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Résumé

Un scénario couramment considéré lors de la formation des planètes telluriques est
celui des océans de magma. L’énergie d’accrétion ainsi que celle dégagée par la
désintégration d’éléments radioactifs de courtes périodes est en effet largement suff-
isante pour fondre une large portion voire l’entièreté du manteau terrestre, formant
dans ce dernier cas un océan de magma global. La dépendance en pression de la
température de solidification et le fort gradient du profil isentropique dans le man-
teau inférieur peut ammener à une cristallisation de cet océan de magma global par
le milieu. Ceci conduit à une situation où la partie solide du manteau primitif est
encadrée par deux océans de magma globaux : un en surface, et un basal.

Cette thèse se focalise sur deux aspects scientifiques d’un tel système. D’une
part, les océans de magma ayant une composition similaire à celle du solide, la
matière en convection dans le solide n’est pas nécessairement arrêtée à l’interface
entre le solide et le liquide mais peut la traverser par fusion/cristallisation si le
temps de changement de phase est court devant le temps de construction de to-
pographie du solide au sein du liquide par force visqueuse. Une analyse de stabilité
linéaire ainsi que des simulations numériques directes montrent que cette possibil-
ité de changement de phase affecte considérablement la convection dans la partie
solide. Le nombre de Rayleigh critique est abaissé, les structures convectives ont
une plus grande longeur d’onde, et le flux de chaleur transporté à travers la couche
solide peut être de plusieurs ordres de grandeurs plus important qu’avec des condi-
tions aux limites classiques.

Le deuxième aspect étudié durant cette thèse est celui de l’évolution à long terme
du manteau primitif. En couplant le modèle de convection dans le solide avec des
modèles simples d’évolution des océans de magma, nous avons construit un modèle
d’évolution global du manteau primitif suivant l’évolution thermo-compositionelle
des océans de magma globaux et de la partie solide. Une analyse de stabilité linéaire
montre que la convection dans la partie solide démarre avant même que l’océan de
magma en surface soit entièrement cristallisé. Une simulation numérique directe
préliminaire montre que la cristallisation fractionnée de l’océan de magma basal
peut conduire à la formation de larges piles thermochimiques en base du manteau
solide, similaires aux structures de faibles vitesses sismiques (LLSVP) observées de
nos jours.

La présence d’océans de magma globaux peut donc avoir d’importantes réper-
cussions sur l’évolution à long terme de la Terre : d’une part via les structures
thermiques et compositionnelles mises en place par la cristallisation fractionnée des
océans et la convection dans le solide ; d’autre part, le bilan énergétique global peut
être considérablement affecté par le fort flux de chaleur extrait par le manteau solide
du fait des conditions de changement de phase.
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Abstract

A common scenario considered during the formation of Earth-like bodies is that of
magma oceans. Indeed, the accretion energy as well as the heat produced by the
radioactive decay of short-period elements is more than enough to melt entirely the
primitive mantle, thereby forming a global magma ocean. The pressure-dependence
of the solidification temperature as well as the steep isentropic temperature profile
at the base of the mantle could lead to a crystallization of that global magma ocean
from the middle. The primitive solid mantle could therefore be bounded by two
global magma oceans: one above and one below.

This PhD thesis focuses on two aspects of such a system. First, the solid part of
the mantle and the magma oceans being of similar composition, convecting matter
in the solid is not necessarily stopped by the solid/liquid interface but could instead
go through it by melting/freezing provided that the phase change timescale is short
enough compared to the viscous timescale needed to build a solid topography in
the liquid oceans. A linear stability analysis and direct numerical simulations show
the phase change at the boundary greatly affects convection in the solid part of the
mantle. The critical Rayleigh number decreases, convective patterns have a larger
wavelength, and the heat flux carried through the solid increases of up to several
orders of magnitude compared to cases with classical boundary conditions.

The second aspect explored in this thesis is the long-term evolution of the prim-
itive mantle. Coupling convection in the solid with simple evolution models for the
magma oceans allowed us to build a global evolution model of the primitive man-
tle monitoring the thermo-compositional evolution of the solid mantle and magma
oceans. A linear stability analysis shows convection sets in the solid before the sur-
face magma ocean crystallizes entirely. A preliminary direct numerical simulation
shows the fractional crystallization of the basal magma ocean may lead to the for-
mation of large thermo-chemical piles at the base of the solid mantle. These piles
are similar to the large low-shear velocity provinces (LLSVP) observed today.

The presence of global magma oceans could therefore have important conse-
quences on the long-term evolution of the Earth: first, fractional crystallization of
the magma oceans and convection in the solid part affect the resulting thermal and
compositional structures; and second, the global heat budget could be tremendously
affected by the high heat flux carried out by the solid part owing to the phase change
boundary conditions.
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Chapter 1

Introduction

The Earth is cooling down. The current heat flux through its surface inferred from
direct measurements is about 45 TW (e.g J. Davies and D. Davies 2009; Jaupart,
Labrosse, et al. 2015; Lucazeau 2019). A significant part of this flux is contributed
by the radioactive decay of the so-called heat producing elements, namely uranium
238, thorium 232, and potassium 40 which mainly reside in the Earth’s mantle
and the continental crust (Huang et al. 2013). Detections of neutrinos emitted by
their desintegrations seem to indicate about half (∼ 25 TW) of the total heat flux
evacuated by the Earth can be imparted to radiocative decay (e.g. Korenaga 2011).
The proportion of heat produced by internal heating is the Urey number U and is
defined as

U =
H

Q
(1.1)

where H is radiogenic heating and Q the total heat flux at the surface of the system.
For today’s Earth, this number is U ∼ 0.5. The other half of the total heat flux is the
residual from the primordial heat accumulated during accretion and early radiogenic
heating. It is estimated around 5− 15 TW can be assigned to core cooling (Lay et
al. 2008), the remaining 5− 15 TW corresponding to mantle cooling. Note that the
balance between mantle and core cooling is still poorly constrained. Other processes
such as tidal dissipation bring minor contributions to the overall heat budget of the
Earth.

It is only since fairly recently that convection has been known to be the prominent
heat transfer mechanism within the Earth. Lord Kelvin (1864) proposed conduction
as the only heat transfer mechanism. Starting from a sphere with a homogeneous
sub-solidus temperature and letting it cool down until the heat flux at its surface
reaches today’s value led him to conclude the Earth is only a few ten or hundred
millions of years old. As shown by Richter (1986), merely adding internal heating
to Lord Kelvin’s model only raises slightly the obtained age for the Earth. Since
the age of the Earth is constrained at 4.55 Gyr from radiogenic dating, this shows
a crucial ingredient is missing to explain the current heat flow at the surface of the
Earth.

Perry (1895) and later Holmes (1913) proposed convection as a way to obtain
an age for the Earth of the order of a few billion years, even without any internal
heating. Indeed, the heat flux at the surface of a convecting spherical domain is
higher for a longer period of time than with a conductive model. Hence, for a
given initial condition, a convective Earth requires more time than a conductive
Earth for its surface heat flow to decrease to today’s value. This is the first strong
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CHAPTER 1. INTRODUCTION

argument in favor of a convecting mantle. The famous study of Strutt (1916) shows
the critical Rayleigh number for thermal convection in a cartesian box heated from
below with clasical free-slip boundary conditions is 27π4

4
∼ 657. This is several

orders of magnitude lower than that of the mantle (roughly 107), which should
hence convect. However, the great success of thermal convection comes from the
fact it provides a physical motor for plate-tectonics (see Schubert et al. 2004, for a
comprehensive historical background).

Convection is now widely studied as it is the prominent mechanism to explain
planetary interiors dynamics and the associated heat transfer.

1.1 The thermal catastrophe
The constraints available to build a thermal evolution model for the Earth are the
following:

1. its accretion age of 4.55 Gyr;

2. the current heat flux at the surface of the planet Q0 = 45 TW;

3. the current Urey ratio U0 ∼ 0.5;

4. the potential temperature of the mantle T0 ∼ 1500 K.

Christensen (1985) exposes a simple method to built parameterized thermal evo-
lution models for the Earth; the gist of this method is shown hereafter. Even though
simple, this model yields an issue that has not been resolved to this day, known as
the thermal catastrophe.

Energy balance at the scale of the mantle gives the following equation on the
time derivative of the mantle potential temperature T :

MCpṪ = H −Q. (1.2)

M is the mass of the mantle, Cp its heat capacity. Note that the flux coming from
the core is neglected in such a model. This is based on the observation that the hot
plumes originated at the Core Mantle Boundary (CMB) bring a small contribution
to the overall heat flux at the top of the mantle (G. F. Davies 1988; Sleep 1990).
Assuming this situation is representative of the Earth’s thermal history, the heat
flux through the CMB and therefore the core contribution to the mantle energy
balance is minor (Stacey and Loper 1983). The internal heating H in the past can
easily be computed in the past from today’s value of about H0 = 20− 25 TW:

H(t) = H0 exp
(
− t

τr

)
(1.3)

with τr the radioactive decay timescale (about 3 Gyr) and t the time. By convention,
t = 0 at the present time and t = −4.55 Gyr at the formation of the Earth.

Convection models offer a power law relationship between the heat flux carried
out by a convective system, Q, and the Rayleigh number, Ra. The latter compares
the buoyancy forces that are the motor of thermal convection with the kinematic
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1.1. THE THERMAL CATASTROPHE

viscosity, ν, and thermal diffusivity, κ, that dampen thermal convection. Its expres-
sion is

Ra =
αg∆TL3

νκ
(1.4)

where α is the coefficient of thermal expansivity, g the gravity acceleration, L the
thickness of the system, and ∆T the temperature difference across the domain. The
heat flux verifies

Q = AS
k∆T

L
Raβ

(
T

∆T

)1+β

(1.5)

where A is some coefficient, S the surface of the top boundary, k the conductiv-
ity, and β an exponent. Note that such a parametrization allows the temperature
difference ∆T to drop out of the equation, the potential temperature T becoming
the only temperature scale describing the system. Boundary layer theory prescribes
that Q should be independent on the thickness of the domain L, leading to β = 1/3.
In practice, direct numerical simulations lead to values that are not exactly 1/3 but
rather around 0.3 (e.g. Wolstencroft et al. 2009). Moreover, the viscosity ν depends
strongly on temperature. Denoting ν0 the current bulk viscosity of the mantle, a
simple power law that can be used to compute the viscosity as a function of the po-
tential temperature is

ν = ν0

(
T

T0

)−n

(1.6)

with n an exponent that can be determined from experimental measurements. A
reasonable value would be n = 30 (G. F. Davies 1979). Plugging eqs. (1.3), (1.5)
and (1.6) in the heat balance eq. (1.2) leads to

MCpṪ = Q0

(
U0 exp

(
− t

τr

)
−
(
T

T0

)1+β+βn
)
. (1.7)

Solving eq. (1.7) backwards in time allows one to recover the past potential
temperature of the mantle. Using U0 = 0.5 and β = 0.3 leads to the so-called
thermal catastrophe. Since today total heat flux Q0 is superior to the radiogenic heat
production H0 (i.e. U0 < 1), the mantle is currently cooling down. Going backwards,
the potential temperature increases. This leads to a large increase of (T/T0)

1+β+βn

(especially due to the large value of n, which represents the dependence of viscosity
on temperature). τr is too large for the internal heating to compensate that effect
and keep Ṫ more or less constant. This leads to an increase of the absolute value
of Ṫ with time and the potential temperature of the mantle quickly diverges. One
could imagine that the opposite case would be possible if U0 were large enough:
the radiogenic term in eq. (1.7) would dominate Ṫ , leading to a temperature that
would diverge towards negative values. This means that bounds exist on the value
of today’s Urey mantle U0 for the model eq. (1.7) to give a satisfactory potential
temperature as far as 4.55 Gyrs in the past. Note that since the value n = 30
for the viscosity law exponent is only valid for values of T that are fairly close
to T0 and tends to under-estimate viscosity at higher temperatures (ibid.), a better
model for the viscosity dependence on temperature would lead to a slightly larger
range of acceptable values for U0. This effect does not prevent however the thermal
catastrophe.
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Figure 1.1: Figure from Christensen (1985). It shows the heat flux Q/Q0 (first
line) and potential temperature T (second line) obtained by running backwards the
model eq. (1.7). Each column is a different value of the heat flux exponent β, and
the grey area represents model trajectories that result in non-diverging potential
temperature and heat flux. The acceptable range of values for U0 is indicated in
percent on each plot.

Figure 1.1, from Christensen (1985), shows the acceptable range for U0, also
exploring the effect of the β coefficient on that range. One can notice that for
β = 0.3 (which is the value obtained from numerical simulations), the acceptable
range for U0 is very narrow around U0 = 0.845 and far off the estimated value of
U0 = 0.5. On the other hand, values of β for which U0 ∼ 0.5 would be acceptable
are β < 0.1, which is also far off the value obtained numerically.

Among possible explanations and ways around the thermal catastrophe are the
two following:

• our understanding of mantle convection lacks a major physical ingredient that
would lead to a radically different power law or even relationship between the
heat flux and the Rayleigh number;

• the heat flux through the CMB is not negligible, and therefore cannot be ruled
out eq. (1.2). A high flux from the core to the mantle would help mitigating the
blowing effect of increasing T in the mantle going backwards in time owing
to the term (T/T0)

1+β+βn. Indeed, part of the heat would go into increasing
the core temperature instead of that of the mantle (Labrosse, Hernlund, and
Hirose 2015).

The second explanation is gaining traction in the community. The argument that the
CMB heat flow should be low given the scarcity of hot plumes reaching the surface
of the Earth is dubious, Labrosse (2002) indeed shows hot plumes originating from
the CMB do not necessarily have enough buoyancy to reach the planet’s surface.
Moreover, higher heat fluxes from the core (of around 15 TW) have recently been
proposed as estimations of the conductivity of the outer core are radically higher
than previous estimates (e.g. Gomi et al. 2013; Koker et al. 2012; Pozzo et al. 2014).
The heat flow that can be extracted from the core by the mantle throughout the
history of the Earth hence needs to be investigated.
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1.2 Evidence for global magma oceans in terres-
trial bodies

Observation of a plagioclase-enriched crust and a KREEP layer (enriched in incom-
patible elements) underneath it at the surface of the Moon led to the hypothesis that
these are manifestations of the crystallization of a global magma ocean, the so-called
Lunar Magma Ocean (e.g. Wood et al. 1970). Numerous following studies suggested
and studied the consequences of a global surface magma ocean for terrestrial plan-
ets including the Earth (e.g. Abe and Matsui 1986; Righter et al. 1998; Zahnle et al.
1988). Indeed, the heat accumulated during the accretion of such planetary bodies
brings more than enough heat to melt the entire mantle. See Elkins-Tanton (2012),
Labrosse, Hernlund, and Hirose (2015), and Solomatov (2015) for comprehensive re-
views on the subject.

Since a surficial global magma ocean would have a gigantic Rayleigh number
owing to the small viscosity of liquid, the convection is expected to be vigorous,
resulting in a well-mixed magma ocean and a large heat flux at its boundary. More-
over, an interesting feature of global magma oceans made out of molten silicates
is that the solidus is steeper with depth than the isentropic temperature profile of
the magma ocean. As a result, the magma ocean crystallizes from the bottom up,
forming a so-called Top Magma Ocean (TMO) lying on top of the primitive solid
mantle. Due to the very large heat flux at the surface of the TMO, the latter is
expected to crystallize on a short timescale, of the order of a few million years (Abe
1997; Lebrun et al. 2013; Sleep 2000).

An additional complexity arises from the effect of pressure and/or composition
(which would vary with time if fractional crystallization is in effect) on the solidus
and isentropic profiles in the magma ocean. In the lower part of the Earth mantle, it
is possible that the solidus becomes less steep than the isentropic temperature profile,
resulting in a crystallization starting from the middle of the mantle instead of the
bottom (Boukaré, Ricard, et al. 2015; Caracas et al. 2019; Labrosse, Hernlund, and
Coltice 2007; Nomura et al. 2011; Thomas, Liu, et al. 2012). In this situation,
provided that solid crystals settle at an intermediate depth, two global magma
oceans are formed: a Top Magma Ocean (TMO) as previously, and a Bottom Magma
Ocean (BMO). Note that contrary to the TMO that is expected to crystallize quickly
owing to the large heat flux at its surface, cooling of the BMO is limited by the
heat flux carried out by convection in the solid mantle which should be much slower
than in the magma ocean. Therefore, the crystallization of the BMO is expected
to happen on a much longer timescale than that of the TMO, possibly of the order
of a few Gyrs (Labrosse, Hernlund, and Coltice 2007). Figure 1.2, from Caracas
et al. (2019), shows various scenarii in which crystallization of the mantle starts
from the middle of the ocean, leading to the formation of a TMO and a BMO.
In these scenarii, the first solid crystals form slightly below or above their neutral
buoyancy depth where they settle. Once a rigid solid layer is formed, both oceans
evolve in a rather individual fashion, the TMO crystallizing at a much faster pace
than the BMO. Depending on where the first solid forms and whether fractional
crystallization is prominent from the beginning of the crystallization or only sets in
later, the composition of both magma oceans does not evolve exactly in the same
way, which could have repercussions on the compositional structure of the future
solid mantle.
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The existence of a Basal Magma Ocean during Earth’s history could explain
a few seismological and geochemical observations. As hypothesized by Labrosse,
Hernlund, and Coltice (2007), it could be a mean to produce the Large Low Shear
Velocity Provinces seismically observed under Africa and the Pacific (Lekic et al.
2012) and thought to be thermo-chemically dense (e.g. Hernlund and McNamara
2015). Indeed, fractional crystallization of a BMO would lead to a dense FeO-
enriched layer at the base of the mantle, which could be pushed around by convection
in the solid mantle and accumulate as large piles. Moreover, some OIB plumes
sampling these piles have a primitive-like signature in noble gasses such as Neon and
Argon. Such a feature can be explained by the important fractionation associated
with the crystallization of a BMO (Coltice et al. 2011).

Note that numerous physical complexities are associated with the cooling of
magma oceans, making the study of their dynamics and evolution an extremely rich
problem. For instance, the cooling of the TMO is deeply connected to the atmo-
sphere dynamics and exchanges of gasses between the TMO and the astmosphere
that can affect it (e.g. Lebrun et al. 2013). Moreover, due to fractional crystal-
lization, compositional heterogeneities can form in a magma ocean and the solid
that crystallizes from it, leading to double-diffusive convection and the associated
numerical challenges to model such systems (e.g. Bouffard et al. 2017).
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Figure 1.2: Crystal formation and settling leading to the formation of a Basal Magma
Ocean in four different scenarii. Either the formation of the first crystals hap-
pens below or above their neutral buoyancy; and either fractional crystallization is
effective from the beginning of the process or only at a later phase after a batch
crystallization episode. From Caracas et al. (2019).
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1.3 Possible consequences of magma oceans on
solid-state convection

An aspect of convection models that should be treated with care is the choice of
suitable boundary conditions. Indeed, they offer a strong constraint on the convec-
tive patterns and heat flux accessible to the modeled system.

Common mechanical boundary conditions applied to the mantle are free-slip
and non-penetrative boundary conditions. Free-slip boundary condition states that
the tangential stress applied at the domain boundary is null. This is a reasonable
assumption, at least for the Earth, as the solid mantle is surrounded by the liquid
outer core at the bottom and a gaseous atmosphere at the top, which are both
several orders of magnitude less viscous than the solid mantle. Note that this stays
valid for the solid layer of the primitive mantle when surrounded by magma oceans.

Non-penetrative boundary condition states that the normal velocity of the con-
vective matter is null at the interface. This condition is generally applied directly
at the position of the interface at rest (i.e. when no convection operates in the
solid). This neglects the possibility of forming dynamic topography and the associ-
ated feedback on convection. This is often a reasonable assumption as the weight of
the topography greatly limit its amplitude. However, as shown by Monnereau and
Dubuffet (2002) and Ricard, Labrosse, et al. (2014), the convection pattern, ther-
mal structure and heat flux can be greatly affected by dynamic topography when it
is associated with volcanism (i.e. a strong heat transfer related to the topography
itself) or fast erosion. In the case of a solid mantle surrounded by global magma
oceans above and/or below it, non-penetrative boundary conditions are very likely
not relevant to describe the dynamics of the solid. Indeed, the solid is in contact with
a liquid of similar composition and therefore dynamic topography at the solid/liq-
uid boundary can be erased as it is formed by melting and freezing. Alboussière
et al. (2010) introduced for the inner core (which is essentially a very similar sys-
tem) a phase change boundary condition, allowing exchange of matter by melting
and freezing between the solid inner core and the liquid outer core. As shown by
Alboussière et al. (2010), Deguen, Alboussière, et al. (2013), Lasbleis et al. (2015),
and Mizzon and Monnereau (2013), this boundary condition exhibits a translation
convection mode for the inner core (see fig. 1.3), as well as a higher heat flux. A
positive topography of solid intruding the liquid melts on one hemisphere while a
negative topography freezes on the other, the inner core being maintained in place
by a wind of matter going through it. Deguen (2013) presents the linear stability
of a similar problem but with a different geometry: instead of a full sphere with a
phase change boundary condition at its top, he considers the case of a solid spherical
shell surrounded by an ocean of similar composition above and/or below it. Such a
setup could be representative of the situation in icy satellites with a solid layer on
top of an ocean (e.g. Čadek et al. 2016) as well as the situation of a terrestrial mantle
crystallizing from the bottom-up or from the middle of a global magma ocean. The
linear stability analysis of this system performed by Deguen (2013) shows the phase
change boundary condition leads to convective patterns with higher wavelengths
than in the classical non-penetrative case (see fig. 1.4). There even is the possi-
bility of a translation mode with both boundaries open, and an almost-translation
mode with some deformation in the bulk when only the top boundary is open. A
question that is not answered by the linear stability analysis is how these convec-
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tion modes affect the heat flux carried out through the solid domain. However, they
involve very little to no deformation, therefore diminishing the role of viscosity and
probably leading to a higher heat flux than the classical case. This could affect the
heat budget scaling law presented as eq. (1.7), and therefore the conditions leading
to thermally catastrophic scenarii.

Figure 1.3: Depiction of the translation mode obtained with the flow through bound-
ary condition at the inner core boundary. The shades of grey represent the tem-
perature field in the inner core (higher temperatures are in darker shades). From
Deguen, Alboussière, et al. (2013).

A B C D

Figure 1.4: Linearly most unstable modes of convection in a spherical shell with
internal heating and a gravity varying linearly with the radius. The 4 cases presented
here are classical non-penetrative boundary conditions (A), phase change condition
at both boundaries (B), phase change boundary only at the top (C), and phase
change boundary only at the bottom (D). From Deguen (2013).

1.4 Focus of this thesis
In this study, we focus on convection in the primitive solid mantle of Earth-like
bodies. We consider the general case where this solid layer can be bounded by
global magma oceans above and/or below. As discussed previously, the boundary
condition we apply at the interface between the solid and the magma oceans allows
matter to traverse it by fusion and crystallization.

The overall goal of this thesis is to study the consequences of the existence of
global magma oceans on solid-state convection and on the heat budget of the Earth.
Increasingly complex models and methods are used to explore this question.

First, we focus on a purely thermal modelling of our system with a solid of con-
stant thickness. All chemical aspects of the problem are left out, and no-net freezing
nor melting of the magma oceans occurs, avoiding the need for an evolution model of
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the magma oceans themselves. Chapter 2 presents the conservation equations and
boundary conditions verified by the primitive solid mantle. Chapter 3 details the
linear stability analysis of this problem. Chapter 4 presents non-linear simulations,
hereby completing the study of the purely-thermal and constant-thickness system.

Then, chapter 5 details a much more complete model, taking chemical aspects
into consideration (through fractionation at the boundary) as well as the long-term
evolution of the system by allowing net-freezing and melting of the magma oceans.
Chapter 6 presents a linear stability analysis of this evolution model to assess the
timescale at which solid-state convection sets in when crystallizing a Top Magma
Ocean. Finally, chapter 7 presents a preliminary fully non-linear numerical resolu-
tion of the evolution model.
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Chapter 2

Constant solid thickness thermal
problem

In the three following chapters, we focus on the simplest instance of the considered
problem. We put aside for now the long term evolution of the system, and hence
consider a solid mantle of constant thickness (no net crystallization of the magma
oceans). The solid part of the crystallizing mantle is considered to be a spherical shell
of external radius R+ and internal radius R−. Its thickness is denoted L = R+−R−.
For generality purpose, we consider global magma oceans can exist above and/or
below the solid layer. They are also considered to be spherical shells. The Top
Magma Ocean (TMO) extends from the external solid boundary R+ to the surface
of the planet at radius RT ; the interface between the TMO and the solid layer is
called the Top Ocean-Mantle Boundary (TOMB). The Basal Magma Ocean (BMO)
extends from the Core Mantle Boundary (CMB) at radius Rc to the internal solid
boundary R−; the interface between the BMO and the solid layer is called the
Bottom Ocean-Mantle Boundary (BOMB). See fig. 2.1 for a visual representation
of these layers.

We focus in the three following chapters on the thermal part of the problem
and therefore neglect any compositional effects. The aim is to see what are the
dynamical consequences of the presence of magma oceans in contact with the solid
primitive mantle, without mixing these with dynamical effects due to compositional
variations in the solid.

Moreover, the studied system is merely the solid part of the crystallizing mantle.
The presence of magma oceans is parameterized with boundary conditions at the
top and bottom boundaries of the solid domain. Such a vision is of course overly
simplistic, but as shown in the following chapters, it allows us to isolate and under-
stand interesting consequences of the presence of magma oceans on solid-state con-
vection. This chapter describes the conservation equations that apply to the solid
layer, and the boundary conditions applied at the TOMB and the BOMB. Finally,
making these equations and associated boundary conditions dimensionless exhibits
the controlling parameters of this simplified system.
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BMO
Solid

TMO

Rc

R−

(BOMB)

R+

(TOMB)

RT

Figure 2.1: Equatorial view of the problem setup. We consider a solid layer (green)
surrounded by global magma oceans (red) above and/or below that solid. The radii
associated with the various interface positions are labelling the relevant arrows.

2.1 Conservation equations
The velocity u = (ur, uθ, uφ), pressure P and temperature T fields in the solid are
linked together by a set of conservation equations. For the sake of simplicity, the
viscosity η and thermal diffusivity κ are assumed to be uniform throughout the
mantle. The gravity acceleration g = −gr̂ is radial and its intensity g is uniform.
This work is done under the Boussinesq approximation where all density variations
are considered negligible except, of course, in the buoyancy term which is the motor
of thermal convection. Moreover, the solid mantle has an extremely large Prandtl
number, which means inertia terms are negligible compared to the viscous forces.
We hence consider the solid mantle is an infinite Prandtl number fluid with no
inertia. Under these assumptions, the mass, momentum and energy conservation
equations are the following (e.g. Chandrasekhar 1961):

∇ · u = 0, (2.1)

0 = −∇P + η∇2u − ραgr̂. (2.2)
∂T

∂t
+ u ·∇T = κ∇2T. (2.3)

ρα is the density used in the buoyancy term. It is related to the temperature field
via the thermal expansion coefficient α which is considered constant. Denoting ρ
the reference density at a temperature T0, the buoyancy density ρα can be expanded
as

ρα = ρ (1− α(T − T0)) . (2.4)

Note moreover that in this problem, we do not consider internal heating occuring
in the solid. Only heat advection and diffusion are included in eq. (2.3). This is
justified here by the fact that heat producing elements (U, K, Th) are refractory
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(e.g. Huang et al. 2013) and therefore are expected to reside in the magma oceans
rather than the solid.

2.2 Boundary conditions
The boundary positions r = R− (BOMB) and r = R+ (TOMB) correspond to the
case where no convection operates in the solid, and the solid and liquid layers are at
thermodynamical equilibrium. In this case – referred to as “the equilibrium case” in
this chapter – both boundaries are spherical, and at the phase change temperatures
T− and T+. Moreover, no heat is gained or lost by the overall system (which would
result in a net melting or freezing of the magma oceans). In practice, if convection
operates in the solid layer, matter at the boundary departs from its equilibrium
position and therefore forms a topography h with respect to it. This topography
is either a solid residing in a liquid or a liquid residing in a solid of the same
composition, and therefore prone to melting or freezing. This phase change can act
as an erosion mechanism of the topography, effectively resulting in an exchange of
matter between the solid and the liquid layers. The goal of this chapter is to write
boundary conditions accounting for this possibility. Such a system comprises a large
wealth of complexities and therefore several assumptions need be made in order to
ease its study. A few of these assumptions are alleviated in chapter 5. Figure 2.2
illustrates what happens as the actual solid-liquid boundary is deformed around its
equilibrium position. The topography with respect to the equilibrium position is
denoted h+ at the TOMB and h− at the BOMB; it is by convention positive when
oriented towards a higher radial position. The actual liquid/solid interface of the
system is then at r = R− + h− for the bottom boundary and r = R+ + h+ for the
top boundary.

The normal stress continuity writes:

2η
∂ur

∂r
(hs)− P (hs) = −P (hl), (2.5)

where f(hs) is the quantity f at the solid side of the boundary, and f(hl) is the
quantity f at the liquid side of the boundary. Note that the viscosity of the liquid
is several orders of magnitude smaller than that of the solid; viscous forces on the
liquid side are therefore neglected. The pressure is then written as the sum between
the hydrostatic pressure P̄ and the dynamic pressure p:

2η
∂ur

∂r
(hs)− p(hs)

−P̄ (hs)︷ ︸︸ ︷
−P̄0 + ρsgh

=− p(hl)−P̄0 + ρlgh︸ ︷︷ ︸
−P̄ (hl)

.
(2.6)

where P̄0 is the hydrostatic pressure at the boundary in the motionless equilibrium
position. Moreover, the dynamic pressure p(hl) in the liquid can be neglected since
its time average value is null and the dynamics of the liquid part is expected to be
fast compared to the one of the solid. Equation (2.6) becomes

2η
∂ur

∂r
(hs)− p(hs) + ∆ρgh = 0 (2.7)
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Figure 2.2: Dynamic topography at the boundaries. Note that the curvature has
been removed and the height of topography exagerated for readability purpose. The
horizontal dot-dashed lines at z = ±1/2 correspond to the equilibrium position
of the boundaries r = R± when no convection operates in the solid and there
is no net freezing or melting of the magma oceans. Matter departing from the
boundary creates a topography h. The thick line on the right side is the super-
isentropic temperature profile in the motionless steady state. The temperature at the
topography follows the melting temperature (thin solid line), and therefore departs
from the isentropic profile in the liquid. Figure from Labrosse, Morison, et al. (2018).

where ∆ρ = ρs − ρl is the density contrast between the solid and the liquid. Note
that for the system to be mechanically stable, ∆ρ should be positive at the top
boundary and negative at the bottom boundary. The last variable that needs to
be connected to the dynamics of the solid mantle is the topography h. At the
TOMB, a positive (resp. negative) topography h+ is formed by solid (liquid) matter
that goes toward the liquid (solid) part but that has not melted (crystallized) yet.
Conversely, at the BOMB, a positive topography h− corresponds to liquid matter
going toward the solid but that has not frozen yet.

The topography h± is formed by the velocity of the solid itself ur as well as
the freezing-front velocity Vr. This freezing-front velocity is chosen positive along
the outward radial direction. A positive value of Vr corresponds to freezing at the
TOMB, and melting at the BOMB. Its lagrangian derivative hence verifies

Dh±

Dt
= ur + Vr. (2.8)

Moreover, energy conservation at the boundary is given by Stefan’s law:

ρsLhVr = (ql − qs) · r̂ (2.9)

where Lh is the latent heat of crystallization and q is the heat flux on either side of
the boundary. Assuming the topography is at thermodynamic equilibrium, the tem-
perature at the boundary T (h) is the melting temperature at the relevant pressure.
It is related to the melting temperature at the equilibrium position of the boundary
T± as follows:

T (h±) = T± − ∂TL

∂P
ρlgh

±. (2.10)
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∂TL

∂P
is the Clapeyron slope, considered constant on the pressure range across the

topography h.
Solving this set of equations at both boundaries requires a full convection model

in the liquid to determine the heat flux in the liquid ql. However, the timescale at
which the liquid evolves is much shorter than that of the solid. This makes solving
Navier-Stokes in a consistent way for both the solid and liquid layers impractical
with our current computing power. The liquid behavior at the timescale at which
solid-state convection operates is therefore parameterized. The parametrization we
use is the one that was introduced for the core in Deguen, Alboussière, et al. (2013).
Assuming advection dominates heat transport, one can write

ql · r̂ ∼ ρlCp,lv
′δT (2.11)

where v′ is the typical fluid velocity in the liquid and δT is the temperature departure
from the average temperature profile in the liquid at the topography. The average
temperature profile is assumed to be isentropic as convection in magma oceans is
expected to be vigorous (e.g. Solomatov 2015). This leads to

δT =

(
∂T

∂P

∣∣∣∣
S

− ∂TL

∂P

)
ρlgh. (2.12)

Moreover, the heat flux from the solid qs · r̂ is considered small compared to the one
carried out in the liquid and is therefore neglected in eq. (2.9). Injecting eqs. (2.11)
and (2.12) in eq. (2.9) gives the following expression for the freezing velocity Vr:

Vr = − h

τφ
(2.13)

with τφ the phase change timescale

τφ =
ρsLh

ρ2l gCP,lv′(∂PTL − ∂PTS)
. (2.14)

τφ is the timescale at which heat is carried in the magma ocean from the topographies
that freeze to the topographies that melt.

Moreover, convection in the solid operates at much longer timescales than convec-
tion in the liquid and melting/freezing, meaning the time derivative of topography
in eq. (2.8) can be neglected (Dh/Dt ∼ 0). Plugging eq. (2.13) in eq. (2.8) yields
the following expression for the topography h

h = urτφ. (2.15)

Substituting h with its expression in eq. (2.7) and assuming the topography is small
compared to the thickness of the domain, one obtains the following boundary con-
dition applied at r = R±

∆ρgτφur + 2η
∂ur

∂r
− p = 0. (2.16)

Note that the topography h is now an implicit variable of the problem that can
be computed a posteriori. This boundary condition and its effects on solid-state
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convection is extensively discussed in Deguen (2013), Deguen, Alboussière, et al.
(2013), Labrosse, Morison, et al. (2018), and Morison et al. (2019).

Assuming viscous forces in the liquid are negligible, the shear stress continuity
at each boundary is written:

τrθ = η

(
r
∂

∂r

(uθ

r

)
+

1

r

∂ur

∂θ

)
= 0,

τrφ = η

(
r
∂

∂r

(uφ

r

)
+

1

r sin θ

∂ur

∂φ

)
= 0.

(2.17)

Those equations are applied directly to the reference boundary R±, the topography
h being considered small.

Finally, boundary conditions on the temperature field are required. We assume
in this study that the solid/liquid phase transition occurs at a laterally constant
temperature. Hence, neglecting the topography, Dirichlet conditions are used at
both boundaries:

T (r = R−) = T−, T (r = R+) = T+. (2.18)

2.3 Dynamic pressure choice
Applying the boundary condition eq. (2.16) at both boundaries might lead to a non-
zero average radial velocity at a boundary. This would be equivalent to a net-freezing
of one magma ocean and a net-melting of the other. We want to decouple completely
net-freezing or melting of the magma oceans (related to the long term evolution
of the system) and dynamical freezing or melting at the boundaries (related to the
dynamic topography formed by viscous forces). To this effect, the dynamic pressure
needs to be chosen to ensure the boundary condition eq. (2.16) cannot yield a non-
zero average radial velocity. In the rest of this document, 〈•〉 denotes the lateral
mean of a quantity. As previously, + and − superscripts denote quantities evaluated
at the top and bottom boundary respectively.

Denoting Tp the temperature profile such that T = Tp yields p = 0, the Stokes
eq. (2.2) becomes

0 = −∇p+ η∇2u + ρgα(T − Tp)r̂. (2.19)

Integrating the Stokes equation over the entire solid domain Ω and projecting on r̂
gives:

0 =

∫
+

(
2η

∂ur

∂r
− p

)
dS −

∫
−

(
2η

∂ur

∂r
− p

)
dS +

∫
Ω

ρgα(T − Tp)dV. (2.20)

Plugging the phase change boundary condition eq. (2.16) in eq. (2.20) leads to

∆ρ+gτ+φ (R
+)2 〈ur〉+ + |∆ρ−|gτ−φ (R

−)2 〈ur〉− = ρgα

∫ R+

R−
(〈T 〉 − Tp) r

2dr. (2.21)

Finally, mass conservation gives us:

(R+)2 〈ur〉+ = (R−)2 〈ur〉− . (2.22)
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This leads to

(
∆ρ+τ+φ + |∆ρ−|τ−φ

)
(R+)2 〈ur〉+ = ρα

∫ R+

R−
(〈T 〉 − Tp) r

2dr. (2.23)

Equation (2.23) shows the average topography at the boundaries τ±φ 〈ur〉± is
directly proportional to the average buoyancy of the bulk. Choosing Tp equal to 〈T 〉
therefore ensures the average topography (and average radial velocity) is zero at all
time. Defining the dynamic pressure as p = P − 〈P 〉, the Stokes eq. (2.2) becomes

0 = −∇p+ η∇2u + ρgα(T − 〈T 〉)r̂. (2.24)

2.4 Dimensionless equations
The equations are made dimensionless in order to reduce the number of parameters
describing the physical problem. The scales for distance, time, mass and tempera-
ture are respectively the thickness of the domain L = R+−R−, the thermal diffusive
timescale L2

κ
, the mass ηL3

κ
and the temperature difference ∆T = T− − T+ between

the two interfaces. The dimensionless temperature T̃ is defined as:

T̃ =
T − T+

∆T
. (2.25)

Using the same symbols for dimensionless and dimensional quantities, the non
dimensional conservation equations write

∇ · u = 0 (2.26)

0 = −∇p+∇2u + Ra(T − 〈T 〉)r̂ (2.27)

∂T

∂t
+ u ·∇T = ∇2T (2.28)

where Ra is the Rayleigh number defined as:

Ra ≡ ρgα∆TL3

ηκ
. (2.29)

This dimensionless number compares the buoyancy forces which drive the convection
to the momentum and heat diffusion coefficients which limit the convection.

With eq. (2.25), the boundary conditions for the temperature are straightfor-
ward:

T− = T (R−) = 1;

T+ = T (R+) = 0.
(2.30)

The free-slip boundary condition eq. (2.17) gives:

r
∂

∂r

(uθ

r

)
+

1

r

∂ur

∂θ
= 0,

r
∂

∂r

(uφ

r

)
+

1

r sin θ

∂ur

∂φ
= 0.

(2.31)
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Finally, the normal stress continuity condition eq. (2.16) leads to:

± Φ±ur + 2
∂ur

∂r
− p = 0. (2.32)

Φ+ and Φ− are the dimensionless phase change numbers of the top and bottom
interfaces, defined as

Φ± ≡ |∆ρ|±gL
η

τφ. (2.33)

These parameters are ratios between the phase change timescale τφ and the timescale
needed to build topography by viscous forces. These numbers represent the resis-
tance of the melting/freezing boundaries to the flow of matter through them. If
Φ → 0 at one interface, the boundary condition eq. (2.32) reduces to a normal
stress free condition, meaning the interface is fully permeable. Physically, melt-
ing and freezing of matter is much quicker than viscous building of topography,
allowing matter to pass easily through the interface. The height of the topogra-
phy is indeed limited by the rate at which it is melted/frozen away instead of its
buoyancy. On the contrary, if Φ → ∞, the boundary condition eq. (2.32) imposes
that ur = 0, which corresponds to the impermeable boundary condition. Physically,
viscous building of topography is fast enough for the height of the topography to be
limited by its weight rather than melting or freezing, hence preventing matter from
crossing the boundary.

After making the equations dimensionless, only four parameters are necessary
to describe the system. The inner radius R− characterizing the geometry (the outer
radius being R+ = 1 + R− since lengths are made dimensionless with the thickness
of the domain), the Rayleigh number Ra describing the strength of convection, and
the two phase change numbers Φ± parameterizing the behavior of the two interfaces
with the magma oceans.
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Chapter 3

Linear stability analysis of the
static thermal problem

A first approach to study the system described in chapter 2 is a linear stability
analysis. We study here the stability of the conductive state in the solid, varying
the phase change numbers Φ± as well as the geometry of the system defined by the
dimensionless position of the internal boundary R−. The approach presented here
is akin to that used by Deguen (2013) who studies a similar problem with three
differences:

• the gravity acceleration is considered constant in our study while it varies
linearly with the radial position in Deguen (ibid.);

• we neglect internal heating in our study, while Deguen (ibid.) considers a
volumetrically heated domain;

• the Rayleigh number is defined with the temperature difference and the domain
thickness in our study, but with the volumetric heating rate and the outer
radius in Deguen (ibid.); comparison of the critical Rayleigh number values
between the two studies should therefore be made with care.

