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Résume 
L’énergie hydroélectrique est la forme la plus répandue d’énergie renouvelable, avec une production 
de 16 400 TWh par an. Il fournit non seulement une électricité propre et renouvelable, mais il atténue 
également la volatilité d'autres sources de production renouvelables, telles que l'éolien et solaire en 
agissant comme un tampon pour équilibrer l’alimentation avec la charge. En outre, l’énergie 
hydroélectrique contribue de manière significative à la fiabilité d'un réseau électrique. En raison du 
démarrage court temps, les centrales hydroélectriques sont très efficaces en tant que primaire et 
secondaire source d'énergie de réserve, ainsi qu'un support de tension idéal. Dans cette thèse, nous 
étudions l’optimisation de l’hydroélectricité dans un contexte de marché libéralisé, dans deux pays, la 
Nouvelle-Zélande et la France. 

Marchés de l'électricité en Nouvelle-Zélande et en France : 

Le marché de l'électricité en Nouvelle-Zélande fonctionne comme un marché intra-journalier, où les 
participants fournissent une offre en cinq tranches toutes les demi-heures à le 'ISO (« Transmission 
System Operator ») pour les 72 prochaines périodes d'échange. En utilisant ces offres, le TSO calcule 
les prix au comptant provisoires, qui sont ensuite rapprochés basé sur la consommation réelle. Afin 
d'aider les acteurs du marché comprendre leur position sur le marché, le 'ISO prévoit des prix au 
comptant toutes les deux heures pour chaque période d'échange jusqu'à 36 heures à l'avance. Le 'ISO 
fournit également des prix indicatifs de cinq minutes. Ceux-ci sont calculés à la fin de chaque période 
de cinq minutes et tenir compte de l'évolution des conditions du système d'alimentation. Cependant, les 
cinq minutes indicatives les prix ne coïncident pas avec les nouvelles offres, mais sont basés sur les 
modifications du système d'alimentation proche du temps réel. De l'autre Par contre, les prévisions de 
prix sur deux heures correspondent aux nouvelles offres sont alignés sur les délais de soumission des 
offres. 

Le marché français de l’électricité fait partie du vaste réseau régional de l’électricité initiatives ou 
« Electricity Regional Initiative » (ERI) initialement mises en vigueur en 1996 par la directive 96/92 / 
CE qui a finalement évolué vers le centre couplage de marché ouest-européen couvrant la France, la 
Belgique, Pays-Bas, Allemagne, Luxembourg et Autriche. L’ERI a pour objectif d’avoir un marché 
paneuropéen de l’électricité, appelé le marché intégré de l’électricité ou « Integrated Electricity 
Market » (IEM), qui consiste à coupler différents marchés de l’énergie à travers l’Europe en volume et 
/ ou en prix. 

L'IEM est divisé en plusieurs niveaux, le premier niveau est le contrôle zones des différents 
gestionnaires de réseau de transport qui, dans le cas de la France, c'est le long de la frontière nationale. 
Les marchés situés à l'intérieur des zones de contrôle sont constitués d'un marché à terme, d'un marché 
journalier intérieur ou « Day-Ahead Market » (DAM), un marché intra-journalier ou « Intra-Day 
Market » (IDM) et un marché d'équilibrage ou « Balancing Market ». Le marché à terme est un marché 
financier qui négocie des contrats bilatéraux et contrats en vente libre pour les charges de base et de 
pointe. Ce commerce est basé sur les prévisions de charge à long terme des zones de contrôle. 

Le probleme Hydro-bidding: 

Le problème de hydro-bidding concerne le calcul des strategies d'offre optimale afin de maximiser le 
bénéfice attendu d'un producteur hydroélectrique participer à ces marchés de l'électricité. Il combine la 
décision processus de fabrication à la fois du commerçant et de l'hydro-régulateur en un problème 
d'optimisation stochastique. Hydro-bidding modèles à prise de prix, qui supposent que les agents n’ont 
pas de pouvoir de marché, visent à arbitrer entre les différents prix, à différentes périodes, afin de 
maximiser les profits. Ces modèles sont généralement formulés en temps discret, horizon fini, problème 
de contrôle optimal stochastique. 

Le problème hydro-bidding peut faire l'expérience par : 

§ Grand espace d'incertitude de la modélisation de la nature stochastique des prix, des flux 
entrants et de la consommation, 

§ Fonctions de valeur non concaves en raison de la présence de variables entières et de fonctions 



  

de production d'énergie non concaves, 
§ Coûteux en termes de calcul à résoudre en présence de grands systèmes hydroélectriques avec 

nombreux réservoirs interconnectés. 

Cela a attiré l'utilisation de diverses techniques pour résoudre différentes variantes. Les principales 
méthodes utilisées sont les suivantes : 

§ Stochastic Dynamic Programming (SDP) : SDP peuvent être formulés en tant que 
programme dynamique stochastique à horizon fini, utilisant l'équation bien connue de valeurs. 
Le problème majeur avec SDP est le « curse of dimensionality ». Depuis SDP utilise la 
récursion en arrière pour calculer la stratégie optimale, de gros problèmes avec de nombreuses 
étapes deviennent rapidement insolubles en raison du nombre astronomique d’étapes de calcul 
nécessaires pour résoudre ces modèles. 

§ Stochastic Mixed-integer Programming (SMIP) : En construisant une approximation finie 
et discrète de la distribution des variables stochastiques, il est possible de formuler un modèle 
équivalent déterministe complet. Dans de tels modèles, toutes les réalisations des variables 
stochastiques dans le temps sont représentées sous forme d'arborescence de scénarios basée sur 
l'approximation discrète. La limitation de cette approche est taille de modelé. Comme SDP, il 
est presque impossible de construire et de résoudre de gros problèmes avec de nombreuses 
périodes d'échange en raison de la croissance exponentielle de l'arbre de scénario avec un 
nombre croissant de périodes d'échange et de scénarios. 

§ Stochastic Dual Dynamic Programming (SDDP): SDDP est un algorithme multi-étage basé 
sur le Benders Decomposition, qui approxime la fonction de valeur avec d'hyper-plans. En 
supposant un échantillonnage indépendant, SDDP garantit une convergence presque sûre 
lorsque chacun des sous-problèmes est convexe, mais pas autrement. Le problème peut par être 
non convexe parce que de la modélisation de la fonction de production des puissances et de 
l’engagement de l’unité. Par conséquent, l’utilisation de SDDP pour résoudre le problème 
d’enchères hydrauliques non convexes ne garantit pas la convergence du SDDP. 

§ Aproximate Dynamic Programming (ADP) : Une nouvelle classe d'algorithmes pour la 
dynamic programs peut réduire la malédiction de la dimensionnalité en se rapprochant de la 
fonction des valeurs. ADP résout des problèmes comportant des fonctions des valeurs 
monotoniques non concaves. Cependant, le défi avec ADP est d’approcher avec précision la 
fonction de Valeurs. De plus, ces algorithmes ne garantissent pas des stratégies optimales. Ce 
n'est que lorsque l'on simule la politique que l'on peut évaluer ses performances. À cet égard, 
SDDP présentent un avantage, car ils calculent également une limite supérieure et une limite 
inférieure dans lesquelles la stratégie candidate est délimitée. Cela donne à l'utilisateur une 
bonne indication de la proximité entre l'optimalité et la stratégie actuelle. 

Sur la base de ces méthodes existantes, nous observons qu’il existe un nombre limité d’algorithmes qui 
traitent de la non convexité des hydro-bidding modèles découlant de variables entières, de contraintes 
non linéaires ou d’objectifs. Dans cette thèse, nous étudions des variantes du problème hydro-bidding 
non convexes et développons de nouvelles techniques pour les résoudre. 

 

 

 

 

 

 



  

Notre contribution :  

Dans cette thèse, nous proposons une nouvelle méthode d'optimisation stochastique appelée le Mixed-
Integer Dynamic Approximation Scheme (MIDAS). MIDAS résout des programmes stochastiques non 
convexe avec des fonctions des valeurs monotones. Il fonctionne de manière similaire à la Stochastic 
Dual Dynamic Programming (SDDP), mais au lieu utiliser des hyperplans, il utilise des fonctions 
d'étape pour créer une approximation externe de la fonction de valeur. MIDAS converge « presque 
sûrement » à 2𝑇𝜀 solution optimale des première étage décisions. 

Nous utilisons MIDAS pour résoudre trois types de problèmes hydro-bidding non convexes. Le premier 
modèle d'hydro-bidding que nous résolvons a des variables d'état entier car les productions sont 
discrètes. Dans ce modèle, nous démontrons que MIDAS est meilleur que SDDP. Le modèle suivant 
d'hydro-bidding utilise des processus de prix autorégressifs au lieu d'une chaîne de Markov. Le dernier 
modèle d'hydro-bidding intègre les effets de hauteur d'eau, où la fonction de production d'énergie 
dépend du niveau de stockage du réservoir et du débit d'eau de la turbine. Dans tous ces modèles, nous 
démontrons que la convergence de MIDAS en un nombre fini d'itération. 
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Chapter 1

Introduction

Hydro power is the most common form of renewable energy, with a global production

of 16, 400 TWh per year [30]. It not only provides clean, renewable electricity, but

it also mitigates the volatility of other renewable generation sources, such as wind

and photo-voltaic, by balancing the supply with the load [4]. Furthermore, hydro

power provides significant contributions to ensuring the reliability of an electricity

grid. Due to the short starting time, hydro power plants are highly effective as a

primary and secondary source of reserve energy, as well as an ideal voltage supporter

[35]. Such capabilities and benefits of hydro power have made it a proven renewable

energy technology that is utilized to produce the majority of the electricity in many

countries (see Table 2.1) around the world. In this thesis we study hydroelectricity

optimization in two countries: New Zealand and France.
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Share of power Countries

100% Albania, DR of Congo, Mozambique, Nepal,

Paraguay, Tajikstan, Zambia.

>90% Norway.

>80% Brazil, Ethiopia, Georgia, Kyrgyzstan, Namibia.

>70% Angola, Columbia, Costa Rica, Ghana,

Myanmar, Venezuela.

>60% Austria, Cameroon, Canada, Congo, Iceland,

Latvia, Peru, Tanzania, Togo.

>50% Croatia, Ecuador, Gabon, DPR of Korea, New

Zealand, Switzerland, Uruguay, Zimbabwe.

Table 1.1: List of countries where majority of the electricity is generated by hydropower
(source: [4]).

Electricity production in New Zealand is hydro dominated, with up to 55% of the total

production being generated by hydro power plants [49]. As listed in Table 2.2, New

Zealand does not have nuclear power. The majority of the country’s installed capacity

is from renewable resources (72%), such as hydro, geothermal, and wind. There is no

commercial photo-voltaic capacity in New Zealand. All photo-voltaics are installed

locally, and are considered as small-scale distributed generation [49].
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Generation Source Installed Capacity (GW) Percentage

Hydro 5.34 55%

Gas 1.50 15%

Geothermal 0.97 10%

Wind 0.68 7%

Coal/Gas 0.50 5%

Co-generation Gas 0.33 3%

Diesel 0.16 3%

Other Co-generation 0.24 2%

Table 1.2: Installed capacity of New Zealand electricity recorded as of 2014
(source:[49]).

There are two main hydro schemes in New Zealand, one in the North Island called

the Waikato scheme (capacity of 1052 MWs), and one in the South Island called the

Waitaki scheme (capacity of 1738 MWs). Figure 2.1 illustrates the topology of each

of the respective hydro schemes. The topology of the Waikato scheme is different to

the topology of the Waitaki scheme. The Waikato scheme connects eight dams in

series along the Waikato River, whereas the Waitaki scheme has two main branches

of waterflow that converge to a central branch. As illustrated in a waterflow network

diagram on the right of Figure 2.1, lakes Tekapo and Pukaki converge under one

branch with lake Ohau, which then connects in series with lakes Benmore, Aviemore

and Waitaki.
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Figure 1.1: The topology of the Waikato (left) and Waitaki (right) hydro scheme in
New Zealand (sources: [63? ]).

While hydro power dominates the New Zealand electricity landscape, nuclear power

dominates the French power, which has the second-largest fleet of nuclear stations

among the OECD countries [3]. The second dominating generation source is hy-

dropower with 25.2 GW (21%) of the total generation capacity reported in 2014 [3].

Table 2.3 breaks down the generation capacity of France by fuel types.
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Generation Source Installed Capacity (GW) Percentage

Nuclear 63.1 53%

Hydro 25.2 21%

Wind 8.1 7%

Oil-fired and combustion turbines 7.0 6%

Combined-cycle gas turbines 5.3 4%

Coal 5.0 4%

Photovoltaics 4.3 4%

Other renewables 1.1 1%

Table 1.3: Installed capacity of French electricity recorded as of 2014 (source: [66]).

1.1 Electricity markets in New Zealand and France

Over the past two decades, electricity sectors have been deregulated in places such

as New Zealand, parts of North America, and Europe [24]. Many of these sectors

have adopted a decentralized, bid-based, competitive, market structure to determine

the wholesale price (also known as the spot price) of electricity. A bid-based market

operates by having power producers submit offers at regular intervals. These offers are

aggregated by the market operator, also known as the ISO or power exchange, who

computes the wholesale price of electricity by dispatching the cheapest generators for

production until demand is met. The wholesale price, at which the market clears, is

the offer of the marginal generator when supply meets demand at the minimal cost of

dispatch, while ensuring that the physical and operational constraints of the electricity

grid are met [76, 82]. An example of how the wholesale price is computed is illustrated

in Figure 2.2 below, where the green spot price is computed to be the point where the

supply equals the demand based on the aggregated offers from all producers.
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Spot price

Price ($/MW)

Quantity (MW)

Demand

Aggregated offers

(Supply)

Figure 1.2: Example of market clearing price based on aggregated offers of all partic-
ipating generators.

The electricity market in New Zealand operates as an intra-day market, where partic-

ipants provide a five-tranche offerstack half hourly to the ISO for the next 72 trading

periods. Using these offers, the ISO computes the provisional spot prices, which are

later reconciled based on the actual consumption. In order to help market participants

understand their market position, the ISO forecasts spot prices every two hours for

each trading period up to 36 hours ahead of time. The ISO also provides five-minute

indicative prices. These are calculated at the end of each five-minute period and take

into account the changing conditions of the power system. However, the five-minute

indicative prices do not coincide with the new offers, but are instead based on the

changes to the power system close to real time. On the other hand, the two-hourly

price forecasts correspond to new offers as they are in alignment with the offer sub-

mission deadlines.

The French electricity market is part of the wider Electricity Regional Initiatives (ERI)

initially put into force in 1996 by Directive 96/92/EC [5], which eventually evolved into

the Central West European (CWE) market coupling that covered France, Belgium,
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Netherlands, Germany, Luxembourg, and Austria [48]. The goal of the ERI is to have

a Pan-European electricity market, called the Integrated Electricity Market (IEM),

which involves coupling different power markets across Europe via volume and/or

price [41]. Figure 2.3 shows the key Electricity Regional Initiatives in Europe.

Figure 1.3: Electricity Regional Initiatives across Europe for the Integrated Electricity
Market (source: [41]).

The IEM is divided into several tiers, the first tier is the control zones of the different

Transmission System Operators (TSOs) which, in the case of France, is along the

national border [48]. Markets within the control zones consist of a futures market, a

day-ahead market (DAM), an intra-day market (IDM), and a balancing market [48].

The futures market is a financial market that trades bilateral contracts and over-the-

counter contracts for base and peak load. This trading is based on the long-term load

forecasts of the control zones [48].

The DAM is run as a day-ahead spot market. Offers are collected from market partic-

ipants until a set time, and then the market clearing algorithm is run to compute the

generation schedules for the next day [48]. Since the DAM is based on the load forecast
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for the next day, the actual load conditions can be different from what was predicted.

This requires the presence of the IDM and the balancing market [48]. Trading is con-

tinuous in the IDM where offers are executed immediately as the appropriate market

clearing price becomes available [48]. In the balancing market, individual generators

submit two types of offers to the TSO, incremental and decremental bids [79]. An

incremental offer, consisting of a single price-quantity pair, represents the price that

the generator gets paid by the TSO to increase production by the offered quantity on

top of their dispatched schedule [79]. The decremental bid on the other hand, repre-

sents the price the generator is willing to compensate the TSO in order to reduce their

supply from their dispatched schedule [79]. It is discussed in greater detail in Chapter

4. Figure 2.4 illustrates the chronological operation of each market within a control

zone. In Figure 2.4, the futures market is first cleared before D − 1, where D stands

for day of realtime production, followed by DAM a day before the actual production,

and then the IDM and the Balancing Market on the day in real time.

Figure 1.4: Integrated Electricity Market (IEM) Structure over time within a control
zone (source: [66]).

1.2 The hydro-bidding problem

Since New Zealand’s electricity production is hydro-dominated, NZEM prices are cor-

related with droughts where high electricity prices are observed during periods of

low lake levels. For electricity generation companies, such as Meridian, Genesis and

Mercury, this poses a great problem in managing water levels for reservoirs with small
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storage. The generation potential of hydro stations depends on the height of the stored

water. The water level of reservoirs with small storage capacity is thus heavily depen-

dent on changes in the volume of water. Therefore, hydro producers participating in

the NZEM need to manage how to consume the water stock in order to produce elec-

tricity, especially when operating hydro schemes under a high risk of drought. Their

challenge is to submit bids in the current trading periods while keeping their reservoir

levels high for maximum generation in the future.

Unlike New Zealand, where hydro power is used as a major generation source, hydro

power in France is predominantly utilized for balancing the supply with the load in

real time. This is because nuclear stations are used to meet non fluctuating base

load due to their inability to rapidly regulate the power output. Hydro stations, on

the other hand, can regulate their generation and have greater flexibility. Therefore,

hydro stations owned by generation companies, such as Electricité De France (EDF),

are mostly utilized to participate in the intra-day and balancing markets.

A common management approach to producing hydro power in the intra-day markets,

both for NZEM and the balancing market in France, is to separate the trading deci-

sions from the production decisions. The usual operation, as illustrated in Figure 2.5,

involves the traders first constructing and submitting offers into the intra-day mar-

ket. After the intra-day market clears, the quantity of power allocated to the hydro

producer (i.e. dispatch), is then sent to the hydro-dispatcher. The hydro-dispatcher

decides on how to generate the power based on the hydrology of the hydro schemes

and future hydrological information such as inflow. The production actions of the

hydro-dispatchers set the future generation capacity of the hydro scheme, which is

then used by the traders to construct offers for the next period.
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Traders

Intra-day market

Hydro-
dispatchers

Generation

DispatchOffer

Capacity

Hydro scheme

Figure 1.5: Hydro-production in an intra-day market environment.

The major limitation with this hydro management process is that it does not integrate

the trading and generation decisions. A hydro producer, employing both the trader

and hydro-dispatcher, can only offer quantities of power which they can feasibly gen-

erate based on the hydrological state of their hydro scheme. With the current process

this is communicated verbally between the trader and the hydro-dispatcher, which

might be sub-optimal. Furthermore, this process is mostly asynchronous, where the

hydro-dispatcher has to make decisions based on the actions of the trader. This is

also sub-optimal because in order to maximize profit, the best strategy would be to

manage the hydrology of the river in order to offer energy during high prices, which

requires optimizing both the offers and the production as one.

If the hydro producer were to simultaneously optimize their trading and generation

decisions in these markets, they face a complex decision problem. Their offers must be

feasible in the hydro scheme as well as maximize their profits, while taking into account

uncertainty in information such as inflows and the market-clearing price [25, 44, 47,
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51]. Furthermore, the stochastic information is observed gradually over time, which

prevents them from computing their optimal decisions for all future periods. This is

because in each period the hydro producer submits their offer based on the current

state of their waterstock and their view of the future prices. Then, the hydro producer

observes the spot price, from the clearing of the market, and determines which of their

bids was cleared for dispatch. They then generate their dispatched quantity of energy.

Afterwards, the hydro producer recomputes the state of their water stock based on

their generation and arrival of new inflows to their reservoirs, and begins the process

of offering into the next period. This type of decision making framework, as illustrated

in Figure 2.6, is classified as a sequential decision-making problem [61, 73].

Construct offer
at period t

Submit offer for t

Observe spot
price & dispatch

quantity for t

Generate
dispatched

quantity for t

Determine
starting stor-
age for t + 1

Construct
offer for t + 1

. . .

Figure 1.6: The sequential decision making process of a hydro producer bidding in an
intra-day market.
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In this type of problem, the maximum profit of a hydro producer is intertwined with

the intrinsic value of the waterstock. Since hydro producers are able to store water

(i.e. energy) in dams and reservoirs, they have the flexibility to choose when and how

much to generate. Therefore, they have to make the trade-off between selling water in

current periods and selling it in future periods when the wholesale price of electricity

might be higher [75]. Such complexity in constructing the optimal offers gives rise to

the hydro-bidding problem.

The hydro-bidding problem is about computing optimal offer policies in order to max-

imize the expected profit of a hydroelectric producer participating in these electricity

markets. It combines the decision making process of both the trader and the hydro-

dispatcher into one stochastic optimization problem. Price-taking hydro-bidding mod-

els, which assume that agents do not have market power [75], aim to arbitrage between

the different prices, at different time periods, in order to maximize profits. These mod-

els are typically formulated as discrete-time, finite horizon, stochastic optimal control

problems [14], where in each period the hydro producer is solving the following prob-

lem.
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Objective: Maximize the expected profit from the

current offerstack & the opportunity

cost of the remaining water,

Subject to:

1. ensuring feasible generation of offered

quantities of power if dispatched,

2. meeting the physical constraints of the

hydro scheme, such as storage bounds

and water-flow balance,

3. meeting the operation constraints of the

turbines such as plant capacity and

power generation function,

4. meeting ancillary requirements, such as

primary and secondary reserve

requirements.

Problem 1: Statement of a general hydro-bidding problem as a stochastic dynamic
programming problem.

The hydro-bidding problem, as stated in Problem 1, can have:

1. Large uncertainty space from modelling the stochastic nature of prices, inflow

and demand,

2. Non-concave value functions due the presence of integer variables and non-

concave power generation functions,

3. Computationally expense to solve in the presence of large hydro schemes with

many interconnected reservoirs.
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This has attracted the use of various techniques to solve different variants of Problem

1. The key methods that have been used are:

Stochastic Dynamic Programming models (SDP): Problem 1 can be formu-

lated as a finite horizon, stochastic dynamic program [82] using the well known

Bellman equation. SDP-based hydro-bidding models have been developed by

[51] and [65]. The major issue with SDP is the well-known curse of dimen-

sionality [61]. Because SDP uses backward recursion to compute the optimum

policy, large problems with many stages quickly become intractable due to the

astronomical number of computational steps required to solve these models.

Stochastic Mixed-integer Programming (SMIP): By constructing a finite, dis-

crete approximation of the distribution of the stochastic variables, Problem 1

can be formulated as a complete deterministic equivalent model. In such models

all realizations of the stochastic variables across time are represented as a sce-

nario tree based on the discrete approximation. Hydro-bidding models based on

this approach have been developed by [1], [33], [44], [32], and [25]. The major

limitation with this approach is scalability. Like SDP, it is nearly impossible to

construct and solve large problems with many trading periods due to the expo-

nential growth of the scenario tree with an increasing number of trading periods,

and scenarios.

Stochastic Dual Dynamic Programming (SDDP): Originally proposed by [55],

SDDP is a multistage Benders decomposition based algorithm that approximates

the value function through hyper-planes. Models based on SDDP have been de-

veloped by [37], [40], [38], [44], [57], and [47]. Assuming independent sampling,

SDDP guarantees almost sure convergence [58] when each of the subproblems

is convex, but not otherwise. Problem 1 can inherently be non-convex when
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modelling the power generation function and unit commitment. Hence, using

SDDP to solve Problem 1 when it is non-convex does not guarantee the conver-

gence of SDDP. Recent such as [83] have applied a similar method like SDDP

for stochastic mixed-integer programs with binary state variables.

Approximate Dynamic Programming (ADP): A new class of algorithms for dy-

namic programming can reduce the curse of dimensionality by approximating the

value function [61]. Although there are no ADP-based hydro-bidding models,

similar models have been developed such as [43], which is based on an ADP algo-

rithm developed by [42]. It solves problems which have non-concave monotonic

value functions. However, the challenge with ADP is accurately approximating

the value function. Furthermore, these algorithms do not guarantee optimal

policies. It is not until one simulates the policy that one can assess its perfor-

mance. In this regard, SDDP-based models have an advantage because it also

computes an upper and lower bound in which the candidate policy is bounded

between. This gives the user a good indication of how close the current policy

is optimality.

Based on these existing methods, we observe that there are a limited number of algo-

rithms that address the non-convexity of hydro-bidding models that arise from integer

variables or nonlinear constraints or objective. In this thesis we study variants of the

non-convex hydro-bidding problem (i.e. Problem 1) and develop novel techniques to

solve them.
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1.3 Our Contributions

Our contributions to the field of multistage, stochastic programming, and hydro-

bidding are as follows. First, we develop a hydro-bidding problem for the French

balancing market called HERBS (Hydro-Electric Reservoir Bidding System). The

purpose of this model is to help hydro producers to construct balancing bids that

maximize their profit from the intra-day balancing market, while also minimizing their

exposure to penalties for unmet dispatched load from their hydro schemes. HERBS is

a two-stage, stochastic, mixed-integer programming (SMIP) model, which computes

the optimal incremental offer and decremental bid based on a day-ahead schedule.

It is difficult to solve HERBS for large problems due to it being a SMIP. Moreover,

HERBS is not convex. This poses a major challenge to using methods like SDDP.

The challenge of solving HERBS has led to the development of a new decomposition

method called Mixed Integer Dynamic Approximation Scheme (MIDAS). MIDAS is a

sampling algorithm similar to SDDP that solves multistage stochastic programming

models where the value function is semicontinuous and nonconcave. MIDAS creates

an ε-outer approximation of the value function using step functions. It works similarly

to SDDP, where it uses a forward pass to compute new states, and a backward pass to

update the value-function approximation in these state values. We prove that MIDAS

converges almost surely in a finite number of iterations to a 2Tε-optimal first stage

decision. We use MIDAS to solve Problem 1, based on the following three variants:

1. Discrete production: Solve Problem 1 with integer storage states arising from

modelling the power generation function by a finite set of predefined, feasible

generation quantities.

2. Price uncertainty: Solve Problem 1 with an autoregressive price process.

3. Headwater effects: Solve Problem 1 incorporating headwater effects, where
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the power generation function is both dependent on the turbine-water flow and

the water levels of the upstream reservoir.

All of these model variants are hard to solve by competing approaches. We demon-

strate the effectiveness of MIDAS by solving these problems in a finite number of

iterations, and constructing near-optimal policies.

Our final contribution is presenting two heuristics that help to improve the compu-

tational efficiency of MIDAS. Even though MIDAS is able to solve the non-convex

hydro-bidding problems, it becomes slow when scaled to solve large hydro schemes.

To address this limitation, we first introduce a heuristic that tightens the value func-

tion approximation by removing redundant step functions. We then introduce the

second heuristic, which is a sub-problem solving method based on the optimal cuts

and the integer L-shaped method of [45]. Applying these heuristics we demonstrate

improvements to the MIDAS algorithm in solving these hydro-bidding problems, and

extend MIDAS to solve a hydro-bidding problem consisting of 4 reservoirs and 4 sta-

tions, with integer state variables, over 4 time periods.
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1.4 Thesis structure

The rest of this thesis is structured as follows:

Chapter 3 - Analysis of the hydro-bidding problem: Chapter 3 defines a hy-

dro scheme and how optimizing it is mathematically represented as a multistage

stochastic programming problem. A mathematical formulation of Problem 1 is

presented as a general hydro-bidding model in Section 3.1. Within this model,

various key features are discussed with reference to existing methods and for-

mulations. The hydro-bidding model is then used as a basis to discuss in detail

existing decomposition methods in Section 3.2. They are demonstrated using

an example hydro-bidding problem to study their performance in Section 3.3.

These methods are compared against each other on the optimality of their com-

puted policies, and their computational efficiency when incorporating large hydro

schemes.

Chapter 4 - Hydro-bidding in a balancing market: Chapter 4 introduces a

hydro-bidding model, called HERBS, for a hydro producer competing in an

intra-day balancing market. This hydro-bidding problem differs from Problem

1. In Section 4.3, we present a mathematical formulation of HERBS, which

is a two-stage, stochastic, mixed-integer program (SMIP) with incremental and

decremental bids. As is the case with SMIPs when extending to multistage prob-

lems, it explodes in size due to the exponential growth of the scenario tree with

the number of periods. Hence, a rolling horizon solution approach is proposed to

solve a multistage version of HERBS in Section 4.4, where the two-stage SMIP

is solved iteratively across each time period. Two hydro schemes, owned by

EDF, are used as case studies to analyse its performance. HERBS produces

sub-optimal offer policies because it assumes observations of all future prices in
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the second stage, which is discussed in Section 4.5.

Chapter 5 - Mixed Integer Dynamic Approximation Scheme: Chapter 5 in-

troduces the novel approach to approximating the Bellman function, and the

general MIDAS algorithm to solving multistage stochastic programming prob-

lems. In Section 5.2, a proof is presented for the convergence of MIDAS to a

2Tε-optimal solution to a multistage deterministic optimization problem. Then,

in Section 5.3 MIDAS is extended to solve the multistage stochastic optimiza-

tion problems, where the random variables are modelled as a scenario tree with

finite number of nodes. Using this new type of problem, the chapter shows that

MIDAS will almost-surely converge to a 2Tε-optimal first stage policy. It does

this by presenting two versions of the MIDAS algorithm. The first version, called

the Full-tree MIDAS, visits all the nodes of the scenario tree in each iteration.

This version is presented in Section 5.3.1. In the other version of MIDAS, called

the Sampled MIDAS, it samples the scenario tree similar to SDDP. The result

for the Sampled MIDAS algorithm is presented in Section 5.3.2.

Chapter 6 - Solving the hydro-bidding problem with integer state variables:

Chapter 6 introduces the hydro-bidding model with discrete production and

integer state variables. We illustrate how the value function of this model is non-

concave in Section 6.2. We then present a MIDAS-based approach to solving this

hydro-bidding model in sections 6.3 and 6.4. We then compare the numerical

performance of MIDAS with respect to the SDDP equivalent in Section 6.5.

We observe that MIDAS produces better polices than SDDP, with a better

approximation of the value function. However, we also observe that MIDAS is

computationally expensive with significantly longer solution times compared to

SDDP.
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Chapter 7 - Solving the hydro-bidding problem with continuous state vari-

ables: Chapter 7 studies Problem 1 with an autoregressive price process, and

secondly with a power function which incorporates headwater effects. In Section

7.1, we model the price process as a state variable inside the value function in

MIDAS. We also develop an SDDP equivalent, in Section 7.1.2, by introducing a

cut interpolation technique, which interpolates the value function based on two

sets of cuts at two different price nodes. This enables us to represent the au-

toregressive price process inside SDDP. We then, introduce the third non-convex

hydro-bidding model. This model approximates the power generation function

with headwater effects as a difference of two quadratic functions linearised using

piecewise linear approximations discussed in Section 7.2. For both of these mod-

els, the overall hydro-bidding problem is a stochastic mixed-integer program.

Both of these models are solved using MIDAS and SDDP. We compare the poli-

cies of MIDAS and SDDP in order to analyse how well MIDAS approximates

the value function, and if MIDAS constructs policies that are better performing

than SDDP.

Chapter 8 - Improving the computation of MIDAS: Chapter 8 discusses some

numerical results of the hydro-bidding problem solved both by SDDP and MI-

DAS. We observe that each of the sub-problems in MIDAS are mixed integer

programs (MIP) arising from the use of step functions. The size of these MIP

sub-problems increases with each iteration in the MIDAS algorithm. This is

due to the addition of extra binary variables when introducing new step func-

tions. As the size of the sub-problem starts to increase it takes longer to solve

them, which in turn adds to the computation time. Hence, MIDAS becomes

computationally expensive with large data sets as it uses a large number of step

functions to approximate the value function. In order to alleviate an increasing
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computation time, we introduce two heuristics. The first heuristic is a step func-

tion selection scheme, presented in Section 8.1, which tightens the value function

approximation by removing redundant step functions. The second heuristic is

a sub-problem solver heuristic based on the optimal cuts and the integer L-

shaped method of [45], presented in Section 8.2. We apply these heuristics and

demonstrate the improvements in the solution time of MIDAS. Using these two

heuristics we then solve a hydro scheme consisting of 4 reservoirs and 4 stages.

Chapter 9 - Concluding remarks: The final chapter of this thesis reviews the

notable findings in Section 9.1, summarizes the major contributions in Section

9.2, and discusses the future research directions in Section 9.3.



Chapter 2

Analysis of the hydro-bidding

problem

Hydro stations can be built on a single water source, or can be part of a network of

reservoirs and generation stations that are connected by rivers and tributaries. This

is referred to as a hydro scheme or a river chain. Based on the topology of the hydro

scheme, released water for generation from upstream reservoirs will flow downstream

to add to the volume of water in downstream reservoirs. This in turn can be used for

generation by downstream power plants. Figure 3.1 illustrates such a hydro scheme.

The water discharged from the reservoir of hydro power plant 1 (HPP1) will flow into

hydro power plant 2 (HPP2), and then flow into HPP3, being used to generate power

in several locations along the chain.
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Figure 2.1: Topology of an example hydro scheme with cascading reservoirs and hy-
dropower plants (HPPs) (source: [4]).

From the dammed lakes at these reservoirs and hydro stations, the energy potential

of the water, stored at different altitudes, is converted into electricity [35]. A typical

hydro station consists of a forebay, a tailrace, a spill gate, and for each turbine a

penstock. The forebay houses the water and is synonymous with dammed natural

lakes and man-made reservoirs. The penstock is the pipe that provides passage of the

water to the turbine. The spill gate provides an alternative passage downstream in

order to manage the reservoir storage, especially during situations where the reservoir

storage is at maximum capacity and is at risk of overflowing. The tailrace is the basin

where the water accumulates at the bottom of the station after travelling through the

turbine. An illustration of a cross section of a hydro station is provided in Figure 3.2,

which depicts how the stored water travels through the turbine converting its potential

energy into kinetic energy, from the rotation of the turbine, and then into electrical

energy through a generator.
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Figure 2.2: Cross section of a hydro station with a single turbine (source: [31]).

2.1 Modeling the hydro-bidding problem

As mentioned in Chapter 2, the hydro-bidding problem is a sequential decision making

problem. With appropriate definitions of states and actions, sequential decision mak-

ing problems can be formulated as discrete-time, finite horizon stochastic program

[14]. These stochastic programs can be modeled as a stochastic dynamic program

(SDP) using the Bellman Equation [62].

The following assumptions are made for the hydro-bidding models presented in this

thesis. These are are the following:

Assumption 1. The only market uncertainty in the model is price.

The founding assumption in this thesis is that hydroproducers cannot influence the

market-clearing price. This assumption is valid if the producer does not have a sig-

nificant portion of the total energy supply [75]. If a producer does have a significant
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proportion of the energy supply, then they can alter the market clearing price through

their bids. By withholding large quantities of their supply they can potentially in-

crease the spot price by forcing the market to dispatch more expensive generators.

