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Abstract

The classical approach for dual-arm cooperative task space control was revisited and the

symmetric formulation of dual arm coordination using virtual sticks was implemented

using screw-based kinematics with dual quaternion representation. The proposed simul-

taneous pose control of cooperative task space, i.e. simultaneous control of both posi-

tion and orientation setpoints of relative and absolute task space was compared against

the performance of conventional proportional controller treating position and orienta-

tion error separately. The simultaneous pose controller demonstrated better tracking of

pose and orientation in terms of accuracy and stability compared to the conventional

controller for tasks requiring faster operation in the relative task space of dual-arm

manipulators.

The cooperative task space modelling and control approach using screw-based kinematics

and dual quaternions were extended for the cooperation modelling of the fingers of an

anthropomorphic robotic hand. Additionally, the coupling of joints in the underactuated

fingers of the robotic hand were represented with a coupled finger Jacobian. The coupled

Jacobian of the robotic finger was used for inverse kinematic control, while allowing easy

integration with a robotic arm.

The idea of simultaneous treatment of position and orientation variables was capitalized

further with the design of a dynamic trajectory tracker using dual quaternions. The

trajectory controller hence designed was capable of tracking pose, velocity and accel-

eration setpoints for the end-effector using inverse dynamic model of the robot. The

dynamic trajectory tracker using a simultaneous resolved rate acceleration controller

was found to be capable of tighter trajectory control, specially for error terms related to

orientation, compared to the conventional controller that treated the position and ori-

entation setpoints separately and ignored the inherent effect of rotation on translational

motion. Additionally, it also led to lower oscillations in the joint torque command when

implemented for the control of one of the arms of Baxter dual-arm robot.

Finally, a complete framework for the coordination of bi-arm robotic systems was pro-

posed with the addition of a cooperative task planner. The simplicity of screw theory

was exploited additionally for parametrized generation of generalized second order tra-

jectories for tasks requiring simplified motion, like translation, rotation and screw motion

around an arbitrary 6D screw-axis given in a known reference frame. The trajectory

generation method was extended to represent the constraints related to tasks involving

contact between objects using the concept of virtual mechanism.
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Chapter 1

Introduction

1.1 Motivation

In the past decades, robots have demonstrated great applicability in manufacturing

industries for manipulation of heavy parts for assembly, welding and machining opera-

tions. Since the focus of previous robotic applications was geared towards high-volume

manufacturing, a structured environment with dedicated robotic cells was the prevail-

ing norm in these manufacturing units. But as the market’s demand is shifting from

mass production towards mass customization [15], as shown in Fig. 1.1, industries are

forced to redesign the production lines more frequently. Additionally, manual labor

is often needed for intermediate tasks like fastening two parts together, inspection of

manufactured parts for defects, etc.

To stay relevant in the industries, the robots should evolve to be more skilled with higher

cognition abilities, flexible in terms of applicability for different kinds of tasks, and safe

enough to work with humans. It is expected that 30% of the robots sold in 2027 will

be collaborative robots [16], or as commonly known, cobots, which are designed for safe

interaction and collaboration with humans. The take-away message from these trends

is that the key drivers of automation in the near future will be the robotics solutions for

tasks that are traditionally done by humans, while capable of working close to humans

and collaboration with humans in an human-centric environment [17].

1
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Fig. 1.1 Shift of ”Robot zone” towards mass customization zone where manual assem-
bly was prevalent [1].

The robotics community has started to respond to this emerging demand of high mix

and low volume production in industries with the development of highly skilled collabo-

rative robots capable of working alongside humans for traditionally manual tasks, such

Fig. 1.2 Dual-arm collaborative robots performing industrial tasks: (a) cooperative
lifting with human [2]; (b) dual-arm IKEA chair assembly [3]; (c) bimanual folding

assembly [4]; (d) bimanual peg-in-hole task [5].
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as packaging of goods, small parts assembly, etc. Dual-arm robots have been used for

cooperative tasks such as: manipulation of heavy objects [18]; bimanual assembly oper-

ations [19, 20]; laboratory automation [21, 22]; and, space exploration crew-assistance

[23], etc. Some of the recent results in the context of these application scenarios of

advanced industrial automation using robots have been depicted in Fig. 1.2.

There is also a significant potential of robotic applications for domestic tasks in a human-

centric environment such as service industries, like restaurants and hotels, in addition to

medical facilities. Dual-arm robotic platforms can be used for domestic applications like

making pancakes [24], and house-keeping tasks such as making a bed, folding laundry,

ironing clothes, etc [6, 7]. However, one of the most crucial service application of a

robot could be taking care of patients and the elderly. Robots can help patients with

immobility ease into their wheelchair or to put them to bed or help them stand by pro-

viding physical support [25]. They can also be used to dress and undress patients with

mental and physical incapabilities [8, 9]. Fig. 1.3 shows some of the robotic solutions

for common household tasks, like folding laundry and clothing assistance tasks.

The applicability of dual-arm robots in manufacturing industries, as well as in domestic

tasks is undeniable on account of following factors [26, 27]:

• Industrial Applications:

– Fixture-less assembly : Assembly operation involves controlled interaction be-

tween two assembly parts. A single manipulator needs a structured fixture to

hold one of the parts thus greatly reducing the applicability of manipulators

in industries. A dual-arm manipulator can eliminate the requirement of a

dedicated setup thus has the potential of increasing the usage of robots in

Small and medium-sized enterprise (SME)s.

– Larger workspace and higher load-bearing capacity : A dual-arm system en-

larges the workspace. Moreover, there are many tasks in industrial settings

that involve the manipulation of heavy objects and their interaction with the

external environment where dual-arm robots can be of higher utility than

single-arm robots.

– Flexibility in the operation and task-space: Sometimes even when the desired

tasks can be accomplished with just one arm, the other arm can provide
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Fig. 1.3 Dual-arm robots performing domestic and assistance tasks: (a) folding clothes
[6]; (b) flattening clothes or wrinkle removal [7]; (c) bottom dressing assistance [8]; and,

(d) upper body clothing assistance [9].

more flexibility of repositioning of objects, or can bring a camera closer to

the task for visual feedback for robust completion of tasks. Additionally,

the performance of the task operation can be improved by regrasping and

exchanging objects between arms.

• Human-centric applications:

– Human form-factor : The human form-factor of dual-arm robots makes them

an ideal choice to employ in service industries owing to the trust factor and

thus making dual-arm robots easier to integrate with human-structured en-

vironment [28].

– Transfer of skills: Since we humans perform many tasks that involve a com-

bination of single-arm and bimanual operations, a dual-arm robot is more

desirable, as human inspired strategies can be easily imitated or transferred

[29, 30].
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1.2 Scope of the thesis

While dual-arm robots offer a considerable advantage for most of the industrial and do-

mestic applications, they inherit all the single manipulator challenges related to the task

description, the abstraction of higher-level inferences from raw sensor data and sensor

inaccuracies, uncertainties related to the environment, motion planning and control of

the manipulator, and so on. On top of that, dual-arm manipulation presents some new

problems such as dual-arm coordination, dual-arm motion planning, role-assignment for

each contributing arms, etc [26].

This thesis deals with some of the issues related to dual-arm coordination for tasks

where cooperative behavior of two arms of a dual-arm robot is paramount. The goal of

this thesis has been to apply the principles of screw theory using dual quaternions for

the representation of motion variable and spatial transformations, and to improve upon

the previous works on cooperative dual-arm manipulation in terms of computational

advantage and controller performance. The improvements in computational and stor-

age efficiency can be attributed to the use of UDQ, and controller performance to the

consideration of the inherent coupling of linear and angular terms in rigid body motion.

The improvement in control performance observed for cooperative task-space control

was extended for second-order trajectory tracking for single robotic manipulator.

While this thesis does not address the issues involved in robotic grasping, the kinematic

aspects of an anthropomorphic hand that incorporates coupled motion in the last two

distal phalanxes similar to human fingers were studied. A coupled Jacobian was proposed

which represented this motion coupling and the forward and inverse kinematic model

was validated on robotic fingers. Additionally, the concept of relative task-space was

applied to control the relative task-space of a unified manipulator consisting of index

and thumb, with two end-effectors frames defined at the two fingers tips.

A framework for task definition, trajectory planning and execution for dual-arm manipu-

lation was designed. Screw theory and dual quaternions were used as the tools to define

cooperative task-space variables, which refers to the absolute and relative task space

of dual-arm robots. In addition, screw-theory were employed to obtain parametrized

cooperative task-space trajectories for common industrial and domestic tasks. The task

definition approach uses VMs to define physical constraints related to tasks. The goal of
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using VM is to parametrize the task definition with task requirements which are either

pre-specified or can be obtained from an appropriate sensing module.

1.3 Contributions

The main contribution of this thesis are presented in the following sections.

ROBOT HW INTERFACE
(Real/Simulation)

[qr
curr

]
 [qtcurr]

bĴr 
bĴt

[Δqr] 
[Δqt]

+
+

[qrcmd]
 [qtcmd]

CTS Controller

Manipulator Kinematics 
Handler (MKHm)

Task Scene

[bx̂r
curr, bx̂t

curr]

for m= {r, t}, 
r: reference frame, 
t: tool frame, 
b: base frame 

Task state

Robot state

[bx̂abs
des, rx̂rel

des]

[V�Sr, V�St]

[V�Sr, V�St]

Initial Screw Axes
 

([bŝ1m
init, bŝ2m

init, ..., bŝnm
init])

Initial end-effector pose
bx̂m

init

Virtual Mechanism Based
Task Planner

Sensing Unit

Dual-Arm Setpoint Controller

Fig. 1.4 Control architecture for CTS pose control.

1.3.1 Framework for Dual-arm cooperative task execution

A framework for dual-arm cooperative task execution has been proposed that includes

a novel formulation of dual-arm coordination using unit dual quaternions, and a task

planning strategy for tasks involving the manipulation of rigid, well as articulated and

deformable object manipulation. The proposed strategy was validated on Baxter robot

for a variety of tasks such as cooperative lifting, deformation of foam for packaging and
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manipulation of isometric linear objects like rope. The framework shown in Fig. 1.4

consists of following modules:

1.3.1.1 Dual-arm cooperative task-space formulation

The modelling of dual-arm coordination tasks was remodeled by capitalizing on the

efficiency and compactness afforded by unit dual quaternions for pose representation

while avoiding representation singularities. The proposed work also takes advantage from

the simplicity of screw theory for kinematic modelling, and its capability to represent

the natural motion of rigid bodies where linear and angular movements are inherently

coupled. The proposed method was compared against the traditional control approach

where the pose variables related to linear and angular motion are separately controlled.

1.3.1.2 Cooperative task-planner

A task planner has been proposed for generating motion plans in the cooperative task

space, with the a variation of VS concept proposed in [31], that was used for static

analysis of a rigid body held by two manipulators. The VS concept was modified for the

task modeling of articulated and deformable object manipulation. The implementation

of the task planner is based on screw theory that allowed us to parametrize these tasks

with minimal parameters, while at the same time generate higher-order trajectories. A

comparative analysis of screw theory and Dual Quaternion (DQ) based pose controller

was carried out for tasks hence defined against the classical control approach involving

three-dimensional position and orientation components of motion.

1.3.2 Anthropomorphic finger modeling and control

An anthropomorphic hand was studied that consisted of fingers with human-like me-

chanical coupling in their middle and distal phalanx motion. The kinematic model was

derived analytically while taking this coupling into account, in a way so as to make it

easier to integrate with the kinematics of the finger with that of a connected robotic

arm. The kinematic model hence derived was validated on an anthropomorphic hand

for forward and inverse kinematic control of individual fingers, as well as for relative

task-space control of relative motion between thumb and index-finger fingertips.
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The inclusion of the relative task space of finger with the cooperative task-space frame-

work has also been proposed and the corresponding architecture has been outlined in

the future work section.

1.3.3 Coupled resolved-rate acceleration controller

The trajectory tracking strategy of manipulators using resolved rate acceleration control

was studied and a controller was designed which respected the inherent coupling of

angular and linear terms in rigid body motion. The proposed trajectory tracker uses a

Proportional Derivative (PD) control scheme based on spatial dynamics and unit dual

quaternion representation of motion variable viz. pose, velocity and acceleration. The

novel trajectory tracker for robotic manipulation hence designed was compared with a

state of the art decoupled controller, where the linear and angular terms of the control

law are controlled separately.

A framework for extending the coupled resolved-rate acceleration control for dual-arm

handling of a rigid object has also been proposed in the future work section.

1.4 Funding

This work is funded by the European Union. The European Union gets involved in

Auvergne-Rhône-Alpes through the European Regional Development Fund (FEDER).

1.5 Publications

The research work conducted in the scope of thesis were disseminated through following

conferences:

• Chandra, R., Corrales-Ramon, J. A., & Mezouar, Y. (2019, April). Kinematic

modeling of an anthropomorphic hand using unit dual quaternion. In 2019 IEEE/SICE

International Symposium on System Integration (SII) (pp. 433-437). IEEE.
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• Chandra, R., Mateo, C. M., Corrales-Ramon, J. A., & Mezouar, Y. (2018, Decem-

ber). Dual-Arm coordination using dual quaternions and virtual mechanisms. In

2018 IEEE International Conference on Robotics and Biomimetics (ROBIO) (pp.

759-765). IEEE.

• Chandra, R., Corrales-Ramon, J. A., & Mezouar, Y. Resolved-acceleration control

of serial robotic manipulators using unit dual quaternions. Manuscript submitted

in invited track in IFAC (International Federation of Automatic Control World

Congress), 2020, Berlin.

• Chandra, R., Corrales-Ramon, J. A., & Mezouar, Y. (2019). Dual-quaternion

based framework for dual-arm manipulation: from coordinated motion control to

task planning. Manuscript submitted in IJRR (International Journal of Robotics

Research).

1.6 Outline of the thesis

Chapter 2 presents the dual-arm coordination problem in detail and explains the ad-

vantages of the proposed dual quaternion based approach compared to state of the

art approaches. The comparative validation for different simple cooperative task-space

motion of the dual-arm manipulators is also presented in chapter 2. The kinematic

modelling and relative task-space control strategy of an anthropomorphic hand is given

in chapter 3. The task planning strategy for dual-arm robots, along with experiments

with deformable objects has been given in chapter 5.

The new strategy proposed for resolved-rate acceleration control design for trajectory

tracking of end-effector, along with the theoretical foundation, related work and com-

parative validation with state of the arm approaches is described in chapter 4. Future

work and perspective and a general conclusion for the entire thesis work is presented in

the last chapter, i.e. chapter 6.





Chapter 2

Dual-Arm Kinematic

Coordination using Dual

Quaternion

The treatment of dual-arm coordination available in the literature can be divided into

symmetric and asymmetric schemes, where in symmetrical schemes of dual-arm manip-

ulation it is desired to have shared contribution of force and motion from both arms. In

asymmetric schemes the pose and desired interaction force setpoints for the master ma-

nipulator are used to compute the corresponding variables for the slave arm [32, 33, 34].

Some bimanual tasks demand master-slave control, for example hammering a nail where

one of the arms position the nail on the wall, while other handles the hammer. However,

for situations where asymmetry is not apparent from the task, it is desired to formulate

the cooperation problem symmetrically to have better control over the task and use

it to our advantage to modify the cooperative behavior [35, 36]. The reasons for this

choice are issues like artificially imposed asymmetry [37], information delay [38], and

proper master/slave role assignment during the execution of task [31] with asymmetric

coordination scheme.

Uchiyama [31] provided one of the earliest symmetric formulations to deal with dual-arm

coordination considering both arms collectively. Their VSs based static analysis of

bimanual manipulation of rigid objects provides a good starting point to study dual

arm coordination, since it also provides a sound basis to account for different kinematic

11
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cooperative models derived from the study of human bimanual actions [39] to impart

different level of contribution to the cooperating robotic arms [35, 40]. In this work

however, we only focus on bimanual actions where the cooperating arms are desired to

contribute equally, i.e. on parallel bimanual actions.

A screw-based approach using dual-quaternion representation has been presented in this

chapter for dual-arm kinematic modelling. One of the goal of this study is to compare

such approach with existing methods using other CTS modelling approaches such as DH

and DH with DQ representation. Another objective for this work was to analyze the

difference in the dual-arm cooperative motion control performance when the position and

orientation variables are controlled separately, against the proposed simultaneous pose

control law that use screw theory to handle both positional and orientational variables

simultaneously.

In following section (section 2.1) the cooperative task space proposed by [31] is briefly

presented, which will aid in understanding between different approaches taken in the

literature for dual-arm cooperation modelling and control. The related works in the

direction of CTS modelling and control is presented in section 2.1, and the motivation

and contributions related to this work is presented in section 2.2.2. Based on [31] static

analysis of dual arm cooperation, a new method for cooperative task-space modelling

is proposed in section 2.3 that uses DQ representation of screw variables of motion,

i.e. pose and velocity. The proposed cooperative task-space control architecture and its

comparative validation against existing models along with corresponding experiments is

given in 2.4. Finally, the conclusion of this work is presented in section 2.5.

2.1 Cooperative task space

Consider two robotic arms equipped with grippers or hands holding an object as shown

in Fig. 2.1. Robotic hand attached to arm 1 exerts force ofh1 and moment onh1 on the

object, measured at the origin of EE frame (or force sensor frame) oΣ1 and given in the

base frame Σo. Similarly, the hand attached to arm 2 exerts force ofh2 and moment

onh2 on the object, which are measured at the origin of its EE frame oΣ2.

For the static analysis VSs can be extended from the origin of both the EEs to the

centre of mass of the object, oOa, denoted by vectors olh1 and olh2. Now the forces and
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Arm 1 Arm 2
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olh2

�o

Fig. 2.1 Static analysis of dual-arm handling a single object.

moments at the points of contacts of the hands with the object can be projected to the

tips of VSs for static analysis of the system, which we will denote with ofbi and
onbi,

for arm i, (i = 1, 2):

ofbi =
ofhi (2.1)

onbi =
onhi +

ofhi × olhi. (2.2)

If the object is assumed to be infinitely rigid, the resultant wrench at oOa is given as:

ofa = ofb1 +
ofb2 (2.3)

ona = onb1 +
onb2 (2.4)

By employing generalized force/moment 6-dimensional (D) vector of̂a and 12-D vector

of̂
b
, the above expression can be succinctly written as:

of̂a = W of̂
b

(2.5)
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where

of̂a =
[
ofᵀ

a
onᵀ

a

]ᵀ
(2.6)

of̂
b
=
[
ofᵀ

b1
onᵀ

b1
ofᵀ

b2
onᵀ

b2

]ᵀ
(2.7)

W =
[
I6 I6

]
, (2.8)

where, I6, is 6× 6 identity matrix.

The general solution for the EE forces being exerted on the end of the VSs can be

obtained by inverting 2.5, and is given as:

of̂
b
= W† of̂a + (I12 −W†W) f̂ (2.9)

where f̂ is an arbitrary 12-D vector and W† is the Moore-Penrose inverse of W.

Six column vectors corresponding to the orthogonally independent bases belonging to

the 6-D null space of W, i.e. N (W), can be chosen from V = [I6 − I6]
ᵀ, where six

orthogonally independent bases from N (W) are given by of̂r. This choice of null space

resolution implies that both the EE applies equal and opposite force and moment at

the end of their corresponding VSs, when the system of dual-arm robot and the object

attached to the EEs is at static equilibrium. Thus we get following relations for of̂a and

of̂r, i.e. absolute force and internal force acting on the object:

of̂a = of̂b1 +
of̂b2 (2.10)

of̂r = 1/2(of̂b1 − of̂b2) (2.11)

Another set of cooperative task space velocity 6-D vectors, containing both linear and

angular terms can be constructed, consistent with the cooperative workspace force vec-

tors using the principle of virtual work, and is given as :

oω̂a = 1/2(oω̂b1 +
oω̂b2) (2.12)

oω̂r =
oω̂b1 − oω̂b2 (2.13)
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where oω̂b1 and oω̂b2 are the velocities of the frames attached to the ends of the VSs

pointing towards the object’s centre of mass and assumed to coincide at the starting of

the motion.

oω̂bi = [ovᵀ
bi

oωᵀ
bi]

ᵀ (2.14)

for i = 1 and 2.

Similarly cooperative workspace pose variables can be derived upon integration of 2.12,

and assuming that the frames attached to the tips of the VSs (oΣbi, for i = 1 and 2)

coincides at the beginning of the motion:

op̂a = 1/2(op̂b1 +
op̂b2) (2.15)

op̂r =
op̂b1 − op̂b2 (2.16)

where op̂bi, represents the position and orientation of the frames attached the tips of

corresponding VSs. op̂a represents the absolute pose of the grasped object, and op̂r

corresponds to relative position and orientation of the frames attached to the tips of

VSs.

