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Abstract

This thesis presents the design and practical implementation of a quadrotor indoor navi-
gation system using a vision system whose input data are obtained from environment in-
formation acquired by an embed- ded camera placed on quadrotor system. Actually, some
used techniques are mono vision, stereo vision, SLAM among others. For our research we
propose to work with mono vision system, due the limited payload of a quadrotor system.
Properties in image perspective are used to design the embedded vision system which aim
is to extract visual information, to fly placed always in the center of a corridor. Camera
rotation ma- trix is obtained by means of orthogonal directions extracted by vanishing
points, which directions define a common structured environment. Then, to control and to
stabilize our quadrotor system, a quaternion bounded control scheme is presented, which
stabilize quadrotor’s orientation, and also is used to control its heading direction merging
visual information.

Quadrotor estimation positions with respect to world reference in y and z-axes are
used as input for the bounded position control to pose it at desired position. It should be
mentioned that vision strategy is not able to estimate x-axis, thus this axis is controlled
manually. In order to corroborate ours results, mathematical model, control law and vision
system are simulated to corroborate the closed-loop system’s stability and for test our
result in real world some platforms have been developed, proposing a new quasi-virtual
system that merge virtual world with real platform.
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Résumé

Cette thèse présente la conception et la mise en œuvre pratique d’un système de navigation
intérieure d’un Drone en utilisant un système de vision dont les données sont obtenues
à partir des informations sur l’environnement acquises par une caméra embarquée sur
un Drone. Les techniques récemment utilisent les systèmes mono vision, vision stéréo et
SLAM. Dans cette thèse nous développons de techniques pour la mono vision, en raison de
la charge utile limitée dans un Drone. La Fig. 1 montre le but principal de la thèse. Nous
pouvons regarder l’image d’un couloir ou nous désirons faire la navigation d’un système
quadrotor en utilisant que l’information obtenue d’une camera. Nous avons développé un
système de vision capable d’obtenir la géométrie de l’environnement. Normalement dans
un couloir nous pouvons faire l’extraction de plusieurs lignes. Ces lignes sont utilisées
pour faire d’abord l’estimation de la rotation du système et ensuite grâce à la perspective
de l’image obtenue pour la camera nous avons utilisé la colinéarité des lignes, qui sont
trouvées dans l’intersection du sol et le plafond, pour estimer certaine position du système
par rapport au couloir.

Système de vision

Les propriétés de projection en perspective dans le traitement d’images sont utilisées pour
concevoir le système de vision embarquée qui vise à extraire des informations visuelles.
Afin de réaliser la navigation au milieu d’un couloir, un système de vision en utilisant
l’image obtenue par camera d’un couloir est utilisé dont directions orthogonales extraites
par des points de fuite nous donnent certaine information de la rotation et la position
du système par rapport au environnement. Dans la Fig. 2 l’algoritme general de notre
systeme de vision est représenté.

La stratégie montre une séquence d’étapes pour estimer une position en fonction de
l’environnement. Tout d’abord, l’image est acquise à l’aide d’une seule caméra. Ensuite,
un détecteur de lignes est appliqué pour obtenir les lignes décrivant l’environnement.
Ensuite, les lignes détectées sont regroupées en fonction de la pente, ce qui donne trois
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Figure 1 – Quadrotor est en train voler dans un couloir; la direction de la tête est donnée
par le point de fuite, et la pose du quadrotor est obtenue géométriquement à l’aide de
lignes de bord qui sont estimées à l’aide de données provenant des lignes de bords.

sous-ensembles de lignes (verticale, horizontale et diagonale). Ensuite, à partir des lignes
classées, il est possible d’extraire deux points de fuite infinis et un point de fuite fini. Puis,
la matrice de rotation de la caméra est estimée en utilisant les points de fuite. Ensuite, un
ajustement général des moindres carrés est appliqué pour extraire quatre lignes des bords.
Enfin, la colinéarité dans les lignes des bords opposées est appliquée pour estimer la pose
de la caméra sur l’image plane. Cette colinéarité donne certaines valeurs en fonction de
la position de la caméra dans l’espace 3D d’un couloir.

Classification des lignes et point de fuite

La Fig. 3 montre la classification des lignes. D’abord, nous pouvons observe l’entrée de
l’image obtenue d’un caméra. Ensuite il est appliqué un algorithme d’extraction des lignes.
Finalement, nous avons utilisée l’équation (1) pour faire la classification des lignes verti-
cales, horizontales et verticales.

L =


110 ≤ L ≥ 80 Lv = L
−10 ≥ L ≤ 10 Lh = L
autrement Ld = L

(1)
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Détecteur des lignes

Classification

Rotation estimation

Estimation de rotation

Estimation de la position de la caméra

Image d’un couloir

Position Rotation

Ensemble des lignes

Lignes verticales
Lignes horizontales

Lignes diagonales

lignes de coin

Figure 2 – Pipeline de l’estimation de la position de la caméra.

Entrée Extraction de lignes

Classification des lignes

Lv

LhLd

Figure 3 – Classification des lignes en fonction de la pente de chaque ligne. Les lignes
verticales sont représentées en rouge, les lignes horizontales en bleu et les diagonales en
vert.
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Figure 4 – Algorithme RANSAC pour eliminer les lignes aberrantes.

Les ensembles des lignes sont utilisées pour faire l’estimation des points de fuite.

Point de fuite fini

La méthode RANSAC est utilisée pour éliminer les lignes aberrantes et garder les lignes
qui nous permettront d’obtenir un point de fuite (vp) fini ou infini. Dans la Fig. 4 est
représentée la méthode RANSAC pour estimer les points de fuite. D’abord, Ils sont sélec-
tionnés au hasard deux lignes dans l’ensemble des lignes soit verticale, soit horizontale ou
diagonale. Ensuite il est calculé un score dans chaque ensemble en utilisant (2), (3) pour
un point de fuite fini. Après, Nous avons fait une comparaison de le score pour vérifier
que le pourcentage de l’ensemble des lignes soit plus grande d’une certaine valeur M .
Finalement avec les ensemble des lignes basée dans le score il est calculé le point de fuite
fini.

score =
n∑
i=0

Υ(vph, li) (2)

où n est le nombre de lignes dominantes du sous-ensemble (Ld, Lh, Lv,) et

Υ(vph, li) =
 1 d(vph, li) < δ

0 autrement
(3)
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d(vph, li) est la distance euclidienne du candidat fini vp candidat vph à la ligne li (Ld, Lh, Lv,).
δ est un seuil fixe donné en pixels.

Point de fuite infini

Pour trouver le point de fuite infini il est utilisée le même algorithme 4 mais l’équation
(4) est utilisée pour faire le calcul de le score.

Υ(v, li) =

 1 Min( ̂(−→v ,−→li ), ̂(−→li ,−→v )) < ι

0 autrement
(4)

où ̂(−→v ,−→li ) est l’angle parmi vp l’infinie direction depuis le centre de l’image, et la ligne
li est utilisée pour tester l’espace image. Dans ce cas, le consensus utilise une distance
angulaire entre la direction de la droite candidate et la direction représentant le point de
fuite infini. Le seuil ι est donné en degrés.

Matrix de la rotation

L’estimation de la rotation a été estimée en utilisant un point de fuite fini et deux points
de fuite infinis. La Fig. 5 montre une représentation succincte de l’image d’un couloir dont
lignes représentent les bords des murs, des fenêtres, des ports. Dans l’image nous pouvons
regarder:

· Point de fuite vp fini

· ~I1 et ~I2 sont les directions de vp infini

· C centre de la caméra ou origin

· xc,yc,zc axes du référentiel de coordonnées de la caméra

· f (distance focale)

· N référentiel de coordonnées du monde

· [~e1, ~e2, ~e3] est la rotation du monde réel par rapport à la caméra
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f

N yc

xc

zc ~e1

vp

~I1

~I2

c

zc

yc
xc ~e2

~e3 C

Figure 5 – Estimation de point de fuite fini.

En utilisant l’équation (5) nous pouvons obtenir le troisième vecteur de la matrice de
rotation.

−−→
Cvp = e3 = [e3x , e3y , e3z ]T

= [vpx, vpy,−f ]T

~e3 = e3
||e3||

(5)

Pour faire l’estimation de premier et deuxième vecteur de la matrice de rotation, nous
utilisons les Fig. 6 et Fig. 7 pour représenter les paramètres du système. Les équations
(6), (7), (8) et (9) sont utilisées faire le calcul des vecteurs manquant.

~I1 = [I1x, I1y, C]T

e1 = [I1x , I1y , e1z ]T

e1 · e3 = 0
(6)

e1 = [I1x , I1y ,
I1xe3x+I1y e3y

f
]T

~e1 = e1
||e1||

(7)

~I2 = [I2x, I2y, C]T

e2 = [I2x , I2y , e2z ]T

e2 · e3 = 0
(8)
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Figure 6 – Estimation de point de fuite infini, lignes horizontales.
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Figure 7 – Estimation de point de fuite infini, lignes verticales.
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Point de fuite fini vpCentre de l’image

Figure 8 – Information obtenue avec l’estimation de la rotation de la camera.

e2 = [I2x , I2y ,
I2xe3x+I2y e3y

f
]T

~e2 = e2
||e2||

(9)

Extraction des lignes de bord

Avec l’information obtenue avant, nous avons les donnes (Fig. 8):

• 4 quadrants

• Chaque quadrant a 3 sous-ensembles de lignes:
verticales, horizontales et diagonales

La méthode des Moindres Carrés Généralisés est utilisée pour trouver les lignes de
bord dans l’environnement structuré.

Moindres Carrés Généralisés

Une fois que nous avons obtenus les points (xi, yi) qui représentent les coordonnées initiales
et finales des lignes de chaque quadrant, la matrice de covariance est donnée par

Cm ≡

 ωi∑x2
i ωi

∑
xiyi

ωi
∑
xiyi ωi

∑
y2
i


Cm représente la matrice de covariance, pour chaque image m, ωi est une ponderation qui
est utilisé pour eliminer les points qui dépassent une certaine limite de la ligne précédente

ωi = e
−0.5µ2

i
σ2
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µi = arctan xiam−1 + yibm−1

xiam−1 − yibm−1

am−1, bm−1 représente les parametres de ligne initiale précédente.

L’equation (10) represent l’expression pour calculer la ligne de chaque quadrant.

y = LQk = − bm
am

x (10)

où LQk représente la ligne principale de chaque quadrant avec k = 1, 2, 3, 4

Lorsque la caméra est au centre du couloir, une colinéarité entre les lignes LQ1 , LQ3 et
LQ2 , LQ4 est représentée par

CP1,3 = LQ1 ∧ LQ3 (11)

CP2,4 = LQ2 ∧ LQ4 (12)

et la position relative par rapport au produit vectoriel

yr = sign(CP1,3(3))||CP1,3|| − sign(CP2,4(3))||CP2,4|| (13)
zr = sign(CP1,3(3))||CP1,3||+ sign(CP2,4(3))||CP2,4|| (14)

Où yr et zr sont les positions relatives de la caméra par rapport au centre du couloir

Modèle du système

Pour commander et stabiliser notre système de type Drone, un schéma de commande
à base de quaternion borné est présenté, celui stabilise l’orientation du Drone, et il est
également utilisé pour commander sa direction, en fusionnant les informations visuelles
et celles provenant de la centrale inertielle. La Fig. 9 représente le système quadrotor et
les équations (15) et (16) represent le modèle du drone a six degrés de liberté.

ΣT :
 ~̇ξ = ~r

m~̇r = mg~en3 − FuRT~en3
(15)

ΣR :


q̇ = 1

2Ξ(q) ~η

J~̇η = −[~η ]×J~η + ~Γ + ~ΓG
(16)
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Figure 9 – Représentation d’un système quadrotor

Commande bornée en position

Nous allons commencer avec une définition pour spécifier le type de la loi de contrôle
obtenue. Considérons la dynamique de rotation du corps rigide décrite par (16) avec les
entrées de contrôle limitées suivantes Γ = [Γφ, Γθ, Γψ]]T , dont l’indice est modifié pour
exprimer les équations suivantes, définies par:

Γi = −σΓi

k~ηi
ρi

+ sign(q0)k~qi

 (17)

Γ i avec i ∈ 1, 2, 3 représente la limite physique sur le torque i - th Γi. q0 représente la
partie scalaire du quaternion et ~qi le vecteur quaternion. ~ηi spécifie la vitesse angulaire. k
marque un paramètre réel tel que 0 < k ≤ miniΓ i/2. ρi est un paramètre réel strictement
positif.

Commande bornée en position

Supposons maintenant qu’en utilisant la loi de contrôle (17), on puisse stabiliser la dy-
namique de lacet, c’est-à-dire ψ = 0, donnée par la direction de la tête obtenue par le
système de vision selon notre configuration. Ensuite, après un temps suffisamment long,
le système (15) devient,
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ẋn

ẏn

żn

 =


rx

ry

rz

 , (18)


ṙx

ṙy

ṙz

 =


−Fu

m
sinθ

Fu
m
sinφ cosθ

Fu
m
cosφ cosθ − g

 , (19)

Avec un choix approprié de ces configurations de cibles, il sera possible de transformer
(18) et (19) en trois intégrateurs triples linéaires indépendants. Pour cela, prenez-nous

φd := arctan
(

ς2
ς3 + g

)
,

θd := arcsin
 −ς1√

ς2
1 + ς2

2 + (ς3 + g)2

 (20)

Fu = m
√
ς2
1 + ς2

2 + (ς3 + g)2 (21)

où % = [
∫
xn, xn, rx,

∫
yn, yn, ry,

∫
zn, zn, rz]T = [%1, %2, %3, %4, %5, %6, %7, %8, %9]T , puis (18)-

(19) devient:

Σx :


%̇1 = %2

%̇2 = %3

%̇3 = ς1

(22)

Σy :


%̇4 = %5

%̇5 = %6

%̇6 = ς2

(23)

Σz :


%̇7 = %8

%̇8 = %9

%̇9 = ς3

(24)
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La Commande bornée en position est:

ς1 := −ϑ1{a3σM1 [ 1
ϑ1

(a2%1 + %2 + %3)] + a2σM1 [ 1
ϑ1

(a1%2 + %3)] + a1σM1 [ 1
ϑ1

(%3)]}

ς2 := −ϑ2{b3σM1 [ 1
ϑ2

(b2%4 + %5 + %6)] + b2σM1 [ 1
ϑ2

(b1%5 + %6)] + b1σM1 [ 1
ϑ2

(%6)]}

ς3 := −ϑ3{c3σM1 [ 1
ϑ3

(c2%7 + %8 + %9)] + c2σM1 [ 1
ϑ3

(c1%8 + %9)] + c1σM1 [ 1
ϑ3

(%9)]}

(25)

ϑ1 = ς̄1/(a1 + a2 + a3),
ϑ2 = ς̄2/(b1 + b2 + b3),
ϑ3 = ς̄3/(c1 + c2 + c3)

(26)

Ensuite, les lois de contrôle dans (25) stabiliser de manière exponentielle les systèmes
(18)-(19) à la position désirée (%1, %2) = (%dx, 0), (%3, %4) = (%dy, 0) et (%5, %6) = (%dz, 0).

L’objectif de stabilisation est l’origine. Dans le cas où la condition asymptotique est
différente de l’origine, les variables %2, %5, %8 doivent être remplacées dans la loi de contrôle
(25) par e1 = %2 − %dx, e2 = %5 − %dy, e3 = %8 − %dz, respectivement. Dans ce cas, %dx, %dy, %dz
représentent la position souhaitée dans l’espace.

Évaluation expérimentale

L’estimation de la position d’un quadrotor dans les axes y et z par rapport à la référence
du monde sont utilisées comme entrée pour le commande de la position bornée afin de la
poser à la position souhaitée.

Des tests expérimentaux ont été effectués pour valider l’algorithme de vision en util-
isant la colinéarité entre les lignes. Pour obtenir le meilleur résultat avec l’algorithme de
vision, il doit être exécuté lorsque le véhicule est en train voler. La coordonnée x et le
mouvement de la hauteur sont fixés pour les limitations de l’espace de travail. Alors le
quadrotor se déplacera comme un avion PVTOL évoluant dans le plan z−y avec un angle
de roulis, et l’angle ψ prendra la direction du point de fuite qui a une valeur proche de
zéro. Cela signifie que les états x et θ sont stabilisés avec le contrôleur utilisant les mesures
provenant du système Vicon ou contrôlées par un pilote externe. Le véhicule se trouve au
milieu du couloir virtuel lorsque la position fournie par le système Vicon est à x = 0, y =
0 et z = 0.9, tous en mètres. Fig. 10 montre le schème pour le système quasi-virtuel que
nous avons développé.

Dans la Table 1 est représentée les positions et les temps que nous avons utilisés dans
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Figure 10 – Système quasi virtuel

ce test

Table 1 – Position aux tests quasi virtuels

Position initiale 1 2 3 4 5 6 7 8
Temps (s) 0 12 75 85 110 185 163 170

y 0.5 0 -0.6 0 0.6 0 -0.6 0.0
z 0.5 0.9 1.3 0.9 1.3 0.9 0.6 0.9

Dans le Fig. 11 le comportement du système et la Fig. 12 est représente le système de
vision et véhicule fonctionnant avec une image virtuelle.

Il convient de mentionner que la stratégie de vision n’est pas capable en mesure
d’estimer l’axe des x, donc cet axe est contrôlé d’une façon manuel.

Conclusions

• Le schéma de commande utilise la fusion données provenant de plusieurs capteurs
et en temps réel: IMU, caméra et Salle Vicon.
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Figure 11 – Stabilisation à l’aide du système Vicon, véhicule et de Babylon 3D.
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Figure 12 – Système de vision et véhicule fonctionnant avec une image virtuelle.

• Le système de navigation a été testé et validé sur une plateforme expérimentale de
type quadrotor

• Vision (traitement d’images, détection de bords, points de fuite)

− Obtention de la matrice de rotation grâce aux points de fuite

• Commande bornée sur l’attitude (PD) et la position (PID)

• Commande pour l’évitement de collisions avec l’aide des lignes de bord

• Validation expérimentale du système sur plusieurs configurations: Simulation, Qua-
sivirtuel et Réel.

Travaux futurs

• Utiliser un filtre de Kalman pour filtrer les données obtenu et pour estimer les
vitesses linéaires

• Concevoir une stratégie pour compenser les retards des données estimées (prédicteur
de Smith)

• Développer le système complet dans une plateforme embarquée
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Introduction

The localisation problem in indoor environments has been subject to interest by both
industry and academy last years. If global positioning system (GPS) sensor can be used
in outdoor environment, to navigate in indoor environments one has to take different kind
of technologies due to the unavailability or at least weak reception/resolution of GPS
measurements. Thus, several strategies have been proposed in the literature to solve this
problem, among which vision systems have become the most adopted strategy to complete
this task. The vision system is able to extract the characteristics of an environment, which
can be used to estimate the position of the system. It means that shape, colour, geometry
of the environment can be used to extract the rotation and position of a camera, which
is usually on-board of a robotic system (in this work a quadrotor).

In urban scenes, buildings are aligned on rectangular grids which means only three
mutually orthogonal directions exist in a scene, named Manhattan world in Coughlan and
Yuille [1999]. These orthogonal directions can be extracted using the lines that describe
the shape of the environment. Windows, doors and some furniture can be also described
by lines. Particularly in a corridor, as illustrated in Fig. 13, walls, windows, and doors are
described by vertical and horizontal lines. Roof and floor are represented with horizontal
lines, and the depth of corridor described by diagonal lines. It can be observed that
all parallel lines in real world converge to a single point in the image plane to camera
perspective. In practical applications, we usually find more than one vanishing point due to
the imperfection of lines extraction and calibration of the camera. These points are known
as vanishing points vps, and can be used for camera calibration Caprile and Torre [1990a].
Taking into account that the camera is placed in front of the quadrotor, the position of
the vanishing points in the image can be used to estimate the head direction of the robotic
system, see Fig. 13. In addition, all the extracted lines which can be acquired by using the
image of a corridor, are normally either concentrated or intersected on the edges. Since a
line can be described by a sequence of points, the edge of a corridor can be represented
by a neighbourhood of points describing the intersection between the floor and roof.
Thus, these points can be used to extract four lines describing the edges of the corridor.
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Keeping in mind that the quadrotor’s head direction has to be maintained pointing to
the vp, collinearities between edges lines can be used to extract pose informations, that is
the position of the vehicle relative to the center of the corridor. These data is estimated
with respect the geometry of the environment (corridor). Nevertheless, only horizontal
and vertical positions (y, z-axes with respect to the real world) can only be estimated
using this approach.

Figure 13 – Quadrotor flying through a corridor; the heading direction is given by a
vanishing point, and the pose of quadrotor is obtained geometrically using edges lines
which are estimated using data from the corner borders.

This thesis is focused on designing a strategy to partially solve the localization problem
of a quadrotor vehicle using images from a single on-board camera. The proposed algo-
rithm extracts information from images taken by a camera in order to pose the quadrotor
in the middle of a corridor. More specifically, the different stages of our proposed solutions
are:

1. To design an algorithm to estimate the position in a corridor using the video image
from an embedded camera.

2. To propose an attitude control law for quadrotor vehicle.

3. To develop a position control law for quadrotor vehicle.

4. To plan a quasi-virtual system that includes a real system and an image video of a
3d engine are combined to validate the tests.

5. To perform simulations and real test experiments.
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Overviews

This thesis is organized in 6 chapters. The three first ones present the state of art and
the background of vision and quadrotor systems. The remaining of the work describes the
proposed solution and the experimental tests. Below a brief summary of each chapter is
given:

Chapter 1

Since this work is focused on two systems: vision and control, this chapter has been
centered on analyzing the state of the art of both quadrotor vehicle and vision systems.
First, some works on the mathematical modelling of a quadrotor system are given. Then a
description of several control laws regarding attitude and position are provided. Next, the
problem of localization is described, and some works about indoor navigation of quadrotor
vehicle using a vision system are mentioned. Finally, some works which motivated the idea
of extracting data from structured environment are described.

