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Automatic landmarking for 2D biological images: image processing with and without deep learning methods

ABSTRACT

Titre : Marquage automatique des images biologiques 2D: traitement d'images avec et sans méthodes d'apprentissage pronfond

Résumé : Les points de repères ou landmarks sont utilisés dans les applications of différents domaines tel que la biologie ou la médecine. Ils ne sont pas utilisés pour uniquement mesurer la forme d' un objet, mais aussi pour évaluer une similarité/dissimilarité entre deux objets ou encore la variation inter-organismes en biologie, par exemple. Il est à noter que positionner des landmarks peut se réveler une tâche très lourde en fonction du nombre affecté à chaque objet d'étude, d'autant qu'ils le sont en générale manuellement. Si ces dernières années, plusieurs méthodes ont été proposées pour prédire automatiquement les landmarks, ces méthodes sont souvent spécifiques à un jeu de données et changer ces données suppose le plus souvent de refaire l'étude du modèle d' estimation des coordonnées des landmarks. Cette thèse porte sur la détermination automatique de landmarks sur des images biologiques, plus spécifiquement des images 2D de coléoptères. Dans le cadre de nos recherches, nous avons collaboré avec l'équipe Démécologie de l'INRA de Rennes qui disposait d'une collection d'images de 293 coléoptères, pour chacun d'eux 5 images ont été réalisées pour 5 parties différentes de l'animal: le pronotum, la tête, l'élytre et les mandibules droite et gauche (Figure 1). Pour chaque image, un ensemble de landmarks a été fixé manuellement par un biologiste. Ces landmarks seront utilisés tout au long de cette étude comme vérité terrain pour évaluer la qualité des estimations automatiques. Supposant que notre jeu de données était probablement trop petit nous nous sommes tournes vers l'ajout d'une étape de transfert d'apprentissage depuis une autre base de données. Nous avons sélectionné pour ce faire une base de données de landmarks sur des visages1 , c'est une application très connue et plusieurs modèles pour traiter cette base, sont disponibles de type AlexNet, VGG16, . . . . Mais les résultats issus d'un transfert de paramètres depuis cette base vers notre jeu de données avec ces réseaux se sont révélés insuffisants. En conséquence, nous avons décidé de customiser notre modèle, EB-Net, pour qu'il puisse apprendre les landmarks de la nouvelle base de données.

Ensuite, de transférer les valeurs de paramètre pour affiner les images du coléoptère.

Pendant le processus de réglage fin (fine-tuning), les paramètres des calculs sont réglés pour poursuivre l'apprentissage.

Les landmarks estimés sont ensuite évalués de la même manière que précédemment:

premièrement, les distances moyennes des points de repère ont été prises en compte.

On peut noter que toutes les valeurs moyennes ont été abaissées de 1 à 1, 5 pixels dans les trois séries d'images à l'aide du processus de réglage fin; ensuite, les distributions de distance à chaque position ont été évaluées. Ces distances ont été réduites, elles sont plus proches de la plage entre 0 et la valeur moyenne, en particulier pour la plupart ABSTRACT des cas très éloignés des valeurs moyennes dans le précédent modèle. Afin d'établir une comparaison avec les méthodes de traitement d'images, le processus de réglage fin a été appliqué aux images des mandibules. Les résultats obtenus ont montré que les landmarks estimés sont plus stables à l'aide du processus de réglage fin. Remarquablement, il y a une forte amélioration pour les positions proche de zone difficile à segmenter. [START_REF] David G Lowe | Distinctive image features from scale-invariant keypoints[END_REF]. From left to right:
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I Automatize landmarks by using Image Processing Techniques

Introduction Motivation

A point of interest, or a key point, or a landmark is a point in an image that may contain useful information and be stable when the image changes. It is a candidate to be effective for many applications in various domains such as object recognition in computer vision or human face detection. In biology, the landmark is an essential type of data in morphometry analysis to evaluate the form/shape of the object; or in Procrustes analysis to identify the variation of anatomical features. From the set of landmarks, biologists can appreciate the morphology of an organism. It can be used to measure the influence of ecological factors and the development of the organism. Currently, the landmarks are manually given by biologists. This procedure is costly and impossible to achieve in good conditions when we work on a large dataset. Consequently, the development of methods that can automatically produce the landmarks in the biology domain is very noteworthy.

In computer vision, key points detection offers methods to automatically determine landmarks in two-dimensional (2D) or three-dimensional (3D) images. In which, most of the methods are focused on the landmarks which stayed on the contours of the object such as the leaf or wing contours; or located inside the object, for example, human facial key points (e.g., eyes, nose, eyebrows). In collaboration with biologists, we have used a dataset including 2D images of anatomical parts of beetle, e.g., head, pronotum, elytra, left and right mandibles, as experimental data. A set of landmarks has been set

INTRODUCTION manually for all parts and has been used as ground truth for this work. For each part, the number and the location of landmarks are different. For example, the left mandible has 16 landmarks, and they are located on the contour of the mandible; while pronotum has 8 landmarks and their positions are indicated both on contour and inside the object.

In this project, our team focuses on the methods to automate such landmarks setting.

This task is the main goal of this Ph.D. thesis.

This work has been done in two parts. The first year has been dedicated to classical image processing methods to experiment if they work on our data or not? These methods often require a step of shape segmentation to detect the features which are used in the following steps. In order to do that, we have studied and applied the method of Palaniswamy [START_REF] Palaniswamy | Automatic identification of landmarks in digital images[END_REF] to work on the mandible images. Then, we have proposed a method, IMEL, which combines an iterative process of registration and verification of Scale-invariant feature transform (SIFT) descriptors to estimate landmarks. We will see that even IMEL has been successfully applied for the left and right mandibles images, it fails to work with the head, the pronotum, and the elytra. It explains why we have turned to another way to process our dataset.

In the second part of the 
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Organisation of the thesis

Chapter 1 of the thesis gives the principal context of morphometry analysis, landmark and landmark detection which are focused through the thesis. This chapter is closed by introducing our dataset which will be used to evaluate the methods during the thesis.

Chapter 2 overviews several image processing techniques that can be combined together for the landmarking task. This chapter presents also some methods which can be applied to detect the landmarks on 2D images.

Chapter 3 presents the IMEL method to automate the landmark setting. This method includes several steps to extract the features before giving the coordinates of landmarks.

The experiments are done on two sets of images: left and right mandibles.

Chapter 4 begins a second part of the thesis speaking about deep learning algorithms. This chapter begins with a short description of machine learning and deep learning context. Then, a brief overview of CNNs which are used to solve the problems on grid topology data will be presented. After that, a short preview of the transfer learning technique will be given.

Chapter 5 describes our first proposition of CNN, EB-Net architecture, to predict landmarks on beetle's images. It also presents a new procedure for data augmentation which was used to increase the number of items in the dataset. The performance of this method is evaluated on the remaining 3 parts of the beetle: head, pronotum, and elytra.

Chapter 6 presents a complementary strategy to apply deep learning for landmark detection by using transfer learning. Accordingly, the proposed CNN model in Chapter 5 is pre-trained on a facial key points dataset before transferring the parameter values to fine-tune on beetle's images. The evaluation is mainly done on three parts of beetles as in Chapter 5, but also on the mandibles to produce a comparison with the obtained results in Chapter 3. We also evaluate the feedback from some modifications of EB-Net model. Finally, we discuss the perspectives on our works before the conclusion. 

CHAPTER 1. LANDMARK-BASED GEOMETRIC MORPHOMETRY

In this chapter, we first describe the context of landmarks and their applications.

After that, we briefly introduce the facial landmarks which are linked to our problem.

Then, we will present a short overview of anatomical landmarks which are our main studied objects in this thesis. Next, we expose the landmark detection problem in 2D

images. Finally, we outline the experimental data which has been used in this work.

Context

In morphometry analysis, the term of landmarks is most often used to define anchor positions, control points on the object, or specific points on the contours. There are three basic types of landmarks: anatomical landmarks, mathematical landmarks, and pseudo-landmarks [START_REF] Il Dryden | Size and shape analysis of landmark data[END_REF][START_REF] Miriam | Geometric morphometrics for biologists: a primer[END_REF].

"Anatomical landmarks are points assigned by an expert that corresponds between organisms in some biologically meaningful way" [START_REF] Brown | Permutation tests for complex data: Theory, applications and software by f. pesarin and l. salmaso[END_REF]. They are discrete anatomical pieces that have the same positions in all specimens in the study [START_REF] Miriam | Geometric morphometrics for biologists: a primer[END_REF]. "Mathematical landmarks are points located on an object in accordance with some mathematical or geometrical properties" [START_REF] Brown | Permutation tests for complex data: Theory, applications and software by f. pesarin and l. salmaso[END_REF], for instance, a high curvature point or/and extreme point. "Pseudo-landmarks are constructed points on an organism, located either around the outline or in between anatomical or mathematical landmarks" [START_REF] Brown | Permutation tests for complex data: Theory, applications and software by f. pesarin and l. salmaso[END_REF]. A typical example is a set of points positioned equally between two anatomical landmarks to get more sample points on the shape. Pseudo-landmarks could also be useful during shape matching when the matching process requires a large number of points [START_REF] Il Dryden | Size and shape analysis of landmark data[END_REF].

In an application, the number of landmarks and their definitions can vary and depend on the objectives of the studying. In computer vision, landmarks are positions in the image that are invariant when the scene changes. The correctness of the landmark positions is essential and it greatly contributes to the accuracy of the methods. Several important types of research can be mentioned such as:

• Corner detection [START_REF] Mehrotra | Corner detection[END_REF]: trying to find the intersection point of two edges which have different directions in a local neighborhood of the points.

• Edge detection [START_REF] Canny | A computational approach to edge detection[END_REF]: identifying the points in the image that have high brightness. These points are typically organized into a set of curves.

• Image matching [START_REF] Hans | Consistent landmark and intensity-based image registration[END_REF][START_REF] Lindeberg | Image matching using generalized scale-space interest points[END_REF]: finding the key points in the images, then trying to identify the matches between two images.

In biomedical examinations, landmarks appear in the studies of human medical images, for example, X-ray or MRI images, to examine the possible signs of sickness or the CHAPTER 1. LANDMARK-BASED GEOMETRIC MORPHOMETRY symptoms of a medical disorder in their body. The applications could be cephalometric analysis [START_REF] Favaedi | Cephalometric landmarks identification using probabilistic relaxation[END_REF], or brain registration [GBR + 99]. In another approach, landmarks are also used in the biometric systems, which are the real-time systems to identify the unique characteristics for each person. In these systems, the particular characteristics of a person are extracted and compared to a library, which contains examples of many people, for a detection task. Landmarks have been identified on data as match points to compare the human attributes. We mention the applications: fingerprint verification In biology, providing landmarks to biologists is highly beneficial. They are useful inputs in analyses of Procrustes [START_REF] John | Procrustes analysis[END_REF][START_REF] Ian L Dryden | Shape analysis[END_REF] or morphometric analysis [START_REF] Bookstein | Morphometric tools for landmark data: geometry and biology[END_REF]WS10]. In the Procrustes, landmarks are most often used to analyze the shape for identifying the change of anatomical characteristics. In the morphometric analysis, landmarks are used to detect the impact of mutations, the changing in the body, or the effects of the environment on the shape [START_REF] Bookstein | Morphometric tools for landmark data: geometry and biology[END_REF]. These analyses are usually focused on living objects, samples of the organism, or fossil records.

Facial landmarks

Facial landmarks are known as the specific landmarks for human face detection. 

Anatomical landmarks

Anatomical landmarks or landmarks (for short) are the biologically meaningful points in an organism that can store important information about the object. According to biologists, the landmarks can be classified into 3 categories [Boo97, ZSS12]: (1) the landmarks are clearly and locally defined by particular structures close to the point, for example, the intersection between veins on the fly wings; (2) intermediate class, the landmarks are located at the local minima and maxima of curvature, such as a tip of the structure; (3) landmarks are not defined by any structure; instead, they are defined solely by being at an extreme distance from another point.

In practice, landmarks can be used to reconstruct the shape of an organism and to apply some morphometric analysis in the shape. For example, it is useful in biology to evaluate the evolution of species, as well as the influence of environmental factors on the development of the organism. The question to choose the number of landmarks and their positions is a difficult question. They are usually suggested by the biologist depending on which kind of application and the studied objects that they focus on.

Currently, landmarks in the biological applications have been manually determined CHAPTER 1. LANDMARK-BASED GEOMETRIC MORPHOMETRY by experts. Firstly, the object is captured by a specific device such as a camera, trinocular magnifier, scanner, . . . to obtain a digital image. Then, the landmarks are manually set on the digital images by using a particular program. For example, tpsDig [START_REF] Fj Rohlf | Tpsdig. Department of Ecology and Evolution[END_REF] is a software that able to display the image, to set the location of the landmarks manually, and to export the coordinates of the landmarks into a text file. However, this process meets some difficulties in real work, such as updating the coordinates of the landmarks, crashing software, or requiring many people to work on the data. These disadvantages make manually setting landmarks time-consuming and difficult to reproduce. So, the method which provides the landmarks automatically could be very interesting and this is the main goal of this thesis.

Landmark detection

Landmark detection refers to the methods which are used to determine the landmarks on 2D (or 3D) images. Based on the characteristics of the input images, the applied methods could be different, and they can be grouped into various categories. In the context of this thesis, we consider the methods belonging to two groups: in the first group, the images are analyzed by using classical image processing algorithms; while in the second group, the deep learning algorithms are applied for predicting the coordinates of the landmarks.

In the first group, the methods usually take into account the shape of the object or the relationship among the pixels. In order to detect the landmarks by considering the shape, the object shape is needed to be extracted first. Then, the list of points belonging to the shape is used to determine the location of the landmarks. In this case, the landmarks could be detected by measuring the curvature [TC89, RR92, Cor97, Wu03, MS04], or evaluating the feature spaces which are the transformation of the contours [MM92, Mok95, GGS + 98]. In another approach, the descriptor for each pixel in the image can be also computed by using the relationship between it and its neighborhoods. Then, they will be used to predict the coordinates of CHAPTER 1. LANDMARK-BASED GEOMETRIC MORPHOMETRY landmarks [START_REF] David G Lowe | Distinctive image features from scale-invariant keypoints[END_REF][START_REF] Bay | Surf: Speeded up robust features[END_REF]. These methods will be presented in Chapter 2.

In As usual, images of beetles have been chosen to be studied instead of using real objects for practical reasons. To create the images, biologists have used a trinocular magnifier to capture the dorsal view of beetles. For each beetle, 5 images are available corresponding to 5 body parts: head, pronotum, elytra, left and right mandibles. One can note that the images of head, pronotum, and elytra have been made before dissection.

Then, biologists have dissected the insects to separate mandibles from the beetle's body before taking the photos. The images of all body parts of beetles are captured with an identical protocol by using the same camera (trinocular magnifier) with different resolutions for pieces to handle the difference between sizes of body parts. At the end of this process, all the images have been released in the RGB color mode (JPEG compression) with a size of 3264 × 2448 pixels. Unfortunately, biologists have not given in detail the different camera resolutions for each element. However, as we know the average size of beetles in nature (≈ 12 mm). So, we can approximate the focus on each part of beetles, such as ≈ 300 pixels/1mm for elytra, ≈ 600 pixels/1mm for both pronotum and head, and ≈ 1500 pixels/ 1mm for mandibles.

The team of biologists who have initialized this project wants to work with anatomical landmarks to apply different morphometric analysis. Our goal in this context is to automatically identify the landmarks to replace the manual task of setting them. To support us in this work, they have defined a set of anatomical landmarks for each piece that they would like to obtain and providing as ground truth to evaluate our results. It is worth to note that the number of landmarks is different among the five portions of the beetle. Biologists have defined a set of manual landmarks with tpsDig2 software [START_REF] James | tpsdig, digitize landmarks and outlines, version 2.05[END_REF]. They have set 8, 10, 11, 16, and 18 landmarks for each pronotum, head, elytra, left and right mandible image, respectively. Figure 1.3 shows the images and landmarks positions of each beetle's part in our dataset. The beginning of this work has been analyzed an article proposed by Palaniswamy et al. [START_REF] Palaniswamy | Automatic identification of landmarks in digital images[END_REF] to automatically predict landmarks on fly's wings. We have deeply studied their method and have first tried to reproduce the results on the mandible images belonging to our dataset. This work will be described in the next chapters, but we present firstly main steps of image processing related to the current work on landmarks in Chapter 2.

Part I Automatize landmarks by using Image

Processing Techniques

CHAPTER 2. KEY POINTS DETECTION AND IMAGE PROCESSING METHODS

In image processing domain, a huge number of methods have been proposed to work on digital images and each of them performs a particular task such as feature extraction, projection, or key points detection, . . . . For a complex application, it is necessary to combine various algorithms for different steps, and selecting the algorithm for each step depends on the problem type, as well as the characteristics of the input images.

