
HAL Id: tel-02481161
https://theses.hal.science/tel-02481161v1

Submitted on 17 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hydrogen sulfide removal from synthetic biogas using
anoxic biofilm reactors

Ramita Khanongnuch

To cite this version:
Ramita Khanongnuch. Hydrogen sulfide removal from synthetic biogas using anoxic biofilm reac-
tors. Environmental Engineering. Université Paris-Est; Tampereen yliopisto, 2019. English. �NNT :
2019PESC2053�. �tel-02481161�

https://theses.hal.science/tel-02481161v1
https://hal.archives-ouvertes.fr


Joint PhD degree in Environmental Technology 

 

Docteur de l’Université Paris-Est 

Spécialité : Science et Technique de l’Environnement 
 

Dottore di Ricerca in Tecnologie Ambientali 
 

 
Degree of Doctor in Environmental Technology 

 
Thesis for the degree of Doctor of Philosophy in Environmental Technology 

          Tesi di Dottorato – Thèse – PhD thesis – Väitöskirja 

 Ramita Khanongnuch 

Hydrogen sulfide removal from synthetic biogas  

using anoxic biofilm reactors 

21/05/2019, Tampere 
 

In front of the PhD evaluation committee 

 

Prof. David Gabriel 
Prof. Pavel Jeníček 

Assoc. Prof. Marta Izquierdo Sanchis 
Prof. Piet N.L. Lens 
Prof. Giovanni Esposito 
Prof. Eric D. van Hullebusch 
Asst. Prof. Aino-Maija Lakaniemi  

Reviewer and chair 
Reviewer 
Reviewer 
Promotor 
Co-Promotor 
Co-Promotor 
Co-Promotor 

 

        
 

Marie Skłodowska-Curie European Joint Doctorate Advanced Biological Waste-to-Energy Technologies



 

 

 

 

 

Evaluation committee 

 

Reviewers/Examiners 

Prof. David Gabriel 

Department of Chemical, Biological and Environmental Engineering 

Universitat Autònoma de Barcelona  

Spain 

Prof. Pavel Jeníček 
Department of Water Technology and Environmental Engineering 

University of Chemistry and Technology 

Czech Republic 

Assoc. Prof. Marta Izquierdo Sanchis 

Chemical Engineering Department 

University of Valencia 

Spain 

Thesis Promotor 

Prof. Piet N. L. Lens 
Department of Environmental Engineering and Water Technology 

IHE Delft 

The Netherlands 

Thesis Co-Promotors 

Prof. Giovanni Esposito 

Department of Civil and Mechanical Engineering 

University of Cassino and Southern Lazio 

Italy 

Prof. Hab. Eric D. van Hullebusch  
University of Paris-Est Marne-la-Vallée 

France 

Asst. Prof. Aino-Maija Lakaniemi 

Faculty of Engineering and Natural Sciences  

Tampere University  

Finland 



 

 

 

 

 

Supervisory team 

 

Thesis Supervisor 

Prof. Piet N. L. Lens 

Department of Environmental Engineering and Water Technology 

IHE Delft 

The Netherlands 

Thesis Co-Supervisors 

Asst. Prof. Aino-Maija Lakaniemi 

Faculty of Engineering and Natural Sciences  

Tampere University  

Finland 

Dr. Eldon R. Rene  

Department of Environmental Engineering and Water Technology 

IHE Delft 

The Netherlands 

Thesis Instructor 

Dr. Francesco Di Capua  
Department of Civil, Architectural and Environmental Engineering  

University of Naples Federico II 

Italy  

 

 

 

 

 

 

 

 

 

 

 

 

This research was conducted in the framework of the Marie Skłodowska-Curie 

European Joint Doctorate (EJD) in Advanced Biological Waste-to-Energy 

Technologies (ABWET) and supported by the Horizon 2020 under grant 

agreement number 643071. 



i 

 

Abstract 

The aim of this work was to develop and study anoxic bioreactors for the removal of 

reduced inorganic sulfur compounds from liquid and gaseous waste streams. In addition, 

the aim was to enable process integration for the simultaneous treatment of H2S con-

taminated gas streams and NO3
--containing wastewater.  

The experiments related to sulfide oxidation in the liquid phase were conducted in two 

different attached growth bioreactors, i.e. a fluidized-bed reactor (FBR) and a moving 

bed biofilm reactor (MBBR), inoculated with the same mixed culture of sulfur-oxidizing 

nitrate-reducing (SO-NR) bacteria. The bioreactors were operated under different nitro-

gen-to-sulfur (N/S) molar ratios using S2O3
2- and NO3

- as an energy source and electron 

acceptor, respectively. Results revealed that both the FBR and MBBR achieved S2O3
2- 

removal efficiencies (RE) >98% and completely removed NO3
- at an N/S ratio of 0.5. 

Under severe nitrate limitation (N/S ratio of 0.1), the S2O3
2- RE in the MBBR (37.8%) was 

higher than that observed in the FBR (26.1%). In addition, the MBBR showed better 

resilience to nitrate limitation than the FBR as the S2O3
2- RE was recovered to 94% within 

1 day after restoring the feed N/S ratio to 0.5, while it took 3 days to obtain 80% S2O3
2- 

RE in the FBR. Artificial neural network models were successfully used to predict the 

FBR and MBBR performance, i.e. S2O3
2- and NO3

- RE as well as sulfate production. 

The SO-NR biomass from the MBBR was used to inoculate an anoxic biotrickling filter 

(BTF), which was studied for simultaneous treatment of H2S and NO3
- containing waste 

streams. In the anoxic BTF, a maximum H2S elimination capacity (EC) of 19.2 g S m-3 h-

1 (99% RE) was obtained at an inlet H2S load of 20.0 g S m-3 h-1 (~500 ppmv) and an N/S 

ratio of ~1.7. As some NO3
--containing wastewaters can also contain organic compounds, 

the anoxic BTF inoculated with Paracoccus versutus strain MAL 1HM19 was studied for 

the simultaneous treatment of H2S, NO3
- and organic carbon containing waste streams. 

With this BTF, NO3
- and acetate removal rates of 16.7 g NO3

--N m-3 h-1 and 42.0 g acetate 

m-3 h-1, respectively, were achieved, which was higher than the values observed in the 

BTF inoculated with the mixed culture of autotrophic SO-NR bacteria (11.1 g NO3
--N m-

3 h-1 and 10.2 g acetate m-3 h-1). Anoxic BTFs were operated under several transient 

conditions (i.e. varied gas and trickling liquid flow rates, intermittent NO3
- supply and H2S 

shock loads) to evaluate the impacts of sudden changes that usually occur in practical 

applications. The different transient conditions significantly affected the H2S EC of the 

anoxic BTF. After applying H2S shock loads, the H2S RE fully recovered to >99% within 

1.7 days after resuming normal operation. 

In summary, the MBBR was more effective for the removal of S2O3
2- than the FBR, es-

pecially under nitrate limited conditions. Based on the short recovery times after expo-

sure to transient-state conditions, the anoxic MBBR and BTF were found to be resilient 

and robust systems for removal of reduced sulfur compounds under autotrophic and 

mixotrophic conditions. 
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Tiivistelmä 

Tämän tutkimuksen tarkoituksena oli kehittää bioreaktoreita sulfidin poistamiseen 

nestemäisistä jätevirroista anoksisissa olosuhteissa. Lisäksi tavoitteena oli mahdollistaa 

rikkivetyä sisältävien kaasumaisten ja nitraattia sisältävien nestemäisten jätevirtojen 

yhtaikainen käsittely.  

Ensiksi tutkittiin liukoisten epäorgaanisten rikkiyhdisteiden hapetusta rikkiä hapettavia ja 

nitraattia pelkistäviä (SO-NR) bakteereita sisältävällä mikrobiviljelmällä kahdessa 

erilaisessa bioreaktorissa, leijupetireaktorissa (FBR) ja kantajakappalereaktorissa 

(MBBR). Bioreaktoreiden toimintaa syötteen eri typen ja rikin moolisuhteilla vertailtiin 

käyttäen tiosulfaattia elektronidonorina ja nitraattia elektroniakseptorina. Molemmissa 

reaktoreissa saavutettiin yli 98 %:n tiosulfaatin poistotehokkuus ja nitraatti saatiin 

poistettua kokonaan N/S-suhteen ollessa 0,5. Erittäin typpirajoitteisissa olosuhteissa 

(NS suhde 0,1), MBBR:llä saavutettu tiosulfaatin poistotehokkuus (37,8 %) oli korkeampi 

kuin FBR:llä saavutettu tiosulfaatin poistotehokkuus (26,1 %). Kun syötteen N/S suhde 

palautettiin arvoon 0,5, MBBR:llä tiosulfaatin poistotehokkuus palautui yhden päivän 

aikana arvoon 94 %, kun taas FBR:llä kesti kolme päivää, että tiosulfaatin 

poistotehokkuus nousi arvoon 80 %. Kummallekin reaktorille kehitettiin oman 

neuroverkko-pohjainen malli, joka ennusti luotettavasti tiosulfaatin ja nitraatin 

poistotehokkuuksia eri olosuhteissa. 

MBBR:ään rikastunutta SO-NR-viljelmää hyödynnettiin valutusbiosuodattimessa (BTF) 

rikkivetyä ja nitraattia sisältävien synteettisten jätevirtojen samanaikaiseen käsittelyyn. 

Anoksisella BTF:llä suurin saavutettu rikkivedyn poistokapasiteetti oli 19,2 g S m-3 h-1 

(99 % poistotehokkuus) rikkivetykuorman ollessa 20,0 g S m-3 h-1 (~500 ppmv) ja N/S 

suhteen noin 1,7. Koska nitraattia sisältävät jätevedet voivat sisältää myös orgaanisia 

yhdisteitä toisessa BTF:ssä tutkittiin Paracoccus versutus MAL 1HM19 kannan kykyä 

poistaa samanaikaisesti rikkivetyä, nitraattia ja orgaanisia yhdisteitä. Tällä BTF:llä 

saavutettiin nitraatin poistonopeus 16,7 g NO3
--N m-3 h-1 ja asetaatin poistonopeus 42,0 

g-asetaattia m-3 h-1. Saavutetut poistonopeudet olivat korkeampia kuin autotrofisia SO-

NR bakteereja hyödyntävällä BTF:llä saavutetut arvot, jotka olivat 11,1 g NO3
--N m-3 h-1 

ja 10,2 g-asetaattia m-3 h-1. SO-NR bakteerien hallitseman anoksisen BTF:n toimintaa 

tutkittiin vaihtuvissa olosuhteissa kuten muuttuva kaasun ja valutusnesteen 

virtausnopeus, katkonainen nitraatin syöttö ja rikkivedyn shokkikuormitus, sillä tällaiset 

häiriöt ovat mahdollisia käytännön sovelluksissa. Olosuhteiden ohimenevät muutokset 

vaikuttivat merkittävästi rikkivedyn poistokapasiteettiin. Esimerkiksi rikkivedyn 

shokkikuormituksen jälkeen kesti 1,7 päivää ennen kuin rikkivedyn poistotehokkuus 

palasi yli 99 %:n tasolle.  

Yhteenvetona voidaan todeta, että MBBR mahdollisti tehokkaamman tiosulfaatin poiston 

kuin FBR erityisesti typpirajoitteisissa olosuhteissa. MBBR:n ja BTF:n osoitettiin 

palautuvan nopeasti ohimenevistä kuormitustilanteista ja mahdollistavan siis vakaan 

epäorgaanisten rikkiyhteisen poiston synteettisistä jätevirroista. 
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Sommario 

Lo scopo di questo lavoro è stato quello di sviluppare e studiare bioreattori anossici per 
la rimozione di solfuro dai flussi di rifiuti liquidi e valutare l'integrazione di processi per il 
trattamento simultaneo di flussi di gas contaminati da H2S e acque reflue contenenti NO3

-. 

Gli esperimenti relativi all'ossidazione del solfuro in fase liquida sono stati valutati in due 

diversi bioreattori di crescita collegati, ovvero un reattore a letto fluido (FBR) e un reattore 

a biomassa adesa a letto mobile (MBBR), inoculati con batteri riducenti il nitrato di zolfo 

(SO-NR). I bioreattori sono stati esaminati nell’ambito di diverse proporzioni molari di 

nitrato e zolfo (N/S) utilizzando rispettivamente S2O3
2- e NO3

- come fonte di energia e 

accettore di elettroni. I risultati hanno rivelato che sia l'FBR che l'MBBR hanno raggiunto 

tassi di rimozione (RE) di S2O3
2- superiori al 98% e la rimozione completa di NO3

- con un 

rapporto N/S di 0,5. In condizioni di forti limitazioni di nitrato (rapporto N/S di 0,1), il tasso 

di rimozione di S2O3
2- nel MBBR (37.8%) era superiore a quello osservato nel FBR 

(26.1%). Di conseguenza, l’MBBR ha mostrato una migliore resilienza alla limitazione di 

nitrato rispetto al FBR, poiché il tasso di rimozione di S2O3
2- è stato ripristinato al 94% 

entro 1 giorno dopo avere riportato il tasso N/S a 0,5, mentre l’FBR ha impiegato 3 giorni 

per ottenere l’80% di tasso di rimozione di S2O3
2-. Modelli di rete neurale artificiale sono 

stati utilizzati con successo per anticipare le prestazioni di FBR e MBBR, ad es. il tasso 

di rimozione di S2O3
2- e NO3

- e la produzione di solfato. 

La biomassa SO-NR sviluppata nel MBBR è stata impiegata simultaneamente per 

trattare H2S e NO3
- contenenti flussi di rifiuti in un filtro anossico biotrickling (BTF). Il BTF 

anossico ha riportato una capacità di eliminazione (EC) di H2S massima di 19,2 g S m-3 

h-1 (99% RE) rispettivamente a un carico di H2S in entrata di 20,0 g S m-3 h-1 (~500 ppmv) 

e un rapporto N/S di ~1,7. Poiché alcune acque reflue contenenti NO3
- possono 

contenere sostanze organiche, il BTF anossico inoculato con il ceppo Paracoccus 

versutus MAL 1HM19 è stato sviluppato per la rimozione simultanea di flussi di rifiuti 

contenenti H2S, NO3
- e carbonio organico. Dai risultati si è riscontrato che ha ottenuto 

tassi di rimozione di NO3
- e acetato di 16,7 g NO3

--N m-3 h-1 r 42,0 g di acetato m-3 h-1 

rispettivamente, superiore ai valori osservati nel BTF inoculato con autotrofi (11,1 g NO3
-

-N m-3 h-1 e 10,2 g di acetato m-3 h-1). Il BTF anossico è stato fatto agire in diverse 

condizioni transitorie (es. tassi di portata di vari gas e di gocciolamento, fornitura 

intermittente di NO3
- e forti cariche di H2S) per valutare l'impatto delle variazioni sulle 

variabili di processo che di solito si verificano nelle applicazioni pratiche. Le diverse 

condizioni transitorie hanno influenzato significativamente la capacità di eliminazione di 

H2S del BTF anossico. Con l’applicazione di forti cariche di H2S, il tasso di eliminazione 

di H2S si è completamente ristabilito quasi del 100% entro 40 h dalla ripresa del normale 

funzionamento. 

In sintesi, l’MBBR si è rivelato più efficace per la rimozione di S2O3
2- rispetto all'FBR. In 

base a un tempo di recupero istantaneo dopo aver tollerato le condizioni transitorie, 

l’MBBR anossico e il BTF anossico si presentano come sistemi di biofilm resilienti e 

robusti per il trattamento di composti di zolfo ridotti in condizioni autotrofe e mixotrofiche. 
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Résumé 

L’objectif de cette étude a été de développer et étudier des bioréacteurs anoxiques pour 

l’élimination du soufre des flux de déchets liquides, et d’évaluer l’intégration du proces-

sus pour le traitement simultané des flux gazeux contaminés au H2S et des eaux usées 

contenant du NO3
-. 

Les expériences relatives à l’oxydation du soufre dans la phase liquide ont été évaluées 

dans deux bioréacteurs à croissance fixe différents, à savoir un réacteur à lit fluidisé 

(RLF) et un réacteur filtrant sur lit mobile (RFLM), inoculés par une bactérie ayant la 

capacité de réduire les nitrates et d’oxyder le soufre (SO-NR). Les bioréacteurs ont été 

évalués sous différent ratios molaires azote/soufre (N/S) en utilisant le S2O3
2- et le NO3

- 

comme source d’énergie et accepteur d’électrons, respectivement. Les résultats ont ré-

vélé que le RLF et le RFLM sont parvenus à des capacités d’extraction (CE) du S2O3
2- 

supérieures à 98 %, et à extraire complètement le NO3
- au ratio N/S de 0,5. En conditions 

de forte limitation en nitrate (ratio N/S de 0,1), la CEx du S2O3
2- dans le RFLM (37,8 %) 

était supérieure à celle observée dans le RLF (26,1 %). En conséquence, le RFLM a 

montré une meilleure résilience à la limitation en nitrate que le RLF puisque la CEx du 

S2O3
2- a été ramenée à 94 % en une journée après restauration du ratio N/S à 0,5, alors 

que le RLF a pris 3 jours pour obtenir une CEx de 80 % pour le S2O3
2-. Les modèles de 

réseau neuronal artificiel ont pu être utilisés pour prédire les performances du RLF et du 

RFLM, à savoir la CE du S2O3
2- et du NO3

-ainsi que la production de sulfate. 

La biomasse SO-NR développée dans le RFLM a été utilisée pour traiter simultanément 

les flux de déchets contenant du H2S et du NO3
- dans un biofiltre (BF) anoxique. Le BF 

anoxique a obtenu une capacité d’élimination (CEl) maximale du H2S de 19,2 g de S m-

3 h-1 (CEx) pour un apport de 20,0 g S m-3 h-1 (~500 ppmv) en H2S et un ratio N/S 

d’environ 1,7, respectivement. Comme certaines eaux usées contenant du NO3
-peuvent 

contenir des produits organiques, le RLF anoxique inoculé avec du Paracoccus versatus 

souche MAL 1HM19 a été développé pour l’extraction simultanée du H2S, du NO3
- et du 

carbone organique contenus dans les flux de déchets. Les résultats ont montré des taux 

d’extraction respectifs de 16,7 g NO3
--N m-3 h-1 et 42,0 g d’acétate m-3 h-1, ce qui est 

supérieur aux valeurs observées dans le BF inoculé avec des autotrophes (11,1 g NO3
-

-N m-3 h-1 et 10,2 g d’acétate m-3 h-1). Le BF anoxique a été opéré sous différentes con-

ditions transitoires (i.e. gaz divers et plusieurs vitesses de flux de ruissellement liquides, 

un apport intermittent en NO3
- et apports élevés en H2S) afin d’évaluer l’impact des mo-

difications sur les variables du processus qui se produisent généralement dans les ap-

plications pratiques. Les différentes conditions transitoires ont significativement affecté 

la CEl du H2S dans le BF anoxique. En appliquant des apports élevés en H2S, la CEx du 

H2S a été presque totalement rétabli à 100 % dans les 40 heures suivant la reprise de 

l’opération normale.  

En résumé, le RFLM s’est montré plus efficace que le RLF pour l’extraction du S2O3
2. 

D’après un moment de récupération instantanée après tolérance des conditions transi-

toires, le RFLM anoxique et le RLF anoxique s’avèrent être de résilients et robustes 

systèmes de biofilms pour le traitement des composés soufrés réduits en conditions 

autotrophes et mixotrophes. 
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Samenvatting 

Het doel van dit werk was om anoxische bioreactoren te ontwikkelen en bestuderen voor 

het verwijderen van sulfide uit vloeibare afvalstromen en het evalueren van 

procesintegratie voor de gelijktijdige behandeling van gasstromen vervuild met H2S en 

afvalwater met NO3
-.  

De experimenten gerelateerd aan sulfide-oxidatie in de vloeibare fase werden 

geëvalueerd in twee verschillende bioreactoren, d.w.z. een wervelbedreactor (FBR) en 

een bewegend bed biofilmreactor (MBBR), geïnoculeerd met bacteriën die zwavel 

oxideren en nitraat reduceren (SO-NR). De bioreactoren werden geëvalueerd onder 

verschillende stikstof-tot-zwavel (N/S) molaire verhoudingen waarbij S2O3
2- en NO3

-, 

respectievelijk, als een energiebron en elektronenacceptor werden gebruikt. De 

resultaten toonden aan dat zowel de FBR als de MMBR een verwijderingsrendement 

(RE, ‘Removal efficiency’) van meer dan 98% behaalden voor S2O3
2- en NO3

- helemaal 

verwijderden bij een N/S-verhouding van 0,5. Bij een zware nitraatbeperking (N/S-

verhouding van 0,1), was de S2O3
2- RE in de MBBR (37,8%) hoger dan dat van de FBR 

(26,1%). Het gevolg was dat de MBBR een betere weerstand had tegen de 

nitraatlimitatie dan de FBR aangezien de S2O3
2- RE binnen 1 dag tot 94% werd hersteld 

na het herstellen van de N/S-verhouding tot 0,5 terwijl de FBR 3 dagen nodig had om tot 

80% van de S2O3
2- RE te komen. Kunstmatige neurale netwerkmodellen werden met 

succes gebruikt om de prestaties van de FBR en MBBR te voorspellen, d.w.z. de S2O3
2- 

en NO3- RE en de productie van sulfaat. 

De SO-NR biomassa die in de MBBR ontwikkelde, werd gebruikt om tegelijkertijd 

afvalstromen waarin H2S en NO3
- zat te behandelen in een anoxische biowasfilter (BTF, 

‘Biotrickling Filter’). De anoxische BTF behaalde een maximum H2S eliminatiecapaciteit 

(EC) van 19,2 g S m-3 h-1 (99% RE) bij, respectievelijk, een inlaat H2S belasting van 20,0 

g S m-3 h-1 (~500 ppmv) en een N/S-verhouding van ~1,7. Aangezien afvalwater met NO3
- 

ook organische stoffen kan bevatten, werd de anoxische BTF geïnoculeerd met 

Paracoccus versutus stam MAL 1HM19 voor het tegelijkertijd verwijderen van H2S, NO3
- 

uit afvalstromen met organische koolstof. De resultaten toonden aan dat de 

afnamesnelheden van 16, 7 g NO3
--N m-3 h-1 en 42,0 g acetaat m-3 h-1 werden bereikt, 

iets dat hoger was dan de waarden waargenomen in de BTF geïnoculeerd met autotrofe 

bacteriën (respectievelijk 11,1 g NO3
--N m-3 h-1 en 10.2 g acetaat m-3 h-1). De anoxische 

BTF blootgesteld enkele kortstondige condities (d.w.z. gevarieerde gas en recirculatie 

vloeistofstroomsnelheden, periodieke NO3
- aanvoer en H2S schokbelastingen) om de 

impact van veranderingen op de procesvariabelen te meten die gewoonlijk plaatsvinden 

bij praktische toepassingen. De verschillende kortstondige condities hadden een 

significante invloed op de H2S EC van de anoxische BTF. Na de H2S-schokladingen 

herstelde de H2S RE bijna helemaal tot 100% binnen 40 uren na het begin van terug 

normaal functioneren.  

Samenvattend, toonde deze studie aan dat de MBBR effectiever was bij het verwijderen 

van S2O3
2- dan de FBR. De anoxische MBBR en de anoxische BTF zijn robuuste 

biofilmsystemen voor het behandelen van afvalstromen met een hoog zwavelgehalte 

onder autotrofe en mixotrofe condities. 
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1.1 Background 

Sulfur compounds utilized and released during anthropogenic processes cause an im-

balance to the sulfur cycle in nature and lead to environmental problems, such as acid 

rain, odor problems, corrosion and sulfide toxicity (Pokorna and Zabranska, 2015). The 

sulfur pollutants released from anthropogenic sources include hydrogen sulfide (H2S), 

thiosulfate (S2O3
2-), sulfite (SO3

2-) and sulfate (SO4
2-). Reduced sulfur compounds, H2S 

and its ionic forms (HS- and S2-), are commonly found in both liquid and gaseous streams 

generated in the petrochemical industry and anaerobic digesters (Mattiusi et al., 2015; 

Pokorna and Zabranska, 2015). In addition, some industrial wastewaters, e.g. from tan-

nery effluents as well as pulp and paper production wastewaters, generally contain ele-

vated concentrations of sulfur in the form of S2O3
2-, SnO6

2-, SO3
2- and SO4

2- which are 

inevitably reduced to H2S under anaerobic conditions (Pokorna and Zabranska, 2015). 

H2S causes odor nuisance at concentrations as low as 0.025 ppmv and represents an 

immediate hazard to human health at concentrations exceeding 600 ppmv (Yalamanchili 

and Smith, 2008). H2S levels in contaminated gas streams, i.e. flue gas and biogas, must 

be significantly reduced to prevent damage to equipment and gas distribution systems. 

For instance, the H2S concentrations in biogas must be less than 1000 ppmv for direct 

combustion of biogas, whereas for the application as a fuel in internal combustion en-

gines or compressed natural gas production (CNG), the H2S concentration must be less 

than 100 ppmv and 16 ppmv, respectively (Khanal and Li, 2017). Additionally, the pres-

ence of dissolved sulfide in the liquid phase can result in the corrosion of water transport 

systems and accumulation of metal precipitates in the sludge (Krayzelova et al., 2015). 

Chapter 1 Introduction 
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1.2 Problem statement 

The removal of sulfides from both liquid and gaseous streams can be accomplished us-

ing various physico-chemical methods, including scrubbing, adsorption, absorption and 

chemical precipitation (Muñoz et al., 2015; Nielsen et al., 2005). However, these tech-

nologies have high operating costs as well as negative environmental impacts due to the 

generation of chemical wastes (Abatzoglou and Boivin, 2009; Muñoz et al., 2015). Bio-

logical processes for sulfide removal are considered to be cleaner and less expensive 

alternatives compared to conventional technologies using chemicals (Cano et al., 2018). 

Aerobic and anoxic bioreactors have been operated for sulfide removal from both liquid 

and gas streams (Almenglo et al., 2016b; Bayrakdar et al., 2016; Can-Dogan et al., 2010; 

Mahmood et al., 2007). Anoxic bioreactors are more practically applicable than the aer-

obic ones in terms of ease of use and operational costs (Cano et al., 2018; Fernández 

et al., 2014), because use of oxygen as an electron acceptor can cause formation of 

polysulfides and mass transfer limitations of oxygen to the microorganisms due to low 

water solubility of oxygen (Krishnakumar et al., 2005). In aerobic biotrickling filters (BTF) 

treating H2S-contaminated gas streams, insufficient oxygen supply can result in S0 pre-

cipitation and bioreactor clogging, subsequently leading to reduced mass transfer and 

decreased bioreactor performance (Khoshnevisan et al., 2017; Rodriguez et al., 2014). 

In aerobic bioreactors for biogas cleaning, it is also necessary to carefully control the 

oxygen to methane ratio in order to avoid explosive mixtures of methane and oxygen 

(Fernández et al., 2013). 

Some wastewaters, such as petroleum refinery wastewaters and tannery industry efflu-

ents, contain both nitrogen and reduced sulfur compounds. These kind of nitrate (NO3
-) 

containing wastewaters and/or nitrified wastewaters can be treated via denitrification 

coupled to sulfur oxidation (Lofrano et al., 2013; Reyes-Avila et al., 2004). NO3
- can be 

introduced externally when the concentrations of NO3
- and nitrite (NO2

-) in the influent 

wastewater are insufficient to sustain oxidation of all reduced sulfur compounds present 

in the waste stream (Yang et al., 2005). Hence, a continuous system for treating simul-

taneously a nitrified/NO3
--contaminated wastewater and sulfide-contaminated 

wastewater/waste gas could be a sustainable technology, if both types of waste streams 

are available in sufficient amount at the same location (Cano et al., 2018).  

The nitrogen to sulfur (N/S) ratio is one of the key operational factors for anoxic sulfide-

oxidizing bioreactors, since it affects the metabolism of the sulfur-oxidizing bacteria and 

the ratio of the end-products (S0 and SO4
2-) formed during sulfide oxidation (Bayrakdar 

et al., 2016; Dolejs et al., 2015; Moraes et al., 2012). However, previous studies have 

not focused on the long-term performance and microbial community evolution under dif-

ferent N/S ratios. Some nitrified/NO3
- contaminated wastewaters such as municipal 

wastewater, and effluents from systems treating swine wastewaters (Hunt et al., 2009) 
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or effluents from faecal sludge treatment (Forbis-Stokes et al., 2018) can also contain 

organic carbon. Therefore, the effect of organic carbon on the performance of an auto-

trophic bioreactor and activity of autotrophic microorganisms needs also to be investi-

gated.  

Among the different bioreactor configurations, biofilm systems are an attractive option, 

because of their ability to retain high biomass levels in the system. This results in less 

problems related to biomass wash-out and enables higher solid retention times (SRT) 

compared to reactor types relying solely on the activity of suspended microorganisms 

such as continuous stirred-tank reactors (CSTR) (Di Capua et al., 2015; Papirio et al., 

2013). Hence, the development of appropriate biofilm systems containing sulfur-oxidiz-

ing nitrate-reducing (SO-NR) bacteria are promising approaches for the removal of re-

duced sulfur compounds (RSCs) from both liquid and gas streams under anoxic condi-

tions. 

During practical bioreactor applications, unexpected or transient conditions such as var-

iable pollutant concentrations, transient emission patterns, and intermittent inlet gas flow 

rates are regularly encountered and can affect microbial activity and bioreactor stability 

(Rodriguez et al., 2014; San-Valero et al., 2017). Recent studies have investigated the 

impact of transient conditions, i.e. pollutant shock loads and starvation periods, on the 

performance of aerobic BTFs removing H2S and other gaseous pollutants (López et al., 

2017; Mohammad et al., 2017; Rene et al., 2010). In addition to the steady-state opera-

tion of anoxic bioreactors, the response and resilience of SO-NR bacteria in the anoxic 

bioreactors to transient conditions require further investigations such as the bioreactor 

operation under NO3
- limiting conditions, H2S shock loads as well as intermittent gas and 

liquid waste flow rates. Furthermore, collecting data of bioreactor performance under 

transient-state operation is useful for preparing operational strategy for further operations. 

Modelling of the performance of biological systems can enhance process control to op-

timize operational conditions. Several mathematical models developed for wastewater 

and waste-gas treatment system required large data on sensitive parameters, e.g. mi-

crobial growth rate, target compound consumption rate, mass transfer and diffusion co-

efficients (Spigno and De Faveri, 2005). Recently, no model is available for predicting 

the dynamic performance of the biological treatment systems due to the process com-

plexity and microbial activity (Rene et al., 2011). A neural network-based model is one 

of the most efficient black-box modelling tools for predicting and describing the non-linear 

performance of biological processes. Furthermore, this model has been successfully im-

plemented for forecasting  effluent quality and reducing energy consumption in full-scale 

wastewater treatment plants (Han et al., 2018; Lee et al., 2011). 
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1.3 Research objectives 

The main objective of this thesis was to develop anoxic bioreactor configurations for 

treating inorganic sulfur-containing waste streams using NO3
- as an electron acceptor. 

The specific objectives were the following: 

1) To evaluate the performance of different bioreactor configurations for S2O3
2- removal 

from the liquid waste streams using NO3
- as an electron acceptor: 

a) by comparing the removal performance of a fluidized bed reactor (FBR) and a 

moving bed biofilm reactor (MBBR) operated under different N/S molar ratios 

b) by developing a neural network-based model for prediction and optimization of 

the bioreactor performance considering sulfur (i.e. S2O3
2-) and NO3

- removal effi-

ciencies and SO4
2- production 

2) To optimize the performance of an anoxic biotrickling filter (BTF) for H2S removal 

from gas streams: 

a) by evaluating the removal performance of the BTF under autotrophic and mixo-

trophic conditions 

b) by developing the anoxic BTF for the simultaneous removal of H2S-contaminated 

gas streams and wastewater containing NO3
- and carbon pollutants using the 

inoculation of specific bacteria 

c) by evaluating the response of the BTF to transient-state conditions and suggest-

ing an appropriate process control strategy 

1.4 Structure of the thesis 

This thesis comprises of eight chapters. The outline of the contents of the individual 

chapters (Figure 1.1) is described below: 

Chapter 1 gives a general overview of this thesis including the background, problem 

statement, research objectives and thesis structure. Chapter 2 reviews the existing 

knowledge on physical and chemical and biological technologies for biogas cleaning and 

upgrading. The chapter provides basic information on the techniques commercially used 

and/or studied for the removal of different contaminants present in biogas, particularly 

H2S and CO2. As technologies for biological removal of H2S have been widely used in 

full-scale applications, the feasibility of simultaneous removal of H2S and other contami-

nants are also highlighted.  

Chapters 3 and 4 report the performance of two different bioreactors for S2O3
2- removal 

from liquid streams including the evaluation of their biofilm activity, microbial community 
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composition and neural network-based models to predict and optimize the reactor per-

formance with the focus on removal efficiencies of S2O3
2- and NO3

-. Chapter 3 focuses 

on the SO-NR process in an anoxic FBR under different N/S ratios using S2O3
2- and NO3

- 

as a sulfur source and electron acceptor, respectively. Kinetic parameters of the FBR 

biomass are also evaluated based on batch activity tests. Chapter 4 focuses on an an-

oxic MBBR operated under low N/S ratios (nitrate-limiting conditions) using S2O3
2- as a 

sulfur source. This chapter also evaluates the specific S2O3
2- and NO3

- removal rates of 

biomass obtained from different experimental phases from the MBBR in batch tests. 

Chapters 5, 6 and 7 focus on the performance of an anoxic BTF packed with polyure-

thane foam (PUF) cubes for H2S removal from gas phase using NO3
- as electron accep-

tor. In Chapter 5, the performance of the laboratory-scale anoxic BTF for H2S removal 

was investigated using the biomass obtained from the anoxic MBBR used in Chapter 4. 

This chapter establishes the H2S removal efficiency and microbial community composi-

tion under both autotrophic and heterotrophic conditions. In Chapter 6, a laboratory-

scale anoxic BTF was inoculated with a pure culture of mixotrophic Paracoccus strain 

MAL 1HM19 for H2S removal via mixotrophic denitrification. This chapter reveals the 

feasibility of the simultaneous removal of H2S-contaminated gas stream, NO3
- and or-

ganic carbon containing wastewater. Chapter 7 focuses on the response of the anoxic 

BTF to short-term transient-state conditions, including intermittent influent H2S and NO3
- 

flow rates, H2S shock loads, the wet-dry bed operations as well as the bioaugmentation 

of the existing anoxic BTF used in Chapters 5 and 7 with Paracoccus strain MAL 1HM19. 

Chapter 8 summarizes the knowledge gained from this dissertation and discusses the 

practical implications of this work. The recommendations and future perspectives are 

also provided in this chapter. 
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2.1 Introduction 

The increased consumption of fossil fuels results in emission of greenhouse gases 

(GHGs), such as carbon dioxide (CO2). It has been estimated that about 90% of the CO2 

emissions is generated from fossil fuel combustion (IEA, 2015). Furthermore, the relia-

bility of the energy supply is a challenge due to limitations of natural resources, e.g. fossil 

fuels, which can cause energy source deficiency in the future. In this context, alternative 

energy production from bioresources has gained interest and it is widely applied at in-

dustrial scales to achieve sustainable and more environmentally friendly energy sources.  

Bioenergy, particularly biogas produced from anaerobic digestion of organic wastes, is 

a promising alternative energy source (Guo et al., 2015; Yentekakis and Goula, 2017). 

Anaerobic digestion is a waste stabilizing process that transforms organic matter to a 

gaseous fraction, i.e. biogas, and a solid residue, i.e. an anaerobic digestate. The latter 

contains nutrients which are easily available to plants and can therefore be used as a 

fertilizer (Daniel-Gromke et al., 2018; Surendra et al., 2015). Biogas mainly consists of 

methane (CH4) and CO2, but also other gases such as hydrogen sulfide (H2S), ammonia 

(NH3), water vapor, siloxanes and halogenated hydrocarbons (Angelidaki et al., 2018; 

Barbusinski et al., 2017). The composition of biogas varies due to differences in biode-

gradable compounds and their quantities present in organic wastes, such as agricultural 

waste, sewage sludge, landfill and industrial wastes/wastewaters. The biogas contami-

nants can cause corrosion and failure of the process equipment and pipeline systems 

and have negative impacts to public health and environment (Sun et al., 2015). In addi-

tion, the presence of such impurities can reduce the final CH4 content in biogas, which 

in turn reduces its calorific value during combustion. Thus, biogas is required to be 

cleaned up or even upgraded for economic considerations and from an environmental 

Chapter 2 Biogas cleaning and upgrading technologies  
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perspective. After biogas upgrading, high quality biomethane (CH4-rich biogas) can be 

obtained and used as a substitute for natural gas (Guo et al., 2015).  

Biogas cleaning technologies refer to the removal of biogas contaminants, e.g. H2S, NH3, 

water vapor and siloxanes, to achieve the criteria for syngas production, direct combus-

tion or combined heat and power (CHP) generation. Besides, the use of biogas for nat-

ural gas grid injection or production of added-value products requires technologies for 

biogas upgrading, particularly the removal of CO2, to obtain a purified biogas with high 

quality as a natural gas (Figure 2.1). 

 

Figure 2.1. Possible pathways of various biogas applications as well as options for removal 
of contaminants from biogas. 

2.2 Biogas production and utilization 

Biogas is produced via anaerobic digestion of organic matter, such as that present in 

municipal wastes, agricultural waste as well as from landfills. Biogas technology has 

been successfully implemented in large-scale applications, e.g. agricultural or food pro-

cessing industries (Prasertsan and Sajjakulnukit, 2006) as well at a small scale used in 

livestock farms or households (Lijó et al. 2017; Rajendran et al., 2012). Biogas technol-
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ogy is, thus, a potential technology for waste management which also allows the produc-

tion of renewable energy and value-added chemicals, e.g. methanol and ethylene 

(Yentekakis and Goula, 2017). In Europe, the number of biogas plants has increased 

during 2010-2014 (Achinas et al., 2017). Several countries have applied biomethane as 

a fuel source for vehicles, particularly in European countries like Germany and Sweden 

(IEA, 2017; Sorda et al., 2013). The potential use of biogas for renewable transport fuels 

in Sweden has been estimated to meet the vehicle gas demand in Stockholm County by 

2020 and it is expected to increase by 2030 (Lönnqvist et al., 2015). 

Biogas produced from anaerobic digestion contains approximately 50-75% CH4, 25-50% 

CO2 and <5% other compounds including H2S, NH3, siloxanes, oxygen (O2), nitrogen (N2) 

and halogenated hydrocarbons (Surendra et al., 2014). However, the content of CH4 in 

biogas varies depending on the organic substrate used (Table 2.1). CH4 is a valuable 

renewable energy source which has a lower calorific value (LCV) of 36 MJ m-3 at stand-

ard temperature and pressure (STP), while the LCV of raw biogas is approximately 20 

MJ m-3 (Angelidaki et al., 2018). Hence, biogas should contain as high amounts of CH4 

as possible to obtain the high quality of biomethane to substitute natural gas. Other com-

pounds present in biogas are considered as pollutants and need to be removed from the 

biogas stream, because they reduce the calorific value and limit the flammability of bio-

gas as well as cause corrosion problems (Table 2.1). 

2.3 Biogas upgrading technologies (CO2 removal) 

Different techniques for biogas cleaning and upgrading are available and the application 

of each technique is based on the purpose of the use of biogas. The use of biogas for 

electricity or heat generation requires the removal of corrosive contaminants, e.g. H2S, 

NH3 and moisture, while the transformation of biogas to biomethane requires the removal 

of CO2 and a purity of CH4 greater than 95%. The techniques for CO2 removal available 

at the commercial scale are mostly physical/chemical technologies which have been 

conventionally used for several decades due to their high reliability and commercial avail-

ability (Table 2.2). Some amounts of other contaminants (e.g. H2S and N2/O2) can be 

simultaneously removed with CO2. According to IEA (2017), the technologies used in the 

market include water scrubbers (30%), membranes (25%), chemical scrubbers (18%), 

pressure swing adsorption (PSA) (14%), organic physical scrubbers (4%), cryogenic 

separation (2%) and other techniques (7%). Biological technologies for CO2 removal are 

still limited at the commercial scale, but are widely investigated at laboratory and pilot 

scales, i.e. photobioreactors and biogas upgrading processes based on hydrogen-

otrophic methanogens (Angelidaki et al., 2018). 
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Table 2.1. Composition of natural gas and biogas produced from different sources (Rasi, 2007; Sun et al., 2015; Yentekakis et al. 2017). 

