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Introduction

Josephson junctions are widely used in superconducting electronics as sensors[1, 2]
and quantum units of information[3, 4]. They are based on superconducting tunneling
across an insulating barrier which separates two superconductors, a quantum pheno-
mena discovered in the seventies[5, 6, 7, 8]. This tunneling drives a (super)current
free from dissipation across the barrier and a phase difference between the supercon-
ductors. The relation between the supercurrent and the phase is at the heart of all
devices relying on the Josephson effect. In this thesis, we study experimentally Joseph-
son junctions where the insulating barrier is replaced by a semiconducting material.
On the one hand, such hybrid devices attract interest in the development of SQUID
magnetometers capable of detecting the magnetization of single molecules[9]. In that
context, the use of a semiconductor quantum dot as a barrier material is promising
as the device operation depends on the microscopic configuration of the quantum dot.
On the other hand, hybrid semiconductor-superconductor devices have received tre-
mendous attention as possible candidates to host non-abelian excitations which allow
for quantum information processing[10]. Once a practical physical system is found to
realize and manipulate such excitations, quantum computing in this system should
not suffer from coupling to the external environment.

Using a conductor as the weak link between two superconductors allows new re-
search directions, distinct from what is done with Josephson tunnel junctions made
with insulating barriers. This includes the realization of supercurrent transistors as
the carrier density in a semiconductor can be modulated by a field effect[11], the de-
sign of Josephson arrays allowing the investigation of the superconductor-insulator
transition[12, 13]. Also, as the supercurrent does not rely on tunneling, it can flow on
large distances such that multi-terminal Josephson junctions[14, 15], where multiple
superconductors are connected through the same weak link, can be fabricated.

Recently, this field has led to advances in material science which have made possible
to grow both the semiconductor and the superconductor in ultra high vacuum chamber
realizing an epitaxial contact between the two, in situ[16, 17]. This approach overcomes
difficulties, encountered by researchers, of making good and reproducible electrical
contacts between the two materials. It will be of great interest for future developments
in the field.

During these three years we fabricated and studied, through electronic transport
measurements, hybrid devices based on InAs nanowires and Bi2Se3 thin films coupled

v
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vi Introduction

with superconducting aluminum electrodes.
In contrast with previous studies, the InAs nanowires provided by the Nanosciences

and Nanotechnologies Center (C2N) have small diameter of 20 nm and are conducting
at low temperature because they are doped during growth with Si atoms. This allo-
wed us to observe the proximity effect of the superconductor across a metal insulator
transition induced by an electrical field effect. We were not able to measure the Jo-
sephson supercurrent in these devices. However, owing to the large disorder induced
by the dopants, we observed in the same device, different coupling regimes between
the semiconductor and the superconductor, including an intermediate coupling regime
where a quantum dot is formed between the electrodes and can be used to control the
supercurrent.

We also fabricated Josephson junctions and Superconducting Quantum Interfe-
rence Devices (SQUID) with Bi2Se3 thin films. These films are grown by molecular
beam epitaxy at the Nanosciences Institute of Paris (INSP) and capped, in the growth
chamber, by a protecting Se layer which avoids exposition of the film surface to air. We
elaborated a fabrication process where the protecting layer is removed just before the
aluminum deposition, which gives very reproducible results in the device resistances
and the magnitude of the supercurrent measured at low temperature. This allowed
us to study the Josephson effect in great detail in this material and obtain experi-
mental evidence of an effect predicted in 2008[18]. It concerns the coupling between
the Josephson current and a spin polarization induced by a magnetic field, through
the spin-orbit interaction of the semiconductor. This effect produces an "anomalous"
current in the absence of a phase difference between the two superconductors forming
the junction. We find and demonstrate experimentally that this anomalous Josephson
effect modifies the operating frequency of the SQUID where two Josephson junctions
are fabricated in parallel on the semiconducting film.

In the first chapter, we present the theory describing the spin-orbit interaction
in semiconductor as well as the coupling between superconductors and diverse non
superconducting materials. In the second, we detail the lithography techniques used
to fabricate the devices and describe the crystalline structures of InAs and Bi2Se3. The
last two chapters are dedicated to the description of the experiments carried on the
nanowires and on the thin films, respectively. We conclude with some perspectives.
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I – Spin-orbit coupling and
superconductivity in hybrid structures

In this chapter, we describe hybrid devices composed of superconductors coupled
to normal conductors in the presence of spin-orbit interaction.

We will first describe a normal conductor and the role played by quantum confi-
nement in nanostructures. Then, we will introduce the spin-orbit interaction which
couples the electron motion to its spin. This coupling attracts interest as an essential
ingredient for the discovery of new phases of matter. It plays an important role in
hybrid devices where a normal conductor is coupled with a superconductor.

The superconductor will be described in two parts. First, its superconducting
condensate will be characterized by the Ginzburg-Landau theory, which describes the
behaviour of a superconductor in a magnetic field. Then, the elementary excitations of
the superconductor will be described by the microscopic BCS theory. The description
of these excitations is essential to understand the properties of hybrid structures made
of superconductors (S) and normal conductors (N).

Finally, we will describe such hybrid structures. First, the Andreev reflection pro-
cess which allows charges to be transferred across a SN interface. Secondly, the case of
SNS interfaces where Andreev bound states form in the N region. These states carry
the Josephson current in SNS devices. Prior to the description of the results obtained
in this thesis, we will describe theoretical works which predict a direct relation between
the spin-orbit interaction in the semiconducting material and the Josephson effect in
a SNS junction.

I.1 Spin-orbit coupled conductors

I.1.1 Normal conductors
As a result of Landau theory of Fermi liquids, a metal can be described as a gas

of non-interacting quasi-particles. Thus, the total energy of this gas is the sum of the
single particle energies. A quasi-particle is described by a wave function ψk solution of
Schrödinger equation :

1
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2Chapitre I. Spin-orbit coupling and superconductivity in hybrid structures

Hψk = εkψk

where H is the single particle Hamiltonian and reduces to the kinetic operator
H = p2

2m = (−i~∇)2

2m when no potential is present, m is the electron mass. In that case,
the electron wave function is a plane wave of the form ψk ∝ ei

~k~r and its energy is solely
determined by its wave vector ~k in the absence of spin dependent interaction :

εk = ~2~k2

2m
In virtue of Pauli exclusion principle, only two electrons can have the same wave

vector provided that their spins are opposite. Therefore, by adding electrons to a three
dimensional system, one builds a sphere in reciprocal space composed of all electron
wave vectors ~k. The last electron added to the system has an energy defined as the
Fermi energy EF = ~2k2

F
2m where ~kF is the wave vector of the last electron added to the

system.
If an electron is confined in a finite size region, boundary conditions are imposed

on its electronic wave function and results in forbidden values for its wave vector ~k.
For a system of dimensions Lx, Ly and Lz in the three spatial directions, the allowed
wave vector components are :

kx,y,z = 2π
Lx,y,z

nx,y,z

where n is an integer. Therefore, the volume in reciprocal space of two spin dege-
nerate electron states is Vs = (2π)3

LxLyLz
and the number of states in the Fermi sphere

is N = 2VF
Vs

where VF = 4
3πk

3
F is the volume of the Fermi sphere. Thereby, the Fermi

wave vector is linked with the electronic density n = N
LxLyLz

by the relation :

kF = (3π2n)1/3

The density of states in three dimensions is obtained from ρ(E) = 1
V
dN
dE

and reads :

ρ3D(E) =
√

2m3E

π2~3

In a metal such as aluminum, the Fermi energy is so large EF > 10 eV that the
density of states and the carrier density are highly stable with respect to perturbations,
such as the presence of impurities, strain and so on. This is not the case in doped
semiconductors EF ≈ 100 meV where the carrier density is widely tunable with gate
voltages and electronic level distribution can be modulated by quantum confinement.

If the size of the system in a given direction, say z, is such that E(kx = 0, ky =
0, kz = 2π

Lz
) > EF the electron momentum is restricted in a plane and the system

can be considered as two-dimensional. Such systems are realized for example at the
conducting AlGaAs/GaAs interface and in graphene. However, the dispersion relation
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I.1 Spin-orbit coupled conductors 3

εk is different for these two systems. For the AlGaAs/GaAs interface it is parabolic as
given above, while for graphene it is linear in momentum :

εk = ~vF|k|

where vF is the Fermi velocity. This gives two distinct relations for the density of
states :

parabolic : ρ2D(E) = m
π~2H(E− Ec) linear : ρ2D(E) = 2E

π~2v2
F

where H is the Heaviside step function and Ec is the energy of the bottom of the
conduction band. The density of states corresponding to these two different dispersion
relations is shown in Fig. I.1. In the next section, we will discuss three dimensional
topological insulators. Theoretically, these materials are expected to have, at their sur-
faces, a linear dispersion relation like graphene, and an insulating bulk. Nevertheless,
unavoidable defects present in real materials often lead to a residual conduction of
the bulk. These bulk electrons are characterized by a parabolic dispersion. Therefore,
two kinds of electronic states coexist and electronic transport in the system depends
on the position of the Fermi energy. If the Fermi energy is below the bottom of the
conducting band, states with a linear dispersion are dominating electronic transport,
while if the Fermi energy is within the conduction band, bulk states with a parabolic
dispersion will dominate electronic transport.

0 100 200
E [meV]

0.0

0.5

1.0

Do
s (

no
rm

al
ize

d)

Fig. I.1 Density of states in two dimensions. In blue for a parabolic and in red for a
linear dispersion relation.

In a quantum wire where the electron momentum is restricted to one dimension,
the Fermi liquid theory does not apply, instead, the system should be rather descri-
bed by the theory of Luttinger liquid, which is beyond the scope of this thesis. In a
quantum dot the electron is confined in the three spatial directions. Therefore, spin-
orbit coupling, the interaction between the electron spin and its momentum, is not
so relevant to understand transport phenomena in a quantum dot as it is in higher
dimensional systems.
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4Chapitre I. Spin-orbit coupling and superconductivity in hybrid structures

I.1.2 Spin-orbit coupling
As spin-orbit coupling is understood as the coupling between the electron spin and

an effective magnetic field, we start by the usual description of a spin in a magnetic
field.

Each electron possesses a magnetic dipole moment µ due to the electronic spin.
The spin operator is defined as :

S = 1
2σ

where the components of σ = σxx + σyy + σzz are the Pauli matrices :

σx =
(

0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
The electron magnetic moment is related to its spin by the relation :

µ = −gµBS

where µB = 57.88 µeV.T−1 is the Bohr magneton and g ≈ 2 is the Landé g-factor
for an electron in vacuum. The effective g-factor value can significantly change for an
electron in a crystal [19, 20].

Applying a magnetic field leads to a precession of the magnetic moment which
is described by the Zeeman Hamiltonian Hz = −µB = 1

2gµBσB. Its eigenstates are

two-component spinors |χ〉 =
(
χ0
χ1

)
describing spin wave functions. Two eigenvalues

±Ez are found for a static magnetic field B, where Ez is the Zeeman energy :

Ez = 1
2gµBB

In spin-orbit coupled system, an effective magnetic field emerges due to the motion
of a charged particle in an electric field. In an atom, an electric field ~En is caused by the
nuclei. In the inertial frame where the electron is at rest, this electric field generates
a magnetic field which couples to the electron spin. This is a relativistic effect that
comes from the transformation of the fields between two frames moving at relative
velocity ~v. The spin-orbit interaction in an atom is derived from the Dirac equation,
in the non relativistic limit [21] :

HSO = −gµB

2c2 (~v × ~En)~S

where c is the speed of light and ~v is the electron velocity. As ~En is the electric
field generated by the electrostatic potential of the charged nucleus, the spin-orbit
interaction is larger for heavier elements with high Z number.

In solid state physics, spin-orbit interaction is important to calculate the correct
band structure of crystals. If the crystal is invariant under time and spatial reversal (or
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parity) symmetries, all energy bands are doubly degenerate in energy. Indeed, spatial
inversion symmetry insures that the energy is the same when going in two opposite
directions :

Parity symmetry : E↓(~k) = E↓( ~−k)
Furthermore, in the presence of time reversal symmetry, Kramers theorem insures

degeneracy of time-reversed states, i.e two states with both opposite momentum and
spin have the same energy :

Time reversal symmetry : E↑(~k) = E↓( ~−k)
Together, these two symmetries protect the spin degeneracy of all energy bands :

Parity and time reversal symmetry : E↓(~k) = E↑(~k)
Nevertheless, spin degenerate energy bands do not imply the absence of spin-orbit

related phenomena, as we will see for three dimensional topological insulators.
Spin degeneracy for a given momentum can be lifted if spatial inversion symmetry is

broken by bulk inversion asymmetry (BIA) or structural inversion asymmetry (SIA).
BIA is present in non centrosymmetric material, where no inversion center leaving
the crystal lattice invariant can be found. This leads to the Dresselhauss spin-orbit
coupling term in the Hamiltonian.

SIA is found at the surface of all materials due to the broken symmetry at the
interface with the vacuum or another material. It can also be induced when two surfaces
of a solid are submitted to a potential difference. SIA leads to an electric field ~E
which points in the direction perpendicular to the interface and the resulting spin-
orbit coupling term is described by the Rashba Hamiltonian :

HR = α

~
(~p× ~ez)~σ

where α is the Rashba spin-orbit coupling strength and ~ez is the direction perpen-
dicular to the interface. In such a system, the spin is mostly coupled to the momentum
components kx, ky and the Rashba Hamiltonian in 2D reads [22] :

HR =
p2
x + p2

y

2m + α

~
(pyσx − pxσy) =

− ~2

2m( ∂2

∂x2 + ∂2

∂y2 ) α( ∂
∂x
− i ∂

∂y
)

−α( ∂
∂x

+ i ∂
∂y

) − ~2

2m( ∂2

∂x2 + ∂2

∂y2 )


The two eigenstates are the spinors :

|χ+〉 = 1√
2
ei
~k~r

(
i
k
(kx − iky)

1

)
and |χ−〉 = 1√

2
eik̃r̃

(
− i
k
(kx − iky)

1

)

where the spinor components depend on momentum with k =
√
k2
x + k2

y. One can
calculate the expectation value of the spin operators on these eigenstates. For example,
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in the present case, there is no out of plane spin component : 〈χ+ |σz|χ+〉 = 0. These
two orthogonal eigenstates have opposite expectation value for the spin : 〈χ+|σx|χ+〉 =
ky
k
, while 〈χ−|σx|χ−〉 = −ky

k
. The expectation value changes sign with the momentum

ky. Therefore, these Rashba eigenstates are spin textured.
Moreover, due to spin-orbit coupling the eigenstates acquire a finite Berry phase,

even in the absence of magnetism in the system. In 2003, the intrinsic spin Hall effect
has been predicted for Rashba systems[23, 24]. It leads to a spin Hall conductivity in
clean system, σSH = eφB

8π2 , related to the Berry phase[25] :

φB = i
∮
C
〈χ| ~∇k|χ〉 ~dk

This phase is equal to π for both Rashba eigenstates 1 and is analogous to the
Aharonov-Bohm phase acquired by an electron when traversing a loop enclosing a
magnetic flux. Thus, one also defines the Berry curvature which is analogous to the
magnetic field :

~Ω(k) = i ~∇k × 〈χ| ~∇k|χ〉
This curvature leads to a spin dependent bending of the electron trajectories when

an electric field ~Ea is applied to the system, characterized by the anomalous velocity :

~va = − e
~
~Ea × ~Ω(k)

This anomalous velocity is responsible for the intrinsic spin Hall effect, i.e a spin
current transverse to the applied electric field. There is no dissipation associated with
the intrinsic spin Hall effect.

However, impurity scattering in spin-orbit coupled system also leads to two mecha-
nisms responsible for an extrinsic spin Hall effect : the skew scattering which leads to
a spin Hall conductivity σskSH ∝ τ which increases with the relaxation time τ and the
side-jump which leads to a spin Hall conductivity σjSH independent of τ . The extrinsic
spin Hall effects also result in a transverse spin current due to a longitudinal charge
current. This transverse spin current can lead to a transverse spin accumulation at the
edges of the sample as shown in Ref. [26]. A related but different effect is known as the
Edelstein effect[27], where a charge current leads to a steady spin polarization[28] due
to asymmetries in the spin relaxation 2. The inverse effect also occurs and is known
as the spin galvanic effect where a a spin polarization generates a transverse charge
current. In Ref. [29] the spin accumulation is generated by optical pumping with cir-
cularly polarized light. It should be possible to generate a spin accumulation simply
by a magnetic field inducing a difference in spin population[30] :

1. The calculation is conveniently done by writing kx = cos θ and ky = sin θ.
2. There is two spin relaxation mechanisms : The Elliot-Yafet where the spin relaxes as it scatters,

thus the spin relaxation time is proportional to the relaxation time. The other is the Dyakonov-Perel
mechanism where the spin relaxes as it travels due to an internal field, thus, the more frequently it
scatters, the less it travels in a fixed internal field and the spin relaxation time is inversely proportional
to the relaxation time.
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n↑ − n↓ = 1
2gµBBρ(EF)

Nevertheless, this effect has never been demonstrated.
We come back to the eigenenergies of the Rashba Hamiltonian :

E± = ~2k2

2m ± αk

This energy dispersion is shown in Fig. I.2a, where the sign of the spin expectation
value σy is represented by arrows. This dispersion is directly observed in angle resolved
photoemission spectroscopy (ARPES) when the Rashba coefficient is large. From an
ARPES spectra, the Rashba coefficient α can be extracted from the slope of the E vs k
spectrum when k → 0. Large Rashba coefficient has been reported by ARPES in BiTeI
(α =4.4 eVÅ)[31], in Bi (α =0.56 eVÅ)[32] and in Bi2Se3 (α =0.36 eVÅ)[33]. Surface
deposition can strongly enhance the Rashba coefficient such as in BiAg surface alloy
(α =3 eV.A)[34]. In material promising for spintronics such as InAs, which possesses
long spin lifetime, the splitting is too small to be resolved by ARPES[35]. In chapter 4
we propose a new experimental method to infer the Rashba coefficient, it can readily
be applied to InAs. Furthermore, it could be used to measure the Rashba coefficient
while changing the electronic density with an electrostatic gate.

Usually, when the Rashba spin-orbit term or the Zeeman term are considered se-
parately, at a given energy, one can find two k vectors with the same spin, Fig. I.2ab.
Due to the interplay between spin-orbit coupling and a Zeeman field, a helical spin tex-
ture can be realized, where a single momentum corresponds to a given spin, Fig. I.2c.
Indeed, when an in-plane magnetic field is present, the Hamiltonian of the Rashba sys-
tem reads[36] : HR = p2

2m + α
~ (pyσx−pxσy)+ 1

2gµB(σxBx+σyBy). And the eigenenergies
are :

E± = ~2k2

2m ±
√

(αky + 1
2gµBBx)2 + (αkx −

1
2gµBBy)2

The previous simple Rashba case is obtained for Bx = By = 0. The dispersion
relations with magnetic field are shown in Fig. I.2bc.

Therefore, by considering a quasi 1D system ky = 0, with a magnetic field along
x, as shown in Fig. I.2c, when the Fermi level resides between two energy bands, the
helical state is realized where a given spin orientation corresponds to a single momen-
tum kx. Such states attract interest as they are protected against back-scattering by
non magnetic impurity as a change in momentum requires a spin flip. The energy gap
at kx = 0 in Fig. I.2c, where this helical spin texture is realized, has been probed by
transport measurements in nanowires[37, 38].

The helical spin texture has been predicted at the edges of materials in the absence
of magnetic field. Firstly in 2005, a quantum spin Hall insulating phase is predicted
for graphene in presence of spin-orbit interaction[39]. In this phase, an energy band
gap opens in the bulk while states with a helical spin texture exist at the edges. Soon
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a b c

z

x
y

B=0 By=10 T Bx=10 T

ER

kR

2Ez

Fig. I.2 Rashba and Zeeman effect. a Energy dispersion along kx showing the
Rashba effect without magnetic field. b Energy dispersion with a magnetic field applied
in the y direction. c Energy dispersion for a magnetic field applied in the x direction.
A Zeeman gap opens at kx = 0.

after, quantum spin Hall insulating phases have been predicted and discovered in
HgTe/CdTe[40, 41] and InAs/GaSb[42] heterostructures. These materials are referred
to as 2D topological insulators or quantum spin Hall insulators.

Three dimensional topological insulators (3D TIs) constitute an extension of the
quantum spin Hall insulating phase[43] to the third dimension. The 1D edge channels
are replaced by 2D surface states with a helical spin texture. Unlike Rashba systems,
the existence of these surface states do not require broken inversion symmetry[44].
Thereby, as previously discussed, the relation E↑(~k) = E↓(~k) applies. In other words,
two states with same momentum and opposite spin have the same energy. Nevertheless,
in 3D TIs, such states are spatially separated on the two opposite surfaces of the
material, as sketched in Fig. I.3. The Hamiltonian describing a 3D TI is a 4 × 4
matrix as 2 orbitals and two spins for each orbitals are considered[45]. As the two
surfaces are decoupled due to the absence of electronic states in the bulk, one can
focus on the properties of a single surface state described by the Hamiltonian[46],
Hsurface = ~vF(σxky − σykx), with eigenvalues :

E± = ±~vFk

Such dispersion describes a Dirac cone in momentum space where the energy is
linear in momentum. By identifying the Hamiltonian Hsurface with the Rashba Hamil-
tonian HR, we can identify an "effective" Rashba coefficient for the surface states of a
3D TI which is directly related to the Fermi velocity, αeff = ~vF.



Version du 29 octobre 2018, 07:41

I.2 Superconductors 9

kx

ky

E

x
y

EF

kx

ky

E

EF

Fig. I.3 Three dimensional topological insulator. Two states ~k with opposite
spin are degenerate in energy but spatially separated on the two opposite surfaces of
the material.

Bi2Se3 and related compounds are predicted to be 3D TIs[47]. The Dirac cone has
been observed by ARPES in Bi2Se3 crystals and in thin films grown by molecular
beam epitaxy. Furthermore, it was shown[48] that the Dirac states disappear below
a critical film thickness of ≈ 5 nm, interpreted as due to the coupling of the two
opposite surfaces by tunneling. Also, the spin texture of the Dirac cone was observed
by our partner[49]. A major complication in highlighting the properties of the surface
states is that 3D TI are often doped such that the bulk is also conducting. Therefore,
making the distinction between the surface states and the bulk states in electronic
transport experiments is challenging. Nevertheless, the supercurrent carried by the
surface states when coupled to a superconductor is expected to differ significantly
than the supercurrent carried by the bulk states.

I.2 Superconductors

I.2.1 Ginzburg-Landau description
A superconductor is characterized by a wave function ψ that describes a quan-

tum coherent superfluid condensate. Ginzburg and Landau (GL) introduced this wave
function as the order parameter in a Landau theory of a second-order phase transition.
It is related to the local density of superconducting electrons ns = |ψ(r)2| and is used
to express the free energy of the superconductor as[50] :

f = fn0 +
∫
d3r

[
a|ψ|2 + b

2 |ψ|
4 + | ~Dψ|2 + B2

8πµ2

]
with :

~D = 1√
4m

(~
i
∇− 2e

c
~A)
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The parameters of the theory a ∝ B2
cλ

2
L and b ∝ B2

cλ
4
L are linked to the critical

magnetic field Bc where the phase transition to the normal state occurs and to the
London penetration depth λL over which the field penetrates in the superconductor,
as sketched in Fig. I.4. The expression of λL can be calculated from GL theory and
agrees with the expression given by London in its earlier theory describing the local
electrodynamics of superconductors :

λL =
√

m

µ0nse2

Beyond this length, in the bulk of a superconductor, the magnetic field is fully
screened and the GL wave function is constant ψbulk = −a

b
.

x

Superconductor Normal

λL

ξ

|Ψ| = ns B2

Fig. I.4 Interface between a superconductor and a normal state. In the
normal state a magnetic field B is present. It decreases in the superconductor over the
London penetration depth λL. The superconductor is characterized by a macroscopic
wave function ψ related to the density of superconducting electron ns. It changes over
the coherence length ξ which is larger than λL for type I superconductor.

