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Résumé:

Dans la première partie de cette thèse, nous étudions les équations différentielles algébriqu-
es (en abrégé EDA) linéaires et les systèmes de contrôles linéaires associés (en abrégé
SCEDA). Les problèmes traités et les résultats obtenus sont résumés comme suit.

1. Relations géométriques entre les EDA linéaires et les systèmes de contrôles génériq-
ues SCEDO. Nous introduisons une méthode, appelée explicitation, pour associer un
SCEDO à n’importe quel EDA linéaire. L’explicitation d’une EDA est une classe des
SCEDO, précisément un SCEDO défini, à un changement de coordonnées près, une trans-
formation de bouclage près et une injection de sortie près. Puis nous comparons les « suites
de Wong » d’une EDA avec les espaces invariants de son explicitation. Nous prouvons que
la forme canonique de Kronecker FCK d’une EDA linéaire et la forme canonique de Morse
FCM d’un SCEDO, ont une correspondance une à une et que leur invariants sont liés. De
plus, nous définissons l’équivalence interne de deux EDA et montrons sa particularité par
rapport à l’équivalence externe en examinant les relations avec la régularité interne, i.e.,
l’existence et l’unicité de solutions.

2. Transformation d’un SCEDA linéaire vers sa forme canonique via la méthode
d’explicitation avec des variables de driving. Nous étudions les relations entre la forme
canonique par bouclage FCFB d’un SCEDA proposée dans la littérature et la forme canon-
ique de Morse pour les SCEDO. Premièrement, dans le but de relier SCEDA avec les
SCEDO, nous utilisons une méthodes appelée explicitation (avec des variables de driv-
ing). Cette méthode attache à une classe de SCEDO avec deux types d’entrées (le contrôle
original et le vecteur des variables de driving) à un SCEDA donné. D’autre part, pour un
SCEDO linéaire classique (sans variable de driving) nous proposons une forme de Morse
triangulaire FMT pour modifier la construction de la FCM. Basé sur la FMT nous pro-
posons une forme étendue FMT et une forme étendue de FCM pour les SCEDO avec deux
types d’entrées. Finalement, un algorithme est donné pour transformer un SCEDA dans
sa FCFB. Cet algorithme est construit sur la FCM d’un SCEDO donné par la procédure
d’explicitation. Un exemple numérique illustre la structure et l’efficacité de l’algorithme.

Pour les EDA non linéaires et les SCEDA (quasi linéaires) nous étudions les problèmes
suivants:

3. Explicitations, analyse externe et interne et formes normales des EDA non linéaires.
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Nous généralisons les deux procédures d’explicitation (avec ou sans variables de driving)
dans le cas des EDA non linéaires. L’objectifs de ces deux méthodes est d’associer un
SCEDO non linéaire à une EDA non linéaire telle que nous puissions l’analyser à l’aide de
la théorie des EDO non linéaires. Nous comparons les différences de l’équivalence interne
et externe des EDA non linéaires en étudiant leur relations avec l’existence et l’unicité
d’une solution (régularité interne). Puis nous montrons que l’analyse interne des EDA non
linéaires est liée à la dynamique nulle en théorie classique du contrôle non linéaire. De
plus, nous montrons les relations des EDAS de forme purement semi-explicite avec les 2
procédures d’explicitations. Finalement, une généralisation de la forme de Weierstrass non
linéaire FW basée sur la dynamique nulle d’un SCEDO non linéaire donné par la méthode
d’explicitation est proposée.

4. Linéarisation par bouclage et sous variété controllable invariante des EDA non
liéaires. Nous étudions la linéarisation par bouclage des EDA non linéaires (de forme
quasi-linéaire) sous l’action de deux sortes de bouclage, i.e., l’équivalence par bouclage
externe et l’équivalence par bouclage interne. Des conditions nécessaires et suffisantes
sont donnés à l’aide de l’explicitation (avec variables de driving). Nous montrons que la
linéarisation par bouclage d’un SCEDA est liée à l’involutivité des distributions, qui for-
ment deux suites, attachées à un SCEDO donné par la procédure d’explicitation. De plus,
nous étudions la sous variété invariante controllable maximale d’un système d’EDA et, si
celle-ci existe, une forme normale sous l’action du bouclage externe est déduite sous des
hypothèses de rang constant. Cette forme normale explicite le rôle de différentes variables
des SCEDA non linéaires.

En outre, pour les EDA non linéaires (de forme semi-explicite), nous étudions:

5. Linéarisation interne et externe des EDA semi explicites. Nous étudions deux
sortes de linéarisation (interne et externe) pour les EDA non linéaires de forme semi-
explicite. La différence entre linéarisation interne et externe est illustré par un exemple
de système mécanique. De plus, nous définissons plusieurs niveaux d’équivalence externe
pour deux EDA de forme semi-explicite. L’explicitation proposée nous permet de traiter
une EDA semi-explicite comme un système de contrôle défini à un bouclage près (une
classe de systèmes de contrôle). Puis des conditions nécessaires et suffisantes exprimées
par l’explicitation caractérisent l’equivalence externe niveau-3 d’une EDA semi-explicite
avec une EDA linéaire semi-explicite d’une forme partciulière. Finalement, nous montrons
par un exemple que la linéarisation par bouclage de niveau-2 peut être réalisée si l’une de
ses explicitations est linéarisable entrée-sortie de niveau-2.
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Abstract:

In the first part of this thesis, we study linear differential-algebraic equations (shortly,
DAEs) and linear control systems given by DAEs (shortly, DAECSs). The discussed prob-
lems and obtained results are summarized as follows.

1. Geometric connections between linear DAEs and linear ODE control systems
ODECSs. We propose a procedure, named explicitation, to associate a linear ODECS
to any linear DAE. The explicitation of a DAE is a class of ODECSs, or more precisely, an
ODECS defined up to a coordinates change, a feedback transformation and an output in-
jection. Then we compare the “Wong sequences” of a DAE with invariant subspaces of its
explicitation. We prove that the basic canonical forms, the Kronecker canonical form KCF
of linear DAEs and the Morse canonical form MCF of ODECSs, have a perfect correspon-
dence and their invariants (indices and subspaces) are related. Furthermore, we define the
internal equivalence of two DAEs and show its difference with the external equivalence
by discussing their relations with internal regularity, i.e., the existence and uniqueness of
solutions.

2. Transform a linear DAECS into its feedback canonical form via the explicita-
tion with driving variables. We study connections between the feedback canonical form
FBCF of DAE control systems DAECSs proposed in the literature and the famous Morse
canonical form MCF of ODECSs. First, in order to connect DAECSs with ODECSs, we
use a procedure named explicitation (with driving variables). This procedure attaches a
class of ODECSs with two kinds of inputs (the original control input and the vector of
driving variables) to a given DAECS. On the other hand, for classical linear ODECSs
(without driving variables), we propose a Morse triangular form MTF to modify the con-
struction of the classical MCF. Based on the MTF, we propose an extended MTF and an
extended MCF for ODECSs with two kinds of inputs. Finally, an algorithm is proposed to
transform a given DAECS into its FBCF. This algorithm is based on the extended MCF
of an ODECS given by the explication procedure. Finally, a numerical example is given to
show the structure and efficiency of the proposed algorithm.

For nonlinear DAEs and DAECSs (of quasi-linear form), we study the following problems:

3. Explicitations, external and internal analysis, and normal forms of nonlinear
DAEs. We generalize the two explicitation procedures (with or without driving vari-
able) proposed in the linear case for nonlinear DAEs of quasi-linear form. The purpose
of these two explicitation procedures is to associate a nonlinear ODECS to any nonlinear
DAE such that we can use the classical nonlinear ODE control theory to analyze nonlinear
DAEs. We discuss differences of internal and external equivalence of nonlinear DAEs by
showing their relations with the existence and uniqueness of solutions (internal regularity).
Then we show that the internal analysis of nonlinear DAEs is closely related to the zero
dynamics in the classical nonlinear control theory. Moreover, we show relations of DAEs
of pure semi-explicit form with the two explicitation procedures. Furthermore, a nonlinear
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generalization of the Weierstrass form WF is proposed based on the zero dynamics of a
nonlinear ODECS given by the explicitation procedure.

4. Feedback linearization and controlled invariant submanifolds of nonlinear DAECSs.
We study feedback linearizability of nonlinear DAECSs (of quasi-linear form) under two
kinds of feedback equivalence, namely, the external feedback equivalence and internal
feedback equivalence. Necessary and sufficient conditions are given with the help of the
explicitation (with driving variable) procedure. It is proved that feedback linearizability of
a DAECS is closely related to the involutivity of distributions, forming two sequences, as-
sociated to an ODECS given by the explicitation procedure. Moreover, we investigate the
maximal controlled invariant submanifold for DAE systems and two normal forms under
external feedback equivalence are derived, under constant rank or involutivity hypothesis,
assuming only the existence of the invariant submanifold. These normal forms facilitate
understanding of the role of various variables in nonlinear DAECSs.

Furthermore, for nonlinear DAEs (of semi-explicit form), we study:

5. Internal and external linearization of semi-explicit DAEs. We study two kinds of
linearization (internal and external) for nonlinear DAEs of semi-explicit SE form. The
difference between external and internal linearization is illustrated by an example of me-
chanical system. Moreover, we define different levels of external equivalence for two SE
DAEs. The proposed explicitation procedure allows us to treat a given SE DAE as a con-
trol system defined up to a feedback transformation (a class of control systems). Then
sufficient and necessary conditions, expressed via explicitation, are given to describe when
a given SE DAE is level-3 external equivalent to a linear SE DAE of some specific form.
Finally, we show by an example that the level-2 external linearization can be achieved if
one of its explicitation is level-2 input-output linearizable.
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Chapter 1

Introduction

In this thesis, we are interested in systems given by differential-algebraic equations DAEs,
which are also called implicit, singular, generalized, or descriptor systems. In particu-
lar, we will study DAE systems of the following different forms, the differences between
these forms come from their structures, nonlinearities and levels of implicitation. More
precisely, we consider the following linear DAE systems:

• A linear differential-algebraic equation, shortly a linear DAE, is of the form

∆ : Eẋ = Hx. (1.1)

• A linear differential-algebraic equation control system, shortly a linear DAECS, is
of the form

∆u : Eẋ = Hx+ Lu. (1.2)

• A linear semi-explicit differential-algebraic equation, shortly a linear SE DAE, is of
the form

∆se :

{
Rẋ= Ax

0 = Cx.
(1.3)

In the above equations, E ∈ Rl×n, H ∈ Rl×n, L ∈ Rl×m, R ∈ Rr×n, A ∈ Rr×n,
C ∈ Rp×n, and R is of full row rank. The variable x ∈ Rn is called the “generalized” state
(also called semi-state, see e.g. [127],[165]) and u ∈ Rm is a predefined control input.
Correspondingly, we consider the following nonlinear DAE systems.

• A nonlinear differential-algebraic equation, shortly a nonlinear DAE, is of the form

Ξ : E(x)ẋ = F (x). (1.4)

• A nonlinear differential-algebraic equation control system, shortly a nonlinear DAE-
CS, is of the form

Ξu : E(x)ẋ = F (x) +G(x)u. (1.5)

5



CHAPTER 1. INTRODUCTION

• A nonlinear semi-explicit differential-algebraic equation, shortly a nonlinear SE
DAE, is of the form

Ξse :

{
R(x)ẋ= a(x)

0 = c(x).
(1.6)

In the above nonlinear systems, x ∈ X is the “generalized” state and X is an open subset
of Rn (or more generally, X is a differential manifold of dimension n), and u ∈ Rm is
a predefined control input and Rm is called the input space. The matrix-valued functions
E(x), R(x), F (x), G(x), a(x) and c(x) above are smooth and of appropriate sizes, and
R(x) is usually assumed to be of full row rank. Throughout the thesis, the word smooth
will always mean C∞-smooth.

Note that the matrices E, R and the matrix-valued functions E(x), R(x) are not nec-
essarily invertible, which is the reason that the DAE systems are different from ordinary
differential equation ODE systems. In fact, if E is invertible, the DAE ∆, given by (1.1),
can be expressed as ẋ = E−1Hx, where E−1 is the inverse of E, which is an ODE. Also
note that for linear systems ∆u, given by (1.2), and nonlinear systems Ξu, given by (1.5),
we emphasize the difference between the variable x and the variable u. Notice that, al-
though there may exist free variables among the components of the “generalized” state x,
we will not call these free variables control inputs as we do for the components of u.

The above linear and nonlinear DAE systems can be seen as special cases of the fol-
lowing DAE of the general form

Θu : F (x, ẋ, u) = 0, (1.7)

where (x, ẋ) ∈ TX , the tangent bundle of X , and F : TX × U → Rl is smooth. Denote
by Class(Θu) the class of systems of the same form as Θu and use the same notation
Class(·) for ∆, ∆u, ∆se, Ξ, Ξu, Ξse. Then, apparently, we have

Class(∆se) ⊆ Class(∆) ⊆ Class(∆u)⊆⊆ ⊆ ⊆

Class(Θu).

Class(Ξse) ⊆ Class(Ξ) ⊆ Class(Ξu) ⊆

The above diagram illustrates the relations between different classes of DAEs. We will not
study general DAEs of form (1.7), but it is worth to mention that the following references,
which discuss problems concerning such DAEs, gave inspirations for the present thesis.
The discussions on geometric interpretations of the existence and uniqueness of solutions
can be seen in [162, 158], numerical methods of analyzing the solutions of DAEs can be
consulted in [28, 38, 157], the discontinuities of DAE solutions are considered in [179],
various definitions of DAE indices are given in [78, 77, 37, 123], some index reduction
methods are shown in [76, 140, 6, 122, 142], connections between DAEs and infinite-
dimensional differential geometry (or, differential flatness, see [68, 71]) are shown in [70,
125, 58, 156, 169, 69] etc.
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CHAPTER 1. INTRODUCTION

1.1 Motivation and a short survey of DAE models in prac-
tical systems

The motivation of studying linear and nonlinear DAEs is their frequent presence in math-
ematical models of some practical systems. In particular, DAEs are a proper tool to model
the following classes of systems.

Constrained mechanical systems: Since there is plenty of examples for such systems,
e.g., the textbooks [159],[28] and thesis [177],[175], and some examples will be used in
the next chapters of the present thesis, we will use a part of this section to discuss them.
In general, the dynamics of a mechanical system, usually given by the Euler-Lagrange
equations, are of the following form [57]:

M(p)p̈+ V (ṗ, p) +G(p) = τ +NT (p)λn +HT (p)λh, (1.8)

where p is the vector of position variables, M(p) is a matrix-valued function which is as-
sociated with mass (or inertia) and V (ṗ, p) is a vector function which characterizes the
Coriolis and centrifugal forces, G(p) represents the gravity force and τ is a vector of ex-
ternal torque, where λh and λn are Lagrange multipliers corresponding to the holonomic
constraints and nonholomic constraints (we will introduce their definitions below), re-
spectively, N(p) and H(p) are matrix-valued functions of appropriate sizes. DAEs appear
frequently in the models of mechanical systems subject to holonomic constraints and non-
holomic constraints [199]. Whether constraints are holonomic or nonholonomic can be
determined by the Frobenius theorem [82]. In particular, holonomic constraints are con-
straints depend on positions only and are usually of the following form:

C(p) =

c1(p)
...

ck(p)

 = 0, (1.9)

where C(p) is a vector of scalar functions ci(p), i = 1, . . . , k and the matrix N(p) in (1.8)
satisfies N(p) = ∂C(p)

∂p
. The following examples are mechanical systems of form (1.8)

subject to holonomic constraints of form (1.9) (we also indicate the form of these DAE
systems using the notations ∆, ∆se, ∆u, Ξ, Ξse, Ξu, given by equations (1.1)-(1.6)):

• Some classical mechanisms: Form Ξse: the horizontal beam with specified shape
supporting a load distributed along it in Example 7 of [35], the planar pendulum
given in [158],[28] and Example 4.1.13 of [177], the lolly in Example 4.1.13 of
[177], the slider crank (2-link robotic arm with end joint sliding on horizontal sur-
face) in Example 4.1.5 of [177], the two-link, flexible joint, planar robotic arm in
Example 5 of [35] or see [34],[100],[199], the 3-link robotic arm in [113], the con-
strained robot systems (a robot arm with inertial load or contacting with a rigid sur-
face, two robots arm with a common inertial load) in [141], the Huygens oscillation
center in [71],[183]; Form Ξu: the cart-pendulum system given in Example 1.1 of
[142], the planar crane shown in [72],[68],[25], the constrained cylinder robot given
in [41]; Form ∆u: the linear mass-spring-system given in [15].
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• Redundant mechanisms: Form Ξu: the redundant parallel robotic arm in [138], the
double four joint mechanism in Example 4.1.16 of [177].

• Mechanisms with constrained trajectory: Form Ξu: the 3-link planar robotic arm
with the trajectory end-point constrained on different surfaces in [198], the air-craft
performing a circular loop in Example 6 of [35] or see [23],[108].

• Mechanical systems with prescribed trajectory: Note that such systems can be char-
acterized by equation (1.8) and equation (1.10) below,

C(q(t))− γ(t) = 0, (1.10)

where r(t) is a curve describing the desired trajectory. For example, the aircrafts of
pre-described trajectory given in [24], the system consisting of two-mass connected
by a spring in Example 1 and Example 3 of [25], the reentry (space) vehicle on a
spherical earth with given trajectories in [28].

The nonholomic constriants, linear with respect to velocity, have the following form

H(p)ṗ = 0, (1.11)

where H(p) is a matrix-valued function of an appropriate size. Nonholomic constraints
usually characterize the sliding and rolling motions of mechanical systems. The following
examples are systems subject to nonholonomic constraints or both holonomic and non-
holonomic constraints, formulated by equations (1.8), (1.9), and (1.11):

• Form Ξ: The 3-link planar robotic arm with a free joint in [89],[3], two spheres
systems (the rolling motion of one small sphere on the surface of a large sphere)
in [199], similarly the rolling ball in (9.18) of [159], the skateboard rolling on a
horizontal surface in [177] or a simpler case: the (single) sharp-edged skate in (9.3)
of [159], the rolling disk in [99], three rolling cylinders in (9.32) [159]; Form Ξu:
the system of mass, spring and double pendulum, called the roll-ring model in (9.13)
of [159].

Electrical circuits (or power) systems: Such kinds of systems are often described by
the mix of differential equations of the form

C(vc)v̇c = ic
L(il)i̇l = vl

coming from the characteristics of the devices (e.g., capacitors, inductors) and algebraic
equations of the form

Ai= 0

v = AT e

coming from the Kirchhoff’s laws, where c, l, i and v stand for capacitors, inductors, cur-
rent and voltage, respectively, and where e are the node potentials. Some simple examples
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of electrical circuits are, e.g., the simple nonlinear RC (only one capacitor, one resistor
and one voltage source) circuit in [162], the linear RLC circuit (composed only of resis-
tors, capacitors and voltage sources), and the nonlinear RLC circuits with differential or
operational amplifiers in [28], the electrical network consisting of nonlinear resistors, in-
ductors and current-sources and linear controlled sources, see Fig.20 of [171], the resistive
nonlinear n ports shown in [51],[171], the parallel AC/DC power system shown in [107],
the discretized transmission line (linear) given in [73],[15]. Actually, electrical circuits
systems can be classified into different models, e.g., NTA, ANA, MNA, tree-based, hybrid
and multi-port models as shown in the textbook [165], survey paper [166] and thesis [11].
Note that except for the MNA and some hybrid models, by assuming that C(vc) and L(il)

are invertible (or of full row rank) matrices, the models mentioned above are all of the
semi-explicit form Ξse or ∆se [166].

Chemical processes: Broad discussions on models of chemical processes from DAE
point of view can be seen in the survey paper [60] and book [121]. Here we only mention a
few examples from the vast documented literature: the distillation column in Example 8 of
[35], various reactors (two phase reactor, reactor with fast and slow reaction, reactor with
fast heat transfer though a jacket and cascade of reactors with negligible pressure drop)
in [121],[119],[120], the catalytic reactors in [81] and the Phase-Locked Loop Circuit in
[175].

Some other systems: Biological systems of heartbeat and nerve impulse in [200], the
water hammer modeling for water network in [110],[109], the model of cyber-physical
systems under attack in [155], the economic system in [134], the fluid dynamics in [84],
etc.

1.2 Linear ODE systems and linear DAE systems

A linear ODE control system, shortly ODECS, is of the following form:

Λ :

{
ẋ = Ax+Bu

y = Cx+Du,
(1.12)

where x ∈ Rn is the state, u ∈ Rm is the control input and y ∈ Rp is the output. A
linear ODECS of form (1.12) is denoted by Λn,m,p = (A,B,C,D); if D = 0, we denote
it by Λn,m,p = (A,B,C). Note that we use x to denote both the “generalized” state of
DAE systems and the state of ODE systems, but their differences should be pointed out as
follows. The states of an ODECS are the variables that enter the system dynamically (and
inputs are the variables that enter the system statically), but the “generalized” states of a
DAE may include some free (static) variables. More precisely, the “generalized” states are
the predefined states when modeling the system. Unless the analysis of the system shows
some properties of the variables in the “generalized” states, we do not know the statuses
of those variables, i.e., some of them may perform as free inputs, some are usual states,
and some of them could be constrained by implicit algebraic constraints. Linear ODECSs

9
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draw attentions from researchers of mathematical control theory since the state space rep-
resentations of systems were introduced in 1950s (see e.g. Kalman’s papers [103],[106]).
After decades of evolutions, linear ODE control theory has been well-developed by efforts
of the control theory community. For a good review of linear control theory, including
the history of its development, we refer to textbooks [167],[193],[102],[170],[43],[30]. In
particular, we are interested in the geometric analysis of linear ODECSs, some pioneering
works of that are from Basile, Marro, Wonham and Morse [9, 7, 194, 148, 147, 192, 8] and
other interesting contributions are [190],[187],[188].

The geometric tools used to analyze the structure of ODECSs include various invariant
subspaces of linear ODECSs (see e.g. [9]). In the matrix theory (see e.g. [75]), for a linear
map A : Rn → Rn, a subspace V of Rn is called A-invariant if AV ⊆ V. Invariant
subspaces of ODECSs generalize the concept of A-invariance to control systems. For
instance, for Λn,m,p = (A,B,C), a subspace V ⊆ Rn is called (A,B)-controlled invariant
if V satisfies

AV ⊆ V + ImB

and a subspace W ⊆ Rn is called (C,A)-conditioned invariant if W satisfies

A(W ∩ kerC) ⊆W.

Denote by V∗ the largest (A,B)-controlled invariant subspace contained in kerC and by
W∗ the smallest (C,A)-conditioned invariant subspace containing ImB. An important ap-
plication of the notion of invariant subspaces is to derive normal forms and canonical forms
for ODECSs, e.g., the Kalman decomposition [105] provides a decomposed normal form
for linear ODECSs based on the controllability and observability subspaces, the Brunovský
canonical form [31] is a canonical form for controllable pairs (A,B) under feedback, the
Morse canonical form MCF [146] is a fully decoupled canonical form for ODECSs with
system matrices (A,B,C). In [146], transformations of an ODECS, given by a triple
(A,B,C), into its MCF are constructed via the controlled and conditioned invariant sub-
spaces. Also the structure invariants of the MCF, called the Morse indices, appearing in
the transformations are calculated via those invariant subspaces. Molinari [145] gener-
alized the MCF to ODECSs described by a quadruple of system matrices (A,B,C,D),
based on the generalized (also called strong or weak) controllability and observability sub-
spaces [144]. These subspaces are actually the controlled and conditioned invariant sub-
spaces generated by the quadruple (A,B,C,D). A more general normal form of ODECSs
is given in [1], whose authors decomposed an ODECS into nine parts (based on a full
consideration of controllability and observability subspaces, controlled and conditioned
invariant subspaces) and discuss their relations with system zeros.

In Chapter 1 and Chapter 2 of this thesis, we will review the precise definitions and
calculation algorithms for conditioned and controlled invariant subspaces. Moreover, we
will modify the construction procedure of the MCF, given in [146],[145], by proposing
a Morse triangular form MTF. The proposed MTF makes the transformation from an
ODECS into its MCF transparent and geometrical.

On the other hand, we consider linear DAEs of the form ∆ and linear DAECSs of the
form ∆u, given by (1.1) and (1.2), respectively. Fundamental achievement and general
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discussions on linear DAEs and DAECSs can be consulted in textbooks [59],[36] and sur-
vey paper [127]. Early results on linear DAEs can be traced back to two famous canonical
forms of the matrix pencil sE −H given by Weierstrass [186] and Kronecker [117]. The
Weierstrass form WF is a canonical form for regular matrix pencil and the Kronecker
canonical form KCF handles the general (regular and non-regular) case. The word regular
above means that E and H are square and det(sE − H) 6= 0, ∀s ∈ C, see e.g. [75].
Luenberger proposed a shuffle algorithm in [133] to test if a given DAE is regular. Struc-
ture analysis of DAECSs from polynomial system matrices point of view was introduced
by Gantmatcher [75] and Rosenbrock [167]. After Rosenbrock introduced the restrictive
system equivalence for two DAECSs (with output) in [168], there appeared various def-
inition of the equivalence relations (e.g., external, strong, completely system, constant,
input-output equivalence) for DAECSs, see the surveys in [64],[118]. In particular, there
is a definition of external equivalence in [189],[118] via the behavior characterization, see
also [2]. Notice that the external equivalence of [2] is different from two others mentioned
above. Moreover, we emphasize here, that in Chapter 1 and Chapter 2 of this thesis, we
will give our definition of external equivalence, which is actually the same as the strict and
restricted equivalence defined in [75] and [168], respectively, and different from the ones
in [189],[118] and [2].

The following literature discusses the normal forms and canonical forms of linear DAE
systems under some predefined equivalence. The authors of [85] proposed a feedback
canonical from for controllable and regular DAECSs. Several canonical forms for regular
systems based on their controllability and impulse controllability are given in [80]. More-
over, in [153], a canonical form of general DAECSs was discussed. A more subtle and
detailed feedback canonical form for general DAECSs was given in [131] by considering
a group of transformations including state (proportional) feedback (P) and state deriva-
tive (proportional-derivative) feedback. Then the P and PD feedback canonical form was
extended to DAECSs with output in [124] by considering additional transformations in-
cluding coordinates changes in the output space and output injections. Furthermore, the
canonical form of general DAECSs with output under the restricted system equivalence
was discussed in [182]. More recently, a normal form based on the impulse-controllability
and impulse-observability of DAECSs was proposed in [181], and a quasi-Weierstrass and
a quasi-Kronecker normal form of DAEs were given in [16] and [20], respectively, us-
ing a geometrical way to make the transformations for a DAE to its WF and KCF more
transparent.

As in the ODE case, fundamental geometrical tools for deriving canonical and normal
forms of DAE systems are invariant subspaces of DAEs’, i.e., the limits of the so-called
Wong sequences and their augmented version (see e.g. [128],[17]). The Wong sequences
of a DAE ∆, given by (1.1), are the subspace sequences Vi and Wi below, first given in
[191] to discuss the existence and uniqueness of solutions for linear DAEs:

V0 = Rn, Vi+1 = H−1EVi, i ∈ N,
W0 = {0}, Wi+1 = E−1HWi, i ∈ N.

The augmented version of the Wong sequences are just the extensions of the above se-
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quences in order to characterize feedback invariants of DAECSs. A deeper generaliza-
tion of the Wong sequences to DAECSs with outputs are given, e.g., in [135],[152],[124].
These invariant subspaces of DAEs are powerful tools for the following problems of DAE
systems: structure analysis [136], regularization and pole placement [126],[54],[18], dis-
turbance decoupling [65],[14], controllability [137],[152],[17] and observability [19] anal-
ysis, etc. In the present thesis, we are particularly interested in the KCF for linear DAEs
[117] and the feedback canonical form FBCF for linear DAECSs [131]. Relations of the
structure invariants of the KCF (called the Kronecker indices) with the Wong sequences
are shown in [130],[20],[21]. Moreover, relations of the indices of the FBCF with the
augmented Wong sequences are shown in [131],[18].

In view of the similarities and mutual correspondence (e.g., the Morse indices of
ODECS and the Kronecker indices of DAEs, the invariant subspaces of ODECSs and
the Wong sequences of DAECSs, etc) that we have just described in the review about the
history of the geometric aspects of linear ODE and DAE systems, it is natural to think
about relations of the two classes of systems. This leads to our studies of Chapter 2, in
which a given DAE is associated with a class of ODECSs and of Chapter 3, in which the
connections of ODECSs and DAECSs are built.

1.3 Preliminaries on geometric theory of nonlinear ODE
control systems

In this section, we will review some concepts of the classical geometric control theory
(see the list of notations from differential geometry at the end of the thesis) for nonlinear
ODECSs of the following control-affine form:

Σ :

 ẋ = f(x) +
m∑
i=1

gi(x)ui = f(x) + g(x)u

y = h(x),
(1.13)

where x ∈ X is the state, X is an open subset of Rn, u ∈ Rm is the input, h(x) is a
smooth Rp-valued function on X , and where f, g1, . . . , gm are smooth vector fields on
X . Nonlinear ODECS (1.13) will be denoted by Σn,m,p = (f, g, h) or, simply, Σ. If we
only discuss (1.13) but without output, we denote it by Σn,m = (f, g). Two ODECSs
Σn,m = (f, g) and Σ̃n,m = (f̃ , g̃) defined on X and X̃ are called feedback equivalent if
there exists a diffeomorphism ψ : X → X̃ , an Rm-valued function α(x) and an invertible
m×m matrix-valued function β(x) satisfying

f̃(ψ(x)) = ∂ψ(x)
∂x

(f + gα) (x),

g̃(ψ(x)) = ∂ψ(x)
∂x

(gβ)(x).

Obviously, (x(t), u(t)) is a solution of Σn,m if and only if (x̃(t), ũ(t)), where x̃ = ψ(x(t))

and u(t) = α(x(t)) + β(x(t))ũ(t), is a solution of Σ̃n,m. Nonlinear ODE control theory
has been well-developed for decades, fundamental theory and insightful results on nonlin-
ear ODECSs using geometric methods can be found in the textbooks of Isidori [92] and
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Nijmeijer and Van der Schaft [151]. Here we only make a review of a few notions which
will be used in Chapters 4, 5 and 6.

The zero dynamics: The notion of zero dynamics was introduced in [95] in order to
generalize the concept of transmission zeros of linear control systems. For an ODECS Σ,
the zero dynamics algorithm is given as follows.

Step 0: Fix a nominal point x0, around which we will work locally. Suppose that
h(x0) = 0. Set N0 = h−1(0). Step k: assume for some neighborhood Vk−1 of a point x0,
Nk−1 ∩ Vk−1 is a smooth submanifold and denote by N c

k−1 the connected components of
Nk−1 ∩ Vk−1 such that x0 ∈ N c

k−1. Let

Nk =
{
x ∈ N c

k−1 : f(x) ∈ TxN c
k−1 + span{g1(x), . . . , gm(x)}

}
.

A smooth submanifoldN is called controlled invariant if there exists a Rm-valued function
α(x) on N such that ∀ x ∈ N , f(x) + g(x)α(x) ∈ TxN . An output zeroing submanifold
of Σ is a locally controlled invariant submanifold N ⊆ X satisfying ∀ x ∈ N , h(x) = 0.
If x0 is a regular point of the zero dynamics algorithm, i.e., at every step k, Nk−1 ∩ Vk−1 is
a smooth submanifold (around x0), then the zero dynamics algorithm converges in k∗ < n

steps and N∗ = N c
k∗ is a locally maximal output zeroing submanifold.

Static feedback linearization and relative degree: An ODECS Σn,m = (f, g) is lin-
earizable by static feedback if it is feedback equivalent to a linear controllable ODECS Λ,
given by (1.12) but without output, i.e., ẋ = Ax + Bu. The problem of static feedback
linearization for ODECS with single input was formulated and solved by Brockett [29]
(for feedback of the form u = α + ũ). Then, Jakubczyk and Respondek [98] and, in-
dependently, Hunt and Su [87] gave necessary and sufficient conditions to solve the static
feedback linearization problem for multi-input ODECSs. Consider the following sequence
of distributions:

G1 := span {g1, . . . , gm} , Gi+1 = Gi + [f,Gi].

The system Σ is locally feedback linearizable if and only if for all i ≥ 1, the distributions
Gi are constant dimensional, involutive and Gn = TX .

The concept of relative degree is introduced to solve the problem of input-output decou-
pling (see [148] for linear ODECSs and [173],[174],[92] for nonlinear ODECSs). A square
control system Λn,m,m = (f, g, h) has a (vector) relative degree (ρ1, . . . , ρm), shortly r.d.,
at a point x0 if (i) LgjL

k
fhi(x) = 0, for all 1 ≤ i, j ≤ m, k < ρi − 1, around x0; (ii) The

m×m decoupling matrix: D(x0) =
(
LgjL

ρi−1
f hi(x

0)
)

is invertible. Note that a nonlinear
ODECS without output, given by (f, g), is feedback linearizable in a neighborhood U , if
and only if there exist dummy outputs y1 = h1(x), . . . , ym = hm(x), where hi(x) are
scalar functions defined on U , such that the ODECS with output, given by (f, g, h), where
h = (h1, . . . , hm), has relative degree (ρ1, . . . , ρm) at x0 and ρ1 + · · ·+ ρm = n [92].

Controlled and conditioned invariant distributions: Recall the following sequences
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of distributions Si and codistributions Pi for ODECS Σ:
S1 := span{g1, . . . , gm}
Si+1 := Si + [f, Si ∩ ker dh] +

∑m
j=1[gj, Si ∩ ker dh],

S∗ :=
∑
i≥1

Si,
P1 := span {dh1, . . . , dhp}
Pi+1 := Pi + Lf (Pi ∩G⊥) +

∑m
j=1 Lgj(Pi ∩G⊥),

P ∗ :=
∑
i≥1

Pi.

Define also Vi := P⊥i , V ∗ := (P ∗)⊥. The distribution V ∗ generalizes the largest controlled
invariant subspace in kerC and the distribution S∗ generalizes the smallest conditioned
invariant subspace including ImB for linear ODECSs (see [9]). These distributions play
an important role in the problems of linearization and decoupling of nonlinear control
systems, see e.g., [94, 86, 93, 150, 114, 115, 139, 61].

Some other results on linearization: A survey about linearization problems for non-
linear ODECSs can be found in [53] and [180]. In particular, the problem of linearization
of the input-output map of the system Σ is considered in [96],[91], in which, the structure
algorithm (generalizing the linear version given by [172]) is used to construct transforma-
tions to linearize the input-output map. Then the results of [96] are modified and used in
[50] in order to linearize ODE control systems with output. In [139], sufficient and neces-
sary conditions are given for the problem of when a system Σ is equivalent to a prime form
(for the definition of prime form, see [146]) by a group of transformations consisting of
diffeomorphisms, feedback transformations, and coordinates changes in the output space.
Based on the results of [139], the problem of using generalized output transformations to
bring an ODECS into prime form is solved in [4]. The results of [139] and [4] can be
interpreted as using some transformations in the output space to achieve a desired rela-
tive degree. Another way of achieving desired relative degree is using dynamic feedback.
Since the linearization by dynamic feedback will not be discussed in this thesis but could
be a nature direction for the future works, we only mention here a few references, see e.g,
[39, 40, 5, 149, 66], or see Section 8.2 of [151] and Section 5.4 of [92].

1.4 Geometric aspects of nonlinear DAE systems

In this section, we review some geometric methods in the existing literature for DAE sys-
tems , including DAE Ξ, DAECS Ξu and DAE Θ of the general form, given by (1.4), (1.5)
and (1.7), respectively. Compared to a large variety of results on nonlinear ODE systems
using geometric methods, much less results are available for nonlinear DAE systems.

The early efforts of using differential-geometric methods to analyze DAEs are the
works of Rheinboldt [164] and Reich [161], which regard a DAE as an implicit descrip-
tion of a vector field on a manifold. Also Chua [52] considered the DAE Ξ = (E,F )

and defined the pair (E(x), F (x)) as a generalized vector field. In [161] and [162], the
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concept of regularity in the linear DAE case was generalized for nonlinear DAEs to char-
acterize the existence and uniqueness of DAE solutions. All the pioneering papers as
[164],[161],[162], see also [160] [158],[165], lead to a geometrical reduction method. This
reduction method is, roughly speaking, based on some constant rank and smoothness as-
sumptions: one can construct a sequence of submanifolds from a given DAE, and if the
constructed sequence converges after finitely many steps of iterations, then solutions of the
DAE correspond to the solutions of an ODE evolving on a smooth submanifold (called the
constrained submanifold or invariant manifold). The use of such a reduction method in
the control context can be consulted in [116],[119],[197],[129],[196] in order to get a state
space representation of a given DAECS. In Chapter 4 of this thesis, we will restate this re-
duction procedure as a nonlinear generalization of the shuffle algorithm given in [133] for
checking the regularity of linear DAEs. We will also give our notion of regularity, called
internal regularity for nonlinear DAEs of form Ξ. A main difference between the results
of Chapter 4 and the former mentioned papers is the distinction between internal and ex-
ternal analysis of DAEs. Roughly speaking, the word “internal” means that we consider
the DAE on its constrained submanifold only, i.e., where the solutions exist, the word “ex-
ternal” means that we consider the DAE in a whole neighborhood and for most points in
that neighborhood there may not exist solutions. Although for a point which is not on the
constrained submanifold, there are no solutions, the external analysis matters if we want
to steer solutions from that point towards the constrained submanifold (in finite time or
asymptotically). So the form of the DAE in this case matters not only on the constraint set
but in a neighborhood as well.

The study of external forms for DAE systems under pre-defined equivalence can be
seen in [111] for the feedback linearization problem of a class of nonlinear DAECSs, the
equivalence relation considered there is actually “external”. A nonlinear generalization
of the Kronecker canonical form is shown in [169], which is an “external” normal form
as well. Recently, Berger [12] generalized the notions of controlled invariant manifold
and zero dynamics from nonlinear ODE control theory for nonlinear DAECSs. A normal
form, called the zero dynamic form of nonlinear DAEs, is given in [13], based on which,
the author of [13] discussed invertibility of nonlinear DAEs. In the present thesis, the
study of external forms of DAE control systems leads to a nonlinear generalization of
the Weierstrass form for nonlinear DAEs given in Chapter 4, and the maximal controlled
invariant submanifold form for nonlinear DAECSs proposed in Chapter 5. Moreover, we
will also consider external linearization problems. As in Chapter 5, we will discuss when
a nonlinear DAECS is externally feedback equivalent to a linear completely controllable
DAECS and in Chapter 5 we discuss when a SE DAE is externally equivalent to a linear
SE DAE of some special form.

The results of Chapter 2 and 3 are inspirations for the ones of Chapter 4, 5 and 6,
e.g. connections of linear ODECSs and DAEs inspire to study connections of nonlinear
DAE systems and nonlinear ODE systems, the linear Weierstrass form is an inspiration for
its nonlinear generalization, the Wong sequences and the augmented Wong sequences for
linear DAEs are inspirations for their nonlinear generalizations as well.
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Chapter 2

Geometric Analysis of Differential-Algebraic
Equations via Linear Control Theory

Abstract: We consider linear differential-algebraic equations DAEs of the formEẋ = Hx

and the Kronecker canonical form KCF of the corresponding matrix pencils sE −H . We
also consider linear control systems and their Morse canonical form MCF [146],[145]. For
a linear DAE, a procedure named explicitation is proposed, which attaches to any linear
DAE a linear control system defined up to a coordinates change, a feedback transformation
and an output injection. Then we compare subspaces associated to a DAE in a geomet-
ric way with those associated (also in a geometric way) to a control system, namely, we
compare the the Wong sequences of DAEs and invariant subspaces of control systems.
We prove that the KCF of linear DAEs and the MCF of control systems have a perfect
correspondence and that their indices are related. In this way, we connect the geometric
analysis of linear DAEs with the classical geometric linear control theory. Finally, we pro-
pose a concept named internal equivalence for DAEs and discuss its relation with internal
regularity, i.e., the existence and uniqueness of solutions.

2.1 Introduction

Consider a linear differential-algebraic equation DAE of the form

∆ : Eẋ = Hx, (2.1)

where x ∈X ∼= Rn is called the “generalized” state, E ∈ Rl×n and H ∈ Rl×n. Through-
out, a linear DAE of form (2.1) will be denoted by ∆l,n = (E,H) or, shortly, ∆ and the
corresponding matrix pencil of ∆ by sE−H , which is a polynomial matrix of degree one.

Terminologies as “singular”, “implicit”, “generalized” are frequently used to describe a
DAE due to its difference from an ordinary differential equations ODE. Since the structure
of DAE ∆ is totally determined by the corresponding matrix pencil sE −H , it is useful to
find a simplified form (a normal form or canonical form) for sE − H . Under predefined
equivalence (see ex-equivalence of Definition 2.2.1), canonical forms as the Weierstrass
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EQUATIONS VIA LINEAR CONTROL THEORY

form WF [186] for regular matrix pencils and the Kronecker canonical form [117] (for de-
tails see KCF in Appendix and [75]) for more general matrix pencils have been proposed.
Note that in the present chapter, we will not distinguish the difference between the KCF
of a matrix pencil sE − H and the KCF of a DAE ∆, since although KCF is introduced
for matrix pencils, it is immediate to put the KCF of sE −H into the corresponding form
for the DAE ∆.

Geometric analysis of linear and nonlinear DAEs can be found in [124, 127, 128, 135,
136, 158, 161, 162]. We highlight an important concept named the Wong sequences (Vi
and Wi of Definition 2.4.1) for linear DAEs, which were first introduced in [191]. Connec-
tions between the Wong sequences with the WCF and the KCF have been recently estab-
lished in, respectively, [16] and [20, 21]. In particular, invariant properties for the limits
of the Wong sequences (V ∗ and W ∗ in Definition 2.4.3) were used to obtain a triangular
quasi-Kronecker form in [20, 21]. Moreover, [20, 21] show that some of the Kronecker
indices can be calculated via the Wong sequences and the remaining ones can be derived
from a modified version of the Wong sequences.

On the other hand, consider a linear time-invariant control system of the following
form

Λ :

{
ż = Az +Bu

y = Cz +Du,
(2.2)

where z ∈ Z = Rq is the system state, u ∈ U = Rm represents the input and y ∈ Y =

Rp is the output. System matrices A,B,C,D above are constant and of appropriate sizes.
We also consider the prolongation of Λ of the following form

Λ :


ż = Az +Bu

u̇ = v

y = Cz +Du

⇔
{

ż = Az + Bv

y = Cz,
(2.3)

where

z =

[
z

u

]
, A =

[
A B

0 0

]
, B =

[
0

Im

]
, C =

[
C D

]
.

Denote a control system of form (2.2) by Λq,m,p = (A,B,C,D) or, simply, Λ and denote
the prolonged system (2.3) by Λn,m,p = (A,B,C), or shortly Λ, where n = q + m.
Notice that there is a one to one correspondence between C∞-solutions of (2.2) and (2.3)
(or a one-one correspondence between C1-solutions (z(t), u(t)) of (2.2) and C1-solutions
z(t), given by C0-controls v, of (2.3)).

Two kinds of invariant subspaces have been studied for analyzing the structure of linear
control systems, see e.g. [193, 9]. More specifically, the largest (A,B)-invariant subspace
contained in ker C (denoted V∗ in Definition 2.4.5), which is related with disturbance
decoupling problems, and the smallest (C,A)-conditioned invariant subspace containing
Im B (denoted W∗ in Definition 2.4.5) which is related to controllability subspaces. With
the help of these invariant subspaces, any control system can be brought (see [146],[145])
into its Morse canonical form (for details, see MCF in Appendix) under the action of a
group of transformations consisting of coordinates changes, feedback, and output injec-
tion. The MCF consists of four decoupled subsystems MCF 1, MCF 2, MCF 3, MCF 4,
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to which there correspond four sets of structure invariants (the Morse indices ε′i, ρ
′
i, σ
′
i, η
′
i

in the MCF) and these structure invariants are computable using V∗ and W∗. Note that
in [146], only the triple (A,B,C) is considered while in [145], the general case of 4-tuple
(A,B,C,D), with nonzero matrix D, is studied.

The first aim of the present chapter is to find a way to relate linear DAEs with linear
control systems and find their geometric connections. In fact, we will show in the next
section that to any linear DAE, we can attach a class of linear control systems defined up
to a coordinates change, a feedback transformation and an output injection. We call this
attachment the explicitation of a DAE. The second purpose of this chapter is to distinguish
two kinds of equivalences in linear DAEs theory, namely, internal equivalence and exter-
nal equivalence. We will give the formal definition of external equivalence in Definition
2.2.1. Note that our notion of ex-equivalence of DAEs is different from the one introduced
in [189],[118], where “systems are defined to be externally equivalent if their behaviors
are the same”. Actually, the external equivalence (also named strict equivalence in [75])
is widely considered in the linear DAEs literature. For example, the KCF of a DAE is
actually a canonical form under external equivalence, which is simply defined by all linear
nonsingular transformations in the whole “generalized” state space of the DAE. However,
since solutions of a DAE exist only on a constrained (invariant) subspace, sometimes we
only need to perform the analysis on that constrained subspace. This point of view moti-
vates to introduce the notion of internal equivalence and to find normal forms not on the
whole space but only on that constrained subspace.

The chapter is organized as follows. In Section 2.2, we introduce the notations, define
the external equivalence of two DAEs, and also the Morse equivalence of two control
systems. In Section 2.3, we explain how to associate to any DAE a class of control systems.
In Section 2.4, we describe geometric relations of DAEs and the attached control systems.
In Section 2.5, we show that there exists a perfect correspondence between the KCF and
the MCF, and that their indices have direct relations. In Section 2.6, we introduce the
notion of internal equivalence for DAEs and then discuss the internal regularity. Section
2.7 contains the proofs of our results and Section 2.8 contains the conclusions of this
chapter. Finally, in the Appendix we recall two basic canonical forms: the Kronecker
canonical form KCF for DAEs and the Morse canonical form MCF for control systems.

2.2 Preliminaries

We use the following notations in the present chapter.

N the set of natural numbers with zero and N+ = N\{0}
C the set of complex numbers
Rn×m the set of real valued matrices with n rows and m columns
R[s] the polynomial ring over R with indeterminate s
Gl (n,R) the group of nonsigular matrices of Rn×n

rankA the rank of a linear map A
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rank R[s](sE −H) the rank of a polynomial matrix sE −H over R[s]

kerA the kernal of a linear map A
dim A the dimension of a linear space A

ImA the image of a linear map A
A /B the quotient of a vector space A by a subspace B ⊆ A

In the identity matrix of size n× n for n ∈ N+

0n×m the zero matrix of size n×m for n,m ∈ N+

AT the transpose of a matrix A
A−1 the inverse of a matrix A
AB {Ax |x ∈ B}, the image of B under a linear map A
A−1B {x |Ax ∈ B}, the preimage of B under a linear map A
A−TB (AT )−1B

A ⊥ {x | ∀a ∈ A : xTa=0}, the orthorgonal complement of A in Rn

Consider a DAE ∆l,n = (E,H), given by (2.1), denoted shortly by ∆, and the cor-
responding matrix pencil sE − H . A solution , or trajectory, x(t) of ∆ is any C1-
differentiable map x : R → Rn satisfying Eẋ(t) = Hx(t). A trajectory starting from
a point x(0) = x0 is denoted by x(t, x0).

Definition 2.2.1. Two DAEs ∆l,n = (E,H) and ∆̃l,n = (Ẽ, H̃) are called externally
equivalent, shortly ex-equivalent, if there exist Q ∈ Gl(l,R) and P ∈ Gl(n,R) such that

Ẽ = QEP−1 and H̃ = QHP−1.

We denote ex-equivalence of two DAEs as ∆
ex∼ ∆̃, and ex-equivalence of the two corre-

sponding matrix pencils as sE −H ex∼ sẼ − H̃ .

If the “generalized” states of ∆ and ∆̃ are x and x̃, respectively, then x̃ = Px is,
clearly, just a coordinate transformation. The following remark points out the relation of
the ex-equivalence and solutions of DAEs.

Remark 2.2.2. Ex-equivalence preserves trajectories, more precisely, if ∆
ex∼ ∆̃ via (Q,P ),

then any trajectory x(t) of ∆ satisfying x(0) = x0, is mapped via P into a trajectory x̃(t) of
∆̃ passing through x̃0 = Px0. Moreover, if x(t) is a trajectory of ∆, thenEẋ(t)−Hx(t) =

0 and, obviously Q(Eẋ(t)−Hx(t)) = 0 implying that x(t) is also a trajectory of QEẋ =

QHx. The converse, however, is not true: even if two DAEs have the same trajectories,
they are not necessarily ex-equivalent, since the trajectories of DAEs are contained in a
subspace M ∗ ⊆ Rn (see Definition 2.6.1 of Section 2.6).

Definition 2.2.3. (Morse equivalence and Morse transformation) Two linear control sys-
tems Λq,m,p = (A,B,C,D) and Λ̃q,m,p = (Ã, B̃, C̃, D̃) are called Morse equivalent, de-

noted by Λ
M∼ Λ̃, if there exist Ts ∈ Gl(q,R), Ti ∈ Gl(m,R), To ∈ Gl(p,R), F ∈ Rm×q,

K ∈ Rq×p such that[
Ã B̃

C̃ D̃

]
=

[
Ts TsK

0 To

] [
A B

C D

] [
T−1
s 0

FT−1
s T−1

i

]
. (2.4)

Any 5-tuple Mtran = (Ts, Ti, To, F,K), is called a Morse transformation.
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Remark 2.2.4. (i) Apparently, in the above definition of a Morse transformation, Ts, Ti,
To are coordinate transformations in the, respectively, state space X , input space U , and
output space Y , and F defines a state feedback and K defines an output injection. More-
over, if we consider two control systems without outputs, denoted by Λq,m = (A,B) and
Λ̃q,m = (Ã, B̃), then the Morse equivalence reduces to the feedback equivalence, i.e., the
corresponding system matrices satisfy Ã = Ts(A+BF )T−1

s and B̃ = TsBT
−1
i .

(ii) The feedback transformation A 7→ A + BF preserves all trajectories (although
changes their parametrization with respect to controls). On the other hand, the output
injection A 7→ A+KC, B 7→ B +KD preserves only those trajectories x(t) that satisfy
y(t) = Cx(t) + Du(t) = 0. Finally, A 7→ TsAT

−1
s maps trajectories into trajectories

while B 7→ BT−1
i re-parametrizes controls and C 7→ ToC and D 7→ ToD re-parametrize

outputs.

2.3 Implicitation of linear control systems and explicita-
tion of linear DAEs

It is easy to see that, if for a linear control system Λ, given by (2.2), we require the output
y = Cz + Du to be identically zero, then Λ can be seen as a DAE. We call such an
output zeroing procedure the implicitation of a control system, which can be formalized as
follows.

Definition 2.3.1. For a linear control system Λq,m,p = (A,B,C,D) on Z = Rq with
inputs in U = Rm and outputs in Y = Rp, by setting the output y of Λ to be zero, that is

Impl(Λ) :

{
ż = Az +Bu

0 = Cz +Du,

we define the following DAE with “generalized” states in Rq+m:

∆Impl :

[
Iq 0

0 0

] [
ż

u̇

]
=

[
A B

C D

] [
z

u

]
. (2.5)

We call the procedure of output zeroing above the implicitation procedure, and the DAE
given by (2.5) will be called the implicitation of Λ and denoted by ∆Impl

q+p,q+m = Impl(Λ)

or, shortly, ∆Impl = Impl(Λ).

The converse procedure, of associating a control systems to a given DAE, is less
straightforward, since the variables are expressed implicitly in DAEs. In order to under-
stand the different roles of the variables in a DAE, take, for example, the nilpotent pencil
Nσ(s) of the KCF of DAEs (see Appendix 2.9), denote the corresponding variables by
x1, ..., xσ and then the DAE is

0 1 . . . 0

0
. . . . . . ...

... . . . . . . 1

0 . . . 0 0



ẋ1

...
ẋσ−1

ẋσ

 =


x1

...
xσ−1

xσ

 .
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It is easy to see that the last equation xσ = 0 is an algebraic constraint which can be seen
as the zero output of a control system. The variable x1 is different from the others because
it is free to be given any value and thus it performs like an input. The variables x2, ..., xσ−1

are constrained by a differential chain forming an ODE, so they can be seen as states of
a control system. Notice that in this case, replacing ẋi = xi−1 by ẋi = xi−1 + kixσ, for
2 ≤ i ≤ σ and for any ki ∈ R does not change the system because xσ = 0, which means
that if we want to associate to our DAE a control system, the association is not unique.
Below we show a way to attach a class of control systems to a given DAE.

• Consider a DAE ∆l,n = (E,H), given by (2.1). Denote rankE = q, define p = l−q
and m = n− q. Choose a map

P =

[
P1

P2

]
∈ Gl(n,R),

where P1 ∈ Rq×n, P2 ∈ Rm×n such that kerP1 = kerE.

• Define coordinates transformation[
z

u

]
=

[
P1x

P2x

]
=

[
P1

P2

]
x = Px.

Then from kerP1 = kerE, we haveEP−1 =
[
E0 0

]
, whereE0 ∈ Rl×q. Moreover,

since P is invertible, it follows that rankE0 = rankE = q. Thus via P , ∆ is ex-
equivalent to

[
E0 0

] [ż
u̇

]
= H0

[
z

u

]
,

whereH0 = HP−1. The variables z are states (dynamical variables, their derivatives
ż are present) and u are controls (enter statically into the system).

• Since rankE0 = q, there exists Q0 ∈ Gl(l,R) such that Q0E0 =

[
E1

0

0

]
, where

E1
0 ∈ Gl(q,R). Thus via (Q0, P ), ∆ is ex-equivalent to[

E1
0 0

0 0

] [
ż

u̇

]
=

[
A0 B0

C0 D0

] [
z

u

]
,

where Q0H0 =

[
A0 B0

C0 D0

]
, A0 ∈ Rq×q, B0 ∈ Rq×m, C0 ∈ Rp×q, D0 ∈ Rp×m.

• Finally, via Q1 =

[
(E1

0)−1 0

0 Ip

]
, we bring the above DAE into

[
Iq 0

0 0

] [
ż

u̇

]
=

[
A B

C D

] [
z

u

]
, (2.6)

where A = (E1
0)−1A0, B = (E1

0)−1B0, C = C0, D = D0.
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• Therefore, the DAE ∆ is ex-equivalent (via P and Q = Q1Q0) to (2.6) and the latter
is the control system

Λ :

{
ż= Az +Bu

y= Cz +Du,

together with the constraint y = 0, that is, ∆
ex∼∆Impl = Impl(Λ).

Let us give a few comments on the above construction:

• The map P =

[
P1

P2

]
defines state variables z = P1x as coordinates on the state space

Z = Rn/ kerE isomorphic to Rq and control variables u = P2x as coordinates on
U ∼= kerE ∼= Rm. The output variables y are coordinates on Y ∼= Rl/ImE ∼= Rp

and define the output map via y = Cz +Du.

• Choose other coordinates (z′, u′) given by z′ = P ′1x and u′ = P ′2x such that kerP ′1 =

kerE = kerP1, then {
z′ = Tsz

u′ = F ′z + Tiu,
(2.7)

where Ts ∈ Gl(n,R) and F ′ ∈ Rm×n, Ti ∈ Gl(m,R). Clearly, z′ = Tsz is an-
other set of coordinates on the state space and u′ = F ′z + Tiu is a state feedback
transformation.

• The output y takes values in the quotient space Rl/ImE. Since y = Cz + Du =

0, we can add y to the dynamics without changing solutions of the system on the
subspace {y = 0}. Together with a state transformation z′ = Tsz and an output
transformation y′ = Toy, it results in a triangular transformation (output injection)
of the system [

ż′

y′

]
=

[
Ts K ′

0 To

] [
ż

y

]
=

[
Ts K ′

0 To

] [
A B

C D

] [
z

u

]
(2.8)

where K ′ ∈ Rn×p, To ∈ Gl(p,R).

In view of the above analysis, the non-uniqueness of the construction leads to a control sys-
tem defined up to a coordinates change, a feedback transformation and an output injection,
which is actually, a class of control systems.

Definition 2.3.2. Given a DAE ∆l,n = (E,H), there always exist Q ∈ Gl(l,R) and
P ∈ Gl(n,R) such that

QEP−1 =

[
Iq 0

0 0

]
and QHP−1 =

[
A B

C D

]
. (2.9)

The control system Λ, given by Λq,m,p = (A,B,C,D), is called the (Q,P )-explicitation
of ∆. The class of all (Q,P )-explicitations, corresponding to all Q ∈ Gl(l,R) and P ∈
Gl(n,R), will be called the explicitation class of ∆ and denoted byExpl(Ξ). If a particular
control system Λ belongs to the explicitation class Expl(∆) of ∆, we will write Λ ∈
Expl(∆).
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Remark 2.3.3. The implicitation of a given control system Λ is a unique DAE ∆Impl,
given by (2.5). The explicitation Expl(∆) of a given DAE ∆ is, however, a control system
defined up to a coordinates change, a feedback transformation, and an output injection, that
is, a class of control systems.

Theorem 2.3.4. (i) Consider a DAE ∆ = (E,H) and a control system Λ = (A,B,C,D).
Then Λ ∈ Expl(∆) if and only if ∆

ex∼∆Impl, where ∆Impl = Impl(Λ). More specifically,
Λ is the (Q,P )-explicitation of ∆ if and only if ∆

ex∼∆Impl via (Q,P ).

(ii) Given two DAEs ∆ = (E,H) and ∆̃ = (Ẽ, H̃), choose two control systems Λ ∈
Expl(∆) and Λ̃ ∈ Expl(∆̃). Then ∆

ex∼ ∆̃ if and only if Λ
M∼ Λ̃.

(iii) Consider two control systems Λ = (A,B,C,D) and Λ̃ = (Ã, B̃, C̃, D̃). Then

Λ
M∼ Λ̃ if and only if ∆Impl ex∼ ∆̃Impl, where ∆Impl = Impl(Λ) and ∆̃Impl = Impl(Λ̃).

The proof is given in Section 2.7.

Remark 2.3.5. Theorem 2.3.4 describes relations of DAEs and control systems, which
we illustrate in Figure 2.1. We conclude that Morse equivalent control systems (and only
such) give, via implicitation, ex-equivalent DAEs. Furthermore, explicitation is a universal
procedure of producing control systems from a DAE and ex-equivalent DAEs produce
Morse equivalent control systems.

∆

Λ ∈ Expl(∆)

∆̃

∆Impl = Impl(Λ)

Ex-equivalence Λ̃ ∈ Expl(∆̃) Ex-equivalence

∆̃Impl = Impl(Λ̃)

Explicitation

Ex-equivalence

Explicitation

Morse equivalence

Implicitation

Ex-equivalence

Implicitation

Figure 2.1 – Explicitation of DAEs and implicitation of control systems

2.4 Geometric connections between DAEs and control sys-
tems

The Wong sequences [191] of a DAE are defined as follows.

Definition 2.4.1. For a DAE ∆l,n = (E,H), its Wong sequences are defined by

V0 = Rn, Vi+1 = H−1EVi, i ∈ N, (2.10)

W0 = {0}, Wi+1 = E−1HWi, i ∈ N. (2.11)
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Remark 2.4.2. The Wong sequences Vi and Wi satisfy

V0 ) V1 ) · · · ) Vk∗ = Vk∗+j = V ∗ = H−1EV ∗ ⊇ kerH, j ∈ N,
W0 ⊆ kerE = W1 ( · · · ( Wl∗ = Wl∗+j = W ∗ = E−1HW ∗, j ∈ N. (2.12)

We now propose a different definition of the limits of the Wong sequences and review
the notions of invariant subspaces in linear control theory.

Definition 2.4.3. For a DAE ∆l,n = (E,H), a subspace V ⊆ Rn is called (H−1, E)-
invariant if V satisfies V = H−1EV ; a subspace W ⊆ Rn is called (E−1, H)-invariant if
W satisfies W = E−1HW . Denote by V ∗ the largest (H−1, E)-invariant subspace of Rn

and by W ∗ the smallest (E−1, H)-invariant subspace of Rn.

Proposition 2.4.4. (i) For a DAE ∆l,n = (E,H), the largest (H−1, E)-invariant subspace
V ∗ and the smallest (E−1, H)-invariant subspace W ∗ exist and are given, respectively, by

V ∗ = Vk∗ and W ∗ = Wl∗ ,

where k∗ is the smallest integer such that Vk∗ = Vk∗+1 and l∗ is the smallest interger such
that Wl∗ = Wl∗+1;

(ii) V ∗ is also the largest subspace such that HV ∗ ⊆ EV ∗, however, W ∗ is not neces-
sarily the smallest subspace such that EW ∗ ⊆ HW ∗.

The proof is given in Section 2.7. For invariant subspaces of control systems, we
consider two cases depending on whether the control system is strictly proper (D is zero
or not). We will use the bold-notation for the strictly proper case D = 0, since throughout
it applies to prolongation (2.3), which we denote by bold symbols.

Definition 2.4.5. For a control system Λn,m,p = (A,B,C), a subspace V ⊆ Rn is called
an (A,B)-controlled invariant subspace if V satisfies

AV ⊆ V + Im B

and a subspace W ⊆ Rn is called a (C,A)-conditioned invariant subspace if W satisfies

A(W ∩ ker C) ⊆W .

Denote by V∗ the largest (A,B)-controlled invariant subspace contained in ker C and by
W∗ the smallest (C,A)-conditioned invariant subspace containing Im B.

The following fundamental lemma shows that V∗, W∗ exist and they can be calculated
via the sequences of subspaces Vi, Wi given below.

Lemma 2.4.6. ([193],[9]) Initialize V0 = Rn and, for i ∈ N, define inductively

Vi+1 = ker C ∩A−1(Vi + Im B). (2.13)
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Initialize W0 = 0 and, for i ∈ N, define inductively

Wi+1 = A(Wi ∩ ker C) + Im B. (2.14)

Then there exist k∗ ≤ n and l∗ ≤ n such that

V0 ⊇ ker C = V1 ) · · · ) Vk∗ = Vk∗+j = V∗ = ker C ∩A−1(V∗ + Im B), j ∈ N,
W0 ⊆ Im B = W1 ( · · · ( Wl∗ = Wl∗+j = W∗ = A(W∗ ∩ kerC) + Im B, j ∈ N.

It is well-known (see e.g. [194],[193],[9]) that V is an (A,B)-controlled invariant
subspace if and only if there exists F ∈ Rm×n such that (A + BF)V ⊆ V and W is
a (C,A)-conditioned invariant subspace if and only if there exists K ∈ Rn×p such that
(A + KC)W ⊆ W . For a control system which is not strictly proper (D is not zero),
following Definitions 1–4 of [145], we use a generalization of that characterization of
invariant subspaces.

Definition 2.4.7. For Λq,m,p = (A,B,C,D), a subspace V ⊆ Rq is called a null-output
(A,B)-controlled invariant subspace if there exists F ∈ Rm×q such that

(A+BF )V ⊆ V and (C +DF )V = 0,

and for any such V, the subspace U ⊆ Rm given by

U = (B−1V) ∩ kerD,

is called a null-output (A,B)-controlled invariant input subspace. Denote by V∗ (resp. U∗)
the largest null-output (A,B) controlled invariant subspace (resp. input subspace).

A subspace W ⊆ Rq is called an unknown-input (C,A)-conditioned invariant subspace
if there exists K ∈ Rq×p such that

(A+KC)W + (B +KD)U = W,

and for any such W, the subspace Y ⊆ Rp given by

Y = CW +DU ,

is called an unknown-input (C,A)-conditioned invariant output subspace. Denote by W∗

(resp. Y∗) the smallest unknown-input (C,A)-conditioned invariant subspace (resp. output
subspace).

The following lemma [144] shows that V∗, U∗, W∗, Y∗ exist and provides a calculable
algorithm to calculate them.

Lemma 2.4.8. Initialize V0 = Rq, and for i ∈ N, define inductively

Vi+1 =

[
A

C

]−1([
I

0

]
Vi + Im

[
B

D

])
(2.15)
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and Ui ⊆ U for i ∈ N are given by

Ui =

[
B

D

]−1 [
Vi
0

]
. (2.16)

Then V∗ = Vq and U∗ = Uq .

Initialize W0 = {0}, and for i ∈ N, define inductively

Wi+1 =
[
A B

]([Wi

U

]
∩ ker

[
C D

])
(2.17)

and Yi ⊆ Y for i ∈ N are given by

Yi =
[
C D

] [Wi

U

]
. (2.18)

Then W∗ = Wq and Y∗ = Yq.

Remark 2.4.9. (i) Lemma 2.4.8 generalizes the results of Lemma 2.4.6 and, if D = 0,
Lemma 2.4.8 reduces to Lemma 2.4.6;

(ii) Even if Λ is not strictly proper (ifD 6= 0), the prolonged system Λ always is; through-
out we will use V∗, U∗, W∗ and Y∗ for Λ, and V∗ and W∗ for Λ.

Throughout this chapter, for ease of notation, we will write Vi(∆) to indicate that Vi is
calculated for ∆, similarly for all the other subspaces defined in this section. Now we give
the main results of this section.

Proposition 2.4.10. (Geometric subspaces relations) Given a DAE ∆l,n = (E,H), a
(Q,P )-explicitation Λ = (A,B,C,D) ∈ Expl(∆), and the prolongation Λ = (A,B,C)

of Λ, consider the limits of the Wong sequences V ∗ and W ∗ of ∆ and of ∆Impl = Impl(Λ),
given by Definition 2.4.3, the invariant subspaces V∗ and W∗ of Λ, given by Definition
2.4.7, and the invariant subspaces V∗ and W∗ of Λ, given by Definition 2.4.5. Then the
following hold

(i) PV ∗(∆) = V ∗(∆Impl) = V∗(Λ) =

[
A B

C D

]−1 [
V∗(Λ)

0

]
,

(ii) PW ∗(∆) = W ∗(∆Impl) = W∗(Λ) =

[
Iq 0

0 0

]−1 [
W∗(Λ)

0

]
.

The proof is given in Section 2.7.

Remark 2.4.11. (i) The limits V ∗ and W ∗ of the Wong sequences coincide for ∆ and ∆̃

that are ex-equivalent via (P,Q), where P = In and Q is arbitrary, and do not depend on
Q. On the other hand, the system Λ, being a (Q,P )-explicitation of ∆, depends on both
P and Q (and so does its prolongation Λ), but the invariant subspaces V∗(Λ) and W∗(Λ)

depend on P only.
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(ii) Some particular relations between the Wong sequences of DAEs and the invari-
ant subspaces of control systems is given in Theorem 5 of [56], which can be seen as a
corollary of Proposition 2.4.10.

Now we will study various dualities of geometric subspaces by analyzing the dual
system. The duality of the subspaces V∗ and W∗ is well-known and studied in [194],[146],
[9]. Similarly, properties of the subspaces V∗,W∗,U∗,Y∗ for the dual system of a control
system are analyzed in [144] and [145]. In [20], it is proved that the Wong sequences
of the transposed matrix pencils have relations with the original matrix pencils. In the
following, we will show that all these results can be connected by the explicitization of
DAEs. Together with ∆ we consider its dual ∆d

n,l = (ET , HT ) of the form:

ET ẋd = HTxd,

where xd ∈ Rl is the “generalized” state of the dual system.

Proposition 2.4.12. Consider a DAE ∆ and its dual ∆d. Then Λ = (A,B,C,D) ∈
Expl(∆) if and only if Λd = (AT , CT , BT , DT ) ∈ Expl(∆d).

Proof. For any invertible matrices Q and P of appropriate sizes that yield (2.9), we have
the following equivalence:

Q (sE −H)P−1 =

[
sIq − A −C
−B −D

]
⇔ P−T

(
sET −HT

)
QT =

[
sIq − AT −CT

−BT −DT

]
.

Suppose Λ ∈ Expl(∆), then by Theorem 2.3.4(i), there exist Q ∈ Gl(l,R) and P ∈
Gl(n,R), such that the left-hand side of the above equivalence holds. Then from the right-
hand side we can see Λd ∈ Expl(∆d).