 Natural 

gas 

Biogas source  

Compounds Landfill 

gas  

Anaerobic 

digestion 

at WWTP  

Agricultural 

wastes 

Negative effect of biogas contaminants 

CH4 (%) 85-92 35-65 60-70 55-75 - 

 

CO2 (%) 0.2-1.5 25-40 30-40 35-40 • Decrease in heating value 

H2S (ppmv) 1-6 20-500 0-34000 30-7200 • Odor  

• Corrosion in equipment and gas transportation systems 

• Immediate hazard to human health at concentrations >100 ppmv 

• SOx emission during combustion 

NH3 (ppmv) - <5 <100 70-150 • NOx emission during combustion 

N2 and O2 (%) <0.5 15 0-8 1-2 • Decrease in heating value 

Siloxanes (mg m-3) - 7-24 n.a. n.a. • Corrosion of equipment and gas transportation systems 

Note: WWTP = Wastewater treatment plant; n.a. = data not available 
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Table 2.2. Physico-chemical technologies available at the industrial scale for biogas upgrading (Bauer et al., 2013; Hoyer et al., 2016; Muñoz et 
al., 2015; Wilken et al., 2017). 

Note: n.a. = data not available 

 Pressure swing 
adsorption 

Water scrub-
bing 

Organic solvent 
scrubbing 

Chemical 
Scrubbing 

Membrane sepa-
ration 

Cryogenic technique 

Main pollutants removed CO2 CO2 or H2S CO2  CO2 or H2S CO2 CO2 

Co-contaminants re-
moved 

N2/O2, halogen-
ates, siloxane 

H2S H2S, NH3 H2S <300 
ppmv 

H2S, N2/O2 H2S, N2/O2 

Mechanism Physical adsorp-
tion 

Physical ab-
sorption 

Physical ab-
sorption 

Chemical ab-
sorption 

Physical separa-
tion/liquid ab-
sorption 

Physical separation  

Chemical/Material re-
quired for the reaction  

Activated carbon, 
zeolites 

Water Glycol Amines Hollow fiber,  Not required  

Operation pressure (bar) 3-10 4-10 4-8 Atmospheric  80 

Required temperature 
(°C) 

ambient ambient 40-80 100-180 ambient low to -150 

Cost (€ Nm-3 h-1) 1000-3000 n.a. n.a. 1500-3500  1500- 6000 n.a. 

Power consumption 
(KWh Nm-3) 

0.20-0.30 0.25-0.30 0.20-0.30 0.06-0.17 n.a n.a. 

CH4 losses (%) 1.5-2.5 0.5-2 1-4 <0.5 0.5 1.8 

Waste product of the pro-
cess 

CO2 Polluted wa-
ter 

Solvent Solvent CO2 CO2 

Example of well-known 
commercial scale  

CarboTech Malmberg Genosob®, 
Seloxol® 

DGE GmbH DMT carborex Cryo Pur 
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2.3.1 Absorption 

Absorption is one of the most widely used technologies for biogas upgrading to remove 

gaseous contaminants that have higher solubility in water than CH4. In order to increase 

solubility of gaseous compounds, biogas is compressed before feeding to the bottom of 

an absorption column in counter-current mode with a scrubbing liquid (Figures 2.2a and 

b). The absorption is carried out in a scrubber column packed with a carrier material to 

enhance the contact between the biogas and liquid. The absorbent can be water, organic 

solvent or an amine solvent (Yentekakis et al. 2017).  

Water scrubbers (Figure 2.2a) enable a high CO2 separation efficiency and can achieve 

a CH4 content greater than 97% after a drying step (Sun et al., 2015). Most water scrub-

bers are operated at a pressure range of 6-10 bar and the inlet biogas temperature 

should not exceed 60 °C due to safety reasons (Rotunno et al., 2017). Prior to CO2 re-

moval in a water scrubber, H2S should be removed to concentrations <300 ppmv to avoid 

fouling (Allegue and Hinge, 2014). The disadvantage of this technique is a high power 

consumption, particularly the use of electricity for biogas compression, cooling and 

pumping (Ryckebosch et al., 2011). As water scrubbers require a large amount of water, 

most applications of water scrubbers are preferred to reuse scrubbing water from a de-

sorption unit, referred to as regenerative absorption, which is more economical and eco-

friendly than a single pass scrubbing process (Sun et al., 2015).  

Organic solvents can be used in scrubbing to enable higher solubility of CO2, lower water 

requirement, smaller unit volume and lower operation pressure (typically 4-8 bar) com-

pared to water scrubbers (Wilken et al., 2017). However, solvent regeneration processes 

require high temperatures up to 80 °C (Wilken et al., 2017). The most common organic 

solvent used for CO2 scrubbing is polyethylene glycol, used in well-known commercial 

Selexol® and Genosorb® processes (Miltner et al., 2017). In physical scrubbers utilizing 

organic solvents, other contaminants (e.g. H2S, N2/O2 and water vapor) can be simulta-

neously removed with CO2 and the CH4 content of the upgraded biogas can be above 

97%. However, the use of scrubbers results in the production of two waste streams, i.e. 

gas stream contaminated with CO2 and liquid stream containing chemicals (Petersson 

and Welinger, 2009). 
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Figure 2.2. Typical configurations of (a) a water scrubber with a water regeneration unit, (b) 
a chemical scrubber with an absorbent regeneration unit and (c) a 4-stage pressure swing 
adsorption (PSA) for CO2 removal and biomethane upgrading (adapted from de Hullu et al., 
2008). 
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Chemical scrubbing is also widely used in commercial scale for CO2 removal due to its 

lower power requirement than other physical/chemical techniques (Hoyer et al., 2016). 

The absorbents used in this technique are alkanol amine solutions, i.e. mono ethanol 

amine (MEA), di-methyl ethanol amine (DMEA) or tertiary amines. The chemical scrub-

bing can also be done by using amine-based nanofluids and nanoparticles (Al3O and 

SiO2) in wetted conditions for the simultaneous removal of CO2 and H2S (Taheri et al., 

2016). The chemical scrubbing unit consists of two main parts, i.e. an absorption column 

and a regeneration column (Figure 2.2b). CO2 reacts with the chemical solution in an 

absorption column packed with chemically inert material to increase mass transfer and 

provide a large wetted surface area between the gas and the scrubbing liquid 

(Ryckebosch et al., 2011). The treated biogas stream is released at the top of the ab-

sorption column, while the solution containing CO2 is passed through the bottom of the 

column to the regeneration column which regenerates the absorbent and releases CO2 

to the atmosphere. The reaction of CO2 in the absorption column and regeneration unit 

to desorb CO2 from the absorbent are shown in the following equations: 

Absorption: 2RNH2 + CO2 → RNHCOO- + RNH3
+     (2.1) 

Desorption: RNHCOO- + RNH3
+ → 2RNH2 + CO2    (2.2) 

2.3.2 Pressure swing adsorption 

Pressure swing adsorption (PSA) is one of the most common techniques used at the 

industrial scale (Hoyer et al., 2016). The upgraded biogas from the PSA process can 

achieve a CH4 content >99% and the process does not require the use of solvents and 

heat for liquid regeneration. PSA is a dry method for the separation of CO2 from the 

biogas stream by adsorption onto the surface of specific adsorbents, i.e. activated car-

bon, zeolites and carbon molecular sieve (Augelletti et al., 2017; Canevesi et al., 2018). 

The system consists of several process units (Figure 2.2c) working in parallel with an 

alternative cycle of adsorption, regeneration and pressure build-up. Initially, compressed 

biogas (4-10 bars) is injected to an adsorption column containing the adsorbing material 

that separates CH4 and CO2. Then, the CH4-rich stream on the top of the column is 

evacuated to atmospheric pressure (1 atm). When the adsorbing material in the column 

becomes saturated, the biogas is sent to another column in which the adsorbing material 

has already been regenerated.  

Regarding the regeneration of the adsorbent, the pressure is reduced to almost atmos-

pheric pressure to evacuate the CO2-rich gas stream which is subsequently released into 

the atmosphere or sent to further treatment. Practically, H2S and the water content are 

removed from raw biogas before feeding it through the PSA to avoid corrosion problems, 

while N2 and O2 are simultaneously removed with CO2. Wu et al. (2015) suggested that 
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the use of a metal-organic framework as an adsorbent could reduce the energy con-

sumption in the PSA process compared to using zeolites. It was due to PSA using the 

metal-organic framework adsorbent having a linear CO2 isotherm that induced easier 

desorption of CO2. However, PSA has also some disadvantages including that the sep-

arated CO2-rich gas stream requires additional treatment before being released to the 

atmosphere, i.e. a lean gas burner.  

2.3.3 Novel CO2 removal technologies 

2.3.3.1 Membrane separation 

In recent decades, separation techniques, i.e. membrane and cryogenic separation, for 

CO2 removal from biogas have been gradually developed. With the membrane tech-

niques, biogas contaminants, e.g. CO2, H2S and NH3, are separated from the biogas 

stream based on selective permeability properties of the membranes. Membranes are 

made of materials that are permeable to CO2, water and NH3. Two membrane techniques 

commonly used for biogas upgrading include: a high-pressure gas separation with gas-

phases on both sides of the membrane (Figure 2.3a), and a low-pressure gas-liquid sep-

aration where a liquid absorbs the molecules diffusing through the membrane (Figure 

2.3b) (Deng and Hägg, 2010; Petersson and Wellinger, 2009). In case of the gas-liquid 

membranes, H2S, NH3 and siloxanes should be removed from the gas streams prior to 

feeding into the membrane unit to avoid the reduction of membrane performance. Mem-

brane separation techniques have 60% lower operational costs than PSA or chemical 

scrubbing (Žák et al., 2018). The membranes can also operate at high pressure in the 

presence of water vapor. 

 

Figure 2.3. Principle of CO2 removal from biogas using membrane techniques: (a) high-
pressure gas separation and (b) low-pressure gas-liquid separation (adapted from Deng and 
Hägg, 2010). 

2.3.3.2 Cryogenic separation 

The cryogenic separation process is based on the difference of boiling and sublimation 

points between CH4 and the impurities. Theoretically, CH4 has a boiling point of -160°C 

at atmospheric pressure, whereas CO2 has a boiling point of -78°C (Persson et al., 2006). 

This means that CO2 condensates at higher temperatures than CH4. This implies that 
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CO2 can be separated from the biogas as a liquid by cooling the gas mixture at elevated 

pressure (Pellegrini et al., 2018). Additionally, water and siloxanes are also removed 

during the biogas cooling.  

Cooling usually takes place in several steps in order to remove the different pollutants 

present in the biogas individually and to optimize the energy recovery (Allegue and Hinge, 

2012). After CO2 is removed as a liquid, the biogas stream can be cooled further to con-

densate the CH4. The separated CO2 in the liquid phase is clean and can be further used 

elsewhere or sold as chemical. To avoid freezing and other problems during the cryo-

genic compression-expansion process, water and H2S need to be removed from the raw 

biogas. As biomethane obtained from the process has a very low temperature, this tech-

nique is more effective and profitable for biogas upgrading to liquefied biomethane (LBM) 

than obtaining gaseous biomethane (Pellegrini et al., 2018). However, cryogenic tech-

nology still has several disadvantages including its very high energy requirement for 

cooling and heating processes and the equipment clogged by frozen CO2 (Wilken et al., 

2017).  

2.4 Technologies for biogas desulfurization 

The H2S present in biogas is a result of metabolic activity of sulfate reducing microor-

ganisms during anaerobic degradation of waste streams with high protein content and/or 

high sulfate concentration (Pokorna and Zabranska, 2015). H2S, which is a colorless and 

inflammable gas, is harmful to human health at 100 ppmv (OSHA, 2005) and causes 

corrosion to facilities and equipment, e.g. pipelines, cogeneration engines and biogas 

distribution units (Soreanu et al., 2008a). The combustion of H2S also produces SOx 

emissions which are known as an acid rain precursor and air pollutants. Thus, H2S needs 

to be removed from biogas to achieve the requirements for the different biogas applica-

tion (Table 2.3).  

Table 2.3. H2S concentration requirements for various biogas applications (Allegue and 
Hinge, 2012). 

Biogas utilization H2S (ppmv) 

Natural gas <4 
Kitchen stoves <10 
Internal combustion engines <50 
Stirling and boiler engines <1,000  
Turbines <10,000 
Micro-turbines <70,000 

The removal of H2S from biogas can be achieved by conventional physico-chemical 

methods including scrubbing, adsorption, absorption and chemical precipitation (Muñoz 

et al., 2015). However, these technologies have limitations in terms of operating cost and 

generating chemical wastes as a side product of the process which can cause a negative 
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environmental impact (Abatzoglou and Boivin, 2009; Muñoz at al., 2015). For example, 

chemical absorption using alkaline solution requires large volumes of liquid solvents, 

which can lead the negative environmental impact (Tippayawong and Thanompongchart, 

2010). The biological processes for H2S removal are considered as an alternative to the 

conventional technologies due to their low operational costs and the benefit of the recov-

ery of end-products (Cano et al., 2018). However, bioreactor technologies are high sen-

sitive to changing operational conditions and require high attention in maintenance and 

operation due to e.g. excess biomass growth as well as the long-term start-up period of 

bioreactors compared to the physico-chemical techniques (Miltner et al., 2012). 

2.4.1 Physical/chemical processes 

2.4.1.1 Absorption 

Chemical absorption is a conventional technique for H2S removal from biogas streams. 

Typically, the absorption has been done by using alkaline solutions, e.g. sodium hydrox-

ide (NaOH) which react with H2S to form sodium sulfide (Na2S) and/or sodium hydrogen 

sulfide (NaHS). In this process, the demands of water and electricity for pumping are 

reduced (Miltner et al., 2012) because the use of chemicals as scrubbing water, e.g. 

NaOH, enhances the water absorption capacity. However, the major drawback of chem-

ical scrubbing is the production of large amounts of aqueous liquid contaminated with 

Na2S. Chemical scrubbing is a potential choice for biogas streams containing high H2S 

concentrations and the purpose of elemental sulfur (S0) recovery (Petersson and 

Wellinger, 2009).  

Other chemical solutions, e.g. iron (II) chloride (FeCl2) and iron (III) hydroxide (Fe(OH)3), 

can be used as absorption liquids; however, they cause the formation of insoluble com-

pounds, such as FeS or Fe2S3 which cannot be regenerated (Ryckebosch et a., 2011). 

Additionally, the chemical absorption can be done by iron-chelated (Fe-EDTA) solutions 

to oxidize H2S into S0 which is easily recovered from the process. With this technique, 

H2S removal efficiencies of 99.99% can be achieved. However, the system commonly 

faces some clogging and foaming problems (Allegue et al., 2014). The system generally 

includes two stages (Figure 2.4): (i) H2S is dissolved to the liquid phase and oxidized to 

S0 by the Fe-EDTA solution (Eq. 2.3) and (ii) ferric solution is regenerated by oxygenation 

(Eq. 2.4) according to the following reactions (de Hullu et al., 2018): 

S2- + Fe3+ ↔  S0 + Fe2+       (2.3) 

Fe2+ + O2 (aq) ↔ Fe3+ + H2O       (2.4) 
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Figure 2.4. Schematic of a chemical absorption column for H2S removal from biogas 
(adapted from de Hullu et al., 2008). The process consists of an absorption column for H2S 
followed by units for S0 recovery and regeneration of the absorbent. 

2.4.1.2 Adsorption 

Adsorption by impregnated activated carbon is a practically applied process for H2S re-

moval. The impregnated activated carbon is usually used for the removal of H2S at the 

inlet concentration <3000 ppmv due to the prolonged regeneration period (Allegue and 

Hinge, 2014). The adsorbents used for H2S removal include zeolites for H2S removal 

(Ozekmekci et al., 2015), nanoparticles of Cu-Zn-Ni loaded activated carbons and Ni-Co 

nanoparticles loaded alumina (γ-Al2O3) (Daneshyar et al., 2017). In the adsorption col-

umn, H2S is chemically oxidized by O2 into S0 and water under the operational conditions 

of temperatures at 50-70°C and pressure at 7-8 bars (Allegue and Hinge, 2014). The 

produced S0 is adsorbed by the activated carbon which is easily removed from the sys-

tem. When the activated carbon bed is saturated, it can be replaced by a fresh one, or 

regenerated by washing with water. During biogas upgrading, the adsorption by the im-

pregnated activated carbon for H2S removal is commonly integrated with other tech-

niques, e.g. a chemical scrubber or a pressure swing adsorption for CO2 removal (Figure 

2.2). 
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2.4.2 Biological technologies for H2S removal 

2.4.2.1 Biocatalysts 

Biological H2S removal can be achieved by numerous microorganisms under aerobic, 

anoxic and anaerobic conditions (Table 2.4). The potential source depends on the type 

of microorganisms, e.g. hot springs and sediments (Behera et al., 2014; Watsuntorn et 

al., 2017), or biological treatment processes, e.g. biomass or effluent from wastewater 

treatment systems and compost units (Chaiprapat et al., 2015; Fernández et al., 2014; 

Montebello et al., 2013; Ryu et al., 2009). In bioprocesses, sulfur oxidizing bacteria oxi-

dizes H2S to S0, SO4
2- or H2SO4

 as the end-products depending on the operational pa-

rameters, i.e. pH, electron acceptor types and the ratio between H2S and the electron 

acceptor (i.e., H2S/O2 and H2S/NO3
-). Aerobic oxidation of H2S occurs according to the 

following equations: 

H2S + 0.5O2 → S0 + H2O        (2.5) 

H2S + 2O2 → SO4
2- + H2O        (2.6) 

Degradation of H2S under anoxic conditions is based on the denitrification process in 

which chemolithotrophic bacteria play a main role in the sulfide oxidizing process using 

NO3
- and/or NO2

- as electron acceptor in the absence of oxygen. The important stoichi-

ometric reactions involved in the process are shown by the following equations (Pokorna 

and Zabranska, 2015): 

5HS− + 8NO3
- + 3H+ → 5SO4

2- + 4N2 + 4H2O         ∆G0 = -3848 kJ/mol (2.7) 

5HS− + 2NO3
- + 7H+ → 5S0 + N2 + 6H2O          ∆G0 = -1264 kJ/mol (2.8) 

S2- + 0.67NO2
- + 2.67H+ → S0 + 0.33N2 + 1.33H2O         ∆G0 = -240.3kJ/reaction (2.9) 

The major type of microorganisms is the phototrophic bacteria, such as green sulfur-

oxidizing bacteria (GSB) and purple sulfur-oxidizing bacteria (PSB). Sulfide is oxidized 

using CO2 as the terminal electron acceptor and light to oxidize sulfide to elemental sulfur 

or sulfate and carbohydrate, as shown in the following equations: 

2H2S + CO2 + Light → 2S0 + CH2O + H2O      (2.10) 

H2S + 2CO2 + 2H2O + Light → H2SO4 + 2CH2O     (2.11) 
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2.4.2.2 Microaeration 

Microaeration is the simplest biological technique for biogas desulfurization which can 

be performed directly in anaerobic digesters. In principle, the small amount of air or O2 

is directly into headspace to oxidize H2S to elemental sulfur (Eq. 2.5). The air or O2 dos-

age is required around 1-1.8% of O2 concentration in biogas to avoid the biogas dilution 

and the explosive limit from the mixture of CH4 and O2 (Muñoz et al., 2015). This tech-

nique has been applied in full-scale anaerobic digestion of sewage sludge from 

wastewater treatment plant (WWTP) since last decade (Jenicek et al., 2010, 2008; 

Jeníček et al., 2017). The removal efficiency of H2S from biogas could reach 99% at an 

initial H2S concentration of ~5000 ppmv (Jeníček et al., 2017). During the process, the 

authors also observed the decrease of COD in the sludge liquor. Recently, the microaer-

ation has been used for H2S removal in anaerobic digestors (e.g. UASB and FBR) treat-

ing industrial wastewaters that the H2S concentration 20000-67000 (Krayzelova et al., 

2015). In this context, the H2S removal efficiency was 70-80% under microaerobic con-

ditions. The important operational parameters include air dosage, dosing point, biogas 

residence time in the reactor headspace and temperature (Khoshnevisan et al., 2017).  

Microaeration provides low cost operation for 4-6 times compared to aerobic/anoxic bio-

trickling filter (Khoshnevisan et al., 2017). However, the limitation of this technique is that 

the application is available for specific reactor headspaces which were suitable for this 

purpose. One of the major challenges is that S0 accumulation on the wall of headspace 

top of anaerobic digestors. 

2.4.2.3 Aerobic biofilter/biotrickling filter 

Biofilters (BF) and biotrickling filters (BTF) have been used for removal of gaseous H2S 

which is fed through a packed bed (Figures 2.5b and c). The contaminants in the gas 

streams are transferred to the liquid phase and adsorbed/absorbed to the biofilm growing 

on the packed bed. The biodegradation of pollutants is carried out by the microorganisms 

attached on the filter media (Figure 2.5a). These bioreactor configurations contain pack-

ing materials such as organic materials (compost, soil or peat) or synthetic plastic pack-

ing. Compared to the BF, the BTF continuously provides trickling liquid to the packed 

bed (Kennes et al., 2009a). Biotrickling filters are more complex than biofilters, yet they 

have been used in field situations to remove H2S from biogas. Fortuny et al. (2008) re-

ported that the BTF was able to recover quickly from accidental shutdowns and after 

applying shock loads.  
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Figure 2.5. Biofiltration systems used for H2S removal (a) the removal mechanism in the 
packing material, (b) biofilter, (c) biotrickling filter (BTF) and (d) bioscrubber (adapted from 
de Hullu et al., 2008). 

Aerobic BF and BTF have been commercialized under various trademarks, e.g. BioSul-

furex®, Biopuric®, BiogasCleaner®. Profactor Produktionsforschungs GmbH® (Allegue 

and Hinge, 2014) designed a BTF inoculated with aerobic sulfur-oxidizing bacteria for 

H2S removal from biogas. In the system, the O2 is provided by directly suppling air into 

the bioreactor, ~4-10% of the inlet gas stream. The Biopuric® process is used for remov-

ing H2S concentrations of 1000-15000 ppmv under acidic conditions (pH of 1-3), and the 

process converts H2S into H2SO4 and S0 with a H2S removal efficiency of 90-99% (Al-

legue and Hinge, 2014). 

López et al. (2016) tested an aerobic BTF for treating synthetic biogas containing H2S of 

2000-10000 ppmv and suggested that BTF operation required the regulation of the trick-

ling liquid velocity and flow pattern to improve the gas-liquid O2 mass transfer in the BTF. 

The aerobic BTF has been recognized as one of the most effective and attractive tech-

niques for biogas desulfurization due to its lower operational costs and environmental 

impact than other physical/chemical technologies (Cano et al., 2018). 
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2.4.2.4 Bioscrubber 

The bioscrubber is a two-stage process including physical or chemical absorption of gas-

eous H2S into sulfide ions (i.e. HS- and S2-) in an absorption column, followed by biolog-

ical oxidation of the liquid streams containing sulfide ions in a bioreactor unit (Figure 

2.5d). The THIOPAQTM process, which is a well-known bioscrubber and currently applied 

in full scale applications, is operated under alkaline (pH of 8.2-9.0) and aerobic conditions, 

wherein biodegradation is carried out by sulfur-oxidizing bacteria, particularly Thiobacil-

lus spp. (Allegue and Hinge, 2014). This process can achieve H2S removal efficien-

cies >99% and recovers elemental sulfur for further utilization. However, the use of con-

ventional bioscrubbers requires large amounts of chemicals, e.g. NaOH, thus the eco-

nomic aspects and environmental impact should be considered. 

Recently, Tilahun et al. (2018) developed a hybrid membrane bioscrubber consisting of 

a polydimethylsiloxane membrane immerged into an absorption liquid for the treatment 

of a synthetic biogas (CH4:CO2:H2S = 60:39: 1% v/v) which was directly bubbled into the 

bioreactor. The process was operated at inlet H2S concentration of 148 g H2S m-3, dis-

solved oxygen (DO) concentrations <1 mg L-1, pH of 7.0, temperature of 30°C and re-

sulted in a H2S removal efficiency of 97% and >74% S0 recovery. The authors reported 

that the system also achieved a CO2 removal efficiency of 50% and no fouling, wetting 

or dilution problems were observed during 180 operational days. 

2.4.2.5 Fluidized bed biofilm reactor (FBR) 

This bioreactor configuration generally contains carriers with small particle size, such as 

sand, activated carbon, glass and clay. To obtain a good performance, the carriers inside 

the bioreactor are required to maintain a proper fluidization rate which is an important 

parameter affecting biofilm formation on the carrier. The sulfur-oxidizing bacteria are pre-

sent in the FBR as suspended and attached growth forms. The reactor is fluidized by 

high recirculation rates and can be operated in both up- and down-flow mode. Annachha-

tre and Suktrakoolvait (2001), who initiated the sulfide removal in a fluidized bed biofilm 

(FBR), found that a FBR operated at upflow velocities of 16-26 m h-1 could achieve a 

sulfide removal efficiency of >90% at sulfide loading rates of 0.13-1.6 kg S m-3 d-1. When 

a FBR was operated at a DO less than 0.1 mg L-1, the S0 production was 65-75% of the 

removed sulfide.  

Krishnakumar et al. (2005) studied the performance of a reverse fluidized loop reactor 

(RFLP) for oxidizing sulfide in the liquid phase and recovering sulfur from the process. 

This reactor was operated under alkaline pH (pH of 8.0) and it was able to achieve 90% 

sulfide oxidation at the maximum sulfide loading rate at 30 kg S m-3 d-1, and 65% of sulfur 

was recovered. Moreover, this bioreactor type can be combined with other reactors for 

H2S removal. 
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2.4.2.6 Photobioreactors 

In photobioreactors for H2S removal, sulfide is oxidized using CO2 as a terminal electron 

acceptor and light to oxidize sulfide to elemental sulfur or sulfate and carbohydrates (Eqs. 

2.10 and 2.11). Phototrophic H2S removal coupled with S0 recovery has been studied in 

phototube bioreactors, which allowed the bacteria to grow on the inner wall of the tubes, 

inoculated by pure cultures of green sulfur bacterium Chlorobium limicola (Henshaw et 

al., 1999; Henshaw and Zhu, 2001; Syed and Henshaw, 2005). As the phototube biore-

actors required energy consumption and increased sulfide loading rates, Syed and Hen-

shaw (2005) applied a light-emitting diode (LED) light source instead of an infrared light 

bulb. Phototrophic H2S removal under anaerobic conditions has limitations during prac-

tical applications due to the problems related to slow growth rate and light source when 

operating at large scale. 

Garcia et al. (2016, 2015) investigated the treatment of sulfide containing anaerobic ef-

fluents (1-6 mg S2- L-1) in phototrophic bioreactors exposed to sunlight located in a 

wastewater treatment plant (Brazil) and reported the microbial community composition 

using pyrosequencing. The system achieved sulfide removal efficiencies of 65% and >90% 

at a HRT of 24 and 12 h, respectively. The authors observed green-colored biomass 

developed in the systems, high amounts of S0 (20 mg S0 g-1 VTS at HRT of 12 h) and 

green and purple sulfur-oxidizing bacteria, e.g. Chlorobium sp., Chloronema giganteum, 

and Chromatiaceae, were detected in the system. These studies suggest the potential 

application of photobioreactors for the simultaneous removal of sulfide, organic matter 

and methane from anaerobic effluents. However, the use of natural light still requires 

further investigation, e.g. the effect of light intensity used in the system and the light 

duration applied to the microorganisms. 

2.5 Technologies integrating biological biogas desulfurization 
with the removal of other contaminants 

2.5.1 Hybrid of bubble column and high rate algal ponds  

In recent years, the transformation of biogas to biomethane has been studied using pho-

tosynthetic systems which are the integration of a bubble column and a high rate algal 

pond (HRAP) for CO2 and H2S removal from biogas (Bahr et al., 2014; Meier et al., 2018; 

Posadas et al., 2015; Serejo et al., 2015; Toledo-Cervantes et al., 2018, 2016; Zhao et 

al., 2015). The mechanism behind this technique is that O2 produced during CO2 fixation 

of microalgae in the HRAP is provided as an electron acceptor for sulfide-oxidizing bac-

teria to oxidize H2S in the subsequent bubble column. The upgraded biogas from this 

technique reaches the quality requirements for electricity production (Toledo-Cervantes 
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et al., 2018). Bahr et al. (2014) reported that the combined adsorption column-HRAP 

system treating a synthetic biogas containing 30% of CO2 and 5000 ppmv of H2S enabled 

H2S and CO2 removal efficiencies of 100% and 90%, respectively. Furthermore, the mi-

croalgal biomass grown in the HRAP during CO2 capture could be harvested and used 

for further biogas production with a CH4 yield of 0.21-0.27 L g-1 of volatile suspended 

solids. In the phototrophic system, the presence of H2S in biogas (up to 5000 ppmv) did 

not affect the CO2 removal (Bahr et al., 2014; Meier et al., 2018). 

2.5.2 Simultaneous removal of H2S and NH3  

In biogas contaminated with low NH3 concentrations, NH3 can be simultaneously re-

moved using physico-chemical techniques for biogas upgrading, e.g. drying or adsorp-

tion processes. In some cases, NH3 concentrations can be up to 2000 ppmv in biogas 

produced from animal manure (Guo et al., 2009), and hence a separate unit for NH3 

removal is required. The simultaneous removal of NH3 and H2S can be carried out in a 

biofilter inoculated with T. thioparus and a mixed nitrifying culture or a biotrickling filter 

inoculated with Pseudomonas putida and Arthrobacter oxydans (Chung et al., 2005; Kim 

et al., 2002). Jiang et al. (2009) developed a horizontal biotrickling filter packed with 

exhausted activated carbon for the simultaneous removal of NH3 and H2S at inlet con-

centrations of 20-400 ppmv for both pollutants. The biotrickling filter, inoculated with sul-

fide-oxidizing and nitrifying bacteria enriched from activated sludge, enabled H2S and 

NH3 removal efficiencies >98% (44 g NH3 m-3 h-1) and 95% (36 g H2S m-3 h-1), respec-

tively. At high concentrations of H2S (400 ppmv), the authors observed inhibition of NH3 

degradation due to the accumulation of elemental sulfur and ammonium sulfate in the 

system.  

Rabbani et al. (2016) studied the simultaneous removal of H2S and NH3 in a pilot-scale 

biofilter and observed that H2S was removed by sulfur-oxidizing bacteria, while NH3 was 

chemically oxidized with SO4
2- to form (NH4)2SO4 in acidic conditions (pH of 1.51-3.67). 

However, the recovery of a solid form of (NH4)2SO4 from the biofilter should be further 

studied. 

2.5.3 Simultaneous H2S removal and treatment of NO3
--contaminated 

wastewater 

The anoxic BTF for H2S removal from biogas entails the use of a soluble electron accep-

tor (NO3
- or NO2

-) and elimination of gas-liquid-biofilm mass transfer limitations of O2 

experienced in aerobic systems (Soreanu et al., 2009, 2008b, 2008a; Krishnakumar et 

al., 2005). The final product of H2S oxidation in anoxic systems depends on the nitrogen-

to-sulfur (N/S) ratio: mainly SO4
2- is produced at N/S ratio >1.6, while S0 production (in 

the range of 50-70%) is typically observed at N/S ratios <0.7 (Eqs. 2.7 and 2.8).  
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Biogas desulfurization has been studied in anoxic BTFs which performed efficiently: a 

high H2S elimination capacity of 127-171 g S m-3 h-1 (at inlet H2S 1400-14600 ppmv) was 

obtained using NO3
- solution (e.g. KNO3

 and Ca(NO3)2) as a trickling liquid (Almenglo et 

al., 2016b; Fernández et al., 2013, 2014; Montebello et al., 2012). Open-pore polyure-

thane foam and Pall rings are the packing materials commonly used in the anoxic BTFs. 

Jaber et al. (2017) studied the use of expended Schist and cellular concrete waste as a 

packing material in an anoxic BTF and reported that the H2S elimination capacity was 

10.5 g m-3 h-1 and H2S removal efficiency of 100% at inlet H2S concentrations of 133 

ppmv and EBRT of 63 s. The authors reported that the anoxic BTF packed with concrete 

wastes showed lower pressure drops (3-16 Pa m-1) than other synthetic packing materi-

als.  

Anoxic H2S removal from biogas has also been conducted in a two-stage reactor com-

prised of a scrubber (physico-chemical method) and an anoxic upflow fixed bed inocu-

lated with sludge taken from the denitrification tank of a local WWTP (Bayrakdar et al., 

2016). The bioreactor was operated at a HRT of 4 h, S/N ratio of 2.5 and sulfide loading 

rate of 451 mg S L-1 d-1. The authors reported removal of 98% and 97% for H2S and NO3
-, 

respectively, and the operational problem with S0 clogging was also reported by the au-

thors. 

Baspinar et al. (2011) studied the simultaneous removal of H2S from biogas produced 

from anaerobic digester (13000-37000 ppmv) and nitrogen (NO3
- and NO2

-) from the ef-

fluent of an activated sludge treatment plant without external carbon source addition. The 

study was conducted using a pilot scale hybrid system comprising of a bubble column 

and bioscrubber (2.4 m3) using the NO3
--containing wastewater as a scrubbing liquid. An 

H2S elimination capacity in the range of 83-167 g S2- m-3 h-1, with outlet H2S concentra-

tions <1000 ppmv was achieved.  

2.6 Conclusions 

The use of biogas for syngas production, direct combustion and electricity generation 

requires the removal of corrosive contaminants, e.g. H2S and NH3. In this context, bio-

logical technologies are attractive, cost effective, environmentally friendly and offer the 

possibility to recover value-added products. Compared to physico-chemical technologies, 

bioreactors have shown great potential, particularly for H2S removal, as they can be op-

erated under various operational conditions and were shown to be robust under transient 

conditions. However, bioreactor technologies require periodic maintenance to remove 

excess biomass that frequently causes clogging and/or channeling problems. The start-

up period of bioreactors also takes long time, from several days up to a few months. For 

full-scale operation, physical/chemical technologies are preferable for biogas upgrading. 
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The selection of biogas cleaning and upgrading technologies can be considered from 

various aspects, e.g. limited installation area, technical optimization as well as opera-

tional and maintenance costs. However, the environmental impact and high energy con-

sumption are still their major drawbacks. Biological technologies for removing CO2 and 

H2S, e.g. via the integration of a bubble column and a high rate algal pond, have gained 

attention as the biomass produced during CO2 capture can also be harvested for further 

applications.  
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Anoxic thiosulfate (S2O3
2-) oxidation using autotrophic denitrification by a mixed culture 

of sulfur-oxidizing nitrate-reducing (SO-NR) bacteria was studied in a fluidized bed reac-

tor (FBR). The long-term performance of the FBR was evaluated for 306 days at three 

nitrogen-to-sulfur (N/S) molar ratios (0.5, 0.3 and 0.1) and a hydraulic retention time 

(HRT) of 5 h. S2O3
2- removal efficiencies >99% were obtained at a N/S ratio of 0.5 and a 

S2O3
2- and nitrate (NO3

-) loading rate of 820 (± 84) mg S2O3
2--S L-1 d-1 and 173 (± 10) mg 

NO3
--N L-1 d-1, respectively. The S2O3

2- removal efficiency decreased to 76% and 26% at 

N/S ratios of 0.3 and 0.1, respectively, and recovered to 80% within 3 days after increas-

ing the N/S ratio from 0.1 back to 0.5. The highest observed half-saturation (Ks) and 

inhibition (KI) constants of the biofilm-grown SO-NR bacteria obtained from batch culti-

vations were 172 and 800 mg S2O3
2--S L-1, respectively. Thiobacilus denitrificans was 

the dominant microorganism in the FBR. Artificial neural network modelling successfully 

predicted S2O3
2- and NO3

- removal efficiencies and SO4
2- production in the FBR. Addi-

tionally, results from the sensitivity analysis showed that the effluent pH was the most 

influential parameter affecting the S2O3
2- removal efficiency. 

3.1 Introduction 

Sulfide compounds (S2-, HS- and H2S) present in wastewater and biogas streams, par-

ticularly in industrial discharges from fermentation of molasses, pulp and paper industry 

and latex production, can cause odor and corrosion problems (Guerrero et al., 2015; 

Rattanapan et al., 2009). The removal of sulfide from both liquid and gaseous phases 

has been implemented by various physico-chemical methods, including scrubbing, ad-

sorption, absorption and chemical precipitation (Muñoz et al., 2015; Nielsen et al., 2005). 

However, these technologies have high operating costs as well as negative environmen-

tal impacts due to the generation of chemical wastes (Abatzoglou and Boivin, 2009; 

Muñoz et al., 2015).  

Biological processes for sulfide removal are considered as cleaner and less expensive 

alternatives compared to conventional technologies using chemicals. Aerobic and anoxic 

bioreactors have been operated for sulfide removal from both liquid and gas streams 

(Almenglo et al., 2016b; Bayrakdar et al., 2016; Can-Dogan et al., 2010; Mahmood et al., 

2007). Anoxic bioreactors are more practically applicable than the aerobic ones in terms 

of ease of use and operational costs (Almenglo et al., 2016b; Fernández et al., 2014). 

Particularly, the use of aerobic bioreactors for biogas cleaning can cause various prob-

lems, including the dilution of biogas by oxygen. For safety reasons, it is also necessary 

to control the oxygen to methane ratio in order to avoid reaching explosive limits (Fer-

nández et al., 2013).  
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Different bioreactor configurations have been operated under anoxic conditions for sul-

fide removal from liquid waste streams. Dolejs et al. (2015) studied sulfide removal using 

autotrophic denitrification in a continuous stirred tank reactor (CSTR) and reported that 

the sulfide removal efficiency decreased from 96% to 55% and the denitrification was 

completely inhibited when the CSTR was operated at a N/S ratio lower than 0.42. In 

another study using an activated sludge augmented with T. denitrificans, the S2O3
2- re-

moval efficiency became very unstable when the N/S ratio was decreased from 1.0 to 

0.9 (Manconi et al., 2007). CSTRs are, however, susceptible to biomass wash-out and 

therefore require a high solid retention time (SRT) resulting in larger reactor volumes 

than biofilm systems, which can efficiently retain biomass (Di Capua et al., 2015; Papirio 

et al., 2013). Biofilm systems, e.g. fluidized bed reactors (FBR), have been widely used 

for sulfide removal under aerobic and micro-aerobic conditions (Annachhatre and Suk-

trakoolvait, 2001; Krayzelova et al., 2015; Krishnakumar et al., 2005; Midha et al., 2012). 

Using oxygen as an electron acceptor can cause the formation of polysulfides as well as 

mass transfer limitations of oxygen and sulfide to the immobilized biomass (Krishna-

kumar et al., 2005). Recently, FBRs have been extensively studied for NO3
- removal 

using RSCs as electron donors at different temperatures and pH conditions (Di Capua 

et al., 2017c, 2017a; Zou et al., 2016). 

Sulfide-oxidizing, nitrate-reducing (SO-NR) bacteria such as Thiobacillus denitrificans 

and Sulfurimonas denitrificans can oxidize sulfide and other RSCs such as elemental 

sulfur (S0) and thiosulfate (S2O3
2-) by using NO3

- as electron acceptor in the absence of 

oxygen (Di Capua et al., 2016a; Manconi et al., 2007). The stoichiometry of anoxic HS- 

and S2O3
2- oxidation by SO-NR bacteria is represented by the following reactions (Mora 

et al., 2014a, 2014c):  

HS- + 1.23NO3
- + 0.573H+ + 0.027CO2 + 0.438HCO3

- + 0.093NH4
+ → SO4

2- + 0.614N2 + 

0.866H2O + 0.093C5H7O2N        (3.1) 

S2O3
2- + 1.16NO3

- + 0.124H2O + 0.035CO2 + 0.519HCO3
- + 0.11NH4

+ → 2SO4
2- + 0.578N2 

+ 0.435H+ + 0.110C5H7O2N        (3.2) 

The application of artificial neural networks (ANNs) for modeling non-linear bioprocesses 

is effective in evaluating the performance of biological waste gas treatment systems, 

particularly biofilters and biotrickling filters (Nair et al., 2016; Rene et al., 2011). Recently, 

ANNs have been used to predict FBR performance in various applications, i.e. treatment 

of sulfate-rich wastewaters and heap bioleaching solutions (Janyasuthiwong et al., 2016; 

Midha et al., 2013; Ozkaya et al., 2008; Reyes-Alvarado et al., 2017). The ANN model 

was for example successfully applied to predict the removal efficiencies of SO4
2- and 

COD, and S2- production in a biological SO4
2- reduction process with a network topology 
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of 5-11-3 (Reyes-Alvarado et al., 2017). The authors also carried out a sensitivity analy-

sis in order to ascertain the relationship between the input parameters and their effects 

on the outputs, which showed that the influent pH mainly affected the sulfidogenic pro-

cess.  

