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opérée au sein de
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Anne-Laure Fougères Professeure, Université de Lyon 1 Directrice de thèse
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Organiser une cotutelle n’est pas une tâche facile. Raffaella Bruno, Russell
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Résumé

Le comportement extrême joint entre variables aléatoires revêt un intérêt par-

ticulier dans de nombreuses applications allant des sciences de l’environnement

à la gestion du risque. Par exemple, ce comportement joue un rôle central dans

l’évaluation des risques de catastrophes naturelles. Une erreur de spécification

de la dépendance entre des variables aléatoires peut engendrer une sous-estima-

tion dangereuse du risque, en particulier au niveau extrême. Le premier ob-

jectif de cette thèse est de développer des techniques d’inférence pour les cop-

ules Archimax. Ces modèles de dépendance peuvent capturer tout type de

dépendance asymptotique entre les extrêmes et, de manière simultanée, mo-

déliser les risques joints au niveau moyen. Une copule Archimax Cψ,� est car-

actérisée par ses deux paramètres fonctionnels, la fonction de dépendance cau-

dale stable � et le générateur Archimédien ψ qui agit comme une distorsion affec-

tant le régime de dépendance extrême. Des conditions sont dérivées afin que ψ

et � soient identifiables, de sorte qu’une approche d’inférence semi-paramétrique

puisse être développée. Deux estimateurs non paramétriques de � et un esti-

mateur de ψ basé sur les moments, supposant que ce dernier appartient à une

famille paramétrique, sont avancés. Le comportement asymptotique de ces es-

timateurs est ensuite établi sous des hypothèses de régularité non restrictives et

la performance en échantillon fini est évaluée par le biais d’une étude de simula-

tion. Une construction hiérarchique (ou en “clusters”) généralisant les copules

Archimax est proposée afin d’apporter davantage de flexibilité, la rendant plus

adaptée aux applications pratiques. Le comportement extrême de ce nouveau

modèle de dépendance est étudié, ce qui engendre un nouvelle manière de con-

struire des fonctions de dépendance caudale stable. La copule Archimax est

ensuite utilisée pour analyser les maxima mensuels de précipitations observées

à trois stations météorologiques en Bretagne. Le modèle semble très bien ajusté

aux données, aussi bien aux précipitations faibles qu’aux fortes. L’estimateur

non paramétrique de � révèle une dépendance extrême asymétrique entre les sta-

tions, ce qui reflète le déplacement des orages dans la région. Une application

du modèle Archimax hiérarchique à un jeu de données de précipitations con-

tenant 155 stations est ensuite présentée, dans laquelle des groupes de stations



asymptotiquement dépendantes sont déterminés via un algorithme de “clus-

tering” spécifiquement adapté au modèle. Enfin, de possibles méthodes pour

modéliser la dépendance inter-cluster sont évoquées.
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Abstract

In various applications in environmental sciences, finance, insurance or risk

management, joint extremal behavior between random variables is of particular

interest. For example, this plays a central role in assessing risks of natural disas-

ters. Misspecification of the dependence between random variables can lead to

substantial underestimation of risk, especially at extreme levels. This thesis de-

velops inference techniques for Archimax copulas. These copula models can ac-

count for any type of asymptotic dependence between extremes and at the same

time capture joint risks at medium levels. An Archimax copula Cψ,� is charac-

terized by two functional parameters, the stable tail dependence function �, and

the Archimedean generator ψ which acts as a distortion of the extreme-value

dependence model. Conditions under which ψ and � are identifiable are derived

so that a semiparametric approach for inference can be developed. Two non-

parametric estimators of � and a moment-based estimator of ψ, which assumes

that the latter belongs to a parametric family, are proposed. The asymptotic

behavior of the estimators is then established under broad regularity conditions;

performance in small samples is assessed through a comprehensive simulation

study. In the second part of the thesis, Archimax copulas are generalized to a

clustered constructions in order to bring in more flexibility, which is needed in

practical applications. The extremal behavior of this new dependence model

is derived. Finally, the methodology proposed herein is illustrated on precip-

itation data. First, a trivariate Archimax copula is used to analyze monthly

rainfall maxima at three stations in French Brittany. The model is seen to fit

the data very well, both in the lower and in the upper tail. The nonparametric

estimator of � reveals asymmetric extremal dependence between the stations,

which reflects heavy precipitation patterns in the area. An application of the

clustered Archimax model to a precipitation dataset containing 155 stations is

then presented, where groups of asymptotically dependent stations are deter-

mined via a specifically tailored clustering algorithm. Finally, possible ways to

model inter cluster dependence are discussed.
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Chapter 1

Introduction

Extreme environmental events such as floods, heat waves and cold spells can have catas-

trophic effects on the natural world and human society in the form of loss of infrastruc-

ture, capital and life. High precipitation in the province of Quebec has caused devastating

floods when coupled with snow melt during the spring season. In the Cévennes region

of southern France, moisture accumulated on the Mediterranean Sea over the summer is

blown onto the region and trapped on the mountainside. This leads to stationary ex-

treme precipitation events during the Fall season known as “Orages cévenols”, which in

turn cause destructive floods. It is important for public safety to be able to predict the

risks of environmental disasters in order to establish preventive measures.

Extreme value theory had been a growing area of research since the first half of the 20th

century. Developments in the area were first motivated by environmental applications.

The gargantuan Delta Works designed to protect the Netherlands from storm surges

are an excellent example of this. A large amount of infrastructure such as storm surge

barriers, dams and levees were planned and built in the aftermath of the North Sea Flood

of 1953 which devastated the Netherlands, Belgium and England. Nearly 2000 deaths

were reported in the Netherlands alone. The most ambitious part of the Delta Works is

a 9 kilometer long dam called the Oosterscheldekering which was designed to guarantee

the safety of the population of Rotterdam for an event with a return period of 10,000

years (4,000 for Zeeland). Roughly speaking, an event with a return period of 10,000

years is defined as an event exceeding a certain threshold in a year with probability

1/10,000. Such extreme events are difficult to model due to the fact that they are also,

by definition, extremely rare. While traditional statistical problems require modeling the

center (or bulk) of the observed data, we find ourselves needing to model the tails of the

distribution where information is scarce. This issue is especially prevalent in the field of

environmental sciences where measurements of high quality rarely go back very far in time.

How can one determine a 10,000 year return level with, say, 40 years of observations? To

alleviate this fundamental issue, extreme value theory draws on more mathematical tools

than other areas of statistics: stability properties and asymptotic behaviors are sought

1



in order to extrapolate and infer on events which often fall outside the observed range of

the data.

In the case of the North Sea Flood of 1953, on the night of the 31st of January, the

sea level rose more than 5.6 meters above its average value in several locations. At first

glance this event can be seen as a univariate statistical problem where the variable of

interest is simply the sea level anomaly at a given location. However, a storm surge is

caused by a combination of wind, high tide and low sea surface pressure. Moreover, the

fact that we are often interested in quantifying risk at not one but multiple locations

makes the problem all the more multi-dimensional. Indeed, understanding the behavior

of each of the variables individually such as wind speed and pressure won’t paint the whole

picture. A crucial part of analyzing risk in environmental applications is to quantify the

dependence between the variables of interest. The purpose of this thesis is to contribute

to the array of tools available to model multivariate extremes, specifically focusing on

modeling dependence.

The problem of sparsity of extremes is amplified in the context of dependence model-

ing. While the expression “curse of dimensionality” refers to various issues surrounding

high dimensions in statistical learning, it is also partivularly relevant to our setting. To

infer the dependence structure between several random variables, say d of them, one

needs to have a sufficiently large sample in order to adequately fill the d-dimensional

observation space. With extreme values being so few in occurrence, it could seem like

an impossible feat, especially when dealing with hydro-meteorological applications. One

popular approach to this issue is to impose a parametric model on the data which also

greatly facilitates inference since well studied likelihood based methods can be applied

with good quantification of uncertainty. Another solution is dimension reduction, which

has recently garnered interest in the field of extreme value analysis. The idea explored

in this thesis is instead to lower the barrier to what is considered an extreme in order

to retain a larger portion of the dataset at hand. Traditionally, data points are selected

to be extreme enough to apply models that are asymptotically justified, i.e. Generalized

Extreme Value or Generalized Pareto univariate distributions tied together by so-called

extreme-value copulas. Real datasets being finite in size, this is never verified but can be

checked to be a reasonable modeling assumption to make.

Here, the asymptotic modeling assumption is relaxed. The terms subasymptotic (or

pre-asymptotic) can have different meanings, in this thesis the intended definition is that

the data is not deemed “extreme enough” to use asymptotic models. Instead of studying

the class of extreme-value (or max-stable) copulas, the more general Archimax family is

considered. Archimax copulas have the advantage of being particularly flexible. Fore-

most, it is fully flexible in the extreme regime, meaning that any asymptotic dependence

structure can be attained by a subclass of Archimax copulas. The size of the family allows

to simultaneously model dependence at medium levels as well. In fact, other desirable

2



properties such as asymmetry and lower tail dependence are also possible to capture.

While Archimax copulas have been known for some time, lack of proper inference tools

have left the family rarely used in practice. The first goal of this thesis is to develop

inference techniques for this family and evaluate their performance through convergence

results, simulation studies and applications. The second goal is to expand the class to a

hierarchical construction, in order to allow for even more flexible modeling of clustered

data. Indeed, while being able to capture asymptotic dependence is necessary, it can also

be of interest to additionally allow for asymptotic independence. This is possible in the

hierarchical Archimax model, where asymptotic dependence and independence is possible

within and between clusters. Clustering in multivariate extremes finds its use not only

in exploratory data analysis but can also be employed to pool data in a spatial setting

between asymptotically dependent stations.

All preliminary notions needed to understand the original research presented in this

thesis can be found in Chapter 2. Namely, dependence modeling via copulas is presented,

along with the Archimedean, extreme-value and Archimax families. Concepts of weak

convergence for empirical processes are also presented as they are used later in the the-

sis. Essential properties of the Archimax family of copulas, namely identifiability and

smoothness, are elicited in Chapter 3. This chapter verifies that powerful theorems can

be applied to justify the inference tools developed herein, and it is thus often referred to

in statements of important results throughout. Chapter 4 develops a non-parametric esti-

mator for one of the two functional parameters of the Archimax copula, namely the stable

tail dependence function. While not directly applicable to a real dataset, essential results

concerning the asymptotic behavior of the estimation techniques are proved here. Small

sample performance is also assessed via an extensive simulation study, whose detailed

results can be found in Appendix A. Chapter 4 serves as a stepping stone to Chapter 5,

where full inference for Archimax copulas is developed. Indeed, a moment-based proce-

dure is proposed to estimate the other functional parameter, the Archimedean generator.

The nonparametric approach of the previous chapter thus completes the procedure, hence

the title of Chapter 5, “Semiparametric inference for Archimax copulas”. Convergence

results which are involved extensions of those from Chapter 4 are also obtained. Chap-

ter 6 presents a new hierarchical (or clustered) Archimax model which addresses some

shortcomings of the simple Archimax model. This allows to broaden the applications,

while offering interpretability and preserving the strengths of the Archimax copula. The

behavior of the model at the extreme regime is studied and points toward a new way to

build dependence structures for extremes. Applications to real datasets are gathered in

Chapter 7. First, a trivariate precipitation dataset is studied to illustrate the methodol-

ogy developed in Chapter 5. The Archimax approach to assessing joint risk is compared

to other techniques and thanks to a pilot simulation study, it is shown to be advanta-

geous in certain situations. The scope of the dataset is then dramatically broadened from

3



three to over a hundred stations in France. In order to model the precipitation amounts

over this large geographical area, the hierarchical model from Chapter 6 is applied thanks

to a clustering algorithm tailored to it. Finally, Chapter 8 concludes this thesis with a

discussion and possible directions for future work.

En Français
Les événements environnementaux extrêmes tels que les inondations et les vagues de

chaleur ont des effets catastrophiques sur les milieux naturels ainsi que sur la société

humaine en matière de perte d’infrastructure, de capital et de vie. Par exemple, des

précipitations extrêmes au Québec causent des inondations dévastatrices lorsqu’elles sont

combinées aux fontes des neiges printanières. Dans la région des Cévennes en France,

l’humidité accumulée durant l’été à la surface de la mer Méditerranée est acheminée au

dessus de la région par des vents venant du sud, provoquant ainsi des orages stationnaires.

Ces orages, appelés “orages cévenols”, sont connus pour leur conséquences destructrices.

Il est donc important, pour des questions de sécurité publique, de pouvoir prédire les

risques de catastrophes environnementales afin d’établir des mesures de prévention et de

protection.

La théorie des valeurs extrêmes est un domaine de recherche qui connait une forte

croissance depuis la première moitié du vingtième siècle. Ce développement fut princi-

palement motivé par des applications environnementales : le gargantuesque projet Delta

conçu pour protéger les Pays-Bas des inondations maritimes en est un parfait exemple.

Il comprend de nombreuses infrastructures, notamment des barrages, des digues et des

clôtures, planifiées et réalisées suite au raz-de-marée de 1953 en Mer du Nord. Cette

année-là, le raz-de-marée causa la mort d’environ 2000 personnes. La construction la

plus ambitieuse de ce projet est un barrage long de 9 km, appelé Oosterscheldekering.

Il a été pensé pour protéger la population de Rotterdam contre un événement dont la

période de retour est de 10 000 années (4000 années pour la population de la Zélande).

De manière simplifiée, on définit un événement avec une période de retour de 10 000

années par le seuil dépassé, en une année donnée, avec une probabilité de 1/10 000. De

tels événements sont difficiles à modéliser statistiquement dans la mesure où ils sont,

par définition, extrêmement rares. Si les problèmes statistiques traditionnels requièrent

souvent de modéliser le centre des données observées, ici le besoin est plutôt celui de

modéliser les queues des distributions, là où l’information est très peu abondante. Ce

manque d’information est d’autant plus présent dans les applications environnementales

où les séries de mesures de quantités physiques, telles que des débits d’eau, sont souvent

courtes ou de qualité médiocre. Comment déterminer un événement avec une période

de retour de 10 000 années avec seulement 40 années d’observations ? Pour pallier cette

difficulté, la théorie des valeurs extrêmes emprunte de nombreux outils mathématiques en
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comparaison à d’autres domaines de la statistique. En effet, on recherche des propriétés

de stabilité et des comportements asymptotiques afin de pouvoir extrapoler et inférer des

valeurs qui sortent souvent du champ des données observé.

Si on reprend l’exemple du raz-de-marée de 1953, dans la nuit du 31 janvier, le niveau

de la mer s’est élevé de plus de 5,6 mètres au-dessus du niveau moyen, et ceci à plusieurs

endroits le long de la côte Néerlandaise. À première vue, on pourrait croire qu’il s’agit

d’un problème statistique univarié, où la variable d’intérêt est simplement l’anomalie du

niveau de la mer en un lieu donné. Or, les raz-de-marée sont causés par une combinaison

de vent, de haute marée et de basse pression atmosphérique. Ajoutons à cela le fait que,

la plupart du temps, il est nécéssaire d’évaluer le risque en plusieurs lieux différents, il est

évident que le problème en est d’autant plus multidimensionnel. En effet, étudier chaque

variable individuellement ne permettra pas de dresser un portrait complet du phénomène,

c’est pourquoi lors de l’analyse du risque dans les sciences environnementales, il est crucial

de quantifier la dépendance entre les variables d’intérêt. L’objectif de cette thèse est de

contribuer à l’éventail des outils permettant de modéliser les extrêmes multivariés, et

particulièrement la dépendance entre ceux-ci.

La sparsité des valeurs extrêmes est exacerbée dans le contexte multivarié, de fait,

l’expression courante du “fléau de la dimension” est pertinente ici. Afin d’inférer la struc-

ture de dépendance entre plusieurs variables aléatoires, disons d d’entre elles, il nous faut

un échantillon de données suffisamment grand pour couvrir l’espace d’observation à d di-

mensions. Étant donnée la rareté inhérente aux événements extrêmes, ceci peut sembler

être une cause perdue surtout dans le domaine hydrométéorologique, qui, comme nous

l’avons précisé plus tôt, est un domaine qui manque de données. Une approche courante

est d’imposer un modèle paramétrique sur les valeurs extrêmes du jeu de données, ce

qui facilite grandement l’inférence grâce à l’abondance de résultats déjà établis sur les

méthodes d’ajustement par maximum de vraisemblance. Celles-ci permettent une bonne

quantification de l’incertitude, qualité également présente dans les méthodes bayésiennes.

Une autre approche assez populaire aujourd’hui consiste à effectuer une réduction de

dimension. L’idée avancée par cette thèse est plutôt d’élargir la classe d’événements con-

sidérés comme étant extrêmes, afin de conserver une plus grande proportion des données

disponibles. Traditionnellement, on sélectionne les observations suffisamment extrêmes

pour ajuster des modèles asymptotiquement justifiés, tels que des lois de valeurs extrêmes

généralisées, liées par des copules de valeurs extrêmes. Les jeux de données étant finis,

ils ne peuvent jamais être parfaitement décrits par de tels modèles, bien qu’il existe des

méthodes pour vérifier si leur utilisation est judicieuse.

Dans cette thèse, le régime asymptotique n’est pas imposé. L’expression subasymp-

totique (ou pré-asymptotique) a différentes significations, ici, elle indique le fait que les

données ne sont pas suffisamment extrêmes pour employer des modèles asymptotiques.

Nous nous pencherons sur une famille de copules, appelée Archimax, qui généralise les
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copules de valeurs extrêmes communément utilisées dans ce domaine. La classe Archimax

a l’avantage d’être très flexible. D’une part, cette flexibilité est présente dans son com-

portement extrême, puisque n’importe quelle structure de dépendance asymptotique peut

être atteinte par une sous-classe de copules Archimax. D’autre part, la grandeur de cette

famille permet de modéliser de manière simultanée la dépendance à plusieurs niveaux.

De plus, d’autres propriétés désirables, comme l’asymétrie et la présence de dépendance

caudale inférieure, peuvent également être capturées. Bien que cette famille soit con-

nue depuis un certain temps, le manque d’outils d’inférence a limité son utilisation dans

des contextes applicatifs. Le premier objectif de cette thèse est donc de développer des

techniques permettant d’ajuster des lois Archimax et d’en étudier les propriétés à travers

des résultats de convergence, des simulations et des applications à des données réelles.

Le deuxième objectif est d’élargir cette classe de distributions, grâce à une construction

hiérarchique, afin d’apporter plus de flexibilité. Effectivement, bien que la dépendance

asymptotique soit un régime important à modéliser, il est aussi intéressant de capturer

l’indépendance asymptotique. Ceci est rendu possible grâce au modèle hiérarchique pro-

posé par cette thèse. Plus précisément, le modèle permet de lier plusieurs clusters de

variables, avec suffisamment de flexibilité pour permettre à la fois de la dépendance et de

l’indépendance inter et intra-cluster. Ce “clustering” est utile dans un contexte d’analyse

exploratoire des données mais peut également être utilisé plus largement, notamment pour

mettre en commun des variables ayant un comportement extrême semblable.

Toutes les notions préliminaires nécessaires à la compréhension de cette thèse sont

présentées dans le Chapitre 2. Il contient une section sur la modélisation de la dépendance,

présentant ainsi les trois familles de copules importantes pour nous: les Archimédiennes,

celles de valeurs extrêmes et les Archimax. En deuxième partie, le Chapitre 2 développe

le concept de convergence faible pour les processus empiriques, nécessaires aux résultats

théoriques des chapitres suivants. Des propriétés essentielles de régularité sont étudiées

dans le Chapitre 3. Celui-ci permet de vérifier que certains théorèmes fins peuvent

être appliqués aux méthodes développées et ainsi apporter une justification théorique.

Le Chapitre 4 propose une méthode d’estimation non paramétrique pour l’un des deux

paramètres fonctionnels de la copule Archimax, la fonction de dépendance caudale stable.

Bien qu’elle ne puisse pas être directement appliquée à un jeu de données, des résultats

essentiels concernant son comportement asymptotique sont prouvés et sa performance en

échantillon fini est également étudiée et détaillée en Annexe A. Le Chapitre 4 pose les

bases d’une inférence complète pour les copules Archimax que nous développerons dans

le Chapitre 5. En effet, on y trouve une estimation par moments de l’autre paramètre

fonctionnel, le générateur Archimédien. La méthode non paramétrique du Chapitre 4 va

ainsi compléter la procédure d’ajustement, expliquant le titre du Chapitre 5, “Inférence

semi-paramétrique pour copules Archimax”. Nous obtiendrons des résultats de conver-

gence, versions généralisées des résultats du Chapitre 4. Ensuite, le Chapitre 6 propose un
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nouveau modèle Archimax hiérarchique pour combler certaines lacunes du modèle Archi-

max simple. Il permet d’élargir les possibilités d’application en offrant une interprétabilité

intéressante tout en conservant les atouts des copules Archimax. Nous y étudierons le

comportement extrême du modèle et suggérerons une nouvelle méthode pour constru-

ire des structures de dépendance de valeurs extrêmes. Les applications à des jeux de

données réelles se trouvent dans le Chapitre 7. En première partie, un jeu de données

de précipitations trivarié est utilisé pour illustrer la méthodologie développée dans le

Chapitre 5. Ensuite, la modélisation par copule Archimax de risques extrêmes est com-

parée à d’autres techniques courantes grâce à une étude de simulation qui souligne ses

avantages. En deuxième partie, le jeu de données est élargi à plus de cent cinquante

stations météorologiques en France. Le modèle hiérarchique du Chapitre 6 est convoqué,

notamment via un algorithme de clustering adapté, afin de modéliser les précipitations

sur un territoire si grand. Le Chapitre 8 conclut cette thèse par une discussion et des

perspectives de recherche futures.
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Chapter 2

Background

This chapter contains all necessary background information needed to read the chapters

that follow. Section 2.1 treats the subject of copulas, most importantly defining the Archi-

max family in Section 2.1.4 which are studied in depth in this thesis. Section 2.2 defines

the notions relating to weak convergence needed to validate non-parametric approaches

to estimate copulas.

In what follows, vectors in R
d are denoted by boldface letters, viz. x = (x1, . . . , xd).

Binary operations such as x + y or a · x, xa are understood as component-wise opera-

tions. In particular, for any function f : R → R and x ∈ R
d, f(x) denotes the vector

(f(x1), . . . , f(xd)). Furthermore, ‖ · ‖ stands for the �1-norm, viz. ‖x‖ = x1 + · · · + xd.

For any x, y ∈ R, let x ∧ y = min(x, y) and x ∨ y = max(x, y). Finally, Rd
+ is the positive

orthant [0,∞)d and for any x ∈ R, x+ denotes the positive part of x.

2.1 Copulas

A copula is simply a d-dimensional distribution function on the unit hypercube with

uniform margins. A formal definition is given below.

Definition 2.1. A d-dimensional copula is a function C : [0, 1]d → [0, 1] satisfying

(i) C(u1, . . . , ud) = 0 whenever uj = 0 for at least one j ∈ {1, . . . , d}.
(ii) C(u1, . . . , ud) = uj if ui = 1 for all i ∈ {1, . . . , d} and i �= j.

(iii) C is d-nondecreasing on [0, 1]d. That is, for each hyperrectangle R =
∏d

j=1[aj, bj] ⊂
[0, 1]d, the C-volume of R is nonnegative, i.e.

∫
R

dC(u) =
2∑

i1=1

. . .
2∑

id=1

(−1)i1+...+idC(u1i1 , . . . , udid) ≥ 0 ,

where for j ∈ {1, . . . , d}, uj1 = aj and uj2 = bj.

Copulas arose when probabilists were interested in the properties of multivariate dis-

tributions with given marginal distributions. Specifically, given d univariate distributions
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F1, . . . , Fd, how can a d-dimensional distribution F be constructed so that the margins are

precisely F1, . . . , Fd? Standardization of the marginals to a common distribution helps in

isolating the underlying dependence structure. In the case of a continuous real random

vector (X1, . . . , Xd), applying the probability integral transforms component-wise, viz.

(F1(X1), . . . , Fd(Xd)), yields a random vector whose distribution is supported on the unit

hypercube [0, 1]d and has uniform margins. In the following theorem due to Sklar (1959),

the link between F and the marginals F1, . . . , Fd is established via copulas. The result

below is stated for the case of continuous marginals, since extensions to discontinuous

margins are not needed in this thesis. Such extensions can be found, for example, in

Nelsen (2006) and Genest and Nešlehová (2007).

Theorem 2.1. Let d ∈ N, d ≥ 2.

• Let F be a distribution function on R
d with continuous margins F1, . . . , Fd and X =

(X1, . . . , Xd) ∼ F . Then there exists a unique distribution function C on [0, 1]d with

uniform margins, named the copula of X, such that, for all x = (x1, . . . , xd) ∈ R
d,

F (x) = C(F1(x1), . . . , Fd(xd)) ,

and C is defined for all u = (u1, . . . , ud) ∈ [0, 1]d by

C(u) = F (F−11 (u1), . . . , F
−1
d (ud)) ,

where for j ∈ {0, . . . , d}, F−1j (uj) = inf{xj ∈ R : Fj(xj) ≥ uj} for uj ∈ [0, 1].

• Conversely, if F1, . . . , Fd are distribution functions on R, and C is a copula, then F

as given for all x = (x1, . . . , xd) ∈ R
d by

F (x) = C(F1(x1), . . . , Fd(xd))

is a joint distribution on R
d with copula C and marginal distributions F1, . . . , Fd.

The implications of the above theorem for dependence modeling are important. In-

deed, it effectively separates marginal distributions from the underlying dependence struc-

ture characterized by the copula. This means that in practice, marginal effects can be

modeled separately (usually before) modeling the dependence between them. This also

means that given a set of marginal distributions, a variety of joint distributions can be

created by tying them together with copulas. There is a vast amount of literature focusing

on the use of copulas for dependence modeling in multivariate statistical problems. One

can refer to the comprehensive monographs by Joe (2014) and Nelsen (2006). Copulas

have been applied in many fields ranging such as hydrology (see Salvadori et al. (2007)),

risk management (see McNeil et al. (2005)) and finance (see Mai and Scherer (2014) or

Cherubini et al. (2004) for example).
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An analogous theorem links multivariate survival functions to marginal survival func-

tions via survival copulas. Survival copulas, denoted C̄, are also copulas and are often

employed in this thesis. One can refer to Chapter 2.6 in Nelsen (2006) for an overview in

the bivariate case. The following result is also stated in the special case of continuity.

Theorem 2.2. Let d ∈ N, d ≥ 2.

• Let F̄ be a survival function on R
d with continuous marginals F̄1, . . . , F̄d and X =

(X1, . . . , Xd) ∼ F . Then there exists a copula C̄ on [0, 1]d with uniform margins,

named the survival copula of X, such that, for all x = (x1, . . . , xd) ∈ R
d,

F̄ (x) = C̄(F̄1(x1), . . . , F̄d(xd)) ,

and C̄ is defined for all u = (u1, . . . , ud) ∈ [0, 1]d by

C̄(u) = F̄ (F−11 (1− u1), . . . , F
−1
d (1− ud)) .

• Conversely, if F̄1, . . . , F̄d are continuous survival functions on R, and C̄ is a copula,

then F̄ as given for all x = (x1, . . . , xd) ∈ R
d by

F̄ (x) = C̄(F̄1(x1), . . . , F̄d(xd))

is a joint survival function on R
d with survival copula C̄ and margins F̄1, . . . , F̄d.

Suppose that (X1, . . . , Xd) is a random vector with continuous margins F1, . . . , Fd,

copula C and survival copula C̄. Let C̃(u1, . . . , ud) = Pr(F1(X1) > u1, . . . , Fd(Xd) > ud).

The survival copula is related to the copula through the following expression. For all

u ∈ [0, 1]d,

C̄(u) = C̃(1− u1, . . . , 1− ud) ,

where C̃ can be written in terms of C viz.

C̃(u) =
∑

ι1,...,ιd∈{0,1}
(−1)ι1+...+ιdC(u1 ∨ ι1, . . . , ud ∨ ιd) .

Conversely,

C(u) =
∑

ι1,...,ιd∈{0,1}
(−1)ι1+...+ιdC̄(1− u1ι1, . . . , 1− udιd) . (2.1)

The following properties concerning copulas are helpful and used throughout this

thesis. Let C be any d-dimensional copula of a random vector (X1, . . . , Xd). Then,

(A) If X1, . . . , Xd are continuous, then

X1, . . . , Xd are independent ⇐⇒ C(u) = CΠ(u) = u1 . . . ud .
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(B) (Fréchet-Hoeffding bounds) For all u ∈ [0, 1]d,

max{1− d+
d∑
j=1

uj, 0} = W (u) ≤ C(u) ≤ CM(u) = min{u1, . . . , ud} .

(C) C is Lipschitz continuous with respect to the �1 norm. That is, for u,v ∈ [0, 1]d,

|C(u)− C(v)| ≤ ||u− v||1 =
d∑
j=1

|uj − vj| .

(D) Let j ∈ {1, . . . , d}. Then the partial derivative Ċj(u) = ∂C(u)/∂uj exists for all

uj′ ∈ [0, 1] and almost all uj ∈ [0, 1], j′ �= j. Moreover, due to Lipschitz continuity,

0 ≤ Ċj ≤ 1 wherever it exists.

These properties are proved, for example, in the monograph by Nelsen (2006).

Remark 2.1. Note that the upper bound CM in (B) above is a bona fide copula while the

lower bound W is not for d ≥ 3. In the case d = 2, W corresponds to perfect negative

dependence, a concept which is not generalizable to higher dimensions. It is however a

pointwise sharp bound. See Theorems 3.3 and 3.9 in Joe (2014), or Theorems 2.10.12

and 2.10.13 in Nelsen (2006).

2.1.1 Measures of dependence

While copulas paint the whole picture regarding the dependence between several random

variables, it is often of interest to report summarizing measures of dependence. Such

dependence concepts are important to acquire an intuition about joint behavior of random

variables and help communicate results of statistical analysis. In the following, we define

the dependence measures used in this thesis. While generalizations to higher dimensions

exist, they are best understood in the bivariate setting. Examples will be given in the

subsequent sections regarding specific copula families.

Definition 2.2 (Rank correlation). Let X1, X2 be random variables with joint distribution

F and marginal distribution functions F1 and F2. Spearman’s rank correlation is given by

ρS(X1, X2) = ρ(F1(X1), F2(X2)) ,

where ρ is the well-known Pearson’s linear correlation. Let (X1, X2) and (X ′
1, X

′
2) be

two independent realizations from F . Then Kendall’s rank correlation (also called the

coefficient of agreement, see Kendall and Babington Smith (1940)) is defined as

τ(X1, X2) = Pr[(X ′
1 −X1)(X

′
2 −X2) > 0]− Pr[(X ′

1 −X1)(X
′
2 −X2) < 0] .
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These two concepts of correlation avoid many pitfalls of the traditionally used linear

correlation (see the cautionary article by Embrechts et al. (2002) for more details). Most

relevant to this thesis, these measures do not depend on the margins, hence depending

only on the underlying copula C. If the margins are continuous, they take following

integral forms.

ρS(X1, X2) =12

∫ 1

0

∫ 1

0

{C(u1, u2)− u2u2}du1du2 ,

τ(X1, X2) =4

∫ 1

0

∫ 1

0

C(u1, u2)du1du2 − 1 .

This thesis being concerned with modeling at extreme levels, a measure of dependence

which focuses on the tails of joint distributions is of interest. In the following, tail depen-

dence coefficients are defined in the monograph by Joe (2014).

Definition 2.3. Let X1, X2 be random variables with distributions F1 and F2. The

coefficients of upper and lower tail dependence are

λU = lim
q↑1

Pr(F2(X2) > q|F1(X1) > q) , (2.2)

λL = lim
q↓0

Pr(F2(X2) < q|F1(X1) < q) . (2.3)

provided the limits λL, λU ∈ [0, 1] exist. In the case of continuous margins, then noting

that there is a unique copula C such that (F1(X1), F2(X2)) = (U1, U2) ∼ C, λU = 2 −
limq↑1{1− C(q, q)}/(1− q) and λL = limq↓0C(q, q)/q.

The pair (X1, X2) is said to be asymptotically dependent if λU > 0 and asymptotically

independent if λU = 0. Since the case of asymptotic independence is reduced to only one

point of the unit interval, a coefficient which allows to discriminate within this class of

bivariate distributions is needed. Initially proposed by Ledford and Tawn (1996), residual

tail dependence coefficients are introduced.

Definition 2.4. Let X1, X2 be continuous random variables with distributions F1 and F2

and copula C. The residual upper and lower tail dependence indices

ηU = lim
q↑1

log(1− q)

log C̃(q, q)
, ηL = lim

q↓0
log(q)

logC(q, q)
, (2.4)

where C̃(u1, u2) = 1− u1 − u2 + C(u1, u2).

Here, ηU , ηL ∈ [0, 1], with 1 representing asymptotic dependence. Within asymptotic

independence, Ledford and Tawn (1996) identify three types of dependence depending on

where η falls within the unit interval.

Remark 2.2. The two previously defined measures of tail dependence are, by definition,

asymptotic. Functions that capture the penultimate tail behavior are also used, as is the

case in Chapter 7.
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2.1.2 The Archimedean family

Archimedean copulas are a convenient and broadly studied class of copulas with many

applications in areas such as finance and insurance. They are generated by a particular

class of functions called Archimedean generators.

Definition 2.5. A non-increasing and continuous function ψ : [0,∞) → [0, 1] which

satisfies ψ(0) = 1, limx→∞ ψ(x) = 0 and is strictly decreasing on [0, xψ), where xψ =

inf{x : ψ(x) = 0}, is called an Archimedean generator. By convention, ψ(∞) = 0. The

inverse φ : [0, 1] �→ [0,∞] of an Archimedean generator is defined as the inverse of ψ on

(0, 1] and by φ(0) = xψ.

Archimedean copulas take the following form, for u ∈ [0, 1]d and an Archimedean

generator ψ,

Cψ(u1, . . . , ud) = ψ {φ(u1) + · · ·+ φ(ud)} . (2.5)

However, for this to be a copula, the notion of d-monotonicity is needed.

Definition 2.6. An Archimedean generator ψ is called k-monotone, k ∈ N and k ≥ 2, if

it is differentiable on (0,∞) up to the order k−2, the derivatives satisfy (−1)mψ(m)(x) ≥ 0

for all x ∈ (0,∞) and m ∈ {1, . . . , k − 2}, and further if (−1)k−2ψ(k−2) is non-increasing

and convex on (0,∞).

Note that 2-monotone simply means that ψ is convex, and that a d-monotone Archi-

medean generator is also k-monotone for all k ≤ d. McNeil and Nešlehová (2009) show

that a function of the form (2.5) is a copula if and only if the generator ψ is d-monotone.

It is also known that for an Archimedean generator to generate a copula in any dimension,

it must be completely monotone, that is (−1)mψ(m)(x) ≥ 0 for all m ∈ N (see Kimberling

(1974)). As will be explained shortly, the following transform due to Williamson (1956)

is used to produce Archimedean generators from nonnegative random variables.

Definition 2.7. If R is a nonnegative random variable with distribution FR satisfying

FR(0) = 0 and d ≥ 2 is an integer, then the Williamson d-transform of FR is a real

function defined for x ∈ R+ by

WdFR(x) =

∫ ∞

x

(
1− x

r

)d−1
dFR(r) =

{
E
(
1− x

R

)d−1
+

if x > 0

1− FR(0) if x = 0
.

As shown in Proposition 3.1 by McNeil and Nešlehová (2009), the distribution of a

nonnegative random variable is uniquely given by its Williamson d-transform. Moreover,

if f = WdFR, then for x ∈ R+, FR(x) = W−1
d f(x) where

W−1
d f(x) = 1−

d−2∑
k=0

(−1)kxkf (k)(x)

k!
− (−1)(d−1)xd−1f (d−1)

+ (x)

(d− 1)!
. (2.6)
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Table 2.1: Archimedean generators and their dependence measures.
D1 denotes the Debye function (see Chapter 27 from Abramowitz
and Stegun (1964)). (�) corresponds to the analytic form 1 −
4
∑∞

k=1 1/(k(θk + 2)(θ(k − 1) + 2)). (†) indicates that ηU = 1/2 if θ = 1,
and (‡) that ηL = 1/2 if θ = 0.

Family ψθ(x) O τ λU λL ηU ηL

Clayton (1 + θx)−1/θ (0,∞) θ/(θ + 2) 0 2−1/θ 1/2 1(‡)
Frank −(1/θ) log{1 + e−x(e−θ − 1)} R 1− 4/θ(1−D1(θ)) 0 0 1/2 1/2

Gumbel exp(−x1/θ) [1,∞) θ/(θ + 1) 2− 21/θ 0 1(†) 1− 1/θ

Joe 1− {1− e−x}1/θ [1,∞) (	) 2− 21/θ 0 1(†) 1/2

Another important notion in order to elicit the stochastic representation of Archimedean

copulas is the class of �1-norm symmetric distributions. In the following, the unit simplex

is defined as

Δd = {s ∈ R
d
+ : ||s||1 = 1} .

Definition 2.8. A random vector X on R
d
+ follows an �1-norm symmetric distribution if

and only if there exists a nonnegative random variable R independent of Sd where Sd is a

random vector uniformly distributed on the unit simplex so that X permits the stochastic

representation

X
d
= RSd .

All the elements needed for the stochastic representation being defined, Theorem 3.1

from McNeil and Nešlehová (2009) is reproduced below.

Theorem 2.3. (i) Let X have a d-dimensional �1-norm symmetric distribution with

radial distribution FR satisfying FR(0) = 0. Then X has an Archimedean survival

copula with generator ψ = WdFR.

(ii) Let U be distributed according to the d-dimensional Archimedean copula Cψ with

generator ψ (itself having the inverse φ). Then (φ(U1), . . . , φ(Ud)) has an �1-norm

symmetric distribution with survival copula Cψ and radial distribution FR satisfying

FR = W−1
d ψ.

This stochastic representation allows to create a variety of Archimedean copulas and

sample from them. Table 2.1 presents a limited selection of generators and their depen-

dence measures. For a larger variety, one can refer to Table 4.1 from Nelsen (2006) for

example. The tail behavior of Archimedean copulas was extensively studied by Charp-

entier and Segers (2009), Table 2.1 only reports the measures of dependence presented

before.
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2.1.3 The Extreme-Value family

This section introduces the family of extreme-value copulas, which are crucial to the work

presented in this thesis. However, before defining them, important results in univariate

extreme value theory are given. Indeed, these results for univariate random variables are

often called upon in the later chapters of this thesis. Comprehensive books on this subject

include those from Resnick (1987), Coles (2001), Beirlant et al. (2004), Embrechts et al.

(1997) and de Haan and Ferreira (2006).

A natural approach to statistical analysis of extremes, the so-called block-maxima

approach, is to study the distribution of the maximum of n independent and identi-

cally distributed random variables X1, . . . , Xn ∼ F . The variable of interest Mn =

max{X1, . . . , Xn} is often taken over a block size motivated by the specific problem at

hand, and large enough to warrant the use of an extreme distribution. For environmental

applications, yearly or seasonal maxima are often considered. However, as n → ∞ the

distribution of Mn, which is equal to F n, converges to a degenerate limit with point mass

at the upper end-point xF of the support of F , viz xf = sup{x ∈ R : F (x) < 1}. It is

therefore useful to find normalizing sequences an > 0 and bn ∈ R such that for all x,

lim
n→∞

Pr

(
Mn − bn
an

≤ x

)
= G(x) ,

for some non-degenerate distribution G. If the above limit does exist, then F is said

to be in the maximum domain of attraction of G, which is denoted F ∈ M(G) in this

thesis. The possible forms G can take were determined by Fisher and Tippett (1928) and

proved by Gnedenko (1943). Before stating the said theorem, recall the notion of regular

variation.

Definition 2.9. f : R+ �→ R+ is regularly varying with index α ∈ R if and only if for all

t > 0,

f(xt)/f(x) → tα

as x→ ∞, in notation f ∈ Rα.

Theorem 2.4 (Fisher-Tippett-Gnedenko Theorem). Let X1, . . . , Xn be i.i.d. random

variables with distribution F . Let an > 0 and bn ∈ R be sequences such that limn→∞ Pr

((Mn − bn)/an ≤ x) = G(x) for a non-degenerate G and all continuity points x of G.

Then, up to location and scale, for α > 0, G is of one of the following three forms:

(Fréchet) For x ∈ R,

Φα(x) = exp(−x−α)1(x ≥ 0) ,

and F ∈ M(Φα) if and only if for all t > 0,

lim
x→∞

1− F (tx)

1− F (x)
= t−α .

that is, if and only if F̄ ∈ R−α.
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(Gumbel) For x ∈ R,

Λ(x) = exp{− exp(−x)} ,
and F ∈ M(Λ) if and only if for some positive function a, for all t > 0,

lim
x→xF

1− F (x+ ta(x))

1− F (x)
= e−t ,

where xF is the upper end-point of the support of F .

(Weibull) For x ∈ R,

Ψα(x) =

{
exp{−|x|α} if x ≤ 0

1 if x > 0
,

and F ∈ M(Ψα) if and only if xF <∞ and for all t > 0,

lim
x→∞

1− F (xF − {tx}−1)
1− F (xF − {x}−1) = t−α .

For the Gumbel domain of attraction, the function a, called an auxiliary function, is

not unique. It can be chosen to be
∫ x�
x
F̄ (t)/F̄ (x)dt for x < x	. The standard represen-

tation for these three limiting distributions, due to Mises (1936) and Jenkinson (1955), is

as follows.

Definition 2.10 (Generalized Extreme Value (GEV) distribution). For ξ ∈ R, the GEV

distribution is defined for 1 + ξx > 0 by

Hξ(x) =

{
exp{−(1 + ξx)−1/ξ} for ξ �= 0

exp{− exp(−x)} for ξ = 0
.

Clearly, the shape parameter ξ in the above definition corresponds to 1/α in the

previous theorem. GEV distributions are exactly the distributions which are max-stable,

that is, distributions F such that for all n ≥ 2, there exists cn > 0 and dn ∈ R so that

max{X1, . . . , Xn} d
= cnX + dn

where X1, . . . , Xn are independent and identically distributed according to F . See Theo-

rem 3.2.2 in Embrechts et al. (1997) for example.

In the multivariate setting, consider an i.i.d. sample X1, . . . ,Xn from a d-dimensional

distribution F with marginals F1, . . . , Fd. Define the component wise maxima Mjn =

max{Xj1 . . . , Xjn} for j ∈ {1, . . . , d}. Suppose that there exists sequences ajn > 0 and

bjn ∈ R, j ∈ {1, . . . , d}, such that for x = (x1, . . . , xd) ∈ R
d,

(
M1n − b1n

a1n
, . . . ,

Mdn − bdn
adn

)
� G, (2.7)

as n → ∞ for some non-degenerate G where � denotes convergence in distribution. If

this is the case, then these margins are GEV by Theorem 2.4. Moreover, G is called a
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multivariate extreme-value distribution (MEV) and F ∈ M(G). Since the margins are

continuous, Theorem 2.1 guarantees the existence of a unique copula for G. Analogously

to the univariate setting, G must be max-stable, which is the case if and only if its margins

are GEV and its copula C is extreme-value (see Theorem 7.44 in McNeil et al. (2005)).

Theorem 2.5. If (2.7) holds for some G with GEV margins, then the unique copula C

of G must be extreme-value. That is, for all u ∈ [0, 1]d and all t ≥ 0:

C(u) = Ct(u1/t) .

There are many mathematical characterizations of MEV distributions. In this thesis,

the characterization of MEVs by stable tail dependence functions is the most convenient

approach. They were first introduced by Huang (1992).

Definition 2.11. A function � : Rd
+ → R

+ is called a d-variate stable tail dependence

function (stdf) if there exists a finite measure H on the d-dimensional unit simplex Δd

such that for all j ∈ {1, . . . , d}, ∫
Δd
sjdH(s) = 1, and such that for all x ∈ R

d
+,

�(x) =

∫
Δd

max(x1s1, . . . , xdsd)dH(s).

Stable tail dependence functions are fully characterized by Ressel (2013) as follows.

Theorem 2.6. � : Rd
+ → R

+ is a d-variate stdf if and only if

(a) � is homogeneous of degree 1, i.e., for all k > 0 and x1, . . . , xd ∈ [0,∞), �(kx1, . . . , kxd)

= k �(x1, . . . , xd);

(b) �(e1) = · · · = �(ed) = 1 where for j ∈ {1, . . . , d}, ej denotes a vector whose compo-

nents are all 0 except the jth which is equal to 1;

(c) � is fully d-max decreasing, i.e., for any k ∈ N, x1, . . . , xd, h1, . . . , hd ∈ [0,∞) and

J ⊆ {1, . . . , d} with |J | = k,

∑
ι1,...,ιk∈{0,1}

(−1)ι1+···+ιk�(x1 + ι1h111∈J , . . . , xd + ιdhd1d∈J) ≤ 0.

With the notion of stable tail dependence functions, we can now characterize extreme-

value copulas.

Theorem 2.7. A copula C is extreme-value if and only if there exists a stable tail depen-

dence function such that C = C�, where for all u ∈ [0, 1]d

C�(u) = exp{−�(− log u1, . . . ,− log ud)} .
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Another characterization of extreme-value copulas, initially proposed in the bivariate

setting only, relies on the so-called Pickands dependence function denoted A and due to

Pickands (1981). Due to homogeneity (Property (a) in Theorem 2.6), an stdf � is uniquely

determined by its restriction A to the unit simplex via �(x) = ||x||A(x/||x||), x ∈ R
d
+.

For pair of random variables X1, X2 with bivariate extreme-value copula C� = CA, the

Pickands dependence function A is in fact defined on [0, 1] and it is easily shown that

λU(X1, X2) = 2− 2A(1/2) = 2− �(1, 1) , λL(X1, X2) = 0 .

ηU(X1, X2) =

{
1/2 if A(1/2) = 1

1 otherwise
, ηL(X1, X2) = 1/(2A(1/2)) = 1/�(1, 1) .

Note that if A(1/2) = 1, then by convexity A(t) = 1 for all t ∈ [0, 1] so that CA = CΠ.

Moreover, Kendall’s tau has can be written in integral form viz. τ(X1, X2) =
∫ 1

0
{t(1 −

t)/A(t)}dA′(t), as shown by Ghoudi et al. (1998).

Weakening the independence assumption on the convergence to extreme value distri-

butions is of course desirable and still an active area of research today. Leadbetter et al.

(1983) established the so called D(un) and D
′(un) conditions on temporal dependence for

the univariate theory and Hsing (1989); Hüsler (1990) studied the multivariate setting

using beta-mixing (stronger than the alpha-mixing to be introduced in Section 2.2).

We can now state conditions under which F ∈ M(G) and define the so-called copula

domain of attraction.

Theorem 2.8. Let F (x) = C(F1(x1), . . . , Fd(xd)) for continuous marginal distribution

functions F1, . . . , Fd and some copula C. Let G(x) = C0(G1(x1), . . . , Gd(xd))be an MEV

distribution with extreme-value copula C0. Then F ∈ M(G) if and only if Fj ∈ M(Gj)

for j ∈ {1, . . . , d} and for all u ∈ [0, 1]d,

lim
t→∞

Ct(u
1/t
1 , . . . , u

1/t
d ) = C0(u1, . . . , ud) .

Moreover, we say that C is in the copula domain of attraction of C0, written C ∈
CDA(C0).

2.1.4 The Archimax family

The class of so-called Archimax copulas was proposed by Capéraà et al. (2000) in the

bivariate case and extended to higher dimensions by Mesiar and Jágr (2013) and Charp-

entier et al. (2014). The latter are, at any u ∈ [0, 1]d, of the form

Cψ,�(u) = ψ[�{φ(u1), . . . , φ(ud)}], (2.8)

where � is an arbitrary d-variate stdf and ψ : [0,∞) → [0, 1] is an Archimedean generator

with inverse φ, as in Definition 2.5. One can think of the function ψ as distorting the
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extreme-value dependence structure. Indeed, if ψ(x) = e−x, then Cψ,� = C� is an extreme-

value copula.

