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Préambule

Résumé

Dans cette thèse nous prouvons la stabilité de certains systèmes d’EDP issus de la
magnétohydrodynamique et obtenus grâce à des développements de type couche limite.
Nous commençons par discuter les conditions aux bords les plus appropriées pour le système
MHD dans un contexte géophysique. Nous obtenons un résultat d’existence de solutions à
la Leray pour de telles conditions. Ensuite, nous effectuons une analyse des couches limites
sur l’équation adimensionnée, en identifiant les différents modèles asymptotiques selon les
régimes d’intérêt. Nous étudions le caractère bien ou mal posé de chacun de ces modèles,
dans des cadres linéarisé ou complètement non-linéaire. Nous montrons en particulier
le caractère stabilisant d’un champ magnétique tangentiel à la paroi. Finalement, nous
illustrons avec des simulations numériques la stabilité ou l’instabilité pour certains des
modèles introduits.

Mots-clés

EDP, équation de Navier-Stokes, équation d’Euler, dynamique des fluides, couche limite,
système de Prandtl, MHD, stabilité.
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Abstract

In this thesis we establish the stability of some PDE systems derived from magne-
tohydrodynamics and obtained through some boundary layer developments. We begin
discussing the most appropriate boundary conditions for the MHD system in a geophysics
context. We obtain an existence result of Leray solutions for this complete system. Next,
we perform a boundary layer analysis on the nondimensionalized equation, identifying the
different asymptotic models according to the most interesting regimes. We study the well-
or ill-posedness of each model, either in a linearised case or either in a completely non-linear
case. In particular, we show the stabilizing effect provided by a magnetic field tangent to
the wall. Finally, we illustrate with numerical simulations the comparison between stability
and instability for some of those models.

Keywords

PDE, Navier-Stokes equation, Euler equation, fluid dynamics, boundary layers, Prandtl
system, MHD, stability.
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Chapter 1

Introduction

In this thesis we establish either the stability or the instability of meaningful boundary
layer models in magnetohydrodynamics (MHD). We use different tools from the analysis
of PDE’s: compactness arguments, multiscale expansion, Sobolev estimates, as well as
numerical simulations. In particular, we try to adapt to the MHD context some techniques
and ideas that arose from studies concerning the purely hydrodynamic case, that is the
Prandtl system. Most strikingly, we are able to obtain - for some asymptotic regimes in
which the Prandtl system is unstable - wellposedness and stability under fair regularity
hypothesis. Lastly, to emphasize the difference between stable and unstable behaviours,
we perform some numerical simulations.

Starting from D’Alembert paradox in 1752, the study of fluid dynamics provided many
reasons to take a closer look near the border that confines the flow. Physical experiments
as well as mathematical results suggest that in the thin layer near the boundary lies an
important part of crucial dynamics. To explain the mechanism causing instabilities in the
flow’s evolution, Ludwig Prandtl in 1904 proposed a mathematical model for it.

The idea was to inject in the Navier-Stokes equations a particular form of solution, a
boundary layer development, where the normal variable is rescaled in order to take into
account the concentration of streamlines near the border. More precisely, the solution
to plug into the Navier-Stokes equation is split into a first term which is solution to the
associated Euler equation (that is, the same equation without the diffusion term) plus a
boundary layer corrector that only models the behaviour close to the boundary. Once done,
one can derive a new equation for the corrector that arises looking at the leading order
terms in the Navier-Stokes equation. This equation, completed with the incompressibility
condition and the proper boundary and initial conditions, constitutes the Prandtl system,
whose study brought a deeper understanding of viscous flows.

One of the main issues that were explored, was the relation between the instability
of the flow and the boundary of fluid domain. This stability/instability problem has
benefited from strong mathematical developments in the last decade. The purpose of this
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8 CHAPTER 1. INTRODUCTION

work is to rely on this recent progress to gain insight and perspective in the study of the
magnetohydrodynamic system (MHD), which couples the Navier-Stokes equation (to model
viscous flows) and an approximation of the Maxwell equations (for the electromagnetic
field). This system describes the evolution of a conducting fluid under the effect of a
magnetic field (such as, for instance, the liquid iron in the Earth’s core under the influence
of the Earth’s magnetic field). More specifically, we would like to investigate its possible
boundary layer behaviours, which depend on the magnitude of different quantities involved
(like the typical length of a flow, the width of the boundary layer itself or the typical
intensity of the magnetic field). In this work we will derive some MHD boundary layer
systems through a multiscale expansion, we will set them in the right context (recognizing
sometimes classical models like the Hartmann layer or the Shercliff layer) and we will
determine conditions to establish their stability or instability for Sobolev initial data.

Before presenting our main results, we first recall some results about the purely hydro-
dynamic case, namely about the Prandtl system. This will provide us with all the right
perspectives and techniques to further venture into the study of the MHD models.

1.1 The Euler and Navier Stokes models

Let Ω Ă Rd an open set whose boundary BΩ is regular. The two classical systems that
model the flow of an incompressible fluid in Ω are the Euler and the Navier-Stokes equa-
tions.

The Euler system reads:
$

’

’

’

&

’

’

’

%

ρ pBtu` pu ¨∇quq `∇p “ 0 in Ω

div u “ 0 in Ω

u ¨ n|BΩ “ 0,

(Euler)

where ρ is the density of the fluid, u “ upt, xq is its velocity considered at time t P R`

at the point x P Ω and p is the pressure (which is a scalar quantity depending on u). We
will restrict ourselves to the case of a constant ρ, that models an homogeneous fluid. The
vector n is a unit normal vector to the boundary. The boundary condition expresses the
impermeability of the boundary.
On the other hand, the Navier-Stokes equation reads

$

’

’

’

&

’

’

’

%

ρ pBtu` pu ¨∇quq `∇p´ µ∆u “ 0 in Ω

div u “ 0 in Ω

u|BΩ “ 0.

(Navier-Stokes)

It differs from the Euler equations by the diffusion term µ∆u, which models viscous flows, µ
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being the viscosity. Besides, at the boundary we have now a no-slip condition, appropriate
to the parabolic type of the equation and satisfied experimentally in most situations. We
will refer to these systems as (E) and (NS), respectively.

Remark 1.1.1. The same equations are also used in the case Ω “ Rd, once completed
with a condition at infinity.

For both systems, one can establish local existence results in the strong sense for initial
data of Sobolev regularity. In particular, for the Navier-Stokes equation one has :

Theorem 1.1.1. Let s ą d
2 ` 1, ρ ą 0, µ ą 0, s P N and u0 P H

s
σpΩq being 0 near

BΩ. Then there exists a time T ą 0 and a unique solution u P L8p0, T ;Hs
σpΩqq X

W 1,8p0, T ;Hs´2
σ pΩqq for the system

$

’

’

’

&

’

’

’

%

ρBtu` Ppρu ¨∇u´ µ∆uq “ 0 in p0, T q ˆ Ω

u|BΩ “ 0

u|t“0 “ u0,

where P denotes the Leray projector and Hs
σ refers to the solenoidal vector fields in Hs.

Remark 1.1.2. When u0 does not vanish near the boundary, additional compatibility
conditions are needed: see [4].

Remark 1.1.3. In dimension 2, the strong solution is known to be global: one can take
T “ `8.

1.2 The high Reynolds number limit

Let us now consider the Navier-Stokes equation: we want to rewrite it in a dimensionless
form. To do so, let us take the typical time scale T (the characteristic time of observation
of the phenomenon) and the spatial scale L (the characteristic size of the flow considered).
We deduce the characteristic velocity of the problem U :“ L

T , and we denote by Π the
characteristic pressure (to be determined). We introduce then, the new variables which
are said to be dimensionless or nondimensional, defined by

u “ Uu1, p “ Πp1, x “ Lx1, t “
L

U
t1.

We inject them into the Navier-Stokes equation to find:

U2ρ

L
Btu1 `

U2ρ

L
pu1 ¨∇qu1 ` π

L
∇p1 ´ µU

L2
∆u1 “ 0.

Dropping the primes and multiplying everything by L
U2ρ

we get
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Btu` pu ¨∇qu`
π

U2ρ
∇p´ µ

LUρ
∆u “ 0.

We define the constants ν “ µ
LUρ , π :“ U2ρ, to bring it in the final form:

$

’

’

’

&

’

’

’

%

Btu` pu ¨∇qu`∇p´ ν∆u “ 0 in Ω

div u “ 0 in Ω

u|BΩ “ 0.

(1.1)

The constant ν is called the inverse Reynolds number, Re “ 1
ν being the Reynolds

number. Let us focus, then, on some phenomena having place with a very high typical
velocity (like a flying plane). In this case, the parameter ν goes to 0, and since the diffusion
term depends on it, it becomes more and more negligible. At this moment, knowing that
for a regular enough initial datum one has existence and uniqueness of a regular solution,
one could be tempted to expect that the solution to (NS) tends toward the solution to (E)
with the same initial datum, at least for a small time (independent from ν). Unfortunately,
the situation is far less intuitive, since the difference in the boundary conditions of (E) and
(NS) affects the solutions’ behaviour.
Indeed, in (NS) the boundary condition is

u|BΩ “ 0,

whereas for (E) one has just

u ¨ n|BΩ “ 0 where n is the normal vector to BΩ,

and this variation is crucial, because since the boundary conditions are independent from
the parameter ν, they are not influenced by the the fact that the two systems, in a way,
"tend" toward each other.

Still, apart from this border conditions, the Navier-Stokes equation formally tends to
the Euler equation. In the limit ν Ñ 0, one could guess that the solutions to (NS) and
(E) should be similar - at least far from the boundary - except for a certain region close
to the boundary of Ω, which we will call boundary layer. In fact, one can prove that when
considered in the whole space Rd (d “ 2, 3), the Navier-Stokes solution tends to the Euler
solution as Re Ñ 8 (see [8], for instance). On the other hand, in the case of an open set
Ω, the following result by Kato in [31] establishes a necessary and sufficient condition for
the convergence to occur:

Theorem 1.2.1 (Kato, 1984). Let Ω :“ t|x| ă 1u Ă R2, ω0 P C8c pΩq and u0 “ Krω0s,
where K is the Biot-Savart operator on Ω. Let uν be the unique classical solution of the
Navier Stokes equation in Ω with the no-slip condition and initial velocity u0. Let u be
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the unique smooth solution of the Euler equations with u ¨ x|t|x|“1u “ 0 and same initial
velocity u0.

Fix T ą 0. Then, one has that uν Ñ u as ν Ñ 0 strongly in L8ps0, T r;L2pΩqq

if and only if ν
şT
0 }∇uνp¨, tq}2L2pΓcν q

dt Ñ 0 as ν Ñ 0, for some c ą 0, where Γcν :“

t1´ cν ă |x| ă 1u .

Remark 1.2.1. This theorem suggests that the typical size of the boundary layer is a
strip of width ν near the boundary of Ω. We will see that its size won’t always be the
same. The next section, in particular, will be devoted to the presentation of an important
boundary layer model whose size isn’t ν: the Prandtl system.

1.3 The derivation of the Prandtl system

Aiming at a deeper understanding of the boundary layer phenomenon, Ludwig Prandtl
proposed in [48] a new way to model it, by introducing an approximation of the fluid’s
behaviour near the boundary of the domain. The underlying idea was to use a particular
asymptotic development in this region. We will provide here a short exposition of this
technique, that will be generalized in the following.

Let us consider the upper half-plane R ˆ R`, having boundary ty “ 0u. Using the
notation uν “ puν , vνq, one can write down the Navier-Stokes equation component by
component:
$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

Btu
ν ` uνBxu

ν ` vνByu
ν ` Bxp

ν ´ νpB2
xu

ν ` B2
yu

νq “ 0

Btv
ν ` uνBxv

ν ` vνByv
ν ` Byp

ν ´ νpB2
xv
ν ` B2

yv
νq “ 0

Bxu
ν ` Byv

ν “ 0

uνpt, x, 0q “ 0, vνpt, x, 0q “ 0 ( boundary conditions for NS ) .
(1.2)

Prandtl’s idea is to inject an ansatz for the two components of the velocity to express
them in a more useful form. Exploiting the fact that the most meaningful part of the flow
takes place near the boundary, the ansatz provides a re-parametrisation of the vertical
variable and of the velocity components.

This asymptotic consists of two different expansions of u “ pu, vq (solution of (NS) for Re
tending to `8), respectively outside and inside the boundary layer:

• outside the boundary layer, no concentration should occur: one should have

upt,xq „ u0pt,xq, vpt,xq „ v0pt,xq;

where pu0, v0q is the solution of the Euler equation.
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• inside the boundary layer, u should exhibit strong gradients, transversally to the
boundary: more precisely, the asymptotics suggested by Prandtl is

upt, x, yq „ uBL
ˆ

t, x,
y
?
ν

˙

, vpt, x, yq „
?
νvBL

ˆ

t, x,
y
?
ν

˙

where uBL “ uBLpt, x, Y q and vBL “ vBLpt, x, Y q are boundary layer profiles, de-
pending on a rescaled variable Y “ y

?
ν
, Y ą 0.

Therefore, in the Prandtl model, the typical scale of the boundary layer is
?
ν, as sug-

gested by the heat part of the Navier-Stokes equation. Accordingly, for the divergence-free
condition not to degenerate, the vertical amplitude of the velocity is Op

?
νq. Let us note

that this Prandtl size
?
ν is very different from the size ν involved in Kato’s theorem.

Plugging the expression above in (1.2) and keeping the leading order terms we derive the
Prandtl system (denoting y instead of Y ):
$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

Btu` uBxu` vByu´ B
2
yu “ ´

Bp0

Bx pt, x, 0q “ pBtu
0 ` u0Bxu

0q|y“0

Bxu` Byv “ 0

u|y“0 “ v|y“0 “ 0,

limyÑ`8 upt, x, yq “ u0pt, x, 0q limyÑ`8 ppt, x, yq “ p0pt, x, 0q

(Prandtl equations)

where u0pt, x, 0q and p0pt, x, 0q are the Euler tangential velocity and pressure at the bound-
ary. The system is completed by both the no-slip condition

u|y“0 “ v|y“0 “ 0,

and by the connection to the Euler flow for y Ñ `8 (thus away from the border) which
gives

lim
yÑ`8

upt, x, yq “ u0pt, x, 0q, lim
yÑ`8

ppt, x, Y q “ p0pt, x, 0q.

Remark 1.3.1. One of the consequences of this formal work is that we eliminated from
the system the evolution equation on the vertical component; it is now recovered through
the divergence-free condition.

Remark 1.3.2. Before proceeding with our exposition, we would like to underline the
fact that the previous construction can be generalized in a very natural way to the case
of an open set with a regular boundary BΩ using the Frenet frame, i.e. by decomposing
x “ x̃pxq ` ynpxq (where x̃ P BΩ, x is the new parametrisation of BΩ and n is the normal
vector to BΩ in the point x̃).
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1.4 The regularity of the Prandtl solution

One of the most important issues concerning the Prandtl system is its stability. Determin-
ing which order of regularity on the initial datum is enough to obtain that the system is
well-posed or ill-posed is the objective of many recent works. Besides, the justification of
the initial ansatz remains a central issue in contemporary research.

Let us focus on the local well-posedness in time.

Without providing all the details (we refer to [16] for a larger introduction about this
system), we can briefly synthesize the main results on this subject in this list:

• [47], [58]: for px, yq Ps0, LrˆR`, for an initial datum that is monotone in the vertical
variable y (that is, Byu ą 0), the Prandtl system is locally well-posed (see [47]). More
precisely, thanks to the monotonicity hypothesis, using Crocco’s transform Oleinik
and Samokhin were able to prove the local well-posedness of both the boundary value
and initial value problems. Moreover, Xin and Zhang in [58] proved that the latter
problem has a global weak solution when the source is null and BxP ď 0 (that is, a
favourable pressure gradient, which is physically known to be stabilizing).

• [7], [5], [6]: for an initial datum which is analytic in x P R and an analytic Euler
flow as well, the initial value problem for the Prandtl equation is well-posed (see [7],
[5], [6]). This strong regularity hypothesis is natural to balance the loss of regularity
due to the term vByu, that leads to an instability (the next paragraph will concern
this mechanism).

• [40], [19]: for an initial datum of class Gevrey 2 in the horizontal variable x, the
Prandtl system is locally well-posed (see [40]). This recent result improves the pre-
vious one, demanding less regularity to obtain the well-posedness. The authors use
energy estimates that are clever generalizations of ideas exposed in [19] (see section
1.5 for more details on this method).

We want, now, to recall some results about the case of Sobolev initial data. What can be
said in this setting? One can show that without the monotonicity hypothesis on the initial
data, the system is ill-posed, because of a strong instability mechanism at high frequencies.
This result and the dynamic it reveals will be important later, during the analysis of
the MHD system. We will determine whether this type of instability still occurs in the
boundary layer systems we will derive from the MHD equations.

The reader can find all the details in [18], we will only provide here the fundamental
notions.

For simplicity, the hypothesis is to have px, Y q P TˆR` and u0pt, x, 0q “ 0. we will write
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y instead of Y . The Prandtl system becomes, then:
$

’

’

’

&

’

’

’

%

Btu` uBxu` vByu´ B
2
yu “ 0, in Tˆ R`

Bxu` Byv “ 0, dans Tˆ R`

pu, vq|y“0 “ p0, 0q, limyÑ`8 u “ 0.

(1.3)

In order to achieve a deeper comprehension of the latter system, one can linearise it around
a certain solution (which of course will be chosen to simplify the analysis). A natural choice
is a shear layer flow : it is a flow whose main characteristic is to be parallel to the boundary
(here ty “ 0u) and independent from the horizontal variable x.
To build it, one considers uspt, yq: a regular solution to the heat equation with initial data
Us, that is

$

&

%

Btus ´ B
2
yus “ 0

us|y“0 “ 0, us|t“0 “ Us.
(1.4)

In this way, the shear layer pus, vsq “ puspt, yq, 0q trivially satisfies (1.3), and as a solution
of the latter one can linearise the equation around it, which gives the simplified system

$

’

’

’

&

’

’

’

%

Btu` usBxu` vByus ´ B
2
yu “ 0, dans Tˆ R`

Bxu` Byv “ 0, in Tˆ R`

pu, vq|y“0 “ p0, 0q, limyÑ`8 u “ 0.

(1.5)

Now that the problem has been rewritten in a simpler form, one can turn to the stability
properties of (1.5).

To provide a framework where this system is well-posed, we introduce the following
notations and functional spaces:

Definition 1.4.1. One defines

• W s,8
α pR`q :“ tfpyq such that eαyf PW s,8pR`qu @α, s ą 0,

with }f}W s,8
α

:“ }eαyf}W s,8 ;

• Eα,β :“
!

upx, yq “
ř

kPZ û
kpyqeikx, }ûk}

W 0,8
α

ď Cα,βe
´β|k|, @ k

)

, @ α, β ą 0 with

}u}Eα,β :“ supkPZ e
β|k|}ûk}

W 0,8
α

.

Note that the functions of Eα,β have analytic regularity in x. They have only L8

regularity in y, with an exponential weight. More regularity in y could be considered as
well. Let α, β ą 0: then one has (cfr [18]):

Proposition 1.4.1 (Well-posedness in the analytic setting). Let us P C0pR`;W 1,8
α pR`qq.

There exists ρ ą 0 such that: for all T with β´ρT ą 0, and all u0 P Eα,β the linear equation
1.5 has a unique solution u P Cpr0, T q;Eα,β´ρT q, upt, ¨q P Eα,β´ρt, u|t “ 0 “ u0.
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In short, the Cauchy problem for (1.5) is locally well-posed in the analytic setting.

Definition 1.4.2. We define, then T pt, squ0 :“ upt, ¨q, where u is solution of (1.5) with
u|t“s “ u0. As the spaces Eα,β are dense in the spaces

Hm :“ HmpTx,W 0,8
α pR`y qq, m ě 0 with }f}2Hm :“

ÿ

kPZ
|k|2m}f̂kpyq}

2
W 0,8
α

,

we introduce for all T P LpEα,β, Eα,β1q

}T }LpHm1 ,Hm2 q :“ sup
u0PEα,β

}Tu0}Hm2

}u0}Hm1

P r0,`8s.

The main result about Sobolev ill-posedness of (1.5) follows:

Theorem 1.4.1 (Gérard-Varet, Dormy; 2010). Let us belonging to C0pR`;W 4,8
α pR`qq X

C1pR`;W 2,8
α pR`qq. Assume that the initial velocity has a non-degenerate critical point

over R`. Then there exists σ ą 0, such that for all δ ą 0,

sup
0ďsďtďδ

}e´σpt´sq
?
|Bx|T pt, sq}LpHm,Hm´µq “ `8, @ m ě 0, µ P r0, 1{2q.

Moreover, one can find solutions us of the heat equation and a σ ą 0 such that for all δ ą 0

one has:
sup

0ďsďtďδ
}e´σpt´sq

?
|Bx|T pt, sq}LpHm1 ,Hm2 q “ `8, @ m1,m2 ě 0.

This theorem expresses ill-posedness in the Sobolev setting. The main idea behind the
proof is that if the base profile us has a non-degenerate critical point, one can find a
solution of (1.5) whose k-th Fourier mode explodes like eσ0

?
|k|t.

We give here the main hints of its complete proof.

1. System (1.5) has constant coefficients in t and y. Since we are expecting high fre-
quency instabilities, it is fair (and can be established a posteriori) to replace uspt, yq
with the initial data usp0, yq “ Uspyq, in order to have constant coefficients only in
y. Then, one can restrict to solutions with frequency k, k " 1 in x, of the type:

´

upt, yq “ eikpωpkqt`xqûkpyq, vpt, yq “ keikpωpkqt`xqv̂kpyq
¯

.

After some manipulations (among which a development of the linear operator around
the critical point of Us), we end up with an eigenvalue problem for an ordinary
differential equation.

2. One looks for approximate eigensolutions of this system. Thanks to a proper rewrit-
ing and to the accurate choice of the functional space, one ends up with the following
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result: there exists an eigenvalue of the equivalent system such that its imaginary
part is negative. This implies that in the previous development we have an almost
instantaneous growth, like eσ0

?
|k|t.

3. Thanks to the previous steps, it is easy to construct a solution of (1.5) which causes
the explosion. The idea is to focus again on the k-th Fourier mode and to propose
a solution (made up by a regular part and a shear layer part) such that it allows
estimates involving the exponential growth, leading to the ill-posedness.

Remark 1.4.1. This result clearly emphasizes that even in a case of strong regularity of
the initial data, we can’t expect this property to be preserved.

1.5 Well-posedness in a weighted Sobolev space for a mono-
tone initial profile

The previous section was totally devoted to illustrate a strong instability arising in the
Prandtl system; this one, instead, will concern a result which is similar to that of Oleinik:
a wellposedness result for a monotone initial data. Although the hypothesis and the results
are similar, the interest of this proof lies in its techniques, which differ from those of
Oleinik (who used Crocco’s transformation). These methods, developed by Masmoudi and
Wong in [44], will be our starting line to prove some well-posedness results in the case of
magnetohydrodynamics.
Their approach is based on the elimination of the problematic term in the Prandtl equation.
Since, as we have recalled in the previous paragraph, this term causes an explosion in high-
frequencies thus leading to instability, they neutralize it by performing a clever change of
variable. This, at the price of exploiting the monotonicity of the initial data.
Their trick arises from a simple observation. Let us consider the linearized Prandtl equation
1.5 and its derivative along the vertical direction

Btu` usBxu` vByus ´ B
2
yu “ 0, (1.6)

Bt rByus ` usBx rByus ` rByuss Bxu` vBy rByuss ` Byv rByuss ´ B
3
yu “ 0; (1.7)

we remark, then, that exploiting the incompressibility condition, one can eliminate two
terms in the second equation and that calling Byu “: ω one can rewrite the system as

Btu` usBxu` vByus ´ B
2
yu “ 0, (1.8)

Btω ` usBxω ` vB
2
yus ´ B

2
yω “ 0. (1.9)

At this point, performing a standard energy estimate on the Prandtl equation would
lead to a huge issue: that of bounding the term vByus. Indeed, if we rewrite it using
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the incompressibility condition we have ´B´1
y Bxu Byus, and this term has one extra x

derivative, which is not skew-symmetric and does not disappear in the estimate. Now,
Masmoudi and Wong’s idea consists of combining two ingredients to bypass this problem.
The first remark is that the equations in system (1.5) are term by term very similar. The
second one is that we can exploit the monotonicity hypothesis on us that assures that
Byus ą 0 so that multiplying the first equation by B2yus

Byus
and afterwards subtracting it from

the second we obtain:

Bt

˜

ω ´ u
B2
yus

Byus

¸

` usBx

˜

ω ´ u
B2
yus

Byus

¸

´ B2
yω ` B

2
yu
B2
yus

Byus
` uBt

˜

B2
yus

Byus

¸

“ 0 (1.10)

which allows to eliminate the term responsible for instability. We will therefore call g :“

ω ´ u
B2yus
Byus

and then work with the simpler equation

Btg ` usBxg ´ B
2
yg “

«

B2
y ,
B2
yus

Byus

ff

puq ´ uBt

˜

B2
yus

Byus

¸

, (1.11)

on which it becomes easy to get the wished energy estimate.