In order to obtain the GL equations, one can take the free energy variation with
respect to ψ∗[51] :

df =
∫
d3r

[
aψδψ∗ + b

2 |ψ|
2ψδψ∗ + ( ~Dψ)( ~Dδψ)∗

]

Using an integration by part for the last term, one can show that this expression
can be separated into an integral over the volume of the superconductor, IV and an
integral over its surface IS that is df = IV + IS with

IV =
∫
V
d3r

[
aψδψ∗ + b

2 |ψ|
2ψδψ∗ − δψ∗ ~D2ψ

]

and

IS = 1√
2m∗

∫
S
dσ

[
δψ∗ ~Dψ

]
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By considering only the volume contribution we have df = IV . At equilibrium, the
free energy is kept constant df = 0 and we obtain the first Ginzburg-Landau equation :

aψ + b

2 |ψ|
2ψ − ~D2ψ = 0

From this equation, the GL coherence length is naturally defined in the absence of
potential vector ~A = 0 as ξGL =

√
~2

4m|a| . A disturbance of the GL wave function from
its bulk value ψbulk will be attenuated over ξGL. This coherence length diverges near Tc
but, well below Tc, is equal to the Pippard coherence length ξ0 which is independent
of temperature for a pure superconductor :

ξ0 = 0.18 ~vF

kBTc

For a dirty superconductor, where the mean free path l is less than ξ0, the coherence
length ξ is obtained from :

1
ξ

= 1
ξ0

+ 1
l

The second Ginzburg-Landau equation is found similarly. A small variation d ~A in-
duced a free energy variation df . At equilibrium, the Ginzburg-Landau current equa-
tion is found from Maxwell equation ∇× ~B = µ0~j :

~j = − e∗~
2m∗i(ψ

∗∇ψ − ψ∇ψ∗)− e∗2

m∗c
ψ∗ψ ~A

By writing ψ(r) = |∆(r)|eiϕ(r) and inserting in the above equation we understand
that the current solely depends on a phase gradient ∇ϕ and does not imply a modulus
variation of the order parameter ∇|∆(r)|.

~j = e∗

m∗
|ψ|2(~∇ϕ− e∗

c
~A)

To guarantee that the wave function ψ is single valued, the phase variation around
a closed path must satisfy : ∮

∇ϕdl = 2πn

with n integer. By replacing ∇ϕ with the previous expression and the current by
~j = |ψ|2e∗~v, one obtains the quantization of the "fluxoid" introduced by London :

∮ c

e∗

(
m∗~v + e∗ ~A

c

)
.dl = nφ0

where φ0 = hc
e∗

is the flux quantum. From Stokes theorem and the relation between
the vector potential and the magnetic field, the second part of the last expression is
the magnetic flux enclosed in the area. Therefore, if one chooses an integration contour
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for
∮
deep inside the superconductor, far with respect to λL from its edges, then the

supercurrent is zero ~v = 0 and it is the flux that is quantized :∮
~A.dl =

∫
~B.ds = nφ0

If we consider a superconducting loop interrupted by a junction we can expressed
the gauge invariant phase difference across the junction by :

ϕj = 2πn− 2π φ
φ0

I.2.2 Elementary excitations
Superconductivity is a phenomena involving many electrons in interactions. Its mi-

croscopic description has been given by Bardeen, Cooper and Schrieffer in 1957[52].
They understood that an attractive interaction between electrons will induce an in-
stability of the Fermi liquid. Many-body problems are usually described in the frame
of second quantization, where an occupied state is specified by the use of creation
operators such as c+

k↑ which creates an electron of momentum k(=~k) and spin up. The
annihilation operator ck↑ empty the corresponding states. In this notation the pairing
Hamiltonian reads :

H =
∑
k,σ
εkc

+
kσckσ − V

∑
k,k′

c+
k′↑c

+
−k′↓c−k↓ck↑

where εk = ~2k2

2m − µ are the single particle Hamiltonian energies and V is an
attractive interaction.

The BCS mean-field approximation consists in neglecting fluctuations in the num-
ber of particles. Defining D = ∑

k
c−k↓ck↑, this approximation corresponds to :

D+D ' −D+ ∆
V
−D∆∗

V
− |∆|

2

V 2

with ∆ = −V < D >. Due to this approximation, the Hamiltonian does not
conserve particle number. By using the anti-commutation rule for fermions :

c+
k↓ck↓ = 1− ck↓c

+
k↓

One finds the mean field Hamiltonian :

HM =
∑

k

(
c+

k↑ c−k↓

)( εk ∆
∆∗ −εk

)(
ck↑
c+
−k↓

)
+
∑

k
εk + |∆|

2

V

This Hamiltonian is diagonalized by the transformation :

γ +© = uck↑ + vc+
−k↓ and γ -© = −vck↑ + uc+

−k↓
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These operators describe the elementary excitations of superconductors. As ck↑
describes the creation of a hole, the excitations, called Bogoliubons, are made of both
electron and hole excitations, with respective contributions u and v that depends on
energy as :

u =
√

1
2

(
1 + εk

Ek

)
and v =

√
1
2

(
1− εk

Ek

)
The eigenenergies of this Hamiltonian are given by :

Ek = ±
√
ε2k + |∆|2 (I.1)

At large energy εk
Ek
→ 1, we recover the excitations of the normal state u = 1,

v = 0.
From Eq. (I.1), it is clear that the excited states can not have an energy smaller

than ∆. Therefore, ∆ is called the superconducting energy gap. It defines a natural
energy scale for superconductivity and is linked to the critical temperature Tc by the
BCS relation at zero temperature :

∆ = 1.764kBTc

where kB is the Boltzmann constant.
The density of states (DOS) of a BCS superconductor Ns is calculated from the

DOS of the normal metallic state Nn :

Ns(E)dE = Nn(ε)dε
As we are interested in a small energy range ∆ compared to the Fermi energy, the

normal DOS is assumed to be constant and the superconducting DOS is expressed :

Ns(E) = Nn(0) dε
dE

= Nn(0) |E|√
E2 −∆2

It is shown in Fig. I.5. The striking departure from the normal DOS is that no states
are present near the Fermi energy for |E| < ∆. Regarding the DOS, a superconductor
looks more like an insulator than a metal.

The vacuum state of a superconductor |vacuum〉, is the state without Bogoliubon
excitations, thus it satisfies γ -©|vacuum〉 = 0 and γ +©|vacuum〉 = 0. The vaccum state
is given by :

|vacuum〉 =
∏
k

c+
−k↓|0〉

where the state empty of electron is denoted |0〉.
The application of the Bogoliubon operator γ+

-© on this vacuum state leads to a
state of lower energy by the amount Ek. Thus, the BCS ground state is obtained from :

|BCS〉 =
∏
k

γ+
-©|vacuum〉
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E∆-∆ 0

Ns

bogoliubon

electron
Filled states

Fig. I.5 BCS Density of states. Superconducting density of states Ns as a function
of energy E. The zero energy is the Fermi energy. No states exist in a superconductor
at energy below the superconducting gap |E| < ∆. The lowest energy excitations are
the Bogoliubons. At high energy, we recover the excitations of the normal state.

Using the definition for the Bogolioubon operator, the BCS ground state reads :

|BCS〉 =
∏
k

(−vc+
k↑c

+
−k↓ + u)|0〉

It is composed of electron pairs having opposite momentum and spin : the so-called
Cooper pairs.

We have seen that no state exists in the superconductor at energy lower than
the superconducting gap |∆|. Therefore, at the interface between a superconductor
and a normal material, the superconductor should reflect electrons coming from the
normal material. Nevertheless, charge transfers do occur across the interface through
the mechanism of Andreev reflection.

I.3 Hybrid devices

I.3.1 Andreev reflections
The Andreev reflection is a general property of the interface between a supercon-

ductor and a conducting material, which we refer to as SN interface. Its description is
provided by the Bogoliubov de Gennes equation[53] where the order parameter ∆(x)
is allowed to vary in space to go from a finite value in the superconductor to zero in
the non superconducting material :(

H ∆(x)
∆∗(x) −H

)(
e
h

)
= E

(
e
h

)
where H is the single particle Hamiltonian and e, h are the electron and hole
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amplitude respectively of the spinor
(
e
h

)
defined in electron hole space. For a system

invariant by translation along x, where ∆ is constant, we recover the BCS result where
e and h describe the Bogoliubons :(

e
h

)
=
(
ek
hk

)
eikx =

(
−v
u

)
or

(
u
v

)
when ∆ is set to zero the waves of the normal states are solutions of the Bogoliubov

de Gennes equation. We assume that the interface is at x = 0, the region x < 0
describes the normal material, the region x > 0 describes the superconductor as shown
in Fig. I.6. We can write the wave function of an incident quasi-particle of the normal
region propagating toward the superconductor by :

ψi
k(x) =

(
1
0

)
eikex

It can be reflected as an electron with a probability b or as a hole with a probability
a :

ψr
k(x) = b

(
1
0

)
e−ikex + a

(
0
1

)
eikhx

which are solutions of the Bogoliubov de Gennes equation with H = p2

2m , ∆ = 0
and wave vectors :

ke = kF

√
1 + E

εF
and kh = kF

√
1− E

εF

The transmitted wave in the superconductor is :

ψt
k(x) = c

(
u

ve−iϕ

)
eik

s
ex + d

(
−v
ue−iϕ

)
e−ik

s
hx

which are solutions of the Bogoliubov de Gennes equation with ∆ = |∆|eiϕ. At low
energy |E| < ∆, the waves in the superconductor are evanescent with wave vectors :

kse = kF

√√√√√1 + i

√√√√∆2 − E2

ε2F
and ksh = kF

√√√√√1− i

√√√√∆2 − E2

ε2F

At the interface (x = 0) the continuity equation for the wave function are :

ψi
k(0) + ψr

k(0) = ψt
k(0) and ∂

∂xψ
i
k(0) + ∂

∂xψ
r
k(0) = ∂

∂xψ
t
k(0)

The continuity of the derivative is satisfied when using Andreev approximation : by
considering low energies with respect to the Fermi energy, all wave vectors ke, kh, kse, ksh
are approximate as equal to kF. Thereby, one finds the coefficient :
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a = v

u
e−iϕ b = 0 c = 1

u
d = 0

The amplitude a corresponds to the Andreev reflection amplitude where an electron
of the normal metal is reflected as a hole. If the incident electron energy is less than |∆|,
this reflection must occur (|a|=1). Thus, two electron charges are lost in the normal
metal, no excitation can be created in the superconductor due to the superconducting
gap, the wave vector kse has an imaginary part describing evanescent wave in the
superconductor and charge conservation implies that a Cooper pair of charge 2e is
added to the condensate. Therefore, the transfer of charge and so the conductance
of the interface is doubled at low energy compared to the normal state. This simple
model describes perfect SN interfaces, where normal reflections are not allowed (b=0).

∆

-∆

x

E

N S

Fig. I.6 Andreev reflection at a normal-superconductor interface.

Blonder, Tinkham and Klapwijk have provided a framework to take into account
imperfect interfaces [54]. They add a repulsive potential in the Hamiltonian

H = p2

2m − µ+ Z~
√

2µ
m
δ(x− x1)

at position x1 < 0 in the normal material and calculate the conductance of the interface
as a function of Z. At low Z value, they found that the conductance is twice the
conductance of the normal state for voltage corresponding to eV < ∆. For high Z, they
found that the conductance is strongly suppressed near zero bias and a conductance
peak at the gap edge eV = ∆, consistent with calculation involving tunneling, for a
normal metal separated from the superconductor by a tunnel barrier [50].

Even in the presence of normal reflections, no wave from the normal material can
be transmitted into the superconductor far from the interface at low energy |E| < ∆.
Thereby, if the normal material is sandwiched between two superconductors its wave
functions will be confined and bound states will form under resonant condition.
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I.3.2 Andreev bound states
In SNS junctions, the electronic states are confined in the N region at low energy,

and stationary states, known as Andreev bound states, can form. The resonant condi-
tion for their formation can be obtained with the scattering matrix formalism. A
scattering matrix (S-matrix)[55], describes a scattering region between two leads de-
noted L and R. We discuss the case of a single transverse mode even so an arbitrary
number of transverse modes can be described by the same formalism. The scattering
matrix relates the outgoing wave amplitudes to the incoming wave amplitudes through
the scattering region : (

oute
L

oute
R

)
= Se

(
ine

L
ine

R

)
where the electron states from the left lead, incident on the scattering region are

denoted ine
L, while electron states going to the right lead, emergent from the scattering

region are denoted oute
R.

Similarly for hole states : (
outh

L
outh

R

)
= Sh

(
inh

L
inh

R

)

As the normal region does not couple electrons and holes the 4×4 scattering matrix
SN can be written in a block diagonal form, as shown in the left part of Fig. I.7 :

SN =
(
Se 0
0 Sh

)

Due to Andreev reflection ([56] or p.777 [57]), one can define an Andreev scattering
matrix SA that relates electron states to hole states at the same lead, as shown in
the right part of Fig. I.7. The coefficients of this matrix are the Andreev reflection
amplitudes found in the last section. Written in the basis of the normal scattering
matrix SN it reads :

SA =


0 0 ahL 0
0 0 0 aeR
aeL 0 0 0
0 aeR 0 0


The Andreev bound states are stationary states, bound in the SNS region. The-

refore, they can be regarded as incident states which remain unchanged after the
scattering process : 

ine
L

ine
R

inh
L

inh
R

 = SASN


ine

L
ine

R
inh

L
inh

R
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SN SA

outLe

outRe

outL
h

outR
h

inL
e inR

e inL
h inR

h

reL

reR

teL

teR
rhL

rhR

thL

thR

0

0

0

0

0

0

0

0

0

0

0

0

0
0
0

0

aeL

aeR

0
0

ahL

ahR

0

0

inL
e inR

e inL
h inR

h

outLe

outRe

outL
h

outR
h

Fig. I.7 Scattering matrix. Left Normal scattering matrix, which does not couple
electron and hole. Right Andreev scattering matrix, which couples electron and hole
at the same lead.

which is satisfied when det(I− SASN) = 0. This requirement gives the Andreev bound
states energy as the coefficients of the scattering matrices depend on energy. The
scattering matrices for electron and hole are related by Se(ε) = Sh(−ε)∗ in system
with time reversal and particle hole symmetry. The scattering matrix coefficients are
related to the coefficients a, b, c and d obtained in the previous section. For |E| < ∆, as
the wave vectors in the superconductor have an imaginary part, the Andreev reflection
amplitude a = v

u
e−iϕ =

√
E−ε
E+εe

−iϕ defined in the previous section, can be re-written
by defining ε = i|ε| :

a = E − i|ε|
∆ e−iϕ = e−i(ϕ+θ)

with θ = arccos E
∆ . Therefore, the Andreev scattering matrix coefficients are phase

factors, aeL = e−i(ϕL+θ), aeR = e−i(ϕR+θ), ahL = ei(ϕL+θ) and ahR = ei(ϕR+θ). In the case
of short junctions, where the scattering matrix in the N region reads :

Se =
(
ir t
t ir

)
One obtains the Andreev bound states energy :

ε = ±∆
√

1− τ sin2 ϕ

2
with τ = |t|2 = 1−|r|2. These states are shown in Fig. I.8 for different transmission

τ . They have been probed by Josephson microwave spectroscopy in SNS junctions with
N being an atomic aluminum contact[58], where the short junction condition is well
fulfilled ; and with N being an InAs nanowire L ≈ 100 nm[59]. As the carrier density
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can be modulated in InAs, it was shown that Andreev states can be added in the
system by tuning the gate voltage and increasing the number of transverse modes.

In a long junction L > ξ a phase term is also acquired due to propagation in the
N region. It corresponds to the phase difference between the electrons at the right
interface and the holes at the left interface (ke − kh)L = 2εL

~vF
. In the case of perfect

transmission across the N region, the equation to get the bound states can be obtained
by summing the phase acquired during a cyclic process where an electron is Andreev
reflected as a hole which is subsequently reflected as an electron, it reads[60] :

2εL
~vF
− 2 arccos( ε∆)± ϕ = 2πn

with n integer. For long junction L >> ξ, the first term dominates over the second
term which is omitted :

ε = (2πn∓ ϕ)~vF

2L
While for short junction L << ξ, the first term is omitted :

ε = ±∆ cos ϕ2

I.3.3 Josephson current phase relations
As the Andreev reflections describe charge transfer across a SN interface, the An-

dreev bound states that form in SNS junctions carry a supercurrent. Moreover, it
has been shown that the Andreev states carry most of the supercurrent in short
junctions[56]. The supercurrent depends on the occupation of the states, which is
given by the Fermi Dirac distribution :

fD(E, T ) = 1
exp((E − EF)/kBT ) + 1

At T=0, all the states below the Fermi energy are occupied and the states above
are empty. Thus, only the Andreev states below the Fermi energy carry a current
which, for a single pair of Andreev states, is given by :

I = 2e
~
∂ε

∂ϕ
= e∆

2~
τ sinϕ√

1− τ sin2 ϕ
2

For a low transmission coefficient τ , the Josephson current phase relation is sinu-
soidal and 2π periodic in phase ϕ, as expected for Josephson tunnel junctions. This
sinusoidal dependence can be obtained by writing a solution of the GL equation in a
system where two superconductors are separated by a weak-link[50], it leads to the
first Josephson equation :

IJ = Ic sin (ϕ)
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Fig. I.8 Andreev bound states and current phase relation. Left Energy of
Andreev states ε as a function of the phase difference between two superconductors ϕ,
for different transmission coefficient τ . Right Corresponding current carried by these
states.

It has been shown experimentally that changing the states occupation by inducing
a non equilibrium Fermi Dirac distribution in the normal region can modulate the
Josephson current[61].

In hybrid devices, such as those involving large g-factor material, one can generate
large Zeeman energy in the N region while maintaining superconductivity in the elec-
trodes. As the Pauli matrices describing the Zeeman Hamiltonian acts in spin space,
one has to explicit the spin states of electron and hole. Thus, the wave function so-
lutions of the single particle Hamiltonian which enters in the Bogoliubov de Gennes
equation has four components :

HBdG


ψe↑
ψe↓
ψh↑
ψh↓

 = E


ψe↑
ψe↓
ψh↑
ψh↓


Analytic solutions for the Andreev states energy considering the Zeeman energy

have been found in Ref. [62] using the scattering matrix formalism in the short junc-
tion limit. The energy of the states depends on a parameter θB = gµBBL

~vF
. The spin

degeneracy of the Andreev states is only preserved when the magnetic field is such
that θB = [π], spin degeneracy is lifted otherwise and four distinct states appear in
the spectrum ε vs ϕ. The values θB = 0 and θB = π correspond to two Andreev
spectrum shifted by π. As the Josephson current results from the derivative of these
states, an Andreev spectrum shifted by π results in a sign reversal of the Josephson
current :

I sin(ϕ)→ I sin(ϕ+ π) = −I sin(ϕ)
It has been observed in planar Josephson junctions made with large g-factor materials[63,
64].
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This shift of π in the Josephson current phase relation is well known when the N
material is a ferromagnet[65]. In a superconductor/ferromagnet/superconductor (SFS)
junction the 0 and the π states are separated by a critical thickness of ferromagnet
where the supercurrent vanishes[66]. The supercurrent reversal can be understood as an
oscillation of the order parameter due to the exchange field experienced by the Cooper
pair traversing the junction. An intuitive picture to understand this oscillation is given
in Ref. [67]. A Cooper pair is composed of two electrons with opposite momentum and
spin. The two-particle state is given by the anti-symmetric singlet wave function :

|S〉 = |p ↑, -p ↓〉 − |-p ↓, p ↑〉
Due to the exchange field in the ferromagnet, the electron acquires a potential

energy +Ez or -Ez depending on its spin orientation. Thereby, its kinetic energy is
modified by a shift in momentum ∆p, in order to conserve its total energy. Considering
that this momentum shift is small compared to the Fermi momentum ∆p << pF, the
Cooper pair acquires a center of mass momentum q = ±2Ez

vF
depending on its spin

configuration and the singlet state becomes :

|SE〉 = eiqx/~|p ↑, -p ↓〉 − e−iqx/~|-p ↓, p ↑〉 = cos(qx/~)|S〉+ i sin(qx/~)|T 〉

with the triplet state defined as |T 〉 = |p ↑, -p ↓〉 + |-p ↓, p ↑〉. As the singlet
component changes sign when qx/~ = π, a minimum of critical current is observed for
a junction thickness d = π~vF

2Ez , in agreements with the Andreev description.
The Josephson current is also strongly affected when it occurs across a confined

region. This is the case when the normal material is a quantum dot (QD) where the
0-π transition can be induced by an electric field. In QD, electron-electron interaction
plays a major role and leads to a charging energy U as detailed in chapter 3. As
electron-electron interaction involves at least two particles, S-QD-S junction can not
be described by the Bogoliubov de Gennes equation which takes as input single particle
Hamiltonian. Therefore, the study of Andreev QD is a challenging theoretical problem.
Confinement of the electronic states in the QD leads to an energy difference δ between
energy level. If this spacing is sufficiently large, the analysis can be restricted to a
single spin degenerate level and is described by the Anderson impurity model with the
Hamiltonian[68] :

H = HQD +
∑
i=L,R

H l
M +

∑
l=L,R

H l
T

where the uncoupled QD is described by :

HQD =
∑
σ

ε0d
+
σ dσ + Ud+

↑ d↑d
+
↓ d↓

where d+
↓ creates an electron in the QD orbital at energy ε0 defined with respect to

the Fermi energy. A BCS mean-field Hamiltonian H l
M is used to describe the super-

conducting lead l. In a given lead l, the superconducting gap is ∆l = |∆|eiϕl . Finally,
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the coupling between the QD and the electrodes is described by :

H l
T =

∑
k,σ

(tc+
kσ,ldσ +H.c)

where t is a hopping amplitude between the QD and the superconducting lead, which
is assumed to be symmetric and independent on the wave vector k. The coupling
parameter Γ depends on the density of states ρ of the electrodes in the normal state
and on the hopping amplitude t between the lead states and the QD state :

Γ = 2πρt2

Solving this Hamiltonian is a challenging theoretical problem and different approaches
and approximations have been used[69].

An interesting physical situation occurs when ∆, Γ and U are of the same order of
magnitude, where the π transition can be induced by an electric field. In this situation,
a perturbation expansion in one of the parameters is hardly justified. Numerical cal-
culations are however possible, such as the numerical renormalization group, and have
provided good agreements between theory and experiments[70, 71, 72]. This method is
computationally demanding and we rather present some analytic approaches, relevant
to the parameters determined experimentally in the third chapter.

The π transition in a S-QD-S junction can be described by removing the many
body part of HQD, responsible for the charging energy, and by including the charging
energy into the orbital energy ε0 → εσ, with εσ=↑ = ε0 + U/2 and εσ=↓ = ε0 − U/2.
In the limit ∆ << Γ, the Andreev states are determined analytically in Ref. [73], and
shown in Fig. I.9. The effect of the on site energy is to split the Andreev states such
that four states appear in the spectrum. By increasing the on site energy, the states
cross zero energy and the Josephson current abruptly changes sign as a consequence
of the sign reversal of the slope of the occupied states. By increasing further the on
site energy, the Andreev spectrum will correspond to a Josephson current of lower
amplitude shifted by π.

Another approach, followed in Ref. [74], treats the coupling Hamiltonian HT as
a perturbation. This method allows the authors to directly calculate the Josephson
current and predicts its sign reversal as a function of the QD orbital energy ε0, in the
limit U →∞ :

I(ϕ) = λ
e

~
Γ1Γ2

∆ F ( |ε0|∆ ) sinϕ

Where λ = 2 for ε0 > 0 and λ = −1 for ε0 < 0. Experimentally, the QD orbital
energy ε0 can be shifted with respect to the Fermi level by applying a gate voltage on
a metallic electrode capacitively coupled to the QD. Therefore, the sign reversal of the
Josephson current can be obtained through an electrical field effect[75].