Alternatively, they can inject excess capacity at low prices and potentially depress the

price by under-bidding their competing generators [75]. The price taking assumption

is made so that we can treat the spot price as an exogenous random variable and use

models and methods from the stochastic programming literature [51].

Assumption 2. Natural inflows between trading periods are deterministic.

In Model (3.1.1) the two sources of uncertainty are inflow (i.e. natural inflow from

rainfall and snow melt) and price. Inflows exhibit seasonal variations throughout

the year. Figure 3.3, as illustrated in [64], shows an example of the seasonal variation

inflow for lake Benmore in the Waitaki hydro scheme. As illustrated, the highest inflow

is during December and January. High inflows occur during these months mainly due

to the melting of the snow caps when New Zealand enters the summer season.

Figure 2.3: Raw inflow data for the waterflow going into lake Benmore in the Waitaki
hydro scheme (source: [64]).
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Assumption 3. There are no delays in flow between upstream and down-

stream reservoirs.

Since hydro schemes are a network of lakes interconnected by rivers, they tend to

cover large geographical areas. The flow of water between two connected reservoirs

can have a delay from a few hours to nearly a day. Water released earlier in the day

from upstream reservoirs may not arrive downstream till several hours later. This adds

another layer of complexity for hydroproducers, as they have to carefully time their

releases upstream so that they arrive downstream at the appropriate time when the

prices are high. Flow delays also add another layer of complexity to the hydro-bidding

models because the state transition equation, or the water-balance constraint, is now

coupled with the storage levels in the previous period as well as the water discharged

several periods earlier.

For SDP and SDDP based models, integer flow delays can be modeled by adding

dummy nodes between an upstream and a downstream node of a river section with

flow delays. The number of dummy nodes equals the number of time periods of

flow delay, where each section of river between the dummy nodes is assumed to have

unit delay. The SDP-based hydro-bidding model by [65] discusses how this can be

implemented to model flow delays.

2.1.1 Hydro-bidding Model Formulation

Model (3.1.1) represents a generic hazard-decision based multistage stochastic pro-

gram, through the dynamic programming principle, of a hydro-bidding problem for a

hydro scheme consisting of a set of reservoirs R, a set of stations S, and an offer curve

of M segments or tranches. At the beginning of period t the hydroproducer observes

the price Pt. Then based on their starting storage xt, they will compute their optimal

policy, based on the decision variables (ot,j, ut,j, lt,j) for each segment j from the set
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of all feasible decisions Dt(xt).



Vt,i(xt) =
M∑

j=1
ρi,j(t) max

(ot,j ,ut,j ,lt,j)∈Dt(xt)
{rt(ot,j, πj) + Vt+1,j (f(xt, ut,j, lt,j, ωt))}

for xt ∈ X, for t = 0, . . . , T − 1,

VT,i(xT ) = Ri(xT ), for i = 1, . . . , M.

(2.1.1)

where:

T = the number of stage in the planning horizon (i.e.

t = 1, 2, . . . , T ),

R = the set of Reservoir node labels,

S = the set of Station node labels,

M = the number of tranches in the offer stack,

Dt(x) = the set of feasible actions (ot,j, ut,j, lt,j) for each

tranche j given a storage x,

Pt = the stochastic market price variable,

X = the set of feasible storage levels,

πj = conditionally expected price for tranche j when

Pt ∈ [pj, pj+1),

xt = vector of starting storage levels belonging to set

X at the beginning of stage t for each reservoir in

the hydro scheme,
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ut,j = decision variable representing a vector of turbine

water discharge (cubic meters per second) for

each station in the hydro scheme for tranche j

among M tranches,

ωt = vector of inflows (cubic meters per second) at

period t for each reservoir in the hydro scheme,

lt,j = decision variable representing a vector of spill

flows (cubic meters per second) for period t at

each reservoir in the hydro scheme for tranche j

among M tranches,

ot,j = decision variable representing an offer quantity

(MW) for tranche j, among M tranches, at time

period t for the hydro scheme,

xt+1,j = vector of storage levels belonging to the set X at

the end of period t if tranche j is dispatched,

rt(ot,j, πj) = expected profit from clearing tranche i based on

the offer quantity ot,i when Pt ∈ [pi, pi+1),

f(xt, ut,j, lt,j, ωt) = the state transition function, or the dynamics, is

based on the starting storage levels xt,

turbine-water discharge ut,j, spill lt,j, and a

deterministic inflow ωt in tranche j (see Section

3.1.1.1 for the formulation of the dynamics),

Vt+1,j(f(xt, ut,j, lt,j, ωt)) = value function representing the contributions of

future stages based on the dynamics for tranche j.
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In this model the stochastic variable is price Pt. It is an exogenous random vari-

able. We approximate Pt as a time inhomogeneous Markov chain. At period t, Pt is

partitioned by M price intervals with M + 1 price points as,

{[p1, p2), [p1, p2), . . . , [pM−1, pM), [pM , pM+1)} . (2.1.2)

Each Markov state j represents a Pt ∈ [pj, pj+1) at time period t. Based on the

realization of Pt−1 in the previous period, Pt can transition to another interval. The

probability (i.e. the transition probability) that the Pt is in interval j in the current

period t given that it was in interval i in the previous period is

ρi,j(t) = P [Pt ∈ [pj, pj+1) | Pt−1 ∈ [pi, pi+1)] . (2.1.3)

We can then define the conditionally expected price as,

πj = E [Pt | Pt ∈ [pj, pj+1)] . (2.1.4)

In each time period t the hydroproducer submits an offers curve of M price-quantity

pairs, defined as

{(p1, ot,1), (p2, ot,2), . . . , (pM−1, ot,M−1), (pM , ot,M)}. (2.1.5)

After the market clears, he/she observes the market-clearing price Pt. If Pt is observed

to be within some interval j then the hydroproducer is dispatched on their offered

quantity ot,j. In order to ensure that the hydroproducer will definitely be dispatched

if Pt is in interval j, he/she offers ot,j amount of power at the lower price point pj of

the interval.

In price-taking hydro-bidding models, the hydroproducer is computing the optimal
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quantities (ot,1, . . . , ot,M) which will maximize their total expected profit
M∑

j=1
rt(ot,j, πj).

For each tranche j, the hydroproducers expected profit is their offer quantity ot,j

multiplied by the conditionally expected price πj and the transition probabilityρi,j(t).

This defines their reward function as,

rt(ot,j, πj) = ρi,j(t)πjot,j. (2.1.6)

For example, consider the following four-tranche offerstack in Figure 3.4. This offer-

stack consists of four quantities ot,1, ot,2, ot,3, and ot,4, with the price p1, p2, p3, and p4.

As illustrated, the observed market-clearing price is within the price interval of the

3rd tranche (i.e. Pt ∈ [p3, p4)), which dispatches the quantity ot,3. The hydroproducer

will be paid by the market at price Pt to generate power ot,3. In the hydro-bidding

models, the hydroproducer will be paid at π3 on average.

Quantity(MWh)

Price ($ per MWh)

ot,1 ot,2 ot,3 ot,4

p1

p2

p3

p4

p5

π1

π2

π3

π4

Pt

Figure 2.4: Example of an offerstack with four tranches.

The discharge variable ut,j, for period t and tranche j, belongs to the feasible set

U(x) = {u ∈ R|S| : us ∈ [us, us] ∀s ∈ S}, which is the allowable discharge of water
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bounded between [us, us] for station s in the hydro scheme. The set L(x) = {l ∈ R|R| :

0 ≤ lr ≤ lr ∀r ∈ R}, where lt,j ∈ L(x) is the set of allowable spill bounded between

0 and min{lr, xr} for each r ∈ R. This, then makes the set of feasible decisions

Dt(x) = X × U(x) × L(x) × RM .

The state transition function, also known as the state equation, f(xt, ut,j, lt,j, ωt) rep-

resents the water-balance constraint, which enforces the conservation of the waterflow

across the hydro scheme. It outputs the storage level at period t + 1 based on the

starting storage xt, the station flows ut,j, spill flows lt,j, and the inflows ωt for each

tranche j. We refer the reader to Section 3.1.1.1 for a detailed formulation of the

water balance constraint.

The hydroproducer has to be able to feasibly generate the quantities (ot,1, . . . , ot,M)

declared in their offerstack. In the model the feasible set of offers is represented by

the set,

O(xt, ut,j, lt,j) = { (ot,1, . . . , ot,M) ∈ RM : oj = ∑
s∈S gs(xt, ut,j,s, lt,j,r),

oj ≤ oj+1, for j = 1, . . . , M}.
(2.1.7)

Monotonicity of the offer stack is enforced through imposing oj ≤ oj+1 when pj ≤ pj+1.

The function
∑
s∈S

gs(xt, ut,j,s, lt,j,r), where g : X × U(xt) → R is the power generation

function for station s in the hydro scheme. The generation function is dependent on

the initial storage level xt, the water releases out of each station ut,j,s, and the spill

flows across the hydro scheme lt,j,r. If the market-clearing price is between tranche i

and tranche i + 1, where Pt ∈ [pi, pi+1), then the hydroproducer will be dispatched at

a total quantity of
∑
s∈S

gs(xt, ut,j,s, lt,j,r), which corresponds to the offer quantity ot,j.

With sequential decision problems, the actions taken in early stages of the planning

horizon will affect circumstances of future decisions [14]. This is represented as the

future value function Vt+1,i(f(xt, ut,j, lt,j, ωt)), where Vt+1,i : X → R, that is dependent
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on the dynamic f(x, ut,j, lt,j, ωt). It indicates the opportunity cost of future profits

based on the remaining waterstock by state transition function f(xt, ut,j, lt,j, ωt) at

beginning of period t+1. The value function VT,i(xT ) for the end period T , also called

the terminal value function, in the model represents the future value of the remaining

waterstock beyond the planning horizon for each i = 1, . . . , M . It is introduced to

prevent policies which drain the water from all reservoirs by the end of stage T .

Model (3.1.1) can be solved using various techniques in the Stochastic Programming

literature [75]. Some of the key methods used to solve these types of models are

presented in Section 3.2. However, before progressing to the solution methods, we

first discuss in detail the water-balance constraint in Section 3.1.1.1, and then the

effects of reservoir storage levels (i.e. headwater effects) on the generation function in

Section 3.1.1.2.

2.1.1.1 State equation: the water-balance constraint

As described earlier in the introduction of Chapter 3, hydro schemes can be represented

as a network of water flows (refer to the Waitaki hydro scheme in Figure 2.1), where

the nodes are the reservoirs and stations, and the arcs are rivers, natural inflows, and

tributaries. The state transition function f(xt, ut,j, lt,j, ωt), also commonly referred

to as the water-balance constraint [22]. In stochastic programming models, the state

transition function sets the storage level for the state variable xt+1,j, where xt+1,i =

f(xt, ut,j, lt,j, ωt). It is defined as,

f(xt, ut,j, lt,j, ωt) = xt + δt (Aut,j + Blt,j+ωt) , j = 1, . . . , M. (2.1.8)

Here, δt represents the length of each discrete time period, variables ut,j and lt,j the

respective station and spill flow, xt and ωt the respective storage and inflow, and the
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matrices A and B are the arc incidence matrices that represent the topology of the

station and spill flows.

The water-balance constraint ensures that the flow of water follows the network topol-

ogy of the hydro scheme, where the volume of water in a reservoir is conserved between

each time period, based on the arrival of water from upstream reservoirs, and the re-

lease of water to downstream reservoirs. The state variables xt and xt+1,j are vectors

of reservoir storage levels in cubic meters. The flow variables ut,j, lt,j, and ωt (cubic

meters per second) represent the station flow, spill flow, and the stochastic inflow for

each reservoir along the hydro scheme. They are all multiplied by δt, which represents

the number of seconds in each time period t in order to convert them to cubic meters.

The matrices A and B are incidence matrices with the respective dimensions |R|× |S|

and |R| × |V|. The set V ⊆ R⋃S represents the set of spillway nodes. It contains

both station and reservoir nodes. The matrix A and B represent the topology of the

network, by indicating how the water will flow between upstream and downstream

reservoirs. Their elements ar,s and br,s have the following definition,

as,r =



−1 if reservoir r is upstream to station s,

1 if reservoir r is downstream to station s,

0 otherwise,

(2.1.9)

br,v =



−1 if reservoir r is upstream to spillway v,

1 if reservoir r is downstream to spillway v,

0 otherwise.

(2.1.10)

At the end of period t, for a particular tranche j, the storage level at each reservoir

r either experiences a net accumulation or a net reduction in the volume of water.
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This due to the arrival of upstream flows and inflows, and the departure of discharged

water for generation and spill. This sets the starting storage level xt+1,j for the next

period. An example is illustrated in Figure 3.5, where at an arbitrary reservoir r2

there is a reduction in the volume of water at the beginning of period t + 1. The total

flow arriving at r2 from upstream reservoir r1 (i.e. ut,j,r1 + lt,j,r1+ωt,r2) is less than the

total flow discharged from r2 (i.e. ut,r2 + lt,r2), which results in a net reduction.

xt,r2

ut,i,s1 lt,i,r1

ut,s2 lt,r2

ωt,r2

xt+1,i,r2

Figure 2.5: Example of the state transition (i.e. water-balance) for reservoir r2 based
on the upstream reservoir r1, where there is a net outflow of water decreasing the
storage level of r2.

Hydro schemes can span large geographical distances. Therefore, the flow of water

can take several hours to travel from upstream to down stream. In this description of

the water-balance constraint, flow delays are omitted with the assumption that there

are no flow delays.
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2.1.1.2 Headwater effects

The power generation function gs(xt, ut,j,s, lt,j,v) is defined as,

gs(xt, ut,j,s, lt,j,v) = 9.81 × 10−3ut,j,sηshr(xt,r, ut,j,s, lt,j,v), (2.1.11)

where it is a function of the station flow ut,j,s, the spill flow lt,j,v, the net headwater

level hr(xt,r, ut,j,s, lt,j,v) of the connecting reservoir, the efficiency factor ηs, and the

constant 9.81×10−3 which is the acceleration due to gravity multiplied by the density

of water [27]. The headwater level hr(xt,r, ut,j,s, lt,j,v) is a function of the storage xt,r,

the station flow ut,j,s, and the spill flow lt,j,v. It is the difference in the water level at the

top of the reservoir (hforebay
r ) minus the water level at the tailrace (htailrace

r (ut,j,s, lt,j,v)),

and a constant headwater losses (hloss
r ) in the penstock. It can be defined as,

hr(xt,r, ut,j,s, lt,j,v) = hforebay
r (xt,r) − htailrace

r (ut,j,s, lt,j,v) − hloss
r . (2.1.12)

The efficiency factor ηs is represented by plant capability curves, also known as hill

curves, of the turbines in station s. These curves are based on empirical measurements

of the actual power [27]. They are constructed by measuring power output under

various net headwater and releases (i.e. ηs = ηs(hr, ut,j,s)) [6]. An example of a hill

curve is illustrated in Figure 3.6. The most efficient points for generation, points

which consume the least volume of water to produce the most energy, are within

specific intervals in the hill curves.
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Figure 2.6: Single plant production function for a particular water level (meters above
sea level).

In order to model headwater levels in the reservoirs, we define the net head variable

hnet
t,r = hr(xt,r, ut,j,s, lt,j,v) to represent the headwater function. It is easy to incorporate

the water level of the forebay as it is simply the function of reservoir storage level.

On the other hand, incorporating the tail water level is complicated because it is

a function of station and spill flow. In many cases there is insufficient data to fit

empirical functions which model the headwater functions of forebays and tailraces.

One assumption that we can make to simplify modeling the tailrace and the forebay

is to take the net head from headwater level at the minimum reservoir storage level.

Then, hnet
t,r = hforebay

r (xt,r) − hmin
r becomes a function of only reservoir volume. There

are numerous ways to represent the function hforebay
r (xt,r). The easiest is dividing it

with an average surface area constant K to get hforebay
r (xt,r) = xt,r

K
, and net head

defined as,

hnet
t,r = xt,r

K
− hmin

r . (2.1.13)
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This assumes that the reservoir basin is cylindrical in shape where the volume increases

linearly with net head. Other methods involve using empirically-derived functions

based on flow (converted into volume) and the water level of reservoirs (converted into

net head) [6]. These empirical functions usually involve polynomials to reflect non

linear reservoir basin shapes like cone shapes.

If the changes in net headwater hnet
t,r have very little impact on the power generation,

then it is safe to ignore the net head and define gs as a function of ut,j,s. Models

such as [19, 29, 56, 67, 69] have taken this assumption for reservoirs with a large

forebays. Other models such as [19, 29] approximate gs(xt, ut,j,s, lt,j,v) as piecewise

linear functions, while [67, 69] approximates them as a quadratic concave function of

ut,j,s. For head dependent reservoirs there are several approaches that can be used to

approximate the power generation function. The aforementioned piecewise functions

can be extended for discrete levels of net head, as is the approach taken by [17, 20, 74],

where a single piecewise function is constructed for each given net head value. In all

of these approximations, additional integer variables are introduced in order to model

the discrete head levels in each reservoir, which pose computational challenges when

incorporating them into stochastic programming models.

A more efficient approach would be to consider head level as a continuous variable.

The piecewise functions, indexed by discrete head levels, can be extended by interpo-

lating between adjacent head levels, as modeled in [15, 34], which allows hnet
t,r to be a

continuous variable. In [10], the power generation function is a linear function of flow

multiplied by a quadratic function of the net head. It is defined as,

gs(hnet
t,r , ut,j,s) = kut,j,s(α(hnet

t,r )2 + βhnet
t,r + γ), (2.1.14)

where α, β, and γ are empirically derived model parameters.

A similar approach is taken by [16], where the power generation function is approxi-
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mated using polynomials of order 2 and 4 that are based on both the flow and head

level. An alternative approximation, one which does not require integer variables nor

uses nonlinear functions, is used to represent the power generation function as the

convex hull of net head and flow [13]. The benefit of using this approximation is that

it does not require the use of additional integer variables and thus improves the com-

putational efficiency of the model. However, it does convexify the hill curves, which

as illustrated already, are non-concave in nature. Furthermore, it is impossible to rep-

resent minimum flow conditions, where the flow has to be above a minimum threshold

in order to generate non-zero power.

Based on our chosen approximation of the headwater function, we would need to

include the defintion of net head inside the model. For example, if we take into

account a cylindrical reservoir then hnet
t,r = xt,r

K
− hmin

r , and add to Model (3.1.1) along

with the generation function defined in Equation (3.1.11).

2.2 Methods of solving the hydro-bidding problem

There are several existing methods that solve Model (3.1.1). The most common meth-

ods are Stochastic Dynamic Programming (SDP), Stochastic Mixed Integer Program-

ming (SMIP), Approximate Dynamic Programming (ADP), and Stochastic Dual Dy-

namic Programming (SDDP). In this section we present some of these methods of

solving Model (3.1.1) and in Section 3.3 we compare their performance.

2.2.1 Stochastic Dynamic Programming based hydro-bidding

model

Model (3.1.1) can be solved as a Stochastic Dynamic Program (SDP) using backward

recursion [62, 73]. However, it requires a few adjustments. The first is to discretize
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the sets Dt(x), X, U(x),and L(x). In addition to discretizing the sets, we introduce

the parameter xt,i for period t and Markov state i in order to store the state value

(i.e. the storage level) [61]. The state variable stores the transitioned state either as

an array or lookup table. Lastly, we define the parameter V̂t+1,j(f(xt,i, ut,j, lt,j, ωt)).

The approximate value function represents the value of Vt+1,j(f(xt,i, ut,j, lt,j, ωt)) for

each xt,i ∈ X. In reality, V̂t+1,j(f(xt,i, ut,j, lt,j, ωt)) is represented as an array or a

lookup table, similar to xt,i. This allows us to then define Model (3.2.1) for use in

the backward recursion algorithm (see Algorithm 1 ). Solving Model (3.2.1) gives an

optimal policy for every xt,i ∈ X for t = 1, 2, . . . , T and i = 1, . . . , M [61].



Vt,i(xt) =
M∑

j=1
ρi,j(t) max

(ot,j ,ut,j ,lt,j)∈Dt(xt)

{
rt(ot,j, πj) + V̂t+1,j (f(xt, ut,j, lt,j, ωt))

}
for xt ∈ X, for t = 0, . . . , T − 1,

VT,i(xT ) = Ri(xT ), for i = 1, . . . , M.

(2.2.1)

Backward recursion involves iterating backwards in time and Markov states, and com-

puting Vt,i(xt,i) across all values of xt,i ∈ X for t = 1, 2, . . . , T and i = 1, . . . , M .

The optimal value function Vt+1,j (f(xt,i, ut,j, lt,j, ωt)) is stored by the parameter rep-

resenting the future value function V̂t+1,j(f(xt,i, ut,j, lt,j, ωt)). Algorithm 1 provides the

pseudocode for computing the optimum policy. It enumerates across all the storage

levels, station flows, offer quantities, and price states in order to compute the optimum

value function Vt,i(x) across each the planning horizon. The computed optimum policy

of Model (3.2.1) is in the form of a decision tree. Once we observe which interval Pt is

in and xt, we can use the information to determine the optimal quantity ot,j, station

flow ut,j, and spill flow lt,j for each Markov state j.
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Algorithm 1 Backward recursion algorithm for solving Model (3.2.1).

1. Intialize R, S, M , X, L, U(x), D(x), ρi,j(t), πt,j, R(xT,j).

2. Initialize V̂t,j(xt,j) = 0 for t = 1, . . . , T , for j = 1, . . . , M and across all xt,j ∈ X.

3. For t = T, . . . , 2, 1, i = 1, 2, . . . , M and ∀xt,i ∈ X do the following:

(a) for j = 1, . . . , M and (lt,j, ut,j, ot,j) ∈ Dt(xt,i),

i. compute xt+1,j = f(xt,i, ut,j, lt,j, ωt),

ii. compute Vt,i(xt,i) in (3.2.1)

iii. if V̂t,i(xt,i) < Vt,i(xt,i) then set V̂t,i(xt,i) =: Vt,i(xt,i)

Like all Stochastic Dynamic Programming models, this hydro-bidding model runs into

the curse of dimensionality. The computational time is heavily dependent on the size of

X and U(x) [62]. For instance, |X| = K |R| where |R| is the number of reservoirs, and

K is the number of storage levels for each reservoir. The size of X grows exponentially

with increasing number of reservoirs (i.e. the dimension of x). Similarly, for the set of

feasible controls U(x) its cardinality is equal to G|S|, which is the number of feasible

generation pairs G raised to the power |S|. And like X, U(x) exhibits the same

exponential growth in size with the number of stations |S|. Iterating over these sets

in Algorithm 1 quickly becomes intractable when dealing with large hydro schemes

that consist of numerous reservoirs and stations. For this reason, Model (3.2.1) is

impractical for solving hydro-bidding problems with many reservoirs and stations.

2.2.2 Stochastic MIP based hydro-bidding model

As the Markov price process is discrete and finite, it can be represented by a scenario

tree with a set N of nodes, and set L of leaf nodes with the following parameters:
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d(n) = the depth of node n with 0 ≤ d(n) ≤ T ,

n− = the unique predecessor node for node n with |n−| = 1,

n+ = the set of child nodes for node n with |n+| = M ,

ρn = P
[
Pd(n) ∈ [pj, pj+1)

]
for 1 ≤ j ≤ M ,

πn = E
[
Pd(n) | Pd(n) ∈ [pj, pj+1)

]
for 1 ≤ j ≤ M .

The scenario tree represents the exhaustive outcomes of the each Markov state across

the planning horizon. Figure 3.7 illustrates an example of a scenario tree with two

price segments (M = 2). Based on the πn at each node n, the hydroproducer computes

the offer curve for each node m ∈ n+.

π0

π1

π3

...

. . . . . .

...

π4

...
...

π2

π5

...
...

π6

...
...

. . . . . . t = T

...

t = 2

t = 1

t = 0

Figure 2.7: Example of a scenario tree with two price states.

A deterministic mixed-integer programming model (MIP) of Model (3.1.1) can be

constructed using a scenario tree. Model (3.2.2) represents the stochastic mixed-

integer linear program (SMILP) for the scenario tree. The objective function VN (x̃, π̃)

represents the total expected profit across the scenario tree. It is dependent on an

initial storage x̃ and conditionally expected price π̃ at the root node. The long-term

value of water is defined by the terminal value function R(xk) for each leaf node k ∈ L.

In the objective VN , we sum across all the nodes n ∈ N with conditionally expected
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profit ρnπnon at the node. Constraint (3.2.2a) represents the transition equation be-

tween node n and its child nodes m ∈ n+. It is the water-balance constraint discussed

in Section 3.1.1.1. Constraint (3.2.2b) defines the offer quantity variable on for each

node n ∈ N . It represents the total generation across the hydro scheme. The function

gs(xn,r, um,s, lm,r) represents the generation function for station s based on the station

flow um,s, the spill flow lm,r at each child node m, and the storage xn,r. Note that

this function is represented as an arbitrary function because the power generation

function of a hydro station can be modeled using any of the techniques mentioned in

Section 3.1. Lastly, constraint (3.2.2c) enforces the monotonic condition of the offer-

stack where each offer is increasing with price, while constraints (3.2.2d) to (3.2.2i)

represent the station flow, spill flow and the reservoir storage bounds, and initializes

the root node.

VN (x̃, π̃) = max
∑

n∈N \L
ρnπnon +

∑
k∈L

ρkR(xk)

subject to:

(2.2.2)
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xm,r = xn,r + δt (Ar · um + Br · lm+ωr) for m ∈ n+,

for r∈ R,

for n ∈ N ,

(2.2.2a)

on =
∑
s∈S

gs(xn,r, un,s, ln,r) for r∈ R,

for n ∈ N ,

(2.2.2b)

om ≤ om+1 for m ∈ n+,

for n ∈ N ,

(2.2.2c)

un,r ∈ [us, us] for s∈ S,

for n ∈ N ,

(2.2.2d)

ln,r ∈
[
0, min

{
xn,r, lr

}]
for r∈ R,

for n ∈ N ,

(2.2.2e)

xn,r ∈ [xr, xr] for r ∈ R,

for n ∈ N .

(2.2.2f)

(2.2.2g)

π0 = π̃, (2.2.2h)

x0 = x̃. (2.2.2i)

Solving Model (3.2.2) will output an optimal policy in the form of a decision tree.

Based on the observed price at a particular node n, the hydroproducer will be able to

determine their optimal offer curve for the next period by aggregating the offers of the

child node m ∈ n+, and then by observing the spot price traverse to the next node in
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the decision tree and repeating the same process.

Model (3.2.2) can include additional features such as unit commitment, reserve en-

ergy allocation, non-convex generation functions and headwater effects. Adding such

features to the model introduces integer variables, thus making Model (3.2.2) a mixed

integer program. Scaling such a model for large hydro schemes, across many price

states, and time periods quickly becomes computationally expensive to solve or even

intractable due to the exponential growth in the number of variables and constraints

with an expanding planning horizon [71, 73]. This is discussed in Section 3.3, which

compares this model with the SDDP model presented in the Section 3.2.3 next.

2.2.3 SDDP based hydro-bidding model

Using an algorithmic approach similar to SDP and the scenario tree of the SMIP model,

the hydro-bidding model can be attacked using a sampling-based method, such as

Stochastic Dual Dynamic Programming which was originally proposed in [55]. When

the value functions are known to be convex (if minimizing) or concave (if maximizing)

then they can be approximated by hyper planes or cutting planes. This is what has

popularized the SDDP algorithm. The algorithm creates a sequence of cutting-plane

outer approximations to the value function at each stage of the Bellman Equation

(see Model (3.1.1)) by evaluating independent sampled sequences of random outcomes

from the scenario tree. This creates an upper bound, which through iterative sampling

and adding cutting planes improves the approximation and reduces the upper bound.

SDDP simulates the policy, that can be obtained from the iterative approximations, to

compute a lower-bound. The optimal policy is bounded between the upper and lower

bound. As the algorithm progresses the upper bound and the lower bound starts

to converge ensuring a good policy. Variations of this idea have been proposed by

[21, 28, 37, 39].
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Since SDDP marries the scenario tree representation of the stochastic variables, and

dynamic programming, it can sequentially sample the scenario tree without complete

representation [72]. Furthermore, since it approximates the value function using Ben-

ders cuts the sub-problems, Model (3.1.1) becomes a linear programming problem,

instead of a SDP, enabling it to solve much larger problems. The use of the Benders

cuts allows SDDP to exploit the natural convexity of the value function in order to

converge towards the optimum policy [72]. Due to these benefits, SDDP has been used

to solve large convex hydro-scheduling, and hydro-bidding problems under uncertainty,

with models developed by [37], [38], [46],[59], [18], and [57].

The first formal proof of almost-sure convergence for SDDP-based algorithms was pro-

vided by [21] for their CUPPS algorithm. Their proof however relied on a key unstated

assumption identified by [58], who provided a new proof of almost-sure convergence for

problems with polyhedral value functions without requiring this assumption. Another

almost-sure convergence for general convex value functions was recently published in

[36].

The stochastic dynamic programming model, Model (3.2.1) in Section 3.1.1, can be

re-formulated into T · M linear programs each with the formulation defined by Model

(3.2.4). In Model (3.2.4), the value function variable V̂t+1,j ∈ R is represented by a set

of Kt+1,j cutting planes for period t + 1 and price state j. Each cut is described by

the gradient parameter θt+1,j,c ∈ R|R| which is calculated from the dual variable values

of the water balance constraints (see Constraint (3.2.4a)), the parameter βt+1,j,c ∈ R

which is the intercept in the V̂t+1,j dimension, and αt+1,j,c ∈ X is the initial storage

level for that cut. Then, a single cut can be defined as,

V̂t+1,j ≤ βt,j,c + θ⊤
j,c(xt+1,j − αj,c). (2.2.3)
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Vt,i(x) = max
M∑

j=1
ρi,j(t)

[
πt,jot,j + V̂t+1,j

]

subject to:

(2.2.4)

xt+1,i,r = xt,r + δt
(
A⊤

r ut,i + B⊤
r lt,i+ωt,r

)
for all j = 1, . . . , M,

and r ∈ R,

(2.2.4a)

xt,j = x0 for j = 1, . . . , M, [θj,r], (2.2.4b)

ot,j =
∑
s∈S

gs(xt,r, ut,j,s, lt,i,r) for j = 1, . . . , M, (2.2.4c)

ot,j ≤ ot,j+1 for j = 1, . . . , M − 1, (2.2.4d)

ut,j,s ∈ [us, us] for j = 1, . . . , M,

and s ∈ S,

(2.2.4e)

xt+1,j,r ∈ [xr, xr] for j = 1, . . . M,

and r ∈ R,

(2.2.4f)

(2.2.4g)

V̂t+1,j ≤ βt+1,j,c + θ̂⊤
t+1,j,c(xt+1,j − αt+1,j,c) for j = 1, . . . M,

and c = 1, . . . , Kt+1,j.

(2.2.4h)

Algorithm 2 describes the key steps for computing the optimal policy of the SDDP

based hydro-bidding model. Like the standard SDDP algorithm, Algorithm 2 has four

main phases which are the sampling phase, the forward pass, the convergence test,

and the backward pass. Special attention should be focused towards Step 6(a)ii in the
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backward pass, which outlines how the individual cuts are computed. The gradient of

each of the cuts is computed using the dual variable values θj,r for each reservoir r and

price state j. For r ∈ R, the r’th component of θ̂t+1,i,Kt+1,i+1 is
M∑

j=1
ρi,j(t)θj,r for r ∈ R.

The parameter βt,j,Kt,j+1 = Vt,j(xt) is the objective function value of the sub-problem,

and αt,j,Kt,j+1 = xt is the state trajectory generated in the forward pass.

Algorithm 2 Solving the hydro-bidding problem using the SDDP algorithm.

1. Initialize R, S, M , [x, x], [u, u], ρi,j(t), πt,j, A, and B.

2. Set Kt,i = 1 and V̂t,i ≤ V t,i for t = 1, . . . , T for j = 1, . . . , M , and x̂0 = x̃.

3. Sampling:

(a) Sample price scenario {π̂1, . . . , π̂T } and its corresponding state index {̂i1, . . . , îT }.

4. Forward pass:

(a) For t = 1, . . . , T do,

i. solve Vt,i(x̂t) (Model (3.2.4)) and let x̂t+1 = xt+1,̂it+1
.

5. Convergence test (at 95% confidence level):

(a) Let ẑlow = [0 for n = 1, . . . , N ].

(b) Solve V1,̃i(x̃) (Model (3.2.4)) and let zup = V1,̃i(x̃).

(c) For n = 1, . . . , N , do the following:

i. sample price scenario {π̂1, . . . , π̂T } and its corresponding state index

{̂i1, . . . , îT },

ii. for t = 1, . . . , T do,

A. solve Vt,i(x̂t) (Model (3.2.4)) and let x̂t+1 = xt+1,̂it+1
,
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B. compute ẑlow
n = ẑlow

n + πt,̂it+1
qt,̂it+1

.

(d) Calculate zlow = 1
N

N∑
n=1

ẑlow
n and σlow =

√√√√ 1
N − 1

N∑
n=1

(zlow − ẑlow
n )2.

(e) If zlow − 1.96√
N

σlow ≤ zup ≤ zlow + 1.96√
N

σlow then terminate.

6. Backward pass:

(a) For t = T, . . . , 2 and i = 1, . . . , M do,

i. solve Vt,i(x̂t) (Model (3.2.4)).

ii. let βt,i,Kt,i+1 = Vt,i(x̂t), αt,i,Kt,i+1 =: x̂t and θ̂t,i,Kt,i+1,r =
M∑

j=1
ρi,j(t)θj,r for

r ∈ R,

iii. set Kt,i =: Kt,i + 1

iv. go to Phase 3.

Unlike the previous versions of the hydro-bidding model, the optimal policy computed

by SDDP is not a decision tree but is a set of cuts that approximate the value function.

In order to compute the optimal offerstack, one simply has to solve the respective

sub-problem based on the observed price and storage level. A major advantage of

solving the hydro-bidding problem using SDDP is that the quality of the policy can

be reviewed during its execution. In each iteration the policy is bounded between the

lower and the upper bound, and since over time these two bounds get closer together,

one can assess how close the current policy is to the optimum policy. Using this

information, the algorithm can be terminated when the user is happy with the quality

of the policy. However, [72] states that SDDP could terminate early when there is a

large variation in the lower bound estimate. This can be remedied by increasing the

sample size, and running SDDP for a minimum number of iterations before carrying

out the convergence test.
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The SDDP-based model is particularly effective when it comes to hydro-bidding. As

mentioned earlier, the state variable xt+1,j in the hydro-bidding problem represents

the waterstock of the individual reservoirs, and are coupled through the water-balance

constraint (Constraint (3.2.4a)). This restricts the state variable to specific regions of

the state space X. SDDP benefits from introducing more cuts to accurately approx-

imate the value functions within these regions while having a rougher approximation

in the other regions.

