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Résumé:

Dans la premiere partie de cette these, nous €tudions les équations différentielles algébriqu-
es (en abrégé EDA) linéaires et les systemes de contrdles linéaires associés (en abrégé
SCEDA). Les problemes traités et les résultats obtenus sont résumés comme suit.

1. Relations géométriques entre les EDA linéaires et les systemes de controles génériq-
ues SCEDO. Nous introduisons une méthode, appelée explicitation, pour associer un
SCEDO a n’importe quel EDA linéaire. L’explicitation d’'une EDA est une classe des
SCEDO, précisément un SCEDO défini, a un changement de coordonnées pres, une trans-
formation de bouclage pres et une injection de sortie pres. Puis nous comparons les « suites
de Wong » d’une EDA avec les espaces invariants de son explicitation. Nous prouvons que
la forme canonique de Kronecker FCK d’une EDA linéaire et la forme canonique de Morse
FCM d’un SCEDO, ont une correspondance une a une et que leur invariants sont liés. De
plus, nous définissons I’équivalence interne de deux EDA et montrons sa particularité par
rapport a I’équivalence externe en examinant les relations avec la régularité interne, i.e.,
I’existence et I'unicité de solutions.

2. Transformation d’un SCEDA linéaire vers sa forme canonique via la méthode
d’explicitation avec des variables de driving. Nous étudions les relations entre la forme
canonique par bouclage FCFB d’un SCEDA proposée dans la littérature et la forme canon-
ique de Morse pour les SCEDO. Premierement, dans le but de relier SCEDA avec les
SCEDO, nous utilisons une méthodes appelée explicitation (avec des variables de driv-
ing). Cette méthode attache a une classe de SCEDO avec deux types d’entrées (le controle
original et le vecteur des variables de driving) a un SCEDA donné. D’autre part, pour un
SCEDO linéaire classique (sans variable de driving) nous proposons une forme de Morse
triangulaire FMT pour modifier la construction de la FCM. Basé sur la FMT nous pro-
posons une forme étendue FMT et une forme étendue de FCM pour les SCEDO avec deux
types d’entrées. Finalement, un algorithme est donné pour transformer un SCEDA dans
sa FCFB. Cet algorithme est construit sur la FCM d’un SCEDO donné par la procédure
d’explicitation. Un exemple numérique illustre la structure et I’efficacité de 1’algorithme.

Pour les EDA non linéaires et les SCEDA (quasi linéaires) nous étudions les problémes
suivants:

3. Explicitations, analyse externe et interne et formes normales des EDA non linéaires.



Nous généralisons les deux procédures d’explicitation (avec ou sans variables de driving)
dans le cas des EDA non linéaires. L’objectifs de ces deux méthodes est d’associer un
SCEDO non linéaire a une EDA non linéaire telle que nous puissions 1’analyser a I’aide de
la théorie des EDO non linéaires. Nous comparons les différences de I’équivalence interne
et externe des EDA non linéaires en étudiant leur relations avec 1’existence et 1’unicité
d’une solution (régularité interne). Puis nous montrons que I’analyse interne des EDA non
linéaires est liée a la dynamique nulle en théorie classique du contrdle non linéaire. De
plus, nous montrons les relations des EDAS de forme purement semi-explicite avec les 2
procédures d’explicitations. Finalement, une généralisation de la forme de Weierstrass non
linéaire FW basée sur la dynamique nulle d’un SCEDO non linéaire donné par la méthode
d’explicitation est proposée.

4. Linéarisation par bouclage et sous variété controllable invariante des EDA non
liéaires. Nous étudions la linéarisation par bouclage des EDA non linéaires (de forme
quasi-linéaire) sous I’action de deux sortes de bouclage, i.e., I’équivalence par bouclage
externe et 1’équivalence par bouclage interne. Des conditions nécessaires et suffisantes
sont donnés a I’aide de I’explicitation (avec variables de driving). Nous montrons que la
linéarisation par bouclage d’un SCEDA est liée a I’involutivité des distributions, qui for-
ment deux suites, attachées a un SCEDO donné par la procédure d’explicitation. De plus,
nous étudions la sous variété invariante controllable maximale d’un systeme d’EDA et, si
celle-ci existe, une forme normale sous I’action du bouclage externe est déduite sous des
hypotheses de rang constant. Cette forme normale explicite le role de différentes variables
des SCEDA non linéaires.

En outre, pour les EDA non linéaires (de forme semi-explicite), nous étudions:

5. Linéarisation interne et externe des EDA semi explicites. Nous étudions deux
sortes de linéarisation (interne et externe) pour les EDA non linéaires de forme semi-
explicite. La différence entre linéarisation interne et externe est illustré par un exemple
de systeme mécanique. De plus, nous définissons plusieurs niveaux d’équivalence externe
pour deux EDA de forme semi-explicite. L’explicitation proposée nous permet de traiter
une EDA semi-explicite comme un systeéme de contrdle défini a un bouclage pres (une
classe de systemes de contrdle). Puis des conditions nécessaires et suffisantes exprimées
par I’explicitation caractérisent 1’equivalence externe niveau-3 d’une EDA semi-explicite
avec une EDA linéaire semi-explicite d’une forme partciuliere. Finalement, nous montrons
par un exemple que la linéarisation par bouclage de niveau-2 peut étre réalisée si I’une de
ses explicitations est linéarisable entrée-sortie de niveau-2.



Abstract:

In the first part of this thesis, we study linear differential-algebraic equations (shortly,
DAE?5) and linear control systems given by DAEs (shortly, DAECSs). The discussed prob-
lems and obtained results are summarized as follows.

1. Geometric connections between linear DAEs and linear ODE control systems
ODECSs. We propose a procedure, named explicitation, to associate a linear ODECS
to any linear DAE. The explicitation of a DAE is a class of ODECSs, or more precisely, an
ODECS defined up to a coordinates change, a feedback transformation and an output in-
jection. Then we compare the “Wong sequences” of a DAE with invariant subspaces of its
explicitation. We prove that the basic canonical forms, the Kronecker canonical form KCF
of linear DAEs and the Morse canonical form MCF of ODECSs, have a perfect correspon-
dence and their invariants (indices and subspaces) are related. Furthermore, we define the
internal equivalence of two DAEs and show its difference with the external equivalence
by discussing their relations with internal regularity, i.e., the existence and uniqueness of
solutions.

2. Transform a linear DAECS into its feedback canonical form via the explicita-
tion with driving variables. We study connections between the feedback canonical form
FBCF of DAE control systems DAECSs proposed in the literature and the famous Morse
canonical form MCF of ODECSs. First, in order to connect DAECSs with ODECSs, we
use a procedure named explicitation (with driving variables). This procedure attaches a
class of ODECSs with two kinds of inputs (the original control input and the vector of
driving variables) to a given DAECS. On the other hand, for classical linear ODECSs
(without driving variables), we propose a Morse triangular form MTF to modify the con-
struction of the classical MCF. Based on the MTF, we propose an extended MTF and an
extended MCF for ODECSs with two kinds of inputs. Finally, an algorithm is proposed to
transform a given DAECS into its FBCF. This algorithm is based on the extended MCF
of an ODECS given by the explication procedure. Finally, a numerical example is given to
show the structure and efficiency of the proposed algorithm.

For nonlinear DAEs and DAECSs (of quasi-linear form), we study the following problems:

3. Explicitations, external and internal analysis, and normal forms of nonlinear
DAEs. We generalize the two explicitation procedures (with or without driving vari-
able) proposed in the linear case for nonlinear DAEs of quasi-linear form. The purpose
of these two explicitation procedures is to associate a nonlinear ODECS to any nonlinear
DAE such that we can use the classical nonlinear ODE control theory to analyze nonlinear
DAEs. We discuss differences of internal and external equivalence of nonlinear DAEs by
showing their relations with the existence and uniqueness of solutions (internal regularity).
Then we show that the internal analysis of nonlinear DAEs is closely related to the zero
dynamics in the classical nonlinear control theory. Moreover, we show relations of DAEs
of pure semi-explicit form with the two explicitation procedures. Furthermore, a nonlinear
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generalization of the Weierstrass form WF is proposed based on the zero dynamics of a
nonlinear ODECS given by the explicitation procedure.

4. Feedback linearization and controlled invariant submanifolds of nonlinear DAECSs.
We study feedback linearizability of nonlinear DAECSs (of quasi-linear form) under two
kinds of feedback equivalence, namely, the external feedback equivalence and internal
feedback equivalence. Necessary and sufficient conditions are given with the help of the
explicitation (with driving variable) procedure. It is proved that feedback linearizability of
a DAECS is closely related to the involutivity of distributions, forming two sequences, as-
sociated to an ODECS given by the explicitation procedure. Moreover, we investigate the
maximal controlled invariant submanifold for DAE systems and two normal forms under
external feedback equivalence are derived, under constant rank or involutivity hypothesis,
assuming only the existence of the invariant submanifold. These normal forms facilitate
understanding of the role of various variables in nonlinear DAECSs.

Furthermore, for nonlinear DAEs (of semi-explicit form), we study:

5. Internal and external linearization of semi-explicit DAEs. We study two kinds of
linearization (internal and external) for nonlinear DAEs of semi-explicit SE form. The
difference between external and internal linearization is illustrated by an example of me-
chanical system. Moreover, we define different levels of external equivalence for two SE
DAEs. The proposed explicitation procedure allows us to treat a given SE DAE as a con-
trol system defined up to a feedback transformation (a class of control systems). Then
sufficient and necessary conditions, expressed via explicitation, are given to describe when
a given SE DAE is level-3 external equivalent to a linear SE DAE of some specific form.
Finally, we show by an example that the level-2 external linearization can be achieved if
one of its explicitation is level-2 input-output linearizable.



Chapter 1

Introduction

In this thesis, we are interested in systems given by differential-algebraic equations DAEs,
which are also called implicit, singular, generalized, or descriptor systems. In particu-
lar, we will study DAE systems of the following different forms, the differences between
these forms come from their structures, nonlinearities and levels of implicitation. More
precisely, we consider the following linear DAE systems:

o A linear differential-algebraic equation, shortly a linear DAE, is of the form

A: Fi=Hzx. (1.1

o A linear differential-algebraic equation control system, shortly a linear DAECS, is
of the form
A" : Ex = Hx + Lu. (1.2)

o A linear semi-explicit differential-algebraic equation, shortly a linear SE DAE, is of
the form

se | Ri=Ax
A { 0 —Cx (1.3)

In the above equations, £ € R™>*" H ¢ R>*" L ¢ R>*™ R ¢ R™", A ¢ R™™,

C € RP*" and R is of full row rank. The variable x € R" is called the “generalized” state

(also called semi-state, see e.g. [127],[165]) and v € R™ is a predefined control input.
Correspondingly, we consider the following nonlinear DAE systems.

o A nonlinear differential-algebraic equation, shortly a nonlinear DAE, is of the form

E: E(x)i = F(x). (1.4)

o A nonlinear differential-algebraic equation control system, shortly a nonlinear DAE-

CS, is of the form

=Y E(x)i = F(z) + G(z)u. (1.5)

5



CHAPTER 1. INTRODUCTION

o A nonlinear semi-explicit differential-algebraic equation, shortly a nonlinear SE
DAE, is of the form

=se . { Rz}t = alz) (1.6)

In the above nonlinear systems, x € X is the “generalized” state and X is an open subset
of R" (or more generally, X is a differential manifold of dimension n), and u € R™ is
a predefined control input and R™ is called the input space. The matrix-valued functions
E(z), R(x), F(z), G(z), a(z) and ¢(z) above are smooth and of appropriate sizes, and
R(z) is usually assumed to be of full row rank. Throughout the thesis, the word smooth
will always mean % *°-smooth.

Note that the matrices F, R and the matrix-valued functions F(z), R(x) are not nec-
essarily invertible, which is the reason that the DAE systems are different from ordinary
differential equation ODE systems. In fact, if E is invertible, the DAE A, given by (I.1),
can be expressed as # = E~'Hx, where £~ ! is the inverse of E, which is an ODE. Also
note that for linear systems A", given by (I.2)), and nonlinear systems =", given by (1.5),
we emphasize the difference between the variable x and the variable u. Notice that, al-
though there may exist free variables among the components of the “generalized” state z,
we will not call these free variables control inputs as we do for the components of .

The above linear and nonlinear DAE systems can be seen as special cases of the fol-
lowing DAE of the general form

0" : F(x,d,u) =0, (1.7)

where (z,%) € TX, the tangent bundle of X, and F' : TX x U — R'is smooth. Denote
by Class(©") the class of systems of the same form as ©" and use the same notation
Class(-) for A, A%, A%, =, =%, =*¢. Then, apparently, we have

Class(A®*) C Class(A) C Class(A*) O
IN IN IN Class(0").
Class(z*¢) C Class(z) C Class(Z%) ¢,

The above diagram illustrates the relations between different classes of DAEs. We will not
study general DAEs of form (I.7)), but it is worth to mention that the following references,
which discuss problems concerning such DAEs, gave inspirations for the present thesis.
The discussions on geometric interpretations of the existence and uniqueness of solutions
can be seen in [162, [158], numerical methods of analyzing the solutions of DAEs can be
consulted in [28, 38, [157]], the discontinuities of DAE solutions are considered in [179]],
various definitions of DAE indices are given in [78, [77, 137, [123], some index reduction
methods are shown in [[76} (140, |6, [122) [142], connections between DAEs and infinite-
dimensional differential geometry (or, differential flatness, see [68} [71]]) are shown in [70}
1251158, 156 169, 169] etc.



CHAPTER 1. INTRODUCTION

1.1 Motivation and a short survey of DAE models in prac-
tical systems

The motivation of studying linear and nonlinear DAE:s is their frequent presence in math-
ematical models of some practical systems. In particular, DAEs are a proper tool to model
the following classes of systems.

Constrained mechanical systems: Since there is plenty of examples for such systems,
e.g., the textbooks [[159],[28] and thesis [177],[175], and some examples will be used in
the next chapters of the present thesis, we will use a part of this section to discuss them.
In general, the dynamics of a mechanical system, usually given by the Euler-Lagrange
equations, are of the following form [57]:

M(p)p+V(p,p) + G(p) =7+ N"(p)An + H' (p) M, (1.8)

where p is the vector of position variables, M (p) is a matrix-valued function which is as-
sociated with mass (or inertia) and V' (p, p) is a vector function which characterizes the
Coriolis and centrifugal forces, G(p) represents the gravity force and 7 is a vector of ex-
ternal torque, where )\, and )\, are Lagrange multipliers corresponding to the holonomic
constraints and nonholomic constraints (we will introduce their definitions below), re-
spectively, N (p) and H (p) are matrix-valued functions of appropriate sizes. DAEs appear
frequently in the models of mechanical systems subject to holonomic constraints and non-
holomic constraints [199]. Whether constraints are holonomic or nonholonomic can be
determined by the Frobenius theorem [82]. In particular, holonomic constraints are con-
straints depend on positions only and are usually of the following form:

c1(p)
Cp)=1| : | =0 (1.9)

¢ (p)
where C'(p) is a vector of scalar functions ¢;(p), i = 1,. .., k and the matrix N (p) in (1.8)
satisfies N(p) = 8%—;”). The following examples are mechanical systems of form lb

subject to holonomic constraints of form (1.9) (we also indicate the form of these DAE
systems using the notations A, A*¢, A%, =, =%, =%, given by equations (I.I)-(I.06)):

e Some classical mechanisms: Form =°¢: the horizontal beam with specified shape
supporting a load distributed along it in Example 7 of [33]], the planar pendulum
given in [158]],[28] and Example 4.1.13 of [[177], the lolly in Example 4.1.13 of
[1'77], the slider crank (2-link robotic arm with end joint sliding on horizontal sur-
face) in Example 4.1.5 of [177]], the two-link, flexible joint, planar robotic arm in
Example 5 of [35] or see [34/,[100],[199], the 3-link robotic arm in [[113], the con-
strained robot systems (a robot arm with inertial load or contacting with a rigid sur-
face, two robots arm with a common inertial load) in [[141], the Huygens oscillation
center in [[71]],[183]]; Form =*: the cart-pendulum system given in Example 1.1 of
[142], the planar crane shown in [[72]],[68]],[25], the constrained cylinder robot given
in [41]]; Form A*: the linear mass-spring-system given in [15]].

7
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e Redundant mechanisms: Form =*: the redundant parallel robotic arm in [138], the
double four joint mechanism in Example 4.1.16 of [177].

e Mechanisms with constrained trajectory: Form =": the 3-link planar robotic arm

with the trajectory end-point constrained on different surfaces in [198]], the air-craft
performing a circular loop in Example 6 of [35] or see [23],[108]].

e Mechanical systems with prescribed trajectory: Note that such systems can be char-
acterized by equation (I.8) and equation (I.10)) below,

Clq(t)) —~(t) =0, (1.10)

where r(t) is a curve describing the desired trajectory. For example, the aircrafts of
pre-described trajectory given in [24], the system consisting of two-mass connected
by a spring in Example 1 and Example 3 of [23], the reentry (space) vehicle on a
spherical earth with given trajectories in [28]].

The nonholomic constriants, linear with respect to velocity, have the following form

H(p)p =0, (.11

where H (p) is a matrix-valued function of an appropriate size. Nonholomic constraints
usually characterize the sliding and rolling motions of mechanical systems. The following
examples are systems subject to nonholonomic constraints or both holonomic and non-
holonomic constraints, formulated by equations (1.8), (1.9), and (I.T1):

e Form =: The 3-link planar robotic arm with a free joint in [89],[3], two spheres
systems (the rolling motion of one small sphere on the surface of a large sphere)
in [199], similarly the rolling ball in (9.18) of [159], the skateboard rolling on a
horizontal surface in [177] or a simpler case: the (single) sharp-edged skate in (9.3)
of [159], the rolling disk in [99], three rolling cylinders in (9.32) [159]]; Form =:
the system of mass, spring and double pendulum, called the roll-ring model in (9.13)
of [159].

Electrical circuits (or power) systems: Such kinds of systems are often described by
the mix of differential equations of the form

C(ve)0e = i
L(ZZ)ZZ = U

coming from the characteristics of the devices (e.g., capacitors, inductors) and algebraic
equations of the form

Ai=0

v =ATe
coming from the Kirchhoff’s laws, where ¢, [, i« and v stand for capacitors, inductors, cur-
rent and voltage, respectively, and where e are the node potentials. Some simple examples

8



CHAPTER 1. INTRODUCTION

of electrical circuits are, e.g., the simple nonlinear RC (only one capacitor, one resistor
and one voltage source) circuit in [162], the linear RLC circuit (composed only of resis-
tors, capacitors and voltage sources), and the nonlinear RLC circuits with differential or
operational amplifiers in [28]], the electrical network consisting of nonlinear resistors, in-
ductors and current-sources and linear controlled sources, see Fig.20 of [[171], the resistive
nonlinear n ports shown in [S1]],[[171], the parallel AC/DC power system shown in [[107],
the discretized transmission line (linear) given in [73]],[15]. Actually, electrical circuits
systems can be classified into different models, e.g., NTA, ANA, MNA, tree-based, hybrid
and multi-port models as shown in the textbook [1635]], survey paper [[166] and thesis [11].
Note that except for the MNA and some hybrid models, by assuming that C'(v.) and L(i;)
are invertible (or of full row rank) matrices, the models mentioned above are all of the

—se

semi-explicit form =*¢ or A*¢ [166].

Chemical processes: Broad discussions on models of chemical processes from DAE
point of view can be seen in the survey paper [60] and book [121]]. Here we only mention a
few examples from the vast documented literature: the distillation column in Example 8 of
[35], various reactors (two phase reactor, reactor with fast and slow reaction, reactor with
fast heat transfer though a jacket and cascade of reactors with negligible pressure drop)
in [121]],[119],[120], the catalytic reactors in [81]] and the Phase-Locked Loop Circuit in
[175].

Some other systems: Biological systems of heartbeat and nerve impulse in [200]], the
water hammer modeling for water network in [110],[109], the model of cyber-physical
systems under attack in [155], the economic system in [[134], the fluid dynamics in [84],
etc.

1.2 Linear ODE systems and linear DAE systems

A linear ODE control system, shortly ODECS, is of the following form:

A:{x = Az + Bu (1.12)

y = Cx+ Du,

where z € R"” is the state, u € R™ is the control input and y € RP? is the output. A
linear ODECS of form is denoted by A, .., = (4, B,C, D); if D = 0, we denote
it by Ay = (A, B,C). Note that we use z to denote both the “generalized” state of
DAE systems and the state of ODE systems, but their differences should be pointed out as
follows. The states of an ODECS are the variables that enter the system dynamically (and
inputs are the variables that enter the system statically), but the “generalized” states of a
DAE may include some free (static) variables. More precisely, the “generalized” states are
the predefined states when modeling the system. Unless the analysis of the system shows
some properties of the variables in the “generalized” states, we do not know the statuses
of those variables, i.e., some of them may perform as free inputs, some are usual states,
and some of them could be constrained by implicit algebraic constraints. Linear ODECSs
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draw attentions from researchers of mathematical control theory since the state space rep-
resentations of systems were introduced in 1950s (see e.g. Kalman’s papers [103],[106]).
After decades of evolutions, linear ODE control theory has been well-developed by efforts
of the control theory community. For a good review of linear control theory, including
the history of its development, we refer to textbooks [167]],[[193]],[102],[170],[43],[30]. In
particular, we are interested in the geometric analysis of linear ODECSs, some pioneering
works of that are from Basile, Marro, Wonham and Morse [9, (7, 194,148, 147, (192, 8] and
other interesting contributions are [[190],[[187],[188]].

The geometric tools used to analyze the structure of ODECSs include various invariant
subspaces of linear ODECSs (see e.g. [9]). In the matrix theory (see e.g. [[735]), for a linear
map A : R — R”, a subspace V of R” is called A-invariant if AV C V. Invariant
subspaces of ODECSs generalize the concept of A-invariance to control systems. For
instance, for A,, ,,, = (A, B, C), a subspace V C R" is called (A, B)-controlled invariant
if V satisfies

AV CV +1ImB

and a subspace W C R™ is called (C, A)-conditioned invariant if W satisfies
AWnkerC) CW.

Denote by V* the largest (A, B)-controlled invariant subspace contained in ker C' and by
W* the smallest (C, A)-conditioned invariant subspace containing Im B. An important ap-
plication of the notion of invariant subspaces is to derive normal forms and canonical forms
for ODECSs, e.g., the Kalman decomposition [105] provides a decomposed normal form
for linear ODECSs based on the controllability and observability subspaces, the Brunovsky
canonical form [31] is a canonical form for controllable pairs (A, B) under feedback, the
Morse canonical form MCEF [146] is a fully decoupled canonical form for ODECSs with
system matrices (A, B,C). In [146], transformations of an ODECS, given by a triple
(A, B, C), into its MCF are constructed via the controlled and conditioned invariant sub-
spaces. Also the structure invariants of the MCF, called the Morse indices, appearing in
the transformations are calculated via those invariant subspaces. Molinari [145] gener-
alized the MCF to ODECSs described by a quadruple of system matrices (A, B, C, D),
based on the generalized (also called strong or weak) controllability and observability sub-
spaces [144]. These subspaces are actually the controlled and conditioned invariant sub-
spaces generated by the quadruple (A, B, C, D). A more general normal form of ODECSs
is given in [1], whose authors decomposed an ODECS into nine parts (based on a full
consideration of controllability and observability subspaces, controlled and conditioned
invariant subspaces) and discuss their relations with system zeros.

In Chapter 1 and Chapter 2 of this thesis, we will review the precise definitions and
calculation algorithms for conditioned and controlled invariant subspaces. Moreover, we
will modify the construction procedure of the MCF, given in [146]],[145], by proposing
a Morse triangular form MTF. The proposed MTF makes the transformation from an
ODECS into its MCF transparent and geometrical.

On the other hand, we consider linear DAEs of the form A and linear DAECSs of the
form A", given by (L.I)) and (I.2), respectively. Fundamental achievement and general

10
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discussions on linear DAEs and DAECSs can be consulted in textbooks [59],[36] and sur-
vey paper [[127]. Early results on linear DAEs can be traced back to two famous canonical
forms of the matrix pencil s/ — H given by Weierstrass [186] and Kronecker [[117]. The
Weierstrass form WF is a canonical form for regular matrix pencil and the Kronecker
canonical form KCF handles the general (regular and non-regular) case. The word regular
above means that £/ and H are square and det(sEl — H) # 0, Vs € C, see e.g. [73].
Luenberger proposed a shuffle algorithm in [133] to test if a given DAE is regular. Struc-
ture analysis of DAECSs from polynomial system matrices point of view was introduced
by Gantmatcher [75] and Rosenbrock [[167]. After Rosenbrock introduced the restrictive
system equivalence for two DAECSs (with output) in [168]], there appeared various def-
inition of the equivalence relations (e.g., external, strong, completely system, constant,
input-output equivalence) for DAECSs, see the surveys in [64],[118]. In particular, there
is a definition of external equivalence in [[189],[118]] via the behavior characterization, see
also [2]. Notice that the external equivalence of [2] is different from two others mentioned
above. Moreover, we emphasize here, that in Chapter 1 and Chapter 2 of this thesis, we
will give our definition of external equivalence, which is actually the same as the strict and
restricted equivalence defined in [[75] and [168]], respectively, and different from the ones
in [189]],[118]] and [2].

The following literature discusses the normal forms and canonical forms of linear DAE
systems under some predefined equivalence. The authors of [85] proposed a feedback
canonical from for controllable and regular DAECSs. Several canonical forms for regular
systems based on their controllability and impulse controllability are given in [80]. More-
over, in [153]], a canonical form of general DAECSs was discussed. A more subtle and
detailed feedback canonical form for general DAECSs was given in [131] by considering
a group of transformations including state (proportional) feedback (P) and state deriva-
tive (proportional-derivative) feedback. Then the P and PD feedback canonical form was
extended to DAECSs with output in [[124] by considering additional transformations in-
cluding coordinates changes in the output space and output injections. Furthermore, the
canonical form of general DAECSs with output under the restricted system equivalence
was discussed in [[182]. More recently, a normal form based on the impulse-controllability
and impulse-observability of DAECSs was proposed in [[181], and a quasi-Weierstrass and
a quasi-Kronecker normal form of DAEs were given in [16] and [20], respectively, us-
ing a geometrical way to make the transformations for a DAE to its WF and KCF more
transparent.

As in the ODE case, fundamental geometrical tools for deriving canonical and normal
forms of DAE systems are invariant subspaces of DAEs’, i.e., the limits of the so-called
Wong sequences and their augmented version (see e.g. [128]],[17]). The Wong sequences
of a DAE A, given by (L.I)), are the subspace sequences ¥; and #; below, first given in
[191] to discuss the existence and uniqueness of solutions for linear DAEs:

%:Rn’ %+1:H_1E7/Z'7 ZGN,
Wo={0}, Wiy = EHW;, ieN

The augmented version of the Wong sequences are just the extensions of the above se-

11
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quences in order to characterize feedback invariants of DAECSs. A deeper generaliza-
tion of the Wong sequences to DAECSs with outputs are given, e.g., in [135]],[[152],[124].
These invariant subspaces of DAEs are powerful tools for the following problems of DAE
systems: structure analysis [[136], regularization and pole placement [[126],[54]],[18], dis-
turbance decoupling [65]],[[14]], controllability [[137],[152],[17] and observability [[19] anal-
ysis, etc. In the present thesis, we are particularly interested in the KCF for linear DAEs
[117] and the feedback canonical form FBCF for linear DAECSs [131]]. Relations of the
structure invariants of the KCF (called the Kronecker indices) with the Wong sequences
are shown in [130]],[20],[21]]. Moreover, relations of the indices of the FBCF with the
augmented Wong sequences are shown in [131],[18].

In view of the similarities and mutual correspondence (e.g., the Morse indices of
ODECS and the Kronecker indices of DAEs, the invariant subspaces of ODECSs and
the Wong sequences of DAECSs, etc) that we have just described in the review about the
history of the geometric aspects of linear ODE and DAE systems, it is natural to think
about relations of the two classes of systems. This leads to our studies of Chapter [2| in
which a given DAE is associated with a class of ODECSs and of Chapter 3| in which the
connections of ODECSs and DAECSs are built.

1.3 Preliminaries on geometric theory of nonlinear ODE
control systems

In this section, we will review some concepts of the classical geometric control theory
(see the list of notations from differential geometry at the end of the thesis) for nonlinear
ODECS:s of the following control-affine form:

i=flx)+ i gi(w)u = f(x) + glx)u

DI (1.13)

y = h(x),
where © € X is the state, X is an open subset of R", u € R™ is the input, h(z) is a
smooth RP-valued function on X, and where f,gi,..., g, are smooth vector fields on

X. Nonlinear ODECS will be denoted by ¥, ., = (f, g, h) or, simply, X. If we
only discuss but without output, we denote it by %, ,,, = (f,g). Two ODECSs
Som = (f,g) and 2., = (f,§) defined on X and X are called feedback equivalent if
there exists a diffeomorphism ¢ : X — X, an R™-valued function a(x) and an invertible
m X m matrix-valued function () satisfying

F(x)) = 252 (f + ga) (x),
g((x)) = 252 (gB8)(x).

Obviously, (x(t),u(t)) is a solution of 3,, ,,, if and only if (Z(t), @(t)), where & = (x(t))
and u(t) = a(x(t)) + B(x(t))a(t), is a solution of %, ,,. Nonlinear ODE control theory
has been well-developed for decades, fundamental theory and insightful results on nonlin-
ear ODECSs using geometric methods can be found in the textbooks of Isidori [92] and

12
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Nijmeijer and Van der Schaft [151]. Here we only make a review of a few notions which
will be used in Chapters [4] [5] and [6]

The zero dynamics: The notion of zero dynamics was introduced in [95] in order to
generalize the concept of transmission zeros of linear control systems. For an ODECS 3.,
the zero dynamics algorithm is given as follows.

Step 0: Fix a nominal point z°, around which we will work locally. Suppose that
h(z°) = 0. Set Ny = h='(0). Step k: assume for some neighborhood V;,_; of a point z°,
Ni_1 N Vi_; is a smooth submanifold and denote by N;_, the connected components of
Ni_1 N Vi such that 2° € N¢_,. Let

Nk: = {ZL‘ € ng—l : f(l’) S T:leg—l + Span{gl(x)v T 7gm<x)}} :

A smooth submanifold [V is called controlled invariant if there exists a R™-valued function
a(x)on N such thatVz € N, f(z) + g(z)a(x) € T, N. An output zeroing submanifold
of ¥ is a locally controlled invariant submanifold N C X satisfyingV x € N, h(z) = 0.
If 2° is a regular point of the zero dynamics algorithm, i.e., at every step k, Ny_; N Vi_1 is
a smooth submanifold (around 2°), then the zero dynamics algorithm converges in k* < n
steps and N* = N[, is a locally maximal output zeroing submanifold.

Static feedback linearization and relative degree: An ODECS %, ,, = (f, g) is lin-
earizable by static feedback if it is feedback equivalent to a linear controllable ODECS A,
given by (I.12)) but without output, i.e., ¢ = Ax + Bu. The problem of static feedback
linearization for ODECS with single input was formulated and solved by Brockett [29]
(for feedback of the form u = o + u). Then, Jakubczyk and Respondek [98] and, in-
dependently, Hunt and Su [87] gave necessary and sufficient conditions to solve the static
feedback linearization problem for multi-input ODECSs. Consider the following sequence
of distributions:

G = span{gh e 7gm}7 Giy1 =G + [f, Gi]'

The system . is locally feedback linearizable if and only if for all 2+ > 1, the distributions
(3; are constant dimensional, involutive and GG,, = T'X.

The concept of relative degree is introduced to solve the problem of input-output decou-
pling (see [[148] for linear ODECSs and [173]],[1174],[92] for nonlinear ODECSs). A square
control system A,, ., ., = (f, g, h) has a (vector) relative degree (p1, ..., pm), shortly rd.,
at a point 2° if (i) ngL’}hi(x) =0, forall 1 <i,j <m,k < p; — 1, around 2°; (ii) The
m x m decoupling matrix: D(z°) = (L,, Lfflhi(xo)) is invertible. Note that a nonlinear
ODECS without output, given by (f, g), is feedback linearizable in a neighborhood U, if
and only if there exist dummy outputs y; = hy(z),...,yn = hn(z), where h;(x) are
scalar functions defined on U, such that the ODECS with output, given by (f, g, h), where
h = (hy,...,h,), has relative degree (pi, ..., pm) at 2’ and p; + - - - + p,,, = n [92].

Controlled and conditioned invariant distributions: Recall the following sequences
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of distributions .S; and codistributions P; for ODECS X:

( Sl = Span{glw-'agm}

Siy1:= S+ [f, Sinkerdh] + 377" [g;, Si N ker dh],
S* =305,
i>1
Py :=span{dhy,...,dh,}
P =F+ Lf<Pi N GL) + Z;n:1 ng(Pi N GL)a
P :=>"P,.

i>1

\

Define also V; := P, V* := (P*)*. The distribution V* generalizes the largest controlled
invariant subspace in ker C' and the distribution S* generalizes the smallest conditioned
invariant subspace including ImB for linear ODECSs (see [9]). These distributions play
an important role in the problems of linearization and decoupling of nonlinear control
systems, see e.g., [94, 186, 93, (150} 114} 115,139, 61]].

Some other results on linearization: A survey about linearization problems for non-
linear ODECSs can be found in [S3]] and [180]. In particular, the problem of linearization
of the input-output map of the system X is considered in [96]],[91]], in which, the structure
algorithm (generalizing the linear version given by [172]) is used to construct transforma-
tions to linearize the input-output map. Then the results of [96] are modified and used in
[SO]] in order to linearize ODE control systems with output. In [139], sufficient and neces-
sary conditions are given for the problem of when a system X is equivalent to a prime form
(for the definition of prime form, see [146]) by a group of transformations consisting of
diffeomorphisms, feedback transformations, and coordinates changes in the output space.
Based on the results of [[139], the problem of using generalized output transformations to
bring an ODECS into prime form is solved in [4]. The results of [139]] and [4] can be
interpreted as using some transformations in the output space to achieve a desired rela-
tive degree. Another way of achieving desired relative degree is using dynamic feedback.
Since the linearization by dynamic feedback will not be discussed in this thesis but could
be a nature direction for the future works, we only mention here a few references, see e.g,
[39,140. 5, (149, 166]], or see Section 8.2 of [[151]] and Section 5.4 of [92].

1.4 Geometric aspects of nonlinear DAE systems

In this section, we review some geometric methods in the existing literature for DAE sys-
tems , including DAE =, DAECS Z* and DAE O of the general form, given by ,
and (I.7), respectively. Compared to a large variety of results on nonlinear ODE systems
using geometric methods, much less results are available for nonlinear DAE systems.

The early efforts of using differential-geometric methods to analyze DAEs are the
works of Rheinboldt [164] and Reich [161]], which regard a DAE as an implicit descrip-
tion of a vector field on a manifold. Also Chua [52] considered the DAE = = (E, F)
and defined the pair (E(x), F(z)) as a generalized vector field. In [161] and [162], the
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concept of regularity in the linear DAE case was generalized for nonlinear DAEs to char-
acterize the existence and uniqueness of DAE solutions. All the pioneering papers as
[164],[161],[162], see also [160] [[158],[1635], lead to a geometrical reduction method. This
reduction method is, roughly speaking, based on some constant rank and smoothness as-
sumptions: one can construct a sequence of submanifolds from a given DAE, and if the
constructed sequence converges after finitely many steps of iterations, then solutions of the
DAE correspond to the solutions of an ODE evolving on a smooth submanifold (called the
constrained submanifold or invariant manifold). The use of such a reduction method in
the control context can be consulted in [[116],[119],[[197],[129],[196] in order to get a state
space representation of a given DAECS. In Chapter [ of this thesis, we will restate this re-
duction procedure as a nonlinear generalization of the shuffle algorithm given in [[133]] for
checking the regularity of linear DAEs. We will also give our notion of regularity, called
internal regularity for nonlinear DAEs of form =. A main difference between the results
of Chapter 4] and the former mentioned papers is the distinction between internal and ex-
ternal analysis of DAEs. Roughly speaking, the word “internal” means that we consider
the DAE on its constrained submanifold only, i.e., where the solutions exist, the word “ex-
ternal” means that we consider the DAE in a whole neighborhood and for most points in
that neighborhood there may not exist solutions. Although for a point which is not on the
constrained submanifold, there are no solutions, the external analysis matters if we want
to steer solutions from that point towards the constrained submanifold (in finite time or
asymptotically). So the form of the DAE in this case matters not only on the constraint set
but in a neighborhood as well.

The study of external forms for DAE systems under pre-defined equivalence can be
seen in [111] for the feedback linearization problem of a class of nonlinear DAECSs, the
equivalence relation considered there is actually “external”. A nonlinear generalization
of the Kronecker canonical form is shown in [169], which is an “external” normal form
as well. Recently, Berger [12] generalized the notions of controlled invariant manifold
and zero dynamics from nonlinear ODE control theory for nonlinear DAECSs. A normal
form, called the zero dynamic form of nonlinear DAEs, is given in [13]], based on which,
the author of [13] discussed invertibility of nonlinear DAEs. In the present thesis, the
study of external forms of DAE control systems leads to a nonlinear generalization of
the Weierstrass form for nonlinear DAEs given in Chapter {] and the maximal controlled
invariant submanifold form for nonlinear DAECSs proposed in Chapter [5| Moreover, we
will also consider external linearization problems. As in Chapter[5 we will discuss when
a nonlinear DAECS is externally feedback equivalent to a linear completely controllable
DAECS and in Chapter 5 we discuss when a SE DAE is externally equivalent to a linear
SE DAE of some special form.

The results of Chapter 2] and [3] are inspirations for the ones of Chapter [} [5] and [6]
e.g. connections of linear ODECSs and DAE:s inspire to study connections of nonlinear
DAE systems and nonlinear ODE systems, the linear Weierstrass form is an inspiration for
its nonlinear generalization, the Wong sequences and the augmented Wong sequences for
linear DAEs are inspirations for their nonlinear generalizations as well.
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Chapter 2

Geometric Analysis of Differential-Algebraic
Equations via Linear Control Theory

Abstract: We consider linear differential-algebraic equations DAEs of the form F'z = Hx
and the Kronecker canonical form KCF of the corresponding matrix pencils sE/ — H. We
also consider linear control systems and their Morse canonical form MCF [146],[145]. For
a linear DAE, a procedure named explicitation is proposed, which attaches to any linear
DAE a linear control system defined up to a coordinates change, a feedback transformation
and an output injection. Then we compare subspaces associated to a DAE in a geomet-
ric way with those associated (also in a geometric way) to a control system, namely, we
compare the the Wong sequences of DAEs and invariant subspaces of control systems.
We prove that the KCF of linear DAEs and the MCF of control systems have a perfect
correspondence and that their indices are related. In this way, we connect the geometric
analysis of linear DAEs with the classical geometric linear control theory. Finally, we pro-
pose a concept named internal equivalence for DAEs and discuss its relation with internal
regularity, i.e., the existence and uniqueness of solutions.

2.1 Introduction

Consider a linear differential-algebraic equation DAE of the form
A: FEt = Hz, 2.1

where x € 27 = R" is called the “generalized” state, £ € R”*™ and H € R"*". Through-
out, a linear DAE of form 1) will be denoted by A;,, = (E, H) or, shortly, A and the
corresponding matrix pencil of A by sE — H, which is a polynomial matrix of degree one.

9% ¢¢ 9% ¢

Terminologies as “singular”, “implicit”, “generalized” are frequently used to describe a
DAE due to its difference from an ordinary differential equations ODE. Since the structure
of DAE A is totally determined by the corresponding matrix pencil s — H, it is useful to
find a simplified form (a normal form or canonical form) for sE' — H. Under predefined
equivalence (see ex-equivalence of Definition [2.2.1)), canonical forms as the Weierstrass
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form WF [186] for regular matrix pencils and the Kronecker canonical form [[117] (for de-
tails see KCF in Appendix and [75]) for more general matrix pencils have been proposed.
Note that in the present chapter, we will not distinguish the difference between the KCF
of a matrix pencil sE — H and the KCF of a DAE A, since although KCF is introduced
for matrix pencils, it is immediate to put the KCF of sEF — H into the corresponding form
for the DAE A.

Geometric analysis of linear and nonlinear DAEs can be found in [[124, 127, (128 135,
136, 158, 161}, [162]. We highlight an important concept named the Wong sequences (%;
and #; of Definition [2.4.1)) for linear DAEs, which were first introduced in [191]]. Connec-
tions between the Wong sequences with the WCF and the KCF have been recently estab-
lished in, respectively, [16] and [20, 21]]. In particular, invariant properties for the limits
of the Wong sequences (#™* and #* in Definition were used to obtain a triangular
quasi-Kronecker form in [20, 21]]. Moreover, [20, 21] show that some of the Kronecker
indices can be calculated via the Wong sequences and the remaining ones can be derived
from a modified version of the Wong sequences.

On the other hand, consider a linear time-invariant control system of the following
form

A:{z:Az—i-Bu 22)

y=Cz+ Du,
where z € 2 = RY is the system state, u € % = R™ represents the input and y € ¥ =
RP? is the output. System matrices A, B, C, D above are constant and of appropriate sizes.
We also consider the prolongation of A of the following form

A 2ifZ+Bu {Z:Az—i-Bv (2.3)
| y=Cz+ Du y=Cz, .

where

z—m, A—{‘g ﬂ B—L?J, c=[c D].

Denote a control system of form by Aymp = (A, B,C, D) or, simply, A and denote
the prolonged system by Apmp = (A,B,C), or shortly A, where n = ¢ + m.
Notice that there is a one to one correspondence between C*°-solutions of and
(or a one-one correspondence between C'-solutions (z(t), u(t)) of and C'-solutions

z(t), given by C-controls v, of (2.3)).

Two kinds of invariant subspaces have been studied for analyzing the structure of linear
control systems, see e.g. [193]9]. More specifically, the largest (A, B)-invariant subspace
contained in ker C (denoted V* in Definition [2.4.5]), which is related with disturbance
decoupling problems, and the smallest (C, A )-conditioned invariant subspace containing
Im B (denoted W* in Definition [2.4.5) which is related to controllability subspaces. With
the help of these invariant subspaces, any control system can be brought (see [146],[145])
into its Morse canonical form (for details, see MCF in Appendix) under the action of a
group of transformations consisting of coordinates changes, feedback, and output injec-
tion. The MCF consists of four decoupled subsystems M CE*, MCF?, MCF3, MCF*,

17



CHAPTER 2. GEOMETRIC ANALYSIS OF DIFFERENTIAL-ALGEBRAIC
EQUATIONS VIA LINEAR CONTROL THEORY

to which there correspond four sets of structure invariants (the Morse indices ¢/, p., o/, 1}
in the MCF) and these structure invariants are computable using V* and WW*. Note that
in [146], only the triple (A, B, C) is considered while in [145]], the general case of 4-tuple
(A, B, C, D), with nonzero matrix D, is studied.

The first aim of the present chapter is to find a way to relate linear DAEs with linear
control systems and find their geometric connections. In fact, we will show in the next
section that to any linear DAE, we can attach a class of linear control systems defined up
to a coordinates change, a feedback transformation and an output injection. We call this
attachment the explicitation of a DAE. The second purpose of this chapter is to distinguish
two kinds of equivalences in linear DAEs theory, namely, internal equivalence and exter-
nal equivalence. We will give the formal definition of external equivalence in Definition
Note that our notion of ex-equivalence of DAEs is different from the one introduced
in [189],[118], where “systems are defined to be externally equivalent if their behaviors
are the same”. Actually, the external equivalence (also named strict equivalence in [[75]])
is widely considered in the linear DAEs literature. For example, the KCF of a DAE is
actually a canonical form under external equivalence, which is simply defined by all linear
nonsingular transformations in the whole “generalized” state space of the DAE. However,
since solutions of a DAE exist only on a constrained (invariant) subspace, sometimes we
only need to perform the analysis on that constrained subspace. This point of view moti-
vates to introduce the notion of internal equivalence and to find normal forms not on the
whole space but only on that constrained subspace.

The chapter is organized as follows. In Section[2.2] we introduce the notations, define
the external equivalence of two DAEs, and also the Morse equivalence of two control
systems. In Section[2.3] we explain how to associate to any DAE a class of control systems.
In Section 2.4, we describe geometric relations of DAEs and the attached control systems.
In Section we show that there exists a perfect correspondence between the KCF and
the MCF, and that their indices have direct relations. In Section we introduce the
notion of internal equivalence for DAEs and then discuss the internal regularity. Section
contains the proofs of our results and Section [2.§] contains the conclusions of this
chapter. Finally, in the Appendix we recall two basic canonical forms: the Kronecker
canonical form KCF for DAEs and the Morse canonical form MCF for control systems.

2.2 Preliminaries

We use the following notations in the present chapter.

N the set of natural numbers with zero and N* = N\ {0}

C the set of complex numbers

Rmxm the set of real valued matrices with n rows and m columns
R[s] the polynomial ring over R with indeterminate s

Gl (n,R) the group of nonsigular matrices of R™*"

rank A the rank of a linear map A
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rank g (sE — H) the rank of a polynomial matrix s£' — H over R[s]

ker A the kernal of a linear map A

dim &7 the dimension of a linear space .o/

Im A the image of a linear map A

o | B the quotient of a vector space </ by a subspace % C &/
I, the identity matrix of size n x n forn € N*

O the zero matrix of size n x m forn,m € N*

AT the transpose of a matrix A

At the inverse of a matrix A

AR {Ax | x € A}, the image of % under a linear map A
At {z | Ax € A}, the preimage of % under a linear map A
AT (AT)"1%n

o+ {x|Va € & : 2Ta=0}, the orthorgonal complement of .7 in R"

Consider a DAE A;,, = (E, H), given by (2.1), denoted shortly by A, and the cor-
responding matrix pencil sE — H. A solution , or trajectory, z(t) of A is any C!-
differentiable map =z : R — R™ satisfying Fi(t) = Hx(t). A trajectory starting from
a point z(0) = z° is denoted by z (¢, 2°).

Definition 2.2.1. Two DAEs A;,, = (E,H) and A;,, = (E, H) are called externally
equivalent, shortly ex-equivalent, if there exist ) € GI(I,R) and P € Gl(n,R) such that

E=QEP™" and H=QHP.

We denote ex-equivalence of two DAEs as A <A, and ex-equivalence of the two corre-
. . . ex ~ r
sponding matrix pencils as sE — H ~sE — H.

If the “generalized” states of A and A are x and %, respectively, then & = Pz is,
clearly, just a coordinate transformation. The following remark points out the relation of
the ex-equivalence and solutions of DAE:s.

Remark 2.2.2. Ex-equivalence preserves trajectories, more precisely, if A ~ A via (@, P),
then any trajectory z(t) of A satisfying z(0) = 2°, is mapped via P into a trajectory Z(t) of
A passing through #° = Pz°. Moreover, if z(t) is a trajectory of A, then Ei(t) — Hz(t) =
0 and, obviously Q(Ex(t) — Hz(t)) = 0 implying that x(¢) is also a trajectory of QE& =
QHz. The converse, however, is not true: even if two DAEs have the same trajectories,
they are not necessarily ex-equivalent, since the trajectories of DAEs are contained in a
subspace .Z* C R" (see Definition of Section [2.6).

Definition 2.2.3. (Morse equivalence and Morse transformation) Two linear control sys-
tems Ay, = (A, B,C, D) and A,,,, = (A, B,C, D) are called Morse equivalent, de-

noted by A ~ A, if there exist 7, € Gl(¢,R), T, € Gi(m,R), T, € Gl(p,R), F € R™¥4,
K € R?%*P such that

A Bl [T, T.K|[A BI[T;' 0 0.4
C Dl |0 T,||C D||FT-' 17" '

()

Any 5-tuple Myyon, = (15, T;,T,, F, K), is called a Morse transformation.
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Remark 2.2.4. (i) Apparently, in the above definition of a Morse transformation, 7%, 7;,
T, are coordinate transformations in the, respectively, state space 2, input space %/, and
output space %/, and F’ defines a state feedback and K defines an output injection. More-
over, if we consider two control systems without outputs, denoted by A, ,,, = (A4, B) and
Aym = (A, B), then the Morse equivalence reduces to the feedback equivalence, i.e., the
corresponding system matrices satisfy A = T,(A + BF)T ! and B = T,BT; "

(ii) The feedback transformation A — A + BF preserves all trajectories (although
changes their parametrization with respect to controls). On the other hand, the output
injection A — A+ KC, B — B + KD preserves only those trajectories z(t) that satisfy
y(t) = Cz(t) + Du(t) = 0. Finally, A — T,AT, ! maps trajectories into trajectories
while B + BT, ' re-parametrizes controls and C' — T,C and D + T, D re-parametrize
outputs.

2.3 Implicitation of linear control systems and explicita-
tion of linear DAEs

It is easy to see that, if for a linear control system A, given by (2.2), we require the output
y = Cz + Du to be identically zero, then A can be seen as a DAE. We call such an
output zeroing procedure the implicitation of a control system, which can be formalized as
follows.

Definition 2.3.1. For a linear control system A,,,, = (A4,B,C,D) on & = R? with
inputs in %7 = R™ and outputs in %" = RP, by setting the output y of A to be zero, that is

2= Az + Bu

we define the following DAE with “generalized” states in R%+t™:

I, Of (2 A Bl |z
Impl . q —
S 1 e &
We call the procedure of output zeroing above the implicitation procedure, and the DAE
given by (2.5) will be called the implicitation of A and denoted by A2 = Impl(A)

or, shortly, AP = I'mpi(A).

The converse procedure, of associating a control systems to a given DAE, is less
straightforward, since the variables are expressed implicitly in DAEs. In order to under-
stand the different roles of the variables in a DAE, take, for example, the nilpotent pencil
Ny (s) of the KCF of DAEs (see Appendix , denote the corresponding variables by
x1, ..., T, and then the DAE is

0 1 0 i )
0 : B

1 |To-1 To—-1
0 0 O Lo To
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It is easy to see that the last equation x, = 0 is an algebraic constraint which can be seen
as the zero output of a control system. The variable x; is different from the others because
it is free to be given any value and thus it performs like an input. The variables x,, ..., T,
are constrained by a differential chain forming an ODE, so they can be seen as states of
a control system. Notice that in this case, replacing ©; = x;,_1 by ©; = x;_1 + k;x,, for
2 <4 < ¢ and for any k; € R does not change the system because x, = 0, which means
that if we want to associate to our DAE a control system, the association is not unique.
Below we show a way to attach a class of control systems to a given DAE.

e ConsideraDAE A;,, = (E, H), given by (2.1). Denote rank E' = ¢, definep = [ —¢q
and m = n — ¢. Choose a map

p- L@] € Gl(n,R),

2
where P, € R?7*"™, P, € R™*™ such that ker P, = ker E.
e Define coordinates transformation
z Pl.T P1
p— p— pr— P .
o= L] = L)
Then from ker P, = ker E, we have EP~! = [EO O] , where E; € R'*7. Moreover,
since P is invertible, it follows that rank Fy = rank £ = ¢. Thus via P, A is ex-

o f]-nf)

where Hy = HP~!. The variables z are states (dynamical variables, their derivatives
z are present) and u are controls (enter statically into the system).

equivalent to

1
e Since rank £y = ¢, there exists )y € GI(I,R) such that QoEy = {%0} , Where

Ej € Gl(g,R). Thus via (Qo, P), A is ex-equivalent to
E& 0 z . Ag Bg z
0 0f ] [Co Do |u]’

AO BO:| , AO S quq7 By € qum, C() € Rpxq, Dy € Rpxm,

where Qg Hy = [Co Dy

: : (EH™1 0 . .
e Finally, via (); = , we bring the above DAE into

0 I,

I, 01 |2] [A Bl |z
5 o] L= le o] @9
where A = (Ej) Ao, B = (E}) !By, C = Cy, D = D,.
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e Therefore, the DAE A is ex-equivalent (via P and () = (01()) to and the latter
is the control system
A { 2= Az + Bu
| y=Cz+ Du,

together with the constraint y = 0, that is, A < AImel — 1 mpl(A).

Let us give a few comments on the above construction:

P : .
e The map P = { Pll defines state variables z = P,z as coordinates on the state space
2

% = R"/ker E isomorphic to R? and control variables u = P,z as coordinates on
U = kerE = R™. The output variables y are coordinates on % = R'/Im E = R?
and define the output map via y = Cz + Du.

e Choose other coordinates (2', u') given by z’ = P/x and v’ = Pjx such thatker P =

ker E = ker P, then
!
{ 2 =Tz 2.7

u = F'z+ T,

where Ty € Gl(n,R) and I € R™", T, € Gi(m,R). Clearly, 2/ = Tz is an-
other set of coordinates on the state space and v’ = F'z + Tju is a state feedback
transformation.

e The output y takes values in the quotient space R!/Im E. Since y = Cz + Du =
0, we can add y to the dynamics without changing solutions of the system on the
subspace {y = 0}. Together with a state transformation 2z’ = T,z and an output
transformation 3y’ = Ty, it results in a triangular transformation (output injection)

of the system
z/:TsK z:TsK A Bl |z (2.8)
Y 0 7T,| |y 0 T,| |C D] |u

where K’ € R"™*?, T, € Gl(p,R).

In view of the above analysis, the non-uniqueness of the construction leads to a control sys-
tem defined up to a coordinates change, a feedback transformation and an output injection,
which is actually, a class of control systems.

Definition 2.3.2. Given a DAE A,;,, = (E, H), there always exist € GI(l,R) and
P € Gl(n,R) such that

I, 0

0 0 (2.9)

QEP™! = {

} and QHP ' = [A B] )

C D
The control system A, given by A, ,,, = (A, B,C, D), is called the ((), P)-explicitation
of A. The class of all (), P)-explicitations, corresponding to all € GI(l,R) and P €
Gl(n,R), will be called the explicitation class of A and denoted by Expl(Z). If a particular

control system A belongs to the explicitation class Expl(A) of A, we will write A €
Expl(A).
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Remark 2.3.3. The implicitation of a given control system A is a unique DAE APl
given by ([2.5). The explicitation Ezpl(A) of a given DAE A is, however, a control system
defined up to a coordinates change, a feedback transformation, and an output injection, that
is, a class of control systems.

Theorem 2.3.4. (i) Consider a DAE A = (E, H) and a control system A = (A, B,C, D).
Then A € Expl(A) if and only if A~ AT ywhere AT™! = Impl(A). More specifically,
A is the (Q, P)-explicitation of A\ if and only if A~ AT yig (Q, P).

(ii) Given two DAEs A = (E,H) and A = (E, H), choose two control systems A €
Expl(A) and A € Expl(A). Then A= A if and only if A ~ A

(iii) Consider two control systems A = (A, B,C,D) and A = (A, B,C,D). Then
ARA if and only if AT"PL = APl ywhere AL = Impl(A) and AT = Impl(A).

The proof is given in Section

Remark 2.3.5. Theorem describes relations of DAEs and control systems, which
we illustrate in Figure We conclude that Morse equivalent control systems (and only
such) give, via implicitation, ex-equivalent DAEs. Furthermore, explicitation is a universal
procedure of producing control systems from a DAE and ex-equivalent DAEs produce
Morse equivalent control systems.

Ex-equivalence -
A A
Explicitation Explicitation
] Morse equivalence [— = )
Ex-equivalence | A € Fxpl(A) A € Expl(A) | Ex-equivalence
Implicitation Implicitation
Ex-equivalence [— =
AL = Impl(A) APl = Impl(A)

Figure 2.1 — Explicitation of DAEs and implicitation of control systems

2.4 Geometric connections between DAEs and control sys-
tems

The Wong sequences [[191] of a DAE are defined as follows.

Definition 2.4.1. For a DAE A,;,, = (£, H), its Wong sequences are defined by

% =R", %y =H 'EY, i€N, (2.10)
Wo = {0}, Wis1 = E'H¥,, i€ N. .11
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Remark 2.4.2. The Wong sequences V; and W; satisfy

2N 2V =Yy =V =H'EV* DkerH, j €N,

2.12
Wo Cker E=W4 C - CWpo =Wy, =W*=E'HW* jeN. 2.12)

We now propose a different definition of the limits of the Wong sequences and review
the notions of invariant subspaces in linear control theory.

Definition 2.4.3. For a DAE A;,, = (FE, H), a subspace ¥ C R" is called (H !, E)-
invariant if ¥ satisfies ¥ = H ' EY; a subspace % C R" is called (E_l, H)-invariant if
W satisfies # = E~'H# . Denote by ¥* the largest (H !, E)-invariant subspace of R”"
and by #* the smallest (E~!, H)-invariant subspace of R".

Proposition 2.4.4. (i) For a DAE A;,, = (E, H), the largest (H ™', E)-invariant subspace
V* and the smallest (E~, H)-invariant subspace W * exist and are given, respectively, by

V* =V and W = W,

where k* is the smallest integer such that Vi~ = Vi1 and [* is the smallest interger such

that Wi» = Wi 15
(ii) V* is also the largest subspace such that HV* C EV™*, however, #* is not neces-

sarily the smallest subspace such that EW™* C HW*.

The proof is given in Section For invariant subspaces of control systems, we
consider two cases depending on whether the control system is strictly proper (D is zero
or not). We will use the bold-notation for the strictly proper case D = 0, since throughout
it applies to prolongation (2.3, which we denote by bold symbols.

Definition 2.4.5. For a control system A, ,,,, = (A, B, C), a subspace ¥V C R" is called
an (A, B)-controlled invariant subspace if V satisfies

Ay CV+ImB
and a subspace WW C R” is called a (C, A)-conditioned invariant subspace if WV satisfies
AWnkerC) C W.

Denote by V* the largest (A, B)-controlled invariant subspace contained in ker C and by
W* the smallest (C, A )-conditioned invariant subspace containing Im B.

The following fundamental lemma shows that V*, WW* exist and they can be calculated
via the sequences of subspaces V;, W; given below.

Lemma 2.4.6. ([193]],[9]) Initialize YV, = R" and, for i € N, define inductively

Viji =kerCNA YV, + ImB). (2.13)
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Initialize Wy = 0 and, for 1 € N, define inductively
Wi = A(W;Nker C) + Im B. (2.14)
Then there exist k* < n and I* < n such that
Vo2okerC=V; 2 -2V =Vpy; =V =kerCNA(V*+ImB), jeN,
WoCImB=W, C---CWr =W, =W =AW*NkerC) + ImB, jeN.

It is well-known (see e.g. [194],[193],[9]) that V is an (A, B)-controlled invariant
subspace if and only if there exists F € R™*" such that (A + BF)Y C V and W is
a (C, A)-conditioned invariant subspace if and only if there exists K € R"*P such that
(A + KC)W C W. For a control system which is not strictly proper (D is not zero),
following Definitions 1-4 of [145], we use a generalization of that characterization of
invariant subspaces.