In this chapter, we describe the procedures that are usually used in the context of landmarks setting on 2D images: segmentation, registration, and landmarks detection.

This chapter ends with a survey of some previous works that have applied these methods to identify landmarks automatically. The readers familiar with the image processing techniques can skip this chapter to go to Chapter 3 directly.

Segmentation

Segmentation is often the first step in the process of image analysis. It is used to change the representation of the image into other ones which are more meaningful and easy to analyze. This process assigns a label to each pixel of the image. Then, it outputs the sets of pixels with different characteristics. The segmented image is then used to extract features and/or to compute descriptors. Choosing a specific segmentation solution is a complex process, it depends on the objective of the application, as well as the required features for future treatments. Segmentation methods can be divided into three groups based on the considered data: points, regions, and contours. Nida et al. give a large list of these methods in [START_REF] Nida | Survey on image segmentation techniques[END_REF]. Besides the classical methods, neural networks have been applied for the segmentation task in recent years, especially on medical images. This section presents an overview of segmentation algorithms in all categories.

Points -based methods

The methods based on points directly consider each pixel in the image without taking care of the structure or topology of objects. These methods divide the pixels into different groups based on their properties.

Thresholding

The by considering the difference between features at pixels and cluster centers. Firstly, cluster centers are randomly (or manually) initialized for all K clusters. Secondly, the differences (distances) in the feature between each pixel and cluster centers are computed. These could be the difference between pixel colors, intensities, or texture values.

Thirdly, pixels are assigned to the nearest cluster (least difference). Finally, the cluster centers of K groups are re-computed based on the pixels belonging to them. The steps (from the second to the last step) are repeated until the distance (in the feature) between pixels in a cluster can not be minimized, and the distance between cluster centers cannot be maximized any more. The performance of this method depends on the K value and often on the initialization of clusters.

Mean-shift [START_REF] Fukunaga | The estimation of the gradient of a density function, with applications in pattern recognition[END_REF] is one of the most powerful clustering methods [START_REF] Cheng | Mean shift, mode seeking, and clustering[END_REF][START_REF] Hong | Improved mean shift segmentation approach for natural images[END_REF][START_REF] Artner | A comparison of mean shift tracking methods[END_REF]. Let S is a finite data point in the n-dimensional Euclidean space, X. Let K is a flat kernel that the characteristic function of the λ in X is:

K(x) =      1 if x ≤ λ 0 if x > λ (2.2)
The sample mean at x ∈ X is

m(x) = s∈S K(s -x)s s∈S K(s -x) (2.
3)

The difference m(x) -x is called the mean shift. The repeated movement of data points to the sample means is called mean-shift algorithm. In each iteration of the algorithm, s ← m(s) is performed for all s ∈ S simultaneously [START_REF] Fukunaga | The estimation of the gradient of a density function, with applications in pattern recognition[END_REF][START_REF] Cheng | Mean shift, mode seeking, and clustering[END_REF].

We can mention that mean-shift has been used in computer vision [START_REF] Comaniciu | Mean shift analysis and applications[END_REF], e.g., image segmentation [CM97, HYZ07, KBA08], image filtering [CM99], visual tracking [START_REF] Artner | A comparison of mean shift tracking methods[END_REF].

Histogram-based method

In the histogram-based method, a histogram is first computed from all pixels in the image by considering the color or intensity values; then, peaks and valleys of the histogram are used to find the groups of pixels. For example in Figure 2.1, the pixels of the image corresponding to the left histogram (Figure 2.1a) can be packed into 2 categories; and we can get 3 categories for the image which provide the right histogram (Figure 2.1b). This method can be adapted to be applied to multiple frames and is easy to implement. However, a disadvantage of this method is that it could be difficult to recognize which peaks and valleys are significant in the histogram. This point will be discussed in Section 3.2. 

Region-based methods

The region-detection based methods try to group the pixels which have similar properties to get a compact representation. In fact, methods in this category have an overlap with methods based on the pixels (points), especially clustering methods, because they consider the characters of the pixels to pack them into different groups. In this context, region growing [START_REF] Chun | Region competition: Unifying snakes, region growing, and bayes/mdl for multiband image segmentation[END_REF] is one of the simplest approaches, but several refinements have proposed to improve the achieved results in practice. Brice and Fenema [START_REF] Brice | Scene analysis using regions[END_REF] have developed a region-growing method based on a set of simple rules to enlarge a region as more as it is possible from an initial point chosen randomly. Yakimovsky [Yak73] has improved the region-growing concept by establishing merging constraints based on the estimation of Bayesian probability of the features of each region.

The split and merge [Fuk80, CP80, OP99] method is also a popular segmentation technique. It is based on a quadtree data representation whereby an image will be broken (split) into four parts if it has not the same attributes (non-uniform), e.g., color or texture. If four neighboring regions are found to be uniform, they are merged into a large square. In principle, the split and merge process could start at the full image level or at any area in the image. In this context, Fukada [START_REF] Fukada | Spatial clustering procedures for region analysis[END_REF] has proposed the segmented variance as a uniformity measure. They try first to find the kernels of areas, then classify pixels into areas using these kernels. Chen and Pavlidis [CP80] suggested more complex statistical measures of uniformity. The segmentation areas are randomly initialized and checked for uniformity. If they do not respect the defined criteria of uniformity, these areas are sub-divided until they are not smaller than a given threshold.

Next, the uniformed areas are analyzed to find the similarity for the merging process.

Any areas remaining after this step are considered part of a boundary ambiguity zone.

The location of the boundary is then estimated by interpolation between the existing uniform regions [START_REF] Pc Chen | Image segmentation as an estimation problem[END_REF]. Ojala [START_REF] Ojala | Unsupervised texture segmentation using feature distributions[END_REF] uses the distribution of the local binary pattern and contrast pattern for measuring the similarity of adjacent areas. Firstly, they split the image into several areas and compute the descriptor for each areas (distribution of
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the local binary pattern and contrast). Then, the descriptors of adjacent areas will be compared to make a base for merging them. Finally, the pixel-wise [SZW + 18] classification is used to improve the localization of area boundaries. In another approach, the graph cut optimization method can be used for image segmentation [START_REF] Yi | Image segmentation: A survey of graph-cut methods[END_REF]. Let define an undirected graph G =< V, E >, where V is a set of nodes and E is set of the edges which connect every two neighbor nodes. V is composed of two different kinds of nodes: normal nodes that can connect to the others and terminal nodes which consist of s (source) and t (sink). In this graph, we assign a non-negative weight (cost) for each edge, denoted as w e . A cut of the graph is a subset of edges E which can be denoted as C (C ∈ E). The cost of the cut C is the sum of the edge's weights in C, denoted |C| == e∈C w e . A cut is a minimum when it has the minimum cost when finding the maximum flow [START_REF] Yuri | Interactive graph cuts for optimal boundary & region segmentation of objects in nd images[END_REF][START_REF] Boykov | Graph cuts and efficient nd image segmentation[END_REF].

In order to apply graph cut to segment the image, we can go back to the core of the image (pixels) which can be divided into two groups: pixels belonging to the object and the background's pixels. Each pixel corresponds to a node in the graph. We create an edge between two nodes if the two pixels are neighbors in the image. An energy function is defined as the sum of edge's weights. The segmentation can be achieved by minimizing the energy-function through the minimum graph cut [START_REF] Yi | Image segmentation: A survey of graph-cut methods[END_REF].

Along with determining the pixels belonging to regions in the image, it is possible to segment regions by detecting the boundaries between them. This task is usually known as edge detection. The next section presents some methods belonging to this task.

Contours -based methods

Contours methods focus on the edges of the objects which are made up of the list of pixels located on the shape. They usually observe borders of the areas, i.e., where intensity value or gradient direction changes.

Basic edge detectors

One of the first methods uses the gradient vector to calculate the edge strength and edge direction at each pixel of the image. The edge strength is the gradient magnitude of the gradient vector. The edge direction at each pixel is considered as the direction that is perpendicular to the direction of the gradient vector. Equation 2.4 presents the way to compute the edge strength and edge direction at a pixel (x, y) in the image. G x and G y are gradients in x and y-direction, respectively.

G = G 2 x + G 2 y φ = atan2(G y , G x ) (2.4)
Using the gradient of an image requires the computation of derivatives at every pixel in the image. In order to calculate the derivative, a sliding window (named mask) is applied to filter the image. If we just consider horizontal and vertical edges, the onedimensional (1D) mask can be used. But, if taking into account also the diagonal edges, we need to use a 2D mask. The Roberts cross operator [START_REF] Lawrence | Machine perception of three-dimensional solids[END_REF] is one of the earliest CHAPTER 2. KEY POINTS DETECTION AND IMAGE PROCESSING METHODS used 2D mask to detect the edge. He has proposed to use a mask of size 2×2 to compute the gradient of the image. However, this size of the mask is not useful for computing the edge direction on the areas of the image that are symmetric at the center point, for example, an area of size 3 × 3. The easiest solution is to increase the size of the mask to 3 × 3 as Prewitt [START_REF] Prewitt | Object enhancement and extraction[END_REF] or Sobel [START_REF] Sobel | History and definition of the sobel operator[END_REF] have done. Each square represents one pixel, the red square is the selected pixel where the edge strength and direction will be computed based on the gradient vector. 

Advanced edge detector

The previous methods are simply edge detectors based on filtering the image with several masks. These methods are useful when we consider the image without noise. In the case of complex images, the detectors need to be improved. Marr-Hildreth [START_REF] Marr | Theory of edge detection. Proceedings of the Royal Society of London[END_REF] has suggested convolving the image with the Laplacian of Gaussian function to reduce the noise and to extract the salient features, e.g., blur and sharp; then, the zero-crossing technique is applied to determine the edges. In another way, Canny [START_REF] Canny | A computational approach to edge detection[END_REF] has proposed to use the gradient vector to determine the pixels belong to the edges. In this method, the noise is reduced by using a Gaussian filter before calculating the gradient vector for every pixel to survey the edge candidates. Then, the weak edges are eliminated by using the edge thinning technique [START_REF] Mallat | Characterization of signals from multiscale edges[END_REF]. Finally, the double threshold is applied to determine the potential edges. Even if these methods can detect pixels that delimit the shapes of the objects, they do not give the segments of the shape. To obtain the pixels in the edges and to sort them following an order, S. Suzuki and K. Abe [S + 85] have proposed a method to indicate the connected pixels belonging to them. 

Artificial Neural Network-based methods

Besides the segmentation methods that we have described previously, artificial neural networks have been used for segmentation tasks in recent years. A neural network is known to try to simulate the learning strategies of the human brain for decision making [START_REF] Dehaene | Reward-dependent learning in neuronal networks for planning and decision making[END_REF][START_REF] Tai | A deep-network solution towards model-less obstacle avoidance[END_REF]. It is usually made of a large number of connected nodes, and each connection has a particular weight. These nodes are organized into layers to study the image features from the basic level, e.g., pixels, edges, to the abstract ones, e.g., different objects. As usual, the network has been trained on a dataset. Then, it is used to provide the segmentation of the images in another set (testing set).

In the various types of neural networks, CNN [START_REF] Lecun | Deep learning[END_REF] is one of the architectures that most often used for the segmentation task. A CNN usually contains numerous con- 

Image registration

In image processing, image registration is one of the most necessary tasks to compare 

Cross-correlation method

The cross-correlation method [START_REF] Yoo | Fast normalized cross-correlation[END_REF] or template matching [START_REF] Brunelli | Template matching techniques in computer vision: theory and practice[END_REF] deals to find the matching regions between two images. Usually, we extract a small window from the source image. Then, we slide this window through each pixel of the target image. At each sliding step, we calculate the correlation coefficient between the window and the area in the target image. Finally, the matching region on the target image is indicated as the position of the maximum correlation value with the sliding window.

The formula to calculate the correlation coefficient in the template matching technique between two images (source and target) by using Cross Coefficient is described as in Equation 2.5.

R corr (x, y) = x ,y [S(x , y ).T (x + x , y + y )] (2.5) 
Where:

• S, T : are source and target images, respectively.

• (x , y ): is selected coordinates in source image.

• (x, y): presents the coordinates of each pixel in target image.

• (x + x , y + y ): is selected coordinates in target image when the source image slides Nevertheless, the correlation coefficient is affected by the difference which can be observed from the brightness of target and source images. The pixel values can be normalized before calculating to reduce the effect of the brightness by dividing a normalization coefficient (Equation 2.6).

Z(x, y) =

x ,y S(x , y ) 2 .

x ,y

T (x + x , y + y ) 2 (2.6)
Consequently, the correlation coefficient can be computed by using Equation 2.7.

R corr_norm (x, y) = R corr (x, y) Z(x, y) = x ,y [S(x , y ).T (x + x , y + y )]
x ,y S(x , y ) 2 . x ,y T (x + x , y + y ) 2

(2.7)

Probabilistic Hough Transform

Hough Transform (HT) [START_REF] Paul | Method and means for recognizing complex patterns[END_REF] has been introduced in the previous century but it remains a common method in image processing and computer vision. At the beginning, HT was used to detect lines in the image, however over time, it has been applied to detect image features, objects, or shape. Practically, HT is a process of summing up evidence for a shape by voting process. Following that, a parameter space, so-called an accumulator, is created to carry in the votes of the corresponding features of the image.

Each vote is explicitly constructed by the algorithm for computing the Hough transform.

At the end of this voting process, the local maxima correspond to the instances of the shape. For example, in a line detection application, HT converts the space of the pixel coordinates to the space of the slope and y-intercept of the lines by voting, the vote is stored in the 2D accumulator. Each cell in the accumulator represents the equation of a line (which is presented by the slope and the y-intercept), then pixels vote for the bins that have a corresponding slope and y-intercept.

In order to speed up Hough Transform, PHT [START_REF] Kiryati | A probabilistic hough transform[END_REF] has been proposed. Different from Hough Transform, PHT considers a subset of dataset instead of processing on the whole dataset. In practice, PHT is used to predict the presence of an object (of an image) in another image. Firstly, we build the feature descriptors for each object. That is a table containing the geometric relationship (e.g., angle and perpendicular distance)

among the object's lines. Secondly, we determine the best matching features between the two objects by applying PHT. Like Hough Transform, PHT uses the voting process to find the best matching features. Finally, the transform information of two objects has been determined by comparing the matching features. Then, these values are used to register the objects.

Procrustes analysis

Procrustes analysis (PA) [Boo97, GD + 04] is a method that allows comparing the shapes of two or more objects. As usual, an object is selected and used as the source object to register other ones. PA is performed by optimally translating, rotating and scaling the target images to find the best match with the source. Practically, we consider each object made up from a finite number of points in n dimensions, called key-points. Then, these key-points are used to determine the transformation values to apply to the target.

Consider an example to register two objects, source and target In order to obtain translation value, we firstly determine the coordinates of the origin point for each object ((xs, ys), (xt, yt)) by using Equation 2.8. Then, we calculate the distance between the two origin points and use it as the translation value. Finally, the target's points are moved to new positions.

x = x 1 + x 2 + . . . + x k k , y = y 1 + y 2 + . . . + y k k (2.8)
Where:

• ((x 1 , y 1 ), (x 2 , y 2 ), . . . , (x k , y k )) are k key-points made up the object.

• (x, y) are the coordinates of the object's origin.

The scale value is considered as the ratio between the sizes of the two objects. Firstly, the size of each object has been calculated as the root mean square distance (RMSD) from the points to the origin by using Equation 2.9. Then, the ratio is computed and used as the scale to re-form the target object.

size_s = (x 1 -x) 2 + (y 1 -y) 2 + . . . k (2.9)
The rotation operation is a little bit more complex than the two previous ones. Assuming that the target has been translated and scaled, we now rotate the target object around the origin until we find an optimum angle of rotation, θ, such as the sum of the squared distances between the corresponding landmarks of the two objects is minimized.

Landmark detection

As mentioned in Chapter 1, a landmark has a position in the image, which is invariant when the scene changes. Landmark detection refers to methods that can automatically give their coordinates. These methods usually include several steps from extracting the object/region of interest at the segmentation step to figuring out the coordinates of the landmarks. In this section, we present algorithms that are usually used to do that.

Based on the curvature estimation

The methods based on curvature estimation assume that landmarks are on the contours.

They usually concentrate at the corners of the shape or at the folding point of the edge. At each point on the curve, the local extreme curvature is computed and used to identify the landmark. In practice, many algorithms have been proposed to calculate the curvature at a point on the curve by using the information of the neighboring points which were indicated as the support region of a point (called support region).

