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Abstract
Multiple sclerosis (MS) is a chronic disease of the central nervous system, leading cause of

nontraumatic disability in young adults. MS is characterized by inflammation, demyelination and

neurodegenrative pathological processes which cause a wide range of symptoms, including cogni-

tive deficits and irreversible disability. Concerning the diagnosis of the disease, the introduction of

Magnetic Resonance Imaging (MRI) has constituted an important revolution in the last 30 years.

Furthermore, advanced MRI techniques, such as brain volumetry, magnetization transfer imaging

(MTI) and diffusion-tensor imaging (DTI) are nowadays the main tools for detecting alterations

outside visible brain lesions and contributed to our understanding of the pathological mechanisms

occurring in normal appearing white matter. In particular, new approaches based on the represen-

tation of MR images of the brain as graph have been used to study and quantify damages in the

brain white matter network, achieving promising results.

In the last decade, novel deep learning based approaches have been used for studying social

networks, and recently opened new perspectives in neuroscience for the study of functional and

structural brain connectivity. Due to their effectiveness in analyzing large amount of data, de-

tecting latent patterns and establishing functional relationships between input and output, these

artificial intelligence techniques have gained particular attention in the scientific community and

is nowadays widely applied in many context, including computer vision, speech recognition, med-

ical diagnosis, among others.

In this work, deep learning methods were developed to support biomedical image analysis, in

particular for the classification and the characterization of MS patients based on structural connec-

tivity information. Graph theory, indeed, constitutes a sensitive tool to analyze the brain networks

and can be combined with novel deep learning techniques to detect latent structural properties

useful to investigate the progression of the disease.

In the first part of this manuscript, an overview of the state of the art will be given. We will

focus our analysis on studies showing the interest of DTI for WM characterization in MS. An

overview of the main deep learning techniques will be also provided, along with examples of

application in the biomedical domain.

In a second part, two deep learning approaches will be proposed, for the generation of new,

unseen, MRI slices of the human brain and for the automatic detection of the optic disc in retinal

fundus images.

In the third part, graph-based deep learning techniques will be applied to the study of brain

structural connectivity of MS patients. Graph Neural Network methods to classify MS patients

in their respective clinical profiles were proposed with particular attention to the model interpre-

tation, the identification of potentially relevant brain substructures, and to the investigation of the

importance of local graph-derived metrics for the classification task. Semisupervised and unsu-

pervised approaches were also investigated with the aim of reducing the human intervention in the

pipeline.



Résumé
La sclérose en plaques (SEP) est une maladie chronique du système nerveux central, principale

cause de handicap d’origine non traumatique chez l’adulte jeune. Il se caractérise par de nombreux

processus de démyélinisation inflammatoire qui provoquent une vaste gamme de symptômes, no-

tamment des déficits cognitifs et invalidité irréversible. L’imagerie par résonance magnétique

(IRM) est aujourd’hui l’outil de référence pour le diagnostic de la maladie. L’emploi de tech-

niques d’imagerie avancées comme la spectroscopie par résonance magnétique et l’IRM de diffu-

sion (DTI) sont les principaux outils de détection des altérations autres que les lésions cérébrales

visibles. Ces techniques ont également permis de mieux comprendre mécanismes pathologiques

dans la substance blanche. En particulier, de nouvelles approches basées sur la représentation

d’images IRM utilisant la théorie des graphes ont été appliquées avec succès pour l’étude et la

quantification des dommages à la substance blanche.

La dernière décennie a vu l’émergence de prometteuses méthodes d’apprentissage profond

pour l’étude des réseaux sociaux. Ces méthodes ont ouvert des perspectives fascinantes en neu-

rosciences pour l’étude de la connectivité structurelle et fonctionnelle du cerveau. Grâce à leur

capacité à analyser d’énormes quantités de données et à identifier les relations latentes, ce do-

maine de l’intelligence artificielle a connu un assez grand succès dans la communauté scientifique

et s’applique désormais dans de nombreux contextes, notamment le diagnostic médical.

Dans ce manuscrit, nous présenterons les différentes techniques d’apprentissage profond dévelop-

pées dans ce travail concernant l’analyse des images biomédicales et, en particulier, pour la clas-

sification et la caractérisation des patients atteints de SEP. Dans ce contexte, la connectivité struc-

turelle est utilisée pour représenter les patients. En fait, la théorie des graphes est devenue un outil

sensible pour la détection des altérations causées par les pathologies cérébrales, et peut être com-

binée à des techniques d’apprentissage automatique afin d’identifier les propriétés structurelles

latentes utiles pour étudier la progression de la maladie.

La première partie de ce manuscrit est consacré à la description de l’état de l’art. Cet état

de l’art se focalisera sur les études montrant les effets de la SEP sur les faisceaux de SB grâce

à l’emploi de l’imagerie de tenseur de diffusion. Une description des principales techniques

d’apprentissage profond sera également fournie, ainsi que des exemples d’applicabilité dans le

contexte biomédical.

Dans la seconde partie, deux techniques d’apprentissage profond seront proposées, concer-

nant la génération de nouvelles images IRM du cerveau humain et l’identification automatique du

disque optique dans les images du fond oculaire.

Dans la troisième partie, nous présenterons les techniques d’apprentissage profond combinées

à la théorie des graphiques que développée dans ce travail pour étudier la connectivité structurelle

des patients atteints d’une SEP. Nous présenterons en particulier des modèles de réseaux de neu-

rones basés sur la théorie des graphes pour la classification des patients dans leurs formes clin-

iques. Une attention particulière sera accordée à l’interprétation de ces modèles afin d’identifier

les sous-structures cérébrales potentiellement importantes. Enfin, nous explorerons des approches

semi-supervisées et non supervisées pour réduire l’intervention humaine dans les processus de

décision.



Sommario
La sclerosi multipla (SM) è una malattia cronica del sistema nervoso centrale, principale causa

di disabilità non traumatica nei giovani adulti. Essa è caratterizzata da numerosi processi di

demielinizzazione infiammatoria che causano un’ampia gamma di sintomi, inclusi deficit cog-

nitivi e disabilità irreversibile. Per quanto riguarda la diagnosi della patologia, l’introduzione della

risonanza magnetica (RM) ha rappresentato la più importante rivoluzione degli ultimi 30 anni.

Tecniche avanzate di risonanza magnetica come la volumetria cerebrale, l’imaging a trasferimento

di magnetizzazione e l’imaging a tensore di diffusione (DTI), sono oggi i principali strumenti per

rilevare alterazioni diverse dalle lesioni cerebrali visibili e hanno contribuito ad una migliore com-

prensione dei meccanismi patologici che si verificano nella materia bianca. In particolare, nuovi

approcci basati sulla rappresentazione di immagini di RM tramite la teoria dei grafi sono stati

applicati con successo per lo studio e la quantificazione di danni della materia bianca.

L’ultimo decennio ha visto nascere nuovi promettenti metodi basati sul deep learning per lo

studio di reti sociali, che hanno aperto intriganti prospettive in neuroscienza per lo studio della

connettività cerebrale strutturale e funzionale. Grazie alla loro capacità di analizzare imponenti

quantità di dati e individuare pattern latenti, infatti, questo campo dell’intelligenza artificiale ha

ottenuto un discreto successo nella comunità scientifica ed è oggi applicato in numerosi contesti,

inclusa la diagnosi medica.

In questo elaborato saranno presentate le diverse tecniche basate sul deep learning da noi

sviluppate per il supporto all’analisi di immagini biomediche e, in particolare, per la classificazione

e la caratterizzazione di pazienti affetti da SM. In questo contesto, i pazienti sono rappresentati

utilizzando informazioni circa la loro connettività strutturale. La teoria dei grafi, infatti, costituisce

un potente strumento per analizzare la connettività cerebrale e può essere combinata con tecniche

di apprendimento automatico al fine di individuare proprietà strutturali latenti utili ad investigare

la progressione della malattia.

Nella prima parte di questo manoscritto forniremo una panoramica dello stato dell’arte. Ci

concentreremo sugli studi riguardanti l’importante ruolo delle DTI per la caratterizzazione della

SM. Una panoramica sulle principali tecniche di deep learning sarà inoltre fornita, insieme ad

esempi di applicabilità nel contesto biomedico.

Nella seconda parte, due tecniche di deep learning saranno proposte, riguardanti la generazione

di nuove immagini di RM del cervello umano e l’individuazione automatica del disco ottico in

immagini del fondo oculare.

Nella terza parte saranno presentate le tecniche di deep learning combinate con la teoria dei

grafi da noi elaborate per lo studio della connettività strutturale di pazienti affetti da SM. Pre-

senteremo in particolare modelli di reti neurali basate su grafi per la classificazione dei pazienti

nelle rispettive forme cliniche. Particolare attenzione verrà posta sull’interpretazione dei modelli

al fine di identificare sotto-strutture cerebrali potenzialmente rilevanti. Infine, esploreremo ap-

procci semi-supervisionati e non-supervisionati al fine di ridurre l’intervento umano nei processi

di decisione.



Contents

Abstract viii

Résumé ix

Sommario x

Contents xiv

List of Figures xviii

List of Symbols xix

Introduction 1

I State of the art 3

1 Magnetic Resonance Imaging 5
1 Magnetic Resonance Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1 Principle of Magnetic Resonance Imaging . . . . . . . . . . . . . . . . . 6

1.2 Conventional MRI Sequences . . . . . . . . . . . . . . . . . . . . . . . 7

2 Diffusion MRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 The Physical Phenomenon . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Acquisition Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Diffusion Tensor Imaging . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Estimate White Matter Tracts Course: Tractography . . . . . . . . . . . 11

3 Brain Connectivity Analysis using Graph Theory . . . . . . . . . . . . . . . . . 12

3.1 Graph Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 DTI Based Structural Connectivity . . . . . . . . . . . . . . . . . . . . . 14

3.3 Complex Network Analysis . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Multiple Sclerosis 19
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 Epidemiology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Etiology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Clinical Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1 Clinically Isolated Syndrome (CIS) . . . . . . . . . . . . . . . . . . . . 23

4.2 Relapsing Remitting (RR) . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.3 Secondary Progressive (SP) . . . . . . . . . . . . . . . . . . . . . . . . 23

xi



4.4 Primary Progressive (PP) . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6 Medical Treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Deep Learning 27
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.1 Learning Paradigms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2 Backpropagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3 Activation Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Deep Learning Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Graph Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Recurrent Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Topic of the thesis 41

II Supporting Biomedical Analysis Using Deep Learning 43

1 Biomedical Data Augmentation Using Generative Adversarial Networks 45
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3 Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1 Generative Adversarial Neural Networks . . . . . . . . . . . . . . . . . 47

3.2 Laplacian Pyramid of Adversarial Networks . . . . . . . . . . . . . . . . 48

3.3 Generating MRI slices of the brain . . . . . . . . . . . . . . . . . . . . . 48

4 Experimental Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1 Dataset description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Training phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4 Quantitative image quality assessment . . . . . . . . . . . . . . . . . . . 50

4.5 Human evaluation of generated images . . . . . . . . . . . . . . . . . . 51

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2 Optic Disc Detection Using Fine Tuned Convolutional Neural Networks 53
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3 Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.1 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . . . 56

3.2 Transfer Learning and Fine-Tuning . . . . . . . . . . . . . . . . . . . . 56

3.3 Reinspection Algorithm Model Overview . . . . . . . . . . . . . . . . . 57

3.4 The GoogLeNet-OverFeat algorithm . . . . . . . . . . . . . . . . . . . . 57

3.5 Fine Tuning for Optic Disc Detection . . . . . . . . . . . . . . . . . . . 58

4 Experimental Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.1 Dataset description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 Tuning of Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61



5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

III Neural Networks for Neurological Complex Network Analysis in Multiple
Sclerosis 65

1 Classification of Multiple Sclerosis Clinical Profiles via Graph Convolutional Net-
works 67
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

2.1 MRI Acquisition and data set description . . . . . . . . . . . . . . . . . 71

2.2 Brain Structural Connectivity Graph . . . . . . . . . . . . . . . . . . . . 72

2.3 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

2.4 Graph-based Neural Networks . . . . . . . . . . . . . . . . . . . . . . . 73

2.5 Graph Local Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

2.6 Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

2.7 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.1 Conventional MRI Data Analysis . . . . . . . . . . . . . . . . . . . . . 77

3.2 Local Graph Metrics Analysis . . . . . . . . . . . . . . . . . . . . . . . 79

3.3 Classification using Unweighted Adjacency Matrix . . . . . . . . . . . . 80

3.4 Classification using Weighted Adjacency Matrix . . . . . . . . . . . . . 80

3.5 Classification of Control Subjects vs MS patients . . . . . . . . . . . . . 81

3.6 Early vs Progressive Forms Comparison . . . . . . . . . . . . . . . . . . 83

4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

2 Semisupervised Classification of Multiple Sclerosis Clinical Profiles 89
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

2 Material and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

2.1 Dataset Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

2.2 Deep Autoencoder Classifier . . . . . . . . . . . . . . . . . . . . . . . . 91

2.3 Semisupervised Training . . . . . . . . . . . . . . . . . . . . . . . . . . 92

2.4 Pseudo-labelling Training . . . . . . . . . . . . . . . . . . . . . . . . . 93

3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.1 Evaluation of sample selection criteria . . . . . . . . . . . . . . . . . . . 94

3.2 Evaluation of initial number of labeled data . . . . . . . . . . . . . . . . 95

3.3 Subsample iteration selection . . . . . . . . . . . . . . . . . . . . . . . 96

3.4 Encoding space analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3 Tensor Factorization for Unsupervised Multiple Sclerosis Detection 103
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

2 Material and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

2.2 Dimensionality Reduction using Tensor Factorization . . . . . . . . . . . 105

2.3 Unsupervised Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . 106

3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107



3.1 MS Identification Using Clustering Analysis . . . . . . . . . . . . . . . 107

3.2 Unsupervised Classification of MS Clinical Profiles . . . . . . . . . . . . 107

4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4 Beyond Classification: A Logic-Based Framework Leveraging
Neural Networks for Studying the Evolution of
Neurological Disorders 113
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

2.1 Background on Answer Set Programming . . . . . . . . . . . . . . . . . 118

3 Framework and Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4 Specializations of the framework . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.1 From MRI to Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.2 Specialization of the Classifier . . . . . . . . . . . . . . . . . . . . . . . 124

4.3 Specialization of the Classification Validity Checker . . . . . . . . . . . 125

4.4 Specialization of the Exit Condition . . . . . . . . . . . . . . . . . . . . 125

4.5 Specializations for three different use cases . . . . . . . . . . . . . . . . 126

5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.1 Experiments on the application of the framework to simulate MS evolution 132

5.2 Experiments on performances . . . . . . . . . . . . . . . . . . . . . . . 140

5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6 Integrated Web Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

7 Specialization of the framework to other scenarios . . . . . . . . . . . . . . . . . 148

7.1 Specialization of the framework to other neurological disorders . . . . . 149

7.2 Specialization of the framework in the context of Social Networks . . . . 150

8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

IV Conclusions and Perspectives 153

1 Conclusions 155

2 Perspectives 157

Bibliography 178

Curriculum Vitae 181

List of Publications 185



List of Figures

I State of the art 5

Magnetic Resonance Imaging 6
1.1 Pulsed Gradient Spin-Echo sequence. . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Representation of the diffusion tensor. . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 Schematic demonstration of the tractography algorithm with DTI. . . . . . . . . 12

1.4 Structural and functional brain networks created through three main steps: (i) def-

inition of network nodes (ii) estimation of a continuous measure of association

between nodes (iii) generation of an association matrix by compiling pairwise

associations between nodes. Image from Bullmore et al. [Bullmore and Sporns

(2009)]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Multiple Sclerosis 20
2.1 Worldwide Multiple Sclerosis prevalence. . . . . . . . . . . . . . . . . . . . . . 20

2.2 Structure of a nerve cell. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Classification of multiple sclerosis clinical forms according to the patients disabil-

ity progression. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Differential diagnosis table of Multiple Sclerosis. . . . . . . . . . . . . . . . . . 25

2.5 MS positive diagnosis criteria. . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Deep Learning 28
3.1 Hypothesis space of possible weight vectors and their associated error values. . . 31

Topic of the thesis 41

II Supporting Biomedical Analysis Using Deep Learning 45

Biomedical Data Augmentation Using Generative Adversarial Networks 46
1.1 Real (left) images compared with artificial (right) images . . . . . . . . . . . . . 49

1.2 Density function (left) and Cumulative Density function (right) comparison of

generated (orange ) and real (blue ) datasets. . . . . . . . . . . . . . . . . . 51

Optic Disc Detection Using Fine Tuned Convolutional Neural Networks 54
2.1 Application of GoogLeNet for optic disc detection . . . . . . . . . . . . . . . . 59

xv



2.2 Recall performances in optic disc identification according to Learning Rate and

Epochs on DRIONS database . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.3 Recall performances in optic disc identification according to Learning Rate and

Epochs on DRIVE database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.4 Example of optic disc identification in images with high level of damages . . . . 62

III Neural Networks for Brain Networks Analysis in Multiple Sclerosis 67

Classification of Multiple Sclerosis Clinical Profiles via Graph Convolutional Networks 69
1.1 Differences between groups found in statistical analysis performed using unweighted

local graph metrics. Blue and Red regions represent negative and positive differ-

ences, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

1.2 Differences between groups found in statistical analysis performed using weighted

local graph metrics. Blue and Red regions represent negative and positive differ-

ences, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

1.3 Box plot in term of F-Measure for each different unweighted feature [Degree (D),

Betweenness Centrality (BC), Clustering Coefficient (CC), Local Efficiency (E),

with all graph-metrics (all-graphs)] and without features (identity). . . . . . . . . 80

1.4 Box plot in term of F-Measure for each different weighted feature [Degree (D),

Betweenness Centrality (BC), Clustering Coefficient (CC), Local Efficiency (E),

with all graph-metrics (all-graphs)] and without features (identity). . . . . . . . . 81

1.5 average F-Measure comparison for weighted and unweighted approach for each

feature [Degree (D), Betweenness Centrality (BC), Clustering Coefficient (CC),

Local Efficiency (E), with all graph-metrics (all-graphs)] and without features

(identity). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

1.6 average F-Measure comparison for weighted and unweighted approach [HC vs

(CIS+RR)] for each feature [Degree (D), Betweenness Centrality (BC), Clustering

Coefficient (CC), Local Efficiency (E), with all graph-metrics (all-graphs)] and

without features (identity). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

1.7 average F-Measure comparison for weighted and unweighted approach [HC vs

(SP+PP)] for each feature [Degree (D), Betweenness Centrality (BC), Clustering

Coefficient (CC), Local Efficiency (E), with all graph-metrics (all-graphs)] and

without features (identity). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

1.8 average F-Measure comparison for weighted and unweighted approach [HC vs

SP vs PP vs RR vs CIS] for each feature [Degree (D), Betweenness Centrality

(BC), Clustering Coefficient (CC), Local Efficiency (E), with all graph-metrics

(all-graphs)] and without features (identity). . . . . . . . . . . . . . . . . . . . . 85

1.9 average F-Measure comparison for weighted and unweighted approach [(CIS+RR)

vs (SP+PP)] for each feature [Degree (D), Betweenness Centrality (BC), Cluster-

ing Coefficient (CC), Local Efficiency (E), with all graph-metrics (all-graphs)] and

without features (identity). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Semisupervised Classification of Multiple Sclerosis Clinical Profiles 90
2.1 Results, in terms of F-Measure for each binary task, obtained at each iteration

using balanced sampling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

2.2 Results, in terms of F-Measure for each multiclass task, obtained at each iteration

using balanced sampling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94



2.3 Results, in terms of F-Measure for each binary task, obtained at each iteration

using proportional sampling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

2.4 Results, in terms of F-Measure for each multiclass task, obtained at each iteration

using proportional sampling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

2.5 Results, in terms of F-Measure for each binary task using different percentages of

initial labeled samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

2.6 Results, in terms of F-Measure for each binary task using different percentages of

selected sample in each iteration. . . . . . . . . . . . . . . . . . . . . . . . . . . 98

2.7 Visualization of bidimensional encoding space generated by autoencoder from it-

eration 1 (left) to iteration 5 (right) in SP (blue) vs PP (violet) task. . . . . . . . . 99

Tensor Factorization for Unsupervised Multiple Sclerosis Detection 104
3.1 Graphic representation of the canonical polyadic decomposition (CPD). . . . . . 105

3.2 Illustration of the latent space computed by tensor factorization for each experi-

ment (HC vs CIS , HC vs RR, HC vs PP) and for PCA, Tensor factorization and

TSNE. Different shapes represent the two clusters assigned by the k-means algo-

rithm while different colors represent the real classes. . . . . . . . . . . . . . . . 108

Beyond Classification: A Logic-Based Framework Leveraging
Neural Networks for Studying the Evolution of
Neurological Disorders 115
4.1 Architecture of the proposed framework . . . . . . . . . . . . . . . . . . . . . . 120

4.2 An ASP encoding for the Classification Validity Checker. . . . . . . . . . . . . . 126

4.3 An ASP encoding for the Max Clique problem. . . . . . . . . . . . . . . . . . . 128

4.4 Summary of results on the correlation between Density and Assortativity and MS

stages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

4.5 An ASP encoding for analyzing the decrease of a graph metric. . . . . . . . . . . 130

4.6 An ASP encoding for the Max Clique problem maximizing the use of impor-

tant/not important edges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

4.7 An ASP encoding for analyzing the decrease of a graph metric maximizing the use

of important/not important edges. . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.8 Results for Clique (iterations i = 0..4). . . . . . . . . . . . . . . . . . . . . . . . 136

4.9 Results for Min Vertex-Cover (iterations i = 0..4). . . . . . . . . . . . . . . . . . 137

4.10 Results for k-hub (iterations i = 0..4). . . . . . . . . . . . . . . . . . . . . . . . 138

4.11 Results for Density (iterations i = 0..4). . . . . . . . . . . . . . . . . . . . . . . 139

4.12 Results for Assortativity (iterations i = 0..4). . . . . . . . . . . . . . . . . . . . . 140

4.13 Variation of classification results removing important/not important edges. . . . . 141

4.14 Analyzing structural properties and graph metrics considering important/not im-

portant edges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

4.15 Execution times for one iteration of the framework, considering the three structural

properties Max Clique, Min Vertex-Cover, and k-hub. Bottom graphs show exe-

cution times for one iteration of the framework on Max Clique considering either

important or not important edges. . . . . . . . . . . . . . . . . . . . . . . . . . . 143

4.16 Execution times for four iteration of the framework. . . . . . . . . . . . . . . . . 143

4.17 Impact of each module of the framework in the running time of one iteration. . . 144

4.18 Running time of the Brain Evolution Simulation module on simulated graphs with

increasing number of edges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145



4.19 Running time of the Brain Evolution Simulation module on simulated graphs with

increasing number of nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

4.20 Screenshot of the integrated web environment . . . . . . . . . . . . . . . . . . . 147

4.21 An example of how the environment encompasses results. . . . . . . . . . . . . . 149

IV Conclusions and Perspectives 155

Conclusions 155

Perspectives 157



List of symbols and abbreviations

Latin letters

�B0 Magnetic field

Greek letters

λ1,2,3 EigenValues of diffusion tensor
�ε1,2,3 EigenVectors of diffusion tensor

λ1 Axial Diffusivity

λr Radial Diffusivity

Abbreviations

ANN Artificial Neural Network

ASP Answer Set Programming

CIS Clinically Isolated Syndrome

CNN Convolutional Neural Network

CNS Central Nervous System

CSF Cerebrospinal Fluid

CST Cortico-Spinal Tract

CPD Canonical Polyadic Decomposition

DI Diffusion Imaging

dMRI Diffusion Magnetic Resonance Imaging

DNN Deep Neural Network

DSC Sørensen-Dice Score Coefficient

DTI Diffusion Tensor Imaging

EDSS Expanded Disability Status Scale

GANN Generative Adversarial Neural Network

GCNN Graph Convolutional Neural Network

GM Grey Matter

GNN Graph Neural Networks

GPU Graphic Processing Units

HC Healthy Control

MRI Magnetic Resonance Imaging

MS Multiple Sclerosis

OD Optic Disc

PP Primary Progressive

xix



RR Relapsing Remitting

SP Secondary Progressive

SVM Support Vector Machine

WM White Matter



Introduction

Among the cause of non-traumatic disability in young adults, Multiple Sclerosis (MS) is one

of the most important and frequent. MS is an inflammatory and neurodegenerative autoimmune

disease that gradually disrupt communication randomly in the central nervous system. It may

cause a wide range of symptoms, including cognitive deficits and irreversible disability. Despite

the fact that the etiology still remains unknown, there is a common agreement to describe individ-

ual patient’s disease form based on four clinical profiles that illustrate temporal information about

the ongoing disease process. Patients usually experience a first neurological episode, called Clin-

ically Isolated Syndrome (CIS). This form may evolve into the Relapsing-Remitting (RR) course

and, successively, into a Secondary-Progressive (SP) course. The remaining 15% of patients start

directly with the Primary-Progressive (PP) course. The exact cause of MS is still unknown, as

well as the exact evolution mechanisms of the disease. The large unpredictability course in an

individual MS patient, in fact, represents one of the most disturbing aspects and makes clinical

management difficult.

Magnetic resonance imaging (MRI) is nowadays the reference tool for the diagnosis and the

investigation of neurological diseases, including MS. In particular, the T1-weighted sequences

(with and without contrast agent injection) and T2 allow us to identify and characterize white mat-

ter lesions and to measure the lesion load on the one hand, and cerebral atrophy on the other hand.

However, these measures are only moderately correlated with the patient’s clinical condition, and

in particular with his disability. Besides, these techniques offer little information about the under-

lying pathophysiological mechanisms. The use of advanced imaging techniques such as magnetic

resonance spectroscopy (MRS) and diffusion MRI offers the prospect of a better understanding

of these mechanisms and could eventually lead to a better prediction of the clinical course of the

patient.

Artificial Neural Networks (ANN) constitute a family of machine learning methods loosely in-

spired by the human brain. Due to their effectiveness in analyzing large amount of data, detecting

latent patterns and establishing functional relationships between inputs and outputs, ANN have

gained attention in the scientific community, and are nowadays widely applied in many contexts

such as computer vision, speech recognition, but also medical diagnosis, prognosis and survival

analysis. In recent years, Neural Network-based approaches for classifying patients affected by

Multiple Sclerosis in their respective clinical profiles have achieved remarkable results. In partic-

ular, graph-based techniques exploit the structural connectivity representation of the white matter

networks to well detect and characterize the presence of pathological mechanisms in the brain
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networks that are invisible to conventional MRI. Quantifying damages in the brain white mat-

ter networks by means of functional and structural brain connectivity using graph theory, indeed,

achieved promising results, becoming one of the most successful approach of the last decade. Such

networks consist of nodes, corresponding to segmented cortical regions, and links, reconstructed

by tractography of DTI from WM fibers-tracts.

In the first part of this work, a general introduction about the main concept object of this

thesis is provided. It is divided in three chapters. In the first, we illustrate the concept of MRI

and diffusion MRI, and their role in human brain investigation, including the MS context. We

describe how structural connectivity representation of the white matter networks can be extracted

from diffusion MRI images and the role of complex network analysis in detecting MS pathological

alterations. In the second chapter, MS disease is illustrated by describing the main aspects of the

disease. The presentation begins with the description of the world epidemiology. Then, elements

of physiopathology are recalled. Finally, the clinical aspects are presented, starting with the natural

history of the disease and the description of the different clinical phenotypes. The third chapter

illustrates the main concept behind deep learning. Starting from the definition of ANN, a detailed

description of the various techniques will be provided, along with different examples of their

application in the biomedical domain. In the last chapter, we will discuss in more detail the scope

of this thesis.

In the second part, we propose two deep learning approaches adapted to biomedical analysis.

In the first chapter, we present the application of a specific type of Generative Models, namely

Generative Adversarial Neural Networks, to the generation of new, unseen, MRI slices of the

human brain. In the second chapter, a deep learning method to automatically detect the optic disc

in retinal fundus images is develped.

In the third, and the last part, graph-based deep learning techniques are applied to the analysis

of brain structural connectivity of MS patients. The first chapter propose a Graph Neural Network

method to classify MS patients in their respective clinical profiles. Particular attention was given

to the model interpretation and to the investigation of the importance of local graph-derived met-

rics for the classification task. In the following two chapters, semisupervised and unsupervised

approaches are explored with the purpose of reducing the human intervention in the pipeline. In

the last chapter, a general logic based framework will be presented, intended as a proof-of-concept

showing how the integration of rule-based systems and neural networks can provide a remarkable

impact in simplifying the study of complex mechanisms. Several experiments will be illustrated to

investigate whether specific structures of the brain are more likely to be affected by the pathology.

Finally, we draw the conclusions of this work and highlight the most interesting perspectives

for clinical applications.
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Magnetic Resonance Imaging

Contents
1 Magnetic Resonance Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1 Principle of Magnetic Resonance Imaging . . . . . . . . . . . . . . . . 6

1.2 Conventional MRI Sequences . . . . . . . . . . . . . . . . . . . . . . 7

2 Diffusion MRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 The Physical Phenomenon . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Acquisition Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Diffusion Tensor Imaging . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Estimate White Matter Tracts Course: Tractography . . . . . . . . . . 11

3 Brain Connectivity Analysis using Graph Theory . . . . . . . . . . . . . . 12

3.1 Graph Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 DTI Based Structural Connectivity . . . . . . . . . . . . . . . . . . . . 14

3.3 Complex Network Analysis . . . . . . . . . . . . . . . . . . . . . . . 14

5



CHAPTER 1. MAGNETIC RESONANCE IMAGING

1 Magnetic Resonance Imaging

Understanding the structural basis of functional connectivity patterns requires a comprehensive

map of structural connections of the human brain. Magnetic Resonance Imaging (MRI), is a

method of imaging the interior of structures in a non-invasive way. It is an important diagnostic

method because it is non-invasive, safe, and yields information that cannot be obtained with any

other techniques. Thanks to the ever-increasing accuracy and resolution, imaging techniques have

recently expanded in new directions. Technological developments in non-invasive neuroimaging

combined with powerful network modelling tools, have opened up new frontiers.

1.1 Principle of Magnetic Resonance Imaging

MRI makes use of the magnetic properties of certain atomic nuclei. Atomic nuclei consist

of protons with positive charge and neutron charge with zero charge. These nuclear particles

are characterized by specific intrinsic properties, such as mass and electric charge. At the base

of the phenomenon of nuclear magnetic resonance there is a property called spin, which can be

represented as a motion of rotation of the particles around its own axis. This behaviour can be

compared to a perfectly balanced not rotating spinning: it lacks moment angular and, if touched,

falls immediately. When the top is rotating around on its own axis, if touched or disturbed it

does not fall immediately, but enters a movement of rotation of its rotational axis around the

direction of the earth’s gravitational field, called precession movement. Atomic nuclei possess

intrinsically this property, as if they were in constant rotation, but their intrinsic angular moment

or spin is influenced by magnetic fields and not gravity, unlike angular “classic" momentum like

that possessed by a spinning top. In more detail, when the atomic nuclei is placed in a magnetic

field (denoted with �B0) the direction of the spins follows the direction of �B0. The alignment of the

spin with the magnetic field �B0 generates a magnetization �M defined as:

�M =
Σ�μ
dV

where�μ represents the magnetic moment in the magnetic field �B0. The frequency of precession

is governed by the Larmor equation, defined as:

�ω =−γ �B0.

where γ is the magnetogyric ratio and every nucleus has its own specific value. Under the

influence of a radio frequency (RF) wave, it is possible to perturbate the magnetization created by

the field �B0. This perturbation leads to the transition of the nuclei from their state of energy (res-

onance), simultaneously producing a radio signal. This is detected using antennas (coils) and can

be used for making detailed images of body tissues. Indeed, due to differences in tissue character-

istics the rate of relaxation differs in each part of the brain and thus sends a slightly different signal

back to the receiver coil. By decoding where that signal came from a 3D images of brain structure

can be created. In general, MRI is possible only for nuclei with non-zero spin, or nuclei for which

6 Aldo MARZULLO



1. MAGNETIC RESONANCE IMAGING

both protons and neutrons are not even numbered. For the formation of biomedical images the

hydrogen nucleus H+ (consisting of a single proton) is used, which due to its abundance and high

gyagnagnetic constant is ideal for producing and returning the greatest quantity of signal.

Recovery of Longitudinal Magnetization and Relaxation times

The RF pulse brings the proton system into a situation of imbalance due to the amount of

energy absorbed and the consequent increase in potential energy that generates instability and a

tendency to restore the conditions of initial equilibrium. The actual longitudinal magnetization is

a function of the tissue-specific relaxation rate, the time needed for the realignment of the magne-

tization with the main magnetic field.

The longitudinal recovery describes the regrowth of the magnetization component in the z

direction. It is a relaxation time constant which is an intrinsic property of each tissue. After a

90◦ pulse, when all the z component is tipped into the transverse plane (M), T1 is the number

of milliseconds it takes to grow to the 63% of the original orientation (Mz). The relationship is

described by the following equation:

Mz(t) = Mz(0)
(

1− e−
t

T 1

)
(1.1)

T2, or transverse, relaxation describes the decay of the signal in the xy plane. It occurs due to

the interactions between spins as energy is released followed an RF pulse. T2 decay is the number

of milliseconds for 37% of the magnetization in the xy (Mxy) plane. It is described by the equation:

Mxy(t) = Mxy(0)e−
t

T 2 (1.2)

1.2 Conventional MRI Sequences

The basic MRI techniques to obtain brain images are called conventional MRI (cMRI) se-

quences. With this name, we usually refer to a well-defined set of standard MRI acquisition

techniques that allow to obtain simple, yet informative anatomical in-vivo images of the brain,

or, in general, human body. By varying the sequence of RF pulses applied and collected, differ-

ent types of images are created. In particular, consider the two paramenters (i) Repetition Time

(TR), the amount of time between successive pulse sequences applied to the same slice (ii) Time

to Echo (TE), the time between the delivery of the RF pulse and the receipt of the echo signal.

By varying TR and TE the most common MRI sequences are produced, including T1-weighted

and T2-weighted scans and Fluid Attenuated Inversion Recovery (Flair). These techniques were

particularly successful for many reasons. They do not use x-ray radiation, unlike traditional x-ray

or Computed Tomography (CT) imaging. They are non-invasive and provide images with excel-

lent contrast detail of soft tissue and anatomic structures like grey and white matter in the brain or

small metastatic lesions (cancers).
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T1-Weighted Imaging

T1-weighted sequence is obtained by tuning the TR parameter to be less than T1 time (500

ms) and the TE value to be less than T2 time (14 ms). T1-weighted sequence is particularly sen-

sible, providing the best contrast for paramagnetic contrast agents (e.g. a gadolinium-containing

compounds). This property is extremely important especially in clinical settings where contrast

agents are essential to perform a correct diagnosis, particularly in brain-related pathologies.

T2-Weighted Imaging

T2-weighted sequence is obtained by tuning the values of the TR and TE acquisition parame-

ters to be greater than T1 (4000 ms) and less than T2 (90 ms), respectively. T2-weighted images

provide better contrast between pathological tissue and normal tissue. In particular, dominant sig-

nals come from: fluids (like Cerebrospinal fluid) that result to be white, grey matter (grey) and

white matter.

T2 FLAIR Imaging

The FLAIR sequence is similar to a T2-weighted image except that the TE and TR times are

very long (greater than 9000 ms and 114 ms, respectively). By doing so, abnormalities remain

bright but normal cerebrospinal fluid (CSF) is attenuated and made dark. This sequence makes

the differentiation between CSF and an abnormality much easier and for this reason, T2-FLAIR

images are useful to help the diagnosis of several neurodegenerative pathologies.

2 Diffusion MRI

The goal of diffusion MRI (dMRI) and specifically Diffusion Tensor Imaging (DTI) is to image

the diffusion of water in the brain. The key idea behind diffusion rely on the concept that water

is always moving (Brownian motion, [Brown (1828)]). In a perfectly homogeneous environment,

water moves with equal probability in all directions. However, the human body environment has

complex diffusion properties and the relative proportion of the water distribution between intra and

extracellular compartments is affected by the pathologic processes. Diffusion weighted imaging

(DWI) provides qualitative and quantitative information about the diffusion properties. It allows

the mapping of the diffusion process of molecules in biological tissues, in vivo and non-invasively.

A special kind of DWI, diffusion tensor imaging (DTI), has been used extensively to map white

matter tractography in the brain.

