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ABSTRACT

MODELLING AND ENGINEERING

MECHANICAL SCIENCE, ACOUSTICS, ELECTRONICS AND ROBOTICS OF

PARIS

for the degree of Doctor of Philosophy

Acoustic Green’s Function Estimation using Numerical Simulations and

Application to Extern Aeroacoustic Beamforming

by Sofiane Bousabaa

Acoustic imaging techniques aims at characterizing the different acoustic sources of

noise on an aircraft (jet, fans, wing, landing gears, etc.) using microphone array mea-

surements. Those source identification techniques, among whom the beamforming is

the most popular, require the knowledge of the acoustic Green’s function of the medium

between the estimated sources and the microphones of the array. Unfortunately, those

propagation functions are known only for cases of relatively simple complexity. In the

presence of complex flows, cavities, reflecting surfaces like wings and tails, the Green’s

function is not known and the use of beamforming techniques based on approximate

Green’s function can lead to errors in the estimation of the location and amplitudes of

the sources and can even lead to the apparition of spurious sources. The main aim of

this thesis is to set up a numerical method for the estimation of the Green’s function

for aeroacoustic imaging applications. The method must have a minimal computational

cost and provide a sufficiently accurate estimation to be used on realistic industrial con-

figurations. The proposed methodology takes advantage of the sparsity of the Green’s

functions in the time-domain to minimize the required simulation time. The close rela-

tionship with the domain of system identification makes possible the use of a wide variety

of sparsity-based regression algorithms like, among others, the stepwise regression, the

lasso and the elastic net. First, the method is validated on complex 3D numerical test

cases in the presence of flows and diffracting objects that are typical of those encoun-

tered in the industry. For the configurations involving a high number of focus points,

the reverse-flow reciprocity decreases significantly the Green’s function estimation prob-

lem. The methodology is finally applied on experimental data obtained on a high lift

2D wing placed in the ONERA CEPRA19 open section anechoic wind tunnel justifying

the applicability of the method on realistic industrial configurations.
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RÉSUMÉ

MODÉLISATION ET INGÉNIERIE

SCIENCES MÉCANIQUES, ACOUSTIQUES, ÉLECTRONIQUE ET ROBOTIQUE

DE PARIS

pour le grade de Docteur en Philosophie

Acoustic Green’s Function Estimation using Numerical Simulations and

Application to Extern Aeroacoustic Beamforming

par Sofiane Bousabaa

Les techniques d’identification acoustique visent à caractériser les différentes sources de

bruit sur un avion (jet, soufflante, voilure, trains datterrissage, etc.) à partir de mesures

effectuées avec un réseau de microphones. Ces techniques d’identification de sources,

dont la plus connue est la formation de voies, nécessitent la connaissance de la fonction

de Green acoustique du milieu considéré entre les sources estimées et les microphones du

réseau. Or ces fonctions de propagation ne sont connues analytiquement que pour des

configurations simples. Dans le cas d’un écoulement hétérogène, en présence de cavités,

de surfaces réfléchissantes comme les ailes ou les empennages, etc., ces fonctions ne

sont cependant pas connues et l’utilisation de techniques de formation de voies basées

sur des fonctions de Green imparfaites peut conduire à une erreur sur la position ou

l’amplitude des sources ou à l’apparition de sources parasites. L’objectif de cette thèse

est de mettre au point une méthode numérique d’estimation des fonctions de Green

pour des applications en imagerie aéroacoustique. La méthode doit avoir un coût de

calcul minimal et fournir une estimation suffisamment précises de ces fonctions pour

être utilisées dans des configurations industrielles réalistes. Pour réduire la quantité

de simulation numérique nécessaire, il est envisagé de prendre en compte le caractère

parcimonieux de la fonction de Green dans le domaine temporel. Le lien étroit avec

le domaine de l’identification de système rend possible l’utilisation d’un grand nom-

bre de méthode régression linéaires comme, entre autre, stepwise, lasso et elastic net.

Dans un premier temps, la méthode est validée sur des cas numériques tridimensionnels

complexes en présence d’écoulement et d’objet diffractants représentatifs de ceux ren-

contrés dans l’industrie. Pour les configurations présentant un nombre élevé de points

de focalisation, la réciprocité en écoulement retourné permet une simplification con-

sidérable du problème. Une application de la méthode est ensuite faite sur des données

expérimentales effectuées sur une aile 2D équipée d’un dispositif hypersustentateur et

passée en soufflerie anéchöıque à veine ouverte justifiant de l’applicabilité de la méthode

sur des configurations industrielles réalistes.
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Introduction

The increase in the air transports during the last decades has made the aircraft noise

reduction a necessity. During the phase of conception of aircrafts, pilots ensure that,

during the take-off and landing phases, a minimum of noise is radiated in the direction

of the ground. On the other hand, engineers and researchers work in creating quieter

aircrafts and propellers (Delrieux (2014); Huber et al. (2014)). It is thus important to

give industrials a robust and precise methodology to enable the localization of acoustic

sources on the wind tunnel model during the wind tunnel tests phase (cf. figure 1).

Acoustic source localization techniques aim to detect, localize and characterize acoustic

sources on a given area of interest using an array of microphones that collects spatial and

temporal samples of propagating wave fields. The set of acquired microphone signals

are then processed in order to extract the relevant information. Several methods can

then be used to recover sound sources: holography (Ahmed et al. (1979)) beamform-

ing (Soderman and Noble (1975); Billingsley and Kinns (1976); Elias (1997)), and time

reversal (Tourin et al. (1997); Fink et al. (2000); Deneuve et al. (2010); Padois et al.

(2012)) among others. Beamforming methods require the knowledge of the acoustic im-

pulse response of the medium or the Green’s function (GF). However, those functions

are known analytically on small number of configurations and under numerous approx-

imations. In the presence of complex geometries and flows, the GF has no analytical

expression.

Figure 1: Measurements in the ONERA CEPRA19 anechoic wind tunnel.
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2 Introduction

Figure 2: (left) An A340 flying over an array of microphones. (right) Beamforming
maps.

In practice, there are three possible ways for obtaining the GFs: analytical, experimental

and using numerical simulation. Considering the analytical approach, Amiet (1978);

Allen and Berkley (1979); Bowman et al. (1987); Rienstra and Tester (2008); Sijtsma

(2012) have determined the GF for geometries up to annular ducts with a stepwise

constant flow in the radial direction. However, in complex media with flows, scattering

objects and reflecting surfaces, an analytic expression of the GF remains difficult to

obtain. An alternative is the experimental approach, Malbequi et al. (1993); Koop et al.

(2005) consists in placing a calibrated acoustic source for every focus point to determine

the effects of the acoustic propagation. Two important disadvantages of this approach

come from the difficulty to create an acoustic source that is isotropic and that has a low

intrusivity. These two drawbacks can be addressed by using a laser-based sound source

as envisaged recently by Rossignol et al. (2009); Rossignol and Delfs (2016). However,

this solution is not an option in view of the wind tunnel operating costs and filled order

books. The third approach is to determine the GF by using numerical simulations and

is the one we are interested in in this study. It has the advantage to be less limiting

in terms of complexity of both the geometry and the flow. Moreover, the progress in

Computational AeroAcoustics (CAA) enables to consider realistic configurations with

low numerical dissipation (Tam, 1995; Lele, 1997). However, the extra precision go hand

in hand with an increase of the computational cost.

Polifke et al. (2001) proposed an approach using excited Computational Fluid Dynamics

simulations with system identification (CFD/SI) to extract acoustic transfer functions of

systems containing two or three inputs (Föller et al., 2010). The system is modeled as a

Linear Time Invariant (LTI) system and system identification (Ljung, 1998) techniques

are applied to time series data to extract the unit impulse responses of the multi-port.

To do so, they compute the auto- and cross-correlations of the input signals and the

impulse response of the system is obtained by the inversion of a Wiener filter equation.

This approach enables an estimation of the impulse response for all the input/output

pairs from one single simulation. However, this approach requires the knowledge of the
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reverberation time and the computational cost is increased when this time is big or

overestimated.

The aim of this thesis is to develop a methodology for the estimation of the GFs based on

numerical simulations for extern aeroacoustic imaging applications. The method must

have a minimal computational cost and provide Green’s functions that are sufficiently

accurate to be used on realistic industrial configurations.

It represents a continuation of the one of Pene (2015). He arrived to an ill-posed problem

that he decided to regularize by using a constraint on both the l1 and l2 norm of the

solution. The resulting methodology allowed the estimation of the GF on a number of

2D test cases like the diffraction by a disc or by a half-plane. However, it presented

some handicaps, in particular a high post-processing cost and the a priori knowledge of

some informations on the GFs for the calibration of the stopping criteria.

The manuscript is organized as follows. The chapter 1 is dedicated to the definition of the

acoustic Green’s functions and their role in acoustic imaging. First, the mathematical

background of the acoustic GF is exposed. We show that it is the impulse response of

a linear system representing the propagation through the medium. Acoustic imaging

techniques are then presented and the role played by the GF and its influence on the

quality of acoustic maps will be highlighted. The various approaches for the obtention of

the GFs are then described. The advantages and drawbacks of analytical, experimental,

and numerical approaches are discussed and we show that, to reduce the computational

cost, one can be tempted to estimate all the required Green’s functions from a single

CAA simulation.

The proof of the ill-posed nature of the GF estimation problem is given in the chapter

2. In order to regularize it, it is necessary to add a priori information on the solution

to the model. In the case of external aeroacoustic imaging, in the absence of resonance

or reverberation, the acoustic GFs can often be considered sparse. We show that the

adding of a constraint on the l0, l1, or l2-norm of the solution enables to regularize the

GFs estimation problem. Several algorithms for taking into account the sparsity are

adapted and compared. Those iterative algorithms require a stopping criterion and the

cross-validation is presented for this purpose.

In the chapter 3, a reflexion on the choice of the signals is led. An iterative algorithm is

proposed for the generation of multisine signals (Schoukens et al., 1988) with low cross-

correlation. It is based on the crest-factor minimization algorithm found in Guillaume

et al. (1991), approximating the Chebyshev norm with lp-norms with increasing values

of p. We also propose an adaptation of the algorithm to the case of finite impulse

response (FIR) systems whose estimation requires the cross-correlation to be low on a

limited time interval. The contributions of the cross-correlation minimization to the GF

estimation are finally discussed.
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In the chapter 4, two test cases representative for extern shapes for fuselage and wings

are considered: the diffraction by a rigid sphere and the diffraction by a NACA0012

wing profile. For the first test case, the pressure field resulting from the diffraction of a

monopole source by a rigid sphere can be expressed analytically. In order to prove the

advantages of CAA in terms of GF estimation, we will compare CAA estimated GFs

with both experimental and analytical ones. For the second test case, the solution is not

known analytically and the GFs obtained using the proposed method will be compared

only with experimental ones. Beamforming results will also be presented proving that

the method can be applied to real industrial configurations with several thousands of

focus points.

Finally, the method is applied in experimental microphone array data measurements in

the chapter 5. Data were collected in the ONERA CEPRA19 anechoic wind tunnel (Pic-

cin, 2009) and were part of the European Commission (EC) Technologies to IMProve

Airframe Noise (TIMPAN) project (Manoha and Ben Khelil, 2009; Perrin Decroux,

2008). The mean flow is obtained using CFD simulation solving the RANS equations

and is then used during the CAA simulation in subsection 5.2.2. Beamforming maps

using CAA estimated Green’s functions are compared with ones obtained using classical

shear layer correction method.



Chapter 1

Methods for the obtention of the

acoustic Green’s function

This chapter is dedicated to the definition of the acoustic Green’s functions and their role

in acoustic imaging. First, in section 1.1, the mathematical background of the acoustic

GF is exposed. We show that it is the impulse response of a linear system representing

the propagation through the medium. Acoustic imaging techniques are then presented

in the section 1.2. The role played by the GF is exposed and its influence on the quality

of acoustic maps. Finally, the various approaches to obtain the GFs are considered

in section 1.3. Advantages and drawbacks of analytical, experimental, and numerical

methods are discussed.

1.1 The acoustic Green’s function

1.1.1 Acoustic model

Euler equations are a set of nonlinear partial derivative equations (PDE) that describe

the flow of a fluid or gas. They correspond to a particular case of the Navier-Stokes

equations in the absence of viscosity and thermal conduction. These equations are a

good model for the propagation of the sound and can be solved numerically by the

use of a computer. Details on Euler equations and their numerical implementation are

given in Toro (2013). However, aeroacoustics simulations using Euler equation is still

a complex problem because it involves different scales. The propagation of acoustic

waves through a moving medium can be modeled by the linearized isentropic Euler

equations Bailly and Juvé (1998). Euler equations are linearized around a given station-

ary mean flow. This mean flow can be obtained analytically or by solving a simplified

problem not involving acoustics (Reynolds-averaged Navier-Stokes equations, potential

5



6 Chapter 1 Methods for the obtention of the acoustic Green’s function

flow equations, . . . ). Linearized Euler system of PDE reads as:





∂p
∂t + u0 · ∇p+ u · ∇p0 + γp0∇ · u + γp∇ · u0 = −c2

0Θ̇
∂u
∂t + u0 · ∇u + u · ∇u0 + 1

ρ0
∇p− p

ρ20c
2
0
∇p0 = 0

p = c2
0ρ and c2

0 = γp0
ρ0

(1.1)

The density ρ, the velocity u and the pressure p designate small perturbations superim-

posed on a mean steady flow of density ρ0, velocity u0 and pressure p0. The coefficient γ

designates the ratio of specific heats, and is taken as γ = 1.4 for air. The term Θ at the

right hand side

−c2
0Θ̇(x, t) = −c2

0

∂Θ

∂t

is used to excite the medium and represents an injection of mass.

The GF g(y,τ)(x, t) is the pressure field resulting from a pulse both in spatial (at position

y) and temporal domain (at time τ). In other words, it is the solution of (1.1) for pressure

when the forcing term is Θ(x, t) = δ(x − y)δ(t − τ). The Dirac delta function is the

identity element for the convolution and we have the property

Θ(y, τ) =

∫ τ

−∞

∫∫∫

x∈V
Θ(x, t)δ(x− y)δ(t− τ) d3x dt,

and the superposition principle enables to write

p(x, t) =

∫ t

−∞

∫∫∫

y∈V
Θ(y, τ)g(y,τ)(x, t) d3y dτ. (1.2)

If the mean flow is time-independent, the system is said to be linear time invariant

(LTI): if the causes are delayed by an interval of time τ , the consequences (pressure and

flow perturbations) will also suffer from the same delay. Mathematically, it means that

g(y,τ)(x, t) = g(y,0)(x, t − τ) and the integral in time in the equation (1.2) can be seen

as a convolution product

p(x, t) =

∫∫∫

y∈V

(
Θ(y, ·) ∗ g(y,0)(x, ·)

)
(t) d3y. (1.3)

To obtain our model of the propagation of sound, we suppose that NS source points,

located at positions (y1, · · · ,yNS
), are excited as point monopole sources with sig-

nals (s1(t), · · · , sNS
(t)). Only the pressure fluctuations at the microphone positions

(x1, · · · ,xNM
) are of interest. Then the forcing term reads as

Θ(x, t) =

NS∑

i=1

δ (x− yi) si(t), (1.4)
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and the pressure fluctuations at the location xm of microphone m is then

p(xm, t) =

NS∑

i=1

(
si(·) ∗ g(yi,0)(xm, ·)

)
(t). (1.5)

This enables to separate the sound generation of the source from the propagation in the

medium.

Signal pm(t) is the measure of the pressure fluctuations at the position xm of micro-

phone m and the time function gi,m(t) = g(yi,0)(xm, t) will be referred to as the GF

between source i and microphone m. It represents the acoustic impulse response of the

medium between those two points

pm(t) =

NS∑

i=1

(gi,m ∗ si) (t) ∀m, t. (1.6)

For each microphone m, this is the equation of an LTI Multiple Input Single Output

(MISO) system as shown in the figure 1.1. This new formulation exhibit the time GFs

as the impulse responses of the system and system identification (SI) (Ljung, 1998)

techniques can be used for their determination.

+
...

...

g1,m(τ)(

gi,m(τ)(

s(((((t)(NS(

si((t)(

s1(t)(

pm((t)(

g((((,m(τ)(NS(

Figure 1.1: The propagation of sound is modeled by a LTI MISO system.

1.1.2 Free-field solution

In a medium at rest (u0 = 0, ∇p0 = 0), the linearized Euler system of equations can

be decoupled. After performing the derivation of the first equation in time, it is now

possible to obtain a single PDE for the pressure fluctuations. To determine the free-

field GF, a dirac delta function in the 3D space is placed in the right hand side. The

invariance with respect to translations enable to place the source at the origin of the

space: 



∆g(0,0) − 1

c2
0

∂2g(0,0)

∂t2
= δ(x)δ(t)

c2
0 =

γp0

ρ0

. (1.7)
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The Green’s function G(0,0) is solution of:





1

r2

∂

∂r

(
r2∂g

(0,0)

∂r

)
− 1

c2
0

∂2g(0,0)

∂t2
= δ(x)δ(t) ∀(x, t) ∈ Ω× R

+ boundary conditions

(1.8)

By performing a Fourier transform:

F (x, ω) =

∫

t∈R

f(x, t)e−iωt dt (1.9)

Problem (1.8) becomes:





1

r2

∂

∂r

(
r2∂G

(0,0)

∂r

)
+ k2G(0,0)(r, ω) = δ(x) ∀(x, t) ∈ Ω× R

+ boundary conditions

(1.10)

For r > 0, the term in the right hand side of the first equation in (1.10) is zero. The

solution space is the vector space of dimension 2 spanned by the functions eikr/r and

e−ikr/r. From those two functions, only the last one satisfies the Sommerfeld (Orlanski,

1976) radiation condition and thus

G(0,0)(r, ω) = A
e−ikr

r
. (1.11)

To determine the constant A, we replace the expression in the equation (1.10), we

multiply both sides by a test function φ and integrate over space

∫ ∞

r=0

(
1

r2

d

dr

(
r2 d

dr

(
A
e−ikr

r

))
+ k2A

e−ikr

r

)
φ(r)4πr2 dr =

∫∫∫

x
δ(x)φ(x) d3x.

(1.12)

It leads to

− 4πAφ(0) = φ(0) =⇒ A = − 1

4π
. (1.13)

With the chosen convention, the frequency and time domain Green’s functions read as

G(y,0)(x, ω) = −e
−i2πf‖x−y‖/c0

4π ‖x− y‖ and g(y,0)(x, t) = −δ (t− ‖x− y‖ /c0)

4π ‖x− y‖ . (1.14)

It is expressed in kg/s2 = (kg ∗m/s2)/m = N/m = Pa ∗m. Since the 3D free-field GF

decreases as 1/r, this results in the intensity of the acoustic wave decreasing as 1/r2 and

reflects the conservation of energy for spherical waves.
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Figure 1.2: Acoustic imaging in the case of a source (a) in the Fraunhofer region
or (b) in the Fresnel region of an array.

1.2 Role in acoustic imaging

The increased restrictions on aircraft noise during takeoff and approach have led to an

increased interest in the localization of noise sources and quantification of their levels.

Hydrophone arrays (Akyildiz et al., 2005) have been used for many years in sonar ap-

plications to detect ships at large distances. Because of the distance, acoustic waves

arriving at the microphones may be considered as plane waves. In the following, L is the

array overall typical size and λ the acoustic wavelength. Two cases can occur depending

on the distance between the sources and the microphone array D. On one hand, we

say that the sources are in the Fraunhofer region of the array if D � L2/λ. In that

case, only the directions of sources are looked for instead of their spatial location (See

figure 1.2-(a)). One the other hand, the sources are said to be in the Fresnel region

of the array if D ≤ L2/λ. The spherical characteristics of the wavefronts are not lost

and the location of the acoustic source can be retrieved at the center of the spherical

waves (Figure 1.2-(b)). Methods can be used in wind tunnel measurements or in real

aircraft noise identification using large aperture phased arrays (Brusniak et al., 2006). It

is then possible to test different strategies for aircraft noise reduction (Piet et al., 2005).

1.2.1 Beamforming in the Fraunhofer region

The figure 1.2-(a) represents the case of acoustic imaging in the Fraunhofer region. The

acoustic source is located far from the array in the direction us. Resulting wavefronts

are orthogonal to this vector. The signal registered at microphone m is expressed as

pm(t) = p0

(
t+

us · xm
c0

)
,
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with p0(t) the pressure signal at the reference microphone located at the center of the

array and at the origin of the spatial system and c0 is the speed of sound. Thus, having

the pressure fluctuations at microphones, the direction of the source can be retrieved.

To do so, the sum of these signals with compensation delays is computed

PABF (u, t) =

NM∑

m=1

wmpm

(
t− u · xm

c0

)
.

The angular beamforming operator PABF (u, t) is used to detect if wavefronts are coming

from the direction u. The previous formulation is often dropped in favor of the frequency

domain formulation

PABF (u, f) =

NM∑

m=1

wmpm(f) exp

(
−2iπf

u · xm
c0

)
, (1.15)

with pm(f) the complex amplitude of pressure fluctuations at microphone m. Even if this

expression was derived for a unique source, there may be several sources in presence. The

quantity PABF (u, f) is computed for all the directions u. High values of this function

are obtained in directions were sources are more likely to be.

One way to study the behavior of an acoustic array is to consider the case of a line array

and a point monopole source. The microphones are taken equally spaced by a distance δ

in the X-axis, xm = mδux. If one source is emitting signal from the direction us, the

pressure at the microphones is

pm(f) ∝ exp

(
2iπfmδ

us · ux
c0

)
.

If all the receiver weights are chosen unitary, wm = 1 for all m, the beamformer out-

put 1.15 can be computed analytically and we obtain

|PABF (u, f)| ∝
sin
(
πfNM δ(u−us)·ux

c0

)

NM sin
(
πfδ(u−us)·ux

c0

) .

This function is plotted in the figure 1.3-(a) at the frequency 1 kHz, 2 kHz and 4 kHz.

The line array contains NM = 25 microphones and the distance between two neighbor

microphones is δ = 1 cm. The medium is air at rest and at ambient temperature and the

speed of sound is c0 = 340 m/s. The spatial resolution, or selectivity, of the beamformer

is the capacity to identify two sources close to one another. It is related to the width

of the main lobe and the amplitude of the side lobes that must be as small as possible.

This width is inverse proportional to the considered frequency it can be seen in the

figure 1.3-(a). The beamforming output at 1 kHz is shown in black color, the width of

the main lobe is divided by 2 at 2 kHz and by a factor 4 at 4 kHz.
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Figure 1.3: (a) Angular beamforming with a rectangular window at 1, 2 and 4 kHz.
(b) Angular beamforming at 1 kHz with a rectangular window, a Bartlett window and

a Hanning window.

Spatial aliasing can occur if the distance between two neighbor microphones is too big.

Very high side lobes appear and can be an obstacle to the determination of the true

direction of the source. This effect is visible in the figure 1.3-(a) at 4 kHz. The Shannon

criterion provides conditions to avoid spatial aliasing. This criterion is respected if the

distance between two neighbor microphones is smaller than half the wavelength.

The choice of the receiver weights wm has a significant effect on the shape of the ar-

ray pattern and consequently on the selectivity of the beamformer. The beamforming

patterns at 1 kHz for a rectangular window, a Bartlett window and a Hanning window

is presented in the figure 1.3-(b). The use of a window function to weight the receiver

signals results enables a trade-off between the width of the main lobe and the height

of the side lobes. A good overview of the techniques and methods for processing radar

signals received by an array of antenna elements is the book of Haykin et al. (1993).

1.2.2 Beamforming in the Fresnel region

In aeroacoustic measurements (Mueller, 2002), the source is often located at close dis-

tance to the array in the Fresnel region of the array D ≤ L2/λ. This case is also referred

to as focused beamforming and is represented in the figure 1.2-(b) . Waves arriving at

microphones cannot be considered as plane anymore. Strictly speaking, the previous

results on lobes characteristics and spatial aliasing are not exact. However, it appears

in practice that the same behavior is obtained with focused processing.

In a medium at rest and without diffracting objects, the signal registered at micro-

phone m is expressed as

pm(t) =
1

4πrms
s

(
t− rms

c0

)
,
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with s(t) is the source signal and rms the distance between the source and the micro-

phone. This expression was derived from the case of one monopole source, however the

position of the source is not known a priori. The application of the beamforming method

consists in several steps. First, the zone containing the sources is guessed and discretized

into NS focus points. Then, for each focus point i, a beamformer output PDAS(xs, t)

can be formed by averaging weighted and delayed versions of the receiver signals

PDAS(xi, t) =

NM∑

m=1

wmpm

(
t+
‖xm − xi‖

c0

)
. (1.16)

This procedure is called delay-and-sum (DAS) and it is a time-domain beamforming

operator. The delays compensate the propagation times from sources to microphones

and high output values are obtained at the positions of the sources. It was shown

by Fischer et al. (2014) that this technique allows assessing the intermittent nature

of aeroacoustic sources. Details on this operator and its application for discrete time

beamforming can be found in the book of Dudgeon and Mersereau (1984).

The DAS beamforming is limited when the domain contains reflecting surfaces and

complex flows. Alternative time-domain imaging methods were proposed for studying

aeroacoustic sources, relying on the time-reversal principle (Fink et al., 2000; Deneuve

et al., 2010; Padois et al., 2012; Mimani et al., 2013; Rakotoarisoa et al., 2014). It is

a promising method operating in the time-domain used for solving inverse problems

of sound source localization. To do so, the recorded acoustic pressure timehistory is

reversed in time and is enforced at the microphone location. Acoustic waves are then

back-propagated after the mean flow direction was numerically reversed. Authors have

proposed alternatives for more complex configurations for instance with the rotating

sources. To image rotating fan blade noise, Dougherty and Walker (2009) applied time-

domain beamforming using a beamforming grid that rotates with the fan.