Considering a contour C is a set of points:

C = {P i (x i , y i )|i = 1, 2, 3, ..., n} (2.10) 
where n is the number of points, P i is the ith point with coordinates (x i , y i ). The curve C can be represented by using n Freeman's chain code [START_REF] Freeman | On the encoding of arbitrary geometric configurations[END_REF] and is denoted as

{c 1 , c 2 , c 3 , ..., c n }. If c i-1 = c i , P i is a point in a linear edge, otherwise it is a break point
and is a candidate to become a landmark.

Teh [START_REF] Teh | On the detection of dominant points on digital curves[END_REF] has first presented a parallel algorithm for detecting key points on a digital closed curve without any input parameters. It was able to work with multiple sizes (lengths) of the digital curve. The procedure first determines the region of support for each point based on its local properties (e.g., Freeman chain code), then computes measures of relative significance curvature of each point, and finally using non-maxima suppression [START_REF] Neubeck | Efficient non-maximum suppression[END_REF] to detect key points. From the method, many other ones based on measurement curvature were suggested to detect the key points. Basically, these methods all rely on finding support regions before applying different techniques to measure characteristics in order to indicate the key points: Ray and Ray [RR92] used the support region and the measure of the significance of each point, which has been computed by using relation with the neighboring pixels, to predict the key points; Cornic [START_REF] Cornic | Another look at the dominant point detection of digital curves[END_REF] suggested computing left and right support regions, then the key points were detected by a logical function relied on these support regions; Wu [Wu03] preferred to detect the key points with local maximum smoothing bending value; Marji and Siy [START_REF] Marji | Polygonal representation of digital planar curves through dominant point detection-a nonparametric algorithm[END_REF] proposed to find the endpoint of each support region before ranking and using them for detecting the key points; Carmona-Poyato et al. [START_REF] Carmona-Poyato | Dominant point detection: A new proposal[END_REF] calculated the adaptive blending value to indicate the location of the key points.

Based on considering the descriptors

The descriptors based methods are mostly focused on the invariant property of the landmarks, e.g., if the scene's point of view is changed by scaling or translating the objects. Accordingly, the methods consider different scales of the input image. In the first step, the descriptors of the image have been computed for each scale. Then, the 

Based on measuring the similarity

Besides using to register two images, template matching could be used to detect the landmarks in the image. To do that, we use an image and its manual landmarks as the reference. Then, we try to estimate these points on another one, the target image. For each source landmark, we extract a small window centered at that point. Then, we slide the window on the target image to find the best matching region with the window by calculating the cross-correlation score (see Section 2.2.1).

As an application of PHT and template matching, Palaniswamy et al. [START_REF] Palaniswamy | Automatic identification of landmarks in digital images[END_REF] have proposed a method to predict the landmarks on wing images of Drosophila fly [SVP + 15]. Their proposition uses a source image and its manual landmarks to estimate landmarks on a target one. The method is a pipeline of four steps: segmentation, registration, estimation, and verification. Firstly, the shape contours of source and target images are extracted and saved as a list of points by using the Canny algorithm [START_REF] Canny | A computational approach to edge detection[END_REF].

Then, they have converted the list of points toward approximated lines [START_REF] Neil A Thacker | Assessing the completeness properties of pairwise geometric histograms[END_REF] for the next step. Secondly, the geometric relations between the lines (angle and perpendicular distances) have been used to encode the features into the invariant form by applying the Pairwise Geometric Histogram [START_REF] Evans | The use of geometric histograms for model-based object recognition[END_REF]. After that, the matching features between the two objects are determined by computing the Bhattacharyya score [START_REF] Bhattacharyya | On a measure of divergence between two statistical populations defined by their probability distributions[END_REF]. Thirdly, Probabilistic Hough Transform [START_REF] Kiryati | A probabilistic hough transform[END_REF] is applied to register two objects and to set the hypothesized coordinates of estimated landmarks on the target image. To verify the position of an estimated landmark, they have extracted the small patch centering at the source's landmark (P ), and another region centered at the corresponding estimated landmark on the target image (R). It is worth to note that the size of the patch P is smaller than R. Then, the template matching [START_REF] Brunelli | Template matching techniques in computer vision: theory and practice[END_REF] is used to find the best match position of the patch P in the region R.

As the preliminary work to test the possibility offers by image processing techniques, we have implemented their method and applied it to mandible images. The implementation of the algorithm is available on our framework [START_REF] Van | Maelab: a framework to automatize landmark estimation[END_REF]. All the details of this process will be described in Appendix A.

Testing landmark detection methods on our dataset

As described in the previous section, several methods have been proposed in the literature to predict the coordinates of landmarks. These methods can be divided into two groups: the first group includes the methods that can directly provide landmarks by studying features of the image without a-priori information; the programs of the second group input pre-defined landmarks (of a source image), use them as references, and predict their locations in another image (target image). In this section, we examine the performance of two methods belonging to the two groups on our dataset: SIFT and template matching. Accordingly, we have used the two functions corresponding to two methods provided by Fiji library [SACF + 12] to do a quick test. 2.7b shows the estimated landmarks on the target given by the SIFT method of the Fiji library. We can see that SIFT has produced too many key points on the image. In these points, some of them are expected, while others are errors. 
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From these two samples, we can tell that SIFT results need to be improved, for example, by adding specific information. The template matching is able to detect correctly the region to push predicted points. We have followed this track to propose a pipeline to predict landmarks on our dataset.

Conclusion

In this chapter, we have focused on methods for segmentation task which is often the first and important step in the image processing methods. Then, we have also described the techniques to register objects. We have also presented the different methods to determine the landmarks/key points in 2D images. Most of these methods are not only focused on the landmarks located on the contours of the object but also concentrated on the landmarks within the objects. Although each proposed method is applied to a specific problem but in general, it is possible to combine several image processing algorithms to create a new method for landmarking. As an application of these steps, we introduce a proposition for automatic landmarks prediction on beetle images in the next chapter. [PTK10] which was designed to predict the landmarks on Drosophila wings [START_REF] Houle | Automated measurement of drosophila wings[END_REF] during my Master's degree internship. It has been done to test the reproducibility of his method on our dataset. It is worth to note that the article gives steps of the method, but it does not mention how to realize them. To test the suitability of their processes with our application, we have followed and found down solutions to implement the steps in their method. At the beginning of this thesis, we have adjusted some elements in his procedure to improve the results. Details of these realization steps will be presented in Appendix A.

This chapter presents the works that we did during the first year of the Ph.D. We have proposed to modify or to replace some steps of the Palaniswamy method to predict the landmarks in the mandible images (left and right). We have called it, Iterative Method to Estimate Landmarks (IMEL). In the same context as Palaniswamy, our method uses a source image and its manual landmarks to estimate the landmarks in another one, named target image. Before going to the details, we outline the steps of our proposition in the next section.

Overview of IMEL method

In the method of Palaniswamy, an image needs to pass through four steps before providing the coordinates of estimated landmarks, in which two processes require the matrices computation. These calculations could request numerous memory resources and be time-consuming, e.g., to build a Pairwise Geometric Histogram (PGH) and to reg-CHAPTER 3. MAELAB: A FRAMEWORK TO AUTOMATIZE LANDMARK ESTIMATION ister two objects by using PHT (more details in Appendix A.III .). Their method has provided more than 90% of predicted landmarks which have less far 2 pixels from the manual ones. However, these results have not been at the same levels when we have applied it to mandible images. A quick analysis has been done to point out the differences between the two applications: first, a portion of the mandible is very noisy. It will affect the process to predict the landmarks. More, the landmarks on the fly wing are positioned at the intersection between veins, which are not difficult to identify. Last, mandibles present a variety of sizes that could be more complex than in the fly wings.

Before going to the details of IMEL, Figure 3 It is worth to note that our proposition is different from Palaniswamy's method.
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Firstly, it is not necessary to convert the contour points to lines to register two mandible shapes. Instead, we directly use the coordinates of contour points. This makes the computation of our method simple and does not require to build large matrices. Secondly, we have used the local descriptors to refine the locations of predicted landmarks instead of considering the pixel's values (template matching). All the next sections will detail the steps of our proposition.

Mandible extraction

The beginning of the procedure, extracting mandible shape, is the same as in Where:

• Gray: is output gray-scale value.

• (R, G, B): is the values at red, green, and blue channels of the considering pixel. 

Shape aligment

As mentioned in Section 1.5, the biologists have provided us images with the same size and same resolution for all mandibles, but mandible objects could have different sizes because of the various sizes of the beetles. Moreover, the position and the orientation of mandibles could vary during the acquisition process. In this section, we describe the procedure that we have used to register two mandible shapes.

As mentioned, IMEL differs a little bit from Palaniswamy's method from this step.

We have chosen to register the source and the target shapes from the list of points instead of using the list of lines. The fact is justified that some landmarks are positioned into a noisy area of the mandible, and they are not on line intersections as in the case of fly wings. We can hope that using a list of points could reduce the error range in the shape description. In this case, Procrustes could be a candidate for this step.

But, we have decided to use another way, and we have kept this kind of analysis for other objectives after achieving the landmarks for every mandible. So, IMEL has been designed to registers the source and the target shapes by iterations of transformation operations.

Firstly, we determine the center point and the axes for each mandible shape (both source and target) from the list of contour points. The center point corresponds to the mean coordinates of all contour points. The first axis is the line which connects the center point and a point on the contour, and has the minimum average distance to other contours points, we named it the Axis with the Min Distance (MDAxis). The second axis is perpendicular to the first one. Algorithm 1 describes the process to find the MDAxis. Secondly, the parameter values of the transformation operations are defined. The translation value is the distance between two center points; the rotation value is the different angle between the axes of the two images. Then, the center point of the target shape will be translated to match with the center point of the source shape.

The matching between the two shapes is evaluated by re-computing and comparing the registration (center point and principal axes) information of two objects. It is worth to note that the registration information can be imprecise if the list of points is not cor-CHAPTER 3. MAELAB: A FRAMEWORK TO AUTOMATIZE LANDMARK ESTIMATION rectly positioned on the contour. It is mainly the case of the points belonging to the base part of the mandible. To reduce the effect of this problem, we have sorted the contour points according to their y values. Then, we have only taken into account a subset of contour points (the upper part) for computing. After several tests, we have fixed the upper part containing the points that have y-coordinate larger than one-quarter of shape height. This part is used to compute the center point and axes in the iterations.

One can note that the coordinates of the points on the contour will be updated after each registration step. It makes some points that have y-coordinate smaller than the limit value could be moved to the upper part and vice-versa. Consequently, we will most often have a new subset of points to compute the registration information. These steps will be repeated until we satisfy the conditions to have an angle of rotation is less than 1.5 degrees. In all experiments, the range of the number of useful iterations is between 3 and 5 repetitions to reach the best registration. Figure 3.3b shows a sample of the process to register two mandibles: the red contours are the source's contours, the black outlines are the target's contours after one iteration of the process, the blue ones are the final results of registration process.

At the end of this step, the source's manual landmarks are set on the target image.

They are considered as the theoretical positions of predicted landmarks on the target mandible. By experiments, we have observed that some predicted landmarks could stay a little bit far from the ground truth. So, we have introduced a last step in the procedure to refine the results.

Refinement of estimated landmarks

As we mentioned, some landmarks are close to manual ones, but some others are far away, and even sometimes they are not on the contour. To improve the accuracy of prediction, we have added a new step in our pipeline to refine the position of estimated landmarks by using the SIFT descriptor [START_REF] David G Lowe | Distinctive image features from scale-invariant keypoints[END_REF]. Commonly, the SIFT descriptor is computed on the whole image. However, we have modified some aspects of the original version to define a specific process for our identification. We have chosen to re-use the information coming from the previous step to define a small area, e.g., a patch, around the source and predicted landmarks, and to extract the SIFT descriptors from these patches.

As usual, the computed SIFT descriptor consists of computing the orientation and the gradient magnitude of each pixel belonging to the patch. The SIFT method takes Concretely, a patch P s centered at the source's manual landmark (9 × 9) and a patch P t centered at the estimated landmark (36 × 36) on the target image are initialized.

Then, the SIFT descriptor is computed for P s . For each pixel in P t , a sub-patch P t is extracted with the same size as P s and the SIFT descriptor is built. In order to compute the agreement between two patches, their SIFT descriptors are compared by computing CHAPTER 3. MAELAB: A FRAMEWORK TO AUTOMATIZE LANDMARK ESTIMATION the L2-distance (Equation 3.2). This process is repeated until all pixels in P t are considered. The new predicted coordinates of the landmark will be set at the center of the sub-patch P t which has the smallest distance L to P s (Figure 3.5).

L(D1, D2) = n i=0 (D1 i -D2 i ) 2 (3.2)
Where:

• n is the number of directions

• D1 and D2 are two descriptors of size n • D1 i , D2 i are the i th value in descriptor D1, D2

Results

All the steps of the IMEL have been also implemented in MAELab framework1 and have been verified on two sets of images: left and right mandibles. After verifying the images, it remained 286/290 workable images of the left/right mandible. A set of 16/18 landmarks for each left/right mandible is considered as ground truth. In order to provide the estimated landmarks, we have randomly chosen an image in each set (left and right mandible) and used it as the source to predict the landmarks on others images considered as the targets. For example, the Md28 and Mg52 images have been randomly selected as the source images for right and left mandibles in our experiment, respectively.

After checking these results, we have noticed that it remains some estimations that are a little bit far from the ground truth, and we have wanted to go deeply to the analysis. As we have discussed in Section 3.3, mandible shapes could show different sizes. We have found that our method is sensitive to this parameter. To improve the results, a pre-processing process has been inserted to estimate the scale between the source and the target image before computing the SIFT descriptors. According to that, the bounding boxes around the source and the target mandibles have been computed.

Then, the scales on x and y dimensions have been determined by computing the ratio between the corresponding sides of the bounding boxes, and the target contours have been scaled to fit the source contours.

We have evaluated our results at two scales: first to verify when we use the predicted landmarks to compute the centroid size, do we obtain similar results than the obtained results from ground truth landmarks, and do we satisfy the requirements of biologists analysis? Secondly, are the predicted landmarks good enough to be displayed in the place of manual ones in an user interface?

The first evaluation is to compare the results provided by IMEL to the results ob- Where:

• Original_Size: is the centroid size calculated by using manual landmarks (ground truth).

• Estimated_Size: is the centroid size computed by using predicted landmarks. Figure 3.7 shows the location of manual and estimated landmarks on an example of a left and a right mandible. First of all, the estimated landmarks are quite near manual ones. However, as it has been shown in Figure 3.6, we can see that it exists a small difference in the prediction on two sets of images: the predicted coordinates in the right mandibles are closest to the manual landmarks than the left ones. In section 3.3, we have also discussed that it could exist of variations in the left mandible size than the right. This hypothesis has been arisen by biologists, but it has not been clear when we have tested the dataset.

In the second attempt, we are also interested in the accuracy of each estimated landmark. We have calculated the distances between the manual landmarks and the corresponding predicted ones. Then, we provide the percentage of proportions based on the distance between manual landmarks and estimated ones. These proportions have been calculated based on several ranges of pixels, as mentioned in Palaniswamy's article. the distances on mandibles. So, to be able to compare with previous results, we have normalized the distances that we have obtained by the IMEL method. To remind the values that we gave in Chapter 1, the initial resolution for mandibles is 1500 pixels/mm.

As mentioned in

As we have normalized the distances in the following tables, the considered resolution is 600 pixels/mm. Tables 3.1 and 3.2 show the proportion of accuracy at several ranges of errors (in pixels) that we have considered on the left and right mandibles. First of all, the obtained scores with our proposition are better than Palaniswamy's ones. For example, for both left and right mandibles, we obtained more or less 50% of the dataset which exhibits an error of distance less than 20 pixels (Tables 3.1b and 3.2b), which is far from the performance of the Palaniswamy method (Tables 3.1a and 3.2a).

As the last evaluation of results, we have considered the average distance obtained with IMEL at each landmark position. Figure 3 

Discussion

In the same context to identify the landmarks on biological images, D. Houle et al. Their process has obtained an accuracy close to 95%. One can note that MAELab2 with all the program dedicated to the automatic identification of landmarks on 2D images of mandibles are available from now.

The results of this section have been presented as:

• a paper [START_REF] Van | Maelab: a framework to automatize landmark estimation[END_REF] presented at the international Conference on Computer Graphics, Visualization and Computer Vision 2017 (WSCG-2017).

• a poster presented at GRETSI, 2017. Figure 3.9: The results of two steps (segmentation and landmarks detection) on a pronotum image.

