
HAL Id: tel-02479121
https://theses.hal.science/tel-02479121

Submitted on 14 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Knowledge Bases and Preferred Update Actions :
Searching for Consistency through Dynamic Logic

Programs
Christos Rantsoudis

To cite this version:
Christos Rantsoudis. Knowledge Bases and Preferred Update Actions : Searching for Consistency
through Dynamic Logic Programs. Databases [cs.DB]. Université Paul Sabatier - Toulouse III, 2018.
English. �NNT : 2018TOU30286�. �tel-02479121�

https://theses.hal.science/tel-02479121
https://hal.archives-ouvertes.fr

THÈSE
En vue de l’obtention du

DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE

Délivré par l'Université Toulouse 3 - Paul Sabatier

Présentée et soutenue par

Christos RANTSOUDIS

Le 10 décembre 2018

Bases de connaissance et actions de mise à jour préférées : à
la recherche de consistance au travers des programmes de la

logique dynamique

Ecole doctorale : EDMITT - Ecole Doctorale Mathématiques, Informatique et
Télécommunications de Toulouse

Spécialité : Informatique et Télécommunications

Unité de recherche :
IRIT : Institut de Recherche en Informatique de Toulouse

Thèse dirigée par
Olivier GASQUET et Guillaume FEUILLADE

Jury
Mme Laura GIORDANO, Rapporteur
Mme Renate SCHMIDT, Rapporteur
M. Andreas HERZIG, Examinateur

Mme Meghyn BIENVENU, Examinateur
M. Olivier GASQUET, Directeur de thèse

Mme Laure VIEU, Président

Abstract

In the database literature it has been proposed to resort to active integrity constraints in

order to restore database integrity. Such active integrity constraints consist of a classical

constraint together with a set of preferred update actions that can be triggered when the

constraint is violated. In the first part of this thesis, we review the main repairing routes

that have been proposed in the literature and capture them by means of Dynamic Logic

programs. The main tool we employ for our investigations is the recently introduced logic

DL-PA, which constitutes a variant of PDL. We then go on to explore a new, dynamic

kind of database repairing whose computational complexity and general properties are

compared to the previous established approaches.

In the second part of the thesis we leave the propositional setting and pursue to adapt

the aforementioned ideas to higher level languages. More specifically, we venture into

Description Logics and investigate extensions of TBox axioms by update actions that de-

note the preferred ways an ABox should be repaired in case of inconsistency with the

axioms of the TBox. The extension of the TBox axioms with these update actions con-

stitute new, active TBoxes. We tackle the problem of repairing an ABox with respect

to such an active TBox both from a syntactic as well as a semantic perspective. Given

an initial ABox, the syntactic approach allows us to construct a set of new ABoxes out

of which we then identify the most suitable repairs. On the other hand, for the semantic

approach we once again resort to a dynamic logic framework and view update actions, ac-

tive inclusion axioms and repairs as programs. Given an active TBox aT , the framework

allows to check (1) whether a set of update actions is able to repair an ABox according

to the active axioms of aT by interpreting the update actions locally and (2) whether an

ABox A′ is the repair of a given ABox A under the active axioms of aT using a bounded

number of computations by interpreting the update actions globally. After discussing the

strong points of each direction, we conclude by combining the syntactic and semantic

investigations into a cohesive approach.

Keywords: Active Integrity Constraints, Dynamic Logic, Description Logic, Inconsis-

tency Management, Database Repairing

Résumé

Dans la littérature sur les bases de données, il a été proposé d’utiliser des contraintes

d’intégrité actives afin de restaurer l’intégrité de la base. Ces contraintes d’intégrité ac-

tives consistent en une contrainte classique augmentée d’un ensemble d’actions de mise

à jour préférées qui peuvent être déclenchées quand la contrainte est violée. Dans la

première partie de cette thèse, nous passons en revue les principales stratégies de répa-

ration qui ont été proposées dans la littérature et proposons une formalisation par des

programmes de la Logique Dynamique. L’outil principal que nous employons dans notre

recherche est la logique DL-PA, une variante de PDL récemment introduite. Nous ex-

plorons ensuite une nouvelle façon dynamique de réparer les bases de données et com-

parons sa complexité calculatoire et ses propriétés générales aux approches classiques.

Dans la seconde partie de la thèse nous abandonnons le cadre propositionnel et adap-

tons les idées susmentionnées à des langages d’un niveau supérieur. Plus précisément,

nous nous intéressons aux Logiques de Description, et étudions des extensions des ax-

iomes d’une TBox par des actions de mise à jour donnant les manières préférées par

lesquelles une ABox doit être réparée dans le cas d’une inconsistance avec les axiomes

de la TBox. L’extension des axiomes d’une TBox avec de telles actions de mise à jour

constitue une nouvelle TBox, qui est active. Nous nous intéressons à la manière de ré-

parer une ABox en rapport avec une telle TBox active, du point de vue syntaxique ainsi

que du point de vue sémantique. Étant donnée une ABox initiale, l’approche syntaxique

nous permet de construire un nouvel ensemble d’ABox dans lequel nous identifions les

réparations les mieux adaptées. D’autre part, pour l’approche sémantique, nous faisons

de nouveau appel au cadre de la logique dynamique et considérons les actions de mise

à jour, les axiomes d’inclusion actives et les réparations comme des programmes. Étant

donné une TBox active aT , ce cadre nous permet de vérifier (1) si un ensemble d’actions

de mise à jour est capable de réparer une ABox en accord avec les axiomes actifs d’aT
en effectuant une interprétation locale des actions de mise à jour et (2) si une ABox A′

est la réparation d’une ABox donnéeA sous les axiomes actifs d’aT moyennant un nom-

bre borné de calculs, en utilisant une interprétation globale des actions de mise à jour.

Après une discussion des avantages de chaque approche nous concluons en proposant

une intégration des approches syntaxiques et sémantiques dans une approche cohésive.

Mots clefs: Contraintes d’Intégrité Active, Logique Dynamique, Logique de Description,

Gestion de l’Inconsistance, Réparation de Bases de Données

Acknowledgements

During my stay in Toulouse there were a number of people who played an instrumental

and pivotal role in the successful writing of this PhD thesis. Coming from all parts of the

world they were my friends, advisors, colleagues and mentors, and without their support

and guidance writing this thesis would never be truly possible.

First and foremost, I am truly grateful to my supervisors Guillaume Feuillade, Olivier

Gasquet and Andreas Herzig for helping make this thesis a reality and shaping me as a

person as well as a researcher. Their everyday guidance, both scientific and nonscien-

tific, in combination with their encouragement and advice inspired me in many, important

ways. More specifically, I would like to thank Andreas for his immense patience and

knowledge, his always positive attitude, and his constant willingness to help, all traits that

kept me going no matter the difficulties we faced. I’ll also be forever indebted to Guil-

laume for his critical help, his friendly nature and all the invaluable conversations we had.

I could not have asked for better advisors and will always strive to follow their example.

I’m also grateful to my friends and colleagues in office, the people who made my

everyday life extremely pleasant and joyful. Going forward we may not see each other

as often, but these people became part of my life, inspired and influenced me without

their knowledge and made my time in Toulouse an absolute delight. Huge thank you

to Zhanhao Xiao, Maël Valais, Usman Younus, Martin Dieguez, Ezgi Iraz Su, Julien

Hay, Julien Vianey, Arianna Novaro, Maryam Rostamigiv, David Fernández-Duque, Petar

Iliev, Victor David, Saul Gonzalez, Elise Perrotin and Dragan Doder.

Next, I would like to express my gratitude to the people of the lab, from the re-

searchers on our team to the always friendly and helpful administrative staff. It was a real

pleasure to meet and interact with them on a daily basis. A special mention to Stergos

Afantenos, whose valuable advice and conversations during break time was something to

always look forward to. Outside the lab, I would like to mention and thank Costas Koutras

for keeping me extra busy and giving me extra advice on all things work and life related.

Last but not least, I would like to thank my family and friends in my home country

for their unconditional love and support during these three years, most of which we had

to regrettably be afar. Special thanks to those who visited me and gave me something to

look forward to in times of need. I truly wouldn’t have achieved anything if it weren’t for

the people closest to me, albeit the farthest away.

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Background and State of the Art . 4

1.2.1 Dynamic Logic of Propositional Assignments 4

1.2.2 Active Integrity Constraints . 8

1.2.3 Description Logic . 9

1.3 Contributions and Outline of the Thesis 15

1.4 Other Contributions . 17

2 A Dynamic Logic Account of Active Integrity Constraints 24

2.1 Introduction . 24

2.2 Background . 27

2.2.1 Static Constraints and the Associated Repairs 27

2.2.2 Active Constraints and the Associated Repairs 30

2.3 Repairs and Weak Repairs in DL-PA . 35

2.4 Founded and Justified Repairs in DL-PA 37

viii

CONTENTS ix

2.5 A New Definition of Repair in DL-PA 44

2.5.1 Repairing a Database: a Dynamic View 44

2.5.2 Dynamic Weak Repairs and Dynamic Repairs 46

2.5.3 Some Interesting Properties . 49

2.6 Complexity of Dynamic Repairs . 55

2.6.1 Lower Complexity Bound . 55

2.6.2 Upper Complexity Bound . 62

2.7 History-Based Repairs . 63

2.8 Conclusion . 66

3 Repairing ABoxes via Active TBoxes: a Syntactic Approach 69

3.1 Introduction . 69

3.2 Integrating Active Constraints to the TBox 71

3.2.1 The Active TBoxes . 74

3.3 A Syntactic Way of ABox Repairing . 76

3.4 Discussion and Conclusion . 83

4 A Semantic Approach to Repairing ABoxes: the Logic dynALCO 85

4.1 Introduction . 85

4.2 Syntax and Semantics . 87

4.2.1 Language . 87

4.2.2 Interpretations and their Updates 88

4.2.3 Semantics . 89

4.3 Reduction Axioms and Decidability . 90

CONTENTS x

4.4 Weak Repairs and Repairs . 97

4.5 Active Inclusion Axioms in ALC TBoxes 101

4.5.1 Founded Weak Repairs and Founded Repairs 102

4.5.2 Dynamic Weak Repairs and Dynamic Repairs 105

4.6 Discussion and Conclusion . 106

5 Repairing ABoxes Semantically: the more Elaborate dynALCIO 109

5.1 Introduction . 109

5.2 Syntax and Semantics . 111

5.2.1 Language . 111

5.2.2 Semantics . 114

5.3 Reduction and Mathematical Properties 115

5.3.1 Associating Local Programs with TBox Axioms 120

5.4 Standard Repairs . 121

5.5 Active Inclusion Axioms in ALCI TBoxes 127

5.6 Dynamic Repairs . 128

5.7 Discussion and Conclusion . 132

6 Conclusion 136

Bibliography 141

List of Figures

1.1 Interpretation of formulas and programs. 7

2.1 Incrementing 000 to 111 through η2 . 46

3.1 Example of a TBox . 72

3.2 Removing (1) vs. forgetting (2) . 73

3.3 Example of an active TBox, based on the TBox of Figure 3.1 76

xii

CHAPTER 1

Introduction

Contents
1.1 Motivation . 1

1.2 Background and State of the Art 4

1.3 Contributions and Outline of the Thesis 15

1.4 Other Contributions . 17

1.1 Motivation

One of the most important (but notoriously difficult) issues in the database and AI litera-

ture is the problem of updating a database under a set of integrity constraints. The latter

are usually expressed by logical formulas and their role is to impose conditions that every

state of the database must satisfy. In the course of database maintenance several changes

are applied to the databases and checking whether these constraints are still satisfied is

of the highest priority. When a database fails to satisfy the integrity constraints, it has to

be repaired in order to restore integrity. Given a database, the procedure of repairing and

restoring its consistency with respect to a set of integrity constraints has been extensively

studied in the last decades [Abiteboul, 1988, Ceri et al., 1994, Bertossi, 2011]. These ap-

proaches propose several possible repairs as candidates for integrity maintenance and it

seems essential to identify which types of repairs are more suitable, given the fact that

the number of all possible repairs can be remarkably large. Given this, the most preva-

1

1. INTRODUCTION 2

lent have become those that are based on the minimality of change principle [Winslett,

1990, Herzig and Rifi, 1999, Chomicki and Marcinkowski, 2005]. Despite this, however,

the need to have ‘more informed’ ways of maintaining database integrity arose.

In light of this, active integrity constraints were proposed as an extension of in-

tegrity constraints (or static constraints) with update actions, each one suggesting the pre-

ferred update method when an inconsistency arises between the database and a constraint

[Flesca et al., 2004,Caroprese et al., 2009,Caroprese and Truszczynski, 2011,Cruz-Filipe,

2014]. For example, the integrity constraint (∀X)[Bachelor(X) ∧ Married(X) → ⊥]

which says that no one should have the property of being a bachelor and married at the

same time can be turned into the active constraint (∀X)[Bachelor(X) ∧ Married(X) →

⊥, {−Bachelor(X)}], whose meaning is that when there is a person in the database who

has both the status of being a bachelor and the status of being married then the preferred

repair is to remove from the database the bachelor status (as opposed to removing the

married status) since married status can be achieved from being bachelor but not the other

way. In this way, the possible repairs are narrowed down as well as better match designer

preferences when maintaining the database. In the propositional case, an active integrity

constraint can be represented as a couple r = 〈C(r),R(r)〉 where C(r) is a boolean for-

mula (called the static part of r and denoting a static constraint) and R(r) is a set of update

actions, each of which is of the form +p or −p for some atomic formula p. The idea is

that (1) when C(r) is false then the constraint r is violated and (2) a violated constraint

can be repaired by performing one or more of the update actions in R(r). The two most

prevalent types of repairs w.r.t. a set of active integrity constraints are the founded and the

justified repairs. Note that while with these methods one can greatly reduce the number of

possible repairs, different choices between update actions in R(r) can still lead to different

repairing routes or even no repairs at all (for example when R(r) is the empty set).

Applying the same idea to the Description Logic setting would result in the extension

of the TBox axioms with preferred update actions that ‘dictate’ the changes that should

be imposed on an ABox in order to achieve consistency with a TBox and this has not yet

been directly pursued in the DL literature. It seems very natural though that sometimes

ontology engineers should be given the means to easily express such preferences without

having to worry that unwanted ‘repairing routes’ will be followed in case there is an

1. INTRODUCTION 3

inconsistency between an ABox and a TBox. Consider for instance the following TBox:

T = {Father v Male u Parent,OnlyChild v ∀hasSibling.⊥}

and an ontology engineer being able to ‘enhance’ it to two possible active TBoxes, viz.

aT1 = {η1, η2} or aT2 = {η3, η4} where:

η1 : 〈Father v Male u Parent, {+Male,+Parent}〉

η2 : 〈OnlyChild v ∀hasSibling.⊥, {−OnlyChild}〉

η3 : 〈Father v Male u Parent, {−Father}〉

η4 : 〈OnlyChild v ∀hasSibling.⊥, {−hasSibling.>}〉

We can witness how, through these enhanced concept inclusions, one can be more specific

in the update actions that s/he prefers when repairing an ABox that is inconsistent with T :

the active axioms of aT1 dictate that an individual who is a father should remain a father

in case of inconsistency, whereas an individual who has siblings should change its status

and not be an only child anymore. Similarly for aT2, where ‘−hasSibling.>’ removes

all relations between individuals that violate the axiom and individuals satisfying > (i.e.,

all individuals), thus stating that an only child who has siblings should drop its ‘sibling’

relationship with everyone and stay an only child. In practice, consider the following

ABox:

A = {John : Male u Father u ¬Parent,Mary : OnlyChild, hasSibling(Mary, John)}

A repaired ABox then according to aT1 should be the following:

A1 = {John : Male u Father u Parent,Mary : ¬OnlyChild, hasSibling(Mary, John)}

whereas a repaired ABox according to aT2 should be the following:

A2 = {John : Male u ¬Father u ¬Parent,Mary : OnlyChild}

During the course of this thesis, we will attempt to materialize the above intuitions in a

number of different formats and examine how the various definitions of repairs from the

1. INTRODUCTION 4

database literature translate and behave in the DL setting.

1.2 Background and State of the Art

We begin by presenting some background that is needed for the later chapters. Mean-

while, we discuss the relevant state of the art of the areas that this thesis is based on.

More specifically, we give the basics of DL-PA, a variant of Propositional Dynamic Logic

that Chapter 2 is based on, give a survey of the literature on Active Integrity Constraints

from their origins to later developments, as well as recall the fundamental notions of De-

scription Logics and the most prevalent methods that exist on repairing inconsistent DL

knowledge bases.

1.2.1 Dynamic Logic of Propositional Assignments

Dynamic Logic [Pratt, 1976,Harel et al., 2000] extends modal logic with dynamic opera-

tors that are designed to reason about the behavior of (computer) programs: each modal

operator has as argument a (computer) program and allows to express facts which hold

after that program is executed. Propositional Dynamic Logic PDL [Fischer and Ladner,

1979] is the ‘fragment’ of Dynamic Logic that deals with propositional statements.

The first studies of assignments in the context of Dynamic Logic are due, among

others, to Tiomkin and Makowski and van Eijck [Tiomkin and Makowsky, 1985, van

Eijck, 2000]. Dynamic Logic of Propositional Assignments DL-PA is a variant of PDL

that was introduced in [Herzig et al., 2011] and was further studied in [Balbiani et al.,

2013, Balbiani et al., 2014]. Evidence for its widespread applicability was provided in

several recent publications, including belief update and belief revision, argumentation,

planning and reasoning about knowledge [Herzig, 2014,Doutre et al., 2014,Herzig et al.,

2014, Herzig et al., 2016, Cooper et al., 2016, Charrier and Schwarzentruber, 2017]. We

briefly recall syntax and semantics.

1. INTRODUCTION 5

Language

Consider a countable set of propositional variables (alias atomic formulas) P = {p, q, . . .}.

An update action is of the form p←> and p←⊥, for p ∈ P. The former is the insertion

of p and the latter is the deletion of p. We denote the set of all update actions by U. A

set of update actions U ⊆ U is consistent if it does not contain both p←> and p←⊥, for

some p. The language of DL-PA is defined by the following grammar:

ϕ ::= p | > | ⊥ | ¬ϕ | ϕ ∨ ϕ | 〈π〉ϕ

π ::= α | π; π | π ∪ π | π∗ | πc | ϕ?

where p ranges over the set of atomic formulas P and α ranges over the set of update

actions U. The other boolean connectives ∧,→, and↔ are abbreviated in the usual way.

In DL-PA, update actions are singletons and are called atomic assignments. The operators

of sequential composition “;”, nondeterministic composition “∪”, finite iteration (the so-

called Kleene star) “(.)∗” and test “(.)?” are the familiar operators of PDL. The operator

“(.)c” is the converse operator. The formula 〈π〉ϕ is read “there is an execution of π after

which ϕ is true”. So e.g. 〈p←⊥c〉(p∧ q) expresses that p∧ q is true after some execution

of p←⊥c, i.e., p ∧ q was true before p was set to false. The star-free fragment of DL-PA

is the subset of the language made up of formulas without the Kleene star.

Let Pϕ denote the set of variables from P occurring in formula ϕ, and let Pπ denote

the set of variables from P occurring in program π. For example, Pp←>∪ q←⊥ = {p, q} =

P〈p←⊥〉q. Moreover, a literal is an element of P or the negation of an element of P and a

clause is a disjunction of literals.

Several program abbreviations are familiar from PDL. First, skip abbreviates>? and

fail abbreviates ⊥?. Second, if ϕ then π1 else π2 is expressed by (ϕ?; π1) ∪ (¬ϕ?; π2).

Third, the loop while ϕ do π is expressed by (ϕ?; π)∗;¬ϕ?. The nondeterministic com-

position
⋃
α∈U

α equals fail when U is empty. Furthermore, let π+ abbreviate the program

π; π∗. Assignments of literals to variables are introduced by means of the following two

abbreviations:

p←q = if q then p←> else p←⊥ p←¬q = if q then p←⊥ else p←>

1. INTRODUCTION 6

The former assigns to p the truth value of q, while the latter assigns to p the truth value

of ¬q. In particular, the program p←¬p flips the truth value of p. Note that both ab-

breviations have constant length, namely 14. Finally and as usual in modal logic, [π]ϕ

abbreviates ¬〈π〉¬ϕ.

Semantics

Valuations are subsets of P and are denoted by V , V1, V2, etc. The set of all valuations is

therefore V = 2P. It will sometimes be convenient to write V (p) = > instead of p ∈ V

and V (p) = ⊥ instead of p 6∈ V . A valuation determines the truth value of every boolean

formula. The set of valuations whereA is true is noted ||A||. We sometimes write V |= A

instead of V ∈ ||A||. The update of a valuation V by a set of update actions U is defined

as:

V � U =
(
V \ {p : p←⊥ ∈ U}

)
∪ {p : p←> ∈ U}

So all the deletions are applied in parallel first, followed by the parallel application of

all insertions. We could as well have chosen another order of application. When U is

consistent then all of them lead to the same result. In particular:

Proposition 1.1. Let {α1, . . . , αn} be a consistent set of update actions. Let 〈k1 . . . kn〉 be

some permutation of 〈1 . . . n〉. Then V � {α1, . . . , αn} =
(
. . . (V � {αk1}) . . .

)
� {αkn}.

DL-PA programs are interpreted as relations between valuations. The atomic pro-

grams α update valuations in the aforementioned way and complex programs are inter-

preted just as in PDL by mutual recursion. Figure 1.1 gives the interpretation of formulas

and programs, where ◦ is relation composition and (.)−1 is relation inverse.

A formula ϕ is DL-PA valid iff ||ϕ|| = 2P = V. It is DL-PA satisfiable iff ||ϕ|| 6=

∅. For example, the formulas 〈p←⊥〉>, 〈p←>〉ϕ ↔ ¬〈p←>〉¬ϕ, 〈p←>〉 p and

〈p←⊥〉¬p are all valid.

Observe that if p does not occur in ϕ then ϕ → 〈p←>〉ϕ and ϕ → 〈p←⊥〉ϕ are

valid. This is due to the following semantical property that is instrumental in the proof of

several results involving DL-PA.

1. INTRODUCTION 7

||p|| = {V : p ∈ V } ||α|| =
{
〈V1,V2〉 : V2 = V1 � {α}

}
||>|| = V = 2P ||π;π′|| = ||π|| ◦ ||π′||
||⊥|| = ∅ ||π ∪ π′|| = ||π|| ∪ ||π′||
||¬ϕ|| = 2P \ ||ϕ|| ||π∗|| =

(
||π||

)∗
||ϕ ∨ ψ|| = ||ϕ|| ∪ ||ψ|| ||πc|| =

(
||π||

)−1

||〈π〉ϕ|| =
{

V : ∃V1 s.t. 〈V ,V1〉 ∈ ||π|| ||ϕ?|| =
{
〈V ,V 〉 : V ∈ ||ϕ||

}
and V1 ∈ ||ϕ||

}

Figure 1.1: Interpretation of formulas and programs.

Proposition 1.2. Let P be a subset of P. Suppose that Pϕ ∩ P = ∅, i.e., none of the

variables of P occurs in ϕ. Then V ∪ P ∈ ||ϕ|| iff V \ P ∈ ||ϕ||.

The most distinguishing feature of DL-PA though is that its dynamic operators can be

eliminated (which is not possible in PDL). Just as for QBF, the resulting formula may be

exponentially longer than the original formula.

Theorem 1.1 ([Balbiani et al., 2013], Theorem 1). For every DL-PA formula there is an

equivalent boolean formula.

For example, the DL-PA formula 〈p←⊥〉(¬p ∧ ¬q) is equivalent to the formula

〈p←⊥〉¬p ∧ 〈p←⊥〉¬q, which is in turn equivalent to > ∧ ¬q. Therefore, the DL-PA

formula 〈p←⊥〉(¬p ∧ ¬q) reduces to the boolean formula ¬q.

Every assignment sequence α1; . . . ;αn is a deterministic program that is always ex-

ecutable: for a given V , there is exactly one V ′ such that 〈V ,V ′〉 ∈ ||α1; . . . ;αn||.

Moreover, the order of the αi in a sequential composition is irrelevant when the set of up-

date actions {α1, . . . , αn} is consistent. The following can be viewed as a reformulation

of Proposition 1.1 in terms of the DL-PA operator of sequential composition.

Proposition 1.3. Let {α1, . . . , αn} be a consistent set of update actions. Let 〈k1 . . . kn〉

be some permutation of 〈1 . . . n〉. Then V � {α1, . . . , αn} equals the single V ′ such that

〈V ,V ′〉 ∈ ||αk1 ; . . . ;αkn||.

This entitles us to use consistent sets of update actions as programs: one may suppose

that this stands for a sequential composition in some predefined order (based e.g. on the

enumeration of the set of propositional variables).

1. INTRODUCTION 8

Finally, we end by noting that both satisfiability and model checking problems of

DL-PA are PSPACE-complete [Balbiani et al., 2014]. We will make extensive use of

DL-PA in Chapter 2 whose results are based on the definitions and contents of this Back-

ground section. Furthermore, almost all of the logics defined in the remaining chapters

are influenced and inspired by DL-PA.

1.2.2 Active Integrity Constraints

Active Integrity Constraints (AICs) originate from the observation that, in the course of

database maintenance, a designer may want to express preferences between the various

repairs that a database may be the subject of. Therefore,AICs were introduced in [Flesca

et al., 2004] as an extension of (static) integrity constraints with preferred update actions

that enforce specific repairing routes when updating a database. For instance, the integrity

constraint:

∀(E, S1, S2)[Employee(E, S1) ∧ Employee(E, S2)→ S1 = S2]

which denotes the fact that every employee should only have one salary can be extended

into the active constraint:

∀(E, S1, S2)[Employee(E, S1) ∧ Employee(E, S2) ∧ S1 > S2 → −Employee(E, S1)]

which states that if there is an employee with two salaries then the preference is to remove

the highest salary (instead of removing one randomly). In the paper the authors define

founded repairs for the first time. The idea is that any update action applied to the database

should be supported by the ‘active part’ of an AIC, i.e., by a preferred update action of

a violated constraint. They also obtain complexity results for the problem of existence

of founded repairs, both in the general case (Σ2
P -complete) as well as in the case that

AICs comprise ‘single heads’, i.e., only one preferred update action is allowed in each

constraint (NP-complete). Recognizing that the existence of founded repairs is not always

guaranteed though, they go on to define preferred repairs as an intermediate repairing

route between founded and standard repairs that always exist. The complexity for the

problem of existence of preferred repairs is shown to be Σ2
P -complete. Further research

on AICs also ensued [Caroprese et al., 2006, Caroprese et al., 2009] that reviewed and

1. INTRODUCTION 9

expanded upon the aforementioned results.

The first new definitions on repairing procedures that are based on preferences be-

tween update routes came in [Caroprese and Truszczynski, 2011], an attempt to relate

the seemingly different approaches to AICs and revision programming. There, the au-

thors distinguish between the various repairs that they propose (standard repairs, founded

repairs, justified repairs) and their weaker versions (weak repairs, founded weak repairs,

justified weak repairs), with only the former complying to the minimality of change princi-

ple that the previous approaches took by default. The definitions of justified weak repairs

and justified repairs were introduced as a response to the so-called circularity of support

defect that founded repairs cannot evade and which the authors argue against. Further-

more, they leave the first-order setting of the previous papers and use a propositional one.

We will have a close and thorough look at all of these definitions in Chapter 2, which we’ll

examine from the perspective of DL-PA, and the propositional setting of [Caroprese and

Truszczynski, 2011] will provide a valuable stepping stone to present and discuss our own

approach. Another distinguishing feature in their work is that they investigate properties

of normalization, i.e., ‘breaking’ all active integrity constraints into many copies such

that each one has at most one preferred update action. They denote the differences that

exist in these two different classes of AICs, both in practice (resulting in more or fewer

repairs) as well as in the complexity of deciding the existence of repairs under normal

AICs. The consensus on complexity results is very interesting, with all of the different

kinds of repairs, being either weak or minimal, and being applied on either normal AICs

or standard AICs, to fall either on the NP-complete or Σ2
P -complete territory.

Last but not least, further approaches to refine or extend active integrity constraints

have been investigated in [Cruz-Filipe et al., 2013, Cruz-Filipe, 2014] with analyses of

algorithms on trees, extensions to knowledge bases outside databases, as well as indepen-

dence/precedence relations among active integrity constraints.

1.2.3 Description Logic

Description Logic (DL) is an important subfield of Logic-based Knowledge Representa-

tion (KR) that provides delicate ways to represent and reason about knowledge through

1. INTRODUCTION 10

the use of expressive but decidable families of languages [Baader et al., 2003]. These

logics lie between basic propositional logic and first-order logic, providing a balance

between expressiveness of the language and complexity of the various reasoning tasks.

The decidable nature of DLs and the efficient algorithms that have been developed for

reasoning with many of them play a vital role in plenty of applications that take advan-

tage of their more expressive languages to deal with important real-life tasks, with an

emphasis on medical ontologies [Baader et al., 2006, Rector and Rogers, 2006] and the

Semantic Web [Baader et al., 2005]. Although not a new area of research, DLs enjoy an

ever-increasing attention by researchers in the field of KR with new promising directions

emerging and improving the state of the art continuously.

In Description Logics, a knowledge base KB = (T ,A) consists of a TBox T and

an ABox A. The TBox, also called the terminology, contains intensional knowledge,

i.e, general knowledge, in the form of (inclusion) axioms that describe general properties

of the concepts and their relationship. The ABox, also called the assertional box, con-

tains extensional knowledge, i.e., specific knowledge, in the form of (assertional) axioms

that describe specific properties of the individuals of the domain. It is important to note

early from this stage that the axioms of the TBox are intended to describe non-contingent

knowledge: knowledge that is typically stable in time. The ABoxes on the other hand

contain contingent knowledge that typically changes more frequently than that of the

TBox. Modifications of the ABox may lead to inconsistencies with regard to TBoxes

and repairing an ABox that is inconsistent with a TBox is a standard task [Lembo et al.,

2010, Bienvenu et al., 2014, Bienvenu et al., 2016].

We go on to present the syntax and semantics of some of the most important and well-

studied families of DL-languages, four of which will be the basis of our investigations in

Chapters 3, 4 and 5. In DLs, the atomic elements from which the languages are built are

the atomic concept names, the atomic role names and the individual names. Using these

together with the concept and role constructors that each description language deploys,

we can inductively build all complex concept and role descriptions available in the lan-

guage. We begin with the basic description languageAL, whose concept descriptions are

built inductively by the following grammar:

C ::= A | > | ⊥ | ¬A | C u C | ∀r.C | ∃r.>

1. INTRODUCTION 11

where A is an atomic concept name and r is an atomic role name. The concept construc-

tor ∀r.C is called value restriction while the concept constructor ∃r.> is called limited

existential quantification. Note that there are no individual names, no role constructors

and that negation is only applied to atomic concept names. When it is applied to any arbi-

trary concept description, then the (more expressive) description language is called ALC

(where C stands for complement). InALC the union of concepts (CtC) as well as full ex-

istential quantification (∃r.C) become expressible, since the former is an abbreviation of

¬(¬C u¬C) while the latter is an abbreviation of ¬∀r.¬C. Further concept constructors

include the number restrictions ≥ nr (at-least restriction) and ≤ nr (at-most restriction)

for any natural number n and role r, the one-of constructor {a1, . . . , an}where a1, . . . , an

are individual names, as well as the fills constructor r : a where r is a role and a an indi-

vidual name. The language ALC extended with the one-of constructor is called ALCO

and concepts of the form {a} for any individual name a are called nominals. Last but

not least, important role constructors comprise the role inverse, usually written as r− but

we will denote it by rc so as to keep the notation uniform with the converse operator of

DL-PA throughout the chapters, as well as the intersection of roles rur, the union of roles

r t r, the complement of roles ¬r, the composition of roles r ◦ r and finally the transitive

closure of roles r+, where r is any atomic role name. We also mention the universal

role rU which we will come across and use in later chapters. The languages ALC and

ALCO extended with the role inverse constructor are calledALCI andALCIO, respec-

tively, whereas L(U) denotes any language L which also includes the universal role. For

example, the concept descriptions of ALCIO(U) are built inductively by the following

grammar:

C ::= A | > | ⊥ | {a} | ¬C | C t C | C u C | ∀r.C | ∃r.>

where A is an atomic concept name, a is an individual name and r is a (possibly inverse)

atomic role name or the universal role rU .

Having given an overview of the various concept and role constructors that are used

to build complex concept and role descriptions, the next step is to present the semantics

of each one which provides a formal description of the job each constructor is intended

to do. We begin by defining the interpretations I to comprise a non-empty set ∆I , which

denotes the domain or universe of the interpretation, and an interpretation function ·I that

1. INTRODUCTION 12

maps each atomic concept A to a subset of the domain, each role r to a binary relation

on the domain and each individual a to an element of the domain, i.e., AI ⊆ ∆I , rI ⊆

∆I×∆I and αI ∈ ∆I . We say that I has the unique name assumption (UNA) if αI 6= bI

whenever a and b are distinct individual names. The extension of ·I to complex concept

descriptions for the basic description language AL is defined inductively as follows:

>I = ∆I

⊥I = ∅

(¬A)I = ∆I \ AI

(C uD)I = CI ∩DI

(∀r.C)I = {a ∈ ∆I | for all b ∈ ∆I , if (a, b) ∈ rI then b ∈ CI}

(∃r.>)I = {a ∈ ∆I | there is b ∈ ∆I such that (a, b) ∈ rI}

whereas the remaining concept and role constructors have the following semantics:

(¬C)I = ∆I \ CI

(C tD)I = CI ∪DI

(∃r.C)I = {a ∈ ∆I | there is b ∈ ∆I such that (a, b) ∈ rI and b ∈ CI}

(≥ nr)I = {a ∈ ∆I | card({b | (a, b) ∈ rI}) ≥ n}

(≤ nr)I = {a ∈ ∆I | card({b | (a, b) ∈ rI}) ≤ n}

{a1, . . . , an}I = {aI1 , . . . , aIn}

(r : a)I = {b ∈ ∆I | (b, aI) ∈ rI}

(rc)I = {(b, a) ∈ ∆I ×∆I | (a, b) ∈ rI}

(r u s)I = rI ∩ sI

(r t s)I = rI ∪ sI

(¬r)I = ∆I ×∆I \ rI

(r ◦ s)I = {(a, c) ∈ ∆I ×∆I | there is b ∈ ∆I such that

(a, b) ∈ rI and (b, c) ∈ sI}

(r+)I =
⋃
i≥1

(rI)i

rIU = ∆I ×∆I

1. INTRODUCTION 13

The TBoxes are composed of terminological axioms which have two forms: either

C v D and r v s or C ≡ D and r ≡ s, where C,D are concept descriptions and r, s

are role descriptions of the DL language. Axioms of the first kind are called concept and

role inclusions whereas axioms of the second kind are called concept and role equalities.

Furthermore, equalities whose left-hand side is an atomic concept or role name are called

definitions. For any two atomic concept names A and B, if B appears on the right-hand

side of the definition ofA then we say thatA directly seesB. We also say thatA seesB to

describe the transitive closure of the relation directly sees. If the TBox contains an atomic

concept name that sees itself then the TBox contains a cycle. If it doesn’t contain any

such atomic concept name then the TBox is acyclic. In the course of this thesis we will

mainly use TBoxes which contain concept inclusion axioms and they can be either cyclic

or acyclic. Finally, the ABoxes are constructed from a finite set of assertional axioms

of two types: the concept assertions a : C and the role assertions r(a, b) where a, b are

individuals, C is a concept description and r is a role description which again depend on

the DL language at hand.

In Chapter 3 we use the language of the description logic ALC for both TBoxes and

ABoxes. In Chapter 4 we stay on ALC for TBoxes, but we use its extension ALCO

with nominals for ABoxes. In Chapter 5 the language of the slightly more expressive

description logicALCI is used for TBoxes and its extensionALCIO is used for ABoxes.

Moving on, an interpretation I satisfies a concept inclusion C v D if CI ⊆ DI and,

respectively, a role inclusion r v s if rI ⊆ sI . Similarly for concept and role equalities:

I satisfies C ≡ D if CI = DI and I satisfies r ≡ s if rI = sI . An interpretation I

satisfies a concept assertion a : C if aI ∈ CI and I satisfies a role assertion r(a, b) if

(aI , bI) ∈ rI . An interpretation that satisfies all terminological axioms of a TBox T is

called a model of T . Similarly, an interpretation that satisfies all assertional axioms of

an ABox A is called a model of A. Last but not least, an interpretation is a model of a

KB = (T ,A) if it is both a model of T and a model of A. If there is a model of a KB we

say that the KB is consistent, or equivalently, that A is consistent with respect to T .

We end the presentation on the fundamental notions of DLs by introducing the most

important reasoning tasks for TBoxes and ABoxes. The subsumption problem is the prob-

lem of whether a concept is more (or less) general than another, i.e., given the concept

1. INTRODUCTION 14

descriptions C and D, whether CI ⊆ DI for all interpretations I. If the problem is rela-

tive to a TBox T then the question transforms into whether CI ⊆ DI for all models I of

T . When this is the case then we write C vT D or T |= C v D. The satisfiability prob-

lem for a concept description C is the problem of whether there exists an interpretation I

such that CI 6= ∅. When this is the case then we say that I is a model of C. Once again,

if the problem is relative to a TBox T then the question transforms into whether CI 6= ∅

for a model I of T . Another reasoning task is the instance checking problem, which is

the problem of whether an assertion follows from a specific ABox A, i.e., given the con-

cept description C, the role description r and the individuals a, b, whether aI ∈ CI and

(aI , bI) ∈ rI for all models I of A. When this is the case then we write A |= a : C and

A |= r(a, b), respectively. It is worth mentioning that most reasoning tasks in DLs are

reducible to one another.

Apart from the syntax, semantics and reasoning tasks of the various DL languages,

we now review some of the most widespread methods to repair inconsistencies in DL

knowledge bases. As we will see in later chapters, our approach to the problem of repair-

ing inconsistent KBs is by updating ABox assertions in order to comply with (preferred

update actions indicated by) the TBox axioms, which is a research avenue that has not

been directly pursued in the DL literature. The related (and most prominent) approaches

to repairing KBs are mainly based on the so-called justifications, which are minimal sub-

sets of the KB containing the terminological and assertional axioms from which an un-

desirable consequence is inferred. Axiom pinpointing through justifications became an

important topic of research within the DL community and several results were quickly

established [Schlobach and Cornet, 2003, Kalyanpur et al., 2007, Suntisrivaraporn et al.,

2008]. Both black-box [Schlobach et al., 2007, Baader and Suntisrivaraporn, 2008] and

glass-box [Parsia et al., 2005, Meyer et al., 2006] methods emerged for computing justi-

fications. The former have a more universal approach and are used independently of the

reasoner at hand, while the latter have a more delicate construction that is tied to specific

reasoners and usually require less calls. After computing all justifications of an unde-

sirable consequence, the next step is to obtain a minimal hitting set [Reiter, 1987] made

up of one axiom per justification and remove it from the knowledge base. More recent

approaches though have focused on providing methods for weakening the axioms instead

of removing them, since the latter can prove to be too big of a change [Troquard et al.,

1. INTRODUCTION 15

2018].

On another front, since we will be using dynamic procedures to obtain results in the

DL setting, it is worth recalling the interplay between PDL (and various extensions) with

Description Logics admitting regular expressions over roles. The mapping that estab-

lished a translation from one to the other helped both disciplines in obtaining decidability

and complexity results that were until then non-existent. For an overview on the matter

see the handbook [Baader et al., 2003]. More recent related work in reducing dynamic

problems to static DL reasoning includes [Ahmetaj et al., 2017] which also makes use of

integrity constraints in rich DLs. Speaking of integrity constraints, we end by mentioning

that approaches to encode integrity constraints into TBoxes already exist, with the most

prominent ones being based on extending the KBs with constraint axioms. These axioms

however are used for validation purposes only and do not share the same semantics as

regular TBox axioms [Motik et al., 2009, Tao et al., 2010].

1.3 Contributions and Outline of the Thesis

As we have mentioned before, the main goal in this thesis is to apply the idea behind

active integrity constraints in the Description Logic setting and, in particular, to provide

extensions of TBox axioms so that they are able to suggest preferred repairing routes

in case of inconsistencies. Before attempting this though, we begin in Chapter 2 with

an overview of static and active integrity constraints, investigated through DL-PA in the

propositional setting. We give the details of weak, founded and justified repairs that we

skipped in Section 1.2.2 and present embeddings of each one into DL-PA. The most

important contribution of the chapter though is the definition of dynamic repairs which

constitute a new, dynamic way of integrity maintenance and which was recently proposed

in [Feuillade and Herzig, 2014]. After an analysis of their properties and a comparison to

the other established repairs of the literature, we provide complexity results for the prob-

lem of existence of these new repairs. We then take advantage of the dynamic framework

that we use (the logic DL-PA) in order to explore an extension on databases with history

and adjust the behavior of the various repairs so that they work in this setting. Finally, for

all these definitions we provide DL-PA counterparts of reasoning and decision problems,

1. INTRODUCTION 16

such as the existence of a repair or the existence of a unique repair. Chapter 2 is based

on [Feuillade et al., 2019].

Lifting the idea behindAICs to Description Logics starts in Chapter 3, where the first

definition of ‘active’ TBoxes is introduced. After a brief discussion on the differences and

difficulties of leaving the propositional setting, we examine preliminary steps into repair-

ing ABoxes syntactically so that they conform to the preferences denoted by the active

axioms. These syntactic repairs are inspired by (and correspond to) the weak and founded

repairs of the database literature. Proving to be quite impractical though, we suggest that

a semantic approach seems more viable and venture into tackling the limitations of such

a syntactic approach in the subsequent chapters. Chapter 3 is based on [Rantsoudis et al.,

2017].