2.1 The Physical Phenomenon

The term Diffusion refers to a random transport phenomenon, which describes the transfer of

material from one spatial location to another over time. The rate of diffusion in three dimension at

a fixed temperature was described by Einstein in 1905 [Einstein (1956)]:
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r2 = 6Dt

where r2 is the mean square displacement of the molecules, t is the diffusion time and D is a

constant value defined as follow:

D =
kBT

6πηR

kB is the Boltzmann constant, T is the temperature of the medium, η is the dynamic viscosity

of the medium and R is the radius of the spherical particle. In the case of studying in vivo the

brain structure in humans, the type of diffusion being investigated is water self-diffusion, meaning

the thermal motion of water molecules in a medium that itself consists mostly of water [Thomsen

et al. (1987), Mukherjee et al. (2008)].

2.2 Acquisition Sequence

Modern diffusion-weighted sequences all trace their origin to the Pulsed Gradient Spin-Echo

(PGSE) technique developed by Edward Stejskal and John Tanner in the mid-1960’s [Stejskal and

Tanner (1965)]. This pioneering work allowed for the first time to obtain in vivo images of the

brain showing the diffusion in tissue.

Figure 1.1: Representation of Pulsed Gradient Echo-Spin sequence. δ represents the duration of

each gradient, Δ is the interval between the onset of the diffusion gradient before the refocusing

pulse and that after the refocusing pulse, G is the amplitude of the diffusion gradient and RF
indicates radiofrequency pulses.

As shown in Figure 1.1, the diffusion-weighted pulse sequence is composed by the addition of

two symmetric, strong diffusion-sensitizing gradients (DG’s), applied on either side of the 180◦-

pulse. Immediately following the second DG, an image acquisition module is placed. This is

typically an echo-planar sequence using rapidly oscillating phase and frequency gradients that

generate multiple gradient echoes.

Molecular motion results in loss of signal intensity due to incomplete rephasing of water proton

spins, which change position between and during the applications of the 2 diffusion-sensitizing
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gradients [Mukherjee et al. (2008)]. This diffusion-weighted contrast can be fit to an exponential

model:

S = S0e−b·ADC

log(S) = log(S0)−b ·ADC (1.3)

where S represents the diffusion weighted intensity in a specific voxel, S0 is the signal intensity

in the same voxel obtained without the application of diffusion gradients, and ADC is the apparent

diffusion coefficient.

The value of b, who represents a measure of the diffusion weighting, is defined by the follow-

ing equation:

b = γ2G2δ 2

(
Δ− δ

3

)
(1.4)

where γ is the gyromagnetic ratio, G is the amplitude of the diffusion gradient, δ represents the

duration of each gradient and Δ is the interval between the onset of the diffusion gradient before

the refocusing pulse and that after the refocusing pulse. Its unity is seconds per square millimetres.

Typical values of b used in clinical applications range from 600 to 1500.

According to the equation of S is then possible to obtain the value for the ADC in each voxel.

The equation can be rewritten as follow:

ADC =
log S

S0

b

ADC value is a quantitative parameter used to study and measure diffusion changes due to the

presence of various pathologies related to the brain [Albers (1998), Maier et al. (2010), Balashov

and Lindzen (2012)].

2.3 Diffusion Tensor Imaging

In fibrous tissues including white matter, water diffusion is relatively unimpeded in the direc-

tion parallel to the fiber orientation. Conversely, water diffusion is highly restricted and hindered

in the directions perpendicular to the fibers. Thus, the diffusion in fibrous tissues is anisotropic.

As we showed in the last two sections, dMRI is a powerful tool to obtain a large range of

interesting information by simply studying the diffusion of the water in the brain. Unfortunately,

except for the ADC value, representing and exploiting dMRI information is not an easy task and a

big effort in development of new mathematical models is needed.

The application of the diffusion tensor (DT) to describe anisotropic diffusion behaviour was

introduced by Basser et al. [Basser et al. (1992),Basser et al. (1994)]. In this elegant yet powerful

model, diffusion is described by a multivariate normal distribution. Technically, it is proportional

to the covariance matrix of a three-dimensional Gaussian distribution that models the displace-

ments of the molecules. The symmetric matrix D ∈ R
3×3 is the diffusion tensor matrix defined as
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follow:

Di j =

⎛
⎜⎝

Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

⎞
⎟⎠

Diagonalization of this matrix allows to obtain the eigenvalues and the eigenvectors. The

matrix D can be then written as:

D =

⎛
⎜⎝

Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz

⎞
⎟⎠=

⎛
⎜⎝

λ1 0 0

0 λ2 0

0 0 λ3

⎞
⎟⎠
⎛
⎜⎝

−→ε1−→ε2−→ε3

⎞
⎟⎠

λ1,λ2,λ3 represent the eigenvalues and
−→ε1 ,

−→ε2 ,
−→ε3 represent the eigenvectors of the diffusion

ellipsoid. Those values and vectors allows to obtain simple and clear information about the shape

of the diffusion tensor model as showed in Figure 1.2. The major eigenvector of the diffusion ten-

sor points in the principal diffusion direction (the direction of the fastest diffusion). In anisotropic

fibrous tissues the major eigenvector also defines the fiber tract axis of the tissue.

Figure 1.2: Representation of the diffusion tensor with its eigenvectors
−→ε1 ,

−→ε2 ,
−→ε3 and eigenvalues

λ1,λ2,λ3.

2.4 Estimate White Matter Tracts Course: Tractography

DTI is often viewed by estimating the course of white matter tracts through the brain via a

process called tractography [Mori et al. (1999)]. The word tractography refers to any method

for estimating the trajectories of the fiber tracts in the white matter. Amongst the many methods

proposed for tractography, streamline tractography is one of the most widely used. This method

outputs discrete curves or trajectories (tracts) by successively stepping in the direction of the prin-

cipal eigenvector (the direction of the fastest diffusion) [O’Donnell and Westin (2011)]. This

process is simply described in figure 1.3. The first set of voxels, also called “seed”, used to start

this iteration chain are usually selected in two different ways according to the type of tractography.

For global brain tractography, usually the seed voxels are randomly selected from the whole WM.
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For structure analysis, like investigation of a specific WM tract, the seed are selected by the user

according to a specific anatomic knowledge i. e. atlas.

Figure 1.3: Schematic demonstrating the tractography algorithm using DTI information. Arrows

represent primary eigenvectors in each voxel. Red lines are reconstructed trajectories.

A large number of techniques have been proposed in the literature [Fillard et al. (2011),Jbabdi

and Johansen-Berg (2011), Mangin et al. (2013)] and an exhaustive evaluation would be pro-

hibitive. The algorithm we previously described belong to a particular family of algorithm called

deterministic. One of this algorithm was proposed in [Hagmann et al. (2007)]. Deterministic al-

gorithms for tractography are quite fast and allow to obtain quite good results in terms of accuracy

in WM fiber reconstruction. Limitation of this type of tractography is related to the accuracy of

the path followed by the fibers. Indeed, these algorithms just follow one of the principal directions

without taking into account other options that could give better results. In order to overcome this

limitation, a new family of probabilistic algorithm was developed in [Behrens et al. (2003)]. Prob-

abilistic algorithms repeat the deterministic version many times by randomly perturbing the main

fiber directions each time, and produce maps of connectivity. Such maps indicate the probability

that a given voxel is connected to a reference position [Fillard et al. (2011)].

3 Brain Connectivity Analysis using Graph Theory

We have known since the nineteenth century that the neuronal elements of the brain constitute

a formidably complicated structural network. Modern non-invasive imaging techniques applied

to the human brain, allow to map its intricate networks of anatomical regions and neural path-

ways at near-millimeter resolution. The resulting large-scale networks provide a comprehensive

description of the brains structural connectivity, also called the human connectome [Sporns et al.

(2005)].

3.1 Graph Theory

Graph theory is a mathematical theory for the study of organized data in the form of networks.

The first introduction of graph theory was proposed by Euler in 1735 to address the problem of the

seven königsberg bridges. Graphs are mathematical structures used to model pairwise relations

between objects. A graph is composed by vertices (also called nodes) which are connected by
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edges (also called links). Formally, a graph is an ordered pair G = (V,E), where V is the set of

vertices and E is the set of edges defined as:

E ⊆ {{x,y}|(x,y) ∈V ×V}

which are unordered pairs of vertices. In more detail, this type of object may be called precisely

an undirected graphs. A directed graph, instead, is a graph in which edges have orientations.

In a broader sense a graph is an ordered triple G = (V,E,ω). In this context, the function ω
associates to every edge a value (e.g ω : E → R). These values are usually known as weights.

Thus, the graph can be weighted or unweighted.

Graphs are powerful models since they describes relationships. Isolated objects, indeed, are

difficult to be considered interesting. When start considering their interactions with the surround-

ing environment, instead, the object become interesting. A graph can describe any type of relation

by using edges between nodes. Each node is the graph, is connected with a subset of nodes defining

its neighbourhood.

Neighbourhood For an undirected graph G = (V,E), the neighbourhood NG(v) of a vertex v is

the set of all neighbours of v, i.e., NG(v) = {u|u,v ∈ E. A similar definition can be applied to

directed graphs, considering ordered pairs of nodes as edges. In this case, two set of neighbours

can be distinguished: in-neighbours and out-neighbours. In general, the NG(v) notation refers to

out-neighbours.

Degree The degree of a node represents the number of edges connected to that node. For an

undirected graph, it counts the number of neighbour nodes; for a directed graph, it is the number

of outcoming/incoming edges; for a weighed graph, it represents the sum of weights corresponding

to connected edges.

di = ∑
j∈V

ai, j

Individual values of degree reflect the importance of nodes in the network. Degrees of all

nodes in the network comprise the degree distribution, which is an important marker of network

development and resilience. The mean network degree, or global degree, is commonly used as a

measure of density. Neurobiologically, nodes with high value of degree, interacts both structurally

and functionally with many other nodes of the network, thus representing important nodes [Sporns

et al. (2005)]. Moreover, most neurobiological systems have been shown to have a broad degree

distribution, with a small but important admixture of highly interconnected nodes and others with

much less degree.

Path A path in a graph is a sequence of adjacent vertices. More formally, for a graph G = (V,E),

Paths = {P ∈ V+|1 ≤ I < |P|,(Pi,Pi+1) ∈ E} is the set of all paths in G, where V+ indicates all

positive length sequences of vertices.

Aldo MARZULLO 13



CHAPTER 1. MAGNETIC RESONANCE IMAGING

3.2 DTI Based Structural Connectivity

The importance of the connectome comes from the realization that structure and functionality

of the brain are intrinsically connected by means of multiple levels of brain connectivity [Sporns

(2013)]. These types of brain connectivity provide different informations, reflecting complemen-

tary aspect of the brain network organization. Structural connectivity, in particular, describes

anatomical connections, linking a set of neural elements. At the scale of the human brain, these

connections generally refer to trajectories of white matter pathways extracted from DTI. Func-

tional connectivity (derived from functional MRI) is generally created from time series observa-

tions, and describes patterns of statistical dependence among neural elements. Within the formal

framework of graph theory, a brain connectivity is a network, comprising a set of nodes, cor-

responding to segmented cortical regions, and edges, their mutual connections. Structural brain

connectivity can be processed into network form, by means of a complex task, involving several

steps and computational resources. Nodes are generally derived by parcellating cortical and sub-

cortical gray matter regions, usually by defining a random parcellation into evenly spaced and

sized voxel clusters. Once nodes are defined, their structural couplings can be estimated, and the

full set of all pairwise couplings can then be aggregated into a connection matrix. The resulting

network can be examined with tools and methods coming from graph theory. This offers a large set

of experimental methodology for detecting, analysing, and visualizing network architectures. A

major promise of human connectomics is that it will lead to a deeper understanding of the biolog-

ical substrates underlying brain and mental disorders [Bassett and Bullmore (2009)]. The primary

aim, however, is to map patterns of structural brain connectivity and uncover their relationship to

emerging patterns of brain dynamics. In the vision that, structure and functionality of the human

brain are intrinsically related, we may think to use brain connectivity to uncover potential dynam-

ics of brain and mental disorders, as well as brain injury and recovery [Sporns (2013)]. A graphical

overview of the mentioned techniques is reported in Figure 1.4.

3.3 Complex Network Analysis

Complex Network Analysis is a new multidisciplinary approach to the study of complex sys-

tems aiming at characterizing brain networks with a small number of neurobiologically meaningful

and easily computable measures [Rubinov and Sporns (2010)]. The foundation for this study has

been laid by the graph theory, thus most if not all of that measures come from it.

In the brain connectivity domain, several measures variously capture functional integration and

segregation, quantify centrality of individual brain regions or pathways, characterize patterns of

local anatomical circuitry, and test resilience of networks to insult [Rubinov and Sporns (2010)].

Different graph metrics can be estimated to measure brain network properties which can be anal-

ysed to better characterize brain networks.

These metrics are often represented in terms of individual network elements (such as nodes

or links). Measurement values of all individual elements comprise a distribution, which provides

a more global description of the network. This distribution is usually characterized by its mean

and standard deviation, although other features, such as distribution shape, may be also important.
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Figure 1.4: Structural and functional brain networks created through three main steps: (i) defini-

tion of network nodes (ii) estimation of a continuous measure of association between nodes (iii)
generation of an association matrix by compiling pairwise associations between nodes. Image

from Bullmore et al. [Bullmore and Sporns (2009)].

Graph metrics reflect different characteristic of the network and can be divided in four groups:

• measures of integration, that estimate the ease with which brain regions communicate, start-

ing from the basic concepts of path and shortest path;

• measures of segregation, that primarily quantify the presence of such groups, known as

clusters or modules, within the network;

• measures of centrality, that variously assess importance of individual nodes as hubs for

promoting functional integration;

• measures of resilience, that measure the vulnerability of the network in terms of functional

integration.

Measures of Integration

Shortest Path Length The Shortest Path Length (SPL) between nodes i and j is the shortest

path that reach j starting from i. For an undirected (or directed) graph is the shortest number of

edges between i and j; for a weighed graph is the sum of all the edge weights in the shortest path

between i and j. This is computed as:

si, j = ∑
au,v∈Gi⇔ j

au,v
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where Gi⇔ j is the shortest path between i and j. Note that si, j = ∞ for all disconnected pairs

i, j.

Short path lengths promote functional integration, since they allow communication with few

intermediate steps, thus minimizing the effects of noise or signal degradation. SPL is used as basic

measure for integration measurements, the most important one, the Characteristic Path Length.

Characteristic Path Length The Characteristic Path Length (CPL) of the network is a global

metric and is the average of all the shortest path length between all pair of nodes. It is computed

as:

C =
1

q ∑Ci =
1

q ∑
i∈V

∑ j∈V si, j

q−1

where Ci is the average path length between i and all the other nodes, and q = |V |.
CPL represents the most commonly used measure of functional integration. Short CPL pro-

motes functional integration of the network. Unfortunately, is not always possible to compute the

measure since disconnected graphs are defined to have infinite length. For this reason, Global

Efficiency is preferred as measure of functional integration.

Global Efficiency The Global Efficiency of a graph is the average of the inverse shortest path

length for all pair of nodes. It is computed as:

G =
1

q ∑
i∈V

∑ j∈V s−1
i, j

q−1

where q = |V | and si, j is the shortest path from i to j.

Global efficiency is maximum for a fully-connected network, while minimum for a totally

disconnected one. This measure is influenced by short paths; thus, the shortest the paths, the lower

the measure.

Measures of Segregation

Modularity The Modularity is the degree to which the network may be subdivided into clearly

delineated and non-overlapping groups. Such groups are referred to as community or modules, and

represent aggregated sets of highly interconnected nodes. Unlike most other network measures,

the optimal modular structure for a given network is typically estimated by means of optimization

algorithms; one of the most commonly used is based on Newman’s Q-metric [Newman and Girvan

(2004)] coupled with an efficient optimization approach:

Q = ∑
u∈M

⎡
⎣pu,u −

(
∑

v∈M
pu,v

)2
⎤
⎦

where the networks is subdivided into M non-overlapping modules and pu,v is the proportion

of edges that connect nodes belonging to module u with nodes belonging to module v.
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Measures of Centrality

Betweenness Centrality The Betweenness Centrality (BC) of a node i is the sum of the fraction

of all-pairs shortest paths that pass through i [Sporns et al. (2005)]. It is computed as:

bi =
1

(n−1)(n−2) ∑
h, j∈V

ρ(h, j)→i

ρh, j

where ρh, j is the number of shortest paths between h and j, and ρ(h, j)→i is the number of shortest

paths between h and j that pass through i.

This measure is useful for identify bridging nodes that connect disparate parts of the network

(hubs), since such this kind of nodes have high BC. The mean of the BC measurements or Global

Betweenness Centrality (GBC), represents the degree to which the graph is able to maintain hubs.

Measures of Resilience

Assortativity Coefficient The Assortativity Coefficient (AC) of a network is the Pearson correla-

tion coefficient between the degrees of all nodes on two opposite ends of a link [Newman (2002)].

Networks featuring a positive AC are likely to have a comparatively resilient core of mutually

interconnected high-degree hubs. On the other hand, networks featuring a negative coefficient are

likely to have widely distributed high-degree hubs. AC is computed as:

A =
l−1 ∑(i, j)∈E did j − [l−1 ∑(i, j)∈E

1
2
(di +d j)]

2

l−1 ∑(i, j)∈E
1
2
(d2

i +d2
j )− [l−1 ∑(i, j)∈E

1
2
(di +d j)]2

where l = ∑i, j∈V ai, j is the total number of links and di = ∑ j∈V ai, j is the degree of node i.

The aforementioned network measures are not intended to be an exhaustive list. Nevertheless,

they represent the most informative metrics, useful to describe importance of brain regions in the

human connectome. The node degree is one of the most easily accessible graph measures and it is

also highly informative, as well as the distribution of node degrees across the whole network. In

many cases, the degree of a node is highly correlated with other more complex influence measures.

Many of these measures capture the “centrality” of network elements, for example the betweenness

centrality. This measure is, in turn, related to communication processes, but is also often found to

be highly correlated with the measure of “closeness centrality”, quantifying the proximity of each

node to the rest of the network.

Another class of measures concerns vulnerability aspects of networks. For example, the de-

crease (or increase) in global efficiency due to the deletion of a single node or edge, or the variation

of assortativity, in conjunction with a decrease (or increase) of network density, should be used

when attempting to identify crucial areas of the network [Sporns (2013)].

Closer analysis of brain networks has shown that modules are network communities of densely

interconnected neural elements that share common input and output projections, exhibiting sim-

ilar physiological responses [Hilgetag and Kaiser (2004)]. To this end, hubs perform important

integrative roles in structural networks. It should be noted that there is no unique way of detect-
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ing these hubs with graph theory tools. Bridging nodes indeed, are generally identified by their

high degree, high centrality, and diverse connection profiles that straddle the boundaries between

modules [Sporns et al. (2007)]. A detailed analysis of the topology of human brain structural

connectivity, revealed a rich club of highly interconnected hub regions including portions of the

superior frontal cortex, superior parietal cortex, and the precuneus, in addition to several subcor-

tical regions including the thalamus, hippocampus, and part of the basal ganglia [van den Heuvel

and Sporns (2011)].

The study of brain networks is a promising frontier. The development of new analytic tech-

niques and modelling approaches, in parallel with continued methodological refinements in the

area of human neuroimaging, continue to allow ever more detailed analyses of human structural

and functional networks. Graph methods have proven useful for capturing how networks vary

across individuals, how they evolve across the time, and how they behave in presence of a wide

variety of brain and mental disorders.
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CHAPTER 2. MULTIPLE SCLEROSIS

1 Introduction

Multiple sclerosis (MS) is a chronic autoimmune, inflammatory neurological disease of the

central nervous system (CNS). MS attacks the myelinated axons in the CNS, destroying the myelin

and the axons to varying degrees. It constitutes the leading cause of non-traumatic disability in

young adults (from 20 to 40 years old) and remains without well-known etiology [Compston and

Coles (2008)]. The course of MS is highly varied and unpredictable. In most patients, the disease

is characterized initially by episodes of reversible neurological deficits, which is often followed by

progressive neurological deterioration over time.

2 Epidemiology

In recent years, knowledge of the geographical distribution of the disease and its survival data,

and a better understanding of the natural history of the disease, have improved our understanding

of the respective roles of endogenous and exogenous causes of MS. A pioneering study on that

field is the one described in [Kurtzke (1980)] and later updated in [Kurtzke (2000)]. As reported

in [Kurtzke (1980)] and how it is shown in 2.1, the geography repartition of MS worldwide is not

equally distributed. It has heterogeneous prevalence worldwide: it is highest in North America

(140/100,000 population) and Europe (108/100,000), and lowest in East Asia (2.2/100,000 popu-

lation) and sub-Saharan Africa (2.1/100,000). The global median prevalence of MS has increased

from 30/100,000 in 2008 to 33/100,000 in 2013, as also confirmed by the MS International Fed-

eration [Leray et al. (2016)]. However, given the mortality, prevalence, incidence, evolution of

the gender ratio and geographical distribution of MS in France, this country can now be more

precisely defined as a high-risk country for MS.

Figure 2.1: Worldwide Multiple Sclerosis prevalence. Image and data from https://www.msif.
org/about-us/advocacy/atlas/.
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Regarding the risk factors for MS, the most significant environmental factors are Epstein-Barr

virus (EBV) infection, particularly if it occurs after infancy and is symptomatic. The role of

smoking in the risk of MS has been confirmed, but modest. On the contrary, vaccines, stress,

trauma and allergies have not been identified as risk factors, while vitamin D involvement has not

yet been confirmed [Leray et al. (2016)]. From a genetic point of view, In [Kurtzke (2000)] the

authors studied the changes in the risk exposure to MS between population migrating to different

regions of risk. As major result, the authors found that adolescents migrating before the age of

15, present the same risk factor of their original region. Contrary, adults who migrate acquire

the risk factor typical of the new risk zone. These results show how the geographic partition of

MS is related to environmental factors linked to a genetic susceptibility. More recently, studies

of genome-wide associations have identified immunogenetic markers (IL2RA, IL7RA) and more

than 100 genetic variants have been reported. Most of these are involved in the immune response

and often associated with other autoimmune diseases.

3 Etiology

The CNS is the part of the nervous system consisting of the brain and spinal cord. It is referred

to as “central" because it combines information from the entire body and coordinates activity

across the whole organism. The brain is the most complex organ in the human body; the cerebral

cortex (the outermost part of the brain and the largest part by volume) contains an estimated 15-

33 billion neurons, each of which is connected to thousands of other neurons. Neurons, are the

basic units of the nervous system which communicate with other cells via specialized connections

called synapses. They have a diameter ranging from 5 to 150 μm and they are composed by three

parts: cell body, dendrites and axons (Figure 2.2). Axons are responsible for the nerve impulse

transmission and they are surrounded by myelin sheath cells in the CNS. This substance is a

membrane who facilitates the nerve impulse transmission along the axons.

MS is characterized by an abnormal immune-mediated response who attacks the myelinated

axons of neurons, inducing a progressive destruction of myelin. As myelin helps to speed up the

nerve impulse transmission along the axon, a destruction of myelin decreases the capability of the

axon to transmit the nerve impulse. The inflammatory processes seem to start after a cell-mediated

response. In this part, macrophages recognize the myelin basic protein (MBP) and present this to

the T lymphocytes. These, after their activation, cross the blood brain barrier (BBB) and trigger

the immune response and relative inflammation. Recent studies also suggest that the beginning of

an antibody-mediated response, with an abnormal production of antibody for myelin destruction,

plays an important role in the progression of the inflammation with relative tissue damage [Disanto

et al. (2012)].

Demyelination in specific tissue area usually start without axonal damage [Noseworthy et al.

(2000), Lucchinetti et al. (2000), Compston and Coles (2008)], oligodendrocytes destruction and

axonal damages are induced when repeated attacks appear in time. Indeed, at the beginning of

the pathology, remyelination process and pathological demyelination alternate. During this pro-

cess, the oligodendrocyte progenitor cells differentiate in oligodendrocytes in order to repair the
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damaged tissue [Goldschmidt et al. (2009), Brück et al. (2003)]. Unfortunately, the capability

of the oligodendrocyte progenitor cells to differentiate oligodendrocytes is reduced in MS. This

limitation influences the capability to recover the damaged tissue.

In the intermediate phase, the myelin contained in the tissue affected by the disease, is substi-

tuted with scarred tissue.

In the late part, demyelination effects are not present and the tissue area does not contain

inflammatory cells. The increased permeability of the BBB and the inflammatory attacks increase

the clinical effect related to the neurodegeneration and atrophy. In this part, when all the reparation

mechanisms of the tissue are exhausted, the disability progression progressively increases.

Figure 2.2: Structure of a nerve cell. Image from http://hyperphysics.phy-astr.gsu.edu/
hbase/Biology/nervecell.html.

4 Clinical Forms

In Multiple Sclerosis, the course of the disease and the risk for developing permanent disability

are very different from one patient to another and the prediction of long-term disability is still

an open challenge. According to the current clinical standards four forms of MS are actually

recognized (Figure 2.3) [Lublin et al. (2014), McDonald et al. (2001)].

Figure 2.3: Classification of multiple sclerosis clinical forms according to the patients dis-

ability progression. Image from http://www.clevelandclinicmeded.com/medicalpubs/
diseasemanagement/neurology/multiple_sclerosis/

22 Aldo MARZULLO



5. DIAGNOSIS

4.1 Clinically Isolated Syndrome (CIS)

Clinically Isolated Syndrome (CIS), is recognized as the first clinical presentation of the dis-

ease, that shows characteristics of inflammatory demyelination that could be MS, but has yet to

fulfil criteria of dissemination in time. This form of MS is the consequence of the series of one

or two consecutive attacks from which the patients recovered completely, generally quite quickly,

and without any progression or persistence of disability. Following this first attack, in the 85% of

the cases, the progression to a relapsing remitting form (RR) occurs.

4.2 Relapsing Remitting (RR)

In this form of MS, It is characterized by acute episodes of exacerbations, followed by events

of complete or partial remission. We often observe unpredictable attacks. During the presence of

those new attacks new clinical symptoms appear or old clinical symptoms evolve. This phase has a

variable duration and could be followed by a partial or total remission. At this stage, the pathology

can be inactive for months or years.

4.3 Secondary Progressive (SP)

The Secondary-Progressive (SP) form is the evolution of the RR form, and is characterized by

a permanent form of disability that gradually progresses in the time, independently of the presence

of inflammatory attacks. This form involves 30% of MS patients.

4.4 Primary Progressive (PP)

Primary progressive (PP) form is characterized by the absence of inflammatory attacks. The

patients suffer from an accumulation of deficits and disabilities. All these effects can be stable for

certain periods or can progressively degenerate in months or years.

5 Diagnosis

The diagnostic criteria for MS have been continuously evolved since 1950’s, and gained speed

parallel to the development of detailed laboratory methods. The common aim for all the defined

criteria up to now, is to establish the dissemination in space and time of the clinical picture caused

by the lesions in the CNS, and to rule out other diseases which might mimic MS. At this time,

there are no symptoms, physical findings or laboratory tests that can, by themselves, diagnose MS.

The Revised McDonald Criteria, published in 2017 by the International Panel on the Diagnosis

of Multiple Sclerosis, include specific guidelines for using MRI and cerebrospinal fluid analysis

to speed the diagnostic process [Thompson et al. (2018), McDonald et al. (2001), Polman et al.

(2011)].

First, differential diagnosis can be use diagnose MS. In medicine, a differential diagnosis is

the distinguishing of a particular disease or condition from others that present similar clinical

features. More generally, a differential diagnostic procedure is a systematic diagnostic method
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used to identify the presence of a disease entity where multiple alternatives are possible. In MS, a

systematic process for exclusion of alternative diagnoses is really hard to define, due to the large

variety of MS symptoms. Moreover, since the symptoms of MS evolve and change with time, the

use of the differential diagnosis is not sufficient to have a general overview of the pathology. An

example of a differential diagnosis table for MS, from [Noseworthy et al. (2000)], is showed in

Figure 2.4.

More complex and more effective methods can be used, compared to the differential diagnosis.

MRI is the diagnostic tool with the best sensitivity in the search for MS lesions. It allows to identify

lesions, their location, and to evaluate their dissemination in space. In addition, a longitudinal

follow-up of the patient makes it possible to identify the appearance of new lesions and thus to

control whether there is dissemination over time.

In order to have a full picture of the damages generated by MS in the brain three MRI se-

quences are needed to detect different type of lesions: T2 sequence, which allows to detect MS

lesions as hyper-signal spots, T1 sequence where lesions are characterized by hypo-intensity sig-

nal spots and T1 sequence acquired after injection of a contrast agent (like Gadolinium) to detect

regions where disruption of hematoencephalic barrier is present.

In [Barkhof et al. (1997), McDonald et al. (2001), Thompson et al. (2018), Polman et al.

(2011)], MRI derived information were used to derive MRI based criteria for the diagnosis of MS.

In more detail, to satisfy the presence of spatial dissemination of the lesions, at least two of this

four criteria must hold:

• Lesion showing hyper-intensity in T2 sequence in periventricular region

• Lesion showing hyper-intensity in T2 sequence in near to the cortex

• Lesion showing hyper-intensity in T2 sequence in the supra tentorial region

• Lesion showing hyper-intensity in T2 sequence in the spinal cord

To satisfy the presence of temporal dissemination of the lesions the following criteria must

hold:

• Lesion showing hyper-intensity in T1 acquired using contrast agent three months after one

attack

• A new lesions showing hyper-intensity in T2 sequence three months after the first MRI exam

• If the first MRI exam was performed 3 months after the first attack, all the new lesions show-

ing hyper-intensity in T2 sequence are considered as expression of a temporal dissemination

An overview of the spatial and temporal dissemination criteria are summarized in Figure 2.5.

6 Medical Treatment

There are different levels of treatment for the disease. The first consists of a re-education of

the patient in order to allow him to recover a maximum of compromised functions or, if necessary,
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Figure 2.4: Differential diagnosis table of Multiple Sclerosis. Table from [Noseworthy et al.
(2000)].

to learn to live with the disability caused by the disease. To this aim, symptoms can be treated

to improve the quality of life of the patients without directly affect the pathological process. For

instance, for the spasticity injection of botulinum toxin or assumption of antispasmodics are used.

Paint is usually treated with the assumption of analgesics or antiepileptic. The second is a treat-
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Figure 2.5: MS positive diagnosis criteria. Image from http://www.nationalmssociety.
org/For-Professionals/Clinical-Care/Diagnosing-MS/Diagnosing-Criteria.

ment of the attacks, which goal is to reduce the number and the frequency of the attacks and then

reduce the progression of the disability by increasing the remission. This type of treatment is

mainly based on the assumption of corticoids usually methylprednisolone. Finally, the treatment

of the pathology tries to control its evolution. The main idea is to reduce the demyelination by

stimulation of the remyelination process. This treatment relies on the auto-immune nature of MS.

Immunomodulators and Immunosuppressors drugs are often use to reduce the effect of MS. In the

category of immunomodulators, we recall the interferon β and the Tysabri®. For the Immunosup-

pressors, mitoxantrone and cyclophosphamide are the most used.

7 Conclusion

MS is a complex disease whose evolution remains difficult to predict. As discussed in this

chapter, its origin has not yet been clearly identified and pathological mechanisms are still subject

of several researches worldwide. From the general introduction presented in this chapter, we

can already see how cMRI acquisition are powerful tools for clinicians to diagnose and study

the effect of MS on the CNS. Those results encouraged researcher on MS to use more complex

MRI techniques like diffusion imaging and spectroscopy to obtain more sensitive and specific

information on normal appearing WM useful for a deeper investigation of the pathology.
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1 Introduction

Despite the significant results obtained by the current state of the art, given the complexity and

the huge volume of biological data, many traditional computer science techniques and algorithms

fail to solve complex biological problems in the real world. Nevertheless, modern computational

approaches based on machine learning can address these limitations. Machine Learning is an

adaptive process that enables computers to learn from experience, learn by example, and learn

by analogy. According to T. Mitchell [Mitchell et al. (1997)], “a computer program is said to

learn from experience E with respect to some class of tasks T and a performance measure P,

if its performance at task T, as measured by P, improves with experience E". The experience

comes in form of data flow usually referred to as training set. Machine Learning methods extract a

mathematical model from the data to be used in making decisions or predictions in a specific task.

Learning capabilities are essential for automatically improving the performance of a computational

system over time on the basis of previous results. Such concept is particularly suitable in many

context, including the biomedical domain. For example, it is not always easy for expert to say

what rules they use for disease analysis and control, data are often noisy or missing, there is the

need for redesigning systems whenever the environment changes, etc.

In general, every machine learning algorithm falls into one of three main categories: super-
vised learning, unsupervised learning and semi-supervised learning.

1.1 Learning Paradigms

Consider a training set, denoted as D . The learning problem can be defined following three

different paradigms:

• Supervised learning: this kind of learning is used when the answer to the problem is known.

In supervised learning, we are able to provide a set of samples which have a known label or

result. A model is prepared through a training process where it is required to make prediction

and is corrected when those predictions are wrong. In other words, the algorithm tries to

figure out what kind of math needs to be done in order to find a relationship. More formally,

The training set is presented to the algorithm in the form D =< x, t >, where each element

< x, t > is a pair of input and corresponding desired output coming from some unknown

function f . The input variables x are also called features while the output variables t are

also known as targets or labels. In a supervised setting the algorithm attempt to find a good

approximation of f and use it to predict the output for new input. Depending on the type of

the output variables, supervised-learning tasks can be further categorized:

– Classification: The labels t are discrete. The algorithm’s objective is to find a function

f that maps an input x to a category whose label is y. The classification problem could

be binary or multi-class depending on the number of classes that we want to predict

that are two for the binary classification problem and more than two in the case of the

multi class one.
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– Regression: Targets t are continuous variables. Examples of regression problems are

the prediction of the temperature in a building, or the prediction of the selling price of

a specific product.

– Unsupervised learning: differently from supervised learning, input data are not la-

belled and we do not have any know result. The training set does not include the

target variables but only the input ones D = < x >. A model is prepared by deduc-

ing structures present in the input data. Problems of this kind are the one to discover

groups of similar examples (clustering), or to give a new representation of the data in

an high-dimensional space.

– Semi-supervised learning: the algorithm is trained upon a combination of labelled

and unlabelled data. Typically, a small amount of labeled data is used to guide the

research of structures present in the (mostly unlabelled) input data.

s

In the field of computer vision, such techniques represented a revolution. Several methods

based on computer vision and image processing techniques to accomplish automatic identification

of pathological mechanisms were developed. Such methods mostly exploit recent advances in

machine learning. In more detail, Deep Learning methods have recently achieved a breakthrough

in a variety of computer vision benchmarks, and are attracting a very strong interest within the

computer vision community. Recently, many studies on extending deep learning approaches for

graph data have emerged, also opening new perspective in the study of brain networks.

In this chapter, an overview of the main techniques used in this research work will be provided.

We illustrate the concept of Deep Learning, with particular attention to the differences between

the various existing algorithms, including graph-based techniques and their applications.

2 Artificial Neural Networks

In the last decade, a particular machine learning paradigm, the Artificial Neural Network

(ANN), gained a lot of popularity, given their impressive results for the analysis and classifica-

tion of images in a wide range of applications [Goodfellow et al. (2016)]. The study of ANNs has

been inspired in part by the observation that biological learning systems are built of very complex

webs of interconnected neurons. If we observe the human brain we discover that it is composed

by million of little components called neurons. In rough analogy, ANNs are built out of a densely

interconnected set of simple units, where each unit takes a number of real-valued inputs (possibly

the outputs of other units) and produces a single real-valued output (which may become the input

to many other units) [Mitchell et al. (1997)].

More formally, ANNs aiming to approximate some function f ∗. For example, for a classifier a

function y = f ∗(x,θ) maps an input x to a category whose label is y. θ is the vector of parameters

that the model learn in order to make the best approximation of f ∗ [Goodfellow et al. (2016)].

They are typically represented by composing together many functions. For example, we might

have three functions f (1), f (2), and f (3) connected in a chain, to form f (x) = f (3)( f (2)( f (1)(x))).
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In this case, f (1) is called the first layer of the network, f (2) is called the second layer, and so on.

The final layer of an ANN is called the output layer. The overall length of the chain gives the

depth of the model. It is from this terminology that the name “deep learning” arises. The learning

algorithm must decide how to use the intermediate layers to best implement an approximation of

f ∗, by iteratively refine parameters θ . Because the training data does not show the desired output

for each of these layers, these layers are called hidden layers.

In order to understand better what an ANN actually is, we can focus on its main component:

the Artificial Neuron. Basically a neural network can be seen as an oriented graph, which nodes are

called neurons and neurons are connected each other by weighted arcs. Each neuron can fires or

inhibits other neurons, depending whether the value computed by its activation function exceeds

a certain threshold. To get started, we focus on a type of artificial neuron called a perceptron.