Computational improvements can be made to Algorithm 2. The backward and forward

passes can be executed in parallel for Algorithm 2 when the price process is stage-wise

independent. By running several scenarios in parallel at each iteration, multiple cuts

can be generated to further improve the value function approximation [26]. In addition

to parallelization of the forward and backward passes, cut selection schemes can be

applied in order to reduce the size of the sub-problems [26]. With every iteration,

each sub-problem is adding a cut, which is adding a constraint. This can slow down

the algorithm in later stages of its execution. By removing cuts that are dominated,

one can still retain the current accuracy of the value function approximation but with

fewer constraints and a smaller sub-problem. This reduces the time it takes to solve

the sub-problem.

2.3 Comparing hydro-bidding models

In order to illustrate how these models perform and scale with respect to increases in

the dimension of the state variable and the number of stages, we compare SDDP and

the scenario tree based hydro-bidding models. We assess their performance in three

key areas:

1. The quality of their policies for the candidate problems;
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2. the quality of their value function approximation;

3. the computational efficiency with respect to the increase in the dimension of the

state space and the number of stages.

We construct hydro schemes of various sizes using the following elementary reservoir

and station. This elementary reservoir has a storage capacity of 200 cubic meters. Its

respective station has a turbine flow capacity of 70 cubic meters, and a generation

capacity of 70 MWh. The turbine curve for this station is a piecewise linear function,

and is illustrated by Figure 3.8.

us,t (cubic meters)

gs(us,t) (MWh)

70

65

55

706050

Figure 2.8: Power production curve of the elementary station.

Using a single elementary reservoir enables us to construct various hydro scheme

topologies, under various price processes, and planning horizons. Using this contrived

data, the models can be tested and easily analysed for various parameter settings. The

price process used for these models is a 3 price state (i.e. M = 3), time-inhomogeneous

Markov chain with the transition probabilities illustrated in Figure 3.9 below.
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Figure 2.9: Three price state Markov chain used to represent the market clearing
prices.

An optimal bidding policy was computed using the SDDP based hydro-bidding model

(Model (3.2.4)) under a combination of initial storage levels for each case study. We

used a desktop computer composed with an Intel i-5 CPU dual-core (with processing

power of 3.4 GHz in each core) and 8 gigabytes of memory. The commercial mathe-

matical program solver CPLEX [23] (version 12.5) was used to solve the hydro-bidding

models in each method. The optimal policy of SDDP was simulated across the entire

scenario tree. The performance of the SDDP policy was measured by calculating how

close the objective of the SDDP policy was to the optimum policy, computed using

the Scenario Tree based model, as a percentage. This was averaged across the set

of initial storage levels. Table 3.3 summarizes how close the SDDP policy is to the

optimum policy for cascading hydro schemes ranging from 2 reservoirs to 4 reservoirs.

In all case studies, policies computed by SDDP were, on average, within 99% of the

optimum policy.

Scenario tree Optimality of SDDP

Policy (%)

|R| |S| Variables Nodes Scenarios Mean LQ UQ

2 2 605 120 81 99.561, 99.530 99.975

3 3 847 120 81 99.551 99.499 99.948

4 4 1089 120 81 99.641 99.615 99.955

Table 2.3: Evaluation of the SDDP policy with respect to the exact optimum policy
computed by Model (3.2.2) with varying number of reservoirs |R| and stations |S|.
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The reason why SDDP is very effective can be illustrated by Figure 3.10, which depicts

the SDDP approximation and the exact first stage value function for the 2 reservoir

hydro scheme case study. The exact value function constructed from the solution of

the scenario tree is concave. Since Model (3.2.4) is creating an outer approximation

of the value function using cutting planes, it is able to accurately represent the shape

of the value function and hence produce near-optimal policies (see Figure 3.11).
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Figure 2.10: Value function approximation comparison between SDDP and the exact
value function from the Scenario Tree.
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Figure 2.11: Policy simulation comparison between SDDP and the exact value function
from the Scenario Tree.

Case studies used to compare the performance and quality of the SDDP based model

with that of the scenario tree based model were relatively small in the number of

variables. As shown in Table 3.3, the number of nodes and scenarios remains constant

with the increase in the number of reservoirs. The number of variables increases

linearly by |N |(|R| + |S| + 1) (note: N is the set of nodes in the scenario tree).

Therefore, the case studies in Table 3.3 pose little challenge for industrial solvers such

as CPLEX [23]. However, when expanding the planning horizon (i.e. increasing T ) or

the Markov chain of prices (i.e. increasing M), solving Model (3.2.2) quickly increases

in computation time, as summarized in Table 3.4.

In order to obtain the results in Table 3.4, Model (3.2.2) was solved using CPLEX for

the planning horizon T to be between 5 and 9 stages for a 2-reservoir hydro scheme

with 3 tranche offerstack, and planning horizon of 5 and 6 periods for a 5-reservoir

hydro scheme with 5 tranche offerstack (see Figure 3.12). The latter case study is more

realistic of the NZEM, as the regulation requires that every generator participating in
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the market provide a 5 tranche, monotonic increasing offerstack. However, due to the

large number of Markov states, the scenario tree based models were not able to be

solved beyond 6 period planning horizons. The solvers applied to these problems ran

out of memory, a symptom of the curse of dimensionality, due to the large number

of variables. These case studies were tested under initial storage levels of 100 cubic

meters for all reservoirs.

20 25 30 35 400.5
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Figure 2.12: Five price state Markov chain to represent the market clearing prices.

Scenario Tree SDDP

|R| |S| M T Variables Nodes Mean

Solution

Time (sec)

Mean

Solution

Time (sec)

Mean

optimality

(%)

2 2 3 5 1820 364 0.5356 4.712 99.552

2 2 3 6 5465 1093 2.207 5.641 98.342

2 2 3 7 16400 3280 13.654 7.431 98.189

2 2 3 8 49205 9841 98.138 10.385 99.489

2 2 3 9 147620 29524 909.156 12.192 99.673

5 5 5 5 42966 3906 236.154 5.541 98.944

5 5 5 6 214841 19531 5995.001 9.153 99.265

Table 2.4: Evaluation of the SDDP policy with respect to the exact optimum policy
computed by Model (3.2.2) under combinations of |R| reservoirs, |S| stations, M
tranche offerstacks, and T periods.

As is shown in Table 3.4, the number of variables, nodes, scenarios and the average
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solution time increases exponentially for Model (3.2.2). As expected, the SDDP based

hydro-bidding model, Model (3.2.4), is far superior in computation time, and produces

optimal policies that are on average 99% optimal. Using an algorithm like SDDP

provides great gains in computation power with a minimal decrease in the optimality

of the computed policy.

Both Models (3.2.1) and (3.2.2) face the curse of dimensionality. For Model (3.2.1) the

size of the discretized state and control set (i.e. X and U(x)) increases the computa-

tional complexities of the backward recursion algorithm. Model (3.2.2) runs into the

curse of dimensionality because the number of nodes in its scenario tree is equivalent

to |N | =
T∏

t=1
M and the number of scenarios is MT −1, which means that the scenario

tree grows exponentially with increasing time periods [71]. For example, when M = 5

and T = 48 we will have a total of 4.441 × 1031 nodes and 7.10543 × 1032 scenarios.

For a hydro scheme with multiple reservoirs (i.e. |R| > 1), Model (3.2.2) will have an

astronomical number of variables, making it impractical to solve. Therefore, methods

like SDDP are an effective way to solve large scale stochastic optimal control problems.

However, the major limitation for SDDP is the requirement for the value function to

be continuous and convex in order to guarantee convergence. In the case for Model

(3.2.4), the value function can become non-convex when the power generation function

gs(xt, ut,j,s, lt,j,r) is bilinear or discrete.

Non-concavity of the value function creates an estimation gap between the cutting

plane approximation and the true value function that cannot be reduced with the

cutting plane approximation of SDDP. Figure 3.13 illustrates how the estimation gap

can form between the true value function Vt+1,j(f(xt, ut,j, lt,j, ωt)), shown by the grey

line, and its single cut approximation V̂t+1,j ≤ β + θT (x − α) shown by the solid black

line. When x = x̂ the approximation gives an estimate of β + θT (x̂ − α), which is

strictly greater than the true value Vt+1,j(x̂). This gap will never be reduced due to
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the non-concave structure of the true value function.

x

V (x)

V̂t+1,j ≤ β + θT (x− α)

Vt+1,j(x)

x̂

V̂t+1,j = β + θT (x̂− α)

Vt+1,j(x̂)

Figure 2.13: The estimation gap between the cutting plane approximation and the
true value function in SDDP.

The strict requirement for concavity of the value function also makes it challenging

to solve multistage stochastic mixed integer programming (SMIP) problems using

SDDP. Due to the discrete variables that are present in the sub-problem, the value

function becomes a piecewise polyhedral function (Figure 3.14) and in many cases

discontinuous [68]. SDDP exploits the gradient of the cutting planes to explore new

state trajectories, and it does this through the dual variables. Therefore, having a

discontinuous value function makes either extracting the dual variables impossible or

their values meaningless. One can relax the SMIP models to be linear programs, which

will allow the dual variables to be extracted. However, this then creates the estimation

gap (Figure 3.13) [52].
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Figure 2.14: Example of a piecewise polyhedral value function (source: [68])

A number of authors have looked to extend SDDP methods to deal with non-convex

stage problems. The first approach replaces the non-convex components of the problem

with convex approximations as was done in [18] to convexify the hydro production

functions. The second approach convexifies the value function, e.g. using Lagrangian

relaxation techniques. A recent paper by [78] proposes a Lagrangian relaxation of the

SDDP sub-problem, and then uses the Lagrange multipliers to produce valid Bender’s

cuts. A similar approach is adopted by [77]. The contribution of [2] introduces a

heuristic to add locally valid cuts that enhances a convexified approximation of the

value function. Even though convexification may make the overall problem fit into

the SDDP framework, the computed policies may not be optimal with respect to the

original, non-convex problem. If we are dealing with a highly non-convex problem,

using these methods will still be subject to the estimation gap (illustrated in Figure

3.13) in which case convergence will never be achieved.

An altered version of the SDDP framework has been recently developed by [83]. In

their work they use Benders cuts, and the binary optimal cuts proposed by [45] to ap-
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proximate the value function with binary state variables. They use their algorithm to

solve the multistage capacity expansion problem under uncertainty. Methods proposed

by [83] and the contributions of this thesis, are early stages of extending algorithms

like SDDP.

2.4 Summary

In this chapter we introduced the hydro-bidding model, Model (3.1.1). Then, we dis-

cuss, in detail, its various components such as the state transition constraint known

as the water-balance constraint, which ensures conservation of the flow of water across

the hydro scheme, and the power generation function, which represents the energy

conversion of the energy potential of dammed water through the turbines in the hy-

dropower stations. We observe that power generation functions are nonlinear (i.e.

bilinear) functions that depend on the waterflow through the turbines and the net

headwater level of the reservoir. We critique various modelling approaches taken to

approximate this function when incorporating it inside the hydro-bidding problems.

We observe that due to integer variables, the non-concave power generation function

is difficult to incorporate inside Model (3.1.1). This is because non-concavity of the

power generation function makes Model (3.1.1) non-concave and hard to solve.

Based on these characteristics, we progress to methods of solving Model (3.1.1). We

discuss three fundamental methods in stochastic programming literature, stochastic

dynamic programming (SDP), stochastic mixed-integer programming (SMIP) with

scenario tree, and stochastic dual dynamic programming (SDDP). For each method, we

present variants of Model (3.1.1) and discuss their advantages and limitations. We then

apply these methods to various hydro schemes and under various parameter settings,

and analyze their performance in approximating the value function, producing optimal
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policies, and computational efficiency. When the hydro-bidding model is convex, we

illustrate that SDDP produces policies that are 99% of the optimal policy (Table 3.4),

but also accurately approximates the value function (Figure 3.10) all in reasonable

time.

Due to the cutting planes used by SDDP to approximate the value function, it cannot

guarantee convergence for non-convex SOCP. Non-concavity in the value function cre-

ates an estimation gap between the cutting plane approximation and the true value

function (Figure 3.13) that cannot be reduced. This can prevent SDDP from meeting

its convergence criteria. This is not an issue if the hydro-bidding model is inherently

convex, however as we have already illustrated that it is not the case. Hence, our

pursuit for solving non-convex hydro-bidding problems has led to the development of

a new method called the Mixed-Integer Dynamic Approximation Scheme (MIDAS).

MIDAS operates similarly to SDDP, but uses step functions to approximate the value

function instead of hyperplanes. This allows MIDAS to approximate monotonic in-

creasing value functions with continuous and integer state variables. In Chapter 5 we

present MIDAS and prove its almost sure convergence.



Chapter 3

Hydro-bidding in the balancing

market

In Chapter 3, we introduced the formulation for the hydro-bidding problem, and anal-

ysed various approaches to solving this multistage, stochastic optimization problem.

We observed that the stochastic dual dynamic programming (SDDP) method was

the best approach to solving convex hydro-bidding problems. SDDP produces near-

optimal policies with less computational effort than the other methods. However, it

cannot solve non-convex hydro-bidding problems. Since SDDP uses hyperplanes to

approximate the value function, it can only guarantee almost-sure convergence when

the value function is concave. However, when the hydro-bidding problem is noncon-

vex, either it contains nonlinear functions and/or discrete state variables, there is no

guarantee that SDDP will converge.

The balancing market is an intra-day market that adjusts the generation schedule

set by the day-ahead market to meet changes in the demand in near realtime (see

Chapter 2). The purpose of the balancing markets is to economically adjust this to-

tal generation in order to meet the observed demand. In each period, the generators
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participating in the balancing market, submit decremental bids and incremental offers

as price-quantity pairs. These offers and bids are based on their reference schedule

and maximum generation capacity. The incremental offer of a generator indicates

how much they would like to be compensated for generating extra power, while the

decremental bid indicates how much the generator is willing to compensate another

generator to meet their reduction in generation. Figure 4.1 depicts the potential

decremental bid and incremental offer a generator can provide based on their refer-

ence dispatch. The incremental offer, shown by the blue arrow (upwards), indicates

the quantity of power the generator can submit into the balancing market. The decre-

mental bid, illustrated by the green arrow (downwards), indicates the quantity that

the generator can reduce from their reference schedule.

Incremental offer

Decremental bid

Reference 
schedule

Maximum 
generation

Time

Generation

Figure 3.1: Illustration of how incremental offers and decremental bids are related to
the reference schedule for a hydro hydro producer.

In this chapter, we present a two-stage stochastic programming model called the Hydro

Electric River Bidding System (HERBS). HERBS is intended to compute balancing
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offerstacks for hydro producers to bid as price-taking agents into an intra-day balancing

market. We first describe the type of balancing market that we are studying in Section

4.1. Taking the proposed view of the balancing market, we describe the hydro-bidding

problem in this market design in Section 4.2. In particular, we describe how this

hydro-bidding problem is similar to the original hydro-bidding problem introduced in

Chapter 2. In Section 4.3, we introduce two-stage stochastic program called HERBS,

which stands for the Hydroelectric Reservoir Bidding System. We then use HERBS

in a rolling horizon fashion in order to construct multi-staged bidding policies. We

apply HERBS to two hydro schemes provided by EDF in Section 4.4 for the French

balancing market being implemented in 2017. As the rules of the future balancing

market in France have not yet been settled at the time of establishing HERBS, we

propose the balancing bid computation process discussed in Section 4.1. In Section

4.5, we discuss how the multistage offer policies of HERBS are sub-optimal, and show

that a multistage stochastic program is more appropriate. Furthermore, we discuss

why it is difficult to solve a multistage HERBS due to the non-convexities identified

in the model. Lastly, we conclude this chapter with a summary in Section 4.6.

3.1 Balancing Market Description

In this thesis,we look at a simplified balancing market with a central merit order, where

the decremental bids and the incremental offers are cleared for given load (demand).

This makes the balancing market similar to the intra-day electricity market described

at the beginning of this thesis in Section 2.1 of Chapter 2.

In each period, the market operator aggregates the incremental offers and the decre-

mental bids submitted by the generators. Then, balancing is managed around a ref-

erence dispatch of quantity Q at a reference price p0. Agents will be regulated up for
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offer price p bigger than p0, and regulated down for offer price p less than p0. Gener-

ators whose bids are accepted will be required to reduce their generation by their bid

quantity from their reference schedule, and be required to pay for this reduction at

the balancing price p. Generators whose incremental offers are accepted are required

to increase their generation by their offer quantity from their reference schedule. They

will be paid for their additional generation at the balancing price p.

Being regulated up is equivalent to selling extra power to the TSO at price p, where

the generator is paid p0 for their reference dispatch. For example, suppose that a

generator submits an incremental offer of 10MW on top of their reference dispatch of

100MW, and that they are regulated up by their offer. Then, they will be paid at

price p for the 10MW and p0 for the 100MW. They will receive in total 100p0 + 10p =

110p0 + 10(p − p0). They are paid p0 for the 110MW generated plus a bonus for

providing the regulation.

Being regulating down is equivalent to buying power back from the TSO at price p.

Suppose that a generator, with a reference dispatch quantity of 100MW, submits a

decremental bid of 10MW, and that they are regulated down by the TSO at their bid

quantity. They will be paid p0 for their reference dispatch quantity of 100MW and

their decremental bid by 10MW at price p. They will receive in total 100p0 − 10(p) =

90p0 +10(p0 −p). They are paid p0 for the 90MW generated plus a bonus for providing

the regulation.

Whenever a generator is dispatched on their balancing offer or bid, their reference

schedule is altered to the reference schedule. If they are dispatched at their bids

or offers, then they may be limited in the future to meet their re-declared schedule.

This creates a potential risk for the TSO to manage the grid in order to balance

generation and consumption for future periods. In order to incentivize offers and bids

which reduce this risk, a deviation penalty can be introduced. This deviation penalty
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penalizes the generators for submitting offers or bids for which they cannot feasibly

meet their re-declared schedule.

3.2 Hydro-bidding in a balancing market

Hydro generators, who manage a hydro scheme, competing in these markets have to

make a similar trade-off, like their counterparts participating in an intra-day market.

They have the same decision making framework, where they make the trade-off be-

tween maximizing their surplus they can earn from their balancing offers and bids in

the current period with the opportunity cost from the balancing prices in the future.

This makes the hydro-bidding problem described in Chapter 2 a good basis to study

hydro-bidding problems in a balancing market environment.

In each period the hydro generator participating in the balancing market is trying to

maximize their overall surplus, which is the profit from their current offers and bids

and the opportunity cost of the remaining water, as well as minimizing the cost of

deviation of their re-declared schedule from their reference schedule. They must be

able to meet their re-declared schedule feasibly across their hydro scheme if their offers

or bids are accepted. This leads to Problem 2. As we can see this problem is very

similar to the hydro-bidding problem defined by Problem 1.
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Objective: Maximize the expected profit from the

current offers, and minimze the

deviation penalty cost.

Subject to:

1. ensuring feasible generation of offered

quantities of power if dispatched,

2. meeting the physical constraints of the

hydro scheme, such as storage bounds

and water-flow balance,

3. meeting the operation constraints of the

turbines such as plant capacity and

power generation function,

4. meeting ancillary requirements, such as

primary and secondary reserve

requirements.

Problem 2: Statement of a general hydro-bidding in an intra-day balancing market as
a stochastic dynamic programming problem.

In the next section we introduce a two stage stochastic programming model called the

Hydroelectric Reservoir Bidding System (HERBS). HERBS is a two-stage stochastic

program, which computes the optimal supply curve for a generator with a hydro

scheme under stochastic balancing prices. The supply combines both the incremental

offers and the decremental bids as one supply curve. Incremental offers are represented

as positive price-quantity pairs while decremental bids are negative price and negative

quantity pairs. An illustration of a supply curve is provided in Figure 4.2.
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3.3 HERBS model formulation

As mentioned earlier, HERBS is a two-stage stochastic programming model for com-

puting optimum balancing supply curves under stochastic balancing price. It is for-

mulated for a hydro scheme consisting of a set of reservoirs R, and a set of stations

S, across T time periods. The random variable is the balancing price PT . This is

equivalent to p, which is used to describe the balancing market price in Section 4.1.

It is partitioned by 2M + 1 price intervals as,

{[p1, p2), [p1, p2), , . . . , [pM−1, pM), . . . , [pM , pM+1), [pM+1, pM+2), . . . , [p2M , p2M+1)} ,

(3.3.1)

and modelled as a Markov price process as described in Section 3.1.1 of Chapter

4. Like in Section 3.1.1 πt,j represents the conditionally expected price, and ρij(t)

represents the probability of being dispatched in tranche j, given the balancing price

Pt ∈ [pi, pi+1), in time period t.

The hydro generators offer a monotonic supply curve to the balancing market. The

curve contains 2M price-quantity pairs with positive prices, defined as,

{(p1, o1), (p2, o2), . . . , (pM , oM), . . . , (pM+1, oM+1), (pM+2, oM+2), . . . , (p2M , o2M)}.

(3.3.2)

Within the supply curve, there are M decremental bids and M incremental offers.

The incremental offers of M tranches are represented by the price-quantity pairs, with

the price being above the market-clearing price in the supply curve. This means that

the generator is regulated up, where they generate additional power on top of their

reference schedule. On the other hand, the M decremental bids are modelled as price-
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quantity pairs where the prices are below the market-clearing price in the supply curve.

The hydro generator in decremental bid is regulated down. This means that they will

generate below their reference schedule, and thus will have to purchase energy from

the market in order to meet their shortfall. An example supply curve is illustrated in

Figure 4.2, which show the incremental offers that are above the market-clearing price

p0 (i.e. (p4, ot,4) ≥ (p3, ot,3) and p3 ≥ p0), and decremental bids that are below p0 (i.e.

(p1ot,1) ≤ (p2, ot,2) and p2 ≤ p0). The supply curve needs to be monotonic in order

to determine a unique market clearing price. To ensure monotonic supply curves, we

enforce adjacent supply quantities to be monotonic increasing, where ot,j ≤ ot,j+1 if

pj < pj+1 for j = 1, 2, . . . , 2M .

p1

p2

p3

p4

ot,3 ot,4ot,2

p0

pt,2

pt,3

pt,1

p5

pt,4

ot,1

Quantity (MWh)

Price ($/MWh)

Figure 3.2: Illustration of the supply curve of a generator participating in the balancing
market. Prices below the market-clearing price p0 represent decremental bids, and
prices above p0 are incremental offers.

In this model, the hydro generator begins with a reference schedule qa
t (MWs) from the

day-ahead market. Whenever an offer j is accepted it changes the reference schedule
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qa
t to the re-declared dispatch,

yt,j = qa
t + ot,j, for t = 1, 2, . . . , T. (3.3.3)

Because of the physical constraints of the hydro scheme, the actual quantity gt,j, called

the realized dispatch, can be different from the yt,j schedule. The realized dispatch

will satisfy the constraints of the hydro scheme such as the water-balance constraint,

and will be as close as possible to the yt,j. If the realized dispatch gt,j is different

from the re-declared dispatch yt,j then the hydro generator will incur a penalty on the

amount of negative deviation,

δ−
t,j = yt,j − gt,j ≥ 0, (3.3.4)

as well as the amount of positive deviation,

δ+
t,j = gt,j − yt,j ≥ 0. (3.3.5)

Model (4.3.8) describes the two-stage, hazard-decision based, stochastic program called

HERBS. In the first stage, denoted by the starting period index k, the generator

computes their supply curve that maximizes their expected pay-off as,

M∑
j=1

ρi,j(t)πk,jok,,j (3.3.6)

in period k across the M price scenarios.

Based on the observed cleared balancing price Pt in period t = k and their re-declared

dispatch, the hydro generator will try to generate close to their re-declared schedule
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yt,j for periods t = k +1, . . . , T , in order to minimize their expected deviation penalty,

M∑
j=1

ρi,j(k)
 T∑

t=k+1
Pt,j(δ+

t,j + δ−
t,j)
 , (3.3.7)

across the M price scenarios.This leads to the objective in the model which is to

maximize the net profit in Equation (4.3.8).

Constraints (4.3.8a), (4.3.8b), (4.3.8l), and (4.3.8m) in HERBS represent the hy-

dro scheme constraints, such as the water balance constraint (4.3.8a), the flow and

storage bounds (4.3.8l) and (4.3.8m), and the initialization of the storage constraint

(4.3.8b).These constraints have been discussed in detail in Chapter 3.

Constraints (4.3.8f) to (4.3.8g) define the offers and bids, and the re-declared schedules

according to Equation (4.3.3). The set of constraints (4.3.8h), (4.3.8i), (4.3.8j), and

(4.3.8k) define the positive and negative deviations according to equations (4.3.4) and

(4.3.5). Two binary variables v+
t,j and v−

t,j have been added in order to select between

the positive and negative deviations. When v+
t,j = 1 it enforces either a 0 or positive

deviation, where gt,j − yt,j ≥ 0. The opposite occurs when v−
t,j = 1, where it enforces

either 0 or positive deviation, where yt,j − gt,j ≥ 0.

In HERBS, the production is represented as a discrete set of Li,s production states.

For each period t = k, k + 1, . . . , T and station s there are Li,s pairs of (θi,s,l, ηi,s,l)

that represent the water discharge and the equivalent power generation pairs. The

parameter θi,s,l in the pair represents the water discharge (in cubic meters) through

the turbines and ηi,s,l represents the respective power (in MWh’s). These pairs are

coupled, through constraints (4.3.8c) and (4.3.8d), by the binary variable zi,j,s,l that

selects the optimal water discharge and power generation pairs for each period, and

station (i.e. when zi,j,s,l = 1, pair l with (θi,s,l, ηi,s,l) is selected). At most, one discrete

production pair can be selected for each station s, therefore constraint (4.3.8e) is added

to ensure that at most one zi,j,s,l can be equal to 1.
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Model (4.3.8) is executed in a rolling horizon fashion, where at the reference period

k, Vk(x) is solved. Then, the balancing market price Pt is computed, and the re-

declared dispatch instructions for the j’th cleared offer are followed. Afterwards,

HERBS iterates to the next bidding period k + 2 and the process is carried out again.

V (x, i, k) = max
M∑

j=1
ρi,j(k)

πk,jok,j −
T∑

t=k+1
Pt,j(δ+

t,j + δ−
t,j)


subject to:

(3.3.8)
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xt+1,j,r = xt,j,r +
∑
s∈S

Ar,sut,j,s + ωi,j,r for j = 1, . . . , 2M,

for r ∈ R,

and t = k, k + 1, . . . , T,

(3.3.8a)

xk,j,r = xr for j = 1, . . . , 2M,

for r ∈ R,

(3.3.8b)

qt,j =
∑
s∈S

Lt,s∑
l=1

ηt,s,lzt,j,s,l for j = 1, . . . , 2M,

and t = k, k + 1, . . . , T,

(3.3.8c)

ut,j,s =
Lt,s∑
l=1

θt,s,lzt,j,s,l for j = 1, . . . , 2M,

for s ∈ S,

and t = k, k + 1, . . . , T,

(3.3.8d)

Lt,s∑
l=1

zt,j,s,l ≤ 1 for j = 1, . . . , 2M,

for s ∈ S,

and t = k, k + 1, . . . , T,

(3.3.8e)

ot,j ≤ ot,j+1 for j = 1, . . . , 2M − 1, (3.3.8f)

ot,j = yt,j − qa
t for j = 1, . . . , 2M,

and t = k, k + 1, . . . , T,

(3.3.8g)
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δ−
i,j ≤ δ̄v−

t,j for j = 1, . . . , 2M,

and t = k + 1, . . . , T,

(3.3.8h)

δ+
i,j ≤ δ̄v+

t,j for j = 1, . . . , 2M,

and t = k + 1, . . . , T,

(3.3.8i)

v+
i,j + v−

i,j = 1 for j = 1, . . . , 2M,

and t = k + 1, . . . , T,

(3.3.8j)

δ+
i,j − δ−

i,j = yi,j−gt,j for j = 1, . . . , 2M,

and t = k + 1, . . . , T,

(3.3.8k)

ui,j,s ∈ [us, min {xi,r, us}] for j = 1, . . . , 2M,

for s ∈ S,

and t = k, k + 1, . . . , T,

(3.3.8l)

xi,j,r ∈ [xr, xr] for j = 1, . . . , 2M,

for r ∈ R,

and i = t, t + 1, . . . , T.

(3.3.8m)

zi,j,s,l ∈ {0, 1} for j = 1, . . . , 2M,

for s ∈ S,

for l = 1, . . . , Li,s,

and i = 1, t + 1, . . . , T,

(3.3.8n)

v+
t,j, v−

t,j ∈ {0, 1} for j = 1, . . . , 2M,

and t = k + 1, . . . , T,

(3.3.8o)

δ+
i,j, δ−

i,j ≥ 0 for j = 1, . . . , 2M,

and t = k + 1, . . . , T,

(3.3.8p)

yi,j, gt,j ≥ 0 for j = 1, . . . , 2M,

and t = k + 1, . . . , T.

(3.3.8q)
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3.4 Computing balancing bids using HERBS

HERBS was applied to two French hydro schemes, provided by EDF. These two hydro

schemes are called Roselend and Agout. Roselend is a single reservoir, single station

hydro scheme with the topology shown in Figure 4.3a. Agout, on the other hand, is

a hydro scheme with 4 reservoirs and stations in cascade with its topology illustrated

in Figure 4.3b.

(a) Roselend

(b) Agout

Figure 3.3: The topology of the Roselend (left) and Agout (right) hydro scheme in
France.

A 96-period bidding horizon of the HERBS model was used to compute the supply

curve for both of these hydro schemes. The daily price of a day in March 2013 from

the French balancing market was used as the price realization. Due to the commercial

sensitivity of the prices and the supply curves computed by HERBS, we regrettably
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are not able to indicate the exact values of the price-quantity pairs and re-declared

schedules. Figure 4.4 illustrates the supply curve for Roselend in period 65, with

Figure 4.5 showing the dispatch following each price-quantity pair of either offer or

bid. As we can see, in period 65 Roselend’s supply curve had 5 unique tranches, none of

which required the station to incur any deviation penalties from the realized dispatch.

However, based on the offers, Roselend was willing to reduce its generation for period

65 to 0 for the minimum bid (i.e. decremental bid), and increase its generation well

above the reference dispatch for the maximum generation quantity (i.e. incremental

offer).

Figure 3.4: Supply curve for Roselend at period 65.
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Figure 3.5: Dispatch following each price-quantity pairs in the supply curve for Rose-
lend at period 65.

The supply curve for Agout only contains 3 unique price-quantity pairs (Figure 4.6),

even though the model requires it to produce 5 price-quantity pairs. This is due to

some of the price-quantity pairs being equal. However, for each pair, Agout is willing to

incur deviation penalties in order to meet these quantities (Figure 4.7). This occurs

when the revenue from the balancing price is higher than the cost of incurring a

deviation penalty. Therefore, it becomes economical for the hydro generator, in this

case EDF, to provide offers with deviation penalties.
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Figure 3.6: Offerstack for Agout at period 65.

Figure 3.7: Dispatch following each bids for Agout at period 65.

The benefit of using a rolling horizon method for HERBS is that the majority of the

policies will be based around the reference dispatch qa
t as any deviations from yt,j are

penalized. Unless the forecasted load in the day-ahead market is significantly different
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from the actual load with high balancing prices, there is little incentive for any hydro

generator to incur the penalty and deviate away from their re-declared schedule. Hence

the balancing bids offered by the hydro generator will ensure that their re-declared

dispatch does not incur any penalties in future periods. This is good for the TSO

because they will not receive extreme offers that are infeasible for dispatching the

power across the grid.

3.5 Limitations of HERBS

Since HERBS is a two-stage stochastic program, it assumes that all balancing price

periods for k + 1 to T will be observed in the second stage. In reality this is incorrect

because the balancing market operates as an intra-day market, where market prices

are observed sequentially over time. In this case, the future balancing price scenarios

Pt will likely be different. Therefore, the policies that are produced by HERBS will

be sub-optimal. It is more appropriate to model the balancing price using a scenario

tree and solve HERBS as a multistage stochastic program.

The penalization term ∑T
t=k+1 Pt(δ+

t,j + δ−
t,j) is the sum of all deviations from periods

k+1 to T . This can make the term greater than the profit earned from the current bid

during initial periods, when there is a large number periods between k + 1 and T , of

the overall bidding horizon. Therefore, the hydro generator will incur large deviation

penalties, which will prevent them from offering more quantities of balancing power

early in the day. As the algorithm progresses towards the latter trading periods, the

sum of the penalization terms becomes smaller making it more profitable to offer

bids that incur deviation penalties. This is not an optimal policy, as ideally a hydro

generator wants to have the waterstock in their hydro scheme at optimal levels during

the day ready for future high prices. Furthermore, the penalty term discriminates
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against offers in early trading periods, where the hydro generator may have greater

flexibility to adapt to changes in their schedules as opposed to later in the day.

In order to produce better bidding policies, we need to model the overall participation

in the balancing market as a multistage stochastic programming problem, like the

hydro-bidding models presented in Chapter 3. This will ensure that the hydro genera-

tor constructs policies that arbitrage between different bidding periods while incurring

minimum deviation penalties. However, formulating HERBS as a multistage stochas-

tic programming problem runs into the curse of dimensionality [61], particularly when

solving large hydro schemes with many reservoirs. Due to discrete production levels

makes the multistage version of HERBS non-convex. This means that methods such

as SDDP may not produce optimal policies and guarantee convergence. When the

stage problems are convex, we might apply SDDP to these models. However, since

we are dealing with discrete production levels, the HERBS stage problems are not

convex.

3.6 Summary

In this chapter we presented a hydro-bidding model called Hydro Electric River Bid-

ding System (HERBS). HERBS computes supply curves for hydro generators bidding

as price-taking agents into a balancing market. A balancing market economically ad-

justs the total generation in order to meet the changes in the demand in real time.

Hydro generators in a balancing market begin with a reference schedule set by the

day-ahead market. They then submit a supply curve, which has both positive price-

quantity pairs (i.e. incremental offers) and negative price-quantity pairs (i.e. decre-

mental bids). The incremental offers indicate how much additional energy, on top

of the reference schedule, the hydro generator is willing to generate at a particular
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price. The decremental bids indicate how much energy the hydro generator is willing

to compensate the market for allowing it to reduce its generation from the reference

schedule. Based on these offers a hydro generator may be dispatched by the TSO on

either its offer or bid. Whenever a hydro generator is dispatched on non-zero balancing

bid or offer their reference schedule changes to a re-declared schedule, which takes into

account their new generation requirement. If a hydro generator is unable to match

its re-declared schedule it incurs a deviation penalty. The objective of HERBS, is to

compute a bidding policy that maximizes the profit from incremental offers and decre-

mental bids, and minimizes the cost of deviating away from the re-declared schedule.

HERBS was applied to two hydro schemes, called Roselend and Agout (figures 4.3a

and 4.3b). It was observed that Roselend offered 5 price-quantity pairs, none of which

incurred any deviational penalties. The supply curve of Agout on the other hand

incurred deviation penalties in order to clear its offers. This indicates that it might be

profitable to incur deviation penalties in order to obtain a better profit. The benefit of

using a rolling horizon method for this problem is that a majority of the policies will be

based around the reference dispatch as any deviation from the re-declared dispatch is

penalized. Unless the forecasted load in the day-ahead market is significantly different

from the actual load with high balancing prices, there is little incentive for any hydro

generators to incur the penalty and deviate away from their re-declared schedule.