While time-domain is a robust method operating in the time domain for solving inverse

problems of sound source localization, most of the experimental studies in wind tunnel

tests are still done in the frequency domain. The various sources often exhibit a different

spectral behavior and their location depend on the frequency of interest. In the Fourier

domain, relation (1.6) reads as:

Pm(f) =

NS∑

i=1

Gi,m(f)Si(f) ∀m, f. (1.17)

From this relation, several estimators can be derived for the estimation of the power of

the sources. Most of them are based on the microphone cross-correlation matrix

Γ(f) =
[
Γm,m′(f)

]
1≤m,m′≤NM

with Γm,m′(f) = P
(k)
m (f)P

(k)
m′ (f)

∗
.
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The cross-spectra Γm,m′(f) of the microphone signals are computed with the classical

periodogram method (Welch, 1967). The recorded time signals are divided into NK

blocks of data. The cross-spectrum is computed from the Fourier transforms of the

microphone signals over each block k. The ensemble of cross-spectra are then averaged

operation over the data blocks and overline denotes the statistical mean. In the peri-

odogram method, there is a trade-off between the number of blocks and the frequency

resolution. Cutting time signals into an high number of blocks will ensure a better

statistical convergence but will result in larger frequency bins.

The conventional beamforming (CBF) operator is

PCBF (xi, f) =

∑
m,m′ G

∗
i,m(f)Γm,m′(f)Gi,m′(f)

∑
m,m′

∣∣Gi,m(f)
∣∣2 ∣∣Gi,m′(f)

∣∣2 . (1.18)

This formula is widely used and enables to obtain acoustic maps that bring both source

location and power. The steering vector Gi = [Gi,1(f), · · · , Gi,NM
(f)] is the concatena-

tion of all the GFs for a focus point i. With this, the CBF operator takes the form

PCBF (xi, f) =
G+
i (f)Γ(f)Gi(f)

‖Gi(f)‖4
, (1.19)

where superscript + is the hermitian operator. In his book, Mueller (2002) gives more

details on the origins of this expression. If a unique source is present at focus point j

and has an amplitude |Sj(f)| at frequency f , the terms of the cross-correlation matrix

will be Γ(f) = G+
j (f)Gj(f) and the CBF operator will give exactly the source power

αj(f) = |Sj(f)|2 at the source location xj . As it will be seen in section 1.2.3 and later

in 4.2, this operator has a tendency to prioritize hidden focus points for which the GF

amplitude |Gi,m(f)| takes small values. The results are often plotted in dB with the

formula

P dB
CBF (xi, f) = 20 log10

(
PCBF (xi, f)

p0

)
,

with p0 is a reference pressure solution that can be chosen as p0 = 2× 10−5 Pa. It is near

the absolute threshold for a normal human listener for a sound frequency of 1000 Hz.

In the following, CBF results will be plotted in dB. Sometimes, acoustic noise sources

can exhibit broadband spectrum characteristics. For this type of sources, the considered

frequency range is often discretized and acoustic maps are computed on all the resulting

frequencies. The contributions of the various frequencies are then taken into account by

summing the resulting acoustic maps.

An alternative method for source location is the coherence with the monopole model

(CMM) (Elias, 1997) and reads as

PCMM (xi, f) =
G+
i (f)Γ(f)Gi(f)

‖Gi(f)‖2 ‖Γ(f)‖
, (1.20)
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where the euclidian norm on square matrices is given by ‖M‖2 = trace
(
M+M

)
. This

operator gives values between 0 and 1. It is very precise in the localization of acoustic

sources but doesn’t give access to the amplitudes of the sources. The sources are more

likely to be where this criteria takes high values and, if only one source is emitting in

the absence of noise, the amplitude at the position of the source is equal to one.
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(a) CBF using free-field GFs.
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(b) CMM using free-field GFs.

Figure 1.4: Focused beamforming in a homegenous infinite medium at rest. The 51
microphones are placed in the segment -0.5 m ≤ xm ≤ 0.5 m and ym = -0.5 m every
0.02 m. The source is placed at xs = (0, 0.5 m, 0) and its amplitude is 0 dB at the

considered frequency f = 5 kHz. The GF of the medium is the free-field GF.

1.2.3 Influence of the accuracy of the Green’s functions on acoustic

maps

Beamforming maps in a medium at rest and using the free-field GF is presented in the

figure 1.4. The 51 microphones are placed in the segment -0.5 m ≤ xm ≤ 0.5 m and

ym = -0.5 m every 0.02 m. The source is placed at xs = (0, 0.5 m, 0) and its amplitude

is 0 dB at the considered frequency f = 5 kHz. The CBF map is shown in the figure

1.4-(a). One main lobe is obtained at the position of the source surrounded by numerous

secondary lobes. The spatial expanse of the main lobe is inverse proportional to the

frequency and directly related to the resolution. The microphone array thus has a

higher sensitivity in the angular than in the depth direction.

Acoustic waves are affected by the presence of a mean flow as it is shown in the figure 1.5.

The same geometry is used however, this time, a mean flow v̄ = v ux with v = 100 m/s

is present in the region y ≥ 0. The use of the free-field GF is not adapted as it can be

seen in the figure 1.5-(a) and (b). It leads to an error in the localization of the source

that is detected downstream its true position. Amiet (1978) proposed an analytical

correction to the free field GF to take into account the refraction by a thin shear-layer.
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The beamforming maps based on the resulting GF is shown in the figures 1.5-(c) and (d).

The use of the correct GF enables to retrieve the position and amplitude of the source.

The presence of reflecting/diffracting surfaces also have an influence on the propa-

gation of sound. In the figure 1.6, beamforming is performed in the presence of a

rigid sphere. The sensor array is composed of 41 microphones placed in the segment

-0.4 m ≤ xm ≤ 0.4 m and ym = -0.4 m every 0.02 m. The 0.2 m-radius sphere is placed

at the origin and the source position is now xs = (0.2 m, 0.3 m, 0) and the medium is

at rest. Again, the free-field GF appears to be unadapted and acoustic diffracted by

the sphere gives to the array the impression that the source is located at the right edge
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(b) CMM using free-field GFs.
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(c) CBF using analytical GFs.
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(d) CMM using analytical GFs.

Figure 1.5: Focused beamforming in the presence of a shear layer. The 51 micro-
phones are placed in the segment -0.5 m ≤ xm ≤ 0.5 m and ym = -0.5 m every 0.02 m.
The source is placed at xs = (0, 0.5 m, 0) and its amplitude is 0 dB at the considered
frequency f = 5 kHz. The medium is at rest in the bottom region (y<0) and the flow
velocity is 100 m/s in the top region (y≥0). Acoustic maps obtained using CBF and
CMM are shown using the free-field GF and a more precise GF that take into account

the presence of the shear layer.
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!"##$

!"#$

!"%$

!"&$

!"'$

!"($

!")$

!"*$

!$

!"+$

!",$

(d) CMM using analytical GFs.

Figure 1.6: Focused beamforming in the presence of a rigid sphere in a medium
at rest. The 41 microphones are placed in the segment -0.4 m ≤ xm ≤ 0.4 m and
ym = -0.4 m every 0.02 m. The source is placed at xs = (0.2 m, 0.3 m, 0) and its
amplitude is 0 dB at the considered frequency f = 5 kHz. Acoustic maps obtained
using CBF and CMM are shown using the free-field GF and the analytical GF that

take into account the presence of the sphere.

of the sphere 1.6-(b). For this geometry, an analytic expression of the GF is available

and is given in the book of Bowman et al. (1987). Acoustic CBF maps based on the

analytic GF is shown in the figure 1.6-(c). The position of the source is still difficult to

extract because the CBF operator prioritize focus points located in hidden region, that

is to say, those located behind the sphere. The CMM operator gives a better estimation

of the position of the source (see figure 1.6-(d)).

Approaches have been proposed to improve the accuracy of the beamforming results.

Conventional beamforming methods have proven their efficiency in source localization,

but they are limited in the estimation of the power levels of extended sources. Blacodon

and Elias (2004) proposed an approach based on a spectral estimation method (SEM) in
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order to determine the actual sound-pressure levels of the acoustic sources found by the

localization method. The method is successfully applied to compute the power levels of

the main sources on a 1/11th-scaled model of the Airbus A320/A321 tested in CEPRA

19 wind tunnel. To improve medical ultrasound imaging results, (Synnevag et al., 2009)

proposed to find the weights in (1.16) by minimizing the variance of the beamformer

output. However, all of those methods will benefit from a more accurate model of

propagation of the sound for configurations involving complex flow and geometry, e.g.,

Fleury and Davy (2014) analyzed the jet-airfoil interaction noise by microphone array

techniques.

1.2.4 Deconvolution methods

We have seen in the previous section that the acoustic maps obtained by the previously

described methods are blurred and present numerous sidelobes. In deconvolution prob-

lems, those maps are often referred to as “dirty” maps. They were first introduced in

astrophysics where images obtained by telescopes are blurred due to diffraction by the

diaphragm. Deconvolution algorithms use the known beam pattern, or point spread

function (PSF), to distinguish between real structure and sidelobe disturbances. The

PSF represents the beamforming map obtained in the presence of one monopole at a

focus point j. This problem can be stated as a linear system

Hα = b. (1.21)

The vector of unknowns α, of size NS , contains the power of the sources. The NS ×NS

matrix H is the concatenation of all the PSF, the vector b contains the CBF values

(1.18) for each of the NS focus points:

[
H
]
i,j

=

∣∣G+
i (f)Gj(f)

∣∣2

‖Gi(f)‖2 ‖Gj(f)‖2
and bi =

G+
i (f)Γ(f)Gi(f)

‖Gi(f)‖4
. (1.22)

It can be shown that, behind (1.21), lies the hypothesis of the sources being distributions

of statistically independent noise radiators (incoherent sources).

Several algorithm have been proposed to estimate the power level α radiated by the

sources. The CLEAN algorithm starts from the dirty map b and iteratively substract

PSF corresponding to the focus point i0 where bi0 is maximum (Högbom, 1974). This

algorithm suppose some regularity in the PSF in particular that the maximum ampli-

tude corresponds to the position of the source. This is not the case for the figure 1.6

where we saw that the maximum CBF amplitude is not at the position of the source.

(Sijtsma, 2007) proposed CLEAN based on spatial source coherence (CLEAN-SC). It

performs a decomposition of the CSM into coherent components and thus, unlike other

deconvolution methods, it does not use the PSF.
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Brooks and Humphreys (2004) proposed the deconvolution approach for the mapping of

acoustic sources (DAMAS). The DAMAS method naturally apply physically-necessary

positivity constraint on the vector of solutions α that also make the problem more

deterministic. The original DAMAS algorithm suffers from slow convergence but it is still

widely used in the aeroacoustic community and in particular in wind tunnel tests. Several

versions were then proposed among whom DAMAS2 and DAMAS3 (Dougherty, 2005)

that restrict the point spread function to a translationally-invariant, convolutional, form

to improve the calculation time. DAMAS-C was proposed by Brooks and Humphreys

(2006) for sources with spatial coherence. Fleury et al. (2008) proposed two extensions

to reduce the heavy computational cost of the DAMAS-C and DAMAS2-3 methods. In

SC-DAMAS, Yardibi et al. (2008) added a sparsity constraint to solve problem (1.21)

for a sparse distribution of the sources (when vector α has a small number of non-zero

components).

Finally, the deconvolution problem (1.21) can also be seen as a minimization problem.

If the spatial distribution of acoustic sources is sparse, the problem can be formulated

as

minimize {‖α‖1} subject to Hα = b. (1.23)

Several linear regression algorithms like lasso (Tibshirani, 1996), Least Angle Regression

(LARS) (Efron et al., 2004) or the elastic net (Zou and Hastie, 2005) can then be used to

solve this problem. The l0-norm can also be preferred to the l1-norm in the minimization

but it will result in an acoustic map that is more sparse. Padois and Berry (2015)

proposed recently to apply the Orthogonal Matching Pursuit algorithm, that is based

on l0-regularization, to the deconvolution approach for the mapping of acoustic sources.

Other regularization can also be envisaged, for instance, Dougherty (2005) proposed a

regularization based on Wiener filter.

1.3 The different approaches to obtain the Green’s func-

tions

In the previous section 1.2, we saw that the accuracy of the GF plays an important

role in acoustic imaging. Beamforming based on approximative GF leads to errors in

the determination of the position and amplitude of acoustic sources. In this section, we

discuss the different analytical, experimental and numerical approaches to obtain the

GFs.

1.3.1 Analytical methods

In most of the cases, conventional beamforming methods use the free-field analytical GFs

to describe the acoustic propagation between noise sources and microphones. To do so,
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microphones must be placed in a way that the propagation of waves is not affected too

much by the presence of the flow and obstacles. In the study of the noise inside a turbofan

engine, Sijtsma (2006) used a circular microphone array in the engine intake duct wall

and the free-field GF is used for the definition of the steering vectors. Several methods

have been proposed to deal with more complex situations. Amiet (1978) proposed an

analytical correction to the free field GF to take into account the refraction by a thin

shear-layer. This correction is widely used in the adjustments of the refraction of a

cylindrical shear layer in open-section wind tunnel tests (Elias, 1996; Fleury and Davy,

2016). For small-room acoustics, Allen and Berkley (1979) investigated the use of image

source techniques for simulating the impulse response between two points in a small

rectangular room. This correction can also be applied to rectangular closed-section

wind tunnel experiments.

In the 20th century, the electromagnetic waves by simple shapes interested researchers

for the purpose of radar applications. In his book, Bowman et al. (1987) gathers the

analytical expression of the diffraction by several geometric shapes. Green’s functions

in the presence of finite or infinite body in two or three dimensions (disc, sphere, cylin-

der, cone, etc.). Unfortunately, those shapes appear inadequate to describe the complex

shapes encountered in the industry. Another limitation of the analytical methods is the

consideration of the influence of the mean flow on acoustics. Taylor (1978) introduced

a coordinate transformation by which the governing acoustic equations in a steady low-

Mach number potential flow are transformed into an ordinary wave equation. The effect

of a background flow field on sound propagation can be obtained by solving, indepen-

dently, the potential (Laplace) equation for steady fluid flow, and the Helmholtz equation

for acoustic-wave propagation in the transformed time variable, and then transforming

the result into the physical time variable. This method was applied by Agarwal and

Dowling (2007) in the study of the acoustic shielding by the silent aircraft airframe.

Recently, Rienstra and Tester (2008) proposed an analytical GF in annular ducts has

been calculated for a uniform flow. Sijtsma (2012) extended it to the case of a stepwise

constant flow in the radial direction. However, in the presence of scattering objects and

reflecting surfaces, the GF is difficult to obtain especially in the presence of complex

flows. Moreover, the analytical expression of the GF is also of increasing complexity.

The analytical expression of the GFs have become more and more complex to compute

reducing the initial interest of this approach. Moreover, a lot of approximations are still

to be made because of the complexity of cases encountered in the industry. The use of

beamforming methods based on approximate GFs may result in biased sources positions

and power estimates or even lead to spurious sources.
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Figure 1.7: Fan noise imaging on an installed turbofan. The propagation of acoustic
waves is affected by the fan cowl and the flow making it difficult to localize acoustic

sources.

1.3.2 Experimental methods

The analytical methods allow to determine the Green’s function in relatively simple

situations. However, for a number of cases of application encountered in aeroacoustics,

there is no analytical solution. In the case of fan noise imaging on an installed turbofan,

shown in the figure 1.7, one may be tempted to install microphones outside the fan cowl

to reduce intrusivity. The propagation of acoustic waves is affected by the fan cowl and

the flow making it difficult to localize acoustic sources.

Candel et al. (1976) studied the scattering of spherical acoustic waves by a turbulent

shear layer. For harmonic incident waves spectral analysis of the pressure field shows a

fine structured tone broadening. Acoustic waves are strongly modulated in amplitude

and phase during their migration in the turbulent mixing layer. Two lobes of scattered

energy are found on both sides of the excited frequency. The study was led in the aim of

characterizing the turbulent structures in the shear layer. The study of the space-time

correlations and cross spectra between the direct signals and scattered fields allows an

estimate of the convection velocity of the scattering vortices of the mixing layer.

Koop et al. (2005) placed a test source within an open jet. The phase shift between

the source and microphones outside the jet is measured. The dependency of the phase

fluctuations on various parameters like frequency, flow velocity and microphone position

is investigated. Kröber et al. (2010) addressed the problem of spatial coherence loss

due to turbulent scattering and refraction. They proposed to use a calibration approach

for an open wind tunnel using an in-flow calibration source. This source employs a

ribbon loudspeaker which can provide sufficiently high sound pressure levels in a broad

frequency range and its properties are known. Effects of the flow can be estimated and

a correction is proposed to improve the quality of source maps and the estimation of

source levels. While this study enables to test correction models in open wind tunnel, it
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is not adapted to GFs estimation because of the high intrusivity of the acoustic source

and the high financial cost.

An alternative to reduce source intrusivity is to use a laser-based sound source. By

focusing a high energy laser it is possible to locally heat a very small volume of air up

to ionization. This process then leads to the creation of a small plasma zone which

rapidly expands in all directions. Rossignol et al. (2009) proposed a sound shielding

prediction tool based on a this type of sound source. The lower intrusivity make this

technique especially attractive for shielding/installation tests, which typically have to

be performed at relativey small scale to reduce costs. In their article, they apply the

method to the study of acoustic shielding by a LNA-1 nacelle. More recently, the

methodology was applied by Rossignol and Delfs (2016) to the analysis of the noise

shielding characteristics of a NACA0012 2D wing. This methodology is well suited for

the study of acoustic shielding. In the case of Green’s function estimation, the GFs

must be estimated for each of the focus points requiring one session of acquisition for

each of them. Bahr et al. (2015) showed that the process provides an effective in situ

method for array calibration both with and without flow and improves the agreement

of beamforming results. Fischer and Doolan (2017) applied this methodology using a

transmitter as a noise source and showed better beamforming results in a hard-walled

test-section. However, this solution may not be an option for large configurations and

facilities in view of the wind tunnel operating costs and filled order books.

1.3.3 Numerical methods

Most of the numerical methods presented in this subsection concern the study of acoustic

shielding. Acoustic monopoles are placed near a geometry and the total diffracted

acoustic field is looked for. This enables to estimate, for example, the noise that will be

directed towards the ground when a turbofan is installed behind an aircraft wing. Those

installation effects can then be used in the aircraft design chain. While those method

doesn’t concern, strictly speaking, GF estimation, they can be used for their obtention.

To do so, for each of the focus point, a simulation is performed with an acoustic source at

that point. The resulting acoustic pressure signal at each microphone is the convolution

and the GF can be extracted easily by passing in the Fourier domain.

Asymptotic methods are well adapted at high frequencies where other simulation meth-

ods becomes computationally demanding. A method proposed by Candel (1977) is based

on the derivation of a variational system of differential equations for the geodesic ele-

ments of the wave front. The elementary cross-section of the wave front is obtained

by integration and the principle of conservation of the field invariant directly yields the

field amplitude. In addition, suitable jump conditions are derived for treating specular

reflexions at solid boundaries. The method is illustrated by specific problems of interest

in aeroacoustics. The method solves numerically the ray equations so that an arbitrary
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three-dimensional flow can be treated. The method has difficulties in the determination

of the field amplitude in an homogeneous media and in the presence of caustics.

Ray method is also a natural alternative at high frequencies. It is based on Geometric

Optics and Diffraction Theory which assumes that all waves are locally plane waves

(Keller, 1962). There are several advantages of using a geometrical ray-theory approach.

Since the method is geometric, computationally, it is not dependent on the size of the

simulation domain nor on the frequency. This method was used by Agarwal et al. (2007)

to calculate acoustic shielding by the silent aircraft airframe. The transformation of

Taylor (1978) was used to take into account a potential flow around the aircraft. The

main drawback of this kind of method is the difficulty to treat complex flow because

they assume that rays are straight lines.

The boundary element method BEM or its accelerated variant, the Fast Multipole

Method solves the monochromatic version of the wave equation, called the Helmholtz

equation (Burton and Miller, 1971; Banerjee, 1981; Coifman et al., 1993). The problem

on the whole domain is reformulated as a problem on the boundaries. The boundaries

must be discretized into surface elements and around 10 elements per wavelength are

necessary to ensure a good accuracy of the results. This method is well suited for the

study of the installation effects at low Mach number Delnevo et al. (2005). It was used

by Lummer et al. (2013) to compare acoustic results on a counter rotating open rotor

CROR. Most dominant peaks in the spectrum of the rotor are well predicted by the

method. The BEM thus doesn’t meet the expectation to handle acoustic propagation

through shear-layer encountered during open section wind tunnel tests.

In this work, “volumic” methods will be used for the simulation. The simulation is

carried on the entire volume and a discretization of the whole volume is necessary. While

those methods are computationally expensive they can handle a complex geometries and

flows. Polifke et al. (2001) proposed an approach using excited CFD simulations with

system identification (CFD/SI). Thermoacoustic systems are modelled as networks of

acoustic multi-ports, where each multi-port corresponds to a certain component of the

system, e.g., air or fuel supply, burner, flame, combustor and suitable terminations. In

their approach, instationary CFD simulation is performed with broadband excitation at

boundary conditions. The system is modeled as a linear time invariant (LTI) system

and the application of system identification (Ljung, 1998) techniques are applied to time

series data to extract the unit impulse responses of the multi-port (Sovardi et al., 2016).

Föller et al. (2010) successfully applied the to the aeroacoustic characterization of T-

junctions (Föller and Polifke, 2011) using large eddy simulation and system identification

(LES/SI). We will see in chapter 2 that acoustic GFs can also be seen as the impulse

responses of a particular LTI system.

A totally numerical method has been proposed by Kornow (2009). The flow-field of the

open jet wind tunnel is firstly calculated by a numerical simulation. The method rests
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Figure 1.8: Procedure for Green’s function estimation from a CAA simulation. Dur-
ing the simulation, focus points are excited using acoustic monopoles with excitation
signals (si)i. During the simulation, pressure fluctuation signals (pcaam )m at the micro-
phones are recorded. The GFs are estimated by applying LTI system identification and
adding a constraint on the solution. The estimated GFs can finally be used to perform

acoustic beamforming.

on the use of steady Reynolds averaged NavierStokes (RANS) simulation to describe the

time-averaged motion of turbulent flow. Then, in a second step, an acoustic source is

placed within the flow and the sound propagation through the flow is computed numer-

ically using Computational AeroAcoustics (CAA). The method was recently applied to

the study of trailing-edge noise, slat noise, and jet noise (Ewert et al., 2011). However,

this study aimed to investigate the effect of the flow on the acoustic propagation and

not for the purpose of aeroacoustic imaging.

The present PhD dissertation is the continuation of the PhD of Pene (2015) and lies

between the works of Kornow (2009) and Polifke et al. (2001). The procedure of acoustic

GF estimation for aeroacoustic beamforming is represented in the figure 1.8. A model of

the geometry is done in order to enable the resolution by the CAA solver. If the mean

flow is not known, one first CFD simulation is led for the determination of the mean

flow depending on the case it can be relied on potential flow (at low Mach number) or

RANS. The obtained mean flow and the geometry constitute the numerical model. The

obtained numerical model is then used for the resolution of linearized Euler equations
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(1.1) in the CAA simulation. All the NS focus points are excited using point monopole

acoustic sources with excitation signals (s1(t), · · · , sNS
(t)) leading to the forcing term

(1.4). The choice of acoustic signals (si)i will be in chapters 2 and 3. During the CAA

simulation, the pressure fluctuation signal pm(t) is recorded for each microphonem at the

locations xm. Both inputs and outputs of the LTI MISO system representing the acoustic

propagation in the medium shown in the figure 1.1 are known. System identification

techniques (Ljung, 1998) can be applied to extract the acoustic GF (ĝi,m)i,m that are

also the impulse response of the system. The estimated GFs can then be used to perform

acoustic beamforming using methods described in the section 1.2.2.

It will be shown later in section 2.2.2 that the MISO system identification problem is

ill-posed. To regularize it, Polifke et al. (2001) added a filter’s memory time TM or

reverberation time (Huang et al., 2006). It consists of adding to the model the a priori

information that most of the energy of the impulse responses is in this interval of time

TM . The number of unknown parameters is reduced and it results in an improvement

of the condition number. In the present work, the SI problem will be regularized by

adding a sparsity constraint (Huang et al., 2006). GFs are estimated as a sum of a small

number of Dirac delta functions corresponding to acoustic paths from the focus point to

the microphone position. The inclusion of the sparsity constraint in the model will also

enable to reduce the computational cost.

The mathematical background of the acoustic GF was exposed. It can be formulated

as the impulse response of a LTI system representing the medium. The knowledge of

the GF makes possible to apply acoustic imaging techniques for complex configurations.

Beamforming based on an approximative GF may lead to errors in characterization of

the location and/or amplitude of the sources. Several methods are available for the

determination of GFs. Analytical methods consist in the mathematical resolution of the

system of PDE but is not applicable on a wide variety of cases. The GF is difficult to

obtain especially in the presence of scattering objects and complex flows. Experimental

approaches are difficult to apply mainly because it requires extensive human resources,

facilities and time. Numerical simulation is an interesting alternative and especially the

CAA simulation. It enables to simulate the propagation of sound in the presence of

complex geometries and flows but requires a high computational cost. In the follow-

ing, it is envisaged to use CAA simulation for the estimation of the GFs. A sparsity

constraint, valid only for configurations where the GFs can be considered as sparse, is

added. This constraint will enable to estimate all the GFs from a single simulation in

order to significantly reduce the computational cost.



