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Abstract : This thesis is dedicated to the study of turbulent mixing in flows
with variable density and non-uniform transport coefficients. We use a new direct nu-
merical simulation (DNS) code based on a two-dimensional domain decomposition,
capable of taking into account variable density and diffusive contributions. At first, we
consider the case of turbulence in weakly-coupled plasmas under isotropic compres-
sion, which can experience a sudden dissipation of kinetic energy due to the growth
of the viscosity coefficient due to temperature increase. In this case, in addition to
DNS we use a spectral model based on the Eddy-Damped Quasi-Normal Markovian
closure. We evidence the sensitivity of the flow dynamics to initial conditions for ho-
mogeneous isotropic turbulence and an inhomogeneous spherical turbulent layer. In
the latter case, we find, also, the first hint of a sudden diffusion effect. The importance
of initial conditions is also shown in the study of the variable density unstably stra-
tified homogeneous turbulence. If the initial density contrasts are sufficiently strong,
the large scales of the flow are modified with the consequent modification of the
self-similar scaling laws. Finally, we consider an idealized configuration of inertial
confinement fusion implosion, with both variable density and transport coefficients
effects. During the compression, we evidence the competition between the plasma mo-
lecular diffusion, which is enhanced by the temperature increase, and the turbulent
diffusion, which on the contrary decreases due to the increased viscous dissipation.
In the last phase of the implosion, we highlight a sudden diffusion process, where
compressed spherical mixing layers are quickly diffused.

Keywords : Mixing, turbulence, variable density flow, non-uniform transport
coefficients, compression, plasma, inertial confinement fusion, DNS, EDQNM

Résumé : Cette thèse est consacrée à l’étude du mélange turbulent dans des
écoulements à densité variable et à coefficients de transport non uniformes. Nous
utilisons un nouveau code de simulation numérique directe (DNS) basé sur une dé-
composition bidimensionnelle du domaine, capable de prendre en compte la densité
variable et les contributions diffusives. Dans un premier temps, nous considérons le
cas de la turbulence dans les plasmas faiblement couplés en compression isotrope,
qui peuvent subir une dissipation soudaine d’énergie cinétique due à la croissance
du coefficient de viscosité par une augmentation de la température. Dans ce cas, en
plus des DNS, nous utilisons un modèle spectral basé sur la fermeture Eddy-Damped
Quasi-Normal Markovian. On démontre la sensibilité de l’écoulement aux conditions
initiales pour une turbulence homogène isotrope et une couche sphérique turbulente.
Dans ce dernier cas, nous trouvons aussi la première indication d’un effet de diffu-
sion soudain. L’importance des conditions initiales est également mise en évidence
par l’étude de la turbulence homogène stratifiée instable à densité variable. Si les
contrastes de densité initiale sont suffisamment forts, les grandes échelles de l’écoule-
ment sont modifiées avec pour conséquence la modification des lois d’échelle des états
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autosemblables. Enfin, nous considérons une configuration idéalisée d’implosion de
fusion par confinement inertiel, avec des effets de densité variable et des coefficients
de transport. Pendant la compression, nous mettons en évidence la compétition entre
la diffusion moléculaire du plasma, qui est renforcée par l’augmentation de la tempé-
rature, et la diffusion turbulente, qui au contraire diminue en raison de la croissance
de la dissipation visqueuse. Dans la dernière phase de l’implosion, nous mettons en
évidence un processus de diffusion soudaine, où les couches de mélange sphériques en
compression sont rapidement diffusées.

Mots-clés : Mélange, écoulements à densité variable , coefficients de transport
non-uniformes, compression, plasma, fusion par confinement inertiel, DNS, EDQNM
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1.1 Turbulent mixing
Mixing is an irreversible process that increases entropy, decreases Gibbs free

energy and exergy [Tailleux 2009], and brings homogenization to the molecular level.
According to Eckart (1948), mixing in fluids can be thought of as a process in three
steps :

1. An initial or entrainment phase, where large volumes of the mixed materials
are visible, steep gradients are found at the interface between these regions,
which are otherwise smooth. This phase is dominated by the large scales co-
herent structure of the flow.

2. An intermediate or stirring phase, when distortion caused by advection, pro-
vokes a rapid increase in the extension of interfacial surfaces, with the final
results to increase the mean value of the initial gradients.

3. A final or diffusion phase where the gradients disappear, and the fluid becomes
homogeneous.
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Mixing can be laminar or turbulent, with noticeable differences in the stirring phase.
The main features that distinguish turbulent from the laminar mixing are the large
range of flow scales and the associated greater interfacial surface, which permits to
the molecular diffusive effect to proceed more effectively.

Although laminar mixing present interesting application [Erwin 1978], especially
in the case where high viscosity prevents the onset of turbulence [Ottino and Chella
1983], the most common mixing processes are driven by turbulence, which is present
in many natural and engineering phenomena, with length scales and Reynolds num-
bers spanning 20 orders of magnitude [Ottino 1990].

Many natural phenomena present turbulent mixing as a crucial factor, from the
atmosphere dynamics [Monin and Obukhov 1954], where it is involved in the trans-
port of heat from the subtropical latitudes to the polar regions, to the oceans cir-
culation [Polzin et al. 1997, Mashayek et al. 2017] where it helps sustain the deep
global ocean overturning circulation. Also, turbulent mixing has a significant impact
on astrophysical processes, from stars [Baglin 1972] to interstellar medium of galaxies
[Slavin et al. 1993] where turbulent mixing layer are substantial contributors to inter-
stellar radiations. Moreover, applications involving combustion [Pitz and Daily 1983,
Reitz 2002], chemical industry reactors [Nienow et al. 1997], hypersonic propulsion
systems [Parent et al. 2002] and inertial confinement fusion [Haines et al. 2014a] are
all concerned in some measure by the understanding of this fundamental problem.

(a) (b)

Figure 1.1 – (a) Numerical simulation of turbulent mixing in the ocean
(NASA/Chris Henze) (b) Numerical simulation of the turbulent mixing with che-
mical reaction in a burner. (Universität Duisburg-Essen)

Dimotakis (2005), in his review, distinguishes between three levels of possible
turbulent mixing. Level-1 is the simplest and one of the widely studied ; it involves
the mixing of a passive scalar, which does not act back on the flow dynamics. In
Level-2, the mixing is coupled to the dynamics of the flow, such as in cases driven
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by buoyancy forces. The Level-3 mixing produces changes to the fluid, e.g., chemical
composition change due to combustion, that in turn modify the flow dynamics.

1.1.1 Buoyancy driven mixing
A classic example of level-2 mixing, which is of interest in this thesis, is caused

by buoyancy-driven flows. A case occurring when a fluid with non-uniform density
distribution is subjected to pressure gradients or external accelerations, in both stably
or unstably stratified configuration, i.e. the density of the fluid respectively increases
or decreases in the direction of the force.

If one takes the vorticity, ω, equation for flow with non uniform density and
constant body forces [Tennekes and Lumley 1972],

∂tω + u · ∇ω = 1
ρ2∇ρ×∇p︸ ︷︷ ︸
Baroclinic term

+ω · ∇u− ω∇ · u︸ ︷︷ ︸
Vorticity stretching

+ ∇× ∇ · τ
ρ︸ ︷︷ ︸

Vorticity diffusion

(1.1)

where u is the velocity field, ρ the density, p the pressure and τ the viscous stress
tensor. The main difference with non-stratified flows is the generation of vorticity
from the baroclinic effects, resulting from misalignment between pressure and density
gradients.

The stability criterion for non-uniform density fluid can be a tricky question, given
the vast difference in possible configurations. For instance, if one considers incom-
pressible flows with a constant pressure gradient, imposed by a constant acceleration,
and the density as the only non-uniform quantity, the stability can be determined by
the direction of pressure and density gradients.

Otherwise, if the acceleration varies in time, even if it is always in the opposite
direction of the density gradient, the configuration can be destabilized by the Faraday
instability [Faraday 1831, Gréa and Adou 2018].

Another example is the double diffusion process, due to the simultaneous pre-
sence of different scalar species [Huppert and Turner 1981], i.e. concentration and
temperature. Finally, discarding the incompressible constraint, one has to take into
account the entropy [Lighthill 2001].

Stably stratified mixing Within the framework of buoyancy-driven mixing, a
great deal of study is devoted to turbulence in stably stratified medium [Fernando
1991]. This field is of particular importance because oceans, lakes, and atmospheres
and many astrophysical bodies are stably stratified. This stable stratification would
imply in principle that vertical motions are inhibited, imposing a limit to the vertical
exchange of matter. Nevertheless, these exchanges happen thanks to the help of
turbulent mixing. In stably stratified fluid, the transition to a turbulent state can be
caused, for example, by shear flows generating Kelvin-Helmholtz or Homlboe waves,
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or the breaking of internal waves generated by gravitational restoring forces acting
on vertically displaced fluid [Lamb 2014].

Unstably stratified mixing The simplest case of unstable stratification is obtai-
ned when density gradients and the acceleration have the opposite direction. In this
configuration, the flow evolution and the related mixing mechanism are determined
by the pressure gradient imposed by the acceleration profile. If the acceleration is
constant, the flow is subjected to the Rayleigh Taylor instability, while if the acce-
leration is an impulsion, such as a shock wave, the Richtmyer-Meshkov instability
takes place.

1.1.1.1 Rayleigh-Taylor

The Rayleigh-Taylor (RT) instability has been individually investigated by Ray-
leigh (1882) and Taylor (1950), who studied the interface of a heavy fluid of density
ρ2, on top of a light fluid of density ρ1. It is one of the most common instability
mechanism. For example, it is the reason why when one turns a glass over, the water
inside falls, even if the atmospheric pressure should be able to keep the water inside
the glass. This instability has been the object of extensive study, and different re-
view articles are available [Sharp 1983, Kull 1991, Boffetta and Mazzino 2017, Zhou
2017a]. Studies on this problem have identified three main phases in the evolution of
the flow : linear, nonlinear, turbulent.

Linear The theory describing the first phase of the instability was proposed by
Rayleigh (1882) and Taylor (1950) who studied the case of incompressible flows.
They assumed that the amplitude, h, of the perturbations was small compared to
their wavelength, λ. This hypothesis allows to linearize the equations and neglecting
the effects of viscosity or surface tension they obtained :

h = h0 exp
t
√
g

2π
λ
At

 (1.2)

where g is the acceleration and At = ρ2−ρ1
ρ2+ρ1

. So that the dispersion relation can be
written as

ζ2 = g
2π
λ
At, (1.3)

which allows us to observe that when acceleration and Atwood number are positive,
the flow is unstable, ω2 > 0, for all perturbation wavelength, and the growth rate
increase unbounded when λ→ 0. When viscosity, surface tension, and compressibility
are considered, the dispersion relation is modified. Chandrasekhar (1961) shows that
viscosity cannot stabilize the flow, it dampens the small wavelengths growth rate,
which nevertheless stays always positive, imposing a maximum to the growth rate
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for a wavelength λmax > 0. On the contrary, the same author demonstrates how
surface tension is capable of stabilizing an unstable configuration for sufficiently small
wavelengths, which nonetheless remains unstable if perturbations have sufficiently
long wavelengths. Regarding compressibility, Livescu (2004) proves that it can have
both stabilizing and destabilizing effects. In the linear phase, the initial perturbations
develop without interacting with each other. However, at some point at the end of
this first phase, they reach an amplitude comparable with their wavelength, and
nonlinear interactions begin to be relevant, so that linear arguments are no longer
valid.

(a) (b)

Figure 1.2 – (a) Sequence of images relative to the development of Rayleigh-Taylor
instability in the linear and nonlinear phases. The Atwood number is 0.15. (b) Three-
dimensional visualization of the structure of the bubbles with the same initial condi-
tion of (a). From Wilkinson and Jacobs (2007)

Non-linear When the flow transition in the nonlinear phase, we observe a first
qualitative difference depending on the Atwood number. For small density contrasts,
At � 1, the evolution of the light and heavy fluid are similar, and we observe an
interpenetrating bubble. When At ∼ 1, the evolution is asymmetric, the lighter fluid
moves into the heavy fluid in the form of bubbles while the heavy fluid in the form
of spikes. In this regime Youngs (1984) found that the mixing zone size δ = 2h has
a quadratic dependence on time

δ = αiAtgt2.

Where α is the mixing zone growth rate. Discussion around this value has gone for 30
years, due to contrasting results obtained in experiments and numerical simulations.
A combined effort resulted in the α-group collaboration [Dimonte et al. 2004], which
proved that numerical simulation and experiment converged to two different results,
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with the second value twice as much as the first. This incoherence was connected to
the large scale perturbations and confinement effects in the experimental set-up that
were not taken into account into numerical computations.

Nowadays discussions around the parameter alpha are still ongoing, for instance
Zhou (2017a) in his review after collecting the value of α published after the α-group
paper, found a spread of its value depending on Atwood number and initial conditions
wavelengths (lower values for short initial wavelength, higher values for large initial
wavelength ).

Turbulence At the end of the nonlinear phase, the bubbles and spikes begin to
interact with each other creating a turbulent mixing regime. This phase addressed by
Boffetta and Mazzino (2017) in a recent review paper, present all the characteristic of
turbulent mixing from multi-scale properties to the development of the Kolgomorov
cascade [Cabot and Cook 2006].

1.1.1.2 Richtmyer-Meshkov

The work on the Richtmyer-Meshkov (RM) instability begins with the theoretical
analysis of Richtmyer (1960) and the experimental confirmation of the results by
Meshkov (1969). In principle, this instability can be considered as a particular case
of RT instability with an impulsion acceleration. As for the Rayleigh-Taylor, this
instability has been the object of extensive study and reviews [Brouillette 2002, Zhou
2017a].

As in the case of RT, also for Richtmyer-Meshkov, we can divide the evolution
into three phases : linear, nonlinear, turbulent, which can be observed in Figure 1.3.

Linear The theory for the linear phase of the instability was derived by Richtmyer
(1960), who assumed that the amplitude, h, of the perturbations was small compared
to their wavelength,λ, without the effects of viscosity or surface tension. With these
hypotheses we obtain :

dh

dt
= h0∆u2π

λ
At (1.4)

where ∆u is the shock impulsion, h0, and At = ρ2−ρ1
ρ2+ρ1

are the initial amplitude and
the Atwood number just after the shock has impacted the interface. The numerical
solution of (1.4) shows that in this phase, the growth of the perturbation is linear in
time, unlike the exponential growth of the RT. Moreover, the interface is unstable for
every value of the Atwood number, even the negative [Brouillette 2002]. The effects
of viscosity and surface tension were considered by Mikaelian (1993), who shows that
viscosity induces damping of the perturbation while surface tension oscillations. Short
wavelength perturbations oscillate faster but are more damped ; longer-wavelength
perturbations oscillate slower and are less damped.
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As for the Rayleigh-Taylor, in the linear phase, the initial perturbations deve-
lop without interaction with each other, but when their amplitude has increased
sufficiently, the nonlinear phase takes place.

Figure 1.3 – Time evolution of Richtmyer-Meshkov instability with an Atwood
number of 0.5 and incident shock Mack number of 1.21. The initial condition is on
the top-right position. The time is noted near every image, together with the distance
traveled in parentheses. These images display the complete evolution of a Richtmyer-
Meshkov mixing zone from the initial development to the final turbulent state. Orlicz
et al. (2013)
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Non-linear We observe the asymmetry between the interpenetration between the
two fluids. The heavy fluid tends to the formation of spikes, whereas the light fluid
organizes as bubbles. Some analytical tools allow studying this phase for single-mode
perturbation [Brouillette 2002]. However, usually, the wavenumbers of the initial
perturbation span many orders of magnitude. Also, as the RM flow develops, the
Kelvin-Helmholtz instability develops, which further complicates the computational
task. Ultimately, a three-dimensional turbulent mixing zone develops on the interface.

At the end of the non-linear stage, the time evolution of the overall mixing zone
size h follows power-law ∼ tθ with values of θ ranging from 0.3 to 1, (see Zhou (2017a)
for a collection of published values). As for the α coefficient in the self-similar phase
of a Rayleigh-Taylor mixing zone, there was a debate on the value of the exponent
θ, addressed by the θ-group work [Thornber et al. 2017]. They determined that the
growth rate exponent is θ = 0.292 ± 0.009, in good agreement with prior studies ;
however, the exponent is decaying slowly in time.

Turbulence At the end of the nonlinear phase, the bubble and spikes begin to
interact with each other creating a turbulent regime. The mixing between the two
fluid is intensified, and the interface is no longer visible. Also, the mixing zone size
continues to follow the evolution law ∼ tθ.

1.1.1.3 Open problems

From the short review on Rayleigh-Taylor and Richtmyer-Meshkov instabilities,
we observe similarities in the development and evolution of the flow together with
differences. The instability mechanisms are the same, and for both cases, the discus-
sion on the dependence of the long-time flow evolution on certain factors is still on-
going. Here we present some open questions : What is the effect of initial conditions ?
How well can these instabilities mix ? Is the anisotropy imposed by the acceleration
maintained in the smallest scale of turbulence ? What happens if the acceleration is
inverted during the development of the instability ? What is the effect of the Atwood
(and Mach) number on the flow ?

Initial condition (IC) influence One of the questions that arise from the study
of RT and RM turbulence is about the role of IC, and this question seems to be still
open to debate.

In the Rayleigh-Taylor context, this dependence has been used to justify the
difference between experimental and numerical studies.
For instance, Ramaprabhu et al. (2005) show that initial perturbation wavelength
may influence the late time self-similar evolution, depending on the wavelength. With
short wavelengths [Ramaprabhu et al. 2005, Youngs 2013], it seems reasonable to
assume a loss of the initial perturbation proprieties, whereas long-wavelengths impose
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a dependence on the initial conditions. Banerjee and Andrews (2009) using Direct
Numerical Simulation (DNS) concluded that RT mixing has a strong dependence on
IC. Whereas the results of Soulard et al. (2015) prove that there is no permanence
of large eddies for RT turbulence, which at late times is dominated by nonlinear
interaction with loss of information of IC.

For Richtmyer-Meshkov, the influence of initial conditions is likely to be signifi-
cant in most applications, in particular for the nonlinear and turbulent phases. For
example, [Budzinski et al. 1994] prove that changes in the initial interface shape give
different patterns during the evolution of the flow.[Thornber et al. 2010] found a de-
pendence on initial conditions for the self-similar exponent θ, which seems to depend,
similarly to the RT case, to the range of scale used for the initialization.

Moreover, from a theoretical point of view Soulard et al. (2018), evidence that the
initial condition can influence late time flow evolution. They prove the permanence
of large eddies, in case of low Atwood number, relating the self-similar growth rate
of the turbulent mixing zone to the infrared slope of the velocity spectrum.

Mixing rate The discussion about how the quantification of mixing is another
subject of debate, with different quantity proposed (see Zhou (2017a), for instance).
One that is widely used is molecular mix fraction Θ [Youngs 1984], which can be
linked to α [Gréa 2013].

The value reported for RT turbulence [Ramaprabhu et al. 2005, Youngs 2003;
2013] varies from 0.68 to 0.8. The reasons for the discrepancy are to be found in the
dependence on the initial perturbation, with long initial wavelengths that result in a
low value of the mixing parameter.

The same quantity can be measured in the RM mixing layer. The range of Θ
from numerical simulation goes from 0.3 − 0.8 [Thornber et al. 2010, Oggian et al.
2015]. This difference can be attributed to differences in initial interface thickness
and shape, as well as the characteristics of the initial perturbations, in particular,
the range of scale used.

Anisotropy Both RT and RM have a preferential direction imposed by constant
or impulsive acceleration so that the question about the anisotropy of the flow has
to be addressed.

In general, for RT flows, the large turbulent scales are anisotropic due to the
action of gravity, but the flow becomes isotropic at small scales in the core of the
mixing layer. However, there are still discussions open, for instance, Livescu et al.
(2009) found anisotropy for the largest and smallest scales where the buoyancy effects
continue to be significant due to the cancellation between nonlinear transfer and
viscous dissipation. Furthermore, Gréa et al. (2016b) show that the level of anisotropy
is not very sensitive to initial energy and buoyancy spectra.
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For the RM case, Soulard et al. (2018) prove large scales keep their initial aniso-
tropy during the flow evolution, implying that the return to isotropy of the turbulent
mixing zone is only partial. These results confirm the observation of Thornber et al.
(2010), Lombardini et al. (2012). This anisotropy, is, of course, more significant in
the direction of the shock propagation, with the ratio of the component turbulent
kinetic energy (TKE) in the parallel and perpendicular directions that tends towards
a constant value.

Acceleration inversion and demixing for RT The assumptions made about
the direction of the acceleration with respect to the density gradient are not always
valid in real applications, for instance, in astrophysical contexts like the Crab nebula
[Ebisuzaki et al. 1989]. In this case, one has to reconsider the theoretical results
under the light of the variable acceleration, which changes direction during the flow
evolution. One of the consequences, for example, is that the expression of the mixing
zone width self-similar evolution is no longer valid. When the sign of the acceleration
is reversed, there is a partial demixing for miscible fluids and complete demixing for
immiscible fluids.

Numerical simulations by Ramaprabhu et al. (2013) show that a deceleration
between two acceleration phases destroys the spikes bubbles structures changing the
flow topology. It increases the molecular mixing and the rate of return to isotropy
within the mixing layer, retarding the following growth towards self-similarity. Ho-
wever, Burlot (2015) shows how the final state of the mixing zone depends on the
time between the two acceleration phases.

The role of the Atwood number For RT, as the Atwood number increases, the
self-similar constant α increases. On the contrary, the late times’ value of the mixing
parameters shows no influence on the At. While the small-scale anisotropy may be
more persistent for higher Atwood number, which can be explained by the fact that
the effects of gravity that cause the anisotropy increase with the Atwood number (for
a complete discussion see the corresponding section in Zhou (2017a)).

In the RM case, the self-similar exponent θ seems to have a little dependence on
the At, while an increase in Atwood number increases the time needed to reach the
self-similar state, and it has the opposite effect of the molecular mixing [Thornber
et al. 2010].

Mach number For the RM, the dependence on Mach number has been studied.
The experimental results of Weber et al. (2014b) show the relative insensitivity of
Θ to the Mach number, which has been confirmed by the numerical simulation of
Lombardini et al. (2012).
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Others effects Rotation [Scase et al. 2017], chemical reactions [Chertkov et al.
2009], and magnetic field [Chandrasekhar 1961] are among the effects that are some-
times present in applications where they can influence the evolution of the buoyancy-
driven instability.

1.1.2 Converging Geometry
Rayleigh-Taylor or Richtmyer-Meshkov instability have been mostly studied in

a planar geometry, a simplified setting useful to understand the fundamental dri-
ving processes. However, in some applications, for instance, inertial confinement fu-
sion compression, the interface geometry can be spherical or cylindrical, also called
converging geometry.

These configurations were investigated by Bell (1951) and Plesset (1954) for invis-
cid potential flow and by Chandrasekhar (1955) who considered the effect of viscosity.
They found that, in this situation, the perturbation growth is modified by pure geo-
metrical effects, independent of the density of the fluid.

1.1.3 Modelling
All the fundamental studies using experiment or high fidelity numerical simulation

are usually performed to understand the phenomena involved in RT and RM. The
objective of the studies is to find the main ingredients of these buoyancy-driven flows
and create meaningful models for real-life problems, where the range of spatial scales
exceeds the current numerical capabilities. Multiple models with different levels of
complexity have been proposed during the years. The first and most simple is the
buoyancy-drag model [Zhou 2017a], which computes the evolution of the amplitudes
of the mixing region. It is essentially an equation of motion that balances the inertia,
buoyancy, and drag forces.

The Reynolds-Averaged Navier-Stokes (RANS) models are the second step in
complexity. They are a class of method which attempt to analyze and characterize
flows at high Reynolds number, with well-developed turbulence, which constitutes
one of the shortcomings of RANS modeling for mix calculations in RT and RM.
They are not designed to compute the production of turbulence from instabilities
(Zhou (2017b) in his review discusses different RANS models with corresponding
merits and shortcomings).
Multiple models have been proposed during the years, K − ε, Besnard-Harlow-
Rauenzahn (BHR), Reynolds stresses, multifluid, spectral with an increasing capa-
bility to reproduce the complex phenomena of the mixing.

All the proposed models have some free parameters that have to be fixed. The
problem that arises at this point is that usually, they are calibrated to reproduce self-
similar states. However, nothing ensures that they can reproduce the transient phase,
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which is more important from an engineering viewpoint since the self-similar state
is never reached in real applications. For instance, Gréa et al. (2016a) demonstrated
for different initial conditions, how different mixing models are capable of getting the
self-similar state but behave very badly and differently in the transient period.

1.1.4 Why is buoyancy-driven mixing important ?
Concerning the hydrodynamic instabilities that we have discussed, the main rea-

son that has driven the efforts over the years has been the quest to understand the
role of turbulent mixing in Inertial Confinement Fusion (ICF) implosions.

For many years this has been identified as having a detrimental effect on iner-
tial confinement fusion target. The inward acceleration, coupled with the fact that
the density increases with the radius, is the basic context for the onset of baroclinic
instability. Moreover, these instabilities are only a part of the phenomena involved
in an ICF implosion, where plasma, radiation, and kinetic effects play significant
roles. Furthermore, the fact that this is a context of high energy density (HED) phy-
sics makes experimental studies to understand the driving mechanisms even more
complicated. Besides, numerical simulations used in the context of ICF are costly in
terms of computational resources and usually take into account all physical pheno-
mena that occur during an implosion. This makes it difficult to understand the role
of hydrodynamics in this context. That is why, in this thesis, we propose to study
mixing in a simplified framework, where we consider the effect of transport coeffi-
cients variation in an idealized ICF target and the effect of variable density in the
homogeneous context.

The remainder of this chapter is organized as follows : After an introduction to
the inertial confinement fusion in section 1.2, we discuss the radiation hydrodynamics
simulation used to investigate ICF implosion and the assumption made to arrive at
the idealized cases studied in this thesis. After this discussion, the following two sec-
tions are dedicated to the review of variable viscosity and variable density turbulence,
the two main effects that are conserved in the idealized case. Finally, we discuss the
plan of the thesis.

1.2 Inertial confinement fusion : an introduction
The idea behind ICF [Atzeni and Meyer-ter Vehn 2004b] is to compress a fuel

usually composed by a mixture of hydrogen isotopes deuterium, D, and tritium, T,
to incredible pressures, around ∼ 100 Gbar, densities ∼ 50 gcm−1, and temperature
∼ 10 keV . Then the objective is to burn the fuel in a short time, ∼ 50 ps, in which
inertia keeps the fuel confined. High power radiation, usually provided via multiple
high-intensity lasers, is the external source that provides the energy that drives the
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compression.
In the "direct drive" approach [Betti and Hurricane 2016], the lasers are focused

directly on the spherical target. The rapid heating causes vaporization of the shell
materials and a consequent inward implosion, compressing the fuel. Moreover, it
creates a shock wave, which further increases the fuel temperature and pressure and
results in a self-sustaining burn.

Another approach, currently employed at the National Ignition Facility (NIF)
and Laser Megajoule (LMJ), is the "indirect drive" method [Lindl 1995], in which the
lasers heat the inner walls of a gold cavity containing the target, which is uniformly
irradiated by X-rays. This radiation heats the outer surface of the spherical shell,
causing a high-speed ablation and consequent implosion of the capsule in the same
way as in the "direct drive." These two approaches are schematically represented in
Figure 1.4.

Figure 1.4 – Schematic of the indirect drive (upper left) and direct drive (upper
right) approaches in inertial confinement fusion experiments. The four images at the
bottom describe schematically different stages in the implosion. In the last image
on the right, the effects of hydrodynamics instability are evidenced. From Betti and
Hurricane (2016)

Following Atzeni and Meyer-ter Vehn (2004b) we can schematically divide the
implosion in three phases :

1. Deposition of the energy by laser beams and ablation of the outer materials.
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2. Implosion of the capsule that reaches the extreme thermodynamic condition
required for the fusion.

3. Ignition of the fuel and hot spot generation.
The numbers correspond to those of the images at the bottom of Figure 1.4.

Once the laser has deposited the energy via direct or indirect drive, the outer
surface of the ablator starts to vaporize and expand outwards, forcing the inner part
of the capsule shell to move inwards, starting the compression. The pressure that
is acting on the ablator/fuel interface at this stage is around 100 Mbar, with an
implosion velocity of 300 km/s. At the same time, as the inwards implosion of the
ablator, a strong shock intensified by the spherical convergence propagates towards
the center of the capsule. When it reaches the center, the shock is reflected and
starts to travel outwards, when at some point encounters the inwards moving shell,
the shell is decelerated. It is at this point that a significant part of the kinetic energy
is transformed in internal energy, and the density increases considerably. At the
same time, the sequence of shock and the compression heat the gas to a very high
temperature, that is, a hot spot has formed. The hot-spot temperature is around 10
keV with a pressure of the order of 100 Gbar and density around 50 g/cm3 . At this
point, one expects a sudden, around 50 ps, rise in temperature up to 100 keV that
would signal the ignition.

During the compression, perturbation to this idealized configuration may alter the
dynamics of the implosion, modifying the desired energy output or preventing the
fusion at all. These perturbations, which may develop at the ablator/fuel interface,
see 1.4(c), are amplified by the Rayleigh-Taylor instability and may lead to the mixing
of cold, dense material in the hot-spot plasma, de facto decreasing the possible yield
of the fusion.

1.3 ICF hydrodynamic simulations
ICF implosions are usually modeled using radiation hydrodynamics codes, that

are capable of accounting for effects coming from all the sources involved in the com-
pression processes from the laser deposition to radiation effects [Marinak et al. 2001].
From the hydrodynamic point of view, since they deal with highly compressible mate-
rials, these codes usually employ Arbitrary Lagrangian Eulerian (ALE) scheme with
artificial viscosity to stabilize shock, or other compressible hydrodynamic formula-
tions [Cabot and Cook 2006], and they can solve 1D [Vold et al. 2015], 2D [Gittings
et al. 2008] or 3D [Marinak et al. 2013] problems. In the case where the fuel reaches
temperatures such as the mean free path of the ions become comparable to the size
of the hot-spot, a kinetic description has to be used [Hoffman et al. 2015].

The parameter that determines if one can use the continuum mechanics approach
to investigate a particular fluid problem is the Knudsen number, Kn, the ratio bet-
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ween the mean free path of the fluid constituents and the characteristic size of the
problem. Usually, large imploding targets as the one used at the NIF, kinetic effect
seems to be negligible. For instance, this can be verified using the expression given
by Molvig et al. (2012), that gives Knudsen numbers of ∼ 10−2 at bang time, so that
the continuum assumption is wholly justified. This assumption would not be verified
in other ICF implosions, for instance, is smaller capsules such as the ones used in
OMEGA experiments [Rinderknecht et al. 2014b].

Another question that has to be addressed is related to the
Magnetohydrodynamics (MHD) effects. There exists the possibility of self-
generating magnetic field during the compression due to the asymmetry of the
implosion [Igumenshchev et al. 2014]. These fields can have intensity up to 104 Tesla,
in the last phases of the implosion [Walsh et al. 2017]. The magnetic energy density
is

EB = B2

µ0
∼ 1014 kg

m s2 .

This value has to be compared with typical kinetic energy density for an ICF implo-
sion that is :

Ekin = 1
2ρv

2 ∼ 1017 kg
m s2 .

The ratio between magnetic and kinetic energy density is ∼ 10−3 so that MHD effect
can be neglected.

ICF simulations are performed mainly to reproduce implosion experiments in
order to explain different than expected behaviors and also to suggest possible im-
provements in the quest to obtain nuclear fusion with desired yields. In recent years,
computations mostly concentrated on understanding the impact of various pertur-
bation sources on the evolution of the spherical compressed flow. The investigation
considered both low-foot and high-foot implosions, which are differentiated by the
shape of the driving laser pulses. In particular low foot implosion have low compres-
sion velocities (320 − 330 kms−1) but higher convergence ratios, the ratio between
the initial and final diameter of the target, (40− 45), compared to the high foot case
where compression velocity can reach 380 kms−1 but with low convergence ratios
of ∼ 35. In Figure 1.5, the effects of the various perturbations sources are apparent.
From the tent perturbation at the capsule poles to fill tube defects and the roughness
of the ablation front that grows during compression. While the results for the two
cases are different, it is evident the presence of denser colder matter that reaches the
center at the bang time in the two simulations. This is mainly caused by the tent
perturbation growth and the hydrodynamic instabilities due to shocks and the strong
inward acceleration.
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Figure 1.5 – Temperature and density contours of low-foot (left) and high-foot
(right) implosions simulation of an indirect drive inertial confinement fusion tar-
get using the radiation hydrodynamic code HYDRA [Marinak et al. 2001]. The top
images show the computational results for a radius of 200µm while the bottom images
the contours of temperature and density at the bang time. Figure adapted from Clark
et al. (2016).