As HERBS is a two-stage stochastic program, executed in a rolling horizon, its offer

policies are sub-optimal. The hydro generator does not arbitrage between different

offers in different time periods. This is because at the beginning iterations of the

algorithm, when it is cycling through the first few periods, the penalization term is

greater than the profit that can be earned from the current bid. Hence the generator

will not produce bids that will incur any penalties. But, as the algorithm progresses

towards the latter trading periods the sum of the penalization terms become smaller,
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and so it becomes more economical to offer bids that incur deviation penalties.

The second stage of HERBS assumes that all prices are observed for future periods.

As the balancing market is an intra-day market, the price is observed sequentially. In

order to produce multistage offer policies that take into account sequential observations

of the price, a multistage HERBS model would be more appropriate, with the price

modeled as a random process.

In order to re-formulate HERBS as a multistage stochastic programming problem we

run into the curse of dimensionality. This is due to the discrete production levels of

HERBS, which make it a non-convex hydro-bidding problem. Our pursuit to solve a

non-convex version of HERBS has led us to the development of a new decomposition

method MIDAS (Mixed Integer Dynamic Approximation Scheme). In the next chap-

ter, Chapter 5, we introduce MIDAS and prove its almost sure convergence for integer

and continuous state variables.



Chapter 4

The Mixed Integer Dynamic

Approximation Scheme

In Chapter 2, we stated the key challenges to solving hydro-bidding models. These

are: dealing with non-convex hydro-bidding models, incorporating price uncertainty,

and modeling effects of reservoir head levels inside the power generation function.

In Chapter 3, we formulated the hydro-bidding problem as a multi-stage stochastic

programming problem. Taking the base formulation we analyzed various stochastic

programming solution methods and showed that the Stochastic Dual Dynamic Pro-

gramming (SDDP) method has an advantage in solving the hydro-bidding problem

compared with other methods. We also discussed its requirement for concavity in

the value function. In Chapter 4, we introduced the model HERBS (Hydro-Electric

Reservoir Bidding System) a 2-stage stochastic mixed integer program, hydro-bidding

model for an intra-day balancing market. We solved HERBS in a rolling horizon

fashion across a 48-period planning horizon.

Since each stage problem in HERBS is not convex, due to the integer variables, we

cannot guarantee that using SDDP to solve HERBS will converge to an optimal policy.
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We can convexify HERBS by relaxing the discrete variables or using other decompo-

sition methods like Lagrangian relaxations, but this yields at best an approximate

solution, which is limited by the lack of the integer variables. HERBS can also be

formulated as a dynamic programming problem, but will quickly run into the curse

of dimensionality if we increase the number of price scenarios and reservoirs in the

hydro-scheme.

In order to solve models like HERBS, we have developed a new algorithm called the

Mixed-Integer Dynamic Approximation Scheme (MIDAS). MIDAS is a sampling algo-

rithm similar to SDDP that solves multi-stage stochastic programming models where

the value function is nonconcave. It works similarly to SDDP, where it uses a forward

simulation (i.e. the forward pass) to compute new states, and a backward recursion

step (i.e. the backward pass) at the visited states in order to update the value-function

approximation. We refer the reader to Section 3.2.3 of Chapter 3 for greater detail in

how SDDP can be used to solve hydro-bidding models that are convex. In contrast

to SDDP, which uses cutting planes, MIDAS uses step functions to approximate the

value function. By using step functions, we can approximate the nonconcave nature

of the value function.

In this chapter, we describe MIDAS, and prove its almost-sure convergence. We be-

gin by outlining the approximation of Vt(x) that is used by MIDAS. In Section 5.2,

we prove the convergence of MIDAS to a 2Tε-optimal solution to a multistage de-

terministic optimization problem. Lastly, in Section 5.3, we extend our proof to a

sampling-based algorithm applied to the multistage stochastic optimization problem,

and demonstrate its almost-sure convergence.
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4.1 Solving a static problem using MIDAS

Consider first the case of a static problem: T = 1, in a deterministic setting. The

problem can then be written in the form

max
u∈U

r(u) + R(f(u)). (4.1.1)

Here the decision set U is a compact (possibly discrete) subset of RM . With u ∈ U

is associated with the “state” f(u), f : U → X, where X is the set of feasible states,

a compact subset of RN . The cost functions are r : U → R and R : X → R, with r

and R ◦ f upper semicontinuous, Denote by 1 a vector with all components equal to

1. We assume the existence of δ > 0, ε ≥ 0, such that

R(x) ≤ R(y) + ε, if x ≤ y + δ1, for all x, y in X. (4.1.2)

Remark 1. (i) We do not assume that R is nondecreasing, but in that case ε may

have large values. So we can call the above condition an approximate nondecreasing

condition.

(ii) If U (and hence X) is a discrete set, and R is nondecreasing, then (5.1.2) is satisfied

by taking δ less than the distance between two distinct points of X, and ε = 0.

(iii) Since X is compact, if R is continuous and nondecreasing, since R is uniformly

continuous, for any ε > 0, we can find δ > 0 such that (5.1.2) holds.

Before stating an algorithm, let us explain how to compute an approximation of the

function R(x). Let R̄ ≥ max{R(x); x ∈ X}. Given a sequence xk in X, with k = 1

to H, set

qk := R(xk). (4.1.3)
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Define the set

Ωk = {
(
xh, qh) : h = 1, 2, . . . , k − 1

}
. (4.1.4)

The set of supporting indices (at step k) of x ∈ X is defined as

Hk(x) := {h : 1 ≤ h < k, xi < xh
i + δ, i = 1, . . . , N}. (4.1.5)

Consider also the following function, that may be viewed as an approximation of the

function R (see the lemma below):

Qk(x) =


R̄ if Hk(x) is empty,

min
{
qh : h ∈ Hk(x)

}
otherwise.

(4.1.6)

Note the strict inequality in (5.1.5); by virtue of this, the function Qk(x) is upper

semicontinuous.

Lemma 1. (i) The function Qk is nondecreasing and upper semicontinuous in x, and

nonincreasing in k:

Qk+1(x) ≤ Qk(x), x ∈ X. (4.1.7)

(ii) We have that

R(x) ≤ Qk(x) + ε, for any x ∈ X, (4.1.8)

k ∈ Hk+1(xk), for any k, (4.1.9)

Qk+1(xk) ≤ qk, for any 1 ≤ k ≤ H. (4.1.10)

Proof. (i) That Qk is nondecreasing as a function of x, follows from the fact that Hk(x)

is itself nonincreasing as a function of x. That Qk is nonincreasing as a function of
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k follows from the fact that Hk(x) is itself nondecreasing as a function of k. Upper

semicontinuity of Qk follows directly from its definition.

(ii) If Hk(x) is empty, (5.1.8) obviously holds, since then Qk(x) ≥ R(x). Assume now

that Hk(x) is not empty. Let x ∈ X and h ∈ Hk(x). By (5.1.2) and the definition of

Hk(x), we get

R(x) − ε ≤ R(xh) = qh. (4.1.11)

Minimizing over k ∈ Hk(x) and using (5.1.6) yields (5.1.8). Since trivially xk
i < xk

i +δ,

for i = 1 to N , we have (5.1.9), and applying (5.1.6) then gives (5.1.10). �

Two examples of the approximation of Q(x) by Qk(x) are given in Figure 5.1 and

Figure 5.2.

x

Q(x)

0.0 0.2 0.4 0.6 0.8 1.0
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Figure 4.1: Approximation of Q(x) = x + 0.1 sin(10x) shown in grey, by piecewise
constant Qk(x), shown in black. Here δ = 0.05 and xh = 0.2, 0.4, 0.6, 0.8.
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x1

x2

q4

q3

q2

q1

Figure 4.2: Contour plot of Qk(x) when k = 4. The circled points are xh, h = 1, 2, 3, 4.
The darker shading indicates increasing values of Qk(x) (which equals Q(xh) in the
region containing xh.)

The definition of Qk in terms of supporting indices is made for notational convenience.

In practice Qk(x) is computed using mixed integer programming (hence the name

MIDAS). We propose one possible formulation for doing this in Section 5.5.

We propose the following algorithm:

Algorithm 3 Static MIDAS

1. Set k = 1, Ωk = ∅, and Qk(x) = R̄.

2. Forward pass:

(a) Solve max
u∈U

{
r(u) + Qk(f(u))

}
to give uk;

(b) If
∥∥∥f(uk) − xh

∥∥∥
∞

< δ for some 1 < h < k, then set xk := xh, else set

xk := f(uk).

3. Backward pass: Ωk+1 := Ωk ∪
{
(xk, qk)

}
, where qk := R(xk).

4. Stopping test: Set εk := Qk(f(uk)) − Qk+1(f(uk)). If εk ≤ ε̄, set H := k, and

stop.



4.1 Solving a static problem using MIDAS 87

5. Increase k by 1 and go to step 2.

Remark 2. (i) The maximum in step 2(a) is attained if U is a discrete set, and more

generally if f is continuous, since r and Qk are upper semicontinuous, the latter as a

consequence of lemma 1.

(ii) Note that εk ≥ 0.

Theorem 1. (i) At any iteration k, uk is a (2ε + εk)-solution of problem (5.1.1).

(ii) The stopping test is activated after finitely many iterations.

Proof. (i) Denote by V the value of problem (5.1.1). Since ∥xk − f(uk)∥∞ < δ, we

have that

k ∈ Hk+1(f(uk)). (4.1.12)

Therefore

V = max
u∈U

(r(u) + R(f(u))) definition of V

≤ max
u∈U

(
r(u) + Qk(f(u))

)
+ ε by (5.1.8)

= r(uk) + Qk(f(uk)) + ε definition of uk

= r(uk) + Qk+1(f(uk)) + ε + εk definition of εk in the algorithm

≤ r(uk) + qk + ε + εk consequence of (5.1.12) and (5.1.6)

≤ r(uk) + R(f(uk)) + 2ε + εk consequence of (5.1.2) and ∥xk − f(uk)∥∞ < δ.

(ii) Since the algorithm generates finitely many points, after finitely many iterations,

Qk+1 = Qk, and consequently εk = 0. The conclusion follows. �

Remark 3. (i) Once convergence of the algorithm is obtained, so that a 2ε+εH-solution

has been found, one can choose to continue the computations with a smaller value of

ε. This may be efficient for avoiding small steps that would occur when taking a small

value of ε at first.
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(i) If the set X is discrete and if R is nondecreasing, taking δ > 0 less than the ℓ∞

distance between two distinct points in X, we can take ε = 0. The output of the

above algorithm is then a solution of (5.1.1).

4.2 Multistage optimization problems

In this Section we describe the MIDAS algorithm for a deterministic multistage opti-

mization problem, and prove its convergence. Given an initial state x̄, we consider a

deterministic optimization problem of the form:

MP: max
x,u

T∑
t=τ

rt(xt, ut) + R(xT +1)

s.t. xt+1 = ft(xt, ut), t = τ, . . . , T,

x1 = x̄,

ut ∈ Ut(xt), xt ∈ Xt, t = τ, . . . , T.

Here 1 ≤ τ ≤ T+1. We have the state constraint xt ∈ Xt, where Xt is a compact subset

of RN , and for each xt ∈ Xt, Ut(x) is a compact subset of RM . The multimapping

from Xt to the set of subsets of Rm, x 7→ Ut(x) is assumed to be compatible with the

state constraint, in the sense that ft(xt, ut) ∈ Xt+1, whenever xt ∈ Xt and ut ∈ Ut(xt).

We denote by Vτ (xτ ) the value of the above problem with initial value of the state

equal to xτ . It is well known that Vt satisfies the dynamic programming principle


Vt(x) = supu∈Ut(x){rt(x, u) + Vt+1(ft(x, u))}, t = 1, . . . , T,

VT +1(x) = R(x).
(4.2.1)

Let V̄ be an upper bound on Vt(x), t = 1, 2, . . . , T + 1. We assume that there exist
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δ > 0 and ε ≥ 0 such that the following approximate nondecreasing condition holds:

Vt(x) ≤ Vt(y) + ε, if x ≤ y + δ1, for all x, y in Xt, t = 2 to T + 1. (4.2.2)

Note that for t = 1 we need no such condition, since we need to estimate V1 only at

the point x̄. In the multistage case, we approximate each stage value function Vt(x)

with a piecewise constant function Qk
t (x). At each stage t we have a sequence xk

t ∈

Xt, k = 1, . . . , H. We will define the associated numbers qk
t later, and set

Ωk
t = {(xh

t , qh
t ) : h = 1, . . . , k − 1}, for all t = 1, . . . , T + 1.

Given these we now define the set of supporting indices

Hk
t (x) := {1 ≤ h < k; xti < xh

ti + δ, i = 1, . . . , N}, (4.2.3)

as well as the following approximations of the Bellman functions:

Qk
t (x) =


V̄ if Hk

t (x) is empty,

min
{
qh

t : h ∈ Hk
t (x)

}
otherwise.

(4.2.4)

We will make use of the following simple result.

Lemma 2. If h < k and
∥∥∥x − xh

t

∥∥∥
∞

< δ then Qk
t (x) ≤ qh

t .

Proof. We have xi < xh
ti + δ, i = 1, . . . , N , so h ∈ Hk

t (x). Thus Qk
t (x) ≤ qh

t as

required. �

The deterministic MIDAS algorithm (Algorithm 4) generates a sequence of functions

Qk
t (x), t = 1, . . . , T + 1. For each k we define:
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forward-step decision:

uk
t ∈ arg max

u∈Ut(xk
t )

{
rt(xk

t , u) + Qk
t+1(ft(xk

t , u))
}

; (4.2.5)

the backward-step decision:

ûk
t ∈ arg max

u∈Ut(xk
t )

{
rt(xk

t , u) + Qk+1
t+1 (ft(xk

t , u))
}

; (4.2.6)

the optimal decision:

u∗
t−1 ∈ arg max

u∈Ut−1(xk
t−1)

{rt−1(xk
t−1, u) + Vt(ft−1(xk

t−1, u))}; (4.2.7)

the stage error :

εk,t := Qk
t+1(ft(xk

t , uk
t )) − Qk+1

t+1 (ft(xk
t , uk

t )), t = 1, . . . , T. (4.2.8)

Note that εk,t ≥ 0. Given ε̄ ≥ 0, the stopping test is

T∑
t=1

εk,t ≤ ε̄. (4.2.9)
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We can now write down the steps of the algorithm as follows.

Algorithm 4 Deterministic MIDAS

1. Choose ε̄ ≥ 0, and set k = 1, Ωk
t = ∅, and Qk

t (x) = V̄ an upper bound on Vt(x),

t = 1, 2, . . . , T + 1.

2. Forward pass: Set xk
1 = x̄. For t = 1 to T ,

(a) Solve max
u∈Ut(xk

t )

{
rt(xk

t , u) + Qk
t+1(ft(xk

t , u))
}

to give uk
t ;

(b) If
∥∥∥ft(xk

t , uk
t ) − xh

t+1

∥∥∥
∞

< δ for h < k then set xk
t+1 = xh

t+1, else set xk
t+1 =

ft(xk
t , uk

t ).

3. Backward pass: Set Ωk+1
T +1 = Ωk

T +1 ∪
{
(xk

T +1, qk
T +1)

}
where qk

T +1 := R(xk
T +1).

For every t = T down to 1,

(a) Compute qk
t = max

u∈Ut(xk
t )

{
rt(xk

t , u) + Qk+1
t+1 (ft(xk

t , u))
}
;

(b) Set Ωk+1
t = Ωk

t ∪
{
(xk

t , qk
t )
}
.

4. Stopping test: if (5.2.9) holds, set H := k, and stop.

5. Increase k by 1 and go to step 2.

Lemma 3. For all iterations k,


(i) Qk

t (x) ≥ Vt(x) − (T + 2 − t)ε, for all x ∈ Xt, t = 2, . . . , T + 1,

(ii) qk
1 ≥ V1(x̄) − Tε.

(4.2.10)

Proof. (i) We prove (5.2.10)(i) by backward induction. For t = T +1, the result follows

from Lemma 1 since VT +1(x) = R(x) for all x ∈ XT +1. Now let (5.2.10) hold for some
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2 < t ≤ T + 1. It follows that for every k

qk
t−1 = max

u∈Ut−1(xk
t−1)

{
rt−1(xk

t−1, u) + Qk+1
t (ft−1(xk

t−1, u))
}

definition of qk
t−1

≥ rt−1(xk
t−1, u∗

t−1) + Qk+1
t (ft−1(xk

t−1, u∗
t−1)) definition of a maximum

≥ rt−1(xk
t−1, u∗

t−1) + Vt(ft−1(xk
t−1, u∗

t−1)) − (T + 2 − t)ε induction hypothesis

= Vt−1(xk
t−1) − (T + 2 − t)ε. definition of u∗

t−1

(4.2.11)

Now let x ∈ Xt−1, and h ∈ Hk
t−1(x). Then xi < xh

t−1,i + δ, i = 1 to N . If t ≥ 3, by

(5.2.2) and (5.2.11), we get that

Vt−1(x) ≤ Vt−1(xk
t−1) + ε ≤ qh

t−1 + (T + 3 − t)ε. (4.2.12)

Minimizing over h ∈ Hk
t−1(x) and using (5.1.6) we obtain that (5.2.10) holds for t − 1.

Point (i) follows.

(ii) In step (a) of this proof, we have obtained (5.2.11) also when t = 2, which upon

setting xk
1 = x̄ becomes

qk
1 ≥ V1(x̄) − Tε, (4.2.13)

so (5.2.10)(ii) follows. �

Lemma 4. (i) For each iteration k,

V1(x̄) ≤
T∑

t=1
rt(xk

t , uk
t ) + R(xk

t+1) + Tε +
T∑

t=1
εk,t. (4.2.14)

(ii) The algorithm terminates after finitely many iterations at iteration k = H, and

the resulting pseudo trajectory satisfies

V1(x̄) ≤
T∑

t=1
rt(xH

t , uH
t ) + R(xH

t+1) + Tε + ε̄. (4.2.15)
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Proof. (i) After step 2(b) of iteration k we have, for t = 1 to T :

∥∥∥xk
t+1 − ft(xk

t , uk
t )
∥∥∥

∞
< δ.

So, ft(xk
t , uk

t ) < xk
t+1 + δ1. This implies

k ∈ Hk+1
t (ft(xk

t , uk
t )). (4.2.16)

We also have that, for t = 1 to T :

qk
t = rt(xk

t , ûk
t ) + Qk+1

t+1 (ft(xk
t , ûk

t )) by (5.2.6) and the definition of qk
t

≤ rt(xk
t , ûk

t ) + Qk
t+1(ft(xk

t , ûk
t )) by the monotonicity of k 7→ Qk

t+1

≤ rt(xk
t , uk

t ) + Qk
t+1(ft(xk

t , uk
t )) by the definition of uk

t in (5.2.5)

= rt(xk
t , uk

t ) + Qk+1
t+1 (ft(xk

t , uk
t )) + εk,t by the definition of εk,t

≤ rt(xk
t , uk

t ) + qk
t+1 + εk,t by (5.2.16).

Also,

qk
T +1 = R(xk

T +1). (4.2.17)

Summing the previous inequalities and equality, we get that

qk
1 ≤

T∑
t=1

rt(xk
t , uk

t ) + R(xk
T +1) +

T∑
t=1

εk,t. (4.2.18)

By Lemma 3 for t = 1, we have that

V1(x̄) ≤ qk
1 + Tε. (4.2.19)

The result follows by combining (5.2.18) and (5.2.19).

(ii) The algorithm visits finitely many points. So, by backward induction over t, we
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get that the pairs (xk
t , qk

t ) also take finitely many values. So, for large enough k, if

the algorithm does not stop, the functions Qk
t do not depend on k, and therefore all

εk,t = 0. But this contradicts the fact that the stopping test is never satisfied. �

The previous result applies to the sequence (xH
t , uH

t ) which satisfies

∥xt+1 − ft(xt, ut)∥∞ < δ, t = 1, . . . , T. (4.2.20)

Assume that with any such pseudo trajectory, we can associate a true trajectory by

increasing the cost by some nonnegative amount cδ. Denote by (x̄H
t , ūH

t ), for t = 1 to

T +1, such a trajectory associated with (xH , uH). We get then the following corollary:

Corollary 1. Set ε̂H := Tε+∑T
t=1 εH,t+cδ. We have that, at each iteration 1 ≤ k ≤ M :

of the algorithm:

V1(x̄) ≤
T∑

t=1
rt(x̄H

t , ūH
t ) + R(x̄H

t+1) + ε̂H . (4.2.21)

In particular, the output trajectory (x̄H , ūH) is Tε + ε̄ + cδ optimal.

The previous result is rather weak in that it gives no bounds of the size of cδ. If

we set ε̄ = 0, then we can obtain a bound on optimality for the trajectory obtained

when the algorithm terminates. This will occur at iteration k = H when for every

t = 1, 2, . . . , T ,

QH
t+1(ft(xH

t , uH
t )) − QH+1

t+1 (ft(xH
t , uH

t )) = 0, t = 1, . . . , T. (4.2.22)

This means that the forward pass in iteration H + 1 will visit the same points as in

iteration H, so

(xH+1
t , uH+1

t ) = (xH
t , uH

t ), t = 1, 2, . . . , T + 1,

and so the functions QH
t+1 and QH+1

t+1 will be identical for all t = 1, 2, . . . , T +1. It follows
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that in the forward pass, uH
t will maximize rt(xH

t , uH
t ) + QH+1

t+1 (ft(xH
t , uH

t )) giving

rt(xH
t , uH

t ) + QH+1
t+1 (ft(xH

t , uH
t )) ≥ rt(xH

t , ûH
t ) + QH+1

t+1 (ft(xH
t , ûH

t )),

and (5.2.6) implies

rt(xH
t , uH

t ) + QH+1
t+1 (ft(xH

t , uH
t )) ≤ rt(xH

t , ûH
t ) + QH+1

t+1 (ft(xH
t , ûH

t )),

so

rt(xH
t , uH

t ) + QH
t+1(ft(xH

t , uH
t )) = rt(xH

t , ûH
t ) + QH+1

t+1 (ft(xH
t , ûH

t )) (4.2.23)

We now can establish the following result.

Lemma 5. For every t = 1, 2, . . . , T,

QH+1
t+1 (ft(xH

t , uH
t )) ≤ Vt+1(ft(xH

t , uH
t )) + (T − t + 1)ε.

Proof. We proceed by backwards induction on t. When t = T , after step 2(b) of

iteration H we have for some h ≤ H

∥∥∥xh
T +1 − fT (xH

T , uH
T )
∥∥∥

∞
< δ

so by Lemma 2

QH+1
T +1 (fT (xH

T , uH
T )) ≤ qh

T +1

= VT +1(xh
T +1)

≤ VT +1(f(xH
T , uH

T )) + ε,

by (5.2.2).
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Assume as an inductive hypothesis that

QH+1
t+1 (ft(xH

t , uH
t )) ≤ Vt+1(f(xH

t , uH
t )) + (T − t + 1)ε

We show that

QH+1
t (ft−1(xH

t−1, uH
t−1)) ≤ Vt(ft−1(xH

t−1, uH
t−1)) + (T − t + 2)ε.

Since at termination of the algorithm

∥xH
t − ft−1(xH

t−1, uH
t−1)∥∞ < δ,

it follows that

QH+1
t (ft−1(xH

t−1, uH
t−1)) ≤ qH

t by Lemma 2

= r(xH
t , ûH

t ) + QH+1
t+1 (ft(xH

t , ûH
t )) by (5.2.6)

= r(xH
t , uH

t ) + QH
t+1(ft(xH

t , uH
t )) by (5.2.23)

≤ r(xH
t , uH

t ) + Vt+1(ft(xH
t , uH

t )) + (T − t + 1)ε induction hypothesis

≤ r(xH
t , u∗

t ) + Vt+1(ft(xH
t , u∗

t )) + (T − t + 1)ε optimality of u∗

= Vt(xH
t ) + (T − t + 1)ε definition of Vt

≤ Vt(ft−1(xH
t−1, uH

t−1)) + (T − t + 2)ε

where the last inequality follows from ∥xH
t − ft−1(xH

t−1, uH
t−1)∥∞ < δ and (5.2.2). This

establishes the result for t − 1 and hence all t by induction. �

Using Lemma 5, we can show that the first-stage decision uH
1 obtained when Algorithm

2 terminates (at iteration H where εH = 0) is 2Tε-optimal.

Theorem 2. Suppose ε̄ = 0. Upon termination of the algorithm the first-stage decision
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uH
1 satisfies

r1(x̄, uH
1 ) + V2(f1(x̄, uH

1 )) ≥ V1(x̄) − 2Tε.

Proof. For the optimal first stage decision u∗
1, Lemma 3 gives

r1(x̄, u∗
1) + QH

2 (f1(x̄, u∗
1)) ≥ r1(x̄, u∗

1) + V2(f1(x̄, u∗
1)) − Tε

and by (5.2.5)

r1(x̄, uH
1 ) + QH

2 (f1(x̄, uH
1 )) ≥ r1(x̄, u∗

1) + QH
2 (f1(x̄, u∗

1))

so

r1(x̄, uH
1 ) + QH

2 (f1(x̄, uH
1 )) ≥ r1(x̄, u∗

1) + V2(f1(x̄, u∗
1)) − Tε. (4.2.24)

Now upon termination of the algorithm (5.2.23) gives

QH
2 (f1(x̄, uH

1 )) = QH+1
2 (f1(x̄, uH

1 )), (4.2.25)

and Lemma 5 implies

QH+1
2 (f1(x̄, uH

1 )) ≤ V2(f1(x̄, uH
1 )) + Tε, (4.2.26)

so (5.2.24), (5.3.22), and (5.2.26) yield

r1(x̄, uH
1 ) + V2(f1(x̄, uH

1 )) ≥ r1(x̄, u∗
1) + V2(f1(x̄, u∗

1)) − 2Tε,

giving the result. �
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4.3 Multistage stochastic optimization problems

We extend model MP, described in Section 5.2, to include random noise on the state

transition function. We model the realizations of the noise in the form of a scenario

tree with nodes n ∈ N and leaves in L, where n represents different future states of

the world. Each node n has a probability p(n). By convention we number the root

node n = 0 (with p(0) = 1). The unique predecessor of node n ̸= 0 is denoted by n−.

We denote the set of children of node n ∈ N \ L by n+, and let Mn = |(n+)|. The

depth d(n) of node n is the number of nodes on the path from node n to node 0, so

d(0) = 1 and we assume that every leaf node has the same depth, say dL. The depth

of a node can be interpreted as a time index, so we can identify dL with time T + 1

as defined in Section 5.2. Set N∗ := N \ {0}. The formulation of MSP in the scenario

tree is

MSPT: max
∑

n∈N∗\L
p(n)rn(xn−, un) +

∑
n∈L

p(n)R (xn)

s.t. xn = fn(xn−, un), n ∈ N∗,

x0 = x,

un ∈ Un(xn−), n ∈ N∗,

xn ∈ Xn, n ∈ N∗.

The probabilities must satisfy

p(n) ≥ 0, n ∈ N ;
∑
n∈L

p(n) = 1; p(n) =
∑

m∈n+
p(m), n ∈ N \ L. (4.3.1)

Observe in MSPT that we have a choice between hazard-decision and decision-hazard

formulations that was not relevant in the deterministic problem. To be consistent

with most implementations of SDDP, we have chosen a hazard-decision setting. This

means that u is chosen in node n after the information from node n is revealed. The
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dynamic programming principle for MSPT can be expressed as


Vn(xn) = ∑

m∈n+

p(m)
p(n) maxu∈Um(xn) {rm(xn, u) + Vm (fm(xn, u))} , n ∈ N \ L,

Vn(xn) = R(xn), n ∈ L.

We seek a policy that maximizes V0(x̄). Below we give two different extensions of the

MIDAS algorithm of the deterministic setting; Full-tree MIDAS goes over every node

at each iteration; and Sampled MIDAS computes only one pseudo trajectory at each

iteration.

Now given a scenario tree, we approximate each node value function Vn(x), n ∈ N∗,

with a piecewise constant function Qk
n(x), where k = 1, 2, . . . , H is the algorithm

iteration. We have a sequence xk
n in Xn. Associated with each xk

n is a value qk
n. For

leaf nodes we have that

qk
n := R(xk

n), n ∈ L. (4.3.2)

As before we define

Ωk
n = {(xk

n, qk
n) : h = 1, . . . , k − 1}, for all n ∈ N∗ \ L

We now define the supporting indices of x ∈ Xn as

Hk
n(x) := {1 ≤ h < k; xi < xk

n,i + δ, i = 1, . . . , N}, (4.3.3)

as well as the following function:

Qk
n(x) =


V̄ if Hk

n(x) is empty,

min
{
qk

n : h ∈ Hk
n(x)

}
otherwise.

(4.3.4)



4.3 Multistage stochastic optimization problems 100

and as before we suppress the dependence of Hk
n(x) and Qk

n(x) on the parameter δ.

The following result is immediate.

Lemma 6. If h < k and
∥∥∥x − xh

n

∥∥∥
∞

< δ then Qk
n(x) ≤ qh

n.

4.3.1 Full-tree MIDAS algorithm

The stopping test is based on the following amounts:


εk,m := Qk

m(fm(xk
n, uk

m)) − Qk+1
m (fm(xk

n, uk
m)), for all n ∈ N \ L and m ∈ n+,

εk : =
∑

m∈N∗

p(m)εk,m.

(4.3.5)

Algorithm 5 Full tree MIDAS
Set k = 1, and Ωk

n = ∅, for all n ∈ N .

1. Forward pass: Set xk
0 = x, and n = 0. While n /∈ L, for each m ∈ n+:

(a) Solve max
u∈Um(xk

n)

{
rm(xk

n, u) + Qk
m(fm(xk

n, u))
}

to give uk
m;

(b) If
∥∥∥fm(xk

n, uk
m) − xk

m

∥∥∥
∞

< δ for some h < k then set xk
m = xk

m.

Otherwise, set xk
m = fm(xk

n, uk
m).

(c) Set n = m.

2. Backward pass:

(a) For every n ∈ L, set

Ωk+1
n := Ωk

n ∪ {(xk
n, qk

n)}, where qk
n = R(xk

n). (4.3.6)

(b) ‘In order of decreasing depth’, for each node n
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i. Compute

qk
n =

∑
m∈n+

p(m)
p(n)

[
max

u∈Um(xk
n)

{
rm(xk

n, u) + Qk+1
m (fm(xk

n, u))
}]

. (4.3.7)

with maxima in computation of qk
n attained at ûk

m, for each m ∈ n+.

ii. Set Ωk+1
n := Ωk

n ∪ {(xk
n, qk

n)}.

3. If εk, defined in (5.3.5), satisfies εk ≤ ε̄, set H := k and stop.

4. Increase k by 1 and go to step 1.

We assume that there exist δ > 0 and ε > 0 such that, for any n ∈ N∗, the following

approximate nondecreasing condition holds:

Vn(x) ≤ Vn(y) + ε, if x ≤ y + δ1, for all x, y in Xn. (4.3.8)

Lemma 7. For every n ∈ N∗, and for all iterations k

Qk
n(x) ≥ Vn(x) − (dL + 1 − d(n))ε. (4.3.9)

Proof. For a leaf node m in L, with depth d(m) = dL, (5.3.9) follows from Lemma

1. Now let n ∈ N∗ \ L have depth d(n), and suppose as an inductive hypothesis that

(5.3.9) holds for all nodes with depth greater than d(n). Let x ∈ Xn, and (h ∈ Hk
n(x),

for some h < k. Let

u∗
m ∈ arg max

u∈Um(xh
n)

{
rm(xh

n, u) + Vm

(
fm(xh

m, u)
)}

, for any m ∈ n+.
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Then

qh
n =

∑
m∈n+

p(m)
p(n) max

u∈Um(xh
n)

{
rm(xh

n, u) + Qh+1
m

(
fm(xh

n, u)
)}

≥
∑

m∈n+

p(m)
p(n)

(
rm(xh

n, u∗
m) + Qh+1

m

(
fm(xh

n, u∗
m)
))

.

Applying (5.3.9) now yields

qh
n ≥

∑
m∈n+

p(m)
p(n) (rm(xh

n, u∗
m) + Vm

(
fm(xh

n, u∗
m)
)

− (dL + 1 − d(m))ε)

= Vn(xh
n) − (dL + 1 − d(m))ε,

= Vn(xh
n) − (dL − d(n))ε,

since d(n) = d(m) − 1. Now for h ∈ Hk
n(x), xi < xk

ni + δ, i = 1, 2, . . . , N . By (5.3.8)

and the above inequality, we get that

Vn(x) ≤ Vn(xh
n) + ε ≤ qh

n + (dL + 1 − d(n))ε. (4.3.10)

The conclusion follows by minimizing over h ∈ Hk
n(x). �

We next analyze the convergence of the Full-tree MIDAS algorithm. As in the deter-

ministic case, we define

uk
m ∈ arg max

u∈Um(xk
n)

{
rm(xk

n, u) + Qk
m(fm(xk

n, u))
}

, m ∈ n+, (4.3.11)

ûk
m ∈ arg max

u∈Um(xk
n)

{
rm(xk

n, u) + Qk+1
m (fm(xk

n, u))
}

, m ∈ n + . (4.3.12)
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Theorem 3. i) We have, at each iteration k of the algorithm:

V0(x̄) ≤
∑

n∈N∗\L
p(n)rn(xk

n−, uk
n) +

∑
n∈L

p(n)R
(
xk

n

)
+ (dL − 1)ε + εk. (4.3.13)

ii) The stopping test is satisfied after a finite value number of steps (when k = H),

and then, the current policy is such that

V0(x̄) ≤
∑

n∈N∗\L
p(n)rn(xH

n−, uH
n ) +

∑
n∈L

p(n)R
(
xH

n

)
+ (dL − 1)ε + ε̄. (4.3.14)

Proof. (i) Adapting the arguments for the deterministic case, we can write

p(n)qk
n =

∑
m∈n+

p(m)
(
rm(xk

n, ûk
m) + Qk+1

m (fm(xk
n, ûk

m))
)

≤
∑

m∈n+
p(m)

(
rm(xk

n, ûk
m) + Qk

m(fm(xk
n, ûk

m))
)

≤
∑

m∈n+
p(m)

(
rm(xk

n, uk
m) + Qk

m(fm(xk
n, uk

m)
)
)

=
∑

m∈n+
p(m)

(
rm(xk

n, uk
m) + Qk+1

m (fm(xk
n, uk

m)) + εk,m

)
≤

∑
m∈n+

p(m)
(
rm(xk

n, uk
m) + qk

m + εk,m

)
.

(4.3.15)

As a special case

qk
0 ≤

∑
m∈0+

p(m)
(
rm(x̄, uk

m) + qk
m + εk,m

)
,

so substituting for p(m)qk
m recursively throughout the tree and using (5.3.15) and

p(n)qk
n = p(n)R(xk

n), for all n ∈ L, (4.3.16)

yields

qk
0 ≤

∑
n∈N∗

p(n)rn(xn−, uk
n) +

∑
n∈L

p(n)R
(
xk

n

)
+
∑

n∈N∗

p(n)εk,n (4.3.17)



4.3 Multistage stochastic optimization problems 104

On the other hand, Lemma 7 gives

V0(x̄) =
∑

m∈0+
p(m) (rm(x̄, u∗

m) + Vm(fm(x̄, u∗
m)))

≤
∑

m∈0+
p(m)

(
rm(x̄, u∗

m) + Qk+1
m (fm(x̄, u∗

m))
)

+ (dL − 1)ε

≤
∑

m∈0+
p(m)

(
rm(x̄, ûk

m) + Qk+1
m (fm(x̄, ûk

m))
)

+ (dL − 1)ε

= qk
0 + (dL − 1)ε.