The density of an Archimax copula cψ,� can be obtained with the application of Faà

di Bruno’s formula, as shown for example by Hofert et al. (2018). It can be written, for

all u ∈ (0, 1)d, as

cψ,�(u) =

{
d∏
j=1

φ′(uj)

}
d∑

k=1

ψ(k)[�{φ(u)}]
∑

π∈Π:|π|=k

∏
B∈π

(DB�){φ(u)} ,

where DB� denotes the partial derivatives of � with respect to the variables in the index

set B and Π denotes the set of all partitions of {1, . . . , d}. We begin with a definition of

several key concepts including Archimax copulas.

Definition 2.12. A d-dimensional copula C is called Archimax if it permits the repre-

sentation (2.8) for some d-variate stdf � and an Archimedean generator ψ with inverse φ

as defined in Definition 2.5.

As the name suggests, the class of Archimax copulas includes both Archimedean and

extreme-value copulas. When � is the stdf pertaining to independence, i.e., �(x) = x1 +

· · ·+ xd for all x ∈ R
d
+, Cψ,� in (2.8) becomes the Archimedean copula Cψ with generator

ψ. When ψ(x) = e−x for any x ≥ 0, Cψ,� reduces to the extreme-value copula C� with

stdf �. An interesting special case arises when � = �M with �M(x) = max(x1, . . . , xd) for

all x ∈ R
d
+. Because φ is strictly decreasing on (0, 1], one has that for all u ∈ [0, 1]d,

Cψ,�M (u) = min(u1, . . . , ud). In other words, Cψ,�M is the Fréchet–Hoeffding upper bound

whatever the generator ψ; this copula characterizes the dependence between comonotonic

variables.

The right-hand side in (2.8) is not a bona fide copula for all choices of Archimedean

generators and d-variate stdfs and d-variate stdf. As proved by Charpentier et al. (2014),

a sufficient condition is that ψ is d-monotone. When �(x) = x1 + · · ·+ xd, i.e., when Cψ,�

is Archimedean, the d-monotonicity of ψ is also necessary as discussed by Malov (2001);

Morillas (2005); McNeil and Nešlehová (2009). However, this condition is not necessary in

general; Example 3.7 of Charpentier et al. (2014) shows that for some stdfs, it suffices that

ψ is k-monotone for some k < d. In fact, ψ can be an arbitrary Archimedean generator

when � = �M .

An Archimax copula can also be defined Cψ,A, i.e. in terms of a Pickands dependence

function instead of an stdf, and expressed, for any u ∈ [0, 1]d, as

Cψ,A(u) = ψ [‖φ(u)‖A {φ(u)/‖φ(u)‖}] . (2.9)

Archimax copulas admit a stochastic representation similar to that of Archimedean

copulas. Let R be a nonnegative random variable, with distribution FR, independent of

Sd, a random vector with survival function defined, for s ∈ R
d
+, by

Pr(S1 > s1, . . . , Sd > sd) = [max{0, 1− �(s)}]d−1 , (2.10)
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where � is a stable tail dependence function. As was the case for Archimedean copulas,

we are interested in the survival copula of vectors of the form

X = RSd = R× (S1, . . . , Sd) , (2.11)

but here S belongs to a larger class of distributions. This stochastic representation is

formally shown in Theorem 3.3 from Charpentier et al. (2014). In this representation, R

can again be interpreted as a distortion variable; when its law is Erlang with parameter d,

Cψ,� = C�.

Theorem 2.9. (i) If (X1, . . . , Xd) is a random vector of the form (2.11), then its sur-

vival copula is the Archimax copula Cψ,�, where ψ is the Williamson d-transform of

FR.

(ii) Let � be a d-variate stable tail dependence function anf ψ be a generator of a d-

dimensional Archimedean copula. Then Cψ,� is the survival copula of a random vector

of the form (2.11), where the distribution function FR is the inverse Williamson d-

transform of ψ.

The Archimax copulas have given extreme-value attractors; Propositions 6.1 and 6.4

from Charpentier et al. (2014), regarding the maximum and minimum domains of attrac-

tion respectively, are reproduced in the following.

Proposition 2.1. Suppose that ψ is a generator of a d-variate Archimedean copula with

1 − ψ(1/·) ∈ R−α for some α ∈ (0, 1]. Then the Archimax copula Cψ,� belongs to the

copula domain of attraction of the extreme-value copula C�α where for all x ∈ R
d
+,

�α(x) = �α(x1/α) .

Equivalently, limn→∞Cn
ψ,�(u

1/n) = C�α(u).

Remark 2.3. It is clear from this result that Archimedean copulas belong to the copula

domain of attraction of the Gumbel (or logistic) family. Indeed as noted earlier, if �(x) =

x1 + · · ·+ xd, then Cψ,� = Cψ and provided 1−ψ(1/·) ∈ R−α, limn→∞Cn
ψ(u

1/n) = C�α(u)

where �α(x) = (x
1/α
1 + · · ·+ x

1/α
d )α, the logistic stable tail dependence function. This was

initially proved by Genest and Rivest (1989).

Suppose X has copula C. To find the minimum domain of attraction of C, the

variable of interest is the component-wise minimum, i.e. W n = (W1n, . . . ,Wdn) where

Wjn = min{Xj1, . . . , Xjn}, j = 1, . . . , d. Using (2.1) and elementary algebra, one has that

for u ∈ (0, 1)d, the copula of W n is as follows:

CWn(u) =
∑

ι1,...,ιd∈{0,1}
(−1)ι1+...+ιdC̄n{(1− ι1v1)

1/n, . . . , (1− ιdvd)
1/n} ,

where C̄ is the survival copula of C. The following proposition by Charpentier et al.

(2014) determines the limit of CWn as n→ ∞ when C is Archimax.
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Proposition 2.2. Suppose that ψ is the generator of a d-variate Archimedean copula with

φ(1/·) ∈ Rα for some α ∈ (0,∞). Then the survival copula of Cψ,�, denoted C̄ψ,�, is in

the copula domain of attraction of D	 defined, for all u ∈ (0, 1)d by

D	(u) =
∑

ι1,...,ιd∈{0,1}
(−1)ι1+...+ιdK(ι1u1, . . . , ιdud) ,

where for arbitrary v1, . . . , vd ∈ [0, 1],

K(v1, . . . , vd) = exp

⎧⎨
⎩−

∑
ι1,...,ιd∈{0,1}

(−1)ι1+...+ιd lnCψ�,�(1− ι1v1, . . . , 1− ιdvd)

⎫⎬
⎭ ,

with ψ	(t) = exp(−t−1/α) for all t > 0. That is, C̄ψ,� ∈ CDA(D	). This is also equivalent

to saying that the Archimax copula Cψ,� belongs to the minimum domain of attraction of

an extreme-value distribution whose unique underlying copula is D	.

It is clear from the two previous propositions that the stable tail dependence func-

tion � of an Archimax copula is the main driver of its extreme behavior. However, the

regular variation of the generator also plays a role. This regular variation translates to

tail behavior of the radial variable R in the stochastic representation in (2.11). Indeed,

Theorem 2 from Larsson and Nešlehová (2011) shows that 1− ψ(1/·) ∈ R−α if and only

if 1/R ∈ M(Φα) for α ∈ (0, 1). Moreover, 1 − ψ(1/·) ∈ R−1 if 1/R is in the maximum

domain of attraction of the Weibull distribution, Gumbel distribution or Fréchet distribu-

tion with α ≥ 1. For the minimum attractor, the condition that φ(1/·) ∈ Rα occurs if and

only if R ∈ M(Φ1/α). Bücher et al. (2019) have linked these indices of regular variation

with the speed of convergence of Archimax copulas to their extreme-value attractor.

2.2 The empirical copula process

This section defines the convergence concepts used later in Chapters 4 and 5. However,

only the essential and necessary elements to understand the derived asymptotic results

are summarized here.

2.2.1 Weak convergence

This section is based on the text by van der Vaart and Wellner (1996), in which one will

find a much deeper view into this area. For a metric space (D, d), let (Pn)
∞
n=1 and P be

Borel probability measures defined on (D,D), where D is a Borel σ-algebra on D. Let

Cb(D) denote the space of bounded, continuous, real functions on D. The sequence Pn is

said to converge weakly to P if and only if for all f ∈ Cb(D),∫
D

fdPn →
∫
D

fdP
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as n → ∞. This is denoted by Pn � P . The equivalent definition of weak convergence

for D-valued random variables (Xn)
∞
n=1 and X is that Xn � X if and only if for all

f ∈ Cb(D) ,

E f(Xn) → E f(X) (2.12)

as n → ∞. Classically, the theory requires that for each n, Pn is defined on the Borel

σ-field D, which is equivalent to saying that Xn is Borel measurable. If D is separable

this condition usually holds but if it is non-separable it can sometimes fail. For example,

it holds for C[0, 1] (the space of continuous functions on [0, 1]) with the supremum norm,

but it fails on D[0, 1] (the Skohorod space of càdlàg functions on [0, 1]) with the supremum

norm.

Pursuing the latter example, let U1, . . . , Un be independent random variables uniformly

distributed on [0, 1]. Now let the empirical distribution function Fn be defined for u ∈ [0, 1]

as

Fn(u) =
1

n

n∑
i=1

1(Ui ≤ u)

and the uniform empirical process, for u ∈ [0, 1], as

Xn(u) =
√
n(Fn(u)− u) .

Both Fn and Xn are maps from [0, 1]n to D[0, 1]. However, neither is Borel measurable

if D[0, 1] is equipped with the supremum norm. Out of all possible solutions to alleviate

this, the monograph from van der Vaart and Wellner (1996) focuses on the notion of outer

expectation and probability as proposed by Hoffman-Jorgensen (1994).

Definition 2.13. Let (Ω,A,P) be a probability space and T : Ω → R̄ an arbitrary map.

• The outer expectation of T with respect to P is defined as

E
	T = inf{EU : U ≥ T, U : Ω → R̄ measurable and EU exists} ,

where EU is understood to exist if E|U | exists.
• The outer probability of any B ⊂ Ω is defined as

P
	(B) = inf{P(A) : A ⊃ B : A ∈ A} .

Inner expectation and probability are then easy to define as well.

Definition 2.14. Let (Ω,A,P) be a probability space and T : Ω → R̄ an arbitrary map.

• The inner expectation of T with respect to P is defined as

E	T = −E
	{−T} ,
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• The inner probability of any B ⊂ Ω is defined as

P	(B) = 1− P
	(Bc) .

We now have the ingredients to define weak convergence for possibly non Borel-

measurable maps.

Definition 2.15. Let Xn : Ωn → D, n ∈ N and X : Ω → D be arbitrary maps from

the probability spaces (Ωn,An,Pn) and (Ω,A,P) respectively. Let X be Borel-measurable.

The sequence Xn converges weakly to X, that is Xn � X, if for any f ∈ Cb(D),

E
	{f(Xn)} → E{f(X)}

as n→ ∞.

Many tools available to the classical concept of weak convergence such as the contin-

uous mapping theorem are available for this concept as well (as shown by van der Vaart

and Wellner (1996)). Inner expectation allows us to define asymptotic measurability and

tightness.

Definition 2.16. Let (Ωn,An,Pn) be arbitrary probability spaces and Xn : Ωn → D be

arbitrary mappings, n ∈ N. The sequence (Xn)
∞
n=1 is asymptotically measurable if and

only if E	{f(Xn)} − E	{f(Xn)} → 0 as n→ ∞ for all f ∈ Cb(D).

Definition 2.17. Let (Ωn,An,Pn) be arbitrary probability spaces and Xn : Ωn → D be

arbitrary mappings, n ∈ N. The sequence (Xn)
∞
n=1 is asymptotically tight if and only if

for any ε > 0, there exists a compact set K ⊂ D such that lim infn→∞ P	(Xn ∈ O) ≥ 1− ε

for any open set O ⊃ K.

The following Lemma 1.3.8 from van der Vaart and Wellner (1996) shows the connec-

tion between weak convergence and asymptotic measurability and tightness.

Lemma 2.1. • If Xn � X as n→ ∞ then (Xn)
∞
n=1 is asymptotically measurable.

• If Xn � X as n→ ∞, then (Xn)
∞
n=1 is asymptotically tight if and only if X is tight.

To get to an intuitive notion of weak convergence using asymptotic tightness, we re-

strict ourselves to spaces of uniformly bounded functions. The following result is proved in

Theorem 1.5.4 from van der Vaart and Wellner (1996). Recall that for an arbitrary domain

S, �∞(S) denotes the space of functions f : S → R such that ||f ||∞ = sups∈S |f(s)| < ∞
equipped with the supremum norm.

Theorem 2.10. Suppose that Xn : Ωn → �∞(S), n ∈ N, are arbitrary maps. Then

Xn � X in �∞(S) if and only if
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• (Xn(s1), . . . , Xn(sk)) converges weakly to (X(s1), . . . , X(sk)) in R
k for any finite sub-

set s1, . . . , sk of S.

• (Xn)
∞
n=1 is asymptotically tight.

Equivalently, the second condition in the above theorem can be replaced by asymptotic

uniform equicontinuity as defined below.

Definition 2.18. Let Xn : Ωn �→ �∞(S), n ∈ N, be arbitrary maps. The collection

(Xn)
∞
n=1 is asymptotically uniformly equicontinuous in probability with respect to a semi-

metric ρ if and only if, for every ε, η > 0 there exists a δ > 0 such that

lim sup
n→∞

P
	( sup
ρ(s,t)<δ

|Xn(s)−Xn(t)| > ε) < η .

2.2.2 The empirical process

The empirical measure of a sample of random variables, as introduced below, is simply a

linear combination of Dirac measures at the observations, each with weight 1/n.

Definition 2.19. Let X1, . . . , Xn be a random sample in the measurable space (X ,A).

The empirical measure of X1, . . . , Xn is defined for any A ∈ A as

Pn(A) =
1

n

n∑
i=1

1(Xi ∈ A) .

For any signed measure Q and a measurable function f : X → R, let Qf =
∫
fdQ.

For a collection F of such measurable functions, an empirical measure Pn induces a map

from F to R by

f �→ Pnf .

Definition 2.20. Let X1, . . . , Xn be a random sample in the measurable space (X ,A)

with common distribution P and F be a collection of measurable functions f : X → R.

The empirical process of X1, . . . , Xn indexed by F is defined as the following rescaled and

centered map

f �→ Gnf =
√
n(Pn − P )f =

1√
n

n∑
i=1

(f(Xi)− Pf) .

The classical empirical process is obtained by simply restricting the sample space X to

be [0, 1], R, [0, 1]d or Rd and F to be the collection of indicator functions of left half-lines

(or lower-left orthants of Rd).

Glivenko-Cantelli and Donsker classes can now be defined. The uniform version of the

law of large numbers becomes

||Pn − P ||F → 0
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as n → ∞, where ||Q||F = sup{|Qf | : f ∈ F} and the convergence is either in outer

probability or outer almost surely. A class F for which this is true is called a P -Glivenko-

Cantelli class. To consider a uniform version of the central limit theorem, one needs to

assume that for all x,

sup
f∈F

|f(x)− Pf | <∞ .

This implies that Gn ∈ �∞(F). Under assumptions on F , one can show that

Gn =
√
n(Pn − P )� G

in �∞(F), for some Borel-measurable and tight limit G ∈ �∞(F). A class of functions F
for which this holds is called P -Donsker. These conditions for F to be P -Donsker, namely

bounded uniform (or bracketing, alternatively) entropy, are discussed in Chapter 2.5 in

van der Vaart and Wellner (1996). Clearly, a Donsker class is also a Glivenko-Cantelli

class but the converse is not always true. Naturally, one would want to know more about

the limiting process G. Firstly, the marginals Gnf converge if and only if f are square-

integrable. If this holds, the multivariate central limit theorem implies that for any finite

set f1, . . . , fk,

(Gnf1, . . . ,Gnfk)� N(0,Σ) ,

where N(0,Σ) is a k-dimensional standard normal distribution whose variance-covariance

matrix Σ has (i, j)-th entry P (fi − Pfi)(fj − Pfj). It follows that {Gf : f ∈ F} is a

zero-mean Gaussian process with covariance

EGf1Gf2 = P (f1 − Pf1)(f2 − Pf2) = Pf1f2 − Pf1Pf2 .

Due to its tightness, Lemma 1.5.3 from van der Vaart and Wellner (1996) ensures that the

distribution of G in �∞(F) is completely determined by the above covariance function. G

is called a P -Brownian bridge (or sheet when the dimension of X is larger than 1).

2.2.3 Weak convergence of the empirical copula process

Now that notions regarding weak convergence and empirical processes are defined, empha-

sis is made on the specific case of the empirical copula process. Let X1, . . . ,Xn be an in-

dependent and identically distributed (i.i.d.) sample from a d-dimensional distribution F

with continuous marginal distribution functions F1, . . . , Fd and unknown copula C. A nat-

ural and non-parametric estimate of each marginal distribution is the so-called empirical

distribution function given for j ∈ {1, . . . , d} and x ∈ R by Fnj(x) = n−1
∑n

i=1 1(Xij ≤ x).

This can be naturally extended to the multivariate setting by letting, for x ∈ R
d,

Fn(x) = n−1
∑n

i=1 1(X i ≤ x). To construct the empirical copula, first define the normal-

ized ranks as follows, for i ∈ {1, . . . , n} and j ∈ {1, . . . , d},

Ûij = nFnj(Xij)/(n+ 1) . (2.13)
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The rank-based empirical copula can now be defined for u ∈ [0, 1]d by

Ĉn(u) =
1

n

n∑
i=1

1(Û i ≤ u) =
1

n

n∑
i=1

d∏
j=1

1(Ûij ≤ uj) . (2.14)

The above is simply the empirical distribution of the renormalized ranks of the observed

data (see results from Rüschendorf (1976) for example). This empirical copula is slightly

different than as first introduced by Deheuvels (1979), for u ∈ [0, 1]d,

Cn(u) = Fn(F
−1
n1 (u1), . . . , F

−1
nd (ud)) . (2.15)

Note that neither expressions (2.15) nor (2.14) is a copula stricto sensu. Also note

that (2.15) and (2.14) are asymptotically equivalent. It is even shown in Lemma 4.6 by

Berghaus et al. (2017) that supu∈[0,1]d |Cn(u)− Ĉn(u)| = op(n
−1/2) for weakly dependent

samples. The empirical copula process is then simply defined for all u ∈ [0, 1]d as

Ĉn(u) =
√
n{Ĉn(u)− C(u)} . (2.16)

Of course, replacing Ĉn by Cn in the above does not change the limit of the process.

This asymptotic behavior has been the subject of many papers over the years. Overall,

smoothness conditions on C have been weakened and convergence results are also now

available under certain serial dependence conditions on X1,X2, . . .. First, the limiting

distribution under independence of the margins was established by Deheuvels (1981a,b).

Weak convergence in the Skorohod space D([0, 1]d) was established by Rüschendorf (1976)

and Gaenssler and Stute (1987), with less restrictive assumptions in the latter. One can

also refer to Example 3.9.29 in van der Vaart and Wellner (1996) for another convergence

result in the Skorohod space restricted to a closed set in the interior of [0, 1]2. Weak

convergence in �∞([0, 1]d) was established by Fermanian et al. (2004) with conditions

on the first order derivatives of C. Convergence rates were proposed by Stute (1984)

and studied by Tsukahara (2000) under assumptions on second order derivatives. These

assumptions were then weakened by Segers (2012). In the work of Bücher and Volgushev

(2013), convergence is established for weak serial dependence of the sample, a much more

realistic condition than serial independence. To allow for broader applications, Berghaus

et al. (2017) proved weak convergence of the empirical process with respected to stronger

weighted metrics. Convergence of the empirical copula process was also studied in the

case where the underlying distributions lack a certain degree of smoothness. Genest

et al. (2017) study the asymptotic behavior of the empirical copula process under broad

conditions that include, for example, discrete margins. Weak convergence with respect

to a metric related to epi- and hypo-convergence is established by Bücher et al. (2014).

The asymptotic behavior of the estimators proposed in this thesis is established thanks

to the work of Berghaus et al. (2017). Firstly, the following notion of asymptotic serial

independence allows to relax serial independence.
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Definition 2.21. For −∞ ≤ a < b ≤ ∞, let F b
a be the σ-field generated by (X i)i∈Z with

i ∈ {a, a + 1, . . . , b}. For k ≥ 1, define α[X](k) = sup{|Pr(A ∩ B) − Pr(A) Pr(B)| : A ∈
F i
−∞, B ∈ F∞

i+k, i ∈ Z} as the alpha-mixing coefficient of (X i)i∈Z. The series is called

alpha-mixing (or strongly mixing) if α[X](k) → 0 as k → ∞.

Next, smoothness assumptions on the true copula C are needed.

Condition 2.1. For l ∈ {1, . . . , d}, let Vd,l = {u ∈ [0, 1]d : ul ∈ (0, 1)}. For each

j ∈ {1, . . . , d}, the partial derivative Ċj given for all u ∈ [0, 1]d by Ċj(u) = ∂C(u)/∂uj

exists and is continuous on the set Vd,j.

For a d-variate copula C, let α be a C-Brownian bridge, i.e., a tight, centered Gaussian

process with covariance function given, for all u,v ∈ [0, 1]d by

cov{α(u), α(v)} =
∑
i∈Z

cov{1(U 0 ≤ u),1(U i ≤ v)} , (2.17)

where U i = (F1(Xi1), . . . , Fd(Xid)). Note that in the case of serial independence, this

covariance function simplifies to cov{α(u), α(v)} = C(u∧ v)−C(u)C(v). Finally, let C

be the process defined, for any u ∈ [0, 1]d, by

C(u) = α(u)−
d∑
j=1

Ċj(u)α(u
(j)) (2.18)

with u(j) = (1, . . . , 1, uj, 1, . . . , 1). For any j ∈ {1, . . . , d} and u ∈ [0, 1]d, if the derivative

∂C(u)/∂uj does not exist, set Ċj(u) = lim suph→0{C(u + hej) − C(u)}. The following

result was proved by Bücher and Ruppert (2013) (Theorem 1).

Theorem 2.11. If Condition 2.1 holds and if (X i)i∈Z are alpha-mixing with α[X](k) =

O(k−a) with a > 1, then Ĉn � C in (�∞([0, 1]d), || · ||∞).

Define the (unobservable) empirical process based on U i = (F1(Xi1), . . . , Fd(Xid)),

i ∈ {1, . . . , n}, for any u ∈ [0, 1]d, by

αn(u) =
√
n{Gn(u)− C(u)} , (2.19)

where Gn(u) = n−1
∑n

i=1 1(U i ≤ u). In the above Theorem, the copula could be esti-

mated by Gn if the margins were known. The limit in that case is simply α without the

extra terms involving the first order partial derivatives. In fact, no assumptions on C and

its derivatives would be needed. As explained by Segers (2012), these extra terms encode

the impact of not knowing the quantiles F−1j and replacing them with their empirical

counterparts. It is not surprising to see how these ‘penalty’ terms depend on the sensitiv-

ity of the copula C to change in the marginals via Ċj. What is surprising however is that

in some cases, ignoring known information about the marginal distributions can lead to
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a better estimation of the copula, as explored in the bivariate case by Genest and Segers

(2010) and in the multivariate case in the upcoming paper from Genest et al. (2019).

The convergence results needed in this thesis required slightly more powerful tools,

which is where the following condition comes into play.

Condition 2.2. For every i, j ∈ {1, . . . , d}, the second-order partial derivative C̈ij given

for all u ∈ [0, 1]d by C̈ij(u) = ∂2C(u)/∂ui∂uj exists and is continuous on the set Vd,j∩Vd,i,
and there exists a constant K > 0 such that for all u ∈ Vd,j ∩ Vd,i,

|C̈ij(u)| ≤ Kmin

[
1

ui(1− ui)
,

1

uj(1− uj)

]
.

This smoothness condition was first proposed by Segers (2012), in which the almost

sure convergence rate elicited by Stute (1984) is recovered. This condition, along with

Condition 2.1 and alpha-mixing, is used to establish the weak convergence of the empirical

copula process with respect to weighted metrics by Berghaus et al. (2017). The proof of the

weak convergence of the estimators derived in this thesis hinge on their result, reproduced

in the following. As alluded to, a weight function is used. For ω > 0, it is defined for

u ∈ [0, 1]d by

gω(u) = min

{
d∧
j=1

uj,
d∧
j=1

(1−min
j′ �=j

uj′)

}ω

. (2.20)

A slight variation preventing the weight function from vanishing is also needed. For

u ∈ [0, 1]d, let

g̃ω(u) = gω(u) + 1(gω(u) = 0) . (2.21)

Theorem 2.12. Suppose that (X i)i∈Z are an alpha-mixing series with α[X](k) = O(k−a)

with a > 1. Suppose that the marginal distributions F1, . . . , Fd are continuous and the

underlying copula C satisfies Conditions 2.1 and 2.2. Then, for any c ∈ (0, 1) and ω ∈
(0, 1/2),

sup
u∈[c/n,1−c/n]d

∣∣∣∣∣Ĉn(u)

gω(u)
− C̄n(u)

gω(u)

∣∣∣∣∣ = op(1) ,

where for u ∈ [0, 1]d,

C̄n(u) = αn(u)−
d∑
j=1

Ċj(u)αn(u
(j)) .

Moreover, C̄n/g̃ω � C/g̃ω in (�∞([0, 1]d), || · ||∞).

The restriction of the supremum in the first result to [c/n, 1− c/n]d is due to the fact

that Ĉn/gω would otherwise be unbounded if the set were to be extended towards the

borders of the unit hypercube.
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Chapter 3

Identifiability and smoothness of the
Archimax family

This chapter establishes properties of Archimax copulas that are needed for the modeling

of real datasets. As shown in Section 2.1.4, this family is characterized by two functional

parameters: the Archimedean generator and the stable tail dependence function. It is

necessary for any inference procedure developed for Archimax copulas to be able to dis-

tinguish these two functions, and as such Section 3.1 explores the conditions under which

the latter are identifiable. The inference tools developed in this thesis are justified by both

simulation studies and theoretical convergence results. For the latter results, regularity

assumptions are often needed in order to use powerful theorems on the asymptotic behav-

ior of empirical copula processes. These assumptions translate to conditions on the two

functional parameters of the Archimax copulas. Such conditions are stated and verified

in Section 3.2.

3.1 Identifiability

In this section, we establish conditions under which � and θ are identifiable when ψ ∈
Ψ = {ψθ, θ ∈ O}. To accomplish this, we first consider two arbitrary d-variate Archimax

copulas C1 = Cψ1,�1 and C2 = Cψ2,�2 whose generators ψ1, ψ2 are not necessarily from a

parametric class. The lemmas below investigate the question whether C1 = C2 implies

that the generators and stdfs are equal.

Lemma 3.1. Suppose that C1 = C2 and ψ1 = ψ2 = ψ. Then �1 = �2.

Proof. For all u ∈ [0, 1]d, �1{φ(u)} = �2{φ(u)}, and since φ is one-to-one, �1(x) = �2(x)

for all x ∈ R
d
+.

Lemma 3.2. Suppose that C1 = C2 and �1 = �2 = � is a d-variate stdf such that � �= �M ,

where for each x ∈ R
d
+, �M(x) = max(x1, . . . , xd). Suppose also that ψ1 and ψ2 are 2-

monotone Archimedean generators. Then there exists a constant c > 0 such that, for all

x ≥ 0, ψ1(x) = ψ2(cx).
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Proof. If �(x) = �M(x) = max{x1, . . . , xd} for all x ∈ R
d
+, then regardless of ψ1 and ψ2,

we have that C1 = C2 = CM , the copula corresponding to the Fréchet-Hoeffding upper

bound.

Now suppose that � �= �M . Then it is clear that Ck �= CM for both k ∈ {1, 2}.
Indeed, fix k ∈ {1, 2}. Note that �(x) > �M(x) for some x ∈ R

d
+. By the homogeneity

of �, there also exists an x ∈ R
d
+ such that 0 < ψk{�(x)} < ψk{�M(x)}. Therefore,

Ck(u) = ψk ◦ �{φk(u)} < ψk ◦ �M{φk(u)} = CM(u) for u = ψk(x). Consequently, there

exists at least one pair i, j ∈ {1, . . . , d}, i < j, such that the bivariate margin of Ck, given,

for all ui, uj ∈ [0, 1], by

C
(ij)
k (ui, uj) := Ck(1, . . . , 1, ui, 1, . . . , 1, uj, 1, . . . , 1)

is not the Fréchet-Hoeffding upper bound copula. Next note that for all ui, uj ∈ [0, 1],

C
(ij)
1 (ui, uj) = ψ1 ◦ �(ij) {φ1(ui), φ1(uj)}

= ψ2 ◦ �(ij) {φ2(ui), φ2(uj)} = C
(ij)
2 (ui, uj),

where �(ij) denotes the bivariate margin of �, given, for all xi, xj ∈ R+, by

�(ij)(xi, xj) = �(0, . . . , 0, xi, 0, . . . , 0, xj, 0, . . . , 0).

Therefore, C
(ij)
k , k ∈ {1, 2} are bivariate Archimax. According to Equation (13) of

Capéraà et al. (2000), they have the following Kendall’s function for w ∈ [0, 1],

Kk(w) = τ�(ij)w + (1− τ�(ij))Kψk
(w),

where τ�(ij) is the Kendall’s tau of the extreme-value copula C�(ij) and Kψk
(w) is the

Kendall’s function of the bivariate Archimedean copula Cψk
. Since �(ij) �= �M , we know

that τ�(ij) < 1 and thus that Kψ1(w) = Kψ2(w). From Genest et al. (2011) and Genest and

Rivest (1993), it follows that Cψ1 = Cψ2 . By the identifiability of Archimedean copulas,

this yields the equality of ψ1 and ψ2 up to scaling (see for example Chapter 4 of Nelsen

(2006)).

The first part of the following lemma is an extension of Theorem 4.5.1 in Nelsen (2006)

and has been shown by Hofert (2008) in the case where ψ is completely monotone. In the

following, for any β ∈ (0, 1], ψβ is defined by ψβ(t) = ψ(tβ) for all t ≥ 0, and �β denotes

�β(x
1/β
1 , . . . , x

1/β
d ) for all x ∈ R

d
+.

Lemma 3.3. (i) Let ψ be a d-monotone Archimedean generator and β ∈ (0, 1]. Then

ψβ is a d-monotone Archimedean generator.

(ii) Let � be a d-variate stdf and β ∈ (0, 1]. Then �β is a d-variate stdf.
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Proof. Proof of part (i). Clearly, ψβ is a continuous and decreasing function such that

ψβ(0) = 1 and ψβ(x) → 0 as x → ∞. Let �β be the logistic stdf given, for all x ∈ R
d
+ by

�β(x1, . . . , xd) = (x
1/β
1 + · · · + x

1/β
d )β. The Archimax copula Cψ,�β , is a bona-fide copula

by Theorem 2.1 of Charpentier et al. (2014). However, it is easily seen that Cψ,�β = Cψβ
,

where Cψβ
is the d-variate Archimedean copula with generator ψβ. By Theorem 2.2 of

McNeil and Nešlehová (2009), ψβ must be d-monotone.

Proof of part (ii). Let ψβ be the generator of the Gumbel copula given, for all x ≥ 0,

by ψβ(x) = e−x
β
. Then ψβ is a completely monotone Archimedean generator and 1 −

ψβ(1/x) ∈ R−β. By Proposition 6.1 of Charpentier et al. (2014), the d-variate Archimax

copula Cψβ ,� is in the maximum domain of attraction of the extreme-value copula with

stdf �β. Consequently, �β is a d-variate stdf, as claimed.

Now suppose that ψ is a d-monotone Archimedean generator and � is an arbitrary

d-variate stdf. By Lemma 3.3, ψβ is a d-monotone Archimedean generator and �β is a d-

variate stdf for some β ∈ (0, 1]. It is then easily seen that the Archimax copulas Cψβ ,� and

Cψ,�β coincide. Thus one cannot expect � to be unique and ψ to be unique up to scaling.

As stated below, however, under a mild regularity condition on ψ, power transformations

of ψ and � are the only possible sources of non-identifiability.

Lemma 3.4. Suppose that �1 �= �M and �2 �= �M are arbitrary d-variate stdfs and ψ1, ψ2

are d-monotone Archimedean generators with the property that for k ∈ {1, 2}, 1−ψk(1/·) ∈
R−1/mk

, with mk ≥ 1. Assuming, without loss of generality, that m1 ≤ m2, Cψ1,�1 = Cψ2,�2

holds iff for all x ∈ R
d
+,

�1(x1, . . . , xd) = �
m1/m2

2 (x
m2/m1

1 , . . . , x
m2/m1

d )

and there exists c > 0 such that, for all t ≥ 0, ψ1(ct
m1/m2) = ψ2(t).

Proof. Proposition 6.1 of Charpentier et al. (2014) implies that, for all k ∈ {1, 2}, that
Cψk,�k is in the maximum domain of attraction of the extreme-value copula with stdf

given, for all x ∈ R
d
+, by �

1/mk

k (xmk). Because Cψ1,�1 = Cψ2,�2 by assumption, this implies

that for all x ∈ R
d
+, it holds that �

1/m1

1 (xm1) = �
1/m2

2 (xm2). Hence, for all x ∈ R
d
+,

�1(x1, . . . , xd) = �
m1/m2

2

(
x
m2/m1

1 , . . . , x
m2/m1

d

)
.

Thus, for all u ∈ [0, 1]d,

Cψ1,�1(u) = ψ1 ◦ �m1/m2

2

[{
ψ−11 (u1)

}m2/m1 , . . . ,
{
ψ−11 (ud)

}m2/m1
]
.

Now set ψ	1(t) = ψ1

(
tm1/m2

)
for t ∈ R+ and note that ψ	1 is a d-montone Archimedean

generator by Lemma 3.3. Therefore, Cψ1,�1 = Cψ�
1 ,�2

= Cψ2,�2 . Given that �2 �= �M by

assumption, the rest of the claim follows from Lemma 3.2.
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Lemma 3.4 allows us to formulate the following main result of this section that de-

lineates the conditions under which an Archimax copula model is identifiable assuming

that the Archimedean generator belongs to a parametric family. Its proof is a direct

consequence of Lemma 3.4.

Proposition 3.1. Let CΨ be a class of d-variate Archimax copulas whose stdfs are arbi-

trary with � �= �M and whose Archimedean generators belong to Ψ = {ψθ, θ ∈ O}, O ⊂ R
p.

Assume also that the following conditions hold:

(i) for all θ ∈ O, 1− ψθ(1/·) ∈ R−1/mθ
, with mθ ≥ 1;

(ii) for all θ ∈ O, c > 0, and β > 0, the function given, for all t ≥ 0 by ψθ(ct
β) is an

element of Ψ if and only if c = β = 1.

Then for any Cψθ,�, Cψθ′ ,�′ ∈ CΨ, Cψθ,� = Cψθ′ ,�′ holds iff � = �′ and θ = θ′.

Condition (i) in Proposition 3.1 returns as Condition 3.1 in Section 4.1, where it

is discussed in detail. As shown by Charpentier and Segers (2009), it holds for many

Archimedean families, including those in Table 4.1 of Nelsen (2006). Condition (ii) is

satisfied by most commonly used one-parameter families of Archimedean generators, e.g.,

the Ali–Mikhail–Haq, Clayton, and Frank models. The only exceptions we could find

are Families 4.2.2, 4.2.4 (Gumbel), 4.2.12, and 4.2.18 in Nelsen (2006), and the outer

power family φ1,β from Theorem 4.5.1 therein. Lack of identifiability is not a concern

for these models, however, because through Lemma 3.4, θ can be absorbed into the stdf

so that the generator ψ of the resulting Archimax model is fixed. For example, for the

Gumbel generator given by ψθ(x) = e−x
1/θ

, and an arbitrary d-variate stdf �, the Archimax

copula Cψθ,� coincides with the Archimax copula Cψ1,�θ , where the Archimedean generator

ψ1(x) = e−x no longer contains any parameters, and �θ(x) = �1/θ(xθ).

3.2 Smoothness

The result in Berghaus et al. (2017) requires smoothness assumptions, namely Condi-

tions 2.1 and 2.2 in the previous chapter. These are the same assumptions that appear in

Segers (2012). We verify that these conditions indeed hold for Archimax copulas under

suitable assumptions on the generator and the stdf, and this is nontrivial. To start, these

said assumptions on ψ and � are stated and discussed.

Condition 3.1. For d ≥ 2, ψ is a d-monotone Archimedean generator and 1−ψ(1/x) ∈
R−1/m for some m ≥ 1.

Condition 3.1, which is equivalent to φ(1− 1/x) ∈ R−m, is very general and satisfied

by virtually all d-monotone Archimedean generators as seen in Charpentier and Segers

(2009); Larsson and Nešlehová (2011). This is because it holds whenever 1/R with R as
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in (2.11), is in the domain of attraction of the Fréchet (Φα), Gumbel (Λ) or Weibull (Ψα)

distributions for some α > 0, in notation 1/R ∈ M(Φα), 1/R ∈ M(Λ) or 1/R ∈ M(Ψα).

Moreover, Condition 3.1 with m = 1 further holds as soon as E(1/R1+ε) < ∞ for some

ε > 0; see Proposition 2 in Belzile and Nešlehová (2017).

Condition 3.2. For d ≥ 2, ψ is a d-monotone Archimedean generator that satisfies either

(a) ψ ∈ R−s for s > 0;

(b) Y ∈ M(Λ), where Y has distribution function 1− ψ;

(c) φ(0) <∞ and ψ(xψ − 1/x) ∈ R−α−d+1 for α > 0.

Most Archimedean generators satisfy Condition 3.2. As shown by Larsson and Nešlehová

(2011), Condition 3.2 (a) holds whenever R in (2.11) is such that R ∈ M(Φs) and is fur-

ther equivalent to φ(1/x) ∈ R1/s. Condition 3.2 (b) is equivalent to 1/ψ being Γ-varying

which is in turn equivalent to φ(1/x) being Π-varying, as defined and proved, e.g., in

Section 0.4.3 in Resnick (1987). It is further shown by Larsson and Nešlehová (2011) that

Condition 3.2 (b) holds whenever R ∈ M(Λ). Finally, Condition 3.2 (c) is equivalent to

R ∈ M(Ψα) and further to {φ(0)− φ(1/x)} ∈ R−1/(α+d−1).

Condition 3.3. For d ≥ 2, � is a d-variate stdf that is twice continuously differentiable

and for which there exists M > 0 such that for any i, j ∈ {1, . . . , d} with i �= j, and for

any x ∈ (0,∞)d,

− ∂2

∂xi∂xj
�(x1, . . . , xd) ≡ −�̈ij(x1, . . . , xd) ≤M

(
1

xi
∧ 1

xj

)
.

Condition 3.3 extends Condition 5.2 in Segers (2012) to the case d > 2. The following

example demonstrates that it is satisfied by the logistic stdf.

Example 3.1. The logistic stdf is given for any x ∈ R
d
+ and θ ≥ 1 by �θ(x1, . . . , xd) =

(xθ1 + . . .+ xθd)
1/θ. It is easily seen that for any x ∈ R

d
+,

−�̈ij(x) = (θ − 1)xθ−1i xθ−1j

(
xθ1 + · · ·+ xθd

)1/θ−2 ≤ (θ − 1)

(
1

xi
∧ 1

xj

)
.

Proposition 3.2 below is the main result of this section, as it delineates the assumptions

under which Conditions 2.1 and 2.2 hold.

Proposition 3.2. Suppose that Cψ,� is a d-variate Archimax copula with Archimedean

generator ψ that is q-monotone for some q ≥ 0 and such that ψ′′ exists and is continuous

on (0,∞). Further assume that Conditions 3.1 and 3.3, and that either Condition 3.2 (a)

is satisfied or Condition 3.2 (b) is satisfied with the additional requirement that − logψ is

concave on (0, xψ). Then Conditions 2.1 and 2.2 are met.
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Remark 3.1. Proposition 3.2 also shows that Condition (4.1) in Segers (2012) holds for

an Archimedean copula Cψ if ψ is q-monotone for some q ≥ 3, ψ′′ exists and is continuous

on (0,∞), Condition 3.1 holds, and either Condition 3.2 (a) is satisfied or Condition 3.2

(b) is satisfied with the additional requirement that − log(ψ) is concave.

The proof of proposition 3.2 requires many auxiliary results that are presented in

Section 3.2.1 below. The result is then proved in two parts, formulated as Propositions 3.3

and 3.4 in Section 3.2.2.

3.2.1 Auxiliary results

Before getting to the main results, some auxiliary results are needed. Let C be a d-

dimensional Archimax copula Cψ,� . With the notation φ(u) = {φ(u1), . . . , φ(ud)}, the
partial derivatives of C can be computed for each i, j ∈ {1, . . . , d}, i �= j, as

Ċi(u) = ψ′ [�{φ(u)}] �̇i{φ(u)}φ′(ui), (3.1)

C̈ij(u) =
(
ψ′′ [�{φ(u)}] �̇i{φ(u)}�̇j{φ(u)}+ ψ′ [�{φ(u)}] �̈ij{φ(u)}

)
(3.2)

× φ′(ui)φ′(uj),

C̈ii(u) =
(
ψ′′ [�{φ(u)}] [�̇i{φ(u)}]2 + ψ′ [�{φ(u)}] �̈ii{φ(u)}

)
(3.3)

× {φ′(ui)}2 + ψ′ [�{φ(u)}] �̇i{φ(u)}φ′′(ui) .

Lemma 3.5. Let � be a d−variate stdf whose first order partial derivatives exist on R
d
+.

Then, for any i ∈ {1, . . . , d} and x ∈ R
d
+, 0 ≤ �̇i(x) ≤ 1 .

Proof. Both inequalities can be derived from the properties (a)–(c) in Theorem 2.6. Fix

i ∈ {1, . . . , d} and x ∈ R
d
+. Since � is fully d-max decreasing, it is increasing in each argu-

ment. This yields the first inequality. To show the second inequality, note that properties

(a) and (b) imply �(0, . . . , 0, xi, 0, . . . , 0) = xi, and hence �̇i(0, . . . , 0, xi, 0, . . . , 0) = 1.

From property (c), it also follows that �̇i is non-increasing in the j-th argument for all

j �= i. Therefore �̇i(x) ≤ �̇i(0, . . . , 0, xi, 0, . . . , 0) = 1.

Lemma 3.6. Let ψ be a d-monotone Archimedean generator for some d ≥ 2 such that ψ′

exists and is continuous on (0,∞) when d = 2. Assume that Conditions 3.1 and 3.2 hold

and let xψ = inf{x ∈ [0,∞) : ψ(x) = 0}. Then the function given for any x ∈ (0, xψ) by

f(x) = ψ(x){1−ψ(x)}/{−xψ′(x)} is continuous on (0, xψ) and has finite limits at 0 and

xψ.
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Proof. Given that the continuity of f is immediate, it suffices to show that its limits at 0

and xψ are finite. Because Condition 3.1 holds,

lim
x→0

f(x) = lim
x→∞

ψ(1/x){1− ψ(1/x)}
(1/x) {−ψ′(1/x)} = m ,

where the last equality follows from Equation (12) of Larsson and Nešlehová (2011).

Turning to the limit of f at xψ, three cases have to be distinguished.

Assume first that Condition 3.2 (a) holds. In this case, xψ = ∞ and Equation (7) of

Larsson and Nešlehová (2011) implies limx→∞ f(x) = 1/s. Next, assume that Condition

3.2 (b) holds. Because the function given for all x ∈ (0, xψ) by ψ(x)/{−ψ′(x)} is an

auxiliary function by the calculations in the proof of Theorem 1 (c) on p. 213 of Larsson

and Nešlehová (2011), limx→xψ f(x) = 0 by Lemma 3.10.1 of Bingham et al. (1989).

Finally, assuming Condition 3.2 (c), xψ <∞ and

lim
x→xψ

f(x) = lim
x→∞

{1− ψ(xψ − 1/x)}ψ(xψ − 1/x)

−ψ′(xψ − 1/x)(xψ − 1/x)

= lim
x→∞

xψ(xψ − 1/x)

−ψ′(xψ − 1/x)

(1/x){1− ψ(xψ − 1/x)}
xψ − 1/x

= 0 ,

since the first ratio in the last expression tends to 1/(α+ d− 1) thanks to Condition 3.2

(c) and the proof of Theorem 1 (b) on p. 211 of Larsson and Nešlehová (2011).

Lemma 3.7. Let ψ be a d-monotone Archimedean generator for some d ≥ 3 such that

ψ′′ exists and is continuous on (0,∞). Assume that Conditions 3.1 and 3.2 hold and

let xψ = inf{x ∈ [0,∞) : ψ(x) = 0}. Then the function given for any x ∈ (0, xψ) by

f(x) = ψ(x){1− ψ(x)}ψ′′(x)/{ψ′(x)}2 is continuous on (0, xψ) and has finite limits at 0

and xψ.

Proof. As in the proof of Lemma 3.6, the continuity of f is immediate and hence it suffices

to show that its limits at 0 and xψ are finite. From Condition 3.1 and Equation (12) of

Larsson and Nešlehová (2011),

lim
x→0

f(x) = lim
x→∞

ψ(1/x){1− ψ(1/x)}(1/x)2ψ′′(1/x)
{−(1/x)ψ′(1/x)}2 = m− 1 ,

Turning to the limit of f at xψ, three cases have to be distinguished.

Assume first that Condition 3.2 (a) holds. In this case, xψ = ∞ and Equation (7) of

Larsson and Nešlehová (2011) implies limx→∞ f(x) = (s+ 1)/s.

Next, assume that Condition 3.2 (b) holds. By the calculations in the proof of Theo-

rem 1 (c) on p. 213 of Larsson and Nešlehová (2011), the functions given for all x ∈ (0, xψ)

by a∗1(x) = ψ(x)/{−ψ′(x)} and a∗2(x) = −ψ′(x)/ψ′′(x) are auxiliary functions that are

asymptotically equivalent to the auxiliary function a of ψ. Consequently, a∗1(x)/a
∗
2(x) → 1

as x→ xψ so that limx→xψ f(x) = 1.
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Finally, assuming Condition 3.2 (c), xψ <∞ and

lim
x→xψ

f(x) = lim
x→∞

ψ(xψ − 1/x)(1/x)2ψ′′(xψ − 1/x)

{−(1/x)ψ′(xψ − 1/x)}2 {1− ψ(xψ − 1/x)}

=
α + d− 2

α + d− 1
,

where the last equality follows from the calculations on p. 211 in the proof of Theorem 1

(b) of Larsson and Nešlehová (2011).

3.2.2 Proof of Proposition 3.2

Proposition 3.2 is an immediate consequence of the following two propositions.

Proposition 3.3. Let C = Cψ,� be a d-variate Archimax copula such that ψ′ exists and

is continuous on (0,∞) when d = 2, and the first order partial derivatives of � exist and

are continuous on R
d
+. Then Condition 2.1 holds.

Proof. Fix j ∈ {1, . . . , d}, u ∈ Vd,j, set x = φ(u) and using (3.1) write

Ċj{ψ(x)} =
ψ′{�(x)}�̇j(x)

ψ′(xj)
.

Because ψ′ > 0 on (0, xψ), and �(x) ≥ xj > 0 on Vd,j, the assumptions imply that

Ċj is continuous on (0, 1]d ∩ Vd,j. If ui → 0 for at least one i �= j, xi → φ(0) and

�(x) → �(x1, . . . , xi−1, φ(0), xi+1, . . . , xd) ≥ φ(0). By Lemma 1 of Williamson (1956),

ψ′(x) → 0 as x → φ(0) and if φ(0) < ∞, ψ′(x) = 0 for x ≥ φ(0). Consequently, as

xi → φ(0), Ċj{ψ(x)} → 0.

Proposition 3.4. Let C = Cψ,� be a d-variate Archimax copula such that ψ is k-monotone

for some k ≥ 3 and ψ′′ exists and is continuous on (0,∞). If Conditions 3.1, 3.2 (a)

and 3.3 hold, or if − log(ψ) is concave and Conditions 3.1, 3.2 (b) and 3.3 hold, then

Condition 2.2 is satisfied.