As the Josephson current flowing through a S-QD-S junction can be reversed by
tuning the relevant parameters, an important achievement in the study of Andreev
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Fig. I.9 Model for a S-QD-S junction, from Ref. [73], which shows the Andreev bound
states and the corresponding current phase relation in the presence of an on-site Cou-
lomb energy. The parameters are ε0

2Γ = −0.5 and Eex
2Γ = 0.25 (upper panel), 0.75 (middle

panel) and 1.5 (lower panel).

QD has been to draw a phase diagram as a function of ∆, Γ and ε0, which separates
the 0 and the π state. This diagram can be obtained by the self-consistent description
described in Ref. [68] where a single particle effective Hamiltonian is derived :

Heff =
∑
σ

ξdd
+
σ dσ − |Γϕ|(d+

↑ d
+
↓ +H.c) + U

2 (
∑
σ

d+
σ dσ − 1)2

where ξd = ε0 + U
2 . This Hamiltonian can be diagonalized by a Bogoliubov-like

transformation. It has four eigenstates, two singly occupied spin 1
2 states with energy

E0
↑ = E0

↓ = ξd and two BCS like states with energy E0
± = U

2 ±
√
ξ2
d + Γ2

ϕ + ξd. The
ground state of the system can be one of the two singly occupied states (doublet) or
the lowest energy BCS state (singlet). Therefore, two ground states of the Andreev
QD can be identified and are separated by a phase transition where the two low energy
states are equal, ξd = E0

−, that is when :(
ξd
U

)2
+
(Γϕ
U

)2
= 1

4
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which leads to the phase diagram in Fig. I.10. This phase diagram allows to capture
a large part of the physics observed in Andreev QD. As we will see in chapter 3,
S-QD-S junctions are often in the Coulomb blockade regime and conductance peaks,
or Coulomb peaks, occur regularly as a function of gate voltage when the energy ξd
is shifted by U , independently of superconductivity. The phase diagram allows for
example to understand that at low coupling Γ << U the ground state of the Andreev
QD changes at each Coulomb peak which results in a modification of the conductance
spectrum at voltage eV < 2∆.

0

1/2

Γφ/U

ξd/U-1/2 1/2

 QD

  BCS 
(singlet)

(doublet)

Fig. I.10 Phase diagram of an Andreev QD. At low coupling Γϕ, the ground
state changes at each charge degeneracy points which correspond to ξd

U
= ±1

2 . At large
coupling the ground states is always a singlet.

Nevertheless, the phase diagram obtained as it is does not capture the 0-π transition
when the Andreev QD ground state changes because the energy of the doublet ξd does
not depend on the superconducting phase and thus does not carry supercurrent. To
solve this issue, in the same study Ref. [68], a perturbation expansion is performed
in the term which are missing in the effective Hamiltonian Heff , to recover the phase
dependence of the states and to describe the sign reversal of the Josephson current
when the QD ground states changes. When the ground states is a doublet another
complication arises when the Kondo temperature expressed as[69] :

TK =
√
UΓ
2 exp

(
− π|ε0(ε0 + U)|

2UΓ

)
leads to a Kondo energy kBTK larger than the Coulomb energy U . In that case,

the local spin of the doublet can be screened by the Kondo effect, and the system will
stay in the 0 state. The Kondo effect can be characterized in the normal state as it
leads to a zero bias conductance peak independent of gate voltage for odd occupancy
of the QD. We did not consider it in chapter 3 as we did not observed the Kondo effect
in the gate voltage range studied experimentally. The study of Andreev QD, when
the ground states is a doublet and when the Kondo effect is neglected, is analogous
to the study of single magnetic impurity in superconductors (see section 6 and 10 of
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the review[76]). In particular, it was shown by Shiba that a bound state forms on the
impurity site at an energy below the superconducting gap energy :

ε = 1− (JSπN0/2)2

1 + (JSπN0/2)2

where S is the impurity spin, N0 is the normal density of states at the Fermi energy
and J is the exchange energy. When the exchange energy is large the Shiba state is
found at zero energy and the conductance, which is a measure of the density of states,
exhibits a peak at zero bias as shown by STM in Ref. [77].

In the 0 or in the π state, the system symmetries insure that no "anomalous"
Josephson current flows without a phase difference between the superconductors. In-
deed, for both current phase relation IJ = I sin (ϕ) or IJ = I sin (ϕ+ π), the relation
IJ(ϕ) = IJ(−ϕ) holds and insures that IJ(ϕ = 0) = 0. However, another type of
junctions exist where this condition is broken, these junctions allow a finite current to
flow in the absence of phase difference. This phenomena is known as the anomalous
or ϕ0 Josephson effect.

I.3.4 Anomalous Josephson effect
In the original paper where Cooper pair tunneling were predicted [5], Josephson

noticed that, in the presence of time reversal symmetry, all contributions to the su-
percurrent are in phase. Forty years later, in a study related to the long range triplet
proximity effect observed in ferromagnet-superconductor heterostructures, the authors
of Ref. [78] found that different magnetization direction in a SFS junction would result
in a finite Josephson current in the absence of phase bias between two superconduc-
tors. One year later, the anomalous Josephson effect is predicted in a simple system
where two superconductors are separated by a magnetic weak link with spin-orbit
coupling[18]. It is also noticed that a magnetic field would result in the same effect
when the weak link is non magnetic.

To understand how the spin-orbit coupling and the exchange field affect the proxi-
mity effect, one adds a spin-orbit term fSO to the GL free energy[18] :

fSO = −
∫
d3r

[
ε~n.{~h× [ψ( ~Dψ)∗ + ψ∗( ~Dψ)]}

]

where ~n is the direction of the Rashba electric field, ~h is in the direction of the ap-
plied magnetic field and ε is the spin-orbit coupling parameter. In the case of a Rashba
spin-orbit coupling this parameter is the Rashba parameter α, defined in section I.1.2.

In order to see how this term modifies the Ginzburg-Landau equation, which des-
cribes a weak link, we consider the variation of the spin-orbit term due to a small
variation δψ∗ :

dfSO = −
∫
d3r

[
ε~n.{~h× [ψ( ~D∗δψ∗) + δψ∗( ~Dψ)]}

]
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As in the derivation of the GL equation, this expression can be separated into an
integral over the volume of the superconductor, IV and an integral over its surface IS
that is dfSO = IV + IS. We are interested in a particular solution of ψ in a direction
where ~A = 0, thereby we find IS = 0 and

IV = −ε~n.{~h×
∫
d3r

[
δψ∗ ~Dψ − ψ ~Dδψ∗

]
}

Therefore, the one dimensional Ginzburg-Landau equation describing the weak-link
is modified, we neglect ψ ~Dδψ∗

δψ∗
=0 :

aψ + b

2 |ψ|
2ψ − ~D2ψ + εh ~Dψ = 0

To illustrate the difference between the proximity effect in a metal and in a ferro-
magnet, this one dimensional equation is widely used[65]. In a simple derivation of the
Josephson current phase relation given in Ref. [50], the last term due to spin-orbit cou-
pling is not present, thus one can choose a general solution for ψ which is real as all the
equation coefficients are real. This solution is of the form ψ = ψ0e

−x/ξ and describes
the decaying order parameter at a SN interface. The phase degree of freedom enters
when choosing the boundary condition, for example ψ(x = 0) = |∆|eiϕ which results
in ψ = |∆|eiϕe−x/ξ. In the case where the weak link is a ferromagnet without spin-orbit
interaction, the one dimensional equation describing the bridge is modified to account
for the paramagnetic effect which becomes dominant over the orbital one[65]. In that
case the solution is of the form ψ = ψ0e

−x/ξf cos (x/ξosc) such that the order parameter
oscillates while it decays. The length ξF and ξosc are defined in Table. I.3.4. For a SN
junction with the same boundary conditions we obtain ψ = |∆|eiϕe−x/ξf cos (x/ξosc).
In both SN and SF proximity effect, there is a spatial dependence of the order pa-
rameter modulus |ψ|(x) but no spatial dependence of its argument arg(ψ), in other
words there is no spatial dependence of the superconducting phase in the weak link.
In the case where the spin-orbit term is present, one must choose a complex general
solution of the form ψ = ψ0e

ix/ξzSO , such that, with the same boundary condition, one
obtains ψ = |∆|ei(ϕ+x/ξzSO). In that case, arg(ψ)(x) is position dependent, as sketched
in Fig. I.11, and a phase shift accumulates along the weak link. This phase shift results
in an anomalous phase difference between the two superconductors as calculated in
Ref. [18] :

ϕ0 = 4EzαL

(~vF)2 (I.2)

where L is the length of the weak link. This ϕ0 term result in the anomalous current
phase relation :

IJ = Ic sin (ϕ+ ϕ0)

which leads to an anomalous current IJ(ϕ0) at zero phase difference.
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Ballistic Diffusive

Superconducting coherence length, ξ ~vF
2πkBTc

√
~D

2πkBTc

Coherence decay length in an exchange field, ξF
~vF

2πkBT

√
~D
Ez

Coherence oscillation length in an exchange field, ξosc
~vF
2Ez

√
~D
Ez

Phase oscillation length in an exchange field with Rashba SOI, ξzSO π(~vF)2

2Ezα
( 6π~6D
τm∗2Ezα3 ) 1

3

Table I.1 Characteristic length scales for the proximity effect. The three first lines
are taken from Ref. [65]. The first line is the superconducting coherence length in the
superconductor. On the normal side, for the same diffusion coefficient, this length is
longer as the critical temperature is replaced by the actual temperature. For the last
line, the phase oscillation length corresponds to the junction length necessary to induce
a phase difference of 2π across a Josephson junction. For the ballistic case Eq. (I.2) is
used, while for the diffusive case Eq. (IV.3) is used.

This anomalous current is related to the inverse Edelstein effect observed in metals
or semiconductors with strong spin-orbit coupling. While the Edelstein effect consists
in the generation of a spin polarization in response to an electric field[27], the inverse
Edelstein effect[79], also called spin-galvanic effect, consists in the generation of a
charge current by a steady spin polarization induced by a magnetic field[80].

The effect of spin-orbit interaction has also been investigated using the microscopic
theory describing the proximity effect in term of Andreev reflections. Spin-orbit in-
teraction alone modifies the Andreev bound states spectrum[81, 82]. Nevertheless, the

|Ψ|

x

arg(Ψ)

S N

|Ψ|

x

arg(Ψ)

S F

|Ψ|

x

arg(Ψ)

S F SOI

a b c

Fig. I.11 Sketch of the order parameter at (a) a superconductor-normal interface (b)
a superconductor-ferromagnet interface and (c) a superconductor-ferromagnet with
spin-orbit coupling interface.
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Josephson current, which results from the summation over the derivative of the occu-
pied Andreev states, is not affected by the modification of the Andreev spectrum[81]
in the absence of magnetic field. The anomalous Josephson current is found using
the Bogoliubov de Gennes equation by including both a Rashba spin-orbit interac-
tion of the form HR = α

~ (pyσx − pxσy) and the Zeeman term in the single particle
Hamiltonian. In Ref. [83] the Andreev bound state spectrum is calculated using the
scattering matrix formalism, it is shown in Fig. I.12a, for a Rashba spin-orbit para-
meter kα/kF = 0.15, where kα = m∗α

~2 . By increasing the magnetic field, the Andreev
states split and present a finite slope at ϕ = 0, resulting in an anomalous current at
zero phase difference Fig. I.12b.

Fig. I.12 Results from Ref. [83]. The Andreev states are calculated in the short junc-
tion limit and in the ballistic regime L

l
= 1. The magnetic field is applied perpendicular

to the current. a The different current phase dependence are calculated for different
value of the parameter θB = gµBL/(~vF ), (top left) θB = 0, (middle left) θB = 0.1π,
(down left) θB = 0.35π, (up right) θB = 0.7π, (middle right) θB = 1.05π and (bot-
tom right) θB = 1.4π. b Josephson current for θB = 0 (solid), θB = 0.35π (broken),
θB = 0.7π (dotted) and θB = 1.4π (dotted borken lines).

The anomalous Josephson effect is not completely trivial to measure. When we
increase the current passing through a Josephson junction in an actual measurement, in
some ways, we increase the phase difference between the two superconductors forming
the junction. We measure simultaneously the voltage drop across the junction, which is
zero until the junction critical current is reached. When the critical current is reached,
the junction switches to a dissipative state and a finite voltage difference is measured.
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In the case of a usual current phase relation IJ = Ic sin(ϕ), the critical current is
reached for a phase difference of π/2, while for an anomalous current phase relation
IJ = Ic sin(ϕ+ϕ0) the critical current is reached for ϕ = π/2−ϕ0. As we do not know
for which phase we get the critical current, the anomalous Josephson effect can not be
detected without requiring to phase sensitive measurement as described in chapter 4.
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II – Sample fabrication

In order to study the Josephson effect in a semiconductor, it is necessary to fabricate
superconducting contacts on its surface, spaced by a distance of the order of the
superconducting coherence length, which is about 100 nm. In this chapter, we describe
the fabrication procedure and the characterization of the semiconducting materials.
We conclude the chapter with the presentation of the experimental setup.

II.1 Electron beam lithography
Electron beam lithography allows to pattern a sample at the nanoscale. This tech-

nique is sketched, step by step, in Fig. II.1. We pursue with a general description of
each step of the process. The exact parameters corresponding to a specific sample are
detailed in the fabrication sections.

II.1.1 Coating
The lithography process starts by coating the substrate with poly(methyl metha-

crylate), referred to as PMMA. As shown in Fig. II.1ab, we deposit a PMMA droplet
on the substrate and use a spin coater that spins the sample at 4000 round per minute
for 30 s with an acceleration of 2000 rpm.s−1. The sample is then baked at 160 ◦C for
15 min. After this step, the PMMA surface is flat and the sample is ready to be loaded
in the scanning electron microscope. The choice of PMMA thickness depends on how
much material needs to be deposited and on the precision needed for lithography. It
can be reduced by diluting PMMA in anisol. Using the PMMA from an A6 bottle
yields a thickness of about 400 nm. The PMMA thickness should be approximately 4
times larger than the metal thickness deposited such that, after metal deposition, the
metal in contact with the substrate is well separated from the metal on the PMMA.

II.1.2 Exposure
As sketched in Fig. II.1c, we expose the PMMA resist to an electron beam in a

scanning electron microscope (SEM), from FEI Magelan. A software, namely Raith El-
phy Quantum, controls the exposure of pattern pre-defined in GDSII files. An electron

31
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Substrate

Electron beamPMMA deposition   Spin-coating
 4000 round per minute.

Development
in MIBK

Metal deposition Lift-o�
in acetone

Undercut

a b c

d e f

Fig. II.1 Lithography method. a A PMMA droplet is deposited on the substrate.
b A spin-coater is used to spin the sample at high speed ; then, the sample is baked.
c The resist is exposed to an electron beam in a scanning electron microscope. d The
exposed resist is washed away by a solution of MIBK. The undercut regions are due to
resist exposure by the spread of the electron beam. e A metal is deposited by e-beam
thermal evaporation in a Plassys evaporator. f The resist is removed by dipping the
sample in acetone, the deposited metal in contact with the substrate remains.

beam is focused along the microscope column and accelerated with a voltage of 27 kV.
The PMMA polymer chains exposed to the electron beam are broken and these expo-
sed regions will be removed during development. The exposure dose needed, D = ItD

S
,

depends on the electrical current, I, delivered by the SEM, as well as the exposure
time, tD, and the surface exposed, S. We use a dose of 230 µC.cm−2 for PMMA resist.
We can adjust the current depending on the precision of lithography. Indeed, a smaller
current allows a better focusing of the electron beam. However, it requires to increase
the exposure time, tD, to keep the exposure dose, D, constant. For small and precise
design, we use a low current of 13 pA and an exposure line spacing of 6 nm yielding
an exposure surface S of 6 nm × 6 nm. While for larger design, we use a current of
26 nA and a line spacing of 100 nm.

II.1.3 Development
After exposure, the sample is dipped in methyl-isobutyl ketone (MIBK) diluted

1 :3 in volume with isopropanol (IPA) for the development. This solution removes the
PMMA which has been exposed to the electron beam, as shown in Fig. II.1d. We dip
the sample in MIBK for 70 s. Then, we rinse the sample in IPA for 30 s and dry it using
a nitrogen gas flow. After development, the designed patterns are reproduced on the
sample as region without PMMA. They can be checked with an optical microscope.
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Then, the sample is loaded in an evaporator for metal deposition.

II.1.4 Surface cleaning and metal deposition

Lid

Shutter

Sample

e-beam

Metal

Crucible

Ar plasma
Valve

Metal
vapor

Sample
holder

Ion beam

a

b

c

Fig. II.2 Plassys evaporator. a Different programs for the ion milling and corres-
ponding etching rate on different materials. C and B denotes the sample position on
the Plassys sample holder, center and edge respectively. We usually use the program
QCL1 for 40 s. b Picture of the Plassys evaporator from MPQ Paris Diderot website.
c Sketch of the evaporator. The sample holder rotates. It is vertical during the ion
milling and horizontal for the metal deposition.

The sample is loaded in a Plassys evaporator shown in Fig. II.2b, for metal de-
position. When a vacuum < 10−6 mbar is reached in the evaporator chamber, we
use the Plassys Argon plasma to clean the surface. Different ion milling programs are
listed in Fig. II.2a, we typically use the weak argon milling program QCL1 for 40 s.
Without breaking the vacuum, we subsequently deposit the desired metal as sketched
in Fig. II.1e. To do so, the metal, contained in a crucible, is heated with an electron
beam and starts to evaporate on the sample as shown in Fig. II.2c. We use different
evaporation rates depending on the metal : for Ti 0.2 nm.s−1, for Au 0.3 nm.s−1 and
for Al 1 nm.s−1. This large evaporation rate for Al is known to make good supercon-
ducting Al grains. We always start with the deposition of a small Ti layer (5 nm) as Ti
is reactive and improves the adhesion of the metal to the substrate. The evaporated
thickness is precisely measured with a quartz crystal. When the desired thickness is
reached, a shutter protects the sample from further deposition. After this step, the
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deposited metal is present on top of the remaining resist and on the sample surface,
where the resist has been removed, as shown in Fig. II.1e.

II.1.5 Lift-off
The resist is removed by dipping the sample in acetone for 5 min in the case of

a thick resist (≈400 nm). For thinner resist (≈100 nm), one should wait for several
hours in order to remove the resist. We can see that the metal on top of the resist
crumples in acetone as the resist is washed away. We use a pipette to induce a current
flow in the acetone which lifts off the metal layer on top of the resist. The deposition
of a thin (5 nm) Ti adhesive layer helps the metal, in contact with the substrate, to
stick to the sample. We rinse the sample in IPA and dry it using a nitrogen gas flow.

II.1.6 Correction of the proximity effect

2 µm

Without proximity 
e�ect correction

With proximity 
e�ect correction

Dose factor = 1 Dose factor = 2.6 Dose factor = 1.4

a b

Dose factor = 1.9

Fig. II.3 E-beam proximity effect correction. GDSII datafile containing the
design of a device for lithography. a Without proximity effect correction, the exposure
dose is the same in each points of the design. We start the lithography with a dose of
230 µC.cm−2. b With proximity effect correction, the exposure dose is adjusted. We
start the lithography with a dose of 90 µC.cm−2. At the edge of the design (red), the
dose delivered is 90×2.6=234 µC.cm−2. In the center (blue) it is 90×1.4=126 µC.cm−2.

After the development procedure, section II.1.3, the developed pattern can be larger
than the pattern which has been scanned with the electron beam due to the exposure
proximity effect : During exposure, the primary electrons incident on the resist lead to
back-scattered electron by the substrate. These secondary back-scattered electrons lead
to a subsequent unintentional exposure of the resist. This effect is large for substrate
made of heavy nuclei elements because the substrate back-scatters electron with a large
scattering angle. It can be corrected by modifying the exposure dose of the design.
Indeed, due to the proximity effect, the center of the design needs less exposure than
its edges. It is comprehensive as the edges have less nearest neighbors exposed to the
electron beam. Therefore, the dose needs to be increased at the edge of a design and
decreased in its center. We use a module of Raith quantum elphy software to correct
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the proximity effect when a high precision lithography is needed. A GDSII datafile
containing a design without and with proximity effect correction is shown in Fig. II.3a
and b, respectively. The proximity effect correction takes some parameters as input
which depend on the resist used, its thickness, the substrate and the acceleration
voltage used during lithography.

II.2 Connections to the devices
After fabrication, the samples consist in nano-circuits connected to microscopic

metallic pads. We can test the sample resistances at room temperature using tip probes
connected to measurement instruments in a glove box filled with argon, see section
II.5.1. Once a sample is ready to be measured at low temperature, we glue it on a chip
as shown in Fig. II.4. We use a wire-bonder to make connections between the chip
and the microscopic metallic pads on the sample. These nano-devices (especially the
nanowires) are extremely fragile. Therefore, all connections to these devices must be
kept at the same potential to avoid unintentional potential differences and currents
which would damage the devices. To do so, a first set of connections is made to connect
all connections of the chip together. Then, the chip connections are connected to the
sample. Once the sample is connected to the dilution fridge, we remove the first set of
connection to address separately the different connections on the sample, as shown in
Fig. II.4.

We now pursue with the description and characterization of the semiconducting
materials as well as the description of the final designed fabrication process for each
device.

II.3 InAs Nanowire devices

II.3.1 Growth and Crystal structure
The InAs nanowires (NWs) are provided by J.C. Harmand from the Center of

Nanosciences and Nanotechnologies (C2N). They are grown by the vapor-liquid-solid
mechanism in a molecular beam epitaxy chamber[84, 85]. Catalyst nano-particles of
Au are deposited on a GaAs substrate and remain liquid during growth. The atoms
of In and As forming the gas in the chamber are deposited preferentially on the liquid
droplet. Thereby, crystalline NWs grow on the droplet. The size of the Au nano-particle
determine the NW diameter. The InAs NWs studied in the next chapter are doped
with silicon atoms during growth.

InAs is a semiconductor of the III-V family. In bulk crystals and thin films it has a
zincblende crystal structure, as shown in Fig. II.5a, and a direct band gap of≈ 350 meV
at the Γ point which corresponds to the Brillouin zone center. Nevertheless, it is
conducting due to the bending of its electronic energy band at its surface that leads to a
surface accumulation layer of charges. This two dimensional electron gas is widely used
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Sample holder

Epoxy

Chip

Sample

Fig. II.4 Picture of a sample mounted on the sample holder. The sample is
glued to a chip. Electrical connections are made with a wire bonding machine and are
represented in red, green and white. The red connections are done first to insure that all
sample connections stay at the same electrical potential. This insures that the sample
does not suffer from a potential difference during the wire bonding or when we plug it
on the cryostat. These red connections are removed once the sample is connected on
the cryostat. Connections to the sample are represented in white. A connection is also
made to the gold below the sample, represented in green. This allows to apply a gate
voltage or a radio frequency signal to the sample via capacitive coupling. For the gate
voltage, an electrical connection is made with epoxy between the doped substrate and
the gold below the sample.

in electronic devices such as transistors since the electronic density can be adjusted
by a gate voltage. Furthermore, it allows to make electrical contacts with negligible
contact resistance due to the absence of Schottky barrier at the semiconductor/metal
interface, as it is required to observe the Josephson effect. These properties have led
to the observation of a quantized conductance which is doubled by Andreev reflection
when a quantum point contact is fabricated at a InAs/Aluminum interface[86].