1.4 From ICF radiative hydrodynamics simulation
to idealized simulation framework

At the moment, many results of ICF implosions simulation exist [Clark et al.
2015; 2016, Weber et al. 2014a; 2017]. They have been used to study multiple as-
pects of actual ICF experiments. These simulations take into account all the physical
phenomena that are important in an ICF context (radiation, alpha heating, alpha
burn). However, usually, they did not take into account transport coefficients, al-
though recently Weber et al. (2014a) have shown how important it is to take into
consideration viscosity to have a realistic representation of the small scale behavior of
the flow in the hot-spot. Clark et al. (2016) in the simulations presented in section 1.3
take into consideration the viscosity, but they do not consider the effect of molecular
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diffusivity.
The different physical mechanisms in action during an ICF compression are chal-

lenging to disentangle if one uses the full simulations just described. A solution is
to employ idealized theoretical frameworks allowing to isolate one phenomenon from
the others, and in that way, have a deeper comprehension of the involved physics. As
an example, in Figure 1.6, we show different levels of idealization for an inertial confi-
nement fusion implosion. For instance, one can discard all the nuclear physics effects
and radiative effects, leaving a problem of a spherical mixing zone between a heavy
and light material under compression. Furthermore, one can make the hypotheses
that locally, the spherical mixing zone could be approximated by a plane mixing
layer under the effect of vertical acceleration, leaving with a Rayleigh- Taylor pro-
blem. The last step would be to consider the center of the planar mixing zone where
inhomogeneous effects are negligible so that one can study homogeneous problems.

In this thesis, we have chosen to study two of the three idealized configurations
depicted in Figure 1.6. In particular, we choose to study the compression of spherical
turbulent mixing zones composed by Deuterium-Tritium (DT) and Carbon-Hydrogen
(CH) in the plasma state, taking into consideration plasma transport coefficients.
At the same time, we have used homogeneous turbulence simulations whereby we
investigated compressed turbulent plasma and the unstably stratified homogeneous
turbulence using the variable density approximation.

The next two sections are dedicated to introducing the two main subjects of
this thesis, namely : variable viscosity effects in turbulent flows and variable density
turbulence.
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Figure 1.6 – Different levels of idealization to study inertial confinement fusion
implosion.

1.5 Variable viscosity flows
Variable viscosity flows, are not specific of the ICF context, but on the contrary

represent an important part of real-life flow. From geophysics [Turner and Campbell
1986, Christensen and Harder 1991] to Magnetohydrodynamics (MHD) [Pantokrato-
ras 2008, Makinde et al. 2016], from re-entry vehicle aerodynamics [K. Reddy and
Sinha 2009] to blood vessel simulation [Layek et al. 2009], from oil industry applica-
tions [Joseph et al. 1997] to rising plumes [Carey and Mollendorf 1980].

Viscosity variations, in many real cases due to viscosity stratification, play an
essential role in the stability of parallel flows. For instance, Govindarajan and Sahu
(2014) have reviewed these effects. They highlight the importance of viscosity varia-
tions even at high Reynolds numbers, which can alter the stability of the flow.

Most of the cited works are either theoretical or numerical. One of the first ex-
perimental investigations on the nature of flows with different viscosities is due to
Campbell and Turner (1985). They studied the injection of a fluid of low viscosity ν1
in a host fluid with a higher viscosity ν2 and higher density. When the ratio ν2/ν1 is
close to one, classical turbulent mixing phenomenology is found, while when this vis-
cosity ratio increases, at fixed Reynolds number, the mixing is less and less effective
until a critical viscosity ratio when it is inhibited.

Talbot (2009) conducted an experimental study using a propane jet issuing into
an air/neon mix. This setting was chosen because of the lower viscosity of propane
with respect to the air/neon mix. Moreover, it allows the author to investigate the
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effects of viscosity variations in fluid with almost similar densities. These results were
then confronted with ones obtained for a case where the jet and the host fluid have
identical viscosity, air into air. Talbot (2009) proves that the efficacy of the mixing,
is higher for the jet with variable viscosity with respect to the constant viscosity
case, with the same initial momentum. Moreover, he shows how viscosity variations
influence velocity signals, shown in Figure 1.7 for the two jets, at a position with
the same local Reynolds number. In particular, from Figure 1.7, we can see that the
turbulence developed by the variable viscosity jet has higher frequency fluctuations,
suggesting the presence of finer structure with respect to the constant viscosity jet.

Figure 1.7 – Instantaneous velocity signals on the axis of : (Left) a jet with the
same viscosity of the issuing fluid, (right) jet with lower viscosity of the issuing fluid.
From Talbot (2009)

Concerning more fundamental aspects of variable viscosity turbulence, most of
the investigations were concentrated on the Homogeneous Isotropic Turbulence (HIT)
decay. One of the first works by Lee et al. (2008) used direct numerical simulation
of mixing of two fluids with different viscosities showing that the Taylor postulate,
independence of dissipation from viscosity, is still valid in this type of fluid mixtures.
Gréa et al. (2014) using DNSs and the Eddy Damped Quasi-Normal Markovian
(EDQNM) spectral model show that in the case where viscosity depends linearly on a
scalar field, the effective viscosity is proportional to the viscosity fluctuations variance
and it is lower than the mean viscosity. A recent investigation by Gauding et al. (2018)
confirmed the results of Lee et al. (2008), and they show how in variable viscosity
HIT there is an increased level of small scales intermittency due to the presence of
smaller scales in the low viscosity region of the flow. Moreover, they demonstrate
the presence of an inverse energy cascade contribution, from small to large scales,
due to the viscosity gradients. The possible effects of viscosity on the large scales of
turbulence is evidenced by Voivenel et al. (2017), who investigated the entrainment
of a jet issuing in a more viscous ambient fluid, found that variable viscosity affects
the dynamics of the flow at all scales. Moreover, Danaila et al. (2017) using the same
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experience as Voivenel et al. (2017) showed how the similarity assumption for the jet
is valid in regions where the viscosity is uniform but is not valid anymore in regions
where the flow has intense viscosity gradients.

Figure 1.8 – Concentration plots of the two dimensional Rayleigh-Taylor compu-
tation, for different characteristic domain sizes. The leftmost results was obtained
without plasma transport coefficients, the others corresponds to the spacial scales
indicated just below every plot. From Haines et al. (2014b)

Unlike in the works mentioned above, viscosity in ICF increases during the com-
pression due to the growth of temperature, and its effect become more and more
important as compression progresses. Weber et al. (2014a) show that thanks to the
viscosity growth into the capsule hot-spot, small scale fluctuations are entirely sup-
pressed. On the same subject, Haines et al. (2014b) provided examples of plasma
viscous effects on instability growth. The authors performed two-dimensional hy-
drodynamic simulations of Rayleigh-Taylor and Kelvin-Helmholtz instabilities with
plasma transport coefficients, at a fixed temperature of 1 keV . They found that if the
characteristic length of the instability is small enough, around ∼ 100µm, viscosity
effects become noticeable, and they are dominant at smaller scales, around ∼ 1µm.

1.6 Variable density turbulence
The usual approximation in the fundamentals studies on buoyancy-driven mixing

is the Boussinesq approximation [Boffetta and Mazzino 2017], which assumes incom-
pressible flows and small variation in the density. However, in most of the applications,
these assumptions may become limiting. Density variation may become important in
certain types of flows, and consequently, their effects have to be carefully taken into
account. Moreover, the Boussinesq approximation assumes symmetry in the mixing ;
it does not differentiate the mixing of a heavy in a light material or the inverse. A
famous example was given by Miller et al. (2005), and it is shown in Figure 1.9.
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Figure 1.9 – Vertical slices of a Rayleigh-Taylor simulation at Atwood number of
0.5, one of which is upside down. From Miller et al. (2005)

Sandoval (1995), in his thesis, introduced the theoretical framework of the va-
riable density turbulence. His work was based on the evidence, provided by Joseph
and Renardy (1993), that the mix of two incompressible flows, i.e. flows in which the
velocity field, u, is solenoidal ∇ · u = 0, is no longer incompressible and the diver-
gence of the velocity field depends on the density, ρ, and the diffusion coefficient, D,
variations i.e.

∇ · u = −∇ ·
(
D
ρ
∇ρ

)
.

Within this approximation, acoustic phenomena are decoupled from the problem,
and the density is not dependent on pressure, meaning that with this assumption, only
low Mach number (the ratio between the flow velocity and the speed of sound) flows
can be studied. Sandoval used this approximation to investigate the turbulent mixing
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generated by buoyancy effects, with the idea to improve one and two-point turbulence
models. He used direct numerical simulations of the Navier-Stokes equations to study
the decay of homogeneous isotropic and buoyancy generated turbulence with variable
density effects. In both cases, Boussinesq approximation was not applicable, because
the ratio between the initial rms value of the density fluctuations and the initial mean
density was higher than 0.1.

Livescu and Ristorcelli (2007; 2008) have performed direct numerical simulations
of buoyancy-driven turbulence, with different initial conditions. They evidenced that
the pure light fluid mixes more rapidly than the pure dense fluid and that when
the density contrast grows, one of the limiting factors from a numerical resolution
point of view is the sharp gradients in the density field. Rao et al. (2017) studied the
L2−spatial average of the density gradient, evidencing the intense mixing of density
field at small scales in buoyancy-driven turbulence and, also, the possible blow-up of
density gradient in a finite time.

From an experimental point of view Prestridge (2018) provided a review of the
experimental efforts in the investigation of variable density mixing. For instance, the
author evidenced that, there are peculiarities in variable density mixing related only
to density effect, but independent on the way mixing has started. On the same note,
Gerashchenko and Prestridge (2015) evidenced how the same non-Boussinesq mecha-
nism, that modifies the mixing in a high-density jet issuing in a low-density ambient
fluid is the same that was identified in homogeneous buoyancy-driven turbulence by
Livescu and Ristorcelli (2007) and in Rayleigh-Taylor mixing layer by Livescu et al.
(2010). In particular, they found that buoyancy has a considerable impact on turbu-
lent quantities such as velocity fluctuations, turbulent kinetic energy, and Reynolds
stresses and that the higher is the Atwood number of the jet, the slower is the mixing.
In a following investigation on the same experimental set-up Charonko and Prestridge
(2017) found a negative turbulent kinetic energy production near the center of the
dense jet, i.e. the mean flow receive energy from the fluctuations. To better unders-
tand this phenomenon, Lai et al. (2018) derived a Karman-Howarth-Monin equation
for variable density turbulence to investigate the energy scale-by-scale budget in the
jet. They identified the total inter-scale energy transfer rate across a scale r, as the
sum of a linear ΠU and nonlinear contribution Π. The linear contributions take into
account vortex stretching and other effects from the mean flow gradient, while the
nonlinear term is the classical energy cascade. These transfers are depicted in Fi-
gure 1.10. The overall net inter-scale transfer is similar for the two jets, but in the
Boussinesq jet, the two terms Π, and ΠU have the same sign, and both contribute
to the forward cascade from large to smaller scales. In the non-Boussinesq case, the
linear term has a positive sign, indicating an inverse cascade from small to larger
scales.

As an example of the difference between variable density and Boussinesq ap-
proximation, we show the results of a spherical mixing zone compression. In this
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Figure 1.10 – Energy transfer mechanism in Boussinesq top and non-Boussinesq
jets. From Prestridge (2018)

simulation, the mixing zone is composed of a heavy material that surrounds a light
material, with Atwood number equal to 0.7. The compression forces accelerate the
mixing layer towards the center of the spherical shell, leading to a Rayleigh-Taylor
flow in spherical geometry. In Figure 1.11 are plotted the contours of θ, a density re-
lated quantity (the definition of θ, is given in chapter 2). These results are computed
using the codes described in chapter 2 and 3. From the same initial condition in (I),
the two simulations at the instant (II) show a different flow topology. In the Boussi-
nesq computation, the light/heavy and the heavy/light sides of the mixing zone have
the same flow structure, as already pointed out in Figure 1.9. On the other hand,
if we observe the variable density results, we find a difference between the flow that
is developing in the light material and the one in the heavy material. At the center
of the capsule, we observe spikes of heavy materials penetrating, without the typical
mushroom topology, that, on the contrary, we observe in the Boussinesq case. This
is due to the higher inertia of the heavy material that avoids the development of the
Kelvin-Helmholtz instability that causes the mushroom shape. The higher inertia is
also the cause of the slow mixing of the heavy fluid with respect to the lighter fluid,
as observed by Livescu and Ristorcelli (2007; 2008).
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Figure 1.11 – Contours of θ, a density related quantity, at three instants during the
compression of a spherical mixing zone. (Top) Results obtained using the Boussinesq
approximation. (Bottom) Results obtained with the variable density approximation

1.7 Plan of the thesis
The plan of the thesis is the following :
In chapter 2, we present the theoretical developments that allow us to investigate

the different topics covered in this thesis, the compressed turbulence, the spheri-
cal turbulent mixing zone, and the unstably stratified homogeneous turbulence. In
chapter 3, we give an overview of the numerical methods used to solve the equation
derived in 2 together with the validation steps for the new code developed.

In chapter 4, we consider a weakly coupled plasma of hydrogen under compression
and we investigate the possible influence of initial condition on the sudden dissipation
effect, knowing that classically, turbulence has a dependence on initial conditions. To
this end, we use the direct numerical simulations of the equation derived in chap-
ter 2 together with a spectral model, knowing that the DNS code cannot explore
high Reynolds number flows. We use the eddy damped quasi normal markovian (
EDQNM) closure, knowing that the classical version is capable of simulating the de-
cay of homogeneous isotropic turbulence for high Reynolds number. With this model,
we perform a parametric study of the compression as a function of the initial Rey-
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nolds number and compression number to understand the sensitivity of the sudden
dissipation effect to the initial conditions. We establish, theoretically, the connection
between initial condition and the statistical proprieties of the flow during compres-
sion, to have analytical relations between initial and final states. Furthermore, we
extend our analysis to an inhomogeneous spherical configuration.

However, the analysis of chapter 4 does not take into consideration the den-
sity field, that is why we introduce the Unstably Stratified Homogeneous Turbu-
lence (USHT) approximation in chapter 5. In this chapter, with constant viscosity
and diffusivity, with the help of direct numerical simulations, we investigate the ef-
fects of the intensity of the initial density field variance on the self-similar states of
USHT, confronting the results of simulations with both variable density and Bous-
sinesq approximations. Moreover, using Implicit Large Eddy Simulations (ILES), we
investigate how different initial conditions affect the self-similar behavior of the flow.

Finally, in chapter 6, we analyze the influence of the molecular and turbulent
diffusivity on the evolution of the fuel/ablator mixing zone and the hot spot conta-
mination. To pursue this analysis, we have derived the equation for a spherical mixing
zone under compression with the variable density approximations. In order to be able
to simulate the DT/CH mixtures, we have integrated into the direct numerical simu-
lation code, a plasma physics model capable of predicting the transport coefficient
values in a plasma mixture for different thermodynamic conditions.
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In this chapter, we introduce the different theoretical frameworks that have been
used through this work. In section 2.1, we introduce the subject of compressed tur-
bulence and the change of reference frame, a useful tool in this study. The problem
of mixing in variable density unsteady stratified homogeneous turbulence is discus-
sed in section 2.2. Section 2.3 is focused on spherical compression, with a summary
of the literature findings and the theoretical framework that we have developed for
this work. Finally, section 3.4 is devoted to the discussion on how to generate initial
conditions for the different cases discussed.

2.1 Compressed turbulence
The problem of compressed turbulence has drawn much attention for several

years. From reciprocating engines to astrophysics and inertial fusion applications,
the interaction between turbulence and the mean compressing field is a fundamental
aspect to understand. The relative importance between the effect of the mean field
and the nonlinear interactions can be quantified by the time scale associated with
the mean field tM and to the turbulence tF [Hamlington and Ihme 2014], and their
ratio

CM = tF
tM

When CM � 1, the turbulence dynamic is mainly influenced by the mean flow, and
the nonlinear transfer and viscous dissipation can be neglected. In this regime, nume-
rous authors have used the Rapid Distortion Theory (RDT) [Hunt and Carruthers
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1990] to obtain theoretical results and improve existing turbulence models. The RDT
demonstrates, even if in a limit case, how the compression affects turbulence and pro-
vides theoretical solutions against which turbulence models can be tested [Cambon
et al. 1992, Coleman and Mansour 1993, Blaisdell et al. 1996, Durbin and Zeman
1992, Hamlington and Ihme 2014].

When compression and turbulence have similar time scales, i.e. CM ∼ 1, RDT
hypotheses are no longer valid and Direct Numerical Simulation (DNS) of the Navier-
Stokes equations become useful to investigate the physics of this problem. Rogallo
(1981) and Wu et al. (1985) performed DNS of compressed turbulence and applied
their results to improve turbulence models. In particular, they have studied a case
where compressibility does not affect the fluctuating field, i.e. the turbulent Mach
number MT = urms

c
is close to zero (here urms is the rms velocity of the turbulent

fluctuations and c the speed of sound). In his paper, Rogallo (1981) proposed a mean
velocity field together with a coordinate system that moves with the mean flow, that
have been employed in most of the works on isotropic compression [Cambon et al.
1992, Coleman and Mansour 1993, Blaisdell 1991, Davidovits and Fisch 2016a]. The
extension to compressible turbulence has been done by Blaisdell (1991), who removed
the low Mach number hypothesis and performed a direct numerical simulation.

In this work, we use the same method as in Rogallo (1981). We start from Navier-
Stokes and mass conservation equations with constant dynamic viscosity µ

∂t(ρUi) + ∂j(ρUjUj) = −∂iP + µ∂2
jjUi (2.1)

∂tρ+ ∂j(ρUj) = 0 (2.2)

in a stationary Cartesian reference frame with space coordinates xi and time t.
The density ρ, pressure P and velocity Ui are decomposed into base and fluctua-

tion :
ρ = ρB + ρ′ (2.3)

P = PB + p (2.4)

Ui = UB
i + ui (2.5)

and density fluctuations, ρ′, are neglected using the low Mach number hypothesis. The
assumption ρ′ � ρ holds during an isotropic compression while it is not necessarily
true for non-isotropic compression, as shown by Coleman and Mansour (1993) and
reference therein. If we consider homogeneous velocity fluctuations ui, the base flow
velocity in Eq. (2.5) must have uniform spatial gradient [Sagaut and Cambon 2008].
This requires that the base velocity UB(x, t) be a linear function of position xi and
time t

UB
i (x, t) = −Sijxj, (2.6)
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where the tensor deformation Sij depends only on time ; in isotropic compressions its
expression simplifies as Sij = S(t)δij, allowing us to define the compression rate S(t).
The assumption in this type of compression is to consider uniform base density,

ρB = ρB(t).

Together with the base velocity expression (2.6) and the continuity equation (2.2),
this gives the time evolution of the base density :

ρB = ρB0 exp
(

3
∫ t

0
S(s)ds

)
, (2.7)

where ρB0 is the base density at initial time t = 0.
If we consider a cubic domain with edge length R(t) we can define the compression

parameter Λ as the normalized size of the domain, Λ = R(t)
R0

, and we observe that
both R(t) and Λ decrease in time.

The volume of the cubic domain is V (t) = R(t)3, which implies that the base
density can be written as a function of the compression parameter ρB(t) = ρ0Λ(t)−3.

Using Eq. (2.7) we find the relation between the compression time rate and the
compression parameter

Λ = exp
(
−
∫ t

0
S(s)ds

)
or S(t) = − 1

Λ
dΛ
dt

(2.8)

and we rewrite the time evolution of the base density as

ρB = ρB0 Λ−3. (2.9)

Injecting the base/fluctuations decomposition from Eqs. (2.3), (2.4), (2.5) for Ui, P ,
ρ in Eq. (2.1), and applying the volume average operator 〈∗〉, we obtain an equation
for the base flow

∂tU
B
i + UB

j ∂jU
B
i = −∂iP

B

ρB
− ∂j〈uiuj〉, (2.10)

and ∂j〈uiuj〉 is zero for spatial homogeneity. If needed we can use (2.10) to obtain
the base pressure PB, from the knowledge of the base velocity.
The equation for the perturbation

∂tui + UB
j ∂jui + uj∂jU

B
i + uj∂jui = −∂ip

ρB
+ µ

ρB
∂2
jjui (2.11)

using the expression for the base velocity becomes

∂tui + uj∂jui − S(t)xj∂jui − S(t)uj = −∂ip
ρB

+ µ

ρB
∂2
jjui. (2.12)



30 Chapitre 2. Theory

The inhomogeneous term can be eliminated using a change of reference frame
[Rogallo 1981] :

x̃i = Λ−1(t)xj (2.13)

The detailed computation that shows how to choose the particular transformation
is developed in appendix A. Using (2.13) and (2.9) in the perturbation momentum
equation (2.12) we obtain

∂tui + 1
Λuj∂jui − S(t)ui = −Λ2∂ip+ Λ µ

ρB0
∂2
jjui. (2.14)

At this point we have two possibilities to further simplify this equation :
— We can eliminate the forcing term −S(t)uj.
— We can eliminate the time dependence due to Λ in front of the viscous term.

In the first case the rescalings of the variables are [Cambon et al. 1992, Viciconte
et al. 2018]

ũi(x̃, t̃) = ui(x, t)Λ(t), t̃ =
∫ t

0 Λ−2(s)ds, p̃(x̃, t̃) = p(x, t)Λ5(t) (2.15)

and the corresponding equation is

∂t̃ũi + ũj∂jũi = −∂ip̃+ Λ3(t) µ
ρB0
∂2
jjũi (2.16)

In the second case [Davidovits and Fisch 2016a]

ũi(x̃, t̃) = ui(x, t)Λ−2(t), t̃ =
∫ t

0 Λ(s)ds, p̃(x̃, t̃) = p(x, t)Λ−1(t) (2.17)

and the corresponding equation becomes

∂t̃ũi + ũj∂jũi + 3S(t)
Λ ui = −∂ip̃+ µ

ρB0
∂2
jjũi. (2.18)

In equations (2.14), (2.16) and (2.18) the spatial operators are to be considered in
the moving frame, depending on x̃i.

2.2 Unstably stratified homogeneous turbulence
Turbulent mixing driven by buoyancy forces is an important phenomenon com-

mon to different fields, from astrophysics to inertial confinement fusion. In these
contexts, to investigate the fundamental properties of the turbulence generated by
baroclinic instabilities, the homogeneous approximation is an alternative to the full
inhomogenous simulation of mixing zones.
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Figure 2.1 – Unstably stratified homogeneous turbulence approximation with res-
pect to a Rayleigh-Taylor simulation. (From Griffond et al. (2015a)).

This approximation, called Unstably Stratified Homogeneous Turbulence (USHT)
[Griffond et al. 2014], applies at the center of a fully developed mixing zone, as de-
picted in Figure2.1, where the separation between the mean density gradient and the
integral scale of the turbulence allows the decoupling between the mean inhomoge-
nous flow and the homogeneous fluctuations. With respect to the complete configura-
tion of full Rayleigh-Taylor mixing, the USHT approximation removes inhomogeneity
and transport mechanisms but conserves the similar properties regarding buoyancy
production, nonlinear transfers, and dissipation.

Most investigations on USHT [Burlot et al. 2015a, Gréa et al. 2016b] have used
the Boussinesq approximation, which is only adapted when the density fluctuations
are small compared to the mean value. To extend the homogeneous approximation
to more general cases, we derive the unstably stratified homogeneous turbulence
equations using the variable density approximation. As explained in section 1.6, this
approximation was introduced by Sandoval (1995) to study the decay homogeneous
turbulence with buoyancy effects, generated by the mixing between light and dense
fluids.

In this section, we will reformulate the theoretical framework for variable den-
sity buoyancy-driven turbulence decay to obtain a non-decaying flow sustained by
buoyancy forces i.e. USHT flow.

We consider the mixing of two materials with different densities but with the same
dynamic viscosity µ and diffusivity D. We start from the conservation equations for
momentum ρUi, mass ρ, species ρYα, where Ui are the velocity components and Yα
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is the mass fraction of the material α = 1, 2 :

∂tρUi + ∂jρUiUj = −∂iP + ∂jτij + ρgδi3 (2.19)
∂tρ+ ∂jρUj = 0 (2.20)
∂tρYα + ∂jρUjYα = D∂j(ρ∂jYα) (2.21)

where g is the gravity acceleration and τij is the viscous tensor defined by

τij = µ
(
∂jUi + ∂iUj −

2
3∂kUkδij

)
.

We add to the system a mixing law :
1
ρ

= Y1

ρ1
+ Y2

ρ2
(2.22)

where ρ1 and ρ2 are the local microscopic densities of each species, assumed constants
and not equal to one another.

Using the same approach as Sandoval (1995) and Livescu and Ristorcelli (2007),
we start from equation (2.21) for the conservation of species, that, using the conser-
vation of mass (2.20), reduces to

∂tY1 + Uj∂jY1 = 1
ρ
D∂j(ρ∂jY1), (2.23)

where without loss of generality we have chosen α = 1. The mixing law (2.22) is
rearranged to express Y1 as a function of the density ρ

Y1 = A

ρ
−B with A = ρ1ρ2

ρ2 − ρ1
and B = ρ1

ρ2 − ρ1
. (2.24)

Injecting (2.24) in equation (2.23) we have

∂tρ+ Uj∂jρ = ρD∂j
(
∂jρ

ρ

)
. (2.25)

The comparison of (2.25) with the equation for conservation of mass leads to the
following

∂jUj = −D∂j
(
∂jρ

ρ

)
, (2.26)

that is, a relation expressing the dependence of the velocity field compressibility on
the mixture density.

We use Eqs (2.25) and (2.26) together with the conservation of momentum (2.19)
to have a closed system of equation in the variable density approximation

∂tUi + Uj∂jUi =− ∂iΠ− Π∂iΘ + gδi3 + ν∂j [(∂jUi + ∂iUj)]
+ ν (∂jUi + ∂iUj) ∂jΘ, (2.27)
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∂tΘ + Uj∂jΘ = D∂2
jjΘ, (2.28)

∂jUj = −D∂2
jjΘ. (2.29)

Π is the reduced pressure P
ρ
and Θ is a new scalar value defined as a Θ = log

(
ρ
ρ0

)
,

where ρ0 is a reference density. At this point we use the Reynolds decomposition :

Ui = 〈U〉i + ui (2.30)
Θ = 〈Θ〉+ θ (2.31)

and we assume homogeneity, in order to obtain the equations for the fluctuating
quantities, i.e. their statistical properties do not vary with position in space. One
of the hypotheses of the USHT approximation is that 〈U〉3 and ∂3〈Θ〉 are uniform,
together with 〈U〉1 = 0 and 〈U〉2 = 0.
Using Eq. (2.29), with the previous assumptions, we obtain for the mean and fluc-
tuations :

∂3〈U〉3 = −D∂2
33〈Θ〉 ⇒ 〈U〉3 = −D∂3〈Θ〉+ f(t)

∂juj = −D∂2
jjθ.

Furthermore, we impose the function f(t), such that 〈U〉3 = 0.

2.2.1 Equations for the scalar Θ
Starting from Eq. (2.28) and decompositions (2.30) and (2.31), we obtain the

following equation for the mean 〈Θ〉

∂t〈Θ〉+ 〈uj∂jθ〉 = D∂2
jj〈Θ〉 (2.32)

and the fluctuation θ

∂tθ + uj∂jθ − 〈uj∂jθ〉+ uj∂j〈Θ〉 = D∂2
jjθ

but ∂j〈Θ〉 = ∂3〈Θ〉 so that

∂tθ + uj∂jθ − 〈uj∂jθ〉+ u3∂3〈Θ〉 = D∂2
jjθ. (2.33)

2.2.1.1 Equations for ui

The same reasoning can be applied to the momentum equation (2.27). With the
decomposition of the reduced pressure Π = 〈Π〉 + π, the mean momentum equation
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is

∂t〈U〉i + 〈U〉j∂j〈U〉i + 〈uj∂jui〉+ 〈Π〉∂i〈Θ〉 − 〈π∂iθ〉 =− ∂i〈Π〉+ gδi3 + ν∂2
jj〈U〉i+

+ ν (∂j〈U〉i + ∂i〈U〉j) ∂j〈Θ〉
+ ν∂i (∂j〈U〉j)

and knowing that 〈U〉i = 0 we have

〈uj∂jui〉+ 〈Π〉∂i〈Θ〉 − 〈π∂iθ〉 = −∂i〈Π〉+ gδi3. (2.34)

The equation for the fluctuating part is

∂tui + uj∂jui − 〈uj∂jui〉+ π∂iθ − 〈π∂iθ〉 =− ∂iπ − 〈Π〉∂iθ − π∂3〈Θ〉δi3 + ν∂2
jjui

+ ν∂i (∂juj) + ν (∂jui + ∂iuj) ∂jθ
+ ν (∂3ui + ∂iu3) ∂3〈Θ〉. (2.35)

The homogeneity required for the fluctuations imposes that 〈Π〉 does not depend on
space. The same condition holds for ∂3〈Θ〉. From the mean velocity equations (2.34),
that assuming turbulent quantities are small enough, there is a relation between two
mean quantities 〈Π〉 and 〈Θ〉 : in fact we have 〈Π〉∂3〈Θ〉 = g. The gradient of 〈Θ〉 is
related to the mixing zone size L via

∂3〈Θ〉 = 1
L

(2.36)

so that Eq. (2.33) and (2.35) become

∂tui + uj∂jui + π∂iθ =− ∂iπ − gL∂iθ −
1
L
πδi3 + ν∂2

jjui

+ ν∂i (∂juj) + ν (∂jui + ∂iuj) ∂jθ

+ ν

L
(∂3ui + ∂iu3) (2.37)

∂tθ + uj∂jθ = D∂2
jjθ −

1
L
u3 (2.38)

∂juj = −D∂2
jjθ. (2.39)

Assuming small fluctuations for θ, we can write the equations for the Boussinesq
case :

∂tui + uj∂jui = −∂iπ + gθδi3 + ν∂2
jjui (2.40)

∂tθ + uj∂jθ = D∂2
jjθ −

1
L
u3 (2.41)

∂juj = 0. (2.42)
For both variable density and Boussinesq approximations, we introduce the

buoyancy frequency
N =

√
g

L
. (2.43)
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2.3 Spherical compressions
In section 2.1, we have discussed the isotropic compression of homogeneous iso-

tropic turbulence. In this section, we discuss the same isotropic compression, but in
the case of a spherical mixing zone. A sketch representing the two configurations is
shown in Figure 2.2. We make the hypothesis that the mixing layer is generated by
the implosion of a capsule of plastic containing a mix of deuterium and tritium, a
configuration of interest for inertial confinement fusion application.

(a) (b)

Figure 2.2 – Sketches of the isotropic compressions for the (a) homogeneous isotropic
case of section 2.1 (b) spherical compression case of section 2.3. The dashed line
represents the initial condition while the solid line represents a later time during the
compression.

The investigations of mixing in converging spherical geometry have been concen-
trated mostly on the curvature effect on the baroclinic instability that may develop
at the interface.

The first investigations are due to Bell (1951) and Plesset (1954). They used a
potential flow approach to study the stability of an accelerated interface between
two incompressible fluids. They found a geometric influence that has a major role in
the development of instabilities, especially in case of compressions with a large ratio
between the initial and final radii. Further investigation by Chandrasekhar (1955)
showed the role of viscosity, in particular on the selection of the most unstable modes
during the compression.

The following works by Mikaelian (1990) and Amendt (2006) were dedicated to
extending the investigation on Rayleigh-Taylor instability in spherical geometry with
the objective of developing a model for inertial confinement fusion application. Other
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works by Prosperetti (1977) and Lin et al. (2002) concentrated on the application of
bubbles collapse. Sakagami and Nishihara (1990) presented the first direct numerical
simulation of the three-dimensional problem. In this paper, they were able to inves-
tigate both linear and nonlinear regimes of the spherical perturbation growth, and
they found a good agreement for the linear evolution, between theoretical prediction
and simulation results.