For the sake of brevity and clarity we have been working with the linearised equation, but
one can obtain an energy estimate in weighted in y Sobolev spaces for the Prandtl equation
itself. More precisely, the result establishes the following:

Theorem 1.5.1 (Existence and local uniqueness for the Prandtl equation in a weighted
Sobolev space). Let s ě 5 an even integer and γ ě 1 the order of the weight in y. We
suppose that the flow in the upper part U (far from the boundary) of the boundary layer
satisfies

sup
t

r s`9
2 s
ÿ

l“0

}BltU}W s´2l`9,8pTq ă `8. (1.12)

We also suppose that u0´U and ω0 (the initial data and its initial derivative, respectively)
belong in two weighted Sobolev spaces with s adapted derivatives. There exists, then, a
time T ą 0 and a unique classical solution pu, vq to the Prandtl equation such that u´U P
L8pr0, T s;Hs,γq X Cpr0, T s;Hs ´ wq and that the curl ω :“ Byu P L8pr0, T s;Hs,γ

σ,δ q X

Cpr0, T s;Hs´wq, where the space Hs,γ
σ,δ is an adapted weighted Sobolev space and by Hs´w

we denoted the space Hs considered with its weak topology.

Once again, for a more precise statement and the proof, the reader can find all in [44].
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1.6 Conclusion

The Prandtl system has shown through time that it models in a precise way the flow near
the boundary, but when studied mathematically, it proves to be ill-posed in most cases.
In fact, as soon as its initial datum of Sobolev regularity is not monotone (that is, it
admits at least one point with zero derivative) the solution is unstable. On the other hand,
provided with the monotonicity of the initial data, a Sobolev-type regularity is enough to
assure that the system is well-posed. The monotonicity is a key hypothesis: without it,
one can’t control a loss of horizontal derivative in the energy estimates, which can’t be
otherwise balanced.

According to this perspective, one could wonder whether the intrinsic instability of the
Prandtl equation is to be found in magnetohydrodynamics (MHD) as well. This discipline
studies the flow of fluids that are subjects to the effects of the electromagnetic field, such
as the Earth’s iron core or plasma in astrophysics. More specifically, we are interested in
the dynamics of an electrically conducting liquid near a wall. This problem can be studied
applying some of the boundary layer techniques we previously presented to a different
system of partial differential equations. This topic, whose applications range among many
domains of active research, such as dynamo theory [13] or nuclear fusion [57], has been of
constant interest. The MHD system couples a Maxwell like equation on the evolution of
the magnetic field with the Navier-Stokes equation, which gains a source term taking into
account the Lorentz force. This system can be studied performing the same boundary layer
development we presented in this introduction, and it is therefore natural to investigate the
same issues, particularly its stability. Two results should now be mentioned, one suggesting
a stabilization of the flow in the MHD case, and one against it.

In [14], the authors prove the Sobolev validity of boundary layer expansions for an
MHD system that models a rotating fluid (so that it takes into account the Coriolis force)
with an almost constant magnetic field, is well-posed. They consider a fluid contained in
the space between two planes of R3 with Dirichlet boundary conditions on the velocity and
the continuity of pE ˆ bq ¨ n through the boundary (E being the electric field and b the
magnetic field). Their proof relies on a boundary layer development, where the role played
by the hypothesis of the constant magnetic field (at the first order) is crucial.

On the other hand, in [45], the author considers a two-dimensional domain and studies a
shear flow solution of the MHD system with Dirichlet boundary conditions on the velocity
and Neumann conditions on the magnetic field. The article concludes that the shear layer
profile of the velocity can develop a non degenerate critical point in a finite time. This
hypothesis, as we have seen, constitutes the key factor in the proof of the ill-posedness of
the Prandtl equation (in [18]). This result would suggest that even for an MHD flow with
a monotone initial profile for the velocity, nothing could prevent the formation of a critical
point, thus preparing the ground for the very same explosion in high-frequencies described
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in [18].

1.7 Presentation of the results

Keeping these two works in mind, we present in this paragraph the results we established
in order to gain insight on the issue of the MHD boundary layer stability.

In the second chapter we discuss all the preliminary hypothesis and some results about
the MHD system. We begin by deriving the system itself from the Maxwell equations
and the Navier-Stokes equation. We consider the case of a fluid contained in a domain Ω

surrounded by an insulator (a situation physically relevant), in contrast with all previous
studies that considered a perfect conductor and thus neglected the magnetic field outside
Ω. As a consequence, we derive jump conditions for the magnetic field at the boundary -
assuring it to be continuous - and for a no-slip condition on the velocity.

As in most of the literature, we neglect the displacement current, and perform a non-
dimensionalisation.

Once derived the MHD system, we introduce a variational formulation for the equation on
the evolution of the magnetic field in order to prove a weak existence (in the Leray sense)
result for the whole system. The existence result is proved adapting the classical proof
of Leray to the MHD system, thus with a Galerkin approximation and then compactness
arguments.

Let us stress that the jump conditions and equations on the magnetic field introduce non-
standard difficulties in both finding the appropriate variational formulation and solving
it.

The third chapter consists of the article [21]. It is divided into two parts.

First part:

It is devoted to a formal boundary layer analysis for the MHD system. We work in Ω “ R3
`

(whose boundary is thus the plan R2) and we consider the following system

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

Btu` u ¨∇u`∇p´ 1

Re
∆u “ Sb ¨∇b,

Btb´ curl puˆ bq `
1

Rm
curl curl b “ 0,

div u “ 0, div b “ 0,

u|BΩ “ 0, b|BΩ “ e.

(1.13)

The parameters Re and Rm are the hydrodynamic and magnetic Reynolds numbers re-
spectively; S is the so-called coupling parameter, given by S “ Ha 2

ReRm , where Ha is the
Hartmann number. Obviously, for S “ 0 we find again the Navier-Stokes equation. The
magnetic field at the boundary equals e, which is a uniform background magnetic field.
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From this set of equations, investigate the different possible boundary layer expansions.
We plug in the system the following approximations:

u «

´

u1x
`

t, x, y, λ´1z
˘

, u1y
`

t, x, y, λ´1z
˘

, λ u1z
`

t, x, y, λ´1z
˘

¯

,

b « e` δ
´

b1x
`

t, x, y, λ´1z
˘

, b1y
`

t, x, y, λ´1z
˘

, λ b1z
`

t, x, y, λ´1z
˘

¯

,
(1.14)

choosing for b either a tangent magnetic field (that is e “ ex) or transverse magnetic field
(that is e “ ez). The value of λ ! 1 is the boundary layer size whereas δ “ Op1q is the
typical norm of the magnetic perturbation. Retaining only the non-trivial cases, we find
the following regimes, that are afterwards analysed:

1. Hartmann regime: choosing λ “ Ha´1, Ha 2 " Re we find the classical Hartmann
layer.

2. Mixed Prandtl/Hartmann regime: choosing λ “ Ha´1, Ha 2 „ Re , the evolu-
tion equations decouple, and we recognize a damped Prandtl equation.

3. Shercliff regime: choosing λ “ Ha´1{2, Ha " Re we find the equations describing
the Shercliff layer.

4. Mixed Prandtl/Shercliff regime: choosing λ “ Ha´1{2, Ha „ Re " Rm we
find a new system, that has features from both the Prandtl and the Shercliff system.

5. Fully non-linear MHD regime: In this case, we take δ “ 1 and e “ 0 (since
the perturbation to the constant magnetic field ex is of size one). Choosing λ “
Ha´1{2, Ha „ Re „ Rm we obtain the fully non-linear layer. It is the only one to
feature two evolution equations (one on the velocity and one on the magnetic field).

Second part:
The previous derivation being formal, we study if the reduced boundary layer models are
well-posed, at least locally in time, so that boundary layer expansions can be built. From
the point of view of well-posedness, the interesting systems are the non-linear ones, that
mix Prandtl and magnetic features. They correspond to the mixed Prandtl/Hartmann
regime (with background transverse magnetic field e “ ez), the mixed Prandlt/Shercliff
and the fully non-linear (with background tangential magnetic field e “ ex). On those
systems, we perform a linear stability analysis, restricting ourselves to the 2d case in the
variables px, zq, with u “ pu, vq, b “ pb, cq.
For the mixed Prandtl/Hartmann regime, that consists of a damped Prandtl equation, we
prove that the dynamic is the same as for the original Prandtl system, developing a strong
instability as soon as the initial profile is not monotone.
For the two other cases, instead, we can use the fact that the two equations are coupled
to obtain a cancellation of the terms leading to the instability. We consider linearizations
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around shear flows first, postponing the discussion of the fully nonlinear models to Chapter
4.
The linearised mixed Prandtl-Shercliff system is the following

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

Btu` UBxu` vU
1 ´

Ha
Re
B2
zu “

Ha
Re
Bxb,

Bxu` B
2
zb “ 0,

Bxu` Bzv “ 0,

u|z“0 “ v|z“0 “ b|z“0 “ 0, pu, bq Ñ 0 as z Ñ `8,

(1.15)

where U “ Upzq connects 0 at z “ 0 to some constant u8 at infinity.
In this system, we have an evolution equation on the velocity and a second equation that
provides a useful relation between the velocity and the magnetic field. To obtain the
linear stability, we perform two energy estimates respectively on the first equation and
its vorticity formulation (obtained simply deriving along the vertical variable). Then, we
exploit (1.15b) to conveniently rewrite some terms and summing them up we obtain a final
estimate that allows to conclude.
Finally, the linearized MHD layer reads

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

Btu` UBxu` U
1 v ´ B2

zu “ SBxb,

Btb´∇Kpv ´ U cq ´
Re
Rm

B2
zb “ 0,

Bxu` Bzv “ div b “ 0,

u|z“0 “ v|z“0, b|z“0 “ 0,

uÑ 0, bÑ 0, as z Ñ `8,

(1.16)

where u “ pu, vq and b “ pb, cq are the perturbations of the reference solution u “

Upzq, v “ 0, b “ ex. After having noticed that there is no loss of generality in assuming
that b has zero average in x, we can write b “ ∇Kφ, for some function φ which is periodic
with zero average in x. This allows to express the second equation of the previous system
as

Btφ` UBxφ´ v ´
Re
Rm

B2
zφ “ 0. (1.17)

This last equation is a key ingredient in the stability analysis of our system: in fact,
combining the evolution equation on u and the evolution equation on φ, one can get rid of
the term in v, responsible for the loss of one derivative in x (which caused the ill-posedness
of the Prandtl system). This idea is reminiscent of article [44] about the classical Prandtl
equation, that used the monotonicity of the velocity profile to perform the change of
variable. However, the novelty in the present MHD context is that no monotonicity of
the velocity profile is needed to obtain well-posedness. We rather consider the following
modified velocity ũ “ u`U 1φ that allows a better energy estimate, and we easily conclude
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that the system is well-posed.

In Chapter 4, we deal with the three non-linear models, particularly with the mixed
Prandtl/Shercliff layer. All of them behave like the linearised versions studied in the
previous chapter. In this chapter we detail these proofs.

• The fully non-linear MHD model has been proved to be well-posed by Liu, Xie and
Yang in [41] while the work for this thesis was being completed. We provide here some
more commentaries about one particular case where one can explicitly compute its
solutions. Indeed, considering the zero-viscosity case (which means that the diffusion
term is absent in the Navier-Stokes equation) and linearising the system, it becomes
easy to calculate these solutions.

• The mixed Prandtl/Hartmann case is analysed, putting into light how the damped
Prandtl equation is similar to the Prandtl equation. The adjustments needed to
apply the ill-posedness theorem of [18] and the well-posedness theorem for initial
data of class Gevrey 7

4 of [19] are provided.

• The new case to treat is the mixed Prandtl/Shercliff model, that is

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

Btu` uBxu` vBzu´
Ha
Re
B2
zu “

Ha
Re
Bxb´ Bxp

8,

Bxu` B
2
zb “ 0,

Bxu` Bzv “ 0,

u|z“0 “ v|z“0 “ b|z“0 “ 0,

uÑ U, bÑ B, as z Ñ `8.

(1.18)

Mathematically, it presents the same difficulty as the fully non-linear MHD layer,
namely the unboundedness of the non-linear term vBzu in the evolution equation
on the velocity. We were able to prove that this system is well-posed for Sobolev
initial data. To do so, we work with an approximation of (1.18) that adds a non-
homogeneous diffusion. Then, instead of defining a new variable that involves both
the velocity and the magnetic field as for the fully non-linear MHD layer, we exploit
here the second equation (that gives Bxu “ ´B2

zb) to obtain a cancellation in the a
priori energy estimate. In order to do so, we define a proper weighted Sobolev space
and we perform our energy estimate. Analysing term by term we use the previous
equation to rewrite the problematic terms and thus obtain their mutual cancellation.

It is straightforward to show the existence of the solution of the approximate system,
and the energy estimate allows to prove its convergence toward the solution we were
looking for in the first place.

Directly following the study of the mixed Prandtl/Shercliff case, we will present in the last
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Chapter some numerical simulations that underline how Prandtl instability mechanism,
differs from the more stable dynamics of the mixed Prandtl/Shercliff layer. As in [18],
where the simulations had put into light the instability of the computed solutions of the
ordinary differential equation obtained passing in Fourier on the linearised Prandtl sys-
tem, we perform similar calculations on the mixed Prandtl/Shercliff case, obtaining stable
profiles.
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Chapter 2

Preliminaries on the MHD system

To prepare the boundary layer analysis of the next chapter, we provide here a careful
derivation of the MHD system, in dimensionless form. Special attention is paid to the
conditions satisfied by the magnetic field at the boundary of the fluid domain Ω. We
focus on the case where the fluid domain is surrounded by an insulator: for instance, this
is relevant to the flow of liquid iron in the Earth’s core. This is in contrast with most
previous studies on the MHD equations ([15], [53], [22], [23]), which treat the case of a
perfect conductor, and neglect the magnetic field outside Ω. Here, on the contrary, the
magnetic field is defined in the whole space R3, with jump conditions at BΩ. It induces
some changes in the construction of solutions. We provide in this chapter a theorem of
existence of weak solutions a la Leray for this full MHD system (Theorem 2.2.1). Some
further remarks on the notion of strong solutions are provided at the end of the chapter.

2.1 Derivation of the dimensionless MHD equations

We first remind here the classical derivation of the dimensional MHD system, following
for instance [24]. We will notably discuss the appropriate boundary conditions. We will
then put the equations in dimensionless form, to lay the ground for the following boundary
layer developments.

The aim of the MHD system is to describe the motion of a viscous incompressible con-
ducting fluid. We denote by Ω the three dimensional bounded domain occupied by the
fluid. The governing equations for the fluid velocity u and pressure p are the classical
Navier-Stokes equations, with constant density ρ and kinematic viscosity coefficient ν:

Btu` pu ¨∇qu`
1

ρ
∇p´ ν∆u “ j ˆ b in Ω,

div u “ 0 in Ω,

u|BΩ “ 0.

(2.1)

25
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With regards to the purely hydrodynamic case, the difference lies in the addition of the
Lorentz force, at the right-hand side of the momentum equation. It is given by the cross
product of the current density j and the magnetic field b. Hence, to complete the de-
scription, one needs to couple this Navier-Stokes dynamic to the one for the magnetic and
electric fields b and e. Therefore, we write the Maxwell equations, in which we neglect the
displacement currents:

Btb` curl e “ 0 in R3,

curl b “ µ0 j in R3,

div b “ 0 in R3.

Note that these equations hold in the whole space R3. To close the system, one still has to
specify the properties of the current density j. In the fluid domain Ω, we express Ohm’s
law in a moving medium of electrical conductivity σ, which yields:

j “ σpe` uˆ bq in Ω.

Together with the the Maxwell equations, it gives

Btb “ curl puˆ bq ´ η curl curl b in Ω,

div b “ 0 in Ω,
(2.2)

with magnetic diffusivity η “ 1
µ0σ

. Eventually, we have to specify the properties of the
medium surrounding the fluid domain, namely Ω1 “ R3zΩ. We will restrict here to the
case of a perfect insulator, resulting in: j “ 0 in Ω1. With the second line of the Maxwell
equation, it amounts to

curl b “ 0 in Ω1,

div b “ 0 in Ω1.
(2.3)

The last step of the derivation consists in specifying some interface conditions at BΩ. As
b is divergence-free over the whole space, one must have rb ¨ ns|BΩ “ 0, where n is a unit
normal vector at BΩ, and r ¨ s|BΩ refers to the jump across BΩ. Also, as we do not consider
the case of a perfect conductor outside Ω, we do not expect surface currents at BΩ, so that
the relation curl b “ µ0 j implies that rbˆns|BΩ “ 0. Hence, the whole field b is continuous
across the interface:

rbs|BΩ “ 0. (2.4)

Equations (2.1)-(2.2)-(2.3)-(2.4) form the full MHD system. Note that it mixes the Navier-
Stokes equation, set on Ω only, with equations on the magnetic field that are both set in
Ω and Ω1. To the best of our knowledge, this difficulty was not considered in previous
mathematical studies devoted to the MHD equations, see [15], [53], [22], [23], [28], [41], [29],
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[54]. In those works the study is conducted considering the case of a perfect conductor:
only the equation (2.2) is retained for the magnetic field, while the jump condition is
replaced by the boundary condition curl b ˆ n|BΩ “ 0. The dynamics of the magnetic
field outside Ω is implicitly neglected, which yields more standard initial boundary value
problems in Ω. We will come back to this issue in the next section of this chapter. With the
upcoming asymptotic analysis of magnetohydrodynamic flows in mind, we wish to provide a
dimensionless version of the MHD equation. Therefore, we introduce some typical length L,
typical speed U of the fluid flow, as well as some typical amplitude B of the magnetic field.
We further introduce the typical advection time T “ L

U and the so-called hydrodynamic
pressure Π “ ρU2. We rescale all unknowns and variables accordingly, more precisely we
set:

u “ Uu1, b “ Bb1, p “ Πp1, x “ Lx1, t “ Tt1, Ω “ LΩ1.

Dropping the primes, we obtain:

U

T
Btu`

U2

L
pu ¨∇qu` π

Lρ
∇p´ νU

L2
∆u “

B2

µ0ρL
curl bˆ b,

where we have expressed j in terms of b in the right-hand side. Multiplying everything by
L
U2 we get

Btu` pu ¨∇qu`∇p´
1

Re
∆u “ S curl bˆ b,

where the Reynolds number Re and the coupling parameter S are defined by:

Re :“
ν

LU
, S :“

B2

µ0U2ρ
.

We can do the same for the first equation in (2.2), which becomes

UB

L
Btb´

UB

L
curl puˆ bq `

Bη

L2
curl curl b “ 0

so that multiplying by L
UB we get

Btb´ curl puˆ bq ´
1

Rm
curl curl b “ 0,

with the magnetic Reynolds number Rm :“ UL
η . Eventually, the dimensionless version of
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the full MHD system takes the form
$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

Btu` pu ¨∇qu`∇p´ 1
Re∆u “ curl bˆ b in Ω

Btb´ curl puˆ bq ` 1
Rmcurl curl b “ 0 in Ω

div b “ 0 in R3

curl b “ 0 in Ω1

div u “ 0 in Ω

with the condition rbs “ 0 at BΩ

and the no-slip condition u|BΩ “ 0 at BΩ.

(MHD)

Let us note that, taking into account the divergence-free constraint on b, we can rewrite
the second order operator in (MHDb) as curl curl b “ ´∆b. Nevertheless, the expression
in terms of the curl operator emphasizes that the equation div b “ 0 in Ω is preserved
by the evolution: if it is satisfied initially, it is satisfied for all times. It can be seen by
taking the divergence of (MHDb), which gives that Btdiv b “ 0. Moreover, this expression
is more suitable for a variational formulation, and the construction of weak solutions. The
existence of solutions for (MHD) will be discussed in the next section.

Remark 2.1.1. Instead of starting from the strong formulation (MHD), one could have
considered the slightly different one:

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

Btu` pu ¨∇qu`∇p´ 1
Re∆u “ curl bˆ b in Ω

Btb` curl E “ 0 in R3

E “ ´uˆ b` 1
Rmcurl b in Ω,

div b “ 0 in R3

curl b “ 0 in Ω1

div u “ 0 in Ω

with the condition rbs “ 0 at BΩ

and the no-slip condition u|BΩ “ 0 at BΩ.

(2.5)

This formulation, closer to the Maxwell equations, is a priori stronger than (MHD), as its
second and third equations seem to contain more information than the second equation in
(MHD) (and in particular one more unknown E !). Nevertheless, if b and u are smooth on
each side of the interface BΩ (which is always implicitly assumed here), one can show that
the formulations are equivalent. Indeed, if b satisfies (MHD), one has div Btb “ Btdiv b “ 0

over R3, so that there exists Ē such that

Btb “ curl Ē in R3.
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Note that as b is smooth on each side of the interface and does not jump across it, Btb has
at least H1 regularity in the neighbourhood of the interface. Hence, the field Ē can be
chosen with H2 regularity across the interface. Now, from the second relation in (MHD),
we infer that

curl Ē “ curl p´uˆ b` curl bq in Ω

so that Ē “ ´uˆ b` curl b`∇p in Ω, for some p which belongs at least to H3pΩq. If Ω is
smooth enough, one can extend p as a function p̃ in H3pR3q. Finally, if we set E “ Ē´∇p̃,
we recover the second and third relations in (2.5).

2.2 Weak solutions of the MHD system

The system (MHD) derived in the previous section is used to describe various magneto-
hydrodynamic flows, notably in the context of dynamo theory ([24]). Without further
assumptions on the magnetic field in the insulator Ω1, it is mathematically and numeri-
cally challenging, as it couples the dynamics of the fluid in the bounded domain Ω to the
dynamics of the magnetic field in the whole space R3. This creates some difficulties in the
well-posedness analysis, for which we could find no references. We will therefore address
this issue before turning to the boundary layer analysis. We focus in this section on weak
solutions of Leray type. Further remarks on smooth solutions will be made in the next
section. For simplicity, we take all parameters Re, Rm and S equal to unity.

2.2.1 Variational formulation and existence result

At first, we must provide a weak formulation for (MHD). The formulation of the Navier-
Stokes equation will be standard, and will involve the classical spaces

DσpΩq :“
 

φ P C8c pΩq3 such that div φ “ 0
(

, (2.6)

HpΩq :“
 

the adherence of DσpΩq in L2pΩq3
(

, (2.7)

V pΩq :“
 

the adherence of DσpΩq in H1
0 pΩq

3
(

. (2.8)

In particular, if we multiply (MHDa) by a test field φ in C1
c pp0, T q, V pΩqq and integrate by

parts over p0, T q ˆ Ω, we find, assuming enough smoothness on Ω, u and b:

ż T

0

ż

Ω
pBtφ` u ¨∇φq ¨ u´

ż T

0

ż

Ω
∇u ¨∇φ`

ż T

0

ż

Ω
pcurl bˆ bq ¨ φ “ 0. (2.9)

The key point is to find the appropriate variational formulation of the equations for b. As
we will see, an appropriate functional space is

B “
 

φ P L2pR3q | curl φ P L2pR3q, curl φ “ 0 in Ω1
(

. (2.10)
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Moreover, we claim that a suitable variational formulation for the magnetic part of the
MHD system is:

ż T

0

ż

R3

Btψ ¨ b`

ż T

0

ż

Ω
puˆ bq ¨ curl ψ `

ż T

0

ż

Ω
curl b ¨ curl ψ “ 0, (2.11)

for ψ P C1
c pp0, T q;Bq.