Chapter 2

This chapter is focused on describing some concepts about vision systems. Points, lines
joining two point lines, intersections of two lines, etc. are defined. The concept of estimat-
ing the calibration of a camera are detailed. Then, projective projections are explained in
order to see how three vanishing points can depict a structured environment. Finally a
simple algorithm to estimate the vanishing point using extracted lines from an image is
presented.

Chapter 3

This chapter is devoted to present some mathematical preliminaries and concepts for a
quadrotor system. Firstly, problems of rigid body, attitude, and position representations
are discussed. Moreover, a presentation of the different configurations for aerial vehicles is
shown by highlighting the importance of the VTOL aircrafts for some specific applications.
In the second part, the relation between world, body, and camera frames to merge a
complete system is described. All these concepts will be used along the present work.
In the third part, a review about the works, which proposed some attitude and position
control laws for UAVs, and considering that localization problem has been resolved, is
reported. Then some works, taking into account that the localization is solved using vision
systems are mentioned. Furthermore some advantages and disadvantages are analyzed
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depending on the application context and the environment. Finally, a study of different
control strategies is performed, analyzing stability, robustness and tracking performance.

Chapter 4

This chapter introduces an algorithm for computing the camera pose. The strategy is
based on camera calibration using the vanishing points and geometry into a corridor. First,
a description of the pipeline algorithm is detailed. Then, the dominant lines detection
which is employed to extract the lines from an image is presented. In a second time, the
algorithm classifies all the extracted lines. Third, vanishing points are computed giving
the mobile unitary frame. The rotation transformation from fixed to mobile world can be
deduced giving an orthogonal matrix. Finally, camera pose is estimated by means of the
edges (corner) lines, which are the lines describing a corridor edge. At the end of chapter,
a numerical validation is presented in order to show the effectiveness of the algorithm, and
some results from rotation matrix are compared with data obtained by a motion capture
system.

Chapter 5

Chapter 5 deals with the attitude and position control laws for a quadrotor system. First,
the objective is to design a control law which drives a quadrotor for attitude stabilization
under bounded torques. In this chapter is also depicted two configurations to test the
proposed algorithms. The first one proposes a strategy to make a navigation in a virtual
environment. The second one merges a virtual environment with a real quadrotor, which
is called in this work Quasi-virtual system. At the end, a simulation test is presented
showing the effectiveness of our algorithms.

Chapter 6

The description of system is presented in Chapter 6. A review of motion capture sys-
tem, ground station, features on hardware, software, communication, and platforms are
presented. Then, experimental results are detailed. These tests include the quasi-virtual
scenario, where are fused a virtual environment and a real quadrotor vehicle. Next, re-
sults obtained using the images acquired by on-board camera of a quadrotor vehicle are
analyzed. Finally, a test made in a real corridor is presented.

Finally conclusions and future works are discussed in Chapter 7.
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Chapter 1

State of the art

Indoor navigation of a quadrotor vehicle is a task which can be performed using several
strategies. The research community and the industry have a great interest in developing
Unmanned Aerial Vehicle (UAV) in order to solve different problems that can be tackled
using these systems. Even in outdoor environments, if the position’s estimation problem
can often be solved using GPS, there are some tasks where GPS data are unavailable,
because these data are often disturbed or noised. Therefore, this problem is becoming a
challenge for developing new strategies to estimate the pose system without GPS data.

One solution is to fuse measures from magnetometers, accelerometer and digital com-
pass using observers algorithms like Kalman filters. However, the problem with this
method is the fusion process resulting in large cumulative drift errors due to the coarsity
of the sensors. Some approaches have tried to solve the estimation problem using, Time
of Flight system (TOF) (Gokturk et al. [2004],Ximenes et al. [2018]), Kinect (Eric and
Jang [2017], Vadakkepat et al. [2016]), and on-board cameras. Simplicity, efficient distance
algorithm, and speed are some advantages of TOF systems; however due to the physics of
the sensors, light and interferences are their principal disadvantages. The Kinect sensor is
an infrared projector, a camera, and a special microchip that generates a grid from which
the location of a nearby object in 3D can be ascertained. This information can be used
in an indoor navigation system, but the size and weight of these sensors make it difficult
to install in lightweight systems. Thus, on-board cameras are a good option to deal with
these problems. A camera is lightweight, and the image acquired yields a lot of useful
information to estimate the position system with respect to the real world.

This chapter presents a review of the literature about quadrotors and vision systems.
Some works about indoor navigation using as platform a quadrotor will be introduced. And
then literature, which has been served as a tool to develop this thesis work, is presented.
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1.1 Indoor navigation of a quadrotor using a vision
system

Nowadays, several works using mono-vision and stereo vision system have been carried
out; however, the problem is still unsolved, and many interesting works arise steadily due
to the advances in embedded computer vision which offer a good choice for helping to solve
the indoor localization problem. For instance, some pose estimation algorithms use only
the information given by the cameras, nevertheless, others approaches combining different
sensors (IMU, radar, sonar etc.) have became also popular. For example, in Schauwecker
and Zell [2013] a stereo vision systems with a SLAM (Simultaneous Localization and
Mapping) algorithm is used. Here the system is equipped with four cameras arranged in
two stereo configurations. It is able to recover pose estimation errors and can cope with
processing failures for a camera pair. In García Carrillo et al. [2012] the development of
a quadrotor, able of autonomously flight indoors using mainly the combination of stereo
vision and an inertial navigation system is presented. The authors applied a Kalman filter
to fuse several sensors like IMU, ultrasonic, etc, which are used to estimate the angular
rate and attitude. Nevertheless, the integration of these signals leads to unbounded low-
frequency drift. In Bristeau et al. [2011], a localization strategy has been developed using a
mono-vision system and the combination of low-cost inertial sensors. The authors used the
popular AR Drone for testing. Nevertheless, a complex integration algorithm of its sensors
is needed to achieve a complete navigation. In Weiss et al. [2011] the authors present a
vision-based MAV control approach, where the pose is estimated by means of a monocular
SLAM algorithm with a precision of few centimeters. This approach needs short period
of stationary hovering to adjust the local map with the gravity vector, and a continuous
flight without pauses is still an open issue. In Wang et al. [2013] a complete navigation
scheme for an indoor flight using a quadrotor is proposed. The authors select, customize,
and combine suitable existing algorithms (SLAM, FastSLAM) for their navigation scheme,
nevertheless it needs three main sensors which are used on-board the platform, namely an
inertial measurement unit, a downward-looking camera and a scanning laser range finder.

Besides these SLAM based approaches, many vision based control approaches are pro-
posed in the literature. For instance, in Zhang et al. [2009] a vision-based method to assist
landing of aircrafts is proposed, which only uses two edge lines and the threshold line on
the runway. The authors describe that using this algorithm, it is possible to estimate yaw
and pitch angles, and also the cross position and the altitude of the aircraft, nevertheless,
simulation results have only proved its accuracy and speed. Authors in Mondragón et al.
[2010] proposed a robust real-time 3D pose estimation system for UAVs using homogra-
phies. The algorithm is validated on real flights where the estimated data are compared
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with the one obtained by the IMU. It has been proved that the method robustly esti-
mates the 3D position with respect to a reference landmark, with a high quality on the
position and orientation estimation when the aircraft is flying at low altitudes. A recent
work is presented in McGuire et al. [2017]. In this paper a highly efficient computer vision
algorithm called Edge-FS for estimating velocity and depth is presented. The algorithm
uses edge distributions to calculate optical flow and stereo disparity. The velocity and
depth measurements were used for fully autonomous flight of a pocket drone only relying
on on-board sensors. This algorithm allows the MAV to control its velocity and avoid
obstacles.

Furthermore, there are works focusing on performing an indoor navigation into a
corridor. For example, a real-time monocular vision based range measurement method for
Simultaneous Localization and Mapping (SLAM) applied in an UAV is presented in Celik
et al. [2008]. Even though, the indoor architecture is represented via corner based feature
points, the system is limited by the capabilities of the camera and the availability of good
corners. In addition, the algorithm depends on the computational resources which affects
the real-time quality. In Bills et al. [2011], an algorithm for autonomous navigation that
uses the perspective cues was designed, but it is only able to give the desired direction for
the UAV. An approach for wall collision avoidance using a depth map based on optical
flow from on board camera images is presented in Simon et al. [2010], though IMU data
is needed for compensating rotational effects of the optical flow.

Finally, some works proposed techniques using vanishing points; in Gomez-Balderas
et al. [2011] an algorithm based on vanishing points is proposed to estimate the 3D
position of a quadrotor vehicle. The results presented are in real time, but control and
vision algorithms have been tested only using line painted in a wall. A similar work is
presented in Wang [2011], where the ground plane vanishing line and a vanishing point
are calculated from a set of equally-spaced parallel lines and rotation matrix is used in a
constrained estimation of the camera location.

1.2 Extracting information from a corridor

An image, taking by a camera, can be analyzed according to its perspective, color, shape,
and texture. In a common indoor environment due its classic architecture there are so
many lines describing its geometry meaning wall, doors, windows, furniture, floor, corners
and corridors that are formed mostly by lines (vertical, horizontal and diagonal). An
image of a corridor is characterized by lines and these lines can be extracted using a
vision system, see Fig. 1.1. These data can give the information to estimate the rotation
and position of a camera.
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a)

b)

c)

d)

e)

Figure 1.1 – Images showing a common corridor, it can be seen that lines can describe
structure, doors, and windows. Figures a),b), and c) were token with a smart-phone
camera. Figure d) and e) were token using a camera FPV with a 240x320 pixels. In c)
some lines describing the structure are shown.

Images in the Fig. 1.1 have in common that camera heading has been pointed in direc-
tion to the end of corridor. This guidance is useful, since to navigate along a hallway can
be achieved keeping this orientation. This head-direction could be estimated by tracking
three orthogonal vanishing points in a video stream. That means, once line segments in an
image have been determined, vanishing points can be extracted from perspectives images.

Furthermore, when the human eye (or camera view) sees a scene of a corridor, the envi-
ronment seems to converge to the end of hallway due its perspective. Such a phenomenon
is characteristic in camera perspective. The view perspective produces a distortion in the
image plane whose border lines have variation in its angles due to the same movements.
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These variation on the slope of edges lines is used to solve partially the camera localiza-
tion. These lines are formed by the union of the walls between ceiling and floor. This lines
are called edges lines in this work). The collinearity of these principal lines yields a partial
solution to estimate the position of a camera with respect to the center of the corridor.

This thesis work was inspired by works using a single camera and perspective projec-
tion. Below some works are described which have inspired the design of proposed algo-
rithm. Several works have been focused on rotation matrix extraction using a strategy
which vanishing points describe the three axes of the coordinate frames of the real world.
For example in Zhang [2000], Caprile and Torre [1990b] some methods are proposed, which
use simple properties of vanishing points. These algorithms can extract the intrinsic and
extrinsic parameters. However they need a single image of a cube and two (or more)
cameras (Caprile and Torre [1990b]) or a planar pattern (Zhang [2000]) to compute their
parameters. A single camera method using two or three vanishing points is mentioned in
Orghidan et al. [2012], Li et al. [2010], where an analysis using perspective projection is
made to obtain camera parameters.

In Li et al. [2012, 2010], strategies to make vanishing point detection in man made
environment are presented. However, even though its solution is designed to work on real
time with a low computational cost, the presented results are only off-line.

A new method for the simultaneous computation of set of lines meeting at multiple
vanishing points using the Expectation-Maximization (EM) algorithm is presented in
Nieto and Salgado [2011]. In this work a vanishing point is treated as a 3D direction,
instead of just a 2D point on an image (a similar strategy is described in Boulanger et al.
[2006a]).

In Boulanger et al. [2006a] the authors present a walk-through inside a single image by
rendering a box textured using the input data. The camera calibration is robust enough to
work with non-architectural scenes, and is also capable to process several input images of
the same 3D environment to navigate through this environment. The technique presented
for camera parameters extraction is based on finding three vanishing points assuming that
principal point of the camera is set on the center of the image. It is assumed that the
directions of the three vanishing points are orthogonal. This work can be implemented on
a smartphone, but it is not fast enough (0.97s) for an real time navigation of a quadrotor
vehicle. This can be also seen in Gomez-Balderas et al. [2011], where vanishing points
are considered as 2D point on the image plane. In practical applications these approaches
suffer from many spurious parallel line segments. In Lee and Yoon [2015] a novel method
is proposed that jointly estimates the vanishing points and camera orientation based
on sequential Bayesian filtering. Regarding to line detection the most common strategy
is using the Hough transform (Duda and Hart [1972a]), which is a powerfull tool to
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identify lines. Several libraries in Matlab, OpenCV are available to accomplish this task.
However, it is necessary to pre-compute the edges. In addition tuning the parameters
is quite complicated and sometimes the computation cost is not low. In the last years,
new strategies were proposed, as Akinlar and Topal [2011], Pătrăucean et al. [2012], to
perform the edge detection. Particularly, in this work, the libraries developed in Akinlar
and Topal [2011] have been applied. Those libraries require no tuning and run at the rate
of 3mx for an image of 240x320 pixels.

In this work, a solution is proposed for solving the indoor autonomous aerial navigation
problem. First, the proposed methodology is based on camera calibration using a vanishing
point strategy. Then, the obtained information is used to find the collinearity of edge lines.
Finally, the variation of the collinearity between edges lines is used as the partial UAV
position.

As additional reference, in Padhy et al. [2019] was presented an approach very similar
to us. They proposed a methodology using a fast procedure to estimate the set of parallel
lines whose intersection would yield the position of the vanishing point (VP) inside the
corridor. They also proposed a suitable measure which is formulated based on the position
of VP on the intersecting lines in reference to any of the image boundary axes which helps
safe navigation of the UAV avoiding collisions with side walls. However, this methodology
is not capable to obtain certain position with respect to the environment, because its
algorithm is not considering the geometry of environment as we proposed. In addition they
used a commercial platform to make their experiments. In our work, several platforms
were developed to complete all the experiments.

1.3 Summary

This chapter was focused on the state of art on quadrotor vehicle and vision systems.
Firstly some of principal industry applications using drones was presented. Then, a study
about the control laws is described. Next, a brief state of the art using a vision system to
solve the problem of localization for indoor navigation was detailed. Finally, some works
serving to extract the information on environment were analyzed focusing on strategies
to extract rotation matrix using vanishing points.
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Chapter 2
Preliminaries: Vision system

This chapter presents a recall of the main existing concepts of vision systems used in
this work. First, the geometrical model is analysed by focusing on concepts of points,
lines, translation, rotation. Then, image representation using the classic pinhole model is
detailed in order to understand how to extract intrinsic and extrinsic parameters. Next,
projective projections, which is the way how an image can be represented using vanishing
points, is detailed. Finally a brief description about some techniques for vanishing point
detection is presented.

2.1 Background

The way a point is represented in the 3D real world is usually determined by three
coordinates [x, y, z]. In image plane, a point will be represented in 2D and is defined
by two coordinates [xs, ys]. The relation between the 3D and 2D world is known as the
projective projection. This process is modeled by central projection in which a ray from
a point in space is drawn from a 3D real world point through the center of projection.

Points, lines, rotation, scale, translation and 2D transformation like, 2D and 3D trans-
formations will be defined below.

Points

A pixel coordinates in an image plane is considered as a 2D point and it can be denoted
using a pair of values

p =
xs
ys

 (2.1)

where p represents a point and [xs, ys]T its coordinates in the image plane. In the se-
quel, this representation is called non-homogeneous by opposition to the homogeneous
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representation.
Another way to illustrate 2D points consist in using homogeneous coordinates, p̃ =

[x̃s, ỹs, w̃]T , where vectors that differ only by a scale factor are considered to be equivalent.
An homogeneous vector p̃ can be converted back into its non-homogeneous form p by
dividing through by the last element w̃.

p̃ =


x̃s

ỹs

w̃

 = w̃


xs

ys

1

 = w̃p̄

where p̄ = [xs, ys, 1]T is the augmented vector. Homogeneous points whose last element
is w̃ = 0 are called ideal points or points at infinity and do not have an equivalent
non-homogeneous representation. This type of points will be detailed later.

Lines

While edges and general curves are suitable for describing contours of natural objects,
the man-made world is full of straight lines. Detecting and matching these lines can be
useful in a variety of applications, including architectural modelling, pose estimation
in urban environments, and the analysis of printed document layouts. A line can also be
represented using homogeneous coordinates l̃ = [a, b, c]T . The line equation is given by

p̄ · l̃ = axc + byc + c = 0 (2.2)

The normalized line equation is given by l = [n̂x, n̂y, d]T = [n̂, d]T with ‖n̂‖ = 1, where n̂
is the normalized expression of the vector [a, b] and d = c/‖[a, b]‖. Here, n̂ is the normal
vector perpendicular to the line and d is its distance to the origin (Fig. 2.1b and Fig. 2.2).
As represented on Fig. 2.1a, n̂ can be also expressed as a function of rotation angle θ,
n̂ = [n̂x, n̂y] = [cos θ, sin θ]. This representation is known as polar coordinates.

Intersection of two lines

When using homogeneous coordinates, the intersection of two lines is computed as

p̃ = l̃1 × l̃2 (2.3)

where l̃1 and l̃2 represent two lines, × is the cross product operator, and p̃ denotes the
obtained point with the intersection of two lines.
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Figure 2.1 – a) 2D plane equation, expressed in polar coordinates. b) 3D plane equation,
expressed in terms of the normal n̂ and distance to the origin d.
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Figure 2.2 – Line projection and normal vector representation.

Line joining two points

The line joining two points of homogeneous coordinates p̃1 and p̃2 can be written as

l̃ = p̃1 × p̃2 (2.4)

where × represents the cross product operator, and l̃ denotes the line joining the two
points.
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Ideal points and the line at infinity

Consider two parallel lines ax+ by + c1 = 0 and ax+ by + c2 = 0. These are represented
by vectors l̃1 = [a, b, c1]T and l̃2 = [a, b, c2]T for which the first two coordinates are the
same. Computing the intersection of these lines is trivial using (2.3). The intersection is
[c2 − c1][b,−a, 0]T , and ignoring the scale factor c2 − c1, this is the point [b,−a, 0]T . That
means that the inhomogeneous representation in this case does not exist. Except it is
possible to suggest that the intersection point has infinitely large coordinates. So, points
with homogeneous coordinates [xc, yc, 0]T do not correspond to any finite point in R2 but
can be seen as representing a point at the infinite.

2.1.1 2D transformations

The basic transformation are described below:

Translation

2D translation of a point can be written as p′ = p+ t or

p′ =
[
I t

]
p̄ (2.5)

where I is the 2 × 2 identity matrix, t depicts the translation vector, p is the point
coordinate before the translation (p̄ is its homogenous point), p′ is the point coordinate
after the translation.

Rotation + translation

It can be written as p′ = rp+ t or

p′ =
[
r t

]
p̄ (2.6)

where r is a 2× 2 orthonormal rotation matrix with rrT = I and |r| = 1.

Scaled rotation

This transformation can be expressed as p′ = srp+ t

p′ =
[
sr t

]
p̄ (2.7)

s = [sx, sy] is the scale for each axis direction.

32



2.1. Background

Mixing translation, rotation and a scale factor and its homogeneous represen-
tation

This expression can be expressed as p′ = srp+ t or

p′ =
[
sr t

]
p̄ (2.8)

The homogeneous representation is given by

p̄′ =
 sr t

01×2 1

 p̄ (2.9)

where 01×2 is the zero line vector of dimension 2. Using a 2 × 3 matrix results in a
more compact notation, whereas using a full-rank 3 × 3 matrix makes it possible to
chain transformations using matrix multiplication. Note that in any equation where an
augmented vector such as p̄ appears on both sides, it can always be replaced by a full
homogeneous vector p̃.

2.1.2 3D transformations

3D transformations are very similar to 2D transformation, and are detailed below:

Translation

3D translations can be written as P ′ = P + T or

P ′ =
[
I T

]
P̄ (2.10)

where I is the 3 × 3 identity matrix, T depicts the 3D translation vector, P is the 3D
point coordinate before the translation (P̄ is its augmented vector), P ′ is the 3D point
coordinate after the translation.

Rotation + translation

It can be written as P ′ = RP + T or

P ′ =
[
R T

]
P̄ (2.11)

where R is a 3× 3 orthonormal rotation matrix with RRT = I and |R| = 1.
3D rotation is a non-trivial task which can be expressed in a compact way. So that, in

Chapter 3 a detailed description is presented.
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Scaled rotation

This transformation can be expressed as P ′ = SRP + T

P ′ =
[
SR T

]
P̄ (2.12)

S = [sx, sy, sz]T is the scale for each axis direction.

Mixing translation, rotation and a scale factor and its homogeneous represen-
tation

This expression can be expressed as P ′ = SRP + T or

P ′ =
[
SR T

]
P̄ (2.13)

The homogeneous representation is given by

P̄ ′ =
 SR T

01×3 1

 P̄ (2.14)

where 01×3 is the zero line vector of dimension 3. Using a 3× 4 matrix results in a more
compact notation, whereas using a full-rank 4 × 4 matrix makes it possible to chain
transformations using matrix multiplication.

2.1.3 Camera calibration

Concepts mentioned above are the basis for each element on the camera sensor matrix
whose intrinsic and extrinsic parameters explain the relation between the real word and the
image plane. The graphic illustration using the classic pinhole representation is detailed
below.

Image through the pinhole

If the point P with coordinates P = [xc, yc, zc]T in the referential centered with respect to
the optical center C, and the zc axis is parallel to the optical axis (of the lens), then from
similar triangles, the coordinates of P and its image p are linked by the ideal perspective
projection, see Fig. 2.3:

xs = −f xc
zc
, ys = −f yc

zc
(2.15)

where f is the focal length and [xs, ys]T represents the coordinates in the image plane.
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P

p

f
C

Figure 2.3 – The image of the point P is the point p where the radius parallel to the
optical axis and the ray that crosses the optical center C intersects.

