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Abstract

All mechanical systems, naturally occurring or human-produced, are subjected to friction
and wear at the interface of solid constituents. Large portions of energy dissipation and
loss of material, in every-day life and industrial applications alike, are due to friction and
wear. Mitigating their effects could save between 1% and 2% of the GDP of a developed
country.1 Some systems governed by friction and wear can have an even more important
bearing on human lives, such as earthquakes nucleating from the sliding of tectonic faults.
Despite the tremendous impact of tribological phenomena on society, their understanding
has remained empirical, and to this day no predictive model has emerged. Interface processes
such as friction and wear are difficult to investigate because of the large number of underlying
physical phenomena (e.g. adhesion, fracture, etc.) and the difficulty of observing them at
contact interfaces.

Although research endeavors into friction and wear have not produced predictive models,
they have identified key components of tribological systems necessary to build such models.
Central among them is the idea that solidsmay not be in contact across their apparent interface
area, but instead a much smaller “true contact area.” This true contact area is the result of the
surfaces in contact being inevitably rough. In addition, contact pressures on roughness peaks
are expected to cause plastic flow of material, drastically changing the properties of the contact
interface, and the role it plays in tribological processes. Therefore, the aim of this PhD thesis
is to develop tools for the modeling of elastic-plastic rough contact interfaces, and to study
the applicability of knowledge of the contact state to the modeling of interface phenomena.

The first part of this objective is the development of a novel computational approach to
volume integral methods, which are used to solve elastic-plastic rough surface contact. Volume
integral methods have the advantage over the finite-element method in that they can represent
exactly elastic constitutive behavior and semi-infinite bodies, which are commonly used in
rough contact applications. This thesis develops a new fundamental solution used in a volume
integral approach, which drastically improves computation times and required memory over
previous approaches. Derived directly in the Fourier domain, this fundamental solution
makes optimal use of the fast-Fourier transform while retaining the advantages of classical
volume integral methods.

In the second part, this numerical approach is used to study the so called “Archard’s wear
coefficient”, and to up-scale known micro-scale adhesive wear mechanisms to the macro-scale
via rough contact simulations. These show that wear is an emergent process dependent on
the interaction of micro-scale mechanisms: they demonstrate the role of plastic deformations
in the crack nucleation process, and the necessity to look beyond the true contact area to

1Tzanakis et al., 2012.
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Abstract

understand tribological phenomena.
While this thesis remains quite fundamental, the tools and codes developed can be used

outside the realm of elastic-plastic contact, and the up-scaling approach to wear that we have
established is a first step towards predictive models.

Keywords — contact; plasticity; volume integral method; fast-Fourier transform; wear;
up-scaling; rough surface;
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Résumé

Qu’ils soient naturels ou manufacturés, tous les systèmes mécaniques sont sujets au frotte-
ment et à l’usure aux interfaces entre leurs composants. Des pertes énergétiques et matérielles
majeures, aussi bien au quotidien que dans les applications industrielles, sont dues au frot-
tement et à l’usure. Les gains économiques que générerait un meilleur contrôle de ces effets
sont estimés entre 1% et 2% du PIB d’un pays développé.1 Plus important encore, certains
systèmes soumis au frottement et à l’usure, comme les failles tectoniques, ont un impact
sur des vies humaines. Malgré la considérable influence des phénomènes tribologiques sur
nos sociétés, nous n’en avons qu’une compréhension empirique, sans capacité de prédiction.
Les mécanismes physiques se déroulant aux interfaces, tels que le frottement et l’usure, sont
complexes à analyser à cause des multiples processus dont ils sont issus (p. ex. l’adhésion, la
rupture, etc.) et de la difficulté d’observation des interfaces de contact.

Malgré que la recherche n’ait pas produit de modèle prédictif, certains aspects clés des
systèmes tribologiques ont néanmoins étés mis en évidence. Parmi eux, le fait que deux solides
ne soient pas en contact sur toute leur interface, mais sur une aire réduite appelée « aire de
contact,» joue un rôle central. Cette aire de contact résulte de l’inévitable rugosité des surfaces.
De plus, les pressions de contact peuvent être suffisantes pour causer des déformations plas-
tiques, changeant ainsi les propriétés de l’interface et son rôle des les processus tribologiques.
L’objectif de cette thèse est donc de développer des outils pour la modélisation du contact
entre solides élastoplastiques, et de transférer la connaissance de l’état de contact à des modèles
de phénomènes d’interface.

La première partie de cet objectif comporte le développement d’une nouvelle approche
numérique pour des méthodes d’intégrale volumique utilisées dans la résolution de problèmes
de contact élastoplastique à surface rugueuse. Comparées aux éléments finis, les méthodes
intégrales ont l’avantage d’exactement représenter le comportement élastique et les conditions
aux limites infinies qui sont couramment utilisées pour des applications de contact de surfaces
rugueuses. Cette thèse apporte une nouvelle solution fondamentale qui améliore considérable-
ment le temps de calcul et le coûtmémoire par rapport auxméthodes existantes. Cette solution
fondamentale, dérivée dans le domaine de Fourier, fait un usage optimal de la fast-Fourier
transform en conservant les avantages des méthodes intégrales volumiques classiques.

En seconde partie, cette approche est appliquée à l’étude de l’usure entre les échelles micro
et macro à l’aide de simulations de contact élastoplastique. Ces dernières rendent explicite
l’émergence de l’usure à partir de la rugosité des surfaces et des interactions entre des méca-
nismes à l’échelle micro. Le rôle prépondérant des déformations plastiques dans le processus
de nucléation de fissure est démontré, ainsi que la nécessité d’aller au-delà de l’aire de contact

1Tzanakis et al., 2012.
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Résumé

pour comprendre les phénomènes tribologiques.
Bien que cette thèse soit relativement fondamentale, les outils et codes développés peuvent

être utilisés au-delà du contact élastoplastique, et l’approche de l’usure qu’elle établit est une
première étape vers des modèles prédictifs.

Mots-clés — contact ; plasticité ; méthode d’intégrale volumique ; fast-Fourier transform;
usure ; transposition d’échelle ; surface rugueuse ;
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Introduction

Nobel price physicist Wolfgang Pauli (1900–1958) is often quoted for having said that
“Godmade the bulk; surfaces were invented by the devil.” Putting aside the grimness of

this statement, an optimist would interpret that the challenging physics resides at interfaces.
Although “the bulk” is not devoid of challenges, this quote holds some truth even today.
While large scale, cutting edge experiments like CERN or LIGO are uncovering the most
fundamental aspects of physics, the most trivial experiences, such as stopping a bike by pulling
on the breaks or erasing a pencil mark are attributed to physical processes which are yet to be
understood, namely friction and wear. This can also be said of large magnitude rare events
such as earthquakes, which affect millions of lives each year, and are governed by … the very
same interface phenomena.

The scientific investigation into friction and wear in the past sixty years has identified
a quantity that plays a major role in the macroscopic friction and wear response: the true
contact area. This was first propounded by Bowden and Tabor (1939) in a different interface
process: the conductivity of electric contacts. They show that nominally flat surfaces have an
electric conductance four orders of magnitude smaller than the expected value based on the
apparent contact area: in fact their results show that the conductance is independent of the
apparent contact area and mainly depends on the normal load. They discuss the implications
of this observation with Amontons’ first law of friction1, i.e. the maximum friction force is
proportional to the applied load (Amontons, 1699), or more classically FT ≤ µFN where µ is
the proportionality coefficient. By comparing an elastic and a plastic model for the contact
area, Bowden and Tabor (1939) conclude that the electric conductivity magnitude cannot
be explained by the elastic model, and plastic deformations must occur at the contacting
asperities: since the contact load is supported on an area several orders of magnitude smaller
than the apparent contact area, local contact pressures are expected to cause plastic flow of
asperities. This was later corroborated using experimental methods allowing a direct imaging
of the contact interface and a precise measurement of the true contact area (Dieterich and
Kilgore, 1996; Weber et al., 2018; Zhang, Liu, et al., 2019). Based on this observation, Bowden
and Tabor (1942) propose an expression for the friction coefficient:

µ =
shear strength
flow pressure , (0.1)

that is based on the shear resistance of contact junctions and the plastic flow pressure of the
material which governs the plastic contact behavior. Later, Dieterich (1979) showed using rock
sliding experiments that the kinematic friction forcewas dependent on the sliding velocity. His

1Which were in fact first discovered by da Vinci (Pitenis, Dowson, and Gregory Sawyer, 2014; Hutchings, 2016).
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works were generalized in “rate-and-state” models (Ruina, 1983; Gu et al., 1984) which include,
via a state variable, a time-dependent effect which strengthens the contact. For example a
possible formulation (Sinai, Brener, and Bouchbinder, 2012) of the rate and state dependent
friction coefficient is:

µ = µ0 + a ln
(
1 +

v

v∗

)
+ bµ0 ln

(
1 +

ϕ

ϕ∗

)
,

wherev is the sliding velocity,ϕ is the state variable and µ0,a,b,v∗,ϕ∗ are empirical quantities to
be determined by experiments. This formulation is often coupledwith an aging law (Dieterich,
1979):

dϕ

dt
= 1 −

vϕ

D
,

where D is also an empirical constant. This “aging”, which was first observed by Coulomb
(1821), is due to an increase over time of the real contact area (Dieterich and Kilgore, 1994) and
to the chemical aging of existing contacts (Li, Tullis, et al., 2011; Liu and Szlufarska, 2012).

Recently, the experiments of Jay Fineberg’s group have given an unprecedented look at
the contact interface and how it carries shear loading. They have in particular highlighted
how fracture mechanics describes the propagation of slip pulses across the interface, even
before the onset of macroscopic sliding (Svetlizky and Fineberg, 2014; Kammer et al., 2015).
The similarity between fracture and friction has been advanced further by Barras, Aldam,
et al. (2019) who have shown how fracture properties can emerge from rate-and-state friction
models. This macroscopic view is necessarily the result of the collective behavior of individual
contacts resulting from the unavoidable micro-scale roughness of surfaces2.

Of course friction and wear are intimately linked: friction is necessary for wear particle
formation, and the surface roughness evolution due to wear may in turn change the friction
properties of the interface. The scientific investigation of wear of the mid-twentieth century
(Holm, 2000; Burwell and Strang, 1952; Archard, 1953; Archard and Hirst, 1956) unveiled,
similarly to friction, the basic laws of wear, which can be summarized in Archard’s wear
equation:

V = K
Ws

H
, (0.2)

which shows that the wear volumeV is proportional to the normal loadW times the sliding
distance s and inversely proportional to the hardness H , with a proportionality constant
K to be experimentally determined. Similarly to the expression of the friction coefficient
by Bowden and Tabor (1942), it is apparent that this law was derived on the assumption of
plastic deformations, as the termW /H represents the true contact area in a purely plastic
contact model. Unlike friction however, where the µ is typically in the range of 0.1þ –0.8þ
for unlubricated solids (with some exceptions, see e.g. Fontaine et al., 2005), the propor-
tionality factor K typically varies by orders of magnitude in 10þ −7–10þ −1 (Rabinowicz, 1995).
Experiments being the only way to determine the proportionality factor K , also known as
the wear coefficient, numerous experimental studies have proposed wear maps for various

2To expand on biblical imagery, “the devil is in the detail.”
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Figure 0.1.: Illustration of the contact area evolution. Contact area between elastic solids with
self-affine rough surfaces. Darker shades correspond to larger applied normal loads. The
complex contact topography and the associated stress state governs virtually all tribological
phenomena.

materials (Hokkirigawa, 1991; Riahi and Alpas, 2003; Kong and Ashby, 1992; Zum Gahr,
1989). Meng and Ludema (1995) have surveyed more than 180 wear equations, among which
“no single predictive equation or group of limited equations could be found for general and
practical use.” They additionally point out as a contributing factor to this issue “the slow
pace of translation of microscopic observations into macroscopic models”, which is still the
consensus today (Vakis et al., 2018).

Microscopic wear observations have flourished with the advent of nano-scale experimental
techniques in the early 21st century, which provided the means to develop an understanding
of wear processes at the atomic scale (Liu, Notbohm, et al., 2010). Similarly, discrete modeling
approaches have made recent breakthroughs in nano-scale wear. Aghababaei, Warner, and
Molinari (2016) have uncovered a critical length-scale controlling wear particle formation
at the asperity level. This length-scale stems from the Griffith energy balance between the
deformation energy available in the contact of two asperities and the required energy to break
off the wear particle from the two surfaces. Similarly, Candela and Brodsky (2016) have shown
that the anisotropy in the roughness of slip surface in geological faults disappears below a
given length scale (∼ 10þ µm). This suggests an interplay between the roughness, the fracture
processes that cause wear and the plastic deformation of the material due to the contact
pressures (cf. fig. 0.2), which can have large-scale consequences on the mechanical properties
of a fault. Indeed, plastic deformations dramatically increase the true contact area, as well as
increase the local stress state of asperities in contact, which can modify how a crack develops.

These examples illustrate the need to understand the contact interface with plastic flow of
the materials in contact. While the true contact area may control the magnitude of certain
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Figure 0.2.: Illustration (3D) of the sub-surface plastic zones. Lighter shades are zones deeper
below the contact interface. Because the contact load must be carried over an area typically
two orders of magnitude smaller than the apparent area of contact, the local pressures may
cause plastic activity. The principal shear stress is maximum below the surface (Johnson,
1985), so plastic deformations first develop below contacting points, then grow in volume
and eventually reach the surface. It is common that disjoint surface contacts “share” a
plastic region below the surface. These plastic strains modify significantly the stress state
compared to an elastic material, which drastically changes themacroscopic picture of stress-
driven phenomena such as wear. Note that this figure is the result of an actual elastic-plastic
contact simulation. The original method used to obtain it is detailed in Chapter 2 of this
manuscript.

macroscopic quantities (such as thermal/electrical conductivity, sealing properties, etc.) and
has been the subject of numerous studies in elastic contact (Greenwood and Williamson,
1966; Bush, Gibson, and Thomas, 1975; Persson, 2006; Hyun and Robbins, 2007; Yastrebov,
Anciaux, and Molinari, 2017a; Pastewka and Robbins, 2014), other aspects of the contact
interface, e.g. the stress state in the vicinity of micro-contacts, may be of greater importance in
the accurate description of tribological phenomena. Because the contact interface is where
micro-scale mechanisms start interacting to give the macro-scale picture that we experience,
its full understanding is necessary to bridge the gap between the micro- and macro-scales.

Objectives

While next-generation experimental techniques (Garabedian et al., 2019; Sahli et al., 2018;
Zhang, Liu, et al., 2019; Weber et al., 2018) allow unprecedented detail of the topography
of the contact area and contact evolution during sliding, some important properties of the
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interface, such as contact pressures, underlying plastic deformations, etc., are difficult to
gather experimentally. In addition, obtaining statistically significant results is experimentally
involved and time consuming. For these reasons, modeling and simulations have proven
efficient in the study of rough contact interfaces. While the earliest efforts in modeling contact
of self-similar surfaces can be traced back to Archard (1957), simulations were not able to
handle the multi-scale nature of rough surfaces until the late twentieth century (Stanley and
Kato, 1997; Polonsky and Keer, 1999b). Since then, numerical investigations into the true
contact area in elasticity have flourished (e.g. Yastrebov, Anciaux, and Molinari, 2012; Hyun,
Pei, et al., 2004; Campañá and Müser, 2006; Putignano et al., 2012). However, the previous
works that form the basis for the undertaking of this thesis clearly show that some plastic
activity must occur at the contact interface (e.g. Bowden and Tabor, 1939; Archard and Hirst,
1956; Greenwood and Williamson, 1966).

In this regard, the work of Pei et al. (2005) has pioneered the study of elastic-plastic rough
surface contact. Although they were not the first to carry out such simulations (Mayeur,
Sainsot, and Flamand, 1995, in 2D only), their analysis of the influence of plastic behavior
on the true contact area in 3D as well as the contact topography and pressure distribution
has shown that elastic contact models cannot realistically capture the relevant quantities for
the understanding of tribological phenomena. The results presented unfortunately contain
representativity and discretization inaccuracies, but are still unique in the rough contact
community at large: a review by Vakis et al. (2018) summarizes the need for realistic contact
models incorporating plastic constitutive behavior in the comprehension of tribological
processes.

The present thesis positions itself with the intent of developing a framework for the mod-
eling of interface phenomena by focusing on the simulation of elastic-plastic rough contact
systems, expanding on existing numerical methods to achieve this task. Precisely, the objectives
of this thesis are:

Contact modeling— to provide an efficient numerical method tomodel the realistic contact of elastoplas-
tic solids with rough surfaces. Boundary integral methods (e.g. Stanley and Kato,
1997) have been very successful in their application to elastic contact with rough surfaces.
While their volume counterparts have been applied to elastic-plastic contact (Jacq et al.,
2002; Wang, Keer, and Wang, 2006), it is unclear whether the existing formulations are
competitive with a finite-element approach. The first concrete objective of this thesis is
to develop a volume integral method that can handle the performance requirements of
rough surface elastic-plastic contact.

Plastic effects— to shed light on the effect of plastic deformations on the overall contact response as
well as its subsequent influence on tribological phenomena. Questions of interest are:
how are the stresses in the vicinity of micro-contacts modified by plastic deformations?
In adhesive wear, how is the crack initiation at a micro-contact affected by plasticity?
How does plasticity affect the statistical properties of the contact interface (e.g. contact
pressure distribution, micro-contact area distribution)?

Up-scaling— to provide insight on themacro-scale tribological response of a system based on the
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collective behavior of individual contacts. How can one transfer knowledge of an
asperity-level mechanism to the whole contact interface? How can one rationalize the
wear coefficient of Archard’s law (K in eq. (0.2)) in a multi-asperity contact setting?
How is the local crack nucleation process in adhesive wear influenced by the global
contact response?

Approach

As mentioned above, we wish to develop a volume integral method for the modeling of
rough contact interfaces. Surface roughness in natural surface occurs on many length scales
which cannot be separated (Persson et al., 2005; Renard, Candela, and Bouchaud, 2013):
numerical methods must therefore enable the full-scale modeling of the contact of such
surfaces. Boundary integral methods make this possible for elastic contact because of the
translational invariance that arises in typical rough surface contact simulations. It is indeed
common to model the rough surface as undeformable and the deformable solid as a flat elastic
half-space (Johnson, Greenwood, and Higginson, 1985). This translational invariance turns
the integral representation of the solution displacement into a convolution product which
can be accelerated via a fast-Fourier Transform.

Such an approach has already been used for volume integral methods (Sainsot, Jacq, and
Nélias, 2002; Zhou, Jin, Wang, Wang, et al., 2016), but it relies either on the discrete Fourier
transform of physical-space Green’s functions and their full storage or 3D discrete Fourier
transforms which have periodicity issues and require large discretized domains. We plan on
developing a volume integral method that makes use of a Green’s function that is directly
available in the Fourier domain, thus reducing the computational burden.

The outcome of the developments on volume integral methods is an efficient simulation
procedure for the contact of rough surfaces that we use in conjunction with recent findings on
the adhesive wear process of pairs of contacting asperities. Aghababaei, Warner, and Molinari
(2016) have shown the existence of a critical length-scale that governs the formation of a wear
particle in the sliding contact of two hemispherical asperities. It gives a simple criterion on
particle formation at the asperity scale: if the contact diameter of the two asperities is larger
than the critical length-scale, the asperities will break anwear off. Wewill apply this knowledge
to multi-asperity contact to rationalize the wear coefficient, which Archard interpreted as the
probability of an asperity-pair forming a wear particle. Since the particle formation process
has been shown to be deterministic, that probability can be epistemically understood within a
stochastic rough surface contact.

We will also apply concepts of fracture mechanics to elastic-plastic rough surface contact
to determine the location of crack nucleation sites and their density, and how the inter-
asperity interactions and plastic deformations may influence them. Since fracture mechanics
is dependent on the stress state, we expect that the true contact area may not be the major
quantity driving the crack nucleation.
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Outline

This dissertation is comprised of five chapters separated in two parts. Below is a brief descrip-
tion of each of them:

Chapter 1— This chapter presents a state of the art on the modeling of rough surface elastic contact
and its associated numerical approaches. I present the derivation of boundary integral
methods applied to the equilibrium of an elastic half-space, and in particular their for-
mulation in the Fourier domain, which allows for significant computational advantages.
We then show how the tools describing the half-space equilibrium are employed in
the context of rough contact mechanics with the quadratic programming techniques
typically used in this field. Finally, we provide a short review on the statistics of rough
surfaces and the algorithms used to generate synthetic surfaces.

Chapter 2— We present here the derivation of the Mindlin fundamental solution, an essential
component of the volume integral method we wish to deploy, directly in the Fourier
domain. We also provide a sound mathematical framework for the application of
volume integral methods to periodic systems with the discrete Fourier transform. We
validate our approach with analytical solutions and compare the methods performance
to the finite-element method.

Chapter 3— Two solutions strategies for the coupling of the contact and plasticity problems are
presented here. We describe first a fixed point algorithm and validate it with finite
elements simulations and published results from the literature. We also propose a new
solving scheme based on the primal-dual interior point method that is often used in
second-order conic programming. We present here the variational formulation of the
elastoplastic contact problem which forms the starting point of the method. We then
describe the method in its essential ideas. This is however ongoing work.

Chapter 4— In this first application chapter, we use elastic rough surface mechanics to examine how
the critical length-scale concept in adhesive wear proposed by Aghababaei, Warner, and
Molinari (2016) can be up-scaled to obtain the macroscopic wear response of a contact
interface. We focus our attention on the wear coefficient of Archard’s model, how it
can be interpreted at the macro-scale, and how it can be derived without relying on
some of Archard’s assumptions on the nature of adhesive wear at the micro-scale.

Chapter 5— Finally, we apply our numerical methods for elastoplastic rough contact to study the
number of cracks nucleating at the edge of contacts, a necessary part of adhesive wear,
and how it depends on plastic behavior and shear resistance of the contacts. We pro-
pose analytical arguments to rationalize the observed behavior of the rough contact
interfaces.

We finish this dissertation with a summary of the main results and discussion of the future
work that could be carried out on the grounds of this thesis.
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1. Elastic rough contact: boundary
integral methods

Abstract
A state of the art of continuum linear elastic rough surface contact is presented, with emphasis
on boundary integral solutionmethods of the equilibriumof an elastic half-space. The Fourier
approach taken in this thesis is introduced to represent the elastic response of a half-space to
surface tractions. This lays the foundation for numerical methods used for the rough surface
contact problem. The latter is formulated as a constrained quadratic program and associated
solution strategies are described. Finally, rough surface generation algorithms are compared
according to their statistical properties. This chapter provides the theoretical basis for the
development of more complex numerical methods and result discussions.

Disclaimer
Parts of this chapter are reproduced from the article Lucas Frérot, Marc Bonnet, et al. (July 1,
2019). “A Fourier-Accelerated Volume Integral Method for Elastoplastic Contact”. In: Com-
puter Methods in Applied Mechanics and Engineering 351, pp. 951–976. doi: 10.1016/
j.cma.2019.04.006, with permission of all authors. My personal contributions to this
article include the development of the method, the code implementation, the running of
simulations, the figure production and the writing of the article.
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1. Elastic rough contact: boundary integral methods

1.4.3. Periodicity and statistical significance . . . . . . . . . . . . . . . . 33

The field of contact mechanics can be said to have originated from the ground breaking
works of Heinrich Hertz on the deformation of optical lenses in 1882. His solution of

two elastic spheres in contact has seen countless uses in both research and industrial settings.
In 1939, Westergaard provides the first multi-asperity contact solution by using a complex
potential method for the contact of a sinusoidal surface with a deformable solid (Westergaard,
1939). That same year, Bowden and Tabor show that friction is intimately linked to the true
contact area of mating surfaces (Bowden and Tabor, 1939), while Archard makes the same
statement for adhesive wear more than a decade later (Archard, 1953). It is with the goal of
quantitatively studying the physics at the true contact area that various methods for rough
surface contact are then developed. The seminal works of Archard (1957) and Greenwood
and Williamson (1966) paved the way for multi-asperity contact via fractal and statistical
methods respectively, which evolved over time to include asperity curvature (Bush, Gibson,
and Thomas, 1975), long-range elastic interaction (Vergne, Villechaise, and Berthe, 1985),
surface anisotropy (Bush, Gibson, and Keogh, 1979), surface power spectral density (Persson,
2006), etc.

Numerical methods have also been developed and used to study rough surface contact.
Although finite elements methods have been successfully employed (Hyun, Pei, et al., 2004;
Yastrebov, Durand, et al., 2011), boundary integral methods have proven very efficient in
dealing with elastic rough contact. These include spectral methods (Stanley and Kato, 1997;
Yastrebov, Anciaux, and Molinari, 2012; Rey, Anciaux, and Molinari, 2017) and Green’s func-
tions methods (Polonsky and Keer, 1999b; Campañá and Müser, 2007; Putignano et al.,
2012). They have been used to study the true contact area evolution in adhesionless (Yastre-
bov, Anciaux, and Molinari, 2015) and adhesive contact (Carbone, Scaraggi, and Tartaglino,
2009; Pastewka and Robbins, 2014; Rey, Anciaux, and Molinari, 2017), as well as interfacial
separation (Almqvist, Campañá, et al., 2011), the autocorrelation of the surface stresses and
micro-contacts (Campañá, Müser, and Robbins, 2008; Ramisetti et al., 2011), the distribution
of the areas of micro-contacts (Frérot, Aghababaei, and Molinari, 2018; Müser and Wang,
2018), the autocorrelation of sub-surface stresses (Müser, 2018), etc. The contact mechanics
challenge organized byMüser in 2016 references as many as 13 different techniques for adhesive
elastic contact, from 12 different research groups, studying some of the quantities previously
mentioned (Müser, Dapp, et al., 2017).

In this introductory chapter, we present a state of the art on numerical methods used in
rough surface elastic non-adhesive contact, with an emphasis on boundary integral methods
and their formulation in the Fourier domain, as it will lay the theoretical grounds for the
methods developed in Chapter 2. We discuss the quadratic programming techniques used for
the contact problem as well as the characterization and generation of self-affine rough surfaces
which are commonly employed to represent realistic contact interfaces.
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1.1. Equilibrium of elastic bodies: problem introduction

1.1. Equilibrium of elastic bodies: problem introduction

Generally, solving a contact mechanics problem involves computation of unknown quantities
located both within the compliant solids (e.g. the displacement field) and at the contact
boundary (e.g. the contact tractions). The former are given as the solution of the problem of
a deformable body in equilibrium, which is established in this section for the specific case of
linear elasticity. This particular topic having a long history of both analytical and numerical
solution methods, we will only focus on state-of-the-art procedures currently employed in the
field of rough surface mechanics.

1.1.1. Variational form

Let the open B ⊂ R3 be a deformable elastic solid of boundary ∂B with outward normaln.
Let u be the displacement vector field of B. The linearized strain tensor ε and the Cauchy
stress tensor σ are respectively given by:

ε[u] :=
1
2

(
∇u + ∇uT

)
, (1.1)

σ [u] := C : ε[u], (1.2)

where C ∈ R3×3×3×3 is the elasticity tensor, satisfying the usual ellipticity and (major and
minor) symmetries. Here and thereafter, we follow the usual conventionwhereby the gradient
operator ∇ acts “to the right”, so that e.g. (∇u)i j = ∂jui = ui , j . Letn be the external normal
of ∂B, we define the traction vector of the displacement fieldu as:

T [u] := σ [u]
���
∂B
· n. (1.3)

Given a prescribed displacementuD applied on ∂Bu and prescribed traction tD applied on
∂Bt , the Dirichlet and Neumann boundary conditions are expressed as:

u
���
∂Bu
= uD , and T [u]

���
∂Bt
= tD . (1.4)

The equilibrium ofB subjected to the above boundary conditions and to the volumetric force
density b can be expressed by the principle of minimum potential energy:

inf
u ∈KA(B)

{
I (u) =

1
2

∫
B

σ [u] : ε[u] dV −
∫
B

b · u dV −
∫
∂B

T [u] · u dS
}
, (1.5)

which involves finding u ∈ KA(B), i.e. a kinematically admissible displacement field, that
minimizes the total potential energy of the system. When complementedwith the appropriate
regularity hypotheses onB,b and boundary data (see e.g. Dacorogna, 2015, chap. 4), the above
formulation is shown to be equivalent to the strong Euler-Lagrange equation:

div(σ [u]) + b = 0þ a.e. in B, (1.6)

which expresses the local balance of momentum. The reduced regularity requirements of
eq. (1.5) make it more attractive than the above equation for use in numerical methods (see

13



1. Elastic rough contact: boundary integral methods

e.g Mason, 1985): indeed the function space KA is typically the Sobolev space H 1 := W 1,2

whose members are in L2 as well as their first order partial derivatives (in the weak sense). The
variational form (1.5) also has the added benefit of easily accommodating the contact boundary
conditions that we will introduce in Section 1.3. Since C is symmetric positive definite, the
elastostatic problem has one and only one solutionu which minimizes the potential energy
functional I . The stationarity condition of I yields the weak Euler-Lagrange equation (see e.g.
Dacorogna, 2015, chap. 3) that expresses the global balance of momentum:

∫
B

σ [u] : ε[v] dV =
∫
B

b ·v dV +
∫
∂B

T [u] ·v dS, ∀v ∈ KA(B). (1.7)

This variational equality is known as the “principle of virtual work” and expresses the fact that
the potential energy of a system in equilibrium should stay constant under any admissible
displacement perturbationv.

The variational equality (1.7) is the starting point of many families of numerical methods,
including the finite element method and the boundary integral methods that we discuss in
this chapter. The former classically applies the Galerkin approach which consists in solving
eq. (1.7) for an unknownuh in a finite-dimensional subspace of functions that approximates
KA(B), and using the same approximate space for the test functions. It is equivalent to solving
the minimization problem (1.5) with u in a computationally tractable subspace of KA(B).
The finite elements method has been lauded for its simplicity and flexibility, and is still today
ubiquitous in all areas of computational solid mechanics.

Although it is widely used in contact mechanics (see e.g. Wriggers, 2006, for various contact
methods), it has seen relatively limited application in the specific field of rough surface contact.
This is in part due to the multi-scale roughness found in natural surfaces (Persson et al.,
2005), which leads to discretization requirements too great for the finite elements method. In
addition, contacts at the micro-scale are usually modeled with semi-infinite bodies, which in
finite elements typically involves modeling a large domain to reduce the effect of the boundary
on the zone of interest.

In this regard, boundary integral methods alleviate the above shortcomings of the finite
elementmethod for elastic rough contact. They are also based on the above variational equality,
which is used as a starting point to derive the main principles of the method.

1.1.2. Boundary integral equation

The basic idea of integral methods is to take advantage of the linearities in the considered
problem to express the sought solution as a combination of solutions known a priori (with
appropriate incorporation of the problem data). To build a solutionmethod on this principle,
let (u1,b1, t1D ,u

1
D ) and (u2,b2, t2D ,u

2
D ) be two solution states, each comprised of the resolved

displacement field and the boundary data. One can apply eq. (1.7) to state 1þ withu2 as a test

14



1.1. Equilibrium of elastic bodies: problem introduction

function and conversely. Taking the difference of the two resulting identities produces∫
B

(
σ [u1] : ε[u2] − σ [u2] : ε[u1]

)
dV =∫

B

(
b1 · u2 − b2 · u1

)
dV +

∫
∂B

(
T [u1] · u2 −T [u2] · u1) dS . (1.8)

Due to the symmetry properties of C, the left-hand side cancels and we obtain the well-known
Maxwell–Betti reciprocity identity:∫

B

(
b1 · u2 − b2 · u1

)
dV =

∫
∂B

(
T [u2] · u1 −T [u1] · u2) dS . (1.9)

This identity allows the expression of an unknown state as a function of a known one. Let
us now define the (known) state number 1þ : b1 represents a unit point force in the direction
ek applied on point x ∈ E ⊇ B, while u2 = U k (x,y) is the displacement vector at point y
caused by the point force. Note that E, the domain of state 1þ , should be chosen so thatU k

can be obtained analytically. The simplest choice is E = R3, but other considerations may
enter the choice of E, as we shall see next. Due to the nature of the volume force density
b1, it is necessary to enlarge the mathematical framework defined until now, as b1 is not a
function in the traditional sense. Indeed, it is best expressed with the Dirac distribution δx
supported on {x}. The theory of distributions is a more appropriate setting: it generalizes
classical functions while retaining properties of differentiation, integration, convolution and
integral transformation, which allow for a rigorous development of the methods we present
in the first part of this manuscript1.

Definition 1. We call a fundamental solution a displacement field U k defined on E that
satisfies

div(C : ε[U k ]) + δxek = 0þ ⇔ N[U k ](x, •) = δxek , (1.10)

wherewehavedefined theNavier operatorN[u] = − div(C :þ ε[u]) (withdifferential operations
acting on the variabley ofU k (x,y) unless otherwise noted).