These cooperative task space variables, i.e. absolute and relative poses, velocities, and

absolute and internal forces had been used in the past to control the interaction of dual-

arm manipulators with the object, as well as to keep the the internal forces within safe

limits. While some of the work focuses entirely on the kinematic aspects of coordina-

tion with the assumption of perfect position or velocity control, others have taken the

modelling and control error into account and used hybrid force/position controller to

accommodate the positioning error to keep the interaction forces between object and

manipulators within limits.

In the section below, we provide some of the representative work related to the formula-

tion of cooperative task-space, focussing mainly on the kinematic control problem when

using symmetrical formulation of dual-arm coordination. The goal is to highlight the

gap in the existing approaches that can be filled with screw-theory and dual-quaternion

based approach taken in this work and to understand the corresponding implications.
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2.2 Related work and contributions

2.2.1 Related Work

The cooperative task space variables, i.e., absolute and relative velocities, were directly

defined by [41] for dual arm coordination for tasks where the robot had not yet grasped

the object. The velocities of the tips of the VSs were replaced with those of the EEs

to obtain the relative and absolute motion during dual-arm manipulation. These co-

operative task space variables were used for inverse kinematics algorithm, which would

generate joint trajectories corresponding to the desired absolute and relative trajectories.

The new definition of cooperative task-space variables, proposed in [41], was applied in

[42] for internal force and position regulation during handling of an object by a dual arm

robot. The concept of VSs was replaced with the concept of grasp matrix to project

the EE forces on to the object. While, conceptual formulations for both grasp matrix

and VSs are exactly the same for dual-arm robots, grasp matrix allows generalization

of the cooperative task-space formulation for multiple manipulators (> 2) cooperation

for rigid object manipulation. Moreover, unit quaternions were used for orientation

representation in order to avoid representation singularities associated with minimal

representation methods such as Euler’s angles.

While some bimanual tasks demands coordination over both absolute and relative task

space, for example in the case of handling a heavy object the absolute position corre-

sponds to the motion of the object and relative motion to rigidly grasp the object, for

some tasks only relative motion is enough. All the assembly tasks such as peg-in-hole

and screwing tasks, where the two arms of a dual-arm robot are handling each of the

assembly parts, can be accomplished with just the relative motion. Such treatment of

bimanual coordination where only relative task space affords higher dimension of null

space in the relative task-space which can be used to perform additional tasks such as

collision avoidance, keeping the joints positions within safety limits, etc. [43].

Relative Jacobian maps the relative velocity between the two EEs of the cooperating

manipulators with their joint velocities. Relative Jacobian was formulated in [44] using

DH convention based frame definition of manipulator links and rotation matrix rep-

resentation of orientation for the trajectory generation for two robots cooperating to
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perform assembly tasks. It allowed the cooperating manipulators to be treated as a

single manipulator, while facilitating higher dimensional null space.

In [45] a weighted pseudoinverse of relative Jacobian was used to control the joint torque

contribution of each joints to keep it within safe limits, in addition to controlling the

relative motion between two manipulators in machining operations. The trajectories for

the manipulators were resolved at the acceleration level using a relative Jacobian, where

consideration of just the relative motion rather than complete cooperative task-space

afforded extra redundancy for the dual-arm system.

Guenther [46] provided a new formulation of relative Jacobian based on screw theory

that required only two frames, i.e. reference and tool frame, thus eliminating the need

of defining frames on each involved link for the corresponding DH convention based

formulation. However, they used the rotation matrices to represent the orientation of

the screw axis, which can be problematic for control due to the associated represen-

tation singularity, as well as, is more expensive in terms of computation and storage.

Screw theory and unit dual quaternion algebra were used in [47] for forward as well

inverse kinematics problem of cooperative manipulation for dual-arm robots, however,

the differential kinematics problem was not addressed.

In [43], a modular relative Jacobian was obtained by using the individual Jacobians

of the cooperating manipulators, and used it for impedance control between two arms.

A slightly different formulation of relative Jacobian was obtained in [36]. The time

derivative of the relative pose was used for the derivation of a modular relative Jacobian

which revealed a wrench transformation matrix (WTM), a function of mutual position

of the cooperating arms’ EEs. The modular relative Jacobian composed of WTM hence

obtained, demonstrated better trajectory tracking accuracy for high relative angular

velocity of the EEs.

The cooperative task space representation of robotic bimanual actions was extended in

[35, 40] to account for the three kinematic cooperative models, viz. orthogonal, serial

and parallel actions, studied and categorized in [39] from the study of human bimanual

actions. The orthogonal model corresponded to the movement where two arms are mutu-

ally independent or uncoordinated, such as using a keyboard and mouse while operating

computers. When two arms share a common task with two hands, for instance, lifting

a heavy box, it is referred to as parallel mode of cooperation. Lastly, the coordination



18 Chapter 2: Dual-Arm Kinematic Coordination using Dual Quaternion

mode where two arms have partial dependence, for example hammering a nail on the

wall or cutting vegetables, falls under the serial mode. To address these coordination

modes in bimanual action, two new coefficients were introduced, namely, balance and

coordination coefficients to modify the balance of shared load, and to represent different

bimanual coordination models or to activate and deactivate coordination respectively.

The adjustment of balance coefficient, for a single object manipulation, was akin to

shifting the centre of mass of the object in the static analysis for dual-arm cooperation

in VSs or grasp matrix approach. The purpose of introducing these balance and coordi-

nation coefficients was to offer more flexibility in relative tasks. While previous works on

relative motion control ([44, 36, 43, 46]) used the kinematic redundancy directly using

the null space of relative Jacobian of dual-arm robots, extended cooperative task space

representation allowed the adjustment of balance coefficient to perform additional tasks

such as increasing manipulability in dual-arm manipulation to avoid singularity, while

still controlling the absolute cooperative task space.

Adorno [13] used unit dual quaternions for the forward and inverse kinematic control

of dual-arm robots, where the quaternions allowed singularity free representation of

orientation and unit dual quaternion representation of pose allowed simultaneous control

of translation and rotation variables. The kinematic modelling of the dual-arm robot

was based on DH convention. In addition to that, many primitive task Jacobians were

proposed, such as relative distance control, absolute rotation control and so on, which

allowed to efficiently utilize the available degrees of freedom for a desired task, and to

use the redundancy for additional tasks.

While the above mentioned works provided an insight into existing work related to

dual-arm coordination at kinematic level, in following section we will highlight some of

the shortcomings of previous works related to modelling and control aspects and explain

how our approach of formulating cooperative task space using unit dual quaternion

representation and screw theory can help in addressing those issues. In addition to that,

our proposed method is also compared with another instance of cooperative task space

formulation using unit dual quaternion ([13]) existing in literature.
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2.2.2 Motivation for unit dual quaternion and screw-theory based co-

operative task space formulation

2.2.2.1 Issues related to previous formulation of cooperative task space

• Usage of DH convention for kinematic modelling : A DH convention based ma-

nipulator modelling requires definition of frames of each involved link. Whereas,

screw-based kinematics requires only two frames for the entire chain, one at the

base of the robot, while other at the tip of the EE. Although, DH parameter based

manipulator modelling is fairly established in robotics, screw-theory can greatly

simplify the modelling process for general manipulators [46]. In addition to that,

the same approach of screw-based modelling can be applied to parallel manipu-

lators, which can be relevant for tasks where a dual-arm robot can be considered

a parallel manipulator, for example, two arms rigidly grasping an object. More-

over, the joint variables can be used to represent actual displacement in contrast

to DH-based modelling where actual joints states are generally computed using

offsets over the DH parameters [48].

• Relative Jacobian Formulation: The earlier definitions of relative Jacobian used

individual Jacobians of the manipulators, without the consideration of effect of

relative angular velocity on relative linear velocity. However, it was revealed that

a WTM, function of relative position vector, exists in the formulation of relative

Jacobian. The modular Jacobian consisting of WTM was obtained by taking the

time derivative of the relative pose computed by taking one of the EEs frame as

base frame and a frame on the other EE as tool frame. The corresponding rela-

tive Jacboian demonstrated better trajectory tracking accuracy for high relative

angular velocity of the EEs [49, 46]. Screw-based formulation of relative Jacobian

naturally takes into account this wrench transformation matrix and thus can lead

to better trajectory tracking for all kinds of relative tasks.

• Representation singularity : The earlier works on cooperative task space control

of dual-arm robots used rotation matrices for the representation of orientation,

where Euler’s angles were derived for the control law formulation. While, rotation

matrices can be intuitive, it suffers from representation singularities that may lead

to instability in the controller.



20 Chapter 2: Dual-Arm Kinematic Coordination using Dual Quaternion

More recent works ([42, 35, 40]) employed quaternions to overcome the limitations

related to unit quaternions, where the vector part of the error quaternion was

used for the formulation of control law. While this approach is relatively simple

to use and asymptotic stability of such a control has been proved in [42], deriving

angle-axis parameters from the error unit quaternion represents more meaningful

definition of error and global exponential convergence behaviour of corresponding

control law can be proved [14].

• Conventional Pose control : Most of previous works for cooperative task space

control controlled the position and orientational error terms separately. While

this method is easy to implement, it does not consider the natural motion of rigid

bodies where linear component is inherently coupled with the angular component

of motion. Controlling linear and angular terms separately may lead to unnatural

trajectory and is undesired for applications where both orientation and position

tracking is equally important[50].

Table 2.1 Computation cost comparison between HTMwDH [12], DQwDH [13] and
DQwScrew ([14], A.5) based manipulator kinematics, where n is the number of joints

in the manipulator.

Multiplications Additions Trigonometric Functions

Cost of successive transform (transform product) computation

HTMwDH 36 27 NA
DQwDH 48 40 NA

DQwScrew 48 40 NA

Cost of forward kinematics

HTMwDH 70n− 64 48n− 48 4n
DQwDH 60n− 48 44n− 40 4n

DQwScrew 61n− 48 43n− 40 2n

Cost of Jacobian computation

HTMwDH 155n− 64 108n− 48 8n
DQwDH 189n− 48 142n− 40 8n

DQwScrew 157n− 144 123n− 120 2n
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Table 2.2 Comparison of our screw-theory and unit dual quaternion based modelling
of CTS compared to previous works.

Previous Works
Complete CTS
modelling [31]

Consideration of
WTM in relative

Jacobian [36]

Advantages of
screw-based

kinematics [48]

Advantages of DQ
representation
[14, 51, 52, 53]

[43, 54] 7 7 7 7
[36, 55, 44] 7 3 7 7
[46, 49] 7 3 3 7

[35, 38, 31, 56, 42, 41] 3 7 7 7
[57, 58, 59] 3 3 7 7
[13, 60] 3 3 7 3

Proposed method 3 3 3 3

2.2.2.2 Comparison with DH parameters and unit dual quaternion based

formulation of cooperative task space

A novel approach for forward and inverse kinematics using dual quaternion representa-

tion was proposed in [60, 13] which used DH parameter based approach for kinematic

modelling of dual-arm robots. The proposed approach was effective in addressing the

issue of orientation representation singularity and their control law accounted for both

position and orientational error simultaneously. However, use of DH based parameters

for kinematic modelling resulted in overly complicated definition of manipulator Jaco-

bian, since it used matrix form of dual-quaternion operations. While theoretical founda-

tion of the relative Jacobian formulation was given for a general manipulator, complete

formulation of relative Jacobian was limited to dual-arm robots with rotational joints.

While most of the modern manipulators have rotational joints, differential kinematics

formulation for both rotational as well as prismatic joints becomes especially relevant

when virtual mechanisms are used to represent task constraints, e.g. the translational

motion in peg-in-hole tasks.

The pose error term used in [13] for inverse kinematic control was the numerical dif-

ference between the unit dual quaternion representing desired and current frames for

relative pose control, which does not represent a meaningful displacement variable [14].

A meaningful expression of dual quaternion error using dual quaternion product was

utilized for a single manipulator control in [61]. Using the modified of error unit dual

quaternion, an optimal trajectory tracking controller was proposed in [62], albeit for a

single manipulator case. However, the screw parameters based definition of control law
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proposed in [14] is still more meaningful since screw error terms can be transformed to

different frames, and has global exponential convergence behaviour.

Moreover, the computational efficiency of dual quaternions was underutilized in [13], as

their computation of Jacobian required more mathematical operations than the homo-

geneous transformation matrix approach, attributed to the use of a large (8 × 8) dual

quaternion Hamilton matrix to compensate for the non-commutative nature of dual

quaternion multiplication.

The comparison between three methods, i.e DH and Homogeneous Transformation Ma-

trix (HTM) based, DQ and HTM based and DQ and screw-theory based method used

in this work, for pose transformation, forward kinematics and Jacobian computation of

a serial manipulator, in terms of computation cost has been given in Table 2.1 based on

the computational analysis given in A.5. HTMwDH based approach is the classical DH

based rotation matrix approach, DQwDH corresponds to the dual quaternion and DH

parameters based formulation given in [13] and the last one (DQwScrew) corresponds to

dual quaternion kinematic formulation based on screw-theory, proposed in [14]. The ex-

planation for the computation of HTM and DQ method based on DH convention based

kinematic modelling of manipulators has been given in [13]. A more detailed analytical

and empirical analysis of the computational efficiency of our dual-quaternion and screw-

theory based approach concerning forward kinematics and Jacobian computation, and

inverse kinematics and control is given in [12, 53].

The presented comparisons show that both dual quaternion based approaches requires

less arithmetic and trigonometric operations for obtaining product of transforms and for

the computation of forward kinematics compared to HTMwDH based method. While

DQwDH based method requires a little less multiplications, it require far more trigono-

metric computations compared to DQwScrew based method used in our work. In terms

of Jacobian computation, HTMwDH method requires less arithmetic (× and +) oper-

ations than both dual quaternion method based operations. However, the DQwScrew

method requires less trigonometric operations than other two methods, even though it

requires a bit more arithmetic operations than HTMwDQ based method. Finally, the

DQ based has less memory requirement compared to HTM approach, i.e. DQ based

representation of pose needs only 8 floating units, compared to 12 floating units needed

for HTM based pose representation.
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Fig. 2.2 Dual-arm frames and joint axes and virtual joints.

Finally a summary of all the advantage our approach has over other work in the direction

of CTS modeling and control has been in Table 2.2.

2.3 Cooperative task space formulation using UDQs

In this section we will use the kinematic formulation for a serial manipulator, developed

in [14] and presented in appendix A.5, to formulate the cooperative task space variables

related to pose and velocity for dual-arm coordination [31]. A differential kinematic

formulation, i.e. relative and absolute Jacobian was also developed to map the joint

velocities of the cooperating arms to cooperative task space velocities. The absolute

Jacobian has been formulated in the base frame, while the relative Jacobian has been

derived in a frame attached to the EE of reference manipulator, so as to define the

relative task intuitively. If the relative task is defined in the object frame, then the error

twist should be transformed from the object to the reference arm’s EE frame.

The dual arm set-up along with the different frames used in the following formulations

is given in Fig. 2.2. Σr is the reference frame, Σt is the tool frame and Σb is the fixed

base frame. The joint screw axes are given as bŝri for i = 1, 2, ..f , and bŝtj for j = 1, 2, ..g

for the reference and tool manipulator respectively, in the base frame. The same screw

axes are given as rŝi for i = 1, 2, ..f + g for the combined manipulator consisting of the

two arms, in the reference end-effector frame.
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2.3.1 Relative Jacobian

The relative pose of the tool EE frame Σt in the reference EE frame Σr can be computed

using the EE poses of tool and reference manipulator as:

rx̂t =
bx̂∗

r
bx̂t, (2.17)

where bx̂∗
r is classic dual-quaternion conjugate of bx̂r.

The formulation of relative Jacobian, which maps the joint velocities of both the arms

to the relative twist of the tool EE with respect to the reference frame, described in the

reference frame will follow the same approach discussed in section A.5.1:

rξ̂tr =
[
rŝ1

rŝ2 · · · rŝf+g

] [
θ̇r ḋr θ̇t ḋt

]T
(2.18)

= rĴ
[
θ̇r ḋr θ̇t ḋt

]T
,

where θ̇r and ḋr refers to the the general joints velocity array, depending on the type

joints for the reference manipulator, starting from the joint closest to the reference

end-effector. Similarly θ̇t and ḋt are the joint velocity arrays for the tool manipulator,

again starting from the joint closest to the reference end-effector.

The screw axes related to the joints will have to be transformed from the base frame

to the reference EE frame, Σr, using following relation that transforms a Plücker line,

represented as a dual vector:

rŝi = (bx̂∗
r)

bŝi (
bx̂∗

r)
∗
=r x̂b

bŝi
rx̂∗

b (2.19)

Additionally, either the joint displacements for reference manipulator joints, or the cor-

responding joint axes, have to be taken in negative sense, so as to respect the inverted

kinematic chain of the reference manipulator used to define a relative task manipulator,

which has joint axes rŝt(i) for i = 1, . . . , f + g (refer the joint screw axes indexing

depicted in red in Figure 2.2). In our formulation we have inverted the joint screw of

the tool manipulator to maintain the traditional representation of relative Jacobian.
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Hence the relative Jacobian corresponding relative twist, in the reference manipulator

frame is given in the matrix form as:

Jrel =

−rLr 0 rLt 0

−rMr −rLr
rMt

rLt

 , (2.20)

where terms like L and M are arrays of direction vector and the moment vectors of the

corresponding manipulator and have meanings similar to A.61.

2.3.2 Absolute Jacobian

All the terms appearing in the following derivation of absolute Jacobian are in the

base frame, unless otherwise mentioned. Let b̂xr = qrP + εqrD,
bx̂t = qtP + εqtD and

bx̂abs = qabsP + εqabsD be the unit dual quaternion corresponding to the reference, tool

and absolute task space frame, i.e. the frame where the tip of VSs connected to the

cooperating manipulators end-effector meet. Let bpb,r and bpb,t be the position vectors

of the reference and tool EEs respectively, which are represented as a pure quaternions.

They can be derived from the corresponding poses UDQs as follows:

bpb,r = 2qrD q∗r P (2.21)

bpb,t = 2qtD q∗t P (2.22)

where q∗ is quaternion conjugate of q.

Absolute position and orientation is given as ([42]):

bpabs =
bpb,r +

b pb,t

2
(2.23)

bqabsP = qrP qrelP
( 1
2
), (2.24)

where qrelP
( 1
2
) refers to half of the rotation around the same rotation axis corresponding

to the relative rotation quaternion (qrelP ) computed in reference frame. The relative

rotation quaternion in reference frame is given as:

bqrelP = q∗rP qtP . (2.25)
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In order to use the control law using screw parameters of error dual quaternion (see

A.73), it is desired to obtain the absolute pose as UDQ. Using relation (2.21) and

(2.23), we have

bpabs = qrD q∗r P + qtD q∗t P (2.26)

or, 2qabsDq
∗
absP = qrD q∗r P + qtD q∗t P

Therefore,

qabsD =
(qrD q∗r P + qtD q∗t P )qabsP

2
(2.27)

The absolute angular velocity in the base frame in the matrix-vector form, using (A.59)

is given as:

ωabs =
ωr + ωt

2

=
Lr θ̇r +Lt θ̇t

2
(2.28)

And absolute linear velocity is given as:

vabs =
vr + vt

2
(2.29)

An absolute Jacobian is required to map joint velocities of the dual-arm robot to screw

twist corresponding to absolute frame motion, i.e {vabs0, ωabs} pair. Here {vabs0 refers to

the linear velocity of a point attached to the absolute frame, currently coinciding with

the base frame. Since the screw-based control law has attractive features like global

stability and exponential convergence [14], it is desired to obtain the absolute Jacobian

in the same form as well. Using (A.67) we have:

vabs0 = vabs − ωabs × pabs. (2.30)
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After expanding (2.30) using (A.67), (2.23), (2.28), (2.29) we get:

vabs0 =
vr + vt

2
− ωr + ωt

2
× (pr + pt)

2

=
vr0 + ωr × pr + vt0 + ωt × pt

2

− ωr + ωt

2
× (pr + pt)

2

=
2(vr0 + vt0) + ωr × (pr − pt) + ωt × (pt − pr)

4

Using matrix-vector representation given in (A.60), we have:

vabs0 =
Mr θ̇r +Lr ḋr +Mt θ̇t +Lt ḋt

2

+
Lr θ̇r × (pr − pt)

4

+
Lt θ̇t × (pt − pr)

4
(2.31)

Writing (2.28) and (2.31) in the matrix form, we get:

ωabs

vabs0

 = Jabs

[
θ̇r ḋr θ̇t ḋt

]T
(2.32)

where,

Jabs =

 Lr
2 0 Lt

2 0

2Mr+Lr ×(pr−pt)
4

Lr
2

2Mt+Lt ×(pt−pr)
4

Lt
2

 (2.33)

2.4 Implementation of dual-arm CTS pose control

The CTS variables and corresponding Jacobians obtained earlier in section 2.3 were

used for the control of absolute and relative poses of the CTS of a dual-arm robot.