Youngs and Williams (2008) proposed an implosion problem and investigated
the role of the mesh refinement and dissipation on turbulent statistics. Lombardini
et al. (2014a) using a Large Eddy Simulations (LES) studied the Richtmyer-Meshkov
driven mixing in low convergence ratio spherical implosion. They evidenced how
Bell-Plesset effect has little impact on the dynamics of the imploding mixing layer.
In particular, they show how the mean flow is dominated by baroclinic instabilities
(Richtmyer-Meshkov, Rayleigh-Taylor) and the turbulent fluctuation inertial sub-
range approaches the same behavior that is obtained in planar geometry.

In the present study, we suppose that a shock wave has already deposited the
vorticity at the interface between the external ablator and the fuel and that the
spherical mixing zone at this instant has radius R.

2.3.1 Navier-Stokes for binary mixtures

We use the same conservation equations (2.19)-(2.21), where the variables depend
on time t and position x relative to a cartesian stationary reference frame and we
recall that Yα is the mass fraction of the material α = 1, 2. Moreover, we add an
equation for the temperature T , as well the ideal gas law, which, in the regimes
considered is good approximation for the equation of state (see for instance Vold
et al. (2015)).

∂tρUi + ∂jρUiUj = −∂iP + ∂jτij, (2.44)
∂tρ+ ∂jρUj = 0, (2.45)
∂tρYα + ∂jρUjYα = ∂jφj,α, (2.46)
nkB
γ − 1(∂tT + Uj∂jT ) = −P∂jUj + ∂j(κ∂jT ) + ∂iUjτij, (2.47)

P = nkBT. (2.48)
(2.49)

where P is the pressure, n is the number density of particles, γ = 5/3, kB is the
Boltzmann constant, and κ the temperature diffusion coefficient. The viscous stress
tensor is modelled with a Newtonian constitutive law and the diffusive flux with a
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Fickian law :

τij = µ(x, t)
(
∂jUi + ∂iUj −

2
3∂kUkδij

)
φj,α = ρD(x, t)∂jYα,

and we consider that transport coefficients ν and D are functions of space xi and
time t. In order to close the system we provide the mixture law for a general two-
component mixture with elements 1 and 2 :

1
ρ

= Y1

ρ1
+ Y2

ρ2
with ρ1 = nM1

1 + Z1
and ρ2 = nM2

1 + Z2
(2.50)

with Zα and Mα the ionization number and the atomic mass of species α = 1, 2.

2.3.2 Base flow and perturbation
In the following we will consider the solution of the previous equations (2.44)-

(2.48) as a superposition of a baseflow and a perturbation, that is, if F (x, t) is one
of the unknowns of the problem, we can write it as

F (x, t) = FB(x, t) + f(x, t). (2.51)

2.3.2.1 Base Flow

In this part we propose to characterize the base flow. In section 2.1 we have
already chosen the base component of the velocity field in 2.6. Due to the spherical
symmetry of the problem, we propose to derive the base components depending only
on the radius r.

First the base velocity is rewritten as

UB
i (r, t) = −S(t)xi. (2.52)

From the density equation in spherical coordinates

∂tρ
B + 1

r2∂r
(
r2ρBUB

)
= 0 (2.53)

and substituting the expression (2.52) for UB(r, t), we obtain an equation for the
base density ρB :

∂tρ
B − rS(t)∂rρB = 3S(t)ρB (2.54)

that admits self-similar solution in the form

ρB(r, t) = ρ0Λ(t)−3G
(
r

Λ

)
. (2.55)
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The base temperature equation, neglecting thermal diffusion, reduces to a form that
resembles (2.54) :

∂tT
B − rS(t)∂rTB = 3(γ − 1)S(t)TB (2.56)

with a solution :
TB(r, t) = T0Λ(t)−3(γ−1)H

(
r

Λ

)
. (2.57)

To obtain the equation for the base number density of particle nB, we use the mixing
law (2.50)

ρY1 = An+Bρ (2.58)

A = M1M2

M2(1 + Z1)−M1(1 + Z2) (2.59)

B = M1(1 + Z2)
M2(1 + Z1)−M1(1 + Z2) (2.60)

together with Eq. (2.46). Neglecting the diffusive term, we get

∂tn
B + 1

r2∂r
(
r2nBUB

j

)
= 0 (2.61)

that has a self similar solution

nB(r, t) = n0Λ(t)−3G
(
r

Λ

)
. (2.62)

From the equation of state we deduce that the base pressure

PB(r, t) = P0Λ(t)−3γG
(
r

Λ

)
H
(
r

Λ

)
(2.63)

and the reduced base pressure

ΠB(r, t) = PB

ρB
= Π0Λ(t)−3(γ−1)H

(
r

Λ

)
(2.64)

We assume that G(0) = G0 = H(0) = H0 = 1. This means that the subscript 0
corresponds to the initial value at the center of the capsule.

Let us consider the case whereG
(
r
Λ

)
= 1, corresponding to a uniform base density.

Using the momentum equation, (2.44) for the base component and neglecting viscous
effect we obtain (

−dS(t)
dt

+ S(t)2
)
r = −∂rΠB(r). (2.65)
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This equation has a solution if ΠB is a quadratic function of the radius r. This
requirement determines the expression of the self similar function H

(
r
Λ

)
:

H(r, t) = 1− r2

η2Λ(t)2 and ΠB(r, t) = Π0Λ(t)−3(γ−1)
(

1− r2

η2Λ(t)2

)
(2.66)

where η is the characteristic scale of the temperature gradient. With this choice of
ΠB, Eq. (2.65) reduces to

− dS(t)
dt

+ S(t)2 = −2Π0

η2 Λ(t)−3γ+1 (2.67)

that can be rewritten using the relation between the compression parameter and the
compression rate (2.8) :

d2Λ(t)
dt2

+ Ω2
0Λ(t)−3γ+2 = 0 with Ω0 =

√
2Π0

η2 . (2.68)

This equation is solved with initial conditions

Λ(0) = 1 and dΛ
dt

(0) = S0

and γ = 5/3 (monoatomic gas). Finally the evolution of Λ with time is

Λ(t) =
√

1− 2S0t+ (S2
0 + Ω2

0)t2 (2.69)

where S0 = S(0), i.e. the compression rate at the beginning of the simulation. The
value of Ω0 is specified by fixing S0 and assigning the minimum value of Λ :

Λmin = Ω0√
Ω2

0 + S2
0

so that Ω0 =

√√√√ S2
0Λ2

min

1− Λ2
min

. (2.70)

The choice of Λmin, imposes the convergence ratio, that is defined as the ratio between
the initial, R0, and final radius Rend, CR = R0

Rend
, so that is the inverse of Λmin. These

choices are also important because Ω0 is linked to the characteristic scale of the
temperature gradient h, through the relation (2.68). Therefore it is worth exploring
how the choices of S0 and Λmin influence the time evolution of the compression
parameter Λ and the radial evolution of the self-similar function H(r, t).

We plot Λ as function of time in Figure 2.3. In Figure2.3a we consider a constant
S0 but different values Λmin. If Λmin is sufficiently small, the compression parameter
curves are similar, only with different values at t = 1 ns. The other effect illustrated
in Figure 2.3 is a difference in the time of the minimum of Λ, in particular,

tmin(Λ) = 1− Λ2
min

S0
(2.71)
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if in this equation Λmin is sufficiently small, the compression time tmin(Λ) depends only
on S0. We explore the compression parameter dependence on the initial compression
rate S0 at fixed Λmin (or fixed convergence ratio) in Figure2.3b. We observe how the
increase of S0 leads to a decrease in the compression time, although with a similar
evolution of Λ. For instance, Figure2.3b shows that when S0 increases from 500µs−1

to 1000µs−1, the minimum of Λ is reached in half the time, from 2 ns to 1 ns.
Concerning the self-similar function H in (2.66), once Π0 is fixed, i.e. once the

thermodynamic condition at the center of the capsule are defined, h depends only
on S0 and Λmin. An example of this dependence is plotted in Figure2.4. As for
the compression parameter, we show in 2.4a how H(r) depends on the inverse of
convergence ratio and in Figure2.4b its dependence on initial compression rate S0.

0 0.2 0.4 0.6 0.8 1
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(a)
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Figure 2.3 – (a) Time evolution of the compression parameter Λ for different value
of Λmin with S0 = 1000. (b) Time evolution of the compression parameter Λ for
different value of S0 (S0 = 500, 625, 750, 875, 1000 µs−1, increases in the direction of
the arrow), with Λmin = 0.05

At this point, we have all the elements to describe the base flow completely :

UB(x, t) = −x · Λ̇
Λ(t) (2.72)

ρB(t) = ρ0Λ(t)−3 (2.73)

ΘB(t) = −3 log Λ(t) (2.74)

nB(t) = n0Λ(t)−3 (2.75)

Y B = 1 (2.76)

TB(r, t) = T0Λ(t)−3(γ−1)
(

1− 1
η2

r2

Λ(t)2

)
(2.77)
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Figure 2.4 – Radial profile of the parabolic function H, in Eq. (2.66), at the begin-
ning of the simulation (Λ = 1) with fixed value of Π0. (a) Plot for different values
of Λmin, which increases in the direction of the arrow, with S0 = 1000. (b) Plot for
different value of S0 (S0 = 500, 625, 750, 875, 1000 µs−1 increases in the direction of
the arrow), with Λmin = 0.05

PB(r, t) = P0Λ(t)−3γ
(

1− 1
η2

r2

Λ(t)2

)
(2.78)

ΠB(r, t) = Π0Λ(t)−3(γ−1)
(

1− r2

η2Λ(t)2

)
(2.79)

2.3.2.2 Perturbations

The perturbations equations follow from the system of equations (2.44) - (2.49)
and the base flow expressions determined in section 2.3.2.1 :

∂tui + uj∂jui − S(t)xj∂jui − S(t)ui = −∂iπ − π∂iθ − ΠB(x, t)∂iθ

+∂j
[
ν
(
∂jui + ∂iuj −

2
3∂kukδij

)]
+ν
(
∂jui + ∂iuj −

2
3∂kukδij

)
∂jθ (2.80)

∂tθ + (uj − S(t)xj)∂jθ = ∂juj (2.81)
∂tn+ ∂jnuj + ∂j(nBuj) + ∂j(nUB

j ) = ∂j (D∂jn)− ∂j
(
(n+ nB)D∂jθ

)
(2.82)

Equations (2.80), (2.81), (2.82) can be simplified with the hypothesis that the
fluctuations of the density number of particle are small with respect to its base
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value, n
nB � 1. With this assumption we get the following system of equations :

∂tui + uj∂jui − S(t)xj∂jui − S(t)ui = −∂iπ − π∂iθ − ΠB(x, t)∂iθ
+∂j[ν(∂jui + ∂iuj)] + ν(∂jui + ∂iuj)∂jθ (2.83)

∂tθ + (uj − S(t)xj)∂jθ = ∂juj (2.84)
∂juj = −∂j(D∂jθ) (2.85)

The main difference with the classic incompressible approximation is that the diver-
gence of the velocity field is no longer equal to zero but is connected to the scalar
field θ. In this approximation we decouple the energy equation from the problem and
compressibility effects are only a result of the mixing.

2.3.3 Change of reference frame and rescaling
Equations (2.83)-(2.84) have inhomogeneous and forcing terms representing the

base flow effects on the velocity and scalar perturbations. To eliminate these terms
we use the change of reference frame (2.13) and the rescaling (2.15) defined in section
2.1. We obtain the following equations for the perturbation in the non-inertial frame :

∂tũi + ũj∂jũi =− ∂iπ̃ − π̃∂iθ̃ − Λ2ΠB(x̃, t̃)∂iθ̃ + ∂j [ν (∂jũi + ∂iũj)]
+ ν (∂jũi + ∂iũj) ∂j θ̃ (2.86)

∂tθ̃ + ũj∂j θ̃ =∂j
(
D∂j θ̃

)
(2.87)

∂jũj =− ∂j
(
D∂j θ̃

)
(2.88)
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The objective of this chapter is to present shortly the numerical methods used in
this thesis. At first, we introduce the Fourier pseudo-spectral method and the third-
order Runge-Kutta Strong Stability Preserving (SSP) time advancement scheme .
We focus on the solution of the pressure Poisson equation in the incompressible and
variable density cases. In particular, for the latter case, we present the Generalized
Minimal Residual (GMRES) iterative solver, employed to solve the non-local elliptic
equation. In section 3.2.4, we discuss the case of variable transport coefficients and
the implicit solution of the diffusive part of the equations.

Finally, we discuss the convergence of the iterative GMRES scheme and the dif-
ferent steps used to validate the code.
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3.1 Equations
The equations derived in chapter 2 are not in conservative form. So that during

computation, conservation properties may not be assured [Canuto et al. 2012]. The
use of the following vector calculus identity

(u∇)u = ω × u + 1
2∇u2 where ω = ∇× u, (3.1)

semi-conserves kinetic energy (at least for inviscid flow), and assures numerical stabi-
lity, which is not granted if we use the standard formulation. Using this substitution,
we redefine the pressure to include an additional kinetic energy contribution, into a
new variable π∗, as

π∗ = π + 1
2u2. (3.2)

The resulting formulation of the equation is called rotation formulation.
Here we rewrite equations in a more compact form that is common to the two

studies of this thesis, spherical compression, and USHT, with incompressible and
variable density approximations.

— The incompressible approximation yields

∂tui + Nω︸︷︷︸
1

= −∂iπ∗ + ∂j (ν∂jui) + Fθ︸︷︷︸
6

(3.3)

∂tθ +Nu(θ)︸ ︷︷ ︸
2

= +∂j (D∂jθ) + FL︸︷︷︸
7

(3.4)

∂juj = 0. (3.5)

— The variable density approximation yields

∂tui + Nω︸︷︷︸
1

+π∗∂iθ −Nθ(ui, θ)︸ ︷︷ ︸
3

−Nν(ui, θ)︸ ︷︷ ︸
4

= −∂iπ∗ + F(xi, θ)︸ ︷︷ ︸
5

+∂j (ν∂jui) + Fπ︸︷︷︸
8

(3.6)

∂tθ +Nu(θ)︸ ︷︷ ︸
2

−∂j (D∂jθ) = FL︸︷︷︸
7

(3.7)

∂juj = −∂j (D∂jθ) (3.8)

In the previous equations, we have used the following short notation :
1.

Nω = ω × u

This term, also called the Lamb vector l, comes from the reformulation of the
nonlinear term to have better energy conservation and stability properties.
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2.
Nu(θ) = uj∂jθ

This is the nonlinear advection term in the scalar θ equation.
3.

Nθ = ukuk
2 ∂iθ

This terms appears when we use the identity (3.1) to introduce the rotation
formulation, in order to redefine the pressure as in Eq. (3.2).

4.
Nν(ui, θ) = ∂j (ν∂iuj) + ν (∂jui + ∂iuj) ∂jθ

This term contains nonlinear viscous contributions. They are among the new
nonlinearity introduced by the variable density approximation.

In addition to the above terms which are always present, the following ones may
appear, depending on the problem which is specifically studied. In the spherical
compression case

5.
F(xi, θ) = −Λ2ΠB(xi, t)∂iθ

This is a forcing term due to the base pressure gradient. In this case we do
not have other forcing terms, so that

6.
Fθ = 0

7.
FL = 0

8.
Fπ = 0

In the USHT study :
5.

F(xi, θ) = F(θ) = −gL∂iθ
This forcing term comes from the mean homogeneous pressure.

6.
Fθ = gθ

This term corresponds to the linear approximation of the forcing from the
mean pressure.

7.
FL = − 1

L
u3

This forcing term comes from the mean θ gradient in the scalar equation.
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8.
Fπ = − 1

L
π∗δi3

This forcing term comes from the mean θ gradient in the momentum equation.

3.2 Direct numerical simulations
Spectral methods are well-established tools in fundamental studies in fluid me-

chanics [Canuto et al. 2012] because they are among the highest precision methods.
When the solution is smooth, the decay of the error is exponential, as we increase the
resolution. Since spectral methods are a particular case of methods of weighted resi-
duals [Canuto et al. 2012], the choice of test and trial functions characterizes different
types of spectral methods. In particular, in this discretization, these functions have
global support that coincides with the domain of the problem under consideration.
Trial functions are used as basis functions for the series expansion of the solution,
while the test functions ensure that the differential equation is satisfied as close as
possible by the approximation series.

The choice of the trial function depends mostly on the boundary conditions of the
problem. There are three classes of polynomials that are widely employed : Fourier,
Chebyshev, and Legendre. For the test functions, there are usually three alternatives :

1. If one chooses to have the same as trial functions we have Galerkin spectral
scheme ;

2. If one selects translated Dirac delta functions centered on the mesh points,
the scheme is called collocation or pseudo-spectral ;

3. If one instead wants the same trial and test functions which do not satisfy
boundary conditions, we have the tau spectral scheme ;

In this work, we use a Fourier pseudo-spectral (collocation) scheme as it has been
already proven very effective in fluid dynamics problem [Orszag and Patterson 1972].

3.2.1 Pseudo-spectral computation using FFT
One of the advantages of using the Fourier spectral method is that there are

libraries that implement the discrete Fourier transform algorithm very effectively. All
the most famous implementations are based on the Fast Fourier Transform (FFT),
an algorithm of Cooley and Tukey (1965). One of the most famous is the Fastest
Fourier Transform in the West (FFTW) library developed at MIT by Frigo and
Johnson (2005). In pseudo-spectral methods, the derivatives are calculated in the
Fourier space since they reduce to the multiplication of Fourier coefficients by the
wavenumbers. All products are instead done in physical space.
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Figure 3.1 – From the site http ://www.2decomp.org

In this thesis, we have developed a DNS code based on the Parallel Three-
Dimensional Fast Fourier Transforms (PDFFT++), a library for large-scale compu-
ter simulations on parallel platforms, developed by Pekurovsky (2012). This library
allows the two-dimensional or "pencil" decomposition of the computational domain
depicted in Figure 3.1(b), whereas the old version of the DNS code used a one dimen-
sional or "slab" decomposition 3.1(a). If one has a three-dimensional problem where
the domain dimensions are Nx × Ny × Nz, where x, y, and z are the three spacial
dimensions, the 1D decomposition allows dividing the domain into planes which are
distributed on the available processors NP . Once the direction of the decomposition
is chosen, here we chose z, every processor receives a slab of dimension Nx×Ny× Nz

NP
.

With this decomposition, one can, at most, use the number of processors equal to
the size of the domain. For instance, in this case, NP = Nz is the maximum possible
number of processors.

The two-dimensional decomposition allows to have "pencils" or "columns" instead
of planes. If we consider the same domain as before, the new sub-domains distributed
on every processor have dimension Nx× Ny

NP 1
× Nz

NP 2
. Now the number of the processors

that can be potentially used for the domain decomposition is NP = NP1 × NP2. If
we consider the maximums of NP1 and NP2, we have NP = Ny ×Nz.

If all the dimensions are equal, Nx = Ny = Nz = N , 1D, and 2D decomposition
allows using respectively at most N and N2 processors, making it clear why it is
interesting to develop a new code based on the 2D decomposition.

The scaling properties of the new direct numerical simulation code, whose nume-
rical details are detailed in the following section, are presented in Figure 3.2. The
set-up used for the speed-up calculation is a 10243 decay of homogeneous isotropic
turbulence, with the resulting time-averaged over 50 time steps. The speed-up is
defined as

Speed-up = Iteration time with N cores
Iteration time with 256 cores . (3.9)

This quantity, which is usually defined with respect to the serial iteration time, in
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Figure 3.2 – Speed up of the code

this case, due to the memory requirements, is defined using the iteration time with
256 cores.

3.2.2 Time advancement scheme
The time advancement is done in Fourier space so that Fourier coefficients are

the dependent variables. The numerical scheme chosen is a third-order Runge-Kutta
SSP [Gottlieb et al. 2001]. Consider the following dynamical system

dF

dt
= L(F, t). (3.10)

The time advancement between tn and tn+1 is done using the following three steps

F 1 = F (tn) + ∆tL(F (tn), t), (3.11)

F 2 = 3
4F (tn) + 1

4
(
F 1 + ∆tL(F 1, t+ ∆t)

)
, (3.12)

F (tn+1) = 1
3F (tn) + 2

3

(
F 2 + ∆tL

(
F 2, t+ ∆t

2

))
. (3.13)

The sub-steps of the scheme are different if one considers either the incompressible
approximations or the variable density one, as detailed hereafter.
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3.2.2.1 Sub-steps for incompressible computation

One of the advantages of doing the time advancement in Fourier space, is that
we can compute implicitly the viscous contribution. For that, one can define a new
variable v as

vi = ui exp
[
νk2(t− t0)

]
(3.14)

such that, in wave-number space, the equation for vi does not have any explicit viscous
term. After this substitution, we use the classical projection method of Chorin (1968).
Starting at time tn,

— Compute an intermediate velocity v∗i

v∗i = vni −∆tFT (Nω) exp
[
νk2(t− t0)

]
. (3.15)

— Using the incompressibility condition we can derive a Poisson equation for π∗

∂2
iiπ

V = ∂iv
∗
i

∆t . (3.16)

solving this equation is straightforward in Fourier space.
— We obtain the velocity at time tn+1 from

vn+1
i = v∗i −∆t∂iπ∗. (3.17)

Here we have used the symbol πV instead of π. The use of the exponential factor
to take into account the viscous effects modifies the pressure terms as :

πV = π exp
[
νk2(t− t0)

]
.

3.2.2.2 Sub-steps for variable density computation

In this case, the time-advancement steps are a bit more complicated. At time tn
— Compute intermediate variables u∗i (without taking into account π∗) and θ∗.

In this step, we compute explicitly only a part of the viscous contribution :

u∗i = uni + ∆t[Nω(uni ) +Nθ(uni , θn)
+ F(xi, θn) +Nν(uni , θn)], (3.18)

θn+1 = θn −∆tNu(θn). (3.19)

— The updated velocity un+1 is obtained by taking into account π

un+1
i = u∗i + ∆t(−∂iπ∗ − π∗∂iθn −Fπ∗). (3.20)
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— Applying the divergence operator to Eq. (3.20) we obtain the Poisson equation

∂2
iiπ
∗ + π∗∂2

iiθ
n + ∂iπ

∗∂iθ
n + (Fπ)3 = 1

∆t
(
−∂iun+1

i + ∂iu
∗
i

)
. (3.21)

At this point we use the expression for the divergence of un+1
i given by the

variable density approximation ∂iun+1
i = −∂j(D∂jθn+1) and we obtain

∂2
iiπ
∗ + π∗∂2

iiθ
n + ∂iπ

∗∂iθ
n + (Fπ)3 = 1

∆t
(
∂j
(
D∂jθn+1

)
+ ∂iu

∗
i

)
. (3.22)

This is a non local Poisson equation that has to be solved with an iterative
method. Once π∗ is computed, we can finally use Eq. (3.20) to obtain the
velocity at time tn+1.

3.2.3 Solution of the Poisson equation
It is worth devoting here a detailed description to the solution method for the

Poisson equation, since this task has proven to present difficulties, especially in the
variable density case, and has required a dedicated implementation of the original
method proposed by Di Pierro (2017). In the incompressible calculations, the Poisson
equation in Fourier space has a straightforward solution. We start from the Fourier
transform of equation (3.16)

k2π̂∗ = kiv̂
∗
i

∆t ,

where k is the module of the wavevector, whose solution is straightforward :

π̂ = kiv̂
∗
i

k2∆t .

In the algorithm for the variable density solution, the equation is more complica-
ted given the non-locality of π̂∗ in Fourier space :

k2π̂ + FT
[
π∂2

iiθ
n
]

+ FT [∂iπ∂iθn] = 1
∆t

(
FT

[
∂j
(
D∂jθn+1

)]
+ kiû

∗
i

)
. (3.23)

Di Pierro (2017), using 1D differentiation matrices, showed that the operator on
the left-hand side of the Eq. (3.23) is ill-conditioned. To improve the convergence, he
proposes to use the constant density operator as a preconditioner and to introduce a
new variable φ, such that

π = e−θ
n/2φ.

The resulting equation for φ is written in physical space as

∂2
iiφ+ φ

2∂
2
iiθ

n − φ

4 ||∂iθ
n||2 = eθ

n+1/2

∆t
(
∂j
(
D∂jθn+1

)
+ ∂iu

∗
i

)
. (3.24)
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The benefit of this choice is not only connected to the decrease of the condition
number but it saves us the computation of the scalar product ∂iπ∂iθn. We can rewrite
this equation in condensed form, calling L the operator acting on φ and b the right-
hand side of the equation :

Lφ = b. (3.25)

The simplest iterative method for solving Eq. (3.24) is the fixed point iteration me-
thod [Di Pierro and Abid 2013]. One of the main disadvantages is the slow conver-
gence of the method when compared with other iterative solvers, and the dependence
of the convergence on the mesh size. With this method, the convergence is obtained
if

max (|∂iθ|) < k (3.26)

where k is the biggest resolved wavenumber allowed by the mesh. More explicitly,
characteristic scales of θ gradients must be of the same size as the grid discretization.
See Di Pierro and Abid (2013), Di Pierro (2012) for details. In our work, we would like
to achieve relative rapid convergence without such constraints on the grid-∂iθ relation.
The quest to find the best all-purpose iterative method is a rather difficult one. In
particular, it has been shown by Nachtigal et al. (1992) that the best iterative solver in
one case may perform poorly in other situations. In his work, Di Pierro (2017) tested
four iterative schemes to solve a non-local Poisson equation. They tested conjugated
gradient (CG), Richardson minimal residual (RMR), and the generalized minimal
residual methods (GMRES). They find that the GMRES method is the best option,
even if it has a higher cost per iteration, and it is more complex to implement. In
light of these results, we have decided to implement this algorithm to solve Eq. (3.24).
Details of the implementation are given in section 3.2.3.1.

3.2.3.1 Generalized Minimal Residual (GMRES) algorithm

The generalized minimum residual (GMRES) is an iterative method to solve linear
systems proposed by Saad and Schultz (1986). It is part of a class of iterative solvers
based on Krylov spaces. The methods in this class are among the best iterative
methods available to solve problems involving non-symmetric matrices and operators.
Such methods are conjugated gradient, bi-conjugated gradient, and the GMRES. The
idea behind this approach is to converge to the exact solution of the system (3.25),
using the sequence of approximate solutions

φn ∈ φ0 +Kn(r0, L) (3.27)

where Kn(r0, L) is the Krylov subspace generated by the discretized operator L and
the starting vector r0 = b− Lφ0

Kn(r0, L) = {r0, Lr0, L
2r0...L

n−1r0} (3.28)
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where φ0 is an initial choice of φ.
The main feature of the GMRES is that the sequence (3.27) is built to minimize

the residuals r = ‖b− Lφ‖2. It can be shown [Stoer and Bulirsch 2013] that the
solution of the problem Lφ = b lies in the affine spaces created by φn ∈ φ0+Kn(r0, L),
that is, the solution φ can be decomposed in this new basis φn = Kng for some vector
g.
The problem with the definition (3.28) is that when n increases, the vectors in the
base become more and more linearly dependent so that the method becomes unstable.
Instead, the alternative is to construct a new orthonormal basis for Kn using Arnoldi
iterations [Stoer and Bulirsch 2013]. The corresponding algorithm is as follows :

— Choose first guess x0, and the size of the basis m.
— Compute r0 = b− Lφ0, β = ‖r0‖2 and q1 = r0/β.
— To compute the orthonormal base we use the Gram-Schmidt process :

For j = 1, ..,m do
— Compute w = Lqj. w is the vector that we would have in the Krylov base

using the classic power iteration.
— For w to be orthonormal to the other vectors in the basis we perform the

following operation :
For i = 1, .., j do
— hi,j = (w, qi), where (, ) is the inner product (w, qi) = wT qi
— w = w − hi,jqi

— Compute hj+1,j = ‖w‖2 and qj+1 = w/hj+1,j
— At the end we have the orthonormal basis Qm defined by Qm = [q1, ...qm]
In this new basis, φn is decomposed as

φn = Qnyn (3.29)
The previous Arnoldi process produces the coefficient hi,j that are the coefficients of
an upper Hessenberg matrix [Stoer and Bulirsch 2013] Hn that satisfies the following
equality

LQn = Qn+1Hn. (3.30)
Recall that the objective of the method is to minimize the norm of the residual
‖rn‖2 = ‖b− Lφ‖2, knowing that the updated solution at each step is φ = φ0 + φn.
Thus we can rewrite the minimization as

min ‖rn‖2 = min ‖b− L(φ0 + φn)‖2 = min ‖r0 − Lφn‖2 . (3.31)

Using relations (3.29) and (3.30) we can rewrite the problem as

min
∥∥∥QT

n+1r0 −Hny
∥∥∥

2
. (3.32)

In this equation the matrix Qn+1 contains the orthonormal vector computed during
the Arnoldi iterations. That is the matrix-vector product is zeros for all but one
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column and Eq. (3.32) simplifies to

min ‖βe1 −Hny‖2 , (3.33)

where β = ‖r0‖2 and e1 is the n-dimensional vector e1 = [1, 0..., 0]. Equation
(3.33) is a least square problem, that we solve using Givens rotations [Stoer and
Bulirsch 2013]. Once y is computed the solution is

φ = φ0 +Qny.

To sum up the steps for the GMRES algorithm, they are presented in a concise form
in Algorithm 1 :

Algorithm 1 GMRES
1: Choose the dimension of the Krylov subspaces m, the initial guess φ0.
2: Compute the initial residual r0 = b− Lφ0, β = ‖r0‖2 and q1 = r0/β

3: for j = 1, ...m do
4: Compute w = Lqj
5: for j = 1, ...m do
6: hi,j = (w, qi)
7: w = w − hi,jqi
8: end for
9: Compute hj+1,j = ‖w‖2 and qj+1 = w/hj+1,j
10: end for
11: Define the matrix Qm = [q1, ...qm]
12: Compute φ = φ0 +Qnym where ym = min ‖βe1 −Hnym‖2
13: If satisfied with the results stop, else set φ0 = φm and go to 3

3.2.4 Non uniform transport coefficients
In this work, we will consider the compression of weakly coupled plasma mixtures.

In these computations, transport coefficients vary considerably in time and space,
reaching considerably large values, so that an explicit treatment may require a very
stringent restriction on the time step, to satisfy numerical stability constraints. That
is why we use an implicit treatment of diffusive terms in the momentum and scalar
equation. This method has already be employed in the case of variable viscosity by
Gréa et al. (2014), using finite differences in physical space to solve the implicit
problem. In the present work, we choose to use the GMRES solver already presented
in the previous section.

The following sub-steps are performed before the projection algorithm presented
the section 3.2.2.2
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— The values of transport coefficients ν and D depend on mass fraction, tem-
perature, and θ. Therefore the first step is to compute their values at time
tn.

νn = ν(Y n, T n, θn) and Dn = D(Y n, T n, θn).

— Ferziger and Peric (2012) argue that the main diffusive contributions that need
implicit treatment are the terms

∂j (ν∂jui) and ∂j (D∂jθ) .

While the other viscous nonlinear viscous contribution Nν(ui, θ) can be com-
puted explicitly. Furthermore we make the hypothesis that Dn+1/2 = Dn and
νn+1/2 = νn, so that

θn+1/2 = θn + ∆t∂j(Dn+1/2∂jθ
n+1/2), (3.34)

u
n+1/2
i = uni + ∆t∂j(νn+1/2∂ju

n+1/2
i ). (3.35)

— At this stage we modify the intermediate variable u∗ using un+1/2 (and not un)
adding the nonlinear effect of the viscous contribution computed explicitly :

u∗i = u
n+1/2
i + ∆t[Nω

(
u
n+1/2
i

)
+Nθ

(
u
n+1/2
i , θn+1/2

)
(3.36)

+ F
(
xi, θ

n+1/2
)

+Nν
(
u
n+1/2
i , θn+1/2

)
]. (3.37)

3.2.5 Preconditioning and initial guesses
In this chapter we have presented three equations that have to be solved using

iterative methods (3.34), (3.35), (3.24). In all three cases, we have decided to use
preconditioning to improve the performance of the GMRES algorithm. In general,
preconditioning is employed for ill-conditioned problems to lower the condition num-
ber of the operator and obtain better performances from the iterative method, i.e
accelerate the rate of convergence.

The modifications of algorithm 1 are described in algorithm 2, where the operator
M is the preconditioner.