Conversely, suppose Λd ∈ Expl(∆d). Then there exist P−T ∈ Gl(n,R) and QT ∈
Gl(l,R) such that right-hand side of the above equivalence holds, then from the left-hand
side we can see Λ ∈ Expl(∆).

Proposition 2.4.13. (Subspaces of the dual system) For ∆ = (E,H) and its dual ∆d =

(ET , HT ), consider the subspaces V ∗ and W ∗ of Definition 2.4.3. For two control systems
Λ = (A,B,C,D) ∈ Expl(∆) and the dual of Λ, denoted by Λd = (AT , CT , BT , DT ),
consider the subspaces V∗ and W∗ of Definition 2.4.7. Finally, for the prolongation of
Λ, denoted by Λ = (A,B,C) and for the dual of Λ, denoted by Λd = (AT ,CT ,BT ),
consider the subspaces V∗ and W∗ of Definition 2.4.5. Then the following hold:

(i) W ∗(∆d) = (EV ∗(∆))⊥, V ∗(∆d) = (HW ∗(∆))⊥;

(ii) W∗(Λd) = (V∗(Λ))⊥, V∗(Λd) = (W∗(Λ))⊥;

(iii) W∗(Λd) = (V∗(Λ))⊥, V∗(Λd) = (W∗(Λ))⊥.

Moreover, assuming one of the items (i), (ii), or (iii) we can conclude the two remaining
ones by the relations given in Proposition 2.4.10.
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Note that item (i) is proved in [20] by showing that for i ∈ N,

Wi+1(∆d) = (EVi(∆))⊥, Vi(∆
d) = (HWi(∆))⊥.

Item (iii) is proved in [146] by showing Wi(Λ
d) = (Vi(Λ))⊥, Vi(Λ

d) = (Wi(Λ))⊥. Item
(ii) is proved in [145] by showing Wi(Λ

d) = (Vi(Λ))⊥, Vi(Λd) = (Wi(Λ))⊥ as well as
observing a supplementary relation Ui(Λ

d) = (Yi(Λ))⊥, Yi(Λd) = (Ui(Λ))⊥. Our purpose
is to propose a new proof in Section 2.7.4 to show that knowing one of the items (i), (ii)
or (iii), we do not need to prove the two others but just to use the relations of Proposition
2.4.10 (between V ∗, V∗, V∗ and W ∗, W∗, W∗) to simply conclude them. In other words,
Proposition 2.4.10 provides a dictionary allowing to go from one of (i), (ii) or (iii) to two
remaining ones.

2.5 Relations of the Kronecker indices and the Morse in-
dices

In this section, we discuss relations of the Kronecker indices and the Morse indices see
Appendix 2.9. An early result discussing these two sets of indices goes back to [104],
where it is observed that the controllability indices of the pair (A,B) and the Kronecker
column indices of the matrix pencil (sI − A,B) coincide, which can be seen as a special
case of the result in this section. Also in [130], it is shown that the Morse indices of
a triple (C,A,B) have direct relations with the Kronecker indices of the matrix pencil
(called restricted matrix pencil, see [97]) N(sI − A)K, where the rows of N span the
annihilator of ImB and the colunms of K span kerC.

It is known (see Appendix 2.9) that any DAE can be transformed into its KCF which is
completely determined by the Kronecker indices ε1, ..., εa, ρ1, ..., ρb, σ1, ..., σc, η1, ..., ηd,
the numbers a, b, c, d of blocks and the (λ1, ..., λb)-structure (by this we mean the eigenval-
ues, together with the dimensions of their eigenspaces). The Kronecker indices (except for
ρi’s and the corresponding eigenvalues λi’s) can be computed using the Wong sequences
as follows. For a DAE ∆ = (E,H), consider the Wong sequences Vi and Wi of Definition
2.4.1, define Ki = Wi ∩ V ∗ and K̂i = (EVi−1)⊥ ∩ (HW ∗)⊥ for i ∈ N+.

Lemma 2.5.1. [20],[21] For KCF of ∆, we have

(i) a = dim (K1), d = dim (K̂1) and{
εj = 0,

εj = i,

for

for

1 ≤ j ≤ a− ω0,

a− ωi−1 + 1 ≤ j ≤ a− ωi,
(2.19)

{
ηj = 0,

ηj = i,

for

for

1 ≤ j ≤ d− ω̂0,

d− ω̂i−1 + 1 ≤ j ≤ d− ω̂i,
(2.20)

where ωi = dim (Ki+2)− dim (Ki+1) and ω̂i = dim (K̂i+2)− dim (K̂i+1), i ∈ N.
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(ii) Define an integer ν by

ν = min{i ∈ N |V ∗ + Wi = V ∗ + Wi+1}; (2.21)

Then either ν = 0, implying that the nilpotent part N(s) is absent, or ν > 0, in which case

c = π0 and

σj = i, for c− πi−1 + 1 ≤ j ≤ c− πi, i = 1, 2, ..., ν, (2.22)

where πi = dim (Wi+1+V ∗)−dim (Wi+V ∗) for i = 0, 1, 2, ..., ν (in the case of πi−1 = πi,
the respective index range is empty).

Any control system Λ = (A,B,C,D) can be transformed via a Morse transformation
into its Morse canonical form MCF, which is determined by the Morse indices ε′1, ..., ε

′
a′ ,

ρ′1, ..., ρ
′
b′ , σ

′
1, ..., σ

′
c′ , η

′
1, ..., η

′
d′ , the eigenvalues λ1, .., λb′ and the numbers a′, b′, c′, d′ ∈ N

of blocks. The following results can be deduced from the results on the Morse indices
in [146],[145]. For Λ = (A,B,C,D), consider the subspaces Vi, Wi, Ui, Yi as in
Lemma 2.4.8, define Ri = Wi ∩ V∗ and R̂i = (Vi)

⊥ ∩ (W∗)⊥ for i ∈ N.

Lemma 2.5.2. For MCF of Λ, we have

(i) a′ = dim (U∗), d′ = dim (Y∗) and{
ε′j = 0

ε′j = i

for

for

1 ≤ j ≤ a′ − ω′0,
a′ − ω′i−1 + 1 ≤ j ≤ a′ − ω′i,

(2.23)

{
η′j = 0

η′j = i

for

for

1 ≤ j ≤ d′ − ω̂′0,
d′ − ω̂′i−1 + 1 ≤ j ≤ d′ − ω̂′, (2.24)

where ω′i = dim (Ri+1)− dim (Ri) and ω̂′i = dim (R̂i+1)− dim (R̂i), i ∈ N.

(ii) Define an integer ν ′ by

ν ′ = min{i ∈ N |V∗ + Wi = V∗ + Wi+1};

Then c′ = dim (U )− dim (U∗), δ = c′ − π′0 and{
σ′j = 0 for 1 ≤ j ≤ δ,

σ′j = i for c′ − π′i−1 + 1 ≤ j ≤ c′ − π′i, i = 1, 2, ..., ν ′,
(2.25)

where π′i = dim (Wi+1 + V∗)− dim (Wi + V∗) for i = 0, 1, 2, ..., ν ′ (in case of π′i−1 = π′i
the respective index range is empty).

Note that for Λ = (A,B,C,D), the above index δ = rankD. Formal similarities
between the statements of Lemma 2.5.1 and 2.5.2 suggest possible relations between the
Kronecker and the Morse indices. In fact, we have the following result.
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Proposition 2.5.3. (Indices relations) For a DAE ∆l,n = (E,H), consider its Kronecker
indices

(ε1, ..., εa), (ρ1, ..., ρb), (σ1, ..., σc), (η1, ..., ηd) with a, b, c, d ∈ N,

of the KCF, and for a control system Λq,m,p = (A,B,C,D) ∈ Expl(∆), consider its
Morse indices

(ε′1, ..., ε
′
a′), (ρ′1, ..., ρ

′
b′), (σ′1, ..., σ

′
c′), (η′1, ..., η

′
d′) with a′, b′, c′, d′ ∈ N,

of the MCF. Then the following holds:

(i) a = a′, ε1 = ε′1, · · · , εa = ε′a′ , and d = d′, η1 = η′1, · · · , ηd = η′d′;

(ii) N(s) of the KCF is present if and only if the subsystem MCF 3 of the MCF is
present. Moreover, if they are present, then their indices satisfy

c = c′, σ1 = σ′1 + 1, · · · , σc = σ′c′ + 1;

(iii) The invariant factors of J(s) in the KCF of ∆ coincide with those of MCF 2 in the
MCF of Λ. Furthermore, the corresponding indices satisfy

b = b′, ρ1 = ρ′1, ..., ρb = ρ′b′ .

The proof is given in Section 2.7. Notice that in item (ii) of Proposition 2.5.3, the
indices σi and σ′i do not coincide, the reason is that the nilpotent indices σ1, . . . , σc of
N(s) can not be zero (the minimum nilpotent index is 1 and if σi is 1, then N(s) contains
the 1× 1 matrix pencil 0s− 1), but the controllability and observability indices σ′1, . . . , σ

′
c′

of MCF 3 can be zero (if σ′i = 0, then the output y3 of MCF 3 contains the static relation
y3
i = u3

i ). It is easy to see from Proposition 2.5.3 that, given a DAE, there exists a perfect
correspondence between the KCF of the DAE and the MCF of its explicitation systems.
More specifically, the four parts of the KCF correspond to the four subsystems of the
MCF: the bidiagonal pencil L(s) to the controllable but unobservable part MCF 1, the
Jordan pencil J(s) to the uncontrollable and unobservable partMCF 2, the nilpotent pencil
N(s) to the prime part MCF 3 and the “pertranspose” pencil Lp(s) to the observable but
uncontrollable part MCF 4.

2.6 Internal equivalence and regularity of DAEs

An important difference between DAEs and ODEs is that DAEs are not always solvable
and solutions of DAEs exist on a subspace of the “generalized” state space only due to
the presence of algebraic constrains. In the following, we show that the existence and
uniqueness of solutions of DAEs can be clearly explained using the explicitation procedure
and the notion of internal equivalence (see Definition 2.6.8 below).
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Definition 2.6.1. A linear subspace M of Rn, is called an invariant subspace of ∆l,n =

(E,H) if for any x0 ∈ M , there exists a solution x(t, x0) of ∆ such that x(0, x0) = x0

and x(t, x0) ∈ M for all t ∈ R. An invariant subspace M ∗ of ∆l,n = (E,H) is called
the maximal invariant subspace if for any other invariant subspace M of Rn, we have
M ⊆M ∗.

Remark 2.6.2. Note that due to the existence of free variables among the “generalized”
states, solutions of ∆ are not unique. Thus it is possible that one solution of ∆ starting
at x0 ∈ M stays in M but other solutions starting at x0 may escape from M (either
immediately or in finite time).

It is clear that the sum M1 + M2 of two invariant subspaces of ∆ is also invariant.
Therefore, M ∗ exists and is, actually, the sum of all invariant subspaces. If M is an
invariant subspace of ∆l,n, then solutions pass through any x0 ∈ M and it is natural to
restrict ∆ to M , in particular, to the largest invariant subspace M ∗. Moreover, we would
like the restriction to be as simple as possible. We achieve the above goals by introducing,
respectively, the notion of restriction and that of reduction. We will define the restriction
of a DAE ∆ to a linear subspace R (invariant or not) as follows.

Definition 2.6.3. (Restriction) Consider a linear DAE ∆l,n = (E,H). Let R be a subspace
of Rn. The restriction of ∆ to R, called R-restriction of ∆ and denoted ∆|R is a linear
DAE ∆|R = (E|R , H|R), where E|R and H|R are, respectively, the restrictions of the
linear maps E and H to the linear subspace R.

Throughout, we consider general DAEs ∆l,n = (E,H) with no assumptions on the
ranks of E and H . In particular, if the map [E H] is not of full row rank, then ∆l,n

contains redundant equations. But even if we assume that [E H] is of full row rank, then
this property, in general, is not any longer true for the restriction [E|R HR ], which may
contain redundant equations. To get rid of redundant equations (in particular, of trivial
algebraic equations 0 = 0), we propose the notion of full row rank reduction.

Definition 2.6.4. (Reduction) For a DAE ∆l,n = (E,H), assume rank [E H] = l∗ ≤ l.
Then there exists Q ∈ Gl(l,Rn) such that

Q
[
E H

]
=

[
Ered Hred

0 0

]
,

where rank [Ered Hred] = l∗ and the full row rank reduction, shortly reduction, of ∆l,n,
denoted by ∆red, is a DAE ∆red

l∗,n = ∆red = (Ered, Hred).

Remark 2.6.5. Clearly, the choice of Q is not unique and thus the reduction of ∆ is not
unique. Nevertheless, since Q preserves the solutions, each reduction ∆red has the same
solutions as the original DAE ∆.

For an invariant subspace M , we consider the M -restriction ∆|M of ∆, and then we
construct a reduction of ∆|M and denote it by ∆|redM = (E|redM , H|redM ). Notice that the
order matters: to construct ∆|redM , we first restrict and then reduce while reducing first and
then restricting will, in general, not give ∆|redM but another DAE ∆red|M .
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Proposition 2.6.6. Consider a linear DAE ∆l,n = (E,H). Let M be a subspace of Rn.
The following are equivalent

(i) M is an invariant subspace of ∆l,n;

(ii) HM ⊆ EM ;

(iii) For a (and thus any) reduction ∆|redM = (E|redM , H|redM ) of ∆|M , the map E|redM is of
full row rank, i.e., rankE|redM = rank [E|redM H|redM ].

Proof. (i)⇔(ii): Theorem 4 of [12], for B = 0, implies that M is an invariant subspace if
and only if HM ⊆ EM .

(ii)⇔(iii): For ∆l,n = (E,H), choose a full column rank matrix P1 ∈ Rn×n1 such that
ImP1 = EM , where n1 = dim M . Find any P2 ∈ Rn×n2 such that the matrix [P1 P2] is
invertible, where n2 = n − n1. Choose new coordinates z = Px, where P = [P1 P2]−1,
then we have

∆ : EP−1Pẋ = HP−1Px⇒ [E1 E2]

[
ż1

ż2

]
= [H1 H2]

[
z1

z2

]
,

where E1 = EP1, E2 = EP2, H1 = HP1, H2 = HP2, and z = (z1, z2). Now by
Definition 2.6.3, the M -restriction of ∆ is:

∆|M : E1ż1 = H1z1.

Find Q ∈ Gl(l,R) such that QE1 =

[
Ẽ1

0

]
, where Ẽ1 is of full row rank, then denote

QH1 =

[
H̃1

H̄1

]
. By HM ⊆ EM , we can deduce that H̄1 = 0 (since QHM ⊆ QEM ⇒

Im

[
H̃1

H̄1

]
⊆ Im

[
Ẽ1

0

]
). Thus a reduction of ∆|M , according to Definition 2.6.4, is ∆|redM =

(E|redM , H|redM ) = (Ẽ1, H̃1). Clearly E|redM is of full row rank.

Define Λ|(V∗,U∗) as the control system Λ = (A,B,C,D) restricted to V∗ (which is
well-defined because V∗ can be made invariant by a suitable feedback) and with controls
u restricted to U∗ = (B−1V∗)∩ kerD. The output y = Cx+Du of Λ becomes y = 0 and
by Λ|red(V∗,U∗), we denoteΛ|(V∗,U∗) without the trivial output y = 0 .

Proposition 2.6.7. For a DAE ∆l,n = (E,H), consider its maximal invariant subspace
M ∗ and its largest (E−1, H)-invariant subspace V ∗. Then we have

(i) M ∗=V ∗;

(ii) Let Λ ∈ Expl(∆) and Λ∗ ∈ Expl(∆|redM ∗). Then Λ|red(V∗,U∗) and Λ∗ are explicit
control systems without outputs i.e., the MCF of the two control systems has no MCF 3

and MCF 4 parts, and Λ|red(V∗,U∗) is feedback equivalent to Λ∗.

The proof is given in Section 2.7. Analogously to the ex-equivalence of DAEs, we
define the internal equivalence of two DAEs as follows.
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Definition 2.6.8. For two DAEs ∆l,n = (E,H) and ∆̃l̃,ñ = (Ẽ, H̃), let M ∗ and M̃ ∗ be the
maximal invariant subspace of ∆ and ∆̃, respectively. Then ∆ and ∆̃ are called internally
equivalent, shortly in-equivalent, if ∆|redM ∗ and ∆̃|red

M̃ ∗ are ex-equivalent and we will denote

the in-equivalence of two DAEs as ∆
in∼ ∆̃.

Remark 2.6.9. A similar definition to the above internal equivalence above is given in
[18], called the behavioral equivalence, proposed via the behavioral approach of DAEs.
The difference between the internal equivalence and the behavioral equivalence is that, in
the definition of internal equivalence, two DAEs are not necessarily of the same dimension,
we only require their reductions of M ∗-restrictions to be of the same dimension (since they
are ex-equivalent), but for the behavioral equivalence, the two DAEs are required to have
the same dimension.

Any Λ∗ ∈ Expl(∆|redM ∗) is an explicit system without outputs (see Proposition 2.6.7(ii))
and denote the dimensions of its state space and input space by n∗ and m∗, respectively,
and its corresponding matrices by A∗, B∗ and thus Λ∗n∗,m∗ = (A∗, B∗).

Theorem 2.6.10. Let M ∗ and M̃ ∗ be the maximal invariant subspaces of ∆ and ∆̃, re-
spectively. Consider two control systems:

Λ∗ = (A∗, B∗) ∈ Expl(∆|redM ∗), Λ̃∗ = (Ã∗, B̃∗) ∈ Expl(∆̃|red
M̃ ∗).

Then the following are equivalent:

(i) ∆
in∼ ∆̃;

(ii) Λ∗ and Λ̃∗ are feedback equivalent;

(iii) ∆ and ∆̃ have isomorphic trajectories, i.e, there exists a linear and invertible map
S : M ∗ → M̃ ∗ transforming any trajectory x(t, x0), where x0 ∈M ∗ of ∆|redM ∗ into
a trajectory x̃(t, x̃0), x̃0 ∈ M̃ ∗ of ∆̃|red

M̃ ∗ , where x̃0 = Sx0, and vice versa.

The proof is given in Section 2.7. In most of the DAEs literature, regularity of DAEs
is frequently studied and various definitions are proposed. From the point of view of
the existence and uniqueness of solutions, we propose the following definition of internal
regularity of DAEs.

Definition 2.6.11. ∆ is internally regular if through any point x0 ∈M ∗, there passes only
one solution.

Recall that rank R[s](sE − H) denotes the rank of a polynomial matrix sE − H over
the ring R[s].

Proposition 2.6.12. For a DAE ∆l,n = (E,H), denote rankE = q. The following state-
ments are equivalent:

(i) ∆ is internally regular;
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(ii) Any Λ∗ ∈ Expl(∆|redM ∗) has no inputs;

(iii) The MCF of Λ ∈ Expl(∆) has no MCF 1 part.

(iv) rankE = dim EM ∗;

(v) rank R(s)(sE −H) = q;

(vi) The MCF of Λ∗ ∈ Expl(∆|redM ∗) has the MCF 2 part only.

The proof is given in Section 2.7.

Remark 2.6.13. (i) The above definition of internal regularity is actually equivalent to
the definition of an autonomous DAE in [11]. Both of them mean that the DAE is not
under-determined (there is no L(s) in the KCF of sE −H).

(ii) Our notion of internal regularity does not imply that the matrices E and H are
square, since the presence of the overdetermined part KCF 4 (or Lp(s)) is allowed for
∆ = (E,H).

(iii) If E and H are square (l = n), then ∆ (equivalently, sE −H) is internally regular
if and only if |sE − H| 6≡ 0, s ∈ C. It means that for the case of square matrices, the
classical notion of regularity and internal regularity coincide.

2.7 Proofs of the results

2.7.1 Proof of Theorem 2.3.4

Proof. (i) This result can be easily deduced from Definition 2.3.1 and 2.3.2.

(ii) Consider two control systems

Λ = (A,B,C,D) ∈ Expl(∆) and Λ̃ = (Ã, B̃, C̃, D̃) ∈ Expl(∆̃).

Then by (i) of Theorem 2.3.4, there exist invertible matrices Q, Q̃, P, P̃ of appropriate
sizes such that

Q (sE −H)P−1 =

[
sI − A −B
−C −D

]
, Q̃

(
sẼ − H̃

)
P̃−1 =

[
sI − Ã −B̃
−C̃ −D̃

]
. (2.26)

“If”. Suppose Λ
M∼ Λ̃, then there exist Morse transformation matrices Ts, Ti, To, F,K such

that [
Ts TsK

0 To

] [
sI − A −B
−C −D

] [
T−1
s 0

FT−1
s T−1

i

]
=

[
sI − Ã −B̃
−C̃ −D̃

]
. (2.27)
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By (2.27), we have[
Ts TsK

0 To

]
Q

(
Q−1

[
sI − A −B
−C −D

]
P

)
P−1

[
T−1
s 0

FT−1
s T−1

i

]
= Q̃

(
Q̃−1

[
sI − Ã −B̃
−C̃ −D̃

]
P̃

)
P̃−1

Substitute (2.26) into the above equation, to have

Q̃−1

[
Ts TsK

0 T0

]
Q (sE −H)P−1

[
T−1
s 0

FT−1
s T−1

i

]
P̃ = sẼ − H̃.

Thus ∆
ex∼ ∆̃ via (Q̄, P̄ ), where

Q̄ = Q̃−1

[
Ts TsK

0 T0

]
Q and P̄−1 = P−1

[
T−1
s 0

FT−1
s T−1

i

]
P̃ .

“Only if”. Suppose ∆
ex∼ ∆̃, then there exist invertible matrices Q̄ and P̄ of appropriate

sizes such that Q̄ (sE −H) P̄−1 =
(
sẼ − H̃

)
, which implies that

Q̄Q−1
(
Q (sE −H)P−1

)
PP̄−1 = Q̃−1

(
Q̃
(
sẼ − H̃

)
P̃−1

)
P̃

(2.26)⇒ Q̃Q̄Q−1

[
sI − A −B
−C −D

]
PP̄−1P̃−1 =

[
sI − Ã −B̃
−C̃ −D̃

]
.

Denote Q̃Q̄Q−1 =

[
Q1 Q2

Q3 Q4

]
and PP̄−1P̃−1 =

[
P 1 P 2

P 3 P 4

]
, where Qi and P i, for i =

1, 2, 3, 4, are matrices of suitable sizes. Then we get[
Q1 Q2

Q3 Q4

] [
sI − A −B
−C −D

] [
P 1 P 2

P 3 P 4

]
=

[
sI − Ã −B̃
−C̃ −D̃

]
.

Now by the invertibility of Q̃Q̄Q−1 and PP̄−1P̃−1, we get
[
Q1 Q2

Q3 Q4

]
and

[
P 1 P 2

P 3 P 4

]
are

invertible. By a direct calculation, we get Q3 = 0, P 2 = 0, Q1 = (P 1)−1, thus Q4 and P 4

are invertible as well. Therefore, Λ
M∼ Λ̃ via the Morse transformation

Mtran =
(
Q1, (P 4)−1, Q4, P 3Q1, (Q1)−1Q2

)
.

(iii) Given two control systems Λ = (A,B,C,D) and Λ̃ = (Ã, B̃, C̃, D̃), the corre-
sponding matrix pencils of ∆Impl = Impl(Λ) and ∆̃Impl = Impl(Λ̃), by Definition 2.3.1,

are
[
sI − A −B
−C −D

]
and

[
sI − Ã −B̃
−C̃ −D̃

]
, respectively.

“If”. Suppose ∆Impl ex∼ ∆̃Impl, that is, there exist invertible matrices Q and P such that

Q

[
sI − A −B
−C −D

]
P−1 =

[
sI − Ã −B̃
−C̃ −D̃

]
. (2.28)
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Denote Q =

[
Q1 Q2

Q3 Q4

]
and P =

[
P1 P2

P3 P4

]
with matrices Qi and P i, for i = 1, 2, 3, 4, of

suitable dimensions. Then by (2.28), we get Q3 = 0, P2 = 0, Q1 = (P1)−1. Since Q and

P are invertible, we can conclude that Q4 and P4 are invertible as well. Therefore, Λ
M∼ Λ̃

via the Morse transformation Mtran = (Q1, (P4)−1, Q4, P3Q1, (Q1)−1Q2).

“Only if”. Suppose Λ
M∼ Λ̃ via a Morse transformation Mtran = (Ts, Ti, To, F,K) (see

equation (2.4)), then we have ∆Impl ex∼ ∆̃Impl via (Q,P ), where Q =

[
Ts TsK

0 To

]
and

P−1 =

[
T−1
s 0

FT−1
s T−1

i

]
.

2.7.2 Proof of Proposition 2.4.4

Proof. (i) It can be observed from (2.10) that Vi is non-increasing. By a dimensional
argument, the sequence Vi gets stabilized at i = k∗ ≤ n and it can be directly seen from
Vk∗ = H−1EVk∗ that Vk∗ is a (H−1, E)-invariant subspace. We now prove by induction
that it is the largest. Choose any other (H−1, E)-invariant subspace V̂ and consider (2.10).
For i = 0, V̂ ⊆ V0; Suppose V̂ ⊆ Vi, then H−1EV̂ ⊆ H−1EVi (since taking the image
and preimage preserves inclusion), thus V̂ = H−1EV̂ ⊆ H−1EVi = Vi+1. Therefore,
V̂ ⊆ Vi for i ∈ N, i.e., V̂ ⊆ Vk∗ , it follows Vk∗ is the largest u(H−1, E)-invariant
subspace.

Now consider (2.11), observe that the sequence Wi is non-decreasing and by a di-
mensional argument, Wi gets stabilized at i = l∗ ≤ n. It can be directly seen from
Wl∗ = E−1HWl∗ that Wl∗ is a (E−1, H)-invariant subspace. We then prove that any other
(E−1, H)-invariant subspace Ŵ contains W ∗, for i = 0, W0 ⊆ Ŵ ; if Wi ⊆ Ŵ , then
E−1HWi ⊆ E−1HŴ , so Wi+1 = E−1HWi ⊆ E−1HŴ = Ŵ that is Wi ⊆ Ŵ for i ∈ N,
which gives Wl∗ ⊆ Ŵ and Wl∗ is the smallest (E−1, H)-invariant subspace.

(ii) By Definition 2.4.3, V ∗ satisfies V ∗ = H−1EV ∗, thus it is seen thatHV ∗ ⊆ EV ∗.
We then prove, by induction that, V ∗ is the largest satisfying that property. Choose any
other subspace V̂ which satisfies HV̂ ⊆ EV̂ , consider (2.10), for i = 0, so V̂ ⊆ V0.
Suppose V̂ ⊆ Vi, then V̂ ⊆ H−1EV̂ ⊆ H−1EVi = Vi+1, thus V̂ ⊆ H−1EVi = Vi+1,
therefore V̂ ⊆ Vi for i ∈ N, i.e., V̂ ⊆ Vk∗ , which implies V ∗ = Vk∗ is the largest subspace
such that HV ∗ ⊆ EV ∗

Obviously, {0} is the smallest subspace satisfyingH{0} ⊆ E{0}, but W ∗ is not always
{0}, so we prove that W ∗ is not necessarily the smallest subspace such that EW ∗ ⊆
HW ∗.
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2.7.3 Proof of Proposition 2.4.10

Proof. Observe that, by Definition 2.2.1 and 2.4.1, if two DAEs ∆ and ∆̃ are ex-equivalent
via (Q,P ), then direct calculations of the Wong sequences of ∆ and ∆̃ give that Vi(∆̃) =

PVi(∆) and Wi(∆̃) = PWi(∆). As Λ is a (Q,P )-explicitation of ∆, by Theorem 2.3.4(i),
we have ∆

ex∼∆Impl via (Q,P ), where ∆Impl = Impl(Λ). Thus we have

Vi(∆
Impl) = PVi(∆), Wi(∆

Impl) = PWi(∆). (2.29)

Notice that

∆Impl
l,n =

([
Iq 0

0 0

]
,

[
A B

C D

])
, Λn,m,p = (A,B,C) =

([
A B

0 0

]
,

[
0

Im

]
,
[
C D

])
,

where m = n− q and p = l − q. The proof of (i) will be done in 3 steps :

Step 1: First we show that for i ∈ N,

Vi(∆
Impl) = Vi(Λ). (2.30)

Calculate Vi+1 (Λ) using (2.13), to get

Vi+1 (Λ) = ker
[
C D

]
∩
[
A B

0 0

]−1(
Vi (Λ) + Im

[
0

Im

])
. (2.31)

Equation (2.31) can be written as

Vi+1 (Λ) =
{
ṽ |
[
A B

]
ṽ ∈

[
Iq 0

]
Vi (Λ) ,

[
C D

]
ṽ = 0

}
or, equivalently,

Vi+1 (Λ) =

[
A B

C D

]−1 [
Iq 0

0 0

]
Vi (Λ) . (2.32)

Now, observe that the inductive formula (2.32) for Vi+1(Λ) coincides with the inductive
formula (2.10) for the Wong sequence Vi+1(∆Impl). Since V0(∆Impl) = V0(Λ) = Rn, we
conclude that Vi(∆Impl) = Vi(Λ) for all i ∈ N.

Step 2: We then prove that for i ∈ N,

Vi+1(∆Impl) =

[
A B

C D

]−1 [
Vi(Λ)

0

]
. (2.33)

By calculating Vi+1(Λ) via (2.15), we get

Vi+1(Λ) =

[
A

C

]−1([
I

0

]
Vi(Λ) + Im

[
B

D

])
.

We can rewrite the above equation as

Vi+1(Λ) =
[
Iq 0q×m 0

]
ker

[
A B V̄i
C D 0

]
, (2.34)
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where V̄i is a matrix with independent columns such that Im V̄i = Vi(Λ).

From basic knowledge of linear algebra, for two matrices M ∈ Rl×n and N ∈ Rl×n,
the preimage M−1ImN = [In, 0] ker [M,N ]. With this formula, calculate Vi+1(∆Impl) via
(2.10), to get

Vi+1(∆Impl) =

[
A B

C D

]−1 [
Iq 0

0 0

]
=

[
Iq 0 0

0 Im 0

]
ker

[
A B

C D

[
Iq 0

0 0

]
Vi

]
, (2.35)

where Vi is a matrix with independent columns such that ImVi = Vi(∆).

In order to show that (2.33) holds, we will first prove inductively that for all i ∈ N,[
Vi(Λ)

0

]
=

[
Iq 0

0 0

]
Vi(∆

Impl). (2.36)

For i = 0,
[
V0(Λ)

0

]
=

[
Rq

0

]
=

[
Iq 0

0 0

]
V0(∆Impl). Suppose that for i = k ∈ N, equation

(2.36) holds, or equivalently,
[
V̄k
0

]
=

[
Iq 0

0 0

]
Vk(∆

Impl). Then we have

[
Vk+1(Λ)

0

]
(2.34)
=

[
Iq 0q×m 0

0 0p×m 0

]
ker

[
A B V̄k
C D 0

]
=

[
Iq 0

0 0

] [
Iq 0 0

0 Im 0

]
ker

[
A B

C D

[
Iq 0

0 0

]
Vk

]
(2.35)
=

[
Iq 0

0 0

]
Vk+1(∆Impl).

Therefore, equation (2.36) holds for all i ∈ N.

Consequently, we have for i ∈ N,

Vi+1(∆Impl)
(2.10)
=

[
A B

C D

]−1 [
Iq 0

0 0

]
Vi(∆

Impl)
(2.36)
=

[
A B

C D

]−1 [
Vi(Λ)

0

]
.

Step 3: Finally, since V ∗ and V∗ are the limits of the sequences Vi and Vi, respectively,
it follows from (2.30) that V ∗(∆Impl) = V∗(Λ). Since V ∗ and V∗ are the limits of Vi and

Vi, respectively, it follows from (2.33) that V ∗(∆Impl) =

[
A B

C D

]−1 [
V∗(Λ)

0

]
. Thus by

(2.29), we have PV ∗(∆) = V ∗(∆Impl) = V∗(Λ) =

[
A B

C D

]−1 [
V∗(Λ)

0

]
.

The proof of (ii) will be done in 3 steps :

Step 1: Firstly, we show that for i ∈ N,

Wi(∆
Impl) = Wi(Λ). (2.37)

Calculate Wi+1(Λ) by (2.14), as

Wi+1(Λ) =

[
A B

0 0

](
Wi(Λ) ∩ ker

[
C D

]
+ Im

[
0

Im

])
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=

[
Iq 0

0 0

]−1 [
A B

0 0

] (
Wi(Λ) ∩ ker

[
C D

])
=

([
Iq 0

0 0

]−1 [
A B

C D

]
Wi(Λ)

)
∩

([
Iq 0

0 0

]−1 [
A B

C D

]
ker
[
C D

])
.

Observe that[
Iq 0

0 0

]−1 [
A B

C D

]
ker
[
C D

]
=

[[
A B

]
ker
[
C D

]
∗

]
+ Im

[
0

Im

]
=

[
Iq 0

0 0

]−1

Im

[
A B

C D

]
.

Then we have

Wi+1(Λ) =

[
Iq 0

0 0

]−1 [
A B

C D

]
Wi(Λ). (2.38)

Observe that the inductive formula (2.38) for Wi+1(Λ) coincides with the inductive for-
mula (2.11) for the Wong sequences Wi+1(∆Impl). Since W0(∆Impl) = W0(Λ) = {0},
we deduce that Wi(∆

Impl) = Wi(Λ) for i ∈ N.

Step 2: Subsequently, we will prove that for i ∈ N,

Wi+1(Λ) =

[
Iq 0

0 0

]−1 [
Wi(Λ)

0

]
. (2.39)

Considering (2.17) for Λ, we have[
Wi+1(Λ)

0

]
=

[
A B

0 0

]([
Wi(Λ)

Rm

]
∩ ker

[
C D

])
=

[
A B

0 0

](([
Iq 0

0 0

]−1 [
Wi(Λ)

0

])
∩ ker

[
C D

])
,

which implies that[
Iq 0

0 0

]−1 [
Wi+1(Λ)

0

]
=

[
A B

0 0

]([
Iq 0

0 0

]−1 [
Wi(Λ)

0

]
∩ ker

[
C D

])
+ Im

[
0

Im

]
.

(2.40)

Observe that the inductive formula (2.40) for
[
Iq 0

0 0

]−1 [
Wi+1(Λ)

0

]
coincides with the

inductive formula (2.14) for Wi+1(Λ). Since W1(Λ) =

[
Iq 0

0 0

]−1 [
W0(Λ)

0

]
= Im

[
0

Im

]
,

we have Wi+1(Λ) =

[
Iq 0

0 0

]−1 [
Wi(Λ)

0

]
for all i ∈ N.

Step 3: Equation (2.37) and the fact that W ∗ and W∗ are the limits of Wi and Wi,
respectively, yield W ∗(∆) = W∗(Λ). Equation (2.39) and the fact that W∗ and W∗ are

the limits of Wi and Wi, respectively, yield W∗(Λ) =

[
Iq 0

0 0

]−1 [
W∗(Λ)

0

]
. Thus using

equation (2.29), we prove (ii) of Proposition 2.4.10.
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2.7.4 Proof of Proposition 2.4.13

In this proof, we will need the following two lemmata. Denote by F(Vi(Λ)) the class of
maps F : Rq → Rm satisfying (A+BF )Vi+1(Λ) ⊂ Vi(Λ) and (C +DF )Vi+1(Λ) = 0.

Lemma 2.7.1. Given ∆l,n = (E,H), its (Q,P )-explicitation Λ = (A,B,C,D) ∈ Expl(∆),
and ∆Impl = Impl(Λ), consider the Wong sequences Vi, Wi of both ∆ and ∆Impl, given
by Definition 2.4.1 and the subspaces Vi, Wi of Λ, given by Lemma 2.4.6. Then for i ∈ N,
we have

Vi+1(∆Impl) = PVi+1(∆) =

[
Vi+1(Λ)

FiVi+1(Λ)

]
+

[
0

Ui(Λ)

]
, (2.41)

where Fi ∈ F(Vi(Λ)) and

Wi+1(∆Impl) = PWi+1(∆) =

[
Wi(Λ)

∗

]
+

[
0

U (Λ)

]
. (2.42)

Lemma 2.7.2. Consider the subspace sequences Vi and Wi of Λd, given by Lemma 2.4.6.
Then for i ∈ N, the following hold

P TWi+1(Λd) = HT (ET )−1
(
P TWi(Λ

d)
)
, (2.43)

P TVi+1

(
Λd
)

= ET (HT )−1
(
P TVi(Λ

d)
)
. (2.44)

Proof of Lemma 2.7.1. We first show that equation (2.41) holds. Let independent vectors

v1 =

[
v1

1

v2
1

]
, ..., vα =

[
v1
α

v2
α

]
∈ Rn form a basis of

PVi+1(∆)
(2.29)
= Vi+1(∆Impl)

(2.33)
=

[
A B

C D

]−1 [
Vi(Λ)

0

]
,

where v1
j ∈ Rq, v2

j ∈ Rm, j = 1, 2, ..., α (implying that dim (Vi+1(∆Impl)) = α). Now
without loss of generality, assume v1

j 6= 0 for j = 1, ..., κ and v1
j = 0 for j = κ + 1, ..., α,

where κ < α is the number of non-zero vectors v1
j . Then from equation (2.36), it can

be deduced that v1
j for j = 1, ..., κ form a basis of Vi+1(Λ). Moreover, from (2.33), it

is not hard to see that v2
j for j = κ + 1, ..., α form a basis of Ui(Λ). Let Fi ∈ Rm×κ

be such that Fiv1
j = v2

j for j = 1, ..., κ (such Fi exists), then v1, . . . , vα form a basis of[
Vi+1(Λ)

FiVi+1(Λ)

]
+

[
0

Ui(Λ)

]
. Therefore,

[
Vi+1(Λ)

FiVi+1(Λ)

]
+

[
0

Ui(Λ)

]
=

[
A B

C D

]−1 [
Vi(Λ)

0

]
,

because both spaces have the same basis v1, . . . , vα. We now prove that for any choice of

Fi, we have Fi ∈ F(Vi(Λ)). Pre-multiply the above equation by
[
A B

C D

]
on the left to

obtain [
(A+BFi)Vi+1(Λ)

(C +DFi)Vi+1(Λ)

]
+

[
BUi(Λ)

DUi(Λ)

]
⊆
[
Vi(Λ)

0

]
.
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Moreover, we get
[
BUi(Λ)

DUi(Λ)

]
⊆
[
Vi(Λ)

0

]
by (2.16). Thus it is easy to see that (A +

BFi)Vi+1(Λ) ⊆ Vi and (C +DFi)Vi+1(Λ) = 0.

Subsequently, we show that equation (2.42) holds. By (2.37) and (2.39), it follows that
for i ∈ N,

Wi+1(∆Impl) =

[
Iq 0

0 0

]−1 [
Wi(Λ)

0

]
. (2.45)

Then by (2.29), we have Wi+1(∆Impl) = PWi+1(∆) and we complete the proof of (2.42)
by calculating explicitly the right-hand side of (2.45).

Proof of Lemma 2.7.2. Notice that Λd
n,p,m =

([
AT 0

BT 0

]
,

[
CT

DT

]
,
[
0 Im

])
.We first prove

that the following relations hold,

Wi+1(Λd) =

[
A B

C D

]T [
Iq 0

0 0

]−T
Wi(Λ

d), Vi+1(Λd) =

[
Iq 0

0 0

]T [
A B

C D

]−T
Vi(Λ

d).

(2.46)

For Λd, calculate Wi+1 via (2.14), to get for i ∈ N:

Wi+1

(
Λd
)

=

[
AT 0

BT 0

] (
Wi

(
Λd
)
∩ ker

[
0 Im

])
+ Im

[
CT

DT

]
.

Moreover, it is not hard to see that[
Iq 0

0 0

]−T
Wi

(
Λd
)

=

[
Iq 0

0 0

] (
Wi

(
Λd
)
∩ ker

[
0 Im

])
+ Im

[
0

Ip

]
.

Pre-multiply both sides of the above equation by
[
A B

C D

]T
, it follows that

[
A B

C D

]T [
Iq 0

0 0

]−T
Wi(Λ

d) =

[
AT 0

BT 0

] (
Wi

(
Λd
)
∩ ker

[
0 Im

])
+ Im

[
CT

DT

]
= Wi+1

(
Λd
)
.

Then calculate Vi+1 for Λd, via (2.13), to get for i ∈ N,

Vi+1

(
Λd
)

= ker
[
0 Im

]
∩
[
AT 0

BT 0

]−1(
Vi

(
Λd
)

+ Im

[
CT

DT

])
. (2.47)

Rewrite (2.47) as

Vi+1

(
Λd
)

= Im

[
Iq
0

]
∩

([
In 0

]
ker

[
(A)T 0

(B)T 0
Ṽi
(
Λd
) (C)T

(D)T

])
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=

[Iq 0
]

ker

[
AT CT

BT DT Ṽi
(
Λd
)]

0

 =

[
Iq 0

0 0

] [
AT CT

BT DT

]−1

Vi

(
Λd
)
.

Therefore, the proof of (2.46) is complete. Consequently, substitute[
A B

C D

]
= QHP−1,

[
Iq 0

0 0

]
= QEP−1

into (2.46), then it is straightforward to see that (2.43) and (2.44) hold for any i ∈ N.

Proof of Proposition 2.4.13. Notice that since Λ ∈ Expl(∆), by Proposition 2.4.12, we
have Λd ∈ Expl(∆d). Moreover, it is easy to see if Λ is the (Q,P )-explicitation of ∆,
then Λd is the (P−T , Q−T )-explicitation of ∆d. The proof will be done in 3 steps.

Step 1; Step 1a: We show that for i ∈ N,

Wi+1(∆d) = (EVi(∆))⊥ ⇔Wi(Λ
d) = (Vi(Λ))⊥. (2.48)

By Λd ∈ Expl(∆d) and (2.42) of Lemma 2.7.1, we get

Q−TWi+1(∆d) =

[
Wi(Λ

d)

∗

]
+ Im

[
0

Ip

]
.

Moreover, we have

(EVi(∆))⊥ = (Q−1QEP−1PVi(∆))⊥
(2.29)
= (Q−1

[
Iq 0

0 0

]
Vi(∆

Impl))⊥
(2.36)
= QT

[
Vi(Λ)

0

]⊥
= QT

([
(Vi(Λ))⊥

∗

]
+ Im

[
0

Ip

])
.

It is seen that Wi+1(∆d) = (EVi(∆))⊥ if and only if Wi(Λ
d) = (Vi(Λ))⊥.

Step 1b: In this step, we will prove that for i ∈ N,

Vi(∆
d) = (HWi(∆))⊥ ⇔ Vi(Λ

d) = (Wi(Λ))⊥. (2.49)

We first prove “⇒” of (2.49): Considering equation (2.29) and (2.36) for ∆d, we can
deduce that

ETVi(∆
d) = P T

[
Iq 0

0 0

]T
Q−TVi(∆

d) = P T

[
Vi(Λ

d)

0

]
.

On the other hand, we have

ET (HWi(∆))⊥ = (E−1HWi(∆))⊥
(2.11)
= (Wi+1(∆))⊥ = (P−1PWi+1(∆))⊥

= (P−1)−T (PWi+1(∆))⊥
(2.42)
= P T

([
Wi(Λ)

∗

]
+

[
0

U (Λ)

])⊥
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= P T

[
Wi(Λ)⊥

0

]
.

Now we can see that for i ∈ N, if Vi(∆d) = (HWi(∆))⊥, then Vi(Λ
d) = (Wi(Λ))⊥.

We then prove “⇐” of (2.49): By equation (2.29) and (2.33), we can deduce that

Q−TVi+1(∆d) =

[
AT CT

BT DT

]−1 [
Vi(Λ

d)

0

]
. (2.50)

We have

(HWi+1(∆))⊥ = (Q−1QHP−1PWi+1(∆))⊥ = (Q−1

[
A B

C D

]
PWi+1(∆))⊥

=

(
Q−1

[
A B

C D

])−T
(PWi+1(∆))⊥

(2.42)
= QT

[
AT CT

BT DT

]−1([
Wi(Λ)

∗

]
+

[
0

U (Λ)

])⊥
.

The above equation gives

Q−T (HWi+1(∆))⊥ =

[
AT CT

BT DT

]−1 [
(Wi(Λ))⊥

0

]
. (2.51)

Now equations (2.50) and (2.51) yield that for i ∈ N, if Vi(Λ
d) = (Wi(Λ))⊥, then

Vi(∆d) = (HWi(∆))⊥. Thus the proof of (2.49) is complete.

Step 2; Step 2a: We prove that for i ∈ N,

Wi+1(∆d) = (EVi(∆))⊥ ⇔Wi(Λ
d) = (Vi(Λ))⊥. (2.52)

Using equation (2.43) of Lemma 2.7.2, we will prove by induction that for i ∈ N,

HTWi(∆
d) = P TWi(Λ

d). (2.53)

For i = 0, HTW0(∆d) = P TW0(Λd) = 0; If HTWi(∆
d) = P TWi(Λ

d), then

HTWi+1(∆d)
(2.11)
= HT (ET )−1HTWi(∆

d) = HT (ET )−1P TWi(Λ
d)

(2.43)
= P TWi+1(Λd).

By an induction argument, (2.53) holds for i ∈ N.

We now prove ”⇒ ” of (2.52): Assume for i ∈ N, Wi+1(∆d) = (EVi(∆))⊥, it follows
that

Wi+1(Λd)
(2.53)
= P−THTWi+1(∆d) = P−THT (EVi(∆))⊥ = (PH−1EVi(∆))⊥

(2.10)
= (PVi+1(∆)) = (Vi+1(∆Impl))⊥

(2.30)
= (Vi+1(Λ))⊥.

We then prove ”⇐ ” of (2.52): Assume for i ∈ N, Wi(Λ
d) = (Vi(Λ))⊥, it follows that

(EVi(∆))⊥ = E−T (Vi(∆))⊥ = E−T (P−1Vi(∆
Impl))⊥

(2.30)
= E−T (P−1Vi(Λ))⊥
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= E−TP TWi(Λ
d)

(2.53)
= E−THTWi(∆

d)
(2.11)
= Wi+1(∆d),

and the proof of (2.52) is complete.

Step 2b: In this step, we show that for i ∈ N,

Vi(∆
d) = (HWi(∆))⊥ ⇔ Vi(Λ

d) = (Wi(Λ))⊥. (2.54)

Using equation (2.44) of Lemma 2.7.2, we will prove by induction that for i ∈ N,

Vi(∆
d) = (HT )−1

(
P TVi(Λ

d)
)
. (2.55)

For i = 0, V0(∆d) = Rn = (HT )−1P TV0(Λd); If Vi(∆d) = (HT )−1P TVi(Λ
d), then we

get

Vi+1(∆d)
(2.10)
= (HT )−1ETVi(∆

d) = (HT )−1ET (HT )−1P TVi(Λ
d)

(2.44)
= (HT )−1P TVi+1(Λd).

By an induction argument, (2.55) holds for i ∈ N.

We now prove ”⇒ ” of (2.54). Assume Vi(∆d) = (HWi(∆))⊥, then

P TVi+1(Λd)
(2.44)
= ETH−TP TVi(Λ

d)
(2.55)
= ETVi(∆

d) = ET (HWi(∆))⊥

= (E−1HWi(∆))⊥
(2.11)
= (Wi+1(∆))⊥ = (P−1Wi+1(∆Impl))⊥

(2.37)
= P TWi+1(Λ),

We then prove ”⇐ ” of (2.54): Assume Vi(Λ
d) = (Wi(Λ))⊥, then for i ∈ N,

(HWi(∆))⊥ = (HT )−1(Wi(∆))⊥ = (HT )−1(P−1Wi(∆
Impl))⊥

(2.37)
= (HT )−1(P−1Wi(Λ))⊥ = (HT )−1P TVi(Λ

d)
(2.55)
= Vi(∆

d),

which completes the proof of (2.54).

Step 3: Since V ∗, V ∗, V∗, W∗, V∗, W∗ are the limites of Vi, Vi, Vi, Wi, Vi, Wi,
respectively, equations (2.48) and (2.49) prove that (i)⇔ (ii) holds, and equations (2.52)
and (2.54) prove that (i)⇔ (iii) holds.

2.7.5 Proof of Proposition 2.5.3

Proof. Note that the Kronecker indices are invariant under ex-equivalence. By ∆
ex∼∆Impl,

in our proof we can work with the Kronecker indices of ∆Impl instead of those of ∆. In
what follows, we will use the results of Lemma 2.7.1 given in Section 2.7.4.

(i) Recall Lemma 2.5.1(i) for ∆Impl and Lemma 2.5.2(i) for Λ. For i ∈ N+, it holds
that,

Ki(∆
Impl) = Wi(∆

Impl) ∩ V ∗(∆Impl)
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Lemma 2.7.1
=

([
Wi−1(Λ)

∗

]
+

[
0

U (Λ)

])
∩
([

V∗(Λ)

F ∗V∗(Λ)

]
+

[
0

U∗(Λ)

])
=

[
Wi−1(Λ) ∩ V∗(Λ)

F ∗ (Wi−1(Λ) ∩ V∗(Λ))

]
+

[
0

U∗(Λ)

]
, (2.56)

for a suitable F ∗ ∈ F(V∗(Λ)). Then we have

a
Lemma 2.5.1(i)

= dim
(
K1(∆Impl)

) (2.56)
= dim

([
0

U∗(Λ)

])
= dim (U∗(Λ))

Lemma 2.5.2(i)
= a′.

Moreover, it is seen that for i ∈ N,

ωi
Lemma 2.5.1(i)

= dim
(
Ki+2(∆Impl)

)
− dim

(
Ki+1(∆Impl)

)
(2.56)
= dim (Wi+1(Λ) ∩ V∗(Λ))− dim (Wi(Λ) ∩ V∗(Λ))

= dim (Ri+1(Λ))− dim (Ri(Λ))
Lemma 2.5.2(i)

= ω′i.

Now consider equations (2.19) and (2.23) and it is sufficient to show{
εj = ε′j = 0

εj = ε′j = i

for

for

1 ≤ j ≤ a− ω0 = a′ − ω′0,
a′ − ω′i−1 + 1 = a− ωi−1 + 1 ≤ j ≤ a− ωi = a′ − ω′.

The statement that d = d′, ηi = η′i can be proved in a similar way using dual objects. It is
not hard to see that for i ∈ N+,

K̂i(∆
Impl) =

(
EVi−1(∆Impl)

)⊥ ∩ (HW ∗(∆Impl))⊥

Prop. 2.4.13(i)
= Wi((∆

Impl)d) ∩ V ∗((∆Impl)d)

Lemma 2.7.1
=

[
Wi−1(Λd) ∩ V∗(Λd)

∗

]
+

[
0

U∗(Λd)

]
,

where (∆Impl)d is the dual system of ∆Impl, which coincides with Impl(Λd). It follows
that

d
Lemma 2.5.1(i)

= dim
(
K̂1(∆Impl)

)
= dim

([
0

U∗(Λd)

])
= dim (Y∗(Λ))

Lemma 2.5.2(i)
= d′.

We can also see that for i ∈ N,

ω̂i = dim
(

ˆKi+2(∆Impl)
)
− dim

(
ˆKi+1(∆Impl)

)
= dim

(
Wi+1(Λd) ∩ V∗(Λd)

)
− dim

(
Wi(Λ

d) ∩ V∗(Λd)
)

Prop.2.4.13
= dim

(
(Vi+1)⊥ ∩ (W∗)⊥

)
− dim

(
(Vi)

⊥ ∩ (W∗)⊥
)

= dim (R̂i+1(Λ))− dim (R̂i(Λ)) = ω̂′i.

Now it is sufficient to show that{
ηj = η′j = 0

ηj = η′j = i

for

for

1 ≤ j ≤ d− ω̂0 = h− ω̂′0,
h− ω′i−1 + 1 = d− ω̂i−1 + 1 ≤ j ≤ d− ω̂i = h− ω̂′.
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(ii) Recall Lemma 2.5.1(ii) for ∆Impl and Lemma 2.5.2(ii) for Λ. We have for all
i ∈ N+,

V ∗(∆Impl) + Wi(∆
Impl)

Lemma2.7.1
=

[
V∗(Λ)

F ∗ ∗ V∗(Λ)

]
+

[
0

Ui(Λ)

]
+

[
Wi−1(Λ)

∗

]
+

[
0

U (Λ)

]
=

[
V∗(Λ) + Wi−1(Λ)

∗

]
+

[
0

U (Λ)

]
.

If ν = 0, then we have the following result by (2.21):

V ∗(∆Impl) + W0(∆Impl) = V ∗(∆Impl) + W1(∆Impl)⇒([
V∗(Λ)

F ∗V∗(Λ)

]
+

[
0

U∗(Λ)

])
=

([
V∗(Λ)

∗

]
+

[
0

U (Λ)

])
⇒ U (Λ) = U∗(Λ).

It follows that c′ = dim (U (Λ))− dim (U∗(Λ)) = 0. Therefore, in this case, the MCF 3-
part of MCF is absent. As a consequence, if N(s) of KCF is absent, then MCF 3 of MCF
is absent as well. If ν > 0, from (2.21) we get

ν = min

{
i ∈ N+

∣∣∣∣[V∗(Λ) + Wi−1(Λ)

∗

]
+

[
0

U (Λ)

]
=

[
V∗(Λ) + Wi(Λ)

∗

]
+

[
0

U (Λ)

]}
= min

{
i ∈ N+ |V∗(Λ) + Wi−1(Λ) = V∗(Λ) + Wi(Λ)

}
= ν ′ + 1.

We have

c = π0 = dim
(
V ∗(∆Impl) + W1(∆Impl)

)
− dim

(
V ∗(∆Impl) + W0(∆Impl)

)
Lemma 2.7.1

= dim

([
V∗(Λ)

∗

]
+

[
0

U (Λ)

])
− dim

([
V∗(Λ)

∗

]
+

[
0

U(Λ)

])
= dim (U (Λ))− dim (U(Λ)) = c′.

We also have for i ∈ N+,

πi = dim
(
V ∗(∆Impl) + Wi+1(∆Impl)

)
− dim

(
V ∗(∆Impl) + Wi(∆

Impl)
)

= dim

([
V∗(Λ) + Wi(Λ)

∗

]
+

[
0

U (Λ)

])
− dim

([
V∗(Λ) + Wi−1(Λ)

∗

]
+

[
0

U (Λ)

])
= dim (Wi(Λ) + V∗(Λ))− dim (Wi−1(Λ) + V∗(Λ)) = π′i−1.

Now substituting c = c′, πi = π′i−1 and ν = ν ′ + 1 into (2.22), we can rewrite equation
(2.22) as{

σj =0 for 1 ≤ j ≤ c− π1 = c′ − π′0 = δ,

σj = i for c′ − π′i−2 + 1=c− πi−1 + 1 ≤ j ≤ c− πi=c′ − π′i−1, i=2, ..., ν ′ + 1.

Replacing i by i− 1, we get

σj = i− 1 for c′ − π′i−1 + 1 ≤ j ≤ c′ − π′i, i = 1, 2, ..., ν ′.

Finally, compare the above expression of σj with that for σ′j of (2.25), it is not hard to see
that σj + 1 = σ′j for j = 1, . . . , c.
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(iii) We only show that the invariant factors of MCF 2 of Λ coincide with the in-
variant factors of the real Jordan pencil J(s) of ∆Impl, then the equalities d = h, η1 =

η′1, · · · , ηd = η′h are immediately satisfied. First, let two subspaces X2 ⊆ V ∗(∆Impl) and
Z2 ⊆ V∗(Λ) be such that

X2 ⊕
(
V ∗(∆Impl) ∩W ∗(∆Impl)

)
= V ∗(∆Impl), Z2 ⊕ (V∗(Λ) ∩W∗(Λ)) = V∗(Λ).

The above construction gives ∆Impl|X2 = KCF 2 and Λ|Z2 = MCF 2, where KCF 2

corresponds to the Jordan pencil J(s). Use Lemma 2.7.1 conclude that

X2 ⊕
(
V ∗(∆Impl) ∩W ∗(∆Impl)

)
= V ∗(∆Impl)

implies

X2 ⊕
(([

W∗(Λ)

∗

]
+

[
0

U (Λ)

])
∩
([

V∗(Λ)

F ∗V∗(Λ)

]
+

[
0

U∗(Λ)

]))
=

([
V∗(Λ)

F ∗V∗(Λ)

]
+

[
0

U∗(Λ)

])
⇒X2 ⊕

([
W∗(Λ) ∩ V∗(Λ)

F ′ (W∗(Λ) ∩ V∗(Λ))

]
+

[
0

U∗(Λ)

])
=

([
V∗(Λ)

F ∗V∗(Λ)

]
+

[
0

U∗(Λ)

])
,

where F ∈ F(V∗(Λ)), F ′ ∈ F(W∗(Λ) ∩ V∗(Λ)). Since Z2 ⊕ V∗(Λ) ∩W∗(Λ) = V∗(Λ),

we have X2 =

[
Z2

F ′′Z2

]
, where F ′′ ∈ F(Z2). Then, it follows that

[
sI − A −B
−C −D

]∣∣∣∣
X2

=

[
sI − A −B
−C −D

] [
Z2

F ′′Z2

]
=

[
(sI − (A+BF ′′)) Z2

(C +DF ′′)Z2

]
=

[
(sI − (A+BF ′′)) Z2

0

]
.

Now it is known from Lemma 4.1 of [146] that (A + BF ′′)|Z2 does not dependent on
the choice of F ′′. Thus the invariant factors of (sI − (A+BF ′′)) Z2 coincide with the
invariant factors of MCF 2 for Λ. Finally, from the above equation, it is easy to see that
the invariant factors of J(s) in KCF of ∆ coincide with those of MCF 2 of Λ.

2.7.6 Proof of Proposition 2.6.7

Proof. (i) By Proposition 2.6.6, M is an invariant subspace if and only if HM ⊆ EM .
Therefore, M ∗ is the largest subspace such that HM ∗ ⊆ EM ∗, then by Proposition
2.4.4(ii), we have M ∗ = V ∗.

(ii) By Proposition 2.6.6, for ∆|redM ∗ = (E|redM ∗ , H|redM ∗), the matrix E|redM ∗ is of full
row rank. Thus from the explicitation procedure, it is straightforward to see that Λ∗ ∈
Expl(∆|redM ∗) is a control system without outputs. Note that, by the definitions of reduction
and restriction, if two DAEs ∆

ex∼ ∆̃, then ∆|redM ∗
ex∼ ∆̃|red

M̃ ∗ . In the following, without loss of
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generality, we assume ∆ is in its KCF (which is invariant under ex-equivalence). Denote
the four parts of the KCF of ∆ as KCF k, k = 1, . . . , 4 and the corresponding matrix
pencil of each part is:

L(s) for KCF 1, J(s) for KCF 2, N(s) for KCF 3, Lp(s) for KCF 4.

Thus Λ ∈ Expl(∆) is in the MCF. It is easily seen that

Λ|red(V∗,U∗) =
(
MCF 1,MCF 2

)
,

which can be seen as a control system without outputs. From the one-to-one correspon-
dence of the KCF and the MCF discussed in Section 2.5, it is straightforward to see that
(MCF 1,MCF 2) ∈ Expl(KCF 1, KCF 2), which implies

Λ|red(V∗,U∗) =
(
MCF 1,MCF 2

)
∈ Expl(∆|redV ∗ ).

Since Λ∗ ∈ Expl(∆|redV ∗ ) , by Theorem 2.3.4(ii), we have Λ|red(V∗,U∗)

M∼Λ∗. Finally, since Λ∗

and Λ|red(V∗,U∗) are two control systems without outputs, their Morse equivalence reduces to
their feedback equivalence (see Remark 2.2.4)

2.7.7 Proof of Theorem 2.6.10

Proof. (i) ⇔ (ii): By Definition 2.6.8, we have ∆
in∼ ∆̃ if and only if ∆|redM ∗

ex∼ ∆̃|redM ∗ .
Consider Λ∗ ∈ Expl(∆|redM ∗) and Λ̃∗ ∈ Expl(∆̃|red

M̃ ∗), then by Theorem 2.3.4(ii), it follows

that ∆|redM ∗
ex∼ ∆̃|redM ∗ if and only if Λ∗

M∼ Λ̃∗. Thus by Proposition 2.6.7(ii), Λ∗ and Λ̃∗ are
two control systems without outputs, which implies that their Morse equivalence reduces
to their feedback equivalence (see Remark 2.2.4).

(ii)⇔ (iii): We first prove that two DAEs ∆∗ = Impl(Λ∗) and ∆̃∗ = Impl(Λ̃∗) have
isomorphic trajectories if and only if Λ∗ and Λ̃∗ are feedback equivalent. Let (z(t), u(t))

and (z̃(t), ũ(t)) denote trajectories of ∆∗ and ∆̃∗, respectively. Suppose Λ∗ and Λ̃∗ are
feedback equivalent, then there exist matrices Ts ∈ Gl(n∗,R), Ti ∈ Gl(m∗,R), F ∈
Rm∗×n∗ such that Ã∗ = Ts(A

∗ + B∗F )T−1
s , B̃∗ = TsBT

−1
i . Since Λ∗ has no output, its

implicitation (see Definition 2.3.1) is

∆∗ :
[
I 0

] [ż
u̇

]
=
[
A∗ B∗

] [z
u

]
.

For Λ̃∗, its implicitation is

∆̃∗ :
[
I 0

] [ ˙̃z
˙̃u

]
=
[
Ã∗ B̃∗

] [z̃
ũ

]
⇒
[
I 0

] [ ˙̃z
˙̃u

]
= Ts

[
A∗ B∗

] [ T−1
s 0

FT−1
s T−1

i

] [
z̃

ũ

]
.

It can be seen that any trajectory (z(t), u(t)) of ∆∗ satisfying z(0) = z0 and u(0) = u0,

is mapped via T =

[
T−1
s 0

FT−1
s T−1

i

]−1

into a trajectory (z̃(t), ũ(t)) of ∆̃∗ passing through[
z̃0

ũ0

]
= T

[
z0

u0

]
.
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Conversely, suppose that there exists an invertible matrix T =

[
T1 T2

T3 T4

]
such that[

z̃ (t)

ũ (t)

]
=

[
T1 T2

T3 T4

] [
z (t)

u (t)

]
. It follows that (z̃(t), ũ(t)), being a solution of ∆̃∗, satisfies

[
I 0

]( ˙̃z (t)
˙̃u (t)

)
=
[
Ã∗ B̃∗

](z̃ (t)

ũ (t)

)
,

which implies

[
I 0

] [T1 T2

T3 T4

](
ż (t)

u̇ (t)

)
=
[
Ã∗ B̃∗

] [T1 T2

T3 T4

](
z (t)

u (t)

)
.

Since (z(t), u(t)) satisfies ż(t) = A∗z(t) +B∗u(t), it follows that

T1ż(t) + T2u̇(t) = (Ã∗T1 + B̃∗T3)z(t) + (Ã∗T2 + B̃∗T4)u(t)⇒
T1(A∗z(t) +B∗u(t)) + T2u̇(t) = (Ã∗T1 + B̃∗T3)z(t) + (Ã∗T2 + B̃∗T4)u(t). (2.57)

Notice that equation (2.57) is satisfied for any solution (z(t), u(t)) of ∆∗. (a). Let u(t) ≡ 0

and (z(t, z0), 0) (where z0 6= 0) be a solution of ∆∗ (obviously, such a solution always
exists). By substituting this solution into (2.57) and considering it for t = 0, we have
T1A

∗z0 = (Ã∗T1 + B̃∗T3)z0, where z0 = z(0) can be taken arbitrary, which implies
A∗ = T−1

1 (Ã∗ + B̃∗(T3T
−1
1 ))T1. (b). Fix z(0) = z0 = 0 and set u(t) = ui(t) =

[0, . . . , t, . . . , 0]T , where t is in the i-th row. Evaluating at t = 0, we have z(0) = 0,
u(0) = 0 and u̇i(0) = [0, . . . , 1, . . . , 0]T , and thus by (2.57) we have T2u̇

i(0) = 0. So
taking control u1(t), . . . , um

∗
(t) of that form, we conclude that T2 = 0. Now it is easy

to see from (2.57) that B∗ = T−1
1 B̃∗T4. Thus Λ∗ and Λ̃∗ are feedback equivalent (see

Remark 2.2.4) via Ts = T1, Ti = T−1
4 and F = T3T

−1
1 . Therefore, any trajectory of ∆∗ is

transformed via T into a trajectory of ∆̃∗ if and only if Λ∗ and Λ̃∗ are feedback equivalent.

Then by Theorem 2.3.4(i), we have

∆|redM ∗
ex∼∆∗ = Impl(Λ∗) and ∆̃|red

M̃ ∗
ex∼ ∆̃∗ = Impl(Λ̃∗)

(since Λ∗ ∈ Expl(∆|redM ∗) and Λ̃∗ ∈ Expl(∆̃|red
M̃ ∗)). Moreover, by Remark 2.2.2, there exist

matrices P ∈ Gl(n∗,R) and P̃ ∈ Gl(n∗,R) such that any trajectory of ∆|redM ∗ is mapped
via P into the corresponding trajectory of ∆∗ and any trajectory of ∆̃|red

M̃ ∗ is mapped via P̃
into the corresponding trajectory of ∆̃∗. Now we can conclude that the linear and invertible
map S = PTP̃−1 sends any trajectory of ∆|redM ∗ into the corresponding trajectory of ∆̃|red

M̃ ∗

if and only if Λ∗ and Λ̃∗ are feedback equivalent.

2.7.8 Proof of Proposition 2.6.12

Proof. (i) ⇔ (ii): Consider a DAE ∆∗ = Impl(Λ∗). We have ∆|redM ∗
ex∼∆∗ (implied

by Λ∗ ∈ Expl(∆|redM ∗) and Theorem 2.3.4(i)), we get ∆|redM ∗
ex∼∆∗. Actually, since Λ∗ is

defined on M ∗, it follows from Definition 2.6.8 that ∆|redM ∗
in∼∆∗ = Impl(Λ∗). Thus by
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the equivalence of item (i) and (iii) of Theorem 2.6.10, the solutions of ∆ passing through
x0 ∈M ∗ are mapped, via a certain linear isomorphism S, into the solutions of ∆∗, which
means that ∆ is internally regular if and only if ∆∗ has only one solution passing through
any initial point in M ∗. This is true if and only if the input of Λ∗ is absent, i.e., ∆∗ is an
ODE without free variables. Therefore, ∆ is internally regular if and only if Λ∗ has no
inputs.

(ii)⇔ (iii)⇔ (vi): From the proof of Proposition 2.6.7(ii), we can see that the input
is absent in Λ∗ if and only if Λ∗ = MCF 2 of Λ, that is, MCF 1 is absent in the MCF of Λ.

(i) ⇔ (iv) ⇔ (v): Using V ∗ = M ∗ and the KCF of ∆, it is straightforward to see
this equivalence.

2.8 Conclusion

In this chapter, we propose a procedure named explicitation for DAEs. The explicitation
of a DAE is, simply speaking, attaching to the DAE a class of linear control systems
defined up to a coordinates change, a feedback and an output injection. We prove that the
invariant subspaces of the attached control systems have direct relations with the limits
of the Wong sequences of the DAE. We show that the Kronecker indices of the DAE
have direct relations with the Morse indices of the attached control systems, and as a
consequence, the Kronecker canonical form KCF of the DAE and the Morse canonical
from MCF of control systems have a perfect correspondence. We also propose a notion
named internal equivalence for DAEs and show that the internal equivalence is useful when
analyzing the existence and uniqueness of solutions (internal regularity).