3.1 Motionless reference state
The system of partial differential equations formed by the conservation eqs. (2.26)
to (2.28) and their boundary conditions eqs. (2.30) to (2.32) exhibits a purely con-
ductive (i.e. motionless) steady solution. This solution is denoted by an overline in
this chapter. Since it is a steady motionless state, we have

ū = 0 (3.1)

and
∇2T̄ = 0. (3.2)

The latter equation along with the boundary conditions on temperature eq. (2.30)
lead to a reference temperature T̄ that is laterally constant and varies with the
radius as

T̄ =
R+R−

r
−R−. (3.3)
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Injecting this in the Stokes eq. (2.27) gives

∇p̄ = 0. (3.4)

Therefore, p̄ is constant throughout the solid domain. Since it should be null to
satisfy the phase change boundary condition eq. (2.32), one obtains

p̄ = 0. (3.5)

Introducing the temperature anomaly Θ = T − T̄ , the conservation equations be-
come:

∇ · u = 0; (3.6)

0 = −∇p+∇2u + Ra (Θ− 〈Θ〉) r̂; (3.7)
∂Θ

∂t
+ u ·∇(Θ + T̄ ) = ∇2Θ. (3.8)

The boundary conditions on Θ are Θ = 0 at both boundaries.

3.2 Poloidal potential formulation
Since the fluid is considered isoviscous and incompressible, the velocity field can be
reduced to a scalar field, the poloidal potential P defined as (e.g. Ribe 2007; Ricard
and Vigny 1989):

u = ∇×∇× (Pr). (3.9)

One can notice that the poloidal potential is related to the stream vector Ψ:

u = ∇×Ψ ⇐⇒ Ψ = ∇× (Pr). (3.10)

The three components of the velocity field are then:

ur =
1

r
L2P , (3.11)

uθ =
∂

∂θ

(
1

r

∂

∂r
(rP)

)
, (3.12)

uφ =
1

sin θ

∂

∂φ

(
1

r

∂

∂r
(rP)

)
. (3.13)

L2 is the scalar operator defined as:

L2• ≡ ∂

∂r

(
r2
∂•
∂r

)
− r2∇2•

= − 1

sin θ

∂

∂θ

(
sin θ

∂•
∂θ

)
− 1

sin2 θ

∂2•
∂φ2

.

(3.14)

Using the following properties (e.g. Dormy 1997):

L2• = (∇×∇× (•r)) · r, (3.15)

∇×∇× u = −∇×∇× (r∇2P), (3.16)
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one can find the poloidal formulation of the momentum conservation equation:

(∇×∇× eq. (3.7)) · r ⇐⇒ L2

(
∇4P − Ra

r
Θ

)
= 0. (3.17)

Since the poloidal and temperature fields are assumed to be “smooth”, this equa-
tion means that the quantity ∇4P − Ra

r
Θ is constant with respect to the φ and θ

directions. This constant can be taken equal to zero without any loss of generality,
leading to

∇4P =
Ra
r
Θ. (3.18)

Introducing Q such as:
Q ≡ ∇2P , (3.19)

eq. (3.18) can be written
∇2Q =

Ra
r
Θ. (3.20)

The heat conservation equation eq. (3.8) becomes:

∂Θ

∂t
+ (∇×∇× (Pr)) ·∇Θ = ∇2Θ+R−R+ 1

r3
L2P . (3.21)

Using eqs. (3.11) to (3.13), the free-slip boundary condition eq. (2.31) leads to:

∂2P
∂r2

+ (L2 − 2)
P
r2

= Cθ,φ (3.22)

where Cθ,φ denotes an arbitrary constant along the θ and φ directions. The choice
of Cθ,φ does not matter to perform the linear stability analysis since it is a term of
harmonic degree 0 and therefore vanishes when equations are written for higher har-
monic degrees. Degree-0 terms are ignored since they are forbidden by our definition
of the dynamic pressure as shown in section 2.3.

Finally, since the dynamic pressure does not appear in the poloidal formulation
of the momentum conservation eq. (3.20), it should be eliminated from the normal
stress continuity boundary condition eq. (2.32). Denoting ω = ∇× u the vorticity
and recalling ∇ · u = 0, one can deduce that

∇2u = −∇× ω. (3.23)

The projection of the momentum conservation eq. (3.7) along θ̂ gives

1

r

∂p

∂θ
+ (∇× ω) · θ̂ = 0. (3.24)

Since there is no source of toroidal potential in the studied problem, there is no
radial vorticity (e.g. Ribe 2007). Hence,

(∇× ω) · θ̂ = −1

r

∂

∂r
(rωφ) . (3.25)

With eqs. (3.11) and (3.12), one obtains:

ωφ = (∇× u) · φ̂ =
1

r

(
∂

∂r
(ruθ)−

∂ur

∂θ

)
=

∂

∂θ

(
∇2P

)
. (3.26)
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Putting eqs. (3.25) and (3.26) in eq. (3.24) leads to:

∂p

∂θ
=

∂2

∂θ∂r

(
r∇2P

)
. (3.27)

Performing a similar calculation on the φ direction gives this relation between the
dynamic pressure and the poloidal potential:

− p+
∂

∂r

(
r∇2P

)
= Kθ,φ (3.28)

where Kθ,φ is an arbitrary constant along the θ and φ directions. This allows us to
substitute the pressure in the phase change condition eq. (2.32):

± Φ±1

r
L2P +

∂

∂r

(
2

r
L2P − rQ

)
= Kθ,φ. (3.29)

Note that as Cθ,φ in eq. (3.22), the actual value of Kθ,φ is irrelevant in this study.

3.3 Perturbation equations
Since Θ is defined as the temperature difference to the conductive state, it already
represents the perturbation of temperature with respect to the reference state. Per-
turbations of the poloidal potential P , Q and the temperature field Θ are developed
using spherical harmonics as following:

P =
∞∑
l=1

l∑
m=−l

Pm
l (r)Y m

l (θ, φ)eσlt,

Q =
∞∑
l=1

l∑
m=−l

Qm
l (r)Y

m
l (θ, φ)eσlt,

Θ =
∞∑
l=1

l∑
m=−l

Tm
l (r)Y m

l (θ, φ)eσlt.

(3.30)

Note that the l = 0 harmonic is not taken into account since it corresponds to the
motionless conductive state.

In the frame of linear stability analysis, one can study each mode (l,m) in an
independent way. For a given problem (R−,Φ+,Φ−), the goal of the analysis is
to determine which mode is the most unstable and what is its associated critical
Rayleigh number Rac. Moreover, the problem is degenerated in terms of lateral
orientation. Hence, the growth rate σl of any given mode (l,m) only depends on l.
For readability purposes, m indices are dropped.

The differential operators can easily be written for any mode l. Indeed, spherical
harmonics are eigenfunctions of the L2 operator. Applying L2 to a given mode
reduces to:

L2• = l(l + 1) • . (3.31)
The laplacian operator applied to a given mode is then:

D2
l • ≡ ∂2•

∂r2
+

2

r

∂•
∂r

− l(l + 1)

r2
• . (3.32)
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The conservation equations eqs. (3.19) to (3.21) can be written as (the only
neglected non-linear term being the advection u ·∇Θ):

Ql = D2
l Pl, (3.33)

D2
l Ql =

Ra
r
Tl, (3.34)

(σl −D2
l )Tl = R−R+ l(l + 1)

r3
Pl. (3.35)

Finally, the boundary conditions eqs. (2.30), (3.22) and (3.29) can be written as:

(Tl)
± = 0, (3.36)(

d2Pl

dr2

)±

+ [l(l + 1)− 2]

(
Pl

r2

)±

= 0, (3.37)

± Φ±l(l + 1)

(
Pl

r

)±

+
d
dr

(
2l(l + 1)

r
Pl − rQl

)±

= 0. (3.38)

Note that the lateral constants Cθ,φ and Kθ,φ do not appear in those equations since
they are of degree l = 0. Also, as mentioned previously, the linearized equations are
independent of the order m of the considered mode.

3.4 Eigenvalue formulation
Using a Chebyshev-collocation approach (e.g. Canuto et al. 1985; Guo et al. 2012),
the system defined by eqs. (3.33) to (3.38) can be formulated as a generalized eigen-
value problem. Chebyshev polynomials are used to expand the perturbations along
the radial direction. Each vertical mode Pl, Ql and Tl is entirely characterized by
N + 1 Chebyshev-Gauss-Lobatto nodal points at zi = cos iπ

N
with i = 0 . . . N . To

map the z ∈ [−1, 1] space to the r ∈ [R−, R+] space, one uses the following trans-
formation:

ri =
zi + 1

2
+R−. (3.39)

Each vertical mode can then be represented by a vector with N + 1 components.
For example, the toroidal potential vertical mode Pl is represented by P, the vector
such as Pi = Pl(ri). Similarly, Ql and Tl are represented by Q and T.

With such a formalism, the successive radial derivatives of each vertical mode at
any nodal point can be computed with the help of a differentiation matrix d:

∂kP
∂rk

= dkP. (3.40)

Note that for numerical precision reasons, the powers of d are computed separately
instead of directly as the successive powers of d. The differentiation matrices dk

are calculated with the help of a Python adaptation of DMSUITE (Weideman and
Reddy 2000). The Python package is available at https://github.com/labrosse/
dmsuite.
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Denoting r the diagonal matrix

r ≡

r0 0
. . .

0 rN

 , (3.41)

the operator D2
l can be written as the matrix D2:

D2 ≡ d2 + 2r−1d − l(l + 1)r−2. (3.42)

The system defined by eqs. (3.33) to (3.38) is then equivalent to the matrix
equation

LX = σRX (3.43)

with

X =

( )P 0, N
Q 0, N
T 1, N − 1

(3.44)

L =

0, N 0, N 1, N − 1



d2 + [l(l + 1)− 2]r−2 0 0 0
D2 −1 0 1, N − 1

d2 + [l(l + 1)− 2]r−2 0 0 N
l(l + 1)(Φ+r−1 − 2r−2 + 2r−1d) −(1 + rd) 0 0

0 D2 −Rar−1 1, N − 1
l(l + 1)(−Φ−r−1 − 2r−2 + 2r−1d) −(1 + rd) 0 N

R−R+l(l + 1)r−3 0 D2 1, N − 1

(3.45)

R =

0, N 0, N 1, N − 1( )0 0 0 0, N
0 0 0 0, N
0 0 1 1, N − 1

(3.46)

where 1 is the identity matrix. The extra row and column on top and right of the
matrices are respectively the column and row indices of each of the submatrices.
For example, the top left submatrix of the matrix L is only the first row (hence the
0 on the extra column) of the matrix d2 + [l(l + 1) − 2]r−2. Similarly, the bottom
right submatrix of the matrix L is the matrix D2 without its first and last rows and
columns. Note that the boundaries of the temperature vertical mode are excluded
because the Dirichlet boundary condition eq. (3.36) is then naturally enforced.

Determining the modes X satisfying eq. (3.43) as well as the associated growth
rate σ is a generalized eigenvalue problem. Given a physical problem Π defined by
the three parameters Π = (R−,Φ+,Φ−), and any Rayleigh number Ra and harmonic
degree l, the finite eigenvalue σ with the greatest real part is the growth rate of the
perturbation of degree l. The eigenvector associated with σ is the vertical modes
of the perturbation. For a given physical problem Π and an harmonic l, one can
compute the growth rate of the perturbation as a function of the Rayleigh number.

38



3.5. RESULTS

The neutral Rayleigh number Ran is the Rayleigh number such as R(σ(Ran)) = 0
where R denotes the real part. Finally, for a given problem Π, one can compute the
neutral Rayleigh number as a function of the harmonic degree l of the perturbation.
The degree lc for which Ran(l) is minimal is the most unstable mode of the problem
Π. The associated Rayleigh number Rac = Ran(lc) is the critical Rayleigh number
of Π.

3.5 Results
A simple way to test the linear stability analysis is to perform the analysis with clas-
sical non-permeable free-slip condition at both boundaries for which linear analysis
have already been obtained. For comparison, in cartesian geometry, one gets a criti-
cal Rayleigh number Rac = 657.52 and an associated wavenumber kx = 2.23 (Strutt
1916). In a spherical shell of aspect ratio γ ≡ R−/R+ = 0.55, the critical Rayleigh
number is Rac = 711.95, associated with the harmonic degree l = 3. Again, this is
in perfect agreement with the existing literature (e.g. Bercovici and Schubert 1988).
Moreover, when γ → 1, the geometry of the spherical shell tends towards a laterally
infinite cartesian space. The critical Rayleigh number is hence expected to tend to-
wards the value Rac = 657.52 obtained for the cartesian geometry. With γ = 0.99,
the obtained critical Rayleigh number is Rac = 657.528 which is very close to the
cartesian value.

In all the performed analyses, the growth rate σ has no imaginary part. All the
modes at Rac presented here are hence non oscillating solutions.

Figures 3.1 and 3.2 show the most unstable mode and associated critical Rayleigh
number for various cases. Since the linear problem we solve here is degenerated
in terms of lateral orientation, all modes with the same harmonic degree l but
different orders m have the same growth rate. We choose in figs. 3.1 and 3.2 to
represent the critical mode of order m = lc (lc being the degree of the critical mode)
in the equatorial plane θ =

π

2
. Moreover, instead of showing the poloidal potential

perturbation, we show instead isovalues of the stream vector component along θ̂.
These are streamlines of the flow in the equatorial plane. Enforcing l = m leads to
the following relationship between the Ψθ component of the stream vector and the
poloidal potential eigenmode Pl:

Ψθ(r, φ) = R
(
ilPl(r)Y

l
l

(π
2
, φ
))

(3.47)

where R denotes the real part.
The left column of fig. 3.1 shows the classical case with non-penetrative bound-

aries. The critical mode consists in nearly aspect-ratio-one convective rolls, and
therefore a higher critical harmonic degree as the aspect ratio of the shell increases.
We can see on the right column of fig. 3.1 the effects of a small phase change num-
ber at the bottom boundary while a classic non-penetrative condition is prescribed
at the top boundary. Owing to the flow-through boundary condition, streamlines
are not deviated by the boundary and can instead pass through it as matter melts
(downwellings) or freezes (upwellings). Hence, as expected in section 2.4, a low value
of the phase change number Φ allows matter to cross the boundary. The return
current necessary to conserve mass happens in the magma ocean. This leads to
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convective patterns with a larger wavelength than the classical rolls, as well as a
lower critical Rayleigh number as less deformation is involved in these modes than
in the classical rolls.

The left column of fig. 3.2 shows that with a flow-through boundary condition
with a small phase change number at the top boundary, the most unstable mode is
a degree-one pattern regardless of the aspect ratio of the shell. Matter crystallizes
on one hemisphere of the shell, goes through the other side avoiding the core, and
finally melts on the other hemisphere. As shown in the right column of fig. 3.2,
when both phase change numbers are small (i.e. both boundaries are flow through),
streamlines go straight through the entire shell. All the cases shown on fig. 3.2
correspond to degree-one translation modes of convection. The solid shell departs
from its equilibrium position but is constantly recycled and kept in place as it freezes
on one side and melts on the other. When both boundaries are flow-through, this
translation operates without any deformation in the solid. Convection is only limited
by the rate at which melting and freezing can occur and, as shown in section 3.6, the
critical Rayleigh number can be arbitrarily small and is proportional to Φ±. Note
that this complete absence of deformation is valid in the frame of linear stability,
the non-linear numerical simulations presented in the next chapter yield a slightly
different result. Finally, when only the top boundary is flow-through, the translation
is associated to some deformation in the solid, necessary for the convecting matter
to go around the core.

Figures 3.3 to 3.5 show the effects of varying the phase change number on the
critical Rayleigh number and associated critical harmonic degree. A first observation
from these figures is that when both phase change numbers are high (Φ± & 102),
the system exhibits the same critical Rayleigh numbers and wavelengths as with the
classical non-penetrative free-slip boundary conditions. This is expected from the
definition of the phase change number Φ, as discussed in section 2.4. As either or
both phase change number decrease, the corresponding boundaries transition to the
flow-through regime. The critical Rayleigh number and associated harmonic degree
decrease as the boundary condition allows for larger wavelength modes of convection.
When only one boundary is flow-through (figs. 3.3 and 3.4), the critical Rayleigh
number decreases of roughly one order of magnitude. As shown in section 3.6, the
critical Rayleigh number can be arbitrarily small when both boundaries are flow-
through and the translation regime is the most unstable (see fig. 3.5). A remarkable
feature visible on fig. 3.4 and fig. 3.5 is that a small value of Φ+ (smaller than about
10) leads to a degree-one translation mode regardless of the aspect ratio of the shell
γ or the value of Φ− (a large value for the latter leads to a translation mode with
deformation as discussed above).

Finally, figs. 3.6 to 3.8 show the effect of varying the aspect ratio of the shell on
the stability of several harmonics degree in three setups: flow-through condition only
at the bottom (fig. 3.6), only at the top (fig. 3.7), and at both boundaries (fig. 3.8).
As observed before, fig. 3.7 and fig. 3.8 show the degree-one mode is the most
unstable for any aspect ratio. Moreover, one can notice the neutral Rayleigh number
of other modes is much higher than that of the degree-one, showing the degree-one
translation mode is strongly favored. The case of a flow-through boundary only at
the bottom depicted in fig. 3.6 exhibits an interesting behavior. For aspect ratio
lower than about 0.75, the most unstable mode corresponds to convective rolls that
cross the boundary. These rolls are about twice as wide as the classical convective
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rolls obtained with non-penetrative boundary conditions, as observed in fig. 3.1
for γ < 0.8 (for γ = 0.2 it is geometrically impossible for the rolls in the flow-
through case to be wider than those in the non-penetrative case). However, for
higher aspect ratios of the shell, instead of higher harmonic degrees corresponding
merely to these wider rolls, the most unstable mode is of degree-one. This mode
is the one shown for γ = 0.8 on fig. 3.1, it correponds to a mode where matter
freezes on one inner hemisphere and melts on the other, akin to what happens in
the translation mode excepts more deformation is involved in the solid. Note that
this degree-one mode has a critical Rayleigh number close to that of other modes as
visible on fig. 3.6, allowing competition between the degree-one mode and higher-
degree modes at intermediate values of the aspect ratio γ. This contrasts strongly
with the translation mode exhibited by cases with a flow-through condition at the
top boundary (figs. 3.7 and 3.8) that is clearly the most unstable mode.
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Φ+ = Φ− = ∞ Φ+ = ∞; Φ− = 10−2

γ = 0.2

Rac = 1058, lc = 1 Rac = 505, lc = 1

γ = 0.4

Rac = 770, lc = 2 Rac = 270, lc = 1

γ = 0.6

Rac = 691, lc = 4 Rac = 189, lc = 2

γ = 0.8

Rac = 666, lc = 10 Rac = 160, lc = 1

Figure 3.1: Temperature perturbation and streamlines of the most unstable mode for
non-penetrative boundary conditions (left) and flow-through at the bottom (right).
Each row is a different value of the aspect ratio γ of the shell. The critical Rayleigh
number Rac and harmonic degree lc are indicated under each figure.
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Φ+ = 10−2; Φ− = ∞ Φ+ = Φ− = 10−2

γ = 0.2

Rac = 73, lc = 1 Rac = 0.84, lc = 1

γ = 0.4

Rac = 81, lc = 1 Rac = 0.39, lc = 1

γ = 0.6

Rac = 96, lc = 1 Rac = 0.28, lc = 1

γ = 0.8

Rac = 115, lc = 1 Rac = 0.25, lc = 1

Figure 3.2: Temperature perturbation and streamlines of the most unstable mode
for flow-through at the top (left) and flow-through at both boundaries (right). Each
row is a different value of the aspect ratio γ of the shell. The critical Rayleigh
number Rac and harmonic degree lc are indicated under each figure.
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Figure 3.3: Critical Rayleigh number and associated harmonic degree for varying
Φ− and various aspect ratios. Left: top boundary is non-penetrative, right: top
boundary is flow-through.
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Figure 3.5: Critical Rayleigh number and associated harmonic degree for varying
Φ+ = Φ− and various aspect ratios.
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ratio of the spherical shell. Boundary conditions are flow-through at the bottom
and non-penetrative at the top.
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Figure 3.7: Neutral Rayleigh number of several modes as a function of the aspect
ratio of the spherical shell. Boundary conditions are non-penetrative at the bottom
and flow-through at the top.
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Figure 3.8: Neutral Rayleigh number of several modes as a function of the aspect
ratio of the spherical shell. Boundary conditions are flow-through at both bound-
aries.
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3.6 Analytical study of the translation mode
The degree-one translation solution is the dominating convection regime when both
phase change numbers Φ± are small. This section presents an analytical determina-
tion of the critical Rayleigh number of this mode of convection.

In this section, U t̂ denotes the translation velocity. U is its amplitude and t̂ a
unit vector along the translation direction. The colatitude is chosen as θ = (t̂, r̂),
see fig. 3.9 for a schematic of the setup.

3.6.1 Buoyancy – topographic weight equilibrium
Integrating the Stokes eq. (2.27) over the entire domain Ω yields

0 =

∫
+

(
−pr̂ +

(
∇u+∇uT

)
· r̂
)

dS

−
∫
−

(
−pr̂ +

(
∇u+∇uT

)
· r̂
)

dS

+

∫
Ω

Ra (T − 〈T 〉) r̂dV.

(3.48)

Plugging the free-slip boundary condition eq. (2.31) and the phase change boundary
condition eq. (2.32) in eq. (3.48) leads to∫

Ω

Ra (T − 〈T 〉) r̂dV =

∫
+

Φ+urr̂dS +

∫
−
Φ−urr̂dS. (3.49)

Equation (3.49) shows the buoyancy of the domain (left-hand-side) compensates the
total weight of the dynamical topographies (right-hand-side).

One can expand the temperature and velocity fields as series of Legendre poly-
nomials. Projecting eq. (3.49) along the translation direction t̂ gives the following
relation between their degree one components:

Ra
∫ R+

R−

∫ π

0

T cos θ sin θdθ︸ ︷︷ ︸
2
3
T1

r2dr =
(
(R+)2Φ+ + (R−)2Φ−) ∫ π

0

ur cos θ sin θdθ︸ ︷︷ ︸
2
3
ur1=

2
3
U

.

(3.50)

u = U t̂

t̂

n̂1

n̂2

θ

Figure 3.9: Physical setup and chosen frame in a degree-one translation case. This
figure is drawn in the ϕ = 0 plane. The system is axisymmetric around t̂ (i.e. ϕ-
invariant).
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This yields the following relation between the translation velocity U and the degree-
one T1 of the temperature field

U =
Ra

(R+)2Φ+ + (R−)2Φ−

∫ R+

R−
T1r

2dr. (3.51)

3.6.2 Critical Rayleigh number
The linear growth rate of T1 is

∂T1

∂t
= −U

∂T̄

∂r
+D2

1T1 (3.52)

where T̄ is the reference conductive profile eq. (3.3), which is also the degree-zero
component of the temperature field. The advection of the degree-two component
T2 is neglected as it is a non-linear term. If the Rayleigh number is at the critical
value for the degree-one mode of convection (i.e. the translation mode), then the
growth rate of T1 should be zero. Solving eq. (3.52) for ∂T1

∂t
= 0 (with T±

1 = 0)
and injecting the solution in eq. (3.51) therefore gives us an equation for the critical
Rayleigh number of the translation mode.

D2
1T1 = U

∂T̄

∂r
= −UR−R+ 1

r2

⇐⇒ T1 =
U

2
R−R+

(
1− (R+)2 − (R−)2

(R+)3 − (R−)3
r +

(R+)2(R−)3 − (R+)3(R−)2

(R+)3 − (R−)3
1

r2

)
(3.53)

This leads to:

Rac = 24
((R+)2Φ+ + (R−)2Φ−) ((R+)3 − (R−)3)

R+R− ((R+)2 + 4R+R− + (R−)2)
. (3.54)

Introducing the aspect ratio γ ≡ R−

R+
, one obtains:

Rac = 24
(Φ+ + γ2Φ−)(1− γ3)

γ(1− γ)(γ2 + 4γ + 1)
. (3.55)

Note that the critical Rayleigh number of the translation mode is directly propor-
tional to Φ+ + γ2Φ−. It can therefore be arbitrarily small as the values of these
phase-change parameters decrease. Indeed, since no deformation occurs in the solid,
the only limiting factor for convection to happen in the translation regime is the
rate at which melting and freezing can occur. Moreover, as γ gets close to 1, the
geometry of the system gets closer to that of an infinite cartesian layer. One can
notice that

lim
γ→1

Rac = 12(Φ+ + Φ−), (3.56)

which is the linear critical Rayleigh number of the translation mode in cartesian
geometry (Labrosse, Morison, et al. 2018).
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3.7 Concluding remarks
Even though a simple approach, the linear stability analysis exposed in this section
sheds light on the dramatic consequences of the flow-through boundary condition
on convection in the primitive solid mantle. Note that the results obtained for our
system are similar to those of Deguen (2013) for a shell with a gravity increasing
with radius and internal heating. This is not surprising given the strong effects of
the phase change boundary condition on the behaviour of the flow. These boundary
conditions drastically decrease the critical Rayleigh number, affecting the onset of
convection in a primitive mantle crystallizing from global magma oceans, as exten-
sively discussed in chapter 6. The geometry of the flow in the solid is also greatly
affected by the possibility for matter to cross the boundary: the expected convec-
tive patterns exhibit a much larger wavelength than with classical non-penetrative
boundary conditions.

It should be kept in mind that the results are only meaningful close to the
critical Rayleigh number when non-linear terms play a minor role. Direct numerical
simulations are necessary to capture the dynamics of the system at higher Rayleigh
numbers and to obtain amplitude for convective velocities, temperature profiles, and
associated heat fluxes. This is the goal of the next chapter.

49



CHAPTER 3. LINEAR STABILITY ANALYSIS OF THE STATIC THERMAL
PROBLEM

50



Chapter 4

Numerical simulations of the
thermal problem

The linear stability analysis exposed in chapter 3 offers interesting insights on the
effect of the flow-through boundary condition used to parameterize the exchange of
matter between the primitive solid mantle and global magma oceans. Namely, the
critical Rayleigh number is drastically lowered, and the convective patterns exhibit
larger wavelengths. However, the linear stability analysis brings little information
on the dynamics of the system as the Rayleigh number departs from the critical
value and non-linear terms become important. It is also unable to yield finite-
amplitude informations on the system, such as heat flow and velocities. In order to
obtain information about these aspects, we choose here to perform direct numerical
simulations of the non-linear system. This chapter presents an exploration of the
parameter space of our problem, namely the phase change numbers Φ±, the aspect
ratio of the shell γ = R−/R+ and the Rayleigh number Ra.

4.1 Implementation in StagYY
Non-linear numerical simulations are done with the StagYY code from Tackley
(2008), which can handle 2D and 3D spherical and cartesian geometries. In this
study, due to the high computational cost of 3D calculations, we merely use the
2D spherical annulus geometry introduced by Hernlund and Tackley (2008). The
surface ratio between the inner surface and the outer surface of a spherical annulus
is the same as that of the full spherical shell. This leads to values of common diag-
nostics, such as the heat flux, that are closer to those obtained with 3D simulations
than when using simpler 2D geometries such as a cylindrical slice.

The resolution of the conservation eqs. (2.26) to (2.28) and the associated bound-
ary conditions is a two-step process. First, the mass and momentum conservation
equations along with the associated boundary conditions are discretized and written
in the form of a large sparse matrix equation with the pressure and velocity fields
as unknowns and the buoyancy term as right-hand-side. This system is solved using
the direct solvers UMFpack (Davis 2004) and MUMPS (Amestoy, Duff, et al. 2001;
Amestoy, Buttari, et al. 2019). Then, an advection-diffusion scheme is used to solve
the heat conservation equation, with the temperature field at the next step as un-
known. At the next time step, the temperature field previously calculated is used to
update the buoyancy term in the momentum conservation equation, and the same
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process is repeated until the desired number of time steps is reached.

Regarding the heat advection scheme, MPDATA (Smolarkiewicz and Margolin
1998) and TVD (Harten 1983) are both implemented in StagYY. However, as shown
in fig. 4.1, the use of MPDATA produces important numerical oscillations with
the phase change boundary conditions. We hence used the TVD scheme which does
not exhibit such oscillations, adapting it to handle non-zero normal velocities at the
boundaries.

Figure 4.1: Temperature field obtained with the MPDATA advection-diffusion
scheme. The important numerical oscillations that arise make this scheme unus-
able for the present study.

The normal stress continuity condition eq. (2.32) was the only missing equation
in the existing sparse matrix solver already implemented in StagYY. Discretization
of that boundary condition is described hereafter. Figure 4.2 shows the staggered
grid used in StagYY near the boundaries. Since ur(0) and ur(nr) are the velocities
at the bottom and top interfaces, one only needs to evaluate the velocity gradient
∂ur/∂r and the dynamic pressure p at the interface as a function of the velocity
and pressure interior points. Three interior points are used to do so, this leads to a
boundary condition written to the third order while other equations are discretized
to the second order. We made this choice because the boundary layer obtained with
the flow-through boundary condition can be extremely thin and its resolution is the
main numerical challenge issued by our system. Using a third order discretization
for the boundary instead of merely refining the grid in order to properly resolve the
boundary layer leads to better performances.
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ir = 0 r(0, 0)
ur(0)

ir = 1 r(0, 1)
ur(1)

ir = 2 r(0, 2)
ur(2)

ir = 3 r(0, 3)
ur(3)

p(0) r(1, 0)

p(1) r(1, 1)

p(2) r(1, 2)
ir = nr − 1 r(0, nr − 1)

ur(nr − 1)

ir = nr − 2 r(0, nr − 2)
ur(nr − 2)

ir = nr − 3 r(0, nr − 3)
ur(nr − 3)

ir = nr r(0, nr)
ur(nr)

p(nr − 1) r(1, nr − 1)

p(nr − 2) r(1, nr − 2)

p(nr − 3) r(1, nr − 3)

Figure 4.2: Staggered grid used in StagYY near the bottom boundary (left) and the
top boundary (right). The domain is decomposed in nr interior cells along the radial
direction. Note that to ease the resolution of the boundary layers, the cell thickness
decreases near the boundary. The pressure (as well as the temperature) is evaluated
at the center of the cells, whereas the velocities are evaluated on the faces of the
cells. r(0, ir) is the radial position of the bottom face of the ir-th cell; r(1, ir) is the
radial position of the center of that cell. ur(ir) = ur(r(0, ir)) and p(ir) = p(r(1, ir)).
ur(0) and ur(nr) are then the radial velocities at the bottom R− = r(0, 0) and top
boundary R+ = r(0, nr) respectively.

Velocity gradient at the bottom

With:
d0 = r(0, 1)− r(0, 0), a0 = d21d

2
2(d2 − d1),

d1 = r(0, 2)− r(0, 0), a1 = d20d
2
2(d0 − d2),

d2 = r(0, 3)− r(0, 0), a2 = d20d
2
1(d1 − d0),

(4.1)

the following Taylor developments may be written:

ur(1) = ur(0) + d0
∂ur

∂r
(R−) +

d20
2

∂2ur

∂r2
(R−) +

d30
6

∂3ur

∂r3
(R−) +O(δr4); (4.2)

ur(2) = ur(0) + d1
∂ur

∂r
(R−) +

d21
2

∂2ur

∂r2
(R−) +

d31
6

∂3ur

∂r3
(R−) +O(δr4); (4.3)

ur(3) = ur(0) + d2
∂ur

∂r
(R−) +

d22
2

∂2ur

∂r2
(R−) +

d32
6

∂3ur

∂r3
(R−) +O(δr4). (4.4)

δr = 1/nr is the typical cell thickness along the radial direction. The linear com-
bination a0(4.2) + a1(4.3) + a2(4.4) gives the following expression for the velocity
gradient at the bottom boundary:

∂ur

∂r
(R−) =

a0ur(1) + a1ur(2) + a2ur(3)− (a0 + a1 + a2)ur(0)

d0a0 + d1a1 + d2a2
+O(δr3). (4.5)

53



CHAPTER 4. NUMERICAL SIMULATIONS OF THE THERMAL PROBLEM

Pressure at the bottom

With:
h0 = r(1, 0)− r(0, 0),

h1 = r(1, 1)− r(0, 0),

h2 = r(1, 2)− r(0, 0),

(4.6)

the following Taylor developments may be written:

p(0) = p− + h0
∂p

∂r
(R−) +

h2
0

2

∂2p

∂r2
(R−) +O(δr3); (4.7)

p(1) = p− + h1
∂p

∂r
(R−) +

h2
1

2

∂2p

∂r2
(R−) +O(δr3); (4.8)

p(2) = p− + h2
∂p

∂r
(R−) +

h2
2

2

∂2p

∂r2
(R−) +O(δr3). (4.9)

The linear combination h1h2(h2−h1)(4.7)+h0h2(h0−h2)(4.8)+h0h1(h1−h0)(4.9)
gives the following expression for the dynamic pressure at the boundary:

p− =
h1h2(h2 − h1)p(0) + h0h2(h0 − h2)p(1) + h0h1(h1 − h0)p(2)

(h1 − h0)(h2 − h0)(h2 − h1)
+O(δr3). (4.10)

Discretized equation at the bottom

Equations (4.5) and (4.10) allow us to write eq. (2.32) at the bottom boundary
under the discretized form:

(−Φ− + cw0)ur(0) + cw1ur(1) + cw2ur(2) + cw3ur(3)

+ cp0p(0) + cp1p(1) + cp2p(2) = O(δr3)
(4.11)

where:

cw0 = −2
a0 + a1 + a2

d0a0 + d1a1 + d2a2
, cp0 = − h1h2

(h1 − h0)(h2 − h0)
,

cw1 = 2
a0

d0a0 + d1a1 + d2a2
, cp1 =

h0h2

(h1 − h0)(h2 − h1)
,

cw2 = 2
a1

d0a0 + d1a1 + d2a2
, cp2 = − h0h1

(h2 − h0)(h2 − h1)
,

cw3 = 2
a2

d0a0 + d1a1 + d2a2
.

(4.12)

Discretized equation at the top

With:
d0 = r(0, nr − 1)− r(0, nr), h0 = r(1, nr − 1)− r(0, nr),

d1 = r(0, nr − 2)− r(0, nr), h1 = r(1, nr − 2)− r(0, nr),

d2 = r(0, nr − 3)− r(0, nr), h2 = r(1, nr − 3)− r(0, nr),

(4.13)

the same developments as for the bottom boundary may be written. Hence, the
discretized version of eq. (2.32) at the top boundary is

(Φ+ + cw0)ur(nr) + cw1ur(nr − 1) + cw2ur(nr − 2) + cw3ur(nr − 3)

+ cp0p(nr − 1) + cp1p(nr − 2) + cp2p(nr − 3) = O(δr3)
(4.14)
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with the coefficients expressed in eq. (4.12).
Using eqs. (4.11) and (4.14), the implementation of the phase change boundary

condition in StagYY is straightforward: one merely needs to add the cw and cp
coefficients in the sparse matrix involved in the resolution of the Stokes equation.

4.2 Flow-through condition at the bottom bound-
ary

We focus in this section on the situation where the top boundary is non-penetrative
while the phase change condition is applied at the bottom boundary. Figure 4.3
shows the behaviour of the system as the phase change number at the bottom, Φ−,
and the super-critical Rayleigh number, Ra/Rac, vary. Rac is the linear critical
Rayleigh number calculated using the method exposed in chapter 3. The aspect
ratio is γ = 0.6 for all the cases on fig. 4.3. These numerical simulations confirm the
two main conclusions previously drawn from the linear stability analysis.

• Large values of the phase change number Φ− lead to a classical non-penetrative
boundary (cases with Φ− = 103). Lower values of the phase change number
lead to a boundary that allows matter to flow through as can be seen with the
opening of the streamlines as Φ− decreases.

• Large values of Φ−, hence a non-penetrative boundary, lead to nearly aspect-
ratio-1 rolls corresponding to a degree-4 flow with the chosen aspect ratio
γ = 0.6. Decreasing Φ− leads to wider convection patterns. One can indeed
observe a competition between degree-4 and wider degree-3 convective patterns
on cases with Ra/Rac > 10 and Φ− 6 10. These cases are not stationary but
instead exhibit oscillations as the two harmonic degrees compete. Note that
these oscillations were not predicted by the linear stability analysis, and the
most linearly unstable mode is a degree-2 pattern (see fig. 3.1). This shows
the shortcomings of linear stability analysis to predict the behaviour of this
system, even at a rather low super-critical Rayleigh number of 101/2.

On top of the aforementioned oscillations, the numerical simulations exhibit inter-
esting features that could not be captured by a linear stability analysis.

• Rayleigh-Bénard convection in a spherical shell with non-penetrative bound-
aries leads to rather large cold downwellings and narrower hot plumes due
to the smaller surface of the hot bottom boundary compared to the cold top
boundary. As can be seen on fig. 4.3, the flow-through boundary condition at
the bottom leads to a strikingly different thermal structure for small values
of Φ−. Owing to inward advection of hot material at the bottom boundary,
most of the shell is filled with wide hot upwellings, while cold downwellings are
narrow. This is similar to convection with internal heating, even though none
is involved in this system. Note that since the bottom boundary allows mat-
ter to cross it, cold downwellings do not spread when reaching the interface.
Instead, they pass through it, reaching the bottom boundary temperature by
the means of a diffusive thermal boundary layer.
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• As the Rayleigh number increases, the cold narrow downwellings become thin-
ner (like the top thermal boundary layer) and associated to a higher vertical
velocity so as to conserve the overall mass of solid. This narrowing and accel-
eration of downwellings induces a numerical challenge. Indeed, the diffusive
thermal boundary layer at the base of downwelling becomes extremely thin.
Moreover, as the bottom boundary is isothermal and conservation of mass
imposes that the average radial velocity is zero through the boundary, no net
advection can occur through that boundary. Therefore, in order to properly
assess the heat flux carried out by the system, the thin and narrow diffusive
boundary layer at the base of downwellings needs to be well resolved as it is
the only mechanism to carry heat through the bottom boundary of the domain.

Figure 4.4 shows the effects of decreasing the phase change number Φ− for various
values of the aspect ratio γ of the shell. The simulations on this figure are performed
at Ra/Rac = 101/2. As noticed on fig. 4.3, it shows decreasing the phase change
number leads to a boundary allowing the matter to flow-through, and large hot
upwellings. One can note that even though the Rayleigh number is fairly close to
the linear critical value, the unstable modes are not the one predicted by the linear
stability analysis. However, as predicted by the latter, convective patterns do tend
to have a larger wavelength when the boundary is flow-through instead of penetrative
(see γ = 0.4 and γ = 0.8 on fig. 4.4, surprisingly γ = 0.6 does not exhibit this effect).

Figures 4.5 to 4.7 show common diagnostics, namely the average temperature,
root-mean-square velocity and heat flux, as functions of the Rayleigh number for
several values of the phase change number Φ−. These figures show simulations
performed with γ = 0.6, similar results are obtained for other aspect ratios. As
deduced from figs. 4.3 and 4.4, fig. 4.5 shows the average temperature of the domain
is dramatically increased by a flow-through bottom boundary, from Tavg ∼ 0.3 for
the classical case (Φ− = 103) to Tavg ∼ 0.9 for the flow-through case (Φ− < 10).
Note that the average temperature increases with the Rayleigh number for a given
Φ− as the cold downwellings get thinner. Figure 4.6 shows that, for a given Rayleigh
number Ra, decreasing Φ− leads to fluid velocities that are roughly twice as large
for the flow-through case (Φ− . 10) than for the non-penetrative case (Φ− > 103).
This can be understood by the fact that less deformation (i.e. less viscous forces) is
involved in the solid as streamlines are open with a flow-through boundary condition.
Therefore, similar values of the Rayleigh number (i.e. buoyancy forces) can lead to
more vigorous convection with a flow-through boundary condition. Note however
that the power law followed by the root-mean-square velocity urms is roughly the
same as that of the classical case, namely urms ∝ Ra2/3 (e.g. Turcotte and Oxburgh
1967). Finally, fig. 4.7 shows an interesting outcome of the flow-through boundary
condition: the heat flux carried out through the solid is twice as high with Φ− . 10
than with a non-penetrative boundary (Φ− > 103). Akin to the rms velocity, the
Nusselt number Nu follows the same power law with a flow-through boundary than
in the classical case, that is Nu ∝ Ra1/3 (ibid.).
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Φ− Ra/Rac = 101/2 Ra/Rac = 10 Ra/Rac = 105/2

103
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0.0 0.2 0.4 0.6 0.8 1.0
Temperature

Figure 4.3: Temperature fields and streamlines for various values of the phase change
number (left column) when the bottom boundary is flow-through. The top boundary
is non-penetrative. The aspect ratio is γ = 0.6 for all simulations.
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Figure 4.4: Temperature fields and streamlines for various values of the phase change
number and aspect ratio γ when the bottom boundary is flow-through. The top
boundary is non-penetrative. The super-critical Rayleigh is Ra/Rac = 101/2 for all
simulations.
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Figure 4.5: Average temperature as a function of Rayleigh number for various values
of Φ−. The top boundary condition is non-penetrative. In these simulations, γ = 0.6.
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Figure 4.6: Root-mean-square velocity as a function of Rayleigh number for various
values of Φ−. The top boundary condition is non-penetrative. In these simulations,
γ = 0.6.
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Figure 4.7: Nusselt number as a function of Rayleigh number for various values of
Φ−. The top boundary condition is non-penetrative. In these simulations, γ = 0.6.
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4.3 Flow-through condition at the top boundary
We focus now on the situation where the bottom boundary is non-penetrative and
explore the effects of changing the phase change number at the top boundary Φ+.
This case is somewhat symmetrical to the one explored in the previous section 4.2,
with a few differences that are stressed here.

