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ABSTRACT

Transport systems are dynamically characterized not only by nonlinear interactions between
the different components but also by feedback loops between the state of the network and
the decisions of users. In particular, network congestion affects both the distribution of lo-
cal demand by modifying route choices and overall multimodal demand. Depending on
the conditions of the network, they may decide to change for example their transportation
mode. Several equilibria can be defined for transportation systems. The user equilibrium
corresponds to the situation where each user is allowed to behave selfishly and to mini-
mize his own travel costs. The system optimum corresponds to a situation where the total
transport cost of all the users is minimum.

In this context, the study aims to calculate route flow patterns in a network considering
different equilibrium conditions and study the network equilibrium in a dynamic setting.
The study focuses on traffic models capable of representing large-scale urban traffic dynam-
ics. Three main issues are addressed. First, fast heuristic and meta-heuristic methods are
developed to determine equilibria with different types of traffic patterns. Secondly, the exis-
tence and uniqueness of user equilibria are studied. When there is no uniqueness, the rela-
tionship between multiple equilibria is examined. Moreover, the impact of network history
is analyzed. Thirdly, a new approach is developed to analyze the network equilibrium as a
function of the level of demand. This approach compares user and system optimums and
aims to design control strategies in order to move the user equilibrium situation towards the
system optimum.
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RÉSUMÉ

Les systèmes de transport sont caractérisés de manière dynamique non seulement par des
interactions non linéaires entre les différents composants, mais également par des boucles
de rétroaction entre l’état du réseau et les décisions des utilisateurs. En particulier, la conges-
tion du réseau impacte à la fois la répartition de la demande locale en modifiant les choix
d’itinéraire et la demande multimodale globale. Selon les conditions du réseau, ils peuvent
décider de changer, par exemple, leur mode de transport. Plusieurs équilibres peuvent être
définis pour les systèmes de transport. L’équilibre de l’utilisateur correspond à la situation
dans laquelle chaque utilisateur est autorisé à se comporter de manière égoïste et à minimi-
ser ses propres frais de déplacement. L’optimum du système correspond à une situation où
le coût total du transport de tous les utilisateurs est minimal.

Dans ce contexte, l’étude vise à calculer les modèles de flux d’itinéraires dans un réseau
prenant en compte différentes conditions d’équilibre et à étudier l’équilibre du réseau dans
un contexte dynamique. L’étude se concentre sur des modèles de trafic capables de représen-
ter une dynamique du trafic urbain à grande échelle. Trois sujets principaux sont abordés.
Premièrement, des méthodes heuristiques et méta-heuristiques rapides sont développées
pour déterminer les équilibres avec différents types de trafic. Deuxièmement, l’existence et
l’unicité des équilibres d’utilisateurs sont étudiées. Lorsqu’il n’y a pas d’unicité, la relation
entre des équilibres multiples est examinée. De plus, l’impact de l’historique du réseau est
analysé. Troisièmement, une nouvelle approche est développée pour analyser l’équilibre du
réseau en fonction du niveau de la demande. Cette approche compare les optima des utilisa-
teurs et du système et vise à concevoir des stratégies de contrôle afin de déplacer la situation
d’équilibre de l’utilisateur vers l’optimum du système.

vii





ACKNOWLEDGEMENTS

In the beginning, I would say thanks to my supervisors Prof. Ludovic Leclercq, deputy di-
rector of the LICIT lab, and Prof. Jean-Patrick Lebacque, director of the GRETTIA lab, for
continuous support of my PhD study, for their patience, motivation, and immense knowl-
edge. Their guidance helped me in all the time of research and writing of this thesis. I could
not have imagined having better advisors and mentors for my PhD study. I truly enjoyed
working in a research environment that stimulate original thinking and initiative, which
they created.

I would like to also express my deep and warm acknowledgments to Prof. Hani Mah-
massani from Northwestern University, and Prof. Francesco Viti from University of Lux-
embourg, who both thoroughly reviewed my thesis and raised detailed comments that im-
proved this revised version of the manuscript. I am also very thankful to all the other mem-
bers of the examination committee: Prof. Van Lint from TU Delft and Prof. Salima Hassas
from Université Claude Bernard Lyon 1, who chaired the committee.

Moreover, these years spent at the GRETTIA and LICIT labs wouldn’t have been so ex-
citing without the help and support of all my colleagues that become my friend during this
PhD. To Milad, Younes, Florian, Demeng, Haroun, Mohammad Hassan, Moncef, Navid,
Adel, Abdullah, Amine, Cyril and Xavier at GRETTIA Humberto, Jean, Nicolas, Delphine,
Ruiwei, Mahendra, Anna, Manon, Cyril, Omar and Carlos at LICIT; many thanks for having
spent very good times together! It was a real pleasure to work with you. I am very grateful
to all the other lab members as well: Régine, Neila, Latifa, Zoï, Simon, Habib, Mahdi, Nadir,
Allou, Etienne and Olivier at Ifsttar Marne-la-Vallee, and Nour-Eddin, Christine, Aurélien,
Angelo, Andres at Ifsttar Bron.

I have special thanks to Cécile Becarie, Olivier Tonck, Clement Picq, Guilhem Mariotte
and Sergio Filipe Assuncao Batista for stimulating discussions and their great helps. I also
thank Sonia Cenille (ENTPE), Anne-Christine Demanny (LICIT), Marie-Laure Poiret (GRET-
TIA) the three secretaries of the labs and Mustapha Tendjaoui for their respective help in
many and diverse administrative tasks.

Last but not least, I would like to thank my parents Faranak and Hassan, my parents-
in-law Nasrin and Dariush and my sister-in-law Negar. I consider myself nothing without

ix



Acknowledgements

them. They gave me enough moral support, encouragement and motivation to accomplish
the personal goals. I also thank my dear cousin Mohammad Reza and my friend Farhad for
their support. And Finally, I would like to say a heartfelt thanks to my wife Negin for always
believing in me and encouraging me, for her feedback on my research and for always being
so supportive of my work.

This PhD thesis received funding from the European Research Council (ERC) entitled MAG-
nUM: Multiscale and Multimodal Traffic Modeling Approach for Sustainable Management
of Urban Mobility (under the European Union’s Horizon 2020 research and innovation pro-
gram: grant agreement No. 646592).

x



TABLE OF CONTENTS

List of Figures 15

List of Tables 17

1 General introduction 19
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.1.1 Urban transportation systems . . . . . . . . . . . . . . . . . . . . . . . . 19
1.1.2 Traffic planning model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.1.3 Traffic assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.1.4 Dynamic traffic assignment (DTA) . . . . . . . . . . . . . . . . . . . . . 22

1.2 Simulation-based DTA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.2.2 Symuvia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.2.3 SymuMaster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.3 Equilibrium calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.3.1 Column generation approach . . . . . . . . . . . . . . . . . . . . . . . . 27
1.3.2 Swapping algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.4 Network equilibrium analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.5 Research objectives and major contributions . . . . . . . . . . . . . . . . . . . 30

1.5.1 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.5.2 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.5.3 Publication list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

I Optimize the DTA calculation 35

2 Benchmark of solution methods 39
2.1 Notations for this chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.2 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.3 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.3.1 Mathematical formula for UE . . . . . . . . . . . . . . . . . . . . . . . . 43
2.3.2 Convergence quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

xi



Table of Contents

2.5 Investigating the solution algorithm . . . . . . . . . . . . . . . . . . . . . . . . 48
2.5.1 Keeping the best solution over inner loop . . . . . . . . . . . . . . . . . 48
2.5.2 Swapping algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.5.3 Inner loop initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.5.4 Initial step size selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.6 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.7.1 Comparison of swapping algorithms . . . . . . . . . . . . . . . . . . . 57
2.7.2 Initialization methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.7.3 Step size methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3 New framework for DTA calculation 71
3.1 Notations for this chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.2 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.3 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.4.1 Simulated Annealing (SA) method . . . . . . . . . . . . . . . . . . . . . 78
3.4.2 Genetic Algorithm (GA) . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.5 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

II Applying DTA method to new network problems 93

4 Impact of network design history on multimodal UE 97
4.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.2 Multimodal STA test case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.3 Bi-modal equilibrium analysis: the car-bus case . . . . . . . . . . . . . . . . . . 101
4.4 Non unicity of equilibrium states in multimodal STA . . . . . . . . . . . . . . 106

4.4.1 Equilibrium analysis for Scenario 1: car-bus-train case . . . . . . . . . . 106
4.4.2 Equilibrium analysis for Scenario 2: (car-bus)-train case . . . . . . . . . 107
4.4.3 Equilibrium analysis for Scenario 3: (car-train)-bus case . . . . . . . . . 110

4.5 Multi-modal simulation-based day-to-day DTA . . . . . . . . . . . . . . . . . 112
4.5.1 Day-to-day network equilibrium model . . . . . . . . . . . . . . . . . . 112
4.5.2 Dynamic test case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.5.3 Experiments scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.6 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5 Equilibria analysis: improving traffic network performance 121
5.1 Notations for this chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.2 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.3 Breakpoint definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.4 Simulation-based dynamic network equilibrium . . . . . . . . . . . . . . . . . 132

5.4.1 Network equilibrium model . . . . . . . . . . . . . . . . . . . . . . . . 132

xii



Table of Contents

5.4.2 Equilibration process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
5.4.3 Definition of SO for dynamic case . . . . . . . . . . . . . . . . . . . . . 132

5.5 Dynamic test case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.5.1 Breakpoint detection in the dynamic case . . . . . . . . . . . . . . . . . 134
5.5.2 Breakpoint analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.6 Control strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
5.6.1 Ban Strategy (BS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
5.6.2 Applying BS to one OD pair test case . . . . . . . . . . . . . . . . . . . 138

5.7 Two OD pairs numerical experiments . . . . . . . . . . . . . . . . . . . . . . . 142
5.7.1 Breakpoint analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
5.7.2 Applying BS to two OD pairs test case . . . . . . . . . . . . . . . . . . . 145
5.7.3 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

General conclusion 152

References 157

A Appendix for chapter 4 168

B Appendix for chapter 5 169

xiii





LIST OF FIGURES

1.1 Traffic assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.2 The impact of DTA model’s detail level and network size on the computation

time of calculating a network equilibrium . . . . . . . . . . . . . . . . . . . . . 23
1.3 SymuMaster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.4 General framework to solve simulation-based DTA . . . . . . . . . . . . . . . 26
1.5 Visualisation of the thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.1 Solution algorithm for trip-based dynamic network equilibrium . . . . . . . . 46
2.2 The three traffic networks of this chapter. (a): Small-scale network. (b): medium-

scale network. (c) and (d): Large-scale network. . . . . . . . . . . . . . . . . . . 55
2.3 The macroscopic fundamental diagram of 9 demand scenarios of the three

traffic networks. There are 3 different saturation levels per network: Under
Saturation (US), Saturation (S) and Over Saturation (OS). . . . . . . . . . . . . 56

2.4 The computation time bar chart of 9 demand scenarios of the three traffic net-
works. There are 3 different saturation levels per network: Under Saturation
(US), Saturation (S) and Over Saturation (OS) . . . . . . . . . . . . . . . . . . . 60

2.5 Convergence patterns for the swapping algorithms of all scenarios. There are
3 different saturation levels per each network: Under Saturation (US), Satura-
tion (S) and Over Saturation (OS). γ denotes the satisfaction threshold. . . . . 62

2.6 Convergence patterns of the inner loops with initialization methods for Satu-
ration (S) scenario on Lyon6V network. [default is All-or-nothing initialization] 66

3.1 Solution algorithm for trip-based dynamic network equilibrium . . . . . . . . 77
3.2 SA solution algorithm flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.3 Solution structure in the GA case . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.4 GA solution algorithm flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.5 Lyon 6e + Villeurbanne: Mapping data c©Google 2019 and the traffic network

used by Symuvia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.6 The demand scenario of Lyon 6e + Villeurbanne. . . . . . . . . . . . . . . . . . 84
3.7 Convergence patterns for the swapping algorithms. . . . . . . . . . . . . . . . 86
3.8 Convergence patterns for the inner loop iterations of the swapping algorithms. 88

4.1 A network with a single OD pair, three paths and three transportation modes. 100

xv



List of Figures

4.2 Cost-flow diagram based on path 1 . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.3 The equilibrium solution(s) on the flow diagram of path 1 . . . . . . . . . . . 104
4.4 The flow diagram of special cases for ρB > ρC (The intersection is outside K) . 105
4.5 The feasible solution space (K) when all modes are active . . . . . . . . . . . . 106
4.6 Initial equilibrium state for Scenario 2: The flow diagram of path 1 when ρB >

ρC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.7 The convergence of scenarios for the mono-OD test case . . . . . . . . . . . . . 112
4.8 The day-to-day framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.9 Multimodal traffic network of Lyon 6e + Villeurbanne . . . . . . . . . . . . . . 115
4.10 Chart of experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
4.11 The average gap and violation in the day-to-day process for the final phase of

all the scenarios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.1 Classic Braess network with the link cost functions and assumptions . . . . . 125
5.2 (a): Path 1 or Path 2 flow-demand diagram for UE, SO and BRUE. (a↔b): Pos-

sible path set of optimal solution [Px = Possible path set of optimal solution
for equilibrium x, where x stands for UE or SO]. Note that for BRUE, it de-
pends on the ε. (b): Path 3 flow-demand diagram for UE, SO and BRUE.
Red dash lines in figures (a) and (b) presents the value of breakpoints in BRUE
path flow distribution based on the given ε. It can change in ranges that are
specified by the red arrows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.3 Network of Lyon 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
5.4 Paths flow-demand diagram for UE, BRUE, SO and ME. Breakpoints are pre-

sented by black vertical dash lines on total demand axis. . . . . . . . . . . . . 136
5.5 Network of Lyon 6 with banning point . . . . . . . . . . . . . . . . . . . . . . . 138
5.6 Total travel time for each level of demand in one OD pair test case for UE, SO,

BRUE, ME, BS and BRUE+BS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.7 flow diagrams in one OD pair test case for UE, SO, BRUE, Mixed Equilib-

rium (ME), Ban strategy (BS) and the combination of BRUE and Ban Strategy
(BRUE+BS). Breakpoints are presented by black vertical dash lines on total
demand axis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.8 Network of Lyon 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
5.9 flow diagrams in two OD pairs test case for UE, SO, BRUE, Mixed Equilib-

rium (ME). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
5.10 Network of Lyon 6 with banning points for two OD pairs scenario . . . . . . . 145
5.11 Total travel time for each level of demand in two OD pairs test case for UE,

SO, BRUE, ME, BS1, BS2, BRUE+BS1 and BRUE+BS2. . . . . . . . . . . . . . . 146
5.12 Breakpoint analysis on path 4 for two targeted OD pairs . . . . . . . . . . . . 148
5.13 The total TT of UE and BP4 for different demand levels of targeted OD pairs . 149
5.14 Comparison between BS by breakpoint analysis and the result of banning

path 4 for all demand levels of two targeted OD pairs: (a) The comparison
between BS plan by breakpoint analysis and the results of banning path 4 for
all demand levels of two targeted OD pairs; (b) The difference between UE
Total Travel Time (TTT) and the TTT when path 4 is banned for all demand
levels of two targeted OD pairs. . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

B.1 Full network of Lyon: Lyon 6 is highlighted by green color . . . . . . . . . . . 169

xvi



LIST OF TABLES

2.1 Specific notations in this chapter . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.2 All the methods in the inner loop considered in this chapter . . . . . . . . . . 54
2.3 Total demand for all test cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.4 Results of numerical experiments for eleven swapping algorithms [AGap (sec-

ond)] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.5 Best swapping algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.6 Results of initialization methods [AGap (second)] . . . . . . . . . . . . . . . . 64
2.7 Computation time of initialization methods (second) . . . . . . . . . . . . . . 65
2.8 Results of initial step size methods [AGap (second)] . . . . . . . . . . . . . . . 67
2.9 Computation time of initial step size methods (second) . . . . . . . . . . . . . 68
2.10 Best algorithms and settings with respect to the network size and loading . . 70

3.1 Specific notations in this chapter . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.2 Solution quality and performance indicators . . . . . . . . . . . . . . . . . . . 87

4.1 The scenarios of network design for the mono-OD test case . . . . . . . . . . . 101
4.2 Mean travel time (Mean OD TT) [min] and percentage of failed trips (% trip

failed) for top five most crowded OD pairs . . . . . . . . . . . . . . . . . . . . 117
4.3 Public transportation criteria; (#: number of) . . . . . . . . . . . . . . . . . . . 119
4.4 Mode choice criteria; (#: number of) . . . . . . . . . . . . . . . . . . . . . . . . 120

5.1 Specific notations in this chapter . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.2 Path flow distribution in Braess network for UE, SO and BRUE . . . . . . . . 131
5.3 The ban strategies for two OD pairs test case . . . . . . . . . . . . . . . . . . . 143

A.1 The scenarios of network design for the dynamic test case. . . . . . . . . . . . 168





1.GENERAL INTRODUCTION

1.1 Background

1.1.1 Urban transportation systems

Over the past several decades, urban areas are expanding, and traffic conditions have gone
dramatically worse, particularly in large metropolitan areas. The urban transportation sys-
tem has a direct impact on the growth rate of business and on the life quality in the urban
area. Road congestion in Europe costs approximately over 110 billion euros (about 1% of
the GDP) per year (Christidis et al., 2012), and this cost is expected to rise by 50 percent from
2013 to 2030 (Hilber & Palmer, 2014). The CEBR research institute estimates that in 2013,
direct costs (fuel consumption and time wasted) and indirect costs (loss of productivity in
business) due to congestion accounted for over 20 billion euros in France, and for over 124
billion dollars in the USA. Billions of man-hours are lost in congestion of the transportation
system. For instance, each user of the urban transportation system in the UK, Germany,
France, and the USA spends, on average, three days in gridlock every year in metropolitan
areas (CEBR, 2014).

Moreover, in both developed and developing countries, urban travel demand is con-
tinuously growing while the transport infrastructure and services have lagged far behind.
Besides, by increasing the price of land and rental rates in city centers, people are forced to
move to the city peripherals thus daily commuting increases (Gendron-Carrier et al., 2018).
Therefore, studying the urban transportation system in order to reduce its level of traffic
congestion is clearly of utter importance. Transportation management has a key role to play
in this context, but there are many problems in urban transportation planning and man-
agement (Narayanaswami, 2016). In short-mid- term, optimizing the use of existing trans-
portation modes, and infrastructures is probably an effective management policy to improve
traffic conditions in the urban environment.

1.1.2 Traffic planning model

In this context, analyzing and forecasting mobility in a given network is vital for traffic
managers. The transportation system is very complex, wherein many factors (e.g., traveler’s
path choice, and transport mode costs) influence the performance of the system. Every
agent in the system looks for optimizing his/her own objective(s). Traffic planning models
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attempt to represent the transportation system as a function of agents’ decision and existing
transport infrastructures. The classical traffic planning and estimation process contains four
main steps with the following goals in a given traffic network (Patriksson, 2015):

1. Trip generation: estimate the number of users that travel between an origin region and
a destination region.

2. Trip distribution: estimate the origin and destination points, i. e., build an Origin-
Destination (OD) matrix by aggregated trip numbers from the previous step.

3. Mode split (choice): estimate the demand for transportation modes (e. g., private cars,
and public transportation).

4. Traffic assignment: assign a given set of trips to a possible path (set of route and
modes).

Each step of the traffic estimation process has a huge body of literature. This PhD thesis
focuses on the fourth step. The traffic assignment concludes the traffic estimation process,
and the result is an estimate of the state of the network based on a traffic model (Guevara
et al., 2011).

1.1.3 Traffic assignment

The traffic assignment problem is like a game; each player wants to win. The travelers
(users) and the transportation system are the players of this game. Solving this game means
to find an equilibrium if it exists Myerson (1999). The traffic assignment problem, from the
early 1980s forward, have been greatly influenced by Wardrop’s first and second principles
Wardrop (1952) that were stated in a traffic environment. Wardrop’s first principle, also
known as the user optimum principle, specifies that travelers are viewed as Nash agents
competing on a network for resources (e. g., road and mode capacity). The user equilibrium
corresponds to the selfish situation when no user can reduce its own travel costs. Wardrop’s
second principle describes the system optimum conditions: the system optimum is reached
when the total travel cost of all users is minimal. In Wardrop’s words:

• the User Equilibrium (UE), i.e., Wardrop’s first principle, is expressed as: “the jour-
ney times in all routes actually used are equal and less than those which would be
experienced by a single vehicle on any unused route.”

• the System optimum (SO), i.e., Wardrop’s second principle, is described as the network
state which “minimizes the total travel time spent in the network.”

These two equilibrium principles can be extended to take into account generalized travel
costs, including monetary costs (e.g., tolls and fuel consumption costs) instead of travel time.
Mathematically, the UE conditions can be expressed by the following conditions:

fp ≥ 0 ; ∀ p, w (1.1)

c∗w
de f
= minp∈w

(
cp
)

; ∀w (1.2)
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fp(cp − c∗w) = 0 ; ∀ p, w (1.3)

where fp denotes the flow on path p between OD pair w; cp represents the generalized travel
cost (or travel time) of path p between OD pair w; and c∗w is the minimum generalized travel
cost path (shortest path) between OD pair w. Equation 1.1 ensures the non-negativity of the
path flow. The shortest path results from Equation 1.2 for an OD pair w, it must have the
minimum cost c∗w. Finally, Equation 1.3 requires that if path p is used (i.e. fp > 0), the cost
on this path should be equal to the minimum travel time. If the cost variable (cp and c∗w)
are replaced by marginal travel cost 1, the equilibrium under constraints 1.1- 1.3 is the SO
equilibrium (Sbayti et al., 2007).

Figure 1.1 presents the traffic assignment as a function. The input is a traffic network
and OD matrix, and the output is the optimal solution of the assignment problem under an
equilibrium principle. In other words, solving the traffic assignment refers to calculating
the path flow distribution of the network equilibrium. As is shown in Figure 1.1, solving the
assignment problem requires two steps: 1) path identification and 2) optimization.

1. Path identification requires to estimate travel costs of possible paths between OD pairs.
A traffic model is used to calculate the needed variables, and expresses the dynamics
of the network as a mathematical model.

2. The second step, which is the main focus of this study, aims to calculate an equilibrium
path flow distribution based on the traffic model. Note that this optimization step
depends on the nature of the traffic model, analytical or numerical.

FIGURE 1.1 – Traffic assignment

When the OD matrix and the link flows are assumed to be time-independent, the prob-
lem simplifies as a Static Traffic Assignment (STA). On the other hand, if time dependence
is considered, the problem becomes a Dynamic traffic assignment (DTA) (Sheffi, 1985). A
small but growing literature exists on filling the gap between STA and DTA models. Quasi-
dynamic traffic assignment models are in fact, a type of static model, but they are considered
more capable (Bliemer et al., 2012). The distinction is based on the fact that a quasi-dynamic
model is often assumed to be capacity constrained (Bliemer et al., 2014).

The DTA is much more complex than static assignment, both computationally and con-
ceptually. Thus STA models are often used by practitioners for planning purposes. Indeed,
although link flows are never truly time-independent, the static assignment may constitute
a good approximation, describing the stationary limit of the traffic flow pattern over not
too long time intervals. However, for congested networks in a peak period, this “stationary

1Marginal travel cost: the changes in travel cost of one unit of flow on a (time-dependent) path caused by
one unit of flow on another (time-dependent) path. (Qian & Zhang, 2011)
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limit” is not realistic. Among the significant shortcomings of static traffic assignment, let us
mention the following:

• the failure to describe congestion correctly and to estimate correctly congestion costs
on links and intersections;

• failure to take into account capacity constraints and spillbacks;

• STA allocates constant flows to paths, therefore, flows on routes sharing a common
arc of the network always interact, whereas drivers on different routes might use a
common link at different times;

• over-estimation of link flows.

This study focuses on DTA. Nevertheless STA will be used in some instances in order to
simplify the presentation of the new proposed methodologies in traffic assignment. These
will then be adapted to DTA.

1.1.4 Dynamic traffic assignment (DTA)

DTA models aim to capture the dynamic relationships between paths, time, and network
characteristics (Levin et al., 2014b). Regarding the history of mathematical models for DTA,
there are several review papers in the literature. The first review paper by Mahmassani et al.
(1991) discusses the DTA and traffic simulation models. Cascetta & Cantarella (1993) focuses
on the DTA models developed before 1991. After a brief review of Huapu et al. (1996) in 1996,
most of the DTA papers published before 2000 were examined by Hoogendoorn & Bovy
(2001) and Peeta & Ziliaskopoulos (2001). Szeto & Lo (2005a) and Mun (2007) examine the
properties of the DTA problem with different types of traffic flow models. Szeto & Lo (2005c)
address the impact of considering spatial queues on the DTA problem. The same authors
also provide a classification of existing DTA models in the literature (Szeto & Wong, 2012).
Pel et al. (2012) did a review on travel behavior modelling in simulation-based DTA models.
A recent review has been carried out by Wang et al. (2018), summarizing and examining the
recent methodological advances of DTA models in practice.

Since the 1970s, DTA models were used to analyze both long-term and short-term plan-
ning issues (Han et al., 2015b). DTA models have the unique capability of capturing within-
day and day-to-day evolution of traffic network dynamics. DTA research consists of wide
ranges of model sizes using various model types (e.g., microscopic and macroscopic). DTA
models can be applied (Szeto & Lo, 2006a):

• To networks with different sizes and resolutions.

• To short-term and future long-range plans.

• To conclude and tune the travel demand estimation process.

• To conduct operational analysis on design improvements.

• For various time periods and time intervals.
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DTA models can represent any given traffic network even though the challenge is the
computation cost of the equilibrium calculation. According to the level of details that is
provided by traffic flow model in order to represent the network’s characteristics (e.g., size
and loading) and dynamics (e.g., mode cost), the computation cost of DTA models can be
different. Figure 1.2 presents a brief overview of how the computation cost of finding a net-
work equilibrium is changed based on their characteristics and the input network. The DTA
models are classified regarding their operating scale (vehicle level, link level, or network
level). Moreover, the scale of the input network has a direct impact on the calculation time
of the equilibrium.

FIGURE 1.2 – The impact of DTA model’s detail level and network size on the computation time of
calculating a network equilibrium

There are two approaches to solve DTA problems: analytical approach and simulation-
based approach. The analytical approach, (reviewed by Boyce et al. (2001)), is very accurate
but can only be applied in practice to small or medium networks with few ODs. Because
we need to consider all path cost functions per OD and also take all the impacts of travel
paths and modes into account (Szeto & Wong, 2012). In a large-scale network when we have
more and more paths per OD pairs and also a large number of ODs, the problem becomes
almost intractable analytically because of multiple flow exchanges at nodes. For this reason,
this study uses the simulation-based approach in order to address the question of DTA in
large-scale networks.

1.2 Simulation-based DTA

1.2.1 Overview

Simulation-based DTA is an effective tool for analyzing transportation systems for both op-
erational and planning purposes (Schreiter et al., 2012). Dynamic Network Loading (DNL)
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is the combination of DTA with a traffic simulator that calculates network states and travel
times (Yu et al., 2008). In other words, DTA models depend on a network performance
module, which is called DNL. The DNL sub-problem aims at describing and predicting the
spatial-temporal evolution of traffic flows on a network by introducing appropriate dynam-
ics to flow propagation and travel delays on a network level (Chong & Osorio, 2017). The
DNL operator usually is not available in closed form because it severely complicates equi-
librium calculation (Song et al., 2017). The outputs of the DNL model and their computation
time are heavily affected by the types of the chosen link model and node model. As is shown
in Figure 1.2, based on the level-of-detail with their presentation of traffic, network loading
models are typically classified into macroscopic, mesoscopic, and microscopic (Rakha &
Tawfik, 2009).

Form another point of view, traffic simulators can be divided into two classes: Flow-
based models, which consider the flow of each path and Trip-based models, which define
how many travelers take each path. Macroscopic traffic flow models fall into the first cate-
gory, while microscopic models belong to the second. In other words, the flow-based models
have a continuous solution space while trip-based ones have a discrete solution space (Ra-
madurai & Ukkusuri, 2011). The flow-based approach is good to simplify the problem and
optimization process in order to take the advantages of continuous models. The macro-
scopic approach and flow-based models usually fast in equilibrium calculation as the path
flow discipline is more flexible (flows are not necessarily equivalent to vehicle units), but
without adding integrality constraints, they are less realistic for OD pairs with low demand
as vehicles are split into parts in practice. In this study, we decide to focus on the trip-based
approach in which each vehicle is reproduced individually. Microscopic traffic simulators
are now widely used for operational studies, and we have chosen to focus on DTA perfor-
mance for this kind of model. Trip-based DNL attempts to assign particle-discretized time-
dependent origin/destination flows in a dynamic network equilibrium framework (Jayakr-
ishnan & Rindt, 1999).

Regarding the real-world application, there are several computer packages in the litera-
ture. Jeihani (2007) reviewed the DTA models used in some well-known computer packages
such as VISSIM (Fellendorf, 1994), TRANSIMS (Smith et al., 1995), PARAMICS (Cameron &
Duncan, 1996), DYNASMART (Hawas et al., 1998, Mahmassani, 2001, Mahmassani & Abdel-
ghany, 2002), DynaMIT (Ben-Akiva et al., 1998), CONTRAM (Taylor, 2003). MATSIM (Cetin,
2005) is also well-known in the literature. For the detailed mathematical formulations and
implementations of DTA models or components, readers are referred to the wealth of litera-
ture listed above.

1.2.2 Symuvia

In this work, we use the Symuvia2 platform for trip-based dynamic simulation in order to
calculate travel costs in the network for any given path flow distributions for all OD pairs.
Symuvia gives access to the position, speed, and acceleration of each vehicle (user) on the
network. Symuvia contains a microscopic simulator based on the Lagrangian resolution of
the LWR (Lighthill Whitham Richards) model (Leclercq et al., 2008) which is the conserva-
tion law concerning traffic density. Vehicle movements at the microscopic scale are gov-

2Note that Symuvia is an open-source computer package that will be made available starting winter 2020.
https://www.licit.ifsttar.fr/linstitut/cosys/laboratoires/licit-ifsttar/plateformes/symuvia/
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erned by a set of rules, including car-following modeling (Leclercq, 2007a,b), lane-changes
by using a macroscopic theory of vehicle lane-changing inside microscopic models (Laval &
Leclercq, 2008) and specific movements based on noise modeling at intersections (Chevallier
& Leclercq, 2007). This car-following law has been further extended to account for all the
features of urban traffic: multi-class (Leclercq & Laval, 2009), signalized and unsignalized
intersections (Chevallier & Leclercq, 2009a), roundabouts (Chevallier & Leclercq, 2009b).
The simulation time-step is equal to 1 second, and we retrieve the travel time information at
the link and node level every 1 minute.

This study developed a new module called "SymuMaster" which is implemented in
Symuvia platform in order to implement solution algorithms to calculate and analyze the
network equilibrium.

1.2.3 SymuMaster

SymuMaster is a portable command module to execute the simulation-based DTA solution
methods. This module is shown in Figure 1.3. SymuMaster can be connected to different
simulators and demand models. All the information about travel costs is stored in a network
graph and optimizer directly work on a network graph and send the optimization output
to assignment command. Then SymuMaster provides the inputs for (a) simulation run(s)
and sends it to the simulator (Symuvia in this study). The users’ routes are determined by
the DTA model and the rolling horizon technique (Mahmassani, 2001) which determine the
path flow distribution based on a prediction period and an assignment period (Mahmassani,
1998).

FIGURE 1.3 – SymuMaster

This study focuses on the optimizer box (Green boxes in Figure 1.3), which determines
the assignment pattern for each simulation step during the optimization process.
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1.3 Equilibrium calculation

Finding an equilibrium through simulation (when no closed-form analytical solution is
available) typically involves a solution scheme that relies on an iterative procedure. Fig-
ure 1.4 presents the simulation-based process to solve the DTA problem. The optimization
process starts with reading the network and the demand profile, and then it considers an
initial assignment pattern as an input for the problem. After, the traffic simulator, simulates
the users travel in the traffic network according to the inputs. The goal is to update the user
travel times based on the inflow of paths in the network. The quality of the solution is mea-
sured in "End condition," and if it does not meet the condition, the equilibration process is
executed.

Same as traffic assignment Figure 1.1, the DTA solver also contains two main steps: (i)
the optimization phase in order to find the optimal assignment pattern; (ii) the reassign-
ment phase to create an assignment pattern for the next simulation. For the first step, sev-
eral studies have proposed multiple path selection models by considering the time and dy-
namics of the network, e.g., (Ziliaskopoulos & Mahmassani, 1993, Jayakrishnan et al., 1994,
Ziliaskopoulos & Mahmassani, 1996, Ding et al., 2008, Sun et al., 2017, Xie et al., 2018). The
second step depends on the user behavior rule we want to adopt, which leads to different
definitions of the network equilibrium (e.g., UE or SO).

FIGURE 1.4 – General framework to solve simulation-based DTA
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Implementing UE discipline as the most straightforward behavioral rule for DNL is far
from trivial (Lin et al., 2011). In small networks with less complexity, the DTA process works
well converging to equilibrium. As the scale of a model grows in size, complexity, and
congestion, the DTA process becomes more difficult. A key cause of degraded performance
is the result of queuing that occurs in the model and which may reflect real-world conditions
(Foytik et al., 2017).

1.3.1 Column generation approach

As mentioned before, in large-scale DTA problems, there are three costly steps in terms of
computation in simulation-based DTA models: traffic simulation, shortest path discovery,
and optimization. According to state of the art, it appears that the most advanced frame-
work for solving the simulation-based DTA problem as a black-box optimization problem is
based on column generation approach.

The idea of the column generation approach is based on the generation of the set of paths
to which users may be assigned. Classical approach starts from an empty set and augment
it every iteration as required. Larsson & Patriksson (1992) suggested that a more efficient
path set can be created if column-generation principles are applied. The column generation
approach contains two loops: outer loop and inner loop. The outer loop is responsible for
path discovery while the inner loops implement the path flow optimization for a given path
set. Note that the classic approach executes both steps in one top loop. In large-scale net-
work problems, it is extremely costly to keep the data of all possible paths between each
OD pair, so, column generation approach definitely reduces memory-requirements Levin
et al. (2014b). Lu et al. (2009) implement and examine the column generation approach in
DTA context and show that it not only reduces memory-requirements but also outperforms
other algorithms in convergence with a designed swapping algorithm embedded in the in-
ner loop. Next section reviews the most common swapping algorithms in the literature.

1.3.2 Swapping algorithms

STA inspires almost all swapping algorithms for DTA. We can classify all existing solution
methods to exact and heuristic algorithms. In the static context, first, we find the cheapest
path (e.g., using Dijkstra’s algorithm) at the beginning of each iteration and shift a portion of
the demand to the (newly) shortest path which is called reassignment process. The optimal
portion of demand to shift can be determined analytically when the cost function is link
additive and strictly concave. The exact algorithms can be classified into three categories:

• The Path Equilibration (PE) (Dafermos, 1969).

• The Frank-Wolfe algorithm(Frank & Wolfe, 1956) and it’s extensions (e.g., LeBlanc et al.
(1975), Mitradjieva & Lindberg (2013).

• The origin-based or destination-based algorithms: Algorithm B or bush algorithm
(Dial, 2006), Linear User Cost Equilibrium (LUCE) algorithm (Gentile, 2012), Nie’s al-
gorithm (Nie, 2010), and The original Physarum-inspired algorithm (Xu et al., 2018)

While in practice, reassignment is often based on heuristics. The reason to resort to
heuristics is based on the fact that the simulator needs to know the path flow distribution in
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order to predict the travel time accurately while the DTA process requires this information
to estimate the path flow distribution (Bekhor et al., 2009). Mathematically, this problem cor-
responds to a fixed-point search, which requires an iterative solution method to converge.
Transforming the DTA problem into a fixed-point problem allow using a large number of al-
gorithms. The main idea stems from the theory of fixed-point re-statement (Xu, 2002). Since
one run of the traffic simulator is computationally expensive, in particular for a large-scale
network, in the field of transportation, it is essential to use an efficient algorithm to solve the
fixed-point problem.