2.9 Appendix

Kronecker Canonical Form (KCF) [117],[75]: For any matrix pencil sE−H ∈ Rl×n[s],
there exist matrices Q ∈ Gl(l,R), P ∈ Gl(n,R) and integers ε1, ..., εa ∈ N, ρ1, ..., ρb ∈
N, σ1, ..., σc ∈ N, η1, ..., ηd ∈ N with a, b, c, d ∈ N such that

Q(sE −H)P−1 =

diag
(
Lε1(s), ..., Lεa(s), Jρ1(s), ..., Jρa(s), Nσ1(s), ..., Nσc(s), L

p
η1

(s), ..., Lpηd(s)
)
,

where (omitting, for simplicity, the index i of εi, ρi, σi, ηi) the bidiagonal pencil Lε(s) ∈
Rε×(ε+1)[s], the real Jordan pencil Jρ(s) ∈ Rρ×ρ[s], the nilpotent pencil Nσ(s) ∈ Rσ×σ[s]
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and the “per-transpose” pencil Lpη(s) ∈ Rη×(η+1)[s] have the following form:

Lε (s) =

[ s −1

. . . . . .
s −1

]
, Nσ (s) =

 −1 s

. . . . . .
. . . s
−1

 , Lpη (s) =

 −1

s
. . .
. . . −1

s

 ,
Jρ (s)=


s−λρ −1

. . . . . .
. . . −1

s−λρ

 , or Jρ(s)=


S−Λρ −I

. . . . . .
. . . −I

S−Λρ

 , S − Λρ=
[
s−φρ −ϕρ
ϕρ s−φρ

]
.

where λρ, ϕρ, φρ ∈ R. The integers εi, ρi, σi, ηi are, respectively, called Kronecker column
(minimal) indices, the degrees of the finite elementary divisors, the degrees of the infinite
elementary divisors and ,Kronecker row (minimal) indices. In addition, λρ and ϕρ+iφρ are
the corresponding eigenvalues of J(s). These indices are invariant under external equiva-
lence of Definition 2.2.1.

Definition 2.9.1. (Prime system) [145] A control system Λ = (A,B,C,D) is called prime
if there exists a Morse transformationMtran such thatMtran(Λ) = Λ3 = (A3, B3, C3, D3),
where the 4-tuple (A3, B3, C3, D3) is given by (2.58) below.

Lemma 2.9.2. [145] A control system Λ = (A,B,C,D) is prime if and only if

W∗ = X , Y∗ = Y , V∗ = 0, U∗ = 0.

Morse Canonical Form MCF [146],[145]: Any linear control system Λ = (A,B,C,D)

is Morse equivalent to the Morse canonical form MCF shown below:

MCF :


MCF 1 : ż1 = A1z1 +B1u1

MCF 2 : ż2 = A2z2

MCF 3 : ż3 = A3z3 +B3u3, y3 = C3z3 +D3u3

MCF 4 : ż4 = A4z4, y4 = C4z4.

If a control system Λ = (A,B,C,D) is in the MCF, then the matricesA,B,C,D, together
with all invariants are thus given by

[
A B

C D

]
=



A1 0 0 0 B1 0

0 A2 0 0 0 0

0 0 A3 0 0 B3

0 0 0 A4 0 0

0 0 C3 0 0 D3

0 0 0 C4 0 0


,

(i) with A1 = diag{A1
ε′1
, ..., A1

ε′
a′
}, B1 = diag{B1

ε′1
, ..., B1

ε′
a′
}, where

A1
ε′ =

[
0 Iε′−1

0 0

]
∈ Rε′×ε′ , B1

ε′ =

[
0

1

]
∈ Rε′×1,
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The integers ε′1, ..., ε
′
a′ ∈ N are the controllability indices of (A1, B1).

(ii) A2 = diag{A2
ρ′1
, ..., A1

ρ′
b′
}, where A2

i is given by

A2
i =


λi 1

. . . . . .
. . . 1

λi

 , or A2
i =


Λi I

. . . . . .
. . . I

Λi

 , Λi =
[
s−φi −ϕi
ϕi s−φi

]
,

where λi, ϕi, φi ∈ R.

(iii) The 4-tuple (A3, B3, C3, D3) is controllable and observable (prime). That is,[
A3 B3

C3 D3

]
=

Â3 B̂3 0

Ĉ3 0 0

0 0 Iδ

 , (2.58)

where

[
Â3 B̂3

Ĉ3 0

]
is square and invertible and δ = rankD3 ∈ N, and the matrices

Â3 = diag{Â3
σ′δ+1

, ..., Â3
σ′
c′
}, B̂3 = diag{B̂3

σ′δ+1
, ..., B̂3

σ′
c′
}, Ĉ3 = diag{Ĉ3

σ′δ+1
, ..., Ĉ3

σ′
c′
},

where

Â3
σ′ =

[
0 Iσ′−1

0 0

]
∈ Rσ′×σ′ , B̂3

σ′ =

[
0

1

]
∈ Rσ′×1, Ĉ3

σ′ =
[
1 0

]
∈ R1×σ′ .

The integers σ1 = · · · = σδ = 0, and σδ+1, ..., σc′ ∈ N+ are the controllability indices of
the pair (Â3, B̂3) and they are equal to the observability indices of the pair (Ĉ3, Â3).

(iv) A4 = diag{A4
η′1
, ..., A4

η′
d′
}, C4 = diag{C4

η′1
, ..., C4

η′
d′
}, where

A4
η′ =

[
0 Iη′−1

0 0

]
∈ Rη′×η′ , C4

η′ =
[
1 0

]
∈ R1×η′ .

The integers η′1, ..., η
′
d′ ∈ N are the observability indices of the pair (C4, A4).

Clearly, the subsystem MCF 2 is in the real Jordan canonical form. Denote µi = ε′i if
k = 1, µi = σ′i if k = 3, and µi = η′i if k = 4. Then for k = 1, 3, 4, the subsystem MCF k

consists of a′, c′, d′, subsystems (indexed by i) for which either µi ≥ 1 and then they are
given by

żk,ji =


zk,j+1
i , 1 ≤ j ≤ µi − 1, for k = 1, 3, 4,

uki , j = µi, for k = 1, 3,

0, j = µi, for k = 4,

yki = zk,1i , for k = 3, 4,

or µi = 0 (notice that we allow for the Morse indices to be equal to zero) in which case the
input u1 contains components u1

i that do not affect the system at all (if ε′i = 0), the output
y4 contains trivial components y4

i = 0 (if η′i = 0) and the output y3 contains δ = rankD3

static relations y3
i = u3

i (if σ′i = 0).

We call the integers ε′i, ρ
′
i, σ

′
i, η
′
i the Morse indices of control systems, together with

a′, b′, c′, d′, δ and λi ∈ R or λi = ϕ+ jφ ∈ C, where j =
√
−1, they are all invariant under

Morse equivalence.
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Chapter 3

From Morse Triangular Form of ODE Control
Systems to Feedback Canonical Form of DAE
Control Systems

Abstract: In this chapter, we study connections between the feedback canonical form
FBCF of DAE control systems, shortly DAECSs, proposed in [131] and the famous Morse
canonical form MCF of ODE control systems ODECSs, see [146],[145]. First, in order
to connect DAECSs with ODECSs, we propose a procedure named explicitation (with
driving variables). This procedure attaches a class of ODECSs with two kinds of inputs
(the original control input and a vector of driving variables) to a given DAECS. On the
other hand, for classical linear ODECSs (with one type of controls), we propose a Morse
triangular form MTF to modify the construction of the MCF given in [145]. Based on this
MTF, we propose an extended MTF and an extended MCF for ODECSs with two kinds
of inputs. Finally, an algorithm is proposed to transform a given DAECS to its FBCF.
This algorithm is based on the extended MCF of an ODECS given by the explicitation
procedure. At last, a numerical example is given to show the efficiency of the proposed
algorithm.

3.1 Introduction

Consider a linear control system described by a differential-algebraic equation DAE of the
following form:

∆u : Eẋ = Hx+ Lu, (3.1)

where x ∈ X ∼= Rn is called the “generalized” state, u ∈ Rm is the vector of control
inputs, and where E ∈ Rl×n, H ∈ Rl×n and L ∈ Rl×m. A linear DAE control sys-
tem DAECS of form (3.1) will be denoted by ∆u

l,n,m = (E,H,L) or, simply, ∆u. The
motivation of studying DAECSs comes from the mathematical models of such constrained
dynamical systems as electrical circuits [63],[176], mechanical systems [159],[143], chem-
ical processes [60],[121], etc.
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In order to connect DAEs of the form Eẋ = Hx with ODE control systems, shortly
ODECSs, and analyze DAEs using classical control theory, we proposed a procedure
named explicitation in Chapter 2, see also [47]. In the present chapter, we will propose a
more general explicitation procedure called explicitation with driving variables (see Def-
inition 3.2.2) for linear DAECSs. Since the vector of driving variables enters statically
into the system (similarly as the control input u), we can regard it as another kind of in-
put. More specifically, the explicitation with driving variables of a DAECS is a class of
ODECSs with two kinds of inputs of the form:

Λuv :

{
ẋ = Ax+Buu+Bvv

y = Cx+Duu,
(3.2)

where A ∈ Rn×n, Bu ∈ Rn×m, Bv ∈ Rn×s, C ∈ Rp×n and Du ∈ Rp×m, where u ∈ Rm

is the vector of control variables and v ∈ Rs is the vector of driving variables. An ODECS
of form (3.2) will be denoted by Λuv

n,m,s,p = (A,Bu, Bv, C,Du) or, simply, Λuv. Note that
although both u and v may be considered as inputs of system (3.2), we distinguish them
because they play different roles for the system and, as a consequence, their feedback
transformation rules are different (see Remark 3.2.7). A classical ODECS (with a control
input only) is of the form

Λu :

{
ẋ = Ax+Buu

y = Cx+Duu,
(3.3)

where A ∈ Rn×n, Bu ∈ Rn×m, C ∈ Rp×n and Du ∈ Rp×m. An ODECS of form (3.3) will
be denoted by Λu

n,m,p = (A,Bu, C,Du) or, simply, Λu.

Remark 3.1.1. Observe that we can express an ODECS Λuv of form (3.2), as a classical
ODECS Λw = (A,Bw, C,Dw) of form (3.3) by denoting w = [uT , vT ]T , Bw =

[
Bu Bv

]
and Dw =

[
Du 0

]
. Throughout the chapter, depending on the context, we will use either

Λuv or Λw to denote an ODECS with two kinds of inputs.

The feedback canonical form FBCF obtained in [131] (we restate it as Corollary 3.4.7
of the present chapter) for linear DAECSs plays an important role in DAECS theory, e.g.
controllability analysis [17], regularization [32],[18], pole assignment [132],[27] are dis-
cussed based on this FBCF. The purpose of the present chapter is to find an efficient geo-
metric way to transform a DAECS ∆u into its FBCF via the explicitation procedure. More
specifically, instead of using transformations directly on a DAECS, we will first transform
an ODECS, given by the explicitation of our DAECS, into its canonical form (called the
extended Morse canonical form EMCF, see Theorem 3.4.2). Then by the relation between
DAECSs and ODECSs given in Section 3.2, we can easily get the FBCF from the EMCF.

The FBCF of DAECSs is actually an extension of the Kronecker canonical form
(see [117],[75]) of singular matrix pencils sE − H . Some methods (most are numeri-
cal) of transforming a matrix pencil into its Kronecker canonical form can be found in
[62],[184],[10]. The authors of [20] proposed recently a geometric method to get a quasi-
Kronecker triangular form for singular matrix pencils based on the Wong sequences and
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there the quasi-Kronecker triangular form is transformed into the quasi-Kronecker form
by solving some generalized Sylvester equations. Inspired by the quasi-Kronecker trian-
gular form of [20], we will propose a Morse triangular form MTF (see Proposition 3.3.1)
to transform an ODECS (with one type of controls) into its Morse normal form MNF
(see Proposition 3.3.2). Then we show that the MTF can be easily generalized to an ex-
tended Morse triangular form EMTF for ODECS with two kinds of inputs. After solving
some constrained Sylvester equations, the transformations from the EMTF to an extended
Morse canonical form EMCF are also easy to construct. We use the following diagram to
show the relations of the results in the present chapter:

∆u

Λuv

FBCF [131]

Λu

EMTF EMNF EMCF

MTF MNF MCF [146],[145]

explicitation, see Def.3.2.2 implicitation, see Sec.3.4

Corollary 3.4.7

extension extension extension extension

Thm.3.3.4 Thm.3.3.5 Thm.3.4.2

Prop.3.3.1 Prop.3.3.2 [145]

Note that a procedure of transforming an ODECS Λu into its MCF was given by Morse
[146] for Du = 0 and by Molinari [145] for the general case Du 6= 0. We propose to do it
via two intermediate normal forms MTF and MNF.

This chapter is organized as follows. In Section 3.2, we introduce the explicitation
with driving variables procedure and build geometric connections between DAECSs and
ODECSs. In Section 3.3, we show a method of constructing the MTF and the MNF for
classical ODECSs of form (3.3), then we extend them to the EMTF and the EMNF for
ODECSs (of form (3.2)) with two kinds of inputs. In Section 3.4, we propose an EMCF for
ODECSs of form (3.2) and show a way of calculating its indices via invariant subspaces.
These results allow to construct the FBCF of DAECSs and to calculate the FBCF indices
as corollaries. Finally, a simple algorithm is proposed to construct the FBCF for a given
DAECS. In Section 3.5, we give a numerical example to show the effectiveness of the
algorithm. Section 3.6 and 3.7 contain conclusions and proofs of this chapter, respectively.
Notations and definitions of geometric invariant subspaces for ODCSs and DAECSs are
given in Appendix.

3.2 Explicitation with driving variables for linear DAE
control systems

Throughout, we will use the notations given in Appendix. Consider a DAECS ∆u
l,n,m =

(E,H,L), given by (3.1). The solution of ∆u is a map (x(t), u(t)) : R → Rn × Rm with
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x(t) ∈ C1 and u(t) ∈ C0 satisfying Eẋ(t) = Hx(t) + Lu(t).

Definition 3.2.1. Two DAECSs ∆u
l,n,m = (E,H,L) and ∆̃ũ

l,n,m = (Ẽ, H̃, L̃) are called ex-
ternally feedback equivalent, shortly ex-fb-equivalent, if there exist matricesQ ∈ Gl(l,R),
P ∈ Gl(n,R), F ∈ Rm×n and G ∈ Gl(m,R) such that

Ẽ = QEP−1, H̃ = Q(H + LF )P−1, L̃ = QLG. (3.4)

We denote the ex-fb-equivalence of two DAECSs as ∆u ex−fb∼ ∆̃ũ.

The notion of ex-fb-equivalence is the classical equivalence of DAECSs via left multi-
plication by Q and right multiplication by P−1, completed by feedback transformations of
the controls via u = Fx+Gũ. Now we introduce the explicitation with driving variables
procedure for ∆u as follows.

• Denote the rank of E by q ∈ N, define s = n − q and p = l − q. Then there exists

a matrix Q ∈ Gl(l,R) such that QE =

[
E1

0

]
, where E1 ∈ Rq×n and rankE1 = q.

Via Q, DAECS ∆u is ex-fb-equivalent to[
E1

0

]
ẋ =

[
H1

H2

]
x+

[
L1

L2

]
u, (3.5)

where QH =

[
H1

H2

]
, QL =

[
L1

L2

]
, and where H1 ∈ Rq×n, H2 ∈ R(l−q)×n, L1 ∈

Rq×m, L2 ∈ R(l−q)×m.

• The matrix E1 is of full row rank q, so let E†1 ∈ Rn×q denote its right inverse. Set
A = E†1H1 and Bu = E†1L1. Consider the differential part of (3.5):

E1ẋ = H1x+ L1u. (3.5a)

The collection of all ẋ satisfying (3.5a) is given by the differential inclusion:

ẋ ∈ Ax+Buu+ kerE1. (3.6)

• Choose a full column rank matrix Bv ∈ Rn×s such that ImBv = kerE1 = kerE

(note that the kernels of E1 and E coincide since any invertible Q preserves the ker-
nel). Thus, by (3.6), there exists a vector of driving variables v ∈ Rs parameterizing
the affine subspace Ax+Buu+ kerE1 and all solutions of the differential inclusion
(3.6) correspond to all solutions of

ẋ = Ax+Buu+Bvv. (3.7)

Observe that the columns of Bv span the subspace kerE with the help of driving
variables v. Now all solutions of DAE (3.5) can be expressed as all solutions (corre-
sponding to all controls v(t)) of{

ẋ = Ax+Buu+Bvv

0 = Cx+Duu,
(3.8)
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where C = H2 ∈ Rp×n and Du = L2 ∈ Rp×m. Recall that a control system of form
(3.2) is denoted by Λuv

n,m,s,p = (A,Bu, Bv, C,Du). It is immediate see that equation
(3.8) can be obtained from the ODECS Λuv by setting the output y = 0. In the above
way, we attach an ODECS Λuv to a DAECS ∆u.

The above procedure of attaching a control system Λu,v to a DAECS ∆u will be called
explicitation with driving variables and is formalized as follows.

Definition 3.2.2. Given a DAECS ∆u
l,n,m = (E,H,L), by a (Q, v)-explicitation, we will

call a control system Λuv = (A,Bu, Bv, C,Du), with

A = E†1H1, B
u = E†1L1, ImBv = kerE1 = kerE, C = H2, D

u = L2.

where

QE =

[
E1

0

]
, QH =

[
H1

H2

]
, QL =

[
L1

L2

]
.

The class of all (Q, v)-explicitations will be called the explicitation with driving variables
class or, shortly explicitation class, of ∆u, denoted by Expl(∆u). If a particular ODECS
Λuv belongs to the explicitation class Expl(∆u), we will write Λuv ∈ Expl(∆u).

The definition of the explicitation class Expl(∆u) suggests that a given ∆u has many
(Q, v)-explicitations. Indeed, the construction of Λuv ∈ Expl(∆u) is not unique at three
stages: there is a freedom in choosing Q, E†1, and Bv. Notice that the choices of Bv and
E†1 can be seen together as a choice of a driving variable v to express (3.5a) explicitly.

Now we will analyze these three choices. We start with Bv. Choosing Bv and B̃ṽ such
that ImBv = Im B̃v = kerE means that there exists Tv ∈ Gl(s,R) such that B̃ṽ = T−1

v Bv

or, equivalently, ṽ = Tvv. To analyze the role of the choice of E†1, fix Bv, consider the
differential part (3.5a) of the semi-explicit system (3.5). Any (Q, v)-explicitation of (3.5a)
is a control system without outputs, so we will denote it by Λuv

n,m,s,0 = (A,Bu, Bv).

Proposition 3.2.3. Assume that a control system Λuv
n,m,s,0 = (A,Bu, Bv) is a (Q, v)-

explicitation of (3.5a) corresponding to a choice of right inverse E†1 of E1. Then a control
system Λ̃uṽ

n,m,s,0 = (Ã, B̃u, B̃ṽ) is a (Q, ṽ)-explicitation of (3.5a) corresponding to another
choice of right inverse Ẽ†1 of E1 with the same choice Bv = B̃ṽ yielding ImBv = ImB̃ṽ =

kerE1 if and only if Λuv and Λ̃uṽ are equivalent via a v-feedback transformation of the
form v = Fvx+Ru+ ṽ, which maps

A 7→ Ã = A+BvFv, B
u 7→ B̃u = Bu +BvR.

To analyze the role of choosing Q, go back to the start of the explicitation procedure
to find an invertible Q such that ∆u is transformed to a DAE of form (3.5). Notice that Q

is an invertible matrix such that E1 of QE =

[
E1

0

]
is of full row rank. Any other Q̃ such

that Ẽ1 of Q̃E =

[
Ẽ1

0

]
full row rank is of the form Q̃ = Q′Q, where Q′ =

[
Q1 Q2

0 Q4

]
,
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Q̃ ∈ Gl(l,R) and Q1 ∈ Rq×q, thus Q1 and Q4 are invertible matrices as well. Then via Q̃,
∆u is ex-fb-equivalent to[

Q1E1

0

]
ẋ =

[
Q1H1 +Q2H2

Q4H2

]
x+

[
Q1L1 +Q2L2

Q4L2

]
u. (3.9)

Proposition 3.2.4. Assume that Λuv
n,m,s,p = (A,Bu, Bv, C,Du) is a (Q, v)-explicitation of

∆u corresponding to a choice of right inverseE†1 ofE1. Then Λ̃uv
n,m,s,p = (Ã, B̃u, B̃v, C̃, D̃u)

is a (Q̃, v)-explicitation of ∆u, where Q̃ = Q′Q and Q′ =

[
Q1 Q2

0 Q4

]
, corresponding to

a choice of right inverse Ẽ†1Q
−1
1 of Q1E1 with Ẽ†1 = E†1 and B̃v = Bv, if and only if

Λuv and Λ̃uv are equivalent via an output injection Ky = K(Cx + Duu) and an output
multiplication ỹ = Tyy, which map

A 7→ Ã = A+KC, Bu 7→ B̃u = Bu +KDu, Bv 7→ B̃v = Bv,

C 7→ C̃ = TyC, Du 7→ D̃u = TyD.

The proofs of Proposition 3.2.3 and 3.2.4 will be given in Section 3.7.1. In view of the
above analysis, it is seen that Expl(∆u) a class of ODECSs of the following form, given
by all choices of K, Fv, R, and invertible Tv, Ty:{

ẋ = Ax+Buu+Ky +Bv(Fvx+Ru+ T−1
v ṽ)

y = Ty(Cx+Du).

Notice that the definition of (Q, v)-explicitation in the present chapter is different in two
aspects from the (Q,P )-explicitation of Chapter 2: in this chapter we consider the explic-
itation of a DAECS but in Chapter 2, we only consider DAEs. The other difference is
shown in the remark below. Nevertheless, in this chapter we use the same name by calling
the explicitation with driving variables as explicitation for simplicity.

Remark 3.2.5. (i) Consider a DAE Eẋ = Hx, denoted by ∆ = (E,H, 0). Via two
invertible matrices Q and P , ∆ is ex-fb-equivalent (actually externally equivalent) to a
pure semi-explicit PSE DAE ∆PSE below. Then the (Q,P )-explicitation of ∆ defined in
Chapter 2 is a control system Λ below (and the class of all (Q,P )-explicitations is denoted
by Expl(∆)) and by adding v = u̇, we get the prolongation Λ (which is actually an (Il, v)-
explicitation of ∆PSE) of Λ :

QEP−1Pẋ = QHP−1Px⇒ ∆PSE :

[
I 0

0 0

] [
ż

u̇

]
=

[
H1 H2

H3 H4

] [
z

u

]
⇒

Λ :

{
ż = H1z +H2u

y = H3z +H4u,
⇒ Λ :

[
ż

u̇

]
=

[
H1 H2

0 0

] [
z

u

]
+

[
0

Im

]
v, y = H3z +H4u.

where Px = [zT uT ]T .

(ii) The state z and control u of the (Q,P )-explicitation Expl(∆) are linear combina-
tion z = P1x and u = P2x, respectively, of the original “generalized” state x of ∆. On the
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other hand, the state x of a (Q, v)-explicitation Expl(∆) is the “generalized” state x of ∆

and the driving variables v are extra variables not present in ∆.

(iii) The differences and relations between (Q,P )-explicitations in Chapter 2 and (Q, v)-
explicitations in this chapter can be illustrated by the following diagram

∆ ∆PSE

Λ ∈ Expl(∆) = Expl(∆PSE)

Λṽ ∈ Expl(∆) Λ ∈ Expl(∆PSE)

(Q, ṽ)-expl

ex-equivalence via (Q,P )

(Q,P )-expl

M-equivalence

(Il, v)-expl

(Il, In)-expl

prolongation

Note that the implication that the (Q, ṽ)-explicitation Λṽ of ∆ is Morse equivalent (see
Remark 3.2.7(ii)) to the prolo. system Λ is a corollary of Theorem 3.2.8 below applied to
DAEs (without the original control u) since Λ ∈ Expl(∆PSE), Λṽ ∈ Expl(∆) and ∆PSE

is ex-equivalent to ∆.

Since the explicitation (with driving variables) of ∆u is a class of ODECSs of form
(3.2), we give the following definition of equivalence for ODECSs of form (3.2). This
definition is a natural extension of the Morse equivalence (see Chapter 2 and [146],[145])
of classical ODECSs of form (3.3).

Definition 3.2.6. (Extended Morse equivalence and extended Morse transformation) Two
ODECSs

Λuv
n,m,s,p = (A,Bu, Bv, C,Du), Λ̃ũṽ

n,m,s,p = (Ã, B̃ũ, B̃ṽ, C̃, D̃u)

are called extended Morse equivalent, shortly EM-equivalent, denoted by Λuv EM∼ Λ̃ũṽ, if
there exist matrices Tx ∈ Gl(n,R), Tu ∈ Gl(m,R), Tv ∈ Gl(s,R), Ty ∈ Gl(p,R),
Fu ∈ Rm×n, Fv ∈ Rs×n, R ∈ Rs×m, K ∈ Rn×p such that the system matrices of Λuv and
Λ̃ũṽ satisfy:

[
Ã B̃ũ B̃ṽ

C̃ D̃ũ 0

]
=

[
Tx TxK

0 Ty

] [
A Bu Bv

C Du 0

] T−1
x 0 0

FuT
−1
x T−1

u 0

(Fv +RFu)T
−1
x RT−1

u T−1
v

 . (3.10)

An 8-tuple (Tx, Tu, Tv, Ty, Fu, Fv, R,K), acting on the system according to (3.10), will be
called an extended Morse transformation and denoted by EMtran.

The matrices Tx, Tu, Tv and Ty are coordinates transformations in the, respectively,
state space X = Rn, input subspace Uu = Rm, input subspace Uv = Rs and, output
space Y = Rp, where Fu defines a state feedback of u, Fv and R define a feedback of v,
K defines an output injection.
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Remark 3.2.7. (i) An extended Morse transformation, whose action is given by equation
(3.10), includes two kinds of feedback transformations:

v = Fvx+Ru+ T−1
v ṽ and u = Fux+ T−1

u ũ. (3.11)

The vector of driving variables v is “stronger” than the original control vector u since when
transforming v we can use both u and x as feedback, but when transforming u we are not
allowed to use v. This is expressed by the triangular form of the matrix multiplying on the
right of (3.10).

(ii) Recall the definition of the Morse equivalence and the Morse transformation [146]
(and their generalization by Molinari [145] for Du 6= 0, see also Chapter 2): for two
ODECSs Λu = (A,Bu, C,Du) and Λ̃ũ = (Ã, B̃ũ, C̃, D̃ũ) of form (3.3), if[

Ã B̃ũ

C̃ D̃ũ

]
=

[
Tx TxK

0 Ty

] [
A Bu

C Du

] [
T−1
x 0

FuT
−1
x T−1

u

]
,

then Λu and Λ̃ũ are called Morse equivalent (shortly M-equivalent ) and the Morse trans-
formation (Tx, Tu, Ty, Fu, K) is denoted by Mtran. Clearly, M-equivalence is an equiva-
lence relation for ODECSs of form (3.3), defined by a 4-tuple (A,Bu, C,Du) and EM-
equivalence is for ODECSs of form (3.2), defined by a 5-tuple (A,Bu, Bv, C,Du). Ob-
serve that if the vector of driving variables v is of dimension zero (Bv is absent), then the
EM-equivalence reduces to the M-equivalence.

(iii) Recall that we can express an ODECS of the form Λuv = (A,Bu, Bv, C,Du) as a
standard ODECS Λw = (A,Bw, C,Dw) of form (3.3) with one type of controls w, where
w = [uT , vT ]T . Now let

Fw =

[
Fu

Fv +RFu

]
, T−1

w =

[
T−1
u 0

RT−1
u T−1

v

]
,

then we conclude the following equation from (3.10) (notice that Tw has a block-triangular
structure): [

Ã B̃w

C̃ D̃w

]
=

[
Tx TxK

0 Ty

] [
A Bw

C Dw

] [
T−1
x 0

FwT
−1
x T−1

w

]
, (3.12)

which is exactly the expression of the M-equivalence for system Λw (compare Remark
3.2.7(ii) above). It implies that the EM-equivalence can be expressed as a form of the M-
equivalence with a triangular matrix Tw (input coordinates transformation matrix). This
triangular form is a consequence of two kinds of feedback transformation shown in equa-
tion (3.11).

Now we give the main result of this subsection:

Theorem 3.2.8. Consider two DAECSs ∆u
l,n,m = (E,H,L) and ∆̃ũ

l,n,m = (Ẽ, H̃, L̃) as
well as two ODECSs Λuv

n,m,s,p = (A,Bu, Bv, C,Du) and Λ̃ũṽ
n,m,s,p = (Ã, B̃ũ, B̃ṽ, C̃, D̃ũ)

satisfying Λuv ∈ Expl(∆u) and Λ̃ũṽ ∈ Expl(∆̃ũ). Then, ∆u ex−fb∼ ∆̃ũ if and only if

Λuv EM∼ Λ̃ũṽ.
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The proof will be given in Section 3.7.1. In Section 3.8, we recall the definitions of
geometric subspaces for DAECSs and ODECSs. More specifically, for a DAECS ∆u, we
recall the augmented Wong sequences Vi and Wi, together with Ŵi (see [17],[128]); For
an ODECS Λw, we recall the subspaces sequences Vi and Wi (see [194],[193],[9]), whose
limits are controlled and conditioned invariant subspaces, respectively, and we introduce
the subspaces sequence Ŵi.

Proposition 3.2.9. Given ∆u
l,n,m = (E,H,L) and Λuv

n,m,s,p = (A,Bu, Bv, C,Du) (or
equivalently, Λw

n,m+s,p = (A,Bw, C,Dw)), consider the subspaces Vi, Wi, Ŵi of ∆u, given
by Definition 3.8.2 and the subspaces Vi, Wi, Ŵi of Λw, given by Lemma 3.8.5 in the
Appendix of Section 3.8. Assume that Λuv ∈ Expl(∆u). Then we have for i ∈ N,

Vi(∆
u) = Vi(Λ

w), Wi(∆
u) = Wi(Λ

w),

and for i ∈ N+,
Ŵi(∆

u) = Ŵi(Λ
w).

The proof will be given in Section 3.7.2. Note that Theorem 3.2.8 and Proposition
3.2.9 are fundamental results for the remaining part of the chapter. Our purpose is to
find the FBCF of DAECSs via explicitation. We have proven in Theorem 3.2.8 that
the EM-equivalence for explicitation systems corresponds to the ex-fb-equivalence for
DAECSs. Thus rather than transforming a DAECS ∆u directly into its FBCF under ex-
fb-equivalence, we will look for the canonical form for Λuv ∈ Expl(∆u) under EM-
equivalence.

3.3 The Morse triangular form and its extension

In the beginning of this section, we show that the normal form given in [145] (called Morse
normal form MNF in the present chapter) for 4-tuple ODECS Λu, given by equation (3.3),
can be constructed through a Morse triangular form MTF that we propose. Although the
constructed normal form is the same as the one in [145], we will give explicit transforma-
tions with the help of the invariant subspaces given in Lemma 3.8.5 of Appendix in Section
3.8, which makes the normalizing procedure simple and transparent. Similar results can
be found in [42], whose authors consider the general 4-tuple (A,B,C,D) and transform
the system matrices into a normal form by choosing a special basis and corresponding
coordinates. Their procedure is illustrated in [44] by examples.

Proposition 3.3.1. (Morse triangular form MTF) For an ODECS Λu
n,m,p = (A,Bu, C,Du),

consider the subspaces V∗, U∗u, W∗, Y∗ given by Definition 3.8.4 of Appendix. Choose full
rank matrices T 1

s ∈ Rn×n1 , T 2
s ∈ Rn×n2 , T 3

s ∈ Rn×n3 , T 4
s ∈ Rn×n4 , T 1

i ∈ Rm×m1 ,
T 2
i ∈ Rm×m2 , T 1

o ∈ Rp×p1 , T 2
o ∈ Rp×p2 such that

ImT 1
s = V∗ ∩W∗, V∗ ∩W∗ ⊕ ImT 2

s = V∗,

V∗ ∩W∗ ⊕ ImT 3
s = W∗, (V∗ + W∗)⊕ ImT 4

s = X = Rn,

ImT 1
i = U∗u, ImT 2

i ⊕ ImT 1
i = Uu = Rm,

ImT 1
o = Y∗, ImT 2

o ⊕ ImT 1
o = Y = Rp,
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where n = n1 + n2 + n3 + n4, m = m1 +m2, p = p1 + p2. Then

Ts = [T 1
s T 2

s T 3
s T 4

s ]−1 ∈ Gl(n,R),

Ti = [T 1
i T 2

i ]−1 ∈ Gl(m,R), To = [T 1
o T 2

o ]−1 ∈ Gl(p,R),

and there exist matrices FMT ∈ Rm×n and KMT ∈ Rn×p such that the Morse transforma-
tion Mtran = (Ts, Ti, To, FMT , KMT ) brings Λu into Λ̃ũ = Mtran(Λu), represented in the
Morse triangular form MTF, that is given by Λ̃ũ = (Ã, B̃ũ, C̃, D̃ũ), where

[
Ã B̃ũ

C̃ D̃ũ

]
=



Ã1 Ã2
1 Ã3

1 Ã4
1 B̃1 B̃2

1

0 Ã2 0 Ã4
2 0 0

0 0 Ã3 Ã4
3 0 B̃3

0 0 0 Ã4 0 0

0 0 C̃3 C̃4
3 0 D̃3

0 0 0 C̃4 0 0


. (3.13)

In the above MTF, the pair (Ã1, B̃1) is controllable, the pair (C̃4, Ã4) is observable and
the 4-tuple (Ã3, B̃3, C̃3, D̃3) is prime (see Definition 2.9.1 in the Appendix of Chapter 2).

The proof is given in Section 3.7.3. In the next proposition, we describe a way to trans-
form the above MTF into a Morse normal form MNF, which is a further simplification of
the MTF. We will use the same notations as in Proposition 3.3.1.

Proposition 3.3.2. (Morse normal form MNF) There exists a feedback transformation
matrix FMN ∈ Rm×n, an output injection matrix KMN ∈ Rn×p and a state space coor-
dinate transformation matrix TMN ∈ Gl(n,R), which can be chosen by Algorithm 3.3.3
below, such that the Morse transformation Mtran = (TMN , Iu, Iy, FMN , KMN) brings Λ̃ũ

of Proposition 3.3.1 into Λ̄ū = Mtran(Λ̃ũ), represented in the Morse normal form MNF,
that is given by Λ̄ū = (Ā, B̄ū, C̄, D̄ū), where

[
Ā B̄ū

C̄ D̄ū

]
=



Ā1 0 0 0 B̄1 0

0 Ā2 0 0 0 0

0 0 Ā3 0 0 B̄3

0 0 0 Ā4 0 0

0 0 C̄3 0 0 D̄3

0 0 0 C̄4 0 0


. (3.14)

In the above MNF, the pair (Ā1, B̄1) is controllable, the pair (C̄4, Ā4) is observable, and
the 4-tuple (Ā3, B̄3, C̄3, D̄3) is prime (see Definition 2.9.1 in the Appendix of Chapter 2).

Notice that in the MNF, the system is decoupled into four independent subsystems of
exactly the same dimension as in the Morse canonical form MNF (see Appendix of Chap-
ter 2). In the latter, correspond to the MNF, we additionally normalize the controllable pair
(Ā1, B̄1) into its Brunovský canonical form [31], the observable pair (Ā4, C̄4) into its dual
Brunovský canonical form and the controllable and observable 4-tuple (Ā3, B̄3, C̄3, D̄3)

into its prime form, and the matrix Ā2 into its (real) Jordan canonical form. The proof of
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Proposition 3.3.2 will be given in Section 3.7.4 and in that proof, we will use the construc-
tion of transformation matrices FMN ,KMN and TMN , which is formulated in the following
algorithm.

Algorithm 3.3.3. Step 1: Choose FMN and KMN :

FMN =

[
F 1
MN 0 0 0

0 0 F 2
MN F 3

MN

]
, KMN =


K1
MN 0

0 0

K2
MN 0

0 K3
MN

 ,
such that the eigenvalues of Ā1, Ā2, Ā3 and Ā4 of the equation below are disjoint (notice
that FMN and KMN preserve the zero blocks of Λ̃ũ = (Ã, B̃ũ, C̃, D̃ũ)):

[
In KMN

0 Ip

] [
Ã B̃ũ

C̃ D̃ũ

] [
In 0

FMN Im

]
=



Ā1 Ā2
1 Ā3

1 Ā4
1 B̄1 B̄2

1

0 Ā2 0 Ā4
2 0 0

0 0 Ā3 Ā4
3 0 B̄3

0 0 0 Ā4 0 0

0 0 C̄3 C̄4
3 0 D̄3

0 0 0 C̄4 0 0


.

Step 2: Find matrices T 1
MN , T 2

MN , T 3
MN , T 4

MN , T 5
MN via the following (constrained)

Sylvester equations:

Ā1T
1
MN − T 1

MN Ā2 = −Ā2
1, Ā2T

4
MN − T 4

MN Ā4 = −Ā4
2,

Ā1T
3
MN − T 3

MN Ā4 = −Ā4
1 − Ā2

1T
4
MN − Ā3

1T
5
MN ;

(3.15)

Ā1T
2
MN − T 2

MN Ā3 = −Ā3
1, T 2

MN B̄3 = −B̄2
1 ,

Ā3T
5
MN − T 5

MN Ā4 = −Ā4
3, C̄3T

5
MN = −C̄4.

(3.16)

Step 3: Set

TMN =


I T 1

MN T 2
MN T 3

MN

0 I 0 T 4
MN

0 0 I T 5
MN

0 0 0 I


−1

.

It is not surprising that Proposition 3.3.1 and 3.3.2 describe results similar to those
of Theorem 2.3 and Theorem 2.6 of [20], as we have shown in Chapter 2 that there
are direct connections between the geometric subspaces (the Wong sequences) of a DAE
∆ : Eẋ = Hx and invariant subspaces of a control system Λ = (A,B,C,D) ∈ Expl(∆).
There are, however, differences between Proposition 3.3.1 and 3.3.2 and results of [20]. In
particular, in Theorem 2.6 of [20], one has to solve generalized Sylvester equations, while
in Proposition 3.3.2 we use (constrained) Sylvester equations. In addition, our transforma-
tions differ from those proposed in [145].

Recall that the explicitation of a DAECS ∆u is a class of ODECSs with two kinds of
inputs of form (3.2). In the following theorems, we will extend the results in Proposition
3.3.1 and 3.3.2 to ODECSs with two kinds of inputs.
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Theorem 3.3.4. (Extended Morse triangular form EMTF) For a DAECS

Λuv
n,m,s,p = (A,Bu, Bv, C,Du),

there exists an extended Morse transformation EMtran bringing Λuv into EMtran(Λuv) =

Λ̃ũṽ represented in the extended Morse triangular form EMTF, that is given by Λ̃ũṽ
n,m,s,p =

(Ã, B̃ũ, B̃ṽ, C̃, D̃ũ), where

[
Ã B̃ũ B̃ṽ

C̃ D̃ũ 0

]
=



Ã1 Ã12 Ã13 Ã14 B̃ũ
1 B̃ũ

12 B̃ṽ
1 B̃ṽ

12

0 Ã2 0 Ã24 0 0 0 0

0 0 Ã3 Ã34 0 B̃ũ
3 0 B̃ṽ

3

0 0 0 Ã4 0 0 0 0

0 0 C̃3 C̃34 0 D̃ũ
3 0 0

0 0 0 C̃4 0 0 0 0


. (3.17)

Moreover,

(i) The pair (Ã1, B̃
w̃
1 ) is controllable, where B̃w̃

1 = [B̃ũ
1 , B̃

ṽ
1 ];

(ii) The pair (C̃4, Ã4) is observable ;

(iii) The 4-tuple (Ã3, B̃
w̃
3 , C̃3, D̃

w̃
3 ) is prime, where B̃w̃

3 = [B̃ũ
3 , B̃

ṽ
3 ], D̃w̃

3 = [D̃ũ
3 , 0].

Proof. Recall Remark 3.2.7(iii) that there exists an extended Morse transformationEMtran

such that Λ̃ũṽ = EMtran(Λuv) is of the EMTF if and only if there exists a Morse transfor-
mation Mtran with a triangular (and not just any) input coordinates transformation bring-
ing Λw

n,m+s,p = (A,Bw, C,Dw) into the MTF. Now we use the result of Proposition 3.3.1
for Λw with a more subtle way to construct the input coordinates transformation matrix
Tw. More specifically, choose full rank matrices T 1

u ∈ R(m+s)×m1 , T 2
u ∈ R(m+s)×m2 ,

T 1
v ∈ R(m+s)×s1 , T 2

v ∈ R(m+s)×s2 with m1 +m2 = m, s1 + s2 = s, such that

ImT 1
v = U∗v, ImT 1

v ⊕ ImT 2
v = Uv,

ImT 1
u ⊕ ImT 1

v = U∗uv = U∗w, ImT 1
u ⊕ ImT 2

u ⊕ ImT 1
v ⊕ ImT 2

v = Uuv = Uw,

where U∗v is U∗uv when input is restricted to v (i.e., we put u = 0). Choose Tw =

[T 1
u T 1

v T 2
u T 2

v ]−1 and set Tx = Ts, Ty = To, Fw = FMT , Kw = KMT as in Proposi-
tion 3.3.1. Then the Morse transformation Mtrans = (Tx, Tw, Ty, Fw, Kw) brings Λw into
Λ̃w̃ = (Ã, B̃w̃, C̃, D̃w̃) = Mtrans(Λ

w), for which

[
Ã B̃w̃

C̃ D̃w̃

]
=



Ã1 Ã12 Ã13 Ã14 B̃w̃
1 B̃w̃

12

0 Ã2 0 Ã24 0 0

0 0 Ã3 Ã34 0 B̃w̃
3

0 0 0 Ã4 0 0

0 0 C̃3 C̃34 0 D̃w̃
3

0 0 0 C̃4 0 0


,
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where B̃w̃
1 = [B̃ũ

1 , B̃
ṽ
1 ], B̃w̃

12 = [B̃ũ
12, B̃

ṽ
12], B̃w̃

3 = [B̃ũ
3 , B̃

ṽ
3 ], D̃w̃

3 = [D̃ũ
3 , 0]. Since Tw need

not be triangular, we will replace it by

T perw = [T 1
u T 2

u T 1
v T 2

v ]−1 ∈ R(m+s)×(m+s),

which is invertible and has a triangular form (since ImT 1
v ⊕ ImT 2

v = Uv). Now the Morse
transformation Mtrans = (Tx, T

per
w , Ty, Fw, Kw) brings Λw into the desired form of (3.17).

Hence, it proves that there exists an EMtran transforming Λuv into the EMTF. Claims
(i), (ii), (iii) of Theorem 3.3.4 are inherited from the corresponding results of Proposition
3.3.1.

Theorem 3.3.5. (Extended Morse normal form EMNF) For Λ̃ũṽ
n,m,s,p = (Ã, B̃ũ, B̃ṽ, C̃, D̃ũ)

in the EMTF, as given by Theorem 3.3.4, there exists an extended Morse transformation
EMtran bringing Λ̃ũṽ into Λ̄ūv̄ = EMtran(Λ̃ũṽ) represented in the extended Morse normal
form EMNF, that is given by Λ̄ūv̄

n,m,s,p = (Ā, B̄ū, B̄v̄, C̄, D̄ū), where

[
Ā B̄ū B̄v̄

C̄ D̄ū 0

]
=



Ā1 0 0 0 B̄ū
1 0 B̄v̄

1 0

0 Ā2 0 0 0 0 0 0

0 0 Ā3 0 0 B̄ū
3 0 B̄v̄

3

0 0 0 Ā4 0 0 0 0

0 0 C̄3 0 0 D̄ū
3 0 0

0 0 0 C̄4 0 0 0 0


. (3.18)

Moreover,

(i) The pair (Ā1, B̄
w̄
1 ) is controllable, where B̄w̄

1 = [B̄ū
1 , B̄

v̄
1 ];

(ii) The pair (C̄4, Ā4) is observable;

(iii) The 4-tuple (Ā3, B̄
w̄
3 , C̄3, D̄

w̄
3 ) is prime, where B̄w̄

3 = [B̄ū
3 , B̄

v̄
3 ], D̃w̄

3 = [D̃ū
3 , 0].

Proof. As explained in the proof of Theorem 3.3.4, there exists anEMtran such that Λ̄ūv̄ =

EMtran(Λ̃ũṽ) is in the EMNF if and only if there exists a Morse transformation Mtran

with a triangular form input transformation matrix Tw bringing system Λ̃w̃ into the MNF.
Then as shown in Proposition 3.3.2, the input coordinates transformation matrix of the
Morse transformation which brings the MTF into the MNF is an identity matrix. Thus
it is always triangular as we need. Therefore, with the transformation matrices shown in
Proposition 3.3.2, we can always bring Λ̃w̃ into the EMNF. Moreover, the claims (i) (ii)
(iii) of Theorem 3.3.5 follow from the corresponding results of Proposition 3.3.2.

3.4 From the extended Morse normal form to the feed-
back canonical form of DAECSs

We show that, with a suitable choice of an extended Morse transformation for each sub-
systems in the EMNF of Theorem 3.3.5, we can bring the EMNF into an extended Morse
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canonical form EMCF. Below the upper indices refer to: c to controllable, nn to non-
controllable and non-observable, p to prime, o to observable.

Definition 3.4.1. By the extended Morse canonical form, we will mean the system

EMCF :



żcu = Acuzcu +Bcuu

żcv = Acvzcv +Bcvv

żnn = Annznn

żpu = Apuzpu +Bpuu, ypu = Cpuzpu +Dpuu

żpv = Apvzpv +Bpvv, ypv = Cpvzpv

żo = Aozo yo = Cozo,

where both the pairs (Acu, Bcu) and (Acv, Bcv) are controllable and in the Brunovský
canonical forms [31], Ann is arbitrary and given up to a similarity transformation, the 4-
tuple (Apu, Bpu, Cpu, Dpu) and the triple (Apv, Bpv, Cpv) are prime and the pair (Co, Ao)

is observable and in the dual Brunovský canonical form.

If an ODECS Λuv
EM = (AEM , B

u
EM , B

v
EM , CEM , D

u
EM) is in the EMCF, then the ma-

trices AEM , Bu
EM , B

v
EM , CEM , D

u
EM , together with all invariants are thus given by

[
AEM Bu

EM Bv
EM

CEM Du
EM 0

]
=



Acu 0 0 0 0 0 Bcu 0 0 0

0 Acv 0 0 0 0 0 0 Bcv 0

0 0 Ann 0 0 0 0 0 0 0

0 0 0 Apu 0 0 0 Bpu 0 0

0 0 0 0 Apv 0 0 0 0 Bpv

0 0 0 0 0 Ao 0 0 0 0

0 0 0 Cpu 0 0 0 Dpu 0 0

0 0 0 0 Cpv 0 0 0 0 0

0 0 0 0 0 Co 0 0 0 0


,

(3.19)

with

(i) Acu = diag{Acuε1 , ..., A
cu
εa}, B

cu = diag{Bcu
ε1
, ..., Bcu

εa }, A
cv = diag{Acvε̄b , ..., A

cv
ε̄b
},

Bcv = diag{Bcv
ε̄1
, ..., Bcv

ε̄b
} where

Acuε =

[
0 Iε−1

0 0

]
∈ Rε×ε, Bcu

ε =

[
0

1

]
∈ Rε×1,

Acvε̄ =

[
0 Iε̄−1

0 0

]
∈ Rε̄×ε̄, Bcv

ε̄ =

[
0

1

]
∈ Rε̄×1.

The integers ε1, ..., εa ∈ N are the controllability indices of (Acu, Bcu), the integers
ε̄1, ..., ε̄b ∈ N are the controllability indices of (Acv, Bcv).

(ii) Ann ∈ Rn2×n2 is unique up to similarity.
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(iii) Both the 4-tuple (Apu, Bpu, Cpu, Dpu) and the triple (Apv, Bpv, Cpv) are controllable
and observable (prime). That is,

[
Apu Bpu

Cpu Dpu

]
=

Âpu B̂pu 0

Ĉpu 0 0

0 0 Iδ

 ,

where

[
Âpu B̂pu

Ĉpu 0

]
is square and invertible and δ = rank D̂pu ∈ N, and the matrices

Âpu = diag{Âpuσ1 , ..., Â
pu
σc}, B̂pu = diag{B̂pu

σ1
, ..., B̂pu

σc },
Ĉpu = diag{Ĉpu

σ1
, ..., Ĉpu

σc }, Apv = diag{Apvσ̄1 , ..., A
pv
σ̄d},

Bpv = diag{Bpv
σ̄1 , ..., B

pv
σ̄d}, Cpv = diag{Cpv

σ̄1 , ..., C
pv
σ̄d},

where

Âpuσ =

[
0 Iσ−1

0 0

]
∈ Rσ×σ, B̂pu

σ =

[
0

1

]
∈ Rσ×1, Ĉpu

σ =
[
1 0

]
∈ R1×σ,

Apvσ̄ =

[
0 Iσ̄−1

0 0

]
∈ Rσ̄×σ̄, Bpv

σ̄ =

[
0

1

]
∈ Rσ̄×1, Cpv

σ̄ =
[
1 0

]
∈ R1×σ̄.

The integers σ1, ..., σc ∈ N+ are the controllability indices of the pair (Âpu, B̂pu)

and they are equal to the observability indices of the pair (Ĉpu, Âpu). The integers
σ̄1, ..., σ̄d ∈ N+ are the controllability indices of the pair (Apv, Bpv) and they are
equal to the observability indices of the pair (Cpv, Apv).

(iv) Ao = diag{Aoη1 , ..., A
o
ηe}, C

o = diag{Co
η1
, ..., Co

ηe}, where

Aoη =

[
0 Iη−1

0 0

]
∈ Rη×η, Co

η =
[
1 0

]
∈ R1×η.

The integers η1, ..., ηe ∈ N are the observability indices of the pair (Co, Ao).

Theorem 3.4.2. (Extended Morse canonical form EMCF) For any

Λuv = Λuv
n,m,s,p = (A,Bu, Bv, C,Du),

there exists an extended Morse transformation EMtran bringing Λuv into

Λuv
EM = (AEM , B

u
EM , B

v
EM , CEM , D

u
EM) = EMtran(Λuv),

represented in the extended Morse canonical form EMCF.

The proof will be given in Section 3.7.5. Throughout if we only consider the differential
equation of (3.2) (meaning (3.2) without output y), we denote it as Λuv

n,m,s = (A,Bu, Bv).
Then by Theorem 3.4.2, we have
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Corollary 3.4.3. (Brunovský canonical form for ODE control systems with two kinds of
inputs) For Λuv

n,m,s = (A,Bu, Bv), assume that rankBw = m + s, where Bw = [Bu, Bv].
If the pair (A,Bw) is controllable, then

(A,Bu, Bv)
EM∼
([
Acu 0

0 Acv

]
,

[
Bcu

0

]
,

[
0

Bcv

])
,

where (Acu, Bcu) and (Acv, Bcv) are in the Brunovský canonical form.

Remark 3.4.4. The difference between the EMCF above and the MCF of [146],[145],
or see Chapter 2, comes from their controllable parts only that correspond to two kinds
of inputs u and v. More specifically, the MCF has only one prime subsystem and only
one controllable but non-observable subsystem. On the other hand, the EMCF has two
prime subsystems: (Apu, Bpu, Cpu, Dpu) and (Apv, Bpv, Cpv), and two controllable but
non-observable subsystems (Acu, Bcu) and (Acv, Bcv).

All the indices in the above EMCF can be calculated with the help of the invariant sub-
spaces defined in Section 3.8 as shown in the following proposition. We will use the fol-
lowing definitions for a multi-index β: define the length of a multi-index β = (β1, . . . , βk)

as `(β) = k, and define |β| =
`(β)∑
i=1

βi. Given a index β̂ = (β̂1, . . . , β̂k̂), we will define the

dual index β = (β1, . . . , βk) by

βi = �i(β̂) =
{

number of β̂j such that β̂j ≥ i
}
, 1 ≤ i ≤ k,

and define � = (�1(β̂), . . . , �k(β̂)).

Proposition 3.4.5. (The EMCF indices) For an ODECS Λuv
n,m,s,p= (A,Bu, Bv, C,Du) (or

equivalently, Λw
n,m+s,p = (A,Bw, C,Dw)), consider the subspaces Vi, Wi, Ŵi of Lemma

3.8.5 in the Appendix of Section 3.8. Assume that
[
Bw

Dw

]
is of full column rank and [C,Dw]

is of full row rank. Then the EMCF indices εi, ε̄i, σi, σ̄i, ηi, together with a, b, c, d,
e, δ in Theorem 3.4.2 can be calculated as follows, and thus are invariant under EM-
transformations.

(i) Set
ε̂i = dim (V∗ ∩Wi)− dim (V∗ ∩ Ŵi), i ≥ 1,
ˆ̄εi = dim (V∗ ∩ Ŵi)− dim (V∗ ∩Wi−1), i ≥ 1,
ˆ̄σi = dim Ŵi − dim Wi−1 − ˆ̄εi, i ≥ 1,

η̂i = dim (W∗ + Vi−1)− dim (W∗ + Vi), i ≥ 1.

Then a = ε̂1, b = ˆ̄ε1, d = ˆ̄σ1, e = η̂1. The indices (ε1, . . . , εa) = �(ε̂), (ε̄1, . . . , ε̄b) =

�(ˆ̄ε), (σ̄1, . . . , σ̄d) = �(ˆ̄σ) and (η1, . . . , ηe) = �(η̂).

(ii) Set

σ̂1 = m− ε̂1, σ̂i = dim Wi−1 − dim Ŵi−1 − ε̂i−1, i ≥ 2.

Then c = σ̂2 and δ = σ̂1 − c. The indices (σ1, . . . , σc) = �(σ̂)− 1.
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Proof. In order to prove the invariance of all indices, notice first that for ODECSs, the sub-
space sequences Vi and Wi are invariant under M-equivalence (see [146],[145], or Chapter
2). Recall that the M-equivalence (with triangular input coordinates transformation matrix
Twi ) for Λw coincide with the EM-equivalence for Λuv. Moreover, since the subspace se-
quences Wi and Ŵi only differ from their initial conditions, it is not hard to see that Ŵi

is also invariant under the EM-equivalence. Thus without loss of generality, we assume
that Λuv is in the EMCF of (3.19). A direct calculation by the formula of Lemma 3.8.5 of
Appendix gives that

Vi = R|ε| × R|ε̄| × Rn2 × ImN i
σ × ImN i

σ̄ × Im (NT
η )i, i ≥ 0, (3.20)

Wi = kerN i
ε × kerN i

ε̄ × {0}
n2 × kerN i

σ × kerN i
σ̄ × {0}

|η| , i ≥ 0, (3.21)

Ŵi = kerN i−1
ε × kerN i

ε̄ × {0}
n2 × kerN i−1

σ × kerN i
σ̄ × {0}

|η| , i ≥ 1. (3.22)

Note that by equations (3.20), (3.21) and, (3.22), we have

V∗ = R|ε| × R|ε̄| × Rn2 × {0}|σ| × {0}|σ̄| × {0}|η| ,

W∗ = Ŵ∗ = R|ε| × R|ε̄| × {0}n2 × R|σ| × R|σ̄| × {0}|η| .

Thus, the following hold:

ε̂1 = rankBcu, ˆ̄ε1 = rankBcv, ˆ̄σ1 = rankBpv, η̂1 = rankCo,

ε̂i+1 = rank
[
Bcu, AcuBcu, . . . , (Acu)iBcu

]
− rank

[
Bcu, AcuBcu, . . . , (Acu)i−1Bcu

]
, i ≥ 1,

ˆ̄εi+1 = rank
[
Bcv, AcvBcv, . . . , (Acv)iBcv

]
− rank

[
Bcv, AcvBcv, . . . , (Acv)i−1Bcv

]
, i ≥ 1,

ˆ̄σi+1 = rank
[
Bpv, ApvBpv, . . . , (Apv)iBpv

]
− rank

[
Bpv, ApvBpv, . . . , (Apv)i−1Bpv

]
, i ≥ 1,

η̂i+1 = rank col
[
Co, CoAo, . . . , (Co)iAo

]
− rank col

[
Co, CoAo, . . . , (Co)i−1Ao

]
, i ≥ 1.

Moreover, we have σ̂1 = m− rankBpv = rankBpu = rank B̂pu + δ and σ̂1 = rank B̂pu,
and for i ≥ 2,

σ̂i+1 = rank
[
B̂pu, ÂpuB̂pu, . . . , (Âpu)i−1B̂pu

]
− rank

[
B̂pu, ÂpuBpu, . . . , (Âpu)i−2B̂pu

]
.

Finally, by the classical controllability and observability indices calculation (see e.g. [31]),
we can calculate εi, ε̄i, σi, σ̄i, ηi from ε̂i, ˆ̄εi, σ̂i, ˆ̄σi, η̂i. Finally, from the relations of indices
and the invariant subspaces, it is seen that the integers εi, ε̄i, σi, σ̄i, ηi, together with
cardinalities a, b, c, d, e, δ are also invariant under the EM-equivalence.

Remark 3.4.6. In general,
[
Bw

Dw

]
may not be monic, i.e., injective, and [C,Dw] may not

be epic, i.e., surjective, which implies that some of these indices are allowed to be zero,
e.g. for certain i, εi = 0 meaning that Bcu has one zero column, and for certain i, ηi = 0

implying that Co has one zero row.

Now we introduce the driving variable reduction and implicitation procedure (compare
Chapter 2 for the case of controls of one kind) to reduce the driving variable v and implicit
the EMCF to a DAECS. The procedure is that, for each sub-system in EMCF, which is
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affected by v, i.e., (Acv, Bcv) and (Apv, Bpv, Cpv), we reduce the last rows in the dynam-
ics of the subsystems and set the output y = 0. Take, for example, a prime subsystem
(Apvσ̄ , B

pv
σ̄ , C

pv
σ̄ ) of (Apv, Bpv, Cpv) for which we get:

(Apvσ̄ , B
pv
σ̄ , C

pv
σ̄ ) :



y = x1,

ẋ1 = x2

· · ·
ẋσ̄−1 = xσ̄

ẋσ̄ = v,

→ (Nσ̄, Iσ̄, 0) :


0 = x1

ẋ1 = x2

· · ·
ẋσ̄−1 = xσ̄.

In the above case, the ODECS Λpv = (Apvσ̄ , B
pv
σ̄ , C

pv
σ̄ ) on the left is mapped via an implic-

itation into a DAECS ∆ = (Nσ̄, Iσ̄, 0) on the right. Notice that Λpv and ∆ in the above
procedure satisfy Λpv ∈ Expl(∆).

Then with the help of the above reduction and implicitation procedure, we can regard
the feedback canonical form FBCF for DAECSs of the form ∆u

l,n,m = (E,H,L) given in
[131] as a corollary of Theorem 3.4.2. In the following, in order to save space and simplify
notations, we denote

Ki =
[
0 Ii−1

]
∈ R(i−1)×i, Li =

[
Ii−1 0

]
∈ R(i−1)×i,

Ni =

[
0 0

Ii−1 0

]
∈ Ri×i, ei =

[
0

1

]
∈ Ri,

and

Nβ = diag {Nβ1 , . . . , Nβk} ∈ R|β|×|β| Kβ = diag {Kβ1 , . . . , Kβk} ∈ R(|β|−k)×|β|,

Lβ = diag {Lβ1 , . . . , Lβk} ∈ R(|β|−k)×|β|, Eβ = diag {eβ1 , . . . , eβk} ∈ R|β|×k,

Corollary 3.4.7. (Feedback canonical form of DAE control systems [131]) Any DAE con-
trol system ∆u

l,n,m = (E,H,L) is ex-fb-equivalent to the following feedback canonical
form FBCF:



I|ε′| 0 0 0 0 0

0 Lε̄′ 0 0 0 0

0 0 Inρ 0 0 0

0 0 0 KT
σ′ 0 0

0 0 0 0 Nσ̄′ 0

0 0 0 0 0 LTη′


,



NT
ε′ 0 0 0 0 0

0 Kε̄′ 0 0 0 0

0 0 Aρ 0 0 0

0 0 0 LTσ′ 0 0

0 0 0 0 I|σ̄′| 0

0 0 0 0 0 KT
η′


,



Eε′ 0 0

0 0 0

0 0 0

0 Eσ′ 0

0 0 0

0 0 0




,

where ε′ = (ε′1, . . . , ε
′
a′) ∈ (N+)a

′
, ε̄′ = (ε̄′1, . . . , ε̄

′
b′) ∈ (N+)b

′
, σ′ = (σ′1, . . . , σ

′
c′) ∈

(N+)c
′
, σ̄′ = (σ̄′1, . . . , σ̄

′
d′) ∈ (N+)d

′
, η′ = (η′1, . . . , η

′
e′) ∈ (N+)e

′
are multi-indices and the

matrix Aρ is given up to similarity.

Remark 3.4.8. (i) The above FBCF of DAECSs is a corollary of Theorem 3.4.2. Indeed,
for any DAECS ∆u = (E,H,L), we can construct an ODECS Λuv ∈ Expl(∆u). Then,

by Theorem 3.4.2, we have Λuv EMM∼ EMCF. From the driving variable reduction and
implicitation procedure, it can be observed that the FBCF is the implicitation of the EMCF
of ∆u. A crucial observation is that EMCF ∈ Expl(FBCF). Thus, by Theorem 3.2.8, we

conclude ∆u ex−fb∼ FBCF (since Λuv EMM∼ EMCF).
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(ii) There exists a perfect correspondence between the six subsystems of the EMCF
and their counterparts of the FBCF. Morse specifically,

(Acu, Bcu)↔ (I|ε′|, N
T
ε′ , Eε′), (Acu, Bcu)↔ (Lε̄′ , Kε̄′ , 0),

An2 ↔ (Inρ , Aρ), (Apu, Bpu, Cpu, Dpu)↔ (KT
σ′ , L

T
σ′ ,Eσ′),

(Apv, Bpv, Cpv)↔ (Nσ̄′ , I|σ̄′|, 0), (Co, Ao)↔ (LTη′ , K
T
η′ , 0).

(iii) Since the FBCF is the implicitation of the EMCF, it is easy to observe that the
indices in the FBCF and EMCF have the following relations:

• a = a′ and εk = ε′k for k = 1, . . . , a, b = b′ and ε̄k = ε̄′k for k = 1, . . . , b;

• n2 = nρ and Ann ≈ Aρ;

• c + δ = c′ and σ′1 = σ′2 =, · · · ,= σ′δ = 1, σ′δ+1 = σ1 + 1, σ′δ+2 = σ2 + 1, . . .,
σ′δ+c = σc + 1; Moreover, d = d′ and σ̄k = σ̄′k for k = 1, . . . , d;

• e = e′ and ηk + 1 = η′k for k = 1, . . . , e.

From the indices relations in Remark 3.4.8(iii) and the subspaces relation of Proposi-
tion 3.2.9, we can deduce the following calculation of the FBCF invariants as a corollary
of Proposition 3.4.5.

Corollary 3.4.9. (Invariants of FBCF in [131] and [18]) For ∆u
l,n,m = (E,H,L), con-

sider the subspaces Vi, Wi, Ŵi of Definition 3.8.2. Assume that rankL = m and ImE ∩
Im [H,L] = 0. Then the FBCF indices ε′, ε̄′, σ′, σ̄′, η′, together with a′, b′, c′, d′, e′ of
Corollary 3.4.7 can be calculated as follows.

(i) Set
ε̂′i = dim (V ∗ ∩Wi)− dim (V ∗ ∩ Ŵi), i ≥ 1,
ˆ̄ε′i = dim (V ∗ ∩ Ŵi)− dim (V ∗ ∩Wi−1), i ≥ 1,
ˆ̄σ′i = dim Ŵi − dim Wi−1 − ˆ̄ε′i, i ≥ 1.

Then a′ = ε̂′1, b′ = ˆ̄ε′1, d′ = ˆ̄σ′1. The indices (ε′1, . . . , ε
′
a′) = �(ε̂′), (ε̄′1, . . . , ε̄

′
b′) = �(ˆ̄ε′),

(σ̄′1, . . . , σ̄
′
d) = �(ˆ̄σ′).

(ii) Set

σ̂′1 = m− ε̂′1, σ̂′i = dim Wi−1 − dim Ŵi−1 − ε̂′i−1, i ≥ 2,

η̂′i = dim (W ∗ + Vi−1)− dim (W ∗ + Vi), i ≥ 1.

Then c′ = σ̂′1, e′ = η̂′1. The indices (σ′1, . . . , σ
′
c′) = �(σ̂′) − 1 and (η′1, . . . , η

′
e′) =

�(η̂′)− 1.

Remark 3.4.10. Note that the assumptions that rankL = m and ImE ∩ Im [H,L] = 0

correspond to the assumptions of Proposition 3.4.5 that
[
Bw

Dw

]
is of full column rank and
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[C,Dw] is of full row rank, respectively. Although more general results about the FBCF
indices (without these assumptions) are given in [131] and [18], our purpose is to show
the connections between EMCF indices and FBCF indices rather than to calculate them
in the case of non full rank. The generalizations of the results of Corollary 3.4.9 to that of
the FBCF indices in [131] and [18] are straightforward.

Below a simple algorithm is proposed to calculate the FBCF for a given DAECS
∆u
l,n,m = (E,H,L) based on the explicitation procedure.

Algorithm 3.4.11. Step 1: For ∆u, construct an ODECS Λuv such that Λuv ∈ Expl(∆u),
via the explicitation procedure described in Section 3.2.

Step 2: By Theorem 3.3.4, find an extended Morse transformation EMtran such that
the transformed system Λ̃ũṽ = EMtran(Λuv) is in the EMTF.

Step 3: By Theorem 3.3.5, find an extended Morse transformationEMtran such that the
transformed system Λ̄ūv̄ = EMtran(Λ̃ũṽ) is in the EMNF. Then by the procedure shown in
the proof of Theorem 3.4.2, bring Λ̄ūv̄ into the EMCF.

Step 4: Find the implicitation of EMCF, denoted by ∆̄ū, via the driving variable re-
duction and implicitation procedure described in Section 3.4. Then ∆̄ū is in the FBCF
and ∆u ex−fb∼ ∆̄ū.

3.5 Example

In this section, we illustrate the construction of Algorithm 3.4.11 by an example taken
from [20]. Consider the following mathematical model of an electrical circuit (see Fig. 1.1
of [20]), which is a DAECS of the form Eẋ = Hx+ Lu:

0 0 0 0 L 0 0 0 0 0 0 0 0 0
0 0 −Ca Ca 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0

 ẋ =



1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 −1 0 0 0 0 0 RG 0 0 0 0 0 0
0 1 −1 0 0 0 0 0 RF 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 R 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −1 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 0 1 −1 1 0
0 0 0 0 0 0 0 0 0 1 0 0 1 1
0 0 −1 0 0 0 0 0 0 0 0 0 0 0


x+



0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
1 0
0 0
0 0
0 0
0 1


[
I

V

]
,

where u = [IT , V T ]T is the control vector, L,Ca,R,RG, RF are real scalars (all as-
sumed to be nonzero). In [20], only the matrix pencil sE − H is transformed into a
quasi-Kronecker form. We will transform the whole DAECS into its FBCF via Algorithm
3.4.11.
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Step 1: Find an ODECS Λuv ∈ Expl(∆u), which we take as

Λuv :



ẋ =



0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1/Ca 0

1/L 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0


x+



0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0


u+



1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1


v

y =


0 −1 0 0 0 0 0 RG 0 0 0 0 0 0
0 1 −1 0 0 0 0 0 RF 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 R 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −1 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 0 1 −1 1 0
0 0 0 0 0 0 0 0 0 1 0 0 1 1
0 0 −1 0 0 0 0 0 0 0 0 0 0 0

x+


0 0
0 0
0 0
0 0
0 0
0 0
1 0
0 0
0 0
0 0
0 1

u.

Step 2: Calculate the subspaces V∗, U∗w, U∗v, W
∗, Y∗ of Λw = (A,Bw, C,Dw) by Lemma

3.8.5 of Appendix, where Bw =
[
Bu Bv

]
, Dw =

[
Du 0

]
and w = [uT , vT ]T . They are

V∗ = Im



RG 0 0 0 0
RG 0 0 0 0

RF+RG 0 0 0 0
0 R 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 −1 1
−1 −1 0 1 −1


, U∗w = Im



0 0 0
0 0 0

R∗RG 0 0
R∗RG 0 0

R∗(RF+RG) 0 0
0 0 0
0 0 0
R 0 0
R 0 0

RF+RG 0 0
0 1 0
0 0 1
R −1 1

−(R+RF+RG) 1 −1


,

U∗v = Im



R∗RG 0 0
R∗RG 0 0

R∗(RF+RG) 0 0
0 0 0
0 0 0
R 0 0
R 0 0

RF+RG 0 0
0 1 0
0 0 1
R −1 1

−(R+RF+RG) 1 −1


, W∗ = X = R14, Y∗ = Y = R11.