In the following two chapters we go on to pursue this semantic approach and, more

specifically, investigate how the dynamic logic-based framework and methods used in

Chapter 2 behave in the DL level. Chapter 4 uses a more local approach, where preferred

update actions in the active axioms behave similarly to the update actions introduced

before, i.e., they have the form ±A for an atomic concept A denoting either the addition

or the removal of an individual from the set of individuals that have property A. This

approach, although more expressive and well-behaved than the syntactic one of Chapter

3, still leaves a lot of repairing scenarios unattainable, mainly because of its boolean

nature and close similarity to the repairs of the database literature. On the other hand,

Chapter 5 introduces and discusses a more elaborate logic and techniques which apply

changes globally, in the sense that preferred update actions of the form±C can be applied

to all individuals violating an axiom and C is not necessarily atomic. Again, both of

these semantic approaches use a dynamic logic framework, influenced by the logic DL-PA

already showcased in Chapter 2. Furthermore, although the resulting logics are extensions

of ALCO and ALCIO respectively with dynamic operators, they are shown to be as

expressive as their static counterparts (with the addition of the universal role). The results

on Chapter 4 are based on [Feuillade et al., 2018], whereas the results on Chapter 5 have

not been published at the time of writing.

The thesis concludes in Chapter 6 with a summary of the work presented and a pro-

posal to connect the approaches of the (syntactic) Chapter 3 and the (semantic) Chapter 5,

1. INTRODUCTION 17

thus completing the picture on active TBox-based ABox repairs. We also briefly discuss

future work, with possible applications of the proposed repairing methods on nonmono-

tonic scenarios in an attempt to combine the results of this thesis with different areas of

research that I’ve also been involved in (see the next section).

1.4 Other Contributions

In this section I briefly discuss research that I’ve conducted in parallel to what is reported

in this thesis. The main theme of several research areas and applications, as well as of the

work presented here, revolves around the search for consistency. Although we generally

want consistency, it is true that in real life we tend to live with inconsistencies in the

sense that a big part of the conclusions we draw is defeasible. The second line of work

I was involved in deals with notions of defeasibility since one of my main interests lies

on nonmonotonic reasoning and in particular on conditional logics of normality. Before

delving into any details though, a general description of this research filed immediately

follows.

Nonmonotonic Logics. One of the major goals in AI is to develop tools that bridge the

gap between human commonsense reasoning and artificial reasoning of rational agents

(like computers or robots). In this regard, nonmonotonic ways to reason about knowledge

are extensively studied and developed since their connection with commonsense reason-

ing is apparent: it is true for a human agent that a seemingly plausible conclusion can be

later retracted in the light of new information (defeasible inferences) and in most real-life

scenarios reasoning is conducted with only incomplete information. Classical (Mathe-

matical) Logic cannot deal with these situations since it is inherently monotonic. Thus,

nonmonotonic logics (like autoepistemic or conditional logics) were devised to capture

default reasoning in the way described above, extending classical logic and providing

a formal mathematical framework through which knowledge can be represented and in-

ferred using nonmonotonic procedures. An exciting and mature research field, it always

remains relevant in the era that AI flourishes and its connection to emerging areas of

research (like machine learning) looks promising and essential.

1. INTRODUCTION 18

Conditional Logic is primarily concerned with the logical and semantic analysis of

the rich class of conditional statements, identified with the sentences conforming with

the ‘if A then B’ structure. The topic has roots in antiquity and the medieval times but

its contemporary development seems to start with F. Ramsey in the ’30s and has blos-

somed after the late ’60s [Arlo-Costa, 2014]. There exist various conditionals of interest

in Philosophy, Logic, Computer Science and Artificial Intelligence, including counterfac-

tual conditionals, open conditionals, causal conditionals, deontic conditionals, normality

conditionals (see [Crocco et al., 1996] for a broad overview of applications); they repre-

sent different linguistic constructions with a common structural form (‘if ... then’) and the

aim of the field is to provide a unifying formal logical account that accurately captures

their essential meaning.

Conditional Logics of Normality. Artificial Intelligence has been interested in con-

ditional logics for default reasoning already from the ’80s (see the work of J. Delgrande

[Delgrande, 1987,Delgrande, 1988]), in counterfactual conditionals (M. Ginsberg, [Gins-

berg, 1986]) and in the ‘normality conditionals’ in nonmonotonic reasoning [Bell, 1990,

Lamarre, 1991, Boutilier, 1992]. The reader is referred to the handbook article of J. Del-

grande [Delgrande, 1998] for a broad overview of conditional logics for defeasible reason-

ing. The investigations on the intimate relation of conditional logics to nonmonotonic rea-

soning have been further triggered by the seminal work of S. Kraus, D. Lehmann and M.

Magidor [Kraus et al., 1990,Lehmann and Magidor, 1992], whose framework (KLM) has

become the ‘industry standard’ for nonmonotonic consequence relations. There exist var-

ious possible-worlds semantics for conditional logics (see [Nute, 1980,Delgrande, 1998])

and a connection to modal logic (known from D. Lewis’ work [Lewis, 1973]) which has

been further explored by the modal construction of ‘normality conditionals’ [Lamarre,

1991, Boutilier, 1992].

A logic of ‘normality conditionals’ for default reasoning attempts to pin down the

principles governing the statements of the form ‘if A, then normally B is the case’. ‘Nor-

mally’ is susceptible to a variety of interpretations. One is based on a ‘normality’ ordering

between possible worlds: (A ⇒ B) is true if it happens that in the most ‘normal’ (least

exceptional) A-worlds, B is also true [Lamarre, 1991, Boutilier, 1992]. Another, more

recent one [Jauregui, 2008] interprets ‘normally’ as a ‘majority’ quantifier: (A ⇒ B) is

1. INTRODUCTION 19

true iffB is true in ‘most’A-worlds. Questions of ‘size’ in preferential nonmonotonic rea-

soning have been firstly introduced by K. Schlechta [Schlechta, 1995, Schlechta, 1997];

the notion of ‘weak filter’ that emerged (as a ‘core’ definition of a collection of ‘large’

subsets) has been also employed in modal epistemic logics [Askounis et al., 2016].

A majority-based account of default conditionals depends heavily on what counts

as a ‘majority’ of alternative situations, what is a ‘large’ set of possible worlds. It is

difficult to state a good definition that would work for both the finite and the infinite

case; the notions of weak filters and weak ultrafilters that have been used capture the

minimum requirements of such a notion [Schlechta, 1997, Jauregui, 2008]. In [Koutras

and Rantsoudis, 2015, Koutras and Rantsoudis, 2017], we experimented with a notion

of ‘overwhelming majority’, combined with the widely accepted intuition that (A ⇒ B)

should mean that (A ∧ B) is more plausible than (A ∧ ¬B). We defined conditionals

of this form to (essentially) mean that (A ∧ B) is true in ‘almost all’ (in the mathemati-

cal sense, i.e., in ‘all but finitely many’) points in the countable modal frame (ω,<) (the

first infinite ordinal, strictly ordered under <), whose modal axiomatization (the normal

modal logic K4DLZ) is known as the ‘future’ fragment of the temporal logic of discrete

linear time [Goldblatt, 1987, Segerberg, 1970]. This majority conditional is modally de-

fined and this readily provides a decision procedure, as a modal translation of conditional

formulas can be checked for validity in (ω,<) using any of the proof procedures known

for K4DLZ. We examined the properties of this conditional, in particular with respect

to the (conditional incarnation of the) ‘conservative core’ of defeasible reasoning set by

the KLM framework. The paradigm of ‘overwhelming majority’ in our work is consis-

tently represented with cofinite subsets of ω. En route, we discuss variants: trying cofinal

(rather than cofinite) subsets of ω, and/or varying the modal definition of the conditional

connective. Then, we discuss the possibility of defining conditionals over cofinite subsets

of ω in the neighborhood semantics for conditional logics; we prove that the conditionals

defined can be very weak, even compared to the conditionals introduced in [Delgrande,

2006].

Our main goal in these papers was to identify a set of ‘normality’ principles that

would possibly characterize a majority-based account of default conditionals, given that

the ‘cofinite vs. finite’ intuition is undeniably a widely acceptable case in the ‘big vs.

1. INTRODUCTION 20

small’ question, and to delineate the limits of such an approach. In addition, we decided

to exploit the well-known (and well-behaved) machinery of modal logic which allowed

us to obtain definitions of cofinite sets of possible worlds in (ω,<), resulting in logics

with an NP-complete satisfiability problem. We have also experimented with logics de-

fined on appropriately populated Scott-Montague frames obtaining relatively weak logics,

something not entirely unexpected in this area (see [Delgrande, 2006] for weak condition-

als constructed under a rule-based interpretation of defaults). A more fine-grained and

elaborate approach came in [Koutras et al., 2018] by exploiting tools from Mathemat-

ical Analysis and Topology to investigate, model-theoretically, this time more delicate

and refined ways to obtain size-oriented approaches to normality statements. A ‘spiritual

successor’ of the previous works on ‘overwhelming majority’ interpretations for defaults,

the ‘most’ generalised quantifiers this time provide better readings of ‘normality’ than

the previous finite-cofinite intuition. The logics are obtained through the notions of clear

majority on finite sets of worlds, asymptotic density of integer sequences, dense (and

nowhere dense) sets of topological spaces and measure on measure spaces, examined and

compared against the ‘conservative core’ of nonmonotonic reasoning.

Apart from the size-oriented approaches to normality, an area where I have con-

tributed is on defining conditional logics of normality directly within Epistemic Logic. It

is true that default statements admit various readings and a fundamental one corresponds

to their principal use of ascribing default properties to individuals (‘Tweety flies since

birds normally fly’), a function accomplished elegantly also in McCarthy’s Circumscrip-

tion (via classical first-order logic) and Reiter’s Default Logic (via the rules of inference

adjoined to first-order logic). Other readings of defeasible conditionals seem closer to

statements about (mostly qualitative but also quantitative) probability: ‘birds generally

(typically, mostly) fly’. It has been noticed however that “the reading ‘a bird that can be

consistently assumed to fly does fly’ is clearly epistemic in nature” [Delgrande, 2012, p.

95]. The reader should consult the recent paper [Delgrande, 2012] for a deep technical

and philosophical discussion on the content, the nature and the role of default statements

in Commonsense Reasoning and the pros and cons of using conditional logic to capture

their content.

That the defeasible conditionals (or at least, some of them) clearly have an epistemic

1. INTRODUCTION 21

interpretation, has been noticed early enough, implicitly or explicitly. A ‘normality state-

ment’ of the form ‘every Tuesday afternoon, you can find Jimmy taking a beer in the

corner pub’ allows one to infer that on a ‘regular’ Tuesday s/he can meet Jimmy there

and this default inference involves facts known (‘it is a Tuesday’), facts observed and

believed (‘Jimmy frequents this place on Tuesday afternoon’), facts considered to be con-

sistent with the belief base (‘there is no reason to believe this is an ‘irregular’ Tuesday’)

and facts plausibly inferred (‘most probably I will meet him there’). Although it is diffi-

cult to agree on the subtle details of the epistemic attitudes involved, it seems that there

is an agreement on the fact that such a description is quite reasonable. Such cognitive

statements are implicit in Reiter’s normal defaults [Reiter, 1980] and the conditional en-

tailment of H. Geffner and J. Pearl [Geffner and Pearl, 1992]: ‘a rule
a : b
b

may be seen

as a soft constraint for believing b when a is known, while a conditional rule a ⇒ b can

be viewed as a hard constraint to believe b in a limited context defined by a and possibly

some background knowledge’ [Eiter and Lukasiewicz, 2000, p. 220].

The study of the connection of defeasible (and perhaps other sorts of) condition-

als with the area of Epistemic and Doxastic Logic has not been hitherto pursued in its

full entirety. In general, the ‘conditionals-via-modal-logic’ technique is known and quite

successful [Lewis, 1973, Chellas, 1975]; yet, the technical and philosophical step to the

construction of conditionals via Epistemic Logic—or the integration of epistemic logic

and conditional logic—has not been fully taken. The relation of Epistemic Logic to con-

ditionals mainly revolves around the famous Ramsey test and this is also apparent in the

earlier works of P. Lamarre & Y. Shoham [Lamarre and Shoham, 1994] or N. Friedman

& J. Halpern [Friedman and Halpern, 1997] where an interesting notion of conditional

belief is based on the semantics of default conditionals (see also [Aucher, 2014, p. 107]).

Modal approaches to defeasible conditionals [Lamarre, 1991, Boutilier, 1992, Boutilier,

1994, Delgrande, 2006] are mostly based on the model-theoretic intuition of ‘preference’

among possible worlds or propositions (overall, the ‘preferential approach’ to nonmono-

tonic logics and to logics of ‘typicality’ has been very influential, see [Britz et al., 2011]

for a recent application). The conditional ϕ⇒ ψ is true in a possible world if ψ is true in

the most ‘normal’ or ‘preferred’ accessible ϕ-worlds; equivalently, given the context of

ϕ, the proposition expressed by ϕ∧ψ is preferred over the one expressed by ϕ∧¬ψ [Del-

grande, 2006]. It is natural to consider that normality orderings are preorders (reflexive

1. INTRODUCTION 22

and transitive relations) and thus the modal approaches to defeasible conditionals usually

employ the logic S4 (or its extension S4.3) within which the defeasible conditional is

modally defined [Boutilier, 1992].

In [Koutras et al., 2017a,Koutras et al., 2019], we amplify the epistemic interpretation

of defeasible conditionals and proceed to define them directly within Epistemic Logic. We

work inside KBE, a recently introduced epistemic logic [Koutras et al., 2017b] account-

ing for knowledge, belief and estimation (as a form of weak, complete belief, interpreted

as ‘truth in most epistemic alternatives’). KBE comprises a S4.2 framework for knowl-

edge and belief, following the fundamental investigations of W. Lenzen [Lenzen, 1978]

who advocated it as the ‘correct’ logic of knowledge; note that R. Stalnaker arrived at

a similar proposal via different assumptions [Stalnaker, 2006]. The non-normal modal

operator for estimation is interpreted as a majority quantifier over the set of epistemic

alternatives of a given possible world. The formal apparatus is that of a weak ultrafilter,

which is an upwards-closed collection of sets, with pairwise non-disjoint members and

such that exactly one out of a set and its complement occurs in the collection; the notion

extends the weak filters introduced in [Schlechta, 1997] and later, independently, in [Jau-

regui, 2008]. We define three nonmonotonic conditionals by capturing a size-oriented

version of the fundamental intuition of normality conditionals: ϕ⇒ ψ is set to mean that

ϕ∧ ψ is more normal compared to ϕ∧¬ψ, as it holds in ‘most’ epistemically alternative

worlds; this is achieved by exploiting the nature of KBE’s ‘estimation’ operator as a ma-

jority quantifier. The logics emerging are rather weak compared to the ‘conservative core’

of default reasoning (the system P, [Kraus et al., 1990]) but this is neither surprising nor

discouraging: weak conditionals of this kind have been also introduced in [Delgrande,

2006, system C and system Λ] under a rule-based interpretation of defaults and it is well-

known that conditionals based on the plausibility structures of N. Friedman & J. Halpern

do not generally satisfy all the KLM properties [Friedman and Halpern, 1997, p. 266].

Another, very ‘natural’ (but rather strong in epistemic assumptions) translation leads to a

weak monotonic conditional, and two other epistemic definitions give rise to nonmono-

tonic conditional logics which do not satisfy the axiom ID (reflexivity), but they capture

very interesting conditional principles and one of them comes close to the ‘overwhelming

majority’ conditional defined in [Koutras and Rantsoudis, 2017]. Note that for all these

definitions a recursive translation in the language of KBE provides direct access to the

1. INTRODUCTION 23

tableaux proof procedure for this logic [Koutras et al., 2017b], and thus a machinery for

testing theoremhood is readily available. It should also be noted that analytic tableaux

exist for KLM logics and the tableaux procedure is constructed via a modal encoding of

nonmonotonic conditionals [Giordano et al., 2009].

There exist two main directions in employing Conditional Logic in Knowledge Rep-

resentation. The first - and perhaps more influential one - asks for devising mechanisms

which will reveal the contingent conclusions that can be plausibly extracted given a back-

ground conditional (default) theory. The second responds to the objective of introducing

axiomatic ways to account for a precise notion of default conditional and devise theories

that capture the basic properties of a defeasible conditional, in as much the same way it

has been achieved for indicative or counterfactual conditionals; see J. Delgrande’s hand-

book article [Delgrande, 1998] for further analysis. In these papers, we took the second

direction. We focused on the ‘epistemic connection’ of defeasible conditionals and inves-

tigated the possibility of a direct syntactic definition within Epistemic Logic; the intension

was to check the potential of such an approach, whose rewarding benefits are more than

obvious.

We will come back to the realm of nonmonotonic reasoning in Chapter 6, where we

briefly mention possible future connections between the results reported in this thesis and

defeasible inferences.

CHAPTER 2

A Dynamic Logic Account of Active Integrity
Constraints

Contents
2.1 Introduction . 24

2.2 Background . 27

2.3 Repairs and Weak Repairs in DL-PA 35

2.4 Founded and Justified Repairs in DL-PA 37

2.5 A New Definition of Repair in DL-PA 44

2.6 Complexity of Dynamic Repairs 55

2.7 History-Based Repairs . 63

2.8 Conclusion . 66

2.1 Introduction

As we have seen in Section 1.2.2, the setting of active integrity constraints is well es-

tablished and thoroughly explored. Despite this however, there exist cases where even

founded and justified repairs cannot provide a satisfactory solution to the problem of

repairing a database under a set of AICs. A more dynamic procedure could provide

solutions to inconsistencies that arise between a database and a set of active constraints

that build upon and extend one another. We showcase such an example in the following

24

2. A DYNAMIC LOGIC ACCOUNT OF ACTIVE INTEGRITY CONSTRAINTS 25

(propositional) scenario. Consider a company with two departments, D1 and D2, where

temporary employees (e.g. interns) are assigned to D1 and permanent employees work

at D2 (so D1 has no permanent members and D2 has no temporary members). Every

employee must be in a department, i.e., we have the integrity constraint D1∨D2. Further-

more, consider that every person working on D2 has previously worked on D1, i.e., D1 is

like a ‘training ground’ for becoming a permanent member. Consider now a database for

permanent members which keeps track of their status. Every employee should be declared

in the database as starting to work on D1 and we can express this by the active constraint

〈D1∨D2,+D1〉which declares that ifD1∨D2 is violated and an employee is not assigned

to any department then s/he should be assigned to D1. Furthermore, since the database

is for permanent employees, if an employee is assigned only to D1 then this should be

rectified by assigning him/her to D2 as well. This is expressed by the active constraint

〈¬D1 ∨ D2,+D2〉. Finally, consider that the database loses track of an employee, i.e., a

permanent employee is declared as working at neither D1 nor D2. How would the status

of this employee, which is inconsistent w.r.t. the active constraints, be repaired according

to the available repair procedures? Whereas founded and justified repairs cannot provide

a solution to this problem (see Section 2.2.2 for more details), a dynamic procedure which

would check each active constraint at a time and apply an update action before repeating

seems able to do so. Indeed, as we will witness in Section 2.5.2, the set {+D1,+D2}

will be the only solution using such a dynamic procedure. Note also that a repair which

conforms to the minimal change principle would suggest that {+D2} should be the only

repair. While this is indeed the only minimal solution, it can be argued that it should not

be the case that this employee was assigned to D2 directly, without having worked on D1

first.

Just as in [Caroprese and Truszczynski, 2011, Cruz-Filipe, 2014] we only consider

ground constraints in the current chapter, i.e., we work with a propositional language.

Due to this, static constraints will be represented by boolean formulas and, as we have

mentioned in Section 1.1, an active integrity constraint will be a couple r = 〈C(r),R(r)〉

where C(r) is the static constraint and R(r) is the set of preferred update actions. In this

chapter we examine active integrity constraints in the framework of dynamic logic and

argue that they can be viewed as particular programs: the sequential composition of the

test of ¬C(r) and the nondeterministic choice of an action in R(r). Repairing a database

2. A DYNAMIC LOGIC ACCOUNT OF ACTIVE INTEGRITY CONSTRAINTS 26

can then be done by means of a complex program that combines active integrity con-

straints. We use DL-PA, the simple yet powerful dialect of dynamic logic we introduced

in Section 1.2.1. We recall that, instead of PDL’s abstract atomic programs, the atomic

programs of DL-PA are update actions: assignments of propositional variables to either

true or false, written p←> and p←⊥. Just as in PDL, these atomic programs can be

combined by means of program operators: sequential and nondeterministic composition,

finite iteration and test. The language of DL-PA has not only programs, but also formulas.

While DL-PA programs describe the evolution of the world, DL-PA formulas describe the

state of the world. In particular, formulas of the form 〈π〉ϕ express that ϕ is true after

some possible execution of π, and [π]ϕ expresses that ϕ is true after every possible exe-

cution of π. The models of DL-PA are considerably simpler than PDL’s Kripke models:

valuations of classical propositional logic are enough. The assignment p←> inserts p,

while the assignment p←⊥ deletes p. Apart from being simple yet quite expressive, its

biggest computational advantage over PDL comes in the form of the elimination of the

Kleene star: it is shown in [Herzig et al., 2011, Balbiani et al., 2013] that every DL-PA

formula can be reduced to an equivalent boolean formula (something that is not possible

in PDL). This is an important attribute and a very useful tool, as it will allow us to con-

struct repaired databases syntactically. The most significant advantage of using a dynamic

logic framework though is the fact that we can easily study extensions (like the history-

based repairs of Section 2.7) that are expressible in the language by simply extending the

formulas in the appropriate ways.

The chapter is organized as follows. In Section 2.2 we provide a thorough background

on static and active constraints, as well as the associated repairs for both (weak repairs,

PMA repairs, founded and justified repairs). In Section 2.3 we provide an embedding of

the associated repairs of static constraints (weak repairs and PMA repairs) into DL-PA. In

Section 2.4 we do the same for the associated repairs of active constraints (founded and

justified repairs). Section 2.5 comprises the main contribution of the chapter: we propose

some new definitions of repairs in terms of while programs and compare them with

the aforementioned founded and justified repairs in various aspects. Their computational

complexity is investigated in Section 2.6. In Section 2.7 we push the envelope of the active

constraint paradigm and examine databases with history as well as how the various repairs

are integrated in their framework. Finally, Section 2.8 concludes with some examples of

2. A DYNAMIC LOGIC ACCOUNT OF ACTIVE INTEGRITY CONSTRAINTS 27

related reasoning problems and a brief discussion on future work.

This chapter extends [Feuillade and Herzig, 2014] by the analysis of justified repairs,

a thorough discussion on the dynamic repairs introduced as well as how they compare

with the available repair procedures from the literature, a complexity analysis and a look

into databases with history.

2.2 Background

The basic definitions and properties of DL-PA have already been introduced in Section

1.2.1. We only note that:

(1) In the context of the present chapter a valuation is called a database.

(2) We sometimes use X as a metavariable for > and ⊥ and write p←X.

(3) For subsets P of P it will be convenient to write P ←> to denote the set of update

actions {p←> : p ∈ P}, and likewise for P ←⊥.

In the following subsections, we recall the definitions of the various repair procedures

w.r.t. static and active integrity constraints.

2.2.1 Static Constraints and the Associated Repairs

In this subsection we consider the classical notion of database integrity that is defined in

terms of static integrity constraints, or static constraints for short. In our propositional

language they are nothing but boolean formulas. Two ways of repairing databases based

on such constraints can be found in the literature [Caroprese and Truszczynski, 2011].

Both consist in first finding an appropriate set of update actions U and then building the

update V � U of V by U as defined in Section 1.2.1. We relate them to well-known

operations in belief revision and update [Katsuno and Mendelzon, 1992], which allows us

to reuse their embeddings into DL-PA [Herzig, 2014].

2. A DYNAMIC LOGIC ACCOUNT OF ACTIVE INTEGRITY CONSTRAINTS 28

Weak Repairs and Drastic Updates

Let V be a database, U a set of update actions and C a set of static constraints, i.e., a

set of boolean formulas. In the rest of the chapter we will only consider finite sets of

static constraints. We say that U is relevant w.r.t. V iff p←> ∈ U implies p /∈ V and

p←⊥ ∈ U implies p ∈ V . The definition of a weak repair immediately follows.

Definition 2.1. Let V be a database and let C be a set of static constraints. A weak repair

of V achieving C is a consistent set of update actions U ⊆ U such that V � U |=
∧
C

and such that U is relevant w.r.t. V .

The next example illustrates that weak repairs are indeed very weak.

Example 2.1. Let V = ∅ and C = {p∨q}. The weak repairs of V achieving C are all

those subsets of the set of positive update actions {r←> : r ∈ P} that contain either

p←>, or q←>, or both.

As the following result shows, if we consider what is true in all possible weak repairs

then we obtain what is called a drastic update in the literature on belief revision and

update.1

Proposition 2.1. Let V be a database and let C be a set of static constraints. Then:

{
V � U : U is a weak repair of V achieving C

}
=
∣∣∣∣∣∣∧C

∣∣∣∣∣∣
Note that a weak repair may contain assignments of variables that do not occur in C.

To witness, in the above example {p←>, q←>, r←>} is a weak repair of V achieving

C. To remedy this we consider every weak repair U from now on to be such that if p←>

or p←⊥ occurs in U then p ∈ PC . This corresponds to a very basic update semantics

that is sometimes called Winslett’s standard semantics [Winslett, 1990, Herzig and Rifi,

1999].

1It is actually also a drastic revision because V is a complete database and update and revision coincide
in that case [Peppas et al., 1996].

2. A DYNAMIC LOGIC ACCOUNT OF ACTIVE INTEGRITY CONSTRAINTS 29

Repairs Tout Court and their Relation to Winslett’s PMA

We now present the definition of a repair which, as we already mentioned, uses the prin-

ciple of minimal change to produce repair solutions that are considered more practical in

contrast to the more general weak repairs.

Definition 2.2. Let V be a database and let C be a set of static constraints. A repair of V

achieving C is a weak repair of V achieving C that is minimal w.r.t. set inclusion: there

is no weak repair of V achieving C that is strictly contained in it.

The next example is a follow-up to Example 2.1.

Example 2.2. Let V = ∅ and C = {p∨q}. There are exactly two repairs of V achieving

C, viz. {p←>} and {q←>}.

We are now going to relate repairs to Winslett’s possible models approach PMA

[Winslett, 1988,Winslett, 1990]. Remember that the update of a database V by a boolean

formula A according to the PMA is the set of valuations V ′ such that V ′ |= A and such

that the symmetric difference between V and V ′ is minimal w.r.t. set inclusion. Formally,

the symmetric difference is defined as D(V ,V ′) = {p : V (p)6=V ′(p)} and the PMA

update of V by A is the set:

{
V ′ : V ′ |= A and there is no V ′′ ∈ ||A|| such that D(V ,V ′′) ⊂ D(V ,V ′)

}

For example, the PMA update of ∅ by p∨q is
{
{p}, {q}

}
and the PMA update of ∅ by

(p∧q)∨r is
{
{p, q}, {r}

}
.

Proposition 2.2. Let V be a database and let C be a set of static constraints. Then:

{
V � U : U is a repair of V by C

}
is the PMA update of V by

(∧
C
)

The above result justifies the term PMA repair that we are going to employ henceforth

(because the mere term ‘repair’ might lead to confusions).

2. A DYNAMIC LOGIC ACCOUNT OF ACTIVE INTEGRITY CONSTRAINTS 30

2.2.2 Active Constraints and the Associated Repairs

Active integrity constraints were proposed more than ten years ago [Flesca et al., 2004]

and various ways of repairing a database V by such constraints were studied in the liter-

ature. Just as for static constraints, all definitions are based on the notion of a repair set:

an appropriate set of update actions U such that V � U no longer violates the integrity

constraints. V �U is once again the result of updating V by U as defined in Section 1.2.1

and is called the repaired database.

In the present subsection we recall syntax and semantics of the two main routes that

have been explored in the literature.

Active Integrity Constraints

An active integrity constraint (or active constraint for short) combines a static integrity

constraint with a set of preferred repair actions.

Definition 2.3. An active constraint is a couple r =
〈

C(r),R(r)
〉

, where C(r) is a

boolean formula and R(r) is a finite set of update actions that is consistent.

As before, C(r) is a static integrity constraint that is violated when C(r) is false. If

this is the case and R(r) 6= ∅ then r is applicable and R(r) indicates how to get rid of

the violation and restore integrity. The elements of R(r) are viewed as permitted update

actions: when C(r) is violated then each of the actions in R(r) gets a ‘license to update’.

This is a rather imprecise description of the job the update actions in R(r) are expected to

do and in the literature various semantics were proposed. One of the most prominent of

them are founded repairs which make use of the foundedness condition in order to apply

the correct update actions, while justified repairs build upon and refine this condition in

order to tackle the so-called circularity of support issue that can be witnessed by founded

repairs.

We say that an active constraint r = 〈C(r),R(r)〉 is standard if C(r) is a clause and

each update action in R(r) makes one of the literals of C(r) true: if p←> ∈ R(r) then

p has to be one of the literals of C(r) and if p←⊥ ∈ R(r) then ¬p has to be one of the

2. A DYNAMIC LOGIC ACCOUNT OF ACTIVE INTEGRITY CONSTRAINTS 31

literals of C(r).

Remark 1. The definition in the literature differs in several respects from ours here. First,

C(r) is usually not viewed as a static integrity constraint but as the negation of a static

integrity constraint: r is violated when the first argument of r is true. Second, active

constraints are noted C(r) → R(r), which makes them look like formulas. However,

“→” is different from material implication as the right hand side of the implication is not

a formula but a set of programs. So their semantics remains to be given: in the literature

this is typically done by means of disjunctive logic programs under a non-monotonic

semantics. Third, all active constraints have to be standard.

We denote finite sets of active constraints by η, η1, etc. The set of static integrity

constraints associated with η is defined as C(η) = {C(r) : r ∈ η}. Furthermore, the

size of C(η), denoted by |C(η) |, is the sum of the lengths of each C(r) for all r ∈ η, i.e.,

|C(η) | =
∑
r∈η
|C(r) |, where |C(r) | is the length of the boolean formula C(r) as defined

in propositional logic.

It remains to give a semantics to active constraints. In the rest of this subsection

we discuss the two main existing directions, viz. founded and justified repairs. We later

propose a new one in Section 2.5 using the programs of DL-PA.

Founded Weak Repairs and Founded Repairs

In the literature, founded repairs are considered to be a basic semantics of active con-

straints. They provide a basis for further refinements. The key notion they rely on is the

foundedness condition.2

Definition 2.4. Let V be a database and let η be a set of active constraints. A consistent

set of update actions U is founded if for every α ∈ U there is an r ∈ η such that:

(a) α ∈ R(r)

(b) V � U |= C(r)

2We have reformulated the original definition so that it applies to our more general definition of active
constraints. Both are equivalent as far as standard active constraints are concerned.

2. A DYNAMIC LOGIC ACCOUNT OF ACTIVE INTEGRITY CONSTRAINTS 32

(c) V � (U \ {α}) 6|= C(r)

Given this condition, the definitions of a founded weak repair and a founded repair

immediately follow.

Definition 2.5. Let V be a database and let η be a set of active constraints. A set of

update actions U is a founded weak repair of V by η if U is a weak repair of V achieving

C(η) and U is founded. Moreover, if U is also a PMA repair of V achieving C(η), then U

is a founded repair of V by η.

The following simple example showcases this definition.

Example 2.3. Let V = ∅ and η =
{
〈p, {p←>}〉, 〈p∨q, {q←>}〉

}
. The set {p←>}

is the only founded weak repair of V by η. Indeed, the second update action in {p←>,

q←>} cannot be founded on the second active constraint of η. It is also the only founded

repair.

There are sets of active constraints for which there is no founded repair, although

there is a founded weak repair [Caroprese and Truszczynski, 2011, Example 2]. The next

example, which is adapted from the example of the introductory Section 2.1, shows that

there are sets of active constraints for which there is not even a founded weak repair.

Example 2.4. Let V = ∅ and η =
{
〈p∨q, {p←>}〉, 〈¬p∨q, {q←>}〉

}
. The set {q←>}

is a PMA repair of V achieving C(η). However, there is no founded weak repair (and thus

no founded repair either).

Last but not least, the next example illustrates circularity of support: each update

action is individually founded because the others happen to be in the repair.

Example 2.5 ([Caroprese and Truszczynski, 2011], Example 3). Let V = ∅ and η ={
〈p∨q, {p←>}〉, 〈¬p∨q, {q←>}〉, 〈p∨¬q, {p←>}〉

}
. The set {p←>, q←>} is the

only founded weak repair of V by η: p←> is founded on 〈p∨¬q, {p←>}〉 and q←> is

founded on 〈¬p∨q, {q←>}〉. It is also a founded repair.

Such repairs were considered to be unintended in [Caroprese and Truszczynski, 2011]

and the notion of justified repair was proposed to overcome the problem. We discuss this

issue further in Section 2.5.3.

2. A DYNAMIC LOGIC ACCOUNT OF ACTIVE INTEGRITY CONSTRAINTS 33

Justified Weak Repairs and Justified Repairs

Justified repairs use a stronger condition than foundedness in order to avoid the afore-

mentioned circular dependencies. We start with the definition of a closed set of update

actions.

Definition 2.6. Let η be a set of standard active constraints. For r ∈ η, all the literals in

C(r) which have no preferred update actions in R(r) are called non-updatable. A set of

update actions U is closed under an r ∈ η when the following holds: if the update actions

in U falsify all the non-updatable literals in C(r), then U must contain an update action

from R(r). Furthermore, U is closed under η if it is closed under every r ∈ η.

For example, {p←>, q←>} is closed under 〈p∨¬q, {p←>}〉, 〈¬p∨q, {q←>}〉 and

〈p∨q, {p←>}〉, while it is neither closed under 〈¬p∨¬q, {p←⊥}〉 nor under 〈¬p∨r,

{r←>}〉. The second step is to define the no-effect actions associated with an initial

database V and an updated database V ′.

Definition 2.7. Let V and V ′ be two databases. The update action p←> is a no-effect

action of (V ,V ′) if p ∈ V ∩ V ′ and the update action p←⊥ is a no-effect action of

(V ,V ′) if p /∈ V ∪ V ′. The set ne(V ,V ′) denotes the set of all no-effect actions of

(V ,V ′).

Clearly, for given V and U , we have that V � U = V � (U \ U ′) for every U ′ ⊆

ne(V ,V � U). Returning to our initial aim now, the definitions of a justified weak repair

and a justified repair are the following.

Definition 2.8. Let V be a database and let η be a set of standard active constraints. A

consistent set of update actions U is a justified weak repair of V by η iff:3

(a) U ∩ ne(V ,V � U) = ∅ (no ‘no-effect’ actions)

(b) U ∪ ne(V ,V � U) is closed under η

(c) there is no U ′ ⊂ U ∪ ne(V ,V � U) such that:

3The original definition of justified weak repairs is slightly different than the one given here. However
it is shown that the two are equivalent in [Caroprese and Truszczynski, 2011, Theorem 1].

2. A DYNAMIC LOGIC ACCOUNT OF ACTIVE INTEGRITY CONSTRAINTS 34

(1) U ′ contains ne(V ,V � U)

(2) U ′ is closed under η

Finally, if U is also a PMA repair of V achieving C(η), then U is a justified repair of V

by η.

The next theorem shows the relationship between founded and justified repairs.

Theorem 2.1 ([Caroprese and Truszczynski, 2011], Corollaries 1 and 2). Let V be a

database, U a consistent set of update actions and η a set of standard active constraints.

If U is a justified weak repair of V by η, then U is also a founded weak repair of V by η

(and likewise, if it is a justified repair of V by η, then it is also a founded repair of V by

η).

The next example shows that the converse does not hold. Furthermore, it illustrates

that for justified repairs circularity of support is no longer an issue.

Example 2.6 ([Caroprese and Truszczynski, 2011], Example 5). Consider again V = ∅

and η =
{
〈p∨q, {p←>}〉, 〈¬p∨q, {q←>}〉, 〈p∨¬q, {p←>}〉

}
. In contrast with Ex-

ample 2.5 and its founded repair, there is no justified weak repair of V by η. As justi-

fied weak repairs are also founded weak repairs, we only have to check whether U =

{p←>, q←>} is a justified weak repair of V by η. Supposing that P = {p, q}, we

have ne(V ,V � U) = ne(∅, {p, q}) = ∅ and U ∪ ne(V ,V � U) = U is not a minimal

set of update actions containing ne(V ,V � U) and closed under η, as ∅ also has these

properties.

However if we replace η with η′ =
{
〈p∨q, {p←>, q←>}〉, 〈¬p∨q, {q←>}〉, 〈p∨¬q,

{p←>}〉
}

then the set {p←>, q←>} is both a justified and a founded repair of V by η′

(and both are the only ones).

In the next two sections, we show that weak, PMA, founded and justified repairs can

be captured in DL-PA.

2. A DYNAMIC LOGIC ACCOUNT OF ACTIVE INTEGRITY CONSTRAINTS 35

2.3 Repairs and Weak Repairs in DL-PA

We now embed Winslett’s standard semantics (and thereby weak repairs) and the PMA

(and thereby repairs tout court) into DL-PA. This was already done in [Herzig, 2014],

but our embeddings are slightly more elegant and are presented in a more uniform and

streamlined way. We start with some auxiliary definitions.

To each propositional variable p we associate a fresh propositional variable p±. Each

p± will register whether or not the proposition p has been modified along the update.4

This is necessary to ensure that every variable is modified at most once during a repair.

We extend the definition to sets of variables P ⊆ P: P± = {p± | p ∈ P}. With the

information stored in the fresh variables P±, we can retrieve the initial valuation from a

valuation V ⊆ P ∪ P± through the set:

{p ∈ V : p± /∈ V } ∪ {p /∈ V : p± ∈ V }

First, we need a program that sets all the propositions in a given set P to ⊥: P ←⊥ is the

sequence of assignments p←⊥ for all p ∈ P (whose order does not matter, see Propo-

sition 1.3). Second, the following two DL-PA programs (1) modify a single proposition

and store this and (2) undo that modification:

toggle(p) = if ¬p± then p←¬p; p±←> else fail = ¬p±?; p←¬p; p±←>
undo(p) = if p± then p←¬p; p±←⊥ else fail = p±?; p←¬p; p±←⊥

As announced above, p± keeps track of the modifications of p: we are going to ensure

that it is true only once p has been modified during the current update. The program

toggle(p) flips the truth value of p if this value has not been modified yet and records the

modification by setting p± to >; if p has already been made true then toggle(p) fails. The

program undo(p) undoes this.

It is easy to see then that starting from a database V that contains none of the vari-

ables p±, a weak repair of V achieving C can be obtained through the following DL-PA

program:

4The difference with [Herzig, 2014] is that our programs memorise that a variable has been flipped
instead of storing its previous value.

2. A DYNAMIC LOGIC ACCOUNT OF ACTIVE INTEGRITY CONSTRAINTS 36

weakRepair(C) =
 ⋃
p∈PC

toggle(p)
∗ ;

(∧
C
)
?

Since each variable can be updated at most once and since the order of the updates does

not matter, this can be rewritten without the Kleene star as a sequence:

(
toggle(p1) ∪ skip

)
; . . . ;

(
toggle(pk) ∪ skip

)
;
(∧

C
)
?

where p1, . . . , pk are the variables in PC . Furthermore, given that none of the variables p±

occur in the database, the program toggle(p) simplifies to just: p←¬p; p±←>.

Finally, we define the following DL-PA formula:

Minimal(C) = ¬
〈 ⋃

p∈PC
undo(p)

+〉∧
C

The program in this formula undoes a nonempty set of toggle(p) actions (and nondeter-

ministically so, failing when there was no change at all). Thus, the formula Minimal(C)

says that there is no execution of that program leading to a database closer to the actual

database that satisfies the constraints. Hence the actual database corresponds to a minimal

change of the initial database. We sum up all the above in the following theorem.

Theorem 2.2. Let C be a set of static integrity constraints in the language of P and let

V ⊆ P be a database (i.e., no p± occurs in either of them). Let U be a consistent set of

update actions that is relevant w.r.t. V .

• U is a weak repair of V achieving C iff:

〈V ,V � U〉 ∈ ||weakRepair(C) ; PC±←⊥||

• U is a PMA repair of V achieving C iff:

〈V ,V � U〉 ∈ ||weakRepair(C) ; Minimal(C)? ;PC±←⊥||

Proof. For the first item, when V ⊆ P observe that 〈V ,V ′〉 ∈ ||weakRepair(C)|| iff

V ′ ∈ ||∧C|| and the following holds for all variables p ∈ P (i.e., excluding the p±):

(a) p± ∈ V ′ iff V (p) 6= V ′(p)

2. A DYNAMIC LOGIC ACCOUNT OF ACTIVE INTEGRITY CONSTRAINTS 37

(b) if p /∈ PC then V (p) = V ′(p)

which means that only p’s from C and the associated p± were modified.

So 〈V ,V � U〉 ∈ ||weakRepair(C);PC±←⊥|| iff (V � U) ∈ ||∧C|| and no p± exists in

U . By Definition 2.1 then, this is equivalent to U being a weak repair of V achieving C.

For the second item, given some actual database V ′, define the initial database as:

V = {p ∈ P : p ∈ V ′ and p± /∈ V ′} ∪ {p ∈ P : p /∈ V ′ and p± ∈ V ′}

Then V ′ ∈ ||Minimal(C)|| iff there is no V ′′ ∈ ||∧C|| such that D(V ,V ′′) ⊂ D(V ,V ′).5

Again then, starting from an initial database V ⊆ P, 〈V ,V � U〉 ∈ ||weakRepair(C);

Minimal(C)?; PC±←⊥|| iff (V � U) ∈ ||∧C||, there is no V ′′ ∈ ||∧C|| such that

D(V ,V ′′) ⊂ D(V ,V � U) and no p± exists in U , which according to Definition 2.8 is

equivalent to U being a PMA repair of V achieving C.

2.4 Founded and Justified Repairs in DL-PA

We will now move on to the embedding of the notions of founded and justified repairs into

DL-PA. For this, we will re-use the programs defined in the previous section for finding

a weak repair and checking minimality, as well as the set of fresh variables P± we had at

our disposal in order to keep track of modifications. Moreover, we will need to define a

program for checking the foundedness condition in order to generate the founded repairs

as well as programs for adding the no-effect actions to a database and checking if a set of

update actions is closed under a set of active constraints.

We start with the embedding of founded repairs into DL-PA, for which we will need

the following formula:

Founded(η) =
∧

p∈PC(η)

p± →∨
r∈η

p←X∈R(r)

〈p←¬p〉¬C(r)

5Note that by definition of toggle(p), p ∈ D(V ,V ′) is equivalent to p± ∈ D(V ,V ′) thus the inclusion

D(V ,V ′′) ⊂ D(V ,V ′) is not affected by the variables in PC
±.