Perceptrons were developed in the 1950s and 1960s by the scientist Frank Rosenblatt, inspired by

earlier work by Warren McCulloch and Walter Pitts [McCulloch and Pitts (1943)]. This simple

architecture is a linear binary classifier that maps its input to a single binary value. Given a real-

valued vector x as input and the corresponding real-valued weights w, the output is

y =

⎧⎨
⎩

1, if w ·x+b ≥ 0,

0, otherwise,
(3.1)

where the w ·x is the weighted sum of the input vector

z = w ·x =
n

∑
i=1

(wixi), (3.2)

and b is the bias term.

Although we are interested in learning networks of many interconnected units, let us begin by

understanding how to learn the weights for a single perceptron. One of the easiest way to learn a

weight vector is starting with random weight and iteratively, at each step t, for each example j, ap-

ply the perceptron on each example, modifying the weights whenever the example is misclassified.

This process is repeated until the perceptron classifies all training examples correctly. Weights are

modified at each step according to the perceptron training rule:

wi(t +1) = wi(t)+Δwi, for all 0 ≤ i ≤ n (3.3)

where wi is the i-th element of the n-dimensional weight vector and Δwi is given by

Δwi = η(t j − y j)x j,i (3.4)

In this formulation t j is the desired output for the current example x j, y j is the prediction

produced by the perceptron, and η is the learning rate which regulates the severity of the update.

The t j − y j term expresses the quality of the predictions with respect to the ground truth and it is

referred to as the error E. Then, the perceptron updates its weights proportionally to the error E:

the more the predictions are far from the targets the greater the correction to be performed in the
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Figure 3.1: Hypothesis space of possible weight vectors and their associated error values.

weights. This procedure is repeated until the algorithm converges to a possible solution so that the

found model classifies correctly all the examples.

In order to learn the weights of the model several optimization techniques could be applied.

The following section will give an overview of the most used ones.

2.1 Optimization

One of the widely used learning algorithm in supervised learning is called gradient descend. o

understand the gradient descent algorithm, it is helpful to visualize the entire hypothesis space of

possible weight vectors and their associated E values, as illustrated in Figure 3.1

We can think the search space search space as a valley and we imagine a ball rolling down

the slope of the valley. Our everyday experience tell us that the ball will roll to the bottom of the

valley. Gradient descendant uses this idea as a way to find a minimum for the function randomly

choosing a starting point for an (imaginary) ball, and then simulate the motion of the ball. We

could do this simulation simply by computing derivatives of the cost function. Those derivatives

would tell us everything we need to know about the local "shape" of the valley, and therefore the

direction the ball will roll. More formally, this procedure takes the form:

w = w+Δw (3.5)

where

Δw =−η∇L(w) (3.6)

The learning rate η is interpreted as the step size in the negative gradient direction and it governs

the entity of the update. The choice of learning rate is critical since for too large η the gradient

descent could "jump" the minimum of the function rather then approach to it. This problem could

be alleviated by using a scheduled learning rate ηt that decreases over time steps.

Gradient descent has some drawbacks which make the training difficult. For example, the loss

function is defined with respected to the whole training set, so we have to process all the data in

batch before evaluating ∇L. Furthermore, the loss surface could have several local minima, so the
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found solution could not be the global one. For this reason, many variations of the original gradient

descent optimization were proposed. Stochastic Gradient Descent updates the weights after seeing

only a single or a few training examples. In practice stochastic gradient descent has been proven

to accelerate the learning, especially in the case of large data sets. It gives also the possibility to

escape local minima since the stationary points could be different from one data point to another.

Variations of the stochastic gradient descent optimization include:

• Stochastic Gradient Descent with Momentum ( [Nesterov (1983)]): It consists in adding a

momentum term in the update rule that has the role of taking memory of the update step at

time t −1. The update rule becomes:

wt = wt−1 +Δwt (3.7)

where

Δwt = αΔwt−1 −η∇L(wt−1) (3.8)

The effect of α is to force the gradient descent search to maintain the trajectory of the

previous step. It also has the effect of promoting the "exploration" when the gradient is

unchanging.

• RMSProp ( [Tieleman and Hinton (2012)]): Also in this case the learning rate is adapted for

each parameter. In RMSProp the learning rate for a parameter is normalized by the average

of the recent gradients for that parameter.

• Adam ( [Kingma and Ba (2014)a]): Adam is similar to RMSProp but in this case the learning

rate is adapted using the average of both the gradients and their second moments.

2.2 Backpropagation

Multi-layer networks can not be trained using the perceptron’s learning rule that needs to

compute the error term between targets and predictions for the single unit. In the case of multi-

layer networks this prerequisite is not verified because of the presence of multiple hidden-layers.

The ground truth is available only for the last layer that outputs the predictions, so it is possible to

evaluate the error only after the computation of the whole network. For this reason we need a new

procedure able to carry the error information back to all the layers so that the network weights can

be updated accordingly.

The solution is the backpropagation algorithm [Rumelhart et al. (1986)] which allows to com-

pute the gradients for a general network, having arbitrary feed-forward topology and differentiable

activation functions. The partial derivatives of the error with respect to a weight tells us the sensi-

tivity of the error on its value. Then, computing the partial derivatives with respect to the weights

of the last layer we can determine the amount by which each of its neuron contributing to causing

the error.

Through the application of the chain rule it is possible to further compute the partial deriva-

tives of the error with respect to the weights of the previous layer until the contribution of each
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weight of the network to the error is determined. The backpropagation algorithm is then composed

by three main steps:

1. Forward pass:

(a) The information is propagated forward through the network to compute values from

input to output for each neuron.

(b) The error term is computed.

2. Backward pass: The error information is propagated backward through the network starting

at last layer and recursively applying the chain rule until the input to compute the partial

derivatives on all the weights.

3. Weights update: The partial derivatives are used by the gradient descent optimizer to update

the weights of the network.

In order to fully understand the backpropagation procedure, let’s consider a multi-layer network

with sigmoid activations and the following error function for a single training example:

Ed(w) =
1

2

K

∑
k=1

(tk − yk)
2 (3.9)

where Ed is the error on training example d, k is the k-th output unit, K is the number of output

units, tk is the target value of unit k, and yk is the output of unit k given a training example. Consider

now a generic unit j, that could be either an output or hidden unit, and the following notation:

• x ji = the i-th input to unit j

• w ji = the weight associated with the i-th input to unit j

• sum j = ∑i w jix ji (the weighted sum of inputs for unit j)

• y j = the output computed by unit j

• t j = the target output for unit j

• σ = the sigmoid activation function

• f ollowing( j) = the set of units whose inputs include the output of j

We want to obtain the partial derivatives ∂Ed
∂w ji

to be used in stochastic gradient descent for up-

dating the weights. This will be done by showing the backward pass and weights update step of

backpropagation. Start considering only the output units.
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Backward pass for output unit j

The output unit j influences the previous layer through w ji, w ji influences the previous layer

through sum j. Thus, the partial derivative of the error on w ji is given by the chain rule:

∂Ed

∂w ji
=

∂Ed

∂ sum j

∂ sum j

∂w ji
=

∂Ed

∂ sum j
x ji (3.10)

Following the previous reasoning, sum j influences the previous layer through y j. Thus we can

write:
∂Ed

∂ sum j
=

∂Ed

∂y j

∂y j

∂ sum j
, (3.11)

where the first term is
∂Ed

∂y j
=

∂
∂y j

1

2

N

∑
k=1

(tk − yk)
2. (3.12)

Since we are considering only the unit j the partial derivative becomes:

∂Ed

∂y j
=−1

2
2(t j − y j) =−(t j − y j). (3.13)

Consider now the second term
∂y j

∂ sum j
. Since y j = σ(sum j) it corresponds to the derivative of the

sigmoid function that is equal to σ(sum j)(1−σ(sum j)). Therefore

∂y j

∂ sum j
= y j(1− y j). (3.14)

The overall partial derivatives ∂Ed
∂ sum j

become

∂Ed

∂ sum j
=−(t j − y j)y j(1− y j), (3.15)

where the negative of ∂Ed
∂ sum j

is usually denoted as δ j. Substituting in Equation 3.10 we obtain

∂Ed

∂w ji
=

∂Ed

∂ sum j
x ji =−(t j − y j)y j(1− y j)x ji =−δ jx ji. (3.16)

Weights update

Now we can compute the stochastic gradient descent update amount for output units as

Δw ji =−η
∂Ed

∂w ji
= ηδ jx ji. (3.17)

Backward pass for hidden unit j

Consider now that j is a generic hidden unit. As above we want to compute the amount by

which the unit contributes to the error that is expressed by the partial derivatives ∂Ed
∂w ji

. Since the

unit is located in the middle of the network it influences the error indirectly through the units
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whose inputs include the output of j that we have defined as f ollowing( j). Thus the gradients

become
∂Ed

∂w ji
= ∑

k∈ f ollowing( j)

∂Ed

∂ sumk

∂ sumk

∂ sum j
x ji (3.18)

The ∂Ed
∂ sumk

is the same computed in Equation 3.15 so we can write

∂Ed

∂w ji
= ∑

k∈ f ollowing( j)
−δk

∂ sumk

∂ sum j
x ji (3.19)

Since the sumk depends on the output y j the above partial derivatives can be decomposed in the

following way
∂Ed

∂w ji
= ∑

k∈ f ollowing( j)
−δk

∂ sumk

∂y j

∂y j

∂ sum j
x ji (3.20)

Now notice that sumk is equal to ∑ j wk jxk j, xk j is the output of the hidden unit y j, and y j =σ(sum j).

The overall partial derivatives become

∂Ed

∂w ji
= ∑

k∈ f ollowing( j)
−δkwk jy j(1− y j)x ji (3.21)

Weights update

From the following, the stochastic gradient descent update amount for hidden units is

Δw ji = ηy j(1− y j) ∑
k∈ f ollowing( j)

δkwk jx ji. (3.22)

2.3 Activation Functions

The previous example considered a network composed by sigmoid units as in MLP. The sig-

moid non-linearity is not the only possible choice. Indeed, each layer of a neural network can

employ arbitrary activation functions and the choice of the non-linearity strictly depends on the

kind of problem we want to afford. Typical choices are:

• Sigmoid or Logistic:

σ(z) =
1

1+ e−z (3.23)

The sigmoid non-linearity takes a real-valued number and "squashes" it into range [0, 1]. It

produces outputs similar to the Perceptron step-function with the main difference of being

a continuous function. Historically it has been frequently used but it has the main drawback

to saturate: at either 0 or 1, the gradient is small (near zero). This is not a desirable behavior

since during backpropagation it could cause the gradient to vanish, making learning difficult.

In this context the initialization of the weights plays a fundamental role. For example too

large weights could lead most of the neurons to saturate.
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• Hyperbolic tangent or Tanh:

tanh(z) =
1− e−2z

1+ e−2z = 2σ(2z)−1 (3.24)

The hyperbolic tangent is a continuous function that "squashes" a real-valued number into

range [-1, 1]. Like the sigmoid, the tanh non-linearity suffers from the saturation problem,

but it is zero-center and this is a desirable property for the training since it is proven to help

learning. For this reason, tanh is usually preferred to the sigmoid non-linearity.

• Rectified Linear Unit (ReLU):

relu(z) = max(0,z) (3.25)

ReLU non-linearity has become very used in the recent years. Many works prove that ReLU

units accelerate the learning convergence with respect to sigmoid and tanh non-linearities.

[Krizhevsky et al. (2012)] reached 6x improvement in convergence compared with the tanh.

The main drawback of the ReLU units is that they can "die" during training. Suppose that

most inputs to a ReLU unit are negative. This cause the gradients flowing through the unit

to be zero and then each neuron going into the unit will stop to respond to the variation in

the error. This problem could cause the "death" of several parts of the network.

3 Deep Learning Architectures

The way neurons and layers are connected determines the type of the architecture of the net-

work. The choice about what type of neural network to use is strictly related to the problem we are

facing. Indeed, different types of artificial neural network topographies are suited for solving dif-

ferent types of problems. In this section, a general overview of the main deep learning algorithms

is presented. However, in this section, we will provide a more detailed description of the models

defined to address the specific problems presented in this manuscript.

3.1 Convolutional Neural Networks

Concerning the image processing field, Convolutional Neural Networks (CNN) play a key role.

Since their first definition by Yann LeCun et al. in 1999 [LeCun et al. (1999)], the impressive

results obtained in various tasks allowed an exponential growth of their popularity. The idea of

convolution is inspired partly by computer science and partly by biology. The particular structure

of these networks achieves the skill of understand translation invariance, this means it has to re-

learn the identify of each object in every possible position. Furthermore, CNNs are fast to train

and particularly well-adapted to classify images. Convolutional neural networks use three basic

ideas: local receptive fields, shared weights, and pooling. Let’s look at each of these ideas in turn.

From now on is useful to consider the input layer as a square of neurons, where values correspond

to the pixel intensities of the input image.
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• Local receptive fields: Differently from a fully connected network, where each neuron is

connected with every neuron of the previous layer, in a classic CNN architecture each neuron

is connected only with small, localized regions of the input image. Such local receptive field

is slided over by certain quantity of pixels (stride) to connect to a second hidden neuron.

• Share weights and biases: Convolutional neural networks uses the same weights and biases

for each hidden neuron, so that the output of i, jth hidden neuron is given by:

σ

(
b+

n−1

∑
l=0

n−1

∑
m=0

wl,ma j+l,k+m

)
(3.26)

Where n is the square root the local receptive field’s side, σ is the activation function (usually

a sigmoid function), b is the shared value for the bias, wl,m is a n×n vector of shared weights

and finally ax, j denotes the input values. The equation 3.26 is also know as convolution.

Shared weights and biases give to convolutional neural networks an important characteristic:

all the neurons in the first hidden layer detect exactly the same feature (e.g. edges in the

images or other types of shape) just at different locations in the input image (translation

invariance principle). The map from the input layer to the hidden layer is known as feature

map. The network structure we described so far has just one feature map and so it can detect

just a single kind of localized feature. To do image recognition we will need more than

one feature map. And so a complete convolutional layer consists of several different feature

maps.

• Pooling: In addition to the convolutional layers just described, convolutional neural net-

works also contain pooling layers. They are used to simplify information coming from

convolutional layers. In details they work combining the output of a feature map in a single

smaller feature map.

In practice, when solving problems in the real world, these steps can be combined and stacked

as many times to address different problems. For example, is possible to have two, three or even

more convolution layers and data size can be reduced at each layer using pooling. The more

convolution steps you have, the more complicated features your network will be able to learn to

recognize. However, there exist many examples of data that lack the underlying low-dimensional

grid structure. Is this the case for many domains, where data usually describe relationships, and

can be naturally modelled by means of graphs [Scarselli et al. (2009)]. To recall, a graph is an

ordered pair G = (V,E) where V is the set of nodes (representing objects of a particular domains)

and E is the set of edges connecting nodes (representing relations between objects).

3.2 Graph Neural Networks

Since the first definition of Graph Neural Network (GNN) [Scarselli et al. (2009)], a huge

effort was made to extend neural networks with the purpose of processing graph structures [Perozzi

et al. (2014),Hamilton et al. (2017)]. Differently from previous existing architectures, this models
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are defined to capture neighbourhood properties of the nodes. Such mechanisms allow to learn

latent representation for the node through a mutual sharing of data among the nodes’ neighbours in

an iterative manner until convergence. More formally, the main idea behind GNN can be expressed

as following: consider a graph G = (V,E). Each node v ∈ V can be characterized by a set of

features xv. The goal of a generic GNN layer is to learn a d-dimensional latent representation of

each node which encode information of its neighbourhood. Specifically,

hv = f (xv,xco[v],hne[v],xne[v])

where xco[v] denotes the features of the edges connecting with v, hne[v] denotes the embedding of

the neighbouring nodes of v, and xne[v] denotes the features of the neighbouring nodes of v. The

function f is the transition function that projects these inputs onto a d-dimentional space.

GNNs have found applications in many different domains, achieving interesting results, quickly

adopting ideas from other successful areas of deep learning to evolve to the architecture we know

today as Graph Convolution Networks [Kipf and Welling (2016)]. Promising results were achieved

by properly managing structured data and capturing hidden information from graphs.

Concerning the study of neurological alterations, graph-based deep learning models have been

defined to handle brain networks. Brain graphs, indeed, are different from social networks in the

fact that their nodes cannot be directly described using features. In more detail, novel specific

cases of more general convolutional filters that have a meaningful interpretation in terms of net-

work topology have been defined, to directly process the adjacency matrix representation of brain

network data. Interesting results were achieved in various tasks, including predicting neurodevel-

opmental outcomes [Kawahara et al. (2017)] and automatic discrimination of neuropsychiatric

patients [Phang et al. (2019)], and paved the way to the characterization of either cognitive im-

pairments or pathological alterations caused by dfferent brain diseases, including MS.

3.3 Recurrent Neural Networks

The Recurrent Neural Network (RNN) is a class of ANN where connections between neu-

rons form a directed graph along a temporal sequence. This allows to model temporal dynamic

behaviour. Unlike feedforward neural networks, RNNs maintain an internal state (memory) to

process sequences of inputs. Roughly speaking, the decision of a recurrent network reached at

time step t−1 affects the decision it will reach one moment later at time step t. So RNNs have two

sources of input, the present and the recent past. The particular topology makes them applicable to

sequence processing tasks such as speech recognition, text and video processing. More formally,

the hidden state at time step t is ht defined as:

ht = σ(Wxt +Uht−1)

It is a function of the input at the same time step xt , modified by a weight matrix W added to the

hidden state matrix U . The weight matrices determine the importance to give to the present input

and the past hidden state The error generated is used to adjust such weights until convergence. The
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sum of the weight input and the hidden state is processed by the - usually non-linear - function σ .

Training RNNs is similar to training ordinary Neural Networks using the backpropagation

algorithm but with some additional efforts. Since the parameters are shared by all the time steps of

the RNN, the gradient at each output depends on the computation of the whole sequence. In order

to backpropagate the error we need then to unroll the RNN and use brackpropagation from the last

time step to the starting one, proceeding backward in time. This procedure is usually referred to

as Backpropagation Through Time (BPTT).
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Chapter 4

Topic of the thesis

The main objective of this thesis is to take advantage from findings in recent network analy-

sis [Kocevar et al. (2016), Rubinov and Sporns (2010), Sporns et al. (2005), Bullmore and Sporns

(2009)] and propose a further investigation of the MS disease in terms of variations among clin-

ical forms. To address this task, we exploit recent advances in computer vision, including graph

representation of the brain structure in conjunction with deep learning techniques. Such combina-

tion represents a powerful tool to model and analyze the complex mechanisms underlying brain

pathologies.

To this end, we first explored the capability of various deep learning algorithm at solving image

processing tasks. These techniques have been proven capable of extracting highly meaningful sta-

tistical patterns in large-scale and high-dimensional datasets, showing great power and flexibility

by learning to represent data as a nested hierarchy of concepts.

Next, a second group of experiments is proposed, concerning the exploitation of potential la-

tent features behind brain networks by means of Deep Neural Networks. Graph-based techniques

were explored, which combine local network descriptors with the graph representation of the brain

structure. Such approach allowed to investigate the role of specific graph-based local metrics for

the characterization of the MS disease. In more detail, supervised, semi-supervised and unsuper-

vised techniques were defined to automatically classify MS patients in their respective clinical

forms. Furthermore, a general logic-based framework was defined with the main goal of under-

standing which portions of connectome are significant during relapses of the disease, thus allowing

to delineate a small group of vulnerable brain regions.
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CHAPTER 1. BIOMEDICAL DATA AUGMENTATION USING GENERATIVE ADVERSARIAL NETWORKS

1 Introduction

The availability of a large amount of data is a crucial issue for applications in many domains.

Indeed, proper data are essential in order to understand specific scenarios (for instance, useful

information are extracted for predicting the evolution of systems or environments) and develop

effective applications. This is especially the case of the biomedical domain; however, in such

context collecting a significant amount of “good” data is not always an easy task, due, for instance,

to the high costs in terms of money and time required to perform screenings and analyses, or, as

in the case of certain pathologies, to the number of case study which is too limited for the creation

of data banks large enough to train physicians, experts, or artificial models. A possible way to

overcome limited availability, in some domains, is to artificially create new data. For many tasks,

indeed, this can be achieved by modifying initially available data [Goodfellow et al. (2016)]. As

an example, new instance images can be obtained by applying linear transformations (i.e., rotation,

reflection, scaling, etc.) to already available ones. For instance, this approach is effective while

training systems for automatic classification: a classifier just needs to take a complicated, high-

dimensional input x and summarize it with a single category identity y, meaning that the main task

a classifier has to perform is to be invariant to a wide variety of transformations. In this scenario,

generating new < x,y > pairs is just a matter of applying proper transformations to the x inputs in

the training set [Goodfellow et al. (2016)]: operations like translating the training images a few

pixels in each direction can often greatly improve generalization, and many other operations such

as rotating or scaling the image have also been proven to be particularly effective for a the specific

task of object recognition. Unfortunately, the same approach is not straightforwardly applicable

to any task: for example, it is difficult to generate new “artificial” data for a density estimation,

unless one has already solved the density estimation problem.

One of the most interesting alternatives, when dealing with image data, consists of learning the

latent manifold on which the input images lie, and then sample realistic pictures (and their labels)

from this manifold. We refer to Generative models as a class of machine learning algorithms

which start from a training set consisting of samples drawn from a distribution, and learn how to

represent an estimate of that distribution, or samples of it, to some extent. Furthermore Generative

models can be trained with missing data and can provide predictions on inputs that are missing

data. For example they can be integrated in semi-supervised learning approaches, in which the

labels for many or even most training examples are missing.

One of the goals of our proposal is to apply such techniques to new generative areas, not

explored so far. In particular, we present the application of a specific type of Generative Mod-

els, namely Generative Adversarial Neural Networks (GANNs), to the generation of new, unseen,

MRI (Magnetic Resonance Imaging) slices of the human brain. Interestingly, the model produces

samples very similar to real MRI slices, which present realistic features. To the best of our knowl-

edge, this is one of the first attempts to apply GANNs to biomedical imaging, and brain images in

particular. We validated the generated images both analytically and via an ad-hoc web platform,

where human physicians and experts have been invited to distinguish wether an image is real or

artificially generated.
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2. RELATED WORKS

The remainder of the chapter is structured as follows. In Section 2 we illustrate the related

literature, and then, in Section 3 we provide a detailed description of our approach. Section 4

presents our experimental evaluation and eventually, in Section 5 we draw our conclusion.

2 Related Works

Artificial generation of natural images is a widely studied task in machine learning, and con-

stituted an ambitious goal for many years [Goodfellow et al. (2016)]. Several efforts have been

spent to solve the problem of generating realistic high-resolution images, and several novel ap-

proaches [Dosovitskiy et al. (2015),Dosovitskiy and Brox (2016)] have already been proven to be

well-suited for generating realistic images which look very similar to the ImageNet dataset [Rus-

sakovsky et al. (2015)], also achieving impressive results at high resolutions.

As for the biomedical domain, the problem of automatically generated unseen instances has

been addressed by means of many different techniques. Many studies focussed on the reconstruc-

tion or the synthesis of an image starting from some initial data [Nie et al. (2017)], on the synthesis

of a source MRI modality to another target MRI modality [Sevetlidis et al. (2016)], on the gen-

eration of multi-modal medical images of pathological cases based on a single label map, also

outperforming the state-of-the-art methods it has been compared against. Closer to our proposal,

in [Costa et al. (2017)], the Authors tested the capability of GANNs in generating high quality

retinal fundus images from pairs of retinal vessel trees and corresponding retinal images. We use

the method proposed in [Denton et al. (2015)], as an attempt to generate high-quality MRI slices

in order to augment biomedical datasets with a fast and inexpensive method.

3 Proposed Approach

In the following, we describe the background techniques and methods, and provide further

details on the proposed approach.

3.1 Generative Adversarial Neural Networks

Generative Adversarial Neural Network is a generative model approach based on differen-

tiable generator networks [Goodfellow et al. (2016)]. GANNs are conceived for scenarios in

which the generator network must compete against an adversary, in a sort of forger-police relation.

Two actors are involved: the Generator network (the “forger”), which directly produces samples

x = g(z,θ (g)), where g is a given probability distribution that describes the training set; the Dis-

criminator (the “police”), that attempts to distinguish between samples taken from the original data

and samples drawn from the Generator; in other words, it estimates a probability value given by

d(x,θ (d)), indicating the probability that x is a real training example rather than an artificial sam-

ple drawn from the model. The best way to describe the GANN training process is as a zero-sum

game as defined in game theory, in which the Discriminator’s Generator’s payoffs are v(θ (g),θ (d))

and −v(θ (g),θ (d)), respectively. During the learning process, each player attempts to maximize its
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own payoff; in such a scenario, the Discriminator is called examine an image and estimate whether

it is “real” (i.e., taken from the training set) or “artificial” (i.e. generated by the algorithm). This

means that it must learn some general rules that govern the distribution until, at convergence, the

Discriminator is no more able to distinguish Generator’s samples from real data, so its output is 1
2

everywhere. On the other side, the Generator should learn how to generate images that look more

and more similar to the samples from the training set, in order to fool the Discriminator and make

it believe that they are real.

3.2 Laplacian Pyramid of Adversarial Networks

Several GANN models exist. As a first attempt, we take advantage from a recent optimization

method which uses a cascade of convolutional networks within a Laplacian pyramid framework

(LAPGAN), in order to generate images in a coarse-to-fine fashion [Denton et al. (2015)]. The

goal is achieved by building a series of generative models, each one able to capture image structure

at a particular scale of a Laplacian pyramid.

This approach allows to first generate a very low-resolution version of an image, and then

incrementally add details to it. The Generator (G) and the Discriminator (D), indeed, are not

trained directly on full-sized images: the training starts with a downsampling at a minimum size

which is increased (e.g., doubled) during multiple steps, until the final size is reached. During

these steps another pair of G and D are trained to learn good refinements of the upscaled images.

This means that G learns how to improve the quality of its input, adding good refinements, and, at

the same time, D learns how refined images look like. It is worth noting that this methodology is

very closely related to the one a human being typically employ to draw images: start with a rough

sketch, and then progressively add more and more details.

3.3 Generating MRI slices of the brain

Our approach uses a GANN to automatically generate MRI slices of the brain; in our work the

architecture described in [Denton et al. (2015)], public available on github1, was maintained “as

is”, except for the size of the output, which has been increased by adding one more convolutional

layer. The framework makes use of another convolutional neural network, the Validator, in charge

of assigning validation scores to generated images and trained once before the Generator network.

Artificial images used to train the Validator are created by applying some transformations to real

images. These techniques are sometimes combined with each other.

Both the Generator and the Discriminator are convolutional networks trained with stochastic

gradient descent, where Adaptive Moment Estimation is used as optimizer. The architecture of the

Generator is basically a full laplacian pyramid in one network; it starts with a linear layer, which

generates 16×8 images, followed by upsampling layers, which increase the image size to 32×16,

64× 32 and then 128× 64 pixels. The Discriminator is a convolutional network with multiple

branches. Rotations are removed by means of spacial transformer at the beginning; three out of

the four branches have also spatial transformers (for rotation, translation and scaling), so they can

1https://github.com/aleju/sky-generator
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Figure 1.1: Real (left) images compared with artificial (right) images

learn to focus on specific areas of the image. The fourth branch is intended to analyze the whole

image.

4 Experimental Analysis

4.1 Dataset description

The dataset consists of 46,737 images representing MRI slices extracted from 77 subjects.

Each subject underwent 8 MR scans. The MR protocol consisted in the acquisition of a sagittal

3D-T1 sequence (1× 1× 1mm3,T E/T R = 4/2000ms). In order to have “pure” MRI images, no

post-processing was applied to the images.

4.2 Training phase

The training process consists of multiple steps: at first, the Validator and the Generator are

trained for a predefined number of steps, 50 and 10, respectively; then, the real training process,

i.e., the zero-sum game, starts. Results shown in the following refer to 800 epochs of training.

Since images are defined on a grayscale, the framework was used with the grayscale parameter

enabled, so that only one input channel was used during the operations. In order to perform all

the tests, the following workstation was used: x86_64 CPU(s), Intel(R) Xeon(R) CPU E5440 @

2.83GHz, Linux Debian 4.8.4-1, CUDA compilation tools, release 7.5, V7.5.17, NVIDIA Corpo-

ration GK110GL on Tesla K20c.

4.3 Evaluation

Rigorous performance evaluation of GANNs is an important research area, since is not clear

how to quantitatively evaluate generative models [Goodfellow et al. (2016)]. Indeed, finding an

images evaluation method in such a context is not straightforward. When using statistical methods,

for instance, it might not be sufficient to look at probability distributions among pixels or part of

the images, as “geometric” relations are crucial. Also, the task is quite different from a clustering

or classification problem, as the point is to find what kind of “features” allow one to tell if an

image is eligible to stay within a given group or not, and not only judge “similarities”. This is

why, besides quantitative tests, we also conduct human evaluation to evaluate the quality of the

generated images [Zhang et al. (2017)a].
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Table 1.1: Likelihood comparison

Samples Real Generated

100 37.31 33.90

1000 34.30 33.92

10000 34.02 33.93

Table 1.2: Inception Score comparison (± stan-

dard deviation in parenthesis)

Test Real Generated

100 1.92 (±0.26) 1.80 (±0.29)

1000 1.79 (±0.06) 1.89 (±0.08)

10000 1.80 (±0.03) 1.93 (±0.03)

4.4 Quantitative image quality assessment

We evaluate our approach by means of two different quantitative methods: (i) Estimating the

distributions of the real and the generated datasets by means of the Kernel Density function and

comparing their likelihood; (ii) comparing the Inception Score of the two datasets. For the sake of

the present work, for each metric we considered two distributions similar if their distance, in terms

of score, is below the empirical threshold of 10%.

Kernel Density function

The approach based on Kernel Density function to evaluate generative models was originally

introduced in [Breuleux et al. (2011)] and applied on GANNs in [Goodfellow et al. (2014)]. The

method estimates the probability of the generated dataset, by fitting a Gaussian Parzen window

to the generated samples and reporting the likelihood under this distribution. The bandwidth of

the Gaussians is obtained by cross-validating the validation set. In our approach, we compute the

similarity between the two datasets estimating their distribution by means of the Kernel Density

function, so that similar datasets should be represented by similar distributions. Figure 1.2 shows

the comparison of the density distribution and the estimated Cumulative Density function under

real and generated datasets. As observable, generated images present very similar features with

respect to the real dataset.

Inception Score

Inception Score [Salimans et al. (2016)] is an automatic method to evaluate samples which is

found to correlate well with human judgement. The probability p(y|x) is estimated by applying the

Inception model [Szegedy et al. (2016)a] to every image in the dataset, so that images belonging

to the same distribution should have low entropy. Consequently, if the generated images are distant

from the estimated distribution, the marginal should present high entropy. These assumption are

used to compute the Inception Score according to the equation IS = exp(ExKL(p(y|x)||p(y)))),
where KL is the Kullback-Leibler divergence and results are exponentiated so the values are easier

to compare. In this work we compare the Inception Score computed on both generated and real

dataset. Tables 1.1 and 1.2 report a comparison of the likelihood and the Inception Score between

both the estimated distributions over 100, 1000 and 10000 samples. Similar scores were obtained

when comparing the generated and the real dataset.
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Figure 1.2: Density function (left) and Cumulative Density function (right) comparison of gener-

ated (orange ) and real (blue ) datasets.

4.5 Human evaluation of generated images

The quality assessment of the generated images are evaluated by means of a web platform2,

where physicians and experts are called to distinguish between real and artificial images. More

in detail, two sets of 100 images (both 100 real and 100 artificial) was prepared. Each user is

proposed, one at a time, images from a set of 20 randomly extracted from the two sets with,

probability 1
2
. During each trial, true positive (TP), true negative (TN), false positive (FP) and

false negative (FN) are collected, where positive is used to indicate real images and negative is

referred to artificial ones. In order to assess the quality of the delineation, we compute Accuracy

(Acc = T P
P+N ), Precision (Prec = T P

T P+FP ), Recall (Rec = T P
T P+FN ) and F1-score (F1 = 2∗Prec∗Rec

Prec+Rec )

where P is the number of positive samples and N the number of negative ones. We collected 15

tests performed by different experts in neuroimaging field; they achieved (on average) an accuracy,

precision, recall and F1-score, to discriminate between real and “artificial” images, of 0.52±0.16,

0.55±0.23, 0.58±0.21, and 0.53±0.17, respectively.

Results obtained after human evaluation show the capability of our method to generate “ar-

tificial” MR images similar to real one. The difficulty to differentiate between the two is well

underlined by the low values of F1-score obtained by humans in the tests. Furthermore, in order

to have a more detailed feedback, we also asked our experts to write down comments describing

how did they tell the difference between real and “artificial” images. Among others, we received

two interesting observations: the first is about grey and white matter tissues contrast, while and

the second about image symmetry. Those two limitations are indeed noticeable in the generated

images: they present a low level of contrast between the two tissues, and an high symmetry be-

tween the two hemispheres. Based on the quantitative results and the comments obtained from the

experts, we can say that our method is definitely appropriate, and still features significant room for

improvement.

5 Conclusion

In this chapter we have shown the feasibility of learning to perform the synthesization of

unseen high-quality MRI slices of the human brain by means of GANNs. The aim of the study

2www.tinyurl.com/mrichallenge
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was to ease inexpensive and fast augmentation of biomedical datasets, in order to overcome the

lack of real images and allow physicians and machine learning algorithms to take advantage from

new instances for their training.

Applications of GANNs have been just started to be studied in literature, and a large variety of

applications are still open. As future work, we aim to improve the quality of the generated images,

to be more and more similar to real MRI scans; to this aim, a comparison with alternatives models,

such as Deep Convolutional Generative Adversarial Networks (DCGAN) [Radford et al. (2015)],

will be of clear interest, as they are currently emerging in literature. Furthermore, the generation

may be improved by allowing the network to add pathological symptoms and provide unseen data

of synthesized patients; this might also improve the study of rare diseases. Another perspective is

the combination of the generated slices in order to compose a three-dimensional MRI. Eventually,

we are planning to better investigate quality and use of quantitative measures for the assessment

of the methods.
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1 Introduction

It is well known in the medical literature that retinal changes reflect systemic microvascular

damage associated with different pathological conditions, such as hypertension or diabetes [Caval-

lari et al. (2015)]; interestingly, analysis of such changes can be performed by using non-invasive

techniques, like fundoscopy.

Fundoscopy allows to obtain high-definition images of the retina in a few seconds, and con-

stitutes a perfect test in emergency rooms to assess the presence of serious diseases. However,

full exploitation of fundoscopy in clinical settings is limited because quantitative information can

hardly be obtained through the observer-driven evaluations currently employed in routine clinical

practices [Cavallari et al. (2015)]. Hence, the development of algorithms capable to extract quan-

titative information from those images is crucial for the automatic extraction of useful information

from fundus images.

Several approaches have been proposed in literature in the last decade [Wong et al. (2004)]

[Cavallari et al. (2015)]. It is worth noting that optic disc (OD) identification is a fundamental step

in the analysis of human retina image analysis, as it allows to identify important regions in fundus

images. Those regions could be exploited as seed points for semi-automatic algorithms to perform

a quantitative analysis of the retinal damage.

Due to the large variations in fundus imaged object appearance, OD detection is a challenging

problem of computer vision. Common variations are given by the changes in viewpoint, illumina-

tion and intra-class variance [Aytar (2014)]. Many of the methods present in literature are based on

two assumptions on the images: (i) the optic disc tends to be much brighter than its surroundings,

(ii) the optic disc is the ultimate source of retinal blood vessels [Lim et al. (2015)]. In contrast,

proper machine learning techniques, like Deep Learning, in OD detection, make the algorithm able

to automatically infer rules for solving this task. In addition, this “data-driven” approach allows to

overcome problems related to the quality of the image and the exposure, considering that the disc

could be hidden in the image because of several diseases.

Current trends in research proved the effectiveness of convolutional neural networks (CNNs)

for solving object recognition tasks, automatically identifying features from large collections of

images, with minimum error [Krizhevsky et al. (2012)] [Szegedy et al. (2016)b]. Moreover,

CNNs are fast to train and particularly well-adapted to classify images.

In practice, in many real-world applications, it is not always possible to have a dataset of

sufficient size to create a high-performance learner for a target domain from a related source do-

main [Weiss et al. (2016)]. Especially in some scenarios (such as in the case of the biomedical

domain), obtaining training data that matches the feature space and predicted data distribution

characteristics of the test data is often difficult and expensive. Thus, in order to overcome this lim-

itation, it is common to pre-train a neural network on a very large dataset, and then use the network

either as an initialization or a fixed feature extractor for the task of interest. This methodology is

known as Transfer Learning [Pan and Yang (2009)].