Chapter 2

Study, regularisation and

resolution of the sparse

estimation problem

In the previous chapter, a multisource approach was proposed for the estimation the

GFs. This approach consists in estimating, for a given acoustic imaging configuration,

all the required Green’s functions from a single CAA simulation. In this chapter we

start by giving the proof that the multisource GFs estimation problem is ill-posed. In

order to regularize it, it is necessary to add a priori information on the solution to the

model. In the case of external aeroacoustic imaging, in the absence of resonance or

reverberation, the acoustic GFs can often be considered sparse. Hence, in that case, the

GFs are composed of a small number of spikes. Each spike corresponds to one acoustic

path from the focus point to the microphone position. We show in this chapter that the

adding of a constraint on the l0- or l1-norm of the solution enables to regularize the GFs

estimation problem. The adaptations of several algorithms for solving this problem are

presented and compared.

2.1 Simulation of the direct problem

In this section, the methodology for the numerical estimation of the GFs is presented. To

obtain the sets of signals needed for the estimation of GFs, the propagation of acoustic

waves is modeled by the linearized isentropic Euler equations (1.1). A CAA simulation

is performed in order to propagate well-designed signals from potential sources located

to a set of focus points through a moving medium. The resulting signals are recorded by

virtual microphones. The GFs are finally identified as the transfer functions (or impulse

responses) between the source points and the microphones. This step is addressed in

the next section.

25
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2.1.1 Computational aeroacoustic simulation

ONERA’s code sabrina v0 (Redonnet et al., 2001) is used to solve the linearized Euler

equations in the non-conservative form with disturbances on body fitted structured

mesh. The code has been validated on a wide range of complexity up to the simulation

of fan interaction noise in 3D coaxial engine (Redonnet et al., 2005; Polacsek et al., 2006;

Redonnet et al., 2008, 2010). This code uses high order finite difference schemes (up

to the sixth order), high order filtering schemes (up to the 14th order) and an explicit

(third order) time scheme. In the frequency domain, the GFs need to be determined

only on a given frequency band [fmin, fmax]. Low-dispersive and low-dissipative acoustic

propagation is ensured by using at least 10 grid points per wavelength at the highest

frequency of interest, fmax. To ensure outflow boundary conditions, a combination of a

smooth stretching grid and Tam and Dong (1996) conditions is used at the boundaries

of the domain. To evacuate acoustic waves accurately, the sources of the problem are

located at least at a distance of one wavelength from the outflow boundaries (relatively to

the smallest frequency of interest, fmin). The propagation of waves outside the frequency

range [fmin, fmax] may result in higher numerical dissipation and/or spurious reflections

at the domain boundaries.

For the i-th source, the forcing term is chosen to be multiplied by a normalized Gaussian-

distribution:

c2
0

∂Θi

∂t
=

1

ε3
exp

(
−π‖x− xi‖2

ε2

)
× si(t), (2.1)

where ε represents the spatial extent of the acoustic source and si the input excitation

signals. The parameter ε must be taken sufficiently large with respect to the cell size

in order to ensure computational stability, while being sufficiently small with respect to

the smallest acoustic wavelength to reproduce an acoustically compact noise source. For

the simulations performed in the following, ε = 2∆x where ∆x is the mesh step. The

validation of the injection of acoustic monopoles in CAA simulation is presented in the

appendix A.

2.1.2 Excitation signals

To cover the frequency range of interest without numerical problems, excitations signals

must be designed following several rules. In their survey of excitation signals for FFT

based signal analyzers, Schoukens et al. (1988) explain that, to contribute constructively

to the measurement, the energy must lie in the frequency range of interest. Moreover,

the use of periodic signals measured over an integer number of periods enables to avoid

leakage effects. If a non-integer number of periods are measured or if aperiodic signals

are used, leakage effects cannot be avoided leading to a an increase of the needed mea-

surement time to get a specified accuracy. In the following, multisine signals exciting
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this frequency range with harmonic components every ∆f are used:

si(tn) =

NF∑

u=1

a(i)
u sin

(
2πf exc

u tn + φ(i)
u

)
, (2.2)

where NF is the number of frequencies and f exc
1 = fmin ≤ · · · ≤ f exc

NF
= fmax are the ex-

cited frequencies. In order not to favor any particular source or frequency, the amplitude

of all the harmonics is taken unitary a
(i)
u = 1 ∀(u, i) ∈ J1, NF K× J1, NSK. The signal is

thus T -periodic with T = 1/∆f . The sampling period ∆t is constant and the discrete

time steps are given by tn = n∆t. The number of time steps for one period of signal is

called NT and T = NT∆t.

The phases φ
(i)
u are randomly generated in [0, 2π[ with a uniform distribution in order to

ensure decorrelation between all the source signals. Better decorrelation can be ensured

by increasing the number of frequencies NF . However, it will also imply a longer period

and thus an increase in the computational cost.

2.2 Sparsity-based GF estimation problem

Most of the regression algorithms, and especially those studied in the present work, aim

to minimize the gradient of the least squares criterion. In this section, the necessity of

regularization is highlighted. To do so, the least squares criterion is introduced and the

expression of its gradient is derived in the section 2.2.1. In the section 2.2.2, the GF

estimation problem is shown to be ill-posed. To regularize it, it envisaged to take into

account the sparsity in time of the GFs for external aeroacoustical configurations and

several regularization strategies are presented in the section 2.2.3.

2.2.1 Gradient of the least squares criterion

For several sources emitting at the same time, the pressure signal at the microphones is

given by (1.6) that represents the propagation of sound in the medium:

pm(t) =

NS∑

i=1

(gi,m ∗ si) (t) ∀m, t, (2.3)

where ∗ is the convolution product, pm(t) is the pressure signal measured at position xm

of microphone m and gi,m(t) will be referred to as the GF between source i and micro-

phone m. It represents the acoustic impulse response of the medium between those two

points. For each microphone m independently, GFs between the sources and this micro-

phone appear to be solution of a multi-input, single-output (MISO) system identification

problem. Since the minimization process is applied independently for each microphone
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m, the microphone index m will be omitted for better readability purposes. The Least

Squares (LS) criteria is thus defined as:

Q (g) =

∥∥∥∥∥p−
NS∑

i=1

gi ∗ si

∥∥∥∥∥

2

2

, (2.4)

where ∗ is the convolution product u ∗ v between two discrete time signals u and v is

defined as

(u ∗ v)(tn) =

NT−1∑

n′=0

ū(tn − tn′)v(tn′), (2.5)

where ū is the periodic extension of signal u (ū(tn − tn′) = u(T + tn − tn′) for negative

times tn < tn′ and ū = u elsewhere). Using this notation, the Least Squares (LS)

criterion reads as:

Q (g) =

∥∥∥∥∥p−
NS∑

i=1

si ∗ gi

∥∥∥∥∥

2

2

=

∥∥∥∥∥p−
NS∑

i=1

Aigi

∥∥∥∥∥

2

2

. (2.6)

Here, we introduced matrix Ai that reproduce the convolution with source signal si:

[
Ai

]

n,n′
= (s̄i(tn − tn′)) n, n′ ∈ J0, NT − 1K, (2.7)

with s̄i is the periodic extension of signal si.

With these notations, the gradient relatively to GF gi is

∂Q

∂gi
= −2Ai

T

(
p−

NS∑

i=1

Aigi

)
.

The matrix Ai
T is the transpose of matrix Ai. It reproduces the cross-correlation with

source signal si:

Ai
Tv = si ⊗ v with (u⊗ v) (tn) =

NT−1∑

n′=0

ū(tn′ − tn)v(tn′), (2.8)

where ⊗ is the cross-correlation product and ū is the periodic extension of signal u. More

details on the convolution and cross-correlation products can be found in the book of

Gray and Goodman (2012) on Fourier transforms. Dropping the multiplicative constant,

the expression of the gradient ĉi,n is

∂Q

∂gi(tn)
(ĝ) ' ĉi,n = +si ⊗


p−

NS∑

j=1

sj ∗ ĝj


 (tn). (2.9)
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2.2.2 Condition number

Ignoring a multiplying factor, the gradient of the criterion with respect to gi(tn) writes:

ĉi,n =


si ⊗


p−

NS∑

j=1

(sj ∗ gj)




 (tn). (2.10)

A fitting descent algorithm tries to minimize this gradient as it will be seen in the next

section. The problem can thus be formulated as finding the functions that cancel the

gradient and g is solution of the Wiener filter equation:


si ⊗

NS∑

j=1

(sj ∗ gj)


 (tn) = (si ⊗ p) (tn)

{
i ∈ J1, NSK
n ∈ J0, NT − 1K

. (2.11)

The number of equations here is NSNT , equal to the number of unknowns (every GF

at every time step {gi(tn)}i,n). However, those equations are not linearly independent

and the rank r of the system (2.11) is smaller than NSNT . First, all these equations are

linear combinations of the equations obtained by simply cancelling the residue:

NS∑

j=1

(sj ∗ gj) (tn) = p(tn) n ∈ J0, NT − 1K, (2.12)

meaning that r ≤ NT . Besides, for periodic signals the rank is even lower. The direct

discrete Fourier transform F and its inverse F−1 of a signal are respectively given by

U(fk) = F {u} (fk) =

NT−1∑

n=0

u(tn)e−i2πtnfk k ∈ J0, NT − 1K, (2.13)

with fk = k∆f = k/T and

u(tn) = F−1 {U} (tn) =
1

NT

NT−1∑

k=0

U(fk)e
i2πtnfk n ∈ J0, NT − 1K. (2.14)

With this expression, and because we are measuring one period of converged signals,

the convolution theorem apply. It states that the Fourier transform of the convolution

is the pointwise product of the Fourier transforms F {u ∗ v} = F {u} · F {v}. The

discrete Fourier transform being a linear operation, applying it to system (2.12) gives,

at frequency fk:

NS∑

j=1

Sj(fk)Gj(fk) = P (fk) k ∈ J0, NT − 1K, (2.15)

where Sj , Gj and P are the discrete Fourier transforms of sj , gj and p respectively. The

discrete Fourier transform is invertible and, thus, conserve the rank so that system (2.12)
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has the same rank as system (2.15). As only a small number NF < NT of frequencies are

excited during the simulation, most of these equations are always true. The non-trivial

equations are those corresponding to the excited frequencies

NS∑

j=1

Sj(f
exc
u )Gj(f

exc
u ) = P (f exc

u ) u ∈ J1, NF K, (2.16)

Thus we have shown that if multisine signals exciting frequencies {f exc
u , 1 ≤ u ≤ NF }

are used for the excitation, and assuming that one period of converged signal is recorded,

the rank r of system (2.11) is smaller than the rank of system (2.16) that is itself smaller

than NF because it contains only NF equations. The problem of GF estimation is thus

severely ill-posed (r ≤ NF � NSNT ) justifying the need of a regularization term.

An approach for the resolution of (2.11) was proposed by Polifke et al. (2001) for NS = 2

non-periodic input signals for the reconstruction of acoustic transfer matrices in ther-

moacoustic systems. The methodology was also applied NS = 3 non-periodic signals

by Föller et al. (2010) for the aeroacoustic characterization of T-junctions. It can be

generalized for a larger number of periodic input signals. The Wiener filter Eq. (2.11)

can be re-written:

Γg = b, (2.17)

where Γ is the correlation matrix between input signals (s1, · · · , sNS
) and b is the cross-

correlation between input signals and pressure at the microphone:

[
Γ
]
in,jn′

= (si ⊗ sj) (tn − tn′)
{

i, j ∈ J1, NSK
n, n′ ∈ J0, NT − 1K

bi(tn) = (si ⊗ p) (tn)

{
i ∈ J1, NSK
n ∈ J0, NT − 1K

. (2.18)

Auto-correlations (si ⊗ si) (tn − tn′) appear in the diagonal blocks of the matrix. They

represent a physical limitation to the estimation of the GFs. Hence, the only excited

frequencies can be estimated in the process (Schoukens et al., 1988). Considering off-

diagonal blocks, it shows that the pairwise signals cross-correlations need to be low.

The difficulty to solve the deconvolution problem also increases with the number of

sources NS . The contributions of all the sources are added in Eq. (1.6) making it

difficult to extract GFs between the considered microphone and all the focus points.

We observe in practice that the number of frequencies NF required to estimate GFs

increases with the number of sources NS .
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2.2.3 Sparsity-based regularization

The GF estimation problem is ill-posed. Adding a constraint to the GFs enables to

regularize the problem. The resulting inverse problem can then be solved in the time

domain if the input and output signals hold enough information. The problem, with

lq-regularization, reads as:

ĝ = argmin
g

∥∥∥∥∥p−
NS∑

i=1

(si ∗ gi)

∥∥∥∥∥

2

2

s. t.

NS∑

i=1

‖ĝi‖q ≤ λq, (2.19)

where g stands for the concatenation of all the GFs g1, · · · ,gNS
between the microphone

under consideration and all the focus points and ĝ is an estimate for g. The parameter

λq can be a predefined constant or can be obtained by using cross-validation (Stone,

1974). The second solution will be used, λq that yields the smallest cross-validation

prediction error is selected. Details on the cross-validation are given in the section 2.4.

The GF estimation problem consists in finding a representation of the pressure at a

microphone pm in the dictionary D consisting in the NSNT signals representing the

source signals delayed in time D = {s(n)
i }i,n with ∀(i, n) ∈ J1, NSK× J0, NT − 1K:

s
(n)
i (tn′) = s̄i(tn′ − tn) n′ ∈ J0, NT − 1K, (2.20)

where s̄i is the periodic extension of signal si. With these notations, the GF estimation

problem (2.19) can be reformulated as

ĝ = argmin
g

∥∥∥∥∥p−
NS∑

i=1

NT−1∑

n=0

gi(tn)s
(n)
i

∥∥∥∥∥

2

2

s. t.
∑

i

‖ĝi‖q ≤ λq. (2.21)

The purpose of linear regression algorithms is to find, from a family of vectors called

covariates {u1, · · · ,uN}, a sparse linear combination that approximates a given vector v.

With α = (α1, · · · , αN ) the coefficients of this linear combination, the OMP algorithm

solves the problem

α̂ = argmin
α

∥∥∥∥∥v−
N∑

i=1

αiui

∥∥∥∥∥

2

2

s. t. ‖α̂‖q ≤ λq. (2.22)

The vector α is the vector of regression coefficients, the family of vectors {u1, · · · ,uN}
is the dictionary D and α̂ is an estimate for α.

The similarity between problems (2.21) and (2.22) makes possible the use of linear

regression algorithm to solve the GF estimation problem (2.19). However, most of

the minimization algorithms require the knowledge of the gradient. Expression of the



32 Chapter 2 Study, regularisation and resolution of the sparse estimation problem
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(b) l0-constraint (stepwise)
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Figure 2.1: Visualization of a lq-constrained minimization problem with q=2, 0, and
0.8. The iso surfaces of the LS criterion are plotted going from blue (small values) to
red (high values) and the constraint region ‖α‖q≤1 is plotted in cyan: the region is the

abcissa and ordinate axis in the OMP problem.

gradient in (2.22) is expressed by

∂Q

∂αi
(α̂) ' ui

T


v−

NS∑

j=1

α̂juj


 . (2.23)

The naive approach consists of computing independently the gradient of the least squares

criterion ∀(i, n) ∈ J1, NSK× J0, NT − 1K:

∂Q

∂gi(tn)
(ĝ) ' s

(n)
i

T


p−

NS∑

j=1

NT−1∑

n′=0

ĝj(tn′)s
(n′)
j


 = s

(n)
i

T
µ̂. (2.24)

The computation of the gradient using this formula has a O
(
NSN

2
T

)
complexity if vec-

tor µ̂ is computed initially and then used for the calculation of the gradient. The use of

expression (2.10) is preferred in the following. It enables to reduce the algorithmic com-

plexity to O (NSNT log2(NT )) by using high speed convolution and correlation (Stock-

ham and Thomas, 1966).

In general q is taken in [0, 2]. The ridge regression problem corresponds to the case q = 2

α̂ = argmin
α

∥∥∥∥∥v−
N∑

i=1

αiui

∥∥∥∥∥

2

2

s. t. ‖α‖2 ≤ λ2, (2.25)

and is the most commonly used method of regularization of ill-posed problems. The hard

constraint in (2.22) is often replaced by a soft constraint by using a Lagrange multiplier

like in the Tikhonov (1943) regularization. The geometric representation of the ridge

regression problem is shown in the figure 2.1-(a). The constraint region corresponds to

the regions where α satisfies the constraint (here ‖α‖2 ≤ λ2). Because of this penalty,

the solutions with small l2-norm are privileged. This enables a trade-off between the

minimization of the LS criterion Q and the aspect of the solution. This penalization is
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of prior interest in the case of ill-posed problems because the solution space is an affine

subspace and solutions with very high norm are also available.

A constraint on the l0-norm leads to the stepwise regression problem

α̂ = argmin
α

∥∥∥∥∥v−
N∑

i=1

αiui

∥∥∥∥∥

2

2

s. t. ‖α‖0 ≤ λ0. (2.26)

It is a variable subset regression problem in the sense that we want to find the solution α

that has the smallest number of non-zero components. It has been proved by Natarajan

(1995) to be NP-hard. This property is true for all q < 1 because the constraint region is

non-convex. The geometric representation of the stepwise regression and l0.8-constrained

problem are shown in figures 2.1-(b) and (c). For both of these cases, the solution

can change completely with a small change on the covariates {u1, · · · ,uN} and the

observations v. The best solution estimate α̂ can switch from one corner to the other.

An increase in the index q of the lq-norm chosen in the minimization problem reduces the

sparsity of the solution estimates. Considering the l1-norm leads to the lasso (Tibshirani,

1996)

α̂ = argmin
α

∥∥∥∥∥v−
N∑

i=1

αiui

∥∥∥∥∥

2

2

s. t. ‖α‖1 ≤ λ1. (2.27)

This is the smallest value for which the problem is convex making it resolution easier.

The figure 2.2-(a) represents the lasso estimation problem and we can see that the

constraint region is a convex polyhedron. An other advantage of constraining the l1-

norm is the ability to set coefficients exactly equal to zero because of the sharp corners

of the constraint region. This behavior is called “soft-thresholding” and differs from the

stepwise regression that operates a “hard-thresholding” as it imposes the number of non

zero components with the λ0 parameter.
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α1�αlasso

!"#$%&"'()*+,"&

(a) l1-constraint (lasso)
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α2

α1

�αl1.2
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(b) l1.2-constraint

�αLS

α2

α1�αe-n

!"#$%&"'()*+,"&

(c) elastic net

Figure 2.2: Visualization of a lq-constrained minimization problem with q=1 or 1.2
and the elastic net problem with t = 0.2. The iso surfaces of the LS criterion are plotted
going from blue (small values) to red (high values) and the constraint region ‖α‖q≤1

is plotted in cyan.
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The lasso can sometimes appear to still be too strict in terms of sparsity of the solution.

The ability of the problem to furnish solutions with numerous coefficients equal to zero

is lost when q > 1 (?). For instance, with a constraint on the l1.2-norm shown in the

figure 2.2-(b), the corners are not sharp and the solution has a few chance to be in the

coordinates axes. To remedy this problem, Zou and Hastie (2005) proposed the elastic

net problem

α̂ = argmin
α

∥∥∥∥∥v−
N∑

i=1

αiui

∥∥∥∥∥

2

2

s. t. (1− t) ‖α‖1 + t ‖α‖2 ≤ λ, (2.28)

with t ∈ [0, 1]. The parameter t enables a trade-off between lasso and ridge regression.

The elastic net problem is represented in the figure 2.2-(c) with t=0.2. Although visually

very similar, the elastic-net has sharp corners, while the q=1.2 penalty does not.

In the case of external aeroacoustical configurations, GFs can be considered as sparse.

The GFs are estimated as a sum of time-delayed Dirac delta functions and solutions

with the minimum number of spikes are privileged. During the last two decades, there

has been an increasing interest on the l1-regularization. This has led to numerous

algorithms, among them the lasso (Tibshirani, 1996) and the elastic net (Zou and Hastie,

2005) algorithms. The l1-penalty is popular because it leads to a convex estimation

problem that can be solved efficiently using convex optimization methods Friedman

et al. (2001). Efron et al. (2004) proposed the LARS algorithm that can be modified

to efficiently solve those regression problems. While the l0-penalty hasn’t all those

properties, the Orthogonal Matching Pursuit algorithm Pati et al. (1993) (or forward

stepwise regression) enables to produce an approximate path through data. The OMP

algorithm is often described as less stable than other l1-constrained algorithm that has

a more strong mathematical background. At the point that Lin et al. (2008, 2010)

have declared themselves defenders of the l0-regularization. However OMP algorithm

exhibit some interesting properties: a fast convergence and an absence of shrinkage on

the estimated coefficients. The practical implementation of the OMP, lasso and elastic-

net is described in the section 2.3. Those algorithms will be compared further in the

section 2.5 in this chapter.

2.3 Adaptation of linear regression algorithms

2.3.1 The Orthogonal Matching Pursuit

The OMP algorithm solves the l0-constrained GF estimation problem

ĝ = argmin
gm

∥∥∥∥∥p−
NS∑

i=1

(si ∗ gi)

∥∥∥∥∥

2

2

s. t.

NS∑

i=1

‖ĝi‖0 ≤ λ0. (2.29)
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It starts with the zero solution (Pati et al., 1993) and iterates in order to minimize the

gradient 2.9. At each iteration, the component that maximizes the gradient is added to

the active set (set of all the non-zero components of the GFs) and a linear system is solved

in order to determine the amplitudes of these components. The algorithm was originally

proposed for the wavelet decomposition in order to compute sparse representations of

signals in possibly overcomplete dictionaries. In the case of external aeroacoustics, the

algorithm can be used to exploit the sparse characteristics of the GFs. Most of the energy

of the GFs is concentrated in a few echoes. It is possible to give a good approximation

of the time-domain GFs as a sum of pulses, each pulse corresponding to one acoustic

ray between the source and microphone positions.

At each iteration q of the algorithm, one non-zero component is added to one of the

GF estimates. The added component is the one which maximizes the gradient (2.10).

A projection on the active set is then performed and all the coefficients are updated in

order to decrease the LS criterion (2.4) as much as possible. In this sense, the algorithm

behaves like if it is l0-constrained. For λ0 fixed, the different steps of the procedure are

described as follows:

Step 0 Initialization of the iteration index q = 0, the algorithm starts with the

intercept:

ĝ
(q=0)
i (t) = 0 ∀i ∀t
A(q=0)
i = ∅ ∀i
A(q=0) = ∅

(2.30)

where ĝi is the estimate for GF gi. Set Ai is the active set relative to source i. It contains

all the time steps n where ĝi(tn) is not zero. The global active set A contains all the

tuples (i, n) for which ĝi(tn) is not zero. Superscript (q) is here to differentiate between

the value at the previous iteration and the new one.

Step 1 Increment the iteration index q ← q + 1. Compute the gradient using (2.10)

based on GFs estimated at the previous step (q − 1). Then determine the argument of

its maximum in absolute value outside the active set and add it to the belonging active

sets:

ĉ
(q−1)
i,n = +si ⊗


p−

NS∑

j=1

ĝ
(q−1)
j ∗ sj


 (tn) ∀i ∀n (2.31)

(̂i(q), n̂(q)) = argmax
(i′,n′)∈(A(q−1))

c

{∣∣∣ĉ(q−1)
i′,n′

∣∣∣
}

(2.32)

A(q) = A(q−1)
⋃{

(̂i(q), n̂(q))
}

A(q)
i =




A(q−1)
i

⋃{
n̂(q)

}
i = î(q)

A(q−1)
i i 6= î(q)

(2.33)
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Step 2 We can now look for GF estimates as a finite sum of Dirac delta functions:

g
(q)
i (t) =

∑

n∈A(q)
i

β
(q)
i,nδ(t− tn) ∀i (2.34)

The vector of coefficients β(q) =
[
β

(q)
i,n

]
(i,n)∈A(q)

∈ Rq, representing the amplitudes of the

spikes, minimizes the LS criterion:

β̂
(q)

= argmin
β(q)∈Rq





∥∥∥∥∥∥
p(t)−

∑

(i,n)∈A(q)

βi,nsi(t− tn)

∥∥∥∥∥∥

2
 (2.35)

The minimum is obtained for β̂
(q)

solution of the system:

Γ
A(q)

β̂
(q)

= α(q) ∈ Rq (2.36)

Where:
Γ
A(q)

= [(si ⊗ sj) (tn − tn′)] (i,n)∈A(q)

(j,n′)∈A(q)

∈ Rq×q

α(q) = [(si ⊗ p) (tn)](i,n)∈A(q) ∈ Rq
(2.37)

Because we are doing a projection, the solution can completely change in one iteration

of the algorithm. It appears that the matrix Γ
A(q)

is a submatrix of the cross-correlation

matrix Γ presented in (2.18). The inversion of the linear system at each step can be

avoided. Indeed, Γ
A(q−1)

is a Grammian matrix of a set of linearly independent time

signals {si(t− tn)}(i,n)∈A(q) and Γ
A(q)

is a Grammian matrix corresponding to the pre-

vious set of vectors increased by one. Pati et al. (1993) proposed to use the inverse

matrix Γ−1

A(q−1)
at iteration (q − 1) for constructing by blocks the inverse matrix at the

next step Γ−1

A(q)
. It enables to avoid matrix inversion at each step and decrease the

algorithmic complexity. Details on this modification are given in the appendix D.

Step 3 Finally GF estimates are updated:

ĝ
(q)
i (t) =

∑

n∈A(q)
i

β̂
(q)
i,nδ(t− tn) ∀i (2.38)

Remaining steps Repeat step 1-3 while
∑
i
‖ĝ(q)
i ‖0 = q < λ0.

As we will see, the algorithm succeeds well in giving a sparse solution. However, the

l0-constraint can appear to be too strict in some cases resulting in a bad estimation of

the GFs. This is the case when the input and output signals are too short and does not

bring enough information for the algorithm to train on and to estimate relevant GFs.
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In the worst case, some GFs can even be skipped (estimated as zero functions while it

is not the case). It appears in practice that the GFs for focus points located in hidden

areas are more likely to be skipped. Considering longer multisine signals with a higher

number of harmonics NF will improve the capacity of the algorithm to extract those

points.