Due to the convolution properties of the Dirac distribution, the Maxwell–Betti iden-
tity applied to a fundamental solution becomes the integral representation of the unknown
displacement (dropping the exponents 1, 2þ ):

u(x) · ek =

∫
∂B

(
T [u](y) ·U k (x,y) −T [U k ](x,y) · u(y)

)
dSy

+

∫
B

U k (x,y) · b(y) dVy , for x ∈ B.
(1.11)

The source point x cannot lie on ∂B because the function T [U k ] is singular at y = x and
not properly integrable (Bonnet, 1995). Nonetheless, this representation clearly shows the

1The reader is referred to the books of David and Gosselet (2015, chap. 4) and Dautray and Lions (2000,
Appendix “Distributions”) for an introduction to the theory of distribution and summary of key properties.
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1. Elastic rough contact: boundary integral methods

expression of the displacement as a superposition of known solutions. However, the boundary
data (T [u],u

��
∂B
) that is needed is not fully knownon ∂B: the tractions are only knownon ∂Bt

and the displacements only on ∂Bu . Assuming some regularity onu and applying a limiting
process to adequately account for the singularity inT [U k ], one can construct a regularized
boundary integral equation suitable for determining themissing boundary data. This equation
is at the heart of boundary element methods, which will not be developed in this manuscript.
The reader is nevertheless referred to the book of Bonnet (1995) for a detailed picture of these
methods, which extend far beyond the realm of contact mechanics.

The methods we wish to present now are also based on a boundary integral equation and
therefore belong, like the boundary element methods, to the family of Boundary Integral
Methods (BIM). We now introduce the hypothesis that ∂E ⊇ ∂B. We assume to have at our
disposal a fundamental solution that additionally verifies the boundary conditionT [U k ] = 0þ ,
i.e. ∂E is a free surface. This cancels the non-integrable traction vector and gives an explicit
expression for the unknown displacement at all x ∈ B ∪ ∂B:

u(x) · ek =

∫
∂B

T [u](y) ·U k (x,y) dSy +
∫
B

U k (x,y) · b(y) dVy . (1.12)

As this integral representation underlies all the numerical methods for rough surface elastic
contact that are based on continuum mechanics, we will now explore how it can be used.

1.2. Equilibrium of a half-space

It often happens in rough surface contact that the scales of interest permit the simplification
of removing macroscopic effects and assuming the bodies in contact are two half-spaces
with rough surfaces. In linear elastic friction-less contact one can apply to this simplified
problem the following hypothesis (Johnson, Greenwood, and Higginson, 1985): the problem
of two contacting isotropic elastic solids with rough surfaces is equivalent to the problem of
a flat half-space with modified elastic properties in contact with a rigid indenter having an
equivalent roughness profile. This simplified formulation of the contact problem has two
major advantages when an integral equation solving strategy is employed:

1. the simplified half-space geometry means that fundamental solutions can be derived
directly for the domain of interest (i.e. E = B),

2. the problem has a horizontal translational symmetry and the integral representation
becomes a horizontal (partial) convolution.

We now provide a rigorous setting to the various mathematical tools that form the backbone
of the solution method and fully exploit the above characteristics.

1.2.1. Integral operators and Fourier formulation

Let B := {y ∈ R3 :þ y · e3 > 0}, according to the semi-infinite assumption previously
described, with outward normaln := −e3. Pointsy ∈ B will often be denoted asy = (ỹ,y3)
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1.2. Equilibrium of a half-space

with ỹ := (y1,y2). We rewrite eq. (1.12) in the form (assuming b = 0þ )

u =M[p], (1.13)

where p ( = T [u]) is the known traction distribution on ∂B2 andM is a boundary integral
operator defined in terms of fundamental solutions. The constitutive uniformity and semi-
infinite geometry of B together imply a translational invariance in any horizontal direction,
i.e.

M[p(• + h̃)](x + h̃) =M[p](x), ∀x ∈ B, ∀h̃ = (h1,h2, 0) ∈ R
2 × {0}. (1.14)

Consequently, the integral operatorM can be expressed as a convolution with respect to
the horizontal coordinates. There is a tensor-valued functionG(z̃, x3,y3) = ek ⊗G

k (z̃, x3,y3)

(Fredholm, 1900) such that:

M[p] =

∫
∂B

G(ỹ − x̃, x3, 0) · p(ỹ) dỹ. (1.15)

We accordingly define the partial convolution operation along the horizontal coordinates
x̃ = (x1, x2) by

(f ?д)(x̃) :=
∫
R2

f (ỹ − x̃)д(ỹ) dỹ, (1.16)

where the operands f ,д may in addition depend on the vertical coordinates x3,y3; moreover,
the convolution symbol?will implicitly retain any tensor contraction involved in the integrals
being recast in convolution form. Reformulating eq. (1.15) using definition (1.16) gives

M[p] = G(•, x3, 0)?p. (1.17)

Remark 1. We emphasize that the partial convolution (1.16) makes sense only provided its
operands f ,д are “convolvable”, i.e. are in some sense mutually compatible. It is in particular
well-defined in the classical sense if f ,д are either (a) integrable functions over R2 (i.e. f ,д ∈
L1(R2)) or (b) locally integrable functions whose supports are convolutive3, and only in the
sense of distributions, a.k.a. generalized functions, or if (c) f is a tempered distribution and д
is a compactly supported distribution4. We will shortly see that such considerations play an
important role in this work, which involves convolutions of types (b) or (c) as kernels such as
G derived from fundamental solutions may be locally-integrable but are not integrable.
Remark 2. Notice the slightly unconventional definition (1.16) of f ?д, adopted here because
of its convenience in the formulation of elastic potentials.

The (horizontal) convolutional form taken by the relevant integral operators, reflecting
the aforementioned translational invariance, prompts the use of the two-dimensional partial
Fourier transform, defined by

f̂ (q,y3) = F [f ](q,y3) :=
∫
R2

f (ỹ,y3)e
−iq ·ỹ dỹ (1.18)

2We only focus here on Neumann problems.
3Meaning that f and д have supports such that ỹ − x̃ remains bounded, which is in particular the case when
one of the operands is compactly supported.

4i.e. f ∈ S′ and д ∈ E ′, using standard notation for spaces defined by the theory of distributions, see e.g. the
appendix “Distributions” in Dautray and Lions, 2000.
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1. Elastic rough contact: boundary integral methods

for functions of the variable ỹ that are in L1(R2). The coordinate space (q,y3) ∈ R2 × R+
underpinning the above Fourier transformwill be referred to as the partial Fourier space, with
q = (q1,q2). Thanks to the celebrated Fourier convolution theorem, convolutions become
mere multiplications upon application of the Fourier transform (1.18). In particular, for
integral operators defined by horizontal convolution, we have

Lemma 1. Under the partial Fourier transform defined by eq. (1.18) and its extension to
distributions, the partial convolution product (1.16) obeys the identity

F
[
f ?д

]
(q) = f̂ (−q)д̂(q), (1.19)

for any pair (f ,д) that is convolvable in the sense of condition (a), (b) or (c) of Remark 1.
Consequently, subject to the same type of convolvability conditions, integral operators of the
form ofM have the expression

�M[p](q, x3) = Ĝ(−q, x3, 0) · p̂(q). (1.20)

The integral in eq. (1.18) is well defined in the classical sense only in case (a), and the distri-
butional extension of the Fourier transform must be used instead for cases (b), (c), see e.g. the
appendix “Distributions” in Dautray and Lions (2000).

This lemma makes systematic use of the Fourier transform the cornerstone of the meth-
ods presented in this manuscript: it has the dual advantage of leveraging the algorithmic
complexity of the fast-Fourier transform (FFT) for the computation of convolutions and of
providing a simplified mathematical framework for dealing with both fundamental solutions
and discretized integral operators, as it will become apparent in Chapter 2 with the application
of integral methods to the volume.

1.2.2. The Boussinesq–Cerruti fundamental solution

The fundamental solutions used in this work are, as mentioned in Definition 1, displacement
fields created by singular point sources in the half-space B endowed with elastic properties.
They are functionsU (x,y)of two spatial variables, namely the source variablex (i.e the location
of an applied point force) and the field variabley (i.e. where displacement is measured). Such
fundamental displacements satisfy problems posed in terms of theNavier elastostatic operator
Nþ , defined for a generic displacementv by

N[v] := − div (C : ε[v]) (1.21)

(differential operators being understood in this work as acting on the field variable y and
defined in the weak sense of the theory of distributions). Fundamental solutions decay at
infinity, i.e. verifyU (x,y) → 0þ as ‖y − x ‖ → ∞ for a given x .

The integral operatorM is defined in terms of theMindlin fundamental tensorG = ek ⊗G
k

(created in B by a point force applied at x ∈ B, see Mindlin, 1936), which moreover satisfies
the traction-free condition on ∂B necessary to provide the integral representation (1.12) of
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1.2. Equilibrium of a half-space

the displacement. However,M admits an alternative description based on the Boussinesq–
Cerruti kernel (cf. Remark 3 for nomenclature details), which simplifies the treatment of the
elastic equilibrium problem. The Boussinesq–Cerruti tensor B(x̃,y) = ek ⊗ B

k (x̃,y) satisfies
for all (x̃, 0) ∈ ∂B

N[Bk ](x̃, •) = 0þ in B, T [Bk ](x̃, •) = δ̃x̃ek on ∂B, 1 ≤ k ≤ 3, (1.22)

where δ̃x̃ is the Dirac distribution defined on ∂B and supported at (x̃, 0) ∈ ∂B.

Lemma 2. The boundary integral operatorM defined in terms of the Boussinesq–Cerruti
kernel is written as: �M[p](q, x3) = B̂

T
(q, x3) · p̂(q). (1.23)

Proof. Mindlin (1936) has shown that the kernelG reduces to the Boussinesq–Cerruti fun-
damental tensor when x → ∂B, that isG(•, 0,y3) = B(•,y3). We make use of this property
along with the property thatU (x,y) = UT (y,x) for any fundamental tensor (Bonnet, 1995):

M[p] = G(•, x3, 0)?p =
∫
∂B

G(x̃ − ỹ, x3, 0) · p(ỹ) dỹ

=

∫
∂B

GT (ỹ − x̃, 0, x3) · p(ỹ) dỹ

=

∫
∂B

BT (ỹ − x̃, x3) · p(ỹ) dỹ.

Applying Lemma 1, we obtain the desired result (notice the change in sign in front ofq due to
the x̃ ↔ ỹ swap). �

Remark 3. The Boussinesq–Cerruti kernel cannot be considered a fundamental solution
in the sense of Definition 1 as it solves a problem where the point force is introduced as a
boundary condition and not as a second member in the local equilibrium equation, i.e. the
point force has to lay on the surface an cannot be swapped for the field point in the domain.
As such, it does not satisfy the usual symmetries expected from fundamental solutions (e.g.
we have B̂(q,y3) , B̂

T
(−q,y3), whereas for the Mindlin tensor Ĝ(q, x3,y3) = Ĝ

T
(−q,y3, x3)).

However, by abuse of terminology, we still refer to the Boussinesq–Cerruti displacement as a
“fundamental solution” since it essentially fulfills the same role.

Since the Boussinesq–Cerruti tensor describes the deformation of a half-space subject to
surface tractions, it is ubiquitous in elastic contact mechanics.

Partial Fourier solution

The first use of a spectral form of the operatorM can probably be attributed to Westergaard
(1939) who solved the line contact of wavy surfaces. Taking his contact solution to full contact
gave the displacement due to a sinusoidal traction distribution on the surface. The generaliza-
tion of this idea to surface contact is due to Johnson, Greenwood, and Higginson (1985), and
was first used for multi-scale rough surface contact by Stanley and Kato (1997).
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The use of the Westergaard solution in a numerical method is straightforward to conceive
(and to execute), hence its popularity since the beginning of the century. Being defined for
a periodic setting, the Westergaard solution is not exactly B̂ in eq. (1.23), since B (and by
extension B̂) does not describe a periodic medium. The first derivation of B̂ was done by
Amba-Rao (1969)5. We now show his derivation method, which we use as foundation for the
volume integral operators introduced in Chapter 2 for the treatment of plastic flow in contact.
The entire method is coded in a Jupyter Notebook (Frérot, 2018) and is free to (re-)use on
binder.org.

In the partial-Fourier domain, the transformed isotropic Navier operator is expressed by
Amba-Rao (1969) as:

�N[u](q,y3) := N̂þ [̂u](q,y3) = µ

{(
d2

dy23
− q2

)
I + c∇̂ ⊗ ∇̂

}
û(q,y3), (1.24)

with c := (λ+µ)/µ = 1/(1þ −2ν ), ∇̂ := (iq1, iq2, d/dy3) andq2 := ‖q‖2 = q21+q22. The process of
deriving the Boussinesq–Cerruti fundamental tensor involves finding elements of ker(N̂þ ), the
6-dimensional space of functions û satisfying the ODE N̂þ [̂u] = 0þ , that fulfill the conditions
given in eq. (1.22). Amba-Rao (1969) has derived a basis of ker(N̂þ ), defined as follows. Let the
matrix-valued functionsA+ andA− be given by

A±(q,y3) = e∓qy3
(
I +

c

c + 2
qy3∆

± ⊗ ∆±
)
, (1.25)

where ∆± = e3 ∓ ∆ and ∆ = (iq1/q, iq2/q, 0). Each column A±j ofA± solves N̂þ [A±j ] = 0þ , so
that we have

ker(N̂þ ) = range
(
A+

)
+ range (A−) . (1.26)

Moreover, the matricesA± are invertible and linearly independent (see Appendix A.1): any
element of ker(N̂þ ) therefore has six free coefficients, to be determined by additional conditions.
In the case of the Boussinesq–Cerruti fundamental solution, the coefficients are deduced from

lim
y3→∞

|B̂
k
(q,y3)| = 0, T̂ [B̂

k
] = ek , (1.27)

which are the decaying and boundary conditions expressed in the partial-Fourier space. The
former imposes that B̂k be solely expressed in terms ofA+. Solving the latter for k = 1, 2, 3þ
gives the solution for the tensor B̂:

B̂(q,y3) =
1
q

[
B̂0,0(q)e

−qy3 + B̂1,0(q)qy3e
−qy3

]
, (1.28)

with

B̂0,0(q) =
1
2µ

(
2I + (1 − 2ν )∆+ ⊗ ∆− + ∆ ⊗ ∆ − e3 ⊗ e3

)
, (1.29)

B̂1,0(q) =
1
2µ

∆+ ⊗ ∆+. (1.30)

5Actually B̂
3
in plane-strain, but Amba-Rao’s derivation method is valid for arbitrary distributions of surface

tractions (including the point force).
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1.2. Equilibrium of a half-space

When p(x̃) = A sin(ωx1)e3 (a normal sine pressure), the above expression recovers the Wester-
gaard solution in full contact. This can be verified with by taking the Fourier transform of
the sine function (two Dirac distributions supported atω and −ω), which when applied to B

and subsequently transformed back to the physical space restores a sine wave of amplitude
scaled byω−1. The application of the Dirac distributions to the continuous function B(q, •)

yields discrete values of B that constitute a Fourier series representing a periodic function.
This result is presented in the next section and discussed further in Chapter 2.

Horizontally-periodic setting

We have until now discussed the solution process for the equilibrium of an elastic half-space.
We have used the Fourier transform because of its ability to cast convolutions into function
products. It also has the advantage of providing a straightforward discretization process by
means of Fourier series. This requires the domain of interest to be periodic, and we therefore
define its cell:

Bp =

]
−
L1
2
,
L1
2

[
×

]
−
L2
2
,
L2
2

[
× R+, (1.31)

where L1 (resp. L2) is the horizontal dimension of the cell in the direction e1 (resp. e2). Bp -
periodic fields admit a representation as Fourier series. The surface traction is consequently
expressed as

p(x̃) =
∑
k ∈Z2

p̂(k) exp(2π ik̄ · x̃), (1.32)

where k is the wave vector, k̄i = ki/Li and p̂(k) are the Fourier coefficients of the complex
series. The resulting displacement also admits a representation as a Fourier series:

M[p](x̃, x3) =
1

4π 2

∑
k ∈Z2

(
B̂
T
(2πk̄, x3) · p̂(k)

)
exp(2π ik̄ · x̃). (1.33)

A more general form of this representation is discussed in Section 2.3. The machine computa-
tion of eq. (1.33) requires the truncation of the series in the set

Z2
N̂
=

{
k ∈ Z2 : −

N1

2
< k1 <

N1

2
,−

N2

2
< k2 <

N2

2

}
, (1.34)

where N̂ := (N1,N2) is the number of surface points. The Fourier coefficients p̂(k) are ap-
proximated using a discrete Fourier transform values of p taken at finitely many points in
the physical space. Values of p have to be represented in the physical space because contact
constraints need to be enforced locally; a Fourier representation of p and cannot be used to
enforce contact constraints because Fourier coefficients have a non-local nature.

1.2.3. Other integral equation methods

While the presented method has strong suits in both ease of implementation and computa-
tional efficiency, the periodicity requirements can be a drawback in some situations (e.g. rough
ball on flat contact). Moreover, there are other fundamental solutions that one can use to
represent the elastic response of a half-space. We present here some alternative methods.
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1. Elastic rough contact: boundary integral methods

Physical space methods

The literature on rough surface contact mechanics shows that the Boussinesq–Cerruti kernel
can be employed directly in the physical space. Polonsky and Keer (1999b) discretize ∂B into
a square grid where the pressure is represented by a function that is piecewise constant on
each square element. Closed form solutions exist for the application of a normal pressure on
a square patch (Johnson, 1985), and the convolution product underlyingM can be written
as a matrix-vector product. They then employ a multi-level multi-summation technique to
reduce the O(N 2) computational complexity to O(N ln2(N )), similar to the complexity of the
fast-Fourier transform of O(N ln(N )). The advantage of this approach is the inherent non-
periodicity of the pressure (that now has a compact support) which makes the method ideal
for non-nominally flat surface contact (e.g. rough ball on flat). Using a Fourier approach in
such a case would require discretizing a domain larger than necessary. This cost can however be
alleviated by a discrete FFT convolution technique (Liu,Wang, and Liu, 2000) that adapts the
computational domain size to the physical contact size. This technique is often used with the
pressure-patch solution defined in the physical space and transformed to the Fourier domain
(Zhou, Jin, Wang, Yang, et al., 2016; Sahlin et al., 2010). An adaptive non-Fourier method
for normal contact has also been developed by Putignano et al. (2012). The physical-space
Boussinesq–Cerruti kernel was also applied to frictional contact (Pohrt and Li, 2014; Li and
Berger, 2003).

Outside the domain of rough surface contact, traditional boundary element methods can
be applied to contact problems (Man, Aliabadi, and Rooke, 1993). Classical formulations
of BEM lead however to dense non-symmetric systems which are simply too expensive to
solve for rough surface contact. However, the recent introduction of the multipole decom-
position of the fundamental solutions (which allows a separation of the source and field
variables in the integral equation) has led to the applicability of the multilevel fast multipole
method (FMM) which drastically reduces the computational cost of BEM to O(N ) (Liu and
Nishimura, 2006). The FMM has seen applications in wave propagation (Chaillat, Bonnet,
and Semblat, 2008; Cao et al., 2015) but also in elastic contact mechanics (Chen and Xiao,
2012), although it has to our knowledge never been applied to rough surface contact mechan-
ics. The Boussinesq–Cerruti solution being derived from potential theory (Love, 1892), it
possibly admits a multipole expansion. Another acceleration method for the BEM is the
use of hierarchical matrices (Chaillat, Desiderio, and Ciarlet, 2017; Hodapp, Anciaux, and
Curtin, 2019) which allow a representation of the dense matrix where the low-rank blocks are
compressed, greatly decreasing storage and computation complexities. It also has the added ad-
vantage of being usable as a black box, whereas the FMM requires tedious problem-dependent
developments.

The adaption of modern BEM acceleration techniques such as FMM and H -matrices
is out of the scope of this thesis, but given the amount of literature on their applicability
and efficiency in other areas of solid mechanics, they seem to give a promising and low-risk
course of action in the development of rough surface contact numerical methods, especially in
elastodynamics, where such an approach of contact has the potential to provide insight into,
for example, earthquake nucleation (Barras, Geubelle, and Molinari, 2017) and propagation
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1.3. Normal Contact

(Chaillat, Bonnet, and Semblat, 2009).

Green’s function molecular dynamics

Although ubiquitous in contact mechanics, the Boussinesq–Cerruti kernel is not the only
kernel that can be used to represent an elastic solid. More complex constitutive relations
require different kernels (Wang, Zhang, et al., 2019), and other approaches for the derivation
of kernels for semi-infinite solids can be taken. One such approach is the molecular dynamics
based method of Campañá and Müser (2006). They consider a harmonic lattice of n atoms,
whose degrees of freedom U ∈ R3×n are coupled with a stiffness matrix K ∈ R3n×3n . Using
statistical physics, one can show that at a given temperatureT the stiffness can be obtained
from the statistical correlation of the degrees of freedom: G := 〈U ⊗ U〉 = kBTK−1. A Schur
complement ofK can be expressed to represent the full lattice response only as a function of the
surface degrees of freedom. This is however not used inpractice. Themethodology to compute
the Schur complement described by Campañá and Müser (2006) consists in evaluating the
correlation matrix of the displacements in the Fourier domain Ĝ(q) := 〈Û(q) ⊗ Û(q)〉 on
an atomic system of small size (i.e. of the order of the lattice spacing), use it to compute the
block-diagonal form of the Schur complement in the Fourier domain, which is proportional
to Ĝ−1, and extrapolate the results to large system sizes. This procedure has the appeal of being
able to formulate Green’s functions for different lattice structures with inherent anisotropy
and has the added advantage, given translational invariance, of computational attractiveness
due to the use of fast-Fourier transforms. It is also well suited to represent infinite-body
boundary conditions for atomistic simulation systems (Pastewka, Sharp, and Robbins, 2012)
and, like their continuous counterpart, to compute elastic contact solutions (Müser, Dapp,
et al., 2017).

1.3. Normal Contact

With the tools developed in the previous section, we are able to efficiently and accurately
solve the equilibrium of an elastic half-space subject to Neumann boundary conditions. The
contact conditions can now be introduced. We consider situations where the boundary ∂B is
in contact with a surface S, which is defined as the graph of a scalar function h ∈ C0(∂B) and
can be viewed as the boundary of an infinitely stiff solid. The resulting normal force bringing
B and S together is denotedW :=W e3. We ignore friction and adhesion between B and S
and define the gap function as:

д[u] := u · e3
���
∂B
− h, (1.35)
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1. Elastic rough contact: boundary integral methods

which is the separationbetween the deformed solidB and the surfaceS alongn. The boundary
conditions on ∂B are hence expressed with the Hertz–Signorini–Moreau conditions:

д[u] ≥ 0, (1.36a)
p[u] := T [u] · e3 ≥ 0, (1.36b)

д[u]p[u] = 0. (1.36c)

Moreover we treat the contacting surface S as fixed, and enforce the applied resulting forceW
as an additional constraint that will allow to determine the mean vertical displacement:∫

∂B
p[u] dA =W . (1.37)

The above contact conditions (1.36) are known as unilateral boundary conditions, as they do
not behave symmetrically with respect to the sign ofu6. This makes the contact problem non-
linear even if the bodies in contact behave elastically. One can think of the contact problem
as a solid mechanics problem with zones of the boundary where the displacement is known
because the gap is null and the bodies touch (the pressure is unknown) and zones where
the boundary is free of tractions because there is no contact (the gap is unknown). What
condition (1.36c) expresses is that these two zones form a partition of ∂B: points where the
gap is strictly positive have p = 0þ and are disjoint from points that have a strictly positive
contact pressure (those have д = 0þ ). The topography of this partition is however a priori
unknown, hence the non-linearity of the problem.

1.3.1. Variational form

We have introduced earlier in this chapter the formulation of the general elastostatic problem
as the minimization of the total potential energy. To introduce the contact constraints, one
needs to define the space of kinematically admissible displacement fields KA(B). Apart from
the usual regularity hypothesis (u ∈ H 1), one needs to carefully define KA because of:

• periodicity: analysis of the kernel B̂ shows that fork = 0þ the displacement is undefined.
This is due to the periodic nature of the problem. A commonworkaround is to remove
the constant displacement mode, as is discussed in Chapter 2;

• contact: an admissible displacement must satisfy the constraint on the gap.

The first consideration defines the function space

H̄ 1(Bp ;R
3) =

{
u + ū

���u ∈ H 1(Bp ;R
3), ū ∈ R3 with ûþ (0þ , •) = 0

}
, (1.38)

which is a space ofBp -periodic functionswhose fundamentalmode (i.e. the horizontal average)
is constant with respect to x3. The space of admissible solutions to the contact problem is:

KA(Bp ) :=
{
u ∈ H̄ 1(Bp ;R

3) : д[u] ≥ 0
}
. (1.39)

6Cables are an intuitive examples of unilateral conditions: unlike bars, they behave differently if their ends are
brought together or pulled apart.
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1.3. Normal Contact

The minimization principle is then written as:

inf
u ∈KA(Bp )

{
1
2

∫
Bp

σ [u] : ε[u] dV
}
, (1.40)

which is a quadratic program with unilateral constraints. Kalker (1977) has shown that the
above problem can be expressed only in terms of boundary integrals, providedu additionally
satisfies the local equilibrium eq. (1.6):

1
2

∫
Bp

σ [u] : ε[u] dV = 1
2

∫
Bp

σ [u] : ∇u dV

=
1
2

∫
Bp

(div(σ [u] · u) − div(σ [u]) · u) dV

=
1
2

∫
∂Bp

u · σ [u] · n dV ,

so that the contact problem is equivalent to

inf
u ∈KA(Bp )

{
Iu (u) =

1
2

∫
∂Bp

T [u] · u dS
}
. (1.41)

The above formulation is well suited to boundary integral methods because the unknown
field u need only be resolved on the surface. Moreover, the integral representation (1.12)
produces by construction displacement fields that satisfy the local equilibrium equation. This
minimization problem can now be solved by quadratic programming (see Rey, Anciaux, and
Molinari, 2017, for adhesive contact), but optimization techniques are usually applied to the
dual of (1.41), which we derive by associating a Lagrange multiplier λ to the non-penetration
constraint eq. (1.36a). The Lagrangian of the problem is:

L(u, λ) =
1
2

∫
∂Bp

T [u] · u dS −
∫
∂Bp

λ(u · e3 − h) dS . (1.42)

The Karush–Kuhn–Tucker optimality conditions imply stationarity of L with respect tou,
so that we can express λ:

∂L

∂u
= 0þ ⇔ T [u] − λe3 = 0

⇔ λ = T [u] · e3

⇔ u =M[λe3].

λ can be physically interpreted as the normal tractions acting on the surface. Replacing
u =M[pe3] in L (effectively computing the Legendre transform of Iu ) leads to the quadratic
program

inf
pe3∈SA(Bp )

{
Ip (p) =

1
2

∫
∂Bp

pe3 · M[pe3] dS −
∫
∂Bp

ph dS
}
, (1.43)

where the primary unknown p is the normal surface traction and SA is the space of statically
admissible tractions, i.e. tractions that satisfy p ≥ 0þ (for non-adhesive contact) and

∫
∂B

p dS =
W .
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1. Elastic rough contact: boundary integral methods

1.3.2. Solution methods

Most methods of (constrained) quadratic programming involve gradient descents (Boyd
and Vandenberghe, 2004) with additional projection and/or constraint enforcement steps
(Bemporad and Paggi, 2015). The gradient computation of the functional Ip is straightforward
with the use ofM as defined previously:

∇Ip (p) =M[pe3] · e3 − h = u3 − h = д. (1.44)

We will here provide an overview of two descent methods used in rough surface contact
mechanics and discuss other methods found in the literature.

Steepest descent

Perhaps the simplest approach to solving (1.43) is the algorithm proposed by Stanley and Kato
(1997). It consists in taking steps in the −∇Ip = −д direction then shifting and truncating
the normal traction so that both the unilateral and equilibrium constraints are satisfied.
It is summarized in Algorithm 1. While only needing one application ofM per loop, its
convergence rate is sub-optimal. It however has the advantage of being easily adapted to
pseudo-plastic methods such as the surface hardness phenomenological model proposed by
Almqvist, Sahlin, et al. (2007).

Algorithm 1 Stanley and Kato (1997) steepest descent algorithm.
Input: normal total loadW , surface profile H, tolerance ε , max. number of iterations Nmax

P←W /|∂Bp | . Average constant load initial guess
hnorm ← ||H| |

k ← 0þ
repeat
G←M[Pe3] · e3 − H . Gradient
P← P − G

Find α0 solution of ∑ (P + α0)+ −W = 0þ . (•)+ is the ramp function
P← (P + α0)+
e ← P · (G −min(G))/(Whnorm) . Error on complementarity
k ← k + 1þ

until e < ε or k > Nmax

G← G −min(G) . Ensure positive gap

Constrained conjugate gradient

The method proposed by Polonsky and Keer (1999b) is a variation of a conjugate gradient
algorithm with an active set to accelerate the convergence. As expected from numerical linear
algebra, it outperforms the steepest descent. Rey, Anciaux, and Molinari (2017) have shown
that it can also be adapted to the primal problem where the unknown is the gap field in
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1.3. Normal Contact

order to solve an adhesive contact problem7. The primal and dual version of the constrained
conjugate gradient are similar enough that one implementation can be done for both. In
Algorithm 2, the main unknown is Pwhich is the pressure, but can be swapped for the gap.

The active set strategy is relying on the definition of the set S = {x̃ ∈ ∂Bp :þ p > 0} which is
the current set of points in contact, and the set R = {x̃ ∈ ∂Bp :þ p = 0þ and д < 0} which is the
set of inadmissible points. The latter should be empty at the end of the algorithm.

Algorithm 2 Polonsky and Keer (1999b) constrained conjugate gradient algorithm.
Input: normal total loadW , surface profile H, tolerance ε , max. number of iterations Nmax

P←W /|∂Bp | . Average constant load initial guess
T← 0þ . Search direction
hnorm ← ||H| |

G ← 0þ ,Gold ← 1þ
δ ← 0þ
k ← 0þ
repeat

S ←where(P > 0) . Set of current points in contact
G← ∇I . Gradient
G← G −mean(G

��
S ) . Centering on contact zone

G ← ||G
��
S | |

2

T
��
S ← G

��
S + δ

G
Gold
T
��
S . Update only in current contact zone

Gold ← G

R←M[T]

R← R −mean(R
��
S )

τ ←
G
��
S · T

��
S

R
��
S · T

��
S

. Critical step size

P← (P − τT)+
R ←where(P = 0þ and G < 0) . Set of inadmissible points
if R = ∅ then

δ ← 1þ
else

δ ← 0þ
end if
P
��
R ← P

��
R − τG

��
R . Positive pressure on inadmissible points

P←
W∑
P
P . Applied force constraint

e ← P · (G −min(G))/(Whnorm)

k ← k + 1þ
until e < ε ∨ k > Nmax

G← G −min(G) . Positive gap

7As adhesive potentials are formulated in terms of distance between surfaces, a primal approach is more
convenient. However, the problem looses convexity: non-unique and unstable solutions can arise.
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1. Elastic rough contact: boundary integral methods

Other approaches

Bemporad and Paggi (2015) have reviewed Algorithms 1 and 2 as well as adapted to algorithms
typically used in quadratic programming: the non-negative least squares and the alternating
direction method of multipliers. The latter uses an augmented Lagrangian formulation of
problem (1.43), i.e. the unilateral constraint on p is incorporated in the Lagrangian with a
Lagrange multiplier and a penalty term. This has the disadvantage of adding unknowns to
the system, whereas the former (and the approaches we have previously presented) does not,
as the Lagrange multiplier is known with the KKT conditions.

The non-negative least squares algorithm proposed by Bemporad and Paggi (2015) seems
to perform better than the constrained conjugate gradient of Polonsky and Keer (1999b),
but it requires to solve a reduced linear system of the formMS [PS ] = US whose number of
unknowns PS is the number of points in the set S . This operation must be solved with an
iterative solver, as the operatorMS , which is a restriction ofM on S cannot be readily inverted.
The advantage of this algorithm is its performance when the number of points in contact is
small. Like Algorithm 2, the active set strategy favors small contact situations when the dual
formulation is employed.

Dynamic relaxation schemes have also been used to solve rough contact problems, both in a
finite elements setting (Hyun, Pei, et al., 2004; Pei et al., 2005) and GFMD setting (Campañá,
Müser, andRobbins, 2008; Zhou,Moseler, andMüser, 2019). While they are relatively simple,
one needs to appropriately choose the fictional mass and damping parameters for optimal
convergence, a process which is often problem dependent. However, like Algorithm 2, they
are flexible enough to be adapted to non-convex problems like adhesive contact (Müser, Dapp,
et al., 2017).

Approaches based on a penalty or barrier term can also be employed. These generally tend
to show a performance independent of the contact area, at the expense of approximately
enforcing the optimality conditions (Boyd and Vandenberghe, 2004). We will consider such
an approach in Section 3.2 for elastic-plastic rough surface contact.

1.4. Rough surfaces and statistics

All solids have rough surfaces at a given range of scales. These vary dramatically depending
on the system (e.g. geological faults scales compared to watch parts scales), but most natural
(and some man-made) surfaces exhibit a self-affine scaling behavior over their characteristic
range of scales8 (Persson et al., 2005). The accurate representation of this scaling over as many
length-scales as possible, as well as the associated contact response, is the main computational
challenge of rough contact numerical methods. In this aspect, boundary integral methods
outperform finite elements methods because of dimensionality reduction. Regardless of the
method, using real surface profiles is important to obtain a realistic response of a contact
interface. These are however difficult to obtain, and we turn to stochastic generation processes
to obtain synthetic surface profiles with representative properties.
8The lower bound of the scaling behavior is unfortunately often arbitrarily determined by the resolution of

the apparatus used to measure the roughness profile.

28



1.4. Rough surfaces and statistics

Figure 1.1.: Generated self-affine rough surface. Color code indicates the asperity height. The
“fractal” aspect of the roughness is represented by small asperities sitting on top of larger
ones.