To see how our proposition works on other parts of beetle, we have first applied the steps on pronotum images. Figure 3.9 shows the results that we have obtained on a pronotum. As we have mentioned before, the pronotum image is different from the mandible because it contains not only the studied object but also other anatomical parts, e.g., legs and parts of the head or elytra. The results have shown that the pronotum image is quite segmented (Figure 3.9b), but the predicted landmarks are totally incorrect (Figure 3.9c), and really far from the manual ones. Clearly, the appearance of noisy elements has caused trouble for the treatments.

During the last ten years, new methods have been proposed to solve different problems in computer vision without using image processing techniques, e.g., SVM 

Conclusion

In this work, we have presented a pipeline, IMEL, for the automatic estimation of landmarks on mandible images. The proposed method includes a step of segmentation to extract the shapes of the mandibles. Then, an iteration of transformation operations is applied to register two forms before predicted the hypothetical landmarks on the target object. Finally, the SIFT descriptor is used to improve the estimated coordinates. The method has been implemented in MAELab framework and has been evaluated on two sets of mandible images. For this dataset, we have shown that we can provide a set of landmarks that can be used to compute the centroid size or to apply other kinds of analysis on the mandible instead of the manual ones, for example, in Procruste analysis. Moreover, a set of refinements as computing the SIFT descriptor on a selected patch around the first estimation has reduced the distance between the estimated coordinates and the ground truth. It makes our proposal satisfactory for biologists as a possibility to replace manual settings.

From now, the next step consists in switching to analyze other beetles parts and to remove the manual interventions. However, these images are more complex than mandible ones. It is not so easy to extract the studied objects for the registration step.

Unfortunately, this is an essential step in our proportion to align two objects and to set the landmarks. The experiments on pronotum have shown that these steps are the bottleneck of this kind of method. The segmentation that has implemented in IMEL can be considered as not really expert, and efforts could be made to improve this step with newer methods. But, we have preferred to investigate deep learning methods, especially Convolutional Neural Network, which has risen in image processing recently, to try to pass this difficulty.

In the first year of this work, the image processing techniques have been studied and applied to determine the landmarks on mandible images. This chapter turns to another approach of landmark detection, using machine learning algorithms, specifically deep learning, to study the other anatomical parts of the beetles.

This chapter begins with an overview of some machine learning and deep learning algorithms. Then, we present Convolutional Neural Network (CNN), a specific variant of deep learning for computer vision task, and its components. Next, we will turn to transfer learning, a complementary approach in deep learning. Finally, the chapter ends with some applications which have used CNN to analyze 2D images.

Machine learning and neural network

Machine learning

Machine learning [Sam88, MST + 94] refers to teaching computer the abilities which are mostly done by humans. It addresses the question: "How to make the machine learns better in the future based on current or past experiences?" [START_REF] Arthur | Some studies in machine learning using the game of checkers. ii-recent progress[END_REF]. The answer to this question could be to create a process that can learn directly through experiences or observe the behaviors of an algorithm on a dataset. An algorithm which is built for tasks of a machine learning system and able to learn from data is called a machine learning algorithm [MST + 94]. Nowadays, machine learning algorithms are widely used in various applications. Depending on the approach, type of input/output data, and kind of tasks to achieve, the machine learning algorithms can be categorized into three categories:

supervised or semi-supervised learning, unsupervised learning, and reinforcement learning.

In supervised learning [START_REF] Stuart | Artificial intelligence: a modern approach[END_REF], the algorithms learn from examples. In the training process, each pair of input data and its ground truth label is given to the model. The algorithm analyzes the input data and tries to optimize its parameter values. Then, the model is used to find the label of new data. As supervised learning, semi-supervised learning develops the model for the incomplete training data, which includes a portion of data that does not label.

In unsupervised learning [START_REF] Arthur | Some studies in machine learning using the game of checkers. ii-recent progress[END_REF][START_REF] Jerome H Friedman | Data mining and statistics: What's the connection?[END_REF] the algorithms track operations to describe the structure of unlabelled data. For example, clustering analysis is a branch of this group that proposes to classify the unlabeled data. The algorithm tries to identify the common features of data belonging to a group. When a new piece of data appears, it will be assigned to the group which exhibits the same common features.

Reinforcement learning [KLM96, SB + 98] concerns how to map situations to actions so as to maximize a numerical reward signal. In an essential way, reinforcement learning can be seen as a close-loop because the learning system's actions influence its later inputs. At each round, the learner discovers the actions which can bring the best reward by trying them out. Reinforcement learning is different from supervised or unsupervised learning: it tries to maximize the reward signal instead of indicating the correct/cluster category of the situation.

From the first appearance till now, many machine learning models have been introduced, e.g., Decision Tree [START_REF] Quinlan | Simplifying decision trees[END_REF], Clustering [START_REF] Lloyd | Least squares quantization in pcm[END_REF], Support Vector Machine [CV95],

Neural Network [START_REF] Warren | A logical calculus of the ideas immanent in nervous activity[END_REF]. In these models, Neural Network is different from these models. It is a combination of hundreds of unit process to solve a problem. Each unit learn to perform the tasks by considering examples without programming of any task-specific rules. Nowadays, Neural Network becomes very popular for regression and classification problems, but over time they have been transformed to adapt with all manner of problem types such as object recognition or speech recognition.

Neural Network

Neural Network [LBH15] is a computing system based on a collection of connected units, called neurons, which are inspired by the biological neural network. In the biological model, each neuron hires an "activation function" to decide which action will apply to the input. An axon, is a connection between two neurons, to transmit the signals. Each axon is partnered with a weight to adjust the "importance" of the inputs. It
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is used to increase or to decrease the strength of the sending signal to the next unit. In practice, the neurons are grouped to create the layers and a neural network is built from a set of layers. The layers in the neural network can be classified into three types: input layer, hidden layer, and output layer. The input layer receives input data, then passes to the hidden layers before returning to the output. In a neural network, the number of input data for each training time is variable and depends on the capacity of resources. However, even different kinds of data in various applications, e.g., image or text, these data have to be converted to vectors before providing to the network.

In the same situation, the number of hidden layers and the number unit in each layer is also the model's hyper-parameters. These layers can be inserted into the model to improve the power of the network. In practice, these values are specified through the experiments. However, it depends on the computing capacity, as well as the complexity of the problem that we need to solve. For example, we can use a model of two layers 1 Image source: https://towardsdatascience.com 90 CHAPTER 4. DEEP LEARNING AND LANDMARK DETECTION with several dozens of units for a classification task. The number of units at the output layer is usually corresponding to the goal of the problem, e.g., it will have two units for a binary classification task. 

Convolutional Neural Network

In recent years, deep learning has risen strongly as a method to solve many difficult tasks in different domains. In serval model variants of deep learning, Convolutional

Neural Networks (CNNs) are known as good solutions to solve the problems on grid topology data such as 2D/3D images, or video sequences. A CNN is a feedforward network that takes the information following one direction from the input layer to the output layer. Different CNNs architectures have been proposed. But generally, they consist of several types of layers: convolutional and pooling layers which are stacked together to convolve and to down-sample the inputs. Then, they are followed by one or more fully connected layers to achieve the output of the network. Sometimes, the dropout layers are added, for example, between the FC layers to prevent the overfitting of the network. In practice, choosing pooling layers in the model depends on features that we would like to extract, for example, max-pooling is preferred to extract features like edges, whereas average-pooling is favored to extract the global objects. Additionally, the size of the filter (F) and the stride value (S) are also important. These parameter values affect its output features which are the summary of characteristics of the previous layer. There are two common variations of pooling in the practice: overlapping pooling which uses three as the filter's size (F=3) and two as the stride value (S=2); and non-overlapping pooling where the filter size equals the stride value (F = S = 2). LeNet [START_REF] Lecun | Gradient-based learning applied to document recognition[END_REF] model is considered as the first architecture of CNN. LeCun et al.

[LBBH98] have used it to classify the handwritten digits in cheques. LeNet exhibits a standard architecture of a CNN that consists of two convolutional layers, pooling layers, followed by two fully connected layers. But to be applied to realistic problems, this model requires huge computation capacities and a large amount of training data which were hardly available in the early 2000s. In the last ten years, the computing capabilities have drastically improved, while at the same time, a huge amount of data became available, new models of neural networks appeared well adapted to this new environment. One of the first ones is AlexNet [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF], which is similar to LeNet [START_REF] Lecun | Gradient-based learning applied to document recognition[END_REF] but with a deeper structure: LeNet has two convolutional layers and 1 fully connected layer while AlexNet has five and three, respectively. Furthermore, in AlexNet the acti- or ResNet-50 [START_REF] He | Deep residual learning for image recognition[END_REF]. The main difference between these networks is that their ar- 

Data augmentation

From AlexNet to ResNet-50, the obtained success stories [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF][START_REF] He | Deep residual learning for image recognition[END_REF] have proved that CNN models produce better results on a large dataset but to use this technique, the size of dataset remains a bottleneck and our own some hundred of images are considered as modest for these models. So, it is important to be able to provide a large dataset in order to learn more cases and to improve the learning ability of the network. Unfortunately, in some application domains as this work in biology, providing a large dataset is too costly. For this reason, one way to solve this problem is to create misshapen data from real data and to add them to the training set. This process is known as data augmentation.

In deep learning domain, the image augmentation algorithms could be grouped into two main groups. The first group includes the methods based on the classical transformations of the image, e.g., rotation, translation [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF][START_REF] He | Deep residual learning for image recognition[END_REF]. In the second group, the algorithms use the neural network to augment the dataset. These models could be the adversarial network, the generative adversarial network [GPAM + 14], or neural style transfer [START_REF] Gatys | A neural algorithm of artistic style[END_REF]. For more details about the methods in the two groups, the readers could find in [START_REF] Shorten | A survey on image data augmentation for deep learning[END_REF].

Practically, choosing the augmentation method depended on the task of the problem that we solve. For example, the classical image transformations like rotating, translating, cropping, zooming could be used to increase the number of samples in a dataset for 

Landmark detection using Deep Learning

In transfer¿' mentions the part of knowledge that can be transferred across the tasks. In a learning system, some knowledge is specific for source task, but some others may be common between different tasks. In this case, reusing common knowledge can help improve the performance of the target task. "When to transfer¿' asks in which situations, the transferring should be used or should not be used. In some cases, when the source and the target task are not related, transfer learning may be unsuccessful or be lead to unexpected results, for example, it may even hurt the performance of learning in the target task, which is known as the negative transfer. For example, if we transfer the knowledge of a model that is designed to solve a classification problem to apply on a regression problem, the model could make more errors than training from scratch. "How to transfer¿' refers to the computation of learning algorithms, which use to transfer the knowledge. Most of the work in transfer learning focuses on a pair of two questions "What to transfer?" and "How to transfer?" by assuming the relation between source and target domain. However, the answers to another pair of questions: "When and how to transfer?", is also important.

In practice, transfer learning is mostly targeted on 2 scenarios:

• Use CNN as a fixed feature extractor: Take a CNN pre-trained on a large dataset, then remove the last fully-connected and use the rest layers of CNN as a fixed extractor for the new dataset.

• Fine-tuning a CNN: This situation is the same as the first one. However, it does not only replace and retrain the last layer but also fine-tunes the weights of the pre-trained model by extending the backpropagation. One can note that to reuse a pre-trained model, the parameters have been adapted between two tasks. These parameters could be the size of input images, the number of outputs, or the parameters of each layer. As usual, the parameter values at each layer, e.g., padding

or stride values, are selected to change their values to declare the differences between the two tasks.

As it is explained in [TS09, PY10], choosing a transfer learning strategy depends on various factors, but the most important is the size of the target dataset (small or big) and its similarity to the source dataset. The characteristic of a CNN is the generic features extracted by the early layers while the specific features are given by the later layers. Therefore, there are four major scenarios:

1. Target dataset is small and similar to source dataset. It is not a good idea to finetune the CNN due to over-fitting concerns because the data is small. Since the data is similar to the original data, we expect higher-level features in the CNN to be related to this dataset as well. So, the best idea could be to train a linear classifier on the CNN features.

2. Target dataset is large and similar to source dataset. Since we have more data, we can believe that we will not overfit when we fine-tune through the full network.

3. Target dataset is small and very different to source dataset. It seems that training the classifier on the top of the network is not the best way instead of the network should be trained from somewhere earlier in the architecture.

4. Target dataset is large and very different to source dataset. Since we have a huge amount of data, we can completely train CNN from scratch. However, it is beneficial to initialize the weights from a pre-trained model to boost the learning process and to save time. Thus, we should have enough data and confidence to fine-tune through the entire network.

In practice, transfer learning has been applied in different applications: Ng. In learning from scratch, all the parameters of CNN models are randomly initialized and trained on the dataset. In transfer learning, they have followed a hypothesis that: "despite the disparity between natural images, CNNs comprehensively trained on the large scale well-annotated ImageNet may still be transferred to make medical image recognition tasks more effective". Therefore, they have used the pre-trained of AlextNet [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF] and GoogLeNet [SLJ + 15] models, to fine-tune on their medical image dataset. The performance of using "off-the-shelf" was also considered In order to evaluate different strategies of deep learning and to improve the results, we have tried to transfer the knowledge of AlexNet [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF] on the ImageNet dataset [DDS + 09] to fine-tune on our images but the results have not been satisfying. However, we believe that transfer learning is a good solution for our application based on what we have studied. To keep the idea of transfer learning, we have chosen another scenario to apply it. All details of this process will be presented in chapter 6.

Conclusion

In this chapter, we have presented some concepts of machine learning which can be applied to solve problems on 2D images: neural network, deep learning, and CNN.

We have also described different strategies to apply a deep learning model in practice:

training from scratch or transfer learning. Due to the availability of current resources for computing, deep learning is nowadays applied with success in a lot of image processing

As we have mentioned in the first part of this document, the classical image processing methods have been difficult to apply on some parts of the beetle's dataset. It explains why we have turned to deep learning to automatically set the landmarks on images without pre-processing steps as segmentation.

In the next chapters, we present the architecture that we have developed to predict the landmarks on beetles images. We will point out also how we have used transfer learning to improve the results.

Chapter 5

Landmarks prediction using Convolutional Neural Network NETWORK

In chapter 3, we have described the results on the left and right mandibles images based on image processing algorithms. In mandible cases, images are pretty easy to segment and landmarks are mostly stayed on contours of shape, using image processing algorithms is appropriate, and this way has given good enough results (Section 3.6). However, the method has encountered difficulties when applying to other parts, e.g., pronotum, elytra, and head. Those images do not only contain the studied object part but also some noisy ones, for example, the legs in the case of pronotum images.

Additionally, location of landmarks could be both on contours and inside the object.

In this chapter, we present the architecture of the CNN that we have designed to solve the task to automatically determine landmarks on the beetle's images. Accordingly, we have proposed a new composition of layers to build network architecture, called EB-Net. This model has been used to analyze the three other parts of beetles:

pronotum, elytra, and head. Before to present our model, the first section describes the data management procedure that we have applied to augment the dataset size.

The first results obtained with EB-Net have been presented as a full paper [START_REF] Van-Linh Le | Landmarks detection by applying deep networks[END_REF] presented at The First International Conference on Multimedia Analysis and Pattern

Recognition 2018 (MAPR -2018).

Data management

The fundamentals of deep learning algorithms are to train models on the dataset repeatedly in order to reach the best accuracy. So, providing a large dataset asserts to learn more cases and clearly improves the learning ability of the network. Unfortunately, in some application domains as in biology, providing a huge dataset is costly and could take a long time to be achieved (several months/years). For this reason, one way to solve this problem is to create misshapen data from real data and to add them to the training set. Figure 5.1 shows the images of three remaining beetle parts in our dataset.

As mentioned before, we have only 293 images for each part and this number is modest to apply deep learning method. To supply that, we have augmented the number of NETWORK images in each set of images by applying two specific procedures. to respect the ratio between width and height; of course, the coordinates of manual landmarks have been also scaled to fit with the new size. This operation causes a loss of information into the image, but using the original size cannot be foreseen without massive computing resources.

EB-Net architecture

As we have presented previously, some CNN architectures are available from literature and tools libraries. It is always possible to adapt them to a specific application by changing the parameter values or by modifying the arrangement of layers. Accordingly, several trials have been done before obtaining a satisfying model dedicated to landmarks estimation. In this section, we present the three versions of the model that we have designed to solve this task. Inserting POOL layers after a convolutional layer is usually done. The POOL layer helps to reduce the spatial size of the representation to decrease the number of parameters and the computation time, as well as to control over-fitting. The operations of POOL layers are independent of each depth slice of their inputs. In our model, we have used the common form for a POOL layer: a filter with a size of 2 × 2 and a stride of 2 pixels.

At the end of the model, three fully-connected (FC) layers are added to extract the global relationship between the features and to proceed with the outputs. The first two FC layers take into account all possible features from convolutional and pooling layers.