Definition 2.4.7. For A,,,, = (A, B,C, D), a subspace V C R? is called a null-output
(A, B)-controlled invariant subspace if there exists /' € R™*? such that

(A+ BF)VCYV and (C+ DF)V =0,
and for any such 'V, the subspace U C R™ given by
U= (B'V)NkerD,

is called a null-output (A, B)-controlled invariant input subspace. Denote by V* (resp. U*)
the largest null-output (A, B) controlled invariant subspace (resp. input subspace).

A subspace W C RY is called an unknown-input (C', A)-conditioned invariant subspace
if there exists K € R?*P such that

(A+ KCYW+ (B+ KD)Z =W,
and for any such W, the subspace Y C RP given by
Y=CW+ DY,

is called an unknown-input (C, A)-conditioned invariant output subspace. Denote by W*
(resp. Y*) the smallest unknown-input (C, A)-conditioned invariant subspace (resp. output
subspace).

The following lemma [144] shows that V*, U*, W*, Y* exist and provides a calculable
algorithm to calculate them.

Lemma 2.4.8. Initialize Vo = RY, and for 1 € N, define inductively

1

el (renll) e
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and U; C % fori € N are given by

'L

Then V* =V, and W* = U, .

Initialize Wy = {0}, and for i € N, define inductively

Wip1 =[A B] ({ZZ\;] Nker [C D]) (2.17)

andy; C ¥ fori € N are given by

(2.18)

Yi=[C D] [W}

U
Then W* = W, and Y* = Y,.

Remark 2.4.9. (i) Lemma generalizes the results of Lemma and, if D = 0,
Lemma[2.4.§reduces to Lemma [2.4.6;

(ii) Evenif A is not strictly proper (if D # 0), the prolonged system A always is; through-
out we will use V*, U*, W* and Y* for A, and V* and WW* for A.

Throughout this chapter, for ease of notation, we will write %;(A) to indicate that ¥; is
calculated for A, similarly for all the other subspaces defined in this section. Now we give
the main results of this section.

Proposition 2.4.10. (Geometric subspaces relations) Given a DAE A;,, = (E,H), a
(Q, P)-explicitation A = (A, B,C, D) € Expl(A), and the prolongation A = (A, B, C)
of A, consider the limits of the Wong sequences V* and #'* of A and of A"™! = Impl(A),
given by Definition the invariant subspaces V* and W* of A, given by Definition
and the invariant subspaces V* and WW* of A, given by Definition Then the
following hold

(i) PY*(8) = ¥+ (A7) = V*(A) = {g g} _1 P?*(()A)} |

(i) P/ (A) = W (AT™) — WH(A) = [{)q 8} h {W*O(A)} |

The proof is given in Section [2.7

Remark 2.4.11. (i) The limits ¥* and #* of the Wong sequences coincide for A and A
that are ex-equivalent via (P, ()), where P = [,, and () is arbitrary, and do not depend on
(. On the other hand, the system A, being a (Q, P)-explicitation of A, depends on both
P and () (and so does its prolongation A), but the invariant subspaces V*(A) and W*(A)
depend on P only.
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(i) Some particular relations between the Wong sequences of DAEs and the invari-
ant subspaces of control systems is given in Theorem 5 of [56], which can be seen as a
corollary of Proposition [2.4.10]

Now we will study various dualities of geometric subspaces by analyzing the dual
system. The duality of the subspaces V* and WW* is well-known and studied in [[194],[146]],
[9]. Similarly, properties of the subspaces V*, W*, U*, Y* for the dual system of a control
system are analyzed in [144] and [145]. In [20], it is proved that the Wong sequences
of the transposed matrix pencils have relations with the original matrix pencils. In the
following, we will show that all these results can be connected by the explicitization of
DAEs. Together with A we consider its dual A%, = (E", H”)) of the form:

ETZ'Ed — HTZEd,
where 2% € R! is the “generalized” state of the dual system.

Proposition 2.4.12. Consider a DAE A and its dual A%. Then A = (A,B,C,D) €
Expl(A) if and only if A* = (AT, CT, BT, DT) € Expl(A?).

Proof. For any invertible matrices () and P of appropriate sizes that yield (2.9), we have
the following equivalence:

sly—A —C

Q(sE—H)P ' = { "5 D

} o pT (SET _ HT) QT _ {qu — AT —OT}

-BT  _DT|"

Suppose A € FExpl(A), then by Theorem i), there exist ) € GI([,R) and P €
Gl(n,R), such that the left-hand side of the above equivalence holds. Then from the right-
hand side we can see A? € Expl(A?).

Conversely, suppose A? € Expl(A?). Then there exist P~7 € Gl(n,R) and Q7 €
GI(l,R) such that right-hand side of the above equivalence holds, then from the left-hand
side we can see A € Expl(A). O

Proposition 2.4.13. (Subspaces of the dual system) For A = (E, H) and its dual A? =
(ET, HT), consider the subspaces V* and W * of Deﬁnition For two control systems
A = (A, B,C,D) € Expl(A) and the dual of A, denoted by A = (AT, CT, BT, DT),
consider the subspaces V* and W* of Definition Finally, for the prolongation of
A, denoted by A = (A, B, C) and for the dual of A, denoted by A = (AT, CT BT),
consider the subspaces V* and YW* of Definition[2.4.5] Then the following hold:

(i) WA = (EV*(A)H (A7) = (HY (D))
(ii) W*(A) = (V*(A))+, V*(AY) = (W*(A))*
(ii) W*(A?) = (V*(A))+, V*(A?) = (W*(A))~

Moreover, assuming one of the items (i), (ii), or (iii) we can conclude the two remaining
ones by the relations given in Proposition

27



CHAPTER 2. GEOMETRIC ANALYSIS OF DIFFERENTIAL-ALGEBRAIC
EQUATIONS VIA LINEAR CONTROL THEORY

Note that item (i) is proved in [20] by showing that for 7 € N,
Pia(AY) = (BEY(A)*F, V(A7) = (HA(A))*

Item (iii) is proved in [146] by showing W;(A?) = (V;(A))*, Vi(A?) = (Wi(A))*. Ttem
(ii) is proved in [143] by showing W;(A%) = (V;(A))4, Vi(AY) = (W;(A))*L as well as
observing a supplementary relation U;(A%) = (Y;(A))*, Y:(A9) = (U;(A))*. Our purpose
is to propose a new proof in Section to show that knowing one of the items (i), (ii)
or (iii), we do not need to prove the two others but just to use the relations of Proposition
(between 7*, V*, V* and #*, W*, W*) to simply conclude them. In other words,
Proposition [2.4.10] provides a dictionary allowing to go from one of (i), (ii) or (iii) to two
remaining ones.

2.5 Relations of the Kronecker indices and the Morse in-
dices

In this section, we discuss relations of the Kronecker indices and the Morse indices see
Appendix 2.9] An early result discussing these two sets of indices goes back to [104],
where it is observed that the controllability indices of the pair (A, B) and the Kronecker
column indices of the matrix pencil (sI — A, B) coincide, which can be seen as a special
case of the result in this section. Also in [[130]], it is shown that the Morse indices of
a triple (C, A, B) have direct relations with the Kronecker indices of the matrix pencil
(called restricted matrix pencil, see [97]) N(sI — A)K, where the rows of N span the
annihilator of Im B and the colunms of K span ker C.

It is known (see Appendix [2.9) that any DAE can be transformed into its KCF which is
completely determined by the Kronecker indices €1, ..., €4, P1, o5 Pbs O1y -5 Tcs M1y -evy Nds
the numbers a, b, ¢, d of blocks and the (A1, ..., \y)-structure (by this we mean the eigenval-
ues, together with the dimensions of their eigenspaces). The Kronecker indices (except for
p;’s and the corresponding eigenvalues \;’s) can be computed using the Wong sequences
as follows. For a DAE A = (FE, H), consider the Wong sequences #; and %#; of Definition
define ¢ = #; N ¥* and J#; = (E¥i_,)* N (HW*)* fori € N*.

Lemma 2.5.1. [20],[21] For KCF of A, we have

~

(i) a = dim (#7), d = dim (J£]) and

€ =1, fOT a_wi—1+1§]§a_wiu
nj =1 Jor d—wi1+1<j<d—w,

where w; = dim (#;,2) — dim (#41) and &; = dim (Ji}Hg) — dim (JZH), i e N.
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(ii) Define an integer v by
v=min{i e N| V" + W, =Y+ Wi} (2.21)
Then either v = 0, implying that the nilpotent part N (s) is absent, or v > 0, in which case

c = my and
oj=1, for c—m+1<j<c—m, i=12,..,v, (2.22)

where m; = dim (W1 + V) —dim (#;+7*) fori = 0,1,2, ..., v (in the case of m;_1 = T,
the respective index range is empty).

Any control system A = (A, B, C, D) can be transformed via a Morse transformation
into its Morse canonical form MCF, which is determined by the Morse indices ¢, ..., €/,
Py ey Phys Oy ooy 0Ly M, ooy My, the eigenvalues Ay, .., Ay and the numbers o', 0, ¢/, d’ € N
of blocks. The following results can be deduced from the results on the Morse indices
in [146],[145]. For A = (A, B,C, D), consider the subspaces V;, W;, U;, Y; as in

Lemma[2.4.8] define R; = W; N'V* and R; = (V;)+ N (W*)* fori € N.
Lemma 2.5.2. For MCF of A, we have
(i) a’ = dim (U*), d' = dim (Y*) and

;L .
e;=0  for 1<y <d —uw, (2.23)
=i  for d—-w_+1<j<d -]
7 i—1 — — %)
= 1<ji<d -
{ S S (224)
0 =i for d—-w_+1<j<d-d,
where w, = dim (Ri41) — dim (R;) and & = dim (Ri41) — dim (R;), i € N.
(ii) Define an integer ' by
Then ¢ = dim (% ) — dim (U*), 6 = ¢ — 7w} and
o:=0 for 1<j<$
J —i = 2.25
{O’;:i for ¢ —m_+1<j<d -7, 1=12 ..V, (2.25)

where 7, = dim (W, 1 + V*) — dim (W; +V*) fori = 0,1,2,...,0/ (in case of 7,_, = 7}
the respective index range is empty).

Note that for A = (A, B,C, D), the above index § = rank D. Formal similarities
between the statements of Lemma [2.5.1] and [2.5.2] suggest possible relations between the
Kronecker and the Morse indices. In fact, we have the following result.
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Proposition 2.5.3. (Indices relations) For a DAE A,,, = (E, H), consider its Kronecker
indices

(€1, 8a), (P1y-spp), (01,.500), (M1, ...,na) with a,b,c,d €N,

of the KCF, and for a control system N, = (A, B,C,D) € Expl(A), consider its
Morse indices

/

(Ehsenel)y (P Ply)y (00 esals), (s osmly) with o0, ¢ d €N,
of the MCF. Then the following holds:
(i)a:a/’z;l:g’l’... ,ga:5;,7andd:d/, ™ :77’17 77]d:77£l,’.

(ii) N(s) of the KCF is present if and only if the subsystem MCE? of the MCF is
present. Moreover, if they are present, then their indices satisfy

/ / /
c=c, or=0i+1- 0c=0l+1;

(iii) The invariant factors of J(s) in the KCF of A coincide with those of MCF? in the
MCEF of A. Furthermore, the corresponding indices satisfy

b= b/7 P1 = pll) oy Pb = 10;)’

The proof is given in Section Notice that in item (ii) of Proposition [2.5.3] the

indices o; and o, do not coincide, the reason is that the nilpotent indices o7, ..., 0. of
N(s) can not be zero (the minimum nilpotent index is 1 and if o; is 1, then N (s) contains
the 1 x 1 matrix pencil Os — 1), but the controllability and observability indices o7, ..., o/,

of MCF? can be zero (if o/ = 0, then the output y* of M CF? contains the static relation
y? = u?). It is easy to see from Proposition that, given a DAE, there exists a perfect
correspondence between the KCF of the DAE and the MCF of its explicitation systems.
More specifically, the four parts of the KCF correspond to the four subsystems of the
MCF: the bidiagonal pencil L(s) to the controllable but unobservable part M CF", the
Jordan pencil J(s) to the uncontrollable and unobservable part M C F?, the nilpotent pencil
N(s) to the prime part M C'F*® and the “pertranspose” pencil L”(s) to the observable but
uncontrollable part M CF*.

2.6 Internal equivalence and regularity of DAEs

An important difference between DAEs and ODE:s is that DAEs are not always solvable
and solutions of DAEs exist on a subspace of the “generalized” state space only due to
the presence of algebraic constrains. In the following, we show that the existence and
uniqueness of solutions of DAEs can be clearly explained using the explicitation procedure
and the notion of internal equivalence (see Definition below).
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Definition 2.6.1. A linear subspace .# of R", is called an invariant subspace of A;,, =
(E, H) if for any 2° € ., there exists a solution (¢, z") of A such that z(0,2°) = z°
and z(t,2°) € . for all t € R. An invariant subspace .#* of A;,, = (E, H) is called
the maximal invariant subspace if for any other invariant subspace .# of R", we have

MM

Remark 2.6.2. Note that due to the existence of free variables among the “generalized”
states, solutions of A are not unique. Thus it is possible that one solution of A starting
U € . stays in .# but other solutions starting at 2° may escape from .# (either
immediately or in finite time).

at x

It is clear that the sum .# + .#5 of two invariant subspaces of A is also invariant.
Therefore, .#Z* exists and is, actually, the sum of all invariant subspaces. If .# is an
invariant subspace of A, then solutions pass through any z° € .# and it is natural to
restrict A to ., in particular, to the largest invariant subspace .# *. Moreover, we would
like the restriction to be as simple as possible. We achieve the above goals by introducing,
respectively, the notion of restriction and that of reduction. We will define the restriction
of a DAE A to a linear subspace & (invariant or not) as follows.

Definition 2.6.3. (Restriction) Consider a linear DAE A, ,, = (F, H). Let % be a subspace
of R™. The restriction of A to %, called %-restriction of A and denoted A|y4 is a linear
DAE A|y = (E|#,H|#), where E|4 and H|4 are, respectively, the restrictions of the
linear maps F and H to the linear subspace %.

Throughout, we consider general DAEs A;,, = (£, H) with no assumptions on the
ranks of £ and H. In particular, if the map [E H] is not of full row rank, then A,
contains redundant equations. But even if we assume that [E' H] is of full row rank, then
this property, in general, is not any longer true for the restriction [F|4 Hg|, which may
contain redundant equations. To get rid of redundant equations (in particular, of trivial
algebraic equations 0 = 0), we propose the notion of full row rank reduction.

Definition 2.6.4. (Reduction) For a DAE A;,, = (E, H), assume rank [E' H] = [* < [.
Then there exists () € GI(l,R™) such that
Ered Hred
E H|=
where rank [E’”ed H ’”Ed] = [* and the full row rank reduction, shortly reduction, of A,
denoted by A%, is a DAE Ajc?, = A" = (E™¢, H™?).

Remark 2.6.5. Clearly, the choice of () is not unique and thus the reduction of A is not
unique. Nevertheless, since () preserves the solutions, each reduction A" has the same
solutions as the original DAE A.

For an invariant subspace .#, we consider the .# -restriction A| , of A, and then we
construct a reduction of A| 4 and denote it by A|"S¢ = (E|", H|"%!). Notice that the
red

order matters: to construct A|"%*, we first restrict and then reduce while reducing first and
then restricting will, in general, not give A|"%¢ but another DAE A"¢| .

31



CHAPTER 2. GEOMETRIC ANALYSIS OF DIFFERENTIAL-ALGEBRAIC
EQUATIONS VIA LINEAR CONTROL THEORY

Proposition 2.6.6. Consider a linear DAE A;,, = (E,H). Let /4 be a subspace of R™.
The following are equivalent

(i) A is an invariant subspace of A, ,,;

(ii) H# C E#;

(iii) For a (and thus any) reduction A|"$ = (E|"S, H|"S) of Al 4, the map E|" is of
full row rank, i.e., rank E|"%* = rank [E|"5 H|"¢).
Proof. (1)< (ii): Theorem 4 of [[12], for B = 0, implies that ./ is an invariant subspace if
andonly if H# C E/ .

(i) (iii): For A;,, = (E, H), choose a full column rank matrix P, € R™*™ such that
Im P, = E#, where ny = dim .. Find any P, € R"*"2 such that the matrix [P, P,] is
invertible, where ny = n — n;. Choose new coordinates z = Px, where P = [P, PQ]_l,
then we have

A:EP'Pi=HP 'Px = [E, B [?l] = [H, Hy)] [Zl] ,
Z9 Z9
where E1 = EPl, E2 = EPQ, H1 = HPl, HQ = HPQ, and z = (2’172’2). Now by
Definition [2.6.3| the .# -restriction of A is:
A‘/// . Elz‘l = lel-

E .
Find @ € GI(I,R) such that QF; = { 01], where E; is of full row rank, then denote

H,

QH, — [m

} By H.# C E.#, we can deduce that H; = 0 (since QH.# C QE.# =

Im [gl] C Im {Eol] ). Thus a reduction of A| 4, according to Definition [2.6.4} is A" =
1

(E|"st, H|"ed) = (El, Hl) Clearly E|"¢ is of full row rank. L

Define A|y- ) as the control system A = (A, B, C, D) restricted to V* (which is
well-defined because V* can be made invariant by a suitable feedback) and with controls
u restricted to U* = (B~'V*) Nker D. The output y = C'x + Du of A becomes y = 0 and
by A|f§‘f7u*), we denoteA |y« y+) without the trivial output y = 0.

Proposition 2.6.7. For a DAE A, = (E, H), consider its maximal invariant subspace
AM* and its largest (E~', H)-invariant subspace V'*. Then we have

(i) H*=V";

(ii) Let A € Fapl(A) and A* € Expl(A|"$L). Then A|’("§d y+y and A* are explicit
control systems without outputs i.e., the MCF of the two control systems has no MCF?
and MCF* parts, and A|”ed ) is feedback equivalent to A*.

The proof is given in Section Analogously to the ex-equivalence of DAEs, we
define the internal equivalence of two DAEs as follows.
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Definition 2.6.8. For two DAEs A, = (E, H) and A;, = (E, H), let .#* and .#* be the
maximal invariant subspace of A and A, respectively. Then A and A are called internally

red

equivalent, shortly in-equivalent, if A|"%% and A]’;;i are ex-equivalent and we will denote

the in-equivalence of two DAEs as A A,

Remark 2.6.9. A similar definition to the above internal equivalence above is given in
[18]], called the behavioral equivalence, proposed via the behavioral approach of DAE:s.
The difference between the internal equivalence and the behavioral equivalence is that, in
the definition of internal equivalence, two DAEs are not necessarily of the same dimension,
we only require their reductions of . *-restrictions to be of the same dimension (since they
are ex-equivalent), but for the behavioral equivalence, the two DAEs are required to have
the same dimension.

Any A* € Expl(A]"¢L) is an explicit system without outputs (see Proposition ii))
and denote the dimensions of its state space and input space by n* and m*, respectively,
and its corresponding matrices by A*, B* and thus A}, . = (A", B¥).

Theorem 2.6.10. Let .#* and #* be the maximal invariant subspaces of A and A, re-
spectively. Consider two control systems:

A = (A", B*) € Bxpl(Al'@h), A" = (A", B*) € Eapl(AI").

Then the following are equivalent:

(i) ACA;
(ii) A* and A* are feedback equivalent;

(iii) A and A have isomorphic trajectories, i.e, there exists a linear and invertible map
S M* — M* transforming any trajectory x(t, z°), where 1° € .#* of AI"%L into
a trajectory 7(t,7°), 2° € A* 0fA|’;;i, where 3° = Sa°, and vice versa.

The proof is given in Section In most of the DAE:s literature, regularity of DAEs
is frequently studied and various definitions are proposed. From the point of view of
the existence and uniqueness of solutions, we propose the following definition of internal
regularity of DAEs.

Definition 2.6.11. A is internally regular if through any point 2° € .#*, there passes only
one solution.

Recall that rank (s (s£ — H) denotes the rank of a polynomial matrix sE' — H over
the ring R[s].
Proposition 2.6.12. For a DAE A,,, = (E, H), denote rank E = q. The following state-

ments are equivalent:

(i) A is internally regular;
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(ii) Any A\* € Expl(A"4) has no inputs;

(iii) The MCF of A € Expl(A) has no MCF" part.
(iv) rank £ = dim E.Z*;

(v) rankps)(sE — H) = ¢;

(vi) The MCF of A* € Expl(A|"$L) has the MCF? part only.

The proof is given in Section

Remark 2.6.13. (i) The above definition of internal regularity is actually equivalent to
the definition of an autonomous DAE in [[11]. Both of them mean that the DAE is not
under-determined (there is no L(s) in the KCF of sE — H).

(i1) Our notion of internal regularity does not imply that the matrices £ and H are
square, since the presence of the overdetermined part KCF* (or LP(s)) is allowed for
A= (EH).

(iii) If £ and H are square ([ = n), then A (equivalently, sE — H) is internally regular
if and only if [sE — H| # 0, s € C. It means that for the case of square matrices, the
classical notion of regularity and internal regularity coincide.

2.7 Proofs of the results

2.7.1 Proof of Theorem 2.3.4

Proof. (i) This result can be easily deduced from Definition [2.3.1]and [2.3.2]

(i1) Consider two control systems
A= (A,B,C,D) e Expl(A) and A= (A,B,C,D) e Expl(A).

Then by (i) of Theorem there exist invertible matrices Q, Q, P, P of appropriate
sizes such that

Qs — H) P = [SI_—CA :g} CQ(sE-A) P = [Sf_—cf‘ :g} - 26)

M % ) . .
“If”. Suppose A ~ A, then there exist Morse transformation matrices T, T;, T,, I, K such
that

[Ts TSK} {sI—A _B] [Tsl 0 } _ {sI—A _3]

0o T, -C  —D| |FT' T g

1 & _pl- (2.27)
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By (2.2'7), we have
T, T.K [sI—A —B T80
s s — P P—l s
b mle(er [t ) e 1

~a(e [“_g‘i jg] PP

Substitute (2.26) into the above equation, to have

~ 1 |Ts T,K -1 0] - =
B E—-H)P'| ¢ P=sE—H.
v T eesme g s
Thus A~ A via (Q, P), where
~  ~ 4 |Ts T4K - -1 0] -
_ A-1 s s -1 _ p-1 s
Q=0Q {O T, } @ and PP =P {FTsl Ti_l} P.

“Only if”. Suppose A ~ A, then there exist invertible matrices Q and P of appropriate
sizes such that Q (sE — H) P! = (sE’ - f[) , which implies that

QQ™ (Q(sE—~H) P PP = Q7 (Q(sE~ 1) P7) P
@20 ~~ -y [sI—A -B| ,5..5, [sI-A -B
QQQQ 1{ 0 _D]PP 'p 1:{ & —D}‘

QS Q4 P3 P4
1,2, 3,4, are matrices of suitable sizes. Then we get
Q' Q¥ [sI-A —-B][P'" P? [sI-A -B
Q Q| -c -D||P® PY | -C -D|°

o 1 2 _ ~ 1 2 ] )
Denote QQQ ! = {Q @ } and PP~'P~! = {P P ], where Q' and P!, for i =

o _ ~ Ql Q2 pl p2
Now by the invertibility of QQQ~* and PP~ 'P~!, we get { 0* O 41 and { P P4] are
invertible. By a direct calculation, we get Q3 = 0, P? = 0, Q' = (P')~!, thus Q* and P!

are invertible as well. Therefore, A X A via the Morse transformation
Mtran = (Qla <P4)717Q47 P3Q17 (Ql)ilQZ) :

B,C, D), the corre-

), by Definition

(iii) Given two control systems A = (A, B,C, D) and A = (A
sponding matrix pencils of AP = I'mpl(A) and A™P! = I'mpl(A

are sl—A =B and sI—A -B respectivel
—C —D —O _ £l p y'

“If”. Suppose ATmPL S ATl that is, there exist invertible matrices @ and P such that

sI—A -B] ., [sI-A -B
Q[_C _Dlp _[_é —D} (2.28)
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@3 Q4 Ps Py
suitable dimensions. Then by (2.28), we get Q3 = 0, P, = 0, Q; = (P;)~'. Since Q and

P are invertible, we can conclude that (), and P, are invertible as well. Therefore, A ~ A
via the Morse transformation M;,., = (Q1, (Py) ™, Q4, P3Q1, (Q1)'Q>).

Denote () = {Ql QQ} and P = [Pl PQ} with matrices Q* and P, fori = 1,2, 3,4, of

“Only if”. Suppose A ~ A via a Morse transformation Miran = (T, T;, T, F, K) (see

ex T, Tk
equation 24)’ then we have Almpl £ Almpl via (Q P) where Q = |:0 T :| and
Tt 0
p—l = S .
Fi 1 ]

2.7.2  Proof of Proposition 2.4.4]

Proof. (i) It can be observed from (2.10) that ¥; is non-increasing. By a dimensional
argument, the sequence 7; gets stabilized at i = k* < n and it can be directly seen from
Ve = H 1EY;~ that ¥ is a (H !, E)-invariant subspace. We now prove by induction
that it is the largest. Choose any other (H !, F')-invariant subspace ¥ and consider .
Fori =0, ¥ C ¥ Suppose ¥ C ¥, then HE¥ C H~'EY; (since taking the image
and preimage preserves 1nclus10n) thus ¥ = H'EY C H\EY, = 7/+1 Therefore,
¥ C ¥ fori € N,ie, ¥ C V., it follows ¥. is the largest u(H ', E)-invariant
subspace.

Now consider (2.T1)), observe that the sequence #; is non-decreasing and by a di-
mensional argument, %#; gets stabilized at i = [* < n. It can be directly seen from
Wi = ET'HW). that #}. is a (E , H)-invariant subspace. We then  prove that any other
(E , H)-invariant subspace W contains #*, fori = 0, #y C #; if #; C ¥, then

1H7%§E1H7/,so%+1: g, C E-\HW = W thatis %, C # fori € N,
which gives #}« C W and ¥j- is the smallest (E~!, H)-invariant subspace.

(i) By Definition[2.4.3] #* satisfies ¥* = H~'E/*, thus it is seen that H¥* C E7/*.
We then prove, by induction that, 7™ is the largest satlsfylng that property. Choose any
other subspace ¥ which satisfies HY C EV, consider ,fori = 0,507 C %.
Suppose ¥ C ¥, then ¥ C H'EY C H'EY¥; = %+1, thus Y C HEY, = Y.,
therefore ¥ C ¥;fori € N, i.e., VA C 7+, which implies 7 = ¥} is the largest subspace
such that HY™* C Ey™*

Obviously, {0} is the smallest subspace satisfying H{0} C E{0}, but #* is not always
{0}, so we prove that #* is not necessarily the smallest subspace such that E#™* C
Hw>. O
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2.7.3 Proof of Proposition 2.4.10

Proof. Observe that, by Definition |2.2. 1| and |2.4. 1[, if two DAEs A and A are ex-equivalent
via (Q, P), then direct calculations of the Wong sequences of A and A give that ¥%(A) =
PY(A) and #;(A) = P#;(A). As Ais a (Q, P)-explicitation of A, by Theorem i),
we have A ~ APl via (Q, P), where A7™"! = I'mpl(A). Thus we have

V(AP = PY(A),  Hi(AT™PY = PH(A). (2.29)

Notice that

= (5 42 2] wermmmo= ([ 2 )

where m = n — q and p = [ — q. The proof of (i) will be done in 3 steps :
Step 1: First we show that fori € N,
Fi(AT) = Vi(A). (2.30)

Calculate V; 1 (A) using (2.13)), to get

Vi (A) = ker [C D]ﬂl‘g ﬂ_l <VZ-(A)+Im [I(;D 231)

Equation (2.31) can be written as
Vi (8) = (3] [4 Bloe[l, 0Vi(a). [C D]s=0)
or, equivalently,

A B]_l []q 0

Vit (A) = [C D 0 O} Vi (A) (2.32)

Now, observe that the inductive formula (2.32) for V;,1(A) coincides with the inductive
formula (2.10) for the Wong sequence %1 (A™!). Since #,(A™P!) = Vy(A) = R, we
conclude that % (A™!) = V;(A) for all i € N.

Step 2: We then prove that for € N,

s = [ 78]

By calculating V; 1 (A) via (2.15)), we get
-1
A 1 B
Vi1 (A) = Vi(A)+1 )
We can rewrite the above equation as

Viz1(A) = [I; Ogm 0] ker[ (2.34)
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where V; is a matrix with independent columns such that Im V; = V;(A).

From basic knowledge of linear algebra, for two matrices M € R>*™ and N € R>*™,
the preimage M ~'ImN = [I,,, 0] ker [M, N]. With this formula, calculate %;;(AT™) via

(2.10), to get

—1
A Bl [, 0] [L, 0 0 A B [I, 0
' Imply _ q — q q Vs
i (A7) {C D] {0 0] [0 I, 0] ker {C D {0 0] ] (2.35)

where V; is a matrix with independent columns such that Im V; = 7#;(A).

In order to show that (2.33)) holds, we will first prove inductively that for all : € N,

{ViéA)} = [qu 8} YAUNIEDY (2.36)

Vo(A RY 1,
For i =0, [ 0(() )1 = [O} = {Oq 8} Yo(A™P), Suppose that for i = k € N, equation

I, 0
0 0

2.36)) holds, or equivalently, ng} = {

1 V(AP Then we have

[ka(A)}{Jq Ogscm 0] ke [A B Vk]

0 0 Opm 0] |lC D 0
I, 011, 0o 0], [A B [I, 0].,]@"[I, 0 -
- k “ = | ATmaly .
{0 0] [o I 0] er{c D {0 O]V’“} 0 o) AT

Therefore, equation ([2.36)) holds for all i € N.

Consequently, we have for: € N,

i @[3 2[5 @[3 2] 1]

Step 3: Finally, since 7"* and V* are the limits of the sequences 7; and V;, respectively,
it follows from that 7 *(A™!) = V*(A). Since ¥* and V* are the limits of ¥; and
A Bl VA
¢ ol [0

O8]

V;, respectively, it follows from (2.3

that ¥*(ATmP!) = [ } Thus by

229), we have P¥*(A) — #*(ATmH) — V*(A) — [é g] h [V*SA)} |

The proof of (ii) will be done in 3 steps :
Step 1: Firstly, we show that for i € N,
(AT = Wi(A). (2.37)
Calculate W;;1(A) by (2.14), as

= [} 5 (w1 2]
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B0 2 owiarnier e o))

(68 [ Blwam)o (5 3] [ Bt )
Observe that

5 8 Ste 1= [ 7 ]

Then we have

0 0 C D
Observe that the inductive formula (2.38)) for W;,1(A) coincides with the inductive for-
mula (2.11) for the Wong sequences #;,,(A™!). Since #o(AI™P) = Wy(A) = {0},
we deduce that #;(AT™) = W;(A) for i € N,

Wi (A) = [[" 01 h {A B} W;(A). (2.38)

Step 2: Subsequently, we will prove that for ¢ € N,

W1 (A) = ﬁf 8} h {WiéA)] . (2.39)

Considering (2.17) for A, we have

P01 [¢ (P o)

[ (5 5 i o)
which implies that

5 1) = [ S5 o) [ et 21) e 2]
(2.40)

I, 017" Wi (A)
0 0 0

Observe that the inductive formula (2.40) for [ } coincides with the

-1
inductive formula (2.14)) for W, ;(A). Since Wi (A) = ﬁ;l 8] [WOO(Aq = Im [[0 } ,

-1
we have W 11(A) = K;] 8] {WzéA)] forall i € N.

Step 3: Equation (2.37) and the fact that #* and WW* are the limits of #; and W,,
respectively, yield #*(A) = W*(A). Equation (2.39) and the fact that W* and W* are
-1 «
the limits of W; and W, respectively, yield W*(A) = K;I 8} [W O(A) } . Thus using
equation (2.29)), we prove (ii) of Proposition [2.4.10]
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2.7.4 Proof of Proposition 2.4.13

In this proof, we will need the following two lemmata. Denote by F(V;(A)) the class of
maps F' : R? — R™ satisfying (A + BF)V;11(A) C V;(A) and (C + DF)V;41(A) = 0.
Lemma 2.7.1. Given A,,, = (E, H), its (Q, P)-explicitation A = (A, B,C, D) € Expl(A),
and A" = Impl(A), consider the Wong sequences V;, #; of both A and A", given
by Definition and the subspaces V;, W; of A, given by Lemma Then fori € N,

we have

Vi (A = PY 4 (A) = { F@*ﬁ%} + {u? A)} : (2.41)
where F; € F(V;(A)) and
Wi (A = PH (D) = {WZEA)] + M A)] : (2.42)

Lemma 2.7.2. Consider the subspace sequences V; and W; of A, given by Lemma
Then for 1 € N, the following hold

PIW; 1 (AY) = HT(ET)™ (PTWi(AY)), (2.43)
PV (A" = ET(HT) 1 (PTV;(AY). (2.44)

Proof of Lemma We first show that equation (2.41)) holds. Let independent vectors

Ul 1)1
U1 = { %] yeey Vg = { 3‘} € R” form a basis of
Ul ’Ua

-1
2-29) 33 |A B V. (A
PYia(A) = %H(AI’“I’Z) {C D] { (() )} 7

where v} € R%, v} € R™,j = 1,2,...,a (implying that dim (¥;,1(A"")) = ). Now
without loss of generality, assume vjl. #0forj=1,..,kand vjl» =0forj=rk+1,...,q,
where K < « is the number of non-zero vectors v]l. Then from equation can
be deduced that 0]1 for j = 1,...,x form a basis of V;,1(A). Moreover, from lb it
is not hard to see that v7 for j = & + 1,...,a form a basis of U;(A). Let F; € R™*"
be such that Fjv; = v? for j = 1,...,x (such F; exists), then vy, ..., v, form a basis of

v h) * - T

Via(A) ][ 0 ]_[4 B T IViA)]
FVi1(A) U;(A)|]  |C D 0 |’
because both spaces have the same basis vy, ..., v,. We now prove that for any choice of
F;, we have F; € F(V;(A)). Pre-multiply the above equation by . g} on the left to
obtain )
(A+ BF;))V;11(A) N BU;(A) c Vi(A)]
(C+ DF;)V;11(A) DW;(A)| — 0o |
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Bui(A)] C {VI(A)} by (2.16). Thus it is easy to see that (A +

DU,(A) 0

Moreover, we get [

Subsequently, we show that equation (2.42)) holds. By (2.37) and (2.39), it follows that
fori € N,

-1
I, 0 W;(A)
(AT = N 24
Then by (2.29), we have %, (A™!) = P#;,,(A) and we complete the proof of (2.42)
by calculating explicitly the right-hand side of (2.45]). O
. d AT 0] [CT
Proof of Lemma[2.7.2] Notice that Ay, = 57 ol | prl [0 I m] . We first prove

that the following relations hold,
A B} ! {Iq 0

¢ p| |o O}TWKAd), Vin(A?) = {Iq O}T{A B}TVi(Ad).

Wi+1(Ad):|: 0 0 C D

(2.46)

For A%, calculate W via (2.14), to get fori € N:

AT 0

Wi (AY) = [BT 0} (W, (AY) Nker [0 1,,]) +Im {CT] .

DT

Moreover, it is not hard to see that

ﬁ;’ 8} _TWZ» (AY) = []Oq 8} (Wi (A" Nker [0 I,,]) + Im m

P

T
A B
Pre-multiply both sides of the above equation by [ c D} , it follows that

[é l’érﬁ) grwiw): Lfgi 8} (W (A%) Aker [0 1,]) + Im [gﬁ]
= Wi (AY).

Then calculate V;; for A4, via (2.13)), to get for i € N,

Vs (AD) —ker [0 1] {gﬁ 8}1 (vi (A%) + Im LC;D 2.47)
Rewrite (2.47) as
Vier (A%) = Im m " ([zn 0] ker E}gﬁ; DV (A1) Eg;i)
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AT CT

R R ) B P )

Therefore, the proof of (2.46)) is complete. Consequently, substitute

A B [, 0] .
[C D}:QHP R {0 0}_QEP1

into (2.46)), then it is straightforward to see that (2.43) and (2.44) hold forany i € N.  [J

Proof of Proposition[2.4.13] Notice that since A € Expl(A), by Proposition 2.4.12] we
have A4 € Expl(A?). Moreover, it is easy to see if A is the (Q, P)-explicitation of A,
then A is the (P~7, Q~T)-explicitation of A¢. The proof will be done in 3 steps.

Step 1; Step 1a: We show that for 7 € N,
Wi (AY) = (EH(A))" < Wi(AY) = (V;(A) ™ (2.48)
By A € Expl(A?) and (2.42) of Lemma2.7.1] we get

QWi (A7) = {WiiAd)] +Im m .

p

Moreover, we have

(E%(A))l _ (Q_lQEP_lp%(A))J‘ (Q_l {[q U| :

0 0
(" )

It is seen that #;, 1 (A?)

>
>
g
S
N>
SN—
'7
™
e
O
~
| — |
=
—
=
SN—
_
'_

(E¥;(A))* if and only if W;(A?) = (V;(A))*.
Step 1b: In this step, we will prove that for 7 € N,
V(AN = (HH(A)) " < Vi(AY) = (W,(A) ™ (2.49)

We first prove “=" of (2.49): Considering equation (2.29) and (2.36) for A%, we can
deduce that

BT =7 | Loyt = P ).

On the other hand, we have

ET(HA(A) = (B HA(A) A (A) = (P PHa (D)

= (P HY T (PHi(A)* &2 pr ({Wi/\)] i {%?A)Dl
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= PT {Wi(oA)T :

Now we can see that for i € N, if %;(AY) = (H#;(A))*, then V;(AY) = (W;(A))L.
We then prove “<" of (2.49): By equation (2.29) and (2.33), we can deduce that

A CTT {Vi(Adq . (2.50)

Q " (AY) = [BT DT 0

We have

A B

(i 8)" = (@ QUP PO =@ [ ]

_ (Q‘1 [é ﬁ])T (PHir())*

el 51 ("))

The above equation gives

] PHia (D))

AT CT} - {(Wi(A))L} ' (2.51)

RTINS I R

Now equations and yield that for i € N, if V;(A?) = (W;(A))+, then
Yi(AY) = (H#;(A))*. Thus the proof of is complete.
Step 2; Step 2a: We prove that for ¢ € N,

i1 (A?) = (EY(A)F & Wi(A) = (Vi(A)- (2.52)

Using equation (2.43)) of Lemma[2.7.2] we will prove by induction that for i € N,
HT#;(AY) = PTW;(AY). (2.53)
Fori = 0, H'#,(AY) = PTW,(A?) = 0; If HT#;(A?) = PTW,;(A?), then
HT Wiy (0% B2 g7 (BT g ad) = BT (ET) PP (A% B2 Ty, (A9),

By an induction argument, holds for ¢ € N.

We now prove ” =7 of (2.52): Assume fori € N, #;,1(A?) = (E¥;(A))*, it follows
that

Wi (A) ) PTHT Y (A% = PTHT(EY(A) = (PHEX(A))*
ED Py () = (F (AT By, (A

We then prove ” <= 7 of (2.52): Assume for i € N, W;(A9) = (V;(A))4, it follows that

(2.30) .,
BB

(EV(A)" = BTN (Fi(A)- = E7H(P (AT P~Vi(A))*
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EfTPTWi(Ad) THTW(ACI) - W+1 (Ad>
and the proof of (2.52) is complete.

Step 2b: In this step, we show that for s € N,

Yi(AY) = (HH#(A)F & Vi(AT) = (Wi(A)*. (2.54)

Using equation (2.44) of Lemma[2.7.2] we will prove by induction that for i € N,
H(AY) = (HT)"1 (PTY;(AY). (2.55)

For i = 0, %(A?) = R = (HT)"1PTVy(AY); If ¥(A?) = (HT)~1PTVY;(A?), then we
get
Vi <Ad><HT> ETH(AY) = (HT) BT (HT) 7 PTV(A)
S HT) PV (A,
By an induction argument, holds for 7 € N.
We now prove ” =7 of- Assume ¥ (A?) = (H#;(A))*, then
PV (AY B2 Er Ty, Aty B2 gAYy — BT (HW(A)
= EHAAN E (0 = A B P a),
We then prove ” < 7 of (2.54): Assume V;(A?) = (W;(A))~, then fori € N,
(HA(A)™ = (HT) " (Hi(A)F = (HT) " (P (AI)
S HT) T PIWIA) = (HT) T PTV(AY)

7i(AY),
which completes the proof of (2.54).

Step 3: Since ¥, ¥*, V*, W*, V*, W* are the limites of ¥;, ¥;, V;, W;, V;, W,

respectively, equations (2.48)) and (2.49) prove that (i) < (ii) holds, and equations (2.52))
and (2.54) prove that (i) < (4i7) holds. O

2.7.5 Proof of Proposition 2.5.3]

Proof. Note that the Kronecker indices are invariant under ex-equivalence. By A ~ A7l
in our proof we can work with the Kronecker indices of A/ instead of those of A. In
what follows, we will use the results of Lemma [2.7.1| given in Section

(i) Recall Lemma i) for AT and Lemma i) for A. For i € N, it holds
that,

%(Almpl) — %(Almpl) N ”f/*<AImpl)
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s [0 5 ) ([0 )

- [F w?zwl(lA()A?r\w? \7(A()A))] + {u*?A)], (2.56)

for a suitable F* € F('V*(A)). Then we have

a Lemma dl ((%/1 (Almpl>) 1' dim ( |:U*(<)A):| ) — dim (U*(A)) Lemma:i) a.
Moreover, it is seen that for ; € N,
w; Lemma:i) dim (%+2<A1mpl)) — dim (%+1 (Afmpl))

dim (Wipi (A) NV*(A)) — dim (Wi(A) N V*(A))

— dim (Rys1 (M) — dim (Ry(A)) B2

Now consider equations (2.19)) and (2.23) and it is sufficient to show

gj=¢;=0 for 1<j<a—wy=d —w,,
=i for d—-w_ +l=a—w1+1<j<a—w=d—-w.

The statement that d = d’, 1; = 7, can be proved in a similar way using dual objects. It is
not hard to see that for 7 € N*,

<%/(Al’nzpl) (E/V (Almpl))i N (HW*(AIm/pl))L
Prop. ml ((Almpl) ) N nj/*((AImpl)d)
Lemm:am Wi_l(Ad) nv* (Ad) X 0
* u*(A9)]’
where (A™P1)? is the dual system of AP, which coincides with Impl(A?). It follows

that

i (Aam) =i ( [0 |) = dim )

We can also see that for 7 € N,

Lemma Lemma

d d’

& = dim (%H(Afmpl)) dim (Jiq (Afmpl)>
— dim (WM(Ad) N V*(Ad)) — dim (W;(A") N'V*(A7))
ORI Qi (Vi) W*)L) —dim ((V;)*n(WH)*h)

dlm

Now it is sufficient to show that

nJITZ;:O for 1§j§d—d)0:hj—<b6,
77j:77}:i fOl" h—wl’-,l—l—lzd—dzi_l—i-l§j§d—d)¢:h—A
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(i) Recall Lemma ii) for AP\ and Lemma ii) for A. We have for all
i€ Nt,

v*(AW)+%(AIm’”)Lm¥m[ e %[uio }+[Wi_1(A)]+{%(()AJ

F V5 (A) (A) ¥
[ )

If v = 0, then we have the following result by (2.21):

(Almpl) + %(Almpl) — 7/*<A1mpl) i %(Afmpl) =

(0] L) ([ = o v

It follows that ¢ = dim (% (A)) — dim (U*(A)) = 0. Therefore, in this case, the MC F*3-
part of MCF is absent. As a consequence, if N (s) of KCF is absent, then M C'F® of MCF
is absent as well. If v > 0, from (2.21) we get

e PN M R Y
= min {i € N* [V*(A) + Wi (A) = V*(A) + Wi(A)} = o/ + 1.

1/:min{i€NJr

We have
¢ = mo = dim (¥ (AT + W4 (ATP) — dim (7F(ATPY) + #p(AT)
< ("] 1) o (2]l
= dim (% (A)) — dim (U(A)) = ¢
We also have for i € N,

o = dim (F5 (AT + Ay (M) — dim (77 (AT) 4+ A4 (AT))

- ([ [ ) ([ 0]
= dim (W;(A) + V*(A)) — dim (Wi_i(A) + V*(A)) = 7._,.

)

Now substituting ¢ = ¢/, m; = 7j_, and v = v/ + 1 into (2.22), we can rewrite equation

€22 as

0;=0 for 1<j<c—m=c—my=79,
o=t for -7 _s+1l=c—m 1 +1<j<c—m=c —nm_y, 1=2,..,V+1

Replacing 7 by ¢« — 1, we get
ogj=i—1 for d—m_+1<5j<d—-m, i=12.,0V.

Finally, compare the above expression of o; with that for o of (2.25), it is not hard to see
thato; +1 =o' forj=1,...,c
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(iii) We only show that the invariant factors of M CE? of A coincide with the in-
variant factors of the real Jordan pencil .J(s) of A/™P!, then the equalities d = h, 7, =
ny, -+ ,na = 1), are immediately satisfied. First, let two subspaces 25 C #*(A™"!) and
%5 C V*(A) be such that

Dy @ (VAP A (ATY) = (AT 2 @ (VM) NWH(A)) = V().

The above construction gives A™P|. 25, = KCF? and A|25 = MCF?, where KCF?
corresponds to the Jordan pencil J(s). Use Lemma conclude that

%'2 D (zy/*(AImpl) N W*(Almpl» — /V*(Almpl)

implies

we ([ L)) ()] # L))
- ({FVV(/E/)\)} * U*E()A)D
= 25 ® q F,\EVW(@\;X *(*/8\))] * {U*?A)D N ([FVV(?/)\)] i {U*(ZA)D ’

where F' € F(V*(A)), ' € F(W*(A) n'V*(A)). Since 25 @ V*(A) N W*(A) = V*(A),

we have 25 = [ %

| where " € F(25). Then, it follows that

[31_,4 _B] - [SI—A —B} [ 7 }: {(s]—(AqLBF”))D%}

~C -D -C -D||F'# (C+ DF") %
_Fd—m+BW»%}
_ ! |

Now it is known from Lemma 4.1 of [146] that (A + BF")|25 does not dependent on
the choice of F”. Thus the invariant factors of (sI — (A + BF")) 2 coincide with the
invariant factors of M CF? for A. Finally, from the above equation, it is easy to see that
the invariant factors of J(s) in KCF of A coincide with those of M CF? of A. O]

2.7.6  Proof of Proposition

Proof. (i) By Proposition [2.6.6], .# is an invariant subspace if and only if H.# C E.# .
Therefore, .#Z* is the largest subspace such that H.#Z* C E.#*, then by Proposition
ii), we have .Z* = V'*.

(ii) By Proposition [2.6.6, for A" = (E|"%L, H|"1), the matrix E|"¢ is of full
row rank. Thus from the explicitation procedure, it is straightforward to see that A* €
Expl(A]"¢L) is a control system without outputs. Note that, by the definitions of reduction

and restriction, if two DAEs A < A, then A\T;{d* < A\’;/d In the following, without loss of
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generality, we assume A is in its KCF (which is invariant under ex-equivalence). Denote
the four parts of the KCF of A as KCF*, k = 1,...,4 and the corresponding matrix
pencil of each part is:

L(s) for KCF', J(s) for KCOF? N(s) for KCF? [LF(s) for KCF*.
Thus A € Expl(A) is in the MCF. It is easily seen that
Al ey = (MCF', MCF?)

which can be seen as a control system without outputs. From the one-to-one correspon-
dence of the KCF and the MCF discussed in Section [2.5] it is straightforward to see that
(MCF', MCF?) € Expl(KCF*', KCF?), which implies

red

Alipd 4oy = (MCF', MCF?) € Expl(A[).

red

Since A* € Expl(AlY) , by Theorem [2.3.4(ii), we have A|’(“§‘fw) X px, Finally, since A*
and A|f$,§f 1) are two control systems without outputs, their Morse equivalence reduces to
their feedback equivalence (see Remark [2.2.4) O

2.7.7 Proof of Theorem

Proof. (i) < (ii): By Definition [2.6.8, we have AZ A if and only if Al"ed = Aol
Consider A* € Expl(A]"%L) and A* € E:cpl(A|’"/%), then by Theorem 2.3.4kii), it follows
that A|"s2 ~ A|"ed if and only if A* ~ A*. Thus by Proposition [2.6.7(ii), A* and A* are
two control systems without outputs, which implies that their Morse equivalence reduces
to their feedback equivalence (see Remark [2.2.4)).

(i) < (i44): We first prove that two DAEs A* = I'mpl(A*) and A* = I'mpl(A*) have
isomorphic trajectories if and only if A* and A* are feedback equivalent. Let (z(t), u(t))
and ((t),@(t)) denote trajectories of A* and A*, respectively. Suppose A* and A* are
feedback equivalent, then there exist matrices 7, € Gl(n*,R), T; € Gl(m*,R), F €
R™ *"" such that A* = T,(A* + B*F)T; ', B* = T,BT, . Since A* has no output, its
implicitation (see Definition [2.3.1)) is

For A*, its implicitation is

A" [I 0] Lﬂ — (A B ij = [I 0] m =T, [A* B [;;;1 Toll m
y

i

It can be seen that any trajectory (z(t),u(t)) of A* satisfying z(0) = 2° and u(0) = u°,
T - "
is mapped via T' = { F%_l Tol} into a trajectory (Z(t), a(t)) of A* passing through

o] =7 L)
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Ty Ty

T T4] such that

Conversely, suppose that there exists an invertible matrix 7" = [

2(t) . T1 T2 Z(t) ~ ~ . . e .
L} (t)] = [Tg TJ LL | It follows that (Z(t), @(t)), being a solution of A*, satisfies

which implies

s o) Go) = 211 1) Co)
Since (z(t), u(t)) satisfies 2(t) = A*z(t) + B*u(t), it follows that

Ty2(t) + Tou(t) = (A*Ty + B*Ty)z(t) + (A*Ty + B*Ty)u(t) =
Ty(A*2(t) + B*u(t)) + Tou(t) = (A*Ty + B*Ty)2(t) + (A*Ty + B*Ty)u(t).  (2.57)

Notice that equation is satisfied for any solution (z(¢), u(t)) of A*. (a). Letu(t) =0
and (z(t,2°),0) (where 2° # 0) be a solution of A* (obviously, such a solution always
exists). By substituting this solution into and considering it for ¢ = 0, we have
TyA*2° = (A*T) 4+ B*T3)2°, where 2° = 2(0) can be taken arbitrary, which implies
A* = TrYA* + BY(TsT7Y)Ty. (b). Fix 2(0) = 2° = 0 and set u(t) = wui(t) =
[0,...,t,...,0]", where ¢ is in the i-th row. Evaluating at ¢ = 0, we have z(0) = 0,
w(0) = 0 and @(0) = [0,...,1,...,0]", and thus by we have Tyu'(0) = 0. So
taking control u!(¢),...,u™ (t) of that form, we conclude that 7, = 0. Now it is easy
to see from 1-| that B* = T_IB T,. Thus A* and A* are feedback equivalent (see
Remark [2.2.4) via T, = T\, T; = T; " and F' = T5T;'. Therefore, any trajectory of A* is
transformed via 7’ into a trajectory of A* if and only if A* and A* are feedback equivalent.

Then by Theorem [2.3.4(i), we have
A" A* = Impl(A*) and A|Ted ~A* = Impl(A*)

(since A* € Expl(Al"¢) and A* € Expl (A\Wd )). Moreover, by Remark , there exist
matrices P € GI(n*,R) and P € GI(n*,R) such that any trajectory of A]md is mapped
via P into the corresponding trajectory of A* and any trajectory of A]Wd is mapped via P
into the correspondmg trajectory of A*. Now we can conclude that the linear and invertible
map S = PTP~! sends any trajectory of A|"“% into the corresponding trajectory of A\

red

if and only if A* and A* are feedback equivalent. D

2.7.8 Proof of Proposition 2.6.12]

Proof. (i) < (ii): Consider a DAE A* = Impl(A*). We have A" = A* (implied
by A* € Expl(A]"¢) and Theorem [2.3. 4k i)), we get A|’”Ed ~ A*. Actually, since A* is
defined on .#*, it follows from Definition [2.6.8] that A|"%% ~ A* = I'mpl(A*). Thus by
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the equivalence of item (i) and (iii) of Theorem [2.6.10] the solutions of A passing through
2% € .#* are mapped, via a certain linear isomorphism S, into the solutions of A*, which
means that A is internally regular if and only if A* has only one solution passing through
any initial point in .#*. This is true if and only if the input of A* is absent, i.e., A* is an
ODE without free variables. Therefore, A is internally regular if and only if A* has no
1mnputs.

(i1) < (4i1) < (vi): From the proof of Proposition ii), we can see that the input
is absent in A* if and only if A* = MCF? of A, thatis, M CF* is absent in the MCF of A.

(1) & (iv) < (v): Using ¥* = .#* and the KCF of A, it is straightforward to see
this equivalence. O

2.8 Conclusion

In this chapter, we propose a procedure named explicitation for DAEs. The explicitation
of a DAE is, simply speaking, attaching to the DAE a class of linear control systems
defined up to a coordinates change, a feedback and an output injection. We prove that the
invariant subspaces of the attached control systems have direct relations with the limits
of the Wong sequences of the DAE. We show that the Kronecker indices of the DAE
have direct relations with the Morse indices of the attached control systems, and as a
consequence, the Kronecker canonical form KCF of the DAE and the Morse canonical
from MCF of control systems have a perfect correspondence. We also propose a notion
named internal equivalence for DAEs and show that the internal equivalence is useful when
analyzing the existence and uniqueness of solutions (internal regularity).

2.9 Appendix

Kronecker Canonical Form (KCF) [117],[73]: For any matrix pencil sE — H € R>*"[s],
there exist matrices Q € GI(l,R), P € Gl(n,R) and integers &1, ...,6, € N, p1, ..., pp €
N,oq,...,0. € N9y, ...,ng € Nwith a, b, c,d € N such that

Q(sE — H)P™' =
diag (Le, (5), ..., Le, (5), Jpy (5), -y Jpo (8), No (), .., Noo (), Ly (s), - Lf;d(s)) ,

where (omitting, for simplicity, the index i of ;, p;, 05, 7;) the bidiagonal pencil L.(s) €
R*(E+ (3], the real Jordan pencil J,(s) € R?**[s], the nilpotent pencil N, (s) € R7*7[s]
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and the “per-transpose” pencil L (s) € R7*(+1[s] have the following form:

-1 s 1
s —1
Le<8)={ } N, (s) = L Lr(s)=| 7
s —1 s .
s=Ap —1 S*Ap i[ s
JP(S): h ) Oer(S>: h 9 S_Ap:[s;fps__fépﬂ]
. S:}‘P ’ S:IIXP

where \,, ¢, ¢, € R. The integers ¢;, p;, 0, 1); are, respectively, called Kronecker column
(minimal) indices, the degrees of the finite elementary divisors, the degrees of the infinite
elementary divisors and ,Kronecker row (minimal) indices. In addition, A, and ¢, +1¢,, are
the corresponding eigenvalues of J(s). These indices are invariant under external equiva-
lence of Definition 2.2.11

Definition 2.9.1. (Prime system) [145] A control system A = (A, B, C, D) is called prime
if there exists a Morse transformation Mj,.,,, such that M;,.,,(A) = A3 = (43, B3, C3, D3),
where the 4-tuple (A3, B3, C®, D?) is given by (2.58) below.

Lemma 2.9.2. [145] A control system A = (A, B, C, D) is prime if and only if
W =2, Y =% V=0, U =0.

Morse Canonical Form MCF [[146],[145]: Any linear control system A = (A, B, C, D)
is Morse equivalent to the Morse canonical form MCF shown below:

MCF"': ' = Azt + Bl!
MCF?: 32 = A%2?
MCF :
¢ MCEF3: 3= A32% + B3?, o3 =323+ D3?
MCOF*: #* = A*z4, yt = 042t

If a control system A = (A, B, C, D) is in the MCF, then the matrices A, B, C, D, together
with all invariants are thus given by

A 0 0 0 | B 0]
0 A2 0 0 0 0
A Bl |0 0 A 0 0 B3
{C D]_ 0 0 0 A*| o o]’
0 0 C* 0 0 D3
0 0 0 C*| 0 0]

(i) with A! = diag{A;,l, AL}, Bl = diag{Bgl,l, .., Bl }, where

A;/ = |:8 [561:| e RE/XE,, Ball _ |:?:| c R‘E,Xl,
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The integers €/, ..., ¢/, € N are the controllability indices of (A*, B1).

(i) A? = diag{A%, , ..., A;Z/ }, where A? is given by
N1 AT

AQ _ . or AZQ _ A’L — [s—q‘)i —©; }7

v pi 5@

where )\i, Dis ¢z € R.
(iii) The 4-tuple (A3, B3, C3, D?) is controllable and observable (prime). That is,

(A4 | B 0]
[éz IB;;] = {03 0 oJ, (2.58)
0 | 0

Is
A3 3
0 is square and invertible and 6 = rank D? € N, and the matrices

where [ s

A3 1 13 13 R3 _ q: 3 3 A3 3: ~3 ~3
A —dlag{AagH""vAa;,}v B —dlag{BagH,...,Baé/}, C —dlag{CUgH,...,CU/ }

Cl
where

0

3 _
A/_o 0 1

(o

1 [O ](f’—l

} e R, B = [ } eR7 C%=[1 0] e R

The integers 0y = -+ = 05 = 0, and 05,1, ...,0» € NT are the controllability indices of
the pair (A3, B3) and they are equal to the observability indices of the pair (C?, A3).
(iv) At = diag{Af],l, s Af],d/}, ot — diag{C’%‘i, s C’f];’}, where
At = |0 e e g o = [1 0] e R™Y
700 I '
The integers 7}, ..., € N are the observability indices of the pair (C*, A*).

Clearly, the subsystem M CF? is in the real Jordan canonical form. Denote j; = €, if
k=1, p; =olif k=3, and y; = 1} if k = 4. Then for k = 1, 3, 4, the subsystem M C F*
consists of a’, ¢, d’, subsystems (indexed by ¢) for which either p; > 1 and then they are
given by

1< j<p—1, for k=1,34,
257] = Ufa j:,uza for k = 1737 yzk = Zf717 for k= 3747
0, J = W, for k =4,

or u; = 0 (notice that we allow for the Morse indices to be equal to zero) in which case the
input u! contains components u; that do not affect the system at all (if €, = 0), the output
y* contains trivial components y; = 0 (if 7, = 0) and the output 3® contains § = rank D3
static relations y? = u? (if o} = 0).