The natural characteristic that artificial rough surfaces should reproduce is the self-affine
scaling behavior. It is often expressed through the power-spectrum density ϕ of the surface
(PSD):

ϕ(q) := |F [h](q)|2. (1.45)

To obtain a self-affine behavior, ϕ must scale as a power-law of its arguments (e.g. for an
isotropic surface ϕ(q) ∼ q−τ ). The scaling is generally described with the Hurst exponent
(Meakin, 1998), which is best defined with the height-height correlation function S(δr )which
characterizes changes in h over a distance δr smaller than the autocorrelation distance,

S(δr ) :=

√〈[
h(• + δx)

��
|δx |=δr − h(•)

] 2〉
∼ δrH . (1.46)

Intuitively, this shows that if one were to stand at a point x of the surface and move δr in any
direction, the typical height variation would be of the order δrH (for an isotropic surface).
This is equivalent to the fact that scaling space by a factor λ scales the surface heights by a
factor λH . Given a power-law behavior of the PSD ϕ(q) ∼ q−τ , τ can be expressed in terms
of the Hurst exponent as τ = 2(H + 1) (Yastrebov, Anciaux, and Molinari, 2012). Figure 1.1
shows an example of a self-affine rough surface.

1.4.1. Rough surface generation

Rough surfaces are often modeled as Gaussian random fields whose covariance encode the
scaling properties previouslymentioned (Longuet-Higgins andDeacon, 1957; Nayak, 1971; Rey,
Krumscheid, and Nobile, 2019). This is a simplifying assumption, as some classes of surfaces,
such as those worn by a grinding process, do not follow a Gaussian distributions (Greenwood
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1. Elastic rough contact: boundary integral methods

andWilliamson, 1966). We showhere two common approaches for the generation ofGaussian
fields with self-affine properties and finally discuss more complex approaches applicable for
non-Gaussian surfaces.

Fourier filtering

The approachofHuandTonder (1992) consists inusing the fast-Fourier transform to construct
a random field from a prescribed PSDϕ(q) and a non-correlatedGaussian field. The procedure
is summarized in Algorithm 3. The randomness introduced via the non-correlated field is
transmitted to the PSD information by taking the discrete Fourier transform of the former
and multiplying the square root of the latter. This has the effect that the PSD of the discrete
surface H computed a posteriori includes spurious noise.

Algorithm 3 Filtering algorithm (Hu and Tonder, 1992).

Input: surface sizes N̂ := (N1,N2), PSD ϕ :þ R2 → R
X← N(0, I ) . Gaussian uncorrelated vector
S← ϕ(k), with k ∈ Z2

N̂
. Discrete PSD

Ĥ← FFT[X]
Ĥ← Ĥ ◦

√
S . Point-wise product and square root

H←

√
|N̂ | · FFT−1[Ĥ]

Output: H discrete surface heights

Random phase

Wu (2000) proposed a method that removes the randomness in the effective PSD of a rough
surface. It is simplymotivatedby the fact that thePSDof anuncorrelatedGaussian field should
be constant. The randomness is therefore introduced with a complex field of unit modulus
and uniformly distributed phase. Since the phase disappears in the a posteriori computation
of the PSD, the discrete PSD is recovered. The procedure is given in Algorithm 4.

Algorithm 4 Random phase algorithm (Wu, 2000).

Input: surface sizes N̂ := (N1,N2), PSD ϕ :þ R2 → R
X←U(−π , π ) . Uniformly distributed phases
S← ϕ(k), with k ∈ Z2

N̂
. Discrete PSD

Ĥ← exp(Xi)
Ĥ← Ĥ ◦

√
S . Point-wise product and square root

H← |N̂ | · FFT−1[Ĥ]
Output: H discrete surface heights
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Non-Gaussian surface generation

Rough surfaces can be auto-correlated non-Gaussian fields. This often happens in processed
surfaces (Greenwood and Williamson, 1966), e.g. sanded surface that have worn out asperi-
ties. They may however conserve their scaling properties. In general, rough surfaces can be
characterized by a probability density function and an auto-correlation function. In wear
processes, both these functions may evolve as third body particles are created and work the
surface (Milanese et al., 2019). Modifications to the distribution of heightsmay induce changes
to the frictional properties of the surface (Chilamakuri and Bhushan, 1998).

Generating non-Gaussian surfaces often involves the iterative solution of a linear system.
Wu (2004) proposes a method based on Algorithm 4 where the distribution of phases is
determined iteratively so that the generated surface matches the desired height distribution.
The distribution of phases is controlled by a Johnson translator system, which is a way to
construct an non-Gaussian random field with controlled skewness and kurtosis. Wang, Liu,
et al. (2017) propose a different method that also uses a translation process to generate a non-
Gaussian surface with a given distribution and auto-correlation from a gaussian field with a
to-be-determined auto-correlation.

Although non-Gaussian rough surface may play a significant role in both friction and wear
systems, they are not used in this thesis, and only discussed as reference for the reader.

1.4.2. Surface statistics

Some statistical properties of rough surfaces have measurable impact on contact-related quan-
tities. For example, the density of surface summits governs the number of micro-contacts
(Nayak, 1971), while the spectrum bandwidth and root-mean-square of slopes influence the
load/contact area relationship (Yastrebov, Anciaux, and Molinari, 2017b; Hyun, Pei, et al.,
2004). Nayak (1971) has shown that under the assumption of a Gaussian field, most surface
measures can be derived from the PSD and its moments:

mst =

∫
R2
qs1q

t
2ϕ(q1,q2) dq1dq2. (1.47)

We now compare the previously introduced generation algorithm on the root-mean-square
of heights and root-mean-square of slopes:

hrms =
√
〈|h |2〉 =

√
m00, (1.48)

h′rms =
√
〈|∇h |2〉 =

√
2m20. (1.49)

Figure 1.2 shows the theoretical value for the twomeasures and histograms for 100 (1024×1024)
realizations of each algorithm, with a reference spectrum given by:

ϕ(q) =


C ql ≤ q < qr ,

C
(
q
qr

) −2(H+1)
qr ≤ q < qs

0þ otherwise,

, (1.50)
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Figure 1.2.: Histogram comparison of rough surface generation algorithms. Figure (a) shows
the root-mean-square of heights, with the average value in dashed line and the colored
zone containing ±σ around the average. The random phase algorithm by Wu (2000) gives
consistent values around the analytical prediction, while the algorithm of Hu and Tonder
(1992) gives a much larger spread (approx. 10 times). Figure (b) shows the root-mean-square
of slopes. Here the random phase algorithm does not reproduce the analytical value. This
is due to the discrepancy between the continuous and discrete version of the PSD which is
increased by the moment computation of eq. (1.47). This error decreases as the ratio L/λl
increases.

where C is typically set to one and (ql ,qr ,qs ) are respectively the long cutoff, roll-off and
short cutoff spatial frequencies associated to the wavelengths (λl , λr , λs ). In the case of fig. 1.2,
ql = 4π , qr = 8π and qs = 256π , with a system size of L = 1þ .

Statistics on surface can be computed in one of two ways: (a) geometric estimation, (b)
spectral estimation. The former uses the generated height profile H directly to compute
quantities of interest, while the latter computes them using the discrete PSD S. Depending
on the quantity of interest, a discrepancy can arise between the two estimators. Figure 1.3
compares the estimated h′rms using both techniques (with a finite differences approximation
for the geometric estimator). One can see a significant bias of the geometric estimator for the
lower surface discretization while the spectral estimator remains stable.

In linear elastic contact of rough surfaces, the slope of the load/contact area curve is propor-
tional toh′rms (Bush, Gibson, and Thomas, 1975; Hyun, Pei, et al., 2004). It is therefore used in
normalizing the applied load. In order to get an unbiased normalization and a correct estimate
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Figure 1.3.: Measures of the root-mean-square of slopes. Due to the finite difference approximation
of the surface gradient, the geometric estimator is dependent on discretization and is
therefore not a good measure of the root-mean-square of slopes. The spectral estimator
computes the discrete version of eq. (1.47) and does not depend on discretization if the
shortest wavelength is larger than twice the sampling size (i.e. if the PSD can be represented
in the Fourier domain).

of the load/contact area slope, we use in the rest of this thesis the average value spectrally
computed over a statistically significant number of surface realizations.

1.4.3. Periodicity and statistical significance

Algorithms 3 and 4 naturally construct periodic surfaces due to their use of the discrete Fourier
transform. This conforms to the mathematical framework presented in Section 1.2, so the
periodicity of the surface corresponds to the periodicity of the deformable half-space. One
must however consider periodicity with respect to the physical problem at hand. The second
part of this thesis is concerned with the up-scaling of microscopic wear mechanisms to the
macro-scale. In this context, periodicity allows the reduction of finite boundary effects and
approximates the response of an infinitely large system, provided the surface is representative.
The latter issue has been studied by Yastrebov, Anciaux, andMolinari (2012), who have shown
that the ratio of the periodic cell size L to the roll-off wavelength λr of the surface spectrum
controls the representativity in the sense of a representative volume element (commonly
used in homogenization). An alternative criterion is that the autocorrelation length of the
rough surface should be small compared to the period size. Representativity is however a
non-objective notion, as it depends on the quantity that one wishes to evaluate with statistical
accuracy (i.e. low variance). For example, Yastrebov, Anciaux, and Molinari (2012) report that
L/λr = 4þ is acceptable for the evaluation of the true contact area, whereas in Chapter 4 we
report a value of L/λr = 8þ to have a statistically converged distribution of micro-contact areas.
This is discussed in further details in Chapter 4 and Appendix C.1.

Some problems are sensitive to periodicity errors: for example, the contact of rough spheres
may be polluted by periodicity (Weber et al., 2018), or a contact moment can be applied in
addition to a force. In those cases, the periodic solution can still be used with an appropriate
padding of the computational domain. This entails larger computations, which may un-
favorably compare to non-periodic simulation methods like the fast multi-pole approach.
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1. Elastic rough contact: boundary integral methods

Case-by-case analysis should then be conducted to determine the most appropriate numerical
method. However, because the physical problems considered in this thesis lend themselves to
periodicity, we shall not undertake such analysis.
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2. Volume integrals

Abstract
A Fourier-based volume integral method for the solution of elastic-plastic problems is pre-
sented. The major novelty of this work consists in the derivation of required fundamental
solutions directly in the partial Fourier domain introduced in Chapter 1, which allows for
drastic memory savings and optimization of the remaining integral. The approach is validated
against analytical solutions from the literature and the computational costs are compared
with a standard finite element method.

Disclaimer
Parts of this chapter are reproduced from the article Lucas Frérot, Marc Bonnet, et al. (July 1,
2019). “A Fourier-Accelerated Volume Integral Method for Elastoplastic Contact”. In: Com-
puter Methods in Applied Mechanics and Engineering 351, pp. 951–976. doi: 10.1016/
j.cma.2019.04.006, with permission of all authors. My personal contributions to this
article include the development of the method, the code implementation, the running of
simulations, the figure production and the writing of the article.
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2. Volume integrals

2.6. Algorithmic complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Although themethods presented in last chapter for elastic rough surface contact are now
mature, elastic theories have difficulties representing realistic contact behavior: local

contact pressures can easily reach values higher than the Young’s modulus (Müser, 2018), and
the true contact area vanishes as the rough surface spectrum grows wider (Persson, 2006). The
works of Bowden and Tabor (1939), Archard (1953), and more recentlyWeber et al. (2018) have
experimentally shown that elastic theories are not able to model realistic contact interfaces. It
is the consensus of the tribology community (Vakis et al., 2018) that contact models need to
evolve to include material non-linearities such as plasticity.

The work of Pei et al. (2005), while pioneering the study of elastic-plastic rough surface
contact (using a finite element approach), suffers from discretization error (a single element
is used to reproduce the smallest surface wavelength), inaccuracy of an explicit dynamic
relaxation scheme to reduce the simulation cost of a static calculation, as well as statistical
errors from the surface spectrum choice (Yastrebov, Anciaux, andMolinari, 2012) and number
of realizations. Pei et al. nonetheless confirmed the key role of plasticity in quantifying the true
contact area and the micro-contact distribution. Consequently, the objective of this chapter
is to propose a high-performance, robust and quantitatively accurate method to study the
contact behavior of elastic-plastic materials with statistically representative rough surfaces.

Our method is based on a volume integral approach (Telles and Brebbia, 1979; Telles and
Carrer, 1991; Bonnet and Mukherjee, 1996). Similarly to the boundary methods previously
mentioned, the volume integral methods (VIMs) can exactly represent the elastic behavior of
a semi-infinite solid. This limits the volume discretization to the potentially plastic regions,
allowing better usage of computational resources. VIMs however require knowledge of
singular fundamental solutions and the computation of their volume convolutionwith plastic
deformations. This operation is costly with a “naive” implementation (Jacq et al., 2002),
its algorithmic complexity being O(N 2) (N being the total number of plastic deformation
unknowns). It has been accelerated using 2D fast-Fourier transform (FFT) of the fundamental
solutions (Sainsot, Jacq, and Nélias, 2002; Wang and Keer, 2005), at the cost of introducing a
sampling error in the computed quantities of interest. Another approach for accelerating the
convolution computation is to use a 3D-FFT (Wang, Jin, et al., 2013), but this introduces a
periodicity error and requires discretization of a domain more than twice the volume of the
expected plastic zone to reduce these effects, thereby reducing the attractivity of VIMs for
semi-infinite modeling.

Accordingly, we present a volume integral method well suited for periodic elastic-plastic
contact problems that is based on a novel derivation of the half-space fundamental solutions
directly in the 2D partial Fourier domain. The advantage is three-fold: it allows the use of
the 2D-FFT to speed up the convolution computation in the plane parallel to the contact
surface without introducing sampling error, it does not require storage of the discrete Fourier
coefficients of the real-space fundamental solutions, and permits optimization of the convo-
lution computation by exploiting the structure of the analytical solutions, while keeping the
advantages described above for volume integral methods. Indeed, the algorithmic complexity
of our treatment is only O(N log(N )) per convolution. Moreover, the use of the FFT renders
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2.1. Problem statement and overview of solution methodology

x1

x3

x2

Figure 2.1.: Schematic representation of a periodic elastic-plastic contact problem, with geomet-
rical contact quantities represented by blue arrows and plastic deformation zones with
dashed red contours. The elastic-plastic body B is represented in deformed shape. Note
that this schematic is taken from a real two-dimensional simulation.

the method matrix-free, making it attractive for use in conjunction with iterative solvers.

2.1. Problem statement and overview of solution
methodology

Let B := {y ∈ R3 :þ y · e3 ≥ 0} be a deformable semi-infinite elastic-plastic solid of boundary
∂B, see fig. 2.1. Pointsy ∈ B will often be denoted asy = (ỹ,y3)with ỹ := (y1,y2). Letu be
the displacement vector field of B. The linearized strain tensor ε and the Cauchy stress tensor
σ are respectively given by:

ε[u] :=
1
2

(
∇u + ∇uT

)
, (2.1)

σ [u, εp ] := C :
(
ε[u] − εp

)
, (2.2)

whereC ∈ R3×3×3×3 is the elasticity tensor, satisfying the usual ellipticity and (major andminor)
symmetries, while εp is the plastic strain. Here and thereafter, we follow the usual convention
whereby the gradient operator ∇ acts “to the right”, so that e.g. (∇u)i j = ∂jui = ui , j . The
stress σ satisfies the conservation of momentum equation in the absence of body forces:

divσ = 0þ a.e. in B. (2.3)

Letn := −e3 be the external normal of ∂B, we define the traction vector of the displacement
fieldu as:

T [u, εp ] := σ [u, εp ]
���
∂B
· n. (2.4)

The evolutionof the plastic strain is, for definiteness, assumed to obey a standard J2 plasticity
model with an associated flow rule (see Section 2.4.1 for more details).
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2. Volume integrals

2.1.1. Horizontally-periodic setting

As we will employ Fourier methods to solve the elastic-plastic contact problem, we set the
latter in a more natural setting for the application of the discrete Fourier transform. Let us
define the periodic cell

Bp =

]
−
L1
2
,
L1
2

[
×

]
−
L2
2
,
L2
2

[
× R+, (2.5)

where L1 (resp. L2) is the horizontal dimension of the cell in the direction e1 (resp. e2). It
will become apparent in Section 2.3 that this helps defining the discretization procedure of
the continuous operators presented below, since Bp -periodic fields admit a representation as
Fourier series.

2.1.2. Volume integral representation

Although integral equation methods are based on a linear superposition of states, they can
still be applied to materially and geometrically non-linear problems (e.g. Telles and Brebbia,
1979 for plastic behavior, Jin, Runesson, and Mattiasson, 1989 for large deformations). To this
effect, eq. (2.3) can be rewritten in the form:

div(C : ε[u]) − div(C : εp ) = 0þ

⇔ N[u] = − div(C : εp ),
(2.6)

which can be solved with eq. (1.12) from Chapter 1 (Bonnet, 1995):

u(x) =

∫
∂B

G(x,y) ·T [u, 0þ ](y) dSy −
∫
B

G(x,y) · div(C : εp )(y) dVy

=M[T [u, 0þ ]] −

{∫
∂B

G(x,y) · (C : εp (y)) · n dSy −
∫
B

∇G(x,y) : C : εp (y) dVy
}

=M[T [u, εp ]] +N[C : εp ]. (2.7)

The volume integral operatorN is defined for an eigenstress distributionw in B as:

N[w](x) :=
∫ ∞

0

{ ∫
R2

∇G(ỹ − x̃, x3,y3) : w(y) dỹ
}
dy3

=

∫ ∞

0
(∇G ?w)(x̃, x3,y3) dy3.

(2.8)

Much like the developments presented inChapter 1, the translational invariance of the problem
allows the application of the partial Fourier transform as described in Lemma 1, provided the
functions involved satisfy the convolvability requirements of Remark 11. However, unlike
in Chapter 1, the Mindlin kernel gradient ∇G cannot be replaced by the Boussinesq–Cerruti
kernel. Ergo any application ofN in the partial Fourier domain necessitates the computation
of ∇̂G.

1I.e. if both distributions are (a) in L1(R2), (b) locally integrable with convolutive supports, (c) one is a tempered
distribution and the other is a compactly supported distribution (Dautray and Lions, 2000).

38



2.2. Displacement and displacement gradient

2.1.3. Overview of solution methodology

In this thesis, we use a volume integral equation approach for solving the elastic-plastic con-
tact problem. We make use of the fact established above that the elastostatic displacementu
generated in B or on ∂B by any given traction distribution p on ∂B and eigenstress distribu-
tionw in B has the explicit representationu =M[p] +N[w], where the integral operators
M,N are defined in terms of the Boussinesq–Cerruti and the Mindlin fundamental solu-
tions respectively. This framework accounts for the semi-infinite geometry of the problem,
and enforces automatic satisfaction of equilibrium and elastic constitutive relations. As a
result, the solution of contact and elastic-plastic problems only requires the satisfaction of
relevant relations on the contact surface (using evaluations of eq. (2.7) at surface points) and
plastic regions (exploiting ∇u at internal points), respectively, with the latter task entailing
computations of ∇M[p] and ∇N[w] for given p orw .

Our emphasis on convolvability restrictions underpinning eq. (2.8) (and eq. (1.20)) stems
from the fact that the kernelG(z̃, x3,y3) of interest in this chapter, given by elastostatic funda-
mental solutions, is not in L1(R2) as a function of z̃ due to insufficiently fast decay at infinity;
moreover, the kernel of ∇N also has a non-integrable singularity at z̃ = 0þ , and hence is not
a locally integrable function. As a result, the convolution integral of eq. (2.8) applied to
(G ?w)(x̃) is not always defined in the classical sense, even for “nice” (smooth, compactly-
supported) densitiesw , while the properties of elastostatic fundamental solutions make it
well defined as a convolution between distributions for anyw having compact (i.e. spatially
bounded) support, ensuring the validity of Lemma 1. The same features ofG cause its partial
Fourier transform to be well defined as a distribution but not in the classical sense of the
integral in eq. (1.18). Finally, the very fact that fundamental solutions are fields created by
singular loads (point forces) entails treating them, and their governing equations, in the sense
of distributions. Summarizing, the framework of distribution theory is necessary for the main
components of our proposed treatment to have clear meaning and validity.

Finally, our aim is to formulate and solve elastic-plastic contact problemswhere all fields have
horizontal periodicity, whereas integral operators appearing in eq. (2.7) are a priori defined in
a non-periodic setting. Indeed, the meaning of the relevant convolutions becomes a priori
unclear for periodic (hence not compactly supported) densities. However, the evaluation at
suitable discrete values of q of Fourier transforms of non-periodic convolutions will be found
(see Theorem 3) to provide the required relations between a periodic displacementu and the
periodic densityw from whichu emerges.

2.2. Displacement and displacement gradient

In this section, we discuss the different integral operators used and their partial Fourier repre-
sentation.
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2. Volume integrals

2.2.1. Fundamental problems

The integral operators introduced in eq. (2.7) are expressed in terms of fundamental solutions
as defined in Definition 1. We present here the fundamental problems of Kelvin and Mindlin,
and their respective solutions needed for the integral operators. The convolutions using those
kernels will be computed in the partial Fourier space using Lemma 1.

The Kelvin problem

The displacement caused by a point force in an infinite medium is at the heart of integral
equation methods in solid mechanics. Here, the Kelvin tensorU∞ = ek ⊗ U

k
∞ is used as a

stepping stone to the Mindlin fundamental solution. The displacementU k
∞ satisfies

N[U k
∞](x, •) = ek δx in R3, for any x ∈ R3, 1þ ≤ k ≤ 3þ , (2.9)

where δx is the three-dimensional Dirac distribution on R3 supported at x , and decays at
infinity. Due to its singular right-hand side, eq. (2.9) must be understood in the sense of
distributions2, and the same will apply implicitly to the other fundamental solutions and their
governing equations.

The Kelvin fundamental solution possesses the full-space translational symmetry, that is
U∞(x,y) = U∞(0þ ,y − x), as well as the implied property for its gradients that ∇xU∞(x,y) =

−∇U∞(x,y). We now define the operatorN∞

N∞[w](x) :=
∫
B

∇U∞(0þ ,y − x) : w(y) dy =
∫ ∞

0

(
∇U∞ ?w

)
(x̃, x3,y3) dy3. (2.10)

The fieldN∞[w] decays at infinity and can readily be shown to satisfy

N
[
N∞[w]

]
= −divw in R3 (2.11)

i.e. it is the elastostatic displacement created in an unbounded medium by an eigenstress
distributionw .

The Mindlin problem

The problem of a point force in a semi-infinite isotropic elastic medium with a free surface
was solved by Mindlin (1936). This fundamental solution allows to express the displacement
created in B by an eigenstress distributionw in B and satisfying a traction-free condition on
∂B. The latter feature makes it very attractive for contact problems since it removes the need
to solve an implicit boundary integral equation, which is a staple of conventional boundary-
element methods (Bonnet, 1995 and references therein). The Mindlin tensorG = ek ⊗ G

k

satisfies:
N[Gk ](x, •) = δx in B, T [Gk ](x, •) = 0þ on ∂B. (2.12)

2Equation (2.9) therefore means that U k
∞ must verify

〈
N[U k

∞](x, ·),ϕ
〉
R3

= ek 〈δx ,ϕ〉R3 , i.e.〈
U k
∞(x, ·),N[ϕ]

〉
R3
= ϕk (x) after integrations by parts and recalling the self-adjointness of the

Navier operator, for any test function ϕ ∈ C∞0 (R
3;þ R3) (with 〈f ,ϕ〉R3 denoting the duality product). Similar

interpretations implicitly apply for the other fundamental solutions.
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2.2. Displacement and displacement gradient

The operatorN defined by

N[w](x) :=
∫ ∞

0

(
∇G ?w

)
(x̃, x3,y3) dy3. (2.13)

then yields the displacement created inB by an eigenstress distributionw . It is easy to see that,
by virtue of linear superposition, Ĝ is given in terms of Û∞ and B̂ (the Boussinesq–Cerruti
tensor) by

Ĝ
k
(q, x3,y3) = Û

k
∞(q, x3,y3) − B̂

T
(q, x3) · T̂ [Û

k
∞(q, x3,y3)], (2.14)

with the second term in eq. (2.14), expressed using Lemma 2, is canceling the traction vector
on ∂B. Consequently, the operatorsM andN can be readily evaluated in the partial Fourier
space once B̂ and Û∞ are known.

2.2.2. Partial Fourier space solutions

Themain novelty of thiswork is the derivation anduse of fundamental solutions directly in the
partial Fourier space. In addition to providing substantial memory and computational savings,
knowing closed-form expressions of these fundamental solutions enables optimizations which
were previously tedious (cf. Section 2.3.2). The fundamental solutions are found in this
context by solving equations involving the transformed Navier operator for an isotropic
medium, which has been expressed in eq. (1.24). We now present our general methodology for
obtaining the desired partial-Fourier expressions of fundamental solutions. The details of this
treatment, including the source code deriving the solutions, are available in the companion
notebook (Frérot, 2018).

The process of deriving solutions for theKelvin andBoussinesq–Cerruti fundamental prob-
lems involves finding elements of ker(N̂þ ), the 6-dimensional space of functions û satisfying
the ODE N̂þ [̂u] = 0þ . This space has been studied in Section 1.2.2, as the Boussinesq–Cerruti
tensor is constructed from members of ker(N̂þ ). Although the Kelvin fundamental solution is
not in ker(N̂þ ), it can be constructed from it.

The Kelvin solution

The Kelvin problem in partial Fourier space consists in solving the distributional ODE:

N̂þ [Û
k
∞](q, x3, •) = ekδx3, for all (q, x3) ∈ R2 × R, (2.15)

where δx3 is the one-dimensional Dirac distribution supported at x3. To find Û k
∞, we follow

the methodology of Chaillat and Bonnet (2014) and seek the displacement vector separately
in each semi-infinite interval extending from the source point:

Û
k
∞(q, x3,y3) =


Û

k ,−
∞ (q, x3,y3) y3 ∈ ] −∞, x3[,

Û
k ,+
∞ (q, x3,y3) y3 ∈ [x3,+∞[.

(2.16)
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2. Volume integrals

We can, without loss of generality, set x3 = 0þ since Û∞ is invariant by translation along
e3 (we then have Û k

∞(q, x3,y3) = Û
k
∞(q, 0,y3 − x3)). Each contribution Û

k ,±
∞ satisfies the

homogeneous Navier equation, and hence belongs to ker(N̂þ ). Using eq. (1.25) and eq. (1.26)
with the requirement that Û k ,±

∞ decay as y3 → ±∞, we obtain:

Û
k ,±
∞ (q, 0,y3) = A±(q,y3) ·C

k ,±, (2.17)

whereCk ,± ∈ C3 are the remaining free coefficients. The latter are determined by requiring
that Û k

∞, expressed as a distribution by the single formula (employing the Heaviside function
instead of eq. (2.16))

Û
k
∞(q, x3,y3) = H (y3 − x3)Û

k ,+
∞ (q, x3,y3) +

(
1 − H (y3 − x3)

)
Û

k ,−
∞ (q, x3,y3) (2.18)

should be continuous aty3 = x3 and should satisfy the distributional ODE eq. (2.15) (recalling
thatH ′(•−x3) = δx3). As can be seen in the companion notebook, this results in the following
expression for Û ±∞ = ek ⊗ Û

k ,±
∞ :

Û
±

∞(q, x3,y3) =
1
q

[
Û
±

0,0(q)д
±
0

(
q(y3 − x3)

)
+ Û

±

1,0(q)д
±
1

(
q(y3 − x3)

) ]
. (2.19a)

The symbols of eq. (2.19) are defined in Table 2.1. On observing that the functions д±0 (z) and
д±1 (z) verify

∇̂д±0 (qy3) = ∓q∆±д±0 (qy3),

∇̂д±1 (qy3) = ∓q∆±д±1 (qy3) + qe3д±0 (qy3),
(2.19b)

the regular parts of the distributional derivatives of Û∞ at any order are easily found to be
given through the recurrence relations

�∇nU ±∞(q, x3,y3) = q
n−1

[
Û
±

0,n(q)д
±
0

(
q(y3 − x3)

)
+ Û

±

1,n(q)д
±
1

(
q(y3 − x3)

) ]
,

Û
±

0,n(q) = ∓Û
±

0,n−1 ⊗ ∆± + Û
±

1,n−1 ⊗ e3,

Û
±

1,n(q) = ∓Û
±

1,n−1 ⊗ ∆±. (2.20)

The Kelvin tensor appears in the operatorsN∞ andN only through its first-order gradient,
see eqs. (2.10) and (2.14). Since Û∞ is continuous at y3 = x3, the representation in eq. (2.18)
shows that ∇̂U∞ can be identified with a discontinuous function (in the classical sense) and
evaluated on the sole basis of formulas in eq. (2.20).

Then, use of Lemma 1 allows to express the operatorN∞ in Fourier space as

�N∞[w](q, x3) = ∫ ∞

0
∇̂U∞(−q,y3 − x3) : ŵ(q,y3) dy3 (2.21)
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2.2. Displacement and displacement gradient

Table 2.1.: Symbols for the full-space fundamental solution

Symbol Expression

b 4(1þ − ν )
∆, ∆± (iq1/q, iq2/q, 0), e3 ∓ ∆

Û
−

0,0
1

2µb
(bI + ∆ ⊗ ∆ − e3 ⊗ e3)

Û
+

0,0
1

2µb
(bI + ∆ ⊗ ∆ − e3 ⊗ e3)

Û
−

1,0 −
1

2µb
∆− ⊗ ∆−

Û
+

1,0
1

2µb
∆+ ⊗ ∆+

д±0 (z), д±1 (z) e∓z , ze∓z

Boussinesq–Cerruti solution

The Boussinesq–Cerruti fundamental tensor given in Section 1.2.2 is recalled here:

B̂(q,y3) =
1
q

[
B̂0,0(q)д

+
0 (qy3) + B̂1,0(q)д

+
1 (qy3)

]
,

with

B̂0,0(q) =
1
2µ

(
2I + (1 − 2ν )∆+ ⊗ ∆− + ∆ ⊗ ∆ − e3 ⊗ e3

)
,

B̂1,0(q) =
1
2µ

∆+ ⊗ ∆+.

Then, the recurrence relations (2.20) are also valid for the gradients of B̂. We can now readily
construct Ĝ and its gradient ∇̂G using eq. (2.14) and the recurrence relations for the regular
parts of Û∞ and B̂.

2.2.3. Displacement gradient computation

Due to the construction of the Mindlin fundamental solution in eq. (2.14), the evaluation of
∇u requires the computation of ∇N∞. This operator is singular (see e.g. Bui, 1978; Bonnet,
2017; Gintides and Kiriaki, 2015), but the present distributional and partial-Fourier framework
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still allows for a very straightforward treatment. Indeed, we simply have

�∇N∞[w](q, x3) = −( �∇2U∞(−q, •)? ŵ
)

= −

∫ x3

0
q
{
д−0

(
q(y3 − x3)

) [ (
Û
−

0,1(−q) : ŵ(q,y3)
)
⊗ ∆− +

(
Û
−

1,1(−q) : ŵ(q,y3)
)
⊗ e3

]
+ д−1

(
q(y3 − x3)

) (
Û
−

1,1(−q) : ŵ(q,y3)
)
⊗ ∆−

}
dy3

−

∫ ∞
x3

q
{
д+0

(
q(y3 − x3)

) [
−
(
Û
+

0,1(−q) : ŵ(q,y3)
)
⊗ ∆+ +

(
Û
+

1,1(−q) : ŵ(q,y3)
)
⊗ e3

]
− д+1

(
q(y3 − x3)

) (
Û
+

1,1(−q) : ŵ(q,y3)
)
⊗ ∆+

}
dy3

−

(��∇U∞�(q) : ŵ(q, x3)) ⊗ e3, (2.23)

with the second equality resulting from the application of ∇̂ to ∇̂U∞ as given by eqs. (2.18)
and (2.20). The discontinuity jump in the gradient of Û∞ is computed, using eqs. (2.19)
and (2.20), as: ��∇U∞�(q) = Û +0,1(q) − Û −0,1(q) = 1

µb
(2e3 ⊗ e3 − bI ) ⊗ e3, (2.24)

with the vector e3 post-multiplying the discontinuity term in eq. (2.23) coming from the fact
that distributional terms can only arise from derivatives in the variable y3 using the present
partial-Fourier framework.

Remark 4. It is interesting to compare the formulations of ∇N∞ in the partial Fourier and
physical spaces. In the latter case, the function ∇2U∞(x,y) has a non-integrable |y − x |−3
singularity. Consequently, the singular integral operator is the sum of a Cauchy principal
value (CPV) integral and a free term, as pointed out e.g. in Bui (1978) (for example, a careful
distributional interpretation of the application of ∇ to N∞[w] yields both contributions).
Then, practical evaluations of ∇N∞ in the physical space entail special methods for the in-
tegration of a CPV (Guiggiani and Gigante, 1990). By contrast, the present method, which
implicitly and indirectly accounts for both the CPV and the free term contributions (the
partial-Fourier counterpart of the latter being the jump term (2.24)) is significantly easier to
exploit numerically, as no specialized methods are required.

2.3. Discretized operators

In this section, we study the numerical evaluation of the integral operator N[w] for given
discretized densitiesw (the evaluation ofM[p], ∇M[p] and ∇N[w] can then be formulated
similarly by adapting the considerations made for N[w]). This extends the developments
of Zeman et al. (2017) to our partial Fourier representation. Although the use of discrete
Fourier methods is widespread in simulating the contact of rough surfaces (e.g. Polonsky and
Keer, 1999a; Jacq et al., 2002; Wang, Jin, et al., 2013 which use DFT of real-space fundamental
solutions and Yastrebov, Anciaux, and Molinari, 2012; Rey, Anciaux, and Molinari, 2017;
Weber et al., 2018 which use Fourier-space fundamental solutions) and dates back to Stanley
and Kato (1997) (which implicitly use a Fourier space fundamental solution via Johnson,
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2.3. Discretized operators

Greenwood, and Higginson, 1985), a theoretical basis for the discretization of continuous
operators has, to the best of our knowledge, never been provided.