By the proof of Theorem 3.3.4 and Proposition 3.3.1, we can choose the following trans-
formation matrices: Ty = I11, KMT = 014×11,

Ts =



1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0
−1 1 0 0 0 0 0 0 0 0 0 0 0 0

−(RF+RG)/RG 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0

−1/RG 0 0 0 0 0 0 1 0 0 0 0 0 0
−1/RG 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 −1/R 0 0 0 0 0 1 0 0 0 0
−1/RG 0 0 0 0 0 0 0 0 0 1 −1 1 0
1/RG 0 0 1/R 0 0 0 0 0 0 −1 1 0 1


,
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Tw =



1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 −1 1 0 0 0 0 0 0 0 0 0 0
0 0 −(RF+RG)/RG 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 −1/RG 0 0 0 0 1 0 0 0 0 0 0
0 0 −1/RG 0 0 0 0 0 1 0 0 0 0 0
0 0 −(RF+RG)/(R∗RG) 0 0 0 0 0 0 1 0 0 0 0
0 0 −1/RG 0 0 0 0 0 0 0 1 −1 1 0
0 0 (R+RF+RG)/(R∗RG) 0 0 0 0 0 0 0 −1 1 0 1


,

FMT =



0 0 0 0 1 0 0 0 0 0 0 0 0 0
(RF+RG)/RG 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0

1/(Ca∗R∗RG) 0 0 0 0 0 0 0 0 0 −1/(Ca∗R) 1/(Ca∗R) 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0

−1/(Ca∗R∗RG) 0 0 0 0 0 0 0 0 0 1/(Ca∗R) −1/(Ca∗R) 0 0


.

Then the Morse transformation Mtrans(Ts, Tw, Ty, FMT , KMT ) brings Λw into Λ̃w̃, given
by (Ã, B̃w̃, C̃, D̃w̃), which is in the EMTF, where

[
Ã B̃w̃

C̃ D̃w̃

]
=

[
Ã B̃ũ B̃ṽ

C̃ D̃ũ 0

]
=

Ã1 Ã13 0 B̃ṽ1 B̃ṽ12

0 Ã3 0 0 B̃ṽ3
0 C̃3 D̃ũ

3 0 0

 =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1/(Ca∗RG) 0 0 −1/Ca 1/Ca 0 0 0 0 0 0 0 1/Ca 0 0 0 (RF+RG)/RG 0 0 0 1 0 0 0 0 0 0 0

1/L 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −1/(Ca∗R) 0 0 0 0 0 0 0 −1/R 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1/(Ca∗R) 0 0 0 0 0 0 0 1/R 0 0 0 0 0 0 1
0 0 0 0 0 −1 0 0 0 RG 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 −1 0 0 0 RF 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0



.

Step 3: By Algorithm 3.3.3, set

KMN =



0 0 0 0 0 0 0 0 0 0 0
−1/(Ca∗RG) 0 0 0 −1/Ca 1/(Ca∗RG) 0 1/Ca −1/Ca 0 0

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0


, FMN = 014×14.

Then solve T 2
MN via the following constrained Sylvester equation,

Ā1T
2
MN − T 2

MN Ā3 = −Ā1, T 2
MN B̄

w̄
3 = −B̄w̄

12,

where Ā = Ã + KMN C̃, B̄w̄ = B̃w̃ + KMND̃
w̃. The above equation is solvable and the
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solution is

T 2
MN =

[
0 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

]
.

Thus the Morse transformation Mtran = (TMN , I14, I11, FMN , KMN), where TMN =[
I T 2

MN

0 I

]
, brings Λ̃w̃ into Λ̄w̄ = (Ā, B̄w̄, C̄, D̄w̄), which is in the EMNF, where

[
Ā B̄w̄

C̄ D̄w̄

]
=

[
Ā B̄ū B̄v̄

C̄ D̄ū 0

]
=

Ā11 0 0 B̄v̄11 0

0 Ā33 0 0 B̄v̄32

0 C̄13 D̄ū
12 0 0

 =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1/(Ca∗RG) 0 0 −1/Ca 1/Ca 0 0 0 0 0 0 0 0 0 0 0 (RF+RG)/RG 0 0 0 0 0 0 0 0 0 0 0

1/L 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −1/(Ca∗R) 0 0 0 0 0 0 0 −1/R 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1/(Ca∗R) 0 0 0 0 0 0 0 1/R 0 0 0 0 0 0 1
0 0 0 0 0 −1 0 0 0 RG 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 −1 0 0 0 RF 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0



.

Step 4: Transform each subsystem of Λ̄w̄ into its canonical form as in Theorem 3.4.2
to obtain the EMCF:


Acv 0 0 Bcv 0

0 Apv 0 0 Bpv

0 0 Dpu 0 0

0 C̄pv 0 0 0

 =



0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0



.

The EMCF indices are ε̄1 = 2, ε̄2 = 2, ε̄3 = 1, δ = 2, σ̄1 = σ̄2 =, . . . ,= σ̄9 = 1. Note that
n2, a, c, e are all zeros and we have 3 subsystems only.

Step 5: Using the driving variable reduction and implicitation procedure, we get the

75



CHAPTER 3. FROM MORSE TRIANGULAR FORM OF ODE CONTROL SYSTEMS
TO FEEDBACK CANONICAL FORM OF DAE CONTROL SYSTEMS

following DAECS from the above EMCF:

1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0

 ż =



0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1

 z +



0 0
0 0
1 0
0 1
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

 ũ,
where z and ũ is the new “generalized” state and the input, respectively. Obviously, the
above DAECS is in the FBCF with indices ε̄′1 = 2, ε̄′2 = 2, ε̄′3 = 1, σ1 = σ2 = 1,
σ̄1 = σ̄2 =, . . . ,= σ̄9 = 1. Moreover, a′ = nρ = e′ = 0, c′ = δ = 2.

Remark 3.5.1. From the above FBCF, it is seen that the variables z1, z3 are actually the
states (they enter the system dynamiclaly) of the system; the variables z2, z4, z5 are the free
variables of the “generalized” state; the new control ũ = (ũ1, ũ2) are actually constrained
by the algebraic constraints 0 = ũ; the variables z6, z7, z8, z9, z10, z11, z12, z13, z14, are also
free “generalized” states (they enter the system statically) but they are constrained by the
algebraic constraints.

3.6 Conclusion

In this chapter, on one hand, for linear ODECSs, we modify and simplify the construction
of the MCF given in [145] by proposing the Morse triangular form MTF. On the other
hand, the bridge from the MTF of ODECSs to the FBCF of DAECSs is constructed via
the explicitation with driving variables procedure. It is shown that, after attaching a class
of ODECSs with two kinds of inputs to a DAECS, we can find connections between their
geometric subspaces and canonical forms. Finally, a simple algorithm of constructing
transformations from the MTF to the FBCF is proposed via the explicitation procedure
and an example is given to show how our results and algorithms can be applied to concrete
physical systems.

3.7 Proofs of the results

3.7.1 Proofs of Proposition 3.2.3, Proposition 3.2.4 and Theorem 3.2.8

Proof of Proposition 3.2.3. If. Suppose that Λuv
n,m,s,0 and Λ̃uṽ

n,m,s,0 are equivalent via v =

Fvx+Ru+ṽ. Then Ã = A+BvFv = E†1H1+BvFv and B̃u = Bu+BvR = E†1L1+BvR,
which imply that E1Ã = H1 and E1B̃ = L1 (since ImBv = kerE). Thus Ã = Ẽ†1H1

and B̃ = Ẽ†1L1 for another choice of right inverse Ẽ†1 of E1. Therefore, Λ̃uṽ
n,m,s,0 is also an

explicitation of (3.5a).

Only if. Suppose that Λ̃uṽ
n,m,s,0 is an explicitation of (3.5a) corresponding the choice of

right inverse Ẽ†1 of E1. Since E†1 is a right inverse of E1 if and only if any solution ẋ of
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E1ẋ = w is given by E†1w, we have E1E
†
1(H1x + L1u) = H1x + L1u and E1Ẽ

†
1(H1x +

L1u) = H1x+L1u. It follows that E1(Ẽ†1 −E
†
1)(H1x+L1u) = 0 and (Ẽ†1 −E

†
1)(H1x+

L1u) ∈ kerE1, for any x ∈ Rn, u ∈ Rm, so (Ẽ†1−E
†
1)H1x ∈ kerE1 and (Ẽ†1−E

†
1)L1u ∈

kerE1. Since kerE1 = ImBv, it follows that (Ẽ†1 − E
†
1)L1 = BvR and (Ẽ†1 − E

†
1)H1 =

BvFv (note that we fixBv) for suitable matricesR ∈ Rs×m and Fv ∈ Rs×n. Therefore Ã =

Ẽ†1H1 = E†1H1 +BvFv = A+BvFc and B̃u = Ẽ†1L1 = E†1L1 +BvR = Bu +BvR.

Proof of Proposition 3.2.4. If. Suppose that Λuv and Λ̃uv are equivalent via an output in-
jection Ky = K(Cx+Duu) and an output multiplication ỹ = Tyy. Then

Λ̃uv :


ẋ = Ãx+ B̃uu+ B̃vv = (A+KC)x+ (Bu +KDu)u+Bvv

= (E†1H1 +KH2)x+ (E†1L1 +KL2)u+Bvv

ỹ = C̃x+ D̃u = Ty(Cx+Du) = Ty(H2x+ L2u),

Pre-multiply the differential part of Λ̃uv by E1, we get (note that ImBv = kerE1){
E1ẋ = (H1 + E1KH2)x+ (L1 + E1KL2)u

ỹ = Ty(H2x+ L2u),

Thus Λ̃uv is an (I, v)-explicitation of the following DAECS:[
E1

0

]
ẋ =

[
H1 + E1KH2

TyH2

]
x+

[
L1 + E1KL2

TyL2

]
u.

The above DAECS can be transformed from ∆u via Q̃ = Q′Q, where Q′ =

[
Iq E1K

0 Ty

]
,

it proves that Λ̃uv is a (Q̃, v)-explicitation of ∆u.

Only if. Suppose that Λ̃uv
n,m,s,p ∈ Expl(∆u) via Q̃ = Q′Q, where Q′ =

[
Q1 Q2

0 Q4

]
.

Thus via Q̃, ∆u is ex-fb-equivalent to (3.9) and using Ẽ†1Q
−1
1 = E†1Q

−1
1 (note that Q1 is

invertible) and B̃v = Bv, we can express (3.9) as
ẋ= Ẽ†1Q

−1
1 (Q1H1x+Q1L1u) + Ẽ†1Q

−1
1 Q2(H2x+ L2u) + B̃vv

= E†1(H1x+ L1u) + E†1Q
−1
1 Q2(H2x+ L2u) +Bvv

0 = Q4(H2x+ L2u).

Thus a (Q̃, v)-explicitation of ∆u is

Λ̃uv :

{
ẋ = Ax+Buu+K(Cx+Duu) +Bvv = Ãx+ B̃uu+ B̃vv

ỹ = Ty(Cx+Du) = C̃x+ D̃u,

where Ty = Q4, K = E†1Q
−1
1 Q2, which implies that Λuv and Λ̃uv are equivalent via the

output injection Ky = K(Cx+Duu) and the output multiplication ỹ = Tyy.

Proof of Theorem 3.2.8. Without loss of generality, we assume that the system matrices of
∆u = (E,H,L) and ∆̃ũ = (Ẽ, H̃, L̃) are of the following form:

E =

[
Iq 0

0 0

]
, H =

[
H1

H2

]
, L =

[
L1

L2

]
, Ẽ =

[
Iq̃ 0

0 0

]
, H̃ =

[
H̃1

H̃2

]
, L =

[
L̃1

L̃2

]
,
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where H1 ∈ Rq×n, L1 ∈ Rq×m, H̃1 ∈ Rq̃×n, L̃1 ∈ Rq̃×m, q = rankE, q̃ = rank Ẽ. Since
if not, we can always find Q, Q̃ ∈ Gl(l,R), P, P̃ ∈ Gl(n,R) such that

(QEP−1, QHP−1, QL) and (Q̃ẼP̃−1, Q̃H̃P̃−1, Q̃L̃)

are of the above desired form. It is easily seen that the ex-fb-equivalence of (E,H,L) and
(Ẽ, H̃, L̃) is equivalent to (implied by and implying) that of (QEP−1, QHP−1, QL) and
(Q̃ẼP̃−1, Q̃H̃P̃−1, Q̃L̃). Thus we can use the above system matrices to represent ∆u and
∆̃ũ in the remaining part of the proof.

By the assumptions that Λuv ∈ Expl(∆u) and Λ̃ũṽ ∈ Expl(∆̃ũ), we have[
A Bu Bv

C Du 0

]
=

H1 L1 0

0 0 In−q
H2 L2 0

 , [Ã B̃ũ B̃ṽ

C̃ D̃ũ 0

]
=

H̃1 L̃1 0

0 0 In−q̃
H̃2 L̃2 0

 .
(3.23)

We have chosen Λuv and Λ̃ũṽ as above for convenience, any other choice based on the
explicitation procedure could have been made. Since any two ODECSs in an explicitation
class are EM-equivalent, the choice of a (Q, v)-explicitation makes no difference when
proving EM-equivalence. Therefore, we will use the system matrices in (3.23) for the
following proof.

If. Suppose Λuv EM∼ Λ̃ũṽ. Then there exist transformation matrices Tx, Tu, Tv, Ty, Fu,
Fv, R, K such that equation (3.10) holds. Substituting the system matrices of (3.23) into
(3.10), we haveH̃1 L̃1 0

0 0 In−q
H̃2 L̃2 0

=

[
Tx TxK

0 Ty

]H1 L1 0

0 0 In−q̃
H2 L2 0

 T−1
x 0 0

FuT
−1
x T−1

u 0

(Fv +RFu)T
−1
x RT−1

u T−1
v

 .
(3.24)

Now represent Tx =

[
T 1
x T 2

x

T 3
x T 4

x

]
, where T 1

x ∈ Rq×q. By B̃ṽ = TxB
vT−1

v , we get
[
0

I

]
=[

T 1
x T 2

x

T 3
x T 4

x

] [
0

I

]
T−1
v , hence it can be deduced that q = q̃ and T 2

x = 0. Moreover, T 4
xT
−1
v = I

implies that T 4
x is invertible. Thus by the invertibility of Tx, we have T 1

x is invertible as
well.

Subsequently, premultiply equation (3.24) by
[
(T 1

x )−1 0 0

0 0 Il−q

]
and we get

[
(T 1

x )−1 0

0 Il−q

] [
H̃1 L̃1 0

H̃2 L̃2 0

]
=

[
Iq K1

0 Ty

] [
H1 L1 0

H2 L2 0

] T−1
x 0 0

FuT
−1
x T−1

u 0

(Fv +RFu)T
−1
x RT−1

u T−1
v

 ,
where K1 =

[
Iq (T 1

x )
−1
T 2
x

]
K. It follows that[

H̃1 L̃1

H̃2 L̃2

]
=

[
T 1
x T 1

xK1

0 Ty

] [
H1 L1

H2 L2

] [
T−1
x 0

FuT
−1
x T−1

u

]
.
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Thus ∆u ex−fb∼ ∆̃ũ via

Q =

[
T 1
x T 1

xK1

0 Ty

]
, P = Tx, F = Fu, G = T−1

u .

Only if : Suppose ∆u ex−fb∼ ∆̃ũ. Then there exist invertible matrices Q, P , and matrices

F , G of appropriate sizes such that equation (3.4) holds. RepresentQ =

[
Q1 Q2

Q3 Q4

]
, where

Q1 ∈ Rq×q, and P−1 =

[
P1 P2

P3 P4

]
, where P1 ∈ Rq×q. Then by

Ẽ = QEP−1 ⇒
[
Iq̃ 0

0 0

]
=

[
Q1 Q2

Q3 Q4

] [
Iq 0

0 0

] [
P1 P2

P3 P4

]
,

we immediately get q = q̃ and Q1P1 = I , Q1P2 = 0, Q3P1 = 0, which implies that Q1,
P1 are invertible matrices, P2 = 0, and Q3 = 0. Thus by the invertibility of Q and P , we
have Q4 and P4 are invertible matrices as well.

Then by equation (3.4), we get[
H̃1 L̃1

H̃2 L̃2

]
=

[
Q1 Q2

0 Q4

] [
H1 L1

H2 L2

] [
P−1 0

FP−1 G

]
.

It implies that the following equation holds:H̃1 L̃1 0

0 0 In−q
H̃2 L̃2 0

 =

Q1 0 Q2

X P−1
4 0

0 0 Q4

H1 L1 0

0 0 In−q̃
H2 L2 0

 P−1 0 0

FP−1 G 0

Y Z P4

 ,
where X = −P−1

4 P3P
−1
1 , Y = (P3P

−1
1 H1 + P3P

−1
1 L1F )P−1, Z = P3P

−1
1 L1G. There-

fore, Λuv EM∼ Λ̃ũṽ via

Tx = P, Tu = G−1, Tv = P−1
4 , Ty = Q4,

Fu = F, Fv = P3P
−1
1 H1, R = P3P

−1
1 L1, K =

[
P1Q2

P3Q2

]
.

3.7.2 Proof of Proposition 3.2.9

Proof. Without loss of generality, we may assume that ∆u
l,n,m = (E,H,L) is of the fol-

lowing form: [
Iq 0

0 0

] [
ẋ1

ẋ2

]
=

[
H1 H2

H3 H4

] [
x1

x2

]
+

[
L1

L2

]
u,

where q = rankE and H1 ∈ Rq×q, H2 ∈ Rq×(n−q), H3 ∈ Rp×q, H4 ∈ Rp×(n−q), L1 ∈
Rq×m, L2 ∈ Rp×m, where p = l − q. Since if not, we can always find Q ∈ Gl(l,R),
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P ∈ Gl(n,R) such that ∆̃ũ = (QEP−1, QH,QL) is of the above form. Then, it is
not hard to verify that Vi(∆̃ũ) = PVi(∆u), Wi(∆̃

ũ) = PWi(∆
u), Ŵi(∆̃

ũ) = P Ŵi(∆
u).

Moreover, for two ODECSs Λw = Λuv ∈ Expl(∆u), Λ̃w̃ = Λ̃ũṽ ∈ Expl(∆̃ũ), we can
verify that Vi(Λ̃w̃) = PVi(Λ

w), Wi(Λ̃
w̃) = PWi(Λ

w), Ŵi(Λ̃
w̃) = PŴi(Λ

w). Therefore,
in order to show that the relations of the subspaces (as claimed in Proposition 3.2.9) hold,
replacing ∆u by ∆̃ũ makes no difference and thus we will assume that ∆u is of the above
form in what follows.

Then, the following system, denoted Λw = Λuv, is a (Q, v)-explicitation of ∆u,

Λw = Λuv :


[
ẋ1

ẋ2

]
=

[
H1 H2

0 0

] [
x1

x2

]
+

[
L1

0

]
u+

[
0

In−q

]
v

y = H3x1 +H4x2 + L2u.

(3.25)

Firstly, we calculate Vi(Λ
w) through equation (3.44) of Appendix in Section 3.8:

Vi+1(Λw) =

[
A

C

]−1([
I

0

]
Vi(Λ

w) + Im

[
Bw

Dw

])

=

H1 H2

0 0

H3 H4

−1[Vi(Λw)

0

]
+ Im

L1 0

0 In−q
L2 0


=

[
H1 H2

H3 H4

]−1([
[Iq, 0]Vi(Λ

w)

0

]
+ Im

[
L1 0

L2 0

])
= H−1(EVi(Λ

w) + ImL).

Comparing the above expression with equation (3.41) of Appendix, it is easily seen that
the subspace sequences Vi+1(Λw) and Vi+1(∆u) are calculated in the same form. Since
V0(∆u) = V0(Λw) = Rn, we conclude that Vi(∆u) = Vi(Λ

w) for i ∈ N.

Then calculate Wi+1(∆u) via equation (3.42) of Appendix:

Wi+1(∆u) = E−1(HWi(∆
u) + ImL) =

[
Iq 0

0 0

]−1([
H1 H2

H3 H4

]
Wi(∆

u) + Im

[
L1

L2

])
=

[
Iq 0

0 0

]−1([
H1 H2 L1 0

H3 H4 L2 0

] [
Wi(∆

u)

Uw

])
=

[
H1 H2 L1 0

0 0 0 0

]([
Wi(∆

u)

Uw

]
∩ ker

[
H3 H4 L2 0

])
+ Im

[
0

In−q

]
.

In the above equation, according to the special form of E, we directly calculate the preim-
age. Moreover, we can express[

0

In−q

]
=

[
0 0 0 0

0 0 0 In−q

]([
Wi(∆

u)

Uw

]
∩ ker

[
H3 H4 L2 0

])
.

It follows that

Wi+1(∆u) =

[
H1 H2 L1 0

0 0 0 In−q

]([
Wi(∆

u)

Uw

]
∩ ker

[
H3 H4 L2 0

])
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=
[
A Bw

]([Wi(∆
u)

Uw

]
∩ ker

[
C Dw

])
.

It is seen from the above equation and (3.46) of Appendix that the subspace sequences
Wi+1(Λw) and Wi+1(∆u) are calculated in the same form. Since the initial conditions
W0(Λw) = W0(∆u) = {0}, we conclude that Wi+1(Λw) = Wi+1(∆u) for all i ∈ N.

Then from (3.42) and (3.43), it is seen that the subspaces sequences Wi and Ŵi are
calculated in the same form, their difference comes from their initial conditions only. Sim-
ilarly, from (3.46) and (3.48), it is seen that Wi and Ŵi have different initial conditions
but evolve in the same way. Thus, by Ŵ1(Λw) = Ŵ1(∆u) = kerE = ImBv, we get
Ŵi(Λ

w) = Ŵi(∆
u) for all i ∈ N+.

3.7.3 Proof of Proposition 3.3.1

Proof. Observe that the transformation matrix Ts decomposes the state space X of Λu

into X = X1⊕X2⊕X3⊕X4, where X1 = V∗∩W∗, X1⊕X2 = V∗, X1⊕X3 = W∗,
(V∗ + W∗)⊕X4 = X . The transformation matrix Ti decomposes the input space Uu

into Uu = U1 ⊕ U2, where U1 = U∗u, U1 ⊕ U2 = Uu. The transformation matrix To
decomposes the output space Y into Y = Y1 ⊕ Y2, where Y1 = Y∗, Y1 ⊕ Y2 = Y . Let
Λ′ = (A′, B′, C ′, D′) = Mtran(Λu), where Mtran is the Morse transformation Mtran =

(Ts, Ti, To, 0, 0). Then consider the following equation and subspaces:[
A′ B′

C ′ D′

]
=

[
Ts 0

0 To

] [
A Bu

C Du

] [
T−1
s 0

0 T−1
i

]

=



A1
1 A2

1 A3
1 A4

1 B1
1 B2

1

A1
2 A2

2 A3
2 A4

2 B1
2 B2

2

A1
3 A2

3 A3
3 A4

3 B1
3 B2

3

A1
4 A2

4 A3
4 A4

4 B1
4 B2

4

C1
3 C2

3 C3
3 C4

3 D1
3 D2

3

C1
4 C2

4 C3
4 C4

4 D1
4 D2

4


,

V∗(Λ′) :


∗
∗
0

0

 ,
Uu
∗(Λ′) :

[
∗
0

]
,

W∗(Λ′) :


∗
0

∗
0

 ,
Y∗(Λ′) :

[
∗
0

]
.

Now, applying (3.45), for i = n, to both Λ′ and the dual system of Λ′, we have[
B′

D′

]
Uu
∗ ⊆

[
V∗

0

]
,

[
(C ′)T

(D′)T

]
(Y∗)⊥ ⊆

[
(W∗)⊥

0

]
.

It follows that B1
3 , B1

4 , C1
4 , C3

4 , D1
3, D1

4, D4
2 are all zero.

Then applying (3.44) for i = n, to both Λ′ and its dual system, we have[
A′V∗

C ′V∗

]
⊆
[
V∗

0

]
+ Im

[
B′

D′

]
, (3.26)[

(A′)T (W∗)⊥

(B′)T (W∗)⊥

]
⊆
[
(W∗)⊥

0

]
+ Im

[
(C ′)T

(D′)T

]
. (3.27)
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The lower parts of equations (3.26) and (3.27) give C ′V∗ ⊆ ImD′ and (B′)T (W∗)⊥ ⊆
Im (D′)T , which implies that B1

2 and C4
2 are zero. On the other hand, equation (3.26) gives

that

Im

A1
3

A1
4

C1
3

 ⊆ Im

B2
3

B2
4

D2
3

 and Im

A2
3

A2
4

C2
3

 ⊆ Im

B2
3

B2
4

D2
3

 ,
implying that there exist matrices F1 ∈ Rm2×n1 and F2 ∈ Rm2×n2 such thatA1

3

A1
4

C1
3

 = −

B2
3

B2
4

D2
3

F1 and

A2
3

A2
4

C2
3

 = −

B2
3

B2
4

D2
3

F2.

Then setting F =

[
0 0 0 0

F1 F2 0 0

]
, we have

[
Ts 0

0 To

] [
A Bu

C Du

] [
T−1
s 0

T−1
i F T−1

i

]
=



A1
1 +B2

1F1 A2
1 +B2

1F2 A3
1 A4

1 B1
1 B2

1

A1
2 +B2

2F1 A2
2 +B2

2F1 A3
2 A4

2 0 B2
2

0 0 A3
3 A4

3 0 B2
3

0 0 A3
4 A4

4 0 B2
4

0 0 C3
3 C4

3 0 D2
3

0 0 0 C4
4 0 0


.

Since W∗ is feedback invariant, equation (3.27) also holds for the above transformed sys-
tem. Thus the upper part of (3.27) becomes

(A′ +B′F )T (W∗(Λ′))⊥ ⊆ (W∗(Λ′))⊥ + Im (C ′)T ,

which gives that (A1
2 +B2

1F1)T = 0,

Im

[
(A3

2)T

(B2
2)T

]
⊆ Im

[
(C3

1)T

(D2
1)T

]
and Im

[
(A3

4)T

(B2
4)T

]
⊆ Im

[
(C3

3)T

(D2
3)T

]
.

It follows that there exist K1 ∈ Rn2×p1 and K2 ∈ Rn4×p1 such that[
(A3

2)T

(B2
2)T

]
= −

[
(C3

3)T

(D2
3)T

]
KT

1 and

[
(A3

4)T

(B2
4)T

]
= −

[
(C3

3)T

(D2
3)T

]
KT

2 .

Let K =

[
0 KT

1 0 KT
2

0 0 0 0

]T
, which implies that

[
Ts KTo
0 To

] [
A B

C D

] [
T−1
s 0

T−1
i F T−1

i

]
=

A1
1 +B2

1F1 A2
1 +B2

1F2 A3
1 A4

1 B1
1 B2

1

0 A2
2 +B2

2F1 0 A4
2 +K1C

4
1 0 0

0 0 A3
3 A4

3 0 B2
3

0 0 0 A4
4 +K2C

4
3 0 0

0 0 C3
3 C4

3 0 D2
3

0 0 0 C4
4 0 0


.

82



CHAPTER 3. FROM MORSE TRIANGULAR FORM OF ODE CONTROL SYSTEMS
TO FEEDBACK CANONICAL FORM OF DAE CONTROL SYSTEMS

Now it is seen that there exist KMT = T−1
s KTo and FMT = T−1

i FTs such that Λ̃ũ =

(Ã, B̃ũ, C̃, D̃ũ) has the form of (3.13), where[
Ã B̃ũ

C̃ D̃ũ

]
=

[
Ts TsKMT

0 To

] [
A Bu

C Du

] [
Ts
−1 0

FMTTs
−1 Ti

−1

]
.

The system matrices of Λ̃u, see (3.13), are Ã1 = A1
1 +B2

1F1, Ã2
1 = A2

1, Ã3
1 = A3

1, Ã4
1 = A4

1,
B̃1 = B1

1 , B̃2
1 = B2

1 , Ã2 = A2
2 + B2

2F1, Ã4
2 = A4

2 +K1C
4
1 , Ã3 = A3

3, Ã4
3 = A4

3, B̃3 = B2
3 ,

Ã4 = A4
4 +K2C

4
1 , C̃3 = C3

3 , C̃4
3 = C4

3 , D̃3 = D2
3, C̃4 = C4

4 .

Now we will show that (Ã1, B̃1) is controllable. By Lemma 4 of [145], for Λ̃ũ,

Wi|U∗u(Λ̃ũ) = Wi(Λ̃
ũ) ∩ V∗(Λ̃ũ), (3.28)

where Wi|U∗u is the subspace Wi when the input is restricted to U∗u. Use system matrices
(3.13) to calculate Wi(Λ̃)|U∗w and Wi(Λ̃

ũ) ∩ V∗(Λ̃ũ), which gives

Wn(Λ̃ũ)|U∗u = B1 + Ã1B1 + · · ·+ (Ã1)n−1B1

(3.28)
= Wn(Λ̃ũ) ∩ V∗(Λ̃ũ), (3.29)

where B1 = Im [B̃1 0 0 0]T . We can see from the above equation that the reachability
space of (Ã1, B̃1) is W∗(Λ) ∩ V∗(Λ) = X1, which implies that (Ã1, B̃1) is controllable.
Since the proof of the observability of (C̃4, Ã4) is completely dual to the above proof, we
omit this part.

Subsequently, we prove that the system Λ3 = (Ã3, B̃3, C̃3, D̃3), given by (3.13), is
prime. Using the system matrices of Λ̃u to calculate W∗|(U∗u)⊥ , we get

W∗(Λ̃u)|(U∗u)⊥ = ∗ × {0} ×W∗(Λ̃3)× {0} ,

where “∗” denotes the terms which are irrelevant. From W∗ = Wn|(U∗u) ⊕Wn|(U∗u)⊥ and
equation (3.29), we can deduce that W∗(Λ̃3) = X (Λ̃3) = X3(Λ̃u). Moreover, by a direct
calculation, we get

Y∗(Λ̃u) = Y (Λ̃3) = C̃3W
∗(Λ̃3) + D̃3Uw(Λ̃3), V∗(Λ̃3) = 0, U∗w(Λ̃3) = 0.

Finally, by Theorem 10 of [145], we conclude that Λ̃3 = (Ã3, B̃3, C̃3, D̃3) is prime.

3.7.4 Proof of Proposition 3.3.2

Proof. First, by Algorithm 3.3.3 and a direct calculation, we have

Ā1 = Ã1 + B̃1F
1
MN , Ā3

1 = Ã3
1 + B̃2

1F
2
MN +K1

MN C̃3 +K1
MND̃3F

2
MN ,

Ā4 = Ã4 +K3
MN C̃

4
3 , Ā3 = Ã3 +K2

MN C̃3 + B̃3F
2
MN +K2

MND̃3F
2
MN ,

B̄3 = B̃3 +K2
MND̃3, Ā4

1 = Ã4
1 + B̃2

1F
3
MN +K1

MN C̃3 +K1
MND̃3F

3
MN ,

B̄2
1 = B̃2

1 +K1
MND̃3, Ā4

3 = Ã4
3 + B̃3F

3
MN +K2

MN C̃
4
3 +K2

MND̃3F
3
MN ,

C̄3 = C̃3 + D̃3F
2
MN , C̄4

3 = C̃4
3 + D̃3F

3
MN .
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We will show that we can always assume D̃3 = 0. To this end, we can find a change

of coordinates in the input and output spaces to obtain D̃3 =

[
0 Iδ
0 0

]
. Then by suitable

choice of feedback and output injection transformation, the 5-tuple (B̃2
1 , B̃3, C̃3, C̃

4
3 , D̃3)

can be brought into the following form:

 ∗ ∗ B̃2
1

∗ ∗ B̃3

C̃3 C̃4
3 D̃3

⇒

∗ ∗ B̂2

1 0

∗ ∗ B̂3 0

0 0 0 Iδ
Ĉ3 Ĉ4

3 0 0

 .
Now, by deleting the zero columns of B̂ and the zero rows of Ĉ, we get ∗ ∗ B̂2

1

∗ ∗ B̂3

Ĉ3 Ĉ4
3 D̂3

 ,
whose D̃3-matrix is D̂3 = 0.

Now with the assumption D̃3 = 0, we show that the constrained Sylvester equations
of (3.16) can be reduced to normal Sylvester equations by a suitable choice of FMN and
KMN . We claim that the following matrix equation

B̃2
1 = −T̂ 2

MN B̃3 (3.30)

is solvable for T̂ 2
MN . This claim can be proved using the following observation,[

B̃(U∗u)
⊥

D̃(U∗u)
⊥

]
∩
[
V∗

0

]
= 0. (3.31)

Note that the above equation is a consequence of the definition of U∗u (see equation (3.45)).
Now by (3.31), we have

Im (col
[
B̃2

1 0 B̃3 0 D̃3 0
]
) ∩
[
V∗

0

]
= 0.

Since D̃3 is already zero by assumption, the above equation proves that (3.30) is solvable
for T̂ 2

MN . Consequently, substitute (3.30) into the upper equations of (3.16) and we get

Ā1T̄
2
MN − T̄ 2

MN Ā3 = −Ā3
1 + Ā1T̂ 2

MN − T̂ 2
MN Ā3, T̄ 2

MN B̄3 = 0, (3.32)

where T̄ 2
MN = T 2

MN + T̂ 2
MN .

Furthermore, since (Ã3, B̃3, C̃3, D̃3) is prime (the result of Proposition 3.3.1), we can
always assume B̃3 = [Im3 , 0]T and C̃3 = [Ip3 , 0] (if not, use coordinates transformations
such that B̃3 and C̃3 are of that form), where m3 = rank B̃3 = dim (U∗u)

⊥ = p3 =
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rank C̃3 = dim Y∗ . Then, it is possible to choose K1
MN , K2

MN , F 2
MN such that the 4-tuple

(Â3
1, Ā3, B̄

2
1 , C̄3) is transformed into the following form:Â3

1

Ā3 B̄3

C̃3

 =


0 Â3′

1

0 0 Im3

0 Ā′3 0

Ip3 0

 .
Thus T̄ 2

MN in equation (3.32) is of the form T̄ 2
MN = [Ḡ′2 0] (since T̄ 2

MN B̄3 = 0). Hence,
solving T̄ 2

MN via equation (3.32) is equivalent to solving Ḡ′2 via

Ā1

[
0 Ḡ′2

]
−
[
0 Ḡ′2

] [0 0

0 Ā′3

]
=
[
0 Â3′

1

]
.

Therefore, the upper part of the constrained Sylvester equations of (3.16) can be reduced to
the above normal Sylvester equation. The reduction of the lower part of (3.16) to a normal
Sylvester equation follows dually from the above result and we will omit that proof.

Moreover, from Proposition 3.3.1, we have that the pair (Ã1, B̃1) is controllable and the
pair (C̃4, Ã4) is observable. By the standard matrix theory, we can choose FMN and KMN

such that the eigenvalues of Ā1, Ā2, Ā′3 ,and Ā4
4 are disjoint. Then there exist unique solu-

tions for T 1
MN , T 2

MN , T 3
MN , T 4

MN , T 5
MN in (3.15) and (3.16). Furthermore, it is not hard to

see that the state coordinates transformation matrix G brings Λ̃u into Λ̄ū. Feedback trans-
formations preserve controllability, so controllability of (Ã1, B̃1) implies controllability of
(Ā1, B̄1); output injection preserves observability, so observability of (C̃4, Ã4) implies ob-

servability of (C̄4, Ā4). We have (Ã3, B̃3, C̃3, D̃3)
M∼(Ā3, B̄3, C̄3, D̄3) and the fact that the

4-tuple (Ā3, B̄3, C̄3, D̄3) is prime is inherited from the fact that (Ã3, B̃3, C̃3, D̃3) is prime
(see this property of prime systems in [145]).

3.7.5 Proof of Theorem 3.4.2

Proof. By Theorem 3.3.5, for a given ODECS Λuv
n,m,s,p = (A,Bu, Bv, C,Du), there ex-

ists an extended Morse transformation EMtran such that EMtran(Λuv) is in the EMNF.
Therefore, the starting point of this proof is the EMNF given by (3.18). Since the system
represented in the EMNF is already decoupled into four independent subsystems, we only
need to transform each subsystem into its corresponding canonical form.

(i) We will prove that any controllable Λuv
n,m,s = (A,Bu, Bv) can be transformed into

the Brunovský canonical form with indices (ε1, . . . , εm) and (ε̄1, . . . , ε̄s), then the transfor-

mation from (Ā1, B̄
u
1 , B̄

v
1) to

([
Acu 0

0 Acv

]
,

[
Bcu

0

]
,

[
0

Bcv

])
is straightforward to see.

Since Λuv = (A,Bu, Bv) is a control system without output, in view of the extended
Morse equivalence of Definition 3.2.6, we just need to prove that there exist transforma-
tion matrices Tx, Tu, Tv, Fu, Fv, R such that the transformed system matrices(

Tx (A+BuFu +Bv (Fv +RFu))T
−1
x , Tx (Bu +BvR)T−1

u , TxB
vT−1

v

)
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are in the Brunovský canonical form. First, from the classical linear system theory (see,
e.g., [31]), using only a state coordinates transformation and state feedback, i.e., choosing
suitable Tx, Fv, Fu, and setting Tu = Im, Tv = Is, R = 0, we can transform Λuv into the
following form:

x
(κ1)
1 = b1

1u1 + · · ·+ b1
mum + b̄1

1v1 + · · ·+ b̄1
svs,

x
(κ2)
2 = b2

1u1 + · · ·+ b2
mum + b̄2

1v1 + · · ·+ b̄2
svs,

. . .

x
(κm+s)
m+s = bm+s

1 u1 + · · ·+ bm+s
m um + b̄m+s

1 v1 + · · ·+ b̄m+s
s vs,

(3.33)

Moreover, without loss of generality, we assume rankBw = m + s (since if not, we can
always permute the variables of u and v such that the first m1 columns of Bu and the first
s1 columns of Bv are independent, where m1 = rankBw and s1 = rankBv, then we will
work with the matrices with these independent columns), it can be deduced that the matrix

Γ =


b1

1 . . . b1
m b̄1

1 . . . b̄1
s

b2
1 . . . b2

m b̄2
1 . . . b̄2

s

. . . . . .

bm+s
1 . . . bm+s

m b̄m+s
1 . . . b̄m+s

s


is invertible. Furthermore, κi for 1 ≤ i ≤ m + s are the controllability indices of the
pair (A, B̄w), where B̄w =

[
B̄u B̄v

]
. Now without loss of generality, we may assume

κ1 ≥ κ2 ≥ · · · ≥ κm+s. In the case of the Brunovský form for classical ODECS (with
one kind of inputs), we can use Γ as an input coordinates transformation matrix. How-
ever, ∆uv has two kinds of inputs and the input coordinates transformation matrix should
have a triangular form (see Remark 3.2.7(ii)). In order to have such an input coordinates
transformation matrix , we implement the following procedure:

Step 1: Starting from i = 1, search for the largest integer i, denoted by i∗1, such that at
least one of b̄ij , 1 ≤ j ≤ s, is not zero. Then we set

ε1 = κ1, ε2 = κ2, . . . , εi∗1−1 = κi∗1−1; ε̄1 = κi∗1 .

Now using the feedback transformation

ṽ1 = b
i∗1
1 u1 + · · ·+ bi

∗
1
mum + b̄

i∗1
1 v1 + · · ·+ b̄i

∗
1
s vs,

we get

x
(ε̄1)
i∗1

= ṽ1, x
(κi∗1+1)

i∗1+1 =
m∑
j=1

b̃
i∗1+1
j ũj +

s∑
j=1

˜̄b
i∗1+1
j ṽj, . . . , ẋ

(κm+s)
m+s =

m∑
j=1

b̃m+s
j ũj +

s∑
j=1

˜̄bm+s
j ṽj.

(3.34)

The terms b̃ij , i
∗
1 + 1 ≤ i ≤ m + s, 1 ≤ j ≤ m and ˜̄bij , i

∗
1 + 1 ≤ i ≤ m + s, 1 ≤ j ≤ s

in the above equation can be easily calculated. Note that since b̄ij = 0, 1 ≤ i ≤ i∗1 − 1,
1 ≤ j ≤ s, the feedback transformation does not affect the subsystems whose states are
xi, 1 ≤ i ≤ i∗1 − 1. Hence the remaining terms in equation (3.33) are kept the same. In the
following, to simplify the notation, we will drop the tildes in equation (3.34).
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The following construction of new coordinates is essential: for 1 ≤ j ≤ m+ s− i∗1, set
x̃1
i∗1+j = x1

i∗1+j − b̄
i∗1+j
1 x

κi∗1
−κi∗1+j+1

i∗1
,

x̃2
i∗1+j = x2

i∗1+j − b̄
i∗1+j
1 x

κi∗1
−κi∗1+j+2

i∗1
,

. . .

x̃
κi∗1+j

i∗1+j = x
κi∗1+j

i∗1+j − b̄
i∗1+j
1 x

κi∗1
i∗1

and we do not change the remaining state coordinates. It can be seen that by construction,
all b̄i1 = 0 for i∗1 + 1 ≤ i ≤ m+ s and thus equation (3.33) becomes

x
(ε1)
1 = b1

1u1 + · · ·+ b1
mum,

. . .

x
(εi∗1−1)

i∗1−1 = b
i∗1−1
1 u1 + · · ·+ b

i∗1−1
m um,

x
(ε̄1)
i∗1

= v1,

x̃
(κi∗1+1)

i∗1+1 = b
i∗1+1
1 u1 + · · ·+ b

i∗1+1
m um + b̄

i∗1+1
2 v2 + · · ·+ b̄

i∗1+1
s vs,

. . .

x̃
(κm+s)
m+s = bm+s

1 u1 + · · ·+ bm+s
m um + b̄m+s

2 v2 + · · ·+ b̄m+s
s vs.

(3.35)

Then, drop all the tildes in equation (3.35) and go to next step.

Step k (k > 1): By constructions in former steps, we have b̄ij = 0 for i∗k−1 + 1 ≤ i ≤
m+ s, 1 ≤ j ≤ k− 1. Then staring from i = i∗k−1 + 1, we search for the largest i, denoted
by i∗k, such that at least one of b̄ij , k ≤ j ≤ s is not zero. Then we set

εi∗k−1+1 = κi∗k−1+1, εi∗k−1+2 = κi∗k−1+2, . . . , εi∗k−1 = κi∗k−1; ε̄i∗k = κi∗k .

Now using the feedback transformation

ṽk = b
i∗k
1 u1 + · · ·+ b

i∗k
mum + b̄

i∗k
1 v1 + · · ·+ b̄

i∗k
s vs,

we get that

x
(ε̄k)
i∗k

= ṽk, ẋ
(κi∗

k
+1)

i∗k+1 =
m∑
j=1

b̃
i∗k+1
j ũj +

s∑
j=1

˜̄b
i∗k+1
j ṽj, . . . , ẋ

(κm+s)
m+s =

m∑
j=1

b̃m+s
j ũj +

s∑
j=1

˜̄bm+s
j ṽj.

(3.36)

Note that the terms b̃ij , i
∗
k + 1 ≤ i ≤ m + s, 1 ≤ j ≤ m and ˜̄bij , i

∗
k + 1 ≤ i ≤ m + s,

1 ≤ j ≤ s can be easily calculated. In the following, to simplify the notation, we will drop
these tildes.

Then construct the following new coordinates, for 1 ≤ j ≤ m+ s− i∗k, set
x̃1
i∗k+j = x1

i∗k+j − b̄
i∗k+j
1 x

κi∗
k
−κi∗

k
+j+1

i∗k

x̃2
i∗k+j = x2

i∗k+j − b̄
i∗k+j
1 x

κi∗
k
−κi∗

k
+j+2

i∗k

. . .

x̃
κi∗
k
+j

i∗k+j = x
κi∗
k
+j

i∗k+j − b̄
i∗k+j
1 x

κi∗
k

i∗k
,

(3.37)
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and keep the remaining ones unchanged. Again, it is seen that, by construction, all b̄ik = 0

for i∗k + 1 ≤ i ≤ m+ s. Then, drop all the tildes for the transformed system and go to next
step.

It is seen that after s steps, the matrix Γ becomes

Γ =



T 1
u 0 0 0 . . . 0

0 1 0 0 . . . 0

T 2
u 0 0 0 . . . 0

0 0 1 0 . . . 0

. . .

T su 0 0 0 . . . 0

0 0 0 0 . . . 1

T s+1
u 0 0 0 . . . 0


,

T ku =

b
i∗k−1+1

1 . . . b
i∗k−1+1
m

. . .

b
i∗k−1
1 . . . b

i∗k−1
m

 ∈ R(i∗k−i
∗
k−1−1)×m,

for 1 ≤ k ≤ s+ 1.

Note that in the above expression, i∗0 = 0 and i∗s+1 = m+ s. Now set

Tu = col[T 1
u , T

2
u , . . . , T

s+1
u ],

and by calculating the dimensions, we see that Tu is an m × m matrix. Since the rank
of Γ is invariant under coordinates and feedback transformations, we deduce that Tu is
also invertible. Finally, using an input coordinates transformation ũ = Tuu, we get the
Brunovský canonical form of Λuv with indices (ε1, . . . , εm) and (ε̄1, . . . , ε̄s).

(ii) Ann = Ā2.

(iii) First, we can find a Morse transformation M1
tran with a triangular Tw such that:

M1
tran

(
Ā3 B̄u

3 B̄v
3

C̄3 D̄u
3

)
=

Ap Bu
p 0 Bv

p

Cp 0 0

0 0 Iδ

 .

Since (Ā3, B̄
w
3 , C̄3, D̄

w
3 ) is prime, by Theorem 10 of [145], (Ap, B

w
p , Cp) enjoys the prop-

erties:

V∗(Ap, B
w
p , Cp) = 0, U∗w(Ap, B

w
p , Cp) = 0. (3.38)

W∗(Ap, B
w
p , Cp) = Rn3 , Y∗(Ap, B

w
p , Cp) = Y . (3.39)

A little thought (or see Lemma 2 of [145]) and equation (3.38) gives that
[
Ap Bw

p

Cp 0

]
is of full column rank. Then by V∗(Ap, B

w
p , Cp) = (W∗((Ap)

T , (Cp)
T , (Bw

p )T ))⊥ (see

the results of (3.49)) and equation (3.39), we have
[
Ap Bw

p

Cp 0

]
is of full row rank. Thus[

Ap Bw
p

Cp 0

]
is square and invertible.

Moreover, by item (i) of this proof, there exists a Morse transformation M2
tran with

triangular Tw such that the pairs (Âpu, B̂pu) and (Apv, Bpv) below are in the Brunovský
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form with indices (σ1, . . . , σc) and (σ̄1, . . . , σ̄d) respectively.

M2
tran

(
Ap Bu

p Bv
p

Cp 0

)
=

Âpu 0 B̂pu 0

0 Apv 0 Bpv

Ĉu
p Cv

p 0


Then, according to the block-diagonal structure of Âpu and Apv, the matrices Ĉu

p and Cv
p

above have the form:

Ĉu
p =

[
Ĉu

1 Ĉu
2 · · · Ĉu

c

]
, Cv

p =
[
Cv

1 Cv
2 · · · Cv

d

]
,

where Ĉu
i ∈ Rp3×σi , 1 ≤ i ≤ c and Cv

i ∈ Rp3×σ̄i , 1 ≤ i ≤ d.

Now every subsystem (Âpuσi , B̂
pu
σi
, Ĉu

i ) and (Apvσ̄i , B
pv
σ̄i , C

v
i ) must have the properties that

W∗(Âpuσi , B̂
pu
σi
, Ĉu

i ) = Rσi , W∗(Apvσ̄i , B
pv
σ̄i , C

v
i ) = Rσ̄i , (3.40)

since if not, equation (3.39) does not hold.

By a direct calculation, we have W1(Âpuσi , B̂
pu
σi
, Ĉu

i ) = Im B̂pu
σi

and W1(Apvσ̄i , B
pv
σ̄i , C

v
i ) =

ImBpv
σ̄i . Then the subspaces W2(Âpuσi , B̂

pu
σi
, Ĉu

i , 0) and W2(Apvσ̄i , B
pv
σ̄i , C

v
i , 0) coincide with

Im B̂pu
σi

and ImBpv
σ̄i respectively, unless the last columns of Ĉu

i and Cv
i are zero vectors.

By similar arguments, we can deduce that Ĉu
i , 1 ≤ i ≤ c and Cv

i , 1 ≤ i ≤ d have the
following form:

Ĉu
i =

[
ĉui 0 · · · 0

]
, Cv

i =
[
cvi 0 · · · 0

]
,

where ĉui ∈ Rp3 and cvi ∈ Rp3 . Furthermore, since the columns of Âpuσi andApvσ̄i correspond-

ing to ĉui and cvi are all zero, by the argument that
[
Ap Bw

p

Cp 0

]
is invertible, we see that the

following matrix

T−1
y =

[
ĉu1 ĉu2 . . . ĉuc cv1 cv2 . . . cvd

]
is invertible. Finally, using Ty as the output coordinates transformation matrix, we get the
following canonical form for Cp

TyCp = Ty

[
Ĉu
p Cv

p

]
=

[
Ĉpu 0

0 Cpv

]
.

(iv) The proof of (Ā4
4, C̄

4
2) implies (Ao, Co) is omitted since it is well-known in the

linear control theory.

3.8 Appendix

We use the following notations in the present chapter.
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Ck the class of k-times differentiable functions
N the set of natural numbers with zero and N+ = N\{0}
Rn×m the set of real valued matrices with n rows and m columns
Gl (n,R) the group of nonsingular matrices of Rn×n

kerA the kernel of the map given by a matrix A
ImA the image of the map given by a matrix A
rankA the rank of a matrix A
In the identity matrix of size n× n for n ∈ N+

0n×m the zero matrix of size n×m for n,m ∈ N+

AT the transpose of a matrix A
A−1 the inverse of a matrix A
AB {Ax |x ∈ B}, the image of B under matrix A
A−1B {x |Ax ∈ B}, the preimage of B under matrix A
A−TB (AT )−1B

A ⊥ {x | ∀a ∈ A : xTa = 0}, the orthogonal complement of A

A† the right inverse of a full row rank matrixA ∈ Rn×m, i.e.,AA† = In
x(k) k-th-order derivative of function x(t)

Recall the following geometric subspaces for DAECSs (see e.g. [152],[17]) of the form
∆u : Eẋ = Hx+ Lu.

Definition 3.8.1. Consider a DAECS ∆u
l,n,m = (E,H,L). A subspace V ⊆ Rn is called

(H,E; ImL)-invariant if

HV ⊆ EV + ImL.

A subspace W ⊆ Rn is called restricted (E,H; ImL)-invariant if

W ⊆ E−1(HV + ImL).

Definition 3.8.2. For a DAECS ∆u
l,n,m = (E,H,L), define the augmented Wong se-

quences as follows:

V0 = Rn, Vi+1 = H−1(EVi + ImL), (3.41)

W0 = 0, Wi+1 = E−1(HWi + ImL). (3.42)

Additionally, define the sequence of subspaces Ŵi as follows:

Ŵ1 = kerE, Ŵi+1 = E−1(HŴi + ImL). (3.43)

Remark 3.8.3. (i) The subspace sequences Wi and Ŵi satisfy,

W0 ⊆ Ŵ1 ( W1 ( Ŵ2 ( W2 · · · ( Ŵk ( Wk ( · · · ( Ŵk∗ = Wk∗ = Ŵk∗+j = Wk∗+j,

or

W0 ⊆ Ŵ1 ( W1 ( Ŵ2 ( W2 · · · ( Ŵk ( Wk ( · · · ( Ŵk∗ ( Wk∗ = Ŵk∗+j = Wk∗+j,
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where j ≥ 1 and k∗ is the smallest k such that Wk∗ = Wk∗+1. Note that k∗ may not be the
smallest k such that Ŵk∗ = Ŵk∗+1 (since Ŵk∗ ( Ŵk∗+1 in the second case of the above).
However, it is seen that Wi and Ŵi always have the same limits.

(ii) From [17], we know that V ∗ is the largest (A,E; ImL)-invariant and W ∗ is the
smallest restricted (E,A, ImB)-invariant, where V ∗ and W ∗ are the limits of the se-
quences Vi and Wi, respectively.

(iii) In Chapter 2, we have proved that for the DAE Eẋ = Hx, V ∗(E,H, 0) is also
the largest such that V (E,H, 0) = H−1EV (E,H, 0), but W ∗(E,H, 0) is not necessarily
the smallest such that W (E,H, 0) = E−1HW (E,H, 0). It is easy to extend that result
to the case of L not being zero, i.e., V ∗(E,H,L) is the largest such that V (E,H,L) =

H−1(EV (E,H,L) + ImL), but W ∗(E,H,L) is not necessarily the smallest such that
W (E,H,L) = E−1(HW (E,H,L) + ImL).

Consider an ODECS Λuv
n,m,s,p = (A,Bu, Bv, C,D) of the form

Λuv :

{
ẋ = Ax+Buu+Bvv

y = Cx+Duu.

The state, input and output space of Λuv will be denoted by X , Uuv and Y , respectively.
The input subspaces of u and v will be denoted by Uu and Uv, respectively. Thus we have
Uuv = Uu ⊕ Uv. Recall that Λuv can be expressed as a classical ODECS Λw

n,m+s,p =

(A,Bw, C,Dw) of form (3.2). The input space of Λw is denoted by Uw and clearly, Uw =

Uuv. We now recall the invariant subspaces V and W defined in [145] for Λw.

Definition 3.8.4. For an ODECS Λw
n,m+s,p = (A,Bw, C,Dw), a subspace V ⊆ Rn is called

a null-output (A,Bw)-controlled invariant subspace if there exists F ∈ R(m+s)×n such that

(A+BwF )V ⊆ V and (C +DwF )V = 0

and a subspace Uw ⊆ Rs+m is called a null-output (A,Bw)-controlled invariant input
subspace if

Uw = (Bw)−1V ∩ kerDw.

Denote by V∗ (respectively U∗w) the largest null-output (A,Bw) controlled invariant sub-
space (respectively input subspace).

Correspondingly, a subspace W ⊆ Rn is called an unknown-input (C,A)-conditioned
invariant subspace if there exists K ∈ Rn×p such that

(A+KC)W + (Bw +KDw)Uw = W

and a subspace Y ⊆ Rp is called an unknown-input (C,A)-conditioned invariant output
subspace if

Y = CW +DwUw.

Denote by W∗ (respectively Y∗) the smallest unknown-input (C,A)-conditioned invariant
subspace (respectively output subspace).
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Lemma 3.8.5. [144] Initialize V0 = X = Rn and, for i ∈ N, define inductively

Vi+1 =

[
A

C

]−1([
I

0

]
Vi + Im

[
Bw

Dw

])
(3.44)

and Ui ⊆ U for i ∈ N are given by

Ui =

[
Bw

Dw

]−1 [
Vi
0

]
. (3.45)

Then V∗ = Vn and U∗w = Un .

Correspondingly, initialize W0 = {0}, and, for i ∈ N, define inductively

Wi+1 =
[
A Bw

]([Wi

Uw

]
∩ ker

[
C Dw

])
(3.46)

and Yi ⊆ Y for i ∈ N are given by

Yi =
[
C Dw

] [Wi

Uw

]
. (3.47)

Additionally, define the subspace sequence Ŵi as

Ŵ1 = ImBv, Ŵi+1 =
[
A Bw

]([Ŵi

Uw

]
∩ ker

[
C Dw

])
. (3.48)

Then W∗ = Wn, Y∗ = Yn and Ŵn = Wn = W∗.

Note that when considering the above defined invariant subspaces for the dual sys-
tem Λwd of Λw, given by Λwd = (AT , CT , (Bw)T , (Dw)T ), we have the following results
[146],[145]:

V∗(Λw) = W∗(Λwd)⊥, W∗(Λw) = V∗(Λwd)⊥,

U∗w(Λw) = Y∗(Λwd)⊥, Y∗(Λw) = U∗w(Λwd)⊥.
(3.49)
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Chapter 4

Geometric Analysis and Normal Form of
Nonlinear Differential-Algebraic Equations

Abstract: For nonlinear differential-algebraic equations DAEs, we define two kinds of
equivalences, namely, the external and internal equivalence. The difference of the two no-
tions will be illustrated by their relations with the existence and uniqueness of solutions.
Roughly speaking, the word “external” means that we consider a DAE (locally) every-
where and “internal” means that we consider the DAE on its (locally) maximal invariant
submanifold only. We show that this invariant manifold can be calculated by an algorithm
iteratively. A procedure named explicitation with driving variables is proposed to connect
nonlinear DAEs with nonlinear control systems. We then show that the driving variables
of an explicitation system can be reduced under some involutivity conditions. Finally, due
to the explicitation procedure, we will use the notion of zero dynamics from nonlinear
control theory to derive a nonlinear generalization of the Weierstrass form.

Notation

N the set of natural numbers with zero and N+ = N\{0}
C the set of complex numbers
Rn×m the set of real valued matrices with n rows and m columns
In n× n identity matrix
Cj(M ;N) the class of maps of class Cj , j ∈ N∪{∞}, fromM toN ; if j =∞,

it is the set of C∞-smooth functions
Gl (n,R) the group of nonsigular matrices of Rn×n

TxM the tangent space of a submanifold M of Rn at x ∈M
∧ exterior product
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4.1 Introduction

Consider a nonlinear differential-algebraic equation DAE of the form

Ξ : E(x)ẋ = F (x), (4.1)

where x ∈ X is a vector of the “generalized” states and X is an open subset of Rn (or
a n-dimensional manifold). The maps E : TX → Rl and F : X → Rl are smooth
and the word “smooth” will mean throughout the chapter C∞-smooth. We will denote a
DAE of form (4.1) by Ξl,n = (E,F ) or, simply, Ξ. Equation (4.1) is affine with respect
to the velocity ẋ, so sometimes it is called a quasi-linear DAE and can be considered
as an affine Pfaffian system (for Pfaffian system, see any book on differential geometry,
e.g. [112]). Note that some variables of x may perform like normal state-variables of
differential equations and the others may play the role of an input, that is the reason why x
is called the “generalized” state.

A pure semi-explicit PSE DAE is of the form

ΞPSE :

{
ẋ1= F1(x1, x2)

0 = F2(x1, x2),
(4.2)

where x1 ∈ Rq is a vector of state variables and x2 ∈ Rn−q is a vector of algebraic
variables (since there are no differential equations for x2), the maps F1 : X1×X2 → TX1

and F2 : X1 × X2 → Rl−q are smooth, where X1 and X2 are open subsets of Rq and
Rn−q (or a q- and (n − q)-dimensional manifolds), respectively. Comparing a DAE of
form (4.2) with that of form (4.1), the function E(x) becomes constant and is of the form

E(x) =

[
Iq 0

0 0

]
. A linear DAE of the form

∆ : Eẋ = Hx (4.3)

will be denoted by ∆l,n = (E,H) or, simply, ∆, where E ∈ Rl×n and H ∈ Rl×n.
Apparently, both the PSE DAE ΞPSE and the linear DAE ∆ can be seen as special cases
of DAE Ξ.

The motivation of studying DAEs is their frequent presence in modelling of practi-
cal systems as electrical circuits [166], chemical processes [33, 154], mechanical sys-
tems [159, 22, 26] and mobile robots [90, 83], etc. A normal form or a canonical form
of a DAE is the simplest possible form of the DAE under some predefined equivalence
relations. The studies on normal forms and canonical forms of DAEs can be found in
[186, 117, 131, 16, 20] for the linear case and in [169, 120, 13] for the nonlinear case.
Two linear DAEs Eẋ = Hx and Ẽ ˙̃x = H̃x̃ are called strictly equivalent [75] or externally
equivalent in Chapter 2 and in [47], if there exist constant invertible matricesQ and P such
that QEP−1 = Ẽ and QHP−1 = H̃ . Analogously, we define the external equivalence for
nonlinear DAEs as follows.

Definition 4.1.1. (External equivalence) Two DAEs Ξl,n = (E,F ) and Ξ̃l,n = (Ẽ, F̃ )

defined on X and X̃ , respectively, are called externally equivalent, shortly ex-equivalent,
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if there exist a diffeomorphism ψ : X → X̃ and Q : X → Gl(l,R) such that

F̃ (ψ(x)) = Q(x)F (x) and Ẽ(ψ(x)) = Q(x)E(x)

(
∂ψ(x)

∂x

)−1

. (4.4)

The ex-equivalence of two DAEs will be denoted by Ξ
ex∼ Ξ̃. If ψ : U → Ũ is a local

diffeomorphism between neighborhoods U of x0 and Ũ of x̃0, and Q(x) is defined on U ,
we will speak about local ex-equivalence.

There are three main results of this chapter. The first result concerns analyzing a DAE
(locally) everywhere (i.e., externally) or considering the restriction of the DAE to a sub-
manifold (i.e., internally), which corresponds to the external equivalence (see Definition
4.1.1) and the internal equivalence (see Definition 4.3.11), respectively. The difference
between the two equivalences will be illustrated by their relations with the solutions of
DAEs. In order to analyze solutions of DAEs, we use a concept named locally maximal
invariant submanifold (see Definition 4.3.1), which can be calculated by an iterative re-
duction method shown in Algorithm 4.3.4. Actually, via this reduction method frequently
appearing in the DAEs literature [161, 162, 164, 165], that works under some constant rank
and smoothness assumptions, one can generate a sequence of submanifolds by analyzing
the existence of solutions. If the sequence of submanifolds converges after a finite number
of steps, then the solutions of the DAE are given by an ordinary differential equation ODE
evolving on the limit (which is actually a maximal invariant submanifold) of that sequence
of submanifolds. Then the word “internally” means that we consider the DAE restricted to
its maximal invariant submanifold (i.e., where its solutions exist). Thus considering only
the restriction of a DAE means that we only care about where and how the solutions of that
DAE evolve. However, when the nominal point is not on the maximal invariant subman-
ifold (which is common for practical systems, since an initial point could be anywhere),
there are no solutions passing through the point but we still want to steer the solutions
to the submanifold and this must follow the rules indicated by the “external” form of the
DAE, thus considering DAEs everywhere is also important.

In Chapter 2, we have shown that one can associate a class of linear control systems
to any linear DAE (by the procedure of the explicitation for linear DAEs). In this way, we
can use the classical linear control theory to analyze linear DAEs. The second result of
this chapter is a nonlinear counterpart of the result in Chapter 2. To any nonlinear DAE,
by introducing extra variables (called driving variables), we can attach a class of nonlinear
control systems. Moreover, we show that the driving variables in this explicitation proce-
dure of nonlinear DAEs can be reduced under some involutivity conditions which explains
when a DAE Ξ is ex-equivalent to a PSE DAE ΞPSE .

It is well-known (see e.g. [117],[75]) that any linear DAE ∆ of form (4.3) is ex-
equivalent (via linear transformations) to the Kronecker canonical form KCF. In particular,
if ∆ is regular, i.e., the matrices E and H are square (l = n) and |sE −H| 6≡ 0 for s ∈ C,
then ∆ is ex-equivalent (also via linear transformations) to the Weierstrass form WF [186],
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given by

WF :

[
N 0

0 I

] [
ξ̇

ż

]
=

[
I 0

0 A

] [
ξ

z

]
, (4.5)

where N = diag (N1, . . . , Nm), and where Ni, i = 1, . . . ,m are nilpotent matrices of
index ρi, i.e., N j

i 6= 0 for all j = 1, . . . , ρi − 1 and Nρi
i = 0. The last result of this

chapter is to use such concept as zero dynamics of the nonlinear control theory [92],[151]
to derive a nonlinear generalization of the WF. In the linear case, canonical forms as the
KCF and the WF are closely related to a geometric concept named the Wong sequences
(see Definition 4.1.2 below). As shown in [16], the relations between the WF and the
Wong sequences has been built and in [20], the importance of the Wong sequences for the
geometric analysis of linear DAEs are reconfirmed.

Definition 4.1.2. For a linear DAE of form (4.3), define the Wong sequences by

V0 = Rn, Vi+1 = H−1EVi, i ∈ N,
W0 = {0}, Wi+1 = E−1HWi, i ∈ N.

In Chapter 2, we showed that the Wong sequences of linear DAEs have direct relations
with the invariant subspaces of the explicitation systems and these invariant subspaces led
us to the Morse canonical form of control systems. Thus generalizations of the Wong
sequences for nonlinear DAEs are desired and possible candidates for a nonlinear version
of Wong sequences would be invariant objects showing up in the procedure of explicitation
of nonlinear DAEs.

This chapter is organized as follows. In Section 4.2, we discuss solutions of DAEs
and show their relations with the external equivalence. In Section 4.3.1, we introduce the
concept of locally maximal invariant submanifold, present an algorithm to calculate it (the
reduction method), and we show that the internal regularity (existence and uniqueness of
solutions) corresponds to the internal equivalence to an ODE without free variables. In
Section 4.3.2, we show the explicitation (with driving variables) procedure and how DAEs
are connected to nonlinear control systems. In Section 4.3.3, we show when a nonlinear
DAE is externally equivalent to a pure semi-explicit one and how this problem is related
to the explicitation. A nonlinear generalization of the Weierstrass form is given in Section
4.3.4. Finally, Section 4.5 and Section 4.4 contain the conclusions and the proofs of the
results, respectively.

4.2 Preliminaries and problem statement

Definition 4.2.1. A solution of a DAE Ξl,n = (E,F ) is a C1 curve γ : I → Rn defined on
an open interval I such that for all t ∈ I , the curve γ(t) satisfies E (γ(t)) γ̇(t) = F (γ(t)).

Throughout this chapter, we will be interested only in solutions of Ξ that are at least
C1. If we fix (t0, x

0), then a solution γ(t) satisfying γ(t0) = x0 will be denoted by γx0
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and the maximal time-interval on which it exists by Ix0 . Clearly, Ix0 is an open interval
that depends on x0 and may be infinite or finite (depending on whether the trajectory γx0
escapes in finite time into infinity or not). We start from the following observation, which
shows that the ex-equivalence preserves trajectories, but even if we can smoothly conjugate
all trajectories of two DAEs, they are not necessarily ex-equivalent.

Observation 4.2.2. Consider two DAEs Ξ
ex∼ Ξ̃. If a C1-curve γ(t), t ∈ Ix0 is a solution

of Ξ passing through x0 = γ(0), then ψ ◦ x : Ix̃0 → X̃ is a solution of Ξ̃ passing through
x̃0 = ψ(x0); The converse is, however, not true: even if there exists a diffeomorphism
ψ : X → X̃ which maps all solutions of Ξ into solutions of Ξ̃ and vice versa, the two
DAEs are not necessarily ex-equivalent.

The following example illustrates the above observation. Consider two DAEs Ξ1 =

(E1, F1) and Ξ2 = (E2, F2), where

E1(x) =

1 0 0

0 0 0

0 1 0

 , E2(x) =

1 0 0

0 0 0

0 0 0

 , F1(x) =

x11

x12

x13

 , F2(x) =

x21

x22

x23

 .
Although

[
cet, 0, 0

]T
is the only solution of both systems (with c = x0

11 for the system
Ξ1 and c = x0

21, for Ξ2), the two DAEs are not ex-equivalent. The reason is that, due to
algebraic constraints, solutions of Ξ1 exist on {x12 = x13 = 0} only, while those of Ξ2 on
{x22 = x23 = 0} only, while the ex-equivalence requires to define the conjugating diffeo-
morphism ψ everywhere on X (on a whole neighborhood for the local ex-equivalence).
The issue of identifying submanifolds, on which solutions exist, is crucial.