Proof. For any u ∈ [0, 1]d, set x = φ(u) and for any i, j ∈ {1, . . . , d}, introduce the

following terms:

Tij,1(x) =
ψ′′{�(x)}
ψ′(xi)ψ′(xj)

, Tij,2(x) =
−Mψ′{�(x)}

(xi ∨ xj)ψ′(xi)ψ′(xj) ,

Tii,3(x) =
ψ′{�(x)}ψ′′(xi)

{ψ′(xi)}3 .

By the d-monotonicity of ψ, observe first that for k ∈ {1, 2, 3}, Tij,k ≥ 0. Now let

xψ = inf{x ∈ [0,∞) : ψ(x) = 0}. From (3.2), (3.3), Lemma 3.5, and Condition 3.3 it

follows that for any x ∈ (0, xψ)
d,

|C̈ij{ψ(x)}| ≤ Tij,1(x) + Tij,2(x), |C̈ii{ψ(x)}| ≤ Tii,1(x) + Tii,2(x) + Tii,3(x).
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Next, note that for any i �= j, C̈ij and C̈ii are continuous on (0, 1]d ∩ Vd,i ∩ Vd,j. The

d-monotonicity of ψ and Lemma 1 of Williamson (1956) implies that for k ∈ {1, 2},
ψ(k)(x) → 0 as x → xψ and if xψ < ∞, ψ(k)(x) = 0 for x ≥ xψ. Consequently, for

each k ∈ {1, 2}, Tij,k(x) → 0 as xr → xψ for at least one r �∈ {i, j} and that for each

k ∈ {1, 2, 3}, Tii,k(x) → 0 as xr → xψ for at least one r �= i. This in turn implies that

C̈ij{ψ(x)} → 0 and C̈ii{ψ(x)} → 0 as xr → xψ for at least one r in {1, . . . , d} \ {i, j} and

{1, . . . , d} \ {i}, respectively. Hence for i �= j, C̈ij and C̈ii are continuous on Vd,i ∩ Vd,j.
Now introduce the functions given, for any z1, z2 ∈ (0, xψ), by

T̃1(z1, z2) =
ψ′′{z1 ∨ z2}
ψ′(z1)ψ′(z2)

, T̃2(z1, z2) =
−Mψ′{z1 ∨ z2}

(z1 ∨ z2)ψ′(z1)ψ′(z2) ,

T̃3(z1) =
ψ′{z1}ψ′′(z1)
{ψ′(z1)}3 .

Note first that for k ∈ {1, 2, 3}, T̃k ≥ 0 on its domain. Because (−1)qψ(q) is nonincreasing

on [0,∞) for q ∈ {1, 2} and �(x) ≥ x1 ∨ · · · ∨ xd for any x ∈ R
d
+, one has that for any

i �= j and any x ∈ {φ(u),u ∈ Vd,i ∩ Vd,j} and x ∈ {φ(u),u ∈ Vd,i},

|C̈ij{ψ(x)}| ≤ T̃1(xi, xj) + T̃2(xi, xj)

and |C̈ii{ψ(x)}| ≤ T̃1(xi, xi) + T̃2(xi, xi) + T̃3(xi),

respectively. Note that for k ∈ {1, 2}, the term T̃k is symmetric. To show the inequality

|C̈ij(u)| ≤ Kmin

{
1

ui(1− ui)
,

1

uj(1− uj)

}

it thus suffices to prove that for k ∈ {1, 2}, the function given for all z1, z2 ∈ (0, xψ) by

ψ(z1){1 − ψ(z1)}T̃k(z1, z2) is bounded on (0, xψ)
2, and further that the function given

for all z1 ∈ (0, xψ) by ψ(z1){1 − ψ(z1)}T̃3(z1) is bounded on (0, xψ). First observe that

because −ψ′ is nonincreasing,

ψ(z1){1− ψ(z1)}T̃2(z1, z2) ≤ Mψ(z1){1− ψ(z1)}
−z1ψ′(z1) ,

ψ(z1){1− ψ(z1)}T̃3(z1) ≤ ψ′′(z1)ψ(z1){1− ψ(z1)}
{ψ′(z1)}2 .

The function on the right-hand side in the first and second inequality is bounded on

(0, xψ) by Lemma 3.6 and Lemma 3.7, respectively.

It remains to consider the function T̃1. For all z1, z2 ∈ (0, xψ), denote h(z1, z2) =

ψ(z1){1− ψ(z1)}T̃1(z1, z2). First note that because −ψ′ is decreasing on (0, xψ),

h(z1, z2) ≤ ψ(z1){1− ψ(z1)}
−z1ψ′(z1)

(z1 ∨ z2)ψ′′(z1 ∨ z2)
−ψ′(z1 ∨ z2) = f(z1)g(z1 ∨ z2) , (3.4)
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in terms of f(x) = ψ(x){1 − ψ(x)}/{−xψ′(x)} and g(x) = xψ′′(x)/{−ψ′(x)}. Now f is

bounded on (0, xψ) by Lemma 3.6. Furthermore, g is continuous and because Condition

3.1 holds, it satisfies

lim
x→0

g(x) = lim
x→∞

(1/x)2ψ′′(1/x)
(1/x) {−ψ′(1/x)} = 1− 1/m ,

where the last equality follows from Equation (12) of Larsson and Nešlehová (2011).

Therefore, h is bounded on (0, κ]2 for any κ < xψ. To conclude that h is bounded on

the entire set (0, xψ)
2, two cases have to be distinguished. First, assume that Condition

3.2 (a) holds. In this case, xψ = ∞ and Equation (7) of Larsson and Nešlehová (2011)

implies limx→∞ g(x) = s + 1 and hence the upper bound in (3.4) is bounded on (0, xψ)
2.

Next, assume that Condition 3.2 (b) holds, and that − log(ψ) is concave. In this case, the

upper bound in (3.4) is too crude because g(x) → ∞ as x → xψ. Instead observe that,

because ψ is decreasing,

h(z1, z2) =
ψ(z1 ∨ z2)ψ′′(z1 ∨ z2)

{ψ′(z1 ∨ z2)}2
ψ(z1)

ψ(z1 ∨ z2)
ψ′(z1 ∨ z2)
ψ′(z1 ∧ z2) (3.5)

≤ ψ(z1 ∨ z2)ψ′′(z1 ∨ z2)
{ψ′(z1 ∨ z2)}2

a∗1(z1 ∧ z2)
a∗1(z1 ∨ z2)

,

where for any x ∈ (0, xψ), a
∗
1(x) = ψ(x)/{−ψ′(x)}. From the proof of Lemma 3.7,

ψ(x)ψ′′(x)/{ψ′(x)}2 → 1 as x → xψ. Furthermore, because − log(ψ) is concave, a∗1 is

increasing and hence the upper bound in (3.5) is bounded on (0, xψ)
2 \ (0, κ]2 for any

κ ∈ (0, xψ). Put together, h is bounded on (0, xψ)
2.
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Chapter 4

Estimating � when ψ is known

In this chapter, we introduce two nonparametric estimators of the stdf � of an Archimax

copula Cψ,� under the assumption that the Archimedean generator ψ is known. As stated

in Chapter 3, � is identifiable under this assumption. Recall that � is uniquely determined

by the corresponding Pickands dependence function A, and hence it suffices to estimate

the latter. To see how to proceed, consider a random vector U with distribution Cψ,A

given by (2.9). For any w in the unit simplex Δd, let

ξ(w) = min{φ(U1)/w1, . . . , φ(Ud)/wd}

with φ(Uj)/wj = ∞ when wj = 0 for some j ∈ {1, . . . , d}. Then

Pr {ξ(w) > x} = Cψ,A {ψ(xw)} = ψ {xA (w)} .

If ψ(x) = e−x, ξ(w) is exponential with rate A(w). This leads to Pickands and Capéraà–

Fougères–Genest (CFG) type estimators of A; these estimators are investigated, e.g., in

Pickands (1981); Capéraà et al. (1997); Zhang et al. (2008); Genest and Segers (2009);

Gudendorf and Segers (2011).

Now let Z denote a random variable with survival function ψ, i.e., for all x ≥ 0,

Pr(Z > x) = ψ(x). Then for any w ∈ Δd, ξ(w) has the same distribution as Z/A(w).

One finds in particular that

E{ξ(w)} = E(Z)/A(w), E[log{ξ(w)}] = E(logZ)− log{A(w)}. (4.1)

When ψ is known, so are E(Z) and E(logZ). Provided the latter are finite, (4.1) leads to

the Pickands and CFG-type estimators of A, as explained next.

Let X1, . . . ,Xn be a random sample from a d-variate distribution H with continuous

margins F1, . . . , Fd and an Archimax copula Cψ,A with known ψ and unknown A. When

the margins are unknown, a sample from Cψ,A is unavailable, but as in Genest and Segers

(2009) and Gudendorf and Segers (2012), one can base inference on normalized ranks

given, for all i ∈ {1, . . . , n} and j ∈ {1, . . . , d} by Ûij = nFnj(Xij)/(n + 1), where for
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any j ∈ {1, . . . , d}, Fnj is the empirical distribution function of X1j, . . . , Xnj, as defined

in Equation (2.13). Now, for every w ∈ Δd and i ∈ {1, . . . , n}, let

ξ̂i(w) = min{φ(Ûi1)/w1, . . . , φ(Ûid)/wd}

again with the convention that φ(Ûij)/wj = ∞ when wj = 0. However, note that for any

w ∈ Δd, wj > 0 for at least one j, so that ξ̂i(w) is finite for every i ∈ {1, . . . , n}. Then,

provided that E(Z) exists, the Pickands-type estimator AP
n is defined, for any w ∈ Δd, by

AP
n(w) = nE(Z)

/ n∑
i=1

ξ̂i(w). (4.2)

Similarly, if E(logZ) exists, the CFG-type estimator ACFG
n is defined through

logACFG
n (w) = E logZ − 1

n

n∑
i=1

log ξ̂i(w). (4.3)

If ψ(x) = e−x, then E(Z) = 1 and E(logZ) = −γ, where γ is the Euler–Mascheroni con-

stant, and AP
n and ACFG

n reduce to the rank-based Pickands and CFG estimators studied

by Genest and Segers (2009) in dimension d = 2 and extended to higher dimensions by

Gudendorf and Segers (2012).

In general, AP
n and ACFG

n are not Pickands dependence functions. In order to enforce

the endpoint constraints A(ej) = 1 for j ∈ {1, . . . , d}, introduce

μ̂ =
1

n

n∑
i=1

φ

(
i

n+ 1

)
, ν̂ =

1

n

n∑
i=1

log φ

(
i

n+ 1

)
.

The endpoint-corrected Pickands and CFG-type estimators now arise by replacing E(Z)

by μ̂ in (4.2) and E(logZ) by ν̂ in (4.3), respectively, viz.

AP
n,c(w) = nμ̂

/ n∑
i=1

ξ̂i(w), logACFG
n,c (w) = ν̂ − 1

n

n∑
i=1

log ξ̂i(w). (4.4)

These corrected versions avoid the generally cumbersome computation of E(Z) or E(logZ).

In addition, the following holds, owing to the fact that μ̂ =
∑n

i=1 φ(Ûij)/n and ν̂ =∑n
i=1 log φ(Ûij)/n almost surely for all j ∈ {1, . . . , d}.

Proposition 4.1. For j ∈ {1, . . . , d}, AP
n,c(ej) = 1 and ACFG

n,c (ej) = 1 almost surely.

Moreover, AP
n,c(w) ≥ max(w1, . . . , wd) and A

CFG
n,c (w) ≥ max(w1, . . . , wd) almost surely for

all w ∈ Δd.

Note that when d = 2 and ψ(x) = e−x, AP
n,c is the corrected rank-based Pickands

estimator from Genest and Segers (2009) with end-point correction as by Hall and Tajvidi

(2000).
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4.1 Asymptotic behavior

In this section, we investigate the asymptotic behavior of the Pickands and CFG-type

estimators under the assumption that ψ is known. This section elicits the limiting behavior

of the processes

A
P
n =

√
n
(
AP
n − A

)
and A

CFG
n =

√
n
(
ACFG
n − A

)
. (4.5)

The main ingredients of the proof are then made explicit in Section 4.2.

The following Lemma explains that under Conditions 3.1 and 3.2 studied in Section 3.2

of the previous chapter, the Pickands and CFG-type estimators are indeed well-defined

and have the same limiting behavior as their end-point corrected versions.

Lemma 4.1. (i) Suppose that ψ is differentiable on (0,∞) and satisfies either Condi-

tion 3.2 (a) with s > 1, (b) or (c). Then E(Z) <∞ and μ̂→ E(Z) as n→ ∞.

(ii) Suppose that ψ is differentiable on (0,∞) and satisfies Conditions 3.1 and 3.2. Then

E(logZ) <∞ and ν̂ → E(logZ) as n→ ∞.

Proof. For part (i), note that Condition 3.2 (a) with s > 1 is equivalent to Z ∈ M(Φs)

with s > 1. Similarly, Condition 3.2 (b) is equivalent to Z ∈ M(Λ), and Condition 3.2 (c)

implies that Z is bounded from above. In either case, E(Z) < ∞, see, e.g., Chapter 3 of

Embrechts et al. (1997). Before showing that μ̂ → E(Z) as n → ∞, note that for any

positive random variable with finite expectation and a differentiable survival function F̄ ,

integrating by parts and a change of variable yields∫ ∞

0

F̄ (t)dt =

∫ 1

0

(
F̄
)−1

(s)ds (4.6)

given that limt→∞ tF̄ (t) = limt→0 tF̄ (t) = 0. Eq. (4.6) then gives∫ 1

0

φ(s)ds =

∫ ∞

0

ψ(t)dt = E(Z) <∞,

and hence μ̂→ E(Z) as n→ ∞, as claimed.

To show part (ii), write

E(logZ) = E{log(Z ∨ 1)}+ E{log(Z ∧ 1)} = E{log(Z ∨ 1)} − E{log(1/Z ∨ 1)} .
When Condition 3.2 holds, Z is in the domain of attraction of either the Fréchet, the

Gumbel or the Weibull distributions. In either case, E{log(Z ∨ 1)} < ∞; see Corollary

3.3.32 and Examples 3.3.33 and 3.3.34 of Embrechts et al. (1997). Furthermore, given

that 1−ψ(1/x) is the survival function of 1/Z, Condition 3.1 implies that 1/Z ∈ M(Φ1/m)

and hence E{log(1/Z ∨ 1)} < ∞ again using Example 3.3.33 of Embrechts et al. (1997).

As in part (i), ν̂ → E(logZ) as n→ ∞ then follows directly from

E(logZ) =

∫ ∞

0

ψ{exp(t)}dt =
∫ 1

0

log{φ(s)}ds <∞,

which holds by Eq. (4.6) given that ψ(et) is the survival function of logZ.
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Theorems 4.1 and 4.2 below respectively specify the limiting behavior of the processes

A
CFG
n and A

P
n defined in (4.5). These convergence results require an alpha-mixing (see

Definition 2.21) sequence of random variables with a time-invariant Archimax copula.

This allows to forgo independence for a form of asymptotic independence in time.

Beforehand, note that the interior of the unit simplex is

Δ̊d = {w ∈ [0, 1]d : w1 + · · ·+ wd = 1, w(1) > 0},

where w(1) = min(w1, . . . , wd). To simplify notation, write, for any x ∈ R
d
+, ψ(x) =

(ψ(x1), . . . , ψ(xd)). Furthermore, for any compact subset K of Δ̊d, let C(K) denote the

space of continuous functions on K equipped with the supremum norm. For a d-variate

copula C, let α be a C-Brownian bridge as defined in Chapter 2, (see Equation (2.17))

and recall the definition of the corresponding process C from Equation (2.18).

Theorem 4.1. Suppose that X1,X2, . . . is a stationary, alpha-mixing sequence with

α[X](k) = O(ak), as k → ∞, for some a ∈ (0, 1). Suppose that the marginals of the

stationary distribution are continuous and the corresponding copula C = Cψ,� = Cψ,A

is Archimax and follows the assumptions of Proposition 3.2. Then for any compact set

K ⊂ Δ̊d, A
CFG
n � A

CFG as n→ ∞ in C(K), where for any w ∈ Δ̊d,

A
CFG(w) = A(w)

∫ 1

0

C[ψ{−w log(u)}] du

u log u
.

Theorem 4.2. Under the assumptions of Theorem 4.1 and the requirement that s > 2

when Condition 3.2 (a) holds, one has that, for any compact set K ⊂ Δ̊d, A
P
n � A

P as

n→ ∞ in C(K), where for any w ∈ Δ̊d,

A
P(w) =

−A2(w)

E(Z)

∫ 1

0

C[ψ{−w log(u)}] du
u
.

First observe that the conditions of Theorem 4.2 are stronger than those of Theo-

rem 4.1; this was further investigated in Chapter 3. Also note that the generator given,

for all x ≥ 0, by ψ(x) = e−x is completely monotone and satisfies Conditions 3.1 and 3.2

(b) and is such that − log(ψ) is linear. Hence, Theorems 4.1 and 4.2 remain valid in the

special case when C is an extreme-value copula. Finally, note that because of Lemma 4.1,

the asymptotic behavior of the endpoint corrected versions of the CFG and Pickands-type

estimators is the same, as stated below.

Corollary 4.1. Theorems 4.1 and 4.2 also hold when A
CFG
n and A

P
n are respectively re-

placed by A
CFG
n,c =

√
n (ACFG

n,c − A) and A
P
n,c =

√
n (AP

n,c − A).
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4.2 Proofs of Theorems 4.1 and 4.2

In this section, Theorems 4.1 and 4.2 are proved. To ease the reading, the main ar-

guments are presented in Section 4.2.1. As will be seen therein, the proofs hinge on

Proposition 4.2. Auxiliary results are then gathered in Section 4.2.2, with Proposition 4.2

being subsequently proved in two parts in Sections 4.2.3 and 4.2.4.

4.2.1 Outline of the main arguments

To establish weak convergence of ACFG
n and A

P
n , the weak convergence of the empirical

copula process with respect to weighted metrics established by Berghaus et al. (2017) is

used. The result, Theorem 2.2 in said paper, is also reported in Chapter 2 as Theorem 2.12.

Following Genest and Segers (2009), we introduce the processes defined, for any w ∈
Δd, by

B
CFG
n (w) =

√
n
{
logACFG

n (w)− logA(w)
}
,

B
P
n(w) =

√
n
{
1/AP

n(w)− 1/A(w)
}
.

The next lemma establishes that these processes are functionals of the empirical copula

process previously defined in (2.16) by Ĉn(u) =
√
n {Ĉn(u) − C(u)} for any u ∈ [0, 1]d,

where Ĉn(u) = n−1
∑n

i=1

∏d
j=1 1(Ûij ≤ uj) denotes the rank-based empirical copula de-

fined in (2.14) via the pseudo-observations Ûij as specified in (2.13).

Lemma 4.2. Fix an arbitrary w ∈ Δd. Then, provided E(logZ) exists,

B
CFG
n (w) =

∫ 1

0

Ĉn[ψ{−w log(u)}] du

u log u
.

Furthermore, provided E(Z) exists,

B
P
n(w) =

1

E(Z)

∫ 1

0

Ĉn[ψ{−w log(u)}] du
u
.
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Proof. Using the fact that log(t) =
∫∞
0

{�(x ≤ t)− �(x ≤ 1)}x−1dx, for w ∈ Δd, write

B
CFG
n (w) = −√

n

{
−E logZ +

1

n

n∑
i=1

log ξ̂i(w) + E logZ − E log ξ(w)

}

= −√
n

(
1

n

n∑
i=1

∫ ∞

0

[
�{x ≤ ξ̂i(w)} − �{x ≤ 1}

] dx
x

− E

∫ ∞

0

[�{x ≤ ξ(w)} − �{x ≤ 1}] dx
x

)

= −√
n

(∫ ∞

0

[
1

n

n∑
i=1

�{x ≤ ξ̂i(w)} − �{x ≤ 1}
]
dx

x

−
∫ ∞

0

[P{x ≤ ξ(w)} − �{x ≤ 1}] dx
x

)

= −√
n

∫ ∞

0

[
1

n

n∑
i=1

�{Ûi1 ≤ ψ(w1x), . . . , Ûid ≤ ψ(wdx)}

− P {Ui1 ≤ ψ(w1x), . . . , Uid ≤ ψ(wdx)}
]
dx

x

= −
∫ ∞

0

√
n
[
Ĉn{ψ(wx)} − C{ψ(wx)}

] dx
x

=

∫ 1

0

Ĉn[ψ{−w log(u)}] du

u log u
.

Similarly, for the Pickands-type estimator, for w ∈ Δd,

B
P
n(w) =

√
n

{∑n
i=1 ξ̂i(w)

nE(Z)
− A(w)

E(Z)

}

=

√
n

E(Z)

∫ ∞

0

[
1

n

n∑
i=1

�{ξ̂i(w) ≥ x}dx− E{ξ(w)}
]
dx

=

√
n

E(Z)

∫ ∞

0

[
1

n

n∑
i=1

�{ξ̂i(w) ≥ x} − P{ξ(w) > x}
]
dx

=
1

E(Z)

∫ ∞

0

√
n
[
Ĉn{ψ(wx)} − C{ψ(wx)}

]
dx

=
1

E(Z)

∫ 1

0

Ĉn[ψ{−w log(u)}]du
u
.

Recall that the required existence of the expectations E(logZ) and E(Z) is treated

in Lemma 4.1 and is satisfied under the assumptions of Theorems 4.1 and 4.2, respec-

tively. Weak convergence of BCFG
n and B

P
n is established next. The proof is provided in

Sections 4.2.3 and 4.2.4.

Proposition 4.2. Let K be any compact subset of Δ̊d.
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(a) Under the assumptions of Theorem 4.1, BCFG
n � B

CFG as n → ∞ in C(K), where

for any w ∈ Δ̊d,

B
CFG(w) =

∫ 1

0

C[ψ{−w log(u)}] du

u log u
.

(b) Under the assumptions of Theorem 4.2, BP
n � B

P as n→ ∞ in C(K), where for any

w ∈ Δ̊d,

B
P(w) =

1

E(Z)

∫ 1

0

C[ψ{−w log(u)}] du
u
.

The validity of Theorem 4.1 now follows directly from Proposition 4.2 (a) and Theorem

3.9.4 of van der Vaart and Wellner (1996), given that the map η : C(K) → C(K) defined by

η(f) = exp(f) is Hadamard differentiable. Similarly, Theorem 4.2 is a direct consequence

of Proposition 4.2 (b) and Slutsky’s Lemma, as for any w ∈ Δd,

A
P
n(w) =

−A2
B

P
n(w)

1 + n−1/2A(w)BP
n(w)

.

Remark 4.1. Theorems 4.1 and 4.2 can in fact be shown to hold for any compact subset

K of Δ∗
d = {w ∈ [0, 1]d : w1 + · · · + wd = 1, w(d) < 1}, where w(d) = max(w1, . . . , wd).

Such sets allow for several components of w to be equal to zero. Proposition 4.2 can be

proved as follows. Let K be any compact subset of Δ∗
d. For any w = (w1, . . . , wd) ∈ K, let

w	 be the subvector consisting of its non-zero components. Thus w	 is a d	-dimensional

vector, with d	 ≤ d, and

B
CFG
n (w) = −

∫ ∞

0

Ĉ
	
n{ψ(w	x)}dx

x
, BP

n(w) =
1

E(Z)

∫ ∞

0

Ĉ
	
n{ψ(w	x)}dx,

where Ĉ
	
n =

√
n (Ĉ	

n − C	). Note that C	 = Cψ,�� has the same Archimedean generator ψ

as C, and the marginal stdf �	 defined as the original � with zero arguments corresponding

to the zeros of w. It is then possible to find K ∈ N such that K ⊂ B1/K = {w ∈ [0, 1]d :

w1 + · · · + wd = 1, w	(1) ≥ 1/K}, where w	(1) = min{wj : wj > 0}. The rest of the proof

is identical to that of Proposition 4.2. Extending the weak convergence to the entire unit

simplex Δd would require a different approach, and it remains to be seen whether such an

extension is possible at all.

4.2.2 Auxiliary results

In the following, lemmas that are used in the proof of Proposition 4.2 are stated and

proved.

Lemma 4.3. Suppose that ψ is a 2-monotone Archimedean generator. Then for any

K ∈ N and c ∈ (0, 1/K), there exists NK ∈ N so that for all n ≥ NK,

ψ
{
Kφ

(
1− c

n

)}
>

n

n+ 1
.
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Proof. Let NK be such that for all n ≥ NK , c < n/{K(n+1)}. Fix an arbitrary n ≥ NK

and define, for all x ≥ 0, ψL(x) = max(1 − x, 0) and observe that ψL is a 2-monotone

Archimedean generator with inverse given, for all x ∈ [0, 1], by φL(x) = 1− x. Because ψ

is convex, the function f = φL ◦ψ on [0,∞) is concave and such that f(0) = 1−ψ(0) = 0.

From Lemma 4.4.3 of Nelsen (2006), f is subadditive. The latter property means that for

all x, y ∈ [0,∞), f(x + y) ≤ f(x) + f(y). Successive application of this inequality yields

that for all x ∈ [0,∞),

f(Kx) ≤ Kf(x).

Because ψL is non-increasing, applying it on both sides gives ψL ◦ f(Kx) ≥ ψL{Kf(x)}.
Given that ψL ◦ f = ψ one has, upon setting x = φ(1− c/n),

ψ
{
Kφ

(
1− c

n

)}
≥ ψL

{
KφL

(
1− c

n

)}
= max

(
1− Kc

n
, 0

)
= 1− Kc

n
,

where the last equality follows from the fact that Kc < 1 by assumption. Clearly, 1 −
(Kc/n) > n/(n+ 1) given that c < n/{K(n+ 1)}.

Lemma 4.4. (i) If Condition 3.2 holds, then for any ω ∈ (0, 1/2) and a ∈ (0, xψ),∫ xψ
a

{ψ(x)}ω/x dx is finite.

(ii) If Condition 3.2 (a) holds with s > 2, then for any ω ∈ (1/s, 1/2) and any a > 0,∫∞
a
{ψ(x)}ωdx is finite.

(iii) If Condition 2 (b) or (c) holds, then for any ω ∈ (0, 1/2) and any a ∈ (0, xψ),∫ xψ
a

{ψ(x)}ωdx is finite.

Proof. (i) If Condition 3.2 (a) holds, xψ = ∞ and the integrand has index of regular

variation −sω − 1 < −1; the integral is thus finite by Karamata’s Theorem (Embrechts

et al., 1997, Theorem A3.6). If Condition 3.2 (b) holds and xψ = ∞, then ψ is rapidly

varying and the result follows from Theorem A3.12 (a) of Embrechts et al. (1997). If

Condition 3.2 (b) holds and xψ < ∞ or Condition (c) is satisfied, then xψ < ∞ and the

integrand is bounded on [a, xψ].

(ii) Given that the integrand is regularly varying with index −sω < −1, the result follows

from Karamata’s Theorem, as in (i).

(iii) In this case, the result follows from Theorem A3.12 (a) of Embrechts et al. (1997) if

Condition 3.2 (b) holds and xψ = ∞, and from fact that xψ <∞ otherwise.

Lemma 4.5. (i) If Condition 3.2 holds, then for any c ∈ (0, 1),

lim
n→∞

√
n

∫ xψ

φ(c/n)

ψ(x)

x
dx = 0 .

(ii) If either Condition 3.2 (a) with s > 2, (b) or (c) holds, then for any c ∈ (0, 1),

lim
n→∞

√
n

∫ xψ

φ(c/n)

ψ(x)dx = 0 .
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(iii) If Condition 3.1 holds, then for any c ∈ (0, 1) and � ∈ {1, 2},

lim
n→∞

√
n

∫ ∞

1/{Kφ(1−c/n)}

1− ψ (1/x)

x�
dx = 0.

Proof. (i) If Condition 3.2 (a) holds, xψ = ∞. By Karamata’s Theorem the integral is a

regularly varying function of φ(c/n) with index −s. For some slowly varying function L,

√
n

∫ ∞

φ(c/n)

ψ(x)

x
dx =

√
n {φ(c/n)}−s L {φ(c/n)} .

Due to the regular variation of φ at zero, there exists a slowly varying function L∗ such

that

√
n {φ(c/n)}−s L {φ(c/n)} =

√
n
{
(n/c)1/sL∗(n/c)

}−s
L {φ(c/n)} (4.7)

which may be written as (c/
√
n)L†(n), where L†(n) = L∗(n/c)−sL{φ(c/n)} is a slowly

varying function of n, see, e.g., Proposition 0.8 (iv) of Resnick (1987). Consequently, the

left-hand side of (4.7) converges to zero as n→ ∞.

If Condition 3.2 (b) holds and xψ = ∞, Theorem A3.12 (b) of Embrechts et al. (1997)

implies that

lim
n→∞

n

c

∫ ∞

φ(c/n)

ψ(x)

x
dx = 0,

from which the result follows at once. Finally, if Condition 3.2 (b) holds and xψ < ∞
or if Condition 3.2 (c) is satisfied, xψ < ∞ and ψ(x) = 0 for all x ≥ xψ. Because ψ is

decreasing,

√
n

∫ xψ

φ(c/n)

ψ(x)

x
dx ≤ √

n

∫ xψ

φ(c/n)

ψ {φ(c/n)}
x

dx =
log xψ − log{φ(c/n)}√

n/c
.

Clearly, the last expression converges to zero as n→ ∞.

(ii) If Condition 3.2 (a) holds with s > 2, xψ = ∞ and one can argue as in the proof of

(i) using Karamata’s Theorem that

√
n

∫ ∞

bn

ψ(x)dx = n1/2+1/s−1L††(n),

where L†† is slowly varying. Since 1/2+1/s−1 < 0, the right-hand side converges to 0 as

n → ∞. If Condition 3.2 (b) holds and xψ = ∞, Theorem A3.12 (b) of Embrechts et al.

(1997) and the fact that φ(1/x) is slowly varying (Bingham et al., 1989, Theorem 2.4.7)

imply that

lim
n→∞

√
n

∫ ∞

φ(c/n)

ψ(x)dx = lim
n→∞

cφ(c/n)√
n

∫∞
φ(c/n)

ψ(t)dt

(c/n)φ(c/n)
= 0 .

If Condition 3.2 (b) holds and xψ < ∞ or Condition 3.2 (c) is satisfied, then xψ < ∞.

Consequently,

√
n

∫ xψ

φ(c/n)

ψ(x)dx ≤ √
n(c/n){xψ − φ(c/n)} ;
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the last expression clearly converges to zero as n→ ∞.

(iii) Because for sufficiently large n,

0 ≤ √
n

∫ ∞

1/{Kφ(1−c/n)}

1− ψ (1/x)

x2
dx ≤ √

n

∫ ∞

1/{Kφ(1−c/n)}

1− ψ (1/x)

x
dx,

it suffices to consider the case � = 1. Karamata’s Theorem implies that there exists a

slowly varying function L1 such that

√
n

∫ ∞

1/{Kφ(1−c/n)}

1− ψ (1/x)

x
dx

=
√
n
{
Kφ

(
1− c

n

)} 1
m
L1

[{
Kφ

(
1− c

n

)}−1]
.

Because φ(1 − 1/x) is regularly varying with index −m, there exists a slowly varying

function L2 such that

√
n
{
Kφ

(
1− c

n

)} 1
m
L1

[{
Kφ

(
1− c

n

)}−1]

=
√
n
{
K(n/c)−mL2(n/c)

} 1
m L1

[{
Kφ

(
1− c

n

)}−1]
= n−1/2L3(n),

where L3(x) = cK1/mL2(x/c)
1/mL1[{Kφ (1− c/x)}−1]. As L3 is slowly varying (Resnick,

1987, Proposition 0.8 (iv)), n−1/2L3(n) → 0 as n→ ∞.

Remark 4.2. It emerges from the proofs of Lemma 4.4 and 4.5 that these results remain

valid if instead of Condition 3.2 (b) or (c), ψ satisfies the weaker condition that either

xψ < ∞, or that xψ = ∞ and ψ is rapidly varying as defined, e.g., on p. 83 in Bingham

et al. (1989).

4.2.3 Proof of Proposition 4.2 (a)

Let K be a compact subset of Δ̊d. For an arbitrary w ∈ Δd, set w(1) = mini=1,...,dwi and

w(d) = maxi=1,...,dwi. Define, for any k ∈ N, the set B1/k = {w ∈ Δd : w(1) ≥ 1/k }. Since
K is compact, there exists an integer K > 1 such that K ⊂ B1/K ⊂ Δ̊d. Next, pick an

arbitrary c ∈ (0, 1/K1/m) with m from Condition 3.1, and define

an = φ
(
1− c

n

)
, bn = φ

( c
n

)
. (4.8)

By Lemma 4.3 and because c < 1, there exists NK ∈ N so that for any n ≥ NK ,

c <
n

n+ 1
and ψ

{
Kφ

(
1− c

n

)}
>

n

n+ 1
. (4.9)

Next, for any i ≥ 1 and j ∈ {1, . . . , d}, let Uij = Fj(Xij) and set U i = (Ui1, . . . , Uid).

Recall from Chapter 2 that the empirical copula and empirical copula process pertain-

ing to the unobservable sequence U 1, . . . ,Un are given for any u ∈ [0, 1]d, by Gn(u) =
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1
n

∑n
i=1

∏d
j=1 1(Uij ≤ uj) and αn(u) =

√
n {Gn(u)− C(u)} respectively (see

Equation (2.19)). Recall also from Chapter 2, Theorem 2.12, the process defined at

any u ∈ [0, 1]d by C̄n(u) = αn(u)−
∑d

j=1 Ċj(u)αn(u
(j)).

Before proceeding, recall that for any x ∈ R
d
+, ψ(x) = (ψ(x1), . . . , ψ(xd)) and note

the following lemma.

Lemma 4.6. As n → ∞, sup
w∈B1/K

∫ xψ/w(d)

0
|C̄n{ψ(wx)} − Ĉn{ψ(wx)}|dxx converges in

probability to 0.

Proof. Using triangle inequality and an, bn as in (4.8), write, for any w ∈ B1/K ,∫ xψ/w(d)

0

|C̄n{ψ(wx)} − Ĉn{ψ(wx)}|dx
x

≤
5∑
j=1

Ij(w),

where

I1(w) =

∫ bn/w(d)

an/w(1)

∣∣∣Ĉn{ψ(wx)} − C̄n{ψ(wx)}
∣∣∣ dx
x
,

I2(w) =

∫ an/w(1)

0

∣∣∣Ĉn{ψ(wx)}
∣∣∣ dx
x
,

I3(w) =

∫ xψ/w(d)

bn/w(d)

∣∣∣Ĉn{ψ(wx)}
∣∣∣ dx
x
, I4(w) =

∫ an/w(1)

0

∣∣C̄n{ψ(wx)}
∣∣ dx
x
,

I5(w) =

∫ xψ/w(d)

bn/w(d)

∣∣C̄n{ψ(wx)}
∣∣ dx
x
.

In the sequel, we show that for any p ∈ {1, . . . , 5}, supw∈B1/K
Ip(w) → 0 in probability as

n→ ∞.

Treatment of I1. Fix an arbitrary w ∈ B1/K and introduce, for any ω ∈ (0, 1/2), the

weight function gω from Theorem 2.2 in Berghaus et al. (2017) reported in (2.20). The

latter is given at any u ∈ [0, 1]d by

gω(u) = min

[
d∧
i=1

uj,
d∧
i=1

{
1− min

j=1,...,d
(u1, . . . , uj−1, uj+1, . . . , ud)

}]ω
. (4.10)

Because an/w(1) < x < bn/w(d) implies that, for all j ∈ {1, . . . , d}, c/n < ψ(wjx) <

1− c/n, one has

I1(w) =

∫ bn/w(d)

an/w(1)

∣∣∣∣∣Ĉn{ψ(wx)}
gω{ψ(wx)} − C̄n{ψ(wx)}

gω{ψ(wx)}

∣∣∣∣∣ gω{ψ(wx)}x
dx

≤ Sn

∫ xψ/w(d)

0

gω{ψ(wx)}
x

dx,

where

Sn = sup
u∈[c/n,1−c/n]d

∣∣∣∣∣Ĉn(u)

gω(u)
− C̄n(u)

gω(u)

∣∣∣∣∣ . (4.11)
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By the first part of Theorem 2.12, Sn converges to 0 in probability as n → ∞. The

conditions of the latter Theorem are indeed fulfilled because of Proposition 3.2. To con-

clude that supw∈B1/K
I1(w) → 0 in probability as n → ∞, it thus suffices to show that∫ xψ/w(d)

0
gω{ψ(wx)}

x
dx is finite. To this end, note that because ψ is decreasing,

gω{ψ(wx)} ≤ [min{ψ(xw1), . . . , ψ(xwd)}]ω = {ψ(w(d)x)}ω (4.12)

and that, since wj ≤ 1 for all j ∈ {1, . . . , d},

gω{ψ(wx)} ≤ [1−min{ψ(xw1), . . . , ψ(xwd)}]ω = {1− ψ(w(d)x)}ω . (4.13)

Choosing an arbitrary a ∈ (0, xψ), one then has

∫ xψ/w(d)

0

gω{ψ(wx)}
x

dx ≤
∫ a/w(d)

0

{1− ψ(w(d)x)}ω
x

dx (4.14)

+

∫ xψ/w(d)

a/w(d)

{ψ(w(d)x)}ω
x

dx = I11 + I12 <∞,

where

I11 =

∫ ∞

1/a

{1− ψ (1/x)}ω
x

dx, I12 =

∫ xψ

a

{ψ(x)}ω
x

dx. (4.15)

Indeed, under Condition 3.1, I11 is finite by Karamata’s Theorem, since the integrand has

index of regular variation −mω − 1 which is strictly less than −1. Finally, I12 is finite

under Condition 3.2 by Lemma 4.4 (i).

Treatment of I2. Without loss of generality, suppose that n ≥ NK so that (4.9) holds.

Fix an arbitrary w ∈ B1/K and observe that from the definition of B1/K one has, for any

x ∈ (0, an/w(1)) and j ∈ {1, . . . , d},

wjx ≤ wj
w(1)

φ
(
1− c

n

)
≤ Kφ

(
1− c

n

)
.

This and (4.9) imply that

ψ(wjx) ≥ ψ {Kφ(1− c/n)} > n

n+ 1
.

Consequently, for any x ∈ (0, an/w(1)), Ĉn{ψ(wx)} = 1. Using (2.8), one thus has

I2(w) =
√
n

∫ an/w(1)

0

[1− C{ψ(wx)}]dx
x

=
√
n

∫ an/w(1)

0

1− ψ{�(wx)}
x

dx.

Because for any x > 0, �(wx) = x�(w), �(w) ≤ 1, and w(1) ≥ 1/K one further has that

I2(w) ≤ √
n

∫ ∞

w(1)/an

1− ψ (1/x)

x
dx ≤ √

n

∫ ∞

1/(Kan)

1− ψ (1/x)

x
dx .

The last term in the above inequality is independent of w and converges to 0 as n → ∞
by Lemma 4.5 (iii).
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Treatment of I3. Without loss of generality, suppose that n ≥ NK so that (4.9) holds.

Fix an arbitrary w ∈ B1/K and observe that if x ≥ bn/w(d), ψ(xw(d)) ≤ c/n < 1/(n + 1)

and consequently Ĉn{ψ(wx)} = 0. Thus

I3(w) =
√
n

∫ xψ/w(d)

bn/w(d)

C{ψ(wx)}dx
x

≤ √
n

∫ xψ/w(d)

bn/w(d)

ψ(w(d)x)

x
dx =

√
n

∫ xψ

bn

ψ(x)

x
dx .

The last term in the above inequality is independent of w and converges to 0 as n → ∞
by Lemma 4.5 (i).

Treatment of I4. Recall the second weight function g̃ω from Berghaus et al. (2017) repro-

duced in (2.21). Fix an arbitrary w ∈ B1/K , let

Zn = sup
u∈[0,1]d

∣∣∣∣C̄n(u)

g̃ω(u)

∣∣∣∣ (4.16)

and observe that

I4(w) =

∫ an/w(1)

0

∣∣∣∣C̄n{ψ(wx)}
g̃ω{ψ(wx)}

∣∣∣∣ g̃ω{ψ(wx)}x
dx ≤

∫ an/w(1)

0

Zn
g̃ω{ψ(wx)}

x
dx

≤ Zn

∫ Kan

0

g̃ω{ψ(wx)}
x

dx.

Given that Zn � supu∈[0,1]d |C(u)/g̃ω(u)| as n→ ∞ by Theorem 2.12, it suffices to prove

that ∫ Kan

0

g̃ω{ψ(wx)}
x

dx

converges uniformly to 0 as n→ ∞. To this end, note that gω(u) = 0 occurs either when

at least one component of u is equal to 0 or at least d − 1 components are equal to 1.

Given that an → 0 as n→ ∞, one thus has, for sufficiently large n,∫ Kan

0

g̃ω{ψ(wx)}
x

dx =

∫ Kan

0

gω{ψ(wx)}
x

dx.

Using (4.13), the integral on the right-hand side can be bounded above by

∫ Kan/w(d)

0

gω{ψ(wx)}
x

dx ≤
∫ Kan/w(d)

0

{1− ψ(w(d)x)}ω
x

dx

=

∫ ∞

1/(Kan)

{1− ψ (1/x)}ω
x

dx .

The last expression converges to 0 as n → ∞, given that it is bounded above by I11

in (4.14), which is finite, and given that an → 0 as n→ ∞.

Treatment of I5. Let g̃ω be as in the preceding paragraph concerning I4. Fix an arbitrary

w ∈ B1/K and note that, using (4.12) and performing a change of variable,

I5(w) ≤ Zn

∫ xψ/w(d)

bn/w(d)

g̃ω{ψ(wx)}
x

dx = Zn

∫ xψ/w(d)

bn/w(d)

gω{ψ(wx)}
x

dx

≤ Zn

∫ xψ

bn

{ψ(x)}ω
x

dx.
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The claim follows since
∫ xψ
bn

{ψ(x)}ω
x

dx→ 0 as n→ ∞ by Lemma 4.4 (i) given that bn → xψ

as n→ ∞.

Returning to the proof of Proposition 4.2 (a), fix an arbitrary w ∈ B1/K and observe

that from Lemma 4.2 and the fact that Ĉn{ψ(wx)} = C{ψ(wx)} = 0 whenever x >

xψ/w(d),

B
CFG
n (w) = −

∫ xψ/w(d)

0

Ĉn{ψ(wx)}dx
x
.

Now introduce the process B̄CFG
n given, for any w ∈ Δd, by

B̄
CFG
n (w) = −

∫ xψ/w(d)

0

C̄n{ψ(wx)}dx
x
.

From Lemma 4.6, it follows that supw∈B1/K
|BCFG

n (w) − B̄
CFG
n (w)| converges to zero in

probability. It thus remains to show that B̄CFG
n � B

CFG in C(B1/K) as n→ ∞. To do so,

consider the map

Γ :
(
�∞([0, 1]d), || · ||g̃ω

) �−→ (
�∞(B1/K), || · ||∞

)
(4.17)

f �−→
{

w �→ −
∫ xψ/w(d)

0

f{ψ(wx)}dx
x

}
,

where ||f ||g̃ω = supu∈[0,1]d |f(u)/g̃ω(u)|. Let f1, f2 be arbitrary functions in (�∞([0, 1]d),

|| · ||g̃ω). Then

sup
w∈B1/K

|Γ(f1)− Γ(f2)| = sup
w∈B1/K

∣∣∣∣∣−
∫ xψ/w(d)

0

f1{ψ(wx)} − f2{ψ(wx)}
g̃ω{ψ(wx)}

g̃ω{ψ(wx)}
x

dx

∣∣∣∣∣
≤ sup
w∈B1/K

∣∣∣∣∣
∫ xψ/w(d)

0

||f1 − f2||g̃ω
g̃ω{ψ(wx)}

x
dx

∣∣∣∣∣
≤ ||f1 − f2||g̃ω(I11 + I12),

where the last inequality follows from (4.14). The map Γ is thus Lipschitz. Theorem 2.12

and the Continuous Mapping Theorem then imply that B̄CFG
n = Γ(C̄n)� Γ(C) = B

CFG as

n→ ∞ weakly in �∞(B1/K). Since B
CFG has continuous paths on B1/K , the convergence

takes place on C(B1/K).

4.2.4 Proof of Proposition 4.2 (b)

The proof of Proposition 4.2 (b) is similar to the proof of part (a) detailed in Section 4.2.3.

For the sake of brevity, only the differences are pointed out.

Let K be a compact subset of Δ̊d. Let B1/K and c be as in Section 4.2.3 and an, bn

as in (4.8). Furthermore, assume without loss of generality that n is sufficiently large so

that (4.9) holds. Finally, recall the weight function gω given in (4.10) for some arbitrary

fixed ω ∈ (0, 1/2); if Condition 3.2 (a) holds, ω ∈ (0, 1/2) must in addition be such that

sω > 1. The following result is the analogue of Lemma 4.6.
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Lemma 4.7. As n → ∞, sup
w∈B1/K

∫ xψ/w(d)

0
|C̄n{ψ(wx)} − Ĉn{ψ(wx)}|dx converges in

probability to 0.

Proof. Fix an arbitrary w ∈ B1/K . Then

∫ xψ/w(d)

0

|C̄n{ψ(wx)} − Ĉn{ψ(wx)}|dx ≤
5∑
j=1

Ij(w),

where

I1(w) =

∫ bn/w(d)

an/w(1)

∣∣∣Ĉn{ψ(wx)} − C̄n{ψ(wx)}
∣∣∣ dx ,

I2(w) =

∫ an/w(1)

0

∣∣∣Ĉn{ψ(wx)}
∣∣∣ dx,

I3(w) =

∫ xψ/w(d)

bn/w(d)

∣∣∣Ĉn{ψ(wx)}
∣∣∣ dx, I4(w) =

∫ an/w(1)

0

∣∣C̄n{ψ(wx)}
∣∣ dx,

I5(w) =

∫ xψ/w(d)

bn/w(d)

∣∣C̄n{ψ(wx)}
∣∣ dx.

To prove the claim, we show that for any p ∈ {1 . . . , 5},
supw∈B1/K

Ip(w) → 0 in probability as n→ ∞.

Treatment of I1. Define Sn as in (4.11) and observe that

I1(w) ≤ Sn

∫ bn/w(d)

an/w(1)

gω{ψ(wx)}dx ≤ Sn

∫ xψ/w(d)

0

gω{ψ(wx)}dx .

For an arbitrary a ∈ (0, xψ) one further has, using (4.12) and (4.13) and the fact that

w(d) ≥ 1/d,

∫ xψ/w(d)

0

gω{ψ(wx)}dx ≤ d

∫ a

0

{1− ψ(x)}ωdx+ d

∫ xψ

a

ψ(x)ωdx. (4.18)

The upper bound in the preceding display is finite; this follows from Lemma 4.4 (ii)–(iii)

and the fact that {1 − ψ(x)}ω is bounded on [0, a]. Given that Sn converges to 0 in

probability as n → ∞ by Theorem 2.12, supw∈B1/K
I1(w) → 0 in probability as n → ∞,

as claimed.

Treatment of I2. Fix an arbitrary w ∈ B1/K . Using the same arguments as in the

paragraph concerning the treatment of I2 in the proof of Lemma 4.6, one has that

I2(w) ≤ √
n

∫ an/w(1)

0

{1− ψ(x)}dx ≤
√
n

w(1)

φ(1− c/n) ≤ K
√
nφ(1− c/n) .

Given that
√
xφ(1− c/x) is regularly varying of index 1/2−m < 0, the expression on the

right-hand side converges to 0 as n→ ∞.

53



Treatment of I3. Fix an arbitrary w ∈ B1/K . Using the same arguments as in the

paragraph concerning the treatment of I3 in the proof of Lemma 4.6 and the fact that

w(d) ≥ 1/d, one has that I3(w) ≤ d
√
n
∫ xψ
bn
ψ(x)dx. The upper bound converges to 0 as

n→ ∞ by Lemma 4.5 (ii).