2.3.1. Spectral discretization and DFT

Let L = (L1, L2, L3) ∈ R+3 be the three lengths defining the discretized domain and N =

(N1,N2,N3) ∈ N
3 the number of points considered in each direction. Let us also define the

following sets:

Z2N =

{
k ∈ Z2 : −

N1

2
< k1 <

N1

2
,−

N2

2
< k2 <

N2

2

}
, (2.25a)

X3 =
{
x i3

} i=N3−1
i=0 ⊂ R+ with L3 = supX3 − inf X3, (2.25b)

X =

{
k1

L1
N1

e1 + k2
L2
N2

e2 + x3e3 : k ∈ Z
2
N and x3 ∈ X3

}
⊂ Bp . (2.25c)

We recall from eq. (1.31) that Bp is a semi-infinite cell of size L1 × L2 when projected on ∂B. X
is a set of N1 × N2 × N3 discrete points, which projected on the (Ox1x2) plane forms a regular
grid, while the projection on (Ox3) gives the set of chosen positive valuesX3. Unlike full-space
Fourier methods (Moulinec and Suquet, 1998; Wang, Jin, et al., 2013; Zeman et al., 2017), we
are free to choose the spacing of points in X3. Any Bp−periodic eigenstressw , as well as the
Bp−periodic displacementu = N[w], can be expressed as complex Fourier series:

w(x̃, x3) =
∑
k ∈Z2

ŵþ (k, x3) exp(2π ik̄ · x̃), (2.26a)

u(x̃, x3) =
∑
k ∈Z2

ûþ (k, x3) exp(2π ik̄ · x̃), (2.26b)

where ŵþ (k, x3) and ûþ (k, x3) are the Fourier coefficients of the series and k̄i = ki/Li . Becausew
isBp -periodic, it is no longer convolvable with∇G, making it impossible to evaluateN[w] as a
convolution (the same remark applies toN∞[w] and the other operators). The operatorN[w]
can nevertheless still be evaluated by means of the non-periodic partial Fourier representation
of the fundamental solution obtained in Section 2.2.2, thanks to the following result:

Theorem 3. Let w be Bp -periodic. Then N[w] is Bp -periodic and

N[w](x̃, x3) =
1

4π 2

∑
k ∈Z2

( ∫ ∞

0
∇̂G(−2πk̄, x3,y3) : ŵþ (k,y3)dy3

)
exp(2π ik̄ · x̃). (2.27)

Proof. See Appendix A.2.

Remark 5. All the fundamental solutions presented in Section 2.2.2 have a O(q−1) weak
singularity at q = 0þ , which does not prevent normal use of their continuous inverse Fourier
transforms. By contrast, discrete transform evaluation at k̄ = 0þ is not possible. For computing
displacements, we can arbitrarily set e.g. Ĝ(0þ , •) = 0þ , following common practice (Stanley
and Kato, 1997; Zeman et al., 2017). In this work, only the operator p 7→ M[p] requires this
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2. Volume integrals

adjustment, as all other operators involve gradients of fundamental solutions, which have no
singularity in q, see eq. (2.20). The displacement resulting from the “regularized” operator
is correct up to an additive constant and a linear displacement depending only on x3. The
former will be determined by contact conditions (i.e. imposed average load or displacement),
while the latter can be ignored: it diverges in a semi-infinite domain, andwe are only interested
in surface displacements for the contact problem. Note that it produces a gradient constant
w.r.t x3, which is taken into account in ∇N. We suppose however that this gradient alone is
not enough to trigger a plastic response of the material.

Unlike themethodof Sainsot, Jacq, andNélias (2002) (and subsequent adaptations byChen,
Liu, and Wang, 2008 and Wang, Jin, et al., 2013), the direct use of the closed-form expression
of ∇̂G implies that eq. (2.27) is exact. The discretization error inherent in the numerical
calculation of ∇̂G based on the discrete Fourier transform of the real-space fundamental
solution ∇G (Firth, 1992; Boyd, 2001) is therefore avoided, which is a definitive advantage
over the previously-mentioned sampling methods. Moreover, storage of the discrete values
∇̂G(−2πk̄, x3,y3) is not necessary, yielding substantial memory gains, especially for higher
order operators such as ∇N involving the fourth-order tensor ∇2G.

Implementing the proposedmethod nevertheless entails unavoidable approximations. One
stems from the necessary truncation of the Fourier series in eq. (2.27). Another appears when
w results from plastic deformations, which require a local (i.e. physical space) representation
in order to perform operations such as the return mapping procedure. Hence, the Fourier
coefficients wþ are approximated using the discrete Fourier transform (Firth, 1992; Zeman
et al., 2017)

ŵþ h := DFT[w
��
X ] (2.28)

which is known to cause discretization errors (Boyd, 2001). Note that because operations like
the computation of plastic deformations are intrinsically local in the physical space and the
application of integral operators (e.g.N) is local in the partial-Fourier space (for the x1 and
x2 directions), the solving of the elastic-plastic problem will involve going back and forth be-
tween the physical and the partial-Fourier representations, using the discrete Fourier transform.
Consequently, numerical evaluation of eq. (2.28) is done with the FFT algorithm (Cooley
and Tukey, 1965) because of its very attractive O(N1N2 log(N1N2)) computational complex-
ity, by means of the open-source library FFTW (Frigo and Johnson, 2005) for the present
implementation.

2.3.2. Discretization and integration in the x3 direction

Equation (2.27) involves integrals in the x3 direction. The purpose of this section is to present
the procedure developed to compute them. First, we introduce a generic interpolation of ŵþ
in the x3 direction:

ŵþ h(k, x3) =
N3−1∑
j=0

ŵþ j (k)ϕ j (x3), (2.29)
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2.3. Discretized operators

where ϕ j (resp. ŵþ j ) are the interpolation function (resp. the Fourier coefficients of w)
evaluated at x3 ∈ X3. From eq. (2.27), the evaluation ofN[w] takes the form:

N[w](x̃, x3) =

1
4π 2

∑
k ∈Z2

N3−1∑
j=0

( ∫ ∞

0
∇̂G(−2πk̄, x3,y3)ϕ j (y3) dy3

)
: ŵþ j (k) exp(2π ik̄ · x̃). (2.30)

Considering a specific node x i3 ∈ X3, the associated Fourier coefficients in eq. (2.30) are
computed as a weighted sum of N3 convolution integrals. Equation (2.19) reveals, after re-
arrangements, that the integral in eq. (2.30) can be expressed in terms of integrals of the simpler
form ∫ ∞

0
д±k

(
q(y3 − x

i
3)
)
ϕ j (y3) dy3. (2.31)

with k = 0, 1þ . Furthermore,N[w] has to be evaluated at every node x i3 ∈ X3, so that in the
worst case the total number of integrals eq. (2.31) to be computed is O(N 2

3 ).
This cost may however be mitigated, and we now propose a method whose efficiency is

better than that of the naive approach consisting in evaluating eq. (2.31) for all 0þ ≤ i, j < N3.
We choose classical Lagrange polynomials as our basis of interpolation functions. Let Ei =
[x i3, x

i+1
3 ] (i ∈ {0, . . . ,N − 2}) be an element with Lagrange polynomials ϕLj (j ∈ {0, . . . ,n − 1})

of degree n − 1þ ; the center x ic and half-length ei of Ei are given by x ic =
1
2 (x

i + x i+1) and
ei = x ic − x

i . Using the change of variables y = x ic + zei and the properties of exponential
functions, we easily find∫

Ei
д±0

(
q(y3 − x3)

)
ϕLj (y3) dy3 = д

±
0

(
q(x ic − x3)

)
G±0 (q, i, j), (2.32a)∫

Ei
д±1

(
q(y3 − x3)

)
ϕLj (y3) dy3 = д

±
0

(
q(x ic − x3)

) {
G±1 (q, i, j) + q(x

i
c − x3)G

±
0 (q, i, j)

}
, (2.32b)

withG±k (q, i, j) given using the standard Lagrange polynomials ϕ̄Lj of degree n − 1þ defined on
[−1, 1] by

G±k (q, i, j) := ei

∫ 1

−1
д±k (qzei )ϕ̄

L
j (z) dz. (2.32c)

As mentioned, the brute-force computation of eq. (2.30) requires O(N1N2N
2
3 ) computa-

tions. However, since we have access to the analytical expression of ∇̂G, we can exploit it to
devise complexity reductionmethods. We present here two suchmethods that lend themselves
to a straightforward implementation3.

Cutoff method

It follows from eq. (2.32) that the inner integral in eq. (2.30) decays as exp(−q |x ic −x3 |), allowing
us to define a threshold criterion q |x ic − x3 | < εco for deciding which integrals need to be

3In contrast, the application of these methods to volume integral approaches that compute the DFT of ∇G (e.g.
Sainsot, Jacq, and Nélias, 2002) are intricate if not completely impossible.
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2. Volume integrals

computed for the application of N . In practice, if |x ic − x3 | > εco/q, the integral over Ei is
not computed. This results in a drastic reduction of the number of operations needed to
compute the integral of eq. (2.27), especially for large wave vectors k since the cutoff length
εco/q is inversely proportional to q = 2π ‖k ‖. The time complexity is then O(

√
N 2
1 + N

2
2N

2
3 )

(see Appendix A.4). However it entails an approximation of integral (2.30) whose accuracy
depends on the selected cutoff.

Linear integration method

An alternative way4 to reduce the number of operations needed in the evaluation of eq. (2.30)
is to rearrange the terms in eqs. (2.32a) and (2.32b) to separate the x3 and y3 variables. Unlike
the cutoff method, this approach does not introduce an error in the evaluation of eq. (2.30).

Theorem 4. For a non-periodic interpolation ŵh(q, x3) defined by eq. (2.29) where ϕ j are
linear shape functions, N∞[ŵh] evaluated on xl ∈ X3 can be expressed as:

N∞[ŵh](q, xl ) =

e−qxl
[ (
Û
−

0,1(−q) − qxlÛ
−

1,1(−q)
)
: S↑l [д

−
0 ](q) + Û

−

1,1(−q) : S
↑

l [д
−
1 ](q)

]
+ eqxl

[ (
Û
+

0,1(−q) − qxlÛ
+

1,1(−q)
)
: S↓l [д

+
0 ](q) + Û

+

1,1(−q) : S
↓

l [д
+
1 ](q)

]
,

(2.33a)

with the functionals S↑l and S↓l defined as:

S↑l [f ](q) =
l−1∑
j=0

{
ŵ j (q)

∫
Ej

f (qy)ϕ j (y) dy + ŵ j+1(q)

∫
Ej

f (qy)ϕ j+1(y) dy

}
, (2.33b)

S↓l [f ](q) =
N−2∑
j=l

{
ŵ j (q)

∫
Ej

f (qy)ϕ j (y) dy + ŵ j+1(q)

∫
Ej

f (qy)ϕ j+1(y) dy

}
. (2.33c)

Proof. See Appendix A.5.

Since the summed terms in S↑l and S↓l do not depend on xl , the application ofN[ŵh] can
be computed in O(N1N2N3) computations if a two pass algorithm is used: the first term in
eq. (2.33a) is computed in a forward pass for l = 0, . . . ,N3 − 1þ (involving only S↑l ), then a
backward pass computes the second contribution for l = N −1, . . . , 0þ . This however increases
the memory cost of the evaluation of eq. (2.30) compared to the cutoff method, since the full
Fourier representation ofN[w] needs to be stored for the two-pass algorithm5. In addition,
because of the separation of variables, floating point precision overflow and underflow can
occur in the exponential terms, while the cutoff method is stable in this regard.

Both integration the cutoff and linear integration bring the overall complexity of evaluating
N[w] to O(N lnN ) if N1 = N2 = N3, with the complexity of the operations in the Fourier
4Not present in Frérot, Bonnet, et al. (2019).
5The memory complexity remains unchanged since the full Fourier representation ofw needs to be stored
anyway.
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2.4. Elastic-plastic integral equation method

domain beingO(N ). However, since the scaling of the two integration methods differ if non-
equal discretization is used, the choice of integration method depends on the desired scaling.
For rough surface contact, as larger surface spectra are often the goal, the O(

√
N 2
1 + N

2
2N

2
3 )

scaling is more appropriate for “horizontal refinement.”
Finally, while the support of x3 7→ ŵþ h(k, x3) is a priori unknown in an elastic-plastic

simulation, it is possible that just a few points in a given sub-surface layer show non-zero
values of ŵþ h , in which case ŵþ i can be treated as a sparse vector, keeping track of the non-zero
entries needed for evaluating integrals. This sparse treatment is applicable for both the cutoff
and linear integral methods.

2.4. Elastic-plastic integral equation method

The use of domain integral equation methods for elastic-plastic analysis is now well estab-
lished (Telles and Brebbia, 1979; Telles and Carrer, 1991; Bonnet and Mukherjee, 1996; Gao
and Davies, 2000; Yu, Kadarman, and Djojodihardjo, 2010). In this work, we use the implicit
integral equation formulation proposed by Telles and Carrer (1991).

2.4.1. Von Mises plasticity

We limit, without loss of generality, the results of this chapter to von Mises plasticity, for
which the yield function fy :þ R3×3sym → R is given by

fy(σ ) :=
√

3
2 ‖s‖ where s := σ − 1

3 Tr(σ )I . (2.34)

We define the cumulated equivalent plastic strain as:

ep :=

√
2
3

∫ t

t0
‖ Ûεp ‖ dt, (2.35)

where Ûεp is the plastic strain rate. The plasticity conditions are then written as:

fy(σ ) − fh(ep ) ≤ 0, (2.36a)(
fy(σ ) − fh(ep )

)
Ûep = 0, (2.36b)

(2.36c)

where fh :þ R→ R is the hardening function, with the associated flow rule

Ûεp =
3 Ûep

2fy(σ )
s(σ ). (2.36d)

Although multiple choices are possible for fh, we only consider linear isotropic hardening, for
which fh is given in terms of the initial yield stress σy and the hardening modulus Eh by

fh(ep ) = σy + Ehep . (2.37)
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2.4.2. Implicit equilibrium equation

The elastic-plastic state Sn of B at step tn is characterized by the cumulated plastic equivalent
strain e

p
n and the total plastic strain ε

p
n ; we write Sn = (epn, ε

p
n). At tn , the total strain in B can

be expressed as a function of the applied boundary tractions tDn (known) and the plastic strain
ε
p
n (unknown):

εn = ∇symM[tDn ] + ∇symN[C : εpn]. (2.38)
Writing eq. (2.38) at step tn+1 and taking the difference of the two, we obtain the following
implicit incremental equation:

∆εn = ∇symM[∆tDn ] + ∇symN
[
C : ∆εpn(∆εn ; Sn)

]
. (2.39)

We can see that this equation combines the balance ofmomentum (2.3), the kinematic compat-
ibility (2.1) (through the use of the symmetrized gradient ∇sym) and the constitutive behavior
through (2.2) and∆εpn(∆εn ;þ Sn) (via a returnmapping algorithm symbolized by∆εpn(∆εn ;þ Sn)).
Therefore, solving eq. (2.39) for∆εn gives the solution of the elastic-plastic problem. To achieve
this, we seek the root of the residual function:

R[∆εn] := ∆εn − ∇symM[∆tDn ] − ∇symN
[
C : ∆εpn(∆εn ; Sn)

]
. (2.40)

Equation (2.39) being non-linear in ∆εn , we have to use an iterative method. Since the
operators ∇symM and ∇symN applied to given arguments are very efficiently evaluated thanks
to the use of the FFT, we want to avoid assembling them. Newton-Krylov solvers (see e.g.
references in (Knoll and Keyes, 2004)) are traditionally well suited for this type of approach,
especially since the consistent tangent operator for eq. (2.39) is known (Bonnet andMukherjee,
1996). However, we will present here a convenient Jacobian-less method (La Cruz, Martínez,
and Raydan, 2006) to solve eq. (2.39), as it offers several advantages over Newton-Krylov
solvers, and is readily available as part of the SciPy (Jones, Oliphant, Peterson, et al., 2001–)
library.

2.4.3. Jacobian-Free Spectral Residual Method

The DF-SANE algorithm developed by La Cruz, Martínez, and Raydan (2006) is an attractive
algorithm because of its low memory requirements compared to traditional Krylov solvers
which require storage of span vectors for a subpart of Krylov space. It also simplifies the
implementation, as it does not require knowledge6 nor evaluation of the consistent tangent
operator. The iteration goes as:

δεin = −αiσiR[∆ε
i
n], ∆εi+1n = ∆εin + δε

i
n (2.41)

with
σi =

‖δεi−1n ‖
2

〈δRi−1, δεi−1n 〉L2
, δRi = R[∆εi+1n ] − R[∆ε

i
n] (2.42)

where 〈•, •〉L2 is the appropriate scalar product on L2(B;þ R3×3) and αi is a step size determined
by a line search on ‖R[∆ε]‖2. More details can be found in (La Cruz, Martínez, and Raydan,
2006; Birgin, Martínez, and Raydan, 2014).
6Even approximation of the Jacobian via finite differences.
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Figure 2.2.: Normalized surface displacements due to a hydrostatic spherical inclusion in a
half-space. Comparisonbetween theMindlin andCheng (1950) solution and the proposed
VIM.The displacements are shown along the x1 = x3 = 0þ line. The agreement between
the analytical and computed solutions is very good in the central part of the periodicity
cell, while distortion induced by periodic conditions becomes apparent near its boundary.

2.5. Method validation

Evaluations of integral operatorsN and ∇N by our approach are compared to the analytical
solution of a hydrostatic eigenstrain in a spherical inclusion embedded in a half-space to
validate the proposed methodology.

The displacement generated by a constant hydrostatic eigenstrain ε = αT I applied in a
spherical region embedded in a half-space is given byu = N[w]withw = C :þ ε = 2µαT 1+ν

1−2ν I ,
and has been derived analytically in closed form by Mindlin and Cheng (1950). We use that
reference solution to validate our implementation of operatorsN and ∇N . Let the inclusion
support be the ball of radius a and center (0, 0, c) (with c > a). The surface displacements ur
and uz are given, using cylindrical coordinates (r , θ, z), by:

ur (r ) =
4a3

3R3
1

β(1 − ν )r , uz (r ) = −
4a3

3R3
1

β(1 − ν )c, (2.43)

with R1 =
√
r 2 + c2 and β = αT 1+ν

1−ν . For this example, we use c = 2a and ν = 0.3þ , while
the periodicity cell Bp and its discretization N are defined by Bp =] − 15a, 15a[2×]0, 10a[ and
N = (128, 128, 126). Figures 2.2a and 2.2b show the horizontal displacementur and the vertical
displacement uz , respectively, evaluated along the x1 = x3 = 0þ line. The computed and
reference displacements are in good agreement in the central zone, the expected distortion
induced by the periodic boundary conditions becoming apparent only close to the boundary
of Bp .

Recalling now that σ = C :þ ∇N[w] −w , fig. 2.3 shows the validation of ∇N by way of a
comparison of stresses σθ , and σz produced by the inclusion, whose values along the vertical
line r = 0þ going through the inclusion center are shown in figures 2.3a and 2.3b, respectively.

51



2. Volume integrals

0 2 4
x3/c

−0.6

−0.4

−0.2

0.0

σ
z
/(2

µ
β
)

a

Mindlin &
Cheng (1950)
Proposed Method

0 2 4
x3/c

−0.6

−0.4

−0.2

0.0

0.2

0.4

σ
θ
/(2

µ
β
)

b

Mindlin &
Cheng (1950)
Proposed Method

Figure 2.3.: Normalized stresses due to a hydrostatic spherical inclusion in a half-space. Com-
parison between the Mindlin and Cheng (1950) solution and the proposed volume integral
method. The stresses are shown along the x3 axis. The red region is where the eigenstrain
ε = αT I is imposed. One can observe a good agreement of the numerical approximation
with the analytical solution outside the inclusion. Some Gibbs effect can be observed at
the boundary of the inclusion, with spurious oscillations in the inclusion. This is due to
the Fourier approximation of the discontinuous eigenstrain function.

The relevant analytical values are (for r = 0þ ):

σθ =


2µβa3

3

(
4ν−3
(z+c)3

+ 6c
(z+c)4

+ 1
|z−c |3

)
z ∈ [0,a[∪]3a,+∞[,

2µβa3

3

(
4ν−3
(z+c)3

+ 6c
(z+c)4

− 2
a3

)
z ∈]a, 3a[,

(2.44)

σz =


2µβa3

3

(
6z+c
(z+c)4

− 2
|z−c |3

)
z ∈ [0,a[∪]3a,+∞[,

2µβa3

3

(
6z+c
(z+c)4

− 2
a3

)
z ∈]a, 3a[,

(2.45)

with β = αT 1+ν
1−ν . We observe on figures 2.3a and 2.3b a Gibbs effect at the inclusion boundary,

caused by the Fourier approximation of the discontinuity of the eigenstrain, as mentioned in
Section 2.3.1. This should however not have a significant effect on elastoplastic simulations, as
plastic deformations should be continuous provided there is no shear band. Nonetheless, our
method accurately represents the large discontinuity in the tangential stress, see fig. 2.3b.

2.6. Algorithmic complexity

Wenow compare the computational cost of the application of the operatorN to that of an elas-
tic solve step of a finite elements simulation involving the same numberN = N1N2N3 of nodes.
Irrespective of the numerical method used, the optimal complexity would be O(N ). In the
proposed methodology, the evaluation ofN[w] for givenw is decomposed into two compu-
tational steps: the multiple 2D fast-Fourier transforms and the computation of eq. (2.31). As-
suming N1 = N2 = N3, the former has a complexity of O(N1N2N3 log(N1N2)) ∼ O(N log(N )),
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2.6. Algorithmic complexity

while the latter has a complexity of O(N1N2N
2
3 ) ∼ O(N

4/3) with a naive implementation.
Using the integration methods proposed in Section 2.3.2 brings the algorithmic complexity
of the evaluations of eq. (2.31) down to O(N ) (see Appendix A.4), so the asymptotic cost of
evaluatingN[w] is O(N log(N )). For the direct solve step of a finite element elastic simulation
with N nodes, the algorithmic complexitiy of a sparse Cholesky factorization is O(N 3/2)7 (Lip-
ton, Rose, and Tarjan, 1979). We compare in fig. 2.4 the relative computation times of the
application ofN and the elastic solve step of Akantu, which uses the direct solver package
MUMPS (Amestoy et al., 2001) to perform the factorization. A regular mesh with N nodes
was used8. We can observe that for large problem sizes the computation times fit the theoret-
ical asymptotic complexities, showing the clear advantage of the proposed VIM over FEM.
One should also note that memory needed for the factorization of the stiffness matrix for
2þ 21 nodes was larger than 128 GB whereas the VIM only required 1.27 GB for this case. For
large problems, both the memory imprint and (absolute) computing time are two orders of
magnitude smaller with the proposed approach.

As a closing remark, evaluatingN in physical space and without any acceleration method
would entail a O(N 2) complexity, making its use unrealistic for 3D problems. This complexity
can be brought down to O(N ) by means of a multi-level fast multipole (ML-FM) approach.
However, implementing the latter is quite involved in general, and here would require in-
tricate and expensive close-range numerical quadrature methods for dealing with the strong
singularity and complex expressions of the kernel in the physical space. This may explain
why ML-FM treatments of VIMs have received only limited attention to date. Hierarchical
matrices can likewise be employed to reduce the complexity (Zechner and Beer, 2013).

7This bound is established for 2D finite elements, but we expect it to remain representative in the present 3D
case.

8Note that actually applying the FEM to the present mechanical problem would in fact require discretization
of a much larger domain to model the fields away from the potentially plastic zone.
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Figure 2.4.: Relative computation times for VIM and FEM.We compare the application of the
operatorN to an elastostatic FEM solve step (Cholesky factorization). The reference time
T0 isT0 = 1.41þ · 10þ −3s for the VIM andT0 = 1.77þ · 10þ −2s for the FEM. The scaling for
large problem sizes agrees with the theoretical algorithmic complexities. For N = 2þ 21 the
stiffness matrix factorization needed over 128 GB of memory, an amount two orders of
magnitude larger than what is required for the VIM.
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3. Contact coupling

Abstract
Two solution strategies for the elastic-plastic contact problem are presented. The first is a
fixed point approach dealing with the plasticity problem (cf. previous chapter) separately
from the contact problem, which is treated as elastic (cf. Chapter 1). The implementation
of this algorithm is validated against results from the literature and reference finite-element
simulations. The second solution strategy deals with the contact and plasticity problems in a
monolithic fashion. The elastic-plastic contact problem is formulated as a second-order conic
program which can be solved with the interior point method.
Disclaimer
Parts of this chapter are reproduced from the article Lucas Frérot, Marc Bonnet, et al. (July 1,
2019). “A Fourier-Accelerated Volume Integral Method for Elastoplastic Contact”. In: Com-
puter Methods in Applied Mechanics and Engineering 351, pp. 951–976. doi: 10.1016/
j.cma.2019.04.006, with permission of all authors. My personal contributions to this
article include the development of the method, the code implementation, the running of
simulations, the figure production and the writing of the article.
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In order to solve the full elastic-plastic contact problem, one needs to solve the unknown
boundary tractions and the plastic deformations. The displacement field satisfying equi-

librium once these quantities have been resolved is obtained with eq. (2.7). The difficulty of
the elastic-plastic contact problem resides in the coupling between the contact and the plastic
problems: a change in plastic deformation will displace the surface, changing the gap function
and therefore the contact solution, while a change in surface traction will influence the plastic
deformations.

We present in this work two different coupling methods: the first is an alternative coupling
strategy (Jacq et al., 2002) where the contact problem is solved with a fixed distribution
of plastic deformations, then the resulting contact tractions are used to update the plastic
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3. Contact coupling

deformations, changing the residual displacements of the surface. The latter are used to
compute a new contact solution, and so on until convergence. The second coupling method
is an interior point algorithm. This class of algorithms is well suited for second-order conic
programming. We show how the elastic-plastic contact problem can be recast into a second-
order conic program and devise the interior point algorithm.

3.1. Fixed point strategy

The periodic elastic contact problem has been covered to great length in Section 1.3. The
addition of plastic strain only changes the variational form:

inf
u ∈Λ

{
1
2

∫
Bp

σ [u, εp ] :
(
ε[u] − εp

)
dV

}
. (3.1)

We can also write this principle of minimum energy on the boundary: one can show that the
minimizer of eq. (3.1) can be written asu = v +N[C :þ εp ], wherev is a member of

Γ(εp ) :=
{
v ∈ H̄ 1(Bp ;R

3) : д
[
v +N[C : εp ]

]
≥ 0 and div(σ [v]) = 0þ

}
, (3.2)

and minimises the potential energy written as surface integral

inf
v ∈Γ(εp )

{
1
2

∫
∂B

T [v] ·v dS

}
. (3.3)

Remark 6. Note the modified contact condition д
[
v + N[C :þ εp ]

]
≥ 0þ , which explicitly

accounts for the residual displacement at the surface caused by the plastic deformations. Since
the contact problem is solved with fixed εp , eq. (3.3) corresponds to an elastic contact problem
with a modified contact surface hmod := h −N[C :þ εp ] · e3

���
∂B

, a property that the fixed point
coupling algorithm exploits.

Because problem (3.3) is the problem treated in Chapter 1, the solutions methods discussed
there are directly applicable. Notably, the problem of contact with adhesion can be easily
treated.

3.1.1. Plastic coupling

The full elastic-plastic contact coupling scheme, developed by Jacq et al. (2002), is given in
Algorithm 5. The algorithm leverages the modified contact condition (3.2) (see Remark 6).
The central loop’s purpose is to determine the increment of residual displacements ∆Up3 at
the surface of the elastic solid. These are incorporated into the surface profile H for the elastic
contact solve step, during which plastic deformations are fixed. The result of the elastic
contact is a traction distribution T on ∂B that acts as a Neumann boundary condition to
the elastic-plastic problem. The solve step yields the total strain increment ∆E, which is used
to compute the residual surface displacement. The convergence condition is established on
the evolution of ∆Up3 from one iteration to the next. Finally, when convergence is reached
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3.1. Fixed point strategy

Algorithm 5 Elastic-plastic contact coupling algorithm (Jacq et al., 2002).
Data:W (normal load), H (surface profile), S (current state), εtol (tolerance), Nmax (maxi-
mum iterations)
∆U

p
3,prev ← 0þ

Tprev ← T [S] . Previous tractions
k ← 1þ
H0 ← H

hnorm ← ‖H0‖

repeat
T← elastic_contact(W ,H) . Polonsky and Keer (1999b) with FFT
∆T← T − Tprev
∆E← plasticity(∆T, S) . Strain increment s.t. R[∆E] = 0þ
∆U

p
3 ← N[C :þ ∆εp (∆E, S)]

��
∂B
· e3 . Surface residual disp. increment

e ← ‖∆U
p
3 − ∆U

p
3,prev‖ /hnorm . Error

∆U
p
3,prev ← ∆U

p
3,prev + λ(∆U

p
3 − ∆U

p
3,prev) . Relaxation

H← H0 − ∆U
p
3,prev

∆U
p
3,prev ← ∆U

p
3

k ← k + 1þ
until e < εtol or k > Nmax

update(S,∆E) . Increment ep and εp

within a specified tolerance, the state S is updated with the converged total strain increment
∆E and traction increment ∆T. The user of Algorithm 5 is free to use any elastic contact
solver and non-linear plasticity solver as drop-ins for elastic_contact and plasticity. For the
simulations presented in this chapter, the elastic contact solver uses the projected conjugate
gradient proposed by Polonsky and Keer (1999b), with an FFT approach for the gradient
computation (Stanley and Kato, 1997; Rey, Anciaux, and Molinari, 2017). For the non-linear
plastic solver, we use the DF-SANE algorithm described in Section 2.4.3. The relaxation
parameter λ can take values in ]0, 1] and helps the algorithm to converge on large loading steps.

Since Algorithm 5 is a fixed point, acceleration schemes such as those described by Ramière
and Helfer (2015) can be applied to enhance the performance. However, these schemes
require the unrelaxed fixed point (Algorithm 5 with λ = 1þ ) to converge in order to guarantee
convergence. This condition is however almost never satisfied, and there is no guarantee
that either the relaxed or the accelerated fixed points will converge. In practice, convergence
is affected by the magnitude of the influence of plasticity on the contact solution, which
means that low yield stress or high contact stresses (due to a large normal load or large surface
amplitude) make it more difficult for Algorithm 5 to find a solution.

57



3. Contact coupling

3.1.2. Elastoplastic contact validation

We validate the complete method (including elastoplastic contact) against an axi-symmetric
FEM analysis by Hardy, Baronet, and Tordion (1971) which provides the surface pressure
distribution for a rigid spherical indenter on an elastic-perfectly plastic material. For Hertzian
contact with ν = 0.3þ , the maximum shear stress occurs at a depth x3 ≈ 0.57a, with a the
contact radius. Moreover, the von Mises stress reaches σy for a maximum surface pressure of
py = 1.6σy (Johnson, 1985). From this, one can compute the total loadWy and contact radius
ay at the onset of yield (Hardy, Baronet, and Tordion, 1971):

(a) Wy =
π 3R2

6E?2p
3
y, (b) ay =

√
3Wy

2πpy
, (3.4)

whereR is the indenter radius and E? := E/(1þ −ν2) is theHertz elasticmodulus. We also define
τy := σy/

√
3 as the shear yield stress. Wy, ay and τy are used to normalize loads, lengths and

stresses respectively. Figure 3.1 compares the surface pressurep[u] computed usingAlgorithm 5
with the corresponding values obtained by Hardy, Baronet, and Tordion (1971) (dashed lines),
for different load ratiosW /Wy. The dark continuous line is the circumferential average of
the pressure, while the lighter zone shows the maximum and minimum pressure for a given
radial coordinate r . The difference between the maximum and minimum pressures at the
edge of contact is due to the discretization and the periodic boundary conditions, which
make the contact region shape deviate from a disk. The simulation parameters are given in
Appendix B.1.1. As mentioned in (Hardy, Baronet, and Tordion, 1971), normalized results are
independent of the E/τy ratio.

Both solutions show a flattening of the initially-ellipsoidal pressure distribution near the
axis of symmetry (also observed in Johnson, 1968; Jacq et al., 2002; Wang, Jin, et al., 2013),
with a plateau that extends as the load is increased. There are however significant differences
between the two sets of results: in the plastic range, the agreement on both the contact radius
and the plateau value is poor. Also, the results of Hardy, Baronet, and Tordion (1971) feature
oscillations in the pressure profile at the highest loading increment, which are likely due to
the coarse mesh that was used, combined with large loading steps 2.

To assess these effects and confirm the latter remark, we have effected additional com-
parisons, this time to an implementation of Algorithm 5 where the strain increment is
computed using a first-order FEM approach with the open-source high-performance code
Akantu (Richart and Molinari, 2015), the rest of the algorithm using the same code as for
the VIM. The geometry, material properties, loading and discretization are as given in Ap-
pendix B.1.2. Figure 3.2 shows the surface pressure and vertical displacement for a load ratio
ofW /Wy = 5þ , the corresponding Hertz elastic solution being also plotted for additional
comparison. We observe an excellent agreement between the FEM and VIM solutions. In

1Their stiffness matrix fits in the 512K RAM of the IBM/360 used for simulations, which is impressive for 1971.
The smoothness of the results (extracted from figure 5) is likely due to the figure being drawn by hand.