A first justification for this choice is the equivalence between the strong and weak formu-
lation for smooth vector fields. More precisely, we have the following:

Proposition 2.2.1. Let Ω be a smooth bounded domain, and Ω1 “ R3zΩ. Let u be a
smooth field over r0, T s ˆ Ω with u|BΩ “ 0, and b be a smooth field over r0, T s ˆ pΩ Y Ω1q

decaying fast enough at infinity.

If div b|t“0 “ 0 in R3, bptq P B for all t P r0, T s and if b satisfies equation (2.11) for all
ψ P C1

c pp0, T q;Bq, then b satisfies (MHDb)-(MHDc)-(MHDd)-(MHDf).

Conversely, if Ω1 is simply connected, and if b satisfies the equations (MHDb)-(MHDc)-
(MHDd)-(MHDf), then bptq P B for all t P r0, T s and b satisfies equation (2.11) for all
ψ P C1

c pp0, T q;Bq.

Proof. The easiest part of the proposition is the first one. We assume that div b|t“0 “ 0 in
R3, bptq P B for all t P r0, T s and that b satisfies equation (2.11) for all ψ P C1

c pp0, T q;Bq.
Since for all t one has that bptq P B, equation (MHDd) is trivially satisfied. Then, by
choosing ψ in C1

c pp0, T q;DpΩq3q (where DpΩq3 can be seen as a subset of B after extension
by zero), we deduce from (2.11) that equation (MHDb) is satisfied as well. Besides, if we
take ψ “ ∇ψ1, with ψ1 P C1

c pp0, T q;DpR3qq, we find that
şT
0

ş

Ω Btb ¨∇ψ
1 “ 0 i.e. Btdiv b “ 0

in a distributional sense. With the assumption div b|t“0 “ 0 in R3, we recover div bptq “ 0

for all t, that is (MHDc). Eventually, the fact that curl bptq P L2pR3q3 for all t implies that
rbˆns|BΩ “ 0, while the fact that div bptq P L2pR3q (and is even zero) for all t implies that
rb ¨ ns|BΩ “ 0. Put together, these two conditions yield (MHDe).

The second part of the proposition remains to be proved, thus assuming (MHDb)-(MHDc)-
(MHDd)-(MHDf). First, by condition (MHDd) and by the continuity of the tangential
components of b at the interface BΩ (see (MHDf)) we get that bptq P B for all t. Now, to
recover (2.11), we write:

$

&

%

Btb “ curl pE`q in Ω with E` “ uˆ b` curl b

Btb “ curl pE´q in Ω1 for some smooth E´ over r0, T s ˆ Ω1.

The first line follows from (MHDb). The second line is a consequence of (MHDc): it
implies that Btb is divergence-free over Ω1 and as Ω1 is supposed to be simply connected,
it implies that Btb can be written as a curl. From there, one has that for all test function
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ψ P C1
c p0, T ;Bq:

ż T

0

ż

R3

Btb ¨ψ “ ´

ż T

0

ż

BΩ
ppE`´E´qˆnq ¨ψ`

ż T

0

ż

Ω
puˆbq ¨ pcurl ψq´

ż T

0

ż

Ω
curl b ¨curl ψ.

On the other hand, by integration by parts in time, the first term can be rewritten as

ż T

0

ż

R3

Btb ¨ ψ “ ´

ż T

0

ż

R3

b ¨ Btψ.

Hence, to obtain (2.11), it is enough to show that
ş

BΩppE` ´ E´q ˆ nq ¨ Ψ “ 0 for all Ψ

in B. Note that this boundary integral has to be understood in a generalized sense: we
have formally

ş

BΩppE` ´ E´q ˆ nq ¨Ψ “
ş

BΩppE` ´ E´q ˆ nq ¨ pΨˆ nq and the latter has
to be interpretated as a duality bracket between an element of H

1
2 pBΩq and an element of

H´
1
2 pBΩq. Indeed, as Ψ is in L2 and curl Ψ is in L2, the tangential trace Ψˆn is in H´

1
2 .

To establish this identity, we remark that, since curl Ψ “ 0 in the simply connected domain
Ω1, we can write Ψ “ ∇p in Ω1 for some p in H1pΩ1 XBp0, Rqq for any R (because Ψ is in
L2pΩ1q3). Hence, it is enough to show that

ż

BΩ
ppE` ´ E´q ˆ nq ¨∇p “ 0.

By a density argument, it is enough to show it for p P DpR3q. We write:
ż

BΩ
ppE` ´ E´q ˆ nq ¨∇p “

ż

BΩ
pE` ˆ nq ¨∇p´

ż

BΩ
pE´ ˆ nq ¨∇p

“´

ż

Ω
pcurl E` ¨∇p´ E` ¨ curl ∇pq ´

ż

Ω1
pcurl E´ ¨∇p´ E´ ¨ curl ∇pq

“ ´

ż

Ω
curl E` ¨∇p ´

ż

Ω1
curl E´ ¨∇p

“`

ż

Ω
div curl E` p´

ż

BΩ
pcurl E` ¨ nq p `

ż

Ω1
div curl E´ p`

ż

BΩ
pcurl E´ ¨ nq p

“´

ż

BΩ
pcurl E` ¨ nq p`

ż

BΩ
pcurl E´ ¨ nq p “ ´

ż

BΩ
rBtb ¨ ns|BΩ p “ 0.

Note that the second and fourth lines come from integration by parts involving respectively
the curl and the gradient operator. Eventually, the last quantity vanishes because of the
continuity of b ¨ n across BΩ. This concludes the proof.

We can now state the existence of a weak solution to (MHD), given appropriate initial data.
We will consider an initial magnetic field which is divergence-free, namely b0 P PB Ă B,
with P being the Leray projector on R3.

Theorem 2.2.1. Let Ω be an open bounded domain of R3 with smooth boundary. Let
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u0 P HpΩq, b0 P PB. There exists

u P Cwpr0, T s;HpΩqq X L
2p0, T ;V pΩqq, b P Cwpr0, T s;PL2pR3qq X L2p0, T,PBq

with initial conditions u0, b0, such that

i) u and b satisfy (2.9) for all φ in C1
c pp0, T q, V pΩqq,

ii) u and b satisfy (2.11) for all ψ in C1
c p0, T ;Bq,

iii) one has the following energy inequality: for almost all t P R`,

1

2

´

|uptq}2L2pΩq ` }bptq}
2
L2pR3q

¯

`

ż t

0
}∇uptq}2L2pΩq `

ż t

0
}curl bptq}2L2pΩq

ď
1

2

´

}u0}
2
L2pΩq ` }b0}

2
L2pR3q

¯

.

Let us emphasize that the non-linear terms involving the magnetic field are well-defined
in both relations (2.9) and (2.11) (see right below).

2.2.2 Sketch of proof

We give here the main steps leading to Theorem 2.2.1. They follow as a whole the classical
proof for Navier-Stokes (as seen for instance in [4]), but we shall underline the novelties
brought by the MHD system.

In this respect, we first remark that the non-linear terms involving the magnetic field
are well-defined in both relations (2.9) and (2.11). Indeed, it is well-known that PB is
embedded in H1pR3q (the whole gradient is controlled by the curl for divergence-free vector
fields). In particular, usual Sobolev imbeddings yield:

ˇ

ˇ

ˇ

ˇ

ż T

0

ż

Ω
pcurl bˆ Pbq ¨ φ

ˇ

ˇ

ˇ

ˇ

ď }curl b}L2pL2q}Pb}L2pL6q}φ}L8pL3q ă `8.

Similarly,

ˇ

ˇ

ˇ

ˇ

ż T

0

ż

Ω
puˆ Pbq ¨ curl ψ

ˇ

ˇ

ˇ

ˇ

ď }u}L2pL3q}Pb}L2pL6q}curl ψ}L8pL2q ă `8.

One can remark that in order to show Theorem 2.2.1, it is enough to establish that there
exists

u P Cwpr0, T s;HpΩqq X L
2p0, T ;V pΩqq, b P Cwpr0, T s;L

2pR3qq X L2p0, T, Bq

with initial conditions u0, b0, such that
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i’) for all φ P C1
c p0, T ;V pΩqq,

ż T

0

ż

Ω
pBtφ` u ¨∇φq ¨ u´

ż T

0

ż

Ω
∇u ¨∇φ´

ż T

0

ż

Ω
pcurl bˆ Pbq ¨ φ “ 0; (2.12)

ii’) for all ψ in C1
c p0, T ;Bq,

ż T

0

ż

R3

Btψ ¨ b`

ż T

0

ż

Ω
puˆ Pbq ¨ curl ψ `

ż T

0

ż

Ω
curl b ¨ curl ψ “ 0; (2.13)

and the energy inequality iii). In other words, we claim that it is enough to build a solution
pu, bq with b which is not a priori divergence-free, and to replace b with Pb in the variational
formulation.

One can argue as for Proposition 2.2.1: we consider in (2.13) a test field of the form
ψ “ ∇p, with p with p P C1

c p0, T ;DpR3q, which yields that

ż T

0

ż

Ω
b ¨ pBt∇pq “ 0.

This implies in turn that Btdiv b “ 0 in the sense of distributions, so that div bptq is
constant in time over p0, T q. Using the weak continuity of b in time with values in L2, we
get: div bptq “ div b0 “ 0. Thus, we recover the divergence-free condition on b a posteriori.
Now, as Pb “ b, equations (2.12) and (2.13) are the same as (2.9) and (2.11).

We now explain how to construct a solution satisfying i’)-ii’)-iii). We proceed in a standard
manner, through a Galerkin approximation and compactness methods.

Galerkin approximation and weak convergence

For the Galerkin approximation, we consider:

• the usual hilbertian basis of HpΩq, made of the family of eigenvectors pekqkPN of the
Stokes operator. We remind that this basis is a complete orthogonal system of V pΩq
(endowed with the usual homogeneous H1 norm).

• a hilbertian basis of B, that we denote by pe1kqkPN. We remind that B is a separable
Hilbert space, endowed with the natural scalar product:

pb|cq “

ż

R3

b ¨ c `

ż

R3

curl b ¨ curl c “
ż

R3

b ¨ c `

ż

Ω
curl b ¨ curl c.

We then consider approximations of the form

unpt, x, y, zq “
n
ÿ

k“0

αkptqekpx, y, zq, bnpt, x, y, zq “
n
ÿ

k“0

βkptqe
1
kpx, y, zq,



34 CHAPTER 2. PRELIMINARIES ON THE MHD SYSTEM

solving

i’-n) for all φn in spanpe0, . . . , enq

ż

Ω
pBtu

n ` un ¨∇unq ¨ φn `
ż

Ω
∇un ¨∇φn “

ż

Ω
pcurl bn ˆ Pbnq ¨ φn “ 0, (2.14)

ii’-n) for all ψn in spanpe10, . . . , e1nq,

ż

R3

Btb
n ¨ ψn ´

ż

Ω
pun ˆ Pbnq ¨ curl ψn `

ż

Ω
curl bn ¨ curl ψn “ 0, (2.15)

together with the initial conditions:

un|t“0 “ Pnu0, bn|t“0 “ P 1nb0

where Pn and P 1n are the orthogonal projections on spanpe0, . . . , enq and spanpe10, . . . , e1nq
respectively.

The previous equations yield a finite differential system on α “ pα1, . . . , αnq and β “

pβ1, . . . , βnq of the form
$

&

%

dα
dt “ F1pt, α, βq

dβ
dt “ F2pt, α, βq,

where F1,F2 are polynomial. By the Cauchy-Lipschitz theorem, there exists a unique
maximal solution un P C8pr0, Tnr, Vect te0, ..., enuq and bn P C8pr0, Tnr, Vect te10, ..., e1nuq
where Tn is the maximal time of existence.

To prove that Tn “ T independently from n, we derive an energy estimate: we take
φn “ un, ψn “ bn, and get after integration by parts:

1

2
Bt

ż

Ω
|un|2 `

ż

Ω
|∇un|2 “

ż

Ω
pcurl bnq ˆ Pbn ¨ un, and (2.16)

1

2
Bt

ż

R3

|bn|2 `

ż

R3

|curl bn|2 “
ż

Ω
pun ˆ Pbnq ¨ curl bn. (2.17)

If we now sum up the two equations and integrate in time between 0 and t P r0, Tnr, we
find (by skew-symmetry of the cross product):

1

2
}unptq}2L2pΩq `

1

2
}bnptq}2L2pR3q `

ż t

0

ż

Ω
|∇un|2 `

ż t

0

ż

R3

|curl bn|2

“
1

2

ż

Ω
|un|2p0, ¨q `

1

2

ż

R3

|bn|2p0, ¨q ď
1

2
}u0}

2
L2pΩq `

1

2
}b0}

2
L2pR3q. (2.18)

Note that we have implicitly assumed here that }bnp0, ¨q}L2 ď }b0}L2 . This is obvious if b0
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is zero, and if not this can be easily realized by choosing e10 colinear to b0. In particular

lim sup
tÑTn

}unpt, ¨q}HpΩq ă `8, lim sup
tÑTn

}bnpt, ¨q}L2pR3q ă `8;

so that by standard blow up results for ODEs one has Tn “ `8. Besides, as the bound in
(2.18) is uniform in n, it implies the weak convergence of subsequences of punq and pbnq:
if we relabel these subsequences punq and pbnq, we have more precisely:

un Ñ u weakly* in L8p0, T ;HpΩqq, weakly in L2p0, T ;V pΩqq,

bn Ñ b weakly* in L8p0, T ;L2pR3qq, weakly in L2p0, T ;Bq.
(2.19)

Bounds on time derivatives

The next step in the classical existence scheme of Leray type solutions is to obtain some
equicontinuity in time (possibly in low norm) for punq and pbnq. We start with the standard
bound on Btun, where we only need to pay attention to the additional magnetic term:

Proposition 2.2.2. For all T ą 0, there exists a constant M ą 0 such that for all n,

ż T

0
}Btu

n}
4{3
V 1pΩq ďM. (2.20)

Proof. Let φ P V pΩq, with }∇φ}L2pΩq “ 1. We take φn “ Pnφ in the variational formulation
for un. We get

ż

Ω
Btu

n ¨ φ “

ż

Ω
Btu

n ¨ Pnφ “´

ż

Ω
pun ¨∇unq ¨ Pnφ´

ż

Ω
∇un ¨∇Pnφ

`

ż

Ω
pcurl bnq ˆ Pbn ¨ Pnφ.

The first two terms appear in the classical Navier-Stokes equation, so that we focus on
the third one. Let us remark that Pbn is divergence-free, so that by standard vectorial
identities:

ˇ

ˇ

ˇ

ˇ

ż

Ω
pcurl bnq ˆ Pbn ¨ Pnφ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż

Ω
pcurl Pbnq ˆ Pbn ¨ Pnφ

ˇ

ˇ

ˇ

ˇ

(2.21)

“

ˇ

ˇ

ˇ

ˇ

´

ż

Ω
∇
ˆ

pPbnq2

2

˙

¨ Pnφ`

ż

Ω
pPbn ¨∇qPbn ¨ Pnφ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

´

ż

Ω
pPbn ¨∇qPnφ ¨ Pbn

ˇ

ˇ

ˇ

ˇ

(2.22)

ď

ż

Ω
|Pbn|2|∇Pnφ| ď }Pbn}2L4pΩq}∇Pnϕ}L2pΩq ď }Pbn}2L4pΩq, (2.23)

where we used the orthogonality properties of pekq to write

||∇Pnφ||L2pΩq ď ||∇φ||L2pΩq “ 1.
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To continue, we need the following

Lemma 2.2.2 (Gagliardo-Nirenberg). There exists C ą 0 such that: for all b P H1pRdq
and θd “ d

4 , one has }b}L4pRdq ď C}b}1´θd
L2pRdq}∇b}

θd
L2pRdq.

Now we can improve the estimate for
ˇ

ˇ

ˇ

ˇ

ż

Ω
pcurl bnq ˆ Pbn ¨ Pnφ

ˇ

ˇ

ˇ

ˇ

ď }Pbn}2L4pΩq ď }Pb
n}2L4pR3q ď C}Pbn}1{2

L2pR3q
}∇Pbn}3{2

L2pR3q

ď C}bn}
1{2
L2pR3q

}curl Pbn}3{2
L2pR3q

ď C}bn}
1{2
L2pR3q

}curl bn}3{2
L2pR3q

.

It follows that

}Btu
n}V 1pΩq “ sup

φPV, }∇φ}L2“1

ˇ

ˇ

ˇ

ˇ

ż

Ω
Btu

nφ

ˇ

ˇ

ˇ

ˇ

ď C

ˆ

}∇un}L2pΩq ` }u
n}

1
2

L2pΩq
}∇un}

3
2

L2 ` }b
n}

1
2

L2pR3q
}curl bn}

3
2

L2pR3q

˙

from which, integrating in time between s0, T r we get to

ż T

0
}Btu

n}
4
3

V 1pΩq ď C 1
ˆ
ż T

0
}∇un}

4
3

L2pΩq
`

ż T

0
}un}

2
3

L2pΩq
}∇un}2L2pΩq `

ż T

0
}bn}

2
3

L2pR3q
}curl bn}2L2pR3q

˙

ď C 1T

ˆ

}∇un}4{3
L2p0,T ;L2pΩqq

` }un}
2
3

L8p0,T ;L2pΩqq
}∇un}2L2p0,T ;L2pΩqq

` }bn}
2
3

L8p0,T ;L2pR3qq
}curl bn}2L2p0,T ;L2pR3qq

˙

ďMT ,

using (2.18), and this allows us to conclude for p2.20q.

We still have to deal with the uniform equicontinuity in time of pbnq. It turns out that
deriving a uniform bound on Btbn in low norm is not so easy as in the case of Btun. Namely,
the previous method does not work because the basis pe1kq of B does not enjoy as good
orthogonality properties as pekq - it is not orthogonal in both L2 and B. Moreover, we
would like a bound on BtPbn rather than on Btbn. This is due to the fact that the uniform
bound on pbnq in the space B does not provide a uniform H1 bound. Hence, we have to
restrict to pPbnq to obtain equicontinuity in space. To solve these issues, we will rather
control a fractional time derivative of pPbnq, through Fourier transform in time:

Proposition 2.2.3. Let T ą 0, and rbn (resp. ĄPbn ) the extension by zero of bn (resp.
Pbn) outside p0, T q. We denote by pbn (resp. yPbn) the Fourier transform of rbn (resp. ĄPbn)
with respect to time. Then, for all γ ă 1

4 , there exists a constant M ą 0 such that for all
n,

ż

R
|τ |2γ} pbnpτq}2L2pR3qdτ ďM,

ż

R
|τ |2γ}yPbnpτq}2L2pR3qdτ ďM. (2.24)
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Proof. The second bound follows from the first by the simple continuity of P on L2pR3q.
To achieve the first one, we follow closely the reasoning of [56]. The extension b̃n verifies:
for all j “ 0, . . . , n,

d

dt

ż

R3

rbn e1j “

ż

Ω
pĂun ˆĄPbnq curl e1j ´

ż

Ω
curl rbn curl e1j

`δ0

ż

Ω
bn0 e

1
j ´ δT

ż

Ω
bn|t“T e

1
j ,

where δ0 and δT refer to the Dirac masses located at t “ 0 and t “ T . Taking the Fourier
transform with respect to the time variable, we obtain

iτ

ż

R3

pbnpτqe1j “

ż

Ω
p {un ˆ Pbnpτqq ¨ curl e1j ´

ż

Ω
curl pbnpτq curl e1j

`

ż

Ω
bn0 e

1
j ´ e

´2iπT t

ż

Ω
bn|t“T e

1
j

where {un ˆ Pbn refers to the Fourier transform in time of Ăun ˆĄPbn. We then multiply by
the conjugate of pβjpτq (with obvious notation) and sum over j to obtain

iτ} pbnpτq}2L2pR3q “

ż

Ω
p {un ˆ Pbnpτqq ¨ curl pbnpτq ´

ż

Ω
curl pbnpτq ¨ curl pbnpτq

`

ż

Ω
bn0 ¨

pbnpτq ´ e´2iπT t

ż

Ω
bn|t“T ¨ pbnpτq.

First of all, we remark that }bn0 }L2pR3q and }bn|t“T }L2pR3q are uniformly bounded in n, so
that

|τ |} pbnpτq}2L2pR3q ď

ˇ

ˇ

ˇ

ˇ

ż

Ω
p {un ˆ Pbnpτqq ¨ curl pbnpτq

ˇ

ˇ

ˇ

ˇ

´

ż

Ω
|curl pbnpτq|2 ` C1} pbnpτq}L2pR3q

ď sup
τPR

´

|}p {un ˆ Pbnqpτq}L2pΩq ` }curl pbnpτq}L2pΩq

¯

}curl pbnpτq}L2pΩq ` C1} pbnpτq}L2pR3q.

Now, we write that

sup
τPR

´

}p {un ˆ Pbnqpτq}L2pΩq ` }curl pbnpτq}L2pΩq

¯

(2.25)

ď

ż

R

´

} Čun ˆ Pbnptq}L2pΩq ` }curl rbnptq}L2pΩq

¯

dt (2.26)

“

ż T

0

`

}pun ˆ Pbnqptq}L2pΩq ` }curl bnptq}L2pΩq

˘

dt (2.27)

ď

ż T

0

`

}unptq}L4pΩq}Pbnptq}L4pΩq ` }curl bnptq}L2pΩq

˘

dt (2.28)

ď C}un}L2p0,T ;H1pΩqq }Pbn}L2p0,T ;H1pΩqq `
?
T }curl bn}L2p0,T ;L2pΩq (2.29)

ď C 1}un}L2p0,T ;H1pΩqq }b
n}L2p0,T ;Bq `

?
T }curl bn}L2p0,T ;L2pΩq ďM (2.30)
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using the energy bound. Back to the previous inequality, we find that:

|τ |} pbnpτq}2L2pR3q ď C
´

}curl pbnpτq}L2pΩq ` }
pbnpτq}L2pR3q

¯

ď C} pbnpτq}B. (2.31)

From there, we can conclude exactly as in [56]: we notice that for γ ă 1
2 ,

|τ |2γ ď Cγ
1` |τ |

1` |τ |1´2γ

so that combining this inequality with estimate (2.31):

ż

R
|τ |2γ} pbnpτq}2L2pR3qdτ ď C

ż

R

} pbnpτq}2L2pR3q

1` |τ |1´2γ
dτ ` C

ż

R

} pbnpτq}B
1` |τ |1´2γ

dτ

ď C

ż

R
} pbnpτq}2L2pR3qdτ ` C

ˆ
ż

R
} pbnpτq}2Bdτ

˙1{2 ˆ
ż

R

1

p1` |τ |2´4γq
dτ

˙1{2

.

Note that the last integral at the right-hand side is finite due to the constraint γ ă 1
4 .

Moreover, by Plancherel equality and (2.18), we find that

ż

R
} pbnpτq}2L2pR3qdτ ď C

ż T

0
}bnptq}2L2pR3q dt ďM,

ż

R
} pbnpτq}2Bdτ ď C

ż T

0
}bnptq}2B dt ďM,

for some M independent of n. This concludes the proof of the proposition.

Compactness

Thanks to the bounds obtained in the previous paragraphs, one can conclude the proof
of Theorem 2.2.1 by usual compactness arguments. First, we apply Aubin-Lions lemma
([3],[55]): as in the original Leray setting, we use the following triplet of spaces

V pΩq ãÑ
compact

HpΩq ãÑ pV pΩqq1 ,

so that for p “ 2 and q “ 4
3 one has E2, 4

3
“

!

v P L2p0, T ;V pΩqq, dv
dt P L

4
3 p0, T ;V 1pΩqq

)

and thus
E2, 4

3
ãÑ

compact
L2p0, T ;HpΩqq,

which provides the strong convergence of a subsequence of punq in L2pp0, T q ˆ Ωq.