2.3.2 The LARS-lasso and LARS elastic net algorithms

The elastic net algorithm (Efron et al., 2004; Zou and Hastie, 2005) is used to solve the

GFs estimation problem with constraints on both the l1 and l2-norm of the solution. It

deals with correlated estimates but it has nothing to do with correlated source signals.

The method distributes the energy equally between estimates but that may not be exact

with GF estimation. The minimization problem reads as:

ĝm = argmin
gm





∥∥∥∥∥pm −
NS∑

i=1

(gi,m ∗ si)
∥∥∥∥∥

2

2

+ λ2

NS∑

i=1

‖gi,m‖22



 s. t.

∑

i

‖ĝi,m‖1 ≤ λ1,

(2.39)

with λ2 a tuning parameter. Zou and Hastie (2005) explain that it is equivalent to

solving a problem of the form (2.28) with t = λ2/(λ1 + λ2). The algorithm reduces to

the lasso algorithm if λ2=0 (Tibshirani, 1996).

Like OMP, it is an iterative gradient based algorithm. For λ1 and λ2 fixed, the various

stage of the procedure are described as follows:

Step 0 Initialization of the iteration index q = 0, the algorithm starts with the

intercept:

ĝ
(q=0)
i (t) = 0 ∀i ∀t
A(q=0)
i = ∅ ∀i
A(q=0) = ∅

(2.40)

where ĝi is the estimate for GF gi. Set Ai is the active set relative to source i. It contains

all the time steps n where ĝi(tn) is not zero. The global active set A contains all the

tuples (i, n) for which ĝi(tn) is not zero. Superscript (q) is here to differentiate between

the value at the previous iteration and the new one.

Step 1 Increment the iteration index q ← q + 1. Compute the gradient using (2.10)

based on GFs estimated at the previous step (q − 1). Then determine the argument of

its maximum in absolute value outside the active set and add it to the belonging active

sets:

ĉ
(q−1)
i,n = +si ⊗


p−

NS∑

j=1

ĝ
(q−1)
j ∗ sj


 (tn)− λ2ĝ

(q−1)
i (tn) ∀i ∀n (2.41)
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(̂i(q), n̂(q)) = argmax
(i′,n′)∈(A(q−1))

c

{∣∣∣ĉ(q−1)
i′,n′

∣∣∣
}

(2.42)

A(q) = A(q−1)
⋃{

(̂i(q), n̂(q))
}

A(q)
i =




A(q−1)
i

⋃{
n̂(q)

}
i = î(q)

A(q−1)
i i 6= î(q)

(2.43)

As it will be seen in steps 2 and 3, the absolute value of the gradient on the added

component (̂i(q), n̂(q)) must be equal to the absolute value of the gradient on the active

set A(q−1). Thus, the absolute value of the gradient on the active set A(q) are all equal

to Ĉ(q−1).

Step 2 The direction of equiangular descent is the direction that makes decrease the

absolute value of the gradient the same way on all the active set. To find the direction

of equiangular descent, consider β(q) the concatenation of the values taken by g
(q−1)
n on

the active set A(q)

β(q) =
[
g

(q−1)
i,n (τk)

]
(i,k)∈A(q)

∈ RN
(q)
, (2.44)

where N (q) is the cardinal of the active set A(q). We are looking for a direction of descent

ω(q) such that the absolute value of the gradient decreases from Ĉ(q−1) to (Ĉ(q−1) − γ)

when the Green’s function components β(q) become
(
β(q) − γω(q)

)
. The equiangular

direction of descent is solution of the linear system:

G
A(q)

ω(q) = ε(q) ∈ RN
(q)
, (2.45)

where:

G
A(q)

=
1

1 + λ2



[
(si ⊗ sj)(τk−τl)

]
(i,k)∈A(q)

(j,l)∈A(q)

+ λ2I
N(q)




ε(q) =
[
sign

(
ĉ

(q−1)
i,k

)]
(i,k)∈A(q)

. (2.46)

I
N(q)

is the identity matrix of size N (q) and sign(x) is the sign of the real scalar x.

The inversion of the linear system at each step can be avoided. Indeed, G
A(q−1)

is a

Grammian matrix of a set of linearly independent vectors and G
A(q)

is a Grammian

matrix corresponding to the previous set of vectors increased by one. The modification

of Pati et al. (1993) enables constructing by blocks the matrix G−1

A(q)
using G−1

A(q−1)
.

Thus, using ω(q) solution of (2.45), ∀γ ≤ Ĉ(q−1) it comes:

β(q) −→
(
β(q) − γ̂ω(q)

)

=⇒ max
(i,k)∈A(q)

{∣∣∣ĉ(q−1)
i,k

∣∣∣
}
−→ (Ĉ(q−1) − γ̂)

(2.47)
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Moving on this direction enables to decrease the gradient on the active set but may also

influence the other components of the gradient. Therefore, γ̂ is chosen as the smallest

positive value of γ such that some new index joins the active set (ie. gradient equal to

the maximum value).

Step 3 The amplitude of displacement is given by:

γ̂ = min+

(i,k)∈(A(q))
c




Ĉ(q−1) − ĉ(q−1)

i,k

1− â(q−1)
i,k

,
Ĉ(q−1) + ĉ

(q−1)
i,k

1 + â
(q−1)
i,k



 (2.48)

Where â
(q−1)
i,k is the cross-correlation of source signals with the direction of descent:

uA(q)(t) =
∑

(j,l)∈A(q)

ω
(q)
j,l sj(t− τl)

â
(q−1)
i,k = (si ⊗ uA(q)) (τk)

(2.49)

Step 4 Following the Lasso path consists of enforcing the continuous increase of the

l1 norm at each iteration. To do so, non-zero coordinate β
(q)
i,k must agree with the sign

ε
(q)
i,k of the gradient ĉ

(q)
i,k :

sign
(
β

(q)
i,k

)
= ε

(q)
i,k = sign

(
ĉ

(q)
i,k

)
(2.50)

Efron et al. (2004) give more details about this modification. To apply the method we

need to compute:

γ̃ = min+

(i,k)∈A(q)



−

β
(q)
i,k

ω
(q)
i,k



 (2.51)

Two situations can then occur: γ̃ can be bigger or smaller than γ̂. If γ̃ ≥ γ̂, Step 3bis

is finished and no modifications occur on this step. However, if γ̃ ≤ γ̂, the amplitude

of displacement is taken as γ̃ (γ̂ = γ̃) and the argument of the minimum in (2.51) is

removed from the active set. As one element has been removed from the active set no

element is added in the next iteration (Step 1 is skipped). Again, there is a way of

constructing by blocks the matrix G−1

A(q)
using G−1

A(q−1)
if one vector has been removed

from the set of the Grammian matrix.

Step 5 Finally the iteration index is incremented (q = q+1) and the solutions (Green’s

functions) are updated :

g
(q)
i,n(τk) = g

(q−1)
i,n (τk) + ω

(q)
i,k ∀(i, k) ∈ A(q) (2.52)
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The maximum absolute value of the gradient in (2.41) has been decreased of γ̂:

Ĉ(q) = max
∀i,k

{
∂R

∂gi,n(τk)
(g(q)
n )

}

= Ĉ(q−1) − γ̂
(2.53)

Remaining steps Repeat step 1-5 while ‖g(q)
n ‖1 < λ1.

2.4 Cross-validation stopping criteria

The linear regression algorithms require to set a stopping criterion. Hence, two phases

appear during the minimization process: (i) the fitting and (ii) overfitting phases. During

the fitting phase, GF estimates are updated in a way that the distance between them and

the exact GFs is reduced. The algorithm then reaches an overfitting phase in which the

algorithm is trying to extract more information than what the training dataset holds.

In their review on modeling issues, Maier and Dandy (2000) explain that the overfitting

appears due to the high ratio between the number of equations and the number of

unknowns. Stone (1974) proposed the cross-validation to differentiate between the fitting

and the overfitting phases. It requires a second set of input signals and pressure at the

microphones, the validation set S̃ = {(s̃i)i , (p̃m)m}. The accuracy of the estimated GFs

is calculated as their ability to generalize on the validation dataset that has not been

utilized in the training process.

This works as follows. The minimization process (2.19) is applied independently for each

microphone index m. We define Q and Q̃ the criteria on the training and validation set:

Q (ĝm) =

∥∥∥pm −
∑NS

i=1 si ∗ ĝi,m

∥∥∥
2

2

‖pm‖22
and Q̃ (ĝm) =

∥∥∥p̃m −
∑NS

i=1 s̃i ∗ ĝi,m

∥∥∥
2

2

‖p̃m‖22
.

(2.54)

The evolution of this two criteria in function of the iteration number are shown in

figure 2.3. In this test case, NS = 11 sources are located in the segment 0 ≤ xs ≤ 2 m

at y=0 m every 0.2 m and z=0 m and the microphone is located at position (0, -2 m, 0).

The OMP algorithm is used for the estimation of the GFs. Multisine signals (2.2) in

the frequency range [4 kHz, 11 kHz] are used for the excitation of the sources. The

procedure was applied for different number of frequencies NF = 141, 281 and 561 and the

delimitation of the fitting (i) and overfitting (ii) phases relatively to the cross-validation

stopping criterion has been highlighted. At each iteration of the algorithm, the GF

estimates ĝm =
(
ĝi,m

)
i

are updated in order to decrease the least squares criterion Q

on the training set. Thus, the criterion Q decreases at every step making it difficult to

differentiate fitting and overfitting phases. However, the criterion Q̃ decreases, reaches

minimum value, then increases when the algorithm starts overfitting. The best GF
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Figure 2.3: Cross-validation stopping criterion. The training (——–) and validation
(– – –) criteria are plotted as a function of the model complexity ‖ · ‖0. Three numbers
of frequencies NF=141, 281 and 561 are considered. The separation between the fitting

and the overfitting phases has been highlighted.

estimates are chosen as those that minimize the criterion Q̃ on the validation set. The

value of the minimum gives information on the quality of the GF estimates. In figure 2.3,

the minimum value reached by the criterion Q̃ is smaller when the number of frequencies

is increased meaning that the estimation is better. This is because when the number of

frequencies is increased, the algorithm is given more data to train on.

The time domain GFs in the various phases of the minimization process is presented

in figure 2.4. For this example, the number of frequencies is NF=141. The temporal

waveforms of the GFs are shown after 11, 50 and 200 iterations of the algorithm. The

iteration 11, shown in the figure 2.4-(a), corresponds to the fitting phase. For this

iteration number, exactly 11 non-zeros were added and the algorithm has decided to

add exactly one component per GF at the time delay corresponding to the propagation

from the source to the microphone. The best GF estimates, relatively to the cross-

validation criterion, are shown in the figure 2.4-(b). Some more non-zero components

have been added near the main spikes. Those components enable the compensation of

the effects of the discretization in time. They appear when the time of propagation of the

sound from the source to the microphone is not a multiple of the time sample ∆t. Two

spurious spikes are visible at times t = 9 ms and t = 12 ms. The iteration 200, shown in

the figure 2.4-(c), corresponds to the overfitting phase. Between iteration 50 and 200, the

solution have not been modified too much in the time interval of interest [5.9 ms, 8.3 ms].

However the solution differs more outside this interval where numerous spurious spikes

have been added to the GFs. The cross-validation appears to give a good estimation

of the limit between the fitting and the overfitting phase in this case. The increase
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(a) Underfitted GFs
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(b) Best GF estimates
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(c) Overfitted GFs

Figure 2.4: Time GFs obtained at (a) iteration 11 during the fitting phase, (b) at
iteration 50 at the minimum of the validation criterion, and (c) at iteration 200 during
the overfitting phase of the OMP algorithm. Vertical dashed lines represents the time

of arrival of the first and the last echoes obtained analytically.

of the sampling frequency, until ∆t = 10−6 s improves the performances of the OMP

algorithm because spikes can be placed more precisely. However, as observed by Berger

et al. (2010), it appears that further increase of the sampling frequency strongly diminish

the quality of the estimation, probably because of the dropping of the condition number.

For all the cases envisaged in the following, the sample time is taken as ∆t = 10−6 s.

2.5 Comparison of the convergence of the regression algo-

rithms

In order to compare the various estimation methods, the lasso and elastic net algorithms

were also applied to the test case of the previous section. The cross-validation enables

to make visible the cap between the fitting and the overfitting phases. The validation

criterion (2.54) allows a global assessment of the various algorithms: the minimum of the

validation criterion evaluates the quality of the estimation. On the other hand, the speed

of convergence is linked to the iteration of the minimum. The validation curves obtained

for the various methods are presented in the figure 2.5. The curves were plotted for the

OMP, the lasso, and the elastic net with λ2=0.001, 0.01, 0.1 and 1. The OMP algorithm

is the fastest to converge with only 49 iterations and, at this iteration, Q̃=5%. The

lasso enables a good estimation of the GFs because the validation criterion is under 1%
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Figure 2.5: Cross-validation stopping criterion. The curves were plotted for the
OMP, the lasso, and the elastic net with λ2=0.001, 0.01, 0.1 and 1. The GFs be-
tween NS=11 focus points and a microphone are estimated. Multisine signals exciting
NF =141 frequencies in the frequency range [4 kHz, 11 kHz] are used as excitation sig-
nals. Vertical dashed lines represent the separation between the fitting and the overfit-

ting phases.

but suffers from a very slow convergence. For this algorithm, we observe a dropping of

the condition number of the matrix Γ
A(q)

before the apparition of the overfitting phase.

The lasso appears to give better GF estimates than the elastic net whatever the value

chosen for the λ2 parameter: the validation curve is always under the one corresponding

the elastic net.

The time domain GFs obtained with the lasso at the iteration 11, 200, 300 are presented

in the figure 2.6 and differs from those given by the OMP for the same case. After 11

iterations, the OMP algorithm had estimated the main spikes and their amplitude.

The lasso has found the times of arrival of the spikes but the amplitudes given to

the coefficients is very low. In fact, the lasso algorithm start by choosing the useful

coefficients and then make them grow together. This difference of behavior can also

be seen in the figure 2.5 where the slope at the origin for the OMP is very high when

compared to the other regression methods. The lasso algorithm is still in the fitting

phase after 300 iterations but the convergence is very slow and the GF estimates are

very similar at iterations 200 and 300 (figure 2.6-(b) and (c)). The time domain GFs for

the elastic net problem with λ2=1 are shown in the figure 2.7. Because of the constraint

on the l2-norm, the algorithm gives solution that is less sparse. The amplitude of the

coefficients is decreased because the energy is spread on more time components. This

behaviour can be of interest when the Green’s function is less sparse. In his PhD, Pene

(2015) used this regularization for the estimation of the GF in a 2D sparse. In that case,
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the free-field GF is less sparse and expressed as

g(0,0)(x, t) = − c0

2π

H (t− ‖x‖ /c0)√
c2

0t
2 − ‖x‖2

. (2.55)

Thus, the λ2 parameter represents a lever of action to control the sparsity of the GF.

However, it appears that this spreading of the energy also leads to the apparition of

more parasitic spikes.

The comparison of the convergence for a larger number of acoustic sources is shown

in the figure 2.8. The same geometry as before is used, the microphone is located at

position (0, -2 m, 0) but the number of sources in the segment 0 ≤ xs ≤ 2 m at y=0 m

every 0.2 m and z=0 m is now NS=51. The number of frequencies is also increased to

NF=701 in order to bring more information to the model. The results are very similar

with those of the figure 2.5 only the number of iterations for convergence is higher

because more parameters are to be estimated. The minimum of the OMP algorithm is

now at iteration 175 instead of 50 for the previous case. The number of focus points NS

often reaches several hundreds of as we will see in the chapters 4 and 5. This argument

also influenced our choice of the OMP algorithm in the following.
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(b) GF estimates at iteration 200
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(c) GF estimates at iteration 300

Figure 2.6: Time GFs obtained with the lasso algorithm at (a) iteration 11 during
the fitting phase, (b) at the iteration 200, and (c) at iteration 300. Vertical dashed lines

represents the time of arrival of the first and the last echoes obtained analytically.
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(b) Best GF estimates
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(c) Overfitted GFs

Figure 2.7: Time GFs obtained with the elastic-net algorithm at (a) iteration 11
during the fitting phase, (b) at iteration 189 at the minimum of the validation criterion,
and (c) at iteration 300 during the overfitting phase of the elastic net algorithm. Vertical
dashed lines represent the time of arrival of the first and the last echoes obtained

analytically.

In this chapter we proved that the multisource GFs estimation problem is ill-posed and

proposed a strategy for its regularization. In the case of external aeroacoustical config-

urations, GFs can be considered as sparse and this characteristic is used to regularize

the problem. The GFs are estimated as a sum of time-delayed Dirac delta functions and

solutions with the minimum number of spikes are privileged. The stepwise regression

imposes the number of non-zero components of the solution to enforce sparsity and can

be solved using the OMP algorithm. The lasso regression solves the problem with a

constraint on the l1-norm of the solution and can be efficiently solved using convex op-

timization methods. The sparsity constraint can be relaxed even more with the elastic

net algorithm when the GF is less sparse like in the 2D case. We saw that the lasso

provides a better estimation of the GFs but has a slow convergence. This is why, in the

following, the OMP algorithm will be used for the resolution of the GF estimation prob-

lem. The cross-validation stopping criterion and its implementation were also presented.

It prevents overfitting that will lead to a deterioration of the GFs during the estimation

process. In the next chapter, the choice of the excitation signals is discussed and in par-

ticular alternatives to the choice of randomly-generated phases in the expression (4.2)

of the multisine signals.



46 Chapter 2 Study, regularisation and resolution of the sparse estimation problem

0 100 200 300 400 500 600 700 800 900

10−1

100

Iteration number

Va
lid

at
io

n 
cr

ite
ria

 

 
OMP
LASSO
LARSEN 0.001
LARSEN 0.01
LARSEN 0.1
LARSEN 1.0

Figure 2.8: Cross-validation stopping criterion. The curves were plotted for the
OMP, the lasso, and the elastic net with λ2=0.001, 0.01, 0.1 and 1. The GFs be-
tween NS=51 focus points and a microphone are estimated. Multisine signals excit-
ing NF =701 frequencies in the frequency range [4 kHz, 11 kHz] are used as excitation
signals. Vertical dashed lines represents the separation between the fitting and the

overfitting phases.



Chapter 3

Excitation signals with low

cross-correlation

In the previous section, a methodology for the estimation of the Green’s functions was

presented. It was seen that taking into account the sparsity of the Green’s functions

enables to reduce the computational cost. Moreover, the study of the condition number

showed that the cross-correlation need to be low. In this chapter, after a reminder of

some properties of multisine signals in section 3.1, an algorithm for the generation of

multisine signals with low cross-correlation is proposed and detailed in section 3.2 and

3.3. The algorithm iterates on the phases of multisine signals with user defined auto-

power spectra. It is based on the crest-factor minimization algorithm found in Guillaume

et al. (1991), approximating the Chebyshev norm with lp-norms with increasing values

of p. The influence of the various parameters is discussed in section 3.4. In section

3.5, the algorithm is adapted to the case of finite impulse response (FIR) systems which

require the cross-correlation to be low on a limited time interval. The contributions of

the cross-correlation minimization to the GF estimation are finally discussed in section

3.6.

3.1 Properties of multisine signals

Consider a multisine signal with a defined spectrum density on a given set of frequencies:

x(t) =

NF∑

u=1

au cos (2πfut+ φu) , (3.1)

where NF is the number of frequencies and f1 ≤ · · · ≤ fNF
are the excited frequencies.

All of those frequencies are chosen to be multiple of a frequency f0. The signal is thus

T -periodic with T = 1/f0. The positive real numbers (au)1≤u≤NF
define the auto-power

47
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spectrum. The root mean square (RMS) value of such a signal is

RMS (x) =

√√√√√ 1

T

T∫

0

x(t)2 dt =

√√√√1

2

NF∑

u=1

a2
u. (3.2)

The RMS value of a signal evaluates the amplitude. The Chebyshev norm (or peak

value) of a signal is the maximum of the absolute value of the signal. For a multisine,

the Chebyshev norm is defined by its peak value:

‖x‖∞ = max
t∈[0,T [

|x(t)| . (3.3)

To finish, the crest-factor (CF) is defined as the ratio between the peak value and the

RMS value:

CF (x) =
‖x‖∞

RMS (x)
. (3.4)

The crest-factor of a signal is always larger than 1 and indicates how extreme the peaks

are in a waveform. In the following, the source excitation signals are chosen of the form:

si(t) =

NF∑

u=1

a(i)
u sin

(
2πfut+ φ(i)

u

)
1 ≤ i ≤ NS , (3.5)

where NF , f1 ≤ · · · ≤ fNF
and

(
a

(i)
u

)
1≤u≤NF

are auto-power spectrum relative to

source i.

In the previous chapters, phases were generated randomly in the interval [0, 2π[. In this

chapter, we envisage to construct the set of phases
{
φ

(i)
u

}
1≤u≤NF
1≤i≤NS

3.2 Crest-factor minimization

A good overview of the contraints in the choice of excitation can be found in Schoukens

et al. (1988) survey on excitation signals for FFT based signal analyzers. In the study

of saturating systems, minimizing the crest-factor is of prior interest as it enables to use

an input power as high as possible while keeping the device under test in its normal

operation region.

An algorithm for the CF minimization of multisine signals (3.1) was proposed by Guil-

laume et al. (1991). It is an iterative algorithm that gives a good estimate of the phases{
φ̂1, · · · , φ̂NF

}
that minimize the Chebyshev norm:

(
φ̂u

)
1≤u≤NF

= argmin
(φu)1≤u≤NF

‖x‖∞ . (3.6)
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As the Chebyshev norm is not differentiable, Guillaume et al. (1991) proposed to mini-

mize the continuous lp-norm instead:

lp(x) =


 1

T

T∫

0

|x(t)|p dt




1/p

. (3.7)

It is then possible to apply gradient based algorithms. The minimization is done for

increasing even values of p. The best estimate for the minimization of the l4-norm is

used to initialize the minimization problem of the l16-norm etc. This defines under some

regularity conditions an algorithm that converges to the minimax solution (3.6):

(
φ̂u

)
u

= lim
p→∞

argmin
(φu)u

{lp (x)} . (3.8)

This algorithm enables to reduce the Chebyshev norm of multisine of the form (3.1). This

enables to get an excitation signal that maximizes the SNR for given allowable amplitude

range. In the following, an adaptation of this algorithm is proposed for the determination

of phases that minimizes cross-correlation between signals of the form (3.5).

3.3 Cross-correlation minimization

3.3.1 Principles

In this work, we are interested in the minimization of cross-correlation between input

signals. Given a set of NS multisine signals
(
s(i)
)

1≤i≤NS
as defined in (3.5), the objective

is to find the phases
{
φ̂

(1)
1 , · · · φ̂(1)

NF
, · · · , φ̂(NS)

1 , · · · , φ̂(NS)
NF

}
that minimize the Chebyshev

norm of pairwise signals cross-correlations:

(
φ̂(i)
u

)
u,i

= argmin(
φ
(i)
u

)
u,i

{
max
i 6=j
‖si ⊗ sj‖∞

}
. (3.9)

Given two different input numbers i, j in J1, NSK, cross-correlation between the two

corresponding signals can be evaluated:

s(i) ⊗ s(j)(t) =
1

T

T∫

0

si(τ)sj(τ + t) dτ

=
1

2

NF∑

u=1

a(i,j)
u cos

(
2πfut− φ(i)

u + φ(j)
u

)

=
1

2
x(i,j)(t),

(3.10)
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where a
(i,j)
u = a

(j,i)
u = a

(i)
u a

(j)
u . The cross-correlation between two such signals appears to

be of the form (3.1). Ignoring the multiplying factor it is noted x(i,j) and criteria (3.9)

can thus be rewritten:

(
φ̂(i)
u

)
u,i

= argmin(
φ
(i)
u

)
u,i

{
max
i 6=j

∥∥∥x(i,j)
∥∥∥
∞

}
. (3.11)

It appears that the minimization problem in this case is close to (3.6) except that

minimization has to be done for all the tuples of different inputs. The problem consists

of the minimization of multiple signals and the common lp-norm can be considered

instead:

lp

((
x(i,j)

)
i 6=j

)
=


 1

T

T∫

0


∑

i 6=j

∣∣∣x(i,j)(t)
∣∣∣
p


 dt




1/p

. (3.12)

Again, the minimization is done for increasing values of p. The best estimate for the

minimization of the l4-norm is used to initialize the minimization problem of the l16-

norm etc. This defines under some regularity conditions an algorithm that converges to

the minimax solution (3.11):

(
φ̂(i)
u

)
u,i

= lim
p→∞

argmin(
φ
(i)
u

)
u,i

{
lp

((
x(i,j)

)
i 6=j

)}
. (3.13)

In practice the minimization is not done on all the phases. The phases of the first

source can be fixed at their initial values as only difference of phases appear in the

cross-correlation expression. This enables to reduce the dimension of the manifold of

the solutions and simplifies the problem.