The next question is the choice of M . Di Pierro (2017) demonstrates that the
constant density operator is very effective as a preconditioner for the solution of
the Poisson equation. Using the same argument, we propose the implicit constant
viscous operator for the variable viscosity and diffusivity computations. In particular
the constant preconditionings are
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Algorithm 2 GMRES with preconditioning
1: Choose the dimension of the Krylov subspaces m, the initial guess φ0.
2: Compute the initial residual r0 = b− Lφ0, β = ‖r0‖2 and q1 = r0/β

3: for j = 1, ...m do
4: Compute zj = M−1qj
5: Compute w = Lzj
6: for j = 1, ...m do
7: hi,j = (w, qi)
8: w = w − hi,jqi
9: end for
10: Compute hj+1,j = ‖w‖2 and qj+1 = w/hj+1,j
11: end for
12: Define the matrix Qm = [q1, ...qm].
13: Compute φ = φ0 +M−1Qnym where ym = min ‖βe1 −Hnym‖2
14: If satisfied with the results stop, else set φ0 = φm and go to 3

1. Mν = 1
1+ν∆tk2

2. MD = 1
1+D∆tk2

3. Mπ = − 1
k2

where Mν and MD are the preconditioner for the variable viscosity and variable dif-
fusivity substeps (3.34), (3.35) and Mπ is the preconditioning matrix for the Poisson
equation (3.24).

The last choice to make is to decide the initial guesses to start the algorithm. In
our computation they are

1. un+1/2
0 = un

1+ν∆tk2

2. θn+1/2
0 = θn

1+D∆tk2

3. φ0 = kiû
∗
i

k2∆te
θ/2

where un+1/2
0 and θn+1/2

0 are the initial guesses for the variable transport coefficients
substeps. They are also the solution that we would have in case of constant visco-
sity and diffusivity. φ0 is the initial guess for the GMRES algorithm applied to the
Poisson equation and it corresponds to the φ that we obtain in the solution of the
incompressible case.

3.3 Convergence and validation
In this section, we describe the convergence criteria for the GMRES iterative

schemes together with the validation steps for the new direct numerical simulation
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code. We start with the incompressible decay of homogeneous isotropic turbulence
(HIT), to validate the computations of the nonlinear convective terms. We move
on to the decay of HIT with variable viscosity to validate the GMRES algorithm
for the computation of the diffusive terms. The first step toward the validation of
the GMRES algorithm for the pressure Poisson equation concerns a case of unstably
stratified homogeneous turbulence with low non-Boussinesq effects, such that variable
density and Boussinesq approximations should have the same results.

3.3.1 Convergence of the iterative GMRES algorithm

m
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Figure 3.3 – (a) Evolution of GMRES algorithm residuals for the pressure Poisson
equation as a function of the Krylov subspaces dimension m (b) Kinetic energy
spectra of an unstably stratified homogeneous turbulence simulation, computed at
the same time with different Krylov subspaces dimension m.

When one deals with an iterative algorithm to solve linear systems, it is useful
to have an idea of what are the conditions under which the iterative scheme can be
considered converged. In particular, the GMRES algorithm has a free parameter, the
size of the Krylov subspace m, which should be carefully tuned. The more m grows,
the more efficient the GMRES method becomes, but at the same time, it became
computationally more expensive. Hence, for our computations, a trade-off has to be
decided between the increased precision and the increased costs.

Numerical experiments show that a good compromise for the most challenging
cases, with mesh sizes of 10243 and increasing density contrast, a Krylov base of
m = 20 have good conservation and convergence properties.

In Figure 3.3, we show an example of the effects of m on the convergence of
the GMRES for a 2563 USHT computation. The decrease of the residuals is plot-
ted in Figure 3.3a, while the consequences of the converged/un-converged iterative
algorithm on the kinetic energy spectrum are shown in 3.3b. This convergence ana-
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lysis, as a function of m, considers only one time step. To further validate the DNS
code, we evaluated the conservation of mass of the numerical method, during the
computations.

Nt0 1 2 3 4
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-25
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-20

10
-15

10
-10

Figure 3.4 – Evolution of the variable density condition (dashed line) and norms
of the residual (solid line) during an 2563 USHT computation with N = 1.4 and no
initial scalar fluctuations.

The equation expresses the mass conservation for the variable density computa-
tion

∂juj = −D∂2
jjθ, (3.38)

which, if we separate the solenoidal uSj , ∂juSj = 0, and dilatational uDj , ∂juDj 6= 0,
velocity contributions, becomes

∂ju
D
j = −D∂2

jjθ. (3.39)

Therefore, to check the conservativity, during the simulation we compute the quan-
tity

V D = ||∂juDj +D∂2
jjθ||. (3.40)

An example of the values of V D during an USHT simulation is given in Figure 3.4,
together with the norm of the GMRES residuals at the same time.

3.3.2 Validation : Decay of incompressible homogeneous iso-
tropic turbulence

The first step in validating the new direct numerical simulation code is to compute
the time evolution of the isotropic homogeneous turbulence (HIT) decay. The results
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Figure 3.5 – (a) Evolution of the turbulent kinetic energy, normalized with its initial
value, as a function of the non-dimensional time τ . (b) Kinetic energy spectra at three
times during the decay. Solid lines indicate results using the new code while dashed
line the ones from the previous version. (c) Relative error Erp between the old and
new code.

are compared with the previous version of the DNS code parallelized in slab, described
in Griffond et al. (2014).

We consider the case of a HIT with a resolution of 5123 with an initial Reynolds
number of Re0 = K(0)2

νε(0) = 30, where ε is the turbulence dissipation, K the integrated
turbulent kinetic energy and ν the kinematic viscosity.

The results of the simulations are shown in Figures 3.5 and 3.6. The evolution of
the kinetic energy is plotted in 3.5a, as a function of the dimensionless time τ , defined
as the time of the simulation divided by the eddy turnover time tE = 1

K1/2(0)kp
, where

kp is the peak of the energy spectrum at t = 0. We observe the excellent agreement
between the two simulations, on the one-point statistics. Subsequently, the spectra,
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in Figure 3.5b, show how also the spatial dependencies are similar between the two
simulations. In Figure 3.5b, the two results are superimposed, so that we cannot
evaluate the differences between the two simulations. That is why in Figure 3.5c we
show the relative error between the two spectra, computed as follow

Erp(k) = EN(k)− EO(k)
EO(k) (3.41)

where EN(k) and EO(k) are respectively the resulting spectra of new and old code.
Lastly, the qualitative comparison between the speed fields in Figure 3.6 confirms

(a) (b)

Figure 3.6 – Contours of turbulent kinetic energy at τ = 2 computed with (a) the
previous version and with (b) the new version of the DNS code.

the similarity between the two results.

3.3.3 Validation : Decay of incompressible homogeneous iso-
tropic turbulence with variable viscosity

To validate the GMRES algorithm for the variable transport coefficients, we
compute a case of homogeneous isotropic turbulence with variable viscosity. Gréa
et al. (2014) has investigated this problem using spectral direct numerical simulations
where viscous effects are accounted for using an implicit finite difference scheme for
equation 3.35. The viscosity has a linear relation with the scalar, θ

ν = νA + Vθ (3.42)
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In this set up θ ∈ [−1, 1] and its averaged value on the volume is zero 〈θ〉 = 0, so
that the mean value of viscosity is 〈ν〉 = νA.

We compute the decay of homogeneous isotropic turbulence with a resolution of
2563 with an average viscosity of νA = 0.5. It has a maximum equal to 0.99 and a
minimum of 0.01. The diffusivity is constant and equal to the minimum of viscosity,
D = νA, such that the Schmidt number based on the averaged values is Sc = νA

D = 50.

In Figure 3.7a, we present the comparison of the turbulent kinetic energy as a
function of the dimensionless time τ defined in section 3.3.2.
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Figure 3.7 – (a) Evolution of the turbulent kinetic energy, normalized with its
initial value, as a function of the non-dimensional time τ (b) Kinetic energy spectra
at three times during the decay. Solid lines indicate GMRES results while dashed
line the finite differences ones.

The evolution of the integrated kinetic energies shows good agreement between
the two simulations, and the two curves are superimposed. On the contrary, we
observe some differences in the kinetic energy spectra. While at large scales, the two
simulations have a good agreement, they show some differences when we look at
smaller scales, with the finite difference computation that has a higher dissipation
with a lower value of the spectrum at higher k. The difference is caused by the two
numerical methods used to solve the variable viscosity step of the computation. The
finite difference schemes have a higher numerical dissipation, confronted with the
iterative spectral GMRES.
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Figure 3.8 – (a) Evolution of the turbulent kinetic energy and (b) scalar variance,
as a function of the non-dimensional time Nt. Solid lines : Variable density compu-
tations. Solid lines with circles : Boussinesq results.

3.3.4 Validation : Variable density results with small non-
Boussinesq effects.

To validate the GMRES algorithm for the Poisson equation, we use unstably
stratified homogeneous turbulence (USHT) results with little effects coming from the
density field, that is, a case where the small fluctuations approximation is valid.

In this configuration, we confront USHT results from computations using the
Boussinesq and the variable density approximations. The 10243 simulations, are ini-
tialized with velocity fluctuations but without scalar fluctuations. The evolution of
kinetic energy K, and the scalar variance 〈θθ〉 are reported in Figure 3.8.

The variance, in Figure 3.8b, shows a very good agreement between the two si-
mulations, while for the kinetic energy, in Figure 3.8a, a little difference is observed
during the decay phase, which is due to the different development of the turbulent
energy cascade. The two integral quantities are plotted as a function of the dimension-
less quantity Nt, where t is the simulation time and N is the stratification frequency
defined, for the USHT computations, as N =

√
g/L, with g and L introduced in

section 2.2.
The analogies and differences between the two simulations can be further eviden-

ced by the kinetic energy, Figure 3.9a, and variance spectra, Figure 3.9b.
From the same initial condition at Nt = 0, the two simulations continue to

have similar results on both spectra at Nt = 2.5, after the minimum of the decay.
Eventually, at Nt = 5, the non-Boussinesq effects, explained in chapter 6, start to
affect both large and small scales beginning to drive the two results apart.
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Figure 3.9 – (a) Kinetic energy and (b) Scalar variance spectra at three times
during the USH turbulence computations. Solid lines : Variable density computations.
Dashed lines : Boussinesq results.

The similarity between the two approximations is confirmed qualitatively by the
contours of the scalar θ in Figure 3.10. We observe the formation of the characteristic
structures of USHT turbulence, with the light fluid moving upwards and the heavy
downwards.
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(a) (b)

θ θ

Figure 3.10 – Contours of the scalar θ atNt = 2.5 computed with (a) the Boussinesq
and (b) the new variable density approximations.

3.4 Initial conditions
In this section, we describe the method used to generate the initial conditions for

the resolution of the dynamical equations. The initializing procedure for the homoge-
neous case is presented in section 3.4.1, while the initialization steps for the spherical
compression case are resumed in section 3.4.2.

3.4.1 Homogeneous isotropic turbulence
Initial conditions for homogeneous isotropic turbulence are created in Fourier

space, using the following kinetic energy spectrum

E(k) = A

(
k

kl

)s
exp

−s2
(
k

kl

)2
 (3.43)

and random phases for the Fourier components. In Eq. (3.43), kl is the peak wave-
number, s is the infrared slope, and A is a constant parameter used to adjust the
amplitude of the spectrum such that it matches a specified initial total kinetic energy
K(t = 0), via the relation

K(t = 0) =
∫ ∞

0
E(k)dk (3.44)

For the initialisation of the scalar field we use the same expression as (3.43) and a
relation similar to (3.44) to achieve the desired initial scalar variance. Once the initial
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velocity and scalar fields are generated, there is a difference between the incompres-
sible and variable density initializations.

For the incompressible case, we have to enforce the solenoidal constraint on the
velocity field ui. This requirement reduces in Fourier space to impose the velocity
perpendicular to the wavevector :

uiki = 0.

The initial condition for variable density computations requires an additional
step. In fact for this case we know that velocity and the scalar θ have to satisfy the
relation :

∂jujV D = −D∂2
jjθ. (3.45)

In order to obtain consistent initial conditions we follow the same steps as Sandoval
(1995). Using the Helmholtz theorem we can decompose the initial velocity field u
into sum of solenoidal (∇×H) and irrotational (∇ψ) parts :

uV D = −∇ψ +∇×H. (3.46)

We replace the divergence-free vector ∇ ×H with the incompressible initialization
ui :

uiV D = −∂iψ + ui. (3.47)

When we compute the divergence of (3.47), we have

∂iuiV D = −∂2
iiψ. (3.48)

If we compare this relation with (3.45), the scalar field ψ is determined by ψ = Dθ.
So that the initial velocity fields for the variable density simulations are computed
by

uiV D = −D∂iθ + ui (3.49)

3.4.2 Spherical compressions
In section 2.3, we have described how, for the spherical compressions computa-

tions, we decompose the velocity and scalar fields as a superposition of base flow
and perturbations, and we have discussed how the former is defined and imposed via
analytical relations. In this part, we describe the initialization of the perturbations
field. First, we use the Reynolds decomposition to separate the mean part of the
velocity and the scalar fields from the fluctuations :

θ = θ + θ′ (3.50)

ui = ui + u′i. (3.51)
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Figure 3.11 – Example of initial condition for the component v2 of the velocity field,
with kl = 30 and K = 0.2.

For this problem the mean is defined as a tangential average on the spherical angular
variables ψ and ζ :

Q(r) =
∫ 2π

0

∫ π

0
Q(t, r, ζ, ψ)r2 sin(ζ)dψdζ

where Q could be ui or θ.

3.4.2.1 Initialization of velocity

In all the cases considered, the initial value of mean velocity field ui is always
zero. Thus we have to provide only the fluctuating velocity in the spherical layer. We
proceed as follows :

1. An homogeneous isotropic velocity field is initialized as described in subsection
3.4.1, with prescribed kinetic energy and peak wavenumber.

2. We compute the vorticity ω = ∇ × u in physical space to which we apply a
filter function F (x), which detail are given in the coming subsection 3.4.3, to
obtain the filtered vorticity ωF.

3. Once the filtered vorticity is computed, it is transformed back to Fourier space
(the ·̂ indicates variables in Fourier space). At this point we use the vector
calculus identity

ik× (ik× û) = ik(ik.û)− û(ik.ik)
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that can be rewritten as

ûF = ik× ω̂F − ik(ik.ûF )
‖k‖2

2
. (3.52)

From (3.52) we see that there is the second term −ik(ik.ûF ), i.e. the gradient
of the divergence of the filtered velocity field, that depends on the type of
computation that we want to perform. In fact :
— For incompressible initial condition this term is zero, and the filtered ve-

locity is

ûF = ik× ω̂F

‖k‖2
2
. (3.53)

— While in the variable density case we use the relation (3.45) to obtain

ûF = ik× ω̂F − ik(D ‖k‖2
2 θ̂)

‖k‖2
2

. (3.54)

3.4.2.2 Initialization of the scalar θ

Figure 3.12 – Example of initial condition for the scalar field for the spherical
compression computations. Here the Atwood number is0.07

The initial condition for the scalar θ is defined through the mean profile, with no
fluctuations. In particular we use an analytical function of the radius r.

θM(r) = 1
2 log

(1− At
1 + At

) [
2− tanh

(1
d

(
r − 2R0

R0

))
+ tanh

(1
d

(
r + 2R0

R0

))]
(3.55)

where At = ρmax−ρmin

ρmax+ρmin
= exp(θmax)−1

exp(θmax)+1 is the Atwood number. d is a parameter that is
defined as :

d = 2
R0θmax

∫ ∞
0

θM(1− θM)dr (3.56)
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The integral in (3.56) is usually employed in the definition of the a mixing zone
width [Andrews and Spalding 1990, Gréa 2013]. So that the specification of d directly
imposes the initial width of the spherical mixing layer. The influence of the Atwood
number and d on the radial profile of scalar is plotted in Figure 3.13. We observe on
both figures 3.13a and 3.13b that the scalar gradient is steeper the smaller the d the
larger the At. An example of the three dimensional contours for the scalar θ is shown
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Figure 3.13 – Initial radial profile of the mean component of the scalar field θ.
(a) Plot with constant Atwood number At = 0.2 and different values of the pa-
rameter d = 0.01, 0.05, 0.10, 0.15, 0.2, which increase in the direction of the arrow.
(b) Plot with constant d = 0.05 and different values of the Atwood number,At =
0.1, 0.15, 0.2, 0.25, 0.3 , which increase in the direction of the arrow.

in Figure 3.12.

3.4.3 Filter
In the procedure of section 3.4.2.1, for the initial velocity field, we use a filter

function to limit the fluctuation inside a defined spherical shell. The filter Fs(x), is a
smoothed square wave, initialized with the characteristic of the spherical layer, such
as inner (rm) and outer (rM) radii :

Fs(x) = 1 for rm ≤ |x| ≤ rM , and Fs(x) = 0 elsewhere. (3.57)

The two values rm and rM depend on the mean radial profile θM defined in the pre-
vious section 3.4.2.2. We define rm and rM , respectively, such as the radial positions
for which θM = 0.01 and θM = 0.99θmax

The definition of the filter function, as a discontinuous function in Eq. (3.57), can
create numerical oscillations due to the Gibbs phenomenon. One way to avoid this
numerical problem is to smooth out high wavenumbers oscillation using a convolution
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with a smoothing function,

S(k) = exp
(
Cs
k2

1 + k2
2 + k2

3
N2

)

in Fourier space. In the previous equation, N is the grid resolution and Cs = 128
is a parameter used to determine the size of the transition zone (see Jause-Labert
(2012) for details). Once the function F̂ (k) = F̂sS(k) is transformed back to physical
space to obtain F (x), the step 2 of the section 3.4.2.1 procedure can continue. In
Figure 3.14, we plot the filter function after the smoothing and the corresponding
profile of θM .
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Figure 3.14 – Solid line : mean radial profile of the scalar θ for an Atwood number
of 0.46. Dashed dotted line : the corresponding filter function Fs after the application
of the smoothing function.
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In inertial confinement fusion application, the extreme temperatures involved im-
ply that the fusion plasmas are in a weakly coupled regime. In this regime, the kinetic
effects are dominant with respect to potential interaction, and the plasma coupling
parameter is small compared to 1. In a weakly-coupled plasma, the viscosity µ has a
strong dependence on temperature, in particular for light elements it has been shown
[Braginskii 1995] that

µ ∼ T
5
2 . (4.1)

For heavier material the dependence is different and less intense. As an example
Ticknor et al. (2016) showed that silver (Ag) dynamic viscosity evolves following

µ ∼ T
3
2 . (4.2)

The theoretical framework for compressed turbulence, introduced in section 2.1, has
been applied to plasma compression by Davidovits and Fisch (2016a). They studied
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an adiabatic compression of Homogeneous Isotropic Turbulence (HIT) in the low
Mach number limit, taking into consideration viscosity variations due to the mean
temperature increase, as in Eq. (4.1). Besides, the turbulence production is impulsed
solely by the compression terms coming from the mean velocity field, while other
production sources such as shear or density gradient are neglected. Despite being
crude, this framework has already proven an interesting starting point to explore
important mechanisms at work during the compression, namely turbulence produc-
tion and dissipation, but also nonlinear transfer. In particular, they evidenced how,
during the compression, there is a moment when viscosity effects begin to dominate
the dynamics of the flow until the turbulent kinetic energy is dissipated. In this
context, the dissipation is rapid with respect to the compression duration, so they
called this phenomenon sudden dissipation. In the following paper, Davidovits and
Fisch (2016b) take into account the ionization state of the compressed plasma as a
phenomenon that modifies the viscosity dependence to the temperature. In particular
they consider µ ∼ T β where the exponent β is ionization dependent. They find that
there is no sudden dissipation for β < 1.

In a recent paper, Campos and Morgan (2019) have investigated the same phe-
nomenon without the low Mach number approximation, allowing the direct study
of the turbulent kinetic energy dissipation on the temperature of the system. These
simulations show how the sudden dissipation effect acts on the solenoidal as well as
the dilatational part of the kinetic energy. Furthermore, their examination of the in-
ternal energy source terms shows that the adiabatic compression term dominates the
viscous dissipation. They conclude that, at least for the cases studied, the proposed
self-consistent mechanism to increase the local temperature in compressed plasma has
a minimal impact ; in particular, the adiabatic contribution is two or three orders of
magnitude higher than the frictional viscous heating.

Meanwhile, the initial conditions and particularly the large scale asymmetries of
the capsule, due for instance to the support tent or the fill tube [Clark et al. 2015],
play a determining role by having a strong imprint on the turbulent mixing. Still,
how initial conditions influence the balance between the stirring processes and the
microscopic dissipation remains unclear in ICF imploding capsules.

Concerning turbulence, it is known since the work of Batchelor [Batchelor 1949;
1953] followed by George (1992) that the large-scale structures or big eddies play an
essential part in the dynamics of turbulent flows. This role has been identified, for
instance, through different self-similar solutions, corresponding to the turbulent and
final decays of HIT, showing a dependence on the initial distribution of energy at
large scales. These solutions have been investigated in particular by spectral models
based on Eddy Damped Quasi-Normal Markovian (EDQNM) closures [Orszag 1977,
Lesieur 2008] allowing a systematic exploration of the influence of initial conditions
at very high Reynolds number [Lesieur and Ossia 2000, Meldi and Sagaut 2012,
Mons et al. 2014]. Note that this method has been similarly generalized to other
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problems such as Rayleigh-Taylor and unstably stratified turbulence [Soulard et al.
2014, Burlot et al. 2015b, Soulard et al. 2015].

In this chapter, we identify different regimes of turbulence in plasma under com-
pression by exploiting the similarity properties of the system and the possibility of
finding self-similar solutions in the moving frame corresponding to the coordinate
transformation. Back in the laboratory frame, this gives information about the im-
portance of initial conditions. To achieve this goal, we use DNS and spectral models
based on classical EDQNM closures. The two methods are complementary : DNS
provides the details of the turbulent fields in space, and their time evolution ; while,
by construction, the EDQNM model directly predicts the time-evolving turbulent
spectra of two-point correlations, and allows exhaustive parametric studies as well as
the exploration of high Reynolds number regimes, due to its low computational cost.
To extend our analysis to a less academic geometry and an inhomogeneous flow,
we also consider a spherical turbulent layer with parameters relevant to ICF, as a
paradigm of the hot spot contamination by turbulence.

4.1 Equation for plasma compression
In chapter 2 in section 2.1 we have derived the equation describing the dynamics

of the velocity field for a neutral gas under compression. We recall that for a velocity
field ũi in the moving frame, moving with the mean compressing flow, we have two
possibilities :

∂t̃ũi + ũj∂jũi = −∂ip̃+ Λ3(t) µ
ρB0
∂2
jjũi (4.3)

and
∂t̃ũi + ũj∂jũi + 3S(t)

Λ ũi = −∂ip̃+ µ

ρB0
∂2
jjũi (4.4)

depending if one wants to take into account compression effects by having a time
dependent viscosity or a forcing term. In this chapter we consider the following time
dependence for the compression parameter Λ :

Λ = 1− S0t (4.5)

The dynamic viscosity in plasmas does not behave as in neutral gases. As already
pointed out in the introduction of this chapter, it grows with temperature. In this
work we will consider an adiabatic compression and with this hypothesis the mean
temperature T has the following dependence on the compression parameter Λ :

T (t) = T0Λ(t)−2 (4.6)

where T0 is the initial temperature. Using relation (4.6) together with the Braginskii
(1995) law in (4.1) we deduce that the dynamic viscosity for a weakly coupled plasma
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under adiabatic compression is

µ = µ0Λ(t)−5. (4.7)

If we inject this expression of the dynamic viscosity µ in (4.3) and (4.4) we have

∂t̃ũi + ũj∂jũi = −∂ip̃+ ν0Λ−2∂2
jjũi (4.8)

and
∂t̃ũi + ũj∂jũi + 3S(t)

Λ ũi = −∂ip̃+ ν0Λ−5∂2
jjũi, (4.9)

where ν0 = µ0/ρ
B
0 is the kinematic viscosity. In Eq. (4.9) there is a new time depen-

dence in front of the viscous term, so that the previous proposed rescaling (2.17) has
to be modified [Davidovits and Fisch 2016a] :

ũi(x̃, t̃) = ui(x, t)Λ3(t), t̃ =
∫ t

0 Λ−4(s)ds, p̃(x̃, t̃) = p(x, t)Λ9(t) (4.10)

and consequently Eq. (2.18) is modified as

∂t̃ũi + uj∂jũi + 2SΛ4ũi = −∂ip̃+ ν0∂
2
jjũi. (4.11)

In the moving frame, an initially homogeneous turbulence remains homogeneous
during the compression. So that in this frame we are left with the problem of the
decay of HIT with time-varying viscosity or with a new forcing term. These two
different choices provide two different equations that model the same phenomenon.
In section 4.2, we derive the EDQNMmodel for both cases, while the direct numerical
simulations are performed only for Eq. (4.8).

To fully characterize the flow regime we use two nondimensional numbers : the
Reynolds number Re and the compression number Cp, defined at the initial time as

Re = u0`0

ν0
, and Cp = u0

`0S0
, (4.12)

where u0 and `0 are characteristic velocity and length scales of the initial turbulent
flow. Re measures the ratio between turbulent and physical viscosity, and Cp the ratio
between the turbulent frequency to the compression rate. They give information
about the initial conditions of the system and help to determine which physical
phenomenon can become dominant during different phases of compression.

4.1.1 Modification to the time integration scheme for the
DNS with time-varying viscosity

The DNSs are performed using the methods described in chapter 3 in section
3.2.2.1 for incompressible computations, with the only modification due to time-
dependent viscosity. In particular for the step that concerns the implicit treatment
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of viscosity. In section 3.2.2.1 for the constant viscosity case, after transforming to
Fourier space, we use the change of variable

vi = ui exp
[
νk2(t− t0)

]
. (4.13)

When the viscosity is a function of time this substitution is no longer adequate. As
an alternative we propose to use

vi = ui exp
[
ν0k

2N(t̃− t̃0))
]

(4.14)

where N(t̃) is

N(t̃) =
∫

Λ(t̃)−2dt̃ = Λ3

3S0
(4.15)

where the compression parameter dependence on the rescaled time t̃, defined in
Eq.(2.15), is Λ(t̃) = 1/(1 + S0t̃).

This step is particularly crucial in these DNSs because the viscosity increases
considerably during the simulation, causing numerical instability if it is treated ex-
plicitly.

4.2 Statistical approach : EDQNM Model
The Eddy Damped Quasi-Normal Markovian (EDQNM) closure has proven an

efficient closure for different types of turbulent flows. The first EDQNMmodel concer-
ned isotropic turbulence, in which a damping timescale (Θkpq)−1 was used to adjust
non linear decorrelation of the third-order cumulants generating the exchange of
energy between three wavenumbers k, p, q (see e.g. Orszag (1977), Lesieur and Ossia
(2000)). More or less sophisticated extensions of the EDQNMmodel were proposed to
account for additional distortions to turbulence : mean velocity gradients, buoyancy
force for stratified flows, Lorentz-Laplace force in magnetohydrodynamics, Coriolis
force for rotating flows [Sagaut and Cambon 2008]. In short, when accounting for
such additional forcing in the Navier-Stokes equation, one can account for the cor-
responding linear term at different levels of the closure (namely, choosing to retain
its influence on increasingly higher-order statistics, e.g. second- or third-order sta-
tistical moments). Since we deal with a rather strong effect of the additional linear
terms arising in equations (4.11) and (4.8), we anticipate that its direct impact on
non linear transfers will be second-order in amplitude with respect to its direct effect
on energy spectra, and we retain a simple version of the EDQNM closure, in which
spectral energy transfers T (k) will be closed with the same rationale as for isotropic
turbulence. We shall see in section 4.2.3 that the resulting model compares very well
with DNS.

Therefore, in the following, we derive the EDQNM closure for the compressed tur-
bulence with plasma effect, for each of the two options mentioned above for behavior
equations.
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4.2.1 First case : Time-dependent viscosity
In the moving frame the Navier-Stokes equation with time-dependent viscosity is

∂t̃ũi + ũj∂jũi = −∂ip̃+ ν0Λ−2∂2
jjũi (4.16)

It is then clear that, when t̃ goes to infinity, the dissipation term in Eq. (4.16)
tends to infinity as well, thus causing the sudden dissipation of kinetic energy. As
done for the classical Navier-Stokes equation, one can derive the two-point velocity
correlation evolution equation from Eq. (4.16), and derive the evolution equation for
the two-point velocity spectrum and then obtain the Lin equation for the kinetic
energy spectrum E(k). In the present case, the corresponding dynamical equation
for the kinetic energy spectrum is

∂t̃E(k, t̃) + 2ν0(1 + S0t̃)2k2E(k, t̃) = T (k, t̃) (4.17)

where the energy transfer term T (k, t̃) is closed using the classical EDQNM closure

T (k, t̃) =
∫∫

∆k

Θkpq
k

pq
E(q, t̃)b(k, p, q)

(
k2E(p, t̃)− p2E(k, t̃)

)
dpdq . (4.18)

b(k, p, q) is the classical geometrical coefficient related to the geometry of the triad
[Sagaut and Cambon 2008] and Θkpq is the characteristic time appearing during
the combined markovianization and eddy-damping process. Its expression is thus
provided by

Θkpq(t̃) = 1− eµkpq t̃+(1+2S0 t̃)2ν0(k2+p2+q2)t̃

µkpq + (1 + 2S0t̃)2ν0(k2 + p2 + q2) (4.19)

with µkpq = νk + νp + νq and νk = 0.36
(∫ k

0
p2E(p)dp

)1/2

.

4.2.2 Second case : Forcing term
If one wants to use the compression equation with the forcing term

∂t̃ũi + uj∂jũi + 2SΛ4ũi = −∂ip̃+ ν0∂
2
jjũi (4.20)

with Λ(t̃) = 1/ 3
√

1 + 3S0t̃. The corresponding Lin equation for this case reads(
∂t̃ + 2ν0k

2
)
E(k, t̃) = T (k, t̃)−D(t̃)E(k, t̃) (4.21)

where D(t̃) = 2SΛ4 = 2S0/(1 + S0t̃). The energy transfer term T (k, t̃) is the same as
in the previous case, with the only difference in the detailed expression of Θkpq :

Θkpq(t̃) = 1− eµkpq t̃+ν0(k2+p2+q2)t̃

µkpq + ν0(k2 + p2 + q2) . (4.22)

where µkpq has the same expression as in (4.19).
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4.2.3 Validation

We now present comparisons between EDQNM and DNS results. We use DNS
data from Davidovits and Fisch (2016a) from simulations using 1283 grid points, and
from our simulations using 2563 grid points. A close comparison permits to validate
the closure and confirms that the statistical approach can be used for an extensive
parametric study. Besides, comparing the different DNS data allows evaluating the
influence of a modification of numerical parameters on DNS statistics.

The numerical integration of EDQNM model Equations (4.17) or (4.21) is done
using a simple trapezoidal integration quadrature as regards the integral appearing in
the transfer T (k). Time-marching is done using the third-order strong stability pre-
serving Runge-Kutta method presented in section 3.2.2, a treatment that we believe
is original for solving these Lin-type equations. This scheme improve the numerical
stability of the time integration process, permitting the use of a larger time step with
respect to the first-order Euler time-integration method used in previous works.

Whereas statistics obtained in DNS is but a by-product of the velocity field for
a particular realization, obtained by averaging over the computational domain, the
resolution of EDQNM equations directly provides the two-point statistics that can be
integrated to obtain one-point statistics such as total kinetic energy. These statistics
stand for the ensemble averaging that should be done if many DNS realizations
could be afforded. Therefore, when comparing DNS and EDQNM, one needs to bear
in mind these differences between the two approaches. Also, initial conditions in DNS
use fields that are δ-correlated, thus with zero third-order correlations. This is not the
case in EDQNM in which energy transfers are immediately triggered at the beginning
of the computation, and therefore have non zero values from the start.

Comparison with DNS of Davidovits et al. The time evolution of kinetic
energy is shown in Figure 4.1 as a function of Λ, at different compression rates S0.
The figure presents results from the EDQNM model and from DNS by Davidovits
and Fisch (2016a). The initial kinetic energy is set to unity, and the time evolution
goes from right to left, starting at the domain size Λ = 1.

The figure shows that kinetic energy evolution initially increases for compression
rate S0 larger than 1, and decreases for S0 < 1. It then undergoes a sudden drop,
triggered at a value of Λ increasing with S0. This drop is not observed for S0 = 0.1
since kinetic energy decays too fast from the beginning.

Figure 4.1 also shows that EDQNM results agree very well with DNS data for
S0 > 1. When S0 ≤ 1, the curves depart slightly, but the overall trend is rather good.
Such differences can be due to various factors :

1. slight differences in initial conditions (that are not fully detailed in Davidovits
and Fisch (2016a)) ;
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Figure 4.1 – Turbulent kinetic energy evolution as a function of the compression
parameter Λ. Solid lines : DNS results from Davidovits and Fisch (2016a). Dotted
lines : EDQNM forcing term closure. Dash-dotted lines : EDQNM time-dependent
viscosity closure. Different colors for decreasing compression rates : red : S0 = 100 ;
green : S0 = 10 ; black : S0 = 1 ; blue : S0 = 0.1.