Treatment of I4. Fix an arbitrary w ∈ B1/K . Arguing as in the paragraph concerning the

treatment of I4 in the proof of Lemma 4.6 and using the fact that w(d) ≥ 1/d one has that

I4(w) ≤ Zn

∫ Kan

0

gω{ψ(wx)}dx ≤ Znd

∫ Kan

0

{1− ψ(x)}ωdx .

The upper bound converges in probability to 0 as n → ∞, given that Zn converges in

distribution by Theorem 2.12, and
∫ Kan
0

{1−ψ(x)}ωdx→ 0 as n→ ∞, given that an → 0

as n→ ∞.

Treatment of I5. Fix an arbitrary w ∈ B1/K . Arguing as in the paragraph concerning the

treatment of I5 in the proof of Lemma 4.6, one has that

I5(w) ≤ Znd

∫ xψ

bn

{ψ(x)}ωdx .

As in the preceding paragraph, the claim follows from the fact that∫ xψ
bn
ψ(x)dx→ 0 as n→ ∞ given that bn → xψ as n→ ∞.

Returning to the proof of Proposition 4.2 (b), introduce the process B̄
P
n given, for all

w ∈ Δd, by

B̄
P
n(w) =

1

E(Z)

∫ xψ/w(d)

0

C̄n{ψ(wx)}dx .

From Lemma 4.2 one has that

B
P
n(w) =

1

E(Z)

∫ xψ/x(d)

0

Ĉn{ψ(wx)}dx ,

and Lemma 4.7 implies that supw∈B1/K
|BP

n(w) − B̄
P
n(w)| → 0 in probability as n → ∞.

As in the proof of Proposition 4.2 (b), one can establish that B̄
P
n � B

P as n → ∞ in

C(B1/K) using Theorem 2.12 and the Continuous Mapping Theorem featuring the map

Γ :
(
�∞([0, 1]d), || · ||g̃ω

) �−→ (
�∞(B1/K), || · ||∞

)
f �−→

{
w �→

∫ xψ/w(d)

0

f{ψ(wx)}dx
}
,

which is easily shown to be Lipschitz.
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Table 4.1: Archimedean generators and stdfs used in the simulation study in
Section 4.3.

Archimedean generators

Family ψθ(x) O Cond. 3.1 Cond. 3.2

Clayton (1 + θx)−1/θ (0,∞) � (m = 1) � (a; s = 1/θ)
Frank −(1/θ) log{1 + e−x(e−θ − 1)} R � (m = 1) � (b)

Gumbel exp(−x1/θ) [1,∞) � (m = θ) � (b)

Joe 1− {1− e−x}1/θ [1,∞) � (m = θ) � (b)

Stable tail dependence functions

Family �(x1, . . . , xd) Parameters

LG (x�1 + . . .+ x�d)
1
� � ∈ [1,∞)

NSD
Γ(α1+···+αd−ρ)
Γ(α1+···+αd)

E
{

max
1≤j≤d

(xjD
−ρ
j Γ(αj)

Γ(αj−ρ)

)}
(D1, . . . , Dd) ∼ Dirichlet(α1, . . . , αd)

α1, . . . , αd > 0, ρ ∈ (0,min(α1, . . . , αd))
DSM d

∑
w∈W max(x1w1, . . . , xdwd) W is a finite subset of Δd with cardinality m

given in (A.1)–(A.3) in Appendix A

4.3 Simulation study

We investigate the performance of the endpoint-corrected estimators defined in (4.4)

through simulations using R package simsalapar by Hofert and Maechler (2016). The

design is as follows: (i) dimension d ∈ {2, 4, 10}; (ii) sample size n ∈ {200, 500, 1000};
(iii) Archimedean generator from the Clayton, Gumbel, Frank and Joe families (see, for

example, Nelsen (2006)); (iv) stdf from the following families: Logistic (LG), scaled neg-

ative extremal Dirichlet (NSD) of Belzile and Nešlehová (2017), and discrete spectral

measure (DSM) of Fougères et al. (2013). The definition of these models may be found

in Table 4.1.

The parameters of the Archimedean generator and the stdf were chosen as to cover

various scenarios in terms of association, lower/upper tail dependence, and asymmetry.

We also intentionally challenge Conditions 3.1–3.3 to explore the robustness of the conver-

gence results. For the sake of brevity, we present the main conclusions of this simulation

study and provide representative illustrations; the complete results are available in Ap-

pendix A. To evaluate the performance of the estimators, the integrated squared error

(ISE) and integrated relative absolute error (IRAE) defined below were used.

ISE(An) =
1

|Δd|
∫
Δd

{An(w)− A(w)}2 dw, (4.19)

IRAE(An) =
1

|Δd|
∫
Δd

|An(w)− A(w)|
A(w)

dw.

ISE and IRAE were computed using Monte Carlo integration with 10,000 uniformly dis-

tributed samples on Δd. For each scenario, 1000 Monte Carlo replicates were deemed

sufficient to capture the behavior of ISE and IRAE.
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Figure 4.1: Boxplots of IRAE(An,c) (left) and ISE(An,c) (right) for the Pickands (blue)
and CFG (red) type estimators for n = 200, d = 4, various Archimedean generators with
τ(ψ) = 1/5 and the NSD stdf with parameters α = (1, 2, 3, 4), ρ = 0.59.

Additionally, the finite-sample behavior of the estimators is compared to that of

the asymptotic limits obtained in Section 4.1. Observe that from Theorems 4.1–4.2,

varACFG(w) and varAP(w) are respectively given by

{A(w)}2
∫ 1

0

∫ 1

0

cov (C[ψ{−w log(u)}],C[ψ{−w log(v)}]) du

u log u

dv

v log v
,

{A(w)}4
{E(Z)}2

∫ 1

0

∫ 1

0

cov (C[ψ{−w log(u)}],C[ψ{−w log(v)}]) du
u

dv

v
,

whenever w ∈ Δ̊d. Plots of these asymptotic variances are provided in Figures 4.2 and

and corroborate the conclusions drawn from the simulations. They are shown for d = 2

as functions of w ∈ (0, 1), where w = (w, 1− w).

4.3.1 Comparisons between the Pickands and the CFG-type es-
timators

We first compared the Pickands and the CFG-type estimators in various scenarios; the

results are reported in Tables A1–A6 in Appendix A. Figure 4.1 is representative of the

overall pattern, namely that the CFG-type estimator performs better on average both in

terms of ISE and IRAE. The superiority of the CFG-type estimator is further supported

by Figure 4.2, which shows that in the bivariate case, varACFG(w, 1− w) is smaller than

varAP(w, 1−w) for any w ∈ (0, 1). This is in agreement with Genest and Segers (2009),

who observed a similar behavior of the asymptotic variance of the CFG and the Pickands

estimator in the bivariate case. In higher dimensions however, the Pickands estimator

can sometimes outperform the CFG estimator, although the differences in IRAE and ISE

are small; see, e.g., Table A.5 for d = 10, small values of τ(ψ), and the Frank, Gumbel

and Joe generators. Figure 4.1 also shows that IRAE is more revealing than ISE, and we

concentrate on the former henceforth.
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Figure 4.2: Plots of varACFG(t) (dashed) and varAP(t) (dotted) for bivariate Archimax
copulas with LG stdf with parameter � = 2. Left: Clayton generator ψθ with θ = 1/s for
values of s equal to 5 (black), 5/2 (red), 5/3 (green), 5/4 (blue). Middle: Joe generator
ψθ with values of θ = m equal to 1.44 (black), 2.22 (red), 3.83 (green), 8.77 (blue). Right:
Frank generator ψθ for values of τ(ψ) equal to 1/5 (black), 2/5 (red), 3/5 (green), 4/5
(blue).
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Figure 4.3: Boxplots of IRAE for the Pickands (blue) and CFG (red) estimators for
n = 200, d = 4, and the Clayton generator ψ with θ = 1/s for various values of s (left),
the Joe generator for various values of θ = m (middle) and Frank for various values of
τ(ψ) = 1 − (4/θ){1 −D1(θ)} (right), where D1 denotes the Debye function. The stdf is
NSD with α = (1, 2, 3, 4), ρ = 0.59.

Given that the behavior of ψ at zero and infinity played a key role in the conditions

of Theorems 4.1 and 4.2, we next investigate the impact of the index of regular variation

of ψ and 1 − ψ(1/·). Figure 4.3 shows the performance of the estimators for the NSD

stdf with parameters α = (1, 2, 3, 4), ρ = 0.59. In the left panel, the generator is Clayton

with parameter θ; the latter satisfies Condition 3.2 (a) with s = 1/θ. This plot reveals

that decreasing s has a detrimental effect on AP
n,c while A

CFG
n,c is hardly affected. When

s ≤ 2, conditions of Theorem 4.2 are no longer met; it is therefore not surprising that the

behavior of AP
n,c deteriorates quickly as s → 0. The middle panel of Figure 4.3 explores

the effect of m when the generator is Joe, which satisfies Condition 3.1 with θ = m.

One can again see that AP
n,c performs worse than ACFG

n,c , but this time, increasing m has a

negative effect on both estimators. Finally, the right panel of Figure 4.3 shows the effect of
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dependence of the Archimedean copula Cψ with generator ψ measured by τ(ψ), Kendall’s

tau of the bivariate Archimedean copula with generator ψ, for the Frank generator. In

this case, m = 1, and increasing τ(ψ) negatively affects both estimators, although ACFG
n,c is

less sensitive. From Figure 4.2, the same conclusions can be drawn about the asymptotic

variances.

4.3.2 The effect of the sample size, dimension, and dependence

Given that the CFG-type estimator performed consistently better than AP
n,c, we con-

centrate on the former hereafter and explore the effect of sample size, dimension and

dependence. We choose the stdf to be either LG with parameter � = 2 (all dimensions)

or NSD with parameters α = (1, 2), ρ = 0.59 (for d = 2), α = (1, 2, 3, 4), ρ = 0.59 (for

d = 4) and α = (1, 1, 1, 1, 2, 2, 2, 3, 3, 4), ρ = 0.69 (for d = 10). These parameters are cho-

sen so that the average of pairwise Kendall’s taus (see Definition 2.2) of the corresponding

d-variate extreme-value copula CA is 1/2. The Archimedean generator is chosen to be

Gumbel with θ = 5/3, which corresponds to Kendall’s tau of 2/5 of the corresponding

bivariate Archimedean copula Cψ. The left panel in Figure 4.4 shows the IRAE for various

sample sizes when d = 4. It is clear that the performance of ACFG
n,c improves with sample

size, but also that it depends on the stdf; the CFG-type estimator performs worse when

A is LG. Other dimensions and Archimedean generators led to the same conclusions. It

is worth noting that the asymmetric stdf NSD does not lead to better or worse results

overall.

The right panel of Figure 4.4 shows the effect of dimension. Unsurprisingly, the per-

formance of ACFG
n,c deteriorates with d. The choice of A has an effect; the latter is most

pronounced when d = 4, although this may be merely due to the choice of parameters.

Again, the same pattern was observed for other sample sizes and Archimedean generators.

We also tried the DSM Pickands dependence function, which does not satisfy Condition

3.3, because it is not differentiable everywhere. The performance of the CFG-type esti-

mator remained essentially unaffected by this choice of A; see Tables A7–A9 in Appendix

A. This is comforting, because Condition 3.3 is virtually impossible to verify from data.

Our next aim was to study the effect of dependence. We restricted ourselves to the

LG Pickands dependence function; in that case, Cψ,A is exchangeable and measuring de-

pendence can be reduced to the bivariate setting. The first study we conducted focused

on Kendall’s tau. For a bivariate Archimax copula Cψ,A, let τψ,A denote its Kendall’s tau

τ(Cψ,A); let also τ(A) = τ(CA) and τ(ψ) = τ(Cψ) denote Kendall’s tau of the correspond-

ing bivariate extreme-value and Archimedean copula, respectively. From Capéraà et al.

(1997),

τψ,A = τ(ψ) + τ(A)− τ(ψ)τ(A). (4.20)
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Figure 4.4: Boxplots of IRAE of ACFG
n,c when d = 4 and n ∈ {200, 500, 1000} (left), and

when d ∈ {2, 4, 10} and n = 200 (right). The Pickands dependence functions are LG
(red) and NSD (blue) with coefficient of agreement 1/2; the Archimedean generator is
Gumbel with θ = 5/3.
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Figure 4.5: Plots of varACFG(t) (dashed) and varAP(t) (dotted) for bivariate Archimax
copulas with stdf LG. Left: Joe generator ψ, τ(A) set for values of 1/5 (black), 2/5 (red),
3/5 (green) and fixed τ(ψ,A) = 0.84. Middle: Frank generator ψ, values of λU(A) equal
to 1/5 (black), 2/5 (red), 3/5 (green) and fixed λU(ψ,A) = 0.6. Right: Clayton generator
ψ, values of η(A) equal to 0.57 (black), 0.66 (red), 0.76 (green), 0.87 (blue) and fixed
λL(ψ,A) = 0.4.

The left panel in Figure 4.6 shows the IRAE of the CFG-type estimator for various

values of τψ,A and τ(A) when n = 200 and d = 10. The observed trend is that for a

fixed τψ,A, an increase in τ(A), which implies a decrease in τ(ψ), results in lower IRAE.

This is corroborated in the asymptotic setting by the left panel of Figure 4.5. There is

also a performance gain as τψ,A increases. Conclusions for other Archimedean generators,

dimensions and sample sizes are the same; see Tables A10–A12 in Appendix A. The second

study focused on the effect of upper tail dependence as measured by λU in (2.2). For a

bivariate Archimax copula Cψ,A whose generator ψ satisfies Condition 3.1, λU(Cψ,A) =

2−{2A(1/2)}1/m. In the middle panel of Figure 4.6, the stdf is again LG with parameter

�, so that A(1/2) = 21/�−1, and the Archimedean generator is Joe with parameter θ = m.

Consequently, various values of λU(Cψ,A) can be obtained by varying � and θ. There is

a noticeable decrease in IRAE when the contribution of A to λU(Cψ,A) increases, and a

slight increase in error for a fixed θ when λU(Cψ,A) increases. A similar conclusion can

be drawn in terms of the asymptotic variances from Figure 4.5 (middle panel). The same

59



0.0

0.1

0.2

0.36 0.52 0.64 0.68 0.76 0.84 0.88 0.92 0.98
τ(ψ, A)

IR
AE

τ(A)
0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

0.5 0.6 0.7 0.8 0.9
λU(ψ, A)

IR
AE

λU(A)
0.2

0.4

0.6

0.8

0.0

0.1

0.2

0.3

0.2 0.4 0.6 0.8
λL(ψ, A)

IR
AE

η(A)
0.57

0.66

0.76

0.87

Figure 4.6: Boxplots of IRAE of ACFG
n,c when n = 200, d = 10 and the Pickands dependence

function is LG for all panels. The Archimedean generators are Frank (left), Joe (middle)
and Clayton (right). In the right panel, ηL(A) = 1/{2A(1/2)} = 2−1/ρ is the lower tail
dependence index of Ledford and Tawn (1996).

pattern was observed for other choices of n and d; see Table A13 in Appendix A.

The last study focused on the effect of lower tail dependence as measured by λL

in (2.3). For a bivariate Archimax copula Cψ,A whose generator ψ satisfies Condition

3.2 (a), λL(Cψ,A) = {2A(1/2)}−s. Again, we considered the LG Pickands dependence

function. As the Archimedean generator we choose the Clayton generator, which is such

that s = 1/θ. The right panel of Figure 4.6 shows that the effects of lower and upper

tail dependence are similar: an increase in the contribution of A to λL leads to lower

IRAE. This agrees with the right panel of Figure 4.5. There is also a slight decrease in

performance when θ is fixed and λL(Cψ,A) increases. The same pattern occurred for other

choices of n and d; see Table A14 in Appendix A.
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Chapter 5

Semiparametric inference for
Archimax copulas

Chapter 4 focused on the nonparametric estimation of the stable tail dependence function

under the assumption that the distortion function ψ is known. Building upon these results,

we can now relax this assumption by supposing instead that ψ belongs to a parametric

family, i.e. ψ ∈ Ψ = {ψθ, θ ∈ O}, O ⊂ R
p. The Archimedean copula family has a

very rich literature surrounding it with many parametric families having been studied

extensively studied. Their flexibility translates well into modeling with Archimax copulas

since generators can be chosen to capture certain aspects of the data at hand. For example,

if the dataset exhibits lower tail dependence, the Clayton generator could potentially be

a good candidate. Once the parametric family is chosen, θ needs to be estimated without

the knowledge of �, and we present an idea on how to do this for one-parameter families

in Section 5.1. Section 5.2 contains the estimators of the stable tail dependence function,

which are adapted from those of Chapter 4. Section 5.3 gathers the conditions on the

parametric family for ψ needed in order to study the convergence of the estimators as is

done in Section 5.4. Finally, Section 5.5 contains the proofs of said convergence results.

5.1 Estimation of ψ

How ψ can be estimated without the knowledge of �, again assuming that ψ ∈ Ψ where

Ψ = {ψθ, θ ∈ O}? Recall that under the assumptions of Proposition 3.1, θ and � are then

identifiable. In this section, we propose a simple moment-based procedure for the most

common scenario where O ⊆ R.

First consider an arbitrary bivariate copula C and a pair (U1, U2) ∼ C. The dis-

tribution function KC of the random variable WC = C(U1, U2) is called the Kendall

distribution, see Barbe et al. (1996). If C = Cψ,A is Archimax, it is known from Eq. (13)

in Capéraà et al. (2000) that for any w ∈ [0, 1], KCψ,A
(w) = KCψ

(w) + φ(w)/φ′(w)τ(A),

where τ(A) is Kendall’s tau of CA. Hence for any k ∈ N, the kth moment of WCψ,A
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satisfies

mk = E(W k
Cψ,A

) = τ(A)
1

k + 1
+ {1− τ(A)}E(W k

Cψ
) . (5.1)

Equations (5.1) for k = 1 and k = 2 then lead to the following identity:

1− 2E(WCψ
)

1− 3E(W 2
Cψ

)
=

1− 2m1

1− 3m2

. (5.2)

The left-hand side depends only on the Archimedean generator and is thus a function of

θ, say f . Assuming that ψ is twice differentiable, Theorem 4.3.4 in Nelsen (2006) and

partial integration yield that for any θ ∈ O,

f(θ) =
1− 2E(WCψθ

)

1− 3E(W 2
Cψθ

)
=

∫ xψθ
0

x{ψ′θ(x)}2dx
3
∫ xψθ
0

xψθ(x){ψ′θ(x)}2dx
. (5.3)

The following example provides explicit expressions for f for three families of generators;

in each case, f is strictly monotone in θ.

Example 5.1. For the Clayton generator given in Table 4.1, E(W k
ψθ
) = (θ + 1)/{(k +

1)(θ + k + 1)} for any k ∈ N. Consequently,

f(θ) = θ + 3/{2(θ + 2)}.

Next, consider the Genest–Ghoudi family Genest and Ghoudi (1994) whose generator

is given, for any x ∈ [0, 1], by ψθ(x) = (1 − xθ)1/θ for θ ∈ (0, 1]. Here, E(W k
ψθ
) =

(1− θ)/(k + 1− θ), for any k ∈ N. Hence,

f(θ) = 3− θ/(4− 2θ).

Finally, consider the Frank generator given in Table 4.1. For j ∈ N, let Dj(θ) =

(j/θj)
∫ θ
0
tj/(et−1)dt denote the Debye function (Abramowitz and Stegun, 1964, Chap. 27).

Here, (5.3) yields that for any θ ∈ R,

f(θ) =
4θ − 4θD1(θ)

3{2θ − θD2(θ) + 4D1(θ)− 4} .

If f is one-to-one, as was the case in Example 5.1, Eq. (5.2) can be used to construct

an estimator of θ. Following Ben Ghorbal et al. (2009), let Iij = 1(Xi ≤ Xj, Yi ≤ Yj) for

all i, j ∈ {1, . . . , n} and set

mn,1 =
1

n(n− 1)

∑
i �=j

Iij, mn,2 =
1

n(n− 1)(n− 2)

∑
i �=j �=k

IijIkj.

As mn,1 and mn,2 are U -statistics with square integrable kernels, the results of these

authors imply that
√
n {(mn,1,mn,2) − (E(WC),E(W

2
C))} � N (0,Σ) as n → ∞; the

entries of Σ are given in Proposition 2 therein.
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Next, provided f has an inverse f←, define h : R2 → R by

h(m1,m2) = f←
(
1− 2m1

1− 3m2

)

and set θn = h(mn,1,mn,2). Assuming h has continuous partial derivatives that are non-

zero at (m1,m2) and using the delta method, one gets that
√
n (θn−θ)� N [0, Jh(m1,m2)

ΣJh(m1,m2)
�], where Jh is the 2×1 Jacobian matrix of h. Consistent plug-in estimators of

the entries of Σ are provided in Ben Ghorbal et al. (2009). For small n, the calculations

presented in that paper can also be used to compute and estimate the finite-sample

variance-covariance matrix of (mn,1,mn,2).

Example 5.2. For the Clayton family, θn = Sn/Rn, where

Sn = 8mn,1 − 9mn,2 − 1, Rn = 1− 4mn,1 + 3mn,2. (5.4)

Then
√
n (θn − θ) =

√
n {h(mn,1,mn,2) − h(m1,m2)} � N (0, σ2), where σ2 is defined as

follows as a function of S = 8m1 − 9m2 − 1 and R = 1− 4m1 + 3m2:

σ2 =
1

R4

{
R2(64Σ11 + 81Σ22 − 144Σ12)

+ S2(16Σ11 + 9Σ22 − 24Σ12)− 2RS(32Σ11 − 27Σ22 + 50Σ12)
}
. (5.5)

Note that the numerator Sn in (5.4) is the quantity on which the test for bivariate extreme-

value dependence of Ghoudi et al. (1998) is based. These authors showed that when C is

an extreme-value copula, 8 E(WC)−9E(W 2
C)−1 = 0. When θ = 0, the Clayton generator

becomes ψ(t) = e−t and Cψ,A = CA is an extreme-value copula.

For the Genest–Ghoudi family, θn = −Sn/Rn, where Sn and Rn are as in (5.4). Hence√
n (θn − θ)� N (0, σ2), where σ2 is given by (5.5).

For the bivariate Frank family, the function f is one-to-one but its inverse is not

explicit. Therefore, both the estimator and the asymptotic variance are not explicit either.

An estimate of θ can be obtained numerically and its asymptotic variance can be studied

via resampling.

In the multivariate case, a generalization of (5.1) does not seem possible. We thus

propose to use θn = 2
∑

j<k θn,jk/{d(d− 1)}, where θn,jk is the above moment-based esti-

mator of θ based on the bivariate sample (X1j, X1k), . . . , (Xnj, Xnk). A heuristic approach

for checking whether averaging the pair-wise estimates is reasonable is presented in the

next section.

5.2 Estimation of � when ψ is unknown

We now focus on the nonparametric estimator of A and its asymptotic properties assuming

that an estimator of θ is available. Once θ has been estimated by θn in such a way that
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θn ∈ O for all n ∈ N, the Pickands or CFG-type estimators of A can be constructed as in

Chapter 4 with ψ replaced by ψθn . For every w ∈ Δd, and i ∈ {1, . . . , n}, let

ξ̂i,n(w) = min{φθn(Ûij)/w1, . . . , φθn(Ûij)/wd}

with the convention that φθn(Ûij)/wj = ∞ when wj = 0. As before, ξ̂i,n(w) is finite

for every i ∈ {1, . . . , n}. When E(logZ) and E(Z) exist, respectively, the CFG and

Pickands-type estimators are given, for each w ∈ Δd, by

log ÂCFG
n (w) = E logZ − 1

n

n∑
i=1

log ξ̂i,n(w), ÂP
n(w) = nE(Z)

/ n∑
i=1

ξ̂i,n(w).

Because ψ is estimated by ψθn rather than fixed, the weak limit of

Â
CFG
n =

√
n (ÂCFG

n − A), Â
P
n =

√
n (ÂP

n − A) (5.6)

is no longer the process given in Theorems 4.1 and 4.2, respectively.

5.3 Regularity conditions

The conditions on the parametric family Ψ = {ψθ, θ ∈ O} are considered. In what follows,

‖ · ‖2 denotes the �2-norm and O̊ denotes the interior of O.

Condition 5.1. For all θ ∈ O, φθ(0) = xψθ
is identical and equal to xΨ.

Condition 5.2. Let Θn =
√
n (θn − θ0). Whenever θ0 ∈ O̊, n → ∞, (Ĉn,Θn) � (C,Θ)

in �∞([0, 1]d)× R
p and the limit is centered Gaussian.

Condition 5.3. For any θ ∈ O̊, the gradient

ψ̇θ(t) = (ψ̇θ,1(t), . . . , ψ̇θ,p(t))
� = (∂ψθ(t)/∂θ1, . . . , ∂ψθ(t)/∂θp)

�

exists and is continuous for all t ∈ [0, xΨ).

The following condition is needed for the CFG-type estimator.

Condition 5.4. For any θ ∈ O̊, there exists an ω ∈ (0, 1/2) and a bounded, non-negative

function hθ on [0, xΨ) such that for each j ∈ {1, . . . , p}, |ψ̇θ,j|/hθ is bounded on [0, xΨ),∫ xΨ

0

hωθ (t)

t
dt <∞,

∫ xΨ

0

hθ(t)

t
dt <∞,

and such that Υθ(ε) → 0 for ε→ 0, where for any ε > 0,

Υθ(ε) = sup
θ′∈O,‖θ′−θ‖2≤ε

sup
t∈[0,xΨ)

‖ψ̇θ′(t)− ψ̇θ(t)‖2
hθ(t)

.

The following condition pertains to the Pickands-type estimator.
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Condition 5.5. For any θ ∈ O̊, there exists an ω ∈ (0, 1/2) and a bounded, non-negative

function hθ on [0, xΨ) such that for each j ∈ {1, . . . , p}, |ψ̇θ,j|/hθ is bounded on [0, xΨ),∫ xΨ

0

hωθ (t)dt <∞,

∫ xΨ

0

hθ(t)dt <∞,

and such that Υθ(ε) → 0 for ε→ 0, where Υθ(ε) is as in Condition 5.4.

Finally, two more conditions are needed, each assuming Condition 5.3.

Condition 5.6. For any θ ∈ O̊, the Hessian ψ̈θ(t) = (ψ̈θ,jk(t))j,k = (∂2ψθ(t)/∂θj∂θk)j,k

exists and is continuous for all t ∈ [0, xΨ). Furthermore, for each j, k ∈ {1, . . . , p},
ψ̈θ,jk(t) → 0 as t→ 0 and as t→ xΨ, and

lim
ε↓0

sup
θ′∈O,‖θ′−θ‖2≤ε

sup
t∈[0,xΨ)

‖ψ̈θ′(t)− ψ̈θ(t)‖E = 0,

where ‖ · ‖E denotes the entrywise 1-norm, i.e., ‖A‖E =
∑

j,k |Ajk|.

Condition 5.7. For each j ∈ {1, . . . , p}, θ ∈ O̊ and any δ > 0 such that {θ′ ∈ R
p :

‖θ − θ′‖ < δ} ⊂ O̊,

lim
u↓0

sup
θ′:‖θ−θ′‖2<δ

ψ̇θ′,j{φθ′(u)}√
u

= lim
u↓0

sup
θ′:‖θ−θ′‖2<δ

ψ̇θ′,j{φθ′(1− u)}√
u

= 0.

In the following, the above conditions are validated for the Clayton family of Archi-

medean generators.

Example 5.3 (Verification of the regularity conditions for the Clayton family). Consider

the Clayton family with generator given, for any x ≥ 0, by ψθ(x) = (1 + θx)−1/θ where

θ ∈ O = [0,∞); when θ = 0, ψθ(x) = e−x. For this family, θ may be estimated for

example as in Example 5.2; to make the estimator intrinsic, one can use θ∗n = max(θn, 0).

Because θn is consistent, |θ∗n−θn| = oP (1) whenever the true parameter value θ0 is strictly

positive. Thus for θ0 > 0,
√
n(θ∗n−θ0) is asymptotically centered Gaussian, with the same

variance σ2 as given in Example 5.2.

Condition 5.1. For this family, for any θ ≥ 0, φθ(0) = xΨ = ∞.

Condition 5.2. The validity of this condition follows from the joint convergence of (Ĉn,√
n{(mn,1,mn,2)−(E(WC),E(W

2
C))}). Becausemn,1 andmn,2 are U-statistics with squared-

integrable kernels, the latter can be established using Hájek’s projection technique; see

van der Vaart (1998), for example.

Condition 5.3. For all θ ∈ (0,∞) and x ∈ (0,∞), ψ̇θ exists and is continuous for all

x ∈ [0,∞). In fact,

ψ̇θ(x) =
1

θ2
(1 + θx)−1/θ

{
ln(1 + θx)− θx

1 + θx

}
=

1

θ2
(1 + θx)−1/θ−1

∫ 1+θx

1

ln(t)dt
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given that the derivative of {x ln(x)− x+ 1} is ln(x).

Condition 5.4. An admissible function hθ is defined for any x ≥ 0 by

hθ(x) = h(x; θ, δ, η) = xδ(1 + θx)−η ,

where 0 < δ < η satisfy 0 < δ < 1 and η − δ < 1/θ. One can first quickly check that the

integrals

∫ xΨ

0

hωθ (t)dt/t and

∫ xΨ

0

hθ(t)dt/t are both finite, as soon as δ > 0 and δ < η,

and this for any ω ∈ (0, 1/2). Besides,

|ψ̇θ|
hθ

(x) = x−δ(1 + θx)η−1/θ
{

1

θ2
ln(1 + θx)− x

θ
(1 + θx)−1

}
,

so that it is a bounded function on [0,∞) as soon as 0 < δ < 1 and η− δ < 1/θ. The last

point to check is then that Υθ(ε) → 0 when ε→ 0, where Υθ(ε) is defined for any ε > 0 in

Condition 5.4. As soon as ψθ is C2, one can write that for any x ∈ [0,∞), and for any

θ′ ∈ O such that |θ′ − θ| < ε,

|ψ̇θ′(x)− ψ̇θ(x)|
hθ(x)

≤ sup
θ′′∈O,|θ′′−θ|<ε

|ψ̈θ′′(x)| |θ − θ′|
hθ(x)

≤ ε sup
θ′′∈O,|θ′′−θ|<ε

|ψ̈θ′′(x)|
hθ(x)

.

Now choose an arbitrary ε0 such that 0 ≤ ε ≤ ε0. One can also write

|ψ̇θ′(x)− ψ̇θ(x)|
hθ(x)

≤ ε sup
θ′′∈O,|θ′′−θ|<ε0

|ψ̈θ′′(x)|
hθ(x)

.

For the Clayton generator, one gets for any θ > 0 and any x ∈ [0,∞),

ψ̈θ(x) =
1

θ4
(1 + θx)−1/θ

{
ln(1 + θx)− θx

1 + θx

}2

+
1

θ3
(1 + θx)−1/θ

{
−2 ln(1 + θx) + 3

θx

1 + θx
− θx

(1 + θx)2

}
. (5.7)

Thus for any θ′′ ∈ (θ − ε0, θ + ε0) and x ∈ [0,∞), ψ̈θ′′(x) =
∑6

i=1 gi(x, θ
′′) in terms of six

functions gi(x, t) = α0,it
α1,i(1+tx)α2,i{ln(1+tx)}α3,i, for fixed reals αk,i, where k = 0, . . . 3

and i = 1, . . . , 6. Making use of the fact that θ − ε0 ≤ θ′′ ≤ θ + ε0, one can then majorize

each of the terms |gi(x, θ′′)| by, say, M̃ i
θ,ε0

(x), and obtain that

sup
θ′′∈O,|θ′′−θ|<ε0

|ψ̈θ′′(x)|
hθ(x)

≤Mθ,ε0(x) ,

where Mθ,ε0(x) is defined as Mθ,ε0(x) =
∑6

i=1 M̃
i
θ,ε0

(x)/hθ(x). One can then check that

when x tends to 0, Mθ,ε0(x) = O(x1−δ), which tends to 0 since δ < 1. Analogously,

when x tends to infinity, one gets that Mθ,ε0(x) = O(xη−δ−1/θ), which tends to 0 since

η − δ < 1/θ. As a consequence,

M̄θ,ε0 := sup
x∈[0,∞)

Mθ,ε0(x) <∞ .
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This allows to conclude that

Υθ(ε) = sup
θ′∈O,|θ′−θ|<ε

sup
x∈[0,xΨ)

|ψ̇θ′(x)− ψ̇θ(x)|
hθ(x)

≤ ε M̄θ,ε0 ,

which tends to 0 as ε tends to 0 and leads to the desired result.

Condition 5.5. For the Clayton family, Condition 3.2 (a) holds with s = 1/θ. Because

s > 2 in Theorem 5.2, θ < 1/2. Furthermore, from the proof of Lemma 5.10, sω > 1 so

that ω ∈ (θ, 1/2). For a fixed ω in this interval, a suitable choice for hθ is

hθ(x) = (1 + θx)−η,

where η ∈ (1/ω, 1/θ). One can then easily check that
∫∞
0
hθ(x)dx and

∫∞
0
hωθ (x)dx are

finite and also that |ψ̇θ|/hθ is bounded on [0,∞). It remains to verify that Υθ(ε) → 0 as

ε → 0. To this end, recall from (5.7) that ψ is twice continuously differentiable w.r.t. θ;

it is helpful to note that for all θ > 0 and x ∈ [0,∞),

ψ̈θ(x) =
1

θ4
(1 + θx)−1/θ−2

{∫ 1+θx

1

ln(t)dt
}2

+
1

θ3
(1 + θx)−1/θ−1

{∫ 1+θx

1

ln(t)dt
}{

−2− θx

1 + θx

}
+

1

θ3
(1 + θx)−1/θ−1 ln(1 + θx)

θx

1 + θx
(5.8)

and that for all x ∈ [0, xΨ), θ > 0, and k ∈ N,

(1 + θx)−1/θ−k
(∫ 1+θx

1

ln(t)dt
)k

≤ (1 + θx)−1/θ{ln(1 + θx)}k. (5.9)

Because η < 1/θ, there exists some small ε0 ∈ (0, θ) so that η < 1/(θ + ε0). Given that

for any ε < ε0, one has that

Υθ(ε) ≤ ε sup
θ′′:|θ−θ′′|≤ε

sup
x≥0

|ψ̈θ′′(x)|
hθ(x)

and hence it suffices to show that |ψ̈θ′′(x)|/hθ(x) is bounded from above for all x ≥ 0 and

θ′′ ∈ (θ − ε0, θ + ε0). From (5.9) and the fact that for any t ∈ [1,∞), k ∈ N and λ > 0,

t−λ{ln(t)}k is bounded above by (k/λe)k, one has that |ψ̈θ′′(x)|/hθ(x) is bounded above by

( θ

θ − ε0

)η{( 1

θ − ε0

)4( 1

θ + ε0
− η
)−2(2

e

)2
+ 4
( 1

θ − ε0

)3( 1

θ + ε0
− η
)−1(1

e

)}
.

Condition 5.6. Clearly, the function in (5.7) is continuous for all x and ψ̈θ(x) → 0 when

x→ 0 as well as when x→ ∞. To verify the smoothness condition of ψ̈θ, fix an arbitrary

ε ∈ (0, θ). It suffices to show that |...ψ θ′′(x)| is bounded from above for all θ′′ ∈ (θ− ε, θ+ ε)

and x ∈ [0, xΨ). Using (5.8) and (5.9),
...
ψ θ′′(x) can be computed to be a sum of finitely
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many terms, each of which is, for any x ∈ [0, xΨ), bounded in absolute value from above

by a term of the form
c

(θ′′)m
(1 + θ′′x)−1/θ

′′{ln(1 + θ′′x)}k (5.10)

for some positive constant c, independent of θ and ε, and some m, k ∈ N. Because for any

t ∈ [1,∞), t−1/θ
′′{ln(t)}k is bounded above by (θ′′)k(k/e)k, the term in (5.10) is further

bounded above, for θ′′ ∈ (θ − ε, θ + ε), by {c/(θ − ε)m}(θ + ε)k(k/e)k which converges to

{c/θm}θk(k/e)k as ε→ 0.

Condition 5.7. Because for all u ∈ (0, 1], φθ(u) = (u−θ − 1)/θ,

ψ̇θ{φθ(u)} =
u

θ2
{−θ ln(u)− (1− uθ)}

Fix an arbitrary θ > 0 and δ ∈ (0, θ). Then for any θ′ ∈ (θ − δ, θ + δ),

1√
u
|ψ̇θ′{φθ(u)}| ≤

√
u

θ′
{− ln(u)}+

√
u

(θ′)2
(1− uθ

′
)

≤
√
u

θ − δ
{− ln(u)}+

√
u

(θ − δ)2
(1− uθ+δ).

Clearly, the upper bound converges to 0 as u → 0. Similarly, for any θ′ ∈ (θ − δ, θ + δ),

|ψ̇θ′{φθ(1− u)}|/√u is at most

√
u(1− u)

θ − δ

{− ln(1− u)}
u

+

√
u(1− u)

(θ − δ)2
1− (1− u)θ+δ

u
.

Again, the upper bound converges to 0 as u→ 0.

5.4 Asymptotic behavior

Under the conditions elicited in Section 5.3, the following two results may be established.

The proofs are rather tedious and may be found in Section 5.5. In the following, Θ denotes

the weak limit of
√
n (θn− θ0) and ψ̇θ(x) is the derivative of ψθ(x) with respect to θ. The

existence of the latter for all x ∈ [0, xψθ
) is guaranteed by Condition 5.2; we set ψ̇θ(x) ≡ 0

for x ≥ xψθ
in order to simplify the expression of the limiting process.

Theorem 5.1. Suppose that X1,X2, . . . is a stationary, alpha-mixing sequence with

α[X](k) = O(ak), as k → ∞, for some a ∈ (0, 1). Suppose that the marginals of

the stationary distribution are continuous and the corresponding copula belongs to the

class of d-variate Archimax copulas CΨ whose stdfs are arbitrary with � �= �M and whose

Archimedean generators belong to a parametric family Ψ = {ψθ, θ ∈ O}, O ⊆ R
p. Assume

that CΨ satisfies the conditions of Proposition 3.1. Suppose further that the true parame-

ter value θ0 is in the interior O̊ of O, that ψθ0 is q-monotone for some q ≥ 3 and such

that ψ′′θ0 exists and is continuous on (0,∞). Further assume that ψθ0 satisfies Conditions

3.1 and 3.3, as well as either Condition 3.2 (a) or Condition 3.2 (b) with the additional
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requirement that − log(ψθ0) is concave on (0, xψθ0
). Finally, assume that Conditions 5.1–

5.4, 5.6 and 5.7 are satisfied. Then for any compact set K ⊂ Δ̊d, Â
CFG
n � Â

CFG as

n→ ∞ in C(K), where for any w ∈ Δ̊d,

Â
CFG(w) = A(w)

∫ 1

0

(
C[ψθ0{−w log(u)}]

+
d∑
j=1

Ċj[ψθ0{−w log(u)}]ψ̇�θ0{−wj log(u)}Θ
) du

u log u
.

Theorem 5.2. Under the assumptions of Theorem 5.1 with the additional assumption

that s > 2 in case ψθ0 satisfies Condition 3.2 (a), and with Condition 5.4 replaced by

Condition 5.5, one has that, for any compact set K ⊂ Δ̊d, Â
P
n � Â

P as n→ ∞ in C(K),

where for any w ∈ Δ̊d,

Â
P(w) =

−A2(w)

E(Z)

∫ 1

0

(
C[ψθ0{−w log(u)}]

+
d∑
j=1

Ċj[ψθ0{−w log(u)}]ψ̇�θ0{−wj log(u)}Θ
)du
u
.

With μ̂ and ν̂ as defined in Chapter 4, the end-point corrected versions of the CFG

and Pickands-type estimators estimators are

ÂP
n,c(w) = nμ̂

/ n∑
i=1

ξ̂i,n(w), log ÂCFG
n,c (w) = ν̂ − 1

n

n∑
i=1

log ξ̂i,n(w). (5.11)

By Lemma 4.1, the asymptotic behavior of the uncorrected and end-point corrected ver-

sions of the CFG and Pickands-type estimators is the same.

Corollary 5.1. Theorems 5.1 and 5.2 also hold when Â
CFG
n and Â

P
n are respectively re-

placed by Â
CFG
n,c =

√
n (ÂCFG

n,c − A) and Â
P
n,c =

√
n (ÂP

n,c − A).

5.5 Proofs of Theorems 5.1 and 5.2

This section is devoted to the proof of Theorems 5.1 and 5.2. Consequences of the regu-

larity conditions from Section 5.3 are first discussed in Section 5.5.1 and auxiliary results

are gathered in Section 5.5.2. Theorems 5.1 and 5.2 are then proved in Sections 5.5.3 and

5.5.4, respectively.

5.5.1 Implications of the regularity conditions

First recall that it is assumed that θn is intrinsic, that is θn ∈ O for all n. Expressions

like ψθn and φθn are then well defined.
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Under the conditions of either Theorem 5.1 or 5.2, Condition 5.2 implies that (C̄n,Θn)

� (C,Θ) in �∞([0, 1]d)×R
p from Proposition 3.1 of Segers (2012). From Berghaus et al.

(2017) it further follows that

(C̄n/g̃ω,Θn)� (C/g̃ω,Θ) (5.12)

in �∞([0, 1]d)×R
p, where for any u ∈ [0, 1]d, g̃ω(u) = gω(u)+�{gω(u) = 0} for gω given by

(4.10). Note that the requirement that Θ is Gaussian is actually not needed. In case Θ is

centered but not Gaussian, the limiting process will be centered, but no longer Gaussian.

Next, Condition 5.4 implies that for each j ∈ {1, . . . , p} and θ ∈ O̊,

∫ xΨ

0

|ψ̇θ,j(t)|
t

dt <∞ and

∫ xΨ

0

‖ψ̇θ(t)‖ω2
t

dt <∞ ; (5.13)

the latter holds because ‖ψ̇θ(t)‖ω2 /hωθ (t) is bounded on [0, xΨ). Because hθ is bounded,

the same condition also implies that

sup
x∈[0,xΨ)

‖ψ̇θ(x)‖2 <∞ (5.14)

and that

lim
ε↓0

sup
θ′∈O,‖θ′−θ‖2≤ε

sup
t∈[0,xΨ)

‖ψ̇θ′(t)− ψ̇θ(t)‖2 = 0. (5.15)

Moreover, given that for any ω ∈ (0, 1) and any a, b ≥ 0, (a+ b)ω ≤ aω + bω, we have that

|aω − bω| ≤ |a− b|ω. Hence, for any t ∈ [0, xΨ) and θ, θ
′ ∈ O̊,

‖ψ̇θ′(t)− ψ̇θ(t)‖ω2
hωθ (t)

≥ |‖ψ̇θ′(t)‖2 − ‖ψ̇θ(t)‖2|ω
hωθ (t)

≥ |‖ψ̇θ′(t)‖ω2 − ‖ψ̇θ(t)‖ω2 |
hωθ (t)

so that

Υω,θ(ε) = sup
θ′∈O,‖θ′−θ‖2≤ε

sup
t∈[0,xΨ)

|‖ψ̇θ′(t)‖ω2 − ‖ψ̇θ(t)‖ω2 |
hωθ (t)

→ 0 (5.16)

ε → 0. Similarly, Condition 5.5 implies (5.14), (5.15), and that (5.16), and that for each

j ∈ {1, . . . , d} and θ ∈ O̊,∫ xΨ

0

|ψ̇θ,j(t)|dt <∞ and

∫ xΨ

0

‖ψ̇θ(t)‖ω2dt <∞. (5.17)

5.5.2 Auxiliary results

As in Section 4.2.3, for an arbitrary w ∈ Δd, set w(1) = mini=1,...,dwi and w(d) =

maxi=1,...,dwi. For any k ∈ N, recall the set B1/k = {w ∈ Δd : w(1) ≥ 1/k }.

Lemma 5.1. Suppose that as n → ∞, Θn =
√
n(θn − θ) converges in law to a nonde-

generate limit Θ and that θ ∈ O̊. Further assume that Condition 5.3 holds and either

Condition 5.4 or Condition 5.5 is satisfied. Then
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(i)
√
n(ψθn − ψθ)� ψ̇�θ Θ as n→ ∞ in C([0, xΨ)).

(ii)
√
n|ψθn−ψθ|/hθ � |ψ̇�θ Θ|/hθ in C([0, xΨ)) as n→ ∞, where hθ is the weight function

from Condition 5.4 and Condition 5.5, respectively, depending on which of these two

conditions holds.

(iii) If Condition 5.4 holds, then for any 0 ≤ a < b ≤ xΨ,
∫ b
a

√
n|ψθn(x) − ψθ(x)|dxx �∫ b

a
|ψ̇�θ (x)Θ|dx

x
as n→ ∞.

(iv) If Condition 5.5 holds, then for any 0 ≤ a < b ≤ xΨ,
∫ b
a

√
n|ψθn(x) − ψθ(x)|dx �∫ b

a
|ψ̇�θ (x)Θ|dx as n→ ∞.

Proof. (i). Because ψ̇θ is continuous by assumption and bounded in view of (5.14),

ψ̇�θ Θn � ψ̇�θ Θ as n→ ∞ in C([0, xΨ)). Now let

Qn = sup
x∈[0,xΨ)

|√n{ψθn(x)− ψθ(x)} − ψ̇�θ (x)Θn| (5.18)

and choose an arbitrary ε > 0. Because (Θn) is tight, for any given δ > 0 there exists

Mδ > 0 and Nδ > 0 such that for all n ≥ Nδ, Pr(‖Θn‖2 > Mδ) < δ. For any such n,

Pr[Qn > ε] < Pr[Qn > ε, ‖Θn‖2 ≤Mδ] + δ.

Suppose that n is large enough so that {θ′ ∈ O, ‖θ′ − θ‖2 ≤ n−1/2Mδ} ⊂ O̊. Whenever

‖θn − θ‖2 ≤ n−1/2Mδ, an application of the Mean-Value Theorem implies that for every

realization � and t ∈ [0, xΨ), ψθn(�)(t)−ψθ(t) = ψ̇�Θ∗
n(t,�)(t)(θn(�)−θ), where Θ∗n(t,�) =

θ + ε(t,�)n−1/2Θn(�) for some ε(t,�) ∈ [0, 1]. Hence,

lim
n→∞

Pr[Qn > ε, ‖Θn‖2 ≤Mδ]

≤ lim
n→∞

Pr[‖Θn‖2 sup
x∈[0,xΨ)

‖ψ̇Θ∗
n(x)(x)− ψ̇θ(x)‖2 > ε, ‖Θn‖2 ≤Mδ]

≤ lim
n→∞

Pr[ sup
θ′∈O,‖θ′−θ‖≤n−1/2Mδ

sup
x∈[0,xΨ)

‖ψ̇θ′(x)− ψ̇θ(x)‖2 > ε/Mδ] = 0,

where the last equality follows from (5.15). Given that δ can be chosen arbitrarily small,

claim follows.

(ii). By the Continuous Mapping Theorem, |ψ̇�θ Θn|/hθ � |ψ̇�θ Θ|/hθ in C([0, xΨ)) as

n → ∞ given that for each j ∈ {1, . . . , p}, ψ̇θ,j/hθ is bounded and continuous on [0, xΨ)

by Condition 5.4 or 5.5. It suffices to show that

Vn = sup
x∈[0,xψ)

∣∣∣√n|ψθn(x)− ψθ(x)|
hθ(x)

− |ψ̇�θ (x)Θn|
hθ(x)

∣∣∣→ 0

in probability as n → ∞. As in the proof of (i), for any given δ > 0 there exists Mδ > 0

and Nδ > 0 such that for all n ≥ Nδ, Pr(‖Θn‖2 > Mδ) < δ. Suppose that n ≥ Nδ is large

enough so that {θ′ ∈ O, ‖θ′ − θ‖2 ≤ n−1/2Mδ} ⊂ O̊. Whenever ‖θn − θ‖2 ≤ n−1/2Mδ,
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an application of the Mean-Value Theorem implies that for every realization � and t ∈
[0, xΨ), ψθn(�)(t)−ψθ(t) = ψ̇�Θ∗

n(t,�)(t)(θn(�)−θ), where Θ∗n(t, �) = θ+ε(t, �)n−1/2Θn(�)

for some ε(t,�) ∈ [0, 1]. Hence,

Vn = sup
x∈[0,xψ)

∣∣∣ |ψ̇�Θ∗
n(x)

(x)Θn| − |ψ̇�θ (x)Θn|
hθ(x)

∣∣∣
≤ ‖Θn‖2 sup

x∈[0,xψ)

‖ψ̇Θ∗
n
(x)− ψ̇θ(x)‖2
hθ(x)

For any such n and arbitrary ε > 0, Pr(Vn > ε) is at most

δ + Pr(Vn > ε, ‖Θn‖2 ≤Mδ) ≤ δ + Pr{MδΥθ(Mδ/
√
n) > ε}

The second expression converges to 0 as n → ∞ by Condition 5.4 or 5.5. Hence,

limn→∞ Pr(Vn > ε) ≤ δ. Since δ was arbitrary, the claim follows.