2. A DYNAMIC LOGIC ACCOUNT OF ACTIVE INTEGRITY CONSTRAINTS 38

where X ranges over {>,⊥}. As we will see, the formula is true if and only if all current

update actions (encoded in the current valuation by means of the fresh variables p±) are

founded.

The embedding of justified repairs into DL-PA is a bit more complex. Firstly, we use

the set nup(r) of all the non-updatable literals in r that we saw in Definition 2.6, i.e.,

all the literals in C(r) for which there is no preferred update action in R(r). By nup(r)+

we denote the set of propositional variables of the form p in nup(r), i.e., nup(r)+ =

nup(r) ∩ P. Similarly, nup(r)− comprises the propositional variables of the form ¬p in

nup(r), i.e., nup(r)− = {¬p | p ∈ nup(r) \ P}. Furthermore, we introduce two new

sets of fresh propositional variables, P+ and P−, defined similarly to P± as follows:

P+ = {p+ | p ∈ P} and P− = {p− | p ∈ P}. Intuitively, the proposition p+ will keep

track of the no-effect action of the form p←>, while the proposition p− will keep track

of the no-effect action of the form p←⊥. This is realized by the following two programs:

ne+(p) =
(
p ∧ ¬p±

)
? ; p+←>

ne−(p) =
(
¬p ∧ ¬p±

)
? ; p−←>

Moreover, we will need a program that skips when neither p←> nor p←⊥ is a no-effect

action and fails otherwise (where ‘ea’ stands for ‘effect action’):

ea(p) = p± ?

Then we associate with the current database all the no-effect actions between the initial

database and the current state through the following program:

ne(η) =
(

ne+(p1) ∪ ne−(p1) ∪ ea(p1)
)

; . . . ;
(

ne+(pk) ∪ ne−(pk) ∪ ea(pk)
)

where p1, . . . , pk are the variables in PC(η) (so the no-effect actions that are added are only

those that are relevant w.r.t. η). The next lemma will be helpful in the proof of Theorem

2.4 below.

Lemma 2.1. Let η be a set of standard active constraints in the language of P and let

V0 ⊆ P be a database (so no p±, p+ and p− occurs in either of them). Let V be some

repaired database (containing variables p±) and let V ′ = V ∩ P be the database V

2. A DYNAMIC LOGIC ACCOUNT OF ACTIVE INTEGRITY CONSTRAINTS 39

without the variables p±. Furthermore, let U be a consistent set of update actions and let

U ′ = {p+←> | p←> ∈ U}∪ {p−←> | p←⊥ ∈ U}. Then U contains all the no-effect

actions between V0 and V ′ that are relevant w.r.t. η iff 〈V ,V � U ′〉 ∈
∣∣∣∣∣∣ne(η)

∣∣∣∣∣∣.
Proof. For the left-to-right direction, 〈V ,V � U ′〉 ∈

∣∣∣∣∣∣ne(η)
∣∣∣∣∣∣ if all the extra variables

in (V � U ′) \ V were added through the programs ne+(p) and ne−(p) for all p ∈ PC(η)

(note that V ⊆ V � U ′). But by definition, if p←> is a no-effect action of (V0,V ′) then

p ∈ V0 ∩ V ′, which means that p ∧ ¬p± ∈ V . Similarly, if p←⊥ is a no-effect action of

(V0,V ′) then p /∈ V0 ∪ V ′, which means that ¬p ∧ ¬p± ∈ V . But these are exactly the

test programs in ne+(p) and ne−(p).

For the right-to-left direction, let p+ ∈ V �U ′. Since V contains no p+ variables, this

means that p+←> ∈ U ′ and consequently p←> ∈ U . Furthermore, since 〈V ,V �U ′〉 ∈∣∣∣∣∣∣ne(η)
∣∣∣∣∣∣, the only way for p+ ∈ V � U ′ is through the program ne+(p) in ne(η). So this

means that p ∧ ¬p± ∈ V , which makes p←> a no-effect action between V0 and V ′.

Similarly for p− ∈ V � U ′. Finally, since the program ne(η) spans across all variables in

PC(η), the only way for both p+ /∈ V � U ′ and p− /∈ V � U ′ is through the program ea(p).

This means then that p± ∈ V and p is not a no-effect action between V0 and V ′. Thus U

contains all the no-effect actions between V0 and V ′ that are relevant w.r.t. η.

Next, we define A(r) and B(r) to be the following formulas:

A(r) =
(∧
p∈nup(r)+

(¬p ∧ p±) ∨ (¬p ∧ p−)
)
∧
(∧
p∈nup(r)−

(p ∧ p±) ∨ (p ∧ p+)
)

B(r) =
(∨
p←>∈R(r)

p
)
∨
(∨
p←⊥∈R(r)

¬p
)

Using these then we define:

Closed(η) =
∧
r∈η

(
A(r)→ B(r)

)

MinimallyClosed(η) =¬
〈 ⋃

p∈PC(η)

undo(p)
+〉

Closed(η)

The next lemma will be once again used in the proof of Theorem 2.4 below.

Lemma 2.2. Let η be a set of standard active constraints in the language of P and let

2. A DYNAMIC LOGIC ACCOUNT OF ACTIVE INTEGRITY CONSTRAINTS 40

V0 ⊆ P be a database (so no p±, p+ and p− occurs in either of them). Let V1 be some

repaired database (containing variables p±) and let V ′1 = V1 ∩ P be the database V1

without the variables p±. Furthermore, let

V2 = V1 ∪ {p+ | p←> ∈ ne(V0,V ′1)} ∪ {p− | p←⊥ ∈ ne(V0,V ′1)}

be the extension of V1 containing all no-effect actions between V0 and V ′1 encoded

through the variables p+ and p−. Finally, let U comprise the update actions that re-

paired V0 to V ′1, plus all no-effect actions between V0 and V ′1. Then U is closed under η

iff V2 ∈
∣∣∣∣∣∣Closed(η)

∣∣∣∣∣∣.
Proof. For the left-to-right direction, it is easy to see that if V2 |= A(r) for some r ∈ η

then V2 falsifies all non-updatable literals in r. But by construction the variables in these

literals either come from the repairing of V0 to V1 (through p±), or from adding the no-

effect actions to V1 (through p+ and p−). This means that they come from update actions

in U , which by hypothesis is closed under η. Thus U must contain an update action from

R(r) and V2 |= B(r). Since r ∈ η was arbitrary, V2 ∈
∣∣∣∣∣∣Closed(η)

∣∣∣∣∣∣.
For the right-to-left direction, let the update actions in U falsify all non-updatable

literals in C(r) for some r ∈ η. By construction again, this means that V2 |= A(r).

But by hypothesis V2 ∈
∣∣∣∣∣∣Closed(η)

∣∣∣∣∣∣, so V2 |= B(r) as well. If also V0 |= B(r), then

either the constraint r ∈ η was already satisfied from the beginning and the update action

p←X ∈ R(r) such that V0 |= B(r) is a no-effect action, or it got satisfied by another

update action in U . In all cases U contains an update action from R(r), which means U is

closed under r. Since r ∈ η was arbitrary, U is closed under η.

So given a set of standard active constraints η, the first formula is true exactly when

all current update actions (again, encoded in the current valuation through the set P±)

plus all the no-effect actions (encoded in the current valuation through the sets P+ and

P−) are closed under η, while the second formula is true if and only if the set comprising

of all current update actions is the minimal set of update actions that (together with the

no-effect actions) has this property. Finally, we define the following abbreviations:

Justified(η)? = ne(η) ; Closed(η)? ; MinimallyClosed(η)?

2. A DYNAMIC LOGIC ACCOUNT OF ACTIVE INTEGRITY CONSTRAINTS 41

ClearAll = PC±←⊥ ; PC+←⊥ ; PC−←⊥

The following two theorems now give a complete characterisation of founded and

justified repairs in terms of DL-PA programs.

Theorem 2.3. Let η be a set of active integrity constraints in the language of P and let

V ⊆ P be a database (i.e., no p± occurs in either of them). Let U be a consistent set of

update actions that is relevant w.r.t. V .

• U is a founded weak repair of V by η iff:

〈V ,V � U〉 ∈
∣∣∣∣∣∣weakRepair(C(η)) ; Founded(η)? ; PC±←⊥

∣∣∣∣∣∣
• U is a founded repair of V by η iff:

〈V ,V � U〉 ∈
∣∣∣∣∣∣weakRepair(C(η)) ; Founded(η)? ; Minimal(C(η))? ; PC±←⊥

∣∣∣∣∣∣
Proof. Let V0 be the initial database and suppose V is some repaired database (containing

variables p±). Define the set of update actions:

UV ,η = {p←> : p± ∈ V and p ∈ V } ∪ {p←⊥ : p± ∈ V and p /∈ V }

Let us prove that 〈V0,V 〉 ∈ ||weakRepair(C(η)); Founded(η)?|| iff UV ,η is a founded

weak repair of V0 by η. The latter means that for every α ∈ UV ,η the three conditions (a)

α ∈ R(r), (b) V0 � UV ,η |= C(r) and (c) V0 � (UV ,η \ {α}) 6|= C(r) of Definition 2.4 are

satisfied.

For the left-to-right direction consider some p←> ∈ UV ,η. Then p± ∈ V . First of

all, 〈V0,V 〉 ∈ ||weakRepair(C(η))|| so UV ,η is a weak repair of V0 by η. Condition (b) is

satisfied from the definition weakRepair(C(η)) and Theorem 2.2. Condition (a) is satisfied

by the existence of a candidate constraint in the definition of Founded(η); remark that we

are guaranteed that the constraint contains indeed p←>, as opposed to p←⊥, because

undoing the change on p changes C(r) to false (so X has to be>). Condition (c) is satisfied

because V0�(U\{p←>}) 6|= C(r) is equivalent to V0�U |= ¬〈p←⊥〉C(r). Similarly for

some p←⊥ ∈ UV ,η. So UV ,η is a weak repair and satisfies the three conditions, making

2. A DYNAMIC LOGIC ACCOUNT OF ACTIVE INTEGRITY CONSTRAINTS 42

it a founded weak repair of V0 by η.

For the right-to-left direction, since UV ,η is also a weak repair of V0 by η, The-

orem 2.2 ensures that 〈V0,V 〉 ∈ ||weakRepair(C(η))|| (remember that we chose the

repaired database V to contain variables p±). To prove that V ∈ ||Founded(η)||, con-

sider some p± ∈ V . By definition, it entails p←X ∈ UV ,η for some X ∈ {>,⊥}.

Condition (a) ensures that there is a constraint r ∈ η with p←X ∈ R(r). Condition

(c) implies V |= ¬〈p←¬X〉C(r). So 〈V ,V 〉 ∈ ||Founded(η)?|| and thus 〈V0,V 〉 ∈

||weakRepair(C(η)); Founded(η)?||.

The rest of the proof (regarding minimality and non-existence of any p± in U) is

similar to that of Theorem 2.2.

Theorem 2.4. Let η be a set of standard active constraints in the language of P and let

V ⊆ P be a database (so no p±, p+ and p− occurs in either of them). Let U be a consistent

set of update actions that is relevant w.r.t. V .

• U is a justified weak repair of V by η iff:

〈V ,V � U〉 ∈
∣∣∣∣∣∣weakRepair(C(η)) ; Justified(η)? ; ClearAll

∣∣∣∣∣∣
• U is a justified repair of V by η iff:

〈V ,V � U〉 ∈
∣∣∣∣∣∣weakRepair(C(η)) ; Justified(η)? ; Minimal(C(η))? ; ClearAll

∣∣∣∣∣∣
Proof. First of all, notice that we can reduce the set of no-effect actions to those only

concerning the set of active integrity constraints η, since the rest have no impact on the

repairing procedure and produce the same results. Without loss of generality, we can

assume that the set ne(V ,V � U) only contains those no-effect actions that are relevant

w.r.t. η, for all V and U . Similarly to the previous proof, let V0 be the initial database, V1

some repaired database (containing variables p±) and define the set of update actions:

U = {p←> : p± ∈ V1 and p ∈ V1} ∪ {p←⊥ : p± ∈ V1 and p /∈ V1}

Furthermore, let V2 extend V1 with variables p+ and p− which encode the no-effect ac-

tions between V0 and V0 � U :

2. A DYNAMIC LOGIC ACCOUNT OF ACTIVE INTEGRITY CONSTRAINTS 43

V2 = V1 ∪ {p+ | p←> ∈ ne(V0,V0 � U)} ∪ {p− | p←⊥ ∈ ne(V0,V0 � U)}

We have to prove that 〈V0,V2〉 ∈ ||weakRepair(C(η)); Justified(η)?|| iff U is a justified

weak repair of V0 by η. According to Definition 2.8, the latter is equivalent to the fact

that (a) U ∩ ne(V0,V0 � U) = ∅, (b) U ∪ ne(V0,V0 � U) is closed under η and (c)

U ∪ ne(V0,V0 � U) is a minimal set containing ne(V0,V0 � U) which is closed under η.

Note that by construction, V1 is the repaired database V0 � U together with the variables

p±.

For the left-to-right direction, the construction of V2 through the use of the programs

weakRepair(C(η)), ne(η), Closed(η)? and MinimallyClosed(η)? gives:

(1) 〈V2,V2〉 ∈
∣∣∣∣∣∣Closed(η)?

∣∣∣∣∣∣ and thus V2 ∈
∣∣∣∣∣∣Closed(η)

∣∣∣∣∣∣
(2) 〈V2,V2〉 ∈

∣∣∣∣∣∣MinimallyClosed(η)?
∣∣∣∣∣∣ and thus V2 ∈

∣∣∣∣∣∣MinimallyClosed(η)
∣∣∣∣∣∣

Property (a) is derived from the fact that U is relevant w.r.t. V0. Property (b) is immediate

by (1) and Lemma 2.2. So the setU∪ne(V0,V0�U) obviously contains the set ne(V0,V0�

U) and is also closed under η. For property (c), suppose there exists a repair U ′ such that

U ′ ⊂ U ∪ ne(V0,V0 � U) and which also contains the set ne(V0,V0 � U) and is closed

under η, and let U ′′ = U ′ \ ne(V0,V0 � U). Define also V ′ to be V0 � U ′′, together

with the variables p± that keep track of the changes between V0 and V0 � U ′′ plus the

variables p+ and p− that encode the no-effect actions in ne(V0,V0 �U). Then 〈V ′,V ′〉 ∈

||Closed(η)?|| and since U ′′ ⊂ U we have that V2 /∈
∣∣∣∣∣∣MinimallyClosed(η)

∣∣∣∣∣∣, which is

contrary to property (2).

For the right-to-left direction, since U is also a weak repair of V0 by η, Theorem

2.2 ensures that 〈V0,V1〉 ∈ ||weakRepair(C(η))|| (remember that we chose the repaired

database V1 to contain variables p±). Then 〈V1,V2〉 ∈ ||ne(η)|| by Lemma 2.1. It fol-

lows from Lemma 2.2 and property (b) that V2 ∈ ||Closed(η)||. Since by property (c)

U ∪ ne(V0,V0 � U) is a minimal set containing ne(V0,V0 � U) which is closed under η,

then V2 ∈ ||MinimallyClosed(η)|| as well. So 〈V2,V2〉 ∈ ||Closed(η)?|| and 〈V2,V2〉 ∈

||MinimallyClosed(η)?|| and thus 〈V0,V2〉 ∈ ||weakRepair(C(η)); Justified(η)?||.

Once again, the rest of the proof (regarding minimality and non-existence of any

p±, p+ and p− in U) is similar to that of Theorem 2.2.

2. A DYNAMIC LOGIC ACCOUNT OF ACTIVE INTEGRITY CONSTRAINTS 44

2.5 A New Definition of Repair in DL-PA

We now propose some new definitions that take advantage of the resources of DL-PA.

More precisely, we make use of while loops in order to iterate the application of active

constraints. We start by discussing how databases can be repaired by applying active

constraints in sequence. This will lead us to the definition of dynamic repair. We show

that it is incomparable with both founded and justified repairs and discuss its properties

and some variants.

2.5.1 Repairing a Database: a Dynamic View

Suppose there is only one active constraint r that is standard. Then it is clear how to

proceed: either V |= C(r) and there is nothing to do, or V 6|= C(r) and we have to apply

r. In the second case, each αi ∈ R(r) provides a PMA repair of V achieving C(r).6 What

about the case where R(r) is empty? Well, then V cannot be repaired and we are stuck.

So far so good. The situation may get way more intricate when the set of active

constraints η contains two or more elements that can interact. Firstly, the example of

the introductory Section 2.1 and Example 2.4 illustrated an instance of active constraints

which intuitively should have a repair (and it does, in the case of PMA repairs) but for

which there is no founded or justified weak repair. We would like to find a definition of a

repair which depends only on the preferred update actions and always provides a repaired

database, as long as there are update actions from each C(r) to choose from. Moreover,

even for standard active constraints it might not be enough to apply an update action

αi ∈
⋃
r∈η

R(r) only once: some of the active constraints might have to be applied several

times in order to obtain integrity. The following active constraints that are inspired by an

(n+1)-bit counter highlight this.

Suppose for n ≥ 0 we represent binary numbers up to 2n+1−1 by means of n+1

propositional variables: ¬pn∧ · · · ∧¬p0 represents the integer zero and pn∧ · · · ∧p0 repre-

6For our more general active constraints where there is no syntactical link between C(r) and R(r) we
have to compute all possible minimal subsets U ⊆ R(r) such that V �U |= C(r). All of them will be PMA
repairs.

2. A DYNAMIC LOGIC ACCOUNT OF ACTIVE INTEGRITY CONSTRAINTS 45

sents 2n+1−1. For each bit we also need an auxiliary variable pi. Let:

r1 = 〈p0∨x1∨ · · · ∨xn, {p0←>}〉

r2k = 〈pk∨¬pk−1∨ · · · ∨¬p0∨xk, {xk←>}〉, for 1 ≤ k ≤ n

r3ki = 〈¬pi∨¬xk, {pi←⊥}〉, for 1 ≤ k ≤ n and 0 ≤ i ≤ k − 1

r3kk = 〈pk∨¬xk, {pk←>}〉, for 1 ≤ k ≤ n

r4k = 〈¬pk∨pk−1∨ · · · ∨p0∨¬xk, {xk←⊥}〉, for 1 ≤ k ≤ n

The idea is that when ¬pk∧pk−1∧ · · · ∧p0 is true, i.e., when the number 011. . .1 has to be

incremented to 100. . .0, then xk is made true by r2k and remains so until 100. . .0 has been

attained. This involves flipping the k digits in the conjunction ¬pk∧pk−1∧ · · · ∧p0: with

active constraints this is done one-by-one by r3ki and r3kk . Then xk is set to false again

by r4k . Let ηn be the set of all the above rules, for a given n, i.e., ηn is the set:

{
r1}∪{r21 , . . . , r2n}∪{r310

, r311
}∪{r320

, r321
, r322
}∪. . .∪{r3n0

, . . . , r3nn}∪{r41 , . . . , r4n}

Successive repairing steps then implement an (n+1)-bit counter counting from the initial

database ∅ to the database {pn, . . . , p0}.

The computation takes a number of steps that is exponential in n, while the number

of update actions is 1
2(n2+7n)+1, demonstrating that sometimes atomic repairs must be

performed an exponential number of times: for example r1 needs to be applied 2n times

in order to repair V0 = ∅ by ηn. Let us illustrate by the 3-bit counter how the repairs are

done.

Example 2.7. Let’s take n = 2 and try to obtain the integer 111 starting from 000. In

Figure 2.1 we can see the steps needed through which we will reach the set of update

actions U = {p0←>, p1←>, p2←>} that will update the database ∅ in order for it

to satisfy the active integrity constraints in η2. The first column represents the current

database (starting from ∅), the second column shows the constraint that was applied in

order to reach it and in the third we see the current integer in the counter. Last but not

least, the last column shows when an xk is kept true in order for the procedure to reach

the integer 10 from 01 and the integer 100 from 011 when needed.

2. A DYNAMIC LOGIC ACCOUNT OF ACTIVE INTEGRITY CONSTRAINTS 46

¬p2 ∧¬p1 ∧¬p0 ∧¬x1 ∧¬x2 000 –
¬p2 ∧¬p1 ∧ p0 ∧¬x1 ∧¬x2 r1 001 –
¬p2 ∧¬p1 ∧ p0 ∧ x1 ∧¬x2 r21 001 X

¬p2 ∧¬p1 ∧¬p0 ∧ x1 ∧¬x2 r310
000 X

¬p2 ∧ p1 ∧¬p0 ∧ x1 ∧¬x2 r311
010 X

¬p2 ∧ p1 ∧¬p0 ∧¬x1 ∧¬x2 r41 010 –
¬p2 ∧ p1 ∧ p0 ∧¬x1 ∧¬x2 r1 011 –
¬p2 ∧ p1 ∧ p0 ∧¬x1 ∧ x2 r22 011 X

¬p2 ∧ p1 ∧¬p0 ∧¬x1 ∧ x2 r320
010 X

¬p2 ∧¬p1 ∧¬p0 ∧¬x1 ∧ x2 r321
000 X

p2 ∧¬p1 ∧¬p0 ∧¬x1 ∧ x2 r322
100 X

p2 ∧¬p1 ∧¬p0 ∧¬x1 ∧¬x2 r42 100 –
p2 ∧¬p1 ∧ p0 ∧¬x1 ∧¬x2 r1 101 –
p2 ∧¬p1 ∧ p0 ∧ x1 ∧¬x2 r21 101 X

p2 ∧¬p1 ∧¬p0 ∧ x1 ∧¬x2 r310
100 X

p2 ∧ p1 ∧¬p0 ∧ x1 ∧¬x2 r311
110 X

p2 ∧ p1 ∧¬p0 ∧¬x1 ∧¬x2 r41 110 –
p2 ∧ p1 ∧ p0 ∧¬x1 ∧¬x2 r1 111 –

Figure 2.1: Incrementing 000 to 111 through η2

We can see how some constraints need to be applied many times in order to succeed

in repairing the original database. This calls for a dynamic way through which a database

is updated in order for it to be repaired: a procedure that modifies the database according

to the integrity constraints step by step, until it reaches a satisfactory form (i.e., satisfies

the integrity constraints). Founded and justified repairs cannot do the job in this and

other scenarios of that kind, as an active constraint can only be used once: indeed, in the

example of the (n+1)-bit counter, no repair can be obtained by means of founded and

justified repairs. That’s why we introduce dynamic repairs.

2.5.2 Dynamic Weak Repairs and Dynamic Repairs

We associate with every active constraint r the DL-PA programs:

2. A DYNAMIC LOGIC ACCOUNT OF ACTIVE INTEGRITY CONSTRAINTS 47

πr = ¬C(r) ? ;
⋃

α∈R(r)
α

π±r = ¬C(r) ? ;
⋃

p←X∈R(r)

(
p←X; p±←>

)

Remember that
⋃

α∈R(r)
α equals fail when R(r) is empty. This matches the intuitive reading

that we have given to active constraints in Section 2.2.2: the repair program πr checks

whether the static integrity constraint associated with r is violated, and if so nondetermin-

istically applies one of the update actions from R(r). The program π±r moreover stores

that p has been changed. These intuitions are also supported by the following proposition,

which tells us that applicability of an active constraint r (the fact that C(r) is violated) is

matched by the DL-PA notion of executability of the program πr.

Proposition 2.3. Let r be an active constraint and let V be a database. Then applicability

of r at V is equivalent to both V |= 〈πr〉> and V |= 〈π±r 〉>.

Proof. It suffices to observe that when π is a nondeterministic composition of update

actions then the equivalence ¬C(r)↔ 〈¬C(r)?;π〉> is DL-PA valid for every C(r).

Based on these, the definitions of a dynamic weak repair and a dynamic repair are

the following.

Definition 2.9. Let V be a database and let η be a set of active constraints. A dynamic

weak repair of V by η is a consistent set of update actions U such that U is relevant w.r.t.

V and:

〈V ,V � U〉 ∈
∣∣∣∣∣∣∣∣while ¬

(∧
C(η)

)
do

(⋃
r∈η

πr

)∣∣∣∣∣∣∣∣
Moreover, if U is also a PMA repair of V achieving C(η), then U is a dynamic repair of

V by η.

In the following example we see that dynamic repairs can sometimes coincide with

founded repairs.

Example 2.8 (Example 2.5, ctd.). Consider again V = ∅ and η =
{
〈p∨q, {p←>}〉,

〈¬p∨q, {q←>}〉, 〈p∨¬q, {p←>}〉
}

. There is a single dynamic weak repair (and also

dynamic repair) of V by η, viz. {p←>, q←>}. Remember by Example 2.6 that there is

no justified repair.

2. A DYNAMIC LOGIC ACCOUNT OF ACTIVE INTEGRITY CONSTRAINTS 48

As we have already witnessed with the (n+1)-bit counter though, dynamic weak

repairs are not necessarily founded. The next example is simpler.

Example 2.9 (Example 2.3, ctd.). Consider again V = ∅ and η =
{
〈p, {p←>}〉,

〈p∨q, {q←>}〉
}

, whose only founded weak repair was {p←>}. There are two dynamic

weak repairs of V by η, namely {p←>} and {p←>, q←>}. Only the former is a dy-

namic repair.

Remember also that at the beginning of Section 2.5.1 we argued against founded and

justified repairs using Example 2.4 (itself an adaptation of the example discussed in the

introductory Section 2.1), for which we would like to have a way to repair V by η. The

next examples shows that dynamic weak repairs solve this problem. Let us also note that

just like founded and justified repairs, dynamic weak repairs do not necessarily coincide

with dynamic repairs.

Example 2.10 (Example 2.4, ctd.). Consider again V = ∅ and η =
{
〈p∨q, {p←>}〉,

〈¬p∨q, {q←>}〉
}

. The only dynamic weak repair of V by η is the set of update actions

{p←>, q←>}. But {q←>} is the PMA repair of V achieving C(η), so there is no

dynamic repair.

Finally, in a similar manner as in the previous sections, the next theorem characterises

dynamic repairs in terms of DL-PA programs.

Theorem 2.5. Let η be a set of active integrity constraints in the language of P and let

V ⊆ P be a database (i.e., no p± occurs in either of them). Let U be a consistent set of

update actions that is relevant w.r.t. V . U is a dynamic repair of V by η iff:

〈V ,V � U〉 ∈
∣∣∣∣∣∣∣∣while ¬

(∧
C(η)

)
do

(⋃
r∈η

π±r

)
; Minimal

(
C(η)

)
? ;PC±←⊥

∣∣∣∣∣∣∣∣
Proof. The proof is quite trivial and based on the definitions. Given a database V ⊆ P

and a set of active integrity constraints η, a dynamic repair of V by η is both a dynamic

weak repair of V by η and a PMA repair of V achieving C(η). In DL-PA terms then, this is

given by the sequential composition of the programs while¬
(∧

C(η)
)

do
(⋃
r∈η

π±r

)
and

Minimal(C(η))?, with the DL-PA program π±r keeping track of which propositions have

2. A DYNAMIC LOGIC ACCOUNT OF ACTIVE INTEGRITY CONSTRAINTS 49

been modified along the update so that they can be checked again in the latter. Finally, as

before the program PC±←⊥ ensures that no p± exists in U .

2.5.3 Some Interesting Properties

In this subsection we present some interesting properties of this dynamic procedure that

distinguishes it from the other main repairs which have been studied and prevailed in

the literature, viz. weak repairs, PMA repairs, founded and justified repairs. Our goal is

to provide a concrete argument that repairs produced in this way are an interesting kind

of repairs, possessing the advantages of the others while not comprising some of their

disadvantages.

The main problem with founded repairs is the so called circularity of support which

has been already mentioned at the end of Section 2.2.2. This undesirable property is what

ultimately led to the definition of justified repairs, which are way more complex and dif-

ficult to understand, at least at first sight. Dynamic repairs on the other hand provide a

solution to this problem without straying too far from the initial definition, making it far

less intricate. In contrast with founded repairs which need the foundedness property to

give priority to the “preferred” repairs, dynamic repairs simply select an update action

from the set that they have access to (the set of preferred ones) without checking for any

other condition. This leads to no circular support between any set of preferred actions

and can also be seen in Example 2.8 where {p←>, q←>} remains a dynamic repair

of V by η even if the constraint ‘〈p∨¬q, {p←>}〉’ is absent (something that cannot be

said for founded repairs, as this constraint is required for the foundedness of ‘p’). Fur-

thermore, although justified repairs solve this problem, they often do not exist, as can be

seen by Example 2.6. Through dynamic repairs we can provide a solution to cases like

this, avoiding the circularity of support found in founded repairs, while still being able to

provide a repaired database. So not only are dynamic repairs more intuitive, but they also

comprise the best of both situations.

Despite this however, one could still argue that they are too “strict”, sometimes re-

quiring that every integrity constraint in C(η) have a way to be repaired (an update action

in R(r) should exist for all r ∈ η in order to make C(r) true). If R(r) = ∅ for some r ∈ η,

2. A DYNAMIC LOGIC ACCOUNT OF ACTIVE INTEGRITY CONSTRAINTS 50

then the whole dynamic repairing procedure could collapse and a dynamic weak repair

never occur. The next example illustrates exactly this.

Example 2.11. Let V = {q} and η =
{
〈p∨q, {p←>}〉, 〈p, ∅〉

}
. The set {p←>} is a

PMA repair of V achieving C(η). However, there are no dynamic weak repairs (and thus

no dynamic repairs either).

As we can see, the problem arises when an integrity constraint has no preferred update

actions and cannot be satisfied by the application of some other constraint when repairing

the database. One could differentiate this behavior into three classes of repairs, based on

the level of “strictness” of the preference that is involved in the active constraints. The

more strict repairs are those conforming to the idea that every integrity constraint C(r)

should be repaired only through an update action in R(r), the less strict allow any update

actions in
⋃
r∈η

R(r) to be used for any integrity constraint C(r), while the middle ground is

to keep a balance between the two. As we can see, the passing from the more strict class

to the others changes the meaning of the update actions in R(r) from permitted repair

actions to preferred ones, a distinction that is not always made clear in the literature. As

Example 2.11 shows, dynamic repairs and dynamic weak repairs possess some of this

“strict” nature: an update action will only arise while updating a database if it helps to

repair some constraint. This forbids repairs in cases where all clauses apart from those

having no preferred actions are already satisfied. In contrast, in such cases solutions with

founded weak repairs can occur, as shown in the next example.

Example 2.12 ([Caroprese and Truszczynski, 2011], Example 2). Let V = ∅ and η ={
〈p∨¬q ∨¬r, {p←>}〉, 〈¬p∨ q ∨¬r, {q←>}〉, 〈¬p∨¬q ∨ r, {r←>}〉, 〈p, ∅〉

}
. The set

{p←>, q←>, r←>} is the only founded weak repair of V by η. Furthermore, the set

{p←>} is a PMA repair of V achieving C(η). There are no dynamic weak repairs (and

thus no dynamic repairs either).

So this leads to the following question: should we require a repair to exist in such

cases or not? Are we willing to agree with the fact that such databases do not and should

not have a repair, or is repairing the database in order to satisfy the integrity constraints in

C(η) of the highest priority?

2. A DYNAMIC LOGIC ACCOUNT OF ACTIVE INTEGRITY CONSTRAINTS 51

If the answer to the last question is positive then dynamic repairs could be less in-

teresting. We can however tweak the definition slightly and define global-dynamic weak

repairs to be a kind of dynamic repairs with the same intuitive behavior as before but

belonging to the least strict of the aforementioned classes of repairs. More precisely, the

reason that dynamic repairs cannot repair a constraint using update actions found in other

clauses is the local nature of the do part in the while loop. Before trying to repair the

whole set of active integrity constraints in η, a dynamic repair locally checks if every

clause (integrity constraint) is satisfied. If we drop this requirement and allow the dy-

namic procedure to globally choose update actions found in other clauses, then we will

have a solution in Examples 2.11, 2.12 and more generally the cases we have discussed.

Definition 2.10. Let V be a database and let η be a set of active constraints. A global-

dynamic weak repair of V by η is a consistent set of update actions U such that U is

relevant w.r.t. V and:

〈V ,V � U〉 ∈
∣∣∣∣∣∣∣∣while ¬

(∧
C(η)

)
do

(⋃
r∈η

α∈R(r)

α
)∣∣∣∣∣∣∣∣

In the same vein as before, if U is also a PMA repair of V achieving C(η), then U is a

global-dynamic repair of V by η.

It is easy to see now that this tweaked definition provides us with the desired repaired

database in Examples 2.11 and 2.12. Specifically, the set {p←>} is a global-dynamic

repair of V by η in both examples. Furthermore, a dynamic weak repair is always a

global-dynamic weak repair, as it can be created by the same procedure using one step

less, namely by not checking the condition “¬C(r)?” in the do part of the program. This

makes dynamic weak repairs a subset of global-dynamic weak repairs (and also dynamic

repairs a subset of global-dynamic repairs).

It is our intention to use the global-dynamic repairs mainly as a tool of comparison

between the different classes of repairs and less as a practical repairing technique that

would replace the others. As we will see, the most important attribute of global-dynamic

repairs is that they are exactly the global-dynamic weak repairs that are minimal w.r.t. set

inclusion (i.e., if U is a global-dynamic repair of V then there is no global-dynamic weak

repair U ′ of V such that U ′ ⊂ U). The recipe when defining repairs till now is to first

2. A DYNAMIC LOGIC ACCOUNT OF ACTIVE INTEGRITY CONSTRAINTS 52

give the definition of their weak versions and then state that they also have to be PMA

repairs. This is of course different from saying that these repairs are the weak repairs that

are minimal w.r.t. set inclusion, as in this case they would always exist if at least one of

their weak counterparts existed. But it is not always the case that they may coincide with

PMA repairs and usually may not exist altogether. This can be witnessed in Example 2.12

for founded repairs and in Example 2.10 for dynamic repairs.

However, when minimality w.r.t. set inclusion and coincidence with PMA repairs is

the same, we have a much more powerful and reliable tool in our hands that avoids the

main disadvantage of other repairs, namely that they may not exist (even if their weak

versions do). This is shown in Theorem 2.6. Before this, a small lemma characterises this

global-dynamic nature.

Lemma 2.3. Let η be a set of active integrity constraints in the language of P and let

V ⊆ P be a database. Let U1 be a global-dynamic weak repair of V by η and U2 be a

weak repair of V achieving C(η) such that U2 ⊂ U1. Then U2 is also a global-dynamic

weak repair of V by η.

Proof. By hypothesis, U1 and U2 are both consistent sets of update actions that are rel-

evant w.r.t. V such that V � U1 |=
∧

C(η) and V � U2 |=
∧

C(η) with U2 ⊂ U1. This

means that V can be updated with less update actions than U1 in order to satisfy the in-

tegrity constraints in η. But U1 was constructed by iteration on checking the satisfaction

of
∧

C(η) and applying update actions from
⋃
r∈η

R(r). Then U2 can be constructed in

exactly the same way, since it doesn’t comprise any update actions outside of U1, with

the difference of taking less update actions into account: namely, by restricting the non-

deterministic choice to updates from U2 and leaving the update actions in U1 \ U2 out of

consideration. This will also lead to a repaired database. So U2 is a global-dynamic weak

repair of V by η as well.

Theorem 2.6. Let η be a set of active integrity constraints in the language of P and let

V ⊆ P be a database. Let U be a consistent set of update actions that is relevant w.r.t. V .

U is a global-dynamic repair of V by η iff U is a global-dynamic weak repair of V by η

that is minimal w.r.t. set inclusion.

2. A DYNAMIC LOGIC ACCOUNT OF ACTIVE INTEGRITY CONSTRAINTS 53

Proof. Let the set GDR consist of all the global-dynamic repairs of V by η and let

MGDWR consist of all the global-dynamic weak repairs of V by η that are minimal

w.r.t. set inclusion. For convenience we also define in the same way R as the set of all

PMA repairs and WR as the set of all weak repairs of V achieving C(η). Finally, let

GDWR be the set of all global-dynamic weak repairs of V by η. First of all, observe that

GDR = GDWR∩R (1) andGDWR ⊆ WR (2). Let us show thatGDR = MGDWR.

• GDR ⊆MGDWR: let U1 ∈ GDR. By (1) then, U1 ∈ GDWR and U1 ∈ R. Let

U2 ∈ GDWR such that U2 ⊂ U1. By (2) we also have that U2 ∈ WR. This means

that U1 ∈ R and U2 ∈ WR with U2 ⊂ U1. But this cannot be the case, as a PMA

repair is a minimal weak repair w.r.t. set inclusion. So there is no U2 ∈ GDWR

such that U2 ⊂ U1, where U1 ∈ GDWR. Thus U1 ∈MGDWR.

Note that this also applies to founded, justified and dynamic repairs. The differ-

ence is in the other direction.

• MGDWR ⊆ GDR: let U1 ∈ MGDWR. By definition then, U1 ∈ GDWR and

there is no U ′ ∈ GDWR such that U ′ ⊂ U1 (3). Let U2 ∈ WR such that U2 ⊂ U1.

By Lemma 2.3 it is also the case then that U2 ∈ GDWR. But this cannot be the

case by (3). So there is no U2 ∈ WR such that U2 ⊂ U1. Since by (2) U1 ∈ WR

as well, this means that U1 ∈ R. Thus U1 ∈ GDWR ∩ R and using (1) we get

U1 ∈ GDR.

So there is enough evidence to support the idea of using global-dynamic repairs as our

repairs of choice when we want to update a database taking into account active integrity

constraints in the cases where other repairs don’t work. They are the closest thing to

a PMA repair as shown by the next Proposition, with the only limitation of being non-

existent if the set of update actions
⋃
r∈η

R(r) is empty or if an integrity constraint can’t be

repaired even through update actions existing in other clauses (in both cases a solution to

this problem shouldn’t exist intuitively).

Proposition 2.4. Let η be a set of active integrity constraints in the language of P and let

V ⊆ P be a database. Let U be a consistent set of update actions that is relevant w.r.t. V .

2. A DYNAMIC LOGIC ACCOUNT OF ACTIVE INTEGRITY CONSTRAINTS 54

U is a global-dynamic repair of V by η iff U is a PMA repair of V achieving C(η) and

U ⊆
⋃
r∈η

R(r).

Proof. The left-to-right direction is trivial by the definition of global-dynamic repairs,

whereas the right-to-left direction follows immediately by Theorem 2.6.

But ultimately the choice between dynamic and global-dynamic repairs is traced back

to what the answer should be regarding the repairing or not of a database in all of these

cases. The former use a more restrictive procedure that makes it more local, while the

latter do not.

Remark 2. In dynamic weak repairs and dynamic repairs we can use the
⋃

p∈PR(r)

toggle(p)

program in the place of
⋃

α∈R(r)
α in πr without any change in the dynamic behavior of the

repairs. In the case of global-dynamic weak repairs, at first sight the programs:

while ¬
(∧

C(η)
)

do
(⋃
r∈η

α∈R(r)

α
)

and while ¬
(∧

C(η)
)

do
(⋃
r∈η

p∈PR(r)

toggle(p)
)

seem to once again bring the same results. So why not use the second definition which

abbreviates: ¬ (∧C(η)
)
? ;
⋃
r∈η

p∈PR(r)

toggle(p)

∗

;
(∧

C(η)
)
?

and which is highly reminiscent of the program weakRepair(C(η)), showing its close re-

lationship with weak and PMA repairs. It should be clarified why toggle(p) doesn’t work

anymore. The reason is that toggling a propositional variable in this case is not the same

as choosing the respective update action, as toggle(p) can bring the opposite results. We

can see this when V = ∅ and η =
{
〈¬p∨q, {p←⊥}〉, 〈¬q∨p, {q←⊥}〉, 〈r, {r←>}〉

}
.

A global-dynamic weak repair of V by η using the alternative definition with toggle(p) is

the set of update actions {p←>, q←>, r←>}, which is obviously absurd.

As already mentioned, this does not happen with dynamic weak repairs and dynamic

repairs. It is another aspect of their “strict” and local nature, as they check if a clause

needs repairing before toggling any propositional variable, thus making any update action

chosen to be exactly the intended one from the set of preferred ones.

2. A DYNAMIC LOGIC ACCOUNT OF ACTIVE INTEGRITY CONSTRAINTS 55

2.6 Complexity of Dynamic Repairs

In this section we provide tight complexity bounds for the problems of existence of a dy-

namic weak repair and a dynamic repair. It is known that deciding the existence of a repair

is NP-complete for weak repairs, PMA repairs and founded weak repairs, while it is Σ2
P -

complete for founded repairs, justified weak repairs and justified repairs [Caroprese and

Truszczynski, 2011]. As we will see, the same problem proves to be more difficult for dy-

namic weak repairs and dynamic repairs: deciding their existence is PSPACE-complete.

For the lower bound (hardness) we provide a reduction from the problem of checking

whether a fully quantified boolean formula is true, whereas for the upper bound (mem-

bership) a reduction to the model checking problem of DL-PA will suffice. The result

follows from the fact that checking whether a fully quantified boolean formula is true and

DL-PA model checking are both PSPACE-complete problems [Stockmeyer and Meyer,

1973, Balbiani et al., 2014].

2.6.1 Lower Complexity Bound

In order to show that the existence of dynamic weak repairs and dynamic repairs is

PSPACE-hard we will provide a reduction from the following problem: given a fully

quantified boolean formula G, decide whether G is true. We suppose w.l.o.g. that G is

in prenex normal form, with the variables in the prefix being all different and the matrix

containing only the boolean connectives ¬ and ∧. Let subf(G) be the set comprising

all the subformulas of G and let subfv(G) be the set comprising all the variables in G.

Furthermore, let subf¬(G), subf∧(G), subf∃(G) and subf∀(G) be the sets comprising all

subformulas of G that have the form ¬A, A ∧ B, ∃x.A and ∀x.A, respectively. It is easy

to see that subf(G) = subfv(G) ∪ subf¬(G) ∪ subf∧(G) ∪ subf∃(G) ∪ subf∀(G). Next,

we define the set PG of propositional variables to be composed of:

• all x, x? and x! such that x ∈ subfv(G)

• A+?, A−?, A+!, A−! and A± for each A ∈ subf(G)

Intuitively, the elements of PG play the following roles: x stores the truth value of x in

2. A DYNAMIC LOGIC ACCOUNT OF ACTIVE INTEGRITY CONSTRAINTS 56

G, x? indicates that a value for x must be chosen and x! indicates that the value for x has

been chosen. Similarly, A+? indicates that we check if A is true and A+! indicates that

A has been proved to be true. The same goes for A−? and A−!, for checking and proving

that A is false. Last but not least, A± is used to record the intermediate state whenever

we need to verify that A is true for both x and ¬x (viz. when we have already checked the

case where x is true and still have to check the case where x is false).