In a NW form, InAs can be found in the wurtzite crystal structure, shown in
Fig. II.5b. This structure is often observed in III-V NWs[88, 89], instead of the usual
zincblende lattice of thin films and bulk crystals. In wurtzite InAs NW, the energy
gap at the Γ point has been found to be enlarged by ≈ 60 meV compared to the bulk
zincblende phase[89, 90]. The effective mass value at the bottom of the conduction band
is expected to increase by 20 % for the wurtzite phase compared to zincblende[91]. In
the next chapter, we use the effective mass of bulk InAs.
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a

b

c d

10 nm

Fig. II.5 Structure of the MBE grown InAs nanowires. a Crystallographic
structure of InAs drawn with Vesta[87]. The structure is imported from the Crystal-
lography Open Database (COD). Bounds between As (purple) and In (yellow) are
represented. InAs bulk crystals form in the zincblende crystal structure. b In III-V
semiconducting nanowires, the wurtzite crystal structure is often found, in contrast
with bulk and thin film materials where only the zincblende phase is observed. Here,
the wurtzite crystal structure of ZnS is imported from COD. c Transmission electron
microscopy (TEM) image of an InAs nanowire. d Fourier transform of the TEM image.
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The transmission electron microscope (TEM) image in Fig. II.5c shows the crys-
talline nature of a large NW (diameter 100 nm) not doped with Si. We could study
this large NW by TEM as the transfer of large NWs from their growth substrate can
be done simply by scratching the growth substrate on top of a TEM metallic grid.

Previous study has shown that InAs NWs become insulating below a typical dia-
meter of 50 nm[92]. The NWs measured at low temperature in the next chapter are
shown in Fig. II.6a, their diameter is about 20 nm and are conducting at low tem-
perature because they are doped with Si. We did not study them with TEM as the
transfer from their growth substrate is not as simple as for the large NW, probably
because they are more strongly bound to their substrate by Van der Waals forces.

II.3.2 Fabrication
In this section, we will detail the fabrication of a nanowire (NW) device which is

done in four steps :
- Preparation of the substrate.
- NWs transfer on the substrate.
- Localization of the NWs.
- Deposition of metallic contacts on the NWs.
We begin with the substrate preparation which is a doped silicon wafer covered with

a 300 nm thick silicon dioxide layer. Before transferring the NWs on that substrate, a
first lithography is performed to pattern alignment gold marks which are essential to
localize the NWs. Therefore, 9 grids of 10×10 small, ≈1 µm, crosses are patterned on
the substrate, these crosses are shown in the optical microscope image in Fig. II.7b.
During this lithography, 8 large gold marks of 100 µm are patterned at the corners of
the chip to be able to align with the sample during the next lithography step, where
we will pattern electrodes on the NWs. We also pattern large gold pads, as shown in
Fig. II.7a, during this lithography. We will do the wire bonding of the sample on these
large pads when the device is finished. This first lithography is done with PMMA of
thickness 400 nm. The small crosses are done with a write-field of 25 µm at a current
of 13 pA. The large crosses and pads are done with a write-field of 100 µm and a
current of 26 nA. After this first lithography the PMMA is developed as described
in section II.1.3 and loaded in the Plassys evaporator. Before metal deposition, the
sample surface is cleaned in the Plassys for 3 min using the weak argon milling program
QCL1, as described in section II.1.4. Then 5 nm of Ti and 75 nm of Au are deposited.
The resist is then removed as described in section II.1.5.

We can now transfer some NWs from their growth substrate to the prepared Si
substrate. To do so, we use a polydimethylsiloxane (PDMS) stamp. PDMS is a soft
material, when it is submitted to a plasma it becomes sticky due to the creation of
free radicals at its surface and can be used to grab nano-objects. We let a small cube
of PDMS in a plasma cleaner (O2-Ar) for 5 min at the lowest power. Then, we stamp
the GaAs growth substrate and the Si substrate several times, as shown in Fig. II.6b.
This procedure transfers some nanowires on the Si substrate.
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Fig. II.6 Nanowire transfer from their growth substrate to a Si/SiO2 sub-
strate. a Scanning electron microscope image of the Si doped InAs nanowires on
their growth substrate. The scale bar is 200 nm. b Picture of the nanowire transfer. A
PDMS stamp is used to transfer the nanowires. c Scanning electron microscope image
of the Si/SiO2 substrate. Alignment crosses are patterned on this substrate to localize
the nanowires (barely visible on that scale).

Once the NWs are on the substrate of interest, we image the sample with the SEM
with a low current of 13 pA and voltage of 5 kV to avoid carbon contamination. The
SEM software provides an automatic acquisition of 225 images of the sample. Each
image size is 25µm×25µm, one is shown in Fig. II.6c. A couple of well isolated NWs are
selected from these images (9 to 18 per chip). The corresponding images can be open
with the lithography software (Raith) and the lithography design is drawn directly on
the image.

The second lithography step to pattern the aluminum contacts on the NWs is
performed with PMMA diluted in anisol to get a PMMA thickness of 200 nm after
spin-coating, see section II.1.1. This lithography requires a high precision, therefore,
it is done with a small current of 13 pA to have the electron beam well focused and
with a write-field of 25 µm × 25 µm. This write-field size corresponds to the surface
over which the electron beam can be oriented using the lenses of the SEM. If a design
is larger than the writefield size, the SEM plate needs to be mechanically moved with
piezoelectric motors in order to complete the exposure. This mechanic motion is precise
within 200 nm which is not enough to aim correctly the NW. Therefore, we use the
motor to align the SEM with the crosses shown in Fig. II.6c, then, without requiring
to the plate motor, we can start the exposure procedure. This procedure needs to be
repeated for each NWs that we have choose to connect on the sample. When it is done,
the PMMA is developed as described in section II.1.3. Before metal deposition, the NW
surface is cleaned in the Plassys evaporator for 45 s using a weak argon milling program
QCL1 which parameters are shown in Fig. II.2a. Without breaking the vacuum, 5 nm
of Ti and 60 nm of Al are deposited. The PMMA is lifted off in acetone as described
in section II.1.5. Some optical and SEM images of the final devices on different scales
are shown in Fig. II.7.

We reproduced the same fabrication procedure to fabricate electrical contacts on
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2 µm
200 nm

a b

c d

Fig. II.7 Nanowire devices on different scale. a Scale bar : 50 µm. Optical image
showing the large gold pads on which the wire bonding is done. The gold crosses present
at the corners of the image are used for a first alignment procedure during lithography.
These gold pads and alignment crosses are done in the first lithography prior to the
nanowires deposition. b Scale bar : 10 µm. The smaller gold crosses are used for a
precise alignment during lithography. The four gold crosses surrounding the selected
nanowire are pictured during the alignment procedure, thus the resist is removed on
these crosses and the metal is also deposited on them. The connections between the
large gold pads and the smaller electrodes on the nanowire are visible. c Scale bar :
2 µm. Scanning electron microscope image of the nanowire contacted with multiple
aluminum electrodes. d Scale bar : 200 nm. A narrow InAs nanowire of 20 nm diameter
is contacted with metallic electrodes spaced by 100 nm.
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Sb2Te3 colloidal nanoplates grown in solution at the INSP by the group of E. Lhuillier.
Sb2Te3 is a three dimensional topological insulator similar to Bi2Se3 described in the
next section. Electrical transport properties of such colloidal particles are usually probe
by deposition of a bunch of particles between two electrodes, which makes the distinc-
tion between the particle itself and the contact between different particle difficult. We
manage to contact electrically a single particle and to show that it was p-doped as
reported in Ref. [93] and shown in Fig. II.8.

Fig. II.8 Sb2Te3 colloidal nanoplate device. The gate voltage VGS is applied on
the metallic side of the SiO2/Si substrate on which the nanoplate is deposited. The
conductance measured at zero bias shows a decrease with increasing gate voltage which
confirmed the p doping of the material.

II.4 Bi2Se3 thin film devices

II.4.1 Growth and Crystal structure
The Bi2Se3 thin films are provided by the INSP. Their are gown in a multichamber

molecular beam epitaxy (MBE) on GaAs substrate. The thickness of the film is ato-
mically controlled by x-ray reflectivity measurements. Following growth, in the MBE
chamber, the samples are capped with a Se protective layer to avoid exposure of the
Bi2Se3 surface to air.

Bismuth (Bi) is the heaviest stable element of the periodic table (Z=83) and there-
fore has a strong spin-orbit interaction, see section I.1.2. It is metallic and its electronic
configuration is 6s26p3. Selenium (Se) is an element of the oxygen family, it is insula-
ting, its electronic configuration is 4s24p4. Together, these two elements form the V-VI
semiconductor Bi2Se3.

Bi2Se3 crystal structure is drawn with VESTA[87] in Fig. II.9a, it is rhombohedral
with the space group D5

3d (R3̄m). The crystal is centrosymmetric because it contains
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inversion centers where the parity transformation leaves the crystal lattice invariant. 1

Bi2Se3 has a layered structure. A quintuple layer (QL) consists in 5 atomic planes
where each plane contains the same element (Bi or Se). It corresponds to a thickness
of ≈ 1 nm. Chemical bonds form within a QL between the Bi and the Se atoms, the QL
are weakly sticked together by van der Waals forces. The layered structure is observed
on the transmission microscope image in Fig. II.9c. The X-ray diffraction spectrum
of the Bi2Se3 thin film grown on GaAs, shown in Fig. II.9d, can be compared with
the spectrum of GaAs and Bi2Se3 generated using the Vesta software. The measured
spectrum shows the peak expected for both material separately.

To calculate the band structure of Bi2Se3, one considers the outermost shell of
Bi and Se which are p orbitals. If each elements are considered separately, the Se p
orbitals have a lower energy than the Bi p orbitals, because Se has less electron than
Bi. Nevertheless, in a Bi2Se3 crystal, a Se p orbital have a higher energy than a Bi p
orbital due to crystal field splitting and spin-orbit coupling[94]. This is a key signature
of the topological insulator phase in Bi2Se3 and its related compounds, Bi2Te3 and
Sb2Te3. This topological phase is characterized by a bulk band gap of 0.3 eV and
gapless Dirac states at the material surfaces. Furthermore, these Dirac states have
their spin locked perpendicular to their momentum such that, at the surface, a given
momentum corresponds to a unique spin. The band gap and the Dirac state are present
at the Γ point in reciprocal space which corresponds to the Brillouin zone center. An
angle resolved photoemission spectroscopy (ARPES) spectra from Ref.[33], is shown
in Fig.II.10. It shows the Dirac cone at the surface of a Bi2Se3 crystal. It also shows
that the Fermi level is well in the conduction band. A large Rashba splitting of the
conduction band is observed after 8 hours after cleaving in UHV. The Dirac cone and
its spin texture have been observed by ARPES with circularly polarized light in the
Bi2Se3 thin films grown by the INSP[49].

II.4.2 Fabrication
The fabrication of Josephson junctions on Bi2Se3 thin film is done in three steps :
- Contact the Bi2Se3 with superconducting electrodes.
- Isolate electrically the Bi2Se3 area containing the Josephson junction from the

rest of the film, by etching.
- Connect the junction to large metallic pads for the wire bonding.
We begin with the first lithography, performed to pattern the Josephson junction

on the thin film and alignment crosses for the next lithography steps. As the super-
conducting electrodes defining the Josephson junction can be relatively wide (several
µm) and spaced by a small distance (100 nm), we correct the exposure proximity effect
for this lithography, as detailed in section II.1.6. We use PMMA diluted in anisol to
get a PMMA thickness of 200 nm after spin-coating, as described in section II.1.1. We
develop the PMMA by dipping the sample in MIBK for 55 s. Then, the Se protecting

1. The parity transformation consists in reversing the three spatial directions x,y,z into -x,-y,-z.
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Fig. II.9 Structure of the MBE grown Bi2Se3 thin films. a Crystallographic
structure of Bi2Se3 drawn with Vesta[87]. The structure is imported from the Crys-
tallography Open Database. Bounds between Se (blue) and Bi (gold) are represented.
A quintuple layer (QL) consists of 5 atomic planes. Van der Waals interaction weakly
coupled the QLs together. b Powder diffraction pattern generated with Vesta. (Top)
GaAs. (Down) Bi2Se3. c High-angle annular dark-field scanning transmission electron
microscopy (HAADF-STEM) cross-section image of Bi2Se3 film with 12 quintuple
layers ( 1 QL ≈ 1 nm). Each QL is delineated by the fringes with darker contrast
located between QL. d X-ray diffraction spectrum showing the crystalline structure
of the films on the GaAs(111) substrate with highly directed 003-type reflections of
the Bi2Se3 film along 111-axis of GaAs. The (006) Bragg reflection is enlarged (in
insert) with Kiessig fringes (indicated by stars) which are used to determine the film
thickness, about 18 QLs for this film.
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Fig. II.10 ARPES spectra of a Bi2Se3 crystal from Ref.[33]. The sample is cleaved in
the ARPES chamber in UHV, the three curves represent different time after cleaving.
From left to right approximately : 20 min, 80 min and 8 hours. The Dirac cone where
the energy is linear in momentum is visible. On the right spectra, a large Rashba
spin-split of the conduction band is resolved.

layer present on the Bi2Se3 surface needs to be removed before metal deposition. The
first attempt to remove it was to heat the sample in the evaporator at 150 ◦C for
one hour and then deposit the metal. This approach leads to high contact resistance
between the electrodes and the Bi2Se3 and we did not observed Josephson current at
low temperature with this method. We did achieve to make good electrical contacts
by removing the Se capping layer by dipping the sample in a solution of Na2S diluted
(1.5 %) in NMF 1. The sample is loaded in the glove box, under nitrogen atmosphere,
after development of the PMMA resist. It is dipped with the PMMA in the Na2S
solution for 45s and rinsed in IPA. This procedure removes the Se capping layer from
the developed area. Then, inside the glovebox, the sample is locked in a waterproof
container to protect it from air during transport to the evaporator. Thereby, the Bi2Se3
surface is exposed to air only for less than a minute, which is the time needed to load
it in the evaporator. In the Plassys, the surface is cleaned by the ion milling program
QCL1, detailed in Fig. II.2a, for 40 s. Subsequently, 5 nm of Ti and 50 nm of Al are
deposited. For some devices, we deposit only 20 nm of Aluminum in order to increase
the parallel critical field of the superconducting electrodes. The resist is then lifted off
in acetone, see section II.1.5. After this step, aluminum electrodes spaced by 100 nm
define Josephson junctions on the Bi2Se3 as shown in Fig. II.11.

As all the thin film surface is conducting, each Josephson junctions have to be
isolated electrically from the rest of the sample. This is done by etching the Bi2Se3

1. 75 mg of Na2S in 5 mL of NMF gives a good amount of solution.
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Fig. II.11 Josephson junction device. Left Sketch of a device section showing
the different material layers. Right Scanning electron microscope image showing a
top view of a Josephson junction device.

area around each junction. During etching, the areas containing Josephson junctions
are protected by a resist mask. To do so, a lithography is performed using a negative
tone resist, in contrast with PMMA which is a positive resist. In the case of a negative
resist, the areas exposed to the electron beam are not removed by the developer. It is
the unexposed areas which are removed. We spin-coat the negative resist ma-N 2403
at 3000 rpm for 30 s. This yield a resist thickness of 300 nm. The resist is then baked
at 90 ◦C for 1 min. As ma-N resist is photosensitive, the spin coating is done at the
ENS, in a clean room free from UV light. In the SEM, the exposure of the resist to the
electron beam, see section II.1.2, is done with a current of 26 nA and an acceleration
voltage of 20 kV. After lithography, the resist is developed at the clean room free from
UV light, in a solution of MIF for 55s. Then, the sample is rinsed in deionized water
for 3 min. As the resist does not stick strongly to the sample, it should be dipped
in the solution softly. After development, the resist can be exposed to UV light. The
etching of the sample area which is not protected by the resist is done in a reactive
ion etching chamber, see Fig. II.12. We use first a physical etching program with Ar to
etch the Bi2Se3. This etching also leads to an unwanted polymerization of the ma-N
resist. This polymerized resist can not be fully removed with acetone. Therefore, in
the RIE chamber, a second chemical etching program is used to remove the resist top
layers which have been polymerized, it is done with O2 which reacts with the organic
resist. Finally, the ma-N protective resist is removed by dipping the sample in acetone
for 5 min at 60 ◦C after which the sample is rinsed in IPA for 2 min.

The Josephson devices are now isolated electrically and ready to be connected
with large gold electrodes, which allow to wire bond the sample. This last lithography
step is done with PMMA, see sections II.1.1, II.1.2 and II.1.3. In addition to large
pads connected to the devices, we also pattern large pads not connected near the
junction for electrolyte gating, as detailed in chapter 4. After development, before
metal deposition, the surface is cleaned using the evaporator Ar ion milling program
QCL1 for 3 min. This step is important to remove some, Al2O3 oxide that forms on
top of the aluminum, in order to have a good electrical contact between the gold and
the aluminum. Then 5 nm of Ti and 75 nm of Au are deposited. The resist is removed
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Fig. II.12 Etching process. a Picture of the reactive ion etching controller. Etching
is monitored by a laser beam focused on the Bi2Se3. The intensity of the reflected
beam is shown in blue. During etching the intensity changes due to change in the film
thickness, when it becomes constant, all the Bi2Se3 has been etched and we stop the
plasma. b Sketch of the etching showing the Bi2Se3 and the devices protected by a mask
of ma-N resist (purple). A physical etching with argon ion removes the unprotected
Bi2Se3 surface and the Se capping layer (not shown). c After the physical etching, the
resist is polymerized (black) and can not be removed by acetone. Therefore, we use a
quick chemical etching with O2 to remove the top resist which has been polymerized.
d The ma-N mask resist is removed by dipping the sample in hot acetone. e After the
acetone, the resist is well removed and the devices electrically isolated.

in acetone and the sample is ready to be wire-bond. A final device is shown on the
SEM images, Fig. II.13.

II.5 Measurement stations

II.5.1 Glove box
Samples are always kept in a glove box which contains a nitrogen atmosphere, in

order to protect them from oxidation. The glove box also contains a probe station
for rapid characterization. It consists in two metallic tips connected to measurement
instruments. The sample is placed under a binocular microscope and the tips are moved
using mechanical arms in contact with the sample electrodes. Thus, the sample two
point resistance can be measured at room temperature in the glove box. The samples
which show an appropriate resistance are wire-bonded and mounted on the dilution
fridge.
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a b

Fig. II.13 SEM images of devices. a Scale bar 100 µm. On these MBE grown films,
many junctions are fabricated and examined by SEM. The best junctions are selected
and connected by Ti5 nm/Au75 nm electrodes. b Scale bar 10 µm. The white grains
at the surface are Se grains. Before deposition of the Al electrodes (dark area), the Se
capping layer is removed by chemical etching in an NMF solution of Na2S. Because of
the undercut in the PMMA resist, the area on which Se is removed extends beyond the
area where the Al electrodes are evaporated. This area where Se is removed, is clearly
visible and indicated by dashed red lines. After evaporation of the superconducting
Al electrodes, the Bi2Se3 film is etched to isolate the junction, the etched contour is
visible and highlighted by the dashed green line.

II.5.2 Dilution fridge

Fig. II.14 Left Design of a PCB with the Eagle software. Right Picture of the PCB
fabricated by a company, the square side size is 2 cm. It contains capacitance connected
to the ground to filter each measurements lines at 20 mK.

Measurements are done in a He3/He4 dilution refrigerator which allows to cool
down a sample to a temperature of 20 mK. A magnetic field up to 7 Tesla can be
applied at low temperature. The measurement lines are filtered with π filters at room
temperature at the input connections of the cryostat. They are also filtered on the
sample stage at 20 mK with 1 nF capacitances connecting the measurements lines to
the ground. These filters present at low temperature where designed using a software
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called Eagle. It generates a file which can be sent directly to a company which fabricate
PCB. A picture of the PCB containing the filters is shown in Fig. II.14. An RF cable
has been added to the dilution fridge to provide a microwave signal on the sample
stage. This RF line is attenuated if necessary. The measurement setup is shown in
Fig. II.15.
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Fig. II.15 Measurement setup. We usually sum and control an AC and a DC
current provided by a lock-in and a yokogawa, respectively, and measure the resulting
AC and DC voltage across the sample after amplification with a lock-in and a keithley,
respectively.
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InAs nanowire

As one reduces the size of a conductor, quantum confinement drastically modifies
its optical and electronic properties. This is the case in Quantum dots (QDs) which
present a discrete set of electronic energy levels. In these nanostructures, one can
tune the number of electron one by one and address single transitions between energy
levels[95]. QDs coupled to metallic leads have allowed to revisit the Kondo effect at
the level of a single spin, when the number of electrons on the QD is odd[96, 97].
When coupled with a superconductor (S), the discrete energy spectrum of a QD is
modified by Andreev reflections. Thereby, in S-QD-S junctions, Josephson current can
flow and be controlled by changing the QD occupancy between even and odd number
of electrons[75]. Devices based on Andreev QDs, such as nano-SQUIDs, promise im-
proved sensors to detect the magnetization reversal of single molecules attached on the
quantum dot[98]. Alternatively, they could be sensitive to atomic dopants implemen-
ted in the QD during growth. Andreev QDs are of fundamental interest as they can be
used to test random matrix theory[99]. Moreover, Andreev QD chains could become a
model system for realizing a Kitaev chain, where a one dimensional spin system with
superconducting correlations host Majorana bound states at its edges[100, 101, 102].
In this chapter, we present a study of Andreev QDs fabricated with small-diameter
(30 nm) Si-doped InAs nanowires where the Fermi level can be tuned across a mobi-
lity edge separating localized states from delocalized states. While at deeply localized
levels only quasiparticle cotunneling is observed, for slightly delocalized levels Shiba
bound states form and a parity-changing quantum phase transition is identified by
a crossing of the bound states at zero energy. Finally, in the metallic regime, single
Andreev resonances are observed. The study is reported in Ref.[103]. We conclude the
chapter with a discussion on recent experiments related to Andreev QDs physics.

49
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III.1 Coulomb blockade transport

III.1.1 Single electron transistors
Electron-electron interaction plays a major role in nanostructures weakly coupled

to their environment. It is particularly the case when the Coulomb or charging energy,
Ec, dominates all other energy scales of a system. The Coulomb energy accounts for
the electrostatic energy rise when one adds an excess charge to a metallic island. If
the island contains N electronic charges its electrostatic energy is given by :

Eel(N) = e2N2

2C
with C the island capacitance. Adding one charge on the island requires an energy,
E(N + 1) = Eel(N + 1)−Eel(N) = e2

C
(N + 1/2), where Ec is defined as the Coulomb

energy :
Ec = e2

C

Thereby, charge transfer is suppressed when the island is connected to two electrodes
subject to a potential difference, VD, such that eVD < Ec. This is the regime of Coulomb
blockade.

At low temperature, we observed that the nanowires (NWs) coupled to metallic
leads are naturally in the regime of Coulomb blockade without the need of engineering
tunnel barriers between the metallic contacts and the NWs. Coulomb blockade takes
place whenever the charging energy, Ec, corresponding to the energy difference, E(N+
1)−E(N), is larger than thermal broadening kBT . Charging the NWwith an additional
charge takes a time, ∆t = RC, where R is the NW resistance. Heisenberg’s uncertainty
relation, Ec∆t > h, sets a lower limit on the charging energy that can be resolved
through the condition, R > h

e2 . Therefore, the charging energy of a system can be
observed if the device resistance is higher than the resistance quantum, RQ = h

e2 ,
which is the case in this study.

In this section, we will focus on the features of the Coulomb blockade regime. They
are measured with a large AC bias corresponding to VAC ≈ 50 µV and on a large drain
voltage range, making the superconducting features barely visible.