(4.3.18)

The result follows from combining (5.3.17) and (5.3.18).

(ii) The result is a consequence of (i) and the fact that, as in the deterministic case,

after finitely many iterations, we will have εk,n = 0 for each node n. �

As before, if we set ε̄ = 0, then at some iteration k = H the forward pass in every

iteration k > H will visit the same points xH
n as in iteration H, so for every t =

1, 2, . . . , T ,

QH
n (fn(xH

n−, uH
n )) = QH+1

n (fn(xH
n−, uH

n )) (4.3.19)

This means that the functions QH
n and QH+1

n will be identical for all n ∈ N∗. It follows

that

rn(xn−, uH
n ) + QH

n (fn(xn−, uH
n )) = rn(xH

n−, ûH
n ) + QH+1

n (fn(xn−, ûH
n )) (4.3.20)

We now can establish the following result.

Lemma 8. For every n ∈ N∗,

QH+1
n (fn(xH

n−, uH
n )) ≤ Vn(fn(xH

n−, uH
n )) + (dL − d(n) + 1)ε.

Proof. We proceed by induction on n. When n ∈ L, after step 2(b) of iteration H we
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have for some h < H ∥∥∥xh
n − fn(xH

n−, uH
n )
∥∥∥

∞
< δ

so by Lemma 6

QH+1
n (fn(xH

n−, uH
n )) ≤ qh

n

= Vn(xh
n)

≤ QH+1
n (fn(xH

n−, uH
n )) + ε.

by (5.3.8).

Assume as an inductive hypothesis that for every m with dm = d we have

QH+1
m (fm(xH

m−, uH
m)) ≤ QH+1

m (fm(xH
m−, uH

m)) + (dL − d + 1)ε.

We show that for every node n with dn = d − 1

QH+1
n (fn(xH

n−, uH
n )) ≤ QH+1

n (fn(xH
n−, uH

n )) + (dL − d + 2)ε.

Since at termination of the algorithm

∥xH
n − fn(xH

n−, uH
n )∥∞ < δ,
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it follows that

QH+1
n (fn(xH

n−, uH
n )) ≤ qH

n

by Lemma 6

=
∑

m∈n+
p(m)

(
rm(xH

n , ûH
m) + QH+1

m (fm(xH
n , ûH

m)
)

by (5.3.11)

=
∑

m∈n+
p(m)

(
rm(xH

n , uH
m) + QH

m(fm(xH
n , uH

m)
)

by (5.3.20)

≤
∑

m∈n+
p(m)

(
rm(xH

n , uH
m) + Vm(fm(xH

n , uH
m) + (dL − dm + 1)ε

)
induction hypothesis

≤
∑

m∈n+
p(m)

(
rm(xH

n , u∗
m) + Vm(fm(xH

n , u∗
m)
)

+ (dL − d + 1)ε

optimality of u∗

= Vn(xH
n ) + (dL − d + 1)ε

definition of Vn

≤ Vn(fn(xH
n−, uH

n )) + (dL − d + 2)ε

where the last inequality follows from ∥xH
n − fn(xH

n−, uH
n )∥∞ < δ and (5.3.8). This

establishes the result for nodes with depth d−1 and hence all n ∈ N∗ by induction. �

Theorem 4. Suppose ε̄ = 0. Upon termination of the algorithm, the first-stage deci-

sions uH
m satisfy

∑
m∈0+

p(m)
(
rm(x̄, uH

m) + Vm(fm(x̄, uH
m))

)
≥ V0(x̄) − 2(dL − 1)ε.

Proof. For every m ∈ 0+, d(m) = 2. So for the optimal first stage decisions u∗
m,



4.3 Multistage stochastic optimization problems 107

Lemma 7 gives

rm(x̄, u∗
m) + QH

m(fm(x̄, u∗
m)) ≥ rm(x̄, u∗

m) + Vm(fm(x̄, u∗
m)) − (dL − 1)ε,

and by (5.3.11)

rm(x̄, uH
m) + QH

m(fm(x̄, uH
m)) ≥ rM(x̄, u∗

m) + QH
m(fm(x̄, u∗

m)),

rm(x̄, uH
m) + QH

m(fm(x̄, uH
m)) ≥ rm(x̄, u∗

m) + Vm(fm(x̄, u∗
m)) − (dL − 1)ε. (4.3.21)

Now upon termination of the algorithm (5.3.19) gives

QH
m(fm(x̄, uH

m) = QH+1
m (fm(x̄, uH

m), (4.3.22)

and Lemma 8 implies

QH+1
m (fm(x̄, uH

m) ≤ Vm(fm(x̄, uH
m)) + (dL − 1)ε (4.3.23)

so (5.3.21), (5.3.22), and (5.3.23) yield

rm(x̄, uH
m) + Vm(fm(x̄, uH

m)) + (dL − 1)ε

≥ rm(x̄, u∗
m) + Vm(fm(x̄, u∗

m)) − (dL − 1)ε
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so

∑
m∈0+

p(m)(rm(x̄, uH
m) + Vm(fm(x̄, uH

m)))

≥
∑

m∈0+
p(m)(rm(x̄, u∗

m) + Vm(fm(x̄, u∗
m))) − 2(dL − 1)ε

giving the result. �

4.3.2 Sampled MIDAS algorithm

We consider next a variant where, in the forward step, only one trajectory is explored,

and no stopping test is given.

Algorithm 6 Sampled MIDAS
Set k = 1, and Ωk

n = ∅, for all n ∈ N .

1. Forward pass: Set xk
0 = x, and n = 0. While n /∈ L:

(a) Sample m ∈ n+;

(b) Solve max
u∈Um(xk

n)

{
rm(xk

n, u) + Qk
m(fm(xk

n, u))
}

to give uk
m;

(c) If
∥∥∥fm(xk

n, uk
m) − xh

m

∥∥∥
∞

< δ for some h < k then set xk
m = xh

m.

Otherwise, set xk
m = fm(xk

n, uk
m).

(d) Set n = m.

2. Leaf node update: Set Ωk+1
n := Ωk

n, for all n ∈ N .

For the particular leaf node n ∈ L at the end of step 1:

(a) Set qk
n = R(xk

n) and Ωk+1
n := Ωk+1

n ∪ {(xk
n, qk

n)}.

3. Backward pass: While n > 0:

(a) Set n = n−;
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(b) Compute

qk
n =

∑
m∈n+

p(m)
p(n)

[
max

u∈Um(xk
n)

{
rm(xk

n, u) + Qk+1
m (fm(xk

n, u))
}]

attained at

ûm ∈ arg max
u∈Um(xk

n)

{
rm(xk

n, u) + Qk+1
m (fm(xk

n, u))
}

.

(c) Set Ωk+1
n := Ωk+1

n ∪ {(xk
n, qk

n)}.

4. Increase k by 1 and go to step 1.

Following [58] we assume that sample paths satisfy the Forward Pass Sampling Prop-

erty.

Forward Pass Sampling Property (FPSP):

Each node is visited infinitely many times with probability 1. (4.3.24)

There are many sampling methods satisfying this property. For example, one method

is to select a child node at each node n in the forward pass, by independently sampling

with a positive probability for each outcome m ∈ n+. This meets FPSP by the

Borel-Cantelli lemma. Another sampling method that satisfies FPSP is to repeat an

exhaustive enumeration of each scenario in the forward pass.

Recall that d(n) is the depth of node n. The following result ensures that Qk
n is a

(dL + 1 − d(n))ε-upper bound on Vn. Its proof is identical to the one in the case of

the full tree algorithm.

Lemma 9. For every n ∈ N , and for all iterations k, (5.3.9) holds.
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Theorem 5. Almost surely, after finitely many (say H) iterations, the functions Qk
n

remain constant. Then, any policy is such that

V0(x̄) ≤
∑

n∈N∗\L
p(n)rn(xH

n−, uH
n ) +

∑
n∈L

p(n)R
(
xH

n

)
+ dLε. (4.3.25)

and the first-stage decisions satisfy

∑
m∈0+

p(m)
(
rm(x̄, uH

m) + Vm(fm(x̄, uH
m))

)
≥ V0(x̄) − 2(dL − 1)ε.

Proof. Since the algorithm generates finitely many points, it is clear that the functions

Qk
n remain constant after finitely many iterations. Since the FPSP is satisfied, each

node is a.s. visited infinitely many times. We easily see that the estimates of the full

tree algorithm are then valid. The conclusion follows. �

In practical implementations of MIDAS, we choose to stop after a fixed number Hmax

of iterations. We also remark that Algorithm 6 simplifies when the random variables

are stagewise independent. In this case, the points (xk
n, qk

n) can be shared across all

nodes having the same depth.

This means that there is a single approximation Qk
n shared by all these nodes and

updated once for all in each backward pass. The almost-sure convergence result for

MIDAS applies in this special case, but one might expect the number of iterations

needed to decrease dramatically in comparison with the general case.

4.4 Integer State Variables

MIDAS can be extended to solve multistage stochastic mixed-integer programs (SMIPs),

when the dynamic, or the state equation fm(xk
n, uk

m), contains only integer variables.

Based on the scenario tree from Section 5.3, we approximate each node value function
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Vn(x), n ∈ N∗, with a piecewise constant function Qk
n(x), where k = 1, 2, . . . , H is the

algorithm iteration. We have a sequence xk
n in Xn ⊆ Z. Associated with each xk

n is a

value qk
n. For leaf nodes we have that

qk
n := R(xk

n), n ∈ L. (4.4.1)

As before we define

Ωk
n = {(xk

n, qk
n) : h = 1, . . . , k − 1}, for all n ∈ N∗ \ L

We now define the supporting indices of x ∈ Xn as

Hk
n(x) := {1 ≤ h < k; xi < xk

n,i, i = 1, . . . , N}, (4.4.2)

as well as the following function:

Qk
n(x) =


V̄ if Hk

n(x) is empty,

min
{
qk

n : h ∈ Hk
n(x)

}
otherwise.

(4.4.3)

In this formulation, we no longer need a δ. This is because when the dynamic contains

all integers, MIDAS will produce feasible state trajectory. There must exist a feasible

action between two integer state points for t and t + 1. Otherwise the problem will

become infeasible. By removing the δ, Algorithm 6 can be simplified into Algorithm

7. The main difference between the two algorithms is that Algorithm 7 does not have

the additional step which sets state points that are within δ distance.

Algorithm 7 Sampled MIDAS with Integer State Variables
Set k = 1, and Ωk

n = ∅, for all n ∈ N .

1. Forward pass: Set xk
0 = x, and n = 0. While n /∈ L:
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(a) Sample m ∈ n+;

(b) Solve max
u∈Um(xk

n)

{
rm(xk

n, u) + Qk
m(fm(xk

n, u))
}

to give uk
m;

Otherwise, set xk
m = fm(xk

n, uk
m).

(c) Set n = m.

2. Leaf node update: Set Ωk+1
n := Ωk

n, for all n ∈ N .

For the particular leaf node n ∈ L at the end of step 1:

(a) Set qk
n = R(xk

n) and Ωk+1
n := Ωk+1

n ∪ {(xk
n, qk

n)}.

3. Backward pass: While n > 0:

(a) Set n = n−;

(b) Compute

qk
n =

∑
m∈n+

p(m)
p(n)

[
max

u∈Um(xk
n)

{
rm(xk

n, u) + Qk+1
m (fm(xk

n, u))
}]

attained at

ûm ∈ arg max
u∈Um(xk

n)

{
rm(xk

n, u) + Qk+1
m (fm(xk

n, u))
}

.

(c) Set Ωk+1
n := Ωk+1

n ∪ {(xk
n, qk

n)}.

4. Increase k by 1 and go to step 1.

Algorithm 7 will converge to the optimal policy by iteratively exploring state trajecto-

ries. The algorithm will terminate when it has re-visited an existing state-trajectory

for all nodes in the scenario tree (see Lemma 10). This can make the algorithm a brute

force-based algorithm, where in the worst case it iterates through all state trajectories

until it reaches the optimal policy.

Lemma 10. If h < k and
∥∥∥x − xh

n

∥∥∥
∞

<= 0 then Qk
n(x) ≤ qh

n.
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4.5 A MIP representation of QH(x)

Assume that X = {x : 0 ≤ xi ≤ Ki, i = 1, 2, . . . , N}, and let V (x) be any upper

semi-continuous function defined on X. Suppose for some points xh, h = 1, 2, . . . , k,

we have V (xh) = qh. Recall V̄ = maxx∈X V (x),

Hk+1(x) = {1 ≤ h ≤ k : xh
i > xi − δ, i = 1, 2, . . . , N},

Qk+1(x) = min
{
V̄ , min

{
qh : h ∈ Hk+1(x)

}}
.

For δ > 0, and for any x ∈ Xδ = {x : δ ≤ xi ≤ Ki, i = 1, 2, . . . , n}, define Q̄k+1(x) to

be the optimal value of the mixed integer program

MIP(x): max ϕ

subject to:

ϕ ≤ qh + (V̄ − qh)(1 − wh), h = 1, 2, . . . , k,

xi ≥ xh
i zh

i + δ, i = 1, 2, . . . , N,∑n
i=1 zh

i = 1 − wh, h = 1, 2, . . . , k,

wh ∈ {0, 1} , h = 1, 2, . . . , k,

zh
i ∈ {0, 1} , i = 1, 2, . . . , N,

h = 1, 2, . . . , k.

Proposition 1. For every x ∈ Xδ,

Q̄k+1(x) = Qk+1(x).

Proof. For a given point x ∈ Xδ, consider wh, zh
i , i = 1, 2, . . . , N , h = 1, 2, . . . , k that

are feasible for MIP(x). If wh = 0, h = 1, 2, . . . , k, then ϕ ≤ V̄ is the only constraint

on ϕ and so Q̄k(x) = V̄ . But wh = 0, h = 1, 2, . . . , k means that for every such h,
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zh
i = 1 for some component i giving

xi ≥ xh
i + δ.

Thus

Hk+1(x) = {h : xi < xh
i + δ for every i} = ∅.

Thus Qk+1(x) = V̄ which is the same value as Q̄k+1(x).

Now assume that the optimal solution to MIP(x) has wh = 1 for some h. It suffices

to show that

Q̄k+1(x) = min{qh : h ∈ Hk+1(x)}.

First if h ∈ Hk+1(x) then wh = 1. This is because choosing wh = 0 implies zh
i = 1 for

some i, so for at least one i

xi ≥ xh
i + δ,

so h /∈ Hk+1(x).

Now if h /∈ Hk+1(x) then any feasible solution to MIP(x) can have either wh = 0 or

wh = 1. Observe however that if

qh < min{qh′ : h′ ∈ Hk+1(x)}

for any such h then choosing wh = 1 for any of these would yield a value of ϕ strictly

lower than the value obtained by choosing wh = 0 for all of them. So wh = 0 is optimal

for h /∈ Hk+1(x). It follows that Hk+1(x) = {h : wh = 1}. Thus the optimal value of

MIP(x) is

Q̄k+1(x) = min{qh : wh = 1} = min{qh : h ∈ Hk+1(x)} = Qk+1(x).
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�

4.6 Summary

In this chapter, we have proposed a method called MIDAS for solving multistage

stochastic dynamic programming problems with monotonic value functions. We have

demonstrated the almost-sure convergence in 2Tε-optimal first stage decision a finite

number of steps.

MIDAS as a general algorithm for solving multistage stochastic integer programming

(MSIPs) problems does not necessarily require a piecewise constant approximation.

As long as the alternative approach provides an ε-outer approximation of the value

function, we can incorporate it into a MIDAS scheme, which will converge almost

surely by the same arguments above. We can also extend the current approximations

of MIDAS in several ways. For instance, a more accurate approximation might be

achieved using an alternative formulation, that for example uses specially ordered sets

to yield a piecewise-affine approximation.

In the following chapters (Chapters 6 and 7), we study several non-convex hydro-

bidding problems. These hydro-bidding problems were formulated based on various

key challenges, such as modeling price uncertainty, modeling headwater effects and

redefining power generation to discrete quantities involving integer state variables. We

use MIDAS to solve these hydro-bidding problems and compare the policies obtained

with the incumbent SDDP equivalent. Our motivation is to assess how well MIDAS

performs in comparison to SDDP in solving these problems.



Chapter 5

Solving hydro-bidding problems

with integer state variables

In Chapter 3, we formulated the hydro-bidding problem, and applied the stochastic

dual dynamic programming (SDDP) method to solve it. However, SDDP was unable to

guarantee convergence if the value function is not convex (if minimizing) or not concave

(if maximizing). Our motivation to solve hydro-bidding problems with non-concave

value functions has led us to develop the mixed-integer dynamic approximation scheme

(MIDAS). MIDAS uses step functions to approximate the value function. In Chapter

5, we presented a general MIDAS algorithm and proved its almost sure convergence

with continuous and integer state variables.

In this chapter, we apply the MIDAS algorithm in order to solve a hydro-bidding

model with integer state variables. The model developed in this chapter is based on

HERBS (see Chapter 4 for description). It has discrete quantities where each station

can choose from a predefined set of feasible power dispatches and equivalent water dis-

charges. Incorporating discrete production quantities makes our hydro-bidding model

a Stochastic Mixed Integer Program (SMIP), which means that the state variable (i.e.
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reservoir storage) is integer. We solve this model using MIDAS and study its per-

formance with respect to the quality of the computed policy and the approximation

of the value function. We compare MIDAS with SDDP and illustrate that MIDAS

produces better policies than SDDP due to its more accurate representation of the

value function. However, solving these models, especially for large data sets, comes at

computational cost, as for large problems MIDAS takes a long time and large number

of steps to converge. The decrease in computational efficiency is due to the MIP rep-

resentation of the sub-problems, which introduces several binary variables whenever a

new step function is added.

5.1 The SMIP hydro-bidding model formulation

Consider Model (6.1.1), a hydro-bidding model with discrete production. This model

represents an M -tranche offerstack with a Markov chain of prices modeled in the same

way as the Markov chain described in Section 3.1 of Chapter 3.

HB(t, i, xt) :

Vt,i(xt) = max
M∑

j=1
ρi,j(t) [πjot,j + Vt+1,j(xt+1,j)]

subject to:

(5.1.1)

xt+1,j,r = xt,r +
∑
s∈S

Ar,sut,j,s +
∑
k∈R

Br,klt,j,k + ωt,r for j = 1, . . . , M,

and r ∈ R,

(5.1.1a)

(5.1.1b)
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ut,j,s =
∑

l∈Lt,s

θt,s,lzj,s,l for j = 1, . . . , M,

and s ∈ S,

(5.1.1c)

ot,j =
∑
s∈S

∑
l∈Lt,s

ηt,s,lzj,s,l for j = 1, . . . , M, (5.1.1d)

ot,j ≤ ot,j+1 for j = 1, . . . , M − 1, (5.1.1e)∑
l∈Lt,s

zj,s,l ≤ 1 for j = 1, . . . , M,

and s ∈ S,

(5.1.1f)

xt+1,j,r ∈ [xr, xr] for j = 1, . . . , M,

and r ∈ R,

(5.1.1g)

zj,s,l ∈ {0, 1} for j = 1, . . . , M, s ∈ S,

and l ∈ Lt,s,

(5.1.1h)

xt+1,j,r ∈ Z for j = 1, . . . , M,

and r ∈ R,

(5.1.1i)

Vt+1,j(xt+1,j) ∈ Qt+1,j (xt+1,j) for j = 1, . . . , M, (5.1.1j)

VT,j(xT,j) = VT,j(xT,j) for j = 1, . . . , M. (5.1.1k)

where:

T = the number of stages in the planning horizon (i.e.

t = 1, 2, . . . , T ),

R = the set of Reservoir node labels,

S = the set of station node labels,

M = the number of tranches in the offer stack as well as the

number of Markov states,

Lt,s = the set of production pair labels for period t and station s,
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ρi,j(t) = the transition probability of being dispatched at tranche j

given the previous dispatch was at tranche i at time t,

πj = conditionally expected price ($/MWh) for clearing

tranche j,

[(θt,s,l, ηt,s,l)]l∈Lt,s = vector of production pairs (water discharge and equivalent

power production) for station s in period t,

xt = vector of starting storage levels (cubic meter) belonging

to set X at the beginning of stage t for each reservoir in

the hydro scheme,

xt+1,j = vector of storage levels (cubic meter) at the end of period

t if tranche j is dispatched, and is based on the

water-balance constraints (6.1.1a),

ωt = vector of inflows (cubic meter) for each reservoir in the

hydro scheme for period t,

lt,j = vector of reservoir spillage (cubic meter) for each reservoir

in the hydro scheme for tranche j and period t,

ut,j = vector of turbine water discharge (cubic meter) for each

station in the hydro scheme for tranche j and period t,

zj,s,l =


1 if production pair l is chosen for offer j at station s,

0 otherwise,

ot,j = offer quantity for tranche j in period t,

Vt+1,j(xt+1,j) = value function representing the contributions of future

stages based on the storage levels xt+1,j if being

dispatched in tranche j.
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At period t and station s there are Lt,s pairs (θt,s,l, ηt,s,l) that represent possible dis-

crete power generation values at this station. The parameter θt,s,l represents the water

discharge (in cubic meters) through the turbines, and ηt,s,l represents the respective

power (in MWh). These pairs are coupled, through constraints (6.1.1c) and (6.1.1d),

by the binary variables zj,s,l that dictate which water discharge and power generation

pairs are selected. When zj,s,l = 1, pair l with (θt,s,l, ηt,s,l) is selected. At most one dis-

crete production pair can be selected for each station s, therefore constraint (6.1.1f) is

added to ensure that only one zj,s,l can be equal to 1. Like the previous hydro-bidding

models, HB(t, i, xt) is a block-based dispatch model where each offer tranche ot,j rep-

resents the total generation of the hydro scheme (see constraint (6.1.1d)). constraints

(6.1.1a), (6.1.1g) and (6.1.1e) in HB(t, i, xt) are the standard constraints present in

the hydro-bidding models that were previously discussed in Chapter 3. Constraint

(6.1.1h) is the terminal value function at the end of the trading horizon. It represents

the value of the water beyond the trading horizon. Constraint (6.1.1j) represents an

arbitrary approximation of the value function by Qt+1,j(xt+1,j). This approximation

can be a set of constraints, like the hyperplanes in SDDP, or step functions in MIDAS.

5.2 Structure of the value function

The value function Vt+1,j(xt+1,j) in Model (6.1.1) has a unique structure. As illustrated

in Figure 6.1, the structure has distinct plateaus or ’steps’, where the value function

remains relatively the same for a range of state values, and then suddenly jumps to a

higher value. This step-like structure has been observed by [68] for stochastic programs

with integer variables in the recourse functions.
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Figure 5.1: Example of the value function structure for 2 reservoir hydro scheme.

The presence of binary variables zj,s,l in the hydro-bidding model is the main reason

why the value function exhibits the aforementioned structure. In the hydro-bidding

model, each offer tranche ot,j defines a block dispatch that equals the total power

generated across the hydro scheme. As a result of this block dispatch rule, there can

be many power generation combinations across the hydro scheme which result in the

same ot,j. For example, consider the power generation combination for a hydro scheme

consisting of 2 reservoirs and 2 stations in cascade, described in Table 6.2. Power

generation combinations of (55, 65) and (65, 55) produce a block dispatch quantity of

120 MWh. It is also a similar case for other power generation combinations.
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[ηt,1,ℓ]ℓ∈Lt,1

ot,j 0 55 65 70

[ηt,2,ℓ]ℓ∈Lt,2

0 0 55 65 70

55 55 110 120 125

65 65 120 130 135

70 70 125 135 140

Table 5.2: Example of the mapping between offer ot,j and power production ηt.

As each generation quantity ηt,s,l corresponds to a respective water discharge θt,s,l,

it couples xt+1 to ot,j in a similar manner. Table 6.3 lists the offer ot,j for each

xt+1 level for a 2 reservoir hydro-scheme. Each reservoir has a net capacity of 100

cubic meters of water, and their stations have the same vector [ηt,s,l]l∈Lt,s of power

generation described by Table 6.2. For various combinations of storage levels between

the upstream reservoir xt+1,j,1 and downstream reservoir xt+1,j,2 the offer quantity ot,j

remains constant. For instance, when xt+1,j,1 ≥ 70 the offer is 140 for all storage levels

in the downstream reservoir. This is due to the maximum water discharge capacity

of the upstream station being 70. Therefore, when xt+1,j,1 ≥ 70 it discharges up to

70 cubic meters of water through the station in order to produce 70 MWh of power.

This same volume of water is also passed through the downstream station in order to

produce an equivalent amount of power, thus, resulting in ot,j = 140. Table 6.3 also

highlights similar instances of different, but constant, ot,j indicated by the different

values. If the terminal value function VT,j(xT,j) exhibits such structure then, through

recursion, this property is transferred to value functions in earlier stages, which results

in the overall model inheriting this property.
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xt+1,j,1 (upstream)

ot,j 0 10 20 30 40 50 60 70 80 90 100

xt+1,j,2 (downstream)

0 0 0 0 0 0 110 130 140 140 140 140

10 0 0 0 0 0 120 135 140 140 140 140

20 0 0 0 0 0 125 135 140 140 140 140

30 0 0 0 0 0 125 135 140 140 140 140

40 0 0 0 0 0 125 135 140 140 140 140

50 55 55 55 55 55 125 135 140 140 140 140

60 65 65 65 65 65 125 135 140 140 140 140

70 70 70 70 70 70 125 135 140 140 140 140

80 70 70 70 70 70 125 135 140 140 140 140

90 70 70 70 70 70 125 135 140 140 140 140

100 70 70 70 70 70 125 135 140 140 140 140

Table 5.3: Example of an offer ot,j for each storage level xt+1,j for a 2 reservoir hydro
scheme.

5.3 Approximating the value function

As presented in Chapter 5, the MIDAS algorithm approximates the value function

using step functions. In iteration H of the forward pass it generates a new state

trajectory (xH+1
1 , xH+1

2 , . . . , xH+1
T , xH+1

T +1 ) based on the current approximation of the

value function QH
t+1,j(x) consisting of H step functions for j = 1, 2, . . . , M . Then, in

the backward pass it updates QH
t+1,j(x) based on the state trajectory, where qH+1

t,j =

Vt(xH+1
t ) for t = 1, 2, . . . , T + 1 and j = 1, 2, . . . , M . It adds the new value function
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estimate as a step function for QH
t+1,j(x), where for a given xt+1,j

Vt+1,j(xt+1,j) ∈ QH
t+1,j = min

{
R, qh

t+1,j : h ∈ HZ(xt+1,j)
}

, (5.3.1)

with its supporting indices

HZ(xt+1,j) = {h′ : xh′

j ≥ xj for h′ = 1, 2, . . . , H}. (5.3.2)

The term R is a known upper-bound of Vt+1,i. In order to illustrate how this actually

works, consider a set of 4 step functions in Table 6.4 with their respective parameters

x and q, that approximates the value function in Section 6.2. If xt+1,j = (40, 50) then

HZ(xt+1,j) = {1, 3, 4} because xt+1,j,r ≤ xh
t+1,j,r for h = 2, 3, 4. Based on HZ(xt+1,j),

QH
t+1,j(xt+1,j) = min{R, q2, q3, q4}. Therefore, the estimate of the value function is

1462.5, which is the value of the second step function.

h = 1, 2, . . . , H xh qh

1 (40, 40) 0

2 (50, 60) 1462.5

3 (50, 100) 1575

4 (100, 100) 3150

Table 5.4: Value function approximation using 4 step functions.

By placing the step functions at state points where there are adjacent plateaus, MI-

DAS can represent the step-like structure observed in the value function. Figure 6.2

compares the approximation by the step function in Table 6.4 with the exact value

function. With 4 step functions, the structure of the value function can be approx-

imated with relatively good accuracy. Adding more step functions will improve the

accuracy of the approximation, but it does not always guarantee significant improve-
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ments in the policy. Furthermore, it may add to the computation time to solve the

MIP sub-problem.

Figure 5.2: Comparison of the value function approximation with the exact value
function.

In order to explicitly represent the value function approximation using the step func-

tions the following constraints and variables need to be added to Model (6.1.1).
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V̂t+1,j ≤ qh
t+1,j + (R − qh

t+1,j)(1 − yh,j) for j = 1, . . . , M,

and h = 1, . . . , H,

(5.3.3)

∑
r∈R

wj,h,r = 1 − yj,h for j = 1, . . . , M,

and h = 1, . . . , H,

(5.3.4)

xt+1,j,r ≥ (xh
t+1,j,r + 1)wj,h,r for j = 1, . . . , M, h = 1, . . . , H,

and r ∈ R,

(5.3.5)

yj,h ∈ {0, 1} for j = 1, . . . , M,

and h = 1, . . . , H,

(5.3.6)

wj,h,r ∈ {0, 1} for j = 1, . . . , M, h = 1, . . . , H,

and r ∈ R.

(5.3.7)

where:

H = the iteration of the MIDAS algorithm, which also

corresponds to the total number of step functions that

have been added,

V̂t+1,j = continuous variable for the approximate value function

for period t + 1 and tranche j,

yj,h = binary variable which chooses if step function h will be

used to estimate the value function for tranche j,

wj,h,r = binary variable which turns on or off the constraint

xt+1,j,r ≥ xh
t+1,j,rwj,h,r for tranche j, step function h,

and reservoir r.
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The variable V̂t+1,j represents the QH
t+1,j(xt+1,j) approximation. The binary variable

yj,h selects which step function will be used to estimate the value of V̂t+1,j. When-

ever yj,h = 1 for the step function h, constraint (6.3.3) becomes binding by remov-

ing the term R − qh
t+1,j making V̂t+1,j ≤ qh

t+1,j. Otherwise, it becomes non-binding

with V̂t+1,j ≤ R. If yj,h = 1 then constraint (6.3.4) forces wj,h,r = 0 for all r ∈ R,

and in turn makes Constraint (6.3.5) non-binding. However, when yj,h = 0 con-

straint (6.3.5) becomes non-binding, and constraint (6.3.4) enforces that
∑
r∈R

wj,h,r = 1.

This entails that for at least one r, wj,h,r = 1 and in turn enforces the storage

variable in the r’th reservoir to be xt+1,j,r ≥ (xh
t+1,j,r + 1)wj,h,r. Based on the val-

ues of yj,h and wj,h,r for h = 1, 2, . . . , H, the approximate value function V̂t+1,j ≤

min
{
R, qh

t+1,j : xh
t+1,j ≥ xt+1,j, for h = 1, 2, . . . , H

}
, which is equivalent to definition

of the QH
t+1,j in Equation (6.3.1). The reader will notice that (6.3.3) to (6.3.7) are

essentially the same as the MIP representation of QH(x) in Appendix 5.5.

In order to visually illustrate how these constraints and variables represent the step-

like structure of the value function, consider an example contour plot of V̂t+1,j in Figure

6.3. Suppose that xt+1,j = (3, 1.5) indicated by the cross in the diagram. Then, yj,2,

yj,3 and yj,4 will all be equal to 1 making V̂t+1,j ≤ min
{
q2

t+1,j, q3
t+1,j, q4

t+1,j, R
}

≤ 20.

As for the first step function yj,1 = 0, which makes the respective constraint V̂t+1,j ≤

q1
t+1,j + R − q1

t+1,j ≤ R (i.e. non-binding).
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xt+1,j,1

xt+1,j,2

q4t+1,j = 30

q3t+1,j = 25

q2t+1,j = 20

q1t+1,j = 10

xt+1,j

2

4

6

8

2 4 6 8

Figure 5.3: Example of upper bounded approximate of V̂t+1,j by 4 step functions.

However, the step function 1 makes sure that
∑
r∈R

wj,1,r = 1 and xt+1,j,r ≥ (x1
t+1,j,r +

1)wj,1,r for all r ∈ R. This enforces that either xt+1,j,1 ≥ 3 and xt+1,j,2 ≥ 1 if wj,1,1 = 1,

or xt+1,j,1 ≥ 1 and xt+1,j,2 ≥ 3 if wj,1,2 = 1. This restricts xt+1,j to the region between

step function 1 and 2.

Essentially, constraints (6.3.4) and (6.3.5) create a set of hyperplanes which act as

lower bounds on the value of variable xt+1,j,r. They partition the feasible space of

xt+1,j into regions of constant value function estimates, which mimics the observed

structure of the value function. The contour plot in Figure 6.4 illustrates the shape

of the example V̂t+1,j.
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xt+1,j,1
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v̂t+1,j = 30
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v̂t+1,j = 10

Figure 5.4: Contour of V̂t+1,j by the 4 step functions.

By adding the aforementioned constraints and variables to Model (6.1.1) we can define

its MIDAS equivalent, HB(t, i, xt), defined by Model (6.3.8).

HB(t, i, xt) :

V t,i(xt) = max
M∑

j=1
Pi,j(t)

[
πt,jot,j + V̂t+1,j

]

subject to:

(5.3.8)
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xt+1,j,r = xt,r +
∑
s∈S

Ar,sut,j,s +
∑
k∈R

Br,klt,j,k + ωt,r for j = 1, . . . , M,

and r ∈ R,

(5.3.8a)

ut,j,s =
∑

l∈Lt,s

θt,s,lzj,s,l for j = 1, . . . , M,

and s ∈ S,

(5.3.8b)

ot,j =
∑
s∈S

∑
l∈Lt,s

ηt,s,lzj,s,l for j = 1, . . . , M, (5.3.8c)

ot,j ≤ ot,j+1 for j = 1, . . . , M − 1, (5.3.8d)∑
l∈Lt,s

zj,s,l ≤ 1 for j = 1, . . . , M,

and s ∈ S,

(5.3.8e)

xt+1,j,r ∈ [xr, xr] for j = 1, . . . , M,

and r ∈ R,

(5.3.8f)

zj,s,l ∈ {0, 1} for j = 1, . . . , M, s ∈ S,

and l ∈ Lt,s,

(5.3.8g)

xt+1,j,r ∈ Z for j = 1, . . . , M,

and r ∈ R,

(5.3.8h)
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V̂t+1,j ≤ qh
t+1,j + (R − qh

t+1,j)(1 − yh,j) for j = 1, . . . , M,

and h = 1, . . . , H,

(5.3.8i)

∑
r∈R

wj,h,r = 1 − yj,h for j = 1, . . . , M,

and h = 1, . . . , H,

(5.3.8j)

xt+1,j,r ≥ ( xh
t+1,j,r + 1)wj,h,r for j = 1, . . . , M, h = 1, . . . , H,

and r ∈ R,

(5.3.8k)

yj,h ∈ {0, 1} for j = 1, . . . , M,

and h = 1, . . . , H,

(5.3.8l)

wj,h,r ∈ {0, 1} for j = 1, . . . , M, h = 1, . . . , H,

and r ∈ R,

(5.3.8m)

VT,j(xT,j) = VT,j(xT,j) for j = 1, . . . , M. (5.3.8n)

5.4 MIDAS algorithm description for hydro-bidding

Algorithm 8 describes the MIDAS algorithm for solving Model (6.3.8). It is very

similar to the SDDP algorithm, but is rewritten here for convenience and to illustrate

the modelling of the Markov process of prices. As in SDDP, convergence is reached if

the upper bound V 1,̂i1
(x̂) is within a defined confidence level of the lower bound V low.