Previous studies have shown that the nitrogen to sulfur (N/S) ratio is one of the key 

operational factors for anoxic sulfide-oxidizing bioreactors, since it affects the metabo-

lism of the sulfide-oxidizing bacteria and the ratio of the end-products formed during sul-

fide oxidation, i.e. S0 and sulfate (SO4
2-) (Bayrakdar et al., 2016; Dolejs et al., 2015; 

Moraes et al., 2012). These studies, however, did not test the long-term performance 

and microbial community evolution under different N/S ratios, neither used ANN model-

ing to evaluate the performance and relationship of the process variables of anoxic H2S 

or S2O3
2- oxidation. In this study, S2O3

2- was used as the model sulfur compound for H2S 

due to be the first intermediate formed by SO-NR bacteria during H2S oxidation and its 

high solubility which is easier to handle in laboratory-scale experiments compared to H2S 

(Luo et al., 2013). 

The objective of this study was to evaluate the long-term performance of an FBR for 

S2O3
2- oxidation using NO3

- as the electron acceptor at different N/S ratios (0.5, 0.3 and 

0.1) using the following tests: (1) the resilience of the FBR to long-term NO3
- limiting 

conditions by operating at an extreme low N/S ratio (N/S ratio 0.1) for over 40 days; (2) 

batch activity tests to evaluate the kinetic parameters of the immobilized biomass under 

steady-state at each studied N/S ratio; (3) polymerase chain reaction-denaturing gradi-

ent gel electrophoresis (PCR-DGGE) to study the evolution of the microbial community 

in the FBR biofilms and (4) ANN modeling to predict the S2O3
2- and NO3

- removal effi-

ciencies and SO4
2- concentration in the FBR for S2O3

2- oxidation, while the modelled data 

was subjected to a sensitivity analysis to determine the key parameters affecting the 

S2O3
2- and NO3

- removal efficiencies.  

3.2 Materials and methods 

3.2.1 Medium preparation 

The mineral medium used in this study was composed of Na2S2O3 (470 g L-1), KNO3, 

(72-280 g L-1), NaHCO3 (1 g L-1), KH2PO4 (2 g L-1), NH4Cl (1 g L-1), MgSO4·7H2O (0.8 g 

L-1), FeSO4·7H2O (2 g L-1) and 2 mL L-1 of a trace element solution as described by Zou 

et al. (2016). The influent pH was adjusted to 7.0 using 37% HCl. All chemicals used in 

this study were of laboratory grade.  
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3.2.2 Experimental set-up and operating conditions 

The lab-scale FBR (Figure 3.1) had an empty bed volume of 0.58 L and a height of 40 

cm, similar to the configuration described by Zou et al. (2016). The reactor was operated 

at a hydraulic retention time (HRT) of 5 h and at room temperature (20 ± 2 °C). Filtra-

sorb®200 granular activated carbon (GAC) (Calgon Carbon, USA) was used as the car-

rier material. The expansion of the reactor bed was maintained at 20-25% of the bed 

height. The FBR was previously operated for 705 days to study thiosulfate-driven deni-

trification at different nitrogen loading rates (NLR) (Zou et al., 2016), pH and temperature 

(Di Capua et al., 2017c, 2017a). The influent tank was connected to a Tedlar gasbag 

filled with N2 to prevent oxygen diffusion into the tank and to maintain the dissolved oxy-

gen (DO) concentration as low as possible.  

 

Figure 3.1. Schematic of a fluidized bed reactor used in this study. 

In this study, S2O3
2- and NO3

- removal efficiencies were evaluated under three different 

N/S molar ratios (0.5, 0.3 and 0.1) for 306 days (Table 3.1). The FBR operation was 

divided into four experimental periods in which the influent S2O3
2- concentration was 

maintained at 200 mg S2O3
2--S L-1, whereas the influent NO3

- concentration was de-

creased stepwise from 40 mg NO3
--N L-1 (N/S 0.5, period I) to 20 (N/S 0.3, period II) and 

10 mg NO3
--N L-1 (N/S 0.1, period III), respectively. During period IV, the N/S ratio was 

increased to 0.5 in order to evaluate the recovery of the S2O3
2- oxidation efficiency after 

a 42-day starvation period at a N/S ratio of 0.1. Steady-state conditions in each period 

of FBR operation were assumed when the relative standard deviation (%RSD) of the 
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S2O3
2- removal efficiency was <10%. The loading rate (LR), removal efficiency (RE) and 

volumetric removal rate (VRR) of S2O3
2- and NO3

- in the FBR were estimated using the 

following equations: 

LR (mg L-1 d-1) =
𝐶𝑖𝑛 × 𝑄 

𝑉
        (3.3) 

RE (%) =  
𝐶𝑖𝑛−𝐶𝑜𝑢𝑡

𝐶𝑜𝑢𝑡
 × 100         (3.4) 

VRR (g L-1 d-1) =  𝐿𝑅 ×  
𝑅𝐸 (%)

100
       (3.5) 

where 𝐶𝑖𝑛  and 𝐶𝑜𝑢𝑡 are influent and effluent concentrations of NO3
- (mg NO3

--N L-1) or 

S2O3
2- (mg S2O3

2--S L-1), respectively. 

Table 3.1. Operational conditions and performance of the FBR during the four operation pe-
riods 

Parameters Period I Period II Period III Period IV 

Steady-state duration (days) 101-115 188-207 235-249 292-306 

Effluent pH 6.84 ± 0.16 7.11 ± 0.05 7.30 ± 0.05 7.18 ± 0.05 

Influent NO3
--N (mg L-1) 38.7 ± 10 27.9 ± 1.3 10.7 ± 0.4 39.8 ± 0.8 

NO3
--N loading (mg L-1 d-1) 173 ± 10 125 ± 6 48 ± 2 178 ± 7 

NO3
--N removal efficiency (%) 100 100 100 100 

Influent S2O3
2--S (mg L-1) 184 ± 19 188 ± 11 193 ± 7 183 ± 7 

S2O3
2--S loading (mg L-1 d-1) 822 ± 84 836 ± 54 862 ± 30 817 ± 29 

S2O3
2--S removal rate (mg L-1 d-1) 814 ± 80 642 ± 55 187 ± 94 660 ± 52 

S2O3
2--S removal efficiency (%) 99.1 ± 0.9 76.3 ± 2.7 26.0 ± 2.0 80.8 ± 4.1 

SO4
2--S concentration in the efflu-

ent (mg L-1) 

245 ± 19 192 ± 10 74 ± 22 225 ± 20 

Influent N/S ratio 0.49 ± 0.03 0.34 ± 0.03 0.13 ± 0.00 0.50 ± 0.02 

Consumed N/S ratio 0.49 ± 0.03 0.45 ± 0.05 0.49 ± 0.06 0.62 ± 0.06 

3.2.3 Batch activity tests 

Batch activity tests were performed in duplicate in order to measure the specific uptake 

rate of S2O3
2- and to determine the affinity of the biomass to S2O3

2-. For each test, 10-

mL of biofilm-coated GAC was collected from the FBR during steady-state conditions of 

experimental periods II, III and IV (on days 196, 244 and 305) and used in three separate 

batch activity tests (tests A, B and C). A sample of 400 (± 50) mg VSS L-1 biomass was 

added to 120 mL serum bottles with 40 mL headspace. The medium used in these batch 

assays was the same as in the FBR experiment. The batch bottles were placed on a HS 

501 horizontal shaker (IKA, USA) with 220 rpm mixing and maintained at 20 (± 2) °C. 
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The initial concentrations of S2O3
2- and NO3

- used in the batch activity tests are reported 

in Table 3.2. S2O3
2- oxidation coupled to NO3

- reduction was described using the Haldane 

model (Eq. 3.6). Besides a Haldane term describing the potential substrate inhibition by 

S2O3
2-, a Michaelis-Menten term was also considered to take into account NO3

- limitation 

(Eq. 3.6).  

𝑟𝑆 =  
𝑟𝑚𝑎𝑥𝑆

 × 𝑆

𝐾𝑠 + 𝑆+ 
𝑆2

𝐾𝐼

×
 𝑁

𝐾𝑛 + 𝑁
         (3.6) 

where S, Ks and KI are the concentration, half-saturation constant and inhibition constant 

for S2O3
2- (mg S L-1), respectively, 𝑁 and 𝐾𝑛 are the concentration and half-saturation 

constant for NO3
- (mg N L-1), respectively, and 𝑟𝑚𝑎𝑥𝑆

 is the maximum specific uptake rate 

for S2O3
2- (mg S g VSS-1 h-1).  

Table 3.2. Experimental conditions of batch activity tests and the obtained Haldane kinetic 
coefficients of the nitrate reducing, sulfide oxidizing bacteria taken from the FBR at different 
N/S ratios 

  Initial concentrations Kinetic coefficients 

Test N/S ra-

tio 

S2O3
2-  

(mg S2O3
2--S 

L-1) 

NO3
-  

(mg NO3
--N 

L-1) 

rmax 

(mg S2O3
2--S 

g-1 VSS h-1) 

KS 

(mg S2O3
2--

S L-1) 

KI 

(mg S2O3
2--

S L-1) 

Kn 

(mg NO3
--

N L-1) 

A 0.3 50, 90 180, 

200, 300, 

550 

7, 14, 30, 

45, 65 

145.8 21.8 466.1 4.53 

B 0.1 50, 90, 200, 

300, 550 

2, 4, 8, 12, 

25 

331.3 171.9 247.7 0.25 

C 0.5 50, 90, 200, 

300, 550 

9, 20, 40, 

70, 160 

127.0 45.1 798.6 6.32 

3.2.4 Residence time distribution (RTD) test  

The RTD test was conducted at the end of the FBR experiments in order to determine 

the hydrodynamic behavior of the FBR. A tracer, 10-mL of a 1 M KCl solution, was pulse 

injected into the influent stream. During the test, the conductivity of the effluent was 

measured using a Multiparameter inoLab Multi Level 1 meter equipped with a KLE 325 

probe (WTW, Germany). In order to validate the RTD test, two flow rates of 360 and 108 

mL h-1 were applied. The hydrodynamic behavior of the FBR was determined using Eqs. 

3.7-3.9. The Morrill Dispersion Index (MDI) (Eq. 3.10) was used to evaluate the flow 

characteristics in the FBR. 

RTD function (𝐸(𝑡)) =  
𝐶𝑖

∑ 𝐶𝑖∆𝑡𝑖
        (3.7) 
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Mean residence time (𝑡𝑚) =  
∑ 𝑡𝑖𝐶𝑖∆𝑡𝑖

∑ 𝐶𝑖∆𝑡𝑖
        (3.8) 

Experimental amount of outlet tracer = ∑ 𝐶𝑖∆𝑡𝑖      (3.9) 

MDI =  
𝑡90

𝑡10
          (3.10) 

where 𝐶𝑖 is KCl concentration in the effluent (mg L-1), 𝑡𝑖  is the measuring time (h), 𝑡90 

and 𝑡10 are times when 90% and 10% of the tracer passes through the FBR, respectively. 

3.2.5 Analytical techniques 

The liquid samples collected from the FBR and batch bottles were filtered through 0.45 

µm Chromafil Xtra PET-202125 membrane syringe filters (Mechery-Nagel, Germany) 

prior to the measurement of nitrite (NO2
-), NO3

-, S2O3
2- and SO4

2- concentrations by ion 

chromatography (IC) as described by Di Capua et al. (2017c). The total dissolved sulfide 

in the FBR effluent was measured using the Cord-Ruwisch method (Cord-Ruwisch, 

1985). The pH of the FBR influent and effluent was measured using a pH 3110 portable 

meter fitted with a SenTix 21 electrode (WTW, Germany). The DO concentration was 

measured directly in the FBR using a HQ40d portable multimeter equipped with an In-

tellicalTM LDO101 probe (HACH, USA). Alkalinity and volatile suspended solid (VSS) 

concentrations of the FBR biofilm were measured according to the procedures described 

in Standard Methods (APHA/AWWA/WEF, 1999). To prepare the biomass for the VSS 

measurement, two samples of 1 mL GAC were mixed in a 15 mL Falcon tube with de-

ionized (DI) water to detach the biofilm from GAC by manual shaking. Subsequently, the 

liquid portion containing the detached biomass was used to measure the VSS concen-

tration. This procedure was repeated until all biofilm was detached from the GAC based 

on visual observation. 

The concentration of S0 in the biofilm-coated GAC was estimated by modified cyanolysis 

(Kelly and Wood, 2000). Deionized water containing the cells detached from 1 mL of 

GAC by manual shaking was mixed with 10 mL of acetone. 200 µL of the obtained solu-

tion was mixed with 100 µL of 100 mM KCN and incubated at room temperature (20 ± 

2 °C) for 10 min. After incubation, 500 µL of PO4
3- buffer solution (containing 50 ml of 0.2 

M NaH2PO4 and 39 ml of 0.2 M NaOH) and 100 µL of 1.5 M Fe(NO3)3 in 4 M HClO4 were 

added to the mixture. After centrifugation for 1 min at 14,000 rpm, the optical density 

(OD) of the supernatant was measured using a UV-1601 spectrophotometer (Shimadzu, 

Japan) at a wavelength of 460 nm.  
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3.2.6 Microbial community analysis 

The microbial community of the FBR biofilm was analyzed by polymerase chain reaction 

denaturing gradient gel electrophoresis (PCR-DGGE) followed by sequencing. Two sam-

ples of 1 mL of biofilm-coated GAC were collected from the FBR during steady-state 

operations of each experimental period (days 114, 196, 242 and 306), and sonicated for 

2 min in sterile de-ionized water to detach all the bacterial cells from the carrier material. 

The solution containing the microorganisms was filtered through a Cyclopore track 

etched 0.2 µm membrane (Whatman, USA), and the biomass samples collected on the 

filters were stored at -20 ºC for further analysis.  

DNA was extracted from the defrosted filters using a PowerSoil® DNA isolation kit (MO 

BIO Laboratories, Inc., USA) according to the manufacturer’s instructions. A primer pair 

Bac357F-GC and Un907R was used for amplifying the partial bacterial 16S rRNA genes 

by using a T3000 thermalcycler (Biometra, Germany) as described by Kolehmainen et 

al. (2007). DGGE was performed with a INGENY phorU2 × 2 - system (Ingeny Interna-

tional BV, GV Goes, The Netherlands) as reported by Kolehmainen et al. (2007). The 

amplified samples were sequenced by Macrogen (South Korea). The obtained se-

quences were analyzed using the Bioedit software (version 7.2.5, Ibis Biosciences, USA) 

and compared with the sequences available at the National Center for Biotechnology 

Information (NCBI) database (http://blast.ncbi.nlm.nih.gov). 

3.2.7 ANN model development 

The ANN modeling was performed using the Neural Net Fitting application in the Neural 

Network Toolbox 11.0 of MATLAB® R2017b (MathWorks Inc., USA). The multilayer per-

ceptron described in Figure 3.2 was a feed-forward network in which the neurons in the 

input layer received the normalized input signals and passed those signals to the hidden 

layer after multiplying them with the respective connection weights. A tan-sigmoidal 

transfer function was used in the hidden layer, while a linear (PURELIN) transfer function 

was used in the output layer, respectively.  
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Figure 3.2. Architecture of a multilayer perceptron used for predicting the fluidized bed reac-
tor performance by artificial neural network (input-hidden-output = 4-4-3) 

The inputs to the ANN model consisted of pH, DO, influent concentrations of S2O3
2- 

(S2O3
2-

in) and NO3
- (NO3

-
in), respectively, while the ANN outputs were S2O3

2- (S2O3
2--RE) 

and NO3
- (NO3

--RE) removal efficiencies and SO4
2- production (SO4

2-
ef), respectively. Ta-

ble 3.3 shows the basic statistics of the training, validation and test data used to develop 

the ANN model. In order to suit the transfer function and avoid outliers, the raw input and 

output data were normalized to the range of 0-1, according to Eq. (3.11). The experi-

mental data (days 45-306) was randomly divided into training (70%), validation (10%) 

and testing (20%) sample sets.  

𝑋̂ =
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
          (3.11) 

where 𝑋̂ is the normalized value, 𝑋𝑚𝑖𝑛 and 𝑋𝑚𝑎𝑥 are the minimum and maximum values 

of 𝑋, respectively. 
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Table 3.3. Basic statistics of the training, validation and test data used to develop the artificial 
neural network model 

 Mean Minimum Maximum 

Dissolved oxygen in the FBR 0.25 0.16 0.40 

pH 7.13 6.60 7.57 

Influent S2O3
2- concentration, S2O3

2-
in (mg L-1) 333.52 267.50 374.94 

Influent NO3
- concentration, NO3

-
in (mg L-1) 138.02 44.88 194.30 

S2O3
2- removal efficiency, S2O3

2--RE (%) 77.35 22.25 100.00 

NO3
- removal efficiency, NO3

--RE (%) 99.99 99.00 100.00 

Effluent SO4
2- concentration, SO4

2-
ef (mg L-1) 591.44 186.48 839.48 

The ANN was trained using the Levenberg-Marquardt back-propagation algorithm 

(trainlm function), while the mean squared error (MSE) and regression analysis were 

used for estimating the error between the model fitted and the experimental data. The 

strength of the relationship between the output and input variables was evaluated by 

sensitivity analysis, which was performed using the shareware version of the multivaria-

ble statistical modelling software, NNMODEL (PA, USA). 

3.2.8 Data analysis 

The statistical analysis of the data was performed using the Minitab 16 software. The 

one-way analysis of variance (ANOVA) was conducted in order to compare the pH, DO, 

S2O3
2- and NO3

- concentrations and the respective removal efficiencies and SO4
2- pro-

duction at the steady-state of each operational period. The significant level was set at 

95% (P ≤ 0.05). To determine the kinetic parameters, the Haldane equation (Eq. 3.6) 

was applied using the non-linear programming solver (fminsearch) in MATLAB® R2017b 

(MathWorks Inc., USA) in order to optimize the experimental data using 𝑟𝑚𝑎𝑥𝑆
, Ks, KI and 

𝐾𝑛 as the optimization variables. 

3.3 Results 

3.3.1 FBR performance 

Figure 3.3 shows the profiles of effluent pH, NO3
-, NO2

-, S2O3
2-, SO4

2- and DO concen-

tration during the 306 days of operation. The influent pH was maintained at 6.9 (± 0.1). 

The consumed N/S ratio slightly fluctuated but remained close to 0.5, while the alkalinity 

consumption varied in the range of 25 to 145 mg HCO3
- L-1 during the entire FBR oper-

ation. NO2
- was never detected in the effluent during the study. During the entire experi-

ment, the VSS concentration of the FBR biofilm was relatively constant, being 21.7 (± 
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4.9) g VSS L-1 of GAC, based on measurements conducted on days 0, 60, 114, 196, 242 

and 306. S0 was visually observed on the GAC carrier as white particles and its concen-

tration showed an increasing trend as the feed N/S ratios were deceased. The measured 

S0 concentration of the biofilm-coated GAC was approximately 9, 13 and 26 mg L-1 on 

days 200, 240 and 300, respectively. 

During period I (N/S ratio of 0.5), the loading rates of S2O3
2- and NO3

- were 820 (± 84) 

mg S2O3
2--S L-1 d-1 and 173 (± 10) mg NO3

--N L-1 d-1, respectively. During the first 38 days 

of operation, the concentrations of S2O3
2-, SO4

2- and DO in the FBR effluent were not 

stable (Figure 3.3). Therefore, the DO concentration in the reactor was decreased from 

0.43 (± 0.07) (days 0-38) to 0.25 (± 0.05) (days 39-306) mg L-1 by connecting a N2 gasbag 

to the influent tank. During steady-state operation of period I (days 101-115), S2O3
2- and 

NO3
- removal efficiencies were 99% and 100%, respectively, with SO4

2- as the main end-

product. The volumetric removal rate of S2O3
2- was 810 (± 80) g S2O3

2--S L-1 d-1 and the 

effluent SO4
2- concentration was 740 (± 60) mg L-1, 35% higher than the theoretical value 

in period I (550 mg L-1) calculated according to Eq. (3.2). The effluent pH during period I 

was 6.8 (± 0.2). 

During periods II (N/S ratio 0.3) and III (N/S ratio 0.1), the feed NO3
- loading rate was 

decreased from 175 (period I) to 125 and 50 g NO3
--N L-1 d-1, respectively (Table 3.1). 

NO3
- was completely consumed in both periods II and III, whereas the S2O3

2- removal 

efficiency decreased to 76% in period II and further to 26% in period III (under steady-

state operation), resulting in effluent SO4
2- concentrations of 580 (± 30) and 200 (± 15) 

mg L-1, respectively. The effluent pH gradually increased from 6.8 (± 0.2) (period I) to  7.1 

(± 0.1) and 7.3 (± 0.1) in periods II and III, respectively. During period III (N/S ratio 0.1), 

biofilm detachment from the GAC was also visually observed. 
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Figure 3.3. Time course profiles of dissolved oxygen, pH, S2O3

2- removal efficiency (RE) in 
the fluidized bed reactor and influent and effluent concentrations of NO3

-, NO2
- and SO4

2-. 
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During period IV, the N/S ratio was increased to 0.5 as in period I. As a result, the S2O3
2- 

removal efficiency increased from 26% in period III to 80% in period IV in 3 days. Alt-

hough the S2O3
2- removal efficiency in period IV was 20% lower than in period I, the SO4

2- 

concentration in the effluent (680 ± 60 mg L-1) was only 8% lower than in period I. During 

period IV, the effluent pH was 7.2 (± 0.1), higher than the one measured at the same N/S 

ratio in period I.  

3.3.2 Batch activity tests 

Figure 3.4 shows the maximum specific uptake rate, half-saturation and inhibition con-

stants for S2O3
2- (rmax, Ks and KI, respectively) estimated from the batch activity tests A, 

B and C (Table 3.2). The highest half-saturation constant, Kn, for NO3
- reduction was 

6.32 mg NO3
--N L-1 and was obtained with the SO-NR bacteria cultivated during period 

IV (N/S ratio of 0.5). The biomass taken during period III (N/S ratio 0.1) showed the 

lowest KI for S2O3
2- oxidation, while it was the highest with the biomass taken at a N/S 

ratio of 0.5 (period IV). The S2O3
2- removal efficiencies obtained in tests A, B and C were 

84.5 (± 12.8)%, 26.3 (± 3.5)% and 91.6 (± 8.4)%, respectively (data not shown). NO2
- 

was found as an intermediate of the process, but no NO2
- was detected at the end of the 

batch activity tests (data not shown). 

3.3.3 Hydrodynamic flow characteristics of the FBR 

The RTD curves of the FBR at the flow rates of 360 and 108 mL h-1 are shown in Figure 

3.5. The mass recovery of KCl used as a tracer was 90%. Most of the tracer was washed 

out within 1 and 2 h at flow rates of 360 and 108 mL h -1, respectively, while the rest of 

the tracer was slowly removed (Figure 3.5). The results obtained from the RTD curves 

indicated that the effective mean residence time in the FBR at flow rates of 360 and 108 

mL h-1 were 2.1 and 6.7 h, respectively. The computed MDI values (MDI = 9 and 11) for 

the two flow rates described the hydraulic regime in the FBR as semi-complete mixing. 

In the case of an effective plug flow, the MDI has a value of 2 or less, whereas the value 

for a completely mixed system is 22 (Metcalf & Eddy Inc. et al., 2014). 
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Figure 3.4. Haldane plots of thiosulfate uptake rate from batch activity tests at different N/S 
ratios: (a) 0.3, (b) 0.1 and (c) 0.5. Dots and lines represent experimental and model fitted 
data, respectively. The error bars indicated the standard error between the experimental and 
model fitted data. 
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Figure 3.5. The residence time distribution (RTD) curves for the FBR at flow rates of (a) 360 
and (b) 108 mL h-1. 

3.3.4 Microbial community profiling in the FBR 

The microbial community profiles of the FBR biofilm during periods I, II, III and IV showed 

that operation at different N/S ratios resulted in changes in the microbial community com-

position (Figure 3.6). Based on the affiliations of the nucleotide sequences obtained from 

the BLAST analysis, 8 of the 15 sequenced bands were identified as known facultative 

autotrophic sulfide-oxidizing bacteria (Table 3.4, bands 1, 6-10, 12 and 13). The closest 

relatives of the known bacteria were T. denitrificans (band 8, 99% similarity) and T. thi-

oparus (bands 6 and 7, 92-99.8% similarity). Bands 1 and 9 were also detected as a 

Thiobacillus genus; however, the sequence results were shown as uncultured repre-

sentative of the genus with no species-level information. During period IV (N/S ratio 0.5), 

the band representing T. denitrificans (band 8) faded away and was replaced by bands 

identified as T. thioparus (bands 6 and 7). The band associated to Thiomonas sp. (band 

13) and uncultured Sulfuritalea (band 12) showed a higher intensity at N/S ratios of 0.3 

and 0.1 than at a N/S ratio of 0.5. The chemo-organotrophic Flavobacteriaceae (bands 

2 and 3), Chryseobacterium sp. (band 4) and Simplicispira sp. (band 10) were detected 

at all N/S ratios tested. Additionally, Desulfovibrio sp. (band 14), a SO4
2- reducing bacte-

rium, was detected in the FBR biofilm throughout the entire experiment.  
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Figure 3.6. Microbial community profiling of the fluidized bed reactor biofilm at different N/S 
ratios. Two duplicate samples were analyzed from each operational period. The affiliations 
of the bands are given in Table 3.4. 
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Table 3.4. Identification of the microorganisms in the FBR biofilm based on the denaturing 
gradient gel electrophoresis band sequences (16S rDNA). 

Band 

label  

Affiliation (sequence ID) Matching 

length 

Similarity 

(%) 

Bacterial class 

1 Uncultured Thiobacilus sp. (FJ933304.1) 425 92.0 β-Proteobacteria 

2, 3 Uncultured Flavobacteriaceae bacterium 

(EU642061.1) 

433-434 91.3-99.3 Flavobacteriales 

4 Uncultured Chryseobacterium sp. 

(JQ724349.1) 

437 99.3 Flavobacteriales 

5 Uncultured bacterium partial 16S rRNA 

gene, isolate EFW618 (LN889996.1) 

463 96.1  

6, 7 Thiobacillus thioparus (HM535225.1) 456-474 99.4-99.8 β-Proteobacteria 

8 Thiobacillus denitrificans (NR_025358.1) 431 99.1 β-Proteobacteria 

9 Uncultured Thiobacilus sp. 

(KM200026.1) 

451-453 99.1-99.8 β-Proteobacteria 

10 Simplicispira sp. Iso11-01 

gene (AB795522.1) 

437 98.6 β-Proteobacteria 

11 Denitrifying bacterium (Y09967.1) 407 93.9 β-Proteobacteria 

12 Uncultured sulfuritalea (JX493272.1) 488 97.6 β-Proteobacteria 

13 Thiomonas sp. (LN864654.1) 467 98.9 β-Proteobacteria 

14 Desulfovibrio sp. (JX828422.1) 429 99.3 δ-Proteobacteria 

15 Uncultured bacterium clone 

QKAB4ZG071 (KJ707249.1) 

404 94.8  

3.3.5 ANN modeling 

Figure 3.7 shows the experimentally verified and ANN predicted profiles of the S2O3
2- 

and NO3
- removal efficiencies and SO4

2- concentration. The network topology was ob-

tained at the following settings of the internal network parameters: learning rate (1.0) and 

epoch size (10). The performance of the Levenberg-Marquardt back-propagation algo-

rithm was achieved with a MSE of 0.006523, while the determination coefficient (R2) of 

the training, validation, test and overall predicted data were 0.90, 0.95, 0.88 and 0.90, 

respectively. At the best network topology for the FBR as 4-4-3, the connection weights 

and the bias terms were obtained for the interconnections between the neurons in differ-

ent layers of the multilayer perceptron (Table 3.5). 

The sensitivity analysis of the ANN model was represented in terms of the absolute av-

erage sensitivity (AAS) and the average sensitivity (AS), as shown in Table 3.6. Table 

3.6 shows that the removal efficiency of S2O3
2- was affected by the effluent pH and DO 

concentrations with AAS values of 0.53 and 0.24, respectively. The removal efficiency of 

NO3
- was affected by the influent S2O3

2- and NO3
- concentrations with AAS values of 0.54 
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and 0.36, respectively. Besides, the SO4
2- production depended on the S2O3

2- and DO 

concentrations. 

 

Figure 3.7. ANN model fitted data for (a) NO3
- and (b) S2O3

2- removal efficiency and (c) SO4
2- 

concentration in the effluent. Dots and lines represent experimental and predicted model 
data, respectively. 
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Table 3.5. Connection weights between the input → hidden layers (W ih), and the hidden → 
output layers (Who) of the artificial neural network model. 

Model in-

put 

Input → hidden layers (W ih) Hidden → output layers (Who) 

HID-1 HID-2 HID-3 HID-4   NO3
--RE S2O3

2--

RE 

SO4
2-

ef 

DO -1.3883 1.9379 -0.0189 -

0.35864 

HID-1 0.39572 0.42553 -

0.12227 

pH -

0.75667 

-

0.05606 

0.48028 0.60495 HID-2 -0.34833 0.74721 0.52792 

S2O3
2-

in -

0.31489 

-1.2136 -

0.24311 

-

0.79393 

HID-3 0.00334 0.82527 0.76574 

NO3
-
in -

0.50078 

-0.6068 2.2425 1.3638 HID-4 -0.63191 0.16955 -

0.24917 

Bias 

term 

2.3203 -2.2994 0.69113 -2.5176 Bias 

term 

-0.3693 0.4252 0.2072 

 

Table 3.6. Sensitivity analysis of artificial neural network model inputs. 

Model inputs NO3
--RE (%) S2O3

2--RE (%) SO4
2-

ef (mg L-1) 

AAS AS AAS AS AAS AS 

DO (mg L-1) 0.0758 +0.0758 0.2377 -0.2377 0.3606 -0.3606 

pH 0.0290 +0.0290 0.5311 -0.5311 0.1167 +0.1167 

S2O3
2-

in (mg L-1) 0.5369 +0.5369 0.1456 -0.1456 0.359 +0.3590 

NO3
-
in (mg L-1) 0.3583 -0.3583 0.0855 -0.0855 0.1637 -0.1637 

Note: RE = removal efficiency; AAS and AS = absolute average sensitivity and average sen-
sitivity, respectively 

3.4 Discussion 

3.4.1 Effect of NO3
- limitation on FBR performance 

This study showed that NO3
- dosing can be used to remove sulfur compounds, i.e. S2O3

2- 

as model for H2S, from waste or scrubbing wasters. The SO-NR bacteria in the FBR 

showed high stability to S2O3
2- oxidation at all N/S ratios tested, evidenced by the com-

parison between the fed and consumed N/S ratios during the entire experiment (Table 

3.1). The consumed N/S ratio was close to 0.5 during periods I, II and III, while it slightly 

increased close to 0.6 during period IV (Table 3.1). During the latter period, the S2O3
2- 

removal efficiency of the FBR decreased because NO3
- was completely depleted over 

time (Figure 3.3).  
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The FBR showed high robustness and resiliency since the S2O3
2- oxidation efficiency 

rapidly recovered after operating under extreme nitrate-limiting conditions (period III), i.e. 

N/S ratio 0.1 compared to the stoichiometric requirement of N/S ratio 0.6 as shown as 

Eq. (3.2) (Figure 3.3). Starvation periods have often been applied to test the robustness 

and resilience of bioreactors. Chen et al. (2016) applied a H2S starvation period of 15 

days in a two-layer biotrickling filter (BTF), observing an increase in H2S removal effi-

ciency from 65% to 99% during the 4 days starvation period. Recently, Thiobacillus-

dominated FBR biofilms have shown extremely high sulfur oxidation and NO3
- reduction 

rates even under extreme operational conditions, such as low temperature (<5°C) (Di 

Capua et al., 2017c), low pH of 5.0 (Di Capua et al., 2017a) and high heavy metal con-

centrations, i.e. 20-100 mg Ni L-1 (Di Capua et al., 2017b) or 86.6 mg Co L-1 (Zou et al., 

2014). The high biomass concentrations of the FBR biofilm (Table 3.7) likely played an 

important role in providing resistance to substrate fluctuations during this study. However, 

the S2O3
2- removal efficiency during period IV (N/S ratio 0.1) was about 20% lower than 

in period I at the same N/S ratio. The lower S2O3
2- removal efficiencies observed during 

period IV could be attributed to the changes in the microbial community of the FBR bio-

film, particularly T. denitrificans was absent (below detection limit of DGGE) in period IV 

(Figure 3.6, Table 3.4).  

In this study, SO4
2- was the main product of S2O3

2- oxidation (Figure 3.3). The reduction 

of 1 g of NO3
--N under S2O3

2- oxidation produced 19.4 (± 1.8) g of SO4
2- in the FBR 

effluent, which is 31% higher than the theoretical value of 11.8 g of SO4
2- calculated 

according to Eq. (3.2). The excess of SO4
2- in the FBR effluent could be attributed to two 

mechanisms. The facultative anaerobic sulfur oxidizing bacteria, i.e. Thiobacillus sp. and 

Thiomonas sp., populating the FBR biofilm can also use oxygen as electron acceptor to 

oxidize the S0 accumulated in the bioreactor during previous operation (Di Capua et al., 

2017a; Zou et al., 2016). Alternatively, the unexpectedly high SO4
2- concentrations in the 

effluent could be due to sulfur disproportionation under anoxic conditions, which occurs 

as described by Eq. (3.12) (Finster et al., 1998):  

4S0 + 4H2O → 3H2S + SO4
2- + 2H+       (3.12) 

During this study, S0 was also measured and visually observed as white particles at-

tached on the GAC carrier material of the FBR. Previous studies have reported the ac-

cumulation of S0 during S2- and S2O3
2- oxidation both in bioreactors (Dolejs et al., 2015; 

Moraes et al., 2012) and batch bioassays (Beristain-Cardoso et al., 2006) as a result of 

electron donor overloading or NO3
- starvation (Mora et al., 2014a). Besides, Sahinkaya 

et al. (2011) reported that low NO3
- loading rates could promote biological sulfur dispro-

portionation in anoxic reactor columns packed with S0.  
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Table 3.7. Comparative analysis of various bioreactors performing sulfide or thiosulfate oxidation using autotrophic denitrification. 

Note: GSAD = granular sludge autotrophic denitrification; N.A. = data not available; CSTR = continuous stirred tank reactor; FBR = fluidized bed reactor; 
TDS = total dissolved sulfide; S = sulfur; N = nitrogen 

 

Type of 

reactor 

Reactor 

volume, 

L 

Microorganisms Biomass 

concentra-

tion 

 

Substrate Feed S-compounds S removal 

rate 

N loading rate  

(mg NO3
--N L-

1 d-1) 

Operational 

N/S ratios 

(mol mol-1) 

HRT 

(h) 

References 

GSAD 30 Mixed culture of auto-

trophic & heterotrophic 

denitrifying bacteria 

7 g VSS L-1 Dissolved 

sulfide 

(TDS) 

100-150 mg TDS L-1 0.18 - 0.63 

(g S L-1 d-1) 

90-330 0.5-0.7 5-20 Yang et al. 

(2016) 

CSTR 2 Mixed culture contain-

ing  

T. denitrificans  

0.5-0.85 g 

VSS L-1 

S2O3
2- & S2- 150-570 mg S2O3

2--S 

L-1 & 96-125 mg S2- L-1 

N.A. 150-500 0.5-1.0 12-20 Manconi et 

al. (2007) 

CSTR 4 Activated sludge from a 

municipal treatment 

plant 

0.6 g VSS L-1 S2- 18-176 mg S2- L-1 N.A. 29 -63 0.2-2.4 40 Dolejs et 

al. (2015) 

FBR 0.58 Mix culture of auto-

trophic denitrifying bac-

teria 

20-28 g VSS 

L-1 of carrier 

S2O3
2- 190 mg S2O3

2--S L-1 0.2 - 0.8 (g 

S2O3
2--S L-1 

d-1) 

50-180 0.1-0.5 5 This study 
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The biofilm detachment from the GAC in the FBR observed from period III onwards likely 

occurred as a response to NO3
- starvation. Under this condition, the deeper biofilm layer 

experiences a lack of substrate that can lead to biofilm detachment and after a more 

extended period to reactor failure (Papirio et al., 2013). However, wash-out of suspended 

cells was minimal as the VSS concentration was relatively stable (21.7 ± 4.9 g VSS L -1 

of GAC) during the entire experiment.  

3.4.2 Effect of NO3
- starvation on the microbial community of the FBR bio-

film 

The microbial community composition of the FBR biofilm changed during FBR operation 

at different N/S ratios (Figure 3.6). Sulfur-oxidizing bacteria of the genus Thiobacillus 

were found as the dominant microorganisms in the FBR biofilm during the whole opera-

tion (Table 3.4) and were mainly responsible for NO3
- consumption. In particular, T. de-

nitrificans (band 8) has a good ability to be immobilized with other microorganisms pro-

moting biofilm formation (Pokorna and Zabranska, 2015). T. thioparus (bands 6-7) can 

reduce NO3
- using S2O3

2- as electron donor and has been reported to be less sensitive 

to high S2O3
2- concentrations than T. denitrificans (Di Capua et al., 2016a). DGGE pro-

filing (Figure 3.6) showed that long-term NO3
- starvation favored T. thioparus over T. 

denitrificans.  

During period IV, T. thioparus (band 6 and 7) outgrew both T. denitrificans (band 8) and 

Thiomonas sp. (band 13). This may also explain the lower S2O3
2- consumption in period 

IV compared to period I, since T. thioparus can use S2O3
2- only to reduce NO3

- to NO2
- 

(Pokorna and Zabranska, 2015). NO2
- was, nevertheless, never detected in the FBR 

effluent, and it was presumably consumed by other denitrifying bacteria (e.g. band 11) 

present in the FBR biofilm.  

Despite the presence of Desulfovobrio sp. in the microbial community of the FBR biofilm, 

SO4
2- reduction rates were almost negligible, probably due to the lack of external electron 

donors. This was also confirmed by the observed SO4
2- concentration in the effluent 

which was higher than the theoretical value, confirming that SO4
2- consumption did not 

occur in this study. It is also possible that some other denitrifying bacteria were playing 

a role in the nitrogen bioconversion in the FBR but were present in concentrations below 

the detection limit of the PCR-DGGE.  

3.4.3 Effect of N/S ratio on the S2O3
2- oxidation kinetics based on batch 

bioassays 

The highest affinity constant, Ks value of 171.9 mg L-1 obtained at a N/S ratio of 0.1 (Table 

3.2), indicates a low S2O3
2- oxidation activity by the SO-NR bacteria populating the FBR 
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biofilm at extreme nitrate-limiting conditions. The Ks values estimated at N/S ratios of 0.3 

and 0.5 (Table 3.2) were closer to the values reported by Mora et al. (2015) (16.1 mg 

S2O3
2--S L-1) for a suspended culture of thiosulfate-oxidizing denitrifiers at a N/S ratio of 

1.3. Biofilm cultures of SO-NR bacteria have higher Ks values compared to suspended-

growth cultures (Sahinkaya et al., 2011) as a result of diffusion limitations of the sub-

strates within the biofilm (Sierra-Alvarez et al., 2007). 