3.3.2 Implementation

In the following, the discrete signal x is the column vector resulting from the concate-

nation of
{
x(i,j) / 1 ≤ i 6= j ≤ NS

}
with x(i,j) the column vector of components x

(i,j)
n =

x(i,j)(tn) for n ∈ J0, NT−1K. Sampling times are taken as {tn = n∆t, 0 ≤ n ≤ NT − 1}
with sampling time ∆t = T/NT . There is then an equivalence between the continuous

norm (3.7) and the discrete one:

[lp(x)]p = Lp(x) with Lp(x) =
1

NT

NT−1∑

n=0

|xn|p . (3.14)

This condition holds if the Shannon sampling condition is respected for signal xp. If

not, the discrete norm is only an approximation of the continuous lp-norm.
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Minimizing the lp-norm of x consists of minimizing the quantity:

Lp(x) =
1

NT
eTe, (3.15)

where e is a column vector of the same size as x whose components are e
(i,j)
n =

(
x

(i,j)
n

)q

for i 6= j, for all time steps n ∈ J0, NT −1K and where q = p/2. Because only even values

of p are considered, q is integer and the Jacobian matrix J is then defined as:

Ji,j,n
k,u

=
∂e

(i,j)
n

∂φ
(k)
u

=





+ q
(
x(i,j)
n

)q−1
a(i,j)
u sin

(
2πfutn − φ(i)

u + φ(j)
u

)
if k = i

− q
(
x(i,j)
n

)q−1
a(i,j)
u sin

(
2πfutn − φ(i)

u + φ(j)
u

)
if k = j

0 else

. (3.16)

Using e and J , the solution to the problem can be found using a Gauss-Newton iterative

algorithm. The initial phases φini are generated randomly in the interval [0, 2π]. They

are updated at each step according to:

φnew = φold −
[
Jold

T
Jold + λΛold

]−1
Jold

T
eold, (3.17)

with Λold a positive-definite Levenberg-Marquardt matrix (the diagonal matrix consist-

ing of the diagonal elements of Jold
T
Jold) and λ a parameter that varies with iterations

as proposed by Marquardt (1963). As the solution improves, λ is decreased and the

algorithm approaches the Gauss-Newton method which accelerates convergence to the

local minimum.

Cross-correlation CF minimization results for NS = 2 and NF = 40 are presented in

figure 3.1. Frequencies are chosen as fu = 1, 2, · · · , 40 Hz giving a period T = 1 s.

Sources have a flat spectrum (au,i = 1 ∀u, i). The algorithm is initialized with signals

with random phases. The minimization is performed successively for p = 4, 8, 16, 32, 64

and 128. Only the phases of the multisine signal s2 are optimized while the signal s1

is kept unchanged. At the end of the process, the time aspect of signal s2 is slightly

modified and the crest-factor of the cross-correlation is decreased from 2.62 to 1.45. One

can note that the energy (and thus the RMS value) of the cross-correlation given in (3.10)

does not depend on the phases φ
(i)
u . Thus, the RMS value of the cross-correlation stays

unchanged during the minimization process. When the number of frequencies is high,

the signals vary very fast between ±RMS.
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Figure 3.1: (a) Time aspects of signal s2 with random phases before (– – –) and
after (——–) cross-correlation CF minimization. Signal s1 is unchanged so it is not
represented here. (b) Cross-correlation before (– – –) and after (——–) application of
the algorithm. The crest-factor is decreased from 2.62 to 1.45 whereas the RMS value

is equal to its theoretical value
√
NF /2 = 4.47 and does not depend on the phases.

3.3.3 Acceleration of the algorithm

The computation of the jacobian matrix can be very slow and needs to be performed at

each iteration. Guillaume et al. also give an efficient algorithm, based on fast Fourier

transform (FFT), to compute the square matrix Jold
T
Jold and the vector Jold

T
eold.

An acceleration using FFT is also possible in our case and details can be found in

appendix B.

However, in the present work,
[
Jold

T
Jold

]
is a matrix of size NSNF × NSNF . When

the number of degrees of freedom (NSNF ) increases, the construction of this matrix

becomes very expensive both in terms of computation and memory storage. Moreover,

the scalability of the matrix inversion with NSNF is even worse. It appears in practice

that it is possible to consider only its diagonal Λold multiplied by a factor α (α < 1):

φnew = φold − α
[
Λold

]−1
Jold

T
eold. (3.18)

The algorithm then reduces to a gradient descent (GD) method. The memory storage

required for the computation of
[
JTJ

]
drops from (NSNF )2 to NSNF and its inversion

becomes trivial. The parameter α has to be chosen small enough to ensure stability.

In practice taking α = 0.25 was enough for the cases considered in the following. For

cases with larger gradients, α may have to be taken smaller. For two source numbers

i 6= j, gradients of
(
s(i) ⊗ s(j)

)p
(t) with respect to phases increase with the index p of

the considered lp-norm and with the maximum frequency of s(i) ⊗ s(j) requiring smaller

value of α.
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Figure 3.2: Crest-factor evolution versus time at the application of the algorithm
using a Levenberg-Marquardt algorithm (top) or gradient descent algorithm (bottom).
Ten sources are considered with flat auto-power spectrum containing 100 frequencies
fu = 1, · · · , 100 Hz. The algorithm is stopped when the crest-factor variation between
two iterations becomes smaller than ε = 10−4 two times in a row. These curves were
computed on the same machine. Vertical dotted lines stand for 10 iterations of the

algorithm and vertical dashed lines delimit the index p of the minimized norm lp.

The number of iterations is increased especially at the end of the convergence. This is

not a big counterpart as the main part of the minimization is done in the first iterations.

In Fig. 3.2, the algorithm was applied to the case of NS = 10 inputs with flat auto-power

spectrum containing 100 excited frequencies fu = 1, · · · , 100 Hz (a
(i)
u = 1 ∀i, u). The

initial phases are randomly generated in [0, 2π[ giving a crest-factor equal to 3.9692. The

Levenberg-Marquardt (LM) algorithm reduces it slightly more (1.83 in 210 iterations)

than the GD algorithm (1.87 in 549 iterations). On the other hand, in terms of execution

time, the GD algorithm converges in only 42 s. This is way smaller than the 1045 s

required by the LM algorithm.

The limitation of these algorithms in terms of computation and memory can be iden-

tified. For the LM algorithm, the limitation is the computation and the storage of

the JTJ matrix of size NSNF × NSNF . Besides the performance of the GD algo-

rithm is limited due to the computation and storage of the cross-correlation vector x of

length NTNS(NS − 1)/2. In practice, (NS , NF ) = (30, 300) was the limit for the LM

algorithm and, using the GD algorithm, it was possible to get to (NS , NF ) = (150, 1500).

Eventually, for the GD algorithm, correlations can be computed on the fly. This enables

to reduce the memory storage at the cost of a loss of modularity.
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Figure 3.3: (Left) Crest-factors are plotted in function of the number of signals and
the number of frequencies for random phases. Obtained values are between 3.06 and
6.25. (Right) Same figure for phases resulting of the application of the algorithm. Crest-
factors have been decreased by more than a factor 2. Obtained values vary between

1.41 and 2.53.

3.4 Influence of the number of signals and frequencies

In the previous case only two signals were considered. In certain situations, a large num-

ber of input signals may be required and their pairwise cross-correlations have to show a

minimum crest-factor. Hence, the RMS value of the cross-correlation is equal to
√
NF /2

whereas the maximum auto-correlation (diagonal elements of the cross-correlation ma-

trix in (2.17) is equal to NF /2. Thus, the ratio between the largest non-diagonal element

and the diagonal ones is CF×
√

2/NF and we want it to be as small as possible. One

way of minimizing this ratio is to increase the number of frequencies. This means adding

more information in the model as more samples NT may be required. The other way is to

find the phases solution of problem (3.11) that minimize the maximum cross-correlation

crest-factor. This is what we are interested in in this part.

In Fig. 3.3, the maximum of all the crest-factors obtained when doing the cross-correlation

between two signals is plotted as a function of both the number of frequencies NF and

the number of signals NS . Frequencies are chosen integers, that is to say fu = u ∀u ∈
J1, NF K. The number of time steps is chosen as NT = 4NF , this is enough to satisfy

the Shannon condition. The application of the algorithm enables to divide by a factor 2

the crest-factors in the considered range of values of NS . The obtained values are be-

tween 3.06 and 6.25 with random phases whereas they get between 1.41 and 2.53 after

the optimization of phases. Moreover, for random phases, the maximum crest-factor

is increasing with both NS and NF . After application of the minimization process, it

appears that only the number of inputs NS really limits the minimization of the crest-

factor.
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The study of the numbers of degrees of freedom and constraints enables to explain this

limitation. Hence, the number of degrees of freedom is Ndof = (NS−1)NF corresponding

to the number of phases to determine. On the other hand, the number of constraints is

Ncons = NTNS(NS−1)/2, the number of time steps where signals have to be minimized.

The minimization is better when the ratio r = Ndof/Ncons is large. As r = 1/(2NS)

here, this ratio tends to drop when the number of signals increases making it difficult to

minimize the cross-correlation as can be observed in Fig. 3.3. For larger values of NS ,

Chebyshev norm of the cross-correlation cannot be minimized as much as in the case of

NS = 2.

A cross-correlation crest-factor equal to 1 appears to be the infimum. However, if an

a priori value of the delay TM under which the minimization has to be done is given,

we can expect to get below this limit. Calling NM the number of time delays for which

|tn| ≤ TM , the number of constraints is then expressed as Ncons = NMNS(NS − 1)/2.

Then NM can now be smaller than the number of frequencies NF . If NM is chosen

small enough, a good minimization of the cross-correlation can be obtained even for big

numbers of signals. The next section deals with cross-correlation minimization inside a

limited time interval.

3.5 Adaptation for low-correlation zone signals

For FIR systems the impulse response has a finite duration time also called filter’s

“memory”. Thus, its coefficients h
(i)
n = h(i)(tn) can be neglected for indices n larger

than a value NM where NM∆t = TM has to be larger than the filter’s “memory” of

previous signal states (Polifke et al. (2001)). If an upper bound of this caracteristic time

is known a priori, then h(t) = 0 for t > TM . Let’s denote h the concatenation of the

impulse responses h =
[
h

(i)
n

]
for all the sources i ∈ J1, NSK in the considered time range

n ∈ J0, NM K. The discrete version of Wiener filter equation is still of the form (2.17).

However, the correlation matrix Γ and vector c are now expressed as:

[
Γ
]
i,n
j,n′

=
(
s(i) ⊗ s(j)

)
(tn − tn′)

{
i, j ∈ J1, NSK
n, n′ ∈ J0, NM K

ci,n =
(
s(i) ⊗ y

)
(tn)

{
i ∈ J1, NSK
n ∈ J0, NM K

. (3.19)

In that case, the problem is driven by the cross-correlation between input signals for

delays smaller or equal to TM . By applying the minimization algorithm in this time

range only, the Chebyshev norm can be decreased more and can even be smaller than

the RMS value taken on all the period. In the algorithm, this is done by taking the
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Figure 3.4: (a) Time signal s2 with random phases (– – –) and after (——–) cross-
correlation minimization. Signal s1 is unchanged so it is not represented here. (b) Cross-
correlation before (– – –) and after (——–) application of the algorithm. The chosen
region for low-correlation is represented in gray, here TM = 0.2 s. Cross-correlation

crest-factor in the minimization zone is decreased from 2.62 to 0.12.

components of vector e as

e(i,j)
n =





(
x(i,j)
n

)q
if tn ∈ [0, TM ]

⋃
[T − TM , T [

0 else
. (3.20)

The minimization is done only on time steps in the interval [0, TM ]
⋃

[T − TM , T [. Hence,

it appears in (3.19) that minimization must be done for both positive and negative time

delays. The part [T − TM , T [ comes from the fact that s(i)⊗ s(j)(−t) = s(i)⊗ s(j)(T − t)
as periodic signals are considered.

The algorithm can be used for the generation of low correlation zone signals using (3.20).

In Fig. 3.4, the algorithm was applied to the same case as in section 3.3.2 but a min-

imization zone is considered. This time, the minimization of the cross-correlation is

done for small delays |t| ≤ TM where TM = 0.2 s. Periodic input signals verify

s(i) ⊗ s(j)(−t) = s(i) ⊗ s(j)(T − t) meaning that minimization also has to be done on

time interval [T − TM , T [. Again, the time aspect of signal s2 is slightly modified. The

crest-factor of the cross-correlation in the minimization zone is decreased from 2.62 to

0.12. The RMS value of the cross-correlation does not depend on the phases and stays

unchanged during the minimization process. However, in this case the energy of the

cross-correlation signal tends to move out of the low correlation zone. This enables to

get a local crest-factor lower than 1. The local crest-factor is minimized more for small

values of TM .
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3.6 Influence on Green’s function estimation

The proposed algorithm is intended to be used for the generation of the excitation

signals in the CAA simulation. We remind the expression of the cross-correlation matrix

in (2.17) of the estimation problem:

[
Γ
]
i,n
j,n′

= (si ⊗ sj) (tn − tn′)
{
∀i, j ∈ J1, NSK
∀n, n′ ∈ J0, NT − 1K

.

This matrix can be decomposed into blocks for each pair of source numbers (i, j)

Γ =




Γ11 Γ12 · · · Γ1NS

Γ21 Γ22 · · · Γ2NS

...
...

. . .
...

ΓNS1 ΓNS2 · · · ΓNSNS



, (3.21)

with [
Γij

]

n,n′
= (si ⊗ sj) (tn − tn′) ∀n, n′ ∈ J0, NT − 1K. (3.22)

The diagonal blocks do not depend on the phases. Hence, phases disappear in the

calculation of cross-correlation (3.10) when i = j. This represents a physical limitation

in the estimation process because the only excited frequencies are estimated in the

process. The use of multisine signals with minimized cross-correlation enables to reduce

the Chebyshev norm of the elements of the non-diagonal blocks or, in other words, the

maximum value of the coefficients. The minimization is interesting but in practice the

influence on the estimation process is not significant. Estimations were performed for

several frequencies and results may even be worse with a set of phases resulting from

cross-correlation minimization.
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Figure 3.5: Time aspects of a square (——), a sinus (——) and a triangle (——)
signal. The three signals are T -periodic and have the same RMS value A.
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signal || · ||1 RMS || · ||∞ CF

ssqr A A A 1

ssin
2A
√

2
π ≈ 0.90A A A

√
2
√

2

stri
A
√

3
2 ≈ 0.87A A A

√
3
√

3

Table 3.1: Norms of the square, sinus and triangle signals.

Several arguments may explain the poor results obtained. In this chapter, we made the

choice of the minimization of the Chebyshev norm. However, it can be shown analytically

that the RMS value of the cross-correlation also doesn’t depend on the phases of the

excitation signals. It appears in practice that, because of the fixed RMS value, the

minimization of the Chebyshev norm also results in an augmentation of the l1-norm. To

illustrate, the time aspects of three T -periodic signals are shown in the figure (3.5). The

square signal ssqr, the sinus signal ssin and the triangle signal stri have the same RMS

value A and are expressed as:

ssqr =(−1)kA and k =

⌊
2t

T

⌋

ssin =A
√

2 sin (2πt/T )

stri =(−1)k
4A
√

3

T

(
t− kT

2

)
and k =

⌊
2t

T
+

1

2

⌋
. (3.23)

The value of the l1-norm, RMS, Tchebyshev norm and crest-factor of those three signals

are listed in table 3.1. It shows that, with a fixed RMS value, signals with the smallest

crest-factor have a greater l1-norm.

We have seen in the previous section that, if the filter’s memory time TM is known a

priori, only the part corresponding to small delays is used during the GF estimation

process. When this memory time is known and is very small compared to the period T ,

the proposed minimization method is of sure interest and enables to reduce significantly

the cross-correlation in the zone of interest as seen in the figure 3.4. However without this

information, method like the pseudo inverse (Golub and Kahan, 1965) or singular value

decomposition (Golub and Reinsch, 1970) may use the whole cross-correlation matrix.

On the other hand, sparse estimation algorithms presented in the previous chapters use

the restriction of this matrix on the active set (other elements may however be used

for the determination of this active set...). It is then difficult to justify the choice of

prioritizing the minimization of the Chebyshev norm over the l1-norm.

A minimization algorithm for the generation of multisine signals with low pairwise cross-

correlation has been proposed. The algorithm allows the user to define the auto-power

spectrum of the sources and iterates on the phases in order to minimize the common

lp-norm with increasing values of p. The minimization is harder for large numbers of
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input signals. However, in every studied case, the crest-factor of the cross-correlation

has been decreased by at least a factor 2. For low memory length systems, an adaptation

of the algorithm to the generation of low-correlation zone signals has been presented.

The results show that introducing an a priori information of the time interval on which

cross-correlation has to be minimized enables to decrease it more effectively. We saw

that the minimization of the Chebyshev norm also results in the increase of the l1-norm

making questionable the benefits brought by the method. In particular, in the case of

the sparse linear regression of interest in the present work, the contributions of this kind

of signals are not significant. Consequently, multisine (3.1) with random phases are

used for the excitation signals in the following chapters. In the next chapter, the GF

estimation procedure is applied to numerical test cases about acoustic imaging in the

presenc of a sphere or a NACA0012 2D wing. Estimated GFs will be compared to ones

obtained experimentally but no experimental microphone array data will be used until

chapter 5.





Chapter 4

Application of the method on

numerical test cases

In previous chapters, a methodology has been proposed for the estimation of the Green’s

function. The methodology enables to estimate all the Green’s functions required to

perform acoustic imaging. However, we have seen that it is restricted to the framework of

extern aeroacoustics because it takes advantage of the sparsity of the Green’s functions.

In this chapter, two test cases representative for extern shapes for fuselage and wings

are considered. The first case that we address in section 4.1 is the diffraction by a

rigid sphere. The acoustic source is located at the opposite side of a microphone line

array. The pressure field resulting from the diffraction of a monopole source by a rigid

sphere can be derived analytically. In order to prove the advantages of CAA in terms

of GF estimation, we will compare CAA estimated GFs with both experimental and

analytical ones. The second test case is the diffraction by a NACA0012 wing profile

presented in section 4.2. For this test case, the solution is not known analytically and

the GFs obtained using the proposed method will be compared with GFs obtained

experimentally. Beamforming results will also be presented and we will see that the

method can be applied to real industrial configurations with several thousands of focus

points. Results presented in this chapter were published in the AIAA Journal (Bousabaa

et al., 2018).

4.1 Beamforming behind a rigid diffracting sphere

4.1.1 Experimental setup

The data were obtained in the Aeroacoustic Windtunnel Braunschweig (AWB) anechoic

wind tunnel (1.2 m × 0.8 m) of the German Aerospace Center (DLR). The experimental

setup is presented in figure 4.1. The center of the 0.06 m radius sphere is taken as the

61
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Figure 4.1: (a): Diffraction by a rigid sphere in the AWB wind tunnel. (b): Schematic
view.

origin of the spatial system. The sphere is made in aluminium and is held by a bar

downstream for reducing the perturbation of the flow. ONERA’s SPARC sound source,

based on high power electric discharge, was used for the excitation. Details on the

characteristics of SPARC source are presented in figure 4.2. The source generates sound

from the cracking of an electric arc. Most of the energy of the acoustic pulse is released

in 0.2 ms and its maximum energy lays around 10 kHz. For the present experiment a

spark repetition rate of 10 Hz was chosen and 10 s of signal was recorded at a sampling

frequency of 250 kHz. This means that approximately 100 samples are recorded per data

point. Time signals are then averaged improving the signal-to-noise ratio and enabling

a better reproducibility. A truncation in time was also performed in order to remove

reflections on mounting objects.

The sound source is positionned at zs = 0.32 m (xs = 0, ys = 0). Acoustic measure-

ments were performed with a 1/4 inch microphone with a nose cap at zm = −0.3 m.

The microphone was moved in the streamwise and spanwise directions. However, only

measurements along the streamwise microphone traverse are used here as the effect of
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Figure 4.2: ONERA’s SPARC acoustic source.
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the flow is more important for those positions. The traverse is constituted of 29 posi-

tions going from xm = −0.2 m to xm = +0.2 m. Measurements were done at two flow

speeds: 0 and 45 m/s. As it will be seen, this is sufficient to observe the influence on the

resulting GFs. The presence of the holding bar, visible in figure 4.1, is not taken into

account in the simulation nor in the analytic formulation inducing a difference for GFs at

microphone positions xm ≥ 0. In the following, comparison is done for position xm ≤ 0

in order to minimize the effect of the bar.

4.1.2 Numerical setup

The simulations were performed with ONERA’s sAbrinA-v0 code on a body-fitted

mesh. The useful part of the mesh is the zone such that |x| ≤ 0.26 m, |y| ≤ 0.16 m

and −0.36 m ≤ z ≤ 0.38 m. The origin of the spatial system is taken as the center

of the sphere of radius a = 0.06 m. In the region of uniform mesh, the spatial step

is 2 mm. It is small enough to ensure more than 10 points per wavelentgh for the maxi-

mum frequency fmax = 11 kHz (leading to the minimum wavelength λmin ' 3.1 cm). A

3% stretching is added at the limits of the domain and combined with Tam and Dong

(1996) outflow boundary conditions (BC) to evacuate outgoing waves properly. The sim-

ulation is led in a medium at rest and in the presence of a potential flow of v̄∞ = v̄∞ux

with v∞ = 45 m/s the flow far from the sphere and ux the unit vector in the x-axis direc-

tion (Mach number M = 0.13). This corresponds to the configuration of the experiments

described in the previous subsection.
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Figure 4.3: Global mesh and CFL number.
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(b) z-axis velocity vz
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Figure 4.4: (a)-(b) components of the mean velocity field. (c) CFL number. Only
the useful part of the mesh is shown meaning that the stretching zones are not plotted.

The CFL number on the whole mesh is plotted in the figure 4.3. The projection of the

useful part of the mesh on the faces are shown in dashed lines. As it can be seen, the

stretching zone represents the main part of the volume (99.9%) and represents 84% of

the 109.4 106 points of the mesh. It means that 84% of the computational ressources

are spent on ensuring accurate outflow boundary conditions. However, this is of prior

interest in the applications presented in the context of this work. A bad application of

the BC will lead to spurious waves reflected at the boudaries of the domain. This will also

imply an increase on the convergence time and discrepancies on the resulting estimated

Green’s functions. A good review for alternative ways of applying such conditions is Tam

(1998). The analytial expression of the mean velocity field is v̄(x) = ∇xφ̄ with:

φ̄(r, θ) = v̄∞ cos(θ)

(
a3

2r2
+ r

)
with

{
r = ||x||

cos(θ) = ux · x/||x||
, (4.1)

where r ∈ R+ is the radial distance, θ ∈ [0, π] is the polar angle, a is the radius of the

sphere and φ̄ is the mean velocity potential. The obtained potential flow is represented

in the figure 4.4-(a) and (b). The mesh is cartesian outside the cube of size 4a = 0.24 m

containing the sphere in its center. A body-fitted mesh is realized in this cube in order

to apply hard wall BC on the surface of the sphere (figure 4.4-(c)). The minimum mesh

cell size is 0.6 mm and the time step is ∆t = 1 µs. This results in a maximum CFL

number equal to 0.6. It is obtained near the surface of the sphere and has to be smaller

than 1 to ensure the stability.

4.1.3 Estimation of the Green’s functions

In order to validate the CAA simulation approach, we start exciting only one monopole

source. This enables to evaluate possible numerical errors and to quantify the quality of

the GFs that can be extracted from the simulation. The monopole source is placed at
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Figure 4.5: Source and microphone signals.

the position xs = (0, 0, 0.32 m) and is excited using a multisine signal in the frequency

range [4 kHz, 11 kHz] every ∆f = 125 Hz.

The period of the signal extracted from the simulation is T = 1/∆f = 8 ms after a

transitory time of around ttrans ' 4 ms. In figure 4.5, the aspects of the source sig-

nal and the resulting microphone pressure signal for a microphone placed at the po-

sition xm = (−0.2 m, 0,−0.30 m) are represented. For that position, the microphone

signal looks similar to the source signal delayed in time by a delay τ = 2 ms. Hence, the

main part of the energy is hold by the direct ray. This delay can also be estimated divid-

ing the distance between the two points d = 0.651 m by the speed of sound c0 = 340 m/s

giving d/c0 = 1.91 ms. The underestimation being due to the presence of the flow as

the microphone is located upstream compared to the source position.

This formula can be sufficient to give a good approximation of the global transitory

time for simple configurations. For more complex configurations, the status of the con-

vergence can be verified by looking at the microphone pressure signals. As multisinus

are being used as excitation signals, if a Fourier transform is applied in a time range

multiple of the period, the source spectrum is not zero only on the excited frequen-

cies. The propagation operator being linear, the same excited frequencies are to be

found in the spectrum of the microphone signals. Microphone spectra before and after

convergence have been represented in the figure 4.6. In figure 4.6-(a), the microphone

signal for t ∈ [0, T [ and its spectrum are plotted. In figure 4.6-(b), the part of signal

for t ∈ [0, T/2[ was replaced by the part at t ∈ [T, 1.5T [ that is more converged. Because

the signals are T-periodic, doing this operation enables to keep the same origin of time

and to not lose the synchronization with the source signal. We can see that the whole

microphone signal spectrum is contained in the excited frequency range [4 kHz, 11 kHz].
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Figure 4.6: Spectra of one period of microphone signal (a) before and (b) after the
convergence of the simulation.

Necessary condition but not sufficient, the microphones spectra are a good indicator for

the convergence. It is especially useful when the number of sources is increased leading

to numerous transitory times as it will be considered further in this chapter.

The simulation is done without flow or in the presence of a potential flow of 45 m/s

as in the experiments presented in the previous section. Resulting pressure fields are

represented in figure 4.7. Phases are generated randomly in [0, 2π[ and the same set of

phases is used for both cases. Pressures at the microphone positions are recorded and

the GFs are extracted dividing the microphone spectrum by the source spectrum at the

excited frequencies.

In the following, the focus is put on 3 microphone positions:

• In the line of sight xm = −0.2 m: the source is visible by the microphone. Two

main rays are to be considered: one direct ray and a ray resulting from the reflexion

on the surface of the sphere. The delay between those two rays will imply positive

or negative interferences on the considered frequency range.

• In the shadow zone xm = −0.07 m: the source is hidden by the sphere. The main

part of the energy is held by two main rays creeping on the surface clockwisely and

counter-clockwisely. In the frequency range [4 kHz, 11 kHz], interference between

those two rays is mainly destructive and the masking effect is maximum.