We call the integers ¢!, pl, 0., . the Morse indices of control systems, together with
a,v,cd,d,0and \; € Ror \; = o+ j¢ € C, where j = y/—1, they are all invariant under
Morse equivalence.
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Chapter 3

From Morse Triangular Form of ODE Control
Systems to Feedback Canonical Form of DAE
Control Systems

Abstract: In this chapter, we study connections between the feedback canonical form
FBCF of DAE control systems, shortly DAECSs, proposed in [[131]] and the famous Morse
canonical form MCF of ODE control systems ODECSs, see [146],[145]. First, in order
to connect DAECSs with ODECSs, we propose a procedure named explicitation (with
driving variables). This procedure attaches a class of ODECSs with two kinds of inputs
(the original control input and a vector of driving variables) to a given DAECS. On the
other hand, for classical linear ODECSs (with one type of controls), we propose a Morse
triangular form MTF to modify the construction of the MCF given in [145]. Based on this
MTF, we propose an extended MTF and an extended MCF for ODECSs with two kinds
of inputs. Finally, an algorithm is proposed to transform a given DAECS to its FBCF.
This algorithm is based on the extended MCF of an ODECS given by the explicitation
procedure. At last, a numerical example is given to show the efficiency of the proposed
algorithm.

3.1 Introduction

Consider a linear control system described by a differential-algebraic equation DAE of the
following form:

AY: Ex = Hx + Lu, (3.1

where ©+ € 2~ = R" is called the “generalized” state, v € R™ is the vector of control
inputs, and where £ € R>", H € R>" and L € R>™. A linear DAE control sys-
tem DAECS of form (3.1) will be denoted by A}, = (E, H, L) or, simply, A". The
motivation of studying DAECSs comes from the mathematical models of such constrained
dynamical systems as electrical circuits [63],[176], mechanical systems [159],[143]], chem-

ical processes [60],[121]], etc.
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In order to connect DAEs of the form E+ = Hax with ODE control systems, shortly
ODECSs, and analyze DAEs using classical control theory, we proposed a procedure
named explicitation in Chapter[2] see also [47]. In the present chapter, we will propose a
more general explicitation procedure called explicitation with driving variables (see Def-
inition [3.2.2) for linear DAECSs. Since the vector of driving variables enters statically
into the system (similarly as the control input u), we can regard it as another kind of in-
put. More specifically, the explicitation with driving variables of a DAECS is a class of
ODECSs with two kinds of inputs of the form:

Auv:{x:Ax+Bu+Bv 32)

y = Cx + D"u,

where A € R™", B* €¢ R™™, BY € R"**, C' € RP*" and D" € RP*™, where u € R™
is the vector of control variables and v € R* is the vector of driving variables. An ODECS
of form will be denoted by A} = (A, B, BY,C, D) or, simply, A**. Note that
although both v and v may be considered as inputs of system (3.2), we distinguish them
because they play different roles for the system and, as a consequence, their feedback
transformation rules are different (see Remark [3.2.7). A classical ODECS (with a control

input only) is of the form

Au:{x:Ax—i-Bu (3.3)

y=Cz+ D"u,

where A € R, B* ¢ R™™, C € RP*™ and D* € RP*™. An ODECS of form (3.3 will
be denoted by A* = (A, B*,C, D") or, simply, A“.

n,m,p

Remark 3.1.1. Observe that we can express an ODECS A*Y of form @), as a classical
ODECS A" = (A, B*,C, D¥) of form by denoting w = [u”,v”]", B* = [B* B"]
and D¥ = [D* 0]. Throughout the chapter, depending on the context, we will use either
A" or A" to denote an ODECS with two kinds of inputs.

The feedback canonical form FBCF obtained in [131] (we restate it as Corollary
of the present chapter) for linear DAECSs plays an important role in DAECS theory, e.g.
controllability analysis [17], regularization [32],[18]], pole assignment [132]],[27] are dis-
cussed based on this FBCF. The purpose of the present chapter is to find an efficient geo-
metric way to transform a DAECS A" into its FBCF via the explicitation procedure. More
specifically, instead of using transformations directly on a DAECS, we will first transform
an ODECS, given by the explicitation of our DAECS, into its canonical form (called the
extended Morse canonical form EMCEF, see Theorem [3.4.2). Then by the relation between
DAECSs and ODECSs given in Section[3.2] we can easily get the FBCF from the EMCF.

The FBCF of DAECSs is actually an extension of the Kronecker canonical form
(see [L171,[75]]) of singular matrix pencils s&Z — H. Some methods (most are numeri-
cal) of transforming a matrix pencil into its Kronecker canonical form can be found in
[62],[1184],[10]. The authors of [20] proposed recently a geometric method to get a quasi-
Kronecker triangular form for singular matrix pencils based on the Wong sequences and
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there the quasi-Kronecker triangular form is transformed into the quasi-Kronecker form
by solving some generalized Sylvester equations. Inspired by the quasi-Kronecker trian-
gular form of [20], we will propose a Morse triangular form MTF (see Proposition [3.3.1))
to transform an ODECS (with one type of controls) into its Morse normal form MNF
(see Proposition [3.3.2)). Then we show that the MTF can be easily generalized to an ex-
tended Morse triangular form EMTF for ODECS with two kinds of inputs. After solving
some constrained Sylvester equations, the transformations from the EMTF to an extended
Morse canonical form EMCEF are also easy to construct. We use the following diagram to
show the relations of the results in the present chapter:

AY FBCEF [131]]
Corollary
explicitation, see Def. implicitation, see Sec[3.4]
Thm[3.3.4 Thm[3.3.3 Thm[3.4.2)
extension extension extension extension
Prop[3.3.1] Prop[3.3.2] [145]

Note that a procedure of transforming an ODECS A" into its MCF was given by Morse
[146] for D* = 0 and by Molinari [145]] for the general case D" # 0. We propose to do it
via two intermediate normal forms MTF and MNF.

This chapter is organized as follows. In Section [3.2] we introduce the explicitation
with driving variables procedure and build geometric connections between DAECSs and
ODECSs. In Section we show a method of constructing the MTF and the MNF for
classical ODECSs of form (3.3), then we extend them to the EMTF and the EMNF for
ODECSs (of form (3.2))) with two kinds of inputs. In Section[3.4] we propose an EMCF for
ODECS:s of form (3.2) and show a way of calculating its indices via invariant subspaces.
These results allow to construct the FBCF of DAECSs and to calculate the FBCF indices
as corollaries. Finally, a simple algorithm is proposed to construct the FBCF for a given
DAECS. In Section [3.5] we give a numerical example to show the effectiveness of the
algorithm. Section [3.6]and[3.7]contain conclusions and proofs of this chapter, respectively.
Notations and definitions of geometric invariant subspaces for ODCSs and DAECSs are
given in Appendix.

3.2 Explicitation with driving variables for linear DAE
control systems

Throughout, we will use the notations given in Appendix. Consider a DAECS A} = =

I,n,m

(E, H, L), given by (3.1). The solution of A" is a map (z(t),u(t)) : R — R" x R™ with
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x(t) € Ctand u(t) € €Y satisfying Fi(t) = Hx(t) + Lu(t).

Definition 3.2.1. Two DAECSs A, . = (E, H,L)and A}, = (E, H, L) are called ex-

ternally feedback equivalent, shortly ex-fb-equivalent, if there exist matrices Q) € GI(l,R),
P e Gl(n,R), F € R™*™ and G € GIl(m,R) such that

E=QEP', H=Q(H+LF)P™', L=QLG. (3.4)
We denote the ex-fb-equivalence of two DAECSs as A* “ I An,

The notion of ex-fb-equivalence is the classical equivalence of DAECSs via left multi-
plication by @ and right multiplication by P!, completed by feedback transformations of
the controls via u = F'x + Gu. Now we introduce the explicitation with driving variables
procedure for A" as follows.

e Denote the rank of £ by ¢ € N, define s = n — ¢ and p = [ — ¢. Then there exists
a matrix ) € GI(l,R) such that QF = [%11 , where F; € R?*"™ and rank E; = q.
Via ), DAECS A* is ex-fb-equivalent to

Ey| . |[H Ly
{O}x— {Hijr {Lz] u, 3.5
H1 Ll -
where QH = | QL = / , and where H; € R?*" H, € Rl-9xn [, ¢
2 2

qum’ LQ c R(lfq)xm.

e The matrix F; is of full row rank ¢, so let EI € R™*? denote its right inverse. Set
A= EI H, and B" = EI L,. Consider the differential part of 1|

Eli' = H1$ + Llu. (353)
The collection of all & satisfying (3.5a)) is given by the differential inclusion:

T € Ax + B"u + ker Ej. (3.6)

e Choose a full column rank matrix B” € R"*® such that Im BY = ker £y = ker £
(note that the kernels of E'; and E coincide since any invertible () preserves the ker-
nel). Thus, by (3.6)), there exists a vector of driving variables v € R® parameterizing
the affine subspace Ax + B“u + ker E; and all solutions of the differential inclusion
correspond to all solutions of

i = Ax + B"u + B"v. 3.7

Observe that the columns of B" span the subspace ker /2 with the help of driving
variables v. Now all solutions of DAE (3.5)) can be expressed as all solutions (corre-
sponding to all controls v(t)) of

(3.8)

T = Az + B%u + B%v
0=Cz+ D"u,
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where C' = Hy € RP*™ and D" = L, € RP*™. Recall that a control system of form
(3.2) is denoted by A}, = (A, BY, BY,C, D"). It is immediate see that equation

(3.8) can be obtained from the ODECS A*" by setting the output y = 0. In the above
way, we attach an ODECS A" to a DAECS A".

The above procedure of attaching a control system A™" to a DAECS A" will be called
explicitation with driving variables and is formalized as follows.

Definition 3.2.2. Given a DAECS A}, = (E, H, L), by a (Q, v)-explicitation, we will

I,n,m

call a control system A" = (A, B*, B, C, D"), with

A=FElH,, B*=E/L, InB’=kerE, =kerE, C = H,, D" = L.

. E1 . H1 . Ll
or- 5] an-[t) u- 2]

where

The class of all (@), v)-explicitations will be called the explicitation with driving variables
class or, shortly explicitation class, of A%, denoted by Expl(A*). If a particular ODECS
A" belongs to the explicitation class Expl(A"), we will write A*> € Expl(A").

The definition of the explicitation class Expl(A") suggests that a given A" has many
(@, v)-explicitations. Indeed, the construction of A*” € Expl(A") is not unique at three
stages: there is a freedom in choosing (), EI , and B". Notice that the choices of BY and
EI can be seen together as a choice of a driving variable v to express explicitly.

Now we will analyze these three choices. We start with 5. Choosing B and B? such
that Im B” = Im BY = ker F means that there exists T, € GI(s, R) such that B® = T, ' B,
or, equivalently, v = T, v. To analyze the role of the choice of ET, fix B", consider the

differential part (3.5a) of the semi-explicit system (3.3). Any (Q, v)-explicitation of (3.5al)
is a control system without outputs, so we will denote it by A%, o = (A, B*, BY).

Proposition 3.2.3. Assume that a control system A", = (A, B, BY) is a (Q,v)-
explicitation of corresponding to a choice of right inverse EI of E. Then a control
system ]\gf’m,syo = (A, B*, B") is a (Q, 0)-explicitation of corresponding to another
choice of right inverse EI of E with the same choice B* = B? yielding InB” = ImB? =
ker B if and only if A* and A" are equivalent via a v-feedback transformation of the

form v = F,x + Ru + v, which maps

A— A=A+ B"F,, B*+— B"= B"+ B"R.

To analyze the role of choosing (), go back to the start of the explicitation procedure
to find an invertible () such that A" is transformed to a DAE of form (3.5)). Notice that ()

E .
is an invertible matrix such that £, of QF = { Ol] is of full row rank. Any other () such

that F, of QF = [%1} full row rank is of the form Q = Q'Q, where Q' = {%1 82} ,
4
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Qe Gl (I,R) and @) € R7*9, thus (); and @), are invertible matrices as well. Then via Q.
A" is ex-fb-equivalent to

OBy . [QiH + Q2Hy 1Ly + Q2L
[ 0 ]x—{ Q.H, ]x+[ OuLs }u 3.9

Proposition 3.2.4. Assume that A*" = (A, B, B",C, D") is a (Q, v)-explicitation of

n,m,s,p
A" corresponding to a choice of right inverse EI of E1. Then AZ?m’S’p = (fl, B, B, C, D“)
Q1 Qo
0 Q4
a choice of right inverse EIQII of Q1E: with EI = EI and B' = BY, if and only if
A" and A™ are equivalent via an output injection Ky = K(Cx + D"u) and an output
multiplication y = Ty, which map

is a (Q, v)-explicitation of A", where Q=QQand Q = [ }, corresponding to

A— A=A+ KC, B+ B*=B"+ KD" B’ B’= B,
Cw C=T,C, D"~ D*=T,D.

The proofs of Proposition [3.2.3|and [3.2.4] will be given in Section In view of the
above analysis, it is seen that Expl(A*) a class of ODECSs of the following form, given
by all choices of K, F,,, R, and invertible T, T}:

i = Ax + B'u+ Ky + B°(F,x + Ru+ T, '0)
y =T,(Cz + Du).

Notice that the definition of (Q, v)-explicitation in the present chapter is different in two
aspects from the (@), P)-explicitation of Chapter in this chapter we consider the explic-
itation of a DAECS but in Chapter 2] we only consider DAEs. The other difference is
shown in the remark below. Nevertheless, in this chapter we use the same name by calling
the explicitation with driving variables as explicitation for simplicity.

Remark 3.2.5. (i) Consider a DAE Ei& = Hz, denoted by A = (E, H,0). Via two
invertible matrices () and P, A is ex-fb-equivalent (actually externally equivalent) to a
pure semi-explicit PSE DAE A”5¥ below. Then the (Q, P)-explicitation of A defined in
Chapter is a control system A below (and the class of all (@), P)-explicitations is denoted
by Expl(A)) and by adding v = 4, we get the prolongation A (which is actually an (7}, v)-
explicitation of AP5E) of A :

QEP 'Pi=QHP 'Px = AP . [I 0] m = {Hl HQ] H =

0 0| |[u Hs; Hy| |u
] &= Hiz+ Hu 12 |Hy Haf |z 0 B
A.{y—H3Z+H4u7 jA.[?ﬁj_{O O}{u}+{[m}v’ y = Hsz + Hyu.

where Pz = [2T uT]7T.

(ii) The state z and control u of the (@, P)-explicitation Fxpl(A) are linear combina-
tion z = Pz and u = Psx, respectively, of the original “generalized” state x of A. On the
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other hand, the state = of a (Q, v)-explicitation Expl(A) is the “generalized” state = of A
and the driving variables v are extra variables not present in A.

(iii) The differences and relations between (), P)-explicitations in Chapter[2and (Q, v)-
explicitations in this chapter can be illustrated by the following diagram

A ex-equivalence via (@, P) APSE

(I, I,)-ex

, P)-expl

(Q,0)-expl A € Expl(A) = Expl(AFSE) (I, v)-expl

M-equivalence

A? € Expl(A) A € Expl(AFP5E)

Note that the implication that the (Q, )-explicitation A” of A is Morse equivalent (see
Remark [3.2.7((ii)) to the prolo. system A is a corollary of Theorem [3.2.8|below applied to
DAESs (without the original control u) since A € Expl(AP5F), A® € Expl(A) and APSF
is ex-equivalent to A.

Since the explicitation (with driving variables) of A" is a class of ODECSs of form
(3-2), we give the following definition of equivalence for ODECSs of form (3.2)). This
definition is a natural extension of the Morse equivalence (see Chapter [2|and [[146]],[145])
of classical ODECSs of form (3.3).

Definition 3.2.6. (Extended Morse equivalence and extended Morse transformation) Two
ODECSs

A= (AB B, C,D"), A, . =(AB" B C,D")
are called extended Morse equivalent, shortly EM-equivalent, denoted by A"" = A if
there exist matrices 7, € Gl(n,R), T, € Gi(m,R), T, € Gi(s,R), T, € Gi(p,R),
F, e R™*" F, € R¥", R € R**™, K € R™P? such that the system matrices of A*” and
A" satisfy:

Tt 0 0
F,T:! T:' 0 |. (3.10)

> Dt T D
¢ 0 0 v 11C 0 F,+ RF,)T;' RT;' T, !

{A B" Bﬁ] B [Tx TxK] [A B B”]
(
An 8-tuple (T, T,,, T, T, F,,, F,,, R, K), acting on the system according to (3.10), will be
called an extended Morse transformation and denoted by E M;,.,.

The matrices 7, T\, T, and T}, are coordinates transformations in the, respectively,
state space Z = R", input subspace 7%, = R™, input subspace %, = R® and, output
space % = RP, where F), defines a state feedback of u, F, and R define a feedback of v,
K defines an output injection.
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Remark 3.2.7. (i) An extended Morse transformation, whose action is given by equation
(3.10), includes two kinds of feedback transformations:

v=Fax+Ru+T,'%9 and u= F,2+ T, a. (3.11)

The vector of driving variables v is “stronger” than the original control vector u since when
transforming v we can use both u and x as feedback, but when transforming v we are not
allowed to use v. This is expressed by the triangular form of the matrix multiplying on the

right of (3.10).

(i1) Recall the definition of the Morse equivalence and the Morse transformation [[146]
(and their generalization by Molinari [145] for D* # 0, see also Chapter [2): for two
ODECSs A“ = (A, B*,C, D*) and A" = (A, B%, C, D%) of form (3.3), if

A BY [T, T.K|[A B[ T,' 0

cC D' |0 T, ||C DY |FT' Tt
then A“ and A” are called Morse equivalent (shortly M-equivalent ) and the Morse trans-
formation (7,7, T,, F,, K) is denoted by M,,,,. Clearly, M-equivalence is an equiva-
lence relation for ODECSs of form (3.3)), defined by a 4-tuple (A, B*,C, D") and EM-
equivalence is for ODECSs of form (3.2), defined by a 5-tuple (A, B*, BY,C, D*). Ob-

serve that if the vector of driving variables v is of dimension zero (B" is absent), then the
EM-equivalence reduces to the M-equivalence.

(iii) Recall that we can express an ODECS of the form A** = (A, B*, B*,C, D") as a
standard ODECS A" = (A, B¥,C, D") of form (3.3) with one type of controls w, where
w = [ul, vT]T. Now let

F, L r;to
for L ) = a1

v

then we conclude the following equation from (3.10) (notice that T}, has a block-triangular
structure):

A BY] [T, T.K|[A B*|[ ;" 0 3.12)
C D*] |0 T,]||C D*||F,T" T;' '

w

which is exactly the expression of the M-equivalence for system A" (compare Remark
[3.2.7(ii) above). It implies that the EM-equivalence can be expressed as a form of the M-
equivalence with a triangular matrix 7;, (input coordinates transformation matrix). This
triangular form is a consequence of two kinds of feedback transformation shown in equa-

tion (3.T1).

Now we give the main result of this subsection:

Theorem 3.2.8. Consider two DAECSs A}, = (E, H, L) and Afnm — (E,H,L) as

well as two ODECSs A}, . = (A, B*, B*,C, D") and Ag?m@p — (A, B* B",C, D%

satisfying A" € Expl(A*) and A™ € Expl(A?%). Then, A" “ S A if and only if
EM ~ -

AW T AU
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The proof will be given in Section In Section [3.8] we recall the definitions of
geometric subspaces for DAECSs and ODECSs. More specifically, for a DAECS A%, we
recall the augmented Wong sequences #; and %, together with % (see [L7],[128]]); For
an ODECS A", we recall the subspaces sequences V; and W; (see [194],[193],[9]), whose
limits are controlled and conditioned invariant subspaces, respectively, and we introduce
the subspaces sequence W;.

Proposition 3.2.9. Given A}, = (E,H,L) and A}, . = (A, B" B",C,D") (or
equivalently, A}) .. = (A, B",C, D")), consider the subspaces ¥, ¥, W; of A, given

by Definition and the subspaces V;, 'W;, W; of A%, given by Lemma in the
Appendix of Section[3.8] Assume that A" € Expl(A"). Then we have for i € N,

%(Au) = Vi(Aw>> %(Au> = Wi(Aw)7

and for i € NT,

A~ ~

Wi(A") = Wi(A”).

The proof will be given in Section Note that Theorem [3.2.8| and Proposition
are fundamental results for the remaining part of the chapter. Our purpose is to
find the FBCF of DAECSs via explicitation. We have proven in Theorem that
the EM-equivalence for explicitation systems corresponds to the ex-fb-equivalence for
DAECSs. Thus rather than transforming a DAECS A" directly into its FBCF under ex-
fb-equivalence, we will look for the canonical form for A*Y € Expl(A") under EM-
equivalence.

3.3 The Morse triangular form and its extension

In the beginning of this section, we show that the normal form given in [1435]] (called Morse
normal form MNF in the present chapter) for 4-tuple ODECS A", given by equation (3.3),
can be constructed through a Morse triangular form MTF that we propose. Although the
constructed normal form is the same as the one in [145]], we will give explicit transforma-
tions with the help of the invariant subspaces given in Lemma|3.8.5|of Appendix in Section
which makes the normalizing procedure simple and transparent. Similar results can
be found in [42], whose authors consider the general 4-tuple (A, B, C, D) and transform
the system matrices into a normal form by choosing a special basis and corresponding
coordinates. Their procedure is illustrated in [44]] by examples.

Proposition 3.3.1. (Morse triangular form MTF) For an ODECS A;. = (A, B*,C, D),
consider the subspaces V*, W:, W*, Y* given by Definition of Appendix. Choose full
rank matrices Ts1 e Rmxm Tf e Rm*m2) T;’ e Rmxms) Tj‘ e R T ¢ Rm*ma

3
T? € Rm»m2 Tl € RP*Pr T2 € RP*P2 such that

ImT}! =V NW, VAW @ ImT? = V¥,
VAW S ImT3 =W, (V' +W)aImT!=2 =R",
Im T} = U, ImT?®ImT! = %, = R™,

Im T} =Y, ImT?®ImT! =% =RP,
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where n = ny + no + ng + Ny, M = my + Mo, p = p1 + po. Then

T, =13 T2 T) T € Gln,R),
T,=[T T €Gl(m,R), T,=[T, T;]7' €GlpR),

7

and there exist matrices Fyyr € R™*" and Ky € R™ P such that the Morse transforma-
tion Mypan = (Ts, Ty, Ty, Farr, Kyrr) brings A into A* = My,q,(AY), represented in the
Morse triangular form MTF, that is given by A" = (A, B*, C', D%), where

A, A2 A3 A | B, B?]

0 A, 0 A | 0 0
{4 Bu} _ |00 A A0 (3.13)
¢ Di 0 0 0 Ay | 0 0

0 0 C3 C+H| 0 Ds

(0 0 0 Cy| O 0]

In the above MTF, the pair (Ay, By) is controllable, the pair (Cy, Ay) is observable and
the 4-tuple (As, B3, C3, D3) is prime (see Definition in the Appendix of Chapter .

The proof is given in Section In the next proposition, we describe a way to trans-
form the above MTF into a Morse normal form MNF, which is a further simplification of
the MTF. We will use the same notations as in Proposition [3.3.1]

Proposition 3.3.2. (Morse normal form MNF) There exists a feedback transformation
matrix Fyy € R™*", an output injection matrix Ky ny € R" P and a state space coor-
dinate transformation matrix Ty;n € Gl(n,R), which can be chosen by Algorithm m
below, such that the Morse transformation Mo, = (Tyn, Ly, Iy, Fyun, Ky n) brings At
of Proposition into A* = Mpan(A™), represented in the Morse normal form MNF,
that is given by A* = (A, B®,C, D%), where

A, 0 0 0 B 0
0 A, 0 O 0 0
A B 0 0 A; 0 0 Bs
{c Du} “lo 0 0 A | 0 0 (3.14)
0 0 C; 0 0 Ds
0 0 0 Cy | O O]

In the above MNF, the pair (Ay, By) is controllable, the pair (Cy, A,) is observable, and
the 4-tuple (As, Bs, Cs, D3) is prime (see Definition in the Appendix of Chapter .

Notice that in the MNF, the system is decoupled into four independent subsystems of
exactly the same dimension as in the Morse canonical form MNF (see Appendix of Chap-
ter|2)). In the latter, correspond to the MINF, we additionally normalize the controllable pair
(Ay, By) into its Brunovsky canonical form [31]], the observable pair (A4, C,) into its dual
Brunovsky canonical form and the controllable and observable 4-tuple (As, Bs, C3, Ds)
into its prime form, and the matrix A, into its (real) Jordan canonical form. The proof of
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Proposition [3.3.2| will be given in Section [3.7.4]and in that proof, we will use the construc-
tion of transformation matrices Fy;n, Ky and Ty, which is formulated in the following
algorithm.

Algorithm 3.3.3. Step 1: Choose Fy;n and Kyn:

Kly 0
Fl 0 0 0 0 0
Fyn = | MN Kyn =
MN 0 0 F]%/[N F]:\g/]N’ MN K[Q\/[N 0 )
0 Kf(ﬂv

such that the eigenvalues of A1, Ay, As and A, of the equation below are disjoint (notice
that Fyrn and Ky preserve the zero blocks of A* = (A, B, C, D%)):

Ay A A3 AY | B, B?]
0 A, 0 Al 0 0
I, Kun|[A B[ L, 0] |0 0 A3 A3 | 0 Bj
[o I, } {(5 Dﬂ} [FMN Im] 0o 0 0 A | 0 0
0 0 Cy Ct | 0 Ds
0 0 0 C, | 0 0]

Step 2: Find matrices Ti;n, Tin: Tirns Tirns Ty via the following (constrained)
Sylvester equations:
ATy — Ty A = AL = T3y — ATy .
Step 3: Set
-1

Tun Tin Thiw

1 0 Tiyn

0 I TN

0 0 1

Tyn =

S O O M~

It is not surprising that Proposition [3.3.1] and [3.3.2] describe results similar to those
of Theorem 2.3 and Theorem 2.6 of [20], as we have shown in Chapter [2| that there
are direct connections between the geometric subspaces (the Wong sequences) of a DAE
A : Ei = Hx and invariant subspaces of a control system A = (A, B,C, D) € Expl(A).
There are, however, differences between Proposition[3.3.1]and[3.3.2] and results of [20]. In
particular, in Theorem 2.6 of [20], one has to solve generalized Sylvester equations, while
in Proposition we use (constrained) Sylvester equations. In addition, our transforma-
tions differ from those proposed in [145].

Recall that the explicitation of a DAECS A" is a class of ODECSs with two kinds of
inputs of form (3.2). In the following theorems, we will extend the results in Proposition
3.3.1]and [3.3.2]to ODECSs with two kinds of inputs.
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Theorem 3.3.4. (Extended Morse triangular form EMTF) For a DAECS

A = (A,B",B",C,D"),

n,m,s,p

there exists an extended Morse transformation E My, bringing A" into EMy,qn,(A™) =
A represented in the extended Morse triangular form EMTF, that is given by Ag?m@p =
(A, B, B®,C, D%), where

Al 12212 ~13 %14 B? B%Q Bf BfQ
0 Ay 0 Ay 0 0 0 0
A B B 0 0 Ay Aw | 0 BY | 0 BI -
cpool=lo o o A |l o o | 0o o (.17)
0 0 C3 Csy | 0O DFE| 0 0
0o 0 o0 (4 0 0 0 0
Moreover,

(i) The pair (Ay, BY) is controllable, where BY = |B¥, BY;

(ii) The pair (Cy, Ay) is observable ;

(iii) The 4-tuple (As, BY,Cy, DY) is prime, where BY = [B¥, BY], D¥ = [DZ,0].

Proof. Recall Remark[3.2.7(iii) that there exists an extended Morse transformation £'M;,4,
such that A" = EM,,,,(A") is of the EMTF if and only if there exists a Morse transfor-
mation Mj,..,, with a triangular (and not just any) input coordinates transformation bring-
ing Ay, .., = (A, B",C,D") into the MTF. Now we use the result of Proposition
for A" with a more subtle way to construct the input coordinates transformation matrix
T,. More specifically, choose full rank matrices 7! € R(m+s)xmi T2 ¢ Rim+s)xme

T} € Rim+s)xst T2 ¢ ROM+9)Xs2 with my 4 my = m, 81 + 55 = s, such that

Im 7} = U, ImT) & ImT? =%,
ImT!eImT! =W, =W, ImT!eImT?®ImT!&ImT? = Uy = Y,

where U; is U7, when input is restricted to v (i.e., we put u = 0). Choose T,, =
Tt Tr 172 T tandsetT, =T, T, = T,, F\y = Fyr, Ky = Ky as in Proposi-
tion Then the Morse transformation My,qns = (1%, Ty, T}y, Fiw, K,,) brings A" into
A? = (A, B?,C, D®) = Mypqns(A™), for which

Ay A~12 13 {114 Bf] Bf}z_
0 Ay, 0 Ay | 0 0
A B9 0 0 A; Ay | 0 BY
{(} [)w} |0 0 0 A | 0 o0}
0 0 C; Cs | 0 DP
o 0 o0 C, 0 0|
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where BY = [B¥, BY|, BY = [BY,, BY,), BY = [BE, Bi], D¥ = [D¥,0]. Since T}, need
not be triangular, we will replace it by
Ty = [Ty T2 T} T2 e RmHximts),

u

which is invertible and has a triangular form (since Im 7)! ¢ Im T?? = %,,). Now the Morse
transformation My, qns = (13, T2, T, Fyy, K,,) brings A" into the desired form of .
Hence, it proves that there exists an EM;,.,, transforming A"’ into the EMTF. Claims
(1), (ii), (iii) of Theorem [3.3.4] are inherited from the corresponding results of Proposition

331 O
Theorem 3.3.5. (Extended Morse normal form EMNF) For A = (A, B*, B” C', D%

n7m787p

in the EMTF, as given by Theorem there exists an extended Morse transformation
EMypqn bringing A™ into A = E M., (A®™) represented in the extended Morse normal

form EMNF, that is given by /_\Z?mv&p = (A, B*, B°,C, D%), where
A4, 0 0 0 | B 0 | BN 0]
0 A, 0 0 0 0 0 O
AB Bl |0 0 A 0 | 0 Bf| 0 B -
c D oo|=|0 0 0 A | 0 0| 0 o0 (3.18)
0 0 C3 0 0 D¥ | 0 0
(0 0 0 C 0 0 0 0
Moreover,

(i) The pair (A, B®) is controllable, where BY = [B®, BY];
(ii) The pair (Cy, A,) is observable;

(iii) The 4-tuple (A3, BY,Cs, DY) is prime, where BY = [BY, By], DY = [Dg,0).

Proof. As explained in the proof of Theorem there exists an £ M,,,,, such that A%’ =
Ethn(f\m) is in the EMNF if and only if there exists a Morse transformation My,..,
with a triangular form input transformation matrix 7% bringing system A into the MNF.
Then as shown in Proposition [3.3.2] the input coordinates transformation matrix of the
Morse transformation which brings the MTF into the MNF is an identity matrix. Thus
it is always triangular as we need. Therefore, with the transformation matrices shown in
Proposition we can always bring A% into the EMNF. Moreover, the claims (1) (i1)
(iii) of Theorem [3.3.5|follow from the corresponding results of Proposition [3.3.2] O

3.4 From the extended Morse normal form to the feed-
back canonical form of DAECSs

We show that, with a suitable choice of an extended Morse transformation for each sub-
systems in the EMNF of Theorem [3.3.5] we can bring the EMNF into an extended Morse
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canonical form EMCF. Below the upper indices refer to: ¢ to controllable, nn to non-
controllable and non-observable, p to prime, o to observable.

Definition 3.4.1. By the extended Morse canonical form, we will mean the system

( .
ZC’LL — ACUZC’M + BCUU

ZC’U — AC’UZCU _'_ BC’U/U

P = APUZPY 4 BPUy Pt = CPUPY o DPUqy
PV = APVZPY  BPYy,  yPY = CPVPY

Z',O — AOZO yO — COZO,

EMCEF :

where both the pairs (A, B) and (A, B®”) are controllable and in the Brunovsky
canonical forms [31]], A™ is arbitrary and given up to a similarity transformation, the 4-
tuple (AP, BP"*, CP* DP*) and the triple (APY, BPY, C?") are prime and the pair (C°, A°)
is observable and in the dual Brunovsky canonical form.

If an ODECS AY, = (A, By B Cen, D) is in the EMCEF, then the ma-
trices A, By, By Cem, Diyy» together with all invariants are thus given by

A 0 0 0 0 0 | B® o0 0 0
0 A 0 0 0 0 0 B 0
0 0 A™ 0 0 0 0 0 0 0
0 0 0 AM™ 0 0 0 Bru 0 0
Asu Biv Bem| | g 0 0 0 ar o 0 0 0 B
Cen Dy 0 O 0 0 0 0 A° 0 0 0 0
O 0 0 C™ 0 0 0 D 0 0
O 0 0 0 O™ 0 0 0 0 0
0 0 0 o0 0 c° 0 0 0 0 |
(3.19)

with

(i) A = diag{Ag', ..., A2}, B = diag{ B¢, ..., B&'}, A® = diag{Ag, ..., AZ'},

€1 €1 €p )

B® = diag{ B¢, ..., BS’} where

0 Ie—l
0 0 1

0 I . 0 _
Agv — € Rexe Bgv — Rexl.
w=lo o eren me=fl] e

0

Aiu — |: :| c ReXe’ Becu — [ :| c REX17

The integers €, ..., €, € N are the controllability indices of (A, B), the integers
€1, ..., & € N are the controllability indices of (A, B®).

(i) A™ € R™*"™ is unique up to similarity.
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(iii) Both the 4-tuple (AP“, BP* CP*, DP") and the triple (A", BPY, C?") are controllable
and observable (prime). That is,

APv  RBpu [’L}pu ‘ L 0-|
{Cpu DPU} = ¢ 0 01,
0 0 I
Aru  Bpu .
where cre g is square and invertible and 6 = rank DP" € N, and the matrices
Art = diag{Are, ... A}, BP* = diag{ B2, ..., BI},
C7 = diag{CP",...,CP"}, AP = diag{ AL, ..., A2},
B = diag{B%,,..., By}, C* =diag{C%/,...,CE'},
where
A 0 1,4 A 0 A
pu o oXo U ox1 pu 1xo
Ap {o O}ER , Br MGR , Cr =11 0] e R,
0 I;_4 o 0 _ _
pv _ c OXo pU aox1 pv __ 1xo
AU_L) O}ER , BE MGR , C=1[1 0] e R,

The integers oy, ...,0. € NT are the controllability indices of the pair (AP“, B”“)
and they are equal to the observability indices of the pair (ép“, Ap“). The integers
g1, ...,04 € NT are the controllability indices of the pair (A", BP") and they are
equal to the observability indices of the pair (C?V, APY).

(iv) A° =diag{A4; ,..., Ay }, C° = diag{Cy

o
. - CF }, where

o_ |0 Iy 0
A :{o ”O]GR”X", Co=1[1 0] e R

n
The integers 71, ..., 7. € N are the observability indices of the pair (C?, A?).
Theorem 3.4.2. (Extended Morse canonical form EMCF) For any
A =AY, = (A, BY, B, C,D"),
there exists an extended Morse transformation EMy,,, bringing A** into

A%UM — (AEM7 BE‘M’ BEM? C(E]\Ja D%M) - EMtTan(Auv)a
represented in the extended Morse canonical form EMCF.
The proof will be given in Section Throughout if we only consider the differential

equation of (3.2) (meaning (3.2) without output y), we denote it as A}Y, . = (A, B, BY).
Then by Theorem [3.4.2] we have
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Corollary 3.4.3. (Brunovsky canonical form for ODE control systems with two kinds of
inputs) For A . = (A, B*, BY), assume that rank B = m + s, where B* = [B", B"|.

n,Mm,Ss

If the pair (A, B") is controllable, then

w ooy EM (A0 B 0
s (15w (V] 1))

where (A", B**) and (A, B®) are in the Brunovsky canonical form.

Remark 3.4.4. The difference between the EMCF above and the MCF of [146],[145]],
or see Chapter |2, comes from their controllable parts only that correspond to two kinds
of inputs v and v. More specifically, the MCF has only one prime subsystem and only
one controllable but non-observable subsystem. On the other hand, the EMCF has two
prime subsystems: (AP* BP* CP* DP*) and (APY, BP,C?"), and two controllable but
non-observable subsystems (A, B) and (A, B®).

All the indices in the above EMCEF can be calculated with the help of the invariant sub-
spaces defined in Section [3.8] as shown in the following proposition. We will use the fol-

lowing definitions for a multi-index /3: define the length of a multi-index 3 = (4, . . ., 5k)
£(B) . N .

as ((f) = k, and define |5| = > B;. Given aindex 5 = (f31, ..., (;), we will define the
i=1

dual index 8 = (B, ..., By) by

Bi = DZ(B) = {number of Bj such that Bj > z'}, 1<i<k,

N ~

and define 0 = (04(f), ..., 0x(B)).
Proposition 3.4.5. (The EMCEF indices) For an ODECS A", . = (A, B*, B",C, D") (or

n,m,s,p-

equivalently, AY = (A, B*,C, D")), consider the subspaces V;, W,, W, of Lemma

n,m-+s,p

3.8.5|in the Appendix of Section|3.8| Assume that [gw} is of full column rank and [C, D"

is of full row rank. Then the EMCF indices ¢;, €;, o;, 7; 7; together with a, b, ¢, d,
e, 0 in Theorem can be calculated as follows, and thus are invariant under EM-
transformations.

(i) Set A
& = dim (V'NW,;) —dim (V*N'W;), i > 1,
& = dim (V* N'W;) — dim (V- N W;_y), i > 1,
G =dim W; — dim W,_; — &, i > 1,
0 = dim (W* 4+ V,_1) —dim (W* +V;), ¢ > 1.

Thena = é, b=¢y, d e = 1. The indices (€1, ... ,€,) = 0(€), (€1,...,6) =

I
Qp
=
<

A

Qp

0(€), (01,...,0a) = 0(0) and (1, ..., ne) = 0(7).
(i) Set
61=m—¢, 6;=dim W,_; —dim W,_1 — é&_y, i > 2.
Then ¢ = 65 and § = 61 — c. The indices (o1, ...,0.) =0(0) — L.
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Proof. In order to prove the invariance of all indices, notice first that for ODECSs, the sub-
space sequences V; and W, are invariant under M-equivalence (see [146],[145]], or Chapter
[2). Recall that the M-equivalence (with triangular input coordinates transformation matrix
T'") for A* coincide with the EM-equivalence for A". Moreover, since the subspace se-
quences W; and W; only differ from their initial conditions, it is not hard to see that W,
is also invariant under the EM-equivalence. Thus without loss of generality, we assume
that A" is in the EMCF of (3.19). A direct calculation by the formula of Lemma 3.8.5]of
Appendix gives that

V; = R x R x R™ x Im N, x Im N x Im (N}, i >0, (3.20)
W; = ker N? x ker N? x {0} x ker N? x ker NZ x {0}, i >0, (3.21)
W; = ker N1 x ker NI x {0} x ker N\ ™' x ker N2 x {0} i>1. (3.22)

Note that by equations (3.20), (3.21) and, (3.22)), we have

V* =Rl x R x R"2 x {0}7 x {0} x {0},
W* = W* = Rl x RFF x {0}™ x Rl x R % {0}

Thus, the following hold:

€1 = rank B, & =rank B®, &1 =rank B, 7); =rankC°,

€i+1 = rank [BC“, A Be (AC“)ch“] — rank [BC“, A B (Ac“)ileC“] ,1>1,
€;4+1 = rank [BC”, AYB, (AC”)iBC”] — rank [BC”, AYB, ..., (Acv)ilec”] , 1> 1,
0ip1 = rank [Bp”, APURPY (Ap“)in”] — rank [Bp“, APYBPY (Ap”)ilep”] ,1>1,
Ni+1 = rank col [CO, CePA° ..., (CO)iAO] — rank col [CO, CePA°, ..., (CO)"’lAO} , 1> 1.

Moreover, we have 67, = m — rank BPY = rank BP* = rank BP* + § and 0, = rank BPY,
and for¢ > 2,

s = vank [ B A B (AP B vanke B A, (A2

Finally, by the classical controllability and observability indices calculation (see e.g. [31]),
we can calculate €;, €, 0y, 7;, 7; from é;, €;, 65, 0;, ;. Finally, from the relations of indices
and the invariant subspaces, it is seen that the integers ¢;, ¢, 0;, 7;, 1;, together with
cardinalities a, b, ¢, d, e, ¢ are also invariant under the EM-equivalence. ]

Remark 3.4.6. In general, Dw} may not be monic, i.e., injective, and [C, D"] may not

be epic, i.e., surjective, which implies that some of these indices are allowed to be zero,
e.g. for certain 7, ¢, = 0 meaning that B has one zero column, and for certain ¢, 1; = 0
implying that C° has one zero row.

Now we introduce the driving variable reduction and implicitation procedure (compare
Chapter 2] for the case of controls of one kind) to reduce the driving variable v and implicit
the EMCF to a DAECS. The procedure is that, for each sub-system in EMCF, which is
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affected by v, i.e., (A%, B®) and (APY, BPY, C?"), we reduce the last rows in the dynam-
ics of the subsystems and set the output y = (0. Take, for example, a prime subsystem
(A%, BE?, CE") of (APY, BPY CP") for which we get:

( y 1‘1
1 2 0 =a!
Tt =z 1 9
T ==z
pU pPY VY .
(AY, BE”,CY°) - — (N3, 15,0) :
51 5
x° _ _
o—1 _ ,.0
- T =z
| @ v,

In the above case, the ODECS APY = (A2 BE" C%") on the left is mapped via an implic-
itation into a DAECS A = (N, I5,0) on the right. Notice that A?” and A in the above
procedure satisfy APY € Expl(A).

Then with the help of the above reduction and implicitation procedure, we can regard
the feedback canonical form FBCF for DAECSs of the form A}, = (E, H, L) given in
[131]] as a corollary of Theorem[3.4.2] In the following, in order to save space and simplify
notations, we denote

Ki=[0 L] e RO L= Iy 0] € RO-DX,
0 0 0

X1 C— i
I 0] e R, e; L} € R,

and

Ng = diag {Ng,, ..., Ng, } € RIS K = diag {Kp,, ..., Kg, } € RUSI=RXIA
Lg =diag{Lg,, ..., Lg } € RIFI-RXIBI ¢ = diag {egs,, ..., e5,} € RIFIXE

Corollary 3.4.7. (Feedback canonical form of DAE control systems [131]) Any DAE con-

trol system A}, . = (E, H, L) is ex-fb-equivalent to the following feedback canonical
form FBCF':
ey O 0 0 0 O] [N O 0 0 0 07 [é« 0 0]
0 Lz O 0 0 0 0 Ke O 0 0 0 0 0 0
0 0 I, O 0 0 0 0 A4, 0 0 0 0 0 0
0 0 0 KL o ofl'lo o o LL 0o ol|'|o & o]’
0 0 0 0 Ny 0 0 0 0 0 Iy O 0 0 0
(o0 0o o o L] Lo o o o o KL [0 0 o

) C/
(NTY, 6 =(5),...,,) € (ND, o/ =(n,...,n.) € (NY) are multi-indices and the
matrix A, is given up to similarity.

where € = (¢),...,¢,) € (N, & = (&,...,8,) ¢ (N, o/ = (0,...,0)) €
(

Remark 3.4.8. (i) The above FBCF of DAECSs is a corollary of Theorem Indeed,
for any DAECS A" = (E, H, L), we can construct an ODECS A"’ € Expl(A*). Then,

by Theorem [3.4.2) we have A"’ PEMEMCF. From the driving variable reduction and

implicitation procedure, it can be observed that the FBCF is the implicitation of the EMCF

of A¥. A crucial observation is that EMCF € Expl(FBCF). Thus, by Theorem [3.2.8] we

conclude A" “~/"FBCF (since A" “*" EMCF).
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(i1) There exists a perfect correspondence between the six subsystems of the EMCF
and their counterparts of the FBCF. Morse specifically,

(A B ¢ (I, N7 Es), (A%, B) ¢ (La, Ka,0),
Ay <> (In,, A, (Are, Bre Cve DPv) <5 (KT LT, €,0),
(AP, BP,C™) 45 (Nyi, I3, 0), (C°, A°) ¢5 (LT, K7, 0).

(iii) Since the FBCF is the implicitation of the EMCEF, it is easy to observe that the
indices in the FBCF and EMCEF have the following relations:

ea=cdande, =¢ fork=1,...,a,b=0and e =¢ fork=1,...0b;
e ny =n,and A" ~ A,

ect+éd=cando) =0y =, , =05 =105, =01+1, 05, =0+1,..,
05,. = 0.+ 1; Moreover,d = d' and 64, = 0, for k = 1,... ,d;

eece=candn,+1=mnfork=1 ... e

From the indices relations in Remark [3.4.8(iii) and the subspaces relation of Proposi-
tion |3.2.9] we can deduce the following calculation of the FBCF invariants as a corollary
of Proposition [3.4.5]

Corollary 3.4.9. (Invariants of FBCF in [131] and [18])) For A}, . = (E, H, L), con-
sider the subspaces V;, W;, VA of Definition Assume that rank L = m and Im ' N
Im[H,L] = 0. Then the FBCF indices ¢',é',o',a' 1/, together with 'V, ,d' e of

Corollary can be calculated as follows.

(i) Set )

¢ =dim (Y*N ) —dim (V*NH), i > 1,
& =dim (Y*NH) —dim (Y N W), i > 1,
&) = dim #;, — dim #,_, — &, i > 1.

79
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/

Thend = ¢}, b = €|, d = &}. The indices (¢},. .. ¢,) =0(&), (€,...,&,) =0(€),
(@, .., 00) =2(o").
(ii) Set
&l=m—¢&, 6/ =dim #_, —dim #;_, —¢_,, i >2,

A =dim (#* + Y1) —dim (#* + %), i > 1.

Then ¢ = 61, ¢ = 1. The indices (o,...,0.,) = 0(¢") — Land (n},...,n.) =
o(7) — L.

Remark 3.4.10. Note that the assumptions that rank L = m and Im ENIm[H, L] = 0

correspond to the assumptions of Proposition [3.4.5| that { Dw} is of full column rank and
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[C, D] is of full row rank, respectively. Although more general results about the FBCF
indices (without these assumptions) are given in [[131] and [[18]], our purpose is to show
the connections between EMCEF indices and FBCF indices rather than to calculate them
in the case of non full rank. The generalizations of the results of Corollary [3.4.9]to that of
the FBCF indices in [[131] and [18]] are straightforward.

Below a simple algorithm is proposed to calculate the FBCF for a given DAECS

Aj = (E,H, L) based on the explicitation procedure.

I,n,m

Algorithm 3.4.11. Step 1: For A", construct an ODECS A" such that A** € Expl(A"),
via the explicitation procedure described in Section

Step 2: By Theorem find an extended Morse transformation E My, such that
the transformed system N*° = EM;,,,(A") is in the EMTF.

Step 3: By Theorem[3.3.5] find an extended Morse transformation E My, ., such that the
transformed system A*° = EM,,q,(A™) is in the EMNF. Then by the procedure shown in
the proof of Theorem bring A™ into the EMCF.

Step 4: Find the implicitation of EMCF, denoted by A", via the driving variable re-
duction and implicitation procedure described in Section Then A" is in the FBCF

and A" N~k A,

3.5 Example

In this section, we illustrate the construction of Algorithm [3.4.T1] by an example taken
from [20]]. Consider the following mathematical model of an electrical circuit (see Fig. 1.1
of [20]]), which is a DAECS of the form Ft = Hx + Lu:

_ . ; -1 007 o
—Ca Ca 1 Re
1 -1 Ry
—1 R
1 n I
= 1 T
1-1 Vi’
—1 -1 1
11 -1
101-11
1 11
i i i Y ] L0 1

where v = [IT,VT]T is the control vector, L,Ca, R, Rg, Rp are real scalars (all as-

sumed to be nonzero). In [20], only the matrix pencil sE — H is transformed into a
quasi-Kronecker form. We will transform the whole DAECS into its FBCF via Algorithm
B.411
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Step 1: Find an ODECS A"’ € Expl(A*), which we take as

4 -0 07 -1 B

1/Ca %
1/L

Am;, L i L . L 1

~1 =1 1
11 -1
—1 1-11
1 11
\ L —1 . 1

Step 2: Calculate the subspaces V*, U, U:, W*, Y* of A¥ = (A, BY,C, D") by Lemma
of Appendix, where BY = [B* B*], D¥ = [D* 0] andw = [u”,v”]". They are

Rg T [ ]
Rg R+R¢
Rr+Rg RxR¢
R Rx(Rp+R¢)
*x *
V* =1Im 0 , W =Im R ,
1 R
1 Rr+Rg
1 1
1 1
1 -1 1 R -1 1
L -1 -10 1 —1| | —(R+Rp+Rg) 1 —1 |
B R*RG T
RxRg
Rx«(Rp+Rg)
U =Im g ., W =2 =RY, Y =& =R,
Rrp+Rg
1
1
R -1 1
_—(R+RF+RG) 1 -1 ]

By the proof of Theorem [3.3.4] and Proposition [3.3.1 we can choose the following trans-
formation matrices: T}, = I11, Ky = Oraxi1,

— 1 -

—1 1
—(RF+RG)/RG 0 1

72:: s
~1/RG 1
~1/RG 1
~1/R 1
~1/RG 1 -11
i 1/RG 1/R 11 01l
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-1 .
1
1

—1
—(RF+RG)/RG 1

~1/RG 1
—1/RG 1
—(RF+RG)/(R*RG) 1
—1/RG 1 -11
L 0 0 (R+RF+RG)/(R+RG) -11 014

(RF+RG)/RG

Fyr =
1/(CaxRxRQG) —1/(CaxR) 1/(CaxR)

L —1/(CaxR+RG) 1/(CaxR) —1/(CaxR)

Then the Morse transformation My,.qns(Ts, Tow, Ty, Fyur, K ) brings A" into _/~\“3, given
by (A, BY,C, D¥), which is in the EMTF, where

i = 7 23 | B Ar Agg 0 BY  Bi,
A | B _[4| B | B i B
= . =0 A 0 0 Bj|=
c | p°] [c | D" | o] .
- Lo Cs | DYy | 0 0]
r 0 00 0 0 1 00 8
1/(CaxRG) 00 —1/Ca 1/Ca 1/Ca (RF+RG)/RG 00 1
1/L 00 0 0 0 00
0 00 0 0 0 10
0 00 0 0 0 01
0 0 000 0 O 0 0 1 0 0000000
0 0 000 0 O 0 0 0 1 0000000
0O 0 00O 0 O 0 0 0 0 1000000
0 0 00O 0O 0 0 0 0 0100000
0 0 00O 0O 0 0 0 0 0010000
0 0 00O O O 0 0 0 0 0001000
00 000 0 0—1/(CaxR)0 0-1/R0000100
0 0 000 0 O 0 0 0 0 0000010
0 0 000 0 0 1/(CaxR) 0 0 1/R 0000001
-1 0 0 ORG 0 O 0 0
1 -1 00 0 RFO 0 0
0 0 000 0 R 0 0
0 0 100 0 O 0 0
00 010 0 O 0 0
-10 00 0 0 O 0 0
0 0 -10 0 0 O 0 01
0 0 011 —-10 0 0
0 0 000 —-10 1 0
0 0 000 01 1 1
L 0 -1000 OO 0 0 1 -
Step 3: By Algorithm [3.3.3] set
—1/(CaxRG) —1/Ca 1/(Ca*xRG) 0 1/Ca —1/Ca
Kun =  Fun = 01414

Then solve 7%, via the following constrained Sylvester equation,
AlT]%/[N - TJ\Q/[NA3 = —/_117 T]%/[NB;&D = _Bfw

where A = A + Ky nC, B® = B + K,;yD®. The above equation is solvable and the
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Thus the Morse transformation My,

Step 4: Transform each subsystem of A" into its canonical form as in Theorem [3.4.2

to obtain the EMCF:

(e]ejelal]
OOoOO—=HO
OoO—=HOOO

[e]e]elelen)

OO—HOO

Soooo

—OO0OO

Soooo
L

[lelelelelalolaly]
[elelalelelalalje]
COOOoCOoO—HOO
OOOOoCO—HOOO
OO —HOOOO
OOO—HOOOOO
COHOOOOOO
O—HOOOOOOO
inlelelolelalolol)

|

[e]elelolelalolol)
[elelelelelalelale)
[e]elelolelalolol)
[elelelelelalelal)
[elelelolelalolol)
[elelelelelalelal)
[elelelolelalolol)
[e]elelelelalell)
[elelelolelalolol)

(elejololelololely}
[lelelelalalal)
[elelelelelelolele)
OO0 O—HOOO
OOOOHOOOO
COO—HOODODOO
CO—HOOOOOO
O—HOOODODODOO
iplelelolelololel)

0
B
0

O BC’U
0 0
Dre 0

0
APY
0

ACU
0
0

1. Note that

., = 09

Step 5: Using the driving variable reduction and implicitation procedure, we get the
75
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following DAECS from the above EMCEF:

10000 7 01000
00100 00010

Z+ u,

[elelelelelololele)
[elelelelelelelels)
[elelelelelololel)
[elelelelelelolels)
[elelelelelaloelele]
[eleleleleleloelels)
[elelelelelalelol]
[elelelelelelolele)
[elelelelelalelole)
L

[elelelelelelelel g
[elelelelelelel )
[elelelelelalidels)
[elelelele]l Jelele]
[eleleleldelolels)
OO OO0OOO
[elel delelelelels)
(=] Jelelelelelelo]
[ =l=lelelelolel)

where 2z and « is the new “generalized” state and the input, respectlvely Obv10usly, the
above DAECS is in the FBCF with indices €|, = 2,é, = 2,é, = 1, 07 = 09 = 1,
01 =09 =,...,= 09 = 1. Moreover,a’ =n,=¢ =0, =0 =2.

Remark 3.5.1. From the above FBCEF, it is seen that the variables z;, z3 are actually the
states (they enter the system dynamiclaly) of the system; the variables 2, 24, 25 are the free
variables of the “generalized” state; the new control & = (14, ) are actually constrained
by the algebraic constraints 0 = u; the variables zg, 27, 23, 29, 210, 211, 212, 213, 214, are also
free “generalized” states (they enter the system statically) but they are constrained by the
algebraic constraints.

3.6 Conclusion

In this chapter, on one hand, for linear ODECSs, we modify and simplify the construction
of the MCF given in [145] by proposing the Morse triangular form MTF. On the other
hand, the bridge from the MTF of ODECSs to the FBCF of DAECSs is constructed via
the explicitation with driving variables procedure. It is shown that, after attaching a class
of ODECSs with two kinds of inputs to a DAECS, we can find connections between their
geometric subspaces and canonical forms. Finally, a simple algorithm of constructing
transformations from the MTF to the FBCF is proposed via the explicitation procedure
and an example is given to show how our results and algorithms can be applied to concrete
physical systems.

3.7 Proofs of the results

3.7.1 Proofs of Proposition 3.2.3, Proposition 3.2.4 and Theorem [3.2.§|

Proof of Proposition[3.2.3] If. Suppose that A 50 and ]\}fmj&o are equivalent via v =
F,z+Ru+0. Then A = A+ B°F, = ElH,+B"F, and B* = B*+B'R = E|L,+B"R,
which imply that EyA = H, and E\B = L, (since Im B = ker E). Thus A = ElH,
and B = EI L, for another choice of right inverse EI of I;. Therefore, A”#’m 50 18 also an
explicitation of (3.5a).

Only if. Suppose that An m.s0 18 an explicitation of 1i corresponding the choice of
right inverse E1 of E;. Since ET is a right inverse of £ if and only if any solution & of
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Eii = wis given by EIw, we have ElEI(Hlx + Lyu) = Hix + Lyju and E1EI(H193 +
Lyu) = Hyx + Lyu. It follows that Ey(E] — E})(Hyz + Lyu) = 0 and (E] — E})(Hyz +
Lyu) € ker Ey, for any z € R, u € R™, so (El — E])H,2 € ker Ey and (E} — ENLyu €
ker ;. Since ker Fy = Im B, it follows that (E] — El)L; = B'Rand (E| — E))H, =
BYF, (note that we fix B") for suitable matrices R € R**" and F,, € R**". Therefore A=
ElH, = E'H, + B’F, = A+ B'F,and B* = ElL, = ElL, + B'R = B*+ B'R. [

Proof of Proposition If. Suppose that A’ and A" are equivalent via an output in-
jection Ky = K(Cx + D"u) and an output multiplication § = 7,y. Then

i = Az 4+ B*u+ B'v = (A+ KC)z + (B* 4+ KD")u + B*v
A — (EH, + KHy)x + (EIL, + KLy)u + B*v
g=Czx+ Du=T,(Czx+ Du) = T,(Hsx + Lou),

Pre-multiply the differential part of A*” by E;, we get (note that Im B = ker F})

Eli‘ = (H1 + ElKHg)Z‘ + (Ll + ElKLQ)U
g = Ty(HQZE + LQU),

Thus A is an (I, v)-explicitation of the following DAECS:

B, _ [Hi+EKH) | [Li+ EKL)]
0] | T,H, T, L,

The above DAECS can be transformed from A* via Q = Q'Q, where )/ = [‘81 EF}K ,
y |
it proves that A" is a (), v)-explicitation of A™.

Q1 Q]

0 Q4]
Thus via Q, A¥ is ex-fb-equivalent to nd using EI Q[ = EI Q1 (note that Q) is
invertible) and BY = BY, we can express li as

T = EIQfl(Qlﬂlx + Q1 Lyu) + EIQI1Q2(HQ$ + Lou) + By

= El(Hyx + Liu) + EIQ7'Qo(Hyx 4+ Lou) + BYv
0= Q4(H2.T —+ LQU)

n7m7s’p

Only if. Suppose that A* € Expl(A*) via Q = Q'Q, where Q' = {

Thus a (Q, v)-explicitation of A" is

I i = Az + B*u + K(Cz + D"u) + B'v = Az + B*u + B*v
| y=T,(Cx + Du) = Cx + Du,

where T}, = @4, K = EIQ;lQQ, which implies that A*” and A" are equivalent via the
output injection Ky = K(Cx + D"u) and the output multiplication § = 7, y. O

Proof of Theorem[3.2.8] Without loss of generality, we assume that the system matrices of
A" = (E,H,L)and A" = (E, H, L) are of the following form:

I, 0 H, L - I 0 N H, L,
E=14¢ H = L = E =14 H=|= L=|=
R AR v N I R A R
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where H; € R L, € R¥*™ H, € R?*" [, € R?*™ ¢ = rank F, § = rank E. Since
if not, we can always find Q, Q € GI(l,R), P, P € Gl(n,R) such that
(QEP™',QHP™',QL) and (QEP™',QHP™', QL)

are of the above desired form. It is easily seen that the ex-fb-equivalence of (E, H, L) and
(E,H, L) is equivalent to (implied by and implying) that of (QEP~',QHP~',QL) and
(QEP‘l, QI:] P‘l, QIN/) Thus we can use the above system matrices to represent A" and
A% in the remaining part of the proof.