The simultaneous pose control approach, that uses screw parameters of the error UDQ,

was compared against the conventional approach of controlling position and orientation

separately. The proposed method was validated with different cooperative tasks, that

required both absolute and relate pose control, on Baxter dual-arm robot [63]. The

control architecture for implementation of CTS control is explained in section 2.4.1. The

robotic platform used for the validation along with its modeling parameters are given in
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section 2.4.2. The cooperative tasks, the classical CTS approach used for comparative

validation, and the trajectory generation strategy is given in section 2.4.3. The details

of the experimental validation with real robot and discussion about the results has been

detailed in section 2.4.4.

2.4.1 Control Architecture

The CTS kinematic formulations using UDQ representation was implemented for a gen-

eral dual-arm system consisting of two redundant (more than 6dofs) manipulators. The

controller architecture of the complete system capable of CTS inverse kinematics control

is shown in Fig. 2.3.

A trajectory descriptor was implemented for generating desired pose trajectory in ab-

solute and relative task-space for simple tasks like rotation and translation along a

pre-defined screw axis defined in a known reference frame. The trajectory generation

strategy has been detailed in section 2.4.3.2. The desired absolute (bx̂des
abs) and relative

pose (rx̂des
rel ) is used along with the current CTS poses (bx̂curr

abs and rx̂curr
rel ) to compute

the corresponding error UDQs. The current CTS poses are computed from the cur-

rent poses of left and arms’ EEs, i.e. bx̂curr
r and bx̂curr

t respectively, using the current

joint positions and initial configuration of joint screw axes of the dual-arm robot in the

Dual-Arm CTS Handler block in given architecture.



2.4 Implementation of dual-arm CTS pose control 29

D
U

A
L
_A

R
M

R
O

B
O

T
 H

W
 I

N
T
E
R

FA
C

E
(R

e
a
l/

S
im

u
la

ti
o
n

)

g
e
tU

D
Q

e
rr

o
r

x̂
e
 =

 x̂
d

 x̂
c*

g
e
tE

rr
o
rP

a
ra

m
e
te

rs
(θ

e
, 

d
e
, 

l e
, 

m
e
)

λ
g

e
tP

se
u
d

o
In

v
e
rs

e

M
a
n
ip

u
la

to
r 

K
in

e
m

a
ti

cs
 H

a
n

d
le

r 
(M

K
H

m
)

S
c
re

w
 E

rr
o
r 

E
x
tr

a
c
to

r
C

o
n

tr
o
l 
C

o
m

m
a
n

d
 

C
a
lc

u
la

to
r

S
cr

e
w

-b
a
se

d
Tr

a
je

ct
o
ry

D
e
sc

ri
p

to
r

S
cr

e
w

 d
is

p
la

ce
m

e
n
t 

p
a
ra

m
e
te

rs

[b
/r
ŝ t

ra
j,
 θ

to
ta

l ,
 d

to
ta

l ]
Tr

a
je

ct
o
ry

Ta
sk

-S
p

a
ce

Tr
a
je

c
to

ry
 D

e
s
c
ri

p
to

r

+

+

g
e
tR

e
la

ti
v
e
Ja

co
b

ia
n

g
e
tA

b
so

lu
te

Ja
co

b
ia

n
g

e
tC

T
S

Po
se

s

g
e
tC

o
m

b
in

e
d

Ja
co

b
ia

n

D
u

a
l-

A
rm

 C
T
S

 H
a
n

d
le

r

b
Ĵr

 b
Ĵt

b
x̂
rc

u
rr

b
x̂
tc

u
rr

[ q
rcu

rr
]

[ q
tcu

rr
]

[b
x̂
a
b

sd
e
s ,

 r
x̂
re

ld
e
s ]

[b
x̂
a
b

scu
rr

, 
r x̂

re
lcu

rr
]

[ω̂
e
a
b

sT
, 
ω̂

e
re

lT
]T

  
 

Ĵ C
T
S

T
 =

 
[

b
Ĵ a

b
sT

, 
 r
Ĵ r

e
lT

 ]
T

fo
r 

m
=

 {
r,

 t
}

, 
w

h
e
re

 r
: 

re
fe

re
n
ce

 f
ra

m
e
, 

t:
 t

o
o
l 
fr

a
m

e
, 

b
: 

b
a
se

 f
ra

m
e
 

[Δ
q

r]

[Δ
q

t]

co
m

p
u
te

Ja
co

b
ia

n

co
m

p
u
te

FK
M

M
a
n
ip

u
la

to
r 

K
in

e
m

a
ti

cs
 H

a
n

d
le

r 
(M

K
H

m
)

In
it

ia
l 
S

cr
e
w

 A
xe

s
 

([
b
ŝ 1

m
in

it
, 

b
ŝ 2

m
in

it
, 

..
.,

 b
ŝ n

m
in

it
])

In
it

ia
l 
e
n
d

-e
ff

e
ct

o
r 

p
o
se

b
x̂
m

in
it

m
: 

m
a
n
ip

u
la

to
r

b
: 

b
a
se

 f
ra

m
e

n
: 

n
u
m

b
e
r 

o
f 

jo
in

ts
in

it
: 

in
ti

a
l 
  

cu
rr

:c
u

rr
e
n
t

[ q
m

cu
rr

]

 b
Ĵ m

 

b
x̂
m

cu
rr

b
FK

M
m

r Ĵ
re

l
b
Ĵ a

b
s

[q
rc

m
d

]

[q
tc

m
d

]

[V
� S

ri
g
h
t, 

V
� S

le
ft
]

[b
x̂
a
b

sd
e
s ,

 r
x̂
re

ld
e
s ]

[V
� S

ri
g
h
t, 

V
� S

le
ft
]

[V
� S

r,
 V
� S

t]

F
ig
.
2
.3

C
on

tr
ol

ar
ch
it
ec
tu
re

fo
r
C
T
S
p
os
e
co
n
tr
ol
.



30 Chapter 2: Dual-Arm Kinematic Coordination using Dual Quaternion

Fig. 2.4 Baxter dual-arm robot’s joints [10]. The robot has two 7-dof arms. There are
two shoulder joints (S), two elbow joints (E), and three wrist joints (W).

The two end-effectors are extended with VSs pointing to the centre of the mass of the

held object, or a desired articulation points for objects like scissors. Note that the cur-

rent and desired absolute poses are given in the static base frame of the robot, while the

desired and current relative poses are given in the reference manipulator ’s EE’s pose. In

the current implementation a frame attached to the right arm’s EE was chosen as the

reference frame for relative task-space.

The CTS Jacobians, bJabs and rJrel, were computed from the individual Jacobians (bJr

and bJt) in the Dual-Arm CTS Handler block, and a damped pseudo-inverse was used

to compute the joint velocity command for the dual-arm robot. The screw-based con-

trol law utilizes screw parameters obtained from the error UDQ (x̂e) obtained from the

desired (x̂des) and current (x̂curr) poses related to the CTS as given in Screw Error

Extractor block in the proposed architecture (see (A.5.3)). The controller was tuned to

obtain a stable response for CTS pose control with a suitable gain (λ). An integrator

approach was chosen to compute desired joint position commands, [qr
cmd] and [qt

cmd],

in the control loop using the current joint positions, [qr
curr] and [qt

curr], and computed

joint velocity, [∆qr] and [∆qt].

2.4.2 Baxter Dual-arm platform

Baxter robot is an industrial collaborative robot built by Rethink Robotics [63, 64], and

is equipped with two compliant 7 dof s robotic arms. The joints for one of the arms is

shown in Fig. 2.4. The novel actuation mechanism provides protection against shock
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Table 2.3 Baxter’s left and right arm’s joints parameters for starting configuration of
the robot when all the joints are at home or zero position.

Joints 3D Screw axis (l) Point on axis (p)

S0 right 0, 0, 1 0.0640272, −0.259027, 0.129626
S1 right 0.707108, 0.707105, 0 0.112818, −0.307818, 0.399976
E0 right 0.707105, −0.707108, 0 0.184942, −0.379943, 0.399976
E1 right 0.707105, 0.707108, 0 0.370501, −0.565502, 0.330976
W0 right 0.707108, −0.707105, 0 0.44375, −0.638751, 0.330976
W1 right 0.707105, 0.707108, 0 0.635163, −0.830166, 0.320976
W2 right 0.707105, −0.707108, 0 0.71717, −0.912173, 0.320976
S0 left 0, 0, 1 0.0640272, 0.259027, 0.129626

S1 left −0.707108, 0.707105, 0 0.112818, 0.307818, 0.399976

E0 left 0.707105, 0.707108, 0 0.184942, 0.379943, 0.399976

E1 left −0.707105, 0.707108, 0 0.370501, 0.565502, 0.330976

W0 left 0.707108, 0.707105, 0 0.44375, 0.638751, 0.330976

W1 left −0.707105, 0.707108, 0 0.635163, 0.830166, 0.320976

W2 left 0.707105, 0.707108, 0 0.71717, 0.912173, 0.320976

loads [65] and meet the requirements of a collaborative robot that is Power and Force

Limited by Inherent Design as described in ISO 10218-1: 2011, section 5.10.5. The robot

is imprecise in terms of positioning accuracy of the EEs since the robot uses serial elastic

actuators (SEAs) for the actuation of the joints of the arms.

The robot has been used for assembly tasks like bimanual peg-in-hole tasks [66], as well

for domestic applications like collaborative human-robot manipulation of deformable

objects like bed sheet [67]. The integration of the robot control with robot operating

system (ROS) [68] through Baxter software developers kit (SDK) provides a perfect

platform to design and test new bimanual applications, and it has been utilized for the

validation of the novel methods developed during this thesis in the scope of dual-arm

cooperative manipulation.

The joint axes parameters for both the arms of Baxter is given in Table. 2.3 for the

initial configuration of the robot with zero displacement in all the joints. They are used

to construct 6-D Plücker line as shown in Fig. A.2 for the computation of forward and

inverse kinematics, as explained in section A.5.1.

2.4.3 Cooperative dual-arm tasks and comparative validation strategy

The validation of the proposed strategy of CTS pose controller designed based on screw

theory was done with tasks that required motion in relative and absolute task space.
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Table 2.4 Baxter’s left and right arm’s EE pose in the base-frame of the robot for
zero joint displacements.

Arm
EE Position
{x, y, z} (in m)

EE Orientation
q0 + q1i+ q2j + q3k

Right Arm 0.7975, 0.9925, 0.3210 0.653281, 0.270599, 0.653281, −0.270599
Left Arm 0.7975, 0.9925, 0.3210 0.653281, −0.270599, 0.653281, 0.270599

We generated the CTS trajectories at different speeds to compare the performance of

screw-based CTS Jacobians and screw-error based control law with the conventional

CTS Jacobians where the wrench transformation matrix is not included in the relative

Jacobian. We describe below the CTS Jacobians and control law for the conventional

control method used for comparison.

2.4.3.1 CTS Jacobians and Control law for conventional CTS pose con-

troller

The manipulator Jacobians for decoupled controller were obtained using Kinematics and

Dynamics Library (KDL) library [69, 70].

The conventional cooperative Jacobians, i.e. absolute and relative Jacobians are defined

as follows [41, 42]:

JKDL
abs =

1

2

[
JKDL
right JKDL

left

]
(2.34)

JKDL
rel =

[
JKDL
left −JKDL

right

]
(2.35)

where JKDL
i for i ∈ {left, right} is the conventional Jacobian relating the joint velocities

to the end-effector frame conventional velocity, rather than screw velocity (refer section

A.6.1). Note that, the relative Jacobian for conventional pose control has been given

in the base frame of the robot. Hence, the error twist between the current and desired

relative pose had to be transformed to the base frame for a relative task defined in the

right arm’s EE frame, for which relation A.50 can be used, the position and orientation

terms to be used for conventional pose controller can be derived (see A.77). The control

law for pose control used in the conventional pose controller is given as:

ξ̂KDL = λ(θe le + ε pe) (2.36)
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Controller
Type

Jacobian
Type

Control
Law

Absolute CTS
Proportional GainλabsP

3×3
p 03×3

03×3 λabsP
3×3
o


Relative CTS

Proportional GainλrelP
3×3
p 03×3

03×3 λrelP
3×3
o


Simultane-
ous pose
Controller

Equation
2.33, 2.20

Equation
A.73

250 03×3

03×3 250


250 03×3

03×3 250


Conven-

tional Pose
Controller

Equation
2.34, 2.35

Equation
2.36

300 03×3

03×3 300


100 03×3

03×3 500


Table 2.5 Summary of the controllers used for comparative analysis of dual-arm CTS

control

where θe, and le are angle-axis parameters corresponding to the error quaternion ob-

tained from the quaternions related to the desired and actual orientations, and λ is the

controller gain.

qe = qdq
∗
c . (2.37)

pe is the relative position error between desired and actual pose, for both relative and

absolute task space, and can be computed from the error unit dual quaternion given in

(A.72) using (A.70).

The controller gains for the control of CTS using both simultaneous pose control and

conventional pose control approach is given in Table 2.5, where λabsPp refers to the

proportional gain corresponding to linear part of the error twist, while λabsPo refers

to the proportional gain corresponding to angular part for absolute task-space control.

Similarly, λrelPp and λrelPo , refers to the linear and angular part of the error twist in the

relative task space. The gains were chosen by tuning the conventional pose controller

for a stable and bounded performance for the pose tracking tasks for Baxter-dual arm

robot, where both the controllers were operating at 100 Hz.
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Table 2.6 Cooperative tasks used for comparative validation of CTS control strategy.

Trajectory

task-space

Motion type Screw axis Reference frame
Displacement

desired (θ̂taskf )

Absolute Translation 0, 0, 1
Initial

Absolute frame

0.20 meter

Relative Rotation 1, 0, 0
Initial

right EE VS tip frame

40 degrees

2.4.3.2 Trajectory generation for CTS kinematic control

All the tasks start with a pre-defined position of the left and right arms’ EEs such that

the tips of respective VSs are assumed to be coinciding in the middle of the two EEs and

the respective frames are pre-oriented to have same orientation at the beginning of the

task. The screw axes for the cooperative tasks are constructed by choosing one of the

orthogonal axes in the corresponding reference frames, i.e. absolute frame for absolute

task, and a frame attached to the tip of the VS attached to the reference manipulator ’s

end-effector frame. The orthogonal axis chosen for the validation of motion in relative

and absolute task-space has been provided in Table. 2.6.

A screw displacement can be parametrized with a dual number, θ̂task = θtask + εdtask.

Given total time and the current time, tf and t respectively, a trajectory can be specified

by varying the displacement parameters represented by the dual number θ̂task linearly

with time:

θ̂task(t) = θ̂taskf

(
t

tf

)
(2.38)

The UDQ corresponding to the desired pose in the reference frame can then be computed

using the screw displacement parameters hence obtained using A.36.

2.4.4 Experiments

In the following sections we will present the plots corresponding to the performance of

the proposed screw-based CTS Jacobians and simultaneous pose control technique along
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with conventional CTS Jacobians and control law. The two experiments chosen for the

comparative validation given in Table 2.6 were carried out with different time allotted

for the entire motion, which were: 8, 4.5 and 1.5 seconds. The goal of performing the

same motion at different speed was to study the effect of wrench transformation matrix

consideration in the proposed screw-based CTS Jacobian om the controller performance.

2.4.4.1 Absolute frame translation in z-axis of absolute frame

Baxter robot performing translation of absolute pose in the positive z-axis of absolute

frame (fixed at the centre of the end-effectors) can be seen in Fig. 2.5. The yellow

lines represent the initial desired state, while magenta lines represent the final desired

state of the virtual sticks. The trajectory for the right (reference manipulator), left (tool

manipulator) and the absolute frame is represented with red dots. The relative pose of

the two cooperating robotic arms was desired to be fixed during the entire motion.

The simultaneous pose (DQ based) controller and conventional (KDL based) pose con-

trollers performance during the motion in absolute task space for a duration of 8 sec. in

terms of DQ terms for absolute and relative task space desired and achieved poses are

given in Fig. 2.6 and Fig. 2.7, respectively. Similarly the performance of the controllers

for the motion duration of 1.5 secs. is given in Fig. 2.8 and Fig. 2.9 for absolute and

relative task space, respectively.

Fig. 2.5 Initial and final configuration of robot performing rotation in the x-axis of
relative task frame.
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The evolution of error in terms of norm of position variables (
√
x2e + y2e + z2e ) and ori-

entation variables (‖θe‖) for the motion duration 1.5 secs. is given in Fig. 2.10 and 2.11

for absolute and relative task space respectively. Finally, the mean root mean square

errors and corresponding standard deviations during CTS pose tracking control for all

three time durations are given in Fig. 2.12, 2.13, 2.14, 2.15, for the norm of position

and orientation components of pose error in absolute and relative task space. Note that

in the desired absolute pose for the simultaneous pose control approach and ( ) to

conventional pose control approach and conventional pose control approach(see x6 and

x7 terms in Fig. 2.6) are different because the desired trajectories for the experiments

were derived from the initial configuration of the manipulators. Since the validation

platform Baxter dual-arm robot consists of non-stiff joints, it is not possible to start the

experiments at exactly the same configuration even after setting the joint states initially.

While the performance of the two controllers were similar for both relative and absolute

task space for the motion duration 8 secs. (Fig. 2.6, 2.7), the conventional pose controller

had slightly better performance in absolute task-space, even for the shorter durations of

4.5 and 1.5 secs, as evident in Fig. 2.12, 2.13. However, the DQ based simultaneous pose

controller demonstrated consistently better performance for position as well orientation

tracking (see Fig. 2.14 and 2.15). Additionally, the oscillations observed in KDL based

conventional controller in Fig. 2.9 and 2.11 for shortest duration experiment (1.5 sec.)

was not observed DQ based simultaneous pose controller.

2.4.4.2 Relative rotation around x axis of right arm’s EE frame

Fig. 2.16 Initial and final configuration of robot performing rotation in the x-axis of
relative task frame.
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Fig. 2.19 Relative Rotation: Pose tracking performance for absolute task space in
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Fig. 2.21 Relative Rotation: Evolution of error in terms of the norm of position and
orientation error in absolute task space for motion duration 1.5 secs.. . ( ) refers to
simultaneous pose control approach and ( ) to conventional pose control approach.
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simultaneous pose control approach and ( ) to conventional pose control approach.
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Fig. 2.23 Relative Rotation: Box plot corresponding to the mean and standard
deviation for position error in absolute task space for the motion duration of 8, 4.5 and
1.5 secs. ( ) refers to simultaneous pose control approach and ( ) to conventional

pose control approach.
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Fig. 2.24 Relative Rotation: Box plot corresponding to the mean and standard
deviation for orientation error in absolute task space for the motion duration of 8,
4.5 and 1.5 secs. ( ) refers to simultaneous pose control approach and ( ) to

conventional pose control approach.
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Fig. 2.25 Relative Rotation: Box plot corresponding to the mean and standard
deviation for position error in relative task space for the motion duration of 8, 4.5 and
1.5 secs. ( ) refers to simultaneous pose control approach and ( ) to conventional

pose control approach.
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Fig. 2.26 Relative Rotation: Box plot corresponding to the mean and standard
deviation for orientation error in relative task space for the motion duration of 8,
4.5 and 1.5 secs. ( ) refers to simultaneous pose control approach and ( ) to

conventional pose control approach.
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Baxter robot performing relative rotation between the tips of the virtual sticks connected

to the end-effectors of two arms around x-axis of the tip of reference manipulator ’s VS

frame can be seen in Fig. 2.16. The trajectory for the right and left end-effectors is

represented with red dots. The absolute pose at the centre of the two cooperating robotic

arms was desired to be fixed during the entire motion.

The simultaneous pose controller and conventional pose controllers performance in terms

of DQ terms for absolute and relative task space desired and achieved poses are given

in Fig. 2.17 and Fig. 2.18, respectively. Similarly the performance of the controllers for

the motion duration of 1.5 secs. is given in Fig. 2.19 and Fig. 2.20 for absolute and

relative task space, respectively. The two controllers performance during the motion in

relative task space for a duration of 8 sec. in terms of DQ terms related to the absolute

and relative task space desired and achieved poses are given in Fig. 2.17 and Fig. 2.18,

respectively. Similarly the performance of the controllers for the motion duration of 1.5

secs. is given in Fig. 2.20 and Fig. 2.20 for absolute and relative task space, respectively.

The evolution of error in terms of norm of position variables and orientation variables

for the motion duration 1.5 secs. is given in Fig. 2.21 and 2.22 for absolute and relative

task space respectively. Finally, the mean root mean square errors and corresponding

standard deviations during CTS pose tracking control for all three time durations are

given in Fig. 2.23, 2.24, 2.25, 2.26, for the norm of position and orientation components

of pose error in absolute and relative task space.

The conventional controller had slightly better performance in absolute task-space for

the relative rotation for a duration of 8 and 4.5 secs. (Fig. 2.17, 2.18, 2.23, 2.24).

However, the DQ based simultaneous pose controller demonstrated consistently better

performance for position as well orientation tracking in relative task-space control (see

Fig. 2.25 and 2.26). For tasks with total duration 1.5 secs. high oscillations can be

observed in relative and absolute task space, as is evident from Fig. 2.19, 2.20, 2.21 and

2.22.