2. the effect of confinement at low-wave number, when the computational domain
is too small in DNS, so that DNS simulation over a 1283 grid is under-resolved
initially, although this resolution rapidly becomes adequate when viscosity
increases ;

3. there are differences between the two formulations of the model, based either
on the time-dependent viscosity closure or on the forcing term closure. Al-
though the two formulations should be formally equivalent, their numerical
implementation can induce departures, as observed on the figure.

Comparison with new DNS data To have better control over the parameters
of the simulation, we perform new Direct Numerical Simulations with known initial
conditions and an increased resolution of 2563. This permits further validation and
comparison of the EDQNM model results with those of our DNS data, shown in
Figure 4.2.

The initial conditions are generated using the method described in section 3.4.1,
using the spectrum (3.43) with s = 4.

For the large compression rates S0 ≥ 10, Figure 4.2 shows an almost perfect agree-
ment between EDQNM and DNS kinetic energy evolution, better than in Figure 4.1.
Also, the agreement is much improved for the lesser compression rates S0. This is the
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Figure 4.2 – Turbulent kinetic energy evolution as a function of the compression pa-
rameter Λ. Solid lines : our DNS results. Dash-dotted line : EDQNM time-dependent
viscosity closure. Different colors for different compression rates : red : S0 = 100 ;
green : S0 = 10 ; black : S0 = 1 ; blue : S0 = 0.1. Viscosity coefficient ν0 = 5 × 10−2

in all simulations.

result of the increase of resolution in the DNS, and better controlled initial conditions
as well.

4.3 Direct Numerical Simulations and EDQNM
results with increased resolution

To quantify and analyze the different phenomena involved in the flow dynamics,
and in particular, to illustrate the competition between turbulence production and
viscous dissipation, we present results from DNS with increased resolution along with
predictions by the spectral EDQNM model.

We illustrate this in Figures 4.3 an 4.4, with results obtained using an initial
kinetic energy spectrum of the Batchelor form E0(k) ∼ k4 exp (−2(k/kpeak)2), where
kpeak corresponds to the maximum of E0. The initial Reynolds number is Re0 = 250
and the compression number Cp0 = 0.1, based on `0 = 1/kpeak and u0 = K1/2.
Turbulence is therefore relatively weak in this example, while the compression is
rapid compared to the turbulent timescale.

In Figure 4.3, we show the evolution of turbulent kinetic energy K =
∫+∞

0 E(k)dk
as a function of the compression parameter Λ(t). We observe a very good agreement
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Figure 4.3 – Evolution of turbulent kinetic energy K, normalized by its value at
t = 0, as a function of the compression parameter Λ for both DNS at resolution 5123

and EDQNM simulations of a HIT compression case with Re0 = 250 and Cp0 = 0.1.
The critical compression parameter ΛM corresponds to the kinetic energy maximum
before the beginning of the viscous phase.

between simulations of 5123 grid-point DNS and the EDQNM model during all the
phases of the kinetic energy evolution. Moreover, the spectral distribution of energy
at four instants plotted in Figure 4.4 (bottom row), show an excellent agreement
between DNS and EDQNM at all scales. This supports the relevance of the closure
as a model for compressed turbulence.

The case presented in Figures 4.3 and 4.4 is typical of the regime extensively dis-
cussed in Davidovits and Fisch (2016a). At the beginning (Λ(t) from 1 to O(10−1)),
the dynamic of the flow is dominated by the compression effects leading to the in-
crease of kinetic energy. Progressively, viscosity grows and dissipates energy in the
small scales and eventually at larger scales, as indicated by the spectra. This coun-
terbalances the turbulence production mechanisms and finally triggers the sudden
viscous dissipation effect. These mechanisms are qualitatively observed in Figure 4.4
(top row), which shows the spatial distribution of kinetic energy in the DNS do-
main at the same four instants as the presented spectra. One particularly observes
the intensification of kinetic energy, especially at the instant (III) corresponding to
the peak of kinetic energy in Figure 4.3, and the substantial reduction of energy
levels at (IV), along with a smoothing of the field due to the damping of small-scale
fluctuations.

The critical value ΛM of the compression parameter corresponds to the maxi-
mum of kinetic energy in Figure 4.3. It indicates how much the turbulence can be
compressed before the appearance of the sudden viscous dissipation effect. We have
therefore computed the evolution of ΛM with the two relevant nondimensional pa-
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Figure 4.4 – Top row : distribution of turbulent kinetic energy K in the DNS at
four instants of the evolution, indicated in the kinetic energy curve of Figure 4.3.
The scaling of the box corresponds to the moving frame of reference. Bottom row :
Associated energy spectra E(k̃) for both DNS and EDQNM simulations, at the same
instants.

rameters, Reynolds and compression numbers, the initial spectrum remaining of the
Batchelor form. The corresponding map of ΛM in the (Re, Cp) coordinates is shown
in Figure 4.5.

This parametric study was permitted by the EDQNM model, which allows ex-
ploring six decades of initial Reynolds numbers Re0 and three decades of initial
compression number Cp0. It required as many as 10000 EDQNM simulations, which
would not be possible using DNS due to its high computational cost.

As expected, Figure 4.5 shows two general trends. First, when the initial Rey-
nolds number increases, ΛM decreases since the viscosity coefficient needs to grow
enough to impact the main energetic scales. Second, for decreasing values of the
compression number Cp0, the critical compression parameter ΛM also becomes smal-
ler since turbulent production is stronger and needs more time before being balanced
by dissipation.

Upon closer inspection, the isolines of ΛM in Figure 4.5 permit to identify two
additional kinds of dynamics different from that presented in Figure 4.3, wherein
turbulent production dominance is followed by that of viscous dissipation as Λ de-
creases. The first additional regime occurs at small initial Re0 and large Cp0. It is
also observed in Davidovits and Fisch (2016a) : dissipation immediately prevails from
the very beginning of the compression phase, and yields a decay of turbulent kinetic
energy, and a narrow energy spectrum limited to large scales, as in Figure 4.6, case
(A).



80 Chapitre 4. Sudden dissipation

ΛM

Re

Cp

(a)

(b)

(c)

Figure 4.5 – Iso-contour map of the critical compression parameter ΛM corres-
ponding to maximum of kinetic energy, as a function of the initial Reynolds number
Re0 and the compression number Cp0. Results from EDQNM simulations. The black
circle corresponds to the parameters used in Figures 4.3 and 4.4, and the red triangle
to that of Figure 4.10. The red line is the contour line at ΛM = 1.
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Figure 4.6 – Evolution of kinetic energy K normalized by its initial value as a
function of the compression parameter Λ for the three typical cases indicated on the
parametric map of Figure 4.5. The spectrum in region (A) illustrates the immediate
decay regime, that of region (B) the intermediate regime, and region (C) shows the
cascade regime.



4.4. Self-similar solutions in plasmas under compression 81

The second additional regime appears at large values of Re0, and Cp0. It corres-
ponds to the presence of important nonlinear energy transfers. In this new regime, two
values of the compression parameter, corresponding to two kinetic energy maxima,
may exist. This generates a discontinuity observed in Figure 4.5 (top-right corner, at
large Re and Cp, where the label (C) appears), which can be explained by conside-
ring the following concurrent phenomena. First, kinetic energy grows as Λ−2, which
means it remains constant in the moving frame. In the meantime, energy is transfer-
red to small scales by nonlinear effects. It is then suddenly dissipated when reaching
the viscous scales, in the classical mechanism of enstrophy blow up well known in
HIT decay. This sudden energy loss can counterbalance the growth of kinetic energy
if the Reynolds number is not large enough, leading to the first maximum of K(Λ).
Meanwhile, large scales keep gaining energy due to the compression until dissipated
by the sudden growth of the viscosity coefficient, resulting in the second maximum
shown in the spectrum in Figure 4.6, case (C).

In summary, we have explored the influence of initial nondimensional parameters
on the dynamics of turbulent plasma under compression by combining the results
of DNS and EDQNM simulations. This has permitted to identify the importance of
the various physical mechanisms involved during the compression. In particular, we
have shown that nonlinear energy transfer can have a decisive role at high Reynolds
numbers. In the following section, we propose theoretical arguments in support of
these conclusions.

4.4 Self-similar solutions in plasmas under com-
pression

The main goal of this part is to derive the different self-similar solutions for
turbulent plasma under compression. These solutions are first expressed in the moving
frame and then transformed back in the laboratory frame using Eq. (2.15). As already
stated, we stress that this derivation is limited to a restricted scenario, where a part
of the phenomena typically involved are not considered (e.g., shear and buoyancy
effects). But again, this kind of analysis may be useful, although not conclusive,
to understand the different mechanisms involved in the evolution of turbulence in
plasma under compression. Section 4.4.1 is dedicated to the theoretical analysis, and
in Section 4.4.2 we show the actual existence of these regimes using DNS and EDQNM
simulations.

4.4.1 Self-similar scaling
Three self-similar solutions are found, corresponding to the rapid compression

regime, the cascade regime, and the viscous regime. They are listed hereafter, and
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for convenience, the corresponding scaling laws are gathered in Table 4.1

4.4.1.1 Rapid compression regime

The rapid compression (RC) regime, historically referred to as Rapid Distorsion
Theory — called RDT in Cambon et al. (1993), although unlike in sheared turbulence,
wavenumbers are not distorted—, is the simplest self-similar solution which can be
obtained. Assuming that the turbulent timescale is much larger than the compression
time, such that Cp � 1, turbulence can be considered frozen in the moving frame,
leading to the following energy spectrum :

Ẽ(k̃, t̃) = E0(k̃), or E(k, t) = E0(Λ(t)k)× Λ(t)−1, (4.23)

whence the evolution of kinetic energy and of the integral length scale `I :

K(t) =
∫ +∞

0
E(k, t)dk ∼ Λ−2(t),

`I(t) = 3π
4

∫+∞
0 k−1E(k, t)dk∫+∞

0 E(k, t)dk
∼ Λ(t).

This self-similarity of spectrum Ẽ(k̃, t̃) is of course only strictly valid for wavenumbers
unaffected by viscosity. It is clear that the RC regime can only last for a limited
duration, due to the Λ−2 growth of the viscosity and to the non-linear transfer in
the moving frame. Note also that K ∼ Λ−2 does not necessary imply a RC phase.
For instance, redistribution of energy by non linear transfers can modify the shape
of spectra and the value of integral length scale ˜̀

I , while still conserving the total
kinetic energy.

4.4.1.2 Cascade regime

The decay of HIT is extensively discussed in most turbulence books, as for instance
in [Batchelor 1953, Lesieur 2008, Sagaut and Cambon 2008]. According to these
monographs, the decay rate of energy depends on the cascading process governed
by large scales of turbulence, but not on the value of the viscosity coefficient. For
compressed turbulence, although the viscosity coefficient varies in the moving frame,
one can expect similarly that the dynamics at large Reynolds number is driven only
by the turbulent energy flux from large to small scales. Considering a self-similar
evolution of kinetic energy as K̃ ∼ t̃−nc , the integral length scale evolves as ˜̀

I ∼
t̃1−nc/2. Assuming the permanence of big eddies [Batchelor 1949, Lesieur and Ossia
2000], which can be expressed by limk̃→0 Ẽ(k̃, t̃) = k̃s (s being the infra-red spectral
slope), we deduce from self-similarity :

nc = 2(s+ 1)
s− 3 . (4.25)
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This provides the classical decay exponent generally encountered in turbulence :
nc = 10/7 ' 1.43 for Batchelor spectrum (s = 4) and nc = 6/5 = 1.2 for Saffman
spectrum (s = 2). Note that the permanence of big eddies is relatively well observed
for s ≤ 3 while not entirely true for s = 4 due to backscatter effects transferring
energy from small to large scales.

Returning to the laboratory frame using Eq. (2.15) and the expression for Λ(t),
this leads to the kinetic energy evolution as Λ→ 0 for the cascade regime :

K ∼ Λnc−2 and `I(t) ∼ Λnc/2, (4.26)

leading in particular to a growth of kinetic energy and decrease of integral scale as
K ∼ Λ−4/5, `I ∼ Λ for Saffman turbulence and as K ∼ Λ−4/7, `I ∼ Λ2 for Batchelor
turbulence.

4.4.1.3 Viscous regime

The last regime is closely related to the sudden viscous dissipation effect occurring
in a turbulent plasma under compression, discussed in Davidovits and Fisch (2016a).
When the Reynolds number becomes small enough, the decay of HIT enters a final
regime, which is driven by dissipation and in which the nonlinear turbulent transfer is
negligible. This phase exhibits a self-similar solution known as the final decay regime
of HIT when the viscosity coefficient is constant [Batchelor 1953]. We propose here a
generalization for the time-varying viscosity case corresponding to a weakly-coupled
plasma.

As for the turbulent decay presented in Section 4.4.1.2, we consider a self-similar
evolution in the moving frame of the form K̃ ∼ t̃−nv . The scaling for the integral
scale can be obtained from the self-similar evolution of the turbulent time ∼ t̃ and the
viscosity coefficient ν̃(t̃), yielding ˜̀

I ∼
(
ν̃(t̃)t̃

)1/2
. Assuming again limk̃→0 Ẽ(k̃, t̃) = k̃s

as large scales remain unaffected by viscosity, we obtain, for Λ̃→ 0 :

nv = 3
2(s+ 1). (4.27)

Similarly to the cascade phase, we deduce the scaling laws for the kinetic energy and
integral scale in the laboratory frame for the viscous phase,

K ∼ Λnv−2 and `I(t) ∼ Λ−1/2, (4.28)

leading in particular to a sudden viscous dissipation of the form K ∼ Λ5/2 in Saffman
turbulence and K ∼ Λ11/2 for Batchelor turbulence. Therefore, the viscous regime
corresponding to the sudden dissipation effect clearly induces an important sensitivity
to initial conditions, contrary to the cascade regime, for instance, where the variations
of the growth exponent are smaller. Notably in the viscous regime, the integral scale of
turbulence grows despite the compression and is not dependent on initial conditions.
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RC regime Cascade regime Viscous regime

K ∼ Λ−2 ∼ Λnc−2 ∼ Λnv−2

`I ∼ Λ ∼ Λnc/2 ∼ Λ−1/2

Re ∼ Λ2 ∼ Λnc+1 ∼ Λ(nv+1)/2

Cp ∼ Λ−1 ∼ Λ0 ∼ Λ(nv+1)/2

Table 4.1 – Scaling laws corresponding to the different self-similar regimes for the
different turbulent quantities and non dimensional numbers. The coefficients nc and
nv are given by Eqs. (4.25) and (4.27) as a function of the infrared spectral slope s.

4.4.2 Simulations of self-similar regimes

We now confirm the actual appearance, in simulations, of the different self-similar
solutions analytically found in the theoretical study of Section 4.4.1. We consider
two types of initial conditions, as representative of many encountered situations :
Saffman turbulence (s = 2) corresponding to equipartition of energy at large scale
among the different wave-vectors, and Batchelor turbulence (s = 4) generated by
backscatter effects from small scale perturbations. In Section 4.4.2.1, we consider the
case of high Reynolds number turbulence, and for this, we use the EDQNM model.
In Section 4.4.2.2, we model the compression of a spherical turbulent layer using both
DNS and EDQNM.

4.4.2.1 High Reynolds number compressed turbulence with EDQNM si-
mulations

The Reynolds number Re = u`/ν for a weakly-coupled turbulent plasma under
compression is expected to decrease, as assessed by the scaling laws for u = K1/2 and
` = `I in either the rapid compression, the cascade or the viscous regime. Thus, we
use the EDQNM model to reach a very high initial Reynolds number, beyond the
possibilities of DNS, to obtain the different self-similar solutions derived in Section
4.4.1.

We choose initial spectra in the von Karman type E0(k) ∼
ks exp [−s/2(k/kpeak)2], both for the Saffman (s = 2) or the Batchelor (s = 4) case.
We set the Reynolds number at Re0 = 107 and the compression number Cp0 = 0.47.
Accordingly, this corresponds to a flow with high intensity turbulent fluctuations
and fast compression.

Figure 4.7 shows the evolutions of the kinetic energy K and of the integral length
scale `I , and Figure 4.8 that of the Reynolds number Re and of the compression
number Cp. The corresponding spectra E(k) at different stages of the evolution are
given in Figure 4.9.
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Figure 4.7 – Evolution of (Top) the kinetic energy K and (Bottom) the integral scale
`I as a function of the compression parameter Λ using EDQNM simulations. Solid
line : Batchelor initial condition (s = 4). Dashed line : Saffman initial condition (s =
2). The scaling laws corresponding to the self-similar solutions derived in Sec. 4.4.1
are also shown.
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simulations. Solid line : Batchelor initial condition (s = 4). Dashed line : Saffman
initial condition (s = 2). The different scaling laws corresponding to the self-similar
solutions derived in Sec. 4.4.1 are also shown.
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Figure 4.9 – Kinetic energy spectra E(k), corresponding to EDQNM simulations of
Figures 4.7 and 4.8, taken at different values of the compression parameter Λ. Left :
Saffman initial condition (s = 2). Right : Batchelor initial condition (s = 4).

Figures 4.7 and 4.8-bottom exhibit very clearly the three different regimes that
can be identified by the evolution changes in K, `I , and Cp when Λ decreases. The
dynamical changes in the evolution of Re (Figure 4.8-top) are less evident due to
transitions between similar powerlaws, especially the RC to cascade one, but are
still present. For all curves, the self-similar scaling laws proposed in Sec. 4.4.1 fit
the results of simulations adequately. The succession of rapid compression, cascade,
and viscous regimes is clear, and the values of Λ at which the RC-cascade transition
occurs seem to be similar for Batchelor and Saffman turbulences.

In Figure 4.7, we observe, for the turbulent kinetic energy evolution, a greater
sensitivity to initial conditions in the viscous regime. Still, the integral length scale
increase in this regime is similar for both Saffman and Batchelor cases. We conclude
that differences in the integral scale `I dynamics are only due to the cascade phase,
thus demonstrating the imprint of nonlinear mechanisms.

The Reynolds number decrease observed in Figure 4.8-top is mainly due to the
growth of viscosity, while initial conditions have relatively low influence except during
the viscous phase. The compression number Cp (Figure 4.8-bottom) increases from
its initial low value of Cp = 0.47 during the RC phase and reaches a plateau at about
ten times this value during the cascade phase.

The fact that simulations agree well with the scaling laws proposed in Sec. 4.4.1
is a consequence of the fact that the distribution of energy at large scales remains
constant during the compression. This constancy is verified in Figure 4.9, for both
Saffman and Batchelor turbulences, in which the infrared slopes of turbulent kinetic
spectra are maintained over three decades of k. In particular, energy backscatter
usually alters the slope in Batchelor turbulence, but this seems of little influence
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here. Besides, the presence of nonlinear transfer over a few decades of scales during
the cascade regime is attested by the observed Kolmogorov scaling k−5/3 in spectra
E(k) at Λ = 10−2 in Figure 4.9. On the contrary, the absence of inertial subrange
shows that, during the sudden viscous dissipation phase, energy is systematically
dissipated from small to large scales.

In summary, we have evidenced in this section the existence of the self-similar
regimes using EDQNM simulations at high Reynolds number with long evolution
times, thus reaching very small compression parameter Λ. This demonstrates the
influence of the initial distribution of energy at large scales, in particular during the
viscous dissipation phase. In the following, we show that these results still apply in
configurations more relevant to ICF, i.e when the Reynolds number is smaller and
in the presence of inhomogeneities.

4.4.2.2 Spherical turbulent layer

An essential question in ICF is how the turbulent ablator/fuel interface eventually
contaminates the hot spot at the center of the spherical capsule. We, therefore, consi-
der here a spherical turbulent layer configuration, more relevant to the ICF problem
than homogeneous turbulence. Of course, this case is still simplified, for it discards
important physical phenomena that are present in ICF, for instance, density effects
and the stagnation shock in the fuel, which has to be taken into account before the
bang time. Nonetheless, it is progress towards more realistic predictions. Therefore,
in this section, we investigate the self-similar solutions and the influence of large scale
perturbations in the case of a spherical turbulent layer under compression using both
DNS and EDQNM.

Although some estimates of physical parameters of experimental ICF are very
difficult to make, we choose initial conditions that can be relevant to actual flow
situations. We evaluate the Reynolds and compression numbers based on the ICF
simulations corresponding to the NIF shot N120205 presented in Weber et al. (2014a).
During the phase considered just before the bang time, the ablator/fuel interface
passes from a radius of 340µm to 54µm in 1ns giving S0 ∼ 109 s−1. The initial fuel
viscosity is around ν ∼ 10 cm2s−1 for ρ ∼ 10 g cm−3 and T ∼ 500 eV corresponding
to a plasma coupling parameter Γ ∼ 0.1 for the deuterium-tritium fuel. The integral
scale and fluctuating velocity are respectively `0 ∼ 10−2 cm and u0 ∼ 106 cm s−1,
leading to Re0 ∼ 103 and Cp0 ∼ 10−1. In our simulations, we therefore choose
Re0 = 450 and Cp0 = 0.1, figures that are relevant to ICF configurations.

The initial spectra are of von Karman type already introduced in Section 4.4.2,
E0(k) ∼ ks exp [−s/2(k/kpeak)2]. These conditions are sufficient to initialize the
EDQNM model, which assumes homogeneity and isotropy of turbulence. Its pre-
dictions will be used to compare to the DNS results. The initialization of the DNS
fluctuating velocity field is performed using the procedure described in section 3.4.2.1
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Figure 4.10 – Evolution of turbulent kinetic energy K as a function of the com-
pression parameter Λ for both 10243 DNS and EDQNM simulations corresponding
to the case of the spherical turbulent layer. Solid line : DNS ; Dashed line : EDQNM
simulation. Saffman and Bachelor initial conditions with respectively (s = 2) and
(s = 4) are used, as indicated in the legend.

for the incompressible velocity field in a spherical layer.
The DNSs are done in a three-dimensional 2π-periodic domain so that it is im-

portant to ensure minimal interaction between adjacent spherical turbulent layers.
Therefore, we choose an outer radius rM small enough compared to the size of the
domain H = 2π, so that the velocity decreases sufficiently between the layers. We
have experienced that rM/H = 1/π is adequate for that, and we also choose an inner
radius such that (rM − rm)/H = 1/(2π). The thickness of the turbulent spherical
layer `MZ is determined on the spherically integrated kinetic energy profiles and cor-
responds to the region where K ≥ 0.1 maxrK(r). The integral length scale `I has to
be smaller than `MZ to avoid a fast turbulent diffusion of the layer during the com-
pression. In consequence, we choose `I0/`MZ0 ∼ 0.07. This scale separation, together
with the constraint of resolving all the scales of turbulence, calls for 10243 DNS grid
points.

Figure 4.10 shows the evolution of kinetic energy from DNS and EDQNM, and
Figure 4.11 visualizations of the kinetic energy field extracted from DNS at different
stages of the compression. The Reynolds and compression numbers Re and Cp, the
integral scales `I and the turbulent layer size `MZ are plotted in Figures 4.12 and 4.13
respectively. Energy spectra at the same compression stages as the kinetic energy
distribution in Figure 4.10 are plotted in Figure 4.14. The kinetic energy radial
profiles averaged over spherical shells in physical space are shown in Figure 4.15.

The kinetic energy evolution in Figure 4.10 exhibits two self-similar phases cor-
responding to rapid compression followed by the viscous dissipation regimes. As ex-
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Figure 4.11 – Distribution in a plane cut of turbulent kinetic energy u2
i

2 in the DNS
at different instants indicated in Figure 4.10. Top row : the Batchelor case (s = 4) ;
and bottom row : the Saffman case (s=2). The scaling corresponds to that of the
moving frame.

pected, the intermediate cascade phase is not observed due to the low value of the
initial Reynolds number.

As for the simulations presented previously, DNS and EDQNM agree very well
if one considers the non dimensional parameters (Figure 4.12) and the one-point
statistics K, `I (Figure 4.13), but it is also true for the kinetic energy spectra (Fi-
gure 4.14). This may appear surprising in the sense that EDQNM is a model for
homogeneous isotropic turbulence, whereas the spherical turbulent layer is spatially
inhomogeneous. This can be explained by the fact that turbulence lengthscales re-
main smaller than the size of the turbulent layer throughout the compression, as
shown in Figure 4.13. Thus the evolution of turbulent structures is not influenced by
the large-scale inhomogeneity, and the flow remains quasi-homogeneous as regards
its statistics.

The different scaling laws derived in Sec. 4.4.1 are also recovered in the sphe-
rical turbulent layer simulations confirming in particular that viscous dissipation is
more important in the Batchelor case compared to the Saffman case, as shown in
Figure 4.11. One, however, remarks in Figure 4.13 That the integral length scale `I
is larger in Saffman turbulence than in the Batchelor case. This can be explained by
non-negligible nonlinear turbulent transfer around ΛM , since, during the compression
phase, `I always evolves as Λ2 in the rapid compression regime, while it scales as Λ−1

in the viscous regime.
It is interesting to look at the `MZ evolution during the compression in Figure 4.13
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and at the different kinetic energy profiles in Figure 4.15 which, in the ICF context
would correspond to studying the contamination of the hot spot by the turbulence.
In the beginning, for Λ ≤ ΛM , the evolution of the turbulent fronts of the turbulent
layer is slow and `MZ ∼ Λ2. However, the dynamics of `MZ changes when entering the
viscous phase, which corresponds to a diffusive increase of turbulent kinetic energy
towards the center, as seen in the radial profiles in Figure 4.15. This phase also is
sensitive to initial conditions since kinetic energy in the center in the Saffman case
is higher than in the Batchelor case.

In summary, our simulations show that the sudden viscous phase not only dissi-
pates the turbulent kinetic energy but also enhances its transport, possibly leading in
the context of ICF to the contamination of the hot spot. Accordingly, it seems parti-
cularly important to predict the time at which the viscous phase occurs, especially if
it is before the bang time. From the data of the simulations of Weber et al. (2014a),
one can obtain a quantitative estimate of the order of the corresponding timescales.
Although some physical phenomena are overlooked and there remain uncertainties
concerning their relative magnitude, it seems that the bang time appears before the
viscous phase, hence possibly explaining why the contamination of the hot spot is not
very important (by bang time the fuel-ablator interface has converged from 340µm
to 54µm giving Λbang ∼ 0.16 > ΛM). However, it seems possible to consider different
initial perturbations in which the viscous phase may appear earlier than the bang
time. This would clearly result in important modifications of the turbulent mixing in
the fuel.

4.5 Conclusion
In this chapter, we have investigated compressed turbulence in a weakly-coupled

plasma by identifying the different regimes resulting from the competition between
turbulence production, nonlinear energy transfer, and viscous dissipation. Depending
on the relative importance of these terms, three self-similar regimes can appear,
namely rapid compression, cascade and viscous phases. All three are clearly observed
in our DNS and EDQNM simulations. While the rapid compression and viscous
phases have been discussed in Davidovits and Fisch (2016a), the cascade phase is
precisely characterized for the first time thanks to the EDQNM model that permits
to explore very high Reynolds number configurations. Besides, this new model has
proven its efficiency at lower Reynolds numbers, by matching DNS results regarding
one-point statistics and two-point correlation spectra.

For sufficiently large initial Reynolds numbers and small initial compression num-
bers, weakly-coupled plasmas under compression experience growth of kinetic energy
due to a rapid compression or cascade phase. However, the viscous phase always
prevails at the end of the compression leading to the sudden dissipation phenome-
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non. By performing a parametric study with the EDQNM model, we have been able
to explore the phase space of nondimensional numbers, Re and Cp, and to locate
the values of the critical compression parameter at the maximum of kinetic energy
corresponding to the beginning of the viscous phase. This also reveals the complex
interplay between turbulence production, transfer, and dissipation, leading to some
configurations to two successive growth/decay phases of kinetic energy in place of
one during the compression.

The scaling laws for the different self-similar regimes have been derived from a
theoretical analysis and recovered in DNS and EDQNM simulations. As in other
classical turbulence problems, it demonstrates the dependence of the flow dynamics
on the initial distribution of energy at large scales. This appears particularly crucial
during the viscous phase since it can change the decay exponents of kinetic energy
drastically. Consequently, a much higher amount of turbulent fluctuations remain at
the end of compression when initial kinetic energy is concentrated at large scales.

Thanks to these results about the refined stages of the flow dynamics and the
conditions of their appearance, we were able to extend our study to the case of an
inhomogeneous spherical turbulent layer under compression, using parameters repre-
sentative of ICF capsules. While recovering the different phases already identified in
the homogeneous configurations, the simulations permit us to observe the diffusion
of the layer towards the center, mimicking the contamination of the hot spot by
turbulence. The results show an enhanced enlargement of the layer during the vis-
cous phase, along with great sensitivity to initial conditions. Therefore, it raises the
question of whether the sudden viscous phenomenon is favorable to achieve ignition
in ICF. On the one hand, viscous dissipation participates in a global temperature
increase by converting kinetic energy into internal energy, increasing the fusion reac-
tions. On the other hand, turbulent mixing can be transported into the core, cooling
the hot spot. In all cases, the appearance of the viscous phase indicates an impor-
tant change in the plasma dynamics, and it seems important to figure out when this
happens, before or after the bang time for some configurations.
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In the introduction, we have presented the problems that are still open in the
context of the baroclinic instability. The complexity of this type of flows makes fun-
damental studies difficult because of the different interacting mechanisms, such as
inhomogeneity, anisotropy, and compressibility [Zhou 2017a].

This is the reason why, during the years, some simplified frameworks have been
introduced to study the buoyancy generated turbulence.

The first simplified set-up was proposed by Batchelor et al. (1992), who investiga-
ted the decay of homogeneous turbulence, with passive scalar and buoyancy effects.
They limited their analysis to Boussinesq approximations, that is, cases with small
scalar fluctuations that correspond to low Atwood number Rayleigh-Taylor turbu-
lence. They found, using linear analysis of the Navier-Stokes equations together with
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DNS, that the history of the motion depends on the large scales of the flow. They
also show that similar behavior is still present when the nonlinear terms are taken
into account, that is, the self-similar state of the flow at large times depends on the
behavior of the spectra near k = 0.

Subsequently, studies on a similar problem were carried out by Sandoval (1995)
and Livescu and Ristorcelli (2007; 2008), who eliminated the small fluctuation hypo-
thesis using the variable density approximations.

Although they consider buoyancy effects in homogeneous configurations, they li-
mit their investigations to a case of turbulence decay, which is an essential difference
with the Rayleigh-Taylor turbulence. One of the features of the latter is the conti-
nuous conversion of potential energy into kinetic energy, which increases turbulence
intensity.

The closer simplified configuration, which retains most of the Rayleigh-Taylor
features together with the idealization of homogeneous turbulence, is the Unstably
Stratified Homogeneous Turbulence (USHT).

The USHT was investigated experimentally by Thoroddsen et al. (1998), who
studied the effects of an unstable linear density profile on the evolution of homoge-
neous grid-generated turbulence, in a thermally stratified wind tunnel. They found
that, contrary to the stably stratified case, where vertical velocity fluctuations are
inhibited, the buoyancy forces feed energy into the vertical motions.

The derivation of the USHT equations and the first numerical simulations were
performed by Griffond et al. (2014), Soulard et al. (2014), who identified this idealized
framework configuration as a tool to obtain a deeper understanding of buoyancy-
driven mixing. The underlying hypothesis of the unstably stratified homogeneous
turbulence is the homogeneity. This is justified if the integral scale ` of turbulence
is small compared to the mixing zone size L. The ratio between these two quantities
has been measured by Vladimirova and Chertkov (2009) in incompressible Rayleigh-
Taylor mixing layer, where they found `

L
≈ 0.2.

The direct numerical simulation of the USHT equations presents, as usual, for
DNS, limitation on the Reynolds number of the flow. That is why Burlot et al.
(2015a), proposed a spectral model based on the EDQNM closure to investigate
USHT dynamics at large Reynolds number.

They found that for several initial conditions, the late time study of the self-similar
states is limited due to confinement effect and that large numerical simulations for
both DNS and EDQNM are required to reach these states.

The Rayleigh-Taylor turbulent mixing zone, at late times, presents a self-similar
evolution, as discussed in the introduction of this thesis. The unstably stratified
homogeneous turbulence maintains the same characteristic.