Figures 4.8 and 4.9 show the behaviour of the system when varying the control
parameters of the problem: the phase change number at the top boundary, Φ+, the
super-critical Rayleigh number, Ra/Rac and the aspect ratio of the shell, γ. As for
the system with a phase change boundary condition at the bottom, high values of
Φ+ correspond to a classical non-penetrative boundary, leading to nearly aspect-
ratio-1 rolls, while low values of Φ+ lead to a flow-through top boundary that the
convective matter can cross via melting and freezing. Low values of Φ+ lead to
wider patterns of convection. Moreover, owing to the flow-through condition, cold
material is advected inward to form large cold downwellings, and hot upwellings
get thinner as Φ+ decreases and Ra/Rac increases. A striking difference with linear
stability analysis is that while the latter shows the degree-1 convection mode is by
far the linearly most unstable when Φ+ is small (fig. 3.4), none of the models shown
on figs. 4.8 and 4.9 exhibits such a pattern. This is even the case at Ra/Rac = 101/2

even though other modes are not linearly unstable (fig. 3.7).
Figure 4.10 shows the flow-through boundary at the bottom leads to an impor-

tant decrease of the average temperature of the domain, from roughly 0.3 when
the boundary is non-penetrative (Φ+ > 103) to values as low as 3 × 10−2 when the
boundary is flow-through (Φ+ . 10). Note the strong dependence of the average
temperature on the Rayleigh number for a given phase change number. This de-
pendence is due to the hot upwellings getting thinner as the Rayleigh number is
increased when the top boundary is flow-through. Similarly to what is observed
for the case with a flow-through bottom boundary, the root-mean-square velocity is
twice as large with flow-through boundary condition but follows the classical case
scaling urms ∝ Ra2/3 as shown on fig. 4.11. The heat flux however does not seem to
be as dramatically affected by the flow-trough boundary at the top of the domain,
as can be seen on fig. 4.12. It is slightly increasing when Φ+ decreases, but the dif-
ference is surprisingly not as strong as in the case of a flow-through boundary at the
bottom.
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Figure 4.8: Temperature fields and streamlines for various values of the phase change
number (left column) when the top boundary is flow-through. The bottom boundary
is non-penetrative. The aspect ratio is γ = 0.6 for all simulations.
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Figure 4.9: Temperature fields and streamlines for various values of the phase change
number and aspect ratio γ when the top boundary is flow-through. The bottom
boundary is non-penetrative. The super-critical Rayleigh is Ra/Rac = 101/2 for all
simulations.
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Figure 4.10: Average temperature as a function of Rayleigh number for various values
of Φ+. The bottom boundary condition is non-penetrative. In these simulations,
γ = 0.6.
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Figure 4.11: Root-mean-square velocity as a function of Rayleigh number for var-
ious values of Φ+. The bottom boundary condition is non-penetrative. In these
simulations, γ = 0.6.
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Figure 4.12: Nusselt number as a function of Rayleigh number for various values
of Φ+. The bottom boundary condition is non-penetrative. In these simulations,
γ = 0.6.
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4.4 Flow-through condition at both boundaries
The last case we will focus on has both boundaries verifying a phase change condi-
tion. Both phase change numbers are considered equal in this section Φ+ = Φ−.

Figures 4.13 and 4.14 show decreasing both phase change numbers leads to a sit-
uation where both boundaries are flow-through. Convective patterns that emerge
from this setup involve very little deformation in the solid and exhibit large wave-
lengths of degree-two or even degree-one. Cold downwellings and hot upwellings are
rather large, with the transition between hot and cold regions getting sharper as
the Rayleigh number increases. Indeed, a higher Rayleigh number leads to higher
flow velocities, and hence leaves less time to thermal diffusion to smear out the tem-
perature gradient between hot and cold regions. Note also that the very notion of
cold downwelling and hot upwelling does not fully describe the convective patterns
obtained with two flow-through boundaries. See for example the Φ± = 10−1 row
on fig. 4.13 where cold regions are dragged by the hot upwellings owing to viscous
forces, and therefore move upwards even though they are negatively buoyant.

A particularly interesting regime yielded by this system with two flow-through
boundaries is the degree-one translation mode. The shell continuously melts on one
side and freezes on the other, and is kept in place by a constant wind of convecting
solid matter going through the entire shell. This convection mode involves very
little deformation in the solid shell. Moreover, building up on the analytical study
of the stability of this mode in section 3.6, we can determine an approximation for
the translation velocity as a function of Ra, Φ± and γ. Equilibrium between the
buoyancy available in the bulk of the domain and the weight of the topography
leads to eq. (3.51), relating the translation velocity U and the degree-one mode of
temperature T1. It is copied here for readability purposes:

U =
Ra

(R+)2Φ+ + (R−)2Φ−

∫ R+

R−
T1r

2dr. (4.15)

Given an arbitrary temperature field, one can hence compute the corresponding
translation velocity (note that this solution would not necessarily be stationary, and
that the full non-linear system would include other velocity modes). Figure 4.15 is
the idealized temperature field in the translation regime at high Rayleigh number.
The hot upwelling is merely modeled as a tangent cylinder at temperature T− = 1
along the translation direction. The rest of the domain is considered to be at T+ = 0.
Note that to ease the computation, we use a spherical frame where the colatitude θ
is the angle with respect to the translation direction. The system is invariant along
the longitude φ in this frame. In this setup, one obtains

T1(r) =
3

2

∫ π

0

T (r, θ) cos θ sin θdθ =
3

2

∫ arcsin
(

R−
r

)
0

cos θ sin θdθ =
3

4

(
R−

r

)2

.

(4.16)
Injecting T1 in eq. (4.15) gives:

U =
3

4
Ra γ2

Φ+ + γ2Φ− = 18
Ra
Rac

γ(1− γ3)

(1− γ)(γ2 + 4γ + 1)
(4.17)

where Rac is the critical Rayleigh number eq. (3.55). The translation velocity is
proportional to the Rayleigh number, which contrasts greatly with the usual scaling
for convective velocity urms ∝ Ra2/3.
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Figure 4.16 shows the effect of decreasing Φ± on the average temperature of the
domain. It decreases slightly as Φ± decreases, although not as much as in the flow-
through only at the top case.

Figure 4.17 shows the root-mean-square velocity as a function of the Rayleigh
number for various values of Φ±, with γ = 0.6. The numerical results are compared
with the ideal velocity given by eq. (4.17). As expected, large values of Φ± > 103,
corresponding to non-penetrative boundary conditions, yield a root-mean-square
velocity scaling as urms ∝ Ra2/3. Moreover, even though not all cases exhibit a
translation mode, velocities for low values of Φ± are remarkably well approximated
by the ideal velocity eq. (4.17). Note that U , and hence likely urms too can be
arbitrarily large as Φ± decreases since it is inversely proportional to the critical
Rayleigh number which itself is proportional to Φ± (see section 3.6).

Finally fig. 4.18 shows the effect of the flow-through boundary on the heat flux.
Again, large values of the phase change numbers lead to the classical case Nu ∝
Ra1/3. Low values of the phase numbers lead both to a dramatic increase of the
heat flux, and to much more efficient power law Nu ∝ Ra. As for the velocity,
the heat flux is expected to become arbitrarily large as Φ± decreases. Note that
both scalings, namely velocity and heat flux proportional to the Rayleigh number,
are similar to those obtained analytically in cartesian geometry for high Rayleigh
numbers (Labrosse, Morison, et al. 2018, in appendix A).
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Figure 4.13: Temperature fields and streamlines for various values of the phase
change number (left column) when both boundaries are flow-through. The aspect
ratio is γ = 0.6 for all simulations.
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Figure 4.14: Temperature fields and streamlines for various values of the phase
change number and aspect ratio γ when the both boundaries are flow-through. The
super-critical Rayleigh is Ra/Rac = 101/2 for all simulations.
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Figure 4.15: Idealized temperature field in the translation regime, in the ϕ = 0
plane. The field is axisymmetric around t̂ (i.e. ϕ-invariant).
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Figure 4.16: Average temperature as a function of Rayleigh number for various
values of Φ+ = Φ−. In these simulations, γ = 0.6.
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Figure 4.17: Root-mean-square velocity as a function of Rayleigh number for various
values of Φ+ = Φ−. In these simulations, γ = 0.6. The black lines are the ideal
translation velocity computed with eq. (4.17).
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Figure 4.18: Nusselt number as a function of Rayleigh number for various values of
Φ+ = Φ−. In these simulations, γ = 0.6.
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4.5 Concluding remarks
Direct numerical simulations bring several informations that complete the linear
stability analysis. It confirms that low values of phase change numbers lead to
flow-through boundary conditions. These greatly affect the thermal structure of
the mantle flow: up- and/or downwellings are large, and convective patterns exhibit
wider wavelengths. This leads to convection with less deformation involved in the
solid compared to cases with classical non-penetrative boundary conditions. The
root-mean-square velocity is increased, roughly twice when one boundary is flow-
through, and to arbitrarily large values when both boundaries are open. The heat
flux is also twice as important when the bottom boundary is flow-through, and
arbitrarily large when both boundaries are flow-through. Note that for Earth-like
planets, the phase change numbers are expected to be small (unless the magma ocean
is stably stratified and inefficient at carrying heat laterally). Morison et al. (2019,
in chapter 6) propose Φ+ ∼ 10−5 at the top boundary. For the bottom boundary,
taking convective velocities in the basal magma ocean of the order of those in today’s
core would lead to Φ− ∼ 10−3. Hence, if global magma oceans existed at some point
throughout Earth’s history, they are likely to have had tremendous effects on the
heat budget of the planet. Full evolutionary models are necessary to explore this
hypothesis, and a rather crude but computationally tractable attempt at building
such a model is presented in the next chapter.
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Chapter 5

Magma ocean evolution models
coupled with the solid

As seen in the previous chapters, the presence of magma oceans has tremendous
consequences on the convection in the solid part of the primitive mantle. Convec-
tion sets in the solid more easily since the critical Rayleigh number is lower, convec-
tive patterns have a larger wavelength with less deformation, and the heat flux is
increased. However, the models presented before are simplistic since no net-freezing
of the magma oceans is allowed. This prevents drawing any conclusions regarding
the long term evolution of the primitive mantle. Two aspects of the problem are
added in this chapter.

• As heat is evacuated from the system, the magma oceans cool down and
crystallize, thickening the solid part.

• Assuming fractional crystallization of the magma oceans, their composition
and that of the solid evolve with time. This can play a role on convection
in the solid due to the effect of composition on buoyancy, and this can also
play a role on the evolution of the thickness of the solid due to the effect of
composition on the melting temperature.

The dynamics and evolution of magma oceans is a complicated subject with
several aspects. Keeping in mind this study is focused on the long term evolution of
the solid part of the primitive mantle, several simplifications are necessary for the
problem to be computationally tractable.

The dynamics of magma oceans itself is hard to model. The parameters are
out of reach even to state-of-the-art convection codes (high Rayleigh number, low
Ekman number). Moreover, fractional crystallization can create a layer enriched in
incompatible elements at the top or the base of magma oceans, potentially leading to
double-diffusive convection involving very large Lewis numbers for which few studies
have been conducted to this day (e.g. Bouffard et al. 2017). However, the dynamics
of magma oceans is expected to be much faster than that of the solid owing to their
small viscosity. Since we are mainly interested in convection in the solid, we assume
the oceans are well-mixed and laterally homogeneous. For the sake of simplicity, we
neglect double-diffusive convection phenomena in the liquid altogether.

Another process that requires simplification is the crystallization of magma
oceans. It raises several complex questions such as whether isolated crystals in
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magma oceans settle or are entrained and potentially melt back, what is the com-
paction length needed to fully drive out the liquid trapped in a matrix of crystals,
what is the rheology of that matrix and that of the new solid, whether the crystal-
lization is fractional, if so what is the phase diagram of the mixture composing the
magma ocean... Rather than trying to have a realistic model dealing with all these
aspects at once, we make the following assumptions.

• We neglect the thickness of the mush and the compaction layer at the interface
between the solid and the liquid, therefore we assume the matter is completely
solid on one side of the boundary and completely liquid on the other side.

• We consider fractional crystallization of the magma oceans, using a simple-
loop phase diagram between two end-members (MgO and FeO enriched end-
members of a silicate). This is a crude simplification of the chemistry of the
mantle, the goal being to see the dynamical effects of the enrichment of the
newly formed solid in a dense incompatible element (the iron) as crystallization
of magma oceans progresses.

• The temperature at the solid/liquid interface is chosen as that of the liquidus
of the liquid composition, which is also that of the solidus of the newly formed
solid composition. It is called the melting temperature in the following chap-
ters. This temperature varies with time as the pressure at the interface and
the composition of the magma oceans vary.

To be able to treat in a self-consistent way the evolution of the magma oceans
and that of the solid part of the primitive mantle, a model describing the evolution of
the magma oceans under the set of hypotheses mentioned above is needed. Energy
conservation written at the scale of the magma oceans is used to build this model.
The evolution model for the Top Magma Ocean (TMO) is presented in the following
section. The evolution model for the Basal Magma Ocean (BMO) is very similar
and is presented in the next section, stressing the main differences with the TMO
evolution model. These evolution models are similar to that of the core proposed in
Labrosse (2015).

5.1 Evolution model of the Top Magma Ocean
(TMO)

5.1.1 Dimensional model
Energy conservation integrated on the entire magma ocean is∫

TMO
ρ

(
T
∂s

∂t
+ µ

∂ξ

∂t

)
dV = QL +QR +Q+ −Qs. (5.1)

The left hand side is the rate of change of internal energy in the volume of the TMO,
balanced by the latent heat associated to melting and freezing, QL, the radiogenic
heating, QR, the heat flux through the Top Ocean/Mantle Boundary (TOMB), Q+,
and the heat flux through the surface of the planet, Qs. The various terms appearing
in eq. (5.1) as well as the phase diagram are described in the rest of this subsection.
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Phase diagram at the boundary

The melting temperature T+ depends on pressure and composition, and will there-
fore vary with time as the position of the TOMB (hence its pressure) and the com-
position of the ocean change. Its time derivative verifies:

Ṫ+ = −∂TL

∂P
ρgṘ+ +

∂TL

∂ξ
ξ̇+. (5.2)

ξ̇+ itself can be written as a linear function of Ṙ+ through conservation of the heavy
component:

d(MTMOξ
+)

dt
= MTMOξ̇

+ − 4π(R+)2ρξ+Ṙ+ = I+, (5.3)

where I+ is the upward flux of FeO through the TOMB. We assume the flux of
FeO across the upper boundary of the TMO to be null. I+ depends on the net
freezing/melting occuring at the boundary, which has two contributions.

• Dynamic melting and freezing occur owing to the phase change boundary
condition eq. (2.32), associated to the radial velocity of the convecting solid
ur. At the TOMB, a positive velocity ur induces the melting of an intrusion
of solid in the magma ocean; while a negative velocity induces the freezing of
an intrusion of liquid in the solid layer.

• Net freezing or melting of the TMO at a velocity Ṙ+. A positive Ṙ+ corre-
sponds to a freezing TMO while a negative Ṙ+ corresponds to a melting TMO.

This leads to
I+ =

∫
+

ρ(ξ−ur
φ ur − ξṘ

+

φ Ṙ+)dS (5.4)

where ξvφ is the composition of the solid associated with a freezing rate v. We assume
here that a newly crystallized solid (case v > 0) has a composition ξf corresponding
to the fractional crystallization of the solid; and that a solid of composition ξs that
melts (case v < 0) pumps iron from the liquid so as to reach the liquidus composition
and melt, which is mathematically equivalent to directly melting the solid without
altering its composition. Denoting K the partition coefficient of FeO defined as

K ≡ ξf (1− ξ+)

ξ+(1− ξf )
, (5.5)

ξvφ verifies

ξvφ =


Kξ+

1− ξ+(1−K)
v > 0;

ξs v < 0.

(5.6)

This implements a simple loop phase diagram between two pure phases, that can
be seen as pure FeO and pure MgO. Of course, this phase diagram is simplistic
compared to that of the actual mantle, but it allows us to model the enrichment of
the magma ocean in heavy components owing to fractional crystallization.

Combining eqs. (5.3) and (5.4) gives the following relation between ξ̇+ and Ṙ+:(∫
+

ρξṘ
+

φ dS − 4π(R+)2ρξ+
)
Ṙ+ +

4π

3
ρ
(
R3

T − (R+)3
)
ξ̇+ =

∫
+

ρξ−ur
φ urdS. (5.7)

ξ̇+ and therefore Ṫ+ are hence entirely determined by Ṙ+ using eqs. (5.2) and (5.7).
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Entropy contribution to internal energy T∂ts

As discussed previously, we assume the magma ocean is well mixed. The specific
entropy s and the composition of the TMO, defined as the FeO massic concentration
ξ+, are therefore considered uniform in the entire volume of the TMO. To avoid
treating entropy explicitely, the heat term T∂ts is written using the heat capacity
Cp as Cp∂tT . Moreover, the isentropic temperature profile in the TMO verifies:

∂T

∂r
= −αgT

Cp

. (5.8)

The temperature at the Top Ocean/Mantle Boundary (TOMB, at r = R+) is the
melting temperature denoted T+. Integrating eq. (5.8) gives the temperature profile
in the TMO. Neglecting variations of α and Cp with depth, this leads to

T (r) = T+ exp
(
α(R+ − r)

Cp

)
. (5.9)

It is well known variations of α are important at the scale of the whole mantle
(Ricard 2015), the assumption of a constant α should therefore be alleviated to
study systems exhibiting thick magma oceans.

Due to the very large Rayleigh number of magma oceans, convection is very
efficient leading to a small super-isentropic temperature difference across the magma
ocean (Labrosse, Hernlund, and Coltice 2007; Ulvrova et al. 2012). The boundary
layer on the liquid side at the TOMB and its associated temperature and composition
jump are therefore neglected. The treatment of the boundary layer at the surface
of the planet is explicited later on in this subsection.

Neglecting spatial and time variations of ρ, Cp, g and α, the cooling term Qc

expands as:

Qc ≡
∫

TMO
ρCp

∂T

∂t
dV

= 4πρCp

(
Ṫ+ +

αgT+

Cp

Ṙ+

)∫ RT

R+

r2 exp
(
αg(R+ − r)

Cp

)
dr.

(5.10)

Compositional contribution to internal energy µ∂tξ

The TMO is assumed to be well-mixed. At any given time, its FeO mass fraction
ξ is therefore constant throughout the entire magma ocean. It is denoted ξ+ and is
only a function of time.

Moreover, the chemical potential difference between the two end-members µ =
µFeO − µMgO verifies (e.g. Braginsky and Roberts 1995; Lister and Buffett 1995)

∂µ

∂r
= −βg. (5.11)

β is the chemical expansivity defined as

β ≡ − 1

ρ

∂ρ

∂ξ

∣∣∣∣
P,s

= ρ
∂µ

∂P

∣∣∣∣
s,ξ

. (5.12)
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Note that since FeO is the heavy end-member of the considered phase-diagram, β
is negative. Assuming constant β and g, integrating eq. (5.11) gives

µ− µ+ = βg(R+ − r) ≡ µ′ (5.13)

where µ+ is the chemical potential difference at the TOMB. Its value can be esti-
mated from the difference at ambient condition of enthalpy of formation ∆H0, heat
capacity ∆C0

p and entropy ∆S0 between the two end-members:

µ+ = ∆H0 +∆C0
p(T

+ − T 0)−∆S0(T+ − T 0) + βg(RT −R+). (5.14)

The second term on the right-hand-side integrates the effect of temperature on the
enthalpy of formation, the third term is the difference between enthalpy and free-
energy, and the last term is the effect of pressure on the chemical potential difference.

Neglecting spatial variations of g and β, the compositional contribution Qξ to
the energy budget is written as

Qξ ≡
∫

TMO
ρµ

∂ξ

∂t
dV

= ρβgξ̇+
(
R+VTMO − π(R4

T − (R+)4)
)
+ ρξ̇+µ+VTMO.

(5.15)

Latent heat QL

The latent heat term QL is related to the rate of freezing and melting, which can
occur through two mechanisms: the net freezing of the magma ocean at a rate
Ṙ+, and the dynamical melting and freezing owing to the flow-through boundary
condition at a rate ur. Integrating these two contributions over the TOMB leads to:

QL =

∫
+

ρLh(Ṙ
+ − ur)dS. (5.16)

Moreover, the latent heat Lh expands as

Lh = T+∆s+ µ+∆ξ = T+(sl − ss) + µ+(ξ+ − ξs). (5.17)

Assuming ∆s to be laterally constant and since the lateral average of ur is null (see
section 2.3), this leads to

QL = 4π(R+)2ρT+∆sṘ+ +

∫
+

ρµ+∆ξ(Ṙ+ − ur)dS. (5.18)

Radiogenic heating QR

Several elements are responsible for radiogenic heating in the primitive mantle. For
the sake of simplicity, all the heat producing elements (HPE) are treated as one
element with an associated half-life τHPE and partition coefficient KHPE. The con-
centration of HPE is denoted c+. The radiogenic heating QR is then

QR = ρc+RH exp
(

ln
(
1

2

)
t

τHPE

)
VTMO (5.19)
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where RH is the massic heat production. Conservation of HPE is similar to that of
FeO:

d(MTMOc
+)

dt
= MTMOċ

+ − 4π(R+)2ρc+Ṙ+ = I+HPE (5.20)

where I+HPE is the upward flux of HPE through the TOMB. That flux depends on
the net freezing/melting occuring at the boundary:

I+HPE =

∫
+

ρ(c−ur
φ ur − cṘ

+

φ Ṙ+)dS (5.21)

where cvφ is the relevant solid composition similarly to what is done for FeO eq. (5.6):

cvφ =


c+KHPE

1− c+(1−KHPE)
v > 0;

cs v < 0.

(5.22)

Combining eqs. (5.20) and (5.21) gives the following relation between ċ+ and Ṙ+:(∫
+

ρcṘ
+

φ dS − 4π(R+)2ρc+
)
Ṙ+ +

4π

3
ρ
(
R3

T − (R+)3
)
ċ+ =

∫
+

ρc−ur
φ urdS. (5.23)

Note that the decay of HPE is directly taken into consideration in the radiogenic
heating eq. (5.19) rather than in the evolution of c+. This is to ease the imple-
mentation in StagYY. This leads to a slight error in the evolution of c+ (since cvφ
depends on the actual value of c+ when v > 0), but this error should be less than
that made with the assumption that the crystallization is purely fractional with a
constant partition coefficient. Once again, the goal of this model is only to capture
the broad behaviour of the system, which should not be strongly affected by this
approximation.

Energy flux through the TOMB Q+

The energy flux through the TOMB Q+ is expanded as:

Q+ = Q+
T + µ+I+. (5.24)

Note that a chemical term µ+I+ appears in the energy flux. µ+ is the chemical
potential difference at the boundary eq. (5.14) and I+ is the flux of FeO through the
boundary eq. (5.4). The thermal flux Q+

T is determined by our model of convection
in the solid.

Energy flux at the surface Qs

At the surface of the planet, we consider that there is no flux of FeO. The energy
flux hence has only a thermal contribution Qs = Qs

T . King et al. (2012) showed that
the scaling law for the heat flux in a rotating fluid (such as the surface magma

ocean) depends on how the quantity RaTMOEk3/2
TMO =

αg∆Tν1/2

κ(2Ω)3/2
compares to 1,

with EkTMO the Ekman number and RaTMO the Rayleigh number in the TMO. A
conservative lower bound with the thermal expansivity α ∼ 10−5 K−1, the gravity
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g ∼ 10 m/s2, the super-isentropic temperature difference ∆T ∼ 1 K, the kinematic
viscosity ν ∼ 10−5 m2/s, the thermal diffusivity κ ∼ 10−6 m2/s and the rotation
rate Ω ∼ 10−4 s−1 is RaTMOEk3/2

TMO ∼ 105 � 1. We then consider the heat flux
is not controlled by rotation and scales as Nu = 0.16Ra2/7

TMO(Γ
+)6/7 with Γ+ =

(RT −R+)/LM the dimensionless thickness of the TMO. Note that this scaling does
not depend on the Prandtl number in the range of values explored by King et al.
(ibid.), i.e. 1 6 Pr 6 100. Since Pr ∼ 10 is a reasonable value for a magma ocean,
we assume this scaling holds for our study. We neglect variations of RaTMO with
time and assume the magma ocean behaves like a gray body at its upper surface.
Heat flow conservation at the surface gives the following equation for the surface
temperature Ts:

k(Tp − Ts)

LM

0.16Ra2/7
TMO(Γ

+)−1/7 = εσ(T 4
s − T 4

∞). (5.25)

Tp = T+ exp
(
αg(R+ −RT )

Cp

)
is the potential temperature at the surface, T∞ is the

black body equilibrium temperature, σ is the Stefan-Boltzmann constant and ε the
emissivity. This equation on Ts is of the form (T 4

s − T 4
∞) + a(Ts − Tp) = 0 with

a > 0. This equation for Ts has a unique solution in [T∞, Tp], and hence can easily
be solved via dichotomy. Once the surface temperature Ts is determined, the heat
flux can be calculated either with the heat flux scaling law or by plugging it back in
the gray-body flux expression:

Qs
T = 4πR2

T εσ(T
4
s − T 4

∞). (5.26)

The emissivity should depend on the atmosphere dynamics and composition
(particularly its water content) and vary with time. Taking this effet into account
would require an atmosphere model (e.g. Abe 1997; Lebrun et al. 2013). For the
sake of simplicity, we assume the emissivity to be constant, tuning its value to obtain
a crystallization timescale that matches the ones of Lebrun et al. (2013).

Energy conservation as a linear function of Ṙ+

Plugging the expressions for several terms detailed in this subsection, the energy
conservation equation can be written as

0 =−Qc−ρβgξ̇+
(
R+VTMO − π(R4

T − (R+)4)
)︸ ︷︷ ︸

Eξ1

+ 4π(R+)2ρT+∆sṘ+︸ ︷︷ ︸
QL,H

−
∫
+

ρµ+ξs(Ṙ
+ − ur)dS︸ ︷︷ ︸

Eξ2

+QR +Q+
T −Qs

T .
(5.27)

Terms in ξ̇+ are expressed as a linear function of Ṙ+ with the iron conservation
eq. (5.3) combined with the expression of I+ eq. (5.4):

ξ̇+ =
1

MTMO

(
4π(R+)2ρξ+ −

∫
+

ρξṘ
+

φ dS
)
Ṙ+ +

1

MTMO

∫
+

ρξ−ur
φ urdS. (5.28)
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Similarly, terms in Ṫ+ are expressed as a linear function of Ṙ+ using the phase
diagram eq. (5.2) and the previous expression eq. (5.28):

Ṫ+ =

(
1

MTMO

(
4π(R+)2ρξ+ −

∫
+

ρξṘ
+

φ dS
)

∂TL

∂ξ
− ∂TL

∂P
ρg

)
Ṙ+

+
∂TL

∂ξ

1

MTMO

∫
+

ρξ−ur
φ urdS.

(5.29)

The energy conservation equation therefore allows us to compute Ṙ+ at a given
instant in our model. Then, plugging Ṙ+ back in eqs. (5.28) and (5.29) gives us ξ̇+

and Ṫ+. Similarly, ċ+ is given by the HPE conservation eq. (5.23).

5.1.2 Dimensionless equations
The magma ocean evolution equations are made dimensionless with the following
scales.

• LM , the total thickness of the mantle (solid and both oceans), considered
constant in this study for simplicity. For the Earth, LM = 2900 km.

• ∆TM , an arbitrary reference temperature difference. In practice it is taken as
a guesstimate for the melting temperature difference between the top and the
bottom of the mantle, so that the dimensionless temperature accross the solid
∆T/∆TM is of order one. The chosen value is ∆TM = 4000 K.

• ρ, the reference density of the considered materials. For the Earth’s mantle,
ρ = 4000 kg/m3.

• κ = k/(ρCp), the diffusion coefficient κ = 10−6 m2/s, associated with the
conductivity k = 4 W/(mK) and the heat capacity Cp = 103 J K−1 kg−1.

The dimensionless parameters arising from the non-dimensionalization are shown
in table 5.1.

The dimensionless equations are shown hereafter using the same symbols as for
dimensional quantities.

The conservation of FeO leads to

ξ̇ =
1

VTMO

(
4π(R+)2ξ − I+ξ

)
︸ ︷︷ ︸

aξ

Ṙ+ +
1

VTMO
I+uξ︸ ︷︷ ︸

bξ

. (5.30)

The two compositional integrals are defined as:

I+ξ =

∫
+

ξR
+

φ dS; (5.31)

I+uξ =
1

Γ

∫
+

ξ−ur
φ urdS. (5.32)

The 1/Γ factor comes from the non-dimensionalization of velocities in the solid with
L instead of LM . See section 5.3 for details.
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Symbol Expression Description Nominal value

Γ
L

LM

Solid thickness Time dependent

Γ+ RT −R+

LM

TMO thickness Time dependent

T+
0

T+(t = 0)

∆TM

Initial TOMB tempera-
ture

Run dependent

ξ+0 ξ+(t = 0) Initial TMO FeO content Run dependent
c+0 c+(t = 0) Initial TMO HPE con-

tent
Run dependent

Bξ − β

α∆TM

Compositional buoyancy 5

Di αgLM

Cp

Dissipation number 0.58

TLP
ρgLM

∆TM

∂TL

∂P
Pressure dependence of
melting temperature

0.53 (Andrault, Petitgi-
rard, et al. 2012)

TLξ
1

∆TM

∂TL

∂ξ
Composition dependence
of melting temperature

-0.125

St ∆s

Cp

Stefan number 0.3

∆H0 ∆H0

Cp∆TM

FeO-MgO enthalpy dif-
ference at ambient condi-
tions

2.8 (Haynes and Lide
2011)

∆C0
p

∆C0
p

Cp

FeO-MgO heat capac-
ity difference at ambient
conditions

-0.2 (Haynes and Lide
2011)

∆S0 ∆S0

Cp

FeO-MgO entropy differ-
ence at ambient condi-
tions

-0.05 (Haynes and Lide
2011)

RH
RH,dρL

2
M

k∆TM

Specific radiogenic heat
production

20

τHPE
τHPE,dκ

L2
M

HPE half-life 0.02

RaTMO
ραg∆TOL

3
M

ηκ
Rayleigh number in the
TMO

1030

T∞
T∞

∆TM

Gray body equilibrium
temperature

6.4 × 10−2

EGB
εσLM∆T 3

M

k
Gray body coefficient 2 × 105

Table 5.1: Dimensionless parameters for the Top Magma Ocean evolution.
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The melting temperature then verifies

Ṫ+ = (TLξaξ − TLP )Ṙ
+ + TLξbξ. (5.33)

The secular cooling term Qc becomes

Qc = 4πIc
(
TLξaξ − TLP + DiT+

)
Ṙ+ + 4πIcTLξbξ (5.34)

with
Ic =

∫ RT

R+

r2 exp
(
Di(R+ − r)

)
dr. (5.35)

The thermal contribution to the latent heat is

QL,H = 4π(R+)2T+StṘ+. (5.36)

The compositional terms become

Eξ1 = BξDi(R+VTMO − π(R4
T − (R+)4))(aξṘ

+ + bξ); (5.37)

Eξ2 = µ+
(
I+uξ − I+ξ Ṙ

+
)
. (5.38)

where µ+ is

µ+ = ∆H0 +∆C0
p(T

+ − T 0)−∆S0(T+ − T 0)−BξDiΓ+. (5.39)

The flux at the surface verifies

Qs
T = 4πEGBR

2
T (T

4
s − T 4

∞), (5.40)

with the surface temperature Ts being solution of

(T 4
s − T 4

∞) +
0.16Ra2/7

TMO(Γ
+)−1/7

EGB

(
Ts − T+ exp(Di(R+ −RT ))

)
= 0. (5.41)

Finally, the energy balance simply is

Qc = Eξ1 + Eξ2 +QL +QR +Q+
T −Qs

T . (5.42)

5.2 Evolution model of the Basal Magma Ocean
(BMO)

5.2.1 Dimensional model
The evolution model of the Basal Magma Ocean is very similar to that of the Top
Magma Ocean presented in the previous section. The main differences are the signs
of some terms, and of course the CMB heat flux is treated in a different way than
the surface heat flux. This section follows the same layout as the previous one,
underlining the key differences. Energy conservation on the BMO gives∫

BMO
ρ

(
T
∂s

∂t
+ µ

∂ξ

∂t

)
dV = QL +QR +Qc −Q−. (5.43)

Note that the only difference with eq. (5.1) are the signs of the surface fluxes. The
flux from the core Qc is a positive contribution to the energy balance of the BMO
while the flux extractd by the mantle Q− is a negative contribution.
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Phase diagram at the boundary

The melting temperature at the BOMB, T−, depends on pressure and composition,
leading to

Ṫ− = −∂TL

∂P
ρgṘ− +

∂TL

∂ξ
ξ̇−. (5.44)

Conservation of FeO gives a linear relation between ξ̇− and Ṙ−:

d(MBMOξ
−)

dt
= MBMOξ̇

− + 4π(R−)2ρξ−Ṙ− = −I−. (5.45)

I− is the upward flux of iron through the BOMB (we do not consider a flux of iron
through the CMB). That flux depends on the net freezing/melting occuring at the
boundary:

I− =

∫
−
ρ(ξur

φ ur − ξ−Ṙ−

φ Ṙ−)dS. (5.46)

Similarly to what is done for the TMO, ξvφ is the composition of the solid associated
with a freezing-front velocity v. Note that ur > 0 and Ṙ− < 0 are the cases
corresponding to the crystallization of a new solid, instead of ur < 0 and Ṙ+ > 0
for the TMO. Denoting K the partition coefficient of FeO, ξvφ follows

ξvφ =


Kξ−

1− ξ−(1−K)
v > 0;

ξs v < 0.

(5.47)

Combining eqs. (5.45) and (5.46) gives:(
4π(R−)2ρξ− −

∫
−
ρξ−Ṙ−

φ dS
)
Ṙ− +

4π

3
ρ
(
(R−)3 −R3

c

)
ξ̇− = −

∫
−
ρξur

φ urdS.

(5.48)

Entropy contribution to internal energy T∂ts

As for the TMO, we assume the BMO is well-mixed and its temperature profile is
therefore isentropic:

∂T

∂r
= −αgT

Cp

. (5.49)

The temperature at the Basal Ocean/Mantle Boundary (BOMB, at r = R−) is the
melting temperature T+. Integrating eq. (5.49) gives the temperature profile in the
BMO:

T = T− exp
(
α(R− − r)

Cp

)
. (5.50)

Both boundary layers in the BMO are neglected in its energy balance. Moreover,
spatial and time variations of ρ, Cp, g and α are neglected, leading to

Qc ≡
∫

BMO
ρCp

∂T

∂t
dV

= 4πρCp

(
Ṫ− +

αgT−

Cp

Ṙ−
)∫ R−

Rc

r2 exp
(
αg(R− − r)

Cp

)
dr.

(5.51)
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Compositional contribution to internal energy µ∂tξ

Similarly to what is done for the TMO, the BMO is considered to be well-mixed.
Its FeO content ξ is therefore only a function of time, it is denoted ξ−.

The chemical potential difference between the two end-members µ = µFeO−µMgO
verifies

∂µ

∂r
= −βg (5.52)

with β the compositional expansivity. Integrating this equation gives

µ− µ− = βg(R− − r) ≡ µ′ (5.53)

where µ− is the chemical potential difference at the BOMB.
As for the TOMB, its value is estimated from the difference at ambient condi-

tion of enthalpy ∆H0, heat capacity ∆C0
p and entropy ∆S0 between the two end-

members:

µ− = ∆H0 +∆C0
p(T

− − T 0)−∆S0(T− − T 0) + βg(RT −R−). (5.54)

The compositional contribution Qξ to the energy budget of the BMO is therefore

Qξ ≡
∫

BMO
ρµ

∂ξ

∂t
dV

= ρβgξ̇−
(
R−VBMO − π((R−)4 −R4

c)
)
+ ρξ̇−µ−VBMO.

(5.55)

Latent heat QL

The latent heat term for the BMO present one difference with the TMO case: melt-
ing and freezing correspond to opposite signs of radial velocities. This leads to

QL =

∫
−
ρLh(ur − Ṙ−)dS. (5.56)

The latent heat Lh expands as

Lh = T−∆s+ µ−∆ξ = T−(sl − ss) + µ−(ξ− − ξs). (5.57)

Plugging this in eq. (5.56) gives

QL = −4π(R−)2ρT−∆sṘ− +

∫
−
ρµ−∆ξ(ur − Ṙ−)dS. (5.58)

Radiogenic heating QR

As for the TMO, the radiogenic heating in the BMO is associated to the concen-
tration in heat producing element (HPE), denoted c−, with an associated half-life
τHPE. The radiogenic heating QR is then

QR = ρc−RH exp
(

ln
(
1

2

)
t

τHPE

)
VBMO (5.59)

where RH is the massic heat production. Conservation of HPE is similar to that of
FeO:

d(MBMOc
−)

dt
= MBMOċ

− + 4π(R−)2ρc−Ṙ− = I−HPE (5.60)
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where I−HPE is the upward flux of HPE through the BOMB. That flux depends on
the net freezing/melting occuring at the boundary:

I−HPE =

∫
−
ρ(cur

φ ur − c−Ṙ−

φ Ṙ−)dS. (5.61)

cvφ is the relevant solid composition similarly to what is done for FeO eq. (5.47):

cvφ =


KHPEc

−

1− c−(1−KHPE)
v > 0;

cs v < 0.

(5.62)

Combining eqs. (5.60) and (5.61) gives the following relation between ċ− and Ṙ−:(
4π(R−)2ρc− −

∫
−
ρc−Ṙ−

φ dS
)
Ṙ−+

4π

3
ρ
(
(R−)3 −R3

c

)
ċ− = −

∫
−
ρcur

φ urdS. (5.63)

Energy flux through the BOMB Q−

Similarly to flux through the TOMB Q+, the energy flux through the BOMB Q− is
expanded as:

Q− = Q−
T + µ−I− (5.64)

with µ− the chemical potential difference at the boundary eq. (5.54) and I− the flux
of FeO through the boundary eq. (5.46). The thermal flux Q−

T is determined by our
model of convection in the solid.

Core contribution to the energy budget

We neglect the FeO flux between the core and the mantle for the sake of simplicity.
The energy flux from the core is therefore purely thermal Qc = Qc

T . We use here
the core cooling model proposed by Labrosse (2015) for an entirely liquid core.
This model connects directly the heat flux extracted from the core Qc to the time
derivative of the temperature at the CMB Tc.

Qc = − 4π

3
ρNCpNL

3
ρ

fC

(
Rc

Lρ
, γ
)

(
1− R2

c

L2
ρ
− Aρ

R4
c

L4
ρ

)γ
︸ ︷︷ ︸

Pc,d

Ṫc. (5.65)

ρN is the density at the center of the core, CpN the assumed constant heat capacity
of the core, Lρ and Aρ the structure parameters describing the density variation
with radius in the core, γ the Grüneisen parameter of the core and

fC(x, γ) = 3

∫ x

0

u2(1− u2 − Aρu
4)1+γdu

= x3

(
1− 3

5
(γ + 1)x2 − 3

14
(γ + 1)(2Aρ − γ)x4 +O(δx6)

)
.

(5.66)
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As the thermal boundary layers at both boundaries of the core are thin and with
a small temperature difference across them compared to that at the scale of the
whole core, Tc can be related to T− assuming an adiabatic profile in the core

Tc = T+ exp
(
αg(R− −Rc)

Cp

)
. (5.67)

Hence, Ṫc, and therefore Qc, can be expressed as a linear function of Ṫ− and Ṙ−:

Ṫc =

(
Ṫ− +

αgT−

Cp

Ṙ−
)

exp
(
αg(R− −Rc)

Cp

)
. (5.68)

Energy conservation as a linear function of Ṙ−

Plugging the expressions for all the terms in the energy conservation eq. (5.43) gives

0 =−Qc−ρβgξ̇
(
R−VBMO − π((R−)4 −R4

c)
)︸ ︷︷ ︸

Eξ1

−4π(R−)2ρT−∆sṘ−︸ ︷︷ ︸
QL,H

+ ρµ−
∫
−
ξs(Ṙ

− − ur)dS︸ ︷︷ ︸
Eξ2

+QR +Qc
T −Q−

T .
(5.69)

The strategy to solve this equation is, as for the TMO, to develop terms in ξ̇− using
the FeO conservation eq. (5.48)

ξ̇− =
1

MBMO

(∫
−
ρξ−Ṙ−

φ − 4π(R−)2ρξ−dS
)
Ṙ− − 1

MBMO

∫
−
ρξur

φ urdS. (5.70)

Terms in Ṫ− are expanded as linear functions of Ṙ− using the phase diagram
eq. (5.44)

Ṫ− =

(
1

MBMO

(∫
−
ρξ−Ṙ−

φ − 4π(R−)2ρξ−dS
)

∂TL

∂ξ
− ∂TL

∂P
ρg

)
Ṙ−

− ∂TL

∂ξ

1

MBMO

∫
−
ρξur

φ urdS.
(5.71)

The energy conservation equation is then used to compute Ṙ− at a given instant in
our model. Plugging Ṙ− back in eqs. (5.63), (5.70) and (5.71) gives us ċ−, ξ̇− and
Ṫ−.