Lemma 4.2.3 (Solutions lemma). Consider a DAE Ξl,n = (E,F ). Let M be a smooth
connected embedded s-dimensional submanifold of X and fix a point x0 ∈ M . Assume
that in a neighborhood U of x0

(A1) dim E(x)TxM = const. = r,

(A2) F (x) ∈ E(x)TxM ,

for all x ∈ M ∩ U . Then, there exists a solution γx0(t) satisfying γ(0) = x0 and γx0(t) ∈
M ∩ U for t ∈ Ix0 . Moreover, the solution is unique if and only if s = r.

The proof is given in Section 4.4.1. In order to show that the constant rank assumption
(A1) above is crucial, we give the following example.

Example 4.2.4. Consider the following DAE

Ξ1,1 : xẋ = F (x),

where x ∈ X = R, F : X → R and F (0) 6= 0. Let M = X , clearly, dim E(x)TxM

equals 1 for x 6= 0 and is 0 for x = 0. It is seen that Ξ1,1 has no solution for x0 = 0 but has
a solution x(t) satisfying ẋ(t) = F (x(t))

x(t)
, x(0) = x0 for x0 6= 0.
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For a given point x0, if there exists at least one solution γ(t) of Ξ satisfying γ(0) = x0

(i.e., E(x0)γ̇(0) = f(x0)), then x0 is called an admissible point of Ξ. We will denote
admissible points by xa. The proof of Lemma 4.2.3 shows clearly the reason behind Ob-
servation 4.2.2: if we assume two DAEs to have corresponding solutions, this assumption
only gives the information that there exists a (local) diffeomorphism between submani-
folds on which solutions evolve (and maps solutions of one DAE into solutions of the
other). We do not know, however, whether the diffeomorphism and the map Q can be ex-
tended outside the submanifolds. In fact, outside the manifolds, the two DAEs may have
completely different behaviors or even different sizes of system matrices. This analysis
gives a motivation to introduce the concept of internal equivalence of two DAEs (see the
formal Definition 4.3.11). We will show that internal equivalence is useful when we only
consider transformations and equivalences on the submanifolds on which solutions exist.

4.3 Main results

4.3.1 Maximal invariant submanifold and internal equivalence

For a DAE Ξl,n = (E,F ), given by (4.1), an invariant submanifold of Ξ is defined as
follows.

Definition 4.3.1. (Invariant and locally invariant submanifold) Consider a DAE Ξl,n =

(E,F ) defined on X . A smooth connected embedded submanifold M of X is called
invariant if for any point x0 ∈ M , there exists a solution γx0 : Ix0 → X of Ξ such that
γx0(0) = x0 and γx0(t) ∈ M for all t ∈ Ix0 . Given an admissible point xa, we will say
that M is a locally invariant submanifold (around xa) if there exists an open neighborhood
U ⊆ X of xa such that M ∩ U is invariant. A locally invariant submanifold M∗ is called
maximal, if there exists a neighborhood U of xa such that for any other locally invariant
submanifold M , we have M ∩ U ⊆M∗ ∩ U .

Proposition 4.3.2. Consider a DAE Ξl,n = (E,F ) and fix an admissible point xa. Let M
be a smooth connected embedded submanifold containing xa. If M is a locally invariant
submanifold, then F (x) ∈ E(x)TxM locally for all x ∈M around xa. Conversely, assume
that the dimension ofE(x)TxM is constant locally around xa, if F (x) ∈ E(x)TxM locally
for all x ∈M around xa, then M is a locally invariant submanifold.

Proof. Suppose that M is a locally invariant submanifold around xa. Then by Definition
4.3.1, there exists a neighborhood U of xa such that for any point x0 ∈ M ∩ U , there
exists a solution γx0 : Ix0 → M ∩ U satisfying γ(0) = x0. Since x(t) = γx0(t) is a
solution, we have f(x(t)) = E(x(t))ẋ(t) ∈ E(x(t))Tx(t)M , which means that we have
f(x0) ∈ E(x0)Tx0M for t = 0. Therefore we have F (x) ∈ E(x)TxM for all x ∈M ∩ U .

Conversely, choose a neighborhood U of xa such that the dimension of E(x)TxM is
constant and F (x) ∈ E(x)TxM for all x ∈M ∩ U . Then the assumption of Lemma 4.2.3
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are satisfied for any point x0 ∈ M ∩ U and hence a solution γx0 passing through x0 exists
and γx0(t) ∈M ∩ U for t ∈ Ix0 . Thus M is a locally invariant submanifold.

Proposition 4.3.3. For a DAE Ξl,n = (E,F ), assume that a point x0 satisfies F (x0) ∈
ImE(x0). Set

M0 = {x ∈ X : F (x) ∈ ImE(x)} ; (4.6)

Assume that Mk−1 ( · · · ( M0, for a certain k ≥ 1, have been constructed and for
some open neighborhood Uk−1 ⊆ X of x0 that the intersection Mk−1 ∩ Uk−1 is a smooth
embedded submanifold and denote by M c

k−1 the connected component of Mk−1 ∩ Uk−1

satisfying x0 ∈M c
k−1. Set

Mk =
{
x ∈M c

k−1 : F (x) ∈ E(x)TxM
c
k−1

}
. (4.7)

Then there exists a smallest integer k, denoted by k∗ (k∗ < n), such that Mk∗+1 = M c
k∗ .

Moreover, assume that dim E(x)TxM
c
k∗ is constant locally for all x ∈ M c

k∗ , then x0 is an
admissible point and M∗ = M c

k∗ is a locally maximal invariant submanifold.

Proof. It is clear that by the assumption that Mk ∩ Uk is a smooth submanifold for k > 0,
there exists a neighborhood Uk∗ and a smallest k∗ ∈ N such that Mk∗+1 = M c

k∗ . Then
by a dimensional argument, it can be deduced that k∗ < n. Moreover, by equation (4.7)
and Mk∗+1 = M c

k∗ , we have F (x) ∈ E(x)TxM
c
k∗ for all x ∈ M c

k∗ . Consequently, by the
assumption that dim E(x)TxMk∗ is constant locally for all x ∈ M c

k∗ and Lemma 4.2.3,
there exists at least one solution passing through x0, i.e., x0 is an admissible point and by
Proposition 4.3.2, M∗ = M c

k∗ is a locally invariant submanifold.

Then we show by induction that any other invariant submanifold M ′ is locally con-
tained in M∗. First, by Definition 4.3.1 and Proposition 4.3.2, M ′ satisfies that F (x) ∈
E(x)TxM

′ for any x ∈M ′ near x0. Now by equation (4.6), we can deduce that M ′ ⊆M0

locally around x0. Suppose M ′ ⊆ M c
k−1, which implies that F (x) ∈ E(x)TxM

c
k−1 locally

for all x ∈ M ′. Thus by equation (4.7), we have x ∈ Mk for all x ∈ M ′ around x0, i.e.,
locally M ′ ⊆Mk. Therefore we have locally M ′ ⊆Mk for all k ≥ 0, which implies M ′ is
locally contained in the limit M c

k∗ of Mk, hence M∗ = M c
k∗ is locally maximal.

The above sequence of submanifolds Mk can be constructed via the algorithm below
under some constant rank assumptions. This algorithm can be seen as a nonlinear version
of the shuffle algorithm given in [133] to verify the regularity of linear DAEs. In Algo-
rithm 4.3.4, we will use the concept of restriction and reduction of a DAE (see Definition
4.3.7 and 4.3.8 below). Consider a DAE Ξl,n = (E,F ).

Algorithm 4.3.4. Step 0: SetE0(x) = E(x) and F0(x) = F (x), assume that rankE(x) =

const. = r0 in an open neighborhood W0 ⊆ X of x0. Then there exists Q0 : W0 →
Gl (l,R) such that E1

0(x) below is of full row rank, i.e., rankE1
0(x) = r0:

Q0(x)E0(x) =

[
E1

0(x)

0

]
, Q0(x)F0(x) =

[
F 1

0 (x)

F 2
0 (x)

]
,
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where E1
0 : W0 → Rr0×n, F 1

0 : W0 → Rr0 , F 2
0 : W0 → Rl−r0 . By Proposition 4.3.3, M0

is given by

M0 = {x ∈ W0 : F 2
0 (x) = 0}.

Then assume that dF 2
0 (x) has n − s0 ≤ l − r0 independent rows for x ∈ W0, denoted by

dϕ1
0(x), ..., dϕn−s00 (x). We have

M c
0 = {x ∈ W0 : ϕ1

0(x) = ... = ϕn−s00 (x) = 0}.

Now choose new coordinates:

z = ψ0(x) = col
[
φ1

0(x), ..., φs00 (x), ϕ1
0(x), ..., ϕn−s00 (x)

]
,

where φ1
0(x), ..., φs00 (x) are scalar functions chosen to complete ψ0(x) as a local diffeo-

morphism on W0. It follows that locally Ξ0 = (E0, F0)
ex∼ Ξ̃0 = (Ẽ0, F̃0) on W0, via Q0(x)

and ψ0(x), where

Ẽ0(z) = Q0(x)E0(x)

(
∂ψ0(x)

∂x

)−1 ∣∣∣x=ψ−1
0 (z) =

[
Ẽ1

0(z) Ẽ2
0(z)

0 0

]
,

F̃0(z) = Q0(x)F0(x)
∣∣∣x=ψ−1

0 (z) =

[
F 1

0 (z)

F 2
0 (z)

]
,

where Ẽ1
0 : W0 → Rr0×s0 . Thus

Ξ̃0 :

[
Ẽ1

0(z) Ẽ2
0(z)

0 0

] [
˙̄z1

ż1

]
=

[
F 1

0 (z)

F 2
0 (z)

]
.

where z̄1 = [φ1
0(x), ..., φs00 (x)]

T and z1 =
[
ϕ1

0(x), ..., ϕn−s00 (x)
]T . Observe that z1 = 0

and F 2
0 (z̄1, 0) = 0 for all x ∈ M c

0 . Assume rank [Ẽ1
0(z̄1, 0), dF 1

0 (z̄1, 0)] = r0, then a
reduction of local M c

0-restriction of Ξ̃0 is

Ξ̃0|redMc
0

: Ẽ1
0 (z̄1, 0) ˙̄z1 = F 1

0 (z̄1, 0) .

If Ξ is solvable for x0, then x0 has to be in M c
0 (since if so, F 2

0 (x0) = 0).

Step k (k > 0): For all x ∈ M c
k−1, set Ek(z̄k) = Ẽ1

k−1(z̄k, 0), Fk(z̄k) = F̃ 1
k−1(z̄k, 0),

where Ek : M c
k−1 → Rrk−1×sk−1 , Fk : M c

k−1 → Rrk−1 . Assume that dim E(x)TxM
c
k−1 =

const. = rk ≤ sk−1 in a neighborhood Wk (Wk ⊆ M c
k−1) of x0, which implies that

rankEk(z̄k) = rk. Then there exists Qk : Wk → Gl(rk−1,R) such that the matrix E1
k

below is of full row rank, i.e., rankE1
k(z̄k) = rk for all x ∈ Wk:

Qk(z̄k)Ek(z̄k) =

[
E1
k(z̄k)

0

]
, Qk(z̄k)Fk(z̄k) =

[
F 1
k (z̄k)

F 2
k (z̄k)

]
,

where E1
k : Wk → Rrk×sk−1 , F 1

k : Wk → Rrk and F 2
k : Wk → Rrk−1−rk . By Proposition

4.3.3, Mk is given by

Mk =
{
z̄k ∈ Wk : F 2

k (z̄k) = 0
}
.
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Then assume dF 2
k (z̄k) has sk−1 − sk ≤ rk−1 − rk independent rows in the neighborhood

Wk of x0, denoted by dϕ1
k(z̄k), ..., dϕ

sk−1−sk
k (z̄k). It follows that

M c
k =

{
z̄k ∈ Wk : ϕ1

k(z̄k) =, ...,= ϕ
sk−1−sk
k (z̄k) = 0

}
.

Now choose new coordinates

col [zk+1, z̄k+1] = ψk(z̄k) = col [ϕ1
k(z̄k), ..., ϕ

sk−1−sk
k (z̄k), φ

1
k(z̄k), ..., φ

sk
k (z̄k)],

where z̄k+1 = [φ1
k, ..., φ

sk
k ]T , zk+1 = [ϕ1

k, ..., ϕ
sk−1−sk
k ]T and ψk is a local diffeomorphism

on Wk. Then we have Ξk = (Ek, Fk)
ex∼ Ξ̃k = (Ẽk, F̃k) locally on Wk, where

Ẽk(z̄k) = Qk(z̄k)Ek(z̄k)

(
∂ψ(z̄k)

∂(z̄k)

)−1

=

[
Ẽ1
k (z̄k+1, zk+1) Ẽ2

k(.)

0 0

]
,

F̃k(z̄k) = Qk(z̄k)Fk(z̄k) =

[
F 1
k (z̄k+1, zk+1)

F 2
k (z̄k+1, zk+1)

]
.

Thus Ξ̃k is locally of the form

Ξ̃k :

[
Ẽ1
k (z̄k+1, zk+1) Ẽ2

k(.)

0 0

](
˙̄zk+1

żk+1

)
=

[
F 1
k (z̄k+1, zk+1)

F 2
k (z̄k+1, zk+1)

]
.

Observe that zk+1 = 0 and F 2
k (z̄k+1, 0) = 0 for all x ∈M c

k . Assume

rank [Ẽ1
k(z̄k+1, 0), dF 1

0 (z̄k+1, 0)] = rk,

then a reduction of local M c
k-restriction of Ξ̃k is

Ξ̃k|redMc
k

: Ẽ1
k (z̄k+1, 0) ˙̄zk+1 = F 1

k (z̄k+1, 0) .

If Ξ is solvable for x0, then x0 ∈M c
k (since if so, F 2

k (x0) = 0).

Remark 4.3.5. (i) Algorithm 4.3.4 is a constructible algorithm for Proposition 4.3.3, but
with more assumptions. That is, in order to assure M c

0 is a smooth connected submanifold,
we assume that rankE(x) and rank dF 2

0 (z̄0) are constant in the neighborhood W0 ⊆ X of
x0. Additionally, in order to assure M c

k−1, k > 0 is a smooth connected submanifold, we
assume that in every step k that dim E(x)TxM

c
k−1 and rank dF 2

k (z̄k) are constant in the
neighborhood Wk ⊆M c

k−1 of x0.

(ii) In the geometrical description of Proposition 4.3.3, Uk is not explicitly expressed
as a neighborhood contained in M c

k−1. However, as shown in the above algorithm that
Wk ⊆ M c

k−1, which implies that the constant rank assumptions are only required locally
on the submanifold M c

k−1.

(iii) The integers rk, sk of Algorithm 4.3.4, satisfy{
n ≥ r0 ≥ r1 ≥ ... ≥ rk ≥ ... ≥ 0, n ≥ s0 ≥ s1 ≥ ... ≥ sk ≥ ... ≥ 0, sk−1 ≥ rk,

n− s0 ≤ l − r0, sk−1 − sk ≤ rk−1 − rk.

Proposition 4.3.6. For Ξl,n = (E,F ), assume in Algorithm 4.3.4 that
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(A1) rankE(x) and rank dF 2
0 (x) are constant in the neighborhood W0 of x0.

(A2) dim E(x)TxM
c
k−1 and rank dF 2

k (z̄k) are constant in the neighborhood Wk of x0 for
k > 0.

Then there exists a smallest k, denoted by k∗ < n such that Mk∗+1 = M c
k∗ , x

0 is an admis-
sible point and M∗ = M c

k∗ is a locally maximal invariant submanifold around xa = x0.

Proof. As mentioned in Remark 4.3.5, Algorithm 4.3.4 is an constructible algorithm for
Proposition 4.3.3, which implies that under assumptions (A1) and (A2), there exists a
smallest k = k∗ < n such that rk∗+1 = rk∗ , implying also sk∗+1 = sk∗ , i.e., Mk∗+1 =

Wk∗+1 ⊆ M c
k∗ . Moreover, we have x0 ∈ M c

k∗ and dim M c
k∗ = sk∗ ≥ 0. By assumption

(A2), dim E(x)M c
k∗ is constant locally for all x ∈M c

k∗ , we denote dim E(x)TxM
c
k∗ = r∗.

From Step k∗ of Algorithm 4.3.4, it is seen that

Ξ|redM∗ : Ẽk∗+1(z̄k∗+1) ˙̄zk∗+1 = Fk∗+1(z̄k∗+1), (4.8)

where Ek∗+1 : M c
k∗ → Rrk∗×sk∗ . Now come to Step k∗ + 1, we have rankEk∗+1(.) =

dim Ek∗+1(.)TxM
c
k∗ = rk∗+1 = rk∗ in a neighborhood Wk∗+1 ⊆ M c

k∗ , hence Ek∗+1(.)

is of full row rank for x ∈ Wk∗+1. Thus we conclude that F (x) ∈ E(x)TxM
c
k∗ for all

x ∈ Wk∗+1, i.e., locally for all x ∈ M c
k∗ . Therefore, by Proposition 4.3.2, M∗ = M c

k∗ is a
locally maximal invariant manifold, where

M∗ = M c
k∗ = {z : zk = 0, i = 1, . . . , k∗ + 1} .

Through the algorithm above, we consider a DAE more and more “internally”, that is,
at the end of every k step, we restrict the DAE to M c

k and reduce its redundant equations
(see the Definition 4.3.7 and 4.3.8 below) and terms which concern what is outside M c

k

vanish (by setting zk+1 = 0 and żk+1 = 0). This observation motivates to define the internal
equivalence for DAEs. Before giving a formal definition of the internal equivalence, we
will define formally the restriction of a DAE to a smooth connected submanifold (invariant
or not) as follows.

Definition 4.3.7 (Local restriction). Consider a DAE Ξl,n = (E,F ) and fix a point x0 ∈ X .
Let R be a smooth connected embedded submanifold. Let ψ(x) = z = (z1, z2) be local
coordinates on a neighborhood U of x0 such that R ∩ U = {z2 = 0} and z1 are thus
coordinates on R ∩ U . The restriction of Ξ to R ∩ U , called local R-restriction of Ξ and
denoted Ξ|R is

Ẽ(z1, 0)

[
ż1

0

]
= F̃ (z1, 0), (4.9)

where Ẽ(z) = E(ψ−1(z))
(
∂ψ
∂x

(ψ−1(z))
)−1

, F̃ (z) = F ((ψ−1(z))).
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Note that, for any DAE Ξl,n = (E,F ), there may exist some redundant equations (in
particular, some trivial algebraic equations 0 = 0 and some dependent equations). In the
linear case, we have defined the full rank reduction of a linear DAE (see Definition 2.6.4
of Chapter 2). We now generalize this notion of reduction to nonlinear DAEs Ξ to get rid
of their redundant equations.

Definition 4.3.8 (Reduction). For a DAE Ξl,n = (E,F ), assume rank [E(x), dF (x)] =

const. = l∗ ≤ l. Then there exists Q : X → Gl(l,R) such that

Q(x)
[
E(x) dF (x)

]
=

[
Q1(x)

Q2(x)

] [
E(x) dF (x)

]
=

[
Q1(x)E(x) Q1(x)dF (x)

0 0

]
,

where rank [Q1(x)E(x), Q1(x)dF (x)] = l∗, Q1 : X → Rl∗×l, Q2 : X → R(l−l∗)×l, and
the full row rank reduction, shortly reduction, of Ξ, denoted by Ξred, is a DAE Ξred

l∗,n =

(Ered, F red), where Ered(x) = Q1(x)E(x) and F red(x) = Q1(x)F (x).

Remark 4.3.9. Clearly, since the choice of Q(x) is not unique, the reduction of Ξ is not
unique. Nevertheless, sinceQ(x) preserves the solutions, each reduction Ξred has the same
solutions as the original DAE Ξ.

For a locally invariant submanifold M , we consider local M -restriction Ξ|M of Ξ, and
then we construct a reduction of Ξ|M and denote it by Ξ|redM . Notice that the order matters:
to construct Ξ|redM , we first restrict and then reduce while reducing first and then restricting
will, in general, not give Ξ|redM but another DAE Ξred|M .

Proposition 4.3.10. Consider a DAE Ξl,n = (E,F ) and fix an admissible point xa. Let M
be a s-dimensional locally invariant submanifold of Ξ around xa. Assume that

dim E(x)TxM = const. = r

for all x ∈ M around xa. Then a reduction Ξ|redM of local M -restriction of Ξ is a DAE of
form (4.1) and the dimensions related to Ξ|redM are r and s, i.e., Ξ|redM = Ξ′r,s. Moreover, the
matrix E ′ and [E ′, dF ′] of Ξ′r,s = (E ′, F ′) are of the same full row rank equal to r.

Proof. Consider Ξ|M , which is a DAE of the form (4.9). By the assumption that dim E(x)TxM =

const. = r, there alway exists Q : M → Gl(l,R) such that Q(z1)Ẽ(z1, 0) =

[
E1(z1)

0

]
,

where E1 : M → Rr×n and rankE1(z1) = r. Denote Q(z1)F̃ (z1, 0) =

[
F1(z1)

F2(z1)

]
, then

Ξ|M is ex-equivalent viaQ(z1) to
[
E1(z1)

0

] [
ż1

0

]
=

[
F1(z1)

F2(z1)

]
. SinceM is locally invariant,

by Proposition 4.3.3, we have locally for all x ∈ M , F (x) ∈ E(x)TxM ⇒
[
F1(z1)

F2(z1)

]
∈

Im

[
E1(z1)

0

]
, thus F2(z1) = 0 locally for all z1. So by Definition 4.3.8, a reduction Ξ|redM

of Ξ|M is locally of the form E1
1(z1)ż1 + E2

1(z1)0 = F1(z1), which is Ξ′r,s = (E ′, F ′),
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where E ′ = E1
1 and F ′ = F1. Clearly, E ′ and [E ′, dF ′] of Ξ′r,s = (E ′, F ′) are of the same

full row rank equal to r.

The definition of the internal equivalence of two DAEs is given as follows.

Definition 4.3.11. (Internal equivalence) Consider two DAEs Ξ = (E,F ) and Ξ̃ = (Ẽ, F̃ ).
Let M∗ and M̃∗ be two smooth connected submanifolds and fix two admissible points
xa ∈M∗, x̃a ∈ M̃∗. Assume that

(A1) M∗ and M̃∗ are locally maximal invariant submanifolds of Ξ and Ξ̃, respectively,
around xa and x̃a.

(A2) dim E(x)TxM
∗ is locally constant for x ∈ M∗ around xa and dim Ẽ(x̃)Tx̃M̃

∗ is
locally constant for x̃ ∈ M̃∗ around x̃a.

Then, Ξ and Ξ̃ are called locally internally equivalent, shortly in-equivalent, if Ξ|redM∗ and
Ξ̃|red

M̃∗
are ex-equivalent, locally around xa and x̃a, respectively. Denote the in-equivalence

of two DAEs by Ξ
in∼ Ξ̃.

Remark 4.3.12. (i) Note that assumptions (A1) and (A2) above are essential for the def-
inition of the internal equivalence. Without those assumptions, the dimensions of Ξ̃|red

M̃∗

and Ξ̃|red
M̃∗

may not be constant. On the other hand, with these constant dimensional
assumptions, by Proposition 4.3.10, we have Ξ|redM∗ = Ξ′r,s and Ξ̃|redM∗ = Ξ̃′r̃,s̃, where
r = dim E(x)TxM

∗, s = dim M∗ and r̃ = dim Ẽ(x)Tx̃M̃
∗, s̃ = dim M̃∗.

(ii) The dimensions l and n, related to Ξ, and l̃ and ñ related to Ξ̃ are not required to be
the same. On the other hand, if Ξ and Ξ̃ are in-equivalent, then by definition, Ξ|redM∗ = Ξ′r,s
and Ξ̃|red

M̃∗
= Ξ̃′r̃,s̃ are locally ex-equivalent and thus the dimensions related to them have to

be the same, i.e., r = r̃ and s = s̃.

Now we will study the existence and uniqueness of solutions of DAEs with the help of
the notion of internal equivalence.

Definition 4.3.13. (Internal regularity) Consider a DAE Ξl,n = (E,F ), fix an admissible
point xa. Let M∗ be a locally maximal invariant submanifold around xa. Then Ξ is called
internally regular around xa, if there exists a neighborhood U ⊆ X of xa such that for any
point x0 ∈M∗ ∩ U , there exists only one solution γx0 passing through x0.

Theorem 4.3.14. Consider a DAE Ξl,n = (E,F ), fix an admissible point xa. Let M∗

be a locally maximal invariant submanifold around xa. Assume that dim E(x)TxM
∗ is

constant locally for all x ∈ M∗ around xa. The following are equivalent locally around
xa:

(i) Ξ is internally regular.
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(ii) dim M∗ = dim E(x)TxM
∗ for all x ∈M∗.

(iii) Ξ is internally equivalent to

Ξ∗ : ż∗ = F ∗ (z∗) , (4.10)

where z∗ is a local, around xa, system of coordinates on M∗.

The proof is given in Section 4.4.2.

Remark 4.3.15. (i) Theorem 4.3.14 illustrates that, under some constant dimension as-
sumptions, Ξ is internally regular if and only if there are no free variables in Ξ|redM∗ , which
also means that Ξ|redM∗ is ex-equivalent to an ODE Ξ∗ of form (4.10).

(ii) Assume that (A1)-(A2) of Proposition 4.3.6 are satisfied, if Ξl,n is internally regular,
then n ≤ l. Indeed, first the internal regularity of Ξ implies that sk∗ = rk∗ . Then by
sk−1−sk ≤ rk−1−rk shown in Remark 4.3.5(iii), we have sk∗−1 ≤ rk∗−1. By sk−1−sk ≤
rk−1 − rk and an iterative argument, we can deduce s0 ≤ r0. Finally, by n − s0 ≤ l − r0

of Remark 4.3.5(iii), we get n ≤ l.

(iii) Theorem 4.3.14 is a nonlinear generalization of the results on internal regularity
of linear DAEs in Chapter 2. As stated in Proposition 2.6.12 of Chapter 2, a linear DAE
∆, given by (4.3), is internally regular if and only if the maximal invariant subspace M ∗

of ∆ (i.e., the largest subspace such that HM ∗ ⊆ EM ∗) satisfies dim M ∗ = dim EM ∗.
A nonlinear counterpart of the last condition is that of Theorem 4.3.14(ii) and thus M∗ is
a natural nonlinear generalization of M ∗.

(iv) The sequence of submanifolds Mk of Algorithm 4.3.4 can be seen as a nonlinear
generalization of the Wong sequences Vi of Definition 4.1.2. Observe that M∗ is the limit
of Mk as V ∗ is the limit of Vi. Moreover, we have shown in Chapter 2 that M ∗ = V ∗.

4.3.2 Explicitation with driving variables of nonlinear DAEs

The explicitation (with driving variables) of a DAE Ξ is the following procedure.

• For a DAE Ξl,n = (E,F ), assume that rankE(x) = const. = q in a neighborhood

U ⊆ X of x0. Then there exists Q : U → Gl(l,R) such that Q(x)E(x) =

[
E1(x)

0

]
,

where E1 : U → Rq×n, and rankE1(x) = q. It is seen that Ξ is ex-equivalent via
Q(x) to {

E1(x)ẋ = F1(x)

0 = F2(x),
(4.11)

whereQ(x)F (x) =

[
F1(x)

F2(x)

]
, and where F1 and F2 are smooth functions with values

in Rq and Rl−q, respectively.
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• The matrix E1(x) is of full row rank q, so choose its right inverse E†1(x) and set
f(x) = E†1(x)F1(x). The collection of all ẋ satisfying E1(x)ẋ = F1(x) of (4.11) is
given by the differential inclusion:

ẋ ∈ f(x) + kerE1(x) = f(x) + kerE(x). (4.12)

• Since kerE(x) is a distribution of constant rank n− q, so choose locally m = n− q
independent vector fields g1, . . . , gm on X such that

kerE(x) = span {g1, . . . , gm} (x).

Then by introducing driving variables vi, i = 1, . . . ,m, we can parametrize the
affine distribution f(x) + kerE1(x) and thus all solutions of (4.12) are given by all
solutions (corresponding to all controls vi(t)) of

ẋ = f(x) +
m∑
i=1

gi(x)vi. (4.13)

• Form a matrix g(x) = [g1(x), . . . , gm(x)]. Then, we rewrite equation (4.13) as
ẋ = f(x) + g(x)v, where v = [v1, . . . , vm]T . Set h(x) = F2(x) and all solutions of
DAE (4.11) can be expressed as all solutions (corresponding to all controls v(t)) of{

ẋ = f(x) + g(x)v

0 = h(x).
(4.14)

Compared with Ξ, equation (4.14) has an extra vector variable v, which we will call
the vector of driving variables.

• To (4.14), we attach the control system Σ = Σn,m,p = (f, g, h), given by

Σ :

{
ẋ = f(x) + g(x)v

y = h(x),
(4.15)

where n = dim x, m = dim u, p = dim y. Clearly, m = n − q and p = l − q (we
will use these dimensional relations in the following discussion). In the above way,
we attach a control system Σ to a DAE Ξ.

Definition 4.3.16. (Explicitation with driving variables) Given a DAE Ξl,n = (E,F ),
assume that the rank ofE(x) is constant locally around x0. Then, by a (Q, v)-explicitation,
we will call a control system Σ = Σn,m,p = (f, g, h) given by

Σ :

{
ẋ = f(x) + g(x)v

y = h(x),

with f(x) = E†1(x)F1(x), Im g(x) = kerE(x), h(x) = F2(x), where Q(x)E(x) =[
E1(x)

0

]
, Q(x)F (x) =

[
F1(x)

F2(x)

]
. The class of all (Q, v)-explicitations will be called

the explicitation with driving variables class, shortly, the explicitation class. If a particular
control system Σ belongs to the explicitation class of Ξ, we will write Σ ∈ Expl(Ξ).
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Remark 4.3.17. The constant rank assumption of E(x) is essential for the above defini-
tion of explicitation and since we assume E(x) is of constant rank around a point x0, the
matrices Q(x), f(x), g(x), h(x) are all defined locally and so is Σ ∈ Expl(Ξ).

Notice that a given Ξ has many (Q, v)-explicitations since the construction of Σ ∈ Expl(Ξ)

is not unique: there is a freedom in choosing Q(x), E†1(x), and g(x). As a consequence
of this non-uniqueness of construction, the explicitation Σ of Ξ is a system defined up to
a feedback transformation, an output multiplication and a generalized output injection (or,
equivalently, a class of systems).

Proposition 4.3.18. Assume that a control system Σn,m,p = (f, g, h) is a (Q, v)-explicitation
of a DAE Ξ = (E,F ) corresponding to a choice of invertible matrix Q(x), right inverse
E†1(x), and matrix g(x). Then a control system Σ̃n,m,p = (f̃ , g̃, h̃) is a (Q̃, ṽ)- explicita-
tion of Ξ corresponding to a choice of invertible matrix Q̃(x), right inverse Ẽ†1(x), and
matrix g̃(x) if and only if Σ and Σ̃ are equivalent via a v-feedback transformation of the
form v = α(x) + β(x)ṽ, a generalized output injection γ(x)y = γ(x)h(x) and an output
multiplication ỹ = η(x)y, which map

f 7→ f̃ = f + γh+ gα, g 7→ g̃ = gβ, h 7→ h̃ = ηh, (4.16)

where α, β, γ and η are smooth matrix-valued functions, and β and η are invertible.

The proof is given in Section 4.4.3. Since the explicitation of a DAE is a class of
control systems, we will propose now an equivalence relation for control systems. An
equivalence of two nonlinear control systems is usually defined by state coordinates trans-
formations and feedback transformations (e.g. see [92],[151]), and sometimes output co-
ordinates transformations [139]. In the present chapter, we define a more general system
equivalence of two control systems as follows.

Definition 4.3.19. (System equivalence) Consider two control systems Σn,m,p = (f, g, h)

and Σ̃n,m,p = (f̃ , g̃, h̃) defined on X and X̃ , respectively. The systems Σ and Σ̃ are
called system equivalent, or shortly sys-equivalent, denoted by Σ

sys∼ Σ̃, if there exist a
diffeomorphism ψ : X → X̃ , matrix-valued functions α : X → Rm, γ : X → Rn×p and
β : X → Gl(m,R), and η : X → Gl(p,R) such that

f̃ ◦ ψ =
∂ψ

∂x
(f + γh+ gα) , g̃ ◦ ψ =

∂ψ

∂x
gβ, h̃ ◦ ψ = ηh.

If ψ : U → Ũ is a local diffeomorphism between neighborhoods U of x0 and Ũ of x̃0, and
α, β, γ, η are defined locally on U , we will speak about local sys-equivalence.

Remark 4.3.20. The above defined sys-equivalence of two nonlinear control systems gen-
eralizes the Morse equivalence of two linear control systems (see [146],Chapter 2). In the
linear case, the output multiplication y 7→ Toy, by a constant invertible matrix To, can be
seen as a linear coordinates change in the output space, but in the nonlinear case, the trans-
formation h 7→ ηh is more general than a zero-preserving change of output coordinates
y 7→ ϕ(y) by a diffeomorphism ϕ on the output space.
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The following theorem is a fundamental result of the present chapter, which shows
that sys-equivalence for explicitation systems (control systems) is a true counterpart of the
ex-equivalence for DAEs.

Theorem 4.3.21. Consider two DAEs Ξl,n = (E,F ) and Ξ̃l,n = (Ẽ, F̃ ). Assume that
rankE(x) and rank Ẽ(x̃) are constant around two points x0 and x̃0, respectively. Then for
any two control systems Σn,m,p = (f, g, h) ∈ Expl(Ξ) and Σ̃n,m,p = (f̃ , g̃, h̃) ∈ Expl(Ξ̃),
we have that locally Ξ

ex∼ Ξ̃ if and only if Σ
sys∼ Σ̃.

The proof is given in Section 4.4.3. In order to show how the explicitation can be useful
in the DAEs theory, we discuss below how the analysis of DAEs given in Section 4.3.1 is
related to the notion of zero dynamics of nonlinear control theory.

For a nonlinear control system Σn,m,p = (f, g, h), for a nominal point x0, assume
h(x0) = 0. Recall its zero dynamics algorithm [92]:

Step 0: set N0 = h−1(0). Step k: assume for some neighborhood Vk−1 ⊆ X of
x0, Nk−1 ∩ Vk−1 is a smooth submanifold and denote N c

k−1 the connected component of
Nk−1 ∩ Vk−1 such that x0 ∈ N c

k−1. Set

Nk =
{
x ∈ N c

k−1 : f(x) ∈ TxN c
k−1 + span{g1(x), . . . , gm(x)}

}
. (4.17)

Remark 4.3.22. (i) It is shown in [92] thatNk∩Vk is invariant under feedback transforma-
tions. Then assume that a control system Σ̃ = (f̃ , g̃, h̃) is given by applying a generalized
output injection and an output multiplication to Σ, i.e., f̃ = f + γh, g̃ = g, h̃ = ηh,
where γ : X → Rn×p and η : X → Gl(p,R). By Ñ0 = h̃−1(0) = h−1(0) (since η(x) is
invertible) and

Ñk =
{
x ∈ Ñ c

k−1 : f̃(x) ∈ TxÑ c
k−1 + span{g̃1, . . . , g̃m}(x)

}
=
{
x ∈ Ñ c

k−1 : (f + γh)(x) ∈ TxÑ c
k−1 + span{g1, . . . , gm}(x)

}
=
{
x ∈ Ñ c

k−1 : f(x) ∈ TxÑ c
k−1 + span{g1, . . . , gm}(x)

}
,

we have Ñk = Nk for k ≥ 0, which means thatNk of the zero dynamics algorithm is invari-
ant under generalized output injections and output multiplications. From Definition 4.3.19,
we know that sys-equivalence is defined by coordinates changes, feedback transformations,
generalized output injections and output multiplications. Therefore, if two systems Σ and
Σ̃ are sys-equivalent via the coordinates change x̃ = ψ(x), completed by transformations
given by arbitrary α, β, γ, η, see Definition 4.3.19, then we have Ñk = ψ(Nk).

(ii) The sequence of submanifolds Nk of the zero dynamics algorithm is well-defined
for the class Expl(Ξ), i.e., does not depend on the choice of Σ ∈ Expl(Ξ). Since by
Proposition 4.3.18 any two systems Σ,Σ′ ∈ Expl(Ξ) are equivalent via a v-feedback, a
generalized output injection and an output multiplication, then by the argument in item (i)
above we have Ñk = Nk.

Proposition 4.3.23. Consider a DAE Ξl,n = (E,F ) satisfying rankE(x) = q = const.

around a point x0 and a control system Σ = (f, g, h) ∈ Expl(Ξ). The following condi-
tions, for each k > 0,
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(A1) Mk ∩ Uk of Proposition 4.3.3 is a smooth submanifold and dim E(x)TxM
∗ is con-

stant locally on M∗,

(A2) Nk ∩ Vk of the zero dynamics algorithm is a smooth submanifold and the dimen-
sion of span{g1, . . . , gm}(x) ∩ TxN∗ is constant locally on N∗ (the assumptions of
Proposition 6.1.1 in [92]),

can be concluded from each other (i.e., (A1) implies (A2) and vice versa). Assume that ei-
ther (A1) or (A2) holds, then the maximal invariant submanifoldM∗ = M c

k∗ of Ξ coincides
with the maximal output zeroing submanifold N∗ = N c

k∗ of Σ ∈ Expl(Ξ). Moreover, Ξ is
internally regular if and only if span{g1(x0), . . . , gm(x0)} ∩ Tx0N∗ = 0 (equation (6.4) of
[92]).

The proof is given in Section 4.4.3.

Remark 4.3.24. By Proposition 4.3.23, if there exists a unique u = u(x) that renders N∗

output zeroing and locally maximal control invariant for a control system Σ ∈ Expl(Ξ),
then Ξ is internally regular. Since the zero dynamics does not depend on the choice of
an explicitation, the internal regularity of Ξ corresponds to that fact that the zero output
constraint y(t) = 0 of any control system Σ ∈ Expl(Ξ) can be achieved by a unique
control u(t).

4.3.3 Explicitation without driving variables and pure semi-explicit
DAEs

Now we will show by an example that sometimes we can reduce some of the driving
variables of a (Q, v)-explicitation.

Example 4.3.25. Consider a DAE Ξ = (E,F ), given by

[
sinx3 − cosx3 0

0 0 0

]ẋ1

ẋ2

ẋ3

 =

[
F1(x)

x2
1 + x2

2 − 1

]
,

where F1 : X → R. By rankE(x) = 1, the explicitation class Expl(Ξ) is not empty. A
control system Σ ∈ Expl(Ξ) is:

ẋ1

ẋ2

ẋ3

 =

 sinx3

− cosx3

0

F1(x) +

0 cosx3

0 − sinx3

1 0

[v1

v2

]
y = x2

1 + x2
2 − 1,

where
[
sinx3 − cosx3 0

]T
is a right inverse of E1(x) =

[
sinx3 − cosx3 0

]
. Now

consider the last equation in the dynamics of Σ, which is ẋ3 = v1. Observe that v1 acts on
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ẋ3 only, which implies that v1 is decoupled from the other part of the dynamics. Thus, we
may get rid of v1 and regard x3 as a new control. Thus the dynamics of Σ become:[

ẋ1

ẋ2

]
=

[
sinx3

− cosx3

]
F1(x) +

[
cosx3

− sinx3

]
v2,

where x1 and x2 are the new states, x3 and v2 are the new control inputs. We are, however,
not able to reduce v2 in the same way.

From the above example, it can be observed that if we want to get rid of the i-th
driving variable vi of a control system Σ, then vi should be present in one equation only
(as ẋj = αj(x) + βj(x)vi) implying that g̃i = ∂

∂xj
, where ṽi = αj(x) + βj(x)vi. Thus

if we want to get rid of all driving variables, a necessary and sufficient condition is that
the distribution span {g1, . . . , gm} = span {g̃1, . . . , g̃m} is involutive (because the latter is
given by span

{
∂

∂xj1
, . . . , ∂

∂xjm

}
). If so, Σ is always feedback equivalent to


[
ẋ1

ẋ2

]
=

[
f1 (x1, x2)

0

]
+

[
0

In−q

]
v

y = h (x1, x2) .

The above system can be reduced to

Σr :

{
ẋ1 = f1 (x1, x2)

y = h (x1, x2) ,
(4.18)

where x2 is the new input. Observe that the above system Σr, given by (4.18), has the same
number of variables as Ξ. Thus Σr is an explicitation without driving variables of Ξ. By
setting y = 0, the control system Σr becomes a pure semi-explicit DAE:

ΞPSE :

{
ẋ1 = f1 (x1, x2)

0 = h (x1, x2) ,
(4.19)

which is actually ex-equivalent to Ξ. Note that the procedure of setting y = 0 for a control
system is called the implicitation of a control system, see [47] and Chapter 2, where we
discuss it in detail for linear systems. Therefore ΞPSE , given by (4.19), is the implicitation
of Σr, given by (4.18). Before giving the main result of this subsection, we formally define
what we mean by “reducing” the variables of a control system Σ:

Definition 4.3.26. For a control system Σn,m,p = (f, g, h), let Dred be an involutive sub-
distribution of constant rank k of the distribution D = span {g1, . . . , gm} (x). There exists
a feedback transformation and a coordinates change such that Dred = span

{
∂
∂x12
, . . . , ∂

∂xk2

}
and Σ takes the form 

ẋ1 = f1 (x1, x2) +
m−k∑
i=1

gi1 (x1, x2)vi1

ẋ2 = v2

y = h (x1, x2) ,
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where v2 = [v1
2, . . . , v

k
2 ]T , we will say that Σ can be Dred-reduced to the following control

system  ẋ1 = f1 (x1, x2) +
m−k∑
i=1

gi1 (x1, x2)vi1

y = h (x1, x2) ,

where x2 is a new control. We say that Σ can be fully reduced if Dred = D .

The above analysis motivates to connect the explicitation without driving variables
with pure semi-explicit DAEs.

Theorem 4.3.27. For a DAE Ξl,n = (E,F ), the following conditions are equivalent
around a point x0:

(i) rankE(x) is constant and the distribution D = kerE(x) is involutive.

(ii) Ξ is ex-equivalent to a pure semi-explicit DAE ΞPSE of form (4.2).

(iii) Any control system Σ = (f, g, h) ∈ Expl(Ξ) can be fully reduced.

The proof is given in Section 4.4.4.

Remark 4.3.28. (i) There are two kinds of explicitations for nonlinear DAEs, namely,
explicitation with, or without, driving variables. Both of them need the constant rank
assumption of E(x). However, explicitation without driving variables requires also the
involutivity of kerE(x). It means that if a DAE has an explicitation without driving vari-
ables, we can always get the one with driving variables by adding ẋj = v to the dynamics
(actually it is a 1−fold prolongation of the variables xj that enter statically into the dy-
namics). But we can not always reduce driving variables unless the involutivity condition
is satisfied.

(ii) A linear DAE ∆ = (E,H), given by (4.3), has always two kinds of explicitations,
since the rank of E is always constant and the distribution D = kerE is always involutive.
The relations and differences of the two explicitations for linear DAEs are discussed in
Chapter 3 and in [46] (note that the explicitation without driving variables for linear DAEs
is called the (Q,P )-explicitation there).

4.3.4 Nonlinear generalization of the Weierstrass form

In this subsection, we will use the explicitation (with driving variables) procedure to trans-
form an internally regular DAE Ξl,n = (E,F ) with l = n, to a normal form under ex-
ternal equivalence. A linear DAE ∆, given by (4.3), is regular (meaning l = n and
det(sE − H) 6= 0, s ∈ C, see e.g. [75]) if and only if E and H are square and ∆ is
internally regular, see Chapter 2. Moreover, if ∆ is regular, then it is ex-equivalent (via
linear transformations) to the Weierstrass form WF, given by (4.5). The following theorem

111



CHAPTER 4. GEOMETRIC ANALYSIS AND NORMAL FORM OF NONLINEAR
DIFFERENTIAL-ALGEBRAIC EQUATIONS

generalizes this linear result and shows that any internally regular DAE (under the assump-
tion that some dimensions are constant) is always ex-equivalent to a nonlinear Weierstrass
form NWF (see (4.20) below).

Theorem 4.3.29. Consider Ξl,n = (E,F ) with l = n, assume that rankE(x) = const. =

q around an admissible point xa. Also assume in Algorithm 4.3.4 that, locally around xa:

(A1) The rank of dF 2
0 (x) and the ranks of the differentials of ∂Φk(x)

∂x
are constant for 1 ≤

k ≤ k∗ − 1, where Φk(x) = col [ϕ0(x), . . . , ϕk−1(x), F 2
k (x)], and where

ϕ0 = col[ϕ1
0(x), ..., ϕn−s00 (x)] and ϕi = col [ϕ1

i (x), ..., ϕ
si−1−si
i (x)] for i > 0.

(A2) The dimensions of E(x)TxMk are constant for x ∈Mk, 0 ≤ k ≤ k∗ − 1.

(A3) dim E(x)TxM
∗ = dim M∗.

Then Ξ is internally regular and Ξ is locally ex-equivalent to the DAE (4.20), represented
in the nonlinear Weierstrass form NWF:

Nρ1 0 · · · 0

E2,1 (.) Nρ2
. . . ...

... . . . . . . 0

Em,1 (.) · · · Em,m−1 (.) Nρm

0

G (ξ, z) I




ξ̇1

ξ̇2

...
ξ̇m
ż

 =


ξ1

ξ2

...
ξm

F ∗ (ξ, z)

+


a1 + b1ξ̇

ρ

a2 + b2ξ̇
ρ

...
am + bmξ̇

ρ

0

 ,
(4.20)

where ξi = [ξ1
i , . . . , ξ

ρi
i ]T and z are the new coordinates, and where ξ̇ρ = [ξ̇ρ11 , ξ̇

ρ2
2 , . . . , ξ̇

ρm
m ]T .

The indices ρi, 1 ≤ i ≤ m, with m = n− q, satisfy ρ1 ≤ ρ2 ≤ . . . ≤ ρm.

More specifically, for 1 ≤ i ≤ m, 1 ≤ s < i, the ρi × ρs matrix-valued functions Ei,s,
the ρi × ρi nilpotent matrix Nρi and the ρi-dimensional vector-valued function ai + biξ̇

ρ

are of the following form

Ei,s =


0 · · · 0 0

0 · · · 0 −Eρsi,s(ξ, z)
...

...
...

...
0 · · · 0 −Eρi−1

i,s (ξ, z)

 , Nρi =


0

1 0
. . .

. . .
1 0

 , ai + biξ
ρ=



0

a1
i +

m∑
l=1

b1i,lξ̇
ρl
l

...

aρi−1
i +

m∑
l=1

bρi−1
i,l ξ̇ρll


,

where the scalar functions aki , b
k
i,l ∈ Ik, 1 ≤ k ≤ ρi − 1, where Ik is the ideal generated

by ξji , 1 ≤ i ≤ m, 1 ≤ j ≤ k in the ring of smooth functions of ξts and zr.

Remark 4.3.30. (i) A more compact expression of the above NWF is

NWF :



0 = ξ1
i , 1 ≤ i ≤ m, 1 ≤ j ≤ ρi − 1

ξ̇ji = ξj+1
i + aji +

m∑
l=1

bji,lξ̇
ρl
l + Ej

i (ξ, z, ξ̇
ρ),

...
ż = F ∗(ξ, z)−G(ξ, z)ξ̇,
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where aki , b
k
i,l ∈ Ik, 1 ≤ k ≤ ρi − 1 and

Ej
i (ξ, z, ξ̇

ρ) =
i−1∑
s=1

Ej
i,s(ξ, z)ξ̇ρss , j ≥ ρs.

(ii) The submanifold sequences Mk of Algorithm 4.3.4 can be expressed as:

Mk=
{

(ξ, z) : ξji = 0, 1 ≤ i ≤ m, 1 ≤ j ≤ k + 1
}
,

the maximal invariant submanifold M∗ is given by

M∗ = {(ξ, z) : ξi = 0, 1 ≤ i ≤ m}.

(iii) By aki , b
k
i,l ∈ Ik and Ik is the ideal generated by ξji , 1 ≤ i ≤ m, 1 ≤ j ≤ k in

the ring of smooth functions of ξts and zr, it is not hard to see aki = bki,l = 0 locally for all
(ξ, z) ∈Mk−1.

(iv) We see that a solution (ξ(t), z(t) passing through (ξ0, z0) exists if and only if
ξ0 ∈ M∗ and thus the solution (0, z(t)) is unique, where z(t) is governed by the ODE
ż = F ∗(0, z), which agrees with the result of Theorem 4.3.14(iii).

The proof is given in Section 4.4.5. This proof is closely related to the zero dynam-
ics algorithm for nonlinear control systems shown in [92] and the construction procedure
of the above normal form is not difficult but quite tedious, so in order to avoid reproduc-
ing the zero dynamics algorithm, we will use some results directly from [92] with small
modifications. Then after the proof, we will show the construction procedure precisely by
an example. Note that from the example below, it is not hard to deduce that under some
extra rank assumptions, the terms aki ’s and bki,l’s vanish and the terms Ej

i ’s become con-
stant, as shown in the following corollary. Denote by rank(A(x)) the rank of the matrix
A(x) and denote by rankR(A(x)) the dimension of the vector space spanned over R by
the rows of A(x). Use the notations as in Algorithm 4.3.4, set Hk(x) = [ϕ0, . . . , ϕk]

T and
g = [g1, . . . , gm] be a matrix such that Img(x) = kerE(x), denote by LgHk the matrix
(LgiH

j
k)ij , 1 ≤ i ≤ m, 1 ≤ j ≤ n− sk.

Corollary 4.3.31. If, additionally to (A1)-(A3), we assume

(A4) rank(LgHk(x)) = rank(LgHk(xa)),

then in the NWF of (4.20), aki = bki,l = 0 for 1 ≤ i ≤ m, 1 ≤ j ≤ k + 1.

If, additionally to (A1)-(A3), we assume that on Mk,

(A5) rankC∞(Mk)(LgHk(x)) = rankR(LgHk(x)),

then in the NWF of (4.20), Ej
i = const. for 1 ≤ i ≤ m, 1 ≤ j ≤ k + 1.

Example 4.3.32. Consider a DAE Ξn,n = (E,F ), assume that rankE(x) = q in a neigh-
borhood U of an admissible point xa, let n = q+3 and then suppose that the zero dynamics

113



CHAPTER 4. GEOMETRIC ANALYSIS AND NORMAL FORM OF NONLINEAR
DIFFERENTIAL-ALGEBRAIC EQUATIONS

algorithm for a control system Σn,3,3 = (f, g, h) ∈ Expl(Ξ) is implemented in the follow-
ing way:

Step 1: Let h =

h1

h2

h3

 =

ξ1
1

ξ1
2

ξ1
3

 = ξ1, suppose that the differentials dhi of hi for

i = 1, 2, 3, are independent around xa. Then define

M0 = {x : h1(x) = h2(x) = h3(x) = 0} = {x : ξ1
1 = ξ1

2 = ξ1
3 = 0} = {x : ξ1 = 0}.

Set H0(x) = h(x) and suppose that the matrix Lgh = LgH0 =

Lgh1

Lgh2

Lgh3

 vanishes at all

x ∈M0 around xa, which implies that there exist smooth functions σ1
i , i = 1, 2, 3 such thatLgh1

Lgh2

Lgh3

 =

σ1
1

σ1
2

σ1
3

 = σ1, where σ1 = 0 for all x ∈ M0 around xa, i.e., σ1
i ∈ I1. Suppose

that the differentials of H1 =

[
H0

LfH0

]
are independent around xa, denote LfH0 = Lfh =Lfh1

Lfh2

Lfh3

 =

ξ2
1

ξ2
2

ξ2
3

 = ξ2. Then define

M1 = {x ∈M0 : ξ2
1 = ξ2

2 = ξ2
3 = 0} = {x ∈M0 : ξ2 = 0.}

Step 2: Suppose that the matrix LgH1 =

[
LgH0

LgLfH0

]
=

[
Lgξ

1

Lgξ
2

]
has rank 1 for all

x ∈ M1 around xa. Then, without loss of generality, we can assume Lgξ2
1 6= 0 and there

exists smooth functions E1(x),E2(x) and σ2
2(x), σ2

3(x) such that

Lgξ
2
2 = −E1Lgξ

2
1 + σ2

2, Lgξ
2
3 = −E2Lgξ

2
1 + σ2

3,

where
[
σ2

2

σ2
3

]
= σ2 = 0 for all x ∈M1 around xa, i.e., σ2

i ∈ I2. Now set

R1 =

[
0 0 0 E1 1 0

0 0 0 E2 0 1

]
and denote

R1LfH1 =

[
E1Lfξ

2
1 + Lfξ

2
2

E2Lfξ
2
1 + Lfξ

2
3

]
=

[
ξ3

2

ξ3
3

]
= ξ3.

Suppose that the differentials of the matrix H2 =

[
H1

R1LfH1

]
are independent around xa,

thus we have

M2 = {x ∈M1 : ξ3
2 = ξ3

3 = 0} = {x ∈M1 : ξ3 = 0}.
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Step 3: Suppose the matrix LgH2 =

Lgξ1

Lgξ
2

Lgξ
3

 . has rank 2 for all x ∈ M2 around xa.

Then, there exist smooth functions E3(x),E4(x) and σ3(x) such that

Lgξ
3
3 = −E3Lgξ

2
1 − E4Lgξ

3
2 + σ3

3,

where σ3
3(x) = 0 for all x ∈M2 around xa, i.e., σ3

3 ∈ I3. Now set

R2 =
[
0 0 0 E3 0 0 E4 1

]
and denote

R2LfH2 = E3Lfξ
2
1 + E4Lfξ

3
2 + Lfξ

3
3 = ξ4

3 .

Suppose that the differentials of matrix H3 =

[
H2

R2LfH2

]
are independent around xa and

we thus have M3 = {x ∈M2 : ξ4
3 = 0}.

Step 4: Consider the matrix

LgH3 = [(Lgξ
1)T , (Lgξ

2)T , (Lgξ
3)T , (Lgξ

4
3)T ]T .

Suppose it has rank 3 at xa, then the algorithm stops (sincem = p = 3). Thus, by Proposi-
tion 6.1.3 of [92] (see also Claim 4.4.1 of Section 4.4.5), in (z, ξ1

1 , ξ
2
1 , ξ

1
2 , ξ

2
2 , ξ

2
3 , ξ

1
3 , ξ

2
3 , ξ

3
3 , ξ

4
3)-

coordinates (where z are complementary coordinates), Σ is brought into the following
form:

y1 = ξ1
1

ξ̇1
1 = ξ2

1 + σ1
1(x)v

ξ̇2
1 = Lfξ

2
1 + Lgξ

2
1v

y2 = ξ1
2

ξ̇1
2 = ξ2

2 + σ1
2(x)v

ξ̇2
2 = ξ3

2 − E1(x)(Lfξ
2
1 + Lgξ

2
1v) + σ2

2(x)v

ξ̇3
2 = Lfξ

3
2 + Lgξ

3
2v

y3 = ξ1
3

ξ̇1
3 = ξ2

3 + σ1
3(x)v

ξ̇2
3 = ξ3

3 − E2(x)(Lfξ
2
1 + Lgξ

2
1v) + σ2

3(x)v

ξ̇3
3 = ξ4

3 − E3(x)(Lfξ
2
1 + Lgξ

2
1v)− E4(x)(Lfξ

3
2 + Lgξ

3
2v) + σ3

3(x)v

ξ̇4
3 = Lfξ

4
3 + Lgξ

4
3v

ż = F̄ (ξ, z) + ḡ(ξ, z)v,

(4.21)

where the matrix

Lgξ2
1

Lgξ
3
2

Lgξ
4
3

 is invertible at xa. Then by the feedback transformation

ṽ =

Lfξ2
1

Lfξ
3
2

Lfξ
4
3

+

Lgξ2
1

Lgξ
3
2

Lgξ
4
3

 v = α + βv,
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we get 

y1 = ξ1
1

ξ̇1
1 = ξ2

1 + σ1
1(x)β−1(x) (ṽ − α(x))

ξ̇2
1 = ṽ1

y2 = ξ1
2

ξ̇1
2 = ξ2

2 + σ1
2(x)β−1(x) (ṽ − α(x))

ξ̇2
2 = ξ3

2 − E1(x)ṽ1 + σ2
2(x)β−1(x) (ṽ − α(x))

ξ̇3
2 = ṽ2

y3 = ξ1
3

ξ̇1
3 = ξ2

3 + σ1
3(x)ṽ

ξ̇2
3 = ξ3

3 − E2(x)ṽ1 + σ2
3(x)β−1(x) (ṽ − α(x))

ξ̇3
3 = ξ4

3 − E3(x)v1 − E4(x)ṽ2 + σ3
3(x)ṽ

ξ̇4
3 = ṽ3

ż = F̄ (ξ, z) + ḡ(ξ, z)β−1(x) (ṽ − α(x))

.

Now by setting y = 0 and deleting ξ̇2
1 = ṽ1, ξ̇

3
2 = ṽ2, ξ̇

4
3 = ṽ3, we get the following DAE:

0 0

1 0

0 0 0 0 0

0 0 1 0 0

0 E1(.) 0 1 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0

0 E2(.) 0 0 0 0 1 0 0

0 E3(.) 0 0 E4(.) 0 0 1 0

0 g∗1 0 0 g∗2 0 0 0 g∗3 I





ξ̇1
1

ξ̇2
1

ξ̇1
2

ξ̇2
2

ξ̇3
2

ξ̇1
3

ξ̇2
3

ξ̇3
3

ξ̇4
3

ż


=



ξ1
1

ξ2
1

ξ1
2

ξ2
2

ξ3
2

ξ1
3

ξ2
3

ξ3
3

ξ4
3

z


+



0

a1
1 + b1

1ξ̇
ρ

0

a1
2 + b1

2ξ̇
ρ

a2
2 + b2

2ξ̇
ρ

0

a1
3 + b1

3ξ̇
ρ

a2
3 + b2

3ξ̇
ρ

a3
3 + b3

3ξ̇
ρ

F ∗ (ξ, z)


,

where g∗1, g
∗
2, g
∗
3 are the nonzero columns of −ḡβ−1 and F ∗ = F̄ − ḡβ−1α, where aki =

−σki β−1α, bki = σki β
−1, for 1 ≤ i ≤ 3, 1 ≤ k ≤ ρi − 1. The indices ρ1 = 2, ρ2 = 3,

ρ3 = 4. Finally, by σki ∈ Ik, we have aki , b
k
i,l ∈ Ik.

4.4 Proofs of the results

4.4.1 Proof of Lemma 4.2.3

Proof. SinceM is a smooth connected embedded submanifold of dimension s, there exists
a neighborhood U0 of x0 and n − s smooth functions ϕ1, ..., ϕn−s : U0 → R such that
M ∩ U0 can be expressed as

M ∩ U0 =
{
x ∈ U0 : ϕ1(x) = ϕ2(x) =, ...,= ϕn−s(x) = 0

}
.

Choose new coordinates:

z = ψ(x) =
(
φ1(x), ..., φs(x), ϕ1(x), ..., ϕn−s(x)

)T
,
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where φ1(x), ..., φs(x) are smooth functions chosen to complete ψ(x) as a local diffeomor-
phism. Then for all x ∈ U0, we have

E(x)ẋ = E(x)

(
∂ψ(x)

∂x

)−1(
∂ψ(x)

∂x

)
ẋ = E(x)

(
∂ψ(x)

∂x

)−1

ż =
[
E1(x) E2(x)

] [ż1

ż2

]
,

where E1 : U0 → Rl×s, E2 : U0 → Rl×(n−s), z1 = (φ1, ..., φs)
T and z2 = (ϕ1, ..., ϕn−s)

T .

Since z2 = 0 for all x ∈M ∩ U0, we have

E1 (z1, z2) ż1 + E2 (z1, z2) ż2 |z2=0 = E1 (z1, 0) ż1.

By assumption (A1) that dim E(x)TxM = r for all x ∈M∩U , we have rankE1 (z1, 0) =

r for all z ∈ M ∩ U1, where U1 = U0 ∩ U . Then there exists Q′ : M ∩ U1 → Gl (l,R)

such that :

Q′(z1)E1 (z1, 0) ż1 =

E1
1(z1) E2

1(z1)

0 0

0 0

[ż1
1

ż2
1

]
,

where rank
[
E1

1(z1) E2
1(z1)

]
= r and z1 = (z1

1 , z
2
1), E1

1 : M ∩ U1 → Rr×r and E2
1 :

M ∩ U1 → Rr×(s−r). Without loss of generality, we can always assume that the matrix
E1

1(z1) is invertible, since if not, we can permute the variables of z1 such that the first r
columns of E1(z1) are independent.

In view of the analysis above, there exist Q(z1, z2) = Q′(z1) and z = ψ(x) defined on
U1 such that:

Ẽ(z) = Q(z)E (x)

(
∂ψ(x)

∂x

)−1

,

F̃ (z) = Q(z)F
(
ψ−1(z)

)
=

F̃ 1
1 (z)

F̃ 2
1 (z)

F̃2(z)

 =

F̃ 1
1 (z1, 0) + F̂ 1

1 (z)z2

F̃ 2
1 (z1, 0) + F̂ 2

1 (z)z2

F̃2(z1, 0) + F̂2(z)z2

 ,
where F̃ 1

1 , F̃ 2
1 , F̃2 are smooth functions with values in Rr, Rs−r, Rn−s, respectively, and

they can be always represented as the above form by using some matrix-valued functions
F̂ 1

1 (z), F̂ 2
1 (z), F̂2(z). Thus by Definition 4.1.1, locally Ξ = (E,F )

ex∼ Ξ̃ = (Ẽ, F̃ ) on U1.

Observe that by assumption (A2), we have F (x) ∈ E(x)TxM for all x ∈ M ∩ U1

(since U1 ⊆ U ), which means F̃ (z) ∈ Ẽ(z)Tzψ(M) for all z ∈ {z|z2 = 0}:F̃ 1
1 (z1, 0)

F̃ 2
1 (z1, 0)

F̃2(z1, 0)

 ∈ Im

E1
1(z1) E2

1(z1)

0 0

0 0

 .
It follows that F̃ 2

1 (z1, 0) = 0 and F̃2(z1, 0) = 0. Thus Ξ̃|z2=0 (means a reduction of the
restriction of Ξ̃ to {z : z2 = 0}, compare Definition 4.3.7 and 4.3.8) has the following
form: [

E1
1(z1) E2

1(z1)
] [ż1

1

ż2
1

]
= F̃1 (z1) . (4.22)
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Let z1
1 : I → Rr be the solution of the following ODE passing through z1

1(0) = z10
1 (note

that E1
1(z1) is invertible):

ż1
1(t) =

(
E1

1(z1)
)−1
(
F̃1 (z1)− E2

1(z1)ż2
1(t)
)
. (4.23)

It is always possible to find such a solution because if we denote ż2
1 = u, f(z1) =

(E1
1)−1F̃1(z1) and g(z1) = (E1

1)−1E2
1(z1), then ODE (4.23) can be expressed as{
ż1

1 = f(z1) + g (z1)u

ż2
1 = u,

(4.24)

which can be seen as a control system with input u and it is always solvable for any u.
Now assume (z1

1(t), z2
1(t)) is a solution of (4.24) passing through z1(0) = (z1

1(0), z2
1(0))

for a fixed u(t). Then for any z0 = (z10
1 , z

20
1 , 0) (notice that x0 ∈ M ), Ξ̃ always has a

solution z(t) = (z1
1(t) z1

2(t) 0). Finally, by Ξ
ex∼ Ξ̃, we get x(t) = ψ−1

(
z1

1(t) z1
2(t) 0

)
is a solution of Ξ passing through x0 = ψ−1(z0). Clearly, xx0(t) ∈ M ∩ U1 ⊆ M ∩ U for
all t ∈ Ix0 . Note that if r 6= s ⇒ r < s, there always exists a free variable u in equation
(4.24) and then Ξ has infinite solutions. If r = s, then z2

1 and u are absent in equation
(4.24) and Ξ has just one solution.

4.4.2 Proof of Theorem 4.3.14

Proof. By dim E(x)TxM
∗ is constant and M∗ is locally maximal invariant, we have

F (x) ∈ E(x)TxM
∗ locally for all x ∈ M∗ (by Proposition 4.3.2). Then all the as-

sumptions of Lemma 4.2.3 are satisfied for M∗. That is, dim E(x)TxM
∗ is constant and

F (x) ∈ E(x)TxM
∗ locally for all x ∈ M∗. By the proof of Lemma 4.2.3, we have Ξ|redM∗

is of the form (4.22).

(i)⇔(ii): Thus by Lemma 4.2.3, locally for any x0 ∈ M∗ , there exists one and only
one solution passing through x0 i.e., Ξ is internally regular (see Definition 4.3.13), if and
only if s = r, that is dim M∗ = dim E(x)TxM

∗.

(ii)⇔(iii): We can see from the the proof of Lemma 4.2.3 that Ξ|redM∗ , given by (4.22), is
externally equivalent to the ODE given by (4.23). Suppose that dim M∗ = dim E(x)TxM

∗,
i.e., s = r. It follows that z2

1 is absent in (4.23). Rewrite ODE (4.23) as

ż1
1 =

(
E1

1(z1
1)
)−1

F̃1

(
z1

1

)
. (4.25)

Denote z∗ = z1
1 and F ∗(z∗) = (E1

1(z1
1))
−1
F̃1 (z1

1). Thus Ξ|redM∗ is ex-equivalent to Ξ∗, given
by (4.10), via Q (z1

1) = (E1
1(z1

1))
−1 and a local diffeomorphism z∗ = z1

1 defined on M∗.
Therefore, Ξ is locally in-equivalent to Ξ∗ by Definition 4.3.11.

Conversely, suppose (iii) holds. Ξ is locally in-equivalent to Ξ∗ implies that Ξ|redM∗
is locally ex-equivalent to Ξ∗. Since z∗ is local system of coordinates on M∗, we can
directly see that Ξ∗ satisfy (ii) since dim M∗ = dim Iz∗Tz∗M

∗, where Iz∗ is an identical
matrix of the same dimension as M∗. Finally, consider system Ξ|redM∗ given by (4.22),
since ex-equivalence preserves the dimensions, we have s = r, implying that dim M∗ =

dim E(x)TxM
∗ locally for all x ∈M∗.
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4.4.3 Proofs of Proposition 4.3.18, Theorem 4.3.21 and Proposition
4.3.23

Proof of Proposition 4.3.18. If. Suppose that Σ and Σ̃ are equivalent via the transforma-
tions given by (4.16). First, Im g̃(x) = Im g(x)β(x) = kerE1(x) = kerE(x) proves that
g̃(x) is another choice such that Im g̃(x) = kerE(x). Moreover, we have

Σ̃ :

{
ẋ = f̃ + g̃ṽ = f + gα + γh+ gβv = E†1F1 + gα + γF2 + gβv

ỹ = h̃ = ηh,

Pre-multiply the differential part ẋ = E†1F1 +gα+γF2 +gβv of Σ̃ by E1(x), we get (note
that Im g(x) = kerE1(x)) {

E1(x)ẋ = F1(x) + E1γF2(x)

ỹ = ηh(x).

Thus Σ̃ is an (I, ṽ)-explicitation of the following DAECS:[
E1(x)

0

]
ẋ =

[
F1(x) + E1γF2(x)

η(x)F2(x)

]
.

Since the above DAE can be obtained from Ξ via Q̃(x) = Q′Q(x), where Q′(x) =[
Iq E1γ(x)

0 η(x)

]
, it proves that Σ̃ is a (Q̃, ṽ)-explicitation of Ξ corresponding to the choice

of invertible matrix Q̃(x) = Q′(x)Q(x). Finally, by E1f̃ = F1 + E1γF2, we get f̃ =

Ẽ†1(F1 + γF2) for the choice of right inverse Ẽ†1 of E1.