It has been shown [Griffond et al. 2014, Soulard et al. 2014] that, for the case of
constant buoyancy frequency N , the second-order moments grow exponentially with
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time, for example, the turbulent kinetic energy

〈uiui〉 = exp (βNt). (5.1)

Here the parameter β plays the same role as the α for the Rayleigh-Taylor turbulence.
The value of β can be directly connected to the large scale of the flow and in

particular, to the infrared slope of the energy spectrum [Poujade and Peybernes
2010]. In fact, Soulard et al. (2014) show that

β = 4
3 + s

, for s ≤ 4. (5.2)

So that the large scales of the flows are the determinant factor to determine the
growth rate of an USHT field second order moments.

5.1 Velocity field induced by an isolated eddy in
a variable density field

Here we consider a blob of vorticity located at x = 0 within a domain V [Davidson
2015] with characteristic length `B. Inside this domain, the density is nonuniform,
while outside of V , it is constant. The following developments are based on the work
of Soulard et al. (2019).
If we use the approximation that the velocity is still incompressible we can relate it

HHHj

`B

x
ω 6= 0 and

non-uniform density
ω = 0 and

uniform density

1

2

3

Figure 5.1 – Isolated blob of vorticity in a domain with variable density located at
x = 0. Figure modified from Soulard et al. (2019).

with the vector potential A,
u = ∇×A (5.3)

which is connected to the vorticity ω via the Biot-Savart law

A(x) = 1
4π

∫
ω(x′) dx′

|x− x′|
, (5.4)
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where the integral is all over the space. If we consider value of x � `B, we can find
value of A using the Taylor expansion of the |x− x′|

1
|x− x′|

= 1
r
− ∂i

(1
r

)
x′i + 1

2∂
2
ij

(1
r

)
x′ix
′
j + · · · , (5.5)

where r = |x|. If one substitutes this expression in Eq (5.4) and after some simplifi-
cations one obtains

4πA(x) = ∂i

(1
r

)
×
∫ x′ × ω

2 dx′ + 1
2∂

2
ij

(1
r

) ∫
x′ix
′
jω

′dx′ + · · · . (5.6)

The first integral is a measure of the linear momentum introduced into the fluid
by the blob of vorticity and we shall call it linear impulse L. To finally obtain the
expression for the velocity, We take the curl of (5.6), to finally obtain the expression
for the velocity

4πu(x) = (L · ∇)∇
(1
r

)
+∇

(
∂2
ij

(1
r

))
×
∫
x′ix
′
jω

′dx′ + · · · . (5.7)

This expression evidences how, if L 6= 0 the velocity in the far field goes like
u(x) ∼ r−3 while in the case of L = 0, we have u(x) ∼ r−4. In case of constant
density, it has been shown [Davidson 2015] that L is an integral invariant for the
isolated blob of vorticity, so that the far-field decay of the velocity is not modified
during the blob evolution.

Taking the divergence of the incompressible Navier-Stokes equation provides a
relation between the velocity and the pressure. Which allows expressing the pressure
p as a function of the velocity u using the Biot-Savart law

4πp
ρ

=
∫

[∇ · (u · ∇u)]′ dx′

|x− x′|
. (5.8)

Again we can expand the integral using the Taylor series (5.5) which after some
simplification leads to

4πp
ρ

= ∂2
ij

(1
r

) ∫
u′iu
′
jdx′ + · · · . (5.9)

which shows how the pressure field decays as p ∼ r−3.
However, when the density is not uniform, equation (5.8) is no longer valid. In

this case, we start from the incompressible Navier-Stokes equation

∂tui + uj∂jui = −τ∂ip+ ν∂2
jjui, (5.10)

where the specific volume τ = 1/ρ is non uniform. Taking the divergence of (5.10)
we obtain

∂2
ii(τp)− ∂j(p∂jτ) = −∂2

ij(uiuj). (5.11)
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This equation cannot be simply inverted to obtain an equation similar to (5.8),
however an implicit solution can still be found

4πτp =
∫
∂j[∂i(uiuj)− p∂jτ)]′ dx′

|x− x′|
(5.12)

which can be expanded, as in the constant density case using the Taylor series

4πτp = −∂i
(1
r

) ∫
p∂jτdx + ∂2

ij

(1
r

)(∫
u′iu
′
jdx′ −

1
2

∫
p(xi∂jτ + xj∂iτ)dx

)
+ · · ·
(5.13)

From equations (5.9) and (5.13), we observe that in the two cases, the pressure
scaling is not the same, due to the additional terms coming from the τ gradients.

Soulard et al. (2019) show that injecting the far-field expansion of the velocity
u, Eq (5.7), into the evolution Eq (5.10) and using the scaling obtained from the
pressure, one obtains an evolution equation for the linear impulse L :

∂tLi =
∫
p∂iτdx. (5.14)

In particular, this result shows that linear impulse can be created in the vorticity blob
by the correlation of pressure and density gradient, so that in this case the velocity
in the far-field

u(x) ∼ r−3. (5.15)

In the same paper, the author analyzes the case of homogeneous turbulence with
variable density. They show that the permanence of large eddy is not achieved in the
case when the infrared slope of the kinetic energy spectra s is greater than 2. This
conclusion is, however, only verified if the density fluctuations are sufficiently large ;
if it is not the case, a kinetic energy spectrum with s = 4 will maintain this value
during the flow evolution.

5.2 Unstably stratified homogeneous turbulence
equations

The equations for the unstably stratified homogeneous turbulence derived in sec-
tion 2.2 are recalled for both approximations, variable density, and Boussinesq.

These equations are derived for a turbulent mixing zone between two fluids with
different densities, in a uniform gravity field. In the following ui is the velocity, π the
reduced pressure, θ = log(ρ/ρ0) is a scalar value connected to the density, g is the
acceleration and L is the mixing zone width. ν and D are the molecular viscosity and
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diffusivity that in this chapter are considered constant.

∂tui + uj∂jui + π∂iθ =− ∂iπ − gL∂iθ −
1
L
πδi3 + ν∂2

jjui

+ ν∂i (∂juj) + ν (∂jui + ∂iuj) ∂jθ

+ ν

L
(∂3ui + ∂iu3) (5.16)

∂tθ + uj∂jθ = D∂2
jjθ −

1
L
u3 (5.17)

∂juj = −D∂2
jjθ. (5.18)

The variable density assumption introduces new nonlinear terms due to the scalar
gradients, together with the relation (5.18) connecting the divergence of the velocity
field to the Laplacian of the scalar.

If one assumes small fluctuations for θ, equations (5.16), (5.17), (5.18) reduce to
the Boussinesq case :

∂tui + uj∂jui = −∂iπ + gθδi3 + ν∂2
jjui (5.19)

∂tθ + uj∂jθ = D∂2
jjθ −

1
L
u3 (5.20)

∂juj = 0. (5.21)

And we recall the expression of the buoyancy frequency

N =
√
g

L
. (5.22)

which is maintained constant in time.
The different USHT flows considered in this work are characterized by two non-

dimensional numbers : the Reynolds and the Froude numbers which are defined as

Re = u`

ν
, and Fr = u

`N
, (5.23)

where u is the characteristic velocity and ` is the integral scale, already introduced
in chapter 4, defined as

` = 3π
4

∫+∞
0 k−1E(k, t)dk∫+∞

0 E(k, t)dk
(5.24)

where E(k, t) is the kinetic energy spectrum.
The Reynolds number helps to understand the relative importance of inertial

over viscous terms, while the Froude number indicates the ratio between inertial and
forcing terms.
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5.2.1 Numerical methods

We solve equations (5.16)-(5.18) and (5.19)-(5.21) using the pseudo-spectral me-
thod and the third-order Runge-Kutta SSP scheme described in chapter 3. We recall
that in all the simulations, the velocity and scalar mean values are imposed to be 0.

The solution of both variable density and Boussinesq systems of equations faces,
in part, the same numerical challenges due to the properties of the USH turbulence.
The growth of the integral scale, together with the decrease of the Kolgomorov length
scale, η = (ε/ν3)−1/4, requires a careful choice of the initial conditions and mesh sizes.

On the one hand, one should have a higher kpeak (the wavenumber of the energy
spectrum peak) possible, knowing that it decreases during the simulation. Pope
(2000) estimates that for a DNS free of confinement kpeak/kmin ≥ 10. In our cases,
we stop our simulations when kpeak/kmin ∼ 8, which is a compromise between the
minimization of confinement effects and the concurrent need to have long enough
simulations to observe the establishment of self-similar states.

On the other hand, the kpeak is limited by the mesh size, which imposes the
smallest resolved scale. Furthermore, during the simulations, due to the turbulence
kinetic energy increase, the Kolgomorov length scale decreases. Consequently, the
computations resolution deteriorates.

Pope (2000) proposes the limit kmax × η = 1.5, where kmax is the maximum
resolved wavenumber, as a lower limit to satisfy in order to have resolved simulations.
For the Boussinesq case at the end of the DNS simulation, we have kmax × η ∼ 4,
which satisfies the proposed criterion.

Moreover, we recall that, in addition to the issues mentioned above, for variable-
density approximation, the non-locality, in spectral space, of the Poisson equation
requires an iterative method to invert the linear system and compute the pressure
contribution. We use the generalized minimal residual (GMRES) algorithm described
in section 3.2.3.1, which ensures convergence even in cases with significant density
fluctuations. Nevertheless, the convergence of this method is one of the variable den-
sity USHT critical features. As shown by Di Pierro (2017), in the Poisson equation,
the pressure operator conditioning number depends on the density contrast in the
computational domain. That is why, in USHT computations, where the scalar va-
riance grows with time, the number of GMRES iteration required to achieve the
desired convergences increases as the simulation advances.

The increasing computational cost of the DNSs would not be manageable for a
parametric study on the initial conditions, for instance, the direct numerical simu-
lation Ud3, presented in section 5.4, demanded 1000000 CPU hours dispatched on
4196 cores.

For this reason, to explore the influence of initial conditions, we propose to use
the implicit large eddy simulation method of Mathew et al. (2006) and referred to as
ADM-LES.
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The ILES allows us to study the same initial conditions that one would have for
the DNS with coarser meshes and reduced computational time.

5.2.1.1 Validation ILES for variable density

The effectiveness of the ADM-LES for USHT computation in Boussinesq ap-
proximation has already be proven by Griffond et al. (2015b). Here we show how this
simple large eddy simulation method can be useful in variable density computation
too. The ADM-LES is based on a low pass filter and an approximate deconvolution
[Grinstein et al. 2007]. In this method, as explained in Mathew et al. (2006), the
filtering and the deconvolution can be combined into a single step, which reduces to
simply filtering the variable at each time step. A comparison between DNS and ILES
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Figure 5.2 – Comparison of DNS (red) and ILES (black) results. (a) Kinetic energy
spectra. (b) Total kinetic energy.

data for the same case with a domain respectively of 10243 and 5123 mesh points is
plotted in Figure 5.2. These cases correspond to the simulation Ud3V D and Ul3V D,
which details are summarised in table 5.1.

From the comparison of the one point integrated kinetic energy in Figure 5.2b,
we observe a very good agreement between the two simulations with the ILES results
having the same temporal dependence as the DNS.

The differences between the two methods are evidenced by the kinetic energy
spectra of Figure 5.2a. The two spectra are in excellent agreement for all the wave
numbers resolved by the ILES method until the sharp cut-off due to the low pass
filtering around k ' 200.

The difference that is limited to the smallest scale of the simulation has to be
considered when one discusses ILES results. All in all, the utility of this kind of
under resolved simulation is undeniable, as it decreases the computational cost of the
parametric study to 150000 CPU hours per simulation, retaining most of the physical
properties of the direct numerical simulations.
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Name Type Mesh
size

Re0 Fr0 N 〈θθ〉/K At

Ud3 VD DNS 10243 4.92 1.24 4 3 0.98
B DNS 10243 4.92 1.24 4 3 0.98

Ul3 VD ILES 5123 4.92 1.24 4 3 0.98
B ILES 5123 4.92 1.24 4 3 0.98

Ul1 VD ILES 5123 4.92 1.24 4 1 0.87
B ILES 5123 4.92 1.24 4 1 0.87

Ul05 VD ILES 5123 4.92 1.24 4 0.5 0.74
B ILES 5123 4.92 1.24 4 0.5 0.74

Ul01 VD ILES 5123 4.92 1.24 4 0.01 0.4
B ILES 5123 4.92 1.24 4 0.01 0.4

Ul0 VD ILES 5123 4.92 1.24 4 0 0
B ILES 5123 4.92 1.24 4 0 0

Table 5.1 – Simulation characteristics in terms of initial Reynolds number, initial
Froude number, buoyancy frequency, the ratio between scalar variance and kinetic
energy, and initial Atwood number. Type VD corresponds to simulations with va-
riable density approximation while for type B to Boussinesq approximation.

5.2.2 Initial conditions
The initial conditions are generated using the methods described in section 3.4.1,

for both variable density and Boussinesq approximations.
A total of 12 simulations are presented in this study, using either the Variable

Density (VD) or Boussinesq (B) approximation to study non-Boussinesq effects. The
12 initial conditions have the same initial Reynolds number, Froude number, integral
scale, and buoyancy frequency N but with a different ratio between scalar variance
and kinetic energy.

5.3 Flow Topology
In this section, we discuss the differences in the flow topology during the time evo-

lution of USHT direct numerical simulation Ud3. In Figure 5.3, we show the contours
of the scalar fields resulting from Boussinesq and variable density approximations.
We observe that from the same initial condition at Nt = 0, the two flows have a
similar evolution until Nt = 1.8.

The first differences appear on the contours at Nt = 3.7, when in the scalar
field of the variable density case, we can differentiate between the more spike-like
and bubble-like structures, while this differentiation is not evident in the Boussinesq
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case, which shows a more symmetric behavior.
The different behaviors of the scalar field become more evident as the simulations

advance with the last two contours showing striking differences.
The variable density tendency to form spike-like structures reach some extreme,

with the presence of thin layers of heavy fluid moving towards the lighter fluid.
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Figure 5.3 – Contours of the scalar field θ of simulations Ud3B (left) and Ud3V D
(right). At four different times during the flow evolution.
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5.4 Results

In this section we confront the results between the two direct numerical simula-
tions Ud3 with Variable Density (VD) and Boussinesq (B) approximations.

5.4.1 Non dimensional numbers
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Figure 5.4 – Temporal evolution of nondimensional quantities of the flow. (a) Rey-
nolds number. (b) Froude number. (c) Atwood number. Red : Variable density. Black :
Boussinesq.

Figure 5.4 shows the evolution of the nondimensional number characteristic of
the flow. The Reynolds number that, at the beginning, has a value of ' 5 grows
considerably and reaches different values for the variable density and Boussinesq
approximations. At the end of the simulations, we have Re ' 287 for Ul3V D and
Re ' 220 for Ul3B, which is the first indication of different behaviors between the
two simulations.

The effective Atwood number computed using the maximum and minimum value
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of θ, that is found in the computational domain at every time step,

At = exp(θmax)− exp(θmin)
exp(θmax) + exp(θmin) (5.25)

is plotted in 5.4c. In this figure, we can observe how, at the beginning, there
is a phase where the At decays, which corresponds to the decrease in the scalar
variance, in Figure 5.5b, discussed in section 5.4.2. After the minimum, reached
around Nt ' 1.5 for the two simulations, the Atwood number increases during the
evolution of the flow, reaching values close to 1 at the end. We remark how the values
for the VD simulation are always higher than B simulation, suggesting the presence
of larger fluctuations of density in the domain.

5.4.2 One-point statistics

0 1 2 3 4 5

10
-1

10
0

10
1

(a)

0 1 2 3 4 5

10
-1

(b)

0 1 2 3 4 5

10
-2

10
-1

10
0

(c)

Figure 5.5 – Temporal evolution of one-point statistics. (a) Turbulent kinetic energy.
(b) Variance of the scalar. (c) Vertical flux. Red : Variable density. Black : Boussinesq

The evolution of the one-point statistics is plotted in Figure 5.5. From the evo-
lution of the turbulent kinetic energy in Figure 5.5a, we can observe how the two
approximations have analogies and differences.
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At the beginning of the simulation, the kinetic energy in the VD approximations
grows more rapidly with respect to the Boussinesq case. The different behavior during
this first transient phase can be explained by the variable density effects, which are
intense enough to modify the large scale of the flow.

During the following phase, from Nt ' 1, when the nonlinear effects begin to
dominate the dynamics, we observe a period where the two approximations have
a good agreement. This period is, however, short, and from Nt ' 3, the kinetic
energy of the two simulations shows, again, different temporal dependencies. After
this phase, where the nonlinearities become the principal mechanism, we observe the
flow entering the self-similar state. As explained in the introduction, in this phase
the second-order moments grow exponentially, with the following scaling

K ∼ exp(βNt) 〈θθ〉 ∼ exp(βNt) 〈u3θ〉 ∼ exp(βNt) (5.26)
where β depends on the infrared part of the spectra.
It is in this phase that the large scale flow modifications due to variable-density

effects become evident. In particular, we observe that the kinetic energy of the VD
simulation has a growth rate of β2 = 4/5 corresponding to s = 2, while for the B
simulation β4 = 4/7 corresponding to s = 4. Additionally, we also remark how the
infrared slope alteration, not only modifies β, but also the time when the flow enters
the self-similar regimes, anticipating it.

The scalar variance 〈θθ〉 time evolutions for both simulations, plotted in 5.5b,
have a decay from Nt = 0 to Nt ' 1.5, followed by phase of growth reaching the self
similar state at Nt ' 4, where the modification of the growth rate is also observed.

As expected, we also find the same behavior in the self-similar phase for the
vertical flux 〈u3θ〉.

5.4.3 Two-point statistics
The kinetic energy E(k, t), the scalar variance Eθ(k, t), and the vertical flux E〈u3θ〉

are presented in Figure 5.6.
From the same initial condition, we observe how the infrared part of the spectra

of the three quantities, in the variable density approximation, is not constant and
on the contrary, is modified, from a slope of k4 to k2. This modification induces the
difference already observed on the one point quantities in section 5.4.2. For most of
the temporal evolution, the main difference between the two approximations is due
to this large scale effects.

However, we observe at Nt = 3.7 and more clearly at Nt = 4.73, that differences
are also present in the nonlinear cascading processes, with small scales differences
that are more and more evident, as the simulations proceed.

In the inertial zone of the VD simulation, we start to observe a scaling close to
the k−5/3, while for the Boussinesq, this dependence is less evident.
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Figure 5.6 – Temporal evolution at four instants,Nt = 0, 1.8, 3.7, 5 of : (a) Turbulent
kinetic energy spectra. (b) Scalar variance spectra. (c) Vertical flux spectra. The time
increases in the direction of the arrows. Red : Variable density. Black : Boussinesq

At Nt = 4.73, the confinement effects are evident for both cases. This is a known
problem for the direct numerical simulations of USHT configuration, which prevents
the study of large Reynolds number configurations.

The difference just discussed is observed on the spectra of the three quantities,
with the large scale justifying the difference observed for most of the simulations,
while towards the end, we can appreciate the increased influence of the nonlinearities
and the onset of confinement effects.

5.4.4 Anisotropy

Anisotropy is one of the main characteristics of the unstably stratified homoge-
neous turbulence, and it is one of the main features of buoyancy-driven flows such as
Rayleigh-Taylor.
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Figure 5.7 – Vertical component of the velocity at Nt = 4.73. Top : Contours in a
plane parallel to the acceleration. Bottom : Contours in a plane perpendicular to the
acceleration. (a) and (c) Boussinesq results (b) and (d) Variable density

The acceleration direction imposes the anisotropy in USHT configuration, and as
shown in section 5.3, it is present in both Boussinesq and variable density approxi-
mations.

As a further illustration in Figure 5.7 we show the contours of the vertical com-
ponent of the velocity in a plane parallel 5.7a, 5.7b and perpendicular 5.7c, 5.7d
to the vertical direction, for both simulations Ul3. The two figures show a marked
anisotropy in the vertical direction, with the variable density case that has higher
values.

A more quantitative way of looking at the anisotropy is using the anisotropy
coefficient

bij = 〈uiuj〉
〈uiui〉

− δij
1
3 (5.27)

for the case of i = j.
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This coefficient is a simple but effective way of looking at the anisotropic behavior
of a flow. When this value is zero, it means that the kinetic energy is distributed
equally among all the components. While if it is different means that the energy
distribution is not isotropic, and we have preferential directions.

The evolution of the three anisotropy coefficients is plotted in Figure 5.8. As we
already remarked qualitatively, the direction of anisotropy of the flow is the direction
3, following the acceleration. b33 is positive with values around 0.4 for most of the
simulations, with a slight decrease towards the end. The difference between variable
density and Boussinesq results is small and seems to increase from Nt = 2 to Nt = 4,
and then decreases until the end of the simulation.

The difference, observed in the phase where nonlinear effects are important, may
be caused by the different redistribution of energy produced by the further nonlinea-
rities of the variable density equation.

Since the primary sources of the anisotropy are the large scales, the confinement
effects in the last steps of the simulation may play a role in the final decrease.
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Figure 5.8 – Evolution of the anisotropy coefficients.In red variable density and
black Boussinesq results.

In Figure 5.9 are reported the kinetic energy spectra of u2 in 5.9a and u3 in 5.9b.
We observe how the difference between the two velocity components increases during
the simulation for both variable density and Boussinesq approximations. The density
influence on the infrared spectra is more evident on the vertical than on the horizontal
component. The other interesting difference is observed at higher wavenumber, where
the difference between the two approximations is higher in the vertical direction than
the horizontal.
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Figure 5.9 – Spectral energy spectra at four instants during the flows evolution
Nt = 0, 1.8, 3.7, 4.73 of :(a) the horizontal component u2 and (b) vertical component
u3. In red variable density and black Boussinesq results

5.4.5 Probability density functions

In this section, we compute the probability density functions for the scalar θ and
two components of its gradient ∂3θ and ∂1θ. The objective is to understand, in the
physical space, how the fluctuations of θ are influenced by the variable density effects.

5.4.5.1 Probability density function of θ

The initial condition plotted in Figure 5.10a shows a symmetric distribution of
θ around the mean value 0. The probability density functions stay symmetric for
both simulations, but the values that θ can take decrease from Nt = 0 to Nt = 1.8,
Figure 5.10b, which is implied by the narrowing of the pdf, which is a decrease of the
variance of θ, already observed in section 5.4.2.

Until this point, the two simulations have similar results, with the VD, which
already has a small asymmetry between positive and negative values of θ.

At Nt = 3.7, while the Boussinesq result is still symmetric, the variable density
has a clear asymmetry toward the positive value of θ, which becomes more evident,
as the simulation progresses, until becoming striking at Nt = 4.73. That is, during
the variable density simulation, the heavy material mixes more slowly, so that the
probability of finding positive fluctuations of θ of increasing values, grows during the
simulations, an effect already evidenced by Livescu and Ristorcelli (2008).
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(a) (b)

(c) (d)

Figure 5.10 – Probability density function of the scalar at four instants during the
flows evolution : (a)Nt = 0, (b)Nt = 1.8, (c) Nt = 3.7, (d) Nt = 4.73. In red variable
density and black Boussinesq results

5.4.5.2 Probability density function of ∂1θ

As for θ, the initial condition of the gradient ∂1θ is plotted in Figure 5.11a, and
show symmetry of the values around the mean 0.

After the decrease that we observe until Nt = 1.8, Figure 5.11c, we find that at
Nt = 3.8, the two simulations have still similar probability density functions.

The main difference is obtained towards the end of the simulation at Nt = 4.73.
In Figure 5.11d, we observe that the tails of the probability density function of the
VD simulation are much wider than the Boussinesq. Confirming the observation of
Rao et al. (2017), that is, intense variable density effects may be the cause of the
existence of sharp and intense gradients in the domain.
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(a) (b)
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Figure 5.11 – Probability density function of one of the scalar gradient horizontal
component at four instants during the flows evolution : (a)Nt = 0, (b)Nt = 1.8, (c)
Nt = 3.7, (d) Nt = 4.73. In red variable density and black Boussinesq results

5.5 Initial condition variation

In this chapter, as already stated in section 5.2.2, the only difference in initial
conditions is the initial ratio of the scalar variance and the kinetic energy. Since we
want to keep the initial Reynolds number constant, this reduces to varying the scalar
variance 〈θθ〉. The characteristics of the different simulations are reported in table
5.1.

The modification of the initial scalar variance implies a variation of the initial
Atwood number of the flow, defined by Eq. (5.25).
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Figure 5.12 – Temporal evolution of nondimensional number characteristic of the
flows. (a) Reynolds number. (b) Froude number. (c) Atwood number. In red variable
density and black Boussinesq results

5.5.1 Non dimensional numbers

The evolution of the nondimensional numbers of the flow is plotted in Figure 5.12,
for the 10 LES simulation.

The Reynolds numbers are shown in Figure 5.12a. We observe how, for both va-
riable density and Boussinesq simulations, the strong Reynolds number dependence
on the initial value of scalar variance. That is, the production of turbulence is connec-
ted to the scalar fluctuations, the stronger they are, the higher the Reynolds number
is. On the same figure, we observe how the difference between VD and B simulation
decreases when the initial scalar fluctuations are less intense. For instance, for the
simulations Ul01 and Ul00, no noticeable difference seems to exist.

The Froude number in Figure 5.12b has a similar dependence on the initial
conditions. The difference observed for Ul3 decreases for all the other cases becoming
non-existent for the two cases Ul01 and Ul00. The notable difference with respect to
the Reynolds number is the tendency for all the 10 simulations to converge to a value
of the Froude number ' 2.
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The Atwood number, as explained in the introduction of this section, decreases
for all the simulations due to the scalar variance decrease.

5.5.2 One point statistics
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Figure 5.13 – Temporal evolution of one-point statistics. (a) Turbulent kinetic
energy. (b) Variance of the scalar. (c) Vertical flux. In red variable density and black
Boussinesq results. The different simulations are indicated in the legend of every
figure.

After the non-dimensional numbers, we investigate the influence of the initial
conditions on the one-point statistics : integrated kinetic energy, integrated scalar
variance, and vertical flux.

The kinetic energy evolution for the 10 LES simulation is plotted in Figure 5.13a.
Here we have the same effect observed in the previous section, that is, the difference
between variable density and Boussinesq simulation decreases with the decrease of
the initial scalar variance. One of the main consequences of the reduction of variable
density effects concerns the growth rate of the kinetic energy in the self-similar phase,
which becomes the same for Ul01 and Ul00. That is, we expect no modification of
the infrared part of the kinetic energy spectra.
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Similar behaviors are observed for the other two quantities in Figures 5.13b and
5.13c, where the differences that are evident for the case Ul3 are less and less so as
the initial scalar variance decreases.

In particular, the disappearance of variable density effects, observed between Ul05
and Ul01, suggests that the non-Boussinesq limit for the USHT simulations is between
these two initial conditions.

5.5.3 Two point statistics
The influence of the initial variance on the spectra is illustrated using as examples

simulations Ul1 and Ul05. In Figure 5.14, we show the spectra for the four simulations
at the same time instants during the evolution of the flow.

We observe how the effects of variable density, which act on both large and small
scales, are more evident for the simulation Ul1, Figure 5.14a, where the scalar fluc-
tuations at the beginning of the simulation are more intense, with respect to Ul05.

In the simulation Ul05, Figure 5.14b, the large scale effects are still visible, but
they do not concern the energetic scales near the peak of the four spectra. Even if
their influence is still present on the integrated quantity, as shown in Figure 5.13.
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Figure 5.14 – Temporal evolution of kinetic energy spectra at four instants for : (a)
Ul1 simulations. (b) Ul05 simulation. In red variable density and black Boussinesq
results.
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Figure 5.15 – Temporal evolution of scalar variance spectra at four instants for : (a)
Ul1 simulations. (b) Ul05 simulation. In red variable density and black Boussinesq
results.

5.6 Conclusion

This chapter concerns the study of the variable density effects on the unstably
stratified homogeneous turbulence (USHT). In particular, following the work of Sou-
lard et al. (2019) on the permanence of large eddies, we are interested in the possible
modification of the the self-similar state growth rate β, which is related to the energy
distribution at large scales. The investigation is carried out, confronting the results
of variable density and Boussinesq direct numerical simulations. Moreover, we report
10 LES simulations with different initial conditions to study in what measure the
variance of the initial scalar field θ influences the late time self-similar flow evolution.

The study of USHT configurations is accompanied by the numerical challenges
associated with the growing spectral range, which requires adequate numerical discre-
tization. On the one hand, one has to consider the rapid growth of the integral scale,
which could cause the confinement of the flow and on the other, the development of
the turbulence cascade, which involves more and more small scales.

Furthermore, the variable density approximation requires an iterative method to
solve the Poisson equation, which, in this case, is not straightforward to solve. In
this work, we propose the GMRES algorithm, which has been used in both direct
numerical simulation and large eddy simulations. The latter has been introduced to
allow the parametric study on initial conditions, that with the DNS alone, would not
have been possible.

From the results of the numerical simulations, we find that in the variable density
approximation, the permanence of the large eddies is not verified for initial conditions
having an infrared spectrum with ∼ k4. In particular, the presence of a scalar field,
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with sufficiently high variance, causes the modification of the large scales of the flow,
reflected by the change of the infrared part of the kinetic energy spectra, which
was already reported by Soulard et al. (2019). In unstably stratified homogeneous
turbulence, the infrared exponent has a direct influence on the growth rates β of
the self-similar state. That is why we observe differences between the β found in
Boussinesq and variable density results. These are evident in the time evolution of
the integrated quantities : kinetic energy, scalar variance, and vertical flux.

From the analysis of the two-point statistics, in addition to the large scale diffe-
rences, we observe that the two approximations lead to different nonlinear cascade
processes, evidenced by the differences in the inertial and dissipative parts of the
spectra. Moreover, the anisotropy of the flow seems to be enhanced in the variable
density case, even if the difference with the Boussinesq result is small.

Furthermore, we compute the Probability Density Function (PDF) of the scalar
θ. Thanks to the PDF, we show that, during the simulation, in the variable density
case, the scalar fluctuations tend to create a longer tail towards large positive values,
while in the Boussinesq case, the PDF stays symmetric. That is, in the variable
density case, after the initial transient, it is more probable to find heavy fluid particles
than light ones. While in the Boussinesq case, the probability is the same during
the computation. This result seems to confirm previous observations of Livescu and
Ristorcelli (2007).

Likewise, the study of the density gradients shows that during the flow evolution,
the variable density PDFs have more extended tails with respect to the Boussinesq’s,
which indicates an increased probability of sharper interfaces and the possible blow-
up of the density gradient proposed by Rao et al. (2017).

Finally, we use the LES simulations to perform a parametric analysis of initial
conditions. We chose to vary the initial scalar variance and to observe its effect on
spectra and self-similar growth rates. As we expect for the Boussinesq simulation, no
dependence on initial condition is observed, while in case of variable density, we find
that the decrease of the scalar variance decreases the influence of the scalar field in
the dynamics of the flows. In particular we find that the non-Boussinesq behaviour
has its onset for a value of 〈θθ〉K between 0.01 and 0.05. The results presented in
this chapter are only the beginning of the analysis of the variable density unstably
stratified turbulence. Future studies may go deeper into the investigation of its small
scales properties. Or one could push further the studies on the initial conditions
dependencies.
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In chapter 4, we have discussed how the weakly coupled plasma produced in iner-
tial confinement fusion compressions experiences a tremendous growth of the dynamic
viscosity µ, as the temperature T increases. Considering the small dimensions of a hot
spot in ICF devices, ∼ 10− 100[µm], and the temperatures achieved, above 10[keV ],
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hydrodynamic instabilities can be partially damped [Haines et al. 2014b] and small
scale velocity structures can be significantly dissipated [Weber et al. 2014a]. We have
investigated the sudden viscous dissipation effect proposed by Davidovits and Fisch
(2016a), which by rapidly converting the kinetic energy of turbulent motions into
internal energy, could, in principle, enhance the hot spot temperature, helping the
fusion reactions to take place. The different regimes and scaling laws characteristics
of compressed turbulent plasmas have been explored theoretically and with spectral
EDQNM model, also evidencing an important sensitivity to initial conditions during
the sudden viscous dissipation phase due to the distribution of energy fluctuations
between scales.