5.2.2 Dimensionless equations
The basal magma ocean evolution equations are made dimensionless with the same
scales as the top magma ocean. The dimensionless parameters arising from the non-
dimensionalization are shown in table 5.2.

The dimensionless equations are shown hereafter using the same symbols as for
dimensional quantities.

The conservation of FeO leads to

ξ̇ =
1

VBMO

(
I−ξ − 4π(R−)2ξ

)
︸ ︷︷ ︸

aξ

Ṙ+− 1

VBMO
I−uξ︸ ︷︷ ︸

bξ

(5.72)
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Symbol Expression Description Nominal value

Γ
L

LM

Solid thickness Time dependent

Γ− R− −Rc

LM

Initial BMO thickness Time dependent

T−
0

T−(t = 0)

∆TM

Initial BOMB tempera-
ture

Run dependent

ξ−0 ξ−(t = 0) Initial BMO FeO content Run dependent
c−0 c−(t = 0) Initial BMO HPE con-

tent
Run dependent

Bξ − β

α∆TM

Compositional buoyancy 5

Di αgLM

Cp

Dissipation number 1.74

TLP
ρgLM

∆TM

∂TL

∂P
Pressure dependence of
melting temperature

0.53 (Andrault, Petitgi-
rard, et al. 2012)

TLξ
1

∆TM

∂TL

∂ξ
Composition dependence
of melting temperature

-0.125

St ∆s

Cp

Stefan number 0.3

∆H0 ∆H0

Cp∆TM

MgO-FeO enthalpy dif-
ference at ambient condi-
tions

2.8 (Haynes and Lide
2011)

∆C0
p

∆C0
p

Cp

MgO-FeO heat capac-
ity difference at ambient
conditions

-0.2 (Haynes and Lide
2011)

∆S0 ∆S0

Cp

MgO-FeO entropy differ-
ence at ambient condi-
tions

-0.05 (Haynes and Lide
2011)

RH
RH,dρL

2
M

k∆TM

Specific radiogenic heat
production

20

τHPE
τHPE,dκ

L2
M

HPE half-life 0.02

Pc
Pc,d

ρCpL3
M

Core cooling contribu-
tion, see eq. (5.65)

3.67

Table 5.2: Dimensionless parameters for the Basal Magma Ocean evolution.
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The two compositional integrals are defined as:

I−ξ =

∫
−
ξ−Ṙ−

φ dS; (5.73)

I−uξ =
1

Γ

∫
−
ξur
φ urdS. (5.74)

The 1/Γ factor comes from the non-dimensionalization of velocities in the solid with
L instead of LM . See section 5.3 for details.

The melting temperature then verifies

Ṫ− = (TLξaξ − TLP )Ṙ
− + TLξbξ (5.75)

The secular cooling term Qc becomes

Qc = 4πIc
(
TLξaξ − TLP + DiT−) Ṙ− + 4πIcTLξbξ (5.76)

with

Ic =

∫ R−

Rc

r2 exp
(
Di(R− − r)

)
dr. (5.77)

The thermal contribution to the latent heat is

QL,H = −4π(R−)2T−StṘ−. (5.78)

The compositional terms become

Eξ1 = BξDi(R−VBMO − π((R−)4 −R4
c))(aξṘ

− + bξ); (5.79)

Eξ2 = µ−
(
I−ξ Ṙ

− − I−uξ

)
. (5.80)

where µ− is

µ− = ∆H0 +∆C0
p(T

− − T 0)−∆S0(T− − T 0) +BξDi(Γ− − 1). (5.81)

The flux at the CMB verifies

Qc
T = −PcṪ

c (5.82)

with the CMB temperature

T c = T− exp
(
Di(R− −Rc)

)
. (5.83)

The energy balance is

Qc = Eξ1 + Eξ2 +QL +QR +Qc
T −Q−

T . (5.84)
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5.3 Fixed-front approach in the solid
The last problem to tackle to be able to solve self-consistently the convection in the
solid part and the evolution of both magma oceans according to the previously
described evolution models is that the thickness of the solid part L = R+ − R−

will change with time as it crystallizes (or melts). A possible approach is to add
layers of cells to the numerical domain as the solid thickens (e.g. Ballmer et al.
2017; Maurice et al. 2017). However, this method would be difficult to implement in
StagYY and raises several questions with no clear answers such as when to add such
a layer, what thickness should it have, and what should be the information inside
to reduce as much as possible discretization related effects. We choose instead to
use a constant computational domain on which we project more and more physical
domain as the solid thickens. This is done by building a dimensionless radius that
is between 1 and 2 at all time and writing the conservation equations in this new
frame (e.g. Crank 1984). This dimensionless radius r̃ is defined as

r̃ ≡ r −R−

L
+ 1. (5.85)

Note that R− and L both depend on time, which introduces additional terms in
the conservation equations when expressing them in this frame. Such an approach
eliminates the need to change the computational domain as the geometry of the
system changes. It is referred to as a fixed-front approach in this document.

5.3.1 Mathematical background
For the sake of clarity, we present here a simple mathematical description of non-
dimensionalisation of a generic set of partial differential equations with scales whose
definition depends on time. Note that two aspects need to be considered in doing so.
First, contrary to the classical case where scales are constant, the non-dimensional
basis vectors are not merely proportional to the dimensional ones, leading to addi-
tional terms when expressing partial derivatives from one frame to the other. Second,
the dimensionless variables themselves are not mereley proportional to the dimen-
sional ones, leading to additional terms when expressing the equations applying to
these dimensionless variables. These two aspects are briefly discussed in a general
manner hereafter.

Let x be any point of a dimensional frame. For our purposes, it is taken as
a spherical frame x = (t, r, θ, φ). Let f be a dimensional function defined on this
frame, such as the temperature or velocity fields involved in convection problems.
The same point in the associated dimensionless frame is denoted x̃, and the dimen-
sional function defined on the dimensionless frame is denoted f ′ and is such that
f(x) = f ′(x̃). The Jacobian matrix J associated to the transformation from the di-
mensionless frame to the dimensional one is

Jij =
∂ x̃i

∂xj

. (5.86)

Partial derivatives in one frame are related to partial derivatives in the other as

∂f

∂xj

=
∑
i

Jij
∂f ′

∂x̃i

. (5.87)
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In the classic cases where xi and x̃i are proportional, J is diagonal which leads
to derivatives that are merely proportional to one another. In our case with the
dimensionless radius built as described in eq. (5.85), the off-diagonal term ∂r̃/∂t is
non-zero, leading to

∂f

∂t
=

∂f ′

∂t̃

∂ t̃

∂t
+

∂f ′

∂r̃

∂r̃

∂t
. (5.88)

This shows time derivatives in the dimensional frame become time derivatives asso-
ciated with an advection at velocity ∂r̃/∂t in the dimensionless frame. This advec-
tion accounts for the fact that more and more physical domain is projected in the
dimensionless frame as the solid mantle thickens. Other derivatives are not affected
by non-zero off-diagonal terms.

The second aspect that deserves attention is that the dimensionless function f̃
associated with the dimensionless variable f can be built with a non-constant scale.
In our problem, this is the case of the temperature, made dimensionless with the
temperature difference between the two solid/liquid interfaces that varies with time.
Keeping on with our generic example, given a time-varying scale F (t) = F ′(t̃) for f
and a function f0(t) = f ′

0(t̃), one can build a dimensionless function f̃ such as:

f(x) = (F ′f̃ + f ′
0)(x̃). (5.89)

Since F and f0 are merely functions of t, plugging eq. (5.89) in eq. (5.88) leads to:

∂f

∂t
= F

(
∂f̃

∂t̃

∂ t̃

∂t
+

∂f̃

∂r̃

∂r̃

∂t

)
+ f̃

∂F

∂t
+

∂f0
∂t

(5.90)

The two last terms are null in the classical case where the scales and offset values
do not depend on time.

Finally, the definition of the dimensionless radius eq. (5.85) yields a dimensionless
curvature term

λ ≡ R−

L
− 1 (5.91)

when expanding the ∇ operator in the dimensionless frame. For example the gra-
dient expands as

∇f =
1

L
∇̃f =

1

L



∂f

∂r̃

1

r̃ + λ

∂f

∂θ

1

(r̃ + λ) sin θ

∂f

∂φ


, (5.92)

and the divergence expands as

∇ · u =
1

L
∇̃ · u =

1

L

(
1

(r̃ + λ)2
∂((r̃ + λ)2ur)

∂r̃

+
1

(r̃ + λ) sin θ

∂(uθ sin θ)

∂θ

+
1

(r̃ + λ) sin θ

∂uφ

∂φ

)
.

(5.93)
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5.3.2 Dimensional equations
Conservation equations and associated boundary conditions are similar to the ones
introduced in chapter 2. We introduce a conservation equation for the major element
composition, namely the FeO mass fraction ξ, as well as internal heating and the
associated heat producing elements (HPE) concentration c.

Mass and momentum conservation equations are

∇ · u = 0, (5.94)

0 = −∇p+ η∇2u + δρgr̂. (5.95)
Composition transport equations are

∂ξ

∂t
+ u ·∇ξ = 0, (5.96)

∂c

∂t
+ u ·∇c = 0. (5.97)

Note that we assume for both FeO and HPE that their diffusion is negligible com-
pared to that of heat (limit case of infinite Lewis numbers). The only transport
mechanism affecting them is advection. Finally, the heat equation is

∂T

∂t
+ u ·∇Θ = κ∇2T + h. (5.98)

The temperature and FeO content both affect the buoyancy term as

δρ = ρα(T − 〈T 〉) + ρβ(ξ − 〈ξ〉). (5.99)

Finally, internal heating is related to the HPE content as

h = c
RH

Cp

exp
(

ln
(
1

2

)
t

τHPE

)
. (5.100)

The mechanical boundary conditions are the same as in chapter 2, namely free-
slip and phase change boundary condition:

r
∂

∂r

(uθ

r

)
+

1

r

∂ur

∂θ
= r

∂

∂r

(uφ

r

)
+

1

r sin θ

∂ur

∂φ
= 0, (5.101)

∆ρgτφur + 2η
∂ur

∂r
− p = 0. (5.102)

The thermal boundary condition is the same as previously, with the temperature at
a boundary equal to the melting temperature:

T (R±) = T±. (5.103)

These temperature evolves with time as the pressure at the boundary and the com-
position of the oceans vary, according to eqs. (5.2) and (5.44). Finally, regarding the
compositional fields ξ and c, their fluxes at the boundaries are imposed by the melt-
ing/freezing associated with the dynamics of the solid (owing to the flow-through
boundary condition), and with the net motion of the solid/liquid interface (owing
to the evolution of both magma oceans). New solid resulting from the freezing has
a composition as described by eqs. (5.6), (5.22), (5.47) and (5.62).
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Symbol Expression Description Nominal value

Ra ρgα∆TML3
M

ηκ
Rayleigh number 107

Bξ − β

α∆TM

Compositional buoyancy 5

Φ± |∆ρ|gτφL
η

Phase change number 10−3

RH
RHL

2
M

κCp∆TM

Heat production 20

τHPE
τHPEκ

L2
M

HPE half-life 0.02

Table 5.3: Dimensionless parameters for the dynamics of the solid.

5.3.3 Dimensionless equations
The scales for length, velocity, mass and temperature all depend on time and are

defined as: L = R+ − R−, κ

L
, ηL3

κ
, ∆T = T− − T+. To ensure the dimensionless

time t̃ is monotonic, it is built with a constant scale, i.e. t =
L2
M

κ
t̃.

Moreover, the dimensionless temperature is defined as:

T̃ =
T − T+

∆T
. (5.104)

This leads to constant boundary conditions on temperature.
These variable scales for length and temperature yield two dimensionless numbers

depending on time. The dimensionless thickness of the solid is

Γ =
L

LM

. (5.105)

The dimensionless temperature scale is

T =
∆T

∆TM

. (5.106)

The dimensionless parameters controlling the convection in the solid are shown
in table 5.3.

The dimensionless equations in the solid are written here using the same symbol
as the corresponding dimensional quantities. The Stokes and mass conservation
equations become:

0 = ∇ · u (5.107)
0 = −∇p+∇2u + TΓ3Raδρr̂ (5.108)

where
δρ =

(
T − Bξ

T
ξ

)
−
〈
T − Bξ

T
ξ

〉
. (5.109)
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Compositional conservation equations are

Γ2∂ξ

∂t
+ u ·∇ξ = 0, (5.110)

Γ2∂c

∂t
+ u ·∇c = 0. (5.111)

The dimensionless heat conservation equation is

Γ2∂T

∂t
+u·∇T+Γ

(
(1− r)Ṙ+ + (r − 2)Ṙ−

) ∂T

∂r
+
Γ2

T
(ṪT+Ṫ+) = ∇2T+h. (5.112)

The internal heating is related to the HPE content as

h = c
Γ2

T
RH exp

(
ln
(
1

2

)
t

τHPE

)
. (5.113)

The phase change boundary condition is:

± Φ±ur + 2
∂ur

∂r
− p = 0 (5.114)

The free-slip boundary condition becomes

(r + λ)
∂

∂r

(
uθ

r + λ

)
+

1

r + λ

∂ur

∂θ
= (r + λ)

∂

∂r

(
uφ

r + λ

)
+

1

(r + λ) sin θ

∂ur

∂φ
= 0.

(5.115)
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Chapter 6

Timescale of overturn in a magma
ocean cumulate

This chapter is a paper written by A. Morison, S.Labrosse, R. Deguen and T. Al-
boussière published in 2019 in Earth and Planetary Science Letters (Morison et al.
2019). It focuses on the timescale of overturn of the solid part of the mantle when
crystallizing a Top Magma Ocean. The approach used in this chapter is a linear
stability analysis and therefore present numerous simplifiations to the models dis-
cussed previously.

6.1 Abstract
The formation and differentiation of planetary bodies are thought to involve magma
oceans stages. We study the case of a planetary mantle crystallizing upwards from
a global magma ocean. In this scenario, it is often considered that the magma ocean
crystallizes more rapidly than the time required for convection to develop in the
solid cumulate. This assumption is appealing since the temperature and composi-
tion profiles resulting from the crystallization of the magma ocean can be used as
an initial condition for convection in the solid part. We test here this assumption
with a linear stability analysis of the density profile in the solid cumulate as crystal-
lization proceeds. The interface between the magma ocean and the solid is a phase
change interface. Convecting matter arriving near the interface can therefore cross
this boundary via melting or freezing. We use a semi-permeable condition at the
boundary between the magma ocean and the solid to account for that phenomenon.
The timescale with which convection develops in the solid is found to be several or-
ders of magnitude smaller than the time needed to crystallize the magma ocean as
soon as a few hundreds kilometers of cumulate are formed on a Mars- to Earth-size
planet. The phase change boundary condition is found to decrease this timescale by
several orders of magnitude. For a Moon-size object, the possibility of melting and
freezing at the top of the cumulate allows the overturn to happen before complete
crystallization. The convective patterns are also affected by melting and freezing
at the boundary: the linearly most-unstable mode is a degree-1 translation mode
instead of the approximately aspect-ratio-one convection rolls found with classical
non-penetrative boundary conditions. The first overturn of the crystallizing cumu-
late on Mars and the Moon could therefore be at the origin of their observed degree-1
features.
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6.2 Introduction

A common scenario considered for the formation of terrestrial planets is the crys-
tallization of a global magma ocean from the bottom-up, because the liquidus of
silicate magmas increases with pressure more steeply than the isentropic temper-
ature, at least at low to moderate mantle pressure (Andrault, Bolfan-Casanova,
Nigro, et al. 2011; Boukaré, Ricard, et al. 2015; Fiquet et al. 2010; Thomas and Asi-
mow 2013). The crystallization of the surface magma ocean is expected to be rapid,
around 1 Myr (e.g. Abe 1997; Lebrun et al. 2013). This has led several authors to
assume convection in the solid part of the crystallizing mantle does not start until
the mantle is entirely crystallized (e.g. Abe 1997; Elkins-Tanton, E. M. Parmentier,
et al. 2003; Elkins-Tanton, Zaranek, et al. 2005; Hess and E. M. Parmentier 1995;
E. Parmentier et al. 2002; Zhang et al. 2013). However, this assumption deserves
scrutiny since the compositional and thermal structure of the mantle after complete
crystallization could be widely different if solid-state convection does set in during
its crystallization.

Two processes might lead to the destabilization of the solid mantle during its
crystallization. First, assumming fractional crystallization, the surface magma ocean
gets enriched in incompatible elements. As a secondary result, the new solid formed
at the solid/liquid boundary gets richer and richer in these elements as crystalliza-
tion progresses. Iron is such an element and its abundance is such that it affects
significantly the density of both the solid and the liquid. The solid formed at the
end of the crystallization is richer in iron than the solid formed at the beginning
of the crystallization, leading to an unstable setup with material denser at the top
than at the bottom of the solid mantle.

The second process that can further destabilize the solid mantle is the temper-
ature gradient in the solid. The solidus temperature increases with pressure, and is
steeper than the isentropic temperature profile. Assuming the temperature in the
solid stays close to the solidus, the resulting profile is hence unstable. This effect
is enhanced by fractional crystallization and the associated enrichment of the solid
in incompatible elements: their presence further decreases the solidus temperature
and the compositional gradient discussed above induces an even steeper solidus.

Numerical simulations including these processes suggest it is possible for solid-
state convection to set in prior to the entire crystallization of the surface magma
ocean (e.g. Boukaré, E. Parmentier, et al. 2018; Maurice et al. 2017). Whether con-
vection in the mantle starts during or after the crystallization of the surface magma
ocean is found to have profound implications on the preservation of compositional
heterogeneities as well as the dynamics of the mantle (Ballmer et al. 2017; Tosi et
al. 2013). These results further confirm the need to assess the parameters control-
ling the onset of convection in the primitive mantle.

A dynamical feature of the solid cumulate in contact with a magma ocean that
has not been accounted for in the past studies is the possibility of exchange of matter
at the boundary between the solid and the ocean via melting and freezing. We use
a boundary condition developed for the inner core boundary (Deguen, Alboussière,
et al. 2013) to take this effect into account. This boundary condition is expected
to have important effects on the convection pattern and heat flux as well as the
timescale with which convection sets in (Deguen 2013; Labrosse, Morison, et al.
2018).
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Our aim is to assess how the timescale at which convection starts in the solid
cumulate compares with the time needed to crystallize a surface magma ocean.
Different scenarios are explored to determine the parameters controlling the onset
of convection in the magma ocean cumulate. We consider the case where fractional
crystallization happens during the entire cooling history of the magma oceans as well
as the case where no compositional fractionation occurs. We explore the classical
case for which no matter crosses the boundary between the magma ocean and the
solid cumulate, and also the case with a boundary that allows matter transfer accross
it. The study is applied to the Earth, Mars, and the Moon.

6.3 Methods
We consider a mantle that is initially fully molten and crystallizes from the bottom
or some intermediate depth upward. The goal of the present study is to determine
the timescale for convection to start in the solid part of the mantle as the magma
ocean crystallizes.

For the sake of simplicity, we assume the compaction length to be small and ne-
glect the thickness of a mush layer at the phase change interface. Matter on one side
of the boundary is entirely liquid while matter on the other side is entirely solid. We
nonetheless allow for compositional fractionation to occur as the mantle crystallizes.
The temperature at the solid/liquid boundary is denoted Tm and referred to as the
melting temperature.

Depending on how the temperature profile in the magma ocean compares with
the profile of the melting temperature, two situations can occur. Either the solidifi-
cation of the ocean progresses from the bottom up, or the solidification starts from
an intermediate depth leading to a setup in which the solid part of the mantle is
surrounded by two magma oceans. In this second scenario, the crystallization of the
surface magma ocean (SMO) is thought to be a lot faster than the crystallization of
the basal magma ocean (BMO) (Labrosse, Hernlund, and Coltice 2007).

We assume the solid mantle is a spherical shell of internal radius R− and ex-
ternal radius R+. Since the crystallization of the BMO is much slower than the
crystallization of the SMO, we assume R− to be constant even for the case where
the solid shell is surrounded by two magma oceans. The presence or absence of a
BMO however affects the boundary condition applied at the bottom boundary of
the solid mantle (see section 6.3.4).

As the magma ocean cools down, R+ increases to reach the total radius of the
planetary body, denoted by RT . The temperature at the top boundary of the solid
follows the melting temperature. The composition of the solid changes as well with
the radius if we assume fractional crystallization occurs. For the sake of simplic-
ity, we only consider fractionation of iron. The mass fraction of FeO, denoted by C,
varies between 0 (e.g. Forsterite) and 1 (e.g. Fayalite). Although simplistic, such a
model allows us to study the effect of the density gradient due to fractional crystal-
lization on the dynamics of the solid. Figure 6.1 shows the composition and tem-
perature profiles at two different times. We assume the velocity of the freezing front
Ṙ+ does not vary laterally and that the SMO is well mixed, the temperature and
compositional fields in the resulting solid hence only vary with the radial position
(as long as no solid-state convection operates).

In this section, we introduce the simple phase diagram we use to compute the
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Figure 6.1: Temperature and composition reference profiles. Solid lines are the
profiles at time t, dashed lines the profiles at time t+ δt. The green area is the solid
mantle at time t. The yellow area represents the part of the surface magma ocean
(SMO, in red) that has crystallized during δt. All the annotations on the axes are
written at time t (see table 6.1 for the meaning of symbols). Notice how the melting
temperature decreases between the two instants owing to the enrichment in iron of
the surface magma ocean. The slopes of the curves are exaggerated for readability
purpose.

resulting temperature and composition profiles in the solid under the assumption
that no convection occurs in the solid (section 6.3.1). This serves as base state which
stability against overturning motion is studied. We don’t treat the full dynamics of
the overturn but compute, using a linear stability analysis, the growth rate of an
overturning instability to compare it to the crystallization rate of the magma ocean.
The latter is computed using a magma ocean cooling model which gives R+ as a
function of time, as described in section 6.3.2.

6.3.1 Composition and temperature reference profiles
Under the assumption that no convection occurs during crystallization, one can
determine the resulting temperature and compositional profiles in the cumulate.
These profiles are used as reference profiles in order to perform the linear stability
analysis (section 6.3.5).

We consider a magma ocean crystallizing from some depth R− up to its top radius
RT . The mass fraction of the heavy component (FeO) is C(r) in the solid and
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Symbol Description Earth Moon Mars
Input parameters

R− Internal radius of the solid shell 3871 km∗ 737 km 2090 km
RT Total radius of the planet 6371 km 1737 km 3390 km
T − Temperature at the bottom boundary† 4500 K 1500 K 2400 K
T∞ Black body equilibrium temperature 255 K 255 K 212 K
ε Emissivity¶ 10−4 1 10−3

g Gravity acceleration 9.81 m/s2 1.62 m/s2 3.71 m/s2

RaS Rayleigh number of SMO 1030 1028 5 × 1028

α Thermal expansion coefficient 10−5 K−1

Cp Heat capacity 103 J K−1

κ Thermal diffusivity 10−6 m2/s
Lh Latent heat 4 × 105 J kg−1

σ Stefan-Boltzmann constant 5.67 × 10−8 Wm−2K−4

ρ Reference density 4 × 103 kg/m3

∆ρm Solid/liquid density contrast 2 × 102 kg/m3

η Viscosity in the solid 1018 Pa s
Cl0 Iron content of the primitive SMO† 0.1
D Solid/liquid partition coefficient of iron‡ 0.6
β Compositional expansion coefficient -0.33

∂Tm/∂P Clapeyron slope 2 × 10−8 K Pa−1

∂Tm/∂C Dependence of Tm on iron content −700 K
Computed dimensional variables

LM Final thickness of solid mantle RT −R− 2500 km 1000 km 1300 km
Tm Melting temperature Tm(P,C) described by eq. (6.4)
T + Temperature at the top boundary T +(t) with eq. (6.5)
Tp Potential temperature at the surface Tp(t) with eq. (6.8)
Ts Temperature at the surface of the planet Ts(t) with eq. (6.9)
R+ External radius of the solid shell R+(t) with eq. (6.10)
L Thickness of the solid shell L = R+ −R−

C0 Iron content of the first solid KCl0 = 0.06
Cl Iron content of the SMO KCl(t) = C+(t) with eq. (6.2)

τStokes Stokes time ηL2/(∆ρgL3
M )

Dimensionless numbers
Ra(t) Thermal Rayleigh number ρgα∆TL3/(ηκ)
Rc(t) Compositional Rayleigh number ρgβL3/(ηκ)

W (t) Freezing front velocity (Peclet number) LṘ+/κ
Γ(t) Thickness of the solid part L/LM

ΓS(t) Thickness of the SMO (RT −R+)/LM

Φ± Phase change number§ 10−2; ∞

Table 6.1: Symbols used in this paper. All quantities with a + superscript are
evaluated at the top boundary (R+), while quantities with a − superscript are
evaluated at the bottom boundary (R−). ¶ The emissivity values for the Earth and
Mars are chosen so that the crystallization time scale of the SMO is of the order of
1 Myr (Lebrun et al. 2013). For the Moon, we neglect the effects of the atmosphere
and assume a black body cooling. ∗ This choice assumes a 400 km thick basal magma
ocean. Using R− = 3471 km does not change significantly the results. † From
Andrault, Bolfan-Casanova, Nigro, et al. (2011), ‡ from Andrault, Petitgirard, et
al. (2012). § 10−2: flow-through, ∞: non-penetrative. For the Moon and Mars, the
possibility of a BMO is not considered and Φ− = ∞ (see section 6.3.4 for details).
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Cl(t) in the liquid, assuming that no diffusion (nor convection) operates in the solid
(therefore C does not depend on time) and convection mixes the liquid efficiently
(therefore Cl depends only on time). At the freezing front, the phase relation is

C(R+(t)) = DCl(t) (6.1)

with D the partition coefficient (considered constant) and R+(t) the time-evolving
radius of the freezing interface.

Assuming the magma ocean undergoes fractional crystallization, the composition
profile in the cumulate is exponential. At the radial position r it is

C(r) =

C0

(
RT

3−(R−)3

RT
3−r3

)1−D

if r < Rs

1 if r > Rs,
(6.2)

with

Rs =

(
(R−)3C

1
1−D

0 +RT
3

(
1− C

1
1−D

0

))1/3

(6.3)

the value of R+ at which Cl reaches 1 (see section 6.7 for more details).
Since the diffusion timescale is much larger than the other time scales considered

here, we assume the temperature profile in the cumulate stays close to the melting
temperature. We take into account variations of the melting temperature Tm due to
both the pressure and the composition. A higher concentration in iron leading to a
lower melting temperature, the resulting temperature profile in the solid is steeper
than a constant-concentration solidus when fractional crystallization is accounted
for (Figure 6.1). The melting temperature Tm verifies:

dTm

dr
=

∂Tm

∂P

∂P

∂r
+

∂Tm

∂C

∂C

∂r
. (6.4)

With ∂P

∂r
= −ρg and eq. (6.2), one obtains

dTm

dr
= −ρg

∂Tm

∂P
+ 3C(1−D)

r2

RT
3 − r3

∂Tm

∂C
. (6.5)

For the sake of simplicity, we assume ∂Tm

∂P
and ∂Tm

∂C
to be constant (see table 6.1

for values).
We denote T = T − Tadb the superisentropic temperature in the solid, with

Tadb = T − exp
(
αg(R− − r)

Cp

)
(6.6)

the isentropic temperature profile in the solid, with α the coefficient of thermal
expansion, g the acceleration of gravity and Cp the heat capacity. We assume the
variations of α, Cp and g with depth to be negligible. The reference superisentropic
temperature (denoted T̄ ) gradient is then:

dT̄
dr

= −ρg
∂Tm

∂P
+ 3C(1−D)

r2

RT
3 − r3

∂Tm

∂C
+

αg

Cp

T − exp
(
αg(R− − r)

Cp

)
. (6.7)
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6.3.2 Crystallization time scale
Assuming the temperature profile in the SMO to be isentropic and neglecting vari-
ations of α, g and Cp with depth, the potential temperature at the surface is:

Tp = T + exp
(
−αg(RT −R+)

Cp

)
. (6.8)

Note that we are neglecting the temperature drop across the boundary layer at the
bottom of the magma ocean. This is justified by the very small viscosity of the
magma and the main buoyancy force coming from cooling to the atmosphere at the
top surface.

King et al. (2012) showed that the scaling law for the heat flux in a rotating
fluid (such as the surface magma ocean) depends on how the quantity RaSEk3/2

S =
αg∆Tν1/2

κ(2Ω)3/2
compares to 1, with EkS the Ekman number and RaS the Rayleigh

number in the SMO. A conservative lower bound with the thermal expansivity α ∼
10−5 K−1, the gravity g ∼ 10 m/s2, the super-isentropic temperature difference ∆T ∼
1 K, the kinematic viscosity ν ∼ 10−5 m2/s, the thermal diffusivity κ ∼ 10−6 m2/s
and the rotation rate Ω ∼ 10−4 s−1 is RaSEk3/2

S ∼ 105 � 1. We then consider
the heat flux is not controlled by rotation and scales as Nu = 0.16Ra2/7

S Γ
6/7
S with

ΓS = (RT − R+)/L the dimensionless thickness of the SMO (ibid.). Note that this
scaling does not depend on the Prandtl number in the range of values explored by
King et al. (ibid.), i.e. 1 6 Pr 6 100. Since Pr ∼ 10 is a reasonable value for a
magma ocean, we assume this scaling holds for our study. We neglect variations of
RaS with time and assume the magma ocean behaves like a gray body at its upper
surface. Heat flow conservation at the surface gives the following equation for the
surface temperature Ts:

k(Tp − Ts)

LM

0.16Ra2/7
S Γ

−1/7
S = εσ(T 4

s − T 4
∞) (6.9)

where T∞ is the black body equilibrium temperature, σ is the Stefan-Boltzmann
constant and ε the emissivity. The emissivity should depend on the atmosphere dy-
namics and composition (particularly its water content) and vary with time. Taking
this effet into account would require an atmosphere model (e.g. Abe 1997; Lebrun
et al. 2013). For the sake of simplicity, we assume the emissivity to be constant,
tuning its value to obtain a crystallization timescale that matches the ones of Le-
brun et al. (2013) (see table 6.1 for values).

As the SMO crystallizes (i.e. R+ increases with time), we assume the temper-
ature at the top of the solid mantle T + follows the solidus (eq. (6.5)), and the
temperature profile in the SMO follows an isentropic profile. As R+ grows, two
phenomena produce heat that should be evacuated: the crystallization itself with
an associated latent heat Lh, and the cooling of the magma ocean. Assuming this
heat is entirely evacuated through radiation in the atmosphere modeled as a gray
body, one obtains the following equation:

εσR2
T (T 4

s − T 4
∞) = ρLhR

+2dR+

dt
− ρCp

d
dt

(∫ RT

R+

T + exp
(
αg(R+ − r)

Cp

)
r2dr

)
.

(6.10)
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The last term of this equation can be developed (keeping in mind that the lower
bound of the integral R+ depends on time). This yields the time derivative of
T +, which is written as a derivative with respect to R+ using the chain rule. One
obtains an ordinary differential equation on R+(t) whose numerical integration gives
the position of the interface between the solid and the surface magma ocean as a
function of time.

6.3.3 Set of dimensionless equations

L = R+ − R−, L2
M/κ, κ/L, ηL3/κ, ∆T = T− − T+ are used as scales for length,

time, velocity, mass and temperature respectively. Note that R+ and T+ vary with
time as the surface magma ocean crystallizes. LM = RT −R− is the thickness of the
solid mantle once the SMO is entirely crystallized. Note that all scales depend on
time except the one for time itself, which is why Γ = L/LM appears in the following
equations. The dimensionless radial position is built as 1 + (r−R−)/L so that it is
between 1 and 2 at all times. Similarly, the dimensionless temperature is chosen as
(T − T+)/∆T so that it is between 0 and 1 at all times.

Using the same symbols for dimensionless quantities, dimensionless conservation
equations of mass, momentum, heat and iron fraction are written as:

∇ · u = 0 (6.11)
0 = −∇p+∇2u + Ra (Θ− 〈Θ〉) r̂ + Rc (c− 〈c〉) r̂ (6.12)

Γ2∂Θ

∂t
+ u ·∇(Θ + T̄ )−∇2Θ = W

(
(r − 1)

∂Θ

∂r
+

(
∂T̄

∂r

)+

Θ

)
(6.13)

Γ2∂c

∂t
+ u ·∇(c+ C̄) = W (r − 1)

∂c

∂r
. (6.14)

u is the velocity field, p the dynamic pressure, Θ the temperature perturbation with
respect to the reference profile T̄ and c the composition perturbation with respect
to the reference profile C̄. 〈x〉 denotes the lateral average of the quantity x. Ra is
the thermal Rayleigh number, Rc is the compositional Rayleigh number. The terms
on the right hand side of eqs. (6.13) and (6.14) are due to the time dependence of
the scales L and ∆T , which brings new advection terms associated with the change
of frame, with W = LṘ+/κ the dimensionless velocity of the freezing front. See
table 6.1 for the definition and values of the various symbols.

Note that these equations are written under the assumption that Ṙ− = 0. Other
terms would appear on the right hand side of eqs. (6.13) and (6.14) in the general
case involving the crystallization of a basal magma ocean. For Earth’s case, we
assume the basal ocean crystallizes much slower than the surface ocean, and as such
we neglect Ṙ− (Labrosse, Hernlund, and Coltice 2007). We assume the diffusion of
the compositional field is negligible since the diffusion coefficient of composition is
much smaller than that of heat. Moreover, diffusion of T̄ is neglected while that
of Θ is retained in order to ease the linear stability analysis. This is justified a
posteriori by the fact that the diffusion timescale is much longer than the other
timescales considered in this study.
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6.3.4 Phase change boundary condition
In the classical Rayleigh-Bénard setup, convecting matter arriving near an horizontal
boundary forms a topography whose height is limited by the weight viscous forces
can sustain. This topography is often neglected and a non-penetrative boundary
condition is assumed at the interface (ur(R

+) = 0). However, in the system studied
here, the boundary between the magma ocean and the cumulate is a phase change
interface. A topography of the solid with respect to the equilibrium position of the
solid/liquid interface can then be eroded by melting or freezing. Provided that the
melting/freezing time is short compared to the time needed to build the topography
by viscous forces, it is thus possible to have a non-zero normal velocity accross
the interface. This is taken into account with the help of the boundary condition
introduced for the inner core by Deguen, Alboussière, et al. 2013. This boundary
condition, which translates the continuity of normal stress across the interface, is
written in dimensional form as:

∆ρmgτφur + 2η
∂ur

∂r
− p = 0. (6.15)

where ∆ρm is the density difference between the solid and liquid phases and τφ
is the phase change timescale. Note that our definition of the dynamic pressure
(defined here as p = P − 〈P 〉) differs from that of p̂ used by ibid. The laterally
constant term ∆ρmgτφṘ is thus included in p instead of explicitly appearing in the
boundary condition. The dimensionless form of the boundary condition is

± Φ±ur + 2
∂ur

∂r
− p = 0 (6.16)

where Φ is the phase change number defined as:

Φ± =
|∆ρm|±gLτφ

η
(6.17)

(the superscript + denotes the interface between the SMO and the solid at R+ while
the superscript − denotes the interface between the BMO and the solid at R−).
Moreover, the continuity of tangential stress is simply written as a classic free-slip
boundary condition.

The phase change timescale τφ is related to the time needed to transport latent
heat in the magma ocean from the areas that freeze to the areas that melt (ibid.):

τφ =
ρLh

(ρ−∆ρm)2Cp(∂PTm − ∂PTadb)gu′ (6.18)

where u′ is the velocity scale in the magma ocean. A reasonable value for the latter is
u′ ∼ 1 m s−1 (Lebrun et al. 2013). Using nominal values for the other parameters, we
find that τφ ∼ 104 s. Plugging this in the expression of the phase change parameter
eq. (6.17) yields Φ ∼ 10−5.

The phase change number Φ compares the phase change timescale τφ (i.e. the
time needed to erode topography via melting and freezing) to the viscous timescale
(i.e. the time needed to build topography with viscous forces). The value of Φ allows
to tune continuously the boundary condition between a non-penetrative classical
condition (Φ → ∞) and a fully permeable condition (Φ → 0). Although this num-
ber should depend on time since L depends on time and τφ depends also on time but
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in a non trivial way, it is kept constant in this study. Two extreme values are tested
for the SMO/solid interface: Φ = ∞ which leads to the classical non-penetrative
boundary condition and Φ = 10−2 which leads to a flow-through boundary (we use
this value rather than 10−5 because the resolution of radial modes is more compu-
tationally demanding as Φ decreases, while the overturn timescale is not affected as
shown in the results). For the Earth, these two values are also considered at the
bottom of the solid, accounting for the possible presence of a basal magma ocean
(BMO, Labrosse, Hernlund, and Coltice 2007). For Mars and the Moon, we do not
consider the possibility of a BMO and the bottom interface is hence non-penetrative,
ur(R

−) = 0. Rather than being realistic, these extreme constant values are used
to study how the possibility of melting and freezing at the interface affects the sta-
bility of the solid, both in terms of onset time of overturn and preferred mode of
motion. The estimated nominal value being Φ ∼ 10−5, we expect the real system
should be closer to the flow-through case than to the classical non-penetrative case.

6.3.5 Determination of overturn timescale
We start from a completely molten primitive mantle (R+ = R− and T + = T −). We
numerically integrate eq. (6.10) to obtain R+ as a function of time (the potential
surface temperature Tp and the surface temperature Ts are computed using eq. (6.8)
and eq. (6.9)).

At each timestep of this integration, we compute the reference temperature and
composition profiles in the solid as shown in section 6.3.1 as well as the dimensionless
numbers Ra(t), Rc(t), W (t) and Γ(t). Using a Chebyshev-collocation approach
(e.g. Canuto et al. 1985; Guo et al. 2012), the set of linearized equations around
the reference state is written as an eigenvalue problem (see section 6.8). Solving
numerically this problem yields the growth rate and shape of the most unstable mode
of overturn. The inverse of that growth rate is the timescale for convection to set
in in the solid shell. We compute this timescale at each timestep of the evolution of
the SMO. By comparing this timescale with the corresponding time in the evolution
of the SMO, we can assess whether convection is able to take place before the entire
magma ocean is crystallized. Three different models are considered for the bulk of
the solid:

1. full model: compositional, thermal, and moving frame terms are taken into
account;

2. thermal model: compositional terms are left out, modeling the ideal case where
no fractional crystallization occurs and the sources of instability are purely
thermal (eq. (6.14) and the corresponding buoyancy term in eq. (6.12) are
ignored);

3. frozen-time model: moving frame terms are left out (i.e. right-hand side of
eqs. (6.13) and (6.14)), resulting in a frozen-time approach where all long term
evolution terms are ignored when studying the stability of the system at a
given instant.

We also compare the timescale obtained by linear stability analysis with the Stokes
time τStokes = ηL2/(∆ρgL3

M) computed at each time to check whether this time is a
relevant proxy of the stability of the solid mantle.
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Figure 6.2: Growth time of the most unstable mode as a function of the crystallized
mantle thickness for the Earth, Mars, and the Moon. The solid black line is the
time necessary to crystallize the remaining surface magma ocean. Colors represent
different boundary conditions: both horizontal boundaries non-penetrative (blue);
flow-through boundary condition between the solid and the surface magma ocean to
model the possibility of melting and freezing (see section 6.3.4 for details) (green);
and flow-through boundary conditions for both horizontal boundaries assuming the
presence of a basal magma ocean (red). Linestyles represent different approxima-
tions regarding compositional effects (fractional crystallization and effect on density)
and moving frame contributions: both are taken into account (solid lines), composi-
tional effects are neglected (dash-dotted lines), or moving frame terms are neglected
(dotted lines). The black dashed line is the Stokes time for each thickness, given for
comparison.

6.4 Results
The destabilization timescales for the Earth, Mars, and the Moon with various
boundary conditions along with the time needed to crystallize the remaining SMO
are shown on fig. 6.2. Comparison of the destabilization timescales obtained for
various bulk setups and boundary conditions yields information regarding their con-
tribution to the destabilization of the solid.