The negative sign of Eq. (2.15) means that the image appears inverted on the im-
age plane. To eliminate this effect, the image can be flipped [xc, yc] 7→ [−xc,−yc], this
corresponds to placing the image plane zc = −f in front of the optical center instead of
zc = +f . Thus it is considered as the frontal pinhole model in the literature (see Fig. 2.4).
In that case, one has:

xs = f
xc
zc
, ys = f

yc
zc

(2.16)

In practice, the size of the image plane is bounded, therefore all points p located in the
real world do not have an image in the image plane. Therefore, the field of vision is defined
as the angle subtended by the spatial extent of the sensor, from the optical center.

Camera Matrix

Once a 3D point has been projected through an ideal pinhole using a projection matrix,
the resulting coordinates must be transformed according to the pixel sensor spacing and
the relative position of the sensor plane to the origin. Then this transformation is given
by:

p̃ = K
[
R T

]
P̄ = CM P̄ (2.17)

where K ∈ R3×3 is the intrinsic parameters,
[
R T

]
∈ R3×4 represents the extrinsic

parameters. P̄ is the augmented vector of 3D coordinates and CM is known as the camera
matrix, p̃ is the homogeneous representation of a point in the image plane.

The calibration algorithm computes the camera matrix using the extrinsic and intrinsic
parameters. The extrinsic parameters represent the location of the camera in the 3D
scene. The intrinsic parameters depict the optical center and focal length of the camera,
and these parameters also detail a projective transformation from 3D camera’s coordinates
into the 2D image coordinate. The relation between the extrinsic and intrinsic parameters
is depicted in Fig. 2.5.
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Figure 2.4 – The image plane using the image inverted to describe the projection of a
point in the space 3D.

Intrinsic parameters

These parameters are given by the next expression:

λ


x′

y′

1

 = KΠ0P̄ =


fsx fsθ ox

0 fsy oy

0 0 1




1 0 0 0
0 1 0 0
0 0 1 0



xc

yc

zc

1

 (2.18)

where λ is a multiplicative scaling factor obtained by normalizing to 1 the last coordinate
of the transformation result. The matrix Π0 of size 3×4 represents the perspective projec-
tion. The triangular matrix K of size 3×3, brings together all the intrinsic parameters of a
particular camera, which is named matrix of intrinsic parameters or camera’s calibration
matrix and contains the following geometric interpretations:

• ox is the x coordinate of the main point in pixels

• oy shows the y coordinate of the main point in pixels

• fsx represents the size of pixels of unit length on the horizontal axis

• fsy describes the size of pixels of unit length on the vertical axis

• fsθ depicts the deviation of the pixel, often close to zero.
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Figure 2.5 – Relation between extrinsic and intrinsic parameters.

Extrinsic parameters

The geometric relation between a given point of coordinates P̄ = [xn, yn, zn, 1]T with
respect to the world reference and its corresponding image, x̄′ = [x′, y′, 1]T , depends upon
the rigid body movement [RT ] between the world reference frame and camera reference,
named extrinsic parameters.

Thus, the model of image formation is as follows:

λ


x′

y′

1

 =


sx sθ ox

0 sy oy

0 0 1



f 0 0
0 f 0
0 0 1




1 0 0 0
0 1 0 0
0 0 1 0


R3×3 T3×1

01×3 1



xn

yn

zn

1

 (2.19)

which is the same equation given by (2.17).

2.1.4 Perspective projections

A perspective projection is distinguished from a parallel projection by the convergence of
parallel lines, diminution of size, and nonuniform foreshortening. It means that parallel
lines that are not parallel to the projection plane converge to a single point, called a
vanishing point (vp). Vanishing points for lines parallel to a plane always lie along a
straight line in the projection plane. When this line appears horizontal to the observer it
is referred to as the horizontal line.

One of the distinguishing features of perspective projection is that the image of an
object that stretches off to infinity can have finite extent. For example, an infinite scene
line is imaged as a line terminating in a vanishing point. Similarly, parallel world lines, such
as railway lines, are imaged as converging lines, and theirs intersection is the vanishing
point for the direction of the railway. Thus, if we see the image perspective acquired from
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a cube, see Fig. 2.7, perspective projections can be classified by the number of points
perspective projection or finite vanishing points.

2.1.5 Vanishing point

Geometrically the vanishing point of a line is obtained by intersecting the image plane
with a ray parallel to the world line and passing through the camera center. Thus a
vanishing point depends only on the direction of a line, not on its position. Consequently
a set of parallel world lines have a common vanishing point, as illustrated in the Fig. 2.8,
Fig. 2.9 and Fig. 2.10.

Therefore, in general vanishing points have the next properties

• Any two parallel lines have the same vanishing point

• The ray from C through vp point is parallel to the lines

• An image may have more than one vanishing point

Fig. 2.6 shows graphically these properties.

vanishing point vp

line on ground plane

line on ground plane

Image plane

camera
center
c

Figure 2.6 – Lines parallels in the space intersect in a vanishing point in the image plane.

One finite vanishing point

One-point perspective projection is the type of projection in which the projection plane
intersects only one of the principal coordinate axes (one finite vanishing point). Hence,
to obtain a one-point perspective, the projection plane must be parallel to one of the
principal planes. One-point perspective of the cube is illustrated in Fig. 2.8 .

Two finite vanishing points

A two-point (or angular) perspective projection is the type of projection where the pro-
jection plane intersects two of the principal coordinate axes (two finite vanishing points).
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x

y

z

center of projection

Figure 2.7 – Perspective projection of a cube.

xn

yn

zn
vp

Figure 2.8 – One-point perspective projection resulting from the construction of one vp.

A two-point perspective is obtained by choosing the projection plane parallel to one of
the principal axes, but not parallel to any coordinate plane. This perspective is illustrated
seeing a cube in Fig. 2.9.

Three finite vanishing points

A three-point perspective projection is the type of projection where the projection plane
intersects all coordinate axes (three finite vanishing points). A three-point perspective is
obtained by choosing the projection plane that it is not parallel to any coordinate axis.
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vp1vp2

Figure 2.9 – Two-points perspective projection from the construction of two vp.

A three point perspective of a cube is illustrated in Fig. 2.10.

vp1vp2

vp3

Figure 2.10 – Three-points perspective projection from the construction of three vps.

2.2 Vanishing point extraction

Often vanishing points are computed from the image of a set of parallel line segments,
though they may be determined in other ways for example by using equal length intervals
on a line. In the case of the detected segments of parallels lines in the image plane, the
objective is to estimate its common intersection, which is the image of the direction of
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the parallel scene lines. Due to measurement noise and discretization the parallels lines
will be not generally intersected in a unique point. Commonly the vanishing point is then
computed by intersecting the lines pairwise and using the centroid of these intersections,
or finding the closest point to all the measured lines.

There are several works on detecting vanishing points for different applications whose
techniques can be divided into three categories. The first two require the knowledge of the
internal parameters of the camera and the last one operates in an uncalibrated setting.

In the first one it is used a set of unit vectors on the Gaussian sphere centered on the
optical center of the camera Collins and Weiss [1990], Boulanger et al. [2006a]. Approach
proposed by Barnard [1983] was performed on a quantized Gaussian sphere using a Hough
transform, until this was shown to lead to spurious vanishing points. Since then, most of
the works rely on 3D parallelism or orthogonality of dominant structures in the scene to
avoid any false detection.

More recent techniques, requiring the knowledge of internal parameters, are based on
the “Manhattan assumptions” that the prominent structures of the scene are orthogonal
to each other Coughlan and Yuille [1999]. The algorithms directly estimate the so-called
Manhattan directions or equivalently the camera orientation Boulanger et al. [2006a],
Elloumi et al. [2012]. Our work uses this technique due to quadrotor environment whose
geometry its similar to the proposed approach of this method.

Finally, some algorithms assume no knowledge of the internal parameters and their
main goal is to estimate possibly non-orthogonal vanishing points. These are especially
useful for calibration of the camera using one or more views, but also to recover build-
ing facades. The Expectation Maximization (EM) approach of Antone and Teller [2000]
requiring entities represented on Gaussian sphere. The EM approach requires an initial
estimate of the vanishing points.

2.3 Summary

The preliminaries and concepts from computer vision were described in this chapter.
Camera parameters were also introduced to see the relation between a point in the real
world and a point in the image plane. Then, perspective projection was detailed in order to
see how vanishing points can describe the environment. Finally, a brief survey of vanishing
point was presented.
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Chapter 3
Preliminaries UAVs

This chapter is focused on describing some characteristics and operation of a quadrotor
vehicle. First, Linear representation between body reference frame and world reference
frame is presented in section 3.2. Then, a survey of some angular representation, which
are Euler, Cardan angles and quaternions, is detailed in section 3.3. Next, in section 3.4
is shown a 3D pose taking into account position and rotation given in precedent sections.
After, rigid body representation is detailed in section 3.1. Then, an introduction and a
mathematical model of the quadrotor system are given in section 3.5.1. Finally, a relation
between coordinate frames (world, camera and body) is examined in section 3.6.

3.1 Rigid body representation

A rigid body representation is usually represented by the body reference frame B[~eb1, ~eb2, ~eb3]
which is located at the center of mass of the rigid body, and the world reference frame
N[~en1~en2 , ~en3 ] which is located at some point in the space, see Fig. 3.4 (the earth NED
frame is normally used for a quadrotor system). The body attitude in the space can be
represented in many ways, each one with their advantages and disadvantages, depending
mainly on the targeted application. For quadrotor vehicles, the body axes xb, yb and zb
coincide with the principal axes of inertial and North/West orientation (or room main
axes for indoor navigation).

The motion of the body frame is described relative to the world reference frame.
Usually, the position and orientation of the vehicle is described relative to the world
reference frame while the linear and angular velocities of the vehicle is expressed in the
body reference frame.

Particularly, the general motion of rigid body can be described by the following vectors:
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N[~en1 , ~en2 , ~en3 ]

~en3

~en1

~eb3
~en2

~eb1

~eb2

Γψ

Γφ

Γθ

Fu

mg~en3

B[~eb1, ~eb2, ~eb3]

rz

rx

ηx

rx

ηy

ηz

Figure 3.1 – Rigid body representation.

~ξ = [xn, yn, zn]T ; ~E = [θ, φ, ψ]T ;
~r = [rx, ry, rz]T ; ~η = [ηx, ηy, ηz]T ;
~F = [Fx, Fy, Fz]T ; ~Γ = [Γφ,Γθ,Γψ]T

(3.1)

Here ~ξ and ~E denotes position and orientation respectively. ~r is the linear velocity. ~η repre-
sents the angular velocity. ~F and ~Γ are the forces and moments acting in the body frame.
~E is given by the angles pitch, roll and yaw angles (θ, φ, ψ); however, a representation in
quaternions q was also proposed above.

3.2 Linear representation

The 3D space is typically represented by three axes denoted z-axis, that is orthogonal
to both the x- and y-axes. The direction of the z-axis obeys the right-hand rule and
forms a right-handed coordinate frame with the x- and y-axes. Fig. 3.2 shows a body
coordinate frame B that we wish to describe with respect to the world coordinate frame
N. Unit vectors parallel to the axes are denoted by N[~en1 , ~en2 , ~en3 ] and B[~eb1, ~eb2, ~eb3] which
represent the orthonormal directions of the world reference frame and body coordinate
frame respectively. A point P is represented by its x−, y− and z-coordinates [x, y, z]T or
as a bound vector. For instance, in Fig. 3.2 a point P with respect to the world reference
frame can be given as NP = [xn, yn, zn]T or P = xn~e

n
1 + yn~e

n
2 + zn~e

n
3 .

Fig. 3.2 also shows that the origin of B has been displaced by the vector NTB =
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[xn, yn, zn]T and then rotated in some complex fashion with respect to the frame N. The
leading superscript denotes the reference coordinate frame and the subscript denotes the
frame being described. If the initial superscript is missing we assume that the change in
pose is relative to the world coordinate frame which is generally denoted as 0. NTB are the
coordinates of the origin of B in the frame N. This approach is considering an arbitrary
point P with respect to each of the coordinate frames and to determine the relationship
between NP and BP . In addition, it is shown linear and angular velocities (~r, ~η), which
represent the motions in time of the body reference frame B. We will again consider the
problem in two parts: rotation and then translation. The translational velocity is direct:
it is the rate of change of the position of the origin of the coordinate frame. Rotation and
angular rotation are surprisingly complex for the 3-dimensional case and we devote all of
the next section to it.

xn

zn

yn

xb

zn

B

N
t

BP
NP

P

~en1

~en2

~en3
~eb1

~eb2

~eb3

rz

rx

ry

yb

ηz

ηy

ηx

Figure 3.2 – Two coordinate frames, a point p whose coordinates can be given with respect
to frame B or N.

3.3 Angular representation

Mathematically, a rotation is a rigid body movement which, unlike a translation, keeps
a point fixed. This definition applies to rotations within both two and three dimensions
(in a plane and in space, respectively). Rotations around the x, y and z axes are called
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principal rotations. Rotation can be performed by taking into account a combination of
rotations around each axis. That is to say, any spatial rotation can be decomposed into a
combination of principal rotations.

3.3.1 Orthonormal Rotation Matrix

The orientation of a coordinate frame can be represented by their unitary vectors ex-
pressed in terms of the reference coordinate frame. Each unitary vector has three elements
and they form the columns of a 3 × 3 orthonormal matrix R


xn

yn

zn

 = R


xb

yb

zb

 (3.2)

which transforms the description of a vector defined with respect to frame B to a vector
with respect to N.

Principal rotations

The orthonormal rotation matrices for rotation of φ, θ and ψ about the x-, y- and z-axes
are respectively in (3.3). This yields the following transformations matrices:

Rx,φ =


1 0 0
0 cφ sφ

0 −sφ cφ

 Ry,θ =


cθ 0 −sθ
0 1 0
sθ 0 cθ

 Rz,ψ =


cψ sψ 0
−sψ cψ 0

0 0 1

 (3.3)

where s· = sin(·) and c· = cos(·). Rx,φ, Ry,θ and Rz,ψ denote a rotation for a given angle
about each axis.

Coordinate transformation matrix

Rotation matrix R belongs to the subspace of orthogonal matrices of dimension three,
called special orthogonal group, denoted by S0(3), and defined by

S0(3) = {R|R ∈ R3×3, RTR = I3, det(R) = 1} (3.4)

In a rotation matrix R, each element Rij is a direct cosine, given by:

R =


R11 R12 R13

R21 R22 R23

R31 R32 R33

 (3.5)
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where

~R1 =


R11

R21

R31

 ~R2 =


R12

R22

R32

 ~R3 =


R13

R23

R33

 (3.6)

consequently,
R =

[
~R1 ~R2 ~R3

]
(3.7)

where
RT
i Ri = 1 and RT

i Rj = 0 ∀i 6= j (3.8)

Three- Angles Representation

Euler’s rotation theorem requires successive rotation about three axes such that no two
successive rotations are about the same axis. There are two classes of rotation sequence:
Eulerian and Cardanian.

The Eulerian type involves repetition, but not successive, of rotations about one par-
ticular axis: XYX, XZX, YXY, YZY, ZXZ, or ZYZ. The Cardanian type is characterized
by rotations about all three axes: XYZ, XZY, YZX, YXZ, ZXY, or ZYX. The ZYZ se-
quence is commonly used in aeronautics and mechanical dynamics. The Euler angles are
the 3-vector [φ, θ, ψ].

Another widely used convention are the Cardan angles: roll, pitch and yaw. In liter-
ature, roll-pitch-yaw sequence is usually defined as ZYX or XYZ depending on whether
they have mobile robot or robot arm focused. When describing the attitude of vehicles
such as ships, aircrafts and cars, the convention is that the x-axis points in the forward
direction and the z-axis points either up or down. This leads to the ZYX angle sequence.

NRB = R = RT
z,ψR

T
y,θR

T
x,φ =


cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ

cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ
−sθ sφcθ cφcθ

 (3.9)

The roll-pitch-yaw sequence allows all angles to have arbitrary sign and it has a singularity
when θ = ±π

2 which is fortunately outside the range of feasible attitudes for most vehicles.

Rotation about an Arbitrary Vector

Two coordinate frames of arbitrary orientation are related by a single rotation about
some axis in space defined by its rotation matrix R. From the definition of eigenvalues
and eigenvectors we recall that

R~a = λ~a (3.10)
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where ~a is the eigenvector corresponding to the eigenvalue λ. For the case λ = 1 verified
by rotation matrices:

R~a = ~a (3.11)

which implies that the corresponding eigenvector ~a is unchanged by the rotation R. For
any real factor r, r~a will remained unchanged by the rotation R. An orthonormal rotation
matrix will always have one real eigenvalue at λ = 1 and in general a complex pair
λ = cos β ± i sin β where β is the rotation angle. Hence, once R is known, the rotation
axis ~a and the rotation angle β can be easily obtained. The inverse problem, that is
converting from angle and vector to a rotation matrix, can be achieved using Rodrigues’
rotation formula

R = I3×3 + sin β[~a ]× + (1− cos β)[~a ]2× (3.12)

where I3 represents the identity matrix of dimension three and [~a ]× represents the skew-
symmetric matrix, given by:

[~a ]× =


ax

ay

az


×

=


0 −az ay

az 0 −ax
−ay ax 0

 (3.13)

It is interesting to note that this representation of an arbitrary rotation is parameterized
by four numbers: three for the rotation axis, and one for the angle of rotation. However, the
direction can be represented by a unitary vector~b = ~a/||~a|| which has only two parameters
and the angle can be encoded in the length to give a 3-parameter representation such as
~bβ, ~b sin(β/2), ~b tan(β) or the Rodrigues’ vector ~b tan(β). While these forms are minimal
and efficient in terms of data storage they are analytically problematic and ill-defined
when β = 0.

Matrix Exponentials

The exponential map effects a transformation from the axis-angle representation of rota-
tions to rotation matrices. Essentially, by using a Taylor expansion one derives a closed-
form relation between these two representations. Given a unitary vector ~a representing
the unitary rotation axis, and an angle, β, an equivalent rotation matrix R is given as
follows,

R = e[~a]×β ∈ R3 (3.14)

the notation [·]× : R3 7→ R3×R3 indicates the mapping from a vector to a skew-symmetric
matrix (3.13). Since [~a]×β = [~aβ]× we can treat ~aβ ∈ R3 as rotational parameters called
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exponential coordinates.

Rotational velocity

The body-fixed angular velocity vector ~η = [ηx, ηy, ηz]T , see Fig. 3.2, and the Euler rate
vector ~̇W = [φ̇, θ̇, ψ̇]T are related through a transformation matrix W ( ~E), sometimes
called the Wronskian matrix, according to:

~̇E = W ( ~E)~η (3.15)

The orientation of a body reference frame B w.r.t. the inertial reference frame N is given
by

~η =


φ̇

0
0

+Rx,φ


0
θ̇

0

+Rx,φRy,θ


0
0
ψ̇

 = W−1( ~E) ~̇E (3.16)

Then, the kinematic equation is given by Fossen [1994]:

φ̇

θ̇

ψ̇

 =


1 tan θ sinφ tan θ cosφ
0 cosφ − sinφ
0 sinφ

cos θ
cosφ
cos θ



ηx

ηy

ηz

 (3.17)

3.3.2 Attitude error

Two orientations of a rigid body are considered, described by rotation matrices R1 and
R2 respectively. Then, the relative attitude between these two orientations is computed
by:

Rr = R−1
1 R2 (3.18)

In fact, Rr represents an operator of orientation which rotates R2 about R1. From here,
the relative orientation is used in the estimation and in the orientation control as attitude
error. If Rd = R1 is the desired attitude of a rigid body and R = R2 is the real attitude
of the body, then the attitude error is computed by:

Re = R−1
d R (3.19)

If the attitude error is zero, then Re = I3. In terms of quaternions.
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3.4 Pose in 3D

The position and orientation change between the two coordinate frames as shown in
Fig. 3.3. This is often referred to as a rigid-body displacement or rigid-body motion.
Above, several different representations of orientation were discussed, and we need to
combine one of these with translation, to create a tangible representation of relative pose.
The simplest way to represent the 3D pose is as follow:

NP = RBP +N TB. (3.20)

Homogeneous Transformation Matrix

Considering the translation between the origins of the frames shown in Fig. 3.3. NP̃ =
[xn, yn, zn, 1]T and BP̃ = [xb, yb, zb, 1]T are the homogeneous representations of NP =
[xn, yn, zn]T and BP = [xb, yb, zb]T respectively. The tilde indicates the vector is homoge-
neous. The relation becomes as follow:

NP̃ =
 R NTB

01x3 1

B

P̃ (3.21)

NTB is the vector defining the origin of frame B with respect to frame N, see section 3.2,
and R is the 3 × 3 orthonormal matrix which describes the orientation of the axes of frame
B with respect to frame N. If a point is represented by its homogeneous coordinates then

NP̃ = NMB
BP̃ (3.22)

and NMB is a 4 × 4 homogeneous transformation matrix. The 4 × 4 homogeneous trans-
formation is very commonly used in robotics, computer graphics and computer vision, see
Chapter 2.

3.5 Quadrotor mathematical model

The dynamic model of the quadrotor vehicle can be divided into two parts: attitude
and translation. The attitude system is covered by the rotational part, and the position
system is described by the translational part. There are different approaches to describe
the dynamics of the system. For example, the Newton-Euler approach which takes into
account the concepts of forces and torques. There is also the Euler-Lagrange approach
which considers the concepts of kinetic and potential energy. In this work, the unitary
quaternion to represent the attitude of the system and the Newton-Euler approach are
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xn

zn

yn

xb

yb

zn

B

N

NTB

BP
NP

P

~en1

~en3

~en2

~eb1

~eb2

~eb3

Figure 3.3 – Two coordinate frames, a point p whose coordinates can be given with respect
to frame B or N.

used in order to obtain the dynamical equations of the system. In order to obtain the
equations of motion of the aerial system, we make the following assumptions:

• the cross-shaped structure is supposed to be rigid,

• the quadrotor has a perfectly symmetrical structure, which allows to consider a
diagonal inertia matrix,

• the pushing force fi and the reactive torque Qi produced by each rotor are supposed
proportional to the square of the speed of rotation of the blade,

• the vehicle flight is assumed to be performed under conditions of a standard atmo-
sphere,

• the disturbances produced by the air are neglected.