In the context of DTA, Method of Successive Average (MSA) algorithm remains by far
the most widely used solution method in simulation-based DTA (Peque et al., 2018). The
simplicity of the MSA implementation and the non-requirement of derivative information
are the main reasons for its widespread use (Sbayti et al., 2007). The MSA algorithm shifts
a predetermined fraction of users to shortest path(s). The predetermined fraction is called
step size, and it is equal to 1

i+1 for the MSA algorithm, where i is the iteration index and
start from zero. Sbayti et al. (2007) and Mahut et al. (2008) observed that using the MSA
step size is a source of inefficiencies because some OD pairs may be closer to convergence
than others in intermediate iterations of the process and also later assignment intervals are
typically further away from convergence. Based on this indication, several approaches are
proposed to improve the determination of the step size (e.g., Sbayti et al. (2007), Mahut et al.
(2008), Florian et al. (2008), Liu et al. (2009)).

Another category of heuristic methods is gradient projection and reduction methods.
The analytical principles of gradient projection algorithm are presented for STA by (Bert-
sekas & Gafni, 1983) and for DTA models by (Szeto & Lo, 2006a). The gradient-based meth-
ods are working in an optimization problem with a differentiable objective function, which
is not the case in simulation-based DTA models. Lu et al. (2009) propose a reformulation of
DTA problem based on a gap function (The difference between path travel time and shortest
path of corresponded OD pair). This development provides the basis for applying gradient-
based heuristics in many studies (e.g., (Zhou et al., 2008, Verbas et al., 2015, 2016a,b, Halat
et al., 2016)). The step size is defined per path, and the gap is used as the gradient direc-
tion for determining the step size. Lu et al. (2009) embedded the gap-based step size in
a column generation framework (section 1.3.1) and showed that it outperformed MSA in
several experiments conducted on small- and medium-size networks. In opposite, Tong &
Wong (2010) compare the convergence of the gradient-based procedure to that of MSA on a
small network under different demand scenarios. Their results do not show significant dif-
ferences among methodologies, although the gradient-based approach is observed to lead
to a slightly lower gap in less congested scenarios. Mounce & Carey (2011) and Han et al.
(2019) proposed new formulas based on the projection method, but their work is based on a
continuous DTA.

Almost all the mentioned studies propose a new solution algorithm based on MSA or
gradient projection algorithm and compare their proposed algorithm to the classical MSA
or gradient projection algorithm, but there is no study that show which swapping algorithm
is the best algorithm for large-scale application. Moreover, most of the algorithms are devel-
oped based on designed DTA models while several algorithms exist for other optimization
problems (e.g., vehicle routing problem) that can be applied to simulation-based DTA.
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1.4 Network equilibrium analysis

Analyzing the properties of a network equilibrium (e.g., uniqueness and stability) can help
to have a better view about network state and the effect of any variation in the network.
The issue of unicity for UE has long been a subject of concern in the literature on traffic
assignment problems (Beckmann et al. (1956); Daganzo (1985); Mounce & Smith (2007); Iryo
& Smith (2018)). Much research has been performed on the unicity of STA solutions with
several assumptions and limitations on the traffic network model (Netter (1972); Dafermos
(1982); Nagurney (1984); Wynter (2001); Wie et al. (2002); Florian & Morosan (2014); Sun
et al. (2014)). For DTA models, the conditions of unicity have been appropriately reviewed
by Iryo (2013). In practice, the strong mathematical assumptions for unicity (e.g., FIFO or
monotonicity) simply do not hold (Boyles et al., 2013). Therefore, the existence of multiple
equilibria can be expected mathematically for real test cases (Levin et al., 2014b), but we
could not find any study that shows the multiple equilibria with variation at the equilibrium
state or measuring the range of multiple equilibria in practice. There are few analytical
studies (Iryo, 2011, Iryo & Smith, 2018) that showed the existence of multiple equilibria in
small networks in DTA context. Most of the studies focused on check the uniqueness of
equilibrium and not use this property to improve the system.

DTA problems, once successfully solved, may serve as decision-support tools for traf-
fic management; it can be used for generating traffic control strategies. While DTA models
are efficient tools to represent the network sate, evaluating control strategies on simulation-
based DTA can predict how effective proposed strategies are (Mahmassani, 2001). The goal
of control strategies is to improve network performance. In other words, improve the objec-
tive functions of the system which may affect the utility function of users. To do so, first, we
need to analyze the current state of the network and compare with an ideal situation that
the system seeks. The equilibrium analysis has received extensive attention in the literature
and applications in transportation planning (Yildirimoglu & Ramezani, 2019).

In this context, comparing the network equilibrium of the user selfish behavior (UE) can
be compared to an optimal network state that the system would choose (SO) (Samaranayake
et al., 2018). There are several indicators to measure the difference between these two net-
work states. One of the common indicators is Price of Anarchy (PoA) (Roughgarden, 2005)
which is generally defined as the ratio of the worst social cost induced by selfish behavior
(UE) to the optimal social cost (SO) (Youn et al., 2008). Based on the review of (Van Essen
et al., 2016), most of the studies in this direction focused on assessing PoA based on the
users’ route choice behavior. Knowing the PoA is essential, but it is even more valuable to
discover a proper method or strategy to reduce it. We can change the PoA by modifying
the underlying network structure. For instance, closing roads to car traffic is relatively easy
to implement and is, moreover, equally effective for users. One might expect that closing
roads only leads to increased congestion. However, contrary to common intuition, Braess’s
paradox suggests that road closures can sometimes reduce travel delays (Braess et al., 2005).
Braess’s paradox exists because the SO and user optimum react in different ways to changes
in the network (Youn et al., 2008). Therefore, there is room to design new frameworks to
improve the system performance based on PoA analysis and Braess’s paradox.

p. 29 / 169



CHAPTER 1. GENERAL INTRODUCTION

1.5 Research objectives and major contributions

1.5.1 Research questions

A huge body of literature has been dedicated to dynamic traffic assignment in the past for
multiple kind of applications. From this literature review, it appears that only simulation-
based approaches can face the dimensionality of large-scale urban networks. What is no-
ticeable in latter case is that (i) most solution methods are based on the same concept, i.e., a
fixed-point problem solved with MSA inspired methods and (ii) few comparisons have been
proposed to test the efficient of the existing algorithms and provide guidance to users about
the best settings. The last question is paramount for large-scale networks as computation
times usually count in hours or even days, therefore, slight improvements may be valuable.
Furthermore, exploring solutions methods from other field of optimization may also lead to
breakthrough in computational times. This deserves to be tested.

Applying DTA simulation to new operational problems is also an interesting research
direction. In particular, it worth noticing that as lot of DTA research papers focus on the
mathematical formulation, strong assumptions are often stated to ensure unicity of the solu-
tions. However, in practice it is now well-known that multimodal cost functions, signalized
intersections that break FIFO rules and other classical features of urban networks basically
violate such assumptions and may then lead to multiple equilibrium. Interestingly this has
not been extensively studied in the literature except the few works from (Iryo & Smith, 2017,
Iryo, 2015, 2011, 2013) because (i) the problem is then usually untracktable analytically ex-
cept for very simple toy networks and (ii) simulation-based approaches are often initialized
with the same starting point (all-or-nothing discipline), which results in a single solution in
practice.

In this thesis, we propose to address the following research questions in order to (i) im-
prove existing solution methods and provide clear guidance about which methods should
be used depending on the network configurations and (ii) address new DTA problems in-
spired by real urban network settings. All these concerns are summed up in the following
list of questions related to simulation-based DTA problem:

• A lot of effort has been paid in providing a new mathematical representation to solve
the DTA problem, but in a sense, it is also essential to have an idea about the efficiency
of different computational methods and the effective factors on the performance of
solution algorithms. To do so, the question is which solution algorithm is efficient to
find the DTA solution by considering the size and loading of the network? Is there
a way to improve the existing methods to find a good quality solution in terms of
optimality and feasible computation time for large-scale?

• The simulation-based DTA problem is a kind of NP-hard problem, where the applica-
tion of the exact solution methods is infeasible at large-scale networks. Several studies
have been done in order to design heuristic methods to solve DTA problems. All of the
methods work iteratively and in series. They prefer to exploit a solution that satisfies
the equilibrium conditions than exploring the solution space for the optimal solution.
Is there a way to design a new generation of solution methods to do more exploration
of the solution space? Do we have a better solution in terms of closeness to the optimal
solution by exploring more the solution space?
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• The unicity has been supposed to be a rare feature of the DTA solution in multimodal
context, but a lot of studies actually show that the multimodal DTA model violates the
unicity conditions and not really investigate the existing of the multiple solutions and
how different they are in terms of path flow distribution. Do we have really different
equilibrium solutions in theory and practice? How can we account these multiple
equilibria in simulation-based DTA?

• In the real multimodal networks, the network design can be changed in the long term,
e.g., several new transportation facilities are added to the system. There are few stud-
ies on day-to-day DTA models by considering the evolution of the network. However,
none of them investigate the nonunicity and history of the network together. Does the
network converge to different equilibria with different network history and the same
final network design? In other words, is the current network situation sufficient to
grasp the real user distribution inside the network?

• Improving the performance of the transportation system is still a matter of debate. The
users are looking for user equilibrium while the system wants to achieve the system
optimum. Many studies have been done to calculate the path flow distribution of both
equilibrium disciplines by DTA models. But, analyzing the output of DTA models in
order to be used for improving the transportation system is missing in the literature.
What is the next step after finding the equilibrium? How can we analyze the network
equilibrium? Can we design a strategy to move the system from user equilibrium
toward the system optimum?

1.5.2 Thesis outline

The objective of this PhD thesis is to address the aforementioned research questions. The
questions can be classified into two categories. The first category encompasses the ques-
tions concerning cross-comparison of the existing algorithms and developing an efficient
framework to find the network equilibrium for simulation-based DTA models. The second
category comprises the innovation in analyzing the equilibrium solution: investigating the
multiple equilibria, the impact of the network design history on the network equilibrium,
develop a framework to analyze the user equilibrium and system optimum solutions and
finally design a strategy to improve the network performance. The thesis outline is built
upon this classification. Thus, the manuscript is divided into two main parts: the first one
focuses on the calculation of equilibrium in DTA problem and aims to improve the DTA
calculation algorithms, the second one uses the algorithm to solve new DTA problems and
innovates in analyzing the DTA output. In other words, the answer of the first category of
questions provides us an efficient tool to compute the equilibrium, and then we use this tool
to calculate fast the equilibrium in order to investigate the questions of the second category.
The thesis outline is illustrated in Figure 1.5.

In the first part, Chapter 2 focuses on improving the existing solution algorithms in the
literature for finding the user equilibrium considering trip-based dynamic network loading.
In other words, the goal of this chapter is to optimize existing optimization algorithms.
The drawbacks of existing methods are highlighted, and several solutions are proposed to
overcome them and speed up the convergence. A significant contribution of this chapter is
the full benchmark of all algorithms for different network size and level of saturation. A
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FIGURE 1.5 – Visualisation of the thesis outline

comprehensive comparison of the performance of the algorithms based on the quality of
solutions and computation time is conducted.

Chapter 3 introduces a new branch of optimization algorithms for simulation-based DTA
models. First, the study highlights the drawbacks of serial algorithms. Second, a new frame-
work based on the parallel computation is proposed for solving the DTA problem. Two
parallelized meta-heuristic approaches are applied to solve the network equilibrium prob-
lem: the first derived from the simulated annealing framework and the second from that of
the genetic algorithm. The results show that meta-heuristic algorithms dominate classical
methods in a large-scale dynamic test case.

In the second part, Chapter 4 discusses several reasons for non-unicity in multimodal
user equilibrium. The study proves that network design history has an impact on the final
equilibrium in static multimodal user equilibrium. Then the investigation moves to dynamic
context. Multiple equilibria are observed for a dynamic multimodal user equilibrium when
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changing the network design history. It is shown that the self-organization of the system
leads to different network performances depending on the history of the network. This
means that the study of the current network situation may not be sufficient to grasp the
real user distribution inside the network. In other words, a unique UE calculation with
the current network setting may lead to an equilibrium other than that resulting from the
different steps corresponding to the network history. Moreover, the system can substantially
reduce total travel time for some specific network history scenarios.

Chapter 5 considers static and dynamic traffic assignment to study the impact of differ-
ent demand levels on three equilibria (User Equilibrium, System Optimum, and Boundary
Rational User Equilibrium). It defines the concept of breakpoint as a demand level where
we observe a change in the active path set of one equilibrium. The study attempts to find
the breakpoints and to investigate the possibility to use breakpoint information and apply
road banning strategy in order to move the system from one equilibrium to another.

Finally, the general conclusions and recommendations for future studies are presented
in the last chapter of this manuscript.

This research is the result of the collaboration between two laboratories of the French in-
stitute of science and technology for transport, development and networks (IFSTTAR): GRET-
TIA (Engineering of transportation networks and advanced computing) and LICIT (Trans-
port and Traffic Engineering Lab). The PhD candidate mainly works at GRETTIA laboratory
in Paris. However, the implementation of all methods in practice is done with collaboration
between the PhD candidate and the members of LICIT laboratory in Lyon. All the research in
this PhD is part of the ERC project MAGnUM held by Prof. L. Leclercq (Multiscale and Mul-
timodal Traffic Modeling Approach for Sustainable Management of Urban Mobility). The
proposed solution methods in the thesis have been implemented in the different simulators
from the MAGnUM project and are used by other team members for their own research.

Most of the chapters in this manuscript are updated versions of papers published or
submitted in peer-reviewed journals or conference proceedings. They all consist of original
works first-authored by the PhD candidate.

1.5.3 Publication list

Journal papers

• Ameli, M., Lebacque, J. P. & Leclercq, L. (2019). Simulation-based dynamic traffic
assignment: meta-heuristic solution methods with parallel computing. Transportation
Science, (under first round of review).

• Ameli, M., Lebacque, J. P. & Leclercq, L. (2019). Non-unicity of day-to-day multimodal
user equilibrium: the network design history effect. Transportation Research Part B:
Methodological, (under first round of review).

• Ameli, M., Lebacque, J. P. & Leclercq, L. (2019). Cross-comparison of convergence
algorithms to solve trip-based dynamic traffic assignment problems. Computer-Aided
Civil and Infrastructure Engineering, (in press).

• Ameli, M., Lebacque, J. P. & Leclercq, L. (2020). Improving traffic network per-
formance with road banning strategy: a simulation approach comparing user equi-
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Peer-reviewed conference proceedings

• Ameli, M., Lebacque, J. P., Delhoum Y. & Leclercq, L. (2019). Simulation-based user
equilibrium: improving the fixed-point solution methods, In Transportation Research
Board 98th Annual Meeting, Washington DC, USA

• Ameli, M., Lebacque, J. P. & Leclercq, L. (2018). Day-to-day multimodal dynamic
traffic assignment: Impacts of the learning process in case of non-unique solutions, In
The 7th International Symposium on Dynamic Traffic Assignment (DTA 2018), Hong Kong,
Chinese special administrative region.

• Ameli, M., Lebacque, J. P. & Leclercq, L. (2018). User equilibrium vs. System optimum:
an analysis based on demand level breakpoints, In Transportation Research Board 97th
Annual Meeting, Washington DC, USA

International conference presentations

• Ameli, M., Lebacque, J. P. & Leclercq, L. (2019). Applying meta-heuristic algorithms
with a parallel computation framework to simulation-based dynamic traffic assign-
ment, the 8th Symposium of the European Association for Research in Transportation (hEART
2019), Budapest, Hungary.

• Ameli, M., Lebacque, J. P. & Leclercq, L. (2019). Applying Meta-heuristic Algorithm
with parallel computation framework to simulation-based Dynamic Traffic Assign-
ment, the 10th Triennial Symposium on Transportation Analysis (TRISTAN X), Hamilton
Island, Australia.

• Ameli, M., Lebacque, J. P. & Leclercq, L. (2018). Impacts of the network design his-
tory on day-to-day multimodal dynamic traffic assignment, The 7th Symposium of the
European Association for Research in Transportation (hEART 2018), Athens, Greece.

• Ameli, M., Lebacque, J. P. & Leclercq, L. (2017). Multi-attribute, Multi-class, Trip-
Based, Multi-modal Traffic Network Equilibrium Model, The 12th Conference on Traffic
and Granular Flow (TGF 2017), Washington, DC, USA.

Working papers

• Ameli, M., Lebacque, J. P. & Leclercq, L. (2019). Computational Method for Multi-
modal Multi-class Traffic Network Equilibrium Model: A Review based on Simulation
Test Case, in progress.

p. 34 / 169



Part I
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Introduction

This first part focuses on the user equilibrium calculation. The goal is to provide an efficient
tool for computing the network equilibrium for simulation-based DTA models. Then we
use this tool for the equilibrium analysis in the second part.

In the present part, the investigations on solution algorithms are divided into two differ-
ent studies. Chapter 2 focuses on improving the existing solution algorithms in the literature
for finding the user equilibrium considering trip-based dynamic network loading. Bench-
mark of all existing and proposed algorithms for different network size and level of satu-
ration allow addressing the question of which algorithm is more efficient than other ones.
This investigation gives a good background for designing the new framework presented
in chapter 3. Two parallelized meta-heuristic approaches are applied to solve the network
equilibrium problem: the first one derived from the simulated annealing framework and the
second one from that of the genetic algorithm.
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2.
BENCHMARK OF SOLUTION

METHODS

Solving a dynamic traffic assignment problem in a transportation network is a computa-
tional challenge. This chapter first reviews the different algorithms in the literature used
to calculate numerically the User Equilibrium (UE) related to dynamic network loading.
Most of them are based on iterative methods to solve a fixed-point problem. Two elements
must be computed: the path set and the optimal path flow distribution between all origin-
destination pairs. In a generic framework, these two steps are referred to as the outer and
the inner loops, respectively.

This chapter aims to assess the computational performance of the inner loop methods
that calculate the path flow distribution for different network settings (mainly network size
and demand levels). Several improvements are also proposed to speed up convergence: four
new swapping algorithms and two new methods for the step size initialization used in each
descent iteration. All these extensions are compared with existing methods by numerical
experiments. The impact of the network size and saturation level of demand on the perfor-
mance of different components of the solution algorithm is also evaluated. Finally, the best
algorithms and settings are identified for all network sizes, with particular attention being
given to the largest scale.

This chapter is an updated version of the paper:

Ameli, M., Lebacque, J. P. & Leclercq, L. (2019). Cross-comparison of fixed-point algo-
rithms to numerically solve dynamic user equilibrium problem. Computer-Aided Civil
and Infrastructure Engineering, (In press).
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2.1 Notations for this chapter

TABLE 2.1 – Specific notations in this chapter

Notation Definition [units]

W Origin-Destination (OD) pairs, subset of origin × destination nodes, W ⊂ N × N.
w index of OD pair, w ∈W.

Pw, τ set of paths for w in departure time interval τ .
P∗w, τ set of shortest paths for w in departure time interval τ .

p index of path, p ∈ Pw, τ .
p∗ index of shortest path, p∗ ∈ P∗w, τ .

Dw total demand for w pair.
Trw, τ list of trips which travel for w in departure time interval τ .
Trp, τ list of trips which travel for w on path p in departure time interval τ , Trp, τ ⊂ Trw, τ .

tr index of trip, tr ∈ Trw, τ .
Ctr,p, τ experienced travel cost of trip tr on path p in departure time τ .

C∗w, τ minimum experienced travel cost for w in departure time interval τ .
Ĉp, τ mean travel cost of trips on path p in departure time τ .
Ĉ∗w, τ mean travel cost of trips on minimum cost path(s) of OD pair w in departure time τ .
n(A) cardinality of a set A.
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2.2 Motivations

Dynamic Traffic Assignment (DTA) refers to the process of: (i) identifying the relevant paths
between all Origin-Destination (OD) pairs in a transportation network, and (ii) determining
the path flow distribution, considering the total OD flow demand and the time evolution of
traffic states inside the network. For the first step, many researches have proposed multiple
path selection models by considering the time and dynamics of the network, e.g., (Jayakr-
ishnan et al., 1994, Mahmassani, 2001, Xie et al., 2018). The second step depends on the user
behavior rule we want to adopt, which leads to different definitions of the network equilib-
rium. The best known is User Equilibrium (UE) when all users try to minimize their own
travel time selfishly. It corresponds to Wardrop’s first principle (Wardrop, 1952), where users
are assumed to be perfectly rational and have perfect information on the network’s status
(Miaou et al., 1999), i.e. the predicted travel time on all the relevant alternatives is known at
the beginning of all the users trips (Ng & Waller, 2012). Implementing this simple behav-
ioral rule for Dynamic Network Loading (DNL) is far from trivial (Lin et al., 2011). DNL
is the combination of DTA with a traffic simulator that calculates network states and travel
times (Yu et al., 2008). The critical issue is that the simulator needs to know the path flow
distribution in order to predict the travel time accurately while the DTA process requires this
information to estimate the path flow distribution (Bekhor et al., 2009). Mathematically, this
problem corresponds to a fixed-point search, which requires an iterative solution method
to converge. Transforming the DTA problem into a fixed-point problem allow using a large
number of algorithms. The main idea stems from the theory of fixed-point re-statement (Xu,
2002). Since one run of the traffic simulator is computationally expensive, in particular for a
large-scale network, in the field of transportation it is essential to use an efficient algorithm
to solve the fixed-point problem.

Multiple algorithms have been proposed in the literature to solve this problem. The ana-
lytical approach, e.g., (Wang et al., 2018), is very accurate but can only be applied in practice
to small or medium networks with few ODs. Several studies proposed exact decomposi-
tion techniques (Mehrabipour et al., 2019) and meta-modeling (Osorio & Bierlaire, 2013) to
reduce the computational complexity of the traffic assignment problems. However, con-
gestion patterns are almost intractable analytically due to multiple non-linear interactions
inside the network (Taale & Pel, 2015). Simulation-based approaches can match any given
network, but obviously the simulation time increases with the number of nodes/links and
vehicles inside the network. Here, we consider the simulator as a black box to make this
study compatible with any existing traffic simulation software. We then focus on the solu-
tion methods.

The general principle of the iterative method to solve the fixed-point problem is to re-
assign a fraction of the users at each step. The algorithm usually reassigns the part of the
users who have chosen a non-optimal path because the travel time estimation was mislead-
ing (Sancho et al., 2015). The critical issue is to reach a given level of convergence while
minimizing the number of iterations.

The method of successive average (MSA) is the best known algorithm for solving the
fixed-point problem. It was presented for the first time by Robbins & Monro (1951). The
MSA is still widely used in simulation-based DTA, because it is simple to implement and
does not require the derivative information of the flow cost function (Nagel & Flötteröd,
2016). The MSA updates the path flow by using the descent direction and a predetermined
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step size. The descent direction (yi
p) of the iteration (i) for path p is extracted from the

auxiliary path assignments obtained by All-or-nothing discipline, i.e., everyone is put on
the active shortest path. Consequently, in iteration i, the MSA algorithm swaps a fraction σ i

of users to the shortest path(s) from each non-shortest path (Equation 2.1). Mathematically, a
fractionσ i of the total number of users on non-shortest paths is added to the shortest path(s).

ni+1
p,w = ni

p,w +σ i
MSA(yi

p,w − ni
p,w) (2.1)

where ni
p,w is the number of trips for OD pair w which travel on path p in iteration i at each

time step. σ i
MSA denotes the step size of the MSA algorithm. The MSA step size satisfies the

following (Sheffi, 1985):

∞
∑
i=1

(
σ i
)2

< ∞ (2.2)

∞
∑
i=1

σ i = ∞ (2.3)

The classic MSA uses one over the iteration index plus one as a step size (Equation 2.4) to
ensure the algorithm converges. The step size can be defined with respect to Equations 2.2
and 2.3.

σ i
MSA =

1
i + 1

(2.4)

The first drawback of the MSA is that it swaps a fixed number of users from all non-shortest
paths to the shortest one without considering the actual travel time on these paths; it does
not consider the gap between the shortest and other paths. First, Sbayti et al. (2007) imple-
mented the classic MSA method in trip-based DTA, using the random selection technique
in view to reducing memory requirements. Second, they attempted to overcome the first
drawback by proposing a criterion-based selection that ranks the users based on experienced
travel time. They showed that on a real network, both methodologies were observed to con-
verge, and that the criterion-based technique also produced a better solution than MSA in
terms of closeness to optimal. However, by increasing the number of users in a large-scale
network, , ranking them based on travel cost is a computationally costly approach. More-
over, Sbayti et al. (2007) uses the same predetermined step size as the MSA method.

The second drawback is about predetermining the step size. The step size rule pushes
the process to stabilize. There may be a risk of stabilizing before reaching the optimal solu-
tion. The step size has a direct impact on the number of iterations (computation time) and
convergence speed. There is no exact method for determining the step size in the literature
(Szeto & Lo, 2005b, Huang & Lam, 2002). The step size does not guarantee the quality of the
solution at the end, which may not be the actual UE (Levin et al., 2014b). One of the goals
of this chapter is to improve the performance of the optimization process by proposing new
methods for step size determination in the simulation-based optimization framework. This
chapter considers common fixed-point algorithms in the literature (e.g., the MSA algorithm
and its extensions) and attempts to overcome the drawbacks of existing methods to improve
the performance of the solution algorithm for simulation-based DTA problems.

The layout of this chapter is as follows: the next section, Problem statement, provides
a discussion on the mathematical conditions for the UE solution. It also presents the two
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indicators that will be used to assess the algorithm’s performance. The benchmark of the so-
lution algorithm for finding the UE is presented in the Methodology section. The improve-
ments made to the solution algorithm with the new swapping algorithms are presented in
the section Investigating the solution algorithm. The experimental design is presented in
the section Numerical experiment. The results obtained are discussed in the section Results.
Finally, we provide concluding remarks in the Discussion section.

2.3 Problem statement

Traffic simulators can be divided into two classes: Flow-based models, which consider the
flow of each path and Trip-based models, which define how many travelers take each path.
Macroscopic traffic flow models fall into the first category while microscopic models belong
to the second. In other words, the flow-based models have a continuous solution space while
trip-based ones have a discrete solution space (Ramadurai & Ukkusuri, 2011). Both kinds of
simulators can be coupled with MSA to perform DNL. The macroscopic approach and flow-
based models usually converge faster as the path flow discipline is more flexible (flows are
not necessarily equivalent to vehicle units), but without adding integrality constraints, they
are less realistic for OD pairs with low demand as vehicles are split into parts in practice. As
mentioned earlier, we decide to focus on the trip-based approach in which each vehicle is
reproduced individually. Microscopic traffic simulators are now widely used for operational
studies and we have chosen to focus on DTA performance for this kind of model. Trip-based
DNL attempts to assign particle-discretized time-dependent OD flows in a dynamic network
equilibrium framework (Jayakrishnan & Rindt, 1999).

2.3.1 Mathematical formula for UE

Let us consider a network G(N, A) with a finite set of nodes N and a finite set of directed
links A. The demand is given and time-dependent. The period of interest (planning horizon)
of duration H is discretized into a set of small time intervals indexed by τ (τ ∈ T = {τ0, τ0 +
η, τ0 + 2η, ..., τ0 + Mη} and τ0 + Mη = H). η is the duration of the time intervals. In an
interval τ , travel times and traffic conditions are estimated on average and are assumed
constant for the DTA. Note that the departure time of users are fixed in this study. In the
sequel, the minimum cost path is considered as the shortest path. According to the definition
in Table 2.1, we have:

Ĉp, τ =
∑tr∈Trp, τ Ctr,p, τ

n(Trp, τ)
; ∀p ∈ Pw, τ , τ ∈ T (2.5)

Ĉ∗w, τ =
∑p∗∈P∗w, τ ∑tr∈Trp∗ , τ

Ctr,p∗ , τ

n(Trp∗ , τ)
; ∀w ∈W, τ ∈ T (2.6)

Equation 2.5 presents the calculation of mean travel cost of path p and Equation 2.6 is
the same presentation for the shortest path p∗. For each OD pair w ∈ W and for all paths
p ∈ Pw, the dynamic traffic network equilibrium conditions with given travel demand and
the users’ departure time for the aforementioned traffic network equilibrium problem are:

Ĉp, τ − Ĉ∗w, τ ≥ 0 ; ∀w ∈W, p ∈ Pw, τ , τ ∈ T (2.7)
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n(Trp, τ)(Ĉp, τ − Ĉ∗w, τ) = 0 ; ∀w ∈W, p ∈ Pw, τ , τ ∈ T (2.8)

n(Trp, τ) ≥ 0 ; ∀p ∈ Pw, τ , τ ∈ T (2.9)

According to Constraint 2.7, the shortest path p∗ has the minimum travel cost for the related
OD pair. Equation 2.8 indicates that all users travel on shortest path with minimum travel
cost at UE state and the flow of paths cannot be negative, according to Constraint 2.9.

Lu et al. (2009) extended the work of Smith, 1993, and reformulated the problem as a non-
linear problem in order to minimize the gap function. The gap function is defined as the gap
between average path travel time and average shortest path travel time. Consequently, the
solution to this fixed-point problem is equivalent to finding the solution to the following
variational inequality:

∑
w∈W

T

∑
τ=1

∑
p∈Pw,τ

Ci
w, p, τ

∗ [
n(Trw, p, τ)− n(Trw, p, τ

∗)
]
≥ 0 (2.10)

where n(Trw, p, τ
∗) is the optimal number of trips from OD pair w that are assigned to path p

at departure time τ and n(Trw, p, τ), n(Trw, p, τ
∗) ∈ H satisfy the equilibrium. H denotes the

flow constraints based on Dw. In Equation 2.10, both n(Trw, p, τ) and n(Tr∗w, p, τ) are decision
variables and hence the gap function is a function of both variables. Before presenting the
solution algorithm, we need to present the convergence indicators used in this study to
evaluate the quality of the solution for the trip-based dynamic network user equilibrium.

2.3.2 Convergence quality

In the trip-based DTA problem, the goal is to minimize the left side of the Equation 2.8 for
all paths and OD pairs. In other words, finding the UE situation is equivalent to minimizing
the delay of each user compared to the optimal option of the associated OD pair (shortest
path) in the network. By this definition we can define a quality indicator for solutions which
is calculated as the average delay of each user (Janson, 1991):

AGap =

∑
w∈W

T
∑

τ=1
∑

p∈P(w,τ)
∑

tr∈Trp, τ

(Ctr,p, τ − C∗tr,w, τ)

∑
w∈W

T
∑

τ=1
n(Trw, τ)

(2.11)

Note that this formula uses the optimal experienced travel time to calculate the gap rather
than the path travel time. The AGap is zero for the perfect UE path flow distribution, so the
best optimization algorithm obtains minimum AGap. Equation 2.11 has physical meaning
for measuring the distance between solution and UE. The second indicator is a characterized
assignment violation, i. e. users that are assigned on (a) non-optimal path(s). The violation
indicator is calculated by the following steps:

1. Calculate the user violation: it is defined by considering the gap of each user (UVtr
w ):

UVtr
w =

{
1; if Ctr,w−C∗w

C∗w
≥ ε

0; o.w.
(2.12)
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where Ctr,w denotes the experienced travel time of the user tr who travels for OD pair
w and C∗w denotes the shortest path of OD pair w. If the gap between the user per-
ceived travel time and the shortest path travel time is bigger than ε of the shortest
path travel time, the user is in violation. ε = 0 means perfect UE, but in practice with
trip-based simulation it is more appropriate to set up a margin to count users that are
miss-assigned.

2. Compute the OD violation: the OD pair w is in violation when more than ε′ of the
users on w are in violation. The function ODVw defines the OD violation:

ODVw =

{
1; if ∑i∈Iw UVi

w
n(Trw)

≥ ε′

0; o.w.
(2.13)

where Trw denotes the set of users, who travel for OD pair w.

3. The violation indicator of network G is the share of ODs in violation. The second
indicator for the quality of solution (Violation) is defined as follows:

V(G) =
∑w∈W ODVw

n(W)
(2.14)

The value of ε and ε′ are fixed at 10% in this study to evaluate the quality of the solution
from a perspective different from AGap. Note that, similar to AGap, the perfect UE means
V(G) = 0 with ε = ε′ = 0.

AGap is a continuous indicator that gives us the average convergence rate of the solution
in a continuous way without parameter(s). As the simulation is never perfect, so we need
to monitor the users at the OD level, so it is important also to define convergence indicators
based on a threshold(s) in order to account for the limitation of the simulation framework.
The two values for ε and ε′ are chosen to define the criterion in order to measure how many
ODs are in violation with corresponding to the convergence rate (AGap). Please note that
we do not use V(G) as an indicator in the convergence process and ranking the solution
algorithm.

2.4 Methodology

In large-scale DTA problems, there are three costly steps in terms of computation in simulation-
based DTA models: traffic simulation, shortest path discovery, and optimization. Here, we
focus on the optimization step. According to the state of the art, it appears that the most
advanced framework for solving the simulation-based DTA problem as a black-box opti-
mization problem is that proposed by Lu et al. (2009) with a clear decomposition between
outer and inner loops. The outer loop is responsible for path discovery while the inner loops
implement the path flow optimization for a given path set. The classic approach executes
both steps in one top loop. In large-scale network problems, it is extremely costly to keep
the data of all possible paths between each OD pair. With Lu et al. (2009)’s framework, the
simulator simply keeps the feasible paths discovered by the outer loops.
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The outer loop is mainly used for path discovery. Therefore, to improve the computation
time of the outer loop, the question is mainly to find a more efficient shortest path algorithm,
which is not in the scope of this study. The goal of this chapter is to improve the inner loop.
The solution algorithm is presented in Figure 2.1 and is detailed in the following:

FIGURE 2.1 – Solution algorithm for trip-based dynamic network equilibrium

Step 1. Initialization: Load the network and the OD matrix, with real data or simple as-
signment models (e.g. All-or-nothing algorithm).

Step 2. Time-dependent shortest path Calculation: Calculate the time dependent shortest
path(s) for each OD pair w.
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Step 3. Update the cost functions: Read the information from the simulator output and up-
date the cost of paths (links) on the network graph and update the quality indicators.

Step 4. Outer loop convergence test: Check the stop conditions:

a. Maximum number of outer loop iterations ( jmax) is reached OR

b. No new shortest path for adding to path set AND good solution quality: AGap j ≤
λ; where AGap j is the AGap of outer loop iteration j (∀ j ∈ {1, ..., jmax}). λ is a
small and fixed value. Otherwise go to the next step.

If it has converged, the process is stopped (END). Note that the path set is a set of
paths that contains used path(s) (n(Trp,τ) > 0) and shortest path(s) which have been
used or not (n(Tr∗p,τ) ≥ 0) for all ODs which come from step 2.

Step 5. Inner loop Initialization: Load the path flow distribution of Step 1 by (Lu et al., 2009)
or other initialization methods (this study) in order to generate the initial assignment
to start the inner loop.

Step 6. Update the path assignment: Swapping trips from a path to another(s) based on an
optimization method in order to load the flow to the different path candidates.

Step 7. Simulation: Command the simulator to simulate the new assignment pattern pro-
vided by Step 6.

Step 8. Identify the shortest path(s): The simulator returns the experienced travel time of
all the users on different ODs. The shortest path travel time can be changed, and
it is possible that we have another shortest path from the path set based on the
simulation results. Note that we have a fixed path set in this step and we do not
need to use the shortest path algorithm.

Step 9. Update the cost function: Update the network data from the simulation in Step 3.

Step 10. Inner loop convergence test: Check the stop conditions:

a. Maximum number of inner loop iterations (imax) is reached OR

b. small enough variation in solution quality:

|AGapi − AGapi−1|
AGapi−1 ≤ Λ ; ∀i ∈ {1, ..., imax} (2.15)

where AGapi is the quality of the solution of inner loop iteration i and Λ is a fixed
threshold (Λ = 1%) for comparing the relative AGap .

At the end of each inner loop, if there is insufficient variation in solution quality, we
converge and go to step 12. Otherwise, we continue to Step 11.

Step 11. Keep the best solution: Compare the solution quality (AGapi) of the current inner
loop iteration (i) with the best solution of the current outer loop (AGap j

min). Note
that if we are in the first inner loop iteration (i = 1), we consider the AGap of Step 4
as the initial best and compare it with the current solution. If the solution has better
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quality, we replace the best solution by the current solution. Otherwise, the best
solution is kept. The solution contains the path assignment pattern and solution’s
AGap. Afterward, we continue iterating in the inner loop by going back to Step 6.