The simplest cases are the one neglecting the compositional effects on density.
For such cases, the destabilization timescale tends to infinity for a given non-zero
thickness of crystallized mantle. This thickness corresponds to the one needed for
instabilities to overcome diffusion of perturbations of the reference state. In other
words, it corresponds to the thickness above which the Rayleigh number in the
solid part is above the critical Rayleigh number. For the Moon, this thickness is
never reached and the Moon’s mantle stays stable with respect to purely thermal
convection. For the Earth and Mars, this thickness is reached rather early, after
∼ 500 km of solid mantle is formed. As crystallization progresses, the thickness
and the temperature contrast between the top and the bottom of the solid mantle
increase. The available buoyancy in the system therefore increases. This leads to a
strong decrease of the destabilization timescale, which becomes much shorter than
the time needed to crystallize the remaining surface magma ocean (up to 6 orders of
magnitude, depending on which boundary conditions are considered). This suggests
that even in the purely thermal case, solid-state convection sets in before the mantle
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is completely crystallized for planets larger than Mars.
The cases taking compositional effects on density into account are always un-

stable. This contrasts with the purely thermal cases and is due to the fact that
diffusion of the composition field is neglected. There is no mechanism to damp per-
turbations around the reference state, the latter is hence always unstable. Similarly
to what is observed for the thermal cases, the destabilization timescale drops dra-
matically as the solid mantle thickens. For the Earth and Mars, the destabilization
timescale ends up being shorter than the crystallization time of the remaining SMO
by several orders of magnitude. The case where moving frame terms are neglected
exhibits a shorter destabilization time scale at small thickness. The moving frame
terms play a stabilising role only at the begining of mantle crystallization for the
Earth and Mars but are significant through the entire Moon’s mantle crystalliza-
tion. The stabilising effect of the moving terms can be understood from the energy
conservation eq. (6.13). Taking a temperature perturbation θ > 0 and the associ-
ated velocity perturbation ur > 0, one can notice there is a competition between the
advection term ur∂rT̄ < 0 and the moving frame term W (r − 1)∂rθ whose average
is negative. The same reasoning can be made with a negative perturbation and on
the iron conservation eq. (6.14).

For the Moon, the destabilization timescale is always greater than the time
needed to crystallize the SMO. However, it should be noted that in this study
the time to crystallize the SMO is computed assuming a well-mixed SMO with a
surface behaving like a black body. The formation of a light solid crust enriched in
plagioclase when around 80% of the SMO is crystallized is expected to slow down
the solidification of the SMO by a few million years (e.g. Elkins-Tanton, Burgess,
et al. 2011). This would leave enough time for convection to set in in the solid since
the destabilization timescale we find is much shorter than that.

The three boundary conditions exhibits different destabilization timescales. The
case where both boundaries are non-penetrative (which is the case classically con-
sidered) needs more time to destabilize than the case where the boundary between
the surface magma ocean and the solid allows melting and freezing. Convective pat-
terns obtained with a flow-through boundary are substantially different than the
classical ones (fig. 6.3). Aspect-ratio-1 rolls are obtained with classical boundary
conditions. However, when the top boundary allows phase change, a spherical-
harmonic-degree-1 near-translation mode develops. Matter freezes on one side of
the spherical shell, goes around the core or basal magma ocean, and melts on the
other side. In the case with a basal magma ocean and its boundary with the solid
of flow-through type, matter also crosses the inner boundary of the spherical shell,
resulting in a true translation mode. These two translation modes involve very lit-
tle or no deformation of the solid compared to the classical case, and therefore less
viscous forces acting against convection. This explains the smaller destabilization
timescale associated with these modes as well as the lower critical thickness in the
purely thermal case.

fig. 6.4 shows the transition between the non-penetrative and the flow-through
regime occurs over a rather short range of values of the phase change number.
Φ+ . 1 leads to near-translation while Φ+ & 100 leads to classical aspect-ratio-one
rolls.

A notable feature on fig. 6.2 is the steep decrease of the destabilization timescales
at the end of the crystallization when compositional terms are taken into account.
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Φ+ =∞
Φ− =∞

(a) classical case

Φ− =∞
Φ+ = 10−2

(b) flow-through at top

Φ+ = 10−2

Φ− = 10−2

(c) flow-through at top and
bottom

Figure 6.3: Most unstable convection modes for the Earth when a 1700 km thick
mantle has crystallized, for different boundary conditions represented by the values
of the Φ parameters at the top and the bottom, as indicated. The dark zones
represent negative temperature anomalies while the bright zones represent positive
temperature anomalies. The streamlines are superimposed. Note that the linear
stability analysis offers no constraint on the orientation and amplitude of these
modes, only their harmonic degree and radial shape. (a): both boundaries non-
penetrative, the convection rolls have an aspect ratio approximatively equal to 1;
(b): flow-through top boundary, the flow pattern is of spherical harmonic degree
one, the streamlines go through the top boundary but go around the central part;
(c): flow-through conditions at both boundaries, the flow pattern is of spherical
harmonic degree one, the streamlines go through both boundaries, resulting in a
translation mode of convection. Similar behavior is obtained for the other bodies.
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Figure 6.4: Destabilization timescale of several harmonics degree (l = 1 to 15) as a
function of the phase change number value for the Earth. The bottom boundary is
non-penetrative. Top: 833 km are crystallized (mid-radius r̄ ∼ 4288 km), bottom:
1667 km are crystallized (mid-radius r̄ ∼ 4704 km). The most unstable mode is the
one with the shortest destabilization timescale. One can notice that in the non-
penetrative case (Φ+ → ∞), the most unstable mode corresponds to aspect-ratio-1
rolls. The typical roll size of the most unstable mode (r̄π/l) is roughly 900 km for
the top case (l = 15) and 1850 km for the bottom case (l = 8). However, with a
flow-through boundary (Φ+ → 0), the most unstable mode is the near-translation
mode for both cases.
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Figure 6.5: Ratio between the destabilization timescale obtained for the purely
compositional case τC (thermal terms are left out) and the timescale obtained for the
purely thermal case τT (compositional terms are left out). When this ratio is above
one, it means the thermal reference profile is more unstable than the compositional
reference profile. The Moon is not shown here since the purely thermal case is never
unstable (τT → ∞). The colors are the same as in fig. 6.2, blue: non-penetrative
condition for both horizontal boundaries (Φ± = ∞); green: flow-through condition
at the boundary between the solid and the surface magma ocean; and red: flow-
through condition at both horizontal boundaries.

That decrease is due to the strong (i.e. very unstable) compositional gradient ap-
pearing at the end of the crystallization. It does not affect the destabilization
timescale obtained with non-penetrative boundary conditions; this can be explained
by the fact that the strong compositional gradient is in a very thin layer at the top
of the domain where vertical velocities vanish, and therefore does not contribute to
the driving of the down- and up-welling currents.

A comparison between the purely thermal and purely compositional cases for the
Earth and Mars is shown on fig. 6.5. The ratio between the destabilization timescales
for theses two cases is 0 before the critical thickness for the purely thermal case
is reached. For Mars, the compositional profile is always more unstable than the
thermal profile and controls the destabilization timescale of the system. For the
Earth, however, the ratio between the two cases is fairly close to 1 for a large
part of the crystallization history: neither the thermal nor the compositional profile
dominates the destabilization timescale of the system.

fig. 6.6 shows that the destabilization timescale τLSA is proportional to the Stokes
time τStokes = ηL2/(∆ρgL3

M). Two effects alter this relation: moving frame terms
whose effects are not included in the Stokes time, and the strong compositional
gradient at the end of the crystallization whose effects depend on the boundary
condition. It should be noted that the ratio τLSA/τStokes depends on the body and
the boundary conditions considered. Notably, permeable boundary conditions lead
to a decrease of τLSA.
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Figure 6.6: Growth time of the most unstable mode versus the Stokes time for the
Earth, Mars, and the Moon. The solid line is the destabilization timescale obtained
with the linear stability analysis τLSA (case with all terms accounted for). The
dashed lines correspond to τLSA ∝ τStokes. Composition, temperature and moving
frame terms are all taken into account. The colors are the same as in fig. 6.2, blue:
non-penetrative condition for both horizontal boundaries (Φ± = ∞); green: flow-
through condition at the boundary between the solid and the surface magma ocean;
and red: flow-through condition at both horizontal boundaries.

6.5 Discussion

We showed for the Earth and Mars that the growth timescale of convective insta-
bilities in a crystallizing mantle from the bottom up is several orders of magnitude
smaller than the time needed to fully crystallize that mantle. This holds even with-
out taking into account fractional crystallization and the unstable density gradient
it induces. This contrasts with the assumptions made in several studies (Elkins-
Tanton, E. M. Parmentier, et al. 2003; Hess and E. M. Parmentier 1995; Tosi et al.
2013) where the overturn is assumed to take place because of the compositionally
induced density gradient after the entire mantle is crystallized. The numerical sim-
ulations performed by Ballmer et al. (2017) for Earth-like objects lead to a destabi-
lization of the solid after a few Myr, and those performed by Maurice et al. (2017)
for Mars-like objects lead to a destabilization after roughly 1 Myr. These times are
not easily comparable to the timescales we compute via linear stability analysis since
the physical problems are different in non-trivial ways: the simulations of Ballmer
et al. (2017) are in a 2D aspect-ratio-1 cartesian box, those of Maurice et al. (2017)
are in cylindrical geometry with a variable viscosity, a melt extraction mechanism
and a solidus temperature that depends only on pressure. However, despite these
differences, the destabilization time uncovered by these simulations are rather simi-
lar to the one we predict for the non-penetrative cases: of the order of 1 Myr for the
Earth and 0.5 Myr for Mars. This confirms the linear growth rate of instabilities is
a relevant proxy for the timescale at which convection sets in.

Moreover, allowing transfer of matter via melting and freezing at the interface
between the solid and the surface magma ocean reduces dramatically the timescale
with which solid-state convection can set in. It also changes the shape and har-
monic degree of the most unstable mode: a degree-one translation mode is pre-
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ferred. Therefore, the possibility of melting and freezing at the interface should
be accounted for when studying the overturn of the primitive mantle of planetary
bodies. For example, the case of the Moon is an interesting potential application.
This body has a strong dichotomy: the near-side presents more mare basalts, more
KREEP material, and a thinner crust than the far-side. Wasson and Warren (1980)
already proposed that such features could be due to a slower cooling of the lunar
magma ocean on the near side than on the far-side. A permeable boundary would
allow the solid mantle to overturn with a dominant degree-one before the entire crys-
tallization of the mantle (keeping in mind that the end of the crystallization is much
slower than what we predict with our simple model, see Elkins-Tanton, Burgess,
et al. (2011)). The mechanisms proposed to build a degree 1 at the scale of the
Moon involve the dynamics of an entirely crystallized lunar mantle (e.g. E. Parmen-
tier et al. 2002; Zhong et al. 2000). The possibility to form a degree one while the
crystallization of the magma ocean is still ongoing is therefore worth exploring with
more complete models to test whether this dominant degree-one can be conserved
after crystallization of the magma ocean and/or helps the development of degree-
one instabilities such as the ones predicted in the aforementioned studies. It is also
tempting to associate the degree-one feature of Mars (the Marsian dichotomy) to
the same process but, as explained above, the first degree-one overturn of the solid
mantle is expected to happen long before its complete crystallization. Secondary
overturning instabilities are possible after the first one that we cannot investigate
with the tools presented above. A more complete study investigating the finite am-
plitude dynamics is necessary to understand the implications of this work to planets
larger than the Moon.

It should be noted that several parameters involved in the problem are badly con-
strained. The viscosity of the solid mantle and even its rheology is such a parameter.
It is highly dependent on how close the temperature in the solid is from the solidus
and could easily vary by a few orders of magnitude (e.g. Solomatov 2015). Since the
destabilization timescale scales as the Stokes time (fig. 6.6), it is directly propor-
tional to the viscosity and could therefore vary by a few orders of magnitude. The
strong relation between the viscosity of the cumulate and the overturn scaling has
been investigated by Ballmer et al. (2017): their numerical experiments confirm the
overturn onset scales as the Stokes time. It should be noted that our flow-through
boundary conditions does not affect this result, it only reduces the proportionality
factor between the Stokes time and the growth time of instabilities (fig. 6.6). This
validates the general approach proposed by Boukaré, E. Parmentier, et al. (2018)
to assess whether solid-state convection sets in before the magma ocean is entirely
crystallized: they compare the Stokes time with the time needed to crystallize the
magma ocean and their numerical experiments yields that syn-crystallization con-
vection is possible when the ratio between these two times exceeds ∼ 5 × 104. This
value however was determined with non-penetrative boundary conditions, the actual
threshold should be a few orders of magnitude higher (meaning syn-crystallization
convection is allowed for shorter solidification timescales) since the flow-through
boundary condition leads to a faster destabilization of the cumulate for the same
Stokes time. Another aspect that deserves care is that for Earth-sized bodies, the
Stokes time should incorporate both the thermal and compositional density con-
strasts. Boukaré, E. Parmentier, et al. (ibid.) compare the “compositional” Stokes
time with the solidification timescale; while this is perfectly valid for the Moon and
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Figure 6.7: Thickness of the solid cumulate at which the destabilization timescale
equals the time needed to crystallize the rest of the SMO for several values of
the partition coefficient, D ∈ [0.01, 0.99]. The Moon is not shown here since the
destabilization timescale is greater than the time needed to crystallize the SMO.
The colors are the same as in fig. 6.2, blue: non-penetrative condition for both
horizontal boundaries (Φ± = ∞); green: flow-through condition at the boundary
between the solid and the surface magma ocean; and red: flow-through condition at
both horizontal boundaries.
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Mars for which the thermal density contrast is much smaller than the compositional
one, this does not hold for the Earth where both terms have similar magnitudes
(fig. 6.5). The tremendous importance of the viscosity is why a viscosity of 1018 Pa s
is assumed in this study since it is a higher bound for the near-solidus viscosity (see
Solomatov 2015, and references therein) and gives the most conservative estimate
for the destabilizing time. The viscosity could be significantly lower if the melt frac-
tion is important in the cumulate, Solomatov (ibid.) suggests 1014 Pa s as a lower
bound at 40% melt fraction (roughly the rheological transition). Another potential
effect of viscosity that is neglected in the study is dynamical: since solid state con-
vection occurs during the crystallization of the magma ocean, the temperature in
the solid departs from the solidus temperature profile and as a result the viscosity
increases. Moreover, the compositional profile becomes gravitationally stable with
iron-enriched heavy material being transported from the top to the bottom of the
solid. These two effects combined may lead to the stopping of the solid state con-
vection (ibid.). Depending on the size of the magma ocean considered, it could then
be possible either that the magma ocean crystallizes completely before convection
may start again in the solid, or that convection sets in again in the solid before it is
entirely crystallized. Studying this scenario requires a more complex method that
a simple linear stability analysis since it involves a non-linear feedback between the
dynamics of the solid part and its viscosity, temperature, and compositional fields.

Another unconstrained parameter is the partition coefficient of iron between the
solid and liquid. An exploration of this parameter shows that the effect of the
partition coefficient is rather limited for the Earth, and slightly more important for
Mars (fig. 6.7). This is in agreement with figs. 6.2 and 6.5 showing the difference
between the purely thermal case (corresponding to the extreme value D = 1) and
the purely compositional case is rather small for the Earth but more important for
Mars.

Finally, our choice of a constant emissivity results in a roughly constant solid-
ification rate, whereas more sophisticated cooling models including an atmosphere
predict most of the mantle crystallizes quickly, and the solidification slows down
when only a shallow magma ocean remains. Although such effects are important to
build realistic solidification models, they should not affect dramatically our results.
Indeed, a faster crystallization at the beginning would lead to a destabilization of
the solid mantle at a larger thickness, but we expect this difference to be small since
the destabilization timescale is rapidly much lower than the solidification timescale.

6.6 Conclusions
Upward crystallization of the silicate mantle of planets within a magma ocean is
expected to produce a unstably stratified situation, because of both temperature
and composition. In this study, we have addressed the question of whether the
overturning instability develops faster than the time it takes to crystallize the magma
ocean. To that end, we have developed a linear stability analysis tool to compute
the growth rate of the fastest overturning mode and studied systematically the
effect of the most important parameters: the planet’s size (Moon to Earth size), the
partition coefficient and the type of boundary condition between the solid and the
liquid. In particular, we have introduced a boundary condition that accounts for
the possibility of melting and freezing at the interface between the solid mantle and
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the magma ocean.
This study shows convection is likely to start in the solid mantle of the Earth,

Mars and the Moon before the entire crystallization of the surface magma ocean.
Evolution models of the primitive mantle of planetary bodies should therefore ac-
count for convection and the associated mixing in the solid part of the crystallizing
mantle.

This result holds for the Earth and Mars even without fractional crystallization
and the unstable compositional gradient it creates in the cumulate. The value of the
partition coefficient is found to have little impact on the timing of mantle overturn.

The timescale at which convection sets in scales as the Stokes time. Specifically,
it is proportional to the viscosity of the solid. However, it should be kept in mind that
these results are obtained assuming a newtonian rheology and a constant viscosity in
the solid mantle. Given the central role of viscosity in this problem, better knowledge
of the viscosity and rheology of the primitive solid mantle is of primary importance
to study its dynamics.

Finally, the possibility of exchange of matter between the solid mantle and the
magma ocean(s) should be accounted for in dynamical models of the primitive man-
tle since it greatly alters the pattern of convection as well as the destabilization
timescale. It could even be a way of producing degree-one structures such as the
ones observed on the Moon and Mars.
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6.7 A – Composition profile resulting from the
fractional crystallization of the surface magma
ocean

Conservation of the heavy component implies that

d
dt

(∫ R+

R−
C(r)r2dr + 1

3

(
RT

3 −R+3
)
Cl

)
= 0, (6.19)

where no compressibility effect on density is considered, allowing the bulk density
to drop out of the equation. Using eq. (6.1) and Ċl = Ṙ+

dCl

dR+
, assuming Ṙ+ > 0

at all time and R− constant:
1

Cl

dCl

dR+
= 3(1−D)

R+2

RT
3 −R+3 . (6.20)

Using eq. (6.1), eq. (6.20) can be written for C:

1

C

dC
dR+

− 1

D

dD
dR+

= 3(1−D)
R+2

RT
3 −R+3 . (6.21)
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Since C(r) does not depend on time, this equation holds for any r 6 R+(t) (i.e.
everywhere in the solid) and can be written as:

1

C

dC
dr

− 1

D

dD
dr

= 3(1−D)
r2

RT
3 − r3

. (6.22)

Equation (6.22) is general and allows to take into account variations of D. How-
ever, it is useful to consider the limiting case of a constant partition coefficient D.
In that case, a solution to this equation is

C = C0

(
RT

3 −R−3

RT
3 − r3

)1−D

, (6.23)

with C0 = DCl0 the mass fraction of FeO in the first solid formed.
Note that eq. (6.23) diverges when r → RT but is in fact only valid as long as

C < 1 and Cl < 1. When Cl reaches 1, the solid formed has the same composition
as the liquid. The complete solution therefore is

C =

C0

(
RT

3−R−3

RT
3−r3

)1−D

if r < Rs

1 if r > Rs,
(6.24)

with

Rs =

(
(R−)3C

1
1−D

0 +RT
3

(
1− C

1
1−D

0

))1/3

(6.25)

the value of R+(t) such that Cl(t) = 1.

6.8 B – Linear Stability
Since the solid is considered isoviscous and no source of toroidal flow is imposed at
the boundaries, the velocity field can be expressed in terms of the scalar poloidal
potential P : u = ∇×∇×(Pr) (e.g. Ribe 2007; Ricard and Vigny 1989). Linearizing
eqs. (6.11) to (6.14) around the reference state (u = 0; T̄ ; C̄) gives:

Q = ∇2P (6.26)

∇2Q = RaΘ− 〈Θ〉
r + λ

+ Rcc− 〈c〉
r + λ

(6.27)

Γ2∂Θ

∂t
+

∂T̄

∂r

L2P
r + λ

−∇2Θ = W

(
(r − 1)

∂Θ

∂r
+

(
∂T̄

∂r

)+

Θ

)
(6.28)

Γ2∂c

∂t
+

∂C̄

∂r

L2P
r + λ

= W (r − 1)
∂c

∂r
. (6.29)

The boundary conditions on the temperature and composition perturbations are
trivial:

Θ± = 0, (6.30)
c± = 0. (6.31)
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The boundary condition eq. (6.16) and the free-slip boundary condition are written
in term of the poloidal potential as:

±Φ± 1

r + λ
L2P +

∂

∂r

(
2

r + λ
L2P − (r + λ)Q

)
= 0 (6.32)

∂2P
∂r2

+ (L2 − 2)
P

(r + λ)2
= 0. (6.33)

λ = R−/L− 1 is a curvature term due to the definition of the dimensionless radius.
L2 is the horizontal laplacian: L2• = ∂r((r + λ)2∂r•) − (r + λ)2∇2•. The quantity
Q is introduced to ease the formulation of this system as an eigenvalue problem
involving square matrices.

The perturbations P , Q, Θ and c are developed using spherical harmonics, e.g.

P =
∞∑
l=1

l∑
m=−l

Pl(r)Y
m
l (θ, φ)eσlt (6.34)

where l and m are the spherical harmonics degree and order and σl is the growth
rate associated to the harmonic degree l. The system is laterally degenerated and m
does not affect the growth rate of the perturbation nor the shape of the radial modes
Pl(r), Ql(r), Θl(r) and cl(r). These radial modes are discretized using a Chebyshev
collocation approach (e.g. Canuto et al. 1985; Guo et al. 2012). Each radial mode
is expressed as a vector whose components are the values at the N + 1 Chebyshev
nodal points (respectively denoted P, Q, T and C). Radial derivatives evaluated
at the nodal points ri =

1
2

(
3 + cos iπ

N

)
can then be expressed with a differentiation

matrix d, e.g. ∂rP(ri) = (dP)i. We formulate the system of linearized equations
along with the associated boundary conditions as

LX = σlRX (6.35)

with

X =




P 0 : N
Q 0 : N
T 1 : N − 1
C 1 : N − 1

(6.36)

L =

0 : N 0 : N 1 : N − 1 1 : N − 1



d2 + (l2 − 2)r−2
λ 0 0 0 0

D2 −1 0 0 1 : N − 1

d2 + (l2 − 2)r−2
λ 0 0 0 N

l2(Φ+r−1
λ − 2r−2

λ + 2r−1
λ d) −(1 + rλd) 0 0 0

0 D2 −Rar−1
λ −Rcr−1

λ 1 : N − 1

l2(−Φ−r−1
λ − 2r−2

λ + 2r−1
λ d) −(1 + rλd) 0 0 N

−(∂rT̄ )l2r−1
λ 0 D2 +W+

(
(r − 1)d + (∂rT̄ )+1

)
0 1 : N − 1

−(∂rC̄)l2r−1
λ 0 0 W+(r − 1)d 1 : N − 1

(6.37)
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R =

0 : N 0 : N 1 : N − 1 1 : N − 1


0 0 0 0 0 : N
0 0 0 0 0 : N
0 0 Γ21 0 1 : N − 1
0 0 0 Γ21 1 : N − 1

(6.38)

where 1 is the identity matrix, rij = ri1ij, rλ = r + λ1, l2 = l(l + 1) and D2 =

d2 + 2r−1
λ d − l2r−2

λ The extra row and column on top and right of the matrices are
respectively the column and row indices of each of the submatrices. For example,
the top left submatrix of the matrix L is only the first row (hence the 0 on the extra
column) of the matrix d2 + (l2 − 2)r−2

λ .
At a given instant during the crystallization, all the dimensionless numbers W ,

λ, Γ, Ra and Rc appearing in the matrices L and R are known. For any harmonic
degree l of the perturbation, finding its growth rate σl and associated vertical mode
X is an eigenvalue problem. The largest eigenvalue is the growth rate, and the
associated eigenvector represent the vertical modes. At a given instant, we look
for the harmonic degree l with the highest growth rate σl, which is then used to
compute the dimensional destabilization time scale L2

M/(κσ).
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Chapter 7

Preliminary non-linear coupled
evolution model

7.1 Implementation in StagYY
Our evolution model described in chapter 5 required several alterations to the ex-
isting convection code StagYY. Time-steps are composed of the following steps.

1. Compute the time-step δt to ensure numerical stability since an explicit scheme
is used:

δt = min
(
A
(r + λ)δφ

uφ

; A
δr

ur

;
δrmin

|Ṙ±|max
; B(r + λ)2δφ2; Bδr2

)
(7.1)

where A and B are safety factors smaller than 1. The first two terms corre-
spond to advection by the flow velocity, the third term is due to the advection
arising from the fixed-front method, and the last two terms account for heat
diffusion. λ is the curvature term as defined by eq. (5.91).

2. Update magma ocean variables R±, T±, ξ±, c± according to the time deriva-
tives computed in the previous step (item 14).

3. Update geometrical variables to the new boundaries’ positions R±. In partic-
ular, the curvature term λ and pre-computed grid cell volumes of the spherical
annulus (r + λ)2δθδφδr.

4. Update the position and ideal mass of tracers to the new position of the
boundaries, as explained hereafter.

5. Add new tracers in case of net freezing, and remove tracers in case of net
melting of the magma oceans.

6. Update the coefficients of the matrix representing the Stokes equation since dif-
ferential operators depend on the curvature term λ as explicited by eqs. (5.92)
and (5.93). This takes a heavy toll in terms of computational costs compared
to the isoviscous cases in chapter 4. Indeed, the matrix being no longer con-
stant, its LU factorization needs to be performed at every time-step instead
of only once per simulation.

119



CHAPTER 7. PRELIMINARY NON-LINEAR COUPLED EVOLUTION
MODEL

7. Update the temperature field owing to diffusion, advection (TVD scheme),
and internal heating. Note that terms related to the fixed-front approach in
eq. (5.112) are treated here.

8. Advect the tracers carrying compositional information (FeO content ξ and
HPE content c). This advection is performed only with the flow velocity. The
advection term due to the fixed-front approach is handled in item 4.

9. Eliminate tracers that went out of the domain due to the phase change bound-
ary conditions, add tracers where matter entered the domain.

10. Merge tracers that have a mass too low compared to the ideal tracer mass
to keep the number of tracers roughly constant as magma oceans crystallize
(more details after).

11. Interpolate tracers information on the grid.

12. Update the velocity and pressure fields by solving the Stokes equation with the
new temperature (item 7) and FeO content (item 11) fields in the buoyancy
term.

13. Compute diagnostics such as the heat flux out of the domain, average tem-
perature, root-mean-square velocities, etc.

14. Compute the time derivatives Ṙ±, Ṫ±, ξ̇± and ċ± according to the evolution
models described in chapter 5.

Tracers in StagYY each have a mass assigned to them, denoted mt in this doc-
ument. Dimensionless tracer masses are scaled with ρL3

M .
The dimensionless mass of the entire spherical annulus, scaled with ρL3

M , is

M =
A

3
((R+)3 − (R−)3). (7.2)

R+ and R− are the TOMB and BOMB radii made dimensionless with LM , and A
is the surface coefficient

A = 2πδθ. (7.3)

Given a total number of tracers N , the ideal mass of one tracer (i.e. the mass
such that every tracer has the same mass) is merely

mideal =
M

N
(7.4)

Note that since M varies as the solid thickens or melts, and that the target number
of tracers is constant, the ideal tracer mass changes between timestep n and the
next timestep n+ 1 as

mideal
n+1 =

Mn+1

Mn

mideal
n . (7.5)

If the solid thickens, mideal increases but the mass of a given tracer mt is constant
since the mass scale ρL3

M is constant. Tracers hence slowly drift away from their
ideal mass, becoming lighter than they should be and their number increasing as new
tracers are added due to the net freezing (item 5). In order to maintain a constant
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number of tracers, groups of tracers with a mass mt <
1
2
mideal are merged together

(item 10) using a merging routine originally developed in StagYY for eruption related
routines.

Moreover, as stated in item 4, the radial position of each tracer needs to be
advected so that their physical position stays the same while the frame changes due
to the fixed-front approach. The position rn+1 at timestep n + 1 is computed from
that at timestep n as:

rn+1 =
Γn(rn + λn)

Γn+1

− λn+1. (7.6)

The last technical aspect that requires some care is that magma ocean evolution
models in chapter 5 are made dimensionless with constant scales while the convective
model in the solid uses scales (of distance and temperature) that vary with time.
On top of that, magma oceans model are written assuming a 3D geometry, while
numerical simulations are performed in a 2D spherical shell. Appropriate scaling of
fluxes (heat and matter) is therefore required to connect the magma ocean evolution
models with that of the solid part. These are described hereafter.

The mass of tracers that should be added in cells where dynamically freezing
matter enters through the boundary (item 9) is

δmt = ∓ 1

Γ
urδt(R

±)2δθδφ (7.7)

The number of tracers added in a cell is chosen so that the mass of those tracers is
as close as possible to the ideal tracer mass. Their positions are chosen randomly
laterally and radially within a distance |ur|δt/Γ2 of the boundary.

The mass of tracers to add owing to the net freezing of magma oceans (item 5)
is

δmt = ±AṘ±(R±)2δt. (7.8)

Similarly to what is done for the dynamical-freezing tracers, the number of tracers
is chosen so that their mass is as close as possible to the ideal tracer mass, and their
positions are chosen randomly laterally and radially, within a distance |Ṙ±|δt/Γ of
the boundary.

The dynamical exchange integrals I±uξ, eqs. (5.32) and (5.74), are estimated as:

I±uξ =

∫
±
ξ∓ur
φ urdS ' 4π

A

(
(R±)2

Γ
δθδφ

∑
grid, inward

ξ±K

1− ξ±(1−K)
ur

+
1

δt

∑
tracers, outward

mtξt

)
.

(7.9)

Tracers actually going out are used to evaluate the integrals over parts where dy-
namical metling occurs because it is more precise than integrating an interpolated
field over the grid. A similar computation is performed with the HPE concentration.

The net fusion/crystallization integrals I±ξ , eqs. (5.31) and (5.73), are estimated
as:

I±ξ '


4π(R±)2

ξ±K

1− ξ±(1−K)
Ṙ± ≷ 0;

4π

A
(R±)2δθδφ

∑
grid ξ Ṙ± ≶ 0.

(7.10)
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A similar computation is performed with the HPE concentration. Note that when
solving the energy balance eqs. (5.42) and (5.84) to determine Ṙ±, the sign of Ṙ± is
not known. We assume first net crystallization Ṙ± ≷ 0 to evaluate I±ξ . If the energy
balance equation then yields Ṙ± ≶ 0, I±ξ is computed again changing the assumed
sign of Ṙ±.

7.2 Preliminary simulation with a Basal Magma
Ocean

We present here a preliminary run with only a Basal Magma Ocean. Moreover,
internal heating in the solid was disabled for this run due to problems with the
conservation of HPE at the end of crystallization of the magma ocean. Parameters
that are different from the nominal values in tables 5.2 and 5.3 are shown in table 7.1.
The grid is 512 cells in the φ-direction and 64 cells in the radial direction. The grid
is refined in the radial direction up to a factor 20 at the bottom boundary and 5 at
the top boundary. The number of tracers is about 650 thousands, i.e. an average of
20 tracers per grid-cell.

The initial condition taken for the composition of the solid is that of a uniform
composition in thermodynamical equilibrium with the BMO. This is probably not a
relevant initial condition since the fractional crystallization of a TMO would lead to
an enriched solid mantle compared to the BMO. We make this choice so as to avoid
compositional effects at the beginning of the crystallization of the BMO to focus on
the thermal aspects of the problem. It would be worth to explore different initial
conditions for the composition of the solid. The initial condition on temperature is
that of a uniform bulk to be consistent with the initial uniform compositional field.

Figures 7.1 to 7.3 show snapshots of the temperature field, streamlines, and FeO
mass fraction in the solid at various instants of the simulation. Figure 7.4 shows the
corresponding time series.

At the beginning of the simulation (second row of fig. 7.1), convection in the
solid is similar to what is obtained in the purely thermal case at constant solid
thickness (chapter 4). The flow-through boundary condition at the bottom leads to
wide hot upwellings and narrow downwellings, with little deformation in the solid
compared to the classical case with nearly-aspect-ratio-1 rolls. As can be seen on
the time series fig. 7.4, this convective mode is very efficient to extract heat from
the BMO since it corresponds to a large heat flux at the BOMB. The flow velocities
are at their maximum, and the average temperature is strongly increased. Since the
initial solid and the BMO compositions are in equilibrium, the FeO mass fraction
does not vary strongly in the solid at the beginning of the simulation.

This situation goes on for some time, even going through a phase where all down-
wellings are grouped in the same hemisphere, corresponding to a mode of convection
dominated by a degree-one (third row of fig. 7.1, t = 4.5 × 10−3). However, the
thermal boundary layer ends up developing Rayleigh-Taylor instabilities, forming
multiple narrow cold-downwellings (last row of fig. 7.1 and first of fig. 7.2). This is
associated with a decrease of the heat flux extracted through the BOMB, the con-
vective velocity, and the average temperature of the domain (fig. 7.4).

Shortly after, strong compositional variations start to appear in the solid as the
BMO has been significantly enriched in FeO because of fractional crystallization.
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Parameter Description Value
Γ−
0 Initial BMO thickness 0.3

T−
0 Initial BOMB temperature 0.7

ξ−0 Initial FeO concentration in the BMO 1/3
ξ0 Initial FeO concentration in the solid 0.1
Bξ Compositional buoyancy 10
Ra Rayleigh number 3 × 105

RH Heat production in the solid 0
Φ− Phase change number at BOMB 10−2

Table 7.1: Parameters used for the simulation. Other parameters have the nominal
values in tables 5.2 and 5.3.

Rows 2 and 3 of fig. 7.2 indeed show that a dense layer enriched in FeO starts
to form at the base of the solid mantle. It is stable enough to stop most of the
cold downwellings, thereby preventing them from going through the phase change
interface while a BMO is still present. The convection in the solid then presents
more classical patterns, the heat flux, flow velocities, and average temperature stay
at values lower than at the beginning of the simulation.

The crystallization of the remaining BMO leads to the formation of an extremely
dense layer enriched in FeO at the base of the mantle, as seen on fig. 7.3. It is
pushed around and given the shape of piles by the flow in the solid mantle, but it is
sufficiently dense to subsist over a very long timescale. Indeed, the last snapshot on
fig. 7.3 at a dimensionless time t = 0.07 would correspond to a total dimensional time
of around 15 Gyrs. This is the first self-consistent evolution model that produces
long-living LLSVP-like features that are chemically dense piles resulting from the
crystallization of a Basal Magma Ocean, as proposed by Labrosse, Hernlund, and
Coltice (2007). It should be kept in mind, however, that the Rayleigh number in
this simulation is only 3 × 105, much lower than the estimated value of 107 or 108 for
the Earth’s mantle. Using a more realistic value should affect the lifetime, shape,
or even existence of these piles. An exploration of the parameter space is therefore
needed before drawing any decisive conclusion.
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Time Temperature Composition

t = 0.000000

t = 0.000935

t = 0.004480

t = 0.005410

0.0 0.2 0.4 0.6 0.8 1.0
Temperature

0.10 0.12 0.14 0.16 0.18 0.20 0.22
FeO content

Figure 7.1: Temperature field with streamlines (left) and compositional field (right)
at various times during the simulation. The red annulus at the base of the solid rep-
resents the BMO, the grey circle represents the core. For reference, a dimensionless
time of 0.02 is about the age of the Earth.
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Time Temperature Composition

t = 0.006920

t = 0.010319

t = 0.013015

0.0 0.2 0.4 0.6 0.8 1.0
Temperature

0.10 0.12 0.14 0.16 0.18 0.20 0.22
FeO content

Figure 7.2: Temperature field with streamlines (left) and compositional field (right)
at various times during the simulation. It is the same as fig. 7.1 for following times.
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Time Temperature Composition

t = 0.019804

t = 0.030200

t = 0.074069

0.0 0.2 0.4 0.6 0.8 1.0
Temperature

0.10 0.12 0.14 0.16 0.18 0.20 0.22
FeO content

Figure 7.3: Temperature field with streamlines (left) and compositional field (right)
at various times during the simulation. It is the same as figs. 7.1 and 7.2 for following
times.
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Figure 7.4: Time series. From top to bottom: heat flux at the outer surface and
BOMB, root-mean-square velocity in the solid, average temperature in the solid,
average FeO mass fraction in the solid, thickness of the solid layer. The dashed
vertical lines correspond to the snapshots visible on figs. 7.1 to 7.3. Beware that
the first and last snapshots are at the first and last timesteps, the corresponding
dashed-lines are therefore not visible.
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Chapter 8

Concluding remarks and
perspectives

Throughout this thesis, we explored the consequences of the existence of global
magma oceans on the dynamics of the primitive solid mantle. We mainly focused
on the fact that the interface between the solid primitive mantle and a magma ocean
is a phase change interface. Dynamic topography forming at the interface owing to
viscous forces in the convecting solid mantle can therefore be melted/frozen away.
This possibility for an exchange of matter at the boundary is strikingly different from
the classical non-penetrative case. We take this mechanism into account with a
phase change boundary condition allowing matter to go through the interface. The
linear stability analysis of this system (chapter 3) revealed two drastic consequences
of the phase change boundary condition: when the transfer of matter through the
interface is efficient, linearly unstable patterns of convection have a larger wavelength
than the classical non-penetrative case, involving less deformation in the solid and
therefore leading to a lower critical Rayleigh number. Direct numerical simulations
(chapter 4) showed moreover that the heat flux carried out by the solid is greatly
increased by these boundary conditions, especially when both boundaries are flow-
through. It could easily be a couple orders of magnitude larger than with classical
boudary conditions. We built in chapter 5 an evolution model for the entire mantle
coupling in a self-consistent manner the solid mantle and global magma oceans
bounding it at either of both its boundaries. Computing the linear growth rate
of a perturbation throughout the crystallization of a Top Magma Ocean showed
it is likely that convection in the solid mantle starts in Earth-like bodies before
the entire crystallization of the magma ocean (chapter 6). Finally, a preliminary
fully non-linear simulation of the self-consistent evolution model showed promising
results with the formation of LLSVPs-like features at the base of the solid mantle
from the crystallization of a BMO.

It is clear from all these results that the possibility of exchange of matter be-
tween magma oceans and the primitive solid mantle has tremendous consequences
on the dynamics and heat budget of the primitive Earth and is therefore a crucial
ingredient that should be included in evolution models of the Earth. An important
question that should be investigated through a more complete exploration of the pa-
rameter space of the coupled evolution model is whether the phase change boundary
condition and the presence of global magma oceans would help solving the thermal
catastrophe problem. Indeed, the enormous heat fluxes expected when two magma
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oceans bound the solid mantle should provide an extremely efficient way to extract
heat from the core. The self-consistent evolution model developed in this thesis of-
fers a way to test this idea. Moreover, many complexities were left out in this thesis
and deserve attention in the near future, some of them are listed below.

• Models featuring a TMO or even both magma oceans still require some tun-
ing due to a problem of tracers mass conservation. Fixing these issues would
be an important leap forward to routinely run self-consistent models follow-
ing the entire cooling history of a global magma ocean crystallizing from the
middle. The heat budget of such a system could be a way around the thermal
catastrophe as discussed before.

• A way to form a BMO that was not considered here is to bring FeO and HPE
enriched solid material (which could be issued from the fractional crystalliza-
tion of a TMO) at the base of the solid mantle. Even though the present model
does not allow yet the apparition of a BMO by this mechanism, it probably
would not be excessively difficult to adapt it to study this setup.

• Hot upwellings in a primitive mantle close to its solidus would result in partial
melting. In the case of a BMO, the volume involved could be considerable.

• Our current model assume an atmosphere behaving as a gray body of con-
stant emissivity. Exchanges of gasses between a surface magma ocean and the
atmosphere introduce an inter-dependence between the two layers that should
be taken into account (e.g. Abe 1997; Lebrun et al. 2013).

• Fractional crystallization of the mantle would release FeO in the Top Magma
Ocean, potentially forming a stable stratified layer at its base. This could affect
both the phase change boundary condition and the self-consistent evolution
model. Both are indeed based on the assumption that the magma ocean is
vigorously convecting and well mixed, an assumption that could be challenged.

• A long standing issue in the community is that of the rheology of the solid
mantle, and in particular what are the ingredients necessary for the onset of
plate tectonics. The presence of a BMO naturally leads to convective patterns
with very localized downwellings and large wavelength of convection, akin to
what is obsserved in the tectonic plates regime. Of course, there is no longer
a global BMO in today’s mantle but it would be worth exploring whether its
presence could ease the transition to a plate tectonics regime.
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Appendix A

Rayleigh-Bénard convection in a
creeping solid with melting and
freezing at either or both its
horizontal boundaries

This chapter is an article written by S. Labrosse, A. Morison, R. Deguen and T.
Alboussière and published in 2018 in the Journal of Fluid Mechanics (Labrosse,
Morison, et al. 2018). It presents a linear and a weakly non-linear stability analysis of
the constant-thickness thermal problem described in chapter 2 in cartesian geometry.