The idea now is to start from the initial formula G and to compute whether it is

true by asking whether there is a dynamic procedure that repairs the database {G+?}

under a set of active constraints. We will define this set by first assigning a set of active

constraints to each A ∈ subf(G), indicating the required steps for checking whether or

not A can be proved true or false, and taking their union. For each A, the goal is to reach

a state satisfying ¬A+? ∧A+! if we want to prove that A is true and ¬A−? ∧A−! if we

want to prove that A is false. Indeed, each A ∈ subf(G) is associated with a set of active

constraints which repair any database satisfyingA+?∧¬A+! (respectivelyA−?∧¬A−!)

to one satisfying ¬A+?∧A+! (respectively ¬A−?∧A−!). So, starting from the database

{G+?} which satisfies G+? ∧ ¬G+!, if there is a successful dynamic repair procedure

using these sets of active constraints then ¬G+? ∧ G+! will be reached and the initial

formula G will be proved to be true. On the other hand, if there is no dynamic weak

repair of {G+?} by these active constraints then G will be false.

In the following we define the sets of active integrity constraints for each A ∈

subf(G) that encode the truth conditions that are used in the evaluation of G. The lit-

erals underlined highlight the differences between the static constraints while the right-

most column explains the action taken. A small lemma after each definition proves why

the respective case works, where (1) IndHyp(A,V)+ and (2) IndHyp(A,V)− denote the

induction hypotheses for A ∈ subf(G) and V ⊆ subfv(G), i.e.:

(1) := the set {A+?←⊥, A+!←>} is a dynamic weak repair of {A+?} iff V |= A

(2) := the set {A−?←⊥, A−!←>} is a dynamic weak repair of {A−?} iff V 6|= A

•When A = ∃x.B we set:

2. A DYNAMIC LOGIC ACCOUNT OF ACTIVE INTEGRITY CONSTRAINTS 57

a1: 〈¬A+? ∨ A+! ∨ B+? ∨ B+! ∨ x? ∨ x! ∨ x , {x?←>}〉 ask for a truth value for x

a2: 〈¬A+? ∨ A+! ∨ B+? ∨ B+! ∨ ¬x? ∨ x! ∨ x , {x←>, x!←>}〉 toggle x or set it to false

a3: 〈¬A+? ∨ A+! ∨ B+? ∨ B+! ∨ ¬x? ∨ x! ∨ ¬x , {x!←>}〉 set x to true

a4: 〈¬A+? ∨ A+! ∨ B+? ∨ B+! ∨ ¬x? ∨ ¬x! , {x?←⊥}〉 end the choice of x

a5: 〈¬A+? ∨ A+! ∨ B+? ∨ B+! ∨ x? ∨ ¬x! , {B+?←>}〉 ask for B to be true

a6: 〈¬A+? ∨ A+! ∨ B+? ∨ ¬B+! ∨ x? ∨ ¬x! , {A+!←>}〉 A is now proved true

a7: 〈¬A+? ∨ ¬A+! ∨ B+? ∨ ¬B+! ∨ x? ∨ ¬x! , {x!←⊥}〉 free x

a8: 〈¬A+? ∨ ¬A+! ∨ B+? ∨ ¬B+! ∨ x? ∨ x! , {B+!←⊥}〉 remove the result for B

a9: 〈¬A+? ∨ ¬A+! ∨ B+? ∨ B+! ∨ x? ∨ x! ∨ ¬x , {x←⊥}〉 remove x if it is set to true

a10: 〈¬A+? ∨ ¬A+! ∨ B+? ∨ B+! ∨ x? ∨ x! ∨ x , {A+?←⊥}〉 end the request for A

Lemma 2.4. Let A ∈ subf∃(G) and V ⊆ subfv(G). Furthermore, consider that the

induction hypothesis holds for B, where A = ∃x.B, i.e., at least one of IndHyp(B,V \

{x})+ or IndHyp(B,V ∪ {x})+ holds. Then:

V |= A iff there is a dynamic weak repair of V ∪ {A+?} by {a1, . . . , a10}

Proof. Consider A = ∃x.B, the database V and the set of active constraints η = {a1,

. . . , a10}. If V |= A then either V \ {x} |= B or V ∪ {x} |= B (1). Starting from

V ∪ {A+?} then, the active constraints a1 to a4 will make sure that the truth value of

x is set, i.e., x is in the database or ¬x is in the database, via the auxiliary variables x?

and x!. The active constraint a5 then will ask if B is satisfied given the truth value of

x that is already set in the database. This will be checked by the active constraints that

are assigned to B. By (1) then, since B is indeed satisfied for at least one of the truth

values of x, choosing the correct one will result in the induction hypothesis removing the

variable B+? from the database and adding the variable B+! to the database. Thus, the

constraint a6 will be violated and it is recorded that A is proved to be satisfied via the

variable A+!. The active constraints a7 to a10 then remove all the auxiliary variables in

case A needs to be checked again.7 Given these we have that for at least one value of x

the procedure is ending and a dynamic weak repair of V ∪ {A+?} by η exists. On the

other hand, if a dynamic weak repair of V ∪ {A+?} by η exists then B has been proved

to be satisfied for at least one truth value of x. This is done in the transition from a5 to

a6 where, by adding B+? to the database, the active constraints assigned to B repair the

database into one satisfying ¬B+?∧B+!. By induction hypothesis then, this means that

7This may happen if, for instance, A′ = ∀x.A and the truth value for A needs to be checked twice while
checking if A′ is true.

2. A DYNAMIC LOGIC ACCOUNT OF ACTIVE INTEGRITY CONSTRAINTS 58

either V \ {x} |= B or V ∪ {x} |= B (according to which of a2 or a3 took place last)

which means that V |= A.

•When A = ∀x.B we set:

b1: 〈¬A+? ∨ A+! ∨ A± ∨ B+? ∨ B+! ∨ x , {x←>}〉 make sure x is true

b2: 〈¬A+? ∨ A+! ∨ A± ∨ B+? ∨ B+! ∨ ¬x , {B+?←>}〉 ask for B to be true, x being true

b3: 〈¬A+? ∨ A+! ∨ A± ∨ B+? ∨ ¬B+! ∨ ¬x , {A±←>}〉 record the intermediate state

b4: 〈¬A+? ∨ A+! ∨ ¬A± ∨ B+? ∨ ¬B+! ∨ ¬x , {B+!←⊥}〉 x being true, erase the result for B

b5: 〈¬A+? ∨ A+! ∨ ¬A± ∨ B+? ∨ B+! ∨ ¬x , {x←⊥}〉 now make x false

b6: 〈¬A+? ∨ A+! ∨ ¬A± ∨ B+? ∨ B+! ∨ x , {B+?←>}〉 ask for B to be true, x being false

b7: 〈¬A+? ∨ A+! ∨ ¬A± ∨ B+? ∨ ¬B+! ∨ x , {A+!←>}〉 A is now proved true

b8: 〈¬A+? ∨ ¬A+! ∨ ¬A± ∨ B+? ∨ ¬B+! ∨ x , {B+!←⊥}〉 remove the result for B

b9: 〈¬A+? ∨ ¬A+! ∨ ¬A± ∨ B+? ∨ B+! ∨ x , {A±←⊥}〉 remove the intermediate state

b10: 〈¬A+? ∨ ¬A+! ∨ A± ∨ B+? ∨ B+! ∨ x , {A+?←⊥}〉 end the request for A

Lemma 2.5. Let A ∈ subf∀(G) and V ⊆ subfv(G). Furthermore, consider that the

induction hypothesis holds for B, where A = ∀x.B, i.e., both of IndHyp(B,V \ {x})+

and IndHyp(B,V ∪ {x})+ hold. Then:

V |= A iff there is a dynamic weak repair of V ∪ {A+?} by {b1, . . . , b10}

Proof. ConsiderA = ∀x.B, the database V and the set of active constraints η = {b1, . . . ,

b10}. If V |= A then V \{x} |= B and V ∪{x} |= B (1). Starting from V ∪{A+?} then,

as a first step we make sure that x is true through b1. We then check, in a similar manner as

before, thatB is indeed satisfied for both truth values of x. This is done through the active

constraints b2 to b6. The only difference here is that we have to record an intermediate

state via the variableA±when switching from x being true to x being false. The reason is

that, if this intermediate state is not recorded through b3, a database which doesn’t include

the variable x will violate both b1 and b6 and may jump to the latter constraint, thus not

checking if B is satisfied when x is true. The rest is the same: the auxiliary variables

are removed from the database before ending the check in b10. By (1) then, since B is

indeed satisfied for both truth values of x, and b3 as well as b7 are both violated, using the

induction hypothesis we have that the procedure is ending and a dynamic weak repair of

V ∪{A+?} by η exists. On the other hand, if a dynamic weak repair of V ∪{A+?} by η

exists then, similarly with before, B has been proved to be satisfied for both truth values

of x: for x in the transition from b2 to b3 and for ¬x and in the transition from b6 to b7.

2. A DYNAMIC LOGIC ACCOUNT OF ACTIVE INTEGRITY CONSTRAINTS 59

By induction hypothesis then, this means that V \ {x} |= B and V ∪ {x} |= B and thus

V |= A.

•When A = ¬B we set:

c1: 〈¬A+? ∨ A+! ∨ B−? ∨ B−! , {B−?←>}〉 ask for B to be false

c2: 〈¬A+? ∨ A+! ∨ B−? ∨ ¬B−! , {A+!←>}〉 A is now proved true

c3: 〈¬A+? ∨ ¬A+! ∨ B−? ∨ ¬B−! , {B−!←⊥}〉 remove the result for B

c4: 〈¬A+? ∨ ¬A+! ∨ B−? ∨ B−! , {A+?←⊥}〉 end the request for A

c5: 〈¬A−? ∨ A−! ∨ B+? ∨ B+! , {B+?←>}〉 ask for B to be true

c6: 〈¬A−? ∨ A−! ∨ B+? ∨ ¬B+! , {A−!←>}〉 A is now proved false

c7: 〈¬A−? ∨ ¬A−! ∨ B+? ∨ ¬B+! , {B+!←⊥}〉 remove the result for B

c8: 〈¬A−? ∨ ¬A−! ∨ B+? ∨ B+! , {A−?←⊥}〉 end the request for A

Lemma 2.6. Let A ∈ subf¬(G) and V ⊆ subfv(G). Furthermore, consider that the

induction hypothesis holds for B, where A = ¬B, i.e., both of IndHyp(B,V)+ and

IndHyp(B,V)− hold. Then:

• V |= A iff there is a dynamic weak repair of V ∪ {A+?} by {c1, c2, c3, c4}

• V 6|= A iff there is a dynamic weak repair of V ∪ {A−?} by {c5, c6, c7, c8}

Proof. For the first case, consider A = ¬B, the database V and the set of active con-

straints η = {c1, c2, c3, c4}. Clearly, if V |= A then V 6|= B (1). So starting from

V ∪ {A+?}, the active constraint c1 will ask for B to be false. This will be checked by

the active constraints that are assigned to B. By (1) then, since B is indeed false in V ,

the (second) induction hypothesis will remove the variable B−? from the database and

will add the variable B−! in the database. Thus, the constraint c2 will be violated and it

is recorded that A is proved to be satisfied via the variable A+!. The active constraint c3

then removes the variable B−! in case A needs to be checked again. Finally, c4 removes

the variable A+?, thus ending the check for A. Given these observations, we have that

the procedure is ending and a dynamic weak repair of V ∪ {A+?} by η exists. On the

other hand, if a dynamic weak repair of V ∪ {A+?} by η exists then B has been proved

to be false in V , i.e., V 6|= B, in the transition from c1 to c2 and the (second) induction

hypothesis. Thus, V |= A.

For the second case, the argument is similar (using the first induction hypothesis).

2. A DYNAMIC LOGIC ACCOUNT OF ACTIVE INTEGRITY CONSTRAINTS 60

•When A = B ∧ C we set:

d1: 〈¬A+? ∨ A+! ∨ B+? ∨ C+? ∨ B+! ∨ C+! , {B+?←>}〉 ask for B to be true

d2: 〈¬A+? ∨ A+! ∨ B+? ∨ C+? ∨ ¬B+! ∨ C+! , {C+?←>}〉 ask for C to be true

d3: 〈¬A+? ∨ A+! ∨ B+? ∨ C+? ∨ ¬B+! ∨ ¬C+! , {A+!←>}〉 A is now proved true

d4: 〈¬A+? ∨ ¬A+! ∨ B+? ∨ C+? ∨ ¬B+! ∨ ¬C+! , {B+!←⊥}〉 remove the result for B

d5: 〈¬A+? ∨ ¬A+! ∨ B+? ∨ C+? ∨ B+! ∨ ¬C+! , {C+!←⊥}〉 remove the result for C

d6: 〈¬A+? ∨ ¬A+! ∨ B+? ∨ C+? ∨ B+! ∨ C+! , {A+?←⊥}〉 end the request for A

d7: 〈¬A−? ∨ A−! ∨ B−? ∨ C−? ∨ B−! ∨ C−! , {B−?←>, C−?←>}〉 ask for B or C to be false

d8: 〈¬A−? ∨ A−! ∨ B−? ∨ C−? ∨ ¬B−! ∨ C−! , {A−?←>}〉 B being false, A is proved false

d9: 〈¬A−? ∨ A−! ∨ B−? ∨ C−? ∨ B−! ∨ ¬C−! , {A−?←>}〉 C being false, A is proved false

d10:〈¬A−? ∨ ¬A−! ∨ B−? ∨ C−? ∨ ¬B−! ∨ C−! , {B−!←⊥}〉 remove the result for B

d11:〈¬A−? ∨ ¬A−! ∨ B−? ∨ C−? ∨ B−! ∨ ¬C−! , {C−!←⊥}〉 remove the result for C

d12:〈¬A−? ∨ ¬A−! ∨ B−? ∨ C−? ∨ B−! ∨ C−! , {A−?←⊥}〉 end the request for A

Lemma 2.7. Let A ∈ subf∧(G) and V ⊆ subfv(G). Furthermore, consider that the in-

duction hypothesis holds forB andC, whereA = B∧C, i.e., both of IndHyp(B,V)+ and

IndHyp(C,V)+ hold whereas at least one of IndHyp(B,V)− or IndHyp(C,V)− holds.

Then:

• V |= A iff there is a dynamic weak repair of V ∪ {A+?} by {d1, . . . , d6}

• V 6|= A iff there is a dynamic weak repair of V ∪ {A−?} by {d7, . . . , d12}

Proof. It can be checked that the procedure is similar to the one of Lemma 2.6, with the

only points of interest being that in the first case we have to check through d1 and d2 that

both B and C are satisfied by V before recording that A has been proved to be satisfied

by V via the variable A+!. In the second case, since only one of B or C is needed to be

proved false in V forA to be false in V , we distinguish these cases through the constraints

d8 and d9.

•When A = x we set:

e1: 〈¬A+? ∨ A+! ∨ ¬A , {A+!←>}〉 A is proved true

e2: 〈¬A+? ∨ ¬A+! ∨ ¬A , {A+?←⊥}〉 end the request for A

e3: 〈¬A−? ∨ A−! ∨ A , {A−!←>}〉 A is proved false

e4: 〈¬A−? ∨ ¬A−! ∨ A , {A−?←⊥}〉 end the request for A

Lemma 2.8. Let A ∈ subfv(G) and V ⊆ subfv(G). Then:

• V |= A iff there is a dynamic weak repair of V ∪ {A+?} by {e1, e2}

2. A DYNAMIC LOGIC ACCOUNT OF ACTIVE INTEGRITY CONSTRAINTS 61

• V 6|= A iff there is a dynamic weak repair of V ∪ {A−?} by {e3, e4}

Proof. For the first case, consider the database V and the set of active constraints η =

{e1, e2}. Since A ∈ subfv(G) and V ⊆ subfv(G), V |= A means that A ∈ V . Starting

from V ∪ {A+?} then, the active constraint e1 will confirm that A is in the database,

whereas through e2 the check for A will stop. Given these, we have that the procedure

is ending and a dynamic weak repair of V ∪ {A+?} by η exists. On the other hand, if a

dynamic weak repair of V ∪ {A+?} by η exists then e1 was violated and consequently

A ∈ V , which means that V |= A. Similarly for the second case, where V 6|= A means

that A /∈ V and e3 is violated by V ∪ {A−?}.

Finally, consider g = 〈G+? ∨ ¬G+!, {G+!←⊥}〉 which is used in the final step

to ensure minimality of the repair procedure, i.e., in order to ensure that only the update

action G+?←⊥ survives at the end. We then define the set of active constraints ηG to be

the following:

⋃
A∈subf∃(G)

{a1, . . . , a10}∪
⋃

A∈subf∀(G)

{b1, . . . , b10}∪
⋃

A∈subf¬(G)
{c1, . . . , c8}∪

⋃
A∈subf∧(G)

{d1, . . . , d12}∪
⋃

A∈subfv(G)
{e1, . . . , e4}∪ g

Then we have the following lemma, proposition and theorem.

Lemma 2.9. If there is a dynamic weak repair of {G+?} by ηG then there is also a

dynamic repair of {G+?} by ηG.

Proof. By the construction of ηG and the active constraint g, the set {G+?←⊥} will

always be the only dynamic weak repair of {G+?} by ηG and, since ∅ is not a weak repair

of {G+?} by ηG, it is also a PMA repair. So if a dynamic weak repair of {G+?} by ηG

exists, it will be the set {G+?←⊥} which is also a dynamic repair of {G+?} by ηG.

Proposition 2.5. Let G be a fully quantified boolean formula in prenex normal form, with

the variables in the prefix being all different and the matrix containing only the boolean

connectives ¬ and ∧. Then:

• G is true iff there is a dynamic weak repair of {G+?} by ηG

• G is true iff there is a dynamic repair of {G+?} by ηG

2. A DYNAMIC LOGIC ACCOUNT OF ACTIVE INTEGRITY CONSTRAINTS 62

Proof. The first result is immediate by the construction of ηG and Lemmas 2.4, 2.5, 2.6,

2.7 and 2.8. The second result follows from the first one and Lemma 2.9.

Theorem 2.7. The problems of existence of a dynamic weak repair and a dynamic repair

are both PSPACE-hard.

Proof. It is known that checking whether a fully quantified boolean formula is true is a

PSPACE-complete problem. The result follows from Proposition 2.5 and the fact that,

given a formula G, the cardinality of the set ηG is linear in the length of G.

2.6.2 Upper Complexity Bound

Next, in order to show that deciding the existence of dynamic weak repairs and dynamic

repairs is in PSPACE we just need to reduce the problem into the model checking problem

of DL-PA, since the latter is known to be PSPACE-complete [Balbiani et al., 2014]. The

reduction is easy and is based on the following proposition.

Proposition 2.6. Let η be a set of active integrity constraints in the language of P and let

V ⊆ P be a database.

• A dynamic weak repair of V by η exists iff V |= 〈πη〉>, where πη is the program:

while ¬
(∧

C(η)
)

do
(⋃
r∈η

πr
)

• A dynamic repair of V by η exists iff V |= 〈πη〉>, where πη is the program:

while ¬
(∧

C(η)
)

do
(⋃
r∈η

π±r
)

; Minimal(C(η))? ;PC±←⊥

Proof. In both cases, for the left to right direction consider that a dynamic weak repair

(respectively, dynamic repair) of V by η exists. By Definition 2.9 and Theorem 2.5, this

means that there exists a set of update actions U such that U is relevant w.r.t. V and

〈V ,V � U〉 ∈ ||πη||. Since V � U |= >, the result follows.

Again in both cases, for the right to left direction let V |= 〈πη〉>. This means that

there exists a V ′ such that 〈V ,V ′〉 ∈ ||πη||. It is easy to see that, if we set U = {p←> :

2. A DYNAMIC LOGIC ACCOUNT OF ACTIVE INTEGRITY CONSTRAINTS 63

p ∈ V ′ and p /∈ V } ∪ {p←⊥ : p ∈ V and p /∈ V ′} then V ′ = V � U and U is

relevant w.r.t. V . So, in other words, there exists a U such that U is relevant w.r.t. V and

〈V ,V �U〉 ∈ ||πη||. By Definition 2.9 and Theorem 2.5 then, this means that there exists

a dynamic weak repair (respectively, dynamic repair) of V by η.

The theorem for membership then follows immediately.

Theorem 2.8. The problems of existence of a dynamic weak repair and a dynamic repair

are both in PSPACE.

Proof. It is known that model checking in DL-PA is a PSPACE-complete problem. The

result follows from Proposition 2.6 and the fact that, given a set of active integrity con-

straints η, the length of the program πη is linear in the size of the set C(η).

Using Theorems 2.7 and 2.8 then, we have the following corollary.

Corollary 2.1. The problems of existence of a dynamic weak repair and a dynamic repair

are both PSPACE-complete.

2.7 History-Based Repairs

In this section we would like to discuss history-based repairs, an extension of the repairs

seen so far taking into account databases with history. What we mean by history is the

consistent set of transactions that took place from the last time the database satisfied

the integrity constraints up until its current form. So let’s say that apart from the initial

database, we are also provided with a consistent set of update actions: these are what we

refer to as history, the extra information of the route taken from an earlier point in time

(more specifically, the last time the integrity constraints were satisfied) until the current

state of affairs.

So given this extra information, how should we make use of it? A starting point

would be to make sure that the update actions which took place in order to reach the

current database will not appear again in the future. Imagine, for instance, that we are

2. A DYNAMIC LOGIC ACCOUNT OF ACTIVE INTEGRITY CONSTRAINTS 64

provided with the database V , a set of active integrity constraints η and an update action

that took place in order to reach it, p←⊥. If there exist two repairs of V by η, namely

U1 = {p←>} and U2 = {q←>}, then we would like to disregard U1 as it would repair

V by adding p and V would return to an “earlier state” (from which it was updated by

removing p) thus violating the ‘priority of the new information’ principle that was widely

considered in the update literature [Katsuno and Mendelzon, 1992]. Furthermore, we

should consider what happens in the case where, although repairs exist, there is no repair

that updates the database without returning it to an “earlier state”. Should we make use

of them and disregard the given history or not? Intuitively, the repair actions of active

integrity constraints are of the highest priority when repairing a database, whereas the

aforementioned history is based on a set of update actions which was used to repair a

previous database into the current one, but can be undone if needed. We can see this in

the previous example as well, where if U1 was the only repair of V by η then it should be

applied regardless of p←⊥ being used to reach V .

But perhaps a more concrete example is the following, based on the “an employee

cannot be in 2 departments” constraint: let P = {d1, d2}, where d1 and d2 denote depart-

ments 1 and 2 respectively, and the integrity constraint r = 〈¬d1∨¬d2, {d1←⊥, d2←⊥}〉

which says that no employee should work in both departments at the same time; if this is

the case, then they should be removed from either one, without any specific preference.

Assume now thatH = 〈{d1, d2}, {d1←>}〉 is our history-based database, where {d1, d2}

is our actual database V (saying that there is someone working on both departments) and

the set {d1←>} represents the history, i.e., that the last department which they joined was

d1. In this case, we would prefer the repairing of V by {d2←⊥}, instead of {d1←⊥},

considering the latest action of putting the specific employee recently in department 1 to

be of higher priority. This is done by repairing V by rH = 〈¬d1∨¬d2, {d2←⊥}〉 in-

stead of r and actually disregarding the “preferred” update action d1←⊥ in R(r) which

conflicts with the provided history.

With that in mind, we call H = 〈V , U〉 a history-based database when V ⊆ P is a

database and U ⊆ U a consistent set of update actions such that there is V ′ ⊆ P with

V ′ � U = V . We also define as U−1 the set comprising the opposite update actions in U :

U−1 = {p←⊥ : p←> ∈ U} ∪ {p←> : p←⊥ ∈ U}.

2. A DYNAMIC LOGIC ACCOUNT OF ACTIVE INTEGRITY CONSTRAINTS 65

According to what has been said so far, we would like U ′ to be a repair of a history-

based databaseH = 〈V , U〉 by a set of active integrity constraints η, only if U ′∩U−1 = ∅.

In order for this to happen we have to repair V by ηH instead of η, where ηH has:

rH =
〈

C(r),R(r) \ U−1
〉

, for r ∈ η

In this way we disregard update actions which have the risk of returning our current

database to a previous state and give priority to the new ones. As already mentioned,

by choosing to ignore update actions based on the history U that we have, we may risk

reducing a set R(r) to be empty for some r ∈ η, thus leading to no repairs occurring. In

this case, choosing to not take U into consideration is the only option and we return to

the repairing of V by η, instead of H by η. The following example highlights everything

that’s been said so far.

Example 2.13. Let H = 〈{d1, d2}, {d1←>}〉 and η1 = 〈¬d1∨¬d2, {d1←⊥, d2←⊥}〉.

Both U1 = {d1←⊥} and U2 = {d2←⊥} are founded, justified, dynamic and global-

dynamic repairs of V = {d1, d2} by η1. Only the second is a founded, justified, dynamic

and global-dynamic repair of H by η1. Similarly, consider η2 = 〈¬d1∨¬d2, {d1←⊥}〉.

Then U1 = {d1←⊥} is a founded, justified, dynamic and global-dynamic repair of V =

{d1, d2} by η2. There are no repairs of H by η2, however, making us reduce H to just V

and use U1 once again.

Finally, let us define:

weakRepairH(C(η), U) =
⋃
p∈A

toggle(p)
∗; (∧C(η)

)
?

(
π±r,U

)′
= ¬C(r) ? ;

⋃
p←X∈B

(
p←X; p±←>

)
and

(
π±r,U

)′′
=
⋃

p←X∈B

(
p←X; p±←>

)
where A = PC(η)\U−1 (the set of the variables that occur in C(η) and not in U−1) and

B = R(r) \ U−1.

The next theorem characterises founded, justified, dynamic and global-dynamic his-

tory-based repairs in terms of DL-PA programs.

Theorem 2.9. Let η be a set of active integrity constraints in the language of P and let

V ⊆ P be a database (so no p±, p+ and p− occurs in either of them). Let U and U ′ be

2. A DYNAMIC LOGIC ACCOUNT OF ACTIVE INTEGRITY CONSTRAINTS 66

consistent sets of update actions such that U is relevant w.r.t. V .

• U is a founded repair of H = 〈V , U ′〉 by η iff:

〈V ,V � U〉 ∈
∣∣∣∣∣∣weakRepairH(C(η), U ′); Founded(η)? ; Minimal(C(η))? ;PC±←⊥

∣∣∣∣∣∣
• U is a justified repair of H = 〈V , U ′〉 by η iff η is a set of standard active constraints

and:

〈V ,V � U〉 ∈
∣∣∣∣∣∣weakRepairH(C(η), U ′); Justified(η)?; Minimal(C(η))?; ClearAll

∣∣∣∣∣∣
• U is a dynamic repair of H = 〈V , U ′〉 by η iff:

〈V ,V � U〉 ∈
∣∣∣∣∣∣∣∣while ¬

(∧
C(η)

)
do

(⋃
r∈η

(
π±r,U ′

)′)
; Minimal

(
C(η)

)
? ;PC±←⊥

∣∣∣∣∣∣∣∣
• U is a global-dynamic repair of H = 〈V , U ′〉 by η iff:

〈V ,V � U〉 ∈
∣∣∣∣∣∣∣∣while ¬

(∧
C(η)

)
do

(⋃
r∈η

(
π±r,U ′

)′′)
; Minimal

(
C(η)

)
? ;PC±←⊥

∣∣∣∣∣∣∣∣
Proof. Note that the construction of all history-based repairs in DL-PA terms are identical

to their counterparts in the previous sections, with the difference being in the choice of

p’s and update actions p←X in the nondeterministic composition place of the programs.

By removing the set U−1 from each nondeterministic choice imposed by the programs

weakRepairH(C(η), U),
(
π±r,U

)′
and

(
π±r,U

)′′
we get exactly the active integrity constraints

rH (instead of r) needed in order to repair a history-based database by the corresponding

set of active integrity constraints ηH .

2.8 Conclusion

We have shown how several definitions of database repair via active integrity constraints

can be expressed in DL-PA, including new proposals in terms of their iterated applica-

tion. More specifically, we have introduced a new, dynamic way of handling database

repair under a set of active integrity constraints and have shown some interesting proper-

ties (including advantages over other repairs, complexity) and alternatives (history-based

2. A DYNAMIC LOGIC ACCOUNT OF ACTIVE INTEGRITY CONSTRAINTS 67

repairs), all through the use of the quite simple but expressive Dynamic Logic of Propo-

sitional Assignments DL-PA. This allows us to claim that DL-PA is a nice integrated

framework for database updates: it not only provides operators p←> of insertion and

p←⊥ of deletion and more generally sets U of such assignments that can be applied to

a database V ; it also provides a means to reason about the repair of the resulting V � U

when some element of the set of integrity constraints is violated.

In the following, the program repair denotes one of the repair programs of Theorems

2.2, 2.3, 2.4, 2.5, 2.9, as well as Definitions 2.9 and 2.10. We can witness the aforemen-

tioned treatment of DL-PA as a means of reasoning between repairs in the following two

instances:

• V ′ is a possible repair of the update of the database V by the insertion or deletion

of p if and only if the couple 〈V ,V ′〉 belongs to the interpretation of the DL-PA

programs p←>; repair or p←⊥; repair respectively.

• The set of candidate repaired databases is the interpretation of the DL-PA formula

〈repairc〉 ϕV , where ϕV is a conjunction of literals describing V syntactically.

But beyond identifying possible repaired databases, what is even more interesting is

that our programs repair also allow to solve decision problems. Some notable examples

follow:

• We may check whether it is possible at all to repair V by model checking in DL-PA

whether V |= 〈repair〉>.

• We can check whether there is a unique repair of V by model checking whether

the set of databases V ′ such that 〈V ,V ′〉 ∈ ||repair|| is a singleton. This amounts

to model check for each of the variables p occurring in the constraints whether

V |= [repair]p ∨ [repair]¬p.

• We might as well wish to check possibility or unicity of the repairs independently

of a specific database V . For instance, we can check whether η can repair any

database by checking whether the formula 〈repair〉> is DL-PA valid.

• A further interesting reasoning task is to check whether two sets of active con-

straints η1 and η2 are equivalent under a given semantics by checking whether

2. A DYNAMIC LOGIC ACCOUNT OF ACTIVE INTEGRITY CONSTRAINTS 68

||repairη1|| = ||repairη2 ||.

All of the above demonstrate the usefulness of DL-PA as a logic dealing with database

repair. The related decision problems also provide a hint of the variety of applications it

provides. Furthermore, our way of handling active integrity constraints of the form r =

〈C(r),R(r)〉 allowed us to generalise the condition C(r) from clauses to arbitrary formulas

(that could actually even be DL-PA formulas). This opens up two perspectives. First, our

definition also covers revision programs [Caroprese and Truszczynski, 2011]; we leave it

to future work to establish the exact relationship. Second, we could further generalise the

action R(r) from a set of update actions to arbitrary DL-PA programs. Dynamic repairs

would then still make sense, while it is not clear how founded and justified repairs would

have to be defined.

Last but not least, although we have argued that there are real world problems, such as

the one in the introductory Section 2.1, where dynamic repairs are preferable over founded

or justified repairs, we did see that this comes at a cost: the computational complexity of

dynamic repairs is higher. We leave it to future work to explore possible avenues of im-

proving this dynamic behavior, especially in terms of computational resources. A possible

extension to a first-order setting is also a good avenue for future research, seeing that the

nature of the procedure is independent of the propositional setting that we worked on and

that it could easily be adapted on higher level formalisms. We immediately take the first

steps and venture into the setting of Description Logics which lie between propositional

and first-order logic.

CHAPTER 3

Repairing ABoxes via Active TBoxes: a
Syntactic Approach

Contents
3.1 Introduction . 69

3.2 Integrating Active Constraints to the TBox 71

3.3 A Syntactic Way of ABox Repairing 76

3.4 Discussion and Conclusion 83

3.1 Introduction

As we have seen so far, the integrity constraints of the database literature are usually

considered to be universal conditions or rules that must hold in any situation. When a

database fails to satisfy such constraints it has to be repaired in order to restore integrity.

On a similar note, TBoxes in Description Logic are usually created by a long and careful

procedure, rendering them of the highest priority for the ABoxes to abide by. In case of

inconsistencies between an ABox and a TBox, the ABox is usually the one that should

be updated to conform with the rules of the TBox [Lembo et al., 2010, Bienvenu et al.,

2014, Bienvenu et al., 2016].

In this chapter, we integrate the idea behind active integrity constraints to the TBoxes

of Description Logic and extend the TBox axioms with preferred update actions. The

69

3. REPAIRING ABOXES VIA ACTIVE TBOXES: A SYNTACTIC APPROACH 70

resulting extended TBoxes are called active TBoxes in accordance with the nomencla-

ture of active constraints. This extension of TBox axioms is achieved by means of the

operations add(A) and remove(A), where A is an atomic concept. The intuition behind

add(A) and remove(A) is similar to the one we have seen for AICs, i.e., whenever an

inclusion axiom of the form C uD v ⊥ appears inside the TBox, for literals1 C and D,

then the TBox should also indicate the preferred way that this should be repaired when

the axiom is violated in an ABox. While the problem is easier when an assertion of the

form a : AuB has to be updated to either the assertion a : Au¬B or the assertion a : A,

difficulties start to arise when such a conjunction appears inside the scope of a quantifier,

e.g. when having to update the assertion a : ∃R.(A u B) to the either a : ∃R.(A u ¬B)

or a : ∃R.A. It is mainly for this reason that we start our investigations with a syntactic

approach, i.e., making syntactic modifications to ABox assertions until consistency with

the TBox is achieved.

As we mentioned in Section 1.2.3, in this chapter we will make use of the basic

description logic ALC. Furthermore, throughout the chapter we impose the following

conventions:

• we suppose that all ABoxes are consistent

• we suppose that all TBoxes are consistent

• a TBox contains only concept inclusions and concept definitions

The chapter will be presented as follows. In Section 3.2 we discuss the main issues of

extending TBoxes with update actions and the main differences with AICs on databases.

Section 3.2.1 is where the ideas discussed so far start to materialize with the first formal

definition of ‘active’ TBoxes as extensions of the usual TBoxes. We then continue by

taking a syntactic approach in Section 3.3, exploring ways in which we can reach a desired

ABox that is repaired according to the preferences of these active TBoxes. We conclude in

Section 3.4 with a discussion on the limitations of this syntactic way of repairing ABoxes,

thus motivating further the semantic approaches that will follow in subsequent chapters.

1A literal in the DL setting is defined similarly to the propositional, i.e., either an atomic concept or the
negation thereof.

3. REPAIRING ABOXES VIA ACTIVE TBOXES: A SYNTACTIC APPROACH 71

3.2 Integrating Active Constraints to the TBox

We have already witnessed and discussed the importance and effectiveness of AICs on

databases and how giving a designer tools to express preferences can lead to more in-

formed ways of maintaining databases. We have also argued that such tools should be

very useful for ontology engineers as well. Let’s start by giving a simple example of a

TBox in Figure 3.1, expressing the different definitions of marital status. In this TBox it

is clearly stated that someone cannot be identified as bachelor and married at the same

time. Now an ABox containing the concept Bachelor u Married among its assertions is

clearly inconsistent with respect to this TBox and has to be repaired. Dropping any of the

two would solve this, however one could argue that a person declared as both bachelor

and married should only be identified as married everywhere. Whereas one can achieve

married status from being a bachelor, a married person cannot ‘go back’ to being bachelor

but can only become divorced or widowed instead. Thus, dropping the concept Bachelor

whenever the concept Bachelor u Married appears in an ABox should be the preferred

update action. In the same vein, since by the last inclusion of Figure 3.1 everybody has to

have a marital status, the preferred update action would be to add the concept Bachelor to

an individual violating this axiom, as in any other case the person would have to declare

that s/he got married, divorced or widowed. Finally, as we can see it is clearly stated that

someone cannot be identified as divorced and widowed at the same time. However, as a

distinction between divorced and widowed cannot be made without further information,

the axiom Divorced uWidowed v ⊥ should not give any preference between the concepts

Divorced and Widowed. So, as witnessed by this example, there exist logical reasons for

extending TBoxes and equipping them with extra information on preferences as well as

investigating ways to make use of them.

A first difficulty comes in the form of the concept constructors that are employed

by most DL languages and, more specifically, value restriction and full existential quan-

tification. While AICs on propositional databases have a specific structure that makes

the addition of update actions easy and straightforward (we have already investigated this

structure in Chapter 2), it is not as straightforward to find the logical form of AICs in

the case of DLs. Having complex concept descriptions inside TBox axioms means that

3. REPAIRING ABOXES VIA ACTIVE TBOXES: A SYNTACTIC APPROACH 72

Married ≡ Person u ∃hasSpouse.Person
Divorced ≡ Person u ∃hadSpouse.Person u ¬∃hasSpouse.Person
Bachelor ≡ Person u ¬∃hadSpouse.Person u ¬∃hasSpouse.Person
Widowed ≡ Person u ∃hadSpouse.Deceased u ¬∃hasSpouse.Person
Bachelor u Married v ⊥
Divorced u Widowed v ⊥

Person v Married t Divorced t Bachelor tWidowed

Figure 3.1: Example of a TBox

‘simple’ update actions like additions or deletions of atomic concepts is not enough, since

the inconsistencies that may arise from complex concepts inside the axioms will not have

a way to be repaired. It is for this reason that the active axioms that we will define in this

and the next chapter will ultimately prove to be quite limited on the repairing routes that

they will be able to provide.

Another differentiation between the TBox axioms and the constraints on databases is

the open world semantics that the ABoxes of DL Knowledge Bases employ in contrast

to the closed world semantics of classical databases. Whereas in the latter one assumes

to have complete knowledge of the facts expressed in a database, the description of a

situation through an ABox is always incomplete, i.e., the absence of a statement does

not imply its negation. We can also witness this distinction from the models of the DL

Knowledge Bases and the fact that consistent ABoxes have multiple models which may

describe differently the various parts of the domain not expressed by the ABox. This

means that a repaired ABox with respect to a TBox is one that is consistent with the

TBox: there exists an interpretation which is a model of both. Whereas for databases a

repaired database is one which entails all the constraints, in the case of DL Knowledge

Bases there may be other interpretations which do not satisfy the KB. So instead of model

checking if a repaired database is the model of (i.e., satisfies) the integrity constraints, we

now move on to consistency checking (or satisfiability checking) of a repaired KB.

Moreover, the aforementioned differentiation due to the open world nature of DLs

gives rise to a duality in the case of removing concepts. While the update action add(A)

3. REPAIRING ABOXES VIA ACTIVE TBOXES: A SYNTACTIC APPROACH 73

‖A‖ ‖T ‖(1)

‖A‖ ‖T ‖(2)

Figure 3.2: Removing (1) vs. forgetting (2)

clearly indicates that an individual is added to the instances of the atomic concept A, the

update action remove(A) can be interpreted in two ways. The first one amounts to remov-

ing an individual from the instances of the atomic concept A and is the meaning which

we will adopt in the following chapters. The second one amounts to forgetting the status

of the atomic conceptA on an individual, which means that there exist interpretations that

include the individual in the instances of A and there exist interpretations that exclude the

individual from the instances of A. Given an ABox A then, let ‖A‖ denote the set com-

prising the models of A and let A′ be the outcome of removing an atomic concept from

an individual. The sets ‖A‖ and ‖A′‖ are clearly different when removing is interpreted

in the first way, while ‖A‖ ⊂ ‖A′‖ when removing is interpreted in the second way.

This is akin to the distinction between revision and contraction from the belief change

literature [Alchourrón et al., 1985]. As we mentioned before, achieving consistency with

a TBox T in both cases amounts to finding an interpretation satisfying both A′ and T ,

i.e., ‖A′‖ ∩ ‖T ‖ 6= ∅. Figure 3.2 shows the difference between removing and forgetting

concepts in order to achieve consistency inside a KB. In the current chapter we do not dif-

ferentiate between the two and remove(A) can be interpreted both ways. In the following

chapters though we adopt the former meaning as it behaves better semantically and the

3. REPAIRING ABOXES VIA ACTIVE TBOXES: A SYNTACTIC APPROACH 74

logics created this way come closer to the logic DL-PA we investigated in Chapter 2 (and

whose atomic programs A←⊥ are clearly interpreted in the former way).

3.2.1 The Active TBoxes

Similarly to how the active integrity constraints extend static constraints by adding update

actions to each constraint, we define ‘active’ TBoxes to contain preferred update actions

of the form add(A) and remove(A) for atomic concepts A. We start by defining what

exactly is a static constraint in this setting.

Definition 3.1. A conjunctive constraint is any inclusion of the form C1 u · · · u Cn v ⊥.

A static constraint is any inclusion that is either a conjunctive constraint or equivalent to

a conjunctive constraint.

For example, in the TBox of Figure 3.1, all three of the inclusions:

Bachelor uMarried v ⊥, Divorced uWidowed v ⊥

Person v Married t Divorced t Bachelor tWidowed

are static constraints since the first two are conjunctive constraints whereas the third is

equivalent to the conjunctive constraint:

Person u ¬Married u ¬Divorced u ¬Bachelor u ¬Widowed v ⊥

In fact, any inclusion axiom of this chapter is a static constraint. We continue with

the definition of an active constraint.

Definition 3.2. Let ρ be a static constraint. If ρ is not a conjunctive constraint, let ρu

be the conjunctive constraint that is equivalent to ρ. An active constraint η is a couple

ρ→ S, where S is a set of add(A) and remove(A) actions such that:

• if add(A) ∈ S then ¬A is a literal on the conjunction of ρ (or ρu).

• if remove(A) ∈ S then A is a literal on the conjunction of ρ (or ρu).

3. REPAIRING ABOXES VIA ACTIVE TBOXES: A SYNTACTIC APPROACH 75

For instance, for the static constraint Au∃r.C v B all the possible active constraints

extending it are the following:

η1 : A u ∃r.C v B → ∅

η2 : A u ∃r.C v B → {add(B)}

η3 : A u ∃r.C v B → {remove(A)}

η4 : A u ∃r.C v B → {add(B), remove(A)}

We use the expression body(η) to denote the static constraint ρ and the expression head(η)

to denote the set of update actions add(A) and remove(A) for atomic concepts A.