Step 12. Best solution check: The goal of this step is to ensure that our last solution is the best
solution of the current outer loop. We compare the last solution with the current
best solution from Step 11. If the last solution is the best (AGapi ≤ AGap j

min), go
to the outer loop to explore the network and find (a) new shortest path(s) (Step 2).
Otherwise, a final simulation is executed in the next step for the best assignment
pattern which is not the last one we obtain.

Step 13. Simulation of the best solution: simulate the traffic state (like Step 7) with the best
assignment pattern of the inner loop provided by Step 11 to move to the next time
period or the next outer loop iteration (Step 2).

2.5 Investigating the solution algorithm

In this section, we focus on improving the green boxes (in Figure 2.1) located in or added to
the inner loop. They correspond to steps 5, 6, and the three new steps by this study (Steps
11-13).

2.5.1 Keeping the best solution over inner loop

Among all these steps, the first visible improvement is to keep the best assignment for the
inner loop. Note that in the inner loop convergence test (Step 10), the stop conditions are the
maximum number of iterations and variations of the gap, so the last iteration solution is not
necessarily the best solution of the inner loop. Therefore, it is obvious that this modification
improves the quality of the solution when the algorithm goes back to the outer loop. This
will be even better when using trip-based approaches because their discrete nature makes
them less stable and we will therefore have more cases where the solution of the last iteration
is not the best over the current inner loop.

The present study adds this modification into the solution algorithm (Figure 2.1), by
considering three new steps (Steps 11-13). In Step 11, the algorithm saves the assignment
pattern and the value of AGap for the best solution. Moreover, Step 11 compares the best
solution with the current solution of the inner loop and updates the best solution. Then
the best solution of Step 11 is compared with the final solution of the inner loop at Step 12.
At the end of the inner loop, if the best solution is not the last one, Step 13 runs another
simulation to provide the simulation results. Otherwise, the algorithm sends the last path
flow distribution to the outer loop. Indeed, the cost of keeping the best solution is at worst
one more simulation per outer loop.

2.5.2 Swapping algorithms

Swapping algorithms corresponds to Step 6 in Figure 2.1, where the solution algorithm up-
dates the path assignment. The MSA algorithm (Equation 2.1) is the first swapping algo-
rithm that we consider in this study. Here, we benchmark different algorithms that exist
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in the literature and also propose new ones. Table 2.2 gives a complete summary of all the
algorithms with their references.

2.5.2.1 MSA Ranking

As mentioned in Section 2.2, the first drawback of the MSA algorithm for DTA application
is that the MSA does not consider the travel time of the non-shortest path and simply swaps
a fixed fraction of users to the shortest path. In other words, the MSA does not take into
account the quality of the path in terms of travel time. To overcome this drawback of the
MSA algorithm, there is an extension of the MSA in the literature called MSA ranking (Sbayti
et al., 2007). The idea of MSA ranking is that the users are first ranked by experienced travel
time then a maximum number of users with long experienced travel time are swapped to the
shortest(s) path, based on the MSA algorithm’s step size. The maximum number of swaps
NSi

max is observed when no users have been previously assigned to the shortest path.

NSi
max = σ i

MSA.Dw (2.16)

The advantage of this algorithm is that it swaps users from the most expensive paths to
the shortest path so the direction of solution searching can be improved to obtain a good
solution in terms of quality for the trip-based UE problem. On the other hand, with a large
number of users traveling between many ODs by many possible paths, ranking the users is
a costly process in a large-scale problem. However, it is a good reference when taking all
the MSA-based algorithms into account because it usually provides the best solutions (low
AGap and Violation values).

2.5.2.2 Projection-based algorithms

Here, we adapt two swapping algorithms with an extension of the MSA-based formula.
1- The within-day fixed point algorithm is a projection-based algorithm designed for non-
linear fixed-points of non-expanding maps. We adapt this algorithm as a Projection method
(PM) to the trip-based DTA problem. The validation of the algorithm for the fixed-point
problem is well defined in Halpern (1967). The swapping algorithm of the Projection method
is based on the transformation of the cost to the flow by a constant (α), which is the time step
size of the algorithm. From the standpoint of application, the unit ofα is time

f low and measures
users’ sensitivity to travel costs. The swapping algorithm for trip-based DTA is as follows:

NSp
PM = min

{
n(Trp), α.(Ĉp, τ − Ĉw, τ)

}
(2.17)

where Ĉw, τ denotes the mean travel time of all paths of OD pair w in time interval τ . At
every iteration, the algorithm attempts to swap users from the path with longer travel time
compared to mean travel time to the shortest path and other low-cost paths. Note that α is
determined in the light of the recent study of (Han et al., 2019) in which this algorithm is
applied to a flow-based DTA problem. Note that in Equation 2.17, we can have a negative
number for swapping, meaning that users should be added to this path. It also gives an
indication of how many should be added. This only concerns paths whose path travel time
is below the mean travel time (Ĉw, τ ).
2- Friesz et al. (2011) extended the Projection algorithm by using a common method for
speeding up the convergence in Hilbert space when solving the fixed-point problem. The
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idea is to retrieve the initial solution at each iteration by using a weighted coefficient based
on a second step size for calculating the Projection algorithm solution. Let us consider zi

as the assignment pattern in iteration i of the Projection algorithm. The solution of this
algorithm, labelled as Projection Initialization (PI) algorithm, will be:

zi
PI = σ i

PI z0 + (1−σ i
PI)zi (2.18)

where z0 is the initial flow pattern at the beginning of the process and σ i
PI is the step size

determined by the following formula:

σ i
PI = (

1
1 + i

)
q

(2.19)

where q is a parameter to be designated and which must satisfy 0 < q < 1.
3- The third algorithm in this category is developed based on the Projection Initialization
algorithm. The same procedure is applied for the MSA algorithm to evaluate the impact of
sticking to the initial solution on the optimization process. Therefore, the flow formula of
the Initialization MSA (IMSA) algorithm is as follows:

zi
IMSA = σ i

PI z0 + (1−σ i
PI)zi

MSA (2.20)

where zi in Equation 2.18 is replaced by zi
MSA, which is the solution of the MSA algorithm

in iteration i. As with the Projection initialization algorithm, σ i
PI is determined by Equa-

tion 2.19.

2.5.2.3 Gap-based algorithm and Gap-based normalized algorithm

Lu et al. (2009) proposed the gap-based step size and proved that it satisfies the step size
conditions. Here, we first introduce Gap-based algorithm based on gap-based step size
and flow-based approach then present the implementation of Lu et al. (2009) for trip-based
approach. The volume of swapping is proportional to the gap (the difference between the
non-shortest path and shortest path cost) over the path cost multiplied by MSA step size:

σ i
GB =

Ĉp, τ − Ĉ∗w, τ

Ĉp, τ
.ρ j

MSA (2.21)

ρ
j
MSA =

{
σ

j
MSA; if i = 0

1; o.w.
(2.22)

We recall that j is the outer loop iteration index. This algorithm solves the problem of sort-
ing and also circumvents the first drawback of the MSA formula (Section 2.2). However, it
also uses the step-size which can induce the convergence of the algorithm to a non-optimal
solution. Moreover, the multiplication of the gap indicator and the MSA step size can pro-
vide a small step size for this algorithm. Here we normalize the gap indicator to provide a
relative fraction for the step size which gives the algorithm more flexibility in swapping at
each iteration. The algorithm can swap more or fewer users from path p with respect to the
gap of other paths of OD pair w:

σ i
GBN =

Ĉp, τ − Ĉ∗w, τ

∑p∈P(w,τ)(Ĉp, τ − Ĉ∗w, τ)
.ρi

MSA (2.23)
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This swapping algorithm is applied for each OD pair. This algorithm attempts to normalize
the gap indicator of the Gap-Based algorithm (GB) which is called the Gap-based normal-
ization (GBN) algorithm in this study.

2.5.2.4 Probabilistic algorithm

The Probabilistic algorithm is based on the work of Lu et al. (2009). We first introduced
this algorithm in Ameli et al. (2017) for solving the multi-class multimodal equilibrium, but
we never investigated it in detail. This algorithm calculates for each user the probability of
swapping (SPtr) by Equation 2.24. Then the Bernoulli trial is implemented in simulation for
a user tr in order to decide to swap or not according to the result of the trial.

SPtr = P(trswap = 1) =
Ctr, τ − C∗w, τ

Ctr, τ
(2.24)

where trswap denotes the binary swap decision variable. This algorithm is the only one which
does not use step size. Moreover, it avoids the ranking process and saves computation
time. The Probabilistic algorithm can be considered as an implementation of the Gap-based
algorithm to a trip-based approach if we adjust the probability of reducing the impact of the
descent step. However, here we basically relax the step size. The Probabilistic algorithm is
totally flexible when searching the solution space based on the probabilistic process.

2.5.2.5 Hybrid algorithms

Hybrid algorithms are different combinations of Gap-based, Probabilistic and MSA algo-
rithms for each individual step of the calculation.
1- Halat et al. (2016) applied a hybrid algorithm for a dynamic activity-based model. The
algorithm is a similar to the Probabilistic method as it adds a step size to Equation 2.24. This
algorithm is called Step size Probabilistic (SSP), and calculates the swap probability by the
following formula:

SPSSP
tr =

Ctr, τ − C∗w, τ

Ctr, τ
.σ i

MSA (2.25)

The first hybrid algorithm uses a random number and compares it with SPSSP
tr to make the

swap decision for each user.
2- Lu et al. (2009) introduced the probabilistic algorithm for each user on each path to swap
more users with high travel cost without ranking. The algorithm is called Gap-based Prob-
abilistic (GBP) because the number of swapping user is determined by Gap-based step size.
For instance, for path p, the number of swapping users is determined by Equation 2.21 and
the users are selected by Equation 2.24 for swapping. Verbas et al. (2015) applied this algo-
rithm algorithm for transit network assignment problems and Verbas et al. (2016a) showed
that this hybrid algorithm obtains better solutions than the MSA algorithm in large-scale
transit assignment problems.
3- The third hybrid algorithm is the Boost-up Gap-based (BGB) algorithm and is proposed
by this study. The idea is to boost step size of the Gap-based algorithm. For path p, we
multiply the number of swaps by a fraction of the swap number of the Gap-based and MSA
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algorithms:

NSp
BGB = min

{
n(Trp), [σ i

GB.n(Trp)].
σ i

GB

σ i
MSA

}
(2.26)

This section presents different alternatives for Step 6 of the solution algorithm.

2.5.3 Inner loop initialization

The solving process in the inner loop should start with an initial path flow distribution to
first estimate travel times by simulation (Step 5 in Figure 2.1). The usual approach is to
assign the total demand to the shortest path(s), using free-flow travel times (All-or-nothing
initial assignment). In Step 5, at the beginning of each outer loop before entering the inner
loop, the assignment pattern is initialized and reset to the assignment pattern in Step 1 (Lu
et al., 2009). We investigate an alternative approach for the assignment pattern initialization.

Keeping the assignment pattern approach removes Step 5 from the solution algorithm.
Consequently, the algorithm starts the outer loop j with the optimal solution from the previ-
ous outer loop ( j− 1). Obviously, this will be very efficient for solving static situations, but
we want to investigate its performance with dynamic loading.

2.5.4 Initial step size selection

The third investigation is the definition of the descent step size. The initial step size (σ1)
defines how many users can be swapped during the first iteration. It is the largest step size
during the inner loop and determines the exploration domain of the solution space. In two-
level simulation-based methodology (Lu et al., 2009), the initial step size of the first inner
loop of the outer loop j (σ1, j) is calculated by the iteration counter of the outer loop ( j):

σ
1, j
Initial =

1
j + 1

(2.27)

This setting improves the speed of convergence because increasing j decreases σ
1, j
Initial, so

the largest number of swaps for the current inner loops in outer loop j + 1 begins with a
smaller value in comparison with outer loop j. On the other hand, increasing j reduces
the exploration domain of the inner loop. In order to overcome this drawback, this study
proposes two new approaches to set up the step size.

2.5.4.1 Re-initializing the step size

The idea of re-initializing the step size (Reset) method is to reset the step size by the inner
loop iteration index:

σ
i, j
Reset =

1
i + 1

(2.28)

This approach at the beginning of each outer loop starts the optimization with σ
1, j
Reset = 1

2
to have more flexibility for searching the solution space. In other words, this approach
can increase the maximum number of swaps at each iteration in comparison to the initial
approach (σ1, j

Reset ≥ σ
1, j
Initial).
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2.5.4.2 Smart step size

Here we design an approach that uses adaptive step size for each OD pair w. First, all the
inner loops are initiated with the same step size whatever the OD pair. At the end of the first
iteration (i = 1), the OD gap for OD pair w is calculated as follows:

Gapi
w = ∑

p∈P(w,τ)
[n(Trw, p).(Ĉp − Ĉ∗w)] (2.29)

Then, we keep the step size and run the second loop (i = 2). At the end of the second
loop, we update the OD gap and compare it with the previous OD gap. If the OD gap is
improved, we keep the step size to swap the same fraction of users for a possibly better
solution, otherwise we decrease the OD step size to decrease the number of swaps. The step
size for OD pair w at inner loop iteration i is:

σ i
w =

{
σ i−1

w
σ i−1

w +1
; if Gapi

w ≥ Gapi−1
w

σ i−1
w ; o.w.

;

∀i ∈ {2, ..., imax}, σ1 = 1
2

(2.30)

Equation 2.30 adapts the step size for each OD pair depending on how the quality of the
solution is improved. This method mimics the Newton−Raphson method in numerical
analysis (Ypma, 1995). It has been proven to be very efficient for continuous problems, but
this is the first time it it is used in the context of DTA and for the discrete formulation (trip-
based model).

To conclude this section, we present all the methods considered in this chapter in Ta-
ble 2.2. Before comparing the methods, we need to present the dynamic trip-based simulator
and test cases.

2.6 Numerical experiments

In order to conduct all experiments, we use Symuvia platform, including the trip-based
simulator (Section 1.2.2) and the command module: SymuMaster (Section 1.2.3). All the
algorithms and methods are implemented in SymuMaster. A configuration file is designed
wherein all the settings for an experiment can be selected. The configuration file works like
a menu where the swapping algorithms, initial step size selection, and inner loop selection
can be selected from the list of implemented modules. In addition, the parameters of an
experiment (e.g., λ, Λ, imax, jmax) and some algorithms (e.g., Projection method) are fixed in
the configuration file. At the beginning of each experiment, SymuMaster is calibrated based
on the configuration file. As mentioned in Section 1.3, the network file and demand profiles
are the other inputs for the simulation-based DTA. The network file includes all the fea-
tures of the network, e.g., nodes, links, signalization, available transportation modes. Note
that trip-based approach means that the demand profile includes the information of each
traveler (user) in the network. The user’s information contains, at least, origin, destination,
departure time, and the set of transportation modes that the user can choose for his/her
travel.

This chapter considers three networks with different topologies to investigate if the net-
work size influences the algorithm settings. Note that all the networks in this chapter are
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TABLE 2.2 – All the methods in the inner loop considered in this chapter

Method Abbreviation Reference
Swapping algorithms (Step 6)

MSA MSA Robbins & Monro (1951)
MSA ranking MSAR Sbayti et al. (2007)
Projection
method

PM
Adapted
Halpern (1967)

Projection
Initialization

PI
Adapted
Friesz et al. (2011)

Initialization
MSA

IMSA New

Gap-based GB Lu et al. (2009) (Flow-based)
Gap-based
Normalized

GBN New

Probabilistic Prob. Ameli et al. (2017)
Step size
Probabilistic

SSP Halat et al. (2016)

Gap-based
Probabilistic

GBP
Lu et al. (2009)
Verbas et al. (2015)

Boost up
Gap-based

BGB New

Inner loop initialization (Step 5)
Default
method

All-or-nothing Lu et al. (2009)

Keep the
assignment

Keep solution New

Initial step size selection (Step 6)
Default
method

Initial Lu et al. (2009)

Re-initializing
the step size

Reset New

Smart
step size

Smart New

mono-modal, i.e., with car-traffic only. A 5 × 5 grid network (5by5) is used for the small-
est scale network, see Figure 2.2(a). All the intersections are signalized and the green and
red light duration is set to 30 seconds. The simulation period is 2 hours for 19 origins and
16 destinations. The medium-scale network exemplifies a Manhattan type city with a ring
road (Ring city), see Figure 2.2(b). This network corresponds to 14×14 two-way regular
roads with a speed limit of 50km/h. These roads delimit blocks that are grouped 3 by 3 to
form 5×5 zones. A two-way ring road with a speed limit of 90km/h has 12 interchanges
with peripheral zones. All the intersections are signalized except the interchanges with the
ring road and the green and red light duration is set to 30 seconds. Ring city is simulated for
50 minutes with 26 origins and 24 destinations.

The large-scale network of this chapter is the network of two French cities: Lyon 6e +
Villeurbanne (Lyon6V). This network has 1,883 Nodes, 3,383 Links, 94 Origins, 227 Des-
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tinations. All the signalized intersections in the real field have been implemented in the
simulator with their actual signal timing. It is illustrated in Figures 2.2(c) and 2.2(d). The
network is loaded with travelers of all ODs with given departure times in order to represent
2.5 hours of the network with the demand of three levels of saturation based on the study of
(Krug et al., 2019).

(a) 5by5 (b) Ring city

(c) c©Google (d) Lyon6V

FIGURE 2.2 – The three traffic networks of this chapter. (a): Small-scale network. (b): medium-scale
network. (c) and (d): Large-scale network.

The Macroscopic Fundamental Diagram (MFD) shows the rapid evolution and gives a
synthetic overview of network states. It usually distinguishes three situations. First, the
curve increases from (0, 0) and traffic states remain under-saturated when demand is light.
This is referred to as the Under Saturation (US) scenario. Travel production, which is equiv-
alent to the total travel distance for a given period of time, stabilizes while the accumulation
(or total travel time) still increases, i.e., the network progresses to maximal capacity and
then it quickly becomes unloaded. This corresponds to the Saturation (S) scenario when
we reach to the maximal capacity of the network and then unload it. Finally, production
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(a) 5by5 network US (b) 5by5 network S (c) 5by5 network OS

(d) Ring city network US (e) Ring city network S (f) Ring city network OS

(g) Lyon6V network US (h) Lyon6V network S (i) Lyon6V network OS

FIGURE 2.3 – The macroscopic fundamental diagram of 9 demand scenarios of the three traffic net-
works. There are 3 different saturation levels per network: Under Saturation (US), Saturation (S) and
Over Saturation (OS).

decreases when the total travel time continues increasing. This is the Over Saturation (OS)
scenario where the network is heavily congested and remains at the maximum capacity of
the network for a long time. We tune the demand to observe all three levels of saturation
in numerical experiments to assess the impact of network loading on the performance of
the fixed-point algorithm. Table 2.3 presents the total demand for all the test cases of this
chapter. Note that demand is constant, but the network state evolves dynamically due to
spreading congestion in all three scenarios. The MFDs of each demand scenario for all the
networks are presented in Figure 2.3. The points in the figures represent the state of the
network at each successive 5-min time period. The MFD of the US scenarios shows the evo-
lution of the state of the networks with almost free flow travel time during the simulation
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for each network (Figures 2.3(a), 2.3(d) and 2.3(g)). The saturated MFD diagrams for each
network (Figures 2.3(b), 2.3(e) and 2.3(h)) show that the S demand scenarios put the states
of the networks in saturation level during the simulation. Finally, the OS scenario moves
the network states to a heavily congested situation in which the saturation level is very high
(Figures 2.3(c), 2.3(f) and 2.3(i)).

TABLE 2.3 – Total demand for all test cases

Level of saturation 5by5 Ring city Lyon6V
Under Saturation (US) 3,520 12,000 20,000

Saturation (S) 5,197 19,000 54,190
Over Saturation (OS) 8,100 22,500 100,000

2.7 Results

All the experiments are first initiated with the All-or-nothing assignment algorithm (see
Step 1 in Figure 2.1). In this study, we impose a limit on the maximum number of iterations
and compare the final solutions obtained by the different algorithms. This is to contain the
computational cost and to bring the experiments closer to usual practice in which traffic en-
gineers try to control maximum computation times. Each scenario is executed for five outer
loops ( jmax = 5). This means that users have to finally choose between a minimum of six
paths (the first path comes from Step 1) for each OD pair. Note that the maximum number
of the outer loop iterations is not the limitation. At one point, increasing the number of
discovered paths will simply add close alternatives that do not improve the solution. The
inner loops run for a maximum of ten iterations (imax = 10) for a small network, twenty
for Ring city (imax = 20), and thirty for a large-scale network (imax = 30). We restrict the
number of inner loop iterations for each network to obtain a complete comparison of the
performances of the algorithms in the same settings. The different values of imax are deter-
mined as a function of the size of the network, based on the studies of Halat et al. (2016),
Verbas et al. (2016a). All the experiments are conducted on a 64-bit personal computer with
a 12-core central processing unit of 2.10 GHz speed, and a memory of 128 GB.

The experiments are conducted in three stages. First, we compare all the swapping al-
gorithms. Then the best swapping algorithms are chosen for the second stage. The initial-
ization methods are tested in the second stage. Finally, the best combinations of swapping
algorithms and initialization methods are considered for the third stage. The step size meth-
ods are examined in the third stage.

2.7.1 Comparison of swapping algorithms

The first stage of the numerical experiments entails finding the best swapping algorithm. We
track AGap and Violation indicators to assess the performance of each swapping algorithm.
The final values are presented in Table 3 for the nine scenarios. Metal colors highlight the
top three algorithms (Gold = first, Silver = second, Bronze = third) for each scenario. More-
over, Figure 2.4 presents a bar chart of the computation times. Note that the computation
time of each algorithm includes the complete process, e.g., the simulation and shortest path
calculations.

p. 57 / 169



CHAPTER 2. BENCHMARK OF SOLUTION METHODS

T
A

B
L

E
2.4

–
R

esults
ofnum

ericalexperim
ents

for
eleven

sw
apping

algorithm
s

[A
G

ap
(second)]

N
etw

ork
/

algorithm
M

SA
M

SA
R

G
B

G
BN

Prob.
SSP

G
BP

BG
B

PM
PI

IM
SA

5by5

U
S

A
G

ap
0.91

0.17
1.10

0.91
0.17

0.88
0.73

0.91
0.48

0.17
1.47

V
iolation

0.05
0.05

0.08
0.05

0.05
0.08

0.07
0.06

0.06
0.05

0.05

S
A

G
ap

11.22
13.34

82.65
11.22

3.50
39.18

22.36
64.05

37.79
112.09

80.19
V

iolation
0.13

0.13
0.16

0.13
0.13

0.18
0.16

0.18
0.18

0.16
0.17

O
S

A
G

ap
0.70

0.85
1.18

0.70
0.93

1.44
2.37

0.71
1.05

1.56
1.19

V
iolation

0.04
0.09

0.08
0.04

0.05
0.07

0.09
0.08

0.08
0.08

0.08

R
ing

city

U
S

A
G

ap
5.79

2.99
8.66

4.30
2.74

5.47
3.02

5.13
4.41

3.27
38.13

V
iolation

0.13
0.06

0.13
0.11

0.06
0.12

0.08
0.10

0.10
0.10

0.24

S
A

G
ap

30.96
12.81

18.31
16.35

8.33
40.13

12.33
24.72

200.71
206.70

205.24
V

iolation
0.17

0.16
0.21

0.15
0.16

0.19
0.16

0.22
0.36

0.38
0.36

O
S

A
G

ap
50.06

20.81
47.73

49.35
16.16

36.16
48.38

26.00
230.71

189.04
225.24

V
iolation

0.26
0.16

0.17
0.26

0.14
0.21

0.20
0.18

0.36
0.32

0.33

Lyon
6V

U
S

A
G

ap
109.47

18.78
37.01

41.09
12.30

16.15
13.59

35.47
20.01

41.09
39.75

V
iolation

0.32
0.15

0.20
0.24

0.12
0.14

0.13
0.21

0.19
0.24

0.24

S
A

G
ap

79.89
39.54

237.35
29.14

24.72
47.73

121.45
62.98

1157.21
27.83

798.47
V

iolation
0.25

0.24
0.35

0.16
0.13

0.25
0.26

0.25
0.35

0.15
0.43

O
S

A
G

ap
180.38

233.44
183.83

80.79
106.83

339.87
153.00

240.95
108.45

73.43
47.18

V
iolation

0.22
0.28

0.23
0.17

0.19
0.30

0.34
0.35

0.27
0.15

0.14

p. 58 / 169



2.7. Results

Regarding the uniqueness of the UE, this is the case for the DNL problem when users
have the same characteristic (homogeneous demand) and travel time functions are increas-
ing (Iryo & Smith, 2017, Ameli et al., 2018). Monotonicity exists at the link level for the traffic
simulator of this study (Leclercq, 2007b) but not at the node because most of the intersec-
tions are signalized. Therefore, we cannot claim, on the basis of the literature, that we have
unicity; however, we check that we have a similar solution in terms of path flow distribution
whatever the algorithm used in each case. In particular, in the small-scale network (5by5),
MSA ranking, Probabilistic, and Projection initialization algorithms lead to optimal values
for the US scenario (Table 2.4). Furthermore, the path flow distributions are equal, possibly
providing the optimal UE for this scenario.

According to Figure 2.4(a), the Projection initialization algorithm converges fastest to
the best solution. The Initialization MSA algorithm also converges quickly, but it does not
converge to the best solution. In the saturation scenario, the best solution is obtained by
Probabilistic algorithm, but Gap-based normalization algorithm is the fastest algorithm to
converge (Figure 2.4(b)) while the AGap by this algorithm is ranked second among all the
algorithms. The MSA algorithm provides the same gap as the Gap-based normalization al-
gorithm and a smaller gap than the MSA ranking; however, the Computation Time (CT) of
this algorithm is the longest. In the saturation scenario, the results provided by the Gap-
based, Boost-up Gap-based, Projection initialization, and Initialization MSA algorithms are
poor in comparison with the best solution. In the over-saturation scenario, the Gap-based
normalization and Boost-up Gap-based algorithms perform well in terms of solution qual-
ity and CT. Note that MSA and MSA ranking also provides a high-quality solution, but
the CTs are higher than for Gap-based normalization and Boost-up Gap-based algorithms
(Figure 2.4(c)).

Table 2.4 shows that the Probabilistic algorithm provides the best solutions in all the
scenarios of the medium-scale network (Ring city). For the US scenario, the Gap-based
Probabilistic algorithm converges fast (Figure 4(d)) and also to a good solution, with a AGap
only 0.28 second longer than the best solution. The MSA ranking and Initialization MSA
algorithms provide solutions close to the best algorithm with good CT in comparison to
other algorithms. In the S scenario, the Probabilistic algorithm is significantly better than the
others in terms of solution quality. Initialization MSA algorithm converges fast (Figure 4(e))
but to a bad solution, which is more than 25 times bigger than the best solution. The MSA
ranking algorithm is the third best algorithm; also the CT is better than the best algorithm.
As with the saturation scenario of Ring city, the Initialization MSA algorithms converge
rapidly in the OS scenario (Figure 4(f)), but the solutions are poor in comparison with the
top three algorithms: Probabilistic, MSA ranking and Boost-up Gap-based.

In the large-scale network (Lyon6V), The results show that many algorithms with low
CTs converge to solutions far from the best solution. For instance, in the OS scenario, the
MSA ranking, Gap-based and Step size Probabilistic algorithms converge faster than the
others (Figure 2.4(i)), but the AGap and Violation are very poor in comparison with the best
solution. The same observation can be made for the MSA, Gap-based, Gap-based Probabilis-
tic, and Boost-up Gap-based algorithms in the saturation scenario and for the Gap-based
Normalized in the US scenario. The top three algorithms in the OS scenario (Projection
initialization, Initialization MSA, and Gap-based Normalized) perform significantly better
than the others. In the OS scenario, no algorithms except the Initialization MSA can find
solutions with a AGap less than a minute. The CTs are also long for two top algorithms.

p. 59 / 169



CHAPTER 2. BENCHMARK OF SOLUTION METHODS

(a) 5by5 network US (b) 5by5 network S (c) 5by5 network OS

(d) Ring city network US (e) Ring city network S (f) Ring city network OS

(g) Lyon6V network US (h) Lyon6V network S (i) Lyon6V network OS

FIGURE 2.4 – The computation time bar chart of 9 demand scenarios of the three traffic networks.
There are 3 different saturation levels per network: Under Saturation (US), Saturation (S) and Over
Saturation (OS)

According to the results, the saturation level has an impact on the computational perfor-
mance of the swapping algorithms because the solution space of the fixed-point problem is
more complex and the intermediate results of the inner loop are not stable. Moreover, the
results in Table 2.4 show that the performance of the swapping algorithms depends not only
on the saturation level but also on the scale of the traffic network. For instance, the MSA
method works well in small-scale, but by increasing the size of the traffic network, it obtains
poor results for AGap and Violation in comparison with the other algorithms. It is notewor-
thy that the MSA algorithm is one of the worst algorithms on the large-scale, particularly
for the US scenario. The reasons for this performance of the drawbacks of MSA algorithms,
but its CT is comparable with other algorithms in the US and S scenario. The MSA ranking
algorithm is not among the top three algorithms in the large-scale. However, because of the
ranking process, it provides good enough solution compared to the best algorithm except in
the OS scenario, where the MSA ranking algorithm converges faster than the others but to a
bad solution.
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The Gap-based algorithm does not appear in the top three algorithms for all the sce-
narios, but it obtains solutions with small AGap for all the US demand scenarios. In these
test cases, when increasing the level of network saturation, the Gap-based algorithm cannot
converge to a high-quality solution. The Gap-based Normalized algorithm performs better
than the Gap-based algorithm in most of cases. The normalization techniques improve the
performance of the Gap-based method, especially in the saturation and OS scenarios. Gen-
erally, the Probabilistic algorithm is the best algorithm in the US and S scenarios of all the
networks and also it also provides good performance for the OS scenario in the small and
the medium test cases. It should be recalled that the Probabilistic algorithm is the only step
size free algorithm of this study. It can explore the solution space without limitation, which
makes it more robust than other algorithms. However, in the large-scale and OS scenario,
the CT of Probabilistic algorithm is very high, and it could not provide a good solution com-
pared to the best algorithm. It means that this algorithm does not fully cover the solution
space under the determined computation budget.

The hybrid algorithms (Section 2.5.2.5) work better than MSA and Gap-based algorithms
in the large-scale and US scenario, but they are dominated by Probabilistic algorithm be-
cause the step size still limits them. The Step size Probabilistic algorithm, which is a com-
bination of MSA and Gap-based algorithms, provides better results than both methods in
the medium- and the large-scale networks with US and saturation levels of demand. When
the saturation level of the network increase, the Gap-based Probabilistic algorithm cannot
provide a good solution. The Step size Probabilistic and Gap-based Probabilistic algorithms
are dominated by the Probabilistic algorithm in all test cases. The Boost-up Gap-based al-
gorithm, which used the boost-up step size performs better in OS scenarios where there is a
large number of trips to optimize.

The projection-based algorithms (Section 2.5.2.2) are good for small scale. Their CT is in-
creased significantly by the saturation level of the network. In addition, they have a high CT
in the large-scale network compared to other algorithms. The Projection initialization algo-
rithm does not work well in saturation and OS scenarios in all networks. On the other hand,
the Initialization MSA algorithm provides good results in Lyon6V network, particularly in
OS scenario. The Projection method works better in the small network and US scenarios,
but it is not a fast algorithm for trip-based DTA.

Figure 2.5 presents the convergence pattern of swapping algorithms. Top five algorithms
in terms of the AGap indicator for each saturation level of small- and medium-scale net-
works are presented in Figures 2.5(a)- 2.5(f). For the large-scale network, we present more
swapping algorithm convergence pattern (Figures 2.5(g)- 2.5(i)) to analyze more algorithms.

According to Figure 2.5, the saturation level has an impact on the scale of AGap at each
level of the outer loop during the optimization process. In the US scenario, the value de-
creases suddenly for the first outer loop but for more saturated scenarios adding the new
shortest path changes AGap scale of users, particularly in the large-scale network. As shown
in Figure 2.5(i), the gap value slumps for the outer loop five, where users have six alterna-
tives per OD to choose.

In addition to the quality of the final solution, converging with the less number of outer
loops ( j < 5 in this study) to a solution with good quality is important in practice. In other
words, the algorithm with a minimum number of outer loops and good solution in terms
of AGap can be more efficient. Note that the solution with good quality means the AGap
of the solution is below a predetermined satisfaction threshold. Here, we consider a given
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(a) 5by5 US; γ = 2 second (b) 5by5 S; γ = 20 second (c) 5by5 OS; γ = 2 second

(d) Ring city US; γ = 10 second (e) Ring city S; γ = 60 second (f) Ring city OS; γ = 60 second

(g) Lyon6V US; γ = 100 second (h) Lyon6V S; γ = 200 second (i) Lyon6V OS; γ = 600 second

FIGURE 2.5 – Convergence patterns for the swapping algorithms of all scenarios. There are 3 different
saturation levels per each network: Under Saturation (US), Saturation (S) and Over Saturation (OS).
γ denotes the satisfaction threshold.

satisfaction threshold (γ) for the quality of the solution at outer loop iteration j (AGap j)
in order to investigate which algorithms can reach faster this threshold (AGap j ≤ γ). The
values ofγ for US and S scenarios are approximately equal to d2× AGap∗e+ 1 where AGap∗

denotes the best quality of the final solution obtained by swapping algorithm in second. For
the OS scenarios in large-scale, we set the γ to 9 minutes based on the initial AGap (≈ 15
min) which is obtained by the All-or-nothing algorithm. Figure 2.5 presents the γ values for
each scenario. We can see in this figure, the first time that each algorithm is positioned below
γ threshold before the last iteration and then determine the minimal number of the outer
loop to guaranty a given level of performance. The Probabilistic algorithm can converge
faster in the small and medium networks according to the γ value. For instance, about the
Ring city network saturated scenario, if we want to reach the level of AGap j = 1 minute
(γ = 60), we need to do only one outer loop iteration with the Probabilistic algorithm. In
the large-scale considering the γ threshold helps to save CT. In the large-scale network, the
MSA algorithm for the saturated scenario, and the MSA ranking algorithm for OS scenario
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are much faster than others and need only two outer loops to reach the threshold.
All our analyses give good hints about which are the best swapping algorithms. As we

discussed in Section 2.5, there are different components in the optimization process, which
can help the swapping algorithm to find a better solution. Consequently, the swapping al-
gorithms with good quality indicators (AGap and Violation) for the final solution and CT
in each scenario (all the golden cells in Table 2.4) are chosen for the next stage of the nu-
merical experiment. We also consider all algorithms which obtain a solution with a similar
value for AGap and Violation to the best algorithms solution for the next stage. For more
investigation in the large-scale, we choose at the swapping algorithms including all colored
cells in Table 2.4 and algorithms with AGap j ≤ γ; ∀ j < jmax in Figure 2.5 for each satura-
tion level. In other words, we also consider the swapping algorithms which converge to the
γ before the last outer loop. Table 2.5 presents which algorithms are selected in each sce-
nario for further investigation. MSA ranking and Probabilistic algorithms are suitable for
all scenarios. MSA algorithm is efficient for small network, and Projection method and Step
size Probabilistic algorithm are efficient for the large-scale network. Gap-based Normalized
and Boost-up Gap-based algorithms provide good results in more saturated scenarios, while
Gap-based Probabilistic algorithm is good for US scenarios and larger networks.

2.7.2 Initialization methods

The second stage of the numerical experiments corresponds to Step 5 in the solution algo-
rithm (Figure 2.1). The methodology improvements to this step are discussed in Section 2.5.3
Now, an alternative initialization method (Keep solution; Table 2.2) for the inner loop is ap-
plied for all numerical experiments. The results for combinations of swapping algorithms
and initialization methods are presented in Tables 2.6 and 2.7. The goal is to compare the
Keep solution method to the initial method (All-or-nothing). The first three combinations
of swapping algorithms and initialization methods are highlighted by medal colors (Gold
= first, Silver = second, Bronze = third). Table 2.6 presents the quality indicators of final
solutions for initialization methods in all networks. About 5by5 network, in the US sce-
nario, it is shown that Keep solution initialization obtains the optimal solution for all best

TABLE 2.5 – Best swapping algorithms

Network 5by5 Ring city Lyon 6V
Scenario US S OS US S OS US S OS

MSA X X
MSAR X X X X X X X X X

GB
GBN X X X X
Prob. X X X X X X X X
SSP X X
GBP X X X
BGB X X
PM X X X
PI X X

IMSA X
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three algorithms. Also, in S and OS scenarios, this method improves the performance of all
swapping algorithms in comparison with the same swapping algorithm and All-or-nothing
initialization. The results on the small network show that the Probabilistic and Keep solution
combination provides the best solution in all saturation levels.