By the assumptions that A* € Expl(A*) and A% € Expl(A%), we have

S N iAo NS Sy R i
{c D 0]_ 0 10 | oy {é D }‘ ! X
LHy | Ly | 0 ] LH> 0 J

(3.23)

We have chosen A* and A% as above for convenience, any other choice based on the
explicitation procedure could have been made. Since any two ODECSs in an explicitation
class are EM-equivalent, the choice of a (@, v)-explicitation makes no difference when
proving EM-equivalence. Therefore, we will use the system matrices in (3.23) for the
following proof.

If. Suppose A"’ o A% Then there exist transformation matrices 1., Ty, Ty, Ty, Iy,
F,, R, K such that equation (3.10) holds. Substituting the system matrices of (3.23)) into
(3.10)), we have

H | Li| 0 H | L | 0 T 0 0

[o 0 In_J :[7(; T;K} [o 0 In_J F, T 10

LHy | Lo | O] Y2 |Hy | Lo | 0 ] (F,+RF)T;" RT,' T,*
(3.24)

T! T?

Now represent 7, = {T?’ T

], where 7! € R?*4. By B” = T, B'T; ", we get B] =

T T?
{Tg TZ] [ﬂ T, hence it can be deduced that ¢ = ¢ and T? = 0. Moreover, T2T, ' = T

implies that T is invertible. Thus by the invertibility of 7}, we have T} is invertible as
well.

. . (TH= 0 0
Subsequently, premultiply equation (3.24) by and we get

0 0 I,
~ ~ —1
TH=t 0 ] [H |Li|0o] [1, K] [Hi|L |0 L o0
g il e e I F,T; ;' 0
0 feg] | Lofo] L0 1] [Ha| L2 [0] | e v !

F,+ RF,)T:' RT' T

where K| = [[

T
~

! 5} K. Tt follows that

[ TG [Hy | L [T 0
o T, | |H | Ly |FTY T

u

78



CHAPTER 3. FROM MORSE TRIANGULAR FORM OF ODE CONTROL SYSTEMS
TO FEEDBACK CANONICAL FORM OF DAE CONTROL SYSTEMS

—fb ~ - .
Thus A% i~y A" via

1 1
Q:[% TxTKl}, P=T, F=F, G=T,"

Y

—fb ~ - .. . . .
Only if: Suppose A" i A". Then there exist invertible matrices (), P, and matrices

F, GG of appropriate sizes such that equation li holds. Represent () = {Ql @

where
Q3 Qj’
-1 Pl P2
Q1 € R and P~ = PP where P; € R7%?, Then by
3 Iy

|:Q1 Q2] |:Iq 0} {H P2:|
Qs Q4] [0 0] [P Py’
we immediately get ¢ = gand Q1 P, = I, Q1 P, = 0, Q3P, = 0, which implies that ()1,

Py are invertible matrices, P, = 0, and ()3 = 0. Thus by the invertibility of ) and P, we
have (), and P, are invertible matrices as well.

. I 0
E=QEP! q
orr= |1 ]

Then by equation (3.4), we get

f:f 1 [:/1 Q1 Q| [Hi | L[ P! O
H, Lo 0 Q4 H, Lo FP~! @G|
It implies that the following equation holds:

H | L, 0 Q 0 Q] THy | Ly 0 Pt 0 0
0 0 | L =X P | 0

0 | 0 | Ls| |FP G 0
4, | I, | o] [0 o0

q )
Q) | L[ ollYy 2z np

where X = —P'PP[Y Y = (BRP'H, + P3P 'L F)P~', Z = P3P 'L,G. There-
fore, A“ R yia

Tm:Pa Tu:G_la

Tv:P4_17 Ty:Q47
_ _ -1 _ 1 [ PQe
F,=F F,=PP'H, R=PP 'L, K= .
P30

3.7.2 Proof of Proposition 3.2.9

u
l,n,m

ool b=l ml b+ 2]

where ¢ = rank £ and H, € R4, H, € R™>*("~9 Hy ¢ RP*9, H, € R*"=9 [, ¢

Proof. Without loss of generality, we may assume that A
lowing form:

(E, H, L) is of the fol-

R9*™ L, € RP*™ where p = | — ¢. Since if not, we can always find Q € GI(I,R),
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P € GI(n,R) such that A® = (QEP~',QH,QL) is of the above form. Then, it is
not hard to verify that %(A%) = P¥(AY), #;(A%) = PH(AY), #i(A") = PHi(AY).
Moreover, for two ODECSs A¥ = A* e Expl(A%), A? = A™ ¢ Expl(A%), we can
verify that V;(A?) = PV;(A®), W;(A®) = PW;(A"), W;(A?) = PW;(A"). Therefore,
in order to show that the relations of the subspaces (as claimed in Proposition [3.2.9) hold,
replacing A* by A% makes no difference and thus we will assume that A is of the above
form in what follows.

Then, the following system, denoted A¥ = A", is a (@, v)-explicitation of A*,
I'l . H1 H2 T L1 0
AV = AW L«J - [0 o} LJ * {0} ut LR_J ! (3.25)
y = Hsxy + Hyzo + Lou.

Firstly, we calculate V;(A™) through equation (3.44) of Appendix in Section

s [ ([ raerom [2])
i3] (e 5
_ Z; ij B ([[Iq,o]gi(/\w)} +1Im Eé SD — HY(EV;i(A*) + Im L).

Comparing the above expression with equation (3.41)) of Appendix, it is easily seen that
the subspace sequences V; 1(A") and ¥;,;(A") are calculated in the same form. Since
Po(A") = Vo(A™) = R", we conclude that #;(A"*) = V;(A") for 7 € N.

Then calculate #;,,(A") via equation (3.42)) of Appendix:

v = emn <[ ([ v o2

(e e
_ ﬁl fé? Lol 8} QWqﬁu)} Nker[H; Hy L o]) +Im Lno_q]

In the above equation, according to the special form of £, we directly calculate the preim-
age. Moreover, we can express

[Inoq] ) {8 0 ¢ Inoj ([7@(2)} Aker[Hy Hy L o}).

It follows that

}ﬁker [H; Hi Lo 0})

A I T

0 0 0 I, U
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— (a5 (|75 nrerle 7)),

It is seen from the above equation and (3.46) of Appendix that the subspace sequences
W;+1(AY) and #;,1(A") are calculated in the same form. Since the initial conditions
Wo(AY) = #4(A") = {0}, we conclude that W; 1 (A") = #;11(A") forall i € N.

Then from (]3.42[) and (]3.43[), it is seen that the subspaces sequences %#; and W; are
calculated in the same form, their difference comes from their initial conditions only. Sim-
ilarly, from and , it is seen that W, and Wz have different initial conditions
but evolve in the same way. Thus, by W (A*) = #;(A") = ker E = Im B?, we get

~ ~

W;(A") = #;(A") for all i € N*. O

3.7.3 Proof of Proposition 3.3.1]

Proof. Observe that the transformation matrix 7 decomposes the state space 2~ of A“
into 2" = 210 250 X3 2y, where 27 = VNW*, 210 2y =V, 210 23 =W,
(V*+W*) @ 2y = 2. The transformation matrix 7; decomposes the input space %,
into %, = % ® %, where 2, = W, 2 & % = %,. The transformation matrix 7,
decomposes the output space % into ¥ = %, & %, where % = Y*, % & % = % . Let
N = (A, B,C",D") = Myan(A"), where M., is the Morse transformation M., =
(T, T;,T,,0,0). Then consider the following equation and subspaces:

A Bl [T, 0]JA B*|[T,;' O

[C’ D’} B {0 TO] {C D“} 0 T.l}

7

(Al A2 A3 Al | Bl B? * *
Ay A3 A3 A | By B coAn .| coany . |0
Ay oz oy oar | B B VW] WML
“la &2 oAl B B 0 0

ci ¢z Cc3 Cci | DY D2 /s * .l n
o o2 oot | pyop2 W (A)'H’ WA)'[()]'

Now, applying (3.45)), for i = n, to both A’ and the dual system of A’, we have

B] U, C m] , [Egﬂ () C [(Wg )1 |

It follows that B3, B}, C}, C2, Di, D}, D3 are all zero.

*

Then applying (3.44)) for i = n, to both A’ and its dual system, we have

)<l 12
(e R T R
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The lower parts of equations (3.26) and (3.27) give C'V* C Im D’ and (B")T(W*)+ C
Im (D’)?, which implies that B2 and C are zero. On the other hand, equation (3.26) gives
that

Al B2 A? B2
Im |A}| CIm [B?| and Im |A%| CIm |B%|,
C;3 D? C? D?

implying that there exist matrices £} € R™2*™ and F, € R"?*"2 such that

Al B? A2 B2
Al == |B}| F, and |A}| =— |B?| F.
Cs Dj C3 D3
Then setting /' = Lgl ]22 8 8},we have
(Al + BiFy A}+BiF, A} A} | Bl Bi]
Ay+BiR A3+ B3Ry A3 Ay | 0 B3
T, 014 BI[T' 0] 0 0 A AL | 0 B
S I T B R
0 0 cs Cy 0 D3
0 0 0 ¢t o0 0]

Since W* is feedback invariant, equation (3.27) also holds for the above transformed sys-
tem. Thus the upper part of (3.27) becomes

(A + BE) (W (X)" € (W (A))* + Im (C')",
which gives that (A} + B#Fy)T =0,
(AZ’)T] {(Cf)T] [(AZV] {(05’):’}
Im C Im and Im CIm .
[(BS)T - (DY) (BY)" (D3)"
It follows that there exist K; € R™*P1 and Ky € R™*P1 guch that

fee R A L Rt ok

T T
Let K = {8 [;1 8 [;2} , which implies that

T, KT,][A B][T;/* 0]

0 T,||C D||T7'F T7'

(Al + B}Fy, A} 4 BiF, A3 Al Bl B?]
0 A2+ B2F, 0 A+ KO} 0 0
0 0 A3 Al 0 B?
0 0 0 A+ K,C: | 0 0
0 0 C3 Cs 0 D2

0 0 0 Ct 0 0]
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Now it is seen that there exist Ky = T, 'KT, and Fyr = Ti_lFTS such that A% =
(A, B®,C', D*) has the form of (3.13), where

A BY] [T, T.Kur][A B*][ T, 0
¢ D' o T, ||C DY |FurT,7" T,
The system matrices of A%, see (3.13), are A; = Al + B2F}, A? = A2, A3 = A3, At = A4,

By = B}, B} = B}, Ay = A} + BIF,, Ay = Ay + K\C}, Ay = A3, A4 Al By = B2,
Ay = AL+ K,01, Gy = C3, (14 — C4, Dy =D2,Cy = C4

Now we will show that (fll, Bl) is controllable. By Lemma 4 of [[145], for A%,

Wiz (A") = Wi (A") 0 V*(AY), (3.28)

where W; |y is the subspace W; when the input is restricted to U;. Use system matrices
(3.13) to calculate W;(A)|y: and W;(A%) N'V*(A™), which gives

WAy = 21+ 4B+ + (A1,

W, (A" NV (AD), (3.29)

where #; = Im [Bl 0 0 0]". We can see from the above equation that the reachability
space of (A, By) is W*(A) N V*(A) = 27, which implies that (A;, B;) is controllable.
Since the proof of the observability of (04, 1214) is completely dual to the above proof, we
omit this part.

Subsequently, we prove that the system A3 = (flg, Bs, Cs, [?3), given by li 1s
prime. Using the system matrices of A" to calculate W[ ., we get

W*(Au”(uz)L =% x {0} x W*(A3) x {0},

where “+” denotes the terms which are irrelevant. From W* = W,,|ai:) @ Wy|ae)+ and
equation (3.29), we can deduce that W*(A3) = 27 (A%) = 25(A%). Moreover, by a dlrect
calculation, we get

Y (AY) = #(A®) = CoW* (A®) + Dy, (A%), V*(A®) =0, UL (A®) =o0.

Finally, by Theorem 10 of [145]], we conclude that A*> = (As, Bs, Cs, Ds) is prime. O

3.7.4 Proof of Proposition 3.3.2]

Proof. First, by Algorithm [3.3.3]and a direct calculation, we have

Ay = A+ BiFly, A=A+ B2F2  + K} nCs+ KL v DsF2
A=A, + KMNC;}, Ay = As+ K2,,C5 + BsF2 n + K2,vD3F2, .,
Bs = Bs+ K3,yDsy, At = A+ B2F},y + K} nCs + Kb yDsF3
B? = BQ—|—K}WND3,, Al = A4+33F§4N+K]2\4NC’4+K NDsE3
Cy = Cs 4 D3F2, 5, 04 Ct + DyF3, .
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We will show that we can always assume Dg = 0. To this end, we can find a change
0 I
0 0
choice of feedback and output injection transformation, the 5-tuple (Bf, Bg, CN’3, C’;}, Dg)
can be brought into the following form:

of coordinates in the input and output spaces to obtain Dy = [ } . Then by suitable

e [

~ * ok Bgo
* ok B3:>O 0 AR
Cs CH | D N 9
[Ca G5 | D] {CgcgfooJ

Now, by deleting the zero columns of B and the zero rows of C, we get

B

*
*
[Cs C5 | Ds)

whose Dg—matrix is .Dg = 0.

Now with the assumption D3 = 0, we show that the constrained Sylvester equations
of (3.16) can be reduced to normal Sylvester equations by a suitable choice of F;y and
Kj;n. We claim that the following matrix equation

B? = —T2,, Bs (3.30)

is solvable for T]@ ~- This claim can be proved using the following observation,

ol

Note that the above equation is a consequence of the definition of U} (see equation (3.45))).
Now by (3.31)), we have

Im(col [B 0 Bs 0 Dy O})ﬂ{%]z&

Since Dy is already zero by assumption, the above equation proves that lj is solvable
for T%, - Consequently, substitute 1' into the upper equations of 1} and we get

72 g2 /12

Furthermore, since (1213, Bg, C~’3, Dg) is prime (the result of Proposition [3.3.1), we can
always assume Bs = [I,,,,0]” and C3 = [[,,, 0] (if not, use coordinates transformations
such that Bs and Cj are of that form), where m3 = rank Bz = dim (U})* = p3 =
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rank C = dim Y* . Then, it is possible to choose K}, y, K3,y F2;y such that the 4-tuple
(A3, A3, B2, () is transformed into the following form:

'A:{) 7 0 A?/

— =— |0 0 I,
éf’ Bal =10 a4 | o

L - _[ps 0 |

Thus 7% in equation (3.32) is of the form T3, = [G} 0] (since T7, 5 Bs = 0). Hence,
solving T2, via equation (3.32)) is equivalent to solving GY, via

1 =, =, 0 O ~al
A0 Gy —[0 G { —}:[O A
o al-b el o ;
Therefore, the upper part of the constrained Sylvester equations of (3.16)) can be reduced to
the above normal Sylvester equation. The reduction of the lower part of (3.16)) to a normal
Sylvester equation follows dually from the above result and we will omit that proof.

Moreover, from Proposition we have that the pair (1211, él) is controllable and the
pair (6’4, 1214) is observable. By the standard matrix theory, we can choose Fj;n and K,y
such that the eigenvalues of A;, Ay, A% ,and A} are disjoint. Then there exist unique solu-
tions for T, n» T2 x> Tiins T Ty in and (3.16). Furthermore, it is not hard to
see that the state coordinates transformation matrix G brings A into A”. Feedback trans-
formations preserve controllability, so controllability of (/11, Bl) implies controllability of
(A, By); output injection preserves observability, so observability of (Cy, A4) implies ob-
servability of (Cy, Ay). We have (As, Bs, Cs, D3) %(/_13, By, Cs, Ds3) and the fact that the
4-tuple (A3, B3, C, D3) is prime is inherited from the fact that (/ng, Bs, Cs, Dg) is prime
(see this property of prime systems in [[1435]]). U

3.7.5 Proof of Theorem 3.4.2

Proof. By Theorem for a given ODECS AW, .= = (A, B*, B",C,D"), there ex-
ists an extended Morse transformation E M., such that EM;,..,(A") is in the EMNF.
Therefore, the starting point of this proof is the EMNF given by (3.18)). Since the system
represented in the EMNF is already decoupled into four independent subsystems, we only

need to transform each subsystem into its corresponding canonical form.

(i) We will prove that any controllable A = = (A, B*, BY) can be transformed into

n,m,s

the Brunovsky canonical form with indices (€1, ..., €,,) and (€, . .., ), then the transfor-

A0 B TOTY
0 ACU] ) [ 0 } ; [ Bw}) is straightforward to see.

Since A" = (A, B, B") is a control system without output, in view of the extended
Morse equivalence of Definition we just need to prove that there exist transforma-
tion matrices 1, 1., T, F,, F,, R such that the transformed system matrices

mation from (A;, BY, BY) to ([

(T, (A+ B"F,+ B (F, + RF,)) T, ', T, (B*+ B'R) T, ', T,B'T, )
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are in the Brunovsky canonical form. First, from the classical linear system theory (see,
e.g., [31]), using only a state coordinates transformation and state feedback, i.e., choosing
suitable T, F,,, F,, and setting T,, = I,,,, T, = I, R = 0, we can transform A"’ into the
following form:

ngil) _ b%ul 4o+ binum + Z_)%Ul +oee Z_);U&

25 =g B, + By - B, (3.33)

wE) = Py e DU+ D 4 D

Moreover, without loss of generality, we assume rank B* = m + s (since if not, we can
always permute the variables of u and v such that the first m; columns of B* and the first
s1 columns of BY are independent, where m, = rank B" and s; = rank B", then we will
work with the matrices with these independent columns), it can be deduced that the matrix

L U
r_ vk . b
pts o pmbs pts o pmbs

is invertible. Furthermore, x; for 1 < ¢ < m + s are the controllability indices of the
pair (A, B¥), where B = [B“ B”]. Now without loss of generality, we may assume
K1 > Kg > +++ > Kpas. In the case of the Brunovsky form for classical ODECS (with
one kind of inputs), we can use I' as an input coordinates transformation matrix. How-
ever, A"’ has two kinds of inputs and the input coordinates transformation matrix should
have a triangular form (see Remark [3.2.7(ii)). In order to have such an input coordinates
transformation matrix , we implement the following procedure:

Step 1: Starting from ¢ = 1, search for the largest integer ¢, denoted by 7, such that at
least one of l;;'., 1 <5 < s, is not zero. Then we set

€1 = K1, €2 = Kz, ..., €r_1= Rig—1; €1 = R4
Now using the feedback transformation

8 it - Tit Tit
Uy = bltug + -+ D u, + bftog + -+ Dl g,

we get
( ) m S m S
(gl) -~ ﬂif+1 _ ~i1<+1 ~ :iI+1 ~ . (H/ers) _ ~m+s ~ :m—i-s ~
Tyl =01, Tny = b u; + B S by + by ;.
j=1 j=1 j=1 =1

(3.34)

Thetermslsj-,z"{—i—l <i<m+s1<j §mand5§-,z”{—|—1 <i<m+s1<j<s
in the above equation can be easily calculated. Note that since b; =0,1<7 <47 -1,
1 < j < s, the feedback transformation does not affect the subsystems whose states are
z;, 1 <1i <47 — 1. Hence the remaining terms in equation (3.33)) are kept the same. In the
following, to simplify the notation, we will drop the tildes in equation (3.34).
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The following construction of new coordinates is essential: for 1 < j < m+s—17, set

7l = ! b 1+J KI*‘H—H
i T Vil4g q )
72 = 72 b 1+J KI*‘HJFQ
it R q )
it 4 Rit+s bz{ﬂ Fox
iT+J ii+j 1 5

and we do not change the remaining state coordinates. It can be seen that by construction,
all b = 0 for i{ + 1 < i < m + s and thus equation (3.33)) becomes

( xgel) = bluy + -+ + bl Uy,
E:ff-l) _ b?_l b 1_1Um,
2 o, (3.35)
(IQ,L* ) i i ’L —*
T = 0 ey e 0 By g 1 BT

~\Km+s 7 7
\ x§n+;“ AT NPT bt S, + by vy 4 -+ 4 B

Then, drop all the tildes in equation (3.35)) and go to next step.

Step k (k > 1): By constructions in former steps, we have l_);'- =0fori;_; +1<:<
m+s,1 < j < k— 1. Then staring from 7 = 7;_, + 1, we search for the largest ¢, denoted
by 47, such that at least one of 1_7;, k < 7 < sis not zero. Then we set

€ir_+1 = Kig_ 41, Cir_ 42 = Kiz_ 42, .-, €1 = K1y € = K.
Now using the feedback transformation
- i it i
UV = blku + - +bmum+b1kvl+"' +bskvsa

we get that

E (K:* m ~'*+1~ s :<*+1~ N 5
xfk ) = oy, xz*ﬂﬂ Zb;’“ a; + Zb;’“ Uj,. .. nf;”; me+s a; + me“
P =1
(3.36)
Notethatthetermsi);.,i;—i—l <i<m+s1<j<mandbi,ifj+1<i<m+s,

1 < 7 < scan be easily calculated. In the following, to simplify the notation, we will drop
these tildes.

Then construct the following new coordinates, for 1 < j7 < m + s — 4, set

Z+] niz—ni2+j+1

~1 _
Tipry = Tipry — Oy
B, — gk R Fipst2
i+ T Tig+s i (3.37)
it Fif+i +y
.Z'Z*]j'_ - Z‘»*k bk * y
kT i tJ Zk
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and keep the remaining ones unchanged. Again, it is seen that, by construction, all b = 0
fori; +1 < ¢ < m+ s. Then, drop all the tildes for the transformed system and go to next
step.

It is seen that after s steps, the matrix I' becomes

T8 0 0 0 0
0 100 0 | |
T 000 ...0 AU X
b0 0o of TF=1| .. € RO =1xm,
L ’ U
TS 000 ... 0 for 1<k <s+1.
0 000 1
7541 0 0 0 |

Note that in the above expression, 75 = 0 and i}, ; = m + s. Now set

T, = col[T}, T2, ..., T5,

ur U

and by calculating the dimensions, we see that 77, is an m X m matrix. Since the rank
of I' is invariant under coordinates and feedback transformations, we deduce that 7T, is
also invertible. Finally, using an input coordinates transformation u = 7, u, we get the
Brunovsky canonical form of A"*¥ with indices (€1, ..., €,,) and (€1, ..., &).

(i) A" = A,.

(iii) First, we can find a Morse transformation M/}

iran With a triangular 7;, such that:

o A, | B2 o | B
M}, MSB;B%(CZ 0 0 p).

tran \6'3 ‘ ngf ‘ }_ 0 0 15

Since (A3, BY, Cs, DY) is prime, by Theorem 10 of [145], (A,, BY, C,) enjoys the prop-
erties:
V*(A,, By, Cp,) =0, U, (A, By, C,) = 0. (3.38)
W*(A,, BY,C,) = R™, Y*(A, BY.C,) = %. (3.39)

A little thought (or see Lemma 2 of [145]) and equation (3.38) gives that lép Bg’]
p

is of full column rank. Then by V*(A,,BY,C,) = (W*((4,)",(Cp)", (BY)T))* (see

w

the results of (3.49)) and equation (3.39), we have [ép Bop } 1s of full row rank. Thus
p

{gi BB” } is square and invertible.

Moreover, by item (i) of this proof, there exists a Morse transformation M2 with

triangular T}, such that the pairs (AP*, B*) and (AP, B"") below are in the Brunovsky
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form with indices (074, ...,0.) and (74, ..., 04) respectively.
o A oo | B | o
b (5 L%
' \G [ ol )

Then, according to the block-diagonal structure of AP and APY, the matrices C’;j and C;j
above have the form:

Go=lcr | ¢y | e aq=lep | oy |l
where CA'Z“ eRP3*oi 1 <i<cand C} € RP#*% 1 <i<d.
Now every subsystem (fl{,’?, ng, CA*Z”) and (AY7, BY?, C?) must have the properties that
Wr(Ape, Bre, Gy = R™, - W*(AR, BY, C7) = R, (3.40)
since if not, equation @]) does not hold.

By a direct calculation, we have W, (/Al{,";, ng, C) = Im Bgf and W (A%, BY?, CY) =
Im BY’. Then the subspaces Wg(fl{fi‘, ng, CA‘Z“, 0) and Wy (A%, BZ', C?,0) coincide with
Im Bgy and Im BY’ respectively, unless the last columns of C’;L and C} are zero vectors.
By similar arguments, we can deduce that C’;‘, 1 <i<cand(C/,1 < i < dhave the
following form:

where ¢ € R and ¢} € RP. Furthermore, since the columns of A2 and A}’ correspond-

w
po

c } is invertible, we see that the
p

ing to ¢! and ¢} are all zero, by the argument that [

following matrix
-1 _ [ru su AU v v v
T, = [cl cy ... Cg ‘ ¢l ¢y ... cd}

is invertible. Finally, using 7), as the output coordinates transformation matrix, we get the
following canonical form for C),

L0, =T,[Cr ] = {Cg CH .

(iv) The proof of (A%}, C3) implies (A°, C°) is omitted since it is well-known in the
linear control theory. [

3.8 Appendix

We use the following notations in the present chapter.
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ek

N
RnXm
Gl (n,R)
ker A
ImA
rank A
I,
0n><m
AT
A-1
AR
ArRB
AT
%J_

At

20

the class of k-times differentiable functions

the set of natural numbers with zero and N* = N\{0}

the set of real valued matrices with n rows and m columns
the group of nonsingular matrices of R™*"

the kernel of the map given by a matrix A

the image of the map given by a matrix A

the rank of a matrix A

the identity matrix of size n x n forn € N*

the zero matrix of size n x m forn,m € N*

the transpose of a matrix A

the inverse of a matrix A

{Azx |z € A}, the image of Z under matrix A

{z| Az € A}, the preimage of % under matrix A

(AT) 128

{z|Va € o : x7a = 0}, the orthogonal complement of &/
the right inverse of a full row rank matrix A € R™*™ ie., AAt = I,
k-th-order derivative of function x(t)

Recall the following geometric subspaces for DAECSs (see e.g. [152],[17]) of the form
A" : Ex = Hx + Lu.

Definition 3.8.1. Consider a DAECS A¥

= (E,H,L). A subspace 7 C R" is called

l,n,m

(H, E;Im L)-invariant if

HYy CEY +1ImL.

A subspace # C R" is called restricted (£, H; Im L)-invariant if

W CE N HY +ImL).

Definition 3.8.2. For a DAECS A}, |~ = (E,H, L), define the augmented Wong se-
quences as follows:

Y% =R", Y =H YEY+ImL), (3.41)
Wy =0, Wy =E'(H#+ImL). (3.42)

Additionally, define the sequence of subspaces W as follows:

W =ker E, Wiy =E Y (H¥#; +ImL). (3.43)

Remark 3.8.3. (i) The subspace sequences #; and % satisfy,

Wo CHCICHoa S W CHLC WS o C Wi = Wi = Wiy = W

or

W CICH G W G CILG - G Whe & Whe = Wiy = Wi,
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where j > 1 and k* is the smallest k& such that #}- = #}+.1. Note that k* may not be the
smallest k& such that #}« = #j-1 (since #i~ C #j++1 in the second case of the above).
However, it is seen that #; and #; always have the same limits.

(ii) From [17], we know that ¥* is the largest (A, E; Im L)-invariant and #* is the
smallest restricted (E, A, Im B)-invariant, where #»* and #* are the limits of the se-
quences ¥; and #;, respectively.

(iii) In Chapter |2, we have proved that for the DAE Ei = Hz, ¥*(E, H,0) is also
the largest such that ¥ (E, H,0) = H'EY(E, H,0), but #*(E, H,0) is not necessarily
the smallest such that % (E, H,0) = E~'H# (FE, H,0). It is easy to extend that result
to the case of L not being zero, i.e., ¥ *(E, H, L) is the largest such that ¥ (E, H, L) =
HY(EY(E,H,L) + ImL), but #*(E, H, L) is not necessarily the smallest such that
#(E,H,L)=E“(H¥(E,H,L)+ImL).

Consider an ODECS A" = (A, B*, BY,C, D) of the form

n7m7sﬂp -

A . & = Az + B*u + B"v
| y=Czx+ D"u.

The state, input and output space of A" will be denoted by 2, %,, and %, respectively.
The input subspaces of u and v will be denoted by %, and %, respectively. Thus we have
U = Uy ® U, Recall that A" can be expressed as a classical ODECS A7, . = =

(A, BY,C, D") of form (3.2)). The input space of A” is denoted by %, and clearly, %,, =
... We now recall the invariant subspaces V and W defined in [145] for A™.

Definition 3.8.4. For an ODECS AY = (A, B, C, D"), asubspace V C R" is called

n,m+s,p
a null-output (A, B")-controlled invariant subspace if there exists F' € R(™+%)%" such that

(A+BYF)VCV and (C+DYF)V=0

and a subspace U,, C R*"™ is called a null-output (A, B")-controlled invariant input
subspace if
Uy = (BY)" 'V Nker D*.

Denote by V* (respectively U’) the largest null-output (A, B*) controlled invariant sub-
space (respectively input subspace).

Correspondingly, a subspace W C R™ is called an unknown-input (C, A)-conditioned
invariant subspace if there exists K € R™*? such that

(A+ KCYW + (B" + KD")%, =W

and a subspace Y C RP is called an unknown-input (C, A)-conditioned invariant output
subspace if
Y=CW+ DY,.

Denote by W* (respectively Y*) the smallest unknown-input (C, A)-conditioned invariant
subspace (respectively output subspace).
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Lemma 3.8.5. [[144] Initialize Vo = 2 = R" and, for i € N, define inductively

va=fe] ([ 3]

and U; C % fori € N are given by
-1
BY V;
w=[o] 3

Correspondingly, initialize Wy = {0}, and, for i € N, define inductively

Then V* =V, and W, = U, .

wo=ta 5[]t )

andy; C % fori € N are given by

Y= [c D] {W]

Uy

Additionally, define the subspace sequence Wl as

~

W, =ImB’, Wii1=[A BY] ([ZZ/\?} Nker [C m]) .

Then W* =W,, Y* =Y, and W,, = W,, = W*.

(3.44)

(3.45)

(3.46)

(3.47)

(3.48)

Note that when considering the above defined invariant subspaces for the dual sys-
tem A¥? of A¥, given by A¥? = (AT, CT (BY)T, (D")T), we have the following results

[146],[145]:

VH(A) = WA, Wr(A%) = V(A%
W (A%) = YH(A™), Y (A®) = g (A
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Chapter 4

Geometric Analysis and Normal Form of
Nonlinear Differential-Algebraic Equations

Abstract: For nonlinear differential-algebraic equations DAEs, we define two kinds of
equivalences, namely, the external and internal equivalence. The difference of the two no-
tions will be illustrated by their relations with the existence and uniqueness of solutions.
Roughly speaking, the word ‘“external” means that we consider a DAE (locally) every-
where and “internal” means that we consider the DAE on its (locally) maximal invariant
submanifold only. We show that this invariant manifold can be calculated by an algorithm
iteratively. A procedure named explicitation with driving variables is proposed to connect
nonlinear DAEs with nonlinear control systems. We then show that the driving variables
of an explicitation system can be reduced under some involutivity conditions. Finally, due
to the explicitation procedure, we will use the notion of zero dynamics from nonlinear
control theory to derive a nonlinear generalization of the Weierstrass form.

Notation
N the set of natural numbers with zero and N* = N\{0}
C the set of complex numbers
Rmxm™ the set of real valued matrices with n rows and m columns
I, n X n identity matrix

C/(M;N) the class of maps of class €/, j € NU{oo}, from M to N; if j = oo,
it is the set of C*°-smooth functions

Gl (n,R) the group of nonsigular matrices of R"*"
T.M the tangent space of a submanifold M of R" atx € M
A exterior product
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4.1 Introduction

Consider a nonlinear differential-algebraic equation DAE of the form
=: E(r)i = F(x), 4.1)

where x € X is a vector of the “generalized” states and X is an open subset of R" (or
a n-dimensional manifold). The maps £ : TX — Rland F : X — R' are smooth
and the word “smooth” will mean throughout the chapter C*°-smooth. We will denote a
DAE of form by =, = (E, F) or, simply, =. Equation is affine with respect
to the velocity &, so sometimes it is called a quasi-linear DAE and can be considered
as an affine Pfaffian system (for Pfaffian system, see any book on differential geometry,
e.g. [112]]). Note that some variables of x may perform like normal state-variables of
differential equations and the others may play the role of an input, that is the reason why x
is called the “generalized” state.

A pure semi-explicit PSE DAE is of the form

—pse . | 41= Fi(z1,22)
= : 4.2
{ 0= Fg(l’l,l'g), ( )

where 7 € R? is a vector of state variables and x5 € R"79 is a vector of algebraic
variables (since there are no differential equations for z5), the maps F; : X7 x Xo — T'X;
and Fy : X; x Xo — R"9 are smooth, where X; and X, are open subsets of R? and
R™ 7 (or a ¢- and (n — ¢)-dimensional manifolds), respectively. Comparing a DAE of

form (4.2)) with that of form (4.1)), the function F/(x) becomes constant and is of the form

E(z) = [{)q 8] . A linear DAE of the form

A:FEit=Hz 4.3)

will be denoted by A;,, = (E, H) or, simply, A, where £ € R™*" and H € R™>".
Apparently, both the PSE DAE =P°F and the linear DAE A can be seen as special cases
of DAE =.

The motivation of studying DAE:s is their frequent presence in modelling of practi-
cal systems as electrical circuits [166], chemical processes [33) [154], mechanical sys-
tems [159, 22|, [26]] and mobile robots [90, [83]], etc. A normal form or a canonical form
of a DAE is the simplest possible form of the DAE under some predefined equivalence
relations. The studies on normal forms and canonical forms of DAEs can be found in
(186l (117, [131) [16 20] for the linear case and in [169), (120, [13]] for the nonlinear case.
Two linear DAEs Ei = Hx and E2 = H7 are called strictly equivalent [[73]] or externally
equivalent in Chapter[2]and in [47], if there exist constant invertible matrices () and P such
that QEP~' = E and QHP~' = H. Analogously, we define the external equivalence for
nonlinear DAEs as follows.

Definition 4.1.1. (External equivalence) Two DAEs =;,, = (E, F') and él,n = (E F )
defined on X and X, respectively, are called externally equivalent, shortly ex-equivalent,
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if there exist a diffeomorphism ¢ : X — X and Q : X — GI(I,R) such that

Folo) = QWIF() and B(u(e) = QB (755) . @)

The ex-equivalence of two DAEs will be denoted by =~=. If ¢) : U — U is a local
diffeomorphism between neighborhoods U of z° and U of 7%, and Q(z) is defined on U,
we will speak about local ex-equivalence.

There are three main results of this chapter. The first result concerns analyzing a DAE
(locally) everywhere (i.e., externally) or considering the restriction of the DAE to a sub-
manifold (i.e., internally), which corresponds to the external equivalence (see Definition
M.1.1) and the internal equivalence (see Definition 4.3.T1)), respectively. The difference
between the two equivalences will be illustrated by their relations with the solutions of
DAEs. In order to analyze solutions of DAEs, we use a concept named locally maximal
invariant submanifold (see Definition [4.3.1]), which can be calculated by an iterative re-
duction method shown in Algorithm 4.3.4] Actually, via this reduction method frequently
appearing in the DAE:s literature 1611162, 1164, |165], that works under some constant rank
and smoothness assumptions, one can generate a sequence of submanifolds by analyzing
the existence of solutions. If the sequence of submanifolds converges after a finite number
of steps, then the solutions of the DAE are given by an ordinary differential equation ODE
evolving on the limit (which is actually a maximal invariant submanifold) of that sequence
of submanifolds. Then the word “internally” means that we consider the DAE restricted to
its maximal invariant submanifold (i.e., where its solutions exist). Thus considering only
the restriction of a DAE means that we only care about where and how the solutions of that
DAE evolve. However, when the nominal point is not on the maximal invariant subman-
ifold (which is common for practical systems, since an initial point could be anywhere),
there are no solutions passing through the point but we still want to steer the solutions
to the submanifold and this must follow the rules indicated by the “external” form of the
DAE, thus considering DAEs everywhere is also important.

In Chapter [2, we have shown that one can associate a class of linear control systems
to any linear DAE (by the procedure of the explicitation for linear DAEs). In this way, we
can use the classical linear control theory to analyze linear DAEs. The second result of
this chapter is a nonlinear counterpart of the result in Chapter 2| To any nonlinear DAE,
by introducing extra variables (called driving variables), we can attach a class of nonlinear
control systems. Moreover, we show that the driving variables in this explicitation proce-
dure of nonlinear DAEs can be reduced under some involutivity conditions which explains
when a DAE Z is ex-equivalent to a PSE DAE =P,

It is well-known (see e.g. [L17],[75]) that any linear DAE A of form (4.3) is ex-
equivalent (via linear transformations) to the Kronecker canonical form KCF. In particular,
if A is regular, i.e., the matrices F and H are square (! = n) and |sFE — H| # 0 for s € C,
then A is ex-equivalent (also via linear transformations) to the Weierstrass form WF [[186]],

95



CHAPTER 4. GEOMETRIC ANALYSIS AND NORMAL FORM OF NONLINEAR
DIFFERENTIAL-ALGEBRAIC EQUATIONS

given by
N 0][€ _[I o][¢
F: = 4.

we Lo (= A “
where N = diag (Ny,..., N,,), and where N;, ¢ = 1,...,m are nilpotent matrices of
index p;, ie., N # O0forall j = 1,...,p; — 1 and N/ = 0. The last result of this
chapter is to use such concept as zero dynamics of the nonlinear control theory [92]],[151]
to derive a nonlinear generalization of the WF. In the linear case, canonical forms as the
KCF and the WF are closely related to a geometric concept named the Wong sequences
(see Definition below). As shown in [[16], the relations between the WF and the

Wong sequences has been built and in [20]], the importance of the Wong sequences for the
geometric analysis of linear DAEs are reconfirmed.

Definition 4.1.2. For a linear DAE of form (4.3)), define the Wong sequences by

% :Rn7 %-‘rl :H_lE%a ZEN?
Wo={0}, #i,n=E'H¥;, iecN.

In Chapter[2] we showed that the Wong sequences of linear DAEs have direct relations
with the invariant subspaces of the explicitation systems and these invariant subspaces led
us to the Morse canonical form of control systems. Thus generalizations of the Wong
sequences for nonlinear DAEs are desired and possible candidates for a nonlinear version
of Wong sequences would be invariant objects showing up in the procedure of explicitation
of nonlinear DAEs.

This chapter is organized as follows. In Section 4.2] we discuss solutions of DAEs
and show their relations with the external equivalence. In Section [4.3.T| we introduce the
concept of locally maximal invariant submanifold, present an algorithm to calculate it (the
reduction method), and we show that the internal regularity (existence and uniqueness of
solutions) corresponds to the internal equivalence to an ODE without free variables. In
Section[4.3.2] we show the explicitation (with driving variables) procedure and how DAEs
are connected to nonlinear control systems. In Section 4.3.3] we show when a nonlinear
DAE is externally equivalent to a pure semi-explicit one and how this problem is related
to the explicitation. A nonlinear generalization of the Weierstrass form is given in Section
M.3.4] Finally, Section 4.5 and Section [4.4] contain the conclusions and the proofs of the
results, respectively.

4.2 Preliminaries and problem statement

Definition 4.2.1. A solution of a DAE Z,;,, = (E, F) is a C! curve v : I — R" defined on
an open interval / such that for all ¢ € I, the curve () satisfies E (y(t)) ¥(t) = F (y(t)).

Throughout this chapter, we will be interested only in solutions of = that are at least
Cl. If we fix (to,z°), then a solution v(¢) satisfying v(to) = z° will be denoted by 7,0
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and the maximal time-interval on which it exists by I,0. Clearly, /0 is an open interval
that depends on 2° and may be infinite or finite (depending on whether the trajectory 7,0
escapes in finite time into infinity or not). We start from the following observation, which
shows that the ex-equivalence preserves trajectories, but even if we can smoothly conjugate
all trajectories of two DAE:s, they are not necessarily ex-equivalent.

Observation 4.2.2. Consider two DAEs Z~ =. If a C'-curve y(t), t € I,o is a solution
of = passing through 2° = ~(0), then ¢) o & : I;0 — X is a solution of = passing through
7% = 4 (2%); The converse is, however, not true: even if there exists a diffeomorphism
¥ : X — X which maps all solutions of = into solutions of = and vice versa, the two
DAEs are not necessarily ex-equivalent.

The following example illustrates the above observation. Consider two DAEs =; =
(E1, F1) and =5 = (Es, Fy), where

100 100 1 Loy
Ei(x)= 10 0 0|, Ex(z)= [0 0 0|, Fi(z)= |z1a|, Fa(z)= |22
010 00 0 13 23

Although [cet, 0, O} " is the only solution of both systems (with ¢ = ¥, for the system
=, and c = xgl, for =5), the two DAESs are not ex-equivalent. The reason is that, due to
algebraic constraints, solutions of Z; exist on {x15 = x13 = 0} only, while those of =, on
{92 = x93 = 0} only, while the ex-equivalence requires to define the conjugating diffeo-
morphism v everywhere on X (on a whole neighborhood for the local ex-equivalence).
The issue of identifying submanifolds, on which solutions exist, is crucial.

Lemma 4.2.3 (Solutions lemma). Consider a DAE =,,, = (E,F). Let M be a smooth
connected embedded s-dimensional submanifold of X and fix a point 2° € M. Assume
that in a neighborhood U of z°

(Al) dim E(z)T,M = const. =,
(A2) F(z) € E(x)T,M,

forall x € M N U. Then, there exists a solution y,0(t) satisfying v(0) = 2° and v,0(t) €
M N U fort € I,0. Moreover, the solution is unique if and only if s = r.

The proof is given in Section In order to show that the constant rank assumption
(A1) above is crucial, we give the following example.

Example 4.2.4. Consider the following DAE
5171 CTT = F(.’E),

where z € X =R, FF: X — Rand F(0) # 0. Let M = X, clearly, dim E(z)T,M
equals 1 for z # 0 and is 0 for z = 0. It is seen that =, ; has no solution for z° = ( but has

a solution z(¢) satisfying #(t) = F%;)),x(O) = 29 for z° #£ 0.
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For a given point z°, if there exists at least one solution ¥() of Z satisfying 7(0) = 2°
(.e., E(x9)%(0) = f(z")), then 2° is called an admissible point of Z. We will denote
admissible points by z,. The proof of Lemma [4.2.3] shows clearly the reason behind Ob-
servation .22} if we assume two DAE:s to have corresponding solutions, this assumption
only gives the information that there exists a (local) diffeomorphism between submani-
folds on which solutions evolve (and maps solutions of one DAE into solutions of the
other). We do not know, however, whether the diffeomorphism and the map () can be ex-
tended outside the submanifolds. In fact, outside the manifolds, the two DAEs may have
completely different behaviors or even different sizes of system matrices. This analysis
gives a motivation to introduce the concept of internal equivalence of two DAEs (see the
formal Definition 4.3.T1)). We will show that internal equivalence is useful when we only
consider transformations and equivalences on the submanifolds on which solutions exist.

4.3 Main results

4.3.1 Maximal invariant submanifold and internal equivalence

For a DAE =, = (E, F), given by {.1), an invariant submanifold of = is defined as
follows.

Definition 4.3.1. (Invariant and locally invariant submanifold) Consider a DAE =, =
(E, F) defined on X. A smooth connected embedded submanifold M of X is called
invariant if for any point 2° € M, there exists a solution v,0 : I,o — X of = such that
Y20(0) = z° and ~,0(t) € M for all t € I,0. Given an admissible point z,, we will say
that M is a locally invariant submanifold (around z,) if there exists an open neighborhood
U C X of x, such that M N U is invariant. A locally invariant submanifold M™ is called
maximal, if there exists a neighborhood U of z, such that for any other locally invariant
submanifold M, wehave M "U C M*NU.

Proposition 4.3.2. Consider a DAE =,,, = (E, I') and fix an admissible point x,. Let M
be a smooth connected embedded submanifold containing x,. If M is a locally invariant
submanifold, then F(z) € E(x)T,M locally for all x € M around x,. Conversely, assume
that the dimension of E(x)T, M is constant locally around x, if F(x) € E(x)T,M locally
for all x € M around z,, then M is a locally invariant submanifold.

Proof. Suppose that M is a locally invariant submanifold around z,. Then by Definition
there exists a neighborhood U of z, such that for any point 2° € M N U, there
exists a solution v,0 : o — M N U satisfying v(0) = z°. Since z(t) = v,0(t) is a
solution, we have f(x(t)) = E(x(t))i(t) € E(x(t))Tyw M, which means that we have

f(2°) € E(x°)T 0 M for t = 0. Therefore we have F(x) € E(z)T,M forallz € M NU.

Conversely, choose a neighborhood U of z,, such that the dimension of E(x)7,M is
constant and F'(z) € E(z)T,M for all z € M N U. Then the assumption of Lemma
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are satisfied for any point z° € M N U and hence a solution 7,0 passing through 2° exists
and v,0(t) € M NU fort € I,0. Thus M is alocally invariant submanifold. ]

Proposition 4.3.3. For a DAE Z,,, = (E, F), assume that a point x° satisfies F(2°) €
Im E(z2). Set

My={re X :F(zx)elmE(x)}; (4.6)

Assume that My_1 C --- C My, for a certain k > 1, have been constructed and for
some open neighborhood U,_; C X of x° that the intersection M,_, N Uy_1 is a smooth
embedded submanifold and denote by M;,_, the connected component of My_1 N U4
satisfying 1° € Mg _,. Set

My ={z € M;_,:F(z) € E(x)T,M;_,}. 4.7)

Then there exists a smallest integer k, denoted by k* (k* < n), such that My, = Mj..
Moreover, assume that dim E(z)T,M{. is constant locally for all x € M., then 2V is an
admissible point and M™* = M. is a locally maximal invariant submanifold.

Proof. 1t is clear that by the assumption that M}, N Uy, is a smooth submanifold for £ > 0,
there exists a neighborhood Uy~ and a smallest £* € N such that M-, = Mj.. Then
by a dimensional argument, it can be deduced that £* < n. Moreover, by equation (4.7))
and My, = Mf., we have F(z) € E(z)T,M{. for all z € M{.. Consequently, by the
assumption that dim F/(z)T, M- is constant locally for all x € Mf. and Lemma
there exists at least one solution passing through z°, i.e., 2° is an admissible point and by
Proposition[#.3.2] M* = M. is a locally invariant submanifold.

Then we show by induction that any other invariant submanifold M’ is locally con-
tained in M*. First, by Definition and Proposition M’ satisfies that F(z) €
E(x)T, M’ for any v € M’ near 2°. Now by equation , we can deduce that M’ C M,
locally around z°. Suppose M’ C Mg, which implies that F(z) € E(x)T,M{_, locally
for all x € M’'. Thus by equation , we have v € M, for all x € M’ around 2°, i.e.,
locally M’ C My. Therefore we have locally M’ C M, for all £k > 0, which implies M’ is
locally contained in the limit M. of M}, hence M™* = M, is locally maximal. [

The above sequence of submanifolds M}, can be constructed via the algorithm below
under some constant rank assumptions. This algorithm can be seen as a nonlinear version
of the shuffle algorithm given in [133] to verify the regularity of linear DAEs. In Algo-
rithm 4.3.4] we will use the concept of restriction and reduction of a DAE (see Definition
4.3.7|and 4.3.8|below). Consider a DAE 5;,, = (E, F).

Algorithm 4.3.4. Step 0: Set Ey(x) = E(x) and Fy(x) = F(x), assume that rank E(x) =
const. = rq in an open neighborhood Wy C X of 2°. Then there exists Qy : Wy —
Gl (I, R) such that E}(z) below is of full row rank, i.e., rank E} (z) = ry:

i) =[] e = [5]
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where B} : Wy — RO Fl o W, — R, F2 : Wy — R . By Proposition[4.3.3] M,
is given by

My = {x € Wy : Fj(x) = 0}.

Then assume that dF(z) has n — sq < | — ry independent rows for x € W,, denoted by
doi(z), ..., dpy > (x). We have

M§={x €Wy :pi(z) =... = @) (x) = 0}.
Now choose new coordinates:
z = 1o(x) = col [gb(l)(a:), ey 00 (), gpé(x), o () },

where ¢}(x), ..., 3° () are scalar functions chosen to complete (x) as a local diffeo-
morphism on Wy. It follows that locally =y = (Ey, Fy) K=y = (Eo, Fo) on Wy, via Qo(x)
and (), where

z=1)y ' (2)

Boe) = @u(o) o) (2020

Fy(2) = Qo(x) Fo()

)

where E} : Wy — R™*%_ Thus

. [E(%O(Z) ~SO(Z)] Fl} _ {F&(Z)} .

[1]

T

where 7, = [¢(z), ..., o2 (2)]" and 2 = [06(2), ... 0 (x) | . Observe that z; = 0

and F}(z,0) = 0 for all v € M§. Assume rank [E}(z1,0),dF](z1,0)] = ro, then a
reduction of local Mg-restriction of = is
éOl?\/ejg : E& (Zl,O) 21 - Fol (51,0) .

If = is solvable for z°, then x° has to be in M (since if so, Fz(z°) = 0).

Step k (k > 0): Forall x € M{ |, set Ex(z) = E,i_l(ék,()), Fi(zx) = F,g_l(ék,()),
where Ey, : M{ | — Re-vSe-1 By ME | — R™-1 Assume that dim F(z)T,M; | =
const. = r, < sip_1 in a neighborhood Wy, (W, € Mg ;) of 2°, which implies that
rank E},(z;) = 7y Then there exists Qi : Wi, — Gl(rx_1,R) such that the matrix E}
below is of full row rank, i.e., rank E} (z;,) = ry, for all x € W,:
_ _ Ei(z _ _ Fl(z
Btz = |55 e - |G

where Ej : Wy, — R™>s=1 Fl o W, — R and F}? : W), — R"=1""%_ By Proposition
Mj, is given by

M, = {Ek EWkIFk2<§k) :0}
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Then assume dF, ,3(@) has sp_1 — s < rp_1 — T independent rows in the neighborhood
Wi of 2°, denoted by dp}(zy), ..., de) % (zx). It follows that

M,g = {Ek e Wy : (,Ollc(zk) =, ..,= (pzkfl_sk(zw = 0} .
Now choose new coordinates

col (241, Zei1] = Yr(Zk) = col [py(Zr), s 0™ (1), G1(Zr)s oo 0 (Z0)],

Ve o T and Ay, is a local diffeomorphism

=, = (Ey, Fk) locally on Wy, where

> _ 1 ST _
where Zy1 = [, ..., O3F], 261 =
on Wy. Then we have =y, = (Ey, Fy,

)
<8¢(2k))1 _ {Ei (Zk+01>zk+1) E%(-)} 7

O(zx)
- _ |:Fk1 E5k+1, Zk+1)] .

Thus =, is locally of the form

= {Ei (Zkt1, Zh+1) Eg(-)} (ka) _ [Fkl (Zet1, Zk+1)1

— 0 0 Zht1 Fy (Zig1s )|
Observe that z 1 = 0 and F]?(Ek+17 0) = 0 forall x € M{. Assume

rank [E,i(ékﬂ, 0), dFol(EkH, 0)] = r,
then a reduction of local M;-restriction of = is
ék‘?\?% L By (41, 0)Z501 = F (5141,0).

If = is solvable for x°, then x° € MF (since if so, F?(z°) = 0).

Remark 4.3.5. (i) Algorithm is a constructible algorithm for Proposition but
with more assumptions. That is, in order to assure )/ is a smooth connected submanifold,
we assume that rank £(z) and rank dFZ(Z,) are constant in the neighborhood W, C X of
2°. Additionally, in order to assure M i_1> k > 0is a smooth connected submanifold, we
assume that in every step k that dim F(z)T,M}_, and rank dF?(z) are constant in the
neighborhood Wy, € M{_, of 2°.

(1) In the geometrical description of Proposition Uy 1s not explicitly expressed
as a neighborhood contained in M;_,. However, as shown in the above algorithm that
Wy € M _,, which implies that the constant rank assumptions are only required locally
on the submanifold M}_,.

(iii) The integers 7, s; of Algorithm 4.3.4] satisfy

nzrg>r2z.2r=>..20 n>s=>s>.2852=>.20 s>,
n— sy <1 —ro, Sgp—1 — Sk < Th—1 — Tk

Proposition 4.3.6. For =,,, = (E, F'), assume in Algorithm that
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(Al) rank E(zx) and rank dF}(z) are constant in the neighborhood Wy of x°.

(A2) dim E(z)T,M{_, and rank dF?(z;) are constant in the neighborhood W, of x° for
k> 0.

Then there exists a smallest k, denoted by k* < n such that M-y, = M., 29 is an admis-

sible point and M* = M. is a locally maximal invariant submanifold around x, = 2°.

Proof. As mentioned in Remark [@.3.5] Algorithm [4.3.4]is an constructible algorithm for
Proposition [4.3.3] which implies that under assumptions (A1) and (A2), there exists a
smallest £ = k* < n such that 7y« = g+, implying also Sg+y1 = Spx, 1.€., My« =
Wi«41 C© Mj.. Moreover, we have 2% € M¢, and dim M. = sgp= > 0. By assumption
(A2), dim E(x)Mjf. is constant locally for all z € Mj., we denote dim E(z)T, Mg, = r*.

From Step £* of Algorithm[4.3.4} it is seen that

2l s Epe 1 (Zret1) Zrr g1 = Frog1 (o s1), (4.8)
where Ej«iq @ Mf. — R™ %% Now come to Step k* + 1, we have rank Ep«1(.) =
dim Eps 1 ()T Mf. = rgey1 = 713+ in a neighborhood Wiy C Mf., hence Epxiq(.)
is of full row rank for x € Wy.,1. Thus we conclude that F'(z) € E(x)T,M;. for all
x € W41, ie., locally for all z € M.. Therefore, by Propositiond.3.2) M* = M. is a
locally maximal invariant manifold, where

M =Mg. ={2:2,=0, i=1,....,k"+1}.

]

Through the algorithm above, we consider a DAE more and more “internally”, that is,
at the end of every k£ step, we restrict the DAE to M and reduce its redundant equations
(see the Definition 4.3.7) and [4.3.8 below) and terms which concern what is outside M}
vanish (by setting 2511 = 0 and 25, = 0). This observation motivates to define the internal
equivalence for DAEs. Before giving a formal definition of the internal equivalence, we
will define formally the restriction of a DAE to a smooth connected submanifold (invariant
or not) as follows.

Definition 4.3.7 (Local restriction). Consider a DAE Z;,, = (F, F) and fix a point 2° € X.
Let R be a smooth connected embedded submanifold. Let ¢)(x) = z = (z1, 22) be local
coordinates on a neighborhood U of z° such that R N U = {2, =0} and 2 are thus
coordinates on R N U. The restriction of = to R N U, called local R-restriction of = and
denoted =g is

E(z,0) [Zl] = F(z,0), (4.9)
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Note that, for any DAE =, ,, = (£, F'), there may exist some redundant equations (in
particular, some trivial algebraic equations 0 = 0 and some dependent equations). In the
linear case, we have defined the full rank reduction of a linear DAE (see Definition [2.6.4]
of Chapter [2). We now generalize this notion of reduction to nonlinear DAEs = to get rid
of their redundant equations.

Definition 4.3.8 (Reduction). For a DAE =,;,, = (E, F), assume rank [E(x),dF (z)] =
const. = [* < [. Then there exists Q) : X — GI(I,R) such that

Q1 () Qu(x)E(z) Q(z)dF(x)

Q) [ ar@)] = |30 (5 arw)] - |4 AE()]

where rank Q1 () E(x), Qu (x)dF(x)] = I, Q X — B Qy : X — RO and

the full row rank reduction, shortly reduction, of =, denoted by =%, is a DAE =4 =

(Ered, Fred), where E™4(x) = Qu (x) E(x) and F"(x) = Q. (2) F(z). :

Remark 4.3.9. Clearly, since the choice of Q(z) is not unique, the reduction of = is not
unique. Nevertheless, since Q(z) preserves the solutions, each reduction Z"°¢ has the same
solutions as the original DAE =.

For a locally invariant submanifold M, we consider local M -restriction =|; of =, and
then we construct a reduction of =|,, and denote it by Z[3%4. Notice that the order matters:

—=|red

to construct =|,5, we first restrict and then reduce while reducing first and then restricting
will, in general, not give =[5 but another DAE Z"?|, .

Proposition 4.3.10. Consider a DAE Z,,, = (E, F') and fix an admissible point x,. Let M
be a s-dimensional locally invariant submanifold of = around x,. Assume that

dim E(x)T,M = const. = r

for all v € M around x,. Then a reduction Z|}5 of local M-restriction of = is a DAE of
form (4.1|) and the dimensions related to _|’”ed arerand s, i.e., = ’j\f[d = Z! .. Moreover, the
matrix E and [E',dF") of 2, , = (E', F') are of the same full row rank equal tor.

Proof. Consider =|,;, which is a DAE of the form (4.9). By the assumption that dim F(z)T,M =
E
const. = r, there alway exists Q : M — GI(I,R) such that Q(z1)E(z,0) = { 1(21)}

0
F1 (Zl)
FQ(Zl)

}. Since M is locally invariant,

where Fy : M — R™" and rank F(z) = r. Denote Q(z1)F(z,0) = [

6= A

by Proposition (4.3.3] we have locally for all x € M, F(z) € E(z)T,M = {?EZI;] €
2?1

Im {Elézl)} , thus Fy(21) = 0 locally for all z;. So by Definition 4.3.8, a reduction =|}¢

} , then

=] is ex-equivalent via Q(z1) to {

of =[5 is locally of the form E}(z1)% + Ef(21)0 = Fi(z1), which is =, | = (E', F'),
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where E' = E} and F’' = Fy. Clearly, E’ and [E’, dF'] of =], = (E', F”) are of the same
full row rank equal to r.

]

The definition of the internal equivalence of two DAEs is given as follows.

Definition 4.3.11. (Internal equivalence) Consider two DAEs = = (E, F) and = = (E, F).
Let M* and M* be two smooth connected submanifolds and fix two admissible points
T, € M*, 2, € M*. Assume that

(A1) M* and M* are locally maximal invariant submanifolds of = and =, respectively,
around x, and .

(A2) dim E(x)T,M" is locally constant for 2 € M* around z, and dim E(Z)T5M* is
locally constant for = € M* around Z,.