(iii) and (iv). This is a direct consequence of part (ii), the fact that either
∫ xΨ
0

hθ(x)dx/x

or
∫ xΨ
0

hθ(x)dx is finite by assumption, as the case may be, and the Continuous Mapping

Theorem.

Lemma 5.2. Suppose that n→ ∞, Θn =
√
n(θn−θ) converges in law to a nondegenerate

limit Θ and that θ ∈ O̊. Assume that Conditions 5.3,5.6 and 5.7 hold and that either

Condition 5.4 or Condition 5.5 is satisfied. Then for any c ∈ (0, 1),

(i) As n→ ∞, φθn(c/n) → xΨ and φθn(1− c/n) → 0 in probability.

(ii) If Condition 3.2 holds for ψθ,

√
n

∫ xΨ

φθn (c/n)

ψθ(x)

x
dx

converges in probability to 0 as n→ ∞.

(iii) If either Condition 3.2 (a) with s > 2, (b) or (c) holds for ψθ, then for any c ∈ (0, 1),

√
n

∫ xΨ

φθn (c/n)

ψθ(x)dx

converges in probability to 0 as n→ ∞.

(iv) If Condition 3.1 holds for ψθ, then for any K ∈ N, K ≥ 2,

√
n

∫ ∞

1/(Kφθn (1−c/n))

1− ψθ (1/x)

x�
dx

converges in probability to 0 as n→ ∞, where � ∈ {1, 2}.
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Proof. (i). It suffices to show that ψθ{φθn(c/n)} → 0 and ψθ{φθn(1 − c/n)} → 1 in

probability; the claim then follows from the Continuous Mapping Theorem. From the

proof of Lemma 5.1 (i) we have that as n→ ∞, Qn → 0 in probability, where Qn is as in

(5.18). Also, recall from (5.14) that M = supx∈[0,xΨ) ‖ψ̇θ‖2 <∞. Therefore, for arbitrary

ε > 0,

Pr[|ψθ{φθn(c/n)}| > ε]

≤ Pr{(c/n) > ε}+ Pr[|ψθn{φθn(c/n)} − ψθ{φθn(c/n)}| > ε}

and similarly

Pr[|1− ψθ{φθn(1− c/n)}| > ε]

≤ Pr{(c/n) > ε}+ Pr[|ψθn{φθn(1− c/n)} − ψθ{φθn(1− c/n)}| > ε}

In both cases, the upper bound is at most

Pr{(c/n) > ε}+ Pr(Qn/
√
n > ε) + Pr(M‖θn − θ‖2 > ε)

which converges to 0 as n→ ∞.

(ii) and (iii). First, observe that

Rn1 =
1

2
Θ�n ψ̈θ{φθn(c/n)}Θn = oP (1); (5.19)

this follows readily from the Continuous Mapping Theorem, part (i) and Condition 5.6.

Second, observe that

Rn2 =
√
nψ̇�θ {φθn(c/n)}Θn = oP (1). (5.20)

To show this, it suffices to prove that for any given j ∈ {1, . . . , p},
√
nψ̇θ,j{φθn(c/n)} = oP (1). (5.21)

To this end, let ψ̈θ,j• denote the j-th row of the Hessian ψ̈θ. Because (Θn) is tight, for

any given δ > 0, there exists Mδ > 0 and Nδ > 0 such that for all n ≥ Nδ, Pr(‖Θn‖2 >
Mδ) < δ. Suppose that n ≥ Nδ is large enough so that {θ′ ∈ O, ‖θ′ − θ‖2 ≤ n−1/2Mδ} ⊂
O̊. Whenever ‖θn − θ‖2 ≤ n−1/2Mδ, the Mean-Value Theorem implies that for every

realization � and t ∈ [0, xΨ), ψ̇θn(�),j(t) − ψ̇θ,j(t) = ψ̈�Θ∗
n(t,�),j•(t)(θn(�) − θ), where

Θ∗n(t,�) = θ + ε(t,�)n−1/2Θn(�) for some ε(t, �) ∈ [0, 1]. Thus for any such n and

arbitrary ε > 0,

Pr(|√n[ψ̇θn,j{φθn(c/n)} − ψ̇θ,j{φθn(c/n)}]− ψ̈�θ,j•{φθn(c/n)}Θn| > ε)

≤ δ + Pr(Mδ sup
θ′∈O,‖θ′−θ‖<Mδ/

√
n

sup
t∈[0,xΨ)

‖ψ̈θ′(t)− ψ̈θ(t)‖E > ε)
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By Condition 5.6, the right-hand side converges to δ as n → ∞. Because δ > 0 was

arbitrary,

|√n[ψ̇θn,j{φθn(c/n)} − ψ̇θ,j{φθn(c/n)}] − ψ̈�θ,j•{φθn(c/n)}Θn| = oP (1). (5.22)

Next, because for any j, k ∈ {1, . . . , p} ψ̈θ,jk(x) → 0 as x→ xΨ by Condition 5.6, part (i)

implies that for arbitrary j ∈ {1, . . . , p},

ψ̈�θ,j•{φθn(c/n)}Θn = oP (1). (5.23)

Finally Condition 5.7 implies that for any δ > 0 sufficiently small and arbitrary ε > 0,

Pr{√n|ψ̇θn,j{φθn(c/n)}| > ε}

≤ Pr(‖θn − θ‖ > δ) + Pr
[√

c sup
θ′:‖θ′−θ‖≤δ

√
n

c
|ψ̇θ′,j{φθ′(c/n)}| > ε

]

so that
√
nψ̇θn,j{φθn(c/n)} = oP (1). Combined with (5.23) and (5.22), we have that (5.21)

holds for any j ∈ {1, . . . , p}, and this in turns implies (5.20).

Next, observe that also

Rn3 = sup
x∈[0,xΨ)

|n{ψθn(x) − ψθ(x)} − √
nψ̇�θ (x)Θn − 1

2
Θ�n ψ̈θ(x)Θn| = oP (1). (5.24)

Indeed, by Taylor’s Theorem with the mean-value remainder and the tightness of ‖Θn‖2,
for any ε > 0 and δ > 0, and all n ≥ Nδ large enough so that {θ′ ∈ O, ‖θ′ − θ‖2 ≤
n−1/2Mδ} ⊂ O̊,

Pr(Rn3 > ε) ≤ δ + Pr
(M2

δ

2
sup

θ′∈O,‖θ′−θ‖≤Mδ/
√
n

sup
t∈[0,xΨ)

‖ψ̈θ′(t)− ψ̈θ(t)‖E > ε
)
,

where Mδ, Nδ > 0 are such that for all n ≥ Nδ, Pr(‖Θn‖2 > Mδ) < δ.

Putting all the pieces together, we have that

n|(c/n)− ψθ{φθn(c/n)}| ≤ |Rn1|+ |Rn2|+Rn3 = oP (1). (5.25)

Whenever n|(c/n)−ψθ{φθn(c/n)}| ≤ δ for some δ ∈ (0,min{c, 1− c}), the fact that ψθ is
decreasing gives that

φθ{(c+ δ)/n} ≤ φθn(c/n) ≤ φθ{(c− δ)/n}

Hence, for arbitrary ε > 0 and δ ∈ (0,min{c, 1− c}),

Pr
{√

n

∫ xΨ

φθn (c/n)

ψθ(x)

x
dx > ε

}
≤

Pr[n|(c/n)− ψθ{φθn(c/n)}| > δ] + Pr
{√

n

∫ xΨ

φθ((c+δ)/n)

ψθ(x)

x
dx > ε

}
.
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As n→ ∞, the first expression converges to 0 by (5.25), while the second converges to 0

by Lemma 4.5 (i). To establish part (iii), one can proceed exactly as above and conclude

based on Lemma 4.5 (ii).

(iv). The proof is similar as that of part (ii). For,

n|(1− c/n)− ψθ{φθn(1− c/n)}| ≤ |R∗n1|+ |R∗n2|+Rn3 = oP (1), (5.26)

where Rn3 is as in (5.24),

R∗n1 =
1

2
Θ�n ψ̈θ{φθn(1− c/n)}Θn = oP (1)

from the Continuous Mapping Theorem, part (i) and Condition 5.7, and

R∗n2 =
√
nψ̇�θ {φθn(1− c/n)}Θn = oP (1)

using the same arguments as in the proof of part (ii) and Condition 5.7. Then for arbitrary

ε > 0 and δ ∈ (0,min(c, 1− c)),

Pr
{√

n

∫ ∞

1/{Kφθn (1−c/n)}

1− ψθ (1/x)

x�
dx > ε

}
≤

Pr[n|(1− c/n)− ψθ{φθn(1− c/n)}| > δ]

+ Pr
{√

n

∫ ∞

1/[Kφθ{1−(c−δ)/n}]

1− ψθ (1/x)

x�
dx > ε

}
.

As n→ ∞, the first expression converges to 0 by (5.26), while the second converges to 0

by Lemma 4.5 (iii).

Lemma 5.3. Suppose that as n→ ∞, Θn =
√
n(θn− θ) converges in law to a nondegen-

erate limit Θ and that θ ∈ O̊. Further assume that Condition 5.3 holds and that either

Condition 5.4 or 5.5 is satisfied. Then for any K ∈ N, K ≥ 2,

(i) If Condition 5.4 holds,

sup
w∈B1/K

∫ xΨ/w(d)

0

|gω{ψθn(wx)} − gω{ψθ(wx)}|dx
x

→ 0

in probability as n→ ∞.

(ii) If Condition 5.5 holds,

sup
w∈B1/K

∫ xΨ/w(d)

0

|gω{ψθn(wx)} − gω{ψθ(wx)}|dx→ 0

in probability as n→ ∞.
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Proof. (i). Using the fact that for any ω ∈ (0, 1/2), the function tω on [0, 1] is C0,ω

Hölder continuous and g1 is Lipschitz continuous, there exist κ1, κ2 > 0 such that, for all

w ∈ B1/K and x ∈ (0, xψ/w(d)),

|gω{ψθn(wx)} − gω{ψθ(wx)}| ≤ κ1κ
ω
2

d∑
j=1

|ψθn(wjx)− ψθ(wjx)|ω,

Consequently,

∫ xΨ/w(d)

0

|gω{ψθn(wx)} − gω{ψθ(wx)}|dx
x

≤

κ1κ
ω
2

d∑
j=1

∫ xΨ/wj

0

|ψθn(wjx)− ψθ(wjx)|ω dx
x
.

By change of variable, the upper bound equals

κ1κ
ω
2d

∫ xΨ

0

|ψθn(t)− ψθ(t)|ω dt
t
. (5.27)

Whenever θn ∈ O̊, an application of the Mean-Value Theorem implies that for every

realization � and t ∈ [0, xΨ), |ψθn(�)(t) − ψθ(t)| ≤ ‖θn(�) − θ‖‖ψ̇Θ∗
n(t,�)(t)‖, where

Θ∗n(t,�) = θ + ε(t,�)n−1/2Θn(�) for some ε(t,�) ∈ [0, 1]. Consequently, (5.27) is

bounded above by

κ1κ
ω
2d‖n−1/2Θn‖ω2

∫ xΨ

0

‖ψ̇Θ∗
n(t)(t)‖ω2

dt

t
,

which may be rewritten as

κ1κ
ω
2d‖n−1/2Θn‖ω2

[∫ xΨ

0

‖ψ̇θ(t)‖ω2
dt

t
+

∫ xΨ

0

{
‖ψ̇Θ∗

n(t)(t)‖ω2 − ‖ψ̇θ(t)‖ω2
}dt
t

]
.

Now fix an arbitrary ε > 0 and δ > 0 sufficiently small so that {θ′ ∈ O, ‖θ′ − θ‖2 ≤
n−1/2Mδ} ⊂ O̊. Then

Pr

[
sup

w∈B1/K

∫ xΨ/w(d)

0

|gω{ψθn(wx)} − gω{ψθ(wx)}|dx
x
> ε

]

≤ Pr

[
κ1κ

ω
2dδ

ω

{∫ xΨ

0

‖ψ̇θ(t)‖ω2
dt

t
+Υω,θ(δ)

∫ xΨ

0

hωθ (t)
dt

t

}
> ε

]
+ Pr(‖n−1/2Θn‖2 > δ),

where Υω,θ is as in (5.16). Since Pr(‖n−1/2Θn‖2 > δ) → 0 as n → ∞, one has, for any

δ > 0,

lim
n→∞

Pr

[
sup

w∈B1/K

∫ xΨ/w(d)

0

|gω{ψθn(wx)} − gω{ψθ(wx)}|dx
x
> ε

]
≤

Pr

[
κ1κ

ω
2dδ

ω

{∫ xΨ

0

‖ψ̇θ(t)‖ω2
dt

t
+Υω,θ(δ)

∫ xΨ

0

hωθ (t)
dt

t

}
> ε

]
.
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The right-hand side converges to 0 as δ → 0. Indeed, (5.16) implies that

lim
δ↓0

[
κ1κ

ω
2dδ

ω

{∫ xΨ

0

‖ψ̇θ(t)‖ω2
dt

t
+Υω,θ(δ)

∫ xΨ

0

hωθ (t)
dt

t

}]
= 0

given that both integrals are finite by Condition 5.4 and (5.13).

(ii). The proof is completely analogous to the proof of (i). Using the same arguments,

there exist constants κ1, κ2 > 0 such that for w ∈ B1/K ,

∫ xΨ/w(d)

0

|gω{ψθn(wx)} − gω{ψθ(wx)}|dx ≤ κ1κ
ω
2dK

∫ xΨ

0

|ψθn(t) − ψθ(t)|ωdt.

One can proceed as above using Condition 5.5 and (5.17).

5.5.3 Proof of Theorem 5.1

Let K be a compact subset of Δ̊d. For an arbitrary w ∈ Δd, set w(1) = mini=1,...,dwi and

w(d) = maxi=1,...,dwi. Define, for any k ∈ N, the set B1/k = {w ∈ Δd : w(1) ≥ 1/k }. Since
K is compact, there exists an integer K > 1 such that K ⊂ B1/K ⊂ Δ̊d.

To simplify notation, we denote the true parameter value by θ instead of θ0 henceforth

and set Θn =
√
n(θn − θ).

As in Section 4.1, introduce the process B̂CFG
n given, for all w ∈ Δd, by

B̂
CFG
n (w) =

√
n
{
log ÂCFG

n (w)− logA(w)
}
.

Proceeding as in the proof of Lemma 4.2, B̂CFG
n may be rewritten as

B̂
CFG
n (w) = −

∫ ∞

0

√
n
[
Ĉn{ψθn(wx)} − C{ψθ(wx)}

] dx
x

= −
∫ xΨ/w(d)

0

√
n
[
Ĉn{ψθn(wx)} − C{ψθ(wx)}

] dx
x

where the second equality follows because Ĉn{ψθn(wx)} = C{ψθ(wx)} = 0 whenever

x > xΨ/w(d) if Condition 5.3 holds. Next, write B̂
CFG
n = B̂

CFG
n1 + B̂

CFG
n2 , where for all

w ∈ Δd,

B̂
CFG
n1 (w) = −

∫ xΨ/w(d)

0

Ĉn{ψθn(wx)}
dx

x

and

B̂
CFG
n2 (w) = −

∫ xΨ/w(d)

0

√
n [C{ψθn(wx)} − C{ψθ(wx)}] dx

x
. (5.28)

For reasons that will become apparent in the proof of Lemma 5.6 below, it is important

to first establish the asymptotic behavior of the drift B̂CFG
n2 . To this end, let B̌CFG

n2 be the

process given for all w ∈ Δ̊d by B̌
CFG
n2 (w) = a�(w)Θn where a(w) = (a1(w), . . . , ap(w))�

with

ak(w) = −
d∑
j=1

∫ xΨ/wj

0

Ċj{ψθ(wx)}ψ̇θ,k(wjx)dx
x
. (5.29)
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The following lemma establishes that |ak(w)| < ∞ for any k ∈ {1, . . . , p} and w ∈ Δ̊d,

and specifies the weak limit of B̌CFG
n2 .

Lemma 5.4. As n → ∞, B̌CFG
n2 � B

CFG
2 in C(B1/K), where for all w ∈ Δ̊d, B

CFG
2 (w) =

a�(w)Θ.

Proof. First, note that for any k ∈ {1, . . . , p} and w ∈ Δ̊d, |ak(w)| < ∞. Indeed, since

0 ≤ Ċj ≤ 1 for all j ∈ {1, . . . , d},

|ak(w)| ≤
d∑
j=1

∫ xΨ/wj

0

Ċj{ψθ(wx)}|ψ̇θ,k(wjx)|dx
x

≤
d∑
j=1

∫ xΨ/wj

0

|ψ̇θ,k(wjx)|dx
x

= d

∫ xΨ

0

|ψ̇θ,k(t)|dt
t
.

The last expression is finite by Condition 5.4. The next step is to show that a is uniformly

continuous on B1/K , viz.

lim
δ↓0

sup
w,w′∈B1/K ,‖w−w′‖2<δ

‖a(w)− a(w′)‖2 = 0. (5.30)

To show that (5.30) holds, define, for all j ∈ {1, . . . , d} and k ∈ {1, . . . , p},

bj,k(w) =

∫ xΨ/wj

0

Ċj{ψθ(wx)}ψ̇θ,k(wjx)dx
x
.

Then (5.30) follows if for all j ∈ {1, . . . , d} and k ∈ {1, . . . , p},

lim
δ↓0

sup
w,w′∈B1/K ,‖w−w′‖2<δ

|bj,k(w)− bj,k(w
′)| = 0.

Pick an arbitrary j ∈ {1, . . . , d}, k ∈ {1, . . . , p}. Then for any w,w′ ∈ B1/K ,

|bj,k(w)− bj,k(w
′)| ≤

∫ xΨ

0

|Ċj{ψθ(wt/wj)} − Ċj{ψθ(w′t/w′j)}||ψ̇θ,k(t)|
dt

t

by the change of variable. Now pick an arbitrary η, μ ∈ (0, 1) and note that because ψθ is

uniformly continuous, there exists λ > 0 such that for all |x−x′| < λ, |ψθ(x)−ψθ(x′)| < μ.

Also note that if ‖w−w′‖2 < δ, |(wkt/wj)− (w′kt/w
′
j)| ≤ 2K2tδ. Because 2K2φθ(η)δ < λ

for all δ sufficiently close to 0 and because 0 ≤ Ċj ≤ 1,

lim
δ↓0

sup
w,w′∈B1/K ,

‖w−w′‖2<δ

|bj,k(w)− bj,k(w
′)| ≤ sup

u,u′∈Aη,j

‖u−u′‖2<μ

|Ċj(u)− Ċj(u
′)|
∫ φθ(η)

φθ(1−η)
|ψ̇θ,k(t)|dt

t

+ 2
{∫ φθ(1−η)

0

|ψ̇θ,k(t)|dt
t
+

∫ xΨ

φθ(η)

|ψ̇θ,k(t)|dt
t

}
,

where Aη,j = {u ∈ [0, 1]d : uj ∈ [η, 1− η]}. Because Ċj is uniformly continuous on the set

Aη,j by Proposition 3.2, the first expression on the right-hand side tends to 0 as μ → 0.

Because
∫ xΨ
0

{|ψ̇θ,k(t)|}/tdt is finite by Condition 5.4, the second expression tends to 0 as

η → 0.
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The next step is to establish, through the following lemma, that the limiting behavior

of B̂CFG
n2 is the same as that of B̌CFG

n2 .

Lemma 5.5. As n→ ∞, supw∈B1/K
|B̂CFG

n2 (w)− B̌
CFG
n2 (w)| converges in probability to 0.

Proof. Let B̃CFG
n2 be given, for all w ∈ Δ̊d, by

B̃
CFG
n2 (w) = −

d∑
j=1

∫ xΨ/wj

0

√
n{ψθn(wjx)− ψθ(wjx)}Ċj{ψθ(wx)}dx

x
.

We will first show that

sup
w∈B1/K

|B̃CFG
n2 (w)− B̂

CFG
n2 (w)| = oP (1). (5.31)

Using the Mean-Value Theorem, write

B̂
CFG
n2 (w) = −

∫ xΨ/w(d)

0

√
n [C{ψθn(wx)} − C{ψθ(wx)}] dx

x

= −
d∑
j=1

∫ xΨ/wj

0

√
n{ψθn(wjx)− ψθ(wjx)}Ċj(uwx)dx

x
,

where for every wx and realization �, uwx(�) = ε(wx,�)ψθn(�)(wx) + {1− ε(wx,�)}
ψθ(wx) for some ε(wx,�) ∈ [0, 1]. It thus suffices to show that for all j ∈ {1, . . . , d},

Vn = sup
w∈B1/K

∫ xΨ/wj

0

√
n|ψθn(wjx)− ψθ(wjx)||Ċj{ψθ(wx)} − Ċj(uwx)|dx

x

converges in probability to 0 as n→ ∞. To accomplish this, fix an arbitrary j ∈ {1, . . . , d}
and let

Tn = sup
x∈[0,xΨ)

|√n{ψθn(x)− ψθ(x)}| . (5.32)

From Lemma 5.1 (i), it follows that the sequence (Tn) is tight. For any δ > 0 there

exists Mδ > 0 and Nδ > 0 such that for all n ≥ Nδ, Pr(Tn > Mδ) < δ. Pick an

an arbitrary ε > 0, η ∈ (0, 1) and let n ≥ Nδ be such that Mδ/
√
n < η/2. Then

Pr(Vn > ε) ≤ δ + Pr(Vn > ε, Tn ≤ Mδ) and Pr(Vn > ε, Tn ≤ Mδ) may be bounded above

by Pr(Vn1 > ε/2) + Pr(Vn2 > ε/2), where

Vn1 = 2 sup
w∈B1/K

{∫ φθ(1−η)/wj

0

√
n|ψθn(wjx)− ψθ(wjx)|dx

x

+

∫ xΨ/wj

φθ(η)/wj

√
n|ψθn(wjx)− ψθ(wjx)|dx

x

}

= 2
{∫ φθ(1−η)

0

√
n|ψθn(t)− ψθ(t)|dt

t
+

∫ xΨ

φθ(η)

√
n|ψθn(t)− ψθ(t)|dt

t

}
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and

Vn2 = sup
u,u′∈Aη/2,j

‖u−u′‖<Mδ/
√
n

|Ċj(u)− Ċj(u
′)|
∫ φθ(η)

φθ(1−η)

√
n|ψθn(t)− ψθ(t)|dt

t
,

where Aη/2,j = {u ∈ [0, 1]d : uj ∈ [η/2, 1− η/2]}. Because Ċj is uniformly continuous on

Aη/2,j and ∫ φθ(η)

φθ(1−η)

√
n|ψθn(x)− ψθ(x)|dx

x
�
∫ φθ(η)

φθ(1−η)
|ψ̇�θ (x)Θ|dx

x

as n→ ∞ by Lemma 5.1 (iii), Vn2 → 0 in probability as n→ ∞. The same lemma, again

part (iii), also implies that as n→ ∞,

Vn1 � 2
{∫ φθ(1−η)

0

|ψ̇�θ (x)Θ|dx
x

+

∫ xΨ

φθ(η)

|ψ̇�θ (x)Θ|dx
x

}
.

The limit is non-negative and bounded above by

2 sup
t∈[0,xΨ)

|ψ̇�θ (t)Θ|
hθ(t)

{∫ φθ(1−η)

0

hθ(x)
dx

x
+

∫ xΨ

φθ(η)

hθ(x)
dx

x

}
.

By the Portmanteau Lemma, the lim sup of Pr(Vn1 > ε/2) is at most

Pr
[
2 sup
t∈[0,xΨ)

|ψ̇�θ (t)Θ|
hθ(t)

{∫ φθ(1−η)

0

hθ(x)
dx

x
+

∫ xΨ

φθ(η)

hθ(x)
dx

x

}
≥ ε/2

]
.

This probability can be made arbitrarily small given that

lim
η→0

{∫ φθ(1−η)

0

hθ(x)
dx

x
+

∫ xΨ

φθ(η)

hθ(x)
dx

x

}
= 0 .

Since δ was arbitrary, Pr(Vn > ε) → 0 as n→ ∞, and (5.31) holds.

Next, we establish that

sup
w∈B1/K

|B̃CFG
n2 (w)− B̌

CFG
n2 (w)| = oP (1) . (5.33)

To this end, it suffices to show that for each j ∈ {1, . . . , d},

sup
w∈B1/K

∫ xΨ/wj

0

|Ċj{ψθ(wx)}||ψ̇�θ (wjx)Θn −
√
n{ψθn(wjx)− ψθ(wjx)}|dx

x

converges to 0 in probability as n → ∞. Using the fact that 0 ≤ Ċj ≤ 1 and making a

change of variable, this expression is bounded above by

Wn =

∫ xΨ

0

|ψ̇�θ (t)Θn −
√
n{ψθn(t)− ψθ(t)}|dt

t
.

We can now proceed similarly as in the proof of (ii) of Lemma 5.1. Because (Θn) is

tight, for any given δ > 0, there exists Mδ > 0 and Nδ > 0 such that for all n ≥ Nδ,
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Pr(‖Θn‖2 > Mδ) < δ. Suppose that n ≥ Nδ is large enough so that {θ′ ∈ O, ‖θ′ − θ‖2 ≤
n−1/2Mδ} ⊂ O̊. Whenever ‖θn − θ‖2 ≤ n−1/2Mδ,

Wn ≤ ‖Θn‖2 sup
x∈[0,xψ)

‖ψ̇Θ∗
n(x)(x)− ψ̇θ(x)‖2

hθ(x)

∫ xΨ

0

hθ(t)
dt

t
,

where for any realization �, Θ∗n(x,�) = θ + ε(x,�)n−1/2Θn(�) for some ε(x,�) ∈ [0, 1].

For any such n and arbitrary ε > 0, Pr(Wn > ε) is at most

δ + Pr(Wn > ε, ‖Θn‖2 ≤Mδ) ≤ δ + Pr
{
MδΥθ(Mδ/

√
n)

∫ xΨ

0

hθ(t)
dt

t
> ε
}

Clearly, the second expression converges to 0 as n → ∞ by Condition 5.4. Hence,

limn→∞ Pr(Wn > ε) ≤ δ. Since δ was arbitrary, (5.33) follows.

Combining Lemmas 5.4 and 5.5, we thus have that

B̂
CFG
n2 � B

CFG
2 (5.34)

as n → ∞ in C(B1/K), where for all w ∈ Δ̊d, B
CFG
2 (w) = a�(w)Θ. Next, let C̄n be as in

Theorem 2.12 in Chapter 2 and define for all w ∈ Δd,

B̄
CFG
n1 (w) = −

∫ xΨ/w(d)

0

C̄n{ψθn(wx)}
dx

x
. (5.35)

The following lemma is the analogue of Lemma 4.6.

Lemma 5.6. As n→ ∞,

sup
w∈B1/K

∫ xΨ/w(d)

0

|Ĉn{ψθn(wx)} − C̄n{ψθn(wx)}|
dx

x

converges in probability to 0.

Proof. First, pick an arbitrary c ∈ (0, 1/K) and define

an = φθn

(
1− c

n

)
, bn = φθn

( c
n

)
.

Let NK ∈ N be such that for any n ≥ NK , c < n/{K(n + 1)}. Throughout the proof,

assume that n ≥ NK . Then c <
n
n+1

and, by Lemma 4.3,

ψθn

{
Kφθn

(
1− c

n

)}
>

n

n+ 1
. (5.36)

As in the proof of Lemma 4.6, use the triangle inequality to write

∫ xΨ/w(d)

0

|Ĉn{ψθn(wx)} − C̄n{ψθn(wx)}|
dx

x

≤ I1(w) + I2(w) + I3(w) + I4(w) + I5(w),
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with

I1(w) =

∫ bn/w(d)

an/w(1)

∣∣∣Ĉn{ψθn(wx)− C̄n{ψθn(wx)
∣∣∣ dx
x
,

I2(w) =

∫ an/w(1)

0

∣∣∣Ĉn{ψθn(wx)
∣∣∣ dx
x
, I3(w) =

∫ xΨ/w(d)

bn/w(d)

∣∣∣Ĉn{ψθn(wx)
∣∣∣ dx
x
,

I4(w) =

∫ an/w(1)

0

∣∣C̄n{ψθn(wx)
∣∣ dx
x
, I5(w) =

∫ xΨ/w(d)

bn/w(d)

∣∣C̄n{ψθn(wx)
∣∣ dx
x
.

Each integral will be treated separately, showing that for all p ∈ {1, . . . , 5},
supw∈B1/K

Ip(w) → 0 in probability as n→ ∞.

Treatment of I1. Fix w ∈ B1/K and let gω be the weight function given by (4.10) for any

ω ∈ (0, 1/2). Since an/w(1) < x < bn/w(d), c/n < ψθn(wjx) < 1−c/n for all j ∈ {1, . . . , d}.
Thus with Sn as in (4.11),

I1(w) ≤ Sn

∫ xΨ/w(d)

0

gω{ψθn(wx)}
x

dx

≤ Sn

[∫ xΨ/w(d)

0

gω{ψθ(wx)}
x

dx

+ sup
w∈B1/K

∫ xΨ/w(d)

0

|gω{ψθn(wx)} − gω{ψθ(wx)}|dx
x

]
.

By the first part of Theorem 2.12, Sn converges to 0 in probability as n → ∞, while

Lemma 5.3 implies that the expression in the square brackets converges in probability to∫ xΨ/w(d)

0

gω{ψθ(wx)}
x

dx,

which was shown to be finite while discussing I1 in the proof of Lemma 4.6.

Treatment of I2. Fixing an arbitrary w ∈ B1/K , for any x ∈ (0, an/w(1)) and j ∈
{1, . . . , d}, wjx ≤ (wj/w(1))φθn(1− c/n) ≤ Kφθn(1− c/n). Together with (5.36), this im-

plies that ψθn(wjx) ≥ ψθn{Kφθn(1−c/n)} > n/(n+1). Therefore, for any x ∈ (0, an/w(1)),

Ĉn{ψθn(wx)} = 1 and I2(w) = I21(w) + I22(w), where

I21(w) =
√
n

∫ an/w(1)

0

[1− C{ψθ(wx)}]dx
x
,

I22(w) =
√
n

∫ an/w(1)

0

[C{ψθ(wx)} − C{ψθn(wx)}]
dx

x
.

As in the treatment of I2 in the proof of Lemma 4.6, we have that

I21(w) ≤ √
n

∫ ∞

w(1)/an

1− ψθ (1/x)

x
dx ≤ √

n

∫ ∞

1/(Kan)

1− ψθ (1/x)

x
dx .

The upper bound is independent of w and converges in probability to 0 by Lemma 5.2

(iii).
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To show that supw∈B1/K
|I22(w)| converges to zero in probability, note that I22(w)

is the same integral as −B̂
CFG
n2 (w), except for the upper limit of integration. Pick an

arbitrary 0 < δ < xΨ/K; this way, for any w ∈ B1/K , δ/w(1) ≤ xΨ/wj. Then, for any

ε > 0,

Pr{ sup
w∈B1/K

|I22(w)| > ε} = Pr{an > δ}+

Pr
{

sup
w∈B1/K

∣∣∣√n ∫ δ/w(1)

0

[C{ψθ(wx)} − C{ψθn(wx)}]
dx

x

∣∣∣ > ε
}
.

The first term on the right-hand side converges to zero because an → 0 in probability by

Lemma 5.2 (i). As for the second term, the same arguments as in the proof of Lemma

5.5 can then be used to show that

sup
w∈B1/K

∣∣∣∫ δ/w(1)

0

√
n[C{ψθ(wx)} − C{ψθn(wx)}]

dx

x
− aδ(w)�Θn

∣∣∣,
converges in probability to 0, where aδ(w) = (aδ,1(w), . . . , aδ,p(w))� with

aδ,k(w) = −
d∑
j=1

∫ δ/w(1)

0

Ċj{ψθ(wx)}ψ̇θ,k(wjx)dx
x
.

Observe that as in the proof of Lemma 5.4, for any k ∈ {1, . . . , p},

|aδ,k(w)| ≤
d∑
j=1

∫ δ/w(1)

0

|ψ̇θ,k(wjx)|dx
x

≤
d∑
j=1

∫ Kδ/wj

0

|ψ̇θ,k(wjx)|dx
x

= d

∫ Kδ

0

|ψ̇θ,k(t)|dt
t
≡ bδ,k,

so that, using (5.13), ‖bδ‖2 → 0 as δ → 0, where bδ = (bδ,1, . . . , bδ,d)
�. Hence,

lim sup
n→∞

Pr( sup
w∈B1/K

|aδ(w)�Θn| > ε) ≤ lim sup
n→∞

Pr(‖Θn‖2‖bδ‖2 > ε)

≤ Pr(‖Θ‖2‖bδ‖2 ≥ ε),

where the last inequality is due to the Portmanteau lemma. As δ → 0, the last expression

tends to 0. Put together, we have that supw∈B1/K
|I22(w)| converges in probability to 0,

as was to be shown.

Treatment of I3. Fixing an arbitraryw ∈ B1/K , note that if x ≥ bn/w(d), then ψθn(xw(d)) ≤
c/n < 1/(n+1) so that Ĉn{ψθn(wx)} = 0. Consequently, I3(w) = I31(w)+I32(w), where

I31(w) =
√
n

∫ xΨ/w(d)

bn/w(d)

C{ψθ(wx)}dx
x

I32(w) =
√
n

∫ xΨ/w(d)

bn/w(d)

[C{ψθn(wx)} − C{ψθ(wx)}]dx
x
.

83



As in the treatment of I3 in the proof of Lemma 4.6,

I31(w) ≤ √
n

∫ xψ/w(d)

bn/w(d)

ψθ(w(d)x)

x
dx =

√
n

∫ xΨ

bn

ψθ(x)

x
dx .

The upper bound is independent of w and converges in probability to 0 by Lemma 5.2

(ii).

To show that supw∈B1/K
|I32(w)| converges to zero in probability, pick an arbitrary 0 <

κ < xΨ. Then, for any ε > 0, and κ arbitrarily close to xΨ,

Pr{ sup
w∈B1/K

|I32(w)| > ε} = Pr{bn < κ}+

Pr
{

sup
w∈B1/K

∣∣∣√n ∫ xΨ/w(d)

κ/w(d)

[C{ψθn(wx)} − C{ψθ(wx)}]dx
x

∣∣∣ > ε
}
.

The first term on the right-hand side converges to zero because bn → xΨ in probability

by Lemma 5.2 (i). As for the second term, the same arguments as in the proof of Lemma

5.5 can then be used to show that

sup
w∈B1/K

∣∣∣∫ xΨ/w(d)

κ/w(d)

√
n[C{ψθ(wx)} − C{ψθn(wx)}]

dx

x
− a∗κ(w)�Θn

∣∣∣,
converges in probability to 0, where a∗κ(w) = (a∗κ,1(w), . . . , a∗κ,p(w))� with

a∗κ,k(w) =
d∑
j=1

∫ xΨ/w(d)

κ/w(d)

Ċj{ψθ(wx)}ψ̇θ,k(wjx)dx
x
.

Because 0 ≤ Ċj ≤ 1, for any k ∈ {1, . . . , p},

|a∗κ,k(w)| ≤
d∑
j=1

∫ xΨ/w(d)

κ/w(d)

|ψ̇θ,k(wjx)|dx
x
.

In the case when xΨ <∞, letM = supx∈[0,xΨ) ‖ψ̇θ(x)‖2; from (5.14) we have thatM <∞.

Then |a∗κ,k(w)|2 ≤ b∗κ,k, where

b∗κ,k = dM(ln xΨ − lnκ).

Clearly, ‖b∗κ‖ → 0 as κ → xΨ, where b
∗
κ = (b∗κ,1, . . . , b

∗
κ,d)

�. In the case when xΨ = ∞,

|a∗κ,k(w)| ≤ b∗κ,k, where this time,

b∗κ,k =
d∑
j=1

∫ xΨ/wj

κ/(Kwj)

|ψ̇θ,k(wjx)|dx
x

= d

∫ xΨ

κ/K

|ψ̇θ,k(t)|dt
t
,

so that, using (5.13), we again have that ‖b∗κ‖2 → 0 as κ→ ∞, where b∗κ = (b∗κ,1, . . . , b
∗
κ,d)

�.

Thus when xΨ <∞ as well as when xΨ = ∞,

lim sup
n→∞

Pr( sup
w∈B1/K

|a∗κ(w)�Θn| > ε) ≤ lim sup
n→∞

Pr(‖Θn‖2‖b∗κ‖2 > ε)

≤ Pr(‖Θ‖2‖b∗κ‖2 ≥ ε),
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where the last inequality is due to the Portmanteau lemma. As κ→ xΨ, the upper bound

tends to 0, so that supw∈B1/K
|I32(w)| = oP (1).

Treatment of I4. Here the second weight function defined for u ∈ [0, 1]d by g̃ω(u) =

gω(u) + 1{gω(u) = 0} is used. Letting w ∈ B1/K and Zn defined as in (4.16),

I4(w) =

∫ an/w(1)

0

∣∣∣∣C̄n{ψθn(wx)}g̃ω{ψθn(wx)}
∣∣∣∣ g̃ω{ψθn(wx)}x

dx

≤ Zn

∫ an/w(1)

0

g̃ω{ψθn(wx)}
x

dx ≤ Zn

∫ Kan

0

g̃ω{ψθn(wx)}
x

dx.

Now suppose for a moment that an ≤ δ for some δ small enough so that Kδ < xΨ. Under

this assumption,

Zn

∫ Kan

0

g̃ω{ψθn(wx)}
x

dx = Zn

∫ Kan

0

gω{ψθn(wx)}
x

dx.

because gω(u) = 0 occurs either when at least one component of u equals 0 or at least

d− 1 components equal 1. Write the right-hand side as

Zn

[∫ Kan

0

gω{ψθ(wx)}
x

dx+

∫ Kan

0

gω{ψθn(wx)} − gω{ψθ(wx)}
x

dx
]

and note from the proof of Lemma 4.6 (Treatment of I4) that this expression is bounded

above by

Zn

∫ ∞

1/(Kδ)

{1− ψθ (1/x)}ω
x

dx

+ Zn sup
w∈B1/K

∫ xΨ/w(d)

0

|gω{ψθn(wx)} − gω{ψθ(wx)}|dx
x
.

Now fix an arbitrary ε > 0 and pick a δ > 0 so that Kδ < xΨ. Then

Pr( sup
w∈B1/K

I4(w) > ε) ≤ Pr( sup
w∈B1/K

I4(w) > ε, an ≤ δ) + Pr(an ≥ δ)

Given that an → 0 in probability from Lemma 5.2 (i), it suffices to show that the first

term on the right-hand side tends to 0 as n→ ∞. Write

Pr( sup
w∈B1/K

I4(w) > ε, an ≤ δ)

≤ Pr
[
Zn

∫ ∞

1/(Kδ)

{1− ψθ (1/x)}ω
x

dx >
ε

2

]

+ Pr
[
Zn sup

w∈B1/K

∫ xΨ/w(d)

0

|gω{ψθn(wx)} − gω{ψθ(wx)}|dx
x
>
ε

2

]
.

Given that Zn � Z = supu∈[0,1]d |C(u)/g̃ω(u)| as n→ ∞ by Theorem 2.12, the Portman-

teau lemma implies that the lim sup of the first term is bounded above by

Pr
[
Z

∫ ∞

1/(Kδ)

{1− ψθ (1/x)}ω
x

dx ≥ ε

2

]
.
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This probability can be made arbitrarily small given that∫ ∞

1/(Kδ)

{1− ψθ (1/x)}ω
x

dx

is bounded above by I11 in (4.15), which is finite, and tends to 0 as δ → 0. Lemma 5.3

and the fact that Zn � Z imply that

lim
n→∞

Pr
[
Zn sup

w∈B1/K

∫ xΨ/w(d)

0

|gω{ψθn(wx)} − gω{ψθ(wx)}|dx
x
>
ε

2

]
= 0

which concludes that supw∈B1/K
I4(w) → 0 in probability as n→ ∞.

Treatment of I5. We can proceed similarly as in the preceding paragraph. Fix any

w ∈ B1/K and suppose that bn > δ for some δ ∈ (0, xΨ) arbitrarily close to xΨ. Using the

arguments from the proof of Lemma 4.6 (treatment of I5), one has that

I5(w) =

∫ xΨ/w(d)

bn/w(d)

∣∣∣∣C̄n{ψθn(wx)}g̃ω{ψθn(wx)}
∣∣∣∣ g̃ω{ψθn(wx)}x

dx

≤ Zn

∫ xΨ/w(d)

bn/w(d)

g̃ω{ψθn(wx)}
x

dx = Zn

∫ xΨ/w(d)

bn/w(d)

gω{ψθn(wx)}
x

dx,

and that the upper bound is bounded above by

Zn

∫ xΨ

δ

{ψθ(x)}ω
x

dx

+ Zn sup
w∈B1/K

∫ xΨ/w(d)

0

|gω{ψθn(wx)} − gω{ψθ(wx)}|dx
x
.

Proceeding as in the proof of supw∈B1/K
I4(w) = oP (1), we thus have that

supw∈B1/K
I5(w) = oP (1), since bn → xΨ in probability as n → ∞ by Lemma 5.2 (i) and∫ xΨ

δ
{ψθ(x)}ω/dx→ 0 as δ → xΨ by Lemma 4.4 (i).

From Lemma 5.6, supw∈B1/K
|B̂CFG

n1 (w) − B̄
CFG
n1 (w)| converges to 0 in probability as

n→ ∞. Finally, introduce B̌
CFG
n1 given, for all w ∈ Δd, by

B̌
CFG
n1 (w) = −

∫ xΨ/w(d)

0

C̄n{ψθ(wx)}dx
x

(5.37)

and note the following result.

Lemma 5.7. As n→ ∞, supw∈B1/K
|B̄CFG

n1 (w)− B̌
CFG
n1 (w)| converges in probability to 0.

Proof. Introduce the process B̃CFG
n1 given, for all w ∈ Δd, by

B̃
CFG
n1 (w) = −

∫ xΨ/w(d)

0

C̄n{ψθn(wx)}
g̃ω{ψθn(wx)}

g̃ω{ψθ(wx)}dx
x
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and observe that, with Zn as in (4.16),

sup
w∈B1/K

|B̄CFG
n1 (w)− B̃

CFG
n1 (w)| ≤

Zn sup
w∈B1/K

∫ xΨ/w(d)

0

|g̃ω{ψθn(wx)− g̃ω{ψθ(wx)|dx
x
.

From Theorem 2.12, Zn converges in law to supu∈[0,1]d |C(u)/g̃ω(u)| as n → ∞. Further-

more, because φθ(0) = φθn(0) = xΨ from Condition 5.3,

sup
w∈B1/K

∫ xΨ/w(d)

0

|g̃ω{ψθn(wx)− g̃ω{ψθ(wx)|dx
x

=

sup
w∈B1/K

∫ xΨ/w(d)

0

|gω{ψθn(wx)− gω{ψθ(wx)|dx
x
.

The expression on the right-hand side tends to zero in probability by Lemma 5.3. Conse-

quently, supw∈B1/K
|B̄CFG

n1 (w)− B̃
CFG
n1 (w)| converges to 0 in probability as

n → ∞. Next, recall that the sequence (Tn) with Tn as in (5.32) is tight. Hence, for any

δ > 0 there exists Mδ > 0 and Nδ > 0 such that for all n ≥ Nδ, Pr(Tn > Mδ) < δ. Let

ε > 0 be arbitrary. Then

Pr( sup
w∈B1/K

|B̌CFG
n1 (w)− B̃

CFG
n1 (w)| > ε) ≤ δ+

Pr
{

sup
u,u′∈[0,1]d

‖u−u′‖2≤Mδ/
√
n

∣∣∣C̄n(u)

g̃ω(u)
− C̄n(u

′)
g̃ω(u′)

∣∣∣ > ε

I11 + I12

}
,

using (4.14); I11 and I12 are as in (4.15). Because δ > 0 was arbitrary, the conclusion

follows from Equation (4.2) of Berghaus et al. (2017).

Putting all the pieces together, we have that

sup
w∈B1/K

|B̂CFG
n (w)− B̌

CFG
n1 (w)− B̌

CFG
n2 (w)| = oP (1).

Equation (5.12) and the Continuous Mapping Theorem then imply that

B̂
CFG
n � −

∫ xΨ/w(d)

0

C{ψθ(wx)}dx
x

−
d∑
j=1

∫ xΨ/wj

0

Ċj{ψθ(wx)}ψ̇�θ (wjx)Θ
dx

x

in �∞([0, 1]d), as was to be shown. The continuity of the mapping follows from (5.30) and

the calculations in the last paragraph of Section 4.2.3. Because for any j ∈ {1, . . . , d},
Ċj(u) = 0 if uk = 0 for some k �= j, the limit can be written more succinctly as

−
∫ xΨ/w(d)

0

[
C{ψθ(wx)}+

d∑
j=1

Ċj{ψθ(wx)}ψ̇�θ (wjx)Θ
]dx
x
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and by change of variable as

∫ 1

0

(
C[ψθ{−w log(u)}] +

d∑
j=1

Ċj[ψθ{−w log(u)}]ψ̇�θ {−wj log(u)}Θ
) du

u log u

with the convention that, if xΨ <∞, ψ̇�θ (x) ≡ 0 whenever x ≥ xΨ.

5.5.4 Proof of Theorem 5.2

The proof proceeds along the same path as the proof of Theorem 5.1. Let K be a compact

subset of Δ̊d. For an arbitrary w ∈ Δd, set w(1) = mini=1,...,dwi and w(d) = maxi=1,...,dwi.

Define, for any k ∈ N, the set B1/k = {w ∈ Δd : w(1) ≥ 1/k }. Since K is compact, there

exists an integer K > 1 such that K ⊂ B1/K ⊂ Δ̊d.

Again, to simplify notation, we denote the true parameter value by θ instead of θ0

henceforth, and write Θn =
√
n(θn − θ).

As in Section 4.1, introduce the process B̂P
n given, for all w ∈ Δd, by

B̂
P
n(w) =

√
n
{
1/ÂP

n(w)− 1/A(w)
}
.

Proceeding as in the proof of Lemma 4.2, B̂P
n may be rewritten as

B̂
P
n(w) = {E(Z)}−1

∫ ∞

0

√
n
[
Ĉn{ψθn(wx)} − C{ψθ(wx)}

]
dx

= {E(Z)}−1
∫ xΨ/w(d)

0

√
n
[
Ĉn{ψθn(wx)} − C{ψθ(wx)}

]
dx

where the second equality follows because Ĉn{ψθn(wx)} = C{ψθ(wx)} = 0 whenever

x > xΨ/w(d) if Condition 5.3 holds. Next, write B̂
P
n = B̂

P
n1 + B̂

P
n2, where for all w ∈ Δd,

B̂
P
n1(w) = {E(Z)}−1

∫ xΨ/w(d)

0

Ĉn{ψθn(wx)}dx

and

B̂
P
n2(w) = {E(Z)}−1

∫ xΨ/w(d)

0

√
n [C{ψθn(wx)} − C{ψθ(wx)}] dx .