TABLE 2.6 – Results of initialization methods [AGap (second)]

Network Scenario US S OS
Algo. / Method AGap Violation AGap Violation AGap Violation

5by5

MSA AoN - 11.22 0.13 0.70 0.04
Keep 5.60 0.21 0.68 0.03

MSAR AoN 0.17 0.05 13.34 0.13 0.85 0.09
Keep 0.17 0.05 7.78 0.15 1.10 0.05

GBN AoN - 11.22 0.13 0.70 0.04
Keep 6.48 0.21 0.46 0.04

Prob. AoN 0.17 0.05 3.50 0.13 -Keep 0.17 0.05 0.86 0.10

BGB AoN - - 0.71 0.08
Keep 0.50 0.01

PI AoN 0.17 0.05 - -Keep 0.17 0.05

Ring
city

MSAR AoN 2.99 0.06 12.81 0.16 20.81 0.16
Keep 1.89 0.08 12.34 0.17 15.25 0.12

Prob. AoN 2.74 0.06 8.33 0.16 16.16 0.14
Keep 1.47 0.05 5.07 0.09 6.35 0.10

GBP AoN 3.02 0.08 12.33 0.16 -Keep 1.53 0.05 6.15 0.13

BGB AoN - - 26.00 0.22
Keep 10.48 0.14

Lyon
6V

MSAR AoN 18.78 0.15 39.54 0.24 233.44 0.28
Keep 13.51 0.13 16.42 0.08 162.60 0.28

GBN AoN - 29.14 0.16 80.79 0.17
Keep 22.47 0.11 69.77 0.15

Prob. AoN 12.30 0.12 24.72 0.13 106.83 0.19
Keep 5.96 0.09 10.59 0.06 92.83 0.19

SSP AoN 16.15 0.14 47.73 0.25 -Keep 6.03 0.09 13.58 0.08

GBP AoN 13.59 0.13 - -Keep 6.79 0.09

PM AoN 20.01 0.19 27.83 0.15 108.45 0.27
Keep 7.33 0.09 21.58 0.11 101.49 0.19

PI AoN - - 73.43 0.17
Keep 62.60 0.15

IMSA AoN - - 47.18 0.14
Keep 40.89 0.15

In Ring city network, same as 5by5, the Keep solution method improves the performance
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TABLE 2.7 – Computation time of initialization methods (second)

Network
Scenario

5by5 Ring city Lyon 6V
US S OS US S OS US S OS

MSA AoN - 1384 2451 - - - - - -Keep 713 1184

MSAR AoN 956 1021 2430 22962 42973 42447 137527 139232 371695
Keep 730 624 2306 18130 39262 39418 154138 132750 333751

GBN AoN - 754 2406 - - - - 206912 677682
Keep 739 1965 197719 556489

Prob. AoN 1003 1093 - 22586 46536 38015 187394 141885 754640
Keep 595 664 15431 28517 36462 138046 111598 291486

SSP AoN - - - - - - 194636 111824 -Keep 135540 106705

GBP AoN - - - 17541 42839 - 177725 - -Keep 23140 36431 121653

BGB AoN - - 2349 - - 44461 - - -Keep 1899 27358

PM AoN - - - - - - 234809 287847 693828
Keep 155722 179288 653254

PI AoN 731 - - - - - - - 809785
Keep 492 741501

IMSA AoN - - - - - - - - 754350
Keep 671548

of swapping algorithms in particular for the Probabilistic method. The differences between
All-or-nothing and Keep solution violation value of two closed AGap solution in Table 2.6,
box of MSA ranking and S scenario, shows the different direction of searching by swapping
algorithm and the impact of the starting point at the beginning of each outer loop on the
final result of optimization methods.

In the large-scale test case, the impact of the initialization is significant. It means that the
quality of the solution by keep solution method is always better than All-or-nothing with
a considerable difference of AGap, e.g., the Keep solution method obtains a better solution
(more than 50% lower AGap) for Step size Probabilistic and Probabilistic algorithms in US
and saturation levels.

Table 2.7 presents the CT of all experiments in this stage. First, the results prove that
the initialization method has an impact on CT. Second, the Keep solution method which is
indicated by "Keep" in the Table 2.7 improves the speed of convergence for all swapping
algorithms in comparison with the All-or-nothing method which is the default method in
the literature. Third, the combination of Probabilistic and Keep solution method is faster
than other methods in most of the cases as we can observe that this method is always in the
top two fastest methods in all scenarios (gold and silver cells in Table 2.7).

In order to have a better comparison between the performance of different initialization
methods, the inner loop convergence patterns of MSA ranking and Probabilistic algorithms
with both initialization methods are presented in Figure 2.6. The results correspond to the
saturation scenario for the large-scale network. The default setting, which is the "All-or-
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nothing" method, starts at each outer loop with the same assignment pattern. It works like
as handbrake at the beginning of each outer loop and forces the algorithm to start from the
assignment with a high AGap. Therefore, the swapping algorithm should attempt to come
back to the optimal region by several iterations.

It is obvious that "All-or-nothing" method needs more iteration (CT) compared to the
Keep solution method to find the new optimal solution for each outer loop. The Keep so-
lution method converges faster than the other one and also provides a better solution (Ta-
ble 2.6). For instance, in Figure 2.6, The Keep solution method prevents the MSA ranking
method from spending several iterations in order to come back to the lower range of AGap
and also helps this swapping algorithm to converge faster than the initial version. Note that
the first outer loop is the same for both methods and then from the second one "MSA rank-
ing + Keep solution" continue with previous path flow distribution, but the initial version
of the MSA ranking starts the second outer loop with the All-or-nothing assignment.

Moreover, Figure 2.6 shows the flexibility of probabilistic algorithm to search the solution
space. The probabilistic algorithm moves in a larger range of AGap during each outer loop,
and it does not improve the solution sequentially except when the probability of swapping
(Equation 2.24) is very low for all users, i.e., the algorithm is close to the optimal solution.

FIGURE 2.6 – Convergence patterns of the inner loops with initialization methods for Saturation (S)
scenario on Lyon6V network. [default is All-or-nothing initialization]

2.7.3 Step size methods

In the previous stage, we presented and discussed the results of the initialization method,
i.e., Step 5 in Figure 2.1. Here, we will present and discuss the results for the step size
methods (Step 6). For the final stage, we select the best methods (colored in Tables 2.6 and
2.7) except the Probabilistic algorithm. The Probabilistic method is excluded simply because
it does not have a step size (Section 2.5.2.4). For methods with step size, the one or two best
combinations in all test cases are chosen. The new methods for step size initialization are
compared with the initial method (Section 2.5.4). Note that we fix the seed for probability
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functions in the Step size Probabilistic and Gap-based Probabilistic in order to compare the
impact of step sizes. The results of applying the three methods on the three networks are
presented in Tables 2.8 and 2.9. Medal colors highlight the top three combinations for each
scenario.

TABLE 2.8 – Results of initial step size methods [AGap (second)]

Network Scenario US S OS
Algo. / Method AGap Violation AGap Violation AGap Violation

5by5

MSA
Initial

-
5.60 0.21

-Reset 2.36 0.19
Smart 3.77 0.18

MSAR
Initial 0.17 0.05

- -Reset 0.17 0.05
Smart 0.17 0.05

GBN
Initial

- -
0.46 0.04

Reset 0.62 0.03
Smart 0.45 0.03

BGB
Initial

- -
0.50 0.08

Reset 0.45 0.02
Smart 0.69 0.04

PI
Initial 0.17 0.05

- -Reset 1.83 0.07
Smart 0.17 0.05

Ring
city

MSAR
Initial 1.89 0.08 12.34 0.17 15.25 0.12
Reset 1.47 0.05 9.57 0.15 9.57 0.10
Smart 1.71 0.08 11.25 0.18 12.38 0.12

GBP
Initial 1.53 0.05 6.15 0.13

-Reset 1.53 0.05 5.73 0.09
Smart 1.47 0.05 5.49 0.09

BGB
Initial

- -
10.48 0.14

Reset 21.38 0.19
Smart 11.31 0.11

Lyon
6V

SSP
Initial 6.03 0.09 13.58 0.08

-Reset 5.96 0.09 11.44 0.08
Smart 12.13 0.12 17.75 0.09

GBP
Initial 6.79 0.09

- -Reset 6.50 0.10
Smart 6.42 0.09

IMSA
Initial

- -
40.89 0.15

Reset 35.49 0.14
Smart 34.10 0.14

Table 2.8 presents the quality indicators for the final solution of all experiments for all net-
works. Smart step size improves the performance of the MSA and Gap-based Normalized
algorithms. The Reset method improves the MSA for the small network. For the medium-
scale network (Ring city), the results show that the Reset method improves the MSA rank-
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TABLE 2.9 – Computation time of initial step size methods (second)

Network
Scenario

5by5 Ring city Lyon 6V
US S OS US S OS US S OS

MSA
Initial

-
713

- - - - - - -Reset 337
Smart 705

MSAR
Initial 730

- -
18130 39262 39418

- - -Reset 2430 9086 34439 35562
Smart 3381 11033 24550 19506

GBN
Initial

- -
1965

- - - - - -Reset 2337
Smart 2219

SSP
Initial

- - - - - -
135540 106705

-Reset 81498 101141
Smart 103695 89258

GBP
Initial

- - -
23140 36431

-
121653

- -Reset 3878 37892 107142
Smart 13927 25805 92989

BGB
Initial

- -
1899

- -
27358

- - -Reset 2796 26114
Smart 2747 27557

PI
Initial 492

- - - - - - - -Reset 1908
Smart 3270

IMSA
Initial

- - - - - - - -
671548

Reset 571493
Smart 485980

ing algorithm, and the Smart method works well with Gap-based Probabilistic algorithm
(Table 2.8). In the Boost-up Gap-based algorithm, the step size of this method is already
modified at each inner loop by boost-up techniques. The result shows that applying the
alternative step size methods cannot improve the performance of this algorithm.

The results in Table 2.8 for the large-scale show that the Smart method improves the so-
lution of Gap-based Probabilistic and Initialization MSA algorithms compared to the Initial
method which is the default setting for step size initialization and Reset method. Same as
Ring city network, the Reset method improves the performance of Step size Probabilistic
algorithm. The CT for all experiments of this stage is presented in Table 2.9. The Smart and
Reset methods converge slowly in the small network, but they converge faster than the Ini-
tial method in the large-scale network particularly the Smart method for Initialization MSA
and oversaturated scenario compared to other methods with which we can save a minimum
of one day of computation.
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2.8 Discussion

This chapter focused on improving solution algorithms in the literature for finding user
equilibrium, by considering trip-based dynamic network loading. We compared the perfor-
mance of the solution algorithms (see Table 2.2 to create a synthesis of the main algorithms
and methods in this chapter), based on the quality of solutions and computation times. Ta-
ble 2.10 presents the best configuration of the solution algorithm that makes the best com-
promise between quality and computation time for all network size and saturation levels.
If the focus is only on the quality of the solution, more than one configuration can be used
in most of the cases. However, the computation time is very important, particularly for the
large-scale network. For instance, in the large-scale and oversaturated scenario, Probabilistic
algorithm cannot provide a better solution than Initialization MSA algorithm, but it is more
than two days faster than Initialization MSA algorithm in computation time (Table 2.7). The
combination of Probabilistic approach (without step size) and Keep solution initialization
appears in most of the cases in Table 2.10 as the best algorithm. It is not necessarily always
the best in terms of quality and speed, but it is the one that is most likely to obtain the best
solution in all scenarios and can be considered as the most robust alternative.

This chapter first showeds that the network size and saturation level has an impact on
the performance of solution algorithms to solve the DTA problem. The analysis shows that
the classic algorithms (e.g., MSA) exhibit good performance in the small-scale network, but
they do not provide a good solution in the large-scale network. The computational cost of
the MSA algorithm is prohibitive for the large-scale network. On the contrary, one of the hy-
brid algorithms, Step size Probabilistic (see Section 2.5.2.5), worked faster in the large-scale
network (Table 2.10). The MSA ranking is efficient for small- and medium- scale networks,
but it cannot provide good results for the large-scale network. Moreover, the results show
that some algorithm such as Gap-based algorithm, and Projection method are dominated by
other algorithms for all scenarios.

Second, this study shows that the initial assignment and step size at the beginning of
the outer loop have a significant impact on the final solution and convergence speed of the
algorithm. An alternative method is proposed to initialize the assignment pattern at the be-
ginning of the outer loop (Section 2.5.3). According to the results, the Keep solution method
improves the performance of all swapping algorithms compared to the recent methodology
in the literature. Table 2.10 shows that all the best configuration of the solution algorithm
includes Keep solution method. This initialization method also speeds up the swapping
algorithms convergence process (Table 2.7).

Third, this study proposes two new methods for the initialization of the step size (Sec-
tion 2.5.4). The step size ensures that the algorithm converges and it has a direct impact on
the speed of convergence. However, the step size cannot guarantee the quality of the final
solution. The two new methods for step size provide a better solution with a combination
of different swap formulas than the classic method in the literature. The algorithms based
on MSA are improved by the Reset step size method. Besides, the Smart method improves
the algorithm based on the gap function and projection method. The new step size meth-
ods speed up the convergence of all algorithms, especially in the large-scale (Table 2.9). For
the next chapter, we are seeking meta-heuristic algorithms for the DTA problem in order
to speed up the optimization process with parallel computation. In addition, designing the
framework to predetermine the computation budget based on network size, topology, and
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saturation level is a topic of interest.

TABLE 2.10 – Best algorithms and settings with respect to the network size and loading

Network
Saturation

level
Best

algorithm
Initialization Step size methods Ranking for Best

compromiseAoN Keep Initial Reset Smart Quality Speed

5by5

US
MSAR X X X X 1 3
Prob. X 1 2

PI X X 1 1 X

S
MSA X X 2 1 X
Prob. X 1 3

OS
MSA X 4 1 X
GBN X X 1 4
BGB X X 1 6

Ring city

US
MSAR X X 1 2
Prob. X 1 3
GBP X X 1 1 X

S Prob. X 1 1 X

OS
MSAR X X 2 1 X
Prob. X 1 5

Lyon 6V

US
Prob. X 1 2
SSP X X 1 1 X

S
Prob. X 1 4
SSP X X 2 1 X

OS
Prob. X 9 1 X
IMSA X X 1 4
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CALCULATION

Based on the investigation in the previous chapter, we notice that most existing algorithms
are based on path-swapping descent direction methods. From the computational stand-
point, the main drawback of these methods is that they cannot be parallelized. This is be-
cause the existing algorithms need to know the results of the last iteration to determine the
next best path flow for the next iteration. Thus, their performance depends on the choice of a
single initial solution and on the intermediate solutions, which means they exploit the way
that the solutions satisfy the equilibrium conditions. But they do not explore sufficiently
the solution space for the optimal solution. More specifically, the goal of this chapter is to
overcome the drawbacks of serial algorithms by using meta-heuristic algorithms known to
be parallelizable and that have never been applied to the simulation-based DTA problem.

In this chapter, first, we conclude our review on the drawbacks and advantages of exist-
ing simulation-based algorithms in the literature. Second, the two new frameworks for DTA
calculation are proposed and applied to the solution algorithm. Third, the full benchmark of
new algorithms and several common algorithms in the literature for a large-scale network
are provided. Finally, the best solution algorithms are highlighted.

This chapter is an updated version of the paper:

Ameli, M., Lebacque, J. P. & Leclercq, L. (2019). Simulation-based dynamic traffic as-
signment : meta-heuristic solution methods with parallel computing. Transportation
Science, (under first round of review).
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3.1 Notations for this chapter

TABLE 3.1 – Specific notations in this chapter

Notation Definition [units]

W Origin-Destination (OD) pairs, subset of origin × destination nodes, W ⊂ N × N.
Pw Set of paths for w.
P∗w Set of shortest (i.e. minimum travel time) paths for w.
w Index of OD pair, w ∈W.

Dw Total demand for w pair.
Trw List of trips that travel for w.
Trp List of trips that travel for w on path p, Trp ⊂ Trw.

p Index of path, p ∈ Pw.
p∗ Index of shortest path, p∗ ∈ P∗w.
tr Index of trip, tr ∈ Trw.
πw Cardinality of a set Trw: number of users traveling for w.
πp Cardinality of a set Trp: number of users on path p.

TTtr,p Experienced travel time of trip tr on path p.
TT∗w Minimum experienced travel time for w.
T̂Tp Mean travel time of trips on path p.
T̂T∗w Mean travel time of trips on shortest path(s) of OD pair w.
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3.2 Motivations

The aim of simulation-based DTA is to calculate the dynamic path flow distribution for all
the Origin-Destination (OD) pairs in the traffic network depending on one equilibrium rule
(Yang et al., 2017, Ben-Akiva et al., 2012). The well-known equilibrium rule is user equi-
librium (UE), wherein all users experience minimum travel time (Wardrop, 1952). Recall
that the simulation-based DTA contains two procedures: (i) a simulation-based dynamic
network loading model to calculate experienced path travel times by considering the traffic
dynamics for a given path flow pattern; and (ii) an algorithm for finding the UE solution
(Marcotte & Nguyen, 1998). Here, we focus on the second procedure.

The mathematical foundations of the DTA problem are recalled in Friesz & Han (2018).
Much research has shown that the DTA problem can be represented as a fixed-point prob-
lem (Wang et al., 2018). To solve the fixed-point problem, a path-swapping descent direction
method is used to reassign a fraction of the users at each step (Sheffi, 1985). The reassign-
ment process is monitored to check whether the solution is improved or not. In other words,
the algorithm consists in reassigning the share of the users who have chosen a non-optimal
path to a more efficient alternative at each iteration of the equilibrium calculation (Levin
et al., 2014a). The foundation of all iterative algorithms is based on starting from the initial
solution and updating the path flow distribution for iteration i using the following formula
(Friesz, 2010):

zi = (1−βi)zi−1 +βi f [zi−1] (3.1)

where zi is the path flow distribution of the iteration i, f [zi] is the descent direction and βi
is the step (descent) size of iteration i for the fixed-point algorithm. At each iteration, Equa-
tion 3.1 reassigns the users in order to move the traffic network toward the UE. Based on the
review papers of Szeto & Lo (2006b) and Wang et al. (2018) almost all of the solution meth-
ods for DTA models used Equation 3.1 to find the network equilibrium. Many works can be
found in the literature dedicated to finding the best βi and f [zi] to improve the efficiency of
the algorithms (see e.g., Nguyen & Dupuis, 1984, Drissi-Kaïtouni & Hameda-Benchekroun,
1992, Akamatsu, 2001, Bar-Gera, 2002, Dial, 2006, Gentile, 2016, Perederieieva et al., 2015, Se-
shadri & Srinivasan, 2017, Xie et al., 2018, Galligari & Sciandrone, 2017, Raadsen et al., 2019).
However, it is not possible to guarantee that fixed point algorithms converge towards the
optimal solution (Ben-Akiva et al., 2012) and there is no exact method for determining the
step size (βi) (Szeto & Lo, 2005b, Levin et al., 2014b). All the algorithms based on Equation 3.1
mainly have two drawbacks when equilibrium is sought for large-scale networks:

1. The calculation should be done sequentially: the algorithms need to know the last it-
eration results to determine the next best path flow for the next iteration. Therefore,
all the steps are in series because we need information (travel time) from the last sim-
ulation run.

2. The reassignment decision is taken only at the OD level and independently at each
step: the algorithms do not consider the effect of shared links between OD path sets in
the reassignment process. Intersections between OD flows are only taken into account
when running the simulation to derive travel time.

To explain the drawbacks explicitly, let us consider the method of successive average
(MSA) by Robbins & Monro (1951). Section 2.2 presented the MSA algorithm as the classical
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method to solve the traffic assignment problem (Nagel & Flötteröd, 2016) and widely used in
theory and application for DTA problems (Mounce & Carey, 2015). The f [zi−1] of the MSA
algorithm in Equation 3.1 is extracted from the auxiliary path assignments obtained by the
All-or-nothing procedure, i.e., everyone is placed on the shortest path and βi =

1
i+1 . Con-

sequently, in iteration i, the MSA algorithm tries to improve the path flow distribution by
swapping a fraction 1

i+1 of users to the shortest path(s) from each non-shortest path. Then,
one simulation is launched based on the updated path flow distribution. We have to wait
until the simulation run is finished to know the new link travel times and adjust the path
flow distribution to be tested in the next iteration accordingly. This is the serial process of
the MSA algorithm, which limits the solution space exploration and computational process.

Moreover, the MSA algorithm performs the reassignment process for each OD indepen-
dently without considering that some OD pairs are connected because they share certain
links and nodes. For instance, if we have a set of shared links between two OD pairs that are
heavily congested, the algorithm will reduce the flow of the paths containing these shared
links for all the OD pairs whereas reducing only the flow of a few OD pairs would have been
sufficient. Therefore, we may trigger a high compensation of heavily congested paths. The
MSA algorithm not only makes no provision to take into account the correlations between
the OD assignment and the travel time, but also there is no accurate definition for f [zi−1] to
consider this effect (Flötteröd, 2018).

All the works in the literature have the aforementioned limitations and perform the cal-
culation in series. In this chapter, we explore a completely new area for overcoming the
drawbacks of serial algorithms using meta-heuristic algorithms. Meta-heuristic algorithms
are known to be parallelizable (Fonseca & Fleming, 1995). Traffic simulation, particularly
micro-simulation, can be viewed as a complex system for which meta-heuristic algorithms
are expected to be well-adapted because they are stochastic methods designed to search the
solution space of complex and computationally costly problems (Yun & Park, 2006). We
can better explore the solution space and will also run several simulations in parallel for
certain path flow assumptions and take the decision on what the next exploration of the
solution space should be. This overcomes not only the first drawback but also makes the al-
gorithm capable of starting the optimization with different starting points at the same time.
Moreover, a new layer of optimization is added to the algorithm to take into account the
correlations between OD pairs through shared links.

The meta-heuristic algorithms are mainly applied to mathematical models that have a
well-defined objective function or functions, and in some cases, constraints. With a large-
scale simulation-based framework, we use the simulator as a black-box to calculate the ob-
jective function, making it necessary to run trials for optimization, e.g., the MSA algorithm
is a trial and error process with the descent method. To the best of our knowledge, no
study in the literature has yet applied a meta-heuristic algorithm directly to find the UE for
simulation-based DTA models. This may be because it is difficult to handle the variables
which in this case are path flows.

Meta-heuristics algorithms can be classified into two categories: single solution and
population-based (Talbi, 2009). The single solution methods start with an initial solution
and apply a process to improve the candidate solution in order to achieve the best solution
by following a trajectory in the solutions space. The second class is population-based; the
purpose of the methods of this class is to improve a set of solutions (population) by applying
a specific process. This study proposes two new solution methods based on two categories
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of meta-heuristic algorithms. The new extension of the Simulated Annealing (SA) method
from the first category and the adaptive Genetic Algorithm (GA) from the second category
are developed to solve the trip-based network equilibrium problem. The algorithms are
generally developed to solve traffic assignments with parallel computation to consider more
than one path flow distribution per iteration. It is possible that with a stochastic approach,
more simulations must be run in order to explore the solution space compared to descent
methods. However, with parallel simulation, the algorithm can counterbalance the number
of simulation runs by finally reaching the optimum more quickly. Also, at the end of the op-
timization process, it is expected to achieve better solutions in terms of quality and closeness
to the optimal solution because the algorithm explores the solution space more efficiently.

The layout of this chapter is as follows: the next section, Section 3.3, presents a discus-
sion on the mathematical conditions for UE solutions. It also presents the two indicators
we use to assess algorithmic performance. The simulation-based framework and two meta-
heuristic algorithms are presented in Section 3.4. The numerical experiments are presented
in Section 3.5. The results obtained are discussed in Section 3.6. Finally, we present conclud-
ing remarks in Section 3.7.

3.3 Problem statement

Depending on the kind of simulator used to perform the network loading and to determine
travel times, the demand from origins to destinations can either be expressed as a contin-
uous flow or units of vehicles. The flow-based approach usually corresponds to dynamic
macroscopic models, while the trip-based approach is widely implemented in microscopic
models (Ramadurai & Ukkusuri, 2011). The latter approach is certainly more realistic for
reproducing traffic flows but it is also more challenging when deriving UE because OD flow
should always correspond to integer numbers during the convergence process (Jordan et al.,
2017). The trip-based approach is used in this study to address the real large-scale DTA
problem. In this section, we present the conditions of dynamic UE for the DTA model and
the indicators used to determine the proximity of solutions to UE in the simulation-based
framework.

Now, we present a short summary of the mathematical model for the trip-based DTA
calculation. For more details, please refer to Section 2.3.1. Consider a network G(N, A)
with a finite set of nodes N and a finite set of directed links A. The demand is given and
time-dependent for each OD pair. The period of interest (planning horizon) of duration H
is discretized into a set of small time intervals indexed by τ . In an interval of τ , the traffic
conditions are assumed constant for the DTA, i.e. travel times are averaged at the path level
over each time interval. Therefore, all the time-dependent variables of the model are indexed
by τ . To simplify the equations, we present the model for each departure time interval of τ .
In Table 2.1 we introduce the notations of all the symbols and variables used in this chapter.

According to the definition, we have:

T̂Tp =
∑tr∈Trp TTtr,p

πp
; ∀p ∈ Pw (3.2)

T̂T∗w =
∑tr∈Trp∗ TTtr,p∗

πp∗
; ∀p∗ ∈ P∗w (3.3)
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The network user equilibrium conditions with predefined travel demand and the users’
departure times are (Peeta & Ziliaskopoulos, 2001):

T̂Tp − T̂T∗w ≥ 0 ; ∀w ∈W, p ∈ Pw

πp(T̂Tp − T̂T∗w) = 0 ; ∀w ∈W, p ∈ Pw

πp ≥ 0 ; ∀p ∈ Pw

(3.4)

Lu et al. (2009) reformulated the problem as a non-linear problem to minimize the gap func-
tion. The gap function is defined as the gap between the average path travel time and
the average shortest path travel time. Therefore, the solution to this fixed-point problem
is equivalent to finding the solution to the following variational inequality:

∑
w∈W

∑
p∈Pw

TTw, p
∗ [πw − πp∗

]
≥ 0 (3.5)

where πp∗ is the optimal number of trips on path p and πw, πp∗ ∈ H satisfy the equilibrium.
H denotes the flow constraints based on Dw. As mentioned before, finding the optimal solu-
tion for a large-scale DTA problem is hard to achieve, so indicators are required to measure
the distance between the solutions and the optimal UE. The two convergence indicators of
this chapter are presented in Section 2.3.2

3.4 Methodology

Determining the UE path flow distribution requires two main steps: (i) identifying the time-
dependent feasible paths between ODs, and (ii) finding the optimal path flow with respect
to demand and network dynamics. The first step refers to solving a time-dependent short-
est path algorithm, which is a computationally expensive process in a large-scale network
(Srinivasan et al., 2018). One of the advanced frameworks in the literature express the solu-
tion algorithm in two loops: the outer loop to find the shortest path and the inner loop to find
the optimal path flow distribution (Lu et al., 2009). The main advantage of this framework is
that it attempts to find the UE path flow distribution with a minimum number of running a
time-dependent shortest path algorithm. Figure 3.1 presents the optimization framework of
this chapter. Here, we focus on the inner loop, wherein the reassignment process is embed-
ded. The green box in Figure 3.1 presents the classical inner loop structure. For the details
of outer loop steps (step 1 to 4), readers can refer to Section 2.4.

The inner loop process starts with a single initial solution, which is generated in step 5.
The optimization algorithm updates the path assignment based on the current state of the
network (step 6). The reassignment process is executed based on the swapping algorithm
(Equation 3.1 in classic approach) and a new path flow pattern is generated to be sent to the
simulator to calculate the experienced travel time. Then one simulation runs in step 7, and
the shortest path or paths is/are identified based on the simulation results of step 8. The
solution quality indicators are calculated in step 9. Step 10 checks the convergence. The
inner loop converges if the AGap is unchanged or if the maximum number of iterations is
reached. If the process has not converged, step 11 keeps track of the best solution obtained
by current inner loop iterations; otherwise, the final solution is checked by step 12 to ensure
that it is the best solution based on AGap. If the last iteration solution is the best, the inner
loop is finished; otherwise, we run one more simulation for the best solution from step 11.
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FIGURE 3.1 – Solution algorithm for trip-based dynamic network equilibrium

As mentioned before, the optimization process is executed in series. The meta-heuristic
algorithms redesign the inner loop structure.

Before presenting the meta-heuristic algorithms, we recall from the previous chapter the
three most common swapping algorithms in the literature for a large-scale DTA problem.
They are considered in this chapter as benchmarks for demonstrating the efficiency of the
new meta-heuristic algorithms. The swapping algorithm is embedded in step 6. The first
algorithm is MSA (introduced in Section 2.2) which is the most common algorithm used in
the literature (Foytik et al., 2017). The second method is an extension of the MSA algorithm
by Sbayti et al. (2007), called MSA ranking (MSAR). The MSAR algorithm was introduced in
Section 2.5.2.1. Summarily, the MSAR algorithm ranks the users by the experienced travel
time then swaps a quantity 1

i+1 Dw of travelers with the longest experienced travel time to the
shortest path. The design of the third method is based on the expected travel time reduction.
This algorithm is called gap-based algorithm in this chapter. Lu et al. (2009) showed numer-
ically that the gap-based algorithm obtains a better solution for UE than the MSA algorithm
for the large-scale network. The gap-based algorithm was introduced in Section 2.5.2.3.
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Briefly, it uses the same formula as Equation 3.1 and same f [zi−1] as MSA algorithm with

βi =
T̂Tp−T̂T∗w

T̂Tp
. We will now present the implementation of the meta-heuristic algorithms.

3.4.1 Simulated Annealing (SA) method

The SA algorithm is inspired by annealing in metallurgy. The basic simulated annealing
algorithm is presented in Kirkpatrick et al. (1983). This study redesigns and adapts the classic
SA to a simulation-based traffic assignment. Figure 3.2 presents the SA algorithm of this
study.

The algorithm starts with an initial solution generated randomly. For solution S, the total
gap TGap(s) between the users’ travel time and the shortest path travel time (Equation 3.6)
is considered as the energy of the solution. The next solution is generated with respect to
the current one based on the temperature (T) of the current iteration. The current phase of
the iteration depends on the temperature of the process. Inspired by the physics of matter,
this study distinguishes three different methods to generate a neighbor solution, gas, liquid,
and solid; these methods represent the states of matter in nature. When the temperature
is high (T > α where α denotes the boiling temperature), the gas method is applied. When
running the SA algorithm, by decreasing the temperature, the algorithm enters the liquid
phase (α > T > α′ where α′ denotes the melting temperature) and then the liquid method is
applied. When the temperature is quite low (T < α′), the solid method is applied.

TGap(s) = ∑
w∈W

∑
p∈Pw

∑
tr∈Trp

(TTtr,p − TT∗tr,w) (3.6)

In the gas phase, we explore the solution space without limitation of any step size (βi).
Therefore, the candidates for the neighbor solution correspond to a random path flow dis-
tribution with respect to the demand value for each OD pair (feasible OD-assignment). The
Gas method generates one solution as a neighbor. In the liquid phase, we target the explo-
ration of the solutions space randomly and also apply step size methods. First, we apply a
randomizing process on the current solution and obtain the first neighbor solution. Then we
optimize it by applying the MSA to obtain the second solution and the Gap-Based method
to obtain the third solution. The liquid method generates three candidates. In the solid phase,
we execute the same process as in the liquid phase but without randomization. This means
the two solutions are generated based on the current solution (Figure 3.2).

Afterwards, the algorithm runs parallel simulations (a maximum of three simulations)
to update the network based on new different path flows obtained from the previous step.
For a new solution or solutions s′, the total gap TGap(s′) is calculated and corresponds to
the energy of the solution (E) compared to the current solution s.

The last step consists in making a decision on accepting one of the best new solutions
based on TGap compared to the current solution of the algorithm. The acceptance decision
is made by the Bernoulli trial.

APs = P(S′accepted = 1) = e
−∇E

T (3.7)

where APs denotes the probability of accepting solution s′, S′accepted denotes the binary de-
cision variable and ∇E = TGap(s′) − TGap(s). If the solution s′ is accepted, the current
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FIGURE 3.2 – SA solution algorithm flowchart

solution s is replaced by s′. At the end of each iteration the temperature is decreased by the
following formula:

T =
T0

ln(i + 1)
(3.8)

where T0 denotes the initial temperature. It should be remembered that i denotes the iter-
ation index. In this study, the starting temperature is set to T0 = 3000. The quality of the
solution is evaluated in the convergence check step, which is similar to step 10 in Figure 3.1.

The SA algorithm considers more than one solution per iteration in the liquid and solid
phases. In addition, the exploration and exploitation degrees are changed based on T. The
algorithm explores more in the gas phase and liquid phase when the temperature is high
and exploits more in the solid phase when the T is low.
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3.4.2 Genetic Algorithm (GA)

The genetic algorithm was first proposed by Holland (1992); it is inspired by natural genetic
variation and natural selection; selection, crossover and mutation are the main operators of
this approach. In the genetic algorithm, we use the terms chromosomes and genes to refer
to the different segments of an individual. In our implementation for the genetic algorithm,
we consider our solution and the TGap as an individual (DNA) with a fitness value, our
ODs-assignment as chromosomes, and the path flows as the genes. Figure 3.3 illustrates the
solution structure for GA. A gene is identified by a path (p) and contains the path flow value
(πp). A chromosome is the OD assignment, identified by w, which contains the genes of all
the corresponding paths (p ∈ Pw). A DNA is the full set of chromosomes that constitutes
one individual solution. Finally, the set of individuals constitutes a population.

FIGURE 3.3 – Solution structure in the GA case

Figure 3.4 presents the application of GA to the DTA problem. The GA process starts
by generating the initial population (initial set of individuals). In this study, we generate
a random population. This study designs a two-layered GA process to search the solution
space by changing the path flows in the inner GA and take into account the correlations be-
tween OD pairs by considering a different combination of OD assignment in GA-operators.
In other words, the classical fixed-point algorithms plus a random method is applied in the
inner GA, and the GA operators in one upper level generate different combinations of OD
assignments to improve the population. The steps of GA applied to traffic assignment are
as follows:

• Selection: we use a random selection based on the crossover rate (Cr) and population
size (PS) to compute the number of selected solutions for the crossover process:

SS = PS× Cr (3.9)

• Crossover: we apply a non-uniform crossover by using a bit-vector mask method
(Maini et al., 1994). We select two different solutions (parents) from the set of selected
solutions; we apply the crossover between each pair of solutions. As a result, we will
have new solutions; the two new solutions will have a part of each parent.

• Mutation: we apply the mutation operator for a set of selected solutions; by replac-
ing one OD assignment (Chromosome) of the solution by another chromosome from
another solution, this operator aims to increase the quality of the worst solution. The
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FIGURE 3.4 – GA solution algorithm flowchart

possibility of the mutation for one chromosome is calculated based on the quality of
the chromosome:

MPw =
TGapw(s)
TGap(s)

(3.10)

where TGapw(s) denotes the total gap of the OD assignment w in solution s.

• Parallel simulation: all the new solutions obtained from the previous steps are simu-
lated in parallel to calculate the fitness function, which is the TGap in this study.

• Replacement: after applying the different GA operators and parallel simulation, the
size of the evaluated population set is increased. To keep it as a fixed value (PS), we
apply the selection operator, and we keep the best solutions as a replacement strategy.

• Convergence check: the algorithm converges when the maximum number of iterations
is reached, or when the algorithm tends to stagnation. In order to check the stagnation,
we use a “Stagnation Factor (SF)” indicator: when SF tends to zero, our process tends
to stagnation, which means the quality of the population solution has not changed.
The Stagnation Factor is presented as follows:

SF = 1−
TGapi

Max

TGap(i−1)
Max

(3.11)
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Where TGapi
Max denotes the total gap of the worst quality DNA (high TGap) in the

population of iteration i. If the algorithm does not converge, the iteration index is
increased, and the inner layer of GA is applied to search the solution space by gene
modifications inside the chromosomes of the selected solutions.