We present here a supervised method for the automatic detection of the Optic Disc in retinal

fundus digital images, which properly reuses previous knowledge from a Convolutional Neural
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Networks (CNN) pre-trained to detect faces in an image. We illustrate the outcome of an ex-

perimental activity that showed high level of accuracy on the DRIVE1, STARE2 and DRIONS3

databases.

The remainder of the chapter is structured as follows. In Section 2, we illustrate related liter-

ature and then, in Section 3, we provide a detailed description of our approach. In Section 4 we

present our experimental activities, discussing the results in Section 5. Eventually, in Section 6 we

draw our conclusion.

2 Related Works

The OD is a yellowish or white circular, sometimes elliptic, region present in color fundus

images. It is the entrance of blood vessels and the optic nerve into the retina which size varies from

patient to patient. Despite its well-known visual properties, OD detection remains a challenging

task because of several issues related to the quality of the image acquired, such as differences in

(high or low) levels of brightness, contrast, or saturation. Moreover, several retinal pathologies

can hide or modify the appearance of the optic disc and the presence of exudates and other shapes

on funds surface can generate confusion in a way such that methods are likely to fail.

Several attempts were provided in order to automatically locate and segment the optic disc

and cup. This was usually achieved by taking advantage from many well-known properties of

the optic disc, such as its grey level variation along with the high contrast between it and its

surrounding [Sinthanayothin et al. (1999), Goh et al. (2001), Pallawala et al. (2004)]. However,

this approach has been shown to work well, unless the presence of occlusion due to pathologies

like exudates which also appears bright and well contrasted. In [Aquino et al. (2010), Yin et al.

(2012), Tamura et al. (1988)], the OD is localized using by means of circular Huge transform,

i.e., computing the gradient of the image, determining the best fitting circle. Unfortunately, this

approach is quite time consuming and it does not consider that the OD is sometimes partially

hidden in the image plane, and so the shape is far from being circular or even elliptic. Finally,

in [Xu et al. (2013)] one of the best optic cup segmentation results has been achieved by means of

optimal linear reconstruction with codebooks.

Fundus images reveal a complex mixture of visual hidden patterns. These patterns could be

only observed by skilled human graders, and can potentially be time-consuming. However, the

best way of translating this knowledge into an automated procedure still remains an open prob-

lem. In contrast to “analytical” methods, which attempt to exploit well-known features of the

OD, another relative recent branch of methods is taking place, namely machine learning based

approaches; these attempt to automatically detect useful properties in order to overcome the above

limitations. In [Lim et al. (2015), Chen et al. (2015)] novel approaches to automatically de-

tect these features by means of Convolutional Neural Networks have been proposed, which have

recently been successfully employed for many image segmentation and classification tasks.

1http://www.isi.uu.nl/Research/Databases/DRIVE/
2http://cecas.clemson.edu/~ahoover/stare/
3http://www.ia.uned.es/~ejcarmona/DRIONS-DB.html
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3 Proposed Approach

In the following, we describe the background techniques and methods, and provide further

details on the proposed approach.

3.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are particular types of artificial neural network which

are biologically inspired by the visual cortex. They are supervised feature learner able to learn

complex invariances and patterns with extreme variability, with robustness scaling, shifting, trans-

lation, rotation and distortion of the input. Their particular architecture was designed to recognize

visual patterns directly from pixel images with minimal preprocessing.

As already described previously, CNN consists of a sequence of layers, each of which make

use of a differentiable function to transform one volume of activations to another. Typically three

main types of layers are used to build CNN architectures: Convolutional Layers, Pooling Layers,

and Fully-Connected Layers. Convolutional layers can be seen as sets of filters which are able to

extract some specific patterns and particular features from an image. The output of a convolutional

layer is a feature map which describes particular characteristics of the image. All neurons in a

feature map share the same set of weights and the same bias, so neurons in a feature map are

able to detect the same feature. The other feature maps in this layer use different sets of weights

and biases, also reducing the number of free parameters, so different types of local features are

extracted. Pooling layers work as a feature selection layers. They progressively reduce the spatial

resolution of each feature map in order to reduce the amount of parameters and the computation

in the net by means of local averaging and a subsampling, hence controlling overfitting. Fully-

connected layers are usually placed at the end of the structure to perform high-level reasoning.

They take a vector of neurons from the previous layer as input, and connects it to all its neurons,

actually producing a one-dimensional vector. This structure makes CNNs particularly well suited

for image recognition and object detection tasks.

3.2 Transfer Learning and Fine-Tuning

Transfer Learning overcomes the assumption, typical of traditional machine learning method-

ologies, on the fact that training and testing data are supposed to be taken from the same domain,

so that the input features space and data distribution characteristics are the same.

A common real-world example that helps at understanding why transfer learning is possible

and actually effective is the following. Let us consider two people who want to learn how to play

a musical instrument: the piano, for instance; interestingly, one of the two persons has no previous

knowledge about music, while the other has been studying guitar since he was child; thus, the

latter already has an extensive musical background. Intuitively, the guy with such a background

will be able to learn the piano in a more efficient way by transfer his previous knowledge to the

new task [Weiss et al. (2016)].

In order to formalize the definition of Transfer Learning, in this paper we use the notation
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defined in [Pan and Yang (2009)]. More in detail, let D be a domain composed by a feature space

X and a marginal probability P(X), where X = {x1, . . . ,xn} ∈ X . For each domain D we can

define a task T composed by a label space Y and a predictive function f (·) which is inferred

from each pair {xi,yi} where xi ∈ X and yi ∈ Y . Now, let Ds be the source domain data and Ts

be the source task. Let Dt be the target domain data and Tt be the target task, Transfer Learning

can be formally defined. Given a source domain Ds along with the corresponding source task Ts

and a target domain Dt with a corresponding target task Tt , Transfer Learning is the process of

improving the target predictive function ft(·) by using the related information from Ds and Ts,

where Ds 
= Dt or Ts 
= Tt [Weiss et al. (2016)].

Fine-tuning is one of the major Transfer Learning scenario, which consists in transferring

knowledge by training a CNN to learn features for a source domain yet trying to minimize the

error in that domain. Hence, the network is trained again on another, more specific, domain. In

this setting, we are transferring features and parameters of the network from the source domain to

the specific one [Reyes et al. (2015)].

3.3 Reinspection Algorithm Model Overview

The model proposed in [Stewart et al. (2016)] provides an end-to-end approach for directly

generating as output a set of boxes that, once superimposed over the input image, bound specific

objects appearing in it. Briefly, the architecture converts an intermediate representation of an im-

age, obtained by means of expressive image features from GoogleLeNet [Szegedy et al. (2016)b],

into a set of boxes using a recurrent neural network with LSTM units (Figure 2.1). As described

by the authors, the LSTM units can be seen as a “controller” that propagates information between

decoding steps, and controls the location of the next output. It has been trained to face detection

in crowded scenes, and achieved impressive results also in situations where distinguishing nearby

individuals is particularly challenging.

More in details, each image is transformed into a grid of 1024 dimensional features descrip-

tors. This vector is somehow representative of the contents of a region, and also holds proper

information about the position of the object in that region. At each step, the LSTM predicts a new

bounding box b = {bpos,bc}, where bpos = (bx,by,bw,bh) ∈ R
4 and bc ∈ [0,1] is the confidence

that a person is found at that location. Boxes are produced in order of descending confidence

values until the LSTM is unable to find another box with a confidence greater than a given thresh-

old. The memory states allow to generate the next hypothesis depending on the previous one. A

specific loss function suitable for guiding the learning process towards the desired output has been

defined.

3.4 The GoogLeNet-OverFeat algorithm

The proposed model takes advantage from a novel feature extractor called “OverFeat”, which

is based on the approach proposed in [Sermanet et al. (2013)], where the winner of the local-

ization task of the ImageNet Large Scale Visual Recognition Challenge 2013 (ILSVRC2013) is

introduced, that obtained very competitive results in the detection and classifications tasks.
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Two models are proposed: fast and accurate, where the second achieves better results with

respect to the first, yet requiring, however, much more connections.

GoogLeNet-Overfeat uses the same fixed input size approach proposed by Krizhevsky et al.

in [Krizhevsky et al. (2012)]. Each image is reduced to a minimum size of 256 pixels; then, 5 crops

of size 221×221 in a random position are extracted and presented to the network in mini-batches

of size 128. Table 2.1 reports some details about the architecture.

3.5 Fine Tuning for Optic Disc Detection

It is known that the OD presents some specific visual properties, such as its circular shape and

its variation of brightness with respect to the background. Furthermore, its position varies among

precise regions of the eye, and it is the origin of the blood vessels. Unfortunately, all these well-

defined features are extremely difficult to combine in the definition of precise algorithmic rules,

due to the presence of a large amount of variations in colors, brightness and saturation; in addition,

several disorders might cause the presence of defects in the retina: well-demarcated lesions, spots

and scar tissue often appear, such that distinguishing between them and the OD become an hard

task (see Figure 2.4 for some examples).

In order to successfully face these issues, CNNs can be used, as they constitute a “natural” tool

for extracting features from images, and can infer such rules for automatically detecting the OD.

Although the real meaning of features learned by the neural network is still unknown, it is rea-

sonable to believe that they represent concepts such as shape, color, proportions, and relationships

between objects of an instance.

Our approach uses the ability of the network defined above for abstracting the features learned

from the source task. Fine-tuning is then applied in order to transfer such background knowledge

to the task of detecting the OD in retinal fundus images. Since training a CNN from scratch can

be very time consuming, the model was fine-tuned in order to speed-up the training process. In

our experiments the main architecture implemented by [Stewart et al. (2016)] was maintained “as

is”, except for the size of the input images. Our model takes as input a retinal fundus image of size

704×576 and process via the three stages described above, hence generating as output a set of

boxes along with their confidence values. The box with the highest value of confidence is the one

which bounds the OD with the highest level of accuracy. Since the OD in a retinal fundus image

is unique, bounding boxes with a confidence value lower than a predefined threshold (0.8) were

removed in order to avoid misclassifications due to the presence of exudates or other brightness

shapes; only the one with the higher level of confidence was considered as representative of the

position of the OD.

4 Experimental Analysis

4.1 Dataset description

Fine-tuning was performed using the publicly-available structural analysis of retina (STARE)

database, which provides a set of retinal fundus images along with the location of their optic disc.
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Table 2.1: GoogLeNet model architecture

Layer 1 2 3 4 5 6 7 8 Output

Stage conv + max conv + max conv conv conv conv + max full full full

#channels 96 256 512 512 1024 1024 4096 4096 1000

Filter size 7x7 7x7 3x3 3x3 3x3 3x3 - - -

Conv. Stride 2x2 1x1 1x1 1x1 1x1 1x1 - - -

Pooling size 3x3 2x2 - - - 3x3 - - -

Pooling stride 3x3 2x2 - - - 3x3 - - -

Zero-Padding size - - 1x1x1x1 1x1x1x1 1x1x1x1 1x1x1x1 - - -

Spatial input size 221x221 36x36 15x15 15x15 15x15 15x15 5x5 1x1 1x1

Table 2.2: Performances in terms of Recall (Rec), True Positives (TP) and mean Dice Score

(DSC) (± its standard deviation in parenthesis) obtained with Learningrate = 0.0003 and different

Epochs.

DRIONS DRIVE
Epochs Rec TP DSC Rec TP DSC

1000 100 110 0.97 (±0.52) 97.5 39 0.43 (±0.19)

900 100 110 0.99 (±0.15) 65.0 26 0.43 (±0.19)

800 100 110 0.99 (±0.09) 90.0 36 0.64 (±0.20)

700 100 110 0.98 (±0.28) 72.5 29 0.60 (±0.23)

500 100 110 0.99 (±0.05) 52.5 21 0.52 (±0.15)

300 96.4 106 0.94 (±0.32) 47.5 19 0.49 (±0.21)

100 0 0 0 0 0 0

STARE dataset consists of 400 PPM images, digitized slides captured by a TopCon TRV-50 fundus

camera with 35 degree field of view. Each slide was digitized to produce 605×700 pixel image

with 24 bits per pixel.

Two different publicly-available databases are used as validation sets: the “test” DRIVE dataset

and the DRIONS-DB dataset. The “test” DRIVE dataset consists of 40 images acquired by means

of a CanonCR5 non-mydriatic 3CCD camera with a 45 degree field of view (FOV). Each image

was captured using 8 bits per color plane at 768×584 pixels. The FOV of each image is circular

with a diameter of approximately 540 pixels. For this database, the images have been cropped

around the FOV. For each image, a mask image is provided that delineates the FOV.

The DRIONS-DB consists of 110 color digital retinal images affected by potential problems

that may distort the detection process of the papillary contour. The mean age of the patients was

Figure 2.1: Application of GoogLeNet for optic disc detection
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53.0 years (SD13.05), with 46.2% male and 53.8% female, all of Caucasian ethnicity. 23.1%

patients had chronic simple glaucoma and 76.9% eye hypertension. The images were acquired

with a colour analogical fundus camera, approximately centered on the optic nerve and they were

stored in slide format. In order to have the images in digital format, they were digitized using a

HP-PhotoSmart-S20 high-resolution scanner, RGB format, resolution 600×400 and 8 bits/pixel.

4.2 Tuning of Neural Network

Accurate selection of the best parameters to train the Neural Network (NN) is a crucial point

to: i) obtain the best performances and ii) understand the behavior of the neural network according

to each parameter. The NN used in this work mainly depends on two parameters: the number of

Epochs and the Learning Rate.

An Epoch consists of one full training cycle on the training set, i.e., the times all of the training

vectors are used once to update the weights.

The Learning Rate is a positive constant, that plays the role of moderating the degree to which

weights are changed at each step [Mitchell et al. (1997)]. A too small learning rate leads to slow

convergence, whilst a too high learning rate to divergence [Duffner and Garcia (2007)].

In order to find the best combination of these two parameters a grid search has been performed.

More in detail, the range [100;1000] with a step size of 100 was selected for the Epochs and

values’ set {0.000003,0.0003,0.003,0.03} was selected for the Learning Rate. These ranges were

selected since a finer step size did not significantly improve the results any further.

Since training of NN is computational demanding, the classical CPU-based architecture is not

sufficient to obtain results in short time. This is why recently, Graphic Processing Units (GPUs)

have become an attractive way of implementing machine learning algorithms that requires large

amount of data processing [Upadhyaya (2013)]. GPUs allow to drastically decrease the computa-

tional time needed by the NN by using a massive parallelism. The introduction of programmabil-

ity in GPUs has allowed to perform non-graphical related applications, known as general purpose

computing on GPU (GPGPU). In order to perform all the tests, the following workstation was

used: x86_64 CPU(s), Intel(R) Xeon(R) CPU E5440 @ 2.83GHz, Linux Debian 4.8.4-1, CUDA

compilation tools, release 7.5, V7.5.17, NVIDIA Corporation GK110GL on Tesla K20c.

In this work only the STARE dataset is used to perform the training of the NN. The grid search

was then performed using part of the STARE and the performances were computed on DRIONS

and DRIVE datasets already described in Section 4.1. It is important stating that the NN never

used information derived from DRIONS and DRIVE datasets during the training phase.

Since the main goal of this test is to understand if our method can detect the optic nerve, we

measured the performances of the neural network using the Recall measured defined as Rec =
T P

T N+FN .

Results of the tuning phase are reported in Figure 2.2 and Figure 2.3.
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Figure 2.2: Recall performances in optic disc identification according to Learning Rate and Epochs

on DRIONS database

4.3 Evaluation

In order to assess the quality of the delineation, the Sørensen-Dice Score Coefficient (DSC) [Zou

et al. (2004)] was computed according to the following equation:

DSC =
2∗ |A∩B|
|A|+ |B|

where A is the voxel set containing the regions with the manually segmented optic disc, B is the

voxel set with the region detected by our method. According to this index, we can have three

different cases:

1. DSC = 0: No overlap

2. 0 < DSC < 1: Partial overlap

3. DSC = 1: Complete overlap

Mean (DSC) and standard deviation (σ(DSC)) of DSC were computed using the DSC value

obtained for each image in the testing set. Moreover, number of true positives (TP) and recall

(Rec) were computed.

Results obtained with different epochs with an optimal LearningRate = 0.0003 obtained from

the previous section are visible in Table 2.3.

5 Discussion

Figure 2.4 illustrates the accuracy of our method: it shows the optic disc detection in 4 images

of the retinal fundus that feature high level of damages. Indeed, the results of our experiments show

that the herein proposed model allows to detect the optic disc with an average recall of above 90%

on the DRIVE-DB and 100% on the DRIONS-DB, which are composed by images which often

feature very high variation in illumination and colors. Furthermore, these results were achieved

after about 500 epochs, showing that the network is able to reuse its previous knowledge in order

to reduce the training time.
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Figure 2.3: Recall performances in optic disc identification according to Learning Rate and Epochs

on DRIVE database

Figure 2.4: Example of optic disc identification in images with high level of damages

Table 2.3: Performances in terms of Recall (Rec), True Positives (TP) and mean Dice Score

(DSC) (± its standard deviation in parenthesis) obtained with Learningrate = 0.0003 and different

Epochs.

DRIONS DRIVE
Epochs Rec TP DSC Rec TP DSC

1000 100 110 0.97 (±0.52) 97.5 39 0.43 (±0.19)

900 100 110 0.99 (±0.15) 65.0 26 0.43 (±0.19)

800 100 110 0.99 (±0.09) 90.0 36 0.64 (±0.20)

700 100 110 0.98 (±0.28) 72.5 29 0.60 (±0.23)

500 100 110 0.99 (±0.05) 52.5 21 0.52 (±0.15)

300 96.4 106 0.94 (±0.32) 47.5 19 0.49 (±0.21)

100 0 0 0 0 0 0
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However, we observed that the level of accuracy significantly decreases in the case of the

DRIVE dataset, where the network fails at correctly locating the disc for 1 out of 10 images; the

main reason is that the dataset used for the training might not be sufficiently representative of the

DRIVE-DB. We have to observe, moreover, that reducing the threshold of overlapping used in

the evaluation the recall achieved is 100% also in the DRIVE-DB. Hence, we can conclude that

the network still locates the Optic Disc in the correct position, but with less accuracy, so that the

misclassification might be solved by training the network on a larger dataset for more epochs.

6 Conclusion

It has been known for a long time that retinal changes reflect systemic microvascular dam-

ages associated with a number of pathological conditions, such as hypertension or diabetes. In

this chapter we presented a method for the automatic location of the optic disc in retinal fundus

images. The method is based on a fine-tuning of the weight of a Convolutional Neural Network de-

signed and trained for face detection tasks, and, notably, we also observed how previous knowledge

learned from a source task can be easily transferred to solve a related target task, thus overcoming

the limitation of insufficient data and time/cost constraints. We carried out an experimental activ-

ity aimed at assessing effectiveness and performances of the proposed method, that proved to be

effective also in case of low-quality input images.
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1. INTRODUCTION

1 Introduction

In Multiple Sclerosis, the course of the disease and the risk for developing permanent disability

are very different from one patient to another and the prediction of long-term disability is still not

possible in a new MS patient. Today’s neurologist challenge is to predict the individual patient

evolution and response to therapy based on the clinical, biological and imaging markers available

from disease onset. Long-term clinical studies have been conducted to determine the clinical

predictors of disability accumulation in MS [Degenhardt et al. (2009), Soldán et al. (2015)].

In RRMS and SPMS, several negative prognostic factors were identified such as the onset of

progression, higher early relapse rate, greater disability in the first 5 years, and shorter interval

to the second relapse. However, none of these predictors are available at the beginning of the

disease [Confavreux et al. (2003), Confavreux and Vukusic (2006), Scalfari et al. (2010)].

Among the available information with a potential prognostic value at the CIS stage, MRI

remains the most promising. A lot of efforts have been concentrated on the identification and

characterization of MS lesions [Valverde et al. (2017), Brosch et al. (2015)]. While conven-

tional T2 lesion load is moderately correlated with the patient clinical status, it can predict the

increase of disability scores, such as the Expanded Disability Status Scale (EDSS) and the Mul-

tiple Sclerosis Functional Composite (MSFC) [Barkhof (2002)]. Global brain atrophy constitutes

a potential marker, as it even exists at the early stages of MS. However, its predictive value is

still controversial, probably due to its methodological limitations [Durand-Dubief et al. (2012)].

Measurement of subcortical grey matter atrophy could be of special interest if appropriate tools

were available in clinic [Hannoun et al. (2012)]. Indeed, atrophy in the thalamus was recently

reported to be an early marker of the neurodegeneration processes occuring throughout the dis-

ease progression [Azevedo et al. (2018)]. Regional atrophy in the whole brain was also studied,

showing a specific pattern of the atrophy progression within the central nervous system, starting

in the posterior cingulate cortex before spreading in the whole cortex [Eshaghi et al. (2018)].

More advanced MRI techniques, such as brain volumetry, magnetization transfer imaging (MTI)

and diffusion-tensor imaging (DTI) are promising tools in that perspective [Rovira et al. (2013)].

Reflecting more specifically the demyelination and remyelination processes, have been shown to

predict deterioration of cognitive functions in patients with early MS stages followed during 7

years [Deloire et al. (2011)]. However, these advanced techniques are not always available in

clinical routine. In contrast, DTI becomes more available in clinical environment and provides an

effective mean for the quantification of demyelination and axonal loss in CIS patients [Sbardella

et al. (2013)]. Furthermore, it has recently been shown that diffusivity measurements in CIS

patient’s cerebellar white matter (decreased fractional anisotropy) can be predictive of a shorter

conversion into a clinically definite MS [Kugler and Deppe (2018)]. Therefore, we propose in this

work a new approach for the automatic classification of MS clinical profiles based on brain DTI

acquisition.

MRI data are usually represented as images. However, new data representation approaches

were developed based on graph theory. Recently applied in neurosciences, graph-based mod-

els opened new perspectives for the exploration of brain structural and functional connectivity
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by means of graph-derived metrics [Rubinov and Sporns (2010)]. In this context, few machine

leaning approaches have been developed for the classification of MS clinical forms. [Stamile et al.

(2015)] applied Support Vector Machines (SVM) to graph-based representation of the brain for the

classification of MS patients clinical courses. In particular, Brain structural connectivity graphs

were extracted from DTI data and several experiments were performed to classify RR vs PP, RR

vs SP, PP vs SP and RR vs PP vs SP clinical profiles. Both weighted and binary graphs have

been considered and the best performances were obtained with unweighted graphs for most of the

classification tasks. In [Kocevar et al. (2016)], a similar strategy has been used. Six global fea-

tures (graph density, assortativity, transitivity, global efficiency, modularity and characteristic path

length) were extracted from the structural connectivity graphs to enhance the performance of the

SVM classification of MS clinical profiles. High level of accuracy were obtained in the HC vs CIS,

CIS vs RR, RR vs PP, RR vs SP, SP vs PP and CIS vs RR vs SP tasks. This work demonstrated

the better sensitivity of the modularity and assortativity metrics to achieve the best performances.

These approaches provided remarkable results on binary classification tasks but were unable to

classify the four possible MS profiles at once.

More recently, Neural Networks (NN) based approaches showed promising results for the

analysis and classification of images in a wide range of applications [Goodfellow et al. (2016)].

More specifically in the context of MRI analysis in MS, Whang et al. exploited complex

CNN to differentiate MS patients from healthy controls with an accuracy greater than 98% based

on T1-weighted MRI [Wang et al. (2018)]. The same task was addressed by Maleki et al. and

Zhang et al. where CNN achieved similar results [Maleki et al. (2012), Zhang et al. (2018)c].

In [Ion-Mărgineanu et al. (2017)] the authors demonstrated the potential of using simple CNN

to classify MS clinical courses. In particular, they exploited features extracted from magnetic

resonance spectroscopic images combined with brain tissue segmentations of grey matter, white

matter, and lesions.

Since the first definition of Graph Neural Networks (GNN) [Scarselli et al. (2009)], a huge ef-

fort was made to extend neural networks with the purpose of processing graph structures data. By

implementing a function that maps a graph and its nodes into an m-dimensional Euclidean space,

the GNN model can directly process many types of graphs (e.g., acyclic, cyclic, directed, and

undirected). An extension of this approach was proposed by [Kipf and Welling (2016)], which in-

troduced a Graph Convolutional Neural Network (GCNN) model that is able to achieve promising

results by properly managing structured data and capturing hidden information from graphs.

Graph kernels are historically widely used techniques to solve graph classification problems

[Kriege et al. (2019)]. These methods use a kernel function to measure the similarity between pairs

of graphs. In this way, kernel-based algorithms such as support vector machines for supervised

graph learning can be used for processing graphs. Similar to GNNs, graph kernels can embed

graphs or nodes into vector spaces by a mapping function. However, differently from GNNs, this

mapping function is deterministic rather than learnable. Furthermore, due to a pair-wise similarity

calculation, graph kernel methods suffer significantly from computational bottlenecks. GNNs

attempt to overcome this limitation by directly perform graph classification based on the extracted

graph representations and therefore are much more efficient than graph kernel methods.
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Table 1.1: Information on the data set for the different clinical profiles (HC,CIS, RR, SP, PP).

HC CIS RR SP PP

Number of patients (%Male/Female) 24(42/57) 12 (50/50) 30 (20/80) 28 (61/39) 20 (45/55)

Age at first scan (years) 35.7 (10.1) 30.88 (6.4) 27.57 (7.8) 27.64 (7.6) 34.99 (6.1)

Disease duration (years) - 1.50 (1.54) 6.75 (4.81) 13.12 (5.84) 5.90 (2.60)

EDSS median (range) - 0.5 (0-4) 2.0 (0-4.5) 5.0 (3-7) 4.0 (2.5-6.5)

Total number of scans 24 63 190 199 126

In this work, we used the GCNN model to classify MS patients into four clinical profiles

[CIS, RR, SP, PP] using the graph structural connectivity information. Beside the use of brain

connectivity graphs directly as an input to the NN, we also investigate the potential role of graph

local features in further improving classification performances. Finally, we perform our experi-

ments using both weighted and unweighted connectivity matrices of the brain structure, in order

to understand the role played by edge weights in the classification process.

2 Materials and Methods

Our method is divided in three steps: (i) structural connectivity information is extracted from

the images in order to produce a graph representation of the MRI; (ii) a feature matrix is extracted

from each graph and local graph metrics are computed; (iii) the adjacency matrix, together with

the local graph features matrix, is used as input for the GCNN to perform the classification task.

In the following, we illustrate how structural connectivity information are extracted from the

images in order to produce a graph representation of the MRI. Then, we describe the NN archi-

tecture used for the classification task. Finally, we provide a description of the graph features

considered in this work.

2.1 MRI Acquisition and data set description

The MS population consisted of 12 CIS, 30 RR, 28 SP, 20 PP examined longitudinally every

6 months during 3 years and then every year during 4 more years. A total of 580 exams were

processed for classification. In addition, twenty-four healthy controls (HC) subjects, age and sex

matched with the MS patients, were considered in the experiments. This prospective study was

approved by the local ethics committee (CPP Sud-Est IV) and the French national agency for

medicine and health products safety (ANSM). Written informed consents were obtained from all

patients prior to study initiation. A description of clinical data is reported in Table 1.1. Diagnosis

and MS profile were established according to the McDonald criteria [Lublin et al. (2014),McDon-

ald et al. (2001)], while disability was assessed with Extended Disability Status Scale (EDSS).

MR examinations were performed on a 1.5T Siemens Sonata system (Siemens Medical Solu-

tion, Erlangen, Germany) using an 8-channel head-coil. The MR protocol consisted in the acquisi-

tion of a sagittal 3D-T1 sequence (1×1×1 mm3, TE/TR = 4/2000 ms) and an axial 2D-spin-echo

DTI sequence (TE/TR = 86/6900 ms; 2× 24 directions of gradient diffusion; b = 1000 s.mm−2,

spatial resolution of 2.5×2.5×2.5 mm3) oriented in the AC-PC plane.
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2.2 Brain Structural Connectivity Graph

As previously described by [Kocevar et al. (2016)], the data processing for the extraction of

brain structural connectivity is composed of three steps:

1. First, each voxel of the T1-weighted MR images is labeled in four classes, depending on

the corresponding tissue type [white matter (WM), cortical GM, sub-cortical GM, cerebro-

spinal fluid (CSF)]. In order to perform the classification a segmentation of the Cortical

and sub-cortical parcellation using FreeSurfer [Fischl et al. (2004)] is performed on the T1

images. The segmentation is also used to define the graph nodes (q=84).

2. Second, the diffusion images are pre-processed by applying correction of Eddy-current dis-

tortions [Jenkinson et al. (2012)] and skull stripping.

3. Third, MRtrix spherical deconvolution algorithm [Tournier et al. (2012)] is used to estimate

main diffusion directions in each voxel of diffusion images. Starting from the previous

tissue-class labeling, a probabilistic streamline tractography algorithm is applied to generate

fiber-tracks in voxels labeled as WM voxels. Symmetrical connectivity matrix A ∈ N
q×q
+ is

then generated for each subject through the combination of GM segmentation and WM

tractography.

In detail, let Ψ : N2
1 → N be the number of fibers connecting two nodes i and j. Then,

each element of the connectivity matrix A is ai, j = Ψ(i, j). In particular, A represents the

adjacency matrix of the weighted undirected graph G = (V,E,ω) where V (|V | = q) is the

set containing the segmented GM brain regions, E is the graph edges set defined as:

E = {{i, j} | Ψ(i, j)> 0 ∀ 1 ≤ i, j ≤ q}

and ω : E → Ψ(E) is the weighted function that assigns at each edge e ∈ E its weight.

Roughly speaking, this function is the same as Ψ but is defined only from the elements of

the edges set E.

Finally, a weighted undirected graph G 1 = (V 1,E1,ω) is created, starting from the undirected

graph G = (V,E,ω) by applying the graph function ϒ : G → G 1. The resulting graph contains

only the strongly connected regions with respect to a given threshold τ ∈ R[0,1]. In particular, ϒ
performs the following mapping:

V 1 =V E1 = L(1, . . . ,T ), T =
(q2 −q)τ

2

where L is the list of graph edges (E) sorted in ascending order of weight. This results in a

weighted undirected brain connectivity graph that is used for this work.

2.3 Notation

For the description of our method, we introduce the following notations. We denote scalar

values with small letters (e.g., a), 1-dimensional vectors with bold small letters (e.g., aaa), matrices
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with boldface capital letters (e.g., AAA) where A′ is the transpose of A. G = (V,E) is an undirected

graph, where V is the set of vertex and E is the set of edges. For each vertex v ∈ V let x ∈Rd be

the associated feature vector. If not differently specified, given a graph G = (V,E) we denote by

n = |V | the number of nodes of the graph.

2.4 Graph-based Neural Networks

The architecture proposed in this work is composed of one GC layer (k=100) with ReLU

activation function followed by a Fully Connected Network with softmax activation to handle

the multi-class classification problem. Dropout (α=0.3) is used to reduce overfitting. Layers

organization and hyperparameters settings were defined following a trial and error process, starting

from a minimal topology. We observed that adding more layers did not increase performances.

2.5 Graph Local Features

Feature extraction is an important task for graph classification. Indeed, while adjacency matri-

ces represent exactly the structure of the graph, features encode latent patterns or measure simple

characteristics of graphs which could be useful for a better characterization and classification.

Particularly, in the brain connectivity domain, several measures are able to detect functional inte-

gration and segregation to quantify centrality of individual brain regions or pathways, characterize

patterns of local anatomical circuitry, and to test resilience of networks to insult [Rubinov and

Sporns (2010)]. These network measures have binary and weighted variants, where weighted

variants of measures are typically generalizations of binary variants obtained by considering edge

weights in the computation. In this work four local measures were identified1, according to the

method described in [Rubinov and Sporns (2010)]. Below, we recall their definition already intro-

duced in Section 3.3, providing a detailed description of their weighted and unweighted version.

Nevertheless, we refer the interested reader to [Rubinov and Sporns (2010)] for a complete de-

scription of the most commonly used measures of local and global connectivity, as well as their

neurobiological interpretations.

Node Degree

The degree of a node is the number of connections of that node. The weighted version of the

metric (strength) also considers the weights of the edges into account. Let N be the set of all nodes

in the network and ai j the connection status between i and j, i.e. equals 1 if there is a link between

these two nodes 0 otherwise. The degree of an unweighted graph can be calculated as follows:

Di = ∑
j∈N

ai j

The weighted version of the metric (strength) also considers the weights of the edges into account.

Let wi j the connection weight between i and j, the weighted degree of a weighted undirected graph

1Brain Connectivity Toolbox: https://sites.google.com/site/bctnet/

Aldo MARZULLO 73



CHAPTER 1. CLASSIFICATION OF MULTIPLE SCLEROSIS CLINICAL PROFILES VIA GRAPH CONVOLUTIONAL

NETWORKS

can be calculated as follows:

Dw
i = ∑

j∈N
wi j

Clustering Coefficient

The clustering coefficient is the fraction of triangles around a node and is equivalent to the

fraction of node’s neighbors that are neighbors of each other. Let ti be the number of triangles

around a node i computed as follows:

ti =
1

2
∑

j,h∈N
ai jaiha jh

The clustering coefficient per each node i is computed as:

CCi =
2ti

ki(ki −1)

The weighed version of the clustering coefficient is obtained by replacing the number of triangles

ti with the sum of triangle intensities:

CCw
i =

2

ki(ki −1) ∑
j,k
(w̃i jw̃ jkw̃ki)

1/3

where weights are normalized by the largest weight in the network, w̃i j = wi j/max(wi j).

Local Efficiency

Let first define the global efficiency as the average of inverse shortest path length. The local

efficiency is the global efficiency computed on the neighborhood of the node, and is related to the

clustering coefficient. It can be defined as follows:

Ei =
1

n ∑
i∈N

∑ j,h∈N, j 
=i ai jaih
[
d jh (Ni)

]−1

ki (ki −1)

where Ei is the local efficiency of node i, and d jh(Ni) is the length of the shortest path between j

and h, that contains only neighbors of i. By considering weights in the calculation, the formula

can be extended to the weighted version as follows:

Ew
i =

1

2
∑
i∈N

∑ j,h∈N, j 
=i (wi jwih

[
dw

jh (Ni)
]−1

)1/3

ki (ki −1)

Betweenness centrality

Betweenness centrality is the fraction of all shortest paths in the network that pass through

a given node. Nodes with high betweenness centrality are considered hub nodes and determine
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important regions in a network. In terms of brain networks this measure helps to detect important

anatomical or functional connections. It is defined as follows:

BCi =
1

(n−1)(n−2) ∑
h, j∈N

h
= j,h
=i, j 
=i

ρh j(i)
ρh j

where ρh j is the number of shortest paths between h and j, and ρh j(i) is the number of shortest

paths between h and j that pass through i. Betweenness centrality is equivalent on weighted

networks, provided that path lengths are computed on respective weighted paths.

2.6 Statistical Analysis

To address the variability introduced by each patient, a linear mixed-effects model was applied

separately to each local graph metric in each graph node:

Responsei j = β0 +β1(Clinical phenotypei)+β2(Scan Sessioni j)+b0i + εi j (1.1)

In this model, the predicted response of interest for subject i at time j is determined by fixed ef-

fects, represented by β1 and β2. Subject-specific effects are represented by b0i, allowing a random

interception per subject i.

The linear mixed-effects models were fitted using the “lme4" package in R [Bates et al. (2015)]

and the significance of the fixed effects and the interaction term is tested applying the Kenward-

Roger approximation to estimate the degrees of freedom using the “car" package [Fox and Monette

(2002)].

When the clinical phenotype fixed effect was significant, a post-hoc test was conducted to extract

the estimate and the significance of each between class difference. This step was processed using

‘lsmeans’ package in R [Lenth et al. (2016)].

2.7 Experimental Settings

T1 and DTI images have been used to obtain a structural N ×N connectivity matrix for each

MRI. For each feature vector, normalization was applied so that each value was in the real range

[0,1].

The parameter τ was set to 0.35 according to the method described in [Kocevar et al. (2016)].

The model was trained using Adam [Kingma and Ba (2014)a] with learning rate 0.001 and early

stopping to prevent overfitting. Cross validation with 3 folds was used to provide a more robust

evaluation of the model. The quality of the classification was compared by means of the average

F-Measure, Precision and Recall [Powers (2011)] achieved during the cross validation. Wilcoxon-

Mann-Whitney test [Wilcoxon (1945)] was conducted to test the differences between the global

metrics measured between the patient’s groups.
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Figure 1.1: Differences between groups found in statistical analysis performed using unweighted

local graph metrics. Blue and Red regions represent negative and positive differences, respectively.