Besides, inhomogeneous simulations of turbulent kinetic energy layers under com-
pression also investigated in chapter 4 have shown an increased transport of turbu-
lence toward the center of the capsule during the implosion. These observations, al-
though not accounting for plasma molecular diffusion, suggest that a new mechanism
producing mixing of the heavy elements from the ablator into the DT fuel may take
place in ICF. Can sudden viscous dissipation come together with sudden diffusion ?
Mixing is indeed an important issue in ICF as having depleting cooling effects on the
hot spot [Betti and Hurricane 2016, Ma et al. 2017]. The asymmetry of the implosion
[Haines et al. 2016], the presence of defects on the capsule, like fill tube [Hammel et al.
2010, MacPhee et al. 2017] or support tent [Weber et al. 2017] are among the large
scale mechanisms known as principally responsible for mixing in ICF targets. Other
contributions may come from the fine scale perturbations amplified by hydrodynamic
instability [Hammel et al. 2010]. Plasma transport coefficients have been shown to
play a role in the mixing zone dynamics (see Vold et al. (2015)). In their paper, Rin-
derknecht et al. (2014a) present an experiment from the OMEGA facility, having a
more than expected ablator-fuel mix prior to the deceleration phase, a period in which
hydrodynamic instability effects are expected to be negligible. Post-processing expe-
rimental data and using one-dimensional radiation-hydrodynamic calculations, they
demonstrated that the main process driving mixing is the molecular diffusion. On
the same experimental platform, Zylstra et al. (2018) provide evidence that implosion
with a moderate temperature (< 6keV ) and moderate convergence are dominated
by diffusive mix and that any turbulence-related effect is less significant.

Still, the question of how and when nonuniformities and strong temporal varia-
tions of plasma transport coefficients due to temperature and mass fraction mixture
[Ticknor et al. 2016] act on the mixing zone dynamics is pending.

Here we study the idealized case of the DT/CH mixing layer in spherical com-
pressions representative of ICF. Here the plasma transport coefficients are taken into
account using the Pseudo-Ion-in-Jellium (PIJ) model, proposed by Arnault (2013),
and further validated in Ticknor et al. (2016). These simulations will be compared
to constant viscosity and diffusivity simulations to identify the importance of the
transport coefficients on the evolution of the mixing zones.
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This chapter is organized as follows : At first, we present the pseudo-ions in
jellium model and some results concerning the role of the coupling parameter in
plasma mixtures. Then, after recalling the equations derived in chapter 2 for the
spherical turbulent layer under compression, we detail the configurations for direct
numerical simulations (DNS) of DT/CH mixing layer. We then identify the different
regimes corresponding to the dominance of turbulent or molecular diffusion on the
mixing from a parametric study on initial conditions.

6.1 Description of the pseudo-ions in jellium (PIJ)
model

In this section, we recall the principle of the pseudo-ions in jellium model, whose
details can be found in Arnault (2013). The most precise estimates, to compute
transport coefficients in a plasma, come from the quantum molecular dynamics si-
mulations. This method is very accurate, although computationally demanding and
not of practical use in hydrodynamic simulations, which need the values of viscosity
and diffusivity at every mesh point and for every time steps.

We consider a plasma as a gas of ions, atoms which, due to extreme heating, lose
part of their electrons, and the free electrons. The ions are composed of the atom
nucleus plus, if the elements are not fully ionized, bound electrons.

In the pseudo-ions in jellium model, the jellium is a background of uniform electric
density representing the free electrons, in which we place the pseudo ions, i.e. a
first-order approximation of the real ions accounting for the approximation on the
electrons density assumed uniform. One of the most significant quantities in plasma
physics, and especially for the PIJ model, is the coupling parameter Γ, the ratio
of the Coulomb electrostatic potential energy of nearest neighbors, and the thermal
energy. This parameter, in general, can vary from values less than 1 to more than
100 [Piel 2017], identifying plasma regime with different properties.

When Γ � 1, the kinetic energy of the single particles of the plasma exceeds
the potential energy of their interaction, this regime is called weakly-coupled plasma,
and it is characterized by high temperature and low density. On the contrary, when
Γ > 1, plasma is in the strongly-coupled regime, which corresponds, usually, to colder
and denser plasma with strong interaction between particles.

An example of the different plasma regimes that are present in nature or engi-
neering application is given by Piel (2017) and reported in fig. 6.1.

The coupling parameter is defined as

Γ = Z∗e2

akBT
, (6.1)

where e is the electron charge, Z∗ is the ionization of the pseudo-ion, or pseudo-
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Figure 6.1 – Different plasma regimes characterized by the temperature T , measured
in Kelvin, and the electron density, i.e., the number of electron for unit volume. On
this figure, the dotted lines represent the border between weakly and strongly coupled
plasma, defined for a coupling parameter of Γ = 1

3 . From Piel (2017).

ionization, T is the temperature, kB is the Boltzmann constant and a is the Wigner-
Seitz radius, the radius of the sphere whose volume is equal to the average volume
occupied by one atom. The pseudo ionization Z∗ is computed using the scaling law
from the Thomas-Fermi approximation, a description of the electronic structure of
atoms using only information from electronic density function. Once the value of the
coupling parameter Γ is determined, the model uses simple kinematic formulas with
collision frequencies and scaling laws to compute viscosity and diffusivity in pure
elements as well as in plasma bi-component mixtures.

One of the advantages of this model is that it can predict viscosity and diffusivity
for different plasma regimes spanning from the high-temperature low-density weakly-
coupled regime to the low-temperature high-density strongly-coupled regime. Figure
6.2 gives an example of the capability of the PIJ model in a plasma mixture of
hydrogen and silver, validated against results obtained with a more accurate method
[Ticknor et al. 2016].

Two examples of the coupling parameter values in plasma mixture that are of
interest for inertial confinement fusion are given in Fig. 6.3. We observe that the
values of the coupling parameter are higher in the DT/gold mixture than in the
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Figure 6.2 – Viscosity of a hydrogen (H) silver (Ag) mixture. PIJ simulation (
continuous lines) are compared with results from orbital free molecular dynamics
simulation (symbols). From Ticknor et al. (2016).

DT/CH mixture, nevertheless for both cases, Γ decreases with temperature and the
mass fraction of the heavier element. These demonstrate that plasma mixtures can be
weakly or strongly coupled depending on temperature or composition, thus requiring
the use of models, like the particle-ion in jellium, for case in which thermodynamic
conditions vary significantly during the simulations.

6.1.1 How the PIJ results depend on mass fraction, density
and temperature

We have observed how the PIJ model is able to compute the viscosity and dif-
fusivity of plasma mixtures in different thermodynamic conditions. In this section,
we show how the results of the model depend on the three quantities that the PIJ
routine demands as inputs : mass fraction, density, and temperature. The mixture
used as an example is the DT/CH. The results are plotted in Fig. 6.4.

In Fig. 6.4a viscosity and diffusivity show an inverse dependence on the CH mass
fraction YCH , the first decreases while the second increases when YCH grows. On
the contrary, in Fig. 6.4b, we observe that the two transport coefficients have the
same dependence on the density : they decrease when the density increases. Finally,
Fig. 6.4c shows the temperature dependence of viscosity and diffusivity, in this case,
for the pure DT. We observe how the curves, for sufficiently high temperatures, follow
the kinematic scaling ∼ T 5/2 [Braginskii 1995].
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Figure 6.3 – Evolution of the coupling coefficient in plasma mixtures, as a function
of the mass fraction of the heavier element, for different temperature and constant
density. (Left) : Mixture DT/CH with density ρ = 5 10−3g/cm3. (Right) : Mixture
DT/ Gold with density ρ = 20g/cm3
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Figure 6.4 – Transport coefficients variation in a DT/CH mixture, (a) as a function
of the CH mass fraction with T = 100 eV and ρ = 5 10−3 g/cm3, (b) as a function of
the density of the mixture with T = 100 eV and YCH = 0.1, (c) as a function of the
temperature with ρ = 5 10−3 g/cm3 and YCH = 0. Black continuous line : viscosity.
Red dashed line : diffusivity.
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6.2 Theoretical framework
In this section, we recall the system of equations derived in chapter 2, that describe

the evolution of a spherical mixing zone under compression. The flow is decomposed
into a base component and a perturbation one. On the one hand, the base flow ac-
counts for the radial velocity and the deuterium-tritium thermodynamics quantities
during the adiabatic compression of an idealized ICF target. It can be derived ana-
lytically from conservation laws. On the other hand, the fluctuations account for the
turbulence and the fuel/ablator mixing zone and are computed from direct numerical
simulations.

6.2.1 Equations for DT/CH mixtures
We specialize the equation derived in section 2.3 for the DT fuel/CH ablator

mixture. We recall that, in this study, radiative effects and combustion terms due
to fusion reactions are not taken into account. In this specific case the mixture law
(2.50), becomes for deuterium-tritium (DT) fuel and ablator (CH) :

1
ρ

= 1− Y
ρDT

+ Y

ρCH
, (6.2)

where ρDT and ρCH are respectively the microscopic densities of the light and heavy
materials. They are defined as

ρDT = nMDT

1 + ZDT
and ρCH = nMCH

1 + ZCH
(6.3)

The particularity of plasma is the strong dependence of the kinematic viscosity µ
and the molecular diffusion D coefficients on the temperature T , density ρ, and mass
fraction Y of CH.

At this stage, we recall that to solve the problem, it is convenient to decompose
the flow quantities into a base flow (noted with suffix B) and fluctuations (identified
by small letters). For instance velocity components are written as Ui = UB

i + ui.

6.2.2 Base flow
The objective pursued by selecting an arbitrary base flow is twofold. First, we

wish to obtain simplified equations for the perturbations when expressed in a non-
inertial frame (see section 2.1). Also, the base thermodynamics conditions are selected
to represent the hot spot characteristics in ICF capsules. We start by recalling the
choice of the radial base velocity field, UB

i , accounting for the main compression,

UB
i (x, t) = −S(t)xi, (6.4)
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introducing the uniform compression time rate S(t), assumed positive for a compres-
sion. Any non-distorted length scale evolves proportionality to Λ during the com-
pression. In particular, the radius R corresponding to the fuel/ablator interface, if
unperturbed by instabilities, would decreases as R(t) = R0Λ(t). Thereafter, initial
values at t = 0 are identified with the suffix 0.

While the expressions of the other base flow quantities are :

ρB(t) = ρ0Λ(t)−3, (6.5a)
nB(t) = n0Λ(t)−3, (6.5b)
Y B(t) = Y0 = 0. (6.5c)

Where the base density ρB is taken uniform and the base mass fraction is set to one,
Y B = 0, corresponding to pure DT fuel. The base temperature TB and pressure PB

are derived assuming an adiabatic compression in which viscous and diffusion effect
have no impact on the base flow. They are :

TB(r, t) = T0Λ(t)−3(γ−1)
(

1− 1
h2

0

r2

Λ(t)2

)
. (6.6)

PB(r, t) = P0Λ(t)−3γ
(

1− 1
h2

0

r2

Λ(t)2

)
. (6.7)

The length scale h0 > 0 expresses the temperature gradient at the beginning of the
compression.

The compression parameter Λ(t) expression is

Λ(t) =
√

1− 2S0t+ (S2
0 + Ω2

0)t2, (6.8)

with the characteristics frequencies S0 = S(0), the initial compression rate, and
Ω0 =

(
2P0
ρ0h2

0

)1/2
expressing pressure gradient effects. The position of the fuel/ablator

interface, R(t) = R0Λ(t), is principally driven by the initial impulsion S0 at the
beginning of the compression, and then decelerated by pressure gradient effects, Ω0,
leading to a minimum convergence radius (see Figure 6.5).

The adiabatic compressions studied here differ qualitatively from realistic implo-
sions of ICF capsules, which are driven by shocks. However, it is possible to choose
parameters such that the duration and convergence ratio are representative of ICF
implosions. Also, we can impose at the minimum convergence ratio the thermody-
namics conditions relevant to hot spots in ICF capsules (see Atzeni and Meyer-ter
Vehn (2004a)). These conditions are gathered in Tab. 6.1 and in figure 6.5.

We can remark that the initial parameters at t = 0 correspond to compressed
and heated plasma state where DT and CH are already fully ionized with ZDT = 1
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Figure 6.5 – Description of the implosion characteristics studied in the present work.
(Left) : Time evolution of the temperature TB, the pressure PB and density ρB at
the center of the domain. The thick solid line represents the radius of the capsule.
(Right) : Radial profiles of base temperature and pressure, at four instants during
the compression as indicated in the left figure by the black triangles on the time axis.

t [ns] T [eV ] P [Mbar] ρ[gcm−3] R[µm]
0 75 2.87× 10−1 5× 10−3 300
0.5 293 8.7 3.9× 10−2 150
0.93 12.8× 103 1.08× 105 11.08 24
1 30× 103 9.14× 105 40 15

Table 6.1 – Temperature T , pressure P and density ρ at the center of the cap-
sule, for different instants. The last column indicates the radius of the unperturbed
fuel/ablator interface R.

and ZCH = 3.5. The inner radius diameter is R0 = 300 µm, the duration of the
compression 1 ns and a convergence ratio of 20 is achieved. The base temperature
at the center of the capsule varies from 75 eV to 30 keV, with the base pressure
reaching 103 Gbar and fuel density 40 gcm3. In figure 6.5 is plotted the temperature
and pressure profiles at different times, revealing the gradients responsible for the
deceleration of the capsule radius. It also generates Rayleigh-Taylor instability at the
fuel/ablator interface. However, due to the fact that Ω0 = 50ns−1 � S0, its effect
remains very weak during the implosion.

6.2.3 Perturbation equations

The equations describing the dynamics of the perturbations around the mean flow
are derived in section 2.3.2.2. We recall that we work in a non-inertial frame with the
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new time t̃ and position variable x̃ corresponding to the reference frame deforming
with the base radial velocity :

t̃ =
∫ t

0
Λ−2(s)ds, x̃ = x

Λ(t) . (6.9)

Moreover, we recall the rescaling that we use in order to eliminate inhomogeneous
forcing terms due to base velocity in the velocity equation.

ũ(x̃, t̃) = u(x, t)Λ(t), π̃(x̃, t̃) = π(x, t)Λ2(t), θ̃(x̃, t̃) = θ(x, t). (6.10)

The equations for the perturbation in the non-inertial frame are :

∂tũi + ũj∂jũi = −∂iπ̃ − π̃∂iθ̃ − Λ2ΠB∂iθ̃ + ...

∂j [ν (∂jũi + ∂iũj)]− ν (∂jũi + ∂iũj) ∂j θ̃, (6.11a)

∂tθ̃ + ũj∂j θ̃ = ∂j
(
D∂j θ̃

)
, (6.11b)

∂jũj = −∂j
(
D∂j θ̃

)
. (6.11c)

In Eq. (6.11a) for the velocity perturbation, one inhomogeneous term remains which
is proportional to the base reduced pressure, ΠB, and accounts for the buoyancy
production. The quantity, π̃, expressed in the new coordinate system not only ac-
counts for the reduced pressure fluctuations, but also for the diagonal components of
the viscous stress tensor. We emphasize again that for the perturbation, the variable
density condition (6.11c) holds. Therefore, compressibility is accounted only for the
base flow in this work, while it is neglected for the perturbations.

6.2.4 Numerical methods
The perturbation equations in the non-inertial reference frame are solved using the

pseudo-spectral method for variable density turbulence with nonuniform transport
coefficients described in chapter 3. In particular, we recall that in the variable density
approximation, the non-locality in spectral space requires an iterative method to
invert the linear system. We use the generalized minimal residual (GMRES) algorithm
described in section 3.2.3.1, which ensures convergence even if density fluctuations
are important contrary to fixed point methods.

The strong dependence of the dynamic viscosity µ and the molecular diffusion D
coefficients on the temperature T , density ρ, and mass fraction Y of CH are taken
into account using the particle-ion-in-jellium (PIJ) model, described in section 6.1.
Viscous and diffusive contributions are taken into account implicitly, also using a
GMRES algorithm.

The typical cost of a simulation is roughly 200000 CPU hours dispatched over
2048 cores.
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6.2.5 Initial conditions

To define more precisely the initial conditions in the simulations, we introduce the
volume average of a quantity ∗ as 〈∗〉. It is also convenient to use ∗ as the tangential
average of the same quantity (thus depending on r only). The fluctuations around
these radial averaged profiles are noted as ∗′. At this stage quantities are expressed
by a triple decomposition with for instance the full velocity given by Ui = UB

i +ui =
UB
i + ui + u′i.
The initial conditions are generated using the methods described in section 3.4.2.

The initial density profile is radial, such that θ = θ. It forms a diffuse spherical
interface between fuel and ablator of width L0 = 5µm, centered on radius R0 =
300µm. Therefore, θ is zero at the center of the capsule, while in the ablator region
of pure CH, θ = 0.16. This latter value is obtained from Eq. (6.3) as the density
number of particles is constant, n = n0, to ensure the variable density approximation.
The Atwood number between DT and CH is then given by At = ρCH−ρDT

ρCH+ρDT
= 0.08.

Along with the small value of the mean base pressure gradient, this small Atwood
number value explains why Rayleigh-Taylor instability remains limited.

Also, zero-mean random velocity perturbations with 〈ui〉 = 0 are added around
the interface, using the filtering procedure described in section 3.4.2.1 and a classical
von Karman spectra (3.43) with integral scale, `0, and rms fluctuations, u0. Here, the
spectra are of Batchelor type, i.e., the distribution of energy at small wavenumber k
scales as k4.

Along with the initial size of the mixing layer L0, the simulations are characterized
by an initial Reynolds number, Re0 = u0`0

ν
, here defined with the DT viscosity at the

center of the capsule (see Tab. 6.2). The values range from Re0 = 0, for simulations
without turbulence, to Re0 = 217, reaching the limits of our available computational
resources. In addition, by introducing the compression parameter, Cp0 = u0

`0S0
, we

observe that the compression is relatively rapid compared to turbulence in the simu-
lations. This choice is motivated to avoid the contamination of the whole domain by
mixing before the bang time.

At this stage, it is important to assess the validity of the variable density approxi-
mation from the initial conditions. For S1 simulations, which have the largest rms
velocity u0 = 1.73kms−1, we find a Mach number value of M = u0/c = 0.02, using
the sound speed provided by c = (γP0/ρ0)1/2 = 79kms−1. This small value ensures
the validity of the variable density approximation during the whole simulation. The
advantage of using the variable density approximation in our code has to be stressed.
Indeed, a fully compressible code would have been very demanding and would have
failed to resolve the small scales of turbulence due to the shock-capturing schemes
[Thornber and Drikakis 2008]. By contrast, the initial base velocity at interface radius
R0 is 300kms−1, which gives a Mach number of M = 3.8. This shows that energy
contained in the perturbation is small compared to the base component, justifying
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Name Type Mesh
size

Re0 Cp0 `0/R0 L0/R0

S1 a DNS 5123 217 0.27 0.07 0.016
b ILES 10243 217 0.27 0.07 0.016

S2 a DNS 5123 153 0.2 0.07 0.016
b ILES 5123 153 0.2 0.07 0.016

S3 a DNS 5123 108 0.13 0.07 0.016
b DNS 5123 108 0.13 0.07 0.016

S4 a DNS 2563 32 0.1 0.05 0.016
b DNS 2563 32 0.1 0.05 0.016

S5 a DNS 2563 0 0 0 0.016

Table 6.2 – Simulation characteristics in terms of initial Reynolds number, com-
pression number, integral length scale, and mixing layer size. Type a corresponds to
simulations with plasma transport coefficients while for type b viscosity and molecular
diffusion are kept constant during the computation.

our choice to neglect the feedback of the perturbations on the base flow.

6.2.6 Resolution
A total of 9 simulations are presented in this study, varying the initial Rey-

nolds numbers and using either a plasma model for transport coefficients (type a) or
constant ones (type b) to evidence its effects.

The simulations start from an initial computational cubic domain of 1200µm
size. This choice results from a compromise to encompass the fuel/ablator interface
to avoid confinement effects, and also to guarantee that the finest turbulent structures
are correctly resolved.

Therefore, the mesh size depends on the initial Reynolds number and the simu-
lation type a or b. The most demanding simulations, S1b and S2b, uses a 10243 and
5123 mesh size respectively and correspond to a constant viscosity and molecular
diffusion configuration. The small scales of turbulence are not fully resolved in these
simulations, which enter the category of Implicit Large Eddy Simulations (ILES). By
contrast, all other simulations can be considered as DNS . In particular, simulations
with plasma coefficients (type a) are less demanding as the diffusion and viscosity
growths rapidly smooth the small scales of turbulence.

As an illustration, we provide in Figure 6.6 the 3D representations of the density
θ field at different instants for S1a,b simulations. This evidences the strong imprint
of transport coefficients, which dissipate turbulence during the implosion (S1a). We
now quantify this phenomenon in the following section.
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Figure 6.6 – Three dimensional contours of mass fraction of CH, Y , using volume
rendering at different instants and for simulations with plasma, S1a, and constant,
S1b, viscosity and diffusion coefficients. The different times correspond to Figure 6.5.
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6.3 One-dimensional evaluation of the transport
coefficients effects on the implosion

In section 6.2.5, we have illustrated the implosion characteristics that we use in
this chapter and the thermodynamic properties of the base flow at the beginning and
during the compression. Nonetheless, in section 6.1.1, we have shown how the trans-
port coefficients have a strong dependence on temperature density and composition.

Hence, the question that arises is how much their effects depend on the characte-
ristics of the implosion or the values of the thermodynamic quantities. A parametric
study using DNS simulations is not feasible due to the high computational cost. An
alternative is to use a one-dimensional model of the perturbation equations (6.11a)-
(6.11c), in spherical coordinates such as

∂tũr + ũr∂rũr = −∂rπ̃ − π̃∂rθ̃ − Λ2ΠB∂rθ̃ + 1
r2∂r

[
2νr2∂rũr

]
− 2ν∂rũr∂rθ̃, (6.12a)

∂tθ̃ + ũr∂rθ̃ = 1
r2∂r

(
Dr2∂rθ̃

)
, (6.12b)

∂rũr = − 1
r2∂r

(
Dr2∂rθ̃

)
. (6.12c)

together with a one-dimensional initial condition for θ, without velocity pertur-
bations, using the radial profile discussed in section 3.4.

The parameter that we use to investigate to what extent the implosion conditions
impact the molecular diffusion in the mixing layer is the mixing layer width L, whose
definition is given in section 6.4.2, and whose value is computed at the end of the
implosions, L(Λmin) = LE.

We perform two parametric studies obtaining the maps, shown in Figure 6.7. In
one case, we set the thermodynamic conditions to the ones chosen in section 6.2.2
and vary the initial compression rate and the convergence ratio. In the other, the
compression characteristics are constant, and we change the initial temperature and
density of the DT at the center of the capsule.

On Figure 6.7a , we observe that the faster the compression, the lower the final
value of the mixing zone size, since the diffusion has less time to act. This tendency
is observed for every convergence ratio. For the same reason, as the minimum of the
compression parameter decreases, i.e. the capsule is compressed to a smaller radius,
the values of LE increase.

On the map in Figure 6.7b, the value of the final mixing zone width grows with
the increase of the initial temperature, and it has the inverse dependence of the initial
density. The first effect is explained by the fact that the higher is the temperature,
the greater is the diffusion. The dependence on the density is similar to that observed
in Figure 6.4b.
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(a) (b)

Figure 6.7 – Dependence of the final size of the mixing zone, on initial compression
velocity and final size of the domain (left) and on initial temperature and density of
the capsule center (right)

6.4 Results
In this section, we extract the different turbulent quantities from simulations to

observe the effects of plasma transport coefficients on the dynamics of turbulent
layers.

6.4.1 Global statistics
Figure 6.8 shows the variations of the turbulent kinetic energy, 〈K〉 = 〈u′iu′i〉/2,

and of the variance 〈θ′θ′〉 for high Reynolds number simulations S1a,b. This compa-
rison shows the role of plasma transport coefficients in the mixing evolution.

For both simulations, the dynamics of the flow is first driven by compression
effects, leading to an increase of kinetic energy. This phase, identified as the rapid
compression in chapter 4, leads to a Λ−2 growth of 〈K〉. Simultaneously, the density
fluctuations initially at rest and expressed by 〈θ′θ′〉 rise rapidly due to the advection
term. After this initial phase, simulations S1a and S1b start to differ. On the one
hand, for the S1a simulation, the turbulent kinetic energy growth is progressively
slowed down due to the viscosity increase. Then, the sudden viscous dissipation ef-
fect occurs [Davidovits and Fisch 2016a], since the turbulent production mainly due
to compression cannot balance viscous terms. Note that a scaling 〈K〉 ∼ Λ11/2 is
expected for the self-similar decay of a Batchelor spectra with constant implosion
rate (see chapter 4).

On the other hand, the S1b simulation goes from rapid compression to a nearly
cascade regime dominated by turbulent nonlinear transfers. This phase lasts until
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Figure 6.8 – Evolution of the turbulent kinetic energy normalized by its initial value
(black) and the scalar variance 〈θ′θ′〉 (red), as functions of the compression parameter
Λ. The solid lines represent the results of plasma transport coefficients simulation
S1a, and the dashed-dotted lines are for S1b results. Scaling laws corresponding to
the self-similar regimes identified in Viciconte et al. (2018) are also plotted.

the end of the compression with scaling close to Λ−4/7 as expected for a Batchelor
spectrum [Viciconte et al. 2018]. A sharp decrease is observed at the end of all the
simulations, which can be attributed to the deceleration of the compressed matter.

The smaller values of 〈θ′θ′〉 in S1a simulations compared to S1b are the first
indication of enhanced mixing due to plasma transport coefficients.

6.4.2 Mixing layer width
We now compare the time evolutions of the size of the mixing layers in Figure 6.9

for high Reynolds simulations S1a,b, with or without plasma effects, and also for S5
to stress the role of plasma transport coefficients when turbulence is absent.

The mixing layer sizes L can be evaluated in simulations using the following
integral function of the radial averaged mass fraction Y (r, t) [Andrews and Spalding
1990, Gréa 2013].

L(t) = 6
∫ +∞

0
Y (t, r)(1− Y (t, r))dr (6.13)

During the implosion, the mixing layers in S1a,b simulations first experience
growth due to the rapid compression regime identified in section 6.4.1. This growth is
slowed due to the dissipation of turbulent energy, either by the cascade process in S1b
or directly by transport coefficient in S1a. This process is very similar to the growth
of a mixing layer in the plane Richtmyer-Meshkov instability as the turbulence scales
are small compared to the radius of the interface.
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Figure 6.9 – Evolution of the renormalized mixing layer width as a function of
the compression parameter Λ. The solid black line for the case of plasma transport
coefficients (S1a). The black dashed line is for the constant case (S1b). The solid
green line is the reference case with Re = 0 (S5a) where the mixing layer is only
enlarged by molecular diffusion.

Despite the active role of plasma viscosity in destroying turbulence and relamina-
rizing the flow, S1a simulation has only a slightly lower growth rate as S1b simulation
until the time (III) t = 0.93ns. This can be explained as the dynamics of a layer is
principally driven by the large energetic scales, which are not dissipated by viscous
effects acting at smaller scales. The molecular diffusion increase can also compensate
for the loss of turbulent diffusion in the S1a simulation. Eventually, this process com-
pletely dominates the turbulence at the end of the simulation leading to a sudden
diffusion of the layer also present in S5 simulation at Re = 0.

It is during this last sudden diffusion phase, that S1a,b simulations become signi-
ficantly different, with the mixing layer width in S1a increasing rapidly much above
the values obtained in S1b simulation.

The effect of initial conditions, mainly with varied Reynolds number detailed in
Table 6.2, is now investigated in Figure 6.10. For the range of Re investigated, the
final sizes of mixing layers are weakly sensitive to the initial level of turbulence in si-
mulations accounting for plasma transport coefficients (Figure 6.10a). The difference
between simulations with or without varying plasma transport coefficients mainly
occurs during the sudden diffusion phase, appearing earlier in low Reynolds number
simulations. Besides, the relaminarization process due to viscosity increase has a low
impact on the mixing layer dynamics. The simulations at higher Reynolds number
would allow us to determine a critical Re where the sudden diffusion no longer occurs.
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Figure 6.10 – Evolution of the mixing layer width as a function of the compression
parameter Λ for the simulations of table 6.2. (a) Simulation with plasma transport
coefficients S1a−S5a. (b) Simulations with constant transport coefficients S1b−S4b.

Still, these simulations are presently out-of-reach, too computationally demanding.

6.4.3 Radial profiles

In this section, we explore the mean radial structures of mixing zones and compare
their evolutions when the relaminarization process occurs due to plasma transport
coefficients.

We show in Figure 6.11 the mean mass fraction of ablator, Y , extracted from S1a,b.
The selected times correspond to the phases identified in Figure 6.9 in section 6.4.2.
Whereas at early times there are small differences between simulations accounting
or not for varying transport coefficients, at late times, the sudden diffusion phase
in S1a marks a strongly different behavior. This phenomenon is very effective at
contaminating the capsule center with heavy ablator elements.

In parallel, we present the mean profiles of turbulent kinetic energy u′iu′i/2 and
variance θ′θ′ in Figure 6.12 also for S1a,b simulations. These profiles are classically
maximum at the center of the mixing layers. The relaminarization process due to
viscous effects is marked by the dissipation of turbulent variances and occurs very
soon, as shown by the differences between the simulations. Interestingly, relaminari-
zation is close to symmetric between the fuel and ablator sides on θ′θ′ radial profile,
but, this is not the case on kinetic energy profiles where dissipation seems to occur
firstly on the DT side. Finally, only molecular diffusion is responsible for the sudden
diffusion of the mixing layer as turbulent quantities are completely quenched at late
times in S1a simulation.
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(a) (b)

(c) (d)

Figure 6.11 – Ablator (CH) tangential averaged mass fraction Y at four times
during compression. (a) Initial condition at t = 0 ns and Λ = 1 (b) (II) t = 0.5 ns
and Λ = 0.5 (c) (III) t = 0.93 ns and Λ = 0.08 (d) (IV) t = 1 ns and Λ = 0.05. Solid
line for the S1a simulation, dashed-dotted line for the S1b simulation. The lagrangian
position of the unperturbed fuel/ablator interface is also indicated in the figure.

6.4.4 Mixing parameter
We further shed light on mixing in S1a,b simulations using the molecular mixing

parameter Ξ(r, t) defined from the mass fraction of the ablator as (see Youngs
(1991)) :

Ξ(r, t) = Y (1− Y )
Y (1− Y )

= 1− Y ′Y ′

Y (1− Y )
. (6.14)

The mixing parameter value thus reaches 1 when mixing is completed. This quantity
is important in ICF for expressing the ratio between the amount of fusion reactions
in the mixing zone and the amount obtained without mass fraction fluctuations
[Youngs 1991]. Therefore, molecular mixing reflects to what extent the local mass
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Figure 6.12 – Radial profiles of the variance of θ (top) and kinetic energy K (bot-
tom), at four times during compression. (a) Initial condition at t = 0 ns and Λ = 1
(b) (II) t = 0.5 ns and Λ = 0.5 (c) (III) t = 0.93 ns and Λ = 0.08 (d) (IV) t = 1
ns and Λ = 0.05. Solid line for the S1a simulation, dashed-dotted line for the S1b
simulation.

fraction departs from the mean but does not give the relative amount of the two
species in the mix [Danckwerts 1952].

We compare the temporal evolution of Ξ between S1a and S1b simulations in
Figure 6.13. Here, the mixing layer width is shown by the specific radii r01, r99 where
Y = 0.01 reaches 0.01 and 0.99 respectively. From the time (I) to (II) corresponding
to the rapid compression phase, the mixing parameter values are similar, since the
process is mainly driven by turbulence.

From the time (II) to (III), although the sizes of the mixing layer are comparable
between both simulations, the values of the molecular mixing parameter in S1a be-
come gradually larger than in S1b, owing to the varying transport coefficients of the
plasma. At time (III) and during the sudden diffusion phase, the values of Ξ in S1a
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Figure 6.13 – Contour maps of the molecular mixing parameter Ξ as a function of the
compression parameter Λ and normalized radial position r/R. (Top) S1a simulation ;
(Bottom) S1b simulation. The red lines show the evolution of the mass fraction
dependent radii r01/R and r99/R, corresponding respectively to Y = 0.01 and Y =
0.99.

become very close to 1, indicating that the mixing is almost complete. By contrast,
in S1b simulation, the mixing parameter also grows but at a smaller pace, as the
mixing is driven by the turbulent cascade.

6.4.5 Transport coefficient evolutions
In this section, we present the temporal and spatial evolutions of plasma transport

coefficients evaluated from the PIJ model [Arnault 2013, Ticknor et al. 2016, White
et al. 2017]. This model is based on a formulation in terms of collision frequencies with
scaling laws to cover the different regimes from weakly to strongly-coupled plasmas
and to address binary mixtures with chemical elements of arbitrary atomic number
Z. In that respect, it extends the theory limited to kinetic regime of Molvig et al.
(2014), Kagan and Tang (2014), and better represent the early time evolution of the
simulations that exhibit moderate coupling (Γ = 0.3).