The lowest value of the inhibition constant KI (247.7 mg S2O3
2- L-1) was obtained at a N/S 

ratio of 0.1, indicating that substrate inhibition by S2O3
2- occurred at the highest S2O3

2- 

concentration tested in the batch bioassays (Table 3.2, Figure 3.4). Substrate inhibition 

by S2O3
2- was also observed in previous studies performing batch tests with both sus-

pended (Campos et al., 2008) and biofilm (Di Capua et al., 2016a) cultures of SO-NR 

bacteria at concentrations exceeding 2.2 g S2O3
2--S L-1. However, the results of this study 

(Table 3.2) showed that S2O3
2- can also inhibit SO-NR bacteria activity at lower concen-

trations, i.e. 800 mg S2O3
2--S L-1. 

3.4.4 ANN modeling and sensitivity analysis 

The AAS and AS values could be used to identify the most influential input parameters 

(pH, DO, NO3
-
in and S2O3

2-
in) affecting the FBR performance (Rene et al., 2009), i.e. 

S2O3
2- and NO3

- removal efficiency as well as SO4
2- production. According to the removal 

of sulfur compounds in anoxic FBRs, the change in input parameters could have signifi-

cant impact on the overall bioreactor performance (Annachhatre and Suktrakoolvait, 

2001; Di Capua et al., 2017c; Zou et al., 2016). The ANN model was able to provide 

adequate information in the form of a contour plot to reveal the effects of different oper-

ational conditions on the FBR performance (Figure 3.8). Accordingly, the influent NO3
- 

concentration should be >100 mg NO3
- L-1 in order to achieve S2O3

2- removal efficien-

cies >80%, and the effluent pH should be maintained at values >4.0. This observation is 

strongly supported by the experimental results of this study in which the effluent pH dur-

ing the entire experiment was higher than 7.0 (Figure 3.3). Besides, a previously oper-

ated FBR wherein the thiosulfate-driven NO3
- removal was achieved at a pH of 4.8 to 6.9, 

resulting in an increase in the removal efficiency at higher pH values (Di Capua et al., 

2017a). The sensitivity analysis results also revealed that the DO concentrations strongly 

affected both the S2O3
2- removal efficiency (AS = -0.24) and effluent SO4

2- concentrations 

(AS = -0.36). These results from the sensitivity analysis were in good agreement with the 

experimental result obtained during days 0-38, which showed that a high DO concentra-

tion led to fluctuations in S2O3
2- removal efficiency (Figure 3.3).  
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Figure 3.8. Contour plot showing the effect of effluent pH and influent NO3
- concentration on 

the artificial neural network model predicted S2O3
2- removal efficiency. 

3.4.5 Practical implications: use of NO3
- dosing for sulfide removal 

For full scale operation, the FBR can be considered as a reliable technology to scale-up 

for the removal of S2O3
2- and other sulfur compounds (e.g. HS- and S2-) under anaerobic 

conditions, e.g. using NO3
- as the electron acceptor. Long-term reactor operation can 

lead to unexpected events, such as substrate starvation, which can dramatically reduce 

the bioreactor performance. The FBR used in this study demonstrated good robustness 

and resilience, particularly, the FBR was able to recover 80% of the initial S2O3
2- removal 

efficiency within 3 days following starvation (period III, N/S ratio 0.1). However, changes 

in the microbial community of the FBR biofilm during the starvation period may affect the 

sulfide oxidation rates and must thus be avoided in practice.  

In full-scale, wastewater and waste gas treatment systems are usually controlled with 

online monitoring equipment, such as programmable sensors which can be integrated 

with the ANN model in order to control and predict the reactor performance (Rene et al., 

2011). The results from the ANN modeling associated with the sensitivity analysis ob-

tained from this study (Figure 3.7) suggest that ANN can be used offline for monitoring 

and assessing the performance of full-scale FBR using autotrophic denitrification treating 

wastewater containing both S2O3
2- and NO3

-, e.g. mining or H2S/S2O3
2- containing scrub-

bing liquors used for treating H2S contaminated gases. 
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3.5 Conclusions 

High (99%) S2O3
2- removal efficiencies were obtained in a FBR using NO3

- as electron 

acceptor using the following parameters: N/S ratio of 0.5, 20 ºC, HRT of 5 h and influent 

pH of 6.9 (± 0.1). Batch activity tests indicated that decreasing the N/S ratio resulted in 

increasing the biomass affinity constant, Ks, and decreasing the inhibition constant, KI, 

of the SO-NR bacteria immobilized in the FBR. The S2O3
2- oxidation efficiency in the FBR 

recovered to 80% within 3 days following an increase in N/S ratio to 0.5 after a 42-day 

starvation period (N/S of 0.1). Thiobacillus sp. was the dominant microorganism in the 

FBR biofilm and primarily responsible for S2O3
2- oxidation using NO3

- as electron accep-

tor. The ANN model successfully predicted the performance parameters of the FBR, i.e. 

S2O3
2- and NO3

- removal efficiency and effluent SO4
2- concentration. The sensitivity anal-

ysis results showed that effluent pH was the most influential parameter affecting the 

S2O3
2- removal efficiency. Besides, the influent S2O3

2- concentration affected the NO3
- 

removal efficiency and the effluent SO4
2- concentration.  
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An anoxic sulfur-oxidizing moving bed biofilm reactor (MBBR) treating sulfur and nitrate-

contaminated synthetic wastewater was monitored for 306 days under feed nitrogen-to-

sulfur (N/S) molar ratios of 0.5, 0.3 and 0.1. Thiosulfate (S2O3
2-) removal efficiencies 

(REs) exceeding 98% were observed at a N/S ratio of 0.5 and a S2O3
2- loading rate of 

0.9 g S2O3
2--S L-1 d-1, whereas REs of 82.3 (± 2.6)% and 37.7 (± 3.4)% were observed 

at N/S ratios of 0.3 and 0.1, respectively. Complete nitrate (NO3
-) removal was obtained 

at all tested N/S ratios. A comparison between the kinetic parameters of the MBBR bio-

mass under the same after stoichiometric conditions (N/S ratio of 0.5) revealed a 1.3-

fold increase of the maximum specific rate of S2O3
2- oxidation (rmax) and a 30-fold in-

crease of the affinity constant for S2O3
2- (Ks) compared to those observed after long-term 

NO3
- limitation (N/S ratio of 0.1). The MBBR showed optimal resilience to NO3

- limitation 

as the S2O3
2- RE recovered from 37.3% to 94.1% within two days after increasing the 

N/S ratio from 0.1 to 0.5. Based on PCR-DGGE analysis, sulfur-oxidizing, nitrate-reduc-

ing bacteria, i.e. Thiobacillus sp. and Sulfuritalea sp., dominated in the MBBR biofilm 

during the entire study. An artificial neural network (ANN) model with a topology of 4-4-

3 was successfully developed to predict the S2O3
2- and NO3

- RE and sulfate concentra-

tion during MBBR operation.  

4.1 Introduction 

Wastewaters such as pig manure, tannery effluents and pulp and paper processing ef-

fluents generally contain elevated concentrations of sulfur in the form of thiosulfate 

(S2O3
2-), polythionate (SnO6

2-), elemental sulfur (S0), sulfite (SO3
2-) and sulfate (SO4

2-), 

which are reduced to hydrogen sulfide (H2S) during anaerobic digestion (Pokorna and 

Zabranska, 2015). The presence of sulfide species (H2S, HS- and S2-) in gaseous and 

wastewater streams is highly detrimental due to their ability to cause corrosion and harm 

the environment (Krayzelova et al., 2015). 

The removal of sulfur contaminants such as H2S and S2O3
2- using nitrate (NO3

-) as the 

electron acceptor has gained increasing interest since reduced sulfur compounds and 

NO3
- can be simultaneously removed from waste streams by a single anaerobic process 

(Di Capua et al., 2016b, 2019; Fernández et al., 2014; Khanongnuch et al., 2018; Zou et 

al., 2016). The operation of anoxic sulfur-oxidizing bioreactors entails the use of a highly 

soluble electron acceptor (i.e. NO3
-) and eliminates oxygen gas-liquid-biofilm mass trans-

fer limitations commonly experienced in aerobic systems (Krishnakumar et al., 2005). 

Moreover, the operation of anoxic bioreactors has low environmental impacts and oper-

ational costs if nitrified wastewater or NO3
--containing wastewater is provided as a source 

of NO3
- (Cano et al., 2018; Di Capua et al., 2015). The reaction involved in the anoxic 
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oxidation of S2O3
2- and sulfide in the presence of NO3

- is described by Eqs. (4.1) and 

(4.2), respectively (Mora et al., 2014b): 

S2O3
2- + 1.16NO3

- + 0.124H2O + 0.035CO2 + 0.519HCO3
- + 0.11NH4

+ → 2SO4
2- + 

0.578N2 + 0.110C5H7O2N + 0.435H+       (4.1) 

HS- + 1.23NO3
- + 0.573H+ + 0.438HCO3

- + 0.027CO2 + 0.093NH4
+ → SO4

2- + 0.614N2 + 

0.866H2O + 0.093C5H7O2N         (4.2) 

Moving bed biofilm reactors (MBBR) have been widely used for the treatment of domestic 

and industrial wastewaters due to their effective biomass retention (Chai et al., 2014; 

Hatika Abu Bakar et al., 2017; Yuan et al., 2015). However, studies focusing on the op-

eration of anoxic MBBRs for treating sulfur contaminated wastewaters is still limited. Full-

scale sulfur-oxidizing bioreactors may experience fluctuations in the influent NO3
- con-

centration as well as an unexpected increase or decrease of sulfur loading, which can 

lead to severe NO3
- limitation in the system. Furthermore, when the concentrations of 

NO3
- and nitrite (NO2

-) in the influent wastewater are insufficient to sustain the process, 

NO3
- source (e.g., NaNO3, KNO3, Ca(NO3)2) can be supplied externally to maintain the 

process efficiency (Yang et al., 2005). Dosing must be strictly controlled to minimize the 

addition of chemicals and the operational costs. As a result, it is important to evaluate 

the performance of an anoxic MBBR under NO3
- limitation as well as the response and 

resilience of the sulfur-oxidizing nitrate-reducing (SO-NR) MBBR biofilm to long-term 

NO3
- limited conditions. Process control evaluation and microbial community analysis are 

important to better understand the operational and biological variables determining the 

performance of the system.  

Modelling of the process is one way to enable enhanced process control and artificial 

neural network (ANN) is one of the most efficient black-box modelling tools for predicting 

and describing the performance of biological processes, in which the process variables 

are non-linear in nature. ANNs have been successfully applied to optimize the opera-

tional conditions for enhancing the process control, monitoring the effluent quality, re-

ducing energy consumption and dynamic forecasting in full-scale wastewater treatment 

plants (Han et al., 2018; Lee et al., 2011) and industrial biohydrogen production plants 

(Han et al., 2018; Lee et al., 2011; Zamaniyan et al., 2013). 

In this study, the performance and microbial community evolution of an anoxic sulfur-

oxidizing MBBR were monitored under different N/S ratios (0.5 and 0.3 and 0.1) for 306 

days. An ANN model coupled with a sensitivity analysis was implemented to predict the 

S2O3
2- and NO3

- removal efficiencies (RE) and SO4
2- production based on the collected 

data during long-term operation.  
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4.2 Materials and methods 

4.2.1 Inoculum source and influent solution composition 

The MBBR was inoculated with biofilm-coated granular activated carbon (GAC) collected 

from a laboratory-scale fluidized-bed reactor (FBR) previously operated to study the ef-

fects of temperature, hydraulic retention time (HRT) and pH on thiosulfate-driven denitri-

fication (Di Capua et al., 2017a, 2017c). The microbial community of the biofilm-coated 

GAC was dominated by sulfur-oxidizing bacteria, i.e. Thiobacillus denitrificans and Thi-

obacillus thioparus. The GAC-attached biomass had total solid (TS) and volatile solid 

(VS) concentrations of 23.0 (± 1.5) and 17.3 (± 1.3) g L-1 of GAC, respectively. The VS/TS 

ratio was approximately 0.75-0.76.  

The influent solution used in this study contained 200 mg S2O3
2--S L-1 (added as 

Na2S2O3·5H2O), 10-45 mg NO3
--N L-1 (added as KNO3), 1 g L-1 of NaHCO3, nutrients (mg 

L-1) as follows: KH2PO4 (200), NH4Cl (100), MgSO4·7H2O (80), FeSO4·7H2O (2) and 0.2 

mL L-1 of a trace element solution as described by Zou et al. (2016). The pH of the influent 

solution was adjusted to 7.0 using 37% HCl. S2O3
2- was used as the representative re-

duced sulfur compound due to its ease of handling and stability at circumneutral pH (Luo 

et al., 2013; Mora et al., 2014b). 

4.2.2 Experimental set-up and operation  

The MBBR used in this study was made of glass and had a working volume of 0.825 L 

(Figure 4.1). The MBBR was filled with 350 (± 5) pieces of Kaldnes-K1 carriers [specific 

surface area: 500 m2 m-3, effective area: 410 mm2 piece-1, density: 0.95 g cm-3, diameter 

× height: 9 × 7 mm], corresponding to a 40% filling ratio. The influent was fed to the 

MBBR at a flow rate of 4.0 L d-1 (Masterflex® Easy Load II L/S driven by Masterflex® 

L/S, Cole-Parmer, USA), corresponding to a theoretical hydraulic retention time (HRT) 

of 5 h. Mixing was provided with a Heidolph RZR 2052 mechanical stirrer (Heidolph In-

strument GmbH & Co. KG, Germany) operated at a speed of 65 rpm. The MBBR was 

operated at room temperature (20 ± 2) °C. 
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Figure 4.1. Schematic representation the MBBR used in this study, including a photograph 
of the two different biofilm types attached to the Kaldnes-K1 carriers: (a) thick-dark brown 
biofilm, and (b) thin-light brown biofilm. 

Initially, the MBBR was filled with 180 pieces of K1 carriers (51% of total carriers) was 

initially filled with the influent solution up to 800 mL and 10 mL of biofilm-coated GAC as 

inoculum. The MBBR was purged with N2 for 15-20 minutes to ensure the anoxic condi-

tions and operated in batch mode for 14 days. Batch operation was stopped when the 

S2O3
2- and NO3

- RE exceeded 90% and biofilm formation was visually observed on the 

K1 carriers. Afterwards, the GAC was completely removed and 170 pieces of K1 carriers 

added to the MBBR prior to starting continuous operation.  

Continuous MBBR operation (306 days) was divided into five experimental periods (Ta-

ble 4.1). During the entire experiment, the influent S2O3
2- concentration was kept con-

stant at ~200 mg S2O3
2--S L-1, corresponding to an inlet S2O3

2- loading rate of 0.91 (± 

0.05) kg S2O3
2--S m-3 d-1, while the influent NO3

- concentration was varied between 10.6 

and 40.5 mg NO3
--N L-1 in order to adjust the N/S ratio (Table 4.1). During period I (days 

0-45), the microbial community in the MBBR was acclimated to continuous operation at 

a stoichiometric N/S ratio of 0.5 (Table 4.1) to ensure that the biofilm formed on the K1 

carriers could sustain the simultaneous removal of S2O3
2- and NO3

-. The dissolved oxy-

gen (DO) concentration in the MBBR was 0.87 (± 0.31) mg L-1. In period II (days 46-115), 

the operational conditions were similar to period I but the DO concentration was reduced 

to 0.45 (± 0.08) mg L-1 (Figure 4.2a) as a N2-filled Tedlar bag was connected to the top 

of the influent tank in order to reduce oxygen intrusion and maintain the anoxic conditions. 
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Table 4.1. Conditions of the anoxic MBBR during the different operational periods. 

Pe-

riod 

Time 

(days) 

DO concentra-

tion (mg L-1) 

Feed N/S 

ratio 

(mol mol-1) 

Influent S2O3
2-  

(mg S2O3
2--S L-1) 

Influent NO3
- 

(mg NO3
--N L-1) 

Effluent  

pH 

I 0-45 0.87 (± 0.31) 0.5 199.0 (± 26.1) 40.5 (± 3.4) 7.11 (± 0.25) 

II 46-115 0.45 (± 0.08) 0.5 185.7 (± 4.7) 39.4 (± 1.5) 6.82 (± 0.13) 

III 116-207 0.53 (± 0.09) 0.3 194.1 (± 12.4) 28.7 (± 1.7) 7.12 (± 0.12) 

IV 208-249 0.52 (± 0.9) 0.1 197.2 (± 7.5) 10.6 (± 0.6) 7.28 (± 0.12) 

V 250-306 0.54 (± 0.8) 0.5 186.8 (± 3.2) 39.6 (± 1.4) 6.93 (± 0.09) 

During period III (days 116-207), the MBBR was operated at a N/S ratio of 0.3, corre-

sponding to an influent NO3
- concentration of 28.7 (± 1.7) mg NO3

--N L-1and an inlet NO3
- 

loading rate of 0.14 kg NO3
--N m-3 d-1. In period IV (days 208-249), the influent NO3

- 

concentration was decreased to 10.6 (± 0.6) mg NO3
--N L-1, corresponding to inlet NO3

- 

loading rate of 0.05 kg NO3
--N m-3 d-1, and the MBBR operated at a N/S ratio of 0.1. 

During period V (days 250-306), an influent NO3
- concentration of 39.4 (± 1.5) mg NO3

--

N L-1 (N/S ratio of 0.5) was used in order to investigate the MBBR potential to recover 

the S2O3
2- RE after a 42-day operation under NO3

- limited conditions (period IV). 

The performance of the MBBR in each experimental period was evaluated during steady-

state conditions. The steady-state condition was assumed when the relative standard 

deviation (%RSD) of the S2O3
2- RE was ≤ 10%. 

4.2.3 Batch kinetics bioassays 

Batch bioassays were performed to determine the kinetic constants, i.e. the maximum 

specific rate of S2O3
2- oxidation (rmax) and the affinities of the biofilm microorganisms to 

S2O3
2- (Ks) and NO3

- (𝐾𝑛). Bioassays were performed in duplicate in 120 mL serum bot-

tles with 60 mL headspace, and the medium solution (pH 7.0 ± 0.2) had the same com-

position as the influent solution used for the continuous MBBR operation. Biofilm-at-

tached K1 carriers (9 pieces/bottle) were taken from the MBBR during steady-state con-

ditions of operational periods II-V (days 117, 196, 244 and 305, respectively) and used 

as inoculum. The initial S2O3
2- and NO3

- concentrations used in these bioassays were as 

shown in Table 4.2. The bottles were purged with N2 for 10 min and sealed with rubber 

septa and aluminum crimps to ensure anoxic conditions. Subsequently, the bottles were 

placed on a HS 501 horizontal shaker (IKA, USA) operated at 220 rpm and 20 (± 2) °C. 

In this study, the simultaneous S2O3
2--oxidizing NO3

--reducing process was described 

using a Monod model (Eq. 4.3): 

rS= 
rmaxS

 × S

Ks + S
×

 N

Kn + N
         (4.3) 
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Table 4.2. Kinetic coefficients (Monod) of the attached biofilm collected from the MBBR dur-
ing different operational periods. 

Period N/S 

ratio 

(mol 

mol-1 

Biomass 

concentra-

tion (mg VS 

L-1) 

Initial concentrations Kinetic coefficients 

S2O3
2-  

(mg S2O3
2--S 

L-1) 

NO3
-  

(mg NO3
--N 

L-1) 

rmax 

(mg S2O3
2--S 

g-1 VS h-1) 

Ks 

(mg S2O3
2--S 

L-1) 

Kn 

(mg NO3
--

N L-1) 

II 0.5 495 (± 105) 0, 6, 85, 160, 

180, 300 

0, 1, 15, 26, 

36, 62 

109.4 1.7 6.3 

III 0.3 465 (± 230) 0, 40, 80, 160, 

270, 380 

0, 6, 12, 24, 

30,50 

113.1 67.0 - 

IV 0.1 320 (± 30) 0, 70, 130, 

360, 480 

0, 3, 6, 14, 

20 

69.2 109.3 - 

V 0.5 490 (± 200) 0, 35, 70, 200, 

300, 420 

0, 7, 15, 45, 

62, 85 

143.9 50.6 8.9 

However, the simplified Monod model (Eq. 4.4) was used when the affinity for NO3
- (𝐾𝑛) 

was much smaller than the affinity for S2O3
2- (Ks) (Kopec et al., 2018). This was the case 

for microbial biofilm samples taken from the MBBR during low N/S ratio conditions (N/S 

ratios of 0.3 and 0.1).  

rS= 
rmaxS

 × S

Ks + S
          (4.4)  

where S and Ks are the concentration and affinity constant for S2O3
2- (mg S2O3

2--S L-1), 

respectively; 𝑁 and 𝐾𝑛 are the concentration and affinity constant for NO3
- (mg NO3

--N L-

1), respectively; and 𝑟𝑚𝑎𝑥𝑆
 is the maximum specific rate of S2O3

2- oxidation (mg S2O3
2--S 

g VS-1 h-1). 

4.2.4 Batch activity tests 

The batch tests were performed in duplicate to study the SO-NR activity of the MBBR 

biomass by measuring the specific uptake rates of S2O3
2- (STUR) and NO3

- (SNUR) (Ta-

ble 4.3). On days 117 (period II), the tests were performed to evaluate the metabolic 

activity of the two different types of biofilm formed on the K1 carriers, i.e. thick-dark bio-

film and thin-light biofilm. At the end of the experiment (day 306, period IV), the fed-batch 

tests were performed to evaluate the response of carrier-attached and suspended bio-

mass to sequential feeding that S2O3
2- and NO3

- were sequentially added before they 

were almost completely consumed. 
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Table 4.3. Experimental conditions of the batch activity tests performed with the MBBR biomass collected at different operational days. 

Day Experiment Vol-

ume 

(mL) 

No. of carri-

ers used 

(pieces) 

Initial concentrations N/S ratio 

(mol/mol) 

VSS concen-

tration 

(mg L-1) 

Removed 

S2O3
2--S 

(mg L-1) 

Produced 

SO4
2--S 

(mg L-1) 

Specific uptake ratea 

S2O3
2--S 

(mg L-1) 
 

NO3
--N (mg 

L-1) 

STUR (g S2O3
2--S 

g VSS d-1) 

SNUR (g NO3
--N g 

VSS d-1) 

107 Effect of different biofilm 

characteristics 

40 5 200 100 0.45      

- thick-dark brown biofilm 

- thin-light brown biofilm 

     265 (± 20) 190 (± 4) 259 (± 10) 1.91 (± 0.04) 0.89 (± 0.02) 

   175 (± 20) 189 (± 1) 271 (± 16) 1.69 (± 0.22) 0.88 (± 0.21) 

306 Effect of sequential feed-

ing on the biomassb 

40  200 100 0.45      

- carrier-attached biomass   5    260 (± 20)  125 (± 14) to 

290 (±73) 

178 (± 16) to 

352 (± 85) 

4.08 (± 0.19), 

5.80 (± 1.40) and 

4.09 (± 0.72)  

0.84 (± 0.05), 1.81 (± 

0.68) and 0.84 (± 

0.13) 

- suspended biomass  32 mL   160 (± 60) 168 (± 9) to 

268 (± 11) 

173 (± 77) to 

398 (± 38) 

1.13 (± 0.07), 

2.59 (± 0.21) and 

4.91 (± 0.86) 

0.28 (± 0.04), 0.69 (± 

0.05) and 1.10 (± 

0.08) 

Note: aSTUR = specific thiosulfate uptake rate; SNUR = specific nitrate uptake rate 
bThe three values reported for the removed S2O3

2--S, produced SO4
2--S, STUR and SNUR were calculated before the first feeding, after the first 

feeding and after the second feeding, respectively 
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The nutrient solution was as described for the kinetic bioassays. K1 carriers (5 

pieces/bottle) were taken from the MBBR and directly added as inoculum to 60-mL se-

rum bottles with 20 mL headspace. The nutrient solution was as described for the kinetic 

bioassays.  

4.2.5 Residence time distribution (RTD) test  

The RTD test for the MBBR, at an theoretical HRT of 5 h, was performed on day 307 to 

determine the hydrodynamic behavior of the MBBR using the pulse input method as 

described by Khanongnuch et al. (2018) The procedure used to perform the RTD test 

and data analysis are described in Fogler (2016). The results obtained from the RTD test 

were used to determine Peclet number (Per) that describes the mixing characteristics of 

the MBBR as shown in Eq. (4.5). 

σ2

tm
2 = 

2

Per
-

2

Per
2 (1-e-Per)         (4.5) 

where 𝜎2 and 𝑡𝑚 are the variance and mean residence time of the RTD, respectively. 

4.2.6 Microbial community analysis 

Two pieces of K1 carrier were taken during the steady-state operation of the MBBR in 

periods II (day 115), III (day 196), IV (day 242) and V (day 306). To obtain the bacterial 

cells from the carrier material, a biofilm-attached K1 carrier was immersed in 10 mL of 

sterile milli-Q water and sonicated for 2 min. The obtained solution was filtered through 

a Cyclopore track etched 0.2 µm membrane (Whatman, USA). Subsequently, the mem-

branes with the retained biomass were stored at -20 ºC for microbial community analysis 

by polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE). The 

DNA extraction was performed using a PowerSoil® DNA isolation kit (MO BIO Laborato-

ries, Inc., USA) according to the manufacturer’s instructions. PCR-DGGE analysis was 

performed according to the protocol described by Ahoranta et al. (2016). The amplified 

DNA samples were sequenced by Macrogen Inc. (The Netherlands). The sequence data 

was edited using the Bioedit software (version 7.2.5, Ibis Biosciences, USA) and com-

pared with the sequences available in the National Center for Biotechnology Information 

(NCBI) database. 

4.2.7 Analytical techniques 

The concentrations of S2O3
2-, SO4

2-, NO3
- and NO2

- in the MBBR influent and effluent 

were measured by ion chromatography (IC) as described by Di Capua et al. (2017c). 

Liquid samples were filtered through 0.45 µm Chromafil Xtra PET-202125 membrane 
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syringe filters (Mechery-Nagel, Germany) and stored at -20 °C prior to analysis. The DO 

concentration in the MBBR was measured with a HQ40d portable multimeter equipped 

with an IntellicalTM LDO101 probe (HACH, USA). The influent and effluent pH of the 

MBBR were measured using a pH 3110 portable meter fitted with a SenTix 21 electrode 

(WTW, Germany). The pH of the liquid samples obtained from batch tests was measured 

using a pH 330i meter (WTW, Germany) fitted with a SlimTrode lab pH electrode (Ham-

ilton, USA). Alkalinity was measured according to the procedure described in Standard 

Methods (APHA/AWWA/WEF, 1999). 

During MBBR operation (days 44, 60, 90, 114, 196, 242 and 306), two pieces of K1 

carrier were collected to measure the total solids (TS) and volatile solids (VS) of the K1 

carrier-attached biomass. Each piece of K1 carrier was added into a 15 mL Falcon tube 

containing 10 mL of deionized water and the biofilm was detached by manual shaking. 

The procedure was repeated until all the biomass was detached from the carrier. The 

solution containing detached biomass was used for the determination of TS and VS of a 

carriers according to the same procedure of volatile suspended solids (VSS) concentra-

tion in liquid samples given in Standard Methods (APHA/AWWA/WEF, 1999). Elemental 

sulfur (S0) was measured from K1 carriers collected on days 193, 240 and 300 using the 

modified cyanolysis method (Khanongnuch et al., 2018). 

4.2.8 ANN model development  

An ANN model was developed using MBBR experimental data from days 45 to 306 (78 

data points). The ANN input parameters consisted of the influent concentrations of S2O3
2- 

(S2O3
2-

in) and NO3
- (NO3

-
in), the effluent pH and the DO concentration. The output param-

eters of the ANN model were the S2O3
2- and NO3

- RE and the produced SO4
2- concen-

tration (SO4
2-

out). The basic statistics of the training, validation and test data sets used to 

develop the ANN model are shown in Table 4.4. The experimental data were normalized 

in the range of 0-1 before being used in the Neural Network Toolbox 11.0 of MATLAB® 

R2018b (MathWorks Inc., USA), as described by Khanongnuch et al. (2018). The net-

work topology selected for the ANN model to predict the S2O3
2- and NO3

- RE and the 

SO4
2- concentration was a three-layered feed-forward back propagation neural network 

(Figure 4.3). The feed-forward network, where signals flow from the input layer to the 

hidden layer and then to the output layer in the forward direction (Figure 4.3), used in 

this study is the most commonly employed network architecture to model and predict the 

performance of bioreactors used in the field of environmental engineering (Nair et al., 

2016; Rene et al., 2011; Sahinkaya, 2009). A three-layered feed-forward network also 

yields lower mean squared error (MSE) and higher coefficient of determination (R2) val-

ues compared to an ANN coupled with hybrid methods (Fan et al., 2018). The network 

architecture consisted of four neurons in the input layer connected to four neurons in the 



76 

 

 

hidden layer, and three neurons in the output layer. To obtain the best network topology, 

the number of neurons in the hidden layer, the number of data points of training, valida-

tion and testing were selected using a trial and error approach based on the R2 and MSE 

values that showed modelled output values closely fitting the experimental measure-

ments (Table 4.5).  

Table 4.4. Basic statistics of the training, validation and test data sets used to develop the 
artificial neural network (ANN) model. 

 N Mean Minimum Maximum 

Dissolved oxygen in the MBBR 78 0.50 0.27 0.71 

pH 78 7.13 6.63 7.67 

S2O3
2-

in (mg S2O3
2--S L-1) 78 193 163 216 

NO3
-
in (mg NO3

--N L-1) 78 30.9 9.86 47.7 

S2O3
2--RE (%) 78 80.3 33.2 100 

NO3
--RE (%) 78 98.5 82.0 100 

SO4
2-

out (mg L-1) 78 213 93.2 304 

Note: N = number of experimental data points was used for training, validating and testing 
the ANN model 

Table 4.5. Best values of the network parameters used to develop the ANN model for the 
moving bed biofilm reactor (MBBR). 

Training parameters Range of value 

tested 

Best value 

Number of training data set 43-54 50 (65%) 

Number of validation data set 12-19 16 (20%) 

Number of test data set 8-12 12 (15%) 

Number of neurons in input layer (NI) 4 4 

Number of neurons in hidden layer (NH) 4-8 4 

Number of neurons in output layer (NO) 3 3 

Epoch size 21 15 

Momentum term (µ) 0-1 0.000001 
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Figure 4.3. Artificial neural network topology developed for the prediction of S2O3
2- and NO3

- 

removal efficiencies and produced SO4
2- concentration of the anoxic MBBR.  and  

represent, respectively, the tan-sigmoid and linear (PURELIN) transfer function. 

The ANN model was trained using the Levenberg-Marquardt back-propagation algorithm 

(trainlm function in the Neural Network Toolbox 11.0). This training algorithm is generally 

used for prediction and forecasting purposes because it is well suited for accurate train-

ing and has a fast convergence speed (Yetilmezsoy and Sapci-Zengin, 2009). In this 

algorithm, the input layer transfers the signal multiplied by the connection weights (W ih) 

to the hidden layer. Subsequently, the hidden layer transfers the signal to the output 

layer, multiplied by the respective connection weights (Who). A tan-sigmoid transfer func-

tion was used in the hidden layer, while a linear (PURELIN) transfer function was used 

in the output layer.  

4.2.9 Statistical analysis  

A one-way analysis of variance (ANOVA) with Tukey’s multiple comparison test was per-

formed for data analysis using the Minitab 16 software (Minitab Inc., USA) to determine 

the statistical differences in each parameter during the steady-state operation of the 

MBBR. The significant difference was considered at 95% (P ≤ 0.05). The kinetic con-

stants of Monod (Eqs. 2 and 3) were determined using the non-linear programming 

solver (fminsearch) in MATLAB® R2018b (MathWorks Inc., USA).  
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The sensitivity analysis for the ANN model was performed using the multivariable statis-

tical modelling software NNMODEL (PA, USA) to determine the absolute average sen-

sitivity (AAS) and the average sensitivity (AS) values. The AAS value is the average of 

the absolute values of the change in the output. To normalize the data, the change in the 

output is divided by the change in the input. The calculation of AS is similar to the deter-

mination of AAS, except no consideration of absolute values. If the change in the output 

variable is in the same direction, both AAS and AS values would be similar. The absolute 

value AS matrix (Ski,abs) is calculated as shown in Eq. (4.6): 

Ski, abs = 
∑ |Ski

(P)
|P

P=1

P
         (4.6) 

Where, P is the number of training patterns of the network. 

4.3 Results  

4.3.1 MBBR performance at different N/S ratios 

Figure 4.2 shows the MBBR performance at different N/S ratio operations. During period 

I (days 0-44), the S2O3
2- RE was 95.2 (± 1.4)%, while the NO3

- RE fluctuated between 

48.7 and 100%, respectively. The effluent pH varied in the range of 6.86-7.36. During 

period II (N/S ratio of 0.5), the S2O3
2- RE was 98.5 ± 0.7%. The effluent pH and alkalinity 

were 6.82 (± 0.13) and 342 (± 14) mg HCO3
- L-1, respectively. A NO3

- RE higher than 99% 

was observed from day 60 onwards (Figure 4.2d). A similar S2O3
2- removal rate of 0.85 

(± 0.04) kg S m-3 d-1 was observed during periods I and II. 

MBBR operation at N/S ratios below 0.5 resulted in lower S2O3
2- removal rates and effi-

ciencies than those observed in the first two operational periods. The S2O3
2- RE was 82.3 

(± 2.6)% at a N/S ratio of 0.3 (period III) and 37.7 (± 3.4)% at a N/S ratio of 0.1 (period 

IV), corresponding to S2O3
2- removal rates of 0.62 (± 0.04) and 0.38 (± 0.01) kg S m-3 d-

1, respectively. The effluent pH and alkalinity were 7.12 (± 0.17) and 393 (± 15) mg HCO3
- 

L-1 in period III and increased to 7.28 (± 0.12) and 440 (± 10) mg HCO3
- L-1, respectively, 

when the MBBR was operated at a N/S ratio of 0.1 (period IV) (Figure 4.2a). The S2O3
2- 

RE increased from 37.3% (day 249) to 94.1% (day 251) in two days after increasing the 

N/S ratio from 0.1 to 0.5 (period V). The S2O3
2- RE further increased slightly during period 

V and reached 99.5 (± 0.7)% at the end of the experiment (days 292-306), corresponding 

to a S2O3
2- removal rate of 0.87 (± 0.02) g S m-3 d-1.  
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Figure 4.2. Time course profiles of (a) effluent DO and pH, (b) S2O3
2- and NO3

- loading rate, 
(c) removal efficiency of S2O3

2- and effluent SO4
2- concentration, (d) effluent NO3

- and NO2
- 

and removal efficiency of NO3
- during the MBBR operation. The dashed line in (c) indicates 

the theoretical SO4
2- production based on Eq. (4.1). 
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Figure 4.2c shows the effluent SO4
2- concentration profile in the MBBR at different N/S 

ratios tested. The highest effluent SO4
2- concentration (302 ± 14 mg SO4

2--S L-1) was 

observed during the acclimation phase (period I, N/S ratio of 0.5), while the lowest (105 

± 11 mg SO4
2--S L-1) was observed during period IV (N/S ratio of 0.1). In periods II and 

V (N/S ratio of 0.5), similar effluent SO4
2- concentrations were observed, being 263 (± 14) 

and 279 (± 22) mg SO4
2--S L-1, respectively. During period III (N/S ratio of 0.3), the efflu-

ent SO4
2- concentration was 241 (± 9) mg SO4

2--S L-1. 

4.3.2 Residence time distribution 

The mean residence time (tm) in the MBBR obtained from the RTD analysis was 4.43 h, 

while the theoretical HRT of 5 h calculated based on the influent flow rate. Regarding the 

dimensionless RTD function (E(Θ)) (Figure 4.4), the normalized time (Θ) was defined as 

the RTD profile time (t) divided by tm. Thus, at Θ = 1 (the value of perfect completely 

mixed reactor) (t = tm = 4.43 h), 64% of the tracer had left the reactor, corresponding to 

an accumulative profile (F(Θ)) of 0.64 (Figure 4.4). The tracer completely left the MBBR 

within 22 h after the pulse injection. According to the mixing characteristics, the Peclet 

number, Per, of 0 represents an ideal completely mixed reactor, whereas the value of an 

ideal plug flow is infinity (∞). In the present study, the hydrodynamic behavior of the 

MBBR (Per =1.31) was very close to that of an ideal completely mixed reactor, resulting 

in a uniform distribution of S2O3
2- and NO3

- in the reactor volume during the study.  

 

Figure 4.4. Residence time distribution (RTD) curve of the MBBR at a HRT of 5 h performed 
on day 307. 
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4.3.3 Biofilm quantity, characteristic and viability during MBBR operation  

The weight of the carrier-attached and suspended biomass in the MBBR during contin-

uous operation was as shown in Figure 4.5. The biofilm formed on K1 carriers added 

prior to starting the 14-day batch mode operation was thick-dark brown (Figure 4.1a), 

while the biofilm developed on the carriers added at the end of the batch mode operation 

was light brown and thinner (Figure 4.1b). The thick-dark brown was observed as a fine 

activated carbon particle attached to the surface K1 carriers. The weight of the carrier-

attached biomass with thick-dark brown biofilm was 1.20 (± 0.14) mg VS carrier-1 on day 

44 and gradually increased up to 2.17 (± 0.15) mg VS carrier-1 on day 90 (period II, N/S 

ratio of 0.5). Afterwards, the biomass quantity remained relatively stable until the end of 

the experiment (day 306). The quantity of the carrier-attached biomass on the carriers 

with thin-light brown biofilm was similar during this study (0.88 - 1.28 mg VS carrier-1), 

except in period IV (day 242) when the weight was only 0.35 ± 0.14 mg VS carrier -1 

(Figure 4.5). The similar metabolic activities (STUR and SNUR) were observed for the 

carrier-attached biomass with thick-dark brown and thin-light brown biofilm during period 

II (Table 4.3). 

 

Figure 4.5. Biomass evolution in the MBBR during operational periods I (days 44, 60, 90 and 
114), II (day 196), III (day 242) and IV (day 306). 

Figure 4.6 shows the activity of carrier-attached and suspended biomass during the se-

quential feedings of S2O3
2- and NO3

- in batch activity tests. After the first, second and 

third sequential feeding, the carrier-attached biomass showed STUR and SNUR of 4.1-

5.8 g S2O3
2--S g VS d-1 and 0.84-1.81 g NO3

--N g VS d-1, respectively (Figure 4.6a, Table 

4.3). STUR and SNUR of the suspended biomass increased from 1.13 (± 0.07) g S2O3
2-

-S g VSS d-1 and 0.28 g NO3
--N g VS d-1 after the first feeding to 4.91 (± 0.86) g S2O3

2--
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S g VSS d-1 and 1.10 (± 0.08) g NO3
--N g VS d-1 after the third feeding, respectively 

(Figure 4.6b, Table 4.3).  

 

Figure 4.6. Thiosulfate, nitrate, nitrite and sulfate concentrations during sequential feeding 

in the batch bioassays performed with (a) carrier-attached biomass, (b) suspended biomass, 

and (c) without microorganisms (abiotic). Error bars represent the standard deviation. 
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A positive correlation between biomass weight on K1 carriers and the S0 concentration 

in the MBBR was observed during this study (days 193, 240 and 300) (data not shown). 

The carriers with thick-dark biofilm (Figure 4.1a) contained a higher amount of S0 (33.5-

76.6 µg carrier-1) than those with thin-light biofilm (Figure 4.1b) (8.2-14.6 µg carrier-1). 

4.3.4 Kinetic parameters of S2O3
2- oxidation based on batch bioassays 

The Monod model was successfully used to describe S2O3
2- oxidation coupled to NO3

- 

reduction at different N/S ratios during MBBR operation (Figure 4.7). The highest rmax 

(144.0 mg S2O3
2--S g-1 VS h-1) was obtained with the biomass taken in period V (N/S ratio 

of 0.5) after 42-day operation at severe NO3
- limitation (N/S ratio 0.1, period IV), while 

similar rmax values (111.3 ± 1.8 mg S2O3
2--S g-1 VS h-1) were obtained in periods II (N/S 

ratio of 0.5) and III (N/S ratio of 0.3) (Table 4.2). The lowest biofilm affinity for S2O3
2- (Ks 

= 1.70 mg S2O3
2--S L-1) was observed in bioassays performed during period II (N/S ratio 

of 0.5), while the highest Ks value (109.43 mg S2O3
2--S L-1) was observed during period 

IV (N/S ratio of 0.1). 