The device is sketched in Fig. III.1a. The potential along the NW is modified by
the presence of metallic electrodes and the region in between defines a Quantum Dot
(QD). A scanning electron microscope image of a NW device is shown in Fig. III.1b.
The gate voltage changes the energy spectrum of the QD, EN , via capacitive coupling.
The energy of the QD, EN , depends on the number N of electrons on the QD. At
low temperature the electronic levels in the left L (right R) lead are filled up to the
chemical potential, µL (µR), as shown by the gray region in Fig. III.1cd. The QD
chemical potential, µN , is defined as the energy required to add one electron in the
QD : µN(VG) = EN(VG) − EN−1(VG). A change in gate voltage, ∆VG, allows to tune
the QD chemical potential, µN(VG + ∆VG) = µN(VG) + |e|αG∆VG where αG is the
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Fig. III.1 Coulomb peaks. a Sketch of the device. The nanowire is deposited
on a silicon dioxide layer on top of a doped silicon substrate. It is contacted with
Ti(5nm)/Al(50nm) electrodes. We inject a current, IDC + IAC and measure the resul-
ting voltage across the device, VDC + VAC . A DC gate voltage, VG can be applied on
the doped Si substrate. b Scanning electron microscope image of a nanowire device.
c Energy level structure of the system when transport is blocked. The left (L) and
right (R) metallic leads have a continuum of energy level filled with electrons up to
the chemical potential, µL = µR = EF. The QD have a discrete set of energy levels. d
When the QD and the electrode chemical potentials are aligned, a current can flow.
e Conductance, dI/dV = IAC/VAC measured at zero DC bias, as a function of gate
voltage, VGate. The conductance exhibits sharp peaks when the QD and the electrodes
chemical potential are aligned.
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so-called lever arm of the gate. At zero drain bias, VD = 0, a low AC excitation
provided by the lock-in allows to probe the conductance of the QD as a function
of gate voltage, VG. The conductance peaks observed experimentally, in Fig. III.1e,
correspond to the situation where the chemical potential of the QD is aligned with
the chemical potential of the electrodes. These peaks correspond to charge degeneracy
points where the energy required to add one electron in the QD, µN+1(VG) is equal to
the energy to remove or add an electron to the left (right) contact, µL (µR). Therefore,
electron transport through the QD is possible as long as it occurs electron per electron.
Indeed the energy difference µN+2, corresonding to the addition of two electrons in the
QD, is significantly higher than µN+1 because of the large charging energy Ec.

The separation between two Coulomb peaks in gate voltage ∆VG can be linked
with the energy states of the QD, EN , providing that we know the lever arm, αG. The
lever arm can be determined by applying a voltage VD on the QD, which is what we
do in the following.

Due to the large charging energy of the device, the number of charges, N , on the
QD is fixed and can be tuned one by one. Therefore, such devices are called single-
electron transistors. Their behaviour can be understood from classical arguments[104],
and basic quantities such as the charging energy, Ec, and the lever arm αG can be
obtained from their characteristics. Fig. III.2a shows different single electron transfers
between the NW and the left and right electrodes. We consider an anti-symmetric
applied bias such that VD

2 = VL = −VR. Also, we assume that both electrodes have the
same capacitance CL = CR = Ce which will be later justified. The electrostatic energy
is expressed :

Eel = e2

C
(N − q

e
)2

with the total capacitance C = 2Ce + CG and an induced charge q = CGVG which
depends only on the gate voltage VG. The change in energy due to an electron transfer
into the NW, (N + 1), and outside the NW, (N − 1) are written :

∆E±el (N) = Eel(N ± 1)− Eel(N) = EC(±N + 1
2 ∓

q

e
)

At T = 0 K the energy associated with an electron transfer, for example, from left
(FL) or to right (TR), must be negative :

∆EFL(N) = EC(N + 1
2 −

q

e
)− eVD/2 < 0

∆ETL(N) = EC(−N + 1
2 + q

e
) + eVD/2 < 0

∆EFR(N) = EC(N + 1
2 −

q

e
) + eVD/2 < 0

∆ETR(N) = EC(−N + 1
2 + q

e
)− eVD/2 < 0
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Fig. III.2 Single electron transistor device and Coulomb diamonds. a Single
electron transfer between the NW and the electrodes represented in red. FL(R) denotes
an electron transmitted to the NW from the left (right) electrode. TL(R) denotes an
electron transmitted, from the NW, to the left (right) electrode. b For a given number
of electron on the QD, N , the four energy conditions corresponding to the different
electron transfer are represented as dashed line. These conditions are fulfilled within a
diamond and transport can not occur in these regions. c Position of energy level that
allows a current to flow when a voltage, VDrain, is applied. d Conductance map as a
function of drain bias and gate voltage. Low conductance regions define diamonds in
the VG,VD plane.

These four conditions are represented as dashed line in Fig. III.2b for N = 0. For a
given N , the transport is blocked in a region of the V-q plane which has a diamond
shape. We can directly read the value of the charging energy Ec from the height in VD
of the Coulomb diamond. From Fig. III.2d we obtain, Ec = 2.6 meV. The capacitance
of the gate, CG = e

∆VG
= 1.10−18 F 1 is extracted from the separation between two

Coulomb peaks in gate voltage, ∆VG = 160 meV, at VD = 0. At the voltage threshold,
VT = −20 V where the conductance drops to zero in Fig. III.1, all the conducting
electrons have been removed from the QD. Therefore, we can estimate the electronic

1. This value is consistent with an estimation considering a parallel plate capacitor with a rectan-
gular QD, of area s = Ld, where L = 100 nm and d = 30 nm. Then, CG = εSiO2ε0s/dSiO2 = 5.10−19 F,
with εSiO2 = 3.9. The value obtained from Coulomb diamond is much more accurate since it does not
depend on the considered geometry.
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density at zero gate voltage from :

n = 4CGVT

eπLd2 = 1.8.1018 cm−3

.
In this picture we have assumed that the capacitance of both electrodes were the

same. This is justified because the Coulomb diamonds are symmetric with respect to
VD = 0. The capacitance model, detailed in the following, allows to describe a system
with CL 6= CR and accounts for the observation of non-symmetric Coulomb diamonds.

More importantly, we have neglected the discrete energy spectrum in the QD due
to quantum confinement of the electronic states. These effects are responsible for the
different diamond size observed in Fig. III.2d. A full quantum treatment of the problem
requires to solve Schrödinger equation,HNψ = Eψ, with the many-body Hamiltonian :

HN =
N∑
n=1

h(~rn) + 1
2
∑
n 6=m

V ( ~rm, ~rn) (III.1)

where h denotes single particle operators and includes a kinetic term, p2
n

2m , plus a
confinement potential, U(~rn). The Coulomb potential between two electrons V ( ~rm, ~rn) =

e2

| ~rn− ~rm| is responsible for the many-body nature of the problem. Nuclei do not appear
in this equation as it is written within the effective mass approximation. An approxi-
mation to handle the problem is given by the capacitance model which separates the
many-body part of the Hamiltonian from the single-particle part.

We will resume the main results of the capacitance model[21] which are useful for
the data analysis. The charge Q0 on the QD is related to the different electrostatic
potentials Vj by the equation :

Q0 =
3∑
j=0

C0jVj +Q
(0)
0

with j=0 denotes the QD, j=1 the gate electrode (G), j=2 the source (S) and
j=3 the drain electrode (D). The capacitance of the QD, C00, is related to the other
capacitors by C00 = −∑3

i=1C0i > 0. The total energy of the QD, E, is written as a
sum of the electrostatic term obtained from the charge, Q0, and the energies, ε(0)

n of
the single particle Schrödinger equation :

E(N) =
N∑
n=1

ε(0)
n + e2N2

2C00
+ |e|N

3∑
j=1

C0i

C00
(Vj − V (0)

j )

The electrochemical potential of the QD is defined as µN = E(N)−E(N −1). The
conductance peaks occur when µN+1 = µL = µR that is at :

VG(N + 1) = 1
eαG

(εN+1 + EcN − |e|
∑
i=2,3

αiVi − µR)
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with the gate voltage, VG = Vj=1, the charging energy, Ec = e2

C00
, and the lever arm

of the gate, αG = −C01
C00

. From this relation we can get the magnetic field dependence
εN(B) if we assume that the charging energy and the lever arm does not depend on
B :

VG(N)B − VG(N)B=0 = 1
eαG

(εN(B)− εN(B = 0)) (III.2)

Also, at zero magnetic field, the separation of two subsequent conductance peaks
contains both the single particle level separation and the charging energy :

∆VG = 1
|e|αG

(εN+1 − εN + Ec)

The different slopes of the Coulomb diamond boundaries represented as dashed line
in Fig. III.2c are denoted m1 and m2. Within the capacitance model their difference
gives the lever arm of the gate :

|m1 −m2| =
1
αG

The diamond boundaries intersect at VD = 1
e
(ε(0)
N+1 − ε

(0)
N + e2

C00
).

III.1.2 Excited state spectroscopy
At large negative gate voltages, we observed sharp conductance lines due to a

reduced coupling between the NW and the metallic electrodes. The first excited state
of the QD can be resolved, as shown by the red arrow in Fig. III.3a. The difference in
gate voltage, ∆VG = 50 mV, between this conductance line and the diamond boundary,
pointed by the black arrow, is linked to the difference between the first excited state
ε1N and the ground state ε0N through the relation :

∆VG = 1
|e|αG

(ε1N − ε0N)

We find for the lever arm, calculated from the capacitance model with the slopes
of the diamond boundaries, αG = 0.034, and the energy of the first excited state
ε1N − ε0N = 1.7 meV. An approximation for the mean level spacing of the single-particle
spectrum, δ = 〈ε1N − ε0N〉, is given by the density of states in the QD. The remaining
electronic density is estimated from the gate voltage separation between the Coulomb
peak and the voltage threshold where the NW is fully depleted, ∆VG ≈ 2 V, and,
n = 4CG∆VG

eπd2L
= 4.4.1016 cm−3. This corresponds to a Fermi energy of EF = 17 meV

calculated with the effective mass of InAs, m∗ = 0.026m0 with m0 the free electron
mass. The mean level spacing is obtained from the density of states ρ(EF) and the QD
volume :

δ = 4
ρ(EF)πd2L

= 1.8 meV
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Fig. III.3 Discrete energy spectrum due to quantum confinement. a
Conductance map as a function of gate voltage and drain bias. A Coulomb diamond
boundary is shown by the black arrow. Additional line due to quantum confinement in
the QD, is pointed by the red arrow. b Position of energy level showing the chemical
potential corresponding to the transition between a ground state and an excited state
of the QD. c Representation of the QD discrete energy spectrum En

N . The energy
depends on the number of electron N present in the QD. For a given N , the different
excited states are labelled by n. d Conductance map showing the diamond boundary
at zero magnetic field. Note that the two axes are interchanged with respect to figure
(a). d Same conductance map with a magnetic field applied perpendicular to the NW
axis, B = 7 T. The red dashed line shows the shift of the Coulomb node in gate
voltage. An additional conductance line is pointed by the red arrow, it is due to the
Zeeman splitting of the electronic states.
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which is very close to the experimental value.
As shown by comparing Fig. III.3d and e, under large magnetic field we observed a

shift of the conductance peak, ∆VG = 54 mV, represented by the red dashed lines. The
lever arm at zero field, αB=0

G = 0.038, and at B = 7 T, αB=7T
G = 0.034, changes by 10%.

We retain the value at zero field which is more precise due to sharper conductance
peaks. From Eq. (III.2), we find a shift in energy of εN(B = 7T )−εN(0) = αB=0

G ∆VG =
2 meV. Also the additional conductance line in Fig. III.3e, marked by the black dashed
line, is found at ∆VD = 2 mV from the diamond boundary. This exactly corresponds to
the energy shift we just calculate using the gate voltage shift. This line is not present
at zero field, see Fig. III.3d. It appears due to the Zeeman splitting of the electronic
level by the magnetic field 1. The Zeeman energy shift is Ez = 1

2gµBB. Thereby, we
can extract the value for the lande g-factor, we find g = 10 consistent with previous
study on InAs NW[105].

The energy spectra of QDs can be predicted when the number of electron in the
QD is low and when the confinement potential is well known. In other words when
the confinement potential U(~rn) which enters in Eq. (III.1) is optimized. Remarkable
agreements with theory has been obtained in InGaAs/AlGaAs quantum wells[106].

However, when the Thouless energy, ET = ~D
d2 > 4 meV, is larger than the mean

level spacing, the system becomes extremely sensitive to the boundary conditions and
the energy levels fluctuate around the mean level spacing value[107]. In that case, a
statistical description of the level spacing is given by random matrix theory.

III.2 Random matrix theory
As the typical mean level spacing is smaller than the Thouless energy, the ad-

dition energy will fluctuate as we sweep the gate voltage. The distribution function
describing these fluctuations can give information about the fundamental symmetries
present in the system. Within random matrix theory (RMT), the Hamiltonian, H, of
a system is written with a random set of matrix elements. However, it satisfies symme-
try requirements. Based on the work of Wigner[108], Dyson[109] showed that there is
three ensembles of random matrices defined in term of the symmetry properties of the
Hamiltonian 2. These correspond to the Gaussian orthogonal (GOE), unitary (GUE)
and symplectic ensembles (GSE). The ensemble which applies depends on the system
symmetries. For example, if the system is invariant under time reversal and under rota-

1. The vector potential ~A, associated with the magnetic field, can not affect the electron momen-
tum, ~p, because its component perpendicular to the NW axis, ~py and ~pz are forbidden at low energy.
Indeed, due to the boundaries of the NW, the wave vectors are discrete, ky,z = 2π

d ny,z. Assuming
a parabolic dispersion, E(ky) − E(0) = ~2

2m ( 2π
d )2 = 63 meV. This is much higher than all the ener-

gies involved in the experiment. We can estimate the typical cyclotron energy for a free electron at
B = 7 T, ~ωc = ~eB

m∗ = 30 meV.
2. There is now 10 ensembles identified in physical context[110] due to the consideration of additio-

nal symmetries. For example, quantum chromodynamics and superconductivity requires to consider
chiral and particle-hole symmetry, respectively.
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tion symmetries, the Hamiltonian is a real symmetric matrix and the ensemble which
applies is the GOE. With broken time reversal symmetry, the GUE applies. Finally,
with strong spin-orbit coupling, the GSE applies. The symmetries corresponding to
the three ensembles are summarized in Table. III.4 from Ref. [111].

Fig. III.4 From Ref. [111].

These different ensembles give different nearest-neighbor level spacing distribution
P (s), which can be compared with experiments. This function is the probability density
for two neighboring levels, εn and εn+1 having the spacing s. P(s) can be calculated
for the different ensembles[112]. An approximation commonly used is given by the
"Wigner surmises" which is exact for 2× 2 matrix :

Pβ(s) = aβs
βe−bβs

2

where a and b are constant, β depends on the ensemble. β = 1 for the GOE,
β = 2 for the GUE and β = 4 for the GSE. The β parameter characterizes the level
repulsion because it describes the probability density when the spacing s → 0, i.e
the probability to find two levels at the same energy. The spacing distribution for the
different ensembles is shown in Fig. III.5 from Ref. [112].

Thus, by identifying the probability density for the level spacing found experimen-
tally with a Wigner probability density Pβ(s), one can obtain information about the
system symmetries. Indeed, the probability density in our system is expected to be
Pβ=1 or Pβ=4 depending on the presence of spin-orbit scattering[107].
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Fig. III.5 From Ref. [112].

Fig. III.6a shows more than 140 Coulomb diamonds, measured on a large range
of gate voltage around VG = 0. At VD = 0, the spacing between two Coulomb peaks
in gate voltage ∆VG are extracted. From the lever arm obtained in Fig. III.2d near
VG = 0, we convert the spacing in gate voltage into an addition energy to add one
electron to the QD, ε = e∆VGαG. The corresponding histogram of level spacing is
shown in Fig. III.6b. This distribution is characterized by two maxima. One is at the
Coulomb energy Ec = 2.6 meV, the other at Ec + δ where δ = 1 meV is the mean level
spacing. δ can be estimated from the density of states ρ(EF) and the volume V of the
QD. We find δ = 1

ρ(EF)V = 1.1 meV with a Fermi energy of EF = 196 meV.
Adding one electron in the QD requires an energy ε = Ec + δ, adding a second

electron costs only ε = Ec in the case of spin degenerate single particle state. Therefore,
we expect a bimodal distribution[107] :

P (E) = 1
2(δ(E − Ec) + 1

2Pβ(E − Ec

2 ))

The distribution for β = 4 is shown as red dashed line in Fig. III.6b as an example.
Because of insufficient histogram resolution, we can not discriminate between the dif-
ferent Wigner distributions for the mean level-spacing. However, the dip in the proba-
bility density between Ec and Ec + δ shows a departure from a Poissonian distribution
which is characterized by P (0) = 1.

The Landauer formula for a single electronic mode, G = 2e2

h
T , relates the conduc-

tance to the transmission coefficient of the mode, T . In a system described by RMT, the
transmission coefficient, T , also follows a distribution related to the ensemble and to
the system symmetries. In Fig. III.6c, we extracted the distribution of the conductance
P (G) from the Coulomb peak heights. However, when the number of electronic mode
is larger than 1, which is the case at zero gate voltage, the different conductance distri-
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EC +< δ >E
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Fig. III.6 Statistics on the Coulomb peaks spacing and conductance fluc-
tuations. a Conductance map showing more than 140 Coulomb diamonds. The
conductance at zero drain bias VD = 0 is shown as a black continuous line. The
spacing between two Coulomb peaks in gate voltage is converted in an energy ε. b
Probability density to find an energy in the range ε + dε. The probability density is
peaked at the QD charging energy Ec. A second smaller peak is observed at Ec+δ. One
of the Wigner bimodal distribution is represented as a red dashed line. c Probability
density for the conductance.
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bution predicted by RMT, P (G), becomes almost equivalent, see Fig. 11 of Ref. [107]
and a comparison between theory and experiment is challenging. Nevertheless, this
broad conductance distribution indicates a fluctuating coupling parameter Γ between
the electrodes and the NW. The conductance peaks are broadened by finite lifetime
effect which depend on the coupling between the QD and the electrode. Therefore, Γ
can be obtained by fitting a conductance peak with a Breit-Wigner function[113]. The
large variation of Γ as a function of gate voltage will be important to understand the
superconducting properties of the device in the last section of this chapter.

Following the pioneered work of Anderson[114], which showed that a metal becomes
insulating by increasing disorder through a random on-site potential energy, random
matrix theory is now widely used to describe the metal insulator transiton.

III.3 Mobility edge
A particularity of these narrow nanowires (NWs) is that they can be driven across

a metal insulator transition with the gate voltage as shown in Fig. III.1e. This was
never reported before for InAs NWs. It is because the use of relatively thick NWs in
previous studies, d ≈ 100 nm prevent them from being fully depleted by a back-gate.
Indeed, the gate induced electric field is screened over the Debye length λD and the
NW can be fully depleted only if its diameter is such that : λD ≈ d.

Fig. III.7 From Ref. [92]. Diameter dependence of the resistance of InAs nanowires
at zero backgate voltage for different temperatures. The electrodes spacing is 1 µm.

Previous studies have shown that the conductivity and the mobility of InAs na-
nowires decrease with decreasing their diameters[115, 92]. In particular in Fig. III.7,
from Ref. [92], it is shown that InAs NWs becomes insulating below a typical diame-
ter of d=50 nm. By comparing the data point at d=45 nm and 30 K, R ≈ 7.104 kΩ
(measured with an electrode spacing of L=1 µm) with our NW resistance R ≈ 30 kΩ,
we find that the conductivity, σ = 4L

Rπd2 is, at least, 103 times larger than for undoped
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NWs. Thus, the NWs used for this study are conducting at low temperature due to
the Si doping. In other words, all the conduction electrons come from the Si dopants.
Assuming that each Si atom provides one electron, the density of Si dopants is equal
to the electronic density extracted from Coulomb peaks measurement. Then, the mean
dopant spacing is estimated, 〈r〉 ≈ 1

n(1/3) ≈ 9 nm. This average distance between do-
pants is smaller than the Bohr radius, a0 = 4πε0ε~2

me2 = 30.2 nm, with ε = 15.15. At
this high dopant concentration, it is expected that an impurity band is formed, as
expressed by the Mott criterion for metallicity, a0N

1/3
c ≈ 0.25.

When the impurity band is fully depleted by applying large negative gate voltage, a
metal insulator transition occurs. On the metallic side, kFl > 1 while on the insulating
side kFl < 1. The mobility edge is defined as the critical potential, µc where the metal
insulator transition occurs.

We now turn to the superconducting features of the device which have been obser-
ved across the metal insulator transition.

III.4 Superconducting correlations

The superconducting gap of bulk aluminum is known[116] to be ∆Al = 180 µeV.
Superconducting features manifest in the conductance of the device at low voltage
when eVD/2 < ∆Al. In this section, the conductance is measured with a low AC
excitation corresponding to Vac < 10 µV.

At low gate voltage, where the NW is nearly depleted, we observed a conduc-
tance peak at VD = 2∆/e, which corresponds to an effective superconducting gap
∆ ≈ 150 µeV, as shown in Fig. III.8b. This peak corresponds to elastic quasiparticle
cotunneling, where the peaks in the density of states of the two superconducting elec-
trodes are aligned, as sketched in Fig. III.8a. At this gate voltage, on the insulating
side of the metal insulator transition, the coupling between the NW and the super-
conducting lead is greatly reduced and the conductance is low. A conductance peak
at eVD = 2∆ is also expected when two superconductors are separated by a tunnel
barrier[50]. It is due to the sharp and large density of states in the superconductor
at the gap edges. The value extracted for the superconducting gap, ∆ = 150 µeV is
consistent with previous study, see for example the evaporated Al device in Ref. [117].

For larger gate voltage, in the metallic side of the metal insulator transition, above
the mobility edge, we observed an additional conductance peak at eVD = ∆ as shown
in Fig. III.8d. As no states are accessible in the superconductor at voltage, eVD < 2∆,
transport occurs through Andreev reflection, as sketched in Fig. III.8c, and peaks are
expected at eVn = 2∆

n
where n=1,2,3.. [118, 119] when the QD is well coupled with

the superconducting electrodes. Conductance peak at eVD = ∆ has been observed
in small SNS structures such as atomic contact[120], InAs NW[121], Insb NW[122],
carbon nanotube[123] and TI nanoribbon[124].
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Fig. III.8 Superconducting correlations. a When two superconductors are sepa-
rated by a barrier, a conductance peak is expected when the superconducting density
of states of the two electrodes align. It corresponds to an apply drain voltage such
that eVD = 2∆. b Conductance of the device as a function of drain voltage measu-
red at low gate voltage. c At low drain voltage, eVD < 2∆, transport occurs through
Andreev reflection where an electron is reflected as a hole, adding a Cooper pair to
the superconducting condensate. Conductance peaks are expected at eVD = 2∆

n
where

n=1,2,3,... d A conductance peak is observed at eVD = ∆, due to Andreev reflection
n = 2.

III.4.1 Ground state transitions
The sub-gap resonances (SGRs) are probed at voltage such that eVD < 2∆. Their

formation and their position in energy depends on the different energy scales : the
superconducting gap ∆, the coupling between the QD and the superconductor Γs, the
charging energy Ec and the energy of the QD level with respect to the Fermi energy
ε0[69]. In particular in our experiment, ε0 is tunable by the gate voltage. Furthermore,
the coupling Γs fluctuates for different region of gate voltage as it is linked[68] with
the normal coupling Γ, previously discussed.