The performance of conventional for position and orientation control in relative as well

as absolute task space deteriorated for faster relative task due to high oscillations, as

shown in Fig. 2.23, 2.24, 2.25, 2.26. The performance of simultaneous pose control is

also affected from high relative motion, however, the controller remains stable and error
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were significantly less for position and orientation control in absolute and relative task

space.

The above results confirms that consideration of wrench transformation matrix for rel-

ative task-space control is important for tasks requiring faster motion in relative task

space. Additionally, it demonstrates that the absolute pose tracking is reliant on the

stability and performance of relative task space, since oscillations were also observed in

absolute task space for conventional control.

2.5 Conclusion

The classical approach for dual-arm cooperative task space control was revisited and the

symmetric formulation of dual arm coordination using VSs was implemented using dual

quaternion method. The proposed proportional simultaneous pose control of cooperative

task space, i.e. simultaneous control of both position and orientation was compared

against the performance of a proportional conventional controller that used KDL library

for forward kinematics and Jacobian computation. The simultaneous pose controller

demonstrated better tracking of pose and orientation in terms of accuracy and stability

compared to KDL based controller for tasks requiring faster operation in CTS.

One of the future goal is to define various task Jacobians, for relative and absolute task-

space, like rotation or translation along a desired axis, and control only those aspects

of the motion which are absolutely necessary for the completion of the task, while using

the redundancy to perform additional task, like increasing manipulability, avoiding sin-

gularities and joint limits, etc. Although, the simultaneous pose approach for kinematic

control of CTS showed improved performance over conventional conventional approach,

still the deviation of actual CTS poses from desired set-points reveals the need to con-

sider the interaction forces for cooperative manipulation, specially in the case of rigid

objects. So, the first goal for the screw-based implementation for manipulation is to

verify its applicability for single arm case and compare the hybrid force/position control

performance with screw-based Jacobian. Afterwards, it is desired to do the same for

dual-arm robots, where the motion and forces are controlled for relative task-space. A

similar approach was taken for dual-arm impedance control in [71], where a modular
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relative Jacobian was formulated for relative task-space control. It will allow the con-

troller to control the interaction between the two arms during dual-arm manipulation,

if the grasps are assumed to be infinitely rigid.





Chapter 3

Kinematics of the fingers of an

anthropomorphic robotic hand

with coupling

3.1 Introduction

The operation of robotic hands performing grasping tasks employs requires two kinds

of operations: bringing the fingers of the hand to an appropriate grasping position,

and closing the fingers until the tactile sensors on the fingertips senses a contact. The

availability of a kinematic model allows for the control of the fingers for each of the

above operations. In this work we present the kinematic model of an anthropomorphic

hand, consisting of fingers with coupled joints similar to humans.

Underactuated hands provides a cheaper and lighter solution for grasping, in addition to

self-adapting capability for different kinds of objects [72]. A four-bar linkage comprising

middle and distal phalanx in a robotic finger can effectively imitate the coupling that

exists between the proximal and distal interphalangical joints (i.e. PIP and DIP joints)

of the human fingers. Additionally, the higher load bearing capacity of four-bar linkages

[73] makes them a natural choice for the purpose of effort transmission in fingers.

However, the mechanism employing these systems often presents additional complexity

to the kinematic formulation, owing to the non-linear relation between the actuation

51



52 Chapter 3: Kinematics of the fingers of an anthropomorphic robotic hand with
coupling

and the motion of the finger joints. Some existing kinematic formulations for these kind

of fingers use a simplified linear coupling model for the relation between PIP and DIP

joints at the cost of accuracy, or a complex actuation mechanism as a trade-off for the

simplicity of the design [74].

A geometrical approach was taken to obtain the relation between the finger joints actu-

ation and the motion of finger consisting of such mechanisms using a coupling Jacobian.

The goal of such formulation was the easier integration of the fingers fo the robotic hand

with the arm at the kinematic level. This will allow us in the future for a combined for-

ward and inverse-kinematics control of the robotic arm and hand, to ensure reachability

of the fingertips to the grasping point, and pre-plan the grasping tasks in terms of the

finger movement.

In addition to that, a relative Jacobian has been derived to control the relative configu-

ration of index finger and thumb fingertips (see Fig. 3.1a) using a screw-based method

described in 2, with the aim of using this model for grasping and in-hand manipulation.

In addition to the advantages of the screw-based treatment of cooperative task space

strategy using UDQ (see Table 2.1 and 2.2), the kinematic model can easily be integrated

with the kinematics of a robotic arm in order to benefit from the added redundancy.

(a) Index finger and thumb of AR10 hand, with corre-
sponding axes and frames.

(b) Index finger mechanism: Frames defined
on the base of the index finger (Σ0), on each
rotational joints (i.e. Σ1, Σ2 , Σ3), and on

the fingertip (Σ4).

Fig. 3.1 AR10 hand, and index finger mechanism.
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The model hence obtained is implemented and validated on an anthropomorphic robotic

hand, AR10 from Active8 Robots[75] shown in Fig. 3.1a, installed at the end-effector of

one of the arms of Baxter robot. Though AR10 hand provides a versatile yet relatively

cost-effective solution for performing grasping and manipulation task, a kinematic model

for the underactuated finger mechanism for forward and inverse kinematics currently

does not exist, as far as the author knows.

In the following sections we describe the formulation of finger Jacobian using unit dual

quaternion formulation. The use of screw based kinematics helps in avoiding the com-

plexity of kinematic modelling associated with the traditional Denavit Hartenberg con-

vention based method. Section 3.2.1 provides the detail of the formulation of kinematics

and corresponding Jacobian for fingers with coupled joints, whereas the formulation of

relative Jacobian in section 3.2.2. The validation of the formulations obtained on AR10

hand is explained in sec. 3.3. Afterwards, a summary of insights and future goals is

presented in sec. 3.4.

3.2 Kinematic modelling of the fingers

3.2.1 Formulation of index finger Jacobian

The kinematic mechanism corresponding to the index finger of AR10 hand (Fig. 3.1a)

is given in Fig. 3.1b. The initial configuration of the joint angles, and screw axes are

computed and stored for a desired starting configuration, with respect to the base frame

of the index finger, i.e., Σ0 . The relation between the finger configuration and the slider

positions is presented below.

The index finger consists of three joints where the last two joints are coupled. The

corresponding joints are θ̂index = [θ̂i1 θ̂i2 θ̂i3 ]
T . The proximal phalanx lead screw

mechanism (slider1 ) rotates Σ1 around its z -axis, and thus changing θi1 . Using cosine

rule for the ∆BCD, θi1 is computed as:

θi1 = cos−1

(
b1

2 + c1
2 − slider1 2

2 b1 c1

)
(3.1)
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θi2 , and consequently the rotation of Σ2 caused by slider2 , is also computed using

(3.1), using the corresponding parameters, i.e., b2 , c2 and slider2 . The change in the

slider2 caused by the middle phalanx movement leads to the change in θi2 as well as

θi3 , owing to the four-bar mechanism of the distal phalanx and middle phalanx defined

by the segments HF , JF , JK and KH. As it can be seen in Fig. (3.1b), the change

in θi2 , also corresponds to change in φ, that is the angle between the segment FH and

HK. θi3 corresponding to a given φ is obtained using the constraint of fixed length of

the link JK, and the two ways to define the position of point K from point H, i.e by

using the position constraint HK = HF + FJ + JK.

θi3 = tan−1

(
q sin(ψ)− p sin(φ)

g + q cos(ψ)− p cos(φ)

)
− φ (3.2)

where, ψ is given as:

ψ(φ) = tan−1

(
B

A

)
− cos−1

(
C√

A2 +B2

)
A(φ) = 2 p q cos(φ)− 2 g q,

B(φ) = 2 p q sin(φ)

C(φ) = g2 + p2 + q2 − h2 − 2 p g cos(φ).

The parameters p, q, g, h used in above equation have been shown in Fig. 3.1b. The

relation between the derivative of φ or θi2 , and θi3 is given as ([76]):

f(θi2 , ψ, θi3 ) =
˙θi3

φ̇
=

˙θi3
˙θi2

(3.3)

=
p sin(ψ − φ)− h sin(φ+ θi3 − ψ)

h sin(φ+ θi3 − ψ)
. (3.4)

Since change in θi2 corresponds to the change in φ, the coupling Jacobian is given as

f(θi2 , ψ, θi3 ), assuming the initial offset between θi2 and φ is known. Finally, the unit

dual quaternion based Jacobian for the index finger is given as (see Fig. 3.1a):

Jindex =
[
ŝindex1 (ŝindex2 + ŝindex3 · f(θi2 , ψ, θi3 ))

]
(3.5)

Note that the relations (3.2) to (3.5) are only valid for the crossed configuration of four-

bar mechanism given in Fig. 3.1b ([77], [76]). It has been assumed that the configuration
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will be crossed throughout the operation, which is, in fact, true for the particular hand

we have chosen for validation of the strategy.

The error unit dual quaternion ê in the base frame, can be obtained as the relative

displacement between the desired and current pose of the fingertip, i.e. x̂d and x̂c,

respectively computed in the base frame.

ê = x̂c x̂
∗
d (3.6)

where, x̂∗
d is the classical quaternion conjugate of x̂d. The control law for kinematic

control for screw-based method using unit dual quaternion representation for a given

gain λ, is:

ξ̂ = −λ ln(ê)

= −λ(θe le + ε (θe me + de le)) = −(ωe + εvoe) (3.7)

where, {θe, de, le, me} are screw displacement parameters related to the error dual

quaternion ê, and λ is a positive scalar gain for the controller. The global exponential

convergence of the above mentioned control law (ξ̂) has been proved for (−π ≥ θe ≥ π)

in [14].

3.2.2 Formulation of relative Jacobian

The thumb consists of two lead screw mechanisms in series, with three links for each

joints connected as a triangle to convert the translational motion of lead-screw mecha-

nism to rotational motion of the joints. The geometrical arrangement is similar to the

first two mechanisms of the index finger, i.e., ∆BCD and ∆EHG. However, the rota-

tion axes of the thumb, i.e. ŝthumb1 and ŝthumb2 , are not coplanar, as was the case with

the index finger (refer to Fig. 3.1b). The forward kinematics for the thumb is computed

using (3.1).

The relative Jacobian maps the intermediate joint displacement to the relative screw

displacements between the index fingertip and thumbtip frames. The index fingertip

is taken as the reference frame for the relative pose control (Fig. 3.1a). The relative

Jacobian defined in the index fingertip frame is given as:
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Jrel =
[
(ŝi2 + ŝi3 · f(θi2 , ψ, θi3 )) ŝi1 ŝt1 ŝt2

]
(3.8)

Note that in the above equation the subscript index has been replaced with i for the

joint screw axes of index finger, for the sake of compactness, whereas subscripts t1 and

t2 refers to the joint screw axes of the thumb joints. It is important to point out that all

the joint screw axes, which were computed at the base frame, Σ0 , have to be transformed

to the frame at the index fingertip (Σindex), during the starting of the computation.

The joint displacement array corresponding to the relative Jacobian defined in (3.8) is:

δθ̂rel =
[
−δθ̂i2 −δθ̂i1 δθ̂t1 δθ̂t2

]T
(3.9)

Again, note that the joint displacements for the index finger joints are negative, in order

to account for the reverse sense of displacement as seen from the index finger tip frame,

compared to the displacement observed from the base frame Σ0 .

3.3 Experimental validation and results

The Jacobian formulated in (3.5) for the finger mechanism was used for the inverse

kinematic control for the index finger of AR10 hand (see (3.7)). Using the formulations

discussed in subsection 3.2.1, the initial values of θ1 , θ2 , and θ3 were obtained. The

subsequent angular displacements were computed using the current slider positions for

forward kinematics. The slider commands for inverse kinematic control were computed

by using the inversion of (3.1) and (3.2), using the initial and the computed values of

θ1 , θ2 , and θ3 .

The parameters given in Fig. (3.1b) and similarly for the thumb, i.e. the dimensions of

all the involved segments, were computed using manual measurements. In the following

experiments we express the error of inverse kinematics with the assumption of perfect

knowledge of those parameters. Since the fingers have very limited workspace, a pre-

identified achievable configuration for the index fingertip was chosen as desired position

of the fingertip. As index finger is a planar mechanism, the XY plane trajectory taken

by the finger tip have been depicted in Fig. 3.2.
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The exponential convergence of the norm of the error screw parameters used in the

controller (see (3.7)) is computed as:

ScrewErrornorm =
√

ω2
e + voe2, (3.10)

is shown in Fig. 3.3. Among the three controller gains tested, the best performance was

achieved for the gain λ = 0.5. The convergence is the slowest for λ = 0.1, while some

oscillation can be seen in the Finger tip trajectory plot in Fig. 3.3 for λ = 1. The error

at the end of the inverse kinematic control, i.e. at the steady state is given in Table 3.1,

which demonstrates that for the gains of λ = 0.5 and 1, the error is under one mm.
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Fig. 3.2 Trajectory of the fingertip of the index finger.
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Fig. 3.3 Performance of the inverse kinematics controller.

The performance of the relative pose control between index and thumb tips are given in

Fig. 3.4 and Fig. 3.5. The results for only those gains that provided satisfactory result
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Fig. 3.4 Trajectory of the relative pose between index fingertip and thumbtip in the
index fingertip frame.
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Fig. 3.5 Performance of the inverse kinematics controller for relative pose control.

Table 3.1 Final error of the index finger IK computation.

Gain Xerror (in mm.) Yerror (in mm.)
0.1 −1.37181 −3.89763
0.5 −0.196327 −0.373781
1 −0.598718 −0.714857

Table 3.2 Final error of the relative pose IK computation.

Gain Xerror (in mm.) Yerror (in mm.)
0.5 -5.65922 0.44209
0.6 -5.52501 -0.206231
0.8 -5.86298 -0.206231
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(a) (b)

(c) (d)

Initial Relative
Configuration

Desired Relative
Configuration

Fig. 3.6 Initial configuration, final desired configuration and state of fingers at different
stages during the inverse kinematics control of relative pose between thumb and index

fingertips.

have been provided. Similar to the index finger inverse kinematic control, the desired

pose was obtained from a known achievable pose. The initial, desired relative config-

uration and different stages of robotic fingers motions from initial to the final desired

relative configuration has been shown in Fig. 3.6. As can be seen in Fig. 3.4, the gain

of λ = 0.6 was found to be most suited for relative pose control. However, an offset

can be observed in the ScrewErrornorm in the Fig. 3.5, which corresponds to 5.5 mm

and 0.2 mm in x and y axis respectively, as shown in Table 3.2. This is attributed to

the fact that the relative task space consists of 6 dof s, while the combined system of

index and thumb can only afford 4 dof s. Therefore it is important to reduce the task

to lower dimension, for example by only giving position set-points instead of proving

complete position and orientation set-points. Another issue encountered during relative

pose control between index and thumb fingertips was the synchronization of the motion
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of the fingers. It can be observed in Fig. 3.5 where even after achieving a lower error at

10 sec. mark, the error (ScrewErrornorm) settles at a higher value. The synchroniza-

tion between the fingers’ motion can be achieved by setting a control frequency higher

than the response time of both the fingers. In the current implementation the relative

task-space inverse kinematics controller operates at 2 Hz.

3.4 Conclusion

The coupling in the motion of middle and distal phalanxes of a finger in an anthropomor-

phic robotic hand effected by a four-bar mechanism was modelled and inverse kinematic

controller was designed. Additionally, the cooperative task-space modelling and control

strategy based on screw-theory and UDQ developed in Chapter 2 was extended to the

anthropomorphic hand for relative task space control between the fingertips of index

and thumb for application in grasping tasks. The finger Jacobian comprising of coupled

joints used in the inverse kinematics controller demonstrated exponential error conver-

gence for the desired end-effector position. The relative pose control between index and

thumb fingertip gave promising results, however demonstrated the need for further work,

so that it can be used for real applications like in-hand manipulation. For the future

work, we have identified following areas of improvements:

• Calibration of fingers: As we noted in the experimental validation section, the

parameters used in the modeling were manually measured, since the manufacturer

have not provided an accurate model. A vision based calibration method can be

employed to estimate the joint screw axes parameters and the fingertips poses [78].

• Task specific Jacobian: Since the fingers have limited dof s, special care has to be

taken about the control objectives. For example, positional distance Jacobian can

be employed [13], since it is not really important to control the orientation of the

frames in the case of grasping.

• Integration with a robotic arm: The kinematic model for the fingers developed in

this work can easily be integrated with the kinematic model of a robotic arm, for

example Baxter robot [64], to increase the applicability of the hand.

A strategy for integrating the cooperative task-space control of the anthropomor-

phic hand with that of the arm it is attached to (see Fig. 3.7) can be proposed to
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Fig. 3.7 Coordinate frames and screw axes for robotic hand-arm system consisting of
Baxter robot and AR10 hand.

deal with the low dof of actuation available in the corresponding fingers. All the

screw axes are given in the base frame of the robot, and it can be assumed that

the pose transformation between the arm’s end-effector frame Σr, given as rx̂bh

is accurately known. To simplify the subsequent modeling, we assume that the

robotic arms and robotic hands consists only of rotational joints.

The strategy to obtain relative pose, absolute pose, and relative Jacobian remains

the same as given in section 2.3, while still keeping the index fingertip frame Σi

as the reference frame. The absolute Jacobian utilizing the combined dof of hand

and arm system can be derived as follows:

Let the Jacobian of the robotic arm r in base frame Σr is given as (refer A.5.2):

bĴr =

[
Lr 0

Mr Lr

]
(3.11)
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Similarly the Jacobian of the index finger (i) and thumb (t) of the anthropomorphic

robotic hand in base frame Σr given in 3.2.1 can be given in simplified form as:

bĴi =

[
Li 0

Mi Li

]
, (3.12)

and

bĴt =

[
Lt 0

Mt Lt

]
(3.13)

We can assume the robotic arm as two manipulators ra and rb for deriving the

absolute Jacobian between these two manipulators, while in reality they are the

same manipulators, each consisting of one of the fingers. Now the absolute velocity

for these two extended manipulators can be given similar to (2.32) as:

[
ωabs

vabs0

]
= Jabs

[
˙θra θ̇i ˙θrb θ̇t

]T
= [θ̇total]

T (3.14)

where,

Jabs =

[
Lra
2

Li
2

Lrb
2

Lt
2

2Mra+Lra ×(pi−pt)
4

2Mi+Li ×(pt−pi)
4

2Mrb
+Lrb

×(pi−pt)

4
2Mt+Lt ×(pt−pi)

4

]
(3.15)

The terms pt and pi refers to the position of thumb and index fingertip frames in

the base frame.

Now, using (3.15) in (3.14) and noting that manipulators ra and rb are indeed the

same, we can obtain the absolute Jacobian for robotic hand and arm system as:

Jabs =

[
Lr

Li
2

Lt
2

2Mr+Lr ×(pi−pt)
2

2Mi+Li ×(pt−pi)
4

2Mt+Lt ×(pt−pi)
4

]
, (3.16)

where θ̇total is redefined as:

[θ̇total]
T =

[
θ̇r θ̇i θ̇t

]T
. (3.17)
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Resolved Acceleration Control

Using Dual Quaternion

4.1 Introduction

Traditional control of robotic manipulators involves decoupling of position and orien-

tation trajectory set-points, i.e. linear and angular position, velocity and acceleration

terms of motion, results in an unnatural trajectory of the controlled end-effector manip-

ulating an object [79]. A tighter control of position and orientation with consideration

of the coupling effect inherent in a rigid body motion is vital for the success of certain

manipulation tasks, such as welding of a curved surface. During such tasks the tool

attached to the end-effector has to follow the surface while maintaining a specific orien-

tation throughout the operation. A simultaneous pose control design can also improve

performance in applications such as collision avoidance in a clattered environment [80],

as it can be beneficial for reducing the swept volume of the end-effector [81], i.e. the

volume generated as a result of the motion of end-effector [81].

The basis of such simultaneous pose controller defined on SE(3), the Euclidean group of

rigid motions, along with a strategy to deal with simultaneous pose trajectory tracking

problem for a rigid body using homogeneous transformation matrices and exponential

coordinates was given in [82]. The geometric properties of Lie groups (and corresponding

Lie algebras) were exploited to generalize the classical PD control in a coordinate-free

way. The difference in the convergence behaviour of simultaneous pose and conventional

63
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control of linear and angular terms was reported in [80] for the motion on SE(2) of a

ground omnidirectional robot and it was concluded that the simultaneous treatment is a

better choice when the synergy of position and orientation is important, i.e. applications

where the position and orientation set points are desired to be achieved simultaneously.