As regards the magnetic field, we rely on the following theorem (see [56]):
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Theorem 2.2.3. Let γ ą 0. Let X0, X,X1 three Hilbert spaces such that

X0 ãÑ
compact

X ãÑ X1.

Let K Ă R a compact, and

HγKpR, X0, X1q :“
 

v P L2pR, X0q, B
γ
t v P L

2pR, X1q, v “ 0 outside K
(

,

which is a Hilbert space endowed with the norm }v}2Hγ
K
“ }v}2L2pR,X0q

`}B
γ
t v}

2
L2pR,X1q

. Then,

for all γ ą 0, the imbedding HγKpR, X0, X1q ãÑ L2pR, Xq is compact.

Now, given an arbitrary smooth bounded domain O of R3, we take K “ r0, T s, X0 “

H1pOq, X “ X1 “ L2pOq. Note that the compact imbedding of X0 into X is ensured by
the Rellich theorem (which is valid as soon as O is Lipschitz). From the analysis of the
previous paragraphs, we have, for γ ă 1

4 and some M ą 0, that

}ĄPbn}L2pR;X0q
ď }Pbn}L2p0,T ;H1pR3qq ď }b

n}L2p0,T ;Bq ďM (2.32)

}B
γ
t
ĄPbn}L2pR;X1q

ďM. (2.33)

Applying the previous theorem (and a standard diagonal argument), we obtain a subse-
quence of bn that converges strongly in L2pp0, T qˆOq for any bounded domain O, notably
in O “ Ω.

This strong convergence of punq and pbnq in L2pp0, T q ˆ Ωq (up to a subsequence) allows
to take the limit of the non-linear terms:

ż T

0

ˆ
ż

Ω
pcurl bnq ˆ Pbn ¨ ej

˙

χptqdt “

ż T

0

ˆ
ż

Ω
Pbn ¨ pPbn ¨∇ejq

˙

χptqdt,

and
ż T

0

ˆ
ż

Ω
pun ˆ Pbnq ¨ curl e1j

˙

χptqdt

for any χ P C1
c p0, T q, for any fixed j. From there, the recovering of the variational formu-

lations i’)-ii’), of the energy inequality iii), and of the initial conditions is very standard
and left to the reader.

2.3 Additional remarks on the well-posedness of (MHD)

We devoted most of this chapter to the construction of Leray type solutions to the system
(MHD). We tried to emphasize the issues and tools associated with the treatment of the
different domains occupied by u and b, that are Ω and R3. Such issues and tools were
not met in the treatment of the other MHD type systems found in the literature. Let us
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stress that our analysis extends also without difficulty to the two-dimensional case, with
the usual changes. Note that in the 2d setting, the non-linearity curl b ˆ b has to be
replaced by pcurl bq bK “ pcurl bq

´

´b2
b1

¯

, where the 2d curl is the scalar operator defined
by curl b “ B1b2 ´ B2b1. Similarly, the non-linearity curl pu ˆ bq has to be replaced by
´∇Kpu ¨ bKq.

It would be interesting to check if the usual results for Navier-Stokes subsist in this MHD
setting: uniqueness of the Leray type solutions and global regularity in 2d, local existence
of strong solutions in 3d. Nevertheless, we do not push further the analysis here: in the next
sections, we will concentrate on a refined asymptotic analysis of the system, focusing on
MHD boundary layer stability. Notably, in the next chapter, we will consider a simplified
setting in which:

• the external magnetic field is assumed to be constant: b “ e in Ωc, where e is a unit
vector.

• the fluid domain is a half-space: Ω “ R3
`.

In particular, with the first assumption, the dynamics of the magnetic field will be restricted
to the fluid domain Ω:

Btb´ curl puˆ bq `
1

Rm
curl curl b “ 0 in Ω

div b “ 0 in Ω

b|BΩ “ e. (2.34)

We will build approximate solutions of boundary layer type for this set of equations (cou-
pled with the Navier-Stokes one). Let us note that, u being given, solutions to (2.34) are
limited, as these linear equations form an overdetermined system. The reason is that the
second operator curl curl is not elliptic, because it vanishes on gradient vector fields. In
particular, the boundary value problem formed by the first equation and the full Dirichlet
condition is in general ill-posed. One could argue that as we restrict to divergence-free
vector fields, the term curl curl b in (2.34a) can be replaced by the full Laplacian ∆b, and
that the boundary value problem

Btb´ curl puˆ bq ´
1

Rm
∆b “ 0 in Ω

b|BΩ “ e.

is well-posed. However, if one works with this formulation, then the preservation of the
divergence-free condition on b is not guaranteed anymore. Indeed, one finds in this case
that

Btdiv b´∆div b “ 0 in Ω, p and div b|t“0q “ 0
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but the boundary condition for div b does not a priori remain homogeneous, so that one
can not conclude that div b “ 0. This is in sharp contrast with what happens for the
boundary conditions curl b ¨ n|BΩ “ 0, b ¨ n|BΩ “ 0, see [15].

Hence, the analysis to come has to be thought as a first step in the discussion of boundary
layers for the full system (MHD). Moreover we hope that it can be useful to study the
case of a perfect conductor as well.
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Chapter 3

Formal Derivation and Stability
Analysis of Boundary Layer Models
in MHD

This article was accepted for publication in
Z. Angew. Math. Phys., (2017) 68:76.

Arxiv version: https://www.arxiv.org/pdf/1612.02641.pdf

We provide a systematic derivation of boundary layer models in magnetohydrodynamics
(MHD), through an asymptotic analysis of the incompressible MHD system. We recover
classical linear models, related to the famous Hartmann and Shercliff layers, as well as
nonlinear ones, that we call magnetic Prandtl models. We perform their linear stability
analysis, emphasizing the stabilizing effect of the magnetic field.

3.1 Introduction

The dynamics of an electrically conducting liquid near a wall has been a topic of constant
interest, at least since the pioneering work of Hartmann [26]. It is relevant to many domains
of active research, such as dynamo theory [13] or nuclear fusion [57].

An appropriate starting point to describe such dynamics is the classical incompressible
MHD system. It is set in an open subset Ω of R3, modeling the fluid domain. It reads in
dimensionless form [12, 23]:

$

’

’

’

’

&

’

’

’

’

%

Btu` u ¨∇u`∇p´ 1

Re
∆u “ Sb ¨∇b,

Btb´ curl puˆ bq `
1

Rm
curl curl b “ 0,

div u “ 0, div b “ 0, t ą 0, x P Ω.

(3.1)

43
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The parameters Re and Rm are the hydrodynamic and magnetic Reynolds numbers re-
spectively. The parameter S is the so-called coupling parameter. It is given by

S “
B2

0

µρU2
“

Ha 2

ReRm
, where Ha “ B0L

ˆ

σ

η

˙1{2

is the Hartmann number. Here, B0 and U are typical amplitudes for the magnetic and
velocity fields, L is a typical length scale of the flow, ρ is the density of the fluid, µ is its
magnetic permeability and η is the viscosity coefficient.

Equations in Ωc and boundary conditions at the interface BΩ depend on the electrical
properties of the surrounding medium Ωc. We focus here on the case of an insulator, so
that

curl b “ 0, div b “ 0 in Ωc. (3.2)

The boundary conditions at BΩ are

u “ 0, rbs “ 0 at BΩ, (3.3)

where the bracket refers to the jump of b across the boundary BΩ (see [24] for more).

For simplicity, we assume a uniform background magnetic field, meaning that b “ e

in Ωc for some constant vector e. This relation is satisfied for all times if it is satisfied
initially. Under this assumption, the MHD system can be recast in Ω only:

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

Btu` u ¨∇u`∇p´ 1

Re
∆u “ Sb ¨∇b,

Btb´ curl puˆ bq `
1

Rm
curl curl b “ 0,

div u “ 0, div b “ 0,

u|BΩ “ 0, b|BΩ “ e.

(3.4)

Many MHD flows are characterized by a large hydrodynamic Reynolds number, Re " 1.
It generates a boundary layer near BΩ, that is a thin zone of high velocity gradients. The
understanding of the boundary layer is a major problem in hydrodynamics, notably in
relation to drag computation, or vortex generation. For purely hydrodynamic flows (S “ 0

in 3.4), a classical model for the boundary layer is the celebrated Prandtl system [48].
However, this model is known to be highly unstable. It is especially true in the presence of
an adverse pressure gradient, where reverse flow and boundary layer separation can occur.

It is then very natural to investigate the effect of a magnetic field on such instabilities.
The existing results on this issue go both ways:

• On one hand, stabilizing effects were stressed out. For instance, in the context of
ideal MHD and plane parallel flows, the action of a parallel magnetic field tightens the
region of possible unstable wave speeds [28]. Another more mathematical example
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is the well-posedness of inviscid hydrostatic equations between two planes, that is
restored under the action of a parallel magnetic field [49]. As regards dissipative
MHD, similar stability results are known. For instance, in the regime Ha " 1,
transverse magnetic fields generate boundary layers of Hartmann type, which behave
much better than the Prandtl ones [26, 1, 50].

• On the other hand, it was shown that magnetic fields can favour the appearance of
inflexion points in the velocity profile [29, 45]. By this loss of concavity, they may
generate instabilities, and one could expect earlier separation in the boundary layers.

The purpose of this note is to gain some insight into the analysis of MHD boundary
layer models. It is primarily intended to mathematicians, either applied or interested in
the theory of fluid PDE’s. The goal is twofold. First, we wish to provide a clear picture of
the various models available, depending on the asymptotics under consideration, and the
orientation of the background field with respect to the wall. Then, we wish to emphasize
the stabilizing effect of the magnetic field, through partial linear stability analysis. We
hope that this work will serve as a starting point for more complete mathematical and
numerical analysis.

The outline of the paper is as follows. We consider the case of a half-space Ω “ R3
`,

and consider both the case of a transverse and tangent background magnetic fields: e “ ez

and e “ ex, with x “ px, y, zq. The first part of the paper is a systematic derivation
of MHD boundary layer models, depending on the relative scalings of Re , Rm and S.
We obtain in this way different sets of equations. They include linear systems, related to
the classical Hartmann and Shercliff layers, but also nonlinear ones, that we call magnetic
Prandtl models.

Such magnetic Prandtl models marry features of the Prandtl equations and the Hart-
mann/Shercliff ones. They are interesting mathematically, because their well-posedness
is unclear. Indeed, contrary to Navier-Stokes, such asymptotic models do not retain tan-
gential diffusion. Therefore, the control of high tangential frequencies is an issue. Note
that this difficulty already occurs in the classical Prandtl equation, whose well-posedness
properties have been satisfactorily understood only recently [18, 20, 44, 2, 19, 40, 10]. In
particular, for general smooth initial data, without monotonicity assumption, local well-
posedness fails: it only holds under Gevrey regularity in x of the data, that is under strong
localization in frequency.

In light of these results, we discuss in the second part of the paper the well-posedness
of the magnetic Prandtl models. Namely, we study linearizations around shear flows,
and their stability with respect to high frequencies. We notably show that for tangential
magnetic fields, linearizations around non-monotonic shear flows are well-posed in Sobolev
spaces. This is in sharp contrast with the Prandtl equation, which is known to be ill-
posed in Sobolev spaces. Hence, while tangential magnetic fields create inflexion points
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in the velocity profiles, as advocated in [29, 45], they may at the same time suppress
hydrodynamic instabilities.

3.2 Derivation of MHD layers

We wish to study solutions of 3.4 that are of boundary layer type, and to find which
reduced models they satisfy, depending on the relative values of parameters Re , Rm and
S. Obviously, we always assume that Re " 1, which is necessary for the generation of a
boundary layer. In the case S “ 0, that is in the purely hydrodynamic regime, it is well-
known that a formal asymptotics leads to the so-called Prandtl equation. But of course,
our goal here is rather to emphasize the role of magnetic effects in the boundary layer: we
are interested in models that couple equations on u and b. Let us also stress that in most
applications, the magnetic Reynolds number is usually smaller than the hydrodynamic one,
so that we always assume:

Re " 1, Rm À Re . (3.5)

For simplicity, we further restrict to a simple geometry, namely the half-space Ω “ tz ą 0u.
Nevertheless, we believe that our analysis could extend to curved bondaries (through the
introduction of curvilinear and transverse coordinates near the boundary). We distin-
guish between the case of a transverse background magnetic field e “ ez and a tangent
background magnetic field, say e “ ex.

3.2.1 Layers under a transverse magnetic field

We consider here solutions of 3.4 behaving like:

u «

´

u1x
`

t, x, y, λ´1z
˘

, u1y
`

t, x, y, λ´1z
˘

, λ u1z
`

t, x, y, λ´1z
˘

¯

,

b « e` δ
´

b1x
`

t, x, y, λ´1z
˘

, b1y
`

t, x, y, λ´1z
˘

, λ b1z
`

t, x, y, λ´1z
˘

¯ (3.6)

and similarly for the pressure. The parameter λ ! 1 denotes the size of the boundary
layer: the profiles u1 “ pu1h, u

1
zq “ pu

1
x, u

1
y, u

1
zq, p1 and b1 “ pb1h, b

1
zq “ pb

1
x, b

1
y, b

1
zq depend on

a rescaled variable z1 “ λ´1z. The parameter δ “ Op1q denotes the typical norm of the
magnetic perturbation. Note the rescaling of the vertical components by a factor λ: it is
consistent with the divergence-free conditions on u and b.
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We insert the expressions (3.6) into 3.4. After dropping the primes, we get

$

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

%

Btuh ` u ¨∇uh `∇hp´
1

Re
`

∆h ` λ
´2B2

z

˘

uh “
Sδ

λ
Bzbh ` Sδ

2b ¨∇bh,

Btuz ` u ¨∇uz ` λ´2Bzp´
1

Re
`

∆h ` λ
´2B2

z

˘

uz “
Sδ

λ
Bzbz ` Sδ

2b ¨∇bz,

Btbh ´ pδλq
´1Bzuh ´ pcurl puˆ bqqh `

1

Rm
∇hdiv b´

1

Rm
`

∆h ` λ
´2B2

z

˘

bh “ 0,

Btbz ´ pδλq
´1Bzuz ´ pcurl puˆ bqqz `

1

Rmλ2
Bzdiv b´

1

Rm
`

∆h ` λ
´2B2

z

˘

bz “ 0,

div u “ div b “ 0,

(3.7)
where the substrict h above refers to horizontal components or variables:

fh “ pfx, fyq, ∇h “ pBx, Byq , ∆h “ B
2
x ` B

2
y .

The equations are completed by the Dirichlet conditions

u “ b “ 0 at z “ 0. (3.8)

Moreover, we expect vertical variations of the boundary layer solutions to be localized near
z “ 0. Therefore, we impose that uh and bh have a limit as z Ñ `8. We denote by u8h
and b8h such limits. We also impose that the z derivatives of uh and bh decay to zero:

puh,bhq Ñ pu8h ,b
8
h q, Bkz puh,bhq Ñ p0, 0q, @k ě 1, as z Ñ `8. (3.9)

Note that once uh and bh are determined, the divergence-free conditions and Dirichlet
conditions (3.8) fully determine uz and bz. From the condition (3.9), they should be at
most Opzq at infinity. Note that equivalently, bz can be determined by equation (3.7d).
This follows easily from the well-known fact that the divergence-free condition is preserved
by the evolution equations (3.7c,d). Indeed, taking the divergence of (3.7c,d), we get
Btdiv b “ 0 in Ω.

Hartmann regime. The first case is when Sδ
λ " 1. Then, the term Sδ

λ Bzbh in (3.7a)
is diverging. It must be balanced by the term coming from diffusion in z. We must also
keep a priori the horizontal pressure gradient, whose amplitude in the layer is unknown.
Retaining these leading order terms, we get

∇hp´
1

Re
λ´2B2

zuh “
Sδ

λ
Bzbh, (3.10)

which yields in particular that
1

Re
λ´2 „

Sδ

λ
. (3.11)
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With this balance and the assumption Re " 1, the second equation (3.7b) yields at leading
order: Bzp “ 0. We recover the classical fact that the pressure is constant in boundary
layers. Back to (3.10), we can send z to infinity and use (3.9) to deduce that ∇hp “ 0 and

´
1

Re
λ´2B2

zuh “
Sδ

λ
Bzbh. (3.12)

Similarly, in (3.7c), the only term that can balance λ´1Bzuh is the term coming from
diffusion in z. Retaining these two terms we get

´pδλq´1Bzuh ´
1

Rm
λ´2B2

zbh “ 0, (3.13)

so that
pδλq´1 „

1

Rm
λ´2. (3.14)

Combining (3.11) and (3.14), we get

λ2 „
1

Re RmS
„ Ha´2.

Hence, the typical size of the layer is Ha´1. We set

λ “ Ha´1, δ “ RmHa´1. (3.15)

The previous equations (3.12)-(3.13) on uh,bh simplify into

B2
zuh ` Bzbh “ 0, Bzuh ` B

2
zbh “ 0 (3.16)

which yields
´B3

zuh “ ´Bzuh.

From the boundary conditions, we deduce

uh “ p1´ e´zqu8h , bh “ p1´ e
´zqu8h (3.17)

or
uh “ p1´ e´Ha zqu8h , bh “ p1´ e

´Ha zqu8h .

in the original z variable. These are the classical Hartmann profiles.

Remark 3.2.1. As the focus of our note is on boundary layers, we do not adress the
dynamics of the limits at infinity u8h pt, x, yq and b8h pt, x, yq. In a full analysis of 3.4,
these limits appear as the boundary values of velocity and magnetic fields uinth and binth ,
describing the (horizontal) dynamics away from the boundary layer. Hence, they are not
arbitrary, but constrained by equations 3.4 and the solvability of the boundary layer. For
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instance, in the Hartmann case, we see from (3.17) that one condition is b8h “ u8h .

Remark 3.2.2. To be consistent, the derivation of the Hartmann boundary layer requires
a priori some assumptions on the parameters. The first requirement is of course that the
size λ of the layer be small, or equivalently Ha " 1. Also, we assumed that Sδ

λ " 1, that
is Ha 2

Re " 1. Eventually, the condition δ “ Op1q means RmHa´1 “ Op1q. Note however
that this last condition on δ is not needed in the derivation of the Hartmann equations:
a sufficient condition is that Sδ

λ " Sδ2 and pδλq´1 " 1. Both conditions come down to
Ha 2 " Rm , which is automatically satisfied if Ha 2 " Re and Rm À Re (see (3.5)). Note
also that these assumptions can be sometimes relaxed. For instance, in the case where u8h
is constant, one can check that the Hartmann profiles (3.17) are exact solutions of the full
system (3.7) (with uz “ bz “ 0).

Mixed Prandtl/Hartmann regime. The second case is when Sδ
λ „ 1. In this case,

the convective term in the equation for uh can no longer be neglected. Hence, the leading
order dynamics reads:

Btuh ` u ¨∇uh `∇hp´
1

Re
λ´2B2

zuh “
Sδ

λ
Bzbh, (3.18)

Meanwhile, the induction equation still yields the same balance:

´pδλq´1Bzuh ´
1

Rm
λ´2B2

zbh “ 0,

or after integration in z:

´pδλq´1puh ´ u8h q ´
1

Rm
λ´2Bzbh “ 0. (3.19)

As before, we can take λ “ Ha´1. Note that 1
Re λ

´2 „ Sδ
λ „ 1, giving the extra condition

λ2 „ Re´1, or Ha „
?
Re .

Moreover, the equation for the vertical velocity component gives at leading order: Bzp “ 0.
Eventually, substituting (3.19) in (3.18), we obtain the system

$

’

’

’

&

’

’

’

%

Btuh ` u ¨∇uh `∇hp´
Ha 2

Re
B2
zuh `

Ha 2

Re
puh ´ u8h q “ 0,

Bzp “ 0,

divh uh ` Bzuz “ 0.

(3.20)

We recognize a nonlinear Prandtl type equation, with an extra magnetic damping term.
This model belongs to what we called in the introduction magnetic Prandtl models, mixing
features of Prandtl and Hartmann dynamics.
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3.2.2 Layers in a tangent magnetic field.

In this section, we consider the case of a tangent background magnetic field b “ ex. As
the MHD system is invariant through horizontal rotation, the choice of ex is no loss of
generality. Proceeding as before, we look for approximate solutions of the type

u «

´

u1x
`

t, x, y, λ´1z
˘

, u1y
`

t, x, y, λ´1z
˘

, λ u1z
`

t, x, y, λ´1z
˘

¯

,

b « ex ` δ
´

b1x
`

t, x, y, λ´1z
˘

, b1y
`

t, x, y, λ´1z
˘

, λ b1z
`

t, x, y, λ´1z
˘

¯

.
(3.21)

By plugging these approximations in the MHD equations, we have this time:

$

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

%

Btuh ` u ¨∇uh `∇hp´
1

Re
`

∆h ` λ
´2B2

z

˘

uh “ SδBxbh ` Sδ
2b ¨∇bh,

Btuz ` u ¨∇uz ` λ´2Bzp´
1

Re
`

∆h ` λ
´2B2

z

˘

uz “ SδBxbz ` Sδ
2b ¨∇bz,

Btbh ´ δ
´1Bxuh ´ pcurl puˆ bqqh `

1

Rm
∇hdiv b´

1

Rm
`

∆h ` λ
´2B2

z

˘

bh “ 0,

Btbz ´ δ
´1Bxuz ´ pcurl puˆ bqqz `

1

Rmλ2
Bzdiv b´

1

Rm
`

∆h ` λ
´2B2

z

˘

bz “ 0,

div u “ div b “ 0.

(3.22)

This system is still completed by (3.8)-(3.9). Note that when δ „ 1, the last two terms at
the right-hand side of (3.22a,b) have the same amplitude. The same remark applies to the
terms δ´1Bxu and curl puˆ bq, see the third and fourth equations. In other words, when
δ „ 1, the perturbative writing (3.21b) is somehow artificial, and should be replaced by

b «

´

b1x
`

t, x, y, λ´1z
˘

, b1y
`

t, x, y, λ´1z
˘

, λ b1z
`

t, x, y, λ´1z
˘

¯

.

We shall consider this non perturbative regime at the end of the section.

Shercliff regime. We consider here that

δ ! 1, Sδ " 1.

In the equation for uh, the diffusion in z and the horizontal pressure gradient can balance
the linearized Lorentz force SδBxbh. The reduced dynamics reads

∇hp´
1

Re
λ´2B2

zuh “ SδBxbh (3.23)

and in particular
1

Re
λ´2 „ Sδ. (3.24)
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Like in the Hartmann regime, the second equation yields at leading order Bzp “ 0. Taking
into account (3.9), we then rewrite equation (3.23) as

SδBxb
8
h ´

1

Re
λ´2B2

zuh “ SδBxbh. (3.25)

Similarly, in the equation for bh, only the magnetic diffusion in z can balance ´δ´1Bxuh.
We find

δ´1Bxuh `
1

Rm
λ´2B2

zbh “ 0

and in particular

δ´1 „
1

Rm
λ´2. (3.26)

Combining (3.24) and (3.26) yields λ4 „ Ha´2. We set

λ “ Ha´1{2.

The previous equations resume to

Bxpbh ´ b8h q ` B
2
zuh “ 0, Bxuh ` B

2
zbh “ 0. (3.27)

These equations describe the so-called Shercliff layer, of typical size Ha´1{2 [54]. In the
half-space case, they can be solved by taking the Fourier transform in x. Accounting for
(3.8)-(3.9), we find

xuhpξ, zq “ ´i
ξ

|ξ|
xb8h pξqe

´

b

|ξ|
2
z sin

˜

c

|ξ|

2
z

¸

,

xbhpξ, zq “ xb8h pξq

˜

1´ e´
b

|ξ|
2
z cos

˜

c

|ξ|

2
z

¸¸

.