Then, the features are passed through the activation functions before sending them to the third FC layer (output layer). The number of outputs at each FC layer is 500, 500 and 16. The 16 outputs of the last FC layer corresponds to the coordinates (x and y) of 8 landmarks which we would like to predict on pronotum. Nevertheless, the obtained results with this architecture have not been considered as enough good to continue to use it. One of the main problems is the presence of over-fitting during the training process: detailed results will be discussed in Section 5.4.

The second model has kept the same architecture as the first one. But the number of outputs at the first two FC layers has been increased to 1000. Increasing the value at FC layers allows getting more features from the CONV layer with limited requirements of new computing resources. However, the obtained results are still not satisfactory, it will be discussed also in the result section (Section 5.4).

To build the third architecture, we have defined a new concept: Elementary Block (EB). An EB is defined as a sequence of a CONV (C i ), a maximum POOL (P i In practice, hyper-parameter values depend on the task and the dataset. They are usually determined empirically. There are many optimized algorithms in deep learning, but gradient descent is well known as a good choice to reduce the loss in the neural network. The core of gradient descent [START_REF] Amari | Backpropagation and stochastic gradient descent method[END_REF] is to follow the gradient until reaching a minimum of the cost function. Consequently, we have chosen the gradient descent as the optimization algorithm with a learning rate initialized at 0.03 and to stop at 0.00001;

while the momentum rate is updated from 0.9 to 0.09999. During the training, the values of learning and momentum rates are updated to fit with the number of epochs by applying parameter adjustments. Additionally, we have chosen the Root Mean Square Error (RMSE) as the loss function because it is usually used for regression problems where the outputs are not discrete values as in the case of landmark coordinates.

First results

The network architecture has been implemented by using Lasagne framework [D + 15] and trained in 5000 epochs on Linux OS by using NVIDIA TITAN X GPU card.

To predict landmarks for all pronotum images, we have applied the cross-validation procedure to select the test images, we will call a selection step is a round. For each round, we have decided to choose 33 images for testing. The 260 remaining pictures will be used to train and to validate the model. Of course, the set of 260 images has NETWORK been augmented as described in Section 5.1 to provide 1820 images for these 2 steps.

To achieve the cross-validation steps, we have to do 9 rounds in total to predict all landmarks. It is worth to note that we have used the down-sampled images (256 × 192, resolution is approximated to 47 pixels/mm).

During After considering these results, we have focused on the location of predicted landmarks comparing to the ground truth. So, we have calculated the distances (in pixels) between coordinates of manual landmarks and predicted ones for all images. Then, the average distance between manual and estimated landmarks has been computed for each landmark position. (corresponding to 2 pixels) could be an acceptable error. Unhappily, our results exhibit an average distance of 4 pixels in the best case, the 1 st landmark and more than 5 pixels in the worst case, the 6 th landmark. The values of other cases are approximate to 4.3 pixels.

Important notice:

The distances are given in pixels. We want to remind you that after down-sampling, the resolutions for pronotum, head, and elytra are 47 pixels/mm, NETWORK 47 pixels/mm, and 23.5 pixels/mm, respectively. We will keep pixel unity because we consider the image on the screen and not on the real insect. To illustrate this point, Figure 5.8 shows the predicted landmarks in two random cases in our test images. One can note that even some predicted landmarks are close to the manual ones in most of the cases (Figure 5.8a), we have also some predicted coordinates that are far from the expected results (Figure 5.8b). To be more confident about our conclusion, the same procedure has been applied
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to two other parts of the beetle: head and elytra. The results are statistically similar (calculating the average distances and illustrating the distribution of distances). The results of these parts will be detailed in Appendix C.

Limitation of the model

The EB-Net has achieved good outcomes in most cases. However, it exists several difficult images in our dataset that the network could not recognize. We can see clearly from 

Conclusion

In this chapter, we have presented a new CNN model, EB-Net, to predict landmarks on 2D images of beetles. EB-Net is composed of Elementary Block three times repeated.

An Elementary Block consists of a convolutional layer, a maximum pooling layer, and a dropout layer. Then, three fully-connected layers and a dropout layer achieve to compute landmarks coordinates. We have also proposed a strategy to augment the number of images in the dataset by modification of their color channels.

The network has been trained several times with different selections of training data (round). After training with the manual landmarks given by the biologist, the network was able to predict the landmarks on the set of unseen images. Then, the In the previous chapter, we have proposed a new architecture of Convolutional Neural Network (CNN), EB-Net, to predict the landmarks on the three sets of 2D beetles images: elytra, pronotum, and head, which have exhibited shape characteristics remained the awkward problematic of segmentation. The results have figured out that using CNN to predict landmarks on these 2D images is relevant and the obtained results are statistically good enough to replace the manual ones. However, the predicted landmarks remain far from the manual ones in some cases, and we are looking for some improvements.

As mentioned in Section 4.2.4, working with Deep Learning requires not only to design a good architecture but also to provide a large dataset to train and to test the model. This is a potential problem in some application domains, as in biology. In Section 5.1, we have presented a way to augment the number of images in our dataset.

However, our number is far away from several thousands even we have augmented our dataset. In this case, knowledge transfer or transfer learning between tasks could be advisable [TS09, YCBL14] as we have described in Chapter 4.

In this chapter, we present the last step of our workflow, which is a fine-tuning process. At this step, we have trained EB-Net on another large dataset, e.g., facial keypoints dataset, to obtain training parameter values and then to re-use them to finetune the model on beetle's images.

Fine-tuning design

As we have mentioned in Chapter 4, transfer learning is another strategy to use deep learning methods in the case we have a limited dataset to train the model. Fine-tuning is a scenario of transfer learning, and it is widely used in practice to boost the efficiency of a model. Technically, we usually fine-tune the weights of a CNN by continuing the backpropagation. It exists two ways to perform fine-tuning: frozen and unfrozen. With the frozen scenario, the parameters of several lower layers (close to the input layer) will be fixed, and we fine-tune only the higher ones (close to the output layer). On the opposite side, unfrozen allows continuing updating the parameter values of all layers in the model. The hyperparameters of the network, e.g., learning rate, have also been adjusted. As usual, a small learning rate is recommended during the fine-tuning process to assume that the pre-trained weights are good enough and we do not wish to disfigure them too quickly and too much. For example, the learning rate of the fine-tuning process could equal to 1/10 time of the pre-training one.

In this context, ImageNet [DDS + 09], a well-known dataset with more than one million images labeled in 20, 000 categories, has been used to train many famous CNN architectures [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF][START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF] with success as we have mentioned in Section 4.2.4. The pre-trained models on ImageNet have been then shared in the deep learning community as a source to re-use the features of ImageNet dataset. Unfortunately, some preliminary tests have shown that re-using ImageNet features is not relevant for our application because ImageNet features mainly concern the detection of the global shape of the objects whereas landmarks can be considered as local features [START_REF] Lin | Homemade ts-net for automatic face recognition[END_REF]. Luckily, searching for landmarks is well defined in other applications as face recognition and facial keypoints detection, and we can consider that these applications present similarities with our problem. Consequently, we have decided to train EB-Net with facial key points dataset and then to transfer the trained parameters to fine-tune it for beetle's images. All the processes are detailed in the next sections.

Pre-trained EB-Net on Facial Keypoint datasets

A Facial Keypoints dataset has been published for a competition in the Kaggle commu- The new parameter values are 96 × 96 for the input's size value, and 30 for the output of the last FC layer. Considering the EB-Net hyperparameters, the learning rate and momentum remained the same but the number of epochs has been increased to 10000.

Team Olegra Trump

Enes Our 1 st 2 nd 3 rd RMSE score (in pixels) 1.2824 1.4004 1.4026 1.497 Table 6.1: RMSE comparison between our score and top three of challenge.

After training, we have tested EB-Net with 100 images. Then, the distances between the predicted and manual ones have been computed to finally calculate the RMSE score.

The obtained value is 1.497. Comparing with other results in the Kaggle challenge (Table 6.1), three models present results better than us but very closed when considering that it is pixel value. In our opinion, the RMSE score around the 1 pixels is not so far if we would like to display the landmarks on the images. Consequently, we have the base to believe that EB-Net is still good in any way, and we have decided to re-use the pre-trained parameter values to fine-tune the model for beetle images.

Fine-tuning on beetle's images and results

One can note that the sizes of images between the two datasets are different, the beetle images have a size of 256 × 192 pixels; whereas the facial images are 96 × 96. Therefore, adjustments are needed to match the two tasks.

First of all, reducing the resolution of the beetle images to 96 × 96 could be lead to a loss of essential information. As our images contain a background band that is easy to suppress with a pre-processing operation, we have chosen to remove the background region instead of down-sampling our pictures. Moreover, removing the background pixels can limit the effect of un-useful image areas.

We have also respected the form of images that they are square. The new beetle images are finally set to 192 × 192 pixels. The EB-Net parameters will be settled to take into account these values between the pre-training and fine-tuning steps. To declare the modification, we mention in a stride value of the first convolutional layer equals to 2 (as the usual way to do [YCBL14]).

To evaluate this process, the parameters of the pre-trained model are transferred to separately fine-tune on three sets of images: pronotum, head, and elytra. We present all the obtained results in the same way as in Chapter 5 to have a clear comparison.

We have also applied this approach to the mandible images in order to compare the obtained results with the results provided by image processing techniques (Chapter 3).

Results

Important notice: In all result tables, we use the pixel as unity. We want to remind that the pronotum and head have the same resolution (47 pixels/mm), and different than the elytra (23.5 pixels/mm) as specified in Chapter 5.

Distance between manual and predicted landmarks

The distances (in pixel) between predicted landmarks and corresponding manual ones have been computed, as we have done previously (Chapter 5). Then, these distances are used to compute the average value for each position on all images. Tables 6.2, 6.3, and 6.4 resume the results on the pronotum, head, and elytra: The first column presents the landmark number; From scratch column reminds the previously average distances when EB-Net was trained from scratch; Fine-tune column presents the new average distances; the fourth column presents the improvement percentage between the two processes. The green and red values are respectively the best and the worst values in each column. All distances are given in pixel unity.

First of all, to check if average distances are significantly different, we have computed the p-values from the average values of two processes (training from scratch and fine-tuning). These p-values are 0.057, 0.005, 0.031 on pronotum, head and elytra, respectively, that is statistically significant.

One can note that all average distances have decreased between 1 and 1.5 pixels both in three sets of images. From tables 6.2, 6.3, and 6.4 we can see that sometimes the points with the best-predicted coordinates have changed, but we prefer to notice that it exists a group of well-predicted landmarks where the differences between the average distances are less than 0.5 pixels, such as:

• For pronotum: the 7 th , 3 rd , and 1 st landmark.

• For head: the 8 th , 6 th , 7 th , and 10 th landmark.

• For elytra: the 3 rd , 1 st , 4 th , 2 nd , 11 th , 5 th , and 10 th landmark.

In another way, we can examine the worst cases. They remain in the same positions as previously in both 3 datasets:

• For pronotum: the 6 th remains isolated as a bad result.

• For head: a group of 2 landmarks (1 st and 3 rd ) obtained more than 4.5 pixels. the minimum, as well as so far from the maximum scores. This reveals the presence of some isolated cases, which are far away from the mean values, has affected the overall outcome. To deeply understand this problem, we continue with the distribution of distances on each landmark.
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Distribution of distances

The average distance between manual and predicted landmarks could be not the only way to appreciate the obtained results. As we have mentioned, the mean value can hide different situations when deeply going to the analysis. Again, it could exist of two cases for an average value: all distance values are very close to the mean value, or they are widely widespread around the mean one. In this case, distribution of distances could be taken into account to characterize this situation. 

Illustration of landmarks on image

To illustrate the results, Figure 6.3 shows both the predicted (in red) and the manual (in yellow) landmarks on three random images of the three beetle parts. For example, we have obtained seven well-predicted landmarks on the head images. The three remaining positions are a little bit far from the manual ones. We wanted to display an illustration of all the computing on a generic image of pronotum. Figure 6.4 displays mean coordinates on each landmark of all pronotum 127 CHAPTER 6. TRANSFER LEARNING AND FINAL RESULTS pictures on a pronotum's shape2 . The 3 colored points correspond to:

• Red points are the mean coordinates of all manual landmarks.

• The yellow squares present obtaining outcomes when we train the model from scratch.

• The green boxes show the results of the fine-tuning process.

One can note that the center of each square is the mean coordinates of all predicted landmarks in each process (from scratch and fine-tuning). The length of the square equals to double of average distance at each landmark position. We can observe that the distance of the average distances between two processes on each landmark is not so large. The overlap between the yellow and green squares shows the similar/different values of the distances. Moreover, it exists a consistency between the mean of manual coordinates and the average coordinates of predicted landmarks because the manual landmarks are always inside the range of the predicted ones (green rectangles). 

A comparision with Image Processing Techniques method

Mandible images have not been processed with the EB-Net model in the previous chapter. However, we have applied the fine-tuning on mandible images in the same way that we have done on other parts. Then, the results have been used to have a comparison between the two methods (deep learning and image processing methods). For the right mandible (Figure 6.5a), with image processing techniques, some first landmarks (from 1 st to 6 th ) have been well-predicted, which illustrated by small average values in the chart. However, these values begin to increase from the 7 th landmark. The reason is that the first group of events is mainly concentrated on the tip of the mandible where we can obtain the precise segmentation, while others are on the base where we can meet some difficulties to get the segment contours. For the fine-tuning process, the obtained values are more stable. Although some first values can be approximate or larger (from 2 nd to 7 th positions), other ones are better than the previous results (after 7 th position). Remarkably, the fine-tuning has a great improvement at the positions located at parts that are hard to extract the contours.

For the left mandible (Figure 6.5b), it is worth to note that they have been more difficult to process than the right ones by using image processing techniques, as we have discussed in Chapter 3. However, with the help of fine-tuning, the results are almost the same as the right ones. They are stable and present significant improvement in most of the landmarks.

To achieve the analysis, we have also displayed the distribution of distances as we have compared in previous parts but by image processing techniques. Figures 6.6 From the achieved results, we give a short comparison between the two methods, Classical Image Processing (CIP) and Deep Learning (DL). As usual, CIP uses a set of techniques to achieve the last results. The algorithms in the method are easy to find in available libraries. In our application context, it does not require so many computing resources to apply it, and we can use it to process on a small dataset. However, a lot of features of the image could be considered as useful features for analyzing, choosing the proper ones becomes a hard problem in the CIP methods, and we need to try a long trial to decide which are best to describe the landmarks. Moreover, we have a link between the results of the steps in the method. If we fail at any level, it will affect the final result.

Deep Learning provides an embeded process to analyze the image. We only give a dataset of images with a set of manual landmarks to the model. Thereby, we train the network on the given data. It will automatically discover the particular features for each key point. At the end of the process, it will provide the coordinates of estimated landmarks. From the comparison, the outputs are more stable and better than with CIP.

However, we need to take into account some other aspects with DL methods such as the number of data, designing model architecture, or computing resources which can be difficult to satisfy. Along with the development of computing resources, deep learning methods could be a good choice for landmark detection on 2D images.

Feedback from modifications of EB-Net

In the deep learning community, the last ten years have seen a kind of competition about the size of the networks. The success studies have proved that adding hidden layers and increasing the depth could be beneficial for a complex task, e.g., multi classes classification or landmark detection as demonstrated [START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF]. In our case, EB-Net has a very modest size. To check if we can obtain an improvement of the EB-Net results, we have tested by enlarging the size of the model. It is worth to note that we do not join to a breakneck quest for huge deep network size, but we want to appreciate the influence of the number of Elementary Block (EB) inside our model. To do that, we have decided to add only one EB to the previous architecture. In this block, the depth of the convolutional layer is larger than others to make the system to become more powerful to learn complicated patterns in data [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF]. The whole set of parameters of the layers in the new EB are set as follows:

• 

New results from the modification

After modification, the new EB-Net has been applied to our dataset in the same protocol as the last work. The trial has been lead on all parts of the beetle. Tables 6.5, 6.6, 6.7, 6.8, 6.9 present the comparison of the obtained results from the two models. The First of all, the results have been improved in all cases. Sometimes, the gain is pretty 1 pixel and more generally 0.5 pixels. Of course, the enhancement of each position is different, but we can see that the improvement most often occurs at the positions which are considered as being a little bit difficult to predict (following the previous results).

For example, the new composition performs to almost positions of head images. It has also affected to the 6 th , 7 th , 8 th landmarks on pronotum; the 6 th , 7 th , 8 th , and 9 th landmarks of elytra; the 2 nd , 14 th positions on left mandible; and the 4 th , 18 th positions of the right mandible.