As in the proof of Theorem 5.1, it is important to establish weak convergence of the

drift B̂
P
n2 first. To this end, let B̌

P
n2 be the process given for all w ∈ Δ̊d by B̌

P
n2(w) =

a�(w)Θn where a(w) = (a1(w), . . . , ap(w))� with

ak(w) = {E(Z)}−1
d∑
j=1

∫ xΨ/wj

0

Ċj{ψθ(wx)}ψ̇θ,k(wjx)dx. (5.38)

The following lemma shows that |ak(w)| < ∞ for any k ∈ {1, . . . , p} and w ∈ Δ̊d, and

determines the asymptotic behavior of B̌P
n2.

Lemma 5.8. As n→ ∞, B̌P
n2 � B

P
2 in C(B1/K), where for all w ∈ Δ̊d, B

P
2 (w) = a�(w)Θ.
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Proof. Fix an arbitrary K ≥ 2. and note that for any k ∈ {1, . . . , p} and w ∈ Δ̊d,

|ak(w)| <∞. Indeed, since 0 ≤ Ċj ≤ 1 for all j ∈ {1, . . . , d}, we have that

E(Z)|ak(w)| ≤
d∑
j=1

∫ xΨ/wj

0

Ċj{ψθ(wx)}|ψ̇θ,k(wjx)|dx

≤
d∑
j=1

∫ xΨ/wj

0

|ψ̇θ,k(wjx)|dx =
d∑
j=1

1

wj

∫ xΨ

0

|ψ̇θ,k(t)|dt

The last expression is finite by Condition 5.5. Next we show that a is uniformly continuous

on B1/K viz.

lim
δ↓0

sup
w,w′∈B1/K ,‖w−w′‖<δ

‖a(w)− a(w′)‖2 = 0. (5.39)

To show that (5.39) holds, define, for all j ∈ {1, . . . , d} and k ∈ {1, . . . , p},

bj,k(w) =

∫ xΨ/wj

0

Ċj{ψθ(wx)}ψ̇θ,k(wjx)dx.

Then (5.39) follows if for all j ∈ {1, . . . , d} and k ∈ {1, . . . , p},

lim
δ↓0

sup
w,w′∈B1/K ,‖w−w′‖2<δ

|bj,k(w)− bj,k(w
′)| = 0.

Pick an arbitrary j ∈ {1, . . . , d}, k ∈ {1, . . . , p}. Then for any w,w′ ∈ B1/K ,

|bj,k(w)− bj,k(w
′)|

≤
∫ xΨ

0

∣∣∣∣∣Ċj{ψθ(wt/wj)}wj
− Ċj{ψθ(w′t/w′j)}

w′j

∣∣∣∣∣ |ψ̇θ,k(t)|dt
≤
∫ xΨ

0

|w′jĊj{ψθ(wt/wj)} − wjĊj{ψθ(w′t/w′j)}|
wjw′j

|ψ̇θ,k(t)|dt

≤ K2wj

∫ xΨ

0

|Ċj{ψθ(wt/wj)} − Ċj{ψθ(w′t/w′j)}||ψ̇θ,k(t)|dt

+K2|wj − w′j|
∫ xΨ

0

Ċj{ψθ(wt/wj)}|ψ̇θ,k(t)|dt

≤ K2

∫ xΨ

0

|Ċj{ψθ(wt/wj)} − Ċj{ψθ(w′t/w′j)}||ψ̇θ,k(t)|dt

+K2|wj − w′j|
∫ xΨ

0

|ψ̇θ,k(t)|dt .

Due to the fact that
∫ xΨ
0

|ψ̇θ,k(t)|dt is finite by (5.17),

sup
w,w′∈B1/K ,

‖w−w′‖2<δ

K2|wj − w′j|
∫ xΨ

0

|ψ̇θ,k(t)|dt→ 0

as δ → 0. The rest of the argument follows as in the proof of Lemma 5.4. Pick an

arbitrary η, μ ∈ (0, 1) and note that because ψθ is uniformly continuous, there exists
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λ > 0 such that for all |x−x′| < λ, |ψθ(x)−ψθ(x′)| < μ. Also note that if ‖w−w′‖2 < δ,

|(wkt/wj) − (w′kt/w
′
j)| ≤ 2K2tδ. Because 2K2φθ(η)δ < λ for all δ sufficiently small and

because 0 ≤ Ċj ≤ 1,

lim
δ↓0

sup
w,w′∈B1/K ,

‖w−w′‖2<δ

|bj,k(w)− bj,k(w
′)| ≤

K2 sup
u,u′∈Aη,j

‖u−u′‖2<μ

|Ċj(u)− Ċj(u
′)|
∫ φθ(η)

φθ(1−η)
|ψ̇θ,k(t)|dt

+ 2K2
{∫ φθ(1−η)

0

|ψ̇θ,k(t)|dt+
∫ xΨ

φθ(η)

|ψ̇θ,k(t)|dt
}
,

where Aη,j = {u ∈ [0, 1]d : uj ∈ [η, 1− η]}. Because Ċj is uniformly continuous on the set

Aη,j by Proposition 3.2, the first expression on the right-hand side tends to 0 as μ → 0.

Because
∫ xΨ
0

|ψ̇θ,k(t)|dt is finite by Condition 5.5, the second expression tends to 0 as

η → 0.

The following result shows that B̂P
n2 behaves asymptotically as B̌P

n2.

Lemma 5.9. As n→ ∞, supw∈B1/K
|B̌P

n2(w)− B̂
P
n2(w)| converges to 0 in probability.

Proof. Let B̃P
n2 be given, for all w ∈ Δ̊d, by

B̃
P
n2(w) = {E(Z)}−1

d∑
j=1

∫ xΨ/wj

0

√
n{ψθn(wjx)− ψθ(wjx)}Ċj{ψθ(wx)}dx.

We will first show that

sup
w∈B1/K

|B̃P
n2(w)− B̂

P
n2(w)| = oP (1). (5.40)

To this end, use the Mean-Value Theorem to write

B̂
P
n2(w) = {E(Z)}−1

∫ ∞

0

√
n [C{ψθn(wx)} − C{ψθ(wx)}] dx

= {E(Z)}−1
d∑
j=1

∫ xΨ/wj

0

√
n{ψθn(wjx)− ψθ(wjx)}Ċj(uwx)dx,

where for everywx and realization�, uwx(�) = ε(wx,�)ψθn(�)(wx)+{1−ε(t,�)}ψθ(wx)
for some ε(wx,�) ∈ [0, 1]. It thus suffices to show that for all j ∈ {1, . . . , d},

Vn = sup
w∈B1/K

∣∣∣∣∣
∫ xΨ/wj

0

√
n{ψθn(wjx)− ψθ(wjx)}[Ċj{ψθ(wx)} − Ċj(uwx)]dx

∣∣∣∣∣
converges in probability to 0 as n→ ∞. To accomplish this, fix an arbitrary j ∈ {1, . . . , d}
and let Tn be defined as in (5.32). From Lemma 5.1 (i), it follows that the sequence (Tn)
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is tight. For any δ > 0 there exists Mδ > 0 and Nδ > 0 such that for all n ≥ Nδ,

Pr(Tn > Mδ) < δ. Pick an arbitrary ε > 0, η ∈ (0, 1) and let n ≥ Nδ be such that

Mδ/
√
n < η/2. Then Pr(Vn > ε) ≤ δ + Pr(Vn > ε, Tn ≤ Mδ) and Pr(Vn > ε, Tn ≤ Mδ)

may be bounded above by Pr(Vn1 > ε/2)+Pr(Vn2 > ε/2), where analogously to the proof

of Lemma 5.5,

Vn1 = 2 sup
w∈B1/K

{∫ φθ(1−η)/wj

0

√
n|ψθn(wjx)− ψθ(wjx)|dx

+

∫ xΨ/wj

φθ(η)/wj

√
n|ψθn(wjx)− ψθ(wjx)|dx

}

= 2K
{∫ φθ(1−η)

0

√
n|ψθn(t)− ψθ(t)|dt+

∫ xΨ

φθ(η)

√
n|ψθn(t)− ψθ(t)|dt

}

and

Vn2 = sup
u,u′∈Aη/2,j

‖u−u′‖2<Mδ/
√
n

|Ċj(u)− Ċj(u
′)|K

∫ φθ(η)

φθ(1−η)

√
n|ψθn(t)− ψθ(t)|dt,

where Aη/2,j = {u ∈ [0, 1]d : uj ∈ [η/2, 1− η/2]}. Because Ċj is uniformly continuous on

Aη/2,j and ∫ φθ(η)

φθ(1−η)

√
n|ψθn(x)− ψθ(x)|dx�

∫ φθ(η)

φθ(1−η)
|ψ̇�θ (x)Θ|dx

as n→ ∞ by Lemma 5.1 (iv), Vn2 → 0 in probability as n→ ∞. The same lemma, again

part (iv), also implies that as n→ ∞,

Vn1 � 2K
{∫ φθ(1−η)

0

|ψ̇�θ (x)Θ|dx+
∫ xΨ

φθ(η)

|ψ̇�θ (x)Θ|dx
}
.

The limit is non-negative and bounded above by

2K sup
t∈[0,xΨ)

|ψ̇�θ (t)Θ|
hθ(t)

{∫ φθ(1−η)

0

hθ(x)dx+

∫ xΨ

φθ(η)

hθ(x)dx
}

By the Portmanteau lemma, lim supn→∞ Pr(Vn1 > ε/2) is at most

Pr
[
2K sup

t∈[0,xΨ)

|ψ̇�θ (t)Θ|
hθ(t)

{∫ φθ(1−η)

0

hθ(x)dx+

∫ xΨ

φθ(η)

hθ(x)dx
}
≥ ε/2

]
.

This probability can be made arbitrarily small given that

lim
η→0

{∫ φθ(1−η)

0

hθ(x)dx+

∫ xΨ

φθ(η)

hθ(x)dx
}
= 0.

Since δ was arbitrary, Pr(Vn > ε) → 0 as n→ ∞. This establishes (5.40).

Next, we will prove that

sup
w∈B1/K

|B̃P
n2(w)− B̌

P
n2(w)| = oP (1). (5.41)
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To this end, it suffices to show that for each j ∈ {1, . . . , d},

sup
w∈B1/K

∣∣∣∫ xΨ/wj

0

Ċj{ψθ(wx)}[ψ̇�θ (wjx)Θn −
√
n{ψθn(wjx)− ψθ(wjx)}]dx

∣∣∣
converges to 0 in probability as n→ ∞. Given that this expression is bounded above by

Wn = K

∫ xΨ

0

|ψ̇�θ (t)Θn −
√
n{ψθn(t)− ψθ(t)}|dt,

one can proceed as when showing (5.33) in the proof of Lemma 5.5.

From Lemmas 5.8 and 5.9,

B̂
P
n2 � B

P
2 (5.42)

as n → ∞ in C(B1/K), where for all w ∈ Δ̊d, B
P
2 (w) = a�(w)Θ. Next, let C̄n be as in

Theorem 2.12 in Section 4.2.3 and define for all w ∈ Δd,

B̄
P
n1(w) = {E(Z)}−1

∫ xΨ/w(d)

0

C̄n{ψθn(wx)}dx,

where C̄n is as defined in Theorem 2.12. The following result is the analogue of Lemma

4.7.

Lemma 5.10. As n→ ∞,

sup
w∈B1/K

∫ xΨ/w(d)

0

|Ĉn{ψθn(wx)} − C̄n{ψθn(wx)}|dx

converges to 0 in probability.

Proof. Fix ω ∈ (0, 1/2); if Condition 3.2 (a) holds, it is also required that sω > 1. Define

the sequences an and bn and the constant NK as in Lemma 5.6 and fix c ∈ (0, 1/K).

Then, ∫ xΨ/w(d)

0

|Ĉn{ψθn(wx)} − C̄n{ψθn(wx)}|dx ≤
5∑
j=1

Ij(w),

where

I1(w) =

∫ bn/w(d)

an/w(1)

∣∣∣Ĉn{ψθn(wx)− C̄n{ψθn(wx)
∣∣∣ dx,

I2(w) =

∫ an/w(1)

0

∣∣∣Ĉn{ψθn(wx)
∣∣∣ dx, I3(w) =

∫ xΨ/w(d)

bn/w(d)

∣∣∣Ĉn{ψθn(wx)
∣∣∣ dx,

I4(w) =

∫ an/w(1)

0

∣∣C̄n{ψθn(wx)
∣∣ dx, I5(w) =

∫ xΨ/w(d)

bn/w(d)

∣∣C̄n{ψθn(wx)
∣∣ dx .

Next, each integral is shown to converge to zero in probability as n→ ∞.
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Treatment of I1. With Sn is as in (4.11), for any w ∈ B1/K ,

I1(w) ≤ Sn

[∫ xΨ/w(d)

0

gω{ψθ(wx)}dx

+ sup
w∈B1/K

∫ xΨ/w(d)

0

|gω{ψθn(wx)} − gω{ψθ(wx)}|dx
]
.

By the first part of Theorem 2.12, Sn converges to 0 in probability as n → ∞, while

Lemma 5.3 (ii) implies that the term in the square brackets converges in probability to∫ xΨ/w(d)

0

gω{ψθ(wx)}dx,

which was shown to be finite while discussing I1 in the proof of Lemma 4.7.

Treatment of I2. Fix w ∈ B1/K . Similarly to the treatment of I2 in the proof of Lemma

5.6, I2(w) = I21(w) + I22(w) where

I21(w) =
√
n

∫ an/w(1)

0

[1− C{ψθ(wx)}]dx,

I22(w) =
√
n

∫ an/w(1)

0

[C{ψθ(wx)} − C{ψθn(wx)}]dx.

Since I21(w) ≤ √
n
∫∞
1/(Kan)

{1 − ψ(1/x)}/x2dx, Lemma 5.2 (iv) ensures convergence to

zero in probability, uniformly on B1/K . The second integral I22 is the same as E(Z)B̂P
n

but with a different upper limit of integration. Fix an arbitrary δ ∈ (0, xΨ/K) so that for

all w ∈ B1/K , δ/w(1) ≤ xΨ/wj for all j = 1, . . . , d. Then for any ε > 0,

Pr{ sup
w∈B1/K

|I22(w)| > ε} = Pr{an > δ}+

Pr
{

sup
w∈B1/K

∣∣∣√n ∫ δ/w(1)

0

[C{ψθ(wx)} − C{ψθn(wx)}]
∣∣∣dx > ε

}
.

By Lemma 5.2 (i), Pr{an > δ} → 0 as n → ∞. The same approach as in the proof of

Lemma 5.9 can then be used to show that

sup
w∈B1/K

∣∣∣∫ δ/w(1)

0

√
n[C{ψθ(wx)} − C{ψθn(wx)}]dx− aδ(w)�Θn

∣∣∣,
converges in probability to 0, where aδ(w) = (aδ,1(w), . . . , aδ,p(w))� with

aδ,k(w) =
d∑
j=1

∫ δ/w(1)

0

Ċj{ψθ(wx)}ψ̇θ,k(wjx)dx.

Analogously to the proof of Lemma 5.8, for any k ∈ {1, . . . , p},

|aδ,k(w)| ≤
d∑
j=1

∫ δ/w(1)

0

|ψ̇θ,k(wjx)|dx

≤
d∑
j=1

∫ Kδ/wj

0

|ψ̇θ,k(wjx)|dx ≤ Kd

∫ Kδ

0

|ψ̇θ,k(t)|dt ≡ bδ,k,
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and using (5.17), ‖bδ‖2 → 0 as δ → 0, where bδ = (bδ,1, . . . , bδ,d)
�. Hence,

lim sup
n→∞

Pr( sup
w∈B1/K

|aδ(w)�Θn| > ε) ≤ lim sup
n→∞

Pr(‖Θn‖2‖bδ‖2 > ε)

≤ Pr(‖Θ‖2‖bδ‖2 ≥ ε),

where the last inequality is due to the Portmanteau lemma. As δ → 0, the last expression

tends to 0. We can conclude that supw∈B1/K
|I22(w)| converges in probability to 0, as

needed.

Treatment of I3. For any w ∈ B1/K , I3(w) = I31(w) + I32(w), where

I31(w) =
√
n

∫ xΨ/w(d)

bn/w(d)

C{ψθ(wx)}dx

I32(w) =
√
n

∫ xΨ/w(d)

bn/w(d)

[C{ψθn(wx)} − C{ψθ(wx)}]dx .

As in the treatment of I3 in the proof of Lemma 4.7,

I31(w) ≤ √
n

∫ xψ/w(d)

bn/w(d)

ψθ(w(d)x)dx ≤ K
√
n

∫ xΨ

bn

ψ(x)dx .

By Lemma 5.2 (iii), the upper bound converges in probability to 0.

Now pick an arbitrary κ ∈ (0, xΨ). Then, for any ε > 0, and κ arbitrarily close to xΨ,

Pr{ sup
w∈B1/K

|I32(w)| > ε} = Pr{bn < κ}+

Pr
{

sup
w∈B1/K

∣∣∣√n ∫ xΨ/w(d)

κ/w(d)

[C{ψθn(wx)} − C{ψθ(wx)}]
∣∣∣dx > ε

}
.

By Lemma 5.2 (i), the first term on the right-hand side converges to zero. For the second

term, the same arguments as in the proof of Lemma 5.9 can then be used to show that

sup
w∈B1/K

∣∣∣∫ xΨ/w(d)

κ/w(d)

√
n[C{ψθ(wx)} − C{ψθn(wx)}]dx− a∗κ(w)�Θn

∣∣∣,
converges in probability to 0, where a∗κ(w) = (a∗κ,1(w), . . . , a∗κ,p(w))� with

a∗κ,k(w) =
d∑
j=1

∫ xΨ/w(d)

κ/w(d)

Ċj{ψθ(wx)}ψ̇θ,k(wjx)dx.

Since for any k ∈ {1, . . . , p} and u ∈ [0, 1]d, Ċj(u) ∈ [0, 1], we have that

|a∗κ,k(w)| ≤
d∑
j=1

∫ xΨ/w(d)

κ/w(d)

|ψ̇θ,k(wjx)|dx .
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In the case when xΨ < ∞, let M = supx∈[0,xΨ) ‖ψ̇θ(x)‖2; from (5.14) we have that M <

∞. Then |a∗κ,k(w)| ≤ MK(xΨ − κ) ≡ b∗κ,k. Clearly, ‖b∗κ‖2 → 0 as κ → xΨ, where

b∗κ = (b∗κ,1, . . . , b
∗
κ,d)

�. If xΨ = ∞, |a∗κ,k(w)| ≤ b∗κ,k with

b∗κ,k =
d∑
j=1

∫ xΨ/wj

κ/(Kwj)

|ψ̇θ,k(wjx)|dx ≤ dK

∫ xΨ

κ/K

|ψ̇θ,k(t)|dt,

so that, using (5.17), we again have that ‖b∗κ‖2 → 0 as κ→ ∞, where b∗κ = (b∗κ,1, . . . , b
∗
κ,d)

�.

Hence,

lim sup
n→∞

Pr( sup
w∈B1/K

|a∗κ(w)�Θn| > ε) ≤ lim sup
n→∞

Pr(‖Θn‖2‖b∗κ‖2 > ε)

≤ Pr(‖Θ‖2‖b∗κ‖2 ≥ ε),

where the last inequality is due to the Portmanteau lemma. As κ→ xΨ, the upper bound

tends to 0, so that supw∈B1/K
|I32(w)| = oP (1).

Treatment of I4. Recall that for u ∈ [0, 1]d, g̃ω(u) = gω(u) + 1{gω(u) = 0}. Letting

w ∈ B1/K and Zn defined as in (4.16),

I4(w) =

∫ an/w(1)

0

∣∣∣∣C̄n{ψθn(wx)}g̃ω{ψθn(wx)}
∣∣∣∣ g̃ω{ψθn(wx)}dx

≤ Zn

∫ an/w(1)

0

g̃ω{ψθn(wx)}dx ≤ Zn

∫ Kan

0

g̃ω{ψθn(wx)}dx.

Suppose that an ≤ δ for some δ small enough so that Kδ < xΨ. Then

Zn

∫ Kan

0

g̃ω{ψθn(wx)}dx = Zn

∫ Kan

0

gω{ψθn(wx)}dx

because gω(u) = 0 occurs either when at least one component of u equals 0 or at least

d− 1 components equal 1. The right-hand side further equals

Zn

[∫ Kan

0

gω{ψθ(wx)}dx+
∫ Kan

0

gω{ψθn(wx)} − gω{ψθ(wx)}dx
]
.

From the proof of Lemma 4.7 (Treatment of I4), this is bounded above by

Znd

∫ Kδ

0

{1 − ψθ(x)}ωdx + Zn sup
w∈B1/K

∫ xΨ/w(d)

0

|gω{ψθn(wx)} − gω{ψθ(wx)}|dx.

Now fix an arbitrary ε > 0 and pick a δ > 0 so that Kδ < xΨ. Then

Pr( sup
w∈B1/K

I4(w) > ε) ≤ Pr( sup
w∈B1/K

I4(w) > ε, an ≤ δ) + Pr(an > δ) .
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Given that an → 0 in probability by Lemma 5.2 (i), it suffices to show that the first term

on the right-hand side tends to 0 as n→ ∞. Write

Pr( sup
w∈B1/K

I4(w) > ε, an ≤ δ)

≤ Pr
[
Znd

∫ Kδ

0

{1− ψθ(x)}ωdx > ε

2

]

+ Pr
[
Zn sup

w∈B1/K

∫ xΨ/w(d)

0

|gω{ψθn(wx)} − gω{ψθ(wx)}|dx > ε

2

]
.

Given that Zn � Z = supu∈[0,1]d |C(u)/g̃ω(u)| as n → ∞ by Theorem 2.12, the Port-

manteau lemma implies that the lim sup as n → ∞ of the first term is bounded above

by

Pr
[
Zd

∫ Kδ

0

{1− ψθ(x)}ωdx ≥ ε

2

]
≤ Pr

[
ZdKδ ≥ ε

2

]
.

The last probability tends to 0 as δ → 0. Lemma 5.3 (ii) and the fact that Zn � Z imply

that

lim
n→∞

Pr
[
Zn sup

w∈B1/K

∫ xΨ/w(d)

0

|gω{ψθn(wx)} − gω{ψθ(wx)}|dx > ε

2

]
= 0

which concludes that supw∈B1/K
I4(w) → 0 in probability as n→ ∞.

Treatment of I5. We can proceed similarly as when treating I4. Fix an any w ∈ B1/K

and suppose that bn > δ for some δ ∈ (0, xΨ) arbitrarily close to xΨ. Using the arguments

from the proof of Lemma 4.7 (treatment of I5), one has that

I5(w) =

∫ xΨ/w(d)

bn/w(d)

∣∣∣∣C̄n{ψθn(wx)}g̃ω{ψθn(wx)}
∣∣∣∣ g̃ω{ψθn(wx)}dx

≤ Zn

∫ xΨ/w(d)

bn/w(d)

g̃ω{ψθn(wx)}dx = Zn

∫ xΨ/w(d)

bn/w(d)

gω{ψθn(wx)}dx,

and that the upper bound is bounded above by

Zn

[∫ xΨ

δ

{ψθ(x)}ωdx+ sup
w∈B1/K

∫ xΨ/w(d)

0

|gω{ψθn(wx)} − gω{ψθ(wx)}|dx
]
.

The fact that supw∈B1/K
I5(w) → 0 in probability as n→ ∞ can now be shown using the

same arguments as were used in the preceding paragraph to prove that supw∈B1/K
I4(w) →

0 in probability as n → ∞, given that bn → xΨ in probability as n → ∞ by Lemma 5.2

(i) and that
∫ xΨ
δ

{ψθ(x)}ωdx→ 0 as δ → xΨ by Lemma 4.4.

Finally, introduce B̌
P
n1 given, for all w ∈ Δd, by

B̌
P
n1(w) = {E(Z)}−1

∫ xΨ/w(d)

0

C̄n{ψθ(wx)}dx .

which by Lemma 5.11 behaves asymptotically as B̄P
n1.
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Lemma 5.11. As n→ ∞, supw∈B1/K
|B̄P

n1(w)− B̌
P
n1(w)| converges to 0 in probability.

Proof. Introduce the process B̃P
n1 given, for all w ∈ Δd, by

B̃
P
n1(w) = {E(Z)}−1

∫ xΨ/w(d)

0

C̄n{ψθn(wx)}
g̃ω{ψθn(wx)}

g̃ω{ψθ(wx)}dx

and observe that, with Zn as in (4.16),

sup
w∈B1/K

|B̄P
n1(w)− B̃

P
n1(w)| ≤

Zn{E(Z)}−1 sup
w∈B1/K

∫ xΨ/w(d)

0

|g̃ω{ψθn(wx)} − g̃ω{ψθ(wx)}|dx

From Theorem 2.12, Zn converges in law to supu∈[0,1]d |C(u)/g̃ω(u)| as n → ∞. Further-

more, because φθ(0) = φθn(0) = xΨ from Condition 5.3,

sup
w∈B1/K

∫ xΨ/w(d)

0

|g̃ω{ψθn(wx)} − g̃ω{ψθ(wx)}|dx =

sup
w∈B1/K

∫ xΨ/w(d)

0

|gω{ψθn(wx)} − gω{ψθ(wx)}|dx.

The expression on the right-hand side tends to zero in probability by Lemma 5.3 (ii).

Consequently, supw∈B1/K
|B̄P

n1(w) − B̃
P
n1(w)| converges to 0 in probability as n → ∞.

Next, recall that the sequence (Tn) with Tn as in (5.32) is tight. Hence, for any δ > 0

there exists Mδ > 0 and Nδ > 0 such that for all n ≥ Nδ, Pr(Tn > Mδ) < δ. Let ε > 0 be

arbitrary. Then

Pr( sup
w∈B1/K

|B̌P
n1(w)− B̃

P
n1(w)| > ε) ≤ δ+

Pr
{∫ xΨ/w(d)

0

g̃ω {ψθ(wx)} dx sup
u,u′∈[0,1]d

‖u−u′‖2≤Mδ/
√
n

∣∣∣C̄n(u)

g̃ω(u)
− C̄n(u

′)
g̃ω(u′)

∣∣∣ > ε
}
.

As shown in (4.18),
∫ xΨ/w(d)

0
g̃ω {ψθ(wx)} dx is bounded. Because δ > 0 was arbitrary, the

conclusion follows from Equation (4.2) of Berghaus et al. (2017).

Combining the above lemmas,

sup
w∈B1/K

‖B̂P
n(w)− B̌

P
n1(w)− B̌

P
n2(w)‖ = oP (1).

Equation (5.12) and the Continuous Mapping Theorem then imply that

B̂
P
n � 1

E(Z)

[∫ xΨ/w(d)

0

C{ψθ(wx)}dx +
d∑
j=1

∫ xΨ/wj

0

Ċj{ψθ(wx)}ψ̇�θ (wjx)Θdx
]
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in �∞([0, 1]d), as was to be shown. The continuity of the mapping follows from (5.30) and

the calculations in the last paragraph of Section 4.2.4. Because for any j ∈ {1, . . . , d},
Ċj(u) = 0 if uk = 0 for some k �= j, the limit can be written more succinctly as

1

E(Z)

∫ xΨ/w(d)

0

[
C{ψθ(wx)}+

d∑
j=1

Ċj{ψθ(wx)}ψ̇�θ (wjx)Θ
]
dx

and by change of variable as

1

E(Z)

∫ 1

0

(
C[ψθ{−w log(u)}] +

d∑
j=1

Ċj[ψθ{−w log(u)}]ψ̇�θ {−wj log(u)}Θ
)du
u

with the convention that, if xΨ <∞, ψ̇�θ (x) ≡ 0 whenever x ≥ xΨ.
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Chapter 6

Clustered Archimax model

So far in this thesis, the Archimax model has been advocated as a flexible way to model a

group of variables whose asymptotic dependence is driven by a stable tail dependence

function; or more precisely a random vector whose dependence structure follows the

asymptotic extreme-value regime perturbed by the same distortion. However, as it is

the case for rainfall over large territories for example, asymptotic independence between

certain variables is likely to be present and this phenomenon cannot be handled by a

single Archimax model without limiting the marginal dependence structure to be an (ex-

changeable) Archimedean copula. Likewise, assuming the same distortion for all variables

may not be realistic when the number of variables is large. How to introduce a greater

flexibility within the model?

The aim of this chapter is to propose a dependence model in a way that its higher-

dimensional margins are Archimax copulas but with possibly different distortions or stable

tail dependence functions. To this end, recall that a random vector with stochastic rep-

resentation (2.11) has an Archimax survival copula; it can thus be seen as a cluster of

variables S1, . . . , Sd affected by the same random distortion R. Suppose for the moment

that the variables X1, . . . , Xd can be clustered in a way that each group is a random vector

of the form (2.11). This means that each cluster has an Archimax survival copula, with a

cluster-specific stdf and distortion variable. The idea pursued here is to introduce depen-

dence between the clusters by making the cluster-specific distortion variables dependent.

The advantage of this hierarchical approach is that the entire d-variate copula needs not

be constructed explicitly and that within-cluster dependence is Archimax by design.

The clustered Archimax model is introduced formally in Section 6.1; it only concerns

the underlying copula and thus has the added flexibility that the margins can be arbitrary.

Section 6.2 studies properties of clustered Archimax copulas, specifically how the depen-

dence between the distortions R1, . . . , RK impacts the dependence between the clusters.

More importantly, extremal behavior of clustered Archimax copulas is established in the

same section. Proofs are reported in Section 6.3, while Section 6.4 formulates a conjecture

extending Theorem 6.1.

99



6.1 Model specification

For a given stdf � and d ≥ 2, recall first the random vector S = (S1, . . . , Sd) with survival

function Ḡd of the form (2.10), that is, for all s ∈ [0, 1]d,

Ḡd(s) = [max{0, 1− �(s)}]d−1 . (6.1)

Note in particular that the margins of S are Beta; specifically, Si ∼ B(1, d − 1) for

all i ∈ {1, . . . , d}. Furthermore, let G = {G1, . . . ,GK} be a partition of {1, . . . , d} into

K sets. Because the stochastic representation (2.11) only makes sense in dimensions

two and higher, we shall require, throughout this chapter, that dk = |Gk| ≥ 2 for all

k ∈ {1, . . . , K}. Hence K ≤ �d/2� and of course also d1 + · · · + dK = d. Unless stated

otherwise, whenever we write Gk = {i1, . . . , idk} we assume that the indices are ordered,

viz. i1 < i2 < · · · < idk .

As we shall see shortly, a clustered Archimax copula is specified through a partition G
as well as K stdfs and Archimedean generators, respectively. To ease the notation, � will

denote (�1, . . . , �K) where for each k ∈ {1, . . . , K}, �k is a dk-variate stdf. Similarly, ψ will

stand for (ψ1, . . . , ψK) where for each k ∈ {1, . . . , K}, ψk is a dk-monotone Archimedean

generator.

Definition 6.1. A d-variate copula C is called clustered Archimax copula with cluster

partition G = {G1, . . . ,GK}, stdfs � and Archimedean generators ψ, in notation CGψ�, if

it is the survival copula of a random vector X that satisfies the following:

(i) For each k ∈ {1, . . . , K} and ij ∈ Gk = {i1, . . . , idk}, Xij = RkS
(k)
j where S(k) =

(S
(k)
1 , . . . , S

(k)
dk

) has survival function Ḡk and Rk is distributed as the inverse Williamson

dk-transform of ψk.

(ii) The random vectors S(1), . . . ,S(K) are mutually independent.

(iii) The random vector R = (R1, . . . , RK) is independent of S
(1), . . . ,S(K).

As the name suggests, certain multivariate margins of a clustered Archimax copula

are Archimax. Specifically, if X is as in Definition 6.1, Theorem 2.9 ensures that for

each k ∈ {1, . . . , K} with Gk = {i1, . . . , idk}, the survival copula of (Xi1 , . . . , Xidk
) is the

dk-dimensional Archimax copula Cψk�k . In particular, in the boundary case when K = 1,

the entire copula is Archimax.

Before we investigate clustered Archimax copulas in more detail in the next section, we

will henceforth assume for simplicity that the partition G is contiguous. This means that

G1 = {1, . . . , d1}, G2 = {d1 + 1, . . . , d1 + d2} and so on, and leads to no loss of generality.

The random vector X in Definition 6.1 is then

(
R1S

(1)
1 , . . . , R1S

(1)
d1
, . . . , RKS

(K)
1 , . . . , RKS

(K)
dK

)
. (6.2)
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Furthermore, from the proof of Theorem 3.3 in Charpentier et al. (2014), the clustered

Archimax copula C with cluster partition G = {G1, . . . ,GK}, stdfs � and Archimedean

generators ψ is the distribution function of

(
ψ1(R1S

(1)
1 ), . . . , ψ1(R1S

(1)
d1

), . . . , ψK(RKS
(K)
1 ), . . . , ψK(RKS

(K)
dK

)
)
. (6.3)

6.2 Model properties

In this section, we investigate the extremal behavior of a clustered Archimax copula CG,ψ,�.

The main result, Theorem 6.1 below, delineates the conditions under which CG,ψ,� is in a

copula domain of attraction of some extreme-value copula and identifies the latter. Again,

without loss of generality, we shall assume that the partition G is contiguous. Because

CG,ψ,� is also the copula of 1/X with X as in (6.2), extremal behavior of 1/X will be

needed.

Given a contiguous partition G, we will need to introduce the following indexing of

components of (random) vectors. Specifically, we shall write X = (X(1), . . . ,X(K)),

where for each k ∈ {1, . . . , K}, X(k) = (X
(k)
1 , . . . , X

(k)
dk

). Similarly, we shall partition

an arbitrary x ∈ R
d as x = (x(1), . . . ,x(K)), where for each k ∈ {1, . . . , K}, x(k) =

(x
(k)
1 , . . . , x

(k)
dk
). Finally, the margins of a d-variate distribution function H will be denoted

as H
(1)
1 , . . . , H

(1)
d1
, . . . , H

(K)
1 , . . . , H

(K)
dK

.

The distortion vector R has an effect on both inter- and intra-cluster dependence at

extreme levels. Its extreme behavior is important, so it is natural to make the following

two assumptions. The first concerns the properties of the margins of 1/R.

Assumption 6.1. For a clustered Archimax copula as in Defintion 6.1, assume that

{1, . . . , K} is the union of disjoint sets D1 and D2, such that

(i) k ∈ D1 if and only if 1/Rk ∈ M(Φρk) for some ρk ∈ (0, 1).

(ii) k ∈ D2 if and only if there exists an εk > 0 such that E{1/R(1+εk)
k } <∞.

If Assumption 6.1 holds, k ∈ D1 means that 1/Rk is heavy-tailed and holds if and

only if ψk satisfies Condition 3.1 with mk = 1/ρk > 1. In contrast, k ∈ D2 implies that ψk

satisfies Condition 3.1 with mk = 1 by Proposition 2 in Belzile and Nešlehová (2017). By

the same proposition, one then has that 1/X
(k)
i ∈ M(Φρk) for k ∈ D1 and i ∈ {1, . . . , dk}

and 1/X
(k)
i ∈ M(Φρ1) for k ∈ D2 and i ∈ {1, . . . , dk}. This means that under Assumption

6.1, the respective clustered Archimax copula is in the copula domain of attraction of an

extreme-value copula C0 if and only if 1/X is in the maximum domain of attraction of an

extreme-value distribution with copula C0. Such a domain of attraction result requires

further assumptions on the extremal behavior of the entire vector 1/R.
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Assumption 6.2. For a clustered Archimax copula as in Definition 6.1, assume that

the reciprocal distortion vector 1/R is in the maximum domain of attraction of a mul-

tivariate extreme-value distribution with stable tail dependence function �1/R given, for

(x1, . . . , xK) ∈ R
K
+ , by

�1/R(x1, . . . , xK) = E[ max
k=1,...,K

{xkWk}]

for some positive random variables W1, . . . ,WK with unit mean.

Here, we choose the d-norm representation for stable tail dependence functions as

discussed in Aulbach et al. (2015). The characterization of (standard) max-stable dis-

tributions can be attributed to Pickands (1975), de Haan and Resnick (1977) and Vatan

(1985). We are now in position to formulate the main result of this Chapter.

Theorem 6.1. Let CG,ψ,� be a clustered Archimax copula with a contiguous partition

G and such that Assumptions 6.1 and 6.2 hold. For k ∈ D1, let bk = E{(1/Zk)ρk},
Zk ∼ B(1, dk−1). Then 1/X ∈ M(H), where the univariate margins of H are H

(k)
i = Φρk

for k ∈ D1 and i ∈ {1, . . . , dk} and H
(k)
i = Φ1 for k ∈ D2 and i ∈ {1, . . . , dk}. The stable

tail dependence function of H is given for all x ∈ R
d
+ by

�G,ψ,�(x) = E

[
max
k∈D1

{
max

i=1,...,dk

(
x
(k)
i Wk

bk{S(k)
i }ρk

)}]
+
∑
k∈D2

�k(x
(k)
1 , . . . , x

(k)
dk
) . (6.4)

Example 6.1 (Clayton Generator). Using the inverse Williamson d-transform (see Equa-

tion (2.6)), one can obtain the distribution of R in the case when ψθ is Clayton with

parameter θ. When ψ is d-times differentiable, its inverse Williamson d-transform has

the density, given, for r > 0, by

fR(r) = (−1)d
rd−1ψ(d)(r)

(d− 1)!
;

viz. Eq. (2) in McNeil and Nešlehová (2010). In the Clayton case, one has for r > 0,

fR(r) =
θd
{∏d

j=0(1/θ + j)
}

(d− 1)!
(1 + θr)−1/θ−drd−1 .

We can see that for d ≥ 2 and any β < d,

E(1/Rβ) =
θd
{∏d

j=0(1/θ + j)
}

(d− 1)!

∫ ∞

0

rd−1−β

(1 + θr)1/θ+d
dr <∞ .

Thus if the k-th cluster has a Clayton distortion, then its components are asymptotically

independent from all other clusters since k ∈ D2 in Theorem 6.1.
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Example 6.2 (Joe generator). Recall the form of the Joe generator ψθ from Table 2.1.

Since 1 − ψθ(1/·) ∈ R−1/θ, 1/R ∈ M(Φ1/θ) by Theorem 2 from Larsson and Nešlehová

(2011). Therefore if the k-th cluster has a Joe distortion, then it is asymptotically de-

pendent with all other clusters j ∈ D1, whose distortions Rj are asymptotically dependent

with Rk.

Inter-cluster asymptotic independence can also be achieved if the distortions are

asymptotically independent, as shown in the following corollary.

Corollary 6.1. If {1/Rj : j ∈ D1} are asymptotically independent, then the limiting stdf

in (6.4) simplifies to

�G,ψ,�(x) =
∑
k∈D1

�ρkk ((x
(k)
1 )1/ρk , . . . , (x

(k)
dk
)1/ρk) +

∑
k∈D2

�k(x
(k)
1 . . . , x

(k)
dk
) .

Remark 6.1. Note that under the hypothesis of Theorem 6.1, the asymptotic behavior of

{1/Rk : k ∈ D2} has no influence on the form of �G,ψ,�.

The following corollary to Theorem 6.1 compares the inter-cluster stable tail depen-

dence function to that of the reciprocal distortions (1/R1, . . . , 1/RK).

Corollary 6.2. Under the hypothesis of Theorem 6.1, let I = (i1, . . . , iK) be a vector of

indices such that 1 ≤ ik ≤ dk for each k ∈ {1, . . . , K}. Then, for all x ∈ R
K
+ ,

�1/R(x) ≤ �G,ψ,�(xI) ,

where xI = (x
(1)
I , . . . ,x

(K)
I ) is defined as follows: For k ∈ {1, . . . , K}, x

(k)
I = (x

(K)
I,1 ,

. . . , x
(K)
I,dk) where for each j ∈ {1, . . . , dk}, x(k)I,j = xk if j = ik and x

(k)
I,j = 0 otherwise.

Remark 6.2. The first component of (6.4) elicits a new method to combine different

stdfs in a non-trivial way. Since the second component of (6.4) does not reveal any new

combination of stdfs, suppose for now that D2 = ∅. For a given k ∈ {1, . . . , K} (and

therefore in D1), setting x
(l)
i = 0 for all l �= k and all i = 1, . . . , dl recovers the marginal

stdf of the cluster k. Recall that bk = E{(1/Zk)ρk} with Zk ∼ B(1, dk − 1). This marginal

stdf is equal to the following for (x
(k)
1 , . . . , x

(k)
dk
) ∈ R

dk
+ ,

E

[
max

i=1,...,dk

(
x
(k)
i

bk{S(k)
i }ρk

)]

which itself is equal to �ρkk
({x(k)1 }1/ρk , . . . , {x(k)dk

}1/ρk) by Proposition 2.1. In the bivariate

case, the form above is a special case of (7) in Engelke et al. (2019). The complete stdf,

defined in R
d
+ by

E

[
max
k∈D1

{
max

i=1,...,dk

(
x
(k)
i Wk

bk{S(k)
i }ρk

)}]
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essentially mixes the marginal cluster stdfs �ρ11 ({x(1)}1/ρ1), . . . , �ρKK ({x(K)}1/ρK ) with the

limiting stdf of (1/R1, . . . , 1/RK). Corollary 6.2 shows that this mixing results in a

weaker asymptotic dependence between clusters than that of the reciprocal distortions

(1/R1, . . . , 1/RK), characterized by �1/R.

The clustered Archimax model studied in this chapter is related to several other recent

articles in the literature. Hierarchical constructions based on Archimax copulas were

proposed by Hofert et al. (2018). Specifically, their construction is based on the frailty

representation of Archimax copulas, which only holds for completely monotone generators.

Hierarchies can be induced via the frailties, the stdf, or both. It would be interesting to

establish the attractor of their proposed hierarchical Archimax copula and compare it to

that of the clustered Archimax copula. The extremal dependence structure of Liouville

copulas is established in Belzile and Nešlehová (2017). The stochastic representation of

Liouville copulas is similar to that of Archimax copulas, as they are survival copulas of

vectors of the form RD, with R a nonnegative random variable and D a Dirichlet random

vector. The work presented in this chapter differs from this by replacing the Dirichlet

component by a vector S characterized by an stdf and by allowing for multiple distorting

random variables R1, . . . , RK , thus inducing a hierarchy (or clustering). Finally, Engelke

et al. (2019) establish the extremal dependence of bivariate vectors of the form R ×
(W1,W2) for an extensive combination of asymptotic behaviors of both R and (W1,W2).

The attractor of the bivariate Archimax copula is in particular obtained as a special case

of their Proposition 1 and equation (6), see Sections 2.1 and 4 therein.

6.3 Proofs

This section contains the proofs of the results from the previous section. We begin with

auxiliary results in Section 6.3.1; Theorem 6.1 and its Corollaries are proved in Sections

6.3.2 and 6.3.3, respectively.

6.3.1 Auxiliary results

The following proposition is used to prove Theorem 6.1 but is also of independent interest.

Proposition 6.1. Let S = (S1, . . . , Sd) be a random vector with joint survival function

Ḡd as in (6.1) for some stdf �. Then 1/S belongs to the maximum domain of attraction

of a multivariate extreme-value distribution with unit Fréchet margins and stdf �.

Proof. For the margins, recall that for each i ∈ {1, . . . , d}, Si ∼ B(1, d− 1). The survival

function of 1/Si is thus given by F̄1/Si
(s) = 1 − (1 − 1/s)d−1; it is easily seen that

F̄1/Si
∈ R−1. Now set cn = {1 − (1 − 1/n)1/(d−1)}−1. From Equation 3.13 in Embrechts

et al. (1997), for all si ∈ R, it then holds that Pr(1/Si ≤ cnsi) → Φ1(si) as n→ ∞. Thus
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1/S is in the domain of attraction of a multivariate extreme-value distribution with unit

Fréchet margins and stdf � if and only if for all s ∈ R
d
+,

lim
n→∞

n {1− Pr(1/S1 ≤ cns1, . . . , 1/Sd ≤ cnsd)}
= lim

n→∞
n
[
1− Ḡd

{
1/(cns1), . . . , 1/(cnsd)

}]
= �(1/s1, . . . , 1/sd).

To show this, fix an arbitrary s ∈ R
d
+ and observe that because cn → ∞ as n→ ∞,

Ḡd

{
1/(cns1), . . . , 1/(cnsd)

}
=
{
1− (1/cn)�(1/s1, . . . , 1/sd)

}d−1
for all n sufficiently large. Now note that as n → ∞, n/ckn converges to 0 for all k ∈
{2, . . . , d− 1} and to 1/(d− 1) for k = 1. Consequently,

lim
n→∞

n
[
1− {1− (1/cn)�(1/s1, . . . , 1/sd)

}d−1]

= lim
n→∞

d−1∑
k=1

(
d− 1

k

)
(−1)k+1 n

ckn
�k(1/s1, . . . , 1/sd) = �(1/s1, . . . , 1/sd)

as claimed.

The following lemma determines the normalizing sequences needed for the proof of

Theorem 6.1.

Lemma 6.1. Let CG,ψ,� be a clustered Archimax copula with a contiguous partition G and

such that Assumptions 6.1 and 6.2 are satisfied. Then the following hold:

(i) For each k ∈ D1 and i ∈ {1, . . . , dk}, 1/(RkS
(k)
i ) ∈ M(Φρk). Recall that for k ∈ D1,

bk = E{(1/Zk)ρk} where Zk ∼ B(1, dk − 1). Moreover, there exists a sequence of

positive constants {ank} such that for all x > 0, nPr(1/Rk > ankx) → x−ρk as

n→ ∞ and nPr(1/(RkS
(k)
i ) > ankb

1/ρk
k x) → x−ρk as n→ ∞.

(ii) For each k ∈ D2 and i ∈ {1, . . . , dk}, 1/(RkS
(k)
i ) ∈ M(Φ1). Moreover, there exists a

sequence of positive constants {ank} such that for all x > 0, nPr(1/S
(k)
i > ankx) →

x−1 as n → ∞ and nPr(1/(RkS
(k)
i ) > ankbkx) → x−1 as n → ∞, where bk =

E{1/Rk}.
Proof. (i) Let k ∈ D1 and i ∈ {1, . . . , dk}. We then have (1/Rk) ∈ M(Φρk) by assumption

and 1/S
(k)
i ∈ M(Φ1) owing to the fact that S

(k)
i ∼ B(1, d − 1). By Proposition 3.1.1 in

Embrechts et al. (1997), there exists a sequence of positive constants {ank} such that for

all x > 0, nPr(1/Rk > ankx) → x−ρk as n → ∞. Because ρk < 1, E(1/S
(k)
i )ρk+ε < ∞

for some ε sufficiently small. Using the lemma of Breiman (1965) and the fact that

bk = E{(1/S(k)
i )ρk}, we then have, for all x > 0,

lim
n→∞

nPr
( 1

RkS
(k)
i

> ankb
1/ρk
k x

)
=

lim
n→∞

nPr
( 1

Rk

> ankb
1/ρk
k x

)Pr( 1

RkS
(k)
i

> ankb
1/ρk
k x

)
Pr
(

1
Rk

> ankb
1/ρk
k x

) = (xb
1/ρk
k )−ρkbk = x−ρk . (6.5)
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Indeed, nPr(1/Rk > ankb
1/ρk
k x) → (xb

1/ρk
k )−ρk as n → ∞ by the choice of normalizing

constants {ank}. The convergence of the fraction in the above display is due to Breiman’s

Lemma. Theorem 2.4 implies that since 1/Rk ∈ M(Φρk) and ρk ∈ (0, 1), F̄1/Rk
∈ R−ρk .

We also have that 1/S
(k)
i and 1/Rk are independent, positive, and E[{1/S(k)

i }γ] < ∞ for

γ ∈ (ρk, 1). By Breiman’s lemma, 1/(RkS
(k)
i ) ∈ M(Φρk) and

Pr
(

1

RkS
(k)
i

> ankb
1/ρk
k x

)
Pr
(

1
Rk

> ankb
1/ρk
k x

) → E({S(k)
i }−ρk) = bk

as n→ ∞.