• Ga Inner: as mentioned before, the Initial Population, Selection, Crossover, Mutation
and Replacement are the basics of GA. In this study, we extend the GA by adding a
new operator, called “GA Inner”. The purpose of this operator is to create diversity in
the current population (diversity inside the OD assignment). This approach is applied
using three different methods: the MSA, the Gap-based methods, and the adaptive
random method.

– Adaptive random method: the foundation of this method is based on the genetic
algorithm. We consider the selection and crossover operators for this method.

∗ Inner Selection: select a set of solutions from the main population. The worst
solutions that have a large TGap are selected because the aim of this selection
is to increase the quality of the population by improving the solutions.
∗ Inner Crossover: We consider the OD assignment (Chromosome) as an indi-

vidual and the flow of each path (Gen) as a chromosome in order to apply
the crossover in the same way as in the previous layer of the optimizer. By
applying the crossover, we risk having a non-feasible OD assignment with
respect to the demand constraint.To solve this problem, we use the following
process to keep only the feasible solutions:
· Step 1: put zero for the flow of the worst path (wp) which has the maxi-

mum travel time.
· Step 2: apply the crossover on the other paths of the current OD.
· Step 3: compute R, the difference between total flow of the current chro-

mosome and the demand level of OD pair w:

R = ∑
i 6=wp

πi − Dw (3.12)

If R ≤ 0 then we put the rest of the flow on the worst path (Xwo = R);
otherwise we reject this chromosome.

∗ The MSA assignment method and Gap-based method (introduced in Sec-
tion 3.4) are also applied to the chromosomes of the selected solutions in GA
inner.

• The new solutions are injected into the main population and the algorithm iterates
while GA converges.

Note that based on the early study of Srinivas & Patnaik (1994), we set the crossover rate
set to Cr = 0.5, and the mutation rate is fixed to 0.4. The PS is set to 10 individuals in this
study.
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3.5 Numerical experiments

The Symuvia platform, including the trip-based simulator (Section 1.2.2) and the command
module: SymuMaster (Section 1.2.3) is used in order to compare the solution algorithms.
Note that in this chapter, we consider a prediction period of 20 minutes and an assignment
period of 15 minutes (Mahmassani, 1998).

The real network of Lyon 6e + Villeurbanne (Figure 3.5) is considered as the large-scale
test case. This network has 1,883 Nodes, 3,383 Links, 94 Origins, 227 Destinations. The
network is loaded with 47,341 travelers of all ODs with given departure times in order to
represent the two morning peak hours of the network between 7:30 to 9:30. The demand
profile comes from the study of (Krug et al., 2019). The dynamic loading represents the
saturation state of the network. To show a quick and synthetic overview of the network state,
we plot the Macroscopic Fundamental Diagrams (MFD) of the network in Figure 3.6(a).
This diagram represents the overall evolution of the traffic conditions in the network by
plotting the total travel distance vs. the total travel time. Note that total travel distance
is proportional to the mean network flow while total travel time is equivalent to vehicle
accumulation. Figure 3.6(b) shows the time and evolution of the mean speed over the full
network.

FIGURE 3.5 – Lyon 6e + Villeurbanne: Mapping data c©Google 2019 and the traffic network used by
Symuvia

The MFD shows the state of the network for the period of 5 minutes during the full sim-
ulation. For instance, point number 15 of the MFD (Figure 3.6(a)) shows the total travel
distance and total travel time of all the travelers in the network between 8:40 to 8:45. First,
the MFD curve increases from (0, 0) and the traffic states remain under-saturated (point
numbers 1 to 8) when demand is light, in this case from 7:30 to 8:10. Afterwards, travel
production, which is equivalent to the total travel distance for a given period of time, sta-
bilizes while the accumulation (or total travel time) continues to increase (point numbers 9
to 13). This corresponds to the saturation level occurring from 8:10 to 8:35. The decrease in
travel production and accumulation (point numbers 14 to 24) shows that the network starts
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(a) The macroscopic fundamental diagram (b) The evolution of the mean speed

FIGURE 3.6 – The demand scenario of Lyon 6e + Villeurbanne.

to exit the saturation level at the end of the simulation period and slowly returns to the
under-saturation level from 8:35 to 9:30.

3.6 Results

In this section, the results of the implementation and application of SA and GA to the
simulation-based DTA problem for the large-scale test case are presented in view to com-
paring them with the MSA, MSAR, and Gap-based algorithms. All the experiments are first
initiated by the first outer loop with the All-or-nothing assignment algorithm (see Step 1 in
Figure 3.1). In order to compare the performance of the algorithms, we use the same outer
loop component with different methods in the inner loop.

In this chapter, we impose a limit on the maximum number of iterations and compare
the final solutions obtained by the different algorithms. This is to restrict the computational
cost. Each classical algorithm is run for ten outer loops. This means that users have to
finally choose from a minimum of eleven paths (the first path comes from Step 1) for each
OD pair. For SA and GA, in order to avoid blocking the random methods with a small
number of paths per OD, we start the first outer loop with the K-shortest path algorithm
(K = 3) and continue in the same way as the other methods with one shortest path per
outer loop iteration. This means the maximum number of outer loops for meta-heuristic
algorithms is 8 in order to keep the total number of minimum paths at 11. In addition,
the computation time of the time-dependant k-shortest path algorithm at each assignment
period is much higher than a single shortest path discovery process in the considered large-
scale network. The extra computation time for meta-heuristic algorithms approximately
equivalent to having two less outer loop iterations than classical algorithms in our test case.
The inner loop runs for a maximum of twenty iterations (imax = 20) for all the algorithms.
With a 15 min assignment interval, we will then have a maximum of 1600 simulations for
the classical methods. With the meta-heuristic algorithms, the maximum can be exceeded
as some simulations will run in parallel.
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The aim of the experiment performed on the Lyon 6e + Villeurbanne network is to ex-
amine the convergence pattern and validate the solutions for a large-scale network case.
Thus, the UE is calculated for the considered network five times with the following algo-
rithms: MSA, MSAR, Gap-based, SA, and GA. The AGap indicator is used to evaluate the
quality of the solution. Figure 3.7 presents the convergence pattern for the five algorithms.
Figure 3.7(a) presents the convergence pattern of the first four outer loop iterations. Fig-
ure 3.7(b) shows the convergence patterns of all the algorithm from outer loop 4 to the end
of the optimization process, and magnifies the difference between the convergence patterns
of the algorithms. Note that each algorithm is terminated once the maximum number of
outer loops is reached. Another possibility, which does not occur here, is that convergence
is reached when the solution is not changed in two consecutive outer loops or no new short-
est path is found for all the ODs.

In Figure 3.7, the convergence pattern and the final result of MSA and Gap-based al-
gorithms are close, but MSAR dominates both algorithms easily from the first outer loop.
Note that the better performances of the MSAR have a cost. Each inner loop iteration takes
longer because of the sorting of users by the experienced travel time for each OD. MSAR
algorithm converges faster than SA and GA at the first outer loop, but it is dominated by
both meta-heuristic algorithms after the fourth outer loop. Both meta-heuristic algorithms
produce better convergence patterns than the classical algorithms. Note that in GA, the best
DNA of the population is sent to the outer loop. Therefore, the convergence pattern of GA
is always decreasing compared to the other methods.

The results for the performance indicators of all the algorithms are presented in Table 3.2.
As expected, the numbers of total simulations for SA and GA are larger than those of the
classical methods around 320%, despite the fact that the computation times are significantly
lower than those of the classical methods because of the parallel simulation framework.
Moreover, the solutions obtained by the meta-heuristic algorithms are significantly closer to
the optimal UE than those of the classical methods. The AGap of the GA solution is better
than that of the classical method, indeed it is 76% better than the MSA algorithm. The SA
algorithm manages to reduce the UE AGap of the MSAR method by more than 54%, the
MSAR method being the best classical method compared to the MSA and Gap-based meth-
ods. The Violation indicator also shows that GA and SA work much better than the MSA
and Gap-based methods (reduction of 82%) and even better than the MSAR method as they
reduce the Violation by one third of its value (−6%). In addition, the meta-heuristic algo-
rithms dominate the others regarding the percentage of incomplete trips. The incomplete
trips denote the share of travelers who could not finish their trip by the end of the simu-
lation in the final path flow distribution of each algorithm. A lower number of incomplete
trips means a lower total travel time spent in the system over the simulation period. The
SA algorithm finds the closest solution to UE (minimum AGap) in this study. Moreover, the
final solution of SA has the best value for other quality indicators that are highlighted in
green in the SA row in Table 3.2.

In order to evaluate the performance of the algorithms, the computation time (CT) should
also be considered. The CTs of both meta-heuristic algorithms are better than those of the
classical methods. In particular, it is significantly better than the MSA method (green values
in GA row inside Table 3.2). Note that each iteration for the MSAR method takes longer
than for the MSA method, but the MSAR method dominates the MSA method at the end as
it requires fewer iterations than MSA. Note also that because of the network size, the DTA
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(a)

(b)

FIGURE 3.7 – Convergence patterns for the swapping algorithms.

process over the full simulation period requires considerable computational resources, i.e.
about a week for the classical methods (MSA, MSAR, Gap-based). Therefore, the computa-
tional improvement obtained by switching to the meta-heuristic methods is huge; 36 hours
(a day and a half) for the SA algorithm and 67.5 hours (two and a half days) for the GA
when compared to the MSA algorithm.

The GA can take the most advantage of parallel computing as each DNA can be run as a
separate thread. From the application standpoint, every simulation usually needs one cen-
tral processing unit (core) of the computer. The classical algorithms are run in series, so they
use one core per iteration. The performance of SA is very good in terms of solution quality,
but the potential for parallelization is limited. Only the difference exploration methods run-
ning in parallel can be assigned to different threads. The SA generates a maximum of three
new path flow patterns (liquid method) per iteration and which must be simulated at once.
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TABLE 3.2 – Solution quality and performance indicators

Indicator/

Method

Number of

simulations

Incomplete

travels (%)
Violation

Final

AGap

CT

[Hours]

Improvement to CT

compared to MSA

MAX number

of cores used

MSA 1485 6,04% 35.34% 31.12 183.74 - 1
MSAR 1145 5.48% 9.01% 11.19 175.41 4.54% 1

Gap-based 1512 6.71% 22.70% 23.90 186.16 -6.13% 1
SA 2317 5.07% 2.61% 5.05 147.86 14.85% 3
GA 9242 5.26% 3.09% 7.27 116.10 21.48% 12

Therefore, we use a maximum of 3 sub-methods and then three threads, and finally three
cores for the simulation process. For the GA algorithm, according to PS, Cr, and the muta-
tion rate, we will have a maximum of 20 new individuals (children) from the GA-operators
and the GA Inner. We limit the number of cores to 12 because all the experiments are con-
ducted on a 64-bit personal computer with 12 cores. If the number of new individuals is
bigger than 12, the algorithm executes in two successive phases, the first 12 simulations in
the first phase and the remaining individuals in the second phase.

To analyze the behavior of the algorithms, the inner loop convergence patterns of the
algorithms are presented in Figure 3.8. As we are looking for the closest solution to perfect
UE (AGap = 0), the value of AGap was not used as a stopping criterion. Before analyzing
the convergence pattern, we explain why fluctuations exist in the convergence figures. First,
when the outer loop index is changed, a new shortest path is added to the system, and
the inner loop AGap is calculated by considering the new shortest path, so AGap increases
for the first inner loop and then decreases after executing the inner loop iterations. The
second reason is that the swapping algorithm does not necessarily improve the AGap at
every iteration. The outcome will be even worse when using trip-based approaches because
their discrete nature makes them less stable. Thus, we expect more variations, especially
when the step size is fixed as in classical methods.

Figure 3.8(a) shows that MSA and Gap-based algorithms are dominated by MSAR. The
convergence pattern of MSA shows that by increasing the inner loop index, the flexibility
of the method for exploring the solution space is decreased. The same scenario occurs for
the Gap-based method with one major difference, which is the high searching flexibility at
the beginning of the process. This stems from the gap criterion in the swapping formula.
However, decreasing the step size prevents the Gap-based method from finding a better
solution. The MSAR algorithm also suffers from the step size, but with ranking technique
it is able to find a better solution than the other classical algorithms. We keep the MSAR in
Figure 3.8(b) in order to compare it with meta-heuristic algorithms.

The SA algorithm has a regular variation behavior in each outer loop, which corresponds
to the three optimization phases. The gas phase has no limitation for exploring the solution
space; hence, we have high variations at the beginning of the outer loop. Then, the variation
is decreased in the liquid phase and afterwards the SA algorithm looks for the local optimum
in the solid phase. This approach finds the best UE solution in comparison with the other
algorithms.

Two values represent the convergence pattern of the GA algorithm in Figure 3.8(b). The
lower value (GA_Min) is the best solution in the solution population of GA, and the other
value (GA_Max) represents the worst individual of the current population. The interval
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(a)

(b)

FIGURE 3.8 – Convergence patterns for the inner loop iterations of the swapping algorithms.
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between two AGap values shows the range of the other individuals in the population. The
initial population at the beginning of each outer loop is generated randomly, so the new
shortest path attracts users before starting the inner loop iterations. Note that the outer loop
finds the new shortest path and it has zero flow in the final solution of the previous outer
loop. Thus, the newly generated solutions for the initial population decrease the variation of
AGap compared to the other algorithms when starting a new outer loop. During the inner
loop, the quality of the best solution never increases because the top ten solutions are always
kept. The range of population AGap is decreased until the process converges. In GA, with
two layers of optimization, we consider a wide range of solutions at each iteration while the
algorithm has less focus on finding the local optimum. The parallel simulation framework
helps GA to converge faster than the other methods with minimum CT.

3.7 Discussion

This chapter has introduced a new branch of optimization algorithms for simulation-based
DTA models. Two meta-heuristic algorithms were applied to solve the network equilib-
rium problem. The SA algorithm has three layers of optimization for searching the solution
space. The algorithm starts in the gas phase and searched the feasible solution space with-
out limitations. Then, the temperature of the algorithm is decreased and the search space is
narrowed by shifting the optimization process from the gas phase to the liquid phase and
then to the solid phase (Figure 3.2). In the GA framework, a new layer in the optimization
process has been added to account for correlations between OD assignments (Figure 3.4).
Moreover, GA considers a set of solutions instead of a single solution at every iteration.
Both algorithms were implemented using parallel computing for calculating the UE in the
DTA model. The new algorithms were applied to the real large-scale network of Lyon6e
+ Villeurbanne in a simulation-based DTA model for a time period of two hours. To com-
pare the SA and GA with existing methods, we have considered three algorithms from the
classical approach in the literature: the MSA algorithm, which is one of the commonest so-
lution algorithms implemented in the field of DTA, and two recent extensions of the MSA
algorithm for simulation-based DTA, namely MSAR and Gap-based algorithms.

The results show that meta-heuristic algorithms dominate classical methods. They pro-
vide wide coverage when exploring the solution space. Hence, they find a better solution in
terms of closeness to the optimal UE solution. The SA has provided the best solution, which
was significantly better than the best solution of obtained by the classical methods (MSAR).
The parallel simulation framework helped the meta-heuristic algorithms to run more simu-
lations compared to serial algorithms and speeded up the exploration process by more than
37%, meaning that we could obtain the solutions about three days in advance.
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Conclusion of part I

In this first part, we have investigated solution algorithms for finding user equilibria by con-
sidering trip-based dynamic network loading. This problem is computationally challenging
for large-scale networks. A large body of literature exists and proposes solution algorithms.
Most of the works done are based on fixed-point algorithms and iterate in series to improve
the current solution.

We, first, performed a full benchmarking of existing algorithms. Second, we highlighted
the current drawbacks of the swapping process and proposed several solutions to overcome
them and speed up convergence. Numerical experiments were performed for different net-
work sizes and levels of saturation in order to compare different algorithms. The results
showed that network size and saturation level have an impact on the performance of solu-
tion algorithms to solve the DTA problem. For instance, the Method of Successive Average
algorithm, the most common algorithm in the literature, exhibited good performance in the
small-scale network, but it did not provide a good solution in terms of closeness to optimal
at large-scale.

The investigation in Chapter 2 showed that the computational costs of the classic algo-
rithms were prohibitive for the large-scale network. We noticed that the process of simulation-
based optimization was performed serially. This fact motivated us to design a new frame-
work in Chapter 3 to take advantages of parallel computation. The new framework allows
not only executing several simulations at the same time but also using the larger class of
evolutionary algorithms to solve the DTA problem. Therefore, two new meta-heuristic al-
gorithms were used to overcome the disadvantages of the serial algorithms: the first one
derived from the Simulated Annealing (SA) framework and the second one from that of Ge-
netic Algorithm (GA). The new design appears promising to solve the DTA problem in the
large-scale network.

The contributions of this part can be summarized as follows:

X Benchmarks of quality and speed for solution algorithms in the literature for different
network sizes and levels of saturation. The best configuration of the classical solution
algorithm that achieved the best compromises between quality and computation time
for all network sizes and saturation levels were presented.

X Identification of the solution algorithms’ drawbacks in the domain of simulation-based
DTA. The study of classical optimization framework showed that the exploration of
the solution space in order to find the equilibrium is very limited because of the serial
process.

X Application of the parallelization approach to the simulation-based equilibrium calcu-
lation. The parallel simulation framework helps the solution algorithms to run more
simulations compared to serial algorithms and amplifies the exploration process.

X Proposition of meta-heuristic algorithms (SA and GA), for the first time, to solve simulation-
based DTA. The results show that meta-heuristic algorithms dominate classical meth-
ods. They provide wide coverage when exploring the solution space. Hence, they find
a better solution in terms of closeness to the optimal UE solution.

The investigations conducted in this part have been focused on the solution algorithm to
find network equilibrium in the large-scale network. However, as we have multi-modality
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in real test cases, there exist multiple equilibria in the system. The tools provided in this
part can find one of the equilibria. Therefore, one question is: since there are possibly sev-
eral equilibria, does the output of DTA models represent the effective equilibrium of a real
network? Note that we consider within-day DTA problems in this part, while the day-to-
day approach may help identify the set of equilibria. In addition, the network design can
be changed in the long term (e.g., several new transportation facilities are added to the sys-
tem). The way this long term process is carried out can have an impact on which equilibrium
solution is reached at the end by the long-term equilibration. Thus, further research direc-
tions should now investigate (i) the existence of multiple equilibria and (ii) the impact of the
history of the network on the end-result that represent the real state of the network.

Moreover, most studies in the literature stop after calculating the equilibrium path flow
distribution. However, analyzing the output of DTA models may derive practical insights.
Thus, designing a framework to analyze the equilibrium solution and propose improve-
ments to the system should also be included in our scope. All these research directions are
then detailed below:

O Investigate the existence of multiple equilibria in practice.

O Evaluate the impact of the network design history on the final equilibrium in the mul-
timodal context.

O Study the equilibrium path flow distribution in order to design a framework to analyze
the equilibrium.

O Investigate the possibility of a control strategy application based on equilibrium anal-
ysis in order to improve system performance.
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Applying DTA method to new network
problems





Introduction

This part aims to use the optimization tool that was previously developed to investigate new
network problems. Analyzing the properties of the network equilibria is the main focus. The
purpose is to identify the opportunities wherein the system performance can be improved.
In this perspective, close attention is paid to the non-unicity of network equilibria and the
differences between the path flow distributions of the various equilibria.

This part is split into two different studies. The first one deals with the unicity of the user
equilibrium in a real multimodal large-scale network. In order to investigate the existence of
multiple equilibria, the day-to-day approach is applied to address the equilibration process.
In particular, we look for multiple equilibria when we have multiple network design history.
The second study investigates the impact of different demand levels on distinct equilibria
(e.g., User Equilibrium and System Optimum). The idea is to analyze path flow distribu-
tions pertaining to different equilibria and find situations wherein control strategies can be
effective. To this end, the road banning strategy is applied to a real test case.

In both studies of this part, the ideas are first introduced in a static context and evaluated
analytically. Then the study is extended to a dynamic settings in order to address the real
test case.
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4.IMPACT OF NETWORK DESIGN
HISTORY ON MULTIMODAL UE

Dynamic loading of the multimodal transportation network leads to multiple solutions for
user equilibrium because the link travel time function is no longer strictly monotone. The
immediate consequence is that the final solution not only depends on the initial state but
also on the convergence process. This chapter focuses on the second aspect when consid-
ering a long-term, day-to-day learning process. In particular, it investigates the network
design history, i.e. the long-term evolution of the network, including opening new multi-
modal options and its impacts on the final network equilibrium. First, the analysis focuses
on static network loading with different successive configurations. This structure makes
analytical derivations possible, highlighting the problem. Then, a more realistic setting is
studied in simulation. A large-scale multimodal network with the flexible opening over
time of three possible transport facilities is investigated to evaluate the uniqueness of the
final equilibrium.

This chapter is an updated version of the paper:

Ameli, M., Lebacque, J. P. & Leclercq, L. (2019). Non-unicity of day-to-day multimodal
user equilibrium: the network design history effect. Transportation Research Part B:
Methodological, (under first round of review).



CHAPTER 4. IMPACT OF NETWORK DESIGN HISTORY ON MULTIMODAL UE

4.1 Motivations

The issue of unicity for UE has long been a subject of concern in the literature on traffic
assignment problems (Beckmann et al. (1956); Daganzo (1985); Mounce & Smith (2007); Iryo
& Smith (2018)). Iryo (2015) defines the unicity of the UE solution as one of two situations:
only a unique link flow value vector meets UE requirements, or the solution set for the
network equilibrium model is convex. A key argument for unicity is a strictly monotone
travel time function with respect to the number of travelers that use a path (Smith (1979);
Aashtiani & Magnanti (1981); Florian & Hearn (1995)). Traffic assignment models address
the network equilibrium problem, including the travel time calculation, mathematically.

The Static Traffic Assignment (STA) problem is defined when the system properties, e.g.,
Origin-Destination (OD) matrix and the link flows, are assumed to be time-independent. On
the other hand, if time dependence is considered, the problem becomes a Dynamic Traffic
Assignment (DTA). DTA is much more complicated than STA, both computationally and
conceptually (Peeta & Ziliaskopoulos, 2001). Here, we first investigate the problem analyti-
cally in STA by taking a flow-based approach and then address a real case using a trip-based
DTA model.

Much research has been performed on the unicity of STA solutions with several assump-
tions and limitations on the traffic network model (Netter (1972); Dafermos (1982); Nagur-
ney (1984); Wynter (2001); Wie et al. (2002); Florian & Morosan (2014); Sun et al. (2014)). For
DTA models, the conditions of unicity have been appropriately reviewed by Iryo (2013).
He explained that in the large-scale DTA problem, evaluating the solution set is not feasible,
and almost all the studies address unicity in small and medium traffic networks by applying
analytical approaches. This study takes a different angle, as we are interested in situations
where unicity conditions do not hold. The following factors may drive a dynamic traffic
network to multiple equilibria:

• The link cost function, i.e., the bottleneck model vs. whole link model (Friesz et al.
(2001); Lindsey (2004); Silva et al. (2016); Osawa et al. (2018))

• The transportation mode cost function.

• The transportation mode interaction model (Jiang et al., 2016).

• The symmetry of the network, i.e., loopy network (Iryo, 2011).

• Multi-class users (Marcotte & Wynter (2004); Konishi (2004); Nilsson et al. (2018)).

One very classical setting in which multiple equilibria can be reached is the multimodal
traffic assignment problem. In a multimodal urban transportation network, users have ac-
cess to different modes, e.g., car, bus, and metro, which changes their characteristics when
they swap between modes (Corman et al., 2017). Therefore, according to the transportation
mode cost function and the mode interaction model, the monotonicity condition simply
does not hold (Mounce & Smith, 2007). In such cases, the final equilibrium not only de-
pends on the initial state but also on the convergence process. This study focuses on the
second aspect.

To investigate the multiple equilibria problem with multimodal settings, we consider a
day-to-day convergence process. This considers that a fraction of users may update their
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4.2. Multimodal STA test case

path choice for the next day in the light of the traffic conditions that they experience during
the current day. Users swap to a path with minimum travel time as they try to optimize
their own gain (Mounce, 2007). When unicity holds, this process converges to the single
equilibrium loading (Zhao et al., 2018). Here, we focus on what happens when multi solu-
tions can be reached and on what drives the system to one equilibrium rather than another.
More specifically, when considering a long-term day-to-day process, the final network may
not be built at once but corresponds to the successive opening of additional facilities. In this
study, we consider that the road network is stable over the entire time horizon and that the
public transport network is subject to the regular opening of new metro lines. We define
this opening process as the network history and investigate how it would affect the final
equilibrium state of the network.

First, we perform an analytical investigation and demonstrate the existence of multiple
equilibria with respect to the network history of day-to-day STA. Second, we address the
same question through simulation for a more complex test case (large-scale network, dy-
namic traffic assignment, multiple configurations for the network history). The analytical
study highlights the causes for the existence of multiple solutions and the influence of net-
work history. The numerical study is performed to investigate in greater depth and show
how different the final solution can be. A specific finding is that several network history
configurations lead to shorter total travel times for the system than others, and to differ-
ent mode ratios in the system. This may be of interest when considering public transport
planning.

The Static test case and methodology of the STA problem is presented in Section 4.2.
The non unicity of equilibrium for bi-modal test case (car-bus) is discussed in Section 4.3.
The multiple equilibria in multimodal STA problem is discussed in Section 4.4. Section 4.5
presents the simulation-based DTA model, the multimodal large-scale network and the
learning process of day-to-day equilibration. The numerical results are presented and ana-
lyzed in Section 4.6 and finally we conclude this chapter in Section 4.7.

4.2 Multimodal STA test case

In this section, we perform an analytical exploration of the non-uniqueness of the network
UE solution in a day-to-day multimodal framework. Netter (1972) was the first to study
multiple equilibria for a bi-modal (car and bus) network loading for a two-arc network with
linear cost functions. Wynter (2001) extended the study by designing a numerical example
with polynomial cost functions on the same graph. Here, we focus on the impact of network
design history on the final network state. The general idea is that the day-to-day process
represents the way in which the users learn about the network state. Each day, a fraction of
users adjust their paths to account for the travel times experienced the previous day. The
system is known to converge the solution to a stable solution under this process, but the
solution may differ depending on the initial state and the learning process. Introducing the
possible options successively and in different orders results in the same final network design
but through different learning paths.

Let us consider a network with two nodes (N = {O, D}) and three directed paths from
O to D (A = {1, 2, 3}). There are three modes of transportation (M = {C, B, T}) which are
referred to as car, bus and train (metro) (Figure 4.1). There are two bus lines between origin
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and destination. Paths 1 and 2 are shared between car and bus and path 3 is the metro line.

FIGURE 4.1 – A network with a single OD pair, three paths and three transportation modes.

The notations are:

a: Index of path, a ∈ A.
m: Index of mode, m ∈ M.
MMV : The set of motor vehicles (car and bus), MMV = {C, B}
Dm: Demand of mode m.
cm: Minimum cost for mode m.
cm

a : Cost of path a for mode m.
f m
a : Flow of mode m on path a.

According to the definition, the total flow of each mode is:

Dm = ∑
a

f m
a ; ∀ f m

a ≥ 0, m ∈ MMV (4.1)

DT = f T
3 (4.2)

The demand for public transportation, DPT is computed as below:

DPT = ∑
m

Dm, ∀m = B, T (4.3)

The cost for path a and mode m not only depends on the path flow for this mode but also
the path flow of other modes as all vehicles interact.

cm
a = gm

a + ∑
µ∈MMV

hm,µ
a fµa , ∀m ∈ MMV , a ∈ A (4.4)

cT
3 = c3 +

α CapT
DT + CapT

(4.5)

The cm
a is defined as a linear function where gm

a is the free flow cost of mode m on path a and
hm,µ

a is the impact factor of fµa on the cost of mode m. cT
3 denotes the cost of the metro (train)

which is independent of the motor vehicles and depends on the capacity of a train (CapT).
Let Captotal denotes the total capacity of the train line. We assume that Captotal ≥ DPT.
In general, for long term equilibrium, the capacity of the train line would be adapted to
DT and DPT: with a higher demand the frequency would be increased and the travel cost
diminished. Note that cT

3 is a decreasing function of the frequency of trains. In static case,
C3 andα are constant values.
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According to the Wardrop equilibrium definition, the network is at the UE flow distribu-
tion if and only if for every path a:

f m
a (cm

a − cm) = 0, ∀m ∈ M, a ∈ A (4.6)

Therefore, when the equilibrium is reached, the cost of all used paths of mode m is equal to
cm. The costs are assumed to be asymmetric: the effect of cars on buses is not the same as the
effect of buses on cars. In other words, in the network (Figure 4.1) for one or more modes
m 6= µ:

∂cm
a

∂ fµa
6= ∂cµa

∂ f m
a
∀a = 1, 2, ∀m,µ = B, C (4.7)

Here, we are interested in investigating the equilibrium situation where intermediate changes
in the network design occur. In other words, the final network is always the same, but this
may result from different intermediate steps, see Table 4.1. Scenario 1 is when all modes
were active from the beginning. Scenario 2 has no metro line at first place. Thus, an in-
termediate equilibrium state (UE) is first achieved through the day-to-day learning process
before the metro line is added. Then, the metro line is added, and the second convergence
process proceeds. Scenario 3 assumes that there are only cars and trains, and no buses dur-
ing the first convergence period. Then buses are added and a second convergence process
is initiated starting from the equilibrium obtained by the first process. We calculate the final
network equilibrium for all the scenarios in Table 4.1.

TABLE 4.1 – The scenarios of network design for the mono-OD test case

4.3 Bi-modal equilibrium analysis: the car-bus case

In order to simplify the presentation of equilibrium analysis, we first explore the non-uniqueness
of the network without train (DT = 0), i.e., we analyze the equilibrium solution(s) for the
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initial equilibrium state of scenario 2 in Table 4.1. The demand data are DPT and DC. Let us
express costs on paths 1 and 2 as functions of the flows f m

1 , for m ∈ MMV). Therefore, the
demand and cost functions are as follows:

DB = DPT (4.8)

f m
2 = Dm − f m

1 , ∀m ∈ MMV (4.9)

cm
1 = gm

1 + ∑
µ∈MMV

hm,µ
1 fµ1 , ∀m ∈ MMV (4.10)

cm
2 = gm

2 + ∑
µ∈MMV

hm,µ
2 Dµ − ∑

µ∈MMV

hm,µ
2 fµ1 , ∀m ∈ MMV (4.11)

To avoid the repetition, we define ḡm
2 :

ḡm
2 = gm

2 + ∑
µ∈MMV

hm,µ
2 Dµ , ∀m ∈ MMV (4.12)

The first assumption is that the Jacobian matrix (∇c( f )) of the car and the bus cost func-
tions is not symmetric positive definite (c( f ) is not the gradient of a convex function). Thus,
the cost functions are not monotonic. The data for the bi-modal equilibrium are DC and DB.
The equilibrium condition for the network with two modes has two possibilities for each
path: the path is used in the equilibrium path flow distribution or not. Here, we discuss the
possibilities for path 1. Figure 4.2 presents the cost-flow diagram of the network based on
path 1 and on the independent flows f m

1 (using Equations 4.9 and 4.11).

FIGURE 4.2 – Cost-flow diagram based on path 1

If cm
1 < cm

2 , we need to increase f m
1 , thus we can show in the plane ( f C

1 , f B
1 ) the natural

direction of variation for flows is ∆cm = (cm
2 − cm

1 )m=1,2. According to Figure 4.2 and Equa-
tion 4.9 (when there is no train), we have to draw ∆cm = cm

2 − cm
1 = 0 based on the flow

value of f m
a to show the equilibrium point. The flows f m

2 can be considered dependent vari-
ables and by Equation 4.11 we can draw the curves ∆cm = 0 of the two vehicular modes on
the flow diagram of path 1 in the ( f C

1 , f B
1 ) plane. The configuration of the diagram depends

on the value of hm,µ
a . In order to draw the two linear flow diagrams, we need at least three

p. 102 / 169



4.3. Bi-modal equilibrium analysis: the car-bus case

points if they have an intersection. The conditions are extracted from the possible common
point:

∆cm = cm
2 − cm

1 = ḡm
2 − gm

1 − ∑
µ=1,2

(hm,µ
1 + hm,µ

2 ) fµ1 = 0 (4.13)

According to the Equation 4.13, we can extract the slope of ∆cm diagram. The intersect with
f B
1 = 0 is:

FC
1 (m) = (ḡm

2 − gm
1 )/(h

m,C
1 + hm,C

2 ) (4.14)

and the intersect with f C
1 = 0:

FB
1 (m) = (ḡm

2 − gm
1 )/(h

m,B
1 + hm,B

2 ) (4.15)

Therefore, the slope of ∆cm = 0 line for mode m on path 1 is as follows:

1

(hm,B
1 + hm,B

2 )
/

1

(hm,C
1 + hm,C

2 )
= ρm =

(hm,C
1 + hm,C

2 )

(hm,B
1 + hm,B

2 )
(4.16)

Thus, with ρm we can conditionally draw the flow diagram of ∆cm = 0 for two modes on
path 1. There are three possibilities: both modes are used, only cars are used, only buses are
used. In the case where the two modes are used, i.e., f m

1 ∈]0, Dm[, we obtain:

−gm
1 + ḡm

2 = ∑
µ=1,2

(hm,µ
1 + hm,µ

2 ) fµ1 ∀m ∈ MMV (4.17)

The diagram configuration depends on the values of ρm. We need to know the relation of
the flow diagram’s slope for mode B (ρB) in relation to the slope of the line ∆cC (ρC). In order
to consider a day-to-day process in static case, we define the network equilibrium problem
as a projected dynamical system. Nagurney & Zhang (2012) prove that projected dynamical
systems find the equilibrium point(s) by producing the solution trajectory (mapping func-
tion) based on a fixed point theory.

The projected dynamical system of traffic assignment
Let K be the rectangle [0, DC]× [0, DB] of admissible flows based on the constraints 4.1.

Let ∆c : R2 7→ R2 be the vector field given by
(
∆cC, ∆cB) and let f =

(
f C
1 , f B

1
)

be the vector
of independent path flows. Let ΠK( f , .) denote the projector on the tangent cone of K at f .
The projected dynamical system PDS( f , ∆c( f )) is defined by:

ḟ = ΠK( f , ∆c( f )) (4.18)

Let ΓK( f )
de f
= ΠK( f , ∆c( f )) be the projection of the field ∆c( f )) on K. The point f ∗ is an

equilibrium point (i.e) satisfies Equations 4.1, 4.4, and 4.6, if and only if ΓK( f ∗) is equal to
zero, which means that f ∗ is a fixed point of the projected dynamical system PDS( f , ∆c( f )).
Thus the field lines (trajectories) of ΓK in the solution space can be used to describe the
day-to-day STA learning process of travellers.

Figure 4.3 presents the flow diagram of path 1 depending on the respective values of ρB
and ρC. The arrows are cardinal field directions in Figure 4.3 and indicate how the solution
moves toward the equilibrium.
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In each region of the diagram, the network state is not at equilibrium, so there are two
possibilities for ∆cm. If ∆cC > 0, which means that the cost of the car on path 1 is lower
than that on path 2, so a part of the flow of path 2 will be shifted to path 1, thus on the
flow diagram of path 1, f C

1 increases and the network state moves to the right. In a similar
manner, when ∆cC < 0, f C

1 decreases and the solution moves to the left. For ∆cB, if the
flow of bus lines shifts from one path to another, according to Equations 4.8 and 4.12, lines
f B
1 = DB and ∆cB = 0 are moved. Therefore, if ∆cB > 0, as with the car, a part of f B

2
is swapped to path 1, which means f B

1 increases and the network state moves up. Finally,
when ∆cB < 0, f B

1 decreases and the solution moves down. Consequently, the day-to-day
STA (PDS( f , ∆c( f ))) changes the state of the network until the UE is reached.

By definition, the network is at UE state where the result of the arrows is zero at the
current point, which corresponds to a fixed point of the PDS( f , ∆c( f )). This refers to the
following conditions for the equilibrium solution based on ∆cm:

- Either If ∆cm = 0; ∀m

- Or If the result of arrows is zero and the other arrows direct the solution to the non-feasible
region (violate Equation 4.1)⇒ ∆cm is zero for mode m and fµ1 = fµ2 = 0 and cµ1 , cµ2 >
cm

1 = cm
2 for mode µ where m 6= µ and we reach the equilibrium. This equilibrium is

located on the axes or demand borders ( f B
1 = DB and f C

1 = DC)

If ρB > ρC the flow diagram for this configuration is presented in Figure 4.3(a). Based on the
initial point, we have three possible equilibria.