Only if. Suppose that Σ̃ ∈ Expl(Ξ) via Q̃(x), Ẽ†1(x) and g̃(x). First by Im g̃(x) =

kerE(x) = Im g(x), there exists an invertible matrix β(x) such that g̃(x) = g(x)β(x).
Moreover, sinceE†1(x) is a right inverse ofE1(x) if and only if any solution ẋ ofE1(x)ẋ =

w is given by E†1(x)w, we have E1E
†
1F1(x) = F1(x) and E1Ẽ

†
1F1(x) = F1(x). It follows

that E1(Ẽ†1−E
†
1)F1(x) = 0, so (Ẽ†1−E

†
1)F1(x) ∈ kerE1(x). Since kerE1(x) = Im g(x),

it follows that (Ẽ†1 − E
†
1)F1(x) = g(x)α(x) for a suitable α(x). Furthermore, since Q(x)

is such that E1(x) of Q(x)E(x) =

[
E1(x)

0

]
is of full row rank, any other Q̃(x), such that

Ẽ1(x) of Q̃(x)E(x) =

[
Ẽ1(x)

0

]
is full row rank, must be of the form Q̃(x) = Q′(x)Q(x),

where Q′(x) =

[
Q1(x) Q2(x)

0 Q4(x)

]
. Thus via Q̃(x), Ξ is ex-equivalent to

Q′(x)

[
E1(x)

0

]
ẋ = Q′(x)

[
F1(x)

F2(x)

]
⇒
[
Q1(x)E1(x)

0

]
ẋ =

[
Q1(x)F1(x) +Q2(x)F2(x)

Q4(x)F2(x)

]
.

The equation on the right-hand side of the above can be expressed (using Ẽ†1(x) and g̃(x))
as: {

ẋ = Ẽ†1F1 + Ẽ†1Q
−1
1 Q2F2 + g̃v = E†1F1 + gα + E†1Q

−1
1 Q2h+ gβṽ

0 = Q4F2 = Q4h.
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Thus the explicitation of Ξ via Q̃(x), Ẽ†1(x) and g̃(x) is

Σ̃ :

{
ẋ = E†1F1 + gα + γh+ gβṽ = f + γh+ g(α + βṽ) = f̃ + g̃ṽ

ỹ = ηh = h̃.

where γ(x) = E†1Q
−1
1 Q2(x), η(x) = Q4(x). Now we can see that Σ and Σ̃ are equivalent

via the transformations given in (4.16).

Proof of Theorem 4.3.21. By the assumptions that rankE(x) = rank Ẽ(x̃) = const. = q

around x0 and x̃0, respectively, we have Ξ and Ξ̃ are locally ex-equivalent to

Ξ′ :

[
E1(x)

0

]
ẋ =

[
F1(x)

F2(x)

]
and Ξ̃′ :

[
Ẽ1 (x̃)

0

]
˙̃x =

[
F̃1 (x̃)

F̃2 (x̃)

]
,

respectively, where E1(x) and Ẽ1 (x̃) are full row rank matrices and their ranks are q. By
Definition 4.3.16, we have

f(x) = E†1(x)F1(x), Im g(x) = kerE1(x), h(x) = F2(x),

f̃(x̃) = Ẽ†1(x̃)F̃1(x̃), Im g̃(x̃) = ker Ẽ1(x̃), h̃(x̃) = F̃2(x̃).
(4.26)

Note that the explicitation is defined up to a feedback, an output multiplication and a
generalized output injection. Any two control systems belonging to Expl(Ξ) are sys-
equivalent to each other and so are any two control systems belonging to Expl(Ξ̃). Thus
the choice of an explicitation system makes no difference for the proof of sys-equivalence.
Without loss of generality, we will use f(x), g(x), h(x) and f̃(x), g̃(x), h̃(x), given in
(4.26) for the remaining part of this proof.

If. Suppose Σ
sys∼ Σ̃ locally in a neighborhood U of x0. By Definition 4.3.19, there

exists a diffeomorphism x̃ = ψ(x) and β : U → Gl(m,R) such that g̃ ◦ ψ = ∂ψ
∂x
gβ, which

implies

ker(Ẽ ◦ ψ) = span{g̃1, ..., g̃m} ◦ ψ = span

{
∂ψ

∂x
g1, ...,

∂ψ

∂x
gm

}
=
∂ψ

∂x
kerE.

We can deduce from the above equation that there exists Q1 : U → Gl(q,R) such that

Ẽ1(ψ(x)) = Q1(x)E1(x)

(
∂ψ(x)

∂x

)−1

. (4.27)

Subsequently, by f̃ ◦ ψ = ∂ψ
∂x

(f + γh+ gα) of Definition 4.3.19, we have

(Ẽ†1 ◦ ψ)(F̃1 ◦ ψ) =
∂ψ

∂x
(E†1F1 + γF2 + gα).

Premultiply the above equation by Ẽ1 ◦ ψ = Q1E1

(
∂ψ
∂x

)−1
, to obtain

F̃1(ψ(x)) = Q1(x)F1(x) +Q1(x)E1(x)γ(x)F2(x). (4.28)

Then by h̃ ◦ ψ = ηh of Definition 4.3.19, we immediately get

F̃2(ψ(x)) = η(x)F2(x). (4.29)
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Now combining (4.27), (4.28) and (4.29), we conclude that Ξ′ and Ξ̃′ are ex-equivalent

via x̃ = ψ(x) and Q(x) =

[
Q1(x) Q1(x)E1(x)γ(x)

0 η(x)

]
, which implies that Ξ

ex∼ Ξ̃ (since

Ξ
ex∼Ξ′ and Ξ̃

ex∼ Ξ̃′).

Only if. Suppose that locally Ξ
ex∼ Ξ̃. It implies that locally Ξ′

ex∼ Ξ̃′. Assume that they
are ex-equivalent via Q : U → Gl(l,R) and x̃ = ψ(x) defined on a neighborhood U of x0.

Let Q(x) =

[
Q1(x) Q2(x)

Q3(x) Q4(x)

]
, where Q1(x), Q2(x), Q3(x) and Q4(x) are matrix-valued

functions of sizes q× q, q×m, p× q and p× p, respectively. Then by
[
Q1 Q2

Q3 Q4

] [
E1

0

]
=[

Ẽ1 ◦ ψ
0

]
∂ψ
∂x

, we can deduce that Q3(x) = 0 and Q1(x), Q4(x) are invertible matrices.

Then we have[
Q1 Q2

0 Q4

] [
E1

0

]
=

[
Ẽ1 ◦ ψ

0

]
∂ψ

∂x
,

[
Q1 Q2

0 Q4

] [
F1

F2

]
=

[
F̃1 ◦ ψ
F̃2 ◦ ψ

]
,

which implies

Ẽ1 ◦ ψ = Q1E1

(
∂ψ

∂x

)−1

, F̃1 ◦ ψ = Q1F1 +Q2F2, F̃2 ◦ ψ = Q4F2. (4.30)

Thus by Im g(x) = kerE(x) = kerE1(x) and Im g̃(x) = ker Ẽ(x̃) = ker Ẽ1(x̃), and
using (4.30), we have

g̃ ◦ ψ =
∂ψ

∂x
gβ (4.31)

for some β : U → Gl(m,R). Moreover, there exists α : U → Rm such that

f̃ ◦ ψ = Ẽ†1 ◦ ψF̃1 ◦ ψ
(4.30)
=

∂ψ

∂x
E†1Q

−1
1 Q1F1 +Q2F2

=
∂ψ

∂x
E†1Q

−1
1 (Q1F1 +Q2F2 +Q1E1gα)

=
∂ψ

∂x

(
f + E†1Q

−1
1 Q2y + gα

)
, (4.32)

In addition, we have

h̃ ◦ ψ = F̃2 ◦ ψ
(4.30)
= Q4F2 = Q4h. (4.33)

Finally, it can be seen from (4.31), (4.32), and (4.33) that Σ
sys∼ Σ̃ via x̃ = ψ(x), α(x),

β(x), γ(x) = E†1Q
−1
1 Q2(x) and η(x) = Q4(x).

Proof of Proposition 4.3.23. We first show that the sequence of submanifolds Mk ∩ Uk of
Proposition 4.3.3 of DAE Ξ and the sequenceNk∩Vk of the zero dynamics algorithm of any
control system Σ = (f, g, h) ∈ Expl(Ξ) coincide. Suppose that rankE(x) = const. = q

in a neighborhood U0 of x0. Then there always exists an invertible matrix Q(x) defined
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on U0 such that Q(x)E(x) =

[
E1(x)

0

]
, Q(x)F (x) =

[
F1(x)

F2(x)

]
and rankE1(x) = q for

all x ∈ U0. Recall that Nk of the zero dynamics algorithm is well-defined for the class
Expl(Σ) (see Remark 4.3.22) and Nk are the same for all control systems belonging to
Expl(Ξ). Since the choice of an explicitation system makes no difference for Nk, we can
assume Σ = (f, g, h) ∈ Expl(Ξ) is given by f(x) = E†1(x)F1(x), Im g(x) = kerE(x),
h(x) = F2(x).
By the definition of M0 (see (4.6) of Proposition 4.3.3) and N0 = h−1(0), we have

M0 ∩ U0 = {x ∈ U0 : Q(x)F (x) ∈ ImQ(x)E(x)}

=

{
x ∈ U0 :

(
F1(x)

F2(x)

)
∈ Im

[
E1(x)

0

]}
= {x ∈ U0 : F2(x) = 0}

= {x ∈ U0 : h(x) = 0} = N0 ∩ U0.

For k > 0, suppose M c
k = N c

k . Then by equation (4.7), we have

Mk =
{
x ∈M c

k−1 : Q(x)F (x) ∈ Q(x)E(x)TxM
c
k−1

}
=

{
x ∈M c

k−1 :

(
F1(x)

F2(x)

)
∈
[
E1(x)

0

]
TxM

c
k−1

}
=
{
x ∈M c

k−1 : F1(x) ∈ ImE1(x)TxM
c
k−1

}
=
{
x ∈M c

k−1 : f(x) + kerE1(x) ⊆ TxM
c
k−1 + kerE1(x)

}
=
{
x ∈ N c

k−1 : f(x) ∈ TxN c
k−1 + span{g1(x), . . . , gm(x)}

}
= Nk.

If either one among (A1) and (A2) holds, then by the relations of Nk and Mk shown
above, we can easily deduce the other one. If so, we have both (A1) and (A2) hold.
Then by Proposition 4.3.3, M∗ = M c

k∗ is a locally maximal invariant submanifold and
by Proposition 6.1.1 in [92], N∗ = N c

k∗ is a local maximal output zeroing submanifold.
Moreover, we have locally M∗ = N∗ (since locally Mk = Nk).

Now in view of Lemma 4.2.3 and Theorem 4.3.14, under the assumption that dim E(x)TxM
∗

is constant locally for all x ∈ M∗, we can deduce the following equivalent statements
around x0 (using the result that N∗ = M∗):

(a) For any point x ∈M∗, there exists only one solution of Ξ passing through x (internal
regularity of Definition 4.3.13);

(b) dim M∗ = dim E(x)TxM
∗ ;

(c) the map E(x) is one to one on TxM∗;

(d) kerE(x) ∩ TxM∗ = 0;

(e) span{g1(x), . . . , gm(x)} ∩ TxN∗ = 0.

Thus we have Ξ is internally regular (condition (a)) if and only if

span{g1(x0), . . . , gm(x0)} ∩ Tx0N∗ = 0

(which is, equivalently, condition (c)).
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4.4.4 Proof of Theorem 4.3.27

Proof. (i) ⇒ (ii): Suppose in a neighborhood U of x0 that rankE(x) = q and D(x) =

kerE(x) = span{g1(x), . . . , gm(x)} is involutive, m = n − q, where g1, . . . , gm are in-
dependent vector fields on U . Then by the involutivity of D , there exist local coordi-
nates x̃ = (x̃1, x̃2) = ψ(x), where x1 = (x1

1, . . . , x
q
1) and x2 = (x1

2, . . . , x
q
2), such that

span {dx̃1
1, . . . , dx̃

q
1} = span {dx̃1} = D⊥ (Frobenius theorem [112]). Note that in the x̃

coordinates, the distribution

ker Ẽ(x̃) = ker

(
E(x)

(
∂ψ(x)

∂x

)−1
)

=
∂ψ(x)

∂x
D(x)

= span

{
∂ψ(x)

∂x
g1(x), ...,

∂ψ(x)

∂x
gm(x)

}
= span{g̃1(x̃), ..., g̃m(x̃)}.

where g̃i(x̃) = ∂ψ(x)
∂x

gi(x), i = 1, ...,m. Now let g̃(x̃) be a matrix whose columns consist
of g̃i(x̃), for i = 1, ...,m. It follows that rank g̃(x̃) = m around x0. By dx̃1 = D⊥, we

have < dx̃1, g̃i >= 0, for i = 1, . . . ,m. Thus g̃(x̃) is of the form g̃(x̃) =

[
0

g̃2 (x̃)

]
, where

g̃2 : ψ(U) → Rm×m. Since rank g(x̃) = m, it can be seen that g̃2(x̃) is an invertible
matrix, which implies that Ẽ(x̃) has to be of the form Ẽ(x̃) =

[
Ẽ1 (x̃) 0

]
, where Ẽ1 (x̃) :

ψ(U)→ Rl×m. Thus in x̃-coordinates, Ξ̃ = (Ẽ, F̃ ) has the following form:

[
Ẽ1 (x̃) 0

] [ ˙̃x1

˙̃x2

]
= F (x̃) .

Now by rankE(x) = q, we get rank
[
Ẽ1 (x̃) 0

]
= rankE(x) = q (the coordinate

transformation preserves the rank). Thus there exists Q : ψ(U) → Gl(l,R) such that

Q(x̃)Ẽ(x̃) = Q(x̃)
[
Ẽ1 (x̃) 0

]
=

[
Ẽ1

1 (x̃) 0

0 0

]
, where Ẽ1

1 : ψ(U) → Rq×q. Since Q(x̃)

preserves the rank of Ẽ(x̃), we have rank Ẽ1
1 (x̃) = q. Therefore, Ẽ1

1 (x̃) is an invertible

matrix. Now let Q′(x̃) =

[(
Ẽ1

1 (x̃)
)−1

0

0 Il−q

]
Q(x̃) and denote Q′(x̃)f(x̃) =

[
F1 (x̃)

F2 (x̃)

]
.

It is seen that, via x̃ = ψ(x) and Q′(x), Ξ is locally ex-equivalent to Ξ̃ = (Ẽ, F̃ ), where

Ẽ(x̃) = Q′(x)E(x)(∂ψ(x)
∂x

)−1 =

[
Iq 0

0 0

]
and F̃ (x̃) = Q′(ψ(x))F (x) =

[
F1 (x̃)

F2 (x̃)

]
. Clearly,

Ξ̃ is a pure semi-explicit DAE.

(ii) ⇒ (iii): Suppose that Ξ is locally ex-equivalent to ΞPSE . Then, any control
system Σ ∈ Expl(Ξ) is sys-equivalent to Σ′ ∈ Expl(ΞPSE) below (by Theorem 4.3.14):

Σ′ :


[
ẋ1

ẋ2

]
=

[
F1(x1, x2)

0

]
+

[
0

Im

]
v

y = F2(x1, x2).
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Suppose that Σ
sys∼ Σ′ via z = (z1, z2) = ψ(x), α, β and γ =

[
γ1

γ2

]
, then

Σ :


[
ż1

ż2

]
= ∂ψ(x)

∂x

([
F1(x)

0

]
+

[
γ1(x)

γ2(x)

]
y +

[
0

Im

]
(α(x) + β(x)ṽ)

)
ỹ = η(x)F2(x)

.

By Definition 4.3.26, Σ can be always fully reduced to (by a coordinates change and a
feedback transformation){

ẋ1 = F1(x1, x2) + γ1(x1, x2)F2(x1, x2)

y = η(x1, x2)F2(x1, x2),

where x2 is the new control.

(iii) ⇒ (i): Suppose (iii) holds. Then Expl(Ξ) is not empty implies that locally
E(x) has constant rank. By Definition 4.3.26, any control system Σ ∈ Expl(Ξ) can be
fully reduced implies D = kerE(x) = span {g1, ..., gm} is involutive.

4.4.5 Proof of Theorem 4.3.29

y1 = ξ1
1

ξ̇1
1 = ξ2

1 + σ1
1v

· · ·
ξ̇ρ1−1

1 = ξσ11 + σρ1−1
1 v

ξ̇ρ11 = α1 + β1v

y2 = ξ1
2

ξ̇1
2 = ξ2

2 + E1
2,1 (α1 + β1v) + σ1

2v

· · ·
ξ̇ρ2−1

2 = ξρ21 + Eρ2−1
2,1 (α1 + β1u) + σρ2−1

2 v

ξ̇ρ21 = α2 + β2v
...

yi = ξ1
i , i = 2, . . . ,m

ξ̇1
i = ξ2

i +
i−1∑
s=1

E1
i,s (αs + βsv) + σ1

i v

· · ·

ξ̇ρi−1
i = ξρ2i +

i−1∑
s=1

Eρi−1
i,s (αs + βsv) + σρi−1

i v

ξ̇ρii = αi + βiv
...

ż = F̄ (ξ, z) + ḡ(ξ, z)v.

(4.34)

where Ej
i,s = 0 for 1 ≤ i ≤ m, 1 ≤ j < ρs.

Claim 4.4.1. If assumptions (A1)-(A3) of Theorem 4.3.29 are satisfied, then the admissible
point xa is a regular point of the zero dynamics algorithm (rank conditions (i), (ii), (iii)
of Proposition 6.1.3 of [92] are satisfied) for any control system Σ ∈ Expl(Ξ). If so,
we use Proposition 6.1.5 of [92] with a small modification: there exist local coordinates
(ξ, z) = (ξ1, . . . , ξm, z) such that Σ is in the form of (4.34) above.
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Remark 4.4.2. (i) Note that in equation (4.34), ρ1 ≤ ρ2 ≤ . . . ≤ ρm, the matrix β =

[βT1 , . . . , β
T
m]T is invertible at xa. Denote ξj = [ξj1, . . . , ξ

j
m], where ξji = 0 for j ≥ ρi, then

the functions σk|redNk−1
= 0 for k = 1, . . . , ρi − 1, where

Nk−1 = {(ξ, z) : ξji = 0, 1 ≤ i ≤ m, 1 ≤ j ≤ k.}

(ii) There are two differences between system (4.34) and the zero dynamics form of Propo-
sition 6.1.3 of [92], where the functions σ1

1, . . . , σ
ρ1−1
1 are not present and the functions

Ej
i,s for 1 ≤ j < s are not necessarily zero. However, in (4.34), σ1

1, . . . , σ
ρ1−1
1 vanish on

M0, . . . ,Mρ1−2, respectively, but may not outside, and the functions Ej
i,s for 1 ≤ j < s are

zero.

Proof of Claim 4.4.1. We will prove that assumptions (A1), (A2), (A3) of Theorem 4.3.29
correspond to the rank conditions (i), (ii), (iii) of Proposition 6.1.3 in [92]. By the assump-
tion of Theorem 4.3.29 that the rank of E(x) is constant in a neighborhood U = U0, we
have Expl(Ξ) is not empty. Now, in order to compare the two algorithms (Algorithm 4.3.4
for Ξ and the zero dynamics algorithm for control system Σ ∈ Expl(Ξ)), we use the same
notations as in Algorithm 4.3.4.

Then for a control system Σ = (f, g, h) ∈ Expl(Ξ), we have f(x) = (E1
0)†F 1

0 (x),
Im g(x) = kerE(x), h(x) = F 2

0 (x). The zero dynamics algorithm for Σ can be imple-
mented in the following way:

Step 0: by assumption (A1) of Theorem 4.3.29 that dF 2
0 (x) has constant rank n − s0

around xa, we get dh(x) = dF 2
0 (x) has constant rank n − s0 around xa (condition (i) of

Proposition 6.1.3 in [92]). Thus h−1(0) can be locally expressed asN0 = {x : H0(x) = 0},
where H0 = ϕ0(x) = col[ϕ1

0, ..., ϕ
n−s0
0 ].

Step k (k > 0): From the proof of Proposition 4.3.23, we have locally Nk−1 = Mk−1,
which is

Nk−1 = Mk−1 = {x : Hk−1(x) = 0},

where Hk−1 = col[ϕ0, . . . , ϕk−1]. By the zero dynamic algorithms, Nk can be calculated
by all x ∈ N c

k−1 such that

LfHk−1(x) + LgHk−1(x)u = 0.

Then by assumption (A2) of Theorem 4.3.29, we can deduce E(x) ker dHk is constant
rank for all x ∈Mk around xa, we have that

dim kerE(x) ∩ ker dHk−1 = dim span{g1, . . . , gm} ∩ ker dHk−1 = const., (4.35)

for all x ∈ Mk−1 around xa. Now by dim kerE(x) = const. around xa (since E(x) is of
constant rank), we get

dim span{g1, . . . , gm} = const. (4.36)
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locally around xa. By (4.35) and (4.36), we get rankLgHk−1(x) = const. for all x ∈Mk−1

around xa (condition (ii) of Proposition 6.1.3 in [92]).

Since the rank of LgHk−1(x) is constant, there exists a basis matrix Rk−1(x) of the
annihilator of the image of LgHk−1(x), that is Rk−1(x)LgHk−1(x) = 0. Thus Nk can be
defined by

Nk = {x ∈ Uk : Hk−1(x) = 0, Rk−1(x)LfHk−1(x) = 0}.

Notice that by Algorithm 4.3.4, we have

Mk = {x ∈ Uk : Hk−1(x) = 0, F 2
k (x) = 0}.

By Nk = Mk and ranks of the differentials of Φk(x) = col[ϕ0(x), . . . , ϕk−1(x), F 2
k (x)] are

constant for all x around xa ( assumption (A1) of Theorem 4.3.29), it follows that the rank

of the differentials of
[

Hk−1(x)

Rk−1(x)LfHk−1(x)

]
has constant rank around xa (condition (i) of

Proposition 6.1.3 in [92]).

Finally, the assumption (A3) of Theorem 4.3.29 that dim E(x)TxM
∗ = dim M∗ lo-

cally around xa implies

span {g1(xa), . . . , gm(xa)} ∩ TxaN∗ = 0.

Finally, by N∗ = {x : Hk∗ = 0}, it follows that the matrix LgHk∗ (xa) has rank m

(condition (iii) of Proposition 6.1.3 in [92]).

Proof of Theorem 4.3.29. Observe that by assumption (A3) and Theorem 4.3.14(iii), we
have Ξ is internally regular. Then by Claim 4.4.1, we have xa is a regular point of the
zero dynamics algorithm for any control system Σ ∈ Expl(Ξ). Then there exists local
coordinates (ξ, z) such that Σ is in the form of (4.34) around xa. Notice that the matrix
β = [βT1 , . . . , β

T
m]T is invertible at xa and the sequence of submanifolds Nk in the zero

dynamics algorithm can be expressed as Nk = {(ξ, z) : ξj = 0, 1 ≤ j ≤ k + 1}.
Moreover, locally for all x ∈ Nk, we have σki = 0 for 1 ≤ i ≤ m, 1 ≤ k ≤ ρi − 1, which
implies σki ∈ Ik. Then for system (4.34), using the feedback transformation ṽ = α + βv,
where α = col [a1, . . . , am], we get :

yi = ξ1
i , i = 1, . . . ,m,

ξ̇1
i = ξ2

i +
i−1∑
s=1

E1
i,sṽs + σ1

i (β−1 (ṽ − α))

· · ·

ξ̇ρi−1
i = ξρii +

i−1∑
s=1

Eρi−1
i,s ṽs + σρi−1

i (β−1 (ṽ − α))

ξ̇ρii = ṽi
ż = F̄ (ξ, z) + ḡ(ξ, z) (β−1 (ṽ − α)) .
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Denote aki = −σki β−1α, bki = σki β
−1, for 1 ≤ i ≤ m, 1 ≤ k ≤ ρi − 1, then we get

Σ̃ :



yi = ξ1
i , i = 1, . . . ,m

ξ̇1
i = ξ2

i +
i−1∑
s=1

E1
i,sṽs + a1

i + b1
i ṽ

· · ·

ξ̇ρi−1
i = ξρii +

i−1∑
s=1

Eρi−1
i,s ṽs + aρi−1

i + bρi−1
i ṽ

ξ̇ρii = ṽi
...

ż = F ∗(ξ, z) +G∗(ξ, z)ṽ,

where F ∗ = F̄ − ḡβ−1α and G∗ = ḡβ−1. Denote the above control system by Σ̃, we have
Σ
sys∼ Σ̃.

Then consider the last row of every subsystem of Σ̃, which is ξ̇ρii = ṽi. By deleting
this equation in every subsystem and setting yi = 0 for i = 1, . . . ,m and replacing the
variable ṽi by ξ̇ρii , we transform Σ̃ to DAE Ξ̃ below. Note that this transformation from Σ̃

to Ξ̃ is called the driving variables reduction and implicitation of a control system, which
has been discussed in Section 4.3.3.

Ξ̃ :



...
0

1
. . .
. . . . . .

1 0



ξ̇1
i

ξ̇2
i
...
ξ̇ρii

−


0
i−1∑
s=1

E1
i,sξ̇

ns
s

...
i−1∑
s=1

Eρi−1
i,s ξ̇nss


=


ξ1
i

ξ2
i
...
ξρii

+


0

a1
i + b1

i ξ̇
ρ

...
aρi−1
i + bρi−1

i ξ̇ρ


...

−G∗ (ξ, z) ξ̇ρi + ż = F ∗ (ξ, z) ,

where Ej
i,s = 0 for 1 ≤ j < ρs. By σki ∈ Ik, we have aki , b

k
i,l ∈ Ik. Finally, by Theorem

4.3.21 and Σ
sys∼ Σ̃, we have that Ξ

ex∼ Ξ̃ and that Ξ̃ is in the NWF of (4.20).

4.5 Conclusion

In this chapter, for a nonlinear DAE Ξ = (E,F ), we define the internal and external equiv-
alence, their differences are discussed by analyzing their relations with solutions. We show
that the internal regularity (existence and uniqueness of solutions) of a DAE is equivalent
to the fact that the DAE is in-equivalent to an ODE on its maximal invariant submanifold.
A procedure named explicitation with driving variables is proposed to connect nonlinear
DAEs with nonlinear control systems. We show that the external equivalence for two DAEs
is the same as the system equivalence for their explicitation systems. Moreover, we show
that Ξ is externally equivalent to a pure semi-explicit DAE if and only if the distribution
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defined by kerE(x) is of constant rank and involutive. If so, the driving variables of a
control system Σ ∈ Expl(Ξ) can be fully reduced. Finally, a nonlinear generalization of
the Weierstrass form WF is proposed and an example is given to show its construction
procedure.
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Chapter 5

Feedback Linearization of Nonlinear
Differential-Algebraic Control Systems

Abstract: In this chapter, we study feedback linearizability for nonlinear differential-
algebraic control systems DAECSs under two kinds of feedback equivalence, namely, the
external and internal feedback equivalence. Necessary and sufficient conditions are given
for the internal and external feedback linearization problems with the help of an explicita-
tion procedure. This explicitation procedure attaches a class of ODE control systems with
two kinds of inputs to any DAECS. We prove that feedback linearizability of a DAECS is
closely related to the involutivity of some distributions of a system given by the explicita-
tion. Moreover, two normal forms are proposed based on the notion of maximal controlled
invariant submanifold of DAECSs. These two normal forms facilitate understanding the
role of the variables in DAECSs. Finally, we illustrate the results of this chapter with
examples (from both practical and academical systems).

Notation

N the set of natural numbers with zero and N∗ = N\{0}
C the set of complex numbers
Rn×m the set of real valued matrices with n rows and m columns
Cj(M ;N) the class of maps of class Cj , j ∈ N∪{∞}, fromM toN ; if j =∞,

it is the set of smooth maps
Gl (n,R) the group of nonsigular matrices of Rn×n

TxM the tangent space of a submanifold M of Rn at x ∈M
Id identity matrix
∧ exterior product
dξ1 ∧ dξ2 dξ1

1 ∧ · · · ∧ ξ
n1
1 ∧ dξ2 ∧ · · · ∧ ξn2

2 , where ξ1 = (ξ1
1 , . . . , ξ

n1
1 ) and

ξ2 = (ξ2
2 , . . . , ξ

n2
2 )
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5.1 Introduction

Consider a nonlinear control system, given by a differential algebraic equation DAE of
quasi-linear form:

Ξu : E(x)ẋ = F (x) +G(x)u, (5.1)

where x ∈ X is the “generalized” state, with X an open subset of Rn, the vector of control
inputs u ∈ Rm, and where E : TX → Rl, F : X → Rl and G : X → Rl×m are smooth
maps and the word “smooth” will always mean C∞-smooth throughout the chapter. Note
that E(x) is not necessarily square and invertible. A differential-algebraic control system
DAECS of form (5.1) will be denoted by Ξu

l,n,m = (E,F,G) or, simply, Ξu. We call x
in (5.1) the “generalized” state because it is different from the state of a classical ODE
control system ODECS, which is

ẋ = f(x) +
m∑
i=1

gi(x)ui, (5.2)

where f, g1, . . . , gm : X → TX . Note that the variables of the “generalized” states play
two different roles for the system. More specifically, non-invertibility of E(x) may imply
the existence of algebraic constraints and some variables of x (even some u-variables) are
constrained by the algebraic constraints. On the other hand, some other variables of x
are free and they play the role of an input (since they enter the system statically). Note
that although the free variables of x may perform "like" inputs, we will emphasize their
differences with the original control input u.

A linear DAECS is of the form

∆u : Eẋ = Hx+ Lu, (5.3)

where E,H ∈ Rl×n and L ∈ Rl×m and will be denoted by ∆u
l,n,m = (E,H,L) or, simply,

∆u. Linear DAECSs have been studied for decades, there is a rich literature devoted to
them (see, e.g., the surveys [127, 128] and textbook [59]). In the context of this chap-
ter, we will need results about canonical forms [131],[124] and Chapter 3, controllability
[17],[55],[74], and geometric subspaces [79],[152]. The motivation of studying linear and
nonlinear DAECSs is their frequent presence in mathematical models of practical systems
e.g., constrained mechanics [159, 199, 22, 141, 177], chemical processes [119, 33, 154],
electrical circuits [165, 166, 67], etc.

The feedback linearization problem for nonlinear ODECSs (i.e., when there exists a
local change of coordinates in the state space and a feedback transformation such that
the transformed system has a linear form in the new coordinate) has drawn attention of
researchers for decades (e.g. see survey papers [163],[180] and books [151],[92]). The
solution of the feedback linearization problem of ODECSs was first given in Brockett’s
paper [29] and developed by Jakubczyk and Respondek [98], Su [178], Hunt et Su [88].
Compared to the ODEs, fewer results on the linearization problem of DAE systems can be
found. Xiaoping [195] transformed a nonlinear DAECS into a linear one by state space
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transformations, Kawaji [111] gave sufficient conditions for the feedback linearization of a
special class of DAECSs, Jie Wang and Chen Chen [185] considered a semi-explicit DAE
and linearized the differential part of the DAE. The linearization of semi-explicit DAEs
under equivalence of different levels [49] is studies in Chapter 6.

There are mainly two contributions of this chapter. One is to find when a given DAECS
of form (5.1) is locally equivalent to a linear completely controllable one (see the definition
of complete controllability in [17]). In particular, we will consider two kinds of equiva-
lence, namely, the external feedback equivalence given in Definition 5.2.2 and the internal
feedback equivalence given in Definition 5.3.8. Note that the words "external" and "inter-
nal", appearing throughout this chapter, basically mean that we consider the DAECS on an
open neighborhood ofX and on the locally maximal controlled invariant submanifold (see
[13]), respectively. We discuss in detail the difference and relations of the two equivalence
relations for linear DAEs in Chapter 2, or see [47], and for nonlinear DAEs in Chapter
4, or see [48]. In this chapter, we will use a procedure named explicitation with driving
variables (proposed in Chapter 3 and Chapter 4) to connect nonlinear DAECSs with non-
linear ODECSs. By this explicitation procedure, we interpret linearizability of DAECSs
under internal or external feedback equivalence with the help of linearizability of the ex-
plicitation systems under system feedback equivalence (see Definition 5.2.7). The other
contribution is to propose two normal forms based on the notion of maximal controlled
invariant submanifold. These normal forms are helpful in understanding the role of the
variables in a DAECS, e.g., to see which variables of the “generalized” state are actually
free and which control inputs are actually constrained by algebraic constraints.

The chapter is organized as follows. In Section 5.2, we give the definition of external
feedback equivalence and describe the explicitation with driving variables procedure step
by step. In Section 5.3, we show a DAECS can be externally equivalent to two normal
forms under different assumptions. In Section 5.4, we give necessary and sufficient con-
ditions for the linearization of DAECSs under external and internal feedback equivalence.
In Section 5.5, we illustrate the results of Section 5.3 and Section 5.4 by some examples.
Section 5.6 contains the proofs. In Section 5.7, we give conclusions and some perspectives
of this chapter.

5.2 Explicitation of differential algebraic control systems

We define the solution of a DAECS as follows:

Definition 5.2.1. (Solution) For Ξu
l,n,m = (E,F,G), a curve (γ, u) : I → X ×U defined

on an open interval I ∈ R with γ(t) ∈ C1 and u(t) ∈ C0 is called a solution of Ξu, if for
all t ∈ I , E(γ(t)) = F (γ(t)) +G(γ(t))u(t).

If we fix (t0, x
0) and u(t), then a solution γ(t) satisfying γ(t0) = x0 will be denoted by

γx0 and the maximal time-interval on which it exists by Ix0 . Clearly, Ix0 is an open interval
that depends on x0 and u(t), and may be infinite or finite (depending whether the trajectory
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γx0 escapes in finite time into infinity or not). Note that for a given point x0, there may
not exist any solution passing through x0 due to the existence of algebraic constraints or a
solution γx0 may not be unique even for a fixed control input u(t). We call a point x0 ∈ X
an admissible point of Ξu, if there exists at least one solution (γ(t), u(t)) of Ξu satisfying
γ(t0) = x0. We will denote admissible points by xa.

Definition 5.2.2. (External feedback equivalence) Two DAECSs Ξu
l,n,m = (E,F,G) and

Ξ̃ũ
l,n,m = (Ẽ, F̃ , G̃) defined on X and X̃ , respectively, are called external feedback equiv-

alent, shortly ex-fb-equivalent, if there exists a diffeomorphism ψ : X → X̃ and smooth
functions Q : X → Gl(l,R), αu : X → Rm, βu : X → Gl(m,R) such that

Ẽ(ψ(x)) = Q(x)E(x)
(
∂ψ(x)
∂x

)−1

,

f̃(ψ(x)) = Q(x) (F (x) +G(x)αu(x)) ,

g̃(ψ(x)) = Q(x)G(x)βu(x).

(5.4)

The ex-fb-equivalence of two DAECSs is denoted by Ξu ex−fb∼ Ξ̃ũ. If ψ : U → Ũ is a local
diffeomorphism between neighborhoods U of x0 and Ũ of x̃0, and Q(x), αu(x), βu(x) are
defined locally on U , we will talk about local ex-fb-equivalence.

Remark 5.2.3. If two DAECSs are ex-fb-equivalent, then the diffeomorphism ψ estab-
lishes one to one correspondence between their solutions. Notice, however, that the control-
parameterizing solutions are not the same but are related via the feedback transformation
ũ(t) = F (x(t)) +G(x(t))αu(x(t)).

Consider a DAECS Ξu
l,n,m = (E,F,G), given by (5.1). The explicitation with driving

variables of Ξu is the following procedure.

Step 1: Assume in a neighborhood U of a given point x0 that rankE(x) = const. = r.
Then there exists a matrix-valued function Q(x) ∈ Gl(l,R) defined on U such that

Q(x)E(x) =

[
E1(x)

0

]
,

where E1 : U → Rr×n and rankE1(x) = r. Thus via Q(x), Ξu is locally ex-fb-equivalent
to the following DAECS: [

E1(x)

0

]
ẋ =

[
F1(x)

F2(x)

]
+

[
G1(x)

G2(x)

]
u, (5.5)

where Q(x)F (x) =

[
F1(x)

F2(x)

]
, Q(x)G(x) =

[
G1(x)

G2(x)

]
, and F1,F2,G1,G2, are smooth

matrix-valued functions of appropriate sizes.

Step 2: The matrix E1(x) is of full row rank, so let E†1(x) be a right inverse of E1(x)

and set f(x) = E†1(x)F1(x), gu(x) = E†1(x)G1(x). The collection of all ẋ satisfying
E1(x)ẋ = F1(x) +G1(x)u is given by the following differential inclusion

ẋ ∈ f(x) + gu(x)u+ kerE1(x) = f(x) + gu(x)u+ kerE(x). (5.6)
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Since kerE(x) is a distribution of rank n − r (because rankE(x) = r), there exist lin-
ear independent vector-valued functions gv1 , . . . , g

v
s : U → Rn, where s = n − r, such

that locally kerE(x) = span {gv1(x), . . . , gvs (x)}. Thus by introducing driving variables
v1, . . . , vs, we parametrize the affine distribution f(x) + gu(x)u + kerE(x), and all solu-
tions of (5.6) correspond to all solutions (generated by all controls vi(t)) of

ẋ = f(x) + gu(x)u+
s∑
i=1

gvi (x)vi. (5.7)

Let gv : U → Rn×s be a smooth matrix-valued function whose columns are gvi , i =

1, . . . , s. Then, equation (5.5) can be expressed as the following equation{
ẋ = f(x) + gu(x)u+ gv(x)v

0 = h(x) + lu(x)u,
(5.8)

where h(x) = F2(x) and lu(x) = G2(x).

Step 3: Now we introduce the following control system

Σuv :

{
ẋ = f(x) + gu(x)u+ gv(x)v

y = h(x) + lu(x)u,
(5.9)

denoted by Σuv
n,m,s,p = (f, gu, gv, h, lu) or, simply, Σuv. Note that s = n− r and p = l− r,

which will be used throughout the chapter to denote dim v and dim y, respectively. Clearly,
equation (5.8) can be seen as an ODECS Σuv by setting the output y = 0. In the above
way, we attach an ODECS Σuv to a DAECS Ξu.

Definition 5.2.4. (Explicitation with driving variables) Given a DAECS Ξu
l,n,m = (E,F,G),

fix a point x0. Assume that the rank of E(x) is constant around x0. Then, by a (Q, v)-
explicitation, we will call a control system Σuv

n,m,s,p = (f, gu, gv, h, lu) with

f(x) = E†1(x)F1(x), gu(x) = E†1(x)G1(x), Im gv(x) = kerE(x),

h(x) = F2(x), lu(x) = G2(x),

where

Q(x)E(x) =

[
E1(x)

0

]
, Q(x)F (x) =

[
F1(x)

F2(x)

]
, Q(x)G(x) =

[
G1(x)

G2(x)

]
.

The class of all (Q, v)-explicitations will be called the explicitation with driving variables
class, shortly the explicitation class. For a particular control system Σuv belonging to the
explicitation class Expl(Ξu) of Ξu, we will write Σuv ∈ Expl(Ξu).

Apparently, in the above explicitation procedure, the choice of Q(x), E†1(x) and gv(x)

is not unique. The following proposition shows that a given Ξu has many (Q, v)-explicitat-
ions and any two explicitation systems of Ξu are equivalent via a feedback transformation
of v, an output multiplication and a generalized output injection.
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Proposition 5.2.5. Assume that an ODECS Σuv
n,m,s,p = (f, gu, gv, h, lu) is a (Q, v)-explicitat-

ion of a DAECS Ξu = (E,F,G) corresponding to the choice of invertible matrix Q(x),
right inverse E†1(x) and matrix gv(x). Then a control system Σ̃u,ṽ

n,m,p = (f̃ , g̃u, g̃ṽ, h̃, l̃u) is
a (Q̃, ṽ)-explicitation of Ξu corresponding to the choice of invertible matrix Q̃(x), right
inverse Ẽ†1(x) and matrix g̃ṽ(x) if and only if Σuv and Σ̃u,ṽ are equivalent via a v-feedback
transformation of the form v = αv(x) + λ(x)u + βv(x)ṽ, a generalized output injection
γ(x)y = γ(x)(h(x) + lu(x)) and an output multiplication ỹ = η(x)y, which map

f 7→ f̃ = f + γh+ gvαv, gu 7→ g̃u = gu + γlu + gvλ,

gv 7→ g̃ṽ = gvβv, h 7→ h̃ = ηh, lu 7→ l̃u = ηlu.
(5.10)

where αv(x), βv(x), γ(x), λ(x), η(x) are smooth matrix-valued functions, and βv(x) and
η(x) are invertible.

The proof is given in Section 5.6.

Remark 5.2.6. The constant rank assumption of E(x) (around x0) is essential for the
explicitation of Ξu. Because without this assumption, we may not have a smooth Q(x)

and/or a smooth right inverse E†1(x) of E1(x). Since we assume E(x) is of constant rank
around a point x0, the matrices Q, f , gu, gv, h, lu are all defied locally, and so is Σuv ∈
Expl(Ξu). Note that x0 is not necessarily an admissible point, i.e., there may not exist
solutions passing through x0. However, the explicitation around x0 always exists as long
as the constant rank assumption of E(x) is satisfied.

Now we will define an equivalence relation for two ODECSs of form (5.9), which can
be seen as a generalization of the notion of sys-equivalence given as Definition 4.3.19 in
Chapter 4.

Definition 5.2.7. (System feedback equivalence) Consider two control systems Σuv
n,m,s,p =

(f, gu, gv, h, lu) and Σ̃ũṽ
n,m,s,p = (f̃ , g̃ũ, g̃ṽ, h̃, l̃ũ) defined on X and X̃ , respectively. Then

Σuv and Σ̃ũṽ are called system feedback equivalence, shortly sys-fb-equivalent, if there
exists a diffeomorphism ψ : X → X̃ , smooth functions αu(x), αv(x) λ(x) and γ(x) with
values in Rm,Rs,Rs×m and Rn×p, respectively, and invertible smooth matrix-valued func-
tions βu(x), βv(x) and η(x) with values in Gl(m,R), Gl(s,R) and Gl(p,R), respectively,
such that

[
f̃ ◦ ψ g̃ũ ◦ ψ g̃ṽ ◦ ψ
h̃ ◦ ψ l̃ũ ◦ ψ 0

]
=

[∂ψ
∂x

∂ψ
∂x
γη

0 η

] [
f gu gv

h lu 0

] I 0 0

αu βu 0

αv + λαu λβu βv

 . (5.11)

The sys-fb-equivalence of two control systems will be denoted by Σuv sys−fb∼ Σ̃ũṽ. If ψ :

U → Ũ is a local diffeomorphism between neighborhoods U of x0 and Ũ of x̃0, and αu,
αv, λ, γ, βu, βv, η are defined locally on U , we will speak about local sys-fb-equivalence.

Remark 5.2.8. (i) Observe that, in equation (5.11), there are two kinds of feedback trans-
formations. Namely, u = αu(x) + βu(x)ũ and v = αv(x) + λ(x)u + βv(x)ṽ, which can
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be written together as: [
u

v

]
=

[
αu

αv

]
+

[
βu 0

λ βv

] [
ũ

ṽ

]
. (5.12)

It implies that there are two kinds of inputs in ODECSs of form (5.9). Moreover, one
input (the driving variable v) is more "powerful" than the other input (the original control
variable u), since when transforming v, we can use both u and x in feedback tranformation,
but when transforming u, we are not allowed to use v. Another difference between u and
v is that the input u is injected into the output y via lu(x)u, but the input v is not directly
injected into the output y.

(ii) Recall that we denote a control system of form (5.9) by Σuv
n,m,s,p = (f, gu, gv, h, lu).

Throughout, for simplicity when needed, we will denote it by Σw
n,m+s,p = (f, gw, h, lw), or

shortly Σw, where gw = [gu, gv], lw = [lu, 0], w = (u, v). Moreover, if we denote

αw =

[
αu

αv + λαu

]
, βw =

[
βu 0

λβu βv

]
, γw =

∂ψ

∂x
γη,

then we have the following equivalent expression of equation (5.11):[
f̃ ◦ ψ g̃w̃ ◦ ψ
h̃ ◦ ψ l̃w̃ ◦ ψ

]
=

[∂ψ
∂x

γw

0 η

] [
f gw

h lw

] [
I 0

αw βw

]
. (5.13)

Observe that in equation (5.13), γw(x) and αw(x) can be arbitrary since γ(x), αv(x) and
αu(x) are arbitrary. The matrix βw(x) is invertible since βu(x) and βv(x) are invertible
and, which is crucial, βw(x) has a lower block-triangular form. This triangular form is
a consequence of two kinds of feedback transformations as explained in item (i) of this
remark.

(iii) The transformations in equation (5.13) can be seen as a nonlinear generalization
of the Morse transformation (see [146],[145], or Definition 2.2.3 of Chapter 2) of linear
ODECSs. In the linear case, the transformations ψ(x), αw(x) and η(x) in equation (5.13)
correspond to, respectively, coordinates changes in the state, input, and output space of
a linear ODECS. Moreover, αw and γw correspond to the feedback transformation and
output injection matrix, respectively.

The following theorem connects the ex-fb-equivalence of two DAECSs with the sys-
fb-equivalence of two ODECSs (explicitations), which can be seen as a generalization of
Theorem 4.3.21 of Chapter 4.

Theorem 5.2.9. (Extension of Theorem 4.3.21 of Chapter 4) Consider two DAE control
systems Ξu

l,n,m = (E,F,G) and Ξ̃ũ
l,n,m = (Ẽ, F̃ , G̃) defined on X and X̃ , respectively.

Assume rankE(x) = r in a neighborhood U of a point x0 ∈ X and rank Ẽ(x̃) = r in a
neighborhood Ũ of a point x̃0 ∈ X̃ . Then, given any ODECSs Σuv

n,m,s,p = (f, gu, gv, h, lu) ∈
Expl(Ξu) and Σ̃ũṽ

n,m,s,p = (f̃ , g̃ũ, g̃ṽ, h̃, l̃ũ) ∈ Expl(Ξ̃ũ), we have locally Ξu ex−fb∼ Ξ̃ũ if and

only if Σuv sys−fb∼ Σ̃ũṽ.

The proof is given in Section 5.6.
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5.3 Maximal controlled invariant submanifold form

In this section, we extend the internal analysis of nonlinear DAEs presented in Chapter 4
to DAECSs using the concept of controlled invariant submanifolds (see e.g., [92],[151] for
ODECSs, and [12] for DAECSs). In this chapter, we define locally controlled invariant
submanifold of DAECSs as follows.

Definition 5.3.1. (Locally controlled invariant submanifold) Consider a DAECS Ξu
l,n,m =

(E,F,G) and fix an admissible point xa. A smooth connected embedded submanifold M ,
such that xa ∈ M , is called a locally controlled invariant submanifold (around xa) of Ξu

if there exists a neighborhood U of xa such that for any point x0 ∈ M ∩ U , there exist a
C0-control u(t) and a C1-solution γx0 : Ix0 → M ∩ U such that γx0(t) ∈ M ∩ U for all
t ∈ Ix0 . A locally controlled invariant submanifold M∗ is called maximal, if there exists a
neighborhood U of xa such that for any other locally controlled invariant submanifold, we
have M ∩ U ⊆M∗ ∩ U .

Remark 5.3.2. Recall that solutions γ(t) of Ξu are not unique, even for a fixed initial point
x0 and a fixed control u(t). Thus it is possible that a solution passing through x0 ∈M ∩U
stays in M ∩U for t ∈ Ix0 , however, other solutions may escape from M ∩U even for the
same u(t).

Consider a DAECS Ξu
l,n,m = (E,F,G). Let M be a smooth connected embedded

submanifold and fix a point x0 ∈M . We introduce the following regularity condition

(Reg) there exists a neighborhood U ⊆ X such that the dimensions of E(x)TxM and of
E(x)TxM + ImG(x) are constant for all x ∈M ∩ U .

Proposition 5.3.3. Consider a DAECS ∆u = (E,F,G), fix an admissible point xa, and
a smooth connected embedded submanifold M containing xa. Then if M satisfies the
regularity condition (Reg) and F (x) ∈ E(x)TxM+ImG(x) locally for all x ∈M around
xa, then M is a locally controlled invariant submanifold. On the other hand, if M is a
locally controlled invariant submanifold, then F (x) ∈ E(x)TxM + ImG(x) locally for
all x ∈M around xa.

The above statement is a generalization of Proposition 4.3.2 of Chapter 4 for nonlinear
DAEs, and was stated as Theorem 9 in [12] for DAECSs. We omit the proof of this
statement because it follows exactly the same line as that of Proposition 4.3.2 of Chapter
4. Then, we introduce the concept of restriction of a DAECS to a controlled invariant
submanifold as follows.

Definition 5.3.4. (Restriction) Consider a DAECS Ξu
l,n,m = (E,F,G) and a controlled

invariant submanifold M , of dimension n1, satisfying the regularity condition (Reg) in a
neighborhood U of xa. Let ψ(x) = z = (z1, z2) be local coordinates on U such that

M ∩ U = {z2 = 0} =
{
z1

2 = · · · = zn2
2 = 0

}
,
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where n1 + n2 = n. Thus z1 = (z1
1 , . . . , z

n1
1 ) form coordinates on M ∩ U . Then, in U , the

restriction of Ξu to M ∩U , called local M -restriction of Ξu, denoted Ξu|M is the following
DAECS

Ẽ(z1, 0)

[
ż1

0

]
= F̃ (z1, 0) + G̃1(z1, 0)u1,

where G1 : M ∩ U → Rl×m1 is such that

ImG1(ψ−1(z)) = E(ψ−1(z))TzM ∩ ImG(ψ−1(z)),

and where

Ẽ(z) = E(ψ−1(z))

(
∂ψ

∂x
(ψ−1(z))

)−1

, F̃ (z) = F ((ψ−1(z))), G̃1(z) = G1((ψ−1(z))),

with u1 ∈ Rm1 and m1 = dim (E(x)TxM ∩ ImG(x)).

Remark 5.3.5. (i) M satisfies the regularity condition (Reg) in a neighborhood U of xa
implies that the dimension of E(x)TxM ∩ ImG(x) is constant for x ∈M ∩ U .

(ii) Notice that G1 is not unique. In fact, it is given up to a u-feedback transformation
u1 = β(x)ũ1 that maps G1 into G1β, where β is invertible.

Moreover, we introduce the notion of reduction of DAECSs, which is an extension of
reductions of nonlinear DAEs shown in Definition 4.3.8 of Chapter 4.

Definition 5.3.6 (Reduction). For a DAECS Ξu
l,n,m = (E,F,G), assume

rank [E(x), dF (x), G(x)] = const. = l∗ ≤ l.

Then there exists Q : X → Gl(l,Rn) such that

Q
[
E dF G

]
=

[
Q1

Q2

] [
E dF G

]
=

[
Q1E Q1dF Q1G

0 0 0

]
,

where rank [Q1E(x), Q1dF (x), Q1G(x)] = l∗, Q1 : X → Rl∗×l, Q2 : X → R(l−l∗)×l, and
the full row rank reduction, shortly reduction, of Ξu, is a DAECS Ξu,red = (Ered, F red, Gred),
where Ered(x) = Q1(x)E(x), F red(x) = Q1(x)F (x) and Gred(x) = Q1(x)G(x).

For a locally invariant submanifold M , we consider the M -restriction Ξu|M of Ξu,
and then we construct a reduction of Ξu|M and denote it by Ξu|redM . Notice that the order
matters: to construct Ξu|redM , we first restrict and then reduce while reducing first and then
restricting will, in general, not give Ξu|redM but another DAECS Ξu,red|M .

Proposition 5.3.7. Consider a DAECS Ξu
l,n,m = (E,F,G) and fix an admissible point

xa. Let M be a n1-dimensional locally controlled invariant submanifold satisfying the
regularity condition (Reg) around xa. Denote dim E(x)TxM = r and dim (E(x)TxM +

ImG(x)) = r + m2. Then Ξu|redM is a DAECS Ξ̂u1 of form (5.1) and the dimensions
related to Ξu|redM are r, n1,m1, where m1 = m − m2, i.e., Ξu|redM = Ξ̂u1

r,n1,m1
. Moreover,

Expl(Ξu|redM ) is not empty and consists of ODECSs without outputs.
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The proof is given in Section 5.6. The definition below is based on just introduced
concepts.

Definition 5.3.8. (Internal feedback equivalence) Consider two DAECSs Ξu = (E,F,G)

and Ξ̃ũ = (Ẽ, F̃ , G̃) defined on X and X̃ , respectively. Fix two admissible points xa ∈ X
and x̃a ∈ X̃ . Assume that

(A1) M∗ and M̃∗ are locally maximal controlled invariant submanifolds of Ξu and Ξ̃ũ,
respectively, such that xa ∈M∗, x̃a ∈ M̃∗.

(A2) M∗ and M̃∗ satisfy the regularity condition (Reg) around xa and x̃a, respectively.

Then, Ξu and Ξ̃ũ are called internally feedback equivalent, shortly in-fb-equivalent, if
Ξu|redM∗ and Ξ̃ũ|red

M̃∗
are ex-fb-equivalent. We will denote the in-fb-equivalence of two DAECSs

by Ξu in−fb∼ Ξ̃ũ.

Remark 5.3.9. In the above definition, the dimensions of two in-fb-equivalent DAECSs
Ξu and Ξ̃ũ are not necessarily the same. However, since Ξu|redM∗ and Ξ̃ũ|red

M̃∗
are required to

be external feedback equivalent, their dimensions have to be the same.

Theorem 5.3.10. (Maximal controlled invariant submanifold form MCISF) Consider a
DAE control system Ξu

l,n,m = (E,F,G) and fix a point x0. Assume thatF (x0) ∈ ImE(x0)+

ImG(x0). Set

M0 = {x ∈ X : F (x) ∈ ImE(x) + ImG(x)} .

Assume that Mk−1 ( · · · ( M0, for a certain k ≥ 1, have been constructed and that
for some neighborhood Uk−1 of x0 the intersection Mk−1 ∩ Uk−1 is a smooth embedded
submanifold, and denote by M c

k−1 the connected component of Mk−1 ∩ Uk−1 satisfying
x0 ∈M c

k−1. Set

Mk =
{
x ∈M c

k−1 : F (x) ∈ E(x)TxM
c
k−1 + ImG(x)

}
. (5.14)

Then there exists a smallest integer k, denoted by k∗ < n such that Mk∗+1 = M c
k∗ and

assume that M∗ satisfies the regularity condition (Reg) around x0, where M∗ = M c
k∗ ,

then x0 is an admissible point and M∗ = M c
k∗ is a locally maximal controlled invariant

submanifold. Moreover, if additionally, for any x ∈ Uk∗ ,

(A1) rankE(x) = const. = r and rank
[
E(x) G(x)

]
= const. = r +m2,

then there exists a neighborhood U of x0 such that Ξu is locally ex-fb-equivalent to a
DAECS represented in the following maximal controlled invariant submanifold form

MCISF :


Ir1 E2

1 (z) 0 E4
1 (z)

0 E2
2(z) Ir2 E4

2 (z)

0 0 0 0

0 0 0 0



ż1

ż2

ż3

ż4

 =


F1 (z)

F2 (z)

0

F4 (z)

+


G1(z) 0

G2(z) 0

0 Im2

0 0


[
u1

u2

]
,

(5.15)
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where (z1, z2) are local coordinates on M∗, and E2
1 , E4

1 , E2
2 , E4

2 are smooth matrix-valued
functions defined on U with values in Rr1×(n1−r1), Rr1×(n2−r2), Rr2×(n1−r1), Rr2×(n2−r2),
respectively, and E2

2(z) = 0 and F4(z) = 0 for z ∈ M∗, where r1 = dim E(x)TxM
∗,

r2 = r − r1, n1 = dimM∗, n2 = n− n1.

Furthermore, if the above (A1) holds and additionally there exists an involutive distri-
bution D on Uk∗ satisfying D(x) = TxM

∗ for x ∈M∗ such that for any x ∈ Uk∗ ,

(A2) dimE(x)D(x) = const. = r1 and dim (E(x)D(x) + ImG(x)) = const. = r1 +m2,

then there exist a neighborhoodU of x0 such that Ξu is locally ex-fb-equivalent to a DAECS
represented in the following special maximal controlled invariant submanifold form

SMCISF :


Ir1 E2

1 (z) 0 E4
1 (z)

0 0 Ir2 E4
2 (z)

0 0 0 0

0 0 0 0



ż1

ż2

ż3

ż4

 =


F1 (z)

F2 (z)

0

F4 (z)

+


G1(z) 0

0 0

0 Im2

0 0


[
u1

u2

]
,

(5.16)

where F2(z) = 0 and F4(z) = 0 for z ∈M∗.

The proof is given in Section 5.6.

Remark 5.3.11. (i) IfM∗ exists and only the constant rank assumption (A1) holds, then Ξu

is locally ex-fb-equivalent to the MCISF given by (5.15). If Ξu satisfies the involutivity
and constant dimension condition (A2), then it is locally ex-fb-equivalent the SMCISF,
given by (5.16). Compared to (5.15), the matrices E2

2(z) ≡ 0 and G2(z) ≡ 0 on U , and
F2(z) = 0 for z ∈M∗ ∩ U in (5.16).

(ii) In the above SMCISF, M∗ ∩ U = {z : z3 = 0, z4 = 0} and F3(z) = F 1
3 (z)z3 +

F 2
3 (z)z4, F4(z) = F 1

4 (z)z3 + F 2
4 (z)z4, where F 1

3 , F 2
3 , F 1

4 , F 2
4 are matrix-valued functions

of appropriate sizes.

(iii) The above are two external equivalence normal forms for Ξu that are constructed
under assumption (A1), for the first one, or (A1)-(A2) for the second one. The word
external means that we consider the DAECS Ξu locally everywhere around x0, not just on
its maximal controlled invariant manifold M∗. For the points around x0 but out of M∗, the
system does not have solutions, nevertheless, the system admits the above normal forms.

(iv) The above two normal forms facilitate understanding the actual role of the vari-
ables in a DAECS Ξu. It is easy to see that some “generalized” state variables, namely
(z1, z3) behave like state variables of differential equations and some “generalized” state
variables, namely (z2, z4), are free and perform like inputs. Moreover, some control vari-
ables, e.g. u2, are constrained and not free to be chosen (u2 is forced to be 0 by the
algebraic constraints).

(v) The above normal forms are also convenient for the internal analysis of DAECSs.
For instance, the result of Proposition 5.3.7, can be easily seen from the SMCISF by
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setting z3 and z4 to zero. Moreover, we can use the SMCISF to analyze the existence
and uniqueness of solutions. A solution z(t) = (z1(t), z2(t), z3(t), z4(t)) of the SMC-
ISF should satisfy z3(t) = 0 and z4(t) = 0. Using the definition of internal feedback
equivalence of Definition 5.3.8, we have the SMCISF is in-fb-eq to

[
Ir1 E2

1(z1, z2)
] [ż1

ż2

]
= F1(z1, z2) +G1(z1, z2)u1.

It is seen that for a fixed u(t), Ξu has a unique solution if and only if m1 = r1 (since in this
case, the z2-variables are absent).

5.4 Feedback linearizations of nonlinear DAECSs

In this subsection, we will discuss the problem of when a nonlinear DAECS of form (5.1) is
external or internal feedback equivalent to a linear DAECS of form (5.3). First, we review
some definitions and criteria of the controllability of linear DAECSs. The augmented
Wong sequences (see [17] and Chapter 3) of a linear DAECS ∆u

l,n,m = (E,H,L), given
by (5.3), are

V0 := Rn, Vi+1 := H−1(EVi + ImL); (5.17)

W0 := 0, Wi+1 := E−1(HWi + ImL). (5.18)

Additionally, recall the following sequence of subspace (see e.g. [128]):

Ŵ1 := kerE, Ŵi+1 := E−1(HŴi + ImL). (5.19)

Now for simplicity of notation, we denote

Kk =
[
0 Ik−1

]
∈ R(k−1)×k, Lk =

[
Ik−1 0

]
∈ R(k−1)×k,

Nk =

[
0 0

Ik−1 0

]
∈ Rk×k, Nβ = diag{Nβ1 , . . . , Nβk} ∈ R|β|×|β|,

Kβ = diag{Kβ1 , . . . , Kβk} ∈ R(|β|−k)×|β|, Lβ = diag{Lβ1 , . . . , Lβk} ∈ R(|β|−k)×|β|,

Eβ = diag{eβ1 , . . . , eβk} ∈ R|β|×k eβi =

[
0

1

]
∈ Rβi×1,

where β is a multi-index β = (β1, . . . , βk), and where |β| =
k∑
i=1

βi. Definition 5.2.2 applied

to linear systems says that two linear SE DAEs ∆u
l,n,m = (E,H,L) and ∆̃u

l,n,m = (Ẽ, H̃, L̃)

are ex-fb-equivalent if there exists constant invertible matricesQ, P , S and a matrixR such
that Ẽ = QEP−1, H̃ = Q(H + LR)P−1, L̃ = QLS.

Definition 5.4.1. (Complete controllability in [17]) A linear DAECS ∆u
l,n,m = (E,H,L)

is completely controllable if for any x0, xf ∈ Rn, there exist a solution (x, u) of ∆u and
t ∈ R+ such that x(0) = x0 and x(t) = xf .
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Lemma 5.4.2. [17] For a linear DAECS ∆u
l,n,m = (E,H,L), the following are equivalent:

(i) ∆u is completely controllable.

(ii) ImE+ ImH + ImL = ImE+ ImL and Im CE+ Im CH + Im CL = Im C(λE−
H) + Im CL, ∀ λ ∈ C.

(iii) V ∗∩W ∗ = Rn, where V ∗ and W ∗ are the limits of the augmented Wong sequences
(5.17) and (5.18), respectively;

(iv) ∆u is ex-fb-equivalent (under linear transformations) to
I|ρ| 0

0 Lρ̄
0 0

0 0


[
ẋ1

ẋ2

]
=


NT
ρ 0

0 Kρ̄

0 0

0 0


[
x1

x2

]
+


Eρ 0

0 0

0 Im2

0 0


[
u1

u2

]
,

where ρ = (ρ1, . . . , ρk) and ρ̄ = (ρ̄1, . . . , ρ̄k) are multi-indices.

In view of the two feedback equivalence relations for DAECSs (external feedback
equivalence of Definition 5.2.2 and internal feedback equivalence of Definition 5.3.8), we
give the following definition for the feedback linearization problems of DAECSs.

Definition 5.4.3. (Feedback linearization of DAECSs) For a DAECS Ξu
l,n,m = (E,F,G),

(i) assume that M∗ is a locally maximal controlled invariant submanifold of Ξu. Then
Ξu is called locally completely internal feedback linearizable, if Ξu is locally in-fb-equival-
ent to a linear DAECS with complete controllability;

(ii) Ξu is called locally completely external feedback linearizable, if Ξu is locally ex-
fb-equivalent to a linear DAECS with complete controllability.

Now consider a nonlinear ODECS Σuv
n,m,s,p = (f, gu, gv, h, lu), given by (5.9). If

ODECS Σuv has no outputs, we denote it by Σuv
n,m,s = (f, gu, gv). Then for Σuv

n,m,s =

(f, gu, gv), define the following two sequences of distributions Di and D̂i, called the lin-
earizability distributions of Σuv,

D0 := {0},
D1 := span {gu1 , . . . , gum, gv1 , . . . , gvs}
Di+1 := Di + [f,Di], i = 1, 2, . . . ,

 D̂1 := span {gv1 , . . . , gvs}
D̂i+1 := Di + [f, D̂i], i = 1, 2, . . . .

Remark 5.4.4. (i) The distribution sequences Di and D̂i satisfy:

D0 ( D̂1 ( D1 ( D̂2 ( D2 · · · ( D̂k ( Dk ( · · · ( D̂k∗ ,

and either
D̂k∗ = Dk∗ = D̂k∗+j = Dk∗+j

or
D̂k∗ ( Dk∗ = D̂k∗+j = Dk∗+j,
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where j ≥ 1 and k∗ is the smallest k such that Dk∗ = Dk∗+1. Note that k∗ is not necessarily
the smallest k such that D̂k∗ = D̂k∗+1 (as seen in the second case, where D̂k∗ ( D̂k∗+1).
However, Di and D̂i always have the same limit.

(ii) For a linear DAECS ∆u = (E,H,L), denote Wi(∆
u) and Ŵi(∆

u) as the subspace
Wi and Ŵi of ∆u, respectively. For a linear ODECS Λuv = (A,Bu, Bv, C,Du) (of form
(5.9) but with constant system matrices), denote Wi(Λ

uv) and Ŵi(Λ
uv) as the subspace

Wi and Ŵi of Λuv, respectively, where

W0 = {0}, Wi+1 =
[
A Bw

]([Wi

I

]
∩ ker

[
C Dw

])
,

Ŵ1 = ImBv, Ŵi+1 =
[
A Bw

]([Ŵi

I

]
∩ ker

[
C Dw

])
,

where Bw = [Bu, Bv] and Dw = [Du, 0]. We have proved in Proposition 3.2.9 of Chapter
3 that if Λuv ∈ Expl(∆u), then for i ∈ N,

Wi(∆
u) = Wi(Λ

uv), Ŵi(∆
u) = Ŵi(Λ

uv).

Apparently, Wi and Ŵi are the linear counterparts of Di and D̂i, respectively, but they are
for linear systems with outputs.

Theorem 5.4.5. Consider a DAECS Ξu = Ξu
l,n,m = (E,F,G), fix an admissible point xa.

Let M∗ be the n∗-dimensional maximal controlled invariant submanifold of Ξu around xa.
Assume that there exists a neighborhood U ⊆ X of xa such that in M∗ ∩ U , we have

(A1) the dimensions of E(x)TxM
∗ and E(x)TxM

∗ + ImG(x) are constant,

(A2) the rank of G(x) is m.

Then Expl(Ξu|redM∗) is not empty and Ξu is locally completely internal feedback lineariz-
able if and only if for one (and thus any) ODECS Σuv ∈ Expl(Ξu|redM∗), the linerizability
distributions Di and D̂i of Σuv satisfy in a neighborhood W ⊆M∗ of xa:

(FL1) Di and D̂i are of constant rank for 1 ≤ i ≤ n∗.

(FL2) Dn∗ = D̂n∗ = TM∗.

(FL3) Di and D̂i are involutive for 1 ≤ i ≤ n∗ − 1.

Theorem 5.4.6. Consider a DAECS Ξu
l,n,m = (E,F,G), fix a point x0. Then Ξu is locally

completely external feedback linearizable, locally around x0, if and only if there exists a
neighborhood U ⊆ X of x0 in which the following conditions are satisfied.

(EFL1) rankE(x) and rank [E(x), G(x)] are constant.

(EFL2) F (x) ∈ ImE(x) + ImG(x).
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(EFL3) For one (and thus any) control system Σuv ∈ Expl(Ξu|redM∗), which is a system with
no outputs on M∗ = U , a neighborhood of x0, the linerizability distributions Di and
D̂i satisfy conditions (FL1)-(FL3) of Theorem 5.4.5.

The proofs of Theorem 5.4.5 and Theorem 5.4.6 are given in Section 5.6.

Remark 5.4.7. (i) By rankE(x) = const., the explicitation class Expl(Ξu|redM∗) is well-
defined. Moreover, by conditions (EFL1)-(EFL2), for any x0 ∈ X , the locally maximal
controlled invariant submanifold M∗ through x0 is a neighborhood U of x0. So condition
(EFL3) is actually, satisfied if and only if the condition (FL1)-(FL3) are satisfied on M∗ =

U , i.e., locally around x0.

(ii) We do not assume the point x0 in Theorem 5.4.6 to be admissible. However, by
conditions (EFL1)-(EFL2), any point x0 is always admissible.

(iii) Note that condition (EFL2) and the condition D̂n∗ = Dn∗ = TM∗ of (FL2) are
nonlinear counterparts of the condition V ∗ ∩ W ∗ = Rn of Lemma 5.4.2. However, in
order to guarantee feedback linearizability, involutivity and some constant rank conditions
are needed.

(iv) The distributions sequences Di and D̂i can thus be seen as nonlinear generaliza-
tions of the augmented Wong sequence Wi of equation (5.18) and the sequence Ŵi of
(5.19), respectively.

5.5 Examples

In the section, we will illustrate the results of the present chapter by some examples.