For example, in the conductance map as a function of gate voltage, in Fig. III.9a,
we observed the SGRs across a charge degeneracy point of the QD, which correspond
to a Coulomb diamond node. As shown in Fig. III.9b the SGR conductance peaks are
shifted at lower voltage VD, but do not cross zero energy eVD = 0. At another Coulomb
node, such as the one shown in Fig. III.9c, the SGR crosses zero energy. This crossing
result in a conductance peak at VD = 0 as shown in Fig. III.9d. In the next section, we
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Fig. III.9 Evolution of sub-gap resonance with the gate voltage. The conduc-
tance maps a, c and the corresponding plots at selected gate voltages b, d show the
spectra of the Andreev QDot for two regimes of weak and strong coupling Γs, respec-
tively. In the strong coupling regime, only the conductance ridges at VD = ∆/e and
VD = 2∆/e are seen. In the weak coupling regime, SGRs form at energies below the
superconducting gap energy eVD < ∆. e Phase diagram of the S-QD-S system as a
function of the charging energy U, the QD level ε0, and the coupling to the lead Γs.
At large coupling Γs, only the singlet ground state can be observed upon changing the
gate voltage. At low coupling Γs, a parity-changing phase transition from the singlet
phase to the doublet phase is identified as a zero bias crossing of the SGRs.
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will see that the SGRs can also cross zero energy in the middle of a Coulomb diamond,
far from the charge degeneracy point. The crossing of the SGR at zero energy signal
a quantum phase transition of the Andreev QD ground state as shown in the phase
diagram, Fig. III.9e. At large coupling with the superconducting leads, Γs > Ec, the
ground state of the QD is a singlet non-degenerate BCS like states. In this regime,
the SGRs result from Andreev reflection and no zero bias crossing are expected as
a function of gate voltage. At low coupling Γs < Ec, the ground state depends on
the relative position of the QD level ε0 with respect to the Fermi energy and zero
bias crossing can occur as a function of gate voltage. By equating the energy of the
BCS singlet state and the energy of the spin degenerate doublet state one can draw
a line in the parameter space which separates the two ground states[68], as discussed
in chapter 1. This line defines the phase diagram in Fig. III.9e. Furthermore, at low
coupling, the energy of the SGR depends on the ratio between the superconducting gap
and the Kondo energy, kBTk. 1 Indeed, in the absence of Kondo screening kBTk << ∆,
a local moment due to the electron spin is present on the QD when it contains an
odd number of electron. In this regime, a Shiba bound state is formed on the QD
and is characterized by a conductance peak at zero voltage. The interaction between
local magnetic moments and BCS states has been addressed theoretically by Yu, Shiba
and Rusinov[76]. Shiba states have been observed by STM at magnetic impurities on
top of superconductor[77, 125]. Their behaviour in a magnetic field has been observed
in a NS junction on a InAs/InP NW[126]. An additional way to probe the singlet-
doublet phase diagram is by controlling the phase between the two superconducting
electrodes[127]. Remarkable agreements between theory and experiment have been
obtained in nano-SQUIDs[70, 71].

III.4.2 Shiba states across the mobility edge
The SGRs have been observed across the metal insulator transition as shown in

Fig. III.10a. On the metallic side of the transition at high gate voltage VG > −19.4 V,
the drain-voltage positions of the SGRs fluctuate due to fluctuation in the coupling
parameter Γs. Across the transition, the four last QD levels, Fig. III.10bcde, show
a remarkable evolution from the intermediate coupling regime to the weak coupling
regime[128]. In Fig. III.10b, a peak corresponding to Andreev reflection is observed
at VD = ∆/e. It corresponds to a relatively large coupling Γs on the phase diagram
shown in Fig. III.9e where the system is in the BCS singlet state and no ground
state transition is expected as a function of gate voltage. In Fig. III.10c and d, a Shiba
resonance corresponding to a zero bias peak is resolved. For these more localized levels,
the coupling Γs is low and the system ground state is switched by the gate voltage
across a charge degeneracy point. The last localized level in Fig. III.10e is in the weak-
coupling regime where only quasiparticle tunneling is observed as conductance peaks
at VD = 2∆/e.

1. The Kondo temperature, Tk, can be expressed as a function of Γs and Ec[68].
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Fig. III.10 Superconducting correlations across the metal insulator tran-
sition. a Conductance map as a function of drain bias and gate voltage. bcde Enlar-
gements on the last QD levels. The waterfall plots are shown for the range indicated
by vertical red bars on the corresponding color maps. The shifts between curves are
respectively of 0.01, 0.02, 0.1, 0.01 e2/h. b On this level, only conductance peaks at
VD = ∆/e are observed, which are the signature of Andreev reflections and correspond
to a large coupling Γs in the phase diagram. cd On these two more localized levels,
the crossing of the conductance peaks at zero bias corresponding to the ground state
transition is observed. e Finally, on the last localized level, only the conductance peaks
at VD = 2∆/e, are observed, indicating the absence of Andreev reflections and only
the presence of quasiparticle cotunneling.
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In the regime corresponding to intermediate coupling, the ground state of the
system can be tuned by an electric or magnetic field effect, as discussed in chapter 1.
This is interesting in the case of a measurable Josephson current through the system.
The BCS singlet state minimizes its energy when the phase difference between the
two superconductors is zero, ϕ = 0, this corresponds to a Josephson current phase
relation, IJ = Ic sin(ϕ). When the ground state is changed to a spin doublet, the
magnetic moment on the QD leads to a phase offset in the Josephson current phase
relation, IJ = Ic sin(ϕ + π)[75]. Therefore, the Josephson current is sensitive to small
variations in the device electrostatic environment and the device can be used as a
sensor[98]. Such a sensor, in contrast with conventional SQUID magnetometers, is
suitable to measure the magnetization of small molecules.

The observation of the superconducting proximity effect, across the metal insulator
transition, at such low carrier density make these doped NWs interesting in the context
of Majorana physics[129]. Indeed, the formation of Majorana zero energy states can
be obtained in one dimensional systems[100] coupled to superconductor. At the metal
insulator transition, the NW likely contains a single spin degenerate electronic mode,
λF ≈ d. Furthermore, the large Lande g-factor reported in this study g = 10, make
these NWs suitable to realize a sufficient Zeeman splitting of the spin states, corres-
ponding to the condition necessary for the formation of Majorana zero energy modes,
Ez >

√
µ2 + ∆2, while maintaining superconductivity.

The high-coupling regime Γs >> Ec has not been observed in this study. It is
antagonist with the Coulomb blockade regime. In the high coupling regime, higher
order multiple Andreev reflection processes are observed[124] and Josephson current
can flow across the device[11].

III.5 State of the art
Quantum dots coupled to superconducting leads have been reviewed in 2011, from

a theoretical[69] and an experimental[128] perspective. We will try to review research
into Andreev quantum dot physics reported after 2010 with a focus on experiments.

Andreev bound states, discussed in chapter 1, have been observed in quantum
dots by using a normal metal as a tunnel probe to infer the density of states of the
quantum dot formed between two superconductors connected in a SQUID geometry.
In this configuration, the phase dependence of the Andreev states can be probed by
controlling the flux in the superconducting loop. Such a device is shown in Fig. III.11a
from Ref. [70], it is conveniently done in a single lithography step by angle evaporation.
Moreover, the gate voltage allows to study the phase periodicity of the Andreev states
in the doublet and in the singlet ground states revealing the offset of π in the current
phase relation. These experiments were done in carbon nanotubes[70, 72] and InAs
nanowires[127], they are shown in Fig. III.11. The π offset in the Andreev spectrum
implies that the Kondo effect is too weak to screen the magnetic spin of the doublet
ground state.
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a d

b c e

Fig. III.11 Andreev bound states in quantum dots. a Sketch of Andreev bound
states and SEM image of a carbon nanotube device from Ref. [70] b Transport maps in
the normal (up) and superconducting (down) states from Ref. [72]. c Phase dependence
of the Andreev bound states in quantum dot from Ref. [70]. d SEM image of an InAs
nanowire device from Ref. [127]. e Phase periodicity of the Andreev bound states in
the singlet and doublet ground states from Ref. [127].

The interplay between the Kondo effect and superconductivity has been studied in
S-QD-S geometries where small Josephson current has been reported[130, 131, 132].
This interplay depends on the superconducting gap energy ∆ and the Kondo tempera-
ture TK . The superconducting gap ∆ has been tuned by a magnetic field in InAs/InP
nanowire quantum dot[131]. A side gate has been used to control the Kondo effect in
InAs quantum dot[130]. In carbon nanotube[132], supercurrent has been measured in
Coulomb diamond showing the Kondo effect in the normal states.

The Zeeman splitting of the sub gap resonance has been resolved in a N-QD-S
geometry[126]. The use of vanadium as S electrode allows to apply relatively large
magnetic field while maintaining superconductivity and to observe the splitting of the
sub gap resonance. Remarkably, the splitting is only observed in the singlet ground
state as shown in Fig. III.12.

An Andreev quantum dot has been realized in graphene simply by deposition of a
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Fig. III.12 Zeeman splitting. From Ref. [126] Left InAs/InP core/shell nanowire
device in a N-QD-S geometry. Right The different rows correspond to different cou-
pling ΓS between the QD and the superconductor. The gate voltage Vpg allows to
sweep the phase diagram in the right of the figure, at constant coupling ΓS/U . The
Zeeman splitting of the sub gap resonance is observed only in the singlet ground state.

tunnel coupled superconductor at its surface[133]. As the lever arm of the device was
very low, multiple charge states of the quantum dot could not be studied.

After the proposal aiming at detecting the magnetization reversal of single molecules[98,
9] attached on narrow (diameter 1 nm) carbon nanotubes embedded in SQUID loop,
such nano-SQUIDs have been investigated[71]. A demonstration of a 0-π transition in
the doublet ground states by tuning the Kondo effect through the coupling to the lead
has been demonstrated, the result is shown in Fig. III.13.

As entanglement between two electrons (or any massive particle) has never been
demonstrated, Cooper pair splitter has been widely studied since 2010[134, 135, 136,
137, 138, 139, 140, 141]. These devices consists in two quantum dots coupled to a
superconducting lead. Two spin entangled electrons forming a Cooper pair in the su-
perconductor can be separated on the two quantum dots and remain entangled as
they travel in normal leads attached to each quantum dot, over the spin coherence
length[142] of the normal leads. Non-local Josephson current carried by spatially se-
parated Cooper pairs across two quantum dots may have been measured[143]. Never-
theless, the multiple orders of co-tunneling events that can lead to the transport of a
Cooper pair across a quantum dot[75] complicates the experiment interpretation.

Semiconductor nanowires are now grown in situ with an epitaxial Al shell[16]. A
quantum dot can be defined, using electrostatic gate, in these nanowires by removing
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Fig. III.13 Nano-SQUID. From Ref. [71] Left Nano-SQUID device based on a
carbon nanotube.Right Josephson critical current Isw as a function of gate voltages. In
a symmetric SQUID device Isw ∝ cos(φ/φ0) therefore φ = 0 (black curve) corresponds
to a larger current than φ = π/2 (purple curve) in the ’0’ state. A transition to the ’π’
state is achieved in the doublet ground state by tuning the Kondo effect.

some of the Al shell by chemical etching. Such nanowires coupled to superconductor
acquires a hard superconducting gap[117] in their density of states due to the proximity
effect and can be considered as superconducting island. Due to the pairing energy ∆,
the addition energy to add an electron on the island depends on the parity of the
number of electron on the island :

Eeven,odd = Ec ±∆

In the group, we have resolved this even odd effect by STM on Pb nanocrystals
deposited on InAs[144, 145]. Nevertheless, if ∆ >> Ec, charges are added to the island
two by two, this is the case in Ref. [146] where an InAs nanowire coupled to an Al shell
is attached to normal leads and studied by tunneling spectroscopy. In this experiment,
the system differs from a quantum dot as the mean level spacing δ due to quantum
confinement in the QD is small compared to the other energy scale. As shown in
Fig. III.14, the periodicity of the conductance peaks, corresponding to the number of
charge added to the island, is doubled when a magnetic field of B = 200 mT is applied.
As the critical field of the thin Al shell is about Bc = 1 T, the superconducting gap
∆ of the electrode is practically unchanged at such low magnetic field. Thus, this
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evolution is attributed to transport through Majorana zero modes at the edges of the
Al shell.

Fig. III.14 Majorana island. From Ref. [146]. An InAs nanowire with an epitaxial
Al shell is studied by tunneling spectroscopy. The periodicity of the conductance peaks
is doubled when a magnetic field of B = 200 mT is applied. As the critical field of
the thin Al shell is about Bc = 1 T, this striking evolution is attributed to transport
through Majorana zero modes at the edges of the Al shell.

The anomalous Josephson effect, discussed in the last section of chapter 1, has
been probed in a quantum dot Josephson junction[147]. The quantum dot is formed
by electrostatic gating in an InSb nanowire. It is embedded in a SQUID loop in order
to detect the anomalous phase shift ϕ0 in the Josephson current phase relation, the
device is shown in Fig. III.15a. In quantum dots, the anomalous Josephson effect is
predicted to occur in the presence of spin-orbit coupling, when multiple orbital are
available for electron transport[148]. In Ref. [147] the critical current is very small
Ic < 1 nA and Icφ0 < kBT ≈ 5 µeV, therefore, some dissipation remains at zero
voltage and only voltage fluctuations can be studied to detect the ϕ0 phase shift. As
shown in Fig. III.15c, an anomalous phase shift ϕ0 different from 0 or π is detected
when a magnetic field of about 100 mT is applied in the sample plane. The phase
shift depends on the angle between the magnetic field and the nanowire as shown in
Fig. III.15c, no phase shift is detected when the magnetic field is along the nanowire.

III.5.1 Conclusion
In summary, while past works on InAs-based Andreev QDots employed large dia-

meter nanowires (>60 nm), we found that Andreev QDots could be fabricated with
smaller (30 nm) diameter nanowires provided that they are initially doped to a high
carrier concentration of about n=1018 cm−3. We found that these nanowires could
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Fig. III.15 Anomalous ϕ0 Josephson effect in quantum dot. From Ref. [147] a
SEM image and sketch of the InSb nanowire device. b At zero in-plane magnetic field,
the Josephson current phase relation is offset by π when the dot occupancy changes
from even to odd. c An anomalous phase shift ϕ0 different from 0 or π is obtained
when a magnetic field Bin-plane is applied. It depends on the angle between the magnetic
field and the nanowire. There is no anomalous phase shift when Bin-plane is along the
nanowire, the phase shift is maximum when Bin-plane is perpendicular to the nanowire.
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be driven across a metal insulator transition by applying a large negative back-gate
voltage, and we observed a remarkable evolution of the superconducting sub gap re-
sonances across the mobility edge, as a consequence of the rapidly changing coupling
of the levels with the superconducting electrodes. Deeply localized levels do not allow
for the presence of Andreev reflections or the formation of Shiba states, and only qua-
siparticle cotunneling is observed. For localized levels near the mobility edge, Shiba
bound states form, and a parity-changing quantum phase transition is identified by a
crossing of the sub gap resonances at zero energy. Finally, on the metallic side of the
mobility edge, simple Andreev reflections at eV = ∆ are observed.

We have presented recent studies of Andreev quantum dots and showed the work
reported in Ref. [147] where an anomalous phase shift different from 0 or π has been
detected in the Josephson current phase relation. We have probed this effect in Jo-
sephson junctions based on Bi2Se3 thin films.
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IV – Anomalous Josephson effect
in Bi2Se3 thin films

As the Josephson effect in topological insulators has been investigated by many
groups in the recent years, we shall start this chapter by presenting some experiments
studying Josephson junctions based on materials with strong spin-orbit interaction.
Then, we will detail our experiments realized on Bi2Se3 thin films and our first at-
tempts at identifying topologically protected transport in this system. As this will
appear, our first experimental observations were in close agreement with the conven-
tional theory describing the Josephson effect until we applied an in-plane magnetic field
and observed an anomalous Fraunhofer pattern, possibly related to strong spin-orbit
coupling and disorder. This first experiment with in-plane magnetic field was realized
in a vectorial magnetic field in collaboration with M. Aprili at the Laboratoire de Phy-
sique des solides. Then, we will describe a simple model developed to reproduce these
experimental observations. Finally, we designed and performed a superconducting in-
terference experiment where the spin-orbit contribution could be well separated from
the disorder contribution. We find experimental evidence of the anomalous Josephson
effect, predicted in 2008[18], and show that spin-orbit coupling modifies the oscillation
frequency of Josephson interferometer devices as reported in Ref. [149].

IV.1 State of the art
In 2008, it was predicted that the proximity effect induced by a s-wave supercon-

ductor on the surface of a three dimensional topological insulator will result in a chiral
p-wave superconductor, which host Majorana bound states at vortices[150]. Moreover,
it was proposed that these vortices could be manipulated by tuning the phase between
the different s-wave superconductors, thereby, realizing a platform for quantum pro-
cessing with anyonic excitations[151]. Bi2Se3 and related compounds were predicted
to be three dimensional topological insulators in 2009[47]. The Dirac cones were first
observed by photoemission at the surface of Bi2Te3 and Sb2Te3 crystals[152], followed
closely by Bi2Se3 grown by MBE[48]. In these studies[33, 153], it was also shown that
Bi2Se3 gets doped after some hours in UHV. This undesirable doping has made diffi-
cult the separation of the contributions between the topological surface states and the

75
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bulk states in experiments. In Ref. [154], an ionic liquid and a metallic gate capaciti-
vely coupled to Bi2Se3 are used to reduce the number of carriers and to observe the
sign reversal of the Hall coefficient, where the type of carrier changes from electron
to hole as the Fermi level crosses a band gap. Josephson junctions were fabricated on
Bi2Se3[155, 156, 157, 158, 159, 160]. While some of these studies manage to measure
the Josephson current across the charge neutrality point, where the bulk is depleted
and only the surface contribution should remain, no departure from the conventional
theory describing the Josephson effect were reported. It has been predicted that the
Josephson current mediated by topological states is 4π periodic as function of the
phase difference between the superconducting electrodes[161, 100, 162, 163]. This per-
iodicity can be obtained from microwave measurements. Recently, a small 4π periodic
contribution to the Josephson current, in contrast with the conventional 2π periodic
contribution expected from trivial states, was reported in Bi2Se3[164]. Larger 4π per-
iodic contribution has been reported in InSb nanowire driven in the topological regime
by a magnetic field[165], in the 3D topological insulator HgTe[166], in the 2D topo-
logical insulator HgTe quantum well[167] and in the Dirac semi-metal BiSb[168]. All
these materials possess electronic states which have their spin locked perpendicular
to their momentum. A comparison with graphene based Josephson junctions is inter-
esting as graphene is also characterized by a linear dispersion in momentum but no
spin momentum locking. Until now, no 4π periodic contribution has been reported in
graphene[169, 170], even though microwave measurements were not shown in the high
quality samples[171, 172].

The dependence of the critical current on magnetic field can provide insight about
where the current is flowing in the material. Measurements of Ic(B) has been used to
identify a supercurrent flowing at the edges of the 2D topological insulator HgTe quan-
tum well[173], InAs/GaSb heterostructure[174], Bi nanowires[175] and in graphene dri-
ven in the quantum Hall regime[176]. Nevertheless, a supercurrent flowing at the edge
of the material does not imply that it is topologically protected from back scattering,
as shown in InAs where current along the etched edge were also reported[177]. There-
fore, both the magnetic field and microwave dependence of the Josephson current has
been measured in HgTe quantum well[167], which shows convincing results of a 4π per-
iodic current with a spatial modulation of the current density, as shown in Fig. IV.1.
Moreover, the 4π periodicity has also been probed by detecting the microwave signal
emitted by the Josephson junction[178].

Above a thickness of 50 nm, HgTe is a three dimensional topological insulator where
a small gap (≈ 20 meV) in the bulk electronic states can be induced by strain, simply
by growing HgTe on a CdTe substrate[179]. As previously mentioned, a 4π periodic
Josephson current has been detected in this material[166]. Strain has been shown to
alter the topological surface states in Bi2Se3[180, 181]. Recently, a critical current
minimum at zero magnetic field has been reported in Bi2Te3, after having cooled
down the sample twice[182]. The Bi2Te3 is grown by MBE on GaAs(001) and then
exfoliated on Si/SiO2. A critical current minimum at zero magnetic field is known from
SFS junctions[183, 184] where the thickness of the F layer changes along the junction
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Fig. IV.1 4π periodic Josephson effect. From Ref. [167] up left Sketch and
SEM images of the HgTe quantum well Josephson junction. down left Microwave
measurements which shows evidence of a 4π periodic contribution to the supercurrent.
rightMagnetic field dependence which shows strong spatial modulation of the current
density and of the magnetic field periodicity in the gate voltage range where the 4π
periodic contribution is present.

width, inducing a ’0’ and a ’π’ coupling in the same junction. In absence of magnetism,
the dip at zero field is also known from corner junction on high Tc superconductor and
have been decisive to identify the unconventional order parameter in cuprates[185].
Therefore, the interpretation of this experiment in terms of an induced chiral p wave
pairing is plausible[182], even though microwave measurements are unfortunately not
discussed in this study. Nevertheless, no 4π periodic current has been reported in
Bi2Te3 crystal exfoliated on Si/SiO2 substrate[186, 187]. It is also worth mentioning
that a dip of the critical current at zero field has also been reported in Josephson
junction made on the Dirac semi-metal Cd3As2[188].

Besides topology, a new type of ’π’ Josephson junctions have emerged and are
interesting for superconducting spintronics[189, 190]. These junctions combine non
magnetic material with large Landé g-factor and conventional superconductor to form
a Josephson junction where the coupling ’0’ or ’π’ is tunable with a magnetic field, as
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discussed in chapter 1. Experiments on HgTe[63] and BiSb[168] are shown in Fig. IV.2.
In these experiments a center of mass momentum is acquired by the Cooper pair due
to the Zeeman field. It is also shown[63] that the center of mass momentum results in
an unusual Fraunhofer diffraction pattern. This unusual pattern has been measured
in Bi2Se3[191]. An interesting perspective is to generate spin triplet pair correlations.
Indeed in diffusive system it should be possible to separate the singlet component
which decays over ξ =

√
~D
Ez

and the triplet component which decays over ξ =
√

~D
2πkBT

.
In ballistic system it should be possible to use the oscillating character of the order
parameter as the triplet component is maximum when the singlet component is zero
and vice-versa.

Fig. IV.2 Zeeman π junctions. Left From Ref. [63]. Josephson junction with HgTe
(g ≈ 10), the electrodes spacing is 800 nm. A ’π’ coupling is induced by an in-plane
magnetic field due to the momentum acquired by the Cooper pairs in the Zeeman field.
Right From Ref. [168]. Josephson junction on the Dirac semi-metal BiSb (g ≈ 800),
the electrode spacing is 800 nm. Multiple 0,π transition are observed. In this case the
magnetic field is applied parallel to the current.

While these experiments rely on the Zeeman field induced by the magnetic field,
another intriguing result has been obtained in[192] where the symmetry of the Fraun-
hofer pattern is broken due to an in-plane magnetic field, as shown in Fig. IV.3. The
authors suggest that spin-orbit interaction could be involved. The asymmetry is also
observed in Ref. [63] as shown in Fig. IV.2.
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Fig. IV.3 Anomalous Fraunhofer pattern. From Ref. [192]. Josephson junction
in InAs/InGaAs with epitaxial Al layer. The symmetry of the Fraunhofer pattern is
broken by a magnetic field applied in the y direction. A magnetic field applied in the
x direction seems to induce a spatial modulation of the current density.

The Rashba spin-orbit coefficient in Bi2Se3 (α ≈ 0.4 eVÅ ) is one of the largest
ever reported especially at high doping[33, 153]. Moreover, a large value for the Landé
g-factor has been measured recently by electron spin resonance (g ≈ 20)[20]. Thus,
Bi2Se3 Josephson junctions are promising devices to observe new effects related to
spin-orbit coupling.

IV.2 Thin films characterization
We perform magnetoresistance measurements to characterize the Bi2Se3 thin films.

These measurements are directly linked to the electronic density in the film and to
its mobility. We consider that the film is isotropic, and that only one type of car-
riers contribute to the transport signal. We did not attempt to separate the surface
contribution from the bulk contribution in these measurements.

Bi2Se3 Hall bars are defined by lithography and sketched in Fig.IV.4a. They are
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characterized using AC lock-in measurements at low frequency, f = 37 Hz. An AC vol-
tage, provided by a lock-in, is converted into an AC current through a large resistance,
Rp, in series with the sample. We measure the voltage across this large resistance, it
typically corresponds to an injected current, I = 100 nA across the Hall bar. The
corresponding longitudinal, Vxx, and transverse, Vxy, voltages are measured. We define
the transverse resistance, Rxy = Vxy

I
. The carrier density and the resitivity are obtained

from the relations :

n3D = 1
te

(dRxy

dB

)−1
ρ = VxxL

ItW
where B is the magnetic field applied perpendicular to the film, t is the film thick-

ness, L is the length across which is measured the longitudinal voltage and W is the
Hall bar width.