We can already witness by the above example how specific concept constructors pro-

vide no counterparts for preferred update actions if we simply adapt the idea behindAICs

to DLs and only allow additions or deletions of atomic concepts. As we can see, η2 and

η3 give a preference between one of the two atomic concepts and η4 gives no preference

to any of them. In case however one doesn’t want to change the status of these atomic

concepts then the only other solution is to not change anything through η1, as there is no

repairing path through the concept ∃r.C. So in the current state of active TBoxes, we

have to keep in mind this limitation (that will be overcome in Chapter 5).

We formalize all the above by the relation ρ η, where ρ is a static constraint

and η is an active constraint extending it as described in Definition 3.2. The next step

is to generalise this construction to TBoxes. We extend the relation and define active

TBoxes as follows.

Definition 3.3. Let T be a TBox. aT is an active TBox extending T , viz. T aT , iff for

each static constraint ρ in T there is an active constraint η in aT such that ρ η and,

vice versa, for each active constraint η in aT there is a static constraint ρ in T such that

ρ η.

In Figure 3.3 we see an example of an active TBox, based on the TBox of Figure 3.1

and the discussion about the preferred update actions in order to repair it. Finally, for any

active TBox aT we denote with static(aT) the TBox T for which T aT and say that

3. REPAIRING ABOXES VIA ACTIVE TBOXES: A SYNTACTIC APPROACH 76

Married ≡ Person u ∃hasSpouse.Person
Divorced ≡ Person u ∃hadSpouse.Person u ¬∃hasSpouse.Person
Bachelor ≡ Person u ¬∃hadSpouse.Person u ¬∃hasSpouse.Person
Widowed ≡ Person u ∃hadSpouse.Deceased u ¬∃hasSpouse.Person
Bachelor u Married v ⊥ → {remove(Bachelor)}
Divorced u Widowed v ⊥ → {remove(Divorced), remove(Widowed)}

Person vMarried t Divorced t Bachelor tWidowed→ {add(Bachelor)}

Figure 3.3: Example of an active TBox, based on the TBox of Figure 3.1

an ABox A is consistent (respectively inconsistent) with respect to aT iff A is consistent

(respectively inconsistent) with respect to static(aT).

In what follows, we present a first, syntactic approach for the difficult task of repairing

an ABox, inconsistent with respect to an active TBox, taking into account preferred update

actions, especially when the inconsistencies appear inside the scope of a quantifier.

3.3 A Syntactic Way of ABox Repairing

While updating a simple ABox (i.e., an ABox whose assertions consist only of concept

literals) is quite straightforward, the update of an ABox which has complex concepts

may not be easy (or even impossible) [Flouris et al., 2005, Flouris et al., 2009, Liu et al.,

2011]. Consider for instance the active constraint η = A u B v ⊥ → {remove(B)}

and an ABox which includes only the assertions a : ∀ r. (A u B) and r(a, b) for two

individuals a and b. We would like to repair this ABox with respect to η into the ABox

having either a : ∀ r. (A u ¬B) or a : ∀ r. A as an assertion for the individual a2. From a

semantic point of view, however, it is not clear what set of update actions would achieve

this goal, especially when the update actions are defined only on the atomic level. In this

section we investigate how we could transform an initial ABox, inconsistent with respect

2Whereas the latter seems like a better candidate for a repair (taking into account the open-world nature
of DLs we discussed in Section 3.2) we do not give a preference to any of them as long as the inconsistencies
are eliminated. Regarding minimality of change, this will be defined syntactically to be the least amount of
syntactic changes made in the ABox, once again providing no preference between the two.

3. REPAIRING ABOXES VIA ACTIVE TBOXES: A SYNTACTIC APPROACH 77

to the active TBox, to a repaired one conforming to the active constraints of the TBox.

We mainly focus on the syntactic procedure that leads to a repaired ABox and what this

resulting ABox could look like.

We start by defining a relation between two ABoxes, so that the second ABox is the

outcome of applying a small change to the first ABox. Let SA be the set that consists of

all concept symbols in the ABox A. For A ∈ SA we define the following:

• At = {A tB | B ∈ SA}

• Au = {A uB | B ∈ SA}

• A¬ = {¬A}

Furthermore, let:

• ΓA:A = At ∪ Au ∪ A¬

• ΓA = ⋃
A∈SA ΓA:A

Intuitively, ΓA denotes the set of concepts that can be reached with one step from SA

using the three boolean constructors. Next, we write A [A |C] to denote the replacement

in A of some instances of the atomic concept A with the concept C. Then we define the

following relation.

Definition 3.4. Let A and A′ be ABoxes. Then A ∼1 A′ iff:

1. there is an atomic concept A ∈ SA and a concept C ∈ ΓA:A such that A′ =

A [A |C] or A = A′ [A |C].

2. A and A′ are semantically different from one another, i.e., there exists an inter-

pretation I such that I |= A and I 6|= A′.

The relation ∼1 is clearly symmetric and irreflexive. The next step is to generalise

this definition to an n-step relation between two ABoxes.

Definition 3.5. Let A and A′ be ABoxes and n > 0. Then A ∼n A′ iff there are ABoxes

A1, . . . ,An+1 such that:

3. REPAIRING ABOXES VIA ACTIVE TBOXES: A SYNTACTIC APPROACH 78

1. A = A1,An+1 = A′ and Ai ∼1 Ai+1,∀i ∈ {1, . . . , n}.

2. A1, . . . ,An+1 are semantically different from one another, i.e., for any twoAi and

Aj there exists an interpretation I such that I |= Ai and I 6|= Aj .

3. there is no n′ < n with these two properties.

WhenA ∼n A′ we say that at least n steps are needed in order to reach the ABoxA′

from the ABoxA. Note that while we may haveA2 = A1 [A1 |C1] andA3 = A2 [A2 |C2]

and therefore A1 ∼1 A2 ∼1 A3, we do not have A1 ∼3 A3 because of the last constraint.

Finally, let us define the relation A ∼ A′ to mean that A′ can be reached from A by an

arbitrary number of steps.

Definition 3.6. Let A and A′ be ABoxes. Then A ∼ A′ iff there exists n > 0 such that

A ∼n A′.

By construction, ∼ is symmetric but it is neither reflexive (A cannot be semantically

different from A) nor transitive (A ∼ A′ and A′ ∼ A but A 6∼ A). So we have a way

to change an ABox syntactically to another one with the use of the set ΓA by applying a

finite number of times one-step changes to concept symbols on each subsequent ABox.

Furthermore, by construction the two ABoxes are always semantically different from each

other and there is always a shortest path of n > 0 steps between them.

We can now utilize this construction in our effort of repairing an ABox with respect

to an active TBox. Let A and aT be an ABox and an active TBox respectively such that

A is inconsistent with respect to aT and let RAn = {A′ | A ∼n A′} be the set of ABoxes

that can be reached from A by at least n steps. So for each n > 0 we have that the

sets RA1 ,RA2 ,RA3 , . . . are pairwise disjoint and their union is the set RA = {A′ | A ∼

A′} of ABoxes that can be reached from A by an arbitrary number of steps. The next

propositions give some important properties on the cardinality of these sets.

Proposition 3.1. Let A and aT be an ABox and an active TBox respectively. Then for

each n > 0 the setRAn is finite.

Proof. We start by noticing that since the ABox is always finite, the set SA containing its

concept symbols is also finite. As a result, for each A ∈ SA the sets At, Au and A¬ are

3. REPAIRING ABOXES VIA ACTIVE TBOXES: A SYNTACTIC APPROACH 79

also finite, since they are made up of disjunctions, conjunctions and negations between

symbols of SA. Then the set ΓA:A which is the union of the finite sets At, Au and A¬ is

also finite, for all A ∈ SA. It follows that the set ΓA of concepts that can be reached with

one step from SA is finite, since it comprises a finite union of finite sets.

The proof continues by induction. Let us look initially at the set RA1 . It comprises

the ABoxes that are semantically different and can be reached with one step from A. So

by the definition, A′ ∈ RA1 iff A′ = A [A |C] or A = A′ [A |C] for some A ∈ SA, where

C ∈ ΓA:A. But as the A ∈ SA are finite and for each A the set ΓA:A is also finite, there

is a finite number of ABoxes such that A′ = A [A |C] or A = A′ [A |C]. As a result the

set RA1 is also finite. Next, we make the induction hypothesis, i.e., we consider that the

set RAn is finite for an arbitrary n > 0. It suffices to show that the set RAn+1 is also finite.

Let us take an ABox A′ ∈ RAn and create the set RA′1 of ABoxes that are semantically

different and can be reached with one step fromA′. We already know that this set is finite.

But by hypothesis, the set of ABoxes A′ ∈ RAn is also finite and thus the union
⋃

A′∈RAn

RA′1 is

finite as well. It’s easy to see that RAn+1 ⊆
⋃

A′∈RAn

RA′1 since for each ABox A′′ which is at

least n + 1 steps away from A there is an ABox A′ which is at least n steps away from

A such that A ∼n A′ and A′ ∼1 A′′. Thus the setRAn+1 is also finite and the induction is

complete.

Proposition 3.2. LetA and aT be an ABox and an active TBox respectively. Then the set

RA is finite.

Proof. It suffices to show that RA =
m⋃
n=1
RAn for some m > 0. Since we have a fi-

nite number of concept symbols, there is only a finite number of semantically different

concepts that can be expressed by these symbols using the three boolean constructors.

Furthermore, using these concepts in combination with the role symbols of A there is a

finite number of semantically different concepts that can reach a specific role depth. But

since for all concepts the role depth never changes between the ABox A and the ABoxes

A′ ∈ RA, and also the set of individuals occurring in A is finite and doesn’t increase,

there will be a set of ABoxes RAn for which each subsequent ABox constructed by the

relation ∼1 will have a semantically equivalent ABox belonging in a set RAm for m < n.

In other words, there is anm > 0 such thatRAn = ∅ for all n > m andRA =
m⋃
n=1
RAn .

3. REPAIRING ABOXES VIA ACTIVE TBOXES: A SYNTACTIC APPROACH 80

Next we define a syntactic modification to be the update action needed in order to

reach an ABox A′ from an ABox A in one step using the set ΓA.

Definition 3.7. Let A and A′ be two ABoxes such that A ∼1 A′. The syntactic modifica-

tion from A to A′ is the singleton set:

UA
′

A =

{A 7→ C} if A′ = A [A |C]

{C 7→ A} if A = A′ [A |C]

where C ∈ ΓA:A.

Using this definition we can now define an update sequence to be the sequence of

syntactic modifications needed in order to reach an ABox A′ from an ABox A in n steps

using the set ΓA.

Definition 3.8. Let A and A′ be two ABoxes such that A ∼n A′. The update sequence

from A to A′ is the sequence:

SA
′

A =
(
UA2
A1 , U

A3
A2 , . . . , U

An
An−1 , U

An+1
An

)

where A1, . . . ,An+1 are the semantically different ABoxes of Definition 3.5.

Finally, if an ABox A can be syntactically modified to the semantically different

ABox A′ in at least n steps (i.e., if A ∼n A′) through the update sequence SA′A , we write

A � SA′A = A′.

Notice that up until now we have not made use of the ‘active’ part of the TBox and

only investigated the different ways to construct new ABoxes. The next step is to indicate

what it means for an ABox to be repaired with respect to the active TBox. We will make

use of concepts that are counterparts of those that we already presented in Chapter 2 about

active integrity constraints to show the relation between the two settings. We start by the

definitions of weak repair and PMA repair.

Definition 3.9. Let A and T be an ABox and a TBox respectively such that A is incon-

sistent with respect to T .

1. A weak repair of A achieving T is an update sequence SA
′
A such that A � SA′A is

consistent with respect to T .

3. REPAIRING ABOXES VIA ACTIVE TBOXES: A SYNTACTIC APPROACH 81

2. A PMA repair ofA achieving T is a weak repair ofA achieving T that is minimal

with respect to the number of steps needed, i.e., there is no weak repair of A

achieving T in fewer steps.

Next we define the notion of foundedness on the level of syntactic modifications and

on the level of update sequences.

Definition 3.10. Let A and aT be an ABox and an active TBox respectively such that A

is inconsistent with respect to aT . A syntactic modification UA
′
A is founded if there is an

active constraint η on aT such that:

1. A is not consistent with respect to body(η).

2. A′ is consistent with respect to body(η).

3. UA
′
A either adds or removes a concept according to the update actions in head(η).

Furthermore, an update sequence SA
′
A is founded if for every U ∈ SA′A there is an active

constraint η on aT such that U is founded.

Finally, using the above definitions, we define founded weak repairs and founded

repairs as follows.

Definition 3.11. Let A and aT be an ABox and an active TBox respectively such that A

is inconsistent with respect to aT .

1. An update sequence SA
′
A is a founded weak repair of A by aT if SA

′
A is a weak

repair of A achieving static(aT) and SA
′
A is founded.

2. An update sequence SA
′
A is a founded repair of A by aT if SA

′
A is a PMA repair of

A achieving static(aT) and SA
′
A is founded.

Summing up, let A be an ABox and aT an active TBox such that A is inconsistent

with respect to aT . A repaired ABox with respect to aT is any ABox A′ ∈ RA such

that SA′A is a founded weak repair of A by aT . A minimally repaired ABox with respect

to aT is any ABox A′ ∈ RA such that SA′A is a founded repair of A by aT . Since by

3. REPAIRING ABOXES VIA ACTIVE TBOXES: A SYNTACTIC APPROACH 82

Proposition 3.2 there is a finite number of ABoxes that we can construct step by step from

the initial ABox using the set ΓA, the sets of repaired and minimally repaired ABoxes

with respect to aT are also finite. This means that we can start from the set of ABoxes

RA1 and continue searching all the sets RAn for n > 0 until we find a minimally repaired

ABox with respect to aT .

We now return to the original example of Figures 3.1 and 3.3 and examine an ABox

(which is inconsistent with respect to this TBox) and two of its possible repairs. Let aT

be the active TBox of Figure 3.3 and consider the following ALC-ABox:

A = {John : Person uMarried u Bachelor u ∃ hasChild. (Divorced uWidowed),

Mary : Person u ¬Married u ¬Divorced u ¬Bachelor u ¬Widowed}

A minimally repaired ABox with respect to aT is the following:

A′ = {John : Person uMarried u ∃ hasChild.Divorced,

Mary : Person u ¬Married u ¬Divorced u Bachelor u ¬Widowed}

A founded repair of A by aT then is the update sequence SA′A = (U1, U2, U3) where

U1 = {Married u Bachelor 7→ Married}, U2 = {Divorced uWidowed 7→ Divorced} and

U3 = {¬Bachelor 7→ Bachelor}. Notice also that if we replace U1 by U ′1 = {Bachelor 7→

¬Bachelor} and U2 by U ′2 = {Widowed 7→ ¬Widowed} in SA′A , the new update sequence

SA
′′
A = (U ′1, U ′2, U3) is also a founded repair of A by aT , where A � SA′′A is the ABox:

A′′ = {John : Person uMarried u ¬Bachelor u ∃ hasChild. (Divorced u ¬Widowed),

Mary : Person u ¬Married u ¬Divorced u Bachelor u ¬Widowed}

The ABoxes A′ and A′′ also showcase in practice the difference between removing and

forgetting concepts that we discussed in Section 3.2. Since we defined minimality to be

relative to the number of syntactic modifications needed and not interpretation-wise, both

A′ and A′′ are considered to be minimally repaired.

3. REPAIRING ABOXES VIA ACTIVE TBOXES: A SYNTACTIC APPROACH 83

3.4 Discussion and Conclusion

In this chapter we explored and discussed the ways in which active constraints, which

originate from the database community, could be integrated into the TBoxes of Descrip-

tion Logic. Based on these ‘active’ TBoxes, we then investigated a syntactic approach of

transforming an ABox (inconsistent with an active TBox) step-by-step by syntactic mod-

ifications to a repaired one, conforming to the preferred update actions found in the active

constraints of the extended TBox.

As we discussed, applying the idea behind AICs to the DL setting via the exten-

sion of TBox axioms with preferred update actions is not as straightforward as it is for

databases. The main limitations of this chapter that we will try to tackle moving forward

are (1) the fact that a syntactic repairing method cannot address inferred inconsistencies

and (2) the fact that the preferred update actions of the active TBoxes deal only with

atomic concepts. An example of the first case is when a concept is defined in the TBox

and does not explicitly appear inside the ABox but is inferred, as is showcased in the

following example.

Example 3.1. Consider the following active TBoxes:

aT1 = {B ≡ E u F,A uB v ⊥ → {remove(B)}}

aT2 = {B v E u F → {remove(B)},

E u F v B → {remove(E)},

A uB v ⊥ → {remove(B)}}

aT3 = {B ≡ E u F,A u E u F v ⊥ → {remove(E)}, A uB v ⊥ → {remove(B)}}

and the ABoxes A1 = {α : A u E u F} and A2 = {α : A u B u E u F}. Using aT1

we would not be able to provide a founded repair for any of the two ABoxes. For A1

the source of inconsistency (the concept B) is inferred by the first definition but cannot be

removed as is. Similarly for A2. The only way to overcome this issue is by defining more

precise active TBoxes. We can witness this with aT2, which provides a founded repair for

A2, and even more with aT3, which provides a founded repair for both ABoxes.

3. REPAIRING ABOXES VIA ACTIVE TBOXES: A SYNTACTIC APPROACH 84

A semantic approach seems to behave better in general and provide solutions to prob-

lems that the syntactic one is unable to handle. This doesn’t mean though that the syntactic

investigations of this chapter are to no avail: the way to reconstruct new ABoxes through

syntactic modifications of an initial ABox will prove very useful in combination with the

subsequent semantic approaches, since the effectiveness of the latter will be mainly in

evaluating whether an ABox is repaired but not in constructing it. We will thus revisit this

chapter’s ideas in the concluding Chapter 6 together with the semantic investigations to

come.

Looking ahead, the most crucial thing will be to make the landscape of active TBoxes

and the associated repairs more clear and intuitive. The logics that we will define are in-

spired by the way DL-PA was utilised to provide new kinds of repairs in the database

literature. In this chapter we provided a first (small) step into this direction, carefully dis-

cussing the difficulties and differences of the DL setting as well as important limitations

that we have to tackle. In Chapter 4 we give an emphasis on overcoming limitation (1),

whereas Chapter 5 goes further and mainly focuses on limitation (2).

CHAPTER 4

A Semantic Approach to Repairing ABoxes: the
Logic dynALCO

Contents
4.1 Introduction . 85

4.2 Syntax and Semantics . 87

4.3 Reduction Axioms and Decidability 90

4.4 Weak Repairs and Repairs 97

4.5 Active Inclusion Axioms in ALC TBoxes 101

4.6 Discussion and Conclusion 106

4.1 Introduction

In this chapter we take a semantic approach and investigate how the various definitions

of repairs from the database literature behave in the DL setting. As with Chapter 2, we

represent update actions as atomic dynamic logic programs and show that repairs can

be represented as complex programs. The main reason for using this framework is to

account for dynamic repairing procedures that check in multiple steps the status of a

possible repair and terminate once consistency with the TBox has been achieved. As we

have seen before, this contrasts with active integrity constraint-based repairs where the

update is applied in one go and later checked if it adheres to the preferences using certain

85

4. A SEMANTIC APPROACH TO REPAIRING ABOXES: THE LOGIC dynALCO 86

criteria. The dynamic logic framework also allows us to lift the approach of [Feuillade

and Herzig, 2014] from propositional databases to DLs.

We consider that TBoxes are sets of concept inclusion axioms in the language of

ALC, without the unique name assumption. Unfortunately, there exist ALC ABoxes that

when semantically updated cannot be expressed in ALC. A simple example from [Liu

et al., 2011] is the following: consider the ABox A = {John : ∃hasChild.Happy, Mary :

HappyuClever} which we want to update by making Mary unhappy. The resulting ABox

then would have the form A′ = {John : ∃hasChild.(Happy t {Mary}), Mary :¬Happy u

Clever}. It is for that reason that our ABoxes may contain nominals. Both the TBox and

the ABox can be represented in our language by single formulas.

Before moving on let us showcase an example of an active TBox based on the in-

tuitions described in Section 1.1 and the example therein. First, consider the following

TBox T :

{Sibling v Brother t Sister,∀hasSibling.⊥ v OnlyChild}

An active TBox extending T then will be aT = {η1, η2} where:

η1 : 〈Sibling u ¬Brother u ¬Sister v ⊥, {−Sibling}〉

η2 : 〈∀hasSibling.⊥ u ¬OnlyChild v ⊥, {+OnlyChild}〉

As we already explained, through these enhanced concept inclusions we aim to be able

to propose the update actions that we prefer when repairing an ABox that is inconsistent

with T . More specifically, the active axioms of aT should dictate that an individual

who is neither a brother nor a sister of someone should drop its sibling status, whereas

an individual who has no siblings should change its status and be an only child. The

direction that we pursue in this chapter is a local one, with preferred update actions like

those showcased above being applied only to the level of the individuals, i.e., they have the

form +OnlyChild(a) and−Sibling(b) for specific individuals a and b. This local approach

to update actions comes close to the approach we have witnessed in Chapter 2 and thus

the logic we propose bears many similarities with DL-PA.

The chapter is structured as follows. Section 4.2 presents syntax and semantics of for-

mulas and programs. In Section 4.3 we prove decidability of the logic through reduction

4. A SEMANTIC APPROACH TO REPAIRING ABOXES: THE LOGIC dynALCO 87

axioms eliminating programs from formulas in a similar fashion to DL-PA. In Section 4.4

we transpose the notions of weak repairs and PMA repairs to the DL setting and use

the programs of our language to constructively represent them. Section 4.5 is the main

contribution of the chapter where we apply the idea behind active integrity constraints to

Description Logic TBoxes and explore founded and dynamic repairs in a similar manner

as in the database literature. We conclude in Section 4.6.

4.2 Syntax and Semantics

The update of an ABox is represented with the help of PDL programs. Their behavior

is identical with the programs of PDL, with formulas of the form 〈π〉ϕ expressing that

ϕ is true after some possible execution of the program π. The main difference is at the

atomic level: whereas PDL has abstract atomic programs, the atomic programs of our

language have the form ±A(a) where A(a) is an atomic assertion. This makes a big

difference: the programs of our language can be eliminated and every formula is reducible

to a static formula, i.e., a formula without programs. This is crucial in acquiring a unique

representation of the update of an ABox through a static formula. We note that the models

of our logic are different from (and quite simpler than) the Kripke models of PDL: the

familiar interpretations of Description Logic suffice.

4.2.1 Language

Let Con be a countable set of atomic concepts, R a countable set of roles and Ind a count-

able set of individual names. The language of formulas and programs is defined by the

following grammar:

ϕ ::= A | {a} | ⊥ | ϕ→ ϕ | ∃r.ϕ | Uϕ | 〈π〉ϕ | 〈π〉cϕ

π ::= +A(a) | −A(a) | π; π | π ∪ π | π∗ | ϕ?

where A ∈ Con, a ∈ Ind, and r ∈ R. Atomic programs have the form +A(a) and

−A(a). The expression ±A(a) is used when we want to talk about both. The operators

4. A SEMANTIC APPROACH TO REPAIRING ABOXES: THE LOGIC dynALCO 88

of sequential and nondeterministic composition, the Kleene star and the test are familiar

from PDL. U is the universal operator indicating that a formula is true for every individual

of an interpretation.

The logical connectives ¬, >, ∧, ∨ and ↔ as well as the universal quantifier ∀ are

abbreviated in the usual way. The expression πn abbreviates the program π; . . . ; π where

π appears n times, and π≤n abbreviates the program
(
π ∪ >?

)n
. We also define π+ to

be π; π∗. Furthermore, while ϕ do π abbreviates the program (ϕ?; π)∗;¬ϕ? and a : ϕ

abbreviates the formula U({a} → ϕ). Finally, r(a, b) abbreviates the formula U({a} →

∃r.{b}).

We use the language of the basic description logic ALC for TBoxes and that of its

extension ALCO with nominals for ABoxes. The TBoxes are composed of concept in-

clusion axioms and the ABoxes contain concept assertions a :C and role assertions r(a, b)

where C is any concept description inALCO, r is a role and a, b are individuals. We will

identify a TBox T and an ABox A, respectively, with the formulas:

∧
CvD∈T
U
(
C → D

)
and

∧
a:C∈A

(a :C) ∧
∧

r(a,b)∈A
r(a, b)

Finally, Con(π) denotes the set of all atomic concepts occurring in the program π.

Similarly, Ind(π) denotes the set of all individuals occurring in π.

4.2.2 Interpretations and their Updates

Interpretations are couples I = (∆I , ·I) where ∆I is the domain and ·I maps each atomic

concept A to a subset of ∆I , each role r to a binary relation on ∆I and each individual

name a to an element of ∆I , i.e., AI ⊆ ∆I , rI ⊆ ∆I ×∆I and aI ∈ ∆I .

An indexical update action is an expression of the form +A or −A, where A is an

atomic concept. A (non-indexical) update action is an expression of the form +A(a) or

−A(a), where A is an atomic concept and a an individual. A set of update actions U is

consistent iff it does not contain both +A(a) and −A(a) for some assertion A(a).

Definition 4.1. Let U be a consistent set of update actions. The update of the interpreta-

4. A SEMANTIC APPROACH TO REPAIRING ABOXES: THE LOGIC dynALCO 89

tion I by U , denoted by I � U , is the interpretation I ′ such that:

• ∆I′ = ∆I

• aI
′ = aI

• AI
′ =

(
AI ∪ {aI | +A(a) ∈ U}

)
\ {aI | −A(a) ∈ U}

• rI
′ = rI

Note that a consistent U can be identified with a program πU , supposing that the

update actions of U are applied in sequence (where, thanks to consistency, the order does

not matter).

4.2.3 Semantics

The semantics of a formula is w.r.t. an interpretation I: it is a set of individuals of ∆I . The

semantics of a program is a relation on interpretations. The extension of ·I to complex

formulas is defined inductively as follows:

{a}I = {aI}

⊥I = ∅(
ϕ→ ψ

)I
=
(
∆I \ ϕI

)
∪ ψI(

∃r.ϕ
)I

= {δ ∈ ∆I | there is δ′ ∈ ∆I such that (δ, δ′) ∈ rI and δ′ ∈ ϕI}

(
Uϕ

)I
=

∆I if ϕI = ∆I

∅ otherwise(
〈π〉ϕ

)I
=
⋃

(I,I′)∈‖π ‖
ϕI
′

(
〈π〉cϕ

)I
=
⋃

(I′,I)∈‖π ‖
ϕI
′

while the semantics of programs is:

(I, I ′) ∈ ||+ A(a)|| iff I ′ = I � {+A(a)}

(I, I ′) ∈ || − A(a)|| iff I ′ = I � {−A(a)}

4. A SEMANTIC APPROACH TO REPAIRING ABOXES: THE LOGIC dynALCO 90

(I, I ′) ∈ ||π1; π2|| iff there exists I ′′ such that (I, I ′′) ∈ ||π1|| and (I ′′, I ′) ∈ ||π2||

(I, I ′) ∈ ||π1 ∪ π2|| iff (I, I ′) ∈ ||π1|| ∪ ||π2||

(I, I ′) ∈ ||ϕ?|| iff I ′ = I and ϕI = ∆I

(I, I ′) ∈ ||π∗|| iff (I, I ′) ∈
⋃
k∈N0

||π||k

Note that the test program is interpreted globally. An interpretation I is a model of a

formula ϕ iff ϕI = ∆I . We say that ϕ is (globally) satisfiable iff there exists a model of

ϕ. We say that ϕ is valid iff every interpretation is a model of ϕ. We call the logic that is

built using this syntax and semantics dynALCO.

The update of an ABox A by a consistent set of update actions U is the set:

A � U = {I � U | I is a model of A}

This is a semantic definition. A�U has also at least one syntactic representation, but it is

not unique: there are many ABoxes that can describe it. What is of interest to us is that

the setA�U equals the set of interpretations satisfying 〈πU〉
cA, where πU is the program

that applies the update actions of U . In this way, as we will soon see, we will be able to

obtain a unique syntactic representation of the set A � U through the formula 〈πU〉
cA of

our logic.

4.3 Reduction Axioms and Decidability

We now show how to convert any dynALCO formula to an equivalent static formula,

i.e., a formula without programs. We first reduce complex programs to atomic programs

and then eliminate atomic programs from formulas. This is familiar e.g. from Dynamic

Epistemic Logics, see [Ditmarsch et al., 2007]. We start with the reduction axioms for

complex programs.

Proposition 4.1. The following equivalences are valid:

〈π1; π2〉ϕ↔ 〈π1〉〈π2〉ϕ

〈π1 ∪ π2〉ϕ↔ 〈π1〉ϕ ∨ 〈π2〉ϕ

4. A SEMANTIC APPROACH TO REPAIRING ABOXES: THE LOGIC dynALCO 91

〈π∗〉ϕ↔ 〈π≤2n〉ϕ

〈ψ?〉ϕ↔ ϕ ∧ Uψ

where n = card(Con(π))× card(Ind(π)).

Proof. For an equivalence ϕ ↔ ψ to be valid, it suffices to show that ϕI = ψI for any

interpretation I. For an arbitrary interpretation I then we have:

•
(
〈π1; π2〉ϕ

)I
=
⋃

(I,I′)∈‖π1;π2 ‖
ϕI
′ =

⋃
(I,I′′)∈‖π1 ‖

⋃
(I′′,I′)∈‖π2 ‖

ϕI
′ =

⋃
(I,I′′)∈‖π1 ‖

(
〈π2〉ϕ

)I′′
=
(
〈π1〉〈π2〉ϕ

)I

•
(
〈π1 ∪ π2〉ϕ

)I
=

⋃
(I,I′)∈‖π1∪π2 ‖

ϕI
′ =

⋃
(I,I′)∈‖π1 ‖∪‖π2 ‖

ϕI
′ =

⋃
(I,I′)∈‖π1 ‖

ϕI
′ ∪

⋃
(I,I′)∈‖π2 ‖

ϕI
′ =

(
〈π1〉ϕ

)I
∪

(
〈π2〉ϕ

)I
=
(
〈π1〉ϕ ∨ 〈π2〉ϕ

)I
• In dynALCO, programs can only modify the assertions (i.e., the status of atomic con-

cepts on individuals) that occur in them. This means that for any program π with

Con(π) = {A1, . . . , An}:

if (I, I ′) ∈ ||π∗|| then AI = AI
′

for A 6= Ai, i ∈ {1, . . . , n}

Furthermore, by the semantics of update actions:

if (I, I ′) ∈ ||π∗|| then AI \ AI′ ⊆ Ind(π) and AI
′ \ AI ⊆ Ind(π) for all A ∈ Con(π)

More formally, let us define π(I) = {I ′ | (I, I ′) ∈ ||π||}. Then we have that:

π∗(I) = {I ′ | AI \ AI′ ⊆ Ind(π) and AI
′ \ AI ⊆ Ind(π) for all A ∈ Con(π)}

It follows that for a given interpretation I there are at most 2card(Con(π))×card(Ind(π)) dif-

ferent interpretations I ′ such that I ′ ∈ π∗(I) or, equivalently, such that (I, I ′) ∈ ||π∗||.

This means that (I, I ′) ∈ ||π∗|| iff (I, I ′) ∈ ||π≤2n||, where n = card(Con(π)) ×

card(Ind(π)). Therefore:
(
〈π∗〉ϕ

)I
=

⋃
(I,I′)∈‖π∗ ‖

ϕI
′ =

⋃
(I,I′)∈‖π≤2n ‖

ϕI
′ =

(
〈π≤2n〉ϕ

)I
where

n = card(Con(π))× card(Ind(π))

• If ψI = ∆I :
(
〈ψ?〉ϕ

)I
=

⋃
(I,I′)∈‖ψ? ‖

ϕI
′ = ϕI and

(
ϕ ∧ Uψ

)I
= ϕI ∩

(
Uψ

)I
=

ϕI ∩∆I = ϕI

4. A SEMANTIC APPROACH TO REPAIRING ABOXES: THE LOGIC dynALCO 92

If ψI 6= ∆I :
(
〈ψ?〉ϕ

)I
=
⋃

(I,I′)∈‖ψ? ‖
ϕI
′ = ∅ and

(
ϕ∧Uψ

)I
= ϕI ∩

(
Uψ

)I
= ϕI ∩∅ = ∅

Observe that, contrarily to PDL and just as in DL-PA, the Kleene star can be elimi-

nated. The next proposition shows how to reduce atomic programs.

Proposition 4.2. The following equivalences are valid:

〈+A(a)〉B ↔

{a} ∨B if A = B

B otherwise

〈−A(a)〉B ↔

¬{a} ∧B if A = B

B otherwise

〈±A(a)〉 {b} ↔ {b}

〈±A(a)〉⊥ ↔ ⊥

〈±A(a)〉 (ϕ→ ψ)↔
(
〈±A(a)〉ϕ→ 〈±A(a)〉ψ

)
〈±A(a)〉∃r.ϕ↔ ∃r.〈±A(a)〉ϕ

〈±A(a)〉 Uϕ↔ U〈±A(a)〉ϕ

where A,B ∈ Con, r ∈ R and a, b ∈ Ind.

Proof. For an arbitrary interpretation I we have:

•
(
〈+A(a)〉A

)I
=

⋃
(I,I′)∈‖+A(a) ‖

AI
′ = AI

′
where I ′ = I � {+A(a)}. But AI′ = AI ∪ {aI} =

(
A ∨ {a}

)I
•
(
〈+A(a)〉B

)I
=
⋃

(I,I′)∈‖+A(a) ‖
BI

′ = BI
′ (

where I ′ = I � {+A(a)}
)

= BI

•
(
〈−A(a)〉A

)I
=

⋃
(I,I′)∈‖−A(a) ‖

AI
′ = AI

′
where I ′ = I � {−A(a)}. But AI′ = AI \ {aI} =

AI ∩ (∆I \ {a}I) =
(
A ∧ ¬{a}

)I
•
(
〈−A(a)〉B

)I
=
⋃

(I,I′)∈‖−A(a) ‖
BI

′ = BI
′ (

where I ′ = I � {−A(a)}
)

= BI

•
(
〈±A(a)〉 {b}

)I
=
⋃

(I,I′)∈‖±A(a) ‖
{b}I′ = {b}I′

(
where I ′ = I � {±A(a)}

)
= {b}I

4. A SEMANTIC APPROACH TO REPAIRING ABOXES: THE LOGIC dynALCO 93

•
(
〈±A(a)〉⊥

)I
=

⋃
(I,I′)∈‖±A(a) ‖

⊥I′ = ∅ = ⊥I

•
(
〈±A(a)〉(ϕ→ ψ)

)I
=
⋃

(I,I′)∈‖±A(a) ‖
(ϕ→ ψ)I′ =

⋃
(I,I′)∈‖±A(a) ‖

(
(∆I′ \ ϕI′) ∪ ψI′

)
=
⋃

(I,I′)∈‖±A(a) ‖
(∆I′ \ ϕI′) ∪⋃

(I,I′)∈‖±A(a) ‖
ψI
′
. But

⋃
(I,I′)∈‖±A(a) ‖

(∆I′ \ ϕI′) = ∆I′ \ ϕI′ where I ′ = I � {±A(a)}. Furthermore,

∆I′ = ∆I and thus ∆I′ \ ϕI′ = ∆I \ ϕI′ = ∆I \
⋃

(I,I′)∈‖±A(a) ‖
ϕI
′ = ∆I \

(
〈±A(a)〉ϕ

)I
.

This gives that
(
〈±A(a)〉(ϕ → ψ)

)I
=
(

∆I \
(
〈±A(a)〉ϕ

)I)
∪
(
〈±A(a)〉ψ

)I
=(

〈±A(a)〉ϕ→ 〈±A(a)〉ψ
)I

•
(
〈±A(a)〉∃r.ϕ

)I
=

⋃
(I,I′)∈‖±A(a) ‖

(∃r.ϕ)I′ = {δ ∈ ∆I′ | there is δ′ ∈ ∆I′ such that (δ, δ′) ∈

rI
′

and δ′ ∈ ϕI
′
, where I ′ = I � {±A(a)}}. But ∆I′=∆I and rI

′=rI and thus(
〈±A(a)〉∃r.ϕ

)I
={δ ∈ ∆I | there is δ′ ∈ ∆I such that (δ, δ′) ∈ rI and δ′ ∈

⋃
(I,I′)∈‖±A(a) ‖

ϕI
′=

(
〈±A(a)〉ϕ

)I
} =

(
∃r.〈±A(a)〉ϕ

)I

•
(
〈±A(a)〉 Uϕ

)I
=
⋃

(I,I′)∈‖±A(a) ‖
(Uϕ)I′ =

∆I′ if ϕI′ = ∆I′

∅ otherwise
, where I ′ = I � {±A(a)}.

But ∆I′ = ∆I and ϕI
′ =

(
〈±A(a)〉ϕ

)I
and thus:

(
〈±A(a)〉 Uϕ

)I
=

∆I if
(
〈±A(a)〉ϕ

)I
= ∆I

∅ otherwise
=
(
U〈±A(a)〉ϕ

)I

Finally, the reduction axioms for the converse operator follow.

Proposition 4.3. The following equivalences are valid:

〈+A(a)〉cϕ↔ (a :A) ∧
(
ϕ ∨ 〈−A(a)〉ϕ

)
〈−A(a)〉cϕ↔ (a :¬A) ∧

(
ϕ ∨ 〈+A(a)〉ϕ

)
〈π1; π2〉

c
ϕ↔ 〈π2〉

c〈π1〉
c
ϕ

〈π1 ∪ π2〉
c
ϕ↔ 〈π1〉

c
ϕ ∨ 〈π2〉

c
ϕ

〈π∗〉cϕ↔ 〈π≤2n〉cϕ

〈ψ?〉cϕ↔ 〈ψ?〉ϕ

where n = card(Con(π))× card(Ind(π)).

4. A SEMANTIC APPROACH TO REPAIRING ABOXES: THE LOGIC dynALCO 94

Proof. For an arbitrary interpretation I we have:

• If aI /∈ AI :
(
〈+A(a)〉cϕ

)I
=

⋃
(I′,I)∈‖+A(a) ‖

ϕI
′ = ∅ as there is no I ′ such that I =

I ′ � {+A(a)} and
(
(a :A) ∧

(
ϕ ∨ 〈−A(a)〉ϕ

))I
= (a :A)I ∩

(
ϕ ∨ 〈−A(a)〉ϕ

)I
=(

U({a} → A)
)I
∩
(
ϕ ∨ 〈−A(a)〉ϕ

)I
= ∅ ∩

(
ϕ ∨ 〈−A(a)〉ϕ

)I
= ∅

If aI ∈ AI :
(
〈+A(a)〉cϕ

)I
=

⋃
(I′,I)∈‖+A(a) ‖

ϕI
′ = ϕI1 ∪ ϕI2 where I1 = I and I2 =

I � {−A(a)}. Indeed, it is easy to check that (Ii, I) ∈ ‖ + A(a) ‖ only for i ∈ {1, 2}

when aI ∈ AI . Furthermore:
(
(a :A) ∧

(
ϕ ∨ 〈−A(a)〉ϕ

))I
= (a : A)I ∩

(
ϕ ∨

〈−A(a)〉ϕ
)I

=
(
U({a} → A)

)I
∩
(
ϕI ∪

⋃
(I,I′)∈‖−A(a) ‖

ϕI
′) = ∆I ∩ (ϕI ∪ ϕI′) where I ′ =

I � {−A(a)} and consequently:
(
(a :A) ∧

(
ϕ ∨ 〈−A(a)〉ϕ

))I
= ϕI1 ∪ ϕI2

•
(
〈−A(a)〉cϕ

)I
=
(
(a :¬A) ∧

(
ϕ ∨ 〈+A(a)〉ϕ

))I
similarly to the previous procedure

but reversing the arguments.

•
(
〈π1; π2〉

c
ϕ
)I

=
⋃

(I′,I)∈‖π1;π2 ‖
ϕI
′ =

⋃
(I′,I′′)∈‖π1 ‖

⋃
(I′′,I)∈‖π2 ‖

ϕI
′ =

⋃
(I′′,I)∈‖π2 ‖

⋃
(I′,I′′)∈‖π1 ‖

ϕI
′ =

⋃
(I′′,I)∈‖π2 ‖

(
〈π1〉

c
ϕ
)I′′

=
(
〈π2〉

c〈π1〉
c
ϕ
)I

•
(
〈π1 ∪ π2〉

c
ϕ
)I

=
⋃

(I′,I)∈‖π1∪π2 ‖
ϕI
′ =

⋃
(I′,I)∈‖π1 ‖∪‖π2 ‖

ϕI
′ =

⋃
(I′,I)∈‖π1 ‖

ϕI
′ ∪

⋃
(I′,I)∈‖π2 ‖

ϕI
′ =

(
〈π1〉

c
ϕ
)I
∪

(
〈π2〉

c
ϕ
)I

=
(
〈π1〉

c
ϕ ∨ 〈π2〉

c
ϕ
)I

• From the proof of Proposition 4.1 we have that (I, I ′) ∈ ||π∗|| iff (I, I ′) ∈ ||π≤2n||,

where n = card(Con(π)) × card(Ind(π)). Therefore:
(
〈π∗〉cϕ

)I
=

⋃
(I′,I)∈‖π∗ ‖

ϕI
′ =

⋃
(I′,I)∈‖π≤2n ‖

ϕI
′ =

(
〈π≤2n〉cϕ

)I
where n = card(Con(π))× card(Ind(π))

•
(
〈ψ?〉cϕ

)I
=

⋃
(I′,I)∈‖ψ? ‖

ϕI
′ =

⋃
(I,I′)∈‖ψ? ‖

ϕI
′ =

(
〈ψ?〉ϕ

)I
since (I1, I2) ∈ ‖ψ? ‖ iff

(I2, I1) ∈ ‖ψ? ‖

Using now Propositions 4.1, 4.2 and 4.3 we obtain the following theorem.

Theorem 4.1. Every formula of dynALCO is equivalent to a static formula.