A.1 Abstract
Solid state convection can take place in the rocky or icy mantles of planetary objects
and these mantles can be surrounded above or below or both by molten layers
of similar composition. A flow toward the interface can proceed through it by
changing phase. This behaviour is modeled by a boundary condition taking into
account the competition between viscous stress in the solid, that builds topography
of the interface with a timescale τη, and convective transfer of the latent heat in
the liquid from places of the boundary where freezing occurs to places of melting,
which acts to erase topography, with a timescale τφ. The ratio Φ = τφ/τη controls
whether the boundary condition is the classical non-penetrative one (Φ → ∞) or
allows for a finite flow through the boundary (small Φ). We study Rayleigh-Bénard
convection in a plane layer subject to this boundary condition at either or both its
boundaries using linear and weakly non-linear analyses. When both boundaries are
phase change interfaces with equal values of Φ, a non-deforming translation mode
is possible with a critical Rayleigh number equal to 24Φ. At small values of Φ,
this mode competes with a weakly deforming mode having a slightly lower critical
Rayleigh number and a very long wavelength, λc ∼ 8

√
2π/3

√
Φ. Both modes lead to

very efficient heat transfer, as expressed by the relationship between the Nusselt and
Rayleigh numbers. When only one boundary is subject to a phase change condition,
the critical Rayleigh number is Rac = 153 and the critical wavelength is λc = 5.
The Nusselt number increases about twice faster with Rayleigh number than in the
classical case with non-penetrative conditions and the average temperature diverges
from 1/2 when the Rayleigh number is increased, toward larger values when the
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bottom boundary is a phase change interface.

A.2 Introduction
Rayleigh-Bénard convection is one of the main heat transfer mechanisms in natural
sciences, responsible for most of the dynamics of the atmosphere and oceans (Ped-
losky 1987), plate tectonics (Schubert et al. 2004), dynamo action in planetary cores
(Roberts and King 2013). It is also one of the most generic example of pattern for-
mation mechanism in fluid dynamics (e.g. Cross and Hohenberg 1993; Manneville
2004) and has therefore attracted a lot of attention for a century since the work of
Lord Rayleigh (Strutt 1916). However, the mathematical and experimental studies
of Rayleigh-Bénard convection have usually considered boundary conditions that
are not fully relevant to the natural systems that justified them, their horizontal
surfaces being generally considered as subjected to no-slip or free-slip boundary
conditions. The former is valid for convection experiments in a tank and for the
natural fluids bounded by much more viscous enveloppes, like the liquid cores of
terrestrial planets and the bottom of the ocean. The latter is often considered as
an approximation for a free-surface condition, as applies to a fluid bounded by a
much less viscous one. This is in particular the case of the solid planetary mantles
that, on long timescales, behave like very viscous fluids (e.g. Jarvis and McKenzie
1980; McKenzie et al. 1974; Turcotte and Oxburgh 1967) and are bounded below
and above by liquid or gaseous layers. This approximation neglects the effect of the
topography on convection and some studies have been devoted to the modeling of
these effects, which can be dramatic when it is associated to, for example, intense
volcanism in hot planets (Monnereau and Dubuffet 2002; Ricard, Labrosse, et al.
2014).

In the present paper, we consider the effects of having horizontal boundaries
at which a solid-liquid phase change occurs on Rayleigh-Bénard convection in the
creeping solid, that has an infinite Prandtl number (Schubert et al. 2004). For
simplicity, we consider a Newtonian fluid with a uniform high viscosity, neglecting
the effects of more complex rheologies (e.g. Bercovici and Ricard 2014; Christensen
and Yuen 1989; Davaille and Jaupart 1993; E. M. Parmentier 1978; Tackley 2000),
that is bounded by a low viscosity liquid of the same composition as the convecting
solid. The boundary between the liquid and the solid consists of a phase change
whose position is controlled by a Clapeyron diagram relating pressure and temper-
ature for phase equilibrium. In the context of planetary interiors, the pressure is
largely dominated by the hydrostatic contribution and the interface is on average a
horizontal surface. The stress field and associated dynamic pressure due to the dy-
namics of the solid leads to deformation of the interface with a viscous timescale τη.
The topography creates variations of the thermal gradient on the liquid side which
drives a convective heat transfer in the liquid acting to erase the topography by
transporting the latent heat released by freezing in topography lows to topography
highs where melting occurs. Other sources of motions in the liquid can also con-
tribute to this lateral heat transfer which happens on a timescale τφ, the expression
of which being derived in section A.3. The ratio of the two timescales, Φ = τφ/τη,
controls the behaviour of the boundary. For a large value of Φ, the topography is
set by the balance between the viscous stress in the solid and the buoyancy of the
topography, the phase change acting on a too long timescale to affect the classical
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behaviour of the free surface. The buoyancy of the topography is responsible for
making the vertical velocity drop to zero at the interface, which leads to an effec-
tively non-penetrating boundary condition. On the other hand, for low values of Φ,
the topography is erased by freezing and melting at a rate greater than the one at
which it is generated. The removal of the associated buoyancy leads to a non-null
velocity across the interface.

This situation has already been considered in the case of the dynamics of the
Earth inner core (Alboussière et al. 2010; Deguen, Alboussière, et al. 2013; Mizzon
and Monnereau 2013; Monnereau, Calvet, et al. 2010), which is the solid iron sphere
at the center of the liquid iron core of the Earth. Deguen, Alboussière, et al. (2013)
have derived a general formulation of the boundary condition for arbitrary values of
Φ and shown that the application of this boundary condition to a sphere considerably
changes the dynamics by decreasing the critical Rayleigh number for the onset of
thermal convection and allowing a new mode of convection, the translation mode,
where no deformation occurs in the sphere, melting happens at the boundary of the
advancing hemisphere and freezing occurs at the trailing boundary.

A similar situation arises for the ice shell of some satellites of giant planets in
the solar system which are believed to host a liquid ocean below their ice layer
(Čadek et al. 2016; Gaidos and Nimmo 2000; Khurana et al. 1998; Pappalardo et
al. 1998; Soderlund et al. 2014; Tobie, Choblet, et al. 2003). Some of the largest of
such satellites can also have a layer of high pressure ices below their ocean (Baland
et al. 2014; Grasset et al. 2000; Sohl et al. 2003). Another situation that implies
such a melt-solid interface arises on all terrestrial planets in their early stage when
their silicate layer is completely or largely molten owing to the high energy of their
accretion (Elkins-Tanton 2012; Solomatov 2015). Convection can start in the solid
mantle during its crystallisation from the magma ocean, while a liquid layer per-
sists above and/or below (Labrosse, Hernlund, and Coltice 2007). It is therefore
interesting to consider convection in a layer, not a full sphere, when a phase change
boundary condition applies at either or both its horizontal boundaries.

Deguen (2013) performed such a study in the case of a spherical shell with
a central gravity linearly varying with radial position and showed that, again, a
translation mode is possible and favoured in the linear stability analysis if both
the upper and lower boundaries allow an easy phase change, that is if each has
a low value of the Φ parameter. The purpose of the present paper is to extend
the analysis to the plane layer situation and perform the linear stability and weakly
non-linear analysis as a function of the phase change parameters of both horizontal
boundaries.

The boundary conditions are presented in section A.3, section A.4 presents the
translation mode of convection, section A.5 presents the linear and weakly non-linear
analysis in the case when both horizontal boundaries have the same value of the
phase change parameter and section A.6 shows the case when phase change is only
allowed on one boundary.
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Figure A.1: Definition of the topography (exaggerated here for clarity) and the
temperature for the boundary conditions. The dash-dotted lines are the reference
positions for the conductive motionless solutions of the top and bottom boundaries.
The right panel shows the reference temperature profile (thick solid line) intersecting
the melting temperature at the top and bottom (thin solid lines) at temperatures T+

and T−, respectively. Lateral variations of the topography make the intersection
deviate laterally in temperature. Representative temperature profiles in the liquid
sides are shown as dashed lines. In the context of planetary applications, the tem-
perature profiles should be interpreted as deviations from the isentropic reference.

A.3 Conservation equations and boundary condi-
tions

We consider a layer of creeping solid that behaves like a Newtonian fluid on long
timescales and that is bounded above or below or both by a liquid related to the
solid by a phase change (fig. A.1). The temperature field at rest is solution of the
thermal conduction problem with temperatures at the boundaries, T+ at the top
and T− at the bottom, that each equals the melting temperature Tm at the relevant
pressure. Pressure, in the context of planetary interiors, is largely dominated by the
hydrostatic part. The melting temperature therefore mainly depends on the vertical
coordinate. The possibility of crossing the melting temperature at both the top and
bottom of our computational domain requires either a non-linear dependence of Tm

on pressure or, more easily, a compositional difference between the solid and both
upper and lower liquid layers (Labrosse, Hernlund, and Coltice 2007). For simplicity
here, we do not consider the dynamical effects of compositional variations. The
vertical dependence of the melting temperature is linearised around the reference
positions of the boundaries, owing to the smallness of their topographies compared
to the total thickness of the layer, d.

The conduction temperature profile that is used as reference writes

T0 =
T+ + T−

2
+

z

d

(
T+ − T−) , (A.1)

the reference for the vertical position z being at the center of the domain. Deviations
from the conduction temperature profiles are made dimensionless using ∆T = T−−
T+ as reference and denoted by θ. In the following, superscripts + and − are used for
quantities pertaining to the top and bottom boundaries, respectively, and omitted
in equations that apply to both boundaries.
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The crossing positions of the conduction solution with the melting temperature
at the top and bottom are used as reference around which a topography height, h+

and h−, is defined for each boundary, respectively (fig. A.1). These topographies can
have either sign, positive upward, and need not average to 0, as will be shown below.
At each phase change interface, two thermal boundary conditions are necessary to
account for the moving boundary (Crank 1984). The temperature must equal the
phase change temperature and the heat flux discontinuity across the interface must
balance the release or consumption of latent heat, L (Stefan condition). The two
thermal boundary conditions write

T (h) = Tm(h), (A.2)
ρsLvφ = JqK, (A.3)

with vφ the freezing rate, ρs the density of the solid and JqK the heat flux difference
between the liquid and the solid sides. These boundary conditions apply to the
deformed interface and need to be projected to the reference level that is used as
boundary for the computation domain. Developing equation (A.2) to first order in
h gives

T

(
±d

2

)
= T± +

(
∂T±

m

∂z
− ∂T0

∂z

)
h±. (A.4)

In dimensionless form, equation (A.4) writes

θ

(
±1

2

)
=

(
1 +

d

∆T

∂T±
m

∂z

)
h±

d
. (A.5)

In the following, we assume h±/d to be small and we apply

θ = 0, z = ±1

2
. (A.6)

Turning to the second thermal boundary condition, the discontinuity of heat
flow on the right-hand-side of equation (A.3) is assumed to be dominated by the
convective heat flow on the low viscosity liquid side, f ∼ ρlcplulδTl, with ρl and cpl
the density and heat capacity of the liquid, ul the characteristic liquid velocity and
δTl the temperature difference between the boundary and the bulk of the liquid.
This difference results from variations of the topography (fig. A.1) and the vertical
gradient of the melting temperature so that

f ∼ −ρlcplul

∣∣∣∣∂Tm

∂z

∣∣∣∣h. (A.7)

The temperature difference h∂Tm/∂z is negligible on the solid side, but crucial for
the convective heat flux on the liquid side. Fig. A.1 shows as dashed lines the typical
local temperature profiles on the liquid side of each boundary for topography highs
and lows, indicating that the implied lateral variations of heat flux density should
lead to melting of regions where the solid protrudes in the liquid and freezing in
depressed regions, tending toward erasion of the topography. This behaviour is
ensured by the anti-correlation of f and h in equation (A.7), independently of the
sign of ∂Tm

∂z
, and this applies to both top and bottom boundaries. The case of

∂Tm

∂z
< 0 depicted here for the top boundary is the most usual and the opposite
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case depicted here for the bottom boundary is encountered for water. Note, however,
that in the context of planetary applications, the temperature considered here in
the liquid layers and depicted on fig. A.1 is in fact the deviation from the reference
isentropic temperature profile (Deguen, Alboussière, et al. 2013; Jeffreys 1930) and
the pressure derivative of the actual melting temperature needs not be negative for
having a liquid underlying the solid layer. Assuming that the convective heat flow
on the liquid side dominates the right hand side of equation (A.3), we write

ρsLvφ ∼ −ρlcplul

∣∣∣∣∂Tm

∂z

∣∣∣∣h. (A.8)

The freezing rate is related to the vertical velocity w across the boundary and
the rate of change of the topography as

v±φ = ±∂h±
∂t

∓ w. (A.9)

Combining with equation (A.8) gives

w ∓ ∂h

∂t
=

ρlcplul

ρsL

∣∣∣∣∂Tm

∂z

∣∣∣∣h ≡ h

τφ
, (A.10)

with
τφ =

ρsL

ρlcplul

∣∣∣∣∂Tm

∂z

∣∣∣∣ (A.11)

the characteristic phase change timescale for changing the topography by transfer-
ring latent heat from regions where it is released to places where it is consumed.
ul depends on the dynamics of the liquid which is not solved in this paper. The
uncertainty in this quantity as well as the scaling coefficients implied by the ∼ sign
in equations (A.7) and (A.8) are all combined to make τφ the control parameter in
our study.

Across the boundaries, the total traction must be continuous. Assuming that
the topography is small (i.e. the horizontal gradient of h± is small compared to 1,
|∇hh

±| � 1), this writes for the vertical component

− Ps(h
±) + 2η

∂w

∂z
= −Pl(h

±) (A.12)

where P is total pressure, s and l are for the solid and liquid sides, respectively, and
η is the dynamic viscosity of the solid. The total pressure on the solid and liquid
sides is split into its hydrostatic part, P (0)− ρs,lgh

± (z = 0 being the reference for
h at each boundary) and the dynamic part p. On the liquid side, viscous stress and
pressure fluctuations are neglected. With these assumptions, we get

− p+ (ρs − ρ±l )gh
± + 2η

∂w

∂z
= 0. (A.13)

Note that the density difference across the phase change boundary, ∆ρ± = ρs − ρ±l ,
takes different signs at the top and bottom since the solid must be denser than the
overlying liquid but less dense that the underlying one. Therefore ∆ρ+ > 0 and
∆ρ− < 0.
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The topography at each boundary is produced as a result of total stress in the
solid, with a typical timescale τη = η/|∆ρ±|gd (the post-glacial rebound timescale,
Turcotte and Schubert 2002), and erased by melting and freezing, as discussed

above, with a timescale τφ. Both timescales are generally much shorter than the
timescale for convection in the whole domain, so that we assume that the topography
adjusts instantaneously to the competition between viscous stress and phase change.
Therefore, we neglect ∂h

∂t
in equation (A.10) and combining it with equation (A.13)

to eliminate h±, we get

− p+∆ρ±gτ±φ w + 2η
∂w

∂z
= 0. (A.14)

Introducing the phase change dimensionless number (Deguen 2013; Deguen, Al-
boussière, et al. 2013)

Φ± =
τφ± |∆ρ±|gd

η
(A.15)

equation (A.14) takes the dimensionless form

± Φ±w + 2
∂w

∂z
− p = 0, z = ±1

2
. (A.16)

Φ± is the ratio of the phase change timescale to the viscous deformation time scale.
For large values of this parameter, the boundary condition (A.16) reduces to the
usual non-penetration condition, w = 0, while for small values it allows a non zero
mass flow through the boundary. The physical interpretation is straightforward: if
τη � τφ± , topography evolves without the possibility of the phase change to happen
and is limited by its own weight that has to be supported by viscous stress in the
solid. In practice, this means that the flow velocity goes to zero at the free interface
and is very small at the reference boundaries z = ±1/2, which is usually modeled
as a non-penetrating boundary. In the other limiting case, τη � τφ± , topography is
removed by phase change as fast as it is created by viscous stresses and this allows
a flow across the boundary.

The liquid is assumed inviscid and therefore exerts no shear stress on the con-
vecting solid. The topography of the boundary is assumed to be small and we ap-
proximate the horizontal component of the continuity condition for traction by a
free-slip boundary condition at both horizontal boundaries,

∂u

∂z
+

∂w

∂x
= 0, z = ±1

2
. (A.17)

The dimensionless equations for the conservation of momentum, mass and energy
are written in the classical Boussinesq approximation as

1

Pr

(
∂v

∂t
+ v·∇v

)
= −∇p+∇2v + Raθẑ, (A.18)

∇·v = 0, (A.19)
∂θ

∂t
+ v·∇θ = w +∇2θ, (A.20)

where Pr = ν/κ is the Prandtl number, with ν and κ the momentum and thermal
diffusivities, v = (u, v, w) is the fluid velocity, p is the dynamic pressure, Ra =
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α∆Tgd3/κν is the Rayleigh number, with α the thermal expansion coefficient, and
ẑ is the upward vertical unit vector. These equations have been made dimensionless
using the thickness of the layer d as length scale and the thermal diffusion time d2/κ
as timescale.

Since we are concerned here with convection in solid, albeit creeping, layers, we
will generally consider the Prandtl number to be infinite in most of the calculations
below.

A.4 The translation mode
The boundary condition (A.16) discussed in the previous section permits a non-zero
vertical velocity across the boundaries. If both boundaries are semi-permeable (finite
values of both Φ+ and Φ−), the possibility of a uniform vertical translation arises.
This situation has been explored systematically in the context of the dynamics of
Earth’s inner core (Alboussière et al. 2010; Deguen, Alboussière, et al. 2013; Mizzon
and Monnereau 2013) and in spherical shells (Deguen 2013) but, in the case of
a spherical geometry, the horizontally average vertical velocity is still null for a
translation mode. Here we show that a translation mode with a uniform vertical
velocity also exists in the case of a plane layer.

We search for a solution that is independent from the horizontal direction and
therefore only has a vertical velocity, v = wẑ. The mass conservation equa-
tion (A.19) implies that w is independent of z and we consider two situations, the
linear stability problem for which w = W eσt and the steady state case for which w
is constant. Similarly, we can write the temperature as θ(z, t) = Θ(z)eσt to study
the onset of convection in that mode, and θ as a function of z only at steady state
and similar convention for pressure as p and P .

A.4.1 Linear stability analysis
The conservation equations (A.18)- (A.20) linearized around the hydrostatic state
reduce to two equations

σ

Pr
W = −DP + RaΘ, (A.21)

σΘ = W + D2Θ, (A.22)

with D ≡ d
dz

. For neutral stability, σ = 0, solving in turn equation (A.22) for Θ

and equation (A.21) for P subject to the boundary conditions (A.6) and (A.16) lead
to [

Ra − 12
(
Φ+ + Φ−)]W = 0.

A non-trivial solution for W can then exist for

Ra = Rac = 12
(
Φ+ + Φ−) , (A.23)

which is the condition for marginal stability of the translation mode.
This system of equations can also be solved for a finite value of σ in order to

relate it to Ra. Equation (A.22) subject to boundary conditions θ(±1/2) = 0 gives

Θ =
W

σ

[
1− 2

sinh(σ1/2/2)

sinh(σ1/2)
cosh(σ1/2z)

]
(A.24)
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Inserting this expression in Eq. (A.21) and solving for P , we obtain

P = cst+

(
Ra
σ

− σ

Pr

)
Wz − 2Ra Wσ−3/2 sinh(σ1/2/2)

sinh(σ1/2)
sinh(σ1/2z). (A.25)

Using the boundary condition (A.16) at z = 1/2 allows to determine the integration
constant, which gives

P =Φ+W +

(
Ra
σ

− σ

Pr

)
W (z − 1/2)

− 2Ra Wσ−3/2 sinh(σ1/2/2)

sinh(σ1/2)

[
sinh(σ1/2z)− sinh(σ1/2/2)

]
.

(A.26)

Finally, using the boundary condition at z = −1/2, −φ−W = P (−1/2), gives, after
rearranging, the following dispersion equation:

0 =
σ2

Pr(Φ+ + Φ−)
+ σ +

Ra
Φ+ + Φ−

[
2σ−1/2 coshσ1/2 − 1

sinhσ1/2
− 1

]
. (A.27)

An approximate solution for small σ can be obtained by developing the ratio of cosh
and sinh functions to the second order in σ, which gives

σ =
10

1 + 120

Pr Ra

(
1− 12(Φ+ + Φ−)

Ra

)
. (A.28)

The critical Rayleigh number, obtained by setting σ = 0, is the same as that of
Eq. (A.23). If GrT ≡ Pr Ra (similar to the Grashof number but with κ in place of
ν) is large, the expression for the growth rate reduces to

σ = 10

(
1− 12(Φ+ + Φ−)

Ra

)
. (A.29)

In the limit of a large σ,

2σ−1/2 coshσ1/2 − 1

sinhσ1/2
− 1 → −1 (A.30)

and the dispersion relation reduces to

0 =
σ2

GrT
+

Φ+ + Φ−

Ra
σ − 1. (A.31)

The positive root is

σ =
Φ+ + Φ−

Ra
GrT
2

√1 +
4

GrT

(
Ra

Φ+ + Φ−

)2

− 1

 (A.32)

which reduces to
σ =

Ra
Φ+ + Φ− (A.33)

in the limit of 1
GrT

(
Ra

Φ++Φ−

)2
� 1. The growth rate in the large GrT limit is plotted

as function of Ra/Rac on figure A.2.
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Figure A.2: Instability growth rate σ as a function of Ra/Rac, for infinite GrT , as
given by the numerical solution of the full dispersion relation (solid blue line), and
by the small and large σ approximations (black dashed lines).

A.4.2 Steady state translation
The steady state finite amplitude translation mode is solution of

0 = −Dp+ Raθ, (A.34)
wDθ = w + D2θ. (A.35)

Solving first the energy balance equation (A.35) subject to boundary conditions
(A.6) gives

θ = z +
cosh

(
w
2

)
− ewz

2 sinh
(
w
2

) ⇒ T =
1

2
+

cosh
(
w
2

)
− ewz

2 sinh
(
w
2

) . (A.36)

Using the momentum balance equation (A.34) and the boundary conditions (A.16)
then gives (

Φ+ + Φ−)w = Ra

[
cosh

(
w
2

)
2 sinh

(
w
2

) − 1

w

]
. (A.37)

This transcendental equation relates the translation velocity w to the Rayleigh num-
ber.

Close to onset, assuming the Péclet number, |w|, to be small, equation (A.37)
can be developed as function of (Ra − Rac)/Rac to give to leading order

w = ±2

√
15

Ra − Rac

Rac

. (A.38)

The corresponding temperature anomaly is

θ =
w

8

(
1− 4z2

)
+O(w2), (A.39)
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Figure A.3: Finite amplitude velocity in the translation mode. The dashed line is
the small velocity approximation given by eq. (A.38), the dash-dotted line is the
large velocity approximation given by eq. (A.40) and the solid line is the solution to
the full equation (A.37).

showing that the temperature only differs from the conduction solution by an amount
proportional to the Péclet number.

For a large Péclet number, |w| � 1, equation (A.37) reduces to

w ∼ ± Ra
2 (Φ+ + Φ−)

= ±6Ra
Rac

. (A.40)

Figure A.3 shows how the translation velocity |w| depends on Rayleigh number,
computed using the full equation (A.37) and either the low or the large velocity
development. It shows that the transition between the two regimes happens for
Ra ∼ 2Rac.

In the high Péclet number regime, the temperature anomaly takes a simple form:

θ ∼ z + sgn(w)
[
1

2
− ew(z−sgn(w)/2)

]
⇒ T ∼ 1

2
[1 + sgn(w)]− sgn(w)ew(z−sgn(w)/2).

(A.41)
The exponential in the last equation is negligible everywhere except close to the
upper boundary (z = 1/2; resp. lower boundary, z = −1/2) when w � 1 (resp.
w � −1). Therefore, the temperature is essentially equal to that imposed at the
boundary the fluid originates from (0 at the top, 1 at the bottom) and adjusts to
that of the opposite side in a boundary layer of thickness δ ∼ 1/w. In dimensional
units, δ is simply defined as the thickness that makes the Péclet number around
1: Pe = wδ/κ ∼ 1. Figure A.4 shows the temperature profiles for the upward
and downward translation modes computed both with the exact (eq. A.36) and
approximate (eq. A.41) expressions, showing that the approximation is quite good.
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Figure A.4: Temperature profile in the translation mode for (Ra − Rac)/Rac = 5.
The solid (resp. dashed) line is for the ascending (resp. descending) mode calculated
using the full equation (A.36) and the up (resp. down) triangles are obtained using
the approximate equation (A.41).

The steady state velocity given by equation (A.40) can also be obtained from a
simple physical argument. In the steady translation regime, the (uniform) topog-
raphy at each boundary is related to the translation velocity and the phase change
timescale by

h± = τφ±w. (A.42)
In steady state, the excess (resp. deficit) weight of the cooler (resp. warmer) solid
layer is balanced by the sum of pressure deviations from the hydrostatic equilibrium
at both boundaries as

αρ0g
∆Td

2
= ∆ρ+gh+ +∆ρ−gh−, (A.43)

where the temperature in the solid layer has been assumed uniform, i.e. the contri-
bution of the boundary layer to its buoyancy has been neglected. This gives for the
translation velocity

w =
αρ0g∆Td

2(∆ρ+gτφ+ +∆ρ−gτφ−)
. (A.44)

In dimensionless form, this is exactly equation (A.40).
It is also worth considering the heat transfer efficiency in the translation mode.

Equation (A.35) can be integrated to show that wT − DT is independent of z and
this implies that w = DT (−1

2
) − DT (1

2
), meaning that the difference between the

conductive heat fluxes across the horizontal boundaries is equal to the advection
by translation. Figure A.4 show that the heat flow (Nusselt number Nu) should be
computed on the exit side, where a boundary layer is produced:

Nu = −DT

(
sgn (w)

1

2

)
= |w| − DT

(
− sgn (w)

1

2

)
= |w|+ we−|w|/2

2 sinh(w/2)
. (A.45)

142



A.5. NON-TRANSLATING MODES WITH Φ+ = Φ−

The small and large |w| limit cases give

Nu = 1 +
|w|
2

= 1 +

√
15

Ra − Rac

Rac

, (A.46)

Nu = |w| = 6
Ra
Rac

, (A.47)

respectively. The large Rayleigh number behaviour is in striking contrast to the
situation encountered for standard Rayleigh-Bénard convection for which Nu ∼ Raβ

with β ∼ 1/3.

A.5 Non-translating modes with Φ+ = Φ−

In this section, we consider the situation with values of the phase change parameter
of both boundaries equal, Φ ≡ Φ+ = Φ−.

A.5.1 Linear stability
Non-translating solutions can be obtained using standard approaches for the clas-
sical Rayleigh-Bénard problem. For the linear stability problem, a solution using
separation of variables is sought, i.e. u = U(z)eikxeσt and similarly for w, p and θ.
Linearized equations (A.18) to (A.20) reduce to

ikU +DW = 0, (A.48)
Pr
[
−ikP +

(
D2 − k2

)
U
]
= σU, (A.49)

Pr
[
−DP +

(
D2 − k2

)
W + RaΘ

]
= σW, (A.50)

W +
(
D2 − k2

)
Θ = σΘ (A.51)

since, at the linear stage, the problem is fully degenerate in terms of orientation of
the mode which can be taken as depending only on x. These equations must be
complemented by boundary conditions applying at z = ±1

2
:

DU + ikW = 0, (A.52)
±Φ±W + 2DW − P = 0, (A.53)

Θ = 0. (A.54)

This forms a generalized eigenvalue problem that we solve using a Chebyshev-
collocation pseudo-spectral approach (e.g. Canuto et al. 1985; Guo et al. 2012).
Given the Chebyshev-Gauss-Lobatto nodal point zi = cos iπ

N
, i = 0...N , in the inter-

val [−1, 1], the values of the z-dependent mode functions at zi/2 is noted as Ui for
U and similarly for other variables. Division by 2 is required here to map the inter-
val on which Chebyshev polynomials are defined onto

[
−1

2
, 1
2

]
. The kth derivative

of each function at the nodal points is related to the nodal values of the function
itself by differentiation matrices:

U (k) = D(k) ·U . (A.55)

The calculation of the differentiation matrices is done using a python adaptation1

of DMSUITE (Weideman and Reddy 2000). With these differentiation matrices,
1available at https://github.com/labrosse/dmsuite
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the system of equations (A.48) to (A.51) can be written as a generalized eigenvalue
problem of the form

L ·X = σR ·X (A.56)

with X = (P ;U ;W ;Θ)T the global vertical mode vector composed of the concate-
nation of vectors Pi, Ui, Wi and Θi, and L and R two matrices representing the
system with its boundary conditions. The general structure of L reads as

L =

0 : N 0 : N 0 : N 1 : N − 1



0 ikI D 0 0 : N

0 D ikI 0 0

−Pr ikI Pr
(
D(2) − k2I

)
0 0 1 : N − 1

0 D ikI 0 N

−I 0 Φ+I + 2D 0 0

−PrD 0 Pr
(
D(2) − k2I

)
PrRaI 1 : N − 1

−I 0 −Φ−I + 2D 0 N

0 0 I
(
D(2) − k2I

)
1 : N − 1

(A.57)
with I and 0 the identity and zero matrices, respectively. The restrictions of line
and column indices, indicated on the right and top of the matrix respectively, are
necessary to leave out the boundary points from applications of equations (A.48)
to (A.51) since these follow equations (A.52)-(A.54) instead. For example, in the
second line of the matrix that represents equation (A.52), only the first line (index
0) of the matrice 0,D, ikI and 0 are present. Note that the boundary values for the
temperature are simply left out since the Dirichlet boundary condition (A.54) is, in a
collocation approach, naturally enforced by removing the extreme Chebyshev points.

The R matrix contains ones on the diagonal corresponding to the interior points
of the equations for U , W and Θ and zeros elsewhere. When solving for an infinite
Prandtl number, which is the case below, the interior points for the U and W
equations are also set to 0, leaving ones only for the interior points of the Θ equation.
The resulting system is singular and many eigenvalues are infinite, one for each zero
in the R matrix. Filtering these spurious eigenvalues leaves us with the relevant
eigenvalues that are used to assess stability. For any values of Φ−, Φ+ and k, the
minimum value of Ra that makes the real part of one of the eigenvalues become
positive is the critical Rayleigh number for perturbations with that wavenumber.
Minimizing Ra as function of k gives the critical Rayleigh number for all infinitesimal
perturbations. Figure A.5 shows the evolution of the critical Rayleigh number and
the associated wavenumber as function of the value of Φ±, both taken equal, Φ+ =
Φ− = Φ. One can see that the classical value derived by Strutt (1916) is recovered
when Φ → ∞, as expected. In the other limit, Φ → 0, the critical Rayleigh number
follows the analytical expression obtained for the translation mode (§ A.4) while
k → 0, as expected.

The behaviour of the system in the limit of small Φ can be obtained using a
polynomial expansion of all the functions, both in z and Φ. Specifically, considering
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Figure A.5: Critical Rayleigh number (top) and wavenumber (bottom) as function
of the phase change numbers, both taken equal here. Filled circles are results of
the calculation using the Chebyshev-collocation technique, the dash-dotted lines
represent the classical Φ → ∞ limit, the dashed line in the upper panel represents
the result for the translating mode (eq. A.23) and the solid lines represent the small
Φ leading order development.
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the symmetry of the problem around z = 0, we write the temperature as

Θ =
N∑

n=0

anz
2n. (A.58)

The Hermitian character of the linear problem (see appendix A.8) ensures that σ
is real and, therefore, σ = 0 at onset. Then W and U can be obtained using equa-
tions (A.51) and (A.48). Equations (A.49) and (A.50) then provide two expressions
for DP and their equality implies several equations, one for each polynomial order
considered. All the functions are developed to the same order as the temperature,
2N . Note that even if the definition of Θ for a given N only requires N + 1 co-
efficients an, the development of the other profiles to the same order requires the
inclusion of an for values up to n = N + 2 because of the derivatives in the linear
system. Using, for example, N = 2 gives a pressure gradient DP that contains terms
in z2n, n = 0..2, and provides therefore three independent equations for the equal-
ity between the two expressions. With the symmetry considered here, the boundary
conditions (A.52)– (A.54) bring three additional equations for the coefficients an.

Setting first Φ = 0 leads to a non trivial solution only for Ra = 0 and k = 0,
the solution being equal to the low Φ development of the translation solution. To
go beyond that, each coefficient an is itself developed as a polynomial of Φ:

an =
J∑

j=0

an,jΦ
j. (A.59)

Similarly, the critical Rayleigh number Rac and the square of the critical wavenumber
k2 are developed in powers of Φ:

Rac =
J∑

j=0

rjΦ
j, k2

c =
J∑

j=0

KjΦ
j. (A.60)

The three boundary conditions and the equations implied by the equality of the
two pressure expressions are then written and solved for increasing degrees in the
development in Φ. In practice, we restrict ourselves to N = J = 2. At order 0 in Φ,
the set of linear equations can admit a non-trivial solution only if the determinant
of the implied matrix is zero, which provides two possible values of r0. The lowest
one admits a minimum, r0 = 0, for K0 = 0. This implies a2,0 = a3,0 = a4,0 = 0 and
a1,0 = −4a0,0. At order 1 in Φ, we get directly that a2,1 = a3,1 = a4,1 = 0, a1,1 =
−4a0,1 and r1 = 24 with no information on K1. This is however obtained at the
next order where we find that K1 = 9/32 minimizes r2, which is then r2 = −81/256.
The order 2 coefficients are also obtained as a function of a0,0, which is the value of
the maximum of Θ. These can then be used to determine the shape of the different
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Figure A.6: Variation of the maxima of profiles of P , U and W of the first unstable
mode, that for Θ being set to 1, as a function of Φ. The bottom panel shows the
difference between 24Φ and the critical Rayleigh number. On each plot, the solid
circles are the results of the calculation using the Chebyshev-collocation method
while the dashed lines are the low Φ predictions of equations (A.62) to (A.66).

function Θ, W , U and P for small values of Φ. To leading order in Φ we get

kc =
3

4
√
2

√
Φ (A.61)

Rac = 24Φ− 81

256
Φ2, (A.62)

Θ = (1− 4z2)Θmax, (A.63)
W = 8Θmax, (A.64)
U = −3i

√
2ΦzΘmax, (A.65)

P =
z

2

(
39− 64z2

)
ΦΘmax. (A.66)

Θmax = a0,0 is used to normalise all profiles. Note that the shape of the temperature
(eq. A.63) and vertical velocity (eq. A.64) profiles are of order 0 in Φ and are
equal to their counterpart in the steady-state translation solution (eq. A.39). The
small Φ development of the solution to the linear problem can be compared to the
results obtained using the Chebyshev-collocation method for cross-validation. The
match between the mode profiles is very good for Φ ≤ 0.1. Figure A.5 shows the
variation of Rac and kc as function of Φ as computed by the Chebyshev-collocation
approach (in solid symbols) as well as the analytical value classically obtained for
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non-penetrating conditions and the small Φ expansion. Additionally, figure A.6
shows the variation of the maximum of profiles of P , U and W , that of Θ being
set to 1, as well as the difference between the critical Rayleigh number for uniform
translation (24Φ) and that for a deforming mode, each as function of Φ. It shows
the consistency between the calculations using the Chebyshev-collocation approach
and the low Φ development.

At low Φ, the wavelength of the first unstable mode tends to infinity as ∼ 1/
√
Φ,

which means that deformation of the solid becomes negligible. Accordingly, the
viscous stress ceases to be a limiting factor for the flow and Rac/Φ, which contains
no viscosity, tends to a constant value. This ratio,

Ra
Φ

=
ρα∆Td2

∆ρ±κτφ
≡ ∆ρT

∆ρ±
τκ
τφ
, (A.67)

is the ratio of the driving thermal density difference ∆ρT to that involved in the
phase change, times the ratio of the thermal timescale to the phase change one, and
can be considered as the effective Rayleigh number in the low Φ limit.

Figure A.7 shows the first unstable mode for different values of the phase change
parameter. In the case of Φ = 105, the critical Rayleigh number and wavenumber
are very close to that obtained using classical non-penetrating boundary conditions
(fig. A.5) and so is the first unstable mode. For Φ = 10, the critical Rayleigh number
has already decreased significantly (Rac = 190), the critical wavelength significantly
increased (λc = 4.55) and the critical mode displays streamlines that cross both
boundaries. For Φ = 10−2, the critical Rayleigh number is a bit less than 0.24,
the critical wavelength is about 115 and streamlines are essentially vertical. At
each horizontal position, this mode of convection has exactly the same shape as the
linearly unstable translation mode but it is modulated laterally, with a very long
wavelength that increases as ∼ 1/

√
Φ when Φ → 0. The fact that this makes the

critical Rayleigh number smaller than that for pure solid-body translation is rather
mysterious.

The critical Rayleigh number for the instability for the non-null k mode is al-
ways lower than that for pure translation, as shown by Eq. (A.62) and fig. A.5 and
should therefore always be favored. This might be true in an infinite layer but, in
practical cases, the horizontal direction is periodic, either in numerical models or
in a planetary mantle. In that case, the minimal value of k that can be attained
is 2π/L with L the horizontal periodicity. If the value of k corresponding to the
critical Rayleigh number is smaller than 2π/L, the translation mode could still be
favored. The study of the stability of the uniformly translating solution with respect
to laterally varying modes is a simple extension to the stability of the conduction so-
lution. Considering now that (p,v, θ) are infinitesimal perturbations with respect to
the steady translation solution (pt, wtẑ, Tt), the only equation to be modified com-
pared to that treated in section A.5.1 at infinite Prandtl number is the temperature
equation that now reads(

D2 − k2
)
Θ− wtDΘ−WDTt = σΘ (A.68)

instead of equation (A.51). Using the steady translation solution provided in sec-
tion A.4.2, this equation can be implemented in the stability calculation to compute
the growth rate of a deforming perturbation of wavenumber k when a steady trans-
lation solution is in place for a given Rayleigh number above the critical value for
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Figure A.7: First unstable mode for three different values of Φ+ = Φ−: 105 (top),
10 (middle) and 10−2 (bottom). The color represents temperature and the flow lines
thickness is proportional to the norm of the velocity. Note that for the bottom panel
the axis are scaled differently owing to the large wavelength of the mode.
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Figure A.8: Growth rate of deforming perturbation over a steady translating solution
as function of the perturbation wavenumber k, for different values of the reduced
Rayleigh number ε = (Ra − Rac)/Rac and for Φ+ = Φ− = 1.

the translation solution. We denote by ε = (Ra − Rac)/Rac the reduced Rayleigh
number, Rac = 12(Φ+ + Φ−) being here the critical value for the onset of uniform
translation. When ε tends to zero, the translation velocity wt tends to zero and
the system of equations tends to that solved for the stability of the steady conduc-
tion solution. But since ε = 0 corresponds to the critical Rayleigh number for the
translation solution that is finitely greater than the critical value for the instabil-
ity with finite k, we expect a finite instability growth rate in a finite band of wave
numbers. We therefore expect an infinitely slow translation solution to be unstable
with respect to deforming modes. However, when the Rayleigh number is increased
above the critical value for the translation mode, we expect this translation mode
with a finite velocity to become more stable since perturbations with a finite k are
then transported away by translation. Figure A.8 indeed shows that, for a given
value of the phase change number Φ (equal for both boundaries here), increasing
the Rayleigh number above the critical value for the translation mode, and there-
fore the steady state translation velocity, the linear growth rate of the deforming
mode decreases. For a given Rayleigh number, the growth rate curve as function
of wave number displays a maximum and this maximum decreases with Rayleigh
number and eventually becomes negative. There is therefore a maximum Rayleigh
number beyond which the translation solution is linearly stable against any deform-
ing perturbation. Figure A.9 shows the range of unstable modes in the k − ε space
for three different values of the phase change number. The range of Rayleigh num-
bers above the critical one for translation that allows the finite k instabilities to
develop shrinks when Φ decreases and the translation mode becomes increasingly
more relevant. Figure A.10 shows that the maximum growth rate of the instability
at ε = 0 varies linearly with Φ and so does the maximum value of ε for an insta-
bility to develop. The wave number for the instability is found to be equal to that
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growth rate as function of the reduced Rayleigh number.

for the instability of the conductive solution (fig. A.9) and therefore varies as
√
Φ

(fig. A.5).

A.5.2 Weakly non-linear analysis
Going beyond the linear stability is necessary to assess the behaviour of the sys-
tem at Rayleigh numbers larger than the critical value, in particular to investi-
gate the heat transfer efficiency of the convective system. We here follow the ap-
proach classically developed for weakly nonlinear dynamics (Malkus and Veronis
1958; Manneville 2004; Schlüter et al. 1965). The system of partial differential
equations (A.18)- (A.20) is separated into its linear and nonlinear parts as

L(∂t, ∂x, ∂z,Ra)X = N(X,X), (A.69)

with X = (p;u;w; θ)T and for an infinite Prandtl case

L =


0 ∂x ∂z 0

−∂x ∇2 0 0
−∂z 0 ∇2 Ra
0 0 1 ∇2 − ∂t

 , N(Xl,Xm) =


0
0
0

ul∂xθm + wl∂zθm

 .