This works presents the first instance of simultaneous pose computed torque controller

design for task-space control of a manipulator which considers the inherent coupling

between the translational and rotational aspects of a rigid body motion for controller

design, rather than controlling the translational motion of a point on the rigid body

and the angular motion of the rigid body separately. Dual quaternions have proved to

be a compact and singularity-free alternative to homogeneous transformation matrices

and are equally capable for handling the natural coupling between the translation and

rotational motion of rigid bodies [83, 84, 85, 86, 50, 53, 13, 14]. The computational and

storage advantages of using unit dual quaternions for a manipulator’s kinematic mod-

elling and control have been established in Table 2.1. This work extends the UDQ and

screw-based kinematics discussed in A.5 and Chapter 2 for the tracking of acceleration,

velocity and pose set-points for end-effector of a robotic manipulator.

Previous works in the direction of task space regulation of manipulators have been

presented in section 4.2. Both simultaneous pose and conventional task space regulation

schemes have been presented in section 4.3. The validation strategy for the proposed

simultaneous pose tracking scheme for task space regulation has been presented in 4.4,

where the conclusions and future work are presented in section 4.5.

4.2 Related work on task space regulation for manipula-

tors

In this section we will revisit the previous works related to second order trajectory

trackers design in the domain of manipulators and will highlight potential improvements

simultaneous pose control might over these methods.

There are mainly two methods available in literature related to trajectory tracking of

a manipulator, which are: computed torque control with resolved-acceleration control

[87, 88, 89, 90, 91];, and operational space control [92, 93]. These approaches differ
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mainly in their method of treating singularities and redundancies. The redundancy of

manipulators is treated as a problem of resolving the end-effector desired motion into

joint motions with respect to some criteria, such as avoidance of joint limits, kinematic

singularities etc in resolved-acceleration control. Whereas in operational space frame-

work the manipulator is treated as a redundant mechanism in the neighbourhood of a

singular configuration with respect to its end-effector motion in the subspace of opera-

tional space. The subspace of the operational space is orthogonal to its singular direction

and can be obtained using the kinematic characteristic of the manipulator’s Jacobian

matrix.

One of the first implementations for task-space regulation of a serial manipulator was

given in [87], where joint torques were obtained for the tracking of a desired trajectory

by a manipulator using inverse dynamic model of the manipulator. While the dynamics

of position error was obtained in a straightforward manner, the dynamics of orientation

errors was resolved only for small orientational error with the assumption that only one

of the axis of desired coordinates is misaligned.

A new approach for resolved-rate and resolved-acceleration controllers capable of sup-

pressing high joint velocities near singularities was proposed in [88]. By the virtue of

damped pseudo-inverse of manipulator Jacobian, the proposed control scheme reduces

the joint rates while inducing minimal errors in the end-effector motion. However, this

controller scheme is incapable of dealing with singularities where the rate of convergence

in the singular directions is reduced. Potential functions composed of position and ori-

entation were constructed for stability and convergence analysis. A family of potential

functions for orientational error that would bring the manipulator from current to the

desired rotated configuration were proposed, although authors assumed the orientation

error to remain bounded during closed-loop control.

Resolved-acceleration technique for the tracking control problem of robot manipulators

in the task space was reviewed in [90], where different forms of orientation error were

compared in terms of tracking performance and representation singularity avoidance. An

alternative method of extracting Euler terms for orientation from mutual rotation matrix

was advocated over classical method of getting the difference of corresponding Euler

angles. The proposed approach only presented singularity problems for high orientation

error. The authors also proposed quaternion based orientation error dynamics along



66 Chapter 4: Resolved Acceleration Control Using Dual Quaternion

with angle-axis based approach. While quaternion based approach was found to be

capable of singularity avoidance, it led to non-linear closed-loop system. The angle-axis

approach suffered from singularity. The tracking performance for quaternion feedback

and the angle-axis feedback schemes was found to be similar to the proposed Euler angles

based method.

Owing to its non-singular representation of orientation, the quaternion feedback based

method has since been the preferred method for formulate orientation dynamics [91, 59,

94] for resolved-acceleration controller design, as well as for operation space formulation

of manipulator task-space regulation problem [93]. However, none of the above work

have addressed the inherent coupling of rotational and linear motion for a rigid body

for designing the control law for end-effector trajectory tracking.

In the current work we take advantage of singularity-free attribute of quaternions, com-

pactness and efficiency of screw-based based kinematics and simultaneous treatment of

angular and linear motion variables of second-order trajectory using UDQ to propose a

new resolved acceleration control and compare its trajectory tracking performance with

above mentioned conventional controllers. In the following section we will describe the

design of both control strategies in detail.

4.3 Controller design for task-space regulation

In this section controller design for conventional task space regulator has been presented,

which would later serve as a benchmark for the performance analysis of the proposed

controller.

4.3.1 Resolved Acceleration Control

The dynamic model of a serial manipulator consisting on n joints in joint space is given

as:

H(q)q̈ + C(q, q̇)q̇ + G(q) = Γ, (4.1)



4.3 Controller design for task-space regulation 67

where, H(q) is an (n×n) symmetric and positive definite inertial matrix and varies with

the joint positions q. C(q, q̇) is an (n × 1) vector of Coriolis and centrifugal torques,

whereas G(q) consists of gravity torques. Γ is an (n× 1) vector of joint driving torques.

The differential kinematics relation for a manipulator that relates the joint velocities θ̂

to the end-effector twist ω̂ is given as:

ω̂ = Ĵ
˙̂
θ (4.2)

The end-effector acceleration â is obtained by differentiating (4.2) with respect of time:

â = ˙̂ω = Ĵ
¨̂
θ + ˙̂J

˙̂
θ (4.3)

where the twist and acceleration terms consists of both linear and angular terms:

ω̂ =
[
ωᵀ vᵀ

]ᵀ
(4.4)

â = âcmd =
[
αᵀ

cmd aᵀ
cmd

]ᵀ
(4.5)

Subsequently, the acceleration of the joints of the manipulator can be computed from

acceleration control command as:

¨̂
θcmd = q̈cmd = Ĵ−1

(
âcmd − ˙̂J

˙̂
θ
)
. (4.6)

Now âcmd can be used to compute the joint torque commands for the inverse dynamic

model given in (4.1). Assuming the perfect knowledge of the involved dynamic parame-

ters and inverting (4.3) and using âcmd as the control input in (4.1), the driving torque

can be computed as:

Γ = H(q)Ĵ−1(âcmd − ˙̂J
˙̂
θ) + C(q, q̇)q̇ + G(q) (4.7)

Since Jacobian inverse is not defined for singular configurations, a damped least-squares

inverse can be adopted for robustness in the neighbourhood of kinematic singularities,

whereas a pseudo-inverse can be used in the redundant case (n > 6) in conjunction with
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a suitable term in the null space of the Jacobian describing the internal motion of the

manipulator.

Note that the dual angle θ̂i used in (4.3) is converted to qi in (4.1), depending on the

type of joint (see (A.52)).

4.3.2 Conventional and Simultaneous Pose Task-Space Regulator De-

sign

As discussed in the last section, the inverse dynamic model can be used to obtain joint

torques for the input âcmd, commonly referred to as resolved acceleration. It is desired

to construct a control dynamics for positional and orientation trajectory with a proper

input command, that will ensure a stable and reliable tracking of the desired trajectory.

In this section we present the conventional position and orientation task-space regulation

design from the existing works, and then present the strategy for simultaneous pose

task-space regulation inspired from [50].

4.3.2.1 Conventional controller design

Consider a desired trajectory for a manipulator’s end-effector motion given by x̂d, ω̂d,

and âd ∈ R6, which are desired pose, velocity and acceleration terms containing both

positional and orientation components and given in a static base frame. Note that these

terms considered as 6D arrays in for the explanation of conventional controller design

in this section.

x̂d =
[
od

ᵀ pd
ᵀ
]ᵀ

(4.8)

ω̂d =
[
ωd

ᵀ ṗd
ᵀ
]ᵀ

(4.9)

âd =
[
ω̇d

ᵀ p̈d
ᵀ
]ᵀ

(4.10)

Similarly the terms for actual trajectory related to end-effector motion, i.e. x̂c, ω̂c can

be defined. It is important to define rotation matrices corresponding to the orientation

terms of desired and actual trajectory, which we denote with Rd and Rc, respectively.

The orientation components oc
ᵀ and od

ᵀ can be derived from the corresponding rotation

matrices based on the representation chosen from the 12 possible definitions of the Euler
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angles, or by using A.41 and A.46 given in the appendix A.4.2.1 if angle-axis method of

orientation representation is used.

Position tracking scheme:

Given a position trajectory, the position error is given with the difference of desired and

current position vectors as:

pe = pd − pc (4.11)

For the following choice of resolved linear acceleration:

acmd = p̈d + λV pṗe + λP ppe (4.12)

an exponentially stable closed loop dynamics is obtained, as long as the proportional

and derivative gains corresponding to closed-loop control of translational motion, i.e.

λP p and λV p, have positive elements.

p̈e + λV p ṗe + λP p pe = 0 (4.13)

Orientation tracking scheme:

While the choice of position error is straightforward to obtain an stable closed loop

dynamics, there are many different possibilities for orientation error selection.

• Euler Angle feedback : The most common approach to represent a relative orienta-

tion is rotation matrices based on Euler angles. While this approach of representing

rotation is intuitive, it suffers from representation singularity which means that

for certain configurations the extraction of Euler angles is not possible. λP o and

λV o represent the proportional and derivative gains corresponding to closed-loop

control of angular motion of the end-effector in the subsequent equations.

– Classical operational space approach: A classical approach to obtain stable

closed-loop orientation error dynamics is by deriving the Euler angles from the

rotation matrices of desired and actual trajectory and getting the numerical
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difference.

oe = od − oc (4.14)

The resolved angular acceleration is given as:

αcmd = T (oe)(öd + λV oȯe + λP ooe) + Ṫ (oe, ȯe)ȯe (4.15)

where, T (oe) is a transformation matrix that relates the angular velocity

error to the time derivative of the error represented using Euler angles:

ωe = T (oe)ȯe (4.16)

ω̇e = Ṫ (oe, ȯe)ȯe + T (oe)öe (4.17)

The above resolved angular acceleration scheme becomes ill-conditioned when

the actual or desired end-effector orientations are near their corresponding

representation singularities.

– Alternative Euler angles feedback : An alternative feedback scheme for orien-

tation tracking was proposed in [90] to mitigate the issues with representation

singularities in classical Euler feedback scheme. An error rotation matrix in

the actual end-effector frame can be first derived from the desired and current

rotation matrices:

cRe = Rᵀ
cRd (4.18)

Using this error rotation matrix and with proper choice of Euler representa-

tion the representation singularity will only come into effect when there are

large orientation error, as compared to last approach where there is chance of

running into representation singularity while deriving orientation components

from current as well as desired rotation matrices.

Now, similar to classical Euler Angle feedback, after deriving the Euler angles

(oe) from the error rotation matrix cRe and taking time derivative of 4.18

and using expression 4.16 after computing the transformation matrix Te(oe)
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in the static base frame:

Te(oe) = Rc
cTe(oe), (4.19)

following feedback scheme for closed-loop orientation control can be adopted:

αcmd = ω̈d − Ṫe(oeȯe)ȯe + Te(oe)(KV oȯe +KP ooe), (4.20)

where Te(oe) is defined similar to (4.16), and

• Angle-axis approach: The axis-angle representation of a rotation represents a ro-

tation in 3D Euclidean space by a unit vector r representing the axis of rotation

and an angle θ describing the magnitude of the rotation about the axis, and can

be represented as a rotation matrix as follows:

R = I+ (sin θ)[r]× + (1− cos θ)[r]2× (4.21)

where [r]× is the cross-product operator matrix corresponding to the axis of rota-

tion r and I.

Two equivalent versions of orientation error were defined in [87]:

oe =
1

2
([nc]×nd + [sc]×sd + [ac]×ad), and (4.22)

= sin(θe)re (4.23)

where nd, sd, ad and nc, sc ac are the unit vectors of the axes corresponding

to the rotation matrices (R = [n s a]) related to the desired and actual pose,

respectively. In the second expression, re and θe are the angle-axis parameters

related to the angle-axis representation of mutual rotation in the common reference

frame, given as:

Re = RdR
ᵀ
c (4.24)

Taking the first and second time derivative of (4.22), following resolved angular

acceleration can be chosen:

αcmd = L−1(Lᵀω̇d + L̇ᵀωd − L̇ωc +KV oȯe +KP ooe) (4.25)
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where

L = −1

2
([nd]×[nc]× + [sd]×[sc]× + [ad]×[ac]×). (4.26)

The above mentioned control commandαcmd is stable in the interval θe = (−π/2, π/2),

but is ill-defined when L is singular, which occurs at θe = ±π/2. In addition to

that, another drawback of this approach is the high computation cost of obtaining

αcmd in (4.25).

• Quaternion feedback : The representation singularity issues related to the above

mentioned approaches for the computation of resolved angular acceleration can

be mitigated by using the vector part of the quaternion related to the mutual

rotation matrix between desired and actual orientation represented in the base

frame in (4.24).

Let quaternion qe = se+ve corresponds to the rotation matrix Re in (4.24). Then

the resolved angular acceleration can be given as:

αcmd = ω̇d +KV oωe +KP ove (4.27)

where ωe the angular velocity error of the end-effector frame is given as:

ωe = ωd − ωc. (4.28)

Lyapunov analysis was invoked for the stability analysis of the above mentioned

control law in [90]. Although quaternion feedback approach does not present any

representation singularity issues, the proposed control law is non-linear.

4.3.2.2 Unit Dual Quaternion based Simultaneous Pose Controller Design

Given current (x̂c) and desired (x̂c) poses represented with UDQ and both expressed in

a static base frame, there are four possible permutations for error computation.

The error UDQ used in our formulation is:

x̂e = x̂d x̂
∗
c =

bx̂c→d. (4.29)
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The screw axis related this error represents a screw displacement vector, directed from

the current frame c to the desired frame d, expressed in the base frame b. Which means,

if we transform the error screw axis derived from x̂e using expressions given in A.4.2.1,

from the base frame to the current frame using Ad(bx̂∗
c)
:

cŝe = Ad(bx̂∗
c)

bŝe =
b x̂∗

c
bŝe

bx̂c (4.30)

= Ad(cx̂b)
bŝe =

c x̂b
bŝe

cx̂∗
b ,

and then postmultiply the corresponding UDQ, obtained using (A.36), to the current

frame pose x̂c, we will achieve the desired pose, i.e.:

x̂d = x̂c exp

(
cθ̂e
2

cŝe

)
. (4.31)

The same interpretation can also be applied to unit quaternion errors. For example,

in [90], the vector part of the quaternion derived from the current and desired rotation

matrices was used, which is equivalent to (qe = q∗cqd = cqc→d), and thus had to be

transformed to the base frame. Instead, (bqc→d = qdq
∗
c ) could have directly been used

with the same effect.

We follow the feedback linearisation approach developed in for the attitude and position

tracking problem of a rigid body. The goal is to obtain an âcmd for obtaining the

appropriate joint driving torques, such that the pose and spatial velocity of the end-end

effector of serial manipulator will converge to a desired pose with a desired spatial

velocity.

Taking the derivative of the error UDQ (4.29), we obtain:

˙̂xe = ˙̂xdx̂
∗
c + x̂d

˙̂x∗
c . (4.32)

Now, it has been proved in [80] that:

˙̂x =
1

2
x̂ω̂, (4.33)

where, ω̂ is the screw velocity of a rigid body given in the reference frame, whose pose

of the rigid body is given with UDQ x̂. The time derivative of its conjugate x̂∗ is given
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as:

˙̂x
∗
= −1

2
x̂∗ω̂. (4.34)

Similarly to [80], following can be derived:

˙̂xe =
1

2
x̂eω̂e, (4.35)

where,

ω̂e = Ad(x̂∗
e)
ω̂d − ω̂c (4.36)

The adjoint operation used in the above expression is given in 4.30.

Taking the derivative of 4.36, we obtain:

˙̂ωe = Ȧd(x̂∗
e)
ω̂d +Ad(x̂∗

e)
˙̂ωd − ˙̂ωc (4.37)

After expanding the involved terms in the above expression we obtain:

˙̂ωe = Ad(x̂∗
e)
˙̂ωd − ˙̂ωc + v̂ecω̂cAd(x̂∗

e)
ω̂d (4.38)

where, v̂ecx̂1x̂2 operation refers to dual quaternion product x̂1x̂2, but with null scalar

terms in both real and dual parts.

If following âcmd is chosen for feedback linearisation:

âcmd =2λP ln x̂e + λV ω̂e (4.39)

+ v̂ecω̂cAd(x̂∗
e)
ω̂d +Ad(x̂∗

e)
˙̂ωd,

and substituted in the place of ˙̂ωc in 4.38, we obtain the following error dynamics:

˙̂ωe + λV ω̂e + 2λP ln x̂e = 0 (4.40)

The asymptotic stability of equilibrium point (ln(x̂e), ω̂e) = (0̂, 0̂) for the above system

was established in [50] for an appropriate choice of the gains λP and λV . Therefore,

the end-effector motion will eventually converge to the desired trajectory for the control
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command obtained in (4.39). The two equilibria problem for dual quaternion has been

discussed in [50], where the system (4.40) has two identical equilibria at x̂e = (I,0) and

(−I,0), which was resolved by multiplying the error UDQ with −1 if the scalar part of

the real quaternion related to the error UDQ is negative.

The expression 2λP ln x̂e is the same control law used in chapter 2 for kinematic control

of manipulators, and refers to the product of dual angle and unit dual vector pertaining

to the axis of the screw obtained by deriving the screw parameters from the error UDQ

x̂e (see section A.4.2.1).

4.3.2.3 Formulation of Jacobian Derivative

In order to compute the driving torque command in 4.1 from the control law âcmd

obtained in 4.39, the computation of ˙̂J is required (see 4.7).

Derivative of the Jacobian Ĵ of a serial robotic manipulator can be obtained as in [95],

assuming a joint screw axis ŝi represented as unit dual line, is fixed on the child link i:

˙̂J =
[
˙̂s1 ˙̂s2 · · · ˙̂sn

]
=
[
v̂ecω̂1 ŝ1 v̂ecω̂2 ŝ2 · · · v̂ecω̂n ŝn

]
, (4.41)

where, ω̂i represents the screw velocity of an ith link, and can be computed by summing

the twists caused by the joints between the base frame and the ith link in a way similar

to 4.2.

4.4 Experimental Validation

The simultaneous pose resolved acceleration control obtained in section 4.3.2.2 was val-

idated on one of the redundant arms of Baxter dual arm collaborative robot [63]. Note

that the presented implementation does not address redundancy resolution for the extra

joint in the used robotic arm. Instead, the trajectory is defined such that the self-motion

of some of the joints due to redundancy does not affect the manipulator motion due to

imperfect gravity compensation.
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Fig. 4.1 Resolved rate acceleration control strategy for single manipulator.

The control architecture implemented for the comparative performance analysis of PD

controller described in previous section using dual quaternions has been shown in Fig.

4.1. Note that compared to the CTS architecture shown in Fig. 2.3 in chapter 2 an

Extended Manipulator Kinematics Handler is used. It computes Jacobian derivative

from the initial screw axes, current joint positions and velocities using 4.41, in addition

to the manipulator Jacobian.

The Resolved-Rate Acceleration Controller module implements the control law discussed

in section 4.3.2.2 to obtain the acceleration command in 4.39. The required joint torque
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command was obtained using inverse dynamic model of the manipulator in getJoint-

Torque module using pseudo-inverse of the manipulator Jacobian and velocity-product

acceleration obtained using the Jacobian derivative and joint speeds.

While in the future it is desired to receive the set-points for the desired end-effector

trajectory from a sensing module and task-planner, in the current implementation we

have used user-defined trajectory to validate the proposed trajectory tracking strategy

for the manipulator. Concepts from screw theory were used to generate parametrised

trajectory in Screw-based Trajectory Descriptor module to generate pose, velocity and

acceleration set-points to be used in the Resolved-Rate Acceleration Controller module.

The trajectory generation module uses a third-order polynomial for interpolation of pose

and velocities and is capable of generating second order trajectories such as rotation,

translation and screw motion, i.e. desired pose, velocity and acceleration. The cubic

function parametrized by parameters of screw motion, and initial desired pose ensures

zero initial and final velocity given the total displacement and the time allotted for the

motion [96].

Third order polynomial trajectory

Since a screw displacement is defined as a rotation (θtask) and translation (dtask) along

same screw axis, it can be parametrized with a dual number, θ̂task = θtask + εdtask,

containing both terms. The position and velocity terms in the desired motion are the

functions of θ̂task and,
˙̂
θtask, as given in A.51 and A.58. Given total time and the current

time, tf and t respectively, a trajectory may be specified by assigning initial and final

conditions for a dual parameter containing both translational and angular displacement

terms. The four desired boundary conditions for position and velocity require the screw

displacement parameter, θ̂task(t), to be a cubic polynomial function of time.

θ̂task(t) = â0 + â1t+ â2t
2 + â3t

3 (4.42)
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Fig. 4.2 Visualization of position, velocity and acceleration trajectories.