Then = and = are called locally internally equivalent, shortly in-equivalent, if =|ned and
\md are ex- equwalent locally around zx, and z,, respectively. Denote the in-equivalence

of two DAEs by =

Remark 4.3.12. (i) Note that assumptions (A1) and (A2) above are essential for the def-
inition of the internal equivalence. Without those assumptions, the dimensions of u]’"ed
and _|’"€§ may not be constant. On the other hand, with these constant dimensional
assumptions, by Proposition m we have u|7"ed — =/, and 23 = Z.., where

—r,s 7‘8’

r=dim E(z)T,M*, s = dim M* and 7 = dim E(z)T;M*, §—d1rnM*

(i1) The dimensions [ and n, related to =, and [ and 7 related to = are not required to be
the same. On the other hand, if = and = are in-equivalent, then by definition, = ned = Er s
and H]“d = :~ ; are locally ex-equivalent and thus the dimensions related to them have to

be the same, i.e.,» =7 and s = S.

Now we will study the existence and uniqueness of solutions of DAEs with the help of
the notion of internal equivalence.

Definition 4.3.13. (Internal regularity) Consider a DAE =, ,, = (£, F), fix an admissible
point z,. Let M ™ be a locally maximal invariant submanifold around z,. Then = is called
internally regular around z,, if there exists a neighborhood U C X of z, such that for any
point z° € M* N U, there exists only one solution 7,0 passing through z°.

Theorem 4.3.14. Consider a DAE =,,, = (E, F), fix an admissible point x,. Let M*
be a locally maximal invariant submanifold around x,. Assume that dim E(x)T,M* is
constant locally for all x € M* around z,. The following are equivalent locally around
Xyl

(i) = is internally regular.
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(ii) dim M* = dim E(z)T,M* for all x € M*.
(iii) = is internally equivalent to
B2 =FT (), (4.10)

where z* is a local, around x,, system of coordinates on M*.

The proof is given in Section 4.4.2]

Remark 4.3.15. (i) Theorem illustrates that, under some constant dimension as-
sumptions, = is internally regular if and only if there are no free variables in =|35¢, which

also means that Z|5¢ is ex-equivalent to an ODE Z* of form (4.10).

(i1) Assume that (A1)-(A2) of Proposition@]are satisfied, if = ,, is internally regular,
then n < [. Indeed, first the internal regularity of = implies that sy« = 74-. Then by
Sk—1 — Sk < Tk—1 — 7', shown in Remark [#.3.5(iii), we have sj«_1 < rp-_1. By 531 — 53 <
rx—1 — r'r and an iterative argument, we can deduce sy < ry. Finally, by n — s < 1 —1rg
of Remark {.3.5(iii), we get n <.

(111) Theorem (4.3.14{is a nonlinear generalization of the results on internal regularity
of linear DAEs in Chapter [2| As stated in Proposition [2.6.12| of Chapter [2, a linear DAE
A, given by (4.3), is internally regular if and only if the maximal invariant subspace . *
of A (i.e., the largest subspace such that H.#* C E.#*) satisfies dim .Z* = dim E.Z*.
A nonlinear counterpart of the last condition is that of Theorem [4.3.14((ii) and thus M* is
a natural nonlinear generalization of .Z*.

(iv) The sequence of submanifolds M), of Algorithm {.3.4] can be seen as a nonlinear
generalization of the Wong sequences ¥; of Definition Observe that M* is the limit
of My as #7* is the limit of %;. Moreover, we have shown in Chapter 2] that .#Z™* = ¥*.

4.3.2 Explicitation with driving variables of nonlinear DAEs
The explicitation (with driving variables) of a DAE = is the following procedure.

e ForaDAE =, = (E, F'), assume that rank F(z) = const. = ¢ in a neighborhood

U C X of 2°. Then there exists Q : U — GI(I,R) such that Q(z)F(x) = {Eléx)} ’

where £ : U — R?7", and rank F;(x) = ¢. It is seen that = is ex-equivalent via

Q(z) to

{ El(osc)dc z ]I::;Eg 4.11)

F
where Q(z)F(z) = () , and where [ and F are smooth functions with values
Fy(x)

in R? and R'~9, respectively.
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e The matrix F; () is of full row rank g, so choose its right inverse E](z) and set
f(x) = El(x)Fy(x). The collection of all i satisfying E; ()i = Fy(x) of (4.11)) is
given by the differential inclusion:

& € f(x) + ker Ey(x) = f(x) + ker E(x). (4.12)

e Since ker F/(z) is a distribution of constant rank n — ¢, so choose locally m = n — ¢
independent vector fields ¢q, . . ., g, on X such that

ker E(x) = span{gi,...,gm} (z).

Then by introducing driving variables v;, i = 1,...,m, we can parametrize the
affine distribution f(x) 4+ ker £ (z) and thus all solutions of (4.12) are given by all
solutions (corresponding to all controls v;(t)) of

T = f(x)+ z:gz(x)vZ (4.13)
i=1

e Form a matrix g(xz) = [g1(2),..., gm(z)]. Then, we rewrite equation (4.13) as
= f(z) + g(x)v, where v = [vy,...,v,]". Set h(z) = Fy(x) and all solutions of
DAE (4.11) can be expressed as all solutions (corresponding to all controls v(t)) of

&= f(z) + g(z)v
{O:M@' (4.14)

Compared with =, equation (4.14) has an extra vector variable v, which we will call
the vector of driving variables.

e To (4.14), we attach the control system ¥ = ¥, ,,, , = (f, g, h), given by

Ja=f() + gz
) { )= ho), (4.15)

where n = dim z, m = dim u, p = dim y. Clearly, m =n —qgand p = [ — q (we
will use these dimensional relations in the following discussion). In the above way,
we attach a control system X to a DAE =.

Definition 4.3.16. (Explicitation with driving variables) Given a DAE =;,, = (E,F),
assume that the rank of E(x) is constant locally around z°. Then, by a (Q, v)-explicitation,
we will call a control system ¥ = 3, ,,,, = (f, g, h) given by

Ji=f(@) +g(x)v
= { y = h(@),

with f(z) = El(z)F\(z), Img(z) = ker E(z), h(z) = Fy(x), where Q(z)E(x) =

[Eléx)} , Qz)F(x) = [ggﬂ . The class of all (Q,v)-explicitations will be called

the explicitation with driving variables class, shortly, the explicitation class. If a particular
control system 3 belongs to the explicitation class of =, we will write ¥ € Expl(Z).
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Remark 4.3.17. The constant rank assumption of F(z) is essential for the above defini-
tion of explicitation and since we assume E(z) is of constant rank around a point x°, the
matrices Q(z), f(x), g(x), h(z) are all defined locally and so is > € Expl(Z).

Notice that a given = has many (@, v)-explicitations since the construction of 3> € Expl(Z)
is not unique: there is a freedom in choosing Q(z), E](z), and g(z). As a consequence
of this non-uniqueness of construction, the explicitation Y of = is a system defined up to
a feedback transformation, an output multiplication and a generalized output injection (or,
equivalently, a class of systems).

Proposition 4.3.18. Assume that a control system ¥,, ., , = (f, g, h) is a (Q, v)-explicitation
of a DAE = = (E, F) corresponding to a choice of invertible matrix Q(x), right inverse
El(x), and matrix g(x). Then a control system %y, ., = (f,§,h) is a (Q,0)- explicita-
tion of = corresponding to a choice of invertible matrix Q(z), right inverse E}(z), and
matrix §(x) if and only if ¥ and S are equivalent via a v-feedback transformation of the
formv = a(x) + B(x)0, a generalized output injection v(x)y = ~y(x)h(x) and an output
multiplication §j = n(x)y, which map

ff=f+vh+ga, g g=gB, h— h=nh, (4.16)

where «, 3, v and 1 are smooth matrix-valued functions, and 3 and 7 are invertible.

The proof is given in Section 4.4.3] Since the explicitation of a DAE is a class of
control systems, we will propose now an equivalence relation for control systems. An
equivalence of two nonlinear control systems is usually defined by state coordinates trans-
formations and feedback transformations (e.g. see [92],[151]), and sometimes output co-
ordinates transformations [139]]. In the present chapter, we define a more general system
equivalence of two control systems as follows.

Definition 4.3.19. (System equivalence) Consider two control systems %, ,,, , = (f, 9, h)
and En,m,p = ( f.a, h) defined on X and X, respectively. The systems X and S are
called system equivalent, or shortly sys-equivalent, denoted by > X%, if there exist a
diffeomorphism ¢ : X — X , matrix-valued functions o : X — R, v : X — R"*P and
f:X — Gl(m,R),and n : X — GI(p,R) such that

Fow=S2(/ +ahtga), gou = 9098, how = nh

If¢): U — Uis alocal diffeomorphism between neighborhoods U of 2° and U of i°, and
a, 3, 7, n are defined locally on U, we will speak about local sys-equivalence.

Remark 4.3.20. The above defined sys-equivalence of two nonlinear control systems gen-
eralizes the Morse equivalence of two linear control systems (see [146],Chapter [2). In the
linear case, the output multiplication y — 1T,y, by a constant invertible matrix 7}, can be
seen as a linear coordinates change in the output space, but in the nonlinear case, the trans-
formation A +— nh is more general than a zero-preserving change of output coordinates
y — ¢(y) by a diffeomorphism ¢ on the output space.
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The following theorem is a fundamental result of the present chapter, which shows
that sys-equivalence for explicitation systems (control systems) is a true counterpart of the
ex-equivalence for DAEs.

Theorem 4.3.21. Consider two DAEs =,,, = (E,F) and Z;,, = (E,F). Assume that
rank F(z) and rank E (&) are constant around two points 2° and i°, respectively. Then for
any two control systems Enmp (f.g,h) E Expl(E) and ¥y, 1np = (f,§,h) € Expl(2),
we have that locally 2~ 2 if and only if IR

The proof is given in Section4.4.3] In order to show how the explicitation can be useful
in the DAEs theory, we discuss below how the analysis of DAEs given in Section[4.3.1]is
related to the notion of zero dynamics of nonlinear control theory.

For a nonlinear control system Y,,,,, = (f,g,h), for a nominal point °, assume
h(z") = 0. Recall its zero dynamics algorithm [92]:

Step 0: set Ny = h™'(0). Step k: assume for some neighborhood V4,1 C X of
2%, Ni_; N Vj_; is a smooth submanifold and denote V. +_, the connected component of
Ni_1 N Vi such that 2° € N¢_,. Set

Ny ={z € Ni_: f() € TuNf_; +span{gi(z), ..., gm(2)}}.  (417)

Remark 4.3.22. (i) It is shown in [92] that N, NV, is invariant under feedback transforma-
tions. Then assume that a control system > = ( 1.3, ) is glven by applying a generalzzed
output injection and an output multiplication to X, i.e., f = f+4+~h, g =g, h = nh,
where 7 : X — R™?and n : X — Gl(p,R). By Ny = h=1(0) = h='(0) (since () is
invertible) and

N, = {x e N, : f(z) € T,N{_, + span{g, . .. ,gm}(x)}
= {x € Nf_,: (f +~h)(x) € T,Nf_, +spanfgy, ... ,gm}(l’)}
= {x € Ni_y: f(z) € T,N{_, +span{gy, ... ,gm}<:v>} :

we have N, r = Ny for k > 0, which means that N, of the zero dynamics algorithm is invari-
ant under generalized output injections and output multiplications. From Definition4.3.19]
we know that sys-equivalence is defined by coordinates changes, feedback transformations,
generalized output injections and output multiplications. Therefore, if two systems > and
> are sys-equivalent via the coordinates change & = Y (z), completed by transformations

given by arbitrary o, /3, 7, 7, see Definition|4.3.19] then we have N;, = 1)(Ny,).

(i1) The sequence of submanifolds N of the zero dynamics algorithm is well-defined
for the class Expl(Z), i.e., does not depend on the choice of ¥ € Expl(Z). Since by
Proposition any two systems X, 3’ € Expl(Z) are equivalent via a v-feedback, a
generalized output injection and an output multiplication, then by the argument in item (i)
above we have Nk = Ng.

Proposition 4.3.23. Consider a DAE =, ,, = (E, F) satisfying rank E(x) = q = const.
around a point 1° and a control system > = (f,g,h) € Expl(Z). The following condi-
tions, for each k > 0,
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(Al) My N Uy of Proposition is a smooth submanifold and dim E(x)T,M* is con-
stant locally on M*,

(A2) Ny N Vi of the zero dynamics algorithm is a smooth submanifold and the dimen-
sion of span{gi, ..., gm }(x) N T,N* is constant locally on N* (the assumptions of
Proposition 6.1.1 in [92]]),

can be concluded from each other (i.e., (Al) implies (A2) and vice versa). Assume that ei-
ther (Al) or (A2) holds, then the maximal invariant submanifold M* = M. of = coincides
with the maximal output zeroing submanifold N* = N{. of ¥ € Expl(Z). Moreover, = is
internally regular if and only if span{g,(z°), ..., gm(2°)} N Too N* = 0 (equation (6.4) of
[92]]).

The proof is given in Section 4.4.3]

Remark 4.3.24. By Proposition if there exists a unique u = u(x) that renders N*
output zeroing and locally maximal control invariant for a control system 3 € Expl(Z),
then = is internally regular. Since the zero dynamics does not depend on the choice of
an explicitation, the internal regularity of = corresponds to that fact that the zero output
constraint y(t) = 0 of any control system > € Expl(Z) can be achieved by a unique
control u(t).

4.3.3 Explicitation without driving variables and pure semi-explicit
DAEs

Now we will show by an example that sometimes we can reduce some of the driving
variables of a (@, v)-explicitation.
Example 4.3.25. Consider a DAE = = (F, F), given by
sinxs —cosxs 0 zl B Fi(x)
0 0 0] |7~ |22 422 -1]"
T3

where [} : X — R. By rank E(x) = 1, the explicitation class Expl(Z) is not empty. A
control system 3 € Expl(=) is:

1 sin x3 0 cosaxs

To| = |—coszs| Fi(z)+ |0 —sinzs {Ul]
i 0 10 2
y =ai+zy—1,

. T . D .
where [sinzz —coszs 0] is a right inverse of F)(z) = [sinzy —coszz 0]. Now
consider the last equation in the dynamics of Y., which is #3 = v;. Observe that v; acts on
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23 only, which implies that v, is decoupled from the other part of the dynamics. Thus, we
may get rid of v, and regard x5 as a new control. Thus the dynamics of > become:

T1 sin x3 COS X3

. = Fl (ﬂf) + . Vg,

) — COS T3 —Sinxs
where x; and x5 are the new states, x3 and v, are the new control inputs. We are, however,
not able to reduce v5 in the same way.

From the above example, it can be observed that if we want to get rid of the i-th
driving variable v; of a control system 3, then v; should be present in one equation only
(as ©; = ay(z) + B;(z)v;) implying that §; = %, where 0; = o;(z) + B;(z)v;. Thus
if we want to get rid of all driving variables, a necessary and sufficient condition is that

the distribution span {¢1, ..., gnm} = span{gi, ..., gn} is involutive (because the latter is
given by span %, ceey % ). If so, X is always feedback equivalent to
J1 m
9‘51 _ S (351,372) i 0 v
T2 0 I,
y =h(z,z9).

The above system can be reduced to

r T = fi (9517552)
DA 4.1
{ y = h(r, 1), (+-18)

where x5 is the new input. Observe that the above system X", given by (4.18)), has the same
number of variables as =. Thus X" is an explicitation without driving variables of =. By
setting y = 0, the control system X" becomes a pure semi-explicit DAE:

—PSE T = f1 (9617 372)
= : 4.1
{ 0=~h (ill'l, ZL’Q) s ( 9)

which is actually ex-equivalent to =. Note that the procedure of setting y = 0 for a control
system is called the implicitation of a control system, see [47] and Chapter [2] where we
discuss it in detail for linear systems. Therefore =%, given by (4.19), is the implicitation
of X, given by (4.18). Before giving the main result of this subsection, we formally define
what we mean by “reducing” the variables of a control system >::

Definition 4.3.26. For a control system %, ., , = (f, g, h), let 27°? be an involutive sub-
distribution of constant rank k of the distribution & = span {¢i, ..., gm } (). There exists

a feedback transformation and a coordinates change such that 27! = span {i d

3x%’ ceey @
and X takes the form

m—k )
&1 = fi(z1,22) + 32 g1 (21, 22)0)
=1
21.32 = V2
Yy = h (ZEl, IQ) )
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where vy = [v3, ..., v5]T, we will say that 3 can be 2"*¢-reduced to the following control
system

m—k ) )
&y = fi (21, 22) + D gi (v1, 22)0]
=1

)

Yy = h(thQ)?

where x5 is a new control. We say that 3 can be fully reduced if 27 = 2.

The above analysis motivates to connect the explicitation without driving variables
with pure semi-explicit DAEs.

Theorem 4.3.27. For a DAE =,,, = (E,F), the following conditions are equivalent
around a point 2°:

(i) rank E(x) is constant and the distribution 9 = ker E(x) is involutive.
(ii) Z is ex-equivalent to a pure semi-explicit DAE ZP5F of form .

(iii) Any control system ¥ = (f, g, h) € Expl(Z) can be fully reduced.

The proof is given in Section 4.4.4

Remark 4.3.28. (i) There are two kinds of explicitations for nonlinear DAEs, namely,
explicitation with, or without, driving variables. Both of them need the constant rank
assumption of F(z). However, explicitation without driving variables requires also the
involutivity of ker F(z). It means that if a DAE has an explicitation without driving vari-
ables, we can always get the one with driving variables by adding #; = v to the dynamics
(actually it is a 1—fold prolongation of the variables z; that enter statically into the dy-
namics). But we can not always reduce driving variables unless the involutivity condition
is satisfied.

(ii) A linear DAE A = (E, H), given by , has always two kinds of explicitations,
since the rank of F is always constant and the distribution & = ker F is always involutive.
The relations and differences of the two explicitations for linear DAEs are discussed in
Chapter 3]and in [46] (note that the explicitation without driving variables for linear DAEs
is called the (@, P)-explicitation there).

4.3.4 Nonlinear generalization of the Weierstrass form

In this subsection, we will use the explicitation (with driving variables) procedure to trans-
form an internally regular DAE =;,, = (E, F) with [ = n, to a normal form under ex-
ternal equivalence. A linear DAE A, given by (#.3), is regular (meaning [ = n and
det(sE — H) # 0, s € C, see e.g. [75]) if and only if E and H are square and A is
internally regular, see Chapter 2| Moreover, if A is regular, then it is ex-equivalent (via
linear transformations) to the Weierstrass form WF, given by (4.5). The following theorem
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generalizes this linear result and shows that any internally regular DAE (under the assump-
tion that some dimensions are constant) is always ex-equivalent to a nonlinear Weierstrass
form NWF (see (4.20) below).

Theorem 4.3.29. Consider =,,, = (E, F') with | = n, assume that rank FE(z) = const. =
q around an admissible point x,. Also assume in Algorithm that, locally around x,:

(Al) The rank of dF?(x) and the ranks of the differentials of a@a#;m) are constant for 1 <
k < k* — 1, where ®y(z) = col [po(z), ..., pr_1(z), F¢(x)], and where

n—so

- 90 s QT ()] for i > 0.

o = col[py (@), (x)] and ¢; = col[; (),
(A2) The dimensions of E(x)T, My are constant for v € My, 0 < k < k* — 1.

(A3) dim E(z)T,M* = dim M"*.

Then = is internally regular and = is locally ex-equivalent to the DAE ({4.20), represented
in the nonlinear Weierstrass form NWF:

Noi 0 0 &1 [ & [ ay + biE° ]
Byi() N, IR & & az + bag”
s S z BN
B () Emm () N, &m Em U + "
I G (& 2) Lzl )l L 0]
(4.20)
where & = [€), ..., €717 and z are the new coordinates, and where €0 = [P €57 ... €pm]T.

The indices p;, 1 <1 < m, withm =n — q, satisfy p1 < p2 < ... < P

More specifically, for 1 <1 <m, 1 < s <1, the p; X ps matrix-valued functions E;

the p; X p; nilpotent matrix N, and the p;-dimensional vector-valued function a; + biép
are of the following form

0
0 - 0 0 0 om
0 -+ 0 —EP(E2) 1 0 ai+l§bi,ll
Ei,s = . . 7. 5 Npi = , Q; + bzf[):
0 -+ 0 —ElYE2) 10 T YT
L =1 i

where the scalar functions a

k pk
iabz‘,l

by ff 1 <i<m, 1< j<kinthe ring of smooth functions of £ and z,.

Remark 4.3.30. (i) A more compact expression of the above NWF is

NWEF :

(

0=¢, 1<i<m, 1<j<p—1

=" val + LU+ B2 ),
=1
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where a¥, bF, € I¥, 1 < k < p; — 1 and

RN
El(§ 2¢") = Z £, 20, j = ps.
(ii) The submanifold sequences M, of Algorithm can be expressed as:
My={(62):§ =0,1<i<m 1<j<k+1},

the maximal invariant submanifold M* is given by

M*={(§z2):&=0,1<i<m}.

(iii) By a¥,b¥, € I¥ and I” is the ideal generated by ¢/, 1 < i < m, 1 < j < kin

RN

the ring of smooth functions of 5}; and z,, it is not hard to see a = bk = 0 locally for all
(éa Z) € Mk—1~

(iv) We see that a solution (£(t), 2(t) passing through (£°,2°) exists if and only if
€% € M* and thus the solution (0, z(t)) is unique, where z(¢) is governed by the ODE
z = F*(0, z), which agrees with the result of Theorem iii).

The proof is given in Section {.4.5] This proof is closely related to the zero dynam-
ics algorithm for nonlinear control systems shown in [92] and the construction procedure
of the above normal form is not difficult but quite tedious, so in order to avoid reproduc-
ing the zero dynamics algorithm, we will use some results directly from [92] with small
modifications. Then after the proof, we will show the construction procedure precisely by
an example. Note that from the example below, it is not hard to deduce that under some
extra rank assumptions, the terms af’s and b} i,’s vanish and the terms E?’s become con-
stant, as shown in the following corollary. Denote by rank(A(z)) the rank of the matrix
A(x) and denote by rankg(A(z)) the dimension of the vector space spanned over R by
the rows of A(x). Use the notations as in Algorithm[4.3.4} set Hy(z) = [¢o, ..., ¢1]T and
g = [g1,---,9m) be a matrix such that Img(z) = ker E(x), denote by L,H) the matrix
(Lg,HD)ijs 1 <i<m,1<j<n—s.

Corollary 4.3.31. If, additionally to (Al)-(A3), we assume
(A4) rank(L,Hy(x)) = rank(LyHy(z,)),
then in the NWF of (#.20), af = bf, = 0for 1 <i<m, 1 <j<k+1.
If, additionally to (Al)-(A3), we assume that on My,
(A5) rankes(ar,)(LgHy(2)) = rankg(LgHy (7)),
then in theNWFof@), Ef =const.for1 <i<m,1<j7<k+1.

Example 4.3.32. Consider a DAE =Z,,,, = (£, F'), assume that rank F(z) = ¢ in a neigh-
borhood U of an admissible point x,, let n = ¢+ 3 and then suppose that the zero dynamics
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algorithm for a control system %, 3 3 = (f, g, h) € Expl(Z) is implemented in the follow-
ing way:

hy !
Step 1: Let h = |hy| = |&| = &, suppose that the differentials dh; of h; for
hs &

1 = 1,2, 3, are independent around z,. Then define

My ={z: hy(z) = ho(z) = hg(z) =0} = {z: &l =€ =l =0} = {a: &' = 0}.

L,hy
Set Hy(z) = h(z) and suppose that the matrix L,h = L,Hy = | L,ho| vanishes at all
L,hs
x € My around x,, which implies that there exist smooth functions o}, i = 1,2, 3 such that
Lyhy o1
Lyhs| = |o3| = o', where o' = 0 for all z € M, around z,, i.e., o; € I'. Suppose
Lyhs o}
. : Hy :
that the differentials of H; = { L HJ are independent around x,, denote L;Hy = Lsh =
Lihy| = &3 | = &% Then define
thg g

Miy={xeMy:&=6=E=0y={xecM:6=0}

. L,H L&t

2: hat th L H, = g4t0 1 |79
Step 2: Suppose that the matrix L,H,; [ LL, HO] [ L€
x € M around z,. Then, without loss of generality, we can assume L 7 # 0 and there

exists smooth functions E;(z),Ey(z) and 03(z), 03 (x) such that

} has rank 1 for all

Ly&s = —E1Ly&l + 03, Ly&s = —EaLy&f + 3,
52
where { %1 = ¢? = 0 forall x € M, around z,, i.e., 07 € I?. Now set
03
000 E;y 10
0 00 FEy 01
and denote

|EBLs&G 4+ LG 8] s
falgth = [Eszs%Mf&% =lal =

Suppose that the differentials of the matrix Hy = [ } are independent around z,,

1
R\L¢H,
thus we have

My={x e M :6=¢E=0={xec M :& =0}
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Ly¢!
Step 3: Suppose the matrix L,Hy = |L,&?| . has rank 2 for all z € M, around z,.
L&
Then, there exist smooth functions E3(z),E,(x) and o(z) such that

ng?? = _E3Lg€% - E4Lg§3 + 0-??:7

where o3 (z) = 0 for all z € M, around z,, i.e., o5 € I>. Now set

Ry=[0 00 E; 00 E; 1]

and denote
RoLyHy = E3Ls& + EyLp&s + Ly&h = &5.

Hy

Suppose that the differentials of matrix Hs = [ RoLHy

} are independent around x, and
we thus have M3 = {z € M, : &5 = 0}.

Step 4: Consider the matrix
LgHs = [(Lgfl)T7 (ngz)T7 (ngg)T7 (Lgfgl)T]T-

Suppose it has rank 3 at z,, then the algorithm stops (since m = p = 3). Thus, by Proposi-
tion 6.1.3 of [92] (see also Claim[.4.1]of Section[d.4.5), in (2, &1, €2, €3, €3, €3, 63, €3. €3, &3)-
coordinates (where z are complementary coordinates), > is brought into the following
form:

yl = f%

& =& +oj(a)v

5% = Lfff + ng%”

y2 = f%

& =& oz

& =& — () (Ly&E + Ly&iv) + o3 ()v

3 = L&+ L,&v 4.21)
Z{3 = f%

& =& +oz(a)v

& =& — Ba(a)(Ly&F + Ly&iv) + o3 ()

& =& — Ba(@)(Ly&f + Ly&iv) — Ba(x) (L& + Ly&3v) + o3(z)v
& = Ly& + Ly&sv

[ 2 =F(&2) +9(8 2)v,

L&t
where the matrix | L,&3 | is invertible at x,. Then by the feedback transformation

Ly&s

Lf&% ng%
0= L& + | L& | v=a+ P,
Lf§§ nggf
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we get
( yl = f%
{1 =& +op()8 () (0 - alz))
§=10
= ¢}

§ =& +o3(x)f7(z) (0 - a(r))

& =8 — Ei(2)t + 03(2)87 (2) (0 - a(z))
{ & =102

Y3 = f%

& =& +o3(a)0

& = & — Ex(2)01 + 03 (2) 7 (2) (0 — a(x))
& =& — Bs(x)v1 — By(x)0z + 03(2)0

&3 = U

[ 2 =F(§2)+9(&2)87(2) (0 - a(z))
Now by setting y = 0 and deleting 5% = 11, 55’ = 0y, §§ = v3, we get the following DAE:

[0 0 1761 [&a] [o ]
10 & & aj + bi¢’
0 0 00 0 £l ¢l 0
0 0 10 0 €2 €2 a3 + byEr
0 Ey() |01 0 g1 18 a3 + b3er
0 0 00 0 000 O a1 & 170 ’
0 0 00 0 100 0 €2 £2 aj + bEr
0 Fy() [ 00 0 010 0 13 3 a3 + b3¢r
0 F3() | 00 Eg() | 001 0 & & aj + biee

0 gr |00 g 000 g | T][z2] [z] |[F(2)

where g}, g5, g5 are the nonzero columns of —g3~! and F* = F — g3 'a, where a* =
—oFB ta, bkzakﬁ Lforl1 <i<3,1<k<p; —1. Theindices p; = 2, p» = 3,
p3 = 4. Finally, by ¥ € T*, we have a¥, b¥, € T*,

19 Vil

4.4 Proofs of the results

4.4.1 Proof of Lemma

Proof. Since M is a smooth connected embedded submanifold of dimension s, there exists
a neighborhood Uy of 2" and n — s smooth functions ¢!, ..., ©"* : Uy — R such that
M N Uy can be expressed as

MNUy={z€U:¢'(z) =¢*(z) =,..,= ¢" *(x) =0}
Choose new coordinates:

2= (@) = (61(2), s (@), 01 (@), ey " ()
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where ¢! (z), ..., ¢*(x) are smooth functions chosen to complete () as a local diffeomor-
phism. Then for all z € U, we have

E(z)i = E(x) (ag—?) B (&g—f)) &= E(z) (ag—f)>_lz = [Ei(z) Es(2)] m ,

22

where By : Uy — R, By : Uy — R*09), 2 = (¢!, .., ¢S)T and z, = (', ...,@n_S)T.

Since zo = 0 for all z € M N Uy, we have
Ey (21, 29) 21 + Es (21, 22) 22 | s9—0 = E1 (21,0) 2.

By assumption (A1) that dim E(z)T,M = r forallz € MNU, we have rank E; (z1,0) =
r forall z € M N Uy, where U; = Uy N U. Then there exists Q' : M NU; — GI(I,R)
such that :
Ei(z1) EX(=1)]
Q/(Zl)El (Zl, 0) 21 = 0 0 |:Z§:| 5
0 0 !

where rank [E{(21) E?(z1)] = rand 2y = (21,2}), Ef : M NU; — R™" and E} :
M N U, — R™677), Without loss of generality, we can always assume that the matrix
E{(z) is invertible, since if not, we can permute the variables of z; such that the first r
columns of F(z1) are independent.

In view of the analysis above, there exist (21, 2z2) = Q'(21) and z = 9 (z) defined on
U; such that:

B = em ) (20

3 :11(217 0) + 1?11(2)22
F(2) = QEF (0(2) = |F2()| = | F2(21,0) + F2(2)=)
Fy(2) Fy(21,0) + F5(2) 2

where F' 11, F 12, Fz are smooth functions with values in R", R*™", R"™*  respectively, and
they can be always represented as the above form by using some matrix-valued functions
FX(2), F2(2), Fy(2). Thus by Definition 4.1.1] locally = = (E, F)~ = = (E, F') on U,

Observe that by assumption (A2), we have F'(z) € E(z)T,M forallz € M N U,
(since U; C U), which means F'(z) € E(z)T,1p(M) forall z € {z|zo = 0}:

F(21,0) Ei(z) Ef(z)
F2(2,0)| €lm | 0 0
FQ(Zl, 0) 0 0

It follows that F2(z;,0) = 0 and Fy(z,0) = 0. Thus Z|,,—o (means a reduction of the
restriction of = to {z : 2z, = 0}, compare Definition |4.3.7| and |4.3.8[) has the following
form:

(B B [ = ). w2
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Let 2} : I — R" be the solution of the following ODE passing through z{(0) = 21" (note
that £} (z;) is invertible):

. -1 (7 .
() = (BX(=)) <F1 (21) — Ef(zl)zf(t)) . (4.23)
It is always possible to find such a solution because if we denote 72 = wu, f(z1) =
(ED)7'Fy(z1) and g(2;) = (E{)"'E?(21), then ODE (4.23) can be expressed as
21
Zl == U,

which can be seen as a control system with input » and it is always solvable for any u.
Now assume (z; (), z%(t)) is a solution of (4.24] - passing through z;(0) = (2{(0), 2£(0))
for a fixed u(t). Then for any 2° = (z{°, 2%, ) (notice that Y € M), E always has a
solution z(t) = (21 (t) =2i(t) 0). F1nally, by E~Z, wegeta(t) = (2] (t) z(t) 0)
is a solution of = passing through z° = ¢~1(2°). Clearly, x,0(t) € M NU; € M N U for
all t € I,0. Note that if r # s = r < s, there always exists a free variable u in equation
(4.24) and then = has infinite solutions. If r = s, then 27 and u are absent in equation

(4.24) and = has just one solution. [

4.4.2 Proof of Theorem 4.3.14

Proof. By dim E(z)T,M* is constant and M* is locally maximal invariant, we have
F(z) € E(x)T,M* locally for all z € M* (by Proposition 4#.3.2). Then all the as-
sumptions of Lemma are satisfied for M*. That is, dim E(x)T,M* is constant and
F(z) € E(x)T,M* locally for all z € M*. By the proof of Lemma[4.2.3] we have Z[}5
is of the form (4.22).

()< (ii): Thus by Lemma [4.2.3] locally for any 2° € M* , there exists one and only
one solution passing through 2V i.e., = is internally regular (see Definition [4.3.13)), if and
only if s = r, that is dim M* = dim E(z)T,M*.

(i1)<>(iii): We can see from the the proof of Lemma that Z[75¢, given by (4.22), is
externally equivalent to the ODE given by (4.23). Suppose that dim AM* = dim E(z)T,M*,
i.e., s = r. It follows that 2? is absent in (4.23)). Rewrite ODE (4.23) as

= (BlGD) R (=) (4.25)

Denote z* = 2} and F*(2*) = (E! (1)) Fy (21). Thus 2[5 is ex- equlvalent to =*, given
by (4.10), via Q (z}) = (EL(z}))"" and a local diffeomorphism z* = z! defined on M*.
Therefore, = is locally in-equivalent to =Z* by Definition 4.3.11

=% red

Conversely, suppose (iii) holds. = is locally in-equivalent to =* implies that =
is locally ex-equivalent to =*. Since z* is local system of coordinates on M™, we can
directly see that =Z* satisfy (ii) since dim M* = dim [,-T,- M*, where [,- is an identical
matrix of the same dimension as M*. Finally, consider system Z[3%¢ given by ,
since ex-equivalence preserves the dimensions, we have s = r, implying that dim M* =

dim E(z)T,M* locally for all z € M*. O
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4.4.3 Proofs of Proposition 4.3.18, Theorem 4.3.21| and Proposition
4.3.23

Proof of Proposition If. Suppose that ¥ and 3 are equivalent via the transforma-
tions given by (4.16). First, Im g(z) = Im g(z)f(x) = ker Ey(z) = ker E(x) proves that
g(x) is another choice such that Im g(x) = ker E(x). Moreover, we have

Pre-multiply the differential part = EI Fy + ga+~vFy+ gBv of X by F, (x), we get (note
that Im g(x) = ker E1(z))

{ Ey(x)t = Fi(z) + EyyFy(x)
g =nh(z).

Thus ¥ is an (I, v)-explicitation of the following DAECS:

{El@;)] o [Fl (x) + EyyFy(z)

0 n(z) Fa(z)
Since the above DAE can be obtained from = via Q(z) = Q'Q(z), where Q'(z) =
K;J El(v()x)} , it proves that Yisa (Q, 0)-explicitation of = corresponding to the choice
n(x

of invertible matrix Q(z) = Q'(x)Q(x). Finally, by F\f = F, + FEyyF, we get f =
EI (Fy + vF>) for the choice of right inverse EI of L.

Only if. Suppose that 3 € Expl(Z) via Q(z), E](z) and g(x). First by Im §(z) =
ker E(xz) = Im g(z), there exists an invertible matrix S(z) such that g(z) = g(z)B(x).
Moreover, since E () is a right inverse of E; (x) if and only if any solution & of F, (z)i =
w is given by E] (z)w, we have EyElFy(z) = Fy(z) and E\E|F,(z) = Fy(x). It follows
that Ey(El — ENFy(z) = 0, s0 (E} — E})Fy(2) € ker By (). Since ker Fy (z) = Im g(z),
it follows that (E] — E)Fy(z) = g(2)a(z) for a suitable ov(z). Furthermore, since Q(z)

E -
is such that F(z) of Q(z)E(x) = { 1(537)1 is of full row rank, any other Q(z), such that

Ey(z) of Q(z)E(z) = {Eléx)] is full row rank, must be of the form Q(z) = Q'(z)Q(x),
where Q' (x) = [Qlo(x) gigﬂ . Thus via Q(z), Z is ex-equivalent to

o (B @] Ly [F1(E) Qu(z)Er(x)| . _ [Qu(x)Fi(2) + Qo) Fa(x)
o0 ") e =ew g = (20 = (M

The equation on the right-hand side of the above can be expressed (using £l (2) and §(x))
as:

{ @ = E]F + E{QT'QoFy + gv = EIFy + ga + FIQ7'Qoh + g0
0 - Q4F2 - Q4h
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Thus the explicitation of = via Q(z), EI(z) and g(z) is

i_{j;:EIFl:i—goz%—’yh—l—gﬁf):f%—’yh—l—g(oz—i—ﬁﬁ):f—l—gfj
"L g=nh=nh.

where v(z) = E{Q7'Q4(x), n(z) = Qu(z). Now we can see that & and ¥ are equivalent
via the transformations given in (4.16). O

Proof of Theorem By the assumptions that rank () = rank F(%) = const. = ¢
around 2° and 2, respectively, we have = and = are locally ex-equivalent to

/ 1 1 / 1 1
= T = and = : T= |~ ,
[ 0 Fy(z) 0 Fy (2)
respectively, where E;(z) and E, (7) are full row rank matrices and their ranks are ¢q. By

Definition we have

f(z) = E{(z)Fi(z), Img(x) = ker Ey(x),

:
f(#) = E{(2)Fy(2), Im (i) = ker Ey(),

Note that the explicitation is defined up to a feedback, an output multiplication and a
generalized output injection. Any two control systems belonging to Expl(Z) are sys-
equivalent to each other and so are any two control systems belonging to Expl(é). Thus
the choice of an explicitation system makes no difference for the proof of sys-equivalence.
Without loss of generality, we will use f(z), g(z), h(z) and f(z),j(z), h(x), given in
(4.26) for the remaining part of this proof.

2

l} T
h(Z) = F5(2).

If. Suppose X £ locally in a neighborhood U of z°. By Definition |4.3.19, there
exists a diffeomorphism & = ¢ (z) and 5 : U — GI(m,R) such that o ¢h = g—lﬁgﬁ, which
implies

~ N _ 0 9, 0
ker(E o 1)) = span{g, ..., m } © ¥ = span {8—1)91, . a—fgm} = —¢kerE.

Oz

We can deduce from the above equation that there exists Q)1 : U — Gl(q, R) such that

B = awme (242)

(4.27)

Subsequently, by f o ¢ = g—f(f + vh + ga) of Definition |4.3.19] we have

~ ~ 0
(B0 9)(Fy 0 %) = J2(E{Fy +7F, + ga).

Premultiply the above equation by E; o 1) = Q E; (%)_1, to obtain
Fi(¢(2)) = Qu(@) Fi(2) + Qi () Er(2)y(2) Fa(x), (4.28)
Then by ho = nh of Deﬁnition we immediately get
Ey(y(x)) = n(x) Fy(w). (4.29)
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Now combining (4.27), (4.28) and (4.29), we conclude that =’ and =’ are ex—equivalent
. Qi(z) Qi(x)Er(x)y(x)
viaz = and ) [
¥() and Q(z) = | o

E~E and 2~ F).

, which implies that = < = (since

Only if. Suppose that locally = RE It implies that locally =’ ~ =/, Assume that they
are ex-equivalent via Q : U — GI(I,R) and & = (=) defined on a neighborhood U of x°.

_ [@u@) @) where Q; (z T r) an ) are matrix-value
Let Q(z) = [Qg(x) Q4(x)]’ here Q1(z), Q2(x), Q3(x) and Q4(x) t lued

functions of sizes ¢ X q, ¢ X m, p X q and p X p, respectively. Then by [81 82} [ﬁgl] =
3 Q4

{El (;) ﬂ g—f, we can deduce that Q3(x) = 0 and Q1(z), Q4(z) are invertible matrices.

Then we have

|:Q1 Qz} |:E1} _ {Eﬂﬂq 3_¢ [Ql Qz} |:F1‘| {Floﬂ
0 Q4 |0] | 0O |oz 0 Q4 |F Fyol|’

which implies

_ ouv\ ' . .
Brov=iti (30) .\ Fiov=QiFi+ @ifs Frov=Qus (430
Thus by Im g(z) = ker E(x) = ker Ey(z) and Im §(z) = ker F(%) = ker E{(&), and

using (4.30), we have

goy = ¢ 16 (4.31)
for some 3 : U — GI(m, R). Moreover, there exists « : U — R™ such that
Fody — Eif E3D Y s
fo=FEloyF o w = —E 1Q1 Q1F1 + Qa2 F
o
e —E1QT (1 F) + Q2F + Q1 Erga)
0
;b (£ + IO Quy + 9a). (4.32)
In addition, we have
(E30)
ho@/J F20¢ = Q4F2 Qah. (4.33)
Finally, it can be seen from - , and (4 l that S XS via & = (z), a(x),
B(@), v(x) = E{QT'Qs(w) and n(x) = Q4( ) m

Proof of Proposition We first show that the sequence of submanifolds M N Uy, of
Propositiond.3.3|of DAE = and the sequence NNV}, of the zero dynamics algorithm of any
control system > = (f, g, h) € Expl(Z) coincide. Suppose that rank F(z) = const. = q
in a neighborhood Uy of 2°. Then there always exists an invertible matrix Q(x) defined
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on Uy such that Q(z)E(z) = lEl(‘”)}, Q(z)F(z) = {F 1(‘”)} and rank E, (z) = ¢ for

0 Fy(x

all z € Uy. Recall that Ny, of the zero dynamics algorithrr(l i)s well-defined for the class
Expl(Y) (see Remark and N are the same for all control systems belonging to
Expl(Z). Since the choice of an explicitation system makes no difference for Vy, we can
assume Y = (f, g, h) € Expl(E) is given by f(z) = El(z)Fi(x), Im g(z) = ker E(z),
h(z) = Fy(x).

By the definition of M, (see of Proposition and Ny = h~1(0), we have

MyNUy={z€Uy:Q(z)F(r) € ImQ(z)E(x)}

e (B em A} e -

:{Z’GUoih(ﬂﬁ):O}:NgﬂUo.
For k£ > 0, suppose M, = Ni. Then by equation (4.7), we have
My = {w € M{_, : Q@) F(x) € Q) E(x)TL M, }
Fl(l’) El(I)
= M;_, T,M;
rem: () e [557] moes
={z e M;_: Fi(z) € mE (x)T,M;_,}
={z € M;_,: f(z)+ker By(z) C T,M;_, + ker Ey(z)}
={z e N_,: f(z) € T,Ng_; +spanf{gi(z),...,gm(2)}} = Np.

If either one among (A1) and (A2) holds, then by the relations of N, and M) shown
above, we can easily deduce the other one. If so, we have both (Al) and (A2) hold.
Then by Proposition 4.3.3] A/* = MF. is a locally maximal invariant submanifold and
by Proposition 6.1.1 in [92], N* = N{. is a local maximal output zeroing submanifold.
Moreover, we have locally M* = N* (since locally M = Ny).

Now in view of Lemma[4.2.3|and Theorem[4.3.14] under the assumption that dim E(z)T, M*
is constant locally for all z € M~*, we can deduce the following equivalent statements
around 2" (using the result that N* = M*):

(a) Forany point x € M*, there exists only one solution of = passing through x (internal
regularity of Definition 4.3.13));

(b) dim M* = dim E(z)T,M*;
(c) the map F(z) is one to one on T, M*;
(d) ker E(z) N T, M* = 0;
(e) span{gi(x),...,gm(x)} NT,N* =0.
Thus we have = is internally regular (condition (a)) if and only if

span{g;(z°),..., gm(z°)} N T N* =0

(which is, equivalently, condition (c)). [l
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4.4.4 Proof of Theorem 4.3.27

Proof. (i) = (ii): Suppose in a neighborhood U of x° that rank E(z) = ¢ and 2(x) =

ker E(xz) = span{g;(z),..., gnm(x)} is involutive, m = n — ¢, where g, ..., g,, are in-
dependent vector fields on U. Then by the involutivity of &, there exist local coordi-
nates 7 = (Zy,79) = ¥(x), where 71 = (z1,...,2%) and 2o = (z3,...,z%), such that

span {dzi,...,d7{} = span{di,} = 2+ (Frobenius theorem [112]). Note that in the ¥
coordinates, the distribution

ker E(7) = ker (E(x) (azg:(j))— ) - ag;x)@(x)

_ span { P @) .. aﬁ—if)gm<x>} — pan{@(), - (@)},

where ¢;(Z) = alg—gf)gi(x), i =1,...,m. Now let () be a matrix whose columns consist

of g;(z), for i = 1,...,m. It follows that rank g(Z) = m around z°. By di; = 2+, we
) 92 (Z)
g2 : Y(U) — R™™_ Since rank g(Z) = m, it can be seen that §(Z) is an invertible
matrix, which implies that £(Z) has to be of the form E(z) = [E; (Z) 0], where E; (Z) :
Y(U) — R>™, Thus in Z-coordinates, = = (E, F) has the following form:

have < dZ,g; >= 0, fori = 1,...,m. Thus g(z) is of the form §(z) = [ } where

B o) [

T

1:F(i*).

Now by rank E(z) = ¢, we get rank [E) (&) 0] = rank E(z) = g¢ (the coordinate

transformation preserves the rank). Thus there exists ) : ¥(U) — GI(I,R) such that
. . El (7 .

QI)E(Z) = Q%) [Er (Z) 0] = { 1O<x) 8}, where Ei : (U) — R4, Since Q(7)

preserves the rank of £(i), we have rank E} (Z) = q. Therefore, E} (%) is an invertible

Ny -1
1 (5 s
(El (x)) 0 Q(Z) and denote Q' (Z)f(z) = {Fl (%)}

0 I, Fy (1)
It is seen that, via & = ¢ (z) and Q'(x), Z is locally ex-equivalent to = = (E, F), where

B@) = QB = [ ] and F@) = @t = [0, crary

Xz
0 0 £ (2)
= is a pure semi-explicit DAE.

matrix. Now let Q'(Z) =

~—

(ii) = (44i): Suppose that Z is locally ex-equivalent to =P, Then, any control
system ¥ € Expl(Z) is sys-equivalent to ¥’ € Expl(Z7°F) below (by Theorem 4.3.14)):

o) )

y = FQ($1,$2).
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Suppose that © X %' via z = (21, 2) = 1(z), o, S and v = [%} , then
V2

o L2 =22 (7] Bl [ o+ om)
gy  =nx)F)

By Definition [4.3.26] ¥ can be always fully reduced to (by a coordinates change and a
feedback transformation)

{ 21 = Fi(21,22) + 7121, 22) Fa (21, 22)
y  =n(r1, z2)Fa(r1, 72),
where x5 is the new control.

(i4i) = (i): Suppose (zii) holds. Then Expl(Z) is not empty implies that locally

E(z) has constant rank. By Definition 4.3.26] any control system ¥ € Expl(Z) can be
fully reduced implies Z = ker E(z) = span{gy, ..., gm } is involutive. O

4.4.5 Proof of Theorem 4.3.29

1
Al 251
1 2 1
& =& tow
'fl—lz ¢171+Uf1—1v
o= ar+ P

__ ¢l
Y2 = &
521 = f% + E%,l (a1 + Prv) + O'%U

po—1 -1 -1
b =&+ By (an + fru) +oh

P2 = g + Bov
. (4.34)

Ui zfil, i=2,...,m

. 1—1
le 251‘2"' ZEzl,s (ozs—i—ﬁsv)—{—ailv
s=1

£ 1:.5524— ZlEle l(as—i-ﬁsv)—i-afl Ly
s=

& =ai+ B

(2 =F(&2) + (8 2)v.

whereE{S:()forl <i<m,1<j5<p’.

Claim 4.4.1. If assumptions (Al)-(A3) of Theoremd.3.29 are satisfied, then the admissible
point x, is a regular point of the zero dynamics algorithm (rank conditions (i), (ii), (iii)
of Proposition 6.1.3 of [92] are satisfied) for any control system ¥ € Expl(Z). If so,
we use Proposition 6.1.5 of [92] with a small modification: there exist local coordinates

(&, 2) = (&, ... &, 2) such that ¥ is in the form of ({.34) above.
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Remark 4.4.2. (i) Note that in equation (4.34), p1 < po < ... < p,,, the matrix § =

(8,..., BL1 is invertible at z,. Denote &/ = [¢],... &/ ], where &/ = 0 for j > p;, then
the functions o*|* = 0fork=1,...,p; — 1, where

Ne={(&2):g=0,1<i<m, 1<j<k}

(ii) There are two differences between system (4.34)) and the zero dynamics form of Propo-

sition 6.1.3 of [92]], where the functions o1, ..., 0% " are not present and the functions

Ef ; for 1 < j < s are not necessarily zero. However, in (4.34), a%, o ,a{’rl vanish on
My, ..., M, _,, respectively, but may not outside, and the functions Ef,s forl1 < j < sare

ZE10.

Proof of Claim We will prove that assumptions (A1), (A2), (A3) of Theorem4.3.29
correspond to the rank conditions (i), (ii), (iii) of Proposition 6.1.3 in [92]]. By the assump-
tion of Theorem that the rank of F(z) is constant in a neighborhood U = Uy, we
have Expl(Z) is not empty. Now, in order to compare the two algorithms (Algorithmm
for = and the zero dynamics algorithm for control system ¥ € Expl(Z)), we use the same
notations as in Algorithm{.3.4]

Then for a control system ¥ = (f,g,h) € Expl(Z), we have f(z) = (E})TF}(z),
Im g(x) = ker E(z), h(z) = F§(z). The zero dynamics algorithm for ¥ can be imple-
mented in the following way:

Step 0: by assumption (A1) of Theorem [4.3.29| that dF?(x) has constant rank n — s
around z,, we get dh(z) = dFZ(x) has constant rank n — sq around x, (condition (i) of
Proposition 6.1.3 in [92])). Thus A~ (0) can be locally expressed as Ny = {z : Hy(z) = 0},

n—So]

where Hy = po(x) = col[@}, ..., v

Step k£ (kK > 0): From the proof of Proposition 4.3.23| we have locally Ny_; = M},
which is

Ny1 =My = {37 : Hkq(f) = 0},

where Hy_1 = col|po, ..., ¢r_1]. By the zero dynamic algorithms, N can be calculated
by all x € N;_, such that

LiHy 1(x)+ LyHp—1(x)u = 0.

Then by assumption (A2) of Theorem 4.3.29, we can deduce E(x)ker dH} is constant
rank for all x € M, around zx,, we have that

dim ker E(z) Nker dHy_; = dim span{gy, ..., gn} NkerdHy_1 = const.,  (4.35)

for all z € Mj,_, around x,. Now by dim ker F(z) = const. around z, (since E(z) is of
constant rank), we get

dim span{gi, ..., gm} = const. (4.36)

125



CHAPTER 4. GEOMETRIC ANALYSIS AND NORMAL FORM OF NONLINEAR
DIFFERENTIAL-ALGEBRAIC EQUATIONS

locally around z,,. By (4.35) and (4.36)), we get rank L,Hj,_ () = const. forallz € Mjy_,
around x, (condition (ii) of Proposition 6.1.3 in [92]).

Since the rank of L,Hj_;(z) is constant, there exists a basis matrix Rj_;(z) of the
annihilator of the image of L Hj_1(x), thatis Ry_1(x)L,Hy_1(x) = 0. Thus N}, can be
defined by

Nk = {$ € Uk : Hk,1($) = 0, Rk,1<l’>LfHk,1<l') = 0}
Notice that by Algorithm[4.3.4] we have
M, ={z €U, : H,_1(z) =0, FZ(z)=0}.

By N, = M, and ranks of the differentials of ®;(z) = col[po(z),. .., pr_1(z), F(x)] are
constant for all x around z, ( assumption (A1) of Theorem 4.3.29), it follows that the rank
Hk,1 (l’)

kal(l')Lfkal(x)
Proposition 6.1.3 in [92]).

of the differentials of has constant rank around x, (condition (i) of

Finally, the assumption (A3) of Theorem 4.3.29| that dim F(z)7,M* = dim M* lo-
cally around x, implies

span {g1(<a), - - gm(a)} N T, N* = 0.

Finally, by N* = {x : Hy» = 0}, it follows that the matrix L,H- (z,) has rank m
(condition (iii) of Proposition 6.1.3 in [92]). [

Proof of Theoremd.3.29, Observe that by assumption (A3) and Theorem [4.3.14(iii), we
have = is internally regular. Then by Claim we have z, is a regular point of the
zero dynamics algorithm for any control system ¥ € Expl(Z). Then there exists local
coordinates (£, z) such that X is in the form of around z,. Notice that the matrix
B = [BT,...,B8L]" is invertible at z, and the sequence of submanifolds NN, in the zero
dynamics algorithm can be expressed as N, = {(,2) : & =0, 1 < j < k+ 1}
Moreover, locally for all z € Ny, we have af =0forl <i<m,1<k<p; — 1, which
implies 0¥ € I*. Then for system , using the feedback transformation v = a + [v,
where o = col [ay, ..., a,), we get :

_ ¢l L
=&, 1=1,...,m,
i—1

& —52 + X B+ ol (57 (0 - a))
i 4 5, 4 o (57 (5 )
s=1

5“
\ (&@+§@Jﬂﬂ*@—aﬂ-

I
o S
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Denote af = —cFB71a, bf = oFp71, for1 <i <m,1 <k < p; — 1, then we get

( _¢1 P
vy =&, 1=1,...,m

. 1—1
& =&+ BlLo,+al +blo
s=1

Mr

i1

S0—1 . 1~ 1 1~

3% =£fl+ZE£; s+ a4+ 00
s=1

& =0

| i = Fre )+ 6o E ),

where F* = F — g3 'a and G* = §S~!. Denote the above control system by ¥, we have
IS

Then consider the last row of every subsystem of 53, which is ff * = v;. By deleting
this equation in every subsystem and setting y; = 0 for ¢ = 1,...,m and replacing the
variable v; by ff ‘_we transform . to DAE = below. Note that this transformation from 3
to = is called the driving variables reduction and implicitation of a control system, which
has been discussed in Section 4.3.31

. [ 0 |
0 11 i—1 L. Zl 0
- 2| | B : al +biér
1 0 Slh i—1 il 5/)1 api_l—i-bpi—lép
) Eis 5;15 [ 7 [
—G (&) € + 2 = F*(&,2),

\

where £/, = 0for1 < j < p°. By of € I¥, we have af,bF, € I". Finally, by Theorem

RN

4.3.21/and ¥ L', we have that = < = and that = is in the NWF of (4.20). 0

4.5 Conclusion

In this chapter, for a nonlinear DAE = = (FE, F'), we define the internal and external equiv-
alence, their differences are discussed by analyzing their relations with solutions. We show
that the internal regularity (existence and uniqueness of solutions) of a DAE is equivalent
to the fact that the DAE is in-equivalent to an ODE on its maximal invariant submanifold.
A procedure named explicitation with driving variables is proposed to connect nonlinear
DAE:s with nonlinear control systems. We show that the external equivalence for two DAEs
is the same as the system equivalence for their explicitation systems. Moreover, we show
that = is externally equivalent to a pure semi-explicit DAE if and only if the distribution
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defined by ker E(x) is of constant rank and involutive. If so, the driving variables of a
control system ¥ € Expl(Z) can be fully reduced. Finally, a nonlinear generalization of
the Weierstrass form WEF is proposed and an example is given to show its construction
procedure.
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Chapter 5

Feedback Linearization of Nonlinear

Differential-Algebraic Control Systems

Abstract: In this chapter, we study feedback linearizability for nonlinear differential-
algebraic control systems DAECSs under two kinds of feedback equivalence, namely, the
external and internal feedback equivalence. Necessary and sufficient conditions are given

for the internal and external feedback linearization problems with the help of an explicita-

tion procedure. This explicitation procedure attaches a class of ODE control systems with
two kinds of inputs to any DAECS. We prove that feedback linearizability of a DAECS is
closely related to the involutivity of some distributions of a system given by the explicita-

tion. Moreover, two normal forms are proposed based on the notion of maximal controlled
invariant submanifold of DAECSs. These two normal forms facilitate understanding the
role of the variables in DAECSs. Finally, we illustrate the results of this chapter with

examples (from both practical and academical systems).

Notation
N the set of natural numbers with zero and N* = N\{0}
C the set of complex numbers
Rm>m the set of real valued matrices with n rows and m columns

C/(M;N) the class of maps of class €/, j € NU{oo}, from M to N; if j = oo,

it is the set of smooth maps

Gl (n,R) the group of nonsigular matrices of R"*"

T.M the tangent space of a submanifold M of R" atx € M
Id identity matrix

A exterior product

d&i A d&s déy Ao NN dE N - NG, where & = (&

52:(537”" 32)
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5.1 Introduction

Consider a nonlinear control system, given by a differential algebraic equation DAE of
quasi-linear form:

= E(x)t = F(z) + G(z)u, (5.1

where © € X is the “generalized” state, with X an open subset of R", the vector of control
inputs v € R™, and where £ : TX — RLF: X - Rhand G : X — R™™ are smooth
maps and the word “smooth” will always mean C>°-smooth throughout the chapter. Note
that £'(x) is not necessarily square and invertible. A differential-algebraic control system
DAECS of form will be denoted by =, ,, = (E, F,G) or, simply, =*. We call x
in (5.1) the “generalized” state because it is different from the state of a classical ODE
control system ODECS, which is

= f(x)+ Zgi(x)ui, (5.2)
i=1

where f,q1,...,9n : X — TX. Note that the variables of the “generalized” states play
two different roles for the system. More specifically, non-invertibility of F£(x) may imply
the existence of algebraic constraints and some variables of = (even some u-variables) are
constrained by the algebraic constraints. On the other hand, some other variables of x
are free and they play the role of an input (since they enter the system statically). Note
that although the free variables of x may perform "like" inputs, we will emphasize their
differences with the original control input w.

A linear DAECS is of the form
A" : FEt = Hx + Lu, (5.3)

where E, H € R>*" and L € R”™ and will be denoted by Al = (E,H, L) or, simply,
A", Linear DAECSs have been studied for decades, there is a rich literature devoted to
them (see, e.g., the surveys [127, [128] and textbook [S9]]). In the context of this chap-
ter, we will need results about canonical forms [131],[124] and Chapter controllability
[171,[551],[74], and geometric subspaces [[79],[152]]. The motivation of studying linear and
nonlinear DAECSs is their frequent presence in mathematical models of practical systems
e.g., constrained mechanics [159, 199, 22| 141} [177], chemical processes [[119, 133, [154],

electrical circuits [[165, (166, 67], etc.