Remark 3.2.3. In this derivation, we assumed implicitly that λ ! 1, that is Ha " 1.
Also, we assumed that δ ! 1, which amounts to RmHa´1 ! 1, as well as Sδ " 1, which
amounts to Ha " Re . Taking (3.5) into account, the constraint Ha " Re is the more
stringent.

Mixed Prandtl/Shercliff regime. We still assume here that δ ! 1, but Sδ „ 1. One
must then retain all terms of order one in the equation for uh, namely

Btuh ` u ¨∇uh `∇hp´
1

Re
λ´2B2

zuh “ SδBxbh.

The leading order terms in the equation for bh remain the same:

δ´1Bxuh `
1

Rm
λ´2B2

zbh “ 0.
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It is therefore legitimate to maintain the same definition for the boundary layer size, that
is λ “ Ha´1{2. As 1

Re λ
´2 „ Sδ „ 1, the regime that we investigate here corresponds to

Re „ Ha .

We finally obtain the following boundary layer system:

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

Btuh ` u ¨∇uh `∇hp´
Ha
Re
B2
zuh “

Ha
Re
Bxbh,

Bzp “ 0,

Bxuh ` B
2
zbh “ 0,

div u “ 0.

(3.28)

This is a mixed Prandtl/Shercliff system.

Fully nonlinear MHD layer. We eventually consider the case where the perturbation
to the constant magnetic field ex is of size one. In such setting, distinguishing between ex

and its perturbation is artificial. One rather looks directly for

b «

´

b1x
`

t, x, y, λ´1z
˘

, b1y
`

t, x, y, λ´1z
˘

, λ b1z
`

t, x, y, λ´1z
˘

¯

.

We plug this new expansion into (3.4), to obtain

$

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

%

Btuh ` u ¨∇uh `∇hp´
1

Re
`

∆h ` λ
´2B2

z

˘

uh “ Sb ¨∇bh,

Btuz ` u ¨∇uz ` λ´2Bzp´
1

Re
`

∆h ` λ
´2B2

z

˘

uz “ Sb ¨∇bz,

Btbh ´ pcurl puˆ bqqh `
1

Rm
∇hdiv b´

1

Rm
`

∆h ` λ
´2B2

z

˘

bh “ 0,

Btbz ´ pcurl puˆ bqqz `
1

Rmλ2
Bzdiv b´

1

Rm
`

∆h ` λ
´2B2

z

˘

bz “ 0,

div u “ div b “ 0.

(3.29)

We stress that the Dirichlet conditions are now

u “ 0, b “ ex at z “ 0. (3.30)

Let us first consider the case S " 1. On one hand, the contribution of the Lorentz force
diverges in (3.29a), and is expected to be balanced by the diffusion in z, resulting in

1

Re
λ´2 „ S " 1.
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On the other hand, looking at the equation (3.29c), we see that

1

Rm
λ´2 À 1

otherwise the dynamics of bh would be trivial. But the constraints 1
Re λ

´2 " 1 and
1

Rm λ´2 À 1 are incompatible with (3.5).

The only relevant case is therefore S „ 1: the case S ! 1, leading to the usual Prandtl
equation, does not exhibit any magnetic effect. To be consistent with the Dirichlet con-
ditions, the reduced boundary layer model should contain diffusion terms for both the
velocity and the magnetic field. This is possible under the two conditions

1

Re
λ´2 „ S „ 1,

1

Rm
λ´2 „ 1

which imply

Re „ Rm „ Ha , λ „
1

?
Re

.

We set λ “ 1?
Re

. We find the MHD boundary layer system

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

Btuh ` u ¨∇uh `∇hp´ B2
zuh “ Sb ¨∇bh,

Bzp “ 0,

Btbh ´ pcurl puˆ bqqh ´
Re
Rm

B2
zbh “ 0,

Btbz ´ pcurl puˆ bqqz `
Re
Rm

Bzdiv b´
Re
Rm

B2
zbz “ 0,

div u “ div b “ 0.

As discussed before, the divergence-free condition on b is preserved by the evolution equa-
tion on pbh, bzq, so that we can get rid of the equation div b “ 0 in the previous system.
On the contrary, if we keep this equation, we can set the term Re

Rm Bzdiv b to zero in the
equation for bz, and the MHD boundary layer system then reads

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

Btuh ` u ¨∇uh `∇hp´ B2
zuh “ Sb ¨∇bh,

Bzp “ 0,

Btb´ pcurl puˆ bqq ´
Re
Rm

B2
zb “ 0,

div u “ div b “ 0.

(3.31)

Remark 3.2.4. The derivation of (3.31) as an asymptotic boundary layer model is only
valid under stringent assumptions on the coupling parameter and the Reynolds numbers:

Re „ Rm „ Ha " 1.



54 CHAPTER 3.

Linear models Nonlinear models
Transverse field Ha 2

" Re Ha 2
„ Re

(Layer size Ha´1) Hartmann, cf (3.16). damped Prandtl, cf (4.1).
Tangent field Ha " Re Ha „ Re " Rm Ha „ Re „ Rm

(Layer size Ha´1{2) Shercliff , cf (3.27). mixed Prandtl/Shercliff, cf (3.28). fully nonlinear, cf (3.31).

Still, compared to the two models derived earlier (the Shercliff and Prandtl/Shercliff sys-
tems), it is the one that retains most terms from the original system (3.4). The other two
can be seen as degeneracies from it.

3.2.3 Summary of the formal derivation

To gather the results of the previous paragraphs, we draw the following table, that relates
the various boundary layer models to the various asymptotic regimes and to the orientation
of the magnetic field.

3.3 Linear Stability

The previous derivation is of course formal. It assumes the existence of solutions of (3.4)
that take the approximate form (3.6) and (3.21). To ground this idea on rigorous argu-
ments, two further steps are needed:

• To show that the reduced boundary layer models are well-posed, at least locally in
time, so that boundary layer expansions can be built.

• To show that once they are built, these expansions are good approximations of exact
MHD solutions, over some reasonable time. This is a stability issue within the MHD
system 3.4.

We shall provide here elements for the first step only. For simplicity, we will assume
invariance with respect to y, and restrict in this way to two-dimensional boundary layer
models: x P T, z ą 0. Let us note that for the classical 2D Prandtl system, with velocity
field u “ pu, vq,

Btu` uBxu` vBzu´ B
2
zu` Bxp “ 0,

Bzp “ 0,

Bxu` Bzv “ 0,

u|z“0 “ v|z“0 “ 0,

uÑ u8, pÑ p8 as z Ñ `8,

(3.32)

the well-posedness theory is already difficult, and was only recently well-understood. To
explain the underlying difficulties, it is worth considering simple linearizations, say around
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shear flows: u “ Upzq, v “ 0. Linearized Prandtl then reads

Btu` UBxu` vU
1 ´ B2

zu “ 0,

Bxu` Bzv “ 0,

u|z“0 “ v|z“0 “ 0,

uÑ 0 as z Ñ `8,

(3.33)

where pu, vq now refers to the perturbation. The main problem comes from the term vU 1:
indeed, in the Prandtl model, v is recovered from u through the divergence-free condition:
v “ ´

şz
0 Bxu. This is a first order term in u (with respect to variable x), and contrary to

the transport term UBxu it has no hyperbolic structure. Hence, no basic energy estimate
can be achieved. Indeed, it turns out that the L2 type well-posedness of (3.33) requires a
monotonicity assumption on the velocity profile U . Let us stress that a similar monotonicity
assumption is needed on the initial data for the nonlinear system (3.32) to be well-posed
in Sobolev spaces, see for instance [44]. On the contrary, when U has a non-degenerate
critical point a, system (3.33) is ill-posed in L2 or Sobolev regularity: it has solutions that
behave like

u « eikxeiωpkqtUkpzq, with ωpkq “ ´kUpaq `
a

|k|τ, =τ ă 0, |k| " 1,

see [11, 18]. Hence, it admits unstable modes whose growth rate is proportional to the
square root of the wave number k. As a consequence, the only functional settings that can
be preserved by the Prandtl evolution in small time are made of functions highly localized
in frequency: their Fourier mode k in x should decay at least like e´δ

?
|k| for some δ ą 0.

This corresponds to Gevrey 2 regularity in x. Accordingly, local well-posedness results in
such Gevrey classes were obtained recently for the full Prandtl system: see [19, 40, 10].

On the basis of these results in the hydrodynamic case, it is very interesting to in-
vestigate the effect of the magnetic field on boundary layer stability, and notably the
well-posedness of MHD boundary layer models. Following the previous sections, we can
distinguish between linear and nonlinear models. The two linear models that we have
derived are the Hartmann system (3.16) and the Shercliff system (3.27). They do not raise
any mathematical difficulty. System (3.16) is made of ODEs in variable z, and can be
solved explicitly. The same is true for (3.27) after Fourier transform in variable x. The
variable t is only a parameter and appears through the functions uh and bh, that is through
the dynamics outside the boundary layer.

From the point of view of well-posedness, the interesting systems are the nonlinear
ones, that mix Prandtl and magnetic features. We call them magnetic Prandtl models.
They correspond to equations (4.1) (with background transverse magnetic field e “ ez),
(3.28) and (3.31) (with background tangential magnetic field e “ ex). We shall discuss
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their well-posedness properties in the next section. As explained above, we shall restrict
to the 2D case in variables px, zq, with u “ pu, vq, b “ pb, cq. The 3D case could carry
additional difficulties, see [42] in the classical Prandtl case.

3.3.1 Mixed Prandtl/Hartmann regime

The 2D version of (4.1) reads

$

’

’

’

&

’

’

’

%

Btu` uBxu` vBzu´
Ha 2

Re
B2
zu`

Ha 2

Re
pu´ u8q “ ´Bxp

8,

Bxu` Bzv “ 0,

uÑ u8 as z Ñ `8, u|z“0 “ v|z“0 “ 0.

(3.34)

We recall that u8, p8 are known functions of t and x, which are the trace of an Euler flow:
they satisfy

Btu
8 ` u8Bxu

8 “ ´Bxp
8.

The only difference with the usual Prandtl system is the damping Ha 2

Re pu ´ u8q. This
damping does not affect the usual well-posedness theory (or in other words the stability
properties of high frequencies). A close look at papers [19, 40, 18] shows that both the
Gevrey well-posedness results and the Sobolev ill-posedness results apply to (3.34).

3.3.2 Mixed Prandtl/Shercliff regime

The 2D version of (3.28) reads

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

Btu` uBxu` vBzu´
Ha
Re
B2
zu “

Ha
Re
Bxb´ Bxp

8,

Bxu` B
2
zb “ 0,

Bxu` Bzv “ 0,

u|z“0 “ v|z“0 “ b|z“0 “ 0,

uÑ u8, bÑ b8, as z Ñ `8.

(3.35)

Contrary to the simple damping term due to a transverse magnetic field, the effect
created by a tangential magnetic field is more subtle. Strikingly, in the context of (4.5), it
is stabilizing. To provide a clear illustration of this fact, we restrict ourselves to a simple
linearization, namely around

u “ Upzq, v “ 0, b “ b8 constant.

We assume that U connects 0 at z “ 0 to some constant u8 at infinity. The linearized
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system reads

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

Btu` UBxu` vU
1 ´

Ha
Re
B2
zu “

Ha
Re
Bxb,

Bxu` B
2
zb “ 0,

Bxu` Bzv “ 0,

u|z“0 “ v|z“0 “ b|z“0 “ 0, pu, bq Ñ 0 as z Ñ `8.

(3.36)

Our aim is to prove good a priori estimates for this linear system, in the Sobolev framework.
Therefore, we introduce the analogue of vorticity, which in the boundary layer context is
simply ω “ Bzu. Differentiating the first equation with respect to z, we find

Btω ` UBxω ` vU
2 ´

Ha
Re
B2
zω “

Ha
Re
BxBzb.

We remark that Bzω|z“0 “ B
2
zu|z“0 “ 0, as can be seen from evaluating (3.36a) at z “ 0.

Multiplication by ω and integration over Ω “ Tˆ R` give

1

2

d

dt
}ω}2L2 `

Ha
Re
}Bzω}

2
L2 “ ´

ż

Ω
U2vω `

Ha
Re

ż

Ω
BxBzb ω.

The first term at the r.h.s. is bounded by
ˇ

ˇ

ˇ

ˇ

ż

Ω
U2vω

ˇ

ˇ

ˇ

ˇ

ď

›

›

›

›

U2
ż z

0
Bxu

›

›

›

›

L2

}ω}L2 ď 2}zU2}L8}Bxu}L2}ω}L2 ,

where we assumed implicitly that z Ñ zU2 is bounded and applied the Hardy inequality
to the first factor. As regards the additional term, we use the second equation to get

ż

Ω
BxBzb ω “ ´

ż

Ω
BxB

2
zb u “

ż

Ω
B2
xuu “ ´

ż

Ω
|Bxu|

2.

Hence, we get

1

2

d

dt
}ω}2L2 `

Ha
Re

`

}Bzω}
2
L2 ` }Bxu}

2
L2

˘

ď 2}zU2}L8}Bxu}L2}ω}L2

which implies
1

2

d

dt
}ω}2L2 `

Ha
2Re

`

}Bzω}
2
L2 ` }Bxu}

2
L2

˘

ď C}ω}2L2 , (3.37)

with C “ 2}zU2}2L8
Re
Ha . To have some information on u itself rather than ω, we perform

another energy estimate directly on (3.36a), which gives

1

2

d

dt
}u}2L2 `

Ha
Re
}Bzu}

2
L2 “ ´

ż

Ω
U 1v u`

Ha
Re

ż

Ω
Bxb u.
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As previously, we have
ˇ

ˇ

ˇ

ˇ

ż

Ω
U 1v u

ˇ

ˇ

ˇ

ˇ

ď 2}zU 1}L8}Bxu}L2}u}L2 ,

ż

Ω
Bxb u “ ´

ż

Ω
|Bzb|

2

and we end up with

1

2

d

dt
}u}2L2 `

Ha
Re

`

}Bzu}
2
L2 ` }Bzb}

2
L2

˘

ď }zU 1}L8
`

}Bxu}
2
L2 ` }u}

2
L2

˘

. (3.38)

Combining with inequality (3.37), we obtain

1

2

d

dt

`

}u}2L2 ` p1` αq}ω}
2
L2

˘

`
Ha
2Re

`

}Bzb}
2
L2 ` }Bzω}

2
L2 ` }Bxu}

2
L2

˘

ď C 1
`

}u}2L2 ` }ω}
2
L2

˘

,

where α “ 2Re
Ha }zU

1}L8 , and C 1 “ maxp}zU 1}L8 , Cp1 ` αqq. Eventually, with Gronwall
inequality:

}ωptq}2 ` }uptq}2L2 `

ż t

0
p}Bzb}

2
L2 ` }Bzω}

2
L2 ` }Bxu}

2
L2q ďMp}ω0}

2
L2 ` }u0}

2
L2qe

Mt, @t ě 0,

(3.39)
where M ą 0 is large enough. Eventually, to have some more information on b, one can
multiply (3.36a) by Btu. Integrating over Ω and over r0, ts, we get after straightforward
manipulations:

ż t

0
}Btu}

2
L2 ´

Ha
Re

ż t

0

ż

Ω
Bxb Btu ď C

ż t

0
p}Bxu}

2
L ` }Bzω}L2q}Btu}L2 .

Using (3.36b), we find

ż t

0

ż

Ω
Bxb Btu “

ż t

0

ż

Ω
b BtB

2
zb “

1

2
}Bzbptq}

2
L2 ´

1

2
}Bzb0}

2
L2 ,

and we can conclude that
ż t

0
}Btu}

2
L2 `

Ha
Re
}Bzbptq}

2
L2 ď

Ha
Re
}Bzb0}

2
L2 ` C

2Mp}ω0}
2
L2 ` }u0}

2
L2qe

Mt, @t ě 0. (3.40)

Let us stress that, from the bounds (3.39) and (3.40), all terms at the l.h.s. of (3.36a)
belong to L2

locpR`, L2pΩqq, and therefore so does the r.h.s. Bxb. Moreover, Bzb belongs
to L8locpR`, L2pΩqq, as seen from (3.40). We recall that b has zero average in x P T, as
deduced easily from (3.36b) and the Dirichlet condition b. It follows that b belongs to
L2
locpR`, H1pΩqq.

These a priori estimates, combined with a classical approximation procedure, allow to
state the following well-posedness result:

Proposition 3.3.1. Assume that U PW 2,8pR`q, zU 1, zU2 P L8pR`q. Let u0 P L
2pΩq s.t.



3.3. LINEAR STABILITY 59

ω0 “ Bzu0 P L
2pΩq, u0|z“0 “ 0. Let b0 P L2

locpΩq s.t. Bzb0 P L
2pΩq, b0|z“0 “ 0 and with

zero average in x. Then there there exists a unique solution pu, v, bq of (3.36) satisfying
(3.39)-(3.40), pu, bq|t“0 “ pu0, b0q.

Remark 3.3.1. The main point of the proposition is that it does not involve any mono-
tonicity assumption on the velocity profile U . This is in sharp contrast with the usual
Prandtl system and its linearizations. In particular, when U has a non-degenerate critical
point, system (3.33) does not admit this kind of solutions, see [20]. The difference comes
from the control of Bxu provided by the relation of Shercliff type. Let us stress that there
is even a regularization effect in x, as no regularity in x is required at initial time.

3.3.3 Fully nonlinear MHD layer

In the specific regime in which Re „ Rm „ Ha , the formal model governing the boundary
layer is (3.31). Its 2D version reads

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

Btu` uBxu` vBzu´ B
2
zu “ Sb ¨∇b´ Bxp8,

Btb´∇Kpuˆ bq ´
Re
Rm

B2
zb “ 0,

Bxu` Bzv “ div b “ 0,

u|z“0 “ v|z“0, b|z“0 “ ex,

uÑ u8, bÑ b8, as z Ñ `8.

(3.41)

We recall that u “ pu, vq and b “ pb, cq are the 2D velocity and magnetic fields respectively.
We also recall that the cross product of u and b is a scalar function: u ˆ b “ uc ´ bv.
To investigate the stability properties of this system, we consider once more a simple
linearization, around

u “ Upzq, v “ 0, b “ ex. (3.42)

The linearized equations are

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

Btu` UBxu` U
1 v ´ B2

zu “ SBxb,

Btb´∇Kpv ´ U cq ´
Re
Rm

B2
zb “ 0,

Bxu` Bzv “ div b “ 0,

u|z“0 “ v|z“0, b|z“0 “ 0,

uÑ 0, bÑ 0, as z Ñ `8.

(3.43)

Here, u “ pu, vq and b “ pb, cq are the perturbations of the reference solution (3.42).

Note that by the conditions Bxb`Bzc “ 0, c|z“0 “ 0, c has zero average in x. Moreover,
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the evolution of the x-average of b is decoupled and solves

Bt

ż

T
b´

Re
Rm

B2
z

ż

T
b “ 0.

Hence, there is no loss of generality in assuming that b has zero average in x as well.
With regards to the divergence-free condition, this means we can write b “ ∇Kφ, for
some function φ which is periodic with zero average in x. We can then write the second
component of (3.43b) as

BtBxφ´ Bxpv ´ U Bxφq ´
Re
Rm

B2
zBxφ “ 0

or equivalently

Btφ` UBxφ´ v ´
Re
Rm

B2
zφ “ 0. (3.44)

This last equation is a key ingredient in the stability analysis of (3.43). The idea is that,
combining the equation (3.43a) on u and (3.44), one can get rid of the bad term in v,
responsible for the possible loss of one derivative in x. This idea is reminiscent of article
[44] about the classical Prandtl equation. In [44], a similar cancellation of the v term
was obtained combining the equations on u and ω “ Byu. In the linearized setting, the
appropriate combination was g “ ω ´ U2

U 1 u. However, some monotonicity of the velocity
profile was needed, in order to divide by U 1. The main point in the present MHD context
is that no monotonicity of the velocity profile is needed to obtain well-posedness. We rather
consider the following modified velocity:

ũ “ u` U 1φ.

Summing (3.43a) and U 1ˆ(3.44), we get

Btũ` UBxũ´ B
2
z ũ “ SBxb`

Re
Rm

U 1B2
zφ´ B

2
z

`

U 1φ
˘

, (3.45)

while the equation on b “ b ¨ ex can be written as

Btb` UBxb´ Bxũ´
Re
Rm

B2
zb “ 0. (3.46)

Formulation (3.45)-(3.46) is much better behaved than the original formulation, and will
allow to establish stability. Indeed, a standard energy estimate yields

d

dt

ˆ

1

2
}ũ}2L2 `

S

2
}b}2L2

˙

` }Bzũ}
2
L2 `

SRe
Rm

}Bzb}
2
L2 ď

Re
Rm

ż

Ω
U 1pB2

zφqũ´

ż

Ω
B2
z

`

U 1φ
˘

ũ,
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where we have used the identity

´S

ż

Ω
Bxũ b “ S

ż

Ω
Bxb ũ.

To control the r.h.s., we then use that Bzφ “ ´b. In particular,

}Bzφ}L2 “ }b}L2 , }B2
zφ}L2 “ }Bzb}L2 , }z´1φ}L2 ď 2}b}L2 .

Hence,

d

dt

ˆ

1

2
}ũ}2L2 `

S

2
}b}2L2

˙

` }Bzũ}
2
L2 `

SRe
Rm

}Bzb}
2
L2 ď Cp}b}L2 ` }Bzb}L2q}ũ}L2 ,

where the constant C depends implicitly on }U 1}L8 , }U2}L8 , }zU3}L8 . After application
of Young’s inequality:

d

dt

ˆ

1

2
}ũ}2L2 `

S

2
}b}2L2

˙

` }Bzũ}
2
L2 `

SRe
2Rm

}Bzb}
2
L2 ď C 1

`

}ũ}2L2 ` }b}
2
L2

˘

,

Gronwall inequality yields

}ũptq}2L2 ` }bptq}
2
L2 `

ż t

0

`

}Bzũ}
2
L2 ` }Bzb}

2
L2

˘

ďM
`

}ũp0q}2L2 ` }bp0q}
2
L2

˘

eMt, @t ě 0

where M ą 0 is large enough. Using }pU 1, U2qφ}L2 ď 2}zpU 1, U2q}L8 }b}L2 , it follows that

}uptq}2L2 ` }bptq}
2
L2 `

ż t

0

`

}Bzu}
2
L2 ` }Bzb}

2
L2

˘

ďM 1
`

}up0q}2L2 ` }bp0q}
2
L2

˘

eM
1t @t ě 0

(3.47)
for some M 1 large enough.

As in the case of system (3.36), we can combine the previous estimate with a standard
approximation procedure, and obtain the well-posedness of (3.43):

Proposition 3.3.2. Assume that U P W 3,8pR`q, zU 1, zU2, zU3 P L8pR`q.Let u0 P

L2pΩq. Let φ0 P L
2
locpΩq, such that b0 “ Byφ0 P L

2pΩq, φ0|z“0 “ 0 and with zero average
in x. Then there exists a unique solution of (3.43) satisfying (3.47), u|t“0 “ 0, b|t“0 “

´∇Kφ0.

Remark 3.3.2. The velocity and magnetic vertical components v and c provided by
this well-posedness proposition have weak regularity with respect to x. For instance,
v “ ´

şy
0 Bxu has to be understood as the x derivative of a function in L2pT, H2

locpR`qq.
For more regularity, one should impose more x regularity on the data.

Remark 3.3.3. While completing the writing of this work, we got aware of the indepen-
dent recent work [41] by Cheng-Jie Liu, Feng Xie and Tong Yang. These authors consider
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the same system as (3.41), with the insulating boundary replaced by a conducting one,
which amounts to replacing the condition b|z“0 “ 0 by Bzb|z“0 “ 0. They establish well-
posedness in Sobolev spaces for the nonlinear system, through a change of unknowns which
is a nonlinear analogue of our ũ.