4. A SEMANTIC APPROACH TO REPAIRING ABOXES: THE LOGIC dynALCO 95

Proof. Let ϕ be any arbitrary dynALCO-formula. As we mentioned at the beginning of

this section, we start by using Proposition 4.1 together with the last four equivalences of

Proposition 4.3 iteratively until all complex programs inside ϕ are eliminated and ϕ ends

up comprising only atomic programs. We then use the last four equivalences of Proposi-

tion 4.2 and the first two of Proposition 4.3 iteratively until no instance of the converse

operator exists inside ϕ and all atomic programs are pushed through the boolean connec-

tives as well as the universal/existential quantifiers and the universal operator. Finally,

through the first three equivalences of Proposition 4.2 we substitute any atomic program

on the left part of each equivalence with the equivalent formula on the right. Since all

equivalences are valid the resulting reduced formula is equivalent to ϕ and contains no

programs, i.e., ϕ is equivalent to a static formula.

Through Theorem 4.1 we can now obtain a unique syntactic representation of the set

A � U by reducing the formula 〈πU〉
cA to a static one containing no programs.

Example 4.1 ([Liu et al., 2011]). Let A = {John : ∃hasChild.Happy, Mary : Happy u

Clever} and U = {−Happy(Mary)}. Applying the reduction axioms to:

〈−Happy(Mary)〉c
(
(John :∃hasChild.Happy) ∧ (Mary :Happy ∧ Clever)

)

we obtain the static formula:

(
John :∃hasChild.(Happy ∨ {Mary})

)
∧
(

Mary :¬Happy ∧ Clever
)

which accurately represents A � U .

Last but not least, decidability of global satisfiability in dynALCO follows from

the fact that any static formula can be mapped to an ALCO(U)-concept and vice versa

and that concept satisfiability in ALCO(U) is decidable [Horrocks et al., 2006]. This

correspondence between static dynALCO-formulas and ALCO(U)-concepts is realized

through the following one-to-one and onto mapping τ (note that we use the connectives

¬ and ∨ in the place of ⊥ and→ since the former are easier to present):

• τ(A) = A

4. A SEMANTIC APPROACH TO REPAIRING ABOXES: THE LOGIC dynALCO 96

• τ({a}) = {a}

• τ(¬ϕ) = ¬τ(ϕ)

• τ(ϕ ∨ ψ) = τ(ϕ) t τ(ψ)

• τ(∃r.ϕ) = ∃r.τ(ϕ)

• τ(Uϕ) = ∀rU .τ(ϕ)

where A ∈ Con, a ∈ Ind, and r ∈ R (recall also that rU is the universal role). Thus,

(global) satisfiability checking of the static fragment of our logic can be reduced to the

satisfiability problem of ALCO(U).

Lemma 4.1. Let ϕ be a static dynALCO-formula which is mapped to the ALCO(U)-

concept C, i.e., τ(ϕ) = C. Then ϕ is (globally) satisfiable iff the concept ∀rU .C is

satisfiable.

Proof. First of all, by induction on ϕ it is easy to prove that
(
τ(ϕ)

)I
= ϕI for any

interpretation I. Since the first four cases are quite trivial we only give the details for the

last two.

• Let ϕ = ∃r.ψ and suppose the induction hypothesis holds for ψ, i.e.,
(
τ(ψ)

)I
= ψI .

Then: (
τ(ϕ)

)I
=
(
τ(∃r.ψ)

)I
=
(
∃r.τ(ψ)

)I
=

{δ ∈ ∆I | there is δ′ ∈ ∆I such that (δ, δ′) ∈ rI and δ′ ∈
(
τ(ψ)

)I
} =

{δ ∈ ∆I | there is δ′ ∈ ∆I such that (δ, δ′) ∈ rI and δ′ ∈ ψI} =(
∃r.ψ

)I
= ϕI

• Let ϕ = Uψ and suppose the induction hypothesis holds for ψ, i.e.,
(
τ(ψ)

)I
= ψI .

Then: (
τ(ϕ)

)I
=
(
τ(Uψ)

)I
=
(
∀rU .τ(ψ)

)I
=

{δ ∈ ∆I | for all δ′ ∈ ∆I , if (δ, δ′) ∈ rIU then δ′ ∈
(
τ(ψ)

)I
} =

{δ ∈ ∆I | for all δ′ ∈ ∆I , δ′ ∈ ψI} =

4. A SEMANTIC APPROACH TO REPAIRING ABOXES: THE LOGIC dynALCO 97

{δ ∈ ∆I | ψI = ∆I} =

∆I if ψI = ∆I

∅ otherwise
=
(
Uψ

)I
= ϕI

Now let ϕ be globally satisfiable. This means that there exists a model of ϕ, i.e., there is

an interpretation I such that ϕI = ∆I and subsequentlyCI = ∆I since ϕI =
(
τ(ϕ)

)I
=

CI . Similarly to before, we have that (∀rU .C)I = {δ ∈ ∆I | CI = ∆I}. But CI = ∆I

and thus (∀rU .C)I = ∆I . This gives (∀rU .C)I 6= ∅, i.e., the concept ∀rU .C is satisfiable.

On the other direction, if the concept ∀rU .C is satisfiable then there exists an interpretation

I such that (∀rU .C)I 6= ∅. This means that there exists a δ ∈ (∀rU .C)I and since

(∀rU .C)I = {δ ∈ ∆I | CI = ∆I} then CI = ∆I . From CI =
(
τ(ϕ)

)I
= ϕI it follows

that ϕI = ∆I as well, i.e., ϕ be globally satisfiable.

Using Lemma 4.1 now we obtain the following theorem.

Theorem 4.2. Global satisfiability in the logic dynALCO is decidable.

Proof. Deciding whether a dynALCO-formula ϕ is (globally) satisfiable is realized by

(1) finding a static formula ψ that is equivalent to ϕ through Theorem 4.1 and (2) deciding

whether ψ is (globally) satisfiable through Lemma 4.1. If there exists an interpretation I

such that ψI = ∆I then ϕI = ∆I as well, since ϕI = ψI for any I. Similarly if ψI 6= ∆I

for all I.

4.4 Weak Repairs and Repairs

From now on we consider a fixed satisfiable TBox T together with a fixed finite set Con of

atomic concepts and Ind of individual names. Furthermore, we consider for the rest of the

chapter that all ABoxes we work with are consistent. We proceed to define the notions of

weak repair and repair of an ABox A with respect to T , i.e., a modification of the ABox

such thatA is consistent with the concept inclusion axioms of T . We recall that an ABox

A is inconsistent with respect to T iff there is no interpretation satisfying both A and T ,

and that in dynALCO this amounts to unsatisfiability of the formula T ∧A. We start with

the definition of a weak repair.

4. A SEMANTIC APPROACH TO REPAIRING ABOXES: THE LOGIC dynALCO 98

Definition 4.2. Let T ∧A be unsatisfiable. A weak repair ofA is a consistent set of update

actions U such that T ∧ (A � U) is satisfiable.

We continue with the definition of a repair, which is based on the principle of minimal

change and Winslett’s possible models approach [Winslett, 1988, Winslett, 1990, Herzig

and Rifi, 1999].

Definition 4.3. Let T ∧A be unsatisfiable. A (PMA) repair U of A is a weak repair of A

that is minimal with respect to set inclusion, i.e., such that T ∧ (A � U ′) is unsatisfiable

for all U ′ ⊂ U .

We showcase the above definitions in the following simple example.

Example 4.2. Let T = {A v ∀r.B } andA = {a : A, b : ¬B, r(a, b)}. Clearly, T ∧A is

unsatisfiable. Any consistent set of update actions containing −A(a) or +B(b) is a weak

repair of A. Only the sets U1 = {−A(a)} and U2 = {+B(b)} are repairs of A.

Note that these definitions are based on the respective weak repairs and PMA repairs

we have come across in Chapter 2. We now repair an ABox that is inconsistent with

respect to T by means of dynALCO programs. We first define the program:

weakRepair =
(⋃
A∈Con
a∈Ind

(
+ A(a) ∪ −A(a)

))∗
; T ?

It is easy to see that, starting from an interpretation I that is a model of an ABox, any

interpretation I ′ for which (I, I ′) ∈ ||weakRepair|| is a model of a repaired ABox that

is consistent with T . Moreover, since by hypothesis T is satisfiable there is at least one

such I ′.

Next, we show how to capture (PMA) repairs. The first step is to extend the set of

atomic concepts Con by new concepts A+ and A− uniquely associated with each concept

A. They allow us to keep track of the concepts that are added or removed. We use these

then to define the following program:

toggle±(A(a)) =
(
¬(a :A+) ∧ ¬(a :A−)

)
? ;
(
(+A(a) ; +A+(a)) ∪ (−A(a) ; +A−(a))

)

4. A SEMANTIC APPROACH TO REPAIRING ABOXES: THE LOGIC dynALCO 99

which is intuitively the program +A(a) ∪ −A(a) but enhanced with update operations

that keep track of any changes. The second step is to define the program:

undo(A(a)) =
(
(a :A+) ? ;−A(a) ;−A+(a)

)
∪
(
(a :A−) ? ; +A(a) ;−A−(a)

)

which, as the name suggests, will undo any change that was imposed on an assertion.

Now, in order to redo any changes that are stored throughA+ andA− to an alternative

interpretation, we use the program:

redo(A(a)) =
(
(a :A+) ? ; +A(a)

)
∪
(
(a :A−) ? ;−A(a)

)

The last step in checking minimality is to define a program that visits all models of the

original ABox A. This will allow us to check whether we can obtain a weak repair using

less update actions. It is easy to see that this can be achieved through the program:

gotoAltInt(A) =
(⋃
A∈Con
a∈Ind

(
+ A(a) ∪ −A(a)

))∗
; A ?

Summing up, we use the above to create the formula:

Minimal(A) = ¬ 〈 gotoAltInt(A) ;
(⋃
A∈Con
a∈Ind

redo(A(a))
)∗

;
(⋃
A∈Con
a∈Ind

undo(A(a))
)+
〉 T

which is the key ingredient in checking if a repair is minimal with respect to other weak

repairs. Consequently:

repair(A) =
(⋃
A∈Con
a∈Ind

toggle±(A(a))
)∗

; T ? ; Minimal(A) ?

Note that the
(⋃
A∈Con
a∈Ind

redo(A(a))
)∗

program may not actually reapply all of the update

actions that may have been stored earlier through the toggle±(A(a)) program: it does

not need to, as reapplying only some of them is equivalent to reapplying all of them and

undoing all those that were left out.

Last but not least, let mkFalse± abbreviate the program which falsifies all the asser-

4. A SEMANTIC APPROACH TO REPAIRING ABOXES: THE LOGIC dynALCO 100

tions of the form A+(a) and A−(a) for all A ∈ Con and a ∈ Ind. The program mkFalse±

will be used in the final step to make sure that none of the new concepts that were used

for storing purposes survive in the repair.

We showcase all of the above in the following theorem.

Theorem 4.3. Let A be inconsistent with respect to T and let U be a consistent set of

update actions. Furthermore, let no atomic concept A+ or A− appear in any of them.

• U is a weak repair of A iff there exists an I such that:

(I, I � U) ∈
∣∣∣∣∣∣∣∣A ? ; weakRepair

∣∣∣∣∣∣∣∣
• U is a repair of A iff there exists an I such that:

(I, I � U) ∈
∣∣∣∣∣∣∣∣(A ∧∧

A∈Con
a∈Ind

(
¬(a :A+) ∧ ¬(a :A−)

))
? ; repair(A) ; mkFalse±

∣∣∣∣∣∣∣∣
Proof. For the first item, suppose there exists an interpretation I such that (I, I � U) ∈∣∣∣∣∣∣A ? ; weakRepair

∣∣∣∣∣∣. This means that I is a model of A, since AI = ∆I by the initial

test. By definition then, I �U is a model ofA�U , where U is the consistent set of update

actions. Furthermore, the final test of the weakRepair program implies that I � U is a

model of T . Given these we have that I � U is both a model of T and a model of A � U ,

i.e., the formula T ∧ (A � U) is satisfiable. By Definition 4.2 then U is a weak repair

of A. For the other direction, let U be a weak repair of A. By Definition 4.2 this means

that T ∧ (A � U) is satisfiable, i.e., there is an interpretation I ′ that is both a model of

T and a model of A � U . By definition again, we have that I ′ is a model of A � U iff

I ′ has the form I � U where I is a model of A. This means that there is a model I of

A such that I � U is a model of T . So there exists an I such that (I, I) ∈
∣∣∣∣∣∣A ?

∣∣∣∣∣∣ and

(I � U, I � U) ∈
∣∣∣∣∣∣ T ?

∣∣∣∣∣∣. Furthermore, it is easy to see that:

(I, I � U) ∈
∣∣∣∣∣∣∣∣ (⋃

A∈Con
a∈Ind

(
+ A(a) ∪ −A(a)

))∗ ∣∣∣∣∣∣∣∣
and thus (I, I � U) ∈

∣∣∣∣∣∣A ? ; weakRepair
∣∣∣∣∣∣.

For the second item, we can see how the construction of repair(A) via the programs

4. A SEMANTIC APPROACH TO REPAIRING ABOXES: THE LOGIC dynALCO 101

toggle±(A(a)), gotoAltInt(A), redo(A(a)) and undo(A(a)) makes sure that there is no

alternative model of A that achieves consistency with T using less update actions. The

procedure is based on the respective one for the propositional case of Chapter 2, with the

difference being that now it doesn’t suffice to just undo some update actions and check

if the ensuing interpretation is a model of T . Indeed, due to the open world semantics

of ABoxes there is no unique model of A (as was the case with databases) and we may

begin from a ‘problematic’ model of A which needs extra update actions to tackle incon-

sistencies between (possibly irrelevant) individuals of the model and axioms of the TBox.

In such a case, the update actions chosen from the toggle±(A(a)) program may indeed

be minimal with respect to the specific interpretation and just retracting them may lead to

interpretations that are not models of T , thus incorrectly identifying them as a minimal set

of update actions repairing A. To be sure we did not choose such an inappropriate inter-

pretation, we need to visit all possible models of A and check for each one that it cannot

achieve consistency with less update actions by means of the redo(A(a)) and undo(A(a))

programs. All of these are realized with the use of the new concepts of the form A+ and

A−, similarly to those of Chapter 2, ending with the mkFalse± program which removes

them from U .

Let us illustrate this by continuing Example 4.2: using the sets U1 = {−A(a)}

and U2 = {+B(b)} we can see now that they are indeed repairs of A = {a : A, b :

¬B, r(a, b)} with respect to T = {A v ∀r.B }, and that they are the only such repairs.

4.5 Active Inclusion Axioms in ALC TBoxes

In this section we once again import the idea behind active integrity constraints into DL,

but this time we also examine dynamic ways an ABox can be repaired via the preferred

update actions suggested by the active axioms. To do this we first have to enrich concept

inclusions with update actions, indicating the preferred ways to be repaired in case of

inconsistency.

We start with the definitions of static and active concept inclusions. The following

are reformulations of Definitions 3.1, 3.2 and 3.3.

4. A SEMANTIC APPROACH TO REPAIRING ABOXES: THE LOGIC dynALCO 102

Definition 4.4. A concept inclusion of the form C1 u · · · u Cn v ⊥ is called a static

concept inclusion.

Note that in ALC, any concept inclusion axiom is equivalent to a static concept in-

clusion.

Definition 4.5. Let r = C1 u · · · u Cn v ⊥ be a static concept inclusion. An active

concept inclusion is of the form 〈r, V 〉 where V is a set of indexical update actions such

that:

• if +A ∈ V then there exists Ci = ¬A.

• if −A ∈ V then there exists Ci = A.

An active TBox, denoted by aT , is a set of active concept inclusions.

For an active concept inclusion η = 〈r, V 〉 we let static(η) = r and active(η) = V .

Note that active(η) can be empty. For an active TBox aT we let static(aT) = {static(η) :

η ∈ aT } and active(aT) =
⋃

η ∈aT
active(η). We say that aT extends T iff T is equivalent

to static(aT).

Going back to the example of Section 4.1, we observe that the active TBox aT con-

forms to the above definitions. Note also that static(aT) is equivalent to T . We also recall

that we have fixed a satisfiable TBox T together with a finite set Con of atomic concepts

and Ind of individuals. From now on, we also consider a fixed active TBox aT that extends

T . In the next two subsections, we define the notions of founded and dynamic repairs of

an ABox A with respect to aT , which choose among the update actions in active(aT)

and modify the ABox such that A is consistent with the concept inclusion axioms of T .

Similarly to Chapter 2, the former are based on [Caroprese et al., 2009, Caroprese and

Truszczynski, 2011] while the latter are based on [Feuillade and Herzig, 2014].

4.5.1 Founded Weak Repairs and Founded Repairs

We start with the notion of foundedness, which is a key condition that a repair should

satisfy for its update actions to be supported by the active concept inclusions.

4. A SEMANTIC APPROACH TO REPAIRING ABOXES: THE LOGIC dynALCO 103

Definition 4.6. Let I be an interpretation. A set of update actions U is founded with

respect to aT and I if for every ±A(a) ∈ U there exists an η ∈ aT such that:

• ±A ∈ active(η)

• I � U is a model of static(η)

• I � (U \ {±A(a)}) is not a model of static(η)

Based on this, the definitions of a founded weak repair and a founded repair follow.

Definition 4.7. Let static(aT) ∧ A be unsatisfiable. A founded weak repair of A is a

consistent set of update actions U such that (1) T ∧ (A�U) is satisfiable and (2) there is

a model I ofA such that U is founded with respect to aT and I. If moreover T ∧(A�U ′)

is unsatisfiable for all U ′ ⊂ U , then U is a founded repair of A.

The following simple example showcases this definition.

Example 4.3. Consider the TBox T = {Born v Alive,> v AlivetDead}. Consider also

the following active TBox which extends T :

aT = {〈Born u ¬Alive v ⊥, {+Alive}〉, 〈¬Alive u ¬Dead v ⊥, {+Dead}〉}

Furthermore, consider the ABox A = {John : Born u ¬Alive u ¬Dead} which is incon-

sistent with T . The set {+Alive(John)} is the only founded weak repair of A. Indeed, the

second update action in {+Alive(John),+Dead(John)} cannot be founded on the second

active axiom of aT . It is also the only founded repair.

In order to find a founded weak repair we have to ensure that the foundedness condi-

tion of Definition 4.6 holds after the update actions of the toggle±(A(a)) program of the

previous section. To do this, we define the following formula:

Founded =
∧

A∈Con
a∈Ind

((
a :A+

)
∨
(
a :A−

)
→
∨
η∈aT

±A∈active(η)

〈
+ A(a) ∪ −A(a)

〉
¬static(η)

)

which does exactly that: it checks for all concepts that have been added to or removed

from an assertion that they belong to the active part of some concept inclusion and that,

without them, the static part of this same concept inclusion is violated.

4. A SEMANTIC APPROACH TO REPAIRING ABOXES: THE LOGIC dynALCO 104

Using the aforementioned, we can now define the program that searches for founded

weak repairs:

foundedWeakRepair =
(⋃
A∈Con
a∈Ind

toggle±(A(a))
)∗

; T ? ; Founded?

as well as the program that searches for founded repairs:

foundedRep(A) = foundedWeakRepair ; Minimal(A) ?

Then the following theorem completes the picture.

Theorem 4.4. Let A be inconsistent with respect to static(aT) and let U be a consistent

set of update actions. Furthermore, let no atomic concept A+ or A− appear in any of

them.

• U is a founded weak repair of A iff there exists an I such that:

(I, I�U) ∈
∣∣∣∣∣∣∣∣(A∧∧

A∈Con
a∈Ind

(
¬(a :A+)∧¬(a :A−)

))
?; foundedWeakRepair; mkFalse±

∣∣∣∣∣∣∣∣

• U is a founded repair of A iff there exists an I such that:

(I, I � U) ∈
∣∣∣∣∣∣∣∣(A ∧∧

A∈Con
a∈Ind

(
¬(a :A+) ∧ ¬(a :A−)

))
? ; foundedRep(A) ; mkFalse±

∣∣∣∣∣∣∣∣
Proof. The construction of the Founded formula is based on the respective one of Section

2.4 for propositional databases and thus the arguments for the foundedWeakRepair and

foundedRep(A) programs can be easily adapted from the proof of Theorem 2.3. The

remaining points are similar to those of Theorem 4.3.

Going back to Example 4.3 now we can witness how, taking I to be a model of

{John : Born u ¬Alive u ¬Dead}, the set {+Alive(John)} satisfies both of the conditions

of Theorem 4.4. On the other hand, the set {+Alive(John),+Dead(John)} doesn’t satisfy

them for any interpretation I.

4. A SEMANTIC APPROACH TO REPAIRING ABOXES: THE LOGIC dynALCO 105

4.5.2 Dynamic Weak Repairs and Dynamic Repairs

We now investigate dynamic repairs which we have met before in Chapter 2 and which

exploit even better the programs and the setting of Dynamic Logic in order to provide a

different view of repairs. We begin with some definitions.

For every active concept inclusion η ∈ aT and individual a, the programs πaη and ±πaη

are defined as follows:

πaη = ¬
(
a :static(η)

)
? ;
⋃

±A∈active(η)
±A(a)

+πaη =
⋃

+A∈active(η)

(
+ A(a) ; +A+(a)

)
−πaη =

⋃
−A∈active(η)

(
− A(a) ; +A−(a)

)
±πaη = ¬

(
a :static(η)

)
? ;
(

+πaη ∪ −πaη
)

Intuitively, the program πaη will check for each active concept inclusion η and individual

a whether the static concept inclusion in η is violated at a, and if so, will try to repair it

using only update actions that are specified by η. The program ±πaη furthermore stores the

concepts that have been changed.

Using the program πaη we can now formally define dynamic weak repairs and dynamic

repairs.

Definition 4.8. Let static(aT) ∧ A be unsatisfiable. A consistent set of update actions U

is a dynamic weak repair of A iff there exists an I such that:

(I, I � U) ∈
∣∣∣∣∣∣∣∣A ? ; while

(
¬T

)
do

(⋃
a∈Ind
η∈aT

πaη

) ∣∣∣∣∣∣∣∣
If T ∧ (A � U ′) is unsatisfiable for all U ′ ⊂ U , then U is a dynamic repair of A.

It is worth noting that, just as in the propositional case, dynamic weak repairs are not

necessarily founded. The next example showcases this.

Example 4.4 (Example 4.3, ctd.). Consider again the active TBox:

aT = {〈Born u ¬Alive v ⊥, {+Alive}〉, 〈¬Alive u ¬Dead v ⊥, {+Dead}〉}

4. A SEMANTIC APPROACH TO REPAIRING ABOXES: THE LOGIC dynALCO 106

and the ABox A = {John : Born u ¬Alive u ¬Dead}, whose only founded weak re-

pair was {+Alive(John)}. There are two dynamic weak repairs of A, namely U1 =

{+Alive(John)} and U2 = {+Alive(John),+Dead(John)}. Only U1 is a dynamic repair.

We now use the program ±πaη together with the formula Minimal(A) to show how

a dynamic repair can be extracted using the familiar procedure of the previous theorem.

Defining:

dynamicRep(A) = while
(
¬T

)
do

(⋃
a∈Ind
η∈aT

±πaη

)
; Minimal(A) ?

we have the following theorem.

Theorem 4.5. Let A be inconsistent with respect to static(aT) and let U be a consistent

set of update actions. Furthermore, let no atomic concept A+ or A− appear in any of

them. U is a dynamic repair of A iff there exists an I such that:

(I, I � U) ∈
∣∣∣∣∣∣∣∣(A ∧∧

A∈Con
a∈Ind

(
¬(a :A+) ∧ ¬(a :A−)

))
? ; dynamicRep(A) ; mkFalse±

∣∣∣∣∣∣∣∣
Proof. Once again the proof is trivial and based on the definitions, since the only addi-

tional thing we do is keep track of the update actions that take place in the course of the

while program in order to check for minimality with the familiar procedure of the previ-

ous theorems. As always, we end the procedure by removing the stored concepts.

Going back to Example 4.4 this time we can witness how, taking I to be a model of

{John : Born u ¬Alive u ¬Dead}, only the set {+Alive(John)} satisfies the condition of

Theorem 4.5 whereas the set {+Alive(John),+Dead(John)} does not for any I.

4.6 Discussion and Conclusion

We have seen how different repairing methods based on preferred update actions of the

database literature translate into Description Logics. We have defined a repair to be a

set of update actions U which, when applied to an ABox, produces a repaired ABox

4. A SEMANTIC APPROACH TO REPAIRING ABOXES: THE LOGIC dynALCO 107

that follows the active axioms of—and is consistent with—the active TBox. The way to

find such a U is the following: starting with a model I of an ABox A, we can extract a

founded or dynamic repair U ofA by finding an I ′ such that (I, I ′) ∈ ||foundedRep(A)||

or (I, I ′) ∈ ||dynamicRep(A)||, respectively, and setting U = {+A(a) : (a : A+)I′ =

∆I′} ∪ {−A(a) : (a : A−)I′ = ∆I′}. The dynamic logic framework on which we rely

is useful for not only representing the various repairs but also for constructing them.

Constructing the repaired ABox then would amount to: either extract A � U by reducing

the formula 〈πU〉
cA as in Example 4.1 or immediately apply the update U in the initial

ALCO ABox and characterize A � U via a semantic update of A by U .

The foundedWeakRepair program is defined in terms of a simple ‘generate and test’

schema. We just observe here that one might however further exploit dynALCO by re-

placing foundedWeakRepair by a program that is the dynALCO counterpart of some al-

gorithm computing founded weak repairs.

A slightly different route, more in line with Description Logic, would be to define

a repair to be any repaired ABox A′ and, given an ABox A, evaluate if A′ is indeed a

repair of A by checking if the formula A ∧ 〈repair〉A′ is satisfiable, where repair is any

of the repair programs defined in the previous sections and used in Theorems 4.3, 4.4 and

4.5. Of course we then would have to guess such a repair A′, but the satisfiability check

could also be used for assertions instead of whole ABoxes, in order to check if something

more specific follows from repairing the initial ABox under the active axioms of an active

TBox.

Deciding the existence of founded and dynamic repairs also amounts to satisfiability

checking. More specifically, taking repair to be once again any of the repair programs,

we can decide the existence of a repair of A by checking whether the formula 〈repair〉cA

is satisfiable, where A is the initial ABox. Indeed, any interpretation that satisfies the

formula 〈repair〉cA will be a model of at least one repaired ABox.

A limitation of our approach comes from the boolean nature of the active concept

inclusions and the fact that complex concepts cannot be paired with a preferred update

action in the active part of a concept inclusion. For instance, it is easy to see that, accord-

ing to Definition 4.5, the TBox T = {∃hasFather.Female v ⊥} can be only extended to

4. A SEMANTIC APPROACH TO REPAIRING ABOXES: THE LOGIC dynALCO 108

the active TBox aT = { 〈∃hasFather.Female v ⊥, ∅〉 }. Remember that we talked about

this limitation at the end of Chapter 3. At first sight, going through roles to apply the

atomic programs or add/remove roles between individuals seems to make the logic unde-

cidable, mainly because of the interplay between these more powerful programs and the

Kleene star. Nevertheless, we pursue this direction through a star-free approach in the

next chapter.

Summing up, we have taken our first semantic approach to repairing ABoxes with

regard to active TBoxes, the latter being an extension of regular TBoxes with update

actions in a similar fashion to Chapter 3. To that end we have exploited a dynamic logic

framework on which various repairing procedures are introduced and discussed, based

on their propositional counterparts of Chapter 2. In the following we investigate a more

elaborate logic that builds upon the results achieved in this chapter.

CHAPTER 5

Repairing ABoxes Semantically: the more
Elaborate dynALCIO

Contents
5.1 Introduction . 109

5.2 Syntax and Semantics . 111

5.3 Reduction and Mathematical Properties 115

5.4 Standard Repairs . 121

5.5 Active Inclusion Axioms in ALCI TBoxes 127

5.6 Dynamic Repairs . 128

5.7 Discussion and Conclusion 132

5.1 Introduction

The semantic approach we take in this chapter is based again on Dynamic Logic, but

this time we show how repaired ABoxes (which constitute the repairs from now on) can

be assessed by complex programs. Since we want to be as general as possible, we once

again consider that TBoxes are composed of concept inclusion axioms but now we work

with the language of ALCI (without the unique name assumption). As we noted in the

introduction of Chapter 4, a first difficulty is that after updating an ALCI ABox the

resulting repair may not be expressible in ALCI anymore (the same simple example

109

5. REPAIRING ABOXES SEMANTICALLY: THE MORE ELABORATE dynALCIO 110

from [Liu et al., 2011] applies here as well). Consequently, there may exist repairs that

we cannot express in order to check if they result from the preferences specified by an

active TBox. For this reason the ABoxes we will be working with will also incorporate

nominals. Similarly to the previous chapter, both the TBox and the ABox are represented

in our language by single formulas.

We continue with the presentation style of the previous chapters and give a glimpse

of what we are able to achieve in this one. More specifically, we are able to construct

exactly the active TBoxes of Section 1.1 and have their intended meaning as discussed.

We recall that the starting TBox T was the following:

{Father v Male u Parent,OnlyChild v ∀hasSibling.⊥}

The active TBoxes aT1 = {η1, η2, η3} and aT2 = {η4, η5} then which we want to extend

T have the following form:

η1 : +Male if ¬ (Father v Male u Parent)

η2 : +Parent if ¬ (Father v Male u Parent)

η3 : −OnlyChild if ¬ (OnlyChild v ∀hasSibling.⊥)

η4 : −Father if ¬ (Father v Male u Parent)

η5 : −hasSibling.> if ¬ (OnlyChild v ∀hasSibling.⊥)

with the preferred update actions on the left part of each active axiom having the respec-

tive meaning. This structure for active axioms also enables us to transform them directly

into atomic programs. Moreover, contrarily to the first semantic approach that we investi-

gated in the previous chapter, the preferred update actions this time can be applied on any

subset of the domain rather than to specific individuals. More precisely, each of them is

applied to the subset of the domain containing all individuals which violate its respective

axiom.

The chapter is structured as follows. In Section 5.2 we present syntax and semantics

of the formulas and programs. In Section 5.3 we show decidability of the logic with the

same procedure of reducing it to the fragment which contains no programs. In Section 5.4

we define the notion of standard repairs which are not based on preferred update actions

5. REPAIRING ABOXES SEMANTICALLY: THE MORE ELABORATE dynALCIO 111

but merely on repairing assertions based on the axioms that they violate. Section 5.5

comprises the definition of this chapter’s active TBoxes and Section 5.6 explores dynamic

repairs in the current setting. Finally, we conclude in Section 5.7 with a discussion around

the presented approach.

5.2 Syntax and Semantics

We recall that a knowledge base KB = (T ,A) consists of a TBox T and an ABoxA. The

ABox is constructed from a finite set of concept assertions a : C and role assertions r(a, b)

where C is a complex concept of the DL language, r is a role and a, b are individuals.

Similarly, the TBox is constructed from a finite set of axioms whose form again depends

on the DL at hand. In this chapter we use the language of the description logic ALCI for

TBoxes and its extensionALCIO with nominals for ABoxes. The TBoxes are composed

of concept inclusion axioms and the ABoxes contain (complex) concept assertions a : C

and role assertions r(a, b) and rc(a, b), where C is any concept description in ALCIO, r

any role and a, b individuals.

As for the dynamic logic framework, it has PDL-style formulas of the form 〈π〉ϕ

expressing that ϕ is true after some possible execution of the program π. The main differ-

ences with PDL are the absence of the Kleene star and the atomic level of the programs:

whereas PDL has abstract atomic programs, the atomic programs of our language have the

form ‘λ if ϕ’ where λ is a program applied on the individuals that satisfy the formula ϕ.

Moreover, the programs of our language can be once again eliminated and every formula

is reducible to a static formula, i.e., a formula without programs. Last but not least, the

models of our logic are identical with the models of Chapter 4, i.e., interpretations of the

underlying Description Logic.

5.2.1 Language

Let Con be a countable set of atomic concepts, R a countable set of roles and Ind a count-

able set of individual names. The language of formulas and programs is defined by the

5. REPAIRING ABOXES SEMANTICALLY: THE MORE ELABORATE dynALCIO 112

following grammar:

ϕ ::= A | {a} | ⊥ | ϕ→ ϕ | ∃r.ϕ | ∃rc.ϕ | Uϕ | 〈γ〉ϕ

λ ::= +A | −A | −r.ϕ | −rc.ϕ | ∀r.λ | ∀rc.λ

γ ::= λ if ϕ | γ; γ | γ ∪ γ | ϕ?

where A ∈ Con, a ∈ Ind and r ∈ R. The logical connectives ¬, >, ∧, ∨ and↔ as well as

the universal quantifier ∀ are abbreviated in the usual way.

The first level is used to build formulas ϕ which represent TBoxes and ABoxes. For

instance, the formula:

ϕ = U
(
(A ∧ ∃rc.(A ∨B))→ ¬A ∧ ∀r.⊥

)
∧ UA ∧ U ∀r.∃r.B

represents the TBox:

T = {A u ∃rc.(A tB) v ¬A u ∀r.⊥,> v A,> v ∀r.∃r.B}

and vice versa. Similarly, the formula:

ψ = U
(
{a} → (A ∨ ∀r.B)

)
∧ U

(
{b} → ∃rc.>

)

represents the ABoxA = {a : At∀r.B, b : ∃rc.>} and vice versa. So the formula ϕ∧ψ

represents the KB (T ,A) and vice versa. We recall that U is the universal operator that

makes a formula true in every individual of an interpretation.

In the second level are the programs that are used on individuals. For this reason we

call the λ-programs local. More specifically, the programs ±A add or remove the atomic

conceptA from an individual and the programs−r.ϕ and−rc.ϕ are used to remove roles:

when applied to an individual a they remove all r(a, b) (respectively rc(a, b)) such that

b has property ϕ. We have already seen this in the example of Section 5.1, in the form

of the program −hasSibling.>. Although ϕ can represent entire KBs or even incorporate

programs, in practice when we use the programs −r.ϕ and −rc.ϕ the formula ϕ will

be the representation of a (possibly complex) concept. Furthermore, the programs ∀r.λ

and ∀rc.λ are used for going through roles in order to apply a local program λ, i.e., for

5. REPAIRING ABOXES SEMANTICALLY: THE MORE ELABORATE dynALCIO 113

an individual a they apply λ to all individuals b such that r(a, b) (respectively rc(a, b)).

A more complex example is ∀r1.−r2.(B ∧ ∃r3.A) which when applied to an individual

a is the program that removes all relations r2(b, c) for each b such that r1(a, b) where

c satisfies B u ∃r3.A. Last but not least, the reader may have noticed that there is an

asymmetry between the local programs concerning (1) addition of atomic concepts but

not roles and (2) application of local programs through universal quantification but not

through existential quantification. This is due to some technical limitations that the latter

cases would have as well as the existence of scenarios where either the addition of roles

or the addition of concepts to only one individual through a role prove to be unintuitive.

We will discuss more on this distinction later in the concluding section.

In the third level are the programs that are used on all individuals. For this reason we

call the γ-programs global. The atomic programs have the form λ if ϕ, whose meaning

is: apply the local program λ to all individuals that have property ϕ. The operators of

sequential and nondeterministic composition and the test are the familiar operators of

PDL.

We again use some abbreviations here that we have already seen before: we use the

expression γn as an abbreviation of the program γ; . . . ; γ where γ appears n times and the

expression γ≤n as an abbreviation of the program
(
γ∪>?

)n
. Furthermore, the expression

while ϕ do≤nγ abbreviates the program (ϕ?; γ)≤n;¬ϕ? and a : ϕ abbreviates the formula

U({a} → ϕ). Finally, r(a, b) abbreviates the formula U({a} → ∃r.{b}) and rc(a, b)

abbreviates the formula U({a} → ∃rc.{b}).

Then we identify an ALCI TBox T and an ALCIO ABox A, respectively, with the

following formulas:

∧
CvD∈T
U
(
C → D

)
and

∧
a:C∈A

(a : C) ∧
∧

r(a,b)∈A
r(a, b) ∧

∧
rc(a,b)∈A

rc(a, b)

Finally, we denote by Ind(A), Con(A) and Role(A) the sets of all individuals, atomic

concepts and roles, respectively, that occur in the ABox A.

5. REPAIRING ABOXES SEMANTICALLY: THE MORE ELABORATE dynALCIO 114

5.2.2 Semantics

We recall that an interpretation is a couple I = (∆I , ·I) where ∆I is the domain and ·I

is the interpretation function that maps each atomic concept A to a subset of the domain,

each role r to a binary relation on the domain and each individual a to an element of the

domain, i.e., AI ⊆ ∆I , rI ⊆ ∆I ×∆I and aI ∈ ∆I . The extension of ·I to inverse roles

and complex formulas is defined inductively as follows:

(
rc
)I

= {(b, a) ∈ ∆I ×∆I | (a, b) ∈ rI}

{a}I = {aI}

⊥I = ∅(
ϕ→ ψ

)I
=
(
∆I \ ϕI

)
∪ ψI(

∃r.ϕ
)I

= {a ∈ ∆I | there is b ∈ ∆I such that (a, b) ∈ rI and b ∈ ϕI}(
∃rc.ϕ

)I
= {a ∈ ∆I | there is b ∈ ∆I such that (a, b) ∈

(
rc
)I

and b ∈ ϕI}

(
Uϕ

)I
=

∆I if ϕI = ∆I

∅ otherwise(
〈γ〉ϕ

)I
=
⋃

(I,I′)∈‖ γ ‖
ϕI
′

while the semantics of global programs is:

(I, I ′) ∈ ‖±A if ϕ ‖ iff ∆I′ = ∆I , aI′ = aI , rI
′ = rI , BI

′ = BI for B 6= A and:

AI
′ =

A
I ∪ ϕI if ± A is + A

AI \ ϕI if ± A is − A

(I, I ′) ∈ ‖−r.ϕ1 if ϕ2 ‖ iff ∆I′ = ∆I , aI′ = aI , AI
′ = AI , RI

′ = RI for R 6= r and:

rI
′ = rI \ {(a, b) | a ∈ ϕI2 , b ∈ ϕI1}

(I, I ′) ∈ ‖−rc.ϕ1 if ϕ2 ‖ iff (I, I ′) ∈ ‖ − r.ϕ2 if ϕ1 ‖

(I, I ′) ∈ ‖∀r.λ if ϕ ‖ iff (I, I ′) ∈ ‖λ if ∃rc.ϕ ‖

(I, I ′) ∈ ‖∀rc.λ if ϕ ‖ iff (I, I ′) ∈ ‖λ if ∃r.ϕ ‖

(I, I ′) ∈ ‖ γ1; γ2 ‖ iff there exists I ′′ such that (I, I ′′)∈‖ γ1 ‖ and (I ′′, I ′)∈‖ γ2 ‖

(I, I ′) ∈ ‖ γ1 ∪ γ2 ‖ iff (I, I ′) ∈ ‖ γ1 ‖ ∪ ‖ γ2 ‖

(I, I ′) ∈ ‖ϕ? ‖ iff I ′ = I and ϕI = ∆I

5. REPAIRING ABOXES SEMANTICALLY: THE MORE ELABORATE dynALCIO 115

Remember that the test program is interpreted globally. Furthermore, the semantics

for formulas and programs follows the intuition we have given for them in the previous

subsection. For example, the following formula:

〈(
∀r.−B if ¬A ∧B

)
;
(
−r.A if ¬A ∧B

)〉 (
a : (¬A ∧ ∀r.¬B)

)

is true in an interpretation I if the assertion a : ¬A u ∀r.¬B is true in the interpretation

I ′, where I ′ is the interpretation I after applying first ∀r.−B and second −r.A to all

individuals of I that satisfy the concept ¬A uB.

Lastly, let ϕ be a formula. We say that ϕ is (globally) satisfiable iff there exists

an interpretation I such that ϕI = ∆I . We say that ϕ is valid iff ϕI = ∆I for every

interpretation I. Paralleling the previous chapter, we call the logic that is built using

this syntax and semantics dynALCIO since it is an extension of the logic ALCIO with

dynamic logic elements.

5.3 Reduction and Mathematical Properties

This time we convert the formulas of dynALCIO that contain programs to equivalent

static formulas which contain no programs. Exactly as in Section 4.3, we achieve this

reduction by first reducing complex programs to atomic programs and second by elim-

inating an atomic program which is inside a formula by finding an equivalent formula

without it. We start with the reduction axioms for complex programs.

Proposition 5.1. The following equivalences are valid:

〈π1; π2〉ϕ↔ 〈π1〉〈π2〉ϕ

〈π1 ∪ π2〉ϕ↔ 〈π1〉ϕ ∨ 〈π2〉ϕ

〈ψ?〉ϕ↔ ϕ ∧ Uψ

Proof. The proof for all three equivalences is identical to the respective cases on the proof

of Proposition 4.1.

5. REPAIRING ABOXES SEMANTICALLY: THE MORE ELABORATE dynALCIO 116

The next three proportions show how to reduce the atomic programs.

Proposition 5.2. The following equivalences are valid:

〈∀r.λ if ϕ〉ψ ↔ 〈λ if ∃rc.ϕ〉ψ

〈∀rc.λ if ϕ〉ψ ↔ 〈λ if ∃r.ϕ〉ψ

where r ∈ R.

Proof. For an arbitrary interpretation I we have:

•
(
〈∀r.λ if ϕ〉ψ

)I
=

⋃
(I,I′)∈‖∀r.λ if ϕ ‖

ψI
′ =

⋃
(I,I′)∈‖λ if ∃rc.ϕ ‖

ψI
′ =

(
〈λ if ∃rc.ϕ〉ψ

)I

•
(
〈∀rc.λ if ϕ〉ψ

)I
=

⋃
(I,I′)∈‖∀rc.λ if ϕ ‖

ψI
′ =

⋃
(I,I′)∈‖λ if ∃r.ϕ ‖

ψI
′ =

(
〈λ if ∃r.ϕ〉ψ

)I

Proposition 5.3. The following equivalences are valid:

〈λ if ϕ〉 {a} ↔ {a}

〈λ if ϕ〉⊥ ↔ ⊥

〈λ if ϕ〉(ψ1→ψ2)↔
(
〈λ if ϕ〉ψ1 → 〈λ if ϕ〉ψ2

)

〈λ if ϕ〉∃r.ψ ↔

(
¬ϕ ∧ ∃r.〈λ if ϕ〉ψ

)
∨
(
ϕ ∧ ∃r.(¬ϕ′ ∧ 〈λ if ϕ〉ψ)

)
if λ=−r.ϕ′

〈−r.ϕ if ϕ′〉∃r.ψ if λ=−rc.ϕ′

∃r.〈λ if ϕ〉 ψ otherwise

〈λ if ϕ〉∃rc.ψ ↔

(
¬ϕ′∧∃rc.〈λ if ϕ〉ψ

)
∨
(
ϕ′∧∃rc.(¬ϕ∧〈λ if ϕ〉ψ)

)
if λ=−r.ϕ′

〈−r.ϕ if ϕ′〉∃rc.ψ if λ=−rc.ϕ′

∃rc.〈λ if ϕ〉 ψ otherwise

〈λ if ϕ〉Uψ ↔ U〈λ if ϕ〉ψ

where a ∈ Ind, r ∈ R and λ has one of the following forms: +A, −A, −r.ϕ, −rc.ϕ.