We show in Figure 6.14 the mean radial profiles of kinematic viscosity ν(r, t)
and diffusion D(r, t) at different instants extracted from the S1a simulation. The
temporal evolutions of viscosity and diffusion are also shown for specific radii r01 and
r99. Several classical features of transport coefficients in plasma are thus recovered.
Viscosity and molecular diffusion follow the kinetic scaling laws Braginskii (1995)
and thus experience tremendous growth, up to two orders of magnitude, due to
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Figure 6.14 – Transport coefficient values extracted from S1a simulation. (a) and
(b) : mean radial profiles of viscosity and diffusion at four different instants. (c) :
Time evolution of mean viscosity and diffusion at the edges of the mixing layer at r01
(solid line) and r99 (dashed lines) corresponding to Y = 0.01 and 0.99 respectively.
At the end of the simulation (t . 1 ns), r01 reaches zero as mixing is entirely spread
inside the capsule. The mean viscosity and diffusion are then plotted at the center
of the capsule, r = 0, and therefore decrease since Y becomes greater than 0.01 at
r = 0

temperature increase. The mean radial profiles of ν exhibit a strong dependence on
the mixture composition expressed by the mass fraction Y . The presence of heavy CH
ions in the pure DT plasma indeed increases the effective plasma coupling parameter,
leading to 1 − 2 orders of magnitude lower viscosity on the ablator side. Here, the
plasma coupling parameter indeed evolves from 3 × 10−2 to 2 × 10−3 in pure DT,
and from 3 × 10−1 to 10−2 in pure CH. Conversely, the molecular diffusion is 2 − 3
times higher on the ablator side. Indeed, the ion density number on the ablator side
is lower than on the DT side, considering that the particle number distribution (ion
and electron) n is constant in the mixing layer. However, the spatial variations of D
are less spectacular than for viscosity. Consequently, the Schmidt number ν/D varies
between 3 and 4 close to the DT side of the mixing layer, while it reaches values of
around 0.05 on the CH side.
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Figure 6.15 – Transport coefficient variances extracted from S1a simulation.(Top)
mean radial profiles of (a) viscosity, ν ′ν ′, and (b) diffusion, D′D′, at four different
instants. (c) : Time evolution of mean variance of viscosity 〈ν ′ν ′〉 and diffusion 〈D′D′〉.

The time evolution of the mean variances of viscosity 〈ν ′ν ′〉 and diffusion, 〈D′D′〉,
and their radial profiles, ν ′ν ′ and D′D′, are plotted at different instants in Figure 6.15.
These quantities reveal how fast viscosity and diffusion vary inside the mixing layer
justifying the use of implicit iterative methods for numerical simulations. Transport
coefficient variances increase during the compression until the decay of turbulence
smooths the mass fraction fluctuations. Interestingly, while radial profiles of molecu-
lar diffusion variances remain maximum and well-centered around the mixing layer
center, r/R = 1, viscosity variances shift toward the DT edge where even a small
amount of CH drives huge variations of viscosity. This effect has also been observed
on kinetic energy, and θ′ variance profiles in section 6.4.3.

6.4.6 Bi-dimensional Maps
In this section, we exhibit the instantaneous turbulent fields extracted from S1a,b

simulations to better understand how the relaminarization process and sudden dif-
fusion effect induced by plasma transport coefficients operate.

We start by showing the two-dimensional contours of local kinetic energy K =
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uiui/2 in S1a,b simulations for the three radial positions, r01, r50 and r99 (defined for
S1b ) and four times I, II, III IV in Figure 6.16. The contour maps are obtained using
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Figure 6.16 – Mollweide projection of the local turbulent kinetic energy in the
mixing layer. The three rows correspond to the radial positions r99, r50, r01 defined
in S1b simulation, at times I, II, III, IV. Top and bottom half contours corresponds
respectively to S1a and S1b results.

the pseudo-cylindrical or Mollweide projection, as detailed in Appendix C.1.

Figure 6.16 clearly evidences the asymmetric relaminarization process due to the
viscosity growth in S1a simulation. The turbulent kinetic energy is firstly dissipated
on the DT side of the mixing layer, following the spatial variations of viscosity, as
detailed in section 6.4.5. Also, the fact that turbulent structures are larger in S1a
simulation compared to S1b shows that dissipation acts at small scales before reaching
larger ones during the final phase of the compression. On the contrary, the constant
viscosity of S1b simulation allows the development of small structures by classical
nonlinear energy cascade.

We now compare the structure of the θ′ variance in Figure 6.17 at the center of
the mixing zone, i.e. r = r50, with kinetic energy contours at the same position. Inter-
estingly, the characteristic sizes of the scalar field θ′θ′ are larger than for the kinetic
energy contours, indicating that the dissipation is more effective for the variance of
θ′ than for the turbulent kinetic energy, as already seen in Figure 6.8.
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Figure 6.17 – Top : Mollweide projection of the kinetic energy. Bottom : Mollweide
projection of the scalar variance. The radius of the spheres corresponds to the center
of the mixing zone. Top and bottom half contours correspond respectively to S1a
and S1b results.

6.4.7 Spherical harmonics spectra
The two-dimensional maps offer only a qualitative appreciation of the transport

coefficient effects on the turbulence within the mixing layer. To quantify the infor-
mation given by the maps of section 6.4.6, we use the spectral analysis of fluctuating
fields on spherical surfaces proposed by Lombardini et al. (2014b). The natural spec-
tral basis to represent these fields are the spherical harmonics. For instance, a function
f(ri, ψ, φ) defined on a sphere of radius ri can be decomposed using the real spherical
harmonic basis as

f(ri, ψ, φ) =
∞∑
l=0

l∑
m=−l

flmYlm(ψ, φ), (6.15)

where Ylm(ψ, φ) are the real spherical harmonics [Abramowitz and Stegun 1965, Groe-
mer 1996], and flm are the expansion coefficients (see also Appendix C.2).

Within this basis, it can be shown [Lombardini et al. 2014b] that the angular
power spectrum Cl associated with the two-point correlation of the quantity f taken
on the sphere of radius ri (and assumed statistically homogeneous and isotropic on
the same sphere) can be computed from the expansion coefficient as

Cl = 1
2l + 1

l∑
m=−l

f 2
lm. (6.16)

Considering high l spherical harmonics, corresponds to very small characteristic di-
mensions with respect to sphere curvature, there is a direct relationship between the
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angular power spectra Cl and the local one-dimensional planar spectrum E(κ), where
the “wavenumber" κ is defined as κ2 = l(l + 1)/r2

i . In the limit of l � 1, κ ' l/R

and it can be shown that lCl ∼ κ−α [Lombardini et al. 2014b].
We thus compute the angular power spectra, using the field interpolated on

spheres with radii r01, r50, and r99. Because of the mixing, these radii vary during the
compressions. Therefore, in order to compare the different spectra at different times
and radii, we plot lCl as a function of the non-dimensional wavenumber ql, that is
directly related to the spherical harmonics number l, by the relation ql = R

ri

l
2π .

In Figure 6.18, we compare the angular power spectra of kinetic energy lCl,K and
scalar field variance lCl,θ, between the simulations S1a with varying plasma transport
coefficients and S1b with constant transport coefficients. At the time (I), the kinetic
energy spectra of the two initial conditions are superimposed, while, as we explained
in section 6.2.5, the initial conditions have no scalar fluctuations. At the time (II),
as observed on the bi-dimensional maps of section 6.4.6, in the constant viscosity
simulation, nonlinear phenomena produce a turbulent cascade. The inertial range,
exhibiting a l−5/3 slope of the kinetic energy spectrum, extends up to the maximum
resolved ql. On the contrary, the spectrum of the S1a simulation shows less energetic
scales, with no inertial range due to the increased value of viscosity. At small ql, which
coincides with the most energetic spherical harmonics, the two spectra have a similar
energy distribution. This implies that the mixing zone evolution, in both simulations,
is still driven by large scale turbulent diffusion, confirming the results of sections 6.4.2
on the mixing zone width. The scalar spectra, lCl,θ, exhibit the same behavior, with
the l−5/3 scaling recovered for the constant transport coefficient simulations, and the
relaminarization effects in the S1a case. When the simulations reach time (III), the
S1b kinetic energy spectrum maintains an inertial zone at intermediate wavenumber.
Still, the l−5/3 scaling does not extend to the ql,max, and we observe the beginning of
a dissipative range. In contrast, for the S1a case, the energy-containing harmonics,
for both kinetic energy and scalar, are reduced to the small ql, suggesting that at
this time, the dynamics of the mixing zone is dominated entirely by viscous and
diffusive effects. At the time (IV), the S1a spectra, for both quantities, show a very
limited spherical harmonics range since the transport coefficients dissipate almost all
the fluctuations. These results are consistent with the bi-dimensional maps of section
6.4.6, where at the time (IV), minimal fluctuations are visible. On the other hand,
the constant coefficient spectra suggest that turbulence is still the primary driving
phenomenon of the mixing zone evolution.

The temporal variation of the kinetic energy and scalar spectra of the S1a simu-
lation, in Figure 6.19, is a further indication of the relaminarization caused by the
transport coefficients. This effect smooths velocity and density fluctuations equally,
leaving only large scales fluctuations at the end of the implosion.
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Figure 6.18 – Spherical harmonics spectra computed at the center of the mixing
zone, r50, at the instants I, II, III, IV. Left : kinetic energy spectra ; right : scalar
spectra. The solid black lines correspond to the simulation S1a, the dashed lines to
the simulation S1b. The red solid line represents the l−5/3 power law.
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Figure 6.19 – Spherical harmonics spectra computed at the beginning (I) and at the
end (IV) of the simulation S1a at three radial positions r01, r50, r99. Black solid lines
correspond to kinetic energy spectra. Red dashed lines correspond to scalar spectra.
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6.5 Conclusion
This chapter presents numerical simulations of turbulent plasma mixtures under

compression using a fluid approach and the PIJ [Arnault 2013, Ticknor et al. 2016,
White et al. 2017] modeling of the transport coefficients, which vary with tempera-
ture, density, and composition. The parameters are chosen to be representative of
adiabatic implosions of DT/CH layers, mimicking the characteristic times and hot
spot thermodynamic conditions of an ICF capsule before the bang time. To achieve
full resolution of low Mach number turbulent fluctuations, we use a Rogallo non-
inertial frame following the compression and the variable density approximation.

Simulations with or without varying plasma coefficients evidence the influence
of plasma viscosity and molecular diffusion on the dynamics of mixing layers. This
aspect is crucial in the context of ICF as the hot spot contamination by heavy
materials has deleterious effects on the capsule yield. A complex relaminarization
process has been observed, occurring first on the DT side where viscosity is higher,
as shown by radial profiles and angular spectra. Although this phenomenon dissipates
the small scales of turbulence and leads to a more homogeneous DT/CH mixing layer,
it does not drastically reduce the dynamics of the mixing zone, mainly driven by larger
scales. However, we show that during the late time evolution of the compression, the
plasma molecular diffusion overcomes the turbulent one, leading to enhanced diffusion
of the DT/CH layer anticipated in chapter 4. This sudden diffusion effect comes along
with the sudden viscous dissipation of turbulence already observed by Davidovits
and Fisch (2016a). This gives credit to the interpretation of mixing due to physical
diffusion in recent experiments performed at the Omega facility by Rinderknecht
et al. (2014a), Zylstra et al. (2018).
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The objective of the works presented in this thesis is to study turbulent mixing
in fluid with strong transport coefficients and density variation. We consider both
canonical flows like the homogeneous isotropic turbulence and unstably stratified
homogeneous turbulence and inhomogeneous configurations like spherical implosions.

The contributions presented in this thesis are, for the most part, based on the ana-
lysis of direct numerical simulations of the Navier-Stokes equations with the working
hypothesis for every case considered.

In the first part of the thesis, we have presented
— The derivation of model equations for spherical compression and USHT in the

variable density approximation.
— The spectral GMRES algorithm employed to solve the Poisson equation in the

variable density simulations.
— The development of a massively parallel spectral direct numerical simulation

code based on the two-dimensional domain decomposition for both incompres-
sible and variable density case.

— The GMRES algorithm used to compute the viscous and diffusive contribution
in turbulent plasma mixtures whose transport coefficients are computed using
a plasma physics code interfaced with the DNS code.

In the following chapters, we have used the codes developed to investigate three
major topics :

— The sudden dissipation effect of turbulent kinetic energy in plasma under
compression in the context of homogeneous isotropic turbulence with time-
varying viscosity, for which we have developed a spectral model based on
EDQNM closure.
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— Then, still in a homogeneous approximation, we study the effect of variable
density on the turbulence properties in an unstably stratified configuration.

— Finally, we consider an inhomogeneous configuration of a spherical implosion,
with transport coefficients and variable density effects.

7.1 Sudden dissipation effect : spectral modeling
and influence of initial conditions

In the context of turbulent weakly-coupled plasma under compression, we have
identified three different self-similar regimes resulting from the competition between
turbulence production, non-linear energy transfer, and viscous dissipation, which are
observed in our DNS and EDQNM simulations.

In the case where turbulence is sufficiently intense and compression sufficiently
rapid, we observe that weakly-coupled plasma under compression experiences growth
of kinetic energy. However, the viscous effects always prevail at the end of the com-
pression leading to the sudden dissipation phenomenon.

Using the EDQNM model, we have explored the phase space of the non-
dimensional numbers, Re and Cp, initial values thanks to which we have identified
the critical values of the compression parameter corresponding to the beginning of
the viscous phase.

This analysis has revealed a strong dependence of critical values on the ini-
tial conditions and evidenced the complex interplay between turbulence produc-
tion, transfer, and dissipation, leading for some configurations to two successive
growth/decay phases of kinetic energy instead of one during the compression.

We have identified three self-similar regimes during the isotropic compression of
a weakly-coupled turbulent plasma. Using a theoretical analysis, we have derived the
scaling laws which have been verified using DNS and EDQNM simulations.

The scaling demonstrates the dependence of flow dynamics on the initial distri-
bution of energy at large scales, which becomes crucial during the viscous phase since
it changes the decay exponents of kinetic energy drastically.

We further extended our study to the case of an inhomogeneous spherical turbu-
lent layer under compression, using parameters representative of ICF capsules.

In this configuration, we were able to observe the different phases already iden-
tified in the homogeneous settings together with the enhanced enlargement of the
layer during the viscous phase and high sensitivity to initial conditions.
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7.2 Unstably stratified homogeneous turbulence

The other subject of the thesis concerns the study of the variable density effect in
the unstably stratified homogeneous turbulence, a canonical flow that retains some
of the features of the Rayleigh-Taylor mixing layer.

We consider two approximations, Boussinesq (B) and Variable Density (VD).
The objective of the investigation is twofold : to understand in what measure the
variance of the initial scalar field influences the late time self-similar flow evolutions,
and the limitations of the Boussinesq approximation and the condition of the onset
of non-Boussinesq effects.

The numerical solution of the USHT equation with the variable density approxi-
mation is considerably challenging in the cases considered due to the high-density
contrasts that are already present at the beginning of the simulation. Together with
the direct numerical simulation, we have introduced the implicit large-eddy simula-
tions, which are less computationally demanding, thanks to which we can perform a
parametric study of initial conditions.

We show that depending on the initial scalar field variance, in VD approximation,
contrary to Boussinesq, the large scale of the flow can be modified. In particular,
we confirm a recent observation of Soulard et al. (2019) demonstrating how variable
density effects modify the infrared slope of the kinetic energy spectrum if the intensity
of the scalar fluctuations is sufficiently important.

In particular, we observe that, from an initial condition where the large scales of
the flow have a dependence in k4, during the initial transient, the spectrum changes
to k2, if the initial variance is sufficiently high. This large scale modification is extre-
mely important because of the direct influence of the infrared exponent on the growth
rate of the self-similar phase. Furthermore, using the probability density function, we
demonstrate other differences between variable density and Boussinesq approxima-
tion. The pdfs of the scalar computed from Boussinesq results have a symmetric
distribution around the mean value, while the VD cases show an asymmetrization of
the probability density functions towards the positive values of θ.

Moreover, the investigation of the scalar gradients shows that in the variable
density case, the tails of the probability density functions are much wider than the
Boussinesq case implying the presence of sharper interfaces that can be observed
qualitatively on the scalar contours too. Finally, performing the parametric study on
the initial conditions, we find that the non-Boussinesq effects become important for
a scalar variance to kinetic energy ratio between 0.01 and 0.05.
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7.3 Sudden diffusion effect in spherical mixing
zones of plasma under compression

The last chapter of the thesis presents numerical simulations of turbulent plasma
mixtures under compression using a fluid approach and the uses of the PIJ model
to compute the transport coefficients, which vary with temperature, density, and
composition.

The theoretical framework derived allows for the study of variable-density flow
with extreme variations of viscosity and diffusivity, both taken into account thanks
to the GMRES iterative scheme.

The parameters of inhomogeneous spherical configuration, together with the ther-
modynamic variable of the hot spot, are chosen to be representative of adiabatic
implosions of DT/CH layers, mimicking the characteristic of an ICF capsule before
the bang time. To evidence the effects of plasma transport coefficients, we present
two sets of simulations : In the first, viscosity and diffusivity are computed using the
PIJ model ; in the second, both transport coefficients are maintained constant. In the
two cases, different initial Reynolds numbers are considered.

During the compression, we can identify different phases based on the mixing
zone width, which evolution evidence the influence of plasma viscosity and molecular
diffusion on the dynamics of mixing layers.

In the first rapid compression phase, both simulations present similar results, and
no effects of transport coefficients are observed. In the following period, turbulence
is the primary factor influencing the evolution of the mixing zone, and the growth
of viscosity comes into play. During this phase, we observe a complex relaminariza-
tion process, occurring first on the side closer to the pure DT , where viscosity is
higher than the part closer to the ablator, and move outwards towards the CH as
the temperature in the capsule increases. This non-homogenous behavior has been
demonstrated with both radial profile and angular power spectra. Although this phe-
nomenon dissipates the small scales of turbulence and leads to a more homogeneous
DT/CH mixing layer, it does not drastically reduce the dynamics of the mixing zone,
mainly driven by larger scales.

In the last phase of the compression, however, we show that plasma molecular
diffusion overcomes the turbulent one, leading to enhanced diffusion of the DT/CH
layer anticipated in chapter 4. This aspect is crucial in the context of ICF as the
hot spot contamination by heavy materials has deleterious effects on the capsule
yield. This sudden diffusion effect comes along with the sudden viscous dissipation of
turbulence already observed in chapter 4 and can explain some recent experimental
results on the Omega laser facility.
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7.4 Perspective

The results of this work, together with the code developed, allow different possible
future researches. For the spherical implosion with plasma transport coefficients, the
first improvement would be to explore other cases of implosion. In particular, one
could use thermodynamic paths extracted from real Inertial Confinement Fusion
(ICF) experiment or simulation. Moreover, the studies of these idealized implosions
could help to include the transport coefficients effects in models used in ICF design.

In the case of variable density unstably stratified turbulence, one could inves-
tigate in-depth the small scale properties and their difference with the Boussinesq
cases. Furthermore, the parametric study on initial conditions could be widened, in-
cluding the variation of other quantities such as the Froude number or the buoyancy
frequency. Moreover, the USHT problem could be explored in the case of variable
acceleration.

Finally, the variable density code with little modification can be adapted to si-
mulate Richtmyer-Meshkov, Rayleigh-Taylor, and Faraday turbulent mixing zones.
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Annexe A

Compression

A.1 Moving frame
Here we sum up the derivation of the relation between frames coordinates , that

is found in Rogallo (1981). The moving frame (x̃i) has to be linearly related to the
fixed frame (xi)

x̃i = Bijxj,

where the tensor Bij is derived imposing that the new coordinates moves with the
mean flow

Dx̃i
Dt

=
(
dBij

dt
+BikSkj

)
xj = 0.

In this work we will only consider isotropic compression so that Bij = δijB(t) and
Sij = δijS(t) With this simplification the previous equations reduce to

dB(t)
dt
− B(t)S(t) = 0.

so that we have the following relation

S(t) = Ḃ(t)
B(t)

Following other works on isotropic compression [Wu et al. 1985, Cambon et al. 1992],
B(t) can be expressed as a function of a characteristic length R of the compressing
domain :

B(t) = R0

R(t) = 1
Λ(t)

where R0 = R(t = 0), so that we have the following

S(t) = −Λ̇(t)
Λ(t) .

Considering a particle moving with the base velocity UB, its distance to the cen-
ter decreases by a factor Λ(t) = exp

(
−
∫ t

0 S(s)ds
)
, referred to as the compression

parameter. So that, finally, we have the following relations

x̃i = Λ(t)−1xj (A.1)

for the change of reference frame.
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A.2 Rescaling
Once the reference frame change derived in section A.1 is applied to the inho-

mogeneous dynamical equations derived in section 2.1, they reduce to an expression
without explicit space dependence

∂tui + 1
Λuj∂jui − S(t)ui = −Λ2∂ip+ Λ µ

ρB0
∂2
jjui. (A.2)

At this point we have Navier-Stokes equation with a time dependent viscosity Λ µ
ρB

0
and a forcing term −S(t)ui. We can further simplify Eq. (A.2) choosing to eliminate
the forcing term or to eliminate the time dependence before the viscous term.

Since the space variable xi is rescaled using the compression parameter Λ, we look
for the rescaling of velocity ui, time t and pressure p as a function of Λ :

ũ = Λ−aui, (A.3)

p̃ = Λ−cp, (A.4)

dt̃ = Λedt. (A.5)

When we use Eqs. (A.3), (A.4), (A.5) we obtain, for the time derivative in Eq. (A.2)

∂tui = ∂(Λaũi)
∂t

= aΛa−1Λ̇ũi + ∂ũi
∂t

Λa = aΛa−1Λ̇ũi + ∂ũi
∂t̃

Λ(a+e), (A.6)

where the time derivatives relation for ũi is

∂tũi = ∂ũi
∂t̃

dt̃

dt
= Λe∂ũi

∂t̃
. (A.7)

The full expression of Eq. (A.2) using the rescalings for velocity, pressure and time
is

aΛa−1Λ̇ũi + ∂ũi
∂t̃

Λa+e + Λ2a−1ũj∂jũi + Λa−1Λ̇ũi = −Λ2+c∂ip̂+ µ

ρB0
Λa+1∂2

jjũi. (A.8)

If we group together the forcing terms we have

∂ũi
∂t̃

Λa+e + Λ2a−1ũj∂jũi + Λa−1Λ̇ũi(a+ 1) = −Λ2+c∂ip̂+ µ

ρB0
Λa+1∂2

j ũi. (A.9)

We want a Navier-Stokes-like equation so the time derivative and the convection term
factors have to be equal,

Λa+e = Λ2a−1 (A.10)
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imposing the equality e = a − 1. We can then divide all the terms in Eq. (A.9) by
Λ2a−1 obtaining :

∂ũi
∂t̃

+ ũj∂jũi + Λ−aΛ̇ũi(a+ 1) = −Λ3+c−2a∂ip̂+ µ

ρB0
Λ2−a∂2

jjũi, (A.11)

and we eliminate the time dependence in front of the pressure taking 3 + c− 2a = 0.
This results in

∂ũi
∂t̃

+ ũj∂jũi + Λ−aΛ̇ũi(a+ 1) = −∂ip̂+ µ

ρB0
Λ2−a∂2

jjũi. (A.12)

Now we have two choices :
1. We can eliminate the forcing term imposing a+ 1 = 0 obtaining

ũ = Λui, (A.13)

p̃ = Λ5p, (A.14)

dt̃ = Λ−2dt. (A.15)

2. We can eliminate the time dependence in front of the viscous term imposing
2− a = 0

ũ = Λ−2ui, (A.16)

p̃ = Λ−1p, (A.17)

dt̃ = Λdt. (A.18)





Annexe B

EDQNM models

B.1 EDQNM Model for isotropic turbulence
In this first section we derive a spectral equation based on an EDQNM closure

for a case of homogeneous isotropic turbulence.
We start from the Navier-Stokes equations for an incompressible flow

∂tui + ∂juiuj = −∂ip+ ν∂jjui, (B.1)

together with the continuity equation

∂iui = 0. (B.2)

We apply the Fourier transform to B.1 to obtain its spectral counterpart

∂tûi + ikj
∫
R3
ûi(p)ûj(k− p)dp = −ikip̂− νk2ûi. (B.3)

while the incompressibility condition is simply expressed by

kiui = 0. (B.4)

The pressure can be eliminated from B.3, using the fact that the velocity field is
solenoidal, resulting in

∂tûi(k) + νk2ûi(k) = − i
2Piαβ(k)

∫
R3
ûα(p)ûβ(k− p)dp (B.5)

where Piαβ(k) = kαPiβ(k) + kβPiα(k) is the Kraichnan projector, and Pij(k) = δij −
kikj

k2 .

B.1.1 Double correlation equation
The goal of a spectral model is to derive a closed equation for the two point

correlation in spectral space. To this end we use equation (B.5) to derive an equation
for the double correlation tensor Rij.

(∂t + 2νk2)Rij(k) = − i
2Piαβ(k)

∫
R3
Sjαβ(−k,p)dp

+ i
2Pjαβ(k)

∫
R3
Siαβ(k,p)dp. (B.6)
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Where we observe how the double correlation Rij, depends on the triple correlation
Sabc. T

Equation (B.6) is simply obtained taking the product of (B.5) by ûj(k′) summed
to the (B.5) rewritten for ûj(k′) and multiplied by ûi(k′), and using an the ensemble
average operator 〈∗〉.

The definition of the double Rij and triple Siαβ correlation tensors are the follo-
wing

〈ûi(k)ûj(k′)〉 = Rijδ(k + k′), (B.7)
〈ûi(k)ûα(p)ûβ(k′ − p)〉 = Siαβ(k,p)δ(k + k′), (B.8)
〈ûj(k′)ûα(p)ûβ(k− p)〉 = Sjαβ(k′,p)δ(k + k′). (B.9)

B.1.2 Triple correlation equation
A similar method is used to derive an equation for the triple correlation tensor

Siαβ. If one follows with the computation one finds an equation for Siαβ that depends
on quadruple correlation. Giving an example of the closure problem of turbulence,
caused by the intrinsic nonlinear nature of the process .

One solution to close the system is to use a quasi normal hypothesis on the fourth
order moment (quadruple correlation), meaning that they can be expressed as a sum
of the products between second order moments

〈g(x1)g(x2)g(x3)g(x4)〉 = 〈g(x1)g(x2)〉〈g(x3)g(x4)〉
+〈g(x1)g(x3)〉〈g(x2)g(x4)〉+ 〈g(x1)g(x4)〉〈g(x2)g(x3)〉.

This assumption together with some computation allows us to obtain a closed
equation for the triple correlation tensor

(∂t + ν(k2 + k′2 + (k + k′)2))Sijh(k,k′) = −iPiαβ(k) (Rjα(k′)Rhβ(−k− k′))
−iPjαβ(k′) (Riα(k)Rhβ(−k− k′) )
−iPhαβ(−k− k′) (Riα(k)Rjβ(k′)) .

(B.10)

This equation has a solution, which expresses Sijh as a sum of second order tensors
products :

Sijh(k,k′) = −i
∫ t

0
e−ν(k2+k′2+(k+k′)2)(t−s) ×

 Piαβ(k)Rjα(k′)Rhβ(−k− k′)
+Pjαβ(k′)Riα(k)Rhβ(−k− k′)
+Phαβ(−k− k′)Riα(k)Rjβ(k′)

 ds.
(B.11)
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At this point we introduce the markovian hypotheses on the double correlation, we
consider that Rij values do not depend on their past, so that they can be taken out
of the integral sign

Sijh(k,k′) = −i

 Piαβ(k)Rjα(k′)Rhβ(−k− k′)
+Pjαβ(k′)Riα(k)Rhβ(−k− k′)
+Phαβ(−k− k′)Riα(k)Rjβ(k′)

× ∫ t

0
e−ν(k2+k′2+(k+k′)2)(t−s)ds,

(B.12)
defining the quantity Θkpq =

∫ t
0 e
−ν(k2+k′2+(k+k′)2)(t−s)ds we can rewrite the expres-

sion of the third order correlation tensor

Sijh(k,k′) = −iΘkpq

 Piαβ(k)Rjα(k′)Rhβ(−k− k′)
+Pjαβ(k′)Riα(k)Rhβ(−k− k′)
+Phαβ(−k− k′)Riα(k)Rjβ(k′)

 . (B.13)

B.1.3 Lin equation for E(k)
At this point we use the derived expression for Sijk in the double correlation

equation (B.6), obtaining

(∂t + 2νk2)Rii(k) =
∫
R3

ΘkpqPiαβ(k)

 Pilm(k)Rlα(p)Rmβ(q)
+Pαlm(p)Ril(k)Rmβ(q)
+Pβlm(q)Ril(k)Rmα(p)

 dp (B.14)

where we have already imposed the case i = j, to consider only the trace of the
tensor. However, Ogura (1963) shows that the quasi-normal approximation leads to
nonphysical behaviour of the solution, in particular it can lead to negative energies.
That is why Orszag (1977) proposes to add to equation (B.10), an eddy-damping
term proportional to the third-order correlation tensor

µkpq(t)Sijk = (µk + µp + µq)Sijk (B.15)

where the expression of µk is given by Pouquet et al. (1975)

µk = a0

√∫ k

0
pE(p, t)dp (B.16)

where a0 is a model constant. When we add this new term to equation (B.10) the
term Θkpq is modified and becomes

Θkpq =
∫ t

0
e−(µkpq+ν(k2+k′2+(k+k′)2))(t−s)ds

So that finally
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(∂t + 2νk2)Rii(k) =
∫
R3

ΘkpqPiαβ(k)

 Pilm(k)Rlα(p)Rmβ(q)
+Pαlm(p)Ril(k)Rmβ(q)
+Pβlm(q)Ril(k)Rmα(p)

 dp (B.17)

It can be shown that the integral in the wavenumber space is limited to the triads
k + p + q = 0. Here we introduce the isotropic spectrum E(k) connected to the trace
of the double correlation tensor via

Rii = E(k)
2πk2 (B.18)

After some algebra and geometric consideration on the triads k,p,q one finally obtains

(∂t + 2νk2)E(k) =
∫

Θkpq
k

pq
E(q)b(k, p, q)

[
k2E(p)− p2E(k)

]
dpdq (B.19)

where b is geometric factor depending on the angles of the triad.
At this point if one defines the transfer term

T (k, t) =
∫

Θkpq
k

pq
E(q)b(k, p, q)

[
k2E(p)− p2E(k)

]
dpdq (B.20)

we obtain the following Lin equation

(∂t + 2νk2)E(k) = T (k, t) (B.21)



Annexe C

Spherical harmonics and
Mollweide projection

C.1 Mollweide Projection
The Mollweide projection is an equal-area, pseudo-cylindrical map projection Sny-

der (1987). It has been previously used in other application for the projection of
spherical results onto a plane such as the cosmic microwave background radiation
Bennett et al. (2013).
The first step is to interpolate the field of interest on a sphere of given radius R, to
get data as function of the polar angular coordinates (ψ,φ). The Mollweide projection
establish a relation between these variables and the map coordinates X and Y . They
represent respectively the equator and the central meridian.

X = R
2
√

2
π

ψ cosλ (C.1)

Y = R
√

2 sinλ (C.2)

where λ is a parametric angle defined by

2λ+ 2 sinλ = π sinφ (C.3)

Equations (C.2), (C.3) have to be solved via an iterative Newton-Raphson method.

C.2 Spherical harmonics
We follow Lombardini et al. (2014b). Here we sum up the principal steps :
1. At time t we have a field in the Cartesian reference frame f(x, y, z). We inter-

polate it on a sphere of radius R obtaining a f(R, θ, φ).
2. Using a discrete spherical harmonics transform we obtain the values flm. The

spherical harmonics are defined by

Ylm(θ, φ) =

N(l,m)P
m
l (cos θ) cos(mθ), if m ≥ 0

N(l,|m|)P
|m|
l (cos θ) sin(|m|θ), if m < 0

(C.4)
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Where Pm
l are the associated Legendre polynomials. The continuous spherical

harmonics transform is defined as

flm = 1
4π

∫∫
Ω
f(R, θ, φ)Ylm(θ, φ) dΩ (C.5)

3. The coefficient of the angular power spectrum can then be now computed

Cl = 1
2l + 1

m=+l∑
m=−l

|flm|2 (C.6)
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