3 Results

In the experiments, we trained the GCNN to classify patients given their brain connectivity

adjacency matrix representation and the corresponding vector of node descriptors. Furthermore,

we trained the GCNN using all the features together (all-graph). Finally, we used a featureless

approach, meaning that the no node descriptor is provided.
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Figure 1.2: Differences between groups found in statistical analysis performed using weighted

local graph metrics. Blue and Red regions represent negative and positive differences, respectively.

3.1 Conventional MRI Data Analysis

Before illustrate results of the proposed approach, we analyze conventional MRI information

(T2 lesions and grey matter volumes) in order to investigate whether such information are sufficient

to discriminate MS clinical forms. Gray matter and lesions were segmented based on T2 FLAIR,

using the MSmetrix software developed by icometrix (Leuven, Belgium). Results are illustrated

in Table 1.2 and Table 1.3. Significant differences were found comparing grey matter volumes of
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Table 1.2: Statistical analysis results using T2 lesions volumes

contrast estimate t-ratio p-value

CIS - PP -13.85 -3.10 0.0139 *

CIS - RR -10.73 -2.60 0.0524

CIS - SP -24.11 -5.76 <0.0001 ***

PP - RR 3.12 0.88 0.8132

PP - SP -10.26 -2.85 0.0278 *

RR - SP -13.40 -4.24 0.0003 ***

* p<0.05; ** p<0.01; *** p<0.001

Table 1.3: Statistical analysis results using grey matter volumes

contrast estimate t-ratio p-value

CIS - PP 49.24 3.32 0.0072 **

CIS - RR 17.24 1.26 0.5910

CIS - SP 53.44 3.85 0.0013 **

PP - RR -32.01 -2.73 0.0376 *

PP - SP 4.30 0.35 0.9850

RR - SP 36.21 3.46 0.0046 **

* p<0.05; ** p<0.01; *** p<0.001

CIS with PP (p < 0.01) and SP (p < 0.01) and comparing grey matter volumes of RR with SP

(p < 0.01) and PP (p < 0.05). Furthermore, significant differences were found comparing lesions

volumes of CIS with PP (p < 0.05) and SP (p < 0.001) and comparing lesions volumes of SP

with RR (p < 0.001) and PP (p < 0.05).

Classification using Naïve Approach

Despite statistical differences among MS clinical forms in terms of lesions volumes and grey

matter volumes, such information might not be sufficient to discriminate patients for developing

an automated classification method. A naïve classifier was defined in order to investigate the

discrimination capability of conventional MRI information. A randomly selected seventy percent

of the dataset was used to compute the mean of each group. Then, to each sample of the test set

is assigned the class corresponding to the closer mean. The experiments was repeated k = 100

times and results using lesions volumes and grey matter are reported in Table 1.4 and Table 1.5,

respectively.

Table 1.4: Naïve classification results

for the multiclass classification task us-

ing T2 lesions volumes

mean (± std)

F-Measure 0.37 ± 0.02

Accuracy 0.42 ± 0.03

Precision 0.37 ± 0.03

Recall 0.48 ± 0.02

Table 1.5: Naïve classification results

for the multiclass classification task us-

ing grey matter volumes

mean (± std)

F-Measure 0.31 ± 0.03

Accuracy 0.32 ± 0.03

Precision 0.32 ± 0.03

Recall 0.38 ± 0.03
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Classification using Support Vector Machine

A Support Vector Machine (SVM) was trained to classify among the MS clinical forms using

lesions and grey matter volumes. In order to find the optimal input parameters of SVM, namely C

and γ , grid search was performed using growing sequences of C and γ . More in detail, we used the

range [0.001,10] for C and [0.001, 1] for γ . Both linear and radial basis function (rbf) kernel were

tested. Generalization of classification performances was ensured by K-Fold cross validation using

3-folds. Finally, each feature was standardized in order to improve the quality of the classification.

Perfomances was evaluated by means of F-Measure, Accuracy, Precision and Recall. Best results

were obtained using linear kernel with C = 0.01, and γ = 0.001 and reported in Table 1.6. As

observable, conventional MRI data do not provide sufficient information to correctly perform the

multiclass classification task. Indeed, despite statistical differences among groups, the number of

overlapping values is too high to discriminate among clinical statuses.

Table 1.6: SVM classification results for the multiclass classification task (CIS vs RR vs SP vs PP)

using conventional MRI information

mean (± std)

F-Measure 0.27 ± 0.03

Accuracy 0.47 ± 0.04

Precision 0.24 ± 0.02

Recall 0.34 ± 0.03

3.2 Local Graph Metrics Analysis

We report results of the statistical analysis performed using unweighted local graph metrics.

Many significant differences were found when comparing the betweenness centrality metric of

CIS vs PP and SP as well as when comparing RR vs PP and SP. No differences were found when

comparing CIS vs RR and PP vs SP. The same behaviour was observed when comparing clus-

tering coefficient, degree and local efficiency metrics. Moreover, no significant differences were

observed when comparing the local efficiency metric of PP vs RR, except for the left amygdala

(p < 0.05). Finally, important differences in several regions were found when comparing the local

degree of CIS vs SP and RR vs SP. An illustration of these results is reported in Figure 1.1.

Concerning the statistical analysis performed using weighted local graph metrics, several

significant differences were found, again, when comparing the betweenness centrality, cluster-

ing coefficient, degree and local efficiency metrics in the CIS and RR groups with respect to

the PP and SP groups. No significant differences were observed between CIS and RR except

for the degree of the left-caudate nucleus (p < 0.05). Concerning the comparison between PP

and SP groups, significant differences were found when comparing the betweenness central-

ity in the left lateral-occipital region and the left precuneus (parietal lobe) and clustering co-

efficient and efficiency in the right middle-temporal region (p < 0.05). This latter region was

also found to be the only one differing between PP and SP groups in terms of clustering co-

efficient (p < 0.05). Statistical analysis results performed using weighted local graph metrics
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are reported in Figure 1.2. Detailed results about our statistical analysis can be downloaded at

https://www.frontiersin.org/articles/10.3389/fnins.2019.00594/full#supplementary-material.

3.3 Classification using Unweighted Adjacency Matrix

We first trained the proposed GCNN model using unweighted brain connectivity adjacency

matrix representations. Results obtained for each experiment are reported in Table 1.7 and graphi-

cally illustrated in Figure 1.3. As observable, using local graph-derived metrics as node descriptors

combined with unweighted graphs, does not provide sufficient information for the classification,

achieving an average F-Measure of about 0.50. In particular, the worst performances were obtained

for the Degree metric (F-Measure = 0.39± 0.03) while slightly better results were observed, on

average, with Clustering Coefficient, Betweenness Centrality and Efficiency. All the graph-metrics

together provided, on average, better results. Nevertheless, the most remarkable results were ob-

served with the featureless approach. In this case, we obtained a significant improvement of the

performances (F-Measure = 0.80 ±0.01), stating that the brain structure itself is highly discrimi-

native for the clinical profiles.

Figure 1.3: Box plot in term of F-Measure for each different unweighted feature [Degree (D),

Betweenness Centrality (BC), Clustering Coefficient (CC), Local Efficiency (E), with all graph-

metrics (all-graphs)] and without features (identity).

3.4 Classification using Weighted Adjacency Matrix

We trained the proposed model using weighted brain connectivity adjacency matrix represen-

tations. Results obtained for each experiment are provided in Table 1.7 and reported graphically in

Figure 1.4. Interestingly, good results were achieved (F-Measure > 0.60) with all the studied local

graph-metrics. Furthermore, a significant increase in performances was observed when using all

the studied features together. Again, the best result was achieved using the featureless approach

(F-Measure = 0.92± 0.02), with an average F-Measure increasing of 10% with respect to the

unweighted version. In particular, a general performance increase can be observed when using

weights information, as graphically shown in Figure 1.5. Indeed, for all the proposed experiments,

except when we use all the graph metrics together, a significant improvement is achieved.
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Figure 1.4: Box plot in term of F-Measure for each different weighted feature [Degree (D),

Betweenness Centrality (BC), Clustering Coefficient (CC), Local Efficiency (E), with all graph-

metrics (all-graphs)] and without features (identity).

Table 1.7: Cross validation results in terms of F-Measure, Precision and Recall (± standard de-

viation) averaged on three folds. Rows report achieved results using unweighted graphs with un-

weighted features (upper) and using weighted graphs with weighted features (lower) [Degree (D),

Betweenness Centrality (BC), Clustering Coefficient (CC), Local Efficiency (E), with all graph-

metrics (all-graphs)] and without features (identity).

Identity D BC CC E all-graphs

unweighted

F-Measure 0.80 (±0.01) 0.39 (±0.03) 0.50 (±0.03) 0.47 (±0.06) 0.51 (±0.02) 0.56 (±0.04)

Precision 0.81 (±0.01) 0.33 (±0.03) 0.54 (±0.08) 0.47 (±0.11) 0.56 (±0.06) 0.57 (±0.04)

Recall 0.80 (±0.01) 0.48 (±0.04) 0.55 (±0.04) 0.55 (±0.04) 0.56 (±0.03) 0.60 (±0.04)

weighted

F-Measure 0.92 (±0.02) 0.64 (±0.01) 0.68 (±0.01) 0.64 (±0.02) 0.62 (±0.03) 0.74 (±0.02)

Precision 0.93 (±0.02) 0.70 (±0.02) 0.69 (±0.01) 0.66 (±0.01) 0.64 (±0.05) 0.76 (±0.02)

Recall 0.93 (±0.02) 0.65 (±0.02) 0.69 (±0.01) 0.64 (±0.02) 0.63 (±0.03) 0.75 (±0.03)

3.5 Classification of Control Subjects vs MS patients

In this section we explore the capability of the proposed models to discriminate between HC

and MS patients. More in detail, we performed three main experiments. First, we trained the

proposed GCNN model at classifying patients at early stages of the pathology (CIS and RR) from

HC. Then, we trained the model at classifying patients at progressive stages (SP vs PP) from HC.

Finally, we performed a multiclass classification task including all the clinical forms, i.e. HC vs

SP vs PP vs RR vs CIS. As for the other experiments in this study, we compared performances

using weighted and unweighted brain connectivity adjacency matrix representations.

HC vs (CIS + RR)

HC vs (CIS + RR) classification task is described in this section. Results obtained using

unweighted and weighted connectivity representations are reported in Table 1.8. Results are

then compared graphically in Figure 1.6. As observable, both weighted and unweighted local
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Figure 1.5: average F-Measure comparison for weighted and unweighted approach for each feature

[Degree (D), Betweenness Centrality (BC), Clustering Coefficient (CC), Local Efficiency (E), with

all graph-metrics (all-graphs)] and without features (identity).

graph-derived metrics provide sufficient information for distinguish between HC and MS patients.

However, weighted connectivity matrices provide overall better results. Best performances were

achieved using no node descriptions and using all graph-metrics together.

Table 1.8: Cross validation results of HC vs (CIS+RR) in terms of F-Measure, Precision and Recall

(± standard deviation) averaged on three folds. Rows report achieved results using unweighted

graphs with unweighted features (upper) and using weighted graphs with weighted features (lower)

[Degree (D), Betweenness Centrality (BC), Clustering Coefficient (CC), Local Efficiency (E), with

all graph-metrics (all-graphs)] and without features (identity).

Identity D BC CC E all-graphs

unweighted

F-Measure 0.96 (±0.05) 0.93 (±0.06) 0.87 (±0.14) 0.89 (±0.11) 0.89 (±0.11) 1.0 (±0.0)

Precision 1.0 (±0.01) 0.97 (±0.03) 0.99 (±0.01) 0.99 (±0.01) 0.99 (±0.01) 1.0 (±0.0)

Recall 0.94 (±0.08) 0.91 (±0.09) 0.83 (±0.16) 0.85 (±0.14) 0.85 (±0.14) 1.0 (±0.0)

weighted

F-Measure 1.0 (±0.0) 0.96 (±0.01) 0.96 (±0.04) 0.98 (±0.01) 0.98 (±0.01) 1.0 (±0.0)

Precision 1.0 (±0.0) 0.98 (±0.02) 0.97 (±0.03) 1.0 (±0.0) 1.0 (±0.0) 1.0 (±0.0)

Recall 1.0 (±0.0) 0.95 (±0.03) 0.94 (±0.05) 0.96 (±0.03) 0.96 (±0.03) 1.0 (±0.0)

HC vs (SP + PP)

HC vs (SP + PP) classification task is described in this section, in order to test the capability of

the model in in discriminating HC from progressive MS. Results obtained using unweighted and

weighted connectivity representations are reported in Table 1.9. Results are then compared graph-

ically in Figure 1.7. Again, high level of accuracy were obtained using weighted and unweighted

information and weighted connectivity matrices provide overall better results. As for the HC vs

(CIS + RR) task, the highest performances were achieved using no node descriptions and using all

graph-metrics together.
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Figure 1.6: average F-Measure comparison for weighted and unweighted approach [HC vs

(CIS+RR)] for each feature [Degree (D), Betweenness Centrality (BC), Clustering Coefficient

(CC), Local Efficiency (E), with all graph-metrics (all-graphs)] and without features (identity).

Table 1.9: Cross validation results of HC vs (SP+PP) in terms of F-Measure, Precision and Recall

(± standard deviation) averaged on three folds. Rows report achieved results using unweighted

graphs with unweighted features (upper) and using weighted graphs with weighted features (lower)

[Degree (D), Betweenness Centrality (BC), Clustering Coefficient (CC), Local Efficiency (E), with

all graph-metrics (all-graphs)] and without features (identity).

Identity D BC CC E all-graphs

unweighted

F-Measure 0.96 (±0.05) 0.93 (±0.06) 0.87 (±0.14) 0.89 (±0.11) 0.89 (±0.11) 1.0 (±0.0)

Precision 1.0 (±0.01) 0.97 (±0.03) 0.99 (±0.01) 0.99 (±0.01) 0.99 (±0.01) 1.0 (±0.0)

Recall 0.94 (±0.08) 0.91 (±0.09) 0.83 (±0.16) 0.85 (±0.14) 0.85 (±0.14) 1.0 (±0.0)

weighted

F-Measure 1.0 (±0.0) 0.96 (±0.01) 0.96 (±0.04) 0.98 (±0.01) 0.98 (±0.01) 1.0 (±0.0)

Precision 1.0 (±0.0) 0.98 (±0.02) 0.97 (±0.03) 1.0 (±0.0) 1.0 (±0.0) 1.0 (±0.0)

Recall 1.0 (±0.0) 0.95 (±0.03) 0.94 (±0.05) 0.96 (±0.03) 0.96 (±0.03) 1.0 (±0.0)

All Classes Classification

Finally a multiclass classification task is performed using all the forms together. Results ob-

tained using unweighted and weighted connectivity representations are reported in Table 1.10.

Results are then compared graphically in Figure 1.8. All the graph-metrics together provided, on

average, better results. Higher performances were observed performing a featureless approach.

3.6 Early vs Progressive Forms Comparison

In this section we explore the capability of the proposed models to discriminate between CIS

and RR and progressive MS clinical forms. The proposed GCNN model was trained at distin-

guishing between CIS-RR and SP-PP patients, in order to provide a better understanding of the

different pathophysiology of patients at an early stage of the disease (CIS and RR) and patients

with progressive MS. Furthermore, performances using weighted and unweighted brain connec-
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Figure 1.7: average F-Measure comparison for weighted and unweighted approach [HC vs

(SP+PP)] for each feature [Degree (D), Betweenness Centrality (BC), Clustering Coefficient (CC),

Local Efficiency (E), with all graph-metrics (all-graphs)] and without features (identity).

Table 1.10: Cross validation results of HC vs SP vs PP vs RR vs CIS in terms of F-Measure,

Precision and Recall (± standard deviation) averaged on three folds. Rows report achieved re-

sults using unweighted graphs with unweighted features (upper) and using weighted graphs with

weighted features (lower) [Degree (D), Betweenness Centrality (BC), Clustering Coefficient (CC),

Local Efficiency (E), with all graph-metrics (all-graphs)] and without features (identity).

Identity D BC CC E all-graphs

unweighted

F-Measure 0.82 (±0.03) 0.56 (±0.08) 0.54 (±0.01) 0.52 (±0.02) 0.53 (±0.03) 0.63 (±0.03)

Precision 0.83 (±0.02) 0.72 (±0.04) 0.58 (±0.03) 0.61 (±0.1) 0.59 (±0.03) 0.71 (±0.01)

Recall 0.81 (±0.03) 0.56 (±0.07) 0.53 (±0.01) 0.54 (±0.03) 0.52 (±0.04) 0.63 (±0.02)

weighted

F-Measure 0.94 (±0.02) 0.66 (±0.07) 0.7 (±0.03) 0.66 (±0.04) 0.68 (±0.0) 0.81 (±0.02)

Precision 0.94 (±0.02) 0.74 (±0.02) 0.75 (±0.03) 0.68 (±0.04) 0.7 (±0.02) 0.84 (±0.01)

Recall 0.93 (±0.02) 0.66 (±0.06) 0.68 (±0.02) 0.67 (±0.04) 0.68 (±0.02) 0.8 (±0.03)

tivity adjacency matrix representations were compared.

Results obtained using unweighted and weighted connectivity representations are reported in

Table 1.11. Results are then compared graphically in Figure 1.9.

An overall increase in performances were observed respect to the intra clinical form classi-

fication tasks previously performed. Both weighted and unweighted local graph-derived metrics

provide promising results. Interestingly, weighted Degree allow to achieve high level of accuracy;

indeed, it is worth to note that graph density decreases along with the progress of the pathol-

ogy, due to neurodegenerative processes. However, as for previous experiments, the featureless

approach provided better and more stable results.
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Figure 1.8: average F-Measure comparison for weighted and unweighted approach [HC vs SP vs

PP vs RR vs CIS] for each feature [Degree (D), Betweenness Centrality (BC), Clustering Coeffi-

cient (CC), Local Efficiency (E), with all graph-metrics (all-graphs)] and without features (iden-

tity).

Table 1.11: Cross validation results of (CIS+RR) vs (SP+PP) in terms of F-Measure, Precision

and Recall (± standard deviation) averaged on three folds. Rows report achieved results using

unweighted graphs with unweighted features (upper) and using weighted graphs with weighted

features (lower) [Degree (D), Betweenness Centrality (BC), Clustering Coefficient (CC), Local

Efficiency (E), with all graph-metrics (all-graphs)] and without features (identity).

Identity D BC CC E all-graphs

unweighted

F-Measure 0.91 (±0.1) 0.68 (±0.02) 0.77 (±0.02) 0.78 (±0.02) 0.77 (±0.01) 0.83 (±0.01)

Precision 0.92 (±0.1) 0.7 (±0.01) 0.78 (±0.01) 0.78 (±0.01) 0.78 (±0.02) 0.83 (±0.01)

Recall 0.91 (±0.0) 0.68 (±0.02) 0.77 (±0.02) 0.78 (±0.02) 0.77 (±0.02) 0.83 (±0.01)

weighted

F-Measure 0.97 (±0.01) 0.99 (±0.0) 0.85 (±0.01) 0.83 (±0.02) 0.84 (±0.02) 0.92 (±0.01)

Precision 0.97 (±0.01) 0.99 (±0.0) 0.85 (±0.01) 0.84 (±0.02) 0.85 (±0.02) 0.92 (±0.01)

Recall 0.97 (±0.01) 0.99 (±0.0) 0.85 (±0.01) 0.83 (±0.02) 0.84 (±0.02) 0.92 (±0.01)

4 Discussion

In this work, we proposed a novel graph-based neural network method to classify MS patients

according to their clinical phenotype using brain structural connectivity information. To this aim,

we exploited a peculiar type of neural network architecture designed to handle arbitrarily struc-

tured graphs. We compared the impact of local graph metrics to the classification performances,

either using weighted and unweighted brain connectivity representation. Furthermore, we per-

formed a statistical analysis on the local graph metrics (weighted and unweighted) computed for

each MS clinical form, attempting to characterize differences in the groups, and eventually classify

patients. Notice that, conventional MRI information such as lesion and grey matter volumes did

not allowed to accurately classify patients into the four clinical forms, thus showing the lack of

specificity of these measurements to the pathophysiological effects of the disease. Details about

the analysis can be found in the supplementary material.
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Figure 1.9: average F-Measure comparison for weighted and unweighted approach [(CIS+RR) vs

(SP+PP)] for each feature [Degree (D), Betweenness Centrality (BC), Clustering Coefficient (CC),

Local Efficiency (E), with all graph-metrics (all-graphs)] and without features (identity).

Our attention focalized on the classification of the MS clinical courses, differently from pre-

vious related works which mostly focused on the differentiation between MS patients from HC

subjects [Charalambous et al. (2019), Zurita et al. (2018)a, Zhang et al. (2018)c, Maleki et al.

(2012)]. The task addressed in this work has a strong clinical interest as the early clinical classifi-

cation and thus prognostic of MS patients is the major challenge for neurologists today. Indeed, it

is worth recalling that MS etiology is still unknown and that each MS patient may follow a different

clinical course, resulting probably from the variety of the underground pathological mechanisms.

More in detail, CIS and RR patients present comparable brain pathological processes, mainly in-

flammation, while SP and PP patients share neurodegenerative mechanisms. Indeed, as showed by

the statistical analysis, few differences were found when comparing local graph metrics between

these two pair of groups. As for the CIS vs RR comparison, these differences are mostly localized

in the sub-cortical regions, temporal and parietal lobes, highlighting that early pathological pro-

cesses start in central subcortical structures. Also, these differences are more related to weighted

measures, thus showing that inflammation has a stronger impact on large WM fiber bundles.

Concerning the SP vs PP comparison, very few differences were found in the occipital, parietal,

and temporal lobes, reflecting the similarity effect of the neurodegenerative process. Significant

differences were mainly observed when comparing early stages of the disease (CIS,RR) with more

severe clinical forms (SP,PP). As previously observed in literature [Charalambous et al. (2019),

Kocevar et al. (2016)], indeed, a general reduction in network efficiency, density and clustering

coefficient was observed in SP relative to RR patients due to severe brain damages. Finally, is

interesting to notice the similarity between differences found in local efficiency and clustering

coefficient (weighted). This result is in agreement with a recent study [Strang et al. (2018)], where

these two metrics were found to be asymptotically linearly correlated in functional connectivity

and various benchmark graphs.

However, despite difficulties in discriminating among groups using statistical markers, the

proposed approaches achieved promising results. The proposed GCNN architecture was able to

achieve good results operating with a relatively small number of parameters (about 42000 trainable
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weights) compared with classical convolutional networks models working on images. Indeed, it

is worth to note that the proposed method works on adjacency matrices of 84 nodes, significantly

reducing the number of input units with respect to models directly operating on MR images [Zhang

et al. (2018)c, Maleki et al. (2012)].

Interestingly, the main results were obtained using only the connectivity matrices, without

graph-metrics as node descriptor. The brain structure, indeed, seems to contain highly discrimina-

tive properties characterizing the clinical profiles. Some of these properties are already mentioned

in literature. According to the statistical analysis performed in [Kocevar et al. (2016)], for ex-

ample, significant differences were found when comparing several graph metrics in progressive

courses, reflecting the neurodegenerative mechanisms acting in the brain. However, as shown in

our experiments, none of these properties used as node descriptors were effectively exploited by

the neural network to discriminate the groups. By contrast, interesting improvement in classifica-

tion performances were observed when using all the graph metrics together. The result is in agree-

ment with a previous study [Kocevar et al. (2016)] where the combination of global graph-derived

metrics provided the best results in the CIS vs RR, RR vs PP, CIS vs RR vs SP classification tasks.

This may be explained considering that each local descriptor can provide useful information for

a particular clinical course. Thus, exploiting them all together allows a better characterization of

MS pathological alterations.

Interesting results were also observed when evaluating the capability of the network in clas-

sifying “early" stages of the pathology vs “progressive" stages. The proposed model was able

to perform the binary classification task achieving high level of accuracy. Remarkable results

were obtained considering the weighted Degree, which allowed the model to achieve the best

performance. Indeed, it is worth to note that graph density decreases along with the progress of

the pathology, due to neurodegenerative processes [Charalambous et al. (2019), Kocevar et al.

(2016)].

Experiments including control patients were also reported in this paper. The proposed archi-

tecture was trained at discriminating between HC and early stages of the pathology (CIS and RR),

and between HC and progressive stages (PP and SP). The model was able to achieve high perfor-

mances. HC subjects were also used to perform a multiclass classification task using all the forms

together. All the graph-metrics together as well as the featureless approach provided, on average,

better results, confirming our previous observations. These results are somehow straightforward.

Related studies have already shown several differences comparing brain structure representation of

control subjects with respect to MS patiens [Charalambous et al. (2019),Zurita et al. (2018)a], due

to pathological alterations. Such effects, cause HC networks to be more dense and well organized

compared to MS, thus allowing an accurate discrimination [Kocevar et al. (2016)]. However, even

if expected, these further analyses confirm the capability of the model to detect and exploit brain

structure differences.

Finally, one of the main observation is related to the significant role played by edge weights

in the classification task. As shown in our results, weights information allowed significant per-

formance improvements in almost all the experiments. This achievement suggests that, despite

comparable alterations in white matter network structure among groups may lead to misclassifi-
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cation in some cases, the fiber bundles’ strength provides a complementary information helpful to

improve the overall accuracy.

5 Conclusion

In this chapter, we proposed a graph-based method to classify MS patients according to their

clinical forms. Graph theory has been applied to describe brain network topology and Graph

Convolutional Neural Networks have been used for the classification of MS clinical courses.

Thanks to a robust experimental activity, we showed the capability of GCNN to classify MS

patients using the whole graph structure. In order to have a clear picture, we also enriched our

analysis by combining the graph structure information with local graph-based metrics. Three ma-

jor results were achieved by this analysis: (i) NNs are able to achieve high classification results

using only the connectivity matrix (ii) local graph metrics do not improve the classification results

suggesting that the latent features created by the NN in its layers have a much important informa-

tive content (iii) graph weights representation of brain connections preserve important information

to discriminate between clinical forms. This result suggests that with graph binarization a lot of

useful information may be lost.

It is worth to note that a limitation of this study is the small number of patients. However,

we minimized these potential biases by using K-Fold cross-validation to generalize classification

results. Further, the small number of each patient profile may not reflect the general population

and induce biases in graph metrics results. As for future work, we aim at improving our method

using a whole trail of longitudinal data collected for each patient as input for the model. In order to

carry out this task, novel models proposed in literature may be taken into account. In this context,

Recurrent Neural Networks [Medsker and Jain (1999)] have achieved remarkable results in dealing

with short-long temporal relations ( [Graves and Jaitly (2014), Fragkiadaki et al. (2015), Donahue

et al. (2015)]) and can be effectively extended to handle graph data [Jain et al. (2016), Manessi

et al. (2017), Jin and JaJa (2018)], achieving promising results. Another interesting perspective

would be to perform a deep clinical analysis in order to understand the potential interest of such

methods to better characterize the disease progression and thus better predict the patient evolution.
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1 Introduction

Multiple Sclerosis (MS) is a chronic disease of the central nervous system that is character-

ized by inflammation, demyelination and neurodegenerative pathological processes [Polman et al.

(2011)]. For 85% of the patients disease onset is characterized by a first acute clinical episode

(called clinically isolated syndrome (CIS)), that includes optic neuritis, paresthesia, paresis and

fatigue [McDonald et al. (2001)] and evolves first into a relapsing-remitting (RRMS) course, and

then, after a delay between 15 to 20 years, into a secondary-progressive (SPMS) course, leading

to long-term disability. The remaining 15% of MS patients starts with the primary-progressive

course (PPMS) [Miller et al. (2005)a, Miller et al. (2005)b].

Several Magnetic Resonance Imaging (MRI) strategies have been defined to help establish-

ing diagnosis of MS and monitor the course of the disease [Kocevar et al. (2016)]. Magnetization

transfer, spectroscopy, and diffusion tensor imaging (DTI [Rovira et al. (2013)]) were successfully

applied to detect alterations outside visible T2-lesions helping to understand pathological mech-

anisms occurring in an apparently normal white matter (WM). In particular, novel approaches

based on the analysis of WM network by means of graph theory [Rubinov and Sporns (2010)]

have achieved promising results in the characterization of either cognitive impairments or patho-

logical alterations caused by different brain diseases, including MS.

In the last decade, the richness and variety of available data sets has opened a new world of

findings in the biomedical field. Novel methods have been proposed to classify and delineate con-

cepts, based on different tools and techniques [Gu and Angelov (2018)]. In particular, supervised

machine learning approaches have gained strong results in several tasks, including MS clinical

forms classification [Kocevar et al. (2016),Calimeri et al.,Calimeri et al. (2018)a]. In this context,

a set of samples with known label or result is available and a model is prepared through a train-

ing process where it is required to make prediction and is corrected when those predictions are

wrong. However, in many real scenarios, obtaining large number of labelled images is expensive

and time consuming. Semi-supervised learning methods [Chapelle and Zien (2005), Zhu et al.

(2003)] overcome this limitation considering both labelled and unlabelled data. These techniques

allow to extend datasets by including samples which would have remained unused with traditional

supervised approaches.

Several semi-supervised learning algorithms have been developed, mostly exploiting some

clustering and manifold assumptions [Chapelle and Zien (2005), Chapelle et al. (2009)]. Typical

family of algorithms are those built on support vector machines (SVM) [Wang et al. (2013),

Chapelle et al. (2008)] and data graph [Belkin et al. (2004), Jiang et al. (2017)]. SVM-based

methods attempt to balance the estimated maximum-margin hyperplane with a separation of all the

data through the low-density regions. Graph-based approaches use the labelled and unlabelled data

as vertices in a graph and build pairwise edges between the vertices weighted by similarities. Semi-

supervised learning applications are particularly suited in the biomedical domain; indeed, in such

context collecting a significant amount of “good" data is not always an easy task, due, for instance,

to the high costs in terms of money and time required to perform screenings and analyses, or, as in

the case of certain pathologies, to the number of case studies which is too limited for the creation of
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data banks large enough to train physicians, experts, or artificial models. Several techniques have

been developed to address various tasks, including medical image classification [Filipovych et al.

(2011)], disease diagnosis [Zhao et al. (2014)], brain damages detection and segmentation [Baur

et al. (2017)]. Another popular approach is based on the idea of pseudo-label. Such methods

enlarge the training set by including unlabelled data, assigning to each unlabeled sample the class

which has the maximum predicted probability and used as if it was the true label [Lee (2013), Wu

and Yap (2006)]. Pseudo-labelling methods have recently gained particular attention also thanks

to their combination with deep learning techniques [Lee (2013)].

In this chapter, we introduce a semi-supervised method to classify MS patients into four clin-

ical profiles, using structural connectivity information. The main goal is to take advantage from

structural brain connectivity and Neural Networks for a better characterization and classification

of four MS clinical profiles [Clinical Isolated Syndrome (CIS), Relapsing Remitting (RR), Sec-

ondary Progressive (SP), Primary Progressive (PP)]. To the best of our knowledge, this is the first

study which attempts to solve the question in a non-supervised manner, and could represent an

important step forward on the road to the definition of completely automatic and unsupervised

approaches.

2 Material and Methods

In this section we provide a detailed description of each step of the proposed approach, also

describing the dataset used for the study.

2.1 Dataset Description

The dataset described in Section 2.1 was used in this study. The processing phase described in

2.2 was used to generate connectivity matrices. Each connectivity matrix is flattened in order to

obtain a single 1-D array of edge-weight values. Edge weights were normalized to be in the real

interval [0,1].

2.2 Deep Autoencoder Classifier

Given the structural connectivity information and limited number of labelled training samples,

we could train a neural network to estimate the corresponding MS clinical form. The proposed

architecture is composed by two main parts: (i) an autoencoder network which learns a latent

representation for the input connectivity matrices; (ii) a fully-connected neural network which is

trained to estimate the MS clinical form by taking as input the latent representation learnt by the

autoencoder. During the training phase, the classifier aims at refining the latent space learned

by the autoencoder, in order to make it useful for classification tasks. Roughly speaking, we

force the autoencoder to learn features that depend on the true classification of the original data.

These features hopefully hold some relevant information, useful to discriminate a MS group from

another.
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Formally, an autoencoder is a neural network trained to attempt to copy its input to its out-

put [Goodfellow et al. (2016)]. Internally, it has a hidden layer h that describes a code used to

represent the input. The network may be viewed as consisting of two parts: an encoder function

h = f (x) and a decoder that produces a reconstruction r = g(h). The proposed autoencoder is

composed by three layers. The encoder network encodes the input in a bi-dimensional space. The

decoder network is its relative symmetric. We use linear activation functions in all encoder/decoder

pairs, meaning that the code h is a linear combination of the input [Sperduti (2013),Pasa and Sper-

duti (2014)], as well as the reconstruction r, that in turn, ends to be a linear combination of the

code:

h =W�ĥencoder +bencoder

r =W�ĥdecoder +bdecoder

where ĥ is the vector of hidden parameters, and b are the bias values.

The classifier is defined by stacking two fully-connected layers of size 100 with Rectified

Linear Units (ReLUs) activation followed by a fully connected layer with softmax activation to

handle the classification problem. The input of the classifier network is the latent representation

learned by the autoencoder. Its output is the probability distribution over c different classes.

2.3 Semisupervised Training

The whole architecture is trained simultaneously using the Adam [Kingma and Ba (2014)a]

optimizer with a learning rate of 0.001. More in detail, to force the autoencoder learning a latent

representation possibly helpful to perform classification we define a multi-objective optimization.

In particular, we need to train the classifier by minimizing the categorical cross-entropy [Good-

fellow et al. (2016)] while forcing the autoencoder to minimize the Mean Squared Error (MSE) of

the input w.r.t. the reconstruction. Formally, we need to minimize the following loss function:

L (x,r,y, ŷ) =−
n

∑
i

yi log(ŷi)+α
1

n

n

∑
i
(x− r)2

i

where the first term is the cross-entropy between the true class label y, and its prediction ŷ and the

second term is the mean squared error between the input x and the reconstruction r. α is used to

weight the reconstruction error.

However, we need to train the architecture in a semisupervised fashion, meaning that only a

portion of true class label are available. For this reason we need to modify the loss function in

order to handle this setting.

Let D be the set of available samples with n = |D|. Let m ∈ {0,1}n and H be the set of

unlabelled instances. m is defined as follows:

mi =

⎧⎨
⎩

0 if Di ∈ H

1 otherwise
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The loss function L can be modified as follows:

Lsemisup(x,r,y, ŷ) =−
n

∑
i

miyi log(miŷi)+α
1

n∑
i
(x− r)2

i

In this case, m act as a mask for y and ŷ, by introducing a new “unknown" class. During the

training, classification scores relative to unlabelled instances are annealed during the computation

of the final loss.

2.4 Pseudo-labelling Training

Pseudo-labelling is a method of semi-supervised learning for deep neural networks which has

gained particular attention in recent years [Lee (2013)]. It consists in training the architecture in

a semi-supervised fashion, where unlabelled data are associated with the class with the maximum

predicted probability. In order to improve generalization performances, we propose an iterative

approach which acts similarly: as described in Algorithm 1 the network is trained using the semi-

supervised method of Section 2.3. Then, at each iteration i, we assign to unlabelled data the class

with maximum predicted probability, thus iteratively expanding the set of known labels until a

particular stopping criterion is met (e.g. performances do not improve for a certain number of

iterations).

Data:
X: training instances;

y: training labels;

H: indices of unknown labels

Result: model: the trained model

initialization(model);

while stopping criterion is met do
m ← create_mask(H);

model ← semisupervised_train(X,y,m);

predictions ← model.predict(X);

best_indices ← sample(predictions,H);

for idx ∈ best_indices do
y[idx] = predictions[idx];

remove(H,idx)
end

end
Algorithm 1: Semisupervised training for MS clinical forms classification

It is worth noting that the quality of pseudo-labelling methods strictly depends on the accuracy

of predicted labels. Introducing inappropriately instances, indeed, can degrade instead of improv-

ing the performance [Lee (2013), Wu and Yap (2006)]. In this work, we select unlabelled samples

according to the scores of confidence of the estimated labels. More in detail, we introduce in

the known label set, iteratively, only a portion of maximum predicted probability instances. Two

sampling approaches were compared: (i) the balanced approach, in which we select a comparable

number of instances from each classes; (ii) the proportional approach, in which the number of in-

stances to select is proportional to the original distribution of true labels. In more detail, using the
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Figure 2.1: Results, in terms of F-Measure for each binary task, obtained at each iteration using

balanced sampling.