Note that the definition of the equilibrium point is different from the stationary point in
this context. The stationary point is the stable equilibrium in our test case. The stability of
the solution can be analyzed based on the PDS( f , ∆c( f )). The unstable equilibrium may
exist in the solution space, where the ∆cm = 0, but the PDS( f , ∆c( f )) of neighbor points
lead the system to another equilibrium. In other words, the UE solution E is stable only if,
when it moves by step size ε; ε → 0 in any direction in the feasible region, the day-to-day
process converges the solution to E. By this definition, the intersection of the two diagrams
is an unstable equilibrium, and the two other equilibria are stable.

(a) ρB > ρC (b) ρB < ρC

FIGURE 4.3 – The equilibrium solution(s) on the flow diagram of path 1
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Figure 4.3(b) presents the flow diagram where ρB < ρC. This configuration leads to a
unique stable solution at the intersection of two flow diagrams. Consequently, in the first
configuration, we will have a conditional equilibrium based on the values of ρC, ρB.

Solution set =

{
ρB > ρC 3 equilibria, 1 unstable and 2 stable,
ρC > ρB 1 equilibrium, stable.

(4.19)

If we consider other configurations for ρB > ρC where the two diagrams ∆cC = 0 and
∆cB = 0 do not intersect inside K, we will have a unique equilibrium. For instance, if the
flow line for car (m = C) lies below the bus line (m = B), then there is an equilibrium which
is stable with f B

1 = DB and f B
1 = 0. This configuration is shown in Figure 4.4(a). If the

relation between the flow of two modes on Path 1 is inverse ( f B
1 = 0), we will have a stable

equilibrium according to Figure 4.4(b). If we look at the configuration where two diagrams
intersect (as in Figures 4.3(a)), we do not necessarily obtain multiple solutions. If the in-
tersection is outside the feasible solution, we also obtain a unique solution. Figure 4.4(c)
presents an example when we obtain a unique solution, and two diagrams intersect outside
the feasible region (K).

(a) FB
1 = 0 (b) FC

1 = 0 (c) FC
1 = DC and FC

2 = 0

FIGURE 4.4 – The flow diagram of special cases for ρB > ρC (The intersection is outside K)

Thus, in order to obtain multiple solutions, it is required that the lines ∆cm = 0 inter-
sect inside K and that their slopes are such that the intersection point is unstable for the
PDS( f , ∆c( f )). The resulting conditions are:{

ρB > ρC

(∆cC = 0) ∩ (∆cB = 0) ∈ K
(4.20)

where (∆cC = 0) ∩ (∆cB = 0) is obtained by solving ∆cB = ∆cC = 0 and depends on the
value of DC and DB.

We proved that even with two modes car and bus, we have multiple equilibria. The final
equilibrium is defined by the initial network state before the learning process starts. For
example, if at the initial state, the demand for cars is split into both paths whereas Public
transportation (PT) users only take the metro, then equilibrium will be reached at the bottom
right corner in Figure 4.3(a). If we have the same assignment for cars whereas PT users
take buses, then the equilibrium will be converged to the point at the top left corner in
Figure 4.3(a). Now, we can calculate the final network equilibria for all the scenarios in
Table 4.1.
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4.4 Non unicity of equilibrium states in multimodal STA

4.4.1 Equilibrium analysis for Scenario 1: car-bus-train case

In the first scenario, all modes are active, and the initial state of the network can be any path
flow distribution with respect to constraints 4.1- 4.3, and 4.21.

DPT = DB + DT (4.21)

where DB depends on DT, which is determined by solving cT
3 = cB. It should be remem-

bered that we consider the train as an independent travel mode, which has an impact on
the demand for the bus. In this case, the flow vector of independent flows ( ḟ ), the feasible
domain K for the independent flow variables, and the field variables (∆c) are as follows:

ḟ = ( f C
1 , f B

1 , DT) (4.22)

{
0 ≤ f C

1 ≤ DC

0 ≤ f B
1 + DT ≤ DPT

(4.23)

∆c =


∆cC = cC

2 − cC
1

∆cB = cB
2 − cB

1
∆cT = cB − cT

3

(4.24)

Therefore, K = [0, DC] × [0, DPT] × [0, DPT] is shown in Figure 4.5. The PDS( f , ∆c( f )) is
defined by Equation 4.18 with ∆c( f ) is given by Equation 4.24.

FIGURE 4.5 – The feasible solution space (K) when all modes are active

Same as the previous section, the network equilibria are the fixed points of PDS( f , ∆c( f ))
in K. In the sequel, we consider cT

3 a constant. The initial condition to have multiple equi-
libria is cT

3 ≮ cB
a ; ∀ f m

a , which means that the cost of the train is not always less than the cost
of the bus lines. Otherwise, only cars and trains will be used, where both modes are inde-
pendent, and consequently the equilibrium is unique. Moreover, if we have cB

a ≮ cT
3 ; ∀ f m

a ,
which means that CT

3 is comparable with the cost of the bus, so at the equilibrium state a
part of DPT takes the train. Otherwise, the train will not be used (DT = 0), and we could
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have multiple equilibria based on the analysis in Section 4.3. Consequently, for scenario 1,
we will have conditional equilibrium based on the values ρC, ρB, and cT

3 .

Solution set =


cT

3 < cB
a ; ∀a, f m

a → 1 equilibrium with DT = DPT ,

o.w.→

ρB > ρC →
{
(∆cC = 0) ∩ (∆cB = 0) ∈ K → 3 equilibria,
o.w.→ 1 equilibrium,

ρB < ρC → 1 equilibrium.
(4.25)

In the case of multiple equilibria, based on the initial path flow distribution, we can converge
to three possible equilibria based on the day-to-day process. Consequently, similar to bi-
modal equilibria, the initial state of the network, determines the final equilibrium in Scenario
1.

4.4.2 Equilibrium analysis for Scenario 2: (car-bus)-train case

In Scenario 2, We have DT = 0 at the initial equilibrium state when only car and bus lines are
active. Thus DPT = DB. The equilibrium is reached in the network, excluding the metro line.
This problem is already discussed in Section 4.3. Here, we want to investigate the situation
where we have multiple equilibria, so let us assume that we have multiple solutions at the
equilibrium state by holding conditions 4.20 and cT

3 ≮ cB
a ; ∀ f m

a where all modes are active,
and Equation 4.21 holds. Figure 4.6 presents the nine possibilities for multiple equilibria
according to the slope of two figures. These possibilities are the starting point for scenario 2,
where the metro line is added, and the convergence process starts. In Figure 4.6, the unstable
equilibrium is the intersection of two lines and presented by a point I and the two stable
equilibria are points P and Q .

The general analysis for all cases in Figure 4.6 is complicated. There are few studies
that provide only numerical examples to show multiple equilibria in a multimodal context.
Netter (1972), Wynter (2001) and Marcotte & Wynter (2004) presented numerical examples
which correspond to the case in Figure 4.6(a). Here, we consider Figure 4.6(b) to analyze the
equilibria solutions.

4.4.2.1 car-bus equilibria in case of Figure 4.6(b)

Before adding the train to the system, we need to analyze two stable equilibria. For point
P , we have the following conditions:



DT = 0
f C
1 = 0

f C
2 = DC

f B
1 = DPT

f B
2 = 0

(4.26)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIGURE 4.6 – Initial equilibrium state for Scenario 2: The flow diagram of path 1 when ρB > ρC

Therefore, the OD cost at point P is as follows:{
SC(P) = cC

2 = gC
2 + hC,C

2 DC ≤ gC
1 + hC,B

1 DPT

SB(P) = cB
1 = gB

1 + hB,B
1 DPT ≤ gB

2 + hB,C
2 DC (4.27)

where, Sm(x) is the OD cost for mode m at point x. Consequently, the feasibility conditions
for the parameters are: {

gC
1 − gC

2 ≥ hC,C
2 DC − hC,B

1 DPT

gB
1 − gB

2 ≤ hB,C
2 DC − hB,B

1 DPT
(4.28)

In the same manner, we will have the following equations for point Q :

DT = 0
f C
1 = DC

f C
2 = 0

f B
1 = 0

f B
2 = DPT

(4.29)
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{
SC(Q) = cC

1 = gC
1 + hC,C

1 DC ≤ gC
2 + hC,B

2 DPT

SB(Q) = cB
2 = gB

2 + hB,B
2 DPT ≤ gB

1 + hB,C
1 DC (4.30)

{
gC

1 − gC
2 ≤ hC,B

2 DPT − hC,C
1 DC

gB
1 − gB

2 ≥ hB,B
2 DPT − hB,C

1 DC (4.31)

Note that Equations 4.28 and 4.31 are equivalent to the fact that (i) the intersects of ∆cm = 0
with f B

1 = 0 are not less than Dc if m is car and not bus; (ii) the intersects of ∆cm = 0 with
f C
1 = 0 are not less than DB if m is bus and not car. By considering Hm,µ = hm,µ

1 + hm,µ
2 , we

can summarize the conditions for the parameters in Equations 4.28 and 4.31:{
HC,CDC < HC,BDPT

HB,BDPT < HB,CDC (4.32)

From Equations 4.27 and 4.30, we deduce a conditions for the data parameters (DC and
DPT = DB) to yield the situation of Figure 4.6(b). For instance, if gm

1 = gm
2 , then DC and DB

should satisfy the following condition:

max

{
hB,B

1

hB,C
2

,
hB,B

2

hB,C
1

}
≤ DC

DB ≤ min

{
hC,B

2

hC,C
1

,
hC,B

2

hC,C
2

}
(4.33)

The Equations 4.27, 4.30 and 4.32 provide the conditions for the parameters to generate
a Figure 4.6(b) type of situation. In the same way, we can calculate the parameter domains
and equilibria set for other cases in Figure 4.6.

4.4.2.2 Adding train to the system

Here, we consider the three equilibria ( P , Q , and I ) as the possible intermediate states,
i.e., the starting point for the convergence process of scenario 2. Now, we add the train to the
system. If cT

3 > cB
a ; ∀a ∈ A, then the train is not used and does not change the system, also, if

cT
3 < cB

a ∀a ∈ A, then the users stop using the bus and we will have two independent modes
(car and train) and the given demand which converge the system to a unique equilibrium.
The challenge is when the cost of the train is comparable to the cost of the bus, and the
system moves to the new equilibrium.

For ∆cB, if the flow of bus lines shifts to the metro line or the reverse, according to Equa-
tions 4.12 and 4.21, lines f B

1 = DB and ∆cB = 0 are moved. Therefore, if ∆cB > 0 there is a
possibility that a part of f B

2 is swapped with the metro line and the network state point on
the flow diagram does not move. Otherwise, as with the car, f B

1 increases and the network
state moves up. Finally, when ∆cB < 0, f B

1 decreases and the solution moves down.
Indeed, when the train enters the system, two lines move in all cases in Figure 4.6:

• Line f B
1 = DPT: It changes to f B

1 = DB = DPT − DT and starts decreasing. If one user
swaps from this pattern to the train, then the border is shifted down by 1 unit.

• Line ∆CB
1 = 0: It moves to left and downwards because the flow of the bus shifts to

the train. The translation of this line if one user swaps to the train is hm,B

Hm,B according to
the Equation 4.20.
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Note that line ∆CC
1 = 0 can move in some cases but the line translation directly depends

on the translation of ∆CB
1 = 0. The translation size of line ∆CB

1 = 0 is smaller than line
f B
1 = DPT ( hm,B

Hm,B ≤ 1). Therefore, the line f B
1 = DPT can pass ∆CB

1 = 0 or ∆CC
1 = 0 and point

I in case of Figures 4.6(b), 4.6(d) and 4.6(e). The analysis of the final equilibrium based
on the intermediate state is as follows:

1. The intermediate state is point I : According to the movement of the line, m = B to the
left and downwards, the system will converge to point Q in all cases in Equation 4.20.

2. The intermediate state is point Q : Any movement of the equilibrium will place the
starting point (intermediate state) in the region where the PDS(∆c( f ), f ) pushes the
system to the updated point Q . Thus, the system converges to the unique equilib-
rium.

3. The intermediate state is point P : As with the previous case, any movement of the
equilibrium places the intermediate state in the region that converges to the updated
point P .

We can calculate the new equilibrium P or Q by considering the initial equilibrium. For
instance, at P if the initial state is P̄, then we have:

SB(P) = gB
1 + hB,B

1 (DPT − DT) = CT
3 = SB(P̄)−ε = SB(P̄)− hB,B

1 DT (4.34)

where ε is the difference between CT
3 and the cost of bus at P̄. Therefore, DT = ε

hB,B
1

and

based on Equation 4.21, we have:

DB(ε) = DPT −
ε

hB,B
1

(4.35)

To complete this example, if Equation 4.33 is satisfied, we obtain a stable equilibrium at
point P : 

f C
1 = 0

f C
2 = DC

f B
1 = DB(ε)

f B
2 = 0

(4.36)

Consequently, for the second scenario, we could have two different stable equilibria by
adding a new mode even if the infrastructure is independent. It should be noted that not
all situations are reachable at the end; secondly, that the final equilibrium state of Scenario 2
depends on the initial state which is determined by bi-modal equilibrium (Section 4.3), i.e.,
the network design history defines which states are the real possible final states.

4.4.3 Equilibrium analysis for Scenario 3: (car-train)-bus case

4.4.3.1 Car-train equilibrium analysis

For the third scenario, the intermediate state is the equilibrium state of the system when just
car and train are active ( f B

m = 0 ; ∀m). Therefore, We have two independent modes with
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fixed demand. In this case, the equilibrium is unique because DT = DPT, i.e., the totality
of public transportation demand is assigned to train, and there are two independent linear
strictly monotone functions for cars.{

cC
1 = gC

1 + hC,C
1 f C

1
cC

2 = gC
2 + hC,C

2 f C
2

(4.37)

The demand DC is spread between paths 1 and 2. Finally, we have one of the following
possibilities as a function of gC

a , hC,C
a ; ∀a:

• Only path 1 is used: f C
1 = DC ; f C

2 = 0 ; CC
1 ≤ CC

2

• Only path 2 is used: f C
1 = 0 ; f C

2 = DC ; CC
1 ≥ CC

2

• Both path are used: f C
1 , f C

2 ≥ 0 | CC
1 = CC

2 ; f C
1 + f C

2 = DC

A unique starting point for scenario 3 is located on line f B
1 = 0 ( f c

1 axis) in the flow diagram
of path 1 (Figure 4.6) at the intersect of ∆cC = 0 with f B

1 = 0. Finally, the unique equilibrium
for car and train network on the path flow diagram of path 1 is as follows:

DT = DPT

f C
1 =

gC
2−gC

1 +hC,C
2 DC

HC,C

f B
1 = 0

(4.38)

4.4.3.2 Adding bus to the system

When the bus lines are added to the system, the initial situation is the car-train equilib-
rium 4.38 and the cost for bus lines are:{

cB
1 = gB

1 + hB,C
1 f C

1
cB

2 = gB
2 + hB,C

2 (DC − f C
1 )

(4.39)

where f C
1 is given by Equation 4.38. The minimum OD cost for bus at the car-train equilib-

rium point is:

SB(C + T) = min
{

cB
1 , cB

2

}
(4.40)

If the cT
3 ≤ SB(C + T), public transportation travellers have no incentive to switch mode

to bus. From a mathematical point of view, ∆cm remains at zero and the PDS( f , ∆c( f ))
cannot move the point. If only path 1 or both paths are used, the convergence process starts
in the region where the intermediate solution is located pushes the system to point Q . If
only path 2 is used ( f C

1 = 0), the final equilibrium depends on the mode cost functions.
In this case, one of two stable equilibria (points P and Q ) can be reached in Figure 4.6.
Therefore, we will have a unique equilibrium. If multiple equilibria are possible, the initial
car-train equilibrium determines which equilibrium will be reached at the end of the third
scenario.
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To conclude this section, Figure 4.7 presents the relation between the intermediate state
of the network and the final equilibrium with a different order of mode activation. The
analysis shows that even in the linear STA if we have a different order for opening the
new network facility (Table 4.1) and even with a rational learning process, we converge to
different equilibrium.

FIGURE 4.7 – The convergence of scenarios for the mono-OD test case

4.5 Multi-modal simulation-based day-to-day DTA

In this section, we address the question of network history and multiple multimodal user
equilibria in a more realistic framework. Now, we resort to a dynamic traffic simulator for
the network loading and focus on a real network. Although the setting is more complex,
mechanisms similar to those described in the previous section apply and induce non unicity
of equilibria, and dependence of equilibria on the order of activation of facilities.

4.5.1 Day-to-day network equilibrium model

Consider a network G(N, A) with a finite set of nodes N and a finite set of directed links A.
The period of interest (planning horizon) of duration D is Dmax days indexed by d (d ∈ D =
{0, 1, 2, ..., Dmax}). In a day d, travel time and traffic conditions are calculated by simulation
and the users choose the path for the next day based on the travel time experienced during
the current day. The important notations for introducing the dynamic equilibrium model
are as follows:

W: set of OD pairs.
Pd

w: set of paths for w in day d.
w: index of OD pair, w ∈W.
p: index of path, p ∈ Pw, d.
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πd
w, p: number of users from an OD pair w that are assigned to path p in day d.

Cd
p(αi,βi): Cost of path p in day d.

Cd
w
∗
: minimum Cost of OD pair w in day d.

Note that Pd
w is not necessarily equal to Pd+1

w because the network design can be changed,
i.e., the new transportation facility is added to the network from the next day (d + 1).

As mentioned in previous chapters, in the trip-based DTA problem, the solution space is
discrete, so the goal according to UE discipline is to minimize the gap between path travel
time and the shortest path travel time of the related OD pair for all OD pairs, which is
equivalent to Equation 4.6. In other words, finding the UE situation is equivalent to min-
imizing the delay of each user compared to the optimal option of the associated OD pair
(shortest path) in the network. Using this definition, for each OD pair w ∈ W and for all
paths p ∈ Pw, d, the dynamic traffic network equilibrium with a given travel demand and
user departure time for the trip-based DTA model is reached on day d ∈ D if the following
conditions are satisfied (Smith, 1993):

Cd
p − Cd

w
∗ ≥ 0

πd
w, p(Cd

p − Cd
w
∗
) = 0

πd
w, p ≥ 0

(4.41)

Based on Equation 4.41, we can define a quality indicator for the solutions which is calcu-
lated as the average delay of the network (Janson, 1991) for day d:

AGd =

∑
w∈W

∑

p∈Pd
w

(Cd
p − Cd

w
∗
)

∑
w∈W

∑
p∈P(w,d)

πd
w, p

(4.42)

Note that AGd = 0 when the perfect UE path flow distribution is achieved. The aim of
the day-to-day process is to minimize the Average Gap of the network by considering the
learning curve of the users.

At the end of each day, the users are ranked based on the TC they experience and 50% of
users with the highest TC are allowed to swap to the time-dependent shortest path(s). Note
that changing the swapping rate would only change the convergence speed, not the final
state. Thus, the swap decision is taken by each user based on the Bernoulli trial:

P(Sd = 1) =
EC− EC∗w

EC
(4.43)

where Sd denotes the binary swap decision variable for day d, EC denotes the TC experi-
enced by the user on the current day and EC∗w denotes the minimum TC experienced of the
OD pair w on the current day which is related to the user. Following the result of the trial,
the user decides to swap or not. The day-to-day DTA framework is presented in Figure 4.8,
and detailed in the following:

1. Read network and demand: The network and demand of the scenario designed are
configured.
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2. Initialization: The initial paths are assigned to the users based on the scenario of the
experiment.

3. Traffic simulation: The simulation is executed for the inputs, and the simulator calcu-
lates all variables.

4. All cost functions are calculated by the updated variables from the simulation.

5. Identify the shortest path based on network facilities and access permission of users.

6. Calculate the indicators and check the End condition based on Average Gap (Equa-
tion 4.42):

• IF Average Gap does not change, End the process

• ELSE Update the path flow distribution for the next day by day-to-day process
(Equation 4.43).

FIGURE 4.8 – The day-to-day framework

4.5.2 Dynamic test case

In this work, The Symuvia platform, including the trip-based simulator (Section 1.2.2) and
the command module: SymuMaster (Section 1.2.3) is used in order to compare the solution
of different scenarios. Using the dynamic simulator permits us to consider the large-scale
network of Lyon 6e + Villeurbanne (Figure 4.9(a)) with 1,883 Nodes, 3,383 Links, 94 Origins,
227 Destinations and 54,190 trips. Walking, buses and private cars are initially available
transportation modes in the network. Figure 4.9(b) presents 31 bus lines in the Lyon 6e +
Villeurbanne network includes 176 bus station (Figure 4.9(c)). There are three metro lines
(A, B and C) and 25 metro stations in the network (Figure 4.9(d)). Each metro station has
parking facilities. Carparks are the connectors between the metro grid and the traffic net-
work. Therefore, the traveler can start their trip with a private car then use the carpark to
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(a) Mapping data c©Google 2019 (b) 31 bus lines

(c) 176 bus station (d) 3 metro lines

FIGURE 4.9 – Multimodal traffic network of Lyon 6e + Villeurbanne

take the train. All mode changes during a trip introduce walking time for connection and
possibly a waiting time for the next bus or metro to arrive at the station.

The network is loaded with travelers of all ODs with a given departure time in order
to represent 1.5 hours of the network with the demand level based on the study of (Krug
et al., 2019). The goal is to analyze the final equilibrium solution obtained by a day-to-day
DTA model with different settings corresponding to different successive introductions of the
metro lines.

4.5.3 Experiments scenarios

For each scenario of opening metro lines, we run the day-to-day DTA for 300 days. A quarter
of users only have access to the public transportation system (bus and metro) and the other
three quarters have access to all transportation facilities (private car, bus, and metro) in the
network. Note that bus lines are active for all scenarios. We can open three metro lines at the
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same time and calculate the equilibrium or successively open one metro line every 100 days
and look for the final network state after 300 days. From the viewpoint of optimization, it
means we change the intermediate assignment pattern to find the equilibrium. There are
seven possible orders to activate the metro lines (Figure 4.10). All the scenarios are started
by the final equilibrium solution of the network without metro lines. The initial assignment
pattern of each step is the final equilibrium flow distribution of the previous step (for more
details see Appendix A.1). For Scenario 1, all three metro lines are activated at the same time
and once the day-to-day process is executed in order to equilibrate the system.

FIGURE 4.10 – Chart of experiments

4.6 Numerical results

The full day-to-day process is conducted for all the scenarios, and we verify that all the
simulations converge to a satisfactory UE solution, i.e., the Average Gap of all scenarios is
less than 12 seconds, which shows good quality for the equilibrium in the large-scale net-
work and given the demand level. Figure 4.11 (excluding 4.11(h)) presents the convergence
pattern of the last step of all the scenarios. For instance, Figure 4.11(b) presents the conver-
gence pattern of the last step of the ABC scenario, which means the simulation starts in the
network with all the metro lines, with the equilibrium flow distribution of the AB simula-
tion. The final solution of the AB simulation is obtained by the day-to-day process in the
network wherein only metro lines, A and B, are active, and metro line C is deactivated (see
Figure 4.10). Mathematically speaking, all the convergence patterns correspond to the same
final network design, including three metro lines with different intermediate steps.

Scenario 1 (A&B&C) starts with the equilibrium solution of the network without metro
lines, and three metro lines become active at the same time for the last convergence process.
This explains why the initial Average Gap of this scenario is much larger than others and
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the variation of the Average Gap is larger than in the other figures because the three new
public transportation modes become active at the same time. It should be remembered that
the day-to-day process stops when the Average Gap does not change for two consecutive
days, which occurs for all the scenarios before day 46. Next, we evaluate the final solution
in order to investigate the unicity of the solution.

We calculate the Violation indicator for the final path flow distribution of each scenario.
the Violation indicator was introduced in Section 2.3.2. Figure 4.11(g) presents the network
Violation of the final solution of each scenario. The results show that the quality of each
solution is slightly different.

To evaluate the travel time distribution of OD pairs, we calculate the mean travel time
and the percentage of failed trips for five most crowded OD pairs (highest demand level). A
user fails the trip if they cannot arrive at their destination before the end of the simulation
period. The results are shown in Table 4.2. The variation of Mean travel time and % trip
failed shows that the path flow distribution of the scenario equilibria are different. For
instance, the values of both indicators for scenario BAC are completely different from the
other scenarios, and no two scenarios obtain similar equilibria.

Scenario CBA has minimum mean OD travel time for ODs 1 and 2 but the % trip failed
is not minimum for OD 1. This explains that the impact of the other ODs path flow dis-
tributions prevent several users from finishing their trip even when the corresponding OD
mean travel time is minimum. The system can choose a specific order for opening metro
lines to minimize the mean OD travel time or % trip failed of targeted OD(s). For ODs 3 and
4, scenario CAB provides a minimum mean OD travel time and % trip failed, and finally
scenario BCA has minimum indicators for OD 5.

TABLE 4.2 – Mean travel time (Mean OD TT) [min] and percentage of failed trips (% trip failed) for
top five most crowded OD pairs

Scenario \OD 1 2 3 4 5

A&B&C % trip failed 5.1% 6.3% 2.0% 2.1% 6.5%
Mean OD TT 28.4 47.3 16.8 24.2 38.6

ABC % trip failed 4.2% 6.3% 5.2% 4.1% 7.0%
Mean OD TT 27.1 47.4 16.1 17.4 37.8

ACB % trip failed 4.2% 6.3% 2.0% 2.1% 6.5%
Mean OD TT 26.6 47.3 18.1 23.7 37.7

BAC % trip failed 4.9% 6.2% 2.1% 2.3% 6.9%
Mean OD TT 26.9 54 20.9 26.3 39.6

BCA % trip failed 4.4% 6.2% 4.0% 4.3% 6.5%
Mean OD TT 26.6 47 29 34 37.1

CAB % trip failed 4.5% 6.2% 2.0% 2.1% 7.0%
Mean OD TT 26.6 47.9 15.7 15.6 37.7

CBA % trip failed 5.2% 6.2% 3.3% 3.3% 6.9%
Mean OD TT 26.6 46.7 28.2 29.8 37.7

In order to complete the investigation and show that we have multiple equilibria, we
need to prove that the solutions do not have similar link flow distributions. To do so, we
evaluate the performance of the PT system and the mode choice of users at the equilibrium
state. Table 4.3 presents the usage of PT at the equilibrium state for all scenarios. The number
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(a) Scenario 1: A&B&C (b) Scenario 2: ABC

(c) Scenario 3: ACB (d) Scenario 4: BAC

(e) Scenario 5: BCA (f) Scenario 6: CAB

(g) Scenario 7: CBA (g) Violation of final solution for all scenarios

FIGURE 4.11 – The average gap and violation in the day-to-day process for the final phase of all the
scenarios.
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of users who take metro line A is between 2089 and 2983. This means if we open the metro
line in the order ACB, we will have 42% more users that take metro line A than in the CAB
scenario. This width of interval for metro lines B and C is 1250 and 640. According to the
demand scenario, 13530 users have to use the PT system, and other users have the choice
between the PT system, driving only or both (combined mode). The other criteria in Table 4.3
show that the different orders of opening the metro lines have an impact on attracting users
to use the PT system. In scenario CAB, opening metro line C at the beginning attracts more
users to takes this metro line, and then metro line A and after B provides the intermediate
solutions which finally converge to an equilibrium with the highest number of users using
PT. Opening metro line A before B when metro line C is activated before the final step always
provides a larger number of users using the PT system (e.g., when comparing scenarios
CAB and CBA or ACB and BCA). Moreover, the system can manage the use of bus lines and
metro lines, e.g., the equilibrium for scenario CBA balances the number of users that use
both systems while in other scenarios the share of users who take the bus is larger.

TABLE 4.3 – Public transportation criteria; (#: number of)

Sequence # of users used Metro # of users
used only PT

# of times
PT used

# of times
metro used

# of times
bus usedA B C

A&B&C 2236 3057 3708 15421 24685 9001 15684
ABC 2826 2771 3316 14751 24093 8913 15180
ACB 2983 2636 3678 15336 22780 9297 13483
BAC 2419 3077 3138 13674 25626 8634 16992
BCA 2608 3117 3481 14559 22502 9206 13296
CAB 2089 3886 3564 17284 25983 9539 16444
CBA 2313 2977 3778 15298 20888 9068 11820

The criteria for the users’ choice of mode are presented in Table 4.4 for the equilibrium
state of all the scenarios. The results show that we have a different number of users that
decide to only drive between their OD pairs, and also a different number of vehicles in
the system. Consequently, there are multiple link flow distributions for the end solution of
different scenarios, as we expected from the STA case. Choosing the order of opening new
metro lines can reduce the number of cars in the system by a maximum of 3%. The combined
mode corresponds to the users that start their trip by car and then enter the PT system via a
car-park. Scenario CAB, as explained before, motivates more users to use the PT system and
also choose a combined mode more than scenario A&B&C in which metro lines are active
and empty at the beginning of the experiment. This shows that the intermediate state of the
network has a significant impact on the final UE.

The share of users that use the PT system and total travel time are standard criteria for
evaluating traffic network performance. According to the results in Table 4.4, by open-
ing the metro lines in the order ABC, we can save 600 hours (3%) on average compared
to the other scenarios. The total travel time values of the scenarios are in the range of
[18559.33, 19701.43], which is the range of the potential equilibrium space.

Scenario CAB provides a lower number of cars and the highest percentage of PT system
use in comparison to the other scenarios. Consequently, the system can choose the specific
order for adding new transportation facilities so as to reach equilibrium with appropriate
performance with respect to the indicators targeted.
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TABLE 4.4 – Mode choice criteria; (#: number of)

Scenario Sequence # of users
just drive

# of
vehicles

Users used
Combined mode

Users use
PT

Total travel
time (hours)

1 A&B&C 34142 39459 9.81% 28.46% 19454.22
2 ABC 36348 40267 7.23% 27.22% 18559.33
3 ACB 36351 40325 7.33% 28.30% 19070.50
4 BAC 37488 40516 5.59% 25.23% 18967.44
5 BCA 37014 40389 6.23% 26.87% 19199.75
6 CAB 33351 39325 11.02% 31.90% 19701.43
7 CBA 36334 40265 7.25% 28.23% 18644.19

4.7 Conclusion

In this chapter we investigated the impacts of network design history on day-to-day multi-
modal UE. Generally, in multimodal urban transportation networks, the monotonicity con-
dition simply does not hold. We highlighted the source of multiple equilibria in traffic net-
work systems (Section 4.1). Then, we studied a particular reason for multiple equilibria:
network design history. When multiple facilities are progressively introduced in the system
at different times, the learning process is subject to multiple steps. When users have time
to adjust to these different steps, it changes the global convergence process and may lead
the system towards multiple different situations while the final network setting remains the
same. Based on the static and the dynamic context we demonstrated that the order of the
successive introduction of such facilities matters when determining the final equilibrium.
This is a crucial finding as this means that the study of the current network situation may
not be sufficient to grasp the real user distribution inside the network and that it is neces-
sary to consider the history of the network. In other words, a unique UE calculation with
the current network setting may lead to an equilibrium other than that resulting from the
different steps corresponding to the network history.

Another key result we obtained from the dynamic simulations is that certain final equi-
libria were more efficient from a systems viewpoint than others. The self-organization of the
system led to different network performances depending on the history of the network. The
results showed that not only do we have non-unicity, but that total travel time can be saved
and other network performance indicators optimized by opening public transportation fa-
cilities in a specific order.
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5.EQUILIBRIA ANALYSIS:
IMPROVING TRAFFIC NETWORK

PERFORMANCE

The purpose of this chapter is to compare network loadings related to different network
equilibria by a simulation-based framework. The direct comparison of path flows or trajec-
tory patterns is hard to achieve so here we propose a more aggregate approach based on the
comparison of demand level breakpoints. A breakpoint is a demand threshold value that
leads to significant changes in path flow loading. More specifically, we set in this chapter a
demand breakpoint when the list of effective route alternatives differs by at least one path.
This is for example the case when one route is no longer considered for one equilibrium
while being used by some vehicles in the second one. We are going to investigate both static
and dynamic network loading while scanning all demand levels to identify the breakpoints.
We focus on discrete demand formulation and choices and use a trip-based traffic simulator.

First, we investigate breakpoints on a well-known network (Braess) in the static case in
order to better define this concept. Second, breakpoints are investigated on a real network
(Lyon, France) where dynamic travel times are provided by a microscopic traffic simulator.
When the breakpoints are obtained for a given scenario, we focus on identifying demand
level ranges where some paths are not used in SO while being travelled in UE or BRUE. Fol-
lowing the concept of Braess paradox, this permits to design banning strategies at some key
locations in the network to prevent some alternatives from being used and thus to improve
the system performance. We show by simulation that such a strategy is effective, which
demonstrates the importance of breakpoint identification.

This chapter is an updated version of the paper:

Ameli, M., Lebacque, J. P. & Leclercq, L. (2020). Improving traffic network per-
formance with road banning strategy: a simulation approach comparing user equi-
librium and system optimum. Simulation Modelling Practice and Theory, 99, 101995,
doi:10.1016/j.simpat.2019.101995.
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5.1 Notations for this chapter

TABLE 5.1 – Specific notations in this chapter

Notation Definition [units]

W Origin-Destination (OD) pairs, subset of origin × destination nodes, W ⊂ N × N.
a index of link, a ∈ A.

w index of origin and destination pair, w ∈W.
Pw, τ set of paths for w in departure time τ .
P∗w, τ set of shortest paths for w in departure time interval τ .

p index of path, p ∈ Pw, τ .
p∗ index of shortest path, p∗ ∈ P∗w, τ .

Dw total demand for w pair.
Cp, τ travel cost of path p in departure time τ .
C∗w, τ minimum travel cost of OD pair w in departure time τ .
Ĉp, τ marginal travel cost of path p in departure time τ .
Ĉ∗w, τ minimum marginal travel cost of OD pair w in departure time τ .
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5.2 Motivations

The difference of the total travel cost between User Equilibrium (UE) and System Optimum
(SO) is called Price of Anarchy (PoA) (Roughgarden, 2005). There are several researches
about how to reduce PoA in the literature (Youn et al. (2008), Colini-Baldeschi et al. (2017)).
The goal of this chapter is to investigate the evolution of PoA depending on the level of de-
mand by introducing a new concept named demand level breakpoints. This concept permits
to identify demand level ranges where PoA is high because of some paths which are used
in UE whereas they are not used in SO. Such situations are known in the literature as the
Braess paradox (Frank, 1981). While being highly documented this paradox remains very
hard to detect in the real field as the level of demand plays a crucial role (Askoura et al.,
2011). This study aims to go one step further in a better identification of these situations by
introducing systematic methods to determine the demand level breakpoints. At the end, we
will show how the identification of breakpoints enables to design efficient control strategies
at the network level that consist in banning some routes when critical demand level values
are experienced.

Path costs can be estimated based on models or simulators. As discussed in Section 1.1.3,
traffic assignment problems are classified into three main groups: Static Traffic Assignment
(STA), semi-dynamic and Dynamic Traffic Assignment (DTA) (Bliemer et al., 2017). Since the
1950s there is much research about finding the assignment solutions for UE and SO. As dis-
cussed before and based on reviews of Szeto & Wong (2012), Wang et al. (2018), Mahmassani
(2001), a simulation based approach is preferred because the results are easy to interpret and
relatively close to reality (Sundaram et al., 2011).

Identifying situations in which the Braess paradox holds and induces the breakpoints
means in practice investigating the qualitative differences between UE and SO equilibrium.
The UE acts as a proxy for the current network situation whereas SO reproduces the opti-
mal situations with smart traffic control (Ehrgott et al., 2015). Moreover, it is well-known
that users are not always taking the shortest paths (Szeto & Lo, 2006a) because they lack a
perfect knowledge of the traffic conditions (Mahmassani & Chang, 1987, Delle Site, 2018) or
because they also favor other criteria when choosing their travel path (Abdel-Aty et al., 1997,
Zhou et al., 2017). To investigate the robustness of breakpoint definition while relaxing per-
fect UE assumptions, we are going to calculate also Boundedly Rational User Equilibrium
(BRUE). BRUE can be considered as a relaxation of UE where users try to optimize their own
benefit up to a point but stop the process where they are satisfied with the current solution
(indifference bound). Equilibrium is achieved when all user costs are within the boundary
around the UE solution (Di & Liu, 2016, Han et al., 2015b).