(ii) Let k ∈ D2 and i ∈ {1, . . . , dk}. The proof of the result relies again on Breiman’s

lemma; see also Proposition 2(b) of Belzile and Nešlehová (2017). Since 1/S
(k)
i ∈ M(Φ1),

Proposition 3.1.1 in Embrechts et al. (1997) implies that there exist sequences of positive

constants {ank} such that for all x > 0, nPr(1/S
(k)
i > ankx) → x−1 as n → ∞, and

this for all i = 1, . . . , dk. Recall that bk = E(1/Rk). Similarly to the proof of part (i),

Breiman’s lemma then implies that for all x > 0,

lim
n→∞

nPr
( 1

RkS
(k)
i

> ankbkx
)

= lim
n→∞

nPr
( 1

S
(k)
i

> ankbkx
)Pr( 1

RkS
(k)
i

> ankbkx
)

Pr
(

1

S
(k)
i

> ankbkx
) = (xbk)

−1bk = x−1 . (6.6)

The convergence of the first part of the above is due to the choice of the normalizing

constants {ank}. For the convergence of the second term, note that F̄
1/S

(k)
i

∈ R−1 and by

assumption, E{1/R1+εk
k } for some εk > 0. Finally, since 1/S

(k)
i and 1/Rk are independent

and positive, Breiman’s lemma implies that 1/(RkS
(k)
i ) ∈ M(Φ1) and that

Pr
(

1

RkS
(k)
i

> ankbkx
)

Pr
(

1

S
(k)
i

> ankbkx
) → E{1/Rk} = bk

as n→ ∞. This completes the proof.

The lemma below establishes asymptotic independence between clusters in D1 and

clusters in D2.

Lemma 6.2. Suppose that k ∈ D1, l ∈ D2, i ∈ {1, . . . , dk} and j ∈ {1, . . . , dl}. Let

{ank} and {anj} be normalizing sequences as in Lemma 6.1. As in Lemma 6.1 (ii), let

bl = E{1/Rl}. Then for all x, y > 0,

lim
n→∞

nPr{1/(RkS
(k)
i ) > ankb

1/ρk
k x, 1/(RlS

(l)
j ) > anlbly} = 0 .
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Proof. Fix x, y > 0 and recall that ρk ∈ (0, 1). The probability of interest can be written

as follows

nPr{1/(RkS
(k)
i ) > ankb

1/ρk
k x, 1/(RlS

(l)
j ) > anlbly}

=

∫
R2
+

nPr{1/S(k)
i > ankb

1/ρk
k xrk, 1/S

(l)
j > anlblyrl}dFRk,Rl

(rk, rl)

=

∫
R2
+

nPr{1/S(k)
i > ankb

1/ρk
k xrk}Pr{1/S(l)

j > anlblyrl}dFRk,Rl
(rk, rl) ,

where the first equality is due to the independence between (Rk, Rl) and (S
(k)
i , S

(l)
j ) and

the last equality is due to the independence of S
(k)
i and S

(l)
j . Next, consider the integrand

as a sequence of functions {fn} defined on R
2
+. Observe that for each rk, rl > 0,

fn(rk, rl) ≤ gn(rk, rl) ,

where {gn} is itself a sequence of functions on R
2
+ defined by

gn(rk, rl) = gn(rl) = nPr{1/S(l)
j > anlblyrl} .

From the choice of {anl}n∈N, for all rk, rl > 0, lim
n→∞

gn(rk, rl) = g(rk, rl), where g(rk, rl) =

1/(blyrl). Moreover,∫
R2
+

g(rk, rl)dFRk,Rl
(rk, rl) =

∫
R2
+

1

blyrl
dFRk,Rl

(rk, rl) =
1

y
,

and ∫
R2
+

gn(rk, rl)dFRk,Rl
(rk, rl) = nPr{1/(RlS

(l)
j ) > anlbly} → 1

y

as n → ∞. We therefore have a sequence of nonnegative functions {gn} bounding {fn}
from above such that

lim
n→∞

∫
R2
+

gn(rk, rl)dFRk,Rl
(rk, rl) =

∫
R2
+

lim
n→∞

gn(rk, rl)dFRk,Rl
(rk, rl) .

Finally, note that

fn(rk, rl) = nPr{1/S(k)
i > ankb

1/ρk
k xrk}Pr{1/S(l)

j > anlblyrl} → 0

as n→ ∞ since

Pr{1/S(k)
i > ankb

1/ρk
k xrk} → 0 and nPr{1/S(l)

j > anlblyrl} → 1/{blyrl}

as n → ∞. The desired result then follows by the generalized Lebesgue dominated

convergence theorem (see Theorem 1.21 in Kallenberg (2002), for example).

We now have enough preliminary results in order to prove Theorem 6.1.
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6.3.2 Proof of Theorem 6.1

A random vector (Y1, . . . , Yd) is in the maximum domain of attraction of the extreme-

value distribution H with Fréchet margins if and only if there exist sequences of positive

constants (ani) ∈ (0,∞), i ∈ {1, . . . , d}, so that, for all (y1, . . . , yd) ∈ R
d
+,

lim
n→∞

n {1− Pr (Y1 ≤ an1y1, . . . , Yd ≤ andyd)} = − lnH(y1, . . . , yd) .

This is a multivariate extension of Proposition 3.1.1 in Embrechts et al. (1997), as used

in Belzile and Nešlehová (2017). For each k ∈ {1 . . . , K}, set the sequences {ank} as done

in Lemma 6.1. Then the fact that the marginals of H are Fréchet follows from the said

Lemma. With the normalizing constants now set, the limit of interest is, for any fixed

(x
(1)
1 , . . . , x

(1)
d1
, . . . , x

(K)
1 , . . . , x

(K)
dK

) ∈ R
d
+,

lim
n→∞

n
{
1− Pr

(
1/(R1S

(1)
1 ) ≤ an1b

1/ρ1
1 x

(1)
1 , . . . , 1/(R1S

(1)
d1

) ≤ an1b
1/ρ1
1 x

(1)
d1
, . . . , (6.7)

1/(RKS
(K)
1 ) ≤ anKb

1/ρK
K x

(K)
1 , . . . , 1/(RKS

(K)
dK

) ≤ anKb
1/ρK
K x

(K)
dK

)}
,

where for k ∈ D2, bk = E{1/Rk} as in Lemma 6.1 (ii) and for ease of notation, ρk = 1.

Let I = {(k, i) : k = 1, . . . , K, i = 1 . . . , dk} and P(I) denote its power set. Then (6.7)

can be rewritten as

lim
n→∞

n
∑
p∈P(I)

(−1)|p|+1 Pr

⎛
⎝ ⋂

(k,i)∈p
{1/(RkS

(k)
i ) > ankb

1/ρk
k x

(k)
i }
⎞
⎠ . (6.8)

Let P(I)|D1,D2 denote the subset of P(I) such that for all p ∈ P(I)|D1,D2 , there exists

at least one (k, i) ∈ p, and one (l, j) ∈ p so that k ∈ D1 and l ∈ D2. Now fix an

arbitrary p ∈ P(I)|D1,D2 and pick (k, i), (l, j) ∈ p so that k ∈ D1 and l ∈ D2. Then for all

{x(c)a : (c, a) ∈ p} ∈ R
|p|
+ ,

nPr

⎛
⎝ ⋂

(c,a)∈p
{1/(RcS

(c)
a ) > ancb

1/ρc
c x(c)a }

⎞
⎠

≤ nPr{1/(RkS
(k)
i ) > ankb

1/ρk
k x

(k)
i , 1/(RlS

(l)
j ) > anlb

1/ρl
l x

(l)
j } → 0

as n → ∞ by Lemma 6.2. Thus the summands in (6.8) for which p ∈ P(I)|D1,D2 are

asymptotically negligible.

Now let P(I)|D1 be the subset of P(I) such that for all p ∈ P(I)|D1 , (c, a) ∈ p implies

that c ∈ D1. In other words, P(I)|D1 contains only sets of indices (c, a) with c ∈ D1. Let
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N1 =
∑

k∈D1
dk and rewrite the summands in (6.8) with p ∈ P(I)|D1 as follows:

n
∑

p∈P(I)|D1

(−1)|p|+1 Pr
{ ⋂

(c,a)∈p
{1/(RcS

(c)
a ) > ancb

1/ρc
c x(c)a }

}

= n
(
1− Pr

[ ⋂
k∈D1

{1/(RkS
(k)
1 ) ≤ ankb

1/ρk
k x

(k)
1 , . . . , 1/(RkS

(k)
dk

) ≤ ankb
1/ρk
k x

(k)
dk
}
])

=

∫
[0,1]N1

n
(
1− Pr

[ ⋂
k∈D1

{1/Rk ≤ ankb
1/ρk
k x

(k)
1 s

(k)
1 ,

. . . , 1/Rk ≤ ankb
1/ρk
k x

(k)
dk
s
(k)
dk
}
])
dF{S(k):k∈D1}(s

(k) : k ∈ D1)

=

∫
[0,1]N1

n
(
1−

Pr
[ ⋂
k∈D1

{1/Rk ≤ ankb
1/ρk
k min

i∈{1,...,dk}
{x(k)i s

(k)
i }}

])
dF{S(k):k∈D1}(s

(k) : k ∈ D1) .

Now consider the integrand as a sequence of functions {fn} defined on [0, 1]N1 and observe

that for each n ∈ N, 0 ≤ fn ≤ gn, where gn is given, for each (s(k) : k ∈ D1) ∈ [0, 1]N1 , by

gn({s(k) : k ∈ D1}) = n
∑
k∈D1

dk∑
i=1

Pr
(
1/Rk > ankb

1/ρk
k x

(k)
i s

(k)
i

)

Clearly,

gn(s
(k) : k ∈ D1) → g(s(k) : k ∈ D1)

as n→ ∞ where

g(s(k) : k ∈ D1) =
∑
k∈D1

dk∑
i=1

1

bk{x(k)i s
(k)
i }ρk

with ∫
[0,1]N1

g(s(k) : k ∈ D1)dF{S(k):k∈D1}(s
(k) : k ∈ D1) =

∑
k∈D1

dk∑
i=1

(x
(k)
i )−ρk .

Moreover,∫
[0,1]N1

gn(s
(k) : k ∈ D1)dF{S(k):k∈D1}(s

(k) : k ∈ D1)

= n

{∑
k∈D1

dk∑
i=1

Pr
(
1/(RkS

(k)
i ) > ankb

1/ρk
k x

(k)
i

)}
→
∑
k∈D1

dk∑
i=1

(x
(k)
i )−ρk

as n → ∞. Therefore, we have a sequence of majorants {gn} such that limn→∞
∫
gn =∫

limn→∞ gn. Now recall that the vector of distortions 1/R has a limiting stdf �1/R defined

in terms of the positive, unit-mean variables W1, . . . ,WK in Assumption 6.2. Therefore,

fn → f point-wise, where for all (s(k) : k ∈ D1) ∈ [0, 1]N1 ,

f(s(k) : k ∈ D1) = E
[
max
k∈D1

{ Wk

(b
1/ρk
k min

i=1,...,dk
{x(k)i s

(k)
i })ρk

}]
.
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Now, integrating over the ({s(k) : k ∈ D1}) yields the following:

∫
[0,1]N1

f(s(k) : k ∈ D1)dF{S(k):k∈D1}(s
(k) : k ∈ D1)

= E
[
max
k∈D1

{
max

i=1,...,dk

( Wk

bk{S(k)
i x

(k)
i }ρk

)}]
.

Using the generalized Lebesgue dominated convergence theorem, we can thus conclude

that for all (x(k) : k ∈ D1) ∈ R
N1
+ ,

lim
n→∞

n
∑

p∈P(I)|D1

(−1)|p|+1 Pr
( ⋂
a(c)∈p

{1/(RcS
(c)
a ) > anbb

ρc
c x

(c)
a }
)

= E
[
max
k∈D1

{
max

i=1,...,dk

( Wk

bk{S(k)
i x

(k)
i }ρk

)}]
.

Analogously to P(I)|D1 , let P(I)|D2 contain only sets of indices (c, a) with c ∈
D2. Let K2 = |D2| and N2 =

∑
k∈D2

dk, and recall that ρk = 1 for k ∈ D2. Next,

({x(k)
i : k ∈ D2}) ∈ R

N2
+ and rewrite the summands of (6.8) with p ∈ P(I)|D2 as follows:

n
∑

p∈P(I)|D2

(−1)|p|+1 Pr
( ⋂
(c,a)∈p

{1/(RcS
(c)
a ) > ancb

1/ρc
c x(c)a }

)

= n
[
1− Pr

( ⋂
k∈D2

{1/(RkS
(k)
1 )≤ankbkx(k)1 , . . . , 1/(RkS

(k)
dk

)≤ankbkx(k)dk
}
)]

=

∫
R
|D1|
+

n
[
1− Pr

( ⋂
k∈D2

{1/S(k)
1 ≤ankbkx(k)1 rk,

. . . , 1/S
(k)
dk

≤ankbkx(k)dk
rk}
)]
dF{Rk:k∈D2}(rk : k ∈ D2) .

Now consider the integrand as a sequence of functions {fn} defined on R
K2
+ and observe

that for each n ∈ N, 0 ≤ fn ≤ gn, where gn is given, for all (rk : k ∈ D1) ∈ R
K2
+ , by

gn(rk : k ∈ D2) = n
{∑
k∈D2

dk∑
i=1

Pr
(
1/S

(k)
i > ankbkx

(k)
i rk

)}

Clearly, for all (rk : k ∈ D2) ∈ R
K2
+ and as n→ ∞,

gn(rk : k ∈ D2) → g(rk : k ∈ D2) =
∑
k∈D2

dk∑
i=1

1

bkx
(k)
i rk

.

Furthermore,

∫
R
m2
+

g(rk : k ∈ D2)dF{Rk:k∈D2}(rk : k ∈ D2) =
∑
k∈D2

dk∑
i=1

1

x
(k)
i
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and as n→ ∞,∫
R
m2
+

gn(rk : k ∈ D2)dF{Rk:k∈D2}(rk : k ∈ D2)

= n
{∑
k∈D2

dk∑
i=1

Pr
(
1/(RkS

(k)
i ) > ankbkx

(k)
i

)}→
∑
k∈D1

dk∑
i=1

1

x
(k)
i

.

Analogously to the treatment of P(I)|D1 we have a sequence of majorants {gn} such that

limn→∞
∫
gn =

∫
limn→∞ gn. It remains to determine the limit of the sequence of functions

{fn} defined for all (rk : k ∈ D2) ∈ R
K2
+ by

n
[
1− Pr

( ⋂
k∈D2

{1/S(k)
1 > ankbkx

(k)
1 rk, . . . , 1/S

(k)
dk

> ankbkx
(k)
dk
rk}
)]

By assumption, S(k) = (S
(k)
1 , . . . , S

(k)
dk

) and S(l) = (S
(l)
1 , . . . , S

(l)
dl
) are independent if k �= l

and are therefore asymptotically independent as well. Using Proposition 6.1 and the

fact that 1/S
(k)
i ∈ M(Φ1) for all k ∈ {1, . . . , K}, i ∈ {1, . . . , dk} one has that fn → f

point-wise, where for all (rk : k ∈ D1) ∈ R
N2
+ ,

f(rk : k ∈ D1) =
∑
k∈D2

�k

(
{bkx(k)1 rk}−1, . . . , {bkx(k)dk

rk}−1
)

=
∑
k∈D2

(bkrk)
−1�k

(
{x(k)1 }−1, . . . , {x(k)dk

}−1
)
.

Integrating the limit f yields∫
R
m2
+

f(rk : k ∈ D2)dF{Rk:k∈D2}(rk : k ∈ D2) =
∑
k∈D2

�k

(
{x(k)1 }−1, . . . , {x(k)dk

}−1
)
.

Thus for all (x
(1)
1 , . . . , x

(1)
d1
, . . . , x

(K)
1 , . . . , x

(K)
dK

) ∈ R
d
+, the limit (6.7) is equal to

E
[
max
k∈D1

{
max

i=1,...,dk

( Wk

bk{S(k)
i x

(k)
i }ρk

)}]
+
∑
k∈D2

�k

(
{x(k)1 }−1, . . . , {x(k)dk

}−1
)
.

Recalling that 1/(RkS
(k)
i ) ∈ M(Φρk), one obtains (6.4) by plugging in the appropriate

Fréchet margins.

6.3.3 Proofs of Corollaries 6.2 and 6.1

Proof of Corollary 6.1. Let K1 = |D1| and recall that E[maxk∈D1 ykWk] is the limiting

stdf of {1/Rk : k ∈ D1}, defined for all (y1, . . . , yK1) ∈ R
K1
+ . Letting {Wk : k ∈

D1} be a (uniformly) random permutation of (K1, 0, . . . , 0) yields the independence stdf

E[maxk∈D1 ykWk] = y1 + . . . + ym1 . Due to the fact that the Wk are independent of all

S
(l)
i , plugging this into (6.4) yields, for all x ∈ R

d
+,

�G,ψ,�(x) =
∑
k∈D1

E
[
max

i=1,...,dk

( x
(k)
i

bk{S(k)
i }ρk

)]
+
∑
k∈D2

�k(x
(k)
1 , . . . , x

(k)
dk
) .
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By Proposition 2.1, for each k ∈ D1,

E
[
max

i=1,...,dk

( x
(k)
i

bk{S(k)
i }ρk

)]
= �ρkk

({x(k)1 }1/ρk , . . . , {x(k)dk
}1/ρk) .

This completes the proof.

Proof of Corollary 6.2. Fix an arbitrary x ∈ R
K
+ and observe first that by Assumption

6.2 and the fact that the variables Wk have unit mean,

�1/R(x) = E
[
max

k=1,...,K
{xkWk}

] ≤ E
[
max
k∈D1

{xkWk}+
∑
k∈D2

xkWk

]
= E

[
max
k∈D1

{xkWk}
]
+
∑
k∈D2

xk. (6.9)

Next, note that �G,ψ,�(xI) = A(x) + B(x), where

A(x) =
∑
k∈D2

�k
(
x
(k)
I,1, . . . , x

(k)
I,dk) =

∑
k∈D2

xk

and

B(x) = E
[
max
k∈D1

{
max

j=1,...,dk

x
(k)
I,jWk

bk(S
(k)
j )ρk

}]
= E

{
max
k∈D1

xkWk

bk(S
(k)
j )ρk

}
.

Because for each k ∈ D1, bk = E{(1/S(k)
j )ρk}, we have that for any w ∈ R

K
+ and k ∈ D1,

E
{
max
k∈D1

xkwk

bk(S
(k)
j )ρk

}
≥ E

{ xkwk

bk(S
(k)
j )ρk

}
= xkwk ,

so that

E
{
max
k∈D1

xkwk

bk(S
(k)
j )ρk

}
≥ max

k∈D1

{xkwk}.

This implies that

B(x) ≥ E
[
max
k∈D1

{xkWk}
]

which together with (6.9) yields the desired result.

6.4 Conjectured extension of Theorem 6.1

As it is stated, Theorem 6.1 does not account for the boundary case when 1/Rk ∈ M(Φ1),

which can occur. It would thus be desirable to replace Assumption 6.1 of Theorem 6.1

by the following requirement.

Assumption 6.3. For a clustered Archimax copula as in Definition 6.1, assume that

{1, . . . , K} is the union of disjoint sets D1, D2, and D3 such that

(i) k ∈ D1 if and only if 1/Rk ∈ M(Φρk) for some ρk ∈ (0, 1).
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(ii) k ∈ D2 if and only if there exists an εk > 0 such that E{1/R(1+εk)
k } <∞.

(iii) k ∈ D3 if and only if 1/Rk ∈ M(Φ1) and E{1/Rk} = ∞.

We conjecture that the variables whose distortions are in D3 have the same asymp-

totic behavior as those whose distortions are in D2. More precisely, we surmise that the

following statement holds.

Conjecture 6.1. Let CG,ψ,� be a clustered Archimax copula with a contiguous partition

G and such that Assumptions 6.3 and 6.2 hold. For k ∈ D1, let bk = E{(1/Zk)ρk},
Zk ∼ B(1, dk−1). Then 1/X ∈ M(H), where the univariate margins of H are H

(k)
i = Φρk

for k ∈ D1 and i ∈ {1, . . . , dk} and H
(k)
i = Φ1 for k ∈ D2 ∪ D3 and i ∈ {1, . . . , dk}. The

stable tail dependence function of H is given for all x ∈ R
d
+ by

�G,ψ,�(x) = E

[
max
k∈D1

{
max

i=1,...,dk

(
x
(k)
i Wk

bk{S(k)
i }ρk

)}]
+

∑
k∈D2∪D3

�k(x
(k)
1 , . . . , x

(k)
dk
) . (6.10)

One part of Conjecture 6.1 is clear, namely that H
(k)
i = Φ1 for k ∈ D3. Indeed,

for any such k, the Corollary to Theorem 3 in Embrechts and Goldie (1980) implies

that 1/(RkS
(k)
i ) ∈ M(Φ1). So one can again find a sequence {ank} of positive constants

ensuring that for all x ∈ R+, nPr(1/(RkS
(k)
i ) > ankx) → 1/x as n → ∞. The main

difficulty in establishing the validity of Conjecture 6.1 that arises is the fact that, for

k ∈ D3 and i ∈ {1, . . . , dk}, the relation between the above normalizing sequence {ank}
and the normalizing sequences for 1/Rk, 1/S

(k)
i is unclear.

In order to prove the conjectured result, it suffices to prove the following three sister

lemmas. The first two, analogous to Lemma 6.2, are proved below. The third, conjecturing

asymptotic independence between different clusters in D3, is the missing result that if

established would prove that Conjecture 6.1 is indeed true.

Lemma 6.3. Under the hypothesis of Conjecture 6.1, suppose that k ∈ D1, l ∈ D3,

i ∈ {1, . . . , dk} and j ∈ {1, . . . , dl}. Let {ank} be a sequence of positive constants such that

for all x > 0, nPr(1/Rk > ankx) → x−ρk as n→ ∞ and nPr(1/(RkS
(k)
i ) > ankb

1/ρk
k x) →

x−ρk as n→ ∞. Furthermore, let {anl} be a sequence of positive constants so that for all

x > 0, nPr(1/(RlS
(l)
i ) > anlx) → 1/x as n→ ∞. Then for all x, y ∈ R+,

lim
n→∞

nPr{1/(RkS
(k)
i ) > ankb

1/ρk
k x, 1/(RlS

(l)
j ) > anly} = 0 .

Proof. The proof is quite similar to the one of Lemma 6.2. Observe first that the assumed

sequences {ank} and {anl} indeed exist, by Lemma 6.1 and the discussion in the paragraph

following Conjecture 6.1. Fix some arbitrary x, y > 0 and recall that ρk ∈ (0, 1). The

probability of interest can be written as follows

nPr{1/(RkS
(k)
i ) > ankb

1/ρk
k x, 1/(RlS

(l)
j ) > anlbly}

=

∫
(0,1)2

nPr{1/Rk > ankb
1/ρk
k xs

(k)
i , 1/Rl > anlys

(l)
j }dF

S
(k)
i ,S

(l)
j
(s

(k)
i , s

(l)
j )
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Consider the integrand as a function fn defined on (0, 1)2 and note that for all n ∈ N,

0 ≤ fn ≤ gn, where gn is given, for all (s
(k)
i , s

(l)
j ) ∈ (0, 1)2 by

gn(s
(k)
i , s

(l)
j ) = gn(s

(k)
i ) = nPr(1/Rk > ankb

1/ρk
k xs

(k)
i ) .

As in the proof of Lemma 6.2, for all (s
(k)
i , s

(l)
j ) ∈ (0, 1)2,

lim
n→∞

gn(s
(k)
i , s

(l)
j ) = g(s

(k)
i , s

(l)
j ) = 1/{bk(xs(k)i )ρk} .

Moreover, ∫
(0,1)2

g(s
(k)
i , s

(l)
j )dF

S
(k)
i ,S

(l)
j
(s

(k)
i , s

(l)
j ) =

1

xρk

and ∫
(0,1)2

gn(s
(k)
i , s

(l)
j )dF

S
(k)
i ,S

(l)
j
(s

(k)
i , s

(l)
j ) = nPr{1/(RkS

(k)
i ) > ankb

1/ρk
k x} → 1

xρk

as n → ∞. We therefore have a sequence of functions {gn} bounding {fn} from above

such that

lim
n→∞

∫
(0,1)2

gn(s
(k)
i , s

(l)
j )dF

S
(k)
i ,S

(l)
j
(s

(k)
i , s

(l)
j ) =

∫
(0,1)2

lim
n→∞

gn(s
(k)
i , s

(l)
j )dF

S
(k)
i ,S

(l)
j
(s

(k)
i , s

(l)
j ) .

Finally, note that

fn(s
(k)
i , s

(l)
j ) = nPr{1/Rk > ankb

1/ρk
k xs

(k)
i , 1/Rl > anlb

1/ρl
l ys

(l)
j } → 0

as n→ ∞ since nPr{1/Rk > ankb
1/ρk
k xs

(k)
i } → {b1/ρkk xs

(k)
i }−ρk and Pr{1/Rl > anlb

1/ρl
l ys

(l)
j }

→ 0 as n → ∞. The desired result now follows by the generalized Lebesgue dominated

convergence theorem.

Lemma 6.4. Under the hypothesis of Conjecture 6.1, suppose that k ∈ D2, l ∈ D3, i ∈
{1, . . . , dk} and j ∈ {1, . . . , dl}. Let {ank} such that for all x > 0, nPr(1/S

(k)
i > ankx) →

x−1 as n → ∞ and nPr(1/(RkS
(k)
i ) > ankbkx) → x−1 as n → ∞. Furthermore, let {anl}

be a sequence of positive constants so that for all x > 0, nPr(1/(RlS
(l)
i ) > anlx) → x−1

as n→ ∞. Then for all x, y ∈ R+,

lim
n→∞

nPr{1/(RkS
(k)
i ) > ankb

1/ρk
k x, 1/(RlS

(l)
j ) > anly} = 0 .

Proof. This proof is almost exactly the same as the proof of Lemma 6.2. Again, the

existence of the norming constants {ank} and {anl} follows from Lemma 6.1 and the

discussion in the paragraph following Conjecture 6.1. Fix some arbitrary x, y > 0. We

are interested in the limit as n→ ∞ of

nPr{1/(RkS
(k)
i ) > ankbkx, 1/(RlS

(l)
j ) > anly}

=

∫
R2
+

nPr{1/S(k)
i > ankbkxrk}Pr{1/S(l)

j > anlyrl}dFRk,Rl
(rk, rl) .
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Consider the integrand as a function fn defined on R
2
+. Observe that for each n ∈ N,

0 ≤ fn ≤ gn where for all (rk, rl) ∈ R
2
+,

gn(rk, rl) = gn(rk) = nPr{1/S(k)
i > ankbkxrk} .

From the choice of {ank}, for all (rk, rl) ∈ R
2
+,

lim
n→∞

gn(rk, rl) = g(rk, rl) = 1/(bkxrk) .

Moreover, since bk = E(1/Rk),∫
R2
+

g(rk, rl)dFRk,Rl
(rk, rl) =

∫
R2
+

1

bkxrk
dFRk,Rl

(rk, rl) =
1

x
.

and ∫
R2
+

gn(rk, rl)dFRk,Rl
(rk, rl) = nPr{1/(RkS

(k)
i ) > ankbkx} → 1

x

as n → ∞. We therefore have a sequence of functions {gn} bounding {fn} from above

such that

lim
n→∞

∫
R2
+

gn(rk, rl)dFRk,Rl
(rk, rl) =

∫
R2
+

lim
n→∞

gn(rk, rl)dFRk,Rl
(rk, rl) .

Finally, note that

fn(rk, rl) = nPr{1/S(k)
i > ankbkxrk}Pr{1/S(l)

j > anlyrl} → 0

as n→ ∞ since

nPr{1/S(k)
i > ankbkxrk} → 1/{bkxrk} and Pr{1/S(l)

j > anlyrl} → 0

as n → ∞. Using the generalized Lebesgue dominated convergence theorem concludes

the proof.

Conjecture 6.2. Under the hypothesis of Conjecture 6.1, suppose that k, l ∈ D3, i ∈
{1, . . . , dk} and j ∈ {1, . . . , dl}. Let {ank} and {anl} be sequences of positive constants such

that for all x > 0, nPr(1/(RkS
(k)
i ) > ankx) → x−1 and nPr(1/(RlS

(l)
i ) > anlx) → x−1 as

n→ ∞. Then for all x, y ∈ R+,

lim
n→∞

nPr{1/(RkS
(k)
i ) > ankb

1/ρk
k x, 1/(RlS

(l)
j ) > anly} = 0 .
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Chapter 7

Data applications

This chapter contains two applications of the models and methods developed in this

thesis to precipitation datasets. This data was kindly provided by Météo France, for

which I am very grateful. In Section 7.1, the semiparametric estimation procedure for

Archimax copulas, as introduced in Chapter 5, is applied to monthly maxima of daily

precipitation for three stations in French Brittany. The strengths of the Archimax model

are shown through this illustrative application, and are further pointed out via a small

comparative simulation study. Section 7.2 studies a much larger precipitation dataset,

weekly maxima for 155 stations spread over metropolitan France. Here, the heterogeneity

of the data discourages the use of a single Archimax copula model, so we instead turn

to the clustered Archimax copula presented in Chapter 6 which will also allow to model

asymptotic independence between stations that are far apart. After discussing certain

model choices and implications, a method for finding appropriate clusters is proposed,

using an established algorithm equipped with a distance which is tailored to the model.

In the second part of Section 7.2, possible directions for modeling joint risk of precipitation

at the medium level are discussed.

7.1 Precipitation over French Brittany

In this section, the practical usefulness of the proposed estimation procedure for simple

Archimax copula models is illustrated in the context of precipitation monitoring. The

data is a trivariate sample of daily precipitation amounts in French Brittany from 1976 to

2016 provided by Météo France. To avoid seasonality, the series is restricted to September

to February, during which most extreme events occur. The position of the three stations

Belle-Ile, Groix, and Lorient is shown in the left panel of Figure 7.1.

To remove time dependence, and since our primary focus is on extreme precipitation,

we considered monthly maxima at each station, totalling 240 observations. Blocking the

data by months also eliminates ties; in particular, it avoids the large number of zeros in

the sample of daily maxima. This series shows no departures from stationarity; the Ljung

and Box–Pierce tests do not reject the hypothesis of temporal independence except at
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Figure 7.1: Satellite map of French Brittany, showing the sites Belle-Ile, Groix, and
Lorient (left). Rankplots of monthly maximum precipitation for the months of September
to February, from 1976 to 2016 (right).

Groix, where there is slight evidence of dependence at lags 1 and 2. As the asymptotic

results hold for alpha-mixing sequences, time dependence is allowed.

The pairs of the normalized component-wise ranks of monthly maxima are displayed

in the right panel of Figure 7.1. These plots show strong correlation between Lorient

and Groix, which is not surprising given their geographical proximity. Also apparent is

asymmetry between Belle-Ile on the one hand and both Lorient and Groix on the other,

in the sense that large precipitation amounts at Groix correspond to large precipitation

amounts at Belle-Ile, but not necessarily vice versa, and similarly for Lorient.

Because the data at hand are monthly maxima, one might first think of fitting an

extreme-value copula model. However the test of Kojadinovic et al. (2011) clearly rejects

the hypothesis that the underlying copula is an extreme-value copula (p ≈ 5 × 10−5).

This may be explained by the presence of lower-tail dependence, which manifests itself

by the clumping of points in the bottom-left corner of the rankplots in the right panel of

Figure 7.1. The empirical estimates of the tail probabilities plotted against q in the bottom

row of Figure 7.2 also indicate that λL in (2.3) for all pairs is likely greater than 0. This

phenomenon is not present in multivariate extreme-value distributions, whose pair-wise

lower tail dependence coefficients are 0. Archimax copula models advocated in this paper

may capture lower-tail as well as extremal dependence. The Clayton-Archimax model

is particularly well suited. The latter assumes continuous marginals and an Archimax

copula of the form Cψθ,A, where A is an arbitrary Pickands dependence function and ψθ is

the Clayton generator given in Table 4.1. Because ψθ for any θ > 0 satisfies Condition 3.2

(a) with s = 1/θ, λL of each bivariate margin of Cψθ,A equals {2A(1/2)}−1/θ. Furthermore,

Condition 3.1 holds withm = 1, so that Cψθ,A is in the domain of attraction of the extreme-

117



Table 7.1: Pair-wise estimates of θ along with 90% asymptotic confidence intervals in the
Clayton-Archimax model, model-based estimates of pair-wise Kendall’s tau of Cψθn ,Â

in
the Clayton-Archimax model, and empirical estimates τn of pair-wise Kendall’s tau.

θn,jk 90% C.I. τ(Cψθn ,Â
) τn

Belle-Ile & Groix 1.58 (0.77, 2.39) 0.54 0.56
Belle-Ile & Lorient 1.08 (0.49, 1.67) 0.51 0.52

Groix & Lorient 1.27 (0.54, 1.99) 0.64 0.67

value copula CA. The Clayton-Archimax model is fitted to the data in Section 7.1.1;

comparisons with other estimators of the limiting A are considered in Section 7.1.2.

7.1.1 Fitting the Clayton-Archimax model

We begin by estimating the Clayton distortion using the moment-based method pre-

sented in Section 5.1. The pair-wise estimates of θ are given in Table 7.1, along with

90% confidence intervals. Because these intervals overlap, there is no evidence against a

trivariate Clayton-Archimax model with a common value of θ. The latter is estimated by

the average of the pair-wise estimates to be θn = 1.31.

The next step consists of estimating A. We use the CFG-type estimator ÂCFG
n,c given

in (5.11) with ψ replaced by ψθn . The Pickands-type estimator is not well suited here,

because for the estimated value of θ, s ≈ 0.76 < 2, so that the requirements of Theorem 5.2

are likely not met. In contrast, assuming that Condition 3.3 holds, the assumptions of

Theorem 5.1 are fulfilled; Conditions 5.1–5.7 are validated in Example 5.3. Comparing

the limiting processes in Theorems 4.1 and 5.1, the additional uncertainty stemming from

estimating θ clearly has an impact on the variability of the estimator. To assess the latter

in finite samples, we run a pilot simulation which is detailed in Section 7.1.2 and the

results of which are shown in Figure 7.4. The boxplots AXC(1) and AXC(2) summarize

the IRAE when ψ is known and estimated parametrically, respectively. Unsurprisingly,

parameter uncertainty increases the variability of the estimator.

A contour plot of ÂCFG
n,c is shown in the left panel of Figure 7.3. The contour levels of

ÂCFG
n,c show a clear global asymmetry, but axial symmetry with respect to Belle-Ile. This

pattern corroborates what was seen on the rankplots in Figure 7.1. This asymmetry may

be explained by the fact that Belle-Ile is located far off shore. This can lead to strong

localized rainfall which does not affect the stations at Groix and Lorient. Although Groix

is also an island, it lies much closer to the coast, and is hence not affected by the localized

rainfall phenomenon. Furthermore, it can also be seen from pressure maps and radar

images that heavy rainfall at Groix and Lorient is mainly due to large-scale weather

systems that affect Belle-Ile as well.
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Figure 7.2: Empirical estimates of χU(q) (top) and χL(q) (middle) plotted against q
(Quantile) along with 95% confidence bands (black). The red lines indicate the model-
based estimates of λU (top) and λL (middle). Contour plots (bottom) of the empirical
copula (black dashed) and the fitted Clayton-Archimax copula (red). The plots cor-
respond to Belle-Ile & Groix (left), Belle-Ile & Lorient (middle), and Groix & Lorient
(right).

Finally, we check the fit of the Clayton-Archimax model. Because ÂCFG
n,c is nonpara-

metric, no existing formal goodness-of-fit test for copula models can be used. However,

the contours of the fitted trivariate Clayton-Archimax copula seem fairly close to the

empirical copula, as evidenced by the bottom panel of Figure 7.2. We also compared

various sample dependence measures to their model estimates. To assess the fit in the

tails, we consider each pair of stations j �= k, say. Following Coles et al. (1999), we plot

the empirical estimates of

χU(q) = 2− log[Pr{Fj(Xj) < q, Fk(Xk) < q}]/ log(q)
χL(q) = 2− log[Pr{Fj(Xj) > 1− q, Fk(Xk) > 1− q}]/ log(q),

against q together with the model-based estimates of the lower and upper tail dependence

coefficients λL and λU for that pair, respectively. To compute the latter, we use that in a

bivariate Clayton-Archimax model, as

λL = lim
q→1

χL(q) = {2A(1/2)}−1/θ, λU = lim
q→1

χU(q) = 2− 2A(1/2).
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The top two panels of Figure 7.2 show that the model-based estimates approximate the

empirical probabilities quite nicely when q → 1, which indicates a good fit in the tails. The

contour plots of the empirical copula and the fitted Clayton-Archimax model displayed

in the bottom panel of the same Figure match nicely as well. Finally, we compared

empirical estimates of pair-wise Kendall’s tau with model-based estimates. To compute

the latter, we used (4.20) with τψ = θ/(θ + 2) and τ(A) =
∫ 1

0
[{t(1− t)}/A(t)]dA′(t), and

approximated the integral in the expression for τ(A) with finite differences. Table 7.1

shows that the empirical and model-based estimates are very close. Overall, the fit of the

Clayton-Archimax model seems adequate, and allows to model the dependence in this

trivariate precipitation dataset, not only in extremes, but also in a medium size regime.

7.1.2 Comparison with other estimators of A

If the objective is to specifically assess the joint risk of extreme precipitation, then the

estimation of the Pickands dependence function A of the extreme-value attractor of the

distribution of the monthly maxima at the three stations is of interest. Because the

Clayton-Archimax copula Cψ,A is in the domain of attraction of CA, the estimator ÂCFG
n,c

calculated in the preceding section is also an estimate of the limiting Pickands dependence

function. As such, it can be compared to other nonparametric estimators considered in

the literature.

The first idea would be to block the data by seasons and consider the maxima over

the period from September to February. This reduces the sample size to n = 40, but the

hypothesis that the underlying copula is an extreme-value copula is no longer rejected

by the test of Kojadinovic et al. (2011) (p ≈ 0.43). Consequently, the multivariate rank-

based CFG estimator of Gudendorf and Segers (2012) can be used. Another option would

be to use nonparametric estimators of A that only assume that the underlying copula is

in the domain of attraction of CA. We consider the FHM and EKS estimators of Fougères

et al. (2015) and Einmahl et al. (2017), respectively. The FHM estimator is denoted as

L̊agg in Section 5.1 of Fougères et al. (2015), built from Eq. (15) therein, and its tuning

parameters are κn = 239, a = 0.8, r = 0.8, kρ = 237. The bias-corrected EKS estimator

is denoted �̄n,k,k1 and its parameters were set to the default choices from the R package

tailDepFun.

The three competing estimators CFG, FHM, and EKS are displayed in Figure 7.3

along with ACFG
n,c from Section 7.1.1. The contours of the CFG estimator are rougher,

which is not surprising given that it is based on 40 observations. Although we expect this

estimator to be more variable because it is based on a smaller sample, it is comforting

that it shows a similar pattern as ÂCFG
n,c ; this further confirms that the Clayton-Archimax

model is adequate for the data at hand. The contours of the FHM and EKS estimators

are much more irregular which makes the plots difficult to interpret.
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To compare these estimators further, we ran a pilot simulation study mimicking the

data. We generated N = 1000 samples of size n = 240 from a trivariate Clayton-Archimax

copula with θ = 1.31 and the scaled negative extremal Dirichlet Pickands dependence

function parameters α = (1, 2, 3) and ρ = 0.9 whose shape roughly resembles ÂCFG
n,c ; see

the left panel of Figure 7.4. For each sample, we estimated A by: (i) the CFG-type

estimator from (4.4) assuming ψ known; (ii) the CFG-type estimator from (4.4) with

θ estimated by the moment estimator θn from Section 7.1.1; (iii) the CFG estimator

of Gudendorf and Segers (2011) based on block maxima with 40 blocks; (iv) the FHM

estimator of Fougères et al. (2015); (v) the EKS estimator of Einmahl et al. (2017). The

boxplots of the IRAE are shown in Figure 7.4. Even if ψ is estimated by ψθn , Â
CFG
n,c is

superior to the CFG, FHM and EKS estimators especially in terms of bias.

To sum up, this application on precipitation data demonstrates the feasibility of the

proposed inference techniques but more importantly illustrates the potential of Archimax

copulas to model joint risk in subasymptotic settings. Since the max domain of attrac-

tion of Archimax copulas is known, one can check the performance of the latter model

by comparing it to models using the max-stable assumption. In this particular data ap-

plication, the Archimax model accurately captures the bulk and both tails of medium to

high precipitation observations. Performance at extreme levels is no doubt also due to

the fact that the studied weather stations are located in a relatively small area. To model

extremes over larger spatial scales however, more flexible models than those studied herein

are required in order to capture asymptotic independence, as noted, e.g., by Huser et al.

(2017) and Wadsworth et al. (2017).

7.2 Precipitation over France

This section is concerned with a much larger data set than the one studied in Section 7.1.

Here, we have access to precipitation measurements from Météo France at 155 stations

across France, for the years 1976 to 2016. As seen in Figure 7.5, some regions such as Côte

d’Azur and Île-de-France (the Parisian metropolitan area) feature higher concentrations
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Figure 7.3: AXC: CFG-type estimator ÂCFG
n,c based on monthly maxima and the Clayton-

Archimax model. CFG: Rank-based CFG estimator of Gudendorf and Segers (2011) based
on seasonal maxima. FHM and EKS: Estimators of Fougères et al. (2015) and Einmahl
et al. (2017) based on monthly maxima.
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Figure 7.5: Map of the studied 155 weather stations located in metropolitan France.

of stations while other locations are lacking, for example the North-East region of the

Ardennes. Since the stations cover a large territory, we need to be more restrictive than
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in Section 7.1 in order to avoid seasonality in the dataset. As was done in the work of

Bernard et al. (2013), which also studied a precipitation dataset with several stations

spanning metropolitan France, we restrict the observations to the months of September,

October and November. Although the different regions of France can exhibit different

weather patterns, this season usually features the heaviest rainfall. For example, the

“Orages cévenols”, mentioned in the introduction, occur during this time period. Here,

the dependence of weekly maxima of daily precipitation measurements is modeled. Since

the block size is obviously smaller than the monthly maxima of Section 7.1, an extreme-

value copula is not appropriate and lower tail dependence between stations is present as

well.

The objective of this section is to fit a clustered Archimax copula CGψ� proposed and

studied in Chapter 6 to this selected dataset. This entails that a partition of the d stations

into K sets, denoted G, must be made. Each resulting ordered set Gk = {i1, . . . , idk},
κ ∈ {1, . . . , K}, represents a cluster modeled via an Archimax copula, itself characterized

by a stable tail dependence function �k and an Archimedean generator ψk; as such � =

{�1, . . . , �K} and ψ = {ψ1, . . . , ψK}.
The proposed approach is to first determine an appropriate partition G via a clustering

algorithm presented in Section 7.2.1. Then, an Archimax copula is fit to each cluster using

the semiparametric procedure of Chapter 5. As was the case in Section 7.1, the Clayton

family was deemed a good choice to model the distortions across all clusters. Of course,

in other applications, several distinct Archimedean families for different clusters could be

a valid choice. Here, the presence of lower tail dependence made the Clayton family a

good candidate; it will be made apparent that a single Archimedean family also greatly

simplifies the clustering procedure. One should also note that as shown in Example 6.1,

the choice of a Clayton generator for all distortions implies asymptotic independence

between all clusters, regardless of the dependence structure of the distortions. Once the

Clayton Archimededean generators {ψθk}Kk=1 are estimated, the stdfs {�k}Kk=1 can also be

estimated nonparametrically.

The inter-cluster dependence is modeled through the distortions (R1, . . . , Rk), which

is the topic of Section 7.2.2. The choice of Clayton generators implies that the distor-

tions have marginal densities, and we further assume that the vector (R1, . . . , Rk) has a

parametric copula Cξ with copula density cξ, where ξ ∈ Ξ for some parameter space Ξ.

For example, were we to chose a normal copula for Cξ, ξ would be the correlation matrix.

Therefore, the density of (R1, . . . , RK) is given for all (r1, . . . , rK) ∈ R
K
+ , by

fR(r1, . . . , rK) = cξ(FR1(r1), . . . , FRK
(rK))

K∏
k=1

fRk
(rk) , (7.1)
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where, as seen in Example 6.1, for each k ∈ {1, . . . , K} and rk ∈ R+,

fRk
(rk) =

θdk

{∏dk
j=0(1/θk + j)

}
(dk − 1)!

(1 + θkrk)
−1/θk−dkrdk−1k

and FRk
is the corresponding cumulative distribution function (see Equation (2.6)):

FRk
(rk) = W−1

dk
ψθk(rk) = 1−

dk−2∑
j=0

(−1)jrjkψθk
(j)(rk)

j!
− (−1)(dk−1)rdk−1k ψθk

(dk−1)
+ (rk)

(dk − 1)!
.

7.2.1 Clustering the stations

In the aforementioned work of Bernard et al. (2013), the partitioning around medoids

(PAM) algorithm, introduced by Kaufman and Rousseeuw (1990), is argued to be well

suited to cluster asymptotically dependent groups of random variables. To do so, Bernard

et al. (2013) use a the PAM algorithm with the F -madogram employed as a distance, viz.

dij = E |Fi(Xi)− Fj(Xj)| ,

where for each station k, Xk ∼ Fk is the random variable of interest. Clearly, the above

distance is not affected by marginal behavior and can be seen as being copula-based.

As shown by Cooley et al. (2006), the F -madogram is in fact linked to the upper tail

dependence coefficient (see Definition 2.3). Indeed, if Xi and Xj have max-stable joint

distribution Fij composed of an extreme-value copula Cij with margins Fi and Fj, then

dij =
1

2

1− λij
3− λij

, (7.2)

where λij = λ(Cij). In Bernard et al. (2013), it is argued that the PAM algorithm is

effective at clustering extremes. Unlike the k-means algorithm which takes averages as

cluster centers, the PAM algorithm selects medoids instead, meaning that the distance

defined by the equation above remains interpretable at any step of the algorithm.

The dataset of weekly precipitation maxima at hand is clearly not distributed ac-

cording to a max-stable distribution, as was the case for the monthly maxima of Sec-

tion 7.1. However, as shown in Proposition 2 p.83 in Murphy (2018), Cij need not be

an extreme-value distribution for (7.2) to be a bona fide distance. Indeed it suffices that

Cij ∈ CDA(C0) for some extreme-value copula C0.

To compute the distances, we chose to fit the bivariate Clayton-Archimax to all pairs

of stations by using the semiparametric approach of Chapter 5. Thus for each i �= j, we

have at our disposal an estimate θ̂ij for the Clayton generator as well as λ̂ij = 2− �̂ij(1, 1),
recalling that the stdf of the attractor of a Clayton-Archimax copula is equal to that

of the Clayton-Archimax copula itself. Note that for these pairwise estimates, zeros

were not considered, as is the case in Bernard et al. (2013) (though their threshold is
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3mm). Since the objective is to model medium to extreme precipitation and since λij in

(7.2) is a measure pertaining to the upper tail, removing the zeros removal was deemed

acceptable. One can also note that as the model is specified, the dependence between

stations that do not belong to the same cluster is not modeled by a bivariate Clayton-

Archimax copula. However, the Clayton generator proved to be flexible enough and the

estimated tail dependence coefficients were very similar when estimated via two other

techniques, a non-parametric estimator (see Figure 7.2) and a parametric approach using

a t-copula. An estimator for (7.2) is then simply obtained by plugging in λ̂ij.

Grouping stations which exhibit strong asymptotic dependence is not sufficient for

the clustered Archimax copula model to be applied. For each cluster k ∈ {1, . . . , K}, the
assumption of a single distortion Rk affecting the extreme regime of the dk stations char-

acterized by (S
(k)
1 , . . . , S

(k)
dk ) also needs to be reasonable. To account for the assumption

of a single distortion per cluster, we introduce weights for each pairwise distance, viz

dWij = wij
1

2

1− λ̂ij

3− λ̂ij
,

where

wij =

∑
k/∈{i,j} λ̂ijλ̂ik|θ̂ik − θ̂jk|∑

k/∈{i,j} λ̂ijλ̂ik
.