3.4 Conclusion

We achieved a formal derivation and stability analysis of boundary layer models in MHD.
This work was motivated by some contradictory results on the stabilizing or destabilizing
role of the magnetic field, notably when it is tangent to the boundary. The boundary
layer models are in most regimes linear, but for some asymptotics of the parameters, the
role of the nonlinearities can not be ignored, leading to models of Prandtl type with extra
magnetic features. We investigated the stability to high frequencies of these nonlinear
models, restricting to simple linearizations. Our analysis shows that in the case of tangent
magnetic fields, the growth rate of high tangential frequencies is no longer growing with
the wave number, contrary to what happens for the Prandtl system when the velocity has
inflexion points. It favours the idea of stabilization by the magnetic field.



Chapter 4

Analysis of the nonlinear models

In this chapter, following the classification of the MHD boundary layer models of the
previous chapter, we detail the study of the three nonlinear ones, namely the mixed
Prandtl/Hartmann system, the mixed Prandtl/Shercliff system and the fully nonlinear
magnetic Prandtl model (for which we only provide some commentaries, the model having
been studied in [41], [42]). Most notably, we establish a well-posedness result for the mixed
Prandtl/Shercliff model.

4.1 Mixed Prandtl/Hartmann regime

We go back briefly to system (4.1), that we rewrite for the reader’s convenience:

$

’

’

’

&

’

’

’

%

Btuh ` u ¨∇uh `∇hp´
Ha 2

Re
B2
zuh `

Ha 2

Re
puh ´ u8h q “ 0,

Bzp “ 0,

divh uh ` Bzuz “ 0.

(4.1)

Despite the damping term Ha 2

Re puh´u8h q generated by the magnetic interaction, the strong
linear instabilities of the Prandtl system persist. More precisely, one can restrict to the
two dimensional case and consider a simple linearization around u “ puspt, zq, 0q in the
spirit of [18]. Here us is such that Btus ´ Bzzus “ 0 and the system becomes

$

’

’

’

&

’

’

’

%

Btu` usBxu` vBzus ´ Bzzu`
Ha
Re u “ 0 in Tˆ R`,

Bxu` Byz “ 0 in Tˆ R`,

pu, vq|z“0 “ p0, 0q, lim
zÑ`8

u “ 0.

(4.2)

In this context, one has

Proposition 4.1.1. The same ill-posedness statement as in Theorem 1.4.1 (from [18])
holds for system (4.2).

63
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Proof. The proof is a straightforward adaptation of the one about the classical Prandtl
system. The first step is to consider the linearized problem where us is replaced by its
initial value. We set Uspzq “ usp0, zq for which we assume the existence of a non-degenerate
critical point. The equations become

$

’

’

’

&

’

’

’

%

Btu` UsBxu` vU
1
s ´ Bzzu` u “ 0 in Tˆ R`

Bxu` Bzv “ 0 in Tˆ R`

pu, vq|z“0 “ p0, 0q, lim
zÑ`8

u “ 0.

(4.3)

Here, we have assumed Ha
Re “ 1 for notational simplicity. Just as in [18], we then look for

an approximate solution of this equation under the form

upt, x, yq “ eikpωpkqt`xqûkpyq vpt, x, yq “ keikpωpkqt`xqv̂kpyq, k ą 0.

We carry a high frequency analysis, namely with ε “ 1
k ! 1. Simple calculations lead to

pωpεq ` Us ´ iεq v
1
εpyq ´ U

1
svεpyq ` iεv

p3q
ε pyq “ 0 (4.4)

which differs from the corresponding equation in [18] only for the term ´iεv1εpyq. This
just corresponds to a shift in the eigenvalue. Namely, by setting ω̃pεq “ ωpεq ´ iε, we
can reproduce exactly the same spectral analysis as in [18]. In particular, we can find an
approximate solution with ω̃pεq “ ´Uspaq ` |ε|1{2τ , where a is the critical point of Us and
τ is a fixed complex number with negative imaginary part. It follows that

=pωq “ =pτq|ε|1{2 ` ε „ =pτq|ε|1{2

as ε Ñ 0. Eventually, this provides us with an approximate solution with growth rate
proportional to k1{2, where k " 1 is the x-frequency. From here, to take into account the
time dependence of us and obtain an ill-posedness result in Sobolev spaces, one proceeds
exactly as in [18].

Remark 4.1.1. Thanks to the similarity between model (4.1) and the usual Prandtl
equation, a great deal of results (such as r19s and r40s) on the latter are true on the former,
as we just showed for the illposedness in Sobolev spaces in the context of non monotonic
profiles. For instance, following [19] we can state the local wellposedness of system (4.1)
for data that belong to the Gevrey class 7

4 in the horizontal variable x. Indeed, our extra
damping adds favourable terms to the estimates in [19].
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4.2 Mixed Prandtl/Shercliff regime

We focus here on the two-dimensional version of the mixed Prandtl/Shercliff system, in
the domain Ω “ T ˆ R`. For notational simplicity, we set Ha “ Re “ 1, but the result
would equally apply for general values of these parameters. The system reads

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

Btu` uBxu` vBzu´ B
2
zu “ Bxpb´ b

8q,

Bxu` B
2
zb “ 0,

Bxu` Bzv “ 0,

u|z“0 “ v|z“0 “ b|z“0 “ 0,

uÑ 0, bÑ b8 as z Ñ `8.

(4.5)

Remark 4.2.1. One could consider a general boundary condition of the form u Ñ u8

as z Ñ 8. But from the second equation in (4.5), one notices the consistency condition
Bxu

8 “ 0. Hence, there is no big loss in assuming u8 “ 0.

Our goal is to establish a local Sobolev well-posedness result without any structural
assumption on the data, as opposed to the usual boundary layer results. To this end, we
introduce the following functional setting:

Definition 4.2.1.

Ω :“
 

px, zq : x P T, z P R`
(

, (4.6)

L2
γ :“

#

fpx, zq : Ω Ñ R, }f}L2
γpΩq

:“

ˆ
ż

Ω
xzy2γ |fpx, zq|2dxdz

˙
1
2

ă `8

+

, xzy :“
a

1` z2,

(4.7)

Hm
γ :“

$

&

%

fpx, zq : Ω Ñ R, }f}Hm
γ pΩq

:“

˜

ÿ

s1`s2ďm

}xzyγ`s2Bs1x B
s2
z f}

2
L2pΩq ă `8

¸
1
2

,

.

-

.

(4.8)

We will prove

Theorem 4.2.1 (Local existence for mixed Prandtl/Shercliff equations). Let m ě 4 be
an even integer, T ą 0. Let b8 “ b8pt, xq smooth over r0, T s ˆ T, with

ş

T b
8dx “ 0. Let

u0 P H
mpΩq, Bzu0 P H

m
1 pΩq.

Under suitable compatibility conditions on u0 (see remark below), there exists a time T ą 0

and a unique solution pu, bq of (4.5) such that

u P L8p0, T ;HmpΩqq X Cwpr0, T s, H
mpΩqq, Bxu P L

2p0, T ;Hm
1 pΩqq,

Bzu P L
8p0, T ;Hm

1 pΩqq, u|t“0 “ u0.
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Remark 4.2.2. As usual in parabolic type equations in bounded domains, compatibility
conditions are needed on the initial data u0 to obtain local smooth solutions as in the
statement of the theorem. Here, it amounts to various identities satisfied by u0 and its
derivatives at y “ 0. We refer to [59, Proposition 2.2 and Remark 3.4], in which the right
compatibility conditions for the Prandtl equations are given and discussed thoroughly.

Remark 4.2.3. The hypothesis that m is even is related to the control of the boundary
terms, and it appears during the proof of Lemma 4.2.2.

Remark 4.2.4. Let us stress that the second equation in (4.5) fully determines b in terms
of u. More precisely, it is implicit that b is given by

bpt, x, zq “

ż z

0

ż `8

z1
Bxupt, x, z

2qdz2dz1 (4.9)

which is consistent with the conditions Bzb Ñ 0 as z Ñ 8 and b|z“0 “ 0. The condition
b Ñ b8 can then be deduced from the first equation of (4.5). Indeed, sending z Ñ `8,
taking into account the decay of u and its derivatives at infinity, we find that limzÑ`8 Bxpb´

b8q “ 0. By assumption b8 has zero mean in x, and the same is true for b by formula
(4.9). Hence, limzÑ`8 b´ b

8 “ 0.

Remark 4.2.5. The fact that u belongs to L8p0, T ;HmpΩqq while ω “ Bzu P
L8p0, T ;Hm

1 pΩqq is coherent with the Hardy inequality:

}f}L2pR`q ď C}p1` zqBzf}L2pR`q (4.10)

valid for functions f “ fpzq going to zero at infinity. A more original fact is the bound
on Bxu, namely Bxu P L2p0, T ;Hm

1 pΩqq. This corresponds to both a gain of regularity in x
(which is crucial to obtain stability estimates for our magnetic Prandtl model) and a gain
of decay. This implies notably that Bzb “ ´

ş`8

z Bxu belongs to L2p0, T ;HmpΩqq, still by
Hardy inequality.

The rest of the chapter will be devoted to the proof of Theorem (4.2.1). We will work
with a parabolic approximation of (4.5), establish uniform estimates for this approximation
and finally send the approximation parameter to zero.
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4.2.1 Regularized system

Precisely, the approximation of (4.5) consists of adding a diffusion term in x. For ε arbi-
trarily small we consider

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

Btu
ε ` uεBxu

ε ` vεBzu
ε ´ B2

zu
ε ´ ε2B2

xu
ε “ Bxpb

ε ´ b8q,

Bxu
ε ` B2

zb
ε “ 0,

Bxu
ε ` Bzv

ε “ 0,

uε|z“0 “ vε|z“0 “ 0, bε|z“0 “ 0,

uε Ñ 0, bε Ñ b8, as z Ñ `8.

(4.11)

The associated vorticity formulation is

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

Btω
ε ` uεBxω

ε ` vεBzω
ε ´ B2

zω
ε ´ ε2B2

xω
ε “ BxBzb

ε,

Bxu
ε ` B2

zb
ε “ 0,

Bxu
ε ` Bzv

ε “ 0,

uε|z“0 “ vε|z“0 “ 0, bε|z“0 “ 0,

uε Ñ 0, bÑ b8, as z Ñ `8.

(4.12)

We will not detail the existence and uniqueness of smooth solutions to the approximate
system (4.11). A very similar system is considered in [44] in the classical Prandtl case. The
main point of this approximation is that standard Sobolev estimates can be applied: thanks
to the tangential diffusion ´ε2B2

x, the convection term vεBzu
ε (or vεBzωε), responsible

for a loss of x-derivative in the Prandtl equation, is under control. More precisely, the
construction of solutions can be achieved through an iterative scheme, where the quadratic
term is treated as a source (explicitly in the language of numerical analysis). In other words,
the construction of solutions comes down to the solvability of the linear inhomogeneous
system:

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

Btu
ε ´ B2

zu
ε ´ ε2B2

xu
ε “ Bxpb

ε ´ b8q ` F,

Bxu
ε ` B2

zb
ε “ 0,

Bxu
ε ` Bzv

ε “ 0,

uε|z“0 “ vε|z“0 “ 0, bε|z“0 “ 0,

uε Ñ 0, bε Ñ b8, as z Ñ `8.

Such a linear system is easily solvable as soon as a priori estimates are available (for
instance through Laplace-Fourier transform in t and x). As we will carry such a priori
estimates at the level of the full system (4.11), we do not give further details. We have:

Proposition 4.2.1 (Local existence for regularized mixed Prandtl/Shercliff equations).
Let m ě 4 be an even integer and ε P r0, 1s. Under the same assumptions as in Theorem
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4.2.1, there exists a time Tε ą 0 and a solution uε, bε of (4.11) such that

uε P L8p0, Tε;H
mpΩqq X Cwpr0, Tεs, H

mpΩqq, Bxu
ε P L2p0, Tε;H

m
1 pΩqq,

Bzu
ε P L8p0, Tε;H

m
1 pΩqq, uε|t“0 “ u0.

Remark 4.2.6. Actually, one must apply this last proposition with a compactly supported
mollification uε0 of u0 and an index m higher than the one considered in Theorem 4.2.1. In
this way, one works with an approximate solution puε, bεq which is smooth and decaying
enough so that all subsequent estimates are legitimate.

4.2.2 Uniform estimates

The main part of the analysis is the derivation of estimates on a time interval independent
of ε. We shall need to combine estimates on the vorticity (system (4.12)) and on the
velocity (system (4.11)). We will first prove:

Proposition 4.2.2 (L2 controls on xzy1`s2Dsω for |s| ď m ). Let m ě 4 be an even
integer and ε P r0, 1s. There exists C ą 0 (independent of ε) depending on m and b8 such
that

d

dt
}ω}2Hm

1 pΩq
` ε2}Bxω}

2
Hm

1 pΩq
` }Bzω}

2
Hm

1 pΩq
` }Bxu}

2
Hm

1 pΩq

ď C

¨

˝1` }ωpt, ¨q}mHm
1 pΩq

`
ÿ

0ď|s|ďm

ż

Ω
|BzB

|s|
x b|

2

˛

‚.
(4.13)

Remark 4.2.7. By the equation Bxu` B2
zb “ 0, we know that b has zero average in x, so

that the term
ř

0ď|s|ďm

ş

Ω |BzB
|s|
x b|2 can be replaced by

ş

Ω |BzB
m
x b|

2.

Remark 4.2.8. This estimate is not closed due to the last term at the right-hand side,
and will have to be combined with a velocity estimate.

Throughout this analysis, we will denote the variables pu, v, ω, bq instead of puε, vε, ωε, bεq
to light up the ensemble. Let s “ ps1, s2q with |s| ď m. We differentiate the vorticity equa-
tion (4.12) s1 times with respect to x and s2 times with respect to z. We integrate in space
over Ω “ T ˆ R` after multiplying by xzy2`2s2Dsω. We obtain after straightforward
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manipulations:

1

2

d

dt
}Dsωxzy1`s2}2L2 “ ´

ż

Ω
uBxD

sωpDsωqxzy2`2s2 ´

ż

Ω
vBzpD

sωqpDsωqxzy2`2s2

´

ż

Ω
Dsv BzωD

sω xzy2`2s2 `

ż

Ω
B2
zpD

sωqpDsωqxzy2`2s2 ` ε2

ż

Ω
B2
xpD

sωqpDsωqxzy2`2s2

´
ÿ

1ď|α|, αďs

ˆ

s

α

˙
ż

Ω
DαuDs´αBxωpD

sωqxzy2`2s2

´
ÿ

1ď|α|ď|s|´1

ˆ

s

α

˙
ż

Ω
DαvDs´αBzωpD

sωqxzy2`2s2 `

ż

Ω
BxBzD

spb´ b8qpDsωqxzy2`2s2 .

We now proceed through a term by term analysis. We will then sum over 0 ď |s| ď m.

1.
´

ż

Ω
uBxD

sωpDsωqxzy2`2s2 “
1

2

ż

Ω
BxupD

sωq2xzy2`2s2 ď C}ω}3Hm
1 pΩq

.

We have used the inequality }Bxu}L8 À }ω}Hm
1 pΩq

, which can be proved as follows.
First, we remind the Sobolev type imbedding (see [44, Lemma B.2])

}f}L8pTˆR`q ď C
`

}f}L2pTˆR`q ` }Bxf}L2pTˆR`q ` }B
2
zf}L2pTˆR`q

˘

, (4.14)

which leads to

}Bxu}L8 ď Cp}Bxu}L2 ` }B
2
xu}L2 ` }BxBzω}L2q.

Then, combining this inequality with (4.10), we end up with

}Bxu}L8 ď Cp}xzyBxω}L2 ` }xzyB2
xω}L2}L2 ` }BxBzω}L2q ď C 1}ω}Hm

1 pΩq
.

2.

´

ż

Ω
vBzpD

sωqpDsωqxzy2`2s2 “
1

2

ż

Ω
BzvpD

sωq2xzy2`2s2 `

ż

Ω
vpDsωq2p1` s2qxzy

2s2z

ď `
1

2

ż

Ω
BzvpD

sωq2xzy2`2s2 ` p1` s2q}v xzy
´1}L8}D

sωxzy1`s2}2L2

ď
1

2

ż

Ω
BzvpD

sωq2xzy2`2s2 ` C}ω}3Hm
1 pΩq

.

Here, we have used the bound }v xzy´1}L8 À }ω}Hm
1 pΩq

. Indeed, (4.14) implies

}v xzy´1}L8 ď C
´

}v xzy´1}L2 ` }Bxv xzy
´1}L2 ` }Bxω xzy

´1}L2 ` }Bxu xzy
´2}L2

¯

ď C
´

}Bxu}L2 ` }B
2
xu }L2 ` }Bxω xzy

´1}L2

¯

ď C}ω}Hm
1 pΩq

(4.15)
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as soon as m ě 2, where the last two inequalities come from the usual Hardy in-
equality and its variation (4.10).

3. We now turn to the bad term containing Dsv, and responsible for a potential loss of
x-derivative. Remembering that s “ ps1, s2q, we distinguish between two cases.

Case 1: s2 ą 0. We write, still using (4.10):

´

ż

Ω
DsvBzωpD

sωqxzy2`2s2 “

ż

Ω
Dps1,s2´1qBxuBzωpD

sωqxzy2`2s2

“

ż

Ω
xzys2´1Dps1,s2´1qBxu xzy

2 BzωpD
sωqxzy1`s2

ď }xzy2Bzω}L8 }xzy
s2´1Dps1,s2´1qBxu}L2 }Dsωxzy1`s2}L2

ď }xzy2Bzω}L8 }xzy
s2Dps1,s2´1qBxω}L2 }Dsωxzy1`s2}L2

ď }xzy2Bzω}L8 }xzy
s2Dps1`1,s2´1qω}L2 }Dsωxzy1`s2}L2 ď C}ω}3Hm

1 pΩq

where the control of the first factor is deduced from (4.14), as soon as m ě 3.

Case 2: s2 “ 0. We take care of this case using (4.10)

´

ż

Ω
Dsv BzωpD

sωq xzy2 “

ż

Ω
B|s|x B

´1
z Bxu Bzω pD

sωqxzy2

ď }xzy´1B´1
z B

|s|`1
x u}L2 }xzy2Bzω}L8 }D

sω xzy}L2

ď C }B|s|`1
x u}L2 }xzy2Bzω}L8 }D

sω xzy}L2

ď

#

C}ω}3Hm
1 pΩq

if |s| “ s1 ă m,

η}Bm`1
x u}2L2 ` Cη}ω}

4
Hm

1 pΩq
if |s| “ s1 “ m, for all η ą 0.

Remark 4.2.9. In the case |s| “ s1 “ m, the extra term }Bm`1
x u}2L2 can not be

controlled by }ω}Hm
1 pΩq

. This is the typical problem that arises when studying the
Prandtl equation, and can only be solved in some particular cases, thanks to some
extra hypothesis on the data. For instance, in [44], the Prandtl system is shown to
be well-posed in the Sobolev setting if the initial velocity satisfies a monotonicity
hypothesis; besides, if this hypothesis is not verified, well-posedness requires at least
Gevrey regularity, as emphasized for instance in [19]. When the MHD system is
considered, it is a remarkable result that the contributions of the magnetic field can
grant the well-posedness. This is what we show here in the context of the Prandtl-
Shercliff model.

4. We now turn to the diffusive term in z, for which integration by parts creates bound-
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ary terms. Taking into account the decay at infinity, we find
ż

Ω
B2
zpD

sωqpDsωqxzy2`2s2 “ ´

ż

T
BzpD

sωq|z“0pD
sωq|z“0

` 2p1` s2q

ż

Ω
BzD

sωpDsωqxzy2s2z ` }BzD
sωxzy1`s2}2L2 .

We have to study the first two of these three terms. The second one is the easiest:

2p1` s2q

ˇ

ˇ

ˇ

ˇ

ż

Ω
BzD

sωpDsωqxzy2s2z

ˇ

ˇ

ˇ

ˇ

ď η}BzD
sωxzy1`s2}2L2 ` Cη}D

sωxzys2}2L2 ,

using Young’s inequality. We now focus on the boundary term. For |s| ď m´ 1, we
can rely on the simple trace inequality

}f |z“0}L2 ď C}f}
1{2
L2 }Bzf}

1{2
L2

to obtain

´

ż

T
BzpD

sωq|z“0pD
sωq|z“0 ď C}BzpBzD

sωq}
1{2
L2 }BzpD

sωq}L2} }Dsω}1{2

ď η}Bzω}
2
Hm

1 pΩq
` Cη}ω}

2
Hm

1 pΩq
.

(4.16)

In the case |s| “ m, the trace inequality is not enough. We rely on the analysis
of boundary conditions carried in [44], except that we account for the additional
magnetic term. Our analogue of Lemma 5.9 in [44] is the following:

Lemma 4.2.2 (Boundary reduction). We have at the boundary y “ 0:

Bzω|z“0 “ Bxb
8

B3
zω|z“0 “ pBt ´ ε

2B2
xqBxb

8 ` ωBxω|z“0.
(4.17)

For any 2 ď k ď r s2 s, there are some constants Ck,l,ρ1,...,ρj which do not depend on ε
such that

B2k`1
z ω|z“0 “ B

2
xB

2k´3
z ω|z“0

` pBt ´ ε
2Bxq

kBxb
8 `

k´1
ÿ

l“0

ε2l
maxp2,k´lq

ÿ

j“2

Ck,l,ρ1,...,ρj

j
ź

i“1

Dρiω|z“0,
(4.18)

where Ajk,l :“ tρ “ pρ1, . . . , ρjq P N2j, 3
řj
i“1 ρ

1
i `

řj
i“1 ρ

i
2 “ 2k ` 4l ` 1,

řj
i“1 ρ

1
i ď k` 2l´ 1,

řj
i“1 ρ

2
i ď 2k´ 2l´ 2 and |ρi| ď 2k´ l´ 1 for all i “ 1, . . . , ju.

Proof. The arguments used in [44] to prove Lemma 5.9 remain the same except for
two differences. First, the function b8 substitutes to the usual Prandtl pressure term
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ppt, xq. Second, when differentiating 2k ´ 1 times (k ě 1) the vorticity equation
and taking its trace to obtain a formula for B2k`1

z ω|z“0, one has to account for the
extra term ´B2k´1

z BxBzb|z“0. Thanks to the relation Bxu` B2
zb “ 0, it simplifies into

B2
xB

2k´2
z u|z“0, which is zero for k “ 1, and equal to B2

xB
2k´3
z ω|z“0 for k ě 2. This

explains the first term at the right-hand side of (4.18).

Corollary 4.2.3. For all k, s1 P N, there exists C “ Cpb8, s1, kq and C 1 “ Cpk, s1q

such that
}Bs1x B

2k`1
z ω|z“0}L2pTq ď C ` C 1}ω}

maxp2,kq

Hs1`2kpΩq
.

Proof. For k “ 0, 1, the inequality follows easily from the first two relations in Lemma
4.2.2. For k ě 2, the inequality can be shown inductively, using relation (4.18). The
point is to bound }

śj
i“1 B

αi
x D

ρiω}L2pTq, where pρ1, . . . , ρjq belongs to a set of type
Ajk,l, and α1 ` ¨ ¨ ¨ ` αj “ s1. One first notices that j ď maxp2, kq “ k, so that
the product has at most k terms. Then, the constraint |ρi| ď 2k ´ l ´ 1 shows
that necessarily αi ` |ρi| ď s1 ` 2k ´ 1 for all 1 ď i ď j. Finally, the constraint
ř

pρ1
i ` ρ

2
i q ď 4k ´ 3 shows that only one of the integers αi ` |ρi| (say for i “ I) can

take the value s1 ` 2k ´ 1, while the others are less than s1 ` 2k ´ 2. We can then
write

›

›

›

›

›

j
ź

i“1

Bαix D
ρiω

›

›

›

›

›

L2pTq

ď }BαIx DρIω}L2pTq
ź

i‰I

}Bαix D
ρiω}L8pTq.

The inequality follows by applying the standard trace inequality to the first factor,
and the Sobolev embedding H2 Ă L8 to the others.

The previous lemma and corollary will allow us to handle the boundary integral in
the case |s| “ m. We remind that we chose m to be an even integer, see Theorem
4.2.1.