Example 5.5.1. (Model of a 2-D crane) Consider the model of a 2-D crane taken from
[68], which is described by a DAECS of the following form:

mẍ = −T sin θ

mz̈ = −T cos θ +mg

x = R sin θ +D

z = R cos θ,

(5.20)

where (x, z) is the position of a load m, and T is the tension of the rope, and together
with θ, they are variables of the “generalized” state, which is thus (x, ẋ, z, ż, θ, T ). The
predefined control variables are D and R, which represent the position of the trolley and
the length of the rope, respectively.
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Rewrite system (5.20) in the form of DAECS (5.1) to get the following system:

Ξu :



1 0 0 0 0 0

0 m 0 0 0 0

0 0 1 0 0 0

0 0 0 m 0 0

0 0 0 0 0 0

0 0 0 0 0 0





ẋ1

ẋ2

ż1

ż2

θ̇

Ṫ


=



x2

−T sin θ

z2

−T cos θ +mg

−x1

−z1


+



0 0

0 0

0 0

0 0

sin θ 1

cos θ 0


[
R

D

]
, (5.21)

where x1 = x, x2 = ẋ and z1 = z, z2 = ż. The above DAECS is denoted by Ξu. We
consider Ξu around the following admissible point (it is also an equilibrium):

x1a = 0, x2a = 0, z1a = 1, z2a = 0, θa = 0, Ta = mg.

It is easy to verify that conditions (EFL1) and (EFL2) of Theorem 5.4.6 are satisfied for Ξu

in a neighborhood U (cos θ 6= 0 for all points in U ). Then by using the following feedback
transformation for Ξu:[

R

D

]
=

[
0 1/ cos θ

1 − sin θ/ cos θ

]
ũ+

[
z1/ cos θ

x1 − (z1 sin θ)/ cos θ

]
, (5.22)

the algebraic constraint of Ξu becomes 0 = ũ.

Now by Definition 5.3.4, a reduction of M∗ = U -restriction of Ξu is

Ξu|redM∗ :


1 0 0 0 0 0

0 m 0 0 0 0

0 0 1 0 0 0

0 0 0 m 0 0





ẋ1

ẋ2

ż1

ż2

θ̇

Ṫ


=


x2

−T sin θ

z2

−T cos θ +mg

+


0 0

0 0

0 0

0 0

 ũ.

By the explicitation procedure described in Section 5.2, we can find an ODECS Σuv =

(f, gu, gv) ∈ Expl(Ξu|redM∗)

Σuv :



ẋ1

ẋ2

ż1

ż2

θ̇

Ṫ


=



x2

−(T sin θ)/m

z2

−(T cos θ)/m+ g

0

0


+



0 0

0 0

0 0

0 0

0 0

0 0


ũ+



0 0

0 0

0 0

0 0

1 0

0 1


v,

where v is a vector of the driving variables (notice that in the present example, v = [θ̇, Ṫ ]T

is also the prolongation of (θ, T )).

Now calculating the distributions Di and D̂i for the system Σuv, we get

D1 = D̂1 = span {gv1 , gv2} , D2 = D̂2 = span {gv1 , gv2 , adfgv1 , adfgv2} ,
D3 = D̂3 = span

{
gv1 , g

v
2 , adfg

v
1 , adfg

v
2 , ad

2
fg

v
1 , ad

2
fg

v
2

}
,

.
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where

gv1 = ∂
∂θ
, gv2 = ∂

∂T
, adfg

v
1 = sin θ

m
∂
∂x2

+ cos θ
m
,

adfg
v
2 = T cos θ

m
∂
∂x2
− T sin θ

m
∂
∂z2
, ad2

fg
v
1 = − sin θ

m
∂
∂x1

+ − cos θ
m

∂
∂z1
,

ad2
fg

v
2 = −T cos θ

m
∂
∂x1

+ T sin θ
m

∂
∂z1
.

It is seen that D̂1 = D1 ⊂ D̂2 = D2 ⊂ D̂3 = D3 = TU . Thus D̂i and Di satisfy con-
ditions (FL1) and (FL2) of Theorem 5.4.5. Moreover, a direct calculation of Lie brackets
gives that D̂1 = D1, D̂2 = D2, D̂3 = D3 are all involutive, which implies that con-
dition (FL3) of Theorem 5.4.5 is also satisfied. Therefore, (EFL3) is satisfied and Ξu is
completely external feedback linearizable by Theorem 5.4.6.

In fact, use the following coordinates change and feedback transformation for Σuv:

ξ1

ξ2

ξ3

ξ4

ξ5

ξ6


=



x1

x2

−(T sin θ)/m

z1 − z1a

z2

−(T cos θ)/m+ g


,

 ũv1

v2

 =

I2 0 0

0 −(m cos θ)/T (m sin θ)/T

0 −m sin θ −m cos θ

 ũṽ1

ṽ2

 ,

where z1a = 1, to get the following linear ODECS:

Λṽ : ξ̇1 = ξ2, ξ̇2 = ξ3, ξ̇3 = ṽ1, ξ̇4 = ξ5, ξ̇5 = ξ6, ξ̇6 = ṽ2.

Thus we have Σuv sys−fb∼ Λṽ. Moreover, the following linear DAECS ∆ũ, given by (5.23),
satisfies Λṽ ∈ Expl(∆ũ).

∆ũ :


1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0





ξ̇1

ξ̇2

ξ̇3

ξ̇4

ξ̇5

ξ̇6


=


0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1





ξ1

ξ2

ξ3

ξ4

ξ5

ξ6


+


0 0

0 0

0 0

0 0

 ũ. (5.23)

Thus by Theorem 5.2.9, we have Ξu|redM∗ is ex-fb-equivalent to the linear DAECS ∆ũ (since

Σuv ∈ Expl(Ξu|redM∗), Λṽ ∈ Expl(∆ũ and Σuv sys−fb∼ Λṽ). Finally, it is seen that Ξu is
ex-fb-equivalent to the following completely controllable linear DAECS:

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 0

0 0 0 0 0 0





ξ̇1

ξ̇2

ξ̇3

ξ̇4

ξ̇5

ξ̇6


=



0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0





ξ1

ξ2

ξ3

ξ4

ξ5

ξ6


+



0 0

0 0

0 0

0 0

1 0

0 1


ũ (5.24)
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via the following transformation:

Q =



1 0 0 0 0 0

0 1/m 0 0 0 0

0 0 1 0 0 0

0 0 0 1/m 0 0

0 0 0 0 1 0

0 0 0 0 0 1


,



ξ1

ξ2

ξ3

ξ4

ξ5

ξ6


=



x1

x2

−(T sin θ)/m

z1 − z1a

z2

−(T cos θ)/m+ g


,

[
R

D

]
=

[
0 1/ cos θ

1 − sin θ/ cos θ

]
ũ+

[
z1/ cos θ

x1 − (z1 sin θ)/ cos θ

]
.

Remark 5.5.2. (i) In [68], it is shown that the above model of crane (with state space
representation) is flat with outputs y1 = x, y2 = z. It raises interest for further studies
about the connections between linearizability of DAECSs and flatness of systems in the
state space representation.

(ii) The above model of crane appears also in [72], whose authors construct nonlinear
control law based on the linearization of the system after eliminating the variables θ and
T . From the view point of the present chapter, this eliminating procedure actually means
constructing the internal system (restricting the original system to M∗). Thus the present
chapter offers another interpretation for the results in [72].

(iii) Since the system is linearizable, we can easily design control laws for such prob-
lems as tracking or stabilization. Since ξ3 and ξ6 are free variables in the dynamics of
system (5.24), we can regard them as some artificial controls. Consider the stabilization
problem for example and take ξ3 = k1ξ1 + k2ξ2, ξ6 = k3ξ4 + k4ξ5 such that all the poles of
the dynamics ξ̈1 = ξ3, ξ̈4 = ξ6 are in the left half real plane. Then we solve θ as a function
of x1, x2, z1, z2 via ξ3 = −(T sin θ)/m and ξ6 = −(T cos θ)/m+ g. Moreover, by (5.22),
the original controls R and D are functions of x1, z1, θ (since ũ is zero). So we can always
express stabilizing feedback controls R and D as functions of x1, x2, z1, z2.

Example 5.5.3. (2-D crane with dynamics of actuators) We consider the model of a 2-D
crane described by equation (5.20), together with its actuator dynamics [68]:{

MD̈ = F − λḊ + T sin θ

(J/ρ2)R̈ = C − (µ/ρ)Ṙ− Tρ, (5.25)

where (F ,C ) are the new input variables, representing the external force applied to the
trolley and the hoisting torque respectively, where M , J , ρ, λ, µ are constant parameters
representing the characteristics of the actuator.
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If we write the whole system in the form of DAECS (5.1), we get

Ξu :



1 0 0 0 0 0 0 0 0 0

0 m 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 m 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 M 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 J/(ρ)2 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0





ẋ1

ẋ2

ż1

ż2

Ḋ1

Ḋ2

Ṙ1

Ṙ2

θ̇

Ṫ


=



x2

−T sin θ

z2

−T cos θ +mg

D2

−λD1 + T sin θ

R2

−(µ/ρ)R1 − Tρ
−x1 +R1 sin θ +D1

−z1 +R1 cos θ


+



0 0

0 0

0 0

0 0

0 0

1 0

0 0

0 1

0 0

0 0



[
F

C

]
,

(5.26)

where D1 = D, D2 = Ḋ and R1 = R, R2 = Ṙ. Thus the control variables R and D
of (5.21) become variables of the “generalized” state x of Ξu. We consider Ξu around an
admissible point xa = (x1a, x2a, z1a, z2a, D1a, D2a, R1a, R2a, θa, Ta), where

x1a = 1, x2a = 0, z1a = 0, z2a = 0, D1a = 0,

D2a = 0, R1a = 1, R2a = 0, θa = π/2, Ta = 0.

The above admissible point represents a configuration that the load is at the same horizontal
level as the trolley and notice that this point is not an equilibrium. Then, we can see that
DAECS Ξu does not satisfy condition (EFL2) of Theorem 5.4.6. Thus Ξu is not completely
external feedback linearizable around that admissible point.

We now search for the maximal controlled invariant submanifold M∗ for Ξu and then
we will transform Ξu into its MCISF via Theorem 5.3.10. First, calculate M∗ by the
algorithm given in Theorem 5.3.10, to get

M0 = {x ∈ R9 × S1 : R1 sin θ +D1 − x1 = 0, R1 cos θ − z1 = 0} ,
M1 = {x ∈M0 : (D2 − x2) sin θ +R2 − z2 cos θ = 0} ,
M∗ = M2 = M1.

We can see that (A1) of Theorem 5.3.10 is satisfied (E(x) and G(x) are constant matrices
in the present example). Subsequently, use the procedure given in the proof of Theorem
5.3.10, to transform Ξu into its MCISF step by step:

Step 1: choose new coordinates

ξ2 =

[
x̃1
z̃1
R̃2

]
=

[
R1 sin θ+D1−x1
R1 cos θ−z1

(D2−x2) sin θ+R2−z2 cos θ

]
, ξ1 =


x̃2
z̃2
d̃1
d̃2
R̃1

θ̃
T̃

 =


x2
z2
D1
D2
R1
θ
T

 .
In the ξ = (ξ1, ξ2)-coordinate system, (5.26) becomes[

E1(ξ) E2(ξ)
] [

ξ̇1
ξ̇2

]
= F (ξ) +G(ξ)u,
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where

[
E1(ξ) E2(ξ)

]
=


0 1 0 sin θ 0 R1 cos θ sin θ 0 1 0 0

−m cos θ 0 m 0 m m·a(ξ) 0 0 0 0

0 0 0 cos θ 0 −R1(sin θ)2 0 0 1 0
m sin θ 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0
0 0 M 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 J/(ρ)2

0 0 0 0 (J sin θ)/(ρ)2 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

 ,

F (ξ) =


x2

−T sin θ
z2

−T cos θ+mg
D2

−λD1+T sin θ
R2

−(µ/ρ)R1−Tρ
−x1+R1 sin θ+D1
−z1+R1 cos θ

 , G(ξ) =


0 0
0 0
0 0
0 0
0 0
1 0
0 0
0 1
0 0
0 0

 ,
with a(ξ) = z2 sin θ + cos θ(D2 − x2)

Step 2: Left-multiply the above DAECS by the following invertible matrix

Q1(ξ) =



0 0 0 1
m sin θ

0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1/M 0 0 0 0
0 0 0 0 0 0 1 0 0 0

−a(ξ) cos θ
R1 sin θ

1/m a(ξ)/R1
cos θ
m sin θ

a(ξ) cos θ
R1 sin θ

−1/M 0 0 0 0

0 0 −1

R1 sin2 θ
0 0 0 cos θ

R1 sin2 θ
0 0 0

− sin θ 0 − cos θ 0 sin θ 0 1 0 0 0
a(ξ)J cos θ

R1ρ
2 −

J sin θ
mρ2

−a(ξ)J sin θ
R1ρ

2 −
J cos θ
mρ2

−J cos θ
R1ρ

2
J sin θ
Mρ2

0 1 0 0

0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1


.

We get the following equation after the multiplication by Q1(ξ):

Q1(ξ)
[
E1(ξ) E2(ξ)

] [
ξ̇1
ξ̇2

]
= Q1(ξ)F (ξ) +Q1(ξ)G(ξ)u, (5.27)

where

Q1(ξ)
[
E1(ξ) E2(ξ)

]
=



1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 J/ρ2

0 0 0 0 1 0 0
−a(ξ cos θ)
R1 sin θ

a(ξ)/R1 0

0 0 0 0 0 1 0 0 −1

R1 sin2 θ
J cos θ

R1ρ
2 sin2 θ

0 0 0 0 0 0 0 − sin θ − cos θ J/ρ2

0 0 0 0 0 0 0 a(ξ)J cos θ
R1ρ

2 −a(ξ)J sin θ
R1ρ

2 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0


,

Q1(ξ)F (ξ) =



mg−T cos θ
m sin θ
D2

−(D1λ−T sin θ)/M
R2

F5(ξ)
R2 cos θ−z2
R1 sin2 θ

R̃2

F8(ξ)
x̃1
z̃1


, Q1(ξ)G(ξ) =


0 0
0 0

1/M 0
0 0

−1/M 0
0 0
0 0

J sin θ
Mρ2

1

0 0
0 0

 ,

for some function F5(ξ) and F8(ξ). Thus we have

Q1(ξ)
[
E1(ξ) E2(ξ) G(ξ)

]
=

 Ẽ1(ξ) Ẽ2(ξ) G1(ξ)

0 0 G2(ξ)

0 0 0

 ,
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where

Ẽ1(ξ) =

[
Ir1 E2

1

0 E4
1

]
=


1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

 , G1(ξ) =


0 0
0 0

1/M 0
0 0

−1/M 0
0 0
0 0

J sin θ
Mρ2

1

 ,

Ẽ2(ξ) =

[
E1

2 E2
2

E3
2 E4

2

]
=


0 0 0
0 0 0
0 0 0
0 0 J/ρ2

−a(ξ cos θ)
R1 sin θ

a(ξ)/R1 0

0 −1

R1 sin2 θ
J cos θ

R1ρ
2 sin2 θ

− sin θ − cos θ J/ρ2

a(ξ)J cos θ
R1ρ

2 −a(ξ)J sin θ
R1ρ

2 0

 .

Notice that G2 vanishes since ImG(ξ) ⊂ ImE(ξ).

Step 3: Use the feedback transformation[
F

C

]
= −

[
1 0

J sin θ
Mρ2

1

]−1 [
0

F8(ξ)

]
+

[
1 0

J sin θ
Mρ2

1

]−1 [
u1

u2

]
,

and pre-multiply equation (5.27) by the following invertible matrix

Q2(ξ) =



1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 ρ2

J sin θ
0 0

0 0 0 0 0 1 − cos θ

R1 sin2 θ

−ρ2
a(ξ)J sin θ

0 0

0 0 0 0 0 0 − sin θ
R1ρ

2 cos θ
a(ξ)J

0 0

0 0 0 0 0 0 − cos θ −R1ρ
2 sin θ

a(ξ)J
0 0

0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1


,

we get the following DAECS, which is in the MCISF:



1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 J/ρ2

0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 −J sin θ

ρ2

0 0 0 0 0 0 0 0 1 −J cos θ

ρ2

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0





˙̃x2
˙̃z2
˙̃D1
˙̃D2
˙̃R1
˙̃
θ
˙̃T

˙̃x1
˙̃z1
˙̃R2


=



mg−T cos θ
m sin θ
D2

−(D1λ−T sin θ)/M
R2

R2 cos θ−z2
R1 sin2 θ

F6(ξ)

−R̃2 sin θ

−R̃2 cos θ
x̃1
z̃1


+



0 0
0 0
1
M

0
0 0
−1
M

ρ2

J sin θ

0 −ρ2
a(ξ)J sin θ

0
R1ρ

2 cos θ
a(ξ)J

0
−R1ρ

2 sin θ
a(ξ)J

0 0
0 0


[ u1u2 ] , (5.28)

for some F6 : U → R.

Remark 5.5.4. (i) The admissible point we considered in this example is a singular point
in the discussion of flatness of [68] and for control law design of [72]. However, we show
in this example that, around this singular point Ξa, the system still can be simplified by
bringing it to the normal form MCISF .
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(ii) We do not give precise formula for F6(ξ) in order to save space. But it is easy to
see from the above MCISF that Ξu is in-fb-equivalent to



1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0





˙̃x2

˙̃z2

˙̃D1

˙̃D2

˙̃R1

˙̃θ
˙̃T


=



mg−T̃ cos θ̃

m sin θ̃

D̃2

−(D̃1λ− T̃ sin θ̃)/M

z̃2 cos θ̃ − (D̃2 − x̃2) sin θ̃
(x̃2−D̃2) cot θ̃−z̃2

R̃1

F6(ξ1, 0)


+



0

0
1
M

0

− 1
M

0


u1.

It follows that T is a free variable of the “generalized” states (and Ṫ is a driving variable)
and C is an input constrained by an algebraic constraint.

Example 5.5.5. Consider the following academic example borrowed from [13]:

Ξu :

x2 x1 0

0 0 0

1 0 1

 ẋ1

ẋ2

ẋ3

 =

 0

0

x2
2 − x3

1 + x3

+

1 −1

1 1

0 0

 [u1

u2

]
. (5.29)

Note that in [13], some outputs are considered for the above DAECS Ξu = (E,F,G).
In the present example, however, we are only interested in the system without outputs.
Moreover, we consider an admissible point xa = (x1a, x2a, x3a), where

x1a = 1, x2a = 1, x3a = 0.

Clearly, there exists a neighborhood U (x1 6= 0 for all x ∈ U ) of xa such that both

ImE(x) = Im

x2 x1 0

0 0 0

1 0 1

 and ImE(x) + ImG(x) = Im

x2 x1 0 1 −1

0 0 0 1 1

1 0 1 0 0


are of constant dimension. Moreover, for all x around xa, we have 0

0

x2
2 − x3

1 + x3

 ∈ Im

x2 x1 0 1 −1

0 0 0 1 1

1 0 1 0 0

 .
Thus (EFL1) and (EFL2) of Theorem 5.4.6 are satisfied. Subsequently, via

Q =

1 1 0

0 0 1

0 1 0

 , [
u1

u2

]
=

[
1 0

−1 1

] [
ũ1

ũ2

]
,

Ξu is ex-fb-equivalent tox2 x1 0

1 0 1

0 0 0

 ẋ1

ẋ2

ẋ3

 =

 0

x2
2 − x3

1 + x3

0

+

2 0

0 0

0 1

 [ũ1

ũ2

]
.
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We drop the tilde of the above u1 for simplicity of notation, then M∗ = U and

Ξu|redM∗ :

[
x2 x1 0

1 0 1

] ẋ1

ẋ2

ẋ3

 =

[
0

x2
2 − x3

1 + x3

]
+

[
2

0

]
u1.

Now an ODECS Σuv ∈ Expl(Ξu|redM∗) can be taken as

Σuv :

ẋ1

ẋ2

ẋ3

 =

 0

0

x2
2 − x3

1 + x3

+

 0

2/x1

0

u1 +

 x1

−x2

−x1

 v,
where v is a driving variable. Now calculate the distributions Di and D̂i for the system
Σuv, which are

D̂1 = span {gv} , D1 = span {gu, gv} , D2 = D̂2 = span {gu, gv, adfgv} ,

where

gv =

 x1

−x2

−x1

 , gu =

 0

2/x1

0

 , adfg
v =

 0

0

3x3
1 + 2x2

2 + x1

 .
Clearly, the distributions above are of constant rank and D2 = D̂2 = TxU for all x ∈ U .
Additionally, [gu, gv] = 0 ∈ D1, D̂1 is of rank one and D̂2 is TU , so the distributions D̂1,
D1, D̂2 are all involutive. Thus, condition (EFL3) of Theorem 5.4.6 is satisfied. Therefore,
system Ξu is completely external feedback linearizable.

In fact, we can choose ϕ1(x) and ϕ2(x) such that

span {dϕ1} = D⊥1 , span {dϕ1, dϕ2} = D̂⊥1 .

By solving some first order partial differential equations with the constraint that

(ϕ1(xa), ϕ2(xa)) = (0, 0),

we get

ϕ1(x) = x1 + x3 − x1a, ϕ2(x) = x1x2 − x1ax2a.

Moreover, setting

ϕ3(x) = Lfϕ1(x) = −(x1)3 + (x2)2 + x3,

we conclude that ϕ(x) = (ϕ1(x), ϕ2(x), ϕ3(x)) is a local diffeomorphism. Furthermore,
use the following coordinates change and feedback transformation

ξ = ϕ2(x), z1 = ϕ1(x), z2 = ϕ3(x),[
u1

v

]
=

[
1/2 0

2
3(x1)3+x1+2(x2)2

− 1
3(x1)3+x1+2(x2)2

][
ũ1

ṽ

]
+

[
0

(x2)2−(x1)3+x3
3(x1)3+x1+2(x2)2

]
,
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the system Σuv becomes

Λũṽ :


ξ̇ = ũ1

ż1 = z2

ż2 = ṽ.

Note that the above feedback transformation has a triangular form as we indicate in (5.12)
and Definition 5.2.7.

Now by Theorem 5.2.9, Ξu|redM∗ is ex-fb-equivalent to the following linear DAECS ∆u,

since Σuv ∈ Expl(Ξu|redM∗), Λũṽ ∈ Expl(∆u), and Σuv sys−fb∼ Λũṽ,

∆u :

[
1 0 0

0 1 0

]  ξ̇ż1

ż2

 =

[
0 0 0

0 0 1

] ξz1

z2

+

[
1

0

]
u1.

Therefore, the original DAECS Ξu is ex-fb-equivalent to the following completely control-
lable linear DAECS:1 0 0

0 1 0

0 0 0

  ξ̇ż1

ż2

 =

0 0 0

0 0 1

0 0 0

 ξz1

z2

+

1 0

0 0

0 1

 [ũ1

ũ2

]

via

Q(x) =

1 1 0

0 0 1

0 1 0

 ,
 ξz1

z2

 =

 x1x2 − x1ax2a

x1 + x3 − x1a

−(x1)3 + (x2)2 + x3

 , [
u1

u2

]
=

[
1/2 0

−1 1

] [
ũ1

ũ2

]
.

5.6 Proofs of the results

Proof of Proposition 5.2.5. If. Suppose that Σuv and Σ̃u,ṽ are equivalent via the trans-

formations given in (5.10). First, Im g̃ṽ(x)
(5.10)
= Im g̃ṽ(x)β(x) = kerE1(x) = kerE(x)

proves that g̃ṽ(x) is another choice such that Im g̃ṽ(x) = kerE(x). Then we have

Σ̃u,ṽ :

 ẋ = f̃ + g̃uu+ g̃ṽṽ
(5.10)
= f + γh+ gvαv + (gu + γlu + gvλ)u+ gvβvṽ

ỹ = h̃+ l̃uu
(5.10)
= ηh+ ηluu,

Now pre-multiply the differential part of Σ̃ by E1(x), to get (notice that f = E†1F1, gu =

E†1G1, h = F2, lu = G2 and Im gv = kerE1){
E1ẋ = F1 + E1γF2 + (G1 + E1γG2)u

ỹ = ηF2 + ηG2u.

Thus Σ̃u,ṽ is an (Il, ṽ)-explicitation of the following DAECS:[
E1

0

]
ẋ =

[
F1 + E1γF2

ηF2

]
+

[
G1 + E1γG2

ηG2

]
u.

152



CHAPTER 5. FEEDBACK LINEARIZATION OF NONLINEAR
DIFFERENTIAL-ALGEBRAIC CONTROL SYSTEMS

Since the above DAECS can be transformed from Ξu via Q̃(x) = Q′Q(x), where Q′(x) =[
Iq E1(x)γ(x)

0 η(x)

]
, it proves that Σ̃u,ṽ is a (Q̃, ṽ)-explicitation of Ξu corresponding to the

choice of invertible matrix Q̃(x). Finally, by E1(x)f̃(x) = F1(x) + E1(x)γ(x)F2(x),
E1(x)g̃u(x) = G1(x) + E1(x)γ(x)G2(x), we get f̃(x) = Ẽ†1(x)(F1(x) + γ(x)F2(x)) and
g̃u(x) = Ẽ†1(x)(G1(x) + γ(x)G2(x)) for another choice of right inverse Ẽ†1(x) of E1(x).

Only if. Suppose that Σ̃u,ṽ ∈ Expl(Ξu) via Q̃(x), Ẽ†1(x) and g̃ṽ(x). First by Im g̃ṽ(x) =

kerE(x) = Im gv(x), there exists an invertible matrix βv(x) such that g̃(x) = g(x)βv(x).
Moreover, sinceE†1(x) is a right inverse ofE1(x) if and only if any solution ẋ ofE1(x)ẋ =

w is given by E†1(x)w, we have E1(x)E†1(x)(F1(x) + G(x)u) = F1(x) + G(x)u and
E1(x)Ẽ†1(x)F1(x) = F1(x)+G(x)u. It follows thatE1(Ẽ†1−E

†
1)(x)(F1(x)+G(x)u) = 0,

so (Ẽ†1 − E
†
1)(x)F1(x) ∈ kerE1(x), (Ẽ†1 − E

†
1)(x)G1(x) ∈ kerE1(x). Since kerE1(x) =

Im gv(x), it follows that (Ẽ†1 − E†1)(x)F1(x) = g(x)αv(x) and (Ẽ†1 − E†1)(x)G1(x) =

g(x)λ(x) for suitable αv(x) and λ(x). Furthermore, since Q(x) is such that E1(x) of

Q(x)E(x) =

[
E1(x)

0

]
is of full row rank, it follows that for any other Q̃(x), such that

Ẽ1(x) of Q̃(x)E(x) =

[
Ẽ1(x)

0

]
is full row rank, must be of the form Q̃(x) = Q′(x)Q(x),

where Q′ =
[
Q1(x) Q2(x)

0 Q4(x)

]
. Thus via Q̃(x), Ξu is ex-equivalent to

Q′
[
E1

0

]
ẋ = Q′

[
F1

F2

]
+Q′

[
G1

G2

]
u

⇒
[
Q1E1

0

]
ẋ =

[
Q1F1 +Q2F2

Q4F2

]
+

[
Q1G1 +Q2G2

Q4G2

]
u.

The bottom equation of the above can be expressed, using Ẽ†1(x) and g̃ṽ(x), as:
ẋ = Ẽ†1F1 + Ẽ†1Q

−1
1 Q2F2 + (Ẽ†1G1 + Ẽ†1Q

−1
1 Q2G2)u+ g̃ṽv

= E†1F1 + gvαv + E†1Q
−1
1 Q2h+ (E†1F1 + gvλ+ E†1Q

−1
1 Q2l

u)u+ gvβvṽ

0 = Q4F2 +Q4G2 = Q4h+Q4l
u.

Thus the explicitation of Ξ via Q̃(x), Ẽ†1(x) and g̃(x) is

Σ̃ :

{
ẋ = f + γ(h+ luu) + gv(αv + λu+ βvṽ) = f̃ + g̃uu+ g̃ṽṽ

ỹ = ηh+ ηluu = h̃+ l̃uu.

where γ(x) = E†1Q
−1
1 Q2(x), η(x) = Q4(x). Now we can see that Σuv and Σ̃u,ṽ are

equivalent via transformations listed in (5.10).

Proof of Theorem 5.2.9. By the assumptions that rankE(x) and rank Ẽ(x) are constant
and equal to r around x0 and x̃0, respectively, there exist invertible matrix-valued functions
Q : U → Gl(l,R) and Q̃ : Ũ → Gl(l,R), defined on neighborhoods U of x0 and Ũ of x̃0,

such that E ′(x) = Q(x)E(x) =

[
E1(x)

0

]
and Ẽ ′(x̃) = Q̃(x̃)Ẽ(x̃) =

[
Ẽ1(x̃)

0

]
, where E1 :
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U → Rr×n and Ẽ1 : Ũ → Rr×n are of full row rank. We have Ξu ex−fb∼ Ξu′ = (E ′, F ′, G′)

and Ξ̃ũ ex−fb∼ Ξ̃u′ = (Ẽ ′, F̃ ′, G̃′) via Q(x) and Q̃(x̃), respectively, where

F ′(x) = Q(x)F (x) =

[
F1(x)

F2(x)

]
, G′(x) = Q(x)G(x) =

[
G1(x)

G2(x)

]
,

F̃ ′(x̃) = Q̃(x̃)F̃ (x̃) =

[
F̃1(x̃)

F̃2(x̃)

]
, G̃′(x̃) = Q̃(x̃)G̃(x̃) =

[
G̃1(x̃)

G̃2(x̃)

]
.

In this proof, without loss of generality, we will assume that Ξu = Ξu′ and Ξ̃ũ = Ξ̃u′ , since

Ξu ex−fb∼ Ξ̃ũ if and only if Ξu′ ex−fb∼ Ξ̃u′ .

Moreover, set

f(x) = E†1(x)F1(x), gu(x) = E†1(x)G1(x), Im gv(x) = kerE1(x),

h(x) = F2(x), lu(x) = G2(x), f̃(x̃) = Ẽ†1(x̃)F̃1(x̃),

g̃ũ(x̃) = Ẽ†1(x̃)g̃(x̃), Im g̃ṽ(x̃) = ker Ẽ1(x̃), h̃(x̃) = F̃2(x̃),

l̃ũ(x̃) = G̃2(x̃),

(5.30)

where E†1(x) and Ẽ†1(x) are right inverses of E1(x) and Ẽ1(x̃), respectively. Then by
Definition 5.2.2, Σuv = (f, gu, gv, h, lu) ∈ Expl(Ξu) and Σ̃ũṽ = (f̃ , g̃ũ, g̃ṽ, h̃, l̃ũ) ∈
Expl(Ξ̃ũ). By Proposition 5.2.5, any control system in Expl(Ξu) is sys-fb-equivalent
to Σuv and any control system in Expl(Ξ̃ũ) is sys-fb-equivalent to Σ̃ũṽ. Without loss of
generality, in the remaining part of the proof, we use Σuv and Σ̃ũṽ with system matrices
given by (5.30) to represent the two ODECSs in Expl(Ξu) and Expl(Ξ̃ũ), respectively.

If. Suppose that locally Σuv sys−fb∼ Σ̃ũṽ. Then there exist a local diffeomorphism x̃ =

ψ(x) and matrix-valued functions αu(x), αv(x), λ(x), γ(x), βu(x), βv(x), η(x) such that
the system matrices satisfy relations (5.11) of Definition 5.2.7.

First, consider g̃ṽ(ψ(x)) = ∂ψ(x)
∂x

gv(x)βv(x). By Im gv(x) = kerE1(x), Im g̃ṽ(x) =

ker Ẽ1(x), we have ker Ẽ1(ψ(x)) = ∂ψ(x)
∂x

kerE1(x). Thus there exists Q1(x) ∈ Gl(r,R)

such that

Ẽ1 ◦ ψ = Q1E1

(
∂ψ

∂x

)−1

. (5.31)

Then, by (5.11), the following relation holds:

[
f̃ ◦ ψ g̃ũ ◦ ψ
h̃ ◦ ψ l̃ũ ◦ ψ

]
=

[∂ψ
∂x

∂ψ
∂x
γη

0 η

] [
f gu gv

h lu 0

] I 0

αu βu

αv + λαu λβu

 .
By substituting (5.30) into the above equation, we get[

Ẽ†1 ◦ ψ · F1 ◦ ψ Ẽ†1 ◦ ψ ·G1 ◦ ψ
F̃2 ◦ ψ G̃2 ◦ ψ

]

=

[∂ψ
∂x

∂ψ
∂x
γη

0 η

] [
E†1F1 E†1G1 gv

F2 G2 0

] I 0

αu βu

αv + λαu λβu

 .
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Premultiply the above equation by[
Ẽ1 ◦ ψ 0

0 Ip

]
=

[
Q1E1

(
∂ψ
∂x

)−1
0

0 Ip

]
,

to get [
F̃1 ◦ ψ G̃1 ◦ ψ
F̃2 ◦ ψ G̃2 ◦ ψ

]
=

[
Q1 Q1E1γη

0 η

] [
F1 G1

F2 G2

] [
In 0

αu βu

]
. (5.32)

Now from equations (5.31), (5.32) and Definition 5.2.2, it can be seen that Ξu ex−fb∼ Ξ̃ũ via

x̃ = ψ(x), Q(x) =

[
Q1 Q1E1γη

0 η

]
(x), αu(x) and βu(x).

Only if. Suppose that Ξu ex−fb∼ Ξ̃ũ (locally in a neighborhood U of x0). Assume that Ξu

and Ξ̃u are ex-fb-equivalent via an invertible matirx Q(x) =

[
Q1(x) Q2(x)

Q3(x) Q4(x)

]
, x̃ = ψ(x),

αu(x), βu(x), whereQ1 : U → Rr×r andQ2(x), Q3(x),Q4(x) are matrix-valued functions
of appropriate sizes.

Then by

Q(x)E(x) = Ẽ(ψ(x))
∂ψ(x)

∂x
⇒
[
Q1(x) Q2(x)

Q3(x) Q4(x)

] [
E1(x)

0

]
=

[
Ẽ1 (ψ(x))

0

]
∂ψ(x)

∂x
,

we can deduce that

Ẽ1 ◦ ψ = Q1E1

(
∂ψ

∂x

)−1

. (5.33)

Moreover, Q3(x) = 0 and Q1(x) is invertible (since both E1(x) and Ẽ1(x) are of full row
rank), which implies that Q4(x) is invertible as well (since Q(x) is invertible). Subse-
quently, by

F̃ ◦ ψ = Q(F +Gαu)⇒
[
F̃1(ψ)

F̃2(ψ)

]
=

[
Q1 Q2

0 Q4

]([
F1

F2

]
+

[
G1

G2

]
αu
)
,

we have

F̃1(ψ (x)) = Q1(x)(F1(x) +G1(x)αu(x)) +Q2(x)(F2(x) +G2(x)αu(x)) (5.34)

and

F̃2 ◦ ψ = Q4(F2 +G2α
u). (5.35)

Moreover, by

G̃(ψ(x)) = Q(x)G(x)βu(x)⇒
[
G̃1(ψ(x))

G̃2(ψ(x))

]
=

[
Q1(x) Q2(x)

0 Q4(x)

] [
G1(x)

G2(x)

]
βu(x),
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we have

G̃1 ◦ ψ = Q1G1β
u +Q2G2β

u (5.36)

and

G̃2 ◦ ψ = Q4G2β
u. (5.37)

Recall the system matrices given in equation (5.30). First, from Im gv(x) = kerE1(x),
Im g̃ṽ(x) = ker Ẽ1(x̃), and equation (5.33), it is seen that there exists βv : U → Gl(s,R)

such that

g̃ṽ ◦ ψ =
∂ψ

∂x
gvβv. (5.38)

Secondly, by equations (5.33) and (5.34), we have

f̃ ◦ ψ = Ẽ†1 ◦ ψF̃1 ◦ ψ

=
∂ψ

∂x
E†1Q

−1
1

[
Q1 Q2

] [F1 +G1α
u

F2 +G2α
u

]
=
∂ψ

∂x
E†1Q

−1
1

[
Q1 Q2

] [F1 +G1α
u + E1g

v (λαu + αv)

F2 +G2α
u

]
=
∂ψ

∂x

(
f + guαu + gv (λαu + αv) + E†1Q

−1
1 Q2 (h+ luαu)

)
, (5.39)

where αv(x) and λ(x) are matrix-valued functions of appropriate sizes. Thirdly, by equa-
tion (5.36), we have

g̃ũ ◦ ψ = Ẽ†1 ◦ ψG̃1 ◦ ψ

=
∂ψ

∂x
E†1Q

−1
1

[
Q1 Q2

] [G1β
u

G2β
u

]
=
∂ψ

∂x
E†1Q

−1
1

[
Q1 Q2

] [G1β
u + E1g

vλ

G2β
u

]
=
∂ψ

∂x

(
guβu + gvλ+ E†1Q

−1
1 Q2l

uβu
)
. (5.40)

Note that we use the equations E1g
v (λαu + αv) = 0 and E1g

vλ = 0 to deduce (5.39) and
(5.40). At last, by equations (5.35) and (5.37) we have

h̃ ◦ ψ = F̃2 ◦ ψ = Q4(F2 +G2α
u) = Q4 (h+ luαu) (5.41)

and

l̃ũ ◦ ψ = G̃2 ◦ ψ = Q4G2β
u = Q4l

uβu. (5.42)

Finally, it can be seen from (5.39), (5.40), (5.41) and (5.42), that Σuv sys−fb∼ Σ̃ũṽ via x̃ =

ψ(x), αv(x), βv(x), αu(x), βu(x), λ(x), γ(x) = E†1Q
−1
1 Q2(x) and η(x) = Q4(x).
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Proof of Proposition 5.3.7. Since M is a smooth submanifold of dimension n1, there exist
a neighborhood U0 of xa and n−n1 independent scalar functions ϕ1, · · · , ϕn−n1 : U0 → R
such that

M ∩ U0 = {x ∈ U0 : ϕ1(x) = . . . = ϕn−n1(x) = 0}.

Let z2 = [ϕ1(x), · · · , ϕn−n1(x)]T and choose local coordinates z = ψ(x) = (z1(x), z2(x)),

where z1 : U0 → Rn1 such that dz1∧dz2 6= 0. DenoteE(x)
(
∂ψ(x)
∂x

)−1

by
[
E1(x) E2(x)

]
,

where E1 : U0 → Rl×n1 and E2 : U0 → Rl×(n−n1). It follows that

E(x)

(
∂ψ(x)

∂x

)−1(
∂ψ(x)

∂x

)
ẋ = F (x) +G(x)u

⇒
[
E1(z1, z2) E2(z1, z2)

] [ż1

ż2

]
= F (z1, z2) +G(z1, z2)u.

For all z ∈ M ∩ U0, we have z2 = 0 and for (z, ż) ∈ TzM , the DAE Ξu has the following
form: [

E1(z1, 0) E2(z1, 0)
] [ż1

0

]
= F (z1, 0) +G(z1, 0)u⇒

E1(z1, 0)ż1 = F (z1, 0) +G(z1, 0)u.

Now from the assumptions

dim (E(z)TzM) = const. = r, dim (E(z)TzM + ImG(z)) = const. = r +m2,

locally for z ∈ M , it follows that there exists a neighborhood U1 ⊆ U0 and an invertible
matrix Q(z1) : M ∩ U1 → Gl(l,R) such that:

Q(z1)
[
E1(z1, 0) G(z1, 0)

]
=

E1
1(z1) G1(z1)

0 G2(z1)

0 0

 ,
where E1(z1, 0), G1(z1) and G2(z1) are smooth functions defined on M ∩ U1 with values
in Rr×n1 , Rr×m and Rm2×m, respectively and, moreover, E1

1(z1) andG2(z1) are of full row
rank.

Denote Q(z1)F (z1) = col [F1(z1), F2(z1), F3(z1)], where F1, F2, F3 are matrix-valued
functions of appropriate sizes. Then for all z ∈M ∩ U1, Ξu has the following form:E1

1(z1)

0

0

 ż1 =

F1(z1)

F2(z1)

F3(z1)

+

G1(z1)

G2(z1)

0

u. (5.43)

Now by F (z) ∈ E(z)TzM + ImG(z) locally for z ∈ M (since M is locally controlled
invariant), we have F1(z1)

F2(z1)

F3(z1)

 ∈ Im

E1
1(z1) G1(z1)

0 G2(z1)

0 0

 ,
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which implies F3(z1) = 0.

Subsequently, since G2(z1) is of full row rank, we can always assume
[
G1(z1)

G2(z1)

]
=[

G1
1(z1) G2

1(z1)

G1
2(z1) G2

2(z1)

]
such that G2

2 : M ∩ U → Gl(m2,R). Since if not, we can always

permute the components of u such that G2
2(z1) is invertible. Then, applying the following

feedback transformation to DAECS (5.43)

ũ =

[
0

F2(z1)

]
+

[
In−m2 0

G1
2(z1) G2

2(z1)

]
u,

we get E1
1(z1)

0

0

 ż1 =

F̃1(z1)

0

F3(z1)

+

G̃1
1(z1) G̃2

1(z1)

0 Im2

0 0

[u1

u2

]
,

where (u1, u2) = ũ and dim u1 = n − m2 = m1, F̃1 = F1 − G2
1(G2

2)−1F2, G̃1
1 =

G1
1 −G2

1(G2
2)−1G1

2 and G̃2
2 = G2

1(G2
2)−1.

Premultiply the above equation by

Q(z1) =

Ir −G̃2
1(z1) 0

0 Im2 0

0 0 Il−r−m2

 ,
then it follows, for all z ∈M ∩U1, that Ξu has the following form (notice that F3(z1) = 0)E1

1(z1)

0

0

 ż1 =

F̃1(z1)

0

0

+

G̃1
1(z1) 0

0 Im2

0 0

[u1

u2

]
.

Finally, by Definition 5.3.4 and 5.3.6, we have

Ξu|redM : E1
1(z1)ż1 = F̃1(z1) + G̃1

1(z1)u1.

Obviously, Ξu|redM = (E1
1 , F̃1, G̃

1
1) is a DAECS of form (5.1) of dimensions r, n1 and

m1 = m −m2, i.e., Ξu|redM = Ξu′
r,n1,m1

, where the notation u′ indicates that the dimension
of the control u has been changed. Moreover, since E1

1(z1) is of full row rank, from the
procedure of explicitation, it is seen that Expl(Ξu|redM ) is not empty and any ODECS in
Expl(Ξu|redM ) has no outputs.

Proof of Theorem 5.3.10. First, we prove that M∗ = M c
k∗ is a locally maximal controlled

invariant submanifold. Under the assumption that Mk ∩ Uk, k > 0 are smooth submani-
folds, by Mk+1 ⊆ Mk, there exists an index k∗ such that Mk∗+1 = M c

k∗ . Note that k∗ is
strictly smaller than n, since dim M0 ≤ n and dim Mk − dim Mk+1 ≥ 1 for all k < k∗

(notice that dim Mk 6= 0).
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For k = k∗, we have

F (x) ∈ E(x)TxM
c
k∗ + ImG(x), x ∈M c

k∗ (5.44)

Now consider the assumption that M∗ = M c
k∗ satisfies the regularity condition (Reg), by

Proposition 5.3.3, M∗ = M c
k∗ is a locally controlled invariant submanifold. Then we prove

M∗ is locally maximal by induction. Consider any other controlled invariant submanifold
M̂ , we can see that M̂ ⊆M0 (since F (x) ∈ E(x)TxM̂+ImG(x) for all x ∈ M̂ ). Suppose
that M̂ ⊆ M c

k , which implies F (x) ∈ E(x)TxM
c
k + ImG(x) for all x ∈ M̂ . By equation

(5.14), it can be deduced that x ∈ Mk+1 for all x ∈ M̂ . Thus M̂ ⊆ Mk for all k < n,
which implies M̂ ⊆Mk∗ . Therefore, M∗ = M c

k∗ is locally maximal.

Next we prove that under the additional assumption (A1): Ξu is locally ex-fb-equivalent
to the MCISF given by (5.15). Denote dim M∗ = n1, there exist a neighborhood U1

of x0 and two vector-valued functions ξ1 : U1 → Rn1 and ξ2 : U1 → Rn2 such that
M∗ ∩ U1 = {x : ξ2(x) = 0} and dξ1 ∧ dξ2 6= 0. In local (ξ1, ξ2)-coordinates, defined by
the local diffeomorphism ξ(x) = col[ξ1(x), ξ2(x)], the system Ξu is expressed as[

E1(ξ) E2(ξ)
] [ξ̇1

ξ̇2

]
= F (ξ) +G(ξ)u,

where E1 : U1 → Rl×n1 and E2 : U1 → Rl×n2 .

Then, by assumption (A1), there exists a neighborhood U2 = U1 ∩ Uk∗ of x0 such that
for ξ ∈ U2,

rank
[
E1(ξ) E2(ξ)

]
= const. = r, rank

[
E1(ξ) E2(ξ) G(ξ)

]
= const. = r +m2.

Choose Q1 : U2 → Gl(l,R) such that the matrices [Ẽ1(ξ), Ẽ2(ξ)] and G2(ξ) are of full
row rank:

Q1(ξ)
[
E1(ξ) E2(ξ) G(ξ)

]
=

Ẽ1(ξ) Ẽ2(ξ) G1(ξ)

0 0 G2(ξ)

0 0 0

 ,
where Ẽ1 : U2 → Rr×n1 and G2 : U2 → Rm2×m.

By assumption (Reg), we have dim E(x)TxM
∗ = const. for x ∈M∗, and denote this

dimension by r1. Then it is immediate to see that rank Ẽ1(ξ) = r1 for ξ ∈ M∗. By the
smoothness of E(x), there exist r1 columns of Ẽ1(ξ) are independent for ξ ∈ U2. Now
consider the matrix[

Ẽ1(ξ) Ẽ2(ξ)
]

=

[
E1

1(ξ) E2
1(ξ) E1

2(ξ) E2
2(ξ)

E3
1(ξ) E4

1(ξ) E3
2(ξ) E4

2(ξ)

]
,

where E1
1 : U2 → Rr1×r1 and E3

2 : U2 → Rr2×r2 and where r2 = r − r1. We can always
permute the rows (by a constant Q-transformation) and the columns (by permuting the
components of ξ1) of the above matrix such that E1

1(ξ) is invertible. Then by a suitable
Q-transformation, [Ẽ1, Ẽ2] admits the form[

Ẽ1(ξ) Ẽ2(ξ)
]

=

[
Ir1 E2

1(ξ) E1
2(ξ) E2

2(ξ)

0 E4
1(ξ) E3

2(ξ) E4
2(ξ)

]
.
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Since rankE(x) = r, we have [E4
1 , E

3
2 , E

2
4 ] is of full row rank r2 = r − r1. Notice that

E4
1(ξ) = 0 for ξ ∈ M∗ (since rank Ẽ1(ξ) = r1 for ξ ∈ M∗). By the smoothness of E(x),

we have [E3
2(ξ), E2

4(ξ)] is of full row rank r2 for x ∈ U2. Now we can always permute
the columns (by permuting the components of ξ2) of Ẽ2 such that E3

2 is invertible. On the
other hand, let [

G1(ξ)

G2(ξ)

]
=

G1
1(ξ) G2

1(ξ)

G3
1(ξ) G4

1(ξ)

G1
2(ξ) G2

2(ξ)

 ,
where G2

2(ξ) is a m2 ×m2 matrix. Since G2 is of full row rank m2, we can permute the
components of u (by a feedback transformation) such that G2

2(ξ) is invertible. Since E3
2(ξ)

and G2
2(ξ) are invertible, set

Q2(ξ) =


Ir1 Q2

1(ξ) Q3
1(ξ) 0

0 Q2
2(ξ) Q3

2(ξ) 0

0 0 Q3
3(ξ) 0

0 0 0 Il−m−r

 ,
where Q2

1 = −E1
2(E3

2)−1, Q3
1 = −(G2

1 − E1
2(E3

2)−1G4
1)(G2

2)−1, Q2
2 = (E3

2)−1, Q3
2 =

−(E3
2)−1G4

1(G2
2)−1, Q3

3 = (G2
2)−1, and we have

Q2(ξ)Q1(ξ)
[
E1(ξ) E2(ξ) G(ξ)

]
=


Ir1 Ẽ2

1(ξ) 0 Ẽ2
2(ξ) G̃1

1(ξ) 0

0 Ẽ4
1(ξ) Ir1 Ẽ4

2(ξ) G̃3
1(ξ) 0

0 0 0 0 G̃1
2(ξ) Im2

0 0 0 0 0 0

 ,
where Ẽ2

1 = E2
1 + Q2

1E
4
1 , Ẽ2

2 = E2
2 + Q2

1E
4
2 , G̃1

1 = G1
1 + Q2

1E
4
1 + Q3

1G
1
2, Ẽ4

1 = Q2
2E

4
1 ,

Ẽ4
2 = Q2

2E
4
2 , G̃3

1 = Q2
2G

3
1 +Q3

2G
1
2, G̃1

2 = Q3
3G

1
2.

Denote Q2Q1F = col[F1, F2, F3, F4]. Then by the feedback transformation[
0

F3(ξ)

]
+

[
Im1 0

G̃1
2(ξ) Im2

]
u =

[
u1

u2

]
,

both G̃1
2 and F3 become zero. Rewrite z = ξ, (z1, z2) = ξ1, (z3, z4) = ξ2, E2

1 = Ẽ2
1 , E2

2 =

Ẽ4
1 , E4

1 = Ẽ2
2 , E4

2 = Ẽ4
2 , G1 = G̃1

1, G2 = G̃3
1, then it is not hard to see Ξu is transformed

into the normal form given by (5.15). Since dim E(x)TxM
∗ = rank

[
Ir1 E2

1(z)

0 E2
2(z)

]
= r1

for z ∈ M∗, we have E2
2(z) = 0 for z ∈ M∗. Since F (z) ∈ E(z)TzM

∗ + ImG(z)

(because M∗ is a controlled invariant submanifold), we have F4(z) = 0 for z ∈M∗.

Now we prove that under additional conditions (A1) and (A2), Ξu is locally ex-fb-
equivalent the SMCISF, given by (5.16). The construction of the SMCISF is similar to
the above construction of the normal form (5.15), but we choose new coordinates differ-
ently as shown in the following. By (A2), there exist a neighborhood U1 of x0 and two
vector-valued functions ξ1 : U1 → Rn1 and ξ2 : U1 → Rn2 such that span{dξ1} =

span{dξ1
1 , . . . , dξ

n1
1 } = D⊥ (recall that D is involutive) and dξ1 ∧ dξ2 6= 0. Since

D(x) = TxM
∗ for x ∈ M∗, we still have M∗ ∩ U1 = {x : ξ2(x) = 0}. Thus by
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(A1) and the above construction of (5.15), we can always transform Ξu into the normal
form of (5.15). However, by (A2), in (5.15),

dimE(z)D(z) = rank

[
Ir1 E2

1(z)

0 E2
2(z)

]
= r1,

dim (E(z)D(z) + ImG(z)) = rank

Ir1 E2
1(z) G1(z) 0

0 E2
2(z) G2(z) 0

0 0 0 Im2

 = r1 +m2,

locally for z ∈ U2. Thus both E2
2 and G2 become zero. Then by F (z) ∈ E(z)TzM

∗ +

ImG(z) (since M∗ is a controlled invariant submanifold), we have F2(z) = 0, F4(z) = 0

for z ∈ M∗. Therefore, under assumptions (A1) and (A2), Ξu is always locally ex-fb-
equivalent to the SMCISF, given by (5.16).

Proof of Theorem 5.4.5. Denote dim M∗ = n∗, dim (E(x)TxM
∗) = r∗ and

dim (E(x)TxM
∗ + ImG(x)) = r∗ + (m−m∗)

(the dimensions being constant by assumption (A1)). Then by Proposition 5.3.7, a DAE
Ξu|redM∗ is of the form

Ξu|redM∗ : E∗(x)ż = F ∗(x) +G∗(x)u∗, (5.45)

where E∗(x) is of full row rank r∗, G∗(x) is of full column rank m∗, and Ξu|redM∗ is thus
Ξu|redM∗ = Ξu

r∗,n∗,m∗ . An ODECS Σ∗n∗,m∗,s∗ = (f, gu, gv) ∈ Expl(Ξu|redM∗) is a system
without outputs and of the form

Σ∗ : ẋ = f(x) + gu(x)u+ gv(x)v,

where s∗ = n∗ − r∗.

Only if. Suppose that Ξu is locally completely internal feedback linearizable (see Def-
inition 5.4.3), which means that Ξu|redM∗ is locally ex-fb-equivalent to a completely control-
lable linear DAECS

∆u∗ : E∗ż = H∗z + L∗u∗,

denoted by ∆u∗ = (E∗, H∗, L∗), where E∗, H∗, L∗ are constant matrices of appropriate
sizes. A linear ODECS Λ∗ = (A∗, Bu∗, Bv∗) ∈ Expl(∆u∗) is of the form

Λ∗ : ẋ = A∗x+Bu∗u+Bv∗v.

Then by Lemma 5.4.2, the complete controllability of ∆u∗ implies Ŵn∗(∆
u∗) = Wn∗(∆

u∗) =

Rn∗ . By Proposition 3.2.9 of Chapter 3 (see also Remark 5.4.4(ii)), we get Ŵn∗(Λ
∗) =

Wn∗(Λ
∗) = Ŵn∗(∆

u∗) = Wn∗(∆
u∗) = Rn∗ . Since Λ∗ is a linear control system without

outputs, we have D̂n∗(Λ
∗) = Ŵn∗(Λ

∗) and Dn∗(Λ
∗) = Wn∗(Λ

∗). Hence, D̂n∗(Λ
∗) =

Dn∗(Λ
∗) = Rn∗ . Thus Σ∗ satisfies condition (FL2). Moreover, since Λ∗ is a linear control

system, it satisfies conditions (FL1) and (FL3) in an obvious way. Conditions (FL1)-(FL3)
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are invariant under sys-fb-equivalence, so Σ∗ (which is sys-fb-equivalent to Λ∗) also satis-
fies them.

After having proved that Σ∗ satisfies (FL1)-(FL3) of Theorem 5.4.5, we will now prove
that any ODECS belonging to Expl(Ξu|redM∗) satisfies these conditions as well. Consider

two ODECSs Σ∗ ∈ Expl(Ξu|redM∗) and Σ̂∗ ∈ Expl(Ξu|redM∗), we have Σ∗
sys−fb∼ Σ̂∗ by The-

orem 5.2.9. Since Σ∗ and Σ̂∗ are control systems without outputs, sys-fb-equivalence
reduces to feedback equivalence. Thus Σ∗ and Σ̂∗ are feedback equivalent (via two kinds
of feedback transformations, see Remark 5.2.8). It is easy to verify that if D̂i and Di are
involutive, then the two distribution sequences are invariant under the two kinds of feed-
back transformations. Hence any ODECS belonging to the class Expl(Ξu|redM∗) satisfies
conditions (FL1)-(FL3) of Theorem 5.4.5.

If. Suppose that an ODECS Σ∗ ∈ Expl(Ξu|redM∗) satisfies conditions (FL1)-(FL3). We
claim that Σn∗,m∗,s∗ = (f, gu, gv) is locally feedback equivalent to the Brunovský canoni-
cal form (see [31] for standard linear ODECSs and Chapter 3 for linear ODECSs with two
kinds of inputs), via two kinds of feedback transformations (see equation (5.46)). We now
describe a procedure to construct new coordinates z = Tx(x) and feedback transforma-
tions: [

u

v

]
=

[
Fu(x)

Fv(x)

]
+

[
Tu(x) 0

R(x) Tu(x)

] [
ũ

ṽ

]
(5.46)

to transform Σ∗ into the Brunovský canonical form. Note that Tu(x) and Tv(x) have to be
invertible around xa.

Step 1: Denote the smallest i such that Di = Dn∗ = TM∗ by k∗ (meaning Dk∗ =

Dk∗+1 = TM∗) and define

m1 = dim D̂⊥k∗ − dim D⊥k∗ , s1 = dim D⊥k∗−1 − dim D̂⊥k∗ .

Now by involutivity of Dk∗−1 and D̂k∗ (condition (FL1)), we can choose scalar functions
hui (x), 1 ≤ i ≤ m1 and hvi (x), 1 ≤ i ≤ s1 such that

span {dhui , 1 ≤ i ≤ m1} = D̂⊥k∗ ,

span {dhui , 1 ≤ i ≤ m1}+ span {dhvi , 1 ≤ i ≤ s1} = D⊥k∗−1,

which implies that〈
dhui (x), adkfg

u
j (x)

〉
= 0, 1 ≤ i ≤ m1, 1 ≤ j ≤ m, 0 ≤ k ≤ k∗ − 2;〈

dhui (x), adkfg
v
j (x)

〉
= 0, 1 ≤ i ≤ m1, 1 ≤ j ≤ s, 0 ≤ k ≤ k∗ − 1;〈

dhvi (x), adkfg
u
j (x)

〉
= 0, 1 ≤ i ≤ s1, 1 ≤ j ≤ m, 0 ≤ k ≤ k∗ − 2;〈

dhvi (x), adkfg
v
j (x)

〉
= 0, 1 ≤ i ≤ s1, 1 ≤ j ≤ s, 0 ≤ k ≤ k∗ − 2.

(5.47)

where the vector fields guj (x), 1 ≤ j ≤ m, are the columns of gu(x) and the vector fields
gvj (x), 1 ≤ j ≤ s are the columns of gv(x).

Recall the following result [92][151]:〈
dh(x), adkfg(x)

〉
= 0, 0 ≤ k ≤ l − 2 then〈

dh(x), adl−1
f g(x)

〉
= (−1)k

〈
dLkfh, ad

l−1−k
f g

〉
, 0 ≤ k ≤ l − 1,

(5.48)
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where h(x) is a scalar function, f(x) and g(x) are vector fields.

Then by (5.47) and (5.48), we have:

Lguj L
k
fh

u
i (x) = 0, 1 ≤ i ≤ m1, 1 ≤ j ≤ m, 0 ≤ k ≤ k∗ − 2;

LgvjL
k
fh

u
i (x) = 0, 1 ≤ i ≤ m1, 1 ≤ j ≤ s, 0 ≤ k ≤ k∗ − 1;

Lguj L
k
fh

v
i (x) = 0, 1 ≤ i ≤ s1, 1 ≤ j ≤ m, 0 ≤ k ≤ k∗ − 2;

LgvjL
k
fh

v
i (x) = 0, 1 ≤ i ≤ s1, 1 ≤ j ≤ s, 0 ≤ k ≤ k∗ − 2.

(5.49)

Let Hu
m1

: M∗ → Rm1 be a vector-valued map with entries hui (x), 1 ≤ i ≤ m1 and
Hv
s1

: M∗ → Rs1 be a vector-valued map with entries hvi , 1 ≤ i ≤ s1. By construction,
dHu

m1
(x) and dHv

s1
(x) are matrices of full row rank around xa. Then, we claim:

(a) The following m1 ×m matrix is of full row rank at xa:

Tm1
u (x) = LguL

k∗−1
f Hu

m1
(x) =

〈
dLk

∗−1
f Hu

m1
(x), gu(x)

〉
and the following s1 × s matrix is of full row rank at xa:

T s1v (x) = LgvL
k∗−1
f Hv

s1
(x) =

〈
dLk

∗−1
f Hv

s1
(x), gv(x)

〉
.

First suppose rankTm1
u (xa) < m1. Then, by (5.47) and (5.48), there exists a nonzero

vector cum1
∈ Rm1 such that

cum1

〈
dLk

∗−1
f Hu

m1
(xa), g

u
j (xa)

〉
= (−1)k

∗−1cum1

〈
dHu

m1
(xa), ad

k∗−1
f guj (xa)

〉
= 0, 1 ≤ j ≤ m.

Note that span {dhui , 1 ≤ i ≤ m1} ∈ D̂⊥k∗ by construction. Thus the above equation
implies that cum1

dHu
m1

(xa) ∈ D⊥k∗(xa). The matrix dHu
m1

(x) is of full row rank and
dim Dk∗ = n∗, so cum1

has to be zero, this contradiction implies that Tm1
u (xa) is of full

row rank. Then, suppose rankT s1v (xa) < s1. Also by (5.47) and (5.48), there exists a
nonzero row vector cvs1 ∈ Rs1 such that

cvs1
〈
dLk

∗−1
f Hv

s1
(xa), g

v
j (xa)

〉
= cvs1

〈
dHv

s1
(xa), ad

k∗−1
f gvj (xa)

〉
= 0, 1 ≤ j ≤ s.

Note that span {dhvi , 1 ≤ i ≤ s1} ∈ D⊥k∗−1 by construction. Thus the above equation im-
plies that cvs1dH

v
s1

(xa) ∈ D̂⊥k∗(xa). It follows that, there exists a nonzero vector bum1
∈ Rm1

such that

cvs1dH
v
s1

(xa) = bum1
dHu

m1
(xa),

which is a contradiction since dhui , 1 ≤ i ≤ m1 and dhvi , 1 ≤ i ≤ s1 are independent.
Hence, the whole claim is true.

Subsequently, if m1 + s1 = m + s, then Tm1
u (x) and T s1v (x) are invertible around xa.

Set

Tx(x) = col
[
Hu
m1
, Hv

s1
, LfH

u
m1
, LfH

v
s1
, . . . , Lk

∗−1
f Hu

m1
, Lk

∗−1
f Hv

s1

]
(x),

Tu(x) = Tm1
u (x), Tv(x) = T s1v (x),

Fu(x) = Lk
∗

f H
u
m1

(x), Fv = Lk
∗

f H
v
s1

(x), R =
〈
dLk

∗−1
f Hv

s1
(x), gu(x)

〉
.
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It can be seen that the system, mapped via the transformations constructed above, is in the
Brunovský canonical form with indices ρ1 = ρ2 = · · · = ρm = ρ̄1 = ρ̄2 = · · · = ρ̄s = k∗.
If m1 + s1 < m+ s, go to the next step.

Step 2: We claim that, arpund xa,

(b) D⊥k∗−1 ∩ span {dLfhui , 1 ≤ i ≤ m1} = 0, and

D⊥k∗−1 + span {dLfhui , 1 ≤ i ≤ m1} ⊂ D̂⊥k∗−1. (5.50)

(c) D̂⊥k∗−1 ∩ span {dLfhvi (x), 1 ≤ i ≤ s1} = 0, and

D̂⊥k∗−1 + span {dLfhvi (x), 1 ≤ i ≤ s1} ⊂ D⊥k∗−2. (5.51)

First, we prove that claim (b) is true. Consider (5.50), then D⊥k∗−1 ⊂ D̂⊥k∗−1 is obvious
(since D̂k∗−1 ⊂ Dk∗−1). By (5.47) and (5.48), we have〈

dLfh
u
i (x), adkfg

u
j (x)

〉
= 0, 1 ≤ i ≤ s1, 1 ≤ j ≤ m, 0 ≤ k ≤ k∗ − 3,〈

dLfh
u
i (x), adkfg

v
j (x)

〉
= 0, 1 ≤ i ≤ s1, 1 ≤ j ≤ s, 0 ≤ k ≤ k∗ − 2,

which implies that {dLfhui , 1 ≤ i ≤ m1} ∈ D̂⊥k∗−1, hence (5.50) is true.

Now suppose D⊥k∗−1(xa) ∩ {dLfhui (xa), 1 ≤ i ≤ m1} 6= 0, which implies that there
exists a nonzero row vector cum1

∈ Rm1 such that cum1
dLfH

u
m1

(xa) ∈ D⊥k∗−1(xa). This
would mean

cum1

〈
dLfH

u
m1

(xa), ad
k
fg

u
j (xa)

〉
= 0, 1 ≤ j ≤ m, 0 ≤ k ≤ k∗ − 2,

cum1

〈
dLfH

u
m1

(xa), ad
k
fg

v
j (xa)

〉
= 0, 1 ≤ j ≤ s, 0 ≤ k ≤ k∗ − 2,

which in turn, implies by (5.48)

cum1

〈
dHu

m1
(xa), ad

k
fg

u
j (xa)

〉
= 0, 1 ≤ j ≤ m, 0 ≤ k ≤ k∗ − 1,

cum1

〈
dHu

m1
(xa), ad

k
fg

v
j (xa)

〉
= 0, 1 ≤ j ≤ s, 0 ≤ k ≤ k∗ − 1.

Thus by the above equations, we have cum1
dHu

m1
(xa) ∈ D⊥k∗ . Then, by dim Dk∗ = n∗ and

dHu
m1

(xa) being of full row rank, cum1
has to be zero. This contradiction completes the

proof of claim (b).

Then we prove claim (c) is true. Consider (5.51), then D⊥k∗−1 ⊂ D⊥k∗−2 is obvious
(since Dk∗−2 ⊂ D̂k∗−1). By (5.47) and (5.48), we have〈

dLfh
v
i (x), adkfg

u
j (x)

〉
= 0, 1 ≤ i ≤ m1, 1 ≤ j ≤ m, 0 ≤ k ≤ k∗ − 3,〈

dLfh
v
i (x), adkfg

v
j (x)

〉
= 0, 1 ≤ i ≤ m1, 1 ≤ j ≤ s, 0 ≤ k ≤ k∗ − 3,

which implies {dLfhvi , 1 ≤ i ≤ s1} ∈ D⊥k∗−2, hence (5.51) holds.

Now suppose D̂⊥k∗−1(xa) ∩ {dLfhvi (xa), 1 ≤ i ≤ s1} 6= 0, which implies that there
exists a nonzero row vector cvs1 ∈ Rs1 such that cvs1dLfH

v
s1

(xa) ∈ D̂⊥k∗−1(xa). This would
mean

cvs1
〈
dLfH

v
s1

(xa), ad
k
fg

u
j (xa)

〉
= 0, 1 ≤ j ≤ m, 0 ≤ k ≤ k∗ − 3,
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cvs1
〈
dLfH

v
s1

(xa), ad
k
fg

v
j (xa)

〉
= 0, 1 ≤ j ≤ s, 0 ≤ k ≤ k∗ − 2,

which in turn, implies by (5.48)

cvs1
〈
dHv

s1
(xa), ad

k
fg

u
j (xa)

〉
= 0, 1 ≤ j ≤ m, 0 ≤ k ≤ k∗ − 2,

cvs1
〈
dHv

s1
(xa), ad

k
fg

v
j (xa)

〉
= 0, 1 ≤ j ≤ s, 0 ≤ k ≤ k∗ − 1.

Thus, by the above equations, we have cvs1dH
v
s1

(xa) ∈ D̂⊥k∗(xa). It follows that there exists
a row vector bum1

∈ Rm1 such that cvs1dH
v
s1

(xa) = bum1
dHu

m1
(xa), which is a contradiction

since dhui , 1 ≤ i ≤ m1 and dhvi , 1 ≤ i ≤ s1 are independent by construction. This
contradiction completes the proof of claim (c).

Based on claims (b) and (c), define

m2 = (dim D̂⊥k∗−1)− (dim D⊥k∗−1)−m1, s2 = (dim D⊥k∗−2)− (dim D̂⊥k∗−1)− s1.

Then choose m2 scalar functions hui (x), m1 + 1 ≤ i ≤ m1 +m2, such that

D⊥k∗−1 + span {dLfhui , 1 ≤ i ≤ m1}+ span {dhui ,m1 + 1 ≤ i ≤ m1 +m2} = D̂⊥k∗−1,

(5.52)

and choose s2 scalar functions hvi (x), s1 + 1 ≤ i ≤ s1 + s2, such that

D̂⊥k∗−1 + span {dLfhvi , 1 ≤ i ≤ s1}+ span {dhvi , s1 + 1 ≤ i ≤ s1 + s2} = D⊥k∗−2.