In this chapter, we use a confidence level of 95% to test for convergence. MIDAS

terminates by default if convergence is not reached before reaching the maximum

iterations Hmax,
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Algorithm 8 : MIDAS algorithm for solving the hydro-bidding model (6.3.8).

1. Initialize x̂, Hmax, k, î1, N

2. Set q1
2,i = R at x1

1,i = [xr]r∈R for i = 1, 2, . . . , M

3. Set H = 2

4. Forward pass:

(a) Randomly generate a sequence of Markov states {̂it}t=1,2,...,T starting from

the initial state î1.

(b) For t = 1, 2, . . . , T do,

i. solve HB(t, ît, xH
t ) and set xH+1

t+1 = xt+1,̂it+1
.

5. Backward pass:

(a) For t = T, . . . , 3, 2, 1 and for i = 1, 2, . . . , M do,

i. solve HB(t, i, xH+1
t ) and compute V t,i(xH+1

t ),

ii. update HB(t−1, i, xH+1
t ) by adding the step function qH+1

t,i = V t,i(xH+1
t )

at point xH+1
t,i = xH+1

t .

6. Convergence test: If H( mod k) = 0 then do the following:

(a) Independently generate N sequences of Markov states {̂it}N starting from

the initial state î1,

(b) for l = 1, . . . , N do,

i. solve HB(1, î1, x̂) and compute V 1,̂i1
(x̂),

ii. set x1,l = x̂, then for t = 1, 2, . . . , T + 1 do,
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A. solve HB(t, ît,l, xt), set Vlow,l = Vlow,l + πt,̂it,l
qt,̂it,l

and xt = xt+1,̂it,l
.

(c) Compute V low = E{1,...,N} [Vlow] and σlow = SD{1,...,N}(Vlow).

(d) If V low − 1.96√
N

σlow ≤ V 1,̂i1
(x̂) ≤ V low + 1.96√

N
σlow or H > Hmax , then stop,

otherwise set H = H + 1 and go to Step 4.

Observe that this algorithm is different the MIDAS algorithm in Chapter 5 for solving

SMIPs. The key difference between these two algorithms is the criteria of convergence.

In the original algorithm, it converges when it visits an already sampled state trajec-

tory across all the scenarios of the scenario tree. In this algorithm, it converges when

the upper bound and the lower bound are within a certain level of confidence. This,

less strict convergence criteria, does not guarantee the policy is the optimum policy

after convergence. However, it does indicate the degree of optimality. Moreover, if the

user of the algorithm is happy with the gap between the upper and lower bound, they

could terminate the algorithm early to obtain a reasonably good policy.

5.5 Comparison of MIDAS and SDDP

In the previous section, we described the standard algorithm of MIDAS for solving

the hydro-bidding problem with discrete productions. In this section, we compare the

performance of MIDAS with SDDP with respect to the quality of the value function

approximation, and the performance of the policies of each method.

We apply Algorithm 8 to the following hydro scheme, illustrated by Figure 6.5. The

data for this hydro scheme are based on the same elementary reservoir used in Section

3.3 of Chapter 3 for the same reason, that this makes it easier to analyze, compare,

and illustrate the performance of each of the algorithms.
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r1

s1

r2

s2

Sea

Figure 5.5: Topology of the hydro scheme.

In Figure 6.5, the two cascading reservoirs, called r1 and r2, each have their own

respective hydropower production stations s1 and s2. In order to compute an analytical

solution to this stochastic program, the reservoirs and stations are identical, and have

the following reservoir storage bounds and discrete power production states listed in

Table 6.6. We solve this problem using the same three tranche offer stack price process

as in Section 3.3 of Chapter 3 (see Figure 3.9) in a 4 stage (i.e. T = 4) trading horizon.

Parameter Value
x

[
0 0

]
x

[
200 200

]

(θ, η)

(
0 0

)(
50 55

)(
60 65

)(
70 70

)
VT,j(xT,j) 0 for j = 1, . . . , M

Table 5.6: Model parameters for the 2 reservoir, 2 station of the test hydro scheme.
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We carry out a similar analysis to Chapter 3 for measuring the optimality of the

policies computed by MIDAS and SDDP. First, an analytical solution to Model (6.1.1)

is computed using a standard scenario tree based model as in Section 3.2.2 of Chapter

3. This represents a baseline measure, which can be used to compare the optimality

of the policies computed by MIDAS and SDDP.

In this analysis, we executed both MIDAS and SDDP for a maximum of 500 iterations

(i.e. Hmax = 500) for each combination of the initial storage levels. We began with

the starting Markov state at 1 (i.e. î0 = 1) and tested for convergence after every

five iterations k = 5 with a sample size N = 30. For all initial storage states, MIDAS

converged under Hmax, whereas SDDP did not. We discuss why this is the case further

in this section. Once these algorithms converged, or terminated due to reaching the

maximum iteration, we extracted the first stage objective and then simulated each

policy across all scenarios in the scenario tree. By simulating the policies across the

complete scenario tree, we can remove any sampling errors. Then the differences in the

expected return from the policy can be purely attributed to their respective policies.

We ran a slightly different SDDP algorithm. As the sub-problem is a mixed-integer

program, we relaxed the sub-problem in the backward pass in order to obtain the dual

variable values in order to construct the hyperplanes. This is a similar approach to

that taken by [52, 53] who used SDDP to solve power system investment planning

problems. The issue with this approach is that the convergence criteria based on the

confidence interval is no longer theoretically valid. The relaxed upper bound may

never fall within the confidence interval of the integer lower bound. However, this

does not mean that the problem will never converge.

Figures 6.6 and 6.7 illustrate the respective upper bounds of the policy computed

by MIDAS and SDDP. These are obtained from the objective of the first stage sub-

problem when the algorithm converges. As seen in Figure 6.6, MIDAS, through its
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step functions, approximates the plateaus of the exact optimum value (red points),

except for highest storage levels. For these points MIDAS cannot produce any better

upper bound values because adding additional step functions does not improve the

value function approximation. This is observed in the figure by high upper bound

values indicated by the sudden ’spikes’. As depicted in Figure 6.7, SDDP convexifies

the overall value function, which is reflected in the upper bound value of the SDDP

policy. As result of this convexification, SDDP misrepresents the plateaus observed in

the exact values. There are several regions in the storage state space where the upper

bound shows non-concavity. These are depicted as five clear ’humps’, and arise from

SDDP failing to converge within the maximum number of iterations because of a very

poor approximation of the value function.

Reservoir r1
 storage (cubic meters)

0

50

100
150

200

Reservoir r
2 storage (cubic meters)

0
50

100
150

200

V
1,1 (x

1 )

0

2000

4000

6000

8000

10000

12000

14000

Upper bound value MIDAS
SDP

Figure 5.6: Upper bound value of MIDAS across various initial storage states.
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Figure 5.7: Upper bound of SDDP across various initial storage states.

The ’humps’ occur in regions of the storage state space where there are large differ-

ences in the value function estimate between adjacent plateaus. Since SDDP uses

hyperplanes to approximate the value function, it overestimates the value function in

these regions and, when testing for convergence, the upper bound never reaches the

95% confidence interval of the lower bound. For example, when the initial storage

x1 = (40, 40) the exact value function is 0 whereas SDDP estimates the value function

as 6100.25. In these regions SDDP starts to cycle. Due to the bad approximation of

the value function, the sub-problems produce the same state trajectory in each itera-

tion. Therefore, after a finite number of iterations SDDP starts to generate the same

cuts that fail to improve the value function approximation and the upper bound. Since

MIDAS uses step functions, it is able to estimate the value function at x1 = (40, 40)

as a step function with a value function estimate of 0, thus producing a better upper

bound on the policy.
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T = 4, M = 3 Lower quartile Mean Median Upper quartile

MIDAS 93% 96% 98% 100%

SDDP 82% 89% 90% 97%

Table 5.7: Simulated profit from the offer policy of MIDAS and SDDP as a proportion
of the optimal profit, averaged across the various storage states.

In order to measure how close each of the computed policies of MIDAS and SDDP is

to the optimal policy, we calculated how close the expected profit, from the simulated

policy, is to the profit of the optimum policy and averaged this measure among all

initial storage level combinations. Table 6.7 summarizes, on average, how well the

simulated policies of MIDAS and SDDP performed in relation to the true optimum

policy. Based on Table 6.7, the offer policies produced by MIDAS yielded on average

96% of the optimum policy value, while the offer policies produced by SDDP yielded

on average 89%. In fact, in all measures, from Median to upper and lower quartiles,

MIDAS consistently produced policies that were better than SDDP for this hydro-

bidding problem. A closer inspection of the simulated policies, illustrated by Figures

6.8 and 6.9, indicates that SDDP under performs in areas where there is strict non-

concavity, such as when x1 = (100, 40), where the SDDP value is 57.4% of the optimum

policy value as opposed to MIDAS which is 99%. However, MIDAS under performs

for high storage levels, where the approximation is poor.
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Figure 5.8: Expected Profit from a policy computed by MIDAS under simulation.
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Figure 5.9: Expected Profit from a policy computed by SDDP under simulation.

Based on these findings, we can conclude that MIDAS indeed can produce better poli-

cies than SDDP for solving multistage stochastic mixed-integer programming prob-

lems. MIDAS is able to approximate the non-concave value function unlike SDDP.
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This gives MIDAS a greater advantage to computing near-optimum policies, as we

have observed in Table 6.7. However, MIDAS is slower than SDDP due to its con-

tinuously increasing MIP sub-problem, and for this reason SDDP is computationally

more efficient. We can see that further developments of the MIDAS algorithm need

to address the issue of speed. In Chapter 8, we present some heuristics to speed up

the solution time of MIDAS.

5.6 Summary

In this chapter we presented a stochastic, multistage hydro-bidding model with integer

state variables. We presented a multistage hydro-bidding model, Model (6.1.1), which

is based on the underlying HERBS model in Chapter 4. In this model the actions,

which are water discharged for power generation, were modeled as a set of discrete pro-

duction quantities, similar to HERBS. Due to the integer state variables, the structure

of the value function is non-concave (Section 6.2), where it exhibits ’steps’ or plateaus.

This makes step functions ideal for approximating the value function.

We reformulated the hydro-bidding model into a MIDAS-based hydro-bidding model

and applied a variant of the MIDAS algorithm presented in Chapter 5. The key

difference between the original MIDAS algorithm and the one proposed in this chapter

is the convergence criterion. The original MIDAS algorithm converges when it samples

a state trajectory that has already been sampled previously for all scenarios of the

scenario tree. In Algorithm 8 the convergence criterion is the same as that of SDDP,

where if the upper bound is within a confidence level of the lower bound then the

algorithm stops.

In order to analyze the performance of MIDAS, we solved a 2 reservoir hydro-bidding

model and compared its offer policies with the SDDP equivalent. MIDAS approx-
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imates the plateaus of the exact value function with greater accuracy than SDDP

(Figures 6.6 and 6.7). SDDP produces a convex value function approximation and

therefore misrepresents these non-concave plateaus. Based on their approximations,

we demonstrate that the offer policies of MIDAS were better than the policies com-

puted by SDDP (Table 6.7). However, MIDAS was slower in computation time than

SDDP. This was due to the sub-problem, which is a mixed-integer program, that con-

tinuously added binary variables to represent new step function in the model. As a

consequence, the time it took to solve a sub-problem increased with each iteration.

In the next chapter, Chapter 7, we study non-concave hydro-bidding models with

continuous state variables.



Chapter 6

Solving hydro-bidding problems

with continuous state variables

In Chapter 5, we introduced the MIDAS algorithm for solving non-convex multistage

stochastic optimization problems, and proved its convergence for integer and continu-

ous state variables. Then, in Chapter 6 we illustrated that MIDAS can produce better

policies than SDDP for hydro-bidding problems when the state variable is integer.

Through the use of step functions, MIDAS constructs more accurate approximations

of the monotonic, non-concave value functions than SDDP, and produces near-optimal

policies. However, we observed MIDAS is slower to converge than SDDP. This is due to

the MIP representation of the sub-problems, which increases in size when adding step

functions in each iteration of the algorithm. In this chapter, we study hydro-bidding

problems with continuous state variables. We focus on two modelling challenges of

the hydro-bidding problem. The first is modelling complex price processes, such as a

mean reverting autoregressive price process, and the other is modelling the headwater

effects for the power generation function.

These two features are very important for New Zealand hydroproducers such as Mer-
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dian. Since the majority of New Zealand’s electricity is generated from hydropower,

effective management of water levels is important for flexibility, specifically during

drought situations [49]. Moreover, New Zealand has an intra-day power market, which

creates opportunities for hydroproducers to arbitrage price differences between differ-

ent periods of the day. Therefore, representing autocorrelated price processes (see

Figure 7.1) into the hydro-bidding models will enable these hydroproducers to con-

struct good offer policies.
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Figure 6.1: Example of mean daily prices at price node OTA2201 from January to
March 2016 with 95% confidence bands.

We first present a hydro-bidding model with an autoregressive price process in Section

7.1. This model has value functions that are dependent on both price and storage,

which makes them non-concave, and so difficult to incorporate into SDDP. We refor-

mulate the model within the MIDAS framework in Section 7.1.1. We approximate the

value function as a function of price and storage through the use of the step functions

from MIDAS. We also extend the model to be within the SDDP framework by using

a cut interpolation technique in Section 7.1.2. The cut interpolation technique super-



6.1 Modelling Price Uncertainty 144

imposes on the scenario tree of prices a lattice of price nodes. Each of the nodes in

the lattice stores the cuts generated in the backward pass. In the forward pass, the

value function is interpolated between an upper and lower node from the lattice. This

allows us to sample the large scenario tree that is created from discretizing the auto

correlated price process.

In Section 7.2, we introduce a hydro-bidding model which incorporates headwater

effects into the power generation function. We present a unique formulation which

decouples the flow and head variables using differences of squares. We linearize the

two quadratic equations using piecewise linear functions so that we can implement

them into the linear models of MIDAS and SDDP. In the backward pass of SDDP we

relax the integer variables so that we can compute the dual variables and construct its

hyperplanes. This is because the formulation uses special ordered sets type II (SOS

type II) which introduces integer variables [12]. We compare the MIDAS and SDDP

based models on the performance of their policies and computational efficiency.

6.1 Modelling Price Uncertainty

Consider a set of reservoirs R, a set of stations S, and a hydro-bidding model for this

system over T periods. This is formulated as

Vt(xt, pt) = Ept

[
max

(vt,lt)∈U(xt)
{rt(g(vt), pt) + Vt+1(ft(xt, vt, lt, pt))}

]
VT +1(xT +1, pT +1) = R(xT +1, pT +1).

(6.1.1)

In Model (7.1.1), (vt, lt) ∈ U(xt) ⊆ R|S| is the action which represents the volumes

of water discharged for generation vt and for spill lt. The random variable, pt, is the

market clearing price. We assert that ft(xt, vt, lt, pt) is a continuous state transition
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function. In the hydro-bidding context, (xt, pt) represents both a reservoir stock vari-

able xt ∈ X ⊆ R|R| and price variable pt. We refer the reader to Section 3.1 for a

description of the compact sets U(xt) and X.

In this chapter, we model pt using an autoregressive, mean reverting price process with

ft(xt, vt, lt, pt) defined as

 xt+1

pt+1

 =

 xt − Avt − Blt + ωt

αtpt + (1 − αt)bt + ηt

 , (6.1.2)

where ωt is a deterministic reservoir inflow (see Assumption 2 in Section 3.1), and ηt

is the error term for an autoregressive price model.

The reward rt(g(vt), pt) in each stage is the revenue earned by the released energy

g(vt) sold at price pt, which is defined as

rt(g(vt), pt) = ptg(vt). (6.1.3)

The terminal reward R(xT +1, pT +1) represents the value of the remaining waterstock

for prices beyond the time horizon. It is continuous and monotonic increasing, but

not necessarily a concave function. Given an initial state (x̄, p), we seek an optimal

policy yielding V1(x, p). Here Vt(xt, pt) denotes the maximum expected reward from

the beginning of stage t onwards given the waterstock is xt and price pt. We discharge

vt for power generation and lt for spill after observing the random price pt. For such

a model, Vt(xt, pt) is continuous and monotonic increasing in xt and pt, but in general

Vt(xt, pt) is not concave (Figure 7.2), which makes it hard to approximate in SDDP

using cutting planes.
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Figure 6.2: Example of a value function Vt(xt, pt).

In order to incorporate the autoregressive, mean reverting price process within MIDAS

and SDDP, the noise term ηt is approximated as a discrete random variable η̃. The

discretized noise term η̃ consists of a set of L values (Ω = {η̂1, η̂2, . . . , η̂L} for t =

1, 2, . . . , T ) with a corresponding set of probabilities {ρ1, ρ2, . . . , ρL}. Then, the new

price process is

pt+1 = αtpt + (1 − αt)bt + η̃, with p1 = p. (6.1.4)

The price process can now be represented as a finite scenario tree, but its size could

be astronomically large. Figure 7.3 illustrates an example of a 12 stage price process

with 5 discrete η̃ values.
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Figure 6.3: Sampled price scenarios from a 12 stage price process with 5 discrete ηt

values.

The approximate price process now can be incorporated inside MIDAS and SDDP.

6.1.1 MIDAS-based approach

The value function Vt(xt, pt) is approximated in MIDAS by adding step functions with

a price dimension. The estimate qh
t is the value function estimate at xh

t and ph
t . An

example is illustrated in Figure 7.4 for a single reservoir, where at (xt,pt) = (175, 17.5)

the approximated value function is 4000.
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Figure 6.4: Value function approximation at (xt, pt), as shown by the cross is q4 = 4000.

The value function approximation QH
t+1(xt+1, pt+1) is represented by the objective of

Model (7.1.5) based on xt+1 and pt+1. This model is similar to the MIP representation

of QH(x) in Chapter 5, which is discussed in greater detail in Section 5.5. There are

two different δ values, one in the price dimension pt+1 and one in the state dimension

xt+1 in order to reflect the differences in their scale.

QH
t+1(xt+1, pt+1) = max ϕ

s.t.

(6.1.5)

ϕ ≤ qh
t+1 + (R − qh

t+1)(1 − wh) for h = 1, 2, . . . , H, (6.1.5a)

xt+1,r ≥ xh
t+1,rz

h
r + δx for h = 1, 2, . . . , H,

and r ∈ R,

(6.1.5b)

pt+1 ≥ ph
t+1z

h
p + δp for h = 1, 2, . . . , H, (6.1.5c)
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∑
r∈R

zh
r = 1 − wh for h = 1, 2, . . . , H, (6.1.5d)

zh
p = 1 − wh for h = 1, 2, . . . , H, (6.1.5e)

zh
r , zh

p ∈ {0, 1} for h = 1, 2, . . . , H,

and r ∈ R.

(6.1.5f)

In Model (7.1.5) three types of binary variables are introduced, these are zh
p , zh

r and

wh for h = 1, 2, . . . , H. These binary variables yield

QH
t+1(xt+1, pt+1) = min

{
qh′ : h′ ∈ Hδ(xt+1,pt+1)

}
, (6.1.6)

where the set of supporting indices of QH
t+1 is

Hδ(x, p) = {h
′ : xh′

> x − δx, ph > p − δp for h′ = 1, 2, . . . , H}.

If wh = 1 for step function h, then ϕ ≤ qh
t+1 (i.e. (R − qh

t+1)(1 − wh) = 0), which

makes constraints (7.1.5b) and (7.1.5c) nonbinding as both zh
p = 0 and zh

r = 0 for

all r ∈ R. On the other hand if wh = 0, then constraint (7.1.5a) is nonbinding (i.e.

ϕ ≤ R). Alternatively, constraints (7.1.5b) and (7.1.5c) become binding constraints,

where pt+1 ≥ ph
t+1 + δp (i.e. zh

p = 1 − wh = 1) and, for at least one r ∈ R, xt+1,r ≥

xh
t+1,r + δs (i.e.

∑
r∈R

zh
r = 1 − wh = 1). The MIP formulation of QH

t models Hδ(s, p),

the supporting index set of QH
t+1, by setting wh = 1 when h ∈ Hδ(x, p). Figure 7.5

depicts an example of QH
t+1(xt+1, pt+1), which is computed along the line pt+1 = p̂t+1

using 4 step functions.
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Figure 6.5: Computing QH
t+1(xt+1, p̂t+1) for p̂t+1 = 7.5 in the increasing step function

along the horizontal line.

Vt(xt, pt) = max ptg (v) + QH
t+1 (xt+1, pt+1) , (6.1.7)

s.t.

xt+1 = xt + Av + Bl + ωt,

pt+1 = αtpt + (1 − αt)bt + η̃,

xt+1 ∈ Xδ,

(v, l) ∈ U(xt),

(x1, p1) = (x, p),

QH
T +1(xT +1, pT +1) = R(xT +1, pT +1).

Like SDDP, MIDAS has three main phases, which is the forward pass, the back-

ward pass and the convergence test. In the forward pass of iteration H it first gen-

erates a price scenario
{
pH

1 , . . . , pH
2 , . . . , pH

T

}
. Then, it computes the state trajectory
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{xH
1 , xH

2 , . . . , xH
T } by solving for Vt(xt, pH

t ) (see Model (7.1.7) above) for t = 1, 2, . . . , T .

In the backward pass, it solves Vt(xH
t , pH

t ) over the discrete distribution of η̃, where

pt+1 = αtp
H
t + (1 − αt)bt + η̂i for i = 1, 2, . . . , L. Then, it computes the expected value

function estimate qH
t =

L∑
i=1

ρiVt(x̂t,p̂t) for the point (xH
t , pH

t ), where ρi is the probabil-

ity of η̂i. Lastly, MIDAS measures the quality of the candidate policy by computing

the upper and lower bound. It calculates the upper bound by taking the expectation

of the objective V1(x, p) for the first stage problem (x and p are the initial state and

price) over the discrete distribution of η̃. Then, MIDAS computes the lower bound

by simulating the candidate policy under N price scenarios and calculates the sample

average reward. Algorithm 9 describes the MIDAS algorithm used to solve the hydro-

bidding model (7.1.7).

Algorithm 9 : MIDAS algorithm for solving the hydro-bidding model (7.1.7).

1. Initialize x, p, Hmax, Hconvergence, L, N

2. Initialize Q1
t (st, pt) for t = 1, 2, . . . , T

3. Set H = 2

4. Forward Pass:

(a) Randomly sample a price scenario {pH
t }t=1,2,...,T starting from the initial

state p

(b) Set xH
1 = x

(c) For t = 1, 2, . . . , T :

i. Solve Vt(xH
t , pH

t ) and set xH
t+1 = xt+1

5. Backward pass:
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(a) For t = T, T − 1, . . . , 1:

i. For k = 1, 2, . . . , L:

A. Set pt+1 = αtp
H
t + (1 − αt)bt + η̂k in Vt(xH

t , pH
t ) and solve (7.1.7)

B. Compute V̂k = pH
t g (v) + ρkQH

t+1 (xt+1, pt+1)

ii. Update QH
t by adding the step function qH

t =
L∑

k=1
V̂k at point (xH

t , pH
t )

6. Convergence test: If H( mod Hconvergence) = 0 then:

(a) For k = 1, 2, . . . , L:

i. Set p2 = α2p + (1 − α2)b2 + η̂k in V1(x, p) and solve

ii. Compute V̂k = pg (v) + ρkQH
2 (x2, p2)

(b) Let V up =
L∑

k=1
V̂k

(c) For l = 1, . . . , N :

i. Randomly generate a price scenario {pt}t=1,2,...,T starting from the ini-

tial state p

ii. Set x1 = x and Vlow,l = 0

iii. For t = 1, 2, . . . , T :

A. Solve Vt(xt, pt), compute Vlow,l = Vlow,l + ptg (v), and set xt+1

(d) Compute V low = E{1,...,N} [Vlow] and σlow = SD{1,...,N}(Vlow)

(e) If V low− 1.96√
N

σlow ≤ V up ≤ V low+ 1.96√
N

σlow or H > Hmax , then stop, otherwise

set H = H + 1 and go to Step 4

6.1.2 SDDP-based approach

Modelling the price process, described in Section 7.1, inside SDDP is not trivial. The

value function Vt(xt, pt) cannot be approximated using hyperplanes in both xt and
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pt. This is because, as we can see from Figure 7.2 the value function is bilinear due

to multiplying the offers being multiplied by the price in the objective, as well as

being present in the right hand side of the constraints. Due to this bilinearity, Model

(7.1.7) becomes non-linear and non-convex, which makes computing the dual variables

difficult and incorrect to construct cutting planes.

In this thesis, we propose to discretize the price variable in order to construct a scenario

tree of prices. Then, we introduce a novel interpolation technique that represents the

value function for a particular price value as the interpolated value function between

neighboring price nodes that is greater and less than the price.

This interpolation technique first discretizes the price domain into K price values,

(p̂1, p̂2, . . . , p̂K). (6.1.8)

Based on these values for period t, pt can be interpolated from two neighboring price

node values as

pt = λp̂i + (1 − λ)p̂i+1, (6.1.9)

where p̂i ≤ pt ≤ p̂i+1, and λ ∈ [0, 1]. Similarly, Vt(xt) can be interpolated between i

and i + 1, which are the SDDP outer-approximation of the value function at p̂i and

p̂i+1 respectively. Then,

Vt(xt) = λθi + (1 − λ)θi+1, (6.1.10)

where

θi+1 ≤ βh
t+1,i+1 +

(
πh

t+1,i+1

)⊤ (
xt+1 − αh

t+1,i+1

)
for h = 1, 2, . . . , H, (6.1.11)
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and

θi ≤ βh
t+1,i +

(
πh

t+1,i

)⊤ (
xt+1 − αh

t+1,i

)
for h = 1, 2, . . . , H. (6.1.12)

Figure 7.6 illustrates how the value function Vt(xt) at pt is computed based on the

interpolation technique. The cutting planes θi and θi+1 approximate the value function

Vt(xt) at the discrete price values p̂i and p̂i+1. By discretizing the price domain and

storing cuts at each of these price nodes we are able to represent Vt(xt, pt) as Vt(xt)

using the SDDP hyperplanes for along both the xt and still model the autoregressive

price process for pt.

x

Vt(x)

(θi+1, p̂i+1)

(θi, p̂i)

xt

Vt(xt) = λθi + (1− λ)θi+1

pt = λp̂i + (1− λ)p̂i+1

Figure 6.6: Interpolating Vt(xt) by two sets of cutting plane approximations i (blue
line) and i + 1 (red line) at p̂i and p̂i+1.

In order to implement this technique, a few alterations are made to the SDDP-based

hydro-bidding model and algorithm discussed in Section 3.2.3 of Chapter 3. We begin

by formulating a new sub-problem (7.1.13), which is the SDDP equivalent of Model

(7.1.7). In this model, the value function Vt+1(xt+1) is represented by the variable

ϕ, which is interpolated between θi and θi+1. The parameters βh
t+1,i, βh

t+1,i+1, αh
t+1,i,
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αh
t+1,i+1, πh

t+1,i, and πh
t+1,i+1, for h = 1, 2, . . . , H, define the hyperplanes for i and i + 1

respectively.

Vt(xt) = max ptg (v) + ϕ, (6.1.13)

s.t. (6.1.14)

(6.1.15)

x = xt,

xt+1 = x + Av + Bl + ωt,

ϕ = λθi + (1 − λ)θi+1,

θi+1 ≤ βh
t+1,i+1 +

(
πh

t+1,i+1

)⊤ (
xt+1 − αh

t+1,i+1

)
for h = 1, 2, . . . , H,

θi ≤ βh
t+1,i +

(
πh

t+1,i

)⊤ (
xt+1 − αh

t+1,i

)
for h = 1, 2, . . . , H,

xt+1 ∈ X,

(v, l) ∈ U(xt),

(x1, p1) = (x, p),

VT +1(xT +1, pT +1) = R(xT +1, pT +1).

In the forward pass of iteration H, SDDP randomly samples a price scenario {pH
t }t=1,2,...,T .

For each price value pH
t , it identifies the neighboring price nodes p̂t,i and p̂t,i+1. In ad-

dition to the nodes, it also identifies the corresponding cutting plane approximations

defining θi and θi+1. It sets
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λ = pH
t+1 − p̂t,i+1

p̂t,i − p̂t,i+1
,

and solves Vt(xt) to get the state xH
t+1 for the next period t + 1.

In the backward pass, SDDP updates the approximation of the value function for

xt = xH
t at the discrete price nodes p̂t,i and p̂t,i+1. For p̂t = p̂t,i and p̂t = p̂t,i+1, for

each discrete value of η̃, it sets

p̂t+1 = αt+1p̂t + (1 − αt+1)bt+1 + η̃,

and then determines the neighboring nodes p̂t+1,j, p̂t+1,j+1 and the λ parameter. Then,

it solves Model (7.1.16) and obtains the hyperplane parameters πt = Eη̃[π̂t], βt =

Eη̃[p̂tg (v) + ϕ] and αt = xH
t . It then adds the hyperplane to its respective price node

in order to improve the value function approximation at [xt, p̂t).
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V t(xt, p̂t) = max p̂tg (v) + ϕ, (6.1.16)

s.t. (6.1.17)

(6.1.18)

x = xt [π̂t],

xt+1 = x + Av + Bl + ωt,

ϕ = λθj + (1 − λ)θj+1,

θj+1 ≤ βh
t+1,j+1 +

(
πh

t+1,j+1

)⊤ (
xt+1 − αh

t+1,j+1

)
for h = 1, 2, . . . , H,

θj ≤ βh
t+1,j +

(
πh

t+1,j

)⊤ (
xt+1 − αh

t+1,j

)
for h = 1, 2, . . . , H,

xt+1 ∈ X,

(v, l) ∈ U(xt),

(x1, p1) = (x, p),

VT +1(xT +1, pT +1) = R(xT +1, pT +1).

In the convergence testing phase, SDDP calculates the upper bound by solving V 1(x)

for each discrete value of η̃ in the same way as carried out in the backward pass, with

p̂2 = α2p + (1 − α2)b2 + η̃. Then, it calculates the lower bound by simulating the

candidate policy under N price scenarios for Vt(xt) and calculates the sample average

reward. It stops when the upper bound is within the 95% confidence interval of the

lower bound. Algorithm 10 describes this version of the SDDP algorithm with the

implemented cut interpolation technique.
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Algorithm 10 : SDDP algorithm with cut interpolation for solving the

hydro-bidding model (7.1.13).

1. Initialize x, p, Hmax, Hconvergence, L, N

2. Set H = 2

3. Forward Pass:

(a) Randomly sample a price scenario {pH
t }t=1,2,...,T starting from the initial

state p.

(b) Set xH
1 = x.

(c) For t = 1, 2, . . . , T do,

i. determine θi, θi+1, and λ for pH
t+1,

ii. solve (7.1.13) for Vt(xH
t ) and set xH

t+1 = xt+1,

4. Backward pass:

(a) For t = T, T − 1, . . . , 1, and for p̂t = p̂t,i and p̂t = p̂t,i+1, do the following:

i. for k = 1, 2, . . . , L do,

A. set p̂t+1 = αtp̂t + (1 − αt)bt + η̂k,

B. determine θi, θi+1, and λ for p̂t+1,

C. solve (7.1.16) for V t(xH
t , p̂t), and obtain π̂t,k,

D. compute V̂k = p̂tg (v) + ϕ.

ii. Update the outer approximation by adding the cutting plane with πt =
L∑

k=1
ρkπ̂t,k, βt =

L∑
k=1

ρkV̂k, and αt = xH
t .

5. Convergence test: If H( mod Hconvergence) = 0 then:
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(a) For k = 1, 2, . . . , L do,

i. set p̂2 = α2p + (1 − α2)b2 + η̂k,

ii. determine θi, θi+1, and λ for p̂2,

iii. solve V 1(x) and let V̂k = p̂tg (v) + ϕ.

(b) Let V up =
L∑

k=1
ρkV̂k.

(c) For l = 1, . . . , N do the following:

i. randomly sample a price scenario {pt}t=1,2,...,T starting from the initial

state p,

ii. set x = x and Vlow,l = 0,

iii. for t = 1, 2, . . . , T do,

A. determine θi, θi+1, and λ for pt+1,

B. solve Vt(x), compute Vlow,l = Vlow,l + ptg (v), and set x = xt+1.

(d) Compute V low = E{1,...,N} [Vlow] and σlow = SD{1,...,N}(Vlow).

(e) If V low− 1.96√
N

σlow ≤ V up ≤ V low+ 1.96√
N

σlow or H > Hmax , then stop, otherwise

set H = H + 1 and go to step 3.

6.1.3 Comparison of MIDAS and SDDP

Both MIDAS and SDDP were used to solve two hydrobidding problems, each with a

planning horizon of 12 periods (i.e. T = 12). A single reservoir (i.e. |R| = 1 and

|S| = 1), and two reservoirs in cascade (i.e. |R| = 2 and |S| = 2) hydro schemes were

used as test cases. We used the elementary reservoir configuration from Section 3.3 of

Chapter 3 so as to make it easier to analyze, compare, and illustrate the performance

of each of the algorithms.

The spill limit was set to 0 in order to prevent spilling (i.e. l = 0), and it was assumed

that there were no inflows (i.e. ωt = 0). This isto help us analyse and compare
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the policies and state trajectories of MIDAS and SDDP. With no inflows the hydro

generator only begins with an initial stock of water, which the must consume efficiently

throughout the planning horizon. In this situation the hydro generator would look to

generate only in the optimal periods as their stock will not be replenished. Therefore,

we should expect to see similar offer strategies by both MIDAS and SDDP.

The price was modeled as an autoregressive lag 1 process that reverts to the mean

defined by bt. The noise term η is discretized into 5 outcomes, which are independently,

and identically distributed (i.e. i.i.d). We chose δp = 1.5, and set the reservoir storage

bounds to be between the value of δx and 200. The generation function g(v) is a

convex piecewise linear function of the turbine flow v, which is between 0 and 70. It

is the same piecewise linear function from Section 3.3 of Chapter 3. Table A.1, in

Section A.1 of Appendix A, lists the values of the model parameters.

As illustrated by Figures 7.7 and 7.8, MIDAS converges under various δx values for

the single reservoir hydro scheme. It converges quicker for higher δx values. This is

because with a higher δx, the value function has a coarser approximation. The state

space Xδ is covered by sampled points xh
t , for h = 1, 2, . . . , H, which are within δx

distance. Hence, the smaller the δx, the closer the sampled state points are which

improves the approximation and decreases the error ε value (see Chapter 5 Section

5.3). It is also a similar case for the 2 reservoir hydro scheme illustrated by Figures

7.9 and 7.10.
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Figure 6.7: Comparison of upper bound for various δx values of the MIDAS algorithm
for a single reservoir hydro scheme.
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Figure 6.8: Comparison of lower bound for various δx values of the MIDAS algorithm
for a single reservoir hydro scheme.
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Figure 6.9: Comparison of upper bound for various δx values of the MIDAS algorithm
for 2 reservoir hydro scheme.
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Figure 6.10: Comparison of lower bound for various δx values of the MIDAS algorithm
for 2 reservoir hydro scheme.