The feedback linearization problem for nonlinear ODECSs (i.e., when there exists a
local change of coordinates in the state space and a feedback transformation such that
the transformed system has a linear form in the new coordinate) has drawn attention of
researchers for decades (e.g. see survey papers [163],[180] and books [[151],[92]]). The
solution of the feedback linearization problem of ODECSs was first given in Brockett’s
paper [29] and developed by Jakubczyk and Respondek [98]], Su [178], Hunt et Su [88].
Compared to the ODEs, fewer results on the linearization problem of DAE systems can be
found. Xiaoping [195] transformed a nonlinear DAECS into a linear one by state space
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transformations, Kawaji [[111] gave sufficient conditions for the feedback linearization of a
special class of DAECSs, Jie Wang and Chen Chen [185] considered a semi-explicit DAE
and linearized the differential part of the DAE. The linearization of semi-explicit DAEs
under equivalence of different levels [49] is studies in Chapter|[6]

There are mainly two contributions of this chapter. One is to find when a given DAECS
of form (5.1 is locally equivalent to a linear completely controllable one (see the definition
of complete controllability in [[17]). In particular, we will consider two kinds of equiva-
lence, namely, the external feedback equivalence given in Definition[5.2.2]and the internal
feedback equivalence given in Definition[5.3.8] Note that the words "external" and "inter-
nal", appearing throughout this chapter, basically mean that we consider the DAECS on an
open neighborhood of X and on the locally maximal controlled invariant submanifold (see
[13]), respectively. We discuss in detail the difference and relations of the two equivalence
relations for linear DAEs in Chapter [2] or see [47], and for nonlinear DAEs in Chapter
M} or see [48]. In this chapter, we will use a procedure named explicitation with driving
variables (proposed in Chapter [3] and Chapter [)) to connect nonlinear DAECSs with non-
linear ODECSs. By this explicitation procedure, we interpret linearizability of DAECSs
under internal or external feedback equivalence with the help of linearizability of the ex-
plicitation systems under system feedback equivalence (see Definition [5.2.7). The other
contribution is to propose two normal forms based on the notion of maximal controlled
invariant submanifold. These normal forms are helpful in understanding the role of the
variables in a DAECS, e.g., to see which variables of the “generalized” state are actually
free and which control inputs are actually constrained by algebraic constraints.

The chapter is organized as follows. In Section[5.2] we give the definition of external
feedback equivalence and describe the explicitation with driving variables procedure step
by step. In Section [5.3] we show a DAECS can be externally equivalent to two normal
forms under different assumptions. In Section [5.4] we give necessary and sufficient con-
ditions for the linearization of DAECSs under external and internal feedback equivalence.
In Section [5.5] we illustrate the results of Section [5.3]and Section [5.4] by some examples.
Section[5.6|contains the proofs. In Section[5.7] we give conclusions and some perspectives
of this chapter.

5.2 Explicitation of differential algebraic control systems

We define the solution of a DAECS as follows:

Definition 5.2.1. (Solution) For =}, = = (E, F,G), acurve (y,u) : [ — X x % defined

on an open interval € R with v(t) € C! and u(t) € C° is called a solution of =, if for
allt € I, E(y(1)) = F(y(1)) + G(y(1))u(t).

If we fix (to, z°) and u(t), then a solution ~y(#) satisfying y(¢o) = z° will be denoted by
7,0 and the maximal time-interval on which it exists by I,0. Clearly, /,0 is an open interval
that depends on z° and u(t), and may be infinite or finite (depending whether the trajectory
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g0 escapes in finite time into infinity or not). Note that for a given point 2°, there may
not exist any solution passing through z° due to the existence of algebraic constraints or a
solution ~y,0 may not be unique even for a fixed control input u(t). We call a point 2° € X
an admissible point of =%, if there exists at least one solution (y(?), u(t)) of =Z* satisfying
v(to) = x°. We will denote admissible points by z,,.

Definition 5.2.2. (External feedback equivalence) Two DAECSs =}, | = (E, F,G) and
:ffn,m = (E, F, G) defined on X and X, respectively, are called external feedback equiv-

alent, shortly ex-fb-equivalent, if there exists a diffeomorphism ¢) : X — X and smooth
functions @ : X — GI([,R), a* : X — R™, §*: X — Gl(m,R) such that

B(e) = Q) B() (22)
FW(2) = Q) (F(z) + G(x)a(z)), (5.4)
d(W(z)) = Q(x)G(x)B%(x).

The ex-fb-equivalence of two DAECSs is denoted by =* Nk % If ) : U — U is alocal
diffeomorphism between neighborhoods U of z° and U of 2°, and Q(x), a*(z), 3*(z) are
defined locally on U, we will talk about local ex-fb-equivalence.

Remark 5.2.3. If two DAECSs are ex-fb-equivalent, then the diffeomorphism ) estab-
lishes one to one correspondence between their solutions. Notice, however, that the control-
parameterizing solutions are not the same but are related via the feedback transformation

u(t) = F(a(t) + Gla(t))a"((1)).

Consider a DAECS =}, | = (E, F,G), given by (5.1). The explicitation with driving

—l,n,m

variables of =" is the following procedure.

Step 1: Assume in a neighborhood U of a given point z° that rank E(z) = const. =
Then there exists a matrix-valued function Q(x) € GI(l,R) defined on U such that

Qe - 7).

where ) : U — R™™ and rank F;(z) = r. Thus via Q(x), Z* is locally ex-fb-equivalent
to the following DAECS:

Fmﬂ¢:rmﬂ+{2@qm (5.5)

where Q(z)F(x) — qu Q2)G(x) = { . (x)}, and F,Fy,Gh,Ga, are smooth

matrix-valued functions of appropriate sizes.

Step 2: The matrix £, (z) is of full row rank, so let E!(z) be a right inverse of E ()
and set f(z) = El(z)Fi(z), g"(z) = E](2)Gy(z). The collection of all i satisfying
Ey(z)t = Fi(z) + G1(z)u is given by the following differential inclusion

€ f(x)+ g“(x)u+ker By (z) = f(z) + g"(z)u + ker E(z). (5.6)
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Since ker E'(x) is a distribution of rank n — r (because rank E(x) = r), there exist lin-
ear independent vector-valued functions ¢7,...,g9° : U — R", where s = n — r, such
that locally ker E(x) = span{g}(x),...,¢%(x)}. Thus by introducing driving variables
v1, ..., Us, We parametrize the affine distribution f(x) + ¢g*(z)u + ker E(x), and all solu-
tions of correspond to all solutions (generated by all controls v;(t)) of

= f(z)+ g"(x)u+ Z 9! (x)v;. (5.7)
i=1
Let g : U — R™° be a smooth matrix-valued function whose columns are g/, ¢ =
1,...,s. Then, equation (5.5) can be expressed as the following equation
i = [(@) + g"(z)u+ g"(a)0 58)
0= h(z) + 1" (x)u, '
where h(z) = Fy(x) and [*(z) = Go(x).
Step 3: Now we introduce the following control system
sw . [ T= f(@) +9"(@)u+g"(x) (5.9)
y = h(z) +1"(z)u,
denoted by X1 = (f, g%, g", h,I") or, simply, $**. Note that s = n —randp = [ —r,

which will be used throughout the chapter to denote dim v and dim y, respectively. Clearly,
equation (5.8) can be seen as an ODECS ¥"¥ by setting the output y = 0. In the above
way, we attach an ODECS Y.*" to a DAECS =".

Definition 5.2.4. (Explicitation with driving variables) Givena DAECS &}, | = (E, F, G),
fix a point 2°. Assume that the rank of E(z) is constant around z°. Then, by a (Q,v)-
explicitation, we will call a control system 33 = (f, ", ", h,[*) with

f(x) = E{(x)Fi(x), g"(z) = E{(2)Gi(z), Img"(x) = ker E(x),
h(z) = Fy(x), [“(z) = Gy(z),

where

Qe - |7 awre = [0 ewow - 0],

The class of all (@), v)-explicitations will be called the explicitation with driving variables
class, shortly the explicitation class. For a particular control system >** belonging to the
explicitation class Expl(Z*) of =%, we will write ¥** € Expl(Z*).

Apparently, in the above explicitation procedure, the choice of Q(z), E] (z) and ¢”(z)
is not unique. The following proposition shows that a given =" has many (), v)-explicitat-
ions and any two explicitation systems of =" are equivalent via a feedback transformation
of v, an output multiplication and a generalized output injection.
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Proposition 5.2.5. Assume thatan ODECS X" = (f, g%, g", h,1") is a (Q,v)-explicitat-
ion of a DAECS =" = (E, F,G) corresponding to the choice of invertible matrix Q(x),
right inverse EI () and matrix g*(x). Then a control system iqflsz = (f,§"* 3" h,1") is
a (Q, v)-explicitation of Z* corresponding to the choice of invertible matrix Q(x), right
inverse EI (x) and matrix §°(x) if and only if =" and U gre equivalent via a v-feedback
transformation of the form v = o’ (x) + A(x)u + 5%(x)v, a generalized output injection

v(z)y = v(x)(h(x) + I*(x)) and an output multiplication §j = n(z)y, which map

frof=f+tah+goar, g“w=g"=g"+ 0"+ g, (5.10)
g*— " =g"B’, hw h=nh, [“—I["=nl" '
where o’ (x), B’(z), v(x), M x), n(x) are smooth matrix-valued functions, and B*(z) and

n(x) are invertible.

The proof is given in Section[5.6|

Remark 5.2.6. The constant rank assumption of F(x) (around z°) is essential for the
explicitation of =*. Because without this assumption, we may not have a smooth Q(x)
and/or a smooth right inverse E](x) of Ey(z). Since we assume E(z) is of constant rank
around a point 2, the matrices Q, f, g%, ¢*, h, [* are all defied locally, and so is ¥** €
Expl(=*). Note that z° is not necessarily an admissible point, i.e., there may not exist
solutions passing through 2°. However, the explicitation around x° always exists as long
as the constant rank assumption of /() is satisfied.

Now we will define an equivalence relation for two ODECSs of form , which can

be seen as a generalization of the notion of sys-equivalence given as Definition in
Chapter 4]

Definition 5.2.7. (System feedback equivalence) Consider two control systems >:*" =

(f, g g°, h,1*) and i;”fjm,p = (f,§"% g" h,1") defined on X and X, respectivel};. 7T7]}ljlen
> and X" are called system feedback equivalence, shortly sys-fb-equivalent, if there
exists a diffeomorphism 1/ : X — X, smooth functions a*(z), a*(z) A\(z) and (z) with
values in R™,R* R**™ and R"*P, respectively, and invertible smooth matrix-valued func-
tions 5" (x), 8Y(z) and n(x) with values in Gi(m,R), Gi(s,R) and GI(p, R), respectively,
such that

- - - 1 0 0
fov glow glon] [ Zyn] [f ¢ ¢ . .

7 y =1% PR T « 16 0. (5.11)
The sys-fb-equivalence of two control systems will be denoted by >*" ook PILCHE (RTE
U — U is alocal diffeomorphism between neighborhoods U of zy and U of zy, and o*,

a’, A\, vy, B4, BY, n are defined locally on U, we will speak about local sys-fb-equivalence.

Remark 5.2.8. (i) Observe that, in equation (5.11]), there are two kinds of feedback trans-
formations. Namely, u = o"(z) + *(z)u and v = a*(z) + A(z)u + 5Y(x)0, which can
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be written together as:

B A e

It implies that there are two kinds of inputs in ODECSs of form (5.9). Moreover, one
input (the driving variable v) is more "powerful" than the other input (the original control
variable u), since when transforming v, we can use both v and x in feedback tranformation,
but when transforming u, we are not allowed to use v. Another difference between v and
v is that the input u is injected into the output y via [*(z)u, but the input v is not directly
injected into the output y.

(ii) Recall that we denote a control system of form (5.9) by X%, . = (f, g%, ¢", h, [").
Throughout, for simplicity when needed, we will denote itby ¥ = (f, g", h,1"), or

shortly >, where g% = [¢", g"], [ = [I*,0], w = (u, v). Moreover, if we denote

aw:{ o 1 511,:{5“ 0], -

a¥ + Aot ABY BY ox
then we have the following equivalent expression of equation (5.11):
feu g7ow) _[5 v [f 9“][1 O (5.13)
howv [Poq 0 nl||h *]|av BY|° '

Observe that in equation (5.13), v*(x) and o (z) can be arbitrary since (), o(z) and
a*(x) are arbitrary. The matrix 5" (z) is invertible since 3*(x) and 3*(z) are invertible
and, which is crucial, 5*(x) has a lower block-triangular form. This triangular form is
a consequence of two kinds of feedback transformations as explained in item (1) of this
remark.

(iii) The transformations in equation (5.13)) can be seen as a nonlinear generalization
of the Morse transformation (see [146],[145], or Definition [2.2.3] of Chapter [2)) of linear
ODECS:s. In the linear case, the transformations 1(z), o (z) and n(x) in equation (5.13))
correspond to, respectively, coordinates changes in the state, input, and output space of
a linear ODECS. Moreover, o and " correspond to the feedback transformation and
output injection matrix, respectively.

The following theorem connects the ex-fb-equivalence of two DAECSs with the sys-
fb-equivalence of two ODECSs (explicitations), which can be seen as a generalization of

Theorem {.3.21] of Chapter ]

Theorem 5.2.9. (Extension of Theorem [4.3.21] of Chapter [d) Consider two DAE control
systems =}, . = (E,F,G) and =}, . = (E,F,G) defined on X and X, respectively.

Assume rank E(x) = 7 in a neighborhood U of a point z° € X and rank E(&) = r ina
neighborhood U of a point 1° € X. Then, given any ODECSs X% =(f,9" g" h,1*) €

n7m7s7p -

Expl(Z*) and 3% = (f,§% ", h,1%) € Expl(Z%), we have locally =* o g if and

n7m787p -
—fb o~ .
only if s VTt s
The proof is given in Section [5.6]
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5.3 Maximal controlled invariant submanifold form

In this section, we extend the internal analysis of nonlinear DAEs presented in Chapter [
to DAECSs using the concept of controlled invariant submanifolds (see e.g., [92],[151] for
ODECSs, and [12] for DAECSs). In this chapter, we define locally controlled invariant
submanifold of DAECSs as follows.

Definition 5.3.1. (Locally controlled invariant submanifold) Consider a DAECS =, | =
(E, F,G) and fix an admissible point z,. A smooth connected embedded submanifold M/,
such that x, € M, is called a locally controlled invariant submanifold (around z,) of =*
if there exists a neighborhood U of x, such that for any point z° € M N U, there exist a
€%-control u(t) and a C*-solution v,0 : I,0 — M N U such that v,0(t) € M N U for all
t € I,0. A locally controlled invariant submanifold M* is called maximal, if there exists a
neighborhood U of x, such that for any other locally controlled invariant submanifold, we

have M NU C M*NU.

Remark 5.3.2. Recall that solutions 7(¢) of =* are not unique, even for a fixed initial point
2% and a fixed control u(t). Thus it is possible that a solution passing through z° € M NU
staysin M NU fort € I,0, however, other solutions may escape from M N U even for the
same u(t).

Consider a DAECS =}, ,, = (E,F,G). Let M be a smooth connected embedded

—l,n,m

submanifold and fix a point z° € M. We introduce the following regularity condition

(Reg) there exists a neighborhood U C X such that the dimensions of E(x)7, M and of
E(z)T, M + Im G(x) are constant forall z € M NU.

Proposition 5.3.3. Consider a DAECS A" = (E, F,G), fix an admissible point x,, and
a smooth connected embedded submanifold M containing x,. Then if M satisfies the
regularity condition (Reg) and F' (x) € E(x)T, M +1m G(z) locally for all x € M around
Zq, then M is a locally controlled invariant submanifold. On the other hand, if M is a
locally controlled invariant submanifold, then F(x) € E(x)T,M + Im G(z) locally for
all x € M around x,,.

The above statement is a generalization of Proposition of Chapter [ for nonlinear
DAEs, and was stated as Theorem 9 in [12] for DAECSs. We omit the proof of this
statement because it follows exactly the same line as that of Proposition of Chapter
Then, we introduce the concept of restriction of a DAECS to a controlled invariant
submanifold as follows.

Definition 5.3.4. (Restriction) Consider a DAECS =}, = (F,F,G) and a controlled

—l,n,m
invariant submanifold M, of dimension 7, satisfying the regularity condition (Reg) in a
neighborhood U of z,. Let ¢)(z) = z = (21, 22) be local coordinates on U such that

MNU={2=0}={zn=-=2°=0},
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where n; +ny = n. Thus 2; = (2], ..., 21') form coordinates on M N U. Then, in U, the
restriction of =% to M NU, called local M -restriction of =%, denoted ="|, is the following
DAECS

E(Z’l, 0) |:T)1:| = F(Zl, O) + él<21, O)ul,
where Gy : M NU — R™™ g such that
Gy (™ (2)) = B~ (2)) M NIm G (¢~ (2)),

and where

B = B ) (07 6)) P = ), Gi) =Gl ()

with u; € R™ and my = dim (E(z)T, M NIm G(z)).

Remark 5.3.5. (i) M satisfies the regularity condition (Reg) in a neighborhood U of z,
implies that the dimension of E(z)7, M N Im G(x) is constant forx € M NU.

(ii) Notice that GGy is not unique. In fact, it is given up to a u-feedback transformation
uy = B(z)u, that maps G, into G 3, where (3 is invertible.
Moreover, we introduce the notion of reduction of DAECSs, which is an extension of

reductions of nonlinear DAEs shown in Definition [4.3.8] of Chapter [4]

Definition 5.3.6 (Reduction). For a DAECS = =~ = (E, F,G), assume

—ln,m
rank [E(z),dF(z),G(x)] = const. =" <.
Then there exists @) : X — GI(l,R™) such that

Q1
Q2

where rank [Q, E(z), Q1dF (z), Q1G(z)] = 1*, Q1 : X — R Qy 0 X — RUEIX! and
the full row rank reduction, shortly reduction, of =%, is a DAECS Z%7¢d = (Ered| red (Gred),
where E™(z) = Q(x)E(z), Fr(z) = Qi (z)F(z) and G"4(x) = Q:(z)G(z).

QE QdF G

QE dF G]:[ 0 0 E

}[E dF G] =

For a locally invariant submanifold M, we consider the M -restriction =*|); of =¥,
and then we construct a reduction of =“|;; and denote it by =*|35?. Notice that the order
matters: to construct =%|15?, we first restrict and then reduce while reducing first and then
restricting will, in general, not give Z%[7¢¢ but another DAECS Z*"¢?| ;.

Proposition 5.3.7. Consider a DAECS =}, = (E,F,G) and fix an admissible point
To. Let M be a ni-dimensional locally controlled invariant submanifold satisfying the
regularity condition (Reg) around x,. Denote dim E(x)T,M = r and dim (E(x)T, M +
ImG(z)) = r + my. Then Z47¢ is a DAECS =" of form and the dimensions

—u|red —u|red ﬁ*ul

related to ="|}\i* are r,ni, my, where m; = m — mo, ie., Z*|1" =
Expl(Z4]55%) is not empty and consists of ODECSs without outputs.

Moreover,

=r,ni,mi°
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The proof is given in Section [5.6] The definition below is based on just introduced
concepts.

Definition 5.3.8. (Internal feedback equivalence) Consider two DAECSs =% = (E, F, G)
and =% = (E, F, Q) defined on X and X, respectively. Fix two admissible points z, € X
and 7, € X. Assume that

(A1) M* and M* are locally maximal controlled invariant submanifolds of =" and =i,
respectively, such that z, € M*, z, € M*.

(A2) M* and M* satisfy the regularity condition (Reg) around z, and 7, respectively.

Then, =% and =% are called internally feedback equivalent, shortly in-fb-equivalent, if
=Zv|75¢ and =7 \gjd are ex-fb-equivalent. We will denote the in-fb-equivalence of two DAECSs
—u in;fb =4

by =

Remark 5.3.9. In the above definition, the dimensions of two in-fb-equivalent DAECSs

=% and =% are not necessarily the same. However, since =*|7¢¢ and E“\R—Zd are required to

be external feedback equivalent, their dimensions have to be the same.

Theorem 5.3.10. (Maximal controlled invariant submanifold form MCISF) Consider a
DAE control system Z}',, . = (E, F, G) and fix a point 2°. Assume that F/(x°) € Tm E(z°)+
Im G (). Set

My={zeX:F(zr) eImE(z)+ImG(x)}.

Assume that My C --- C M, for a certain k > 1, have been constructed and that
for some neighborhood Uy, of 2° the intersection M;,_, N Uy_; is a smooth embedded

submanifold, and denote by My | the connected component of My_1 N Uy_; satisfying
¥ € Mf_,. Set

My ={z e M;_,: F(z) € E(x)T,M;_; +ImG(z)}. (5.14)

Then there exists a smallest integer k, denoted by k* < n such that M-, = M. and
assume that M* satisfies the regularity condition (Reg) around x°, where M* = M.,

0

then x° is an admissible point and M* = M. is a locally maximal controlled invariant

submanifold. Moreover, if additionally, for any v € Uy,

(Al) rank E(x) = const. = r and rank [E(z) G(z)] = const. = r + ms,

u

then there exists a neighborhood U of x° such that =% is locally ex-fb-equivalent to a

DAECS represented in the following maximal controlled invariant submanifold form

I, Ei(z) 0 E! ()| |£ Fi (2) Gi(z) 0
0 E3(z) I, E3(2)| |2 F (2) Ga(z) 0 | |ug
MCISF : 212 A -
cIs 0 0 0 0 Z3 0 + 0 I, | |u2]’
0 0 0 0 || Fi(2) 0 0
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where (21, z9) are local coordinates on M*, and E?, E}, E3, E3 are smooth matrix-valued
functions defined on U with values in R™*(—m1)  Rrix(na=ra) Rrax(nmi—r1) Rrax(n2—r2)
respectively, and E3(z) = 0 and Fy(z) = 0 for = € M*, where r; = dim E(x)T,M*,
ro =1r —1r1, N =dimM*, ng =n —ny.

Furthermore, if the above (Al) holds and additionally there exists an involutive distri-
bution D on Uy satisfying D(x) = T, M* for x € M* such that for any x € Uy,

(A2) dim E(z)D(x) = const. = ry and dim (E(z)D(x) + Im G(z)) = const. = r1+ma,

then there exist a neighborhood U of x° such that =% is locally ex-fb-equivalent to a DAECS
represented in the following special maximal controlled invariant submanifold form

I, E*(z2) 0 E!(2)]| |4 Fi(2) Gi(z) 0

0 0 I, B | |Be) 0 0| fu
SMCISF o _

0 0 0 ||z o | T o 1| |uw|

0 0 0 o0 |l|al |me 0 0

where F5(z) = 0 and Fy(z) = 0 for = € M*.

The proof is given in Section [5.6]

Remark 5.3.11. (i) If M* exists and only the constant rank assumption (A1) holds, then =
is locally ex-fb-equivalent to the MCISF given by (5.15). If =* satisfies the involutivity
and constant dimension condition (A2), then it is locally ex-fb-equivalent the SMCISF,
given by (5.16). Compared to (5.15), the matrices F3(z) = 0 and G(z) = 0 on U, and
Fy(z) =0forz € M*NU in (5.16).

(i1) In the above SMCISF, M* N U = {z : 23 = 0,24 = 0} and F3(z) = FJ(2)23 +
F2(2)z4, Fu(2) = F}(2)23 + F£(2)z4, where F}, F, F}, F}? are matrix-valued functions
of appropriate sizes.

(iii) The above are two external equivalence normal forms for =" that are constructed
under assumption (Al), for the first one, or (A1)-(A2) for the second one. The word
external means that we consider the DAECS Z* locally everywhere around z°, not just on
its maximal controlled invariant manifold M *. For the points around x° but out of M/*, the
system does not have solutions, nevertheless, the system admits the above normal forms.

(iv) The above two normal forms facilitate understanding the actual role of the vari-
ables in a DAECS =“. It is easy to see that some ‘“generalized” state variables, namely
(21, z3) behave like state variables of differential equations and some “generalized” state
variables, namely (z9, 24), are free and perform like inputs. Moreover, some control vari-
ables, e.g. wuo, are constrained and not free to be chosen (us is forced to be 0 by the
algebraic constraints).

(v) The above normal forms are also convenient for the internal analysis of DAECSs.
For instance, the result of Proposition can be easily seen from the SMCISF by

139



CHAPTER 5. FEEDBACK LINEARIZATION OF NONLINEAR
DIFFERENTIAL-ALGEBRAIC CONTROL SYSTEMS

setting z3 and 24 to zero. Moreover, we can use the SMCISF to analyze the existence
and uniqueness of solutions. A solution z(t) = (z1(¢), 22(t), 23(t), 24(t)) of the SMC-
ISF should satisfy z3(t) = 0 and z4(t) = 0. Using the definition of internal feedback
equivalence of Definition we have the SMCISF is in-fb-eq to

Z

(I, E}(z1,2)] L] = Fi(21,22) + G1(21, 22)us.

2

It is seen that for a fixed u(¢), =* has a unique solution if and only if m; = r; (since in this
case, the zy-variables are absent).

5.4 Feedback linearizations of nonlinear DAECSs

In this subsection, we will discuss the problem of when a nonlinear DAECS of form 18
external or internal feedback equivalent to a linear DAECS of form (5.3). First, we review
some definitions and criteria of the controllability of linear DAECSs. The augmented
Wong sequences (see [17] and Chapter i of a linear DAECS A}, = (E,H, L), given

l,n,m
by (5.3)), are

Yo :=R", ¥ :=H Y(EY¥+ImL); (5.17)
Wo =0, Wiy :=E Y (HW;,+ImL). (5.18)

Additionally, recall the following sequence of subspace (see e.g. [128]):
Wy =kerE, Wi, :=E "(H¥;+ImL). (5.19)

Now for simplicity of notation, we denote

Ky =1[0 Iy_q] € RE-DxF Ly = [I)-1 0] € REZDxE
Kz = diag{Kg,,...,Kg } € RUSI=RXIB [ o — diag{Lg,, ..., Lg,} € RUSI=RIxIBI
&5 = diag{eg,, ..., e5 } € RIFIXE es = [(1)] c ROX1,

k

where [ is a multi-index 8 = (S, . .., Bk), and where || = > ;. Definition|5.2.2|applied
i=1

to linear systems says that two linear SEDAEs A}, | = (E, H,L)and A}, | = (E, H,L)

are ex-fb-equivalent if there exists constant invertible matrices (), P, S and a matrix R such
that E = QEP~!, H = Q(H + LR)P_l, L=QLS.

Definition 5.4.1. (Complete controllability in [17]) A linear DAECS A}, | = (£, H, L)

is completely controllable if for any z°, z/ € R", there exist a solution (x,u) of A* and
t € R such that x(0) = 2° and x(t) = /.
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Lemma 5.4.2. [17] For a linear DAECS A}, .~ = (E, H, L), the following are equivalent:

I,n,m

(i) A" is completely controllable.

(ii)inE4+ImH+ImL=ImFE+ImLandImcE+ImcH+ImcL =Imc(AE —
H)+ImcL, VX eC.

(iii) V*NH* = R", where V* and W™ are the limits of the augmented Wong sequences

(5.17) and (5.18), respectively;

(iv) A" is ex-fb-equivalent (under linear transformations) to

L, 0 NpT 0 €, 0
0 L; {ml} _ 0 K; {xl} n 0 O {ul}
0 0] |z 0 0 T 0 I, | |u2|’
0 0 0 0 0 0

where p = (p1,...,pr) and p = (p1, . . ., px) are multi-indices.

In view of the two feedback equivalence relations for DAECSs (external feedback
equivalence of Definition [5.2.2] and internal feedback equivalence of Definition [5.3.§), we
give the following definition for the feedback linearization problems of DAECSs.

Definition 5.4.3. (Feedback linearization of DAECSs) For a DAECS =} = (E, F,G),

=
—ln,m

(i) assume that M* is a locally maximal controlled invariant submanifold of =*. Then
=" 1s called locally completely internal feedback linearizable, if = is locally in-fb-equival-
ent to a linear DAECS with complete controllability;

(i) =" is called locally completely external feedback linearizable, if =* is locally ex-
fb-equivalent to a linear DAECS with complete controllability.

Now consider a nonlinear ODECS ¥ . = (f, g%, g", h,1"), given by (5.9). If
ODECS ¥** has no outputs, we denote it by X% = = (f, g% ¢). Then for X" = =

(f,9" g*), define the following two sequences of distributions D; and D;, called the lin-
earizability distributions of >*?,

'DO = {O}, R
91 = Span{g%a'-‘ag;‘mgi}u"wgg} ?1 = Spa’n{gi}’A"'7gg}
®i+1 :®’L+[f7‘DZL i:172,..., Di+1 :®Z+[f7D’L]7 Z:172,

Remark 5.4.4. (i) The distribution sequences D; and D; satisfy:
DoCDICDICDCDy - CDLCDL S - C Dye,

and either

or
D+ - Dy~ = Dk*-i-j = ®lc*+j,
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where j > 1 and k* is the smallest k£ such that Dy« = Dy, 1. Note that k£* is not necessarily
the smallest k£ such that Dy« = Dy, (as seen in the second case, where Dy C Dy« q).
However, D, and D, always have the same limit.

(i) For a linear DAECS A" = (E, H, L), denote #;(A") and #;(A") as the subspace
#; and #; of A, respectively. For a linear ODECS A% = (A, B*, B*,C, D") (of form
but with constant system matrices), denote W;(A*”) and W;(A™) as the subspace
W, and \/A\?Z of A", respectively, where

Wo= {0}, Wiy = [A BY] (w}nker © Dw}),

W, =ImBY, W, = [A qu({z;]mkaﬁc zwq),

where B* = [B", B"] and D" = [D",0]. We have proved in Proposition of Chapter
Bl that if A*” € Expl(A*), then for i € N,

~ ~

Wi(A") = Wi(A™), Hi(A") = Wi(A™).
Apparently, W; and 'W; are the linear counterparts of D; and D;, respectively, but they are

for linear systems with outputs.

Theorem 5.4.5. Consider a DAECS =" = =}, = (E, F,G), fix an admissible point z,,.

—l,n,m

Let M* be the n*-dimensional maximal controlled invariant submanifold of =" around z,,.
Assume that there exists a neighborhood U C X of x, such that in M* N U, we have

(Al) the dimensions of E(x)T,M* and E(x)T,M* + Im G(z) are constant,
(A2) the rank of G(z) is m.
Then Expl(Z4|552) is not empty and =% is locally completely internal feedback lineariz-

able if and only if for one (and thus any) ODECS ¥*° € Expl(Z%|}52), the linerizability
distributions D; and D; of X" satisfy in a neighborhood W C M* of x,:

(FL1) D; and @Z are of constant rank for 1 < i < n*.
(FL2) D, = D,. = TM".
(FL3) D; and @Z are involutive for 1 <1 <n* — 1.

Theorem 5.4.6. Consider a DAECS =, = (E, F,Q), fix a point 2°. Then =" is locally

—l,n,m

completely external feedback linearizable, locally around z°, if and only if there exists a
neighborhood U C X of 2° in which the following conditions are satisfied.

(EFL1) rank E(z) and rank [E(x), G(z)] are constant.

(EFL2) F(x) € Im E(z) + Im G(x).
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red

(EFL3) For one (and thus any) control system 3" € Expl(Z"[15%), which is a system with
no outputs on M* = U, a neighborhood of x°, the linerizability distributions D; and
D; satisfy conditions (FLI)-(FL3) of Theorem

The proofs of Theorem [5.4.5|and Theorem [5.4.6|are given in Section[5.6]

Remark 5.4.7. (i) By rank F(x) = const., the explicitation class Expl(Z%|}5?) is well-
defined. Moreover, by conditions (EFL1)-(EFL2), for any 2° € X, the locally maximal
controlled invariant submanifold M* through 2 is a neighborhood U of 2°. So condition
(EFL3) is actually, satisfied if and only if the condition (FL1)-(FL3) are satisfied on M* =
U, i.e., locally around 2°.

(ii) We do not assume the point 2° in Theorem to be admissible. However, by
conditions (EFL1)-(EFL2), any point z° is always admissible.

(ii1) Note that condition (EFL2) and the condition i)n = D, = TM* of (FL2) are
nonlinear counterparts of the condition »* N #* = R" of Lemma However, in
order to guarantee feedback linearizability, involutivity and some constant rank conditions
are needed.

(iv) The distributions sequences D; and D; can thus be seen as nonlinear generaliza-
tions of the augmented Wong sequence %#; of equation (5.18) and the sequence % of

(5.19), respectively.

5.5 Examples

In the section, we will illustrate the results of the present chapter by some examples.

Example 5.5.1. (Model of a 2-D crane) Consider the model of a 2-D crane taken from
[68]], which is described by a DAECS of the following form:

mi = —T sin 6

mz = —T cost + mg
r = Rsinf+ D

z = Rcosb,

(5.20)

where (x, z) is the position of a load m, and T is the tension of the rope, and together
with 6, they are variables of the “generalized” state, which is thus (z,%, 2, 2,0,T). The
predefined control variables are D and R, which represent the position of the trolley and
the length of the rope, respectively.
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Rewrite system (5.20)) in the form of DAECS (5.1)) to get the following system:

(1]
=R R e R e i
oo oo 3 o
cCoor oo

oo 3 oo o

O O O O O O

o O O O oo

o
T
Z1
2
0
T

X2
—Tsin 6
Z9

—T cos 4+ mg

o O O
o O O O

0
sinf 1

| cos 0 O_

R
. o

where v1 = x, x5 = ¢ and z; = 2, 23 = 2. The above DAECS is denoted by =*. We
consider =" around the following admissible point (it is also an equilibrium):

.Tla:O, x?azoa Zla:L Z2a:O7 9(1207 Ta:mg'

It is easy to verify that conditions (EFL1) and (EFL2) of Theorem|[5.4.6]are satisfied for =*
in a neighborhood U (cos # # 0 for all points in U). Then by using the following feedback
transformation for =":

/-

the algebraic constraint of =* becomes 0 = .

0

1 —sinf/cosé

1/cos®

} o [l’l - (Zl/COSQ

z18inf)/cosf|’

Now by Definition [5.3.4] a reduction of M* = U-restriction of =" is

—u|red .
M* -

o O O

o o 3 o

O = O O

S oo o

Ty

T
Z1
2
0
T

o O O O
o O O O

4]
—T'sin6
22
—T cos + mg

(5.22)

_:z

o O O O

By the explicitation procedure described in Section [5.2] we can find an ODECS ¥* =
(f,9"9") € Expl(Z[57)

-x'l
To
XU %l
)
9
T

X2
—(T'sin®)/m
)
—(T'cos@)/m+g
0
0

O O O O O O
O O O O O O
o =R O O O O

_ o O O O O

where v is a vector of the driving variables (notice that in the present example, v = [, 77
is also the prolongation of (0, T')).

Now calculating the distributions D; and D, for the system »*Y, we get

91 - ?1 = sparll {9f79§}7 DQ = 92 = spal {gi)hggv adfgi)v Cldfgg},
®3 = 93 = Span {911)7 ggv adfgi)v Cldfgg, ad?‘gi}a ad?gg} )
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where

v __ 0 v __ 0 v __ sinf 9 cos 6
9 =735 92 =7zp, adpg] =S5+ 05,

v __ Tcosf O _ Tsinf 0 2 v __ —sinf _0 —cosf 0

adf92 T om gxza m 3228’ adfgl T m Om + m 0z’
2 v _ —Tcost O Tsinf 0
a/deZ - m Ox1 + m  0z1°

It is seen that @1 =D, C ®2 =Dy C ®3 = D3 = TU. Thus @z and D; satisfy con-
ditions (FL1) and (FL2) of Theorem[5.4.5] Moreover, a direct calculation of Lie brackets
gives that i)l = Dy, @2 = D,, @3 = Dg are all involutive, which implies that con-
dition (FL3) of Theorem [5.4.5] is also satisfied. Therefore, (EFL3) is satisfied and =" is
completely external feedback linearizable by Theorem [5.4.6]

In fact, use the following coordinates change and feedback transformation for >**:

-51- L1
&2 L2 ~ -
?’ = _(Z sinj)/m . vl =10 —(mcos@)/T (msin®)/T| |01] .
54 ! z la Vg 0 —msin 6 —m cosf 0
5 2
|6 | | —(T'cos)/m +g|

where 21, = 1, to get the following linear ODECS:

N 6=6, &=6, &=10, &=6&, &=4E, &=

Thus we have X% *¥5o’” A%, Moreover, the following linear DAECS A%, given by (5.23)),
satisfies AV € Expl(AY).

_51 /]
1 0 0 0 0 0f [& 01 000 0f & 0 0
ot oo0o0o0| &l loo1ooo|lal ool
A ] = . (5.23
000100/ & " loooo1ollal oot G
00001 0 |& 00000 1| (& 0 0
[ &6 ] | &6

Thus by Theorem|5.2.9} we have =Z%|¢¢ is ex-fb-equivalent to the linear DAECS A% (since
Y e Expl(Zt[;e), A € Expl(A” and ¥ ¥
ex-fb-equivalent to the following completely controllable linear DAECS:

A?). Finally, it is seen that =% is

10000 0] [&4] 01000 0][&4 0 0
01000 0] |& 00100 0]]|& 00
00010 0] |& 0000 1 0|]|& 0 0f .

3| 5.24
00001 0| |& 00000154+00“ (5.24)
00000 0] |& 00000 0] |& 10
000000] |&] [000000]][&% [0 1)
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via the following transformation:

(1 0 0 0 0 0] K| T 1
0 1/m 0 0 0 0 & T
o0 1 0 00 &l | —(Tsing)/m
@= 0 0 0 1/m 0 0|’ & 21 — 21a ’
0 0 0 0 10 & 2
0 0 0 0 01 &| |- (Tcost)/m+g]

R |0 1/cos® P 21/ cosf
D] |1 —sinfd/cosf x1 — (z18in6)/cos |

Remark 5.5.2. (i) In [68]], it is shown that the above model of crane (with state space
representation) is flat with outputs y; = x, y» = z. It raises interest for further studies
about the connections between linearizability of DAECSs and flatness of systems in the
state space representation.

(i) The above model of crane appears also in [72], whose authors construct nonlinear
control law based on the linearization of the system after eliminating the variables ¢ and
T. From the view point of the present chapter, this eliminating procedure actually means
constructing the internal system (restricting the original system to A/ *). Thus the present
chapter offers another interpretation for the results in [[72].

(1i1) Since the system is linearizable, we can easily design control laws for such prob-
lems as tracking or stabilization. Since &3 and &g are free variables in the dynamics of
system (5.24), we can regard them as some artificial controls. Consider the stabilization
problem for example and take &5 = k1&1 + koo, &6 = k3&y + k4&5 such that all the poles of
the dynamics él = &3, 54 = & are in the left half real plane. Then we solve 6 as a function
of z1, s, 21, 20 via 3 = —(T'sinf) /m and & = —(T cos0) /m + g. Moreover, by (5.22),
the original controls 12 and D are functions of x4, 21, 6 (since @ is zero). So we can always
express stabilizing feedback controls R and D as functions of x4, xs, 21, 25.

Example 5.5.3. (2-D crane with dynamics of actuators) We consider the model of a 2-D
crane described by equation (5.20)), together with its actuator dynamics [68]]:

B .
{(MD =% —AD+Tsinb (5.25)

JIpP VR =€ — (n/p)k—Tp,
where (%, %) are the new input variables, representing the external force applied to the

trolley and the hoisting torque respectively, where M, J, p, A, i are constant parameters
representing the characteristics of the actuator.
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If we write the whole system in the form of DAECS (5.1)), we get

1T 0 0 0 0 0 0 0 0 0] [4 Ty 0 0

0O0m 0 0 0 0 0 0 0 0| | —T'sinf 0 0

001 00 0 0 0 00| |&n 2 0 0

0 0 0Om 0 0 O 0 0 0 29 —T cosf + mg 0 0
.00 0 0 1 0 0 0 00 |Df_ D +00[3‘}
o000 0 MO 0 0 0| [Dy| | —AD+Tsin8 1 0| [¢]”

00 0 00 0 1 0 00| |R Ry 0 0

000 0 0 0 0 0 J/(p)? 0 0| |Ry —(u/p)Ry —Tp 0 1

00 00 0 0O 0 00O0|]8 —x1 + Rysinf + Dy 0 0

0 0 0 00 0 0 0 0 0] L7] | —2 +Ricosh 0 0]
(5.26)

where Dy = D, Dy = D and Ry =R, Ry = R. Thus the control variables R and D
of (5.21) become variables of the “generalized” state x of =*. We consider =" around an
admissible point x, = (214, T24, 214, 224> D1a, D2a, Ria, R2a, 0a, Ta), where

xlazlp Q:2a:07 Zla:O7 Z2a207 Dla:07
DQGZO, Rlazl, RQQZO, Qa:ﬂ'/Q, Ta:0.

The above admissible point represents a configuration that the load is at the same horizontal
level as the trolley and notice that this point is not an equilibrium. Then, we can see that
DAECS =" does not satisfy condition (EFL2) of Theorem[5.4.6] Thus =" is not completely
external feedback linearizable around that admissible point.

We now search for the maximal controlled invariant submanifold M* for =* and then
we will transform =" into its MCISF via Theorem [5.3.100 First, calculate M* by the
algorithm given in Theorem[5.3.10] to get

My ={reRxS':Rysin0+ D, —x;, =0, Rycosh— 2z =0},
My, ={x € My: (Dy—x2)sinf + Ry — zpcos6 =0},
M* :MQZMl.

We can see that (A1) of Theorem |5.3.10]is satisfied (F/(z) and G(z) are constant matrices
in the present example). Subsequently, use the procedure given in the proof of Theorem
5.3.10, to transform =" into its MCISF step by step:

Step 1: choose new coordinates

x1 Ry sin0+D1—x1 Cgl D1
52 — %1 — R1cos0—z1 , 61 — do —_ Do
Rs (D2—x2) sin 0+ Ra—2z2 cos 0 Ry Ry
0 7
T

In the £ = (&1, {2)-coordinate system, (5.26) becomes

[E©) Ex9)] 2] = F©) + G,
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where
r 0 1 0 sin@ 0 Ricosfsinf 0|10 0 7
—mcosf® 0 m O m ma(€) 0]00 O
0 0 0 cosf 0 —Ry(sin®)?2 0]01 0
St A
[El(g) E2(5)] = 0 O0M 0 0 0 0100 0 )
0 00 1 0 0 000 J/(p)?
0 00 0 (Jsind)/(p)? 0 000 0
0 00 0 0 0 0100 0
L 0 00 O 0 0 0100 0 A
_ . -
—T sin 6 00
22 00
—T cos0+mg 00
Dy 00
F(é) = —AD1+T sin 6 5 G(f) - 10 5
R> 00
~(u/p)R1—Tp 03
—x1+R1 sin 0+ D 00
L —21+Ricosf

with a(§) = z28in 6 + cos0(Dy — x2)

Step 2: Left-multiply the above DAECS by the following invertible matrix

0 0 1 0 0 0 0007
m sin 6
0 0 1 0 0 000
0 0 0 0 1/M 0 000
0 0 0 1 000

0 0
—a(§) cos 6 0 (§) cos @
_ ;1 sicnog 1/m a(g)/Rl 77‘52?:]0 aRl :i?xbe _1/M 0 000
Ql(g) - 0

0
0
0
0
0
0 .
.

—1 cos 60
Ry sin2 @ 0 0 0 Ry sin2 0 000
—sin6 —cos @ 0 sin 6 0 1 000
J cos O Jsin @ Jsin @ Jcosé Jcosf Jsin6
a(¢) R1p2  mp2 —a(§) R1p2  mp?  Ryp?  Mp2 0 100
0 0 0 0 0 0 0 010
L 0 0 0 0 0 0 0 001

We get the following equation after the multiplication by Q1 (&):

QO [E©) B©)] 2] = QOFE + QG (5.27)
where
~1000000] 0 0 0 -
01000001 0 0 0
0010000 0 0 0
0001000 ]| 0 0 J/p?
0000100 ‘ *g(f;jfg‘” a(€)/Ry 0
Q1(8) [E1(€) Ex(¢)] = 0000010 0 s s |
0000000| —sinf —cosf J/p?
ooooooo‘a(f)%jo —a({)%‘;g 0
0000000 0 0 0
L0000000]1 0 0 0 -
B mg—Tcos@ 7
mB;G — 8 8_
—(Dlx\—TSine)/M l/M 0
A ) a0
—1/M 0
QUOFE) = |  muis | QOGO =|"9"0],
Ry sin2 0 0 0
2 il
Fs(€) 0 0
z L 0 0d
L 21 .

for some function F5(¢) and Fg(§). Thus we have
§
Ql(f) [ El(f) EQ(f) G(f) ] = 0 0 G2(§) )
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—_ OO0 OO0 O0Oo
L

where
0
10000010 0
Lo | ] |d40hges i
- 1
Bi€) = o] = | 8835018 | Gr©) = |
0
00000010 Lsing
VIip
- 0 0 0
o8 13
0 0 | J/p?
1 2 :
BEy(€) = {_HEg Ei _ | TRime @@/R |0
By | By O maes | meee
—sinf —cos@® | J/p?
[ a(©) 5% @52 | 0
Notice that G5 vanishes since Im G (&) C Im E(&).
Step 3: Use the feedback transformation
-1 -1
[ﬁ ] B 1 0 [ 0 ] L 1 0 [ul]
=~ | Jsin® Jsin6
€ AZ‘EQ 1 F3(§) AZ‘EQ 1 ug |’

and pre-multiply equation (5.27) by the following invertible matrix

100000 0 0
010000 0O 0
001000 0 0
000100 O 0
000010 O o
—cos @ —p2
QQ(f) - 000001 Ry sin2 9 a(§)Jsin6
2 os
000000 —sind Rl;’(g)cf;w
2 .
000000 —cosp —Trne
000000 0 0
L000000 0O 0
we get the following DAECS, which is in the MCISF:
-xL.Q- B mg—T cos 6 T
1000000100 0 T Z2 m sin 6
0100000100 0 p 2
0010000100 0 Dy (D1 A-T'sin)/M
0001000]/00 J/p? Dy Ry
0000100100 0 * Rg cos 0—z9
0000010100 0 Ri| = “RysinZo +
0000000[10 =25 i Fo(€)
000000001 =Lg=e T —Rysin6
0000000100 0 o —Rgz cosd
0000000100 0 J [ = &
Ro L 1 .

for some Fgs : U — R.

o O o000
oS O O00Oo

00

1
0

o gL ogkoo

o

oo O

0
1

™
WO O 0O

J sin 6
2

P

a(§)Jsinf

R1p2 cos 6
a(§)J

—R1p2 sin 6

a(§)J
0
0

[

u1
u2

|, (5.28)

Remark 5.5.4. (i) The admissible point we considered in this example is a singular point
in the discussion of flatness of [68] and for control law design of [72]. However, we show
in this example that, around this singular point =,, the system still can be simplified by

bringing it to the normal form MCISF

149



CHAPTER 5. FEEDBACK LINEARIZATION OF NONLINEAR
DIFFERENTIAL-ALGEBRAIC CONTROL SYSTEMS

(ii) We do not give precise formula for F5(&) in order to save space. But it is easy to
see from the above MCISF that =Z* is in-fb-equivalent to

100000 0]]5% ma—Test 0
010000 0||p Dy 0

5 (D) _T<nf 1
00 100000 |51 | =(DA=Tsinb)/M | |5 |
0001000 - Zycos ) — (Dy — T)siné 0
0000100 R;l (F2—D2) cot -2 _%

0 i 0
0000010 : Fo(61,0) | Lo

It follows that 7" is a free variable of the “generalized” states (and Tisa driving variable)
and ¥ is an input constrained by an algebraic constraint.

Example 5.5.5. Consider the following academic example borrowed from [13]]:

xy a1 0 1 0 1 -1
=0 0 0] |iy| = 0 +11 1 {ﬂ (5.29)
1 0 1] |ds 23— 23 + x5 0 0 2

Note that in [13], some outputs are considered for the above DAECS =% = (E, F,G).
In the present example, however, we are only interested in the system without outputs.
Moreover, we consider an admissible point z, = (214, 24, T34), Where

T1g = 17 Tog = 17 T3q = 0.

Clearly, there exists a neighborhood U (x; # 0 for all = € U) of z, such that both

x9 x1 0 o x1 0 1 —1
ImE(x)=Im [0 0 0| and ImFE(z)+ImG(z)=Im [0 0 0 1 1
1 0 1 1 0 10 O

are of constant dimension. Moreover, for all x around z,, we have

0 T2 I 01 -1
0 €lm [0 0 O 1 1
r3— 23+ 23 1 010 0

Thus (EFL1) and (EFL2) of Theorem [5.4.6) are satisfied. Subsequently, via

1 10 -
=100 1], {Zl]z{_ll ﬂ Bl]
01 0 2 2
=" is ex-fb-equivalent to
To T 0 21.31 0 2 0 ’L~L
1 0 1| @ = |23—23+z3] + |0 0 Lll}
0 0 0] |is 0 0 1 2
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We drop the tilde of the above u; for simplicity of notation, then M* = U and

T
—uire 9 x1 0 ) 0 2
= Mcf . 2 ! To| = 2 3 + Uuq.
1 0 1 5 Ty —x] + 23 0
3

Now an ODECS X% € Expl(Z*|35?) can be taken as

x'l 0 0 T
X I'g = 0 + 2/331 U+ | —xz2| v,
I'g .Z‘% - I% + x3 0 —I1

where v is a driving variable. Now calculate the distributions D; and D; for the system
>" which are

D, =span{g’}, D; =span{g",¢"}, Ds=D,=span{g" ¢",adsg"},

where
T 0 0
g’U = —Z2| , gu - 2/1’1 ) adfgv = 0
- 0 328 + 223 + 14

Clearly, the distributions above are of constant rank and Dy = @2 =T, Uforallz € U.
Additionally, [¢*, g*] = 0 € Dy, @1 is of rank one and @2 1s T'U, so the distributions @1,
Dy, @2 are all involutive. Thus, condition (EFL3) of Theoremis satisfied. Therefore,
system =" is completely external feedback linearizable.

In fact, we can choose ¢;(x) and ¢ (x) such that
span {d1} = Dy, span {di, dip,} = Dy
By solving some first order partial differential equations with the constraint that
(1(2a), 2(za)) = (0,0),
we get
P1(2) = 21 + 23 — Tia,  P2(T) = T1T2 — T1aT20.
Moreover, setting
p3(z) = Lypi(x) = —(21)° + (22)* + @3,

we conclude that p(z) = (@1(x), p2(z), p3(z)) is a local diffeomorphism. Furthermore,
use the following coordinates change and feedback transformation

= p2(x), 21 =¢1(x), 22 = p3(x),

u 1/2 0 U
5 S | ]
v 3(@1)fw1+2(2)?  3(w)Ptai+2(w2)? | LY
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the system X*V becomes
£
A" 2

Z9

Uy
22

v.

Note that the above feedback transformation has a triangular form as we indicate in (5.12))

and Definition [5.2.71
Now by Theorem | =u|red is ex-fb-equivalent to the following linear DAECS AY,
since % € Expl("ured) A" € Expl(A¥), and £ V7" A,
A“-1005—0005+1u
“oo1r ool | oo 1 |7 T o]
Therefore, the original DAECS =" is ex-fb-equivalent to the following completely control-
lable linear DAECS:
10 0] ¢ 00 0]T¢ L 0] s
010 21:001z1+00[ﬁ1]
00 0] [% 00 0] [2 0 1] v
via
1 10 £ T1T9 — T1a%2q ~
1
Q(ZU) =10 01 ) 21| = T1+ 23— T1a ) |:le| = |:_/12 ?1 |:le| :
0 1 0 Z9 —<5E1)3+(ZE2)2+ZE3 2 2

5.6 Proofs of the results

Proof of Proposition|5.2.51 If. Suppose that 2“” and 247 are equivalent via the trans-

(5.10)

First, Im g

5.10). 7 ()
proves that §°(xz) is another choice such that Im § (

formations given in

. ~ - ~5 5A10
iu,f}. Z :f_|_guu+g
§ =h+"u nh + nl*u,

Now pre-multiply the differential part of )y by Fi(x

EIG, h = F5, 1" = Gy and Im ¢° = ker E)

{

4 =nky, +nGau.

) = ker Ey(x) = ker E(x)

m g (x
) = ker E(x). Then we have

)B(x
ker

f_'_ h+gUOéU+(gu—F’}/lu—i-gv)\)U—ngﬂD@

), to get (notice that f = EI Fi, g

Eli = F1 + El’)/FQ + (Gl + El’}/Gg)U

Thus X%7 is an (I;, ¥)-explicitation of the following DAECS:

Ey
0

|s-

|:F1 + El’yFQ
nky

I+l
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Since the above DAECS can be transformed from Z* via Q(z) = Q'Q(z), where Q'(z) =
{Iq By (x)y(x)

0 nx) i i
choice of invertible matrix Q(x). Finally, by E;(z)f(z) = Fi(x) + E1(x)y(x)Fy(z),
Ey(2)3"(x) = Gi(2) + Ex(2)y(x)Ga(x), we get f(x) = El(2)(Fi(z) + v(x) Fy(x)) and
§"(z) = El(2)(G1(x) + v(x)Gy(x)) for another choice of right inverse E] (z) of Ey(z).

] , it proves that U s a (Q, 0)-explicitation of =" corresponding to the

Only if. Suppose that X% € Expl(Z*) via Q(z), E!(x) and §°(z). Firstby Im §°(z) =
ker E(xz) = Im g"(x), there exists an invertible matrix 5% (x) such that g(z) = g(x)p"(x).
Moreover, since E!(z) is a right inverse of 1 () if and only if any solution & of E;(z)& =
w is given by EI(x)w, we have Ey(z)El(z)(Fi(z) + G(z)u) = Fi(z) + G(z)u and
Ey(x) El(x) Fy(x) = Fi(x)+G(x)u. It follows that Ey (E — E])(x)(Fy(x)+G(z)u) = 0,
so (BT — El)(z)Fy(z) € ker E; ( ) (ET — E))(2)Gy(2) € kel"E1<I> Since ker F1(x) =
Im ¢*(x), it follows that (E] — )(x) ( ) = g(z)a’(z) and (E] — E})(2)Gy(z) =
g(x)A(z) for suitable o¥(x) and A\(x). Furthermore, since Q(x) is such that F;(x) of

Q(z)E(x) = {Elé@] is of full row rank, it follows that for any other Q(z), such that

E, (x) of Q(x)E(:p) = {E}éx}] is full row rank, must be of the form Q(m) = Q' (v)Q(x),

Q2(x)
O Q4($)

! El o Fl / Gl
o[5)i= ] +e gl
- [QIEI} i {QIFI + Q2F2} n [Q1G1 + Q2G2} u
0 QuF> Q4G

} . Thus via Q(z), Z* is ex-equivalent to

The bottom equation of the above can be expressed, using £l (z) and §°(z), as
i = E[F 4+ ElQ' Qo Fy + (E]Gy + ElQ1 ' QuGa)u + v
= E[Fy + g%a” + EIQ7' Q:h + (EJFy + g\ + E]QT' Qal")u + g" Y%
0 = QuFy + QuGr = Quh + Q4l*.
Thus the explicitation of = via Q(z), EI(x) and g(z) is

o [ &=+ 1)+ g (0 + Mt 57) = f+ g%+ G0
§ = nh +nl*u = h+ [*u.

where v(z) = ElQ7'Qa(z), n(z) = Qu(z). Now we can see that X*” and %*? are
equivalent via transformations listed in (5.10). O

Proof of Theorem[5.2.9) By the assumptions that rank F(z) and rank £(z) are constant
and equal to r around 2° and 7°, respectively, there exist invertible matrix-valued functions
Q:U— GI(,R)and Q : U — GI(I,R), defined on neighborhoods U of z° and U of 7°,

such that £’ (z) = Q(z)E(x) = |:E1<=T):| and E’(i) _ Q(i)E(f) _ |:E1(5:)

0 0 },where FE:
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U— R”” and Fy : U — R™" are of full row rank. We have Z* A (B, F',G")

and =0~ 2 = (E', F',G") via Q(x) and Q(&), respectively, where
Flo) = Q@) = 0] 6 = e =[]
()= Qi@ = | R0 G = aee = (G0

In this proof without loss of generality, we will assume that Z* = =% and 2% = =¥, since

=
S % if and only if =% N f

Moreover, set

fl@) = E{(2)Fi(2),  g"(2) = E}(2)Gi(x), Img"(x) = ker Ey(x),
h(z) = Fy(x), I"(x) = Calo), [@) = El@F(@), 55
§'(7) = E{(2)5(7), mg’(F) =ker E(3),  h(@) = Fy(3),

where Fj(z) and El(z) are right inverses of F;(z) and E;(Z), respectively Then by
Definition [5.2.2, £* = (f, g% ¢*,h,1*) € Expl(Z%) and X% = (f g% §° h,1%) €
Expl(Z%). By Proposition any control system in Expl(Z") is sys-fb-equivalent
to ¥ and any control system in Expl(Z%) is sys-fb-equivalent to X% . Without loss of
generality, in the remaining part of the proof, we use >* and S with system matrices
given by to represent the two ODECSs in Expl(Z*) and Expl(Z%), respectively.

If. Suppose that locally >** g~k >@_ Then there exist a local diffeomorphism z =
¥ (x) and matrix-valued functions o*(z), o’ (x), A\(x), v(x), B*(x), B*(x), n(z) such that
the system matrices satisfy relations (5.11)) of Definition

First, consider §”(i(z)) = 242 v( )5@( ). By Im ¢*(z) = ker Ey (), Im §°(z) =
ker Ey (z), we have ker F} (¢(x )) — 2@ kor B (2). Thus there exists Q;(z) € Gi(r,R)
such that

_ o\ !
Eio¢y =QE, (%) : (5.31)
Then, by (5.11)), the following relation holds:
i I 0
[f o go w} _ {?f; g‘ﬁw} {f g" 9”] a g
hov ["o1 0 n h I* 0 o+ At ABY

By substituting ([5.30) into the above equation, we get

{Eiozﬂﬂw Eio@z;-Glow]

Fyo Gy o1
1 0
0 n F2 GQ 0
a’ + At B
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Premultiply the above equation by

E’10¢ 0 o
0o I

QlEl(g—f)_l 0
0 Ll

to get

{}E’loqﬁ éloﬂ B [Ql Qlen} {Fl Gl} {fn 0} (5.32)

Fyoyp Gyowp] |0 U] Fy, G| |a* B*]

. .. . — —fb~- .
Now from equations (5.31)), (5.32)) and Definition |5.2.2} it can be seen that =" o =% via

i = (2). Qa) = [% Qlf;””] (), a*(z) and B ().