Solving for the boundary conditions reveals following expressions for the coefficients â0,

â1, â2, â3.

â0 = θ̂taski ,

â1 =
˙̂
θtaski ,

â2 =
−3(θ̂taski − θ̂taskf )− (2

˙̂
θtaski +

˙̂
θtaskf )tf

tf 2
, (4.43)

â3 =
2(θ̂taski − θ̂taskf ) + (

˙̂
θtaski +

˙̂
θtaskf )tf

tf 3
,

The evolution of position, velocity and acceleration of the one of the parameters be-

longing to the dual screw displacement (θ̂task), i.e. θtask or dtask, generated using above

method has been plotted in Fig. 4.2 for a time period of 10 seconds, where the initial

and final velocity is zero and initial and final positions are 0 and 50 respectively. Now,

a second order trajectory can be generated, given a 6D screw axis, i.e. a Plücker line in

an known frame, and the third order polynomial trajectory generator, as discussed in

section A.5.1 and A.5.2.

Comparative performance analysis of simultaneous pose and conventional

controllers

The controller performance was compared with the control law used in [90], where the

translational and orientational components of the trajectory were treated separately.
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Controller
Type

Jacobian
Type

Control Law

Proportional
GainλP

3×3
p 03×3

03×3 λP
3×3
o


Derivative

GainλV
3×3
p 03×3

03×3 λV
3×3
o


Simultane-
ous pose
Controller

Screw-based
Jacobian

Equation 4.39

190 03×3

03×3 190


 6 03×3

03×3 6


conven-
tional

Controller

KDL
Jacobian

Equation 4.44

270 03×3

03×3 270


 7.5 03×3

03×3 7.5


Table 4.1 Comparison of simultaneous pose and conventional controllers for resolved-

rate acceleration control

The Jacobian of the manipulator for the conventional controller were obtained from

the KDL library. This Jacobian maps the joint velocities of the manipulator to the

conventional end-effector velocity and not spatial velocity (see discussion in appendix

A.6). Additionally the derivative of this Jacobian was also obtained from KDL library.

The quaternion based control law used for comparison, as given in [90]:

acmd = p̈d + λV p ṗe + λP p pe, (4.44)

αcmd = ωd + λV oωe + λP o ve, (4.45)

where, pe refers to the position error of the end-effector frame, for a given desired position

pd. ve refers to the vector part of the error quaternion computed as qe = qdq
∗
c , from

which the orientation error in the base frame can be derived. acmd and αcmd are used to

obtain the combined acceleration command, similar to âcmd, to be used in an expression

similar to (4.7).

Both the controllers were tuned for a stable profile in velocity and to obtain the best

tracking performance. The controller gains for the two controllers used in the compar-

ative analysis have been given in Table. 4.1. The control loop frequency for both the

controllers was set 200 Hz.
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Fig. 4.3 Trajectory generation strategy and Baxter robot performing trajectory track-
ing task.
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Fig. 4.4 Pose error (Desired− Current) plot for the two controllers. ( ) refers to
the simultaneous pose controller and ( ) to conventional controller.
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Fig. 4.5 Velocity error (Desired−Current) plot for the two controllers. Linear velocity
components are given in m/sec., and angular velocity error in radian/sec. ( ) refers

to the simultaneous pose controller and ( ) to conventional controller.
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The end-effector was desired to rotate around a pre-selected line defined in the base frame

of the robot, while keeping one of the axis attached to the end-effector frame always

pointing towards the line, thus requiring both translational and orientation control of

the end-effector. The acceleration of the screw motion thus generated was parametrized

by θtraj = {0 to π
2 } and dtraj = 0, using the trajectory generation strategy discussed in

section 4.4. The goal of such trajectory was to start and end with a zero screw velocity.

The total duration of the simulation was 18 seconds.
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Fig. 4.7 Desired and tracked trajectory of the end-effector position. ( ) refers to
the simultaneous pose controller and ( ) to conventional controller.
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Fig. 4.8 Joint Effort plot for the two controllers. ( ) refers to the simultaneous pose
controller and ( ) to conventional controller.

The âcmd obtained in 4.39 calculated using position and velocity errors was used to

compute q̈cmd using 4.6. The q̈cmd hence obtained was substituted in 4.1 to get the

joint driving torques. The joint inertia matrix, Coriolis and centrifugal torques, and the

gravity torques were obtained using KDL library [70], and q̇ was provided by the Baxter

ROS interface.

The robot performing the trajectory tracking task can be seen in Fig. (4.3), and per-

formance of both the controllers for pose and velocity tracking has been given in Fig.

(4.4) and (4.5), respectively. While the performance of both the simultaneous pose and

conventional controllers is identical for position tracking (see Fig. 4.7), the simultaneous

pose controller performed better in terms of orientation tracking, as is evident from Fig.

4.6. The performance is identical in terms of velocity error and the commanded joint
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torques for all the joints, given in Fig. 4.8, however higher oscillations can be observed

with conventional controller for commanded joint torques.

4.5 Conclusion and Future Works

A new controller for resolved acceleration control of robotic manipulators was proposed

for the trajectory tracking of serial robotic manipulator using screw theory and con-

cepts from spatial dynamics. Representation of the motion variables with dual quater-

nions allowed simultaneous treatment of translational and orientational components of

trajectory tracking error. Comparison with a conventional controller revealed better

orientation tracking and less oscillations in commanded joint torques, while achieving

identical performance for the translational components of the trajectory. However, an

appropriate redundancy resolution strategy is needed to utilize the additional degrees

of freedom for redundant manipulators, as during the current implementation special

attention was taken during the definition of trajectory. Additionally, we would like to

extend this method trajectory tracking for dual-arm manipulation.

ROBOT HW INTERFACE
(Real/Simulation)

[qm
curr, q̍m

curr]

bJm

Resolved-Rate Acceleration Controller

Extended Manipulator
Kinematics Handler

Task Scene

{bx̂m
des, bω̂m

des, bâm
des}  

Initial Screw Axes
 

([bŝ1
m, bŝ2

m, ..., bŝn
m ])

Initial end-effector poses
bx̂m

init

bx̂m
curr

Inverse 
Dynamic 

Model

q̍m
curr

qm
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τm = Hmq̎m
cmd+Cmq̍m + G 

q̎m
cmd 

Task state

Robot state

τm

for m= {left, right}

USER/TASK

Absolute Task sensing/
GUI-based Absolute

Task Specifier
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Grasp Matrix
Based

Task Resolver

[bx̂rel
des, bω̂rel
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des]  

for m= {left, right} for m= {left, right} for m= {left, right}

Fig. 4.9 Pose control loop for dual-arm cooperative manipulation of single object.
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In the future, we wish to extend the simultaneous pose resolved-rate acceleration con-

troller for dual-arm manipulation similar to the approach taken in [42, 97, 59], where

the desired trajectory of individual manipulators were obtained from the CTS trajec-

tories. If the two robotic arms are manipulating a single object and the constraint of

rigid grasp is assumed, then the relative motion can be assumed to be negligible, and

the corresponding trajectories for the the cooperating manipulators can be derived from

the geometry of the grasp [59]. Since, the simultaneous pose approach of trajectory

tracking demonstrated better tracking for single arm, it will be interesting to see if this

performance carries over into dual-arm cooperative manipulation. In addition to that,

a hybrid force/position force control or impedance control strategy is needed to ensure

the interaction forces between the object and the robotic arms’ end-effectors, and in-

ternal force acting on the object under acceptable limits. The dual-arm architecture,

proposed as an extension to the architecture presented in Fig. 4.1, incorporating the

above mentioned strategy for the inner position control loop, has been given in Fig. 4.9.





Chapter 5

CTS Planner for Shape-Servoing

and Contact-based Assembly

Tasks

In the previous chapters, we established the advantages of screw theory and DQ based

kinematic modeling of CTS of dual-arm robots (chapter 2) and anthropomorphic hands

with underactuated fingers (chapter 3), in terms of computational and storage efficiency,

as well as in terms of ease of kinematic modelling. The coupled treatment of position

and orientation variables in resolved acceleration control of manipulators demonstrated

improvement in trajectory tracking performance with regards to tracking accuracy and

reduced oscillations in the joint torque commands, as shown in chapter 4. Addition-

ally, the approach to extend the resolved acceleration control for bimanual control was

proposed as future work.

In this chapter, we add another dimension to our framework for dual-arm control with

the addition of a task planner. When the two end-effectors attached to the arms of a

dual-arm of a robot are interacting through a single rigid or articulated object, or with

two objects held in each arm, there are situations which require complex interaction

between the cooperating robotic arms. These interactions are related both to the kind

the task desired, as well as to physical constraints related to the tasks. For example when

handling a rigid object, the relative pose between the arms should be kept constant so as

to not exert excessive internal force on the object, whereas the absolute force will counter

87
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gravity and perform manipulation and control interaction with the environment. In the

case of interaction of the grasped object with environment the type of contact the held

rigid object makes with the environment has to be taken into account while generating

absolute task-space motion, i.e. the motion for the object to keep the interaction forces

arising due to the contact of object with the environment within limits. Similarly, if the

dual-arm robot is performing an assembly operation with two mating parts held in each

arm, the involved contact state between the objects also limits the motion permissible

for the relative task-space.

A cooperative task-planner that is capable of representing these constraints related to

external (with the environment) and internal (between cooperating manipulators) in-

teraction can be instrumental to generate cooperative motion plans. In this chapter we

propose a task planner that is capable of representing such tasks and related constraints

with the application of virtual mechanisms. We generate virtual mechanisms in relative

and absolute task space to represent different tasks with constraints, and adjust the VSs

attached to each of the arms as the task evolves thus giving the same inputs to the con-

trol architecture presented in 2.4.1 (Fig. 2.3). The objective of readjusting the virtual

sticks is to extend the static analysis of bimanual rigid body grasping [31] explained in

chapter 2.1 for tasks requiring interaction between two objects and also for the handling

of objects with articulations, like a pair of scissors. In the current work we assume that

the object/objects are at static equilibrium throughout the task, the object model and

corresponding pose sensing, as well as manipulator pose control, is precise enough to

keep the interaction forces within limits.

The implementation of the task planner is based on screw theory, which allows us to

easily define these tasks with minimal parameters, while at the same time is also capable

of generating higher-order trajectories. A higher-order trajectory is desired to generate

smooth end-effector motion in situations when there are abrupt changes in the pose

setpoints. The task-planner will be validated with tasks requiring variation of virtual

sticks, by deforming a linear elastic body in different shapes with intuitive approach,

and with tasks requiring virtual mechanisms to represent multiple intermediate articula-

tions, like deforming a rope using hinges. Although we have limited the experiments to

deformable objects, one of the objective of the these experiments is also to demonstrate

how contact states arising in an assembly tasks can be represented with the proposed

task-planner.
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Fig. 5.1 Proposed levels of dual-arm coordination hierarchy.

In the following section (section 5.1) the global motivation for the development of coop-

erative task-space planner based on VM is presented. The framework for defining and

executing CTS based tasks is explained in section 5.2. Afterwards, the experimental

setup and corresponding results are discussed and future directions for the proposed

method are presented in section 5.3. The concluding remarks related to this work and

future work will be presented in section 5.4.
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5.1 Motivation

The applicability of VM based task planners can be demonstrated with a new catego-

rization of dual-arm tasks as shown in Fig. 5.1. There are a variety of tasks that can

be accomplished by a dual-arm robot, which can roughly be divided into coordinated

(goal-coordinated and bimanual tasks) and uncoordinated tasks [26]. Uncoordinated

tasks are relatively simpler to handle since they are an extension of single-arm tasks, in

spite of added complexity of collision awareness of the other arm’s operation. Coordi-

nated tasks, especially bimanual tasks, where coordination between the arms is inherent

requirement of the task, for example bimanual lifting or bimanual assembly tasks. Bi-

manual cooperative structures have been further classified into parallel and serial model

of cooperation [35], taking a cue from the study of human bimanual actions [39].

In the proposed new categorization we define new sub-categories of bimanual tasks,

different from [35] categorization based on the dependency between arms for bimanual

tasks. The new categorization is based on the degree of complexity in the definition

of cooperative tasks and extends the concept of CTS for performing assembly tasks,

and to control the shape of deformable objects using two arms. Although single object

manipulation presents challenges related to internal force control and interaction of

the grasped object with the environment, the rigid body constraint assumed during

cooperative manipulation design makes it comparatively easier to define the task. In

the manipulation of objects with fixed articulation, for instance, scissors, telescope,

etc., constraint related to the articulation joint should also be taken into account. On

the other hand, contact-based dual-arm assembly tasks like bimanual peg-in-hole and

fastening using screws, and shape-control of deformable objects presents additional task

modeling challenges due to the higher degree of articulation related to assembly tasks

and shape control of deformable objects.

face-face face-edge face-vertex edge-edge cross

Fig. 5.2 Principal contacts between two polyhedra [11].
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Assembly tasks deals with achieving a desired contact configuration between two as-

sembly parts, where these parts go through a controlled sequence of different contact

formations. Some these contact states for two polyhedra are given in Fig. 5.2. During

assembly sequence the mating parts are required to perform motion within these contact

states, in addition to transitioning between different contact states [11] which can also

be represented with finite articulation between assembly parts. Robotic manipulation

of these assembly parts has to respect the constraints imposed by the contact, and the

knowledge of these constraints are important to not only for maintaining the contact,

but also for keeping the interaction forces within limits [98].

The constraints related to a different state of contact during assembly tasks can be

modeled using VM, with the exclusion of the dynamic aspects such as interaction force

control. VM has been used for contact modelling in assembly tasks in [99], and for

modeling finger contact model in [100]. Additionally, the same approach can be used to

model bimanual skills for the task-frame formalism of assembly tasks [15, 101]. While

there are more complicated issues involved for reliable and safe execution of assembly

tasks, such as proper sensing of contact state, compliance control, etc. [102], in the cur-

rent work, we have limited our study to the definition of kinematic constraints involved

in dual-arm coordination for assembly tasks. The definition of VM for some common

assembly tasks has been given in Fig. 5.3.

Fig. 5.3 Virtual mechanism equivalents of different assembly tasks: qv encapsulates
the joint displacement of the virtual mechanism. (a) Surface-surface contact task can
be represented with a 3-dof planar mechanism, (b) peg-in-hole task with a one-dof pris-
matic joint, (c) and bolting task with 2-dof screw joint mechanism, where the prismatic
joint displacement is equal to the revolute joint displacement (θ) multiplied by the pitch

(h) of the bolt.

Deformable object manipulation presents some of the most complex scenarios for defin-

ing dual-arm cooperative motion which arises due to the high degree of articulations

associated with deformable objects [103]. The degree of articulations of a deformable

linear object often outnumbers the degree of control the cooperating arms have over
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these articulations, which are only twelve dimensions of CTS, half of them for relative

and the other half for absolute task-space control. Nonetheless, the description of certain

linear deformable objects using VMs will not only allow us to obtain an approximate

model of the shape of objects but also provide a plan for the deformation. In fact, there

are some previous works related to the deformation control of isometric linear objects

have already employed similar method of modeling the shape of the rope as multi-link

system [104, 105], however, without the consideration of cooperative task-space for the

shape control of rope.

5.2 Design of Cooperative Task Planner

Task sensing/
GUI-based Task Specifier

CTS Task Descriptor

Initial Screw Axes: ([s1
vm, s2

vm, ..., sn
vm ]),

Screw displacement parameters

[θ1
total, ... θn

total], [d1
total, ... dn

total]

Total time

{bxabs
init, rightxrel

init}

Task state Robot state

CTS Visualization
Marker Extractor

RViz

RViz Markers
for CTS

Representation

Current Time

CTS Task Visualizer

Virtual Sticks Extractor

{bxabs
des, rightxrel

des}

computeFKM

Virtual Sticks / Mechanism

Based

Trajectory Generator

{bxabs
init, rightxrel

init}

CTS Task Planner

{VSright, VSleft}

{VSright
init, VSleft

init}

{bxabs
des, rightxrel

des}

{VSright, VSleft}

CTS Task Mediator

Fig. 5.4 Cooperative task planner architecture.

This section presents architecture for the implementation of an efficient and compact

way of parametrized definition of assembly and shape-servoing tasks using virtual links,
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and is given in Fig. 5.4. The cooperative task planner consists of a CTS Task Descriptor

module that is capable of defining VMs based on the sensor input, for example, an image

of the initial state of the linear object, and with the desired resolution. The same can be

derived for a desired state of the object, and a plan for deformation can thus be obtained

by identifying the nodes/joints of deformation and moving the closest joints in the initial

VM representation to achieve an approximation of the desired state. The proposed task

planner in its current state of implementation does not close the shape control loop with

sensorial information, but we demonstrate the effectiveness of this approach by achieving

some simple shapes obtained with user-defined tasks in CTS Task Descriptor module.

The joint screw axes of the virtual mechanism, total desired joint displacements and

total time for the operation are the outputs of CTS Task Descriptor module and given

as an input to CTS Task Mediator module.

The task is initialized once the object is held by both hands by recording the current

relative configuration. While in the original formulation by [31] the absolute pose was

assumed to coincide with the centre of mass for a rigid body held by two manipulators.

However, for the shape control of linear elastic body like a foam we can assume negligible

mass of the object and can a variable absolute pose. The implication this assumption

is that VS sticking from the end-effectors attached to the cooperating robotic arms are

coinciding with the new absolute pose. Thus the relative motion between the tips of

the virtual sticks can be used to apply a desired internal force for shape control. In the

current implementation the new absolute pose can be defined by the user in CTS Task

Descriptor module, while the relative pose at the beginning of a task is always a unity

transformation matrix, which means absolute frame and the frames at the tips of the

virtual sticks are all coinciding at the beginning of the task.

A VM is defined in Virtual Sticks/ Mechanism Based Trajectory Generator using initial

screw axes DQ given in the reference frame and the current relative pose. In the current

implementation, the absolute pose in reference manipulator ’s end-effector frame is con-

nected to the link exactly at the centre of the virtual mechanism. The Virtual Sticks/

Mechanism Based Trajectory Generator uses the computeFKM block to compute the

evolution of the virtual mechanism in the reference manipulator ’s end-effector frame.

The desired absolute pose is then computed from the current state of virtual mechanism

defining the desired relative configuration using the method described in Algorithm 2.

Finally new virtual sticks are computed from the desired relative and absolute frame
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hence computed using Algorithm 3. The complete method used in CTS Task Mediator

to generate the CTS poses and virtual sticks is given in Algorithm 1.

Algorithm 1 VM based CTS task planner

1: procedure VM based CTS task planning
Initial Conditions:

• bx̂init
r ← right end-effector pose in base frame

• bx̂init
t ← left end-effector pose in base frame

Input:

• lvm ∈ {lx, ly, lz}: initial VM screw axes direction in reference manipulator ’s
end-effector (ref) frame

• nVM : number of joints desired for the VM

• q̂vm
total

= [qvmtotal, ...] ∈ DnV M : total joint motion (dual angle consisting of transla-
tional and rotational motion) desired for VM joints

• ŝabs ∈ {ŝx, ŝy, ŝz}: screw axes direction in absolute frame for desired trajectory

• [θtotalabs , dtotalabs ]: total screw displacement desired for absolute frame given in the
initial absolute frame

• totalT ime: total time allotted for CTS task

Output:

• bx̂des
abs: desired absolute pose in base frame

• rx̂des
rV S : VSref in reference manipulator ’s end-effector (ref) frame

• tx̂des
tV S : VStool in tool end-effector frame

2: rx̂init
vm = rx̂init

t ← multiplyDQ(getDQClassicConjugate(bx̂init
r ), bx̂init

t )
3: rx̂init

abs ← computeAbsPoseInRefFrame(rx̂init
t ) (Algorithm 2)

4: initialize VM

• divide total length of relative position into nVM + 1 parts

•
[
ŝvm1 ŝvm2 · · · ŝvmnV M

]
← initial screw axes

5: currentTime ← ∅
6: while currentT ime < totalT ime do
7: timeFraction← currentT ime/totalT ime
8: q̂vm

now
← q̂vm

total
∗ timeFraction

9: rx̂now
vm ← FKM(q̂vm

total
,r x̂init

vm , nVM )

10: rx̂now
abs ← FKM(q̂vm

total
,r x̂init

abs , nVM/2 + 1)

11: [θnowabs , d
now
abs ]← [θtotalabs , dtotalabs ] ∗ timeFraction

12: bx̂des
abs ← multiplyDQ(bx̂init

abs , screwToDQ([θtotalabs , dtotalabs , ŝ
abs]))

13: [rx̂des
rV S ,

t x̂des
tV S ] ← computeV SFromAbsoluteRelative(bx̂des

abs,
r x̂now

vm ) (Algo-
rithm 3)

14: end while
15: end procedure
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Algorithm 2 computeAbsPoseInRefFrame

1: procedure get absolute pose from relative pose
Input:

• rx̂t: tool frame pose in ref frame

Output:

• rx̂abs: absolute pose in ref frame

2: [θ, d, l,m]← DQToScrew(rx̂t)
3: p← getPositionFromDQ(rx̂t)
4: rorientationabs ← angleAxisToQuaternion(θ/2, l)
5: rtranslationabs ← getTranslationQuaternion(rorientationabs,p/2)

6: rx̂abs ←
[
rorientationabs

rtranslationabs

]
7: end procedure

Algorithm 3 computeVSFromAbsoluteRelative

1: procedure get VSs from absolute and relative poses
Input:

• bx̂abs: absolute pose in ref frame

• rx̂t: tool pose in ref frame

Output:

• rx̂rV S : VSref in ref end-effector frame

• tx̂tV S : VStool in tool end-effector frame

2: [bx̂r,
b x̂t]← getRefToolFromAbsRelative(bx̂abs,

rx̂t) (Algorithm 4)
3: rx̂rV S ← multiplyDQ(getDQClassicConjugate(bx̂r),

b x̂abs)
4: tx̂tV S ← multiplyDQ(getDQClassicConjugate(bx̂t),

b x̂abs)
5: end procedure

Algorithm 4 getRefToolFromAbsRelative

1: procedure get end-effectors poses from absolute and relative poses
Input:

• bx̂abs: absolute pose in base frame

• rx̂t: tool end-effector pose in ref end-effector frame

Output:

• bx̂r: ref pose in base frame

• bx̂t: tool pose in base frame

2: rx̂abs ← computeAbsPoseInRefFrame(rx̂t)
3: bx̂r ← multiplyDQ(bx̂abs, getDQClassicConjugate(

rx̂abs))
4: bx̂t ← multiplyDQ(bx̂r,

rx̂t)
5: end procedure
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5.3 Experimentation Validation and Result

The proposed framework for CTS task planning and control was validated on a Baxter

dual-arm platform for the manipulation of a deformable foam and a non-elastic rope.