The SDDP algorithm converges to similar upper and lower bounds in fewer iterations

than MIDAS, as illustrated by Figures 7.12, and 7.11. The reason why SDDP con-

verges quicker than MIDAS is because it exploits the gradient of the hyperplanes in

order to generate new state trajectories in the forward pass. MIDAS on the other

hand generates new state trajectories that are δx distance apart. This takes longer to
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converge as it has to thoroughly cover the state space in order to accurately approxi-

mate the value function. Figures 7.13 and 7.14 show the state trajectories generated

in the forward pass by MIDAS and SDDP respectively. MIDAS covers the feasible

state space in points that are δx distance apart, thus creating a grid of visited states.

SDDP on the other hand explores different states only in the peak price periods when

it is discharging water for generation.
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Figure 6.11: Comparison of upper and lower bound SDDP algorithm for 2 reservoir
hydro scheme.
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Figure 6.12: Comparison of upper and lower bound of the SDDP algorithm for single
reservoir hydro scheme.
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Figure 6.13: Generated state trajectory by iteration of the MIDAS algorithm (δx = 10)
for a single reservoir hydro scheme.
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Generated state trajectory by iteration: SDDP

Figure 6.14: Generated state trajectory by iteration of the SDDP algorithm for a
single reservoir hydro scheme.

When the policies of MIDAS and SDDP are simulated they illustrate similar strategies,

which offer the greatest quantity of power during the peak price periods. The policy

of MIDAS produces offer quantities in increments of δx, whereas SDDP has greater

variations in its quantity. Moreover, MIDAS (unlike SDDP) offers energy in early time

periods when the price is just about to increase, thus it anticipates the higher price

peaks.
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Figure 6.15: Offers from the simulated policy of the MIDAS algorithm (δx = 10) for
a single reservoir hydro scheme.
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Figure 6.16: Offers from the simulated policy of the SDDP algorithm for a single
reservoir hydro scheme.

Through the use of the cut interpolation technique, SDDP is computationally more

efficient than MIDAS at constructing similar offer policies. However, this technique

can only model univariate price processes. It is not easy to implement the cut interpo-

lation technique in multiple price dimensions as it requires carrying out multivariate

interpolation among the neighboring price nodes. For MIDAS, adding more dimen-
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sions is trivial to model, as it only requires adding new dimensions inside the value

function. There is no need for additional calculations, because the formulation of the

step function approximation of the value function is still the same.

6.1.4 Solving a large scale hydro scheme using SDDP

Using the cut interpolation technique SDDP can represent an autoregressive, mean

reverting price processes. Since it is computationally more efficient than MIDAS, it

was extended to solve a hydro-bidding problem for a 5 reservoir hydro scheme, and

with a higher resolution of η̃ disturbances (Figure 7.17a). Each reservoir has an initial

storage volume of 100 cubic meters, and there is no inflow and spill in this model.

The offer policy computed by SDDP, as illustrated in Figure 7.17b, submits bids with

higher quantity of power during periods of peak prices. Between period 1 to 5 there is

only one single bid quantity of 55 MWh. Then, the quantity of offers starts to increase

in time, where at period 8 the maximum quantity is submitted during the peak when

the price is at its highest.

(a) Simulated prices. (b) Simulated offers.

Figure 6.17: Simulated price and offers of 5 reservoir hydro scheme from a policy
constructed through SDDP.

Every offer quantity submitted must be feasible for generation across the hydro scheme.
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Based on the simulated storage volumes, illustrated between Figures 7.18a to 7.18e,

one can see that water in upstream reservoirs is conserved for consumption for the

peak prices. The upstream reservoirs 1 and 2 (Figures 7.18a and 7.18b) release their

water last, compared to the downstream reservoirs in order to extract the maximum

value. Since the stored water flows from upstream to downstream, it is utilized at

multiple stations to produce power. This makes the volume of water stored upstream

more valuable than if it were stored downstream, therefore it is released just before the

price peaks in order to construct offers with maximum quantities. The downstream

reservoirs 3, 4, and 5 (Figures 7.18c, 7.18d, and 7.18e) release water earlier in order to

have enough storage capacity to receive the upstream releases during the price peaks.

In fact, reservoir 5, in some of the scenarios, reaches maximum storage volume (200

cubic meters) in early trading periods due to early upstream releases, which it depletes

over time.
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(a) Reservoir 1. (b) Reservoir 2.

(c) Reservoir 3. (d) Reservoir 4.

(e) Reservoir 5.

Figure 6.18: Simulated state trajectories of each reservoir in the 5 reservoir hydro
scheme.
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Based on the the water releases observed in this SDDP model, the hydro scheme is

transferring a set volume of water across its reservoirs over time. This is what is

referred to as cycling, where reservoirs are periodically emptied and then filled back

up to consume a constant volume of water for power generation. This is common

practice for hydropower management, which efficiently consumes the water to produce

the maximum power.

6.2 Modelling headwater effects

Accurately modelling the power generation function in hydro-bidding models is impor-

tant because it estimates the capacity of power available for generation based on the

flow and the reservoir water level. This is particularly significant for hydro schemes of

reservoirs with low storage capacity, or where the water level of their reservoirs vary

significantly. As shown in Figure 7.20, the power generation varies with the water

level of the reservoir for a particular flow profile. If we assume fixed headwater and

model the power as function of only flow, then the increases and decreases of the power

based on the headwater will be absent. This can produce sub-optimal policies in low

storage conditions, when efficient generation is crucial. The significance of incorpo-

rating headwater effects has been observed by [60], where their models retained water

(i.e. keep headwater levels high) in reservoirs with low storage capacity in order to

produce maximum power. In this section, we take the perspective that headwater is

significant.

The power generation function, as defined in Equation (7.2.1) and discussed in Chapter

3, depends on the flow through the turbines u, the efficiency factor η, and the net water

head h (the constant 9.81×10−3 is the acceleration due to gravity constant multiplied

by the density of water converted from meters to MJ). The efficiency factor η represents



6.2 Modelling headwater effects 171

the plant capability curves, also known as hill curves. Combined with the hill curves,

the power generation function can be represented as a function of h and station flow

(i.e. total flow across all turbines) based on empirical measurements. This creates a

surface which shows the actual power that can be generated for a particular station

flow and head level (Figure 7.19).

gs(h, u) = 9.81 × 10−3ηuh (6.2.1)
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Figure 6.19: Example power function based on empirical measurements for a station
with 6 turbines.

The empirical power function in Figure 7.19 is non-concave due to switching at specific

station flows. These switches are due to the starting of additional turbines. As the

flow across an operating turbine increases, beyond its efficient generation point, the

efficiency starts to decrease. Then, switching on an additional unit increases the

efficiency and the power, which is illustrated by a strict increase in generation. This

creates a hill surface with a similar shape similar to the hill curves depicted in Figure

3.6 of Chapter 3.
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The power function is also bilinear due to the multiplication of u and h. As illustrated

in Figure 7.20, the power is increasing with the head level. Whenever the head level

is below the minimum (i.e. h = 0) the power is zero. But, at higher station flows,

the power depends on the head level. Due to the cloud-like shape, and the bilinear

property, the power function is non-concave, which is difficult to model inside a SDDP-

based hydro-bidding model.
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Figure 6.20: Example power function based on empirical measurements for each mea-
sured head level.

In this section, we present a new approximation of the non-concave power functions

and implement this formulation inside MIDAS and SDDP. This formulation is based

on the work of [60], who used it to analyze whether headwater effects on the power

generation capacity were significant for the Waikato hydro scheme in New Zealand.

The benefit of using such an approximation is that it enables us to include unit com-

mitment, where the states of the individual turbines can be controlled.

Consider the following approximated power function formulation in Equation (7.2.2).

In this formulation gh0(u) is the piecewise linear power function, based on station
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discharge u, at the nominal head level h0. This function is linearly scaled by the

differences in the current head level h and h0 by gradient ∂g

∂h
. For a given u, Equation

(7.2.2) is a linear function in the h dimension.

g(h, u) = gh0(u) + gh0(u)∂g

∂h
(h − h0) (6.2.2)

The overall function g(h, u) is bilinear due to the term gh0(u)∂g

∂h
(h−h0), which gh0(u)

and h is being multiplied. The bilinear terms in Equation (7.2.2) can be separated

using differences of squares. First, we define the following variables

a = gh0(u) +
(

∂g

∂h
(h − h0) + 1

)
, (6.2.3)

and

b = gh0(u) −
(

∂g

∂h
(h − h0) + 1

)
. (6.2.4)

Then, g(h, u) can be represented as

g(h, u) = a2 − b2

4 . (6.2.5)

The a2 and b2 terms are quadratic and convex, since a and b are now linear with

separated gh0(u) and h terms. Both a2 and b2 can be approximated as a piecewise

linear function. Then, g(h, u) can be implemented inside the linear sub-problems of

MIDAS and SDDP. Furthermore, the piecewise linear approximation of a, b and gh0(u)
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can be represented as special ordered set of type two (SOS type II) constraints inside

the solvers for efficient computation [12].

The nominal power function gh0(u) is approximated as a single power function for a

single turbine, and then it is multiplicatively scaled based on the number of turbines

that are in use. For a single turbine in use, the nominal power is defined in Equation

(7.2.6) for Lpower
s pieces, where dg1

du
is the gradient for the line between (û1, ĝ2) and

(ĝ1, ĝ2).

gh0(u) =



ĝ1 + dg1

du
(u − û1) if u ∈ [û1, û2),

ĝ2 + dg2

du
(u − û2) if u ∈ [û2, û3),

. . . . . . ,

ĝLpower
s −1 + dgLs−1

du
(u − ûLpower

s −1) if u ∈ [ûLpower
s −1, ûLpower

s
).

(6.2.6)

The nominal power function, gh0(u), can be multiplicatively scaled, where ĝ and û

values are multiplied by the number of units that are turned on. Figure 7.21 illustrates

how the nominal power function for a single turbine is scaled based on the number of

units being used. It is an approximation of the power generation at a head level of

359.45 (meters above sea level).

Unit switching can be incorporated inside the power generation function based on this

type of formulation. As is shown in Figure 7.21, this type of formulation represents

the incremental shape of the power function. The efficient generation frontier, which

is formed by edges of the piecewise linear functions for each turbine in use, closely

follows the empirically based power generation function shown in black.
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Figure 6.21: Piecewise linear approximation of gh0(u) scaledby the number of units in
use (h0 = 359.45).

There is an underlying assumption associated with this formulation, which is that all

the turbines are identical. In most occasions this is not a bad assumption because it is

common for stations in a hydro scheme to be constructed with identical turbines. But

all the turbines are not equally used, which can result in variations in their performance

over time. The reader, if implementing this approximation, is advised to first test this

assumption.

In the next section, Section 7.2.1, we introduce the linear programming formulation

for representating the approximate generation function g(h, u) in Equation (7.2.5).
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6.2.1 Linear formulation of g(h, u)

For a station s and its upstream reservoir r, let gs(hr, us) be the approximate genera-

tion function in (7.2.5) that can be modelled by the following set of constraints:

gs,h0 =
∑
i∈Ts

gunit
s,h0,i , (6.2.7a)

us =
∑
i∈Ts

uunit
s,i , (6.2.7b)

gunit
s,h0,i = i

Ls∑
l=1

ĝs,lλ
power
s,i,l for i ∈ Ts, (6.2.7c)

uunit
s,i = i

Ls∑
l=1

ûs,lλ
power
s,i,l for i ∈ Ts, (6.2.7d)

1 =
Ls∑
l=1

λpower
s,i,l for i ∈ Ts, (6.2.7e)

uunit
s,i ≤ iûs,Lpower

s
zs,i for i ∈ Ts, (6.2.7f)

uunit
s,i ≥ iûs,1zs,i for i ∈ Ts, (6.2.7g)

1 ≥
∑
i∈Ts

zs,i, (6.2.7h)
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hr = xt,r + xt+1,r − 2xr

2K
, (6.2.7i)

ar = gs,h0 + ∂g

∂h
(hr − hr,0) + 1, (6.2.7j)

br = gs,h0 − ∂g

∂h
(hr − hr,0) − 1, (6.2.7k)

ar =
Lb

r∑
l=1

âr,lλ
a
r,l, (6.2.7l)

br =
Lb

r∑
l=1

b̂r,lλ
b
r,l, (6.2.7m)

asquared
r =

La
r∑

l=1
âsquared

r,l λa
r,l, (6.2.7n)

bsquared
r =

Lb
r∑

l=1
b̂squared

r,l λb
r,l, (6.2.7o)

gs = asquared
r − bsquared

r

4 , (6.2.7p)

1 =
La

s∑
l=1

λa
r,l, (6.2.7q)

1 =
Lb

s∑
l=1

λb
r,l, (6.2.7r)

λpower
s,i,l , λb

r,l, λa
r,l ∈ [0, 1], (6.2.7s)

zs,i ∈ {0, 1}. (6.2.7t)

where:

Ts = set of turbines for station s,

hr = average net headwater level adjusted from the minimum

storage xr for reservoir r,
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us, uunit
s,i = station flow (cumec) and turbine flow (cumec) for the i’th

turbine,

zs,i =


1 if i’th number of turbines are on,

0 otherwise,

Lpower
s , La

r , Lb
r = the number of linear function intervals for the piecewise

linear approximations of gunit
s,h0,i, ar, and br respectively,

xt,r, xt+1,r = volume of water (cubic meter) of reservoir r starting period t

and t + 1 respectively,

[λpower
s,i,l ]l∈Lpower

s
,

[λa
r,l]l∈La

r
,

[λb
r,l]l∈Lb

r

= interpolation variables for the piecewise linear

approximations of nominal power, and the quadratic

functions,

[ûs,l]l∈Lpower
s

,

[ĝs,l]l∈Lpower
s

= turbine flow and power points for the piecewise linear

approximation of a single turbine,

[âr,l]l∈La
r
,

[b̂r,l]l∈Lb
r

= a and b points for the piecewise linear approximation of the

quadratic variable,

[âsquared
r,l ]l∈La

r
,

[b̂squared
s,l ]l∈Lb

r

= points for a2 and b2 of the piecewise linear approximation of

the variable a and b.

Constraints (7.2.7a) to (7.2.7h) and (7.2.7t) model the unit switching as binary vari-

ables and the nominal power function gs,h0 as a piecewise linear approximation. It

uses the binary variable zs,i to select the number, indicated by the value of i, tur-

bines that are turned on. Whenever zs,i = 1, it indicates that i turbines are being

used to generate power. In this case the turbine flow uunit
s,i of a single unit is be-
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tween the minimum iûs,1 and maximum iûs,Lpower
s

flow, set by constraints (7.2.7g) and

(7.2.7f), with all other turbine flow variables uunit
s,· set to 0. Then, the nominal power

gs,h0 = gunit
s,h0,i, through constraint (7.2.7a), and the station flow is equivalent to uunit

s,i

(constraint (7.2.7b)). The tubine flow gunit
s,h0,i is equivalent to the single turbine piece-

wise linear function, based on uunit
s,i , and is scaled by i through constraints (7.2.7c)

to (7.2.7e). The variables λpower
s,i,l interpolate between adjacent nominal power ĝs,l and

flow ûs,l points through constraint (7.2.7e). Additional SOS type II constraints are

added to λpower
s,i,l to ensure that the interpolated nominal power is not greater than the

piecewise approximation. These SOS constraints enforce an ordering of λpower
s,i,· , where

only two adjacent variables can be positive [12].

Based on the nominal power gs,h0 and the head level hr, the actual power gs across

the station s is represented as the piecewise linear approximation of the difference of

the squares, which is represented by the terms asquared and bsquared in the model. The

head level is the average of the head level of the net volume of water at period t and

t + 1 through constraint (7.2.7i), where K is the surface area of the reservoir. This

assumes that the reservoir is cylindrical in shape, and therefore has a constant rate of

change in head level with respect to change in volume (i.e. constant K). Constraints

(7.2.7j) and (7.2.7k) represent the definition of variables a and b, and are the same as

equations (7.2.3) and (7.2.4) respectively. Constraints (7.2.7l) to (7.2.7o), and (7.2.7q)

to (7.2.7r) are the piecewise linear approximations of the quadratic functions for a and

b. SOS type II constraints are also added for λa
r,· and λb

r,· weight variables in order to

ensure that the interpolated value does not exceed the piecewise approximation. The

overall power gs, generated from the station, is equivalent to the difference of asquared

and bsquared set by the constraint (7.2.7p). This is equivalent to Equation (7.2.5).

Even though this approximation includes the switching of individual turbines, it does

not take into account cost of their switching. It is expensive to switch turbines on
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and off, referred to as unit switching, as it damages the turbines and reduces their

lifespan. Therefore, production schedules that have less frequent unit switching are

desirable. Potential ways to incorporate unit switching inside hydro-bidding models

are discussed in Section A.2.1 of Appendix A. Including switching costs inside the

objective introduces an additional binary state variables, which represent the state

of the turbine for periods t and t + 1. This adds another layer of complexity on the

sub-problems solved in both MIDAS and SDDP. Therefore, it is not explicitly included

inside the objective of the hydro-bidding models presented in this chapter. Since, the

objective maximizes hydro generator surplus, it should naturally reduce the number

of unit switching in order to generate efficiently. Incorporating turbine state variables

inside the value function of MIDAS and SDDP provides for a good research direction

in the future.

In the next section, Section 7.2.2, we describe how the aforementioned approximation

was numerically carried out, and analyse its accuracy for a single hydrostation.

6.2.2 Analysis of the approximation of g(h, u)

We applied this approximation to a test hydro station with the empirical power func-

tion illustrated in Figure 7.19. The nominal power function was based on the power

flow profile for the average head level. The nominal power flow profile was then

partitioned into 6 individual profiles based on the observed power increments, which

indicated the starting of additional turbines. These partitions were then adjusted to

represent a single unit. A 5 point (4 linear function pieces) piecewise linear function

was then fitted to these data points. This piecewise linear function approximates nom-

inal power function gunit
s,h0 for a single turbine. The rate of change in the power with

the headwater was calculated as the rate of change between the measured power at

the measured head level with respect the nominal power at the nominal head level.
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This was then averaged across all the individual measurements to obtain an average

rate. Based on these measures the terms a and b along with their respective quadratic

terms were calculated. Similar to the power approximation, a 5 point (4 linear func-

tion pieces) piecewise linear function was fitted to the quadratic functions to the term

asquared and bsquared. The piecewse approximation parameters are listed on Table A.3

in Appendix A.
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Figure 6.22: Approximated power function from empirical measurements for a station
with 6 turbines.

Figure 7.22 illustrates the approximate power generation function based on the mea-

sured flow and head levels. As observed, the shape of the approximation closely

resembles the original function. This approximation captures the power increments,

and the cloud-like shape from the original function, albeit with less accuracy. This is

illustrated in Figure 7.23 where there are distinct peaks, which indicate the starting

of additional turbines. In addition to representing the price peaks, this approximation

also captures the bilinear nature of the original power function, also illustrated in

Figure 7.23.
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Figure 6.23: Approximated power function for each measured head levels.

Measuring the accuracy of the approximation indicates a maximum error of 8% at

the lowest head level, and at the minimum flow. As illustrated in Figure 7.24, the

errors are the highest at low head levels and during flows when an additional turbine

is turned on. This is due to the formulation of the nominal power function. Recall,

that the nominal power function is modeled for a single turbine, which is then scaled

multiplicatively by the number of tubines in use. This introduces additional errors at

flow ranges when the power function is scaled by the addition of a turbine. The error

is greatest just after the power increments, when a new turbine is switched on, and

are at its lowest just before the additional turbine is turned on.
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Figure 6.24: Measured error of the approximate power function for each measured
head levels.

6.2.3 Comparison of MIDAS and SDDP

We implemented the head level approximation inside the 3 tranche offerstack hydro-

bidding model, Model (6.3.8) in Chapter 6, with zero inflow (i.e. ωt = 0) and zero

spill assumptions along with the same Markov price process. The original objective

function was replaced with that of (A.2.2) in the model as well as setting the xt+1

to be a continuous variable. Algorithm 8 was used to solve this model for a single

reservoir hydro scheme with δx = 10, 000. The initial storage level was set to 1% of the

maximum level in order to simulate drought conditions. This is because, during these

conditions, when there is a limited volume of water available, efficieny in generation

is important. We also added the new power function formulation into an SDDP

equivalent of Model (6.3.8). In the SDDP model, the binary turbine state variables

and the SOS type II constraints were relaxed in the backward pass in order to extract

the dual values and construct the hyperplanes.
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Figure 6.25: Convergence comparison between MIDAS and SDDP for a single reservoir
hydro scheme with headwater effects.

Figure 7.25a illustrates the convergence of MIDAS within 60 iterations. The upper

bound steadily decreases as the value function approximation improves, and the lower

bound increases towards the optimal policy. Similar to the price uncertainty model,

MIDAS takes longer to converge than SDDP (Figure 7.25b). For the same reason

discussed in Section 7.1.3 it has to thoroughly explore the state space in order to

construct the optimal policy. As illustrated in Figure 7.26, it begins with a greedy

policy, where it offers all of the station capacity in early time periods. Then, it

improves on this policy by exploring state values that are δx distance apart, which

takes longer than SDDP to converge.
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Figure 6.26: Generated state trajectory by iteration of the MIDAS algorithm of single
reservoir hydro scheme with headwater effects.

6.3 Summary

In this chapter, we presented different approaches to modelling a mean reverting au-

toregressive price process, and headwater effects into the hydro-bidding problem. In

both of these cases the state variable was continuous, but the overall hydro-bidding

problem is non-convex. We first illustrated that MIDAS can incorporate these price

processes by adding a price dimension into the state variable. We also introduced

a cut interpolation technique in SDDP, which enabled us to incorporate these price

processes. The interpolation technique discretized the price domain by K price values.

Based on these price values, the price outcomes from the mean reverting autoregressive

price process could be interpolated by two neighboring values, as stated by Equation

(7.1.9). Using the same interpolation weights, the value function could then be inter-

polated between two approximate value functions of adjacent price nodes (see Figure

7.6). By storing the cuts at these price nodes, we can compute the value function for
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a wider range of price outcomes.

We compared MIDAS and the interpolated SDDP for a 1, 2, and 5 reservoir hydro

scheme. We observed that both methods produce similar optimum policies, but SDDP

was more computationally efficient than MIDAS. SDDP, with its cutting plane approx-

imation, exploited the gradient of the cuts to explore new states, where as MIDAS

used the δx. This required MIDAS to more thoroughly explore the state space, as

illustrated by Figure 7.13, in order to construct an optimum policy.

Although MIDAS is slower compared to SDDP, it can model multivariate price pro-

cesses. For SDDP, incorporating these price processes requires carrying out multivari-

ate interpolation among the neighboring price nodes between each price dimensions.

MIDAS on the other hand simply adds another price dimension to the state vari-

able. There is no need for additional calculations because the formulation of the step

function approximation of the value function would still be the same.

We then incorporated headwater effects into the power generation function. We pre-

sented an alternative approximate power function formulation. The formulation first

modeled the power function for a single turbine as a piecewise linear function of turbine

flow at a nominal head level. Then, we linearly scaled this piecewise power function

based on the changes in the head level. This approach made the overall power function

bilinear, therefore we re-formulated the function as a difference of squares to separate

the bilinear terms. In order to implement it inside the linear sub-problems of MIDAS

and SDDP, we approximated each of the squares using piecewise linear functions. We

used SOS type II constraints to represent the piecewise linear function approximation

inside the solvers.

We solved a 3 tranche offerstack hydro-bidding model similar to Model (6.3.8) in Chap-

ter 6 using MIDAS and SDDP. We observed a similar convergence characteristics as the

price uncertainty case, where SDDP was computationally more efficient than MIDAS.



6.3 Summary 187

MIDAS iteratively improved a starting greedy policy by exploring state values that

were δx distance apart. This took longer than SDDP. However, MIDAS had a tighter

upper bound of 9931.022, than SDDP, which had upper bound of 10389. This was

because MIDAS could explicitly represent the approximate power function, whereas

SDDP, through its relaxation of the binary SOS type II constraints, convexified the

approximation.

In Chapters 6 and 7 we observed that MIDAS, although it produces better upper

bounds and optimum policies, is slower than the SDDP equivalent. It does not exploit

any gradient information of the value function, unlike SDDP. This makes it slower

because it enumerates across the state space in order to construct an optimum policy.

Furthermore, it solves SMIP sub-problems, which grow in size with additional step

functions. Hence, industrial solvers take longer to solve the sub-problems due to the

increasing number of binary variables and big-M constraints. In the next chapter,

Chapter 8, we analyze MIDAS and propose some heuristics to improve its computa-

tional inefficiency.



Chapter 7

Improving the computation of

MIDAS

In Chapter 5, we introduced the Mixed-Integer Dynamic Approximation Scheme (MI-

DAS), and proved its finite convergence for continuous and integer state variables.

Then in Chapters 6 and 7 we used MIDAS to model various versions of the hydro-

bidding problem for continuous and integer state variables. The policies that were con-

structed using MIDAS were compared to the policies constructed using the Stochastic

Dual Dynamic Programming (SDDP) equivalent. For models with integer state vari-

ables (i.e. Chapter 6), the offer policies constructed by MIDAS were superior to the

policies of SDDP. However, MIDAS took much longer to converge than SDDP, and in

many cases for large hydro-schemes the sub-problem became too large to solve using

industrial solvers such as CPLEX [23]. As for the continuous state variable case, it

was noticeably slower than SDDP. Its computation time depended on the value of δ.

A larger δ would ensure less computation time for convergence but greater optimality

error ε. Furthermore, the policies of SDDP and MIDAS were similar to each other.

At each iteration of MIDAS, and with each step function, the MIP sub-problems adds
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M(2 + |R|) constraints and M(1 + |R|) binary variables. As a result, the MIP sub-

problems increase in the number of variables and big-M constraints with each iteration

of the backward pass, which in turn increases the computation time for solving the

sub-problem, as summarized in Table 8.1. The execution time for the SDDP equivalent

of Model (6.3.8) in Chapter 6, is significantly less. MIDAS on the other hand takes

several hundred seconds to converge, where as SDDP takes on average a maximum of

30 seconds to solve the problem with the largest data set (2 reservoir hydro-scheme,

5 Markov states, and 9 stages).

Mean execution Time

(sec)

Mean Upper Bound

(lower is better)

M T SDDP MIDAS SDDP MIDAS

3 5 4.990 107.484 8588.410 7876.953

3 7 9.954 228.398 8960.435 8446.267

3 9 20.093 354.986 9444.515 8454.877

5 5 8.197 440.858 9310.741 8054.981

5 7 19.547 563.756 10106.507 8444.402

5 9 30.630 617.277 10636.140 9117.780

Table 7.1: Comparing the computation time of SDDP and MIDAS with increasing T
and M for 2 reservoir hydro-scheme in Chapter 6.

Unlike SDDP, MIDAS does not utilize information associated with the gradient of the

value function. As a result, it has to explore the state space rigorously in order to

yield a good approximation. Furthermore, the sub-problems are MIPs which increase

with the number of step functions present. This increases the size of the branch and

bound tree inside the solvers like CPLEX [23], which causes many of these solvers to

run out of memory. It is due to this memory error that MIDAS has been limited to
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solving hydro-schemes with up to 3 reservoirs for integer state variables.

Both the size of the sub-problem and the computation time can be reduced if the step

function implementation is re-formulated as a linear program. However, this is not

achievable with the structure of the step functions. Fortunately, we can improve the

computation of MIDAS by applying similar techniques to those used in SDDP, such as

cut selection. In this chapter, we present two heuristics to improve the computational

efficiency of MIDAS and study their impact. The first is similar to SDDPs cut selection

described in [26], where step functions are filtered out based on a specific criteria

proposed in Section 8.1. The benefit of such a method is that it removes redundant

step functions and reduces the size of the MIPs without hindering the accuracy of the

value function approximation.

The second is a heuristic that solves the sub-problem iteratively, discussed in Section

8.2. It is based on the L-shaped method proposed by [45]. The benefit of using this

heuristic is that it no longer requires using the QH(x) MIP formulation, in Section 5.5

of Chapter 5, in the sub-problem. Instead it uses the cuts proposed by [45] to directly

integrate the binary variables associated with the discrete production with each of the

step functions. This significantly reduces the branch and bound tree inside the solvers,

and increases their capability to solve large sub-problems in MIDAS.

7.1 Step function selection scheme

Unlike SDDP, MIDAS does not utilize information associated with the gradient of

the value function. As a result, MIDAS has to explore the state space rigorously in

order to yield a good approximation. Figure 8.1 illustrates the step functions added

by MIDAS in period 8 of a hydro-bidding problem with a continuous state variable.

They are color coded by iteration, with the color bar in the figure indicating in which
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iteration the step functions were added to the sub-problem. As illustrated in the figure,

the step function, computed in earlier iterations, are redundant in later stages of the

MIDAS algorithm. They do not improve the approximation of the value function.

This provides an opportunity for us to filter out the redundant step functions in order

to reduce the size of the sub-problems and time it takes to solve them in solvers such

as CPLEX [23].

Figure 7.1: Step functions used to approximate the value function of a 2 reservoir
hydro scheme with continuous state variables.

Similar to the cut selection approach in SDDP, we can apply a step function selection

scheme, which removes redundant step functions in order to reduce the size of the

sub-problem. The step function selection scheme works by removing a step function

h1, which is dominated by another step function h2 (i.e. xh1
t,r ≤ xh2

t,r for r ∈ R), that

breaks the monotonicity property of the value function (i.e. qh1
t ≥ qh2

t ). In these

conditions h1 does not improve the value function approximation as QH
t (x) ≤ qh2

t

for x ≤ xh1
t . Figure 8.2 illustrates an example, where step function 2 breaks the

monotonicity property (i.e. q3
t < q2

t ) but is dominated by step function 3 where
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x2
t ≤ x3

t . As a result the QH
t = min{q3

t , q2
t , M} = q3

t for points which are dominated

by x2
t . Therefore, having step function 2 in the sub-problem does nothing to improve

the approximation.

x1

x2

(x0
t ,M)

Q3
t = q3

t(x1
t , q

1
t )

Q3
t = q1

t

(x2
t , q

2
t )

Q3
t = q3

t

(x3
t , q

3
t < q2t )

Figure 7.2: Example of a redundant step function function (x2
t , q2

t ).

The algorithm for step function selection is described by Algorithm 11. It is a routine

that can be added to MIDAS between the forward and the backward pass, or even

after the convergence testing phase.

Algorithm 11 : step function selection scheme.

1. Set C = ∅.

2. For h1 ∈ {1, . . . , H} and h2 ∈ {1, . . . , H} \ {h1} do,

(a) if xh1
t ≤ xh2

t and qh1
t ≥ qh2

t then C = C ∪ {h1}.

3. Redefine QH
t (x) with (xh

t , qh
t ) for h ∈ {1, . . . , H} \ C points.
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7.1.1 Analyzing computational performance of step function

selection

Applying this step function selection scheme to MIDAS yields the following improve-

ments summarized by Table 8.2. The results in the table are obtained by executing

the model under the same initial conditions 30 times in order to obtain an averaged

measurement of the execution time and the upper bound. Based on the results, the

step function selection scheme reduces the solution time of MIDAS by a minimum of

40%. The average time, ranges from 65 to 312 seconds with step function selection,

where it originally took between 107 to 617 seconds.

Mean execution Time (sec) Mean upper bound

(lower is better)

M T Original step

function

selection

Reduction (%) Original step

function

selection

3 5 107.484 65.626 39% 7876.953 7876.953

3 7 228.398 135.730 41% 8446.267 8271.274

3 9 354.986 198.538 44% 8454.877 8337.396

5 5 440.858 118.092 51% 8054.981 8102.071

5 7 563.756 222.160 64% 8444.402 8702.847

5 9 617.277 312.613 45% 9117.780 9146.019

Table 7.2: Comparison of the execution time of MIDAS without and with step function
selection, across increasing T and M for a 2 reservoir hydro scheme.

For instance, applying the step function selection scheme to the 5 Markov state 9

stage hydro-bidding problem reduces the number of step functions from 41 to 17. As

illustrated in Figure 8.3, there are essentially two layers of step function functions on
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the original Q2(x). One layer has a higher value function estimate, and is dominated

by the second layer. The step function selection scheme removes this layer in order to

tighten the value function approximation, while also reducing the number of binary

variables and big-M constraints in the sub-problem.

Reservoir 1 storage

0

50

100
150

200

Reservoir 2 storage 0
50

100
150

200

V
a
lu

e
 fu

n
ctio

n
 e

stim
a
te

5000

0

5000

10000

15000

20000

25000

30000

35000

Approximation of Q2(x)

Without PCF selection
With PCF selection

Figure 7.3: Comparison of the step function selection scheme for the 5 Markov state
and 9 stage problem for Markov state 0.

However, the solution time with step function selection is still higher than for SDDP.

This is because, even with step function selection, the sub-problems are still MIPs,

which are always computationally more expensive than solving a linear program equiv-

alent. Even with step function selection, MIDAS could take a while to solve for large

hydro-schemes, as eventually it could accumulate a large set of step functions. The

step function selection scheme also has an order of n2 time complexity because it cross

references step functions, which may add to the overall execution time of the algo-

rithm. Although the results show a great improvement, the level of this improvement

may be marginal for large data sets. Moreover, the improvement depends on both the

model and initial conditions.
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7.2 MIP sub-problem solver

Due to the ever increasing size of the MIP sub-problem in terms of the number of

binary variables, industrial solvers such as CPLEX [23] are limited by their capability

to store the branch and bound tree in memory. Moreover, the branch and bound tree

will become astronomically large, which increases the time to solve the sub-problems.

This is illustrated by figures 8.4a and 8.4b, where the execution time of the forward

and backward passes exponentially increase with the addition of step functions in each

iteration.
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Figure 7.4: Forward and backward pass execution time by iteration for the 2 reservoir
hydro-scheme, 5 Markov state, and 10 staged model.

One of the reasons for such a rapid increase in the execution time of the forward and

backward pass is due to the slow reduction of the upper bound (UB) of the branch and

bound tree in order to reduce the large MIP gap. In comparison to the lower bound

(LB), which reaches the optimal integer solution early in a particular node of branch

and bound tree, the upper bound, which is the relaxed linear program equivalent at

this node, takes longer to converge. This is due to the fathoming of the other nodes.
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Figure 7.5: Lower and upper bound of the branch and bound tree for solving a MIP
sub-problem in MIDAS using CPLEX.

To address the limitations of the increasing MIP sub-problem, and the lingering high

upper bound for closing the MIP gap, we propose a heuristic for solving the MIP

sub-problems iteratively, without adding any additional binary variables. It is based

on the optimal cuts, which we refer to as binary optimal cuts in the L-shaped method

defined by [45]. The reader is directed to [70], which provide a detailed summary

of the method with numerical examples. Furthermore, this method has been further

extended to solve multistage stochastic problems, in similar fashion to SDDP and

MIDAS, for binary state variables by [83].