2Our own experiments with finite-element simulations exhibited the same behavior, as well as disagreement
in the plateau value, for too-large element sizes.
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Figure 3.1.: Elastic perfectly-plastic Hertzian contact, comparison with Hardy, Baronet, and
Tordion (1971). Increase of the applied load beyond the initial yield shows that the
pressure profile deviates from the elliptic Hertzian profile by flattening of the curve at
the axis of symmetry, with a plateau whose extent increases with the load. The results
of Hardy, Baronet, and Tordion (1971) however show oscillations of the pressure profile at
high plastic loads which is not reproduced by our simulation. As there is, to our knowledge,
no physical reason to these oscillations, they are likely due to the coarse discretization of
the finite-element mesh they used in their study1. The simulation parameters are given in
Appendix B.1.1

addition, fig. 3.3 shows good qualitative agreement between the values of |εp | on a symmetry
plane obtained for the same load with the FEM and the VIM.

3.2. Interior point method

Disclaimer: the work presented here is an ongoing collaboration with Jérémy Bleyer (ENPC,
Laboratoire Navier) and Marc Bonnet (ENSTA, Poems).

While the fixed point algorithm of Jacq et al. (2002) is a simple solving scheme, it has
serious convergence issues which limit its applicability to realistic rough contact situations
where a lot of plastic activity is expected. For this reason, we have developed an alternative
approach to solve the elastic-plastic contact problem based on interior point methods (cf.
Boyd and Vandenberghe, 2004, chap 11 for an introduction). This family of methods is
well suited to second-order conic programs (SOCPs), a class of optimization problem that
contains the elastic-plastic contact problem with an associated flow rule. Indeed, the non-
penetration contact condition of eq. (1.36a) and the yield condition of eq. (2.36a) are both
conic constraints (cf. Yonekura andKanno, 2012; Krabbenhoft et al., 2007, who provide SOCP
formulations for the plasticity problem).
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Figure 3.2.: Elastoplastic Hertzian contact. Comparison between the elastic Hertz solution (John-
son, 1985), a simulation using Algorithm 5 where the surface residual displacement is
calculated by FEM, and a full VIM simulation. Both simulations have identical surface
discretization. As expected (Johnson, 1968), the plastic pressure distribution deviates from
the elliptical shape of the Hertzian distribution. The contact radius is larger in the plastic
case. The simulation parameters are given in Appendix B.1.2.

VIM FEM

Plastic strain norm

Figure 3.3.: Plastic strain norm |εp | in elastoplastic Hertzian contact. Results obtained with Al-
gorithm 5, with the plastic problem solved using our VIM approach (left) or a first order
FEM (right). Note that in the FEM case, plastic deformations are piece-wise constant,
whereas in the volume integral result they are interpolated between nodal values (cf. Sec-
tion 2.3). Nonetheless, the solutions give similar plastic zone size and maximum plastic
deformation norm. The simulation parameters are given in Appendix B.1.2.

The main idea of interior point methods is to introduce a repulsive barrier term for the
conic constraints so that the computed iterates always remain within the admissible domain.
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3.2. Interior point method

This allows to take large minimizing steps without having to project the solution on the space
of constraints as is done by Algorithm 5. In an interior point method, the “strength” of the
barrier is adjusted during the course of the algorithm so as to provide a balance between step
size and accuracy of the solution, because a solution computed with a barrier only enforces an
approximate version of the optimality conditions. We now describe the second-order conic
program formulation of the elastic-plastic contact problem, followed by the application of
the interior point procedure.

3.2.1. Variational form of elastic-plastic contact

To apply the interior point method to the elastic-plastic contact problem, one needs to write a
minimization principle to a solid mechanics problem where the constitutive law has a plastic
form. For simplicity, we will again only consider here classical von Mises associated plasticity.
However, to derive a variational form of plasticity, we will start in a more general thermody-
namic setting and follow the derivation of the properties of generic plastic constitutive laws
of Reddy and Martin (1994). Let us start by stating three fundamental equations relevant for
our purposes:∫

Ω
σ : ε[v] dV =

∫
Ω
b ·v dV +

∫
∂Ωt

(σ · n) ·v dS ∀v ∈ KA(Ω), (3.5)

d

dt

∫
Ω
e dV =

∫
Ω
b · Ûu dV +

∫
∂Ω
(σ · n) · Ûu dS +

∫
Ω
r dV −

∫
∂Ω

qh · n dS, (3.6)

d

dt

∫
Ω
η dV ≥

∫
Ω

r

θ
dV −

∫
∂Ω

qh
θ

dS, (3.7)

which are respectively the balance of momentum equation, the first and the second law of
thermodynamics for a subdomain Ω ⊂ B. The variables e, η, θ , r and qh are respectively the
internal energy, the entropy per volume, the temperature, the inner heat rate per volume and
the heat rate per area supplied to Ω. The latter equations can be written in local form because
Ω is arbitrary:

Ûe = σ : Ûε + r − div(qh), (3.8)

Ûη ≥
r

θ
− div

(qh
θ

)
, (3.9)

where we have used eq. (3.5) with v = Ûu in the conservation of energy to have the stress
and strain rate appear in place of the power of external forces. We introduce the Helmholtz
free energy f = e − ηθ which should be minimum when the system is in thermodynamic
equilibrium, giving us a minimization principle. The conservation of energy allows to express
the entropy rate as a function of f :

Ûη =
1
θ

[
σ : Ûε − Ûf + r − div(qh) − η Ûθ

]
. (3.10)
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Replacing the expression for Ûη in the entropy inequality gives the dissipation inequality (Reddy
and Martin, 1994):

σ : Ûε ≥ Ûf + η Ûθ +
qh
θ
∇θ (3.11)

⇔ σ : Ûε ≥ Ûf , (3.12)

whose second form comes from the assumption that θ is uniform in space and time. Next we
assume that the free energy f is function of the kinematic variables ε (the linearized strain
tensor), ξ and γ . The latter two are internal variables, later to be identified to the plastic strain
tensor and cumulated plastic strain, which represent the material rearrangement due to crystal
plasticity molecular mechanisms. The variables conjugate3 to (ε, ξ ,γ ) are (σ , χ ,k) derived
from f :

σ =
∂ f

∂ε
, χ = −

∂ f

∂ξ
, k = −

∂ f

∂γ
, (3.13)

and represent the force quantities related to the kinematic quantities (ε, ξ ,γ ), with of courseσ
being the Cauchy stress tensor. The force variables χ and k , which will later be related to the
deviatoric part of σ and the yield stress, represent the forces associated with the inner material
rearrangement characterized by ξ and γ . Developing the time derivative of f = f (ε, ξ ,γ ) in
eq. (3.12) with the chain rule gives the following form of the dissipation equation:

χ : Ûξ + k Ûγ ≥ 0. (3.14)

Reddy and Martin (1994) discuss in detail the nature of the postulates that are needed
to derive a rate independent plasticity law, and in particular that the maximum dissipation
postulate and the normality law (i.e. associated flow rule) are equivalent. We shall only give
the main results that will allow us to formulate a principle of minimum free energy which
integrates plasticity.

Let us first define the spaceS ⊂ R7 of stress variables (χ ,k)which are constitutively admissible.
The existence of this set is physically motivated by experiments (Bui, 1969) which show for
metals that it is convex. When (χ ,k) reach the boundary of S , dislocations start to nucleate
and move in the atomic lattice. Since S is convex, it can be described by a support function
ϕ (Boyd and Vandenberghe, 2004):

ϕ( Ûξ , Ûγ ) = sup
(χ ,k )∈S

{
χ : Ûξ + k Ûγ

}
. (3.15)

The function ϕ gives the maximum energy dissipated for a given couple ( Ûξ , Ûγ ). An admissible
stress should not dissipate more energy than ϕ( Ûξ , Ûγ ) for all ( Ûξ , Ûγ ). The Legendre transform of
ϕ is the indicator function of S (Boyd and Vandenberghe, 2004).

3In the sense of the Legendre-Fenchel transform. They are alternatively called “dual” variables.
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3.2. Interior point method

Von Mises plasticity with isotropic linear hardening

Reddy and Martin (1994) give as an application the example of a material with a von Mises
elasticity criterion, linear isotropic and kinematic hardening. As in Chapter 2, we shall only
consider isotropic hardening. For this purpose, the free energy is expressed as

f (ε, ξ ,γ ) =
1
2
(ε − ξ ) : C : (ε − ξ ) +

1
3
Ehγ

2. (3.16)

To link back with the variables that where introduced in the previous chapter, we have εp = ξ

and ep =
√
2/3γ . It can be seen from the definition of the internal static variables that χ = σ

and k = −2γEh/3þ = −
√
2/3Ehe

p . The von Mises criterion can be expressed with:

| dev(χ )| + k ≤ c0, (3.17)

where dev gives the deviatoric part of a tensor and c0 =
√
2/3σy is the initial radius of the

von Mises yield cylinder in stress space. In addition, the maximum dissipation postulate is
equivalent to the normal flow rule (Simo and Hughes, 1998), so Ûξ is colinear to dev(χ ). The
dissipation potential can be readily computed4 (Reddy and Martin, 1994; Ladevèze, Moës,
and Douchin, 1999):

ϕ( Ûξ , Ûγ ) = sup
(χ ,k )∈S

{
χ : Ûξ + k Ûγ

}
= sup
(χ ,k )∈∂S

{
| dev(χ )| | Ûξ | + k Ûγ

}
= sup
(χ ,k )∈∂S

{
| dev(χ )| | Ûξ | − (| dev(χ )| − c0) Ûγ

}
= sup
(χ ,k )∈∂S

{
| dev(χ )|(| Ûξ | − Ûγ ) + c0 Ûγ

}
=

{
c0 Ûγ | Ûξ | ≤ Ûγ

+∞ | Ûξ | ≥ Ûγ
.

We now establish the principle of minimum free energy in a backward-Euler fashion (Simo
and Hughes, 1998): the free energy at time tn is equal to the free energy at tn+1 plus the
dissipated energy between times tn and tn+1. The equilibrium is then sought byminimizing the
total free energy in the system at tn with respect to Ξn+1 = (un+1, εn+1, ε

p
n+1,γn+1,дn+1,Un+1):

inf
Ξn+1∈KA(B)

{∫
B

[
f (εn+1, ε

p
n+1,γn+1) +

∫ tn+1

tn
ϕ

(
Ûεp, Ûγ

)
dt

]
dV −Wn+1Un+1

}
, (3.18)

whereUn+1 is the rigid body displacement of the surface corresponding to the applied normal
loadWn+1. The function space KA(B) contains, in addition to the kinematic compatibility of
ε and the gap condition, the incompressibility condition Tr(εpn+1) = 0þ .

4Note that Tr(a) = 0þ ⇒ a :þ b = a :þ dev (b).
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3. Contact coupling

3.2.2. Conic programming

The numerical solution of problem (3.18) requires approximation of the time derivative terms,
which we replace with finite differences: Ûεp ≈ ∆εp/∆t . This allows to express quantities at
tn+1 as a function of known quantities at tn and to write the minimization principle in terms
of increments. We develop the free energy5:

f (εn + ∆ε, ε
p
n + ∆ε

p,γn + ∆γ ) = f (εn, ε
p
n,γn) + ∇f (εn, ε

p
n,γn) · (∆ε,∆ε

p,∆γ )

+ f (∆ε,∆εp,∆γ ),

= f (εn, ε
p
n,γn) + f (∆ε,∆εp,∆γ )

+ σn : (∆ε − ∆εp ) +
2
3
Ehγn∆γ

and approximate the dissipation integral:∫ tn+1

tn
ϕ

(
Ûεp, Ûγ

)
dt ≈ ∆tϕ

(
∆εp

∆t
,
∆γ

∆t

)
= ϕ

(
∆εp,∆γ

)
.

We can now write the SOCP corresponding to the elastic-plastic contact problem:

inf
∆u ,∆ε ,∆εp ,∆γ ,дn+1,Un+1

{∫
B

[
f

(
∆ε,∆εp,∆γ

)
+ σn : (∆ε − ∆εp )

+
2
3
Ehγn∆γ +

√
2
3
σy∆γ

]
dV −Wn+1Un+1

}
,

(3.19a)

under the constraints:

дn+1 ≥ 0, (3.19b)
‖∆εp ‖ ≤ ∆γ , (3.19c)

Tr(∆εp ) = 0, (3.19d)
∆ε = ε[∆u] (3.19e)

дn+1 = (∆u +un) · e3 − h −Un+1. (3.19f)

The last constraint is needed because we consider дn+1 as a free variable. We introduce the
Lagrange multipliers pn+1 and s = (s0, s) ∈ R7 for the first two (unilateral) constraints,
such that pn+1 ≥ 0þ and ‖s‖ ≤ s0

6. Yonekura and Kanno (2012) have shown that the third
constraint (3.19d) can be ignored if one replaces all occurrences of ∆εp by dev(∆εp ) in prob-
lem (3.19a). The last constraint is enforced with the Lagrange multiplier λд , so that the

5Since the free energy in eq. (3.16) is quadratic, the second order term of the Taylor expansion is expressed
directly with f and the expansion is exact.

6Note that s and (∆γ ,∆εp ) both belong to the same Lorentz cone K = {(x0,x) ∈ R7 :þ x0 ≥ ‖x ‖}.
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Lagrangian of the SOCP (3.19a) is:

L(∆ε,∆εp,∆γ ,дn+1,pn+1, s, λд,Un+1) = F (∆ε, dev(∆εp ),∆γ ,Un+1)

−

∫
∂B

[
pn+1дn+1 + λд(дn+1 − ∆u3 +Un+1 − д[un])

]
dS

−

∫
B

(s0∆γ + s : ∆εp ) dV ,

with F being the objective function of (3.19a).

Optimality conditions
Next we assume eq. (3.19e) holds by construction and take variations of the Lagrangian with
respect to the kinematic variables to obtain its stationarity conditions.

〈∂∆uL,v〉 =

∫
B

(
σn + C : (∆ε − dev(∆εp ))

)
: ε[v] dV +

∫
∂B

λдv · e3 dS = 0, (3.20a)

∂∆εpL = − dev
(
σn + C : (∆ε − dev(∆εp ))

)
− s = 0þ , (3.20b)

∂∆γL =
2
3
Eh∆γ +

2
3
Ehγn +

√
2
3
σy − s0 = 0, (3.20c)

∂дn+1L = −pn+1 − λд = 0, (3.20d)

∂Un+1L = −Wn+1 −

∫
∂B

λд dS = 0. (3.20e)

These conditions respectively give the equilibrium equation, the interpretation of s as the
negative deviatoric stress, the hardening rule and definition of s0 as the hardened yield stress,
the equivalence ofλд (which enforces the relationbetweenu andдn+1) and the normal pressure,
and finally the total applied load condition. To obtain the complete optimality conditions,
we add the following complementarity conditions for the variables related to inequality
constraints.

pn+1дn+1 = 0, (3.20f)
∆γs0 + ∆ε

p : s = 0. (3.20g)

The last equation implies that (∆γ ,∆εp ) ands lie on the boundary of their respective constraint
cone. Hence, ∆γ = ‖∆εp ‖ and s0 = ‖s‖, resulting in ∆εp :þ s = −‖∆εp ‖‖s‖, which is the
normality rule: the plastic strain increment is colinear to −s with a positive constant equal to
∆γ/s0. This is rewritten as:

s0∆ε
p + ∆γs = 0þ . (3.20h)

Integral operators
The set of equations (3.20), complemented with the conic constraints and eq. (3.19f), describes
completely the incremental elastic-plastic contact problem. Since the kinematic unknowns
are considered independent, we can once again consider ∆εp as initial eigenstrain and apply to
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Table 3.1.: Simplified notation for linear operators

Notation Definition Description

D dev(•) Deviatoric operator
M ′3 ∇symM[•e3] ε from surface pressures
N ′ ∇symN[•] ε from eigenstresses
M33 e3 · M[•e3]|∂B Surface normal displacements from pressures
N3 e3 · N[•]|∂B Surface normal displacements from eigenstresses
R ∇symN[C :þ •] − • “Elastic” strain

eq. (3.20a) the treatment developed in Chapter 2. This actually allows us to exactly solve the
equilibrium with:

∆ε = ∇symM[pn+1e3] + ∇
symN[C : dev(εpn + ∆ε

p )] − εn, (3.21a)
∆u =M[pn+1e3] +N[C : dev(εpn + ∆ε

p )] −un . (3.21b)

The use of integral operators essentially removes∆ε (and by extension∆u) from the unknowns
of the optimality conditions. Replacing ∆ε in eq. (3.20b) yields:

−dev
(
C :

{
∇symM[pn+1e3] + ∇

symN[C : dev(εpn + ∆ε
p )] − dev(εpn + ∆ε

p )
} )
−s = 0. (3.22)

In order to simplify notations, we use the symbols defined in Table 3.1 in lieu of the linear
operators used above. We also define the following operations for x, s ∈ Rm+1:

x ◦ s =

{
x0s0 + x · s

x0s + xs0

}
= mat(x)s = mat(s)x, (3.23a)

mat(x) =

[
x0 xT

x x0Im

]
. (3.23b)

We can then write the optimality conditions in compact form:



[
− 2

3Eh 0þ
0þ DCRD

]
I 0þ

[
0þ

DCM ′

]
0þ[

0þ −N3CD
]

0þ I −M33 a

0þ 0þ 0þ aT 0þ





[
∆γ

∆εp

]
s

дn+1
pn+1
Un+1


=



[
2
3Ehγn +

√
2
3σy

−DCRDε
p
n

]
N3CDε

p
n − h

Wn+1


, (3.24a)

дn+1pn+1 = 0, (3.24b)
(∆γ ,∆εp ) ◦ s = 0þ , (3.24c)

where a is a vector of ones.
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The basic idea of primal-dual interior point methods, which is the subcategory of IPMs
that we employ here, is to operate a Newton–Raphson scheme on the non-linear system of
equations (3.24) with the following perturbation:

дn+1pn+1 = µ, (3.25a)
x ◦ s = µe, (3.25b)

where x = (∆γ ,∆εp ), µ > 0þ and e = (1, 0þ ). This effectively adds a logarithmic barrier to the
conic constraints of the problem, whose parameter µ decreases during the algorithm so the
perturbed problem approaches the original problem. Let zk =

{
xk , sk ,дkn+1,p

k
n+1,U

k
n+1

}T be
the collection of unknowns at the Newton–Raphson iteration k and R(zk ) the residual of
the perturbed optimality conditions. Algorithm 6 describes the primal-dual interior point
method. We can see in this algorithm that the barrier parameter µ is updated at each step with
the complementarity gap reduced by a parameter 0þ < ω ≤ 1þ . The value of this parameter
determines the propensity of the algorithm to reduce the duality gap (low values of ω) or to
follow the so-called central path, which is the set of optimal solutions for varying values of
µ (Boyd and Vandenberghe, 2004). The value of ω therefore affects the efficiency: heuristics
can be used instead of a user-provided value, but Mehrotra (1992) has proposed a predictor-
corrector scheme which improves the algorithm convergence (Bleyer, 2018).

Algorithm 6 Primal-dual interior point method applied to elastic-plastic contact.
Data: W (normal load), H (surface profile), S (current state), εtol > 0þ (tolerance), Nmax

(maximum iterations),ω ∈ (0, 1] (centering parameter)
P←W . Initial pressure
G← ‖H‖ . Initial gap
X← (1, 0)
S← (

√
2/3σy, 0)

U ← 0þ
µ ← P · G + X · S

k ← 0þ
repeat

Solve R′(Z)δZ = −R(Z) . cf. Section 3.2.2
Line search on maximum α such that Z + αδZ is admissible
Z← Z + αδZ

µ ← ω(P · G + X · S)

k ← k + 1þ
until µ < εtol and ‖R(Z)‖ < εtol or k > Nmax

Linear system solving

The computationally intensive step of Algorithm 6 is the resolution of the Newton–Raphson
direction. To reduce the computational burden, we actually solve a reduced version of the
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linear systemwhere the only unknowns are (δεp, δp, δU ). This is possible because the matrices
arising from the linearization of the complementarity conditions are invertible by block (cf.
Appendix B.2). The solving of the resulting linear system requires particular attention: be-
cause wemake use of integral operators, the assembledmatrix corresponding to the discretized
tangent operator is dense. The storing of this matrix becomes problematic rather quickly, so
for large problem sizes we are restricted to iterative solvers, which are sensitive to condition-
ing (Quarteroni, Sacco, and Saleri, 2007). Since interior point approaches introduce a barrier,
the linearized tangent contains terms of type P ·G−1 andX · S−1 that result from the reduction
of the complementarity conditions, cf. Appendix B.2. As µ → 0þ and the unknowns get closer
to the constraints, the components of these terms either diverge or go to zero, and the condi-
tioning number of the tangent operator diverges, preventing convergence of whatever iterative
solver is chosen if the system is not preconditioned. The issue of preconditioning the tangent
in interior point methods is an active area of research (Gondzio, 2012). Since we wish to retain
a matrix-free formulation of the algorithm, we cannot use incomplete LU factorization as is
sometimes proposed in large sparse systems (Bocanegra, Campos, and Oliveira, 2007). We
have therefore developed a tentative preconditioner that inverses an approximation of the
reduced tangent operator, cf. Appendix B.2. Finally, the predictor-corrector scheme proposed
by Mehrotra (1992) demands an additional linear solve with the tangent operator. With direct
solver this can be done at a little expense since the tangent has already been factorized, but
with iterative solvers this demands the full cost of an extra solve step.

The issues of performance of the primal-dual interior point method with integral operators
are central questions of an ongoing research effort in collaboration with Dr. Jérémy Bleyer
and Dr. Marc Bonnet.
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4. Wear of rough surfaces:
understanding the wear
coefficient

Abstract
Sliding contact between solids leads to material detaching from their surfaces in the form
of debris particles, a process known as wear. According to the well-known Archard wear
model, the wear volume (i.e. the volume of detached particles) is proportional to the load
and the sliding distance, while being inversely proportional to the hardness. The influence of
other parameters are empirically merged into a factor, referred to as wear coefficient, which
does not stem from any theoretical development, thus limiting the predictive capacity of the
model. Based on a recent understanding of a critical length-scale controlling wear particle
formation, we present two novel derivations of the wear coefficient: one based on Archard’s
interpretation of the wear coefficient as the probability of wear particle detachment and one
that follows naturally from the up-scaling of asperity-level physics into a generic multi-asperity
wear model. As a result, the variation of wear rate and wear coefficient are discussed in terms
of the properties of the interface, surface roughness parameters and applied load for various
rough contact situations. Both new wear interpretations are evaluated analytically and numer-
ically, and recover some key features of wear observed in experiments. This work shines new
light on the understanding of wear, potentially opening a pathway for calculating the wear
coefficient from first principles.

Disclaimer
This chapter is reproduced fromthe articleLucas Frérot,RaminAghababaei, and Jean-François
Molinari (May 2018). “A Mechanistic Understanding of the Wear Coefficient: From Single to
Multiple Asperities Contact”. In: Journal of the Mechanics and Physics of Solids 114, pp. 172–
184. doi: 10.1016/j.jmps.2018.02.015, with permission of all authors. My personal
contributions to this article include the development of the models, the code implementation,
the running of simulations, the figure production and the writing of the article.
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The scientific study of wear dates back to the early 19th century (Hatchett, 1803), but our
current understanding was built upon research conducted in the middle of the last

century (Burwell, 1957). Wear comes in various forms, with adhesive wear, the process of
detachment of surface asperities tip by adhesive forces during the sliding contact of two solids,
being one of the most prominent. Systematic wear experiments in the mid-20th century (Ar-
chard, 1953; Burwell and Strang, 1952) suggested a general relation where the wear rate (i.e.
wear volume per unit sliding distance) is linearly proportional to the applied normal load, in a
certain range of the latter (Burwell and Strang, 1952; Rabinowicz and Tabor, 1951), and related
to the hardness of the material. Inspired by this experimental evidence, Archard (Archard,
1953) generalized Holm’s concept of “atom removal” (Holm, 2000) to “debris removal” and
pictured an adhesive wear model. He assumed that an asperity junction of radius a produces
a debris volume proportional to a3 over an effective sliding distance of 2a, giving a linear
relationship between wear rate and real contact area at the asperity level. To extend this
single-asperity relation to a multi-asperity contact, Archard argued that only a fraction of
contacting asperities, a quantity referred to as the “wear coefficient”, produces wear particles.
This conception of the “wear coefficient” being key in understanding wear, Archard andHirst
(1956) claimed that “…one of the most important problems in an understanding of wear is to
explain the magnitude of the probability of the production of a wear particle at an asperity
encounter.” This long-standing problem has remained unresolved, and evaluation of the wear
coefficient is still relying on empirical data, with no insight from a physical model.

Similarly to the friction coefficient (Svetlizky and Fineberg, 2014), the wear coefficient
is a system property that depends on many parameters including applied load (Zhang and
Alpas, 1997; Riahi and Alpas, 2003), material properties of sliding bodies (e.g. fracture tough-
ness (Fleming and Suh, 1977; Challen, Oxley, and Hockenhull, 1986)) and properties of
interface (e.g. dry or lubricated contact (Kato, 2000), roughness parameters (Kato, 2000),
chemical properties (Mischler and Muñoz, 2013)). However, all these effects are currently
empirically merged into the wear coefficient, which limits the applicability of Archard’s model.
Therefore, our goal in this work is to further the understanding of adhesive wear in multi-
asperity setting, based on a physics-based understanding of the wear process. To this effect,
we base our approach on the concept of critical length-scale governing the formation of wear
particles (Aghababaei, Warner, and Molinari, 2016). This concept stems from energy balance
between the available deformation energy in an asperity encounter and the energy required
to detach a wear particle (Griffith, 1921; Rabinowicz, 1958; Rabinowicz, 1995). The balance
states that contacts smaller than a critical length-scale d∗ plastically deform and contacts larger
than d∗ break into a wear particle. This was recently shown with molecular dynamics simula-
tions (Aghababaei, Warner, and Molinari, 2016). The critical length-scale d∗ = λ ·G∆w/σ 2

j
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is function of the shear modulusG, the fracture energy per unit area ∆w and the junction
strength σj with a shape factor λ, all of which can be determined by direct experiments or
analytical predictions, with no fit parameter.

In this chapter, we present two new conceptions of the wear coefficient that is built upon
the critical length-scale concept. The first concept incorporates Archard’s interpretation of
the wear coefficient as the “probability of production of a wear particle”. The second is based
on an up-scaling of single-asperity wear considerations to a multi-asperity contact setting.
Both concepts are analytically and numerically studied in different contact situations. We
compare them in the context of contact of self-affine surfaces and show that the concept based
on Archard’s interpretation leads to a constant coefficient wear within a certain range of load,
while the second does not. We finally give possible explanations as to why this is the case, and
potential improvements to the proposed models.

4.1. Review of Archard’s wear model

Archard’s wear model (Archard, 1953) can be decomposed into two parts: the single-asperity
wearmodel and the contactmodel. At the single asperity level, the amount ofmaterial removed
in an asperity interaction is considered proportional to a3 (a is the asperity contact radius),
whereas the sliding distance required to break off the wear particle is proportional to a. This
gives the general relationship for the wear rate (worn volume per sliding distance) of a single
asperity (subscript 1, see Table 4.1):

R1 = ωA, (4.1)

where A is the contact area of the asperity and ω is a generic shape factor, equal to 1/3þ in
the case of spherical asperities forming hemi-spherical wear particles. This hypothesis is
discussed in (Rabinowicz, 1995) and has been verified for isolated debris with molecular
dynamics (Aghababaei, Warner, and Molinari, 2017). At the multi-asperity level, Archard
makes two hypotheses:

I. the size and shape of the individual contact areas are given by a contact model consider-
ing a rough surface made of spheres with radius r uniformly distributed in depth, with
density d (number of spheres per unit distance).

II. a probability factorK applies on each contact to account for the fact that not all asperity
encounters result in a wear particle. Archard assumes K is independent of a.

Using these, the global wear can be related to the applied loadW :

R(W ) = KωAc (W ) (4.2)

= K
ωbd

2

(
p + 1

cd
W

) 2
p+1

,

whereAc is the true contact area, b, c and p are found in Table 4.2. In the case of a rigid-plastic
material the wear equation is a linear relationship written as:

R(W ) = Kω
W

H
. (4.3)
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Table 4.1.: Symbols and notations

Symbol Description Physical dimension

A single asperity contact area area
R wear rate volume/distance

W , δ normal applied load, indentation depth force, distance
d∗,A∗ critical length-scale, critical area distance, area
(·)1 quantity relative to a single asperity con-

tact
—

K wear coefficient based on Archard’s inter-
pretation

dimensionless

K wear coefficient based on up-scaling ap-
proach

dimensionless

(·)PL quantity computed with power-law con-
tact model

—

(·)num quantity numerically computed —
Ac ,A∗c real contact area, cumulated area of con-

tacts larger thanA∗
area

p(X ,y) probability density function of random
variableX with parameter y

dimension of 1/X

P(X > x,y) probability of the event X > x with pa-
rameter y

dimensionless

N number of contacts dimensionless
λl , λs largest and smallest wavelengths distance
H Hurst exponent dimensionless

L, ∆l system size, discretization distance
d height density 1/distance

As ,Am smallest and largest micro-contact areas area
α ,C power-law exponent and plateau value dimensionless,

1/area
E, ν ,H Young’s modulus, Poisson’s ratio, indenta-

tion hardness
pressure, dimension-
less, pressure

E? effective Young’s modulus (E? ≡ E/(1þ −
ν2))

pressure

G, ∆w , σj shear modulus, adhesive energy per unit
area, junction shear strength

pressure, en-
ergy/area, pressure

Equation (4.2) shows that the total wear rate is proportional to the total contact area, with
a proportionality factor K (modulo a shape factor), and eq. (4.3) recovers the experimentally-
observed linear relationship between wear rate and load (Burwell and Strang, 1952) (within a
certain load interval). The wear equation is however non-linear in any other case than rigid-
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Behavior b c p

Elastic πr 4.25E
√
r 3

2

Plastic 2πr 2πrH 1þ

Table 4.2.: Parameters for Archard’s multi-asperity contact model. E is the Young’s modulus,H is the
hardness of the material and r is the radius of the spherical asperities.

plastic behavior. This limitation comes exclusively fromArchard’s contact model, as it governs
theW 7→ Ac relationship. Note that other contact models (Greenwood andWilliamson, 1966;
Persson, 2006) would yield a linearW 7→ Ac relationship in the purely elastic case.

4.2. Wear coefficients based on critical length-scale

Archard interprets the proportionality factor as the probability that a given asperity encounter
yields a wear particle, and introduces it at the asperity level by expressing the single asperity
wear rate as R1 = KωA. This suggests that the particle formation is a random process at the
asperity level and independent of the micro-contact size. This is inconsistent with recent
results (Aghababaei, Warner, and Molinari, 2016) that exhibit a Griffith-like criterion gov-
erning the detachment of wear particles for homogeneous materials, the latter thus being
deterministic.

We now fundamentally enrich Archard’s interpretation of the wear coefficient by consider-
ing, within a multi-contact setting, a critical micro-contact area:

A∗ ∝

(
G∆w

σ 2
j

) 2
, (4.4)

which is the square of the critical length-scale defined in (Aghababaei, Warner, and Molinari,
2016). This length-scale is derived from the balance of available deformation energy and
required energy to form a wear particle. In this expression, G is the shear modulus, ∆w is
the fracture energy per unit area and σj is the asperity junction’s shear strength. We now
complement the eq. (4.2) with two new statements:

A. the size and shape of individual contacts are the outcome of contact between random
surfaces. The area of a single contact (also called contact cluster) is a random variableA
characterized by a probability density function p(A,W ).

B. The process of debris formation is deterministic at the asperity level. It is governed by
a critical area A∗: if the area A of a cluster is larger than A∗, a wear particle is formed
(fig. 4.1).

With this, we are now in position to propose two alternative definitions of the wear coefficient.
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Figure 4.1.: Schematic representation of rough contact and corresponding wear mechanisms.
A contact cluster forms a wear particle upon sliding if its area is larger thanA∗, otherwise the
asperity in contact deforms upon sliding without breaking (hypothesis B.). This hypothesis
brings asperity-level physics in the wear particle formation process through the critical
cluster sizeA∗.

4.2.1. Wear coefficient based on Archard’s interpretation

Archard’s interpretation of the wear coefficient is the “probability of the production of a
wear particle at an asperity encounter”. With the critical areaA∗ in mind, the probability of
production of a wear particle is simply:

K ≡ P(A > A∗,W ) =

∫ ∞

A∗
p(A,W ) dA, (4.5)

which is the probability that a realization of the random variable A is larger than A∗ for a
given loadW . This definition maintains Archard’s interpretation of the wear coefficient while
defining it at the multi-asperity level.

4.2.2. Alternative formulation of wear coefficient

Although Archard’s interpretation of the wear coefficient is widely accepted, and therefore of
prime interest, it is not physically justified by Archard, and still relies on a direct sum of wear
volume produced by every micro-contact (weighted by a constant probability coefficient),
which is not compatible with the critical length-scale concept. Here, we propose a new
interpretation of the wear coefficient: we directly use the single asperity wear relation of
eq. (4.1) with no probability coefficient and sum the wear rate of all contacts forming a wear
particle, thus truly up-scaling eq. (4.1) to multi-asperity contact.