 

Figure 4.7. Monod model prediction for estimating the maximum rate of sulfur oxidation 
(𝑟𝑚𝑎𝑥) as well as S2O3

2- (Ks) and NO3
- (𝐾𝑛) affinity constants of MBBR biomass collected at 

different N/S ratios. Dots and lines represent experimental and model fitted data, respec-
tively. The error bars indicate the standard errors between the experimental and model fitted 
data.
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4.3.5 Microbial community profile 

The results of the PCR-DGGE analysis showed that the microbial community structure 

of the carrier-attached biomass changed during long-term MBBR operation (Figure 4.8). 

The sequenced DGGE bands indicated that microorganisms having 97.6-99.6% similar-

ity to Thiobacillus sp., Chryseobacterium sp., Simplicispira sp. and Sulfuritalea sp. were 

present in the MBBR biofilm during all the experimental periods. However, bands 9 and 

11 related to a bacterium having 99.1-99.3% similarity to T. denitrificans, which were 

clearly visible in the DGGE profiles of periods I, III and IV, showed low intensity in period 

II. Bands 10 and 16, related to bacteria having 98.9 and 100% similarity to Rhodocy-

claceae and Thiomonas sp., respectively, were detected in periods I, II and III but they 

faded away in period IV. Band 17, related to a bacterium with 99.3% similarity to Desul-

fovibro sp., was clearly detected in period III, whereas it had low intensity in periods I, II 

and IV. Bands 7 and 8 had no significant similarities to the bacteria in the database due 

to the poor quality of the sequenced DNA. The microbial community composition of the 

suspended biomass samples was very similar to the carrier-attached communities during 

each operational period (data not shown).  

4.3.6 ANN modeling of MBBR performance 

The best network topology of the ANN model developed for the MBBR had 4 neurons in 

the input layer, 4 neurons in the hidden layer and 3 neurons in the output layer (4-4-3). 

Altogether 50 data points were used for training, 16 for validation and 12 for testing, that 

corresponded to 65%, 20% and 15% of all data points, respectively (Table 4.5). The ANN 

model training was completed within 2 s and the best validation performance with a MSE 

of 0.013185 was achieved at an epoch size of 15. The values of coefficient of determi-

nation (R2) of the training, validation and test data sets were 0.94, 0.92 and 0.95, respec-

tively, which corresponded to an overall R2 of 0.93 for the whole data set. The connection 

weights and the bias terms associated to the neurons in the three-layered ANN were as 

shown in Table 4.6. The S2O3
2- RE and NO3

- RE and the SO4
2- production profiles pre-

dicted by the ANN model are shown in Figure 4.9. 

 
 
.
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Figure 4.8. PCR-DGGE profiling of the microbial community composition of the K1 carrier-attached biomass in the MBBR during experimental periods 
II (day 115), III (day 196), IV (day 242) and V (day 306). Each sample was run in duplicate.
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Figure 4.9. Artificial neural network model predicted and experimental data for (a) thiosulfate 

and (b) nitrate removal efficiency and (c) effluent sulfate during operational days 45 to 306. 

 

Table 4.6. Connection weights between the input-hidden layer (W ih) and hidden-output layer 
(Who) of the developed artificial neural network model (4-4-3). 

Input Input-hidden layer (Wih) Hidden-output layer (Who) 

HID-1 HID-2 HID-3 HID-4 NO3
- RE S2O3

2- RE SO4
2-

out 

DO -0.1629 -0.5262 14.8681 2.7219 -0.1003 0.4092 0.1756 

pH -2.7005 0.5462 -12.2174 0.3961 0.0386 -0.2569 -0.1379 

NO3
-
in 12.0382 -8.1713 -15.3434 7.1698 0.9873 0.1019 0.2297 

S2O3
2-

in -3.3725 0.2566 -0.0629 0.3265 0.0560 0.2580 0.3763 

Bias term 4.4894 4.2162 19.1464 2.4816 -0.0707 -0.0312 -0.3966 
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Table 4.7 shows the absolute average sensitivity (AAS) and the average sensitivity (AS) 

values obtained from the sensitivity analysis of the developed ANN model. The AAS and 

AS values indicated that the influent NO3
- and effluent pH were the most important factors 

affecting the S2O3
2- RE (AAS = 0.4680 and 0.3528) and SO4

2- production (AAS = 0.4357 

and 0.3185). The NO3
- RE was strongly influenced by the influent S2O3

2- concentration 

(AAS = 0.3603) and the effluent pH (AAS = 0.3781). 

Table 4.7. Sensitivity analysis of the artificial neural network model inputs. 

Input variable S2O3
2- RE (%) NO3

- RE (%) SO4
2-

out (mg L-1) 

AAS AS AAS AS AAS AS 

S2O3
2-

in (mg S2O3
2--S L-1) 0.1513 -0.0656 0.3603 +0.1383 0.2180 -0.1258 

NO3
-
in (mg NO3

--N L-1)  0.3528 +0.3020 0.2180 -0.0094 0.3185 +0.3185 

pH 0.4680 -0.4006 0.3781 -0.3781 0.4357 -0.3845 

DO (mg L-1) 0.0279 +0.0145 0.0436 +0.0107 0.0278 +0.0278 

Note: RE = removal efficiency; AAS and AS = absolute average sensitivity and average sen-
sitivity, respectively 

4.4 Discussion 

4.4.1 Effect of NO3
-limitation on MBBR performance 

The S2O3
2- RE in the MBBR was strictly correlated to NO3

- loading rate (Figure 4.2). 

Decreasing the NO3
- concentration in the feed reduced S2O3

2- consumption and SO4
2- 

production based on the stoichiometry described by Eq. (4.1). The S2O3
2- REs (Figure 

4.2c) during period V were higher than those observed in periods I and II, indicating that 

the sulfur-oxidizing capacity of the MBBR biofilm was enhanced after cultivation under 

severe NO3
- limited conditions (N/S ratios of 0.3 and 0.1). In a previous work, the re-

sponse of a sulfur-oxidizing FBR biofilm was investigated under the same NO3
- limited 

conditions applied in this study (Khanongnuch et al., 2018). The S2O3
2- RE of the FBR 

recovered to 80.8 (± 4.1)% 14 days after increasing the N/S ratio from 0.1 to 0.5. The 

MBBR operated in this study showed 8.2, 14.8 and 18.7% higher S2O3
2- REs during 

operation at feed N/S ratios of 0.3, 0.1 and 0.5 (after severe NO3
- limitation) and a much 

shorter recovery period (2 days) after restoring the N/S ratio to 0.5 (Khanongnuch et al., 

2018). This was likely due to the different bioreactor configuration, microbial community 

structure as well as biomass and DO concentrations in the two reactors. The higher DO 

concentrations observed in the MBBR (0.45 mg L-1) during the study compared to that 

maintained in the FBR (0.25 mg L-1) likely stimulated bacteria capable sulfur oxidation 

using O2 observed in the MBBR biofilm, i.e. Thiomonas sp. and Thiobacillus sp.. 
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During this study, S2O3
2- was oxidized to mainly SO4

2- at all operational conditions. The 

effluent SO4
2- concentrations exceeded the theoretical values (calculated based on Eq. 

4.1) throughout the study (Figure 4.2c), being particularly high at the beginning of period 

I. The high SO4
2- concentration observed in the MBBR effluent can be attributed to the 

oxidation of excess S2O3
2- and other sulfur compounds formed in the system, i.e. H2S 

and S0. The biological disproportionation of excess S2O3
2- into sulfide and SO4

2- (accord-

ing to Eq. 4.7) could have occurred in the MBBR:  

S2O3
2- + H2O → SO4

2- + 0.5H2S + 0.5HS- + 0.5H+  ΔG0 = -25 KJ mol-1  (4.7) 

Moreover, excess SO4
2- production in the MBBR could be also produced by the complete 

oxidation of the biogenic S0 accumulated intracellularly by the SO-NR bacteria during the 

previous long-term cultivation at extremely high S2O3
2- concentrations and loading rates 

of the biomass used as inoculum (Di Capua et al., 2017c; Zou et al., 2016). NO3
- limited 

conditions could promote partial S2O3
2- oxidation to S0 due to excess availability of elec-

tron donor compared to electron acceptor (Di Capua et al., 2017c). The S0 disproportion-

ation can be described by Eq. (4.8) (Finster et al., 1998): 

4S0 + 4H2O → 3H2S + SO4
2- + 2H+       (4.8) 

4.4.2 Effect of NO3
- limited conditions on quantity and activity of the MBBR 

biomass  

The MBBR showed good ability to develop a SO-NR biofilm, resulting in a VS/TS ratio 

up to 0.94 (Figure 4.5). The affinity constant of the SO-NR biomass for S2O3
2- (Ks = 1.7 

mg S2O3
2- L, at N/S ratio of 0.5) observed in period II (N/S ratio of 0.5) was lower than 

values previously reported for sulfur-oxidizing biomass cultivated in other bioreactors, i.e. 

CSTR (16.1 mg S2O3
2--S L-1) and FBR (45.1 mg S2O3

2--S L-1) (Khanongnuch et al., 2018; 

Mora et al., 2015). The higher Ks observed at N/S ratios of 0.3 and 0.1 (Figure 4.7) were 

clearly due to the cultivation under NO3
- limitation.  

This study also revealed that the active SO-NR biomass decreased during cultivation at 

a N/S ratio of 0.1, resulting in the lowest rmax. The metabolic activity of the SO-NR bac-

teria populating the MBBR biofilm was enhanced after cultivation under severely NO3
- 

limited conditions (N/S ratio of 0.1), as the highest rmax was observed during period V. 

The NO3
- limited conditions probably also developed the density of active SO-NR bio-

mass, as resulted higher of affinity constant but similar biomass concentration to periods 

II (N/S ratio of 0.5) (Table 4.2). Stress conditions such as nutrient limitation can induce 

a delay in biochemical conversions and enhance the EPS production, which serve as a 

supplementary substrate source and protect the bacterial cells from harmful toxic mate-

rials (Chénier et al., 2003). EPS overproduction can increase the adhesive properties of 
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the biofilm, enhancing its ability to withstand stress and harsh operating conditions (Gar-

rett et al., 2008). 

The results obtained from the sequential feeding experiment (Figure 4.6, Table 4.3) re-

vealed that the suspended biomass in the MBBR could also remove S2O3
2- and NO3

- 

efficiently. As those sequential feedings resulted in an increase in the food to biomass 

ratio, i.e. high substrate availability, an increase in the STUR and SNUR was observed 

for the suspended biomass. This observation is in agreement with the results of Re-

boleiro-Rivas et al. (2013) who reported the utilization of high inlet organic loads with a 

lower biomass concentration in an aerobic moving bed membrane bioreactor treating 

municipal wastewater. In their study, the enzymatic activities, i.e. alkaline phosphatase, 

acid phosphatase and α-glucosidase activities, of the suspended biomass samples were 

higher than the activities observed in the attached biofilm samples due to better substrate 

diffusion. In biofilm reactors, fast-growing bacteria commonly grow in suspension, while 

the slow-growing bacteria aggregate to form a biofilm (Nogueira et al., 2002). However, 

NO3
- limited conditions (N/S ratios of 0.3 and 0.1) strongly reduced the suspended bio-

mass concentration, which decreased from 200 mg VSS L-1 (period I) to less than 5 mg 

VSS L-1 (period IV) (Figure 4.5). Conversely, the quantity of the attached growth biomass 

remained relatively constant after the acclimation period of the MBBR (day 90) (Figure 

4.5), which confirms the good resilience of the SO-NR biofilm to withstand NO3
- limited 

conditions. 

During the MBBR operation, the observed fine activated carbon particles attached on 

the surface of the K1 carriers (thick-dark brown biofilm, Figure 4.1a) were able to main-

tain high and constant biomass quantity during the MBBR operation, particularly under 

severe NO3
- limitation (Figure 4.5). Similarly, several studies reported that the activated 

carbon powder provided an efficient surface for the attached biomass and increase the 

resistant effect of fluctuating loading of substrate enhanced biofilm (Baêta et al., 2012; 

Skouteris et al., 2015; Woo et al., 2016). 

4.4.3 Effect of NO3
- limited conditions on microbial community composi-

tion 

The MBBR enabled to effectively maintain and enrich autotrophic SO-NR bacteria such 

as Thiobacillus sp., T. denitrificans and Sulfuritalea sp., as they were detected at all 

tested N/S ratios (Figure 4.8). The growth of heterotrophic bacteria, such as Thiomonas 

sp., Rhodocyclaceae bacterium and Chryseobacterium sp., in the MBBR biofilm could 

be sustained by soluble microbial and cell lysis products (e.g. acetate, glucose and py-

ruvate) available under autotrophic conditions (Di Capua et al., 2017a; Khanongnuch et 

al., 2019; Wang et al., 2016). In particular, the reduction of biomass weight indicated that 
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biofilm degradation and detachment of the outer layer of the biofilm substantially oc-

curred during period IV and were likely responsible for the enhanced growth of Thio-

monas- and Desulfovibrio-like bacteria. Desulfovibrio are sulfate-reducing bacteria (SRB) 

commonly found in the inner parts of the biofilm and able of S2O3
2- disproportionation to 

H2S and SO4
2- (Eqs. 4.7 and 4.8) (Di Capua et al., 2017b; Qian et al., 2015a). 

4.4.4 ANN modeling and sensitivity analysis 

Figure 4.9 shows that the experimental data was perfectly mapped by the ANN model 

with high R2 values during training and testing (0.94 and 0.95, respectively). The R2 of 

training (0.94) indicated that the model learned the relation between input output param-

eters (i.e. S2O3
2- RE and NO3

- RE and SO4
2- production), while the R2 of validation (0.92) 

demonstrated a good generalization capacity of the model (Antwi et al., 2017). The ANN 

developed in this study can be successfully used to predict the performance of full-scale 

MBBR operation in the future using influent pH, DO concentration and influent concen-

trations of S2O3
2- or NO3

- as input factors. Besides, other input parameters, such as the 

temperature or N2 gas production could also be included as input factors to the model. 

In such cases, the number of neurons in the input and the hidden layers would change 

and the model should be trained offline to accommodate the new data set.  

In practical situations, the ANN model can be trained using real-time data from the pro-

cess and merged with previously recorded data in offline or online mode. In such cases, 

the software can be programmed to monitor the performance of the MBBR in real time 

and generate a set of signals that will raise an alarm to the plant operator about the faults 

that are occurring and enable suitable changes in the operational parameters to prevent 

failure of the MBBR using a set-point tracking control loop (M. E. López et al., 2017; 

Sadeghassadi et al., 2018). 

4.5 Conclusions 

Based on this study, the MBBR is a robust biofilm system able to sustain anoxic S2O3
2- 

oxidation under severe NO3
- limitation (feed N/S ratio 0.1). The SO-NR biofilm in the 

MBBR demonstrated high resiliency, being able to recover the S2O3
2- RE from 37% to 

94% within two days after increasing the feed N/S ratio from 0.1 to 0.5. The rmax and Ks 

of the NR-SO biofilm in the MBBR at a N/S ratio of 0.5 after severe NO3
- limitation were 

1.3-fold and 30-fold, respectively, higher than those at the same N/S ratio prior to culti-

vation at lower N/S ratios. Nevertheless, long-term operation at low N/S ratios reduced 

the amount of active SO-NR biomass in the system. Biomass sloughing due to long-term 

NO3
- limitation sustained the growth of heterotrophic bacteria in the MBBR. An ANN 
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model coupled to a sensitivity analysis was able to predict and describe the effect of NO3
- 

limited conditions on the MBBR performance. 
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Removal of H2S from gas streams using NO3
--containing synthetic wastewater was in-

vestigated in an anoxic biotrickling filter (BTF) at feed N/S ratios of 1.2-1.7 mol mol-1 with 

an initial nominal empty bed residence time of 3.5 min and a hydraulic retention time of 

115 min. During 108 days of operation under autotrophic conditions, the BTF showed a 

maximum elimination capacity (EC) of 19.2 g S m-3 h-1 and H2S removal efficiency (RE) 

above 99%. Excess biofilm growth reduced the HRT from 115 to 19 min and decreased 

the desulfurization efficiency of the BTF. When the BTF was operated under mixotrophic 

conditions by adding organic carbon (10.2 g acetate m-3 h-1) to the synthetic wastewater, 

the H2S EC decreased from 16.4 to 13.1 g S m-3 h-1, while the NO3
- EC increased from 

9.9 to 11.1 g NO3
--N m-3 h-1, respectively. Thiobacillus sp. (98-100% similarity) was the 

only sulfur-oxidizing nitrate-reducing bacterium detected in the BTF biofilm, while the 

increased abundance of heterotrophic denitrifiers, i.e. Brevundimonas sp. and Rhodocy-

clales, increased the consumed N/S ratio during BTF operation. Residence time distri-

bution tests showed that biomass accumulation during BTF operation reduced gas and 

liquid retention times by 17.1% and 83.5%, respectively.  

5.1 Introduction 

Hydrogen sulfide (H2S) is generated by many industrial activities, livestock operations 

and anaerobic digestion of wastes (Kanjanarong et al., 2017; Pokorna and Zabranska, 

2015). It is harmful to human health at 100 ppmv (OSHA, 2005) and causes corrosion to 

equipment, e.g. pipelines, cogeneration engines and biogas distribution units (Soreanu 

et al., 2008). Particularly, H2S needs to be removed from biogas to obtain a high quality, 

safe and convenient energy source from the anaerobic digestion of organic waste. The 

H2S concentrations must be less than 1000 ppmv for direct combustion of biogas, 

whereas for the application as a fuel in internal combustion engines or compressed nat-

ural gas production (CNG), the H2S concentration must be less than 100 ppmv and 16 

ppmv, respectively (Khanal and Li, 2017).  

The use of anoxic biotrickling filters (BTF) for H2S removal has received widespread 

industrial attention in the last few decades (Soreanu et al., 2009, 2008) as more environ-

mentally friendly and cost-effective technologies than the conventional physico-chemical 

methods such as chemical precipitation and scrubbing (Almenglo et al., 2016b; Fernán-

dez et al., 2014). Anoxic H2S oxidation via autotrophic denitrification proceeds according 

to Eqs. (5.1) and (5.2) by sulfur-oxidizing nitrate-reducing (SO-NR) bacteria (Mora et al., 

2014): 

HS- + 1.23 NO3
- + 0.093 NH4

+ + 0.438 HCO3
- + 0.573 H+ + 0.027 CO2 → 0.093 C5H7O2N 

+ 0.614 N2 + SO4
2- + 0.866 H2O       (5.1) 
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HS- + 0.350 NO3
- + 0.013 NH4

+ + 0.059 HCO3
- + 1.4 H+ + 0.004 CO2 → 0.013 C5H7O2N 

+ 0.175 N2 + S0 + 1.21 H2O        (5.2) 

In recent years, H2S removal in anoxic BTFs with recycling of the liquid medium has 

been studied at the laboratory-scale. In these studies, the authors have tested the per-

formance of the BTF under the influence of different parameters and operational strate-

gies such as the use of different packing materials, gas-liquid flow patterns, mode of 

reactor start-up and the effect of inlet H2S concentrations (Table 5.1). When NO3
- is sup-

plied in batch feeding mode, the H2S RE decreases once NO3
- is completely consumed 

(Fernández et al., 2014; Soreanu et al., 2008). This leads to H2S fluctuations during BTF 

operation which affects the stability of the BTF performance during long-term operation. 

Continuous NO3
- supply can be applied to overcome the fluctuations typically observed 

in H2S removal during BTF operation and reduce stress on microbial population due to 

NO3
- starvation during discontinuous dosing (Almenglo et al., 2016c). López et al. (2018) 

showed that a feedforward control of NO3
- dosing significantly reduces the impact of H2S 

load fluctuation to the anoxic BTF performance, resulting in stable H2S removal. In con-

trast, Li et al. (2016) observed no significant effects of the NO3
- supplying strategy on 

H2S removal at N/S ratios ranging from 0.25 to 1.0 and a constant H2S concentration of 

~1600 ppmv. Additional research on the effects of H2S concentration, N/S ratio and mi-

crobial community composition on anoxic desulfurization in BTF are still required. 

Using chemical nitrate sources (e.g. NaNO3 and KNO3) increases the operating costs 

(Cano et al., 2018). Hence, a continuous system for H2S removal from gas stream (e.g. 

biogas) using nitrified/NO3
--containing wastewater would be a sustainable option, partic-

ularly if the H2S treatment plant is located nearby a nitrification bioreactor (Cano et al., 

2018). Since, some nitrified/NO3
- contaminated wastewaters such as swine wastewaters, 

and effluents from nitrification units or fecal sludge treatment (Forbis-Stokes et al., 2018; 

Hunt et al., 2009; Jiang et al., 2013; Qian et al., 2015) can also contain residual organics, 

the effect of organic compound on the performance of a BTF relying on the activity of 

autotrophic microorganisms needs to be investigated. The main objective of this study 

was to evaluate the capability of an anoxic BTF for H2S removal with continuous NO3
- 

feeding under autotrophic and mixotrophic conditions at (i) different H2S concentrations 

(from 100 to 500 ppmv), (ii) different N/S ratios (1.2 and 1.7 mol mol-1), and (iii) a feed 

acetate (CH3COO-) concentration of (51.4 ± 2.8 mg L-1).  
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Table 5.1. H2S removal selected anoxic biofilter/biotrickling filter studies conducted at different operational parameters. 

Packing 

materials 

Bed 

vol-

ume 

(L) 

EBRT 

(min) 

H2S (ppmv) H2S ILb (g 

S m-3 h-1) 

The maximum 

ECb (g S m-3 h-1) 

Gas flow 

rate (L h-1) 

NO3
- 

(mg L-1) 

Trickling 

velocity 

(m h-1) 

N/S ratio pH of Liquid 

medium  

Tempera-

ture (°C) 

References 

Plastic fi-

ber 

12.0 5-16 1000-4000 1-31 11.7 25-75 300-

1800c  

1.7 N.D. d 6.5 23 ± 2 Soreanu et 

al. (2008a)  

Pall rings  2.40 2-17 1400-

14600 

9-201 170 8.4-60 50-600c 2.3-20.6 0.7-1.5 7.0 29 ± 1 Fernández 

et al. (2013) 

OPUFa 2.40 2-6 850-8500 6-201 170 60 500-

2400c 

2.3-20.6 0.4-1.6 7.3-7.5 15-36 Fernández 

et al. (2014) 

Concrete 

waste 

7.85 1-5 25-1100 2-38 30.3 94-470 N.D.d 0.01e 0.4-1.6 7.0-9.0 N.D. d Jaber et al. 

(2017) 

PUFa 2.11 3 100-500 3-20 19.2 60 12-64 0.22 1.2-1.7 7.0 ± 2.0 24 ± 2 This study 

Note: aOPUF and PUF = open-polyurethane foam and polyurethane foam, respectively 
bIL and EC = inlet loading rate and elimination capacity, respectively 
cFresh NO3

- was supplied once after NO3
- in liquid medium was completely consumed 

dN.D. = no data availablee the liquid was trickled for 5 min each hour 
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5.2 Materials and methods 

5.2.1 Synthetic nitrified wastewater 

The synthetic nitrified wastewater used as the BTF medium had the following chemical 

composition (per liter): 0.07-0.46 g KNO3, 1 g NaHCO3, 0.2 g KH2PO4, 0.1 g NH4Cl, 0.08 

g MgSO4·7H2O, 1 mL FeSO4·7H2O solution and 0.2 mL of trace element solution as 

described by Zou et al. (2016). Sodium acetate (230 g CH3COONa3H2O L-1) was added 

as a model organic compound during the mixotrophic operation due to its ease of use 

and measurement. The pH of the synthetic wastewater was adjusted to ~7.0 with 37% 

HCl.  

5.2.2 Source of inoculum and immobilization of biomass in the BTF 

The inoculum was biofilm-attached K1 carriers (2.17 ± 0.15 VSS carrier-1 and VSS/TSS 

ratio of 0.76) collected from a Thiobacillus-dominated lab-scale moving bed biofilm reac-

tor (MBBR) previously operated for anoxic thiosulfate (S2O3
2-) oxidation (Khanongnuch 

et al., 2019). The inoculation was performed in a 5-L Schott-Duran bottle filled with 1.5 L 

of the polyurethane foam (PUF) cubes and 80 pieces of biofilm-attached K1 carriers. The 

bottle was filled with 3 L medium with 650 mg S2O3
2--S L-1 and 140 mg NO3

--N L-1, re-

spectively, and purged with N2 gas for 10 min. After 14-day incubation at room tempera-

ture (22 ± 2 °C), the incubated PUF cubes were mixed with new PUF cubes and added 

to the BTF to obtain a bed height of 30 cm.  

5.2.3 Bioreactor set-up and operation 

The laboratory-scale BTF used in this study (Figure 5.1) was made of glass (Glass dis-

covery, The Netherlands) and had an inner diameter and a bed height of 12 and 30 cm, 

respectively. The BTF packed-bed comprised of 264 pieces of PUF cubes (BVB Sub-

strate, The Netherlands) with a cube size of 8 cm3, a void ratio of 0.98 and a density of 

28 kg m-3, corresponding to total bed volume of 2.11 L occupied by PUF.  
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Figure 5.1. Schematic of the anoxic biotrickling filter for H2S removal. Dotted and continuous 
lines represent the gas and liquid flows, respectively. 

The gas stream fed to the BTF consisted of a mixture of N2 gas and H2S generated using 

solutions of Na2S (0.1-0.3 N) and H2SO4 (1 N). The desired H2S concentrations were 

obtained by controlling Na2S concentrations and dripping rates using a peristaltic pump 

(Cole-Parmer, USA). The gas stream was fed to the BTF in counter-current mode, con-

trolled by a Delta Smart II Mass Flow controller (Brooks instrument, USA) connected to 

a flow meter. The gas flow rate was maintained at 60 L h-1, corresponding to a theoretical 

empty bed residence time (EBRT) of 3 min. The synthetic wastewater and recirculated 
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effluent were fed to the BTF from the top at a flow rate of 10 L d-1 and 50 L d-1 (Masterflex, 

Cole-Parmer, USA), respectively, to obtain a total trickling liquid flow rate of 60 L d-1.  

5.2.4 Residence time distribution (RTD) tests 

The nominal EBRT and hydraulic residence time (HRT) of the BTF before and after the 

experiments (days -16 and 139, respectively) was estimated by residence time distribu-

tion (RTD) test and calculation described by Fogler (2016). The Bodenstein number (Bo) 

to characterize the axial dispersion in the BTF was determined based on the RTD test 

data. A potassium bromide solution (1 g KBr L-1) was used as a tracer for determining 

the liquid residence time using the pulse input method as described by Fogler (2016). 

The KBr solution was injected through the influent and the KBr concentration in the ef-

fluent was monitored using a Cond3310 meter fitted with a TetraCon® 325 probe (WTW, 

Germany). To determine the gas residence time, CH4 was used as a tracer and pulse 

injected to the influent gas stream. Effluent gas samples were collected once every 0.5 

min to measure the CH4 concentration using a SCION 456-GC gas chromatograph 

equipped with a PORABOND-Q capillary column (25 m × 0.53 mm × 10 mm) and a 

thermal conductivity detector (TCD) (SCION instrument, United Kingdom). The temper-

ature of the oven and the detector were 25 and 140 °C, respectively. Helium was used 

as the carrier gas at a flow rate of 30 mL min-1. The hydraulic retention time of NO3
- in 

the BTF was determined using Eqs. (5.3)-(5.5). 

RTD function (E(t)) = 
Ci

∑ Ci∆ti
         (5.3) 

Mean residence time (tm) = 
∑ tiCi∆ti

∑ Ci∆ti
         (5.4) 

Experimental amount of outlet tracer = ∑ Ci∆ti     (5.5) 

where 𝐶𝑖 is KCl concentration in the effluent (mg L-1) and 𝑡𝑖  is the measuring time (h). 

The results obtained from the RTD tests were used to determine the Peclet number (Per) 

is referred as Bodenstein number (Bo) (Fogler, 2016) that describes the mixing charac-

teristics indicating the axial dispersion of the BTF as shown in Eq. (5.6), respectively.  

σ2

tm
2 = 

2

Per
-

2

Per
2 (1-e-Per)         (5.6) 

where 𝜎2 and 𝑡𝑚 are the variance and mean residence time of the RTD, respectively. 

The BTF was operated for 154 days in five different experimental phases (P1, P2, P3, 

P4 and P5) at a temperature of 24 (± 1) °C (Table 5.2). In phase P1, the BTF was filled 
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with 4 L of the synthetic wastewater containing initial concentrations of 67.4 (± 8.4) mg 

S2O3
2--S L-1 and 15.5 (± 1.0) mg NO3

--N L-1 and operated in batch mode for 11 days (days 

-15 to 0) to allow biofilm formation on the PUF cubes. From day 1 onwards (phase P2), 

the retaining synthetic wastewater was drained out from the BTF. The gas stream con-

taining H2S and the synthetic wastewater were continuously fed to the BTF. The inlet 

H2S concentration in phase P2 was 111 (± 15) ppmv and was increased to 434 (± 28) 

ppmv from phase P3 onwards. NO3
- concentrations were gradually increased from 12.2 

(± 2.1) mg NO3
--N L-1 in phase P2 to 62.1 (± 2.0) mg NO3

--N L-1 in phase P5 (Table 5.2). 

In phase P5, acetate was added to the synthetic wastewater at a concentration of 51.4 

(± 2.8) mg L-1. Sulfur, nitrogen and carbon mass balances (Table 5.3) were performed 

based on the experimental data obtained during 3 days of steady-state observed in each 

experimental phase. Data from both gas and liquid phases were considered for sulfur 

and carbon mass balances, while nitrogen mass balance was based only on the liquid 

phase. 

Table 5.2. Operational and influent characteristics during different phases of the biotrickling 
filter operation. 

Phase P1 P2 P3 P4 P5 

Time (days) -15-0 1-22 23-84 85-108 109-138 

Feeding mode Batch  Continuous  Continuous  Continuous  Continuous  

H2S (ppmv) - 111 (± 15) 434 (± 28) 433 (± 44) 428 (± 30) 

ILa (g S m-3 h-1)  - 3.5-5.6 14.6-19.3 14.2-20.0 15.1-19.2 

S2O3
2--S (mg S L-1) 67.4 (± 8.4) - - - - 

NO3
--N (mg N L-1) 15.5 (± 1.0) 12.2 (± 2.1) 46.9 (± 2.6) 62.2 (± 1.8) 62.1 (± 2.0) 

ILa (g N m-3 h-1) - 1.8-2.9 8.3-10.2 11.8-12.9 11.4-15.0 

CH3COO- (mg L-1) - - - - 51.4 (± 2.8) 

Feed N/S ratio  

(mol mol-1) 

0.53 (± 0.01) 1.18 (± 0.09) 1.21 (±0.05) 1.68 (± 0.18) 1.66 (± 0.12) 

Note: a IL inlet loading rate  
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Table 5.3. Mass balances of sulfur, nitrogen and carbon in the anoxic biotrickling filter (BTF) during different experimental phases (P2-P5) of BTF 
operation. 

EPa Day Sulfur (mg S d-1) Nitrogen (mg N d-1) Carbon (mg C d-1) 

Influent Effluent  Influent Effluent  Influent Effluent  

 H2S  SO4
2- S2O3

2- H2S SO4
2- S2O3

2- S2- ΔSb NO3
- NO3

- NO2
- ΔNb HCO3

- CH3COO- HCO3
- CH3COO- CO2 ΔCb 

P2 20-22 226 256 3 0 477 30 0 -21 143 32 35 75 904 - 493 - 1 410 

P3 48-50 867 217 3 55 909 22 20 82 474 50 2 422 979 - 502 - 13 442 

P3 81-83 847 217 3 243 901 14 22 -112 484 27 2 455 914 - 524 - 36 354 

P4 104-106 900 210 3 89 943 4 6 71 627 140 8 479 899 - 582 - 219 98 

P5 135-137 844 224 3 265 728 3 12 63 640 18 5 617 920 227 748 2 1446 -1048 

Note: aEP = experimental phase 
bΔ = total influent load - total effluent load (ΔS and ΔC= estimated S0 production and estimated carbon consumed, respectively, considering 
sulfur and carbon in both gas and liquid streams, while ΔN = estimated N2 production estimated from nitrogen removed from liquid stream.) 
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5.2.5 Batch activity tests 

Batch tests were performed at the end of each experimental phase to determine the SO-

NR activity of the biomass attached on the PUF cubes. Tests I, II and III were conducted 

under autotrophic conditions with biomass collected during phases P3, P4 and P5 of BTF 

operation, respectively (Table 5.4). In addition, biomass collected during phase P5 was 

also tested with acetate in the medium (test IV). Three pieces of PUF cubes collected 

from the BTF were immediately cut into small pieces (2 × 0.67 × 0.67 cm3) using a sterile 

surgical blade and divided into two 250-mL batch bottles (working volume of 200 mL), 

resulting in a total PUF volume of 12.1 (± 0.6) cm3 per bottle. Na2S·9H2O was added as 

the sulfide source to the synthetic nitrified wastewater. The bottles were purged with N2 

gas to ensure anoxic conditions and incubated at 22 (± 2) °C and 65 rpm mixing. 

5.2.6 Microbial community analysis  

Two pieces of PUF cubes were collected from the BTF at the end of each experimental 

phase (days 9, 25, 72, 112, and 138) for the microbial community analysis using poly-

merase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). To detach 

the bacterial cells from the PUF, each PUF cube was immersed in 30 mL of sterile phos-

phate buffer solution (8.0 g L-1 NaCl, 0.20 g L-1 KCl, 0.97 g L-1 HPO4
2- and 0.17 g L-1 

H2PO4) and sonicated for 2 min. The solution was subsequently filtered through a Cyclo-

pore track etched 0.2 µm membrane (Whatman, USA). The membranes containing the 

retained biomass were stored at -20 ºC for DNA extraction using the DNeasy® Pow-

erSoil® Kit (QIAGEN, Germany). The procedure of polymerase chain reaction-denatur-

ing gradient gel electrophoresis (PCR-DGGE) and reamplification of cut DGGE bands 

were performed according to Kolehmainen et al. (2007). DNA sequencing was performed 

by Marcrogen Europe Inc. (The Netherlands). The obtained sequencing data was ana-

lyzed using the BioEdit software (version 7.2.5) and compared with sequences in the 

National Center for Biotechnology Information (NCBI) database 

(https://blast.ncbi.nlm.nih.gov) using the Nucleotide BLAST (blastn) search tool.  

5.2.7 Analytical methods  

The liquid samples were filtered through 0.45 µm syringe filters (Sigma-Aldrich, USA) 

prior measurement of NO3
-, S2O3

2- and SO4
2- concentrations using ion chromatography 

with a Dionex ICS-1000 (Thermo Fisher, USA) as described by Villa-Gomez et al. (2011). 

The pH of the solutions was measured using a Präzision-pH-Meter E510pH (Metrohm, 

Switzerland) equipped with a SenTix 21 pH electrode (WTW, Germany). The concentra-

tions of total sulfide (S2-), nitrite (NO2
-) and COD were measured using colorimetric meth-

ods (APHA/AWWA/WEF, 1999) with a Lamda 365 UV/VIS spectrophotometer (Perkin-
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Elmer, USA). Alkalinity was measured by potentiometric titration using a Titrino plus 848 

titration meter equipped with a Metrohm 801 Stirrer (Metrohm AG, Switzerland). Acetate 

concentrations were measured using a Varian 430-GC gas chromatograph (Varian Inc., 

USA) as described by Eregowda et al. (2018). Gas composition (CH4, CO2 and N2) was 

measured using a SCION 456-GC gas chromatograph as described in the Supplemen-

tary material. H2S and O2 concentrations in the gas phase were measured using a Dräger 

X-am® 7000 gas detector (Dräger, Germany). 

Table 5.4. Specific sulfide and nitrate removal rate of biomass-attached polyurethane foam 
(PUF) cubes in the batch activity tests. 

Daya No. Initial concentrations Specific removal rates 

 S2- (mg S 

L-1) 

NO3
--N 

(mg N L-1) 

CH3COO- 

(mg L-1) 

S2- (g S m
PUF
-3  

h-1) 

NO3
- (g N 

m
PUF
-3  h-1) 

83 I 161 (± 16) 75.5 (± 1.1) - 9.6 (± 1.2) 1.8 (± 0.4) 

108 II 124 (± 8) 94.5 (± 2.1) - 25.9 (± 4.0) 23.1 (± 3.2) 

137 III 78.2 (± 1.7) 74.1 (± 5.0) - 1131 (± 10) 359 (± 52) 

137 IV 75.0 (± 0.2) 72.1 (± 4.4) 52.5 (± 3.5) 1061 (± 35) 1400 (± 57) 

Note: a day of biomass harvesting 

5.2.8 Data analysis 

The statistical differences in the performance parameters during each phase of BTF op-

eration, i.e. EC and RE, were determined using a one-way analysis of variance (ANOVA) 

in combination with Tukey’s multiple comparison test (Minitab Inc., USA). The significant 

difference was considered at 95% (P ≤ 0.05).  

5.3 Results 

5.3.1 H2S and NO3
- degradation behavior in the anoxic BTF  

At the start of the experiments (day -16), based on the results of the RTD test the mean 

residence times of gas (EBRT) and liquid (HRT) in the BTF were 3.5 and 115 min, re-

spectively (Figures 5.2 and 5.3). The initial Bodenstein number (Bo) in the BTF was 11.4, 

indicating a near typical plug-flow behavior (Bo >10) (Kim and Deshusses, 2003). How-

ever, EBRT and HRT had decreased to 2.9 and 19 min, respectively, by the end of the 

experiment (Figures 5.2 and 5.3). As a result, Bo decreased to 9.4, which indicates that 

an axial dispersion of the gas phase, i.e. a nonuniform velocity profile, occurred in the 

BTF at the end of this study. 



107 

 

 

 

Figure 5.2. Residence time distribution (RTD) curves for the anoxic biotrickling filter obtained 
at a gas flow rate of 60 L h-1. 

 

 

Figure 5.3. Residence time distribution (RTD) curves for the anoxic biotrickling filter (BTF) 
obtained with a liquid flow rate of 10 L d-1 (a) before starting the experiment (day -16) and (b) 
after finishing the experiment (day 139). 

During phase P1 (days -15-0), the initial biofilm formation occurred and the obtained 

S2O3
2- and NO3

- RE were 65.2% and 94.2%, respectively (Figures 5.4c and e). The ef-

fluent pH increased from 7.2 to 7.8 between day -15 and day -13 and thereafter it grad-

ually decreased to 7.0 (Figure 5.4a). In phase P2 (days 1-22), the H2S feed was 111 (± 

 

 

(a) 

(b) 
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15) ppmv, corresponding to an inlet loading rate (IL) of 3.5-5.6 g S m-3 h-1 and a N/S ratio 

of 1.18. The H2S RE reached 100%, whereas the NO3
- RE fluctuated between 26 and 

82%. NO2
- concentration, which was 22 mg NO2

--N L-1 on day 0 and the concentration 

gradually decreased to 2.5 mg NO2
--N L-1 by day 22. In phase P2, approximately 40% of 

the feed NO3
- was converted to N2 (Figure 5.5b). During phase P2, the effluent pH was 

8.5 (± 0.3) and the effluent alkalinity concentration decreased from 555 mg HCO3
- L-1 

(day 1) to 188 mg HCO3
- L-1 (day 22, Figure 5.4b).  

 

Figure 5.4. Time course profiles of influent and effluent pH, alkalinity, H2S, S2-, SO4
2-, S2O3

2-

, NO3-, NO2- and acetate concentrations and removal efficiency (RE) of H2S and NO3
- in the 

anoxic biotrickling filter. 
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Figure 5.5. N/S ratios and the mass balances of sulfur, nitrogen and carbon during BTF 
operation. % S0 production and % carbon consumed in the BTF was based on the influent 
and effluent concentrations of sulfur or carbon, while % N2 production was estimated from 
NO3

- and NO2
- in the liquid phase. 