In this chapter, we consider UE, SO and BRUE independently and try to investigate the
relation between these three equilibria for different demand levels. To the best of our knowl-
edge the studies in the literature focus mainly on finding the path flow distributions over
the global network related to each equilibrium. Here, we would like to go further and cross-
compare trip patterns. We attempt to design new traffic management methods based on
the idea of incenting users to change paths, so that the network moves closer to SO. The
questions are which users should be switched from one route to another and which routes
should be promoted by the route guidance. We are going to directly answer these questions
by studying demand level breakpoints and apply some banning and rerouting strategy.

Generally, the travel demand is not fixed even in the short term. There are few studies
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that focus on the impact of different levels of demand on the UE (see e.g. Wie et al. (2002),
Szeto & Lo (2004), Han et al. (2011), D’Ambrogio et al. (2009), Han et al. (2015a)). First we
define breakpoints and analyze them. Then, for each level of demand, and given a fixed
active paths set, we try to analyze how we can determine the critical users for rerouting.
Critical users are the users who, when they change their path, have more impact than others
on moving the equilibrium towards SO conditions. There are four main points that we aim
at investigating:

• The impact of one origin-destination demand level on the network equilibria.

• Critical users who can have maximum impact on moving UE and BRUE toward SO by
change their path.

• Demand level ranges that we can apply control strategies to follow the SO assignment
by respecting the network UE or BRUE.

• Does the banning strategy work in order to shift the network UE/BRUE towards an
equilibrium with lower total travel costs?

The layout of this chapter is as follows: Section 5.3 presents the definition of the break-
point and solves a simple static traffic model in order to define the breakpoints in the Braess
network. In Section 5.4, we explain the dynamic equilibrium model and how we calculate
the breakpoints in DTA context. The network for numerical experiments and the process
of breakpoint detection are presented in the Section 5.5. We consider two test cases on the
dynamic network. The control strategy and the obtained results for the first test case are dis-
cussed in Section 5.6. The second test case and the application of breakpoint detection and
ban strategy to the second test case are presented in section 5.7. Finally, we state concluding
remarks of this chapter in the Section 5.8 section.

5.3 Breakpoint definition

Traffic assignment provides the path flow distribution for all OD pairs, i.e. how many users
take each possible path from each origin to each destination. There is a path set which con-
tains all the active paths from each origin to each destination. A path chosen by at least one
user is an active path. The active path set is a component of the optimal path flow distribu-
tion defined for each equilibrium: UE, SO and BRUE. For a given origin and destination pair
w, the active path set for a given equilibrium can be the same at different levels of demand.
We define the breakpoints as demand levels where we observe a change in the active path
set (e.g. one new path in or/and one current path out). We will first study the breakpoints in
the static case on the classical Braess network (Braess et al., 2005). As explained in the intro-
duction, the Braess paradox arises when UE and SO have difference path set. Determining
the breakpoint for both equilibria will permit to easily identify such situations.

The classic Braess network with linear cost functions in the static case is shown is Fig-
ure 5.1. There are five links with cost functions ti j for the link i j connecting node i to node j.
The flow of the link i j is fi j and there are three alternative paths from origin node 1 to desti-
nation node 4: path 1 (1-3-4), path 2 (1-2-4) and path 3 (1-3-2-4). Therefore the cost functions
(Ck) of paths k are as follow:

C1(π) = t13 + t34 (5.1)
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C2(π) = t12 + t24 (5.2)

C3(π) = t13 + t32 + t24 (5.3)

Where πk denotes the flow of path k and π = (πk)k=1,2,3.

FIGURE 5.1 – Classic Braess network with the link cost functions and assumptions

The two assumptions in Figure 5.1 (α1 ≥ α2, β1 > β2) guarantee that by increasing the
demand, there exist three cases of UE (see e.g. Pas & Principio (1997)). They also ensure
that the path 3 is the cheapest free flow path, due to lower coefficients (α2, β2) in the path
cost function. This is a critical condition for the Braess paradox to appear. The different
demand levels will be defined in relation with the structure of the equilibrium (active paths).
Consequently, for UE we will have three scenarios. According to the definition of the UE,
the conditions of static UE can be stated mathematically as follows:

Cp − Cw
∗ ≥ 0 ; ∀p ∈ Pw (5.4)

πp(Cp − Cw
∗) = 0 ; ∀p ∈ Pw (5.5)

πp ≥ 0 ; ∀p ∈ Pw (5.6)

Where Cw
∗ is the minimum travel cost for origin-destination pair w. Pw is the set of possible

paths for w and πp denotes the flow on path p.
The path flow distribution is a [1 × 3] vector π that contains the flow value for three

paths. Note that the feasible path flow vector is defined as: Π , {π : π ≥ 0, ∑p∈Pw πp =
Dw}. So the active path set is the set of path p ∈ Pw such that π > 0. The path flow
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distribution for UE is a function UE(D) of demand level D and can be shown to be as
follows:

UE(D) =


[0, 0, D] 0 ≤ D < α1−α2

β1+β2
,

[−α1+α2+(β1+β2)D
β1+3β2

, −α1+α2+(β1+β2)D
β1+3β2

, 2(α1−α2)−(β1−β2)D
β1+3β2

] α1−α2
β1+β2

≤ D < 2(α1−α2)
β1−β2

,

[D
2 , D

2 , 0] D ≥ 2(α1−α2)
β1−β2

(5.7)
Consequently, there are two breakpoints for UE: D = α1−α2

β1+β2
and D = 2(α1−α2)

β1−β2
.

Let us now investigate the network under BRUE. The boundary rational model is one behav-
ioral model used to relax the perfect rational hypothesis in the definition of UE by consider-
ing an indifference band (ε). There are two main differences in the definition of breakpoints
between the BRUE and UE:

• The path flow distribution for BRUE not only depends on the demand level, it also
depends on the ε value for the indifference band for this origin and destination pair.

• The path flow distribution is not unique in some scenarios, so for the Braess network
there are two convex sets (simplices) of flow vectors φ1 and φ2 which can satisfy the
conditions of BRUE:

φ1 = {π ≥ 0 : Ci(π)− C j(π) ≤ ε; i, j ∈ {1, 2}, i 6= j} (5.8)

φ2 = {π ≥ 0 : Ci(π)− C j(π) ≤ ε; i, j ∈ {1, 2, 3}, i 6= j} (5.9)

Note that Equation 5.8 is obtained by assuming that both paths are used. In Equation 5.9, φ2
is a set in which all three paths can be active. If the indifference band is equal to zero (ε = 0)
the BRUE and UE assignment are the same. Due to the non-uniqueness of the BRUE, for a
givenε, an active path has a cost lower or equal to the minimum travel cost path plusε. The
ε-BRUE path flow pattern can be shown to be given by:

πp > 0→ Cp − Cw
∗ ≤ ε ; ∀p ∈ Pw (5.10)

The path flow distribution for BRUE is a function of the demand level and the band value
BRUE(D, ε) is given by:

BRUE(D, ε) =


[0, 0, D] 0 ≤ D < α1−α2

β1+β2
− ε

β1+β2
,

φ1 ∪φ2 D > 2(α1−α2)
β1−β2

+ ε
β1−β2

,
φ2 o.w.

(5.11)

For a detailed calculation of Equation 5.11 readers can refer to Di et al. (2014). Therefore,
there are two breakpoints but they depend on the ε value: D = α1−α2

β1+β2
− ε

β1+β2
and D =

2(α1−α2)
β1−β2

+ ε
β1−β2

.
The third considered equilibrium is SO. The SO path flow distribution is based on the

second principle of Wardrop (1952), i.e. minimizing the total travel cost. Therefore, math-
ematically the goal is to minimize the total travel cost as a function of demand and flow
vector:

min T(D, π) = ∑
p∈Pw

πpCp (5.12)
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Given our assumptions on coefficient values for the Braess network (Figure 5.1), three
scenarios that can occur as in the UE case. The objective function in each scenario is given
by:

T(D) =



(2β1 +β2)D2 +α2D if only path 3 used,
(β1 +β2)(π1

2 + π2
2) +α1D if path 1 and 2 used,

(β1 + 2β2)+

[α1 −α2 − 2(β1 +β2)D](π1 + π2)+ if all paths used and π3 = D− (π1 + π2)

2β2π1π2 + (2β1 +β2)D2 +α2D
(5.13)

Therefore and mathematically, the path flow distribution for SO is defined as follow:

SO(D) =


[0, 0, D] 0 ≤ D < α1−α2

2(β1+β2)
,

[
−α1+α2

2 +(β1+β2)D
β1+3β2

,
−α1+α2

2 +(β1+β2)D
β1+3β2

, (α1−α2)−(β1−β2)D
β1+3β2

] α1−α2
2(β1+β2)

≤ D < α1−α2
β1−β2

,

[D
2 , D

2 , 0] D ≥ α1−α2
β1−β2

(5.14)
There are two breakpoints for SO: D = α1−α2

2(β1+β2)
and D = α1−α2

β1−β2
. There is a fixed relation-

ship between breakpoints of SO and UE which is shown in Equation 5.15. The relationship
between BRUE’s breakpoints and the breakpoints of SO is depending on the value of ε.

BPi,SO =
1
2

BPi,UE ; ∀i ∈ {1, 2} (5.15)

BP1,SO =
1
2
[BP1,BRUE +

ε

(β1 +β2)
] ; BP2,SO =

1
2
[BP2,BRUE −

ε

(β1 −β2)
] (5.16)

Where BPi, j is the ith breakpoint of the equilibrium j ∈ {UE, SO, BRUE}.
As aforementioned, existing studies usually finish the breakpoints analysis here (finding the
path flow distribution for equilibria). We are now going to analyze the equilibria based on
breakpoints.

The path flow distribution for UE, SO and BRUE is shown in Figure 5.2 to present the
optimal path set of two different types of paths in the Braess network. It is not easy to present
the BRUE in the path flow distribution diagram because theε allowance for cost implies that
for each path there is a set of possible flow values in the BRUE path flow distribution around
the UE flow value. Thus in Figures 5.2(a) and 5.2(b), we represent the BRUE solution in
terms of the maximum range of flows at equilibrium. Figure 5.2(a) presents the demand-
flow diagram for path 1 and 2 in UE, SO and BRUE situations. Breakpoints are shown
on the demand axis. (a↔b) presents the active path set for UE and SO and also possible
active path set for BRUE depending on the value of ε. The same demand-flow diagram for
path 3 is shown in Figure 5.2(b). Note that the breakpoints of BRUE, α1−α2

β1+β2
− ε

β1+β2
and

2(α1−α2)
β1−β2

+ ε
β1−β2

, are equal to UE breakpoints when ε = 0.
The first breakpoint occurs when D = α1−α2

2(β1+β2)
for analyzing the UE solution and SO.

Determining this level of demand as a breakpoint means that the active path set of one of
the equilibria is changed. Before this breakpoint, the active path set of both equilibria has the
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same path: PUE = PSO = {3}. In other words, from D = 0 to D = α1−α2
2(β1+β2)

, the equilibrium
under both disciplines refers to the same active path set. Then after this breakpoint, only
paths 1 and 2 should be used under SO discipline while path 3 is the only active path for
UE. From the first breakpoint of the SO (BP1,SO) to the first breakpoint of the UE (BP1,UE),
the flow is distributed differently for UE and SO. For UE all users are still taking the third
path but for SO some of them start to take the paths 1 and 2 to minimize the total travel
time. It means that for demand level higher than the BP1,SO, paths 1 and 2 will be added to
the active path set in SO solution. The active path sets for UE and SO are fixed after BP1,SO
until BP1,UE is detected at D = α1−α2

β1+β2
. Where paths 1 and 2 are used under UE discipline.

The active path set is the same for UE and SO when the demand level is α1−α2
β1+β2

≤ D < α1−α2
β1−β2

.
Path 3 is not in the active path set for SO but used in UE solution when we pass the BP2,SO

and the demand is in range α1−α2
β1−β2

≤ D < 2(α1−α2)
β1−β2

. Therefore the BP2,UE is D = 2(α1−α2)
β1−β2

where the active path set of UE is changed. In Braess network, after the last breakpoint,
D ≥ 2(α1−α2)

β1−β2
, the UE and SO path flow distribution will be the same.

In general, the BRUE path flow distribution is close to UE but the solution is not sym-
metric with respect to paths 1 and 2 as in SO and UE. In the BRUE-SO analysis, D = α1−α2

2(β1+β2)

is the first breakpoint as in the UE-SO only if ε ≤ α1−α2
2 . If ε > α1−α2

2 , the first breakpoint
is located in the lower demand level with respect to the first SO breakpoint. Path 1 and(or)
path 2 are added to the path set after the first breakpoint. For higher demand levels, by
taking into account ε, the BRUE-SO breakpoints are same as the UE-SO breakpoints until
the last breakpoint, when path 3 exits the active path set. If D ≥ 2(α1−α2)

β1−β2
, the BRUE and SO

path flow distribution will be the same only if ε = 0. It means, for ε > 0, the last breakpoint
will be 2(α1−α2)

β1−β2
+ ε

β1−β2
. All paths are active for BRUE and path 3 is not active for SO while

2(α1−α2)
β1−β2

≤ D < 2(α1−α2)
β1−β2

+ ε
β1−β2

. Consequently, the path flow distribution is the same for

BRUE and SO when D ≥ 2(α1−α2)
β1−β2

+ ε
β1−β2

. Note that BRUE accepts 3 non zero path-flows for
values of D < α1−α2

β1+β2
− ε

β1+β2
when ε > α1 −α2. Moreover, if ε ≤ α1−α2

2 and D < α1−α2
2(β1+β2)

,
the solution is the same for all 3 equilibria. Finally, the mathematical formulas for path flow
distributions for the 3 equilibria (UE, SO and BRUE) are shown in Table 5.2. This table is
obtained by merging the equations 5.7, 5.11 and 5.14 in order to jointly investigate the
breakpoints when demand is increasing.

This study by breakpoint analysis attempts to identify ranges of demand where we have
a qualitative difference between UE/BRUE and SO. We are looking in particular for situa-
tions where some paths are used in UE/BRUE while not in SO. This corresponds to demand
ranges with breakpoints as boundaries, because breakpoints are identifying changes in the
active paths for each equilibrium. Then, we can apply a control strategy in order to improve
the performance of the network. At each range of demand between two breakpoints, we
know the active path set of SO and the network state (UE or BRUE). So at the range of de-
mand where PUE/BRUE 6= PSO, changing the path set may improve the system. For instance,

when 2(α1−α2)
β1−β2

≤ D < 2(α1−α2)
β1−β2

+ ε
β1−β2

path 3 is not used under SO discipline. So in this
demand interval the system controller can ban path 3 or design other control strategies in
order to prevent users from travelling on path 3, and the system will move towards the SO
state. In other ranges of demand the network controller can induce a certain number of users
to travel by specific paths, in order to get closer to SO. Such users are critical for an efficient
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control strategy.
The breakpoint analysis helps the system controller to evaluate the possibility of apply-

ing control strategies in order to improve the system performance. In the sequel, we focus
on the banning strategy in which, by banning one link or by preventing users from turning
at one intersection, the controller can ban one path which is in the active path set of the UE
solution but does not belong to the SO active path set. An alternate possibility, which will
be explored in future work, consists in using guidance. In urban networks, transportation
system controllers can guide (e.g. by Advanced Traveler Information System (ATIS)) the
limited number of users that are equipped (Klein et al., 2018). Generally, it will be useful to
know how many users need to change their path in order to move the network from one
equilibrium on the user side (UE or BRUE) to one equilibrium on the system side (SO).

This part of the chapter has attempted to explain the path flow distribution breakpoints
concept and to define them in a simple manner using the static assignment on the Braess
network. In the following parts of this chapter, we present the dynamic trip-based frame-
work to find the breakpoints and identify the critical user(s) for rerouting and critical path(s)
for banning.
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FIGURE 5.2 – (a): Path 1 or Path 2 flow-demand diagram for UE, SO and BRUE. (a↔b): Possible path
set of optimal solution [Px = Possible path set of optimal solution for equilibrium x, where x stands
for UE or SO]. Note that for BRUE, it depends on the ε. (b): Path 3 flow-demand diagram for UE, SO
and BRUE.
Red dash lines in figures (a) and (b) presents the value of breakpoints in BRUE path flow distribution
based on the given ε. It can change in ranges that are specified by the red arrows.

p. 130 / 169



5.3. Breakpoint definition

TA
B

L
E

5.
2

–
Pa

th
flo

w
di

st
ri

bu
ti

on
in

Br
ae

ss
ne

tw
or

k
fo

r
U

E,
SO

an
d

BR
U

E

𝜑 2
=

{𝜋
: 𝐶

𝑖( 𝜋
) −

𝐶 𝑗
( 𝜋

) ≤
𝜀,

𝑖,𝑗
∈

{ 1
,2,

3}
,𝑖

≠
𝑗} 

 
 

 
 

 
(9

) 

In
 fa

ct
, i

f t
he

 in
di

ff
er

en
ce

 b
an

d 
is

 e
qu

al
 to

 z
er

o 
(𝜀

=
0)

 th
e 

B
R

U
E 

an
d 

U
E 

as
si

gn
m

en
t p

la
n 

ar
e 

th
e 

sa
m

e.
  

D
ue

 to
 th

e 
no

n-
un

iq
ue

ne
ss

 o
f t

he
 B

R
U

E,
 fo

r t
he

 g
iv

en
 𝜀,

 if
 o

ne
 u

se
d 

pa
th

 im
pl

ie
s 

its
 p

at
h 

co
st

 is
 le

ss
 th

an
 

or
 e

qu
al

 to
 th

e 
m

in
im

um
 tr

av
el

 c
os

t p
at

h 
pl

us
 a

 b
an

d 
th

en
 th

e 
𝜀-B

R
U

E 
pa

th
 fl

ow
 p

at
te

rn
 is

 d
ef

in
ed

 a
s:

 

𝜋 𝑝
≥

0→
𝐶 𝑝

 −
 𝐶 𝑤

∗  ≤
𝜀  

    
    

   ;
 ∀

 𝑝
∈

𝑃 𝑤
 

 
 

 
 

 
 

(1
0)

 

Th
e 

as
si

gn
m

en
t p

la
n 

fo
r B

R
U

E 
is

 a
 fu

nc
tio

n 
of

 d
em

an
d 

le
ve

l a
nd

 b
an

d 
va

lu
e 

𝐵𝑅
𝑈𝐸

(𝐷
,𝜀

) i
s: 

 
 

 
 

 
 

 
 

 
 

 
 

(1
1)

 

Fo
r d

et
ai

le
d 

ca
lc

ul
at

io
n 

of
 (1

0)
, r

ea
de

rs
 c

an
 lo

ok
 a

t (
D

i e
t a

l. 
20

14
) 

Th
e 

th
ird

 e
qu

ili
br

ia
 is

 S
O

 in
 th

is
 p

ap
er

. T
he

 S
O

 a
ss

ig
nm

en
t p

la
n 

is
 b

as
ed

 o
n 

W
ar

dr
op

’s
 s

ec
on

d 
pr

in
ci

pl
e 

(W
ar

dr
op

, 1
95

2)
 to

 m
in

im
iz

e 
th

e 
to

ta
l t

ra
ve

l c
os

t. 
Th

er
ef

or
e,

 m
at

he
m

at
ic

al
ly

 th
e 

go
al

 is
 to

 m
in

im
iz

e 
th

e 
to

ta
l t

ra
ve

l c
os

t a
s a

 fu
nc

tio
n 

of
 d

em
an

d 
an

d 
flo

w
 v

ec
to

r: 

mi
n  

𝑇(
𝐷,

𝜋)
= 

  ∑
𝜋 𝑝

𝐶 𝑝
𝑝∈

𝑃 𝑤
 

 
 

 
 

 
 

 
 

(1
2)

 

A
cc

or
di

ng
 to

 co
ef

fic
ie

nt
s a

ss
um

pt
io

ns
 fo

r t
he

 B
ra

es
s n

et
w

or
k 

(F
ig

.1
) a

nd
 th

e t
hr

ee
 sc

en
ar

io
s t

ha
t c

an
 h

ap
pe

n 
lik

e 
th

e 
U

E 
ca

se
 th

e 
ob

je
ct

iv
e 

fu
nc

tio
n 

(1
1)

 is
 

If 
on

ly
 p

at
h 

3 
is

 u
se

d:
  

 
𝑇1 ( 𝐷

,𝜋
) =

(2
𝛽 1

+
𝛽 2

)𝐷
2

+
𝛼 2

𝐷2  
If 

pa
th

 1
 a

nd
 2

 a
re

 u
se

d:
 𝑇2 ( 𝐷

,𝜋
) =

(𝛽
1

+
𝛽 2

)( 𝜋
12

+
𝜋 2

2 ) +
𝛼 1

𝐷 
If 

th
re

e 
pa

th
s a

re
 u

se
d:

 
 

 

𝑇3 ( 𝐷
,𝜋

) =
( 𝛽

1
+

2𝛽
2)

( 𝜋
12

+
𝜋 2

2 ) +
2𝛽

2𝜋
1𝜋

2
+

[𝛼
1

−
𝛼 2

−
2(

𝛽 1
+

𝛽 2
)𝐷

]+
[(2

𝛽 1
+

𝛽 2
)𝐷

2
+

𝛼 2
𝐷]

 

M
at

he
m

at
ic

al
ly

, t
he

 a
ss

ig
nm

en
t p

la
n 

fo
r S

O
 is

 d
ef

in
ed

 a
s f

ol
lo

w
: 

 
 

 
 

 
 

 
 

 
 

 
 

(1
3)

 
 A

s a
fo

re
m

en
tio

ne
d,

 th
e e

xi
st

ed
 st

ud
ie

s f
in

is
h 

th
e b

re
ak

po
in

ts
 an

al
ys

is
 af

te
r t

hi
s s

te
p 

(f
in

di
ng

 th
e a

ss
ig

nm
en

t 
pl

an
 fo

r e
qu

ili
br

ia
) a

nd
 fo

cu
s o

n 
th

e 
ot

he
r r

el
at

ed
 to

pi
cs

. T
hi

s s
tu

dy
 fi

rs
t m

er
ge

s t
he

 e
qu

at
io

ns
 (7

), 
(1

0)
 a

nd
 

(1
2)

 to
 fi

nd
 th

e 
br

ea
kp

oi
nt

s 
in

 th
e 

ca
se

 th
at

 w
e 

co
ns

id
er

 a
ll 

th
re

e 
di

ff
er

en
t e

qu
ili

br
iu

m
s 

by
 in

cr
ea

si
ng

 th
e 

de
m

an
d.

 T
he

 a
ss

ig
nm

en
t p

la
n 

by
 ta

ki
ng

 to
 a

cc
ou

nt
 U

E,
 S

O
 a

nd
 B

R
U

E 
co

nd
iti

on
s 

ar
e 

sh
ow

n 
in

 T
ab

le
 1

. 
M

or
eo

ve
r, 

th
e 

flo
w

 d
ia

gr
am

 fo
r U

E 
an

d 
SO

 h
as

 b
ee

n 
sh

ow
n 

in
 F

ig
.2

 to
 p

re
se

nt
 th

e 
flo

w
 d

ia
gr

am
 o

f t
w

o 
di

ff
er

en
t t

yp
e 

of
 p

at
hs

 in
 th

e 
B

ra
es

s 
ne

tw
or

k.
 It

 is
 n

ot
 e

as
y 

to
 p

re
se

nt
 th

e 
B

R
U

E 
in

 fl
ow

 d
ia

gr
am

 b
ec

au
se

 
by

 th
e 

va
ria

bi
lit

y 
of

 𝜀 
ca

n 
m

ak
e 

th
e 

di
ff

er
en

t s
pa

ce
 o

f p
os

si
bl

e 
as

si
gn

m
en

t p
la

n 
in

 n
ea

rb
y 

of
 U

E.
  

 

Ta
bl

e 
1:

 A
ss

ig
nm

en
t p

la
ns

 fo
r B

ra
es

s n
et

w
or

k 
fo

r U
E,

 S
O

 a
nd

 B
RU

E 
de

pe
nd

 o
n 

de
m

an
d 

le
ve

l. 

D
em

an
d 

le
ve

l (
D

) 
U

se
r 

E
qu

ili
br

iu
m

 (U
E

) 
Sy

st
em

 o
pt

im
um

 (S
O

) 
B

an
d 

V
al

ue
 (𝜺

) 
B

ou
nd

ar
y 

ra
tio

na
l U

E
 

0≤
𝐷

≤
𝛼 1

−
𝛼 2

2(
𝛽 1

+
𝛽 2

) 
[0

,0,
𝐷]

 
[0

,0,
𝐷]

 

𝜀<
𝛼 1

−
𝛼 2

−
( 𝛽

1
+

𝛽 2
) 𝐷

 
[0

,0,
𝐷]

 

𝜀>
𝛼 1

−
𝛼 2

−
( 𝛽

1
+

𝛽 2
) 𝐷

 
𝜑 2

 

𝛼 1
−

𝛼 2
2(

𝛽 1
+

𝛽 2
)≤

𝐷
≤

𝛼 1
−

𝛼 2
𝛽 1

+
𝛽 2

 
[0

,0,
𝐷]

 
[−𝛼

1
+

𝛼 2
2

+
(𝛽

1
+

𝛽 2
)𝐷

𝛽 1
+

3𝛽
2

,−𝛼
1

+
𝛼 2

2
+

(𝛽
1

+
𝛽 2

)𝐷
𝛽 1

+
3𝛽

2
,( 𝛼

1
−

𝛼 2
) −

(𝛽
1

−
𝛽 2

)𝐷
𝛽 1

+
3𝛽

2
] 

𝜀<
𝛼 1

−
𝛼 2

−
( 𝛽

1
+

𝛽 2
) 𝐷

 
[0

,0,
𝐷]

 

𝜀>
𝛼 1

−
𝛼 2

−
( 𝛽

1
+

𝛽 2
) 𝐷

 
𝜑 2

 

𝛼 1
−

𝛼 2
𝛽 1

+
𝛽 2

≤
𝐷

≤
𝛼 1

−
𝛼 2

𝛽 1
−

𝛽 2
 

[−𝛼
1

+
𝛼 2

+
(𝛽

1
+

𝛽 2
)𝐷

𝛽 1
+

3𝛽
2

,−𝛼
1

+
𝛼 2

+
(𝛽

1
+

𝛽 2
)𝐷

𝛽 1
+

3𝛽
2

,2(
𝛼 1

−
𝛼 2

) −
(𝛽

1
−

𝛽 2
)𝐷

𝛽 1
+

3𝛽
2

] 
[−𝛼

1
+

𝛼 2
2

+
(𝛽

1
+

𝛽 2
)𝐷

𝛽 1
+

3𝛽
2

,−𝛼
1

+
𝛼 2

2
+

(𝛽
1

+
𝛽 2

)𝐷
𝛽 1

+
3𝛽

2
,( 𝛼

1
−

𝛼 2
) −

(𝛽
1

−
𝛽 2

)𝐷
𝛽 1

+
3𝛽

2
] 

A
ll 

va
lu

es
 

𝜑 2
 

𝛼 1
−

𝛼 2
𝛽 1

−
𝛽 2

≤
𝐷

≤
2(

𝛼 1
−

𝛼 2
)

𝛽 1
−

𝛽 2
 

[−𝛼
1

+
𝛼 2

+
(𝛽

1
+

𝛽 2
)𝐷

𝛽 1
+

3𝛽
2

,−𝛼
1

+
𝛼 2

+
(𝛽

1
+

𝛽 2
)𝐷

𝛽 1
+

3𝛽
2

,2(
𝛼 1

−
𝛼 2

) −
(𝛽

1
−

𝛽 2
)𝐷

𝛽 1
+

3𝛽
2

] 
[𝐷 2,𝐷 2,0

] 
A

ll 
va

lu
es

 
𝜑 2

 

𝐷
≥

2(
𝛼 1

−
𝛼 2

)
𝛽 1

−
𝛽 2

 
[𝐷 2,𝐷 2,0

] 
[𝐷 2,𝐷 2,0

] 
𝜀<

−2
(𝛼

1
−

𝛼 2
)+

( 𝛽
1

−
𝛽 2

) 𝐷
 

𝜑 1
∪

𝜑 2
 

𝜀>
−2

(𝛼
1

−
𝛼 2

)+
( 𝛽

1
−

𝛽 2
) 𝐷

 
𝜑 2

 

 

p. 131 / 169



CHAPTER 5. EQUILIBRIA ANALYSIS: IMPROVING TRAFFIC NETWORK PERFORMANCE

5.4 Simulation-based dynamic network equilibrium

The concept and the application of breakpoint detection are presented in the static case.
This section presents the network equilibrium model and tools to calculate the equilibria in
the dynamic case. In this work, The Symuvia platform, including the trip-based simulator
(Section 1.2.2) and the command module: SymuMaster (Section 1.2.3) is used in order to
calculate travel times in the network for any given path flow distributions for all OD pairs.
The travel demand is given (dynamic OD pair demand) and users’ routes are determined by
a dynamic traffic assignment model, which guides each vehicle in the network on the route
that optimizes its travel time to its initially assigned destination based on some specific
equilibria discipline (UE, SO and BRUE are considered here).

5.4.1 Network equilibrium model

Here, we recall the UE conditions in order to extend the conditions to SO and BRUE dis-
ciplines. Let us consider a network G(N, A) with a finite set of nodes N and a finite set
of directed links A. The demand is time-dependent. The period of interest (planning hori-
zon) of duration H is discretized into a set of small time intervals indexed by τ (τ ∈ T =
{τ0, τ0 +σ , τ0 + 2σ , ..., τ0 + Mσ} and τ0 + Mσ = H). σ is the duration of the time inter-
vals. In an interval τ , travel times and traffic conditions do not change. The main notations
to introduce in the dynamic equilibrium model are presented in Table 5.1. According to the
definition of the variables and time interval in DTA and based on the study of (Sbayti et al.,
2007), the conditions of dynamic UE can be mathematically restated from equations 5.4, 5.5
and 5.6:

Cp, τ − C∗w, τ ≥ 0 ; ∀w ∈W, p ∈ Pw, τ , τ ∈ T (5.17)

πp, τ(Cp, τ − C∗w, τ) = 0 ; ∀w ∈W, p ∈ Pw, τ , τ ∈ T (5.18)

πp, τ ≥ 0 ; ∀p ∈ Pw, τ , τ ∈ T (5.19)

The equilibrium condition for BRUE is:

πp, τ > 0→ Cp, τ − Cw, τ
∗ ≤ ε ; ∀p ∈ Pw, τ (5.20)

5.4.2 Equilibration process

In order to find the equilibrium, we are using an iterative algorithm. As the sub-area net-
work Lyon 6 is not a large-scale network, we use MSA ranking method, which is intro-
duced in Section 2.5.2.1. The algorithm is executed until the final solution does not change,
and finally, we converge by the best solution in terms of closeness to equilibrium (see Sec-
tion 2.5.1).

5.4.3 Definition of SO for dynamic case

In the static case, we focused on specific OD pair in mono-OD network but here we are going
to focus on specific OD pairs in the network with multiple OD pairs. Therefore we consider
two different definitions for SO: Global SO and Local SO.
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5.4.3.1 Global SO

The SO conditions in the dynamic case are mathematically stated in equations 5.21, 5.22
and 5.23 based on marginal travel time. The path marginal travel time is the extra travel
time that will be added to the path travel time if an extra user is assigned to the path at
the current time interval. The SO conditions state that if the path flow is positive, then the
experienced path marginal travel time should be equal to the minimum path marginal travel
times (Sbayti et al., 2007).

Ĉp, τ − Ĉ∗w, τ ≥ 0 ; ∀w ∈W, p ∈ Pw, τ , τ ∈ T (5.21)

πp, τ(Ĉp, τ − Ĉ∗w, τ) = 0 ; ∀w ∈W, p ∈ Pw, τ , τ ∈ T (5.22)

πp, τ ≥ 0 ; ∀p ∈ Pw, τ , τ ∈ T (5.23)

Computing the path marginal travel time analytically is very costly. In Leclercq et al. (2016) it
has been shown that using the simulation-based approach to compute the path marginals is
also very costly, even in a simple grid network. Therefore, we use the simulator to compute
a surrogate model for the marginal travel time. We used three methods for calculating the
SO and consider the minimum total travel time as the SO path flow distribution. The first
method updates the link marginal every time a vehicle is exiting the link by calculating the
marginal variation since the last exit the link. Finally, link marginal are averaged using the
1 minute window. Consequently, the path marginal travel time can obtained by:

Ĉp, τ = ∑
a∈Ap

[
∑
τ+σ
t=τ Ĉa, t

σ
] (5.24)

Where Ĉa, τ is the marginal travel time of link a at second t, σ is the length of each time
interval and Ap is the subset of link set A which defines path p. In fact, the surrogate func-
tion by Peeta & Mahmassani (1995) considers the sum of link marginal travel times as the
actual function. In the SO problem, we aim to minimize the cost in Equation 5.24 for all
users of each OD pair. We also consider two methods based on the observation of trajecto-
ries at the link level. The observation process of link marginal travel time for both methods
(second and third) is the same but in the second method we use the average operator for
link marginal travel time and for the third one, median operator is used in order to calcu-
late the link marginal travel time. Finally, the path marginal travel time will be the sum
of link marginal travel times of that path like the first method. The last two methods are
well defined in Yildirimoglu & Kahraman (2018). For each scenario of SO, the simulation is
executed three times with these methods and the path flow distribution by minimum total
travel time is considered as the SO solution.

5.4.3.2 Local SO

The idea of the local SO is to look for a SO to be achieved only by the users of specific OD
pair(s), while all other users choose the path based on the UE framework. This permits to
study control strategies that are focusing on a single OD pair in the network while other
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users for other OD pairs are not targeted. Therefore, Conditions 5.21, 5.22 and 5.23 for
SO are applied to the users of specific OD pair(s) who are aiming to achieve SO and Condi-
tions 5.17, 5.18 and 5.19 for UE are applied to the other users in the network (who choose
their paths according to UE). Finally we will have a mixed equilibrium in the network which
is called "ME" solution in this chapter.

5.5 Dynamic test case

As we are now using a simulator to derive dynamic travel time, we can investigate a more
complex network configuration than the Braess network. We are then now considering a
sub-area of the Lyon full regional network. It is a network of the Lyon 6 district (Fig-
ures 5.3(a)). It is a Braess-like network when considering a specific OD pair that corresponds
to travel from the west (“Quai de Serbie”) to the east of the network (“6 Avenue Verguin”).
In this network we are looking for the breakpoints at various demand levels. Note that the
travelers of other OD pairs load the complete network, in order to represent the peak half
an hour of the network based on the study of Krug et al. (2019). The simulation and opti-
mization are carried out for each level of demand with a 30 minutes horizon. The demand
pattern has been set up to adjust the regular level observed in this area during the peak hour.
We select the 3 most likely routes from each origin to destination to define the set of path
candidates. They are shown in figures Figures 5.3(b). The network of Lyon 6 has: 430 nodes,
786 links, 26 origins, 24 destinations and 3732 trips for OD pairs excluding the demand of
“Quai de Serbie” to “6 Avenue Verguin”.

We search for the three equilibria in the complete network. It means that the optimiza-
tion process is executed for all OD pairs and users in the network and we try to analyze
the breakpoints by increasing the demand level on the specific OD pair. A simulation-based
DTA is used to find the UE, SO and BRUE at every level of the demand on the three pre-
defined paths. The departure time for the test users is spread uniformly in the 30 minutes
duration of the horizon. Moreover, the users with other OD pairs travel with fixed departure
time. According to the scale of the network, for calculating the BRUE assignment, we con-
sider ε = 0.1 Cp, τ . It means users will be satisfied if they perceive a maximum ten percent
more than the shortest path cost.