Finally, to be completed, we illustrate the distribution of the distances obtained from the new version of EB-Net. As usual, we consider the representation of the best and worst cases. One can note that all the distances between the manual and predicted 

Future works

From these comparisons, we can observe that changing the activation function and adding one elementary block has improved the obtained results even the increase of the network's size is not large. As we have mentioned, we did not want to join a disputa- The comparison of average distances on each landmark of beetle's parts. The results are obtained from different processes on two versions of EB-Net.

tion between the size of the network and the achieved results. However, changing the composition of the network by adding a new EB in our case has given better results to us. The coordinates of predicted landmarks are more close to the manual ones. As a perspective, we would like to test that could we achieve better results when adding one or two new blocks if we have the computing resources.

It is worth to note that our block is a generic one. It is easy to add it, easy to test the model, even to remove a block from the model if the results are not satisfying. The users can choose suitable blocks for their applications. Choosing the number of blocks depends on the computing resources, as well as the expected results. As usual, we need to note that it exists a balance between the depth of the model, the accuracy of outputs and the cost to compute.

As perspectives, we would like to introduce our model for applying on other applications, e.g., different applications in biology or predicting landmarks for human pose detection which are studied topics in our team. Moreover, the pre-trained model of EB-Net is existed from now, available freely on Github3 , the users can use it to apply on other applications of landmarking.

Conclusion

In this chapter, we have presented a complementary approach of deep learning, transfer learning for the landmarking problem. We have also described a process to apply fine-tuning, a specific strategy of transfer learning, for improving the performance of automating landmarks on beetles images. In this step, we have pre-trained our network, EB-Net, on a facial key points dataset before transferring the parameters to fine-tune on beetle images.

We have examined another composition of EB-Net by adding a new elementary block. We have also replaced the activation functions to LeakyReLU. The modification of the model has achieved our works on beetle images. We are now able to provide a set of predicted landmarks, which is good enough to replace manual ones in the statistical point of view, and to display them on the images in a user-end application. So, we have distributed the final results to the biologists, and they have confirmed that our estimation is good enough to use in the morphometry analysis.

Conclusion

This Ph.D. research has figured out the methods to automatically predict landmarks in 2D biological images. The application has been made on beetle images coming from a dataset of the Demecology team (INRA, Rennes). In the first step, the studies focused on the beetle's mandibles. In this context, we have first studied and tested solutions found in the literature, as the detection of landmarks on wing images of Drosophila wings with the help of Probabilistic Hough Transform computation associated with a template matching process. The first results with this method attest the feasibility of this research, but the outputs need to be improved. We have proposed another pipeline of operations composed of a segmentation step and an iteration of registration step.

The estimations of landmarks have been then achieved by applying a SIFT method. The results have been considered good enough to use these landmarks for morphometric operations required by biologists. Unfortunately, running our pipeline on the three other parts of the beetle: pronotum, head, and elytra, has come out the poorest results. The pictures of these parts have been taken before dissection, and they stay stuck together.

To deal with this problem, we have chosen to turn to another approach coming from deep learning algorithms, which do not need the segmentation to process these parts.

Accordingly, a CNN model has been proposed, named EB-Net. The EB-Net architecture is a combination of three Elementary Blocks, EB. Each Elementary Block is a composite of three classical layers: convolutional, maximal pooling, and dropout layers. After several working processes with EB-Net architecture, the final results have been obtained with the help of a fine-tuning process, i.e., transfer learning from a facial Conclusion landmarks analysis. The outcomes have provided the estimated landmarks, which are most often in an area more or less than three pixels around the manual ones.

The final results have been delivered to biologists. They have confirmed that the quality of predicted landmarks is statistically good enough to replace the manual landmarks for the different morphometry analysis, and to be displayed them on an end-user interface. In order to apply our framework to a large set of problems in morphometry, In image processing, shape recognition mentions identifying the similarity of two images features. This work can be achieved by comparing their histograms. Palaniswamy has chosen Bhattacharya metric [START_REF] Bhattacharyya | On a measure of divergence between two statistical populations defined by their probability distributions[END_REF] to measure the similarity of two histograms.

This metric provides a quantitative estimation of the likeness between the source and the target features as a dot product correlation of the histogram of lines. The form of To compare the performance of Palaniswamy's method on our mandibles with their data (fly wing). We have computed the distances between manual landmarks and predicted ones. Then, we have considered the proportion of prediction with several ranges of acceptable distances. One can note that the size of the images is different between the two datasets. To be able to compare, the distance on each landmark of the mandible has been scaled to size provided by the article (1280 × 1022). in each case. In these charts, the horizontal axis presents the number of images in the dataset. The vertical axis illustrates the distances in pixels between manual landmarks and predicted ones. From the charts, most of the distances between predicted and manual landmarks have been reduced in both two cases (the best and the worst). In which, we make a note of the distances above the average values. These values have been decreased, and they are more close to the average lines by helping of fine-tuning.
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II . The distributions of the distances

Figure 1 :

 1 Figure 1: Les images de cinq parties de notre ensemble de données. De gauche à droite: mandibule gauche, mandibule droite, pronotum, élytre et tête.

Figure 2 :

 2 Figure 2: Les landmarks prédits et manuels sur les mandibules gauche et droite. Les points rouge/jaune présentent les landmarks manuels et estimées.
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  Figure 3: La distribution des distances entre les landmarks manuels et estimées de toutes les images pour le meilleur (1) et le pire cas (6).

Figure 4 :

 4 Figure 4: L'emplacement des points de repère prévus dans un cas de chaque partie. Les points rouge/jaune représentent les landmarks prévus/manuels.
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  Figure 1.1: The location of landmarks in various applications.Images from Facial technologies 1 and Giga Science 2

[ NB02 ,

 NB02 PPJ08], iris scanning [SK17, VCFR09], facial recognition [SWT13, Z + 14]. The landmarks, which are used in the face detection tasks, are called facial landmarks. They will be described in Section 1.2.
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 12 Figure 1.2: An illustration of the beetle.
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 13 Figure 1.3: The sample images (1 st and 3 rd rows) and positions of manual landmarks (2 nd and 4 th rows) on each part in our dataset.

  Figure 2.1: Intensity histograms of two different cases

Figure 2 .Figure 2 . 2 :

 222 Figure 2.2: The sequence of Ojala's method. Image from semantic scholar 1

Figure 2 .

 2 Figure 2.3 illustrates how to calculate the edge strength and direction at a pixel.

Figure 2 . 3 :

 23 Figure 2.3: The detection of edge strength and direction at a pixel (red). Each square represents one pixel, the edge is perpendicular to the direction of the gradient vector.

Figure 2 .

 2 Figure 2.4 presents a patch of an image that contains an edge. The pixels, which have the direction perpendicular to the gradient vectors (grey color with the blue border), are indicated as belonging to the edge.

Figure 2 . 4 :

 24 Figure 2.4: Illustration of the pixels (gris color) belonging to an edge.

  Figure 2.5: An examination of segmentation techniques on a right mandible.From left to right: original image, cluster techniques, Canny edge detector, respectively.

  volutional layers and pooling layers associated to non-linear activation function, batch normalization [GWK+ 18]. These layers can be grouped into two phases, called encoder and decoder phases. In the encoder phase, we reduce the spatial size but increase the depth (channels) of the image by passing it through combinations of the convolution and down-sampling layers. At the end of this phase, it outputs the low-resolution tensors, which contain the high-level features (e.g., object) of the image[START_REF] Long | Fully convolutional networks for semantic segmentation[END_REF]. In the decoder phase, it takes into account the low-resolution tensors and provides the output as the high-resolution tensors with the label for each pixel in the image. To do that, we use the convolution layers coupled with upsampling layers to increase the size of the image and to decrease the depth of input tensors. From the first application to the present, various CNNs have been proposed, e.g., Fully Convolutional Networks[START_REF] Long | Fully convolutional networks for semantic segmentation[END_REF], ParseNet[START_REF] Liu | Parsenet: Looking wider to see better[END_REF], Encoder-Decoder[START_REF] Noh | Learning deconvolution network for semantic segmentation[END_REF], UNet[START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF], Mask-RNN[START_REF] He | Mask r-cnn[END_REF], DeepLab [CPK+ 17]. The details of neural networks and CNN will be given in the next part of the thesis. We will figure out the components of a network model as well as their operations. Besides, we also introduce the other applications of neural networks, especially CNN.

  two or several images. The registration methods use one image as the source and the others as targets. Features in the pictures are used as inputs to calculate the registration values between the source and target. Based on the data as well as the characteristics of methods, we can divide the registration methods into several categories, e.g., intensitybased [Gos05], feature-based [Gos05], transformation model-based [Gos05, SDP13, Boo97], frequency-domain-based [Zok04, KEB91], similarity measures-based [Gos05, YH09, Bru09]. The readers can find the detail in the surveys [ZF03, SDP13, VMK + 16]. In the context of this work, we will present in details only three methods that we have studied from the literature because the two first are referenced in the Palaniswamy's article [PTK10] that we have used to initialize our work, and the last is often cited in morphometry analysis. These are cross-correlation or template matching (similarity measures category), Probabilistic Hough Transform (PHT) (frequency-domain class), and Procrustes methods (transformation model-based).

  properties of descriptors are considered to indicate the location of the key points. The methods that should be mentioned in this group are Scale-invariant feature transform (SIFT) which has been proposed by D. Lowe[START_REF] David G Lowe | Distinctive image features from scale-invariant keypoints[END_REF], and Speeded up robust features (SURF) method of Herbert Bay et al.[START_REF] Bay | Surf: Speeded up robust features[END_REF].In SIFT, the key points are considered as invariant to the transformation of the image. The method mainly includes 4 steps: (1) scale-space extrema detection which considers all scales and orientation of input image to produce the key-point candidates,(2) keypoint localization to refine the key point candidates by suppressing the points which have the low contrast or are poorly localized along an edge, (3) orientation assignment to calculate the orientation and gradient magnitude of key points by considering their 4-neighborhoods, and (4) keypoint descriptor to build the descriptor for each key point based on the orientation and gradient magnitude values.In practice, a Difference of Gaussian (DoG) [WD] is first applied to identify the interest points at all scales of the image. The key points are indicated as the maximal and the minimal of the DoG function results. However, this process produces a lot of key point candidates with some of them unstable (they are candidates in some scales CHAPTER 2. KEY POINTS DETECTION AND IMAGE PROCESSING METHODS but not in other ones). In the second step, the key point candidates are localized and refined by suppressing the ones which have low contrast or far away from the objects.In the third step, the orientation and gradient magnitude of key points are calculated by considering their 4-neighborhoods. Finally, the descriptor is computed for each key point based on the orientation and gradient magnitude values of a 16×16 region around the key point. The descriptor is presented as a 4 × 4 histogram, each element includes 8 bins corresponding to 8 ranges of gradient orientations (45 o for each range).

Figure 2 .

 2 Figure 2.6: SIFT descriptor of a 16 × 16 patch. Left: the gradient at each pixel of the patch. Right: Key point descriptor

Figure 2 .

 2 Figure 2.7 shows the best result that we have obtained with the SIFT method. Figure 2.7a illustrates a target image with the waited landmarks.Figure 2.7b shows the
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Figure 2 .

 2 Figure 2.8 shows the best example with template matching.Figure 2.8a shows a

Figure 2 .

 2 Figure 2.8 shows the best example with template matching.Figure 2.8a shows a source image with a patch around the landmark (green region) that we would like to predict in the target image.Figure 2.8b represents the last result of the template

Figure 2 .

 2 Figure 2.7: A result on right mandible with SIFT method [Low04]. From left to right:the mandible image with manual landmarks, the estimated landmarks provided by SIFT, respectively.

Figure 2 . 8 :

 28 Figure 2.8: The result of the template matching technique. Left: the source image witha patch centering at expected landmark (green area). Right: the small green patch represents the source's patch, the red area is the corresponding region of the source's patch on the target image.
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  .1 illustrates the three steps in our pipeline: features extraction, shape registration, and landmarks refinement. Firstly, extracting the mandible shapes (source and target) and saving as the lists of contour points. Then, using lists of contour points to register two mandible shapes by applying an iteration of transformation operations. Finally, the coordinates of estimated landmarks are refined by extracting and comparing the local descriptors around the landmarks (SIFT descriptor).

Figure 3 . 1 :

 31 Figure 3.1: Illustrates the steps in our proposition.

  Palaniswamy's method[START_REF] Palaniswamy | Automatic identification of landmarks in digital images[END_REF]. To do that, two threshold values are needed to determine the potential edges as it is mentioned in Section 2.1.3. These values could be extracted from the image's histogram [LVBAS + 16]. Fortunately, in the case of mandible images, each image only presents a single object onto a good-looking background. It promises that the histogram of the image will exhibit only two regions. Consequently, the histogram exhibits only two peaks and a valley. The threshold values are easy to extract from this histogram. We have firstly converted all the pixels of the color image to the gray-scale mode by using Equation 3.1. Then, the histogram of the gray-scale image has been built and analyzed to determine the threshold value. Gray = 0.299 * R + 0.587 * G + 0.114 * B (3.1)

Figure 3 . 2

 32 Figure 3.2 shows the gray-scale histogram of a right mandible image. To determine threshold value from the histogram, we have firstly detected the positions of the two peaks and the valley on the histogram: The first peak and the valley have been identified as the highest and the lowest values from the first to the median values in the histogram.The second peak is the highest value after the median. Secondly, two center positions

Figure 3 . 2 :

 32 Figure 3.2: The histogram of an gray-scale right mandible image in our dataset. The peaks and valley are illustrated on the figure.

Algorithm 1 : 2 for all points p j in l do 3 if p i = p j then 4 12

 123412 Algorithm to find the MDAxis from a list of contour points Input : Centroid c, list of contour points l Output: MDAxis a 1 for all points p i in l do Compute the orthogonal distance d ij between the line (c, p i ) and p j . Compute d mean as the average distance of all d ij distances. 8 if d mean is minimal then 9 p min = p i ; The axis is: a = (c, p min ).

  Figure 3.3: The registration process and its result on a right mandible.

Figure 3 .

 3 Figure 3.3a illustrates the steps in the process to register the two mandible shapes.
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 34 Figure 3.4: The SIFT descriptor of a patch. In the left figure, the orientation and gradient magnitude of each pixel in the patch. In the right figure, the arrow length corresponds to the sum of gradient values in each direction.

Figure 3 . 5 :

 35 Figure 3.5: Illustration of the process to apply SIFT method in our approach.

  tained from the use of the Palaniswamy method (Appendix A). The biologists have suggested computing the difference between the two centroid sizes (manual and estimation). The error has been calculated following Equation 3.3, which has been done with Palaniswamy results. P ercent_Of _Error = 100 * |(Original_Size -Estimated_Size)| Original_Size (3.3)

Figure 3 .

 3 Figure 3.6 shows this comparison. The orange columns remind the results fromPalaniswamy method, while the blue columns represent the IMEL ones. To remind the previous results, their method applied to the beetle's mandible datasets provided 150 right and 140 left mandibles with an error of less than 5% of the difference between the centroid size of the manual and estimated mandible. Our proposition has provided more precisely the coordinates of predicted landmarks than the Palaniswamy one. We

  Figure 3.7: The manual (in red) and estimated landmarks (in yellow) on a left and right mandible.

  Figure 3.3b), the segmented contours at the base are noisier than on the tip of the mandible. It explains why the accuracies at the 11 th , 12 th landmarks on the left mandible and the 13 th , 14 th landmarks on the right mandible are less than the others. Again, the left mandibles have more variety of sizes than the right ones. It illustrates the accuracy of the right part is always better than the left in all experiments.
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 38 Figure 3.8: The average distance at each landmark of two sets of images. The blue/green represents the mean distances on left/right mandible images.