In phase P3 (days 23-84), the inlet H2S was increased to 434 (± 28) ppmv (IL of 14.6-

19.3 g S m-3 h-1), while NO3
- was kept constant (feed N/S ratio of 1.21). The effluent 

alkalinity was 269 (± 37) mg HCO3
- L-1, while pH remained stable at 7.9 (± 0.2) from 

phase P3 onwards (Figure 5.4a). During days 25-50, the H2S RE was 98.2 (± 2.6)%, and 

a maximum elimination capacity (EC) of 19.2 g S m-3 h-1 was achieved on day 42. The 

consumed N/S ratio was 1.15 (± 0.06) and 11.2% of the fed H2S was partially oxidized 

to S0 (Figure 5.5). During days 51-66, the BTF was not monitored due to technical prob-

lems with the gas detector. Subsequently, the H2S RE fluctuated in a range of 58-85% 

and the H2S EC (12.4 ± 1.8 g S m-3 h-1) was lower than that in phase P2 (Figure 5.6a), 

while the NO3
- RE was >96% during days 67-83 (Figures 5.4c and e). The consumed 

N/S ratio (1.60 ± 0.23) was higher than the one observed during days 25-50 (Figure 5.5). 

NO2
- was not detected in the effluent (<1 mg NO2

--N L-1) from phase P3 onwards (Figure 

5.4e). 
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Figure 5.6. Elimination capacities (EC) of H2S and NO3
- during different experimental phases 

(P1-P5) of anoxic biotrickling filter operation. 

To recover the H2S RE that decreased during days 67-83 (phase P3), the influent NO3
- 

IL was increased from 9.2 (± 0.55) (phase P3) to 12.3 (± 0.4) g N m-3 h-1 in phase P4 

(Table 5.2). As a result, the average H2S RE increased to 91.9 (± 3.7)% (EC of 16.4 ± 

2.7 g S m-3 h-1), while the NO3
- RE slightly decreased to 82.1 ± 3.7% (days 85-108, Figure 

5.4d). However, increasing NO3
- IL increased the EC from 8.6 (± 0.6) in phase P3 to 10.0 
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(± 0.7) g N m-3 h-1 in phase P4. NO3
- was partially reduced to NO2

- (Table 5.3) and the 

estimated N2 production (75%) was lower compared to phase P3 and P5 (Figure 5.5). 

Compared to the biomass taken from the BTF on day 83 (phase 3), the biomass collected 

on day 108 resulted in 2.7 and 12.8 times higher S2- and NO3
- removal rates, respectively 

(Table 5.4).  

During phase P5, the feed acetate (10.2 g m-3 h-1) was completely removed from the first 

day of the addition (Figure 5.4f). However, the H2S RE decreased from 96.0% on day 

113 to 67.3% on day 116. The NO3
- RE and the maximum EC of the BTF in phase P5 

were 96.5 (± 3.8)% and 11.1 (± 3.2) g NO3
--N m-3 h-1 (day 134), respectively. The effluent 

alkalinity increased from 290 (± 18) mg HCO3
- L-1 (phase P4) to 366 (± 33) mg HCO3

- L-1 

(phase P5) and the carbon production rate in the effluent of both gas and liquid phases 

increased to much higher values than those of the influent (Figure 5.5b). In batch tests 

conducted with biomass collected from phase P5 (day 137), the test without acetate ad-

dition (Table 5.4, test III) showed ~4 times lower specific NO3
- removal rates compared 

to the test with acetate addition (Table 5.4, test IV). Besides, the specific S2- removal rate 

in the test without acetate (1131 ± 10 g S m
PUF

-3  h-1) was slightly higher than the test with 

acetate (1061 ± 35 g S m
PUF

-3  h-1) (Table 5.4). 

5.3.2 Microbial community in the BTF 

The microbial community composition demonstrated by a DGGE profile showed an in-

crease of in the number of DGGE bands during the BTF operation (Figure 5.7). Bacteria 

having 98-100% similarity to Thiobacillus sp. (bands 1, 9, 10, 12, 13, and 16) were dom-

inant in the DGGE profiles of all experimental phases. The DGGE and sequencing re-

sults also indicated that Stenotrophomonas sp. (bands 3 and 14) and Rhodobacter sp. 

(bands 4, 15, and 17) were present in the culture during all the experimental phases of 

the BTF operation (Figure 5.7). Conversely, Chryseobacterium sp. (band 6) was ob-

served only in the beginning (day 1). From day 84 onwards (the end of phase P3), the 

new DGGE bands were observed in the DGGE profile, i.e. Brevundimonas sp. (band 2), 

Rhodocyclales bacterium (band 11) and Bacteroidetes bacterium (bands 7 and 8). 

 

 

.
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Figure 5.7. Denaturing gradient gel electrophoresis (DGGE) profiles (left) and identification of the sequenced DGGE bands (right) of the biomass 
samples collected during the BTF operation. 
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5.4 Discussion 

5.4.1 Effect of N/S ratio and organic carbon addition on H2S removal in the 

anoxic BTF 

The maximum H2S EC of 19.2 g S m-3 h-1 (99% RE) obtained in this study was higher 

than the EC values reported in anoxic BTFs packed with lava rock (9.1 g S m-3 h-1) 

(Soreanu et al., 2009) and plastic fibers (11.7 g S m-3 h-1) (Soreanu et al., 2008), which 

were operated at ILs ranging from 2.0 to 23.5 g S m-3 h-1. However, the H2S EC in our 

study was lower than those observed in anoxic BTFs using open-pore PUF (Almenglo et 

al., 2016a; Fernández et al., 2014), pall ring (Fernández et al., 2013) and concrete waste 

(Jaber et al., 2017) (Table 5.1) as the packing material. In literature, BTFs in those stud-

ies were operated at very high H2S IL (up to 200 g S m-3 h-1) and a temperature of 30 °C, 

which is optimal for the activity of Thiobacillus sp. (Di Capua et al., 2016). As the EC 

trends during stable BTF operation (phase P1, P2 and P3) were very close to the 100% 

performance line (Figure 5.6a), probably higher ECs could still be attained if higher ILs 

were applied. 

The complete H2S oxidation to SO4
2- in the presence of NO3

- as the electron acceptor 

(Eq. 5.1) results in the production of 1.26 g SO4
2-/g NO3

- (stoichiometric N/S ratio of 1.2 

mol mol-1), whereas 1.47 g S0/g NO3
- (stoichiometric N/S ratio of 0.35) is produced during 

partial H2S oxidation to elemental sulfur (Eq. 5.2). In this study, SO4
2- was the main oxi-

dation product during the entire BTF operation and its concentration in the effluent was 

close to the stoichiometric SO4
2- production (Eq. 5.1). Jaber et al. (2017) studied anoxic 

biofilters packed with concrete waste at N/S ratios between 0.4 and 1.6 and observed 

that 55-57% of the inlet H2S was oxidized to SO4
2- at all tested N/S ratios. Other studies 

reported that systems operated at N/S ratios >1.6 mainly produce SO4
2- (S0 production 

<15%), while S0 production in the range of 50-70% is typically observed at N/S ratios 

<0.7 (Fernández et al., 2014, 2013; Montebello et al., 2012).  

The addition of organic carbon in the form of acetate (phase P5) led to mixotrophic con-

ditions in the BTF which resulted in insufficient NO3
- availability for H2S removal by au-

totrophs. Conversely, acetate addition had a positive effect on NO3
- removal, as the re-

sidual NO3
- present in phase P4 was almost completely consumed via heterotrophic de-

nitrification during phase P5 (Figures 5.4 and 5.5b). The batch activity tests also showed 

no substantial difference in the sulfide oxidation activity of the biomass cultivated in the 

BTF with and without acetate supplementation (Table 5.4 and Figure 5.8). This indicates 

that SO-NR bacteria were not inhibited by the growth of heterotrophic denitrifiers and 
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were abundantly present in the BTF biofilm during phase P5, as confirmed by the micro-

bial community composition on day 138 (Figure 5.7). The consumption of residual NO3
- 

at the beginning of phase P5 occurred simultaneously with a decrease in H2S RE (day 

116), indicating the fact that a shortage of NO3
- decreased the desulfurization efficiency 

under mixotrophic conditions. Besides acting as an electron donor for denitrification, ac-

etate addition also increases the alkalinity of the reactor (1.60 g HCO3
-/g NO3

-) according 

to the following equation (Bayrakdar et al., 2016): 

NO3
- + 0.63CH3COO- + 0.37CO2 → 0.5N2 + 0.13H2O + 1.63HCO3

-  (5.7) 

During phase P5, heterotrophic denitrification using acetate produced a large amount of 

alkalinity and CO2 (Table 2), which act as a buffer and inorganic carbon source for the 

autotrophic microorganisms (Eq. 5.1). 

 

Figure 5.8. Profiles of sulfide (S2-), nitrate (NO3
-), nitrite (NO2

-) and sulfate (SO4
2-) concen-

trations in the batch activity tests with biofilm-attached PUF cubes collected from the BTF on 
days 83 (a), 108 (b) and 137 (c and d; with and without acetate addition, respectively). 
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5.4.2 Effect of substrate loads on microbial community profile in the an-

oxic BTF performance 

Changes in microbial community profile were observed every time operational conditions 

were changed. Increase of both H2S and NO3
- ILs in phase P3 led to the appearance of 

new DGGE bands from day 84 onwards (Figure 5.7) representing Brevundimonas sp., 

Rhodocyclales bacterium and Bacteroidetes bacterium which are known heterotrophic 

denitrifiers (Tsubouchi et al., 2014). These microorganisms could compete for NO3
- as 

electron acceptor with autotrophic denitrifiers in the anoxic BTF resulting in the decrease 

of H2S RE in the end of phase P3 (Figure 5.4d). Huang et al. (2017, 2015) who studied 

the microbial community structure in five continuous stirred tank reactors (Huang et al., 

2015) and three anaerobic sludge blanket reactors (Huang et al., 2017) for mixotrophic 

denitrifying sulfide removal also observed that microbial community was different at dif-

ferent NO3
- and acetate ILs applied. Huang et al. (2017, 2015) reported that the optimized 

N/S molar ratio of 1.2 provided S0 production of 75%, while the SO4
2- was the main prod-

uct of sulfide oxidation when the reactors were fed with higher or lower inlet NO3
- and 

acetate loads (N/S ratio 0.4 and 1.8). Those studies (Huang et al., 2017, 2015) confirm 

our results: (i) the evolution of microbial community was due to the increase of H2S and 

NO3
- ILs from phase P2 to P3 (Table 5.2) and (ii) H2S oxidation to S0 or SO4

2- was inde-

pendent from N/S ratios, but related on NO3
- and H2S ILs, resulting in decreasing in %S0 

production at the end of phase 3 which was likely caused by the insufficient NO3
- IL 

(Figure 5.5).  

Thiobacillus sp. was the only SO-NR bacterium observed in the BTF and therefore likely 

responsible for the simultaneous removal of H2S and NO3
- as described by Eq. (5.1) and 

(2). Based on those equations, Thiobacillus sp. also produced biomass by using bicar-

bonate as carbon source under autotrophic denitrification as evidenced by lower carbon 

in the effluents than in the influents during phases P2-P4 (Figure 5.5). Stenotrophomo-

nas sp., a heterotrophic denitrifier detected since the first day of BTF operation, can 

survive by utilizing organic compounds excreted by autotrophs and microbial biomass 

(C5H7O2N) produced during H2S oxidation via autotrophic denitrification (Eq. 5.1) (Huber 

et al., 2016). Heterotrophic denitrifiers have also been detected from autotrophic systems, 

further verifying that their activity can be sustained by the organic material excreted by 

Thiobacillus sp. (Di Capua et al., 2017a, 2017b, 2017c). Figure 5.5 shows that carbon 

was bound to the biomass during the BTF operation under autotrophic conditions, and 

carbon was released during period P5, when acetate was added to the feed, indicating 

degradation of the previously formed biomass.  
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5.4.3 Effect of gas and liquid retention times on the BTF performance 

During BTF operation, a trickling liquid velocity (TLV) of 0.22 m h -1 (flow rate of 2.5 L h-

1), H2S RE >95% was observed without any operational problems such as clogging and 

bed drying. The TLV applied to the BTF in this study was much lower than those used in 

several previous studies, while gas flow rates were similar (Table 5.1). TLV typically has 

a low impact on the H2S RE of anoxic BTFs as the electron acceptor (NO3
-) is dissolved 

into the liquid phase (Brito et al., 2017; López et al., 2018), although high TLVs (>18.9 

m h-1) could severely impact the BTF performance by generating high pressure drops 

(Fernández et al., 2013) as well as biomass detachment (Fortuny et al., 2011). Biomass 

growth had a strong impact on the HRT of the BTF during the study. Based on the results 

of RTD tests, the HRT at the end of the study (day 139) was six times shorter than the 

initial HRT (day -16) (Figure 5.3), while the gas retention time was less affected (Figure 

5.2). This suggests that the retention time of the liquid (synthetic nitrified wastewater) 

should be increased and optimized during BTF operation to maintain an optimal contact 

time between NO3
- in the liquid phase and H2S in the gas phase. The large decrease in 

the HRT during the study might explain the H2S breakthrough observed at the end of 

phase P3 that required additional NO3
- to maintain high desulfurization efficiency (Fig-

ures 5.4c and e). Conversely, the decrease of the EBRT from 3.5 to 2.9 min had less 

effect on the H2S RE compared to that of the HRT reduction. The EBRTs tested in this 

study were in the range of commonly reported values for BTF operation under both an-

oxic (Table 5.1) and aerobic (Charnnok et al., 2013; Tomas et al., 2009) conditions. In a 

previous study involving mixtures of pollutants, Montebello et al. (2012) reported that a 

decrease of the EBRT in an anoxic BTF had much less effect on the H2E RE than to the 

methylmercaptan (CH3SH) RE due to the higher solubility of H2S compared to that of 

CH3SH.  

5.4.4 Practical implications  

The results from this study showed that H2S removal could be achieved in an anoxic BTF 

using nitrified/NO3
--contaminated wastewater as an electron acceptor. The anoxic BTF 

can be applied for biogas cleaning prior to CO2 removal step or used in combined heat 

and power (CHP) unit without CH4 dilution as N2
 and CO2 production was not significant 

in the system. This study suggested that the BTF can be operated with wastewater con-

taining organic carbon (C/N molar ratio of 0.2) as it is beneficial to increase the NO3
- RE 

via mixotrophic denitrification and provides CO2 as the endogenous carbon source in-

stead of adding an external bicarbonate buffer (Bayrakdar et al., 2016). However, the 

NO3
- IL should be optimized to serve sufficiently for both autotrophic and heterotrophic 

denitrifiers. 
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Acetate is a readily biodegradable organic carbon source that was chosen as a model 

organic compound in this study because it is easily available and measured. However, 

much more recalcitrant and slowly biodegradable organic matter would likely be availa-

ble in the nitrified wastewater after aerobic oxidation. The presence of poorly soluble 

organic matter in the BTF may hamper gas/liquid mass transfer and the SO-NR activity, 

resulting in low H2S and NO3
- removal. Therefore, additional research on the effects of 

slowly biodegradable organic matter on BTF operation is therefore required. 

5.5 Conclusions 

The H2S EC was achieved between 3.5 and 19.2 g S m-3 h-1 (>99% RE) using inlet NO3
- 

loads of 2.9-12.9 NO3
--N m-3 h-1 (N/S ratio=1.2-1.7) in the anoxic BTF. The addition of 

acetate reduced the H2S RE from 92% to 67% and increased NO3
- RE from 86% to 99%. 

Thiobacillus sp. was the sole SO-NR genus present in the biofilm of the BTF in all exper-

imental phases, while populations of Bacteroidetes and Rhodobacter sp. were enhanced 

by acetate addition. Feed N/S ratios >1.7 are recommended for complete H2S oxidation, 

although NO3
- breakthrough in the effluent may occur at inlet loading rates 12.3 (± 0.4) 

g NO3
--N m-3 h-1. Low trickling liquid velocity (0.22 m h-1) led to poor NO3

- distribution and 

reduced the HRT during long-term anoxic BTF operation. 
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The application of an anoxic biotrickling filter (BTF) for H2S removal from contaminated 

gas streams is a promising technology for simultaneous H2S and NO3
- removal. Three 

transient-state conditions, i.e. different liquid flow rates, wet-dry bed operations and H2S 

shock loads, were applied to a laboratory-scale anoxic BTF. In addition, bioaugmentation 

of the BTF with a H2S removing-strain, Paracoccus MAL 1HM19, to enhance the biomass 

stability was investigated. Liquid flow rates (120, 60 and 30 L d-1) affected the pH and 

NO3
- removal efficiency (RE) in the liquid phase. Wet-dry bed operations at 2-2 h and 

24-24 h reduced the H2S elimination capacity (EC) by 60-80%, while the operations at 

1-1 h and 12-12 h had a lower effect on the BTF performance. When the BTF was sub-

jected to H2S shock loads by instantly increasing the gas flow rate (from 60 to 200 L h -1) 

and H2S inlet concentration (from 112 ± 15 to 947 ± 151 ppmv), the BTF still showed a 

good H2S RE (>93%, EC of 37.8 g S m-3 h-1). Bioaugmentation with Paracoccus MAL 

1HM19 enhanced the oxidation of the accumulated S0 to sulfate in the anoxic BTF. 

6.1 Introduction 

Hydrogen sulfide (H2S) is one of the major gaseous pollutants emitted from wastewater 

treatment plants, landfill sites, anaerobic digesters and petroleum refinery processes and 

the H2S concentration can be as high as 10,000 ppmv (Khanal and Li, 2017; Muñoz et 

al., 2015; Yang et al., 2017). H2S causes odor nuisance at concentrations as low as 

0.025 ppmv and represents an immediate hazard to human health at concentrations >600 

ppmv (Yalamanchili and Smith, 2008). Among the different biological techniques for H2S 

removal from waste gas streams, biotrickling filters (BTFs) are widely used because they 

are easy to operate, economically viable and more efficient than conventional biofilters 

(Barbusinski et al., 2017). The major difference is that the trickling liquid in the BTF is 

continuously passed over the filter bed (packed with inert materials) to provide sufficient 

moisture and nutrients for the growth of microorganisms present in the BTF. 

In recent years, H2S removal in anoxic BTFs using nitrate (NO3
-) as an electron acceptor 

has gained increasing interest (Almenglo et al., 2016b; Fernández et al., 2014; Jaber et 

al., 2017; López et al., 2017). NO3
- can be cost-effectively fed to an anoxic BTF by using 

nitrified wastewater as the trickling liquid (Cano et al., 2018), resulting in a potential sus-

tainable technology for combined H2S and NO3
- removal from waste streams. Anoxic 

H2S removal is carried out by sulfur-oxidizing nitrate-reducing (SO-NR) bacteria, accord-

ing to Eqs. (6.1) and (6.2) (Mora et al., 2014): 

: 
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HS- + 1.23 NO3
- + 0.093 NH4

+ + 0.438 HCO3
- + 0.573 H+ + 0.027 CO2 → 0.093 

C5H7O2N + 0.614 N2 + SO4
2- + 0.866 H2O      (6.1) 

HS- + 0.350 NO3
- + 0.013 NH4

+ + 0.059 HCO3
- + 1.4 H+ + 0.004 CO2 → 0.013 C5H7O2N 

+ 0.175 N2 + S0 + 1.21 H2O        (6.2) 

During full-scale BTF operation, unexpected (transient) operating conditions, such as a 

process shut down during weekends, equipment malfunctions, sudden or unexpected 

changes in process conditions, are regularly encountered and can cause irregular inlet 

gas flow rates and variations in the inlet contaminant concentrations. This will affect the 

activity of microorganisms as well as the bioreactor stability (Rodriguez et al., 2014; San-

Valero et al., 2017). Recent studies have investigated the impact of transient conditions, 

such as pollutant shock loads and starvation periods, on the performance of aerobic 

BTFs removing H2S and other gaseous pollutants (Kim et al., 2008; López et al., 2017; 

Mohammad et al., 2017; Rene et al., 2010; Romero-Hernandez et al., 2013). Till to date, 

anoxic BTFs have only been studied under steady-state conditions to evaluate their per-

formance using different packing materials, H2S loading rates, gas flow rates or liquid 

flow rates (Almenglo et al., 2016a; Fernández et al., 2014, 2013; Montebello et al., 2012; 

Soreanu et al., 2009). The response of an anoxic BTF performing simultaneous waste 

gas desulfurization and wastewater denitrification to transient-state operation has, how-

ever, not yet been investigated.  

The present study aimed, therefore, to evaluate the effect of several transient conditions 

on the performance of an anoxic BTF for H2S removal using NO3
--containing trickling 

liquid. Transient-state operation of the anoxic BTF included the application of: (i) different 

liquid flow rates, (ii) wet-dry bed operations, and (iii) H2S shock loads by suddenly in-

creasing both the gas flow rate and the inlet H2S concentration in the gas stream. Fur-

thermore, bioaugmentation of the BTF with a biomass dominated by Paracoccus MAL 

1HM19 was performed to investigate if addition of a SO-NR bacterium enhances the 

biomass stability of an anoxic BTF for simultaneously treating H2S and NO3
- contami-

nated waste streams. 

6.2 Materials and methods 

6.2.1 BTF set-up and synthetic wastewater composition 

The anoxic BTF used in this study was previously operated for 138 days under steady-

state conditions (Khanongnuch et al., 2019). The BTF, having an inner diameter and 

height of 12 and 50 cm, respectively, was packed with polyurethane foam (PUF) cubes 
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(8 cm3 each) to a volume of 2.11 L. The trickling liquid consisted of a NO3
- rich medium 

containing (per 1 L): 0.07-0.46 g KNO3, 1 g NaHCO3, 0.2 g KH2PO4, 0.1 g NH4Cl, 0.08 g 

MgSO4·7H2O, 1 mL FeSO4·7H2O solution (2 mg L-1) and 0.2 mL of trace element solution, 

as described by Khanongnuch et al. (2019). The inlet gas stream consisted of a mixture 

of N2 and synthetic H2S as described by Khanongnuch et al. (2019). 

6.2.2 BTF operation 

The BTF was operated for 78 days to evaluate three different transient-state conditions 

(phases I-III) and investigate the bioaugmentation of the BTF (phase IV) (Figure 6.1). 

Table 6.1 describes the operational conditions tested during each transient-state test 

and normal operation. The latter was applied for 1-4 days to stabilize the BTF perfor-

mance at the end of each transient-state test. Under normal conditions, the BTF was fed 

with an inlet H2S concentration of 116 (±2) ppmv, gas flow rate of 60 L h-1, a feed N/S 

molar ratio of 3 and a tricking liquid flow rate of 60 L d-1. During phases I, II and III, the 

effect of, respectively, the liquid flow rates, wet-dry bed operation and H2S shock load 

conditions was tested. In phase IV, the BTF was bioaugmented with a biomass domi-

nated by Paracoccus MAL 1HM19 which is a SO-NR bacterium isolated from a hot spring 

in Thailand showing good capacity to grow at varied environmental conditions, e.g. NaCl 

concentrations of 0.03-7% w/v and temperatures of 20-50 °C (Watsuntorn et al., 2017). 

During phase I (days 0-21), the liquid flow rates were increased stepwise from 30 L d-1 

(days 0-6) to 60 L d-1 (days 7-12) and 120 L d-1 (days 13-19), while the gas flow rate was 

kept constant at 60 L h-1 (Table 6.1). On days 20-21, the BTF was operated under normal 

conditions before initiating the next transient condition. 

During phase II (days 22-50), the BTF was tested under four different wet-dry bed oper-

ations by supplying the trickling liquid to the BTF at four different time intervals: (i) 12 h 

wet-12 h dry (days 22-30), (ii) 24 h wet-24 h dry (days 31-41), (iii) 1 h wet-1 h dry (days 

42-45) and (iv) 2 h wet-2 h dry (days 46-50). The liquid flow rate was controlled using an 

automatic timer to switch the peristaltic pumps on or off. 
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Figure 6.1. BTF performance during the entire operation (78 days): (a) different gas flow 
rates, (b) different liquid flow rates, (c) influent and effluent profiles of pH, (d) inlet and outlet 
concentrations of H2S in the gas phase and sulfate production rate in liquid phase, (e) influent 
and effluent concentrations of nitrate and nitrite in the liquid phase and (f) consumed and 
feed N/S ratios. 
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Table 6.1. Transient-state operation of the anoxic biotrickling filter (BTF) for the simultaneous removal of H2S and NO3
-. 

 Specific experiments Inlet H2S con-
centration 
(ppmv) 

H2S loading rate 
(g S m-3 h-1)  

Gas flow 
rate  
(L h-1) 

EBRTb 
(min) 

NO3
- loading 

rate (g NO3
--N 

m-3 h-1) 

Liquid 
flow rate 
(L d-1) 

Operational 
days 

Days of 
normal 
conditionsa 

 Normal conditionsa 116 (± 2) 4.3 (± 0.1) 60 3 3.8 (± 0.1) 60 - - 

I Effect of liquid flow rate 98 (± 8) 3.7 (± 0.3) 60 3 3.9 (± 0.2) 30, 60 
and 120 

0-21  20-21 

II Effect of wet-dry bed opera-
tions 

109 (± 12) 4.2 (± 0.4) 60 3 4.0 (± 0.1) 60   

 (i) 12 h wet-12 h dry       22-30 29-30 

 (ii) 24 h wet-24 h dry       31-41 40-41 

 (iii) 1 h wet-1 h dry       42-45 43-45 

 (iv) 2 h wet-2 h dry       46-50 48-50 

III Effect of H2S shock loads:         

  (i) increasing the gas flow rate 115 (± 18) 4.4 (± 0.8) and 
14.0 (± 1.5) 

60 and 
200 

3 and 
0.9 

3.8 (± 0.2) 60 51-55 54-55 

  (ii) increasing the H2S 
      concentration 

112 (± 15) and 
947 (± 151) 

4.2 (± 0.6) and 
35.5 (± 5.6)  

60 3 3.9 (± 0.2) 60 56-62 58, 61-62 

IV Bioaugmentation with Para-
coccus MAL 1HM19 followed 
by the H2S shock load test 

110 (± 13) and 
982 (± 70) 

4.1 (± 0.4) and 
36.8 (± 2.6)  

60 3 3.8 (± 0.1) and 
11.6 (± 0.1) 

60 63-78 - 

Note:  aNormal operation was applied for stabilizing/recovering the H2S RE of the BTF at the end of each transient-state tests. 
bEBRT = empty bed residence time of the gas phase. 
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During phase III (days 51-62), H2S shock loads were tested by suddenly increasing (i) 

the gas flow rate (days 51-55) and (ii) the inlet H2S concentration (days 56-62). Each 

shock load was applied for 4 h and repeated for a duplicate test after 24 h of the first 

shock load (Table 6.1). First, the gas flow rate was instantly increased from 60 to 200 L 

h-1 while maintaining the inlet H2S concentration constant at 115 (±18) ppmv, resulting in 

an increase of the H2S loading rate from 4.4 (±0.8) to 14.0 (±1.5) g S m-3 h-1 (days 51-

55). Then, the inlet H2S concentration was increased from 112 (±15) to 947 (±151) ppmv 

at a constant gas flow rate of 60 L h-1, resulting in an increase of the H2S loading rate 

from 4.2 (±0.6) to 35.5 (±5.6) g S m-3 h-1 (days 56-62). 

On day 63 (phase IV), the BTF was bioaugmented with PUF cubes obtained from an-

other laboratory-scale anoxic BTF dominated by a facultative autotrophic denitrifying 

bacterium, Paracoccus MAL 1HM19 (Watsuntorn et al., 2017). One third of the PUF cu-

bes (88 pieces) in the BTF of the present study were removed and replaced with PUF 

cubes of the other BTF containing Paracoccus MAL 1HM19. From day 70 onwards, the 

response of the BTF to H2S shock loads of the bioaugmented BTF was tested. In this 

test, the inlet H2S concentration was increased from 110 (±13) to 982 (±70) ppmv for 4 h 

and repeated for a duplicate test at 24 h after the first shock load (Table 6.1). 

6.2.3 Performance parameters of the anoxic BTF 

The operation and performance parameters of the anoxic BTF were calculated as follows: 

Removal efficiency (RE, %) = 
(CH2S-in − CH2S-out)

CH2S-in
×100     (6.3) 

Elimination capacity (EC, g m-3 h-1) = 
(CH2S-in − CH2S-out)

V
× QG    (6.4) 

Feed N/S ratio (mol mol-1) = 
((CNO3

-
-in × QL) MWN⁄

(CH2S-in × QG) MWS⁄
     (6.5) 

Consumed N/S ratio (mol mol-1) = 
((CNO3

-
-in − CNO3

-
-out) × QL) MWN⁄

((CH2S-in − CH2S-out) × QG) MWS⁄
   (6.6) 

Produced SO4
2- (mg S d-1) = (C

SO4
2-

-S-out
−  C

SO4
2-

-S-in
)  × QL× 24 h d⁄   (6.7) 

% SO4
2- production = 

(C
SO4

2-
-S-out

 − C
SO4

2-
-S-in

) × QL

(CH2S-in − CH2S-out) × QG

 ×100    (6.8) 
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where CX-in and CX-out  are concentrations of H2S-S, NO3
--N or SO4

2--S in the influent and 

effluent (mg L-1), respectively. V is the volume of the BTF packed bed (L), QG and QL are 

the flow rates of the gas and liquid phases (L h-1), respectively. MWS and MWN are the 

molecular weights of sulfur and nitrogen (g mol-1), respectively. The %SO4
2- production 

was used for estimating the %S0 production in the system.  

6.2.4 Analytical techniques 

The influent and effluent pH was measured using a Präzision pH Meter (Metrohm, Swit-

zerland) equipped with a SenTix 21 pH electrode (WTW, Germany). Liquid samples of 

the BTF influent and effluent were measured for total dissolved sulfide (HS- and S2-) and 

NO2
- concentrations using colorimetric methods (APHA/AWWA/WEF, 1999) with a 

Lamda 365 UV/VIS spectrophotometer (Perkin-Elmer, USA). The liquid samples were 

filtered through 0.45 µm cellulose acetate syringe filters (Sigma-Aldrich, USA) prior to 

the measurements of NO3
-, S2O3

2- and SO4
2- concentrations using ion chromatography 

Dionex ICS-1000 (Thermo Fisher, USA) (Villa-Gomez et al., 2011). The volatile sus-

pended solids (VSS) of the BTF effluent were determined according to the procedure 

given in Standard Methods (APHA/AWWA/WEF, 1999). A Dräger X-am® 7000 gas de-

tector (Dräger, Germany) was used to measure the H2S concentration in the gas phase 

from 0-500 ppmv, while H2S concentration in the range of 500-5000 ppmv were measured 

using a Geotech Biogas-5000 gas analyzer (Hatech Gasdetectietechniek BV, The Neth-

erlands).  

6.2.5 Microbial community analysis  

Two pieces of randomly selected PUF cubes were collected from the BTF on days 0, 62 

and 78. DNA was extracted, followed by polymerase chain reaction (PCR) of the 16S 

rDNA and denaturing gradient gel electrophoresis (DGGE) as well as the sequencing 

procedure was carried out according to the procedure described by Khanongnuch et al. 

(2018). 

6.2.6 Data analysis 

The experimental data sets from each phase of the BTF operation were compared and 

the statistical differences (significant difference at 95%) in the performance parameters 

during BTF operation, i.e. EC and RE, were determined using Tukey’s multiple compar-

ison tests (a one-way ANOVA, Minitab Inc., USA).  
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6.3 Results 

6.3.1 Transient-state BTF operation 

6.3.1.1 Effect of liquid flow rate 

At different liquid flow rates from 30 to 60 and 120 L d-1 (phase I), the H2S RE of the BTF 

was constant at 100% and corresponded to a H2S EC of 3.7 (±0.3) g S m-3 h-1. A partial 

oxidation of H2S to S0 likely occurred at a liquid flow rate of 30 L d-1, as the produced 

SO4
2- (136 ± 49 mg S d-1) with respect to the removed H2S was 84 (±12)% (Figure 6.2c, 

days 0-6). 

 

Figure 6.2. Effect of liquid flow rate on the BTF performance: (a) variation in liquid flow rates, 
(b) loading rate and elimination capacity of nitrate in the liquid phase and N/S ratio, (c) inlet 
and outlet concentrations of H2S in the gas phase and sulfate production rate in the liquid 
phase, and (d) influent and effluent pH profiles. 
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The increase of the liquid flow rate from 30 to 60 L d -1 and 120 L d-1, corresponding to 

an increase of the NO3
- loading rate of 2.7 (±0.1) to 5.2 (±0.3) and 11.3 (±0.5) g NO3

--N 

m-3 h-1, resulted an increase of the NO3
- removal rate from 1.4 (±0.1) to 2.3 (±0.3) and 

2.6 (±0.6) g NO3
--N m-3 h-1, respectively (Figure 6.2b). However, the increase in the liquid 

flow rate from 30 to 60 L d-1 and 120 L d-1 resulted in a decrease of the effluent pH from 

8.3 (±0.1) to 8.0 (±0.1) and 7.7 (±0.1), respectively (Figure 6.2d).  

6.3.1.2 Effect of wet-dry bed operations 

During 12 h wet-12 h dry operation, the NO3
-- containing liquid phase was fed to the BTF 

for 12 h, at an interval of 24 h from days 22-30 (Figure 6.3a). During days 24-30, the H2S 

RE decreased from 100 to 87% after 6-h of dry operation (Figure 6.3b). During 12 h wet-

12 h dry operation, the H2S RE recovered to 100% within 5 h after resuming the trickling 

liquid supply. The NO3
- RE fluctuated in the range of 32.0-56.8% during days 22-23, 

whereas a stable NO3
- RE (45.9 ± 3.0%) were observed from day 25 onwards (Figure 

6.3c). 

 

Figure 6.3. BTF performance during 12 h wet-12 h dry operation: (a) inlet and outlet concen-
trations of H2S in gas phase, (b) sulfate production rate and (c) influent and effluent concen-
trations of nitrate and nitrite in the liquid phase. 
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During 24 h wet-24 h dry operation, the BTF was fed with the trickling liquid for 24 h at 

an interval of 48 h from days 31-41 (Figure 6.4a). During this test, the H2S RE decreased 

from 100% to 35.6% (day 35) after 24 h of dry operation; however, the H2S RE recovered 

to 100% within 3.5 h after resuming the trickling liquid supply (Figure 6.4b). At the end of 

the 24 h wet-24 h dry operation, the H2S RE showed a longer recovery time, as complete 

H2S removal was observed after 84 h of resuming the normal operating conditions (day 

40). The %SO4
2- production showed high variation with respect to the removed H2S, in 

the range of 105-404% (Figure 6.4b). The average NO3
- RE was 50.5 (±4.0)% during 

this test (days 31-41), except on day 36 on which an unexpected increase of the NO3
- 

RE (61.6%) was observed (Figure 6.4c). 

 

Figure 6.4. BTF performance during 24 h wet-24 h dry operation: (a) inlet and outlet concen-
trations of H2S in the gas phase, (b) sulfate production rate and (c) influent and effluent con-
centrations of nitrate and nitrite in the liquid phase. 
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During 1 h wet-1 h dry operation (days 42-43), the H2S RE was relatively stable in the 
range of 84.3-98.3% (Figure 6.5b) and the H2S RE was still >98% when the BTF was 
operated under normal conditions (days 44-45). During 2 h wet-2 h dry operation, the 
H2S RE decreased to 75.0% during days 46-47 and thereafter to 56.7% during days 47-
48. The decrease of the H2S RE did not significantly affect the NO3

- removal from the 
liquid phase (Figure 6.5c). At the end of the wet-dry operations, the H2S RE recovered 
to 98.3% after the trickling liquid had been continuously fed to the BTF for ~62 h (day 
50). 
  

 
Figure 6.5. BTF performance during 1 h wet-1 h dry and 2 h wet-2 h dry operations: (a) inlet 
and outlet concentrations of H2S in the gas phase, (b) sulfate production rate and (c) influent 
and effluent concentrations of nitrate and nitrite in the liquid phase. 

6.3.1.3 Effect of H2S shock loads 

During the H2S shock load tests by suddenly increasing the gas flow, a critical H2S load-

ing rate of 10.5 g S m-3 h-1 was achieved (Figure 6.6a). The sudden increasing the gas 

flow rate from 60 to 200 L h-1, corresponding to increasing the H2S loading rate from 4.4 

to 14.0 g S m-3 h-1, reduced the H2S RE from 96.9 (±1.1)% to the lowest value of 72.0% 

(day 51). However, the H2S RE recovered to 96.0 (±1.1)% within 16 h when the gas flow 
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rate was restored to 60 L h-1 (Figure 6.7a, days 53-55). Besides, SO4
2- was mainly pro-

duced during this test (120 ± 40)% (Figure 6.7b, days 50-62). 

 

Figure 6.6. H2S elimination capacity of the anoxic BTF under different transient-state opera-
tions tested in this study: (a) H2S shock loads and bioaugmentation and (b) wet-dry bed 
operations. 

During the subsequent H2S shock load tests by increasing inlet H2S from 110 (±13) to 

982 (±70) ppmv, the H2S RE decreased to its lowest value of 68.9% (day 57). The critical 

H2S loading rate was 17.9 g S m-3 h-1, while the maximum H2S EC was 37.8 g S m-3 h-1 

(H2S RE of 93.9%) (Figure 6.6a). During this test, the NO3
- RE increased from 40.4% on 

day 51 to 56.0% on day 60 (Figure 6.7c). Moreover, the %SO4
2- production based on the 

removed H2S was below 20% during each H2S shock load (Figure 6.7b). After this H2S 

shock load test, when the inlet H2S concentration was decreased to 116 (±2) ppmv, the 

H2S RE recovered to >98.0% within 40 h (Figure 6.7a). 

6.3.2 Bioaugmentation with Paracoccus MAL 1HM19 

After the BTF was bioaugmented with Paracoccus MAL 1HM19 (days 63-68), the H2S 

RE was 96.8 (±2.1)% (Figure 6.8a), corresponding to a H2S EC of 4.49 (±0.19) g S m-3 

h-1 (Figure 6.6a). The bioaugmentation increased the NO3
- RE from 46.3 (±1.2)% (phase 

III, days 50-61) to 80.4 (±5.0)% (phase IV, days 63-68), corresponding to an increase in 

the NO3
- removal rate from 2.6 (±0.3) to 4.5 (±0.2) g NO3

--N m-3 h-1 (Figure 6.8b). The 

consumed N/S ratio during normal operation prior to the bioaugmentation was 1.5 (±0.4) 

mol mol-1, which increased to 9.9 (±3.6) mol mol-1 after subjecting the bioaugmented BTF 

to a H2S shock load (Figure 6.1f, days 74-78). 
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Figure 6.7. BTF performance under the influence of different H2S shock loads: (a) inlet and 
outlet concentrations of H2S in the gas phase, (b) sulfate production rate and (c) influent and 
effluent concentrations of nitrate and nitrite in the liquid phase. 

When a H2S shock load was applied to the bioaugmented BTF (days 70-71), the H2S RE 

sharply decreased from 96.9 (±0.6)% to 12.0% (day 70) and 34.4% (day 71) after apply-

ing the first and second shock loads for 5.0 h and 4.3 h, respectively (Figure 6.8a). The 

SO4
2- production rate gradually increased from 219 mg S d-1 (day 70) to 669 mg S d-1 

(day 74). During days 71-73, the H2S RE did not completely recover after the H2S shock 

loads and fluctuated in the range of 34.4-70.6%. On day 74, when the influent NO3
- con-

centration was increased from 27.8 (±1.2) to 84.0 (±0.6) mg L-1, the H2S RE increased 

to >98% (Figure 6.8a, days 75-78), corresponding to a H2S EC of 4.0 (±0.2) g S m-3 h-1. 

Besides, the NO3
- RE was 87.1 (±9.1)% (Figure 6.8c, days 74-78), corresponding to a 

NO3
- removal rate of 14.4 (±1.4) g NO3

--N m-3 h-1. The increase in SO4
2- production rate 
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(713 mg S d-1) on day 75 corresponded to a ~300% increased SO4
2- production based 

on 190 mg H2S-S d-1 removed (Figure 6.8b). During days 70-73, a higher turbidity and 

the presence of white/pale-yellowish particles, most likely S0 particles, were visually ob-

served in the effluent.  

 

Figure 6.8. Effect of bioaugmentation with a facultative autotrophic biomass dominated by 
Paracoccus strain MAL 1HM19 on the BTF performance: (a) inlet and outlet concentrations 
of H2S in the gas phase, (b) sulfate production rate and (c) influent and effluent concentra-
tions of nitrate and nitrite in the liquid phase. 