The modelling of the system has been reviewed in many works, and is given by (3.23)
and (3.24). The six degrees of freedom (position and attitude) of the system could be
separated into translational (ΣT ) and rotational (ΣR) motions, as follows
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ΣT :
 ~̇ξ = ~r

m~̇r = mg~en3 − FuRT~en3
(3.23)

ΣR :


q̇ = 1

2Ξ(q) ~η

J~̇η = −[~η ]×J~η + ~Γ + ~ΓG
(3.24)

where m denotes the mass of the vehicle, J its inertial matrix expressed in B. R is
the rotation matrix which allows the passage between the inertial and fixed frames. Fu
represents the total thrust. g indicates the gravity acceleration. ~en3 = [0 0 1]T is the
direction orthonormal of zn-axis of world reference frame. ξ = [xn, yn, zn]T represents the
position of the vehicle center of gravity, which coincides with the origin of frame B, with
respect to frame N, ~r = [rx, ry, rz]T its linear velocity in N, q is the orientation quaternion
and ~η denotes the angular velocity of the vehicle expressed in B. ~Γ is the vector of control
torques, and ~ΓG represents the gyroscopic torques. Note that the rotation matrix R can be
given as a function of Euler angles. Fig. 3.4 depicts the basic representation of a quadrotor
system which replace the basic representation of a rigid body shown in Fig. 3.1.

3.5.1 Characteristics and operation of the quadrotor

The quadrotor or four rotor helicopter is a mechatronic system composed classically of a
cross structure. At each end of the cross there is a propeller coupled to a motor, and at
the center of the configuration all the electronic elements are established (power source,
computer, etc). Compared to the classical helicopter, this system does not have main
rotor and the control is performed by the angular velocity changes on each rotor, (Nelson
[1998]).

The four rotors are composed of the propellers coupled to DC motors or DC brushless
motors (BLDC). The quadrotor prototype is represented in Fig. 3.4, where the front and
rear motors (1 and 2) rotate clockwise, while the others two (3 and 4) rotate counter-
clockwise. In this way, gyroscopic effects and aerodynamic torques tend to cancel each
other out in trimmed flight.

Each rotor produces a force fi parallel to its rotation axis, as well as a drag torque
Qi, opposite to the direction of rotation. The total force or total thrust acting on the
aircraft (parallel to the zb axis) is the sum of the four forces generated by each rotor
(Fu = f1 + f2 + f3 + f4). The combination of these forces and the drag torques allow the
angular motions over the main axes of the vehicle, see Fig. 3.5.

• Roll (φ): It is produced by the difference f3 − f4. To obtain this, the velocity of
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Figure 3.4 – Scheme of the quadrotor configuration: inertial frame N[~en1~en2 , ~en3 ], the body
fixed frame B[~eb1, ~eb2, ~eb3], the fi force on each motor, angular velocity of the motors si and
the reaction torques Qi.

the motor m3 is increased/reduced, while the velocity of the motor m4 is equally
decreased/increased. This difference of forces produces a torque Γφ around the axis
xb.

• Pitch (θ): It is produced by the difference f1 − f2. It is obtained similarly using
the front and rear motors m1 and m2. This difference of forces produces a torque
Γθ around the axis yb.

• Yaw (ψ): It is the combination of all the reactive torques, Q1 + Q2 − Q3 − Q4. It
is obtained by decreasing/increasing the speed of the front and rear motors while
decreasing/increasing the speed of the lateral motors. In other words, if there is a
difference of speed between the motors turning in the opposite direction, the reactive
torques produce a torque Γψ around the axis zb.

• Vertical displacement on the xn axis: To go forward or back, the rotational
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speed of motor m2 must be decreased/increased, while decreasing/increasing the
rotational speed of the motor m1.

• Lateral displacement on the yn axis: To go to the right or left, the rotational
speed of the lateral motors m4 and m3 must be decreased/increased.

• Displacement on the zn axis: To go up or down, the forces of all the rotors mi

must be decreased/increased. In the absence of disturbances, the aerial system can
perform a hover at a certain height by having a zero translation speed. Then, the
total thrust Fu must balance the weight mg of the aerial system by pointing its
direction in the axes zb.

φ

φ

zb

yb
Front motor

xb

zb

Front motor

θ

θ

xb

yb
ψ

ψ

N
xn

yn

zn

p

Figure 3.5 – Roll (φ), pitch (θ), yaw (ψ) and space displacement.

From the description of the different angular movements and the vertical and horizon-
tal displacements, it is visible that the position of the system depends on its attitude.

Thrust force. According to Fig. 3.4 the force fi delivered by the ith rotor with a
blade rotational speed si is modeled by:

fi = bF s
2
i with i ∈ 1, 2, 3, 4 (3.25)

where bF > 0 is the thrust force parameter. The expression Fu is given by:

Fu =
4∑
i=1

fi = bF
4∑
i=1

s2
i . (3.26)

Reactive force. The reactive torque Qi generated in the free air by the rotor i due to
the motor drag and the total thrust Fu produced by the four rotors can be, respectively,
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approximated by Castillo et al. [2004]

Qi ≈ kQs
2
i (3.27)

where k > 0 is the motor drag constant. Both bF and kQ are parameters that depend on
the density of air, the radius, the shape, the pitch angle of the blade and other factors.

Gyroscopic torques. The vector of gyroscopic torques ΓG is a consequence of the
simultaneous rotation of the structure of the quadrotor and the high-speed rotation of the
actuators, and it is given by:

ΓG =
4∑
i=1

Jr(~w × ~zb)(−1)i+1si (3.28)

where Jr is the inertia of the so-called rotor (composed of the motor rotor itself with the
gears). This vector adds a term that is canceled because of relation: ~ηTΓG = ~ηT (~ηT ×
~eb3)∑4

i=1 Jr(−1)i+1si = 0 Guerrero-Castellanos et al. [2011a].
Control torques. As it can be seen above the components of the control torque

~Γ ∈ R3 generated by the rotors are given by ~Γ = [Γφ, Γθ, Γψ]T , with

Γφ = d(f3 − f4) = dbF (s2
3 − s2

4) (3.29)

Γθ = d(f1 − f2) = dbF (s2
1 − s2

2) (3.30)

Γψ = Q1 +Q2 −Q3 −Q4 = kQ(s2
1 + s2

2 − s2
3 − s2

4) (3.31)

where d represents the distance from a rotor to the center of mass of the quadrotor.
Combining the equation (3.26) with (3.29)-(3.31), the torques and forces applied to the
vehicle are written in vector form as

 ~Γ
Fu

 =


0 0 dbF −dbF
dbF −dbF 0 0
kQ kQ −kQ −kQ
bF bF bF bF




s2

1

s2
2

s2
3

s2
4

 = NS (3.32)

with S the square rotor speeds of the four motors. It should be noted that the relations
between the rotation velocities and the resistive torque of the actuator axis and those of
the motor are given by  zm = Kgz

Qm = Q
Kg

(3.33)
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where zm and Qm represent the rotation speed and the resistive torque of the motor,
respectively, andKg defines the gear ratio. One of the main characteristics of the quadrotor
is its symmetry. Consequently, the distribution of the mass can be considered uniform.
Considering that the structure is similar at that one of the Fig. 3.4, the classical definitions
of inertial moments and inertia product are used, see Fossen [1994].

3.6 Relation from world, camera and body frames to
merge in to a complete system

In section 3.1, quadrotor vehicle was described by vectors depicting translation and rota-
tional movements (~ξ, ~E), linear and angular velocity (~r, ~η), and finally force and torques
acting on each axis (~F , ~Γ). However, our system also takes into account an embedded cam-
era which is put on the quadrotor system. This camera is used to take images from the
environment. This information is used to estimate certain position of the system (quadro-
tor) with respect to its environment. The camera is put in front of the quadrotor, and the
origin of camera reference frame C[~ec1, ~ec2, ~ec3] is on the center of camera lens. The origin
of body reference frame B is supposed to be in the center of gravity of the quadrotor
system. Fig. 3.6 shows an general scheme of the system.

Once the references systems are defined, the relation between the world reference
frame, camera reference frame, and body (quadrotor) reference frame can be obtained
as a simple transformation. Fig. 3.6 depicts a point P which is projected into the image
plane acquired by the embedded camera. The coordinates of the point P with respect to
the camera coordinate system C can give us some useful information to know the position
of the system. Fig. 3.6 also shows a ray which is going out from the camera projection
center, and it goes directly to the point. Thus, point P can be expressed w.r.t. camera
reference frame C as follows

CP = CRN
NP +C TN (3.34)

where CP is the coordinate of the point P with respect to the camera C. NP represents
the same point P with respect to the world N. CRN depicts the rotation from the world
reference frame N w.r.t. the camera reference frame C. Finally CTN shows the translation
from the world reference frame N w.r.t. the camera reference frame C .
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yb
B

Xn

Yn

Zn

C

zc

yc zbxb

xc

N

P

NP

CP

CTN

Figure 3.6 – The camera model system has its center of projection on the lens, which is
the camera reference frame C. The zc-axis is going outwards to the optical axis, xc-axis
to the right and the yc-axis downwards.

3.6.1 Translation

The meaning of the translation CTN between two references frames can be understood
letting NP to zero. Then, eq. (3.35) is the vector from the camera origin to world origin.

CP =C RN(0) +C TN (3.35)

3.6.2 Rotation

Let the rotation matrix be written as three orthogonal column vectors, see Fig. 3.7:

CRN =
[

C~en1
C~en2

C~en3

]
(3.36)

The rotation of the world N with respect to the camera C is shown in Fig. 3.7, and it
is given by

CRN = Rz,ψRy,θRx,φ (3.37)

Taking into account the rotation matrix given in 3.3 and putting ψ = π/2, θ = 0 and
ψ = π/2„ we obtain the rotation matrix of the world reference N with respect to camera
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~en1

N

C

~en3

~en2 ~ec2
~ec3

~ec1

CTN

Figure 3.7 – Orthogonal vector representation.

reference C,

CRN =


0 1 0
0 0 1
1 0 0

 (3.38)

This rotation can be also expressed in terms of quaternions using equation (??), which is
a simple form to represent a rotation.

3.6.3 Camera-body-world transformation

The transformation between coordinates systems according to Fig. 3.6 is made using 4×4
matrices, then

CMN =
CRN

CTN

01×3 1

 (3.39)

CMB =
CRB

CTB

01×3 1

 (3.40)

taking into account that NMC = (CMN)T , the complete transformation is given by:

NMB = NMC
CMB (3.41)

The inverse transformation is given by (3.42), and it represents the transformation
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Figure 3.8 – Inverse transformation from the camera with respect to the world.

from the camera C with respect to the world N, see Fig. 3.8

NMC =
CRT

N −CRT
N

CTN

0T 1

 (3.42)

Considering the translation between axes is equal to zero the rotation of the body
reference frame with respect to the world reference frame, taking into account a point
acquired by a camera, is given by the rotational part of NMB.

3.7 Summary

This chapter was focused on the principal characteristics and operation of our quadrotor
vehicle. The representation of position and attitude were also introduced to analyse how
3D pose describes the rigid body motion. Then, mathematical model of quadrotor system
was presented. Finally, the relation between world, camera, and body frames to merge in
to a complete system was presented.
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Chapter 4
Camera pose estimation

This chapter describes the proposed algorithm whose aim is to estimate certain position of
an embedded camera in a quadrotor system. A description of the proposed configuration
is analysed in Section 4.1. In section 4.2 position algorithm and its numerical validation
are described. The chapter is concluded with a description of some problems encountered
during the design, section 4.3.

4.1 Description system

The proposed configuration takes advantage of the video acquired from a corridor. The im-
age video is acquired by a camera over a quadrotor system. These images are taken while
the vehicle is flying through a corridor, and considering that camera is always pointed
to the end of the corridor, see Fig. 4.1a. As can be seen in Elloumi et al. [2014], and
Boulanger et al. [2006a], our work also rely on the Manhattan-world assumption Cough-
lan and Yuille [1999], where different lines describe the floor, ceiling, walls, windows,
and doors, see Fig. 4.1b. Moreover, several parallels lines, which describes the depth of
a corridor, can be clearly seen under this perspective. These lines intersect in an infinity
point named vanishing point vp. This particular vp has a direction which can coincide
with orthogonal direction (zc-axis) with respect to the projection center of the camera.
Furthermore, according to its perspective, a common structured environment can be rep-
resented by their orthogonal directions which are extracted by the environment geometry.
These directions are used to estimate each vector of the rotation matrix, see section 2.1.4.
Since camera is supposed to be on-board of the quadrotor system, and the horizontal is
kept during hover, see Fig. 4.1b, we can say that horizontal and vertical orientation of the
lines yield the orthogonal direction of missing vectors. Once this data is estimated, and
performing suitable frames transformation, head direction of the system can be controlled
using a control law, which will be described in Chapter 5, by exploitation of the angle
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yaw (ψ).

Besides, image perspective often affects the extracted lines in the real world having
different angles depending on the direction of view camera view and its position in 3D
space. Particularly some lines, which shapes comes from edges of a corridor, can give
useful information to extract certain position of the system. Fig. 4.2c depicts the camera
which is near to the center of the corridor, where a symmetry is observed on the opposite
edge lines. On the contrary, when the camera is in a different place, this symmetry is lost
due the variations in lines angles, see Fig. 4.2. Thus, we can deduce that if the collinearity
on opposite edge lines is applied, the obtained data can be used like certain position which
can be used to pose the quadrotor system in the world plane parallel to the image plane.

vp

(a)

(b)

Figure 4.1 – Quadrotor flying into a corridor, the head-direction is given by a vanishing
point, and the pose of the quadrotor is obtained geometrically using principal lines which
are estimated using data from the corner borders.
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(a) (b)

(c)

(d) (e)

Figure 4.2 – The origin of the world is supposed to be in the corridor center, and the
vanishing point vp can be moved in agreement of the camera projective perspective. There
is a variation of the angles of each corner line, which is used to compute the position error.
The quadrotor is placed in the corridor: c) center, a) near to the left wall, b) near to the
right wall, d)down, and e) up.
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4.2 Pose estimation algorithm

A general scheme of our proposed algorithm can be seen in Fig. 4.3. The strategy shows
a sequence of steps to estimate certain position according to the environment. Firstly the
image is acquired using a single camera. After, the line detector EDLines is applied to
obtain the lines which describes the environment. Then, the detected lines are grouped
in accordance to the slope resulting into three subsets of lines (vertical, horizontal, and
diagonal). Next, from one finite vanishings point and two infinite vanishing points can
be extracted using the classified lines. Thereafter, camera rotation matrix is estimated
performing an algorithm to extract the camera parameters. Later, a general least squares
fitting is applied to extract four edges lines. This task is achieved using a set of points
describing the edges of a corridor. Finally, the collinearity in opposite edges lines is applied
to estimate the camera pose on the plane image. This collinearity yields certain values
according to camera position in the 3D space of a corridor. Fig. 4.4 shows the general
procedure, where the proposed algorithm is applied to an image taken by embedded
camera. This figure shows all the lines acquired by detector lines. The extraction of the
four edge lines is also represented. This algorithm was inspired from ideas of Akinlar and
Topal [2011], Boulanger et al. [2006b] and Lee et al. [2009]

4.2.1 Dominant lines detection

While edges and general curves are suitable for describing the contours of natural objects,
straight lines describes a typical man-made world which is full of it. Thus, detecting and
matching lines can be useful in a variety of applications, including architectural modeling,
pose estimation in urban environments, and so on. In the case of a common corridor, lines
can be classified as vertical lines Lv, horizontal lines Lh. We name the rest of lines as
diagonal lines Ld. Since the image from camera gives the projection of a real world, the
direction of lines describing a corridor can be matched with the orthogonal direction of
the world system.

From implementation point of view, the computational time is considered a constraint
because this time has to be taken into account in the sample rate. Therefore, the perfor-
mance of the algorithm has to be designed in such a way that it has low computational
cost. Normally, the algorithm of detection lines is the most expensive in terms of com-
putational cost; for instance the Hough transformation , see Hough [1959], Duda and
Hart [1972b], is the most common feature extraction technique. However, it has some
drawbacks: Its parameters are sometimes quite difficult to tuning, and also a detection
edge (Canny, Sobel, etc) is required before to run the algorithm. Otherwise, in literature
there are some alternatives, for instance, the line segment detector called EDlines Akin-

64



4.2. Pose estimation algorithm

Line detector

Classification

Rotation estimation

Principal line extraction

Camera position estimation

Image from a corridor

Position Rotation

set lines

Vertical lines
Horizontal lines

Diagonal lines

Corner lines

Figure 4.3 – Pipeline of position camera estimation.

lar and Topal [2011] which gives accurate results, and also has low time process (all the
segments for an image 240× 320 are computed in 3 ms). This line detector makes use of
the clean, contiguous (connected) chain of edge pixels produced by an edge detector, the
Edge Drawing (ED) algorithm Topal and Akinlar [2012]; hence the name EDLines. The
detector includes a line validation step which lets it control the number of false detection.
With its accurate results and low computational cost, this algorithm is very suitable in a
real time implementation. This algorithm can be seen as a function, which has as input
the image, and as output an array with all the lines, see Fig. 4.5. The acquired information
is a unclassified set of initial and final points of each line.

4.2.2 Lines classification and vanishing point extraction

In Chapter 2, we had seen that the perspective projection changes the tilt of lines which
are describing the environment according to position of the camera. Thus, assuming that
the camera takes an image in direction toward to the end of a corridor (as can be see in
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LQ2

LQ3

LQ1

LQ4

Figure 4.4 – These images introduce the applied methodology. The scene is a corridor and
an image is taken from the video to extract a set of lines that could describe geometrically
the environment and the rotation matrix. Four new subsets of lines are made taking into
account the vanishing point (quadrant 1, 2, 3 and 4). The information of each quadrant
is used to obtain the principal lines (LQ1 , LQ2 , LQ3 , LQ4).

Fig. 4.5), this view is matched with the perspective projection where one finite vanishing
point is enable, see section 2.1.4. The lines detected by EDLines are a set of lines which
can be grouped in three sets that are named horizontal lines Lh, vertical lines Lv and
diagonal lines Ld. Each set of lines is used to obtain the vanishing points. Therefore,
diagonal lines are used to estimate the finite vanishing point vp, and the direction lines
of Lh and Lv are used to extract the infinite vanishing point. The vps direction, which
normally are matching with the frame reference of real world, are known as orthogonal
vps direction, which can be employed to rebuild the camera rotation matrix.

Lines classification

Lines classification is based in making a classification using the inclination of each line.
Once the slope of each line L is available, a new lines subsets (Lh, Lv, and Ld) can be
performed. Lines direction are given from −90 to 90 degrees, and taking in account that
camera keeps the horizontal position, the sub-classification can be extracted as follows:

66



4.2. Pose estimation algorithm

ED lines Algorithm

Input (image)  

Output (line set)

Image acquired by the camera

Line set representation extracted 
         by the algorithm

Figure 4.5 – The EdLines algorithm is taken as a function where the input is the image
acquired by the camera, and the output is a lines set. Each line has as information the
initial and final point.

L =


110 ≥ L ≥ 80 Lv = L
−10 ≥ L ≤ 10 Lh = L
otherwise Ld = L

(4.1)

After the sub-classification, the lines are graphically represented with a color according
the new sub-classification. Fig. 4.6 depicts it, where the blue, red and green lines represent
horizontal, vertical and diagonal lines respectively.

Vanishing point: Finite and infinite vanishing point

In the frame of indoor navigation, the main orthogonal directions in a corridor environ-
ment consist generally in a vertical direction (often associated with one infinite vp) and
two horizontal directions. All detected lines from a corridor can be employed to estimate
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Input Lines extraction

Lines classification

Lv

LhLd

Figure 4.6 – Lines classification according to the slope of each line. Vertical lines are
represented in red, horizontal lines are in blue, and diagonal lines are in green.

the vps. However, the given information contains plenty of outliers that could contaminate
the final estimation. In order to find such an orthogonality in the right vps, RANSAC 1

is used to prun the undesired data.
The goal is to spot orthogonality between these set-lines. In this particular case, the

camera is supposed to be parallel to the horizontal, and its direction is pointed through
the end of the corridor. Therefore, one finite and two infinite vps can be established using
this configuration. The vp extraction is carried out in two steps: first, the finite vps are
detected; and then the infinite vps are identified.

Finite vanishing point

In section 2.1.5 was shown this particular case. The algorithm begins selecting randomly
two lines (Ldi , Ldj) from the set Ld for generating a vanishing point hypothesis vph. The
participants lines fitting the best vanishing point inside a neighborhood are computed
using a consensus score given by equations

score =
n∑
i=0

Υ(vph, li) (4.2)

where n is the number of dominant lines of the subset (Ld, Lh, Lv,) and

Υ(vph, li) =
 1 d(vph, li) < δ

0 otherwise
(4.3)

1. RANSAC (Random Sample Consensus) has become a simple and powerful method to provide a
partition of parallel straight lines into clusters by pruning outliers.
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with d(vph, li) is the Euclidean distance from the finite vp candidate vph to the line li
(Ld, Lh, Lv,). δ is a fixed threshold given in pixels.

Previous steps need to be repeated k times which is the number of random combi-
nations for selecting a pair of line segments from Ld. The consensus score is based on a
distance between the candidate straight line and the intersecting point, eq. (4.3). All lines
whose distance is below a fixed threshold δ are considered as participants. These lines are
used to estimate the finite vanishing point which according to environment (corridor) is
normally near to the center of the image plane.

Infinite vanishing point

The procedure used to detect two infinite vps is similar to that of finite vp except that
the aim is to identify the vanishing line direction instead of its intersection. For this, a
line segment is selected randomly from the remaining dominant lines of the set Lv or Lh.
Then, its direction is computed using the consensus score given by eq. (4.2) and eq. (4.4).