Considering a system of finite size, there is a finite number N (W ) of clusters in the system.
We define n(A,W ) ≡ N (W ) · p(A,W ). Provided A 7→ An(A,W ) is integrable on [0,+∞[, we
can compute the total wear rate, using Archard’s single-asperity wear rate and the critical
length-scale concept, as a weighted sum of all contacts larger thanA∗:

R(W ) =

∫ ∞

A∗
R1(A)n(A,W ) dA =

∫ ∞

A∗
ωAn(A,W ) dA = ωA∗c (W ), (4.6)
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whereA∗c is the cumulated area of all clusters forming a wear particle andω is an average shape
factor. We define the functionK(W ) as:

K(W ) ≡
A∗c (W )

Ac (W )
=

∫ ∞
A∗ Ap(A,W ) dA∫ ∞
0

Ap(A,W ) dA
, (4.7)

where Ac (W ) is the total contact area. This allows us to write the wear rate as R(W ) =
K(W )ωAc (W ), in the same form as eq. (4.2). We call K(W ) the “wear coefficient”, but its
definition is substantially different from Archard’s, as we now have an area ratio instead of a
probability of particle formation. The definition in eq. (4.7) results naturally from the up-
scaling of the single-asperity wear considerations to multi-asperity contact, unlike Archard’s
wear coefficient, which was introduced a posteriori into the wear rate equation.

4.3. Numerical results

Without making a priori assumptions on the distribution of cluster areas, numerical simula-
tion allows the direct application of the wear models on realistic surfaces (Persson et al., 2005).
We evaluate the wear coefficient and the wear rate using a model for rough-surface contact
consisting of a flat, semi-infinite elastic medium in contact with a rigid solid having a random
rough surface. The contact problem is solved using a boundary-element approach (Stanley
and Kato, 1997; Polonsky and Keer, 1999b) which fully accounts for elastic interactions. The
wear coefficient is investigated through the analysis of the contact map across a representative
sample of simulations. The area of each contact cluster is determined from the contact map
using an 8-neighbors flood-fill algorithm1. This approach allows a direct computation of the
wear coefficient using eqs. (4.5) and (4.7).

The rough surfaces are random self-affine (fractal) isotropic surfaces (Mandelbrot, Pas-
soja, and Paullay, 1984; Nayak, 1971), with height function h(x,y) generated by a filtering
algorithm (Hu and Tonder, 1992). They are defined through their power spectral density
(PSD). The surfaces are isotropic, so the surface PSD depends only on the radial coordinate
q = 2π/λ, where λ is a wavelength. The surface PSD is defined using λs , λl , respectively the
short wavelength cut-off and the large wavelength cut-off (Nayak, 1971; Yastrebov, Anciaux,
and Molinari, 2012). Between ql = 2π/λl and qs = 2π/λs , the PSD decays as q−2(H+1). H is the
Hurst exponent, governing the self-affine behavior of the fractal rough surface. We vary the
Hurst exponent between 0.6þ and 0.8þ as is commonly occurring in natural surfaces (Persson
et al., 2005). There are three main properties governing the statistics of fractal surfaces:

• L/λl where L is the size of the surface, governs the representativity of the surface (Yas-
trebov, Anciaux, and Molinari, 2012). A large value yields a surface with many large
asperities, allowing better statistics while also reducing the effect of the periodic bound-
ary conditions.

• λl/λs controls the range of the PSD. This quantity influences the spectrum bandwidth
of the surface (Nayak, 1971).

1Neighborhood definition has no influence on distribution of cluster areas when discretization is fine enough.
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• λs/∆l , where ∆l is the discretization size, governs the discretization error which causes
bias in evaluated mechanical and statistical quantities, but also governs the resolution
of the details of the fractal contact clusters (Yastrebov, Anciaux, and Molinari, 2017a).
A large value reduces both of these sources of error.

Figures C.1 and C.2 show a sensitivity analysis that justifies the use of L/λl = λs/∆l = 8þ
in the work presented. All data obtained from simulation is normalized by λs for lengths
andW0 = E?

√
〈|∇h |2〉L2 for loads, where E? is the effective Young’s modulus and

√
〈|∇h |2〉

is the standard deviation of surface slopes. Figure 4.2a shows one realization of this surface.
Figures 4.2b-d show the contact map for different load steps in the rangeW /W0 ∈ [0.001, 0.2],
indicated by dashed lines in fig. 4.2e. Black area is not in contact, yellow contact clusters
are smaller than A∗, and red clusters are larger. As the load is increased, clusters grow to
span more of the available area, occasionally merging to form larger clusters, as shown in
fig. 4.2e with the increase in contact area and maximum cluster size. The latter increases
dramatically as the clusters merge, forecasting percolation. Figure 4.2f represents the increase
in the number of clusters per increase of contact area ( dN / dAc ). Positive values indicate
the regime where contact-area growth is dominated by nucleation of clusters, and negative
values indicate the regime where cluster merging dominates contact-area growth. We focus
our study to the former regime, in which the clusters are far enough to neglect interactions
in the debris forming process. As postulated by Burwell and Strang (1952), this corresponds
to the mild wear regime (Wang and Hsu, 1996; Das et al., 2007; Hokkirigawa, 1991). We let
W /W0 ∈ [0.001, 0.06], discretized in thirty load steps for the other simulations presented in
this paper.

4.3.1. Statistical distribution of contact clusters

Figure 4.3 presents the probability density function of cluster areas at multiple applied loads
for three different spectrum range parameters (λl/λs ) and a Hurst exponent of 0.8þ . Results
for different Hurst exponents and λl/λs = 128þ are shown in the inset. In agreement with
previous experimental observations (Majumdar and Bhushan, 1991; Dieterich and Kilgore,
1996) and numerical simulations (Hyun, Pei, et al., 2004; Pei et al., 2005; Campañá, Müser,
and Robbins, 2008), the probability density function of cluster areas follows a power-law
in a given interval of A. The evaluated exponent value of 1.5 (using a maximum likelihood
estimator (Clauset, Shalizi, and Newman, 2009)) is well within the measured range of 1.05þ −
2.69þ from the experiments of Dieterich and Kilgore (1996), close to values of 1.6þ predicted
by the overlap model (Mandelbrot, 1975) and 1.54þ − 1.56þ measured in the experiments
of Majumdar and Bhushan (1990). Values predicted by various contact mechanics models
(discrete and continuous) fully accounting for long-range asperity interactions are in the range
of 1.45þ − 1.6þ (Hyun and Robbins, 2007; Campañá, 2008; Müser, Dapp, et al., 2017).

Figure 4.3 also shows that the behavior of p(A,W ) is independent ofW within the power-
law interval, and that the upper bound of this interval increases with the load, in agreement
with experimental observations (Majumdar and Bhushan, 1991). The upper bound of the
power-law interval is also increasing with the surface PSD range. Moreover, when cluster sizes
are normalized with the shortest wavelength in the system, all probability density functions
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Figure 4.2.: Evolution of contact area with increasing normal load. Simulation of forty realiza-
tions with λl /λs = 8þ and fifty load steps in [0.001, 0.20] ·W0. A∗ is taken as 2λ2s . (a) shows
a rough surface sample. (b), (c) and (d) show the state of one realization at the loads
indicated by dashed lines in (e). The video provided with the supplementary material
shows the contact evolution for this realization. It can be seen from (b), (c) and (d) that the
number and the size of clusters increase withW . (e) shows the combined effect of those
two contact-area growth mechanisms on the total contact areaAc . It also shows the size
of the largest cluster, which increases dramatically when the growth ofAc is dominated
by cluster merging. Figure (f) shows the rate of increase in the number of clusters with
respect toAc . Positive values indicate a regime where the growth ofAc is dominated by
cluster nucleation and negative values indicate that the merging of clusters dominates the
contact-area growth.

collapse to a single curve within the power-law interval. The inset of fig. 4.3 shows that the
Hurst exponent has limited influence on the distribution of clusters and only affects the fall-off
behavior at large cluster areas, making the power-law approximation less accurate in this range.

4.3.2. Wear coefficient

Figure 4.4a shows the wear coefficient, Knum, as defined in eq. (4.5). It exhibits common
features with fig. 4.3, namely a power-law behavior in a given interval ofA∗ and the increase
of the upper bound of that interval withW and with λl/λs . The load-invariant power law
of fig. 4.4a signals a constant wear coefficient for a given load range. Figure 4.4b shows
the evolution of the wear coefficient as a function of load (surface used has λl/λs = 128þ ).
Remarkably, regardless of A∗, the wear coefficient transitions from zero (i.e. no observable
wear) to a constant value given by the power law of fig. 4.4a, which corresponds to the
proportionality constant observed in experiments (Burwell, 1957; Rabinowicz and Tabor, 1951;
Archard and Hirst, 1956). This is the first time to our knowledge that a model derived from
first principles predicts a constant wear coefficient within a given load range and a transition
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Figure 4.3.: Distribution of contact cluster areas. The main graph shows p(A/λ2s ,W ), the probabil-
ity density function of normalized cluster areas forH = 0.8þ and varying λl /λs , evaluated
using twenty logarithmic bins. The inset shows the probability density function for values
of H ∈ {0.6, 0.7, 0.8} with λl /λs = 128þ . p(A,W ) can be approximated by a power-law
within a certain cluster size interval, inside which it is independent of the applied loadW .
IncreasingW or λl /λs increases the upper bound of the power-law interval. Normaliza-
tion with the smallest wavelength λs collapses all distributions to a single curve within
the power-law interval. Varying the Hurst exponent has a limited effect on the resulting
distribution.

from no observable wear (i.e. wear coefficient is zero) to mild wear (i.e. wear coefficient is
constant). This transition occurs at a critical load that depends on the value ofA∗, and is larger
for systems with higherA∗ (as would be the case in lubricated contact). For systems with small
A∗ values (e.g. poor lubrication conditions), the critical load may be lower than the lowest
load we simulate. Note that in the presence of lubrication, the wear volume is affected by a
change ofA∗ as well as a reduction of the solid contact area.

Figure 4.5a and 4.5b show the wear coefficient Knum and the wear rate as functions of
the load, computed from eqs. (4.6) and (4.7) respectively. Figure 4.5a shows that the wear
coefficient is zero up to a transition load that depends on A∗. For A∗ in the low range of
values we simulate, the transition load is smaller than 0.001þ ·W0. Similarly to Archard’s wear
coefficient, this new interpretation is able to exhibit the no-wear/wear transition that has
been observed in experiments (Colaço, 2009). After the transition load, the wear coefficient
increases monotonically up to one. In fig. 4.5b, the wear rate is quasi-linear after a transition
region (Kato and Adachi, 2001).

Although there is a qualitative agreement of eq. (4.5) with experimental observation, a
quantitative agreement is difficult to obtain because measurements of hardness and RMS of
slopes are difficult and not systematic in wear experiments. In the experiments of Burwell and
Strang (1952), good care is taken in eliminating all possible sources of wear but adhesive wear,
and they provide a good base for a quantitative comparison. However no precise estimation
of the wear coefficient is given. They nonetheless give measurements of the transition load to
severe wear, which is the limit of our model, and thus cannot be computed using our base
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Figure 4.4.: Archard’s wear coefficient in context of self-affine surface contact. (a) shows the
complementary cumulative probability distribution function (H = 0.8þ ), (b) shows Ar-
chard’s wear coefficient as a function of the applied load (for λl /λs = 128þ andH = 0.8þ ).
Regardless ofA∗ there exists a critical load at which the wear coefficient transitions from
zero (i.e. no wear debris) to a constant value (i.e. steady-state mild wear regime). This
critical load largely depends on the value ofA∗: the transition occurs at a higher critical load
for contacts with lower interfacial shear strength and consequently largerA∗ (i.e. better
lubrication condition). In (b) the y-axis is linear up to 10þ −5.
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Figure 4.5.: Wear coefficient and wear rate (H = 0.8þ and λl /λs = 128). While the wear coefficient is
non-constant with the load, its derivative decreases with the load. However, regardless of
A∗, the limit value of K is one, which does not correspond to experimental observations.
Similarly, the wear rate is increasing non-linearly with the load, although its derivative
stabilizes to a fixed value with increasing load.

assumptions that neglect asperity interactions during the wear process.
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4.3.3. Analytical results

In order to understand the properties of the proposed wear coefficients in the contact of
self-affine surfaces, we develop analytical expressions of K andK for a power-law distribution
of contact clusters, as suggested by fig. 4.3:

pPL(A,Am) =


C A ∈ [0,As ]

C

(
A

As

) −α
A ∈ [As ,Am]

0þ A ∈ [Am,+∞)

. (4.8)

C is a normalizing factor such that
∫ ∞
0

pPL(A,Am) dA = 1þ and α is the power-law exponent,
set to the value measured in fig. 4.3. The effect of increasing the contact load is taken into
account via increasingAm . Applying the previously stated equations for the wear coefficient
yields the following expressions (c.f. Appendix C.1 for details):

KPL =


1þ −

A−αs (1 − α)A
∗

A1−α
m − αA1−α

s
A∗ ∈ [0,As ]

1þ −
(A∗)1−α − αA1−α

s

A1−α
m − αA1−α

s
A∗ ∈ [As ,Am]

0þ A∗ ∈ [Am,+∞)

, (4.9)

KPL =



1þ −
A−αs (1 −

α
2 )(A

∗)2

A2−α
m − α

2A
2−α
s

A∗ ∈ [0,As ]

1þ −
(A∗)2−α − α

2A
2−α
s

A2−α
m − α

2A
2−α
s

A∗ ∈ [As ,Am]

0þ A∗ ∈ [Am,+∞)

. (4.10)

The graphs of these expressions are displayed in fig. 4.6. It is apparent that the behavior ofKPL

andKPL whenAm increases is very different: while KPL tends to a limit whose value depends
onA∗, the limit value ofKPL is one, regardless ofA∗. This discrepancy is caused by the value
of α ≤ 2þ . If α > 2þ , thenKPL has a finite limit dependent onA∗, exhibiting a wear coefficient
independent of the load.

4.4. Discussion

The values predicted for Archard’s wear coefficient (fig. 4.4) are in the order of 10þ −5 − 10þ −1,
which is in the range of values reported in experiments (10þ −8 − 10þ −1; see e.g. Rabinowicz,
1995; Hsu and Shen, 2004), especially values for dry sliding (Archard and Hirst, 1956). We
have shown that the upper bound of the power-law interval in the wear coefficient increases
with the range of the surface PSD (λl/λs ). Due to computational limits, the maximum
value of λl/λs simulated was 128, much lower than values of 10þ 3 and above measured on real
surfaces (Power, Tullis, and Weeks, 1988; Liang et al., 2012; Persson et al., 2005). We postulate
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Figure 4.6.: Comparison between Archard’s wear coefficient KPL and the proposed interpre-
tationKPL for a power-law distribution of cluster areas (α = 1.5þ ). As can be seen in
the expressions of eqs. (4.9) and (4.10), the behavior ofK is different from K when α < 2þ :
we haveK → 1þ whereas K plateaus at values in ]0, 1[.

that the range of predicted values for the wear coefficient could reach the lower experimental
values for larger PSD ranges: if λs is decreased, both the power-law interval upper bound
andA∗/λ2s are increased. Moreover, it has been shown (Pei et al., 2005) that an elasto-plastic
constitutive behavior also increases the upper bound of the power-law interval, and an elasto-
plastic behavior is expected to occur even at small loads (Greenwood and Williamson, 1966;
Majumdar and Bhushan, 1991).

The newly proposed model for the wear coefficient (fig. 4.5) introduces an interpretation
that does not rely on Archard’s assumption that the probability of wear particle formation is
the same for all contacts, but does not predict the behavior commonly observed in experiments,
as the wear coefficient tends to a value of one regardless of the critical length-scale. The value
of the power-law exponent α = 1.5þ is the cause of this discrepancy: the integrals in eq. (4.7)
are dominated by the value ofAm , the largest cluster size. This can be seen in the expression
for the self-affine model in eq. (4.10). There is no definite reasoning on the origins of α , as
it depends on the spectrum of the surface, but also on constitutive behavior. A value of
α > 2þ would make the limit value of K dependent on the critical length-scale and strictly
smaller than one. It may be the case that under elasto-plastic constitutive assumption this
would be satisfied (Pei et al., 2005), but it requires efficient numerical methods to be checked
accurately. In addition, our contact model does not include transport of wear particles or
relative movement of surfaces and possible reattachment. These aspects likely also change
p(A,W ) and therefore change the properties of the wear coefficient.

The formation of a tribological layer (Popov, Gervé, et al., 2000; Scherge, Martin, and
Pöhlmann, 2006) may also change the debris formation process and geometrical as well as
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physical properties of the surfaces. This may induce lubrication and/or formation of a third
body, which could be accounted for via the proper modifications of the contact model and
the energies involved in the Griffith criterion for particle formation.

Conclusive experimental data for validation of our proposed models is difficult to ob-
tain, as wear experiments often include several coupled physical phenomenon (e.g. adhesion,
chemistry, temperature). The experiments of Burwell and Strang (1952) manage to focus on
adhesive wear only, and show that the wear coefficient should remain constant for a specific
load range before increasing sharply with the load. They relate the transition load to the
hardness, arguing that when the average applied pressure reachesH/3þ , individual contacts
and detached wear particles start interacting to form larger debris. We have shown that our
simulations remain in the regime where the contact area growth is dominated by cluster
nucleation. Individual contacts are not close enough for interaction, and the wear coefficient
computed could be compared with a measurement done with an average pressure less than
H/3þ . However, the experiments of Burwell and Strang (1952) lack precise measurements of
the wear coefficient and surfaces’ spectra, which make quantitative comparison impossible.
Some wear experiments (Power, Tullis, and Weeks, 1988; Davidesko, Sagy, and Hatzor, 2014)
provide surface spectra, but do not observe the variations of the wear coefficient with the
applied load, although the values reported by Power, Tullis, andWeeks (1988) are close to 0.02
in a linear wear regime, which is in the range of values we observe.

Ideally, a validating wear experiment would provide spectrum measurement of the surface,
study only adhesive wear of homogeneous materials (similarly to (Burwell and Strang, 1952))
and give wear coefficient measurements with respect to the load. We hope that the ideas we
put forth in our paper can encourage the experimental community to move towards this kind
of experiments. In the meantime, we are optimistic that an elasto-plastic contact model may
bring us closer to an experimental validation of those ideas.

Nonetheless, the new approach we describe both incorporates physical properties of the
interface (e.g. surface energy, junction strength), geometrical and statistical properties of the
surfaces in contact, while remaining generic with respect to the contact model. This leaves the
possibility to tune the latter to advances in contact mechanics (e.g. elasto-plastic contact), but
also real measurement of rough surfaces.

4.5. Conclusion

We have presented two physics-based interpretations for the adhesive wear coefficient. The
use of the critical length-scale is the key ingredient in our approach, and the results obtained
show common characteristics with experimental observations. In particular, the results based
on Archard’s assumption that the wear coefficient is the probability of wear particle formation
exhibit a transition in the wear coefficient, after which it remains constant with load. We also
propose a second interpretation based on a direct up-scaling of single asperity adhesive wear,
and observe that the wear coefficient depends on load. We hypothesize that this is due to
limitations in the contact model rather than the approach taken to derive the wear coefficient.
We provide analytical results for both wear concepts in different simple contact situations
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that give a broad understanding of how the wear coefficient evolves with interface physical
parameters and surface roughness.
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5. Crack Nucleation in the
Adhesive Wear of an
Elastic-Plastic Half-Space

Abstract
The detachment of material in an adhesive wear process is driven by a fracture mechanism
which is controlled by a critical length-scale. Previous efforts in multi-asperity wear model-
ing have applied this microscopic process to rough elastic contact. However, experimental
data shows that the assumption of purely elastic deformation at rough contact interfaces is
unrealistic, and that asperities in contact must deform plastically to accommodate the large
contact stresses. We therefore investigate the consequences of plastic deformation on the
macro-scale wear response. The crack nucleation process in a rough elastic-plastic contact is
analyzed in a comparative studywith a classical J2 plasticity approach and a saturation plasticity
model. We show that plastic residual deformations in the J2 model heighten the surface tensile
stresses, leading to a higher crack nucleation likelihood for contacts. This effect is shown to be
stronger when the material is more ductile. We also show that elastic interactions between
contacts can increase the likelihood of individual contacts nucleating cracks, irrespective of
the contact constitutive model. This is confirmed by a statistical approach we develop based
on a Greenwood–Williamson model modified to take into account the elastic interactions
between contacts and the shear strength of the contact junction.

Disclaimer
This chapter is reproduced from the article Lucas Frérot, Guillaume Anciaux, and Jean-
François Molinari (Oct. 11, 2019). “Crack Nucleation in the Adhesive Wear of an Elastic-
Plastic Half-Space”. In: arXiv: 1910.05163 [cond-mat], with permission of all authors.
My personal contributions to this article include the development of the models, the code
implementation, the running of simulations, the figure production and the writing of the
article.
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5.4. Multi-asperities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

The removal of a wear debris particle through adhesive forces is mainly driven by a fracture
process, and as such obeys a balance between the energy release rate (i.e. the energy

released by the crack front advancing) and the fracture toughness (i.e. the energy required
to create new surfaces). This Griffith (1921) energy balance has been verified in atomistic
simulations (Aghababaei, Warner, andMolinari, 2016; Aghababaei, Brink, andMolinari, 2018;
Brink andMolinari, 2019) and reduced to a critical length-scaled∗ ∝ G∆w/τ 2j , withG being the
shear modulus, ∆w the surface energy and τj the junction shear strength. This gives a simple
geometric criterion for the formation of hemispherical wear particles: if the contact diameter
between two hemispherical asperities is larger than d∗ then a wear particle detaches from the
surface upon shearing of the system. The issue of transposing asperity-scale wear mechanisms
to multi-asperity contact is key in the goal of formulating predictive wear models (Meng and
Ludema, 1995; Vakis et al., 2018). Popov and Pohrt (2018) and Pham-Ba, Brink, and Molinari
(2019) have recently proposed energy-based models for the formation of wear particles in
multi-asperity settings. The former investigates the formation of hemispherical wear particles
in an elastic rough surface contact by computing an energy-favored particle diameter based on
the elastic deformation energy of the contact solution. The latter formulates the energetic
competition between the formation of a single vs.multiplewear particles (for 2D line contacts),
thus giving an energy approach to the crack shielding mechanism that leads to disjoint but
sufficiently close contacts forming a single wear particle (Aghababaei, Brink, and Molinari,
2018).

In Chapter 4, we have applied the critical length-scale concept to rough elastic contact by
defining a critical cluster area A∗ ∝ (d∗)2 above which micro-contacts should form a wear
particle. This work however suffers from two model inadequacies: (a) the contact solution is
given by an elastic contact model, (b) it assumes thatA∗ exists and is proportional to the square
of d∗. The latter is related to the topography and shape of contacts. Contacts resulting from
interfaces with rough surfaces are not disk-shaped and the crack is not expected to produce
hemispherical wear particles. Moreover, this does not account for disjoint contacts that may
form a single particle (Aghababaei, Brink, and Molinari, 2018; Pham-Ba, Brink, and Molinari,
2019). Thence, it is unclear if the Griffith balance can be characterized with a comparison as
“naive” asA ?

≥A∗ withA being the area of a single contact cluster.
The former shortcoming (a) provides to the wear models developed in the previous chapter

an unrealistic contact solution. Since both A∗ and the contact solution indirectly depend on
σy

1, the outcome of an elastic contact problem (which is independent of σy) leads to a paradox:
more ductile materials (with lower σy) have a higherA∗ and thus wear less than more brittle
materials (with higher σy). This is due to the contact solution being insensitive to changes
in σy, but also to the lack of surface roughness evolution in sliding. When the contact of
two asperities does not create a wear particle, plastic smoothing of the asperities occurs, thus
creating larger contacts. In any case, a contact model incorporating plastic effects is needed.

Experimental data clearly shows that some form of plasticity must occur at rough contact

1We haveA∗ ∝ σy−4 if one assumes τj ∝ σy and the total contact areaAc ∝ σ−1y according to saturation models
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interfaces (Bowden and Tabor, 1939; Greenwood and Williamson, 1966; Weber et al., 2018;
Zhang, Liu, et al., 2019). Modeling these interfaces with a non-linear constitutive behavior is
however a challenge because of the multi-scale nature of rough surfaces. Pei et al. (2005) were
the first to use the finite-element method to study elastic-plastic rough contact with a classical
von Mises formulation (Simo and Hughes, 1998). Jacq et al. (2002) have developed a volume
integral method that we have refined with a Fourier approach to be able to handle the large
discretization requirements of multi-scale rough surfaces, cf. Chapters 2 and 3. The majority
of published works on elastic-plastic contact does not rely on classical formulations of plastic
flow, but rather on the concept of surface flow pressure, which is associated to the hardness
of a material (Archard, 1953; Greenwood and Williamson, 1966; Majumdar and Bhushan,
1991; Persson, 2001a). The surface flow pressure is usually taken as the maximum value of the
mean pressure caused by an indenter of a given shape (it is therefore shape-dependent). Tabor
(1951) has shown that for a spherical indenter, the mean pressure saturates at a value close to
3σy (with σy being the yield stress). The models previously mentioned are thereafter referred
to as “saturation models”, in the sense that they apply this concept of a maximum average
pressure to a multi-asperity contact model see e.g Tabor, 1951, chap. 9 and assume that a given
contact cannot have a pressure exceeding the saturation pressure noted pm2. They have been
used in conjunction with boundary integral approaches (Almqvist, Sahlin, et al., 2007) to
study friction (Weber et al., 2018), but have to our knowledge never been compared to classical
plasticity formulations, and the relevance of the choice between the two plasticity models has
never been studied.

Akchurin, Bosman, and Lugt (2016) and Li, Shi, et al. (2019) have used a saturation plasticity
model to compute the contact solution and applied a stress based criterion for the removal
of debris particles: from the contact pressure profile, they computed the resulting von Mises
stress caused in a purely elastic medium. Then the zones of the material where the von Mises
stress exceeds the yield stress are removed, changing the surface profile. This has the advantage
of foregoing any geometrical consideration, at the expense of providing an ad-hoc removal
process that is not derived from the fracture energy balance, as well as using a stress distribution
that does not account for plastic deformations.

In this work, we wish to investigate the multi-asperity wear process from a fracture me-
chanics perspective and understand the influence of plasticity in the contact model on the
global wear response. To this end, we focus on the crack nucleation process in the contact of a
rigid self-affine rough surface with an elastic-plastic flat half-space. One measure of particular
importance is the crack spatial density. While it is not ameasure of wear itself, crack nucleation
is a necessary process of wear, and understanding what are the roles of the normal load, the
critical nucleation stress, the junction resistance, and plastic behavior in crack nucleation is
a fundamental step towards predictive wear models. We first highlight the importance of
the choice of a plasticity model and the implications it may have on the contact response
(Section 5.1). We then show how the crack nucleation density in a rough surface elastic-plastic

2More often than not, the saturation pressure is referred to as “hardness”. As Burwell and Strang (1952) discuss,
the saturation (or flow) pressure cannot be absolutely known but is of the same order of magnitude as the
value given by usual hardness tests. We therefore keep separate notations for clarity.
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contact depends on the fracture mechanics properties of the material, as well as the applied
load and the junction shear strength (Section 5.2). To rationalize the differences between the
elastic, the saturation and the von Mises plasticity approaches, we study the contact behavior
of a single asperity to understand under which conditions a crack can nucleate and what is
the influence of residual plastic deformations on this process (Section 5.3). These findings
are applied to a simple multi-asperity contact model (Greenwood and Williamson, 1966) in
order to obtain analytical predictions of the scaling of the crack density with respect to system
parameters like the applied normal load (Section 5.4). These predictions are confronted to
elastic rough contact simulations which are able to reproduce the contact shielding effect
under shear loading, as seen in molecular dynamics simulations (Aghababaei, Brink, and
Molinari, 2018; Pham-Ba, Brink, and Molinari, 2019). Simulation results show that ductile
materials in contact with rough surfaces produce more crack nucleation sites than brittle
materials due to the residual stresses caused by plastic deformations. This effect is not captured
by the elastic contact model nor the saturation plasticity model, indicating that the resolution
of the aforementioned wear paradox should include the full plastic contact response. This
further implies that the true contact area is not the only key quantity in wear modeling.

5.1. Elastic-plastic contact

At our disposal are (at least) two formulations of the elastic-plastic contact of solids, the
choice of which may have an impact on the subsequent results we wish to obtain. The first
formulation, which has been used in the finite-element studies of Pei et al. (2005), follows
the classical modeling hypothesis of metal plasticity (Simo and Hughes, 1998), which have
both experimental (Bui, 1969) and theoretical backgrounds (Reddy and Martin, 1994), and
additionally are valid in other context than contact. The second, developed by Bowden
and Tabor (1939) and extended by Almqvist, Sahlin, et al. (2007) in conjunction with a
boundary integral approach, postulates that the surface contact pressure should nowhere
exceed a maximum value pm . This is based on observations that for spherical indentation
the mean contact pressure does not exceed a value around 3σy (Tabor, 1951). Recent finite-
element simulations (Krithivasan and Jackson, 2007; Song and Komvopoulos, 2013; Ghaednia
et al., 2017) show that pm/σy may depend on the ratio σy/E

∗ (with E∗ := E/(1þ − ν2) being
the contact modulus) as well as the wavenumber in the case of sinusoidal contact surfaces.
Despite these reports, saturation models are often used in computational tribology (Weber
et al., 2018; Akchurin, Bosman, and Lugt, 2016; Li, Shi, et al., 2019) due to their simplicity and
ease of implementation. Besides increasing the magnitude of the true contact area compared
to elastic contact, plasticity influences other aspects of the contact interface (such as contact
pressures). These additional aspects may be key ingredients in wear modeling. For this reason
we wish to provide a comprehensive comparison between the von Mises associated plasticity
and the saturation plasticity with pm = 3σy in a rough contact situation, and determine the
consequences of the choice of onemodel over the other. We start by giving the full mechanical
formulation for both models, then proceed to the comparison.
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Definitions In this work, we consider a deformable three-dimensional solidB spanning a
half-space, with its (flat) boundary noted ∂B. Moreover, we suppose a horizontal periodicity
in the cell Bp = [0, L]2 × R+. We note σ the Cauchy stress tensor, which is related to the
small-strain tensor ε and the plastic strain tensor εp by the relationσ = C :þ (ε − εp )where C is
the usual isotropic linear elasticity tensor. The strain tensor is given by kinematic compatibility
as a function of the displacement field: ε = ∇symu. Finally, σ is expected to be divergence-free
to satisfy conservation of momentum without volume forces.

We additionally define some surface quantities: t and p := t · e3 are respectively tractions
and normal pressures applied on ∂B. Other surface quantities are noted with an over-bar •
when not explicitly defined on ∂B, e.g.u is the surface displacement.

Saturation: perfect plasticity

The simplest form of saturationmodel, conceptually close to the notion of “perfect plasticity”,
is given as (Almqvist, Sahlin, et al., 2007)

min
p

{
1
2

∫
∂Bp

pM[p]dS −
∫
∂Bp

phdS

}
, (5.1a)

which is a problem of finding the surface pressures p minimizing the complementary energy
of the system under the constraints

p ≥ 0, (5.1b)
p ≤ pm, (5.1c)∫

∂Bp

pdS =W . (5.1d)

The linear operatorM gives the normal surface displacement due to the applied pressure p
if B is assumed elastic; h is a continuous function representing the rough surface brought
in contact with ∂B andW is the total applied normal load in the periodic cell boundary
∂Bp . The gap is defined as д :=M[p] − h and should satisfy weak Hertz–Signorini–Moreau
conditions (Weber et al., 2018):

д ≥ 0 where p < pm, (5.2a)
p ≥ 0, (5.2b)

p д = 0 where p < pm . (5.2c)

The solution to the above constrained optimization problem yields a negative gap where
p = pm . The magnitude of the negative gap is often assumed to be the magnitude of the
residual plastic displacements. Since theweak optimality conditions donot represent a physical
system (the gap should be non-negative everywhere to avoid body interpenetration), it is
necessary to replace h in eq. (5.1a) by hsmod := h + hpl, with hpl being in principle a correction
due to residual plastic displacements, therefore hpl := −(M[p] − h) where p = pm . Weber
et al. (2018) propose an iterative scheme to solve for hpl which we have implemented and
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5. Crack Nucleation in the Adhesive Wear of an Elastic-Plastic Half-Space

made available in the open-source contact library Tamaas (Frérot, Anciaux, Rey, et al., 2019)
(https://c4science.ch/tag/tamaas/).

The “perfect plasticity” aspect of the model comes from the fact that pm is homogeneous
on ∂B and constant. Weber et al. (2018) have amended this hypothesis to include a form of
hardening. The saturation pressure is simply expressed as a linear function of hpl (i.e. the
initial saturation stress is zero, and rises in proportion with hpl). We will however not discuss
this particular model here.

J2 von Mises plasticity

For the Cauchy stress tensor σ , the von Mises yield function fy is defined as

fy(σ ) =

√
3
2
| |s | |, where s := σ −

1
3
Tr(σ )I . (5.3)

The equivalent cumulated plastic strain is expressed as the integral of the plastic strain rate Ûεp
from some reference time t0:

ep :=

√
2
3

∫ t

t0
| | Ûεp | |dt . (5.4)

The admissibility and consistency conditions are written as:

fy(σ ) − fh(e
p ) ≤ 0, (5.5a)(

fy(σ ) − fh(e
p )

)
Ûep = 0, (5.5b)

where fh is the hardening function. In this work, we will only consider functions of the
form fh(e

p ) = σy + Ehe
p , with σy the initial yield stress and Eh the hardening modulus3. The

associated flow rule that determines Ûεp is given by (Johnson, 1985):

Ûεp =
3 Ûep

2fy(σ )
s(σ ). (5.6)

The numerical integration of the relations above is typically done with a backwards Euler
scheme and is classical to the solid mechanics literature (Simo and Hughes, 1998). Its coupling
with the equilibrium and contact conditions is however non-trivial.