Vxy

I
Ground

A x

y

L
W

a

b

Au electrode

Ionic liquid
Vax

I
Ground
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d e

Gate Voltage

VGate = - 2.5 V

Fig. IV.4 Hall measurements. a Sketch of a Bi2Se3 Hall bar. Length L=60 µm,
width W=30 µm. b Transverse resistance as a function of magnetic field measured at
room temperature. The curve slope is directly link with the carrier density. In blue,
the Bi2Se3 Hall bar is measured with the Se capping layer. In orange, it is measured
after removal of the Se capping layer with the Na2S solution. c An ionic liquid is
deposited on top of a Hall bar and on top of a gold electrode. A gate voltage is applied
on the gold electrode and allows to tune the carrier density of Bi2Se3. d Modulation
of the carrier density by an electrolyte gate at T=250 K. The two curves correspond
to opposite directions for the gate voltage sweeping. As shown by the identical values
at zero gate voltage, we observed no electro-chemical reaction at this temperature and
in this gate voltage range. e Resistivity as a function of temperature at a gate voltage
of -2.5 V. It shows a metallic behaviour.

During the Josephson junction fabrication, we removed the Se protecting layer, just
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before deposition of the superconducting electrodes, using an NMF solution of Na2S.
We checked the effect of this solution on Bi2Se3. Fig. IV.4b shows the carrier density
before and after removal of the Se capping layer. We observed a slight increases in the
carrier density after removal. However, the film electronic properties remain practically
unchanged, as shown in Table IV.1.

The film which has been measured with in-plane magnetic field, as detailed in sec-
tion IV.4, has been characterized in a Van Der Pauw geometry. For this configuration
a Bi2Se3 square of side, S=400 µm, is defined by lithography. Fig. IV.5a, shows the
transverse measurement used to obtain the carrier density. In this configuration the
resistivity ρxx of the film, measured as sketched in Fig.IV.5b, is obtained from the rela-
tion ρxx = Vxxtπ

I ln(2) . We retain some important values for this film. By taking an effective
mass, m∗=0.25m0[193], the Fermi velocity is found to be 3.2 105 m.s−1. The elastic
diffusion time is τ = m∗σ

n3De2 = 0.13 fs and the mean free path is l = vFτ = 40 nm. The
diffusion coefficient is D = 1

3vFl = 4.4.10−3 m2.s−1. An important length for the su-
perconducting proximity effect at a superconductor-normal interface is the coherence
length in the normal material, ξN =

√
~D

2πkBT
= 420 nm at a temperature T=30 mK. We

fabricate junction with a superconducting electrode spacing L = 75 nm to L = 300 nm,
therefore l<L<ξN which corresponds to the diffusive and short junction regime.

Vxy

I

I
S S

B

Vxx

B

a b

Fig. IV.5 Van der Pauw measurements. a Transverse resistance as a function
of magnetic field (green curve). The carrier density is obtained from the slope of the
fit (blue curve). b Resistivity of the film as a function of magnetic field measured at
4.2 K. A weak anti-localization dip is observed at zero magnetic field.
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IV.2.1 Carrier density modulation with an electrolyte gate

As Bi2Se3 is naturally n-doped[33], the bulk of the material is conducting. We re-
duce this doping by using an electrolyte gate as sketch in Fig. IV.4c. A gold electrode
is patterned on the sample near the Hall bar, by lithography. A small electrolyte 1

droplet is deposited on top of the gold electrode and the Hall bar. We apply a voltage
on the gold electrode to tune the carrier density in Bi2Se3 as shown in Fig. IV.4d.
Each point corresponds to the slope of a Rxy vs B curve for a given gate voltage value.
We observed a decrease in the carrier concentration by applying negative gate voltage
which confirms the n-type nature of the doping. The maximum voltage that can be ap-
plied depends on the electrochemical stability of the ionic liquid. It is -2.6 V to 2.2 V
for the electrolyte used during this thesis. Above this voltage, electrochemical pro-
cesses occurs, such as the extraction of Se from the sample, and the sample resistance
changes irreversibly. The electrochemical stability can be checked by measuring the
gate current. When a gate voltage is applied, a gate current peak is observed because
the electrolyte is charging. This gate current should decrease to zero as the sample is
charging. If the gate current does not reach zero, but stay at a finite stationary value,
that means that electrochemical processes are occurring. We found that the ionic mo-
bility is sufficient at temperatures larger than 250 K to modulate the carrier density.
At a temperature below 250 K, the ionic liquid freezes and it is no more possible to
change the carrier density. Thus, to change the carrier density, the gate voltage should
be applied at a temperature above 250 K. The film resistivity, ρxx, at low carrier den-
sity, Vgate = −2.5 V, is shown in Fig. IV.4e, as a function of temperature. It shows a
metallic behaviour.

We did not manage to induce such a carrier density modulation on a Josephson
junction. Indeed, the gating method sketched in Fig. IV.4c was repeated on a Josephson
junction. As we cannot directly measure the carrier density in a Josephson junction,
we compared the change in resistivity induced by the gate voltage applied on the
electrolyte. By applying a gate voltage of −2.5 V the resistivity changes only by 5%
while on the Hall bar it changes by 20%. We manage to measure the Josephson current
at low temperature with the electrolyte, we report no distinct behaviour due to its
presence. The anomalous Josephson effect reported in this chapter has been probed
without electrolyte.

Tables IV.1,IV.2 and IV.3 summarize the electronic properties of the different
Bi2Se3 thin films used.

1. We tried two ionic liquids : 1-Ethyl-3-methylimidazolium-bis(trifluoromethylsulfonyl)imide and
diethylmethyl(2-methoxyethyl)ammonium-bis(trifluoromethylsulfonyl)imide. As they show similar
gating effect we mainly used the former which is more common.
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Temperature [K] Carrier density [1019 cm−3] Resistivity [mΩ.cm] Before/After Na2S
300 1.9 1.1 Before
30 2.0 0.9 Before
300 2.4 0.9 After
60 2.7 0.6 After

Table IV.1 Thin film 32m0258 (30QL). Before and after removal of the Se capping
layer.

Temperature [K] Carrier density [1019 cm−3] Resistivity [mΩ.cm] VGate [V]
250 1.4 1.1 off
250 0.8 1.4 -2.5 V
5 0.9 / -2.5 V

Table IV.2 Thin film 32m0236 (30QL). Effect of an electrolyte gate.

Temperature [K] Carrier density [1019 cm−3] Resistivity [mΩ.cm]
300 / 1.1
4.2 1.2 0.6

Table IV.3 Thin film 32m0272 (20QL). This film has been measured in a van der
Pauw configuration.

IV.3 Josephson effect in Bi2Se3

Once the fabrication process was well established, we observed the Josephson cur-
rent in most of the devices measured at low temperature T=30 mK. A typical diffe-
rential resistance curve measured with a lock-in is shown in Fig. IV.6a for a junction
of width W=1.5 µm and electrode spacing L=150 nm. At low current (I < 1 µA),
a Josephson superfluid current flows through the junction and the resistance is zero.
The Josephson critical current Ic is defined as the current above which the junction
becomes resistive. Above Ic, the resistance corresponds to the Bi2Se3 resistance which
differs from the normal state resistance due to Andreev reflections. At large current,
the aluminum becomes resistive. As the aluminum resistance is negligible compared
to Bi2Se3, the normal state resistance, RN , corresponds to the resistance of the device
at large current. For this junction we find RN = 23 Ω. It corresponds to a resistivity
ρxx = RN

Wt
L

= 0.7 mΩ.cm, which is close to the value obtained from Hall bar measu-
rement, see Table IV.1 after Na2S. A value commonly reported in Josephson studies is
the IcRN product, we find 12 µeV for this junction. In Fig. IV.6b we report the IcRN

product as a function of the electrode spacing for the devices measured at the LPEM.
Due to slight adjustments in the fabrication process we did not attempt a quantitative
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analysis between different junctions. These values for the IcRN product is consistent
with previous studies summarized in Ref. [158].

a b

2Ic

Fig. IV.6 Josephson current in Bi2Se3. a Resistance as a function of current
across the junction. The Josephson critical current Ic is the current above which the
junction becomes resistive. b IcRN product as a function of superconducting electrode
spacing, L. The junction width is W and the Bi2Se3 thickness is t. The red (blue)
points correspond to a Bi2Se3 thickness, t = 20 nm (30 nm).

IV.3.1 Supercurrent interferences
A hallmark of the Josephson effect is the Fraunhofer pattern which results from

the spatial modulation of the supercurrent by the magnetic field. For single junction
devices such as the one sketched in Fig. IV.7a, we observed the Fraunhofer pattern,
Fig. IV.7b and c. These two patterns correspond to two different junctions with di-
mension L1=100 nm and W1=1 µm for Fig. IV.7b, L2=200 nm and W2=1.5 µm for
Fig. IV.7c.

Due to the magnetic field B a phase gradient is present at the edges of both super-
conductor forming the junction. This phase gradient is expressed from the Ginzburg-
Landau equation[194], and adds a position dependent phase difference along the junc-
tion width :

ϕ(y) = 2π(L+ 2λL)yB
φ0

where λL is the London penetration depth. This additional phase results in a position
dependent Josephson current per unit length 1 J(y) = J0(y) sin(ϕ(y) + ϕb). Here ϕb
is the phase difference between the two bulk superconductors, this phase depends
on the current which is applied in the junction. J0(y) is the supercurrent per unit
length without magnetic field which can be position dependent, for example due to

1. The current per unit length is found by integration of the current density J2D(y, z) along the
z direction J(y) =

∫
J2D(y, z)dz.
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Fig. IV.7 Supercurrent interferences in Bi2Se3. a Sketch of a Josephson junc-
tion made with superconducting Al electrodes on top of Bi2Se3. In the red dashed
region the magnetic flux lines are diverted in the junction due to the Meissner ef-
fect. bc Resistance as a function of current and magnetic field. The critical current
corresponds to the current where the device becomes resistive. e Scanning electron
microscope image of a SQUID device. The image is dark because this sample was fa-
bricated before learning how to properly remove the ma-N mask resist. The effective
SQUID area is shown by the red dashed line. The phase difference across the junction
which is cut by the yellow dashed line is directly related to the magnetic field. f For a
SQUID device the supercurrent envelope due to the single junction area is observed.
f On a much lower magnetic field scale, fast critical current oscillation are due to the
large SQUID area. dh Theoretical dependence of the critical current as a function of
magnetic field for d a single junction and h a SQUID.
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imperfections or edge states. The Josephson current across the junction is found by
integrating the current per unit length along the junction width : IJ =

∫W/2
−W/2 J(y)dy.

To calculate the maximum supercurrent through the junction i.e the critical current,
Ic, one must maximize the last expression with respect to the bulk phase difference ϕb
that is Ic = maxϕbIJ . The final critical current expression is :

Ic(B) = maxϕbIm
[
eiϕb

∫ W/2

−W/2
J0(y)eiϕ(y)dy

]
Where Im denotes the imaginary part. A Fourier transform of the current per unit

length J0(y) is clearly identify in this expression. Therefore, measurement of Ic(B) has
been used to extract a position dependent supercurrent per unit length J0(y) due to
edge states in 2D topological insulator[174, 173], in the quantum Hall regime[176], and
in InAs[177]. If J0 is constant along the junction width, expression IV.3.1 is always
maximized for ϕb = [π] and we obtain the standard expression for the Fraunhofer
pattern :

Ic(B) = J0W
∣∣∣∣sin πφ

φ0
πφ
φ0

∣∣∣∣
where φ = W (L + 2λL)B is the magnetic flux through the junction area. This

relation is shown in Fig. IV.7d and we expect a first critical current minimum at
B0 = φ0

W (L+2λL) . We find experimentally B0,1 = 1.4 mT as shown by the dashed line in
Fig. IV.7c. This value is lower than expected from the junction area because the ma-
gnetic field in the junction is larger than the applied magnetic field due to flux focusing
by the superconducting electrodes. An intuitive way to take this effect into account is
given in Ref. [187] : when the electrode becomes superconducting, the magnetic flux
lines in the dashed red region in Fig. IV.7a are diverted into the junction area. The
effect is present at both electrodes and is equivalent as increasing the junction area
by W 2/2. Thereby, we can estimate the London penetration depth from B0,1 = φ0

Seff

with Seff = (L+ 2λL)W + W 2

2 the effective junction area. We find λL ≈ 20 nm which
is close to the bulk value of aluminum. In Ref. [156] flux focusing is underestimated.
Indeed by taking their junction dimensions L = 55 nm and W = 1.5 µm, if we add the
effective surface resulting from flux focusing W 2

2 we find B0,1 = 1.7 mT which is close to
their experimental value (consideration of the London penetration depth barely affects
the result). The non regular value of the magnetic field minimum in their Fraunhofer
pattern, that we also observed in Fig. IV.7bcf, are probably due to trapped vortices
which we discuss now.

In Fig. IV.7b, abrupt jumps in the critical current magnitude are observed for
B > 2 mT. Such jumps are expected in presence of trapped vortices. Similar be-
haviour has been observed in Josephson junctions fabricated with type II supercon-
ducting electrodes[195]. In our case, the aluminum is of type I and no vortices are
expected in the electrodes (ξ > λL). However, in hybrid Josephson junctions, the ef-
fective penetration depth in the semiconducting material is expected to be much larger
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than for the superconducting electrodes because the carrier density in the semicon-
ductor is much smaller than in the electrodes. Thus, it is quite plausible that vortices
can be trapped inside the semiconducting material near the interface with the super-
conducting electrode and escape the junction. This probably explains the ubiquitous
observation of flux-trapping effects in hybrids SNS junctions made from semiconduc-
ting materials[195, 156]. Due to these trapped vortices the second minimum of critical
current occurs at a much larger field than expected from Eq. IV.3.1. We also note that
the critical current of the electrode (not of the junction) observed as resistive line at
large current and field in Fig. IV.7bcf does not show such abrupt jumps which supports
that the jumps are related to the flux in the junction and not to superconductivity in
the electrodes.

We also fabricated superconducting quantum interference devices (SQUID) consis-
ting of two identical Josephson junctions in parallel as shown in Fig. IV.7e. The ma-
gnetic field dependence of the critical current is observed in Fig. IV.7f, and on a much
lower field scale, in Fig. IV.7g. The critical current envelope (f) is due to the phase
modulation along the junction width as previously discussed. In a SQUID the cri-
tical current is modulated by the magnetic flux in the normal area SN enclosed by
the superconductor which is φL = BSN . Indeed, the phase difference across the two
junctions contributing to supercurrent between the two superconducting electrodes
are linked by the relation ϕ1 − ϕ2 = 2πφL

φ0
, in the case of negligible inductance[194].

The current is the sum the Josephson current across the two junctions in parallel
IJ = I(sin(ϕ1)+sin(ϕ2)) = 2I sin(ϕ1− πφL

φ0
) cos(πφL

φ0
). The critical current is obtained 1

by maximizing this expression with respect to ϕ1, which gives :

Ic(B) = 2I
∣∣∣∣ cos(πφL

φ0
)
∣∣∣∣

We find experimentally a periodicity B = 242 µT in Fig. IV.7g. From the normal
area SN enclosed by the superconductor, we expect B = 590 µT. This discrepancy is
again due to flux focusing. By taking into account not the normal area but an effective
area shown in Fig. IV.7f, we find B ≈ 210 µT which is close to the experimental
value. Flux focusing significantly changes the critical current sensitivity to an applied
magnetic field. This effect is used to amplify the magnetic field in the loop of SQUID
sensors[196].

Devices such as the one shown in Fig. IV.7e, fabricated on top of 3D topologi-
cal insulator have been proposed to create Majorana bound states[150]. The device
contains a third junction made of the same superconductor piece. This junction car-
ries no current between the two separate superconductors. Across this junction, the
phase difference is directly related to the flux enclosed in the SQUID area, see the
yellow dashed line in Fig. IV.7e, ϕ3 = 2πφL

φ0
. When the phase is tuned to ϕ3 = π a

zero energy Andreev states is expected in the junction. Different techniques have been

1. In Fig. IV.7h we plot Ic(B) = I0

∣∣∣ sin (πφφ0
)

πφ
φ0

cos(πφLφ0
)
∣∣∣ with φ and φL the effective flux in one single

junction and in the SQUID area respectively.
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proposed to probe this zero energy state[197], one of them consists in using the right
electrode as a tunnel probe and look for a conductance peak at zero voltage. This
configuration requires an extra fabrication step. For the present device, we investigate
the periodicity of the current phase relation through microwave measurements, see
next section, at different magnetic field. We did not find anomalous behaviour of the
Josephson effect in this device. Measurements on a tri-junction on top of Bi2Se3 has
been reported in Ref. [159, 160]. In these experiments the critical current does not va-
nish as a function of magnetic field. This is expected if the critical current of the two
junctions are not equals i.e if the SQUID is not symmetric, see section IV.3.4. Howe-
ver, it is argued in these studies, that the temperature dependence of critical current
shows an unexpected behaviour. The Josephson current carried by topological states is
expected to be 4π periodic in phase, in contrast with the conventional 2π periodicity.
The phase periodicity can be precisely probed by microwave measurements.

IV.3.2 Shapiro steps
Microwave measurements can be used to determine precisely the phase periodicity

of the Josephson current phase relation. Indeed considering a current phase relation
with a general periodicity :

IJ = Ic sin(ϕp)

When a voltage, V = V0 + V1 cos(ωt), where ω is the microwave frequency is
applied across the Josephson junction, its phase evolves in time according to the second
Josephson relation :

dϕ

dt
= 2eV

h

Integrating to get ϕ and replacing in Eq. IV.3.2, one finds an AC current :

IJ = Ic sin(2eV0p

h
t+ 2eV1p

hω
sin(ωt) + cst)

Using the expansion of the sine of a sine in term of Bessel functions[50], one obtains :

IJ = Ic
∑

(−1)nJn(2eV1p

~ω
) sin(cst+ 2eV0pt

~
− nωt)

This current has a DC component when V0,n = n~ω
2ep with n integer. Therefore, the

current dependence on voltage shows supercurrent steps so-called Shapiro steps[7] for
these voltage values. The position of these steps in voltage gives the periodicity of the
current phase relation. If the current phase relation is conventional, that is 2π periodic,
then p = 1 in Eq. IV.3.2 and we expect steps at voltages :
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Vn = n~ω
2e

However, the supercurrent mediated by topological states is predicted to be 4π
periodic in phase[161, 100, 162, 163]. This result in p = 1

2 in Eq. IV.3.2 and the di-
sappearance of odd Shapiro steps (n=1,3,5,...). Therefore microwave measurements of
the Josephson current is a powerful tool to make the distinction between supercurrent
mediated by conventional and topological states. Disappearance of the first Shapiro
step n = 1 has been reported in InSb nanowire driven in the topological regime by a
magnetic field[165], in the 3D topological insulator HgTe[166], in the 2D topological
insulator HgTe quantum well[167] (where multiple odd steps disappear) and in the
Dirac semi-metal BiSb[168].

The Dirac cone, which is a predicted characteristic of 3D topological insulators[47],
has been observed by photoemission in our thin films[49]. Therefore, we investigate the
phase periodicity of the supercurrent by illuminating the junctions with microwaves.
An RF cable has been added in the dilution fridge to apply a microwave signal on the
gold plate on which the sample is glued. The resulting resistance maps as a function
of current and microwave power are shown in Fig. IV.8abc for different microwave
frequencies. The IV curve at a fixed microwave power shows the Shapiro steps, see
Fig. IV.8d. Regular steps are observed at voltage Vn = nhf/2e and f = 4.236GHz is
the microwave frequency. For some values of microwave power, the first Shapiro step
disappears as observed in the lower panel of Fig. IV.8d. Nevertheless, this behaviour is
well captured by the resistively shunted junction (RSJ) model with a conventional, 2π
periodic, current phase relation. In the experiments mentioned above[165, 166, 167,
168], the disappearance of the Shapiro step occurs for all values of the microwave
power.

IV.3.3 RSJ model
The microwave response of Josephson junctions can be captured by the RSJ model.

The equivalent circuit of a SNS junction consists of a Josephson junction of critical
current Ic in parallel with a resistor RN. The current across the resistor is IR = V

RN
. The

microwave signal is added in the model in the form of an AC current, IRFsin(2πft), with
f the microwave frequency. The voltage V is linked to the phase difference according
to the second Josephson relation and the total current in the circuit is :

I = h

2eRN

dϕ

dt
+ Ic sin(ϕ) + IRF sin(2πft) (IV.1)

This differential equation is solved numerically with Python for each pair of I and
IRF. The voltage V is found from the second Josephson relation by a time average 〈〉t
of the phase solution derivative :

V = h

2e〈
dϕ

dt
〉t



Version du 29 octobre 2018, 07:41

90 Chapitre IV. Anomalous Josephson effect in Bi2Se3

P=4.9 dBm

P=2.1 dBm

f=4.236 GHz

f=2 GHz f=2.7 GHz f=5.3 GHza b c

d ef=4.236 GHz f

Fig. IV.8 AC Josephson effect in Bi2Se3. abc Resistance maps as a function of
current and RF power for different microwave frequencies (a) f=2 GHz, (b) 2.7 GHz
and (c) 5.3 GHz. The zero resistance regions correspond to voltage plateaus. d IV
curves showing the Shapiro steps for two values of the microwave power. The nth
current step appears at a voltage Vn = nhf

2e . e Resistance maps as a function of current
(upper panel) or voltage (lower panel) and RF power at the frequency f=4.236 GHz.
In the lower panel as a function of voltage, dashed line are plotted at Vn = nhf

2e .
f Theoretical curves calculated at f=4.236 GHz with Eq. (IV.1) using two different
CPRs : A conventional 2π periodic current phase relation IJ = Ic sin(ϕ) is used for
the upper panel, it reproduces properly the experimental data. In the lower panel an
unconventional current phase relation IJ = Ic(4

5 sin(ϕ) + 1
5 sin(ϕ/2)) is used. The odd

steps have a lower current amplitude.
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The result for a conventional 2π periodic CPR is plotted in the upper panel of
Fig. IV.8f. It reproduces well the observation.

We also used the RSJ model to see the effect of a Josephson current containing a
large conventional and a small topological component :

IJ = Ic(
4
5 sin(ϕ) + 1

5 sin(ϕ/2))

The result is shown in the lower panel of Fig. IV.8f, the odd Shapiro steps have a lower
current magnitude than the even steps. This method has been used in an extended
RSJ model to understand the role of thermal effect which can mask the 4π periodic
contribution to the supercurrent in Bi2Se3[164]. In this study, a small 4π periodic
contribution is reported. They used exfoliated Bi2Se3 crystal of carrier concentration
larger than our thin films. However, the thickness of the film is larger ≈ 80 nm, which
may result in a better decoupling of the two surfaces. Indeed, the spin momentum
locking at one surface is expected to protect the electronic states from back-scattering,
if the film is too thin, an electronic states can possibly be back-scattered on the other
surface.

As discussed in the first chapter for short junctions, high transmission across the
normal material can lead to a non-sinusoidal current phase relation, as observed in
atomic contacts[198], HgTe[199], InAs nanowire[200] and Bi nanowire[175].