Υ(v, li) =

 1 Min( ̂(−→v ,−→li ), ̂(−→li ,−→v )) < ι

0 otherwise
(4.4)

where ̂(−→v ,−→li ) is the angle between the infinite vp direction from the image center, and the
line li is used to test in image space. In this case, the consensus uses an angular distance
between the direction of the candidate straight line and the direction representing the
infinite vp eq. (4.4). The threshold ι is given in degrees.

At the end of the process one finite vanishing point and two infinite vanishing points
are identified, which are the vertical vp and the two horizontal vps. Fig. 4.7 represents the
vanishing point which is the intersection of the set of Ld, and the vertical and horizontal
lines direction of infinite vanishing points are represented with the lines in red and blue
respectively.

4.2.3 Rotation matrix estimation using vanishing points

Even though intrinsic and extrinsic camera parameters can be extracted using an algo-
rithm based on vanishing points, in this work the intrinsic parameters are considered to
be known. Then, the task is focused on computing extrinsic parameters.

Camera rotation matrix, which describes the orientation of the camera with respect to
the new world coordinate system, transforms points from real world to the image plane.
Its columns are vectors of the world reference frame N[~en1 , ~en2 , ~en3 ] expressed in the camera
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Finite vpImage center

Figure 4.7 – Representation of vp and main point; Vanishing point is acquired using
RANSAC; image center is given by the intrinsic parameters.

reference frame C. In other words, world reference frame is rotated to make it parallel
to the camera reference frame, as it was presented in section 3.6. The three directions
of vanishing points, having as origin the optical center of the camera, are assumed to be
orthogonal. Thus without loss of generality, the following relations have to be satisfied for
the final calibration.

f > 0 (4.5a)
~en1 · ~en2 = ~en2 · ~en3 = ~en3 · ~en1 = 0 (4.5b)

‖~en1‖ = ‖~en2‖ = ‖~en3‖ (4.5c)

where f is the focal length. Fig. 4.8 depicts an ideal case where horizontal, vertical,
diagonal lines and the finite vp can be extracted in a corridor.

The obtained lines from the image corridor provide enough information to estimate the
extrinsic parameters where rotation of world reference frame N w.r.t. camera reference
frame C can be extracted, see section 3.6. That is, as the camera is supposed to be in an
horizontal position and pointed to the end of the corridor, orthogonal directions of the
environment can be extracted. This rotation is given as the rotation to world (perspective
of the real world-image plane) with respect to the camera CRN.

A finite vanishing point, two infinite vanishing points

Normally, the corridor environment is defined by one finite vanishing point and two infinite
vanishing points. This case occurs when two axes of the world frame are parallel to
the image plane. Fig. 4.8 introduces the terms involved for the camera calibration using
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one finite vanishing point −→0vp = [vpx, vpy,−f ]T and two infinite vanishing points with
directions ~I1 = [I1x , I1y , 0]T and ~I2 = [I2x , I2y , 0]T . 0 represents the origin of camera
reference frame C.

f

N yc

xc

zc ~en1

vp

~I1

~I2

c

~en3

~en2
~en1 ~en2

~en3 C0

Figure 4.8 – Camera calibration with one finite and two infinite vanishing points. [xc, yc, zc]
is the camera coordinate frame. vp is the finite vanishing point. ~I1 and ~I2 represent the
infinite vanishing point directions. c depicts the main point of the image, and [~en1 , ~en2 , ~en3 ]
represents the rotation of the world with respect to camera.

The vector en3 defines a non-normalized form of ~en3 , and is computed from the finite
vanishing point as

en3 = [en3x , e
n
3y , e

n
3z ]

T = −→0vp = [vpx, vpy,−f ]T (4.6)

Horizontal direction
The coordinate axis ~en1 , as indicated in Fig. 4.9, lies on the plane defined by the vector

−→0c and the direction ~I1 = [I1x , I1y , 0]T . Then en1 , the non-normalized version of ~en1 , can
be expressed as en1 = [I1x , I1y , e

n
1z ]T . The goal is that ~en1 and ~en3 belong to an orthogonal

coordinate frame, hence

en1 · en3 = I1xe
n
3x + I1ye

n
3y + en1ze

n
3z = 0 (4.7)

therefore
en1z =

I1xe
n
3x + I1ye

n
3y

f
(4.8)
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Figure 4.9 – ~en1 estimation from the infinite vanishing points.

Vertical direction
Similar procedures can be used for en2 = [I2x , I2y , e

n
2z ]T (see Fig. 4.10), thus

en2z =
I2xe

n
3x + I2ye

n
3y

f
(4.9)

Typically the vertical lines are plenty and more precise in many images, thus it retains
en2 and en3 and compute en1 using a cross product, en1 = en2 × en3 . Thus rotation of world
reference frame N w.r.t. to camera reference frame N is given by

CRN =
[
~en1 , ~en2 , ~en3

]
(4.10)

This rotation matrix, which meets the conditions from eq. (4.5a), is obtained by nor-
malizing en1 , en2 and en3 .

4.2.4 Principal line extraction

In the beginning of the chapter it was mentioned that the perspective of a corridor has
some changes depending on the camera position. These perspectives were shown in Fig. 4.2
according to the camera position in 3D space of a virtual corridor. Images present a
phenomenon on corners lines due to the perspective. Fig. 4.4 depicts this situation using
a real image of a corridor. In the images it can be seen that corners lines have a variation
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Figure 4.10 – ~en2 estimation from the infinite vanishing points.

on their angles according to the camera position in 3D space of the corridor. This variation
can be used to obtain some information to know the position under two restrictions:

• Camera head direction has to be pointed to the end of the corridor,

• The system has to be always posed close to the horizontal.

Then, four lines, representing the corners along of a corridor, can be extracted to
obtain a particular information which can be used to pose the system in the center of
a corridor. In Fig. 4.11, the camera rotation is visually represented in the image by the
thick lines which are intersected on the vp. This new virtual coordinate frame represents
the camera reference frame with respect to the world reference frame whose origin is in
the center of the corridor. This virtual frame follows the movements of the camera, and
its movements are considered to extract the edges lines. The process followed is as follows:

• Firstly, the image is partitioned in four quadrants bounded by the coordinates of vp
and the variation of rotation matrix,

• Then, as the vertical Lv, horizontal Lh and diagonal lines Ld are concentrated in
the corner of the corridor, a neighborhood of points, describing each edge line, can
be used to estimate the corner line of each quadrant, see Fig. 4.11

• Finally, edge (corners) lines are estimated using General Least Squares fitting.
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ysv

xsv0
vp

ysv

xsv

[xsvi , ysvi ]

set of points [xsvi , ysvi ]

a) b)

xs

ys

Figure 4.11 – a) Set of points to estimate a line in a coordinate system, b) set of point
(xsvi , ysvi) of the frame image plane, vanishing point vp, and vertical line ysv and horizontal
line xsv.

Since all the lines are clustered in four quadrants and centered with respect to the
vp, these data can be used like a dynamic coordinate system whose axes xsv and ysv take
direction of the infinite vertical line and the infinite horizontal line, see Fig. 4.11.

General least squared GLS: principal line estimation

The neighborhood of points describing the edges of the corridor has been used to extract
four lines. These lines have to be estimated during each frame in order to obtain a dynamic
position. That means, the algorithm is turned according to the frame rate. To accomplish
this task, the general least squared algorithm has been applied. The process to make it is
as following:

• Firstly, given the information proportioned by EDlines algorithm, points from di-
agonal, vertical, and horizontal lines are taken as main work data. These points are
given w.r.t. the coordinates of the image plane [xs, ys].

• Then, a transformation is made to center these data taking as origin the finite
vanishing point vp.

xsvi = xsi − vpxm (4.11)
ysvi = ysi − vpym (4.12)

where [xsi , ysi ] represent coordinates of initial and final point from each set of lines,

74



4.2. Pose estimation algorithm

and i describes the numbers of lines taken from each frame. [vpxm , vpym ] are the
coordinates of the vanishing point. The frame number is represented by m.

• Now having a set of points [xsvi , ysvi ], which are represented as circles in Fig. 4.11,
the GLS is applied to obtain the principal line. Thus, the covariance matrix is given
by

Cm =
 ∑i x̂

2
i

∑
i x̂iŷi∑

i x̂iŷi
∑
i ŷ

2
i

 (4.13)

where x̂i and ŷi are given by

x̂i = xsvi − x̄ (4.14)
ŷi = ysvi − ȳ (4.15)

and x̄ and ȳ represent the arithmetic mean, of xsvi and ysvi respectively.

• Finally the principal line is estimated computing the eigenvalues (am, bm) from the
covariance matrix Cm, and the principal line of each quadrant LQk is given by

yLQk = − bm
am

xLQk (4.16)

where xLQk takes the values of xsv depending of each quadrant (k = 1, 2, 3, 4).
Fig. 4.12 shows the principal line estimated from the neigboorhood of points of the
quadrant 1.

ysv

xsv0

ysvi

xsvi

Principal line

a) b)

LQ1line fitting

vp

Figure 4.12 – a) Fitting line using total least squares, b) Principal line LQ1 using data of
the image plane.
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Weighted total least squares

The above least squares formulation assumes that all feature points are matched with the
same accuracy. However, the images contain plenty of undesired data resulting in a noisy
estimation. Thus, if a scalar variance estimate σ2

i is associated with each correspondence,
a weighted least squares problem can be minimized instead,

EWLS =
∑
i

‖ri‖2 (4.17)

The covariance matrix can be rewritten as

Cm ≡

 ωm∑i x̂
2
i ωm

∑
i x̂iŷi

ωm
∑
i x̂iŷi ωi

∑
i ŷ

2
i


This matrix is used for computing the eigenvalues and later the normal of each line. The

previous strategy is done for each frame; however, to initialize the algorithm a line with
45 deg of inclination in each quadrant is considered for implementation. For estimating
the new line, the previous line is taken into account, with this, ωm can be defined,

ωm = e
−0.5µ2

σ2

where σ defines the variance parameter and,

µ = arctan xsviam−1 + ysvibm−1

xsviam−1 − ysvibm−1

with am−1, bm−1 represents initial line hypothesis. ωm also represents the weight that
supplies the response variance to a constant value.

4.2.5 Position camera estimation using principal lines

Taking into account the definition of collinearity, which is known as a set of points having
the property that they are lying on a single line, lines obtained in previous section can
give us certain useful information to know the position of a camera. It should be noted
that lines are extracted in a particular environment (corridor). Thus, this situation can be
observed in Fig. 4.2 where lines describing a corridor are changing its slope according to
the camera perspective or camera position in 3D space. This phenomenon happens when
camera head direction is pointed toward the end of the corridor. In Fig. 4.4 edges lines
( LQ1 , LQ2 , LQ3 , LQ3) can be observed which are intersecting on the vp. Using opposite
edges lines, that is (LQ1 , LQ3) and (LQ2 , LQ4), a collinearity can be computed between
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these mentioned lines, and it can be expressed as

CP1,3 = LQ1 ∧ LQ3 (4.18)
CP2,4 = LQ2 ∧ LQ4 , (4.19)

CP1,3 and CP1,3 represent the collinearity between edges lines. ∧ represents the cross
product. LQ1 , LQ2 , LQ3 , LQ4 are the vectors describing each line assuming that its third
element is equal to zero.

The result obtained by equations 4.18 and 4.19 are two vectors where the first and
second element is approximately equal to zero. The third element is normally different
to zero when collinearity is not present. This result gives certain data which can render
us a relation to the camera movements with respect to the image plane of a corridor.
To accomplish this, we use the function sign to extract the sign of the third element of
CP1,3 and CP1,3. Then, we normalize the vectors CP1,3 and CP1,3. Finally the proposed
relations are given by

yr = sign(CP1,3(3))||CP1,3|| − sign(CP2,4(3))||CP2,4|| (4.20)
zr = sign(CP1,3(3))||CP1,3||+ sign(CP2,4(3))||CP2,4|| (4.21)

where yr and zr are the data which can be seen as the positions with respect to center
of the corridor. A numerical validation is presented in the next section. sign(−) is sign
function, and || − || represents the norm.

4.2.6 Numerical validation

The previous algorithm for pose estimation was firstly tested off-line. For corroborating
equations (4.18) and (4.19) a sequence of images of a real corridor were taken with specified
movements. These motions are shown in Fig. 4.13 and Fig. 4.14.

1) 2) 3) 4) 5)

Figure 4.13 – Pictures with a camera in the middle of a corridor with up and down
movements. In this sequence: Starting from left side 1) stay at the middle, 2) move up,
3) returns to the middle, 4) move down and 5) returns to the middle.
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1) 2) 3) 4) 5)

Figure 4.14 – Pictures with a camera in the middle of a corridor with left and right
movements. In this sequence: 1) stay at the middle, 2) move right, 3) returns to the
middle, 4) move left and 5) returns to the middle.

The experiment was about puting the camera in the middle of the corridor and moves
it firstly up and down (Fig. 4.13) and after right and left (Fig. 4.14). These movements
can be represented via edges lines in the image and observed graphically in Fig. 4.15a and
Fig. 4.16a. On one hand, notice for example from Fig. 4.15a that both cross products have
the same behavior and if the camera is moved up the lines representing LQ1 ∧ LQ3 and
LQ4∧LQ2 increase and when the camera is moved down they decrease, thus demonstrating
the desired behaviour. On the other hand, when the camera is moved right and left,
then the cross product between LQ1 ∧ LQ3 and LQ4 ∧ LQ2 are different (see Fig. 4.16a),
nevertheless this information gives necessary data to estimate the yr position, as it can be
seen in Fig. 4.16b. In this figure it is observed that when the camera is moved right the
yr estimation is negative and if it is moved left, then a yr positive response is obtained.
In addition, it can be noted that zr estimation remains quasi-constant. Similarly for
Fig. 4.15b where with the up and down camera’s movements the zr state is estimated, it
is also observed that yr estimation is also quasi-constant.

In other words, when the camera is positioned in the center of a corridor, and is also
pointed to end of it, the collinearity between opposite edges lines is zero. If the camera is
in a different position, the result of collinearity between opposite edges lines is different
to zero. So, these values can be employed to obtain certain data which can be used as
input error data to close the loop of position control.

Fig. 4.17 and Fig. 4.18 show several images taking from a corridor using a smartphone
camera, and also depict the results after that the proposed vision algorithm was applied.
All the images on the left side are the images extracted by a smartphone camera without
any processing. Detected lines from the environment geometry and the finite vanishing
point are depicted in the middle images. And finally edge lines are shown in each image
on the left.

The algorithm was applied in several corridors to see the behavior of the proposed
method. For instance, it can be seen that Fig. 4.17b and Fig. 4.18c show a corridor
smaller than the rest of figures. The presence of columns or rooms along the corridor are
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depicted in Fig. 4.17a and Fig. 4.17c. Moreover, a low illumination through the corridor
is shown in Fig. 4.17d and Fig. 4.18a. Furthermore Fig. 4.17e, Fig. 4.18b, and Fig. 4.18d
are obtained from a corridor with a large size having a natural illumination. In spite of
these different scenarios, the behavior of the algorithm has been effective to obtain edges
lines from different corridors.

Rotation

Even though the rotation matrix is estimated by the vision algorithm, this information is
only used to feedback the attitude control in the head-direction. And once the direction
is always controlled, position algorithm can be accomplished. Thus, a test was realized to
probe our proposed algorithm. However, some constraints have to be into account in order
to achieve the experiment. Then, since the data obtained into the corridor by a camera
can not be compared directly by real data (particularly a motion capture system), an
scenario was proposed at firsts in order to compare the real data with the estimated data
(rotation matrix).

The scenario was the following: Firstly, the idea was to project an image on the wall.
This image was taken manually using a camera from an smartphone in the middle of a
corridor. Then, once the fixed image was projected on the screen of the camera, whose
movement was produced by hand, was used to acquire the image projected on the screen.
The data obtained by the camera was used to simulate the effect produced by the per-
spective as if the camera was capturing a real image from a corridor. At the same time,
the camera movements were monitored by the Vicon system. The rotation matrix was es-
timated using the equations given in section 4.2.3. Fig. 4.19 depicts the sequence images
from this test.

Fig. 4.20 shows the experimental test. Each data is labeled as moca data or camera
data. The movement in yaw angle ψ can be observed in Fig. 4.20a, where it can be seen
a variation of -20 to 20 degrees at time 16s and 23s. The ψcamera signal follows accurately
the ψMoca signal. Fig. 4.20b depicts the variation of roll angle. In time 23s, there is a
movement induced by the movement in yaw angle, and in time 40s to 55s there is a direct
motion in roll angle. Finally, the pitch data for both systems are represented in Fig. 4.20c.
At time 35s-38s is observed that θcamera not follows the signal of θMoca. This problem was
a result of a lost of the projected image. That is vision algorithm was not capable to
estimate the variation in this angle. However the last value of the angle was kept until a
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Figure 4.15 – (a) Cross product between principal lines of a corridor, (b) relative position
between the cross product and the principal lines.

new value was estimated as can be observed at time 38s. The algorithm is only capable to
estimate angles between ±10deg in roll and pitch, and ±30deg in yaw angle. It should be
mentioned that this approach was thought to obtain the data of head direction in order
to control it, which is the principal constraints to overcome the position algorithm.

4.3 Encountered problems

The camera pose algorithm was designed under certain restrictions. For example, the
quadrotor counts with a low payload. The designed system was developed taking into
consideration this problem, therefore the on-board camera is light and energy efficient.
Meaning the image resolution is low (240x320 pixels), and sometimes it has a noisy re-
ception. In addition, as the camera has only 30 fps, the pose algorithm has to be designed
taking into account: the camera frames, computational time of the vision system, and
the dynamic control of the system (quadrotor). In this section, some problems and some
restrictions will be discussed.
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Figure 4.16 – (a) Cross product between principal lines of a corridor, (b) relative position
between the cross product and the principal lines.

4.3.1 Camera motion

Nowadays, there are multiple cameras in the market that give us a professional image.
The image quality is normally in HD and in some cases 4K, the video capture can reach
up to 120 fps. However, the camera used in this work has a smaller dimensions than HD,
and the frame frequency is 30 fps. There is a great difference between both cameras, yet
a small camera was chosen in order to make an algorithm simple and fast. However, the
image obtained by the small camera does not have sufficient quality, and sometimes the
image obtained is blurred and noisy. Additionally, the camera motion is re-stringed by
the rate frames. Then, if the velocity of the system is faster than the camera frames, the
obtained images are blurred and sometimes also noisy, see Fig. 4.21a. These noisy images
can affect the estimated data giving unwanted data in the vanishing point estimation and
mainly poor principal lines, see Fig. 4.21b.
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(a)

(b)

(c)

(d)

(e)

Figure 4.17 – Proposed algorithm applied to differents corridors
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(a)

(b)

(c)

(d)

Figure 4.18 – Proposed algorithm applied to differents corridors (continuation).
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Figure 4.19 – A image, which was taken by a smartphone, was projected on wall using a
commercial projector, then a video was taken by a smartphone whose some movements
were made on yaw ψ, pitch θ and roll φ angles.

4.3.2 Video stream

The obtained images can serve to take the streaming video which can give details about the
environment. The image processing is desired to be made on-board; however, that requires
a high computational cost. Thus, the proposed configuration is based in a commercial
drone with an inexpensive camera, and the stream video is acquired via wireless using a
FPV monitoring system 5.6 GHz. This information can be displayed directly in a monitor,
in a FPV headset, or even data can be recovered on a PC using an interface video-to-USB
giving the task to compute the pose algorithm in the ground station.

4.4 Summary

An algorithm to estimate the pose camera was described in this chapter which is based on
camera calibration using vanishing points, and the collinearity of the edges lines described
by a corridor. The camera calibration was obtained extracting one finite vanishing point
and two infinite vanishing points where the camera is supposed to be always pointed
to the end of the corridor. The relative position is obtained computing the collinearity
of opposite edges lines. One can conclude that when the camera is not in the center
of the corridor, the collinearity is different to zero. This value is used to obtain certain
position with respect to the environment. At the end of chapter, some numerical tests
were presented to see the behavior of the proposed solution.
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(a)

(b)

(c)

Figure 4.20 – Variation and comparison, moca vs camera, of angles: (a) yaw, (c)roll, and
(c) pitch.
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(a) (b)

Figure 4.21 – (a) Image has been taken by on-board camera when the drone was perform-
ing a sudden motion, (b) Lines were extracted during this motion, thus the estimated
principal lines has been obtained with a fail due this sudden movement.
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Attitude and Position control

Merging visual information and control techniques, generate restrictions in control laws.
Some kinds of restrictions like delays, noise and non-stability produces some errors in a
feedback control. In Chapter 3 we described the quadrotor model which is composed of
two dynamics model: attitude model and position model. Attitude control depends only
of attitude dynamics model, but position control relies on attitude and position dynamics
model. In this work we propose to use a visual system that add partial information to close
the position control loop in position and attitude control for quadrotor head direction.

Vision system can be used to estimate certain position to close the loop of position
control. Thus, the data obtained by the vision system presented in Chapter 4 can be used
to control partially the position of the system. Moreover, head direction of the quadrotor
system is controlled using the estimated data for the algorithm of camera calibration.

In this chapter we present a bounded attitude control 5.2. Then position control is
explained in section 5.4. In section 5.5 is depicted some configurations proposed during
the development of this work.

5.1 System description

The general control scheme of a quadrotor is shown in Fig. 5.1, where an internal loop and
an external loop control can be observed. The internal loop comprises only the attitude
control. The external loop control includes position and attitude controllers considering
that the position control always depends of the attitude control. The mini quadrotor block
has two outputs q and ~η which are respectively orientation and angular rates. ~ϕ and ~r
represent the position system and the linear velocity. The attitude control block has seven
inputs states (q, ~η) and desired angles [φd, θd, ψd]T , and three outputs [Γφ, Γθ, Γψ]T being
the torques computed by the attitude control. The position control yields the desired an-
gles [φd, θd, ψd]T and total thrust Fu which are computed using the position states ~ξ, signal

87



Chapter 5 – Attitude and Position control

control ~r and rotation matrix NRC. Finally, the block titled as vision system represents
the vision algorithm. The vector ϕ is partially estimated by the vision algorithm (yr, zr),
and NRC also estimated by vision system is employed to control the head-direction.