(5.53)

Moreover, set

Tm2
u (x) = LguL

k∗−2
f Hu

m2
(x), T s2v (x) = LguL

k∗−2
f Hv

s2
(x).

where Hu
m2

(x) and Hv
s2

denote vector-valued functions whose rows consist of hui (x), m1 +

1 ≤ i ≤ m1 +m2, and hvi (x), s1 + 1 ≤ i ≤ s1 + s2, respectively. We claim that

(d) The (m1 +m2)×m matrix

Tm1+m2
u (x) =

[
Tm1
u (x)

Tm2
u (x)

]
is of full row rank at xa and the (s1 + s2)× s matrix

T s1+s2
v (x) =

[
T s1v (x)

T s2v (x)

]
is of full row rank at xa. First suppose that rankTm1+m2

u (xa) < m1 + m2, which implies
that there exist some row vectors cum1

∈ Rm1 and cum2
∈ Rm2 such that

cum1

〈
dLk

∗−1
f Hu

m1
(xa), g

u
j (xa)

〉
+ cum2

〈
dLk

∗−2
f Hu

m2
(xa), g

u
j (xa)

〉
= 0, 1 ≤ j ≤ m,

(5.54)

which implies, by (5.48), that

cum1

〈
dLfH

u
m1

(xa), ad
k∗−2
f guj (xa)

〉
+ cum2

〈
dHu

m2
(xa), ad

k∗−2
f guj (xa)

〉
= 0, 1 ≤ j ≤ m.
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Thus 〈
cum1

dLfH
u
m1

+ cum2
dHu

m2
, adk

∗−2
f (xa)g

u
j (xa)

〉
= 0, 1 ≤ j ≤ m. (5.55)

Notice that by (5.52), we have

cum1
dLfH

u
m1

(xa) + cum2
dHu

m2
(xa) ∈ D̂⊥k∗−1(xa). (5.56)

As a consequence of (5.55) and (5.56), we get

cum1
dLfH

u
m1

(xa) + cum2
dHu

m2
(xa) ∈ D⊥k−1(xa),

which contradicts the independence of the differentials used in (5.52). Thus Tm1+m2
u (xa)

is of full row rank. Then suppose rankT s1+s2
v (xa) < s1 +s2, which implies that there exist

some row vectors cvs1 ∈ Rs1 , cvs1 ∈ Rs2 such that

cvs1
〈
dLk

∗−1
f Hu

s1
(xa), g

v
j (xa)

〉
+ cvs2

〈
dLk

∗−2
f Hv

s2
(xa), g

v
j (xa)

〉
= 0, 1 ≤ j ≤ s.

By (5.48), the above equation gives

cvs1
〈
dLfH

v
s1

(xa), ad
k∗−2
f gvj (xa)

〉
+ cvs2

〈
dHv

s2
(xa), ad

k∗−2
f gvj (xa)

〉
= 0, 1 ≤ j ≤ m.

Thus 〈
cvs1dLfH

v
s1

(xa) + cvs2dH
v
s2

(xa), ad
k∗−2
f gvj

〉
= 0 1 ≤ j ≤ s.

Notice that by (5.53), we have cvs1dLfH
v
s1

+ cvs2dH
v
s2
∈ D⊥k∗−2. As a consequence,

cvs1dLfH
v
s1

(xa) + cvs2dH
v
s2

(xa) ∈ D̂⊥k∗−1,

which contradicts the independence of the differentials used in (5.53). Therefore, T s1+s2
v (xa)

is of full row rank.

Now if m1 + m2 + s1 + s2 = m + s, we have Tm1+m2
u (x), T s1+s2

v (x) are invertible
around xa. Set

Tx(x) = col
[
LjfH

u
mi

(x), LjfH
v
si

(x), 1 ≤ i ≤ 2, 0 ≤ j ≤ k∗ − i
]
,

Tu(x) = Tm1+m2
u (x), Tv(x) = T s1+s2

v (x), R(x) = col[Lk
∗−1
f Hv

s1
Bu, L

k∗−2
f Hv

s2
Bu](x),

Fu(x) = col
[
Lk
∗

f H
u
m1
, Lk

∗−1
f Hu

m2

]
(x), Fv(x) = col

[
Lk
∗

f H
v
s1
, Lk

∗−1
f Hv

s2

]
(x).

Then the transformations given by the above matrices bring Σ∗ = (f, gu, gv) into its
Brunovský canonical form with indices

ρ1 = ρ2 = · · · = ρm1 = ρ̄1 = ρ̄2 = · · · = ρ̄s1 = k∗,

ρm1+1 = ρm1+2 = · · · = ρm = ρ̄s1+1 = ρ̄s2+2 = · · · = ρ̄s = k∗ − 1.

If m1 + s1 < m+ s, go to next step.
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Step k: After k − 1 iterations of the above procedure, we can find (k − 1)m1 + (k −
2)m2 + · · ·+mk−1 + (k − 1)s1 + (k − 2)s2 + · · ·+ sk−1 independent row vectors

dhui (x), dLfh
u
i (x), . . . , dLk−2

f hui (x), 1 ≤ i ≤ m1

. . .

dhui (x), dLfh
u
i (x), m1 + . . .+mk−3 + 1 ≤ i ≤ m1 + . . .+mk−2

dhui (x), m1 + . . .+mk−2 + 1 ≤ i ≤ m1 + . . .+mk−1

dhvi (x), dLfh
v
i (x), . . . , dLk−2

f hvi (x), 1 ≤ i ≤ s1

. . .

dhvi (x), dLfh
v
i (x), s1 + . . .+ sk−3 + 1 ≤ i ≤ s1 + . . .+ sk−2

dhvi (x), s1 + . . .+ sk−2 + 1 ≤ i ≤ s1 + . . .+ sk−1

that span D⊥k∗−(k−1). Then, define

C=span
{
dLjfh

u
i (x),m1 + · · ·+mk−j−1 + 1 ≤ i ≤ m1 + · · ·+mk−j, 1 ≤ j ≤ k − 1

}
and

Ĉ = span
{
dLjfh

v
i (x), s1 + . . .+ sk−j−1 + 1 ≤ i ≤ s1 + . . .+ sk−j, 1 ≤ j ≤ k − 1

}
.

By similar arguments as those used to prove claims (b) and (c) above, we can show that
around xa,

D⊥k∗−(k−1) + C ∈ D̂⊥k∗−(k−1),

and that the intersection of the D⊥k∗−(k−1) and C is zero,

D̂⊥k∗−(k−1) + Ĉ ∈ D⊥k∗−k.

and that the intersection of the co-distributions D̂⊥k∗−(k−1) and Ĉ is zero. Then, define

mk = (dim D̂⊥k∗−(k−1))− (dim D⊥k∗−(k−1))− (m1 + . . .+mk−1),

sk = (dim D⊥k∗−k)− (dim D̂⊥k∗−(k−1))− (s1 + . . .+ sk−1).

We can choose mk independent row vectors dhui (x), m1 + . . . + mk−1 + 1 ≤ i ≤ m1 +

. . .+mk, such that

D̂⊥k∗−(k−1) −D⊥k∗−(k−1) = C + span {hui ,m1 + . . .+mk−1 + 1 ≤ i ≤ m1 + . . .+mk} .

Subsequently, we can choose sk independent row vectors hvi (x), s1 + . . .+ sk−1 + 1 ≤ i ≤
s1 + . . .+ sk, such that

D⊥k∗−k − D̂⊥k∗−(k−1) = Ĉ + span {hvi , s1 + . . .+ sk−1 + 1 ≤ i ≤ s1 + . . .+ sk} .

Then, by a similar argument that used to prove claim (d), it is possible to show that the
(m1 +m2 + · · ·+mk)×m matrix

Tm1+m2+···+mk
u (x) =

T
m1
u (x)

...
Tmku (x)


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is of full row rank at xa, where Tmiu (x) = LguL
k∗−i
f Hu

mi
(x), 1 ≤ i ≤ k. The (s1 + s2 +

· · ·+ sk)× s matrix

T s1+s2+···+sk
v (x) =

T
s1
v (x)

...
T skv (x)


is of full row rank at xa, where T siv (x) = LgvL

k∗−i
f Hv

si
(x), 1 ≤ i ≤ k.

Now if m1 + · · · + mk + s1 + · · · + sk = m + s, we have Tm1+m2+···+mk
u (x) and

T s1+s2+···+sk
v (x) invertible at xa. With a similar construction to that given in Step 2, we can

construct suitable Tx(x), Tu(x), Tv(x), Fu(x), Fv(x), R(x) such that the transformation
given by these matrices brings Σ∗ into its Brunovský form for systems with two kinds of
inputs (see Corollary 3.4.3 of Chapter 3) with indices:

ρ1 = ρ2 = · · · = ρm1 = ρ̄1 = ρ̄2 = · · · = ρ̄s1 = k∗,

ρm1+1 = ρm1+2 = · · · = ρm2 = ρ̄s1+1 = ρ̄s2+2 = · · · = ρ̄s2 = k∗ − 1,

. . .

ρmk−1+1 = ρ2 = · · · = ρmk = ρ̄sk−1+1 = ρ̄sk−1+2 = · · · = ρ̄sk = k∗ − k + 1.

If m1 + s1 < m+ s, go to the next step.

Finally, we conclude that one can always find suitable transformation matrices to bring
Σ∗ = (f, gu, gv) into its Brunovský canonical form by implementing at most k = k∗ steps
of the above procedure.

Now we will prove that Ξu|redM∗ , given by (5.45), is locally ex-fb-equivalent to:

∆uc :

[
I|ρ| 0

0 Lρ̄

] [
ż1

ż2

]
=

[
NT
ρ 0

0 Kρ̄

] [
z1

z2

]
+

[
Eρ
0

]
ũ∗. (5.57)

Note that by Lemma 5.4.2, the linear DAECS ∆uc, given by (5.57), is completely control-
lable. Denote the Brunovský form (for systems with two kinds of inputs) of Σ∗ by Σ∗Br.
Then by the construction above, Σ∗ is locally sys-fb-equivalent to Σ∗Br. Moreover, it is not
hard to see that Σ∗Br ∈ Expl(∆uc). Furthermore, recall that Σ∗ ∈ Expl(Ξu|redM∗). There-
fore, by Theorem 5.2.9, Ξu|redM∗ is locally ex-fb-equivalent to ∆uc. Hence Ξu is locally
completely internal feedback linearizable.

Proof of Theorem 5.4.6. Only if. Suppose that Ξu is locally completely external feedback
linearizable. Then Ξu is locally ex-fb-equivalent, via z = ψ(x), Q(x) and u = αu(x) +

βu(x)ũ, to a linear completely controllable DAECS:

∆ũ : Ẽż = H̃z + L̃ũ. (5.58)

Thus by Definition 5.2.2, we have

Q(x)E(x) = Ẽ · ∂ψ(x)
∂x

,

Q(x)(F (x) +G(x)αu(x)) = H̃ · ψ(x),

Q(x)G(x)βu(x) = L̃.

(5.59)
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Obviously, ∆ũ satisfies condition (EFL1). The system Ξu satisfies condition (EFL1) as
well because the ranks of E(x) and [E(x), G(x)] are invariant under ex-fb-equivalence.
Moreover, the complete controllability of ∆ũ implies H̃z ∈ Im Ẽ + ImL (see Lemma
5.4.2). By substituting (5.59), we get

Q(x)(F (x) +G(x)αu(x)) ∈ ImQ(x)E(x)

(
∂ψ(x)

∂x

)−1

+ ImQ(x)G(x)βu(x)

⇒ F (x) +G(x)αu(x) ∈ ImE(x) + ImG(x)⇒ F (x) ∈ ImE(x) + ImG(x).

Thus, Ξu satisfies condition (EFL2). Furthermore, by conditions (EFL1) and (EFL2), and
Theorem 5.3.10, it is seen that the locally maximal controlled invariant submanifoldM∗ =

U . Now consider the restricted and reduced system ∆ũ|redM∗ = ∆ũ|redU , which is a linear
completely controllable DAECS without outputs. This means that Ξu is locally internally
feedback linearizable. Thus by Theorem 5.4.5, Ξu satisfies condition (EFL3) on M∗ = U .

If. Suppose that in a neighborhood U of x0, Ξu satisfies conditions (EFL1)-(EFL3).
Let rankE(x) = r and rank [E(x), G(x)] = r+m2 and m1 = m−m2. Then, by (EFL1),
there exist an invertible Q(x) defined on U and a partition of u = (u1, u2) such that

Q(x)E(x)ẋ = Q(x)F (x) +Q(x)G(x)u⇒E∗(x)

0

0

 ẋ =

F1(x)

F2(x)

F3(x)

+

G1
1(x) G2

1(x)

G1
2(x) G2

2(x)

0 0

[u1

u2

]
,

whereE∗(x) is of full row rank r andG2
2(x) is am2×m2 invertible matrix-valued function

defined on U . Moreover, by condition (EFL2), we have F3(x) = 0 for x ∈ U . Now use
the feedback transformation[

u1

u2

]
= −

[
Im1 0

G1
2(z1) G2

2(z1)

]−1 [
0

F2(z1)

]
+

[
Im1 0

G1
2(z1) G2

2(z1)

]−1 [
ũ1

ũ2

]
,

and the system becomesE∗(x)

0

0

 ẋ =

F1(x)

0

0

+

G1
1(x) G2

1(x)

0 Im2

0 0

[ũ1

ũ2

]
,

Premultiply the above equation by

Ir −G2
1(x)

0 Im2

0 0

 to get

E∗(x)

0

0

 ẋ =

F ∗(x)

0

0

+

G∗(x) 0

0 Im2

0 0

[u∗
ū∗

]
, (5.60)

where F ∗ = F1, G∗ = G1
1, u∗1 = ũ1 and u∗2 = ũ2.

By Definition 5.3.4 and 5.3.6, it is seen that Ξu|redM∗ = Ξu|redU is the following system:

E∗(x)ẋ = F ∗(x) +G∗(x)u∗.
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By condition (EFL3) and Theorem 5.4.5, Ξu|redM∗ is locally ex-fb-equivalent to a linear
DAECS ∆cu of (5.57). It can bee seen from (5.60) that Ξu is locally ex-fb-equivalent to

I|ρ| 0

0 Lρ̄
0 0

0 0


[
ż1

ż2

]
=


NT
ρ 0

0 Kρ̄

0 0

0 0


[
z1

z2

]
+


Eρ 0

0 0

0 Im2

0 0


[
u∗1
u∗2

]
,

which is completely controllable by Lemma 5.4.2. Therefore, Ξu is locally completely
external feedback linearizable.

5.7 Conclusions and perspectives

In this chapter, we propose a maximal controlled invariant submanifold form (a normal
form) for nonlinear DAECSs, which is our first main result. This form requires only the
existence of a maximal controlled invariant submanifold and some constant rank assump-
tions of system matrices. Moreover, we give necessary and sufficient conditions to the
problem for a nonlinear DAECS to be locally internally (second main result) or externally
(third main result) feedback equivalent to a completely controllable linear one. The condi-
tions are based on an ODECS given by the explicitation with driving variables procedure.
Some examples are given to illustrate the construction of the maximal controlled invari-
ant submanifold form, and how to externally or internally feedback linearize a nonlinear
DAECS.

A natural problem for future works is that of when a nonlinear DAE system is ex-fb-
equivalent to a linear one which is not necessarily completely controllable. Actually, this
problem is more involved than the problem of complete external feedback linearization.
Indeed, since in Theorem 5.4.6, the maximal controlled invariant submanifold M∗ on U
is M∗ = U , it follows that the algebraic constraints are directly governed by some vari-
ables of u. Thus the in-fb-equivalence is very close to the ex-fb-equivalence. However, if
M∗ 6= U , then the algebraic constraints may affect the generalized state. Moreover, since
the explicitation is defined up to a generalized output injection, it may happen that one sys-
tem of the explicitation is feedback linearizable but another is not. The general feedback
linearizability problem remains open and, in view of the above points, is challenging.
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Chapter 6

Internal and External Linearization of
Semi-Explicit Differential Algebraic Equations

Abstract: In this chapter, we study two kinds of linearization (internal and external) of
nonlinear differential-algebraic equations DAEs of semi-explicit SE form. The difference
of external and internal linearization is illustrated by an example of a mechanical system.
Moreover, we define different levels of external equivalence for two SE DAEs. A proposed
explicitation procedure allows us to treat a given SE DAE as a control system defined up
to feedback transformation (a class of control systems). Then sufficient and necessary
conditions, expressed via explicitation procedure, are given to describe when a given SE
DAE is level-3 externally equivalent to a linear SE DAE of some specific forms. At last, we
show by an example that level-2 external linearization can be achieved if its explicitation
is level-2 input-output linearizable.

6.1 Introduction

We study differential-algebraic equations DAEs of semi-explicit SE form

Ξse :

{
R(x)ẋ = a(x)

0 = c(x),
(6.1)

where R(x), a(x), and c(x) are smooth maps with values in Rr×n, Rr, and Rp, respectively,
and the word smooth will mean throughout C∞-smooth, and where x ∈ X is called the
generalized state and X is an open subset of Rn. A SE DAE of form (6.1) will be denoted
by Ξse

n,r,p = (R, a, c) or, simply, Ξse. A solution of Ξse is a curve x(t) ∈ C1(I;X) with
an open interval I such that for all t ∈ I , x(t) solves (6.1). An admissible point of (6.1)
is a point x0 ∈ X such that through x0, there passes at least one solution. The motivation
of studying SE DAEs is their presence in modeling of electrical circuits [165], chemical
processes [120] and constrained mechanical systems [35],[141], etc.

Definition 6.1.1. (External equivalence). Consider two SE DAEs Ξse
n,r,p = (R, a, c) and

Ξ̃se
n,r,p = (R̃, ã, c̃). If there exists a diffeomorphism ψ : X → X̃ and a smooth invertible
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r × r-matrix Qa(x) such that

R̃(ψ(x)) = Qa(x)R(x)

(
∂ψ(x)

∂x

)−1

,

ã(ψ(x)) = Qa(x)a(x),

and if, additionally,

(i) there exists a smooth invertible p× p-matrix Qc(x) such that c̃(ψ(x)) = Qc(x)c(x),
we call Ξse and Ξ̃se externally equivalent, or shortly ex-equivalent, of level-1;

(ii) there exists a smooth invertible p× p-matrix Qc(x) such that c̃(ψ(x)) = Qc(x)c(x)

and Qc(x) = S(c(x)) for some invertible S(x), we call Ξse and Ξ̃se ex-equivalent of level-
2;

(iii) there exists a constant invertible p × p-matrix T such that c̃(ψ(x)) = Tc(x), we
call Ξse and Ξ̃se ex-equivalent of level-3.
The level i (i = 1, 2, 3) ex-equivalence of two SE DAEs will be denoted by Ξse ex−i∼ Ξ̃se. If
ψ : X0 → X̃0 is a local diffeomorphism between neighborhoods X0 of x0 and X̃0 of x̃0,
and Qa(x), Qc(x) are defined locally on X0, we will speak about local ex-equivalence.

Remark 6.1.2. For SE DAEs, we introduce three kinds of output multiplication which
correspond to three levels of external equivalence. The interpretation of the three level
ex-equivalence is as follows.

(i) Two constraints 0 = c(x) and 0 = c̃(x) are level-1 ex-equivalent if and only if
M0 = M̃0, where M0 = {x | c(x) = 0} and M̃0 = {x | c̃(x) = 0};

(ii) Two constraints are level-2 ex-equivalent means that the foliations Md and M̃d̃

coincide, where d, d̃ ∈ Rp, Md = {x | c(x) = d} and M̃d̃ =
{
x | c̃(x) = d̃

}
, i.e., there

exists a diffeomorphism φ such that M̃d̃ = Mφ(d). It also implies that the set of motions
x(t) respecting the constraint c(x) = d (equivalently, dc(x(t)) · ẋ(t) = 0) coincides with
that respecting c̃(x) = d̃;

(iii) Two constraints are level-3 ex-equivalent means the foliationsMd and M̃d̃ coincide
via a linear parameter transformation, i.e., M̃d̃ = MTd.

There are two kinds of equivalence relations for DAEs, namely, external equivalence
and internal equivalence (for the details of internal equivalence, we refer Chapter 2 and
Chapter 3). We will show the differences of these two equivalent relations for SE DAEs in
Section 6.3 by examples. Roughly speaking, the word “internal” means that we consider
the DAE on its constrained submanifold [162] only (also called invariant submanifold in
Chapter 3 and 5, see also [48] and [45], or configuration subspace [177]), i.e., where the
solutions of the DAE exist. Correspondingly, the word “external” means that we consider
the DAE in a whole neighborhood and for some points in that neighborhood there may
not exist solutions. More precisely, solutions of R(x)ẋ = a(x) pass through each point of
the neighborhood but may not respect the algebraic constraint c(x) = 0. Therefore, exter-
nal equivalence is interesting for all problems, where the nominal point does not respect

172



CHAPTER 6. INTERNAL AND EXTERNAL LINEARIZATION OF SEMI-EXPLICIT
DIFFERENTIAL ALGEBRAIC EQUATIONS

the constraints but we want to steer the solution towards the constraint (in finite time or
asymptotically). So the form of the DAE matters not only on the constraint set but in a
neighborhood as well.

The purpose of this chapter is to discuss when a SE DAE, given by (6.1), is locally
equivalent to a linear SE DAE. Some results for linearization of DAEs can be found in
[111],[101], however, the concepts of external and internal equivalence are not mentioned
in those papers. In the present chapter, we will use a new tool named explicitation (see
Definition 6.3.1) to represent DAEs as explicit control systems. As shown in the examples
of Section 6.3, the internal linearizability has direct relations with the feedback lineariz-
ability of the explicit control system on its maximal output zeroing submanifold. For the
external linearizability, we only consider level-3 and level-2 external equivalence, level-1
will be discussed in future. The level-3 external linearizability of SE DAEs is closely re-
lated to the involutivity of some distributions of an explicit control system (obtained via
explicitation), as is shown in Section 6.4. Moreover, in Section 6.5 we provide an example
of a system that is level-2 externally linearizable but not level-3 externally linearizable.

6.2 Some results for the linear case

In this section, we introduce some concepts of linear semi-explicit DAEs of form

∆se :

{
Rẋ = Ax

0 = Cx,
(6.2)

where R ∈ Rr×n, A ∈ Rr×n, C ∈ Rp×n. We assume R to be of full row rank. A DAE
of form (6.2) will be denoted by ∆se

r,n,p = (R,A,C) or, simply, ∆se. From the Kronecker
canonical form KCF, see e.g. [117] or [11], for matrix pencils sE − H (or equivalently,
for linear DAEs Eẋ = Hx), the following canonical form SCF can be deduced for lin-
ear SE DAEs. Definition 6.1.1 applied to linear systems says that two linear SE DAEs
∆se = (R,A,C) and ∆̃se = (R̃, Ã, C̃) are ex-equivalent if there exists constant invertible
matrices P , Qa, Qc such that R̃ = QaRP−1, Ã = QaAP−1, C̃ = QcCP−1.

Proposition 6.2.1. Any linear SE DAE ∆se
r,n,p = (R,A,C) is ex-equivalent to the following

semi-explicit canonical form:

SCF :



ż1 = A1z1 +B1w1 +K1y

ż2 = A2z2 +K2y

ż3 = A3z3 +B3w3 +K3y

ż4 = A4z4 +K4y

0 = C3z3 +D3w3

0 = C4z4,

where y = (y3, y4), y3 = C3z3 +D3w3 and y4 = C4z4. Up to injection terms

(K1y,K2y,K3y,K4y),
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for each k = 1, 2, 3, 4, the equation for żk consists of, respectively, a,b,c,d equations of the
form

żi = A2
i zi, zi ∈ z2,

ż
(µi)
i =

{
wi, zi ∈ z1, z3,

0, zi ∈ z4,

0 =

{
zi, zi ∈ z3, z4, µi 6= 0,

wi, zi ∈ z3, µi = 0.

where A2
i are constant matrices in the Jordan canonical form of real matrices.

Proof. From the theory of the Kronecker canonical form, there always exist invertible Q,
P such that the DAE Eẋ = Hx given by

E = Q

[
R

0

]
P−1 =

[
Ir 0

0 0

]
, H = Q

[
A

C

]
P−1 =

[
H1 H2

H3 H4

]
,

is in the Kronecker canonical form, then by row permutations, we put all the algebraic

constrains “0 = ∗” at the bottom of the system (thus the matrixE keeps the form
[
Ir 0

0 0

]
).

Since E is of the form
[
Ir 0

0 0

]
and R is full row rank, it is not hard to see that Q has to

be of a triangular form (as Q has to preserve the zeros in the lower part of
[
R

0

]
), i.e.,

Q =

[
Q1 Q2

0 Q4

]
, where Q1 ∈ Rr×r and Q2, Q4 are of appropriate sizes. Now in view of

Definition 6.1.1, in the semi-explicit DAE case, we put Q2 = 0. Thus, using Q1, Q4, P ,
we can transform ∆se into[

Ir 0

0 0

]
ż =

[
H1 H2

H3 H4

]
z +

[
−Q2(Q4)−1y

0

]
,

which is the desired form SCF. 2

Remark 6.2.2. The indices µi, i = 1, 2, 3, 4 together with the numbers a, b, c, d of equa-

tions are the Kronecker indices of the matrix pencil
(
s

[
R

0

]
−
[
A

C

])
. The above canonical

form differs from the KCF (after some row permutations) only by the drift injection terms
(K1y,K2y,K3y,K4y).

Remark 6.2.3. If we regard the algebraic constraint as the zero output of the control sys-
tem, the above canonical form coincides with the Morse canonical form MCF [146] (under
coordinates change and feedback transformation only, without output injection) for linear
control systems.

Now let M ∗ be the largest subspace M such that
[
A

C

]
M ⊆

[
R

0

]
M . The Wong

sequences Vi and Wi (see [191] and [11]) of ∆se are defined as:

V0 := Rn, Vi+1 :=

[
A

C

]−1 [
R

0

]
Vi, i ∈ N,
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W0 := {0}, Wi+1 :=

[
R

0

]−1 [
A

C

]
Wi, i ∈ N.

The limits of Vi and Wi are denoted by V ∗ and W ∗, respectively. Notice that the solutions
of ∆se exist on M ∗ only and, moreover, M ∗ = V ∗ (see, e.g. Chapter 2). Now we
introduce the following regularity and reachability concepts (compare [17]).

Definition 6.2.4. ∆se
r,n,p = (R,A,C) is called

• internally regular, if ∀ x0 ∈M ∗, ∃ only one solution x(t) such that x(0) = x0,

• regular, if it is internally regular and r + p = n,

• internally reachable, if ∀ x0, xe ∈ M ∗, ∃ te > 0 and a solution x(t) of ∆se such
that x(0) = x0 and x(te) = xe,

• constraint-freely reachable, if ∀x0, xe ∈ Rn, ∃ te > 0 and a solution x(t) of Rẋ =

Ax such that x(0) = x0 and x(te) = xe.

Lemma 6.2.5. ∆se
r,n,p = (R,A,C) is

(i) internally regular⇔ dim V ∗ = dim(RV ∗)⇔ V ∗ ∩W ∗ = 0⇔ the subsystem z1

in SCF is absent,

(ii) regular⇔ V ∗ ∩W ∗ = 0 and V ∗⊕W ∗ = Rn ⇔ the subsystems z1 and z4 in SCF
are absent,

(iii) internally reachable⇔ V ∗ ⊆ W ∗⇔ the subsystems z2 in SCF is absent,

(iv) constraint-freely reachable⇔ Rẋ = Ax is internally reachable.

The above lemma can be easily proved using the SCF described in Proposition 6.2.1.
The purpose of this lemma is to show how the concepts of Definition 6.2.4 correspond to
certain forms of linear SE DAEs and that they are closely related to the Wong sequences.

6.3 Explicitation and internal linearization

We start this section by the definition of explicitation for SE DAEs. Throughout the chap-
ter, we will assume that R(x) is of full row rank equal to r in a neighborhood X0 of the
nominal point x0.

Definition 6.3.1. (Explicitation) For Ξse
n,r,p = (R, a, c), set m = n− r. Then the explicita-

tion of Ξse, denoted by Expl(Ξse), is a class of control systems of the following form:

Σ :

{
ẋ = f(x) + g(x)v

y = h(x),
(6.3)
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where v ∈ Rm is called the driving variable, h(x) is a smooth Rp-valued function on X0,
and where f, g1, . . . , gm are smooth vector fields on X0 satisfying

f(x) = R†(x)a(x), Img(x) = kerR(x), h(x) = c(x).

Above R†(x) is a right inverse of R(x), i.e., R(x)R†(x) = Ir and g = (g1, . . . , gm). We
will denote control system (6.3) by Σn,m,p = (f, g, h) or, simply, Σ.

Notice that Expl(Ξse) is a class of control systems. Indeed, f is given up to kerR(x)

and the distribution spanned by g1, . . . , gm is given uniquely but not the vector fields
g1, . . . , gm themselves. We will use the notation Σ ∈ Expl(Ξse) to indicate that control
system (6.3) belongs to the class of explicitation of Ξse. By setting y = 0 for system (6.3),
we get a SE DAE parametrized by the driving variable v. The definition of f and g implies
that ẋ = f(x) + g(x)v and R(x)ẋ = a(x) have the same solutions. Thus, via explicitation,
we can study the solutions of Σ yielding a zero output instead of studying the solutions of
Ξse directly. Since the explicitation allows to treat a SE DAE as a class of control systems,
we give the definition of equivalence for control systems.

Definition 6.3.2. (System equivalence) Consider two control systems Σn,m,p = (f, g, h)

and Σ̃n,m,p = (f̃ , g̃, h̃) defined on X and X̃ , respectively. If there exists a diffeomorphism
ψ : X → X̃ , an Rm-valued function α(x) and an invertible m×m-matrix-valued function
β(x) satisfying

f̃(ψ(x)) = ∂ψ(x)
∂x

(f + gα) (x),

g̃(ψ(x)) = ∂ψ(x)
∂x

(gβ)(x),

and, additionally,

(i) there exists a smooth invertible p × p-matrix T (x) such that h̃(ψ(x)) = T (x)h(x),
we call Σ and Σ̃ system equivalent, shortly sys-equivalent, of level-1;

(ii) there exists a diffeomorphism ϕ : Rp → Rp such that h̃(ψ(x)) = ϕ(h(x)), we call
the two control systems sys-equivalent of level-2;

(iii) there exists a constant invertible matrix T such that h̃(ψ(x)) = Th(x), we call the
two control systems sys-equivalent of level-3.

The sys-equivalence of level-i (i = 1, 2, 3) of two control systems will be denoted by

Σ
sys−i∼ Σ̃. If ψ : X0 → X̃0 is a local diffeomorphism between neighborhoods X0 of x0 and

X̃0 of x0, ϕ is a local diffeomorphism around h(x0), and α(x), β(x) are defined locally on
X0, we will speak about local sys-equivalence.

Actually the above defined system equivalence for two nonlinear control systems of
the form (6.3) is widely considered in nonlinear control theory, e.g., [139, 96, 92, 151].
The following result is essential since it connects control systems with SE DAEs.

Proposition 6.3.3. (i) Consider two control systems Σn,m,p = (f, g, h) and Σn,m,p =

(f̃ , g̃, h̃), that are belong to explicitation class of Ξse
n,r,p, i.e. Σ, Σ̃ ∈ Expl(Ξse). Then

there exist α(x), β(x) such that

f̃(x) = f(x) + g(x)α(x), g̃(x) = g(x)β(x).
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(ii) Two SE DAEs Ξse
n,r,p = (R, a, c) and Ξ̃se

n,r,p = (R̃, ã, c̃) are ex-equivalent of level-2
(respectively, level-3) if and only if two control systems (f, g, h) = Σ ∈ Expl(Ξse) and
(f̃ , g̃, h̃) = Σ̃ ∈ Expl(Ξ̃se) are sys-equivalent of level-2 (respectively, level-3).

Remark 6.3.4. If Σ and Σ̃ are as in Proposition 6.3.3(i), then obviously h(x) = c(x) =

h̃(x).

Proof. (i) By Definition 6.3.1, Img(x) = Img̃(x) = kerR(x). Thus there exists an invert-
ible β(x) such that g̃(x) = g(x)β(x) (since β(x) preserves images). Then from Definition
6.3.1, both f(x) and f̃(x) are given as R†a(x) but for different choices of the right inverse
R†. Actually, at each x, f(x) and f̃(x) are two solutions Z of the equation R(x)Z = a(x)

and thus their difference f̃(x) − f(x) is in kerR(x) implying there exists α(x) such that
f̃(x) = f(x) + g(x)α(x).

(ii): We will only prove the more general case, which is the level-2 case:
If. Suppose that Σ

sys−2∼ Σ̃. By g̃(ψ(x)) = ∂ψ(x)
∂x

(gβ)(x) from Definition 6.3.2 and Img(x) =

kerR(x), Img̃(x) = ker R̃(x) from Definition 6.3.1, it can be deduced that there exists an

invertible matrix Qa(x) such that R̃(x) = Qa(x)R(x)
(
∂ψ(x)
∂x

)−1

. Moreover, we have

f̃(ψ(x)) = ∂ψ(x)
∂x

(f + gα) (x) which implies that

(R̃†ã)(x) =
∂ψ(x)

∂x

(
R†a+ gα

)
(x).

Left-multiply the above equation by R̃(x), we get ã(x) = Qa(x)a(x). Now by h̃(x) =

ϕ(h(x)) from Definition 6.3.2, we have c̃(x) = ϕ(c(x)). Then choose coordinates (y, z) =

(y1, . . . , yp, z1, . . . , zn−p), where yi = ci(x). We have c̃i(x) = ϕi(y). Denote ϕi1 = ϕi,
ϕi2(y2, . . . , yp) = ϕi1(0, y2, . . . , yp) and φi1 = ϕi1 − ϕi2. Now φi1(0, y2, . . . , yp) ≡ 0 and
by the Taylor series expansion with respect to y1, we have φi1 = y1Q

i
1(y) and thus ϕi =

y1Qi
1(y) + ϕi2. Repeat the above procedure replacing ϕi1 by ϕi2, i.e., set ϕi3(y3, . . . , yp) =

ϕi2(0, y3, . . . , yp) and φi2 = ϕi2 − ϕi3. Since φi2(0, y3, . . . , yp) ≡ 0, by the Taylor series ex-
pansion, we have φi2 = y2Q

i
2(y). By an induction argument, we get c̃i = ϕi(y) = yjQi

j(y),
that is, c̃i = cjQi

j(y), where Qi
j = Qi

j(c(x)). Therefore, by Definition 6.1.1, we have

Ξse ex−2∼ Ξ̃se.

Only if. Suppose that Ξse ex−2∼ Ξ̃se. From R̃(x) = Qa(x)R(x)
(
∂ψ(x)
∂x

)−1

of Definition

6.1.1 and Img(x) = kerR(x), Img̃(x) = ker R̃(x) of Definition 6.3.1, it can be deduced
that there exists an invertible β(x) such that g̃(ψ(x)) = ∂ψ(x)

∂x
(gβ)(x). Moreover, we have

f(x) = (R†a)(x) and f̃ = R̃†ã =
∂ψ(x)

∂x
(R−1(Qa)−1Qaa)(x) =

∂ψ(x)

∂x
(R†a)(x).

It follows that f(x) and
(
∂ψ(x)
∂x

)−1

f̃(x) are two solutionsZ of the equation R(x)Z = a(x).

Thus their difference
(
∂ψ(x)
∂x

)−1

f̃(x)−f(x) is in kerR(x), implying there exists α(x) such

that f̃(x) = ∂ψ(x)
∂x

(f + gα)(x). Furthermore, c̃(ψ(x)) = Qc(x)c(x) and Qc(x) = Q(c(x))
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of Definition 6.1.1 implies that there exists an invertible matrix P (x) such that dh̃ = Pdh

(with P = ∂(Q(y)y)
∂y

, where y = c(x)). Finally, it can be seen from dh̃ = Pdh that there
exists a diffeomorphism ϕ such that h̃(x) = ϕ(h(x)). Therefore, by Definition 6.3.2, we

have Σ
sys−2∼ Σ̃.

Now we apply the above defined explicitation to the internal analysis of SE DAEs. For
a SE DAE Ξse, a submanifold M∗ is called a maximal invariant submanifold (for details,
see Chapter 3) if M∗ is the largest submanifold of X such that ∀ x0 ∈M∗, ∃ x(t) such that
x(0) = x0. M∗ can be seen as a nonlinear generalization of the invariant space M ∗ for
linear DAEs. But note that M ∗ always exists while M∗ may not exist. Denote by Ξse|M∗
a semi-explicit DAE Ξse restricted to its maximal invariant submanifold M∗.

Definition 6.3.5. (Internal equivalence) Consider two SE DAEs Ξse
n,r,p = (R, a, c) and

Ξse
n,r,p = (R̃, ã, c̃). Let M∗ and M̃∗ be their maximal invariant submanifolds. We call Ξse

and Ξ̃se internally equivalent, shortly in-equivalent, if Ξse|M∗ and Ξ̃se|M̃∗ are ex-equivalent.

Theorem 6.3.6. For Ξse
n,r,p = (R, a, c), the followings are equivalent:

(i) Ξse is in-equivalent to a linear SE DAE ∆se, given by equation (6.2);

(ii) A (and then any) control system (f ∗, g∗) = Σ∗ ∈ Expl(Ξse|M∗) is feedback lin-
earizable;

(iii) The linearizability distributions Gi(Σ
∗), given by (6.13) below, are involutive and

of constant rank and G∗(Σ∗) = TM∗.

The following example illustrates the above theorem. Note that in Chapter 3, it is
proved the maximal invariant submanifold M∗ of DAEs coincide with the output zeroing
submanifold of any control system in its explicitation class.

Example 6.3.7. (The Kapitsa pendulum with auxiliary controls). Consider the following
equation of the Kapitsa pendulum taken from [68].

α̇ = p+ u1
l

sinα

ṗ =
(
g
l
− (u1)2

l2
cosα− (u2)2

2l2
cosα

)
sinα− u1

l
p cosα

ż = u1.

(6.4)

We subject the system to two different holonomic constraints and analyze the modified
system from the DAE point of view.

Case 1: Consider the following holonomic constraint:

z + l cosα = c10, (6.5)

where c10 denotes a fixed constant. This holonomic constraint assures that the end joint of
the pendulum keeps the same vertical position as its initial point. Now combine equations
(6.4) and (6.5), and denote x = (x1, . . . , x5), where

x1 = α, x2 = p, x3 = z, x4 = u1, x5 = u2. (6.6)
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We get the following SE DAE:

Ξse
1 :

{
R1(x)ẋ = a1(x)

0 = c1(x),
(6.7)

where

R1(x) =

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

 , c1(x) = x3 + l cosx1 − c10,

a1(x) =

 x2 + x4
l

sinx1(
g
l
− (x4)2

l2
cosx1 − (x5)2

2l2
cosx1

)
sinx1 − x4

l
x2 cosx1

x4

 .
Consider the above DAE around an admissible point x0 = (x10, . . . , x50) such that

x50 cosx10 sinx10 6= 0.

The explicitation of DAE (6.7) contains the following control system, see Definition 6.3.1,
denoted by Σ1 = (f1, g1, h1), with driving variables v1 = ẋ4, v2 = ẋ5,

Σ1 :


ẋ =

a1(x)

0

0

+

0 0

1 0

0 1

[v1

v2

]
y = x3 + l cosx1 − c10.

(6.8)

Recall that the explicitation of our DAE is the above control system defined up to feedback
transformation. By the zero dynamics algorithm (see [92]), the maximal output zeroing
submanifold of Σ1, denoted by M∗

1 , can be expressed as:

M∗
1 =

{
x |x3 + l cosx1 − c10 = x4 cos2 x1 − lx2 sinx1 = 0

}
.

Notice that x0 ∈M∗
1 . Then system (6.8) restricted on M∗

1 is
ẋ1 = x2

cos2 x1

ẋ2 =
(
g
l
− (x2)2

cos3 x1
− (x5)2

2l2
cosx1

)
sinx1

ẋ5 = v2.

(6.9)

System (6.9) is locally static feedback equivalent to the following chained form around x0:

˙̃x1 = x̃2, ˙̃x2 = x̃5, ˙̃x5 = ṽ2,

where (x̃1, x̃2, x̃5) are new coordinates and ṽ2 is a new control. It follows by Theorem
6.3.6 that Ξse

1 is internally equivalent to the following linear DAE:{
˙̃x1 = x̃2

˙̃x2 = x̃5.

179



CHAPTER 6. INTERNAL AND EXTERNAL LINEARIZATION OF SEMI-EXPLICIT
DIFFERENTIAL ALGEBRAIC EQUATIONS

Case 2: Consider again system (6.4) but now under the following dummy holonomic
constraints {

0 = z

0 = ln | tan α
2
|+ (k − 1)z,

where k ∈ R. Following the notations of Case 1, we get

Ξse
2 :

{
R2(x)ẋ = a2(x)

0 = c2(x),
(6.10)

where R2(x) = R1(x), a2(x) = a1(x) and

c2(x) =

[
x3

ln | tan x1
2
|+ (k − 1)x3

]
.

Consider Ξse
2 around an admissible point x0. Then the explicitation of Ξse

2 gives a control
system Σ2 ∈ Expl(Ξse

2 ), where Σ2 = (f2, g2, h2) is given by

Σ2 :


ẋ =

a2(x)

0

0

+

0 0

1 0

0 1

[v1

v2

]
[
y1

y2

]
=

[
x4

ln | tan x1
2
|+ (k − 1)x3

]
.

(6.11)

The maximal output zeroing submanifold M∗
2 , given by the zero dynamics algorithm ap-

plied to Σ2, is:

M∗
2 =

{
x

∣∣∣∣ ln | tan x1
2
|+ (k − 1)x3 = x2 = x4 =

2lg − (x5)2 cosx1 = 0

}
.

The zero dynamics of Σ2 is
ẋ3 = 0.

Since x3 does not depend on time, Σ2 is just the point (x10, 0, x30, 0, x50) on its output
zeroing submanifold (note that x0 ∈ M∗

2 ). It implies that internally Ξse
2 consists of the

fixed admissible point x0 only.

6.4 Level-3 external linearization

We start by reviewing the results of the linearization of input-output map for control sys-
tems, firstly given in [96]. Denote by r(A(x)) the point-wise rank of the matrix A(x) and
denote by rR(A(x)) the dimension of the vector space spanned over R by the rows ofA(x).

Theorem 6.4.1. ([96],[50]) For a control system Σn,m,p = (f, g, h), the following condi-
tions are equivalent.

(i) System Σ is level-3 input-output linearizable;
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(ii) The Toeplitz matrices

Mk =


T0(x) T1(x) · · · Tk(x)

0 T0(x) · · · Tk−1(x)

· · · · · · · · · · · ·
0 0 · · · T0(x)


satisfy r(Mk(x)) = rR(Mk(x)) for all k ≤ 2n− 1, where Tk(x) = LgL

k
fh(x);

(iii) System Σ is level-3 sys-equivalent to

ξ̇1 = f 1(ξ) + g1(ξ)v1 + g3(ξ)v3

ξ̇3 = Â3ξ3 + B̂3v3 +K̂3y

ξ̇4 = f 4(ξ4) +K̂4y

y3 = Ĉ3ξ3

y4 = Ĉ4ξ4,

(6.12)

where y = (y3, y4) and (Â3, B̂3, Ĉ3) is prime (see Definition 2.9.1 in Chapter 2, or [146]
for the definition of prime form).

Note that in [96] and [50], the implication (i) ⇒ (ii) is proved by the structural
algorithm, from which a linearizing feedback can be constructed via a r2n−1 × m full
row rank decoupling matrix LgΓ(x). Due to the reason of saving space, here we will not
re-implement the structural algorithm but emphasize that this rank r2n−1 will be used for
the external linearization problem below.

For a nonlinear control system Σn,m,p = (f, g, h), define sequences of distributions Gi,
Si and codistributions Pi by

G1 := G := span {g1, . . . , gm} ,
Gi+1 := Gi + [f,Gi],

G∗ :=
∑
i≥1

Gi

(6.13)

S1 := G,

Si+1 := Si + [f, Si ∩ ker dh] +
∑m

j=1[gj, Si ∩ ker dh],

S∗ :=
∑
i≥1

Si

P1 := span {dh1, . . . , dhp},
Pi+1 := Pi + Lf (Pi ∩G⊥) +

∑m
j=1 Lgj(Pi ∩G⊥),

P ∗ :=
∑
i≥1

Pi

The above distributions and co-distributions, together with Vi := P⊥i , V ∗ := (P ∗)⊥, play
an important role in the problems of linearization and decoupling of nonlinear control
systems, see e.g. [92],[151].

Theorem 6.4.2. Consider Ξse
n,r,p = (R, a, c) around a point x0. Then in a neighborhood

X0 of x0, Ξse is level-3 ex-equivalent to a linear SE DAE ∆se with internal regularity and
constraint-free reachability if and only if a (and then any) control system Σ = (f, g, h) ∈
Expl(Ξse), satisfies the following conditions in X0:
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(i) Σ is level-3 input-output linearizable;

(ii) G∗ = TX0;

(iii) [adk
f̃
g̃i, ad

l
f̃
g̃j] = 0 for 1 ≤ i, j ≤ m, 0 ≤ l + k ≤ 2n− 1, where f̃ and g̃i are vector

fields modified by a feedback transformation resulting from the structure algorithm;

(iv) V ∗ ∩ S∗ = 0.

Moreover, ∆se is regular if and only if Ξse satisfies (i)-(iv) and, additionally, condition

(v) V ∗ ⊕ S∗ = TX0.

Remark 6.4.3. (i) The distributions V ∗ and S∗ are, obviously, the nonlinear generaliza-
tions of the limits of Wong sequences V ∗ and W ∗, respectively.

(ii) Condition (iv) above can be replaced by (iv)’: The rank r2n−1 of the decoupling
matrix LgΓ(x) in the structural algorithm equals m. Condition (v) can be replaced by (v)’:
r + p = n.

Observe that if the rank r2n−1 = m, which implies that the feedback transformation
of the structure algorithm is unique, then condition (iii) of Theorem 6.4.2 is verifiable.
However, if r2n−1 < m, which implies some inputs are not used for the purpose of input-
output linearization, then condition (iii) may be difficult to check. We give the following
theorem, in which the "unused" inputs serve to linearize the remaining part (contained in
V ∗) of the system and all conditions become checkable.

Theorem 6.4.4. Consider Ξse
n,r,p = (R, a, c) around a point x0. Then in a neighborhood

X0 of x0, Ξse is level-3 ex-equivalent a linear SE DAE ∆se of the form
ż1 = A1z1 +B1w1,

ż3 = A3z3 +B3w3 +K3y,

0 = C3z3 +D3w3,

(6.14)

where all matrices are in the SCF (z2- and z4-subsystems are absent), if and only if a (and
then any) control system Σ ∈ Expl(Ξse) satisfies the following conditions in X0:

(i) Σ is level-3 input-output linearizable;

(ii) Si and Gi are involutive and of constant rank;

(iii) S∗ = TX0;

(iv) Si ∩ V ∗ = Gi ∩ V ∗.

Example 6.4.5. (Continuation of Example 6.3.7) Case 1: Consider Ξse around a point x0

(not necessarily admissible). Assume x50 cosx10 sinx10 6= 0. Then the control system Σ1
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satisfies conditions (i)-(iv) of Theorem 6.4.4 around x0. In particular, via the change of
coordinates 

x̃3 = x3 + l cosx1 − c0, x̃4 = x4 cos2 x1 − lx2 sinx1,

x̃1 = l ln | tan x1
2
| − x3, x̃2 = lx2

sinx1
,

x̃5 = g − cosx1(lx2+x4 sinx1)2

l sin2 x1
− (x5)2 cosx1

2l

and the static feedback transformation{
ṽ1 = α̃1(x) + cos2 x1v1,

ṽ2 = α̃2(x)− 2(x4 sinx1+lx2) cosx1
l sinx1

v1 − x5 cosx1
l

v2,

where α̃1(x) = Lf x̃4(x) and α̃2(x) = Lf x̃5(x), Σ1 is level-3 sys-equivalent to Σ̃1 below.
It follows from Proposition 6.3.3 that Ξse

1 is level-3 ex-equivalent to the following ∆se
1

(since Σ1 ∈ Expl(Ξse
1 ) and Σ̃1 ∈ Expl(∆se

1 )).

Σ̃1 :



˙̃x3 = x̃4, y = x̃3

˙̃x4 = ṽ1

˙̃x1 = x̃2

˙̃x2 = x̃5

˙̃x5 = ṽ2

⇒ ∆se
1 :


˙̃x1 = x̃2

˙̃x2 = x̃5

˙̃x3 = x̃4

0 = x̃3.

Note that the above transformation bringing Σ̃1 into the linear DAE, given by ∆se
1 , is a

dual procedure to that of explicitation and it is called implicitation of a control system (for
details, see Chapter 2,Chapter 3).

Case 2: We show that although internally Ξse
2 is a trivial system whose generalized state

consists of one point only (which is admissible), it is ex-equivalent to a linear SE DAE.
Consider Ξse

2 around x0, which is not necessarily admissible. Assume x50 cosx10 sinx10 6=
0. Since Σ2 satisfies conditions (i)-(v) of Theorem 6.4.2 around x0, it can be seen that Σ2

is level-3 sys-equivalent to the following Σ̃2 via the coordinates change{
x̃3 = x3, x̃4 = x4, x̃1 = l ln | tan x1

2
| − x3,

x̃2 = lx2
sinx1

, x̃5 = g − cosx1(lx2+x4 sinx1)2

l sin2 x1
− (x5)2 cosx1

2l

and the static feedback transformation{
ṽ1 = v1,

ṽ2 = α̃2(x)− 2(x4 sinx1+lx2) cosx1
l sinx1

v1 − x5 cosx1
l

v2,

where α̃2(x) = Lf x̃5(x). Moreover, since Σ2 ∈ Expl(Ξse
2 ) and obviously Σ̃2 ∈ Expl(∆se

2 ),
by Proposition 6.3.3, Ξse

2 is level-3 ex-equivalent to the following ∆se
2 , which is regular and

constraint-freely reachable.

Σ̃2 :



˙̃x3 = x̃4

˙̃x4 = ṽ1, y1 = x̃4

˙̃x1 = x̃2 + ky1, y2 = x̃1

˙̃x2 = x̃5

˙̃x5 = ṽ2

⇒ ∆se
2 :



˙̃x1 = x̃2 + kx̃4

˙̃x2 = x̃5

˙̃x3 = x̃4

0 = x̃4

0 = x̃1.
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6.5 An example which is not level-3 externally lineariz-
able but so is level-2

Example 6.5.1. Consider a SE DAE Ξse
3 = (R3, a3, c3), described by

R3(x) =

1 0 −x1 0 0 0

0 0 e3x3 −1 0 0

0 0 0 0 1 0

 , a3(x) =

 2(x1e
x3)

1
2x2

−(x5 + kex3)

x6

 ,
c3(x) =

[
x3

x4

]
.

where k ∈ R. We can choose a control system (f3, g3, h3) = Σ3 ∈ Expl(Ξse
3 ), given by

Σ3 :





ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ6


=



2(x1e
x3)

1
2x2

0

0

x5 + kex3

x6

0


+



0 x1 0

1 0 0

0 1 0

0 e3x3 0

0 0 0

0 0 1


v1

v2

v3



y1 = x3

y2 = x4.

It is easy to verify that Σ3 is not level-3 input-output linearizable (since the Toeplitz matri-
ces Mk(Σ3) do not satisfy rank condition (ii) of Theorem 6.4.1). However, via a nonlinear
coordinates change in the output space

ỹ1 = ey1 , ỹ2 = y2 −
1

3
e3y1 ,

the system with the new outputs ỹ1, ỹ2 is level-3 input-output linearizable. Additionally,
the transformed system satisfies conditions (i)-(iv) of Theorem 6.4.4. In fact, by choosing
new coordinates {

x̃1 = (x1e
−x3)

1
2 , x̃2 = x2, x̃3 = ex3 ,

x̃4 = x4 − 1
3
e3x3 , x̃5 = x5, x̃6 = x6,

and the feedback transformation v1 = ṽ1, v2 = e−x3 ṽ2, v3 = ṽ3, the system Σ3 is level-2
sys-equivalent to the linear control system Σ̃3 below. Moreover, since Σ3 ∈ Expl(Ξse

3 ), by
Proposition 6.3.3, Ξse

3 is level-2 ex-equivalent to the linear DAE ∆se
3 below.

Σ̃3 :



˙̃x1 = x̃2

˙̃x2 = ṽ1

˙̃x3 = ṽ2, ỹ1 = x̃3

˙̃x4 = x̃5 + kỹ1, ỹ2 = x̃4

˙̃x5 = x̃6

˙̃x6 = ṽ3

⇒ ∆se
3 :



˙̃x1 = x̃2

˙̃x4 = x̃5 + kỹ1

˙̃x5 = x̃6

0 = x̃3

0 = x̃4.

In view of the example above, even if an explicit control system is not level-3 input-
output linearizable, it may be so under level-2 sys-equivalence. Thus via further transfor-
mations, the original SE DAE is possibly level-2 externally linearizable. It suggests that
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the future work should be focused on level-2 input-output linearizability of control systems
and corresponding SE DAEs.

6.6 Sketch of the proof of Theorem 6.4.4

Proof. Necessity. If Ξse is level-3 ex-equivalent to ∆se given by (6.14), then any control
system Σ ∈ Expl(Ξse) is level-3 ex-equivalent to

ż1 = A1z1 +B1w1, ẇ1 = v1,

ż3 = A3z3 +B3w3 +K3y, ẇ3 = v3,

y3 = C3z3 +D3w3.

The above linear control system satisfies (i)-(iv) in an obvious way. Moreover, the in-
variance of Si, Gi (clearly, Gi is involutive for the linear system), and V ∗, under level-3
sys-equivalence, completes the proof of necessity.

Sufficiency. Suppose Σ ∈ Expl(Ξse) satisfies conditions (i)-(iv), then by condition (i)
and Theorem 6.4.1, Σ is level-3 sys-equivalence to a control system of the form (6.12) via
the structural algorithm. Subsequently, condition (iii) implies that there is no ξ4 in system
(6.12), i.e., after input-output linearization, Σ becomes

ξ̇1 = f 1(ξ1, ξ3) + g1(ξ1, ξ3)v1 + g3(ξ1, ξ3)v3

ξ̇3 = Â3ξ3 + B̂3v3 + K̂3y3

y3 = Ĉ3ξ3.

(6.15)

For ease of proof, we assume that v1 is of dimension 1. Denote

f =

(
f 1(ξ)

Â3ξ3 + K̂3y3

)
, g1 =

(
g1(ξ)

0

)
, g3 =

(
g3(ξ)

B3

)
.

In view of condition (iii), the key of the following proof is to find new coordinates ξ̃1 and
new control ṽ1 (we do not change ξ3 and v3) such that in (ξ̃1, ξ3)-coordinates and with the
control (ṽ1, v3), the distributions Gi are rectified. Notice that from the involutivity of Si in
(ii), we have Si+1 = Si + [f, Si ∩ ker dh]. Now from V ∗ = span

{
∂
∂ξ1

}
, via condition (iv)

and a direct calculation of Si, we get for (6.15),

Gi ∩ V ∗ = Si ∩ V ∗ = span
{
g1, adfg1, . . . , ad

i−1
f g1

}
.

Then there exists a smallest number, denoted by ρ, such that Gρ∩V ∗ = G∗∩V ∗ (note that
dim(Gρ ∩ V ∗)− dim(Gρ−1 ∩ V ∗) = 1). Thus, from the involutivity of Gi, we can choose
a scalar function ψ(ξ1, ξ3) such that dψ ∈ (Gρ−1)⊥ and dψ /∈ (Gρ ∩ V ∗)⊥ = (V ∗)⊥.
The above construction implies the dummy output y1 = ψ(ξ1, ξ3) has relative degree
ρ and Lg1L

ρ−1
f ψ 6= 0. Observe that Gρ ∩ V ∗ = V ∗ and that span

{
dψ, . . . , dLρ−1

f ψ
}
∩

(V ∗)⊥ = 0. Thus (ψ, . . . , Lρ−1
f ψ, ξ3) form a local diffeomorphism (since dξ3 = (V ∗)⊥ and
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dψ, . . . , dLρ−1
f ψ are independent). Finally, via the change of coordinates ξ̃1

1 = ψ, . . . , x̃1
ρ =

Lρ−1
f ψ and the feedback transformation ṽ1 = Lρ−1

f ψ+ v1Lg1L
ρ−1
f ψ+ v3Lg3L

ρ−1
f ψ, we get

˙̃ξ1
1 = ξ̃1

2 ,
˙̃ξ1
2 = ξ̃1

3 , . . . ,
˙̃ξ1
ρ = ṽ1,

ξ̇3 = Â3ξ3 + B̂3v3 + K̂3y3,

y3 = Ĉ3ξ3.

6.7 Conclusions

In this chapter, we discuss linearization of semi-explicit differential-algebraic equations
under internal and external equivalence. The difference of linearization under those two
equivalence relations is illustrated by an example of a mechanical system under some holo-
nomic constraints. Moreover, we define 3-levels of external equivalence depending on 3
kinds of output transformations and show their geometric interpretations. Then we give
necessary and sufficient conditions for level-3 external linearization problem via the ex-
plicitation procedure and illustrate by an academic example the problem of level-2 external
linearization.
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Conclusions and Perspectives

In this thesis, we study both linear and nonlinear systems described by differential-algebraic
equations DAEs using geometric methods. These DAE systems are classified into differ-
ent categories, which include linear DAEs ∆, linear DAE control systems DAECSs ∆u,
semi-explicit SE linear DAEs ∆se, and their nonlinear counterparts Ξ, Ξu, Ξse, based on
their system structures. The main results of the present thesis are summarized as follows.

1. Existence and uniqueness of solutions. We discuss the solutions of linear (resp.
nonlinear) DAEs using the notions of invariant subspaces (resp. invariant submanifolds).
We have shown that for a linear (resp. nonlinear) DAE, there passes at lest one solution
through a nominal point if and only if the point belongs to its maximal invariant subspace
(resp. locally maximal invariant submanifold). Moreover, if the solution is unique, we
call the DAE internally regular, and thus the internal regularity of a DAE yields an ODE
evolving on the maximal invariant subspace (submanifold) that has no free variables; the
corresponding results are given in Proposition 2.6.12 for linear DAEs and Theorem 4.3.14
for nonlinear DAEs. The calculation of the locally maximal submanifold of a nonlinear
DAE can be implemented by a reduction method commonly appeared in the nonlinear
DAEs literature. We reformulate this reduction method as Algorithm 4.3.4 in Chapter 4
and show how this algorithm is related to the zero dynamics algorithm in the nonlinear
control theory.

2. Internal and external (feedback) equivalence. A main difference between this thesis
and the other existing results on geometric analysis of DAE systems is that we system-
atically distinguish the difference between the two equivalence relations. The external
(feedback) equivalence of two DAEs (DAECSs) is important in every chapter of this thesis
since it is the fundamental relation when considering DAE systems (locally) everywhere
(not just on the subspace (submanifold) where the solutions exist). Various normal forms
and canonical forms under external (feedback) equivalence are proposed in this thesis (see
item 5 below) to simplify the structure of DAE systems. The internal equivalence of two
DAEs is defined by the external equivalence of the two DAEs restricted to their maximal
invariant subspaces (or submanifolds), i.e., where the solutions exist. We have shown that
the internal equivalence is useful when we only care about where and how the solutions
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evolve; the corresponding results are given in Theorem 2.6.10 for linear DAEs, and Lemma
4.2.3 and Theorem 4.3.14 for nonlinear DAEs.

3. Two kinds of explicitation procedures. In order to “explicitate” the “implicit” DAE
systems and connect DAE systems with ODE systems, we propose two kinds of explici-
tation procedures, i.e., the explicitation with driving variables (or (Q, v)-explicitation) and
without driving variables (or (Q,P )-explicitation). Through Chapters 2-6, we have shown
that the explicitation procedure is a powerful tool for DAE systems since with its help we
can use the knowledges from the classical linear and nonlinear control theory to analyze
DAE systems. We prove that the explicitation of a DAE system is not just a system but
a class of systems (or a system defined up to some transformations), as seen in Remark
2.3.3 and Proposition 3.2.3,3.2.4,4.3.18,5.2.5,6.3.3. We discuss the differences of the two
explicitation procedure in Remark 3.2.5 of Chapter 3 for linear DAE systems and show in
Theorem 4.3.27 that a nonlinear DAE Ξ = (E,F ) admits an explicitation without driv-
ing variables if and only if the distribution defined by kerE(x) is of constant rank and
involutive, which also explains when Ξ is externally equivalent to a SE DAE Ξse.

4. Connections between DAE and ODE systems. The connections between the two
classes of systems are built up depending on the results that the external (feedback) equiv-
alence for DAE systems is a true counterpart of the system (feedback) equivalence (the
(extended) Morse equivalence for the linear case) for ODE systems; the corresponding re-
sults are Theorem 2.3.4, 3.2.8, 4.3.21, 5.2.9 and Proposition 6.3.3. The relations of linear
DAE systems and linear ODE systems are shown by connecting their geometric subspaces
and canonical forms. The relations between the (augmented) Wong sequences for DAE
systems and the invariant subspaces for ODE systems are given in Proposition 2.4.10 and
Proposition 3.2.9. The correspondence of the Kronecker canonical form of DAEs and the
Morse canonical form of ODE control systems are shown by establishing relations of their
indices in Proposition 2.5.3. Similarly, the correspondence of the feedback canonical form
of DAECSs and the extended Morse canonical form are shown by establishing relations of
their indices in Remark 3.4.8.

5. Normal and canonical forms. In Chapter 3, we propose a Morse triangular form
MTF (Proposition 3.3.1) to simplify the construction of the Morse normal form MNF
(Proposition 3.3.2) of classical ODE control systems and then the MTF and MNF are
generalized, respectively, to the extended Morse triangular form EMTF (Theorem 3.3.4)
and the extended Morse normal form EMNF (Theorem 3.3.5) for ODE control systems
with two kinds of inputs. In Theorem 3.4.2, we provide a constructive passage from the
EMNF to the extended Morse canonical form EMCF. Algorithm 3.4.11 describes a way
of transforming a linear DAECS into its feedback canonical form FBCF via the interme-
diate forms EMTF, EMNF and EMCF of its explicitation systems. In Theorem 4.3.29
of Chapter 4, a nonlinear generalization of the Weierstrass form NWF is proposed based
on the comparison of Algorithm 4.3.4 for DAEs and the zero dynamics algorithm for the
explicitation systems. In Theorem 5.3.10 of Chapter 5, two normal forms based on the
notion of maximal controlled invariant submanifold are proposed to simplify the structure
and to understand various types of variables of DAECSs.
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6. Nonlinear generalizations of the notions in linear DAEs theory. We have shown
in Chapters 4-6 that the (augmented) Wong sequences have two kinds of nonlinear gen-
eralizations, which are sequences of submanifolds and distributions, those observations
are given in Remark 4.3.15(iv), 5.4.7(iv) and 6.4.3(i). The NWF in Theorem 4.3.29 gen-
eralizes the Weierstrass form for linear regular DAEs. The maximal controlled invariant
form in Theorem 5.3.10 is the effort made to generalize the FBCF of linear DAECSs. The
(Q,P )- and (Q, v)- explicitation for linear DAEs in Chapter 2-3 are generalized to the
explicitation with and without driving variables in Chapter 4 and the correspondence of
external (feedback) equivalence and system (feedback) equivalence for nonlinear systems
generalizes the linear results in Theorem 3.2.8.

7. Linearization and feedback linearization. Necessary and sufficient conditions are
given in Theorem 5.4.5 and 5.4.6 to describe when a nonlinear DAECS is externally and
internally feedback equivalent to a completely controllable linear one, respectively. The
results of linearization of semi-explicit DAEs are given in Chapter 6. We show in Theorem
6.3.6 and 6.4.2, 6.4.4, respectively, when a semi-explicit DAE is internally and externally
equivalent to a linear one. All these results on linearization for nonlinear DAE systems are
solved with the help of some distributions given by the explicitation systems.

We now give some perspectives for this thesis. As the explicitation procedure builds
up a bridge between DAE systems and ODE systems, various results on geometric control
of nonlinear ODE systems, such as disturbance decoupling, observer design by geomet-
ric methods, the zero dynamics algorithm, invertibility analysis, stabilization and tracking,
dynamic feedback linearization etc, can be possibly generalized to DAE systems. The lin-
earization problems of DAE systems need a further study since in this thesis we only give
the results for some special cases, e.g. in Theorem 5.4.6, we only study when a DAECS
can be linearized to a linear one with complete controllability, but a linear DAECS can
have various kinds of controllability (see [17]), thus different controllability of the lin-
earized DAE system should correspond to different conditions of linearization. Moreover,
in Chapter 6, we define 3-levels of external equivalence but only give the conditions for
lever-3 external linearization problem, thus the conditions for lever-1 and level-2 exter-
nal linearization of semi-explicit DAEs should be further investigate. Last but not least,
examples in Chapter 5 raise the interests in studying relations of the flatness of the explic-
itation systems and the feedback linearizablity of the DAE control system and the flatness
of DAE systems is also an interesting subject to be studied in the geometric spirit of the
present thesis.
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Some Notations and Notions from Differential
Geometry

dh
the differential of a smooth function h : X → R. In coordinates x =

[x1, . . . , xn]T , we have dh =
n∑
i=1

∂h
∂xi
dxi = [ ∂h

∂x1
, . . . , ∂h

∂xn
]

< x, g >
the inner product of a co-vector x = [x1, . . . , xn] and vector g =

[g1, . . . , gn]T , i.e.,
n∑
i=1

xig
i

Lfh

the lie derivative (direction derivative) of a smooth function h : X →
R with respect to a vector field f . In coordinates x, Lfh(x) =
n∑
i=1

∂h
∂xi

(x)f(x) = ∂h
∂x

(x)f(x) =< dh(x), f(x) >

[f, g]

the lie bracket of two vector fields f and g. In coordinates x, [f, g](x) =

∂g
∂x

(x)f(x) − ∂f
∂x

(x)g(x) =
∑
j

(∑
i

∂gj
∂xi

(x)fi(x)− ∂fj
∂xi

(x)gi(x)

)
∂
∂xj

,

where ∂g
∂x

and ∂f
∂x

denote the Jacobi matrices of g and f
adfg [f, g]

∧ exterior product

dξ1 ∧ dξ2
dξ1

1 ∧ · · · ∧ ξ
n1
1 ∧ dξ2 ∧ · · · ∧ ξn2

2 , where ξ1 = (ξ1
1 , . . . , ξ

n1
1 ) and ξ2 =

(ξ2
2 , . . . , ξ

n2
2 )

TX the tangent bundle of a smooth manifold X
TxM the tangent space of a submanifold M of Rn at x ∈M
distribution D a map attaching to any x ∈ X a linear subspace D(x) ⊆ TxX

codistribution D⊥
consists of all linear forms (co-vectors) ω(x) such that <

ω(x), g(x) >= 0, for any g(x) ∈ D(x)

involutive D a distribution D is involutive if for any f, g ∈ D , we have [f, g] ∈ D

Foliation Mα

a p-dimensional foliation of an n-dimensional manifold X is a de-
composition of X into a union of disjoint connected submanifolds
{Mα}α∈A, called the leaves of the foliation, with the following prop-
erty: Every point in X has a neighborhood U and a system of lo-
cal coordinates x = (x1, . . . , xn) : U → Rn such that for each
leaf Mα, the components of U ∩ Mα are described by the equations
xp+1 = const., . . . , xn = const.

205



Abbreviations

DAE differential-algebraic equation
DAECS differential-algebraic equation control system
EM-equivalent extended Morse equivalent
EMCF extended Morse canonical form
EMNF extended Morse normal form
EMTF extended Morse triangular form
ex-equivalent externally equivalent
ex-fb-equivalent externally feedback equivalent
FBCF feedback canonical form
in-equivalent internally equivalent
in-fb-equivalent internally feedback equivalent
KCF Kronecker canonical form
M-equivalent Morse equivalent
MCF Morse canonical form
MCISF maximal controlled invariant submanifold form
MNF Morse normal form
MTF Morse triangular form
NWF nonlinear generalization of the Weierstrass form
ODE ordinary differential equation
ODECS ordinary differential equation control system
QL quasi-linear
SE semi-explicit
SMCISF special maximal controlled invariant submanifold form
sys-equivalent system equivalent
sys-fb-equivalent system feedback equivalent
WF Weierstrass form
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