Case s “ pm, 0q. Let us first consider the case where all the derivatives are along the
first variable. We use the first statement in Lemma 4.2.2, which gives

´

ż

T
BzpD

sωq|z“0pD
sωq|z“0 “ ´

ż

T
BzB

m
x ω|z“0B

m
x ω|z“0

“´

ż

T
Bm`1
x b8Bmx ω|z“0

ď }Bm`1
x b8}L2pTq}BzB

m
x ω}

1{2
L2 }B

m
x ω}

1{2
L2 ď η}Bzω}

2
H1
mpΩq

` Cηpb
8q}ω}2H1

mpΩq
,

where η ą 0 is arbitrarily small (and Cηpb8q depends on b8).

Case |s| “ m, s1 ď m ´ 1. We make use of the previous corollary, distinguishing
between two possibilities:
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• s2 is even.

When s2 “ 2k for some k P N, we obtain (note that maxp2, kq ď m
2 ).

´

ż

T
BzpD

sωq|z“0pD
sωq|z“0 ď }B

s1
x B

2k`1
z ω|z“0}L2pTq}D

sω|z“0}L2pTq

ď

´

C ` C 1}ω}
m
2

Hm
1 pΩq

¯

}BzD
sω}

1{2
L2 }D

sω}
1{2
L2

ď η}Bzω}
2
Hm

1 pΩq
` Cηp1` }ω}

m
Hm

1 pΩq
q,

where Cη depends implicitly on b8.

• s2 is odd

When s2 “ 2k ` 1 for some k P N, since s1 ` s2 “ m is even, we know that
s1 ě 1. Using integration by parts in x, we have that

´

ż

T
BzpD

sωq|z“0pD
sωq|z“0 “

ż

T
Bs1´1
x Bs2`1

z ω|z“0BxD
sω|z“0. (4.19)

Now, the term BxD
sω|z“0 “ B

s1`1
x B2k`1

z ω|z“0 has an odd number of z deriva-
tives, so that we can apply again the previous corollary. We obtain as previously

´

ż

T
BzpD

sωq|z“0pD
sωq|z“0 ď η}Bzω}

2
Hm

1 pΩq
` Cηp1` }ω}

m
Hm

1 pΩq
q,

where Cη still depends on b8.

5. We turn to the treatment of the first trilinear term, starting with

Iu :“ ´
ÿ

1ď|α|, αďs

ˆ

s

α

˙
ż

Ω
DαuDs´αBxωpD

sωqxzy2`2s2 .

Of course we can study this sum term by term, and separate the following cases

Case 1 ď |α| ď m
2 :

´

ż

DαuDs´αBxωpD
sωqxzy2`2s2

ď }Dαuxzyα2}L8 ¨ }D
s´αBxωxzy

1`s2´α2}L2 ¨ }Dsωxzy1`s2}L2

ď }Dαuxzyα2}L8 ¨ }ω}
2
Hm

1 pΩq
.

Note that we were able to bound the second factor by }ω}Hm
1 pΩq

since |α| ě 1.
Combining (4.14) together with the Hardy-type inequality (4.10), we deduce

´

ż

DαuDs´αBxωpD
sωqxzy2`2s2

ď C
`

}Dαuxzyα2}L2 ` }BxD
αuxzyα2}L2 ` }B

2
zpD

αuxzyα2q}L2

˘

}ω}2Hm
1 pΩq
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ď C
`

}Dαuxzyα2}L2 ` }BxD
αuxzyα2}L2

` }Dαωxzyα2´1}L2 ` }BzD
αωxzyα2´2}L2

˘

}ω}2Hm
1 pΩq

ď C
`

}Dαωxzy1`α2}L2 ` }BxD
αωxzy1`α2}L2 ` }BzD

αωxzyα2`2}L2

˘

}ω}2Hm
1 pΩq

ď C}ω}3Hm
1 pΩq

.

Case m
2 ă |α| ď m, so that |s´ α| ď m

2 ´ 1 :

´

ż

DαuDs´αBxωpD
sωqxzy2`2s2 (4.20)

ď }Dαuxzyα2}L2 ¨ }Ds´αBxωxzy
s2´α2`1}L8 }D

sωxzy1`s2}L2 (4.21)

ď }Ds´αBxωxzy
s2´α2`1}L8 }ω}

2
Hm

1 pΩq
. (4.22)

The same steps as for the previous case can be followed, resulting in

}Ds´αBxωxzy
s2´α2`1}L8 ď C}ω}H1

mpΩq

and eventually Iu ď C}ω}3H1
mpΩq

.

6. Let now consider

Iv :“ ´
ÿ

1ď|α|ď|s|´1

ˆ

s

α

˙
ż

Ω
DαvDs´αBzωpD

sωqxzy2`2s2 .

Case 1 ď |α| ď m
2 :

´

ż

DαvDs´αBzωpD
sωqxzy2`2s2

ď }Dαv xzyα2´1}L8 }D
s´αBzω xzy

2`s2´α2}L2 }Dsω xzy1`s2}L2 .

The first factor can be handled again through (4.14) and Hardy inequalities (see
(4.15) in the case α “ 0). We find }Dαv xzyα2´1}L8 À }ω}Hm

1 pΩq
and

´

ż

DαvDs´αBzωpD
sωqxzy2`2s2 ď C}ω}3Hm

1 pΩq
.

Case m
2 ă |α| ď m´ 1, so that |s´ α| ď m

2 ´ 1:

´

ż

DαvDs´αBzωpD
sωqxzy2`2s2

ď }vxzyα2´1}L2}Ds´αBzωxzy
s2´α2`2}L8}D

sωxzy1`s2}L2 .
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Note that |α| ď m´ 1, so that

}vxzyα2´1}L2 À }Bxuxzy
α2}L2 À }Bxωxzy

α2`1}L2 À }ω}Hm
1 pΩq

.

With similar ideas, we derive the bound

´

ż

DαvDs´αBzωpD
sωqxzy2`2s2 ď C}ω}3Hm

1 pΩq
.

and eventually Iv ď C}ω}3Hm
1 pΩq

.

7. We now turn to the crucial magnetic term
ż

BxBzD
sbpDsωqxzy2`2s2 .

We write Dsω “ BzD
su and integrate by parts in z, so that

ż

BxBzD
sbpDsωqxzy2`2s2

“ ´

ż

BxB
2
zD

sbpDsuqxzy2`2s2 ´ p2` 2s2q

ż

BxBzD
sbpDsuqxzy2s2z

“

ż

B2
xD

supDsuqxzy2`2s2 ´ p2` 2s2q

ż

BxBzD
sbpDsuqxzy2s2z

“ ´}BxD
suxzy1`s2}2L2 ´ p2` 2s2q

ż

BxBzD
sbpDsuqxzy2s2z.

Here, we used the identity Bxu`B2
zb “ 0 to go from the second to the third inequality,

followed by an integration by parts in x. The treatment of the last integral at the
right-hand side depends on the value of s2.

Case 1: s2 ą 0. We write
ż

BxBzD
sbpDsuqxzy2s2z “

ż

BxB
2
zD

s1,s2´1b pDs1,s2´1ωqxzy2s2z

“ ´

ż

BxD
s1`1,s2´1u pDs1,s2´1ωqxzy2s2z

ď η}BxD
s1`1,s2´1uxzy1`s2}2L2 ` Cη}ω}

2
Hm

1 pΩq
.

Case 2: s2 “ 0. We just rewrite
ż

BxBzD
sbpDsuqxzy2s2z “ ´

ż

BzB
|s|
x bB

|s|`1
x uz

“

ż

BzB
|s|
x bB

2
zB
|s|
x bz “

1

2

ż

Bz|BzB
|s|
x b|

2z

“ ´
1

2

ż

|BzB
|s|
x b|

2.
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Note that we used the fact that z vanishes at the boundary, so that no boundary
term came out from the integration by parts.

Eventually, we put together all previous inequalities, sum over all s “ ps1, s2q with 0 ď

|s| ď m. By taking η small enough, we obtain the inequality in the proposition. This
concludes its proof. The next step is to control the magnetic term

ş

Ω |BzB
m
x b|

2 (see the
right-hand side of (4.25) and the remark just below. Note that BzBmx b “

ş`8

z Bm`1
x u:

through Hardy inequality (4.10), one can control it by C 1}Bm`1
x uxzy}L2 , but we can not

ensure that the constant C 1 is small enough so as to absorb it by the right-hand side. This
is why we will use a velocity estimate. It will be crucial that

ş

Ω |BzB
m
x b|

2 contains no weight
in z, otherwise commutation with the weight would create a bad term, reminiscent of the
magnetic term we have here at the level of the vorticity estimate.

Proposition 4.2.3. Under the same assumptions as in the previous proposition, we have
for any η ą 0, a constant C depending on η, m and b8 such that

d

dt
}Bmx u}

2
L2pΩq ` ε

2}Bm`1
x u}2L2pΩq ` }BzB

m
x b}

2
L2pΩq

ď Cη

´

1` }ωpt, ¨q}4Hm
1 pΩq

¯

` η}Bm`1
x uxzy}2L2 .

(4.23)

We will be quick on the proof of this proposition, as most ingredients are similar to
those used in the previous proof. We differentiate m times the velocity equation with
respect to x, test against Bmx u and integrate to obtain that

d

dt
}Bmx u}

2
L2pΩq ` ε

2}Bm`1
x u}2L2pΩq ` }Bzu}

2
L2pΩq “ ´

ż

Ω
Bmx v ω B

m
x u

´

ż

Ω

ÿ

1ď|α|ďm

ˆ

m

α

˙

Bαxu B
m`1´α
x u Bmx u´

ż

Ω

ÿ

1ď|α|ďm´1

ˆ

m

α

˙

Bαxv B
m´α
x ωBmx u`

ż

Ω
BxB

m
x pb´ b8q B

m
x u.

The first term at the right-hand side is bounded through

´

ż

Ω
Bmx v ω B

m
x u ď }B

m
x vxzy

´1}L2}ωxzyL8}B
m
x u}L2

ď C}Bm`1
x u}L2}ω}2Hm

1 pΩq
ď η}Bm`1

x u}2L2 ` Cη}ω}
4
Hm

1 pΩq
.

The second and third terms can be treated with the same ideas as Iu and Iv above. We
find

´

ż

Ω

ÿ

1ď|α|ďm

ˆ

m

α

˙

Bαxu B
m`1´α
x u Bmx u´

ż

Ω

ÿ

1ď|α|ďm´1

ˆ

m

α

˙

Bαxv B
m´α
x ωBmx u ď C}ω}3Hm

1 pΩq
.
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It remains to handle the magnetic term. We use the identity Bm`1
x u “ ´Bmx B

2
zb as follows:

ż

Ω
BxB

m
x pb´ b

8q Bmx u “ ´

ż

Ω
Bmx pb´ b8q B

m`1
x u “

ż

Ω
Bmx pb´ b

8qBmx B
2
zb

“ ´

ż

Ω
|BzB

m
x b|

2 `

ż

T
Bmx b

8 BzB
m
x b|z“0.

Finally, to control the second term at the left-hand side, we write
ż

T
Bmx b

8 BzB
m
x b|z“0 ď }B

m
x b
8}L2pTq}BzB

m
x b|z“0}L2pTq

and write

}BzB
m
x b|z“0}

2
L2pTq “

ż

T

ˇ

ˇ

ˇ

ˇ

ż `8

0
Bm`1
x u dz

ˇ

ˇ

ˇ

ˇ

2

dx ď

ż `8

0
xzy´2dz }Bm`1

x u xzy}2L2 .

By Young’s inequality, we have for any η ą 0:
ż

Ω
BxB

m
x pb´ b8q B

m
x u ď ´

ż

Ω
|BzB

m
x b|

2 ` η}Bm`1
x u xzy}2L2 ` Cη.

Gathering the previous bounds yields the proposition.

Corollary 4.2.4. Let m ě 4 be an even integer and ε P r0, 1s. There exists C,C 1 ą 0

(independent of ε) depending on m and b8 such that

d

dt
}ω}2Hm

1 pΩq
` ε2}Bxω}

2
Hm

1 pΩq
` }Bzω}

2
Hm

1 pΩq
`

1

2
}Bxu}

2
Hm

1 pΩq

`C
´ d

dt
}Bmx u}

2
L2pΩq `

1

2
}BzB

m
x b}

2
L2pΩq

¯

ď C 1
´

1` }ωpt, ¨q}mHm
1 pΩq

¯

.

(4.24)

Proof. By the previous propositions (and the remark after Proposition 4.2.2): there exists
C such that

d

dt
}ω}2Hm

1 pΩq
` ε2}Bxω}

2
Hm

1 pΩq
` }Bzω}

2
Hm

1 pΩq
` }Bxu}

2
Hm

1 pΩq

ď C
´

1` }ωpt, ¨q}mHm
1 pΩq

` }BzB
m
x b}

2
L2

¯

(4.25)

and for all η ą 0, there exists Cη such that

d

dt
}Bmx u}

2
L2pΩq ` }BzB

m
x b}

2
L2pΩq ď Cη

´

1` }ωpt, ¨q}4Hm
1 pΩq

¯

` η}Bm`1
x uxzy}2L2 .

We multiply the second inequality by 2C and add it to the first so that

d

dt
}ω}2Hm

1 pΩq
` ε2}Bxω}

2
Hm

1 pΩq
` }Bzω}

2
Hm

1 pΩq
` }Bxu}

2
Hm

1 pΩq
` 2C d

dt
}Bmx u}

2
L2pΩq ` C}BzB

m
x b}

2
L2pΩq

ď C
´

1` }ωpt, ¨q}mHm
1 pΩq

` }BzB
m
x b}

2
L2

¯

` 2C
´

Cη

´

1` }ωpt, ¨q}4Hm
1 pΩq

¯

` η}Bm`1
x uxzy}2L2

¯

.
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Then, one takes η small enough so that the term 2Cη}Bm`1
x uxzy}2L2 can be absorbed by

}Bxu}
2
Hm

1 pΩq
.

4.2.3 Well-posedness for the mixed Prandtl/Shercliff Equations

We will, in this paragraph, re-use the notations puε, vε, bε, ωεq to distinguish the approx-
imate system from the original one. We remember that all the calculations above were
performed with these quantities.

Existence: The existence of a solution to the system (4.5) is a standard consequence of
the uniform estimates established on the approximate system (4.11). From such estimates
and the Gronwall lemma, one can easily show that there exists a time T ą 0 and some
M ą 0 such that for all t P r0,minpT, Tεqs (where Tε is the maximal time of existence of
the approximate solution), one has

}ωεptq}2Hm
1 pΩq

` }uεptq}2HmpΩq `

ż t

0

´

ε2}Bxω
εptq}2Hm

1 pΩq
` }uε}2H1

mpΩq
` }BzB

m
x b

ε}2L2pΩq

¯

ď M.

(4.26)
This constant M depends on }ω0}Hm

1 pΩq
, }u0}HmpΩq and b8. In particular, if one had

Tε ă T , the standard blow-up criterion that goes with Proposition 4.2.1, namely

lim sup
tÑTε

}ωεptq}Hm
1 pΩq

` }uεptq}HmpΩq “ `8

would yield a contradiction. Thus, Tε ě T , namely, there exists a time T independent on ε
on which the approximate systems are all well-posed. From there, existence of a solution to
the exact system (4.5) follows by classical compactness arguments relying on Aubin-Lions
lemma. We do not provide further details.

Uniqueness: Uniqueness of the Cauchy problem is a straightforward consequence of the
following

Proposition 4.2.4 (L2 Comparison Principle). For any m ě 4, and smooth b8 “ b8pt, xq,
let pui, vi, ωi, biq, i “ 1, 2 two solutions of (4.5). Let us define the following variables:

ũ :“ u1 ´ u2, ṽ :“ v1 ´ v2, ω̃ :“ ω1 ´ ω2, b̃ :“ b1 ´ b2.

Then we have:
1

2

d

dt

`

}ũ}2L2 ` }ω̃}
2
L2

˘

ď C
`

}ũ}2L2 ` }ω̃}
2
L2

˘

.
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Proof. The equations on u1,2 and on ω1,2 are

Btui ` uiBxui ` vBzui ´
Ha
Re
B2
zui “ Bxpbi ´ b

8q (4.27)

Btωi ` uiBxωi ` vBzωi ´ B
2
zωi “ BxBzbi. (4.28)

From there,

Btũ´ B
2
z ũ “ Bxb̃´ ũBxu1 ´ ṽBzu1, (4.29)

Btω̃ ´ B
2
z ω̃ “ BxBz b̃´ u1Bxω̃ ´ ũBxω2 ´ v1Bzω̃ ´ ṽBzω2. (4.30)

Multiplication (respectively) by ũ and ω̃, followed by integration over Ω “ T ˆ R` and
standard integration by parts leads to

1

2

d

dt
}ũ}2L2 ` }Bzũ}

2
L2 “

ż

Ω
Bxb̃ ũ`´

ż

Ω
ũBxu1ũ´

ż

Ω
ṽBzu1ũ, (4.31)

1

2

d

dt
}ω̃}2L2 ` }Bzω̃}

2
L2 “

ż

Ω
BxBz b̃ ω̃ ´

ż

Ω
ũBxω2ω̃ ´

ż

Ω
ṽBzω2ω̃. (4.32)

The two magnetic terms in the two energy estimates can be turned into
ż

Ω
Bxb̃ ũ “ ´

ż

Ω
b̃ Bxũ “

ż

Ω
b̃ B2

z b̃ “ ´

ż

Ω
|Bz b̃|

2, (4.33)
ż

Ω
BxBz b̃ ω̃ “ ´

ż

Ω
BxB

2
z b̃ ũ “ `

ż

Ω
B2
xũ ũ “ ´

ż

Ω
|Bxũ|

2. (4.34)

As regards the right-hand side terms, we find:
ˇ

ˇ

ˇ

ˇ

ż

Ω
ũBxu1ũ

ˇ

ˇ

ˇ

ˇ

ď }Bxu1}L8}ũ}
2
L2 ď C}ũ}2L2 ,

ˇ

ˇ

ˇ

ˇ

ż

Ω
ṽBzu1ũ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż

Ω

ṽ

xzy
Bzu1xzyũ

ˇ

ˇ

ˇ

ˇ

ď }ω1xzy}L8

›

›

›

›

ṽ

xzy

›

›

›

›

L2

}ũ}L2 ď C }Bxũ}L2 }ũ}L2 ,

while
ˇ

ˇ

ˇ

ˇ

´

ż

Ω
ũBxω2ω̃

ˇ

ˇ

ˇ

ˇ

ď }Bxω2}L8}ũ}L2}ω̃}L2 ď C}Bxω2}L8}ũ}L2}ω̃},

ˇ

ˇ

ˇ

ˇ

´

ż

Ω
ṽBzω2ω̃

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż

Ω

ṽ

xzy
Bzω2xzyω̃

ˇ

ˇ

ˇ

ˇ

ď }Bzω2xzy}L8

›

›

›

›

ṽ

xzy

›

›

›

›

L2

}ω̃}L2 ď C }Bxũ}L2 }ω̃}L2 .

Hence, we get

$

’

&

’

%

1

2

d

dt
}ũ}2L2 ` }Bzũ}

2
L2 ` }Bz b̃}

2
L2 ď C

`

}ũ}2L2 ` }Bxũ}L2 }ũ}L2

˘

1

2

d

dt
}ω̃}2L2 ` }Bzω̃}

2
L2 ` }Bxũ}

2
L2 ď C p}ũ}L2}ω̃}L2 ` }Bxũ}L2 }ω̃}L2q .

(4.35)
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Using Young’s inequality, we get that for all η ą 0,

$

’

&

’

%

1

2

d

dt
}ũ}2L2 ` }Bzũ}

2
L2 ` }Bz b̃}

2
L2 ď η}Bxũ}

2
L2 ` Cη}ũ}

2
L2

1

2

d

dt
}ω̃}2L2 ` }Bzω̃}

2
L2 ` }Bxũ}

2
L2 ď C}ũ}2L2 ` η}Bxũ}

2
L2 ` Cη}ω̃}

2
L2 ,

(4.36)

where Cη depends on η, but C does not. If we sum up the two equations and take η small
enough, the inequality of the proposition follows.

This concludes the well-posedness analysis of the Prandtl-Shercliff system.

4.3 Fully nonlinear MHD layer

To conclude this chapter, we discuss briefly the fully nonlinear regime of the MHD layers,
described by

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

Btu` uBxu` vBzu´ B
2
zu “ Sb ¨∇b´ Bxp8,

Btb´∇Kpuˆ bq ´
Re
Rm

B2
zb “ 0,

Bxu` Bzv “ div b “ 0,

u|z“0 “ v|z“0, b|z“0 “ ex,

uÑ u8, bÑ b8, as z Ñ `8,

(4.37)

over R ˆ R` or T ˆ R`. We have already studied a simple linearisation of (4.37) in the
previous chapters and seen how the magnetic term restores Sobolev well-posedness for such
linearization. This stabilizing effect of the magnetic field has been nicely emphasized in
recent and extensive studies by Cheng-Jie Liu, Feng Xie and Tong Yang. They have notably
established the local in time Sobolev well-posedness of such boundary layer systems, under
positivity of the tangential component of the initial magnetic field. Moreover, beyond
this well-posedness of the boundary layer system, they have established the stability of the
associated boundary layer expansions in the MHD equations [41, 42], in sharp contrast with
the situation observed for the traditional problem of stability of the Prandtl expansions
within the Navier-Stokes equations.
As a little complement, we provide a calculation for the inviscid version of the linearised
system.

4.3.1 The linearised zero viscosity case

The purpose of this last section is to detail an explicit calculation of the inviscid case.
Interestingly, when we consider the inviscid case (that is, without the diffusion terms in
both equations) for the linearised MHD system, we find that the latter can be explicitly
solved.
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We will consider the system to have been linearised around

Upzq and Bpzq,

under the hypothesis U,B P W 1,8pR`q.

In this section, we will denote the two components of the velocity as pu, vq and those for
the magnetic field as pb, cq.

As a preliminary remark, we underline that the initial conditions will always be noted as

up0, x, zq “ u0px, zq, vp0, x, zq “ v0px, zq, bp0, x, zq “ b0px, zq, cp0, xq “ c0px, zq,

(4.38)
and that the boundary conditions are the following (remembering that the boundary is
tz “ 0u)

upt, x, 0q “ 0, vpt, x, 0q “ 0, rbs|z“0 “ 0, rcs|z“0 “ 0. (4.39)

As anticipated, using these notations, we rewrite the system without the two diffusion
terms, that is

$

’

’

’

&

’

’

’

%

Btu` UBxu` vUz ´BBxb´ cBz “ 0 p1q

Btb` UBxb` vBz ´BBxu´ cUz “ 0 p2q

Bxu` Bzv “ 0, Bxb` Bzc “ 0,

(4.40)

and we Fourier transform in the x variable

$

’

’

’

&

’

’

’

%

iξû` Bz v̂ “ 0, iξb̂` Bz ĉ “ 0 so that we have û “ ´Bz v̂iξ , b̂ “ ´Bz ĉiξ

Btû` Uiξû` v̂Uz ´Biξb̂´ ĉBz “ 0 p1q

Btb̂` Uiξb̂` v̂Bz ´Biξû´ ĉUz “ 0. p2q

(4.41)
Now we rewrite everything in function of v̂ and ĉ

$

’

’

’

&

’

’

’

%

û “ ´Bz v̂iξ , b̂ “ ´Bz ĉiξ

´BtBz v̂iξ ´ UBz v̂ ` v̂Uz `BBz ĉ´ ĉBz “ 0 p1q

´BtBz ĉiξ ´ UBz ĉ` v̂Bz `BBz v̂ ´ ĉUz “ 0, p2q

(4.42)

that is the same as

$

’

’

’

&

’

’

’

%

û “ ´Bz v̂iξ , b̂ “ ´Bz ĉiξ

´BtBz v̂iξ ´ U2Bz
`

v̂
U

˘

`B2Bz
`

ĉ
B

˘

“ 0 p1q

´BtBz ĉiξ ´ BzpUĉq ` Bzpv̂Bq “ 0. p2q

(4.43)
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Let us now consider equation p2q

´
BtBz ĉ

iξ
´ BzpUĉq ` Bzpv̂Bq “ 0 (4.44)

which we can integrate between 0 and z in the vertical variable to obtain

´
Btĉ

iξ
´ Uĉ` v̂B “ 0, (4.45)

using the fact that ĉ is the boundary layer vertical component, which is 0 at z “ 0. As
a consequence, we can express v̂ in function of ĉ and therefore work on the first equation
with just one unknown function:

$

’

’

’

&

’

’

’

%

v̂ “ Btĉ
iξB ` U

ĉ
B

´BtBz v̂iξ ´ U2Bz
`

v̂
U

˘

`B2Bz
`

ĉ
B

˘

“ 0 p1q

û “ ´Bz v̂iξ , b̂ “ ´Bz ĉiξ .