Figure 2.2: Results, in terms of F-Measure for each multiclass task, obtained at each iteration

using balanced sampling.

balanced approach, at each iteration, the same percentage of labels from each class is selected to be

included in the set of known labels. Using the proportional approach, we compute for each class

its relative frequency in the set of known labels. Then, at each iteration, a number of instances

proportional to such frequencies is selected to be included in the set of known labels. It is worth to

note that the latter method is useful when some prior knowledge on the data distribution is known.

3 Results

3.1 Evaluation of sample selection criteria

In order to evaluate the effect of the different sampling criteria presented in this work, we per-

formed an extensive experimental campaign. More in details, we analyzed and compared the per-

formances obtained using balanced and proportional sampling approaches. Goal of this analysis is

to understand how the sample selection criteria can influence our algorithm. All the experiments

described in this section were obtained using only the 10% of initial labeled data. Moreover, each

experiment was performed 5 times in order to get, for each task, mean and standard deviation of

the performances.

The first analysis is described in Figure 2.1 where we show the results obtained with balanced

sampling for binary semi-supervised tasks. From the analysis of Figure 2.1, it is possible to see

how the classification performances reach high values of F-Measure starting already from the

second iteration. Indeed, for the binary classification, all the tasks reach, at iteration 1, a F-Measure

> 0.75. For the easiest classification tasks: HC - CIS, HC - RR, HC - SP and HC - PP the algorithm

reaches high F-measure values at the first iteration and then stabilizes. On the other side, for the

most difficult tasks: SP - PP, RR - PP and RR - SP, the classification performances increase at each
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Figure 2.3: Results, in terms of F-Measure for each binary task, obtained at each iteration using

proportional sampling.

Figure 2.4: Results, in terms of F-Measure for each multiclass task, obtained at each iteration

using proportional sampling.

iteration.

For the multi-class task, the behaviour is slightly different as described in Figure 2.2. Task RR-

SP-PP reaches a F-Measure > 0.8 already at iteration 1 whereas CIS-RR-SP-PP reaches a similar

value at iteration 3. As expected the most complex multi-class task HC-CIS-RR-SP-PP reaches its

best F-Measure at the last iteration (0.73).

In Figure 2.3 we show the results obtained with proportional sampling for binary semi-supervised

tasks. As observable, performances increase rapidly at iteration 1, reaching high level of F-

Measure. Then, they stabilize in the next iterations. A similar behaviour is observable in Fig-

ure 2.4, where we show the results obtained with proportional sampling for the multiclass semi-

supervised tasks.

Finally, in order to have a fair comparison of the two sample selection criteria, we analyzed

the difference, in terms of F-Measure (ΔF(iti, it j)), between two consecutive iterations iti, it j. Goal

of this analysis is to understand the performances gain obtained in each iteration using the two

methods. The results are reported in Table 2.1. From this comparison it is possible to see how

the proportional selection criteria (P) allows to get a better improvement from it0 to it1. This

difference is not visible in the other iterations where the improvements are stable for both the

selection criteria.

3.2 Evaluation of initial number of labeled data

The number of initial labeled data was investigate in order to understand the minimum number

of labeled samples to use in order to get satisfiable results. In more detail, we performed several

experiments using a different percentage of initial randomly selected samples, ranging from 10%

to 50% of the total population. Each experiment was performed 5 times for each task. Results, in
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Task ΔF
ΔF(it1, it0) ΔF(it2, it1) ΔF(it3, it2) ΔF(it4, it3)
B P B P B P B P

HC-CIS 0.04 0.10.10.1 0.01 0.02 0.02 0.0 0.01 0.01

HC-PP 0.01 0.050.050.05 0.02 0.0 0.0 0.0 0.0 0.02

HC-RR 0.0 0.010.010.01 0.01 0.01 0.0 0.01 0.0 0.0

HC-SP 0.01 0.01 0.0 0.01 0.01 0.01 0.0 0.0

CIS-PP 0.01 0.10.10.1 0.02 0.03 0.05 0.0 0.03 0.01

CIS-RR 0.03 0.050.050.05 0.02 0.02 0.02 0.01 0.01 0.01

CIS-SP 0.04 0.070.070.07 0.0 0.01 0.0 0.0 0.0 0.0

RR-PP 0.03 0.10.10.1 0.02 0.01 0.02 0.01 0.02 0.0

RR-SP 0.02 0.110.110.11 0.03 0.0 0.01 0.01 0.02 0.0

SP-PP 0.07 0.160.160.16 0.02 0.01 0.02 0.0 0.03 0.0

RR-SP-PP 0.170.170.17 0.16 0.04 0.04 0.03 0.0 0.03 0.01

CIS-RR-SP-PP 0.11 0.140.140.14 0.03 0.04 0.03 0.0 0.01 0.0

HC-CIS-RR-SP-PP 0.08 0.110.110.11 0.02 0.04 0.0 0.0 0.02 0.01

Table 2.1: Delta of F-Measure (ΔF(iti, it j)), between two consecutive iterations iti, it j for balanced

sampling (B) and proportional (P) selection criteria.

0 1 2 3 4

HC - CIS - RR - SP - PP 0.60 (0.08) 0.71 (0.05) 0.76 (0.04) 0.76 (0.02) 0.75 (0.03)
CIS - RR - SP - PP 0.61 (0.09) 0.75 (0.05) 0.79 (0.03) 0.79 (0.04) 0.79 (0.02)
RR - SP - PP 0.67 (0.02) 0.83 (0.04) 0.87 (0.02) 0.87 (0.02) 0.87 (0.05)

Table 2.2: Mean and standard deviation (in parenthesis) of F-Measure per iteration. With 10% of

ground truth.

terms of F-Measure, are reported in Figure 2.5. Obviously, the best results were achieved using

50% of the labelled data, reaching a mean F-Measure 98%± 1% for all the binary tasks. From

the analysis of these results it comes out that already with 10% of labeled data good results were

achieved with a mean F-Measure 94%±5%.

3.3 Subsample iteration selection

According to our algorithm, the semi-supervised procedure assigns, at each iteration, a label to

all the samples. We then evaluated the number of samples to select at each iteration to be included

as labeled data for the next one. We performed different experiments using the proportional se-

lection criteria and changing the percentage of new labeled data to select. Each experiment was

performed 5 times.

Results, in terms of F-Measure, for difference percentages (ranging from 5% to 20%) are

reported in Figure 2.6. For all the binary tasks, as expected, best results were achieved using the

20% of the new labelled data with a mean F-Measure of 97%±2%. It is worth noting that good

results are already achieved using only 5% of the new labeled data with a mean of 93%± 3%.

Indeed performances from 10% to 20% do not show large improvements.

96 Aldo MARZULLO



3. RESULTS

Figure 2.5: Results, in terms of F-Measure for each binary task using different percentages of

initial labeled samples.

0 1 2 3 4

HC - CIS - RR - SP - PP 0.61 (0.04) 0.69 (0.03) 0.71 (0.04) 0.70 (0.07) 0.72 (0.02)
CIS - RR - SP - PP 0.62 (0.03) 0.73 (0.03) 0.76 (0.05) 0.79 (0.03) 0.78 (0.02)
RR - SP - PP 0.63 (0.02) 0.80 (0.05) 0.84 (0.02) 0.87 (0.03) 0.90 (0.02)

Table 2.3: Mean and standard deviation (in parenthesis) of F-Measure per iteration. Balanced

sampling 10%.
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Figure 2.6: Results, in terms of F-Measure for each binary task using different percentages of

selected sample in each iteration.
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0 1 2 3 4
ACC 0.69 0.84 0.88 0.93 0.93

AMI 0.08 0.34 0.45 0.61 0.64

Fm 0.69 0.84 0.88 0.93 0.93

NMI 0.08 0.35 0.46 0.62 0.66

Prec 0.70 0.84 0.88 0.93 0.94

Rec 0.69 0.84 0.88 0.93 0.93

Table 2.4: Performances of the encoded representation computed at each iteration for the SP - PP

task.

Figure 2.7: Visualization of bidimensional encoding space generated by autoencoder from iteration

1 (left) to iteration 5 (right) in SP (blue) vs PP (violet) task.

3.4 Encoding space analysis

A final evaluation was performed on the encoding space generated by the encoding layer of

the proposed NN. In more detail, we analyzed, at each iteration, the latent representation of all

graphs generated by the NN. In order to understand if the latent representation showx difference

between groups, the following performance measures were computed: Normalized Mutual Infor-

mation (NMI), Adjuster Mutual Information (AMI), Accuracy (ACC), Precision (Prec), Recall

(Rec) and F-Measure (Fm). In Table 2.4 we reported the performance metrics computed, at each

iteration, for the SP - PP task. Moreover, we reported in Figure 2.7 the evolution of bidimensional

encoding space representation. It is interesting to observe a clearer separation between classes as

the algorithm moves forward.

4 Discussion

In particular contexts, such as the biomedical domain, large amount of labelled data are not

easy to obtain. Semisupervised classification approaches constitute an important resource to ad-

dress this issue. In this study, we proposed a novel method based on neural networks, to automat-

ically classify MS patients using brain structural connectivity information. For the first time, the

problem is addressed in a semisupervised manner, including unlabelled data that could not be used

in the previously proposed methods.

Several binary classification tasks were performed, including HC-CIS, CIS-RR, RR-PP, RR-

SP, SP-PP. In addition, multiclass classification tasks were included in the study. High levels

of accuracy and F-Measure were achieved both for easy and more difficult classification tasks,
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showing the capability of the method to exploit pathological alterations to differentiate MS clinical

profiles.

The highest level of F-Measure were obtained in the HC vs MS classification tasks. These

results were expected. Indeed, related studies have already shown several differences comparing

brain structure representation of control subjects with respect to MS patients [Charalambous et al.

(2019), Zurita et al. (2018)a], due to pathological alterations. Such effects, cause HC networks to

be more dense and well organized compared to MS, thus allowing an accurate discrimination [Ko-

cevar et al. (2016)].

However, high classification performances were also achieved in the more difficult tasks, such

as SP-PP and CIS-RR. Indeed, despite comparable white matter alterations were observed in those

two pairs of clinical profiles, neural networks were able to detect important information to dis-

criminate between clinical forms.

In machine learning, the composition of the training set may affect the performance of the

model. This is also true in the proposed semisupervised method, where the initial distribution of

labeled data may impact the final classification accuracy. We evaluated the performance variations

according to the initial number of labeled data. Interestingly, good performances were achieved

using a moderate amount of labeled data, demonstrating the capability of the algorithm of gener-

alizing predictions on unseen data even with a small set of training samples.

In the proposed method, the initial number of labelled data is iteratively increased pseudo-

labelling data using the network predictions. Two sampling criteria were proposed in this study,

namely balanced and proportional, to iteratively augment the set of known labels. However, other

sampling approaches could be implemented to address different tasks. Comparable final perfor-

mances were obtained in all the binary classification tasks and in the multiclass classification tasks

when using the two sampling criteria. However, an important difference was observed by evaluat-

ing the gain obtained in each iteration using the two methods. As observable from Table 2.1, the

proportional sampling outperforms the balanced sampling at the beginning of the process, result-

ing in faster convergence of the algorithm. Indeed, in the balanced approach, the number of new

labels included in the process may not reflect the true data distribution. By contrast, when some

prior knowledge of such distribution is known, it can be exploited by the proportional method to

improve the learning process.

Finally, the evolution of the encoding space was analyzed to better understand the behaviour

of the classifier. We noticed that clusters were better organized as performances increase, that is,

the encoding part of the network learned similar latent representations for objects belonging to the

same class. This result could be interpreted as common latent features are shared among instances

of the same class.

5 Conclusion

In this work we proposed a semi-supervised approach to classify MS patients into four clinical

profiles. Pseudo-labelling was used to iteratively train a deep neural network in a semi-supervised

manner. The experimental activities illustrated the robustness of our approach to variations respect
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to the initial training set size and with respect to the new knowledge to include in the further steps

of the process. Two main results achieved by this analysis: (i) unlabelled data could be effectively

used in the training process to classify MS patients (ii) good classification performance could

be achieved by using a moderate amount of labelled data. Achieved results could represent an

important step forward on the road to the definition of completely automatic and unsupervised

approaches.
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1 Introduction

In recent years, several studies were conducted to identify MS from healthy controls with the

help of MRI. In particular, quantify brain damages by analyzing the white matter network is a

promising technique to detect pathological alterations useful to delineate biomarkers to charac-

terize the disease. indeed, network metrics can provide clinically relevant information about MS

pathology. In [Charalambous et al. (2019)], several structural changes were identified between

subjects’ groups. Compared with controls, network efficiency and clustering coefficient were

reduced in MS. Furthermore, in [Kocevar et al. (2016)], author observed greater assortativity,

transitivity, and characteristic path length as well as a lower global efficiency when comparing MS

patients to HC subjects, probably corresponding to transient damages caused by inflammatory and

demyelinating processes.

On the other hand, several methods based on computer vision and image processing techniques

to accomplish MS automatic identification tasks were developed. Such methods mostly exploit

recent advances in machine learning. Zurita et al. [Zurita et al. (2018)b] developed classifiers

based on DTI and fMRI data able to distinguish between patients and healthy subjects, reaching

accuracy levels as high as 89%±2%. Based on a simple DTI acquisition associated with structural

brain connectivity analysis, Kocevar et al. proposed a method based on support vector machines

which allowed an accurate classification of HC subject and MS patients’ clinical profiles achieving

high level of accuracy (F-Measure 91.8%). Whang et al. exploited complex Convolutional Neural

Networks (CNN) to identify MS from healthy control with an accuracy greater than 98% starting

from Brain MRI slices [Wang et al. (2018)]. The same task was addressed by Maleki et al. and

Zhang et al. where CNN achieved similar results [Maleki et al. (2012), Zhang et al. (2018)c].

As we already shown in Chapter 2, good results can be achieved by semi-supervising the

training of complex deep learning models. However, obtaining large number of labelled images

remains a relevant issue, since the task is often expensive and time consuming. For this reason,

adopting completely unsupervised (i.e. without any human intervention) methods constitutes one

of the main direction of our researches. In particular, in this study we propose a combination of

the above mentioned approaches: we take advantages from structural connectivity and machine

learning methods to develop a fully automatic method to classify MS patients and HC subjects.

Furthermore, we proposed a completely unsupervised method. To the best of our knowledge,

this is the first attempt to solve this question in a fully unsupervised automated manner, which

constitutes an important improvement.

2 Material and Methods

The proposed method is composed by five main steps: (i) structural connectivity information

are extracted from the images in order to produce a graph representation of the MRI; (ii) the

adjacency matrix representation of the produced graphs is used to create a third order tensor (iii)

the tensor is decomposed to create a latent representation of the dataset (iv) unsupervised clustering

on the latent space was performed using the k-means algorithm.In this section we provide a detailed
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TTT ≈

c1c1c1

b1b1b1

a1a1a1

+ . . . +

cKcKcK

bKbKbK

aKaKaK

Figure 3.1: Graphic representation of the canonical polyadic decomposition (CPD).

description of each step of the proposed approach, also describing the dataset used for the study.

2.1 Notation

In this paper, to better defining the proposed method, we denote scalar values with small letters

(e.g., a), 1-dimensional vectors with bold small letters (e.g., aaa), matrices with boldface capital

letters (e.g., AAA). Tensors are denoted with boldface Euler script letters (e.g., AAA ). G = (V,E) is

an undirected graph, where V is the set of vertices and E is the set of edges. If not differently

specified, given a graph G = (V,E) we denote by N = |V | the number of nodes of the graph.

2.2 Dimensionality Reduction using Tensor Factorization

A tensor is a multidimensional array. Formally, a tensor is an element of the tensor product of

D vector spaces each defined in its own coordinate system [Kolda and Bader (2009)].

In recent years, tensor factorization (decomposition) became a widely used method for iden-

tifying relations and correlations in high dimensional data. Many decomposition techniques have

been developed and found their application in many research fields such as signal processing,

computer vision, numerical analysis, data mining, neuroscience, graph analysis, and more. In par-

ticular a number of different factorization methods have been proposed in the literature, such as

Higher Order SVD (HOSVD) [Hunyadi et al. (2014)], Tucker decomposition [Tucker (1966)],

Parallel Factor (also known as PARAFAC or CANDECOMP or CP) [Harshman (1977)] and Non-

negative Tensor Factorization (NTF) [Shashua and Hazan (2005)]. These techniques are mainly

generalizations of the Singular Value Decomposition (SVD) [Golub and Reinsch (1971)]. In this

study, we refer to the canonical polyadic decomposition (CPD) method [Asta and Özcan (2015)].

In particular, given a third-order tensor XXX ∈ R
i× j×z the aim is to write it as a sum of component

rank-one tensors:

XXX =
K

∑
r=1

ararar ◦brbrbr ◦crcrcr +EEE (3.1)

where K ∈N+, ararar ∈R
i,brbrbr ∈R

j,crcrcr ∈R
z ∀ 1≤ r ≤K are the component vectors and EEE ∈R

i× j×z

is denoted as the error tensor. The symbol “◦” represents the vector outer product.

In an exact CP decomposition, where “exact” means that the residual tensor EEE in equation 3.1

is a zero-element tensor, the smallest number of rank-one tensors that generate XXX as their sum
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Table 3.1: Clustering performance comparison with and without dimensionality reduction.

Accuracy F-Measure Precision Recall

HC vs CIS HC vs PP HC vs RR HC vs CIS HC vs PP HC vs RR HC vs CIS HC vs PP HC vs RR HC vs CIS HC vs PP HC vs RR

No reduction 0.97 0.81 0.50 1.00 0.88 0.62 1.00 0.79 0.54 1.00 0.99 0.95

PCA 0.99 0.81 0.53 1.00 0.69 0.61 1.00 0.79 0.54 1.00 0.54 0.89

Tensor 0.94 0.99 0.99 0.95 1.00 0.99 0.97 1.00 0.99 0.91 1.00 0.96

TSNE 0.70 0.55 0.61 0.58 0.59 0.73 0.65 0.54 0.58 0.52 0.81 0.98

is called the rank of XXX , denoted rank(XXX ). An exact CP decomposition with K = rank(XXX )

components is referred to as the rank decomposition.

The CPD problem can be formalized as follows:

min
X̂XX

‖XXX −X̂XX ‖ with X̂XX =
K

∑
r=1

ararar ◦brbrbr ◦crcrcr = �AAA;BBB;CCC� (3.2)

where AAA ∈ R
i×K , BBB ∈ R

j×K , CCC ∈ R
z×K .

The factorization is then obtained by solving the following optimization problem:

min
A,B,CA,B,CA,B,C

‖TTT −AAA◦BBB◦CCC‖ (3.3)

The formulation of the tensor factorization using CPD is graphically illustrated in Figure 3.1.

Tensor factorization techniques feature interesting properties that turn out to be of use in many

contexts. Indeed, factorization helps to represent data in a more concise and generalizable manner,

which can be of specific use according to various criteria and applications.

Our approach is based on the intuition that tensor factorization allows to identify correlations

and relations among high dimensional data. A third-order tensor TTT is created, which encodes

the t graphs generated from the MR images (in their adjacency matrix form). Then, the tensor

TTT is factorized in its basic factors, with K = 2, producing the approximation T̂̂T̂T as described the

equation 3.1, where the length of each vectors aaar,bbbr and cccr ∀ 1≤ r ≤K, are N,N and t respectively.

It is worth to note that the two components ccc1, ccc2 represent a projection of each graph in the

euclidean space. Thus, we used this latent representation to perform the unsupervised clustering

task.

2.3 Unsupervised Clustering

K-means clustering is a type of unsupervised learning algorithm used on unlabelled data to

find K groups (i.e. clusters). The algorithm works iteratively to assign each data point to one

of the groups based on the features that are provided. Data points are clustered based on feature

similarity. In the proposed approach the latent representation of the dataset was used as input

to the algorithm to perform perform to detect 2 groups, eventually corresponding to the MS and

HC classes. The output of the k-means clustering is a vector of labels, specifying for each voxel

whether it belongs to one or the other cluster by assigning it the values 0 or 1.
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3 Results

3.1 MS Identification Using Clustering Analysis

First, we analyze whether the clustering accuracy benefits from a latent representation of the

brain connectivity graphs. In the proposed experiments, the latent representation was used as in-

put for the k-means to compute two clusters. Additionally to the proposed method based on tensor

factorization, we compared performances using two widely used dimensionality reduction algo-

rithms: Principal Component Analysis (PCA) and t-distributed Stochastic Neighbor Embedding

(TSNE). Three different binary classification tasks were performed (HC vs CIS, HC vs RR, HC

vs PP). Quality of the classification was assessed by means of Precision, Recall, F-Measure and

Accuracy. Results are reported in Table 3.1.

High level of accuracy were observed already when using the k-means algorithm without di-

mensionality reduction. However, PCA and Tensor factorization allow to achieve better results. In

particular, the best results are achieved using PCA for the for the HC vs CIS task while the best

results are achieved using tensor factorization for HC vs RR and HC vs PP. However, the proposed

method allow to achieve the most stable results all over the experiments. Worse performances are

observed using TSNE.

The latent representations computed for each task and for each dimensionality reduction al-

gorithms are reported in Figure 3.2. A well defined separation between the two clusters can be

observed for PCA and tensor factorization. Interestingly, when using PCA for HC vs RR and HC

vs PP, two well defined areas can be observed, which, however, are not related to the real classes.

This is probably due to common structural similarities among the patients, not directly related to

the pathology.

3.2 Unsupervised Classification of MS Clinical Profiles

In this section, a preliminary study concerning the unsupervised classification of MS clinical

profiles. As shown in the previous sections, dimensionality reduction using tensor factorization of

structural connectivities provides a stable method for distinguish MS patients from HC subjects.

For the sake of completeness, we performed preliminary experiments to investigate whether such

method can be useful to discriminate the various forms of MS.

MS Forms Clustering Using Brain Connectivity

The proposed dimensionality reduction approach based on Tensor Factorization was applied

for each MS patient. The obtained latent representation was used as input for the k-means to

compute two clusters. Additionally, the k-means algorithm was feed using directly the adjacency

matrix representation, for comparison. For this experiment, we performed pairwise comparison

of clinical interest, namely RR vs CIS, RR vs PP, RR vs SP and PP vs SP. Table 3.4 and Table

3.5 illustrate obtained results using unweighted and weighted graphs, respectively. As observ-

able, the proposed approach is not able to achieve suitable results in many cases. When using
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(a) HC vs CIS (b) HC vs RR (c) HC vs PP

Figure 3.2: Illustration of the latent space computed by tensor factorization for each experiment

(HC vs CIS , HC vs RR, HC vs PP) and for PCA, Tensor factorization and TSNE. Different shapes

represent the two clusters assigned by the k-means algorithm while different colors represent the

real classes.
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Table 3.2: pairwise MS clinical profile clustering performance comparison using unweighted

graph metrics

F-Measure Precision Recall Accuracy

RR vs CIS 0.48 0.63 0.50 0.51

RR vs PP 0.69 0.78 0.66 0.66

RR vs SP 0.75 0.80 0.74 0.74

PP vs SP 0.59 0.64 0.59 0.59

Table 3.3: pairwise MS clinical profile clustering performance comparison using weighted graph

metrics

F-Measure Precision Recall Accuracy

RR vs CIS 0.45 0.55 0.48 0.48

RR vs PP 0.66 0.67 0.66 0.66

RR vs SP 0.70 0.69 0.70 0.70

PP vs SP 0.57 0.58 0.58 0.57

either weighted or unweighted graphs, the worst results were obtained comparing RR vs CIS. Fur-

thermore, using unweighted graphs, low level of accuracy was obtained comparing SP vs PP. By

contrast, better results were obtained when comparing RR vs SP (using weighted and unweighted

graphs). Furthermore, we observed that unweighted graphs provided better results, overall. More-

over, dimensionality reduction did not provide better results.

MS Forms Clustering Using Brain Connectivity Metrics

In this preliminary study, we did not use directly the adjacency matrix representing the brain

structure. Instead, the matrix A ∈ R × d, (d = 4) of local graph metrics already presented in

Section 2.5 (Node Degree, Clustering Coefficient, Local Efficiency, Betweenness Centrality) was

computed for each subject. Then, a third-order tensor TTT is created, which encodes the feature

matrices, and factorized in its basic factors, with K = 2, as previously illustrated. Table 3.2 and

Table 3.3 illustrate obtained results using unweighted and weighted graphs, respectively. Obtained

results are comparable with the approach using directly connectivity matrices: low levels of ac-

curacy were observed comparing RR vs CIS as well as PP vs SP. The best results were obtained

comparing RR vs SP. Even in this case, dimensionality reduction did not provide better results.

Table 3.4: Pairwise MS clinical forms clustering performance comparison with and without di-

mensionality reduction using unweighted graphs.

Accuracy F-Measure Precision Recall

No reduction Tensor No reduction Tensor No reduction Tensor No reduction Tensor

RR vs CIS 0.53 0.53 0.45 0.45 0.67 0.67 0.47 0.47

RR vs PP 0.65 0.66 0.40 0.40 0.61 0.61 0.62 0.60

RR vs SP 0.75 0.76 0.71 0.71 0.60 0.62 0.81 0.83

SP vs PP 0.65 0.65 0.64 0.66 0.67 0.66 0.65 0.65
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Table 3.5: Pairwise MS clinical forms clustering performance comparison with and without di-

mensionality reduction using weighted graphs.

Accuracy F-Measure Precision Recall

No reduction Tensor No reduction Tensor No reduction Tensor No reduction Tensor

RR vs CIS 0.55 0.55 0.42 0.42 0.53 0.53 0.44 0.46

RR vs PP 0.63 0.63 0.53 0.52 0.51 0.52 0.53 0.53

RR vs SP 0.70 0.70 0.68 0.68 0.66 0.65 0.70 0.71

SP vs PP 0.51 0.52 0.51 0.51 0.47 0.50 0.62 0.62

4 Discussion

Graph representation of the brain structure offers a sensitive tool to detect pathological alter-

ations respect to healthy subjects. As already suggested by previous work, this kind of representa-

tion enhances several structural changes in MS brain networks compared with controls. As shown

in our experiments, such structural variations are easily captured by clustering algorithms, and

can be exploited to create a more readable representation in a bi-dimensional space. However, as

observed, dimensionality reduction allowed to achieve more stable and better results. In particu-

lar, the proposed approach based on tensor factorization of structural connectivities provided an

effective way to extract suitable features to improve clustering results for all the binary tasks. It is

worth to note that the proposed method requires a number of parameters significantly lower with

respect to previous approaches based on complex deep learning structures.

Concerning the MS clinical forms comparison, we observed how the proposed unsupervised

algorithm did not provide suitable performances. The CIS and RR patients comparison provided

the worst results in all the experiments. These two preliminary MS stages, indeed, presents several

structure similarities which, probably, prevent the algorithm to find a proper separation criteria.

Similar results were observed when comparing SP and PP patients, which are characterized by

similar degenerative brain damages, are associated to different disability values. For this reason,

the pathological mechanisms differentiating these two stages are too complex to be automatically

modelled by simply looking at the brain structure in a whole. Differently, the RR vs SP comparison

provided interesting results. RR patients are characterized by inflammation processes while SP

patients are more subjected to neurodegeneration, leeading the clustering algorithm to find more

suitable structural difference between the two classes.

5 Conclusion

In this chapter, we presented a preliminary study aimed at solving the MS identification and

classification problem in a completely unsupervised manner. As observed in the experiments,

graph representation of the brain structure allow unsupervised algorithm to detect and exploit dif-

ferences between HC and MS. By contrast, the same approach were not successful in detecting the

complex pathological mechanisms of MS. For this reason, more sensitive tools need to be inves-

tigated, including innovative unsupervised clustering approaches. In this context, Graph Neural

Networks could play a key role, given their ability to model complex non-linear representations
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of structured data. Furthermore, less general approach should be explored: since pathological

mechanisms act differently in each stages, more “class-oriented" methods could be defined, which

could take into account the clinical background knowledge about MS.
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1. INTRODUCTION

1 Introduction

After a number of works on automatic theorem proving and artificial intelligence, the work on

logic programming took actually off in the 1970’s, with the aim of obtaining automated deduction

systems. Answer Set Programming (ASP) [Gelfond and Lifschitz (1991), Niemelä (1999), Lonc

and Truszczynski (2006)] is one of the several formalisms that stemmed out of such research

efforts, and during the years it turned out to be a powerful declarative formalism for knowledge

representation and reasoning (KRR).

After more than twenty-five years of scientific research, the theoretical properties of the lan-

guage are considered to be well understood, and even if the community is still very active on

several extensions, the solving technology, as witnessed by the availability of a number of robust

and efficient systems [Gebser et al. (2017), Gebser et al. (2018)], is mature for practical applica-

tions [Brooks et al. (2007), Terracina et al. (2008), Gebser et al. (2011)b, Manna et al. (2015)]. In

the latest years, ASP has been indeed employed in many different domains, and used for the devel-

opment of enterprise and industrial-level applications [Calimeri and Ricca (2013),Leone and Ricca

(2015), Erdem et al. (2016)], fostered by the release of a variety of proper development tools and

interoperability mechanisms for allowing interaction and integration with external systems [Ricca

(2003), Calimeri et al. (2007)]

Nevertheless, even though Answer Set Programming, and deductive approaches via logic for-

malisms in general, are of wide use for Artificial Intelligence (AI) applications, they are not the

ultimate, comprehensive solution to AI, as some kind of problems can be hardly encoded by logic

rules. This can be due to several reasons: the nature of the problem, the lack of proper develop-

ment tools, and severe performance issues even for the best performing systems. Bioinformatics

is a prime example, as both related data (think, for instance, of biomedical images, temporal data,

etc.) and relevant tasks (think, for instance, of classification) are not naturally approachable with

deductive strategies. In such research area, and similar ones, different AI-based strategies have

been employed. Lately, approaches relying on Machine Learning (ML) and Artificial Neural Net-

works (ANNs) [Haykin (1998),Goodfellow et al. (2016)] are on the rise, both because of the great

results achieved by the research community in the latest years and because they better deal with

the data and the nature of the tasks of interest.

Basically, with ANNs the problem is not actually modelled, and its structure remains almost

unknown; rather, approaches progressively learn, usually by examples, the best answers to provide

in presence of specific inputs. ANNs can learn and model non-linear complex relationships, and

even generalize acquired knowledge in order to infer new properties over unseen data; moreover,

once trained, a neural network can be extremely fast in providing answers to instances of com-

plex problems. Unfortunately, obtained results have only statistical significance; it is noteworthy,

indeed, that the main weakness of ANNs is in general their incompleteness, since their precision

may strongly depend on the training phase and on the quality of the training data. The logic they

use can be sound, yet proven incorrect by further observations. Hence, clearly, as for deductive

reasoning, not all problems can be properly solved by ANNs.

This chapter focuses on some opportunities provided by a combined use of ASP and ANN.
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As a motivating scenario, we concentrate on a relevant bioinformatics problem, namely the study

of neurological disorders and, specifically, on the Multiple Sclerosis (MS) disease. To the best

of our knowledge, computer science research on this topic mainly focused on the identification

of the disease and, possibly, on the detection of its severity. Actually, in order to clinically ana-

lyze disease evolution, long periods of observations, even decades, are needed. Obviously, a tool

supporting physicians in accelerating the analysis process, e.g. via simulations, would be of great

benefit. Notably, it has been demonstrated by several independent studies that there is a strong

correlation between the variations of the structure of the connections among neurons (also called

connectome) with possible insurgence of several neurological disorders [Bargmann and Marder

(2013)]. Hence, it would be of high interest to simulate the course of the disease by simulating

brain connections degradation, in order to understand which kind of modifications might mostly

determine an evolution of the disease into a worst state, or which recovery processes might induce

a remission state. Unfortunately, this simulation represents a non-trivial challenge due to various

reasons, including the fact that the actual mechanisms guiding the evolution of the pathology are

still largely unknown.

As we have seen in previous chapters, the brain structure can be fruitfully represented by

means of a graph; hence, a possible solution would be to simulate the progress of the pathology

by means of a set of custom-defined rules for modelling the evolution of the brain structure, which

may involve a certain background knowledge. An effective tool for the experts could consist

of a comprehensive environment which allows to dynamically detect minimal alterations of brain

connections, based on specific guidelines, that induce a change of state in the disease. The possible

change of state can, in turn, be detected by neural networks, exploring latent relations learnt from

samples. It is worth pointing out that, to the best of our knowledge, a tool providing these features

is not available yet; moreover, simulating manually brain alterations is not an easy task and it is

almost impossible to manually detect significant brain substructures.

In this context, ASP can play a relevant role. In fact, simulation tasks could be in principle

designed with any programming paradigm; nevertheless, since it is still not clear which changes

to which graph properties are likely to impact on the evolution of the disease, a try-and-check

methodology is necessary. This implies to write ad-hoc simulation machineries for each of them.

Clearly, a declarative methodology allows for compact and clear definitions as well as fast proto-

typing: ASP paves the way to easy definition of rules for the identification of brain substructures

that can be of interest for the analyst.

Interestingly, it has been shown [Kocevar et al. (2016)] that it is important to look at mini-

mal graph changes allowing to reach a certain goal in some graph variations, such as density or

assortativity; this implies that most of the tasks to be carried out would actually involve optimiza-

tion. The use of ASP for optimization problems is still relatively less popular than its use for

decision problems, even though it has been proved to be perfectly suited for them; moreover, the

formulas for the computation of graph metrics can be in general not easy to be written by rules

only. This increases the interest in the application of recent extensions of ASP systems, such as

I-DLV/DLV2 [Calimeri et al. (2017),Adrian et al. (2018)], DLVHEX [Eiter et al. (2016),Calimeri

et al. (2016), Eiter et al. (2018)a], etc., which allow both to solve optimization problems and the
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integration of external computation sources within the ASP program. The potentialities of ASP in

these two areas are pointed out in the rest of the paper.

The main contribution illustrated in this chapter consists of a framework for studying the evo-

lution of neurological disorders by simulating variations in the connectome. The framework relies

on two main modules: an ANN that classifies a given connectome with respect to disorder stages,

and a logic program (specified via ASP) that allows to perform non-deterministic variations on

a given connectome that guarantee fixing some graph parameters under study. The framework

iterates between the ANN and the ASP modules to simulate possible evolutions of a neurological

disorder.

The remainder of the chapter is structured as follows. In Section 2 we discuss related work,

and in Section 2.1 we recall some preliminary notions both from the biomedical and ASP contexts.

In Section 3 we introduce the general framework and discuss the role ASP and ANN play therein,

while Section 4 presents three actualizations of the framework. Section 5 describes the experi-

ments we carried out to assess potentiality and applicability of the approach. Section 6 introduces

the web tool we developed based on the presented work, whereas Section 7 surveys some other

applications possibly benefiting of the presented framework. Eventually, in Section 8, we draw

our conclusions and outline some future work.

2 Related Works

In this section we outline related literature. Since, to the best of our knowledge, there is no

proposal available, to date, that simulates the evolution of neurological disorders by a combined

use of ASP and ANN, we concentrate our attention on works exploiting together, to different

extents, declarative formalisms and ML solutions.

Some works have been carried out to integrate data-driven solutions into declarative sys-

tems with the aim of increasing performance; for instance, such solutions are used for induc-

tively choosing configurations, algorithms selection, and proper coupling of subsystems [Gebser

et al. (2011)a, Maratea et al. (2014), Fuscà et al. (2017)]. In some proposals, see for instance

SMT [Cok et al. (2015), Barrett et al. (2016), Barrett and Tinelli (2018), Barrett et al. (2013)] or

CASP [Baselice et al. (2005), Mellarkod et al. (2008), Balduccini and Lierler (2017), Lierler and

Susman (2017),Shen and Lierler (2018),Arias et al. (2018)], the logic solver can select statements

that should be checked by external theory/numerical solvers, so that the next steps carried out by

the logic solver depend on the answers produced by the external ones. Some works mix statistical

analysis and ASP [Gelfond (2010), Nickles and Mileo (2014), Beck et al. (2015)]: here, the aim

is to extend logic programs with probabilistic reasoning, either by a direct integration or by em-

bedding external predicates. Other approaches are related to the use of methods that “guide” the

reasoning, the generation of logic programs or other optimizations [Law et al. (2015), Law et al.

(2016), Chabierski et al. (2017), Dodaro and Ricca (2018)]; most of them are still at a preliminary

stage.

In the context of ASP, some proposals allow ASP systems to access external sources of compu-
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tation and even value invention [Calimeri et al. (2007), Redl (2016), Kaminski et al. (2017), Cal-

imeri et al. (2017), Eiter et al. (2018)b, Alviano et al. (2019), Gebser et al. (2019)a], making

them to impact on semantics computation to different extents. In particular, thanks to extended

built-in constructs, it is possible to invoke external functions and define custom constraints; via

such invocations, one might in principle place a call even to an ANN from an ASP program.