(A.70)
The linear operator is further developed around the critical Rayleigh number as

L = Lc − (Ra − Rac)M. (A.71)
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By giving Rac as weight to the θ part in the dot product 〈•|•〉, it can be shown that
the operator Lc is self-adjoint (Hermitian), 〈X2|LX1〉 = 〈LX2|X1〉 (see appendix
for details). Among other things, it implies that all its eigenvalues are real and the
marginal state is characterized by ∂t = 0. The solution X and the Rayleigh number
are developed as

X = εX1 + ε2X2 + ε3X3 + ... (A.72)
Ra = Rac + εRa1 + ε2Ra2 + ... (A.73)

and equation (A.69) leads to a set of equations for the increasing order of ε:

LcX1 = 0, (A.74)
LcX2 = N(X1,X1) + Ra1MX1, (A.75)
LcX3 = N(X1,X2) + N(X2,X1) + Ra1MX2 + Ra2MX1, (A.76)

LcXn =
n−1∑
l=1

N(Xl,Xn−l) +
n−1∑
l=1

RalMXn−l. (A.77)

Equation (A.74) is simply that of the linear stability problem and its solution is
X1 = Xc which can be suitably normalised such that the maximum value of W is 1.
Taking the scalar product of equations of subsequent orders by X1 and making use of
the Hermitian properties of Lc provides solvability conditions (Fredholm alternative)
that determine the values of Rai. For Ra1 one gets:

Ra1 = −〈X1|N(X1,X1)〉
〈X1|MX1〉

. (A.78)

The x dependence of X1 is of the form eikcx, i.e.

X1 = Z1,1(z)eikcx + c.c., (A.79)

with Z1,1(z) = (P1,1(z);U1,1(z);W1,1(z); Θ1,1(z))
T the vector composed of the four

vertical modes for all four variables, at degree 1 of weakly non-linear development
(first index) and first mode in the horizontal direction (second index).

Then, N(X1,X1) contains two contributions to its x dependence, one constant
and one in ei2kcx. It is therefore orthogonal to X1 and it can then be concluded that
Ra1 = 0. The general solution to equation (A.75) is the sum of the solution to the
homogeneous equation and a particular solution of the equation with a right-hand-
side. Since we are seeking a solution X2 which adds to X1, i.e. orthogonal to it, and
since X1 is the general solution to the homogeneous equation, only the particular
solution is of interest. The x dependence of X2 will contain a constant value of the
form Z2,0(z) and a term of the form Z2,2(z)ei2kcx. Computing the scalar product of
equation (A.76) by X1 gives the value of Ra2:

Ra2 = −〈X1|N(X2,X1)〉+ 〈X1|N(X1,X2)〉
〈X1|MX1〉

. (A.80)

X2 containing a term proportional to ei2kcx and a term independent of x, N(X2,X1)
and N(X1,X2) have contributions of the form e±ikcx which can resonate with X1

and make Ra2 non-null. In that case, the amplitude parameter is, to leading order,

ε =

√
Ra − Rac

Ra2

. (A.81)
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The procedure can be extended to any higher order and the general behaviour can
be predicted by recursive reasoning. In particular, it is easy to show that solutions
of even and odd order contain contributions to their x dependence as even and odd
powers of eikcx up to their order value, i.e.

X2n =
n∑

l=0

Z2n,2l(z)ei2lkcx + c.c., (A.82)

X2n+1 =
n∑

l=0

Z2n+1,2l+1(z)ei(2l+1)kcx + c.c., (A.83)

the vertical normal mode Zn,l = (Pn,l(z);Un,l(z);Wn,l(z); Θn,l(z))
T being indexed

with the order n of the solution and harmonic number l in the x dependence. It
also appears recursively that

Ra2n = −
∑2n

l=1 〈X1|N(Xl,X2n+1−l)〉+
∑n−1

l=1 Ra2l

〈
X1|MX2(n−l)+1

〉
〈X1|MX1〉

, (A.84)

Ra2n+1 = 0. (A.85)

This is true for orders 1 and 2, as explained above and, assuming it holds up to
degrees 2n−1 and 2n, the expressions for degrees 2n+1 and 2n+2 can be predicted
from equation (A.77). First, equation (A.77) of order 2n+ 1 includes on the right-
hand-side only terms up to degree 2n and can be used to predict the form of X2n+1.
Each term of the form N(Xl,X2n+1−l) contains only odd powers of eikcx since it is
composed of products of even (resp. odd) and odd (resp. even) polynomials of eikcx

for l even (resp. odd). Each term of the form RalMX2n+1−l is either null for l odd
or an odd polynomial of eikcx for l even. Summing up, the right-hand-side of the
equation being an odd polynomial of eikcx, the solution to the equation is of the
form (A.83).

Taking the dot product of equation (A.77) of order 2n+ 2 by X1 and using the
Hermitian character of Lc provides the equation for Ra2n+1. Starting first with
the last term on the right-hand-side, all the terms in the sum except the one in
Ra2n+1 drop out either because Ral is null for l odd or because the dot product
〈X1|MX2n+2−l〉 = 0 for l even since X2n+2−l then contains only even powers of
eikcx. We are left with Ra2n+1 〈X1|MX1〉. Considering the first sum on the right-
hand-side, each term N(Xl,X2n+2−l) is an even polynomial of eikcx, as the product
of either two even polynomials (for l even) or two odd polynomials (for l odd).
Therefore, each of these terms is orthogonal to X1 and Ra2n+1 = 0. The same
equation (A.77)2n+2 contains only even powers of eikcx on the right-hand-side and
this justifies equation (A.82) for the order 2n+ 2.

Finally, equation (A.84)2n+2 is obtained by simply taking the dot product of
equation (A.77)2n+3 by X1.

An important diagnostic for convection is the heat transfer efficiency measured
by the dimensionless mean heat flux density, the Nusselt number Nu. Since the
temperature is uniform on each horizontal boundary and the average vertical velocity
is null for the deforming mode considered here, the advective heat transfer across the
horizontal boundaries is null. Therefore, the Nusselt number can easily be computed
by taking the vertical derivative of the temperature at either boundary. In the
Fourier decomposition used for the non-linear analysis, only the zeroth order term
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Figure A.11: Heat flux coefficient as a function of the phase change numbers, equal to
each other (left), and Nusselt number as a function of Rayleigh number for different
values of Φ± (right). The solid line gives the limit of two non-penetrating boundaries
while the dashed line represents the first order development obtained for Φ → 0
(eq. A.91).

in eikcx contribute to the horizontal average and they only appear in terms that are
even in the ε development. Restricting ourselves here to an order 2 development,
the Nusselt number can be computed as

Nu = 1− ε2Dθ2,0

(
1

2

)
= 1−Dθ2,0

(
1

2

)
Rac

Ra2

Ra − Rac

Rac

(A.86)

where equation (A.81) was used. This equation shows the classical result that the
convective heat flow, Nu − 1, increases linearly with the reduced Rayleigh number
ε = (Ra − Rac)/Rac for small values of ε and the determination of the coefficient
of proportionality, A, is the main goal of the weakly non-linear analysis presented
here. Note that N(X2,X1) and N(X1,X2) only have a non-zero component only
along the θ space (eq. A.70) so that, because of our definition of the dot product
(§ A.8) and using equation (A.80), Ra2 is proportional to Rac.

The procedure just outlined can be applied to the case with classical boundary
conditions. In particular, for free-slip non-penetrating boundary conditions, the
problem can be solved analytically (Malkus and Veronis 1958; Manneville 2004).
Starting with the vertical velocity in the critical mode as w1 = sin kx cos πz, one gets
θ1 = (π2 + k2)

−1 sin kx cos πz, Rac = (π2 + k2)
3
/k2, θ2 = (8π (π2 + k2))

−1 sin 2πz,
w2 = 0 and Ra2 = (π2 + k2)

2
/8k2. This gives A = −Dθ2,0 (1/2)Rac/Ra2 = 2.

Similarly, the low Φ expansion of the linear mode, equations (A.61)– (A.66),
can be used to compute the behaviour of coefficient A at low Φ values. We choose
Θmax = 1/16 to have a normalisation consistent with the one above2 and the solution

2The amplitude of X1 is not defined by the linear problem and changing its normalisation,
say by multiplying it by a factor a, leads to X2 and Ra2 multiplied by a2, so that by virtue of
equation (A.81), the total solution X is unchanged.
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at order 2 is searched in the form of z polynomials, and we get, to order 1 in Φ,

θ2 = − z

48

(
z2 − 1

4

)[
1 +

(
1− Φ

64

)
cos 2kcx

]
, (A.87)

u2 = −
√
Φ

192
√
2

sin 2kcx, (A.88)

w2 =
zΦ

256
cos 2kcx, (A.89)

Ra2 =
1

320
− 43Φ

430080
. (A.90)

The heat flux coefficient is then, to order 1 in Φ:

A =
4480

1344− 43Φ
. (A.91)

Figure A.11 represents the value of the heat flux coefficient A as function of Φ
obtained using the Chebyshev-collocation approach described above (solid circles,
see appendix A.9 for details on the calculation of non-linear terms) and the two
limiting cases of Φ → ∞ (solid line) and Φ → 0 (dashed line), which shows a good
match.

The heat flux coefficient A, which equals 2 for classical non-penetrating bound-
aries, tends to 10/3 when Φ → 0. This ∼ 50% increase makes the Nusselt number
increase when Φ tends to zero but the main effect comes from the decrease of the
critical Rayleigh number as ∼ 24Φ, which makes the slope dNu/dRa go to infinity
as ∼ 5/36Φ. This is illustrated on figure A.11 which shows the Nu − Ra relation-
ship derived from this analysis for different values of Φ. The heat transfer efficiency
is greatly increased by decreasing Φ for two reasons. Firstly, it makes the critical
Rayleigh number decrease so that convection starts with a lower Rayleigh number.
Secondly, the rate at which the Nusselt number increases with Ra above its critical
value is also drastically increased when Φ is decreased.

A.6 Solutions with only one phase change bound-
ary

Let us now consider the case when only one boundary is a liquid-solid phase change,
the other one being subject to a non-penetrating condition. With the plane layer
geometry considered here, the situation with the upper boundary a phase change
is symmetrical to the one with a lower boundary a phase change. The latter is
considered here since it applies to the dynamics of the icy shells of some satellites of
giant planets (Čadek et al. 2016) and possibly to the Earth mantle for a large part
of its history (Labrosse, Hernlund, and Coltice 2007).

The analysis is done in the same way as for the case with a phase change at
both boundaries. Figure A.12 shows examples of the first unstable mode for two
different values of Φ−. The upper one shows that when Φ− = 10, the convection
geometry is not very different from that with a non-penetrating condition (hereafter
“the classical situation”) but the streamlines are slightly open at the bottom. The
horizontal wavelength at onset, λc = 3.57, is larger than the one for the classical
situation (λc = 2

√
2) and the critical Rayleigh number is smaller (Rac = 352). For
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Figure A.12: First unstable mode when only the bottom boundary is a phase change
interface, with Φ− = 10 (top) and Φ− = 10−2 (bottom). The temperature anomaly
compared to the conduction solution is represented in colours and streamlines have
a thickness proportional to the relative norm of the velocity.

Φ− = 10−2, the streamlines are almost normal to the bottom boundary and the
wavelength λc = 5 is about twice the classical one, as if the solution was the upper
half of a classical convective domain. However, the boundary condition imposed for
temperature at the bottom is different from what would be obtained in that case
and the critical Rayleigh number, Rac = 153 is about a quarter of the classical one.
This can be understood in a heuristic way: The Rayleigh number can be written as

Ra =
τντκ
τ 2c

=
α∆Tg

d

d2

ν

d2

κ
, (A.92)

with τc the convective time scale associated with acceleration due to gravity, τν
the viscous time scale and τκ the thermal diffusion time scale. Compared to the
classical situation, we have the same imposed temperature gradient, hence the same
τc. Similarly, diffusion happens on the same vertical length scale and we have the
same τκ. On the other hand, the bottom boundary imposes no limit to vertical flow
and the viscous deformation is distributed on vertical distance twice the thickness
of the layer, which increases the effective viscous time scale by a factor 4. Therefore,
the Rayleigh number imposed here is equivalent to a value 4 times larger in the
classical situation.

Figure A.13 shows the variation of the critical Rayleigh number (top) and wave-
number (bottom) as a function of Φ− and one can see that both tend to a finite
value when Φ− → 0. The mode obtained for Φ− = 10−2 is close to that limit.
Contrary to the situation with a phase change at both boundaries, the presence
of non-penetrating boundary condition implies that some deformation is always
needed for convection to occurs, which makes viscosity still be a limiting factor at
vanishing values of Φ−.

Considering now the weakly non-linear analysis results, figure A.14 shows that
the heat flux coefficient for only one phase change boundary condition tends to a
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Figure A.13: Critical Rayleigh number (top) and wavenumber (bottom) as function
of the phase change number for the bottom boundary Φ−, the top one having a non-
penetrating condition. The dash dotted lines represent the classical values obtained
for two non-penetrating conditions, for reference.
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Figure A.14: Heat flux coefficient as a function of the bottom phase change number
Φ−, the top boundary being non-penetrative (left), and Nusselt number as a function
of Rayleigh number for different values of Φ− (right).
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Figure A.15: Mean temperature coefficient (B defined in equation (A.93)) as func-
tion of the bottom phase change parameter Φ− (left) and mean temperature as
function of Ra for different values of Φ− (right). The range of Ra values explored is
the same as that used for figure A.14.

little above 1, that is about half that for the case for both non-penetrative bound-
aries. Combining that with a critical Rayleigh number that is about four times
smaller makes dNu/dRa about twice that for the classical situation. Therefore, the
efficiency of heat transfer is improved compared to the classical case, both because
convection starts for a smaller Rayleigh number and because the rate of variation
of the Nusselt number with Ra is about twice larger. This is illustrated on the right
panel of figure A.14.

In contrary to the case with both boundaries being a phase change with equal
values of Φ, the case discussed in this section breaks the symmetry around the z = 0
plane. In particular, this means that the mean temperature in the domain is not
equal to the average of both boundaries, 〈T 〉 6= 1/2 in dimensionless form. As for
the Nusselt number (eq. A.86), a contribution from all even orders in ε is expected,
and to the leading order explored here,

〈T 〉 = 1

2
+ 〈θ2,0〉

Rac

Ra2

Ra − Rac

Rac

≡ 1

2
+B

Ra − Rac

Rac

. (A.93)

The coefficient B defined above is computed exactly for the case of both non-
penetrating boundaries and as expected found to be null. Figure A.15 shows the
evolution of this coefficient as function of Φ−. One can see that it tends to a finite
positive value when in the limit Φ− → 0. Therefore, for small values of Φ−, the
average temperature is expected to be larger than 1/2 (figure A.15). For the same
range of Rayleigh number as explored in figure A.14, figure A.15 also shows the evo-
lution of the mean temperature at the leading order given by equation (A.93). For
low values of Φ−, the mean temperature increases rapidly with Rayleigh number.

The asymmetry of the mean temperature for low values of Φ− is also expressed in
the finite amplitude solution that can be plotted for a given value of ε. The range of
validity of such solutions as function of ε depends on the order of the development.
Computing the solution only up to order 3 in ε, we restrict ourselves to small values
of this number and figure A.16 shows the result for ε = 5.58 corresponding to
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Figure A.16: Finite amplitude solution for Φ− = 10−2, ε = 5.58 and a non-
penetrating boundary condition at the top.

Nu = 1.5. This shows that the down-welling current is more focused than the up-
welling one. This situation is similar to the case of volumetrically heated convection
(e. g. E. M. Parmentier and Sotin 2000), which is not the case here. Preliminary
direct numerical simulations confirm this behaviour but the full exploration of this
question goes beyond the scope of the present paper.

A.7 Conclusion
In the context of the dynamics of planetary mantles, convection can happen in
solid shells adjacent to liquid layers. The viscous stress in the solid builds up a
topography of the interface between the solid and liquid layers. In the absence of
mechanisms to erase topography, its buoyancy equilibrates the viscous stress which
effectively enforces a non-penetrating boundary condition. On the other hand, if
the topography can be suppressed by melting and freezing at the interface at a
faster pace than its building process, the vertical velocity is not required to be
null at the interface. The non-penetrating boundary condition is then replaced
by a relationship between the normal velocity, its normal gradient, and pressure
(eq. A.16) and involving a dimensionless phase change number, Φ, ratio of the
phase change timescale to the viscous timescale (eq. A.15). When this number
is large, we recover the classical non-penetrating condition while the limit of low Φ
authorises a large flow through the boundary.

When both boundaries are characterised by a low Φ number, a translating, non-
deforming, mode of convection is possible and competes with a deforming mode with
wave number k that decreases as

√
Φ, and therefore ressembles translation with

alternating up- and downward direction. The critical Rayleigh number for the onset
of the deforming mode is slightly below that of the translation mode, Ra = 24Φ,
but the latter is found to be stable against a deforming instability when the Rayleigh
number is ∼ Φ2 above the critical value. It is therefore likely to dominate when both
boundaries are characterised by low values of Φ. In both translating and deforming
modes of convection, the heat transfer efficiency, the Nusselt number, is found to
increase strongly with Rayleigh number at small values of Φ.

When only one boundary is a phase change interface with a low value of Φ, the
wavenumber is about half and the critical Rayleigh number is about a quarter the
corresponding values for the classical non-penetrating boundary condition. Close to
onset, a weakly non-linear analysis shows that the Nusselt number varies linearly
with the Rayleigh number with a slope that is about twice that for both non-
penetrating boundary conditions. The average temperature is also found to increase
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strongly with Rayleigh number and the flow geometry is strongly affected, with
down-welling currents more focused than up-welling ones.

Overall, having the possibility of melting and freezing across one or both hori-
zontal boundaries of an infinite Prandtl number fluid makes convection much eas-
ier (i.e. the critical Rayleigh number is strongly reduced), the preferred horizontal
wavelength much larger and heat transfer much stronger, with important potential
implications for planetary dynamics.
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A.8 A – Self-adjointness of operator Lc

Using a Fourier decomposition for the horizontal decomposition, Lc simply reads as

Lc =


0 ik D 0

−ik D2 − k2 0 0
−D 0 D2 − k2 Rac

0 0 1 D2 − k2

 (A.94)

where the time derivative has been omitted since the linear instability is found to
be stationary. In a linear stability analysis, adding a growth rate σ on the diagonal
of the matrix would not alter the adjoint calculation, as will appear below. The
boundary conditions are given by equations (A.52) to (A.54). In the calculation of
the dot product, the θ part is given Rac as weight and the horizontal integral can
be factored out:

〈X2|LcX1〉 =
∫

ei(k2−k1)dx

[∫ 1
2

− 1
2

P̄2 (ikU1 + DW1) dz

+

∫ 1
2

− 1
2

Ū2

(
−ikP1 +

(
D2 − k2

)
U1

)
dz

+

∫ 1
2

− 1
2

W̄2

(
−DP1 +

(
D2 − k2

)
W1 + RacΘ1

)
dz

+Rac

∫ 1
2

− 1
2

Θ̄2

(
W1 +

(
D2 − k2

)
Θ1

)
dz

]
(A.95)

where the overbar means complex conjugate. Since the x part poses no difficulty, we
only consider the z part, which we denote as 〈•|•〉z. Reordering the different integrals
in Eq. (A.95) so that terms of X1 are factored out and performing integrations by
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part on each term including D, we get

〈X2|LcX1〉z =
∫ 1

2

− 1
2

(
−ikŪ2 + DW̄2

)
P1dz

+

∫ 1
2

− 1
2

(
ikP̄2 +

(
D2 − k2

)
Ū2

)
U1dz

+

∫ 1
2

− 1
2

(
DP̄2 +

(
D2 − k2

)
W̄1 + RacΘ̄2

)
W1dz

+ Rac

∫ 1
2

− 1
2

(
W̄2 +

(
D2 − k2

)
Θ̄2

)
Θ1dz

+
[
P̄2W1

] 1
2

− 1
2

+
[
Ū2DU1

] 1
2

− 1
2

−
[
U1DŪ2

] 1
2

− 1
2

−
[
W̄2P1

] 1
2

− 1
2

+
[
W̄2DW1

] 1
2

− 1
2

−
[
W1DW̄2

] 1
2

− 1
2

+ Ra
([

Θ̄2DΘ1

] 1
2

− 1
2

−
[
Θ1DΘ̄2

] 1
2

− 1
2

)
(A.96)

The integral part shows that the adjoint linear system is the same as the direct one,
with Lc as operator. The boundary conditions are the one that allow to suppress all
the boundary values in equation (A.96). The boundary conditions (A.52) to (A.54)
are applied to X1 to remove Θ1(±1

2
) and replace DU1 and P1. In addition, the mass

conservation equation applied to X2 allows to replace DW2. Factorizing W1, U1 and
Θ1 gives for the boundary conditions[
W1

(
−P̄2 ± Φ±W̄2 + 2DW̄2

)] 1
2

− 1
2

+
[
U1

(
−ikW̄2 + DŪ2

)] 1
2

− 1
2

− Ra
[
Θ̄2DΘ1

] 1
2

− 1
2

= 0.

(A.97)
Since W1, U1 and DΘ1 can take arbitrary values on the boundaries, the differences
can only be eliminated in a general manner by setting all their coefficients to 0,
which gives the boundary conditions for the adjoint:

DU2 + ikW2 = 0, (A.98)
±Φ±W2 + 2DW2 − P2 = 0, (A.99)

Θ2 = 0. (A.100)

The adjoint problem is therefore identical to the direct one. Among other impli-
cations, all eigenvalues of Lc must be real, which is consistent with our numerical
findings.

A.9 B – Expression of the non-linear terms
Computation of the non-linear term N(Xn,Xm) (eq. A.70) is the trickiest part of
the procedure explained in section A.5.2 and deserves some details provided here.
First of all, it contains only a component, referred to as N(Xn,Xm)Θ. To compute
it, one needs first to decompose indices n and m as

n = 2p+ q with p =
⌊n
2

⌋
, (A.101)

m = 2r + s with r =
⌊m
2

⌋
, (A.102)
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where bc denotes the floor function. In computing N(Xn,Xm)Θ, one needs to ac-
count for the full (i.e. real) expression of Xn and Xm including the complex conju-
gate. They write

Xn =

p∑
l1=0

Zn,2l1+q(z)ei(2l1+q)kx + c.c., (A.103)

Xm =
r∑

l2=0

Zm,2l1+s(z)ei(2l2+s)kx + c.c.. (A.104)

Using eq. (A.70), we get

N(Xn,Xm)Θ =

p∑
l1=0

q∑
l2=0

{[i(2l2 + s)kUn,2l1+qΘm,2l2+s

+Wn,2l1+qDΘm,2l2+s] ei[2(l1+l2)+q+s]kx

+
[
−i(2l2 + s)kUn,2l1+qΘ̄m,2l2+s

+Wn,2l1+qDΘ̄m,2l2+s

]
ei(2(l1−l2)+q−s)kx

}
+ c.c..

(A.105)

The harmonics of the first term is always positive while that of the second can be
negative. Either way, each term has its complex conjugate and we solve only for
the positive or null harmonics, the rest of the solution simply being obtained as the
conjugate of the computed part.

163



APPENDIX A. CONVECTION WITH PHASE CHANGE BOUNDARIES

164



Appendix B

Mantle convection interacting
with magma oceans

This chapter is an article written by R. Agrusta, A. Morison, S. Labrosse, R. Deguen,
T. Alboussière, P. J. Tackley and F. Dubuffet. It is currently under minor revi-
sion after submission to Geophysical Journal International. It presents numerical
simulations of the thermal problem with constant thickness of the solid in cartesian
geometry.

B.1 Abstract

The presence of a magma ocean may have characterized the beginning of terrestrial
planets and, depending on how the solidification has proceeded, the solid mantle
may have been in contact with a magma ocean at its upper boundary, its lower
boundary, or both, for some period of time. At the interface where the solid is
in contact with the liquid the matter can flow through by changing phase, and
this affects convection in the solid during magma ocean crystallization. Linear and
weakly non linear analyses have shown that Rayleigh-Bénard flow subject to two
liquid-solid phase change boundary conditions is characterized by a non-deforming
translation or weakly deforming long wavelength mode at relatively low Rayleigh
number. Both modes are expected to transfer heat very efficiently, at least in the
range of applicability of weakly non-linear results for the deforming mode. When
only one boundary is a phase change, the critical Rayleigh number is also reduced,
by a factor of about 4, and the heat transfer is also greatly increased. In this
study we use direct numerical simulations in two-dimensional Cartesian geometry
to explore how the solid convection may be affected by these boundary conditions for
values of the Rayleigh number extending beyond the range of validity of the weakly
non-linear results, up to 103 times the critical value. Our results suggest that solid
state convection during magma ocean crystallization may have been characterized
by a very efficient mass and heat transfer, with a heat flow and velocity at the least
twice the value previously thought when only one magma ocean is present, above
or below. In the situation with a magma ocean above and below, we show that the
convective heat flow through the solid layer could reach values of the same order as
that of the black-body radiation at the surface of the magma ocean.
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B.2 Introduction

Partial or even complete melting of the silicate mantle may have occurred early in the
history of rocky planets, and depending on the phase diagram involved (e.g. Boukaré,
Ricard, et al. 2015; Thomas, Liu, et al. 2012), the solid mantle may have crystallised
upwards and/or downwards leading to a solid mantle bounded above and/or below
by molten layers, commonly called magma oceans (e.g. Debaille et al. 2007; Elkins-
Tanton 2012; Labrosse, Hernlund, and Coltice 2007; Solomatov 2015). Petrological
experiments and thermodynamics calculation have shown that chemical composition
controls significantly the melting curves of mantle rocks (Andrault, Bolfan-Casanova,
Bouhifd, et al. 2017; Boukaré, Ricard, et al. 2015; Thomas and Asimow 2013),
and that the location of the first solids within the mantle depends on the slope of
their melting curves compared to the isentropic temperature gradient in the magma.
The solid crystalizes from the bottom if the isentropic gradient is smaller than the
melting temperature gradient (e.g. Thomas and Asimow 2013) and from the top if
the adiabatic gradient is larger that the melting one (e.g. Mosenfelder, Asimow, and
Ahrens 2007). The comparison between the two slopes must be done locally, at each
depth, and the curvature of the two temperature profiles matter. Fiquet et al. (2010)
obtained a curved liquidus whereas Andrault, Bolfan-Casanova, Nigro, et al. (2011)
obtained a liquidus with a nearly constant slope, for different compositions and using
slightly different experimental techniques. The curved liquidus implies that the
magma ocean starts crystallising at intermediate depth while the straight liquidus
implies a crystallisation from the bottom up (Thomas, Liu, et al. 2012). Moreover, at
the lowermost mantle conditions, crystallization may lead to the formation of solids
lighter (Fe depleted) than the surrounding melt (Boukaré, Ricard, et al. 2015), and
this would favor the formation of a basal magma ocean and eventually sustain the
scenario with a solid bounded between two magma oceans (Boukaré, Ricard, et al.
2015; Labrosse, Hernlund, and Coltice 2007) A situation with a basal ocean is
also currently encountered in icy satellites like Enceladus, Europa, Titan, where
the shallow icy layer is in contact with liquid water ocean and where possibly a
high-pressure ice layer underlies the buried ocean (e.g. Baland et al. 2014; Čadek
et al. 2016; Grasset et al. 2000; Khurana et al. 1998; Pappalardo et al. 1998; Tobie,
Choblet, et al. 2003; Tobie, Lunine, et al. 2006).

Whatever the relative position of the solid compare to the ocean is, the existence
of solid-liquid phase change at the boundary of a solid mantle is thought to strongly
affect its dynamics (Deguen 2013; Labrosse, Morison, et al. 2018) and this is the
subject of the present paper.

Usually, convection models in solid mantles assume a non-penetrating bound-
ary condition at the horizontal boundaries of the solid shell, where the free-surface
boundary condition is modeled as a free-slip boundary condition on an undeformed
surface. This approximation is valid as long as the dynamic topography generated
by convective stresses is small and is affected only slowly by surface processes (Ri-
card, Labrosse, et al. 2014). This approximation has been used for mantle convection
models as it operates in the current Earth and planets (Schubert et al. 2004), but
also in the presence of a magma ocean (Ballmer et al. 2017; Maurice et al. 2017).
However, at the boundary between the solid and liquid, matter may flow through
by changing phase. This requires that the latent heat released in regions of freez-
ing (inflow for the solid) is transferred efficiently to regions where it is consumed for
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melting (outflow). Whether this happens depends on how fast latent heat is trans-
ferred in the liquid region compared to the rate at which topography is generated
by solid viscous flow (Alboussière et al. 2010; Deguen 2013; Deguen, Alboussière,
et al. 2013). Indeed, if the heat transfer in the liquid is able to erase the topography
formed by viscous deformation, the lithostatic stress due to the topography varia-
tion will not balance the viscous stress of the convective solid, and the liquid-solid
boundary can be considered as semi-permeable (Deguen 2013; Deguen, Alboussière,
et al. 2013). This process, that leads to semi-permeable boundary condition, has
been shown to strongly affect the dynamics of the solid and the associated heat
transfer leading for example to a translation dynamics in the Earth’s inner core
in contact with the liquid outer core (Alboussière et al. 2010; Deguen, Alboussière,
et al. 2018; Deguen, Alboussière, et al. 2013; Mizzon and Monnereau 2013; Mon-
nereau, Calvet, et al. 2010), whereas only recently, attention has been paid on its
effect on the evolution of the solid mantle (Deguen 2013; Labrosse, Morison, et al.
2018; Morison et al. 2019).

Morison et al. (2019) looked at the effect of semi-permeable solid-liquid phase
change boundaries on the development of the first mantle overturn, during magma
ocean crystallisation of the silicate mantle of the Earth, Mars, and Moon. They
show that solid-liquid phase change boundary conditions make the timescale of the
first overturn decrease by several orders of magnitude compared to the case where
solid-liquid phase change is not taken into account (Ballmer et al. 2017; Boukaré,
E. Parmentier, et al. 2018; Maurice et al. 2017). Moreover, Labrosse, Morison,
et al. (2018) performed both linear and weakly non-linear analysis to show that
Rayleigh-Bénard flow in a two-dimensional (2D) Cartesian geometry, subjects to
one semi-permeable boundary, representing the simplest scenario during solid man-
tle formation, presents an heat transfer efficiency much higher than the classical
values obtained with non-penetrating boundary conditions. Moreover, their study
shows that the flow is characterized by a non-deforming translation mode or weakly
deforming long-wavelength mode if the flow is allowed at both boundaries of the solid
mantle. Both translation and weakly deforming modes are able to transfer heat
very efficiently, and may have characterized mantle dynamics during the primordial
epochs of Earth or of larger size terrestrial planets.

In this study, using 2D Cartesian numerical simulations, we explore how solid-
state Rayleigh-Bénard convection may be affected by the presence of one or two
solid-liquid phase change(s) at horizontal boundary(ies). We compare the results of
the present finite amplitude calculations to the weakly non-linear results of Labrosse,
Morison, et al. (ibid.) and discuss the applicability of the latter to finite amplitude
situations at high Rayleigh number, and the likely consequences of these boundaries
conditions on the primordial evolution of the Earth or other terrestrial planets.

B.3 Method

B.3.1 Governing equations
Solid-state mantle convection is described by the system of conservation equations
for mass, momentum and energy for an incompressible fluid with infinite Prandtl
number and in the Boussinesq approximation. These equations, rendered dimension-
less using the thickness H of the solid mantle for length, the diffusion time H2/κ
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for time, with κ the thermal diffusivity, κ/H for velocity and ηκ/H2 for pressure,
with η the viscosity, are:

∇ · u = 0, (B.1)
∇2u −∇p+ Ra(T − Tc)z = 0, (B.2)

∂T

∂t
+ u ·∇T = ∇2T, (B.3)

with u = (v, w) the velocity, p the dynamic pressure, T the temperature and Tc the
steady conduction solution, t the time, z the unit vector in the vertical direction
and Ra the Rayleigh number:

Ra =
αgρs∆TH3

κη
, (B.4)

with α the thermal expansion coefficient, g the acceleration of gravity, ρs the density
of the solid, ∆T the temperature difference between the lower and upper boundaries.

This set of equations neglects many of the complexities of mantle convection: in
this first study, we assume a Newtonian rheology with a constant viscosity, we do not
consider volumetric heat generation, all physical parameters are assumed uniform
and constant and no compositional effect is included. Although we recognise the
importance of these complexities to understand mantle dynamics (Schubert et al.
2004), we consider the simplest possible convective system to isolate the effects of
the phase change boundary condition.

B.3.2 Treatment of the solid-liquid phase changes
At the boundary between a solid mantle and a liquid of the same composition, a
flow through the phase change can take place. Whether the flow through the phase
change takes place or not depends on the latent heat transferred through the liquid
region during topography variations due to solid viscous flow (Deguen, Alboussière,
et al. 2013). Stresses in the solid lead to the formation of topography of the solid-
liquid interface and convective heat transfer in the liquid tends to homogenize tem-
perature and suppress that topography. On the one hand, if the topography is able
to build because the heat transfer in the liquid region is slow, the radial velocity at
interface is limited by the weight of the topography (classical dynamic topography
balance) and the flow across the boundary is effectively inhibited. On the other
hand, when heat transfer in the liquid is fast, it can destroy the topography by
transporting heat from places where crystallization occurs to places where melting
happens, and the flow through the boundary is allowed. To include this process, the
solid-liquid phase change is accounted for by considering the variation in the stress
field and the associated dynamic pressure at the phase boundary. Details can be
found in previous papers (Deguen 2013; Deguen, Alboussière, et al. 2013; Labrosse,
Morison, et al. 2018) and the derivation of the boundary condition is only shortly
recalled here.

Across the solid-liquid boundary the total stress must be continuous and, if the
topography slope and the viscous stress and dynamic pressure in the liquid side are
assumed small and can be neglected, the vertical stress equilibrium acting along the
undeformed phase boundary is

(ρs − ρ±l )gh
± + 2η

∂w

∂z
− p = 0. (B.5)

168



B.3. METHOD

The first term is the differential stress between the solid and liquid hydrostatic pres-
sures, with ρs and ρl the solid and liquid density respectively and h the topography
height, the second term and third term (p) are the viscous stress and the dynamic
pressure on the solid side, w being vertical velocity. The + and − exponents refer
to the upper and lower boundaries, respectively. Note that Chambat et al. (2014)
argue for a discontinuity of traction across the boundary and propose to add two
terms to the balance equation (B.5). A preliminary analysis has shown that these
two terms are negligible for applications to mantle convection and they are omitted
here for simplicity.

At the solid-liquid boundary, like any phase change, the reaction is accompanied
by release and absorption of latent heat, during freezing and melting, respectively.
Because the interface between solid and liquid cannot accumulate or lose heat, the
discontinuity of heat flow at the interface must equilibrate the release or absorption
of latent heat due to the reaction. This may be expressed by the Stefan condition,

ρsLvφ = −qs + ql, (B.6)

where the term on the left represents the heat production due to freezing or melting,
with L the latent heat and vφ the freezing (negative for melting) rate. The right-
hand-side is the heat flow difference across the boundary, and the subscript s and l
refer to solid and to liquid respectively. The heat flow difference of the right-hand
side is dominated by convective heat transport in the liquid side, and for the sake
of simplicity the right side of eq. B.6 can be expressed by the advective heat flux
on the liquid. Moreover, the freezing (or melting) rate (vφ) can be approximated
by the vertical velocity (w) across the boundary, if the topography growth rate is
negligible. Under these conditions eq. B.6 leads to (see Deguen, Alboussière, et al.
2013; Labrosse, Morison, et al. 2018, for details):

w ≡ h±

τφ
, (B.7)

τφ being the characteristic phase-change time scale for transferring latent heat from
region where it is released (freezing, around topography depression) to places where
it is consumed (melting, around topography highs), and is defined as:

τφ =
ρsL(

ρlcplul

(dTl

dz − dTad

dz

))± , (B.8)

where cpl is the heat capacity, ul the characteristic liquid velocity, and dTl

dz and dTad

dz
are the melting temperature Clapeyron slope and the isentropic gradient in the
melting region, reflectively. The explicit development of equations B.7 and B.8 can
be found in Deguen, Alboussière, et al. (2013). Using eq. B.7 and introducing the
viscous time scale for building topography,

τη =
η

|ρs − ρ±l |gH
, (B.9)

eq. B.5 becomes, in dimensionless form:

± Φ±w + 2
∂w

∂z
− p = 0 (B.10)
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where Φ = τφ/τη is the phase-change number and represents the ratio between the
characteristic phase-change and viscous time scales. For a large value of Φ, the phase
change condition (eq. B.10) implies a small value of w. This can be interpreted
considering that, when τη � τφ, the topography forms in response to stress in
the solid and the solid flow is limited by the buoyancy of the topography, which
makes the vertical velocity effectively drop to zero at the boundary, which leads to
an effectively non-penetrating classical free-slip boundary condition. On the other
hand, for the opposite situation when τη � τφ, the topography is erased faster than
it is generated. The removal of the associated buoyancy leads to a non-null velocity
across the interface and the boundary is permeable.

The continuity of the horizontal traction across the boundaries leads to the
classical free-slip boundary condition,

∂u

∂z
+

∂w

∂x
= 0. (B.11)

Note however, that contrary to the classical calculations assuming a non-penetrating
boundary condition, the second term in equation (B.11) is identically null in our
model.

B.3.3 Numerical approach and set-up
The equation described in B.3.1 and B.3.2 are solved using the finite-volume code
StagYY (Tackley 2008). The mass and momentum equation B.1 and B.2 are dis-
cretized as a unique linear system of equations inverted using a direct solver for
sparse matrices (UMFpack for sequential calculations, MUMPS for parallel calcula-
tions; Amestoy, Duff, et al. 2001; Amestoy, Guermouche, et al. 2006), whereas the
energy equation B.3 is solved in an explicit manner, using a total variation dimin-
ishing (TVD) method for the advection term.

The mechanical boundary conditions are periodic on the vertical sides, and free-
slip (eq. B.11) on the top and bottom domain boundaries, where eq. B.10 is also
applied. The thermal boundary conditions are the Dirichlet condition of fixed tem-
perature of 0 and 1 at the top and bottom, respectively. However, resolving nu-
merically the boundary layers on the melting front of the flow at low values of the
phase change number (Φ) is difficult at large Rayleigh number. Indeed, as shown by
the analytical solution for the translation mode of convection when both boundaries
have a phase change, a thermal boundary layer (TBL) of thickness 1/w exists in
the solid side (Labrosse, Morison, et al. 2018) and since the velocity can be very
large, it requires a huge number of grid points to be properly resolved. Moreover,
even if extreme grid refinement can be used in the boundary layers, the stabil-
ity of the explicit time-stepping scheme requires a extremely small timestep which
renders calculations at high Rayleigh number inaccessible. The analytical solution
for the translation mode and the weakly non-linear analysis for the deforming mode
(ibid.) show however that regions where the TBL is very thin are those where flow
is toward the boundary and therefore are not prone to instabilities. Moreover, the
temperature difference in these TBLs are tiny. In that sense, these regions play lit-
tle role in the global dynamics and can be modeled using the theory developed by
Labrosse, Morison, et al. (ibid.). In that case, the thin TBL needs not to be re-
solved numerically and the Dirichlet boundary condition is replaced by an effective
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Robin one that depends on the vertical velocity w. The Dirichlet condition that ap-
plies at the boundary is replaced by a condition that applies on the interior side of
the thin boundary layer. In practice, when the flow is toward the boundary (w < 0
at the bottom, w > 0 at the top), the vertical temperature gradient should be null,
∂θ/∂z = 0, whereas flow going away from the boundary carries the information of
the boundary temperature and the Dirichlet condition is applied, θ = 0, with θ the
deviation of temperature with respect to the steady-state conduction profile. This
condition is written as:

Γ±θ +
(
1− Γ±) ∂θ

∂z
= 0, (B.12)

where Γ± is a smooth approximation of the Heaviside function depending on the
vertical velocity:

Γ± =
1

2

[
1 + tanh

(
π
∓w + w0

2
w0

2

)]
, (B.13)

with w0 the velocity range along which Γ varies from 0 to 1, defined depending on
the problem. For a large velocity toward the boundary (w � −w0/2 at the bottom,
w � w0/2 at the top), Γ ∼ 0 and we get a Neumann boundary condition, ∂θ/∂z = 0,
whereas for flow away from the boundary or slow flow toward the boundary, we
get the classical Dirichlet boundary condition, θ = 0. Using eq. B.12 the heat
carried by diffusion across the thermal boundary layer is ignored and heat transport
is done entirely by advection across the boundary. A similar approach has been
already used to study the convection pattern with fast surface erosion or important
magmatism in hot planets (Ricard, Labrosse, et al. 2014). We checked that, for
cases with intermediate velocity at the boundary that can be modeled using both
boundary conditions, the results do not depend on the choice of boundary condition.
We are therefore confident that the thermal boundary condition (B.12) can be used
to model the phase change at high Rayleigh number.

The initial temperature conditions are described case by case in the results sec-
tion B.4. The model domain has different mesh resolution depending of the problem,
and it ranges from 18 to 128 grid points for unit length.