(4.46)

We only deal with equation p1q, that is

´
BtBz

iξ

ˆ

Btĉ

iξB
` U

ĉ

B

˙

´ U2Bz

ˆ

1

U

Btĉ

iξB
`
ĉ

B

˙

`B2Bz

ˆ

ĉ

B

˙

“ 0 (4.47)

´
B2
t

piξq2
Bz

ˆ

ĉ

B

˙

´
Bt

iξ
Bz

ˆ

U
ĉ

B

˙

´ U2 Bt

iξ
Bz

ˆ

1

U

ĉ

B

˙

´ U2Bz

ˆ

ĉ

B

˙

`B2Bz

ˆ

ĉ

B

˙

“ 0

(4.48)

and writing explicitly all the derivatives one finds

´
B2
t

piξq2
Bz

ˆ

ĉ

B

˙

´
Bt

iξ
UBz

ˆ

ĉ

B

˙

´
Bt

iξ
Uz

ˆ

ĉ

B

˙

´ U
Bt

iξ
Bz

ˆ

ĉ

B

˙

` U2

ˆ

Uz
U2

˙

Bt

iξ

ˆ

ĉ

B

˙

´

(4.49)

´ U2Bz

ˆ

ĉ

B

˙

`B2Bz

ˆ

ĉ

B

˙

“ 0 (4.50)

which can be simplified into

´
B2
t

piξq2
Bz

ˆ

ĉ

B

˙

´ 2U
Bt

iξ
Bz

ˆ

ĉ

B

˙

´ U2Bz

ˆ

ĉ

B

˙

`B2Bz

ˆ

ĉ

B

˙

“ 0 (4.51)

B2
t

piξq2
Bz

ˆ

ĉ

B

˙

` 2U
Bt

iξ
Bz

ˆ

ĉ

B

˙

` pU2 ´B2qBz

ˆ

ĉ

B

˙

“ 0. (4.52)

Now, we can easily solve this system in a direct way, and write the exact solutions. From
the latter expression one gets Bz

`

ĉ
B

˘

“ c1pzqe
p´U`Bqiξt ` c2pzqe

p´U´Bqiξt, and solving it
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with the initial data gives:

ĉ “ B

ż z

0

„

Bzpĉ0 ´ v̂0q

2B
´
ĉ0

B

ˆ

Bz ´ Uz
2B

˙

e´pU`Bqtiξdz1` (4.53)

`B

ż z

0

„

Bzpĉ0 ` v̂0q

2B
´
ĉ0

B

ˆ

Bz ` Uz
2B

˙

e´pU´Bqtiξdz1, (4.54)

v̂ “ B

ż z

0

„

Bzpĉ0 ´ v̂0q

2B
´
ĉ0

B

ˆ

Bz ´ Uz
2B

˙

pUpzq ´ Upz1q ´Bpz1qqe´pU`Bqtiξdz1` (4.55)

`B

ż z

0

„

Bzpĉ0 ` v̂0q

2B
´
ĉ0

B

ˆ

Bz ` Uz
2B

˙

pUpzq ´ Upz1q `Bpz1qqe´pU´Bqtiξdz1, (4.56)

which are the explicit solutions.
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Chapter 5

Numerical Study

In this chapter we carry on two simulations on the Prandtl system and the mixed Prandtl
/ Shercliff system, in order to check numerically the stabilizing effect of the magnetic field
that was established mathematically in the previous chapters. For both systems, we will
use the perfect conductor boundary conditions, that allow more efficient computations.
We begin with some remarks on the good properties of the linearisation, and we present
the simulations afterwards.

5.1 Mixed Prandtl/Shercliff system

To begin, we want to rewrite the linearised mixed Prandtl/Shercliff system in an appropri-
ate form to perform some simulations. We consider the 2D nonlinear version of the system
in the upper half space RˆR`. We take all the constants involved of size 1, and we model
the boundary as perfect conductor. The system reads:

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

Btu` uBxu` vBzu´ B
2
zu “ Bxb´ Bxp

8,

Bxu` B
2
zb “ 0,

Bxu` Bzv “ 0,

u|z“0 “ v|z“0 “ b|z“0 “ 0,

uÑ u8, BzbÑ 0, as z Ñ `8.

(5.1)

The first step is to consider a linearisation around

u “ Upzq, v “ 0, b “ b8 constant.

85
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We assume that U connects 0 at z “ 0 to some constant u8 at infinity. The linearized
system reads (we will only write the two first equations in the following)

#

Btu` UBxu` vU
1 ´ B2

zu “ Bxb

Bxu` B
2
zb “ 0.

(5.2)

Consistently, one must have Bxp8 “ 0. We will now begin to rewrite the first equation
of the former system as an evolution equation in terms of v, using the incompressibility
condition Bxu` Bzv “ 0.

System (5.2) has constant coefficients in t and x, so that we can perform a Fourier analysis:
we look for solutions in the form

upt, x, zq “ eikxûpkt, zq, vpt, x, zq “ keikxv̂pkt, zq; (5.3)

bpt, x, zq “ eikxb̂pkt, zq, cpt, x, zq “ keikxĉpkt, zq. (5.4)

Note that we are rescaling the vertical component to be coherent with the incompressibility
condition. We then express the whole first equation in terms of v̂, using that same condition

iûpkt, zq “ ´Bz v̂pkt, zq,

which we substitute in the evolution equation

#

ikBtBz v̂ ´ kUBz v̂ ` kv̂U
1 ´ iB2

zBz v̂ “ ikb̂

´ kBz v̂ ` B
2
z b̂ “ 0,

(5.5)

we then divide by ik the first equation and rewrite the second

$

&

%

BtBz v̂ ` iUBz v̂ ´ iv̂U
1 ´

1

k
B3
z v̂ “ b̂

kB´2
z Bz v̂ “ b̂.

(5.6)

Deriving the first equation to obtain an even number of derivatives and injecting the second
one we get

BtB
2
z v̂ ` iU

1Bz v̂ ` iUB
2
z v̂ ´ iv̂U

2 ´ iBz v̂U
1 ´

1

k
B4
z v̂ “ kBzB

´2
z Bz v̂. (5.7)

Thanks to the boundary conditions on the magnetic field, one has kBzpB´2
z qBz v̂ “ kv̂, which

yields the expression we will use to perform our numerical simulations:

pBt ` iUqB
2
z v̂ ´

`

iU2 ` k
˘

v̂ ´
1

k
B4
z v̂ “ 0. (5.8)
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Before presenting the numerics, let us stress that we can recover a stabilizing estimate from
(5.8). We multiply it by ¯̂v to get
ż

BtB
2
z v̂

¯̂v ` i

ż

UB2
z v̂

¯̂v ´ i

ż

v̂U2 ¯̂v ´
1

k

ż

B4
z v̂

¯̂v ´ k

ż

v̂¯̂v “ 0 (5.9)

´
1

2

ż

Bt|Bz v̂|
2 ´ i

ż

U |Bz v̂|
2 ´ i

ż

U 1Bz v̂¯̂v ´ i

ż

U2|v̂|2 `
1

k

ż

B3
z v̂Bz v̂ ´ k

ż

|v̂|2 “ 0 (5.10)

1

2

ż

Bt|Bz v̂|
2 ` i

ż

U |Bz v̂|
2 ` i

ż

U 1Bz v̂¯̂v ` i

ż

U2|v̂|2 `
1

k

ż

|B2
z v̂|

2 ` k

ż

|v̂|2 “ 0 (5.11)

1

2

d

dt
}Bz v̂}

2
L2 `

1

k
}B2
z v̂}

2
L2 ` k}v̂}

2
L2 “ i

ż

U 1Bz v̂v̂ ´ i

ż

U |Bz v̂|
2 ´ i

ż

U2|v̂|2 (5.12)

1

2

d

dt
}Bz v̂}

2
L2 `

1

k
}B2
z v̂}

2
L2 ` k}v̂}

2
L2 ď (5.13)

ď }U 1}L8
1

2η
}Bz v̂}

2
L2 ` }U

1}L8
η

2
}v̂}2L2 ` }U}L8}Bz v̂}

2
L2 ` }U

2}L8}v̂}
2
L2 , (5.14)

so that taking η “ 2kHa´2Re }U2}L8
Re }U 1}L8

we get

1

2

d

dt
}Bz v̂}

2
L2 `

1

k
}B2
z v̂}

2
L2 ď

ˆ

}U 1}L8

2η
` }U}L8

˙

}Bz v̂}
2
L2 (5.15)

and hence

1

2

d

dt
}Bz v̂}

2
L2 ď C}Bz v̂}

2
L2 , (5.16)

which implies thanks to Gronwall inequality that

}Bz v̂}
2
L2 ď 2C}Bz v̂0}

2
L2e

Ct, (5.17)

which closes the estimate and the stability result.

5.2 Simulation of the stability mechanism and comparison

Let us now go back to (5.8)

$

&

%

pBθ ` iUqB
2
z v̂ ´

`

iU2 ` k
˘

v̂ ´
1

k
B4
z v̂ “ 0,

iûpkt, zq “ ´Bz v̂pkt, zq,
(5.18)

where we remember that v̂ “ v̂pθ, zq, with θ :“ kt. We have performed some numerical
simulations on this equation, which we can easily compare to the Prandtl system (cfr
[18]). Indeed, taking the linearisation of the Prandtl equation around shear layer flows:
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u “ Upzq, v “ 0 and denoting the velocity components as pr, wq

$

’

’

’

’

’

&

’

’

’

’

’

%

Btr ` UBxr ` wU
1 ´ B2

zr “ 0,

Bxr ` Bzw “ 0,

r|z“0 “ w|z“0 “ 0,

r Ñ 0 as z Ñ `8,

(5.19)

and once performed the very same operations exposed in the previous paragraph to obtain
(5.8), the two first equations are rewritten as

$

&

%

pBθ ` iUqB
2
z ŵ ´ iU

2ŵ ´
1

k
B4
z ŵ “ 0

ir̂pkt, zq “ ´Bzŵpkt, zq,
(5.20)

that is, comparing term by term, an expression identical to (5.18) except for the term kv̂.

We will, now, calculate numerical solutions for both systems and compare them1. We
already expect to find quite different behaviours, knowing that the Prandtl system is ill-
posed and that the mixed Prandtl/Shercliff is well-posed.

We take for the base velocity profile: Upzq “ 2ze´z
2 . For each, we have discretized

these equations in space using finite differences on a stretched grid and in time through a
Crank-Nicholson scheme. We will provide a brief sketch of the algorithm.

Let us define the linear operators L and L1, from expression (5.18) and expression (5.20)
respectively

L :“ ´
`

iU2 ` k
˘

Id` iUB2
z ´

1

k
B4
z ,

L1 :“ ´iU2Id` iUB2
z ´

1

k
B4
z .

From this point on, the steps are exactly the same. We provide here some details for (5.18),
that thus becomes

BθB
2
z v̂ “ Lpv̂q.

We rewrite it using the Crank-Nicholson method, which gives

B2
z v̂n`1 ´ B

2
z v̂n

dθ
“
Lpv̂n`1q

2
`
Lpv̂nq

2
,

so that, calling A2 :“ B2z
dθ ´

L
2 and A1 :“ B2z

dθ `
L
2 , one has

A2v̂n`1 “ A1v̂n.

1The author would like to thank Emmanuel Dormy for his precious programming advices on the code.
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To perform the calculations we need to inverse the matrix A2, which can be done exploiting
the fact that, thanks to the even number of derivatives involved, the matrix is pentadi-
agonal. This allows to easily solve it as a linear system (the technique is similar to the
tridiagonal case).

Starting from initial random data we compute the time evolution of (5.18) and (5.20)
for different values of k “ ε´1 that range from 100 to 35000. For sufficiently large times,
one observes that both numerical solutions v̂num, ŵnum behave like:

v̂numpθ, zq « eiω
num
1 pkqθV̂ numpzq, ŵnumpθ, zq « eiω

num
2 pkqθŴnumpzq, (5.21)

in the sense that both

iωnum1 pkq “
v̂numpθ `∆θ, zq ´ v̂numpθ, zq

∆θv̂numpθ, zq
and iωnum2 pkq “

ŵnumpθ `∆θ, zq ´ ŵnumpθ, zq

∆θŵnumpθ, zq

(5.22)

get independent of θ and z. Of course, since

eiω
num
1 pkqθV̂ numpzq “ ei<pω

num
1 pkqqθe´=pω

num
1 pkqqθV̂ numpzq, (5.23)

eiω
num
2 pkqθŴnumpzq “ ei<pω

num
2 pkqqθe´=pω

num
2 pkqqθŴnumpzq, (5.24)

when we look at the sign of ´=pωnum1,2 q, we can deduce whether this Fourier mode will
grow or decay exponentially with time. If we plot those two values (see figure 5.1) we
find that ´=pωnum2 q, that is the one corresponding to the Prandtl equation is positive and
decreasing to 0, whereas ´=pωnum1 q, corresponding to the Shercliff system, is negative and
tends toward ´2. A positive value will lead to the explosion of the Fourier mode, whereas
a negative one will be exponentially small as time grows.
These calculations correspond to our expectations: the Shercliff flow presents a decreasing
in time Fourier mode and the Prandtl flow an explosing Fourier mode in time.
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Figure 5.1: Top: ´=pωnum2 q; bottom: ´=pωnum1 q; for both, we let k range between 100
and 35000.



Bibliography

[1] R. Lingwood, T. Alboussière. On the stability of the Hartmann Layer. Phys. Fluids
11, 2058 (1999).

[2] R. Alexandre, Y.-G. Wang, C.-J. Xu, and T. Yang. Well-posedness of the Prandtl
equation in Sobolev spaces. J. Amer. Math. Soc., 28(3):745–784, 2015.

[3] T. Aubin. Un théorème de compacité. C. R. Acad. Sci. Paris, 256: 5042-5044, 1963.

[4] F. Boyer, P. Fabrie. Mathematical Tools for the Study of the Incompressible Navier-
Stokes Equation and Related Models, Springer, 2010

[5] R. E. Caflisch, M. Sammartino. Zero viscosity limit for analytic solutions of the
Navier-Stokes equation on a half-space. I: Existence for Euler and Prandtl equations.
Comm. Math. Phys. 192 433-446, 1998

[6] R. E. Caflisch, M. Sammartino. Zero viscosity limit for analytic solutions of the Navier-
Stokes equation on a half-space. II: Construction of the Navier-Stokes solution. Comm.
Math. Phys. 192 463-491, 1998

[7] R. E. Caflisch, M. Sammartino. Existence and Singularities for the Prandtl Boundary
Layer Equations Zamm Z. Angew. Math. Mech., 80 11-12, 733-744, 2000

[8] J.Y. Chemin, D. Gérard-Varet, I. Gallagher Facettes mathématiques de la mécanique
des fluides, X-UPS, 2010

[9] E. Coddington, N. Levinson. Theory of ordinary differential equations, McGraw-Hill
Book Company, Inc, New York-Toronto-London, 1955

[10] D. Chen, Y. Wang, Z. Zhang Well-posedness of the linearized Prandtl equation around
a non-monotonic shear flow Preprint arXiv:1609.08785.

[11] S. J. Cowley, L. M. Hocking, and O. R. Tutty. The stability of solutions of the classical
unsteady boundary-layer equation. Phys. Fluids, 28(2):441–443, 1985.

[12] P.A. Davidson. An introduction to Magnetohydrodynamics. Cambridge University
Press, Cambridge, 2001.

91



92 BIBLIOGRAPHY

[13] B. Desjardins, E. Dormy, E. Grenier. Boundary Layer Instability at the top of the
Earth’s outer core. Journal of Computational and Applied Mathematics 166 (1),
123?131 (2004).

[14] B. Desjardins, E. Dormy, E. Grenier. Stability of mixed Ekman-Hartmann boundary
layers, Nonlinearity 12 (1999) 181-190

[15] G. Duvaut, J.-L. Lions. Inéquations en thermoélasticité et magnetohydrodynamique,
Arch. Rat. Mech. Anal., 46, 241-279

[16] W. E. Boundary layer theory and the zero-viscosity limit of the Navier-Stokes equa-
tion, Acta Math. Sin. (Engl. Ser.) 16, 2 (2000), 207-218

[17] L.C. Evans. Partial Differential Equations, second edition, American Mathematical
Society, 2010

[18] D. Gérard-Varet and E. Dormy. On the ill-posedness of the Prandtl equation. J.
Amer. Math. Soc., 23(2):591–609, 2010.

[19] D. Gerard-Varet and N. Masmoudi. Well-posedness for the Prandtl system without
analyticity or monotonicity. Ann. Sci. Éc. Norm. Supér. (4), 48(6):1273–1325, 2015.

[20] D. Gérard-Varet and T. Nguyen. Remarks on the ill-posedness of the Prandtl equation.
Asymptot. Anal., 77(1-2):71–88, 2012.

[21] D. Gérard-Varet and M. Prestipino. Formal derivation and stability analysis of bound-
ary layer models in MHD. Z. Angew. Math. Phys., (2017) 68:76

[22] J-F. Gerbeau, C. Le Bris. Existence of solution for a density-dependent magneto-
hydrodynamic equation. Adv. Differential Equations Volume 2, Number 3 (1997),
427-452.

[23] J-F. Gerbeau, C. Le Bris, T. Lelièvre. Mathematical Methods for the magnetohydrody-
namics of liquid metals. Numerical Mathematics and Scientific Computation. Oxford
University Press, Oxford 2006.

[24] A. Gilbert. Dynamo theory. Handbook of mathematical fluid dynamics, Vol. II,
355-441, North-Holland, Amsterdam, 2003.

[25] E. Grenier, N. Masmoudi. Ekman layers of rotating fluids, the case of well-prepared
initial data, Comm. Par. Diff. Eqns. 22 (1997) 953-975

[26] J. Hartmann. Theory of the laminar flow of an electrically conductive liquid in a
homogeneous magnetic field, K. Dan. Vidensk. Selsk. Mat. Fys. Medd. 15(6), 1?28
(1937).



BIBLIOGRAPHY 93

[27] B. Helffer Spectral Theory and its Applications, Cambridge University Press, 2013

[28] D.W. Hugues, S.M. Tobias. On the instability of magnetohydrodynamic shear flows.
Proc. R. Soc. Lond. A (2001) 457, 1365-1384.

[29] J.C.R. Hunt. Magnetohydrodynamic flow in rectangular ducts J. Fluid Mech. (1965)
21 (4), 577-590.

[30] L. Hong, J. K. Hunter. Singularity formation and instability in the unsteady inviscid
and viscous Prandtl equations, Commun. Math. Sci. 1,2 (2003), 293-316

[31] T. Kato. Remarks on zero viscosity limit for nonstationary Navier-Stokes flows with
boundary, Seminar on Partial Differential Equations, S S Chern eds 1984 85-98

[32] T. Kato. Perturbation theory for linear operators -second edition-, Princeton univer-
sity press, 1995

[33] T. Kato. Nonlinear Evolution Equations and the Euler Flow, Journal of Functional
Analysis 56 (1984), 15-28

[34] T. Kato, G. Ponce. Commutator estimates and the Euler and Navier-Stokes equations,
Commun. Pure and Appl. Math. 41 1988, 891-907

[35] O. A. Ladyzenskaja, V.A. Solonnikov. Solution of some non-stationary problems of
magnetohydrodynamics for a viscous incompressible fluid. (Russian), Trudy Mat. Inst.
Steklov 59 (1960) 115–173

[36] J.Leray. Essai sur les mouvements plans d’un liquide visqueux emplissant l’espace,
Acta Math., 63: 193-248, 1934

[37] J.Leray. Essai sur les mouvements plans d’un liquide visqueux qui limitent des parois,
J. Math. Pures Appl., 13: 331-418, 1934

[38] Lieb Elliot H. , Loss Micheal. Analysis -second edition-, American Mathematical
Society, 2001

[39] P.L. Lions. Mathematical topics in fluid mechanics -volume 1, Incompressible models,
Oxford Science Publications, 1996

[40] W.-X. Li, T. Yang. Well-posedness in Gevrey function space for the Prandtl equations
with non-degenerate critical points Preprint arXiv:1609.08430, August 2017. Accepted
for publication in the Journal of European Mathematical Society

[41] C.-J. Liu, F. Xie, T. Yang. MHD Boundary layers theory in Sobolev spaces without
monotonicity. I. Well-posedness theory Preprint arXiv:1611.05815, Janvier 2017.



94 BIBLIOGRAPHY

[42] C.-J. Liu, F. Xie, T. Yang. MHD Boundary layers theory in Sobolev spaces without
monotonicity. II. Convergence theory Preprint arXiv:1611.05815, May 2016.

[43] C.-J. Liu, Y.-G. Wang, T. Yang. On the ill-posedness of the Prandtl equations in
Three Dimensional Space Arch. Rat. Mech. Anal. 220 (1), 2016, pp83-108.

[44] N. Masmoudi and T. K. Wong. Local-in-time existence and uniqueness of solutions
to the Prandtl equations by energy methods. Comm. Pure Appl. Math., 68(10):1683–
1741, 2015.

[45] M. Nunez. MHD shear flows with non-constant transverse magnetic field. Physics
Letters A 376 (2012) 1624-1630.

[46] C. Marchioro, M. Pulvirenti. Mathematical Theory of Incompressible Nonviscous
Fluids, Springer-Verlag, 1991

[47] O.A. Oleinik, V.N. Samokhin Mathematical Models in Boundary Layer Theory, Chap-
man and Hall/CRC, New York, 1999

[48] L. Prandtl. Uber Flussigkeitsbewegung bei sehr kleiner Reibung. Verh. III. Intern.
Math. Kongr., Heidelberg, 1904, S. 484-491, Teubner, Leipzig, 1905.

[49] M. Renardy. Well-Posedness of the Hydrostatic MHD Equations. J. Math. Fluid
Mech. 14 (2012), 355-361.

[50] F. Rousset. Large mixed Ekman-Hartmann boundary layers in magnetohydrodynam-
ics. Nonlinearity 17 (2), 503-518 (2004).

[51] Rudin Walter. Functional Analysis -Second Edition-, McGraw-Hill International
Editions, 1991

[52] S. Salsa. Partial Differential Equations in Action, Springer, 2008

[53] M. Sermange, R. Temam. Some mathematical questions related to the MHD equa-
tions, Comm. Pure Appl. Math., XXXVI (1983), 635-664,

[54] J.A. Shercliff. Steady motion of conducting fluids in pipes under transverse magnetic
fields. Math. Proc. Cambridge Phil. Soc. 49 (1) 1953, pp. 136-144.

[55] J. Simon Compact sets in the space Lpp0, T ;Bq. Ann. Mat. Pura appl.,146 (4): 65-96,
1987.

[56] R. Temam. Navier-Stokes Equations: Theory and Numerical Analysis, North- Holland
Pub. Company, 1977. Second revised edition, 1979. Third revised edition, 1984.

[57] J. Wesson. Tokamacs. Oxford University Press, Oxford, 2011.



BIBLIOGRAPHY 95

[58] Z. Xin, L. Zhang, On the global existence of solutions to the Prandtl’s system. Adv.
Math. 181 (1) 2004, pp. 88-133.

[59] C.-J. Xu, X. Zhang Long time well-posedness of the Prandtl equations in Sobolev
space Preprint arXiv:1511.04850v6, May 2016