• Opposite to the source xm = 0 m: the source, the microphone and the center of the

sphere are aligned. Creeping rays come from all the perimeter of the sphere and

interfere in a constructive way creating an important increase of the amplitude.
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Figure 4.7: Diffraction of a point monopole source by a rigid sphere without
flow (left) or in presence of a potential flow of 45 m/s (right). The source is repre-
sented with the violet diamond whereas microphone positions are represented with
gray squares. The monopole source is excited using a multisine signal in the fre-
quency range [4 kHz, 11 kHz] every ∆f=125 Hz (fexc1 =4 kHz, fexc2 =4.125 kHz, . . . ,

fexc57 =11 kHz).

The pressure field resulting from the diffraction of a monopole by a rigid sphere can be

expressed analytically by Bowman et al. (1987) in the absence of flow and the analytical

expression is given in appendix C. A transformation (See Agarwal and Dowling (2007)),

available at low Mach number M2 � 1, is then applied to obtain the GFs in the

presence of a potential mean flow. The holding bar, visible in figure 4.1, is not taken

into account in the simulation nor in the analytical formulation which may imply a

difference on the estimated GFs when compared with the experimental ones. The GFs

obtained using the experimental, analytical and numerical approaches are compared in

figure 4.8-(a), (c) and (e) respectively for positions xm = −0.2, −0.07 and 0 m. The

comparison is performed in terms of modulus and phase of the GFs in the frequency

range [4 kHz, 11 kHz]. For the three microphone positions, a good agreement is obtained

between analytical, numerical and experimental GFs especially on the phase. In the

absence of flow, the GFs extracted from the simulation should equal the analytical

solutions. However, because of a small mesh dissipation effect at high frequencies, we

notice a small offset in amplitude that reaches 0.5 dB at 11 kHz. This error is negliged

here but could be reduced more if a finer mesh is used. However, the consequence will be

an increase of the computational cost. The error on the modulus for the experimental

GFs is smaller than 2 dB on almost all the chosen frequency range.

The same procedure is followed in the presence of a 45 m/s mean flow (Mach num-

ber M = 0.13). Again, several approximations are to be taken into account. In the

simulation and for the analytical solution, a potential mean flow is considered. This

may induce a difference with the experimental flow especially because of the presence
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(a) xm=−0.2 m, no flow
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(b) xm=−0.2 m, 45 m/s flow
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(c) xm=−0.07 m, no flow
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(d) xm=−0.07 m, 45 m/s flow
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(e) xm=0 m, no flow
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(f) xm=0 m, 45 m/s flow

Figure 4.8: Comparison between GFs obtained experimentally (——), analytically
(– – –) and using CAA simulation with one point monopole excited (+). Subfigures (a),
(c) and (e) correspond respectively to microphone positions xm=−0.2, −0.07 and 0 m
in absence of flow. Subfigures (b), (d) and (f) show the results obtained in presence of
a mean flow of 45 m/s. For those last three subfigures, the GFs obtained by applying

the proposed multisource strategy have also been represented.



Chapter 4 Application of the method on numerical test cases 69

of the holding bar. Moreover, for the analytical GFs, a transformation Agarwal and

Dowling (2007) valid only under the hypothesis of a low Mach number M2 � 1 is used

to take into account the potential mean flow. This transformation involves the GF at

rest and its gradient. In the present case, M2 = 0.017 is in agreement with the hypoth-

esis. The GFs obtained in presence of the flow using the experimental, analytical and

numerical approaches are compared in figure 4.8-(b), (d) and (f) respectively for posi-

tions xm = −0.2, −0.07 and 0 m. On all the frequency range [4 kHz, 11 kHz], agreement

is very good for the phase between the numerical and experimental GFs. This means

that the asumption of a potential flow enables to reproduce correctly the influence of

the mean flow on the acoustic diffraction. The error on the analytical solution is already

visible at M2 = 0.017. A phase drift appears for the analytical solution and the flow

effect is underestimated by this formulation. This effect is more important for upstream

microphone positions (Figure 4.8-(b)). In terms of magnitude, it appears that for po-

sition xm = −0.07 m, the flow induces an increase in the shielding effect of the sphere

at 8500 Hz (Figure 4.8-(d)). This shielding effect is underestimated when using the ana-

lytical solutions. Finally, for position xm = 0 m, the flow induces a small increase of the

amplitude visible on both the experimental and numerical GFs while the flow correction

states that the flow has no influence onto the GF for this position.

Thus, the analytical formulation gives an accurate estimation of the GF in the absence

of flow. However, as it is shown in this section, the main difficulty is on reproducing

correctly the impact of a complex mean flow. The CAA approach enables to take into

account complex flows. However, because it is a volumic method, this generally results

in a high computational cost that limits its intensive use in a study. In the next section,

we will show how the estimation of all the GFs from a single CAA simulation enables

to reduce computational cost.

4.1.4 Acoustic imaging

In this subsection, we propose to use the multisource approach for the estimation of all

the GFs from one main simulation by solving the GFs estimation problem presented in

chapter 2. The whole procedure followed in this section is described in the figure 4.9.

Acoustic GFs are estimated using a CAA simulation and are used to solve a problem of

imaging with the classical beamforming method. Because no microphone array data is

available, the aeroacoustic measurements are replaced by a CAA simulation to extract

a synthetic cross-correlation matrix. The estimated GFs can finally be used to perform

acoustic beamforming.

The setup is the same as in the previous section but only the number of sources and

microphones and their positions are changed. The 41 microphones representing the sen-

sor array are uniformly placed every 10 mm at zm = −0.3 m and −0.2 m < xm < 0.2 m.
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Figure 4.9: Procedure for acoustic beamforming based on CAA estimated GFs for
the application on the sphere test case. During the simulation, focus points are excited
using acoustic monopoles with excitation signals (si)i and the pressure fluctuation sig-
nals (pcaam )m at the microphones positions are recorded. The GFs are estimated by
applying LTI system identification and adding a constraint on the l0-norm of the so-
lution. Because no microphone array data is available, the aeroacoustic measurements
are replaced by a CAA simulation to extract a synthetic cross-correlation matrix. The

estimated GFs can finally be used to perform acoustic beamforming.

On the other side of the sphere, the focalization area is divided into 101 focus points

uniformly placed every 4 mm at zm = +0.32 m and for xs in the range [−0.2 m, 0.2 m].

These positions are highlighted in figure 4.10 where the pressure field resulting of the

simultaneaous excitation of all the source points is presented. In order to obtain the

training and validation sets S and S̃ introduced in subsection 2.4, two simulations were

performed. For the main simulation, corresponding to the training set S, exitation

signals used are multisines as in Eq. (3.1) with NF = 1401 harmonics in the frequency

range [fmin, fmax] = [4 kHz, 11kHz] every ∆f = 5 Hz and with unitary auto-power spec-

trum:

si(t) =

NF∑

u=1

cos (2πfut+ φu,i) 1 ≤ i ≤ NS , (4.2)

where fu = fmin + (u− 1)∆f and the phases φu,i are randomly generated in [0, 2π[ in

order to ensure decorrelation between all the source signals. After a transient regime

of ttrans ' 4 ms, one period T = 200 ms of signal is recorded. For the validation set S̃,
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Figure 4.10: Presure field resulting by the simultaneous excitation of NS monopoles
at the focus points (zs=+0.32 m). The perturbations of pressure are recorded at the
microphones positions (zm=−0.3 m). The simulation is done in presence of a potential
flow of 45 m/s. The sources are represented with the violet diamonds whereas micro-
phone positions are represented with gray squares. The sources are excited using a
multisine signals in the frequency range [4 kHz, 11 kHz] every ∆f = 5 Hz (fexc1 =4 kHz,

fexc2 =4.005 kHz, . . . , fexc1401=11 kHz).

only ÑF = 57 frequencies are excited in the frequency range [4 kHz, 11 kHz] giving a

period T̃ = 8 ms and a frequency step ∆̃f = 125 Hz. The total simulation time required

for the estimation of the GFs using the proposed multisource approach is thus tmulti =

2ttrans + T + T̃ = 216 ms.

The obtained GFs have been compared with those obtained using the monosource strat-

egy in figure 4.8-(b), (d) and (f). We see a good agreement on the amplitude but the

error is more important at the limits of the excited frequency range [4 kHz, 11 kHz] due

to side effects. Hence, out of this interval, no information is brought to the model and

the solution has no physical sense. On the other hand, there is a good agreement on the

phases of the estimated GFs with those obtained with the monosource strategy.

The estimated GFs have then been used to perform beamforming using the CBF op-

erator (1.19). Beamforming maps obtained using the estimated GFs are plotted in

figure 4.11 for three positions of the acoustic source xs = −0.1, 0 and +0.1 m and at

several frequencies f = 5, 7.5 and 10 kHz. The use of the free-field GFs leads to a bias

in the estimation of the positions of the source and an underestimation of its power

due to the shielding of the sphere. The shielding effect is more important at high fre-

quencies. At 10 kHz, the maximum of beamforming based on the free-field GFs is not

at the position of the source and two sources are seen coming from the two edges of
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Figure 4.11: Beamforming below a rigid sphere for three source posi-
tions (xs=−0.1, 0 and +0.1 m) and at three frequencies f=5, 7.5 and 10 kHz. The solid
lines (——) corresponds to beamforming done with GFs estimated by the proposed
method. Dashed (– – –) and dotted (· · · · · · ) lines correspond respectively to beam-
forming based on analytical GFs with and without taking into account the presence of
the sphere. A correction was applied on analytical GFs in order to reproduce the effect

of the 45 m/s potential flow.
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the sphere. However, we see that the beamforming patterns obtained using the ana-

lytical and estimated GFs are of very good quality. Those GFs enable to identify a

source masked by the sphere both in terms of position and amplitude. The correct level

of 0 dB is found at the position of the source. We can also notice that the beamforming

patterns are affected by the presence of the sphere. Its presence increases the secondary

lobe amplitudes but reduces the width of the main lobe. At 10 kHz, the maximum

side-lobe amplitude are increased to −6 dB when the source is masked by the sphere

whereas it only reaches −13 dB when the source is not masked. On the other hand, the

width of the main lobe below the sphere is 0.04 m, narrower than in the absence of the

sphere (0.064 m).

Finally, the application of the proposed method enabled to reduce the computational

cost. Hence, supposing that the GFs are required every 125 Hz, the estimation of the

GF for one focus point will require ttrans + T̃ = 12 ms. Because one simulation has to

be done for each of the NS = 101 focus points, the total simulation time required to

estimate the GFs using the monosource approach is tmono = NS(ttrans+T̃ ) = 1.12 s. The

proposed method needs only tmulti = 0.216 s of CAA simulation i.e. 18% of the initial

computational cost. If the GFs samples are required every 50 Hz, only 9% of the 2.42 s

original computational time is required. Concerning the resolution of the estimation

problem (2.29), the cost is negligible in comparison with the simulation. The CAA

simulation required around 600 hours on 480 CPU whereas the deconvolution process

required 24 hours of Matlab computation without parallel implementation.

4.2 Beamforming in presence of a diffracting NACA0012

profile

We now adress the case of the 2D acoustic imaging of a NACA0012 wing profile. For

this test case, the solution is not known analytically and the GFs obtained using the

proposed method will be compared with GFs obtained experimentally. The spatial

sampling of the surfaces results in a high number of focus points. However, the use of

the reverse-flow reciprocity will enable applying the method.

4.2.1 Experimental setup

Again, the data were recorded in the DLR AWB anechoic wind tunnel and the experi-

mental setup is presented in figure 4.12. The center of the 0.2 m chord NACA0012 profile

wing is taken as the origin of the spatial system. The wing is held from its extremities

and is supposed infinite in the Y direction. Again, ONERA’s SPARC source, is used for

the excitation and the same procedure as the one described in 4.1.1 is used to improve

the signal-to-noise ratio. The measurements are performed at a flow speed of 55 m/s.
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Figure 4.12: (a): Diffraction by a NACA0012 profile in the AWB wind tunnel.
(b): Schematic view.
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Figure 4.13: Global mesh and CFL number.

4.2.2 Numerical setup

The simulations were performed with ONERA’s sAbrinA-v0 code on a body-fitted

mesh. The useful part of the mesh is the zone such that −0.26 m ≤ x, y ≤ 0.26 m

and −0.16 m ≤ z ≤ 0.46 m. The origin of the spatial system is at the middle of the 0.2 m

chord of the NACA0012 2D wing. In the region of uniform mesh, the spatial step

is 2 mm. It is small enough to ensure more than 10 points per wavelentgh for the max-

imum frequency fmax = 11 kHz (leading to the minimum wavelength λmin ' 3.1 cm).

A 3% stretching is added at the limits of the domain and combined with Tam and
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Dong (1996) outflow BC to evacuate outgoing waves properly. The global mesh con-

tains 78.4 106 points and the CFL on the whole mesh is plotted in figure 4.13.

The simulation is led in the presence of a potential flow of 55 m/s in order to be compared

with the experiments described in the previous section. This time, the potential mean

flow is first obtained by the use of the FreeFem++ software (Hecht (2012)) because no

analytical expression is availabe. The Laplace equation is solved on a large 2D rectangu-

lar domain in the X-Z directions meshed with triangles. The flow was then interpolated

linearly on the CAA mesh and extended on the Y-direction using translational symme-

try. The obtained potential flow is represented in the figure 4.14-(a) and (b). The mesh

is cartesian outside the region with |x| ≤ 0.2 m and |z| ≤ 0.1 m containing the wing. A

body-fitted mesh is realized in this region in order to apply hard wall BC on the surface

of the wing (figure 4.14-(c)). The minimum mesh cell size is 1.4 mm and the time step

is ∆t = 2.5 µs. The resulting maximum CFL number is 0.65. It is obtained near the

surface at the maximum thickness of the wing and has to be smaller than 1 to ensure

the stability.

4.2.3 Estimation of the Green’s functions

In order to have a reference solution for the CAA simulation approach, we start exciting

only one monopole source at various focus points. This enables to evaluate possible

numerical errors and to quantify the quality of GFs that can be extracted from the

multisource simulation. The monopole source is excited using a multisine signal exciting

the frequency range [4 kHz, 11 kHz] every ∆f = 125 Hz. The period of the signal

extracted from the simulation is T = 8 ms after a transitory time of around 3 ms.

Phases were generated randomly in [0, 2π[. The pressures at the microphone positions

are recorded and the GFs are extracted dividing the microphone spectrum by the source
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Figure 4.14: (a)-(b) components of the mean velocity field. (c) CFL number. Only
the useful part of the mesh is shown meaning that the stretching zones are not plotted.
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spectrum at the excited frequencies

Gi,m(f exc
u ) =

Pm(f exc
u )

Si(f exc
u )

∀u ∈ J1, NF K. (4.3)

This expression holds when only one source i is excited during the simulation and this is

the case in this subsection. When the number of sources excited is bigger, the equation

(4.3) doesn’t hold and the sound propagation model is described by (2.16).

Comparisons between the experimental GFs and the ones obtained using CAA simula-

tion are shown in figure 4.15. Three source and microphone positions are taken under

consideration. The sources are placed in the visible upstream region (Figure 4.15-(b):

xs = (−0.15 m, 0,−0.1 m) and xm = (−0.2 m, 0,+0.4 m)), exactly below the wing (Fig-

ure 4.15-(c): xs = (0, 0,−0.1 m) and xm = (−0.1 m, 0,+0.4 m)) and near the trailing

edge of the wing (Figure 4.15-(d): xs = (+0.1 m, 0,−0.04 m) and xm = (0, 0,+0.4 m)).

The GFs are obtained with a good accuracy even when the source is hidden below the

X

Z

!"#$ !%#$ !&#$

!"#$ !%#$

!&#$

(a)

4000 5000 6000 7000 8000 9000 10000 11000
50

60

70

80

90

Frequency (Hz)

M
o

d
u

lu
s
 (

d
B

)

 

 

Experiments

CAA monosource

CAA multisources

4000 5000 6000 7000 8000 9000 10000 11000
−4

−2

0

2

4

Frequency (Hz)

P
h

a
s
e

 (
ra

d
)

(b) xs=(−0.15, 0, −0.1), xm=(−0.2, 0, +0.4), 55 m/s.
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(c) xs=(0, 0, −0.1), xm=(−0.1, 0, +0.4), 55 m/s.
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(d) xs=(+0.1, 0, −0.04), xm=(0, 0, +0.4), 55 m/s.

Figure 4.15: Comparison between GFs obtained experimentally (——) and using
CAA simulation with one point monopole excited (+) or by applying the proposed
multisource strategy (◦). Subfigures (b), (c) and (d) show the results obtained for

three different positions in presence of a mean flow of 55 m/s.
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profile. A shift in phase appears in every case that can reach π at high frequencies.

This can be due to errors in the post processing of experimental data or to differences

between the experimental configuration and the numerical model. The more important

intrusivity of the SPARC source in the flow which is placed only at 0.1 m from the

diffracting object may also have an influence.

4.2.4 Acoustic imaging

In this subsection, we consider doing aeroacoustic imaging in the presence of a NACA0012

profile wing where all the GFs are estimated from one main simulation. Again, it is a

completely numerical test case because no experimental data are used. The setup is pre-

sented in figure 4.16-(a). The first surface, plotted in red, is in the plane z = 0 containing

the wing and follows the extrados with |x| ≤ 0.2 m and |y| ≤ 0.2 m. The second sur-

face, plotted in blue, is in the plane z = −0.1 m below the wing in the area |x| ≤ 0.2 m

and |y| ≤ 0.2 m. The last surface, in green, is orthogonal to the wing profile at y = 0

with |x| ≤ 0.2 m and −0.2 m ≤ z ≤ 0.1 m. The three surfaces of focalization are dis-

cretized respectively into 1681, 1681 and 1291 points giving a total number of 4653

focus points. A cross-shaped sensor array consisting of 81 microphones is considered.
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Figure 4.16: (a) 3D representation of the three areas of interest and their discretiza-
tion into 4653 focus points. The microphones of the cross-shaped microphone array
used for acoustic imaging have also been plotted. (b) Pressure perturbation signal
resulting from the excitation of 81 acoustic monopoles placed at the positions of the
microphones of the array. The monopoles are excited using multisine signals in the
frequency range [4 kHz, 11 kHz] every ∆f = 5 Hz (fexc1 =4 kHz, fexc2 =4.005 kHz, . . . ,
fexc1401=11 kHz). The mean flow of 55 m/s is reversed for the reciprocity principle to

apply.
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It is included in the plane z = 0.4 m and is at a distance of 0.4 m from the wing. Mi-

crophones are uniformly distributed every 0.01 m and the two braces of the array are

parallel to x and y-axis.

4.2.4.1 Reverse-flow reciprocity

This time, the number of focus points is very large and solving the estimation prob-

lem (2.29) for NS = 4653 is not the best strategy. Hence, in this case the estimation

problem is more difficult to solve because it requires a higher number of frequencies due

to the fact that more parameters must be estimated for one minimization. The reci-

procity principle states that the acoustic response of a medium does not change when

the source and microphone are swapped (Heaslet and Spreiter (1952)). This principle

doesn’t hold directly to the case of a moving medium encoutered in aeroacoustics. How-

ever, it was pointed out by Lamb (1887) that inverting the direction of the steady flow

may restore reciprocity (Deneuve et al., 2010; Padois et al., 2012).

In this section, we propose to assess the applicability of this principle in the case of a

NACA0012 wing placed in a potential flow. A numeric validation of this principle is

shown in figure 4.17 in the presence of a NACA0012 diffracting wing. In this example,

the estimation of the GF between a source point located near the trailing edge and a

microphone is presented. The direct problem consists of exciting the source point using

a multisine signal and to measure one period of the resulting pressure signal at the

position of the microphone (Figure 4.17-(a)). The frequency domain GF between the

two points is obtained by computing the ratio of the Fourier transforms of those signals.

In the reverse approach, shown in figure 4.17-(b), the flow is inverted and the roles of

the microphone and the source point are exchanged.

The time aspect of the recorded signals is shown in the figure 4.18 where one period

of converged signals is recorded. The aspects of signals obtained with the direct and

reverse approach are similar. There appears to be a higher dissipation for the direct

approach for which the peaks have a slightly smaller amplitude. The GF in the frequency

domain obtained with the direct and reversed approach are shown in figure 4.17-(c) and

compared with experimental ones. The direct and reversed approaches give the same

GF and are in good agreement with the experiments.

In the present work, this principles enables to inject monopole sources from the micro-

phones to the focus points. The problem of Eq. (2.29) is now solved for each focus point

independently and reads as:

ĝi = argmin
gi

∥∥∥∥∥pi −
NM∑

m=1

(gi,m ∗ sm)

∥∥∥∥∥

2

2

s. t.
∑

i

‖ĝi,m‖0 ≤ λ0, (4.4)
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Figure 4.17: Reverse-flow reciprocity principle. In the simulations, the monopole
source is excited using a multisine signal in the frequency range [4 kHz, 11 kHz] ev-
ery ∆f = 125 Hz (fexc1 =4 kHz, fexc2 =4.125 kHz, . . . , fexc57 =11 kHz). (a) Direct approach.

(b) Reverse approach. (c) Comparison of the GFs with experiments.
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Figure 4.18: (a) One period of signal recorded with the direct and reverse approach
and (b) a zoom on the interval of time [7 ms, 8 ms].

where NM is the number of microphones and gi now stands for the concatenation of all

the GFs gi,1, · · · , gi,NM
between the focus point i and all the microphones.

The procedure followed in this section is described in the figure 4.19. Acoustic GFs

are estimated using a CAA simulation and are used to solve a problem of imaging with

the classical beamforming method. The reverse-flow reciprocity principle is used in

order to reduce the complexity of the GF estimation problem. During the simulation,

microphones position are excited using acoustic monopoles with excitation signals (sm)m

and the pressure fluctuation signals (pcaa
i )i at the focus points are recorded. Because

no microphone array data is available, the aeroacoustic measurements are replaced by

a CAA simulation to extract a synthetic cross-correlation matrix. The estimated GFs

can finally be used to perform acoustic beamforming.
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Figure 4.19: Procedure for acoustic beamforming based on CAA estimated GFs for
the application on the NACA 2D wing. The reverse-flow reciprocity principle is used
in order to reduce the complexity of the GF estimation problem. During the simula-
tion, microphones position are excited using acoustic monopoles with excitation signals
(sm)m and the pressure fluctuation signals (pcaai )i at the focus points are recorded.
The GFs are estimated by applying LTI system identification and adding a constraint
on the l0-norm of the solution. Because no microphone array data is available, the
aeroacoustic measurements are replaced by a CAA simulation to extract a synthetic
cross-correlation matrix. The estimated GFs can finally be used to perform acoustic

beamforming.

The reciprocity principle is of particular interest in the case of real aeroacoustic imaging

applications for two reasons. On one hand, the number of focus points can reach several

thousands whereas the number of microphones in the array is usally smaller or around

one hundred. The use of the reciprocity conducts to the problem of the estimation

of NM GFs simultaneously instead of NS for the direct problem. Less parameters are

to be estimated which results in a reduction of the number of frequencies NF required,

which also drives the quantity of information given to the model. This also implies a

reduction of the period T of the signal and thus a reduction of the CAA simulation

time. On the other hand, reciprocity also enables to extract GFs between microphones

and focus points that may be located on the surface of diffracting objects because only

pressure perturbations need to be recorded at the focus points. This enables to localize

the acoustic sources resulting from the interaction of turbulent flows with structures.

The reverse-flow reciprocity was applied here and a 3D view of the performed CAA
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simulation is shown in figure 4.16-(b). In order to apply the reciprocity principle, the

flow is reversed. Monopole sources are placed at the microphones positions and excited

with multisinus (4.2) with NF = 1401 harmonics in the frequency range [4 kHz, 11 kHz]

every 5 Hz. Pressure fluctuations are recorded at every focus point and an estimation

problem of the form (4.4) is solved for each of them in order to extract the GFs. Three

of the estimated GFs, corresponding to positions described in figure 4.15-(a), are plotted

in figure 4.15-(b), (c) and (d). Again there is a good agreement with those obtained

with the monosource strategy. The more defavorable case corresponds to figure 4.15-(b)

when the source is centered below the wing. Hence, there is an important difference

of the GFs amplitude between this focus point and the various microphones making

problem (4.4) more difficult to solve.

4.2.4.2 On the surface of the wing

The surface in the plane at z = 0 and following the extrados is discretized into 41 points

in each direction giving a total of 1681 focus points (red area in figure 4.16). The es-

timated GFs with the proposed multisource strategy are used to perform aeroacoustic

imaging on the surface of a NACA0012 wing profile. Results of beamforming are pre-

sented in figure 4.20 both in one and two dimensions. For the 1D-beamforming, only

the streamwise brace of the sensor array is used in order to improve the results. Results

after deconvolution have also been represented. The deconvolution was performed using

the Least Angle Regression (LARS) Efron et al. (2004) model selection algorithm. The

process is stopped when 99% of the energy of the acoustic map has been removed. It

appears that the free-field GFs with flow is a good approximation. This is because a

uniform flow is a good approximation in this case. In practice, the flow cannot always be

considered uniform or potential and a mixing layer often appears between focus points

and microphones. The proposed method however does not make the assumption of the

flow being potential but only require a stationary flow.