Only if. Suppose that =% AT (locally in a neighborhood U of 2°). Assume that Z*
Q1 (2) Qz(x)} =

» L = x),
Q3(z) Qalx) v(a)
a'(x), " (x), where Q1 : U — R™" and Q2(z), Q3(x),Q4(z) are matrix-valued functions
of appropriate sizes.

and =" are ex-fb-equivalent via an invertible matirx Qz) = [

Then by

we can deduce that

-1
Eioyp=QF (%’) : (5.33)

Moreover, Qs(z) = 0 and Q,(z) is invertible (since both F (z) and F} (z) are of full row
rank), which implies that Q4(z) is invertible as well (since ()(x) is invertible). Subse-
quently, by

promarsonr= (18] (3 9] (56

we have

Fi (¥ (z)) = Qi(2)(Fi(z) + Gi(z)a*(z)) + Qa(x)(F2(z) + Ga(z)a(z))  (5.34)
and
Fyo1p = Qu(Fy + Goa™). (5.35)

Moreover, by
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we have

G ot = Q1G1f" + QoG 3" (5.36)

and

Gy 0 1) = QuG2B". (5.37)

Recall the system matrices given in equation (5.30)). First, from Im ¢*(x) = ker F4(x),
Im §°(x) = ker F(Z), and equation (5.33)), it is seen that there exists ¥ : U — Gli(s,R)
such that

i 9
G ot = a—%”ﬁ”. (5.38)
X

Secondly, by equations (5.33)) and (5.34)), we have

fow:ETowﬁ’low

0
o 2 L A

- el o o |

zw(

F1 + Gloz“
F2 + GQO{U

F1 + GlOéu + Elg” ()\Oéu + Oév)
F2 + GQOéu

Ftgia®+ ¢° (At +a®) + EIQ'Qs (h + l“a“)> , (5.39)

where a’(z) and A(z) are matrix-valued functions of appropriate sizes. Thirdly, by equa-

tion (5.36)), we have
§" ot =EfopGyot

8 u
orlert o @ o]
G15U+E1gv)\:|

Go "

gw Bl [ @ |

0
= 9 (g5 + g+ B Qi) (5.40

Note that we use the equations F;¢" (Aa* + a¥) = 0 and F;¢”A = 0 to deduce (5.39) and
(5.40). At last, by equations (5.35) and (5.37) we have

hot = Fyoth = Qu(Fy+ Goa") = Qq (h+"a") (5.41)

and
[op = Gyoth = QuGsB" = Qul"AY (5.42)
Finally, it can be seen from (5.39), (5.40), (5.41) and (5.42), that yuw %Y E“” viaT =

Y(x), a(x), B (x), a*(x), B"(x), Ax), v(z) = E{Qy" Qo(x) and 1(x )—Q4( )- N
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Proof of Proposition[5.3.7] Since M is a smooth submanifold of dimension n,, there exist

aneighborhood U of x, and n —n; independent scalar functions @1, -+, @p—pn, : Ug = R
such that
MnNUy={ze€Uy:pi(x)=... = @p_n,(z) =0}
Let 2y = [01(), -+, Pn_n, (x)]T and choose local coordinates z = ¥ (x) = (2(x), 22(z)),
1
where z; : Uy — R™ such that dz;Adzy # 0. Denote E(x) <81g—§f)> by [El () Eg(as)},

where E, : Uy — R™>™ and F, : Uy — R>(=n1) Tt follows that
op(x)\ " (O(a) .
E(x) ( 9 ) pral K F(z)+ G(x)u

= [Ei(z1,2) Ea(a1, 20)] m — F(21,2) + Glo1, 2.

2

For all z € M N U,, we have 2z, = 0 and for (z, 2) € T, M, the DAE =" has the following
form:
21

|: El(Zl,O) EQ(Zl,O) } |:O

E1 (Zl, O)Zl = F(Zl, 0) + G(Zl, O)U

:| = F(Zl,O) + G(zl,O)u =

Now from the assumptions
dim (E(2)T,M) = const. =r, dim (E(2)T,M + Im G(z)) = const. = r + ma,

locally for z € M, it follows that there exists a neighborhood U; C Uy, and an invertible
matrix Q(z1) : M NU; — GI(l,R) such that:

Q(z1) [E1(21,0) G(z,0)] = 0 Gy(21) ],

where E(z1,0), G1(2z1) and Go(2;) are smooth functions defined on M N U; with values
in R™"™1 R™™ and R™2*™, respectively and, moreover, Fj (1) and G5 (z1) are of full row
rank.

Denote ()(z1)F(z1) = col [F1(z1), Fa(z1), F3(21)], where Fy, F, F3 are matrix-valued
functions of appropriate sizes. Then for all z € M N U, Z* has the following form:

Ei(z1) Fi(z1) Gi(21)
0 Z’l = FQ(Zl) + GQ(Zl) u. (543)
0 F3<Zl) 0

Now by F(z) € E(2)T.M + Im G(z) locally for z € M (since M is locally controlled
invariant), we have

Fi(%) Ei(z1) Gi(=1)
FQ(ZI) € Im 0 GQ(ZI) 9
F3<Zl) 0 0
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which implies F5(z;) = 0.

Subsequently, since Ga(z1) is of full row rank, we can always assume [

[G%(zl) Gi(=1)
Gy(z1) Gi(=)
permute the components of u such that G3(2;) is invertible. Then, applying the following
feedback transformation to DAECS (5.43)

} such that G2 : M NU — Gl(my,R). Since if not, we can always

"= [Fz?zl)] i EE(ZQ) Gg((]zl)] v

we get
Ei(21) Fi(21) Gi(z) Gi(=) "
0 21 = 0 + 0 Img |: 1:| )
Uz
0 Fg(Zl) 0 0
where (u1,u2) = @ and dim u; = n — mg = my, F, = F, — G2 (G3)' B, é% =

Gl — GR(GY) G} and G = GH(GY)

Premultiply the above equation by

I, —G%(z) 0
Q(z1) = |0 I, 0 ,
0 0 [lfrfmg

then it follows, for all z € M N Uj, that =* has the following form (notice that F3(z;) = 0)

El(z) Fi(z) Gi(z) 0 ”
0 |&#=1| 0 |+]| 0 I, Ltl] .
0 0 0 0 2

Finally, by Definition [5.3.4]and [5.3.6] we have

Eu‘yve[d : E11(2’1>Z.1 = F1<Zl) + é%(zl)ul.

Obviously, Z[5«d = (E}, Fy,G1) is a DAECS of form (5.1) of dimensions 7, n; and
mp = m — may, i.e., 244 = E}f;nl,ml, where the notation u indicates that the dimension
of the control u has been changed. Moreover, since Ej(z) is of full row rank, from the
procedure of explicitation, it is seen that Expl(Z%[¢9) is not empty and any ODECS in

Expl(Z*|55?) has no outputs. O

Proof of Theorem[5.3.10} First, we prove that M* = M}, is a locally maximal controlled
invariant submanifold. Under the assumption that M, N Uy, k > 0 are smooth submani-
folds, by Mj.+1 C My, there exists an index £* such that M-y, = Mp.. Note that £* is
strictly smaller than n, since dim M, < n and dim M} — dim My, > 1 for all k£ < k*
(notice that dim My, # 0).
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For k = k*, we have
F(z) € E(x)T, M. +ImG(z), =€ M. (5.44)

Now consider the assumption that M* = M. satisfies the regularity condition (Reg), by
Proposition[5.3.3] M* = Mj. is alocally controlled invariant submanifold. Then we prove
M* is locally maximal by induction. Consider any other controlled invariant submanifold
M, we can see that M C M, (since F((z) € E(x)T,M+Im G(x) forall = € M). Suppose
that M C Mg, which implies F(z) € E(x)T,M¢ + Im G(z) for all z € M. By equation
, it can be deduced that x € M, for all x € M. Thus M C M, forall & < n,
which implies M C My-. Therefore, M* = M. is locally maximal.

Next we prove that under the additional assumption (A1): =" is locally ex-fb-equivalent
to the MCISF given by (5.15). Denote dim M* = n,, there exist a neighborhood U,
of z° and two vector-valued functions &; : U; — R™ and & : U; — R™ such that
M*NU, =A{z: &(x) =0} and d§; A dés # 0. Inlocal (&, &>)-coordinates, defined by
the local diffeomorphism £(z) = col[{1(x), & ()], the system =" is expressed as
3
&
where F; : U; — R>™ and E, : Uy — RX"2,

By(©) Ez(é)][ ]=F<£>+G<£>u,

Then, by assumption (A1), there exists a neighborhood U, = U; N Uy« of 2° such that
for & € Us,

rank [E1(§) Ea(€)] = const. =r, rank [Ei(§) Ex() G(€)] = const. =1+ mo.

Choose Q; : Uy — GI(I,R) such that the matrices [E'(£), E2(¢)] and G5(€) are of full
row rank:

Ey(§) Ea(§) Ga()
Ql(f) [E1<§) EQ(f) G(f)]: 0 0 G2(§) )
0 0 0

where F; : Uy — R™™ and Gy : Uy — R™2%™,

By assumption (Reg), we have dim E(x)1,M* = const. for x € M*, and denote this
dimension by 7. Then it is immediate to see that rank F;(§) = r for £ € M*. By the
smoothness of E(x), there exist r; columns of F;(¢) are independent for £ € U,. Now
consider the matrix

3 3 EN(&) EX(§) | Ey(&) E3(E)
E g E 5 — |: 1 1 2 2 ,
O | BO1= gy mie) | BHO BiO

where E} : Uy — R™*"™ and Eg’ : Uy — R™*™ and where ro = r — r;. We can always
permute the rows (by a constant ()-transformation) and the columns (by permuting the
components of &;) of the above matrix such that E] () is invertible. Then by a suitable
Q-transformation, [F}, F,) admits the form

B | Bel=[5 3G | 5O F
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Since rank E(z) = r, we have [E}, E3, E%] is of full row rank 7 = 7 — r;. Notice that
EX(€) = 0 for & € M* (since rank Ey(€) = 7, for ¢ € M*). By the smoothness of E(z),
we have [E3(€), E2(€)] is of full row rank ry for z € U,. Now we can always permute
the columns (by permuting the components of &) of E, such that E3 is invertible. On the
other hand, let

[G% (€) G%(ﬂ
= |Gi(§) Gi(9)]

LG3(6) G3(6)]
where G%(€) is a my X my matrix. Since Gy is of full row rank ms, we can permute the

components of u (by a feedback transformation) such that G3(€) is invertible. Since F3 ()
and G%(¢) are invertible, set

L, Qi(§) Qi) 0
_ 10 Q3 @36 0
0 0 0 J R—

where @7 = “E(ED, F = (G — FJ(E)'GH(GH) ", @ = (ED)". @} =
—(EH'GHGEH ™Y, Q3 = (G3)7!, and we have

L, E§<s> 0 L3O C:?i(é) 0
QOO B B | 6] = | Y T O g o
0 0 0 0 0 0

where B = Ef + Q1F}, 5 = Ej + QiE;. Gi = Gl + Q1B + QiG, Ef = Q3F},
By = Q3. GF = Q3G + Q3G Gy = Q3G

Denote (Q2Q1 F' = col[Fy, Fy, F3, Fy|. Then by the feedback transformation

) * Lt 1) = L)

both G} and Fy become zero. Rewrite z = &, (21, 2) = &1, (23, 24) = &, B? = B2, B3 =
Ef, Bt = E3, B} = E}, Gy = G, Gy = G2, then it is not hard to see Z* is transformed
I, E%(Z)} —
0 F3(z)]
for z € M*, we have F2(z) = 0 for = € M*. Since F(z) € E(2)T.M* + ImG(z)
(because M* is a controlled invariant submanifold), we have F(z) = 0 for z € M*.

into the normal form given by (5.15). Since dim F(z)T,M* = rank [

Now we prove that under additional conditions (A1) and (A2), =Z* is locally ex-tb-
equivalent the SMCISF, given by (5.16). The construction of the SMCISF is similar to
the above construction of the normal form (5.15]), but we choose new coordinates differ-
ently as shown in the following. By (A2), there exist a neighborhood U; of 2° and two
vector-valued functions &; : U; — R™ and & : U; — R™ such that span{d{;} =
span{d¢t, ..., dé'} = DL (recall that D is involutive) and dé; A dé, # 0. Since
D(x) = T, M* for x € M*, we still have M* N U; = {x : &(x) = 0}, Thus by
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(A1) and the above construction of (5.15), we can always transform =" into the normal

form of (5.15). However, by (A2), in (5.15)),

dim E(2)D(z) = rank {[61 gggzﬂ =y,
]7’1 E%(Z) Gl (Z) 0
dim (E(2)D(2) + ImG(z)) =rank | 0 E3(z) Gao(z) 0 | =71+ ma,
0 0 0 I,

locally for 2 € U,. Thus both E? and G5 become zero. Then by F(z) € E(2)T,M* +
Im G(z) (since M* is a controlled invariant submanifold), we have Fy(z) = 0, Fy(z) =0
for z € M*. Therefore, under assumptions (Al) and (A2), =% is always locally ex-fb-
equivalent to the SMCISF, given by (5.16). O

Proof of Theorem Denote dim M* = n*, dim (E(z)T,M*) = r* and
dim (E(z)T,M* 4+ ImG(z)) =r* 4+ (m —m")

(the dimensions being constant by assumption (A1)). Then by Proposition a DAE

Zu[red is of the form

el B* () = F*(x) + G*(2)u, (5.45)

where E*(z) is of full row rank r*, G*(z) is of full column rank m*, and =*|55¢ is thus

Sulred — Zu An ODECS X* = (f,g%¢") € FExpl(Z[;s?) is a system

‘_"I'*,TL*,'ITL*' n*,m*,s*

without outputs and of the form
i = f(x) + g"(@)u+ 9" (z),
where s* =n* —r*.

Only if. Suppose that = is locally completely internal feedback linearizable (see Def-
inition |5.4.3)), which means that Z%[7%¢ is locally ex-fb-equivalent to a completely control-
lable linear DAECS

A B2 =H"'z2+ L*'u",

denoted by A"* = (E*, H*, L*), where E*, H*, L* are constant matrices of appropriate
sizes. A linear ODECS A* = (A*, B**, BY*) € Expl(A™*) is of the form

Nz =A%+ B"u + B"v.

Then by Lemmal5.4.2| the complete controllability of A** implies W, (A™) = W (A™) =

R™". By Proposition @I of Chapter (see also Remark ii)), we get W, (A*) =
Wo- (A*) = #pe (A™) = #,-(A™) = R™. Since A* is a linear control system without
outputs, we have D,.(A*) = W,-(A*) and D,,- (A*) = W,«(A*). Hence, D (A*) =
D+ (A*) = R™". Thus X* satisfies condition (FL2). Moreover, since A* is a linear control

system, it satisfies conditions (FL1) and (FL3) in an obvious way. Conditions (FL1)-(FL3)
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are invariant under sys-fb-equivalence, so >* (which is sys-fb-equivalent to A*) also satis-
fies them.

After having proved that ¥* satisfies (FL1)-(FL3) of Theorem[5.4.5] we will now prove
that any ODECS belonging to Expl(Z%|}5?) satisfies these conditions as well. Consider
two ODECSs ¥* € Expl("“|7“ed) and ¥* € Expl(Z“]7¢?), we have * VT 5y by The-
orem Since ©* and * are control systems without outputs, sys-fb-equivalence
reduces to feedback equivalence. Thus >* and S* are feedback equivalent (via two kinds
of feedback transformations, see Remark . It is easy to verify that if D, and D; are
involutive, then the two distribution sequences are invariant under the two kinds of feed-
back transformations. Hence any ODECS belonging to the class Expl(Z%[3¢4) satisfies
conditions (FL1)-(FL3) of Theorem[5.4.5]

If. Suppose that an ODECS X* € Expl(Z%|%¢) satisfies conditions (FL1)-(FL3). We
claim that 3,,« ,,,« o« = (f, g%, g") is locally feedback equivalent to the Brunovsky canoni-
cal form (see [31] for standard linear ODECSs and Chapter 3| for linear ODECSs with two
kinds of inputs), via two kinds of feedback transformations (see equation (5.46)). We now
describe a procedure to construct new coordinates z = T,(z) and feedback transforma-

tions:
u F,(x) T.(z) O a
= 5.46
o= L) (R il [ 40
to transform >* into the Brunovsky canonical form. Note that 7),(x) and T, (z) have to be
invertible around z,.

Step 1: Denote the smallest ¢ such that D; = D, = T'M* by k* (meaning D;- =
Dy+y1 = T M*) and define

my = dim D — dim D, sy = dim D, — dim D
Now by involutivity of Dy._; and i)k (condition (FL1)), we can choose scalar functions
hi(x),1 <i < myand hY(z), 1 <i < s such that
span {dh? 1 <i <my} = D,
span {dh!',1 <i<my} +span{dh?!,1<i< s} =D 4,
which implies that
<dh“ angj (x)>
<dh“ ad]{gj (1:)>
<dh” adigj (1:)>
<dh” adfgj >

0, 1<i<my, 1<j<m, 0<k<k'—2
0, 1<i<my, 1<j<s 0<k<k*—1
0
0

(5.47)

, 1<i<sy, 1<5<m, 0<k<Ek —2;
L 1<i<s, 1<j<s 0<k<k" —2

where the vector fields g} “(z), 1 < j < m, are the columns of ¢g*(z) and the vector fields
g;-’(x), 1 < j < s are the columns of ¢*(z).

Recall the following result [92]][151]:

(dh(z),adkg(z)) =0, 0 <k <1—2 then

(dh(z), ad  g(x)) = (—=1)* (dLEh,ad*Fg), 0 <k <11, (5:48)

162



CHAPTER 5. FEEDBACK LINEARIZATION OF NONLINEAR
DIFFERENTIAL-ALGEBRAIC CONTROL SYSTEMS

where h(z) is a scalar function, f(z) and g(x) are vector fields.

Then by and (5.48), we have:

Ly Lihi(x) =0, 1<i<mi, 1<j<m, 0<k <k -2
U(z) = O 1<i<my, 1<j<s, 0<kE<Ek*-—1;
LLh”(:c) 0, 1<i<sy, 1<j<m, 0<k<k*—2;
Vr) =0, 1<i<s, 1<j<s 0<k<k -2

(5.49)

Let H) : M* — R™ be a vector-valued map with entries hj(z), 1 < i < m; and
HY : M* — R® be a vector-valued map with entries hy, 1 < i < s;. By construction,
dH}, (r) and dH () are matrices of full row rank around z,. Then, we claim:

(a) The following m; x m matrix is of full row rank at z,:
Ty (x) = Ly LY 7 HY, () = (AL T HY (2), g"(x))
and the following s; X s matrix is of full row rank at z,:
S k*—1 v k*—1 v v
T3 (2) = Lo LY Y (2) = (ALY ' H, (2), 6" (2)) -

First suppose rank 7)™ (x,) < my. Then, by (5.47) and (5.48)), there exists a nonzero
vector ¢, € R™ such that

Cuml <dL]J€c*_1HgL1 (xa),g;‘(xa» - k ! Cy <d adk g;(xa» = 0, 1 S] <m.

Note that span{dh}, 1 <i<m;} € @ﬁ by construction. Thus the above equation
implies that ¢ dH! (z,) € Dj.(x,). The matrix dH? (x) is of full row rank and
dim Dy« = n*, so clt, has to be zero, this contradiction implies that 777" (z,) is of full
row rank. Then, suppose rank 75! (z,) < s;. Also by and (5.48), there exists a
nonzero row vector ¢y, € R* such that

cy, <dLIJf*’1H§1 (Jca),g}?(ma» =cy <dH;’1(a:a)7ad’}*’1g}’(xa)> =0, 1<j<s.

Note that span {dh?,1 < i < s;} € Dj._, by construction. Thus the above equation im-
plies that ¢} dH; (z,) € DL (x,). Tt follows that, there exists a nonzero vector by, € R™
such that

cglngl(xa) = by, dH,, (a),

which is a contradiction since dh{,1 < ¢ < m; and dh},1 < ¢ < s; are independent.
Hence, the whole claim is true.

Subsequently, if m; + s; = m + s, then 7' (z) and T}?* () are invertible around z,.
Set

Ty(x) = col [HY ,H!,LyHY |
Tu(x)

I (@), To(z) =T (2), )
Fy(z) =LK HY (x), F,=LYH! (x), R={(dL}y"H(z),g"(x)).

LeHE, ... Ly HY (LY HE ] (2),

517 mi?
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It can be seen that the system, mapped via the transformations constructed above, is in the
Brunovsky canonical form with indices py = po =+ =p,, = p1 = p2 = -+ = ps = k™.
If my + 51 < m + s, go to the next step.

Step 2: We claim that, arpund z,,,
(b) Di&._, Nspan {dL;h¥ 1 <i<m;} =0, and
D |+ span {dLh* 1 <i<mi} C D, (5.50)

(¢) Di._, Nspan {dLsh}(x),1 <i<s}=0,and
D | +span {dLh?(z),1 <i < 51} C Dt . (5.51)

First, we prove that claim (b) is true. Consider lb then D, C ®¢*—1 is obvious

(since @k* 1 C Dpe_q). By 7)) and (5 -i we have
(dLshi(x), adfg! (x )>:0, 1<i<sy, 1<j<m, 0<k<Ek* -3,
(dLgh(x),ad}g!(z)) =0, 1<i<s, 1<j<s 0<k<k" -2,
which implies that {dLsh},1 <i<m;} € @,ﬁ*,l, hence (5.50) is true.

Now suppose Di-._,(x4) N {dLsh¥(x,),1 <i<my} # 0, which implies that there
exists a nonzero row vector ¢ € R™ such that ¢ dL;H" (z,) € Dj._,(z,). This
would mean

Gy (dLgHY, (24), adfgi(za)) =0, 1<j<m, 0<k<k* -2,
ct (dLpHY, (z0),adigi(z,)) =0, 1<j<s 0<k<k* =2,
which in turn, implies by (5.48)
ct (dHY (2,),adbgi(z,)) =0, 1<j<m, 0<k<E —1,
b (dHY (z4), adfgj(xa)> =0, 1<j<s, 0<k<k*—1.

Thus by the above equations, we have ¢, dHY (z,) € Dj.. Then, by dim Djy» = n* and
dH}!, (x,) being of full row rank, cj; has to be zero. This contradiction completes the
proof of claim (b).

Then we prove claim (c) is true. Con51der , then D5 | C Di._, is obvious
(since Dy-_y C Dy-_1). By (5.47) and (5.48), we have

(dLshY(x), adjg! (x )>=0, 1<i<my, 1<j<m, 0<k<Ek"—3,
(dLshy(x),adjgl(x)) =0, 1<i<my, 1<j<s, 0<k<k —3,

which implies {dL;h?,1 <i < s;} € Di._,, hence 1| holds.

Now suppose DL (z,) N {dLsh¥(z,),1 <i<s;} # 0, which implies that there
exists a nonzero row vector c; € R*! such that ¢} dL;H; (z,) € DL, (2,). This would
mean

¢ (dLpH? (24), adigl (za)) =0, 1<j<m, 0<k<k*—3,
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cy, <deH§1(a:a),adl}g;(:va)> =0, 1<j<s, 0<Ek<k"-2,

which in turn, implies by (5.48)
¢ (dH? (w,), adbgh(z,)) =0, 1<j<m, 0<k <k -2,
cy, <dH§1(a:a),adl}g;(:va)> =0, 1<j<s, 0<EkE<Kk"—-1.

Thus, by the above equations, we have ¢ dH? (z,) € D (2,). Tt follows that there exists
arow vector by, € R™! such that ¢} dH; (2,) = by, dH}, (x,), which is a contradiction
since dh},1 < i < my and dh},1 < ¢ < s; are independent by construction. This
contradiction completes the proof of claim (c).

Based on claims (b) and (c), define
mo = (dim @i*_l) — (dim D) —my, s9 = (dim D _,) — (dim @ﬁ*_l) — 5.
Then choose my scalar functions hl(x), m; + 1 < ¢ < my + mag, such that

Dig_y +span{dL;h¥ 1 <i <my} +span{dh¥,m, +1<i <my +my} = D,
(5.52)

and choose s, scalar functions h{(z), s; + 1 < i < $1 + s, such that

D | +span {dLhl,1 <i < 51} +span{dh?,s;+1<i < s+ 52} = D _,.
(5.53)

Moreover, set
T2 (x) = Lgu LY 2HY (x),  T3*(x) = Le LY T2 HY ().

where H}! (r) and H, denote vector-valued functions whose rows consist of (), m; +
1 <i<my+mg,and hY(x), s; +1 < i < s1 + 9, respectively. We claim that

(d) The (my + mgy) X m matrix

w- [

is of full row rank at =, and the (s; + s2) X s matrix

- (21

is of full row rank at x,. First suppose that rank 712 (z,) < m; + msy, which implies
that there exist some row vectors ¢, € R™ and ¢;;,, € R™2 such that

e (dLE T HY (24), g4 (2a)) + ¢ty (LY T2 HY, (24), g4 (2a)) =0, 1< j <m,
(5.54)

which implies, by (5.48), that

ch (AL HY (z4), adl}*_Qg;‘(xa» + ¢t (dHy (), ad’}*_zg;(xa» =0, 1<j<m.
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Thus
(o dLgHY 4 ch dHY  ady =2 (24)g) (xa)) =0, 1< j <m. (5.55)
Notice that by (5.52]), we have
¢ AL HY (24) + ¢t dHY (24) € D (2). (5.56)

As a consequence of (5.55) and (5.56), we get

Coy ALy iy (20) + €, A, (20) € Dy (),

which contradicts the independence of the differentials used in (5.52)). Thus 771 ™2(z,,)
is of full row rank. Then suppose rank 751 7%2(x,) < s + so, which implies that there exist
some row vectors c; € R, ¢/ € R*2 such that

cy, <dL';*_1H;‘1(:va) 95 (x4)) + €4, <de TPH? (z4), 9 (14)) =0, 1<j<s.
By (5.48)), the above equation gives
¢t (dLyH? (z,), adl}*72g}’(:ca)> + ¢ (dH? (xa), ad’;*’Qg;?(xa» =0, 1<j<m.
Thus
(c? dLyH? (xq) + b, dH?, (:Ea),adl;*_295> =01<j<s.
Notice that by , we have ¢ dL;H? + ¢! dH! € Dj._,. As a consequence,
cy dLyHY () + co,dH], (2,) € Di .,

which contradicts the independence of the differentials used in (5.53)). Therefore, 752 (z,)
is of full row rank.

Now if my + mg + 1 + so = m + s, we have T ™2 (z), T51+%2(x) are invertible
around z,. Set
T,(x) = col [L4HY (x), L4H!(2), 1<i<2, 0<j<k*—i],
Tu(z) = T (x), To(x) =T7 2 (x), R(x) = collL§ 'HY B,, L} H. B,)(xz),
Fy(z) =col [L} HYy Ly ' HY | (x), F,(z) = col [L} HY, Lk*—lﬂv} (z).

miy?

Then the transformations given by the above matrices bring ¥* = (f, g%, ¢*) into its
Brunovsky canonical form with indices

PL=p2=:=pPm =PpL=P2= = Py =k

pm1+1:pm1+2:"':pm:ﬁsu-l25524-2:"':?8:]{*_1-

If my + s1 < m + s, go to next step.
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Step k: After k — 1 iterations of the above procedure, we can find (kK — 1)m; + (k —
2)mg + - +my_1+ (k—1)s; + (kK — 2)sy + - - - + sx_1 independent row vectors

( dhi(z),dLgh(x), ... ,dL}?hi(z), 1<i<m
dhf(az),dl}fhf(az), mi+...+mgp_3+ 1< < mi+...4+mg_o

dni(z), mp+...+mpo+1 <t <m+...+mu
dhy(x),dLgh!(z), ..., dLy*hi(z), 1<i<s

dhf(l‘),d[/fh;}(x), 81+...+Sk_3—|—1 <1<S814+...+ Sp_9
dhj(z), S1+ . F st 1<i<s+... .+

that span ’Dé*_(k_l). Then, define

stpan{dLi}h?(x),ml—|—~~+mk,j,1+1 <i<mp+-+my, 1 <5< k:—l}
and

é:span{dchhf(x), S14+ .o+ Sspjm1 1< i <s1 4.+ s, 1§j§k:—1}.

By similar arguments as those used to prove claims (b) and (c) above, we can show that
around z,,

‘D%*—(k—l) +Ce ®i*—(k:—1)v
and that the intersection of the D,ﬁ*f (k1) and C is zero,
and that the intersection of the co-distributions 25;?*—(1@—1) and C is zero. Then, define
my = (dim @i*_(k_l)) — (dim @i*_(k_l)) —(my+ ...+ mg_1),
S = (dlm Dé_*—k:) — (dlm ®1Jg_*—(k—1)) - (51 + ...+ Skfl).

We can choose my, independent row vectors dh}'(x), my + ... + mp_1 +1 < i < my +
...+ my, such that

@i*_(k_l) — @é*_(k_l) =C+span{hl,mi+...+mp_1+1<i<mg+...+my}.

Subsequently, we can choose s, independent row vectors hY(x),s1+ ...+ g1+ 1 <i <
$1 4+ ...+ s, such that

91?*71@—@?*7(1@71) —Ctspan{hl,s1+ ... +sp 1 +1<i<s +...+s}.

Then, by a similar argument that used to prove claim (d), it is possible to show that the
(mq 4+ mg + -+ 4+ my) X m matrix

T (x)
Tm1+m2+--~+mk (33) — .

T ()
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is of full row rank at x,, where T} (x) = LguL}§ ~'H}Y (), 1 < i < k. The (s1 + s +
-+ + ) X s matrix

T ()
T31+S2+'"+3k (l’) — .

I+ (x)
is of full row rank at z,, where 7% (z) = Lng];*’iH;’i (x),1 <i<k.

Now if mq + -+ +my + 51 + -+ + s, = m + s, we have T2 (g) and
T2t 45k (1) invertible at z,. With a similar construction to that given in Step 2, we can
construct suitable 7, (z), T,,(x), T,(x), F,(z), F,(x), R(z) such that the transformation
given by these matrices brings >* into its Brunovsky form for systems with two kinds of
inputs (see Corollary [3.4.3] of Chapter[3]) with indices:

PL=P2= = Pmy = PL=P2= 00 = Py = K
P41 = Prmat2 = = Pmy = Ps1+1 = Psyt2 = "+ = Ps, = k¥ — 1,
P41 = P2 =" = Pmy = Psj_14+1 = Psy_y42 = = Ps, = k" —k + 1.

If my + s1 < m + s, go to the next step.

Finally, we conclude that one can always find suitable transformation matrices to bring
¥* = (f, g%, ¢") into its Brunovsky canonical form by implementing at most k£ = k* steps
of the above procedure.

Now we will prove that Z%|35¢, given by (5.43)), is locally ex-fb-equivalent to:

1 01 (2 NT 01z €
Ave |l =1 ! 71 5.57
[0 Lsz'2 0 K,||=) Tlo]" (5.57)
Note that by Lemma|[5.4.2] the linear DAECS A", given by (5.57), is completely control-
lable. Denote the Brunovsky form (for systems with two kinds of inputs) of X* by 7,
Then by the construction above, X* is locally sys-fb-equivalent to ¥7,.. Moreover, it is not
hard to see that X% € Expl(A“). Furthermore, recall that ©* € Expl(=*|}5¢). There-

fore, by Theorem [5.2.9) Z%[¢d is locally ex-fb-equivalent to A“. Hence =* is locally
completely internal feedback linearizable. [

Proof of Theorem Only if. Suppose that =" is locally completely external feedback
linearizable. Then =* is locally ex-fb-equivalent, via z = ¥(z), Q(x) and v = o*(x) +
B*(x)u, to a linear completely controllable DAECS:

A B3 = Hz+ La. (5.58)

Thus by Definition we have

Q(z)E(z) = E- 252,
Q(z)(F(z) + G(z)a"(z)) = H - ¥(z), (5.59)
Q(x)G()B(x) = L.
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Obviously, A? satisfies condition (EFL1). The system Z“ satisfies condition (EFL1) as
well because the ranks of F(z) and [F(z), G(z)] are invariant under ex-fb-equivalence.
Moreover, the complete controllability of A% implies Hz € Im E + Im L (see Lemma

[5.4.2). By substituting (5.59), we get

Qx)(F(z) + G(x)a"(x)) € Im Q(z) E(x) < m Q(z)G(x)5 ()
F(z) + G(z)a"(x) € Im E(x) + ImG(x) = F(x) € Im E(z) + Im G(x).

Thus, =* satisfies condition (EFL2). Furthermore, by conditions (EFL1) and (EFL2), and
Theorem|[5.3.10] it is seen that the locally maximal controlled invariant submanifold M* =
U. Now consider the restricted and reduced system A%[7%¢ = A%[7¢d which is a linear
completely controllable DAECS without outputs. This means that =* is locally internally

feedback linearizable. Thus by Theorem [5.4.5] =" satisfies condition (EFL3) on M* = U.

If. Suppose that in a neighborhood U of z°, =% satisfies conditions (EFL1)-(EFL3).
Let rank F(z) = r and rank [E(z), G(x)] = r 4+ my and m; = m —ms. Then, by (EFL1),
there exist an invertible )(x) defined on U and a partition of u = (uy, us) such that

E*(z) Fi(z) Gi(r) Gi(z) w
0 |2= FQ(:U) + |Gi(x) Gi(z) LL } ,
0 Fy(z) 0 0 2

where E*(z) is of full row rank r and G3(x) is a mg X my invertible matrix-valued function
defined on U. Moreover, by condition (EFL2), we have F3(z) = 0 for z € U. Now use
the feedback transformation

Bj - {GQ&) Gg(()zl)}_l [F2?Zl)] N {Git’l) G%?Zl)yl Ej ’

and the system becomes

E*(x) Fy(z) Gi(z) Gi(2)] o
0 [é=] 0 [+] 0 Ll} :
0 0 0 ?
-]r _G%( )
Premultiply the above equation by | 0 I, to get
| 0 0
E*(x) [F*(z) G*(z) 0 »
0 T = 0 + 0 I, L_L*} , (5.60)
0 | 0 0 0

where F* = Fy, G* = G1, u} = @4y and u} = ts.

By Definition|5.3.4/and |5.3.6} it is seen that Z%|75¢ = =%|7¢ is the following system:

E*(z)t = F*(z) + G*(x)u”
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By condition (EFL3) and Theorem [5.4.5, Z%[7¢¢ is locally ex-fb-equivalent to a linear
DAECS A of (5.57). It can bee seen from (5.60) that = is locally ex-fb-equivalent to

LI, 0 NpT 0 E, 0

0 L, m |0 K m Lo o M

0 0] [2 0 0| |2 0 In,| |us]’

0 0 0 O 0 0
which is completely controllable by Lemma Therefore, =Z* is locally completely
external feedback linearizable. U

5.7 Conclusions and perspectives

In this chapter, we propose a maximal controlled invariant submanifold form (a normal
form) for nonlinear DAECSs, which is our first main result. This form requires only the
existence of a maximal controlled invariant submanifold and some constant rank assump-
tions of system matrices. Moreover, we give necessary and sufficient conditions to the
problem for a nonlinear DAECS to be locally internally (second main result) or externally
(third main result) feedback equivalent to a completely controllable linear one. The condi-
tions are based on an ODECS given by the explicitation with driving variables procedure.
Some examples are given to illustrate the construction of the maximal controlled invari-
ant submanifold form, and how to externally or internally feedback linearize a nonlinear
DAECS.

A natural problem for future works is that of when a nonlinear DAE system is ex-fb-
equivalent to a linear one which is not necessarily completely controllable. Actually, this
problem is more involved than the problem of complete external feedback linearization.
Indeed, since in Theorem the maximal controlled invariant submanifold M* on U
is M* = U, it follows that the algebraic constraints are directly governed by some vari-
ables of u. Thus the in-fb-equivalence is very close to the ex-fb-equivalence. However, if
M* # U, then the algebraic constraints may affect the generalized state. Moreover, since
the explicitation is defined up to a generalized output injection, it may happen that one sys-
tem of the explicitation is feedback linearizable but another is not. The general feedback
linearizability problem remains open and, in view of the above points, is challenging.
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Chapter 6

Internal and External Linearization of
Semi-Explicit Differential Algebraic Equations

Abstract: In this chapter, we study two kinds of linearization (internal and external) of
nonlinear differential-algebraic equations DAEs of semi-explicit SE form. The difference
of external and internal linearization is illustrated by an example of a mechanical system.
Moreover, we define different levels of external equivalence for two SE DAEs. A proposed
explicitation procedure allows us to treat a given SE DAE as a control system defined up
to feedback transformation (a class of control systems). Then sufficient and necessary
conditions, expressed via explicitation procedure, are given to describe when a given SE
DAE is level-3 externally equivalent to a linear SE DAE of some specific forms. At last, we
show by an example that level-2 external linearization can be achieved if its explicitation
is level-2 input-output linearizable.

6.1 Introduction

We study differential-algebraic equations DAEs of semi-explicit SE form

—se . | R(@) = a(z)
e . { ' 6.1)

= (),

where R(z), a(x), and c¢(x) are smooth maps with values in R™*", R", and R?, respectively,
and the word smooth will mean throughout €*°-smooth, and where x € X is called the
generalized state and X is an open subset of R™. A SE DAE of form (6.1]) will be denoted

by Z3¢ = (R,a,c) or, simply, Z*¢. A solution of =*¢ is a curve z(t) € C!(I; X) with

an opér;pinterval I such that for all ¢ € I, () solves (6.1). An admissible point of
is a point xy € X such that through x,, there passes at least one solution. The motivation
of studying SE DAE:s is their presence in modeling of electrical circuits [163]], chemical
processes [120] and constrained mechanical systems [35],[141], etc.

Definition 6.1.1. (External equivalence). Consider two SE DAEs =%¢. = (R, a,c) and

‘_‘n’/r7p
—se

—n,r,p

= (R, a,é). If there exists a diffeomorphism 1 : X — X and a smooth invertible
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r X r-matrix Q°(z) such that

R(p(x) = Q()R(x) (8"‘”—”) ,

ox
a((z)) = Q*(z)a(z),
and if, additionally,

(i) there exists a smooth invertible p x p-matrix Q°(x) such that ¢(¢(x)) = Q%(x)c(z),
we call =°¢ and =°¢ externally equivalent, or shortly ex-equivalent, of level-1;

(ii) there exists a smooth invertible p X p-matrix Q°(x) such that ¢(¢(z)) = Q°(z)c(x)
and Q°(x) = S(c(z)) for some invertible S(z), we call =°¢ and =*¢ ex-equivalent of level-
2;

(iii) there exists a constant invertible p x p-matrix 7" such that ¢(¢)(z)) = Te(x), we
call Z*¢ and =*¢ ex-equivalent of level-3.
The level i (= = 1, 2, 3) ex-equivalence of two SE DAEs will be denoted by =*¢ RrEse It
v Xy — )N(O is a local diffeomorphism between neighborhoods X of x4 and f(o of Zg,
and Q*(z), Q°(x) are defined locally on Xy, we will speak about local ex-equivalence.

Remark 6.1.2. For SE DAEs, we introduce three kinds of output multiplication which
correspond to three levels of external equivalence. The interpretation of the three level
ex-equivalence is as follows.

(i) Two constraints 0 = ¢(x) and 0 = ¢&(x) are level-1 ex-equivalent if and only if
My = My, where My = {z|c¢(z) = 0} and My = {z|é(z) = 0};

(i1) Two constraints are level-2 ex-equivalent means that the foliations M, and M F
coincide, where d,d € R?, My = {x|c(z) = d} and M; = {x | é(x) = J}, i.e., there
exists a diffeomorphism ¢ such that A i = Mgy It also implies that the set of motions
x(t) respecting the constraint ¢(x) = d (equivalently, dc(z(t)) - ©(t) = 0) coincides with
that respecting é(x) = d;

(i11) Two constraints are level-3 ex-equivalent means the foliations M, and M ; coincide
via a linear parameter transformation, i.e., Mj = Mryq.

There are two kinds of equivalence relations for DAEs, namely, external equivalence
and internal equivalence (for the details of internal equivalence, we refer Chapter [2] and
Chapter[3). We will show the differences of these two equivalent relations for SE DAEs in
Section [6.3] by examples. Roughly speaking, the word “internal” means that we consider
the DAE on its constrained submanifold [[162] only (also called invariant submanifold in
Chapter [3| and [5] see also [48] and [45]], or configuration subspace [177]]), i.e., where the
solutions of the DAE exist. Correspondingly, the word “external” means that we consider
the DAE in a whole neighborhood and for some points in that neighborhood there may
not exist solutions. More precisely, solutions of R(z)# = a(x) pass through each point of
the neighborhood but may not respect the algebraic constraint ¢(x) = 0. Therefore, exter-
nal equivalence is interesting for all problems, where the nominal point does not respect
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the constraints but we want to steer the solution towards the constraint (in finite time or
asymptotically). So the form of the DAE matters not only on the constraint set but in a
neighborhood as well.

The purpose of this chapter is to discuss when a SE DAE, given by (6.1)), is locally
equivalent to a linear SE DAE. Some results for linearization of DAEs can be found in
[111],[101]], however, the concepts of external and internal equivalence are not mentioned
in those papers. In the present chapter, we will use a new tool named explicitation (see
Definition [6.3.)) to represent DAE:s as explicit control systems. As shown in the examples
of Section [6.3] the internal linearizability has direct relations with the feedback lineariz-
ability of the explicit control system on its maximal output zeroing submanifold. For the
external linearizability, we only consider level-3 and level-2 external equivalence, level-1
will be discussed in future. The level-3 external linearizability of SE DAEs is closely re-
lated to the involutivity of some distributions of an explicit control system (obtained via
explicitation), as is shown in Section[6.4] Moreover, in Section [6.5| we provide an example
of a system that is level-2 externally linearizable but not level-3 externally linearizable.

6.2 Some results for the linear case

In this section, we introduce some concepts of linear semi-explicit DAEs of form

Rz = Ax
A% 2
{ 0 =Cu, 6.2)

where R € R™", A € R™", C' € RP*™, We assume R to be of full row rank. A DAE
of form (6.2) will be denoted by A, = (R, A, C) or, simply, A*. From the Kronecker
canonical form KCF, see e.g. [117] or [L1], for matrix pencils sE' — H (or equivalently,
for linear DAEs Fx = Hz), the following canonical form SCF can be deduced for lin-
ear SE DAEs. Definition @ applied to linear systems says that two linear SE DAEs
A% = (R, A,C) and A% = (R A, C) are ex- -equivalent if there exists constant invertible
matrices P, Q%, Q¢ such that R = Q°RP~!, A = Q*AP~!,C = Q°CP..

Proposition 6.2.1. Any linear SE DAE A*°, = (R, A, C) is ex-equivalent to the following

rn,p
semi-explicit canonical form:

= Al + Blw!' +K'y
2 _ 42,2 FK2y
3 = A3 + B3w? + K3y
F
SCF:q 4 _ A4 FE Yy
0 = (323 + Do
0 = C44,

\

where y = (v, y*), y® = C323 + D3w? and y* = C*z*. Up to injection terms
(K'y, Ky, Ky, K'y),
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for each k = 1,2, 3,4, the equation for 3* consists of, respectively, a,b,c,d equations of the
form

z; = A?Z’Z, Zi € 22,
1.3
) _ Wy,  Z €z, 27,
i 4
0, zi € 2%,

0 =

Zis Zi € 237 247 223 7£ 07
wy, 7 €23, p;=0.

where A? are constant matrices in the Jordan canonical form of real matrices.

Proof. From the theory of the Kronecker canonical form, there always exist invertible (),
P such that the DAE E'& = Hx given by

~ [R] o1 [ 0O Al .. [H H,
e-alo] =[5 o] mefe]r - [l

is in the Kronecker canonical form, then by row permutations, we put all the algebraic

I,
constrains “0 = *’” at the bottom of the system (thus the matrix £ keeps the form [ 0 8] ).

Since F is of the form []OT 8} and R is full row rank, it is not hard to see that () has to

be of a triangular form (as () has to preserve the zeros in the lower part of {]g] ), 1.e.,

Q1 @
-3 &
Definition in the semi-explicit DAE case, we put ()2 = 0. Thus, using )1, Q4, P,
we can transform A®¢ into
I H, H — -1
[T o} | { 1 }+{ Q) y}

0 ol |H, H,

which is the desired form SCF. O ]

], where (); € R™" and ()2, ()4 are of appropriate sizes. Now in view of

Y

Remark 6.2.2. The indices p;, i = 1, 2, 3,4 together with the numbers a, b, ¢, d of equa-

é] ) . The above canonical

form differs from the KCF (after some row permutations) only by the drift injection terms
(K'y, Ky, Ky, K'y).

tions are the Kronecker indices of the matrix pencil (s {]ﬂ — {

Remark 6.2.3. If we regard the algebraic constraint as the zero output of the control sys-
tem, the above canonical form coincides with the Morse canonical form MCEF [146] (under
coordinates change and feedback transformation only, without output injection) for linear
control systems.

Now let .#* be the largest subspace .# such that [é] M C {g] A . The Wong
sequences ¥; and %#; (see [191]] and [11]]) of A®*¢ are defined as:

1
Yo = R", Vs = [é] m”f/ PN,
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—1
Wo =10}, Wip:= [](ﬂ [é] Wi, 1€N.

The limits of ¥; and %#; are denoted by 7"* and #*, respectively. Notice that the solutions
of A®¢ exist on .#Z* only and, moreover, .#Z* = 7¥* (see, e.g. Chapter . Now we
introduce the following regularity and reachability concepts (compare [17]).

Definition 6.2.4. A = (R, A, C) is called

T,p T

e internally regular, if V z° € _/*, 3 only one solution z(t) such that z(0) = z°,

e regular, if it is internally regular and r 4+ p = n,

e internally reachable, if V 1° x¢ € .#*, 3t. > 0 and a solution x(t) of A** such
that x(0) = 2" and x(t.) = z¢,

e constraint-freely reachable, if V2° 1¢ € R", 3t, > 0 and a solution z(t) of Ri =
Az such that 2(0) = 2° and z(t.) = z°.

Lemma 6.2.5. A’ = (R, A,C)is

rn,p T

(i) internally regular < dim ¥* = dim(RY™*) & V* N #* = 0 & the subsystem 2!
in SCF is absent,

(ii) regular < V*N\W* = 0and V*®© W* = R" & the subsystems z' and z* in SCF
are absent,

(iii) internally reachable < V* C W'* < the subsystems z* in SCF is absent,
(iv) constraint-freely reachable < Ri = Ax is internally reachable.
The above lemma can be easily proved using the SCF described in Proposition

The purpose of this lemma is to show how the concepts of Definition correspond to
certain forms of linear SE DAESs and that they are closely related to the Wong sequences.

6.3 Explicitation and internal linearization

We start this section by the definition of explicitation for SE DAEs. Throughout the chap-
ter, we will assume that R(x) is of full row rank equal to r in a neighborhood X of the
nominal point x.

Definition 6.3.1. (Explicitation) For Z%¢ = (R, a, ¢), set m = n — r. Then the explicita-

—n,r,p ~
tion of =Z°¢, denoted by Expl(=°¢), is a class of control systems of the following form:

Ja=f(@) + gz
DE { )= he), (6.3)
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where v € R™ is called the driving variable, h(z) is a smooth RP-valued function on X,
and where f, g1, ..., g, are smooth vector fields on X satisfying

f(z) = R'(x)a(z), Img(z) =kerR(z), h(z) = c(z).

Above R'(z) is a right inverse of R(z), i.e., R(x)R'(z) = I, and g = (g1, ..., gm). We
will denote control system (6.3)) by X,, ., ,, = (f, g, h) or, simply, 3.

Notice that Expl(Z=°¢) is a class of control systems. Indeed, f is given up to ker R(z)
and the distribution spanned by g, ..., g, 1s given uniquely but not the vector fields
g1, - - -, gm themselves. We will use the notation > € Expl(=*¢) to indicate that control
system belongs to the class of explicitation of =°¢. By setting y = 0 for system (6.3)),
we get a SE DAE parametrized by the driving variable v. The definition of f and g implies
that & = f(x)+ g(z)v and R(z)z = a(x) have the same solutions. Thus, via explicitation,
we can study the solutions of X yielding a zero output instead of studying the solutions of
=%¢ directly. Since the explicitation allows to treat a SE DAE as a class of control systems,

we give the definition of equivalence for control systems.

Definition 6.3.2. (System equivalence) Consider two control systems %, ,,, = (f,g,h)
and X, ., = (f, g, h) defined on X and X, respectively. If there exists a diffeomorphism
¢ X — X, an R"-valued function () and an invertible m x m-matrix-valued function

B(x) satisfying

F(2)) = 242 (f + ga) (z),
G((x)) = 229 (g6)(x),

and, additionally,

(i) there exists a smooth invertible p x p-matrix 7'(z) such that h(¢(z)) = T'(z)h(z),
we call X and X system equivalent, shortly sys-equivalent, of level-1;

(ii) there exists a diffeomorphism ¢ : R? — R such that h(y(z)) = ¢(h(x)), we call
the two control systems sys-equivalent of level-2;

(iii) there exists a constant invertible matrix 7" such that h(1(z)) = Th(z), we call the
two control systems sys-equivalent of level-3.

The sys-equivalence of level-i (i = 1,2, 3) of two control systems will be denoted by

SYs—i =

Yo~ NIty Xy — Xo is a local diffeomorphism between neighborhoods X of xy and
X of xg, ¢ is a local diffeomorphism around h(x), and «(z), 5(z) are defined locally on
Xo, we will speak about local sys-equivalence.

Actually the above defined system equivalence for two nonlinear control systems of
the form (6.3)) is widely considered in nonlinear control theory, e.g., [139, 96, 92| [I51].
The following result is essential since it connects control systems with SE DAEs.

Proposition 6.3.3. (i) Consider two control systems ¥, = (f,9,h) and ¥, ., =
(f,3,h), that are belong to explicitation class of =7, , i.e. ¥, % € Expl(Z*). Then
there exist a(x), f(x) such that

f(z) = f(z) + g(z)a(z), §(z) = g(x)B(x).
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(ii) Two SE DAEs E5f, ) = (R, a,¢) and Z5¢ = (R, a,¢) are ex-equivalent of level-2
(respectively, level-3) if and only if two control systems (f,9,h) = X € Expl(=*°) and

( f g,h) = = Expl(=%°) are sys-equivalent of level-2 (respectively, level-3).

nrp

Remark 6.3.4. If & and 3. are as in Proposition i), then obviously h(z) = ¢(x) =

Proof. (i) By Definition[6.3.1]} Img(z) = Img(z) = ker R(x). Thus there exists an invert-
ible 5(x) such that g(z) = g(z)B(x) (since 3(x) preserves images). Then from Definition
- both f(z) and f(z) are given as Ria(x) but for different choices of the right inverse
RP. Actually, at each x, f(z) and f(z) are two solutions Z of the equation R(x)Z = a(z)
and thus their difference f(x) — f(x) is in ker R(x) implying there exists «(x) such that

f(z) = f(z) + g(2)a(z).
(i1): We will only prove the more general case, which is the level-2 case:

If. Suppose that 3 5} By g(¢(z)) = aqg—gf) (98)(x) from Definition|6.3.2{and Img(z) =
ker R(z), Img(z) = ker R(x) from Definition 6.3.1} it can be deduced that there exists an

- , -1
invertible matrix Q*(x) such that R(z) = Q%(z)R(z) (dlg—f» . Moreover, we have
f((z)) = aqg—ff) (f 4+ ga) (x) which implies that

~ %()(

(Rla)(z) = Ria + ga) (z).

Left-multiply the above equation by R(z), we get a(z) = Q%(z)a(z). Now by h(z)
¢(h(z)) from Definition[6.3.2] we have ¢(z) = ¢(c(x)). Then choose coordinates (y, z) =
(Y1y -3 Yp, 21,5+ -5 Zn_p), Where y; = ¢*(x). We have ¢'(z) = ¢'(y). Denote ¢! = ¢,
©5(y2: - yp) = €1(0, 42, ... yp) and ¢ = @ — h. Now ¢;(0,4,...,4,) = 0 and
by the Taylor series expansion with respect to y;, we have ¢! = y;Q}(y) and thus ¢’ =
y'Q (y) + ¢h. Repeat the above procedure replacing ¢} by 5, i.e., set ¥4 (ys, ..., Ypy) =
©05(0,ys,...,yp) and ¢ = p, — L. Since ¢4(0,ys, . ..,y,) = 0, by the Taylor series ex-
pansion, we have ¢y = 1,Q5(y). By an induction argument, we get & = ¢*(y) = v’ Q}(y).
that is, & = /Q}(y), where Q% = Q'(c(x)). Therefore, by Definition 6.1.1, we have

—se 635\72 =se
= =0

- -1
Only if. Suppose that = e “%S*Z5¢. From R(x) = Qz)R(x) (87’2—;@) of Definition

6.1.1|and Img(x) = ker R(z), Img(x) = ker R(z) of Definition it can be deduced
that there exists an invertible 3(z) such that §(¢(z)) = 8’@—?@6)(@. Moreover, we have

f() = ®a)(w) and | = Ra = 220 (mo1Q) Qra)) = P00 (i) o).

-1
It follows that f(z) and <61/)_(x)> f(z) are two solutions Z of the equation R(z)Z = a(x).

Thus their difference (aw( )> - f(x)—f(z)isin ker R(z), implying there exists a(z) such
that f(z) = 229 (f + ga)(z). Furthermore, &((z)) = Q°(x)c(z) and Q(x) = Q(c(x))
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of Definition implies that there exists an invertible matrix P(z) such that dh = Pdh
(with P = %g)y), where y = c¢(z)). Finally, it can be seen from dh = Pdh that there

exists a diffeomorphism ¢ such that h(z) = @(h(z)). Therefore, by Definition 6.3.2] we
SYs—2 =~
have ¥ '~ " 3, 0

Now we apply the above defined explicitation to the internal analysis of SE DAEs. For
a SE DAE =°¢, a submanifold M* is called a maximal invariant submanifold (for details,
see Chapter 3 if M* is the largest submanifold of X such thatV z, € M*, 3 z(t) such that
x(0) = xo. M* can be seen as a nonlinear generalization of the invariant space .#* for
linear DAEs. But note that .#* always exists while //* may not exist. Denote by Z°¢| ;-
a semi-explicit DAE =°¢ restricted to its maximal invariant submanifold M*.

Definition 6.3.5. (Internal equivalence) Consider two SE DAEs =, = (R,a,c) and
Enirp = (R,a,¢). Let M* and M* be their maximal invariant submanifolds. We call Z*¢

and Z*¢ internally equivalent, shortly in-equivalent, if =%¢| )/« and =°¢| ;.. are ex-equivalent.

Theorem 6.3.6. For =:¢ = (R, a, ¢), the followings are equivalent:

n,r,p
(i) 2% is in-equivalent to a linear SE DAE A*¢, given by equation (6.2);
(ii) A (and then any) control system (f*,g*) = ¥* € Expl(E°¢|y+) is feedback lin-

earizable;

(iii) The linearizability distributions G;(3*), given by below, are involutive and
of constant rank and G*(X*) = T M*.

The following example illustrates the above theorem. Note that in Chapter [3] it is
proved the maximal invariant submanifold M* of DAEs coincide with the output zeroing
submanifold of any control system in its explicitation class.

Example 6.3.7. (The Kapitsa pendulum with auxiliary controls). Consider the following
equation of the Kapitsa pendulum taken from [68]].
a=p+ “sina
D= 9 _ @) oogq — 120 cosa) sina — 6.4
1 12 512 ;peosa (6.4)
z = Uq.

We subject the system to two different holonomic constraints and analyze the modified
system from the DAE point of view.

Case 1: Consider the following holonomic constraint:
2z 4 lcosa = ¢y, (6.5)

where ¢ denotes a fixed constant. This holonomic constraint assures that the end joint of
the pendulum keeps the same vertical position as its initial point. Now combine equations
(6.4) and (6.5)), and denote x = (1, ..., xs5), where

Ty =@, Tg=DpP, Tyg=2z, Ty=U, Ty= Us. (6.6)
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We get the following SE DAE:

_ Ri(x)t = ai(x)
=3¢ 6.7
! { 0 = O (ill'), ( )
where
100 00
Ri(z)=10 1 0 0 0|, ci(z) =x3+ lcoszy — ¢,
00100
Ty + 5 sinxy
ai(x) = (% — @;;)2 CcOS Ty — (2?32 cos :v1> sinxy — %twy cos Ty
Ty
Consider the above DAE around an admissible point xy = (19, . - ., Z50) such that

T50 COS T10 sin x19 # 0.

The explicitation of DAE contains the following control system, see Definition
denoted by 31 = (f1, g1, h1), with driving variables v; = 4, vo = s,

ai(x) 00 .
Ji=] 0 [+t o0 { ]
Y 0 o 1| L2 (6.8)

Yy = a3+ [cosx; — cqp.

Recall that the explicitation of our DAE is the above control system defined up to feedback
transformation. By the zero dynamics algorithm (see [92]), the maximal output zeroing
submanifold of X;, denoted by M7, can be expressed as:

M7 = {x|x3+lcosx1 — €10 = x4c082 Ty — lxgsine, = 0}.

Notice that 5 € M. Then system (6.8) restricted on M is

cos? x1
(g _ (x2)* _ (x5)? :
Ty = (l P e 52~ COS Ty ) sin g (6.9)
T5 = Vg

where (1, Z2,75) are new coordinates and ¥ is a new control. It follows by Theorem
[6.3.6| that =3¢ is internally equivalent to the following linear DAE:

iy =y
iy = 7.
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Case 2: Consider again system (6.4)) but now under the following dummy holonomic
constraints

0=z
0=In|tan§|+ (k — 1)z,

where k£ € R. Following the notations of Case 1, we get

—se . RQ(J")‘/E = CLQ(x)

2 { 0 = CQ(x)v
where Ry(x) = Ry (), az(x) = a1(z) and

os(z) = [ 3 } .

In|tan B |+ (k — 1)x3

(6.10)

Consider =5° around an admissible point zy. Then the explicitation of Z5° gives a control
=5°), where Xy = (fa, g2, ho) is given by

system X, € Expl(=5
as () 0 0 y
i = +1(10 [1]
01

0 (%
0 2

(

6.11)

)= Lot 1)
[ [v2 In|tan &| + (k — 1)as]

The maximal output zeroing submanifold My, given by the zero dynamics algorithm ap-

plied to 2o, is:
M; = {:c

The zero dynamics of X5 is

In tam 2|+ (k — 1)y = 2 = 24 =
2lg — (z5)%coszy =0 '

iy = 0.

Since x5 does not depend on time, Y, is just the point (19,0, 230, 0, 50) on its output
zeroing submanifold (note that xy € Ms). It implies that internally Z5° consists of the
fixed admissible point z( only.

6.4 Level-3 external linearization

We start by reviewing the results of the linearization of input-output map for control sys-
tems, firstly given in [96]. Denote by r(A(z)) the point-wise rank of the matrix A(x) and
denote by rg(A(z)) the dimension of the vector space spanned over R by the rows of A(x).