Theses weights encourage stations within the same cluster to have pairwise estimates θik

that are similar. The product λ̂ijλ̂ik ensures that for stations k which are “far” (in the

sense of extremal dependence) from i and j, the differences |θ̂ik − θ̂jk| have less of an

impact.

We also mix dW above with the classical euclidean distance betweens stations dG. For

two stations i, j with longitudes loni, lonj and latitudes lati, latj, this distance is simply

dGij = {(loni − lonj)
2 + (lati − latj)

2}1/2 and the resulting distance d	 is defined by

d	ij = (1− α)
dWij

max
i �=j

dWij
+ α

dGij
max
i �=j

dGij
,

with α = 1/3. This mixing parameter was chosen to be small since the geographic distance

dG was employed to avoid rare and spurious groupings of stations that were far apart, and

does not represent “climatological” distance well. For example, the east and west coast

of Corsica will often observe different weather, even though the distance between them is

relatively small. In the case of Corsica, this is explained by the mountainous topography

of the island.

For a given number of clusters K, the PAM algorithm, which is implemented in the R

package cluster, consists in choosing K cluster medoids at random and following three

steps:

(1) Each station is assigned to the nearest medoid according to d	ij.
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(2) For each cluster k ∈ {1, . . . , K}, find the new medoid that minimizes the total intra-

cluster distances based on d	ij.

(3) Repeat steps (1) and (2) as long as at least one medoid has changed.

To chose the number of clusters K, we us the average silhouette coefficient as introduced

by Rousseeuw (1987) and implemented in the cluster package. According to this method,

K = 41 clusters is a good choice; the result of the PAM algorithm can be seen in Figure 7.6.

The mean silhouette coefficient for k = 41 is about 0.32. The closer a coefficient is to 1, the

better the clustering, while a value of 0 is synonymous for a non-informative clustering.
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Figure 7.6: Map of the clustered 155 weather stations resulting from the PAM algorithm
using d	ij.

The resulting clustering exhibits interesting cluster shapes. Unfortunately, the 40th

cluster is a singleton and cannot be captured by our modeling procedure. One can note

that mountainous regions are often more heterogeneous, which can be seen in the south-

east and south-west of the territory. Moreover, the 1st and 11th clusters seem to follow

the Rhône valley. The Cévennes region, roughly corresponding to cluster 27, is separated

from other neighboring stations which is expected.
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Once the clusters are determined, each Archimedean generator ψk, for k ∈ {1, . . . , K},
can be estimated by averaging the pairwise estimates, viz.

θ̂k =
2

dk(dk − 2)

∑
i,j∈Ik,i �=j

θ̂ij ,

where Ik = {j : station j is in cluster k}. The stable tail dependence functions {�k}Kk=1

can then be estimated nonparametrically. For ease of notation, let {�̂k}Kk=1 and {ψθ̂k}Kk=1

denote the estimated stdfs and Archimedean generators, respectively.

This clustering procedure is work in progress whose quality needs to be evaluated via

simulations. Generating data from the model would allow to test the robustness of the

choices made, such as the distance matrix used, the estimation of the λij coefficients or

the choice of the number of clusters K. The procedure will also be evaluated by applying

it to other datasets, such as a portfolio of stocks from various industries. The use of

Euclidean distance between stations is an ad-hoc way to avoid the very rare but obvious

misclassifications that occurred without it. The drawbacks involve the risk of over-fitting

and inducing user bias in the clustering; the objective in the future is to create a robust

algorithm that does not require this type of tuning and can be applied in other settings.

7.2.2 Modeling the distortions

At this stage, suppose that G as well as the functional parameters {ψk}Kk=1 and {�k}Kk=1

have been estimated. Recall the form of the density of R = (R1, . . . , RK) given in (7.1).

The aim of this section is to discuss a strategy on how the parameter ξ of the copula of the

distortions R can be estimated. To begin, suppose that U = (U (1), . . . ,U (K)) ∼ CGψ�, so

that (φ1{U (1)}, . . . , φK{U (K)}) d
= (R1S

(1) . . . , RKS
(K)). The main difficulty in estimating

ξ lies in the fact that even if U were observable, R cannot be observed. However, the

following result will prove to be helpful.

Proposition 7.1. Suppose that (R1S
(1), . . . , RKS

(K)) is a d =
∑K

k=1 dk-dimensional ran-

dom vector as in Definition 6.1 and assume further that (R1, . . . , RK) has a density fR.

For all k ∈ {1, . . . , K}, let

Bk = �k(1) min
i∈{1,...,dk}

{S(k)
i } ,

where 1 is a vector of 1’s of dimension dk. Then, the density of Y = (Y1, . . . , YK) =

(R1B1, . . . , RKBK) is given, for all (y1, . . . , yK) ∈ R
K
+ , by

fY (y1, . . . , yK) = E

(
fR(y1/D1 . . . , yK/DK)

D1 . . . DK

)
, (7.3)

where D1, . . . , DK are independent and such that Dk ∼ B(1, dk − 1) for k ∈ {1, . . . , K}.
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Proof. The distribution of Bk can be seen to be Beta B(1, dk − 1):

Pr(Bk > s) = Pr(S
(k)
1 ∧ . . . ∧ S(k)

dk
> s/�k(1))

= Pr(S
(k)
1 > s/�k(1), . . . , S

(k)
dk

> s/�k(1)) = (1− s)dk−1 .

To obtain the density of Y , we simply apply the transformation theorem. To do so, define

the said transformation t as follows:

t : (R1, . . . , RK , B1, . . . , BK) �−→ (R1B1, . . . , RKBK , B1, . . . , BK) .

Thus, the components of the inverse of t are as follows:

t−1j (y1, . . . , yK , yK+1, . . . , y2K) =

{
yj/yj+K for j ∈ {1, . . . , K}
yj for j ∈ {K + 1, . . . , 2K}

The Jacobian is then an upper triangular matrix with determinant equal to
∏K

j=1(1/yj+K).

Therefore, the density of (R1B1, . . . , RKBK , B1, . . . , BK) is given, for (y1, . . . , yK) ∈ R
K
+

and (y1+K , . . . , y2K) ∈ (0, 1)K , by

fR(y1/y1+K , . . . , yK/y2K)
K∏
j=1

(1− yj+K)
dk−2

(dk − 1)yj+K
.

To get to the density of (R1B1, . . . , RKBK), we must integrate out the second half of the

vector: ∫ 1

0

. . .

∫ 1

0

fR(y1/y1+K , . . . , yK/y2K)
K∏
j=1

(1− yj+K)
dk−2

(dk − 1)yj+K
dyj+K .

This is equal to

E

(
fR(y1/D1 . . . , yK/DK)

D1 . . . DK

)
.

If the density of is the form (7.1), then (7.3) only depends on the parameter ξ. One

can therefore attempt estimating ξ using maximum likelihood techniques. However, max-

imizing the likelihood based on (7.3) directly is unwieldy since the expectation cannot be

calculated explicitly. Instead, we propose to use an EM algorithm. To this end, suppose

for the sake of simplicity thatU 1, . . . ,Un is a sample from CGψ� where G, ψ = {ψk}Kk=1 and

� = {�k}Kk=1 are all known. Suppose also that the ψ = {ψk}Kk=1 are Clayton, hence their

parameters {θk}Kk=1 are also known. Then, let Y 1, . . . ,Y n be defined, for all i = 1, . . . , n,

as follows:

Y i = (Yi1, . . . , YiK) =

( min
j∈{1,...,d1}

{φθ1(U (1)
ij )}

�1(1)
, . . . ,

min
j∈{1,...,dK}

{φθK (U (K)
ij )}

�K(1)

)
, (7.4)
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making it a random sample from (7.3). In the above display, U
(k)
ij is the i-th copula

observation of the j-th component of the cluster k. To devise the EM algorithm, write

the log likelihood as follows:

lnL(ξ;Y 1, . . . ,Y n, ;B1, . . . ,Bn) =
n∑
i=1

ln fX|B(X i|Bi; ξ) +
n∑
i=1

ln fB(Bi) .

Conveniently, the second part in the above does not depend on ξ and can be dropped.

Therefore,

lnL(ξ;Y 1, . . . ,Y n, ;B1, . . . ,Bn) ∝
n∑
i=1

ln fX|B(X i|Bi; ξ) .

Recalling the form of the density in (7.1), one can further simplify the above to obtain

the form

lnL(ξ;Y 1, . . . ,Y n, ;B1, . . . ,Bn) ∝ ln L̃(ξ;Y 1, . . . ,Y n, ;B1, . . . ,Bn)

=
n∑
i=1

ln cξ(FR(Y i/Bi)) ,

where the marginal densities of R were removed as they do not depend on ξ. The E step

at time step s consists in computing the conditional expectation to define the following

objective function:

Q(ξ; ξ(k)) = E
[
ln L̃(ξ;Y 1, . . . ,Y n, ;B1, . . . ,Bn)|Y 1, . . . ,Y n; ξ

{s}
]
,

where ξ{s} denotes the parameter estimate at time step s. The M step is then to maximize

Q with respect to ξ, viz.

ξ{s+1} = argmax
ξ
Q(ξ; ξ(s)) .

The E and M steps are repeated until convergence ensues. To perform the E step, the

expectation needs to be approximated via Monte Carlo. This is done by drawing from

the distribution of B|Y , whose density is proportional to fY ,B. These draws can be

performed using either importance sampling or rejection sampling, which is currently

being investigated.

Of course, the properties of the resulting estimator ξ̂ need to be investigated, both

theoretically and via simulations; this is the objective of the immediate future. In fact,

the matter is further complicated by the fact that we have to resort to using pseudo-

observations. The first level of approximation is that the copula sample is in fact a

rank-based pseudo sample as given in Equation (2.13). Moreover, the inverse generators

{φk}Kk=1 are estimated parametrically and the stdfs {�k}Kk=1 are estimated nonparametri-

cally. Thus (7.4) is replaced by the following, for i = 1, . . . , n:

( min
j∈{1,...,d1}

{φθ̂1(Û
(1)
ij )}

�̂1(1)
, . . . ,

min
j∈{1,...,dk}

{φθ̂k(Û
(k)
ij )}

�̂k(1)
, . . . ,

min
j∈{1,...,dK}

{φθ̂K (Û
(K)
ij )}

�̂K(1)

)
,
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where Û
(k)
ij is the normalized rank of the i-th observation of the j-th component of the

cluster k. The pseudo-observations in the above display therefore inherit uncertainty due

to the estimation of the copula sample, the partition G, the generators {ψk}Kk=1 and the

stdfs {�k}Kk=1. In the near future, this should be further investigated through simulation

studies.
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Chapter 8

Conclusion and future work

The first objective of my Ph.D. was to develop inference techniques for the Archimax

class of copulas. My understanding is that this family, introduced in the bivariate setting

by Capéraà et al. (2000), was mostly seen as a tool for simulation studies. Indeed, one

can test the effectiveness of estimation techniques for asymptotic dependence structures

using a variety of Archimax copulas with known extreme-value attractor. In Fougères

et al. (2015), the proposed inference procedure for limiting stable tail dependence func-

tions only assumes the existence of an extreme-value attractor and involves the choice

of a threshold. The simulation study therein uses Archimax copulas to study the finite

sample performance since a variety of asymptotic regimes can be tested. In Bücher et al.

(2019), the efficiency of the block maxima and peaks over threshold methods are com-

pared in the multivariate setting. Through second order methods, the authors find that

the convergence of one method usually implies the convergence of the other; however the

rates might be different depending on the underlying copula. The Archimax family is

employed in this paper to illustrate this fact both theoretically and through a simulation

study. Depending on the choice of the Archimedean generator and its index of regular

variation at zero, either the block maxima or the peaks over threshold method will prove

to be asymptotically superior. This result is particularly interesting given the preference,

in recent years, for the latter method in the extreme value analysis community.

While there is still work to be done to improve its ease of use, I believe that the

Archimax family also has its place in applications to risk modeling, in areas ranging from

insurance to environmental sciences. As seen in Chapter 7, it appears that this family can

be well suited to fit multivariate datasets which are not “yet” distributed according to an

extreme-value distribution. Taking large block sizes or imposing high thresholds can be

quite costly; using an Archimax model allows for the retention of a greater proportion of

the data. The estimation procedure proposed in this thesis is geared toward inference on

the extremal dependence regime of the data at hand. Since the main driver of the said

regime is the stable tail dependence function, a nonparametric approach offers a certain

flexibility and granularity. This of course comes with typical drawbacks, for example
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the fact that the estimator itself is not a valid stdf and the fact that goodness-of-fit is

hard to check. The parametric estimation of the Archimedean generator comes with

several advantages. Firstly, many single parameter families have already been extensively

studied in the literature. With some exploratory data analysis, one can identify certain

properties that seem to be present and choose an appropriate Archimedean family, as

is done in Chapter 7. Since the indices of regular variation at zero and infinity of the

generators are often linked to their parameter, this allows to estimate the maximum and

minimum attractor of the (assumed) underlying Archimax copula, when combined with

the estimated stdf. Finally, the assumption of a parametric family for the Archimedean

generator made the extension of the weak convergence results presented in Chapter 5,

more manageable. Three other estimation procedures were considered during the course

of my Ph.D. but did not make it into this thesis, nor the resulting paper. The first was a

completely parametric approach; but having to choose a family for the stdf was not ideal,

especially in higher dimensions where asymmetry often implies many extra parameters

to estimate. However, likelihood-based estimation boasts many advantages and this is an

option worth having in my opinion. Secondly, I attempted a pairwise semi-parametric

approach where the stdf and Archimedean generator were iteratively estimated assuming

the knowledge of the other functional parameter until some stability was attained. The

estimator of the stdf was the same as the one proposed in this thesis while the estimator

of the Archimedean generator was based on inverting Kendall’s tau. In simulations, this

procedure would sometimes diverge and theoretical grounding to study the method was

lacking. Finally, I attempted a completely non-parametric estimation of the Archimedean

generator using the nested diagonal property also present in Archimedean copulas. This

is in fact an extension of the work of Di Bernardino and Rulliere (2013), but results of

the procedure in simulations were not encouraging. Thus the semiparametric approach

was retained and extensively studied via asymptotics, simulations and an illustrative

application to a trivariate rainfall dataset. This work makes up for most of this thesis

and resulted in the paper titled “Inference for Archimax copulas” to be published in the

Annals of Statistics this year. I also plan to write an R package in the upcoming months

to make the tools developed for Archimax models available online.

Given the promising results for the simple Archimax model, it appeared natural to

extend it to a hierarchical construction as done in Chapter 6. For two univariate mar-

gins of a distribution with an Archimax copula to be asymptotically independent, their

marginal bivariate copula must necessarily be Archimedean. To avoid this restriction

and to allow for a more parsimonious model in higher dimensions, Archimax copulas

can be linked together via a dependence structure on their distortions, giving rise to the

clustered Archimax copula. In Chapter 6, the maximum domain of attraction of a clus-

tered Archimax copula is found and shown to have certain desirable properties. Namely,
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extreme-dependence between clusters is found to be very flexible, due to both the distor-

tions and their own asymptotic dependence having an impact. Notably, an interesting

by-product of this work is the discovery of a new way to construct stable tail dependence

functions. I hope to complete the proof of the extension proposed in Section 6.4 which

would cover virtually all possible cases of distortions and their attractors. Additionally,

determining the minimum domain of attraction of a clustered Archimax copula appears

to be an achievable goal in the near future, most likely by employing similar techniques

to those used in Section 6.3. These results put together will make up for a paper on

clustered Archimax copulas that I am expecting to submit in the upcoming months.

Section 7.2 contains work in progress for a paper in preparation with Samuel Per-

reault from Université Laval. The objective is to develop tools to use clustered Archimax

copulas in an applied setting. To do so, we are working with two datasets. The first, as

presented in the aforementioned section, is a dataset consisting of precipitation measured

at over one hundred stations spread across a large territory. Here we want to identify

small regions which have high risk of joint extreme precipitation, with their shape de-

scribing storm patterns during the studied season. The second, which we are currently

working with and therefore did not make into this thesis, is a portfolio dataset consist-

ing of stock returns where one can easily imagine different groups of stocks in the same

industry being asymptotically dependent, while stocks from different industries might be

less intertwined. Our approach so far has been to adapt existing clustering algorithms to

the model in order to find groups of variables with strong asymptotic dependence, and for

whom the assumption of a single distortion affecting the said extreme regime is a reason-

able assumption to make. The second step is then to fit Archimax copulas to each cluster

with the semiparametric approach discussed earlier. Finally, the dependence between the

distortions is inferred upon. This sequential approach clearly has the drawback of not

taking into account the uncertainty of the clustering when fitting the Archimax copulas

and the distribution of the distortions. I think an interesting project would be to borrow

from bayesian methodology to improve on this, as is done, for example, in Vettori et al.

(2019).

From the work I have done during my Ph.D., three problems for future research have

become apparent to me. Although they are related to this thesis, they are more ambitious

than the extensions and improvements already suggested in the previous paragraphs. The

first one is related to the stochastic representation of simple and clustered Archimax

copulas. The representation used in this thesis is the most general as it works for any

Archimedean generator, while the frailty representation (see Section 4.2 in Joe (2014), or

McNeil (2008)) is only valid for completely monotone generators. However, this generality

comes at the expense of handiness. It is not known how to simulate from the random

vector S of RS in (2.11) apart for some examples such as the logistic stdf. However,
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there appears to be some parallels to be drawn from the spectral representation of max-

stable processes of De Haan et al. (1984). It seems like the Poisson process in the latter

can be replaced by a binomial process whose parametrization depends on the stable tail

dependence function that characterizes S, however many complications arise. This would

amount to sampling from any multivariate extreme dependence structure and to the best

of my knowledge, this is a high-reaching problem that has been sought after for some

years. The second long term project I have in mind stems from the precipitation dataset

I have available from Météo France. While the multivariate approach from this thesis can

answer some questions, there is an obvious flaw in that inference at locations between

stations is not available. The spatial nature of the data calls for a spatial model, and one

could argue that the temporal aspect should also be modeled. In the current literature,

a lot of effort is being put into developing models that are able to capture the extremal

dependence structure of precipitation (see, for example, Huser et al. (2017), Wadsworth

et al. (2017) and Bacro et al. (2019)). Indeed, as previously discussed, there is evidence

that rainfall quickly loses its extreme dependence as distance between locations grows.

Can the distortion on an extreme regime paradigm be applied in a spatial setting? While

there are similarities with random scale mixtures, the work done in Chapter 6 points

toward the distortions being themselves a field over the observed domain. The margins

would no longer be Archimax copulas, as it is the case with inter-cluster margins in

the clustered Archimax copula model, but perhaps this could be an interesting area to

explore. Finally, causality and extremes has garnered a lot of interest recently, especially

in applications related to climate change research. In the data applications presented

in this thesis, storm patterns were picked up both by the asymmetry in the stable tail

dependence and the shapes of the regions identified as asymptotically dependent clusters

of stations. This constitutes, in my opinion, a very compelling reason to explore how

concepts in extremal dependence can be linked to causality.
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Appendix A

Detailed simulation study results

This section contains the detailed results of the simulation study from Section 4.3 in the

form of tables containing the means of errors obtained from 1000 Monte Carlo replicates.

Tables A.12, A.13 and A.14 compare results for logistic (LG) and discrete spectral

measure-type (DSM) Pickands dependence functions. Following the notation of Fougères

et al. (2013), the parameter choices for the latter are provided below. We have m = 10

and w(d) the matrix of weight parameters, where d denotes the dimension.

w(2) =

[
1.00 0.93 0.87 0.80 0.73 0.67 0.60 0.53 0.47 0.40
0.00 0.07 0.13 0.20 0.27 0.33 0.40 0.47 0.53 0.60

]
, (A.1)

w(4) =

⎡
⎢⎢⎣
0.67 0.00 0.33 0.33 0.00 0.33 0.33 0.00 0.00 0.00
0.33 1.00 0.33 0.00 0.00 0.33 0.00 0.00 0.33 0.00
0.00 0.00 0.33 0.67 1.00 0.00 0.33 0.67 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.33 0.33 0.33 0.67 1.00

⎤
⎥⎥⎦ , (A.2)

w(10) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.33 0.00 0.00 0.33 0.00 0.00 0.00 0.33 0.00 0.00
0.33 0.00 0.00 0.00 0.00 0.33 0.00 0.00 0.00 0.00
0.00 0.33 0.00 0.33 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.33 0.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.33 0.00 0.00 0.00 0.33 0.33 0.00 0.33 0.33 0.00
0.00 0.33 0.00 0.00 0.00 0.00 0.33 0.00 0.00 0.00
0.00 0.00 0.33 0.00 0.33 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.33 0.33 0.00 0.33 0.00 0.33 0.00
0.00 0.00 0.00 0.00 0.00 0.33 0.33 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.33 0.33 1.00

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A.3)
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Table A.7: Average Integrated relative absolute error (IRAEx100) and Integrated squared
error (ISEx10000) of ACFG

n,c for 2-dimensional Archimax copula Cψ,A samples of size
n ∈ {200, 500, 1000}. The Pickands dependence function A is LG with four choices
of parameters so that τ(A) ∈ {1/5, 2/5, 3/5, 4/5}, where τ(A) = τ(CA) is Kendall’s tau
of the bivariate extreme-value copula CA. There are four choices for the Archimedean
generator ψ, Clayton, Frank, Gumbel and Joe, each with four parameter choices so
that τ(ψ) ∈ {1/5, 2/5, 3/5, 4/5}, where τ(ψ) = τ(Cψ) is Kendall’s tau of the bivariate
Archimedean copula Cψ. There are 1000 Monte Carlo replicates.

error IRAE(x100) ISE(x10000)

n ψ τ(ψ) | τ(A) 1/5 2/5 3/5 4/5 1/5 2/5 3/5 4/5

200 Clayton 1/5 6.6 3.23 1.03 0.17 2.22 1.72 1.04 0.4
2/5 8.68 3.9 1.2 0.2 2.54 1.88 1.11 0.44
3/5 10.01 4.4 1.51 0.36 2.7 1.96 1.23 0.6
4/5 16.01 7.96 3.49 1.08 3.4 2.62 1.9 1.12

Frank 1/5 6.49 3.11 1 0.15 2.23 1.7 1.03 0.38
2/5 7.16 3.19 1.01 0.16 2.31 1.69 1.01 0.39
3/5 6.94 2.97 0.94 0.18 2.31 1.66 0.99 0.42
4/5 7.56 3.3 1.24 0.39 2.36 1.72 1.13 0.65

Gumbel 1/5 7.59 3.46 1.09 0.16 2.39 1.77 1.06 0.4
2/5 8.95 3.78 1.19 0.19 2.61 1.87 1.12 0.43
3/5 10.13 4.31 1.39 0.3 2.75 1.96 1.19 0.55
4/5 13.4 6.17 2.48 0.75 3.1 2.33 1.6 0.93

Joe 1/5 7.99 3.64 1.14 0.18 2.45 1.82 1.08 0.42
2/5 9.54 4.09 1.28 0.22 2.7 1.93 1.15 0.47
3/5 11.67 5.13 1.71 0.37 2.94 2.13 1.31 0.62
4/5 18.06 8.65 3.74 1.11 3.62 2.75 1.98 1.14

500 Clayton 1/5 2.52 1.23 0.4 0.06 1.38 1.06 0.64 0.24
2/5 3.25 1.47 0.46 0.07 1.57 1.16 0.69 0.26
3/5 4.12 1.75 0.55 0.1 1.74 1.24 0.74 0.32
4/5 5.66 2.58 0.96 0.26 2.0 1.48 0.99 0.55

Frank 1/5 2.48 1.22 0.38 0.05 1.36 1.05 0.63 0.23
2/5 2.71 1.21 0.37 0.05 1.44 1.06 0.62 0.23
3/5 2.78 1.17 0.36 0.06 1.44 1.03 0.61 0.23
4/5 2.61 1.12 0.38 0.09 1.39 1.0 0.63 0.3

Gumbel 1/5 3.06 1.42 0.43 0.06 1.52 1.14 0.67 0.24
2/5 3.7 1.57 0.47 0.07 1.67 1.2 0.69 0.26
3/5 4.15 1.69 0.51 0.08 1.75 1.22 0.72 0.29
4/5 4.77 2.06 0.74 0.19 1.88 1.35 0.88 0.46

Joe 1/5 3.33 1.49 0.45 0.06 1.59 1.16 0.68 0.24
2/5 4.2 1.74 0.52 0.08 1.77 1.25 0.73 0.27
3/5 4.94 2.01 0.62 0.11 1.9 1.33 0.78 0.34
4/5 6.32 2.77 1.03 0.29 2.13 1.56 1.04 0.59

1000 Clayton 1/5 1.42 0.7 0.22 0.03 1.03 0.8 0.48 0.17
2/5 1.78 0.81 0.25 0.03 1.17 0.86 0.51 0.19
3/5 2.22 0.95 0.3 0.05 1.3 0.94 0.56 0.22
4/5 2.89 1.26 0.44 0.11 1.46 1.07 0.68 0.35

Frank 1/5 1.37 0.68 0.21 0.03 1.02 0.79 0.47 0.16
2/5 1.5 0.66 0.19 0.03 1.07 0.78 0.45 0.16
3/5 1.51 0.64 0.19 0.03 1.07 0.76 0.45 0.16
4/5 1.42 0.6 0.18 0.03 1.04 0.74 0.45 0.19

Gumbel 1/5 1.66 0.76 0.23 0.03 1.13 0.84 0.49 0.17
2/5 1.95 0.83 0.25 0.03 1.22 0.87 0.51 0.18
3/5 2.2 0.9 0.27 0.04 1.3 0.92 0.53 0.2
4/5 2.54 1.07 0.35 0.07 1.39 1.0 0.61 0.28

Joe 1/5 1.77 0.78 0.24 0.03 1.16 0.85 0.5 0.18
2/5 2.17 0.9 0.26 0.04 1.28 0.91 0.53 0.19
3/5 2.56 1.04 0.31 0.05 1.39 0.98 0.57 0.23
4/5 3.21 1.38 0.47 0.11 1.56 1.13 0.71 0.36



Table A.8: Average Integrated relative absolute error (IRAEx100) and Integrated squared
error (ISEx10000) of ACFG

n,c and for 4-dimensional Archimax copula Cψ,A samples of size
n ∈ {200, 500, 1000}. The Pickands dependence function A is LG with four choices of
parameters so that τ(A) ∈ {1/5, 2/5, 3/5, 4/5}, where τ(A) = τ(CA) is Kendall’s tau
of the corresponding bivariate extreme-value copula CA(2) . A(2) is a 2-dimensional LG
Pickands dependence function with the same parameter as A. There are four choices for
the Archimedean generator ψ, Clayton, Frank, Gumbel and Joe, each with four parameter
choices so that τ(ψ) ∈ {1/5, 2/5, 3/5, 4/5}, where τ(ψ) = τ(Cψ) is Kendall’s tau of the
bivariate Archimedean copula Cψ. There are 1000 Monte Carlo replicates.

error IRAE(x100) ISE(x10000)

n ψ τ(ψ) | τ(A) 1/5 2/5 3/5 4/5 1/5 2/5 3/5 4/5

n = 200 Clayton 1/5 17.84 7.55 2.05 0.26 4.33 3.49 2.22 0.9
2/5 20.5 7.71 2.08 0.3 4.65 3.56 2.23 0.96
3/5 25.09 8.98 2.58 0.52 5.12 3.76 2.42 1.28
4/5 37.15 14.51 5.2 1.58 5.92 4.68 3.49 2.4

Frank 1/5 17.12 7.02 1.88 0.24 4.24 3.36 2.11 0.85
2/5 18.62 7.03 1.83 0.24 4.45 3.38 2.09 0.86
3/5 16.1 5.68 1.52 0.27 4.06 3.02 1.9 0.92
4/5 15.33 5.72 1.97 0.59 3.93 3 2.15 1.46

Gumbel 1/5 20.93 8.01 2.06 0.25 4.71 3.62 2.24 0.9
2/5 24.64 8.63 2.21 0.32 5.04 3.74 2.3 1
3/5 27.75 9.35 2.5 0.46 5.3 3.84 2.43 1.22
4/5 33.36 12.27 4.17 1.14 5.71 4.32 3.12 2.05

Joe 1/5 23.9 8.77 2.23 0.28 5.03 3.79 2.33 0.94
2/5 29.48 10.16 2.53 0.36 5.49 4.02 2.45 1.06
3/5 35.24 12.21 3.31 0.63 5.85 4.32 2.74 1.42
4/5 51.43 19.1 6.54 1.74 6.81 5.25 3.87 2.54

n = 500 Clayton 1/5 6.95 2.89 0.77 0.09 2.71 2.17 1.37 0.54
2/5 7.63 3.11 0.84 0.11 2.8 2.24 1.41 0.6
3/5 9.81 3.67 1.01 0.17 3.15 2.41 1.54 0.74
4/5 14.66 5.6 1.88 0.45 3.78 2.93 2.1 1.31

Frank 1/5 6.15 2.54 0.67 0.08 2.53 2.03 1.27 0.51
2/5 6.24 2.47 0.66 0.08 2.53 1.99 1.26 0.51
3/5 6.08 2.17 0.57 0.08 2.52 1.89 1.18 0.52
4/5 5.74 2.02 0.6 0.13 2.43 1.8 1.19 0.67

Gumbel 1/5 8.01 3.06 0.8 0.1 2.9 2.23 1.39 0.55
2/5 9.74 3.38 0.86 0.11 3.19 2.34 1.44 0.6
3/5 11.18 3.67 0.96 0.14 3.41 2.43 1.51 0.68
4/5 13.1 4.49 1.35 0.31 3.62 2.65 1.78 1.07

Joe 1/5 8.95 3.26 0.83 0.1 3.06 2.3 1.42 0.56
2/5 11.12 3.71 0.94 0.12 3.39 2.46 1.51 0.63
3/5 13.39 4.5 1.16 0.19 3.66 2.67 1.67 0.79
4/5 17.54 6.34 1.96 0.48 4.15 3.13 2.18 1.34

n = 1000 Clayton 1/5 3.47 1.48 0.4 0.05 1.9 1.56 0.99 0.39
2/5 4.01 1.59 0.42 0.05 2.01 1.58 1 0.41
3/5 5.11 1.85 0.48 0.07 2.3 1.73 1.08 0.48
4/5 6.46 2.35 0.71 0.16 2.52 1.9 1.3 0.76

Frank 1/5 3.22 1.36 0.36 0.04 1.81 1.48 0.94 0.37
2/5 3.26 1.26 0.32 0.04 1.86 1.45 0.89 0.35
3/5 3.23 1.14 0.28 0.04 1.83 1.36 0.83 0.34
4/5 2.9 1.02 0.27 0.05 1.73 1.28 0.82 0.4

Gumbel 1/5 4.31 1.61 0.41 0.05 2.12 1.62 1 0.39
2/5 4.91 1.67 0.41 0.05 2.27 1.66 1.01 0.4
3/5 5.27 1.73 0.42 0.06 2.34 1.68 1.02 0.43
4/5 5.86 1.97 0.54 0.11 2.45 1.77 1.14 0.61

Joe 1/5 4.87 1.74 0.43 0.05 2.25 1.69 1.03 0.4
2/5 6.08 2 0.48 0.06 2.49 1.79 1.08 0.43
3/5 7.1 2.31 0.56 0.08 2.66 1.9 1.15 0.5
4/5 8.69 2.97 0.85 0.18 2.91 2.15 1.43 0.8



Table A.9: Average Integrated relative absolute error (IRAEx100) and Integrated squared
error (ISEx10000) of ACFG

n,c and for 10-dimensional Archimax copula Cψ,A samples of size
n ∈ {200, 500, 1000}. The Pickands dependence function A is LG with four choices of
parameters so that τ(A) ∈ {1/5, 2/5, 3/5, 4/5}, where τ(A) = τ(CA) is Kendall’s tau
of the corresponding bivariate extreme-value copula CA(2) . A(2) is a 2-dimensional LG
Pickands dependence function with the same parameter as A. There are four choices for
the Archimedean generator ψ, Clayton, Frank, Gumbel and Joe, each with four parameter
choices so that τ(ψ) ∈ {1/5, 2/5, 3/5, 4/5}, where τ(ψ) = τ(Cψ) is Kendall’s tau of the
bivariate Archimedean copula Cψ. There are 1000 Monte Carlo replicates.

error IRAE(x100) ISE(x10000)

n ψ τ(ψ) | τ(A) 1/5 2/5 3/5 4/5 1/5 2/5 3/5 4/5

n = 200 Clayton 1/5 32.88 9.78 1.97 0.2 7.1 5.74 3.73 1.6
2/5 35.12 9.92 2.03 0.23 7.36 5.7 3.7 1.72
3/5 43.17 11.68 2.48 0.38 8.1 6.22 4.1 2.19
4/5 54.62 15.64 4.19 1.08 8.87 7.01 5.21 3.93

Frank 1/5 31.49 9.01 1.82 0.18 7 5.5 3.54 1.55
2/5 28.42 7.96 1.62 0.18 6.61 5.15 3.34 1.51
3/5 26.69 6.88 1.36 0.19 6.43 4.82 3.07 1.57
4/5 21.7 5.79 1.46 0.4 5.67 4.3 3.1 2.39

Gumbel 1/5 40.74 10.81 2.05 0.21 7.89 6.02 3.77 1.64
2/5 48.43 11.84 2.18 0.24 8.54 6.31 3.91 1.76
3/5 52.22 12.45 2.36 0.35 8.74 6.37 3.99 2.12
4/5 61.23 15.44 3.7 0.85 9.08 6.79 4.88 3.47

Joe 1/5 47.39 11.98 2.23 0.22 8.46 6.3 3.91 1.68
2/5 59.62 14.23 2.59 0.29 9.27 6.76 4.16 1.89
3/5 71.83 16.91 3.2 0.45 9.86 7.13 4.51 2.39
4/5 95.53 24.21 5.59 1.19 10.97 8.3 5.97 4.15

n = 500 Clayton 1/5 13.8 4.34 0.87 0.08 4.59 3.82 2.47 1.04
2/5 16.11 4.59 0.89 0.09 4.94 3.93 2.5 1.08
3/5 18.48 5.05 1.01 0.12 5.22 4.07 2.63 1.28
4/5 23.39 6.41 1.52 0.31 5.91 4.57 3.21 2.1

Frank 1/5 13.16 4.01 0.78 0.07 4.48 3.66 2.32 0.97
2/5 11.96 3.41 0.67 0.07 4.24 3.34 2.14 0.92
3/5 10.51 2.74 0.53 0.06 3.95 3 1.91 0.89
4/5 8.29 2.13 0.47 0.09 3.47 2.62 1.78 1.14

Gumbel 1/5 17.62 4.68 0.88 0.08 5.1 3.93 2.47 1.04
2/5 21.52 5.16 0.93 0.09 5.61 4.12 2.54 1.09
3/5 23.46 5.45 0.98 0.11 5.85 4.22 2.61 1.22
4/5 24.49 5.89 1.25 0.22 5.96 4.35 2.9 1.78

Joe 1/5 20.08 5.01 0.93 0.09 5.45 4.05 2.54 1.08
2/5 25.61 5.85 1.04 0.1 6.14 4.41 2.71 1.18
3/5 29.34 6.66 1.19 0.14 6.51 4.67 2.87 1.38
4/5 34.69 8.39 1.81 0.34 6.93 5.1 3.47 2.2

n = 1000 Clayton 1/5 6.53 2.03 0.4 0.04 3.11 2.6 1.68 0.71
2/5 7.1 2.09 0.42 0.04 3.21 2.62 1.71 0.74
3/5 8.9 2.38 0.47 0.05 3.65 2.81 1.8 0.83
4/5 10.7 2.76 0.6 0.11 3.99 3.01 2.03 1.23

Frank 1/5 6.57 2.01 0.39 0.04 3.11 2.59 1.65 0.69
2/5 5.9 1.65 0.32 0.03 2.97 2.35 1.5 0.63
3/5 5.4 1.42 0.27 0.03 2.83 2.17 1.38 0.61
4/5 4.06 1.05 0.22 0.03 2.43 1.85 1.22 0.67

Gumbel 1/5 8.53 2.23 0.41 0.04 3.56 2.72 1.7 0.7
2/5 9.91 2.38 0.43 0.04 3.81 2.8 1.74 0.73
3/5 10.61 2.49 0.45 0.05 3.94 2.86 1.77 0.79
4/5 11.09 2.68 0.54 0.08 4.04 2.99 1.95 1.09

Joe 1/5 10.08 2.47 0.45 0.04 3.85 2.85 1.76 0.73
2/5 12.37 2.82 0.49 0.05 4.18 3.01 1.84 0.79
3/5 13.83 3.13 0.56 0.06 4.42 3.16 1.95 0.9
4/5 15.34 3.7 0.76 0.13 4.64 3.42 2.28 1.35



Table A.10: Average Integrated relative absolute error (IRAEx100) and Integrated
squared error (ISEx10000) of ACFG

n,c and for d-dimensional Archimax copula Cψ,A sam-
ples of size n ∈ {200, 500, 1000} for dimensions d ∈ {2, 4, 10}. The Pickands dependence
function A is LG with four choices of parameters so that λU(A) ∈ {1/5, 2/5, 3/5, 4/5},
where λU(A) = λU(CA) is the upper tail dependence coefficient of the corresponding bi-
variate extreme-value copula CA(2) . A(2) is a 2-dimensional LG Pickands dependence
function with the same parameter as A. The Archimedean generator ψ is Joe and
λU(ψ,A) ∈ {5/10, 6/10, 7/10, 8/10, 9/10}, where λU(ψ,A) = λU(Cψ,A) is the upper tail
coefficient of the bivariate Archimax copula Cψ,A(2) . There are 1000 Monte Carlo repli-
cates.

error IRAE(x100) ISE(x10000)

d λU (ψ,A) | λU (A) 1/5 2/5 3/5 4/5 1/5 2/5 3/5 4/5

n = 200 2 5/10 9.34 4.63 2.6 1.98
6/10 10.37 5.04 2.74 2.07
7/10 11.38 5.49 1.94 2.88 2.16 1.38
8/10 13.18 6.11 2.11 3.07 2.26 1.45
9/10 17.3 8.22 2.73 .39 3.48 2.59 1.61 .63

4 5/10 29.13 11.76 5.25 4.02
6/10 33.02 13.18 5.55 4.27
7/10 37.03 14.6 4 5.82 4.47 2.89
8/10 41.83 16.44 4.47 6.08 4.66 3.03
9/10 54.45 20.81 5.78 .65 6.73 5.1 3.34 1.39

10 5/10 63.58 17.87 8.88 6.64
6/10 73.1 20.78 9.42 7.14
7/10 82.19 23.37 4.53 9.89 7.51 4.78
8/10 94.21 27.01 5.21 10.34 7.87 5.12
9/10 112.8 31.95 6.53 .56 10.93 8.37 5.52 2.44

n = 500 2 5/10 3.91 1.83 1.67 1.26
6/10 4.45 2.08 1.78 1.33
7/10 5.02 2.35 .77 1.89 1.41 .88
8/10 5.64 2.63 .88 1.98 1.48 .93
9/10 6.65 3.11 1.03 .14 2.13 1.59 .99 .38

4 5/10 10.98 4.37 3.2 2.44
6/10 12.59 4.88 3.42 2.59
7/10 14.08 5.45 1.52 3.6 2.74 1.76
8/10 16.22 6.12 1.7 3.83 2.9 1.88
9/10 19.48 7.63 2.12 .24 4.16 3.17 2.07 .86

10 5/10 27.19 7.63 5.74 4.32
6/10 31.54 8.71 6.16 4.58
7/10 35.6 9.87 1.9 6.55 4.87 3.11
8/10 39.37 11.02 2.17 6.88 5.17 3.34
9/10 44.77 12.64 2.52 .22 7.19 5.46 3.58 1.58

n = 1000 2 5/10 2.06 1 1.22 .92 ÊÊ
6/10 2.31 1.1 1.3 .98
7/10 2.6 1.22 .41 1.37 1.02 .64
8/10 2.95 1.37 .45 1.45 1.08 .67
9/10 3.47 1.62 .53 .07 1.58 1.17 .73 .28

4 5/10 5.98 2.38 2.36 1.81
6/10 6.8 2.64 2.5 1.9
7/10 7.71 2.95 .8 2.65 2.01 1.29
8/10 8.68 3.31 .89 2.79 2.1 1.36
9/10 10.12 3.88 1.05 .12 2.97 2.25 1.45 .6

10 5/10 13.72 3.82 4.06 3.07
6/10 15.62 4.31 4.28 3.24
7/10 17.26 4.84 .93 4.47 3.39 2.19
8/10 18.7 5.33 1.04 4.65 3.53 2.29
9/10 20.29 5.89 1.2 .11 4.85 3.7 2.44 1.08



Table A.11: Average Integrated relative absolute error (IRAEx100) and Integrated
squared error (ISEx10000) of ACFG

n,c and AP
n,c for d-dimensional Archimax copula Cψ,A sam-

ples of size n ∈ {200, 500, 1000} for dimensions d ∈ {2, 4, 10}. The Pickands dependence
function A is LG with four choices of parameters so that ηL(A) ∈ {0.57, 0.66, 0.76, 0.87},
where ηL(A) = ηL(CA) is the index of lower tail dependence Ledford and Tawn (1996)
of the corresponding bivariate extreme-value copula CA(2) . A(2) is a 2-dimensional LG
Pickands dependence function with the same parameter as A. The Archimedean gen-
erator ψ is Clayton and λL(ψ,A) ∈ {1/5, 2/5, 3/5, 4/5}, where λL(ψ,A) = λL(Cψ,A) is
the lower tail coefficient of the bivariate Archimax copula Cψ,A(2) . There are 1000 Monte
Carlo replicates.

error IRAE(x100) ISE(x10000)

d λL(ψ,A) | ηL(A) 0.57 0.66 0.76 0.87 0.57 0.66 0.76 0.87

n = 200 2 1/5 6.39 3.24 1.06 0.15 2.17 1.71 1.05 0.39
2/5 6.81 3.23 1.04 0.16 2.26 1.71 1.04 0.39
3/5 8.33 3.47 1.07 0.15 2.54 1.79 1.06 0.39
4/5 9.96 4.07 1.22 0.17 2.71 1.9 1.12 0.4

4 1/5 16.81 6.99 1.92 0.23 4.22 3.4 2.16 0.86
2/5 18.08 7.21 2 0.23 4.37 3.42 2.18 0.85
3/5 20.02 7.42 2.07 0.25 4.58 3.46 2.22 0.89
4/5 24.27 8.11 2.13 0.27 4.97 3.6 2.26 0.91

10 1/5 33.23 10.06 2 0.19 7.15 5.8 3.72 1.58
2/5 34.7 10.12 2 0.2 7.37 5.86 3.74 1.61
3/5 34.72 10.49 2.02 0.19 7.32 5.94 3.78 1.59
4/5 39.04 10.01 1.94 0.21 7.68 5.8 3.7 1.63

n = 500 2 1/5 2.48 1.26 0.4 0.05 1.36 1.07 0.64 0.23
2/5 2.78 1.31 0.39 0.05 1.46 1.09 0.65 0.23
3/5 3.24 1.48 0.4 0.06 1.57 1.16 0.65 0.24
4/5 3.79 1.5 0.46 0.06 1.69 1.17 0.69 0.24

4 1/5 6.52 2.88 0.77 0.09 2.62 2.15 1.36 0.53
2/5 6.73 2.89 0.78 0.09 2.64 2.17 1.37 0.54
3/5 7.9 2.95 0.75 0.09 2.84 2.18 1.35 0.53
4/5 9.22 3.21 0.84 0.09 3.1 2.29 1.41 0.55

10 1/5 12.8 4.15 0.83 0.08 4.4 3.7 2.4 1.0
2/5 13.81 4.17 0.79 0.08 4.57 3.77 2.35 1.01
3/5 15.36 4.09 0.86 0.08 4.81 3.71 2.46 1.0
4/5 17.48 4.89 0.93 0.08 5.1 4.05 2.56 1.05

n = 1000 2 1/5 1.37 0.69 0.22 0.03 1.02 0.8 0.48 0.17
2/5 1.52 0.68 0.22 0.03 1.07 0.8 0.48 0.17
3/5 1.71 0.73 0.23 0.03 1.14 0.81 0.49 0.17
4/5 2.07 0.84 0.24 0.03 1.26 0.88 0.5 0.17

4 1/5 3.41 1.45 0.39 0.04 1.88 1.53 0.97 0.37
2/5 3.5 1.5 0.38 0.04 1.9 1.56 0.96 0.38
3/5 3.73 1.46 0.39 0.04 1.96 1.53 0.97 0.38
4/5 4.84 1.66 0.43 0.05 2.24 1.64 1.01 0.39

10 1/5 6.54 2.02 0.39 0.04 3.09 2.6 1.63 0.7
2/5 6.68 1.97 0.4 0.04 3.12 2.56 1.68 0.69
3/5 7.11 2.08 0.42 0.04 3.22 2.62 1.71 0.71
4/5 8.37 2.17 0.42 0.04 3.49 2.67 1.72 0.7
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Ben Ghorbal, N., Genest, C., and Nešlehová, J. (2009). On the Ghoudi, Khoudraji, and

Rivest test for extreme-value dependence. Canad. J. Statist., 37:534–552.
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Modélisation de la dépendance

entre pré-extrêmes

Résumé: Cette thèse développe des techniques d’inférence pour copule Archimax Cψ,�. Des conditions
sont dérivées afin que ψ et � soient identifiables, de sorte qu’une approche d’inférence semi-paramétrique
puisse être développée. Deux estimateurs non paramétriques de � et un estimateur de ψ basé sur les
moments, supposant que ce dernier appartient à une famille paramétrique, sont avancés. Le comportement
asymptotique de ces estimateurs est ensuite établi sous des hypothèses de régularité et la performance
en échantillon fini est évaluée par le biais d’une étude de simulation. Une construction hiérarchique qui
généralise les copules Archimax est proposée afin d’apporter davantage de flexibilité. Le comportement
extrême de ce nouveau modèle de dépendance est ensuite étudié. La copule Archimax est ensuite utilisée
pour analyser des maxima mensuels de précipitations. L’estimateur non paramétrique de � révèle une
dépendance extrême asymétrique entre les stations, ce qui reflète le déplacement des orages dans la région.
Une application du modèle Archimax hiérarchique à un jeu de données de précipitations contenant 155
stations est ensuite présentée, dans laquelle des groupes de stations asymptotiquement dépendantes sont
déterminés via un algorithme de “clustering” spécifiquement adapté au modèle.

Mots clés: modélisation de la dépendance; extrêmes; pré-extrêmes; copules; inférence semi paramétrique;
modélisation hiérarchique; processus empiriques; asymptotique; convergence faible; précipitation
extrême.

Dependence modeling for pre-asymptotic extremes

Abstract: This thesis develops inference techniques for Archimax copulas, which are denoted Cψ,�.
Conditions under which ψ and � are identifiable are derived so that a semiparametric approach for inference
can be developed. Two nonparametric estimators of � and a moment-based estimator of ψ, which assumes
that the latter belongs to a parametric family, are proposed. The asymptotic behavior of the estimators
is then established under broad regularity conditions; performance in small samples is assessed through
a comprehensive simulation study. Archimax copulas are then generalized to a clustered constructions
in order to bring in more flexibility. The extremal behavior of this new dependence model is derived.
Finally, the methodology proposed herein is illustrated on precipitation data. First, a trivariate Archimax
copula is used to analyze monthly rainfall maxima. The nonparametric estimator of � reveals asymmetric
extremal dependence between the stations, which reflects heavy precipitation patterns in the area. An
application of the clustered Archimax model to a precipitation dataset containing 155 stations is then
presented, where groups of asymptotically dependent stations are determined via a specifically tailored
clustering algorithm.

Keywords: dependence modeling; extremes; pre-extremes; copulas; semiparametric inference; hierarchi-
cal modeling; empirical processes; asymptotics; weak convergence; extreme precipitation.
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