For a source near the leading edge of the wing, the use of the free-field GF leads to an

error in the estimation of the position of the source. The source is estimated downstream

its actual position due to the effect of the flow. The correction of the flow effect enables

to localize the position of the acoustic source. It appears on the beamforming maps

that the use of the free-field GFs with correction leads to a slight overestimation of the

amplitude of the source. The amplification factor is due to the presence of a second

acoustic ray diffracted by the leading-edge of the wing. The overestimation is more

important at low frequencies for which the two rays reach the microphones with the

same phase. On the surface of the wing (−0.1 m ≤ x ≤ 0.1 m), beamforming obtained

with CAA-estimated GFs have levels 6 dB lower than those obtained with flow-corrected

free-field GFs. The estimated GFs take into account the fact that, for focus points on the

surface of the wing, two times the energy is scattered in the direction of the sensor array
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Figure 4.20: (a), (d): Acoustic beamforming results on the surface of the NACA0012
wing profile for a source positionned at (xs, ys, zs)=(−0.11 m, 0, 0) with unit power.
The 2D acoustic maps are obtained using classical beamforming using CAA-estimated
GFs. Positions of the source and microphones have also been represented. (b), (e): 1D
beamforming results performed on the curve corresponding to y=0. Only the stream-
wise part of the array is used for 1D beamforming to improve the sensitivity. (c),
(f): Results after deconvolution using the LARS algorithm. The considered frequency

is 5 kHz ((a)-(c)) and 10 kHz ((d)-(f)).

which is not true with the flow-corrected free-field GFs. For focus points outside the

surface of the wing (x < −0.1 m or x > 0.1 m), the beamforming levels are close. The

mixing between surfacic and volumic focus points tends to favour the volumic ones. The

GFs obtained for surfacic points have higher amplitudes resulting in lower beamforming

power estimation. This amplification due to the reflection on the wing is also the reason

why the maximum of beamforming using estimated GFs is not at the position of the

source. However, after deconvolution, the estimated GFs enable to get the exact levels

of a source located near the leading edge whereas the flow-corrected free-field ones give

an over-estimation of its amplitude. Thus, acoustic imaging based on the estimated

GFs enables the estimation of the amplitude and location of the acoustic source. The

free-field GF with correction of the flow allows to obtain accurate results and also is a

good approximation for doing imaging in this configuration.

4.2.4.3 Below the profile

We now focus on the plane 0.1 m below the wing which is discretized into 41×41 = 1681

focus points (blue area in figure 4.16). Beamforming results for a source positionned
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Figure 4.21: (a), (d): Acoustic beamforming results on a surface below the
NACA0012 wing profile for a source positionned at (xs, ys, zs)=(0, 0, −0.1 m) with
unit power. The 2D acoustic maps are obtained using classical beamforming using
CAA-estimated GFs. Positions of the source and microphones have also been repre-
sented. (b), (e): 1D beamforming results performed on the curve corresponding to y=0.
Only the streamwise part of the array is used for 1D beamforming to improve the sensi-
tivity. (c), (f): Results after deconvolution using the LARS algorithm. The considered

frequency is 5 kHz ((a)-(c)) and 10 kHz ((d)-(f)).

below the profil are shown in figure 4.21. As it can be expected, the use of the free-

field GFs does not enable to localize the source below the wing. When the correction

of the effect of the flow is applied, the beamforming based on free-field GFs leads to

two sources coming from the leading and trailing edges of the wing and the amplitude

is underestimated (−20 dB at 10 kHz). Beamforming results based on estimated GFs

enables to characterize the acoustic source placed below the profile. For focus points

located below the wing, only two interfering rays coming from leading and trailing edges

contribute to the GF. The beamforming results mainly rely on the phase of those two

rays. As a result, the beamforming lobes have smaller full-width at half maximum

but the amplitude of secondary lobes is almost equal to the amplitude of the main

lobe (figure 4.21-(b) and (e)). Deconvolution enables to extract the position of the

source but spurious sources are found at the positions of secondary lobes.

We also notice that the beamforming lobes downstream the position of the sources

have higher amplitudes than those located upstream (Figures 4.21-(b) and (e)). This

is because the trailing edge has a higher masking effect than the leading edge. In

the expression of the conventional beamforming operator (1.18), the GF appears with a
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Figure 4.22: (a), (d): Acoustic beamforming results below the NACA0012 wing
profile for a source located at (xs, ys, zs)=(−0.15 m, 0, −0.1 m) with unit power. The
2D acoustic maps are obtained using classical beamforming using CAA-estimated GFs.
Positions of the source and microphones have also been represented. (b), (e): 1D beam-
forming results performed on the curve corresponding to y=0. Only the streamwise part
of the array is used for 1D beamforming to improve the sensitivity. (c), (f): Results
after deconvolution using the LARS algorithm. The considered frequency is 5 kHz

((a)-(c)) and 10 kHz ((d)-(f)).

power of 2 in the numerator and a power of 4 in the denominator favoring masked regions.

This effect is even more important when the source is located in the visible region as

shown in figure 4.22. For that case, secondary lobes have an amplitude greater than the

level of the source (Figures 4.22-(b) and (e)). The correct level of 0 dB is found at the

location of the source but the beamforming does not pass by a maximum at this position.

Discrepancies on the phases are not large enough to make the beamforming decrease

because of the too important ratios between the GFs modulus. After deconvolution,

the position and level of the source are found but artefact sources appear below the

profile where beamforming levels are high (Figures 4.22-(c) and (f)). Free-field GFs

with correction of the flow leads to an underestimation of the amplitude of the source

and to the detection of a second source coming from the leading edge.

4.2.4.4 Orthogonal to the wing

This time, we focus on the plane orthogonal to the wing which is discretized into 1291 fo-

cus points (green area in figure 4.16). 2D beamforming results on the plane orthogonal
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to the wing are shown in figure 4.23. Only the streamwise part of the sensor array is

used. With the flow-corrected free-field GF, an image source is detected due to the

reflection of acoustic waves on the surface of the wing (Figure 4.23-(d)). Beamform-

ing based on CAA-estimated GFs leads to very high amplitudes in regions where GFs

have small amplitude. This happens in masked regions and near the surface of the

wing (Figure 4.23-(a)). For a monopole placed near the surface, interferences between

direct and image source lead to minimum and maximum of the modulus of the GF. How-

ever, the conventional beamforming operator (1.18) vary as the inverse of the square of

the GF modulus. Performing beamforming near reflecting surfaces results in maximum

and minimum of beamforming. The effect is more important near the surface as the

direct and image sources have almost the same amplitudes leading to increasing inter-

ferences. This interference effect was studied by Sijtsma and Holthusen (2003) when

studying the solution consisting in integrating image sources in the steering vectors in

order to correct reflections during hard-wall closed-section wind tunnel experiments. It

was also observed by Dougherty and Walker (2009) who performed broadband fan noise

beamforming using steering vectors derived from annular hardwall duct modes.

Broadband beamforming enables to decrease secondary lobes. When the frequency is

changed, lobes do not appear at the same position whereas the position of the main

lobe remains the same. Broadband beamforming was performed for a source emitting in

third octave frequency range [4.47 kHz, 5.62 kHz] (Figures 4.23-(b) and (e)) and for a

source emitting in the whole frequency range [4 kHz, 11 kHz] (Figures 4.23-(c) and (f)).

In every case, the total power of the source is 0 dB. In the figures 4.23-(b), the secondary

lobes are still important but have been significantly decreased in figure 4.23-(c). Note

that this solution is not always feasible as it depends on the characteristic sources to

localize that can be narrow-band. Thus, it is better to avoid doing beamforming in

volumic regions located not only in masked regions but also near flat reflecting surfaces.

The reflections on the surface of the wing do not have only negative effects here. Hence,

the presence of the wing enables to increase the power of detection of the array in the

Z-axis direction. If the focalization area is far enough from the surface to avoid this

interference effect, the presence of reflecting surfaces can be an advantage. A possible

application would be, in the framework of wind tunnel experiments, to intentionally place

reflecting surfaces in order to improve the power of detection of a sensor array. However,

those reflecting surfaces have to be positioned in a way that they do not perturbate the

flow in the wind tunnel. For instance, it was numerically shown by Mimani et al. (2017)

that mounting a rigid surface on the floor of an anechoic wind tunnel can improve the

capability of a line array of microphones to characterize experimental flow-induced noise

sources.

The method also allowed to reduce the computational cost. If the GFs are required

every 125 Hz, one period T̃ = 8 ms of signal has to be recorded after the transient regime

of ttrans ' 3 ms. Using the monosource approach, one simulation of time ttrans + T̃
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Figure 4.23: Beamforming maps on the plane orthogonal to the NACA0012 wing
profile for a source positionned at (xs, ys, zs)=(+0.1 m, 0, +0.1 m). Beamforming is
done using estimated GFs ((a)-(c)) or free-field GFs with correction of the effect of
the flow ((d)-(f)). Only the streamwise part of the sensor array is used to improve the
sensitivity. Positions of the source and microphones have also been represented. The
beamforming is done at the frequency 5 kHz ((a), (d)), in the octave band [4.47 kHz,
5.62 kHz] ((b), (e)) or in the whole frequency range [4 kHz, 11 kHz] ((c), (f)). In every

case, the total power of the source is 0 dB.

will have to be performed for each of the NS = 4653 focalization points leading to

a simulation time of tmono = NS(ttrans + T̃ ) = 51.2 s. The use of the reverse-flow

reciprocity only requires to do one simulation for each of the NM microphone. Thus,

only treverse = NM (ttrans + T̃ ) = 0.891 s of CAA simulation time is required i.e. 1.7% of

the initial time. The proposed method needs only tmulti = 0.214 s of CAA simulation

decreasing the computational cost by again a factor 4. Concerning the deconvolution

problem, the cost is negligible in comparison with the simulation. The CAA simulation

required around 220 hours on 480 CPU whereas the deconvolution process required 2

weeks of Matlab computation with a parallelization on 4 processors. The parallelization

of the deconvolution process (4.4) is trivial because it has to be solved independently on

each focalization point.
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In this chapter, the proposed methodology was applied to two test cases representative

for extern shapes for fuselage and wings: the diffraction by a rigid sphere and by a

NACA0012 wing profile. For both cases, it enabled to get an accurate estimation of

the acoustic GFs. When the number of focus points is greater than the number of

microphones, we saw that the use of the reverse-flow reciprocity principle enables a

decrease of the complexity of the estimation problem. The difficulty of the resolution

of the resulting GF estimation problem is then driven by the number of microphone,

usually much smaller than the number of focus points. Moreover, the reciprocity enabled

to handle focus points located on the surface of diffraction objects because only pressure

perturbations must be recorded at the focus points location.





Chapter 5

Slat noise imaging using

CAA-estimated Green’s functions

In the previous chapter, we applied the Green’s function estimation methodology on

two test cases representative for extern shapes for fuselage and wings. By comparing

the estimated Green’s functions with analytical ones, we show that it enables to extract

Green’s function in the presence of both flow and diffracting surfaces. The method

was also applied on synthesized microphone array data. Results showed that using

high quality Green’s functions can improve the quality of array data measurements.

In the present chapter, the method is applied in experimental microphone array data

measurements. The details on the experimental setup are given in the section 5.1. Data

were collected in the ONERA CEPRA19 anechoic wind tunnel (Piccin, 2009). The

measurements were part of the European Commission (EC) Technologies to IMProve

Airframe Noise (TIMPAN) project (Manoha and Ben Khelil, 2009; Perrin Decroux,

2008). The numerical setup is given in section 5.2. The mean flow is obtained using

CFD simulation solving the RANS equations and filtered afterwards (subsection 5.2.1).

It is then used during the CAA simulation in subsection 5.2.2. Again, the reciprocity

will be used to decrease the required simulation time. In the section 5.3, beamforming

maps using CAA estimated Green’s functions are compared with ones obtained using

classical shear layer correction method.

5.1 Experimental setup

5.1.1 Wind tunnel setup

The acoustic wind tunnel CEPRA19 (Piccin, 2009) is operated by Onera in Saclay,

France. It is an open circuit facility. The compressed air comes through a series of inlet

devices:

89
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Figure 5.1: CEPRA19 open-jet anechoic wind tunnel.

• A 9 x 9 m (29.5 x 29.5 ft) inlet featuring a dust filter, acoustic baffles, anti-

turbulence screens and a honeycomb. This part of the circuit aims to filter and

straighten the flow in order to reproduce the flight conditions.

• A contraction with an inlet diameter of 9 m (29.5 ft) and a nozzle exit diameter

of 3 m or 2 m (9.8 or 6.6 ft). This part is in charge of the acceleration of the flow.

• An anechoic chamber (test section) in the shape of roughly a quarter of a sphere,

with an internal radius of 9.6 m (31.5 ft). Walls are covered with absorbing foam

which provide a very good anechoicity (minimised noise reflections), and low back-

ground noise in the 200 Hz to 80 kHz frequency bandwidth.

• A flow collector that aims to collect the flow after passing through the wind tunnel

model. During experiments, one must ensure that the air jet coming from the inlet

nozzle lands in the collector. Otherwise, it will lead to a consequent increase in

noise generation and a flow recirculation.

• A diffuser.

• A fan silencer to avoid the fan noise from going upstream the flow and influence

the measurement results.

• A centrifugal fan driven by a 7 MW asynchronous electric motor putting air into

motion.

In the following, considered data were obtained in the framework of the TIMPAN cam-

paign. It was interested in the experimental assessment of noise reduction concepts. A

2D high lift wing was placed at 2 m downstream the exit plane of the nozzle. Down-

stream the test measurement chamber the flow is run through a collector. The nozzle

chosen in the experiments for the TIMPAN project is a 2 m diameter device allowing a

maximum speed of 130 m/s.
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Figure 5.2: TIMPAN wind tunnel model.

The geometry of the wind tunnel model is shown in figure 5.2. The model span is 1.4 m

and the “clean” chord (slat/flap retracted) is 0.5 m. In the data used for the present

study, the slat is deployed and the flap is retracted. The wing is mounted between two

end plates z = ±0.7 m covered with absorbing foam. The center of the leading edge

of the wing body is in the jet axis. The whole device is designed in order to minimize

the noise generation by the additional structure. In the chosen configuration, the wing

incidence of 11.5◦ (13.5◦ also available) is chosen. For this configuration, the tonal slat

noise of the wing has more amplitude. Moreover, the lower jet deflection enabled a better

collection of the flow on the collector resulting in a decrease of the background noise.

The other factor that influenced the choice for this configuration is the availability of

data.

5.1.2 Acoustic instrumentation and measurement

For acoustic measurements, the wind tunnel is equipped with several microphones. One

of the three main tasks of the EC TIMPAN project concerned High lift device activity. In

particular, the both innovative concepts based on flow control technologies and mid-term

noise reduction solutions as absorptive wing leading edge treatments were considered and

a study of high-lift settings optimization through computational aero-acoustic methods

was led.

The microphones that are under interest in the present work are gathered in a cross-

shaped array of 41 microphone. The planar sensor array is used for acoustic source

localization. It is placed in the plane y = −2 m. The geometry of the microphone array

is shown in the figure 5.3. The cross-shaped antenna contains 41 half-inch condenser

microphones numbered M1-M41. The positions of the various microphones are given in

table 5.1. The central microphone faces the center of the leading edge of the wing body.

During an acquisition session, 30 s of signal are recorded with all the microphones

synchronized. They consist in 3.08 106 time samples collected at the sampling fre-

quency Fe = 102.4 kHz. Power and cross power spectral density estimates are then
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computed every 10 Hz in the frequency range [0 kHz, 20 kHz] using Welch (1967) over-

lapped segment averaging estimator furnished in the Matlab signal processing toolbox.

!"

#"

$"%"&"'("

)"%"*+"'("

,"
%"
-"+

./
"(

"

,"
%"
-"+

.&
"(

"

,"
%"
+.
&"
(
"

,"
%"
+.
/"
(
"

0"%"+./"("

0"%"+.&"("

0"%"-"+.&"("

0"%"-"+./"("

(1'23453678"

Figure 5.3: Geometry of the microphone array.

mic n◦ x (m) y (m) z (m)

1 0.7 −2 0

2 0.6 −2 0

3 0.5 −2 0

4 0.4 −2 0

5 0.3 −2 0

6 0.25 −2 0

7 0.2 −2 0

8 0.15 −2 0

9 0.1 −2 0

10 0.05 −2 0

11 −0.05 −2 0

12 −0.1 −2 0

13 −0.15 −2 0

14 −0.2 −2 0

15 −0.25 −2 0

16 −0.3 −2 0

17 −0.4 −2 0

18 −0.5 −2 0

19 −0.6 −2 0

20 −0.7 −2 0

mic n◦ x (m) y (m) z (m)

21 0 −2 0.7

22 0 −2 0.6

23 0 −2 0.5

24 0 −2 0.4

25 0 −2 0.3

26 0 −2 0.25

27 0 −2 0.2

28 0 −2 0.15

29 0 −2 0.1

30 0 −2 0.05

31 0 −2 −0.05

32 0 −2 −0.1

33 0 −2 −0.15

34 0 −2 −0.2

35 0 −2 −0.25

36 0 −2 −0.3

37 0 −2 −0.4

38 0 −2 −0.5

39 0 −2 −0.6

40 0 −2 −0.7

41 0 −2 0

Table 5.1: Sensor array microphones positions.
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Figure 5.4: Pressure spectra in three configurations.

This gives around 300 averaged measurements per frequency bins. Power spectral den-

sity is used to study the spectra of one microphone in particular. Cross power spectrum

densities are used to construct the cross spectral density matrix of the microphones

required by beamforming methods.

The first thing to do is to study the background noise and the one generated by mounting

objects. These two types of noise must be negligible and if not, it is necessary to

determine in which frequencies they are present. To ensure that, spectrum measurements

with one microphone are performed in 3 configurations:

1. In the absence of the wing, only the mounting objects are presents.

2. In the presence of the wing, the slat is removed.

3. In the presence of the wing with the slat deployed.

The resulting spectra are shown in the figure 5.4. It appears that the noise measured

by a single microphone is dominated by slat noise on most of the frequency range of

interest except near 5.3 kHz. Around this frequency, spurious noise sources due to the

support are very loud. Last but not least, it was ensured that the noise generated by

the presence of the cross-shaped array is negligible.

5.2 Numerical simulation

5.2.1 CFD simulation

In the framework of the TIMPAN project, a 3D RANS computation of the flow around

the wing and support was performed including the whole wind tunnel flow conditions
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Figure 5.5: Flow velocity magnitude in the XY plane.

(Manoha and Ben Khelil, 2009). The objective was to compute the 3D flow around the

high lift model and its support, including the wind tunnel open jet. In the configuration

considered here, the profile has an incidence of 11.5◦. The magnitude of the flow velocity

at the exit of the nozzle is 60 m/s.

It was achieved with ONERA’s elsA structured multiblock solver with the chimera tech-

nique based on combining a grid of the wind tunnel, a grid of the high-lift wing model

and a grid of the support. The simulation domain contains the nozzle, the anechoic

chamber and a part of the collector. In order to use the chimera technique, three in-

dependent meshes are made with ICEM-CFD software. The mesh contained 74 blocks

and around 23 millions of points.

Figure 5.6: Flow velocity magnitude in the YZ plane.
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The flow velocity magnitude in the XY-plane is represented in the figure 5.5. This plane

is at position z = 0 m and contains the X-axis branch of the sensor array. At the exit

of the nozzle, the flow is almost uniformly equal to 60 m/s. This velocity profile was

verified by performing a comparison with experimental hot wire and Pitot measurements.

The diffusion of the velocity in the mixing layer during the propagation in the anechoic

chamber is visible. An increase in the velocity in the extrados is visible. In this region,

the velocity reaches 80 m/s. The flow recirculation in the slat cove and the thin shear

layer is also visible. This shear layer is very important as it may causes instabilities

during the CAA simulation step. As it will be seen in the next section, it is essential to

filter the flow velocity field to use it as mean flow.

The flow velocity magnitude in the YZ-plane is represented in the figure 5.6. This plane

is at position x = 1.932 m and contains the Z-axis branch of the sensor array The plane

also contains the leading edge of the wing body and cuts the slat cove recirculation. It

shows that the flow velocity, circular at the output of the nozzle, has diffused. This

validates that the whole support lies inside the velocity region. The low velocity behind

the slat cove is due to the recirculation of the flow. To finish, this also shows that the

sensor array is effectively outside the jet.
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(b) CFL on the whole mesh.

Figure 5.7: (a) CFL near the high lift wing profile. Only the useful part of the mesh
is shown meaning that the stretching zones are not plotted. (b) Global mesh and CFL

number.

5.2.2 CAA simulation

The CAA simulations were performed with ONERA’s sAbrinA-v0 code on a body-fitted

mesh. The useful part of the mesh corresponds to the region with −0.9 m ≤ x ≤ 1 m,

−2 m ≤ y ≤ 0.2 m and −0.84 m ≤ z ≤ 0.84 m. The origin of the spatial system is at

the middle leading edge of the wing body. In the region of uniform mesh, the spatial

step is 4 mm. It is small enough to ensure more than 10 points per wavelength for the
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(a) RANS simulation

(b) Filtered RANS simulation

(c) Cylindrical shear layer model flow

Figure 5.8: Surfaces iso-‖v‖ based on the norm of the flow velocity are plotted
at 30 m/s, 45 m/s and 60 m/s.

maximum frequency fmax = 8 kHz (leading to the minimum wavelength λmin ' 4.2 cm).

This time, a 5% stretching is added at the limits of the domain and combined with Tam

and Dong (1996) outflow BC to evacuate outgoing waves properly. The global mesh

contains around 270 millions of points and the CFL on the whole mesh is plotted in

figure 5.7.
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The flow resulting from the CFD simulation presented in the previous section is used

as mean flow for the CAA simulation. The iso-‖v‖ surfaces are shown in the figure 5.8-

(a). Only the surfaces in the z ≤ 0 region are represented. In this figure, we can see

that the flow still has some turbulent structures. Also, the CFD simulation was done

with the exact support geometry (shown in figure 5.8). However, to enable a CAA

simulation, the geometry is simplified to the one present in figure 5.8. The flow velocity

is then interpolated on the nodes of the CAA mesh and void regions are extrapolated.

Moreover, we have seen in the previous section that a thin shear layer appears in the

slat cove due to flow recirculation. All those discontinuities appears to make the CAA

simulation diverge making the filtering of the flow a necessity.

The iso-‖v‖ surfaces of the filtered flow are shown in the figure 5.8-(b). The resulting

flow was obtained after the following step:

1. The flow resulting from the CAA simulation is first interpolated on a coarse carte-

sian grid with a spatial step of 10 cm.

2. The flow on the coarse grid is then filtered by performing a convolution with 3×3

matrix with all the coefficients equal to 1/27. The filtering process is repeated

another time in order to increase the filtering.

3. The flow on the coarse grid is then interpolated on the fine grid using a linear

interpolation to obtain the flow of the figure 5.8-(b).

This filtering process has the advantage of being very easy to implement. If more filtering

is needed, the step 2 can be repeated to increase the filtering. On the other hand, if less

filtering is needed, the spatial step of the coarse grid in step 1 must be taken smaller.

However, the main drawback of this filtering technique is that it doesn’t respect the

condition of tangential flow on the surface. Considering a better filtering technique that

respects boundary conditions may improve the quality of the CAA simulation. But,

because of a lack of time and due to the important number of points in the mesh this

method of filtering was privileged. The model of the flow obtained with this procedure

is more complex than the cylindrical shear layer model flow shown in the figure 5.8-(c).

To be able to apply acoustic imaging technique, a focalization area must be chosen and

discretized into focus points. The three regions of the focalization area and their dis-

cretization into NS = 12833 focus points is represented in the figure 5.9. The first region,

colored in blue, is the intrados part of the airfoil and the slat (3150 focus points). The

second region, colored in gray, extends the previous one by two plane surface upstream

and downstream (respectively 3475 and 1650 focus points). A part of the support, rep-

resenting the last region and colored in red, was also discretized (2×2279 focus points).

The procedure followed in this section is described in the figure 5.10. Acoustic GFs are

estimated using a CAA simulation and are used to solve a problem of imaging with the



98 Chapter 5 Slat noise imaging using CAA-estimated Green’s functions

Figure 5.9: Discretization of the focalization areas into 12833 focus points.

classical beamforming method. The multisource approach is used to extract the Green’s

functions between the NM = 41 microphones and the focus points. The Green’s func-

tion are estimated in the considered frequency range [fmin, fmax] = [2 kHz, 8 kHz]. The

reverse-flow reciprocity, presented in subsection 4.2.4.1, is used to reduce the complex-

ity of the estimation problem. A 3D view of the performed CAA simulation is shown

in the figure 5.11. The mean flow is reversed in order for the reciprocity principle to

apply. In the CAA simulation, acoustic signals are thus propagated from microphones

to focus points. Monopole sources are placed at the microphones positions and excited

with multisinus (4.2) with NF = 601 harmonics in the frequency range [2 kHz, 8 kHz]

every 10 Hz. Pressure fluctuations are recorded at every focus point and an estimation

problem of the form (4.4) is solved for each of them in order to extract the GFs. The

estimated GFs can finally be used to perform acoustic beamforming.

5.3 Acoustic imaging

5.3.1 Results

In this section, we present acoustic imaging results using CAA estimated Green’s func-

tions. The obtained acoustic maps will be compared with to the ones obtained with

a cylindrical shear layer correction model. Hence, the theory on the effect of a thin
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Figure 5.10: Procedure for acoustic beamforming based on CAA estimated GFs for
the slat noise imaging test case. The reverse-flow reciprocity principle is used in order
to reduce the complexity of the GF estimation problem. During the simulation, mi-
crophones position are excited using acoustic monopoles with excitation signals (sm)m
and the pressure fluctuation signals (pcaai )i at the focus points are recorded. The GFs
are estimated by applying LTI system identification and adding a constraint on the
l0-norm of the solution. The estimated GFs can finally be used to perform acoustic

beamforming.

shear layer on the propagation of the sound has been widely studied in the literature.

Amiet (1978) proposed a correction of the refraction effect of sound by shear layer. The

method was validated afterwards by Bahr et al. (2010). To do so, they used a non-

intrusive acoustic point source (pulsed laser system is used to generate a plasma point

source) and showed that the method proposed by Amiet (1978) enables the recovering

of the position of the source at several Mach numbers.