Theorem 6.4.1. ([96].[50]) For a control system %,, ,,, = (f, g, h), the following condi-
tions are equivalent.

(i) System Y is level-3 input-output linearizable;
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(ii) The Toeplitz matrices

To(z) Ti(x) Ti(x)
L I
0 0 e

satisfy r(My,(x)) = re(My(x)) for all k < 2n — 1, where Ty(x) = LyL5h(x);

(iii) System X is level-3 sys-equivalent to

(&= 1O +g" (v + P "
53 — A3€3 + B33 —I—K3y
&= €Y +Kty (6.12)
y3 _ 0353

|yt = Ot

where y = (v, y*) and (A%, B3,C?) is prime (see Definition in Chapter or [146]
for the definition of prime form).

Note that in [96] and [50], the implication (i) = (i) is proved by the structural
algorithm, from which a linearizing feedback can be constructed via a r5, 1 X m full
row rank decoupling matrix L,I'(z). Due to the reason of saving space, here we will not
re-implement the structural algorithm but emphasize that this rank 75,1 will be used for
the external linearization problem below.

For a nonlinear control system %,, ,,, , = (f, g, h), define sequences of distributions G;,
S, and codistributions P; by

G1 =G :=span{gi,...,9m},

Gip = G+ [f, Gil, (6.13)
i>1

Sl = G,

Si+1 = Sz + [f, Sz N ker dh] -+ E;n:l[gj: Sz N ker dh],
1>1

P, :=span{dhy,...,dhy},
Piy:=F+ Lf<P1 N GL) + Z;nzl ng (R N GL)?
P =3P
i>1
The above distributions and co-distributions, together with V; := P, V* := (P*)*, play
an important role in the problems of linearization and decoupling of nonlinear control
systems, see e.g. [92],[151].

Theorem 6.4.2. Consider =;°, , = (R, a,c) around a point xo. Then in a neighborhood
Xo of xg, =°¢ is level-3 ex-equivalent to a linear SE DAE A*¢ with internal regularity and
constraint-free reachability if and only if a (and then any) control system ¥ = (f,g,h) €

Expl(=%°), satisfies the following conditions in X:
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(i) X is level-3 input-output linearizable;
(ii) G* =T Xy,

(iii) [ad’;;gi, adlfgj] =0for1<i,j<m, 0<Il+k<2n—1, where f and §; are vector
fields modified by a feedback transformation resulting from the structure algorithm;

(iv) VN S* =0.

—se

Moreover, A*¢ is regular if and only if =°¢ satisfies (i)-(iv) and, additionally, condition

(v) V*& S* =TX,.

Remark 6.4.3. (i) The distributions VV* and S* are, obviously, the nonlinear generaliza-
tions of the limits of Wong sequences 7* and #*, respectively.

(i1) Condition (iv) above can be replaced by (iv)’: The rank 4, ; of the decoupling
matrix L,I'(z) in the structural algorithm equals m. Condition (v) can be replaced by (v)’:
r+p=n.

Observe that if the rank r5, ; = m, which implies that the feedback transformation
of the structure algorithm is unique, then condition (iii) of Theorem [6.4.2] is verifiable.
However, if ry,_1; < m, which implies some inputs are not used for the purpose of input-
output linearization, then condition (iii) may be difficult to check. We give the following
theorem, in which the "unused" inputs serve to linearize the remaining part (contained in
V*) of the system and all conditions become checkable.

Theorem 6.4.4. Consider =3¢, = (R, a,c) around a point xo. Then in a neighborhood

n,r,p

Xo of xg, =% is level-3 ex-equivalent a linear SE DAE A*° of the form

= Azt + Blw!,
33 = A3 + B3w? + K3y, (6.14)
= (323 + D3w?,

where all matrices are in the SCF (z2- and z*-subsystems are absent), if and only if a (and
then any) control system 3 € Expl(=°¢) satisfies the following conditions in X:

(i) X is level-3 input-output linearizable;

(ii) S; and G; are involutive and of constant rank;
(iii) S* =T Xy;
(iv) S;NV* =G, NV*™

Example 6.4.5. (Continuation of Example|6.3.7) Case 1: Consider =*¢ around a point z
(not necessarily admissible). Assume x5q cos x1gsin x19 # 0. Then the control system X34
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satisfies conditions (i)-(iv) of Theorem [6.4.4] around (. In particular, via the change of
coordinates

Tg =3+ lcosxy — ¢y, Ta = T4CO8° T — lToysinzy,
lxo
sinxy ’
cos 1 (lza+xy sinx1)2 (:55)2 cosx1
Isin? z1 - 2[

Ts =g —

and the static feedback transformation

{

where &, (z) = L;Z4(x) and do(x) = Lsis(z), ¥ is level-3 sys-equivalent to 3, below.
It follows from Proposition that =3¢ is level-3 ex-equivalent to the following A%¢
(since X; € Expl(Z5°) and X; € Expl(Aj°)).

&y (z) + cos? vy,
_ 2(wgsinzyHlwa)cosxy,  zscoswmy
(.T) Isinzy U1 l

(41

1

N
jo3

2 = Q2 V2,

( - ~ -
I3:$4;y:$3 L ~
3 - 1 = X2
T4 = V1 ;_5:

< L ~ 2 =I5

Y1 T =19 = A°: s
L~ 3= T4
S 0=42
2 ~ 3-

L L5 = V2

Note that the above transformation bringing 3; into the linear DAE, given by A%, is a
dual procedure to that of explicitation and it is called implicitation of a control system (for
details, see Chapter [2]Chapter [3)).

—se 1

Case 2: We show that although internally =5° is a trivial system whose generalized state
consists of one point only (which is admissible), it is ex-equivalent to a linear SE DAE.
Consider =5 around x(, which is not necessarily admissible. Assume x5y cos 19 sin x19 #
0. Since Y, satisfies conditions (i)-(v) of Theorem [6.4.2] around x, it can be seen that Y,
is level-3 sys-equivalent to the following 3, via the coordinates change

cos z1 (lxa+xy sinz)? N (25)2 cos 1

lsin® z 21

Tg=2 Fy=g-—

sinxy’?

{ 5732273, [Z’4:[L’4, :ilzlln|tan%1|—$3,

and the static feedback transformation

U1 = Uy,
~ ~ 2 i l
Ty = ag(l’) _ 2(xgsinzy+lag) cosxy vy — Z5 COS T1 Vs,

[sinx, l
where Gy () = Lyis5(x). Moreover, since ¥, € Expl(Z5°) and obviously X5 € Expl(A$°),
by Proposition[6.3.3] =5° is level-3 ex-equivalent to the following A3°, which is regular and
constraint-freely reachable.

(

i’g == J~74 I.l - 532 + k?[f'4
) Ty =1, Y1 =Ty Ty = T5
22 : i’l :QNJQ—Fkyl, Yo :jfl :>A§e : f3:j4

Ty = s 0 =ay

i’5 = Uy 0 =2
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6.5 An example which is not level-3 externally lineariz-
able but so is level-2

Example 6.5.1. Consider a SE DAE =5 = (R3, as, c3), described by

10 —z; 0 00 2(3316933)%%2
Ry(x)=10 0 € —1 0 0|,as(x)= |—(v5+ ke™)|,
00 O 0 10 Tg
o[
where k& € R. We can choose a control system ( f3, g3, h3) = X3 € Expl(Z5°), given by
( [i1] [2(z1e™)22,| [0z 0]
T 0 1 0 O y
i3] 0 Lo vl
5. ig| | as+ ke 0 e UQ
) s 6 o o0 of -
| 6 | i 0 ] 0 0 1]
Y1 = T3
\ Y2 = Z4.

It is easy to verify that 23 is not level-3 input-output linearizable (since the Toeplitz matri-
ces M}, (X3) do not satisfy rank condition (ii) of Theorem |6.4.1)). However, via a nonlinear
coordinates change in the output space

~ ~ 3
j=¢e", T =1y — ze,

3

the system with the new outputs ¥, 9> is level-3 input-output linearizable. Additionally,
the transformed system satisfies conditions (i)-(iv) of Theorem [0.4.4] In fact, by choosing
new coordinates

1
-~ _ —T 5 e _ -~ _ X
{xl = (z1e7™)2, Ty =mxy, T3 =€,
=, _ 1 _3x e _ 5 _
Ty =Tq4—3€°7°, Ty =Ts, Tg = s,

and the feedback transformation v; = vy, vo = e *309, v3 = U3, the system X3 is level-2
sys-equivalent to the linear control system X3 below. Moreover, since X5 € Expl(Z5°), by
Proposition =3¢ is level-2 ex-equivalent to the linear DAE A3 below.

{ <

ry = 5]2 ( - ~

L ~ Ty =22

To =11 - ~ ~

i 5 i = Ty =I5+ ki
~ 3 = V2 1 = 3 2 ~
23 : P ~ ’ ~ ~ ~ = Age : s = Tg

Ty =I5+ ky1, Y2=14 0 —7

< ~ — &3

Ty = Tg ~

2 ~ 0 = Tyq.

T = Us N

\

In view of the example above, even if an explicit control system is not level-3 input-
output linearizable, it may be so under level-2 sys-equivalence. Thus via further transfor-
mations, the original SE DAE is possibly level-2 externally linearizable. It suggests that
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the future work should be focused on level-2 input-output linearizability of control systems
and corresponding SE DAE:s.

6.6 Sketch of the proof of Theorem [6.4.4

Proof. Necessity. If =*° is level-3 ex-equivalent to A*® given by (6.14)), then any control
system ¥ € Expl(=%¢) is level-3 ex-equivalent to

= A2t + Blw?, w! =t
23 = A323 + B3w? + K3y, w3 = 03,
v = C32% + D3uw?.

The above linear control system satisfies (i)-(iv) in an obvious way. Moreover, the in-
variance of S;, G; (clearly, GG; is involutive for the linear system), and V'*, under level-3
sys-equivalence, completes the proof of necessity.

Sufficiency. Suppose ¥ € Expl(Z=°¢) satisfies conditions (i)-(iv), then by condition (i)
and Theorem [6.4.1] ¥ is level-3 sys-equivalence to a control system of the form (6.12) via
the structural algorithm. Subsequently, condition (iii) implies that there is no &4 in system
(6.12), i.e., after input-output linearization, > becomes

€1 = f1(EL, ) + ' (€, )t + g (€1, )0’
€3 = A3¢3 4+ B33 + K33 (6.15)
Y3 = 0353'

For ease of proof, we assume that v! is of dimension 1. Denote

1= (ad S )= (7)o (),

In view of condition (iii), the key of the following proof is to find new coordinates ¢ and
new control &' (we do not change £? and v*) such that in (£, £3)-coordinates and with the
control (o', v?), the distributions G; are rectified. Notice that from the involutivity of .S; in
(ii), we have S;, 1 = S; + [f, S; Nker dh]. Now from V* = span {aigl}’ via condition (iv)
and a direct calculation of \S;, we get for (6.13),

G;NnV*=5NV"=span {gl,adfgl, e ,adlf_lgl} .

Then there exists a smallest number, denoted by p, such that G,NV* = G*NV™ (note that
dim(G, NV*) —dim(G,_; N V*) = 1). Thus, from the involutivity of G;, we can choose
a scalar function ¥(£*,£?) such that dyp € (G,_1)* and dyp ¢ (G, N V*)Lt = (V)1
The above construction implies the dummy output ' = (£, £3) has relative degree
p and LglLfc_lzD # 0. Observe that G, N V* = V* and that span {d, ... ,dL?_lw} N
(V*)* =0. Thus (1),.. ., L} "1, &%) form alocal diffeomorphism (since d¢* = (V*)* and
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di, ..., dee_lzZz are independent). Finally, via the change of coordinates ! = v, . . ., T, =
Lfflw and the feedback transformation o, = Lfflz/z + 0Ly, Lfflw +v3L,, Lfflw, we get

5112%7 é% :Aé?{? T gfl):f)la
53 :A3£3+33U3+K3 37
Y3 = 64353‘

6.7 Conclusions

In this chapter, we discuss linearization of semi-explicit differential-algebraic equations
under internal and external equivalence. The difference of linearization under those two
equivalence relations is illustrated by an example of a mechanical system under some holo-
nomic constraints. Moreover, we define 3-levels of external equivalence depending on 3
kinds of output transformations and show their geometric interpretations. Then we give
necessary and sufficient conditions for level-3 external linearization problem via the ex-
plicitation procedure and illustrate by an academic example the problem of level-2 external
linearization.
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Chapter 7

Conclusions and Perspectives

In this thesis, we study both linear and nonlinear systems described by differential-algebraic
equations DAEs using geometric methods. These DAE systems are classified into differ-
ent categories, which include linear DAEs A, linear DAE control systems DAECSs A%,

semi-explicit SE linear DAEs A*¢, and their nonlinear counterparts =, =%, =*¢, based on
their system structures. The main results of the present thesis are summarized as follows.

1. Existence and uniqueness of solutions. We discuss the solutions of linear (resp.
nonlinear) DAEs using the notions of invariant subspaces (resp. invariant submanifolds).
We have shown that for a linear (resp. nonlinear) DAE, there passes at lest one solution
through a nominal point if and only if the point belongs to its maximal invariant subspace
(resp. locally maximal invariant submanifold). Moreover, if the solution is unique, we
call the DAE internally regular, and thus the internal regularity of a DAE yields an ODE
evolving on the maximal invariant subspace (submanifold) that has no free variables; the
corresponding results are given in Proposition [2.6.12] for linear DAEs and Theorem[4.3.14]
for nonlinear DAEs. The calculation of the locally maximal submanifold of a nonlinear
DAE can be implemented by a reduction method commonly appeared in the nonlinear
DAE:s literature. We reformulate this reduction method as Algorithm [4.3.4] in Chapter {4
and show how this algorithm is related to the zero dynamics algorithm in the nonlinear
control theory.

2. Internal and external (feedback) equivalence. A main difference between this thesis
and the other existing results on geometric analysis of DAE systems is that we system-
atically distinguish the difference between the two equivalence relations. The external
(feedback) equivalence of two DAEs (DAECSs) is important in every chapter of this thesis
since it is the fundamental relation when considering DAE systems (locally) everywhere
(not just on the subspace (submanifold) where the solutions exist). Various normal forms
and canonical forms under external (feedback) equivalence are proposed in this thesis (see
item 5 below) to simplify the structure of DAE systems. The internal equivalence of two
DAEs is defined by the external equivalence of the two DAE:s restricted to their maximal
invariant subspaces (or submanifolds), i.e., where the solutions exist. We have shown that
the internal equivalence is useful when we only care about where and how the solutions
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evolve; the corresponding results are given in Theorem[2.6.10|for linear DAEs, and Lemma
4.2.3]and Theorem 4.3.14 for nonlinear DAEs.

3. Two kinds of explicitation procedures. In order to “explicitate” the “implicit” DAE
systems and connect DAE systems with ODE systems, we propose two kinds of explici-
tation procedures, i.e., the explicitation with driving variables (or (Q, v)-explicitation) and
without driving variables (or (@), P)-explicitation). Through Chapters we have shown
that the explicitation procedure is a powerful tool for DAE systems since with its help we
can use the knowledges from the classical linear and nonlinear control theory to analyze
DAE systems. We prove that the explicitation of a DAE system is not just a system but
a class of systems (or a system defined up to some transformations), as seen in Remark
[2.3.3] and Proposition [3.2.3]3.2.44.3.18][5.2.5]/6.3.3] We discuss the differences of the two
explicitation procedure in Remark [3.2.5| of Chapter [3|for linear DAE systems and show in
Theorem that a nonlinear DAE = = (E, F') admits an explicitation without driv-
ing variables if and only if the distribution defined by ker F(z) is of constant rank and

—se

involutive, which also explains when = is externally equivalent to a SE DAE =°¢.

4. Connections between DAE and ODE systems. The connections between the two
classes of systems are built up depending on the results that the external (feedback) equiv-
alence for DAE systems is a true counterpart of the system (feedback) equivalence (the
(extended) Morse equivalence for the linear case) for ODE systems; the corresponding re-
sults are Theorem [2.3.4] [3.2.8 4.3.21] [5.2.9] and Proposition[6.3.3] The relations of linear
DAE systems and linear ODE systems are shown by connecting their geometric subspaces
and canonical forms. The relations between the (augmented) Wong sequences for DAE
systems and the invariant subspaces for ODE systems are given in Proposition [2.4.10|and
Proposition [3.2.9] The correspondence of the Kronecker canonical form of DAEs and the
Morse canonical form of ODE control systems are shown by establishing relations of their
indices in Proposition [2.5.3] Similarly, the correspondence of the feedback canonical form
of DAECSs and the extended Morse canonical form are shown by establishing relations of
their indices in Remark 3.4.8]

5. Normal and canonical forms. In Chapter [3 we propose a Morse triangular form
MTF (Proposition to simplify the construction of the Morse normal form MNF
(Proposition [3.3.2)) of classical ODE control systems and then the MTF and MNF are
generalized, respectively, to the extended Morse triangular form EMTF (Theorem [3.3.4))
and the extended Morse normal form EMNF (Theorem [3.3.5)) for ODE control systems
with two kinds of inputs. In Theorem [3.4.2] we provide a constructive passage from the
EMNEF to the extended Morse canonical form EMCF. Algorithm describes a way
of transforming a linear DAECS into its feedback canonical form FBCF via the interme-
diate forms EMTF, EMNF and EMCEF of its explicitation systems. In Theorem
of Chapter 4] a nonlinear generalization of the Weierstrass form NWF is proposed based
on the comparison of Algorithm for DAEs and the zero dynamics algorithm for the
explicitation systems. In Theorem of Chapter [5] two normal forms based on the
notion of maximal controlled invariant submanifold are proposed to simplify the structure
and to understand various types of variables of DAECSs.
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CHAPTER 7. CONCLUSIONS AND PERSPECTIVES

6. Nonlinear generalizations of the notions in linear DAEs theory. We have shown
in Chapters [4}{6] that the (augmented) Wong sequences have two kinds of nonlinear gen-
eralizations, which are sequences of submanifolds and distributions, those observations
are given in Remark {.3.13(iv), [5.4.7(iv) and [6.4.3i). The NWF in Theorem gen-
eralizes the Weierstrass form for linear regular DAEs. The maximal controlled invariant
form in Theorem is the effort made to generalize the FBCF of linear DAECSs. The
(@, P)- and (Q, v)- explicitation for linear DAEs in Chapter are generalized to the
explicitation with and without driving variables in Chapter ] and the correspondence of
external (feedback) equivalence and system (feedback) equivalence for nonlinear systems
generalizes the linear results in Theorem [3.2.§]

7. Linearization and feedback linearization. Necessary and sufficient conditions are
given in Theorem [5.4.5| and [5.4.6| to describe when a nonlinear DAECS is externally and
internally feedback equivalent to a completely controllable linear one, respectively. The
results of linearization of semi-explicit DAEs are given in Chapter[6] We show in Theorem
[6.3.6/and [6.4.2] [6.4.4] respectively, when a semi-explicit DAE is internally and externally
equivalent to a linear one. All these results on linearization for nonlinear DAE systems are
solved with the help of some distributions given by the explicitation systems.

We now give some perspectives for this thesis. As the explicitation procedure builds
up a bridge between DAE systems and ODE systems, various results on geometric control
of nonlinear ODE systems, such as disturbance decoupling, observer design by geomet-
ric methods, the zero dynamics algorithm, invertibility analysis, stabilization and tracking,
dynamic feedback linearization etc, can be possibly generalized to DAE systems. The lin-
earization problems of DAE systems need a further study since in this thesis we only give
the results for some special cases, e.g. in Theorem [5.4.6] we only study when a DAECS
can be linearized to a linear one with complete controllability, but a linear DAECS can
have various kinds of controllability (see [17]), thus different controllability of the lin-
earized DAE system should correspond to different conditions of linearization. Moreover,
in Chapter [6] we define 3-levels of external equivalence but only give the conditions for
lever-3 external linearization problem, thus the conditions for lever-1 and level-2 exter-
nal linearization of semi-explicit DAEs should be further investigate. Last but not least,
examples in Chapter [S|raise the interests in studying relations of the flatness of the explic-
itation systems and the feedback linearizablity of the DAE control system and the flatness
of DAE systems is also an interesting subject to be studied in the geometric spirit of the
present thesis.

189






Bibliography

[1]

[2]

(3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

H. ALING AND J. M. SCHUMACHER, A nine-fold canonical decomposition for
linear systems, International Journal of Control, 39 (1984), pp. 779-805.

J. D. APLEVICH, Minimal representations of implicit linear systems, Automatica,
21 (1985), pp. 259-269.

H. ARAI, K. TANIE, AND N. SHIROMA, Nonholonomic control of a three-dof pla-
nar underactuated manipulator, IEEE Transactions on Robotics and Automation,

14 (1998), pp. 681-695.

E. ARANDA-BRICAIRE AND R. HIRSCHORN, Equivalence of nonlinear systems to
prime systems under generalized output transformations, SIAM Journal on Control

and Optimization, 37 (1998), pp. 118-130.

E. ARANDA-BRICAIRE, C. MOOG, AND J.-B. POMET, A linear algebraic frame-
work for dynamic feedback linearization, IEEE Transactions on Automatic Control,
40 (1995), pp. 127-132.

R. BACHMANN, L. BRULL, T. MRZIGLOD, AND U. PALLASKE, On methods for
reducing the index of differential algebraic equations, Computers & Chemical En-
gineering, 14 (1990), pp. 1271-1273.

G. BASILE AND G. MARRO, Controlled and conditioned invariant subspaces in

linear system theory, Journal of Optimization Theory and Applications, 3 (1969),
pp. 306-315.

——, On the observability of linear, time-invariant systems with unknown inputs,
Journal of Optimization Theory and Applications, 3 (1969), pp. 410-415.

—, Controlled and Conditioned Invariants in Linear System Theory, Prentice Hall
Englewood Cliffs, 1992.

T. BEELEN AND P. VAN DOOREN, An improved algorithm for the computation of
Kronecker’s canonical form of a singular pencil, Linear Algebra and its Applica-
tions, 105 (1988), pp. 9-65.

T. BERGER, On Differential-Algebraic Control Systems, Univ.-Verlag, 2013.

191



BIBLIOGRAPHY

[12] ——, Controlled invariance for nonlinear differential-algebraic systems, Automat-
ica, 64 (2016), pp. 226-233.

[13] ——, The zero dynamics form for nonlinear differential-algebraic systems, IEEE
Transactions on Automatic Control, PP (2016), pp. 1-1.

[14] ——, Disturbance decoupling by behavioral feedback for linear differential—
algebraic systems, Automatica, 80 (2017), pp. 272-283.

[15] T. BERGER, A. ILCHMANN, AND T. REIS, Zero dynamics and funnel control of lin-

ear differential-algebraic systems, Mathematics of Control, Signals, and Systems,
24 (2012), pp. 219-263.

[16] T. BERGER, A. ILCHMANN, AND S. TRENN, The quasi-Weierstraf3 form for reg-
ular matrix pencils, Linear Algebra and its Applications, 436 (2012), pp. 4052 —
4069.

[17] T. BERGER AND T. REIS, Controllability of linear differential-algebraic sys-
tems—a survey, in Surveys in Differential-Algebraic Equations I, Springer, 2013,
pp. 1-61.

[18] ——, Regularization of linear time-invariant differential-algebraic systems, Sys-
tems & Control Letters, 78 (2015), pp. 40—46.

[19] T. BERGER, T. REIS, AND S. TRENN, Observability of linear differential-algebraic

systems: a survey, in Surveys in Differential-Algebraic Equations IV, Springer,
2017, pp. 161-219.

[20] T. BERGER AND S. TRENN, The quasi-Kronecker form for matrix pencils, SIAM
Journal on Matrix Analysis and Applications, 33 (2012), pp. 336-368.

[21] T. BERGER AND S. TRENN, Addition to “The quasi-Kronecker form for matrix
pencils”, SIAM Journal on Matrix Analysis and Applications, 34 (2013), pp. 94—
101.

[22] P. BETSCH AND P. STEINMANN, A DAE approach to flexible multibody dynamics,
Multibody System Dynamics, 8 (2002), pp. 365-389.

[23] W. BLAIJER, Modelling of aircraft program motion with application to circular loop
simulation, The Aeronautical Journal, 92 (1988), pp. 289-296.

[24] W. BLAJER, J. GRAFFSTEIN, AND M. KRAWCZYK, Prediction of the dynamic

characteristics and control of aircraft in prescribed trajectory flight, Journal of The-
oretical and Applied Mechanics, 39 (2001), pp. 79-103.

[25] W. BLAJER AND K. KOLODZIEICZYK, A geometric approach to solving problems

of control constraints: theory and a DAE framework, Multibody System Dynamics,
11 (2004), pp. 343-364.

192



BIBLIOGRAPHY

[26] ——, Control of underactuated mechanical systems with servo-constraints, Nonlin-
ear Dynamics, 50 (2007), pp. 781-791.

[27] M. E. BONILLA AND M. MALABRE, External reachability (reachability with pole
assignment by PD feedback) for implicit descriptions, Kybernetika, 29 (1993),
pp- 499-510.

[28] K. E. BRENAN, S. L. CAMPBELL, AND L. R. PETZOLD, Numerical Solution of
Initial-Value Problems in Differential-Algebraic Equations, vol. 14, SIAM, 1996.

[29] R. W. BROCKETT, Feedback invariants for nonlinear systems, IFAC Proceedings
Volumes, 11 (1978), pp. 1115-1120.

[30] ——, Finite Dimensional Linear Systems, vol. 74, SIAM, 2015.

[31] P. BRUNOVSKY, A classification of linear controllable systems, Kybernetika, 6
(1970), pp. 173-188.

[32] A. BUNSE-GERSTNER, R. BYERS, V. MEHRMANN, AND N. K. NICHOLS, Feed-
back design for regularizing descriptor systems, Linear Algebra and its Applica-
tions, 299 (1999), pp. 119-151.

[33] G. BYRNE AND P. PONZI, Differential-algebraic systems, their applications and
solutions, Computers & Chemical Engineering, 12 (1988), pp. 377-382.

[34] S. CAMPBELL, R. NIKOUKHAH, AND F. DELEBECQUE, Nonlinear descriptor sys-
tems, in Advances in Control, Springer, 1999, pp. 247-281.

[35] S. L. CAMPBELL, High-index differential algebraic equations, Journal of Structural
Mechanics, 23 (1995), pp. 199-222.

[36] S. L. CAMPBELL AND S. CAMPBELL, Singular Systems of Differential Equations,
vol. 1, Pitman London, 1980.

[37] S. L. CAMPBELL AND C. W. GEAR, The index of general nonlinear DAEs, Nu-
merische Mathematik, 72 (1995), pp. 173-196.

[38] S. L. CAMPBELL AND E. GRIEPENTROG, Solvability of general differential alge-
braic equations, SIAM Journal on Scientific Computing, 16 (1995), pp. 257-270.

[39] B. CHARLET, J. LEVINE, AND R. MARINO, On dynamic feedback linearization,
Systems & Control Letters, 13 (1989), pp. 143-151.

[40] ——, Sufficient conditions for dynamic state feedback linearization, SIAM Journal
on Control and Optimization, 29 (1991), pp. 38-57.

[41] C. C. CHEAH AND D. WANG, Learning control for a class of nonlinear differential-

algebraic systems with application to constrained robots, Journal of Robotic Sys-
tems, 13 (1996), pp. 141-151.

193



BIBLIOGRAPHY

[42] B. M. CHEN, X. L1U, AND Z. LIN, Interconnection of Kronecker canonical form

and special coordinate basis of multivariable linear systems, Systems & Control
Letters, 57 (2008), pp. 28-33.

[43] C.-T. CHEN, Linear System Theory and Design, Oxford University Press, Inc.,
1998.

[44] M.-C. CHEN ET AL., Robust and H,, Control, Citeseer, 2000.

[45] Y. CHEN AND W. RESPONDEK, Feedback linearization and controlled invariant
submanifold of nonlinear differential-algebraic control systems, (2019). Preprint.

[46] ——, From Morse triangular form of ODE control systems to feedback canonical
form of DAE control systems, (2019). Preprint.

[47] ——, Geometric analysis of linear differential-algebraic equations via linear con-
trol theory, (2019). Preprint.

[48] ——, Geometric analysis of nonlinear differential-algebraic equations via nonlin-
ear control theory, (2019). Preprint.

[49] ——, Internal and external linearization of semi-explicit differential-algebraic
equations, (2019). Accepted by the 11th IFAC Symposium on Nonlinear Control
Systems.

[50] D. CHENG, A. ISIDORI, W. RESPONDEK, AND T. J. TARN, Exact linearization of

nonlinear systems with outputs, Mathematical Systems Theory, 21 (1988), pp. 63—
83.

[51] L. CHUA, T. MATSUMOTO, AND S. ICHIRAKU, Geometric properties of resis-
tive nonlinear n-ports: transversality, structural stability, reciprocity, and anti-
reciprocity, IEEE Transactions on Circuits and Systems, 27 (1980), pp. 577-603.

[52] L. O. CHUA AND H. OKA, Normal forms for constrained nonlinear differen-
tial equations. 1. Theory, IEEE Transactions on Circuits and Systems, 35 (1988),
pp- 881-901.

[53] D. CLAUDE, Everything you always wanted to know about linearization, in Al-
gebraic and Geometric Methods in Nonlinear Control Theory, Springer, 1986,
pp- 181-226.

[54] D. COBB, Feedback and pole placement in descriptor variable systems, Interna-
tional Journal of Control, 33 (1981), pp. 1135-1146.

[55] ——, Controllability, observability, and duality in singular systems, IEEE Transac-
tions on Automatic Control, 29 (1984), pp. 1076—-1082.

[56] G. COSTANTINI, S. TRENN, AND F. VASCA, Regularity and passivity for jump

rules in linear switched systems, in 52nd IEEE Conference on Decision and Control,
IEEE, 2013, pp. 4030—4035.

194



BIBLIOGRAPHY

[57] J. J. CRAIG, Introduction to Robotics: Mechanics and Control, vol. 3, Pear-
son/Prentice Hall Upper Saddle River, NJ, USA:, 2005.

[58] P. S. P. pA SiLvA AND C. C. FILHO, Relative flatness and flatness of implicit
systems, SIAM Journal on Control and Optimization, 39 (2001), pp. 1929-1951.

[59] L. DAL, Singular Control Systems, vol. 118, Springer, 1989.

[60] P. DAOUTIDIS, DAESs in model reduction of chemical processes: an overview, in
Surveys in Differential-Algebraic Equations II, Springer, 2015, pp. 69-102.

[61] C. DE PERSIS AND A. ISIDORI, A geometric approach to nonlinear fault detection
and isolation, IEEE Transactions on Automatic Control, 46 (2001), pp. 853—-865.

[62] P. V. DOOREN, The computation of Kronecker’s canonical form of a singular pen-
cil, Linear Algebra and its Applications, 27 (1979), pp. 103 — 140.

[63] D. ESTEVEZ SCHWARZ AND C. TISCHENDOREF, Structural analysis of electric

circuits and consequences for mna, International Journal of Circuit Theory and Ap-
plications, 28 (2000), pp. 131-162.

[64] P. FERREIRA, On system equivalence, IEEE Transactions on Automatic Control, 32
(1987), pp. 619-621.

[65] L. R. FLETCHER AND A. AASARAAI, On disturbance decoupling in decsriptor
systems, STAM Journal on Control and Optimization, 27 (1989), pp. 1319-1332.

[66] M. FLIESS, A note on the invertibility of nonlinear input-output differential systems,
Systems & Control letters, 8 (1986), pp. 147-151.

[67] M. FLIESS AND M. HASLER, Questioning the classic state-space description via
circuit examples, in Realization and Modelling in System Theory, Springer, 1990,
pp. 1-12.

[68] M. FLIESS, J. LEVINE, P. MARTIN, AND P. ROUCHON, Flatness and defect of non-

linear systems: introductory theory and examples, International Journal of Control,
61 (1995), pp. 1327-1361.

[69] M. FLIESS, J. LEVINE, P. MARTIN, AND P. ROUCHON, Implicit differential equa-
tions and Lie-Backlund mappings, in Proceedings of the 34th IEEE Conference on
Decision and Control, vol. 3, IEEE, 1995, pp. 2704-2709.

[70] M. FLIESS, J. LEVINE, P. MARTIN, AND P. ROUCHON, Index and decomposition

of nonlinear implicit differential equations, IFAC Proceedings Volumes, 28 (1995),
pp. 37-42.

[71] ——, A Lie-Backlund approach to equivalence and flatness of nonlinear systems,
IEEE Transactions on Automatic Control, 44 (1999), pp. 922-937.

195



BIBLIOGRAPHY

[72] M. FLIESS, J. LEVINE, AND P. ROUCHON, A simplified approach of crane control

via a generalized state-space model, in Proceedings of the 30th IEEE Conference
on Decision and Control, IEEE, 1991, pp. 736-741.

[73] M. FLIESS, P. MARTIN, N. PETIT, AND P. ROUCHON, Active signal restoration

for the telegraph equation, in Proceedings of the 38th IEEE Conference on Decision
and Control, vol. 2, IEEE, 1999, pp. 1107-1111.

[74] H. FRANKOWSKA, On controllability and observability of implicit systems, Sys-
tems & Control Letters, 14 (1990), pp. 219-225.

[75] F. GANTMACHER, The Theory of Matrices, Chelsea Publishing Co., 1959.

[76] C. W. GEAR, Differential-algebraic equation index transformations, SIAM Journal
on Scientific and Statistical Computing, 9 (1988), pp. 39-47.

[77] ——, Differential algebraic equations, indices, and integral algebraic equations,
SIAM Journal on Numerical Analysis, 27 (1990), pp. 1527-1534.

[78] C. W. GEAR AND L. R. PETZOLD, ODE methods for the solution of differen-
tial/algebraic systems, SIAM Journal on Numerical Analysis, 21 (1984), pp. 716—
728.

[79] T. GEERTS, Invariant subspaces and invertibility properties for singular systems:
The general case, Linear algebra and its applications, 183 (1993), pp. 61-88.

[80] H. GLUSING-LUERBEN, Feedback canonical form for singular systems, Interna-
tional Journal of Control, 52 (1990), pp. 347-376.

[81] V. GOL’DSHTEIN AND V. SOBOLEV, Qualitative analysis of singularly perturbed
systems of chemical kinetics, Singularity Theory and Some Problems of Functional
Analysis. American Mathematical Society, Translations, SG Gindikin (ed.), 153
(1992), pp. 73-92.

[82] H. GOLDSTEIN, Classical Mechanics, Pearson Education India, 2011.

[83] C. GRAND, F. B. AMAR, P. BIDAUD, AND G. ANDRADE, A simulation system for
behaviour evaluation of off-road mobile robots, in Proceedings CLAWAR’s of the
International Conference on Climbing and Walking Robots, 2001, pp. 307-314.

[84] P. M. GRESHO, Incompressible fluid dynamics: some fundamental formulation is-
sues, Annual Review of Fluid Mechanics, 23 (1991), pp. 413—453.

[85] U. HELMKE AND M. A. SHAYMAN, A canonical form for controllable singular
systems, Systems & Control letters, 12 (1989), pp. 111-122.

[86] R. HIRSCHORN, (A, B)-invariant distributions and disturbance decoupling of non-
linear systems, SIAM Journal on Control and Optimization, 19 (1981), pp. 1-19.

196



BIBLIOGRAPHY

[87] L. HUNT AND R. Su, Linear equivalents of nonlinear time-varying systems, in Proc
. Int . Symposium on Math. Theory of Networks and Systems, Santa Monica, 1981,
pp- 119-123.

[88] L. HUNT, R. SU, AND G. MEYER, Global transformations of nonlinear systems,
IEEE Transactions on Automatic Control, 28 (1983), pp. 24-31.

[89] J.-1. IMURA, K. KOBAYASHI, AND T. YOSHIKAWA, Nonholonomic control of 3
link planar manipulator with a free joint, in Proceedings of the 35th IEEE Confer-
ence on Decision and Control, vol. 2, IEEE, 1996, pp. 1435-1436.

[90] M. ISHIKAWA, R. KITAYOSHI, AND T. SUGIE, Volvot: A spherical mobile robot

with eccentric twin rotors, in IEEE International Conference on Robotics and
Biomimetics (ROBIO), IEEE, 2011, pp. 1462-1467.

[91] A.ISIDORI, Nonlinear feedback, structure at infinity and the input-output lineariza-
tion problem, in Mathematical Theory of Networks and Systems, Springer, 1984,
pp. 473-493.

[92] A.ISIDORI, Nonlinear Control Systems, Springer-Verlag New York, Inc., Secaucus,
NJ, USA, 3rd ed., 1995.

[93] A. ISIDORI, A. KRENER, C. GORI-GIORGI, AND S. MONACO, Locally (f, g) in-
variant distributions, Systems & Control letters, 1 (1981), pp. 12-15.

[94] A. ISIDORI, A. KRENER, C. GORI-GIORGI, AND S. MONACO, Nonlinear de-

coupling via feedback: a differential geometric approach, IEEE Transactions on
Automatic Control, 26 (1981), pp. 331-345.

[95] A. ISIDORI AND C. MOOG, On the nonlinear equivalent of the notion of transmis-
sion zeros, in Modelling and Adaptive Control, Springer, 1988, pp. 146—158.

[96] A.ISIDORI AND A. RUBERTI, On the synthesis of linear input-output responses for
nonlinear systems, Systems Control Letters, 4 (1984), pp. 17 — 22.

[97] S. JAFFE AND N. KARCANIAS, Matrix pencil characterization of almost (A, Z)-

invariant subspaces: A classification of geometric concepts, International Journal
of Control, 33 (1981), pp. 51-93.

[98] B. JAKUBCZYK AND W. RESPONDEK, On linearization of control systems, Bull.
Acad. Polonaise Sci. Ser. Sci. Math., (1980), p. 517-522.

[99] K. JANKOWSKI, Dynamics of controlled mechanical systems with material and pro-
gram constraints—III. Illustrative examples, Mechanism and Machine Theory, 24
(1989), pp. 175-179.

[100] K. P. JANKOWSKI AND H. VAN BRUSSEL, Inverse dynamics task control of flexible

joint robots—I: Continuous-time approach, Mechanism and Machine Theory, 28
(1993), pp. 741-749.

197



BIBLIOGRAPHY

[101] Z. JIANDONG AND C. ZHAOLIN, Exact linearization for a class of nonlinear
differential-algebraic systems, in Proceedings of the 4th World Congress on Intelli-
gent Control and Automation, vol. 1, IEEE, 2002, pp. 211-214.

[102] T. KAILATH, Linear Systems, vol. 156, Prentice-Hall Englewood Cliffs, NJ, 1980.

[103] R. KALMAN, On the general theory of control systems, IRE Transactions on Auto-
matic Control, 4 (1959), pp. 110-110.

[104] R. KALMAN, Kronecker invariants and feedback, tech. rep., STANFORD UNIV
CALIF DEPT OF OPERATIONS RESEARCH, 1971.

[105] R. E. KALMAN, Canonical structure of linear dynamical systems, Proceedings of
the National Academy of Sciences, 48 (1962), pp. 596-600.

[106] R. E. KALMAN, Mathematical description of linear dynamical systems, Journal of
the Society for Industrial and Applied Mathematics, Series A: Control, 1 (1963),
pp- 152-192.

[107] S. KAPRIELIAN, K. CLEMENTS, AND J. TURI, Feedback stabilization for an
AC/DC power system model, in Proceedings of the 29th IEEE Conference on Deci-
sion and Control, IEEE, 1990, pp. 3367-3372.

[108] O. KATO AND I. SUGIURA, An interpretation of airplane general motion and contol

as inverse problem, Journal of Guidance, Control, and Dynamics, 9 (1986), pp. 198—
204.

[109] R. KAUSAL AND S. TRENN, Impulses in structured nonlinear switched DAEs,
in IEEE 56th Annual Conference on Decision and Control (CDC), IEEE, 2017,
pp- 3181-3186.

[110] R. KAUSAR AND S. TRENN, Water hammer modeling for water networks via hy-
perbolic PDEs and switched DAEs, in X VI International Conference on Hyperbolic
Problems: Theory, Numerics, Applications, Springer, 2016, pp. 123-135.

[111] S. KAWAJI AND E. Z. TAHA, Feedback linearization of a class of nonlinear de-
scriptor systems, in Proceedings of the 33rd IEEE Conference on Decision and
Control, vol. 4, IEEE, 1994, pp. 4035-4037.

[112] S. KOBAYASHI AND K. NOMIZU, Foundations of differential geometry, vol. 1, New
York, 1963.

[113] J. KOVECSES, J.-C. PIEDBOEUF, AND C. LANGE, Dynamics modeling and simu-

lation of constrained robotic systems, IEEE/ASME Transactions on Mechatronics,
8 (2003), pp. 165-1717.

[114] A.J. KRENER, (ad_f,g), (ad_f,g) and locally (ad_f,g) invariant and controllability
distributions, SIAM Journal on Control and Optimization, 23 (1985), pp. 523-549.

198



BIBLIOGRAPHY

[115] ——, Conditioned invariant and locally conditioned invariant distributions, Sys-
tems & Control Letters, 8 (1986), pp. 69-74.

[116] H. KRISHNAN AND N. H. MCCLAMROCH, Tracking in nonlinear differential-

algebraic control systems with applications to constrained robot systems, Automat-
ica, 30 (1994), pp. 1885-1897.

[117] L. KRONECKER, Algebraische Reduction der Schaaren bilinearer Formen, 1890.

[118] M. KUIJPER AND J. M. SCHUMACHER, Minimality of descriptor representations
under external equivalence, Automatica, 27 (1991), pp. 985-995.

[119] A. KUMAR AND P. DAOUTIDIS, Feedback control of nonlinear differential-
algebraic-equation systems, AIChE Journal, 41 (1995), pp. 619-636.

[120] ——, Control of nonlinear differential algebraic equation systems: an overview, in
Nonlinear Model Based Process Control, Springer, 1998, pp. 311-344.

[121] ——, Control of Nonlinear Differential Algebraic Equation Systems with Applica-
tions to Chemical Processes, vol. 397, CRC Press, 1999.

[122] P. KUNKEL AND V. MEHRMANN, Index reduction for differential-algebraic equa-
tions by minimal extension, ZAMM-Journal of Applied Mathematics and Mechan-
ics/Zeitschrift fiir Angewandte Mathematik und Mechanik: Applied Mathematics
and Mechanics, 84 (2004), pp. 579-597.

[123] G. LE VEY, Some remarks on solvability and various indices for implicit differential
equations, Numerical Algorithms, 19 (1998), pp. 127-145.

[124] G. LEBRET AND J. J. LOISEAU, Proportional and proportional-derivative canoni-
cal forms for descriptor systems with outputs, Automatica, 30 (1994), pp. 847-864.

[125] J. LEVINE, On necessary and sufficient conditions for differential flatness, Applica-
ble Algebra in Engineering, Communication and Computing, 22 (2011), pp. 47-90.

[126] F. LEwWIS AND K. OZCALDIRAN, Geometric structure and feedback in singular
systems, IEEE Transactions on Automatic Control, 34 (1989), pp. 450-455.

[127] F. L. LEWIS, A survey of linear singular systems, Circuits, Systems and Signal
Processing, 5 (1986), pp. 3-36.

[128] ——, A tutorial on the geometric analysis of linear time-invariant implicit systems,
Automatica, 28 (1992), pp. 119-137.

[129] X. L1u* AND D. WC Ho, Stabilization of non-linear differential-algebraic equa-
tion systems, International Journal of Control, 77 (2004), pp. 671-684.

[130] J.-J. LOISEAU, Some geometric considerations about the Kronecker normal form,
International Journal of Control, 42 (1985), pp. 1411-1431.

199



BIBLIOGRAPHY

[131] J.J. LOISEAU, K. OZCALDIRAN, M. MALABRE, AND N. KARCANIAS, Feedback
canonical forms of singular systems, Kybernetika, 27 (1991), pp. 289-305.

[132] J.J. LOISEAU AND P. ZAGALAK, On pole structure assignment in linear systems,
International Journal of Control, 82 (2009), pp. 1179-1192.

[133] D. G. LUENBERGER, Time-invariant descriptor systems, Automatica, 14 (1978),
pp. 473-480.

[134] D. G. LUENBERGER AND A. ARBEL, Singular dynamic Leontief systems, Econo-
metrica: Journal of the Econometric Society, (1977), pp. 991-995.

[135] M. MALABRE, More geometry about singular systems, in 26th IEEE Conference
on Decision and Control, vol. 26, IEEE, 1987, pp. 1138-11309.

[136] ——, Generalized linear systems: geometric and structural approaches, Linear Al-
gebra and its Applications, 122 (1989), pp. 591-621.

[137] M. MALABRE, V. KUCERA, AND P. ZAGALAK, Reachability and controllabil-
ity indices for linear descriptor systems, Systems & Control Letters, 15 (1990),
pp. 119-123.

[138] M. MANDERLA, D. SCHMITT, AND U. KONIGORSKI, Modelling, simulation and
control of a redundant parallel robotic manipulator based on invariant manifolds,
Mathematical and Computer Modelling of Dynamical Systems, 16 (2010), pp. 95—
113.

[139] R. MARINO, W. RESPONDEK, AND A. VAN DER SCHAFT, Equivalence of nonlin-
ear systems to input-output prime forms, SIAM Journal on Control and Optimiza-
tion, 32 (1994), pp. 387-407.

[140] S. E. MATTSSON AND G. SODERLIND, Index reduction in differential-algebraic

equations using dummy derivatives, SIAM Journal on Scientific Computing, 14
(1993), pp. 677-692.

[141] N. McCLAMROCH, Singular systems of differential equations as dynamic models
for constrained robot systems, in Proceedings of IEEE International Conference on
Robotics and Automation, vol. 3, IEEE, 1986, pp. 21-28.

[142] V. MEHRMANN AND T. STYKEL, Descriptor systems: a general mathematical

framework for modelling, simulation and control, Automatisierungstechnik, 54
(2006), pp. 405-415.

[143] S. MOBERG, Modeling and Control of Flexible Manipulators, PhD thesis,
Linkoping University Electronic Press, 2010.

[144] B. MOLINARI, A strong controllability and observability in linear multivariable
control, IEEE Transactions on Automatic Control, 21 (1976), pp. 761-764.

200



BIBLIOGRAPHY

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

B. P. MOLINARI, Structural invariants of linear multivariable systems, Interna-
tional Journal of Control, 28 (1978), pp. 493-510.

A. MORSE, Structural invariants of linear multivariable systems, SIAM Journal on
Control, 11 (1973), pp. 446—465.

A. MORSE, System invariants under feedback and cascade control, in Mathematical
Systems Theory, Springer, 1976, pp. 61-74.

A. MORSE AND W. WONHAM, Status of noninteracting control, IEEE Transactions
on Automatic Control, 16 (1971), pp. 568-581.

H. NIUMEIJER AND W. RESPONDEK, Dynamic input-output decoupling of nonlin-

ear control systems, IEEE transactions on Automatic control, 33 (1988), pp. 1065—
1070.

H. NUMEIJER AND A. VAN DER SCHAFT, Controlled invariance for nonlinear
systems, IEEE Transactions on Automatic Control, 27 (1982), pp. 904-914.

H. NIJMEIJER AND A. VAN DER SCHAFT, Nonlinear Dynamical Control Systems,
vol. 175, Springer, 1990.

K. OZCALDIRAN, A geometric characterization of the reachable and the control-

lable subspaces of descriptor systems, Circuits, Systems and Signal Processing, 5
(1986), pp. 37-48.

K. OZCALDIRAN, A complete classification of controllable singular systems, in
29th IEEE Conference on Decision and Control, IEEE, 1990, pp. 3596-3597.

C. PANTELIDES, D. GRITSIS, K. MORISON, AND R. SARGENT, The mathemati-

cal modelling of transient systems using differential-algebraic equations, Comput-
ers & Chemical Engineering, 12 (1988), pp. 449-454.

F. PASQUALETTI, F. DORFLER, AND F. BULLO, Attack detection and identification
in cyber-physical systems, IEEE Transactions on Automatic Control, 58 (2013),
pp. 2715-2729.

P. S. PEREIRA DA SILVA AND S. BATISTA, On state representations of nonlinear
implicit systems, International Journal of Control, 83 (2010), pp. 441-456.

L. PETZOLD, Differential/algebraic equations are not ODE’s, SIAM Journal on
Scientific and Statistical Computing, 3 (1982), pp. 367-384.

P. J. RABIER AND W. C. RHEINBOLDT, A geometric treatment of implicit

differential-algebraic equations, Journal of Differential Equations, 109 (1994),
pp- 110-146.

——, Nonholonomic Motion of Rigid Mechanical Systems from a DAE Viewpoint,
vol. 68, SIAM, 2000.

201



BIBLIOGRAPHY

[160] P. J. RABIER, W. C. RHEINBOLDT, ET AL., A general existence and uniqueness

theory for implicit differential-algebraic equations, Differential and Integral Equa-
tions, 4 (1991), pp. 563-582.

[161] S. REICH, On a geometrical interpretation of differential-algebraic equations, Cir-
cuits, Systems, and Signal Processing, 9 (1990), pp. 367-382.

[162] ——, On an existence and uniqueness theory for nonlinear differential-algebraic
equations, Circuits, Systems and Signal Processing, 10 (1991), pp. 343-359.

[163] W. RESPONDEK, Geometric methods in linearization of control systems, Banach
Center Publications, 1 (1985), pp. 453-467.

[164] W. C. RHEINBOLDT, Differential-algebraic systems as differential equations on
manifolds, Mathematics of Computation, 43 (1984), pp. 473—482.

[165] R. RIAZA, Differential-Algebraic Systems: Analytical Aspects and Circuit Applica-
tions, World Scientific, 2008.

[166] ——, DAEs in circuit modelling: a survey, in Surveys in Differential-Algebraic
Equations I, Springer, 2013, pp. 97-136.

[167] H. H. ROSENBROCK, State-space and Multivariable Theory, Nelson, 1970.

[168] ——, Structural properties of linear dynamical systems, International Journal of
Control, 20 (1974), pp. 191-202.

[169] P. ROUCHON, M. FLIESS, AND J. LEVINE, Kronecker’s canonical forms for non-

linear implicit differential systems, in System Structure and Control 1992, Elsevier,
1992, pp. 248-251.

[170] W. J. RUGH AND W. J. RUGH, Linear System Theory, vol. 2, Prentice Hall Upper
Saddle River, NJ, 1996.

[171] S. SASTRY AND C. DESOER, Jump behavior of circuits and systems, IEEE Trans-
actions on Circuits and Systems, 28 (1981), pp. 1109-1124.

[172] L. SILVERMAN, Inversion of multivariable linear systems, IEEE Transactions on
Automatic Control, 14 (1969), pp. 270-276.

[173] S. N. SINGH AND W. J. RUGH, Decoupling in a class of nonlinear systems by

state variable feedback, Journal of Dynamic Systems, Measurement, and Control,
94 (1972), pp. 323-329.

[174] P. SINHA, State feedback decoupling of nonlinear systems, IEEE Transactions on
Automatic Control, 22 (1977), pp. 487-489.

[175] J. SIOBERG, Optimal Control and Model Reduction of Nonlinear DAE Models, PhD
thesis, Institutionen for systemteknik, 2008.

202



BIBLIOGRAPHY

[176]

[177]

[178]

[179]

[180]

[181]

[182]

[183]

[184]

[185]

[186]

[187]

[188]

M. S. SOoTO AND C. TISCHENDORF, Numerical analysis of DAEs from coupled

circuit and semiconductor simulation, Applied Numerical Mathematics, 53 (2005),
pp. 471-488.

A. STEINBRECHER, Numerical Solution of Quasi-Linear Differential-Algebraic
Equations and Industrial Simulation of Multibody Systems, PhD thesis, Technische
Universitit Berlin, 2006.

R. SU, On the linear equivalents of nonlinear systems, Systems Control Letters, 2
(1982), pp. 48 — 52.

F. TAKENS, Constrained equations; a study of implicit differential equations and
their discontinuous solutions, in Structural Stability, the Theory of Catastrophes,
and Applications in the Sciences, Springer, 1976, pp. 143-234.

I. TALL AND W. RESPONDEK, Feedback equivalence of nonlinear control systems:

a survey on formal approach, in Chaos in Automatic Control, CRC Press, 2005,
pp. 156-281.

S. TRENN, A normal form for pure differential algebraic systems, Linear Algebra
and its Applications, 430 (2009), pp. 1070-1084.

D. VAFIADIS AND N. KARCANIAS, Canonical forms for descriptor systems under
restricted system equivalence, Automatica, 33 (1997), pp. 955-958.

M. VAN NIEUWSTADT, M. RATHINAM, AND R. M. MURRAY, Differential flatness

and absolute equivalence, in Proceedings of 33rd IEEE Conference on Decision and
Control, vol. 1, IEEE, 1994, pp. 326-332.

A. VARGA, Computation of Kronecker-like forms of a system pencil: Applications,
algorithms and software, in Proceedings of the 1996 IEEE International Symposium
on Computer-Aided Control System Design, IEEE, 1996, pp. 77-82.

J. WANG AND C. CHEN, Exact linearization of nonlinear differential algebraic

systems, in 2001 International Conferences on Info-Tech and Info-Net. Proceedings
(Cat. No.01EX479), vol. 4, Oct 2001, pp. 284-290 vol.4.

K. WEIERSTRASS, Zur theorie der bilinearen und quadratischen formen, Berl.
Monatsb, (1968), p. 310-338.

J. WILLEMS, Almost invariant subspaces: an approach to high gain feedback
design—Part I: Almost controlled invariant subspaces, IEEE Transactions on Au-
tomatic Control, 26 (1981), pp. 235-252.

—, Almost invariant subspaces: an approach to high gain feedback design—Part
11: Almost conditionally invariant subspaces, IEEE Transactions on Automatic Con-
trol, 27 (1982), pp. 1071-1085.

203



BIBLIOGRAPHY

[189] J. C. WILLEMS, Input-output and state-space representations of finite-dimensional
linear time-invariant systems, Linear Algebra and its Applications, 50 (1983),
pp- 581-608.

[190] J. C. WILLEMS AND C. COMMAULT, Disturbance decoupling by measurement

feedback with stability or pole placement, SIAM Journal on Control and Optimiza-
tion, 19 (1981), pp. 490-504.

[191] K.-T. WONG, The eigenvalue problem \T'x+ Sx, Journal of Differential Equations,
16 (1974), pp. 270-280.

[192] W. WONHAM AND A. MORSE, Feedback invariants of linear multivariable sys-
tems, Automatica, 8 (1972), pp. 93-100.

[193] W. M. WONHAM, Linear multivariable control, in Optimal Control Theory and its
Applications, Springer, 1974, pp. 392-424.

[194] W. M. WONHAM AND A. S. MORSE, Decoupling and pole assignment in linear
multivariable systems: a geometric approach, SIAM Journal on Control, 8 (1970),
pp. 1-18.

[195] L. XTIAOPING, On linearization of nonlinear singular control systems, in American
Control Conference, June 1993, pp. 2284-2287.

[196] L. XIAOPING, Asymptotic output tracking of nonlinear differential-algebraic con-
trol systems, Automatica, 34 (1998), pp. 393-397.

[197] L. XIAOPING AND S. CELIKOVSKY, Feedback control of affine nonlinear singular
control systems, International Journal of Control, 68 (1997), pp. 753-774.

[198] W. YIM AND S. N. SINGH, Feedback linearization of differential-algebraic systems

and force and position control of manipulators, Dynamics and Control, 3 (1993),
pp- 323-352.

[199] X. YUN AND N. SARKAR, Unified formulation of robotic systems with holonomic
and nonholonomic constraints, IEEE Transactions on Robotics and Automation, 14
(1998), pp. 640-650.

[200] E. ZEEMAN, Differential equations for the heartbeat and nerve impulse, Towards a
Theoretical Biology, 4 (1972), pp. 8-67.

204



Some Notations and Notions from Differential
Geometry

the differential of a smooth fuglction h : X — R. In coordinates x =

dh T oh oh oh
[l’l,...,I’n] ,WehaVedh: Zla—xldﬂfl = [8_:61”%]
1=
the inner product of a co-vector + = [xy,...,2,| and vector g =
<z 9>

gt ..., 9", e, Y 2
=1

the lie derivative (direction derivative) of a smooth function h : X —
Lsh R with respect to a vector field f. In coordinates z, Lsh(z) =

S 2 (@) f(2) = 2(2) f(x) =< dh(z), f(z) >

=1

the lie bracket of two vector fields f and g. In coordinates z, [f, g|(z) =
9g; 0f;
.l B0f) - o) = T (SR - Ea) ) &,
J i
where % and % denote the Jacobi matrices of g and f

adgg [f, 4]

A exterior product

de A dé d§211/\---£\§{“ ANdéy N NEY?, where & = (€1,...,€0") and & =
(527 ) 22>

TX the tangent bundle of a smooth manifold X

T.M the tangent space of a submanifold M of R" atx € M

distribution ¥ a map attaching to any z € X a linear subspace Z(z) C T, X

consists of all linear forms (co-vectors) w(z) such that <

distributi +
codistribution 7 w(z), g(x) >= 0, for any g(z) € Z(z)

involutive ¥ a distribution Z is involutive if for any f, g € 2, we have [f,g] € ¥

a p-dimensional foliation of an n-dimensional manifold X is a de-
composition of X into a union of disjoint connected submanifolds
{Mq},c4- called the leaves of the foliation, with the following prop-

Foliation M, erty: Every point in X has a neighborhood U and a system of lo-
cal coordinates * = (z1,...,2,) : U — R" such that for each
leat M, the components of U N M, are described by the equations
Tpy1 = const.,...,x, = const.
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Abbreviations

DAE

DAECS
EM-equivalent
EMCF

EMNF

EMTF
ex-equivalent
ex-fb-equivalent
FBCF
in-equivalent
in-fb-equivalent
KCF
M-equivalent
MCF

MCISF

MNF

MTF

NWF

ODE

ODECS

QL

SE

SMCISF
sys-equivalent
sys-fb-equivalent
WF

differential-algebraic equation
differential-algebraic equation control system
extended Morse equivalent

extended Morse canonical form

extended Morse normal form

extended Morse triangular form

externally equivalent

externally feedback equivalent

feedback canonical form

internally equivalent

internally feedback equivalent

Kronecker canonical form

Morse equivalent

Morse canonical form

maximal controlled invariant submanifold form
Morse normal form

Morse triangular form

nonlinear generalization of the Weierstrass form
ordinary differential equation

ordinary differential equation control system
quasi-linear

semi-explicit

special maximal controlled invariant submanifold form
system equivalent

system feedback equivalent

Weierstrass form
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