[ HMGC03 ]

 HMGC03 have described a method based on analyzing the curves belonging to the wing shape of the fly. The method has been evaluated on 535 Drosophila wing images (12 landmarks on each wing) and the obtained mean proportion of well-estimated landmarks is 82%. Ke. Yan et al. [KS + 04] have proposed to combine SIFT descriptor and Principle Component Analysis (PCA) for characterizing and identifying the matching points between the images in Graffiti dataset. The method firstly finds the landmarks in each image. Then, they are used to determine the matches between the pictures.

  a . Segmentation of source image b . Segmentation of target image c . Landmarks on target image. Red is prediction, yellow is manual.
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 4 Figure 4.1 illustrates the exchange signals between two human neurons. The signals will be processed, converted and passed through the axon to the second ones. At the second neuron, the signals can be accepted or rejected depending on their strength. The signals are then processed at the second neuron and sent to the next neuron.
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 4 Figure 4.1: A drawing of a biological neuron 1 .
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 4 2 illustrates two different architectures with and without hidden layers (Figure 4.2a/ Figure 4.2b). A network that contains a number of hidden layers is named Deep Neural Network, and this is the first idea of Deep Learning. a . Neural network without hidden layers b . Neural network with hidden layers
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 42 Figure 4.2: The examples of neural network without and with hidden layers

4. 2

 2 Deep Learning Deep learning algorithms have been introduced as a modern update on Neural Network in the previous century with the composition of multiple layers with non-linear functions to learn the representations of data at various levels [LBH15, GBC16]. In the organization of a model, each level of representation is corresponding to the different levels of abstraction. The lower layers (closed to the input) take into account the local features, and the higher layers (closed to the output) enlarge the aspects of the input which are important to discriminate and to suppress irrelevant variations. At the first ages, deep learning encounters several problems to take into account real-world cases because of the limitation of the memory size or computing power before the 2000s. Recently, programming on the Graphics Processing Unit (GPU) has fastly grown up because of the improvement of computing capacities, both in memory size and computing time. It has offered deep learning a new perspective to deal with the problems. In a deep learning model, the computation can be divided into two phases: forward phase, where the layers take the input from the previous layer, compute new representation and send to the next layer; and backward phase, where backpropagation algorithms are applied to compute the updated values for the parameters at each layer. From its first appearance to nowadays, many variant architectures of deep learning have been proposed, and they have found great success in different domains. For example, Deep Neural Networks (DNNs) to solve the classification or text analysis problems [H + 12, M + 11]; CNNs to deal with the problems in computer vision such as image classification [SLJ + 15, KSH12], document recognition [LBBH98, HHW19], object detection [FCNL13, LLS + 15]; Recurrent Neural Networks (RNNs) to analyze data under time sequence, such as language and text processing [JCMB14, SVL14, CWB + 11]. In the next section, we focus on CNN, a specific variant of deep learning models for grid topology data.

Figure 4 .

 4 Figure 4.3 shows a classic example of a CNN, the network inputs directly an image to several stages of convolutional and pooling layers. Then, the representation is passed to three fully-connected layers. A dropout layer is inserted after the second fullyconnected layer (it is represented by some blue nodes). Finally, the last fully-connected layer provides the label of the input image. This architecture could be seen as the most popular one. Now, we will describe the different types of layers that could be used to build a CNN architecture.

Figure 4 .

 4 Figure 4.3: A CNN network for classification problem

Figure 4 .

 4 Figure 4.4 illustrates the differences between the maximum and average pooling: Giving an input image of size 4 × 4 and considering a filter with a size of 2 × 2 and

Figure 4 . 4 :

 44 Figure 4.4: The results of different pooling

  vation functions have been changed, and dropout layers have been added to prevent the over-fitting. AlexNet won the famous ImageNet Challenge2 in 2012. From the success of AlexNet, a lot of different models have been proposed to improve the performance of CNN; one can cite ZFNet [ZF14], GoogLeNet [SLJ + 15], VGGNet [SZ14],

  an image classification task [KSH12, DT17, SLJ+ 15]. However, they could not fit other tasks, for example, object detection task or keypoint detection task because re-labeled data is more costly [GG15, ZCG+ 19]. In our case, we have preferred to work on the CHAPTER 4. DEEP LEARNING AND LANDMARK DETECTION color channels of the image. All details of the process will be discussed in Section 5.1.

  the context of applying CNN for keypoints detection task, Liu et al. [LYL + 16] have presented a method to predict the positions of functional key points on fashion items such as the corners of the neckline, hemline, and cuff. Yi Sun et al. [SWT13] have proposed a CNNs cascade to predict the facial points belonging to the human face. Their model contains several CNNs which are linked together in a list as a network cascade. Three levels of the cascade are set to recognize the human face from the global to local view with the objective to increase the accuracy of predicted key points. Zhanpeng Zhang et al. [Z + 14] have proposed a Tasks-Constrained Deep Convolutional Network to join facial landmarks detection problem with a set of related tasks, e.g. head pose estimation, gender classification, age prediction, or facial attribute inference. In their method, the input features have been extracted by 4 convolutional layers, 3 pooling layers and 1 fully connected layer which is shared by multiple tasks in the estimation step. Shaoli Huang et al. [HGT17] have introduced a coarse-fine network to locate key points and to estimate human poses. Their framework consists of the base convolutional layers shared by two streams of key point detectors: the first stream, named coarse stream, includes 3 detector branches (3 stacks of Inception modules [SLJ + 15]) which are used to focus on capturing local features and modeling spatial dependencies between human parts. The second one, named fine stream, receives the features which are concatenated from the coarse stream and provides accurate localization. Cintas et al. [CQSA + 16] have introduced an architecture that enables one to recognize 45 landmarks on human ears. Their model includes 3 times repeated structure. This structure consists of 2 convolutional layers, 1 pooling layer, and 1 dropout layer, to extract the features. These structures are followed by 3 fully connected layers. In the same context of key point detection, we have developed a CNN model to automatize landmarks on beetle's anatomies. The details of this model will be presented a . Traditional learning b . Transfer learning

Figure 4 .

 4 Figure 4.5: Different processes between traditional learning and transfer learning

  Hong-Wei et al. [NNVW15] have applied transfer learning in two stages to recognize the emotions on the human faces. Starting from a generic pre-training process of two CNN architectures ( AlexNet [KSH12] and VGG [SZ14]) on the ImageNet [DDS + 09] dataset, the first stage fine-tunes the pre-trained models on a facial expression dataset [GEC + 13]. The second stage then takes place based only on training part of the Emotion Recognition in the Wild (EmotiW) dataset, adapting the network weights to the characteristics of the Static Facial Expression Recognition in the Wild (SFEW) sub-challenge. Their experimental results have shown that the cascading fine-tuning approach achieves better results than the single stage of fine-tuning on the combined datasets with an improvement of up to 16%. Girshick et al. [GDDM15] have fine-tuned the pre-trained model of AlexNet on the PASCAL dataset [EVGW + 10] to perform object detection and segmentation tasks. The obtained results have proved that using transfer learning significantly improved over the other methods without CNN. Shin. Hoo-Chang et al. [SRG + 16] has applied deep CNN on medical images to detect the thoracoabdominal lymph node and to classify the interstitial lung disease. They have chosen the two famous models: AlexNet and GoogLeNet. Their studies focused on three important factors of employing a deep CNN to solve a problem: training from scratch, using "off-the-shelf" CNN, and transfer learning.

  by using the pre-trained model of AlexNet as a feature extractor and training only the final classifier. At the end of the processes, they have found that the transfer learning strategy yields the best performance results. S. Lin et al. [LZS16] have proposed transfer and specialized net (TS-Net) which fuses the general and specialized knowledge by combining a Transfer FaceNet and a Specialized FaceNet. The former is obtained by fine-tuning the pre-trained GoogleNet network to transfer object-recognition knowledge to face recognition, and the latter is trained on global and local face patches to provide the discriminative specialized knowledge for face recognition.

Figure 5 . 1 :

 51 Figure 5.1: The images in three remaining parts of beetle. From left to right: pronotum, elytra, and head

Figure 5 . 2 :

 52 Figure 5.2: A constant c = 10 has been added to each channel of an original image

Figure 5. 4 :

 4 Figure 5.4: The architecture of the first model

  Figure 5.5: The layers in an elementary block. It includes a CONV layer (red), a maximum POOL layer (yellow) and a DROP layer (green).

Figure 5 .

 5 Figure 5.6 describes the EB-Net architecture. For our purpose, we have assembled three Elementary Blocks initially. The parameters for each layer in each elementary block are detailed in Appendix C. Followed the Elementary Blocks, three FC layers have been added. The parameters for each FC layer remain the same as in the second architecture: FC1 and FC2 have 1000 outputs; the last FC layer (FC3) has 16 outputs. As usual, a dropout layer is inserted between FC1 and FC2 with a probability equal to 0.5.

Figure 5 . 6 :

 56 Figure 5.6: The architecture of the third model

  Figure 5.7: The losses (training and validation) of the 1 st model and EB-Net

  Figure 5.8: The predicted landmarks, in red, on the images in test set.

Figure 5 .

 5 Figure5.9 shows the distribution of distances between manual and predicted landmarks on all images for the best and the worst cases. Each point presents the distance between keypoints (manual and predicted one) of an image. The lines are mean values of all distance values. It is worth to note that the mean value could reflect two different

Figure 5 .

 5 Figure5.9 that we have several distances far away from the average values, both in the best and in the worst case. Figure5.10 shows some examples of the pronotum that we have extracted from our dataset. The reasons have been found down by checking the images. In the pronotum 282, the head shape has misled the estimation on the left side of the upper part, and the same situation has been done by the leg's shadow at the lower

2
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nity 1 .

 1 Figure 6.1: Four face images in the dataset and ground truth position of the landmarks.

Figure 6 . 2

 62 Figure6.2 illustrates the distribution of the distances for two example cases: the 1 st and 6 th landmarks of all pronotum images. In the same meaning as figure 5.9 (Chapter 5), the x-axis and y-axis present the image number and the distance (in pixel), respectively. Each point in the chart represents a distance between manual and predicted landmarks. The blue/red lines in charts present the average values. We can observe from the figure that the distance values are very different from the two processes. With the help of fine-tuning, these distances have been reduced and more close to the range between 0 and average value.

a . 1

 1 Figure 6.2: A comparison of distances distribution of the 1 st landmark and the worst case (6 th landmark) when applying two processes.

Figure 6 . 4 :

 64 Figure 6.4: The location of average coordinates. The Zoom-in operation has been effected on several landmarks.

  Figure 6.5: These charts show the average distance on each landmark of all mandibles images. These values have been down-sampled from the last results of Chapter 3 to fit with the new size of images. The red, blue lines present the results from image processing and fine-tuning process, respectively.

  Figure 6.6: The distribution of average distances of all right mandible images.

• 2 •

 2 Convolutional layer: depth = 256, filter = (2, 2), stride = 1 Maximum pooling layer: filter = (2, 2), stride = Dropout layer: probability = 0.4 Another tested hypothesis was to change the activation function. In the list of activation functions, ReLU was known to be more efficient than other ones as Sigmoid, Softmax, TanH, . . . (more detail in [GBC16]). Technically, ReLU function outputs all the positive values and zero for all negative values. Therefore, the last version of EB-Net has used ReLU as non-linear functions as usual in the most architectures [KSH12, HZRS16, LSD15] of the deep convolutional neural network. However, it is worth to note that ignoring negative output values by setting to zeros is equivalent to stop some neurons in the network model. Such neurons are not playing any role in the forward and backward phases, and the network can lose information in the computation. To tackle this problem, we have decided to replace the ReLU by the Leaky ReLU function which has a small slope to process the negative values instead of completely replaced them by zero.

  first column indexes the landmark number. Column A reminds the previous average distances (from the fine-tuning process with the model of three EBs). Column B presents the new obtained mean values. Column C shows the improvement percentages of the new results. The green/red numbers represent the best/worst values in each column.

  landmarks have been improved (reduction) in the new composition of EB-Net. Particularly, we can observe from the charts that the weak points (far from the mean line) in the previous results are improved, they are more close to the average values in the new results. These distributions of all pieces are presented in Appendix D.

  we plan to test different datasets owned by the INRA team. All the implementations, both IMEL and EB-Net, are available freely on the Github website. It is possible to reuse EB-Net parameters for another landmark setting application and to apply transferlearning. We plan also to export EB-Net architecture to other application domains: MRI images analysis, pose identification, . . . , studied in our team. 139 one (Figure A.1a). Notably, these features are based on absolute distance and they are sensitive to the scale. Fortunately, this problem could be solved by normalizing the perpendicular distances. In practical, a PGH is represented as a two-dimensional matrix. One dimension presents the relative angle (0 -2π), and other dimension outlines the perpendicular distance (Figure A.1b). Each PGH stores the geometric relations between a line, called reference line, and other lines presented the object, named scene lines. Firstly, the relative angle and the perpendicular distance between reference and a scene line are computed. Then, these values will be recorded in the PGH matrix. This process is repeated until all scene lines have been considered. At the end of the process, the blur of the entries in the PGH histogram presents the true position and orientation of object's lines. An object, therefore, has a set of PGHs associated with it, one histogram for each line [ETM93]. a . Geometric features. b . Pairwise geometric histogram.

Figure A. 1 :

 1 Figure A.1: Geometrics features between two lines and their pairwise geometric histogram. Left figure: the relative position between two lines; right figure: the PGH of two lines in the left figure.

(

  Figure A.3b). Finally, 90% of images (both in left and right mandibles) have less than 10% of errors in their size computing. a . Right mandible. b . Left mandible.

Figure A. 3 :

 3 Figure A.3: Percentage of error in computing centroid size from estimated landmarks.

Figures D. 1

 1 Figures D.1 and D.2 illustrate the distribution of distances on the landmarks (the best and the worst case) between two processes (training from scratch and fine-tuning) on each part: head, and elytra, respectively. The lines in charts represents the mean values
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  KEY POINTS DETECTION AND IMAGE PROCESSING METHODS((xt 1 , yt 1 ), (xt 2 , yt 2 ), . . . , (xt k , yt k )) for source and target object, respectively. Now, we find the translation, rotation and scaling values to register target on the source.

. Each object is made from a set of k key-points: ((xs 1 , ys 1 ), (xs 2 , ys 2 ), . . . , (xs k , ys k )) and CHAPTER 2.

  chitectures became deeper and deeper by adding more layers, e.g., ResNet-50, which won the champion of ILSVRC 2015, is deeper than AlexNet around 20 times. Besides applying to solve tasks in classification or recognition objects, CNNs have been used in the applications of key points detection too. The research activities in this field will be described in Section 4.2.3. The next section mentions another essential component in deep learning method, data augmentation.

Table 5 .

 5 1 resumes the losses of 9 rounds when we trained EB-Net on pronotum images. For each round, the training and the testing images are different. However, we can observe that differences (of the training/validation losses) among rounds are not so high, they are tiny and stable.

	Round Training loss Validation loss
	1	0.00018	0.00019
	2	0.00019	0.00021
	3	0.00019	0.00026
	4	0.00021	0.00029
	5	0.00021	0.00029
	6	0.00019	0.00018
	7	0.00018	0.00018
	8	0.00018	0.00021
	9	0.00020	0.00027
	Table 5.1: The losses during the training of the third model on pronotum images

Table 5 .

 5 2 shows the average distances by landmarks of all images in the pronotum dataset. With the image's size of 256 × 192, we can consider that an error around 1%

Table 5 .

 5 2:The average distances on all images per landmark on pronotum images.

		Distance (in pixels)
	1	4.002
	2	4.4831
	3	4.2959
	4	4.3865
	5	4.2925
	6	5.3631
	7	4.636
	8	4.9363

From scr. Fine-tune % of impr.

  For elytra: it exists a group of 3 points which are close to bad result (7 th , 8 th , 9 th ). These statistical values are presented in Appendix D. From tables, the median values, which separate data samples into two parts, are smaller than mean ones. Moreover, they are close to

					LM From scr. Fine-tune % of impr.
	1	4.00	2.99	25.25	1	5.53	4.82	12.83
	2	4.48	3.41	24.01	2	5.16	4.21	18.43
	3	4.30	2.98	30.56	3	5.38	4.73	12.15
	4	4.39	3.54	19.18	4	5.03	4.11	18.42
	5	4.29	3.37	21.55	5	4.84	4.18	13.69
	6	5.36	4.06	24.28	6	4.45	3.50	21.43
	7	4.64	2.93	36.85	7	4.79	3.92	18.29
	8	4.94	3.64	26.16	8	4.53	3.40	24.94
	Table 6.2: Average distances comparison on pronotum images	9 10	5.14 5.06	4.17 3.94	18.88 22.01
					Table 6.3: Average distances comparison
						on head images
		#LM From scratch Fine-tune % of improvement	
		1	3.87	3.21	17.04		
		2	3.97	3.28	17.34		
		3	3.92	3.20	18.36		
		4	3.87	3.22	16.61		
		5	4.02	3.31	17.66		
		6	4.84	4.21	13.13		
		7	5.21	4.54	12.82		
		8	5.47	4.76	12.96		
		9	5.27	4.55	13.69		
		10	4.07	3.39	16.68		
		11	3.99	3.29	17.54		
		Table 6.4: Average distances comparison on elytra images	
	• When we consider each landmark, the percentage of enhancement is different de-
	pending on the difficulty of its position. However, all cases have been improved, even
	they are the worst or best ones. With the help of fine-tuning, most of the predictions
	have been gained from 36.85%/ 24.94%/ 18.36% to 19.18%/ 12.15%/ 12.82% on prono-
	tum, head, and elytra, respectively.				

To look for additional improvement, we have studied other statistical indicators, e.g., standard deviation, median, minimum, and maximum values.