This heuristic operates like two stage Benders decomposition. It first decomposes the

MIP hydro-bidding sub-problem into a master problem MP (t, i, xt) (Model (8.2.1)),

which is the same as Model (6.3.8) but without the step function constraints for

representing V̂t+1,j (i.e. constraints (6.3.8i) to (6.3.8k) in Chapter 6).
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MP (t, i, xt) :

V t,i(xt) = max
M∑

j=1
Pi,j(t)

[
πt,jot,j + V̂t+1,j

]

subject to:

(6.3.8a),

. . .

(6.3.8h).

(7.2.1)

The heuristic iteratively improves the value function approximation by adding binary

optimality cuts into the master problem until convergence. For instance, at iteration

K it solves MP (t, i, xt) and obtains the set of first stage binary variable values zK
j,s,l

and state values xK
t+1,j for each Markov state j, station s, and production state l.

Then, it computes the set IK of binary variables that are equal to one, defined in

Equation (8.2.2).

IK =
{
(j, s, l) | zK

j,s,l = 1, for j = 1, 2, . . . , M, s ∈ S, l ∈ Lt,s

}
. (7.2.2)

Once it has constructed the sets IK , it computes the new estimate for V̂t+1,j as

qK
t+1,j = min

{
M, qh

t+1,j : h ∈ HH
Z (xK

t+1,j)
}

(7.2.3)

based on the step functions for the state xK
t+1,j value for each j Markov state. After

computing qK
t+1,j, it adds a binary optimal cut defined by Equation 8.2.4 to MP (t, i, xt).

V̂t+1,j ≤ qK
t+1,j +

(
M − qK

t+1,j

) ∑
(j,s,l)/∈IK

zj,s,l −
∑

(j,s,l)∈IK

zj,s,l + |IK |

 for j = 1, 2, . . . , M.

(7.2.4)



7.2 MIP sub-problem solver 198

The binary optimal cut approximates V̂t+1,j at the binary solution zK
j,s,l and the big-M

(i.e. M) for all other solutions. The term

∑
(j,s,l)/∈IK

zj,s,l −
∑

(j,s,l)∈IK

zj,s,l + |IK |

equals to zero whenever the binary solution zj,s,l = zK
j,s,l for all j = 1, 2, . . . , M , s ∈ S,

and l ∈ Lt,s. When this happens V̂t+1,j ≤ qK
t+1. However if zj,s,l ̸= zK

j,s,l for some

(j, s, l) ∈ IK , then there is at least one binary variable zj,s,l not in the set IK which

switches from 0 to 1. This makes the term

∑
(j,s,l)/∈IK

zj,s,l −
∑

(j,s,l)∈IK

zj,s,l + |IK |,

at least one, which makes the binary optimal cut unbounded and V̂t+1,j being at least

bounded by the big-M term, where

V̂t+1,j ≤ qK
t+1 + M − qK

t+1 = M.

An illustration of how the binary optimal cut approximates the value function at the

point xK
t+1,j for the binary solution zK

j,s,l is provided in Figure 8.6. At the point xK
t+1,j

with the solution zK
j,s,l, V̂t+1,j is projected onto qK

t+1,j from the big-M upper bound M

by the difference M − qK
t+1,j, where qK

t+1,j is the value function estimate based on the

step functions.
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xt+1,j

V̂t+1,j

M

qKt+1,j

(xK
t+1,j , z

K
j,s,l)

M− qKt+1,j

Figure 7.6: Example of a binary optimal cut approximating V̂t+1,j at point xK
t+1,j for

a 1 reservoir hydro-scheme.

The pseudocode below describes the proposed heuristic for solving the MIP sub-

problems in MIDAS. Algorithm 12 is similar to the Bender’s decomposition. At each

iteration it computes a new state value xK
t+1,j by solving MP (t, i, xt). Then, it up-

dates V̂t+1,j by adding a binary optimal cut based on value function approximation

QH
t+1(xK

t+1,j). Since each binary optimal cut applies to a particular binary solution

zK
j,s,l and state xK

t+1,j, it naturally explores a new binary solution and a new state in

consecutive iterations. It keeps iterating between the different binary solutions and

states until the upper bound (V up) and the lower bound (V low) is within ϵconvergence.

Because there are a finite number of binary solutions then Algorithm 12 will always

converge within a finite number of iterations.

Algorithm 12 : Solving the MIP hydro-bidding subproblem in MIDAS using the

binary optimal cuts and the L-shaped method.

1. Input: t, i , xt, KMax, ϵconvergence.

2. Set K = 1, Vup = M, Vlow = 0.

3. While Vup − Vlow ≤ ϵconvergence and K ≤ KMax do,
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(a) solve MP (t, i, xt) set V up = min {Vup, M} and V low = ∑M
j=1 Pi,j(t)πt,jot,j,

(b) compute zK
j,s,l for s ∈ S and l ∈ Lt,s, its set IK , and xK

t+1,j for j =

1, 2, . . . , M ,

(c) compute qK
t+1,j based on (8.2.3) for j = 1, 2, . . . , M ,

(d) add the binary optimal cuts based on (8.2.4) to MP (t, i, xt) for j = 1, 2, . . . , M ;

(e) set Vlow = Vlow +∑M
j=1 Pi,j(t)qK

t+1,j.

4. Output:Vup and xt+1,j for j = 1, 2, . . . , M .

7.2.1 Analyzing computational performance of the heuristic

Applying this heuristic to the algorithm yields the following improvements, summa-

rized by Table 8.3. The results in the table are obtained by executing the model under

the same initial conditions 30 times in order to get an averaged measurement of the

solution time and the upper bound. Based on the results, the heuristic reduces the

solution time of MIDAS by a minimum of 17%. The average time, ranges from 90 to

291 seconds with the heuristic, where it originally took between 107 to 617 seconds.
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Mean execution Time (sec) Mean upper bound

(lower is better)

M T Original Heuristic Reduction (%) Original Heuristic

3 5 107.484 89.603 17% 7876.953 8243.320

3 7 228.398 146.461 36% 8446.267 8842.056

3 9 354.986 168.622 52% 8454.877 9086.276

5 5 440.858 139.986 42% 8054.981 8701.660

5 7 563.756 247.230 60% 8444.402 9359.539

5 9 617.277 291.242 48% 9117.780 9836.071

Table 7.3: Comparing the computation time of MIDAS with and without using the
heuristic, across increasing T and M for 2 reservoir hydro-scheme.

In both the forward pass (Figure 8.7a) and the backward pass (8.7b) the heuristic is

significantly faster than the original. Initial iterations of MIDAS show the heuristic

has a slightly higher execution time than the original MIP. However, with larger MIP

sub-problems the heuristic is computationally more efficient than solving the original

MIP, with lower execution times.



7.2 MIP sub-problem solver 202

0 5 10 15 20 25 30 35 40
Iteration

0

2

4

6

8

10

E
x
e
cu

ti
o
n
 t

im
e
 (

se
c)

Forwardpass execution time

Original
Heuristic

(a) Forward pass

0 5 10 15 20 25 30 35 40
Iteration

0

5

10

15

20

25

30

E
x
e
cu

ti
o
n
 t

im
e
 (

se
c)

Backwardpass execution time

Original
Heuristic

(b) Backward pass

Figure 7.7: Comparison of the forward and backward pass execution time by iteration
between the original algorithm and the implemented heuristic.

The benefit of using the heuristic is that it removes the M(2 + |R|) constraints and

M(1+ |R|) binary variables that are added to the original sub-problems in MIDAS for

each step function. This drastically reduces the branch and bound tree of the MIP, and

enables the heuristic to solve MP (t, i, xt) rapidly in each iteration. Moreover, with

each addition of the binary optimal cuts, the heuristic is not adding any additional

integer or binary variables, only M constraints. Therefore, the heuristic reduces the

upper bound faster than the linear program relaxed upper bound of the original MIP.

This is illustrated in Figure 8.8a, where the upper bound from the heuristic decreases

at a faster rate than the upper bound of the original MIP sub-problem. However, the

lower bound (Figure 8.8b) takes longer to converge using the heuristic compared to the

original MIP because of the point estimate of the binary optimal cuts. Since a binary

optimal cut is only valid at its respective point xK
t+1,j and zK

j,s,l (for j = 1, 2, . . . , M ,

s ∈ S, and l ∈ Lt,s), then MP (t, i, xt) only has to change one of the zj,s,l variables

that were originally 0 to 1 in order to make V̂t+1,j ≤ M. Therefore, the heuristic has

to enumerate across many xK
t+1,j points in order to improve the lower bound.
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Figure 7.8: Lower and upper bound comparison between the branch and bound tree
for solving a MIP sub-problem and the heuristic in MIDAS using CPLEX.

7.3 Solving a 4 reservoir hydro-scheme with MI-

DAS

As observed, both the step function selection scheme, and the sub-problem solver

heuristic improves the computational efficiency of MIDAS. However, implementing

them both inside MIDAS does not add their individual improvements. Nonetheless,

using both of these heuristics have enabled MIDAS to solve a hydro-bidding problem

consisting of 4 reservoirs, 3 Markov states, and 4 stages. The model parameters are

the same as those described in Table 6.6 and Figure 3.9. The model took 850 iterations

(see Figure 8.9) to converge with a total time of 367, 000 seconds. Although the model

takes approximately 4 days to solve, its execution time for the forward and backward

passes does not exponentially increase with the number of step functions. In fact,

its execution time for each of the phases increase linearly by iteration, and plateaus

towards an average of 500 seconds for the backward pass, and 100 seconds for the

forward pass. This is due to the synergy of both heuristics. For instance, the step
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function selection heuristic reduces the number of iterations that the sub-problem

solver (Algorithm 12) takes to converge by reducing the number of step functions used

to approximate the value function. And the sub-problem solver heuristic only solves

MIPs with a small, and constant, number of discrete variables, which reduces the

total time it takes to solve the sub-problem. Therefore, the computation times for

each of the sub-problems are no longer exponentially increasing with additional step

functions.
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Figure 7.9: Lower and upper bound of the branch and bound tree for solving a MIP
sub-problem in MIDAS using CPLEX.
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Figure 7.10: Execution time for the forward and backward pass by iteration for a 4
reservoir hydro-bidding problem in MIDAS.

However, is execution time in reality is inefficient for the size of the problem. This

is due to MIDAS enumerating across many state points. Figures 8.11a to 8.11d show

the state trajectories visited during the execution of the MIDAS algorithm. They visit

significantly more state points for the downstream reservoirs 3 and 4 than the upstream

reservoirs 1 and 2, and as a result MIDAS spends many iterations enumerating these

points. Such a phenomenon has also been observed for the continuous state variable

case in Chapter 7. This is detrimental to solving large models. The more state points

MIDAS explores the larger the MIP sub-problem, and the longer it takes to converge.
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(a) Reservoir 1.
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(b) Reservoir 2.
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(c) Reservoir 3.
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(d) Reservoir 4.

Figure 7.11: Simulated state trajectories of each reservoir in the 4 reservoir hydro-
scheme.

7.4 Summary

This chapter analyzes the computational efficiency of MIDAS. It discusses its short-

comings, which prevent it from solving large hydro-bidding models. These shortcom-

ings are mainly due to the MIP formulation of the sub-problems, which adds M(2+|R|)

constraints and M(1 + |R|) binary variables. The MIP sub-problems increase in the

number of variables and big-M constraints with each iteration of the backward pass,

which in turn increases the execution time of the algorithm, as summarized in Table
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8.1. This causes two issues for MIDAS: first the solution time for the sub-problem

increases exponentially over the execution of the algorithm; second the MIP becomes

to big for solvers such CPLEX [23] to handle.

In order to address these two issues we introduce two heuristics. The first is the step

function selection scheme, much like the cut selection scheme in SDDP, which removes

redundant step functions that break the monotonicity property of the value function

(see Algorithm 11). Applying this step function selection scheme to MIDAS reduces

its execution time by a minimum of 40%, as summarized in Table 8.2, with average

time ranging from 65 to 312 seconds as opposed to 107 to 617 seconds originally. The

advantage of using step function selection is that it minimizes the number of step

functions needed to retain the current approximation of the value function. This in

turn reduces the number of constraints and binary variables added to the sub-problems,

thus reducing their solution times.

The second heuristic is a sub-problem solving heuristic based on the L-shaped method

by [45]. We observed that the reason the sub-problems took a slow time to solve was

due to the long convergence of the upper bound of the branch and bound tree to the

optimal integer solution. In comparison to the lower bound, which reaches the optimal

integer solution early, the upper bound took longer to converge, as it had to fathom

all other potential nodes (Figure 8.5). By using the L-shaped method and the binary

optimal cuts, we were able to remove all the binary variables needed to add the step

functions, and iteratively converge to an optimum solution. This way we were able to

solve the sub-problem by further decomposing it into smaller MIPs, and reducing the

solutions times within the forward and backward passes (Algorithm 12). Applying the

heuristic yielded a reduction in the execution time from 16% up to 60% with average

times ranging from 90 to 291, where it originally took between 107 to 617 seconds.

The improvements for a range of different sized problems are presented in Table 8.3.
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Using both of these heuristics we were able to solve a hydro-bidding problem consisting

of 4 reservoirs, 3 Markov states, and 4 stages with MIDAS. It took 850 iterations

(see Figure 8.9) to converge with a total time of 367, 000 seconds. Even though the

execution time of MIDAS is large, the execution times for the forward and backward

passes do not exponentially increase with the number of step functions, as was observed

originally. The execution time for each of the phases increase linearly by iteration, but

plateaus towards an average of 500 seconds for the backward pass, and 100 seconds for

the forward pass. This is due the step function selection scheme reducing the number

of iterations that the sub-problem solver (Algorithm 12) takes to converge by removing

redundant step functions. Furthermore, the sub-problem solver heuristic only solves

MIPs with a small, constant number of discrete variables which reduces the total time

to model solution time of solving the MIP.

Based on the improvements provided by these heuristics, MIDAS has great potential to

be a fully scalable algorithm for solving large scale, non-convex, multistage, stochastic,

optimization problems with both continuous and integer state variables. However, it

does require further developments, mainly in developing tight formulations for the sub-

problems. These, along with other aspects of MIDAS, and its underlying contribution

to solving a variety of multistage, stochastic, optimization problems are discussed in

the final chapter of this thesis, Chapter 9.



Chapter 8

Concluding remarks

A hydro producer, participating in an electricity market, has to make the trade-off

between selling water in current periods and selling it in future periods when the

wholesale price of electricity might be higher [75]. Their offers of energy to the market

when dispatched must be feasible across the hydro-scheme, as well as take into account

uncertainty in information such as inflows and the market-clearing price, which is

realized over time [47]. The hydro-bidding problem seeks optimal offer policies in

order to maximize the expected profit of a hydroelectric producer participating in

these electricity markets.

The hydro-bidding problem suffers from:

1. uncertain prices, inflow and demand,

2. non-convex or non-concave value functions due to the presence of integer vari-

ables, price, or non-concave power generation functions,

3. being computationally expensive to solve for large hydro-schemes

In this thesis, we study these limitations of hydro-bidding problem, and propose a new

stochastic optimization algorithm called the Mixed-Integer Dynamic Approximation
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Scheme (MIDAS). MIDAS solves nonconvex, discrete-time, finite horizon, stochastic

optimal control problems. It works in similar fashion to the Stochastic Dual Dynamic

Programming (SDDP), but instead of using cutting planes, it uses step functions to

create an outer approximation of the value function. Using these step functions as

approximations it can solve stochastic optimal control problems with monotonic value

functions.

We used MIDAS to study three variants of the hydro-bidding problem. In all of these

variants the hydro-bidding model is non-convex, which limits SDDP from guaran-

teeing convergence to an optimum policy. The first variant had discrete production

states. This makes the state variables integer, which in turn makes the hydro-bidding

problem a multistage stochastic mixed-integer program (SMIP). The second variant

incorporates continuous price distributions, allowing us to model more complex price

processes such as autoregressive models. And the last variant is modelling headwater

effects, which approximates the power generation function based on both the turbine

flow and the water level of the upstream reservoir. In the last two variants the state

variable is continuous, but the hydro-bidding models are non-convex. We compared

the policies of MIDAS with its SDDP equivalent for all three variants. Our overall

observation was that MIDAS indeed produced optimum policies that were better or

at least equivalent to the policies produced by the SDDP equivalent.

8.1 Main results

The key findings from this thesis are described in the following passages.

As observed in Chapter 3, the SDDP algorithm produced offer policies which were

near optimal (Table 3.4) compared to the exact optimum policy. SDDP solved these

hydro-bidding models with varying reservoirs, time, and Markov states in order of
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magnitudes less than the deterministic equivalent. Therefore, the Stochastic Dual

Dynamic Programming (SDDP) algorithm is a good method to use for solving convex,

linear, hydro-bidding problems.

Unless the forecasted load in the day-ahead market is significantly different from the

actual load with high balancing prices, then there is little incentive for any hydro

generators to incur the penalty and deviate away from their reference schedule. It

was observed that the rolling horizon, two-stage, hydro-bidding model called HERBS

produces offer policies which have very little deviation from the reference dispatch.

Through MIDAS, we approximated the monotonic increasing value functions using

step functions and guarantee convergence within finite iterations. We were able to

show that MIDAS can obtain policy that is 2Tε-optimal in its first stage decisions,

when solving a multistage stochastic programming problem by sampling the scenario.

We used MIDAS to solve various hydro-bidding models with discrete state variables.

We observed that through the step functions MIDAS was able to approximate the

unique structure of the value function. It produced near-optimal policies that were on

average within 4% of the optimum policy (Table 6.7). SDDP on the other hand con-

vexified the value function, and in some instances did not converge. MIDAS produced

near-optimal policies, which are better than those produced by SDDP.

For hydro-bidding problems with continuous state variables, MIDAS can model com-

plex price processes and guarantee convergence within finite iterations. Due to the

step functions, MIDAS can represent single variate and multivariate, autoregressive

price processes by incorporating price as part of the state variable (Section 7.1.1). It

does not need to alter its approach to approximating the value function through its

step functions. Through this approach MIDAS produces optimum offer policies that

arbitrage between price differences in different trading periods.

SDDP can also model complex price processes using a cut interpolation technique.
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It can represent the scenario tree by a coarser scenario tree of predefined price out-

comes. Then, it can represent the value function by interpolating between two of the

coarser price nodes based on the autoregressive price outcome illustrated by Figure

7.6. The coarser price nodes store the actual SDDP cuts generated in the backward

pass. Through this cut interpolation method, SDDP can compute offer policies which

are similar to that produced by MIDAS.

Since the sub-problems in MIDAS are mixed-integer programs, we can incorporate

any formulation of the power generation function as long as the value function is

still monotonic increasing. We were able to represent the power generation function

using the approach of [60], and solved a 3 tranche offerstack hydro-bidding model

using MIDAS. Therefore, MIDAS can incorporate headwater effects into the power

generation function and guarantee convergence within finite iterations.

The sub-problems that MIDAS solves are mixed-integer programs, which naturally

take longer to solve than the linear programs of SDDP. In MIDAS, additional big-

M constraints and binary variables are added to the sub-problem whenever a new

step function is introduced. This lengthens the time to solve the sub-problems as the

algorithm progresses (Table 8.1). Furthermore, MIDAS does not exploit any gradient

information of the value function, unlike SDDP. This makes it slower, because it needs

to explore the state space thoroughly in order to produce an accurate approximation

of the value function and converge to an optimal policy.

In order to speed up MIDAS and make it a scalable method, we introduced a step

function selection scheme. The step function selection scheme functions like the cut

selection in SDDP, where it removes redundant step functions that break the mono-

tonicity property of the value function (see Algorithm 11). The advantage of using

step function selection is that it reduces the size of the MIP sub-problem in the num-

ber of binary variables and constraints. We observed that applying the step function
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selection scheme to MIDAS reduced its execution time by a minimum of 40%, as sum-

marized in Table 8.2, with average time ranging from 65 to 312 seconds compared

with the original time of 107 to 617 seconds.

We observed that the industrial solvers, such as CPLEX, took a long time to reduce

the MIP gap when solving the sub-problems in MIDAS. This was due to the long time

the solvers took fathoming nodes in the branch-and-bound tree. In order to reduce

the slow solver time of the solvers, we introduced a heuristic to iteratively solve the

MIP sub-problems. Since binary variables are used to model the discrete generation

states of the hydro-bidding model in Chapter 6, we can use the binary optimality cuts

of [45] to further decompose MIP sub-problems into two-stage stochastic programs.

We can then use the L-shaped method (Algorithm 12) to iteratively solve the MIP

sub-problem. Because we are using the binary optimality cuts, we no longer need the

big-M constraints and additional binary variables to model the step functions, which

keeps the size of the branch and bound tree in the MIP small and constant. Using this

heuristic, we were able to reduce the execution time of MIDAS by up to 60%, with

average time ranging from 90 to 291 seconds compared with 107 to 617 seconds.

Using the step function selection scheme and the sub-problem solver heuristic, MIDAS

was able to solve a 4 reservoir hydro-bidding problem. The model took 850 iterations

(see Figure 8.9) to converge with a total time of 367, 000 seconds. With the range of

experiments we observed a linear behavior of the execution times for the forward and

backward passes up to the 600th iteration. Beyond this iteration, we observed that

the execution time remained relatively constant with an average of 500 seconds for

the backward pass, and 100 seconds for the forward pass.



8.2 Contributions 214

8.2 Contributions

This thesis has contributed to the understanding of non-convex, short-term, hydro-

bidding problems under uncertainty, and solving discrete time, stochastic optimal

control problems with non-concave or non-convex value functions. The specific con-

tributions of this thesis are described in the following passages.

We have developed a hydro-bidding model for hydroproducers participating in an intra-

day balancing market. The model called HERBS (Hydro-Electric Reservoir Bidding

System) is a two-stage stochastic mixed-integer program, which constructs balancing

bids that maximize the expected profit. HERBS is executed in a rolling horizon

fashion, where at each period it computes a balancing bid.

HERBS is a non-convex SMIP which cannot be solved easily using existing methods

such stochastic dynamic programming (SDP), or stochastic dual dynamic program-

ming (SDDP). In pursuit of solving models like HERBS, we have developed an algo-

rithm called the Mixed-Integer Dynamic Approximation Scheme (MIDAS). MIDAS is

a sampling algorithm similar to SDDP that solves multi-stage stochastic programming

models with monotonic, non-concave value functions. It works similarly to SDDP. We

prove that MIDAS converges within finite iterations to produce policies that produce

2Tε-optimal first stage decisions through Theorem 5.

Using MIDAS, we solve a variety of non-convex hydro-bidding problems and show

that MIDAS converges in finitely many iterations. The first hydro-bidding problem

we solve is based on HERBS, where the power generation function is represented by a

discrete set of power productions and equivalent turbine-water discharges. This makes

the state variables integer and the overall problem non-convex. We demonstrated that

MIDAS produced policies that were better than policies computed using SDDP.

The second hydro-bidding problem we solve involves modelling complex price pro-
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cesses, such as an autoregressive, mean-reverting price process. The step functions in

MIDAS can incorporate these price processes by adding a price dimension into the

state variable. In order to incorporate the price process inside SDDP, we introduce a

cut interpolation technique, which interpolates the value function based on two sets

of cuts. We demonstrated that both of the policies, one computed by MIDAS and the

other by SDDP, indicated strategic offers that arbitraged between price differences in

different trading periods.

The last hydro-bidding problem we solved using MIDAS incorporated headwater ef-

fects into the power generation function. By using the formulation of [60], we were

able to model both the unit states and the water levels of the reservoirs. Solving this

hydro-bidding model yielded similar policies from both MIDAS and SDDP.

Due to the MIP sub-problems in MIDAS, it is computationally inefficient, which lim-

ited MIDAS to solving small hydro schemes of up to 3 reservoirs. In order to address

this limitation, we have developed two heuristics, the first tightens the value function

approximation by removing redundant step functions; and the second uses a sub-

problem solver heuristic based on the optimal cuts and the L-shaped method of [45].

Using these heuristics, we demonstrated improvements in the execution time of MI-

DAS. When we applied the step function selection scheme, we observed a reduction

of 40% in the execution time with average time ranging from 65 to 312 seconds as

opposed to 107 to 617 seconds originally. We also demonstrated a reduction in the

execution time up to 60% with average times ranging from 90 to 291, when we applied

the sub-problem solving heuristic. Using both of these heuristics, we were successfully

able to scale MIDAS to solve a 4 reservoir hydro-scheme with integer state variables.

Based on these contributions we have demonstrated that MIDAS can solve non-convex

stochastic optimal control problems. Moreover, it can solve multistage, stochastic

mixed-integer programs in similar fashion to SDDP. This shows that monotonicity of
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the value function is a key property required to solve multistage stochastic programs

using algorithms like SDDP. This opens up possibilities for studying other models

using MIDAS that approximate the value function.

8.3 Future research directions

Although MIDAS is in its early days, it already shows some promise in terms of

solving non-convex stochastic optimal control problems. Here we suggest a few ideas

that might take MIDAS from a proof of concept to an industrially scalable algorithm

capable of solving hydro-bidding problems with many reservoirs, many stations, and

complex topologies.

Since MIDAS has the same algorithmic framework as SDDP, it can incorporate paral-

lelization. We could implement the parallelization techniques discussed in [26] inside

MIDAS and analyze its performance. In addition to parallelization, we could extend

the models already developed with real hydro schemes. The hydro schemes used in

this thesis are contrived, where each reservoir and station is the same. This makes the

hydro-bidding problems more symmetric than usual, where there are multiple state

trajectories which produce the same offer strategies. We could analyze MIDAS per-

formance with more realistic data, and see if it generates state trajectories similar to

those observed in the SDDP equivalent.

One limitation of the sub-problem solving heuristic is that the binary optimal cuts

are point estimates, where the cut is only valid at a particular state point. This

formulation is not a tight formulation. We could use the improved L-shaped method

proposed in [7], which introduces a new class of binary optimal cuts. We may also

be able to strengthen the sub-problem by re-formulating it as a forbidden vertices

problem as proposed by [8]. The forbidden vertices problem, in essence, produces a
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set of optimal points on an existing polytope, that does not belong to a predefined set

of vertices of the same polytope. We could formulate the master problem MP (t, i, xt)

in the heuristic as a forbidden vertices problem, where the polytope is the overall state

space, and the set of forbidden vertices are the already visited state points. This may

speed up the heuristic by producing a set of binary optimal cuts per iteration instead

of just one.

The value function, when the state variable is continuous, is piecewise convex. Using

this property, we can represent the state space by a finite number of polytopes in

which the value function is convex. Then, instead of using step functions, we can

use the SDDP hyper-planes within these polytopes to approximate the value function.

The formulations of the piecewise linear functions proposed by [80, 81] may be poten-

tial avenues for formulating value function approximation. As long these alternative

approximations still produce an ε-outer approximation of the value function, MIDAS

will still converge within finitely many iterations based on Theorem 5. We can further

complement these formulations and solve the sub-problems through disjunctive pro-

gramming [11], where we can represent the set of hyperplanes within each polytope

as disjunctive constraints and use branch-and-bound methods to branch on specific

polytopes in order to solve the sub-problem [70].

In summary, we have produced an innovative algorithm called MIDAS, which can

solve stochastic optimal control problems with non-concave value functions. We have

proven its almost sure convergence for continuous and integer state variables, and have

applied it to various hydro-bidding models to verify that it works and is comparable

with SDDP methods. Our hope is that this approach might lead to other suitable

methods that can be applied to a variety of stochastic optimization problems at an

industrial scale.



Appendix A

Model parameters Chapter 7,

Section 7.2

A.1 Modelling price uncertainty

Table A.1: Model parameters for each of the three hydro-scheme configurations.

Parameters Value

T 12

αt for t = 1, 2, . . . , T 0.5

ηt for t = 1, 2, . . . , T ∼ Norm(0, 1)

bt

[61.261, 56.716, 59.159, 66.080,

72.131, 76.708, 76.665, 76.071,

76.832, 69.970, 69.132, 67.176]

Ω 10

δp 5

Xδ {x ∈ R : x ∈ [δx, 200]}
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lt for t = 1, 2, . . . , T 0

ωt for t = 1, 2, . . . , T 0

U(xt) {u ∈ R : u ∈ [0, min {xt, 70}]}

g(v)



1.1v if v ∈ [0, 50],

v + 5 if v ∈ (50, 60],

0.5(v − 60) + 65 if v ∈ (60, 70],

0 otherwise.

xr for r ∈ R 100

p 61.261

N 30



A.1 Modelling price uncertainty 220



A.2 Modelling headwater effects 221

A.2 Modelling headwater effects

P
ar

am
et

er
s

V
al

ue

ĝ
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A.2.1 Modeling unit committment

In order to model unit switching, (A.2.1) can be added as a constraint inside the hydro-

bidding models. This constraint represents the change in the number of turbines being

either switched on or off between period t − 1 and t.

∑
i∈Ts

izt,s,i −
∑
i∈Ts

izt−1,s,i = wstartup
t,s − wshutdown

t,s (A.2.1)

As already defined, zt,s,i, which is now also indexed by period t, represents the state of

the turbine and indicates when it is on (zs,i = 1) or off (zs,i = 0). The variables wstartup
t,s

and wshutdown
t,s , which can be either continuous or integer, represents the number of units

that have been started up or shut down in period t. A unit is considered to have been

started up (i.e. wstartup
t,s ≥ 1) when it transitions from being off (i.e. zt−1,s,i = 0) in

the previous period to being on (zt,s,i = 1) in the current period. Similarly, a unit is

considered to have been shut down (i.e. wshutdown
t,s ≥ 1) when it transitions from being

on (i.e. zt−1,s,i = 1) to being off (zt,s,i = 0).

Constraint (A.2.1) is based on the formulation presented in [50], and ensures that

if the unit status variable zt−1,s,i is binary then the unit switching variables wstartup
t,s

and wshutdown
t,s will naturally be integer. As reported in [50], such a formulation does

reduce the computation time, because when more variables are relaxed from discrete

to continuous the fewer variables are branched on resulting in a smaller branch and

bound tree. However [54] has reported that this is not always the case. A reason

may be because it is easier to generate strong cutting planes for the convex hull of

integer points when more binary variables are present. If the solver does not know

that certain quantities are inherently binary, it is not able to look for opportunities to
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exploit this fact [9]. For instance zt−1,s,i variables can be prioritized to branch first and

then variables wstartup
t,s and wshutdown

t,s , assuming they are integer. This would maintain

the advantages of the presence of the wstartup
t,s (ξ) and wshutdown

t,s variables for generating

the cutting planes.

The inclusion of unit commitment, through the use of Constraint (A.2.1), makes vari-

able zt,s,i a state variable along with the reservoir storage variable xt. Because this

variable is binary it makes the sub-problems in MIDAS and SDDP stochastic, mixed-

integer, linear programs. As discussed throughout this thesis stochastic, mixed-integer,

linear programs are difficult to solve due their non-convex and discontinuous structure.

Including zt,s,i in the state variable can be avoided by adding a fixed running cost to

each turbine. This changes the objective function in Model (6.1.1) of Chapter 6, to

the new of the objective function defined by Equation (A.2.2). The new function adds

the term C
∑
s∈S

∑
i∈Ts

zt,s,i, which prices all the turbine state variables with a fixed run-

ning cost C. This new objective does not require the addition of Constraint (A.2.1),

and therefore we no longer require the zt,s,i to be a state variable. However, it does

not minimize unit switching explicitly, but rather incentivizes efficient generation by

limiting the number of turbines that are used in each period.

Vt,i(x) = max
M∑

j=1
ρi,j(t)

πt,jot,j − C
∑
s∈S

∑
i∈Ts

zt,s,i + V̂t+1,j

 (A.2.2)

However, if one were to consider unit switching, then implementing the variable zt−1,s,i

as a state variable would be trivial in MIDAS. A similar approach to Section 7.1 can

be taken, where an additional dimension is added as an input to the value function,

which represents the number of turbines that are in use. This additional state variable

can be an integer, and enable the implementation of the Constraint (A.2.1). The step

functions in MIDAS would simply have an additional dimension to represent this

variable.
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Résumé :  

Le problème de l'hydro-offre consiste à calculer des d'offre optimales afin de maximiser le bénéfice attendu 

d'un producteur hydroélectrique participant à un marché de l'électricité. Ces problèmes peuvent être 

difficiles à résoudre lorsque la fonction de valeur n'est pas concave. Dans cette thèse, nous étudions 

quelques-unes des limites du problème hydro-bidding et proposons une nouvelle méthode d'optimisation 

stochastique appelée le Mixed-Integer Dynamic Approximation Scheme (MIDAS). MIDAS résout des 

programmes stochastiques non convexe avec des fonctions de valeurs monotones. Il fonctionne de manière 

similaire à la Stochastic Dual Dynamic Programming (SDDP), mais au lieu utiliser des hyperplans, il utilise 

des fonctions d'étape pour créer une approximation externe de la fonction de valeur. MIDAS converge 

« presque sûrement » à 2𝑇𝜀 solution optimale des première étage décisions. 

Nous utilisons MIDAS pour résoudre trois types de problèmes hydro-bidding non convexes. Le premier 

modèle d'hydro-bidding que nous résolvons a des variables d'état entier car les productions sont discrètes. 

Dans ce modèle, nous démontrons que MIDAS est meilleur que SDDP. Le modèle suivant d'hydro-bidding 

utilise des processus de prix autorégressifs au lieu d'une chaîne de Markov. Le dernier modèle d'hydro-

bidding intègre les effets de hauteur d'eau, où la fonction de production d'énergie dépend du niveau de 

stockage du réservoir et du débit d'eau de la turbine. Dans tous ces modèles, nous démontrons que la 

convergence de MIDAS en un nombre fini d'itération.  

Title: River Optimization: short-term hydro-bidding under uncertainty 

Keywords: Stochastic optimization, Hydro-scheduling, Nonconvex optimization 

Abstract:  

The hydro-bidding problem is about computing optimal offer policies in order to maximize the expected 

profit of a hydroelectric producer participating in an electricity market. These problems can be difficult to 

solve when the value function is not concave. In this thesis, we study some of the limitations of the hydro-

bidding problem, and propose a new stochastic optimization method called the Mixed-Integer Dynamic 

Approximation Scheme (MIDAS). MIDAS solves nonconvex, stochastic programs with monotonic value 

functions. It works in similar fashion to the Stochastic Dual Dynamic Programming (SDDP), but instead of 

using cutting planes, it uses step functions to create an outer approximation of the value function. We show 

that MIDAS will converge almost surely to 2𝑇𝜀 optimal first stage decisions.  

 

We use MIDAS to solve three types of nonconvex hydro-bidding problems.  The first hydro-bidding model 

we solve has integer state variables due to discrete production states. In this model we demonstrate that 

MIDAS constructs offer policies which are better than SDDP. The next hydro-bidding model has a mean 

reverting autoregressive price processs instead of a Markov chain. The last hydro-bidding incorporates 

headwater effects, where the power generation function is dependent on both the reservoir storage level and 

the turbine waterflow. In all of these models, we demonstrate convergence of MIDAS in finite iterations. 
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