Proof. The first three equivalences as well as the last one are proved similarly to the re-

spective cases of Proposition 4.2. Regarding the remaining two, suppose I is an arbitrary

interpretation. Then we have that:

5. REPAIRING ABOXES SEMANTICALLY: THE MORE ELABORATE dynALCIO 117

•
(
〈−r.ϕ′ if ϕ〉∃r.ψ

)I
=

⋃
(I,I′)∈‖−r.ϕ′ if ϕ ‖

(∃r.ψ)I′ = (∃r.ψ)I′ for the unique interpretation I ′ such

that (I, I ′) ∈ ‖ − r.ϕ′ if ϕ ‖. By the definitions then (∃r.ψ)I′ =

{a ∈ ∆I′ | there is b ∈ ∆I′ such that (a, b) ∈ rI′ and b ∈ ψI′} =

{a ∈ ∆I | there is b ∈ ∆I such that (a, b) ∈ rI \ {(c, d) | c ∈ ϕI , d ∈ ϕ′I}

and b ∈
⋃

(I,I′)∈‖−r.ϕ′ if ϕ ‖
ψI
′} =

{a ∈ ∆I \ ϕI | there is b ∈ ∆I such that (a, b) ∈ rI and b ∈
(
〈−r.ϕ′ if ϕ〉ψ

)I
}∪

{a ∈ ϕI | there is b ∈ ∆I such that (a, b) ∈ rI and b /∈ ϕ′I

and b ∈
(
〈−r.ϕ′ if ϕ〉ψ

)I
} =((

∆I \ ϕI
)
∩
(
∃r.〈−r.ϕ′ if ϕ〉ψ

)I)
∪(

ϕI ∩ {a ∈ ∆I | there is b ∈ ∆I such that (a, b) ∈ rI

and b ∈
(
∆I \ ϕ′I

)
∩
(
〈−r.ϕ′ if ϕ〉ψ

)I
}
)

=((
¬ϕ
)I
∩
(
∃r.〈−r.ϕ′ if ϕ〉ψ

)I)
∪
(
ϕI ∩

(
∃r.(¬ϕ′ ∧ 〈−r.ϕ′ if ϕ〉ψ)

)I)
=((

¬ϕ∧∃r.〈−r.ϕ′ if ϕ〉ψ
)
∨
(
ϕ ∧ ∃r.(¬ϕ′ ∧ 〈−r.ϕ′ if ϕ〉ψ)

))I

•
(
〈−rc.ϕ′ if ϕ〉∃r.ψ

)I
=

⋃
(I,I′)∈‖−rc.ϕ′ if ϕ ‖

(∃r.ψ)I′ =
⋃

(I,I′)∈‖−r.ϕ if ϕ′ ‖
(∃r.ψ)I′ =

(
〈−r.ϕ if ϕ′〉∃r.ψ

)I
• Otherwise, λ has one of the following forms: +A, −A, −R.ϕ, −Rc.ϕ where R 6= r.

It is easy then to see that
(
〈λ if ϕ〉∃r.ψ

)I
=
(
∃r.〈λ if ϕ〉 ψ

)I
based on the definitions.

• Similarly for 〈λ if ϕ〉∃rc.ψ

Proposition 5.4. The following equivalences are valid:

〈+A if ϕ〉B ↔

A ∨ ϕ if A = B

B otherwise

〈−A if ϕ〉B ↔

A ∧ ¬ϕ if A = B

B otherwise

〈−r.ϕ1 if ϕ2〉A↔ A

〈−rc.ϕ1 if ϕ2〉A↔ A

5. REPAIRING ABOXES SEMANTICALLY: THE MORE ELABORATE dynALCIO 118

where A,B ∈ Con and r ∈ R.

Proof. The first two equivalences are once again similar to those of Proposition 4.2. For

the other two, let I be an arbitrary interpretation. We have:

•
(
〈−r.ϕ1 if ϕ2〉A

)I
=

⋃
(I,I′)∈‖−r.ϕ1 if ϕ2 ‖

AI
′ = AI

′
for the unique interpretation I ′ such that

(I, I ′) ∈ ‖ − r.ϕ1 if ϕ2 ‖. By definition then AI′ = AI

•
(
〈−rc.ϕ1 if ϕ2〉A

)I
=

⋃
(I,I′)∈‖−r.ϕ2 if ϕ1 ‖

AI
′ = AI

′
for the unique interpretation I ′ such that

(I, I ′) ∈ ‖ − r.ϕ2 if ϕ1 ‖. By definition again AI′ = AI

The next example showcases such a reduction using many of these reduction axioms.

Example 5.1. Consider the atomic program ∀r.−A if B and the assertion a : ¬A u ¬B

which is represented by the formula U
(
{a} → (¬A ∧ ¬B)

)
. We show how to reduce the

formula ϕ = 〈∀r.−A if B〉 U
(
{a} → (¬A∧¬B)

)
to a static one by means of the equiva-

lences of Propositions 5.2, 5.3 and 5.4. First, ϕ is equivalent to 〈−A if ∃rc.B〉 U
(
{a} →

(¬A ∧ ¬B)
)

which is in turn equivalent to U
(
{a} → 〈−A if ∃rc.B〉 (¬A ∧ ¬B)

)
.

Second, we have that 〈−A if ∃rc.B〉 (¬A ∧ ¬B) is equivalent to ¬ 〈−A if ∃rc.B〉A ∧

¬ 〈−A if ∃rc.B〉B. Furthermore, 〈−A if ∃rc.B〉A is equivalent to A ∧ ¬∃rc.B and

〈−A if ∃rc.B〉B is equivalent to B. These give then that:

〈−A if ∃rc.B〉 (¬A ∧ ¬B)↔ ¬(A ∧ ¬∃rc.B) ∧ ¬B

↔ (¬A ∨ ∃rc.B) ∧ ¬B

So ϕ is equivalent to the formula U
(
{a} → (¬A ∨ ∃rc.B) ∧ ¬B

)
which represents the

assertion a : (¬At∃rc.B)u¬B. This means that the assertion a : (¬At∃rc.B)u¬B is

equivalent to the assertion a : ¬Au¬B after executing the atomic program 〈∀r.−A if B〉

which is clearly the expected outcome.

From Propositions 5.1, 5.2, 5.3 and 5.4 we then obtain the following theorem.

Theorem 5.1. Every formula of dynALCIO is equivalent to a static formula.

5. REPAIRING ABOXES SEMANTICALLY: THE MORE ELABORATE dynALCIO 119

Proof. The procedure is the same as in Theorem 4.1: given a dynALCIO-formula ϕ,

iterative applications of the equivalences in Proposition 5.1 will result in a formula with-

out complex programs that is equivalent to ϕ. With the equivalences of Proposition 5.2

then all local programs of the form ∀r.λ and ∀rc.λ are eliminated from within the atomic

programs. Next, using Proposition 5.3 the atomic programs can be pushed through the

boolean connectives, the universal and existential quantifiers, as well as the universal

operator. Finally, all of the atomic programs are eliminated by applying iteratively the

equivalences of Proposition 5.4 together with the first equivalence of Proposition 5.3.

Since all equivalences are valid we obtain a static formula that is equivalent to ϕ.

Through Theorem 5.1 we can now reduce every formula of the logic which we work

with to the static fragment of the logic which contains no programs. Decidability of

global satisfiability in dynALCIO then follows using the same argument of the previous

chapter: any static formula can be mapped to an ALCIO(U)-concept and vice versa and

concept satisfiability in ALCIO(U) is decidable [Horrocks et al., 2006]. The mapping τ

that achieves the correspondence between static dynALCIO-formulas and ALCIO(U)-

concepts extends the previous mapping in the obvious way (where we once again use the

connectives ¬ and ∨ in the place of ⊥ and→), i.e.:

• τ(A) = A

• τ({a}) = {a}

• τ(¬ϕ) = ¬τ(ϕ)

• τ(ϕ ∨ ψ) = τ(ϕ) t τ(ψ)

• τ(∃r.ϕ) = ∃r.τ(ϕ)

• τ(∃rc.ϕ) = ∃rc.τ(ϕ)

• τ(Uϕ) = ∀rU .τ(ϕ)

where A ∈ Con, a ∈ Ind, and r ∈ R (with rU the universal role). Then (global) satisfiabil-

ity checking of the static fragment of dynALCIO is similarly reduced to the satisfiability

problem of ALCIO(U) and we obtain the following theorem.

5. REPAIRING ABOXES SEMANTICALLY: THE MORE ELABORATE dynALCIO 120

Theorem 5.2. Global satisfiability in the logic dynALCIO is decidable.

Both the proof of Theorem 5.2 as well as the lemma that it is based on are identical

to the respective of Section 4.3 and are omitted.

5.3.1 Associating Local Programs with TBox Axioms

We can now make use of the language of dynALCIO and, as a first step, show how

to build a (non-dynamic) repairing procedure that checks whether an assertion or ABox

can be obtained as a result of repairing an initial ABox that is inconsistent with a TBox

through a bounded number of steps. Through this problem we showcase the flexibility

of the programs that can be built using our dynamic logic framework. We recall that an

ABoxA is inconsistent with a TBox T iff there is no model of (T ,A), i.e., iff the formula

T ∧ A is (globally) unsatisfiable in our logic. Furthermore, we consider for the rest of

the chapter that all TBoxes we work with are consistent and all ABoxes we work with

are consistent: we focus then on cases where their conjunction is inconsistent due to the

interaction between them. We start by defining the set of update actions that each TBox

axiom can be paired with.

Definition 5.1. Let ρ be any concept inclusion axiom. The set pr(ρ) of programs associ-

ated with ρ is defined inductively as follows:

pr(A) = {+A,−A}

pr(¬C) = pr(C)

pr(C1 u C2) = pr(C1) ∪ pr(C2)

pr(∀r.C) = {−r.¬C} ∪ {∀r.λ | λ ∈ pr(C)}

pr(∀rc.C) = {−rc.¬C} ∪ {∀rc.λ | λ ∈ pr(C)}

pr(C v D) = pr(C) ∪ pr(D)

The set pr(ρ) is defined to contain all local programs that can be constructed from

each ρ∈T based on the intuitions given in Section 5.2. For example, consider the con-

cept inclusion ρ = Av∀r.¬B. According to Definition 5.1, the set pr(ρ) comprises the

5. REPAIRING ABOXES SEMANTICALLY: THE MORE ELABORATE dynALCIO 121

following programs: +A, −A, −r.B, ∀r.+B, ∀r.−B. Clearly, not all of them can pro-

vide a repairing solution. For example, consider the assertion a : A u ∃r.B which is

not consistent with ρ. The programs +A and ∀r.+B when applied to a do not provide a

repaired assertion because the sources of the inconsistency are not tackled by these pro-

grams, while the programs −A, −r.B and ∀r.−B do so. So the set pr(ρ), although finite,

contains arbitrary local programs constructed from ρ many of which may not be suitable

when repairing an assertion or ABox that is inconsistent with ρ. This does not pose a

threat though as that ineffective subset of pr(ρ) can be ignored during the repairing pro-

cedure or, in the worst case, raise the number of computations needed without modifying

the result.

5.4 Standard Repairs

Given the set pr(ρ) we can now define the program that tries to repair an ABox that

is inconsistent with a TBox T by updating the individuals which violate some ρ ∈ T

with random update actions based on the concepts and roles of each ρ ∈ T . Since this

program does not depend on any active axioms (that we will introduce in the next section)

and since there is no preference between the update actions chosen, we call it a standard

repair program.

Definition 5.2. Let T be a TBox and n ∈ N. The standard repair program up to n of T is

the following program:

πnT =
(⋃
ρ∈T

λ∈pr(ρ)

(
λ if ¬ρ

))≤n
; T ?

It is easy to see what this program does: it applies at most n times update actions

from the axioms of T that are violated until T is ultimately satisfied. So now we are

in a position to take advantage of the atomic programs of our logic to build decision

procedures that can check whether specific ABoxes are repairs or not. More specifically,

if T is a TBox andA is an ABox that is inconsistent with T , we can decide if an assertion

or ABox A′ is the outcome of repairing A (by using at most n computations). This is

possible by checking if the formulaA∧〈πnT 〉A′ is satisfiable in our logic and is articulated

in the next proposition.

5. REPAIRING ABOXES SEMANTICALLY: THE MORE ELABORATE dynALCIO 122

Proposition 5.5. Let T be a TBox, let A be an ABox, let A′ be either an assertion or an

ABox and let n ∈ N. If the formula A ∧ 〈πnT 〉A′ is satisfiable then T ∧ A′ is consistent.

Proof. Satisfiability of the formulaA∧〈πnT 〉A′ implies that there exists an interpretation

I such that
(
A ∧ 〈πnT 〉A′

)I
= ∆I and more specifically

⋃
(I,I′)∈‖πnT ‖

A′I′ = ∆I (1). In general,

since the formula A is a conjunction of subformulas all of which begin with the universal

operator, it holds that either AI = ∆I or AI = ∅ for all I. Thus, by (1) there exists

an I ′ such that (I, I ′) ∈ ‖πnT ‖ and A′I′ = ∆I . Furthermore, if (I, I ′) ∈ ‖πnT ‖ then

(I ′, I ′) ∈
∣∣∣∣∣∣ T ?

∣∣∣∣∣∣. This means that there exists an I ′ such that A′I′ = ∆I , T I′ = ∆I′

and ∆I′ = ∆I which gives that
(
T ∧ A′

)I′
= ∆I′ , i.e., T ∧ A′ is consistent.

The reader may wonder whether we could just check satisfiability of the formula

T ∧ A′ in order to see if A′ is a repair of A. As we show in Example 5.2 below, through

the satisfiability of the formula A ∧ 〈πnT 〉A′ we can also check if A′ is a repair of A

that results from updating the individuals according to the axioms they violate, so A′ is

not any random ABox. Furthermore, we know that we can achieve this with at most n

computations.

We continue with the definition of relevance between two ABoxes.

Definition 5.3. Let A and A′ be two ABoxes. We say that A′ is relevant to A iff:

• Ind(A′) ⊆ Ind(A)

• Con(A′) ⊆ Con(A)

• Role(A′) ⊆ Role(A)

• if r(a, b) ∈ A′ then r(a, b) ∈ A

The role of relevance is to make sure that a repair of an ABox does not contain

irrelevant concept and role assertions. For instance, when repairing the ABox A = {a :

¬A} which is inconsistent with the TBox T = {> v A}, the ABoxA′ = {r(a, b), b : B}

should not be a repair ofA, although the formulaA∧ 〈π1
T 〉A′ is satisfiable, because both

of its assertions have nothing to do with A.

Next is the main definition of this section, viz. that of a standard repair.

5. REPAIRING ABOXES SEMANTICALLY: THE MORE ELABORATE dynALCIO 123

Definition 5.4. Let T be a TBox and let A be an ABox. An ABox A′ is a standard repair

of A with respect to T iff A′ is relevant to A and the formula A ∧ 〈πnT 〉A′ is satisfiable

for some n ∈ N.

So, in other words, a standard repair of A with respect to T is an ABox that can

be built from updating assertions of A so that they conform with the axioms of T and

that doesn’t contain any irrelevant (with respect to A) concept and role assertions or new

individuals. Note that since the program πnT can apply quite arbitrary update actions from

the set pr(ρ) for each ρ ∈ T , standard repairs can diverge more from the initial ABox than

desired. A simple example that highlights this follows.

Example 5.2. Consider the following TBox and ABox:

T = {Male u Person v Man,Man v ∀hasSpouse.¬Man,¬Man v ∀hasSpouse.Man}

A = {John : Man,Peter : Man, hasSpouse(John,Peter), hasSpouse(Peter, John)}

For the ABox A1 = {John : Man,Peter : Man} we have that A ∧ 〈π1
T 〉A1 is satisfiable

using the atomic program:

−hasSpouse.Man if ¬ (Man v ∀hasSpouse.¬Man)

and thus, according to Proposition 5.5 and Definition 5.4, A1 is consistent with T and

is also a standard repair of A with respect to T . If we just checked satisfiability of the

formula T ∧ A2 though, where:

A2 = {John:¬Person,Peter:¬Person, hasSpouse(John,Peter), hasSpouse(Peter, John)}

then we would have that A2 is also a repair of A with respect to T , although the way to

obtain A2 from A is irrelevant with the axioms of T that were violated by A and seems

rather undesirable. Last but not least, according to Definition 5.4 a standard repair of A

with respect to T is also the ABox A3 = {John : ¬Man,Peter : ¬Man} using the atomic

programs:

∀hasSpouse.−Man if ¬ (Man v ∀hasSpouse.¬Man)

−hasSpouse.¬Man if ¬ (¬Man v ∀hasSpouse.Man)

5. REPAIRING ABOXES SEMANTICALLY: THE MORE ELABORATE dynALCIO 124

which, although consistent with T and a standard repair ofA with respect to T , is also a

debatable repair.

So, although we can check whether a possible repair of the initial ABox can be

achieved using a bounded number of computations, this procedure can also provide other,

quite undesirable ABoxes through the application of too many update actions to the initial

ABox. We can separate then the standard repairs into two classes: those that are achieved

through a minimal number of computations and those that are not. The next definition

singles out the classes of standard repairs based on the minimum number of computations

required.

Definition 5.5. Let T be a TBox and let A be an ABox that is inconsistent with T . The

set of all standard repairs of A with respect to T is denoted by StandRep(T ,A). The

subset of StandRep(T ,A) comprising the standard repairs that can be achieved with a

minimum of n computations is denoted by StandRepn(T ,A).

Given Definition 5.5, the way to check if an ABox belongs to the set StandRepn(T ,A)

for some n ∈ N is given next.

Proposition 5.6. Let T be a TBox and let A be an ABox that is inconsistent with T . For

an ABox A′ then, A′ ∈ StandRepn(T ,A) iff:

• A′ is relevant to A

• the formula A ∧ 〈πnT 〉A′ is satisfiable

• the formula A ∧ 〈πn−1
T 〉A′ is unsatisfiable

Proof. For the left to right direction, if A′ ∈ StandRepn(T ,A) then A′ is a standard

repair ofA and thusA′ is relevant toA as well as the formulaA∧〈πnT 〉A′ is satisfiable for

some n ∈ N. The fact that A′ can be achieved with a minimum of n computations means

thatA∧ 〈πmT 〉A′ is satisfiable for all m ≥ n. Furthermore, satisfiability ofA∧ 〈πn−1
T 〉A′

would obviously mean that A′ can also be achieved with n − 1 computations and A′ /∈

StandRepn(T ,A). Thus A ∧ 〈πn−1
T 〉A′ is unsatisfiable.

5. REPAIRING ABOXES SEMANTICALLY: THE MORE ELABORATE dynALCIO 125

For the right to left direction, the first two items give that A′ is a standard repair of

A that can be achieved within n steps. By the third item, for all m < n− 1 the formulas

A ∧ 〈πmT 〉A′ are also unsatisfiable since a repair that can be achieved with at most m

steps can also be achieved with more than m (imagine the rest of the steps being the

‘>?’ programs in the definition of ‘γ≤n’). This means that A′ needs at least n steps and

A′ ∈ StandRepn(T ,A).

As mentioned in this proof, if the formulaA∧ 〈πnT 〉A′ is satisfiable then the formula

A∧〈πmT 〉A′ is also satisfiable for any m > n. Furthermore, there exists a minimal k ∈ N

such that the formulaA∧〈πkT 〉A′ is satisfiable and this k is the minimum number of steps

needed to obtain A′ from A. Based on this we have the following proposition.

Proposition 5.7. For every TBox T and ABox A, either StandRep(T ,A) = ∅ or there

exists an n ∈ N such that:

• StandRepn(T ,A) 6= ∅

• StandRepm(T ,A) = ∅ for all m < n

Proof. Let StandRep(T ,A) 6= ∅ (1). By Proposition 5.6 it is easy to see that the sets

StandRepn(T ,A), much like the sets RAn of Chapter 3, are pairwise disjoint and their

union is the set StandRep(T ,A) of all standard repairs of A with respect to T . There-

fore, StandRep(T ,A) =
∞⋃
n=0

StandRepn(T ,A) and by (1)
∞⋃
n=0

StandRepn(T ,A) 6= ∅. It

follows easily that there exists an m ∈ N such that:

∞⋃
n=0

StandRepn(T ,A) =
∞⋃
n=m

StandRepn(T ,A) and StandRepm(T ,A) 6= ∅

which also gives that StandRepk(T ,A) = ∅ for all k < m.

Non-existence of a repair can be the case when there is an inconsistency that cannot

be repaired because the sets pr(ρ) do not provide any adequate update actions based on

Definition 5.1. Consider e.g. the TBox T = {> v ∃r.>} and the ABoxA = {a : ∀r.⊥}.

Then StandRep(T ,A) = ∅. We will come back to this later in the concluding discussion.

For every T and A with StandRep(T ,A) 6= ∅ we denote the set StandRepn(T ,A)

satisfying Proposition 5.7 by MinStandRep(T ,A). This is the set that comprises the

5. REPAIRING ABOXES SEMANTICALLY: THE MORE ELABORATE dynALCIO 126

standard repairs which require the least amount of computations. We thus obtain the

definition of minimal standard repairs.

Definition 5.6. Let T be a TBox and let A be an ABox that is inconsistent with T . An

ABoxA′ is a minimal standard repair ofAwith respect to T iffA′ ∈ MinStandRep(T ,A).

Going back to Example 5.2 then we can witness thatA1 ∈ StandRep1(T ,A) whereas

A3 ∈ StandRep2(T ,A), and since MinStandRep(T ,A) = StandRep1(T ,A) we con-

clude that A1 is a minimal standard repair whereas A3 is not. Furthermore, A2 /∈

StandRep(T ,A). Therefore, there is a way to avoid debatable repairs likeA3 by searching

only for minimal standard repairs. The way to obtain the minimum number of computa-

tions required for each repairing procedure is given in the following proposition.

Proposition 5.8. Let T be a TBox and let A be an ABox that is inconsistent with T . We

have that MinStandRep(T ,A) = StandRepk(T ,A) iff:

• the formula A ∧ 〈πkT 〉> is satisfiable

• the formula A ∧ 〈πk−1
T 〉> is unsatisfiable

Proof. For the left to right direction, let MinStandRep(T ,A) = StandRepk(T ,A). Then

StandRep(T ,A) 6= ∅ by the definition of MinStandRep(T ,A). More specifically, by

Proposition 5.7 we have that (1) StandRepk(T ,A) 6= ∅ and (2) StandRepm(T ,A) = ∅

for all m < k. By (1) then there exists an ABox A′ such that A′ ∈ StandRepk(T ,A)

and subsequently the formula A ∧ 〈πkT 〉A′ is satisfiable. Satisfiability of the formula

A ∧ 〈πkT 〉> follows immediately. Furthermore, let A ∧ 〈πk−1
T 〉> be satisfiable and let I

be one of its models. It is easy to see then that there is an ABox A′ which is relevant to

A for which the formula A ∧ 〈πk−1
T 〉A′ is satisfiable and has I as a model. This means

StandRepm(T ,A) 6= ∅ for somem ≤ k−1 which contradicts (2). ThereforeA∧〈πk−1
T 〉>

is unsatisfiable.

For the right to left direction, since the formula A ∧ 〈πk−1
T 〉> is unsatisfiable the

same holds for all formulas A ∧ 〈πmT 〉> as well, where m < k − 1. By Proposition 5.6

it follows that StandRepm(T ,A) = ∅ for all m < k (1). Furthermore, since A ∧ 〈πkT 〉>

is satisfiable we can find an ABox A′ which is relevant to A that makes the formula

5. REPAIRING ABOXES SEMANTICALLY: THE MORE ELABORATE dynALCIO 127

A ∧ 〈πkT 〉A′ satisfiable. For the same A′ we have that A ∧ 〈πk−1
T 〉A′ is unsatisfiable

since A ∧ 〈πk−1
T 〉> is unsatisfiable. By Proposition 5.6 again StandRepk(T ,A) 6= ∅

(2). By (1), (2), Proposition 5.7 and the definition of MinStandRep(T ,A) it follows that

MinStandRep(T ,A) = StandRepk(T ,A).

So given a standard repair A′ of A with respect to T , in order to check if A′ is

a minimal standard repair we need two steps: first, pinpoint the (unique) number k such

that StandRepk(T ,A) = MinStandRep(T ,A) through Proposition 5.8 and second, check

whether A′ ∈ MinStandRep(T ,A) using Proposition 5.6; more specifically, by the sec-

ond condition of Proposition 5.8 the third condition of Proposition 5.6 is implied and can

be omitted. Moreover, in order to pinpoint the (unique) number k from Proposition 5.8

we can start from n = 1 and increment the value of n until the formula A ∧ 〈πnT 〉>

becomes satisfiable. If we don’t want to exceed a specific bound though and iterate the

previous procedure indefinitely, we can start with a satisfiability check of the formula

A ∧
〈 ⋃
m≤n

πmT
〉
> which will verify the existence of the number k below the specified

bound n we are willing to check.

In the next section we are going to provide a framework and tools for more informed

ways of repairing ABoxes. As with earlier chapters, this will be achieved by endowing

TBox axioms with preferred update actions through which they should be repaired in case

of inconsistency. As we discussed in Section 5.1, the distinguishing feature of the present

approach is the global nature of the update actions and their greater expressiveness.

5.5 Active Inclusion Axioms in ALCI TBoxes

In this section we use the structure of the programs in our quest to enrich the axioms of

the TBoxes with update actions. We then examine the various results we can obtain when

we start from an ABox that is inconsistent with a TBox and modify it via these preferred

update actions such that it is ultimately consistent with the concept inclusion axioms of

the TBox. The first thing to do is to define the static and active concept inclusions.

Definition 5.7. Any concept inclusion axiom ρ is called a static concept inclusion. An

active concept inclusion is of the form ‘λ if ¬ρ’ where λ ∈ pr(ρ). An active TBox, denoted

5. REPAIRING ABOXES SEMANTICALLY: THE MORE ELABORATE dynALCIO 128

by aT , is a set of active concept inclusions.

For η =‘λ if ¬ρ’ we let static(η) = ρ. For an active TBox aT we let static(aT) =

{static(η) : η ∈ aT }. We say that aT extends T iff T = static(aT). The next definition

extends the notion of inconsistency.

Definition 5.8. Let aT be an active TBox. We say that an ABoxA is consistent with aT iff

A is consistent with static(aT). Similarly, A is inconsistent with aT iff A is inconsistent

with static(aT).

We can see now that the active TBoxes of Section 5.1 can be expressed in this frame-

work and, more specifically, that static(aT1) = static(aT2) = T .

Active TBoxes are a way for an ontology engineer to specify preferred update actions

to tackle inconsistencies. Our goal now is to provide appropriate tools that check whether

an assertion (or a whole ABox) is indeed the outcome of applying these preferred update

actions a bounded number of times. More specifically, given an active TBox aT and an

ABox A that is inconsistent with aT , we would like to define a program πnaT that uses

the active inclusion axioms of aT to determine whether or not the formula A ∧ 〈πnaT 〉A′

is satisfiable for an assertion or ABox A′. We thus introduce in the following section

the notion of dynamic repair programs, which choose among the update actions in aT

in order to provide repair solutions given an upper bound on the number of steps. Their

construction resembles the dynamic repairs we have seen in Chapters 2 and 4.

5.6 Dynamic Repairs

We now investigate dynamic repair programs which make use of the setting of Dynamic

Logic in order to provide a dynamic perspective on the repair procedure; more specifically,

by making use of the restricted while programs of dynALCIO we are able to iterate

the process of applying the preferred update actions and apply each one at a time until

all the inconsistencies are eliminated after a bounded number of computations. We begin

with the basic definition.

5. REPAIRING ABOXES SEMANTICALLY: THE MORE ELABORATE dynALCIO 129

Definition 5.9. Let T be a TBox, aT an active TBox extending T and n ∈ N. The

dynamic repair program up to n of aT is the following program:

πnaT = while
(
¬T

)
do≤n

(⋃
η∈aT

η
)

Just like the standard repair programs, the dynamic repair programs apply update

actions from pr(ρ) for each ρ ∈ T that is violated until T is ultimately satisfied after a

bounded number of steps. The difference is in the actual choice of these λ ∈ pr(ρ): while

previously there was no preference between the update actions chosen, the update actions

now are exactly those indicated by the active axioms of aT . In practice, despite their

slightly different nature, dynamic repair programs are a special case of standard repair

programs as is shown in the following proposition.

Proposition 5.9. Let T be a TBox, aT an active TBox extending T and n ∈ N. Then

‖ πnaT ‖ ⊆ ‖πnT ‖.

Proof. We have ‖ πnaT ‖ =
∥∥∥∥while

(
¬T

)
do≤n

(⋃
η∈aT

η
) ∥∥∥∥ =

∥∥∥∥ (¬T ? ;
⋃
η∈aT

η
)≤n

; T ?
∥∥∥∥.

The result follows from the fact that, unlike PDL where the program ‘(ϕ?; γ)≤n;¬ϕ?’

is not equivalent to the program ‘γ≤n;¬ϕ?’ since the latter can apply γ at most n times

even if ¬ϕ is satisfied from the start, for active TBoxes aT with static(aT) = T we have:

∥∥∥∥ (¬T ? ;
⋃
η∈aT

η
)≤n

; T ?
∥∥∥∥ =

∥∥∥∥ (⋃
η∈aT

η
)≤n

; T ?
∥∥∥∥ (1)

This happens because applying any atomic program (λ if ¬ρ) ∈ aT from the nonde-

terministic composition
⋃
η∈aT

η in an interpretation I translates into applying the local

program λ to the set (¬ρ)I = ∆I \ ρI . If T I = ∆I then ρI = ∆I for every ρ ∈ T and

thus (I, I ′) ∈
∥∥∥∥ ⋃
η∈aT

η

∥∥∥∥ iff I = I ′. It is easy to check then that:

(I, I ′) ∈
∥∥∥∥ (¬T ? ;

⋃
η∈aT

η
)≤n

; T ?
∥∥∥∥ iff I = I ′ iff (I, I ′) ∈

∥∥∥∥ (⋃
η∈aT

η
)≤n

; T ?
∥∥∥∥

If T I 6= ∆I then ρI 6= ∆I for some ρ ∈ T . More specifically, it will be the case that

T I = ∅ and ρI = ∅ due to the use of the universal operator in their representation. This

means that (¬T)I = ∆I \ T I = ∆I and consequently (I, I) ∈ ‖¬T ? ‖. It follows that:

5. REPAIRING ABOXES SEMANTICALLY: THE MORE ELABORATE dynALCIO 130

(I, I ′) ∈
∥∥∥∥¬T ? ;

⋃
η∈aT

η

∥∥∥∥ iff (I, I ′) ∈
∥∥∥∥ ⋃
η∈aT

η

∥∥∥∥
which also extends to the programs

(
¬T ? ;

⋃
η∈aT

η
)≤n

and
(⋃
η∈aT

η
)≤n

. So (1) holds. Fur-

thermore, if (I, I ′) ∈
∥∥∥∥ ⋃
η∈aT

η

∥∥∥∥ then (I, I ′) ∈
∥∥∥∥ ⋃
ρ∈T

λ∈pr(ρ)

(
λ if ¬ρ

) ∥∥∥∥ by Definition 5.7. Thus:

∥∥∥∥ (⋃
η∈aT

η
)≤n

; T ?
∥∥∥∥ ⊆ ∥∥∥∥ (⋃

ρ∈T
λ∈pr(ρ)

(
λ if ¬ρ

))≤n
; T ?

∥∥∥∥ (2)

By (1) and (2) then ‖ πnaT ‖ ⊆ ‖πnT ‖.

So, in a similar manner as before, we can now utilize the atomic programs of our logic

to build decision procedures that check if an assertion or ABox A′ is indeed the outcome

of applying the preferred update actions of an active TBox after a bounded number of

steps. We can witness this in the following corollary.

Corollary 5.1. Let aT be an active TBox, let A be an ABox, let A′ be either an assertion

or an ABox and let n ∈ N. If the formula A∧ 〈πnaT 〉A′ is satisfiable then A′ is consistent

with aT .

Proof. Consider A∧ 〈πnaT 〉A′ is satisfiable. By Proposition 5.9 the formula A∧ 〈πnT 〉A′

is also satisfiable, where T = static(aT). Proposition 5.5 then gives that T ∧ A′ is

consistent or, equivalently, that A′ is consistent with T . By Definition 5.8 then A′ is also

consistent with aT .

Once again, satisfiability of the formula A ∧ 〈πnaT 〉A′ provides much more than just

consistency checking: it also makes sure that the assertion or ABox A′ conforms to the

active axioms of aT as well as ensures we can achieve this with at most n repair steps.

The definition of a dynamic repair immediately follows.

Definition 5.10. Let aT be an active TBox and let A be an ABox. An ABox A′ is a

dynamic repair ofAwith respect to aT iffA′ is relevant toA and the formulaA∧〈πnaT 〉A′

is satisfiable for some n ∈ N.

5. REPAIRING ABOXES SEMANTICALLY: THE MORE ELABORATE dynALCIO 131

Going back to the example of Section 5.1 again (see also the example on Section 1.1),

we can check now that:

A1 = {John : Male u Father u Parent,Mary : ¬OnlyChild, hasSibling(Mary, John)}

A2 = {John : Male u ¬Father u ¬Parent,Mary : OnlyChild}

are indeed dynamic repairs of:

A = {John : Male u Father u ¬Parent,Mary : OnlyChild, hasSibling(Mary, John)}

with respect to aT1 and aT2, respectively, by checking that both of the formulas A ∧

〈π2
aT1〉A1 and A ∧ 〈π2

aT2〉A2 are satisfiable. Furthermore, using the reduction axioms of

Section 5.3 we have that:

〈η2; η3〉A1 ↔ John : (Male ∧ Father) ∧Mary : (¬OnlyChild ∨ ∃hasSibling.>)∧

hasSibling(Mary, John)

〈η4; η5〉A2 ↔ John : (Male ∧ ¬Parent) ∧Mary : OnlyChild

and thus A → 〈η2; η3〉A1 and A → 〈η4; η5〉A2 are both valid.

Definitions 5.5 and 5.6 and Propositions 5.6, 5.7 and 5.8 then extend in the obvi-

ous way, with DynRepn(aT ,A) comprising the dynamic repairs that can be achieved

with a minimum of n computations and MinDynRep(aT ,A) comprising the dynamic re-

pairs which require the least amount of computations. So similarly with standard repairs,

given a dynamic repair A′ of A with respect to aT , in order to check if A′ is a minimal

dynamic repair we first pinpoint the (unique) number k such that DynRepk(aT ,A) =

MinDynRep(aT ,A) and then check whether A′ ∈ MinDynRep(aT ,A) by the obvious

extensions of the decision procedures from standard to dynamic repairs.

Last but not least, for an active TBox aT let us restrict static(aT) to the subsets of

each pr(ρ) that comprise the local programs of each active axiom η ∈ aT . For an ABox

A then it is easy to see that A′ is a dynamic repair of A with respect to aT iff A′ is a

standard repair ofA with respect to static(aT). We end the section with a corollary based

on this observation that shows the relationship between standard and dynamic repairs.

5. REPAIRING ABOXES SEMANTICALLY: THE MORE ELABORATE dynALCIO 132

Corollary 5.2. Let T be a TBox, let aT = {λ if ¬ρ | ρ ∈ T and λ ∈ pr(ρ)} and let A

be an ABox. An ABox A′ is a dynamic repair of A with respect to aT iff A′ is a standard

repair of A with respect to T . Furthermore, MinDynRep(aT ,A) = MinStandRep(T ,A)

and thus A′ is a minimal dynamic repair of A with respect to aT iff A′ is a minimal

standard repair of A with respect to T .

Proof. The left to right direction is immediate since it is easy to check by Definition 5.10

and Proposition 5.9 that every dynamic repair of A with respect to aT is also a standard

repair of A with respect to static(aT). For the other direction, we recall (from the proof

of Proposition 5.9) that ‖ πnaT ‖ =
∥∥∥∥ (⋃

η∈aT
η
)≤n

; T ?
∥∥∥∥. But since aT = {λ if ¬ρ | ρ ∈

T and λ ∈ pr(ρ)} then static(aT) = T and
∥∥∥∥ ⋃
η∈aT

η

∥∥∥∥ =
∥∥∥∥ ⋃
ρ∈T

λ∈pr(ρ)

(
λ if ¬ρ

) ∥∥∥∥ which gives:

∥∥∥∥ πnaT ∥∥∥∥ =
∥∥∥∥ (⋃

η∈aT
η
)≤n

; T ?
∥∥∥∥ =

∥∥∥∥ (⋃
ρ∈T

λ∈pr(ρ)

(
λ if ¬ρ

))≤n
; T ?

∥∥∥∥ =
∥∥∥∥πnT ∥∥∥∥

Therefore, if A′ is a standard repair of A with respect to T then A′ is relevant to A and

the formula A ∧ 〈πnT 〉A′ is satisfiable for some n ∈ N. This means that A ∧ 〈πnaT 〉A′ is

satisfiable and, by Definition 5.10, A′ is a dynamic repair of A with respect to aT . The

fact that MinDynRep(aT ,A) = MinStandRep(T ,A) follows similarly.

5.7 Discussion and Conclusion

In this chapter we have proposed a richer framework for defining extensions of TBoxes

with active axioms, specifying preferred repairing routes in case their static part is violated

by an ABox. We tackled the problem of checking whether there exists a repair of an ABox

that is inconsistent with a TBox in a bounded number of computations through dynamic

logic programs. Furthermore, given a possible repair of an ABox, we have shown how

to check whether or not it can be obtained from the active axioms of the TBox under a

bounded number of steps and, in case it is indeed a repair, whether or not it can do so with

the least amount of steps possible.

The reader may have noticed that we make no effort to repair an axiom of the form

5. REPAIRING ABOXES SEMANTICALLY: THE MORE ELABORATE dynALCIO 133

‘> v ∃r.C’. This could in principle be done by either allowing the addition of roles,

i.e., local programs of the form +r.ϕ and +rc.ϕ, or the addition/removal of a concept to

only one individual through a role, i.e., local programs of the form ∃r.±A and ∃rc.±A.

The reason is the following: in the first case (addition of roles), adding to an individual a

relation between the individual and any member of the domain that has property C may

produce a big change in the resulting interpretation, thus creating possible repairs that are

very undesirable. Consider, for instance, the following KB:

T = {> v ∃hasFather.Male}

A = {John : Male u ∀hasFather.¬Male}

Applying to John the update action +hasFather.Male then will result in the ABox A′ =

{hasFather(John, John), John : Male} being a possible repair (and also other repairs with

the role assertions hasFather(John,X), for every other possible individual X in the ABox

who may have the property Male) which is obviously not what a repair should be. Simi-

larly for the addition of inverse roles. On the other hand, both (1) adding to an individual

a relation between the individual and only one (abstract) member of the domain and (2)

adding or removing a concept only to one individual through a role cannot be pursued

because of technical limitations: it is true that enhancing the logic with these extra lo-

cal programs would produce more repairs in practice, but the reduction axioms would

unfortunately fail and the logic would no longer be reducible to its static part.

Even in our framework, there exist cases where one should be careful with concepts

like the previous example. More specifically, when a concept appears inside an axiom

and, in case of inconsistency of the axiom with an ABox, repairing this concept amounts

to ‘something should exist’ then an alternative repairing route might be better pursued by

the active axioms. For instance, the axiom ‘ρ = Grandparent v ∃hasChild.Parent’ should

only be extended as follows:

−Grandparent if ¬ (Grandparent v ∃hasChild.Parent)

since the inconsistency that comes from the concept ‘∃hasChild.Parent’ is not trivial: the

assertion John : Grandparent u ¬∃hasChild.> is inconsistent with this axiom but cannot

be repaired by adding properties to John’s children (since he doesn’t have any). Therefore,

5. REPAIRING ABOXES SEMANTICALLY: THE MORE ELABORATE dynALCIO 134

in order to assure that a repairing procedure will not fail, an ontology engineer should not

‘risk’ putting the update action ‘∀hasChild.+Parent’ which is the only other meaningful

program from the set pr(ρ) apart from ‘−Grandparent’. Although for another individual

(that has children) it could provide a drastic repair (drastic in the sense that all children

would be parents, although at least one is needed), it will always fail for John since the

formula:

John :
(

Grandparent ∧ ¬∃hasChild.>
)
∧ 〈πnaT 〉>

is unsatisfiable for all n ∈ N when the update action ‘∀hasChild.+Parent’ is the only

choice.

Our approach in this chapter and the logic we use don’t allow to check whether a

possible (standard or dynamic) repair exists in general, since StandRep(T ,A) 6= ∅ iff the

formula A ∧ 〈πnT 〉> is satisfiable for some n ∈ N (and respectively DynRep(aT ,A) 6= ∅

iff the formula A ∧ 〈πnaT 〉> is satisfiable for some n ∈ N). We thus have a positive

answer in case a (standard or dynamic) repair exists but we are not able to decide in case

there isn’t. The compromise we make though gives us some extra information, i.e., we

can check if a repair exists within a specific number of computations and, in case there

is, what is the minimal number of computations through which we can achieve this. This

makes sense in real world applications where a big deviation from the original ABox may

not be desirable. This means that, in practice, if a transaction has turned an ABox that is

consistent with aT into one that is inconsistent with aT then the dynamic repair should

only involve few active axioms. It follows that the maximal allowed number of update

actions can reasonably be expected to be rather low.