No. of points Proportion (%) range

  

				Pixel No. of points Proportion (%) range
	≤ 5	36	0.784	≤ 5	71	1.36
	≤ 10	106	2.308	≤ 10	170	3.257
	≤ 15	156	3.397	≤ 15	306	5.862
	≤ 20	252	5.488	≤ 20	424	8.123
	≤ 30	426	9.277	≤ 30	717	13.736
	≤ 50	789	17.182	≤ 50	1236	23.678
		a. Left mandible			b. Right mandible	

Table A .

 A 1: The proportion of several ranges (in pixel) on the left mandibles set provided by Palaniswamy's method.TableA.1 shows the results that we have obtained on the left and right mandibles, respectively. We can see that the results are at different levels on two datasets. Even It means that most of the landmarks are well-predicted. It only exists some difficult cases to predict.

	#LM	Mean Stand. Dev. Median Minimum Maximum
	LM1 3.2081	3.064	2.6311	0.1265	32.6688
	LM2 3.2842	3.204	2.5934	0.1607	33.9982
	LM3 3.1975	3.004	2.5412	0.0763	31.0928
	LM4	3.225	3.102	2.479	0.1485	33.1458
	LM5 3.3062	3.200	2.606	0.1187	35.7959
	LM6 4.2069	3.350	3.578	0.2149	35.3037
	#LM Mean Stand. Dev. Median Minimum Maximum LM7 4.5445 3.507 4.0792 0.3454 34.7368
	LM1 2.9914 LM8 4.7596	1.808 3.454	2.7031 4.3057	0.23 0.4697	14.2496 32.1749
	LM2 3.4066 LM9 4.548	2.235 3.279	2.9626 3.9626	0.175 0.2711	18.4053 28.3484
	LM3 2.9829 LM10 3.3918	2.063 3.033	2.5864 2.7726	0.216 0.1799	19.2092 29.9211
	LM4 3.5449 LM11 3.2897	2.433 3.019	3.117 2.7064	0.1638 0.0527	22.8899 32.3641
	LM5 3.3675	2.272	2.9741	0.101	17.4586
	LM6 4.0611 Table D.3: The statistical indicator values on elytra images 2.588 3.5733 0.1733 14.0745
	LM7 2.9274	1.984	2.5703	0.2263	14.092
	LM8 3.6448	2.483	3.0116	0.1647	15.4585
	Table D.1: The statistical indicator values on pronotum images
	#LM	Mean Stand. Dev. Median Minimum Maximum
	LM1 4.8185	2.925	4.2951	0.3732	21.1819
	LM2 4.2098	2.936	3.7484	0.2072	23.9351
	LM3 4.7286	2.918	4.3991	0.2719	19.12
	LM4 4.1071	2.912	3.6232	0.1942	21.6451
	LM5 4.1769	2.645	3.7967	0.2683	20.2307
	LM6 3.4976	2.837	2.9338	0.2384	22.6836
	LM7 3.9168	2.529	3.4284	0.2134	21.0319
	LM8	3.402	2.544	2.7877	0.1478	21.233
	LM9 4.1703	2.536	3.7181	0.4441	22.0267
	LM10 3.9433	2.695	3.4147	0.152	20.7223
	Table D.2: The statistical indicator values on head images
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The functionalities of MAELab are described in Appendix B.

It is freely available on Github at the address: https://github.com/linhlevandlu/MAELab2019
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Transfer learning

The most popular way to solve a problem by applying deep learning is training from scratch. In this strategy, all layer parameters are randomly initialized. During the training, these parameter values will be updated in the backward phase to provide the best accuracy of the model. Using the random parameter values is extremely risky. It makes the model need a long learning time to optimize these values. Moreover, if we train the model on a dataset that could not provide enough samples for the training process, the model could often fall into the local minima. These problems can be escaped by training the model on a large dataset, which includes several thousand samples. However, this condition is hard to meet in practice because of collecting examples in the real world is costly and time-consuming. Fortunately, we can reuse the parameter values from another experiment to initial the parameter values when two tasks have a relation. This strategy is known as a transfer learning, another way to apply Deep Learning.

Transfer learning is a deep learning technique where a model trained on one task (called source task) is re-purposed on a second related task (called target task) [START_REF] Torrey | Transfer learning. Handbook of Research on Machine Learning Applications and Trends: Algorithms[END_REF]YCBL14]. It is the improvement of learning in the target task by transferring the knowledge, which has been learned from the source task. One of the most famous works in transfer learning is using ImageNet dataset [DDS + 09] to train different popular models, e.g., AlextNet [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF], VGG [START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF], ResNet [START_REF] He | Deep residual learning for image recognition[END_REF]. Then, the parameter values of these models are provided to use as a pre-trained model to solve various problems. Figure 4.5 shows a comparison between 2 strategies to apply deep learning. In the traditional strategy, each model is built and trained for each specific task (Figure 4.5a). On the opposite side, the transfer learning strategy uses the knowledge on the source task to use in the learning system to solve the target task where the source and target tasks have a relationship (Figure 4.5b).

Based on the different situations between the source (dataset/task) and target CHAPTER 5. LANDMARKS PREDICTION USING CONVOLUTIONAL NEURAL NETWORK predicted landmarks have been evaluated by calculating the distance between them and corresponding manual ones. The average of distance errors on each landmark has been also considered. The results have shown that using the convolutional network to predict the landmarks on biological images has promised good results in the case of the pronotum, head, and elytra. The quality of the prediction allows using automatic landmarks to replace manual ones for statistical analysis. However, if we consider the end-user point of view, the results are still needed to be improved. The last chapter will present how we have used transfer learning to solve this problem. 

Appendix A

Landmarks estimation by Probabilistic

Hough Transform

As mentioned in Chapter 3, this work was initialized from my Master's degree internship by studying a method of Palaniswamy [START_REF] Palaniswamy | Automatic identification of landmarks in digital images[END_REF] and applying to our application. This is a method including four steps: (1) segmentation to extract the contour; (2) conversation to convert the features to an invariant form for comparing the objects;

(3) registration to find the match between two objects and prediction of hypothesized landmarks; (4) verification to verify the coordinates of estimated landmarks. The thesis begins by adjusting their steps to improve the results. In this chapter, we present the implementations of steps of the method that we have studied.

As usual, segmentation is the first step of the method to extract the object's features.

In this case, the contour points have been taken into account. In order to select the shape of mandibles, we have decided to apply a combination of binary threshold and

Canny algorithm [START_REF] Canny | A computational approach to edge detection[END_REF]. The details of segmentation step are described in Section 3.2.

I . Features conversion

As mentioned in [START_REF] Palaniswamy | Automatic identification of landmarks in digital images[END_REF], the geometric relationship between lines is a useful feature for shape representation. Therefore, lists of points come from the segmentation step are turned to sets of approximated lines by using a recursive algorithm [START_REF] Neil A Thacker | Assessing the completeness properties of pairwise geometric histograms[END_REF], that is a new improved version of Lowe's method [START_REF] David G Lowe | Three-dimensional object recognition from single twodimensional images[END_REF]. In [START_REF] Neil A Thacker | Assessing the completeness properties of pairwise geometric histograms[END_REF], the algorithm stops when the relative between measured distances (d max and the length of line l) is less than an approximate threshold. However, to save computing time and to implement easily, we have modified this condition by only comparing the maximum distance (d max ) to the threshold λ received from the experiments. Steps of the recursive algorithm are described as follows:

1. Creating a straight line l between two endpoints of the edge 2. Calculating the perpendicular distance from each point in the edge to the line l.

Then, identifying the point p m which has the maximum distance (d max ) to l.

3. If the perpendicular distance from p m is greater than a threshold value (d(p m , l) > λ), then the edge is split at this point (p m ) into two parts, and the procedure continues on both two split parts. Otherwise, the edge can be represented by l.

II . Pairwise Geometric Histogram

In order to compare objects, it is necessary to encode their features into the compact and invariant forms, e.g., Pairwise Geometric Histogram (PGH). It is worth to note that the shape of any object can be represented by a set of approximated lines, then the geometric relationships between lines can be used to built PGH. In this case, the relative angle and the perpendicular distances are chosen to provide an efficient description of the object: the relative angle is defined by the angle between two lines, and perpendicular distances are the distances from two endpoints of a line to the extension of another Bhattacharya is following.

In which:

• H i , H j : are the histograms of image i and image j

In our application, the feature conversion step has outputted lists of lines presented the mandible object. In this step, these lines are used to build the PGHs for the object as described. Then, the PGHs are used to examine the correspondence between two mandibles by calculating the Bhattacharya metric.

III . Probabilistic Hough Transform

At this step, Probabilistic Hough Transform (PHT) [START_REF] Kiryati | A probabilistic hough transform[END_REF] is applied to discover the presence and the location of the target object in the source image, as well as find out the hypothetical coordinates of target's landmarks. Applying PHT can be divided into two steps: firstly, confirming the appearance of the target object in the source image by finding a pair of target lines which is the best matching with a couple of source lines;

secondly, indicating the pose of the target object on the source image. At this moment, the positions of the source's landmarks are considered as the hypothetical landmarks of the target image.

Firstly, the relative information tables for both the source and the target object have been created, namely T s and T t , respectively. To build a related information table for an image, an arbitrary point (in the image) is selected and considered as the origin point.

Then, for each time we examine a couple of lines, the angles and the perpendicular distances between lines and the origin point are computed: the angles are equals to the angles of two lines and the horizontal axis which begins from the origin point;

the perpendicular distances are the distances from the origin point to each line. Then, the information is recorded in the table. This process is repeated until considering all distinct pair of object's lines.

After that, to find the best matching of couples of lines between two objects, an accumulator is created as a two-dimensional matrix represents the angle and the perpendicular distance information. All the cells in the accumulator are set to zero. For each pair of source's lines, if existing a couple of target's lines that corresponds to position, orientation, selecting their information (angle and perpendicular distance) from the table T t . Then, a vote is carried out on the accumulator at the corresponding cell with the selected information by adding one to the cell's value. At the end of the voting process, couples of lines (both in source and target image) which have the highest value will be kept.

The next step concerns retreiving the presence of the source's origin point in the target image by using the relative information of the best matching couples of lines:

firstly, extracting the relative information of the pair of source's lines from T s . Then, indicating the source's origin point on the target image by extending lines which are perpendicular with the two of target's lines at the appropriate position [START_REF] Ashbrook | Robust recognition of scaled shapes using pairwise geometric histograms[END_REF].

After obtaining the location of the source's origin in the target image, it is necessary to register two origin points. Then, the source's manual landmarks are set by using the relatedness among them and the source's origin point. These points are assumed to be the hypothetical positions of the predicted landmarks of the target's image. Besides, the angle deviation between the two images is also recorded to use in the next step.

IV . Template Matching

The PHT step has computed the estimated landmarks on target image based on the corresponding features of global shape. To refine the location of estimated landmarks, a cross-correlation method [START_REF] Brunelli | Template matching techniques in computer vision: theory and practice[END_REF], template matching, is used for the refinement of the coordinates of predicted landmarks.

As mentioned in Section 2.3.3, the template matching process needs a template and a search image. In this case, a template is a small patch around the landmark on the source image and the search image is the target image. However, the number of candidates in the target image is numerous. It is necessary to limit the search region for saving the computing time. It is worth to note that the previous step provided the estimation of landmarks positions in the target image. These positions can be used to reduce the searching areas correspondence with the patches. As mentioned in Section 1.5, the mandibles could be placed in different poses during the process to capture the images.

So, to obtain the complete matching, the target image is rotated to match with the source image by using the angle which was extracted from the PHT step. This process finishes when all estimated landmarks are refined.

V . Results

As Then, calculating the size measure of the mandible as the sum of all square distance from each event to the center point. In that way, we have compared the centroid sizes which are computed from manual landmarks and the corresponding from estimated landmarks. The percentage of errors has been evaluated as Equation A.2:

3 shows the percentage of error from estimated landmarks on both left and right mandible images. For right mandibles, we have obtained more than 160 images of less than 5% of errors between manual and estimated sizes. Only two right mandibles are more than 30% of errors. These cases could be considered as the wrong predictions in the right mandibles (Figure A.3a). In the part of left mandibles, we have got more than 140 images of less than 5% of errors. Only five pictures are more than 30% of errors if we accept a distance of 50 pixels between the estimated and manual landmarks, we cannot reach to the results shown in the article. We have taken a look, analyzed the images, and seen that we have a big difference between two kinds of images. Landmarks on fly wings have mostly stayed at the intersection of veins, whereas these are not the same in mandible cases. It seems that the method is more suitable for wing fly than the mandibles.

Palaniswamy's method includes a sequence of algorithms, in order to improve the global result, we need to improve the results of each step in the process. Additionally, the values of the parameters could affect the results, for example, the window size during the template matching process. If the window size is small, the result of the verifying step has not a significant variation. In the opposite side, a larger window will influence the speed of the algorithm, which is important when processing the large numbers of images.

The obtained results have shown that the estimated landmarks are accurate enough to compute centroid sizes of mandibles. They have been also evaluated by comparing to the manual ones. However, these positions are not satisfied to display them on a user interface. The quality of predicted coordinates needs to improve both to optimize the computation time and to provide more realistic landmarks.

The obtained results in this section were published in a poster [LVBAS + 16] and presented at the International Conference on Computer Graphics, Visualization and

Computer Vision 2016.

Appendix B MAELab and its functionalities

As mentioned in Chapter 3, all the methods to provide the automated landmarks on mandible images have been implemented in MAELab framework. This appendix will describe the modules, as well as the functions of MAELab.

I . Software architecture

MAELab software mainly provides the functionality for landmarking on 2D beetle's images, but it includes also the helper functions for other processes in image processing such as segmentation, binary operations. The main modules are displayed in Figure B.1. The functionality of each module is describing as follows:

• Qt Framework module: contains the classes inherited from Qt Framework, which provide the graphics interface to software.

• pointInterest module: includes the classes for automatic landmarking.

• pht module: realizes operations for the PHT process.

• segmentation module: implements the segmentation algorithms, for example threshold, Canny, Suzuki, and line segment algorithm.

• imageModel module: includes the classes to represent the data structure of image such as matrix, point, line.

• io module: contains the input and output functions of software. The input functions read the image into the matrix for computing. The output operations convert/save the results into output image. The capacities of this module are helped from LibJpeg module.

• LibJpeg module: uses to decode and to encode (read) JPGE image. This is a free library. • Menu View contains the functions to change the view modes of image in program.

• Menu Segmentation contains the functions to segment image.

• Menu Process provides the functions to filter image. It contains also the binary operations on image.

• Menu Landmarks provides the operations to automatically determine landmarks.

• Menu Help describes the information about the software. 

head and body

Chapter 5 has presented the results when we trained the EB-Net on pronotum images.

These following sections describes the results on two remaining sets of images: head and elytra images, respectively. This chapter firstly figures out the parameters of the layers in the elementary blocks. As mentioned in Chapter 5, we have applied the crossvalidation technique to select data. This makes we need to train EB-Net in several times, named rounds, with different subsets of data. So, we will present the losses of the rounds during the training process in the next part. Then, the mean distances will be discussed. It finishes with the illustrations of predicted landmarks on the images.

This presented structure is applied to both head and elytra images.

I . The detailed parameters in EB-Net

As mentioned in Chapter 5, EB-Net is a combination of three elementary bocks, followed by 3 fully-connected layers and a dropout layer has been inserted between the first two convolutional layers (Figure C.1). In this architecture, the order of layers in the elementary blocks is the same, but their parameter values are different in each block. • CONV layers:

-Number of filters: 32, 64, and 128 -Kernel filter sizes:

-Stride values: 1, 1, and 1

• POOL layers:

-Kernel filter sizes: (2 × 2), (2 × 2), and (2 × 2)

-Stride values: 2, 2, and 2

• DROP layers:

-Probabilites: 0.1, 0.2, and 0.3

II . The results on Head images The losses during training process

Like the processes on pronotum images, the losses are stables when we train EB-Net on head images. The average losses among the processes are 0.00026/0.00041 for training/validation. 

The average distances

Table C.1 shows the average distance on each landmarks of all head images. The green and red numbers represent the best and the worst distances in each case. First of all, the predictions are quite stable. We do not have a big difference between the values. In this case, the 6 th landmark has the best prediction with 4.45 pixels; whereas the worst-case belongs to the 1 st position with 5.53 pixels. If we consider an error of 3% of the image's size (256 × 192), these values are acceptable. However, it is still high in the point of view of the biologists when we display the landmarks on the images. from training from scratch as mentioned in Chapter 6. Secondly, the median rates which are separated the data into two parts, are reduced and smaller than the mean values.

Landmarks displaying

The average distances

Landmarks displaying

I . Other statistical indicators

Additional, these values close to the minimum values and far from the maximum rates. 

III . The novel results on modifications of EB-Net

This section shows the distribution of distances between the manual and predicted land-