In the last decades, ANNs have become one of the most powerful machine learning tools for

solving complex problems. Especially in visual domains, they achieved impressive results in ob-

ject detection, recognition and classification [Goodfellow et al. (2016)]. An ANN is typically

represented as a composition of functions, each computing a nonlinear weighted combination of

its input, which constitute the neural structure, and are organized in layers. Starting from sam-

ples, the learning algorithm iteratively refines the network parameters θ in order to approximate

a target function f . For example, in the particular case of classification, the ANN learns how to

approximate a function y = f (x,θ) which maps an input x to a category whose label is y. However,

the approximation given by the ANN does not provide any insight on the form of f , meaning that

there is no interpretable connection between the parameters and the target function. This is one of

the main causes for the interpretation of ANN being an open problem.

Several attempts have been made for interpreting the behavior of Neural Networks, also using

declarative approaches [Zhang and Zhu (2018)], and to incorporate symbolic knowledge into neu-

ral networks, resulting in a class of networks known as knowledge-based neural networks [Towell

and Shavlik (1993)]. In the context of network interpretation, Zhang et al. used explanatory

graphs and decision trees to create interpretable rules describing convolutional neural network

(CNN) features [Zhang et al. (2018)b, Zhang et al. (2018)a]. Furthermore, based on a semantic

And-Or representation, Zhang et al. also proposed a method to use active question-answering to

assign a semantic meaning to neural patterns in convolutional layers of a pre-trained CNN and

built a model for hierarchical object understanding [Zhang et al. (2017)b]. Hu et al. proposed a

framework using logic rules to obtain more meaningful network representations by constructing an

iterative distillation method that transfers the structured information of logic rules into the weights

of neural networks [Hu et al. (2016)].

2.1 Background on Answer Set Programming

The term “Answer Set Programming” was introduced by Vladimir Lifschitz to denote a declar-

ative programming methodology [Lifschitz (1999)]; concerning terminology, ASP is sometimes

used in a broader sense, referring to any declarative formalism which represents solutions as sets.

However, the more frequent understanding is the one adopted in this article, which dates back

to [Gelfond and Lifschitz (1991)]. For a more thorough introductory material on ASP, we refer

the reader to [Baral (2003), Gelfond and Leone (2002), Lifschitz (1999), Marek and Truszczyński

(1999)]; in the following, we briefly recall syntax and semantics of the formalism.

The language of ASP is based on rules, allowing (in general) for both disjunction in rule heads

and nonmonotonic negation in the body. It is worth recalling that a significant amount of work has

been carried out by the scientific community for extending the basic language, in order to increase
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the expressive power and improve usability of the formalism. This has led to a variety of ASP

“dialects”, supported by a corresponding variety of ASP systems1 that only share a portion of the

basic language; notably, the community relatively recently agreed on the definition of a standard

input language for ASP systems, namely ASP-Core-2 [Calimeri et al. (2012)a], which is also the

official language of the ASP Competition series [Calimeri et al. (2012)b];it features most of the

advanced constructs and mechanisms with a well-defined semantics that have been introduced and

implemented in the latest years.

For the sake of simplicity, we next focus on the basic aspects of the language; for a complete

reference to the ASP-Core-2 standard, and further details about advanced ASP features, we refer

the reader to [Calimeri et al. (2012)a] and the vast literature.

A variable or a constant is a term. Variables are denoted by strings starting with some up-

percase letter, while constants can either be integers, strings starting with some lowercase letter

or quoted strings. An atom is a(t1, . . . , tn), where a is a predicate of arity n and t1, . . . , tn are

terms. A literal is either a positive literal p or a negative literal not p, where p is an atom. A

disjunctive rule (or simply rule, for short) r is a formula of the form: a1 | · · · | an :– b1, · · · ,bk,

not bk+1, · · · , not bm., where a1, · · · ,an,b1, · · · ,bm are atoms and n ≥ 0,m ≥ k ≥ 0. The dis-

junction a1 | · · · | an is the head of r, while the conjunction b1, ...,bk, not bk+1, ..., not bm is the

body of r. A rule without head literals (i.e. n = 0) is usually referred to as an integrity constraint.

If the body is empty (i.e. k = m = 0), it is called a fact. H(r) denotes the set {a1, ...,an} of the

head atoms, and B(r) the set {b1, ...,bk,not bk+1, . . . ,not bm} of the body literals. B+(r) (resp.,

B−(r)) denotes the set of atoms occurring positively (resp., negatively) in B(r). A rule r is safe if

each variable appearing in r appears also in some positive body literal of r.

An ASP program P is a finite set of safe rules. An atom, a literal, a rule, or a program is

ground if no variables appear in it. According to the database terminology, a predicate occurring

only in facts is referred to as an EDB predicate, all others as IDB predicates; the set of facts of P

is denoted by EDB(P).

The Herbrand Universe and the Herbrand Base of P are defined in the standard way and

denoted by UP and BP , respectively. Given a rule r occurring in P , a ground instance of r

is a rule obtained from r by replacing every variable X in r by σ(X), where σ is a substitution

mapping the variables occurring in r to constants in UP ; ground(P) denotes the set of all the

ground instances of the rules occurring in P .

An interpretation of P is a set of ground atoms, that is, an interpretation is a subset I of BP .

A ground positive literal A is true (resp., false) w.r.t. I if A ∈ I (resp., A 
∈ I). A ground negative

literal not A is true w.r.t. I if A is false w.r.t. I; otherwise not A is false w.r.t. I. Let r be a ground

rule in ground(P). The head of r is true w.r.t. I if H(r)∩ I 
= /0. The body of r is true w.r.t. I if all

body literals of r are true w.r.t. I (i.e., B+(r)⊆ I and B−(r)∩ I = /0) and is false w.r.t. I otherwise.

The rule r is satisfied (or true) w.r.t. I if its head is true w.r.t. I or its body is false w.r.t. I. A model

of P is an interpretation M of P such that every rule r ∈ ground(P) is true w.r.t. M. A model

1During the years, the scientific community has been very active, and many ASP systems have been released re-

lying on different algorithms and solving technologies; we refer the reader to the latest available report on the ASP

competition series [Gebser et al. (2019)b], the therein reported references and the vast literature.
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Figure 4.1: Architecture of the proposed framework

M of P is minimal if no model N of P exists such that N is a proper subset of M. The set of all

minimal models of P is denoted by MM(P).

Given a ground program P and an interpretation I, the reduct of P w.r.t. I is the subset P I of

P , which is obtained from P by deleting rules in which a body literal is false w.r.t. I. Note that

the above definition of reduct, proposed in [Faber et al. (2004)], simplifies the original definition

of Gelfond-Lifschitz (GL) transform [Gelfond and Lifschitz (1991)], but is fully equivalent to the

GL transform for the definition of answer sets [Faber et al. (2004)]. Let I be an interpretation of a

program P . I is an answer set (or stable model) of P if I ∈ MM(P I) (i.e., I is a minimal model

of the program P I) [Przymusinski (1991), Gelfond and Lifschitz (1991)]. The set of all answer

sets of P is denoted by ANS(P).

Example 1. In order to appreciate declarativity and expressiveness of ASP, let us consider the

well-known NP-complete 3-Coloring problem. Given a graph, we must decide whether there exists

an assignment of one out of three colors (red, green, or blue, for instance) to each node such that

adjacent nodes always have different colors. If we suppose that the graph is represented by a

set of facts F consisting of instances of the unary predicate node(X) and of the binary predicate

arc(X ,Y ), then the following ASP program (in combination with F) describes all 3-colorings (as

answer sets) of that graph.

r1: color(X,red) | color(X,green) | color(X,blue) :- node(X).

r2: :- color(X1, C), color(X2, C), arc(X1, X2).

Rule r1 expresses that each node must either be colored red, green, or blue2; due to minimality

of answer sets, a node cannot be assigned more than one color. The subsequent integrity constraint

checks that no pair of adjacent nodes (connected by an arc) is assigned the same color.

Thus, there is a one-to-one correspondence between the solutions of the 3-Coloring problem

and the answer sets of F ∪{r1,r2}: the graph is 3-colorable if and only if F ∪{r1,r2} has some

answer set.
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3 Framework and Methodology

In this section we present a framework to support the analysis of neurological disorders evo-

lution. It is worth noting that the framework is intended to be rather general, and can be adapted

to several kind of disorders and, as it will be shown in Section 7, it can be even extrapolated to

other scenarios. Here, we focus on MS disorder. We first introduce the general workflow of the

framework, and then illustrate its components in abstract terms. In Section 4 we consider different

use cases, and provide some specializations of the various modules.

The general workflow is presented in Figure 4.1. Intuitively, it takes a brain representation as

input, classifies the current stage of the disease, and then simulates the effects of the disease course

by “damaging the brain”; the newly obtained brain representation is then classified, and used for

the next steps. These steps are iterated until some condition holds or until a misclassification is

detected; in the first case, the overall set of results is provided as output; in the latter case, the

execution of the framework is aborted.

More in detail, the framework takes as input a graph representation of the brain of a patient,

which can be obtained starting from a combination of MRI acquisition methods. This is expected

to be a weighted graph G0 = (V,E0,ω0) representing the brain connectome of the patient; this

graph is then processed by the Classifier module.

The Classifier module can be formally modelled as a function χ : G → R4. In particular, it

takes as input the graph Gi of the i-th iteration of the framework, which represents the possibly

modified brain connectome of a patient, and outputs four real values, each indicating the probabil-

ity of the input graph of expressing a specific MS stage, namely Resulti = (PCISi ,PRRi ,PPPi ,PSPi).

Here, PCISi (resp., PRRi , PPPi , PSPi) corresponds to the probability of Gi of representing a CIS (resp.,

a RR, a PP, a SP) MS stage (see Section 2.1). The stage associated with Gi is implicitly the one

showing the highest probability.

As previously pointed out, the classification task can be carried out in several ways. One

possibility is to make use of results from graph theory [Rubinov and Sporns (2010),Kocevar et al.

(2016), Shovon et al. (2017)]; however, despite network analysis applied on brain connectivity

represents a powerful tool, it is not possible yet to define precise biomarkers to classify subjects,

especially in the MS context. As far as current classification methods for MS are concerned,

there is a clear distinction between approaches that are based on ANN and those that use different

learning methods, such as Support Vector Machines (SVM). ANN demonstrated to be one of the

most promising tools for the analysis and classification of images, and has been used in a wide

range of applications even if, to date, image analysis via ANN in the context of MS has been

exploited mostly for the identification of MS lesions rather than MS profile classification. As

usually done in similar contexts, in the approaches studying MS via ANN the ground truth for

training purposes is obtained by annotations on the data directly provided by human experts. The

ANN training phase is a pre-processing step propaedeutic to the application of the framework.

Depending on the actual implementation of the classifier, this module may also provide some

insights on the classification process that could be of use in the subsequent steps. This case will

2The same piece of knowledge can be equivalently expressed by means of choice rules, see [Calimeri et al. (2012)a].
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be detailed in Section 4. Intuitively, the specific ANN we adopt in the specialization of our frame-

work allows to leverage the topology of the graph for the classification process and to compute a

meaningful coefficient for each graph edge, in the form (x,y, impxy), representing the importance

of the edge (x,y) in the classification task. These insights can be exploited in the simulation of

brain evolution and are expressed in Figure 4.1 by the direct connection between the Classifier

module and the Brain Evolution Simulation module.

The output of the classification is verified by a Classification Validity Checker. One of the

recently arising research issues in classification tasks is the automatic check of validity of results.

Indeed, verification of ANN results is receiving increasing interest, and it is currently a very active

research area [Pulina and Tacchella (2010),Kouvaros and Lomuscio (2018),Leofante et al. (2018)].

However, given the nature of the problem we are addressing in this chapter, we can simplify this

task by resorting to rules and constraints that model domain knowledge.

In particular, if certain clinical evidences are available for a patient, they can be used to limit

classification alternatives. As an example, it is well known that a brain model obtained by a severe

disruption of its previous structure cannot induce a remission of the pathology. In other words,

given a brain structure Gi−1 classified, e.g., as RR, and given its modified version Gi obtained by a

strong reduction of arcs and/or weights, if Gi is classified as CIS, i.e., a remission is hypothesized

from Gi−1 to Gi, the classification is evidently wrong and must be discarded. This kind of checks

can be easily carried out through suitable sets of rules and constraints; these will be presented in

detail in Section 4. As a side note, if the starting input graph G0 is annotated with the ground

truth provided by an expert on the right classification of the initial MS stage, this step can stop

the process at the very first iteration if the classification result disagrees with the ground truth. In

order to provide the input to the checker in the proper formalism, an ASP Input Formatter module

stands between the classifier and the checker. It is in charge of translating the output provided by

the classifier and the current graph into ASP facts.

The Classification Validity Checker can be modelled in abstract terms as a function ν : G ×
R4 × G ×R4 → {“OK”,“FAIL”} which takes as input two graphs, Gi−1 and Gi and the cor-

responding classification results Resulti = (PCISi ,PRRi ,PPPi ,PSPi) and Resulti−1 = (PCISi−1
,PRRi−1

,

PPPi−1
,PSPi−1

); it provides as output one among the two possible values “OK” or “FAIL”, depend-

ing on the outcome of the check. If the Classification Validity Checker returns “FAIL”, the iterative

process is immediately stopped and current and previous results are invalidated. On the contrary,

if the checker returns “OK”, the execution of the framework proceeds to the next steps.

In particular, a generic Exit Condition is subsequently checked in order to verify whether it

is necessary to proceed with the next iteration of the framework or not. The definition of such

condition strongly depends on the objective of the analysis. As an example, it could be interesting

to check if a certain target probability is reached for a certain MS stage, or if a certain degree of

disruption of the original graph has been induced in the last step, or simply if the required number

of iterations has been carried out. If the exit condition is verified, the execution is stopped and

the set {〈G0,Result0〉,〈G1,Result1〉, . . .〈Gn,Resultn〉} of graphs and corresponding classification

results are provided as output. Otherwise, the execution proceeds with the next brain evolution
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simulation step.

The Brain Evolution Simulation module can be formally modelled as a function μ : G ×2E ×
2E → G ; here, G is the set of all possible graphs, whereas 2E represents all possible sets of triples

of the form (x,y,cxy), where x and y are nodes of the graph and cxy is a label. In particular, μ takes

as input the current graph Gi, and two sets of triples (x,y, impxy), and (x,y,dcxy) which convey,

respectively, information on the importance of each edge for the classification task, whenever

provided by the classifier, and information on how to modify edge weights during the simulation.

We formally introduce and specialize these sets is Section 4. μ provides as output a new graph

Gi+1 which represents a simulated evolution of brain structure.

Some metrics over graphs representing brain structures have been considered in previous stud-

ies on MS; however, it is still unclear how these metrics influence the progress of the disease. In

our framework, the Brain Evolution Simulation module is used to explore a wide variety of graph

modification criteria. In this context, ASP plays a very relevant role as a fast and effective tool for

the definition and identification of subgraphs satisfying some predefined property that could be in-

volved in MS course; in some cases, the identification of such subgraphs may involve the solution

of optimization problems, whose coding can be significantly time-consuming in other program-

ming paradigms. In our framework, the Brain Evolution Simulation module is composed of an

ASP program of choice that, given the graph Gi, first defines a connectome modification criterion

described by a set of edges to modify and then produces the new graph Gi+1. The corresponding

ASP program(s) enjoy the nice properties of such a declarative formalism, resulting very flexible

and easy to adapt to small changes in the desiderata.

Each ASP program is coupled with an extensional knowledge base consisting of a set of facts

representing nodes and edges of Gi, and identifies a set of atoms which represent the set of edges E ′

to be modified. Given that, in our context, edge weights are related to the number of fibers linking

two points in the brain, an edge (x,y,w) with w = 0 is considered inactive and not contributing to

the network, i.e., the corresponding nodes are considered not connected. If available, the choice of

E ′ can also be guided by the information about the importance of each edge for the classification

task; this information is expressed by the first set of triples (x,y, impxy) provided as input along Gi.

As already noted, different ways of altering the brain structure using E ′ can be devised. A basic

altering method could consist in simply removing these arcs; this corresponds to set the weight

of each edge in E ′ to 0. However, edge weights play an important role for the structure itself

and, from a biological point of view, the strength of the connections (expressed by edge weights

in our model) progressively decreases while the brain degenerates. As a consequence, possible

evolution strategies might include progressive variations of selected edge weights, as expressed by

the second set of triples (x,y,dcxy) provided as input. All the edges not included in E ′ are simply

copied into Gi+1.

Examples of interesting criteria for identifying the set of edges to be modified, and that will be

detailed in Section 4, are reported next:

(i) Max Clique: contains the greatest subset of vertices in G such that every two distinct vertices

in the clique are connected by an edge;

(ii) k-hub: the set of k nodes having the highest degree;
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(iii) Min Vertex Cover: the smallest set of vertices MVC such that each edge of the graph is

incident onto at least one vertex of the set;

(iv) Density reduction: the minimal set of edges that, if removed, allows a reduction of the graph

density by a given amount;

(v) Assortativity increase: the minimal set of edges that, if removed, allows an increase of the

graph assortativity by a given amount.

It is important to note that, as already mentioned and as it will be clearer in the following,

switching between these properties or slightly modify the criteria in ASP requires just to change a

few rules; on the contrary, using a classical imperative programming scheme, it would require to

rewrite and adapt source code that can be significantly harder to maintain.

The newly obtained graph Gi+1 is given as input back to the Classifier; the ASP representa-

tion of Gi+1 is translated back into the format required by the Classifier by the Classifier Input

Formatter module.

4 Specializations of the framework

In this section we specialize the framework to three biologically relevant settings, upon which

we also carry out some experiments in Section 5. Some of the modules are implemented in the

same way for all the three specializations, and are hence described first.

Before the actual description, it is worth pointing out, once again, that the goal of the present

work is not to provide clinical validation of some kind of results; rather, we want to show the

potential of the herein proposed framework that, thanks to the combined use of ASP and ANN,

can help experts in studying the evolution of the disease from different perspectives.

4.1 From MRI to Graphs

To recall, the connectivity matrix A ∈ R
q×q (q = 84) is generated for each subject. We recall

that A represents the adjacency matrix of the weighted undirected graph G = (V,E,ω) where V

is the set containing the segmented GM brain regions (with |V | = q), E is the set of graph edges

defined as:

E = {{i, j} | ω(i, j)> 0, 1 ≤ i, j ≤ q}

and ω : N2 → [0,1] is a function that measures the strength of the connection between a pair of

nodes by summing the number of streamlines connecting them and scaling this number in the

range [0,1]3

4.2 Specialization of the Classifier

The Classification of MS patients in their respective clinical forms is achieved by means of a

slightly modified version of BrainNetCNN [Kawahara et al. (2017)] we specifically defined for

3It is worth observing that, since current ASP systems do not support real numbers, the ASP Input Formatter scales

values in the real interval [0,1] into integer values between 0 and 100.
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this work. BrainNetCNN is a convolutional neural network (CNN) framework which operates

on brain connectivity. Differently from the spatially local convolutions done by traditional CNN,

BrainNetCNN is designed to exploit topological locality of structural brain networks. This result

is achieved by using two novel operators: the Edge2Edge layer, which performs a convolution

over the weights of edges that share nodes together, and the Edge2Node layer, which computes,

for each node i, a weighted combination of the incoming and outgoing weights of edges connected

to i.

The BrainNetCNN architecture parameters originally proposed by Kawahara et al. were kept

unchanged since they already showed promising results in predicting clinical neurodevelopmental

outcomes from brain networks. The model takes as input the adjacency matrix representation

of a graph G (the brain connectivity matrix) and outputs a probability value for each MS stage.

The architecture is composed of two Edge2Edge layers, which process the input using 32 filters,

followed by two Edge2Node layers with 64 and 256 filters. Then, two fully connected layers of

size 128 and 30 are applied. Both convolutional and fully connected layers use Leaky ReLU (α =

0.33) activation function. Finally, a fully connected layer of size 4 (the output layer) with softmax

activation is used to perform the classification.

4.3 Specialization of the Classification Validity Checker

The Classification Validity Checker is implemented via an ASP encoding. Due to pace reasons,

we refrain from discussing in detail this and the following encodings, but we point out that they

comply with the ASP-Core-2 standard; the interested reader can refer to Section 2.1 and the vast

literature on Answer Set Programming for more details.

For the purpose of this work we implement a very basic checker that can be easily enriched

with more domain specific knowledge; this is shown in Figure 4.2. In particular, it takes as input

two graphs Gi and Gi−1 encoded by a set of facts of the form edge(X,Y,W) and edge_1(X,Y,W),

respectively; it takes as input also a threshold T , used to determine whether a severe disruption

occurred and the results obtained by the classifier at steps i and i−1, encoded as facts of the form

result(STAGE, P) and result_1(STAGE, P), where STAGE ∈ {“CIS”, “RR”,“PP”, “SP”} and

P represents the probability computed for the corresponding stage by the classifier.

The encoding first determines whether a severe disruption occurred in the brain model between

Gi−1 and Gi by counting the number of arcs that have been removed from Gi−1 and comparing

it with a threshold. If this happens, it checks whether a known impossible transition has been

inferred by the classifier between step i− 1 and step i. As an example, in presence of a severe

disruption, it is well known that a transition from RR (resp., from PP, or SP) to CIS is biologically

implausible [Lublin et al. (2014)]. If a known impossible transition is detected, the computed

answer set contains check("FAIL"); otherwise, the answer set contains check("OK").

4.4 Specialization of the Exit Condition

The exit condition can be specialized in several ways. As an example, it can stop iterations as

soon as it detects that the classifier predicts a transition from one MS stage to another for the current
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% input: facts of the form "edge(X,Y,W)" and "edge_1(X,Y,W)" as the input graphs
% input: facts of the form "result(STAGE,P)",
% e.g., result("CIS", 90). result("RR", 25). result("PP", 15). result("SP", 10).
% representing the classification results for the current graph
% input: facts of the form "result_1(STAGE,P)",
% representing the classificatoin results for the previous graph
% input: a fact of the form "Th(T)" indicating the minimum number of removed arcs
% representing a severe disruption according to domain knowledge

% determine if a severe disruption occurred in the last iteration
severedisruption :- #count{X,Y: edge_1(X,Y,W1), edge(X,Y,W), W1>0, W=0}>T, Th(T).

% check for validity of the classification step
check("FAIL") :- severedisruption, result("CIS",R_CIS), result_1(S,R_1), S!="CIS",

#max{ R : result(_,R)} = R_CIS, #max{ R : result_1(_,R)} = R_1.

check("OK") :- not check("FAIL").

Figure 4.2: An ASP encoding for the Classification Validity Checker.

patient, for instance when a patient starts from a CIS stage and, after some modifications to the

brain structure, she is classified as RR. This would imply that modifications simulated to the brain

structure are sufficient to simulate a transition in the pathology of the patient. Analogously, the

exit condition can stop the iterations of the framework whenever the difference between predicted

probabilities become very low (i.e., below a certain threshold) from one iteration to the other; this

may imply that the last modifications simulated on the brain structure are no more informative.

In our framework, we exploited a simple exit condition which stops the execution after a certain

number of iterations.

4.5 Specializations for three different use cases

Specialization for studying structural properties

A first interesting use case for our framework is the study of the impact of graph structural

properties, and their modification, in the evolution of MS. The aim is to determine whether there is

a latent relation between the presence/absence of particular graph structures in the connectome and

the stage of the MS disease. In particular, we are interested in verifying if and how modifications on

the connectome of a patient, simulated by modifications on the graph representing it, can modify

the classification returned by the ANN. Observe that, as a side effect, understanding these relations

could provide at least partial motivations for ANN classifications; this is still an open issue in ANN.

In this use case, the Brain Evolution Simulation module must be specialized to detect the

structural property of interest, and in particular the set of edges representing it, and to generate a

new connectome by modifying selected edges.

Interesting criteria and returned edges are the following: (i) Max Clique, i.e., the greatest

subset of vertices in G such that every two distinct vertices in the set are adjacent; in this case,

the module modifies the edges E ′ linking the vertices in the clique. (ii) Independent Set, i.e., the

greatest subset of vertices in G such that no two vertices in the set are adjacent; in this case the
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module modifies the edges E ′ having exactly one vertex in the independent set. (iii) Max-degree

node, i.e., the node showing the maximum degree in G; in this case the module modifies the edges

connected to it. (iv) k-hub, i.e., the set of k nodes having the highest degree; in this case the module

modifies the edges connected to the k-hub. (v) Min Vertex Cover, i.e., the smallest set of vertices

MVC such that each edge of the graph is incident onto at least one vertex of the set; in this case

the module modifies the edges E ′ such that both vertices of the edge are in MVC.

Each version of the Brain Evolution Simulation module is then obtained by a suitable ASP

encoding detecting the property and the corresponding edges. As an example, Figure 4.3 reports

an ASP encoding for the Max Clique problem.

Intuitively, the program “guesses” the nodes that belong to a clique in the graph Gi by means

of the choice rule:

{clique(X)} :- node(X)

and then checks, by means of the strong constraint:

:- clique(X), clique(Y), X < Y, not activeEdge(X,Y)

that the inclusion of two unconnected nodes in the candidate clique set is forbidden. Cardinality

of the clique is maximized using the weak constraint

:˜ node(X), not clique(X). [1@1,X]

that penalizes the exclusion of a node in the candidate clique set.

The set of the edges connecting the nodes within the resulting clique is represented by the ex-

tension of predicate e(X,Y,W), which is built according to the rule e(X,Y,W) :- edge(X,Y,W),
clique(X), clique(Y). The new modified graph Gi+1 is built with the last two rules appear-

ing in the encoding. In particular, all the edges that must not be modified are just copied in

the new graph Gi+1 (see the last but one rule). The last rule simulates the progressive disrupt-

ing process of the MS disease on the portion of brain connectome identified by the extension of

predicate e(X,Y,W); specifically, we designed it in order to act as a degradation function on the

weights of selected edges; this simulates a degradation in the strength of the connections. In par-

ticular, given the initial graph G0 a degradation coefficient is computed for each edge (x,y,wxy)

in G0 as dxy = wxy × p, where p is a percentage of degradation, set as a parameter for the ex-

perimentation. Degradation coefficients are given as input to the program as facts of the form

dc(X,Y,D) and computed as a preprocessing step before starting framework iterations. Then,

each edge e(X,Y,Wxy) generates in Gi+1 an edge edge1(X,Y,max{Wxy-Dxy,0}) (see the last

rule). Here, a weight set to 0 means a deletion of the edge from the resulting graph (it will no

longer be an activeEdge), and consequently a complete disruption of the corresponding connec-

tion; in this case, the subsequent iterations and the corresponding ASP programs will no longer

consider this edge as belonging to the graph. In our experiments, we considered both p = 25%

and p = 50%.

The value of p heuristically determines the intensity of degradation applied to the strength of

the connections in one iteration and, consequently, the velocity of degradation of the connectome

through the iterations of the framework. Thus, the choice of p determines the velocity of the simu-
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% input: facts of the form "node(X)" and "edge(X,Y,W)" as the input graph
% input: facts of the form "dc(X,Y,D)" as degradation coefficients for all edges
% input: support atom "zero(0)"

% guess the clique
{ clique(X) } :- node(X).

% take into account only active edges
activeEdge(X,Y) :- edge(X,Y,W), W>0.
:- clique(X), clique(Y), X < Y, not activeEdge(X,Y).

% maximize clique cardinality
:~ node(X), not clique(X). [1@1,X]

% edges to be modifed in the new graph
e(X,Y,W) :- edge(X,Y,W), clique(X), clique(Y).

% define the new graph
edge1(X,Y,W) :- edge(X,Y,W), not e(X,Y,W).
edge1(X,Y,NW) :- e(X,Y,W),

#max{K : e(X,Y,W), dc(X,Y,D), K=W-D ; 0 : zero(0)} = NW.

Figure 4.3: An ASP encoding for the Max Clique problem.

lation. In particular, if we assume that p = 25% and that the same edge is chosen at each iteration4,

it takes four iterations to virtually remove it from the connectome. Analogously, when p = 50%,

and the same edge is chosen at each iteration, two iterations of the framework are sufficient to

virtually remove it. As a consequence, the choice of p strictly depends on the granularity of degra-

dations one wants to study and on the maximum number of iterations of the framework that one

wants to carry out.

All ASP encodings for considered criteria can be found at https://www.mat.unical.it/
calimeri/material/mix-lp-nn/.

Specialization for studying graph metrics

In [Kocevar et al. (2016)] a relationship between some graph metrics, e.g., Density and As-

sortativity, and the MS stage of a patient has been clinically demonstrated (see Figure 4.4 for a

summary). It is then interesting to evaluate whether the evolution of the disease could be also

related to progressive modifications (decrease/increase) of such metrics obtained by modifications

in the corresponding graphs. It is worth pointing out that a change in these metrics is not always

related to specific substructures and, generally, depends on presence/absence of edges. As a con-

sequence, the setting introduced in the previous section cannot be applied in this new context.

Moreover, while searching for a variation in a metric, as an example a decrease in density, it is

important to avoid trivial modifications such as the removal of all the edges. It is also worth noting

that, for some metrics such as assortativity, the removal of edges may induce either a decrease

or an increase in the property. As a consequence, it is crucial to look at minimal graph changes

4Observe that this is not obvious, and it strongly depends on both the studied property and the configurations of the

other edges.
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Figure 4.4: Summary of results on the correlation between Density and Assortativity and MS

stages.

allowing to reach a certain goal in metric variation. Also in this context, the expressiveness and

compactness of ASP and its extensions allow for very elegant and readable encodings even for

optimization problems, i.e., the identification of minimal changes involving the computation of

complex metrics.

Among the metrics considered in [Kocevar et al. (2016)], we focus on Density and Assortativ-

ity. In order to keep the paper self contained, we next recall the basic definition of these metrics.

The density d of a graph G = 〈V,E〉 is defined as:

d =
|E|

|V |(|V |−1)

where |E| is the number of edges in G and |V | represents the number of nodes in G.

Assortativity measures the similarity of connections in the graph with respect to the node

degree. In particular, the formula for computing the assortativity degree of a graph G is defined

as [Newman (2002)]:

r =
∑xy(xy(exy −axby))

σaσb

where x and y are values of node degrees for G, exy is the fraction of all edges in G joining vertices

having degree values x and y, and ax = ∑y exy, by = ∑x exy. Moreover, σa and σb are the standard

deviations of the distributions ax and by.
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% input: facts of the form "node(X)" and "edge(X,Y,W)" as the input graph
% compute the starting value of the metric and the corresponding threshold
target(X) :- &computeMetric[activeEdge](Y), X=Y/90.

% take into account only active edges
activeEdge(X,Y) :- edge(X,Y,W), W>0.

% guess the new graph
0 < { in(X,Y): activeEdge(X,Y) }.

% check that the goal is reached
:- &computeMetric[in](X), target(K), X > K.

% minimize removed edges
:~ activeEdge(X,Y), not in(X,Y). [1@1,X,Y]

% define the new graph
edge1(X,Y,W) :- in(X,Y), edge(X,Y,W).
edge1(X,Y,0) :- edge(X,Y,W), not in(X,Y).

Figure 4.5: An ASP encoding for analyzing the decrease of a graph metric.

The formulas above, especially the one for assortativity, show that the computation of graph

metrics can be in general not easy to be carried out using only rules in an ASP program. As

a consequence, we resort to recent extensions of ASP systems, such as I-DLV/DLV2 [Calimeri

et al. (2017), Adrian et al. (2018)], DLVHEX [Eiter et al. (2016), Calimeri et al. (2016), Eiter

et al. (2018)a], etc., which allow the integration of external computation sources within the ASP

program. In particular, the problem at hand requires to send a (possibly guessed) entire graph,

i.e., a set of edges, to an external source of computation. The ASP standardization group has

not released standard language directives yet for such features; here, we make use of syntax and

semantics of DLVHEX [Eiter et al. (2016)], while a slightly different formulation must be used to

comply with I-DLV/DLV2 [Calimeri et al. (2017), Adrian et al. (2018)] or clingo [Gebser et al.

(2019)a] syntax.

Figure 4.5 shows the specialization of the Brain Evolution Simulation module for deriving the

minimal changes to perform on a graph Gi in order to obtain a decrease in the measure of a certain

property (by 10% by edge removal in the example).

In particular, the program of Figure 4.5 first defines the current value of the metric on the input

graph; this is done with the support of a call (via “external” atom &computeMetric) to an external

function written in an imperative programming language, e.g., Python. Then, it defines the target

value for the metric. Hence, the program reports the guess for a subgraph that satisfies the goal,

where the number of removed edges, expressed by the edges not in the subgraph, is minimized by

the weak constraint. Finally, the new graph Gi+1 is generated by the last two rules. Specifically,

edges of Gi in the guessed subgraph are copied into Gi+1, whereas all the other edges are removed

by setting their weight to 0. The changes to be performed on the program for analyzing an

increase of the metric are straightforward.
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Specialization for exploiting ANN insights

As previously pointed out, the specific ANN presented in Section 4.2, leverages the topology

of the graph for the classification process. Furthermore, the particular structure of the network

allows to estimate a meaningful coefficient for each graph edge representing the importance of

that edge in the classification task. Specifically, in order to define an importance coefficient for

each input edge of the brain connectivity, we used the method formerly proposed by Simonyan et

al. [Simonyan et al. (2013)] and already applied to BrainNetCNN by Kawahara et al. [Kawahara

et al. (2017)].

Let pc(G) be the score assigned to the class c by the trained classification layer of the ANN

for a given graph G = (V,E,ω). Then, the contribution of each edge e ∈ E can be estimated based

on its influence to the score pc(G). More in detail, the edge importance is computed by the partial

derivative
δ pc(G)

δe for each edge e ∈ E by backpropagation [Simonyan et al. (2013)].

Then, given a graph G, let us assume we can derive from the output of the Classifier module

a set of facts of the form imp(X,Y,P), where P is the importance in the ANN of the edge (X ,Y )

given by the formula introduced above. It is strongly interesting to study the impact over MS

clinical course of both structural properties over graphs and graph metrics also taking into account

these insights from the ANN. Indeed, determining that there are sets of edges that could be ig-

nored without losing important information or, conversely, that it is possible to focus on a small

subset of edges, could both significantly help experts in their analyses and reduce computational

requirements.

The specialization of the framework taking into account edge importance is quite straightfor-

ward. In particular, let us use a threshold T to distinguish between important (P ≥ T ) and not

important (P ≤ T ) edges. Consider the ASP program shown in Figure 4.6; this is substantially

the same as the one shown in Figure 4.3 for studying cliques, except for the second rule, which

forces important edges (if P ≥ T is used) or not important edges (if P ≤ T is used) to belong to the

clique. The threshold T can be dynamically set. Observe that putting not important edges in the

clique, means that the graph will be modified on not important parts only (as judged by the ANN).

Differently from what we have shown in Figure 4.3, the last two rules state that, in the new graph,

the weights of edges identified by the clique are set to 0 and, hence removed.

Analogously, Figure 4.7 shows the specialization for graph metrics by minimizing/maximizing

the use of important edges in reaching the goal for graph metrics variation. Again, there is a

minimal difference consisting in the introduction of a weak constraint that minimizes the use of

important/not important edges.

5 Experiments

This section reports about the experiments we carried out in order to assess the proposed

framework and its specializations. The section is organized in three parts. The aim of the first part

is to show the flexibility of the framework, and to adapt the analysis to different perspectives. In

particular, we focus on analyzing how classification probabilities vary during the brain evolution
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% input: facts of the form "node(X)" and "edge(X,Y,W)" as the input graph
% input: facts of the form "imp(X,Y,P)" denoting the importance of edge(X,Y,W)
% input: a fact of the form Th(T) used to discriminate between important and
% not important edges
% guess the clique
{ clique(X) } :- node(X).

% take into account only active edges
% if P <= T not important edges are in the clique,
% if P >= T important edges are in the clique
activeEdge(X,Y) :- edge(X,Y,W), W>0, imp(X,Y,P), Th(T), P <= T.
:- clique(X), clique(Y), X < Y, not activeEdge(X,Y).

% maximize clique cardinality
:~ node(X), not clique(X). [1@1,X]

% edges to be modifed in the new graph
e(X,Y,W) :- edge(X,Y,W), clique(X), clique(Y).

% define the new graph
edge1(X,Y,W) :- edge(X,Y,W), not e(X,Y,W).
edge1(X,Y,0) :- e(X,Y,W).