Solution strategy Jacq et al. (2002) established a numerical method for the solution of
the elastic-plastic rough contact problem, which we summarize here. The method consists
in solving the contact and the plasticity problems separately. The contact problem is solved
for fixed plastic deformations: it is effectively an elastic contact problem with a rough surface
hmod := h − u

p
3 , with u

p
3 the vertical component of the actual4 plastic residual displacement.

Various solution strategies for the elastic rough contact problem are available in the litera-
ture (Bemporad and Paggi, 2015), and we use here the modified conjugate gradient algorithm

3This corresponds to linear isotropic hardening.
4In this approach the residual displacement is directly computed from εp , whereas in the saturation plasticity

model it is merely assumed equal to the negative gap.
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of Polonsky and Keer (1999b) coupled with the spectral approach of Stanley and Kato (1997)
for the gradient computation involving the operatorM.

The plastic problem is solved with fixed boundary tractions, meaning that the contact
area does not evolve during the resolution of the plastic strain increment. The procedure
we employ, fully detailed in (Frérot, Bonnet, et al., 2019), relies on an implicit incremental
volume integral equation formulation proposed by Telles and Carrer (1991). The total strain
increment is shown to be expressed as:

∆ε = ∇symM[∆t] + ∇symN[C : ∆εp (∆ε ; S)], (5.7)

where S := (ep, εp ) is the current plastic state, ∆t is the increment of surface tractions (in
our case ∆t = ∆p e3 as we are in a normal contact situation). The function ∆εp (∆ε ;þ S)
represents the radial-return algorithm classically used in incremental plastic analysis (Simo
and Hughes, 1998). Equation (5.7) is a non-linear equation that can be solved with the DF-
SANE algorithm (La Cruz, Martínez, and Raydan, 2006) which has the advantage of being
jacobian-free.

The operatorsM andN , which are at the heart of the method developed in (Frérot, Bon-
net, et al., 2019), are linear integral operators which compute in B the displacement due to
periodic distributions of surface traction and volume eigenstress respectively5. Their complete
formulation and application in a discretized setting is extensively discussed in (Frérot, Bonnet,
et al., 2019). The coupling between the elastic contact problem and the plasticity problem is
done with a relaxed fixed point strategy (Jacq et al., 2002; Frérot, Bonnet, et al., 2019). The
full implementation of the described solution method is also freely available in Tamaas.

Comparison: rough surface

While both plasticity models are phenomenological, associated plasticity is soundly grounded
in experimental observations (Bui, 1969) as well as thermodynamic principles (Reddy and
Martin, 1994; Simo and Hughes, 1998), and expresses a macroscopic picture of dislocation
systems at the micro-scale. This is not the case for the saturation models: they depend on the
observation that the mean contact pressure saturates for spherical indentation (Tabor, 1951),
which has been challenged by recent finite-element simulations (Song and Komvopoulos,
2013; Krithivasan and Jackson, 2007).

We aim here to provide a direct comparison for a rough surface between a perfectly plastic
J2 model and the saturation model. The rough surfaces we use throughout this work are
self-affine random surfaces. Their power-spectrum density is defined as

ϕ(q)=


C ql ≤ |q | ≤ qr ,

C

(
qr
|q |

) −2(H+1)
qr ≤ |q | ≤ qs ,

0þ otherwise

(5.8)

5For reference, we can express withM andN both the surface vertical displacement due to an applied pressure
M[p] =M[p · e3]

��
∂B · e3 and the residual vertical displacement ūp3 = N[C :þ εp ]

��
∂B · e3.
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5. Crack Nucleation in the Adhesive Wear of an Elastic-Plastic Half-Space

where ql ,qr ,qs are the spatial frequencies associated to the long cutoff wavelength λl , roll-off
wavelength λr and short cutoff wavelength λs respectively, while H is the Hurst exponent.
For the purposes of comparison, we chose a rather narrow spectrum: L/λl = 3þ , λl = λr and
λr /λs = 9þ . The discretization size ∆l is such that λs/∆l = 9þ . The depth modeled in the J2
approach is L/5þ . This gives a discretized system of 243þ × 243þ × 64þ points. Naturally, the
discretized saturated model has 243þ × 243þ points.

The normal loads applied in both models are adimensionalized byW0 = E∗L2h′rms where
h′rms :=

√
〈|∇h |2〉 is the root-mean-square of the surface slopes. In elasticity, this normalization

collapses load (W ) vs. true contact area (Ac ) for different values ofh′rms (but the same spectrum
parameters) (Bush, Gibson, and Thomas, 1975; Hyun, Pei, et al., 2004). We do not intend
here to modify the spectrum parameters but merely scale h′rms, which therefore becomes a
non-dimensional measure of surface summit amplitude. This is convenient to compare the
results of the J2 and saturated models to an elastic reference, as we expect the contact behavior
to depend on the surface peak amplitude because of plasticity.

a b c0
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Figure 5.1.: Pressure profiles for J2 plasticity (a), saturation (b) and elasticity (c) models. Al-
though fig. (a) shows that the local pressure can exceed values of 3σy, the average pressure
in contacts 〈p〉 =W /Ac is closer to 2σy, whereas the saturated model gives an average of
2.5σy with large saturated portions of the micro-contacts. In this case, the normal load is
W /W0 is 6.5þ · 10þ −2, and the saturated model predicts a contact area 20%þ smaller than the
J2 prediction. As a result the connectivity of micro-contacts is different between the two
models.

Figure 5.1 shows the contact pressures for J2 (fig. 5.1a) and saturated (fig. 5.1b) plasticity,
as well as elasticity (fig. 5.1c), at the loadW /W0 = 6.5þ · 10þ −2. The total contact ratio is 25%þ
for J2 plasticity, 20%þ for saturation and 15%þ for elasticity, resulting in about 20%þ error in
the contact area of the saturated model. Moreover, while the maximum pressure in the J2
model exceeds 3σy (cf. fig. 5.1a), the average pressure on micro-contacts is closer to 2σy, which
the saturation model fails to capture with an average of 2.5σy . Local features of the contact
patches also differ due to the three models being in different contact stages.

Figure 5.2 shows the contact area ratio and the secant slope of the load/contact area relation-
ship, which is a quantity that has been extensively studied in elastic contact (Bush, Gibson,
and Thomas, 1975; Persson, 2001b; Yastrebov, Anciaux, and Molinari, 2015; Campañá and
Müser, 2007; Pastewka and Robbins, 2014; Yastrebov, Anciaux, and Molinari, 2017b; Hyun,
Pei, et al., 2004). We show here that all models have a sub-linear load/contact area law since
the secant slope is decreasing. The saturation plasticity model fails to predict the J2 secant
slope and is on average 20% smaller. Both models should give increased slopes when h′rms is
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Figure 5.2.: Contact ratio and secant slope of the load/contact area relationship. All models
predict a sub-linear load/contact area law because the secant slope decreases with the load.
On average the slope computed using the saturation pressure model is 20% lower than the
slope computed with the J2 plasticity approach.
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Figure 5.3.: Probability density function of surface pressures. Neither the elastic nor the saturated
models qualitatively reproduce the pressure distribution of the elastic-plastic model. As
expected, the pressure distribution of the saturated model tends to a Dirac distribution
for p = pm , whereas the distribution for the elastic-plastic model tends to zero. Note that
the results of Pei et al. (2005) have been renormalized (cf. companion notebook (Frérot,
2019b)).

increased, but it is unclear if the relative error between them should stay constant with respect
to h′rms. One could nonetheless fit pm in the saturation model to match the elastic-plastic
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5. Crack Nucleation in the Adhesive Wear of an Elastic-Plastic Half-Space

contact area ratio for a given value of h′rms.
Figure 5.3 shows the probability density function of the surface pressures for the three

models, with the addition of reference data from Pei et al. (2005) (fig. 10a) which results
from a J2 plasticity criterion used in a finite-element approach. The features of the curve
corresponding to the J2 plasticity models are not qualitatively reproduced by the saturation
model: the peak at p = 2.5σy is non-existent and as expected the distribution of the saturated
pressures tends to a Dirac at p = pm whereas the J2 distribution tends to zero. The difference
between our results and those of Pei et al. (2005) can be explained by the coarseness of the
mesh they used, as well as different spectrum parameters (e.g.H = 0.5þ in their case).

To studymacroscopic quantities (such as the true contact area), the saturationmodel is only
suitable if one has reference data to fit pm . However, it fails to qualitatively reproduce local
surface quantities (as can be seen in figs. 5.1 and 5.3), in addition to providing no information on
the complete stress state at and below the contact surface. The saturationmodel may be useful
in applications where quantitative errors in the contact area magnitude or its topography
may be accepted, only to obtain qualitative relations (e.g. sealing, electric conductance). It
can however give unequivocally wrong results when local stress based quantities drive the
phenomenon one wishes to study. We shall see in the next section that this can be the case
in wear modeling when we consider the crack nucleation process in an elastic-plastic rough
contact.

5.2. Crack nucleation in rough surface contact

Most of the atomistic investigations of adhesive wear processes use geometries that contain
stress concentrators (Aghababaei, Warner, andMolinari, 2016; Milanese et al., 2019; Brink and
Molinari, 2019), such that in their model system the debris formation is only controlled by the
Griffith energy balance. However, without a defect/stress concentration, a crack described
by linear elastic fracture mechanics cannot nucleate. In a half-space geometry, with plasticity
constitutive behavior, no such concentration can exist. For that reason, it is necessary to
introduce a critical nucleation tensile stress σc .

In linear elasticity the stresses are unbounded and depend linearly on the applied load. The
picture however changes in plasticity, as one can expect the tensile stress to saturate, possibly
below σc , preventing crack nucleation altogether. Brink and Molinari (2019) have also shown
that the resistance to shear of the contact junction plays a fundamental role in the wear particle
formation. From a stress perspective, there is a competition between σc and τj (the junction
shear resistance) for the formation of a crack: if the junction is strong enough, the maximum
tensile stressmay, under conditions depending onσy, reachσc and nucleate a crack. Conversely,
if the junction is weaker, its slip may prevent the tensile stress from reaching σc .

We investigate the interplay of these effects in the contact of a rigid self-affine rough surface
with h′rms = 0.1þ and whose spectrum is defined with L/λs = 16þ , λl = λr = 8λs , H = 0.8þ , so
that the surface is representative (Yastrebov, Anciaux, andMolinari, 2012). We have discretized
the systemwith 729þ ×729þ points for the elastic and saturationmodels, and 729þ ×729þ ×32þ for
the J2 model. The applied normal mean pressure varies between 10þ −2h′rmsE and 8þ · 10þ −2h′rmsE
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for the elastic case and between 10þ −2h′rmsE and 4þ · 10þ −2h′rmsE for the saturation and J2 models.
The yield stress is σy = 10þ −2E and hardening modulus Eh = 5þ · 10þ −2E. Since we investigate
the effect of the junction shear strength, we also apply a shear stress on the contacts at constant
normal load. There is a simple correspondence between the applied shear stress and the
junction strength τj : any shear loading larger than τj should not modify the stress state of
the system since all contacts should be slipping and the stresses should not increase. We
therefore interchangeably refer to the applied shear and the junction strength as τj . In linear
elasticity, the application of a constant shear stress on a patch of the surface creates a stress
singularity at the edge of the patch (Menga and Carbone, 2019) because of the boundary
condition discontinuity. In a physical system, a small amount of slip and rearrangement of the
solids would occur at the edge of the contact junction so that the shear stress carried should be
reduced on this zone. We therefore regularize6 the constant shear distribution over a transition
zone of width ετ small compared to the smallest surface wavelength (ετ ≈ λs/3þ ), removing
any numerical discrepancy due to the singularity.

We call a crack nucleation site a connected zone of the surface where the largest eigenvalue
of the Cauchy stress tensor σI is larger than σc . Although the wear particle formation process is
deterministic, the inherent randomness of the rough surfaces makes the process epistemically
random (Frérot, Aghababaei, and Molinari, 2018). We apply a similar concept here and study
the probability that a given contact nucleates a crack.

However, because of the complex topography of the micro-contacts, there is no one-to-one
correspondence between crack nucleation sites and contacts. This can be seen in fig. 5.4,
where we show in grey the true contact area, in red the plastic zones and in black the crack
nucleation sites (i.e. the zones where σI > σc ) for σc = 0.1h′rmsE

∗ and upwards applied shear
stress τj = 2þ · 10þ −3E. Figure 5.4a shows the result for the saturation plasticity model and
fig. 5.4b shows the J2 plasticity model. One can easily see on the latter that a single micro-
contact may have several crack sites. We also recognize the expected crescent shape crack
nucleation on some contacts. Finally, the number of cracks is larger in the J2 model than in the
saturation plasticity model. Since the contact areas predicted by both models are essentially
the same, this difference can only be explained by the residual plastic deformations, which are
not modeled in the saturation plasticity approach.

Becausewe still want to investigate a quantity akin to the probability that a contact nucleates
a crack, we propose an adimensional measure called the crack nucleation likelihood (CNL)
given byA0 · ncrack/Ac , whereA0 = L2 is the apparent contact area and ncrack is the number
of crack nucleation sites (i.e. the number of connected black zones in fig. 5.4). The CNL is
conceptually a normalization of the number of crack nucleation sites by the density of contacts
and relates to the probability of crack nucleation at a contact (this relationship will be detailed
later on in this article).

Figures 5.5 and 5.6 show the CNL as a function of σc when the normal load and the applied
shear stress/junction strength are respectively varied, for an elastic (a), a saturated and a J2
contact (b). On fig. 5.5a, the CNL curves are shifted to the right with larger normal loads. This

6Regularization is done by convolution with a function of the form ϕε (r ) = exp(−1/(1þ − (r/ε)))/ε2 (David and
Gosselet, 2015).
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a b

Figure 5.4.: Crack nucleation sites for the saturation pressure (a) and J2 plasticity (b) models.
An “upwards” shear is applied on each contact. The true contact area is shown in light
grey, the plastic zones in red and the crack nucleation sites in black. We can see that the J2
model has more crack nucleation sites than the saturation model. Since both models give
approximately the same true contact area, this discrepancy must be due to plastic residual
deformations which are not represented in the saturation approach. Figure (b) shows that
there can be multiple crack nucleation sites per contact.
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Figure 5.5.: Crack nucleation likelihood (CNL) as a function of σc and normal load. Figure (a)
shows the results for an elastic contact, while (b) shows the saturation and J2 plasticity
results. In (a) the CNL curves are uniformly shifted to the right when the load is increased,
indicating an exponential increase in the CNL. The normalization of ncrack by the true
contact area makes explicit that this increase is due to stronger elastic interactions between
contacts. The magnitude of the shift is given by the most frequent value of σI called σi/c.
The two plasticity models in (b) have drastically different behavior: the crack nucleation
is much more likely in the J2 approach because of plastic residual stresses, and the CNL
experiences a faster decay for values of σc > σy.
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Figure 5.6.: Crack nucleation likelihood (CNL) as a function of σc and junction strength. As
for fig. 5.5, (a) shows the elastic model and (b) the plastic models. Unlike fig. 5.5a, the CNL
for the elastic model is scaled to the right when the junction strength increases. The same
can be said of the curves corresponding to the saturation plasticity in (b), but not of the J2
curves, which are relatively insensitive to changes in τj . This is due to plasticity preventing
increases in σI.

means that for a fixed value of σc , the CNL increases exponentially when the load is increased.
The vertical lines indicate a quantity σi/c, which is the stress for which the probability density
function of σI on the whole surface is maximum: in other words it is the most frequent
stress value, and is typically found between contacts (hence the term “inter-contact stress”).
The horizontal shift in the CNL curves corresponds to σi/c. Since the latter depends on the
spatial proximity of contacts, the CNL must depend on elastic interactions between contacts.
Figure 5.5b shows that the two plasticity models have widely different behavior: the crack
nucleation likelihood is much higher in the case of J2 plasticity, but also decays faster for values
of σc > σy. It is surprising that despite being plastic with some hardening, the J2 model is more
likely to lead to surface cracks than the saturation model. This may be a first step towards
resolving the paradox highlighted in introduction.

Figure 5.6 shows the CNL when the junction strength increases (for the last normal load
of fig. 5.5). Unlike previously, the elastic results are not shifted to the right when τj increases
but are instead scaled rightward. The same happens with the saturation plasticity model,
whereas the J2 CNL seems relatively unaffected by τj . This is due to plastic deformations
having reached the contact surface (cf. fig. 5.4) and preventing an increase of σI as fast as the
elastic and saturation models, although hardening still allows some increase at a lower rate. In
order to rationalize these results and provide evidence for the conclusions we have induced
from our multi-asperity simulations, we now study the crack nucleation process for a single
asperity.
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Figure 5.7.: Maximum tensile stress as a function of applied shear stress across single asperity
contact with J2 plasticity. The loading curves consist of two parts: an initial linear
loading and a non-linear saturation of σI. Although the initial slope is linear, the loading
is not elastic as plastic deformations still evolve in the system. Their influence on the
maximum tensile stress at the surface is however minimal. A sufficient shear stress may
eventually create plastic strain at the surface, which causes a transition in the loading curve.
Moreover, given a low enough yield stress, the initial indentation may cause surface yield,
as seen for the curve where σy/E = 2þ · 10þ −2.

5.3. Single asperity crack nucleation

To investigate the effect of plasticity in the competition between σc and τj , we simulate a
spherical indenter of radius R pushed onto an elastic-perfectly-plastic solid. The resulting
contact junction is then subjected to a shear distribution (with ετ = R/64þ ), and the principal
tensile stress σI at the surface is recorded.

Figure 5.7 shows the maximum tensile stress σI as a function of the applied shear stress τj
across the contact. The different curves correspond to different yield stresses, with the dashed
lines indicating the value of σy for reference. Stresses here are normalized by the maximum
tensile stress in Hertz contact σHertz

I = (1þ − 2ν )p0/3þ , with p0 being the maximum hertzian
contact pressure (Johnson, 1985). We can observe that the initial tensile stress (without applied
shear) depends on the amount of plastic deformation: if σy is decreased (or conversely the
applied load increases), the initial tensile stress at the edge of the contact is higher. This is due
to the residual stresses created by the plastic deformations that accommodate the indentation:
the localized nature of the plastic strains causes the unloaded equilibrium position to not be
stress-free. The additional stresses are tensile and add to the stress on the contact rim. In the
case of σy/E = 2þ · 10þ −2, the plastic zone has reached the surface and the von Mises stress at
the edge of contact has reached σy by indentation alone (not shown here).

If the von Mises stress at the surface is below σy, the application of a shear stress will cause
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5.3. Single asperity crack nucleation

Figure 5.8.: Failure regimes for a sheared spherical indentation. For the first row of graphs, the
ratio σy/E is varied for a perfectly plastic material. For the second row, the hardening ratio
Eh/E is varied for a yield ratio of σy/E = 2þ · 10þ −2. On each graph the dashed line shows the
yield stress. The white curve marks the transition between failure driven by slip rupture
of the junction and failure by crack nucleation. The competition between the junction
strength τj and the critical stress σc is influenced by σy because of the saturation effect
shown in fig. 5.7. While plasticity gives a failure mechanism independent of τj , hardening
allows the tensile stress to grow past the initial yield limit, giving a linear transition between
failure mechanisms.

an elastic loading phase, offset by the initial σI value, as seen for the higher values of σy/E. The
loading continues until σI reaches values close to σy, as indicated by the dashed lines. Since
the stress state at the edge of contact is triaxial, the maximum value σI can reach is not σy, as
is seen for the most plastic case. After a certain point, eq. (5.7) becomes unsolvable because
a plastic failure mechanism develops (Drucker and Prager, 1952): we supposed that further
loading will not increase the value of σI. Of course, for a hardening material σI should not
saturate and instead increase further at a lower rate.

Figure 5.8 shows the competition between the junction strength τj and the tensile strength
σc for different values of σy (first row no hardening, i.e. Eh/E = 0þ ) and Eh (second row with
σy/E = 2þ · 10þ −2) the hardening modulus. The zones below the white curve show for which
values of (σc , τj ) a crack may nucleate, and the zones above show when the interface breaks
(i.e. slips) before crack nucleation. The dashed lines indicate the values of σy. We can see that
for materials with high yield there is an affine boundary between the two mechanisms, which
shows their competition. Of course materials with σc < σy are not plastic, so such transition
can only happen for brittlematerials. It does however exist for hardeningmaterials, as opposed
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5. Crack Nucleation in the Adhesive Wear of an Elastic-Plastic Half-Space

to perfectly plastic ones. With no hardening, the failure mechanism is purely determined by
the value of σc/σHertz

I , which depends on the applied load.
With this single-asperity analysis, we have explained why the crack nucleation likelihood is

higher in the J2 model for no applied shear stress: the plastic residual deformations cause tensile
stresses which combine with the contact stresses and increase σI, thus increasing the CNL.
This does not occur in the saturated model because it ignores plastic residual deformations
in the stress computation. We have also explained why the J2 CNL is relatively insensitive to
the applied shear/junction strength: plasticity has a saturation effect on σI: when the system
is sheared, the rim of contacts is in the plastic regime, and the increase in σI is purely driven
by hardening, which in the case of fig. 5.6 is only 5% of the Young’s modulus. In order to
rationalize the other aspects of the CNL highlighted by figs. 5.5 and 5.6, we resort to a statistical
model for multi-asperity contact.

5.4. Multi-asperities

One can now apply a statistical approach to estimate the proportion of contacts that nu-
cleate cracks in a multi-asperity setting. We thereafter use a Greenwood–Williamson (GW)
model (Greenwood andWilliamson, 1966)with an exponential distribution of asperity heights
to obtain simple analytical results. Since the asperities are randomly distributed (all with the
same radius R), σHertz

I becomes in turn a random variable. There is however a significant
difference between the single asperity case we have studied and the multi-asperity setting.
Because of elastic interactions, the tensile stress at the edge of a contact depends on the prox-
imity and magnitude of the neighboring contacts. In a traditional GW approach, contacts are
independent of each other. We assume this is the case, but that the stress state is determined
by the local contact with an additional contribution σi/c, the inter-contact stress, determined
from the neighboring contacts. The radial stress outside the area of a single contact of radius
a is given by (Johnson, 1985):

σr (r ) =
1 − 2ν

3
·
a2

r 2
p0 = κ

sR

r 2
(z∗ − h)

3
2 , (5.9)

with

κ :=
2(1 − 2ν )E∗

3π
·

√
s

R
, (5.10)

where r is the euclidean distance from the contact center, z∗ = z/s is the asperity height random
variable normalized by the standard deviation of heights s and h is the normalized surface
approach. We assume a spatial asperity densityη and a contact densityηc = ηe−h = Ac/(A0πsR)

(Greenwood and Williamson, 1966), with Ac being the true contact area. To compute the
inter-contact stress σi/c, we assume the stress state outside each contact is given by the mean
of eq. (5.9), averaged over contacting asperities, and we compute the largest stress eigenvalue
at the center of a series of circles whose diameters are multiples of dc = 1/

√
ηc which is the

characteristic distance between contacts. The calculation process is detailed in Appendix D.1
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and leads to the following expression:

σi/c = 3κ
ξ
√
π
·
Ac

A0
, (5.11)

with ξ ≤
√
3ζ (3) ≈ 1.9þ and ζ is the Riemann Zeta function. We use this upper bound for

σi/c in the rest of this work. We can see that σi/c depends linearly on the contact ratio, and
therefore is linear with the load. We suppose that σi/c acts as a “background” stress, and
that the maximum tensile stress is the sum of the local contact tensile stress σHertz

I and the
inter-contact stress. We can therefore quantify the probability that a contact nucleates a crack:

Pcrack = P

(
σc

σHertz
I + σi/c

< ω(τj )
��� z∗ − h ≥ 0

)
= exp

(
−

(
σc/ω(τj ) − σi/c

κ

) 2)
, (5.12)

where ω is the function describing the failure mechanism transition (white line in fig. 5.8).
The calculation details of eq. (5.12) can be found in Appendix D.2.
Remark 7. The crack nucleation likelihoodA0 · ncrack/Ac and Pcrack are related in our GW
approach: indeed ncrack = PcrackηcA0 = PcrackAc/πsR, cf. (Greenwood and Williamson, 1966,
p. 303).
Remark 8. The quantity σc/ω(τj ) − σi/c strikingly explains the features of figs. 5.5 and 5.6 for
the elastic model. In fig. 5.5, the curves are shifted to the right as the load increases, which is
apparent in eqs. (5.11) and (5.12): σi/c increases linearlywith the load, and thus causes a rightward
shift in the graph of the CNL. Similarly, asω is linear in τj , Pcrack is scaled horizontally, which
can also be seen in the CNL on fig. 5.6.
Remark 9. When σc/ω(τj ) = σi/c the probability is one, meaning that all contacts, regardless
of size, nucleate cracks; in other words the whole surface should be cracking in a catastrophic
breakdown. This does not happen in practice, as the normal loading process should nucleate
and propagate cracks at single asperities before the breakdown is reached, thus relaxing the
tensile stresses in the system.

Comparison to a rough surface

We wish to assess the validity of the above developments with simulations of self-affine rough
surface contact. Because of the simplifying assumptions of a GW model, we do not hope to
establish a quantitative agreement, especially since the asperity curvature is not unequivocally
defined on a self-affine rough surface (Nayak, 1971). Instead, we will focus on the qualitative
relations between Pcrack, σc , σi/c and τj highlighted above.

ElasticityResults We first considerσi/c for a rough surface. Recall that the inter-contact
stress in a rough contact is themost frequent value ofσI, i.e. the value for which the probability
density function pσI of the surface tensile stress is maximum. This is illustrated in the inset
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Figure 5.9.: Inter-contact stress as a function of contact ratio. Inset shows the probability density
function of the largest stress eigenvalue at the surface. The stress value corresponding to
the peak in the probability density is defined as the inter-contact stress σi/c. We see that in
the rough surface simulation and the Greenwood–Williamson model σi/c evolves linearly
with the contact ratio. The value of κ is estimated from the mean curvature of contacting
summits in the rough surface.

of fig. 5.9. In the latter, we plot the evolution of σi/c for the elastic rough contact defined
previously and for eq. (5.11). We can observe that both curves behave linearly with the contact
area ratio, with different slopes. To compute the value of κ, which depends on

√
s/R, cf.

eq. (5.10), we have used Nayak’s approach (Nayak, 1971) to estimate the mean curvature radius
of the zones of the rough surfaces in contact, i.e. R =

√
3/m4/I (z

∗
c ), wherem4 is the fourth

moment of the surface spectrum, z∗c is the normalized height of the surface in contact and I is
a function defined in (Nayak, 1971). As can be seen in fig. 5.9, the slope of the GW curve is
approximately constant, showing the weak dependency on z∗c . Note that although the values
of R and Ac/A0 for the GW model are informed from the rough surface simulation, there
is no fit parameter to the GW prediction. The lack of quantitative agreement between the
theoretical approach and the rough contact simulation shows the prediction limit of GW.
Using a more elaborate model like that of Bush, Gibson, and Thomas (1975) could improve
the agreement, but as our aim is to establish a qualitative prediction we restrict the results
presented to GW.

As previously mentioned, Pcrack is not directly measurable on a rough contact interface (cf.
fig. 5.4). However, the crack nucleation likelihood acts as an alternative measure for Pcrack,
cf. Remark 7. Figure 5.10a, confirms that this is indeed the case and we find the squared
exponential dependency predicted by eq. (5.12), with all curves collapsed due to the shift
caused by σi/c (recall that ω(0) = 1þ ). Figure 5.10b, on the other hand, shows that the CNL
does not follow eq. (5.12) for non-zero τj . While each curve remains close to a straight line, they
do not overlap, but seem to converge to a master curve. More strikingly, the CNL decreases
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Figure 5.10.: Crack nucleation likelihood as a function of re-normalized critical stress, normal
load and junction shear strength. The material in contact behaves elastically. We
normalize by h′rmsE

∗ instead of κ because of the difficulty of defining asperity curvature
on a rough surface. One can see on figure (a) that the curves corresponding to different
normal loads are collapsed on a straight line, showing that the CNL does indeed follow the
scaling established in eq. (5.12). When the strength of the junction is taken into account
(figure (b)), or, equivalently, if a shear stress is applied, we observe qualitative deviations
from eq. (5.12). There is a decrease in crack event density due to the interference of close
contacts, which tends to unload the tensile stresses at the trailing edge of leading contacts.

as τj increases, meaning that ω(τj ), which was computed directly from the data of fig. 5.7,
over-normalizes the data. This is again due to interactions between asperities. For our “single-
asperity” analysis, because of periodicity, we in fact consider many interacting asperities on a
square lattice, each separated by a distance L. When shear is applied, a positive σI is created
at the trailing edge of the contact and a negative σI appears at the leading edge. Because the
periodic images are equidistant and far apart, they weakly affect the stress distribution in the
vicinity of the contact. However, when two contacts are close to each other, creating local
anisotropy, the inter-contact stress distribution of each asperity is compensated by the other.
The positive peak in σI at the trailing edge of one contact is then reduced, thereby reducing
Pcrack as seen in fig. 5.10b. This phenomena is akin to the crack shieldingmechanism uncovered
by Aghababaei, Brink, and Molinari (2018).

Plasticity Results As for the elastic model, we compare the inter-contact stress com-
puted from the plastic rough contact simulations to our GW approach. Figure 5.11 shows
the results for both the saturation and J2 plasticity. Compared to the elastic results, the slope
of the plastic models is smaller. The J2 plasticity model has the smallest slope, showing that
residual plastic deformations play a role in the inter-contact stress. One should note that the
plastic model in fig. 5.11 includes hardening, hence the reduced contact ratio. It seems both
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Figure 5.11.: Inter-contact stress as a function of contact ratio for the saturation and J2 plastic-
ity models. While the curves do not match the analytical GW approach, their slopes are
smaller than in the elastic case. The J2 model shows the smallest slope, indicating that the
stresses due to plastic residual deformations have an influence on the inter-contact stress
and actually reduce it compare to the underlying elastic stresses of the saturation pressure
model.

models still give a linear dependency of σi/c on the contact ratio, although some more data
may be required to draw an affirmative conclusion in this regard.

Finally, fig. 5.12 shows the data of fig. 5.5b normalized to compare the results to eq. (5.12).
While the saturation model seems to follow our GW prediction (which is based on elasticity
assumption), it is clear that the J2 model does not conform to our scaling predictions for
Pcrack. However, in light of fig. 5.11, it is interesting to note that although σi/c is lowest for
the J2 approach (indicating less interactions between contacts), the latter has the largest crack
nucleation likelihood, because of the local effect of plastic residual deformations. As shown in
fig. 5.7, this local effect of plastic deformations is stronger the more ductile a material is, as
expected from experimental data which shows that softer materials wear more.

Conclusion

We have investigated in this work the nucleation of cracks at an elastic-plastic rough contact
interface. This was motivated by the necessity for an accurate description of the process of
crack nucleation for adhesive wear that includes plasticity. By comparing a classical J2 plasticity
model and a saturation plasticity approach commonly used in tribology, we have concluded
that the latter can only qualitatively reproduce the true contact area and fails to give satisfactory
results on local quantities. This can be seen in the crack nucleation likelihood, which is much
higher in the J2 approach. This is caused by plastic residual deformations which increase
tensile stresses in the vicinity of contacts. In this regard, the saturation model is not applicable
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Figure 5.12.: Crack nucleation likelihood as a function of re-normalized critical stress and nor-
mal load for the saturation and J2 plasticity models. The pressure saturation model
reproduces a scaling similar to the elastic case in fig. 5.10a, while the J2 model shows a fun-
damentally different behavior. The crack density is higher in the plastic case because of the
additional tensile stresses caused at the edge of contacts by residual plastic deformations.

to study crack nucleation because it does not capture plastic deformations. We show with a
single asperity analysis that more ductile materials can have larger surface tensile stresses and
nucleate more cracks at the interface.

We have also showed that elastic interactions play a role in the crack nucleation likelihood
of a single contact. They may increase the latter through proximity of contacts, or decrease it
in shearing by elastic shielding. This was further supported by an analytical approach based
on a Greenwood–Williamson model modified to take interactions into account.
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Conclusion

This thesis has been concerned with the modeling of realistic rough surface contact and its
applicability to up-scale asperity level observations on wear and friction. It has specifically fo-
cused on the mathematical aspects of efficiently characterizing rough surface contact between
materials with elastic-plastic constitutive laws. Natural and man-made surfaces are seldom flat,
and roughness plays a crucial role in phenomena such as friction (Bowden and Tabor, 1939),
adhesion (Pastewka and Robbins, 2014), sealing (Shvarts and Yastrebov, 2018), electric resis-
tance of contacts (Greenwood and Williamson, 1966) and wear (Archard, 1953). Developing
simulation tools for such problems is challenging because of the inherent non-linear material
behavior and the multi-scale nature of rough surfaces (Renard, Candela, and Bouchaud, 2013;
Persson et al., 2005).