The variation of virtual sticks, obtained by changing the initial absolute pose in the

reference frame, was validated first with an elastic linear foam and by analysing the

deformed shape. It is hypothesized that static analysis valid for rigid body control,

where the relative pose is kept constant to avoid excessive strain on the object due to

internal force, can be used to achieve the desired deformation for quasi-static motion

between the robotic arms by providing a relative motion.

In the first set of experiments we will validate the variation of virtual sticks with defor-

mation tasks with linear deformable foam, so that the effect of changing the absolute

pose is visible. Afterwards, the VM based trajectory generation method was validated

with constraint based deformation of a rope. The controller gains for the simultaneous

pose controller used in this approach were the same chosen in chapter 2 and has been

presented in Table 2.5. The total duration of the experiment was 8 seconds and the

controller was operating at ≈ 100 Hz. The following sections describe the experiments

designed for the validation of the VS (section 5.3.1) and VM based task specification

(section 5.3.2) in more detail.

5.3.1 Variation of Virtual sticks

In the first set of experiments shown in Fig. 5.5 and 5.6, the linear foam is at static

equilibrium when it is held between both the two cooperating arms. For the BC (Bend

Centre) experiment absolute pose was fixed exactly at the centre of the foam, while for

the BOC (Bend Off Centre) experiment absolute pose was fixed exactly at the centre

of the foam. A relative rotational motion of 80 degrees was generated at the tips of the

VSs in the frame of the tip of the reference manipulator while keeping the absolute pose

constant with respect to the base frame. The screw-based rotational trajectory planning

was achieved using the approach given in section 2.4.3.2.

The performance of the controller has been shown in terms of DQ representation on the

desired and actual pose for both experiments in Fig. 5.9 and 5.10. Whereas, in Fig. 5.8

and 5.7 the controller performance has been represented in terms of norm of the position,
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i.e. the modulus of distance (
√
x2e + y2e + z2e ) error, and in terms of orientational distance

(‖θe‖) error related to angle-axis approach of orientation error representation.

Fig. 5.5 Bend at the centre: The absolute pose was fixed at the centre of the foam.
The initial desired state of VSs is shown in yellow, current desired state in blue, and

final desired configuration in magenta.

Fig. 5.6 Bend off centre: The absolute pose was shifted 10 cm to the left from the
centre of foam.
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Fig. 5.7 Pose tracking performance for absolute task space in DQ (x1, x2, ..., x8) terms
for two relative rotation tasks with variation of absolute pose, which are BC(Bend

Centre) and BOC(Bend Off Centre).
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Fig. 5.8 Pose tracking performance for relative task space in DQ (x1, x2, ..., x8) terms
for two relative rotation tasks with variation of absolute pose, which are BC(Bend

Centre) and BOC(Bend Off Centre).

0 2 4 6 8

time (secs.)

0

1

2

3

4

5

6

7

m
e
te

r

10
-3 NormError Position

0 2 4 6 8

time (secs.)

0

0.005

0.01

0.015

0.02

ra
d
ia

n

NormError Orientation

Fig. 5.9 Evolution of error in terms of the norm of position and orientation error in
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Fig. 5.10 Evolution of error in terms of the norm of position and orientation error in
relative task space. ( ) refers to BC experiment and ( ) to BOC experiment.

For both the experiments high pose tracking accuracy was achieved both in relative and

absolute task space and the maximum pose error was around 7 mm, while a maximum

rotation error of 0.02 radian was recorded. The deformable foam was at equilibrium

throughout the experiment and the deformation was very controlled. This confirms that

our static equilibrium assumption can be beneficial for controlled deformation of such

objects.

5.3.2 Relative task definition using VMs

The VM based definition of task in relative task space explained in 1 was validated with

experiments related to constrained deformation of a rope. Two kinds of experiments were

designed to validate the VM based trajectory generation module. The experiment starts

with a rope held in the undeformed elongated state by both arms of the manipulator. In

the first experiment, the rope has to be wound around two vertical lines in the U-shape,

while keeping the absolute pose static. The distances between the hinges were a third

of the total length of the rope. The motion of the arms was generated by using two

rotational axes in the same direction. An equal rotation of 45 degrees is given to both

the joints, while the initial absolute pose was maintained. For the next experiment,

one of the joints was given an equal and opposite rotation, while maintaining the initial

absolute pose by redefining the VSs for each iteration of the control loop. The robot

performing the task, as well as the corresponding VM is given in Table 5.1.
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(a) Initial and desired state of U-shape VM. (c) Initial and desired state of S-shape VM.

(b) Robot performing U-shaped deformation. (d) Robot performing S-shaped deformation.

Table 5.1 U and S shaped deformation trajectory details and real robot performing
the tasks.

The performance of the controller has been shown in terms of DQ representation on the

desired and actual pose for both experiments in Fig. 5.11 and 5.12. Whereas, in Fig.

5.13 and 5.14 the controller performance has been represented in terms of the modulus of

distance error, and in terms of orientational distance error related to angle-axis approach

of orientation error representation.
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Fig. 5.11 Pose tracking performance for absolute task space in DQ (x1, x2, ..., x8) terms
for the rope deformation task to achieve U and S shape.
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for the rope deformation task to achieve U and S shape.
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Fig. 5.13 Evolution of error in terms of the norm of position and orientation error
in absolute task space for the rope deformation task to achieve U ( ) and S ( )

shape.

While the trajectory profile for both the experiments is stable, significant error (≈ 2.5

cm) was recorded for the U-shape task in relative task space. This significant error can

be attributed to the measurement errors related to the dimension of the rope and the

distance between the hinges, and to the fact that the rope is rigidly attached to the

robot and the joints of Baxter robot are compliant. Note that the desired absolute as

well relative pose represented as DQ in Fig. 5.13 and 5.14 is constant throughout the

task. This is because instead of varying the desired relative pose, we are computing the

corresponding virtual sticks, as explained in Algorithm 1.
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shape.
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5.4 Conclusion

This chapter presented the application screw theory based kinematics with DQ repre-

sentation for constraint modeling and trajectory generation using virtual mechanisms.

The static analysis for rigid body handling using dual-arm robots was extended for the

definition of a deformation task for linear semi-rigid objects with elastic properties. The

implementation of the task planner consisted of planning as well as visualization mod-

ules, which was found to be useful for visualizing the task before executing it with the

robot.

The task modeling approach using screw theory provided a basis for compact parametriza-

tion of a wide range of tasks. While conventional approaches require a frame for every

link of the virtual mechanism along with the axis of joint motion, the screw-based ap-

proach requires only the screw axes of the joints of the VM. Forward kinematics of

the virtual mechanism is also more efficient than HTM based method since DQ mul-

tiplication is computationally less expensive, as shown in section 2.2.2.2. Moreover,

the comparative evaluation of DQ pose controller using screw parameters of pose er-

ror against the conventional control of position and orientation error, proved that the

simultaneous pose control was found to be better at pose tracking in relative task space.





Chapter 6

Conclusion

In this thesis we developed a complete framework for dual-arm coordination and task

definition. We used screw-based kinematics for the modelling of manipulators and their

coordination, and employed VM for task definition. A simultaneous pose control ap-

proach was taken for the CTS control of dual-arm that operated on the screw error

between the desired and current poses, and was compared with the conventional ap-

proach of minimizing position and orientation errors separately. Preliminary results

of the implementation of these two controllers, simultaneous pose controller and con-

ventional pose controller, on a dual-arm robot, demonstrated that simultaneous pose

controllers are better at tracking CTS pose set-points, with clear improvement for ori-

entation control.

To summarize the contributions of this thesis:

• CTS modelling and control : We combined screw-based kinematics with DQ rep-

resentation for the modelling and control of CTS poses for dual-arm coordination

in chapter 2. The compactness and computational efficiency of dual quaternion

representation of pose (Table 2.1), and generalized velocity were utilized for the

forward kinematics and control law design for dual-arm cooperation. Usage of

screw-based kinematics allowed natural consideration of wrench transformation

matrix and thus more stable and accurate tracking in relative task space, even for

tasks requiring fast relative motions (Table 2.2).

105



106 Chapter 6: Conclusion

• Anthropomorphic hand modelling : We extended the relative Jacobian modelling

for the cooperation modelling of the fingers of an anthropomorphic robotic hand

in chapter 3. The coupling of joints in the underactuated fingers of the robotic

hand were represented with a coupled finger Jacobian. The coupled Jacobian

of the robotic finger was used for inverse kinematic control, while allowing easy

integration with a robotic arm. Additionally, the relative task-space between the

fingertips of index finger and thumb was modelled using screw theory, similar to

dual-arm robots. The inverse kinematic control to achieve a desired relative pose

between the thumb tip and the index finger tip was validated on a robotic hand

AR10.

• Resolved-rate acceleration control : The idea of simultaneous pose treatment of

position and orientation variables was taken further in chapter 4 with the design

of a second-order trajectory tracker using DQs. The trajectory controller hence

designed was capable of tracking pose, velocity and acceleration setpoints for the

end-effector using inverse dynamic model of the robot. The simultaneous pose

resolved rate acceleration controller was implemented for the control of one of

the arms of Baxter dual-arm robot, and was found to be capable of tighter tra-

jectory control, specially for error terms related to orientation, compared to the

conventional controller ([90]) that treated the position and orientation setpoints

separately and ignored the inherent effect of rotation on translational motion. Ad-

ditionally, it also led to lower oscillations in the joint torque command.

• CTS Task Planner : Finally, a complete framework for the coordination of bi-

arm robotic systems was proposed with the addition of a cooperative task plan-

ner in chapter 5. The simplicity of screw theory was exploited additionally for

parametrized generation of generalized second order trajectories for tasks requiring

simplified motion, like translation, rotation and screw motion around an arbitrary

6D screw-axis given in a known reference frame. The trajectory generation method

was extended to represent the constraints related to tasks involving contact be-

tween objects using the concept of VM. Again, screw theory was found to be a

suitable choice for constructing such mechanisms on the fly, and computation of

desired set points for relative and absolute task-space for dual arm coordination.

Additionally, the VMs were also used to parametrize different kinds of operations of
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semi-deformable objects with evident elastic properties like foam and with highly

articulated objects like rope where we constrain the rope to achieve desired shapes.

6.1 Future directions

The current implementation of the framework for dual-arm manipulation is capable of:

• Generating simple trajectories like rotation, translation and screw motion around a

6D screw axes. Additionally, trajectories can also be generated using VM for single

arm, as well as for relative and absolute task space. The parametrized trajectory

generator is also capable of generating second-order trajectory with null velocity

at the starting and end of the trajectory, which can easily be extended to higher

order if is desired to include the boundary conditions for acceleration.

• Tracking of pose trajectory hence generated for single arm, and for CTS control

of dual-arm robots using both UDQ based coupled controller, as well as for KDL

based decoupled controller.

• Trajectory tracking of a single manipulator, when the end-effector has to follow a

desired pose, velocity and acceleration set-points, for both position and orientation.

The significance of this framework can be further enhanced by:

• Combining hand kinematics with the robotic arm, so that the complete robotic

hand-arm system can be made to achieved an initial configuration with an object

to be grasped. Then the relative task-space modelling for fingertips can be used

to obtain task-specific Jacobian [13] for tasks like grasping and un-grasping by

increasing or decreasing the distance between finger tips. We have proposed CTS

Jacobians for cooperation control between robotic fingers of an anthropomorphic

hand attached to a robotic arm in the conclusion section (3.4) of chapter 3.

• Extension of coupled resolve-rate acceleration control of manipulators for dual-arm

manipulation: In the future we would like to extend the coupled resolved-rate ac-

celeration controller for dual-arm manipulation similar to the approach taken in

[42, 97, 59], where the desired trajectory of individual manipulators were obtained
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from the CTS trajectories. We have proposed an architecture for this extension of

resolved-rate acceleration control for tasks where the two robotic arms are manip-

ulating a single object and the constraint of rigid grasp is assumed in Fig. 4.9 in

chapter 4.

• Identifying and formalizing dual-arm robotics skills for deformation control and

assembly tasks. Since today’s industries rely on constantly changing products to

spur the market demands, a flexible framework for robotic application in the pro-

duction line is desired. One of most common approaches to address this challenge

of easy reconfigurability of robotic applications has been to implement a skill-based

system [15]. While there are multitude of aspects involved in the design of such a

system that are outside the scope of this thesis, such as force control, uncertainty

handling, etc., other than the additional components of task state identification

and state transition, a parametrized description of motion during these tasks con-

stitute the core of such systems. As has been demonstrated in the current chapter,

screw-based definition of tasks provides a compact and general parametrization

of motion. Some common deformation and assembly tasks can be encoded as

dual-arm skill primitives using the tools such as task definition and dual-arm mo-

tion control, provided in the current framework of cooperative task modelling and

control.



Appendix A

Dual Quaternion and Spatial

Dynamics Basics

A.1 Quaternions

Quaternions can be regarded as pairs of a scalar and a vector (s,v), where s ∈ R and

v ∈ R3, or as a 4-tuple:

q = sq + vq = sq + vqxi+ vqyj + vqzk (A.1)

= (sq, vqx, vqy, vqz). (A.2)

i, j, k are the unit vectors along the x, y, z axis, respectively, for which following

relations was defined by William Rowan Hamilton in 1843 [106]:

i2 = j2 = k2 = ijk = −1 (A.3)

A pure quaternion has null scalar component, i.e. s = 0.
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A.1.1 Quaternion operations

• Addition: Addition of two quaternions p = sp + vp = sp + vpxi+ vpyj + vpzk and

q = sq + vq = sq + vqxi+ vqyj + vqzk is defined as:

p+ q = (sp + sq) + (vpx + vqx)i+ (vpy + vqy)j + (vpz + vqz)k (A.4)

• Multiplication: Multiplication of two quaternions p = sp + vp and q = sq + vq is

performed as:

pq = (spsq − vp · vq) + (spvq + sqvp + vp × vq) (A.5)

The multiplication between quaternions is associative but not commutative.

• Conjugate: The conjugate of a quaternion q = sq + vq is given as:

q∗ = sq − vq (A.6)

The product of a quaternion and its conjugate will result in the square sum of its

elements, i.e.:

qq∗ = q∗q = sq
2 + vq

2
x + vq

2
y + vq

2
z (A.7)

• Norm: The norm of a quaternion is defined as:

‖q‖ =
√

qq∗ =
√
q∗q (A.8)

A quaternion with unity norm, i.e ‖q‖ = 1 is called unit quaternion and can be

used to represent rotation operation akin to rotation matrix.

• Inverse: The inverse of a quaternion is defined as:

q−1 =
q∗

‖q‖2
(A.9)

The inverse of a unit quaternion is its conjugate as can be verified from above

relation.
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A.1.2 Rotation representation using unit quaternions

A rotation of angle θ ∈ [0.π] around a unit vector u can be represented using a unit

quaternion as (see Fig. A.1):

q = e
θ
2
(uxi+uyj+uzk) = cos

θ

2
+ (uxi+ uyj + uzk) sin

θ

2
(A.10)

A rotation represented by q can be applied to a vector v = vxi + vyj + vzk, and the

vector thus obtained is given as:

v′ = qvq∗ (A.11)

A.2 Dual Numbers

Dual numbers, proposed by Clifford [107], is defined with a real and dual part, a and b

respectively, as:

d̂ = a+ εb, (A.12)

where a, b ∈ R and ε is a dual unit, such that ε2 = 0.

Fig. A.1 Frame rotation using unit quaternion.
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A.2.1 Dual number operations

• Addition: Addition of two dual numbers d̂1 = a1 + εb1 and d̂2 = a2 + εb2 is given

as:

d̂1 + d̂2 = (a1 + a2) + ε(b1 + b2). (A.13)

• Multiplication: The multiplication of two dual number is given as:

d̂1d̂2 = a1a2 + ε(a1b2 + a2b1). (A.14)

• Inverse: Inverse of a dual number d̂ = a+ εb is defined for the condition a 6= 0, as:

d̂−1 = a−1(1− εba−1). (A.15)

• Function of dual number : A function of a dual number d̂ = a+ εb is defined using

Taylor expansion yields:

f(a+ εb) = f(a) + εbf ′(a), (A.16)

since all terms with two or higher power of ε vanish.

A.3 Dual Vectors

Dual vectors have 3D vectors as both real and dual parts, or can also be defined as

vectors where each entry of the vector is a dual number. Dual vectors with a unit vector

as real part and orthogonal real and dual parts are the representation of spatial lines in

R3, also known as Plücker lines, as shown in Fig. A.2:

ŝ = l+ εm (A.17)
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A.3.1 Dual vectors operations

• The product of a dual number d̂ and a dual vector d̂ = (d̂1, d̂2, d̂3) is given as:

d̂d̂ = (d̂d̂1, d̂d̂2, d̂d̂3) (A.18)

• The inner product of two dual vectors d̂ = (d̂1, d̂2, d̂3) and ê = (ê1, ê2, ê3) is defined

as:

d̂ · ê = d̂1ê1 + d̂2ê2 + d̂3ê3 (A.19)

• The cross product of two dual vectors d̂ and ê is given as :

d̂ê =



d̂2ê3 − d̂3ê2

d̂3ê1 − d̂1ê3

d̂1ê2 − d̂2ê1


(A.20)

If l is a unit vectors then, it can regarded as the direction vector of the line and the

dual part m is the moment of the line about the origin of the reference frame, given as

m = p× l, where p can be any point on the line. The inner product of two Plücker lines

yields the cosine of a dual angle θ̂ = θ+ εd, where d is the relative distance between the

lines and θ is the angle between the two Plücker lines.

Fig. A.2 Plücker line in reference frame: Represented by a dual vector ŝ with direction
unit vector l as the real part and moment of the line m computed with respect to the

origin of the reference frame Σref .
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A.4 Dual Quaternions

Dual quaternions are extension of dual numbers with real and dual quaternion compo-

nents which combines Hamilton quaternion algebra with the dual number theory [107].

A dual quaternion can be written in following forms:

x̂ = qr + εqd (A.21)

= ŝ+ v̂ = (sp + εsq) + (vp + εvq) (A.22)

= (sr, vrx, vry, vrz, sd, vdx, vdy, vdz) (A.23)

The first dual quaternion representation has quaternions where qr and qd are real and

dual components of dual quaternion x̂, respectively. The second representation has ŝ

and v̂ as the dual number and dual vector components of the given dual quaternion.

The last representation considers a dual quaternion as an 8-tuple.

A.4.1 Dual quaternion operations

• Addition: Given two dual quaternions x̂1 = qr1+εqd1 and x̂2 = qr2+εqd2 , addition

operation of dual quaternions is defined as:

x̂1 + x̂2 = (qr1 + qr2) + ε(qd1 + qd2). (A.24)

• Multiplication: The product of two dual quaternions x̂1 and x̂2 is defined as:

x̂1x̂2 = qr1qr2 + ε(qr1qd2 + qd1qr2) (A.25)

• Conjugate: There are three conjugates that can be defined for a dual quaternion,

which are used for different operations like Plücker line transformation, or point

transformation.