5.5.1 Breakpoint detection in the dynamic case

As mentioned earlier, we solve the problem with different demand levels. Demand of the
specific “Quai de Serbie to Verguin” OD pair is increased from one user to 1439 users (max-
imum demand based on the study of Krug et al. (2019)) over the simulation time horizon
= 30 min. We focus on the travels from the specific “Quai de Serbie to Verguin” OD pair
with 3 paths like the Braess network in order to detect the breakpoints which are expected
to exist in the real network. The departure time is fixed for all users who do not travel be-
tween the specific OD pair. The distribution of departure time for this OD pair is uniform.
The optimization process has been carried out for all equilibria and the full network. All
experiments for UE and SO are reproducible and lead to a unique solution but for BRUE
the solution depends on the first network initialization (starting point in optimization pro-
cess) and the value of ε. Note that we will present one instance for the BRUE path flow
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(a) Origin, destination and paths
(Mapping data c©Google 2019)

(b) The test case of Lyon 6 network
with one OD pair

FIGURE 5.3 – Network of Lyon 6

distribution for breakpoint detection with all-or-nothing initialization and ε = 0.1Cp, τ .
The solution space is not continuous because of the trip-based simulation (flows have in-

teger values). Therefore, for each experiment, we have three integer numbers as the flow on
each path in the vector of assignment. In order to represent and analyze the breakpoints in
a continuous space, we draw the flow distribution diagram by making a (piece-wise) linear
regression with R2 < 0.9 on the integer data. The demand-flow diagram for each path is
presented in Figure 5.4(a)-(c). Moreover, the results of breakpoint detection are presented in
Figure 5.4(d). In each experiment, each equilibrium is calculated and the breakpoint occurs
when at least one path enters or exits the active path set of one equilibrium. The breakpoint
analysis will be carried out by comparing one equilibrium from travellers’ point of view (UE
or BRUE) and one equilibrium from system point of view (SO or ME).

5.5.2 Breakpoint analysis

According to the Figure 5.4, the SO active path set contains paths 1 and 2 at low demand
level until the first SO breakpoint is reached at the demand level of 359 users where path
3 enters the active path set. Then, path 3 exits the active path set at a demand level of 719
users where the second breakpoint is detected. The active path set remains the same for all
demand levels bigger than 719 users. Therefore, SO path flow distribution has two break-
points. On the other hand, UE path flow distribution has two breakpoints at a demand level
of 539 travellers where path 2 enters to the active path set and at a demand level of 1259 trav-
ellers where path 1 exits the active set; path 1 is not used beyond this level. Consequently,
the breakpoint analysis for UE-SO contains 4 breakpoints. It is remarkable that path 3 is not
being used at most demand levels in the SO path flow distribution but it always belongs the
active path set of UE for all demand levels.
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(a) Path 1 flow-demand diagram.

(b) Path 2 flow-demand diagram.

(c) Path 3 flow-demand diagram.

(d) Active path sets between breakpoints for four equilibria.

FIGURE 5.4 – Paths flow-demand diagram for UE, BRUE, SO and ME. Breakpoints are presented by
black vertical dash lines on total demand axis.
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The ME path flow distribution is obtained by applying UE discipline to users of all OD
pairs except the users of the specific OD pair (Figure 5.3(b)) who travel under SO discipline.
ME has paths 1 and 2 in the active path set until the only breakpoint of ME where path
3 enters the path set. According to the UE breakpoint detection, the analysis of UE-ME
breakpoint involves two breakpoints. Path 3 is not used at most demand levels as in the SO
path flow distribution.

As mentioned previously the BRUE scenario is one instance from BRUE solution set.
There are two breakpoints in this scenario. The first one is where path 3 starts to be used
and the second one happens where path 2 enters to the active path set. All three paths
are used beyond the second breakpoint. There are 3 breakpoints with respect to the SO
breakpoints for BRUE-SO breakpoint analysis. Note that in BRUE, path 3 is used at all
demand levels beyond the first breakpoint. In the BRUE-ME breakpoint analysis, there are
three breakpoints. The active path set for both equilibria is same when demand is below the
first breakpoint where path 3 enters the BRUE active path set. Path 2 enters the active path
set of BRUE at the second breakpoint and the last breakpoint is the BRUE breakpoint.

Here, we focus on one specific OD pair to detect the breakpoints in the real network. We
compare the breakpoints of different equilibria. We identify the range where the active path
sets of two equilibria are different. This range is used for applying control strategies in order
to push the system from the current state to SO.

5.6 Control strategy

The idea of shifting the network from one equilibrium to another requires applying a control
strategy in the demand range between two breakpoints, where the active path set remains
fixed. When both equilibria have the same path set but different flows, we need to design a
strategy to reroute the critical users. The number of critical users, in this case, is the differ-
ence between the two flow values of the paths. For instance, in this network, the pattern of
each equilibrium (set of active paths) is constant between two breakpoints. The traffic man-
agement system can induce a change of path for the critical users. Also, when the difference
in flow is high for two equilibria, then promoting users to use one specific path may also be
efficient. On the other hand, if the active path set is not the same for the two equilibria (e.g.
paths used in UE which are not used in SO), the system can ban some paths (unused in SO)
through routing advises. In this chapter, we highlight the situation when one path is not
used in SO or ME while it is being used in UE or BRUE. Note that it is important to consider
which discipline is used with respect to a control strategy. If we consider the ME discipline
as a reference, the range of banning or the path involved in banning may change. Here, we
want to investigate which discipline would be a reference for control strategy? And does
banning improve the network performance? The answer to the latter question is connected
to the Braess paradox.

In these experiments, according to the breakpoint detection (Figure 5.4(c)) when the de-
mand level is below 359 and when it exceeds 719, the SO flow for the third path is zero. For
ME, when the demand is higher than 1259 the flow of path 3 is not zero. Therefore, if we
ban path 3 for UE and BRUE scenarios, users will use the two other paths and the perfor-
mance of the network is changed. The goal of the control methods is to improve the total
travel time of the network. We will check that banning is efficient in those ranges of demand
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where path 3 is unused in SO or ME. Here we present the ban strategy that we apply to the
test case.

5.6.1 Ban Strategy (BS)

Banning some links or some turning movements at intersections and optimizing traffic
lights’ settings are major tools that traffic managers use in order to improve the performance
of a traffic network. Here based on the breakpoints analysis we apply the BS to prevent users
of specific OD pair(s) from taking a path which has zero flow in the SO/ME framework and
non-zero flow in the UE/BRUE solution. Such a strategy may also stop users from other OD
pairs to use the banned link or turning at the specific intersection in the network. Therefore,
we can have side effects because the route choice of other users is also affected.

In order to choose the best location banning point, we first list all possibilities and then
count how many users from other OD pair use that intersection or link. Then we choose the
banning point that affects fewer users from other OD pairs. Note that all the simulations
with BS are executed in the UE/BRUE framework for all users in the network. We consider
one banning point which is presented in Figure 5.5 which prevents the users of the “Quai
de Serbie to Verguin” OD pair from using path 3. The banning point prevent all users from
going straight forward at the intersection.

FIGURE 5.5 – Network of Lyon 6 with banning point

5.6.2 Applying BS to one OD pair test case

For the “Quai de Serbie to Verguin” OD pair, we consider one BS based on SO and ME be-
cause with both disciplines there are approximately same zone between breakpoints that the
level of demand in ME and SO is zero for path 3 and not zero in UE/BRUE framework. In
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other words, the BS optimal ranges of demand (identifying by breakpoints) for both refer-
ences (SO and ME) are similar. We apply the banning strategy for all demand levels to see
the impact of the strategy on the different demand levels. Therefore, path 3 is banned for all
levels of demand. We remark that the BS scenarios are run in UE framework. The BRUE is
also considered for all ban scenarios (BRUE+BS) in order to compare with the BRUE scenario
without ban strategy.

The total travel time of the breakpoints for all equilibria are presented in Figure 5.6. We
present it here in order to first show that optimizing the surrogate model instead of the actual
value of the path marginal still yields a better total travel time than UE and BRUE. Second,
in the mixed equilibrium the rerouting of a specific OD pair improves the performance of
the network but it also shows that when users of one OD pair switch to the SO solution,
other users take advantage and use the capacity of those links which are less used. Third,
the total travel time of BS is below the total travel time of UE. Even the BRUE+BS obtains
better performance than BRUE. For ban strategies, we also close a link of path 3 between
two breakpoints where path 3 is used in SO, and the result shows that the total travel time
of this level is higher than UE (dash lines in Figure 5.6).

FIGURE 5.6 – Total travel time for each level of demand in one OD pair test case for UE, SO, BRUE,
ME, BS and BRUE+BS.

The results of all experiments for one OD pair test case are presented in Figure 5.7. Note
that the ban strategy is applied for all demand level so the path 3 flow of BS and BRUE+BS
in Figure 5.7(c) is zero for all demand levels. At the demand level at which we should
not apply BS, flows and travel time are presented by dash lines for BS. The dash lines in
Figures 5.7(a) and 5.7(b) show that between demand levels 359 and 719 the flow assigned
to path one and the flow level is higher than SO solution. The BS improves the total travel
time also after the last breakpoint where the SO solution guides us to ban path 3 and ME
contains this path in the active path set. The result for one OD pair test case shows that
considering the SO solution as the reference can provide a better control strategy than ME
solution in order to improve the total travel time of the system. Also, because all users
in BS/BRUE+BS are looking for UE/BRUE, we do not expect the total travel time for the
whole network to be equal to SO travel time. But the result shows that the performance of
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the network is improved with BS in UE and BRUE frameworks. If we would be able also to
apply BS to more than one OD pair flow based on the breakpoint analysis we would expect
better performance in term of total travel time from the traffic network.
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(a) Path 1 flow-demand diagram.

(b) Path 2 flow-demand diagram.

(c) Path 3 flow-demand diagram.

FIGURE 5.7 – flow diagrams in one OD pair test case for UE, SO, BRUE, Mixed Equilibrium (ME), Ban
strategy (BS) and the combination of BRUE and Ban Strategy (BRUE+BS). Breakpoints are presented
by black vertical dash lines on total demand axis.
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5.7 Two OD pairs numerical experiments

In this section, we apply the breakpoint analysis and the ban strategy based on the break-
point analysis to the second test case considering jointly two OD pairs in order to show that
our framework can be applied to more general configurations. We first identify what are
the two most problematic OD pairs in terms of congestion (carry the most demand). Recall
that the main idea is through the banning we try to improve the traffic condition of the full
network by focusing on these OD pairs. We trigger our banning based on the evolution of
demand on these OD pairs.

We consider an experiment which contains two OD pairs in order to analyze the break-
points by considering the interaction of the two OD pairs. The Lyon 6 network, including
the two OD pairs test case, is presented in figure 5.8. There are 3139 trips for all OD pairs ex-
cluding the two targeted OD pairs (for more details see B). In order to find the breakpoints,
the demand levels of both OD pairs are increased at the same time because both demands
come from the same direction and ME discipline is also applied for the users of these OD
pairs while the other users follow the UE/BRUE framework. Figure 5.8 shows that the two
OD pairs have many links in common. Taking this fact into consideration, we try to choose
the banning intersection in a smart way based on the breakpoint analysis.

(a) Satellite view of Lyon 6, France
(Mapping data c©Google 2019)

(b) The paths on the network for
two OD pairs test case with banning points

FIGURE 5.8 – Network of Lyon 6

5.7.1 Breakpoint analysis

The flow-demand diagrams of all six paths are presented in Figure 5.9. The demand level of
both OD pairs is increased at the same time and the breakpoints are detected from the path
flows in order to identify the range of demand for applying the ban strategy. The demand
axis shows the inflow of both targeted OD pairs which are equal and increase together for
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each simulation. The 3 figures on the right (Figures 5.9(a),(c) and (e)) are related to the first
OD pair. They show the breakpoints which are changed because of the impact of the demand
level of the second OD pair. The third path is used in the SO solution when the demand
level of both OD pairs exceeds than 362. It shows the impact of OD pairs on each other
when the demand level is changed. For the second OD pair the results in Figures 5.9(b),(d)
and (f) show the opportunity of banning strategy for path 4 which is almost not used for SO
solution. Path 3 and path 4 have many common links and we observe that these links are
more used for the UE discipline of the first OD pair which shows that these links are critical
for breakpoint detection and ban strategies.

The breakpoint detection is carried out for each equilibrium by considering the active
path set and the ban strategy is designed based on the breakpoint analysis. Here, we do not
represent the process which is same as in subsections 5.5.2 and 5.6.1 and just demonstrate
the result of breakpoint analysis and BS designing. The ban strategies based on SO and ME
for two OD pairs test case are presented in Table 5.3. For instance, when the path flow is
zero for ME and not zero for UE/BRUE, we ban that flow until the next breakpoint that this
path is used.

TABLE 5.3 – The ban strategies for two OD pairs test case

Ban Strategy based on system optimum (BS1) Ban Strategy based on mixed equilibrium (BS2)
starting breakpoints ending breakpoints Ban starting breakpoints ending breakpoints Ban

0 359 3, 4 and 6 0 269 3, 4 and 6
359 1439 4 and 6 269 539 3 and 6

- - - 539 1439 4

For this case, we consider two ban strategies. The first BS (BS1) is applied based on the SO
and the second one (BS2) is designed based on ME path flow distribution (Table 5.3). Four
banning points are chosen in order to implement the BS which are presented in Figure 5.10.
Point α is same as in the first scenario and we ban path 3 for the first OD pair and path 4
for the second OD pair. The second point is point β which prevents users from turning left
at the intersection and bans path 3 only for the first OD pair. Point γ prevents users from
turning left and ban path 4 and the last banning point δ is forbidding users to go straight
forward and use path 6. These four banning point(s) are activated based on the breakpoint
analysis. When the flows on both paths 3 and 4 are zero in the SO solution, point α is
activated and when the flow of path 3 is zero, point β becomes activated. The point γ allows
us to ban path 4 and prevents users from turning left at the intersection. Finally point δ
becomes active when we need to ban path 6 in order to prevent users from moving straight
at the intersection. Considering these banning points we are able to apply the designed ban
strategies in each range of demand.
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(a) Path 1 flow-demand diagram. (b) Path 4 flow-demand diagram.

(c) Path 2 flow-demand diagram. (d) Path 5 flow-demand diagram.

(e) Path 3 flow-demand diagram. (f) Path 6 flow-demand diagram.

FIGURE 5.9 – flow diagrams in two OD pairs test case for UE, SO, BRUE, Mixed Equilibrium (ME).
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FIGURE 5.10 – Network of Lyon 6 with banning points for two OD pairs scenario

5.7.2 Applying BS to two OD pairs test case

The results of the Ban strategies are provided for the two OD pairs scenario. Figure 5.11
presents the evolution of the total travel time at different demand levels of the two OD
pairs for different disciplines. We present the application of ban strategy in the UE and
BRUE frameworks. "BS1" and "BS2" correspond to the UE framework in Figure 5.11(a) and
"BRUE+BS1" and "BRUE+BS2" in Figure 5.11(b) present the total travel time of ban strategies
in BRUE framework.

The total travel times for UE, SO, ME, BS1 and BS2 are shown in Figure 5.11(a). The figure
shows that BS2 works better than BS1 in the two ODs test case, but we should consider that
both strategies improve the network performance. BS1 and BS2 also change the network
design. Therefore, there is a possibility, while applying BS, to obtain a total travel time lower
than the SO total travel time in some ranges of demand. This has happened in two ranges
of demand: [813 − 1187] and [155 − 241], where the total travel time of BS is lower than
the total travel time SO. The second reason for getting lower total travel time with BS than
with SO could be using the surrogate model instead of the analytical path marginal cost in
SO calculation. The surrogate model only yields an approximate SO. But the results shows
that considering the approximation of the SO solution as a reference is enough to design a
control strategy based on breakpoint detection in order to improve the performance of the
dynamic traffic network.

The second figure (Figure 5.11(b)) presents the evolution of the total travel time for ref-
erence disciplines (SO and ME) and BRUE discipline combined with two ban strategies.
BRUE+BS1 is the BS based on SO and the second one (BRUE+BS2) is the BS based on ME.
ME obtains a better solution for designing the ban strategy in the context of BRUE discipline.
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The BRUE+BS2 solution is close to UE and better than BRUE in term of total travel time. The
application of ban strategies to the second test case shows that this strategy can improve the
network performance also when we consider more than one OD pair with common links.

(a)

(b)

FIGURE 5.11 – Total travel time for each level of demand in two OD pairs test case for UE, SO, BRUE,
ME, BS1, BS2, BRUE+BS1 and BRUE+BS2.
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5.7.3 Sensitivity analysis

For now, breakpoints for two OD pairs have been derived when the demand level is similar
on both side. This situation is quite realistic because, during network loading, we expect that
the demand grows in a coordinated way. However, we want to investigate in this subsection
what happens if we relax this hypothesis and have different demand levels for each OD pair.

First, we run simulations to derive UE and SO equilibrium on the network for any de-
mand levels on both OD pairs. Figure 5.12(a) presents the total TT for UE and SO conditions
and all demand levels. We draw the planes by using the linear interpolation method (Blu
et al., 2004). The total TT in SO is obviously less than UE for all demand levels. Second,
we look for breakpoints and path 4 as previous results in section 5.7.1 show that banning
this path at point γ (figure 5.10) significantly improves the system performance when the
demands very coordinated on both OD pairs. In other words, path 4 is the most promis-
ing path for the application of banning strategy. The breakpoint detection is carried out by
comparing UE and SO solutions and looking for situations when path 4 should not be used
in SO while being used in UE. Figure 5.12(b) presents the demand ranges when the banish-
ment should be applied to path 4 based on such a breakpoint analysis. Note that we look
for rectangle areas when all conditions are met and we did not do fine tuning of the area
shapes.

To assess how BS is effective, we first ban path 4 for all demand levels and run again
the simulations considering UE equilibrium. We expect that the BS improves the network
situation compared to UE without banning within the ranges of demand we have previously
identified based on the breakpoint analysis. Figure 5.13 presents the total TT of UE and UE +
banning path 4 (BP4). Two deformed planes are overlapping each other in different demand
levels. When the UE plane is placed at the top of BP4 plane, it means by banning path 4 we
reduce the total TT.

Figure 5.14(a) presents the comparison between BS plan (from Figure 5.12(b)) and the
results of banning path 4 for all demand levels of two targeted OD pairs. The green regions
are where the system has better performance (less total TT) than UE without banishment,
i.e., the banishment is effective. The red regions are the demand ranges where the BS cannot
improve (decrease) the total TT of the network. Besides, the heat map in figure 5.14(b) shows
how many hours can be saved or lost by banning path 4 at each level of demand. The results
in figure 5.14 show that breakpoint analysis properly cover the ranges of demand when the
BS is effective. Futhermore, it provides a full coverage of the region when the BS is the most
effective, i.e. save the more hours, see red regions in figure 5.14(b).
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(a) The total TT of UE and SO for different demand levels of joint OD pairs

(b) The output of breakpoint analysis

FIGURE 5.12 – Breakpoint analysis on path 4 for two targeted OD pairs
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FIGURE 5.13 – The total TT of UE and BP4 for different demand levels of targeted OD pairs

(a) (b)

FIGURE 5.14 – Comparison between BS by breakpoint analysis and the result of banning path 4 for all
demand levels of two targeted OD pairs: (a) The comparison between BS plan by breakpoint analysis
and the results of banning path 4 for all demand levels of two targeted OD pairs; (b) The difference
between UE Total Travel Time (TTT) and the TTT when path 4 is banned for all demand levels of two
targeted OD pairs.
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5.8 Conclusion

This chapter investigated the impact of different demand levels on three equilibria (User
Equilibrium, System Optimum, and Boundary Rational User Equilibrium). It defined a
breakpoint as a demand level where we observe a change in the active path set of one equi-
librium. This study attempted to find the breakpoints and to investigate the possibility to
use breakpoint information in order to move from one equilibrium (UE/BRUE) to another
(SO). In the static case, we first introduced the process of breakpoint detection and then
demonstrated the identification of the situation in which we can improve the network per-
formance by using the ban strategy in the Braess paradox context. For the dynamic case,
this study proposed a novel approach to analyze network DTA equilibrium as a function
of demand level. The potential implications of this approach for network suppliers concern
the analysis of the network status and the design of ban strategies to move from an initial
UE or BRUE situation towards SO.

The numerical experiments were conducted on a dynamic real sub-area network Lyon
6 in order to examine the equilibrium patterns at different demand levels. We considered
the full network equilibrium and analyzed the pattern when the demand of either one, or
two, origin-destination pairs is changed. Two control strategies are applied based on the
breakpoint detection in order to evaluate their impact. The results showed that in the dy-
namic case, the banning strategy is efficient, and we should apply it in the right range of
demand. The mixed equilibrium strategy is designed in order to consider a second refer-
ence for designing the ban strategy. The results showed that both references could help the
design process, and the ban strategy improves network performance. Finally, we have done
a sensitivity analysis on the effectiveness of banning a potential path for different demand
levels of two OD pairs. The results show that the breakpoint analysis is a powerful tool in
order to detect the demand ranges wherein the banning strategy is effective. Note that the
experiments of this chapter have been carried out with homogeneous users. The approach
in this chapter can be carried over to heterogeneous users and can consider the profile of
each user, which allows to consider the BRUE in the stable form.

The numerical experiments showed that approximating the marginal cost and estimat-
ing SO solution yields a breakpoint-based control strategy which improves network equilib-
rium, so there is a possibility to get a better total travel time by improving the approximation
of SO. Thus it will also be possible to investigate if what we observe here in Section 5.7.2 (BS
total travel time lower than SO total travel time) is caused by a non-optimal solution or re-
lated to network effects (e.g., correlations of the effects between multiple OD pairs). Finally,
the results of this chapter show the existence of the breakpoints, which is to be expected
from the static case analysis but has not been analyzed in the dynamic case before. They
also show the efficiency of the banning strategy, particularly based on mixed equilibrium
discipline at the proper level of demand.
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Summary and global overview

This PhD thesis purposed dynamic network loading process, and in particular, path flows
calculations for different network equilibrium conditions. Our research has been entirely fo-
cused on the simulation-based DTA model, for which a rich and prolific literature has been
produced over the past decade, as shown in the introduction chapter and the beginning of
each following chapter of this manuscript. Simulation-based DTA models can be applied
to large-scale urban networks. However, despite the growing attention paid to simulation-
based DTA modeling, the literature review of our introduction chapter unveiled several
theoretical and methodological issues in the solution algorithm for trip-based dynamic net-
work equilibrium. The reason lies in the fact that there is no comprehensive comparison of
the performance of the existing solution algorithms, and also, there are few studies on ap-
plying solutions methods from other fields of optimization. Most existing solution methods
are often simple to implement to solve the DTA problem, but they are not fast enough and
do not guarantee the quality of the solution, particularly for large-scale networks. Not only
the calculation of the network equilibrium is crucial, but analyzing the equilibrium path
flow distribution is also important. Studying path flow distributions for UE solution has not
received lots of attention because lots of works are dedicated to finding the optimal solution.

In this context, the objectives of our work were two-fold: (i) first, improving the DTA
calculation algorithms, and (ii) second, using the algorithm to solve new DTA problems
and innovate in analyzing the DTA outputs to improve the transportation system perfor-
mance. Parallel to these two objectives, the storyline of this manuscript can be seen as the
introduction of optimization framework from calculating the equilibrium as fast as possible
(part I) to optimize the system based on equilibrium analysis (part II) for DTA models. For
the first objective, our main contributions were cross-comparison of the existing algorithms
and developing an efficient framework based on meta-heuristic algorithms to find the traffic
network equilibrium. These questions were mainly in the topics of chapters 2 and 3 (part I).
In chapter 2, first, the existing solution algorithms were investigated, and several improve-
ments proposed to improve the performance of solution algorithms compared to the recent
methodology in the literature. This investigation gave a good background for designing a
new framework for large-scale traffic network. As described in chapter 3, the fundamentals
of the most existing algorithms are similar. Therefore, another significant contribution of
present work was introducing a new approach based on parallel computation for solving
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the DTA problem. Two meta-heuristic algorithms (Genetic and Simulated annealing) were
designed and adapted to the problem. Both of them reduced the computation time and also
provided better solutions in terms of closeness to the optimum than existing algorithms. The
parallel computation framework empowers the solution algorithm to explore more points
in the solution space.

All the efforts in part I aimed to provide an efficient tool to calculate the equilibrium. For
the second objective, our main contribution was innovating in analyzing the equilibrium so-
lution inspired by real urban network settings. In part II, two methodologies are developed
in order to improve the performance of the transportation system. The first one corresponds
to the features of the equilibrium solution. One of the key features is unicity of the equi-
librium solution, which is simply violated from the theoretical point of view in multimodal
and urban traffic networks. As shown by simulation in chapter 4, multiple equilibrium so-
lutions exist in large-scale networks. Moreover, the impact of network design history on
day-to-day DTA problem was investigated, where we have multiple solutions for equilib-
rium. This question is addressed and discussed in chapter 4. Another key result that was
obtained from the dynamic simulations is that certain final equilibria were more efficient
from the systems point of view than other equilibria.

The second methodology was an innovation in the equilibrium analysis to design con-
trol strategies. This question was the subject of chapter 5. The breakpoint concept was
introduced in order to design a novel approach to analyze the path flow distribution of dif-
ferent network equilibrium rules (e.g., user equilibrium and system optimum) as a function
of demand level. This analysis is able to find the demand levels, where the control strategies
can be effective for system improvement. Using dynamic simulator showed the existence
of the breakpoints, which has not been analyzed in the dynamic case before. Application of
one control strategy (banning) at the proper level of demand also proved the advantage of
the breakpoint analysis.

Finally, the practical output of our work was the development of the SymuMaster as
an optimization platform presented in chapter 1.2.3. It contains all of the implementations
that have been done in this thesis, particularly one of our notable contributions to the field
of DTA simulation, namely the implementation of the meta-heuristic algorithms with par-
allel computation for simulation-based DTA, operating in both flow-based and trip-based
settings. From a broader research perspective, this platform is portable and has been con-
nected to the different simulators and also used with other members involved in the MAG-
nUM project. SymuMaster is going to be available open-source as part of the publication of
the Symuvia platform.

Contributions to our initial research questions

According to the list of the research questions that was presented in section 1.5.1, our main
contributions are listed below in the same order:

• The full benchmark of all algorithms has been done for different network size and level
of saturation in chapter 2. The performance of the algorithms is evaluated based on the
quality of solutions and computation times. Several improvements are also proposed
to speed up the convergence. All the extensions significantly reduce the number of iter-
ations to get a good convergence rate and drastically speed up the overall simulations.
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The results also show that the performance of different components of the solution al-
gorithm is sensitive to the network size and saturation. Finally, the best configurations
of the solution algorithms have been identified for all network sizes, with a particular
focus on the largest scale.

• About designing a new generation of solution methods, chapter 3, first, highlighted
the drawbacks of existing algorithms for DTA models. Second, for the first time, paral-
lelized meta-heuristic approaches were applied to solve the network equilibrium prob-
lem. Two new solution methods were proposed: an extension of the simulated anneal-
ing and an adapted genetic algorithm. With parallel simulation, the algorithm runs
more simulations in comparison with existing methods, but the algorithm explores
the solution space better and therefore obtains better solutions in terms of closeness to
the optimal solution and computation time compared to classical methods. The results
showed that meta-heuristic algorithms dominate classical methods.

• In chapter 4, the assumption of unicity for DTA models was first discussed. Second, the
relaxation of this hypothesis with the multi-modality on traffic dynamics were studied.
Multiple solutions are first investigated analytically in the static test case and then
examined on a real test case by long-term, day-to-day learning process. The results
showed that not only non-unicity exists, but that total travel time can be saved and
other network performance indicators optimized by switching from one solution to
another.

• Chapter 4 studied the network design history in the day-to-day multimodal context
where there are multiple equilibria. When multiple facilities are progressively intro-
duced in the system at different times, the learning process is subject to multiple steps.
When users have time to adjust to these different steps, it changes the global conver-
gence process and may lead the system towards multiple different situations while the
final network setting remains the same. Based on static and the dynamic settings, it
was demonstrated that the order of the successive introduction of such facilities mat-
ters when determining the final equilibrium. This is a crucial finding, which means
that the study of the current network situation may not be sufficient to grasp the real
user distribution inside the network and that it is necessary to consider the history of
the network. In other words, a unique UE calculation with the current network set-
ting may lead to an equilibrium other than the one resulting from the different steps
corresponding to the network history.

• The analysis on the solution of three popular equilibrium conditions: User equilib-
rium (UE), System optimum (SO) and Boundary Rational User Equilibrium (BRUE)
has been done in chapter 5 considering static and dynamic traffic assignment. Here
the novelty of our approach for analyzing the equilibrium solutions would lie in intro-
ducing the new concept: demand level breakpoint. A breakpoint is the demand level
where we observe a change in the active path set of one equilibrium. It was used in this
study as identification of the situation in which there is an opportunity to improve the
network performance. Following the concept of Braess paradox, breakpoint detection
permitted to design banning strategies at some key locations in the network to pre-
vent some alternatives from being used and thus to improve the system performance.
Dynamic simulation on a real test case showed that such a strategy is effective, which
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demonstrated the importance of breakpoint identification. The potential implications
of this approach for network suppliers concern the analysis of the network status and
the design of ban strategies in order to move from an initial UE or BRUE situation
towards SO.

Research perspectives

In the following part, we propose recommendations for future research:

• First of all, improving the existing solution algorithms in the literature for equilibrium
calculation is not completed by this study, and there is still room for further improve-
ments. For instance, designing the framework to predetermine the computation bud-
get, based on network size, topology, and saturation level can be an interesting topic.

• In addition to improving the path flow calculation, identifying the component of the
problem which has more impact on the computation time and the quality of end-result
for different algorithms is also crucial. Therefore, testing the performance of algo-
rithms on more detailed models, e. g., activity-based models can be worthy.

• Other comparison studies should definitively be carried on to further validate and in-
vestigate the meta-heuristic approaches we introduced. Indeed, although we tried to
keep them quite general, one major issue with the tests we conducted is that we ap-
plied the algorithm to specific congestion patterns on the large-scale network. There-
fore, it is recommended to test the algorithm on other networks and loading profile.

• This study has introduced a new branch of optimization algorithms for simulation-
based DTA models. Therefore, designing other types of meta-heuristic algorithms is
undoubtedly a very promising direction of research when attempting to overcome the
curse of dimensionality related to large-scale DTA problems.

• Regarding the wide literature on solving fixed-point problems and variational inequal-
ity, there are still many solution methods in the field of game theory and operation
research that can be applied to DTA problems.

• Here, we introduced the first parallel computation framework to solve DTA problems.
It is also interesting to investigate other effective parallel and distributed algorithms
or computing platforms in order to improve the computation time of large-scale prob-
lems. Integrating this approach with the path discovery and simulation steps can be
an interesting research direction.

• Investigating other approaches to shorten the running time is also worthy. For in-
stance, developing effective surrogate models for large-scale DTA simulation models.

• The application of hybrid or multi-objective variants of such meta-heuristics to solve
simulation-based DTA problems with environmental considerations can be interesting
also for future research.
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• As it is proved mathematically in the literature and shown in the large-scale by this
study, non-unicity and existing of multiple equilibria with different features are in the
nature of urban traffic models. One of the research directions for future work can be
building an equilibria prediction model to estimate the multiple possible equilibria of
the system and control strategies to shift from one equilibrium to others.

• Another direction of research is considering a multi-objective equilibrium or a mixed
equilibrium DTA, which is a challenging problem in day-to-day multimodal DTA
models. The model is closer to the real world, but it is also more complex, and new
sources of non-unicity can be correlated with other components of the system.

• As mentioned before, most of the research in the DTA field are stopped after calculat-
ing the DTA solution. Here, we analyzed the path flow distribution of equilibrium and
found situations wherein we can improve the system performance by control strate-
gies. We think that there is still lots of space to go further in better identification of
these situations by introducing systematic methods.

• In this thesis, we tried to investigate how we can analyze and use the output of DTA
models. Looking for the impact of initialization on the calculation of equilibrium for
different demand levels, applying the breakpoint analysis process to more than two
Origin-Destination pairs while considering correlations between paths and also test-
ing other control strategies with breakpoint constitute some interesting topics for ex-
tending our study.
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Verbas, İ. Ö., Mahmassani, H. S., Hyland, M. F. & Halat, H. (2016b). Integrated mode
choice and dynamic traveler assignment in multimodal transit networks: Mathemati-
cal formulation, solution procedure, and large-scale application. Transportation Research
Record, 2564(1):78–88.

Wang, Y., Szeto, W., Han, K. & Friesz, T. L. (2018). Dynamic traffic assignment: A review of
the methodological advances for environmentally sustainable road transportation appli-
cations. Transportation Research Part B: Methodological, 111:370–394.

Wardrop, J. G. (1952). Road paper. some theoretical aspects of road traffic research. Proceed-
ings of the institution of civil engineers, 1(3):325–362.

Wardrop, J. G. (1952). Some theoretical aspects of road traffic research. Institution of Civil
Engineering, 1:325–362.

Wie, B.-W., Tobin, R. L. & Carey, M. (2002). The existence, uniqueness and computation of
an arc-based dynamic network user equilibrium formulation. Transportation Research Part
B: Methodological, 36(10):897–918.

Wynter, L. (2001). A convergent algorithm for the multimodal traffic equilib-
rium problem. Tech. Rep. 4125, Institut National De Recherche en Informa-
tique et en Automatique, Le Chesnay Cedex, France. Available from Internet:
https://hal.inria.fr/file/index/docid/72503/filename/RR-4125.pdf.

Xie, J., Nie, Y. M. & Liu, X. (2018). A greedy path-based algorithm for traffic assignment.
Transportation Research Record: Journal of the Transportation Research Board, 2672(48):36–44.

Xu, H.-K. (2002). Iterative algorithms for nonlinear operators. Journal of the London Mathe-
matical Society, 66(1):240–256.

Xu, S., Jiang, W., Deng, X. & Shou, Y. (2018). A modified physarum-inspired model for the
user equilibrium traffic assignment problem. Applied Mathematical Modelling, 55:340–353.

Yang, Q., Balakrishna, R., Morgan, D. & Slavin, H. (2017). Large-scale, high-fidelity dy-

p. 166 / 169



References

namic traffic assignment: framework and real-world case studies. Transportation Research
Procedia, 25:1290–1299.

Yildirimoglu, M. & Kahraman, O. (2018). Investigating the empirical existence of equilib-
rium conditions. Tech. rep.

Yildirimoglu, M. & Ramezani, M. (2019). Demand management with limited cooperation
among travellers: a doubly dynamic approach. Transportation Research Part B: Methodolog-
ical.

Youn, H., Gastner, M. T. & Jeong, H. (2008). Price of anarchy in transportation networks:
efficiency and optimality control. Physical review letters, 101(12):128701.

Ypma, T. J. (1995). Historical development of the newton–raphson method. SIAM Review,
37(4):531–551.

Yu, N., Ma, J. & Zhang, H. M. (2008). A polymorphic dynamic network loading model.
Computer-Aided Civil and Infrastructure Engineering, 23(2):86–103.

Yun, I. & Park, B. (2006). Application of stochastic optimization method for an urban corri-
dor. In Proceedings of the 2006 Winter Simulation Conference. IEEE.

Zhao, X., Wan, C. & Bi, J. (2018). Day-to-day assignment models and traffic dynamics under
information provision. Networks and Spatial Economics, pages 1–30.

Zhou, B., Xu, M., Meng, Q. & Huang, Z. (2017). A day-to-day route flow evolution process
towards the mixed equilibria. Transportation Research Part C: Emerging Technologies, 82:210–
228.

Zhou, X., Mahmassani, H. S. & Zhang, K. (2008). Dynamic micro-assignment modeling
approach for integrated multimodal urban corridor management. Transportation Research
Part C: Emerging Technologies, 16(2):167–186.

Ziliaskopoulos, A. K. & Mahmassani, H. S. (1993). Time-dependent, shortest-path algo-
rithm for real-time intelligent vehicle highway system applications. Transportation Research
Record.

Ziliaskopoulos, A. K. & Mahmassani, H. S. (1996). A note on least time path computation
considering delays and prohibitions for intersection movements. Transportation Research
Part B: Methodological, 30(5):359–367.

p. 167 / 169



A.APPENDIX FOR CHAPTER 4

TABLE A.1 – The scenarios of network design for the dynamic test case.



B.APPENDIX FOR CHAPTER 5

Lyon 6 demand description

The total travel demand for Lyon metropolis (Figure B.1) is about one million trips per day
(Souche et al., 2016). During peak hour, we should then observe about 100,000 trips. The
size of the Lyon 6 network (1.72 km2) is about 7% of the full network of Lyon. Therefore,
approximately, we should have about 7,000 trips per hour. In this study, based on the real
data (Krug et al., 2019), we have, in total, 4361 trips for half an hour in Lyon 6 network,
which shows that our test case is fully consistence with real life pattern.

FIGURE B.1 – Full network of Lyon: Lyon 6 is highlighted by green color
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