To allow the efficient resolution of elastic-plastic rough contact problems, I devised a novel
numerical approach for volume integral methods (cf. Chapter 2). These methods rely on fun-
damental solutions to construct, by superposition, stress and displacement fields that satisfy
the required boundary conditions, kinematic compatibility and equilibrium equations (Bon-
net, 1995). The breakthrough in computational efficiency presented in Chapter 2 was achieved
with a novel formulation of the required fundamental solution directly in the Fourier domain,
which drastically saves on memory resources as well as computing time. This novel method
is able to handle the discretization requirements of rough surfaces while including a proper
plasticity constitutive law (Simo and Hughes, 1998). As a byproduct of this research, I have
implemented the method in a high-performance hybrid C++/Python open-source code called
Tamaas, which has enabled me to conduct elastoplastic simulations of rough contact with
upwards of 100 million degrees of freedom (729þ × 729þ × 32þ × 6þ components of strain) on a
single compute node, which tomy knowledge is an order ofmagnitude larger than simulations
of the same kind reported in the literature (Pei et al., 2005; Zhou, Jin, Wang, Wang, et al.,
2016).

To improve the performance of the fixed point algorithm developed by Jacq et al. (2002), I
have explored an interior-point approach to solve both the plasticity and the contact problems
simultaneously (cf. Chapter 3). The proposed primal-dual interior point approach solves the
conic program underlying the elastic-plastic contact formulation using the volume integral
operators laid out in Chapter 2. This is however work in progress, as the efficient solving
of the underlying linear system of equations is an active research topic in the optimization
community.

To study the applicability of rough surface contact models in the rationalization of macro-
scopic wear models, I have adopted in Chapter 4 a simple approach to single-asperity wear:
a contact of area A can only form a wear particle if A > A∗ ∝ (d∗)2 in similar fashion to
Aghababaei, Warner, and Molinari (2016). I have shown that although the particle forma-
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tion process is deterministic at the single-asperity level, the wear coefficient, which Archard
interprets as the probability of particle formation, can be understood at the multi-asperity
level (i.e. macro-scale) as K = P(A > A∗), which is the probability that a contactA is greater
than A∗. With this interpretation, the wear coefficient is shown to remain constant with
the applied load, as expected from experiments. However, this interpretation of the wear
coefficient relies on assumptions that were not justified by Archard. I have therefore proposed
a new interpretation of the wear coefficient which does not rely on Achard’s assumption an
directly up-scales asperity-level wear mechanisms.

Finally, I have used the elastic-plastic contact method developed in Chapters 2 and 3 to build
and understanding of the crack nucleation process in the adhesive wear of a rough contact
interface. In particular, I have showed that the density of contacts, and hence the density of
elastic interactions, plays a key role in the number of crack nucleation sites. Using analytical
arguments based on the statistical approach ofGreenwood andWilliamson (1966), I accurately
predicted the dependency of the crack nucleation density on the normal load and the critical
tensile stress in normal contact. With added shear stress, I have rationalized the departure from
expected behavior with elastic shielding effects which prevent crack nucleation in-between
contacts that are in close proximity. I have also showed that plastic residual deformations have
a crucial influence of the stress state in the neighborhood of a micro-contact by comparing
the results of the methods developed in this thesis with a saturation pressure approach, which
qualitatively describes the relationship between the normal load and the contact area but fails
to reproduce the stress state obtained with the more physically accurate von Mises plasticity.

Outlook

This thesis has developed two major axes of research which have been clearly outlined by
the two parts of the present manuscript, and therefore two major topics for future research
endeavors arise. The first topic is concerned with the improvement of the numerical methods
that have been developed. As mentioned in Chapter 3, an ongoing collaboration aims to
develop a more efficient solving scheme based on a primal-dual interior-point method and
on the integral operators detailed in Chapter 2. While this method may indeed yield a better
algorithm, more optimal approaches may be developed in the future. This is however not
the only aspect that could be improved. We have proposed in Chapter 2 two algorithms for
the integration of the remaining physical-space integral in the volume integral operatorN .
While the second algorithm has a linear complexity (as opposed to the quadratic complexity
of the first), the numerical evaluation of the exponential terms may overflow or underflow
the machine representation of floating point numbers because of the separation of variables
that was operated (cf. Appendix A.5). Other approaches for the integration may be taken to
alleviate this issue while retaining the complexity advantages (e.g. multi-level methods). On a
more technical note, the present implementation of the integration method is sequential, and
an investigation into the parallelizability of the different integration algorithms should also
factor in the choice of integration approach.

As we have shown in this manuscript, the methods developed in the first half of this
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thesis are tools that can be used to efficiently solve contact problems with plastic constitutive
behavior. However, some parts of these methods are not restricted to that specific class
of problems: in particular, the volume integral operators are mathematical entities used to
construct displacement and strain fields satisfying equilibriumand elastic behavior, which gives
them a wider range of applications than what we show here. In fact volume integral methods
have been used to model damage around stiff inclusions in contacting bodies (Beyer et al.,
2019), and could be used in conjunctionwith gradient-based damagemodels, whose governing
equation can also be solved with Fourier-based volume integral operators. Developing such a
numerical method could be instrumental to the modeling of wear particle formation in rough
surface (sliding) contact.

This manuscript has brought in focus some key issues of wear modeling: the necessity of
understanding wear laws as emerging from the interaction ofmicro-scale mechanisms and that
the true contact area, while being a quantity of interest, is not sufficient to describewear. These
observations are also true of many other interface phenomena, including friction, sealing,
etc. While it seems the major concern of the rough contact community at large has been the
true contact area, I think future pursuits in tribology should consider the contact interface
as a whole. For example, the experiments on friction conducted by Fineberg’s group show
that the fracture energy of a PMMA frictional interface is comparable to the bulk fracture
energy (Svetlizky and Fineberg, 2014; Bayart, Svetlizky, and Fineberg, 2016), indicating some
level of extreme material behavior at the contact interface that cannot possibly be captured by
the contact area alone. The simulation code that I have developed in my thesis is unique in its
kind to help shed light on these issues, as well as provide insight into other applications of
rough contact, such as vibrating systems, for which the dynamical response depends on the
contact interface (Gallego, Nélias, and Jacq, 2006; Armand et al., 2018) or sealing, where the
percolation point of the contact interface is of prime importance (Dapp et al., 2012; Shvarts
and Yastrebov, 2018) and plastic deformations are expected. New experimental methods are
able to track the evolution of the rough contact interface during sliding (Weber et al., 2018;
Garabedian et al., 2019), and the tools developed during this thesis should be instrumental in
the rationalization of the refined experimental observations.

Finally, bridging scales in friction can be attempted on the basis of this thesis. The issue
in this domain is the choice of friction law at the interface: Coulomb friction is inherently
ill-posed and should physically make sense only at the macro-scale, as like wear it is a phe-
nomenon emerging from the micro-scale interactions. The tools developed in this thesis
can be employed to study these interactions with great accuracy, but methods incorporating
non-linear geometry may be required to gain sufficient understanding (Caroli and Nozières,
1998). Micro-contact lifetimes when two rough surfaces are sliding are important to rationalize
the state variable in modern friction models. Further investigation in this area may reinforce
or challenge the current interpretation of the state variable in modern rate-dependent friction
models as a “memory of contact”, and perhaps give further leads as to how these friction
models emerge from the contact interface. Finally, frictional slip events that are well described
by linear-elastic fracture mechanics at the macro-scale are actually composed of micro-contacts
breaking and interacting via elastic waves. Although we have provided a static picture of the
contact interface in this thesis, it could be extended to include dynamic effects, for example by
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coupling with another boundary integral method (Barras, 2018).
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A. Appendix to Volume Integrals

A.1. Invertibility and linear independence ofA+ andA−

Due to its structure,A± has two unit eigenvalues. The determinant ofA± is therefore:

det(A±) = trace(A±) = e∓qy3
( c

c + 2
qy3(∆

± · ∆±) + 1
)

(A.1)

= e∓qy3

(
c

c + 2
qy3

(
1 −

(
q1
q

) 2
−

(
q2
q

) 2)
+ 1

)
= e∓qy3, (A.2)

so does not vanish ∀(q,y3) ∈ R2 × R. ThereforeA± is invertible and rank(A±) = 3þ . The linear
independence ofA+ andA− then stems from their being proportional to different exponential
functions.

A.2. Proof of Theorem 3

The displacementu = N[w] (N being the Mindlin integral operator) solves the problem

(a) N[u] = −divw in B, (b) T [u] = 0þ on ∂B (A.3)

In the non-periodic case, the partial Fourier version of the above problem is the ODE system

(a) N̂þ (q) · û(q,y3) = −∇̂ · ŵ(q,y3)
(
y3 ∈ [0,∞[

)
, (b) T̂ (q) · û(q, x3) = 0þ , (A.4)

where q ∈ R2 acts as a parameter. Solving (A.4) for arbitrary sources ŵ(q,y3) yields û(q, •) =�N[w](q, •) for any q ∈ R2, �N[w] being given by (1.20) with Ĥ = ∇̂G.
Consider now the case wherew is Bp -periodic, so has the Fourier series form (2.26a). Since

F [exp(iþ a · x̃)] = δ (q − a) for F [•] as defined by (1.18), this implies

ŵ(q,y3) =
∑
k ∈Z2

ŵþ (k, x3)δ (q − 2πk̄). (A.5)

Using this in the right-hand side of (A.4a), we deduce that û must also assume the form of a
series of weighted Dirac distributions with the same supports. Henceu is also Bp -periodic
and can be expressed as a Fourier series (2.26b) with its coefficients ûþ (k, x3) to be determined:

û(q,y3) =
∑
k ∈Z2

ûþ (k, x3)δ (q − 2πk̄). (A.6)
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Applying the partial Fourier transform to problem (A.3) and inserting ŵ(q,y3), û(q,y3) as
given above thus yields

N̂þ (q) ·
∑
k ∈Z2

ûþ (k, x3)δ (q − 2πk̄) = −
∑
k ∈Z2

∇̂ · ŵþ (k, x3)δ (q − 2πk̄) y3 ∈ [0,∞[, (A.7)

T̂ (q) ·
∑
k ∈Z2

ûþ (k, x3)δ (q − 2πk̄) = 0þ . (A.8)

Using (for example) the distributional equality N̂þ (q)δ (q − a) = N̂þ (a)δ (q − a), we deduce the
relations for k ∈ Z2

N̂þ (2πk̄) · û(k,y3) = −∇̂ · ŵþ (k, x3) y3 ∈ [0,∞[, (A.9a)

T̂ (2πk̄) · ûþ (k, x3) = 0þ , (A.9b)

which are formally identical to (A.4) with the replacements q → 2πk̄, û(q,y3) → ûþ (k, x3)
and ŵ(q,y3) → ŵþ (k, x3). This shows that ûþ (k, •) = �N[w](2πk̄, •), where �N[w] is still given
by (1.20) with Ĥ = ∇̂G. This completes the proof of the theorem. �

A.3. Simulation data

In this appendix, we give the detailed geometry, discretization and loading of each simulation.
We note [a,b]n the [a,b] interval discretized in n equally spaced values (including a and b).

A.3.1. Comparison with Mindlin and Cheng (1950)

With a the radius of the inclusion, the free parameters are fixed to:

• Inclusion center x3 coordinate c = 2a

• System size [0, 15c]2 × [0, 5c]

• Discretization N = (128, 128, 126).

• ν = 0.3þ

Values of E, α orT do not influence the normalized results.

A.3.2. Scaling simulations

With a cubic domain of side L = 1þ , the number of points in the discretized system direction
(withN1 = N2 = N3) in both FEM andVIM simulations vary in {4þ 3, 8þ 3, 16þ 3, 32þ 3, 64þ 3, 128þ 3}.
The source code for the finite elements simulation can be found here: 10.5281/zenodo.2613614
(Frérot, 2019a).
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A.4. Complexity of integration with cutoff

The cutoff condition on the integration of an element of center x ic for a point of interest x is
that q |x ic − x3 | < εco ⇔ |x

i
c − x3 | < εco/

√
q21 + q

2
2. So for a given value of x3, the number of

operations needed for the computation of integral (2.31) for all discrete values of q is of the
order of: ∑

k ∈Z2
N

N3√
k21 + k

2
2

. (A.10)

Since the cutoff is smaller at high wavenumbers the number of terms to be accounted for
decreases. We can approximate this series with an integral, which gives the value N3

√
N 2
1 + N

2
2 .

Setting N1 = N2 = N3 gives an asymptotic complexity of O(N 2
3

√
N 2
1 + N

2
2 ) ∼ O(N ).

A.5. Proof of Theorem 4

Let the function ŵh :þ R2 × R+ → R3×3 be of the form:

ŵh(q, x3) =
N3−1∑
j=0

ŵ j (q)ϕ j (x3). (A.11)

For conciseness, we will drop theq dependency on ŵ j as well as Û ±k := Û
±

k ,1 fork = 0, 1þ , which
are the “bits” constituting the kernel ofN∞, cf. equation (2.20). The correct q-dependency
for the latter can be deduced from Lemma 1. The application ofN∞ to ŵh yields:

N∞[ŵh ] =

N3−1∑
j=0
N∞[ŵ jϕ j ](q, xl )

=

N3−1∑
j=0

{∫ xl

0

[
Û
−

0 : ŵ jд
−
0 (q(y3 − xl ))ϕ j (y3) + Û

−

1 : ŵ jд
−
1 (q(y3 − xl ))ϕ j (y3)

]
dy3

+

∫ ∞
xl

[
Û
+

0 : ŵ jд
+
0 (q(y3 − xl ))ϕ j (y3) + Û

+

1 : ŵ jд
+
1 (q(y3 − xl ))ϕ j (y3)

]
dy3

}
=

N3−1∑
j=0

{
e−qxl

[ (
Û
−

0 − qxlÛ
−

1

)
: ŵ j

∫ xl

0
д−0 (qy)ϕ j (y) dy + Û

−

1 : ŵ j

∫ xl

0
д−1 (qy)ϕ j (y) dy

]
+ eqxl

[ (
Û
+

0 − qxlÛ
+

1

)
: ŵ j

∫ ∞
xl

д+0 (qy)ϕ j (y) dy + Û
+

1 : ŵ j

∫ ∞
xl

д+1 (qy)ϕ j (y) dy

] }
= e−qxl

(
Û
−

0 − qxlÛ
−

1

)
:
N3−1∑
j=0

ŵ j

∫ xl

0
д−0 (qy)ϕ j (y) dy + e

−qxl Û
−

1 :
N3−1∑
j=0

ŵ j

∫ xl

0
д−1 (qy)ϕ j (y) dy

+ eqxl
(
Û
+

0 − qxlÛ
+

1

)
:
N3−1∑
j=0

ŵ j

∫ ∞
xl

д+0 (qy)ϕ j (y) dy + e
qxl Û

+

1 :
N3−1∑
j=0

ŵ j

∫ ∞
xl

д+1 (qy)ϕ j (y) dy.

Here we havemade use of the properties ofд±0 andд±1 to separate the xl andy3 variables. There
still remain a dependency to xl in the sums, which can be removed if we assume a compact
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support of ϕ j on the interval [x j−1, x j+1] (e.g. P1 shape functions). Then we have the following
properties:

∫ xl

0
д−k (qy)ϕ j (y) dy =



0þ j > l∫ xl

xl−1
д−k (qy)ϕ j (y) dy j = l∫ x j+1

x j−1
д−k (qy)ϕ j (y) dy j < l

for l > 0,

∫ ∞

xl
д+k (qy)ϕ j (y) dy =



0þ j < l∫ xl+1

xl
д+k (qy)ϕ j (y) dy j = l∫ x j+1

x j−1
д+k (qy)ϕ j (y) dy j > l

for l < N3 − 1.

These allow the simplification of the sums, as some terms cancel:

N3−1∑
j=0

ŵ j

∫ xl

0
д−k (qy)ϕ j (y) dy = w1

∫ x1

x0
д−k (qy)ϕ1(y) dy +

l−1∑
j=1

w j

∫ x j+1

x j−1
д−k (qy)ϕ j (y) dy +wl

∫ xl

xl−1
д−k (qy)ϕl (y) dy

= w1

∫ x1

x0
д−k (qy)ϕ1(y) dy +wl

∫ xl

xl−1
д−k (qy)ϕl (y) dy

+

l−1∑
j=1

{
w j

∫ x j

x j−1
д−k (qy)ϕ j (y) dy +w j

∫ x j+1

x j
д−k (qy)ϕ j (y) dy

}

=

l−1∑
j=0

w j

∫ x j+1

x j
д−k (qy)ϕ j (y) dy +

l∑
j=1

w j

∫ x j

x j−1
д−k (qy)ϕ j (y) dy

=

l−1∑
j=0

w j

∫ x j+1

x j
д−k (qy)ϕ j (y) dy +

l−1∑
j=0

w j+1

∫ x j+1

x j
д−k (qy)ϕ j+1(y) dy

=

l−1∑
j=0

{
w j

∫
Ej

д−k (qy)ϕ j (y) dy +w j+1

∫
Ej

д−k (qy)ϕ j+1(y) dy

}
.

The same can be done for the second sum, and we have now eliminated the dependency of
the sum terms on l , yielding the expression in Theorem 4. �
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B.1. Simulation data

B.1.1. Comparison with Hardy, Baronet, and Tordion (1971)

With R the radius of the indenter, the free parameters are fixed to:

• System size [0, 203 R]
2
× [0, 103 R]

• Discretization N = (81, 81, 32)

• ν = 0.3þ

• LoadingW /Wy ∈ [0.9, 15.5]20∪{1, 2.1, 6.4, 15.5} (sorted formonotonic loading history)

Values of E or σy do not influence the normalized results. The tolerance of Algorithm 5 is set
to 10þ −9.

B.1.2. Comparison with Akantu (Richart and Molinari, 2015)

With R the radius of the indenter, the free parameters are fixed to:

• System size [0, 203 R]
2
× [0, 103 R]

• Discretization N = (81, 81, 32)

• FEM discretization: 81×81 surface nodes, 54 nodes in the x3 direction, 85975 total nodes
and 460246 linear tetrahedron elements. The mesh is refined at the contact interface.

• ν = 0.3þ

• Loading:W /Wy ∈ [0.7, 5]20

The tolerance of Algorithm 5 is set to 10þ −9. The source code of Akantu is available on
https://akantu.ch. The finite-element mesh is generated with GMSH (Geuzaine and
Remacle, 2009) and results are visualized with Paraview (Ayachit, 2015).

B.2. Conic programming

We construct the sequence zk =
{
xk , sk ,дkn+1,p

k
n+1,U

k
n+1

}T with a Newton-Raphson iteration
such that R(zk ) → 0þ where R(zk ) is the residual of the system (3.24) with the perturbed
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complementarity (3.25).

R(z) =



− 2
3Ehx0 + s0 −

√
2
3σy −

2
3Ehγn

DCRDx + s +DCM ′3pn+1 +DCRDε
p
n

дn+1 −M33pn+1 − N3CDx +Un+1 + h − N3CDε
p
n∫

∂B
pn+1 dS −Wn+1

дn+1pn+1 − µ

x ◦ s − µe


(B.1)

The tangent operator R′ is comprised of the linear operator of eq. (3.24a) augmented with
the linearized complementarity conditions:

R′(zk ) =



[
− 2

3Eh 0þ
0þ DCRD

]
I 0þ

[
0þ

DCM ′

]
0þ[

0þ −N3CD
]

0þ I −M33 a

0þ 0þ 0þ aT 0þ
0þ 0þ P G 0þ
S X 0þ 0þ 0þ


, (B.2)

where P := diag(pkn+1),G := diag(дkn+1), S := mat(sk ) andX := mat(xk ).
In order to simplify the resolution of the Newton–Raphson iteration R′(zk )δz = −R(zk ),

we operate two changes to the linear system: (1) introduce a rescaling, proposed by Nesterov
andTodd (1998), which provides a symmetric version of the complementarity equation (3.25b)
(Bleyer, 2018); (2) reduce the linear system size by inverting R′ by block.

Nesterov and Todd (1998) have shown that for all admissible (x, s) there exists a matrix F
such that Fx = F−1s =:þ v and eq. (3.25b) is equivalent tov ◦v − µe = 0þ . As consequence,
we have X = VF−1 and S = VF with V = mat(v). The equations associated with the
linearized complementarity can be manipulated to explicitly obtain the unknowns δд and δs
(cf. Appendix B.2):

δд = −GP−1δp +
µ

pkn+1
− дkn+1, (B.3)

δs = −Eδx − s + µX−1e, (B.4)

with E = F 2. The above unknowns can be replaced in the Newton–Raphson linear system.
We can additionally isolate δx0 by replacing δs0 in the first optimality equation:

δs0 = −E00δx0 − E · δx − s0 +
[
µX−1e

]
0

⇒ −
2
3
Ehδx0 − E00δx0 = E · δx + s0 −

[
µX−1e

]
0 − R0(z

k )

⇔ δx0 =
R0(zk ) − E · δx − s0 +

[
µX−1e

]
0

2
3Eh + E00
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with the block decomposition of E:

E =

[
E00 E

T

E E11

]
.

One can now introduce δx0 and δs in the second optimality equation:

δs = −Eδx0 − E11δx − s + µX
−1e,

⇒DCRDδx − Eδx0 − E11δx +DCM ′δp = s − µX−1e − R1(zk ),

⇔(DCRD − E11)δx − E
R0(zk ) − E · δx − s0 +

[
µX−1e

]
0

2
3Eh + E00

+DCM ′δp = s − µX−1e − R1(zk ),

⇔

(
DCRD−E11+

E ⊗ E
2
3Eh + E00

)
δx +DCM ′δp = s − µX−1e − R1(zk ) +

E
2
3Eh + E00

(
R0(z

k ) − s0+
[
µX−1e

]
0

)
.

Finally, we can replace δдn+1 in the third optimality condition:

−N3CDδx + δдn+1 −M33δp + δU = −R2(z
k ),

⇒ −N3CDδx −
(
M33 +GP

−1) δp + δU = −R2(z
k ) −

µ

pkn+1
+ дkn+1.

We can now write the reduced linear system:


DCRD−E11+

E ⊗ E
2
3Eh + E00

DCM ′ 0þ

−N3CD −
(
M33 +GP

−1) a

0þ aT 0þ



δx

δp

δU

 = −R̃(z
k ), (B.5)

where R̃ is the reduced residual formed from the previous substitutions:

R̃(zk ) =


R1(zk ) − s + µX

−1e −
E

2
3Eh + E00

(
R0(zk ) − s0+

[
µX−1e

]
0

)
R2(zk ) +

µ

pkn+1
− дkn+1

R3(zk )


.

To complete the formulation, we can explicit the expressionX−1e. We define the function
det(x) := (x0)

2 − ‖x ‖2, which helps expressing the inverse ofX (Bleyer, 2018):

X−1 =
1

det(x)


x0 −xT

−x
det(x)Im + x ⊗ x

x0

 ,
X−1e =

x̂

det(x)
with x̂ = (x0,−x).
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It remains to express E. Bleyer (2018) gives the expressions for F , which we develop here for
E = F 2:

E = θ 2(−Q + 2w ⊗w),

θ = 4þ

√
det(s)
det(x)

,

w =
θ−1s + θx̂

√
2 ·

√
x · s +

√
det(s) det(x)

,

Q = diag(1,−Im).

The sub-parts of E can be expressed individually:

E00 = θ
2 (
2w2

0 − 1
)
,

E = 2θ 2w0w,

E ⊗ E =
(
θ 2w0

) 2
w ⊗w,

E11 = θ
2 (Im + 2w ⊗w) .

Preconditioning
Althoughwe cannot proceed to an incomplete LU factorization on the reduced linear operator
of eq. (B.5) because we wish to keep a matrix-free iteration scheme, we can explicitly invert the
components of the reduced tangent that cause the condition number to diverge as µ → 0þ ,
i.e.: 

E11 −
E ⊗ E

2
3Eh + E00

0þ 0þ

0þ −GP−1 a

0þ aT 0þ


.

Using the Sherman–Morrison formula, the first block can be inverted (β := (2/3 · Eh + E00)
−1):

(
E11 + βE ⊗ E

) −1
= E−111 − β

E−111

(
E ⊗ E

)
E−111

1 + βE · E−111 E
,

E−111 = θ
−2

(
Im − 2

w ⊗w

1 +w ·w

)
.

The second block can also be inverted:[
GP−1 −aT

−a 0þ

] −1
=

[
A + 1

kAaa
TA 1

kAa
1
ka

TA 1
k

]
A =

(
GP−1

) −1
= PG−1

k = −aTAa
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C.1. Analytical results

C.1.1. Power-law distribution of cluster areas

Recent contact simulations (Hyun, Pei, et al., 2004; Pei et al., 2005; Hyun and Robbins, 2007;
Campañá, 2008) and experiments (Majumdar and Bhushan, 1990; Dieterich and Kilgore,
1996) have shown that, in contact with self-affine surfaces, the probability density of cluster
areas is constant up to an areaAs , then follows a power-law of exponent −α in the interval
[As ,Am], where Am is the size of the largest cluster in the system and is the only parameter
depending on the load (cf. fig. 4.3 for additional numerical evidence). Consider the following
probability density function for cluster areas:

pPL(A,Am) =


C A ∈ [0,As ]

C

(
A

As

) −α
A ∈ [As ,Am]

0þ A ∈ [Am,+∞)

, (C.1)

whereC is chosen to satisfy
∫ ∞
0

p(A,W ) dA = 1þ :

C =
1 − α

As
αA1−α

m − αAs
. (C.2)

C.1.2. Wear coefficients based on Archard’s interpretation

KPL =

∫ ∞

A∗
pPL(A,Am) dA =


C

[∫ As

A∗
dA +

∫ Am

As

(
A

As

) −α
dA

]
A∗ ∈ [0,As ]

C

∫ Am

A∗

(
A

As

) −α
dA A∗ ∈ [As ,Am]

0þ A∗ ∈ [Am,∞]

=


1þ −

A−αs (1 − α)A
∗

A1−α
m − αA1−α

s
A∗ ∈ [0,As ]

1þ −
(A∗)1−α − αA1−α

s

A1−α
m − αA1−α

s
A∗ ∈ [As ,Am]

0þ A∗ ∈ [Am,+∞)

(C.3)
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C.1.3. Wear coefficients based on up-scaling approach

D ≡

∫ ∞

0
ApPL(A,Am) dA = C

[∫ As

0
AdA +

∫ Am

As
A

(
A

As

) −α
dA

]
= C

(
As +

Aα
s

2 − α
(A2−α

m −A2−α
s )

)
(C.4)

KPL =
1
D

∫ ∞

A∗
ApPL(A,Am) dA =



C

D

[∫ As

A∗
AdA +

∫ Am

As
A

(
A

As

) −α
dA

]
A∗ ∈ [0,As ]

C

D

∫ Am

A∗
A

(
A

As

) −α
dA A∗ ∈ [As ,Am]

0þ A∗ ∈ [Am,∞]

=



1þ −
(1 − α

2 )A
−α
s (A

∗)2

A2−α
m − α

2A
2−α
s

A∗ ∈ [0,As ]

1þ −
(A∗)2−α − α

2A
2−α
s

A2−α
m − α

2A
2−α
s

A∗ ∈ [As ,Am]

0þ A∗ ∈ [Am,+∞)

(C.5)
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C.2. Sensitivity of contact statistics to surface
parameters
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Figure C.1.: Influence of L/λl on the complementary cumulative distribution function of
contact-cluster areas. Grey curves are results for each realization (20 in total), and red
curves are ensemble averages. Surface sampled has λl /λs = 8þ and λs/∆l = 16þ , so that only
L is varied. As L/λl increases, the dispersion of the individual realizations decreases, and
the behavior of the ensemble average approximates accurately the behavior of each realiza-
tion. We also note that as L/λl increases, the distributions converge to a limit distribution.
For the simulations carried out in the rest of this paper, a value of L/λl = 8þ , which is a
good compromise between required number of realizations and computational cost, was
selected. Note: we analyze the cumulative distribution instead of probability density to
remove any bias due to binning.

125



C. Appendix to Rough Surface Wear
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Figure C.2.: Influence of λs/∆l on the complementary cumulative distribution function of
contact-cluster areas. Curves are ensemble averages of 20 realizations of a surface with
L/λl = 16þ and λl /λs = 8þ , so only ∆l is varied. As λs/∆l is increased, the distributions
converge to a limit distribution. Increasing λs/∆l smoothens the distributions and reduces
the systematic bias between the computed distribution and the limit of λs/∆l →∞. For
simulations carried out in the main paper, a value of λs/∆l = 8þ was selected, offering a
reasonably low discretization bias, and making the simulations possible with our current
code.
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in the Adhesive Wear of an
Elastic-Plastic Half-Space

D.1. Inter-contact stress computation

We first compute σr (r ), which is the average radial stress outside contacts:

σr (r ) =
1

P(z∗ ≥ h)

∫ ∞

h
κ
sR

r 2
(z∗ − h)

3
2 e−z

∗

dz∗

= κ
3
√
π

4
·
sR

r 2
.

We then suppose for simplicity that all contacts have the same radial stress σr (r ). Accordingly,
their hoop stress is σθ (r ) = −σr (r ) (Johnson, 1985). We assume that all contacts are spatially
uniformly distributed with density ηc , so that the characteristic distance between contacts
is dc = 1/

√
ηc . We divide the infinite surface into concentric rings of width dc and diameters

di ∈ {dc , 2dc , 3dc , . . .}. Each ring can be reduced to a circle of contacts with linear density
√
ηc . We now wish to compute for the sum of all circles of diameter d1,2, ... the largest stress

eigenvalue at the center. For a single contact positioned at an angle θ on a circle of diameter di ,
the stress state in Cartesian coordinates is:

σ = σr (di/2)

(
cos(2θ ) − sin(2θ )
− sin(2θ ) − cos(2θ )

)
.

For the circle number i, the expected number of contacts is πidc
√
ηc = i · π , but we simplify

by assuming the expected number to be ni := 3i. The total stress state at the center, summing
all contacts per circle and all circles:

σ =
∞∑
i=1

σ i
r

ni∑
k=1

(
cos(2θk ) − sin(2θk )
− sin(2θk ) − cos(2θk )

)
,

with σ i
r := σr (idc/2). The largest eigenvalue of σ is given by:

λ2 =

(
∞∑
i=1

σ i
r

ni∑
k=1

cos(2θk )

) 2
+

(
∞∑
i=1

σ i
r

ni∑
k=1

sin(2θk )

) 2
=

∞∑
i=1

(σ i
r )

2
(c2i + s

2
i ) +

∞∑
i<j

σ i
rσ

j
r (cic j + sisj ),
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where:

ci :=
ni∑
k=1

cos(2θk ), si :=
ni∑
k=1

sin(2θk )

The angular position of each contact is assumed to be uniformly distributed in [0, 2π ]. The
expected value of λ, which gives the inter-contact stress, is given by:

σi/c = E[λ] ≤
√
E[λ2] =

√√√ ∞∑
i=1

(σ i
r )

2
E[c2i +s

2
i ]+

∞∑
i<j

σ i
rσ

j
rE[cic j +sisj ].

where we have used Jensen’s inequality for a simple estimation. We note that:

c2i + s
2
i =

(
ni∑
k=1

cos(2θk )

) 2
+

(
ni∑
k=1

sin(2θk )

) 2
=

ni∑
k=1

cos2(2θk ) + 2
ni∑
k<l

cos(2θk ) cos(2θl ) +
ni∑
k=1

sin2(2θk ) + 2
ni∑
k<l

sin(2θk ) sin(2θl )

= ni + 2
ni∑
k<l

cos(2(θk − θl ))

cic j + sisj =
ni∑
k=1

cos(2θk )
nj∑
l=1

cos(2θl ) +
ni∑
k=1

sin(2θk )
nj∑
l=1

sin(2θl )

=

nj∑
k=1

nj∑
l=1

cos(2(θk − θl ))

Computing the expected value of the above expressions gives integrals of the form:∫ 2π

0

∫ 2π

0
cos(2(θ − γ )) dθdγ = 0,

and we simply obtain E[c2i + s2i ] = ni = 3þ · i and E[cic j + sisj ] = 0þ . Therefore:

σi/c ≤

√√
∞∑
i=1

(σ i
r )

2
ni

≤ 3κ
√
π
sR

d2c

√√
∞∑
i=1

3
i3

≤ 3κ
√
πsRηc

√
3ζ (3)

where ζ is the Riemann Zeta function. We can now use the GW contact model to replace
sRηc = sRηe

−h = Ac/(πA0):

σi/c ≤ 3κ

√
3ζ (3)
π
·
Ac

A0
.

Note that only the
√
3ζ (3) term depends on the estimation from Jensen’s inequality, so σi/c is

indeed linear with respect to the contact ratio.
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D.2. Nucleation probability

Pcrack as defined in eq. (5.12) is a conditional probability. It expresses the question “knowing an
asperity is in contact, what is the probability that a crack nucleates at the contact edge?” The
final expression for this probability is obtained by manipulating the inequality. We evaluate
σr at the contact radius a = R · s

√
z∗ − h:

σHertz
I = σr (R · s

√
z∗ − h) = κ(z∗ − h)

1
2 ,

which is replaced in the inequality:

σc

σHertz
I + σi/c

≤ ω(τj )

⇔
σHertz
I + σi/c

σc
≥

1
ω(τj )

⇔ σHertz
I ≥

σc
ω(τj )

− σi/c

⇔ z∗ ≥

(
σc/ω(τj ) − σi/c

κ

) 2
+ h.

Let us callX the event corresponding to the above inequality. We have:

Pcrack = P(X
�� z∗ ≥ h)

=
P(X and z∗ ≥ h)

P(z∗ ≥ h)

=
P(X )

P(z∗ ≥ h)

= exp

(
−

(
σc/ω(τj ) − σi/c

κ

) 2)
,

since z∗ follows the canonical exponential distribution.
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