– Classical quaternion conjugate: This conjugates refers to the representation

of dual quaternion as a variation of dual numbers with quaternions as real

and dual components and is used for line transformation.

x̂∗ = q∗r + εq∗d. (A.26)
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– Dual conjugate: Dual conjugate is similar to the conjugate of a dual number

and is given as:

x̂ = qr − εqd. (A.27)

– Combined conjugate: is used for point transformation and is defined as:

x̂
∗
= q∗r − εq∗d. (A.28)

The conjugate of the conjugate of x̂, for all the conjugates introduced above, is

itself. The conjugate of the product of dual quaternions equals the product of the

individual conjugates of these dual quaternions in the reverse order.

• Norm: The norm of a dual quaternion is obtained using classical quaternion con-

jugate and is given as:

‖x̂‖ =
√
x̂x̂∗ =

√
x̂∗x̂ (A.29)

=
√
(s2r + vr · vr) + ε 2(srsd + vrvd) (A.30)

A unit dual quaternion has unity norm, i.e.:

‖x̂‖ =
√
x̂x̂∗ =

√
x̂∗x̂ = 1, (A.31)

which implies that real part quaternion qr should be a unit quaternion and it

should be orthogonal to the dual part qd as 4-tuples:

sr
2 + vrx

2 + vry
2 + vrz

2 = 1, (A.32)

srsd + vrxvdx + vryvdy + vrzvdz = 0. (A.33)

The above equations shows that unit dual quaternions belongs to a six-dimensional

manifold and can be used to represent rigid body displacement.

A.4.2 Transformations using unit dual quaternions

A unit dual quaternion can be used to represent rigid body motion or a directed line.

They are also useful for transforming geometrical entities like lines, points, etc.
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A.4.2.1 Rigid body motion and pose representaion

A rigid body motion can be represented using unit dual quaternions a single screw motion

as well as with a series of transformation similar to an order sequence of translation and

rotational motion. Both forms of the representation of rigid body motion is equally

useful and has been explained below, along with the methods to obtain the motion

parameters when the corresponding UDQ is given.

• HTM equivalent rigid body motion using UDQ: A rigid body displacement equiv-

alent of homogeneous transformation matrix is given as:

x̂ = qr + ε
1

2
tqr (A.34)

The above unit dual quaternion represents a sequence of rigid body motion, where

a frame attached to the rigid body is first translated by t and then rotated using

the unit quaternion qr, as demonstrated in Fig. A.3.

Fig. A.3 Rigid body motion akin to one represented using homogeneous transformation
matrix. The rigid body frame (Σ0) is first translated by a vector t to Σref to Σ1 frame
(shown with dotted axes) and rotated using a unit quaternions qr to Σ2 frame, where
all the motion and frames are computed and represented in the reference frame. Σref .

The rotation parameter corresponding to a unit dual quaternion (x̂ = qr + εqd) in

this representation or rigid body motion is derived in the same way as the screw

based representation. The translation component as a pure quaternion is given as:

t = 2qdq
∗
r (A.35)
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Fig. A.4 Screw displacement of a rigid body: p is any point lying on the screw axis ŝ,
both computed and represented in reference frame Σref . The rigid body first undergoes

a rotation by θ along ŝ and then a translation by d along the same axis.

The method for deriving the angle-axis parameters can be derived from the rotation

quaternion, i.e. the primary part of the given dual-quaternion, will be the same

for both HTM equivalent representation and screw-displacement representation,

which is given below.

• Screw displacement : Chasles’s theorem states that the general spatial displace-

ment of a rigid body is screw displacement, i.e. a rotation about an axis and a

translation along the same axis, as depicted in Fig. A.4. The corresponding unit

dual quaternion, with real component as rotation unit quaternion, is given as:

x̂ = exp

(
θ̂

2
· ŝ

)
(A.36)

= cos

(
θ̂

2

)
+ ŝ sin

(
θ̂

2

)
(A.37)

=

(
cos

(
θ

2

)
+ l sin

(
θ

2

))
+ ε

(
−d
2
sin

(
θ

2

)
+ l

d

2
cos

(
θ

2

)
+m sin

(
θ

2

))
(A.38)
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where, θ̂ is a dual angle containing the screw rotation and translation parameters,

and ŝ is a Plücker line given as a dual vector (see Fig. A.2).

θ̂ = θ + εd (A.39)

ŝ = l+ εm (A.40)

l is the unit vector along the axis related to the screw displacement and m = p× l

corresponds to the moment of the directed line (Plücker line) in the reference frame

at which the screw displacement is computed. p is a vector from the origin of the

reference frame to any point lying on the directed line.

Computational cost of representation of screw-based displacement using UDQ: The

computation of UDQ from given screw parameters, l, m, d, and θ using expression

A.38 will require:

– Two trigonometric operations for the computation of sin
(
θ
2

)
and cos

(
θ
2

)
.

– 13 multiplication (×) operation for the computation of d/2(1 ×), θ/2(1 ×),

l sin
(
θ
2

)
(3 ×), d

2 sin
(
θ
2

)
(1 ×), d

2 cos
(
θ
2

)
(1 ×), ld2 cos

(
θ
2

)
(3 ×), and m sin

(
θ
2

)
(3

×).

– Three addition (+) operations for the computation of
(
ld2 cos

(
θ
2

)
+m sin

(
θ
2

))
.

UDQ to screw parameters : Given a unit dual quaternion (x̂ = ŝ + v̂ = (sp +

εsq)+ (vp+ εvq)) corresponding to a rigid body motion, the computation of screw

parameters (θ, d, l and m) requires different approaches depending if there is

rotation involved during the motion.

First, the rotation angle is derived from the scalar part of the real quaternion

component of the unit dual quaternion (comparing A.22 and A.37):

θ = 2arccos(sp). (A.41)
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If there is no rotation involved, i.e. sp = 1 or θ = 0, the dual quaternion corre-

sponds to pure translation and the screw components are given as:

d = 2 ‖v̂q‖ (A.42)

l = 2
vq
d

(A.43)

m = [0, 0, 0]T . (A.44)

If θ 6= 0 and 0 < θ < 2π, screw parameters are given as:

d = −2 sq
sin(θ/2)

(A.45)

l =
vp

sin(θ/2)
(A.46)

m =

(
vq − sp

d

2
l

)
1

sin(θ/2)
. (A.47)

A.4.2.2 Point tranformation

A 3D point in cartesian coordinates p, given as pure quaternion, can be represented as

a unit dual quaternion:

p̂ = 1 + εp (A.48)

A point p, represented in unit dual quaternion form (p̂), as shown above undergoing a

transformation represented using unit dual quaternion x̂ can be given as:

p̂b = x̂p̂ax̂
∗

(A.49)

where x̂
∗
is the combined conjugate of the transformation unit dual quaternion x̂.

A.4.2.3 Line tranformation

A directed line or Plücker line represented using dual vector (see sec. A.3) is a unit

dual quaternion, since it satisfies both conditions of unit quaternion as real part and

orthogonal relation between real and dual part of the dual quaternion given in A.32.
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Fig. A.5 A serial manipulator and its joint screw axes in the reference frame Σref .
The current end-effector position computed and represented in the reference frame is

given by the vector refpref .

A directed line represented by a dual vector ŝa undergoing a transformation represented

by unit dual quaternion x̂ can be given as:

ŝb = x̂ŝax̂
∗ (A.50)

where x̂∗ is the classical quaternion conjugate of unit dual quaternon x̂.

A.5 Serial manipulator kinematics using unit dual quater-

nions

A forward kinematic model of a manipulator is used to obtain the position of its con-

stituent links and end-effector for a given joint configuration. Inverse kinematics deals

with the computation of the joint positions for a desired end-effector pose and the most

common method is through the use of inverse Jacobian of the manipulator. This section

presents a dual quaternion based forward and inverse kinematics of serial manipula-

tor, where the theory developed in [14] is revisited. All the variables related to pose

and directed lines such as joint screw axes are computed and represented in a common

reference frame Σref .
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A.5.1 Forward Kinematics of a serial manipulator

Let ŝi be the directed line corresponding to the current joint screw axes of a se-

rial manipulator with n joints (shown in Fig. A.5), represented as a dual vector for

i = 1, ..., n. Let x̂ee0 be the initial pose of the end-effector with respect to the base

frame, for the initial configuration of the joints given as an array of dual numbers

θ̂0 =


θ̂10 θ̂20 · · · θ̂n0

T

∈ Dn×1. The end-effector pose x̂ee relative to the

base frame, Σref , for a joint configuration θ̂ =


θ̂1 θ̂2 · · · θ̂n

T

∈ Dn×1 is

given as:

x̂ee = δT x̂ee0 ,

δ̂T = δ̂1 δ̂2 · · · δ̂n, (A.51)

δ̂i = exp

(
θ̂i
2

ŝi0

)
.

where,

• ŝi0 is the initial joint screw axis described using unit vector along the axis (i.e.

li0), and moment of the joint screw axis about the base frame of the manipulator

(i.e. mi0),

• dual vector δ̂i is the displacement effected on the end-effector by the ith joint of

the manipulator due to joint displacement θ̂i, and

• θ̂i is a joint displacement from the home position θ̂i0

θ̂i = ∆θi, for revolute joints,

θ̂i = ε ∆di, for prismatic joints. (A.52)

Computational cost for the forward kinematics computation using screw-based method

using dual-quaternion representation: The product of DQ consists of 3 quaternion mul-

tiplications and a sum of two quaternions. Multiplication of two quaternions involves

one dot product (3 × operations and 2 + operations), one cross product (6 × operations,

and 3 + operations), and two vector scaling operations (6× operations) and one scalar
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multiplication (1 × operation) and 7 additions (7 + operations). Thus total computation

requirements for pose transformation using UDQ is 3(3+ 6+ 6+ 1) = 48 multiplication

operations, and 3(2 + 3 + 7) + 4 = 40 addition operations.

Now, the computation of forward kinematics for a serial manipulator with n joints involve

n times computation of UDQ representation of screw-based displacement using A.38.

It also involves (n − 1) UDQ multiplications. Thus the total computation of forward

kinematics requires 48(n − 1) + 13n = (61n − 48) multiplication (×) operations, and

3n + 40(n − 1) = 43n − 40 addition/substraction (+) operations and 2n trigonometric

operations.

A.5.2 Jacobian computation of a serial manipulator

The screw twist of the end-effector frame in a reference frame is given as:

ref ξ̂eeo = ωee + ε veeo . (A.53)

where, ωee is the rotational velocity of the end-effector frame, and veeo is the translational

velocity of a point which is attached to the end-effector frame and is instantaneously

coincident with the origin of reference frame Σref (see Fig. A.5). ωee is defined as a

pure quaternion non-dual part, and veeo is defined as a pure quaternion dual part of the

dual quaternion ref ξ̂eeo .

The twist of the end-effector in the base frame is given as:

ref ξ̂eeo =


ŝ1 ŝ2 · · · ŝn

 ˙̂
θ = Ĵ ′ ˙̂θ (A.54)

Therefore, the corresponding Jacobian is given as:

Ĵ ′ =


ŝ1 ŝ2 · · · ŝn

 . (A.55)

The current configuration of an intermediate joint screw of the manipulator represented
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as dual vector ŝi for the ith joint, can be obtained from its initial value ŝi0 , by trans-

forming it using the total displacement caused by the previous (i− 1) joints.

ŝi = δ̂T(i−1)
ŝi0 δ̂∗T(i−1)

(A.56)

δ̂T(i−1)
= δ̂1 δ̂2 · · · δ̂i−1. (A.57)

Note that in the case of first joint, i.e. ŝ1, the dual vector of joint screw is constant with

respect to the reference frame.

A matrix-vector representation of (A.55) was given in [14] as:

refξeeo =


ωee

veeo

 =


L 0

M L




θ̇

ḋ

 (A.58)

ωee = L θ̇, (A.59)

veeo = M θ̇ +L ḋ

= P ⊗L θ̇ +L ḋ (A.60)

where,

θ̇ =


θ̇1 θ̇2 · · · θ̇n

T

∈ Rn×1, (A.61)

ḋ =


ḋ1 ḋ2 · · · ḋn

T

∈ Rn×1, (A.62)

L =


l1 l2 · · · ln

 ∈ Rn×3, (A.63)

P =


p1 p2 · · · pn

 ∈ Rn×3, (A.64)

M =


m1 m2 · · · mn

 ∈ Rn×3, and (A.65)

⊗ is element-wise cross-product operator. (A.66)
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Let refpref,ee = pee be the position of end-effector frame origin computed and given with

respect to reference frame, Σref . The relation between the linear velocity of a point on

the end-effector frame (vee), and the velocity of a point attached to the end-effector but

instantaneously coincident with the reference frame, i.e. vee0 is:

vee = veeo + ωee × pee. (A.67)

(A.67) can be written in a matrix form using (A.58) as:

vee = (P − Pee)⊗L θ̇ +L ḋ, (A.68)

where,

Pee =


pee pee · · · pee

 ∈ R(n)×3. (A.69)

pee can be derived as a vector from the current pose of the end-effector frame (x̂ee)

computed in (A.51), as:

pee = 2qtq
∗
r , (A.70)

where x̂ee = qr + εqt, and q∗r is the quaternion conjugate of qr.

Computational cost for the screw-based Jacobian computation for a serial manipulation

using dual-quaternion representation: In order to compute the Jacobian as given in (eq.

(A.55), (A.56) and (A.57)), we need to first compute the forward kinematics and we need

two additional dual quaternion multiplication for each joints to transform the screw axes

(A.56) except the first joint screw axis, to obtain the DQs corresponding the joint screw

axes for the current joint configurations. So we need totally (2∗ (n−1)∗48+61n−48 =

157n − 144) multiplication operations, and 2 ∗ (n − 1) ∗ 40 + 43n − 40 = 123n − 120

addition operations, in addition to 2 trigonometric operations for the computation of

forward kinematics.
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A.5.3 Proportional kinematic control using screw parameters

Given two poses, i.e. current (x̂c) and desired (x̂d), both expressed in the same reference

frame, there are following two choices for error unit dual quaternion computation.

x̂e1 = x̂∗
c · x̂d = cx̂c→d (A.71)

x̂e2 = x̂d · x̂∗
c =

ref x̂c→d (A.72)

Since joint screw axes, and hence the Jacobian has been computed in the reference

frame in A.55, the definition of error given in A.72 is the appropriate choice for the

computing joint velocity as control input to track a desired pose. ref x̂c→d refers to a

screw displacement vector directed from the current frame c to the desired frame d,

expressed in the reference frame Σref .

The control law for kinematic control was given in [14] in terms of the logarithm of the

error unit dual quaternion:

ξ̂ = λ ln(x̂e2)

= λ(θe le + ε (θe me + de le)) (A.73)

where, {θe, de, le, me} are screw displacement parameter related to the error unit dual

quaternion x̂e2 (see A.4.2.1), and λ is a positive scalar gain for the controller. The global

exponential stability of the above mentioned control law (ξ̂) was proved for −π ≥ θe ≥ π

in [14] using Lyapunov analysis.

The norm of the screw error, which has been used throughout the work for the validation

of screw theory and dual quaternion based manipulation based controllers is computed

as:

screwNormerror = ‖leθe‖+ ‖lede +meθe‖ (A.74)

A.6 Spatial Vectors: Velocity and Acceleration

A screwing motion along a directed line is the most general motion of a rigid body,

which is referred to as spatial motion by Featherstone in [108, 95]. A screw motion is
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characterised with an angular magnitude, linear magnitude and a directed line. Spatial

motion vectors include spatial velocity, or twist velocity, and spatial acceleration, which

is the derivative of spatial velocity. Spatial motion vectors along with force vectors form

two dual 6D vector spaces called M6 and F6, which are defined in the same way as a

screw twist. Spatial forces, or wrench and spatial momentum are the members of F6.

In this section the relation of spatial variables, like spatial velocity and spatial acceler-

ation with conventional twist and conventional acceleration is discussed.

A.6.1 Spatial Velocity

Consider a point P on a rigid body, moving with an angular velocity ω and linear

velocity vP given in a reference frame Σref with origin O. The spatial acceleration in

6D vector form is given as:


ω

vo

 =


ω

vP +
−−→
OP × ω

 (A.75)

The same can be represented as a dual vector as:

ω̂ = ω + εvo (A.76)

Thus spatial velocity of a point attached to the rigid body but instantaneously passing

through the origin of the reference frame. Velocity motor and twist velocity are other

common names for spatial velocity.

Conversely, the dual vector of the velocity of a point P on a rigid body in 6D form

can be obtained from the spatial velocity and the position vector from the origin of the

reference frame to the point P on the rigid body:


ω

vP

 =


ω

vo −
−−→
OP × ω

 (A.77)
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A.6.2 Spatial Acceleration

Spatial acceleration is the derivative of screw velocity and defines a helicoidal vector

field [109].

â = ˙̂ω =


ω̇

v̇o

 (A.78)

The angular acceleration ˙̂ω of a body in classical sense and spatial dynamics is the same.

However, the linear acceleration of a point attached to the body is quite different in both

paradigm. Below, we provide the steps to obtain classical acceleration of a general point

attached to a rigid body from its spatial acceleration and vice-versa.

A.6.2.1 Spatial to classical acceleration

Let âco = ω̇ + ε aco represents the conventional acceleration of a frame co rigidly

attached to the end-effector and instantaneously coincident with the origin of the base

frame. Given spatial acceleration a = ω̇ + εv̇o, and spatial velocity ω̂ = ω + εvo, âco is

computed as:

âco =


ω̇

aco

 =


ω̇

v̇o + ω × vo

 (A.79)

Note that the dual part of aco , i.e. aco is not the derivative of vco (or vo). In fact,

aco ”refers to the acceleration of an individual body-fixed point at the moment when it

happens to be passing through the origin” [109].
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The dual classical acceleration comprising the linear acceleration of a general point, say

P , i.e. origin of a frame on the end-effector, can be obtained as:

âcP =


ω̇

acP

 =


ω̇

aco + ω̇ ×
−→
OP+ ω × (ω ×

−→
OP)

 (A.80)

Thus (A.79, A.80) can be used to convert spatial acceleration of a rigid body to the

classical acceleration of a know point on the rigid body, if the twist related to its motion

is known.

A.6.2.2 Classical to spatial acceleration

The classical acceleration of a point attached to the rigid body and instantaneously coin-

cident with the origin of the reference frame is derived first from the classical acceleration

of a point P attached to the rigid body.

âco =


ω̇

aco

 =


ω̇

acP − ω̇ ×
−→
OP− ω × (ω ×

−→
OP)

 (A.81)

Then inverting (A.79), the spatial acceleration can be obtained as:

â =


ω̇

v̇o

 =


ω̇

v̇o + ω × vo

 =


ω̇

aco − ω × vo

 (A.82)
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trol strategies using the cooperative dual task-space framework. In IROS’10: In-

ternational Conference on Intelligent Robots and Systems, pages 3955–3960. IEEE,

2010.

[61] LFC Figueredo, Bruno Vilhena Adorno, João Yoshiyuki Ishihara, and Geo-

vany Araujo Borges. Robust kinematic control of manipulator robots using dual

quaternion representation. In Robotics and Automation (ICRA), 2013 IEEE In-

ternational Conference on, pages 1949–1955. IEEE, 2013.

[62] MM Marinho, LFC Figueredo, and Bruno Vilhena Adorno. A dual quater-

nion linear-quadratic optimal controller for trajectory tracking. In Intelligent

Robots and Systems (IROS), 2015 IEEE/RSJ International Conference on, pages

4047–4052. IEEE, 2015.

[63] Rethink Robotics. Baxter collaborative robots for industrial automation, 2017.



136 References

[64] Rethink Robotics. Baxter research robot. Retrieved April, 26:2018, 2013.

[65] Gill A Pratt and Matthew M Williamson. Series elastic actuators. In Proceedings

1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Hu-

man Robot Interaction and Cooperative Robots, volume 1, pages 399–406. IEEE,

1995.

[66] Xianmin Zhang, Yanglong Zheng, Jun Ota, and Yanjiang Huang. Peg-in-hole

assembly based on two-phase scheme and f/t sensor for dual-arm robot. Sensors,

17(9):2004, 2017.

[67] Daniel Kruse, Richard J Radke, and John T Wen. Collaborative human-robot ma-

nipulation of highly deformable materials. In 2015 IEEE international conference

on robotics and automation (ICRA), pages 3782–3787. IEEE, 2015.

[68] Morgan Quigley, Brian Gerkey, Ken Conley, Josh Faust, Tully Foote, Jeremy Leibs,

Eric Berger, Rob Wheeler, and Andrew Ng. Ros: an open-source robot operating

system. In Proc. of the IEEE Intl. Conf. on Robotics and Automation (ICRA)

Workshop on Open Source Robotics. Kobe, Japan, May 2009.

[69] KDL wiki — The Orocos Project. http://www.orocos.org/kdl. (Accessed on

06/14/2019).

[70] Ruben Smits, H Bruyninckx, and E Aertbeliën. Kdl: Kinematics and dynamics
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