Now, in order to be in a position to check if a repair exists in the general case, the

logic dynALCIO has to be extended with the ‘Kleene star’ operator of PDL, similarly to

the logic dynALCO of Chapter 4. Then we would be able to abbreviate an arbitrary finite

number of applications of ‘λ if ¬ρ’ with a single program πaT , thus deciding the existence

of a dynamic repair by checking if the formulaA∧〈πaT 〉> is satisfiable or not. However,

the addition of this program makes the reduction to the static fragment unachievable and

the logic dynALCIO extended with the ‘Kleene star’ operator is not guaranteed to be

5. REPAIRING ABOXES SEMANTICALLY: THE MORE ELABORATE dynALCIO 135

decidable anymore. This is showcased in the following example, where (.)∗ is the Kleene

star operator.

Example 5.3. Let I be an interpretation such that:

• ∆I = {α1, α2, . . . }

• AI = {α1}

• (αn, αn+1) ∈ rI for all n ∈ N

Then we have that
(
〈(∀r.+A if A)∗〉A

)I
= ∆I and

(
〈(∀r.+A if A)≤n〉A

)I
⊂ ∆I for

all n ∈ N, i.e., the program (∀r.+A if A)∗ cannot be reduced to (∀r.+A if A)≤n for any

n ∈ N.

The reason this didn’t happen for dynALCO is the combination of the local nature

of its update actions with the less expressive power of its atomic programs. But as we

argued before, deciding the existence of a standard or dynamic repair in general may not

be very interesting, since the repair might be too divergent from the original ABox and

difficult to pinpoint. So with the approach we took in this chapter, an ontology engineer

can set a benchmark by specifying the maximum number of operations within which a

repair should be achieved and, in case this is not possible, it may be an indication that

the active axioms defined in the active TBox may be suboptimal in producing a desirable

repair.

Summing up, we have taken a more elaborate semantic approach to the investigation

of repairing ABoxes with regard to active TBoxes, the latter being an extension of regular

TBoxes with update actions inspired by the active integrity constraints of the database

literature. This time we have exploited a dynamic logic framework admitting global se-

mantics for atomic programs on which various decision procedures are introduced and

compared. Having successfully overcome both limitations that we set out to do at the end

of Chapter 3, we end the thesis by combining the aforementioned semantic proposal to

evaluating repaired ABoxes with the syntactic proposal to constructing them.

CHAPTER 6

Conclusion

Throughout the course of this thesis we investigated methods for maintaining the integrity

and consistency of knowledge bases, both in the propositional and in the DL setting, with

a specific goal in mind: extend propositional databases and description logic TBoxes

with preferred update actions and take them carefully into account when searching for

repairing solutions. Whereas the landscape in the propositional case was already explored

and understood, the extension to higher level languages like Description Logics proved to

be non-trivial and challenging. Relying mainly on Dynamic Logic we acquired tools for

both representing known procedures in our setting as well as constructing new, dynamic

ones.

Speaking of Dynamic Logic, and as we already mentioned at the end of Section

1.2.3, a correspondence between DLs and (variants of) PDL has been achieved early on

[Schild, 1991]. Let us note at this point that we do not attempt something similar here.

In practice, we merely extend ALCO and ALCIO with simple atomic (and complex)

programs that ultimately reduce to static ALCO(U) and ALCIO(U) concepts. Thus,

our logics are as expressive as plainALCO(U) andALCIO(U), respectively, and do not

admit regular expressions over roles like role union, role composition, reflexive-transitive

closure of roles and role identity. This makes DLs admitting regular expressions over roles

likeALCOreg andALCIOreg strictly more expressive than dynALCO and dynALCIO,

since the universal role can be expressed in the former by the union and the reflexive-

transitive closure of roles.

Our approaches also come close to the work presented in [Ahmetaj et al., 2017]

136

6. CONCLUSION 137

where dynamic problems on graph-structured data are reduced to static DL reasoning.

The Dynamic Logic framework presented here though is different and allows us to not be

restricted into finite interpretations, among other things. Furthermore, we introduce and

work mainly with active TBoxes, which differentiates us from other approaches to tackle

(possibly dynamic) problems in DLs using regular TBoxes.

Last but not least, let us note that our perspective in this thesis differs from [Motik

et al., 2009, Tao et al., 2010], since we do not split the TBox up into integrity constraints

and other, non-integrity axioms. The direction we pursue is clearly different from their

attempts to encode integrity constraints into TBoxes, which differentiate the KB from the

set of integrity constraints, treating the latter with a closed-worlds assumption and using

different dedicated semantics. Nevertheless, it looks like a promising future direction to

import their way of handling integrity constraints inside TBoxes and see how such an

approach would compare with our own in this thesis.

We now conclude our investigations with an attempt at connecting the two different

directions we took for repairing ABoxes: constructing them syntactically and assessing

them semantically. We recall from Chapter 3 that, starting from an ABox A, the set SA

consists of all concept symbols occurring in A. Furthermore, the set RA comprises the

ABoxes that can be reached from A by an arbitrary number of syntactic modifications

and it is always finite. These syntactic modifications however take place only for atomic

concepts and not for nominals or roles. Since in Chapter 5 we are working on ALCIO

and nominals can exist in ABoxes, we now extend the set SA into the set S∗A which also

includes the nominals of the ABox A and also define the sets A∗t, A
∗
u, A

∗
¬,Γ∗A:A and Γ∗A

accordingly. We can then also extend all the definitions of Section 3.3 to incorporate

nominals and Propositions 3.1 and 3.2 are still valid. The same goes for removing roles:

since one of the distinguishing features of Chapter 5 is the ability to remove roles through

the programs −r.ϕ and −rc.ϕ, we can extend Definition 3.4 so that A ∼1 A′ if also

A′ is the outcome of removing a role assertion from A. This implies that A and A′

are semantically different from one another and once again the remaining definitions and

propositions stay intact. We also write A′ = A [−r(a, b)] when this happens and UA′A =

{r(a, b) 7→ ⊥} if A′ = A [−r(a, b)].

Taking these new syntactic modifications into account, we can see how all ABoxes

6. CONCLUSION 138

in the new set RA follow Definition 5.3 and are relevant to A since no new individuals,

concepts or roles are introduced and role assertions can be only removed. This means

that searching for repairs in the setRA is safe and, given an active TBox aT , satisfiability

of the formula A ∧ 〈πnaT 〉A′ for some n ∈ N and A′ ∈ RA is enough to identify A′

as a dynamic repair of A with respect to aT . So now the number n ∈ N can have a

dual purpose: both an upper bound that specifies the maximum number of (semantic)

updates within which a repair should be found as well as an upper bound on the number

of syntactic modifications that the initial ABox should be the subject of. In other words,

for an upper bound k ∈ N, we only check if the formulaA∧〈πkaT 〉A′ is satisfiable where:

A′ ∈
k⋃

n=1
RAn (1)

If no dynamic repair is found in this way then we stop. Of course, since all of the sets

RAn as well as the set RA are finite, we could search if A ∧ 〈πkaT 〉A′ is satisfiable for all

A′ ∈ RA. The purpose of limiting the A′s such that (1) holds is to once again showcase

methods for not straying too far away from the initial ABox.

Let us showcase an example of what has been said so far. We return to the initial

example of Section 1.1 and the way we represented it in Chapter 5 through the following

active TBoxes:

aT1 = {+Male if ¬ (Father v Male u Parent) ,

+Parent if ¬ (Father v Male u Parent) ,

−OnlyChild if ¬ (OnlyChild v ∀hasSibling.⊥)}

aT2 = {−Father if ¬ (Father v Male u Parent) ,

−hasSibling.> if ¬ (OnlyChild v ∀hasSibling.⊥)}

Remember also that the initial ABox was the following:

A = {John : Male u Father u ¬Parent,Mary : OnlyChild, hasSibling(Mary, John)}

We can see how, taking SA1
A =

(
{¬Parent 7→ Parent}, {OnlyChild 7→ ¬OnlyChild}

)
and

SA2
A =

(
{Father 7→ ¬Father}, {hasSibling(Mary, John) 7→ ⊥}

)
, we have A � SA1

A = A1

and A � SA2
A = A2 where:

6. CONCLUSION 139

A1 = {John : Male u Father u Parent,Mary : ¬OnlyChild, hasSibling(Mary, John)}

A2 = {John : Male u ¬Father u ¬Parent,Mary : OnlyChild}

Thus A1,A2 ∈ RA2 and they are minimal repairs with respect to the number of syntactic

modifications needed. Furthermore, we saw in Chapter 5 that both of the formulas A ∧

〈π2
aT1〉A1 and A ∧ 〈π2

aT2〉A2 are satisfiable and A1,A2 ∈ MinDynRep(aT ,A), so they

are minimal dynamic repairs as well. Let us note though that dynamic repairs that are

minimal with regards to the number of syntactic modifications are not necessarily minimal

dynamic repairs and vice versa. Consider, for instance, the following active TBox and

ABox:

aT = {+Man if ¬ (Person uMale v Man) ,

∀hasFather.+Male if ¬ (Person v ∀hasFather.Male) ,

−hasFather.¬Male if ¬ (Person v ∀hasFather.Male)}

A = {Anna : Person,Mary : Person,Peter : Person, John : Person u ¬Male u ¬Man,

hasFather(Anna, John), hasFather(Mary, John), hasFather(Peter, John)}

For the ABoxA1 = {Anna :Person,Mary :Person,Peter :Person, John :Personu¬Maleu

¬Man} we have that A ∧ 〈π1
aT 〉A1 is satisfiable and thus A1 ∈ DynRep1(aT ,A) =

MinDynRep(aT ,A). Furthermore, A1 ∈ RA3 since:

A1 = A �
(
{hasFather(Anna, John) 7→ ⊥},

{hasFather(Mary, John) 7→ ⊥},

{hasFather(Peter, John) 7→ ⊥}
)

and it is not minimal with regards to the number of syntactic modifications because there

are dynamic repairs of A that are achieved in less syntactic steps, e.g.:

A2 = {Anna : Person,Mary : Person,Peter : Person, John : Person uMale uMan,

hasFather(Anna, John), hasFather(Mary, John), hasFather(Peter, John)}

and A2 ∈ RA2 by means of SA2
A =

(
{¬Man 7→ Man}, {¬Male 7→ Male}

)
. Note also

that A2 ∈ DynRep2(aT ,A) and thus A2 is not a minimal dynamic repair although it is

6. CONCLUSION 140

a dynamic repair achieved with the least number of syntactic modifications. Finally, it is

easy to check that the update sequence SA3
A =

(
{¬Man 7→ Man}

)
is a PMA repair of A

according to Chapter 3, but A3 /∈ DynRep(aT ,A) according to Chapter 5.

So one can choose to look for dynamic repairs in RA by interpreting minimality

either way s/he wants, pursuing one of the following:

• After fixing the number k, go though all ABoxes A′ in RA1 ,RA2 , . . . and check

whether A ∧ 〈πkaT 〉A′ is satisfiable. The first ABox for which this is the case will

be a dynamic repair achieved with the least number of syntactic modifications. We

reiterate that we can either exhaustRA or stop atRAk .

• After pinpointing the number k for which DynRepk(aT ,A)=MinDynRep(aT ,A)

with the procedure of Chapter 5, check for any A′ ∈ RA whether A ∧ 〈πkaT 〉A′

is satisfiable. The first ABox for which this is the case will be a minimal dynamic

repair.

It is clear though that immediate applications of the above procedures in real world sce-

narios may be computationally impractical. Thus, next research steps should consist of

finding ‘reasonable’ complexity bounds for working with active TBoxes. In connection

to Section 1.4, an attempt to combine our results with other areas of research could be to

look at possible applications of the proposed repairing methods on nonmonotonic scenar-

ios such as Defeasible Description Logics [Britz and Varzinczak, 2016, Britz and Varz-

inczak, 2017]. In particular, the preferential approach for nonmonotonic reasoning that

has been established in the propositional setting has already been extended to DLs [Casini

and Straccia, 2010, Giordano et al., 2015] and applying the results reported in this thesis

to such a defeasible setting seems like an interesting future endeavor.

Summing up, by venturing into the landscape of active TBoxes we exhibited that

preferences when repairing Description Logic KBs can constitute very interesting and

important research directions, much like AICs on databases that came before them. Al-

though a first—and quite theoretical—step in this direction, we believe that the basic idea

behind active TBoxes is proving to be fruitful.

Bibliography

[Abiteboul, 1988] Abiteboul, S. (1988). Updates, A new frontier. In Gyssens, M.,

Paredaens, J., and Gucht, D. V., editors, ICDT’88, 2nd International Conference on

Database Theory, Bruges, Belgium, August 31 - September 2, 1988, Proceedings, vol-

ume 326 of Lecture Notes in Computer Science, pages 1–18. Springer.

[Ahmetaj et al., 2017] Ahmetaj, S., Calvanese, D., Ortiz, M., and Simkus, M. (2017).

Managing change in graph-structured data using description logics. ACM Trans. Com-

put. Log., 18(4):27:1–27:35.

[Alchourrón et al., 1985] Alchourrón, C. E., Gärdenfors, P., and Makinson, D. (1985).

On the logic of theory change: Partial meet contraction and revision functions. J.

Symb. Log., 50(2):510–530.

[Arlo-Costa, 2014] Arlo-Costa, H. (2014). The logic of conditionals. In Zalta, E. N.,

editor, The Stanford Encyclopedia of Philosophy. Summer 2014 edition.

[Askounis et al., 2016] Askounis, D., Koutras, C. D., and Zikos, Y. (2016). Knowledge

means ‘all’, belief means ‘most’. Journal of Applied Non-Classical Logics, 26(3):173–

192.

[Aucher, 2014] Aucher, G. (2014). Principles of knowledge, belief and conditional be-

lief. In Rebuschi, M., Batt, M., G.Heinzmann, Lihoreau, F., Musiol, M., and Trognon,

A., editors, Dialogue, Rationality, and Formalism, volume 3 of Logic, Argumentation

& Reasoning, pages 97–134. Springer.

141

BIBLIOGRAPHY 142

[Baader et al., 2003] Baader, F., Calvanese, D., McGuinness, D. L., Nardi, D., and Patel-

Schneider, P. F., editors (2003). The Description Logic Handbook: Theory, Implemen-

tation, and Applications. Cambridge University Press.

[Baader et al., 2005] Baader, F., Horrocks, I., and Sattler, U. (2005). Description logics

as ontology languages for the semantic web. In Hutter, D. and Stephan, W., editors,

Mechanizing Mathematical Reasoning, Essays in Honor of Jörg H. Siekmann on the

Occasion of His 60th Birthday, volume 2605 of Lecture Notes in Computer Science,

pages 228–248. Springer.

[Baader et al., 2006] Baader, F., Lutz, C., and Suntisrivaraporn, B. (2006). CEL - A

polynomial-time reasoner for life science ontologies. In Furbach, U. and Shankar,

N., editors, Automated Reasoning, Third International Joint Conference, IJCAR 2006,

Seattle, WA, USA, August 17-20, 2006, Proceedings, volume 4130 of Lecture Notes in

Computer Science, pages 287–291. Springer.

[Baader and Suntisrivaraporn, 2008] Baader, F. and Suntisrivaraporn, B. (2008). Debug-

ging SNOMED CT using axiom pinpointing in the description logic EL+. In Cornet,

R. and Spackman, K. A., editors, Proceedings of the Third International Conference

on Knowledge Representation in Medicine, Phoenix, Arizona, USA, May 31st - June

2nd, 2008, volume 410 of CEUR Workshop Proceedings. CEUR-WS.org.

[Balbiani et al., 2014] Balbiani, P., Herzig, A., Schwarzentruber, F., and Troquard, N.

(2014). DL-PA and DCL-PC: model checking and satisfiability problem are indeed in

PSPACE. CoRR, abs/1411.7825.

[Balbiani et al., 2013] Balbiani, P., Herzig, A., and Troquard, N. (2013). Dynamic

logic of propositional assignments: A well-behaved variant of PDL. In 28th Annual

ACM/IEEE Symposium on Logic in Computer Science, LICS 2013, New Orleans, LA,

USA, June 25-28, 2013, pages 143–152. IEEE Computer Society.

[Bell, 1990] Bell, J. (1990). The logic of nonmonotonicity. Artif. Intell., 41(3):365–374.

[Bertossi, 2011] Bertossi, L. E. (2011). Database Repairing and Consistent Query An-

swering. Synthesis Lectures on Data Management. Morgan & Claypool Publishers.

BIBLIOGRAPHY 143

[Bienvenu et al., 2014] Bienvenu, M., Bourgaux, C., and Goasdoué, F. (2014). Querying

inconsistent description logic knowledge bases under preferred repair semantics. In

Brodley, C. E. and Stone, P., editors, Proceedings of the Twenty-Eighth AAAI Con-

ference on Artificial Intelligence, July 27 -31, 2014, Québec City, Québec, Canada.,

pages 996–1002. AAAI Press.

[Bienvenu et al., 2016] Bienvenu, M., Bourgaux, C., and Goasdoué, F. (2016). Query-

driven repairing of inconsistent dl-lite knowledge bases. In Kambhampati, S., editor,

Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelli-

gence, IJCAI 2016, New York, NY, USA, 9-15 July 2016, pages 957–964. IJCAI/AAAI

Press.

[Boutilier, 1992] Boutilier, C. (1992). Conditional logics for default reasoning and belief

revision. PhD thesis, University of Toronto.

[Boutilier, 1994] Boutilier, C. (1994). Conditional logics of normality: A modal ap-

proach. Artif. Intell., 68(1):87–154.

[Britz et al., 2011] Britz, K., Meyer, T., and Varzinczak, I. J. (2011). Preferential reason-

ing for modal logics. Electr. Notes Theor. Comput. Sci., 278:55–69.

[Britz and Varzinczak, 2016] Britz, K. and Varzinczak, I. J. (2016). Introducing role de-

feasibility in description logics. In Michael, L. and Kakas, A. C., editors, Logics

in Artificial Intelligence - 15th European Conference, JELIA 2016, Larnaca, Cyprus,

November 9-11, 2016, Proceedings, volume 10021 of Lecture Notes in Computer Sci-

ence, pages 174–189.

[Britz and Varzinczak, 2017] Britz, K. and Varzinczak, I. J. (2017). Towards defeasible

SROIQ. In Artale, A., Glimm, B., and Kontchakov, R., editors, Proceedings of the

30th International Workshop on Description Logics, Montpellier, France, July 18-21,

2017., volume 1879 of CEUR Workshop Proceedings. CEUR-WS.org.

[Caroprese et al., 2006] Caroprese, L., Greco, S., Sirangelo, C., and Zumpano, E. (2006).

Declarative semantics of production rules for integrity maintenance. In Etalle, S. and

Truszczynski, M., editors, Logic Programming, 22nd International Conference, ICLP

2006, Seattle, WA, USA, August 17-20, 2006, Proceedings, volume 4079 of Lecture

Notes in Computer Science, pages 26–40. Springer.

BIBLIOGRAPHY 144

[Caroprese et al., 2009] Caroprese, L., Greco, S., and Zumpano, E. (2009). Active in-

tegrity constraints for database consistency maintenance. IEEE Trans. Knowl. Data

Eng., 21(7):1042–1058.

[Caroprese and Truszczynski, 2011] Caroprese, L. and Truszczynski, M. (2011). Active

integrity constraints and revision programming. TPLP, 11(6):905–952.

[Casini and Straccia, 2010] Casini, G. and Straccia, U. (2010). Rational closure for de-

feasible description logics. In Janhunen, T. and Niemelä, I., editors, Logics in Artificial

Intelligence - 12th European Conference, JELIA 2010, Helsinki, Finland, September

13-15, 2010. Proceedings, volume 6341 of Lecture Notes in Computer Science, pages

77–90. Springer.

[Ceri et al., 1994] Ceri, S., Fraternali, P., Paraboschi, S., and Tanca, L. (1994). Automatic

generation of production rules for integrity maintenance. ACM Trans. Database Syst.,

19(3):367–422.

[Charrier and Schwarzentruber, 2017] Charrier, T. and Schwarzentruber, F. (2017). A

succinct language for dynamic epistemic logic. In Larson, K., Winikoff, M., Das, S.,

and Durfee, E. H., editors, Proceedings of the 16th Conference on Autonomous Agents

and MultiAgent Systems, AAMAS 2017, São Paulo, Brazil, May 8-12, 2017, pages

123–131. ACM.

[Chellas, 1975] Chellas, B. F. (1975). Basic conditional logic. J. Philosophical Logic,

4(2):133–153.

[Chomicki and Marcinkowski, 2005] Chomicki, J. and Marcinkowski, J. (2005).

Minimal-change integrity maintenance using tuple deletions. Inf. Comput., 197(1-

2):90–121.

[Cooper et al., 2016] Cooper, M. C., Herzig, A., Maffre, F., Maris, F., and Régnier, P.

(2016). A simple account of multi-agent epistemic planning. In Kaminka, G. A.,

Fox, M., Bouquet, P., Hüllermeier, E., Dignum, V., Dignum, F., and van Harmelen, F.,

editors, ECAI 2016 - 22nd European Conference on Artificial Intelligence, 29 August-

2 September 2016, The Hague, The Netherlands - Including Prestigious Applications

of Artificial Intelligence (PAIS 2016), volume 285 of Frontiers in Artificial Intelligence

and Applications, pages 193–201. IOS Press.

BIBLIOGRAPHY 145

[Crocco et al., 1996] Crocco, G., del Cerro, L. F., and Herzig, A., editors (1996). Con-

ditionals: From Philosophy to Computer Science. Studies in Logic and Computation.

Oxford University Press.

[Cruz-Filipe, 2014] Cruz-Filipe, L. (2014). Optimizing computation of repairs from ac-

tive integrity constraints. In Beierle, C. and Meghini, C., editors, Foundations of In-

formation and Knowledge Systems - 8th International Symposium, FoIKS 2014, Bor-

deaux, France, March 3-7, 2014. Proceedings, volume 8367 of Lecture Notes in Com-

puter Science, pages 361–380. Springer.

[Cruz-Filipe et al., 2013] Cruz-Filipe, L., Gaspar, G., Engrácia, P., and Nunes, I. (2013).

Computing repairs from active integrity constraints. In Seventh International Sym-

posium on Theoretical Aspects of Software Engineering, TASE 2013, 1-3 July 2013,

Birmingham, UK, pages 183–190. IEEE Computer Society.

[Delgrande, 1987] Delgrande, J. P. (1987). A first-order conditional logic for prototypical

properties. Artif. Intell., 33(1):105–130.

[Delgrande, 1988] Delgrande, J. P. (1988). An approach to default reasoning based on a

first-order conditional logic: Revised report. Artif. Intell., 36(1):63–90.

[Delgrande, 1998] Delgrande, J. P. (1998). Conditional Logics for Defeasible Reason-

ing, volume 2 of Handbook of Defeasible Reasoning and Uncertainty Management

Systems, pages 135 – 173. Kluwer Academic Publishers.

[Delgrande, 2006] Delgrande, J. P. (2006). On a rule-based interpretation of default con-

ditionals. Ann. Math. Artif. Intell., 48(3-4):135–167.

[Delgrande, 2012] Delgrande, J. P. (2012). What’s in a default? thoughts on the na-

ture and role of defaults in nonmonotonic reasoning. In Brewka, G., Marek, V. W.,

and Truszczyński, M., editors, NonMonotonic Reasoning, Essays celebrating its 30th

anniversary, volume 31 of Studies in Logic, pages 89–110. College Publications.

[Ditmarsch et al., 2007] Ditmarsch, H. v., van der Hoek, W., and Kooi, B. (2007). Dy-

namic Epistemic Logic. Springer Publishing Company, Incorporated, 1st edition.

[Doutre et al., 2014] Doutre, S., Herzig, A., and Perrussel, L. (2014). A dynamic logic

framework for abstract argumentation. In Baral, C., Giacomo, G. D., and Eiter, T.,

BIBLIOGRAPHY 146

editors, Principles of Knowledge Representation and Reasoning: Proceedings of the

Fourteenth International Conference, KR 2014, Vienna, Austria, July 20-24, 2014.

AAAI Press.

[Eiter and Lukasiewicz, 2000] Eiter, T. and Lukasiewicz, T. (2000). Default reasoning

from conditional knowledge bases: Complexity and tractable cases. Artif. Intell.,

124(2):169–241.

[Feuillade and Herzig, 2014] Feuillade, G. and Herzig, A. (2014). A dynamic view of

active integrity constraints. In Fermé, E. and Leite, J., editors, Logics in Artificial

Intelligence - 14th European Conference, JELIA 2014, Funchal, Madeira, Portugal,

September 24-26, 2014. Proceedings, volume 8761 of Lecture Notes in Computer Sci-

ence, pages 486–499. Springer.

[Feuillade et al., 2018] Feuillade, G., Herzig, A., and Rantsoudis, C. (2018). A dynamic

extension of ALCO for repairing via preferred updates. In Proceedings of the 31th

International Workshop on Description Logics, Tempe, Arizona, October 27-29, 2018.

To appear.

[Feuillade et al., 2019] Feuillade, G., Herzig, A., and Rantsoudis, C. (2019). A dynamic

logic account of active integrity constraints. Fundamenta Informaticae. To appear.

[Fischer and Ladner, 1979] Fischer, M. J. and Ladner, R. E. (1979). Propositional dy-

namic logic of regular programs. J. Comput. Syst. Sci., 18(2):194–211.

[Flesca et al., 2004] Flesca, S., Greco, S., and Zumpano, E. (2004). Active integrity con-

straints. In Moggi, E. and Warren, D. S., editors, Proceedings of the 6th International

ACM SIGPLAN Conference on Principles and Practice of Declarative Programming,

24-26 August 2004, Verona, Italy, pages 98–107. ACM.

[Flouris et al., 2009] Flouris, G., d’Aquin, M., Antoniou, G., Pan, J. Z., and Plexousakis,

D. (2009). Special issue on ontology dynamics. J. Log. Comput., 19(5):717–719.

[Flouris et al., 2005] Flouris, G., Plexousakis, D., and Antoniou, G. (2005). Updating

dls using the AGM theory: A preliminary study. In Horrocks, I., Sattler, U., and

Wolter, F., editors, Proceedings of the 2005 International Workshop on Description

BIBLIOGRAPHY 147

Logics (DL2005), Edinburgh, Scotland, UK, July 26-28, 2005, volume 147 of CEUR

Workshop Proceedings. CEUR-WS.org.

[Friedman and Halpern, 1997] Friedman, N. and Halpern, J. Y. (1997). Modeling belief

in dynamic systems, part I: foundations. Artif. Intell., 95(2):257–316.

[Geffner and Pearl, 1992] Geffner, H. and Pearl, J. (1992). Conditional entailment:

Bridging two approaches to default reasoning. Artif. Intell., 53(2-3):209–244.

[Ginsberg, 1986] Ginsberg, M. L. (1986). Counterfactuals. Artif. Intell., 30(1):35–79.

[Giordano et al., 2009] Giordano, L., Gliozzi, V., Olivetti, N., and Pozzato, G. L. (2009).

Analytic tableaux calculi for KLM logics of nonmonotonic reasoning. ACM Trans.

Comput. Log., 10(3):18:1–18:47.

[Giordano et al., 2015] Giordano, L., Gliozzi, V., Olivetti, N., and Pozzato, G. L. (2015).

Semantic characterization of rational closure: From propositional logic to description

logics. Artif. Intell., 226:1–33.

[Goldblatt, 1987] Goldblatt, R. (1987). Logics of Time and Computation. Center for the

Study of Language and Information, Stanford, CA, USA.

[Harel et al., 2000] Harel, D., Kozen, D., and Tiuryn, J. (2000). Dynamic Logic. MIT

Press.

[Herzig, 2014] Herzig, A. (2014). Belief change operations: A short history of nearly

everything, told in dynamic logic of propositional assignments. In Baral, C., Giacomo,

G. D., and Eiter, T., editors, Principles of Knowledge Representation and Reasoning:

Proceedings of the Fourteenth International Conference, KR 2014, Vienna, Austria,

July 20-24, 2014. AAAI Press.

[Herzig et al., 2014] Herzig, A., de Menezes, M. V., de Barros, L. N., and Wassermann,

R. (2014). On the revision of planning tasks. In Schaub, T., Friedrich, G., and

O’Sullivan, B., editors, ECAI 2014 - 21st European Conference on Artificial Intel-

ligence, 18-22 August 2014, Prague, Czech Republic - Including Prestigious Applica-

tions of Intelligent Systems (PAIS 2014), volume 263 of Frontiers in Artificial Intelli-

gence and Applications, pages 435–440. IOS Press.

BIBLIOGRAPHY 148

[Herzig et al., 2016] Herzig, A., Lorini, E., Maffre, F., and Schwarzentruber, F. (2016).

Epistemic boolean games based on a logic of visibility and control. In Kambhampati,

S., editor, Proceedings of the Twenty-Fifth International Joint Conference on Artifi-

cial Intelligence, IJCAI 2016, New York, NY, USA, 9-15 July 2016, pages 1116–1122.

IJCAI/AAAI Press.

[Herzig et al., 2011] Herzig, A., Lorini, E., Moisan, F., and Troquard, N. (2011). A dy-

namic logic of normative systems. In Walsh, T., editor, IJCAI 2011, Proceedings of the

22nd International Joint Conference on Artificial Intelligence, Barcelona, Catalonia,

Spain, July 16-22, 2011, pages 228–233. IJCAI/AAAI.

[Herzig and Rifi, 1999] Herzig, A. and Rifi, O. (1999). Propositional belief base update

and minimal change. Artif. Intell., 115(1):107–138.

[Horrocks et al., 2006] Horrocks, I., Kutz, O., and Sattler, U. (2006). The even more

irresistible SROIQ. In Doherty, P., Mylopoulos, J., and Welty, C. A., editors, Proceed-

ings, Tenth International Conference on Principles of Knowledge Representation and

Reasoning, Lake District of the United Kingdom, June 2-5, 2006, pages 57–67. AAAI

Press.

[Jauregui, 2008] Jauregui, V. (2008). Modalities, Conditionals and Nonmonotonic Rea-

soning. PhD thesis, Department of Computer Science and Engineering, University of

New South Wales.

[Kalyanpur et al., 2007] Kalyanpur, A., Parsia, B., Horridge, M., and Sirin, E. (2007).

Finding all justifications of OWL DL entailments. In Aberer, K., Choi, K., Noy,

N. F., Allemang, D., Lee, K., Nixon, L. J. B., Golbeck, J., Mika, P., Maynard, D.,

Mizoguchi, R., Schreiber, G., and Cudré-Mauroux, P., editors, The Semantic Web, 6th

International Semantic Web Conference, 2nd Asian Semantic Web Conference, ISWC

2007 + ASWC 2007, Busan, Korea, November 11-15, 2007., volume 4825 of Lecture

Notes in Computer Science, pages 267–280. Springer.

[Katsuno and Mendelzon, 1992] Katsuno, H. and Mendelzon, A. O. (1992). On the dif-

ference between updating a knowledge base and revising it. In Gärdenfors, P., editor,

Belief revision, pages 183–203. Cambridge University Press. (preliminary version in

Allen, J.A., Fikes, R., and Sandewall, E., eds., Principles of Knowledge Representation

BIBLIOGRAPHY 149

and Reasoning: Proc. 2nd Int. Conf., pages 387–394. Morgan Kaufmann Publishers,

1991).

[Koutras et al., 2018] Koutras, C. D., Liaskos, K., Moyzes, C., and Rantsoudis, C.

(2018). Default reasoning via topology and mathematical analysis: a preliminary re-

port. In Proceedings of the 16th International Conference on Principles of Knowledge

Representation and Reasoning, KR 2018, Tempe, Arizona, October 30-November 2,

2018. To appear.

[Koutras et al., 2017a] Koutras, C. D., Moyzes, C., and Rantsoudis, C. (2017a). A recon-

struction of default conditionals within epistemic logic. In Seffah, A., Penzenstadler,

B., Alves, C., and Peng, X., editors, Proceedings of the Symposium on Applied Com-

puting, SAC 2017, Marrakech, Morocco, April 3-7, 2017, pages 977–982. ACM.

[Koutras et al., 2019] Koutras, C. D., Moyzes, C., and Rantsoudis, C. (2019). A recon-

struction of default conditionals within epistemic logic. Fundamenta Informaticae. To

appear.

[Koutras et al., 2017b] Koutras, C. D., Moyzes, C., and Zikos, Y. (2017b). A modal logic

of knowledge, belief and estimation. J. Log. Comput., 27(8):2303–2339.

[Koutras and Rantsoudis, 2015] Koutras, C. D. and Rantsoudis, C. (2015). In all, but

finitely many, possible worlds: Model-theoretic investigations on ‘overwhelming ma-

jority’ default conditionals. In Destercke, S. and Denoeux, T., editors, Symbolic and

Quantitative Approaches to Reasoning with Uncertainty - 13th European Conference,

ECSQARU 2015, Compiègne, France, July 15-17, 2015. Proceedings, volume 9161 of

Lecture Notes in Computer Science, pages 117–126. Springer.

[Koutras and Rantsoudis, 2017] Koutras, C. D. and Rantsoudis, C. (2017). In all but

finitely many possible worlds: Model-theoretic investigations on ‘overwhelming ma-

jority’ default conditionals. Journal of Logic, Language and Information, 26(2):109–

141.

[Kraus et al., 1990] Kraus, S., Lehmann, D. J., and Magidor, M. (1990). Nonmonotonic

reasoning, preferential models and cumulative logics. Artif. Intell., 44(1-2):167–207.

BIBLIOGRAPHY 150

[Lamarre, 1991] Lamarre, P. (1991). S4 as the conditional logic of nonmonotonicity. In

Allen, J. F., Fikes, R., and Sandewall, E., editors, Proceedings of the 2nd International

Conference on Principles of Knowledge Representation and Reasoning (KR’91). Cam-

bridge, MA, USA, April 22-25, 1991., pages 357–367. Morgan Kaufmann.

[Lamarre and Shoham, 1994] Lamarre, P. and Shoham, Y. (1994). Knowledge, certainty,

belief, and conditionalisation (abbreviated version). In Doyle, J., Sandewall, E., and

Torasso, P., editors, Proceedings of the 4th International Conference on Principles

of Knowledge Representation and Reasoning (KR’94). Bonn, Germany, May 24-27,

1994., pages 415–424. Morgan Kaufmann.

[Lehmann and Magidor, 1992] Lehmann, D. J. and Magidor, M. (1992). What does a

conditional knowledge base entail? Artif. Intell., 55(1):1–60.

[Lembo et al., 2010] Lembo, D., Lenzerini, M., Rosati, R., Ruzzi, M., and Savo, D. F.

(2010). Inconsistency-tolerant semantics for description logics. In Hitzler, P. and

Lukasiewicz, T., editors, Web Reasoning and Rule Systems - Fourth International Con-

ference, RR 2010, Bressanone/Brixen, Italy, September 22-24, 2010. Proceedings, vol-

ume 6333 of Lecture Notes in Computer Science, pages 103–117. Springer.

[Lenzen, 1978] Lenzen, W. (1978). Recent Work in Epistemic Logic. North-Holland.

[Lewis, 1973] Lewis, D. (1973). Counterfactuals. Blackwell.

[Liu et al., 2011] Liu, H., Lutz, C., Milicic, M., and Wolter, F. (2011). Foundations of

instance level updates in expressive description logics. Artif. Intell., 175(18):2170–

2197.

[Meyer et al., 2006] Meyer, T. A., Lee, K., Booth, R., and Pan, J. Z. (2006). Finding

maximally satisfiable terminologies for the description logic ALC. In Proceedings,

The Twenty-First National Conference on Artificial Intelligence and the Eighteenth In-

novative Applications of Artificial Intelligence Conference, July 16-20, 2006, Boston,

Massachusetts, USA, pages 269–274. AAAI Press.

[Motik et al., 2009] Motik, B., Horrocks, I., and Sattler, U. (2009). Bridging the gap

between OWL and relational databases. J. Web Sem., 7(2):74–89.

[Nute, 1980] Nute, D. (1980). Topics in Conditional Logic. Kluwer.

BIBLIOGRAPHY 151

[Parsia et al., 2005] Parsia, B., Sirin, E., and Kalyanpur, A. (2005). Debugging OWL

ontologies. In Ellis, A. and Hagino, T., editors, Proceedings of the 14th international

conference on World Wide Web, WWW 2005, Chiba, Japan, May 10-14, 2005, pages

633–640. ACM.

[Peppas et al., 1996] Peppas, P., Nayak, A. C., Pagnucco, M., Foo, N. Y., Kwok, R. B. H.,

and Prokopenko, M. (1996). Revision vs. update: Taking a closer look. In Wahlster,

W., editor, 12th European Conference on Artificial Intelligence, Budapest, Hungary,

August 11-16, 1996, Proceedings, pages 95–99. John Wiley and Sons, Chichester.

[Pratt, 1976] Pratt, V. R. (1976). Semantical considerations on floyd-hoare logic. In 17th

Annual Symposium on Foundations of Computer Science, Houston, Texas, USA, 25-27

October 1976, pages 109–121. IEEE Computer Society.

[Rantsoudis et al., 2017] Rantsoudis, C., Feuillade, G., and Herzig, A. (2017). Re-

pairing ABoxes through active integrity constraints. In Artale, A., Glimm, B., and

Kontchakov, R., editors, Proceedings of the 30th International Workshop on Descrip-

tion Logics, Montpellier, France, July 18-21, 2017., volume 1879 of CEUR Workshop

Proceedings. CEUR-WS.org.

[Rector and Rogers, 2006] Rector, A. L. and Rogers, J. (2006). Ontological and practical

issues in using a description logic to represent medical concept systems: Experience

from GALEN. In Barahona, P., Bry, F., Franconi, E., Henze, N., and Sattler, U.,

editors, Reasoning Web, Second International Summer School 2006, Lisbon, Portugal,

September 4-8, 2006, Tutorial Lectures, volume 4126 of Lecture Notes in Computer

Science, pages 197–231. Springer.

[Reiter, 1980] Reiter, R. (1980). A logic for default reasoning. Artif. Intell., 13(1-2):81–

132.

[Reiter, 1987] Reiter, R. (1987). A theory of diagnosis from first principles. Artif. Intell.,

32(1):57–95.

[Schild, 1991] Schild, K. (1991). A correspondence theory for terminological logics:

Preliminary report. In Mylopoulos, J. and Reiter, R., editors, Proceedings of the 12th

International Joint Conference on Artificial Intelligence. Sydney, Australia, August 24-

30, 1991, pages 466–471. Morgan Kaufmann.

BIBLIOGRAPHY 152

[Schlechta, 1995] Schlechta, K. (1995). Defaults as generalized quantifiers. J. Log. Com-

put., 5(4):473–494.

[Schlechta, 1997] Schlechta, K. (1997). Filters and partial orders. Logic Journal of the

IGPL, 5(5):753–772.

[Schlobach and Cornet, 2003] Schlobach, S. and Cornet, R. (2003). Non-standard rea-

soning services for the debugging of description logic terminologies. In Gottlob, G.

and Walsh, T., editors, IJCAI-03, Proceedings of the Eighteenth International Joint

Conference on Artificial Intelligence, Acapulco, Mexico, August 9-15, 2003, pages

355–362. Morgan Kaufmann.

[Schlobach et al., 2007] Schlobach, S., Huang, Z., Cornet, R., and van Harmelen, F.

(2007). Debugging incoherent terminologies. J. Autom. Reasoning, 39(3):317–349.

[Segerberg, 1970] Segerberg, K. (1970). Modal logics with linear alternative relations.

Theoria, 36(3):301–322.

[Stalnaker, 2006] Stalnaker, R. (2006). On logics of knowledge and belief. Philosophical

Studies, 128(1):169–199.

[Stockmeyer and Meyer, 1973] Stockmeyer, L. J. and Meyer, A. R. (1973). Word prob-

lems requiring exponential time: Preliminary report. In Aho, A. V., Borodin, A.,

Constable, R. L., Floyd, R. W., Harrison, M. A., Karp, R. M., and Strong, H. R., edi-

tors, Proceedings of the 5th Annual ACM Symposium on Theory of Computing, April

30 - May 2, 1973, Austin, Texas, USA, pages 1–9. ACM.

[Suntisrivaraporn et al., 2008] Suntisrivaraporn, B., Qi, G., Ji, Q., and Haase, P. (2008).

A modularization-based approach to finding all justifications for OWL DL entailments.

In Domingue, J. and Anutariya, C., editors, The Semantic Web, 3rd Asian Semantic

Web Conference, ASWC 2008, Bangkok, Thailand, December 8-11, 2008. Proceed-

ings, volume 5367 of Lecture Notes in Computer Science, pages 1–15. Springer.

[Tao et al., 2010] Tao, J., Sirin, E., Bao, J., and McGuinness, D. L. (2010). Integrity

constraints in OWL. In Fox, M. and Poole, D., editors, Proceedings of the Twenty-

Fourth AAAI Conference on Artificial Intelligence, AAAI 2010, Atlanta, Georgia, USA,

July 11-15, 2010. AAAI Press.

BIBLIOGRAPHY 153

[Tiomkin and Makowsky, 1985] Tiomkin, M. L. and Makowsky, J. A. (1985). Proposi-

tional dynamic logic with local assignments. Theor. Comput. Sci., 36:71–87.

[Troquard et al., 2018] Troquard, N., Confalonieri, R., Galliani, P., Peñaloza, R., Porello,

D., and Kutz, O. (2018). Repairing ontologies via axiom weakening. In McIlraith,

S. A. and Weinberger, K. Q., editors, Proceedings of the Thirty-Second AAAI Con-

ference on Artificial Intelligence, New Orleans, Louisiana, USA, February 2-7, 2018.

AAAI Press.

[van Eijck, 2000] van Eijck, J. (2000). Making things happen. Studia Logica, 66(1):41–

58.

[Winslett, 1988] Winslett, M. (1988). Reasoning about action using a possible models

approach. In Shrobe, H. E., Mitchell, T. M., and Smith, R. G., editors, Proceedings

of the 7th National Conference on Artificial Intelligence, St. Paul, MN, USA, August

21-26, 1988., pages 89–93. AAAI Press / The MIT Press.

[Winslett, 1990] Winslett, M.-A. (1990). Updating Logical Databases. Cambridge

Tracts in Theoretical Computer Science. Cambridge University Press.