B.4 Results

We performed 323 simulations in 2D Cartesian coordinate (the full simulation list is
presented in the supplementary material) to systematically investigate the convec-
tion style, the thermal structure and heat transfer efficiency in the solid mantle when
it is bounded by one or two solid-liquid phase change boundaries. We investigate
the effect of the phase change (Φ±) and Rayleigh (Ra) numbers, which allows us
to have an overview of possible convection patterns during magma ocean crystalli-
sation. In this first exploration, we do not consider the effects of many ingredients
that are commonly thought to play a role in mantle convection: spherical geometry,
volumetric heating, compositional variations, temperature- and depth- variation of
physical properties. We make this choice in order to restrict this first study to a
tractable set of independent parameters and compare the results to the well studied
situation of Rayleigh-Bénard convection.
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B.4.1 Convection with a magma ocean above and below
Let us first consider the situation where both the top and bottom boundaries are
the seat of a phase change between the convecting solid and the magma oceans.
This situation may have happened if the solid mantle crystallized from the middle,
up- and downward (Boukaré, Ricard, et al. 2015; Labrosse, Hernlund, and Coltice
2007; Thomas, Liu, et al. 2012). For simplicity, we consider only the situations with
an equal value of the phase change parameter at the top and bottom boundaries,
which we call simply Φ for both sides.

Non-deforming translation mode

Labrosse, Morison, et al. (2018) showed that a steady-state translation mode of con-
vection can exist when both top and bottom boundaries are phase change interfaces.
In that mode, a uniform purely vertical upward or downward flow in the solid is
maintained by the buoyancy associated with a nearly uniform temperature, equal
to that of the boundary at which the flow enters. This analytical solution is a good
test of the numerical method.

To investigate the ability to develop a translation mode, we have performed
numerical simulations, in a rectangular domain with aspect ratio A = 4, with a
finite small phase-change number Φ = 0.01 for both top and bottom sides. The
choice of these parameters is justified by the fact that, for such a low value of Φ, the
critical Rayleigh number for the onset of the translation mode is Ract = 24Φ = 0.24
and this mode is favored over a deforming mode if the aspect ratio of the domain is
smaller than the critical wavelength of the deforming mode, which is approximately
115 (ibid.). The reduced Rayleigh number εt = (Ra−Ract)/Ract investigated ranges
from 0.01 to 100 (Table S1, supplementary material). The numerical results show
that steady state vertical translation occurs in the solid. The dimensionless vertical
velocity (w) increases with the Rayleigh number in a way that was predicted by the
analytical solution for a steady-state translation (ibid.) (Figure B.1a). Figure B.1b
shows the temperature profiles obtained by the numerical simulations compared to
the temperature profile predicted by the analytical solutions. Numerical solutions
nicely reproduce theoretical results, and this validates our numerical method. The
temperature profile obtained at low values of the reduced Rayleigh number (εt <
1) diverges from the conductive profile by an amount proportional to the velocity
(ibid.). At high Rayleigh numbers (high translation velocity), the profile assumes a
form with a constant temperature equal to the temperature at the inflow boundary
(0 for downward flow and 1 for upward flow), whereas on the opposite side the
temperature drops (or rises) to the boundary temperature in a thermal boundary
layer of thickness δ ∼ 1/w (ibid.). Contrary to classical Rayleigh-Bénard convection
where the flow is driven by horizontal density contrast, in the translation mode,
the uniform topography of each boundary, h = τφw, is maintained by the buoyancy
associated with difference between the nearly uniform temperature and conductive
profile that decreases linearly with height. Moreover, in the translation mode at high
Rayleigh number, heat is mainly advected by the translation, and the difference
between the top and bottom conductive heat fluxes is equal to the advective heat
flux (ibid.). This implies that, at high Rayleigh numbers (εt � 1), the heat flux
scales linearly with the Rayleigh number, on the contrary to classical Rayleigh-
Bénard convection where the heat flux scales as Ra

1
3 .
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Figure B.1: Non-deforming translation mode. (a) Translation velocity (w) plotted
against the reduced Rayleigh numbers (εt), compared to the theoretical predictions
(Labrosse, Morison, et al. 2018). The blue symbols are the numerical simulations,
and the white crosses indicate the simulations in (b). Solid, and dashed lines are the
theoretical results. (b) Temperature profiles for relatively slow and fast velocities,
both upward and downward compared with the theoretical profiles.

Non-translating mode

The simulations to study the non-translating modes of convection are performed in
a model domain with aspect ratio equal to the critical wavelength, Ac = 2π/kc,
with kc the wavenumber for which the critical Rayleigh number is minimum. Ac

increases with the decrease of the phase-change number Φ as
√
128π/9Φ for small Φ

and tends to the classical 2
√
2 at large Φ (ibid.). For this study we have investigated

5 values of Φ, ranging from 10−1 to 103, and the aspect ratio ranges from ∼ 36
to ∼ 2.8, respectively. Wider and narrower aspect ratios of respectively 1.5 and
0.5 times Ac have been used, too. We performed numerical simulations with the
supercritical Rayleigh number Rasc = Ra

RacNt
ranging from 100.25 to 103 (Table S2,

supplementary material). The critical Rayleigh number (RacNt) refers to the critical
Rayleigh number for the non-translating mode and must not be confused with the
one for the translation mode (Ract = 12(Φ+ + Φ−)). In this study we use the
subscript “Nt” to indicate the non-translating mode, and “t” the translation one.
For low values of Φ, RacNt ' Ract − 0.3Φ2, whereas for high values of Φ, RacNt

increases up to reach the critical value for a classical Rayleigh-Bénard convection
27π4

4
(ibid.). The limit between low and high Φ regimes can be assumed to occur

where 24Φ = 27π4

4
, i.e. at Φ = 27.39.

The temperature initial condition is:

T (x, z) = 1− z + 0.05 sin (πz) cos (kcx) (B.14)

which represents a conductive profile with a cosine perturbation of wavenumber kc,
maximum at the center (z = 0.5) and zero at the horizontal boundaries.

Figure B.2 gives an overview of the convective flow obtained by the numerical
simulations for three values of Rasc and three values of Φ. At Φ = 0.1, convection
is mostly characterized by alternating vertical up- and downward flow, whereas
at higher Φ the flow is similar to the situation with classical free-slip boundary
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Figure B.2: Convection modes with two solid-liquid change boundaries. Snapshots
of temperature (colour) and velocity (arrows) for different cases investigated. The
value of Φ increases from left to right, and the value of Rasc from the bottom to the
top, as indicated by the axes. Note that the horizontal scale depends on the value
of Φ.

conditions. For intermediate cases, like for Φ = 10, the flow is still able to pass
throughout the phase changes, but it presents a substantial horizontal component
compared to the lowest phase change number cases. At high values of Φ, for example
Φ = 1000, the flow across the phase-change boundaries appears completely limited
and the solution resembles the classical one for Rayleigh-Bénard convection with
free-slip boundary conditions. This behavior agrees with the prediction of the weakly
non-linear analysis (Labrosse, Morison, et al. 2018).

Figure B.2 shows well the effect of Φ and Rasc on the thermal structure of
the solution. For Φ = 103, we observe the classical behaviour of Rayleigh-Bénard
convection with the thickness of boundary layers and the associated up- and down-
welling currents that decreases with Rasc. Conversely, the regions between up- and
down-welling currents where the temperature is approximately uniform and close to
0.5, hereafter the isothermal cores, become thicker as Rasc increases. A markedly
different behaviour is observed for low values of Φ (Φ ≤ 0.1 on the figure B.2) for
which the thickness of vertical currents does not relate to the thickness of bound-
ary layers. In addition, the boundary between the isothermal cores and the vertical
currents sharpens with the increase of the Rayleigh number, and the temperature
becomes more uniform in each region. To describe the thermal structure of the con-
vective system more quantitatively, we compute the width of the isothermal core.
To define the limits of the isothermal core we use the horizontal profile of the verti-
cally averaged temperature and the limits are defined where the temperature is the
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Figure B.3: Thermal structure of convection with two phase change boundaries.
(a) Normalized width of the isothermal core between up- and down-welling cur-
rents as function of εNt (see text for details). The dash-dotted and dotted black
lines represent the width obtained by the numerical results for a classical free-slip
Rayleigh-Bénard problem (Φ± = ∞), and at the critical Rayleigh number. The
red dash-dotted line is the predicted scaling for non-penetrating boundary condi-
tion. (b) Temperature as function of height in the up- and down-welling currents
for cases at Φ = 0.1 and Φ = 100 for the Rasc as indicated in the legend. The dots
represent the numerical solutions obtained from StagYY, whereas the solid lines are
the profiles predicted by the theory for the pure translation solution for the same
values of the Rayleigh number.

half between the mid-value and the extrema (e.g. Grigné et al. 2005). The isother-
mal core size normalized by the domain width is plotted against εNt = RaNt − 1 on
Figure B.3a. For high values of Φ (Φ > 100) the width of the isothermal core in-
creases with the Rayleigh number. This is the typical behaviour of classical (closed
boundaries) Rayleigh-Bénard convection in which plume width decreases with the
Rayleigh number value, like the thickness of boundary layers from which they orig-
inate, as Ra− 1

3 . We show in Figure B.3a, for comparison, the relationship between
the isothermal core width and the Rayleigh number for the classical Rayleigh-Bénard
cases, as:

WIsoCore

A
= 0.5− 2.87Ra− 1

3 (B.15)

with A = 2π/kc the aspect ratio of computational domain. Eq. B.15 is obtained
by WIsoCore + Nu−1 1+

√
2√

2
= 0.5A, with 1+

√
2√

2
the correction due to the plume lateral

heat diffusion, and assuming the classical scaling law for the dimensionless heat flux
(Nusselt number, Nu) as function of the Rayleigh number, valid for closed boundary
conditions (Figure B.5a). The width of the isothermal core also increases with Ra at
intermediate phase change number (Φ = 10) but, in that case, it saturates at a value
smaller than 0.5, the maximum value that can be reached for infinitely thin plumes.
On the other hand, it decreases for the smaller values of Φ, leading to wider up- and
down-welling currents.

For the non-translating mode solutions obtained with Φ in the low range, Φ <
27.39, the maximum and minimum temperature profile respectively of the cold and
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hot current perfectly match the profile predicted by theory for the translation mode
(Figure B.3b), which therefore provides a good prediction of the solution for small Φ.
The similarity between the translation and non-translation velocity at lower Φ can
be explained by the low value of the phase change number, which promotes mainly
vertical flow at the expenses of the horizontal one. The numerical simulations also
highlight that the non-translating mode is favored over pure translation, and prove
what the linear stability analysis has suggested. Indeed the pure translation solution
is unstable with respect to non translating mode, because RacNt is always smaller
than Ract (Labrosse, Morison, et al. 2018). The similarity with the translation
solution disappears when Φ increases, with the transition that occurs for a value of
Φ somewhere between 1 and 10. For large values of Φ, the vertical flow velocity is
lower than the one predicted for the translation velocity. This agrees with colder
and hotter profiles respectively for the up- and down- welling current compared to
the profile predicted by the translation theory (Figure B.3b). This can be explained
by the fact that the difference between Ract and RacNt increases as ∼ 0.3Φ2 when
Φ increases, which tends to favor the non-translating mode.

The existence of two types of solutions for the same set of parameters, one as
a uniform translation and one with deformation, raises the question of their rela-
tive stability and the one that would be most likely chosen in natural situations.
Labrosse, Morison, et al. (ibid.) showed that slightly above the critical Rayleigh
number for the translation mode, there is a region in the (k,Ra) space where the
steady translation is unstable with respect to a deforming mode. The region shrinks
with the decrease of Φ, meaning that the translation solution becomes more stable.
In other words, for any value of Φ, there is a value of the Rayleigh number above
which the translation solution is stable. On the other hand, the stability of the
deforming mode of convection with respect to the translation one was not studied
but the increasing stability of the translation solution when increasing the Rayleigh
number suggests that the deforming mode of convection could also become unstable
with respect to translation. Without exploring systematically this question, we per-
formed calculations in the same range of parameters as presented above, Rayleigh
numbers, Φ and aspect ratio A, but starting from an initial temperature condition
characterized by a conductive profile with a random thermal anomaly with ampli-
tude of 0.05 (Table S3, supplementary material). Starting with a random initial
perturbation is closer to natural situations and is known to lead to different stable
solutions, or to planforms with defects, in Rayleigh-Bénard convection. Figure B.4
shows snapshots of representative cases that we computed. We obtained solutions
with a wavelength that differ from the one predicted by linear stability, or with up-
and downwelling blocks of different width, like the case of Rasc = 100 and Φ = 0.1.
We also get a translation solution in some cases, when the Rayleigh number is large
enough, like for Rasc = 100 and Φ = 1000. Note that, for the models presented with
Φ = 0.1 in figure B.4, despite running for a total dimensionless duration of ∆t = 8.5
for Ra = 10 and for ∆t = 0.05 for Ra = 100, the system has not yet reached steady
state and may still evolve toward a translation solution. In particular, the case for
Φ = 0.1 and Rasc = 100 shows a clear asymmetry between up- and down-welling
currents, the up-welling regions gaining with time. We expect it to ultimately run
in an upward translation mode.

The heat transfer efficiency of the non-translating mode of convection is studied
by computing the dimensionless heat flux and the RMS velocity (Vrms), for all
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Figure B.4: Convection patterns with two solid-liquid change boundaries, obtained
with a random initial perturbation. Snapshots of temperature (colour) and velocity
(arrows) for different cases investigated. The phase change parameter Φ increases
from left to right, and the super-critical Rayleigh number Rasc from the bottom to
the top, as indicated on the axes.

parameter sets investigated, but ignoring the simulations that show pure translation
that have been discussed above and are already well explained by the analytical
theory of Labrosse, Morison, et al. (ibid.). In Figure B.5 we show Nu and Vrms

plotted against the Rayleigh number, for different values of Φ. The case with classical
boundary conditions as well as the exact solution for the translation velocity and
the Nusselt number predicted by weakly non-linear analysis (ibid.) are plotted for
reference, too. As expected, for Φ = 1000, the solution roughly follows the scaling
for classical Rayleigh-Bénard convection. On the other hand, for smaller values
of Φ, both Vrms and Nu increase more steeply with Ra than for non-penetrating
boundary conditions. For Φ ≤ 1, the numerical solutions are found to closely match
the prediction of the weakly non-linear analysis, for the whole range of parameters
investigated, and in particular Nusselt number values in excess of 103. This is
somewhat unexpected since this first order development is only supposed to be valid
very close to the onset of convection. This is another expression of the simplicity
of the solution which exhibits alternative up- and down-ward translation regions,
each very similar to the pure translation solution for which the velocity and Nusselt
numbers increase linearly with Ra at large values of Ra. Indeed, for each set of
solution with the same value of Φ we fit the relation Nu = Nu0Raα, and Vrms =
V0Raβ, and the resulting scaling law are shown in the plot legends. In the Rayleigh
number range investigated, the exponent α of 0.36 and β of 0.66 for the case Φ =
1000 are similar to the exponents for a classical Rayleigh-Bénard convection (e.g.
Jaupart and Mareschal 2011). As Φ decreases, both exponents tend to 1, showing
the linear relationship of heat flux and velocity with the Rayleigh number, already
proved for the pure translation solution (Labrosse, Morison, et al. 2018). Moreover,
for cases at low phase change number (Φ ≤ 10) the coefficient of proportionality Nu0,
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Figure B.5: Heat transfer efficiency by solid-state mantle convection bounded by
two magma oceans. (a) Nusselt number and (b) RMS velocity against the Rayleigh
number for different values of the phase change number, as labeled. Coloured solid
symbols represent results of all cases investigated. The dotted lines represent the
predictions by Labrosse, Morison, et al. (2018), using the weakly non-linear analysis
for the heat flux and the exact solution of the translation mode for the velocity ,
whereas the gray dashed and the coloured solid lines represent the fit for each value
of the phase number studied as indicated in the legend for each figures.

and V0, both scale as Φ−1, as shown for the translation mode (Labrosse, Morison,
et al. 2018). The heat flux and velocity obtained by the weakly non-linear analysis
represent well the results from direct numerical simulations for very small value of
Φ (Φ ≤ 1). On the other hand, for 10 ≤ Φ ≤ 100, the heat flux and RMS velocity
from numerical solutions diverge at higher Rayleigh number values from analytical
predictions, which is the usual behaviour for Rayleigh-Bénard convection.

B.4.2 Convection with a magma ocean above or below
The situation with only one boundary having a phase change is encountered in
several cases. The case with a liquid ocean below the solid layer is relevant to
the surface ice-shell of some icy satellites of Jupiter and Saturn (e.g. Baland et
al. 2014; Čadek et al. 2016; Grasset et al. 2000; Khurana et al. 1998; Pappalardo
et al. 1998; Tobie, Choblet, et al. 2003) and possibly for the early Earth with a
basal magma ocean (Labrosse, Hernlund, and Coltice 2007). The case with a liquid
on top of the solid may be currently relevant for high pressure ice layers below a
buried ocean in the largest icy satellites (e.g. Grasset et al. 2000; Tobie, Lunine,
et al. 2006) and for an upwardly crystallizing magma ocean in young terrestrial
planets (Solomatov 2015). In the Cartesian geometry investigated in this paper,
both situations are symmetrical to one another and we only study one of them, with
a magma ocean below. This is done considering a finite value for the phase change
number only at the bottom boundary (Φ−), while for the top one we consider Φ+ to
be infinite, in order to impose the classical non-penetrative free-slip condition. We
perform the calculations using a model domain with aspect ratio equal to the critical
wavelength, Ac = 2π/kc, and imposing the same initial temperature condition as
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above (eq. B.14).
Before discussing all the results with only the phase change at the bottom, let

us consider one case to discuss and to prove the symmetry between the situations
with a magma ocean above and below. Figure B.6 shows the final snapshots of two
runs with the same parameters except for the boundary conditions, one having
the Φ− = ∞ and Φ+ = 0.1 and the other Φ− = 0.1 and Φ+ = ∞. Both cases
were run in a box of aspect ratio 4.978 corresponding to the wavelength of the
most unstable mode at the onset of convection. After a time of about 0.05 during
which convection proceeded with this initial wavelength, a transition occurred to
a solution with a wavelength that is half the width of the computation domain,
before resuming to a solution having the original wavelength, as displayed on the
figure B.6a. As convection proceeds, the system alternates between solutions with
one or two plumes. The two situations appear clearly symmetrical from one another:
in the case of melting at the top, the flow is characterised by hot plumes with
a cold diffuse return flow, whereas when the phase change is at the bottom, the
flow is dominated by cold down-welling plumes and a diffuse hot return flow. The
temperature in the return flow is equal to that of the boundary from which it
originates with a boundary layer to match the opposite temperature (figure B.6b).
The thickness of that boundary layer controls the heat flow in that situation and its
scaling is the subject of this subsection.

For our systematic study in the case of phase change condition only at the bot-
tom, we investigated 5 values of Φ−, ranging from 0.1 to 1000, with a correspond-
ing aspect ratio between 5 and 2.8, respectively. The range of supercritical Rayleigh
number (Rasc) is from 100.025 to 103.25 (Table S4, supplementary material), the lower
Rayleigh number cases allowing us a detailed comparison to the predictions of the
weakly non-linear stability analysis (Labrosse, Morison, et al. 2018). For the compu-
tations at relatively high Rayleigh number (Rasc ≥ 102.75) and Φ ≤ 10, we applied
at the bottom the Robin temperature boundary condition (eq. B.12), assuming a
threshold velocity w0 based on the RMS velocity for a case without phase change at
similar Rasc, w0 = 0.5Vrms. The numerical solutions for nine cases for Φ− of 0.1, 10
and 1000 and for Rasc of 100.25, 10, 103 are shown in Figure B.7. The temperature
and velocity field show that at high phase-change number (Φ− = 1000), the solu-
tion does not differ from a classical case of non penetrating boundaries, and as Ra
increases, the width of the isothermal core increases, which is the same behaviour
we observed with phase change at both boundaries (Figure B.2, and Figure B.3a).
At lower Φ−, a stationary cold plume, that becomes thinner as the Rayleigh num-
ber increases, characterizes the convective structure, and depending on the phase
change number, at high Rayleigh number, a second cold plume can form, as shown
in Figure B.7 for Φ− = 0.1 and Rasc = 100. The formation of a secondary plume
occurs at Rasc ≥ 100.5 for Φ− ≤ 1 and at Rasc ≥ 101.75 for Φ− = 1, and the convec-
tion shows periodic alternation of one and two cold plumes. In general, the gradual
increase of the Rayleigh number and/or decrease of the phase change number leads
to a strong increase of the mean temperature and a consequent progressive reduc-
tion of the thickness of the top thermal boundary layer, the formation of thin and
strong cold-plumes, and the disappearance of the hot thermal boundary layer at the
bottom. This pattern of convection is similar to that obtained for internally heated
convection (e.g. Houseman 1988; E. M. Parmentier, Sotin, and Travis 1994; Sotin
and Labrosse 1999), even though no volume heating is included in the present cal-
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Figure B.6: Solution for convection bounded by a liquid above or below. (a) Snap-
shots show the temperature field in colour and the streamlines at the end of the run
(t = 0.18), with a phase change boundary condition above (top) or below (bottom),
(b) The vertical profiles of minimum, mean and maximum temperature. The dashed
and solid lines represent the profiles for the case with a magma ocean above and
below, respectively. The Rayleigh number is Ra = 104. We used the horizontal peri-
odicity of the solution to avoid the plume in the upper panel to be on the boundary,
which it originally was.
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Figure B.7: Convection patterns obtained with a phase change only at the bottom
boundary. Snapshots of temperature (colour) and velocity (arrows) for different case
investigated. Φ− increases from left to right, and Rasc from the bottom to the top,
as indicated by the axes. Note that the horizontal scale depends on the value of Φ−.

culations.
Let us now study how the Nusselt number (Nu) and the average temperature

(〈T 〉) vary at low Rayleigh numbers (Rasc ≤ 100.25). Figure B.8 shows Nu and 〈T 〉
plotted against the Rayleigh number, for different values of Φ−, together with the
prediction of the weakly non-linear analysis (Labrosse, Morison, et al. 2018). The
weakly non-linear analysis is found to provide good predictions only close to the
critical Rayleigh number, as expected, the range of validity being somewhat larger
for the average temperature than for the Nusselt number. For large values of Φ−,
the average temperature is close to 0.5, like for classical Rayleigh-Bénard convection,
while at low Φ− it increases more steeply as the Rayleigh number increases. The
fact that the average temperature is larger than 0.5 is again similar to the situation
encountered for internally heated convection.

The Nusselt number (Nu), the RMS velocity (Vrms) and the average tempera-
ture (〈T 〉) at higher Rayleigh numbers are plotted on figure B.9. The Nu and Vrms

variations are bounded between the low value of the classical Rayleigh-Bénard con-
vection with non-penetrative conditions and the high value for low phase change
number (Φ− = 0.1). The scaling law for the Nusselt Number, RMS velocity and
temperature are, for Φ− = 0.1:

Nu = 0.37Ra0.33, (B.16)

Vrms = 0.2Ra0.66, (B.17)
〈T 〉 = 1.0− 2.64Ra−0.33. (B.18)
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Figure B.8: Heat flux and average temperature for a Rayleigh number close to
the critical value for convection bounded by only one phase change boundary. (a)
Nusselt number and (b) average temperature against the Rayleigh number. The
lines represent the predictions of the weakly nonlinear analysis.

We obtained the same scaling laws for Nu and 〈T 〉 as that obtained by Ricard,
Labrosse, et al. (2014) for mantle convection subject to fast erosion or magmatism
at its surface. This indicates that different physical processes can lead to a similar
physics. Moreover, as shown on figure B.9, the pre-factors in the scaling laws for the
Nusselt number and the RMS velocity (equations B.16 and B.17) are about twice
their counterpart for the case with non-penetrating boundary conditions, indicating
a much larger heat and mass transfer when a phase change is permitted at the
boundary. As suggested by Labrosse, Morison, et al. (2018), because there is not
limit to vertical flow at the bottom, the Rayleigh number is equivalent to four times
the Rayleigh number of the classical not-permeable case. The ratio between the pre-
factors is similar to what would be expected from this simple heuristic. Results
for Φ− ≥ 10 are close to that for non-penetrative boundary conditions, at least
at low values of the Rayleigh number. Increasing its value makes the heat flow at
the bottom increase which makes the mean temperature increase further eventually
leading to a transition to a fully open bottom boundary. This transition appears to
take place at 104 < Ra < 105 for Φ− = 10, and likely at higher Ra for Φ− ≥ 100.
We suspect that, for large enough Rayleigh numbers, all scaling laws collapse to the
one obtained in the small Φ− limit, the results obtained here for intermediate values
of Φ− (Φ− = 10, 100) being transitional.
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B.5 Discussion

In this study we have investigated the dynamics of a solid mantle bounded between
two magma oceans or in contact with one at the bottom. The mantle is modeled as
a two-dimensional layer of infinite Prandtl number fluid and the solid-liquid phase
change at either or both boundaries is taken into account by imposing a boundary
condition allowing a flow through the boundary. This boundary condition is con-
trolled by a phase change parameter, Φ, which allows the system to go from easy
flow-through at low Φ values to classical non-penetration at large Φ.

In many ways, the setup we used is too simplistic to be directly applied to
planetary mantles but the effects of the phase change boundary condition are so
drastic that is calls for a systematic study on these effects on the simplest situation
before including some of the complexities of mantle convection. Let us discuss
here a few of these complexities, that may be required to include in future models,
depending on the planetary object of applications, the Earth or icy satellites.

The first obvious limitation concerns the chosen geometry, cartesian instead of
a spherical shell. Running models in a spherical shell is possible using StagYY
(Tackley 2008) but it is quite costly in three dimensions. Using the spherical an-
nulus geometry (Hernlund and Tackley 2008) is readily possible and is the target
of a future study. Compared to the situation investigated in the present paper in
which the horizontal scale of the flow can tend to infinity when the phase change
numbers of both boundaries are decreased, up to the uniform translation mode, the
spherical shell geometry imposes a maximum wavelength that corresponds to the
spherical harmonics degree 1. This mode is indeed found to be preferred when both
boundaries have a low value of Φ (Deguen 2013; Morison et al. 2019), which corre-
sponds to a spherical translation mode. Opposite to the situation of the translation
mode in cartesian velocity, a translation in spherical geometry is characterised by a
zero horizontal average of the vertical velocity. Even if this mode of convection is
predicted by the linear stability analysis, its form at finite amplitude remains to be
studied.

In the case with only a basal magma ocean, the dynamics is controlled by the top
boundary layer, as in internally heated convection, and we expect a similar behaviour
in spherical shell geometry. The main difference between the two geometries is that
the situations with a magma ocean on top is not strictly symmetrical to the one
with a magma ocean below in spherical geometry, although the behaviours of each
situation can be qualitatively predicted from the other.

Pursuing with geometrical effects, the dynamics that is modeled here should also
be accompanied with the net motion of the boundaries as the magma oceans freeze
or, possibly, the solid mantle remelts. The importance of this aspect depends on the
velocity of the boundary motion relative to the flow velocity in the solid. During the
crystallisation of a top magma ocean, both velocities may be comparable and the net
freezing has been included in the study of Morison et al. (2019) about the onset of
convection. In the case of a basal magma ocean only, the net motion of the interface
is expected to be slow and separation of time-scales should apply. Nevertheless,
the net motion of the interfaces is important, particularly when dealing with the
long term evolution of the mantle. This is also associated with the evolution of the
composition of magma oceans and the solid that crystallises from it. These effects
have been included in the numerical model and are the subject of our current studies.
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Another simplification of the present model is that we consider all physical prop-
erties uniform whereas most vary with pressure and temperature in planetary man-
tles. Among these, the most important one is undoubtedly the viscosity. In the
case of a magma ocean above and below, the whole solid is close to the melting
temperature and we do not expect its variations to affect the solutions too much, in
particular since the solutions in that case have a very large wavelength with little
deformation. The situation with only a basal magma ocean is quite different since
the surface boundary is the one at the lowest temperature and therefore the highest
viscosity but is also the one which provides the buoyancy source for the flow. Taking
into account the temperature-dependence of the viscosity, we expect to obtain the
same regimes as with classical boundary conditions: the small viscosity contrasts
regime, the transitional regime and the stagnant-lid regime (Moresi and Solomatov
1995). The regime boundaries should however be displaced compared to the clas-
sical case, as is the value of the Rayleigh number for the onset of convection. The
significance of this effect remains to be investigated.

By far, the most important limitation of the present results comes from neglect-
ing variations of composition and their effect on the melting temperature and the
implied two-phase flow dynamics. First of all, as we assume incompressibility in the
framework of the Boussinesq approximation, temperature gradients should in fact
be interpreted as super-isentropic temperature gradients, or gradient of the poten-
tial temperature. In this context, a curved liquidus as obtained by (Fiquet et al.
2010) that allows crystallisation to start in the mid-mantle (Boukaré, Ricard, et al.
2015; Mosenfelder, Asimow, Frost, et al. 2009), could in fact lead to a decrease of
melting temperature with depth in the deep mantle. Considering first the situation
where crystallisation indeed starts in the mid-mantle, the upward crystallisation
proceeds much faster than the downward one, owing to the rapid heat transfer to
the atmosphere, and we expect a temperature profile in the solid following the liq-
uidus (Morison et al. 2019). As soon as the convective instability sets in, the matter
at the bottom of the solid layer, which is at the highest temperature, should remelt
on its way up. Treating properly this problem requires including two-phase flow dy-
namics, as done by Boukaré and Ricard (2017), and goes beyond the current paper.
We expect however that taking into account remelting of hot solid as it moves up
should enhance heat transfer even more than what is obtained in the present results,
which should then be considered as conservative.

The situation with only a basal magma ocean (BMO) is less problematic. The
existence of a BMO requires the isentropic gradient to be steeper than the melting
temperature gradient. This has been proposed for the magma (Boukaré, Ricard,
et al. 2015; Mosenfelder, Asimow, Frost, et al. 2009) and it is also possible for the
solid. Of course, we expect that an up-welling current getting close to the upper
boundary may eventually cross the solidus, leading to partial melting and volcanism
as it is happening in the current mantle. This process is likely to be more pervasive
with a basal magma ocean since the whole mantle, except for focused down-welling
currents, is then predicted to have a potential temperature similar to that of the
lower boundary. Some effort has been conducted in the recent years to account for
volcanism and plutonism in large scale mantle convection models (e.g. Agrusta et al.
2015; Lourenço et al. 2018) and we expect that similar processes can coexist with a
basal magma ocean. Again, the present result not taking these effects into account
should be considered as conservative in terms of heat flow.
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The model presented in this paper neglect the effects of variations of composi-
tion even though Labrosse, Hernlund, and Coltice (2007) proposed that fractional
crystallisation at the base of the mantle could lead to formation of dense piles at the
bottom of the mantle. This behaviour is in fact expected to develop late in the his-
tory of the mantle, when enough of the BMO has already crystallised. The present
results should apply early in the history, when the variations of composition are too
small to significantly affect mantle dynamics. They may also apply to the ice layers
of icy satellites in which very little salt is expected to enter.

Having laid down the most important limitations that we can identify, we can
still use the scaling laws obtained for the Nusselt number as function of the Rayleigh
number to evaluate the heat flux and to quantify the impact that a permeable solid-
liquid change boundary might have had on the thermal evolution of both bottom
magma ocean and core, and on the surface magma ocean. Combining the definition
of Nusselt number, Rayleigh number, and their scaling relationship Nu = γRaβ, the
heat flux Q can be evaluated by the following equation:

Q = γ

(
αgρs
κη

)β

kHs
3β−1(Tbottom − Ttop)

β+1, (B.19)

with k = ρsCpκ the thermal conductivity, γ and β the fitting coefficients and that
depend on the phase change number Φ and the problem considered. Their values
are given in the Figure B.5a for the case with 2 magma oceans and in the eq. B.16
for the case of a solid in contact with only one magma ocean. Tbottom and Ttop

are the bottom and top potential temperature, respectively. Obviously, the super-
isentropic temperature difference depends on the thickness of the solid mantle and
we follow a very simple scenario similar to that of Morison et al. (2019), assuming
that the top and bottom boundaries are at the liquidus temperature. We assume
that crystallisation starts at a depth of 2500 km, first upward with both magma
oceans then downwards with only a basal magma ocean. For any thickness of the
crystallised mantle we can compute the predicted heat flow from equation (B.19)
for different values of the Φ parameters. Although simplistic, this scenario allows
us to compare a conservative estimate of heat transfer by solid-state convection in
the early mantle to that at present and draw some implications.

For simplicity, we consider all physical parameters constant and in particular the
liquidus temperature gradient, ∂rTL ' −0.93Kkm−1 (Andrault, Bolfan-Casanova,
Nigro, et al. 2011), the isentropic temperature gradient, ∂rTL ' −0.17Kkm−1 (Kat-
sura et al. 2004), which allow us to relate the super-isentropic difference to the
thickness of the layer as ∆T ≡ Tbottom − Ttop = 0.76H with H in km and ∆T in
K. For the other parameters, we use g = 9.8ms−2, α = 210−5K−1, κ = 10−6m2s−1,
ρs = 4103kgm−3, Cp = 103Jkg−1K−1 and, for the viscosity, either η = 1018Pas,
possibly representative of the situation where the solid is close to the solidus, or
η = 1022Pas, similar to the present-time mantle viscosity.

Figure B.10 shows the results of this simple calculation. The choice of param-
eters makes the heat flux density for a completely solid mantle, using the classical
boundary conditions and the large viscosity, q = 98mWm−2, similar to the present
day value, q = 90mWm−2 (Jaupart, Labrosse, et al. 2015), represented as a red dot
on the figure. Decreasing the viscosity obviously leads to a larger heat flux. Hav-
ing a basal magma ocean makes the heat flux 76% larger, with γ = 0.37 instead of
γ = 0.21 as pre-factor in the scaling relation (B.19). The most spectacular result is
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Figure B.10: Heat flux density predicted as a function of the thickness of crystallised
mantle. For a thickness lower than 2500 km, we assume the existence of magma
oceans above and below. For a thicker solid mantle, we assume only a basal magma
ocean. The orange curves are computed using the scaling law obtained for Φ = 0.1,
the blue ones are computed with the scaling law obtained without the effect of the
phase change boundary condition. Solid and dashed curves are for different values
of the solid mantle viscosity, as labeled. The red dot represents the present day
value of the mean surface heat flux.
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obtained with magma oceans above and below. As a comparison, a magma ocean
with a surface temperature of Ts = 3000K not surrounded by an atmosphere radi-
ates q = 4.6MWm−2 into free space. This value is obtained for a convecting solid
mantle of 1200km thickness. Including an early atmosphere on top of the magma
ocean makes its surface heat flow decrease significantly (e.g. Hamano et al. 2013;
Lebrun et al. 2013; Salvador et al. 2017) so that the value just quoted is in fact a
maximum achievable surface heat flux. On the other hand, the value Φ = 0.1 used
to compute the results shown on figure B.10 is likely to be overestimated, possibly
by orders of magnitude. It appears therefore that if both magma oceans existed at
some point in the early times, convection in the solid mantle is not a limiting fac-
tor for the cooling of the deep Earth. The reason for the ease of heat transport in
that case lies in the peculiar mode of convection that develops with no or very little
deformation, the viscosity playing therefore no role in the process.

B.6 Conclusions
In this study we have investigated the dynamics of a solid mantle bounded between
two magma oceans or in contact with one at the bottom, with a semi-permeable
phase-change at the solid-liquid boundary(ies). We explored systematically the pa-
rameter space to compare with and extend the results of the weakly non-linear anal-
ysis of Labrosse, Morison, et al. (2018). For the case when the solid is bounded above
and below by magma oceans, we recover the two modes of convection predicted by
Labrosse, Morison, et al. (ibid.): a steady-state up- or down-ward non-deforming
translation and a deforming mode. Extending the previous results from Labrosse,
Morison, et al. (ibid.) to high values of the Rayleigh number shows that the solution
at small values of Φ takes the form of alternating up- and down-ward translating
blocks separated by thin deformation bands (isothermal core width ∼ 1). The two
vertically moving blocks have a vertical velocity and a thermal structure that closely
resemble the exact analytical solution for the pure translation mode (ibid.). Both
convection modes are characterised by a very efficient heat transfer, in which the
Nusselt number scales linearly with the Rayleigh number, whereas in the classical
situation of Rayleigh-Bénard convection with non-penetrating boundary conditions,
it scales as Ra1/3. Consequently, we find that the predictions from the weakly non-
linear analysis predict very well the behavior of the solution for the whole range of
calculations performed in this study, with a Nusselt number as high as 3 103.

The situation with a magma ocean above and below the solid mantle may have
occurred early in the history of Earth-or-larger-sized rocky Planets (Boukaré, Ri-
card, et al. 2015; Labrosse, Hernlund, and Coltice 2007; Thomas, Liu, et al. 2012).
Assuming efficient mixing of the magma ocean, we expect the value of Φ to be less
than 0.01. Applying the present results to that situation suggests that heat and
mass transfer would rapidly grow to values that are orders of magnitude larger than
any rate encountered in the solid mantle after full crystallisation of magma oceans,
of the same order or even larger than the black body heat flow at the surface of a
bare magma ocean. This would promote a heat flow from the deep interior to the
surface magma ocean so large that the basal magma ocean and the core would cool
faster than previously thought, fast enough to drive an early dynamo.

A magma ocean that simply cools by radiating heat into space would solidify
completely in a few thousand years (Monteux et al. 2016). Considering the effect
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of a dense atmosphere can elongate this period to about 10 Myr at Earth position
(e.g. Abe 1997; Hamano et al. 2013; Lebrun et al. 2013; Salvador et al. 2017).
Longer timescales can be reached for planets closer to their star (e.g. Hamano et al.
2013; Salvador et al. 2017). It is however difficult to explain with these models
the apparent longevity of the Martian magma ocean (Debaille et al. 2007). Our
result suggest that the possibility of phase change between the crystallising mantle
and the magma ocean allows for a very efficient heat transfer by convection in the
solid. This means that the contribution of the heat flow from the deepest part of
the planet to the magma ocean thermal budget may not be as negligible as usually
assumed. If the mantle crystallizes upward from the bottom and is in contact with
only one magma ocean, the heat flux scaling obtained here would suggest a heat flow
a factor of two larger than that obtained for classical non-penetrating conditions, for
the same Rayleigh number. The importance of that heat flow depends then crucially
on the values of poorly constrained parameters such as the viscosity of the solid
mantle. On the other hand, it is quite possible that a basal magma ocean formed
on Mars owing to the density inversion between olivine and silicate melt at about
8 GPa (e.g. Agee and Walker 1988, 1993; Ohtani 1983). In that case, the heat
flow across the solid mantle could be orders of magnitude larger, of the same order
as the radiative surface heat flux, and contribute significantly to keep the surface
magma ocean liquid, as long as the basal magma ocean has not crystallised. This
could help making the magma ocean on Mars last ∼ 100My (Debaille et al. 2007).
Heat is not the only player in this scenario since fractional crystallisation would also
lead to transfer of FeO between the top and basal magma oceans changing their
freezing temperature (Andrault, Bolfan-Casanova, Bouhifd, et al. 2017). A full
model including FeO exchange is therefore necessary to test whether this scenario
could make the surface magma ocean live longer.

Considering now the case of only one magma ocean, the situation applies for
the present time on icy satellites and possibly for a part of the history of the Earth
(Labrosse, Hernlund, and Coltice 2007). We only studied here the situation with
a magma ocean below the solid mantle but the case with a magma ocean above
is its symmetrical in the cartesian geometry considered here (fig. B.6). The re-
sults presented above show that the form of convection and the thermal structure
are dramatically modified and heat and mass transfer are greatly enhanced when
phase melting and freezing occurs at one boundary, even though these effects are
not as drastic as in the case of two phase change boundaries. In the case of a
basal magma ocean that has been investigated thoroughly here, the dynamics and
thermal structure bears many similarities with internally heated convection, with
narrow cold plumes descending from the upper boundary and broad high tempera-
ture return flow elsewhere. Even though volumetric heating is not included in these
calculation, the bottom boundary layer is completely suppressed and no hot plume
can develop. This suggests that the dynamics of the surface ice shells of icy satel-
lites and possibly of the early Earth mantle are entirely dominated by down-welling
currents, leaving no role to hot plumes. In the case of the Earth mantle, the situa-
tion is certainly more complex with fractional crystallisation at the bottom possibly
leading to compositional stratification, a situation that deserves further study.

In terms of heat transfer, we find that the dimensionless heat flux, the Nusselt
number, scales with the Rayleigh number with an exponent equal to 1/3, which is
the same as for classical non-penetrating conditions, but with a pre-factor about 76%
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higher. This means that, for the same Rayleigh number, the thermal evolution
with a basal magma ocean should be about twice faster than without, and this
imply that thermal evolution models, involving a basal magma ocean, should take
that effect into account. The parameterisation of the heat flow at the bottom of the
solid mantle cannot rely on the existence of a boundary layer, as was assumed by
Labrosse, Hernlund, and Coltice (2007), since heat transfer happens by advection
through the boundary. We expect however that, as compositionally dense material
fractionally crystallizing at the bottom starts to accumulate (ibid.), the dynamics
of the bottom of the solid mantle strongly departs from the one shown here.
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