In this section, the correction proposed by Elias (1996) for the correction of the refraction

effects in the CEPRA19 anechoic wind tunnel is used. The study of this correction

procedure showed that it enables to recover precisely jet noise sources. In the following,

beamforming is performed with the free-field Green’s functions (1.14), the corrected

Green’s functions using the method proposed by Elias (1996), and the CAA estimated

Green’s functions using the method presented in Chapter 2.
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Figure 5.11: Pressure perturbation signal resulting from the excitation of 41 acous-
tic monopoles placed at the positions of the microphones of the sensor array. The
monopoles are excited using multisine signals in the frequency range [2 kHz, 8 kHz]
every ∆f = 10 Hz (fexc1 =2 kHz, fexc2 =2.01 kHz, . . . , fexc601=8 kHz). The mean flow is

reversed for the reciprocity principle to apply.

A 3D view of the wind tunnel model, the microphone array, and the nozzle is given

in the figure 5.12. In the following, the beamforming maps corresponds to the direc-

tion y < 0. The comparisons of the acoustic maps at 2 kHz and 3.8 kHz are presented

in the figure 5.13. For these frequencies, the noise is due to the presence of the slat as

shown in the figure 5.4. Hence, the measured power spectrum density is increased by

more than 20 dB (at 2 kHz) and 10 dB (at 3.8 kHz) when the slat is present.

As expected, the use of the free-field Green’s function is not adapted (cf. figure 5.13-

(a) and (b)). The main lobe is larger at the frequency 2 kHz than at 3.8 kHz. This

is in agreement with the theory that the main lobe varies as 1 /fbf with fbf is the

considered frequency for beamforming. An offset of around d = 18 cm is present in the

position of the detected acoustic sources. This is in agreement with the theory that

gives doffset ≈ Rnozzle M
/√

1 + M2 = 17.4 cm for the offset distance in the downstream

direction where M = 0.176 is the Mach number. The corrected Green’s functions using

the cylindrical shear layer correction is shown in the figure 5.13-(c) and (d). For both

frequencies, the generated noise is found to come from the slat cove.

The acoustic imaging results obtained using CAA estimated Green’s functions are rep-

resented in the figures 5.13-(e) and (f). At 2 kHz, The noise source levels are slightly

overestimated upstream. This is due to the mixing between focus points located on

the surface of the wing and in the interior of the fluid. The overestimation corresponds

to the main beamforming lobe and can also be seen at this frequency with corrected
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Figure 5.12: 3D view of the configuration.

free-field Green’s functions (figure 5.13-(c)). On the surface of the slat and the wing

body, the size of the beamforming lobes and their amplitude differs completely. The

lobes are more numerous but have a higher amplitude when compared to the free-field

case. The width of beamforming lobes seems to depend on the curvature of the solid

surface on which the focalization is done. Monopoles located on the surface see their

resulting wavefront in the area of the microphone array impacted. However, we can say

that globally, the estimated Green’s functions are able to correct the effect of the flow.

Especially at 3.8 kHz, for this higher frequency, the beamforming lobes have smaller
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(a) Free-field GFs at 2 kHz
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(b) Free-field GFs at 3.8 kHz
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(c) Corrected GFs at 2 kHz
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(d) Corrected GFs at 3.8 kHz

!"#
$
%"

&"#$%"

!"#$

!$

%!"#$

%!"#$ !$ !"#$ &$

'())"
!"'#$
!"'$
!"(#$
!"($
!"##$
!"#$
!")#$
!")$
!"*#$
!"*$
!"+#$
!"+$
!"&#$
!"&$
!"!#$
!$

(e) Estimated GFs at 2 kHz
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(f) Estimated GFs at 3.8 kHz

Figure 5.13: Beamforming maps at 2 kHz (left) and 3.8 kHz (right). The coherence
with the monopole model operator (1.20) is plotted based on (a-b) the free-field GFs,

(c-d) the flow-corrected free-field GFs, and (e-f) the CAA estimated GFs.

width and the source is found to be located in the slat.

In the following, the results based on the free-field Green’s functions are not presented

anymore. Acoustic maps obtained at 5.21 kHz, 5.39 kHz and 5.55 kHz are presented in

the figure 5.14. In this figure, the results obtained by the corrected free-field Green’s
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(a) Corrected GF at 5.21 kHz
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(b) Estimated GF at 5.21 kHz
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(c) Corrected GF at 5.39 kHz
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(d) Estimated GF at 5.39 kHz
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(e) Corrected GF at 5.55 kHz
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(f) Estimated GF at 5.55 kHz

Figure 5.14: Beamforming maps (a-b) at 5.21 kHz, (c-d) at 5.39 kHz and (e-f) at
5.55 kHz. The coherence with the monopole model operator (1.20) is plotted based on

(left) the flow-corrected free-field GFs, and (right) the CAA estimated GFs.

functions (Figure 5.14-(a), (c) and (e)) and the CAA estimated ones (Figure 5.14-(b), (d)

and (f)) are compared. As it was seen during the study of the noise spectra (Figure 5.4),

at those frequencies, noise is present even when the wing and slat are not installed. Thus,

the generated noise is likely to be coming from the support holding the wing. This is



104 Chapter 5 Slat noise imaging using CAA-estimated Green’s functions

!"#
$
%"

&"#$%"

!"#$

!$

%!"#$

%!"#$ !$ !"#$ &$

'())"
!"'$
!"(#$
!"($
!"##$
!"#$
!")#$
!")$
!"*#$
!"*$
!"+#$
!"+$
!"&#$
!"&$
!"!#$
!$

(a) Corrected GF at 6.07 kHz
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(b) Estimated GF at 6.07 kHz
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(c) Corrected GF at 7.35 kHz
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(d) Estimated GF at 7.35 kHz
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(e) Corrected GF at 8 kHz
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(f) Estimated GF at 8 kHz

Figure 5.15: Beamforming maps (a-b) at 6.07 kHz, (c-d) at 7.35 kHz and (e-f) at
8 kHz. The coherence with the monopole model operator (1.20) is plotted based on

(left) the flow-corrected free-field GFs, and (right) the CAA estimated GFs.

confirmed by the acoustic maps at 5.21 kHz and 5.39 kHz. At these frequencies, the main

part of the noise is generated from the support. The slightly higher frequency 5.55 kHz

corresponds to the transition from support noise to slat noise. Hence, for this frequency,

the acoustic maps (Figure 5.14-(e) and (f)) show a mix from noise coming from the slat
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and the z < 0 part of the support.

At higher frequencies, the noise is mainly due to the slat noise. It is confirmed by the

acoustic maps obtained at 6.07 kHz, 7.35 kHz and 8 kHz presented in the figure 5.15.

5.3.2 Discussion

The corrected Green’s functions is well suited for the acoustic imaging configuration

studied in this chapter. These Green’s functions have been used for years in wind

tunnel tests (refs) and are still in used today even on fan noise imaging (Sijtsma, 2006).

For all the acoustic maps seen in the previous subsections, results obtained with CAA

estimated Green’s functions are consistent with those obtain using corrected Green’s

functions. However, results can still be improved.

On one hand, the maps obtained with the proposed method are noisy due to errors in the

estimation of the Green’s function. These errors may have their origins in several places.

More frequencies than NF = 601 must give more precise Green’s functions and will result

in less noisy acoustic maps. In the present case, acoustic paths from microphones to

focus points are more numerous. The Green’s functions are not as sparse as before. A

longer time of simulation is necessary for the estimation of the Green’s functions because

more parameters are to be estimated.

On the second hand, several approximations made in the procedure of acoustic imag-

ing. The geometry of the support was approximated by two parallelepipeds in order to

facilitate both the mesh generation and the simulation process. Approximation of the

geometry may have had an influence on the results. The approximation of the flow is

also a source of error and must be as close as possible from the reality. However, it was

necessary to filter the flow here in order to remove shear and boundary layers that cre-

ate instabilities of the CAA simulation. The filtering is too blunt and the resulting flow

doesn’t respect the physics (mean flow penetrating the surface of the wing). A better

filtering method, respecting boundary conditions is necessary to reduce the errors.

In this chapter, the proposed methodology was applied to the case of a high lift wing

in the CEPRA19 anechoic wind tunnel. It constitutes the first case of validation of the

method on industrial acoustic imaging configurations. The proposed method enabled to

get an accurate localization of acoustic noise sources in the presence of a non potential

mean flow (presence of a shear layer).





Conclusion

A methodology for the estimation of the Green’s functions (GFs) based on numerical

simulations for extern aeroacoustic imaging applications have been developed in this

thesis. The method takes advantage of the sparsity of the GFs to minimize the compu-

tational cost and provide Green’s functions that are sufficiently accurate to be used on

realistic industrial configurations. It represents a continuation of Pene (2015)’s disser-

tation and various points were addressed.

The study of 3D cases has shown that the constraint on the l2-norm of the solution can

lead to a deterioration of the solution. Two algorithms remain relevant for the resolution

of the estimation problem. The lasso algorithm exhibits a behavior that is very stable

and provides accurate GFs but suffers from a very slow convergence. On the other

hand, the OMP algorithm provides GFs that are less accurate but its convergence is

considerably faster and was privileged in this study. An improvement of the algorithms

to avoid matrix inversion was also added for the acceleration of the algorithms. At each

iteration, the inverse at the previous step is used to build the inverse of the augmented

matrix. The addition of a cross-validation stopping criterion, more straightforward, also

brought a consolidation of the method for avoiding overfitting.

A minimization algorithm for the generation of multisine signals with low pairwise cross-

correlation has been proposed. The algorithm allows the user to define the auto-power

spectrum of the sources and iterates on the phases in order to minimize the common

lp-norm of the cross-correlation with increasing values of p. For low memory length

systems, an adaptation of the algorithm to the generation of low-correlation zone (LCZ)

signals has been presented. The results show that introducing an a priori information of

the time interval on which cross-correlation has to be minimized enables to decrease it

more effectively. When the reverberation time is known a priori, the condition number

of the problem can be increased using LCZ signals because the cross-correlation can

be decreased significantly. The benefits of using signals resulting from a minimization

of the Chebyshev norm of the cross-correlation on the whole period require further

investigations.

The proposed methodology was applied to test cases representative for extern shapes for

fuselage and wings: the diffraction by a rigid sphere and by a NACA0012 wing profile.
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For both cases, it enabled to get an accurate estimation of the acoustic GFs. In his

perspectives, Pene (2015) highlighted two conditions necessary for the application of

the method in realistic industrial configurations: the method must be able to deal with

a high number of focus (more than a thousand) and be able to deal with focus points

located on walls. These issues were addressed by introducing the reverse-flow reciprocity:

the acoustic response of a medium does not change when the source and microphone are

swapped if the flow is inverted. As a result, the condition number of the problem is now

driven by the number of microphones that rarely exceeds one hundred. The proposed

methodology was then applied to the case of a high lift wing in the CEPRA19 anechoic

wind tunnel. It is the first case of validation of the method on an industrial acoustic

imaging configuration with around 13000 focus points. The proposed method enabled to

get an accurate localization of acoustic noise sources in the presence of a non potential

mean flow (presence of a shear layer).

For the geometry of the experimental envisaged in this work, the corrected free-field

GFs is already a good approximation. The wind tunnel tests were not performed in the

framework of this PhD and were designed in such a way that this condition is fulfilled. In

order to validate the method, it must be applied on geometries of increasing complexity.

This may require to conduct experiments specially dedicated to this purpose. The case

of fan noise imaging still remains a challenge. For this case, the intrinsic nature of the

acoustic GF is different and it may require to rethink the regularization strategy.



Appendix A

Validation of the free-field

acoustic propagation

The 3D Free-field Green’s functions in both time and frequency domains are:





g(0,0) (x, t) = −δ (t− ‖x‖ /c0)

4π ‖x‖

G(0,0) (x, f) = −e
−i2πf‖x‖/c0

4π ‖x‖

where δ is the Dirac delta function and ‖·‖ the euclidean norm.

In Fig. A.1, the pressure resulting from an harmonic source in a 3D free field is repre-

sented. Simulation was done using ONERA’s sabrina v0 software. We obtain spherical

wavefronts as the solution of this problem is the real part of the of the frequency Green’s

function at this frequency G(0,0) (x, f).

Figure A.1: (left) Pressure field for an harmonic source (s(t)=cos (2πft)) for three
excitation frequency f=6 kHz. (right) Same but at the excitation frequency f=12 kHz.
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Figure A.2: RMS in function of the radius far (left) and near right) the source.

In Fig. A.2, the RMS pressure is plotted in function of the radius and compared to the

analytical value |G(0,0)(r, f)|/
√

2. Here a factor 1/
√

2 is necessary because, during the

simulation, only the real part of the pressure signals is simulated. The error in amplitude

is small far from the source and high frequencies are more attenuated. At the position of

the acoustic source, the analytical value is not defined. However, the gaussian volumic

injection (2.1) enables to regularize the problem at this position to avoid instabilities.

The variation of the real part of the GF R(G(0,0)(x, f)) and the simulated pressure

field in function of the radius are plotted in Fig. A.3. Here again the small error in the

amplitude can be seen. However, this figure also shows that a very small delay is present

in the phase. These results show that the sabrina v0 software behaves as expected in

the simple case of an homogeneous infinite medium and in the absence of flow. For

the applications considered in this work, the error is negligible when compared to the

precision required for the GF estimation.
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Figure A.3: Pressure field in function of the radius in the 2D free-field case. Com-
parison of sabrina v0 results with the analytical ones.



Appendix B

Acceleration of the

cross-correlation minimization

using FFT

This appendix presents the procedure to compute matrix
[
JTJ

]
∈ RNSNF×NSNF and

vector
[
JTe

]
∈ RNSNF without computing the real Jacobian matrix J =

[
∂e

(i,j)
n

∂φ
(k)
u

]

i 6=j,n
k,u

of size NS (NS − 1)NT ×NSNF .

Computation of the matrix
[
JTJ

]

The element at line and column corresponding respectively to phases φ
(k)
u and φ

(l)
v is:

[
JTJ

]
k,u
l,v

=
∑

i,j,n
i 6=j

∂e
(i,j)
n

∂φ
(k)
u

∂e
(i,j)
n

∂φ
(l)
v

(B.1)

Condition i 6= j means that only cross-correlation is minimized. Autocorrelation is not

considered as it does not depend on the phases. The expression differs depending on if

we are on a non-diagonal block k 6= l or on a diagonal one k = l.

1st case : k 6= l

[
JTJ

]
k,u
l,v

=
∑

i,j,n
i 6=j

∂e
(i,j)
n

∂φ
(k)
u

∂e
(i,j)
n

∂φ
(l)
v

=

NT−1∑

n=0

(
∂e

(k,l)
n

∂φ
(k)
u

∂e
(k,l)
n

∂φ
(l)
v

+
∂e

(l,k)
n

∂φ
(k)
u

∂e
(l,k)
n

∂φ
(l)
v

) (B.2)
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excluding all the zero combinations. Using the notations:

{
S(k,l)
u (n) = sin

(
2πfutn − φ(k)

u + φ(l)
u

)
(B.3)

The expression becomes:

[
JTJ

]
k,u
l,v

= −q2a(k,l)
u a(k,l)

v

NT−1∑

n=0

[ (
x(k,l)
n

)2q−2
S(k,l)
u S(k,l)

v

+
(
x(l,k)
n

)2q−2
S(l,k)
u S(l,k)

v

]
(B.4)

With the notations:





∆φ+
k,l
u,v

=
(
φ(k)
u − φ(l)

u

)
+
(
φ(k)
v − φ(l)

v

)

∆φ−k,l
u,v

=
(
φ(k)
u − φ(l)

u

)
−
(
φ(k)
v − φ(l)

v

) (B.5)

and denoting <{z} the real part of a complex z, it comes:

[
JTJ

]
k,u
l,v

=
p2

8
a(k,l)
u a(k,l)

v <





NT−1∑

n=0



(
x(k,l)
n

)p−2
e
−i
(

2π(fu+fv)tn−∆φ+k,l
u,v

)

−
(
x(k,l)
n

)p−2
e
−i
(

2π(fu−fv)tn−∆φ−k,l
u,v

)

+
(
x(l,k)
n

)p−2
e
−i
(

2π(fu+fv)tn−∆φ+l,k
u,v

)

−
(
x(l,k)
n

)p−2
e
−i
(

2π(fu−fv)tn−∆φ−l,k
u,v

)






(B.6)
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If {tn = nT/NT / 0 ≤ n ≤ NT − 1}, it comes:

[
JTJ

]
k,u
l,v

=
p2

8
a(k,l)
u a(k,l)

v <




X̃

(k,l)
u+v e

+i

(
∆φ+k,l

u,v

)
− X̃(k,l)

u−v e
+i

(
∆φ−k,l

u,v

)

+ X̃
(l,k)
u+v e

+i

(
∆φ+l,k

u,v

)
− X̃(l,k)

u−v e
+i

(
∆φ−l,k

u,v

) 


(B.7)

where X̃
(k,l)
u±v is the Discrete Fourier Transform (DFT) of the signal

(
x(k,l)

)p−2
taken at

frequency fu ± fv:

X̃
(k,l)
u±v =

NT−1∑

n=0

(
x(k,l)

)p−2
e−i(2π(fu±fv)tn) (B.8)

2nd case : k = l

[
JTJ

]
k,u
k,v

=
∑

i,j,n
i 6=j

∂e
(i,j)
n

∂φ
(k)
u

∂e
(i,j)
n

∂φ
(k)
v

=
∑

i,n
i 6=k

(
∂e

(k,i)
n

∂φ
(k)
u

∂e
(k,i)
n

∂φ
(k)
v

+
∂e

(i,k)
n

∂φ
(k)
u

∂e
(i,k)
n

∂φ
(k)
v

) (B.9)

[
JTJ

]
k,u
k,v

= +q2
∑

i,n
i 6=k

a(k,i)
u a(k,i)

v

[(
x(k,i)
n

)2q−2
S(k,i)
u S(k,i)

v

+
(
x(i,k)
n

)2q−2
S(i,k)
u S(i,k)

v

]

= −
∑

i 6=k

[
JTJ

]
k,u
i,v

= −
∑

i 6=k

[
JTJ

]
i,u
k,v

(B.10)

Thus the diagonal blocks of the matrix can be expressed in function of the non-diagonal

ones:

[
JTJ

]
k,u
k,v

= −
∑

l 6=k

[
JTJ

]
k,u
l,v

= −
∑

l 6=k

[
JTJ

]
l,u
k,v

(B.11)
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Computation of the vector
[
JTe

]

The element at line corresponding to phase φ
(k)
u is:

[
JTe

]
k,u

=
∑

i,j,n
i 6=j

∂e
(i,j)
n

∂φ
(k)
u

e(i,j)
n

=
∑

i,n
i 6=k

(
∂e

(k,i)
n

∂φ
(k)
u

e(k,i)
n +

∂e
(i,k)
n

∂φ
(k)
u

e(i,k)
n

) (B.12)

Using notations (B.3) it comes:

[
JTe

]
k,u

= +q
∑

i,n
i 6=k

a(k,i)
u

[(
x(k,i)
n

)2q−1
S(k,i)
u

−
(
x(i,k)
n

)2q−1
S(i,k)
u

] (B.13)

[
JTe

]
k,u

= −p
2
=





∑

i,n
i 6=k

a(k,i)
u

[(
x(k,i)
n

)p−1
e
−i
(

2πfutn−
(
φ
(k)
u −φ

(i)
u

))

−
(
x(i,k)
n

)p−1
e
−i
(

2πfutn−
(
φ
(i)
u −φ

(k)
u

)) ] 


(B.14)

where ={z} stands for the imaginary part of a complex z. Again, if {tn = nT/NT / 0 ≤ n ≤ NT − 1},
the expression becomes:

[
JTe

]
k,u

= −p
2
=




∑

l 6=k
a(k,l)
u

[
X̂(k,l)
u e

+i
(
φ
(k)
u −φ

(l)
u

)

− X̂(l,k)
u e

+i
(
φ
(l)
u −φ

(k)
u

)]


(B.15)

where X̂
(k,l)
u is the DFT of the signal

(
x(k,l)

)p−1
taken at frequency fu:

X̂(k,l)
u =

NT−1∑

n=0

(
x(k,l)

)p−1
e−i(2πfutn) (B.16)
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Hence, at each iteration of the algorithm, it is necessary to compute only one time the

DFT X̃
(k,l)
u and X̂

(k,l)
u of signals

(
x(k,l)

)p−2
and

(
x(k,l)

)p−1
respectively. The matrices

can then be efficiently computed using equations (B.7), (B.11) and (B.15).





Appendix C

Diffraction of a monopole by a

rigid sphere

In this appendix, we give the expression of the acoustic field diffracted by a monopole

in the presence of rigid sphere. Suppose the acoustic source is at the position xi and the

origin of the system of coordinates is the center of the sphere. Here, we are looking for

the solution of the system of partial differential equations:





k2
0Gi(x, ω) + ∆Gi = δ(x− xi) ∀(x, ω) ∈ Ω× R
∂Gi(., ω)

∂n
= 0 on boundary r = a

(C.1)

where Gi,m(ω) = Gi(xm, ω) is the frequency GF between the source at the position xi

and the microphone at the position xm. The radius of the sphere is a and k0 = ω/c0 is

the source wavenumber. With this convention, the free-field GF is expressed as:

Gfreei,m (ω) = −e
−iω‖xm−xi‖/c0

4π ‖xm − xi‖
(C.2)

However, taking into account the boundary condition in (C.1) modifies this solution.

The solution of (C.1) can be expressed as a sum of spherical harmonics:

Gi,m(ω) =

∞∑

l=0

G̃i,m(l, ω)Pl (cos(θi,m)) (C.3)

where Pl is the Legendre polynomial of degree l and θi,m ∈ [0, π] is the angle between the

acoustic source, the center of the sphere and the microphone. The amplitude G̃i,m(l, ω)

of the mode l is expressed in function of the spherical Bessel functions:

G̃i,m(l, k0) = F−i,m(l, k0)H(ri − rm) + F+
i,m(l, k0)H(rm − ri) (C.4)
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where: 


F−i,m(l, k0) =A−i (l, k)jl(k0rm) +B−i (l, k0)yl(k0rm)

F+
i,m(l, k0) =A+

i (l, k)h
(1)
l (k0rm) +B+

i (l, k0)h
(2)
l (k0rm)

(C.5)

To determine the 4 constants in (C.5) we have to use continuity and boundary conditions.

To obtain only out-going waves in rm → +∞, A+
i (k0, l) = 0. The expression of the last

three constants is:





A−i (k0, l) =
(2l + 1)k0

4π

h
(2)
l (k0ri)y

′
l(k0a)

h
(2)
l

′
(k0a)

B−i (k0, l) = −(2l + 1)k0

4π

h
(2)
l (k0ri)j

′
l(k0a)

h
(2)
l

′
(k0a)

B+
i (k0, l) =

(2l + 1)k0

4π

jl(k0ri)y
′
l(k0a)− yl(k0ri)j

′
l(k0a)

h
(2)
l

′
(k0a)

(C.6)

The result for a = 1, ri = 2 and k0 = 4 where the sum in (C.3) was truncated toNL = 121

polar harmonics, has been compared with the one given by ONERA’s Bemuse code based

on boundary element method. The superposition of the contours obtained by the two

methods is plotted in figure C.1. Results are in good agreement except for points in the

region r ' ri where the convergence is slower requiring a higher number of harmonics.
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Figure C.1: Diffraction of an acoustic monopole by a rigid sphere. (a) Pressure field
in dB for a = 1, ri = 2 and k0 = 4 (b) Comparison to results obtained with the Bemuse
code based on boundary element method. - - -: Contours obtained by analytical

method. ——-: Contours obtained using Bemuse.



Appendix D

Matrix inversion avoiding

D.1 Active set increase

In this part, the case of an increase of the active set is considered. A new component

(iN(q) , kN(q)) is added to the active set A(q−1) = {(i1, k1), . . . , (iN(q−1) , kN(q−1))} giving

the new active set A(q).

The following relation can be used to compute the inverse of the new matrix using the

previous one:

Γ
A(q)

=




Γ
A(q−1)

v

v∗ γ




Γ
A(q)

invertible and Grammian

Γ−1

A(q−1)
exists and known





=⇒





Γ−1

A(q)
=




Γ−1

A(q−1)
+ βww∗ −βw

−βw∗ β




w = Γ−1

A(q−1)
v

β = γ − v∗w

(D.1)

Indeed, Γ
A(q)

is Grammian as:

[
Γ
A(q)

]
(i,k),(j,l)

= (si ⊗ sj) (τk − τl) = ((sj ⊗ si) (τl − τk))∗ =

([
Γ
A(q)

]
(j,l),(i,k)

)∗

The vector v and the coefficient γ are defined as:





v =
[(
si1 ⊗ siN(q)

)(
τk1 − τkN(q)

)
, . . . ,

(
si

N(q)−1
⊗ si

N(q)

)(
τk

N(q)−1
− τ

kN
(q)

)]T

γ =
(
si

N(q)
⊗ si

N(q)

)
(0)
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D.2 Active set decrease

On the other hand, if the active set is decreased, the following implication can be used

in order to compute the inverse of the submatrix:

Γ
A(q−1)

=




Γ
A(q)

v

v∗ γ




Γ−1

A(q−1)
=




Ã u

u∗ α




Γ
A(q−1)

invertible and Grammian

Γ
A(q)

invertible

α ∈ R∗





=⇒ Γ−1

A(q)
= Ã− 1

α
uu∗ (D.2)

Often, the index to remove is not the last one added. In this case the formula is slightly

different:

Γ
A(q−1)

=




Γ(1)

A(q)
v1 Γ(2)

A(q)

v∗1 γ v∗2

Γ(3)

A(q)
v2 Γ(4)

A(q)




and Γ−1

A(q−1)
=




Ã
(1)

u1 Ã
(2)

u∗1 α u∗2

Ã
(3)

u2 Ã
(4)




If:

Γ
A(q)

=




Γ(1)

A(q)
Γ(2)

A(q)

Γ(3)

A(q)
Γ(4)

A(q)




Then, (D.2) holds with:

u =




u1

u2




and Ã =




Ã
(1)

Ã
(2)

Ã
(3)

Ã
(4)



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