MiniΓφ

Γθ

Γψ quadrotor

Vision system

q, ~η

θd
ψd

Fu

φd

~ξ, ~r,N RC

Position

control

Atittude

control

Figure 5.1 – Control scheme: the internal control loop controls the attitude while external
control loop stabilizes the position.

5.2 Bounded control

In general, the proposed approach for the stabilization of the aerial vehicle consists on the
development of a control law with bounded inputs. Since large amplitude disturbances can
modify the system actuators into saturation threshold, the usage of this kind of algorithms
becomes a good option for control design. As was shown, among others, in Bernstein and
Michel [1995] many works were presented giving a good perspective of the control of
systems with bounded inputs.

The works considering this kind of approach are mainly focused on the stabilization
of linear systems, known as chains of integrators. Normally, these systems are represented
by the form:

ẋ = Ax+Bu (5.1)

where the state vector x is a column vector of length n, the input vector u is a column
vector of length m, A ∈ Rn×n depicts a square matrix with constant coefficients, and
B ∈ Rn depicts a matrix with weight coefficients over inputs.
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The control amplitude is limited by physical constraints in the system; in this case the
physical constraints over the actuators:

−ū ≤ u ≤ ū (5.2)

where ū is a positive number representing the threshold of work for the control law, −ū
is negative saturation and u is positive saturation.

In literature, some approaches have been proposed. Some of them are: Optimal control,
Pseudo-optimal control based on Ricatti equation, and the most popular for simplicity and
regularity properties is non-linear control. This field of research has been initially proposed
by Teel [1992]. Then, this result was generalized in Sussmann et al. [1994]. However, in
these works, system performance in closed loop is affected in increasing dimensions. All of
the aforesaid approaches of these techniques showed the interest on systems stabilization
by bounded inputs in automatic control community. Nowadays, these strategies are highly
implemented due to its simplicity and high performance.

5.3 Bounded attitude control

Considering the attitude dynamics of quadrotor ΣR (5.3) and assuming that the angular
positions are known, the attitude scheme control is depicted in Fig. 5.2. Then, the inter-
nal control can be computed with quaternion and angular velocities (q, ~η). The desired
angles [φd, θd, ψd]T and total thrust Fu are computed by the position control law, where
[φd, θd, ψd]T are given by theirs equivalent in quaternions qd.

ΣR :


q̇ = 1

2Ξ(q)~η

J~̇η = −[~η×]J~η + Γ
(5.3)

5.3.1 Problem statement

The goal is to design a control law which drives the quadrotor to attitude stabilization.
In other words, let qd denoting the constant quadrotor stabilization orientation then

q → qd, ~η → [0, 0, 0]T as t→∞ (5.4)

The quaternion error that represents the attitude error between the current orienta-
tion. To drive the quadrotor to attitude stabilization, qd = [±1 0 0 0]T , the quaternion
error coincides with the current attitude quaternion, that is, qe = q. The control objective
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MiniΓφ

Γθ

Γψ
quadrotor

q, ~η

[φd, θd, ψd]T
Atittude

control

Fu

Figure 5.2 – Attitude control scheme.

is then
q → [±1 0 0 0]T , ~η → [0, 0, 0]T as t→∞ (5.5)

Furthermore, it is known that the actuator saturation reduces the benefits of the feed-
back. When the controller continuously outputs infeasible control signals that saturates
the actuators, system instability may follow. Then, besides the asymptotic stability, the
control law also takes into account the physical constraints of the control system, in order
to apply only feasible control signals to the actuators.

5.3.2 Attitude control

We will start with a definition to specify the type of control law obtained,

Theorem 5.3.1 (Guerrero-Castellanos et al. [2011b]) Consider the rigid body rota-
tional dynamics described by (5.3) with the following bounded control inputs Γ = [Γφ, Γθ, Γψ]T =
[Γ1, Γ2, Γ3]T , whose subscript is changed to express the following equations, defined by:

Γi = −σΓi

k~ηi
ρi

+ sign(q0)k~qi

 (5.6)

Γ i with i ∈ 1, 2, 3 represents the physical bound on the i-th torque Γi. q0 represents
the scalar part of the quaternion and ~qi indicates the vector quaternion. ~ηi specifies the
angular velocity. k marks a real parameter such that 0 < k ≤ miniΓ i/2. ρi is a strictly
positive real parameter. Then the inputs (5.6) asymptotically stabilize the rigid body to
the origin [1 0T3×10T3×1]T (i.e. q0 = 1, qv = [0, 0, 0]T and ~η = [0, 0, 0]T ) with a domain of
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attraction equal to S3 × R3 \ [1 0T3×10T3×1]T . In the case where the asymptotic condition
q ⇒ qd with qd = [1, 0, 0, 0]T is considered, the control law to be applied becomes

Γi = −σΓi

k~ηi
ρi

+ sign(qe0)k ~qei

 (5.7)

where qe represents the attitude error between the current orientation and the desired
one.The proof of stability is detailed in Guerrero-Castellanos et al. [2011b].

5.4 Position control

The position control design takes into consideration the dynamic position of ΣT (5.8).
The scheme control is depicted in Fig. 5.3. The position controller computes the angular
position [φd, θd, ψd]T and the total thrust Fu according to the inputs references [xd, yd, zd]T .

ΣT :=
 ~̇ξ = ~r

m~̇r = −mg~ξ3 +RFu~ξ3
(5.8)

θd

ψd

Fu

φd~ξd

Position

control
System

linear velocity ~r

Position ~ξ

Figure 5.3 – Position control scheme.
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5.4.1 Problem statement

The objective is to design a control law with the inner-outer loop configuration, which sta-
bilizes the quadrotor to a desired position, from attitude stabilization problem solved. In
other words, once the control law has stabilized the attitude of the system, limt→∞[qT , ~ηT ]T =
[qTd ,~0T3×1]T , quadrotor desire position can be reached limt→∞[~ξT , ~rT ] = [~ξTd ,~0T3×1]T .

5.4.2 Design of position control

The dynamics of the whole system is obtained with the Newton-Euler formalism and
the kinematics is represented using the quaternions formalism. This system can be seen
as a cascade system, where the translational dynamics depends on the attitude, but the
attitude dynamics does not depend on the translational one. Now, assume that using the
control law (5.6) one can stabilize the yaw dynamics, that is ψ = 0, which is given by
the head-direction obtained by vision system according to our configuration . Then after
a sufficiently long time, system (5.8) becomes as follow


ẋn

ẏn

żn

 =


rx

ry

rz

 , (5.9)


ṙx

ṙy

ṙz

 =


−Fu

m
sinθ

Fu
m
sinφ cosθ

Fu
m
cosφ cosθ − g

 , (5.10)

With an appropriate choice of these targets configurations, it will be possible to transform
(5.9) and (5.10) into three independents triple linear integrators. For this, take us

φd := arctan
(

ς2
ς3 + g

)
,

θd := arcsin
 −ς1√

ς2
1 + ς2

2 + (ς3 + g)2

 (5.11)

Fu = m
√
ς2
1 + ς2

2 + (ς3 + g)2 (5.12)

where % = [
∫
xn, xn, rx,

∫
yn, yn, ry,

∫
zn, zn, rz]T = [%1, %2, %3, %4, %5, %6, %7, %8, %9]T , then

(5.9)-(5.10) becomes:

Σx :


%̇1 = %2

%̇2 = %3

%̇3 = ς1

(5.13)
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Σy :


%̇4 = %5

%̇5 = %6

%̇6 = ς2

(5.14)

Σz :


%̇7 = %8

%̇8 = %9

%̇9 = ς3

(5.15)

Since the chains of integrators given in (5.13)-(5.15) have the same form, a control
law has been proposed in Cruz-José et al. [2012], and has been established by the next
theorem:

Theorem 5.4.1 (Cruz-José et al.) Consider the quadrotor translational dynamics ex-
pressed in (5.9-5.10). Then, the thrust input Fu with ς1, ς2, ς3 as in (5.16), where σM1(·)
is defined in (??) with M1 = 1 and ςi are given by (5.17), a(1,2,3), b(1,2,3), c(1,2,3) > 0 tuning
parameters such that (a, b, c)1 > (a, b, c)2 + (a, b, c)3, (a, b, c)2 > (a, b, c)3, stabilizes glob-
ally and asymptotically the quadrotor translational dynamics at the origin. Furthermore,
if none of the σM1 are saturated, the poles of the linearized closed-loop for the subsystems
(5.13)-(5.15) reside at −(a, b, c)1,−(a, b, c)2,−(a, b, c)3, respectively.

ς1 := −ϑ1{a3σM1 [ 1
ϑ1

(a2%1 + %2 + %3)] + a2σM1 [ 1
ϑ1

(a1%2 + %3)] + a1σM1 [ 1
ϑ1

(%3)]}

ς2 := −ϑ2{b3σM1 [ 1
ϑ2

(b2%4 + %5 + %6)] + b2σM1 [ 1
ϑ2

(b1%5 + %6)] + b1σM1 [ 1
ϑ2

(%6)]}

ς3 := −ϑ3{c3σM1 [ 1
ϑ3

(c2%7 + %8 + %9)] + c2σM1 [ 1
ϑ3

(c1%8 + %9)] + c1σM1 [ 1
ϑ3

(%9)]}

(5.16)

ϑ1 = ς̄1/(a1 + a2 + a3),
ϑ2 = ς̄2/(b1 + b2 + b3),
ϑ3 = ς̄3/(c1 + c2 + c3)

(5.17)

Then, the control laws in (5.16) exponentially stabilize the systems (5.9)-(5.10) to the
desired position (%1, %2) = (%dx, 0), (%3, %4) = (%dy, 0) and (%5, %6) = (%dz, 0).

Remark 5.4.2 In the above theorem, the stabilization goal is the origin. In the case
where the asymptotic condition is different from the origin, the variables %2, %5, %8 should
be replaced in the control law (5.16) by e1 = %2−%dx, e2 = %5−%dy, e3 = %8−%dz, respectively.
In this case %dx, %dy, %dz represent the desired position in the space.
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Vision algorithm gives the relative position from y-axis and z-axis, called yr and zr in
section 4.2.5, and the position over x-axis is controlled using measures from the motion
capture system, or the desired values for xd could be given by a pilot.

5.5 System navigation configuration

Overview of the system is depicted in Fig. 5.4-5.6, where three configurations can be
observed: the complete simulation, the quasi-virtual system and the real video scheme.
All configurations have a function switch which is used to commute the real data and the
estimated data.

Fig. 5.4 shows the simulation strategy. The scheme is separated in two parts: internal
control loop and external control loop. The internal control loop takes into account the
system model (quadrotor), the attitude control, and the external control loop includes
the position control and the computer vision. The operation is as follows:

• The system model yields the states of the system: position vector ~ϕ, linear velocity
vector ~r, rotation matrix R and angular rate ~η.

• These data are the inputs to the Babylon 3D system Catuhe and Rousset [2016],
which is a 3D engine based on webGL and Javascript, and at the same time this
information is applied to the function switch to obtain the inputs errors.

• The 3D engines come up with the image video serving as input to the image pro-
cessing.

• The vision algorithm estimates position in y and z axes and the rotation matrix R.

• Function switch performs a selection in both model real data and estimated data and
computes the vector error ~e = ~ϕref − ~ϕr taking into account the reference position
vector ~ϕref , and the real position vector ~ϕr.

• From ~e, position control ς1,2,3 is calculated. Finally a conversion between the position
control to the desired angles (φd, θd, ψd) and the thrust Fu is accomplished .

5.5.1 Simulation setup

Even though the performance of this configuration is good, this approach is a complete
simulation without any external disturbance. Then, a quasi-virtual system is proposed
in Fig. 5.5, which is the combination between a real system and virtual image. In this
scheme, a real system (mini quadrotor) and a virtual image created by Babylon 3D are
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control

Internal control loopExternal control loop

Babylon 3DImage
Processing

model-vision system
Function switch

Position

control

Control
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& thrust
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Virtual
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~e
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φd, θd, Γ1,2,3

~ϕref

ψd

Mini

quadrotor

~ϕ,~r

Figure 5.4 – Quadrotor system navigation strategy: Simulation scheme.

used. The running is similar to the first configuration, and the results are presented in
the next chapter.

Fig. 5.6 depicts a configuration using a system where the image video is acquired in
real time. The video is obtained using the embedded camera over the quadrotor where
the streaming video is used as input to run the block of vision system.
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Figure 5.6 – Quadrotor system stabilization strategy: Real video scheme.

5.6 Simulation tests

Simulation tests were carried out for validating the vision algorithm presented in Chapter
3. In order to simplify the simulation tests, the x coordinate and the pitch movement
θ are fixed for limitations in the workspace. Therefore, the quadrotor will move as a
PVTOL aircraft evolving in the z−y plane, and the ψ angle will take the vanishing point
direction (head-direction) having a value near to zero. However, the x-axis is stabilized
using measurements coming from Vicon system with this data input quadrotor evolves
in hover state in the middle of virtual corridor at Vicon position x = 0m, y = 0m and
z = 0.9m.

From this validation steps are the following: 1) quadrotor is placed at different positions
in the y and z coordinates at different times, using states from model system (simulator)
or using Vicon measurements called in this work: quasi-virtual system, more details in
next Chapter 6. 2) measurements coming from simulator or quasi-virtual system (only for
y and z) are switched with related position (yr, zr) calculated with our proposed vision
algorithm. Our goal is to keep the vehicle in the middle of the corridor, for that control
laws are computed using the (yr, zr) measurements in order to place our quadrotor system
in a desired position.

5.6.1 Analysis results

This test is carried out using two sessions of Matlab. The first one is used to run the
complete simulation of the vehicle model, orientation and position control. The other one
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Table 5.1 – Position to simulation tests

Position 1 2 3 4 5 6 7 8
Time (s) 0 17 53 80 120 180 170 190
y 1.0 0 -1.0 0 1.0 0 -1.0 0.0
z 0.5 0.95 1.3 0.95 1.3 0.95 0.5 0.95

a)

b)

c)

Figure 5.8 – Images (a), (b) and (c) represent respectively positions 4 , 3 and 7 of table
5.1.

runs the engine BabylonJs and the vision system. The communication between these two
sessions was done via UDP (User Datagram Protocol). The acquisition of the image video
is at 200 hertz and the vision algorithm runs at 22 hertz.

Fig. 5.7 shows the numerical behavior of the system applying the sequence from the
Table 5.1. Firstly, Fig. 5.7e displays the flag which indicates changes of the different
positions. Here, values indicates the moment when the estimated states are used 1 means
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real states from simulator and 0 means estimated states from vision system. Fig. 5.7a
depicts the cross product of the main lines according to the equations (4.18) and (4.19),
and it can be seen the behavior of this product with respect to collinearity between lines.
Besides, if lines are collinear cross product is equal to zero (that can be seen in positions
2, 4, 6 and 8 in Table 5.1).

The real position from the model system is represented in Fig. 5.7c. The variation of
y and z positions are given according to Table 5.1, notice that x position always remains
constant. The variations of estimated position over y and z axes are shown in Fig. 5.7b
whose values are obtained using the data of the Fig. 5.7a and equations (4.20)-(4.21). The
behavior over y-axis is similar in both figures Fig. 5.7b and Fig. 5.7c. However, the z real
position from Fig. 5.7c is quite different from the estimated position in z-axis Fig. 5.7b due
to the change of the origin from camera system. Although the data plotted in Fig. 5.7c are
given in meters, the metric unit in Fig. 5.7b is not similar; though, this information is used
as the position error to the origin defined by the vision algorithm. Finally, in Fig. 5.7d
the error evolution is shown, where it can be seen the moment when the estimated values
are switched.

Fig. 5.8 depicts some images of the sequence video. Fig. 5.8c shows the position 7 of
Table 5.1 which represents the initial condition of the virtual quadrotor system. Position
control is applied to converge to the center of the corridor, Fig. 5.8a. The same case can
be seen in Fig. 5.8b. It can be seen clearly that vanishing point is moved according to
the orientation and camera position. Moreover, the tilt variation in lines, which converge
to the vp, are used to extract certain position of the camera. This information is used
to feedback the position control and centering the virtual quadrotor to the center of the
virtual corridor.

5.7 Summary

In this chapter, a bounded attitude and position controllers were detailed to be imple-
mented in our quadrotor platform. Then, a bounded position control was presented. Since
vision system is only able to estimate position over (yr, zr) axes, position control was
applied to yn, zn axes in real world. xn-axis could be commanded either closing the loop
control from data obtained by Vicon system or by a remote control with a pilot.

Three configurations for the complete system were proposed. The first one is a total
simulation, the second one is a combination of virtual image (Babylon 3D) and a real
quadrotor, quasi-virtual system, and the third one is a scheme using a real video and
a real quadrotor. Finally, results obtained from simulation were shown to validate the
proposed algorithm.
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Chapter 6
Platform and experimental

validation

In this chapter we present the experimental set up, including the MOCA room at GIPSA-
lab, ground station, position estimation system and aerial platforms developed during my
thesis, as well as to introduce the experimental results and subsequently, theirs analysis.

First, to implement the position control law, the position of the system must be known,
for this, the MOCA room and vision system were used. The first one is composed of
12 cameras and a ground station, which allows the implementation of the algorithms
through MATLAB/Simulink and sends them to the system through radio signals. More
details about this system are provided in this chapter. The second one is the vision system
proposed in this work, composed of a single on-board camera into the quadrotor vehicle,
and a PC receiving the streaming video to estimate the position with respect to the
geometry of a corridor.

During my thesis, different platforms were developed and used to validate our proposed
algorithm. First, a Flexbot micro quadrotor was used to test the attitude and position con-
trol laws. The general performance of this model was suitable; however, when the camera
system was added to test the vision algorithm, the platform was not able to take off due
to non powerful motors. Thus, a bigger platform was designed. The second platform was
the Flexbot micro-hexacopter. The technical specifications of on-board flight controller
and motors were similar to the first one, but this model also offered two extra actuators
and a bigger battery. With this prototype, new experimental tests were performed, and
the behavior of system was improved. The motors used with this commercial platforms
were DC motors and its operational life is not so long, therefore, the performance of these
ones were reduced drastically with each test.

Therefore, due to aforesaid problems. Two different frames were designed and 3D
printed. The on-board flight controller was changed, with better specifications in terms of
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processor and general performance. The DC motors were changed to brush-less motors,
to increase the power and carrying capacity. Consequently, the use of speed controllers for
the motors were needed. The propellers were enlarged according to the specifications of
the motors as well as the size of the battery. The camera was added manually; however, the
video stream was noisy, and sometimes the streaming video was lost. Thus, a commercial
drone, see section 6.2.3, with an embedded camera was used in order to fix the streaming
video problems. This quadrotor system has small size brush-less motors.

All the platforms are described in the next subsections, some characteristics of each
one are given, but only the last two, will be detailed. At the end of chapter, experimental
results are presented.

6.1 Moca Room and ground station

In order to test and to compare the data obtained by the proposed algorithm with respect
to the real data acquired by the Moca system, a complete platform was developed. This
stage is integrated with a motion capture (Vicon system) and a ground station. The Vicon
system is used to obtain the real orientation and position of the system, and the ground
station is concerned with calculating the position control, and the vision system.

6.1.1 Moca Room

The motion acquisition is made through infrared cameras with emitters and receivers of
infrared light and also through reflecting markers attached to the objects or individuals
which can move inside the workspace. The MOCA room is composed of 12 VICON©
cameras (T40 series), attached to a metal structure upward and pointing their vision
towards a common area. There are also 8 digital cameras pointing to the same area,
but these ones are used for objects reconstruction or motion capture by image processing.
With this system, it is possible to compute the position and attitude up to 100Hz. Fig. 6.1
shows an image of the MOCA room and the reflecting markers.

A VICON camera is an infrared camera, which emits and receives infrared rays. A
set of cameras pointing towards a common area is able to detect a reflective marker. The
markers are little balls of retro-reflecting materials going from 0.5cm to 2cm of diameter.
The cameras emit a very special light which makes the receivers sensitive only to this one,
when a marker is placed into the area covered by the cameras, it creates a single point in
the plane of each one of the cameras (if the area is well covered). Then, the information is
collected in a computer running the VICON© tracker software. Fig. 6.2 shows an image
of the used VICON cameras and the VICON tracker environment.

102



6.1. Moca Room and ground station

(a) (b)

Figure 6.1 – (a)MOCA room and (b)reflecting markers.

(a) (b)

Figure 6.2 – (a) VICON cameras and (b) VICON tracker environment.

6.1.2 Ground station

The ground station is composed by three computers: the first one is under the real time
MATLAB/Simulink© environment. The second one is running the xPC-target tool- box,
and also interfaces with the radio-frequency emitter and Vicon system. The Vicon system
yields the states of the system, which are sent to MATLAB/Simulink through an UDP
frame every 2ms. The position control algorithm is computed and implemented in real
time at 200Hz on the xPC-Target. This PC also manages communications between the
host and target PC, as well as the different inputs/outputs of the real-time application.
The control variables are finally sent back to the system through GIPSA-lab’s built-in
bridge that converts UDP frames to DSM2 protocol. For this, the radio-frequency emitter
is used. The third PC is used to compute the proposed algorithm using as input the
streaming video acquired by the on-board camera. This video is transmitted to the PC
using a video monitors on 5.8GHz. The estimated data (position and head-direction) are
sent to the xPC-target via UDP frames. These estimated data are switched with the
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data estimated by Vicon system in accordance to the experimental test. Fig. 6.3 shows a
general overview of the computing process.

VICON©tracker

UDPframes

MATLAB/Simulink©
xPCtarget

UDPframes
DSMX©

Quadrotor

UDPframes

Video Monitor
on 5.8Ghz

USB

MATLAB/ Computer vision

VICON©cameras

Figure 6.3 – Quadrotor control system process at MOCA room.