Figure 4.6: An ASP encoding for the Max Clique problem maximizing the use of important/not

important edges.

simulation, in order to verify appropriateness of the approach in the biomedical context herein

discussed. The second part specifically focuses on performance, while the third part is devoted

to the discussion of obtained results and to outline some lessons learned thanks to experiments

outcome.

5.1 Experiments on the application of the framework to simulate MS evolution

In the following, we first introduce the dataset and the preprocessing steps. Then, we report

and discuss obtained results for each specialization introduced in Section 4. It is worth noting that

we developed also a web tool for supporting experts in carrying out their analyses online through

our framework; such tool will be discussed in Section 6.

Dataset Description and Preprocessing Steps

Structural connectivity matrices were extracted for each subject. A total of 578 samples (dis-

tributed into the four aforementioned categories as 63 CIS, 199 RR, 190 SP, 126 PP, respectively)

were considered for the experiments overall, and for each sample the corresponding graph G has

been extracted as explained in Section 4.1. Ground truth on the correct MS stage of all the sam-

ples is available, as it has been provided by expert physicians. Each graph consists of 84 vertices

with an average of 2036.31 ± 139.19 edges for the samples in CIS, 1951.25 ± 235.43 in RR,

1634.56±315.27 in SP and 1760.96±293.58 in PP.

The ANN introduced in Section 4.2 has been trained before starting the experiments on the

framework, by cross validation with 3 folds, using 70% of the samples in each fold for training
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% input: facts of the form "node(X)" and "edge(X,Y,W)" as the input graph
% input: facts of the form "imp(X,Y,P)" denoting the importance of edge(X,Y,W)
% input: a fact of the form Th(T) used to discriminate between important and
% not important edges
% compute the starting value of the metric and the corresponding threshold
target(X):- &computeMetric[activeEdge](Y), X=Y/90.

% take into account only active edges
activeEdge(X,Y):- edge(X,Y,W), W>0.

% guess the new graph
0 < { in(X,Y): activeEdge(X,Y)}.

% check that the goal is reached
:- &computeMetric[in](X), target(K), X > K.
:~ activeEdge(X,Y), not in(X,Y). [1@2,X,Y]

% In the next constraint,
% if P >= T maximizes removal of not important edges,
% if P <= T maximizes removal of important edges
:~ activeEdge(X,Y), not in(X,Y), imp(X,Y,P), Th(T), P >= T. [1@1,X,Y]

% define the new graph
edge1(X,Y,W) :- in(X,Y), edge(X,Y,W).
edge1(X,Y,0) :- edge(X,Y,W), not in(X,Y).

Figure 4.7: An ASP encoding for analyzing the decrease of a graph metric maximizing the use of

important/not important edges.

the model and the remaining 30% as test set for validation. The quality of the classification was

evaluated by means of the average Precision, Recall and F-Measure achieved during the cross

validation, as usual in the literature. The proposed ANN was trained using Adam [Kingma and

Ba (2014)b] with learning rate 0.001. Early Stopping was used to prevent overfitting. Average

evaluation of the cross validation is shown in Table 4.1. It can be observed how the ANN we

designed for this work is particularly effective in determining the right stage of the pathology under

consideration. This is a crucial factor in the framework, as studying the impact of the variations

in the connectome on the course of the disease requires a very high precision in the classification

step. Observe that, even if augmenting the classification accuracy is beyond the scope of this work,

the use of well-performing networks allows to obtain more reliable results.

Notably, the new classification model adopted in this work allows to reach an average F-

Measure of 88%, which represents a significant improvement with respect to the 80% reached

in [Calimeri et al. (2018)c] for the same quality measure. It is important to point out that results

shown in Table 4.1 are slightly lower than previous results obtained in [Calimeri et al. (2018)b];

nevertheless, we consider these slightly lower values definitely acceptable, as the new ANN used

in the present work allows a meaningful and more interpretable representation of the classification

process, and this is particularly useful in the new version of the framework. Indeed, BrainNetCNN

leverages the topological locality of structural brain networks, thus performing more meaningful

operations on the graph structure with respect to the previous approach [Calimeri et al. (2018)b]

and allowing to compute edge importance. Furthermore, high-level features learned by Brain-
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Table 4.1: Average Precision, Recall and F-Measure (± standard deviation) achieved during cross

validation (3 folds). Results are computed per class (CIS, PP, RR, SP) and with respect to all the

classes (Tot).

Precision Recall F-Measure

CIS 0.76 (±0.12) 0.88 (±0.13) 0.81 (±0.10)

PP 0.91 (±0.04) 0.69 (±0.17) 0.78 (±0.10)

RR 0.89 (±0.03) 0.94 (±0.06) 0.91 (±0.02)

SP 0.90 (±0.06) 0.93 (±0.02) 0.92 (±0.03)

Tot 0.89 (±0.01) 0.88 (±0.01) 0.88 (±0.02)

NetCNN have been already discussed in the literature in the context of the anatomy and function

of the developing pre-term infant brain.

After the training phase, in order to keep experiments on the overall framework coherent,

before starting the tests on the framework we filtered out some input samples, relying on the

ground truth provided by physicians. In particular, we filtered out input samples misclassified by

the trained ANN at the very first classification; this way, we avoid to propagate initial classification

errors in the framework. As a consequence, a total of 55 CIS, 189 RR, 187 SP and 109 PP correctly

classified samples have been actually fed as input to the framework for the tests.

Experiments for studying structural properties

In the context of this analysis, we are interested in studying the possible variations of each stage

of the MS clinical course by modifying the connectome of a patient, according to the structural

properties introduced in Section 4.5. For the sake of presentation and space constraint, we discuss

in detail the results of a subset of the experiments we carried out, namely Max Clique, Min Vertex-

Cover, and k-hub, with p = 50%. Nevertheless, the complete set of results is available at https:
//www.mat.unical.it/calimeri/material/mix-lp-nn/.

Figures 4.8, 4.9, and 4.10 report the overall results for this specialization. For each starting

stage of the pathology, we report the probability values (indicated by a group of four vertical bars,

for each iteration of the framework), computed by the ANN. In particular, from left to right, one

can observe the variation of the average probability values for each class. As an example, the first

bar in the leftmost group of the first bar chart in Figure 4.8 represents the probability associated

with the CIS stage for a CIS classified patient. The same bar in subsequent groups shows variations

of this probability through iterations 1–4 with the ASP program shown in Figure 4.3; the same bar

in the chart below shows variations of the same probability for patients formerly classified as RR.

In order to evaluate the significance of obtained results, we considered also a random test for

each test case, designed as follows: at each iteration, given the number n of edges identified by

the Brain Evolution Simulation module, we generate a parallel modified graph choosing n random

edges to be modified that are not related to the structure under consideration. In other words, we

are interested in evaluating whether the variations in classification results depend on the structure

134 Aldo MARZULLO



5. EXPERIMENTS

of the modified portion of the connectome, or simply on the number of varied edges. Outcomes of

random tests are reported on the right side of Figures 4.8, 4.9, and 4.10.

Results show interesting variations, when testing the framework with the Max Clique criterion

(Figure 4.8). In particular, it is worth noting that Max Clique seems to affect mostly the CIS stage,

as CIS probability values significantly decrease. Interestingly, this behaviour seems not to be sim-

ply related to the amount of modified edges: random tests show substantially constant probability

values across iterations. More interestingly, the aforementioned behaviour is not observable for

the other stages RR, SP and PP, where the alteration of cliques does not actually induce significant

changes. This absence of variations is not related to the absence of cliques to change, or to their

different cardinalities; indeed, the number of edges modified in all stages are comparable being on

average 258.37±34.30 from iteration 1 to iteration 2, and 130.38±5.34 from iteration 3 to iter-

ation 4. The results for the CIS starting stage also show that probabilities of PP actually increase

through iterations, even if not sufficiently enough to allow a guess over a change of state.

As far as Min Vertex Cover is concerned (Figure 4.9), significant variations can be observed

in all stages. However, we observe in this case also a significant decrease of the probability of

election in random tests, especially in the first iterations. This is mainly due to the high number

of modified edges, being on average 1490.45±147.12 from iteration 1 to iteration 2, i.e. 41.59%

of the total. In the subsequent iterations, very small minimum vertex cover could be identified

in the modified graphs due to the low number of remaining edges; as a consequence, very few

edges (about 0.003% of the total) are modified and, thus, very small variations on probabilities are

detected.

However, if we concentrate on non random tests, we observe a quite different and interesting

behaviour. In particular, at iteration 2 the probability of RR is always the highest suggesting that

(the absence of) this sub-structure might characterize the RR class, and calls for further studies.

Finally, the k-hub sub-structure (see Figure 4.10) can be considered as a counter-example of

previous results. In fact, even if the number of modified edges is significant and comparable with

Max Clique, i.e., 301.47±22,82 from iteration 1 to iteration 2, and 202,99±26,47 from iteration

3 to iteration 4, probability values across iterations are almost constant and very similar to the

random tests. This leads us to hypothesize that k-hub sub-structures are not characterizing any

stage of the disease.

Experiments for studying graph metrics

In the context of this analysis, we are interested in studying the possible variations of each

stage of the MS clinical course by modifying the connectome of a patient, according to the metrics

introduced in Section 4.5. In particular, in this section, we discuss the results obtained for Density

and Assortativity. It is worth pointing out that current versions of state-of-the-art ASP systems have

not been able to reasonably scale over the graphs involved in the following tests; as a consequence,

after proving the viability of the approach over small examples, we simulated the behavior of the

ASP-based module via ad-hoc heuristic algorithms.

Figure 4.11 shows the results obtained for Density; recall that, at each iteration, we reduce
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(a) Clique (normal) (b) Clique (random)

Figure 4.8: Results for Clique (iterations i = 0..4).

the density of each graph by 10% by removing edges. From the analysis of Figure 4.11(a) it is

possible to observe a generalized reduction of the probability of the initial classification through

the iterations. Only for the CIS stage, however, this is more remarkable, even if a clear transition

cannot be observed from this figure. In order to better analyze this result, we computed (see Figure

4.11(b)) the average probabilities obtained by isolating the cases in which a transition from CIS

to PP is observed through the iterations (these are 39.53% of the total) and the cases in which

a transition from CIS to RR is observed through the iterations (these are 62.79% of the total).

We point out that some of the graphs presented both transitions through the iterations; they have

been considered in both cases. The analysis of Figure 4.11(b) shows indeed that there is quite

an interesting evidence of these transitions in the last iterations; first of all, these results partially

confirm the results obtained from studies presented in [Kocevar et al. (2016)], pointing out that

the Density of a graph characterizes the stage of MS. Moreover, these results provide more insight

in the potential evolution of the disease. In fact, depending on the area of the brain that is altered,

the transition from CIS can evolve in RR stage. This calls for further studies on this aspect.

In order to better analyze these results, we computed the average number of edges removed at

each iteration for the two transitions separately (CIS-PP and CIS-RR). Results, reported in Table
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(a) Min Vertex-Cover (normal) (b) Min Vertex-Cover (random)

Figure 4.9: Results for Min Vertex-Cover (iterations i = 0..4).

4.2, show that even a low number of removed edges, if properly selected, may induce a significant

change in MS stage.

Results obtained for Assortativity are shown in Figure 4.12. Recall that, in this case, we modi-

fied the graphs in order to obtain an increase in the property of 10% at each iteration by removing

edges. As far as these results are concerned, we observe an almost complete independence of the

computed probabilities on this property through the iterations. Observe that the final variation of

assortativity at the last iteration is about 40% of its initial value; as a consequence, this result can-

not be motivated by a low variation in the property itself. As a matter of fact, the number of edges

to be removed in order to reach the variation goal on assortativity was indeed extremely small. As

an example, only 27.67± 15.94 edges have been removed on average through the four iterations

for CIS patients, and only 24.26± 16.07 edges for PP patients. This result can be linked to the

ones obtained for Density where the specificity of removed edges is probably more important than

the overall properties of the corresponding graphs. And this calls for a deeper analysis on the role

of specific subsets of edges in the classification process, which is precisely what we analyze in the

next section.
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(a) k-hub (normal) (b) k-hub (random)

Figure 4.10: Results for k-hub (iterations i = 0..4).

Table 4.2: Average number of removed edges (± standard deviation) for reducing Density of 10%

at each iteration.

Iteration CIS-PP CIS-RR

1 190.65 (±15.82) 199.48 (±11.15)

2 171.47 (±14.19) 179.52 (±9.96)

3 154.47 (±12.87) 161.67 (±9.00)

4 138.94 (±11.48) 145.41 (±8.14)

Tot 655.53 (±54.35) 686.07 (±38.23)

Experiments for studying ANN insights

In Section 4.5 we introduced the concept of importance of an edge for the classification pur-

poses, computed by exploiting the peculiar properties of the adopted ANN. In particular, we intro-

duced a specialization of our framework dealing with edge importance.

Before analyzing our tests coupling graph structures or graph metrics with edge importance,

we first consider the impact of the importance degree through the following two simple tests.

Assume edges are ordered by importance, in descending order: (i) remove, one by one, the edges
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(a) Results for all stages (b) Detail for CIS transitions

Figure 4.11: Results for Density (iterations i = 0..4).

starting from the most important ones; (ii) remove, one by one, the edges starting from the less

important ones. Each time an edge is removed, the classification task is carried out again and

results plotted for each stage. Results are shown in Figure 4.13. Consider the results in Figure

4.13(b) first; from the analysis of this figure, it is manifest that removing not important edges is

completely irrelevant for the classification result at any stage. And this is true up to about 1500

removed edges. On the contrary, removing even very few important edges may strongly affect

classification results (see Figure 4.13(a)).

These considerations call for a deeper analysis of the two settings tested above. In particular, it

would be of great interest for an expert both knowing that there are edges he/she may completely

disregard in the analysis, and that there are edges that need more attention for stage variation

analyses.

In particular, given the specializations for the Brain Evolution Simulation module introduced

in Section 4.5, we set a threshold such that the top 40% of edges having the highest importance

are considered as important, whereas the remaining edges are considered non important.

Figure 4.14(a) shows results for Max Clique when not important edges only are allowed in the

cliques. The number of altered edges is comparable to the one obtained for the previous tests on

Max Clique. Figure 4.14(a) clearly confirms that altering graph sub-structures using not important
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(a) Assortativity

Figure 4.12: Results for Assortativity (iterations i = 0..4).

edges only, provides no apparent modifications in the classification. As a consequence, it confirms

the fact that experts may completely disregard at least 60% of edges in their analyses.

On the contrary, Figure 4.14(b) reports results on Density when only important edges are

removed. In this case, results show that when a huge amount of important edges is removed, the

ANN becomes almost unable to perform a reliable classification. As a consequence, this reinforces

the intuition that there are very few important, and let’s say critical, edges guiding transitions

between MS stages. In Section 6 we show how we took these preliminary results into account in

order to provide experts with a powerful analysis tool.

5.2 Experiments on performances

In this section we present the results of a series of tests aimed at providing support for a

performance analysis of the system. We first analyze execution times of the entire framework,

then we single out the role of the main modules in the overall execution times. Eventually, we

focus on the ASP-based Brain Evolution Simulation module.

All tests have been carried out on a Linux machine 4.15.0− 20-generic #21-Ubuntu, with an

Intel(R) Core(TM) i7-4770 CPU @3.40Ghz and 15.6 GB of RAM. As for the grounder and the
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(a) Starting from the important edges (b) Starting from the less important edges

Figure 4.13: Variation of classification results removing important/not important edges.

solver, we coupled I-DLV (version 1.1.0) and WASP (version 2.0). The solver parameters have

been set to –silent and –printonlyoptimum; this means, that the computation is stopped at the

first optimum found for optimization problems.

When not differently specified, we used the dataset introduced in Section 5. It is worth pointing

out that the aim of these tests is not an assessment of ASP solvers and their performance (as

extensively done in related literature [Calimeri et al. (2012)b, Gebser et al. (2016), Gebser et al.

(2017),Gebser et al. (2019)b]), but rather to assess the applicability of the proposed framework to

the herein considered context and related ones.

In a first series of experiments, we measured the execution times of one iteration of the frame-

work, i.e., involving one step in the brain evolution simulation. We separately considered the three

structural properties Max Clique, Min Vertex-Cover, and k-hub discussed above and, as for Max

Clique, we tested also the ASP programs altering both not important and important edges5. Results

are shown in Figure 4.15. In order to verify whether the starting stage influences performance or

not, we highlighted running times for each property and for each stage; times are averaged over

5Recall that in Section 5.1 we set a threshold such that the top 40% of edges having the highest relevance are

considered as important, whereas the remaining edges are considered as not important. It is worth mentioning again

that information about importance of edges is directly provided by the Classification module.
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(a) Clique - Altering not important edges (b) Density - Removing important edges

Figure 4.14: Analyzing structural properties and graph metrics considering important/not impor-

tant edges.

all the samples grouped by MS stage and standard deviation is also shown in the figure. From

the analysis of Figure 4.15, we can observe that (a) the execution time of one iteration is partic-

ularly small for all properties, always significantly lower than one second; (b) there is no actual

correlation between starting stages and performance; (c) interestingly, considering important/not

important edges reduces average execution times, as the dimension of the graphs the ASP program

works on is reduced, in terms of edges.

We then evaluated the potential impact on running times due to subsequent iterations. Fig-

ure 4.16 reports execution times averaged over all the stages for four subsequent iterations; it is

easy to see that fluctuations of running time among iterations are negligible except for Min Vertex-

Cover where, as discussed in Section 5.1, at the third iteration a very low number of edges remains

in the modified graphs.

In a further series of experiments, we considered the impact of each module of the frame-

work in the running time of one iteration. We take into account the three main modules, namely

the Classifier, the Classifier Validity Checker and the Brain Evolution Simulation modules. Re-

sults shown in Figure 4.17 clearly point out that the main load of computation is on the Brain
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Figure 4.15: Execution times for one iteration of the framework, considering the three structural

properties Max Clique, Min Vertex-Cover, and k-hub. Bottom graphs show execution times for one

iteration of the framework on Max Clique considering either important or not important edges.

Figure 4.16: Execution times for four iteration of the framework.

Evolution Simulation module. Obviously, both Classifier and Classification Validity Checker ex-

ecution times are independent from the graph property under examination; interestingly, they are

both significantly faster than the simulation task. Higher execution times for Max Clique and Min

Vertex-Cover with respect to k-hub depend on the deterministic nature of the encoding for k-hub.

The same considerations carried out in the previous tests when including important/not important

edges for Max Clique are still valid in this test.
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Figure 4.17: Impact of each module of the framework in the running time of one iteration.

The scalability of the ASP part of the system has been tested over graphs of increasing size.

First of all, we measured running times of the Brain Evolution Simulation module over a set of

simulated graphs possibly representing connectome; in particular, we fixed the number of nodes

(84 in our tests, coherently with the technique described in Section 4.1) and we randomly generated

graphs with increasing number of edges up to a complete graph. It is worth recalling that, as

pointed out in Section 5, the average number of edges in graphs corresponding to real connectome

is around 2000. Results are reported in Figure 4.18; each data point is the average running time of

10 different executions over random graphs having the same number of nodes and edges. Via this

figure, it is possible to observe that all the tested ASP programs for studying structural properties

are solvable with execution times always below one second on any potential graph representing

a connectome. There are obviously small variations between different samples and properties;

nonetheless, the figure shows that any connectome can be easily managed by our approach in

order to study structural properties.

As a further scalability test, we generated graphs with increasing number of nodes; as for the

number of edges in these graphs, we measured the average number of edges in the graphs rep-

resenting real connectome and we kept the same proportion of edges for each generated graph.

Results are shown in Figure 4.19 for graphs up to 700 nodes; again, each data point is the average

running time of 10 different executions over random graphs having the same number of nodes and

edges. In this case, it is possible to observe that, while the number of nodes is around 100, running

times for all the problems are reasonable; when the number of nodes grows further, the com-

binatorial explosion of programs including non-deterministic choice rules is reflected in rapidly

increasing running times (indeed, as an example, Max Clique is reported as an hard problem in the

ASP Competition series [Gebser et al. (2016), Gebser et al. (2017), Gebser et al. (2019)b]); Min

Vertex-Cover is affected first by this issue. In fact, we observed that, on the machine used, it may
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Figure 4.18: Running time of the Brain Evolution Simulation module on simulated graphs with

increasing number of edges.

require more than one hour of computation for determining the Min Vertex-Cover on a graph with

around 150 nodes or finding the Max Clique on a graph with around 500 nodes. It is interesting

to observe that, again, considering only important/not important edges allows to move forward the

limit of computation. Indeed, the lower number of considered edges simplifies the graph and the

execution time is faster; as it was expected, considering important edges (40% of the total) allows

a further improvement with respect to the not important edges (60% of the total). Notably, k-hub

scales very well on tested graphs.

These results pose some questions on the applicability of ASP solutions, and generally of

exact solutions for optimization problems, in contexts different from the one studied in this work,

where the graphs to be handled become very large and non-deterministic reasoning over the graph

is needed. In these contexts, heuristic algorithms, not spanning the entire search space, might be

more efficient. However, as previously pointed out, compactness, versatility, and declarative nature

of ASP allow for a fast prototyping, and make it an excellent tool for testing numerous alternative

graph properties; in those contexts where input is represented by large graphs, one may think of

applying ASP based solutions on small sample graphs, in order to identify the most promising

properties and, then, implementing them with other ad-hoc, more efficient, solutions in order to

study the problem on real graphs. The adoption of ANN insights on important edges shown in this

chapter may be of significant help in this task; indeed, leveraging the most important edges only

allows to work on smaller but still significant graphs.

Furthermore, we do believe that applications like the one herein described can significantly

motivate the scientific community, especially the one working on ASP, at improving performance

of systems for their use in real-world applications.

5.3 Discussion

The tests presented in this section allow us to draw some interesting considerations. First of all,

all tests presented in Section 5.1 actually proved the appropriateness of the approach for studying

the evolution of MS; also, simplicity and high versatility in defining, setting up and carrying out a

wide variety of tests showed how crucial is the role played by ASP. We also provided some experts
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Figure 4.19: Running time of the Brain Evolution Simulation module on simulated graphs with

increasing number of nodes.

with the system for a first view, and they have been quite impressed by the possibility of simulating

brain evolution so easily.

On the ASP side, we can also say that what discussed in Section 5.2 confirms that expres-

siveness and compactness of the language make it perfectly suitable to address a wide variety of

problems on graphs. Moreover, language extensions significantly expanded the range of applica-

bility of ASP; as an example, weak constraints allowed us to easily express optimization problems

and, analogously, the recently introduced possibility of placing external function calls into a logic

program, with a predicate as function parameter instead of a single variable (see, e.g., the encod-

ing in Figure 4.5), allowed us to keep the encoding simple and elegant even with the inclusion

of complex graph metrics computation. Furthermore, when the ASP program does not include

choice rules, actual ASP implementations can deal with very large graphs, and scale definitely

well. Unfortunately, on the downside, the major weakness of current ASP systems becomes ap-

parent when a combinatorial explosion of the problem occurs. In particular, while we have shown

that the system is fully capable of addressing structural properties on connectome, we experienced

that addressing large graphs is possible only to some extent.

Moreover, as pointed out in Section 5, when dealing with graph metrics, since the non-

deterministic choice is carried out on edges instead of nodes, and since the metrics need to be

computed on the entire guessed graph, current versions of state-of-the-art ASP systems do not

reasonably scale over the connectome graphs. In particular, we observed that systems incur in

out-of-memory or exceed time limit (more than one hour) much earlier with respect to the tests fo-

cusing on structural graph properties. Intuitively, the problem is that the systems need to generate

all possible guesses on potential graphs, before computing the corresponding metrics. In order to

exclude external function calls as the potential bottleneck in this case, we also checked a version

of the program for controlling graph density variations using aggregates only; while avoiding ex-

ternal function calls allowed us to reduce memory issues, we encountered similar scalability issues

on connectome.

The experience above calls for the need of some extra features of ASP systems, e.g., extending

their solving capabilities with custom heuristics and propagators; some work in this direction is
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Figure 4.20: Screenshot of the integrated web environment

currently ongoing (see [Dodaro and Ricca (2018)] and references therein). However, the applica-

bility of these approaches in our context is not straightforward. As a matter of fact, even taking

the possibility of specifying suitable propagators into account, it is not always possible to easily

define model generation guiding rules; let us think, for instance, to assortativity, where it is not

clear how to guide the edge selection in order to imply a decrease in the property. Moreover, the

problem is even more complex if we consider that the combinatorial explosion of this problem is

coupled with an optimization task.

However, it is worth stressing again the potential role of important/not important edges in

encompassing, to some extent, scalability issues in our general framework. In fact, we have first

shown in Sections 5 (see specifically Figure 4.13) that removing even a high percentage of not

important edges does not affect the classification quality. We have then shown in Section 5.2 (see

specifically Figure 4.19) that limiting the computation on (a small number of) important edges

only significantly reduces performance issues, thus extending the dimensions of graphs that can

be managed.

To the best of our knowledge, this is the first work showing how to exploit the importance of

an edge in graph-based classification tasks in order to boost reasoning capabilities over graphs.

In our opinion, this result deserves further investigations in future works, and can stimulate the

research community in looking for new ASP program evaluation optimizations.

6 Integrated Web Tool

In this section we present an integrated web tool that has been developed in order to implement

the framework introduced in this chapter and make it actually usable. The tool is available online

at https://brainmsa.mat.unical.it. The integrated environment provides a user-friendly

interface that shows analysis results in real time. The main objective of the tool is to help physi-

cians, typically neurologists that are not likely to be ANN/ASP experts, to study the evolution of

MS through the application of the proposed framework, but also by manual inspection of brain

modifications.
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The input to the tool is expected to be a graph representation of the brain, obtained as described

in Section 4.1. A 3D environment showing the connectome is then generated, as shown in Fig-

ure 4.20. The graph accurately reflects the shape of a human brain, so that it is possible to identify

which nodes belong to a specific brain area. Usual rotation, translation and zooming operations

are available for inspecting the brain structure. Edge colors depend on the corresponding weight,

so as to provide a visual representation of connection strength.

The tool provides pre-defined specializations for the various modules of the framework. For

some of them, such as the Brain Evolution Simulation module, the user can choose one among

different ASP programs already available, or she/he can provide other programs personally de-

veloped for specific purposes. It allows also to choose an empty program, in order to apply only

manual modifications as explained below.

By launching the classification and asking for one single iteration of the framework, the user

can immediately check (see Figure 4.20) the new prediction on the right panel, and the 3D brain

representation is updated with the applied modifications. If the number of required iterations is

more than one, the right panel shows the graphs for each iteration (similarly to the ones presented

in Section 5), whereas only the last 3D brain representation is shown.

Once the user carried out several runs, it is possible to have a general overview of obtained

results by clicking the History button. In this case, the page shown in Figure 4.21 is presented; it

first shows a boxplot for each stage of MS that summarizes the overall probability values returned

by the classifier during the current test session. Moreover, the detailed history of prediction results

computed on the current connectome is also provided. Finally, for each prediction, the system

provides also a heat map representing the adjacency matrix of the corresponding graph; this can

be useful to see distribution of edges and weights at a glance.

Besides the implementation of the framework, the tool provides also some more functionalities

helping experts to carry out manual and more refined analyses. Specifically, first of all, the user

can manually select the set of edges to modify in a brain evolution step. This selection can be

either exploited in substitution of the Brain Evolution Simulation module (if the user chooses the

empty ASP program) or it can be seen as a pre-processing step on the connectome, if one of the

specializations of the Brain Evolution Simulation module is chosen.

Furthermore, the user can modify the visualization of the connectome, based on edge impor-

tance. In particular, if at least one classification has been carried out on the connectome, edge

importance, as introduced in Section 4.5, is available. Then, users can hide or show edges, based

on their importance, by using a slider. As a consequence, manual inspection on the connectome

can be greatly simplified, allowing the user to concentrate her/his attention on important edges

only.

7 Specialization of the framework to other scenarios

In order to show the generality of the proposed framework, in this section we present some

additional application scenarios it can be specialized to in a quite straightforward way. In particu-

lar, we first overview some additional biomedical contexts and then we show the application of the
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Figure 4.21: An example of how the environment encompasses results.

framework to a very different application scenario, namely influence prediction in social networks.

7.1 Specialization of the framework to other neurological disorders

It has been proved by several independent studies that there is a strong correlation between

the variations of connections among neurons and the function of the brain and, consequently,

with possible insurgence of several neurological disorders [Bargmann and Marder (2013)]. As an

example, in the Alzheimer Disease researchers observed a drecrease in the connectivity, associated

with changes in the hippocampus [Lenka et al. (2015)]; altered connectivity has been observed

also in the Parkinson disease [Lenka et al. (2015)]; similarly, an increased connectivity associated

with changes in the amygdala have been associated with anxiety disorder [Stein et al. (2007)].

In all such contexts, the analysis of brain connections and their variations can provide significant

insights in the knowledge of disease evolution.

Let us concentrate on the Alzheimer Disease (hereafter, AD); it is well known that, at early

stages, this disease appears as Mild Cognitive Impairment (hereafter, MCI) but not all patients

with MCI subsequently develop AD [Petersen (2004)]. However, it is also known that in MCI
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progression towards AD a key role is played by the loss of connectivity among the different cortical

areas. Thus, a large variety of approaches aiming at characterizing both MCI and AD have been

proposed in the literature [Hornero et al. (2009), Jeong (2004)]. Some of them are based on the

analysis of electroencephalograms (EEG) data; this is a less invasive observation method than

MRI. In this case, the analysis can be based on a graph, where each node represents an electrode,

and the weight of each edge expresses the similarity degree between the signals registered by the

corresponding electrodes (see [Cauteruccio et al.]).

Our framework can be specialized quite straightforwardly to the analysis of MCI evolution in

order to study key factors determining its progress to AD. In fact, it is sufficient to specialize the

Classifier module with any approach developed to classify patients in one of the Healthy, MCI,

or AD stages. The Brain Evolution Simulation module can be then specialized with a proper ASP

program that identifies subgraphs corresponding to (variations of) some property of interest; as an

example, in [Cauteruccio et al.] it has been shown that interesting graph properties related to AD

are network density and clustering coefficient. Here, again, the Classification Validity Check can

refute the classification outcome if a significant degradation in the graph corresponds to a predicted

remission of the disease; indeed, this situation is not biologically relevant.

7.2 Specialization of the framework in the context of Social Networks

The work presented in [Wu et al. (2019)] surveys several contexts where ANNs are applied to

graph data; indeed, there is increasing interest in extending deep learning approaches for this kind

of data. Interesting applications include, but are not limited to, e-commerce and recommender

systems, citation networks, social networks, traffic analysis, drug discovery, adversarial attack

prevention, and event detection. All of these problems can benefit from the application of our

framework in the identification of potentially relevant graph properties.

In order to provide an example, we focus next on one of them, namely influence prediction in

social networks [Qiu et al. (2018)]. A social network can be represented as a graph G = (V,E),

where V denotes the set of users and E denotes the set of relationships between them. Each user

in a social network performs social actions towards other users; these can be suitably summarized

as edge labels between the nodes corresponding to the involved users. Social influence commonly

refers to the phenomenon that the opinions and actions of a user are affected by others. In many

applications, such as advertising and recommendation, it is crucial to predict the social influence

of each user.

In [Qiu et al. (2018)] a neural network-based approach is proposed to predict the action status

of a user given the action statuses of both near neighbors and local structural information. The list

of action statuses strictly depends on the kind of social network under analysis. As an example

it can be a “retweet” action in Twitter or a citation action in academic social networks. The

input network is then fed to the ANN which outputs a two-dimension representation for each user

indicating the action status prediction, which is then exploited for the social influence computation.

In this contexts it would be of great relevance to study the evolution of social influence with

respect to modifications on the social graph. As an example, it would be interesting to find the
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minimal graph modifications required to increase the social influence in the network. Our frame-

work can be specialized quite straightforwardly also to this context. In particular, the Classifier

module can be specialized with the approach presented in [Qiu et al. (2018)] in order to predict

action statuses and, thus, social influence. The Brain Evolution Simulation module, which in this

context could be more appropriately renamed as Graph Evolution Simulation, can be specialized

with the ASP program of choice identifying the minimal changes to be applied on the input graph

in order to reach some target value of social influence. Even if the complete development of this

specific application is out of the scope of this paper, it is easy to see that the Classification Validity

Checker can be easily encoded with specific rules allowing to detect wrong classifications in action

statuses.

8 Conclusion

This chapter introduced a general and extensible framework pointing out opportunities pro-

vided by a combined use of ASP and ANN. In particular, we grounded the framework in order to

provide an effective support for neurologists in studying the evolution of neurological disorders.

We have shown that a mixed use of ASP and ANNs can be of significant impact both in

bioinformatics and other research fields. Indeed, logic-based modules greatly simplify the explo-

ration of different, possibly complex, variations in the structure of the connectome, and ANNs

allow to immediately check the potential impact of such variations on the course of the disease.

We provided three specializations of the general framework and tested them on real data to show

the effectiveness of the proposed approach. Extensive tests proved the potential impact of the

framework on the discovery process and some limitations of current ASP solvers. Based on this

experience, we developed a web tool allowing even non experts to explore the connectome and

test the impact of its variations on the course of the disease.

We believe that the results are encouraging; moreover, they further motivate the already run-

ning research activities for optimizing ASP program evaluations. Finally, obtained results provide

us with a solid basis for encouraging the communities of both ASP and ANN areas to identify

more contexts where a mixed use of these tools can lead to significant benefits.

As far as future work is concerned, we plan to specialize the presented framework on the

application contexts outlined in Section 7.
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Chapter 1

Conclusions

Processing MRI data is crucial to better understand the pathological mechanisms of complex

brain diseases such as MS. In this context, graph theory is a powerful approach for the analysis of

the WM network. These techniques, combined with powerful machine learning and deep learning

algorithms, open new perspectives for the neuroimaging field.

Deep learning techniques have represented in recent years a powerful tool for supporting var-

ious biomedical analysis. Concerning our contribution in this field, Generative Adversarial Net-

works were used to automatic generate artificial Magnetic Resonance Images of slices of the hu-

man brain; both quantitative and human-based evaluations of generated images have been carried

out to assess the effectiveness of the method. This work represented one of the first applications

of these techniques to the neuroimaging field. Furthermore, Deep Learning methods were also de-

veloped to solve the Optic Disc Detection task. In this context, we showed how transfer learning

can be easily applied to different domains, thus allowing us to overcome the problems in presence

of big data sets and high requirements in terms of computational power, and laying the foundation

for interesting future works.

Various approaches for the automatic classification of MS patients in their respective clinical

profiles based on their brain structural connectivity were presented. Various deep learning tech-

niques were defined and compared, gradually trying to reduce human intervention in any step of

the process. In these studies, we have shown the role of local graph metrics in the characteriza-

tion of the different MS forms. However, was interesting to notice that local graph metrics do not

improve the classification results suggesting that the latent features created by the NN in its lay-

ers have much important informative content. Furthermore, graph weights represent an important

source of information to discriminate between clinical forms.

Finally, beyond the patients’ classification itself, one of the main objectives of our studies relies
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on the interpretation of the defined models, with the primary goal of detecting and characterize the

presence of pathological mechanisms in the brain networks. In this context, a generic framework

showing the impact of mixing rule-based systems and neural networks to investigate neurological

disorders were proposed. The ambitious goal is to boost the interest of the research community

in developing a more tight integration of these two approaches. Interesting substructures of the

connectome were identified, which could be analyzed from a clinical perspective.
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Perspectives

The various methods explored in this work can be seen as a starting point for a more general

and robust pipeline to investigate pathological mechanisms. It is worth to note that the methods

and results reported in this manuscript represented a portion of the work developed under this

project. Several other researches were conducted using cutting edge approaches, which still need

to be further investigated.

Generative approaches in the biomedical field, for example, have been just started to be stud-

ied in the literature, and a large variety of applications are still open. An interesting perspective

is to improve the quality of the generated images, to be more and more similar to real MRI scans;

to this aim, a comparison with alternatives models will be of clear interest, as they are currently

emerging in literature. Furthermore, the generation may be improved by allowing the network to

add pathological symptoms and provide unseen data of synthesized patients; this might also im-

prove the study of rare diseases. Furthermore, Generative models are widely used to extract latent

features of the input in a compressed dimensional space. Investigating such latent space would be

interesting to reduce the complexity of the problem, thus isolating discriminative biomarkers or to

characterizing pathological alterations. Also, longitudinal data can be exploited in this context to

simulate the evolution of the pathology.

Novel graph-based techniques are also emerging, which could provide better and more in-

terpretable results. In this context, another interesting perspective is to combine functional and

structural connectivity to analyze the progression of the disease. Such a multiview approach could

be applied for predicting the short term evolution of the patient disability, which represents one of

the more disturbing aspects of MS.
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