6.3.3 Microbial community composition in the BTF 

The microbial community composition visualized by DGGE showed an increase in the 

number of individual bands after the transient-state tests (day 62) and the bioaugmenta-

tion (day 78) of the BTF (Figure 6.9). During all operational conditions, bacteria identified 
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as Thiobacillus sp. (bands 5, 7 and 8), Rhodobacter sp. (bands 2 and 15), Stenotropho-

monas sp. (bands 1 and 11), Rhodocyclales bacterium (band 5) and bacteria belonging 

to Bactroidetes (bands 3 and 4) were detected (Figure 6.9). The bacteria with >99% 

similarity to the endosymbiont of Acanthamoeba sp. (band 14) and Geobacter sp. (band 

16) were present after finishing the transient-state tests (day 62). After the bioaugmen-

tation with Paracoccus MAL 1HM19 (day 78), DGGE bands of bacteria identified as Par-

acoccus sp. (bands 10 and 13) and Simplicispira sp. (band 9) were present in the BTF, 

while the band related to Thiobacillus sp. (band 5) and Stenotrophomonas sp. (band 11) 

had a lower intensity compared to days 0 and 62. 

6.4 Discussion 

6.4.1 Resistance of the BTF to intermittent H2S loads 

This study showed that H2S shock loads only slightly affected the H2S EC of an anoxic 

BTF, which maintained a stable performance in terms of H2S RE and SO4
2- production 

(Figure 6.7). H2S shock loads occur frequently in industrial systems and can result in a 

rapid decrease of the empty bed residence time (EBRT) (Sharma et al., 2008). The sud-

den increase of the H2S concentration likely resulted in partial oxidation of H2S to S0 due 

to NO3
- limitation (feed N/S ratio was ~0.35) as the %SO4

2- production was <20% of the 

consumed H2S (Figure 6.7b) and visual observations suggested the presence of S0 par-

ticles in the BTF effluent. However, the H2S RE of the BTF recovered quite fast after the 

first H2S shock load (Figure 7a). Moreover, the H2S RE improved during the succeeding 

H2S shock loads, resulting in a higher H2S RE than when the first shock load was applied 

(Figure 6.7a). This suggests that the microorganisms adapted to the intermittent H2S 

loading regime in the anoxic BTF. 

The BTF showed a good resilience capacity to withstand a 10-fold increase in the H2S 

loading rates (from 4.2 to 35.5 g S m-3 h-1). In particular, the anoxic BTF showed a faster 

recovery time compared to those reported for an aerobic biofilter treating H2S (loading 

rate of 1-6 g H2S m-3 h-1), which was subjected to a H2S shock load of 10 g H2S m-3 h-1 

(Kim et al., 2008). Kim et al. (2008) showed that the recovery time to attain the H2S RE 

of ~100% after restoring the initial H2S load was 96 h. Jing et al. (2009) tested sulfide 

shock loads by applying (for 2 h) 1.5-3 times higher inlet concentrations (520 mg S2--S 

L-1) in an anaerobic upflow bioreactor treating sulfide and NO3
- in synthetic wastewater. 

The authors reported that the recovery time was 30 h at the highest tested concentration 

(1820 mg S2--S L-1), which was similar to the recovery time observed in this study when 

the BTF was subjected to a 10-fold increase in the H2S loading rate (Figure 7a). 
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Figure 6.9. Microbial community profiles (left) and identification of the sequenced denaturing gradient gel electrophoresis bands (right)  of the 
biomass samples collected before (day 0), after transient-state conditions (day 62) and bioaugmentation (day 78). Each sample was run in dupli-
cate. 
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6.4.2 Effect of intermittent flow of the trickling liquid 

The anoxic BTF showed a high resilience capacity to tolerate gas-phase H2S (88-147 

ppmv) in the absence of the trickling liquid and NO3
- for 24 h, as the H2S RE recovered 

to 100% immediately after resuming the liquid recirculation (Figure 6.4). During NO3
- 

starvation in an attached biofilm system, microorganisms can survive by utilizing the eas-

ily biodegradable biofilm components (i.e. extracellular polymeric substance, EPS) in the 

system as carbon and energy sources (Wang et al., 2015). The NO3
- RE also increased 

during prolonged bed drying periods, from 45.9 (± 3.0%) at 12 h wet-12 h dry operation 

to 50.5 (± 4.0)% at 24 h wet-24 h dry operation. During these disturbances of the bed 

wetting pattern, the NO3
- RE increase could be a stress response of microorganisms to 

pulses of NO3
- starvation and elevated H2S concentrations.  

The 12 h wet-12 h dry operation likely showed a high and stable BTF performance, re-

sulting in H2S EC close to the 100% performance line (Figure 6.6b), while the operations 

at 1 h wet-1 h dry and 2 h wet-2 h dry are not recommended to be applied during long-

term BTF operation. Those short pulse feeding regimes were likely more detrimental to 

the H2S RE which likely continued to reduce during the operation and only recovered to 

almost 100% when the BTF was operated under normal conditions (Figure 6.5b). Short 

pulse feeding may lead to non-uniform trickling liquid distribution through the packed bed 

and the formation of a stagnant zone within the pores of the foam cubes. These can 

cause severe mass transfer limitation. In further studies, residence time distribution (RTD) 

tests should be performed to obtain a better understanding of the effects of different 

modes of wet-dry operations on the hydrodynamic behavior of anoxic BTF and their ef-

fects on microbial activity. 

6.4.3 BTF response to changes in liquid flow rate 

The increase in liquid flow rate from 30 to 60 and 120 L d-1 did not significantly affect the 

H2S RE of the BTF (Figure 6.2c). This related to previous observations in BTFs showing 

that the liquid flow rate usually has only a slight effect on the removal of low concentra-

tions of gas-phase pollutants, especially when the pollutants are water soluble (Fernán-

dez et al., 2013; Kennes et al., 2009). Also Fernández et al. (2013) reported that different 

liquid flow rates of 20 to 180 L h-1 did not affect H2S RE of the BTF at H2S loading rate 

of 48.8 g S m-3 h-1, while at higher H2S loading rates (201 g S m-3 h-1), the H2S RE dropped 

to <80% at liquid flow rates <80 L h-1. Subjecting the BTF to a high liquid flow rate could, 

nevertheless, reduce the biofilm stability and generate increased shear stress causing 

biofilm to wash out from the system (Kennes et al., 2009). In this study, the low biomass 

concentration in the effluent (VSS <30 mg L-1) suggested no biofilm sloughing has oc-

curred. 
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At the lowest liquid flow rate tested (30 L d-1), partial oxidation of H2S to S0 using NO3
- 

as electron acceptor likely occurred, as the H2S consumed (84 ± 12%) was converted to 

SO4
2- (Figure 6.2c), although sufficient NO3

- was supplied to the BTF (feed N/S ratio of 

1.7 ± 0.2). However, the consumed N/S ratio was 1.2 (±0.1), which causes the partial 

H2S oxidation to S0 in typical anoxic BTFs (Fernández et al., 2014, 2013; Soreanu et al., 

2008). In contrast, the higher liquid flow rates tested in the BTF, i.e. 60 and 120 L d-1, 

increased the %SO4
2- production to 122 (±24)% (Figure 6.2c). This indicated sufficient 

NO3
- was supplied to the sulfide-oxidizing biofilm in the BTF when the liquid flow rate 

was higher than 30 L d-1. However, the liquid flow rates at 120 L d-1 likely caused an 

overload of the NO3
- supply to the anoxic BTF (11.3 ± 0.5 g NO3

--N m-3 h-1), wherein the 

NO3
- removal rate was only <3.3 (±0.6) g NO3

--N m-3 h-1 resulting in a NO3
- RE of 32 (±7)% 

(Figure 6.2b, days 7-20). Besides, an increase in the liquid flow rate in the BTF de-

creased the NO3
- retention time in the anoxic BTF causing NO3

- breakthrough in the 

effluent as evidenced by the lower consumed N/S ratio at the liquid flow rate of 120 L d -

1 compared to the N/S ratio at 60 L d-1 (Figure 6.2b).  

6.4.4 Microbial community composition 

The microbial community composition in the BTF after the transient-state tests, i.e. dif-

ferent liquid flow rates, H2S shock loads and wet-dry operations was only slightly different 

compared to the initial biomass (Figure 6.9). Surprisingly, the microbial community was 

enriched with the endosymbiont of Acanthamoeba sp. and Geobacter sp., which likely 

do not play roles in sulfide oxidation (Cardenas et al., 2010; Lu et al., 2015; Satoh et al., 

2009). It should be noted, however, that those bacteria might not be viable as they have 

a lower intensity at the end of the BTF operation (day 78) (Figure 6.9). This study showed 

the stability of microbial community composition in the anoxic BTF to withstand different 

transients-state conditions, resulting in stable H2S EC (4.0 ± 0.2 g S m-3 h-1) at the end 

of experiment (days 75-78). 

Bioaugmentation of the BTF with Paracoccus MAL 1HM19 did not affect the H2S EC but 

increased ~2 times of NO3
- removal compared to the value prior to bioaugmentation. The 

bioaugmentation, followed by the H2S shock load, stimulated the utilization of NO3
- as 

electron acceptor to oxidize S0 previously accumulated in the BTF (Eq. 6.2), resulting in 

high SO4
2- production (~300%) at the end of experiment (days 74-78). 

The BTF can be further developed for simultaneously treating H2S contaminated gas 

streams and wastewater containing NO3
- and COD. For this, mixotrophic or heterotrophic 

denitrification could be stimulated in the BTF by e.g. inoculating with the Paracoccus 

MAL 1HM19. These are able to utilize various organic carbon sources (e.g. acetate, glu-

cose and pyruvate) during H2S oxidation under anoxic conditions (Watsuntorn et al., 
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2017). The microbial interactions between autotrophic and heterotrophic bacteria can 

occur in the SO-NR systems (Di Capua et al., 2017a, 2017d, 2019; Khanongnuch et al., 

2019). The inorganic carbon used for biomass production during H2S oxidation via auto-

trophic denitrification (Eqs. 6.1 and 6.2) can be excreted by the SO-NR cells as organic 

compounds, which subsequently served for mixotrophic or heterotrophic denitrifying bac-

teria which also dominated in the BTF (Figure 6.9).  

6.5 Conclusions 

H2S shock loads up to 35.5 (± 5.6) g S m-3 h-1 only slightly affected the BTF performance, 

resulting in the highest EC of 37.8 g S m-3 h-1 with >93% H2S RE. Modification of the BTF 

liquid supply, i.e. the liquid flow rate and wet-dry bed operation, should be taken into 

account in designing and operating anoxic BTFs to avoid the depletion of the electron 

acceptor and mass transfer limitations. Bioaugmentation with biomass dominated with 

the SO-NR bacterium, Paracoccus MAL 1HM19, revealed the feasibility of H2S removal 

at high NO3
- loading rates. Considering its good resiliency and resistance to various tran-

sient-state conditions, anoxic BTFs are an attractive option in full-scale applications com-

bining waste gas clean-up (H2S removal) with wastewater treatment (NO3
- removal). 
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Biological hydrogen sulfide (H2S) removal under brackish conditions (pH = ~7.0) was 

tested for 189 days in a biotrickling filter (BTF) inoculated with a pure culture of Para-

coccus versutus strain MAL 1HM19. The BTF was packed with polyurethane foam cubes 

and operated in both fed-batch and continuous modes. The H2S inlet concentrations to 

the BTF varied between ~100 and ~500 ppmv during steady-state tests, and later to 

~1000, ~2000, ~3000 and ~4000 ppmv during shock-load tests. The H2S removal effi-

ciency (RE) ranged between 17 and 100% depending on the operational mode of the 

BTF and the presence of acetate as a carbon source. The maximum elimination capacity 

(ECmax) of the BTF reached 113.5 (± 6.4) g S m-3 h-1 (97% RE) during H2S shock-load 

experiments at ~4000 ppmv. The results from polymerase chain reaction denaturing gra-

dient gel electrophoresis (PCR–DGGE) revealed that P. versutus remained dominant 

throughout the 189 days of BTF operation. The analysis using artificial neural networks 

(ANNs) predicted the H2S and NO3
--N removal efficiencies and SO4

2- production in the 

anoxic BTF. Consequently, P. versutus strain MAL 1HM19 can be used in an anoxic BTF 

system for the treatment of high H2S contaminated gas streams. 

7.1 Introduction 

Biogas is a renewable energy source produced during the anaerobic digestion (AD) of 

solid waste and high strength wastewater. The presence of hydrogen sulfide (H2S) in 

biogas as an impurity (0.1-2% v/v or 1000-20,000 ppmv) limits its use for power genera-

tion (Fernández et al., 2014). H2S is highly toxic, malodorous and corrosive to the equip-

ment such as biogas engines. Moreover, sulfur dioxide (SO2) is generated during the 

combustion of H2S, which results in toxic effects to human health and the environment 

(Li et al., 2016). Hence, H2S should be removed from biogas prior to use for domestic or 

commercial applications. 

There are many techniques to clean H2S from the gas-phase including physio-chemical 

and biological processes. Physico-chemical methods such as absorption, adsorption or 

chemical scrubbing are effective but have high energy requirement, disposal of gener-

ated wastes and chemical costs and generate secondary waste streams (Ramírez et al., 

2009; Abdehagh et al., 2011). Biological methods are efficient for the treatment of waste 

gases at low concentrations and high gas-flow rates, Besides, they require low amounts 

of chemical addition, have low energy requirements and lower operational and mainte-

nance costs compared to physical and chemical processes (Díaz et al., 2011). 

The biotrickling filter (BTF) is one of the conventional biological waste gas treatment 

processes (Kennes et al., 2009), mostly used to remove hydrophilic volatile pollutants. 

In this reactor configuration, the waste gas is passed through a filter bed containing inert 
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packing material, on which the microorganisms grow as a biofilm. The pollutants present 

in the waste gas are absorbed by the biofilm and used as energy source by the microor-

ganisms. The continuously trickling liquid-phase allows to adjust the operational param-

eters to the required conditions such as pH and nutrient concentrations (Abdehagh et al., 

2011; Vikrant et al., 2017). 

The selection of a proper inoculum is important for the successful operation of any waste 

gas treatment system (Lee et al., 2006). For the treatment of H2S containing waste gases, 

both mixed and pure cultures can be used as inoculum for the BTF (Rattanapan et al., 

2010). Activated sludge from domestic wastewater treatment systems are frequently 

used to inoculate BTF systems (Solcia et al., 2014). However, the long period of accli-

mation ranging from several weeks to months is one of the drawbacks when using the 

activated sludge as the inoculum (Rattanapan et al., 2010). 

The use of pure cultures of bacteria as inoculum for BTF can offer the following ad-

vantages: short start-up times, high removal efficiency of the target pollutant, tolerate 

fluctuating concentrations and high inlet loads (Vikromvarasiri and Pisutpaisal, 2017). 

Several sulfur oxidizing bacteria have been used as inoculum to remove H2S under long-

term operation such as Pseudomonas putida, Thiobacillus thioparus (Chung et al., 2001), 

Thiobacillus denitrificans (Ramírez et al., 2009), Acidiothiobacillus thiooxidans (Ab-

dehagh et al., 2011) and Halothiobacillus neapolitanus (Vikromvarasiri and Pisutpaisal, 

2017). Recently, the genus of Paracoccus has also been considered as a biocatalyst for 

the simultaneous removal of H2S and NO3
- removal (Vikromvarasiri et al., 2015; Watsun-

torn et al., 2017; Watsuntorn et al., 2018). In a recent study, H2S removal (700-800 ppmv) 

was achieved within 10 h in batch tests by Paracoccus sp. strain MAL 1HM19, isolated 

from the Mae Um Long Luang hot spring in Thailand (Watsuntorn et al., 2017).  

The modelling of the BTF performance is crucial to optimize the appropriate operating 

conditions. However, classical approaches are arduous to predict the performance of a 

bioprocess because of various factors, i.e. microbial community in the BTF, composition 

of synthetic wastewater and the operational parameters of BTF. ANNs are a powerful 

tool which have been applied for prediction and solution of the complex relationship be-

tween input and output parameters in many different applications such as biotechnology, 

air contamination and environmental problems (Rene et al., 2008; Zamir et al., 2011; 

Atasoy et al., 2013). There are, however, only few studies on the application of ANNs for 

the simultaneous anaerobic sulfide and nitrate removal process (Cai et al., 2015). 

To the best of our knowledge, this is the first continuous long-term study of anoxic H2S 

and NO3
- removal in an anoxic BTF inoculated with Paracoccus versutus strain MAL 
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1HM19 using brackish synthetic wastewater as the trickling nutrient solution. The objec-

tives of this study were: (i) to investigate the performance of an anoxic BTF inoculated 

with pure cultures of P. versutus strain MAL 1HM19 for H2S removal using NO3
- as an 

electron acceptor under brackish conditions, (ii) to investigate the stability of P. versutus 

strain MAL 1HM19 and the bacterial community present in the BTF using PCR-DGGE, 

and (iii) to examine the effect of shock loads, i.e. sudden variations of H2S concentration, 

on the performance of the anoxic BTF.  

7.2 Materials and methods 

7.2.1 Inoculum and nutrient solution 

The Paracoccus sp. strain MAL 1HM19 used as the inoculum of the BTF was previously 

isolated from the Mae Um Long Luang hot spring (Mae Hong Son province, Thailand) 

(Watsuntorn et al. 2017). Based on whole genome sequencing analysis, the strain was 

identified as Paracoccus versutus (unpublished results). A modified Coleville synthetic 

brine (mCSB) was maintained at brackish conditions using 7 g NaCl L-1, because the P. 

versutus strain MAL 1HM19 demonstrated the highest growth and H2S removal rates 

under brackish conditions (Watsuntorn et al. 2017). 

7.2.2 Immobilization  

The immobilization step was conducted using “the three-step immobilization method”, 

described by Liu et al. (2013) to avoid wash out by the recirculation of mCSB medium 

when the immobilization step is performed directly in the BTF. P. versutus strain MAL 

1HM19 was cultured in 1000 mL serum bottles according to the protocol described in 

Watsuntorn et al. (2017). The active P. versutus strain MAL 1HM10 was subsequently 

transferred to anaerobic bottles containing the polyurethane foam (PUF) cubes and 

mCSB medium and incubated for 7 d. The PUFs were then transferred to the anoxic BTF. 

7.2.3 BTF set up and operation 

The laboratory scale anoxic BTF was made from cylindrical glass having a total height 

of 50 cm and a diameter of 12.8 cm. The total bed height of the BTF was 30 cm, corre-

sponding to a working bed volume of 3 L. The biogas mimic consisted of a mixture of N2 

and H2S generated by mixing 1 M H2SO4 and 0.1 and 0.3 M Na2S·9H2O to obtain the 

desired gas phase H2S concentrations (100-4000 ppmv). The inlet gas-flow rate was 60 

L h-1, corresponding to an empty bed residence time (EBRT) of 3 min, while the temper-

ature of the BTF was maintained at 22-25 °C. The mCSB medium was trickled from the 
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top of the BTF over the filter bed using a peristaltic pump (Masterflex, USA) at a liquid 

rate of 2.5 L h-1 and 1.67 L h-1 at fed-batch and continuous mode, respectively. The 

operational parameters and conditions tested in the anoxic BTF are shown in Table 7.1. 

Table 7.1. Operational characteristics of the anoxic biotrickling filter. 

Parameters Values 

Temperature 25 °C 

pH 7.0-8.0 

Electron donor H2S 

Electron acceptor NO3
- 

Nutrient Modified CSB medium 

Nutrient loading rate (mL min-1) 41.5  

Inlet gas flow rate (L h-1) 60 

EBRT (min) 3 

Volume of packed bed (L) 3 

Note: EBRT= empty bed gas residence time; CSB = Coleville synthetic brine 

PUF cubes were used as the packing material. Before inoculation, the PUF cubes were 

manually cut into cube-shaped (2 × 2 × 2 cm) pieces. The PUF cubes had a density of 

28 kg m-3 and porosity of 98% (Eregowda et al., 2018). Before adding the PUF cubes to 

the BTF, they were sterilized by autoclaving for 15 min at 121 °C. After that, the PUFs 

were submerged in 1 L sterile mCSB medium containing 10% (v/v) of P. versutus strain 

MAL 1HM19. The cell concentration of the P. versutus strain MAL 1HM19 in the PUF 

cubes was 8.7×108 CFU mL-1. 

The BTF was operated for 189 days under anoxic conditions during which H2S was con-

tinuously fed in the gas-phase and NO3
−-N was added as the electron acceptor in the 

mCSB medium. The BTF operation was divided into three phases (phases P1-P3) to 

evaluate the BTF performance under different operational strategies as described in Ta-

ble 7.2. In phase P1 (days 0-107), the BTF was operated in fed-batch mode and divided 

into five experimental phases (P1-I to P1-V) with different H2S and acetate concentra-

tions. During fed-batch mode, the mCSB medium was refreshed every week following 

the recommendations of a previous study by Prado et al. (2004). In phase P2, the effect 

of the presence (phase P2-I, days 133-161) and an absence (phase P2-II, days 162-174) 

of acetate on the performance of the BTF was evaluated. To evaluate the resilient ca-

pacity of the biofilm, the BTF was subjected to H2S shock-loads (472.7-4129.4 ppmv) in 

phase P3 (days 175-178 and days 184-187). After that, the BTF was operated again 

under steady-state conditions to check the stability and recoverability of the system.  
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Table 7.2. Operating conditions during anoxic BTF operation. 

Mode of  
operation 

Phase Carbon 
source 

(CH3CHOO-) 

Duration 

(days) 

Inlet H2S concen-
tration  

(ppmv) 

H2S loading rate 
(g S m-3 h-1) 

Fed-batch P1-I + 0-27 97.0 (± 11.0) 2.7 (±0.4) 

Fed-batch P1-II - 28-54 94.9 (± 11.6) 2.7 (± 0.3) 

Fed-batch P1-III + 55-69 93.7 (± 15.3) 2.7 (± 0.4) 

Fed-batch P1-IV + 70-90 318.5 (± 23.7) 9.0 (± 0.7) 

Fed-batch P1-V + 91-107 426.6 (± 48.0) 12.1 (± 1.4) 

Continuous P2-I + 133-161 475.9 (± 119.2) 13.3 (±3.4) 

Continuous P2-II - 162-174 567.6 (± 58.8) 16.1 (± 1.7) 

Continuous P3-I - 175-178 472.7 (± 67.8)-
4129.4 (± 146.1) 

13.4 (± 1.9)-116.8 
(± 4.1) 

Continuous P3-II - 184-187 432.1 (± 44.2)-
4015.0 (± 234.8) 

11.9(± 1.9)-113.6 
(±10.1) 

Note: “+” refers to addition of CH3CHOO- “-” refers to no addition of CH3CHOO- 

7.2.4 Calculations 

The performance of the BTF was evaluated in term of removal efficiency (RE), inlet load-

ing rate (ILR) and elimination capacity (EC) as follows:  

RE (%) = 
𝐶𝑖𝑛−𝐶𝑜𝑢𝑡

𝐶𝑖𝑛
× 100        (7.1) 

ILR (g S m-3 h-1) = 𝐶𝑖𝑛 ×
𝑄

𝑉
        (7.2) 

Elimination capacity (EC) (g S m-3 h-1) = 𝑄 ×
𝐶𝑖𝑛−𝐶𝑜𝑢𝑡

𝑉
    (7.3) 

Where Cin and Cout are the inlet and outlet H2S concentrations (g S m-3), Q is the gas flow 

rate (m3 h-1), V is the filter bed volume of the packing medium (m3). The H2S concentra-

tions, RE, ILR and EC values were presented as mean ± SD values. 

7.2.5 Analytical techniques 

H2S concentration (0-500 ppmv) was measured using two H2S sensors depending on the 

concentration range: (i) Dräger X-am 7000 (Dräger, Lübeck, Germany) (H2S measure-

ment range: 0-500 ppmv), and (ii) Biogas 5000 (Geotech, UK) (H2S measurement range: 

0-5,000 ppmv), as described by Khanongnuch et al. (2019). Sulfide (S2-) was measured 

using the modified methylene blue color method as described by van den Hoop et al. 

(1997) using a UV/Vis spectrophotometer (PerkinElmer, USA) at an absorbance of 670 

nm. NO3
−-N and NO2

−-N concentrations were measured using the standard 4500-NO3
−-
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B ultraviolet spectrophotometric screening (at 220 and 275 nm) and 4500-NO2
−-B color-

imetric methods (at 543 nm), respectively (APHA, 2005). The cell density was monitored 

in term of the colony forming units (CFU mL-1) using the drop plate technique (Gronewold 

and Wolpert, 2008). Acetate concentration was measured using a Varian 430 gas chro-

matograph (GC) (Varian Inc., USA) (Eregowda et al., 2018).  

7.2.6 Microbial community analysis 

The proliferation of the microbial community in the BTF was evaluated by PCR-DGGE 

as described by Khanongnuch et al. (2019). PUF samples were collected from the sam-

pling ports at different operational phases of the BTF, i.e. on days 2, 11, 28, 98, 161, 184 

and 189. The forward and reverse primers for PCR were 357F-GC and Un907R, respec-

tively. The amplified PCR-DGGE products were purified and sequenced by Macrogen 

(The Netherlands). Bioedit software (version 7.2.5, Ibis Biosciences, USA) was used to 

compare the available sequences based on the National Center for Biotechnology Infor-

mation (NCBI) database (Dessì et al., 2017). 

7.2.7 ANN model development 

The experimental data from days 0 to 189 (158 data points) of BTF operation was used 

to develop the ANN model using the Neural Network Toolbox 11.0 of MATLAB® R2017b 

(MathWorks Inc., USA). The inlet N/S ratio, H2S concentration and the effluent pH were 

used as the ANN input parameters, while the output parameters consisted of H2S-RE, 

NO3
--RE and SO4

2- production. Figure 7.1 shows the schematic of the three-layered feed-

forward network topology developed to predict the BTF performance. The Levenberg-

Marquardt back-propagation algorithm was used to brain the network (Khanongnuch et 

al., 2018).  

To determine the optimal neural network, the input data were transformed by multiplying 

with the connection weights (W ih) and bias term values to create data in the hidden layer. 

Thereafter, the signal to the output layer is transferred by multiplying with the respective 

connection weights (Who) to generate the desired output (Rene et al., 2009). A tan-sig-

moid and a linear transfer function were used in the hidden layer and the output layer, 

respectively. 
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Figure 7.1. Three-layered network topology (3-9-3) for predicting the performance of the 
anoxic BTF. 

The ANN model performance was evaluated using the mean squared error (MSE) and 

coefficient of determination (R2) between the experimented and model fitted data. The 

basic statistics of the training, validation and test data sets are shown in Table 7.3. The 

experimental data from the BTF were normalized to values in the range of 0-1 according 

to Eq. (7.4): 

𝑋̂ =
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
           (7.4) 

where X̂ is the normalized value, Xmin and Xmax are the minimum and maximum values of 

X, respectively. 

Table 7.3. Basic statistics of the training, validation and test data sets used to develop the 
artificial neural network (ANN) model. 

 N Mean Minimum Maximum 

Input     

Inlet H2S (ppmv) 158 937 23.0 4456 

Feed N/S ratio 158 0.14 0.002 0.70 

Effluent pH 158 7.78 7.00 8.41 

Output     

H2S-RE (%) 158 91.2 20.9 100 

NO3
--RE (%) 158 80.3 21.0 100 

SO4
2- production (mg L-1) 158 670 193 1609 
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7.3 Results 

7.3.1 H2S removal and elimination capacity of the BTF 

The H2S RE was 99.6 (± 1.7)% within one day after BTF start-up (Figure 7.2A). During 

phase P1-II, i.e. the absence of acetate in the trickling liquid, the RE of H2S decreased 

from 100% on day 28 to almost 17% on day 36. However, it reached a RE of 100% after 

replacing the nutrient medium on day 36 (Figure 7.2A). The H2S RE decreased to values 

around 31-46% when the NO3
−-N concentration in the trickling medium was completely 

consumed, while the H2S RE increased immediately to 100% when NO3
−-N was intro-

duced to the BTF during medium replacement. During phase P1-III (days 55-69), acetate 

was added again to the nutrient medium. The H2S RE was stable and >89% between 

days 60 and 69, even when NO3
−-N was completely consumed. During phase P1-IV 

(days 70-90), the inlet H2S concentration was increased from 93.7 (± 15.3) (2.7± 0.4 g S 

m-3 h-1) to 318.5 (± 23.7) ppmv (9.0 ± 0.7g S m-3 h-1). This resulted in a decrease of the 

H2S RE from 97% (day 70) to 73% (day 75). Subsequently, in phase P1-V, when the 

inlet H2S concentration was increased to 426.6 (± 48.0) ppmv (12.1 (± 1.4) g S m-3 h-1), 

the RE of H2S was still >70% (Figure 7.2A). In phase P2 (days 133-174), the operational 

mode of the anoxic BTF was changed from fed-batch to continuous and the inlet H2S 

concentration was 475.9 (± 119.2) ppmv. The H2S RE was >92% from the beginning of 

phase P2 (day 133) (Figure 7.2B) when NO3
- was fed at a loading rate of 50.2 (± 15.0) g 

NO3
--N m-3 h-1. 

During H2S shock-load tests (phase P3, days 175-188), two sets of H2S shock-loads 

were applied to ascertain the reproducibility of this phase of BTF operation. From days 

175-178, the inlet H2S concentration was maintained at 432.1 (± 44.2) ppmv, while the 

H2S shock-loads were applied once a day by increasing the H2S concentration to 994.2 

(±70.2) ppmv on day 174, 1976.9 (± 96.1) ppmv on day 175, 3008.3 (± 168.6) ppmv on 

day 176, and 4129.4 (± 146.1) ppmv on day 177, corresponding to an H2S inlet load of 

28.1 (± 2.0), 55.9 (± 2.7), 85.1 (± 4.8) and 116.8 (± 4.1) g S m-3 h-1, respectively. Each 

step of H2S shock-load was maintained for 4 h and repeated at 24 h intervals for 4 d. 

During the successive H2S shock-load tests, the H2S RE decreased from 96% to the 

lowest RE values RE 96%, 91%, >83% and 61%, respectively (Figure 7.2C). During the 

restoration of the normal inlet H2S concentrations of 370 (± 0) ppmv on day 178, the RE 

increased to values >95 %. During the second set of H2S shock-load tests (days 184-

187), the inlet H2S concentration was increased from 432.1 (± 44.2) to 2174.3 (± 285.0), 

3018.0 (± 211.0) and 4133.4 (± 234.8) ppmv for each H2S shock-load, corresponding to 

H2S loading rates of 61.5 (± 8.1), 85.4 (± 6.0) and 116.9 (± 6.6) g S m-3 h-1, respectively 

(Figure 7.2D). The H2S RE was >96% during all the H2S shock-load test. The H2S RE 



154 

 

 

 
Figure 7.2. H2S concentration and removal efficiency profiles during BTF operation: (A) fed-batch mode, (B) continuous mode, (C) 1st shock-load, 
and (D) 2nd shock-load. 
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increased to 98.1 (± 2.9)% within 1.5 h after decreasing the inlet load to 10.4 (±0.8) g S 

m-3 h-1 at an inlet H2S concentration of 366.7 (± 27.1) ppmv (Figure 7.2D). 

Figure 7.3 shows the EC values and the inlet loading rates of the anoxic BTF. The EC of 

phase 1-I was 2.86 (± 0.66) g S m-3 h-1 at an inlet H2S concentration of 97.0 (± 11.0) 

ppmv. The ECmax values during fed-batch and continuous mode of BTF operation were, 

respectively, 10.67 and 21.22 g S m-3 h-1. The ECmax value during the H2S shock-load 

experiment was 113.5 (± 6.4) g S m-3 h-1 (RE = 96.5 %), which was achieved at an inlet 

loading of 116.9 (± 6.6) g S m-3 h-1.  

7.3.2 Sulfide and SO4
2− profiles in the BTF 

Trace amounts of sulfide in the liquid-phase (0-0.4 mg L-1) were detected in the anoxic 

BTF during fed-batch mode of operation (Figure 7.4A). The sulfide concentration in the 

liquid-phase was below 0.7 mg L-1 during the H2S shock-load tests (phase P3, days 174-

188). The average SO4
2− concentration was in the range of 900 to 1600 mg L-1 even 

when the H2S concentration was increased from 99.6 (± 1.7) to 426.6 (± 48.0) ppmv 

(Figure 7.4A). Consequently, an increase in the H2S concentration did not affect the 

SO4
2− profiles. The highest SO4

2− concentration was 1600 mg L-1 during phase P1 of BTF 

operation (fed-batch mode) at an inlet H2S concentration of 426.6 (± 48.0) ppmv (Figure 

7.4A). During BTF operation in continuous mode, a cream-whitish layer of S0 covered 

the PUFs in the BTF and results from EDX analysis confirmed these precipitates as S0 

particles (data not shown). The SO4
2− concentrations during the continuous mode of BTF 

operation were lower than the SO4
2− formed during fed-batch operation (247-593 mg L-

1) because S0 was also produced as an end-product. 
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Figure 7.3. Influence of H2S inlet load on the elimination capacity of the BTF during differ-
ent modes of operation: (A) fed-batch and continuous, and (B) H2S shock-load tests. 
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Figure 7.4. Profiles of different parameters in the BTF: (A) sulfide, and SO4

2−, (B) acetate 
and pH, and (C) NO3

−-N and NO2
−-N. 
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During phase P1: I-III (IL = 2.7 ± 0.4 g S m-3 h-1), SO4
2- was detected as the major end-

product (>83.4 ± 23.5)% formation) of sulfide oxidation, while S0 was also detected as 

another end-product at high H2S IL. During phases P1-IV and P1-V, 51.3 (± 3.7)% and 

38.2 (± 13.3)% SO4
2- was produced via the sulfide oxidation pathway at an H2S IL of 9.0 

(± 0.7) and 12.1 (± 1.4) g S m-3 h-1, respectively. During continuous mode of BTF opera-

tion, 50.2 (± 19.9) and 42.4 (± 19.5%) of the sulfide was oxidized to SO4
2- during phases 

P2-I and P2-II, respectively. 

7.3.3 Acetate and pH profiles in the anoxic BTF 

The acetate RE was 100% during the 189 days of anoxic BTF operation (Figure 7.4B). 

During phase P1-II, it was evident that the RE of H2S decreased slightly from 70 to 52 

ppmv in the absence of acetate at day 31. However, after phase P2, the BTF was oper-

ated in continuous mode and acetate was not supplied to the reactor. The initial pH value 

was ~6.5-7.0 and the final pH value was ~7.7-8.1 without any adjustment of the pH 

throughout the entire BTF operation (Figure 7.4B).  

7.3.4 NO3
--N removal and NO2

--N profile in the BTF 

During fed-batch mode of operation (phase P1, days 0-107), the NO3
- removal efficiency 

was almost 100% within 2 days for each cycle and NO2
--N (0-55.0 mg NO2

--N L-1) was 

detected as an intermediate product of NO3
- reduction (Figure 7.4C). During continuous 

mode of BTF operation (phase P2, days 133-175), the NO3
- removal efficiency was 

only >82% and the effluent NO2
--N was below 14 mg NO2

--N L-1 (Figure 7.4C). 

7.3.5 Stability of P. versutus strain MAL 1HM19 and microbial community 

analysis 

At the end, three different phyla of bacteria were present in the anoxic BTF (Table 7.4): 

Proteobacteria, Flavobacteria, and Actinobacteria. The anoxic BTF was started using a 

pure culture of P. versutus strain MAL 1HM19. From the results of the PCR-DGGE anal-

ysis, the Paracoccus sp. strain MAL 1HM19 (P. versutus) (band 1), with a high similarity 

(98%), remained as the dominant microorganism during the BTF (Figure 7.5). Further-

more, CFU growth confirmed the presence of P. versutus strain MAL 1HM19 in the BTF 

biofilm (data not shown). Moreover, another dominant microorganism in the anoxic BTF 

was Brevundimonas sp. (band 2) with 95-99% similarity. Microbes having 97% similarity 

to Microbacterium sp. strain SFA13 (band 4) were observed only during phase P1-I. Fla-

vobacterium sp. (band 3) and Ochrobactrum sp. AFO (band 8) were observed on day 

161 and Pseudomonas sp. RAS29 (band 10) was detected on day 189, respectively 

(Figure 7.5).
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Table 7.4 Identification of OTUs obtained from Genebank data (http://www.ncbi.nlm.nih.gov/genbank) based on DGGE band sequences.  

Band 
ID 

Closest relatives in the GenBank Accession 
number 

Identity 

(%) 

Class Matching length 

1 Paracoccusversutus strain MAL 1HM1983  KY427435.1 98% Alphaproteobacteria 482 

2 Brevundimonas sp. 

 

KU557513.1 

EF590244.1 

HQ622538.1 

MF285791.1 

FN435943.1 

96% 

99% 

95% 

98% 

97% 

Alphaproteobacteria 

 

446 

486 

427 

513 

479 

3 Uncultured Flavobacterium sp. KM107820.1 

KP875419.1 

95% 

97% 

Flavobacteria 

 

532 

503 

4 Microbacteriumsp. strain J13-49 MH470446.1 97% Actinobacteria 502 

5 Sphingopyxis sp. OTB55 KX022846.1 91% Alphaproteobacteria 488 

6 Uncultured Rhizobiales bacterium HF678305.1 <90% Alphaproteobacteria 377 

7 Endosymbiont ofAcanthamoebasp. UWC8 CP004403.1 98% - 438 

8 Ochrobactrum sp. AFO KJ127515.1 97% Alphaproteobacteria 481 

9 Pseudomonas sp. RAS29 FJ868601.1 98% Gammaproteobacteria 521 

10 Uncultured bacterium AJ536818.1 98% - 590 
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Figure 7.5. DGGE profiles based on 16S rDNA fragments amplified from DNA extracted from 
the biomass samples (7 pieces) collected on days 2, 11, 28, 98, 161, 184 and 189 from the 
BTF.  

7.3.6 ANN modeling results 

The ANN model developed could predict the H2S-RE, NO3
--RE and SO4

2- production 

profiles in the BTF (Figure 7.6). The best network topology of the developed ANN model 

for the anoxic BTF consisted of 4 neurons in the input layer, 9 neurons in the hidden 

layer and 3 neurons in the output layer (3-9-3). The training of the network (Table 7.5) 

was achieved within 2 s and the best validation performance with an MSE of 0.01784 

was achieved at an epoch size of 15. The R2 of the training, validation and test data sets 

are 0.86, 0.91 and 0.81, respectively (Table 7.6). 
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Figure 7.6. Experimental and ANN predicted profiles of: (A) H2S removal efficiency, (B) NO3
-

-N removal efficiency, and (C) SO4
2- production in the BTF. 

 
Table 7.5. Best values used to develop the ANN model for the anoxic biotrickling filter. 

Training parameters Range of value tested Best value 

Number of training data set 87-110 94 (60%) 

Number of validation data set 40-24 32 (20%) 

Number of test data set 16-32 32 (20%) 

Number of neurons in input layer (NI) 3 3 

Number of neurons in hidden layer (NH) 4-12 7 

Number of neurons in output layer (NO) 3 3 

Epoch size 15 19 

Momentum term (µ) 0-1 0.00001 
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Table 7.6. Connection weight between the input-hidden layer (W ih) and hidden-output layer 
(Who) of the developed ANN models. 