6.2 Experimental platforms

For the development of this work, 5 experimental platforms were used: 2 FLEXBOT
prototypes, 2 home-made platforms and 1 Inductrix 200 FPV BNF.

6.2.1 Flexbot on the project

Two original flexbot prototypes and a tuned flexbot prototype were used in the past of
the project. First, the flexbot quadrotor was used to test the orientation and position
control laws, but due to its small size the vehicle was not able to fix a small camera. From
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here, it was decided to move to the Flexbot hexa-copter, which has two extra actuators
and propellers. However, batteries constraints reduced flight time were encountered.

For more information about the the FLEXBOT prototypes and the other platforms
developed, please refer to Appendix A.

6.2.2 Home-made prototype: Mosca quadrotor

This aerial system consists of a home-made quadrotor, named “ Mosca quadrotor”. Two
structures were designed and built to test our algorithms. The characteristics and param-
eters of the quadrotor are described in Table 6.1. The total weight of the quadrotor is
about 280g and its carrying capacity is about 80g. The system is depicted in Fig. 6.4.

System Description Value Units
Mass (m) 280 g
Distance (d) 10.7 cm
Battery 7.4 V
Carrying capacity 80 g

Quadrotor Inertial moment x (Jφ) 0.0056 Kg ·m2

Inertial moment y (Jθ) 0.0056 Kg ·m2

Inertial moment z (Jψ) 0.0087 Kg ·m2

Proportionality constant (b) 2615.23 N/s
Proportionality constant (k) 257.80 N/s

Table 6.1 – Characteristics and parameters of Mosca quadrotor.

Figure 6.4 – Mosca quadrotor developed at GIPSA-LAB.
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Flight controller

The attitude control law, see (5.6), for the quadrotor was programmed on the Copter
board, which features an IMU sensor (MPU6050), integrated by gyros and accelerome-
ters, the HMC5883L as 3-axis digital magnetometer, a MS5611-01BA03 high precision
altimeter and the ATMega 2560-16AU as processor. The processor consists of a high-
performance, low-power Atmel 8-bit AVR RISC-based micro-controller and it combines
256KB ISP flash memory, 8KB SRAM, 4KB EEPROM, 86 general purpose I/O lines,
32 general purpose working registers, real time counter, six flexible timer/counters with
compare modes, PPM (Pulse Position Modulation), 4 USARTs, byte oriented 2-wire serial
interface, 16-channel 10-bit A/D converter, and a JTAG interface for on-chip debugging.
The device achieves a throughput of 16 MIPS at 16 MHz and operates between 4.5-5.5
volts.

The board dimensions are of 50× 50× 11.66mm and the weight of 14.5g. The motors
are connected to the card though the speed controllers (ESC). Fig. 6.5 shows the CRIUS
flight controller board.

Figure 6.5 – CRIUS flight controller board.

Communication

In order to communicate between the ground station and the platform, a Spektrum©
AR6115e module was used. This one features a 2.4GHz 6-channel park flyer receiver with
red led indicator under the DSM2/DSMX© protocol.

Frame

Two different frames were designed and 3D printed. Both systems are shown in Fig. 6.6a
and Fig. 6.6b.
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(a) Mosca robot version 1.0.

(b) Mosca robot version 2.0 (Inverted motor).

Figure 6.6 – Prototypes developed in GIPSA-LAB 2017.

6.2.3 Commercial prototype: Inductrix 200

The Blade ©Inductrix™200 FPV quadrotor (Fig. 6.7) is a drone which has First Per-
son View (FPV) capabilities in a compact aircraft, and is easy to fly. The FPV camera
integrated into the lightweight airframe operates with a wide range of view screens and
headsets. Since the Inductrix 200 FPV drone can give the immerse experience of riding
air, this system has some advantages for the purposes of this thesis. The prototype has a
lightweight, fully assembled airframe, and a fully integrated FPV flight camera compati-
ble with FatShark headsets or video monitors at 5.8GHz. At the same time, the drone is
compatible to Full-range 5+ channel, multi-function transmitter with Spektrum 2.4GHz
DSM2/DSMX technology, and it is easy to communicate to the computer featuring the
xPC-target system. The main characteristics are listed in Table 6.2.

6.2.4 Battery effects and motor speed control

A common problem experienced with quadrotors is the time-variant thrust response due
to a drop of the battery voltage. In other words, for a same command received by the
flight controller, the resulting thrust given by the motors will depend on the battery state
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System Description Value Units
Mass (m) 185 g
Length 15.5 cm
Battery 3S 800mAh LiPo

Table 6.2 – Characteristics and parameters of Inductrix 200.

(a) (b)

Figure 6.7 – a) Inductrix™200 FPV quadrotor, b) quadrotor in flying.

of charge. This time-variant response of the quadrotor requires a high integrator gain in
the position controller which results in adding too much phase. For the Flexbot, the DC
motors are controlled directly by the flight controller card through some transistors, but
for the actual quadrotor, as power is required for the motors, Electronic Speed Controllers
drivers (ESC) are used in order to provide the necessary amount of power and to handle
the 3-phases of the motors. However, most of the ESCs do not achieve closed-loop control
of the motor speed, and are then sensitive to the voltage drop of the battery. BLHeli
is an open source project intended for replacing the official firmware of different ESCs
drivers. The main advantage is that it provides a sensor-less closed-loop control mode of
the motor speed. Therefore, the rotation speed should not be impacted by the battery’s
state of charge. Several adjustable parameters are available; however, finding the good
values for our setup is quite difficult without any objective measurement. For this reason,
a test bench for the couple motor/ESC driver has been built in order to quantify the effect
of the different tuning parameters for a PI controller.

Motor test bench setup

We desired to acquire motor speed in order to measure its response time and to validate
if the closed-loop control is able to reject a drop voltage. To measure speed motor a hall
effect sensor is used, for considered motor model, here poles are directly visible by the
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Figure 6.8 – Test bench ESC driver + motor.

sensor. An arduino Uno microcontroller has been programmed to compute the frequency
given by the hall effect sensor, this frequency is then sent to a PC periodically. The PC
sends several set-points through USB to another arduino card which generates the PPM
signal for the ESC driver, coded like 1ms pulses translate to zero throttle, 2ms pulses
coded to full throttle, Fig. 6.9 shows the input profile sent to the ESC driver, the first
part (from 0 to 9 seconds) consists on an ascending and descending ramp, the second
part (from 10 to 19 seconds) tests several step responses, the third part (from 20 to 22
seconds) consists on a high frequency reference, and during the last part, the voltage of
the power supply is dropped by 1 Volt. A Lab-view real-time software has been built to
send, receive and save the different data. Fig. 6.9 shows an overview of the motor test
bench.

Results

18 configurations of PI control parameters have been tested. Fig. 6.10 shows the measured
speed of the motor for 4 different tuning parameters. It can be seen that the response
to the ramp input is the same for all the closed-loop parameters. To determine the best
values for the proportional gain (Kp) and the integral gain (Ki), two important behaviors
are considered : the rejection of a voltage drop and the step response. Fig. 6.11 shows a
detailed zoom around two regions of interest:

• It can be seen clearly on Fig. 6.11a that a voltage drop equal to 1 Volt (near 24 s)
results in a speed drop of about 15 Hz for the open-loop control, whereas all the
closed-loop response are less impacted and tend to recover the speed drop. As the
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Figure 6.9 – Profile input for the tuning of the motor control loop.

drop was manually applied to the power supply, it is not synchronized between all
the experiments.

• Fig. 6.11b shows the response to a step input, at t = 11s the PPM signal input of
the ESC goes from 1.29 ms (29 % full speed) to 1.49 ms (49 % full speed). The
open-loop response has not been plotted because it does not converge to the same
value.

The parameters which have been found to give the best performances in terms of both
disturbance rejection and step response are Kp = 3, and Ki = 3. A high Ki tends to
provide faster disturbance rejection but it leads to an important overshoot of the step
response if the Kp is not high enough.

Firmware

The firmware is based on Multiwii card, however the code has been written to run on
numerous platforms and flight systems. In order to edit the code, first it is necessary to
specify which type of multi-rotor is used. For this, two software packages are needed:

• Arduino: the development environment which allows to edit and upload the code;
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Figure 6.10 – Measured speed for different tuning parameters.
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Figure 6.11 – Tuning of the ESC’s gain.

• Multiwii: it includes both the open source code and the graphic user interface
(GUI), necessary for the configuration of the board parameters
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Multiwii GUI

To change the card’s flight parameters, the MultiWii graphical interface is used, which is
activated running the file MULTIWIIConf.exe. Once the board is connected to a COM
port of the computer, parameters of the different sensors in the board (accelerometers,
gyros, magnetometer, altimeter) can be changed. In general, the main window of the
Multiwii GUI, can be seen in Fig. 6.12

Figure 6.12 – Multiwii GUI.

6.3 Experimental results

In this section some practical results are presented in order to test the vision system and
the control laws. First, a quasi-virtual scenario is developed to keep up safety of quadrotor
system and the pilot during tests, comparing data provided by the vision system with
respect to the acquired data given by the Vicon system, and to perform the vision system
employing a virtual image from a virtual environment, a more detailed scheme is shown
in Fig. 6.13.

In this experiment, the flight is also made into the space of the Vicon system. The
data estimated from vision system are also compared with the acquired data by the Vicon
system, see Fig. 6.14. Finally, an experiment in a real corridor is accomplished, but head-
direction was only controlled using data coming from our vision algorithm.

6.3.1 Vicon tracker system, ground station and quadrotor

Vicon tracker system estimates the position and orientation of the system. These data
are sent to the ground station which uses XPC-target for computing the position control
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Figure 6.13 – General scheme of the vision system switching with the Vicon system using
images from virtual world.

algorithm. Generated signals are sent to the quadrotor via radio signal. Even though all
quadrotor states are available, meaning that the attitude control could be also computed
on the ground station, the attitude controller is computed on-board of the quadrotor. The
aerial prototype used in this experiment was described in section 6.2.2.

6.3.2 Quasi-virtual scenario

BabylonJs 3D Simulator is a complete JavaScript framework for building 3D games with
HTML5, WebGL and Web Audio. It is executed in a specific computer to combine the
simulator with the real world. Here a real quadrotor flight is run with image coming of a
virtual world, called quasi-virtual flight. In this test quadrotor position vector obtained
from the Vicon System (real word) is used into a s-function, which is made using MAT-
LAB, for moving the internal camera of the simulator (virtual world), covering the vehicle
and involving it with the simulator in a quasi-virtual scenario. This computer is also ca-
pable to project in a screen the virtual environment (in our case a corridor) moving in
concordance with the real object. The acquisition image is at 200 fps.

Once the vehicle and the virtual scenario are connected, the vision algorithm can
be executed, lateral states , altitude states, and head-direction are estimated using only
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Figure 6.14 – General scheme of the vision system switching with the Vicon system using
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the virtual images emulating a flight into a corridor, see Fig. 6.15. For maintaining the
aerial vehicle in the middle of the corridor, the control algorithms are also computed for
stabilizing its orientation and moving the vehicle into the corridor.

Figure 6.15 – A quasi-virtual flight with autonomous navigation into a corridor.
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The advantage of this scenario is that it can be changed by other 3D scenarios defined
by the user.

Therefore, experimental tests were carried out for validating the vision algorithm using
collinearity between lines. In order to obtain the best result with the vision algorithm,
it needs to be executed when the vehicle is flying. To simplify, the simulation and the
experimental tests, the x coordinate and the pitch movement are fixed for limitations
in the workspace. Then, the quadrotor will move as a PVTOL aircraft evolving in the
z − y plane with a roll angle, and the ψ angle will take the vanishing point direction
which has a value around to zero. This means that the states x and θ are stabilized with
the controller using the measurements coming from the Vicon system, or controlled by
an external pilot. The vehicle is in the middle of the virtual corridor when the position
provided by the Vicon system is at x = 0, y = 0 and z = 0.9 all in meters.

The test procedure is the following: The quadrotor is placed, using the data acquired
by the Vicon measurements (quasi-virtual system), in different positions in the y and z
coordinates at different times as shown in Table 6.3 (quasi-virtual tests). Later, these
measurements (only for y and z) are switched with those (yr, zr) estimated by the vision
algorithm. As the control goal is to keep the vehicle in the middle of the corridor, then the
control laws are computed using only the (yr, zr) measurements for carrying the quadrotor
at the center of the corridor.

Table 6.3 – Position to quasi-virtual tests

Initial position 1 2 3 4 5 6 7 8
Time (s) 0 12 75 85 110 185 163 170

y 0.5 0 -0.6 0 0.6 0 -0.6 0.0
z 0.5 0.9 1.3 0.9 1.3 0.9 0.6 0.9

6.3.3 Quasi-virtual test

This system is shown in Fig. 6.16 where the virtual image is projected on the wall to have
a more visual experiment; though, this mean that images are taken using a real camera,
but image processing keeps virtually.

Similarly to simulation test, Fig. 6.17 shows the evolution of the different positions.
Positions 1, 3, 5 and 7 from the Table 6.3 represent the flag at 0, and the values obtained
by the Vicon system are used to stabilize the system. Furthermore, positions 2, 4, 6 and 8
represent the flag at 1 and the values estimated by the vision system are used for centering
the system to the origin of the vision system.
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Figure 6.16 – Vision system and vehicle running with virtual image.

The real y position is shown in Fig. 6.17(c). Although the variation is similar to values
coming from the estimated vision system, see Fig. 6.17(b), the 2, 4, 6 and 8, the positions
represent the origin from the vision system being similar in both figures. Furthermore, the
real z position is represented in Fig. 6.17(c). However the variation from the Fig. 6.17(b)
is different to the values from the estimated vision system due to the change of the origin
(vision system). This information serves as the error input into the proposed controller.
Fig. 6.17(d) depicts the evolution in terms of error. There is a variation at 15s, 58s, 108s,
135s, 160s, and 169s in y and z axes in all the figures, but in Fig. 6.17(d) it can be observed
the instant when the y and z data are switched. The position 1, 3, 5 and 7 represent the
position in the y − z plane (1-right down, 3-left up, 5-right up and 7-left down).

In others words, the test is switched between real data and estimated data during all
the experiment . Fig. 6.17 (e) represents this commutation. Where "0" means that data
is taken from Vicon system, and "1" denotes that data is acquired from Vision system.
Then, the experiment starts using Vision data (flag= "0" in Fig. 6.17 (e)). The quadrotos
is stabilized in position x = 0, y = 0.5 and z = 0.5. It has to be mentioned that x-axis is
always controlled using data from Vicon system. Fig. 6.17 (c) depicts real position from
real system. Fig. 6.17 (b) represents relative position from Vision system. Data from both
system, Vicon and Vision systems, are quite different because they have a different origin.
In this case, the origin of Vision system is placed in the center of the corridor or position
(0,0,1) meters (Fig. 6.17 (c)) from data of Vicon system. The error is mostly zero as it
can be seen in Fig. 6.17 (d). Then, in time 18s approximately, Vision data is commuted
(flag of Fig. 6.17 (e) is now "1"). Fig. 6.17 (d) shows an increase in the error because data
reference was changed, however the stabilization is quite fast, and the system converge to
zero again. This can be seen in Fig. 6.17 (b) where Vision data is stabilized to its origin.
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Fig. 6.17 (c) represents the cross product which is the collinearity between principal lines.
When position control takes Vicon data as input reference, the collinearity takes a valor
different to zero, but if the reference is changed to our Vision system, the system will
converge to the collinearity of the principal lines.

This test is shown in a different way in Fig. 6.18, where the acquired image keeps
virtual which means that this time the images are not projected on the wall.

A video of this experiment can be see in TELLEZ [2018].

6.4 Test: Using real image

This test presents some results using real images. These images are acquired using an
on-board camera of the system presented in section 6.2.3. The experiment was carried
out in a structured environment (Moca room). Fig. 6.19 depicts a sequence of images
during the drone flight. These images show that the environment has some similitude
with respect to a corridor. Position and head direction are estimated using our proposed
algorithm. Fig. 6.20 shows the behavior of the vision system using the same sequence
of images. The size of images is 240x360 pixels. It can be also observed that there is
a low lighting, and some images are really noisy. Nevertheless, our algorithm is capable
to extract the right lines to estimate the rotation matrix and relative position using the
geometry environment.

Using the rotation matrix, the head direction (ψ) can be controlled to keep the quadro-
tor pointed to the finite vanishing point, which is near to the image center. The test is
made using position states given by Vicon system, and at time 20s the pose estimation
algorithm is used to control the position of the system. Fig. 6.21 shows that yr and zr

data are switched at time 20s to close the position control loop in yn and zn axes. xn-axis
is controlled using Vicon data.

Fig. 6.21a shows real position which is acquired from Vicon system. z-axis was set to
1m. y-axis was put to 0.5m until the time 90s, and then it was displaced to one side at
time 92s. At time 103s position of y-axis was returned to 0.5m. Position was newly moved
to the same side at time 133s. Finally, y-axis was posed to the initial position at time
142s.

Fig. 6.21b depicts relative position estimated by our proposed vision system. In this
image, z-axis is quite different, because the origin of vision system is not the same with
respect to the Vicon system. In the particular case of a corridor, the origin of the vision
system in real world, using our algorithm to estimate the relative position, is located in
the center of the corridor. Then, the information of z-axis acquired with respect to the
origin of vision system is nearly to zero. y-axis is also posed in the origin of vision system,

117



Chapter 6 – Platform and experimental validation

Figure 6.17 – Stabilization using vehicle-Vicon system and Babylon 3D.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.18 – Quasi-virtual system. In (a), (b), (e), and (h) it is used motion capture to
closed-loop control. Vision-based centering is applied in (c), (d), (f), and (g).
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but there are some variations because of the displacement in its real position.
Finally, Fig. 6.21c represents the comparison of real and relative position. The infor-

mation from relative position was added an offset to match with real position in order
to make more visual theirs equivalences. Even though, information from relative position
is a little noisy with respect to the real position, the data is very similar. It should be
noticed that vision system is not using any filter to improve its performance.

Figure 6.19 – Sequences of images from structure of salle moca.

6.5 Test into a corridor

Fig. 6.23 shows a sequence of images when the system is flying inside a corridor. The
test is performed using head direction autonomously. If the on-board camera is always
pointing to the end of corridor, finite and infinite vanishing points can be extracted to
estimate the rotation matrix. Thus head direction (ψ) can be computed, and it can be
used to navigate along the corridor.

Fig. 6.22 shows the same sequence from Fig. 6.23, but now running the vision system.
Even though there are several movements during the test flight, head direction always
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Figure 6.20 – Sequences of images from structure of salle moca, applying the proposed
algorithm.

holds the right direction. Meaning φ is roughly equal to zero if the head direction is pointed
directly to the end of a corridor, as it can be see in Fig. 6.24. Quadrotor movements are
performed manually on axes yn, zn in plane image and even on depth xn.

6.6 Summary

This chapter was focused on describing the platforms and our experiments, where some
tests were carried out to validate theirs performance. Firstly, the platform which consists
on a ground station and a quadrotor system was detailed. The elements that describe the
ground station were presented. Moreover, it was mentioned that Moca system is used to
extract the real position of the system, and it serves to compare the estimated position.
Later, a proposed algorithm was running in a workstation to manage all the data and to
compute the position control. Another algorithm running in a PC is employed to compute
the proposed vision algorithm. Finally, some experiments using virtual and real images
like inputs were performed to test our proposed algorithm.
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(c) Real position (y, z) vs relative position (yr, zr)

Figure 6.21 – Comparison between Vision data and Vision data using real video
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Figure 6.22 – Images frames after processing from real time video starting from upper left
corner until lower right corner



Figure 6.23 – Images frames from real time video starting from upper left corner until
lower right corner
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Figure 6.24 – Quadrotor angles estimated by proposed algorithm using images taken by
embedded camera, roll φ, pitch θ, yaw ψ. Yaw angle is only near to zero due to heading
control proposed in this work.



Chapter 7
Conclusions and Future work

7.1 Conclusions

This thesis was thought as an alternative to perform an indoor navigation of a quadrotor
system using an embedded camera. The proposed vision algorithm was also designed in
such a way that the computational cost is minimum to optimize our proposed embedded
system. Thus, a vision algorithm, which uses perspective geometry from real time video
sequence, was proposed to solve partially the problem of localization, and then, try to
navigate over a corridor autonomously. For that, we proposed a quadrotor system that
evolves into a structured environment to use parallelism of hand made structures. From a
geometrical point of view all parallel lines in 3D world converge into a geometrical point
named vanishing point in camera image 2D plane. To develop a quadrotor navigating in
real world some research subject were studied and established:

In vision:

• Perspective projection: The simple form to interpret the orthographic projection is
using the perspective projection. This transformation represents a method to render
a point in 3D dimension to a pane of 2D. Moreover, this concept also serves to explain
how the human eye sees a scene, whose objects in the 3D seem to be small in the
distance. That means, while orthographic projection ignores this effect to allow
accurate measurements, perspective projection shows distant objects as smaller to
provide additional realism. However, distance and shape are not conserved, but
straight lines are kept. Parallel lines in the image plane always converge into a
point called vanishing point, which is used like a reference and in our case for 3D
reconstruction. Section 2.1.4 from Chapter 2 is focused on this concept.

• Camera calibration: Extrinsic and intrinsic parameters can be obtained using an
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algorithm for camera calibration. These parameters are implicit in the camera ma-
trix. Intrinsic parameters give the relation between a 3D point in the real world to
a 2D point in the image plane, and extrinsic parameters yield a matrix where rota-
tion and translation are implicit. This matrix gives the camera motion with respect
to the world. These data can be normally extracted with an algorithm for camera
calibration using vanishing points. Intrinsic parameters can be only obtained under
certain scenarios, but extrinsic parameters can be extracted. Taking into account
that the scenario is into a corridor, and considering the perspective projection of
the environment, a partial camera calibration can be made in order to obtain the
motion of the camera with respect to the real world. See Chapter 2.

• 3D reconstruction: The obtained information (points, lines, color, texture) from an
image gives certain information to extract in a succinct way the 3D information
of the world. Usually, a common structured environment (as a corridor) is plenty
of lines whose directions coincide with the shape of environment. These directions
converge to a point called vanishing point, and they also meet with the orthogonal
direction of the 3D world. Using some strategies of camera calibration, the orthog-
onal directions are useful to rebuild in a simple way the 3D world. The proposed
algorithm was showed in Chapter 4.

• Lines segmentation, see Section 4.2.1: Once the image is acquired by the onboard
camera on quadrotor system, the next stage is to extract all the useful information
to interpret the 3D world using data from an image plane. The environment can
be described by a set of lines which can extracted using detector lines algorithm.
Hough transform is the common tool to identify lines by a voting procedure. Even,
this approach is useful to find other shapes in the image plane, sometimes it has a
high computational cost. Furthermore, an edge detector (Canny, Sobel, etc.) has to
be used before it. Nowadays, in the literature some strategies have been developed
by the community research, for instance, EDlines is an algorithm developed to work
in real time. The information yielded by EDlines is a set of points which describes
the lines extracted in the environment. The information extracted by some detector
lines can be used to describe the real world through lines.

• Lines clustering: The obtained data for the line detector is a set of lines without
any order. In this case in particular, lines clustering was focused to find the parallels
lines converging in a vanishing point. In this work due to restriction of our goals,
only a simple classification according to the slope of each lines is proposed. The
result is a set of vertical, horizontal and diagonal lines which give us the data to
obtain the vanishing points. This information was used to extract the intrinsic and
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extrinsic parameters of a camera. In addition, this classification was also applied to
compute the edges lines used to extract certain position in y and z axes, see Section
4.2.2.

In control:

• Data fusion from IMU and from vision data: To have knowledge about all the states
of the system using a single modality is a hard task. In the particular case of a
quadrotor system, which needs orientation and position states to perform a control
in both. Thus, even there are some works where it is used only an IMU system to
estimate attitude and position states, we propose to use two different modalities
for each. Therefore, IMU was used to obtain orientation, and a vision system was
employed to acquire a partial position and head-direction of the quadrotor system.
It should be mentioned that vision system is capable to yield the orientation of the
system, but these data is not used due to its processing speed. For safety reasons,
IMU data is used to close the loop of the orientation control law. Nevertheless,
head-direction obtained by vision system is used to ensure the right direction of the
quadrotor system w.r.t. the world. Keeping the desired direction, vision system is
able to obtain certain position in y, z axes with respect to the environment (corridor).
This approach can be seen, in general way, like a multimodal system since it has
has two modalities to complete the vector state. In Chapter 5 were presented some
schemes using both IMU and Vision data, and in Chapter 6 were analyzed some
results using these data.

• Closed loop control: Two control laws have as been implemented in order to have
an autonomous flight trough a corridor. A quadrotor system can be considered
as cascade control system. That means, we can develop an attitude and position
control separately; however it has to be taken into account that attitude control
does not depend on position control, but position control relies on attitude control.
Furthermore, as the frequency of the vision algorithm is relatively slow (20Hz), the
proposed control laws takes into account this drawback. For attitude control, IMU
data is used to close the feedback control. For position control, data vision was
applied to pose the system in middle of a corridor. Both control laws were using
bounded control strategies, see Chapter 5.

• Open loop control: A quadrotor system can be partially controlled as a non-feedback
configuration. Since these systems are considered like a cascade control system,
position control can be commanded as open loop control. However, attitude control
can not be controlled using the same strategy because of its dynamic model. In this
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work, vision system is only able to estimate position in two axes (y, z). Thus, a closed
loop control system is used in (y, z), and open-loop system could be used for x-axis.
It should be mentioned that x-axis can be obtained using other source or sensor
(MOCA system) to perform a full feedback control. x-axis is handled by a pilot for
a non-feedback control. At the end of Chapter 6 was presented an experiment where
head direction was only controlled taking as reference vision data.

• Data estimation: The information obtained by vision system (yr, zr) can be used
as inputs in the feedback control for position in yn, zn axes. However, velocities in
both axes are missing since our vision system is not able to estimate directly this
information. Thus, to start a first order filter was applied to the data obtained by
vision system, but noisy from estimated signals affect the final result. Therefore,
a Kalman filter, which is used to solve common problems for navigation, guidance
and control, can be used to estimate the velocity in (y, z) axes.

Contributions:

• Autonomous navigation into a corridor placed in the center of the corridor. The
proposed platform can keep its position in (y, z) axes w.r.t. corridor. Taking into
account that origin is considered to be in the center of a corridor according to camera
perspective. The position control is able to stabilize to the center of the corridor.

• Stability of quadrotor using data fusion visual and inertial data. Even though atti-
tude control uses as inputs IMU Data, head direction is controlled by information
estimated by vision system. Furthermore, (yr, zr) estimated by vision system are
applied to feedback the position control in (yn, zn) with respect to the corridor, and
xn is left as non-feedback control.

• Merging real platform evolving into virtual world: Quasi-virtual system. The plat-
form developed in this thesis work was made for several stages. Firstly, a full sim-
ulation of the system, which comprehend the model system, attitude and position
control, and a virtual environment. The 3D world was created in order to make more
visible the behavior of the system and to acquire the frames images created by a
3D engine . These images are used to obtain the partial position of the quadrotor
system. Then, a combination of a real system and virtual system was implemented.
In this case, it was used a real quadrotor system, but virtual images were still ob-
tained from virtual environment. Moreover, vicon system was also used to compare
data from vision system with Vicon system. Finally, virtual images were replaced
using real images acquired by camera embedded on quadrotor system.
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• Quadrotor development taking into account, dynamical and mechanical system. In
the beginning of this thesis several structures were designed which were made with
a 3D printer from GIPSA-LAB. These structures were drawn according to its size
and payload capacity.

• Embedded system implementation using low images. CRIUS flight controller was
used as embedded system. Attitude control was only implemented in this card.
However, the system has also embedded a small camera which send the image video
via wireless to the ground station. The embedded system is also configured with
inputs and outputs to interact with the world. For instance, the protocol DSM-2 is
used to send and receive signals of reference to control the quadrotor.

Publications

Some publications were produced, namely,

• Conference paper

– Velocity control of mini-UAV using a helmet system Tellez-Guzman et al. [2015]

– Nonlinear control of a nano-hexacopter carrying a manipulator arm Alvarez-
Muñoz et al. [2015]

– Integral Backstepping Control for Trajectory Tracking of a Hybrid Vehicle
Colmenares-Vázquez et al. [2015a]

– Position Control of a Quadrotor under External Constant Disturbance Colmenares-
Vázquez et al. [2015b]

• Journal

– Rotorcraft with a 3DOF Rigid Manipulator: Quaternion-based Modeling and
Real-time Control Tolerant to Multi-body Couplings Alvarez-Munoz et al.
[2018]

and "Quasi-virtual UAV autonomous navigation into a corridor:A vision collinearity ap-
proach" is in reviewing to submit to a journal publication.

7.2 Future Work

Even the partial navigation of the quadrotor system could be carried out successfully
using only the visual information of a camera and a vision algorithm based on perspective
projection, there are some problems to solve, which are mentioned below:
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• Firstly, our vision system is capable to estimate y, z position and head direction,
but linear velocities are missing. To solve this problem, we are working in a filter
Kalman to filter data and to estimate linear velocities.

• Secondly, there are some problems of delays due to communication and computation
of the vision system. Thus, we are designing a system predictor (Smith predictor).
Particularly, we are working with a merge between Smith predictor and Kalman
filter.

• Finally, a complete embedded system will be used to implement all the vision system.
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Appendix A
Experimental platforms

A.1 Flexbot

Flexbot comes from a crowd-funding project dedicated to offer open source hardware
multi-copters controllable with a smartphone. Fig. A.1 shows the Flexbot hexa-rotor and
quad-rotor platforms.

Figure A.1 – Flexbot platforms, hexa-rotor and qua-drotor.

Hardware

Some of the main elements of these platforms are presented below. We present a brief
introduction of the frame, flight controller board and communication protocol.

Frame

The frame is 3D printed and the CAD model is open source. The frame of the quad-copter
is shown on Fig. A.2a
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Flight controller board

The flight controller board allows the implementation of the attitude control law, since the
on-board software is equally open source. The board features an ATMega32u4 processor,
an IMU sensor (MPU6050), a magnetometer (HMCL5883L) and a barometer (BMP085).
The motors are directly connected to the card as some transistors are mounted to run
the DC motors. The board can be programmed with arduino, and the default firmware
is based on MultiWii. A blue-tooth low energy module is also mounted and communicate
through a serial bus with the processor. Fig. A.2b shows the flight controller board.

(a) 3D printed frame. (b) Flight controller board.

Figure A.2 – 3D printed frame of the Flexbot quad-rotor and the flight controller board.

Communication

An application for smart-phone is provided to control the multi-copter with blue-tooth
protocol. The data received by the flight controller board is organized withMultiWii Serial
Protocol (MSP). In order to communicate between the ground station and the platform, a
specific board had to be developed. It consists on an arduino MEGA, an Ethernet shield
and a blue-tooth shield. The arduino board is connected to the same local network as the
ground station which packs the commands to fulfill the MSP and sends it through UDP
to the IP adress of the arduino board at a specific port. The arduino board is running an
UDP server which listens to the communication, pairs the blue-tooth device and relays
the data received by UDP to the Flexbot’s blue-tooth module.

This solution has been found to be reliable, but was only possible because the blue-
tooth module of the Flexbot and the arduino shield were both the same. However, Flexbot
changed the bluetooth module after the first batch, the bluetooth shield was then not able
to be paired with the flight controller board. To overcome this issue, a Raspberry Pi and a
bluetooth dongle have been used. The communication protocol had to be reverse engined,
a python script has been developed to run an UDP server, and to send the data through
bluetooth protocol.
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A.2 Other experimental platforms at GIPSA

Currently there are three other projects that gave way to the usage of other experimental
platforms.

The main objective of the first project was the development of a control law for a
hybrid vehicle, which allows to the system fly and move on the floor automatically. It
was developed by Josue Colmenares. Two prototypes were used during the development
of this project. The first one consisted on the FLEXBOT nano-hexacopter, see section
A.1. The second one consisted on a hybrid vehicle called the “Wagon” hybrid vehicle, see
Fig. A.3. As in our case, the frame was designed and 3D printed in GIPSA-lab.

Figure A.3 – Wagon hybrid vehicle in flight

The objective of the second project was the design of an event-based control for mi-
cro biometric robots. The development of this work was in charge of Bruno Boisseau.
Many experimental prototypes were tested during the development of the project, in-
cluding two nano-quadrotors called “Inductrix” and “Nano-QX” both from BLADE, see
Fig. A.4. BLADE is a company subsidiary of Horizon Hobby, dedicated to the design and
construction of mini UAVs.

The third project consists on a home-made quad-copter and a 3-DOF arm manipula-
tor, named “Aerial Carrying robot” (Aeca). The development of this project is in charge
of Jonatan Uziel Alvarez. Two different frames were designed and 3D printed. Since these
designs have the actuators at different positions with respect to the quad-rotor center of
mass, the objective of their construction was to test and validate a better flight perfor-
mance with the manipulator arm. Both systems are shown in Fig. A.5a and Fig. A.5b.
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(a) (b)

Figure A.4 – (a)Inductrix nano-quadcopter and (b)Nano-QX nano-quadrotor in flight

(a) AeCa robot version 1.0 (Top located ac-
tuators).

(b) AeCa robot version 2.0 (Medium height
located actuators).

Figure A.5 – 3D printed frames of the final prototypes.
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Pre-experimental tests

B.1 Velocity control of mini-quadrotor using a hel-
met system

The usage of a helmet to command a mini-quadrotor, is a telepresence system that con-
nects the operator to the vehicle. This test proposes a system which remotely allows the
connection of a pilot’s head motion and the 3D movements of a mini-quadrotor. Two
velocity control algorithms have been tested in order to manipulate the system. Results
demonstrate that these movements can be used as reference inputs of the controller of the
mini-quadrotor.

B.2 Heading control

One of the characteristics of the head control with regard to quad-rotor control is that the
operators can intuitively determine the position and the orientation of the mini-quadrotor.
The operator wears a helmet and he can tilt his head to obtain the references of control.
With these head motions, the operator can intuitively manipulate an quad-rotor. When
the operator tilts his head in front or back (see Fig. B.1a and Fig. B.1b), right or left (see
Fig. B.1c and Fig. B.1d) the UAV flies in the same direction. When the operator rotates
his head, the UAV rotates in the same direction.

B.3 Control strategy

The mathematical model is detailed in section 3.5. The attitude control is described in
section 5.3. Two position control laws are tested in this experiment. The first one is
discussed in section 5.4. The second one is going to be explained below. This control law
was used only during this experiment.
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(a) Forward head movement (b) Backward head movement

(c) Left head movement (d) Right head movement

Figure B.1 – Teleoperation of quadrotor using head movements

B.3.1 Control Law for Trajectory Tracking

The approach used for the trajectory tracking is based in the backstepping technique.
To ensure the convergence to desired trajectory using the backstepping design a integral
control. The integral control helps to reduce the error of the tracking and add a factor to
improve the robustness when parameters of the system are not well-known. In the next
lines will describe the control strategy.

The thrust vector F and weight vector Fg are defined as follows:

F =


0
0
f

 Fg =


0
0
−mg

 (B.1)

The rotation matrix R is obtained from Euler angles in the order yaw-pitch-roll and
it has the following expression:

R =


cψcθ −sψcφ+ cψsθsφ sψsφ+ cψsθcφ

sψcθ cψcφ+ sψsθsφ −cψsφ+ sψsθcφ

−sθ cθsφ cθcφ

 (B.2)

where s = sin(·) and c = cos(·). The yaw, pitch and roll angles are given by ψ, θ, φ,
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respectively. The Euler angles vector and the force vector u is defined as:

η =


ψ

θ

φ

 u =


ux

uy

uz

 (B.3)

Then, from (3.24), (B.1), (B.2) and (B.3) it can be deduced the thrust and the Euler angles
needed to generate the virtual control uυ. The ψref needed can be chosen arbitrarily or
conveniently. θref , φref and fref have the following expressions:

θref = arctan
[
uysψ + uxcψ

uz +mg

]
(B.4)

φref = arctan
[
cθref ·

uxsψ − uycψ
uz +mg

]
(B.5)

fref = uz +mg

cθref · cφref
(B.6)

Let us define the Euler angles error as:

eη = η − ηref =⇒ ėη = η̇ − η̇ref
= B(η)Ω− η̇ref

(B.7)

The matrix B(η) has the following form:

B =


0 cφ −sφ
0 sφ/cθ cφ/cθ

1 sφ · tθ cφ · tθ

 (B.8)

where t means tan(∗). The matrix B(η) is not singular if and only if cos(θ) 6= 0.

Let us propose the next Lyapunov function

VLη = 1
2 < χ2, KIηχ2 > +1

2 < eη, eη > (B.9)

where,
χ2 =

∫ t

0
eΨ dτ (B.10)

and KIη is a positive diagonal constant matrix that will be used for tuning the control.
Thus,

V̇Lη =< χ2, KIηeη > + < eη, ėη > (B.11)
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and by choosing the virtual angular velocity Ωυ,

Ωυ = B−1 (η̇ref −KIηχ2 −Kηeη) (B.12)

with Kη as a positive diagonal constant matrix for tuning the control, it yields

VLη = −Kη < eη, eη > ≤ 0 ∀ t ≥ 0 (B.13)

Now, let us define the angular velocity error as:

eΩ = Ω− Ωη =⇒ ėΩ = Ω̇− Ω̇η (B.14)

remember that,
Ω = Ωη + eΩ & Ω̇ = J−1

(
τ − ω×JΩ

)
(B.15)

Now, consider the following candidate Lyapunov function:

VLΩ = VLη + 1
2 < eΩ, eΩ > (B.16)

so, then
V̇LΩ = V̇Lη+ < eΩ, ėΩ > (B.17)

thus,
V̇LΩ = − < eη, Kηeη > + < eη, BeΩ > + < eΩ, ėΩ > (B.18)

and by choosing,
τ = ω×JΩ + J

(
Ω̇η −BT eη −KΩeΩ

)
(B.19)

it yields,
V̇LΩ = − < eη, Kηeη > − < eΩ, KΩeΩ > ≤ 0 ∀ t ≥ 0 (B.20)

with KΩ as a positive diagonal constant matrix for the tuning of the control law.

B.3.2 Hardware setup

Our prototype mini-quadrotor is based on the mechanical structure developed by FLEXBOT1.
The attitude control law is executed on Flight Control System Microwii Copter Proces-
sor ATMega32u4, Gyro and Accel. Then, a ground station estimates the position and
attitude of the mini-quadrotor using the Vicon system. With this system it is possible
to compute the position and attitude up to 100Hz. The estimated states are sent to
MATLAB/Simulink through a UDP frame every 2ms. The position control algorithm is

1. http://www.flexbot.com
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implemented in real-time at 200Hz on a computer using xPC target toolbox . The control
variables are finally sent back to the mini-quadrotor on the Microwii, through a GIPSA-
lab’s built-in bridge that converts UDP frames to Bluetooth protocol. The helmet is a
TELEPORTER by fatshark 2. The Vicon System GIPSA-LAB ["2016"] is used to obtain
the 3D position and rotation (q) of the mini-quadrotor and the helmet. A PC (simulink)
is used to compute the algorithm of velocity control. The data sample of simulink is ar-
ranged to 0.01 seconds. These components can be seen in the schema of the Fig.B.2 using
the Vicon system. A video showing the experimental results can be viewed at Tellez [2016].

B.3.3 Experimental test

Two experiments were performed to evaluate the behavior the control laws proposed in
Chapter 5 and section B.3.1. The scenario for both experiments is as follow :

• The mini-quadrotor is flying directly using the proposed control laws

• The attitude control law is applied for both velocity control strategies proposed

• The altitude, axis− z, is controlled by the control law, and it is set at one meter

• The velocity of axis− x and axis− y is controlled by the reference inputs

• The reference inputs are acquired by the helmet orientation [φhead, θhead, ψhead].
Where the orientation is obtained for the head movements. Random tilt movements
are did in order to shift the system in the axis− x and axis− y.

The specification and parameters of the mini-quadrotor prototype are given in the
Table B.1.

Table B.1 – The specification and parameters of the Quad-rotor

Parameter Description Value Units
m Mass 0.057 Kg
d Distance 0.042 m
Jx Inertia in x-axis 0.0006833 Kg· m2

Jy Inertia in y-axis 0.0006833 Kg· m2

Jz Inertia in z-axis 0.00042993 Kg· m2

2. http://www.fatshark.com/
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Figure B.2 – Control System

Attitude boundary control

The parameters of the control law are selected according to the characteristics of the
actuators and those of the quad-rotor presented above. For the attitude control given in
section (5.6), the maximum torque is Γ = 0.085Nm. Thus, the saturation function is set
as σ123 = 0.04, and the parameters are given as k12 = 0.094, k3 = 0.15,ρ12 = 0.022 and
ρ3 = 0.035.

Test: Control law for trajectory tracking

The second test is shown in Fig. B.3. The parameters of the control are Kη = diag[4, 4, 4]
and KΩ = diag[1, 1, 1].

The movement of the system though axis−x can be seen in second 2, see Fig. B.3a, and
the movement is taking in account the displacement of the head movement represented
at the same time in Fig. B.3d. Nevertheless, there is some delay between the real velocity
and the reference velocity, that can be seen comparing both signal data from Fig. B.3d.
The same behavior for axis− y can be observed in second 6, see Fig. B.3a and Fig. B.3c.
A delay of 0.25 seg of the reference of the velocity can be observed in both Fig. B.3c and
Fig. B.3c. Fig. B.3b shows the Euler angles where the maximum angle, from φ and θ, is
around +− 45. In this test the displacements are a bit aggressive. The ψ is controlled by
the turn of the head in axis− z. .

Test: Velocity boundary control

The parameters for the control law , section5.3, are a1 = a2 = 1 and r̄1 = 1,r̄2 = 1, r̄3 = 5.
Fig. B.4a show the position of the axis− z, which is set at one meter. At the same time,
the desplacement of the axis − x and axis − y can be seen in Fig. B.4a. Fig. B.4c and
Fig. B.4d show the reference velocity Vref and velocity from axes [x, y]T . The euler angles
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are depicted in Fig. B.4b.
The test, detailed above, consists on the displacement of the mini quad-rotor using the

head movements. This movement can be seen in second 4 for the axis − y in Fig. B.4a,
and the movement is taking in acount the displacement of the head movement represented
at the same time in Fig. B.4d. Nevertheless, there is some delay between the real velocity
and the reference velocity, that can be seen comparing both signal data from Fig. B.4d.
The same behavior for axis− x can be observed in second 6, see Fig. B.4a and Fig. B.4c.
Fig. B.4b shows the euler angles where the maximum angle, from φ and θ, is around
+− 30. That means that the displacements are slow and smooth. ψ is fixed to zero.

B.4 conclusions

This work proposes a teleoperation scheme to control a mini-quadrotor using only head
movements from an operator. Quad-rotor position, quad-rotor orientation, and helmet
movements are obtained using the Vicon System. Two velocity control algorithms were
proven in order to observer the feasibility between these two control laws.

The behavior from both algorithms are quite similar; however there are some differ-
ences. For example, algorithm from section 5.4 is soft and slow to the input references,
which depend on the movements of the operator’s head, but algorithm from section B.3.1
is more reactive and accurate for the follow-up of the input references. In addition, the
second algorithm can also command the yaw angle ψ when the operator rotates the head.

Both strategies can be used to perform the tele-operation. However, 5.4 can gives
us a soft control, since using the right parameters this strategy can be used to do soft
movements that can help inexperienced operators.

Finally, the manipulation of the mini-quadrotor with this method is more intuitive
than using a radio control. When the system FPV is used as part of the teleo-peration,
the manipulation is difficult, because the perception of the environment is difficult coming
to a sense of disorientation. So, a new strategy is presented along this work to help the tele-
operation of the systems. The tele-operation is planned to be made in indoor environment,
particularly into a corridor.
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