Input Input-hidden layer (Wih)   Hidden-output layer (Who) 

H2Sin S/N ratio in pH BT   H2S RE NO3
- RE Effluent 

SO4
2- 

HID-1 3.17911 1.49688 0.39428 -3.25933 HID-1 -0.9648 -1.20858 -0.02010 

HID-2 -2.11596 -0.84500 -1.10522 2.82909 HID-2 -0.88392 -1.27784 -0.27479 

HID-3 -2.78028 5.51576 1.10998 2.36456 HID-3 1.10869 -1.46237 -3.52432 

HID-4 -1.41548 -0.94300 -1.78299 1.44844 HID-4 -0.51009 -0.57477 0.08760 

HID-5 2.15991 1.60030 -1.67597 0.84400 HID-5 -0.14413 0.78937 -0.50398 

HID-6 3.22409 0.39342 1.97824 2.53679 HID-6 -0.45921 0.90080 1.71352 

HID-7 -2.56672 -0.42964 1.08732 -1.45408 HID-7 0.12283 0.80194 -0.82300 

HID-8 1.38155 -1.18395 2.20227 1.28492 HID-8 -0.43005 0.09495 0.98716 

HID-9 0.09249 -1.05230 2.53563 3.26122 HID-9 -0.09228 -0.12704 -0.14324 

          BT 1.20774 1.66862 0.19080 

Note: HID: hidden layer; W ih: Input-hidden layer; Who: Hidden-output layer; BT: Bias term 

7.4 Discussion 

7.4.1 BTF performance 

The good performance of the BTF in terms of reaching high ECmax values during shock-

loading tests (Figure 7.3B) and consistently high H2S removal efficiency (Figure 7.2) 

clearly indicates the versatility of the strain MAL 1HM19 to handle gas-phase H2S. In a 

previous study, Aroca et al. (2007) tested the H2S removal performance using Acidithio-

bacillus thiooxidans as the inoculum in an aerobic BTF, and an ECmax of 370 g S m-3 h-1 

was reported at an EBRT of 45 sec. The anoxic BTF tested in this study had a moderately 

high ECmax value (116.9 ± 6.6 g S m-3 h-1) compared to the ECmax observed in other 

bioreactors inoculated with mixotrophic sulfur oxidizing bacteria (SOB) as well as mixed 

cultures of autotrophic bacteria (Table 7.7). 

The high H2S RE noticed immediately after reactor start-up (Figure 7.2) indicated P. ver-

sutus strain MAL 1HM19 was active immediately. In a previous study, Wu et al. (2001) 

reported a start-up time of 80 days for the immobilization and acclimatization of microor-

ganisms in a H2S treating BTF inoculated with Thiobacillus thiooxidans. In another study, 

the acclimation step of a biofilter (BF) inoculated with a pure culture of Acidithiobacillus 

thiooxidans required 18 days (Aita et al., 2016). It should be noted that the initial H2S 

concentration used in this study (~100 ppmv) during start-up was higher than in previous 

studies where in the initial H2S concentrations were usually in the range of 25-85 ppmv 

(Nisola et al., 2010; Abdehagh et al., 2011). 
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 Table 7.7. ECmax values reported in the literature for H2S removal using different bioreactor configurations. 

Microorganism Electron 

acceptor 

H2S loading rate 

(g S m-3 h-1) 

EBRT 
(S) 

pH ECmax (g S 
m-3 h-1) 

Salinity 
(g L-1) 

Reactor 
type 

References 

Acidithiobacillus thiooxidans O2 

 

240 

 

45 

 

2-4 370 0 BTF Aroca et al. (2007) 

Bordetella sp. Sulf-8 BTF 94  O2 

 

104.5 5 7.0 94 0 BTF Nisola et al. (2010) 

Thiobacillus thioparus O2 30 26 6.8 14 0 BF 

 

Aroca et al. (2007) 

Thiobacillus denitrificans NO3
- 22 ≥16 6.9-8.6 22.0 0 BTF 

 

Solcia et al. (2014) 

 

Mixed cultures of autotrophic bac-
teria 

O2 13 32 

 

7.0 8 0 BF 

 

Kim et al. (2008) 

Consortium from activated sludge 
from a domestic wastewater treat-
ment plant (Tougas, Nantes, 
France) 

NO3
- 

 

18.5 300 

 

N.D. 30.3 0 BTF Jaber et al. (2017) 

Consortium dominated by Thioba-
cillus sp. 

NO3
- 

 

20.0 

 

180 7.0 

 

19.2 0 BTF 

 

Khanongnuch et 
al. (2019) 

Paracoccus versutus strain MAL 
1HM19 

NO3
- 116.9 (± 6.6) 180 7.0-9.0 113.5 (± 6.4) 7 BTF This study 

Note: BF = biofilter; BTF = biotrickling filter; BS = bioscrubber; N/A = not available 
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The H2S RE during the second set of shock-load experiments was higher than (>94%) 

the first successive shock-load experiments (>70%) and a satisfactory bioreactor perfor-

mance was demonstrated (Figure 7.2D). Usually, in a BTF or BF, a sudden exposure to 

very high H2S concentrations might cause toxicity to the microbial community, leading to 

an inhibition of the microbial activity and a decline of the RE by ~40 to 50% (Kim et al., 

2008). This study clearly demonstrated the effective of anoxic BTF inoculated with P. 

versutus strain MAL 1HM19 for biological H2S removal from contaminated gas stream at 

high concentration.  

The removal of H2S coupled to NO3
−-N reduction at pH 7.0 was mainly due to the biolog-

ical activity of NR-SOB (Soreanu et al., 2008). Oh et al. (2001) reported that the optimum 

pH is in the range of 6.0-9.0 for autotrophic and heterotrophic denitrifying bacteria, which 

is also the same pH range used in this study. 

Due to the absence of structured mathematical models to predict the BTF performance, 

artificial neural networks are an alternative way to identify the complicated patterns in 

datasets (López et al. 2014). The overall correlation coefficient (R2) of the ANN model 

(0.93) confirms the reliable prediction of the biological processes in the BTF even though 

it was operated under transient-state conditions. The R2 of training (0.86) indicated that 

the model was able to map the relation between the input and output parameters (i.e. 

H2S RE, NO3
- RE and SO4

2- production), while the R2 of validation (0.91) showed the 

good generalization capacity of the model (Antwi et al., 2017). The developed ANN in 

this study could be useful for predicting and optimizing the operational conditions of full-

scale anoxic BTF for H2S removal from gas streams using NO3
- containing wastewater 

as the electron acceptor. 

7.4.2 Complete or partial H2S oxidation 

The amount of sulfide produced in the liquid-phase (<0.7 mg L-1, Figure 7.4A) had no 

inhibitory effect on the microorganisms present in the anoxic BTF. As reported in previ-

ous studies, the inhibitory concentration of undissociated and dissolved dissociated sul-

fide and H2S are in the range of 50-400 and 100-800 mg L-1, respectively (Pokorna et al., 

2015). SO4
2− is the main product in the sulfide bio-oxidation pathway under anoxic con-

ditions and as reported previously by Vikromvarasiri and Pisutpaisal (2017), the SO4
2− 

production rate is usually constant when the inlet H2S concentration is <570 ppmv. SO4
2− 

formation or the presence of SO4
2− in the trickling medium did not have an inhibitory 

effect on the microorganism nor an effect on the removal of gas-phase H2S. This obser-

vation is consistent with the results reported in a previous BTF study for H2S removal 

under aerobic conditions by Ramírez et al. (2009). In that study, the BTF was inoculated 
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with T. thioparus and repression was not reported at SO4
2− concentrations as high as 

5,000 mg L-1. 

The final product of the sulfide oxidation pathway not only depends on the NO3
−-N con-

centration following equations (Eqs. 7.5 and 7.6) (Moraes et al., 2012), but also on the 

amount of sulfide or other S compounds present in the bioprocess: 

5HS- + 8NO3
- + 3H+ → 5SO4

2- + 4N2 + 4H2O (complete oxidation); 

∆G° = -3848 kJ/reaction         (7.5) 

5HS- + 2NO3
- + 7H+ → 5S0 + N2 + 6H2O (partial oxidation);    

∆G° = -1264 kJ/reaction         (7.6) 

With the NO3
--N limiting conditions at phase P1-I (S/N = 0.25 ± 0.02), P1-II (S/N = 0.34 

± 0.03) and P1-III (S/N = 0.38 ± 0.1) under fed-batch operation, SO4
2- was detected as 

the dominant end-product (>96%) according to equation (5) which is similar to the find-

ings by Moraes et al. (2012), who reported the complete sulfide oxidation and SO4
2- for-

mation throughout the operation of a vertical fixed bed reactor treating H2S and NO3
--N 

at a S/N ratio = 0.37. In this study, the presence of excess H2S, i.e. an increase of H2S 

IL during phases P1-IV and P1-V might have caused insufficiency of NO3
--N, which was 

supplied approximately once a week but was consumed within 1 d. This resulted in a 

severe fluctuation of the S/N ratio and the amount of S0 generated increased relative to 

the amount of SO4
2- formed. During NO3

- limitation (phases P1-IV and P1-V), abiotic 

oxidation of H2S to S0 and polysulfides (Sx
2-) could be occurs in the BTF as a trace of 

oxygen can be contaminated with a trickling liquid (Beristain-Cardoso et al., 2006; 

Pokorna and Zabranska, 2015).  

Another possible reason for the formation of S0 as end-product of the H2S oxidation might 

be the higher IL of H2S during phases 1-IV and 1-V. Li et al. (2016) reported S0 as the 

dominant end-product and the gradual decrease of SO4
2- formation during BTF operation 

at an IL ranging between 16.3 and 54.5 g H2S m-3 h-1, i.e. S/N >0.625. The presence of 

S0 might lower the chemolithotrophic denitrification rates because the solid Sº can cause 

unexpected clogging problems and also affect the mass transfer characteristics of the 

reactor (Beristain et al., 2005). Besides, changing of the operational mode of the BTF 

from fed-batch to continuous with high H2S loading rates (>400 ppmv or >12 g S m-3 h-1) 

(S/N = 0.13 ± 0.02) in order to provide sufficient NO3
--N to the BTF system, S0 was also 

detected as the end-product (>45%), which is good agreement with Jaber et al. (2017) 

who reported the high amounts of S0 (~53%) at high H2S loading rates (>600 ppmv). 

Interestingly, the S/N ratio tested under continuous mode of BTF operation was much 
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lower than the ratio used by Cai et al. (2008). In that study, 50% S0 and 50% SO4
2- were 

observed as the end-products at S/N ratio of 5/5. 

7.4.3 Mixotrophic versus autotrophic growth 

During mixotrophic conditions wherein both H2S and acetate were supplied served as 

the electron donors, the removal of both H2S and acetate occurred simultaneously which 

is concurrent with prior studies by Xu et al. (2015) who developed a heterotrophic and 

autotrophic denitrification (HAD) process for the simultaneous removal of sulfide, NO3
- 

and acetate from synthetic wastewater in a Plexiglas reactor using sludge containing 

Thiobacillus sp., Thauera sp., Xanthomonadaceae sp. and Chromatiales sp. with the 

operating pH and temperature at 7.2-7.5 and 29.5-30.5 °C, respectively. However, this 

study contrasts An et al. (2010), where sulfide was used as an electron donor for NO3
- 

reduction and acetate was used as an electron donor only when the reactor was depleted 

of sulfide. The different results of this study and An et al. (2010) might be due to the 

different inocula used.  

The H2S, NO3
- and acetate removal pathways can be derived from the genetic data of 

strain MAL 1HM19, obtained by whole genome sequencing (unpublished results). P. 

versutus strain MAL 1HM19 contains the four enzymes including periplasmic nitrate re-

ductase (Nap), nitrite reductase (Nir) and nitrous oxide reductase (Nos) encoded by the 

nap, nir, nor and nos genes for the four-step conversion NO3
- to N2 (Watsuntorn et al., 

2017). As shown by the NO2
--N concentrations produced (<14 mg NO2

--N L-1) during the 

continuous mode of BTF operation (Figure 7.4C) were not inhibitory to the microorgan-

isms. The accumulation of NO2
--N was usually followed by its complete conversion to N2 

gas within 3 days (Figure 7.4C). Also, the sox genes were present (unpublished results), 

which belong to the bacterial SOX system and are related to the sulfide oxidation path-

way (Friedrich et al., 2005). Moreover, acetyl-CoA synthetase (ACS) or acetate-co A 

ligase involving the complete conversion of acetate to carbon dioxide (CO2) as the end-

product was present in the genetic profile of P. versutus strain MAL 1HM19. The ACS 

enzyme has the function to change the acetate and coenzyme A to acetyl Co A (Hattori 

et al., 2005). 

7.4.4 Microbial community in the anoxic BTF 

Most of the microbes which were observed during BTF operation belonged to denitrifying 

bacteria. The presence of these various types of denitrifying bacteria likely contributed 

to the NO3
− removal in the anoxic BTF investigated. Brevundimonas sp., another domi-

nant microorganism present in the anoxic BTF (band 2, Figure 7.5), is a denitrifying bac-

terium which belongs to the Alphaproteobacteria (Kavitha et al., 2009; Ji et al., 2016). Ji 

et al. (2016) isolated B. diminuta MTCC 8486 from groundwater and demonstrated its 
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ability to withstand NO3
--N up to 10,000 mg L-1, and 94% NO3

--N removal was achieved 

within 36 h at an initial concentration of 148.8 NO3
--N mg L-1 (Ji et al., 2016). Kavitha et 

al. (2009) reported NO3
−-N removal using B. diminuta isolated from marine soil of a 

coastal area near Trivandrum (Kerala, India). B. diminuta can tolerate NO3
− concentra-

tions up to 10,000 mg L-1. Microbacterium sp. strain SFA13, isolated from Songhua River 

(China), showed good NO3
− and ammonium (NH4

+) removal, converting NO3
− and NH4 +

to N2 at 5 °C under aerobic conditions and ~70% of the NO3
− was reduced to N2 within 

30 h (Zhang et al., 2013). In addition, species from the genus Pseudomonas have also 

been reported to participate in the denitrification process (Zhang et al., 2011). 

7.5 Conclusions 

• An anoxic BTF inoculated with pure culture of P. versutus strain MAL 1HM19 required 

a short start-up time (1 d) and showed robustness for removal of H2S from a biogas 

mimic. The P. versutus strain MAL 1HM19 was dominantly present in the BTF irre-

spective of the operational conditions and the strain showed good removal capacity 

during H2S shock-load test. 

• The ECmax values of the anoxic BTF in steady and transient state with continuous 

mode were 17.9 (± 2.1) and 113.5 (± 6.4) g S m-3 h-1, respectively.  

• The P. versutus strain MAL 1HM19 was dominantly present in the BTF irrespective of 

the operational conditions and the strain showed a good removal capacity during H2S 

shock-load test.   
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8.1 Introduction 

In this thesis, various anoxic bioreactor configurations were successfully used for treating 

waste streams contaminated with RSCs, i.e. S2O3
2- and H2S, using NO3

- as an electron 

acceptor (Table 8.1). These processes relied on the activity of sulfur-oxidizing nitrate-

reducing (SO-NR) bacteria, the ratio of nitrogen-to-sulfur (N/S ratio), the source of an 

inoculum and different bioreactor configurations. Two different anoxic bioreactor config-

urations, i.e. a fluidized bed reactor (FBR) and a moving bed biofilm reactor (MBBR) 

were successfully developed for the treatment of sulfur-containing liquid streams by us-

ing S2O3
2- and NO3

- as the sulfur source and electron acceptor, respectively (Chapters 

3 and 4). To develop an integrated and sustainable approach, an anoxic biotrickling filter 

(BTF) was developed for the simultaneous treatment of H2S contaminated gas streams 

and NO3
--containing wastewater as well as the effect of organic matter present in the 

systems (Chapter 5). Besides, the inoculation and bioaugmentation with a facultative 

autotrophic bacterium, Paracoccus sp. strain 1MAL19, in the anoxic BTF was investi-

gated to improve the bioreactor’s resistance to high steady and transient loading rates 

of gas and liquid phase pollutants (Chapters 6 and 7). This research provides valuable 

insights to the anoxic treatment of RSCs contaminated waste streams and the reliability 

of different sulfur-oxidizing anoxic bioreactors. The integrated technologies based on the 

major findings obtained in this research are illustrated in Figure 8.1.  

Chapter 8 General discussion 
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Table 8.1. Overview of the operational conditions and performance of the anoxic sulfur oxi-
dizing bioreactors used in this PhD thesis. 

 Fluidized bed 
reactor  

Moving bed bio-
film reactor 

Biotrickling filter Biotrickling filter 

Inoculum Thiobacillus-
dominated bio-
film 

Thiobacillus-
dominated bio-
film 

Thiobacillus-
dominated bio-
film 

Pure culture of 
Paracoccus sp. 
strain MAL 

Carriers Granular acti-
vated carbon 

Kaldnes-K1 Polyurethane 
foam  

Polyurethane 
foam 

Sulfur source S2O3
2- S2O3

2- H2S H2S 

Feed N/S ratio 
(mol mol-1) 

0.1-0.5 0.1-0.5 1.2-1.7 1.9-11.4 

Inlet sulfur load-
ing rate 
(g S m-3 h-1) 

37.0 37.0 3.5-20.0 
(40.0)a 

2.0-18.0  
(125)a 

Maximum sulfur 
removal rate  
(g S m-3 h-1) 

33.8 35.8 19.2 (37.8)a 17.0 (122)a 

NO3
- loading rate 

(g N m-3 h-1) 
2.0-7.5 2.0-7.9 9.9-11.1 17.0 

Note: amaximum value during shock load tests 
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Figure 8.1. Schematic for the integrated treatment of reduced sulfur contaminated waste streams in anoxic bioreactors based on the major findings 
of this thesis. 
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8.2 H2S removal from synthetic biogas 

8.2.1 Application of anoxic bioreactors for the removal of reduced sulfur 

compounds (RSCs) from waste streams 

The attached-biofilm reactors, including a FBR and MBBR, have been reported as effec-

tive bioreactors for NO3
- removal from wastewater (Di Capua et al., 2015; Papirio, 2012; 

Yuan et al., 2015). However, the research and development of these bioreactors for 

treatment of RSCs contaminated wastewater is still limited. As these bioreactors have 

shown good ability to retain biofilms in the system and protect the microorganisms in the 

biofilms from high toxic and harmful environments, the performances of anoxic FBR and 

MBBR for S2O3
2- oxidation were investigated in Chapters 3 and 4. The performance of 

the FBR and MBBR in terms of S2O3
2- removal efficiency (RE) showed no difference 

when sufficient NO3
- was supplied in the feed (N/S ratio of 0.5). In addition, the FBR and 

MBBR used in this study demonstrated higher resiliency to long-term operation under 

excess S2O3
2- (N/S ratio of 0.5) compared to the optimal N/S ratios obtained in anoxic 

completely stirred tank reactors (CSTR), at 1.0 and 0.8-0.9 mol mol-1 for the removal of 

S2O3
2- and S2-, respectively (Dolejs et al., 2015; Manconi et al., 2007).  

The MBBR showed a slightly higher S2O3
2- RE than the FBR during the operation at NO3

- 

limited conditions (N/S ratios of 0.3 and 0.1). The MBBR also showed a faster recovery 

of the S2O3
2- RE, which increased from 37.7% to >99% within 2 days after increasing the 

N/S ratio from 0.1 to 0.5. The S2O3
2- RE in the FBR recovered from 26.0% to 80.8 (± 

4.1)% in 3 days and did not further improve although the experiment was continued for 

64 d. Additionally, the metabolic activity of the MBBR biomass, i.e. the maximum specific 

rate of S2O3
2- oxidation, was also enhanced after operation under severe NO3

- limitation. 

The different bioreactor configurations and mixing conditions provided slightly higher dis-

solved oxygen concentrations to the MBBR (0.45 ± 0.08 mg L-1) than to the FBR (0.25 ± 

0.05 mg L-1). Thus, one of the reasons for the slightly better performance of the MBBR 

compared to the FBR might be the higher level of free oxygen stimulating the sulfur-

oxidizing activity of the MBBR biofilm during NO3
- limitation (N/S ratio 0.3 and 0.1). Oxy-

gen likely served as an alternative electron acceptor for facultative autotrophs, i.e. Thio-

bacillus thioparus and Thiomonas sp., which were present in the systems (Chapter 4, 

Figure 4.8).  

The different characteristics of the carrier materials used in the two systems also likely 

affected the bioreactor performance. Compared to the FBR biofilm developed onto gran-

ular activated carbon, the biofilm attached on the internal structure of the MBBR carriers 
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(Kaldnes-K1 carriers) could be more efficient in protecting the microorganisms against 

harsh environmental conditions (Barwal and Chaudhary, 2014). However, the FBR con-

tained higher biomass concentrations than the MBBR (Chapters 3 and 4) that can fur-

ther benefit when treating pollutants at high loading rates (Di Capua et al., 2015; Papirio 

et al., 2013).  

In practical applications, RSCs contaminated waste streams, i.e. scrubbing liquid from 

the desulfurization unit or biogas production from anaerobic digestion of WWTP sewage 

could be simultaneously treated with NO3
- containing wastewater from post-treatment 

using nitrification-denitrification to avoid the addition of external organic carbon (Baspinar 

et al., 2011; Guerrero et al., 2015). Due to the good performance of the MBBR in this 

study (Chapter 3), a long-term operated MBBR (306 days) can be used for enriching 

SO-NR biomass prior to the inoculation of other bioreactors, e.g. an anoxic BTF for H2S 

removal or an anoxic MBBR. Furthermore, the FBR and MBBR can also be used for 

treating scrubbing liquid containing HS-, S2- and/or S2O3
2- from scrubbers for H2S removal 

coupled with nitrogen removal, which has been previously demonstrated as potential 

application for packed columns and activated sludge bioreactors (Baspinar et al., 2011; 

Deng et al., 2009).  

8.2.2 Application of anoxic BTFs for H2S removal from gas streams 

Anoxic biotrickling filters for H2S removal provide higher availability of electron acceptor 

for microbial metabolism than aerobic systems due to the high solubility of NO3
- (Brito et 

al., 2017). In Chapters 5 and 6, the anoxic BTFs were used for H2S removal from the 

gas stream (the mixture of N2 and H2S) and a H2S RE >99% was obtained under steady-

state operation with outlet H2S concentrations of 0 and 0-10 ppmv for inlet concentrations 

of 100 and 500 ppmv, respectively. The highest H2S elimination capacity (EC) of 19.2 g 

S m-3 h-1 was observed after 42 days of operation. The highest H2S EC reported in anoxic 

BTFs was ~170 g S m-3 h-1 at high inlet H2S concentrations in the range of ~1000-14600 

ppmv (Almenglo et al., 2016; Brito et al., 2017; Fernández et al., 2014, 2013; López et 

al., 2018). Those studies focused on the use of NO3
- from chemical sources, i.e. 

Ca(NO3)2, KNO3 and NaNO3; and the determination of optimal operational conditions 

controlled by automatic systems, i.e. gas-liquid flow patterns and the use of proportional-

integral-derivative (PID) control systems. Several applications of biogas, such as gas 

stoves and fuel cells, require biogas containing a very low H2S concentration, e.g. <10 

ppmv. Furthermore, the outlets from full-scale desulfurization units often still contain H2S 

concentrations of 20-1000 ppmv (Baspinar et al., 2011). The results obtained from this 

thesis suggest that anoxic BTFs can also be used as a secondary treatment unit to re-

move H2S from the effluent of full-scale desulfurization units treating high H2S concen-

trations (10000-40000 ppmv) to reach the regulatory limits.  



177 

 

 

When considering the use of NO3
--containing wastewater as the electron acceptor 

source in anoxic sulfide oxidizing bioreactors, the composition of the wastewater should 

be analyzed carefully because many wastewaters also contain organic compounds 

which can affect the sulfur-oxidizing process and the microbial community in the biore-

actor. Results of Chapter 5 revealed that the addition of acetate under autotrophic con-

ditions stimulated the growth and activity of heterotrophic denitrifying bacteria and the 

microbial community composition in the bioreactor changed significantly. The NO3
- de-

mand was high because NO3
- was used for both autotrophic and heterotrophic denitrifi-

cation. This led to a decrease of the H2S RE in the BTF; however, the efficiency increased 

immediately after increasing the NO3
- loading rate (Chapter 6). The mass balance anal-

yses of sulfur, nitrogen and carbon carried out for the anoxic BTF showed high amounts 

of carbon release from the system during the addition of acetate in the form of high CO2 

production due to biodegradation of the feed acetate and wash out of biomass previously 

formed in the system. These results suggest that the BTF can be operated with 

wastewater containing organic carbon as it increases the NO3
- RE via mixotrophic deni-

trification and provides CO2 as the endogenous carbon source instead of adding external 

inorganic carbon (Bayrakdar et al., 2016). Furthermore, Chapter 5 demonstrated that 

the N2 and CO2 concentrations produced during the autotrophic and/or mixotrophic H2S 

oxidation did not affect the outlet gas composition of the system. Therefore, the anoxic 

BTF can be used for biogas desulfurization without dilution of the CH4 content.  

The variation in the feed N/S ratios from 1.2 to 1.7 mol mol-1 did not affect the main H2S 

oxidation product, which was mainly SO4
2-, when the anoxic BTF was operated at NO3

- 

loading rates of 9.9-11.1g N m-3 h-1 for treating H2S in the range of 100-500 ppmv (Chap-

ter 5). However, Chapter 6 demonstrated that the trickling liquid flow rate at 30 L h-1 

could lead to the partial S0 production of ~20% at a feed N/S ratio of ~1.7 and NO3
- 

loading rate of 2.7 g N m-3 h-1. Nevertheless, the H2S RE was stable at 100% compared 

to the trickling liquid flow rates at 60 and 120 L d-1. Apart from the operation at high inlet 

H2S concentrations (Fernández et al., 2014, 2013), the results of this study suggest that 

the operation at low trickling liquid flow rate or low NO3
- loading rate also results in the 

production of S0. S0 can be used in commercial products, e.g. biological S0 and fertilizer. 

However, the recovery techniques for S0 from anoxic BTFs are still limited. Thus, the 

increase of the NO3
- loading rate allows the removal of the accumulated S0 and avoids 

clogging problems in the bioreactor (Brito et al., 2017). 

Chapter 7 describes the performance of an anoxic BTF (189 operational days) inocu-

lated with a pure culture of Paracoccus sp. 1MAL19 for H2S removal. Watsuntorn et al. 

(2017) previously reported that Paracoccus sp. 1MAL19 could grow in varying operating 

conditions, i.e. temperatures of 20-50 °C and high salinity (7% w/v of NaCl). Chapters 5 

and 6 demonstrated that bioaugmentation with Paracoccus sp. 1MAL19 enhanced the 
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tolerance of bioreactors to varying influent acetate concentrations. Furthermore, the BTF 

bioaugmented with Paracoccus sp. 1MAL19 required organic carbon (10.2 g acetate m-

3 h-1) to achieve sulfide oxidation efficiencies >90% (Chapter 6). Additionally, it was 

shown that the BTF inoculated with Paracoccus sp. 1MAL19 could be operated at N/S 

ratios in the range of 1.9-11.4 mol mol-1, while maintaining the H2S removals efficien-

cies >90% (Chapter 7). This demonstrated that the Paracoccus sp. 1MAL19 could be 

used either as an inoculum or bioaugmented to an existing BTF for the simultaneous 

removal of H2S, NO3
- and organic carbon. Although anoxic BTFs have been developed 

for biological gas desulfurization, their practical application may encounter high varia-

tions in operating conditions, e.g. increase of heterotrophic bacteria growth and unex-

pected (transient) operating conditions. Chapters 5, 6 and 7 also demonstrated the ro-

bustness of the anoxic BTF to H2S shock loads, resiliency to recover the performance of 

two anoxic BTFs inocula with different inoculum as well as the microbial activity and 

community composition under transient conditions. 

8.2.3 Microbial community composition of the anoxic bioreactors used for 

treatment of waste streams contaminated with RSCs 

A similar microbial community composition was observed in the different bioreactors 

tested in this study (Chapters 3, 4, 5 and 6). During the entire operation of the FBR, 

MBBR and BTF, Thiobacillus sp. and Chryseobacterium sp., were the dominant micro-

organisms detected in the bioreactors under both autotrophic and heterotrophic denitri-

fication conditions. Although the BTF was inoculated with biomass from the MBBR, the 

BTF showed the presence of only one species of known sulfur-oxidizing bacteria, i.e. 

Thiobacillus sp. (Chapter 5), while the FBR and MBBR retained various species that can 

oxidize RSCs, i.e. Thiobacillus denitrificans, Thiobacillus sp., Sulfuritalea sp. and Thio-

monas sp. (Chapters 3, 4). This indicates that submerged attached growth bioreactors 

(FBR and MBBR) are able to better retain various microorganisms compared to BTFs. 

However, the BTF was preferable for the treatment of waste gas due to enhanced pollu-

tant transfer characteristics from the gas-phase to the biofilm and its ability to handle 

transient-state conditions that are usually prevalent in industrial operations (Kennes et 

al., 2009). 

During stress conditions in anoxic bioreactors for sulfur oxidation, i.e. NO3
- limitation 

(Chapters 3 and 4), sulfate reducing bacteria (e.g. Desulfovibrio sp.) were detected from 

the biofilm samples and likely grew by reducing S2O3
2- or SO4

2- in the bioreactor. How-

ever, their representative DGGE bands faded away in the later stages of bioreactor op-

eration likely because the conditions favored the dominance of sulfide-oxidizing bacteria 

in the system. This observation clearly confirms that the operating conditions of the re-

actor and the microbial community composition should be monitored carefully in order to 
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maintain the dominant microorganisms and bioreactor efficiency during long-term oper-

ation. Based on the results obtained from the BTF tested under various transient-state 

conditions (Chapter 6), it was evident that the growth of heterotrophic bacteria was stim-

ulated during stress conditions when the sulfur-oxidation efficiency decreased. In such 

situation, heterotrophic and Desulfovibrio-like bacteria could utilize organic carbon 

sources excreted by and from the autotrophs or other bacteria present in the system. 

8.2.4 Use of artificial neural networks for modeling the performance of dif-

ferent bioreactors 

The artificial neural network (ANN) is one of the most efficient black-box modelling tools 

used widely to predict and describe the performance of biological processes (Jiang et al., 

2016; Nair et al., 2016; Rene et al., 2011; Sahinkaya, 2009). ANN models were success-

fully used to predict the S2O3
2- RE and NO3

- RE and SO4
2- production in the FBR and 

MBBR during long-term operation for 306 days (Chapters 3 and 4). The performance of 

the anoxic BTF that was operated under both steady-state and transient conditions for 

189 days was also successfully predicted by the developed ANN model (Chapter 7). 

However, the application of ANN models can also have some drawbacks, e.g. the re-

quirement of large data sets to represent the process behavior, possibility of over-training, 

problems with error convergence and need to use a trial and error approach to determine 

the optimal network topology. However, ANN models, such as fuzzy neural network, 

have been continuously developed and tested to solve the fluctuation of operational con-

ditions in full-scale applications (Han et al., 2018; Mingzhi et al., 2009).  

At industrial scale, wastewater and waste gas treatment systems are usually controlled 

with online monitoring instruments, and programmable sensors can be integrated with 

the ANN model in order to control and predict the reactor performance using online 

and/or off-line mode (Figure 8.2). In such cases, the software can be programmed to 

monitor the performance of the bioreactor treating wastewater/waste gas in real time and 

generate a set of signals that will raise an alarm to the plant operator about the faults 

that are occurring and enable suitable changes in the operational parameters to prevent 

failure of the bioreactor using an optimal set-point decided by neural networks (López et 

al., 2017; Sadeghassadi et al., 2018). 
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Figure 8.2. Example of an ANN application for the automated control and optimization of 
bioreactor performance (adapted from López et al., 2017). 

8.3 Future research perspectives 

8.3.1 Novel processes for H2S and NO3
- removal from waste streams  

In this thesis, the anoxic MBBR showed a high performance for the removal of S2O3
2- via 

autotrophic denitrification as well as good resilience under NO3
- limitation (Chapter 4). 

However, the application of an anoxic MBBR for H2S removal from biogas is non-practi-

cal due to a major limitation of gas-liquid mass transfer. MBBRs have commonly been 

used for the nitrogen removal process comprised of nitrification and denitrification steps 

in WWTP (Bassin and Dezotti, 2018; Yuan et al., 2015). It would be interesting to inte-

grate the MBBR denitrification with biogas desulfurization which is able to provide sulfide 

as an electron donor during denitrification (NO3
- removal) without the addition of external 

organic carbon. A bubble column is one of the most common reactors for simultaneous 

removal H2S and CO2 from biogas (Bahr et al., 2014; Kantarci et al. 2005; Kennedy et 

al., 2015). The alternative system could be an integration of a bubble column used for 

H2S and CO2 removal from biogas and a MBBR used for denitrification (Figure 8.3a). 
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Figure 8.3. Novel processes for simultaneous removal of H2S and NO3
- from waste streams: (a) a moving bed biofilm reactor (MBBR) denitrification 

integrated with bubble column for biogas upgrading and (b) a hybrid biotrickling filter and MBBR for biogas desulfurization with S0 recovery.



182 

 

 

The effluent from the bubble column, also containing dissolved CO2 (e.g. HCO3
-), could 

serve as carbon source for the SO-NR process in the MBBR. However, this warrants 

further research since the integration of these processes has not yet been studied and 

the optimal operational conditions are unknown, e.g. the effect of dissolved CO2 concen-

tration on the SO-NR process and the optimization between concentrations of gaseous 

H2S and NO3
- in the MBBR. 

Moreover, H2S can be simultaneously removed with other contaminants such as CO2 

and NH3 in biogas as well as the NO3
-/nitrified wastewater from the post-treatment units 

of WWTPs (Baspinar et al., 2011; Garcia et al., 2015). The H2S removal has also been 

done simultaneously with the removal of both NH4
+ and NO3

- from wastewater (anammox 

and autotrophic denitrification) as well as S0 recovery (Franco-Morgado et al., 2018; 

Rios-Del Toro and Cervantes, 2016). In simultaneous desulfurization and denitrification 

process, the N2O emission and other nitrate species (e.g. NH3 and NH4
+) should be also 

taken into account and evaluated during the process.  

Anoxic bioreactors for gaseous H2S removal have only been tested in laboratory and 

pilot scales. Cano et al. 2018 carried out a life cycle assessment (LCA) of different tech-

niques for H2S removal, i.e. an aerobic BTF, an anoxic BTF, chemical scrubber and im-

pregnated activated carbon. The results showed that the anoxic BTF had lower opera-

tional costs than the chemical scrubber and impregnated activated carbon despite using 

chemicals (e.g. KNO3 and Ca(NO3)2) as a NO3
- source. Furthermore, the anoxic BTF had 

lower operational costs than the aerobic BTF when using NO3
--containing wastewater 

from a nearby location. The use of the anoxic BTF for H2S removal from synthetic biogas 

streams using NO3
- as an electron acceptor required long hydraulic retention times 

(Chapter 5).  

Further studies should be focused on the improvement of performance, elimination ca-

pacity and design of the packed bed structure of the BTF. The anoxic BTF packed with 

polyurethane foam likely caused rapid biomass accumulation, particularly when the 

wastewater contains organic carbon (Chapters 5 and 6). The maintenance of the BTF 

was also difficult due to the accumulation of S0 in the BTF packed bed. During the anoxic 

BTF operation, Almenglo et al. (2017) suggested that switching off biogas and feeding 

only NO3
- could remove accumulated S0 which is oxidized to SO4

2-. For a sustainable 

and cost-effective solution, a bioreactor configuration should be capable of directly re-

covering S0. To combine the advantages of the MBBR and BTF, it would be interesting 

to develop a hybrid anoxic bioreactor (Figure 8.3b) for the simultaneous treatment of H2S 

contaminated gas streams and NO3
- containing wastewater. This alternative bioreactor 

configuration could potentially overcome high biomass accumulation in the BTF and fa-

cilitate S0 recovery. 
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In practical applications, the use of real biogas in long-term operations should be further 

investigated because H2S concentrations in real biogas can have significant fluctuations. 

Feeding biogas consisting mainly of CH4 and CO2 and low amounts of H2S to a bioreactor 

over a long period of time might enrich new consortia under anoxic conditions as NO3
- 

and NO2
- can function as electron acceptors for methane oxidizing bacteria (López et al., 

2017). Some sources of biogas containing insufficient CH4 content (<30% v/v) cannot be 

used as an alternative energy source and CH4 should not be released to the atmosphere 

as it is a greenhouse gas. In this context, the study of CH4 oxidation in anoxic BTF is 

important for the removal of H2S. As the end-product of H2S is SO4
2-, the effect of the 

SO4
2- concentration should be further investigated as it can be an electron acceptor for 

CH4 oxidation (Bhattarai et al., 2018; Cassarini et al., 2018). However, there are so far 

no studies of simultaneous CH4 oxidation, SO4
2- reduction and H2S removal in anoxic 

BTF using NO3
- as electron acceptor. The H2S removal coupled with CH4 oxidation could 

be done in the suggested hybrid bioreactor as illustrated in Figure 8.3b.  

8.3.2 Advanced biofilm bioreactor analyses  

8.3.2.1 Fluid dynamics 

Fluid flow in biofilm reactors (e.g. MBBR and BTF) has the high impact on the biofilm 

development and mass transfer between microorganisms and pollutants (Bassin and 

Dezotti, 2018; Fortuny et al. 2011). The residence time distribution (RTD) tests carried 

out in this thesis to characterize the hydrodynamics in the bioreactors could be used to 

detect the axial dispersion occurring due to nonuniform liquid flow during the anoxic BTF 

operation (Chapter 5). However, the data obtained from the RTD tests is not suitable for 

the development of a dynamic model because it might critically affect the biofilm dynam-

ics in the system (Prades et al., 2016). In further studies, mathematical modeling tools 

such as Computational Fluid Dynamics (CFD) for hydrodynamics in conjunction with bi-

okinetic models as AquaSim could potentially be used to model integrated processes 

like the biogas desulfurization and wastewater denitrification process studied in this the-

sis. 

8.3.2.2 Microbial ecology 

Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) fol-

lowed by sequencing was used to identify the dominant species present in the biofilms 

in the different bioreactors under the influence of different operational conditions. It is a 

useful tool to enhance the understanding of the bioreactor performance and link the ob-

served changes to the change in microbial community structure. However, PCR-DGGE 

is only able to provide information on what species are dominating the communities, but 

it does not reveal which microorganisms are active and what species are present in minor 
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amounts during the different operational conditions. For example, as the performance of 

bioreactors improved after transient-state operation such as NO3
- limitation in the MBBR 

(Chapter 4) or the intermittent inlet concentrations of H2S and NO3
- in the BTF (Chapter 

6), it would be interesting to investigate the microbial abundance and interactions in more 

detail. Illuminar Miseq sequencing is a powerful instrument to investigate the diverse 

microbial community (Giordano et al., 2018). Moreover, MiSeq can also be done on RNA 

level to identify the active species. This could allow to identify the microbial species and 

the abundance of the microbial community present in bioreactors during operations at 

different N/S ratios and after transient-state operations.  

In addition to the comparative studies between the performance of different bioreactors, 

it would be interesting to study the biofilm characterization and/or the biofilm response 

to different operational conditions. For example, the use of fluorescent in situ hybridiza-

tion with taxon specific probes can be an effective tool for identifying the dominant mi-

croorganisms and the changes in cell morphology and aggregates in biofilm samples. 

Zhang et al. (2013) demonstrated that FISH followed by confocal laser-scanning micros-

copy (CLSM) could be used to better understand the interaction between microorgan-

isms and bioreactor performance. Thus, these methods could potentially be used to de-

scribe the interaction between sulfur-oxidizing bacteria and other autotrophic and het-

erotrophic bacteria as well as linking the biofilm characteristics to the performance of the 

bioreactors. 

8.4 Conclusions 

Reduced sulfur compound pollutants (i.e. H2S and S2O3
2-), NO3

- and organic carbon were 

simultaneously removed using different anoxic bioreactor configurations. This research 

demonstrated that the selection of bioreactor configurations is based on the types and 

composition of contaminants. In anoxic sulfur-oxidizing bioreactors, the NO3
- loading rate 

and N/S ratio can be used as the key operational parameters to maintain the good bio-

reactor performance and the effective microorganisms in the bioreactor system. In this 

work, anoxic sulfur-oxidizing bioreactors were shown to be resilient and resistant to var-

ious transient-state conditions, e.g. NO3
- limited conditions, H2S shock loads and inter-

mittent inlet flow rates of pollutants, that are important variables in practical applications. 

Besides, the activity of the sulfur-oxidizing biofilms was enhanced by applying harsh op-

erating conditions, e.g. NO3
- limited conditions, which could be used to enrich and 

strengthen microorganisms for being used as an inoculum for further applications. The 

collection of data of bioreactor performance (e.g. removal efficiencies and effluent con-
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centration of pollutants) implemented with neural network-based models can help to op-

timize the operational conditions and deal with the low performance during transient-

state conditions. 
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