IV.3.4 Current phase relation
The Josephson current phase relation[201] (CPR) can be directly measured with

a Josephson interferometer[194, 198]. Such device consists in two Josephson junctions
in parallel as shown in Fig. IV.9a. The two junctions have widths W1 = 600 nm and
W2 =60 nm. The Josephson current is obtained by summing the current through the
junctions :

Ij = fcpr(Ic,1, ϕ1) + fcpr(Ic,2, ϕ2)

where fcpr is the current phase relation which we assume periodic with value between
[-Ic,Ic]. The phase differences ϕ1 and ϕ2 for the two junctions are linked by the relation
ϕ1−ϕ2 = 2π φ

φ0
. Therefore, one can express the critical current as a function of a single

phase difference and the magnetic flux φ :

Ic = maxϕ1 [fcpr(Ic,1, ϕ1) + fcpr(Ic,2, ϕ1 − 2π φ
φ0

)]

As the critical current Ic1 is much higher than Ic2 , the phase ϕ1 stays fixed at a value
ϕcst to insure a maximum current through the large junction and :

Ic(Bz) = Ic1 + fcpr
(
Ic2 , ϕcst −

2πSBz

φ0

)
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Fig. IV.9 Measurement of the current phase relation in Bi2Se3. a SEM image
of a Josephson interferometer device. This device consists of two Josephson junctions
in parallel and enables to probe the CPR of the smaller junction. bc These curves
are measured with a nanovoltmeter, the noise at DC is 200 nV. b Voltage map as a
function of current and magnetic field Bz showing zero voltage below a critical current
value. The critical current of the small junctions oscillates with the magnetic flux in
the superconducting loop. c IV curve of the device. The critical current value Ic is
extracted when the junction develops a finite voltage defined as Vswitch and indicated
by the dashed vertical line. d Critical current extracted from (c) as a function of Bz.
The oscillations are properly described by the function Ic(Bz) = Ic1 + Ic2 cos(ωBz),
indicating a sinusoidal current phase relation. e Switching probability as a function
of magnetic field and magnitude of current square pulses. We did not measure the
magnitude of the current pulse, the unit is arbitrary. f Resistance measured with a
lock-in on a large magnetic field scale.
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Thus, a measurement of the critical current Ic as a function of magnetic field Bz

provides a measure of the current Ic2 as function of ϕ2. In other words, it provides a
measure of the current phase relation.

From the voltage map as a function of current I and Bz, shown Fig. IV.9b, the
critical current Ic is extracted when the voltage across the device exceeds a value
defined as Vswitch = 4 µV, as shown by the dashed lines in Fig. IV.9c. The critical
current as a function of magnetic field is fitted in Fig. IV.9 d, we find that the CPR
displays a conventional sinusoidal form IJ = Ic sin(ϕ) 1. Measurements b and c were
done with a nanovoltmeter connected through a voltage divider on the junction. Such
measurements avoid to use the Stanford amplifier which have a noise of about 2 µV
at DC. We also measured this device by replacing the Yokogawa source by a function
generator, as shown in Fig. IV.9e. It generates square voltage pulses at a frequency
f=863 Hz, which are converted into current pulses through a large resistor. These
pulses generate a voltage difference across the sample if the current pulse exceed the
critical current. We define a voltage threshold and a counter counts how many time
this voltage threshold is exceeded. The switching probability corresponds to Nswitch/N
where Nswitch is the number of counts and N = 3452 is the number of pulses. We also
measured the device using standard lock-in method on a large field scale as shown in
Fig. IV.9f. The overall decrease of the critical current is due to the flux in the large
junction which results in a Fraunhofer pattern, see section IV.3.1.

The Josephson effect in Bi2Se3 shows a conventional behaviour. As discussed in
the first chapter and in section IV.1, phenomena directly related to the Zeeman field
and to spin-orbit coupling in the junction are observable with a significant applied
magnetic field. This requires the fabrication of device with higher critical magnetic
field.

IV.4 Josephson effect with in-plane magnetic field
The critical field of the superconducting electrodes is Bc = 10 mT, as shown by

the resistive lines at large magnetic field in Fig. IV.7bcf. From the Ginzburg-Landau
theory, it is shown that the critical field for a magnetic field applied in the y direction,
see sketch Fig. IV.7a, is[50], Bc// = 2

√
6BcλL(d)

d
where d = 60 nm is the aluminum

thickness. To increase this parallel field while maintaining superconductivity[202], we
fabricate Josephson junction with an aluminum thickness d = 20 nm.

In Ref. [202], it is shown that the critical temperature of Al film increases by
decreasing the Al thickness. It is not the case for our Al films, see Fig. IV.10. We
argue that it is due to the inverse proximity effect[203] of the 5 nm of Ti which is
used as a sticking layer. Indeed, near the interface between a normal material and a
superconductor, the superconducting gap ∆ is affected by the normal material over the
coherence length, ξ ≈ 1 µm, on the superconducting side. Therefore, if the aluminum

1. That is fcpr(I, ϕ) = I sin(ϕ) and ϕcst = π
2 . Which result in Ic(Bz) = Ic1 + Ic2 cos

( 2πsBz
φ0

)
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thickness ds is smaller than ξ, the change in the superconducting gap value is non
negligible. For a bulk superconductor at zero temperature the BCS relation gives,
∆ = 2Ωe−

1
N0V , where Ω ≈ 400kB T and N0V ≈ 0.17 for Al. An estimation of the

superconducting gap for a bi-layer is provided by L. Cooper, which is valid when
ξ >> ds, dn, see Ref. [204] : As electrons are part of the time in the normal material
and the other part in the superconductor they feel an effective potential Veff = ds

ds+dnV
as the potential in the normal material is zero. Thus, the superconducting gap is
reduced ∆ = 2Ωe−

dn+ds
N0V ds . The new critical temperature is obtained from the BCS

relation ∆ = 1.8kBTc. We neglect the superconducting gap in Ti which is much smaller
than in Al. For the same Ti thickness of 5 nm, we find Tc ≈ 0.7 K for 60 nm of Al
and Tc ≈ 0.3 K for 20 nm of Al, which agree with the experimental points. See also
Ref. [205] for the critical temperature of Al/Ti bi-layer for different Ti thickness.

As the Ti/Al bi-layer is deposited on Bi2Se3 we could consider Cooper’s argument
to calculate the reduction of the critical temperature due to the inverse proximity
effect arising from the proximity with the semiconductor. However, this argument was
formulated for a metal superconductor bi-layer, where the normal density of states at
the Fermi energy of both materials are of the same order of magnitude. For a super-
conductor deposited on top of a semiconductor, the changes in the critical temperature
is weak because the electronic density in a semiconductor is generally much smaller
than in a metal. Thus, we replace the probability to find an electron in the aluminum
ds

ds+dN by the probability taking into account the density of states in both materials
N0ds

N0ds+N0,ndn
. When N0 = N0,n, we recover Cooper formula. We find no correction to

the critical temperature as N0 ∝ m3/2√EF, and the Fermi energy in Al (≈11 eV) is
much larger than in Bi2Se3 (60 meV).

IV.4.1 Anomalous Fraunhofer pattern
A Josephson junction with an aluminum thickness of 20 nm is shown in Fig. IV.11a.

Defects created during the fabrication process are more visible below the electrodes
when the aluminum is thin. We recall that the selenium capping layer is only removed
where the aluminum is deposited. We measured such a junctions in a dilution fridge,
equipped with a 3D vectorial magnetic field, which allows the application of a magne-
tic field in any direction. The base temperature of the fridge is 80 mK. As shown in
Fig. IV.11bf, the modulation of the critical current is symmetric with respect to the
perpendicular magnetic field Bz. It becomes asymmetric upon increasing an in-plane
magnetic field By, as shown in Fig. IV.11cdeg. The in-plane magnetic field is much
larger than the perpendicular one. These measurements were acquired with an oscil-
loscope. The current source is a function generator which generates current ramps at
f = 77 Hz. We define a voltage threshold VT = 1µV to extract the critical current from
the data. This technique allows to record the critical current map shown in Fig. IV.11h
as a function of both magnetic fields in a single day.

Similar behaviour for the Fraunhofer pattern has been observed in InAs Josephson
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Fig. IV.10 Critical temperature. Normalized resistance as a function of tempera-
ture for two different thicknesses of aluminum deposited on Ti/Bi2Se3. The resistance
is normalized with respect to the value at 4 K. In blue, the aluminum thickness is
60 nm, the critical temperature is 0.75 K. In orange, the thickness is 20 nm, the criti-
cal temperature 0.37 K. For both curves, the thickness of Bi2Se3 and Ti is respectively
20 nm and 5 nm.

junctions[192]. Following this study, we define a parameter to quantify the Fraunhofer
pattern asymmetry :

Ic,L − Ic,R
Ic,L + Ic,R

where Ic,L (Ic,R) is the critical current of the left (right) side lobe, as shown in
Fig. IV.12b. As the Fraunhofer pattern is symmetric when no in-plane magnetic field
is applied, this parameter is equal to zero when B=0, as shown in Fig. IV.12a. As in
Ref. [192], we find a linear dependence for the asymmetry parameter as a function of
in-plane magnetic field. The asymmetry is more pronounced when the field is applied
perpendicular to the current than parallel.

Before we discuss the simulation of an anomalous Fraunhofer pattern, it is impor-
tant to understand what must be included in a simulation to generate an asymmetry.
It was shown in Ref. [206], from a symmetry analysis of a general Hamiltonian H des-
cribing hybrid Josephson junctions, which parameters must be included to generate an
asymmetric Fraunhofer pattern. The Hamiltonian H include spin-orbit coupling, Zee-
man splitting and an asymmetric disorder with respect to the junction center, denoted
Vx, Vy. The generation of an asymmetry in the pattern requires breaking all symme-
try operations U leaving UH(Bz)U†=H(−Bz). These symmetry operations are shown
in Table IV.4 from Ref.[206], together with the parameters breaking those symme-
tries. We removed the Dresselhauss coefficient from the original Table[206] as Bi2Se3
is centrosymmetric.
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Fig. IV.11 Fraunhofer pattern with in-plane magnetic field a SEM image
of a Josephson junction device. The aluminum thickness is 20 nm. Measurements are
shown for two different junctions with the same dimensions, bcd corresponds to one
junction while efgh to the other. bf The Fraunhofer pattern is symmetric with respect
to perpendicular magnetic field Bz when no in-plane magnetic field is applied. cd It
becomes asymmetric when a magnetic field By is applied in the y direction. eg The
asymmetry is reversed by changing the direction of the magnetic field. eg Critical
current map as a function of magnetic field By and Bz.

UH(Bz, ϕ)U†=H(−Bz, ϕ) Broken by
σxPy By, α, Vy
σyPy Bx, Vy
PxPyT Bx, By, α, Vx, Vy
σzPxPyT Vx, Vy

Table IV.4 Symmetry operations U protecting the symmetry of the Fraunhofer pat-
tern H(Bz) = H(−Bz), see Ref. [206]. Px,y are the parity operator which correspond
to a spatial inversion in the x or y direction. σx,y are the spin operators. T is the time
reversal operator. A symmetry operation in the left column is broken by one of the
parameters in the right column. These parameters include the in-plane magnetic fields
Bx, By, the asymmetric disorder potentials Vx, Vy and the spin-orbit coefficient α.

An asymmetric disorder Vy along the junction width is enough to break all symme-
tries and generate an asymmetric pattern. Indeed, asymmetric Fraunhofer pattern in
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Fig. IV.12 Asymmetry parameter. a An asymmetry parameter Ic,L−Ic,R
Ic,L+Ic,R is extrac-

ted from the Fraunofer pattern and shown as a function of magnetic field. We observed
a more pronounced asymmetry for a magnetic field in the y direction. b Critical cur-
rent a a function of magnetic field Bz for finite By and Bx = 0. The critical current
of the side lobe of the Fraunhofer pattern are extracted to calculate the asymmetry
parameter. c Same for finite Bx and By = 0. The asymmetry is less pronounced.

the absence of in-plane magnetic field has been reported[177]. However, we measured a
symmetric Fraunhofer pattern in the absence of in-plane magnetic field, which shows
that disorder Vy is not enough to break all symmetries of Table IV.4 and that the
magnetic field By must play a role in the asymmetry.

IV.4.2 Simulation of an anomalous pattern
Due to the magnetic fieldBz the phase difference changes linearly along the junction

width according to ϕ(y) = 2π(L+2λL)yBz
φ0

. An asymmetric Fraunhofer pattern can be
generated, Fig. IV.13b, simply by adding a phase jump along the junction width
as shown in Fig. IV.13c. We consider that the in-plane magnetic field is responsible
for this phase jump, as the Fraunhofer pattern is symmetric at By=0. An in-plane
magnetic field also induced a position dependent phase difference along the thickness
of the film, which is considered as superconducting by proximity with the electrodes 1,
as sketched in Fig. IV.13a. The phase is modulated according to ϕ(z) = 2π(L+2λL)zBy

φ0
.

If the thickness of the film changes (along the z direction), it produces a phase offset

1. The film thickness, 20 nm is much smaller than the coherence length in the normal material
ξN = 420 nm, see section IV.2.
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along the junction width. A first attempt to simulate our observation, has been to
consider this thickness variation using the standard relation for tunnel junction[194] :

Ic(Bz, By) = max
ϕ

∫ W

0

∫ t(y)

0
j0 sin

(
ϕ+ 2π(L+ 2λL)yBz

φ0
+ 2π(L+ 2λL)zBy

φ0

)
dydz
(IV.2)

AFM measurement of the film, Fig. IV.13ef, shows thickness t variation of about
t′ ≈1 nm over a length ld ≈1 µm. We consider the thickness variation of the film
along the y direction with the function : t(y) = t+ t′ sin(2πy/ld), with t = 20 nm the
film thickness. The calculated pattern at By = 0.25 T is shown in blue in Fig IV.13g.
It shows a much less pronounced asymmetry than the measured pattern, shown in
Fig. IV.13d, measured at the same field.

SimulationExperiment

2 µm

nm

µm

b

SimulationExperiment

c d

e f g
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h i
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t
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Fig. IV.13 Simulation of the anomalous Fraunhofer pattern. b An asymme-
tric Fraunhofer pattern can be generated simply by c a phase jump along the junction
width. If it occurs symmetrically with respect to the junction center y=0 it does not
generate an asymmetric pattern. d Experimental Fraunhofer pattern with an in-plane
magnetic field By = 0.25 T. e AFM measurement showing thickness variation of the
film of about ±1 nm over a length ld ≈ 1 µm. f AFM topographic image of the Bi2Se3
surface. g Simulation of an asymmetric pattern by considering spin-orbit induced phase
jump due to the film thickness variation. hj Experimental critical current maps as a
function of By and Bz. ik Simulation of the critical current maps.

Thus, we consider an additional disorder that can manifest through spin-orbit



Version du 29 octobre 2018, 07:41

IV.4 Josephson effect with in-plane magnetic field 99

coupling. As discussed in the first chapter and shown in Ref. [18], an in-plane magnetic
field generates an anomalous phase difference between the two superconductors due
to spin-orbit coupling in the weak link. In the ballistic regime this anomalous phase is
given by :

ϕ0 = 4EzLα

(~vF)2

where Ez = 1
2gµBB is the Zeeman energy. It is strongly generated in Bi2Se3 due to its

large Landé g-factor and Rashba spin-orbit coefficient α. Nevertheless, in absence of
disorder, the anomalous phase has no effect on the Fraunhofer pattern. It is understood
because the arbitrary bulk phase difference between the two superconductors masks
the anomalous phase ϕ0. However, if the anomalous phase is spatially varying due to
disorder in the junction it can generate an asymmetric Fraunhofer pattern. In Ref. [207]
it is shown, from ARPES measurements, that the Rashba coefficient can change due
to a thickness variation of 1 QL (1 nm). We consider a variation of α′ ≈0.01 eVÅ
with the function α(y) = α + α′ sin(2πy/ld). The mere existence of a large value
for α ≈ 0.4 eVÅ , does not lead to an asymmetric Fraunhofer pattern in absence of
disorder, as the induced anomalous phase-shift ϕ0 can always be compensated by the
arbitrary phase ϕ. In other words, because in Eq. IV.4.2, the critical current is obtained
by maximizing over the arbitrary phase ϕ, a global change of ϕ0 will be compensated
by an equivalent change of the arbitrary phase ϕ. Only the spatial variation of the
anomalous phase due to disorder along the y direction can generate an asymmetric
Fraunhofer pattern, in agreement with Table IV.4 indicating that finite disorder Vy
must be present for the asymmetry to be present. We calculate the pattern by adding
the anomalous phase in the usual relation :

Ic(Bz, By) = max
ϕ

∫ W/2

−W/2
j0 sin

(
ϕ+ 2π(L+ 2λL)yBz

φ0
+ ϕ0(y)

)
dy

We use the expression from Ref. [208] for the anomalous phase in the diffusive
regime as the electrode spacing L=150 nm is larger than the mean free path l=40 nm :

ϕ0 = τm∗2Ez(αL)3

3~6D
(IV.3)

where τ = 0.13 ps is the elastic scattering time, D = 1
3v

2
Fτ = 40 cm2s−1 is the

diffusion constant and m∗ = 0.25 me is the effective electron mass[193]. The value of
the Lande g-factor, g=19.5, is taken from electron spin resonance measurements[20].
The result for By = 0.25 T is shown in red in Fig. IV.13g and agrees with the measured
pattern. We also calculated the critical current maps shown in Fig. IV.13i and k
which reproduce the experimental map Fig. IV.13h and j respectively. These maps are
calculated using Eq. (IV.2), including the anomalous phase.

While a spatially varying anomalous phase provides a natural explanation for the
asymmetric Fraunhofer pattern in these SNS junctions made from Bi2Se3 with strong
spin-orbit coupling, we also showed that disorder along the junction width in combina-
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tion with By, is sufficient to generate an asymmetric Fraunhofer pattern. To unambi-
guously demonstrate that an anomalous phase shift ϕ0 is generated by finite spin-orbit
coefficient α and finite magnetic field By, a direct measurement of the current phase
relation with in-plane magnetic field is required.

IV.4.3 Detection of the anomalous Josephson effect
A remarkable consequence of the anomalous Josephson effect is that the current

oscillation frequency of a superconducting loop interrupted by a Josephson junction
does not depend solely on its surface, as shown in section IV.7.

To probe the anomalous Josephson effect, we measured simultaneously two Jo-
sephson interferometers, oriented as sketched in Fig. IV.14a, differing only by the
orientation of the small junctions with respect to the in-plane magnetic field. Accor-
ding to Ref. [18] an anomalous phase manifests only in the small junction of the upper
device in Fig. IV.14a. This is because the anomalous phase is generated perpendicular
to the magnetic field. As the anomalous phase generates a current, the ϕ0 Josephson
effect can be seen as the superconducting analogue of the spin galvanic effect (or in-
verse Edelstein effect)[80], where a spin polarization generates a transverse current.
Therefore, we call the device where the anomalous phase is expected, the anomalous
device while the other is the reference device where no anomalous phase is expected.
This experiment were done in a dilution fridge equipped with a single magnetic coil
at a base temperature T = 30 mK. The sample is mounted in the fridge such that the
sample plane is parallel to the magnetic field B. The sample plane can be mechani-
cally tilted by about 1◦ with respect to the magnetic field. Thus, the magnetic field
B produces an in-plane By = B cos(θ) and a perpendicular Bz = B sin(θ) magnetic
field, as sketched in Fig. IV.14c. In this situation, the critical current for the reference
device changes as Ic ∝ cos(ωrefB) with ωref = 2πSref

φ0
sin(θ) where Sref is the normal

surface enclosed by the superconductor. For the anomalous device, the critical current
changes as Ic ∝ cos(ωB) with :

ω = 2πS
φ0

sin θ + ϕ̇0 cos(θ) (IV.4)

with ϕ̇0 = τm∗2gµB(αL)3

6~6D

In Eq. (IV.4), the first term arises from the flux within the Josephson interferometer
of area S, the second term arises from the anomalous phase shift in the diffusive regime
ϕ0 = ϕ̇0B cos(θ), which is expressed in the previous section.

Fig. IV.14b shows voltage maps for two different angle θ. At low B, the two devices
are in-phase and become out-of-phase at higher magnetic field, indicating that the
frequency ω of the anomalous device is slightly larger than the reference device, as
expected from Eq. (IV.4) where the anomalous phase leads to an enhanced frequency
ω with respect to the reference device.

One also sees that the frequency of both devices decreases with increasing B. This
is due to flux focusing that makes the effective device area larger at low magnetic field.
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Fig. IV.14 Probing the anomalous ϕ0 Josephson effect a Sketch of the setup
consisting of two Josephson interferometers fabricated on the same chip. An anomalous
phase induced by Rashba spin-orbit and a magnetic field By can only be generated
in the small junction of the anomalous device, as it is correctly oriented with respect
to B. b Voltage maps, showing the critical current oscillation of the two devices as
a function of magnetic field B, for two different angle θ between the magnetic field
and the sample plane. The angle θ is determined from the last oscillation period, as
shown by the black arrow. The frequency of the anomalous device is larger than the
reference as a consequence of the anomalous phase shift. The colored arrows are guide
to the eyes, to help visualizing the increased phase shift in the anomalous device. c
The oscillation frequency can be changed by mechanically tilting the sample, i.e by
changing the perpendicular component of the magnetic field Bz = B sin θ.

As flux focusing decreases upon increasing the in-plane magnetic field, the effective
areas of the devices are reduced and so are their frequencies.

The angle θ is determined from the last oscillation period ∆B of the reference
device by the relation :

θ = arcsin( φ0

S∆B )

We choose the last oscillation period as it is the one where the effective area of the
device is the closest from the area defined by lithography. The error on the determi-
nation of the angle δθ is due to the error δ(∆B) which is estimated as the difference
between the last oscillation period and the before last oscillation period. The error on
the angle is given by the relation :
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δθ = dθ

d∆Bδ(∆B) = φ0δ(∆B)

S∆B2
√

1−
(

φ0
S∆B

)2

To compare precisely the oscillation frequencies, the critical current plot, Fig. IV.15a,
is extracted from the voltage maps. The average critical current, shown as a continuous
line in Fig. IV.15a, is removed from the critical current curve and the result is shown
in Fig. IV.15b for the two devices. These curves show that the anomalous device has a
frequency larger than the reference as expected from Eq. (IV.4) where the anomalous
phase leads to an enhanced frequency ω with respect to the reference device.

a

b

c

Fig. IV.15 Comparison of the device frequencies as a function of the angle
θ. a The critical current is extracted and shown as a function of magnetic field. The red
and blue curves correspond to the reference and anomalous device respectively. The
anomalous device shows a larger oscillation frequency than the reference device. As
the critical current of the large junction decreases with the magnetic field, a decreasing
background is fitted for both devices and shown by the continuous lines. b Critical
current as function of magnetic field. The background is subtracted to compare pre-
cisely the oscillation frequency of the two devices. Each period are compared one by
one and the average of the single period ratios provides a value ω

ωref
. c The ratio of the

oscillation frequencies is plotted as a function of the angle θ. Without the generation
of an anomalous phase this ratio should be constant and equal to the surface ratio
S
Sref
' 1. This ratio diverges as 1

θ
for small θ, as shown by Eq. (IV.5). Fitting the curve

with Eq. (IV.5) provides the spin-orbit coefficient α.

While the two devices have been fabricated with nominally identical areas, to ex-
clude that the observed difference in frequencies between the two is due to a difference
of areas, we plot in Fig. IV.15c, the frequency ratio ω

ωref
(θ) measured at different angles

θ. Because each curve contains several periods Ti, the frequency ratio is obtained from
the average between N period ratio as ω/ωref = 1

N

∑N
i=1

Ti,ref
Ti

, where Ti,ref and Ti are the
ith oscillation period for the reference and for the anomalous device, respectively. This
method enables ignoring the flux focusing effect because the ratio is taken between
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two periods measured at about the same magnetic field. We find that the experimental
data follows the relation :

ω

ωref
(θ) = S

Sref
+ ϕ̇0φ0

2πSref tan(θ) (IV.5)

At large θ, this ratio is equal to the ratio of areas S/Sref ' 1, however, for small θ,
this ratio increases as 1/ tan(θ), indicating the presence of an anomalous phase shift
ϕ0. Indeed if their were no anomalous phase shift, this ratio should not depend on the
angle and stays constant at the value S

Sref
.

Another method has been used to compare the frequency ratio. The initial proce-
dure of removing the decreasing critical current background is the same as for the first
method as shown in Fig. IV.16ab. As the oscillation frequency of the devices should
not vary with the magnetic field in the absence of flux focusing, we create a new ma-
gnetic field scale, Bcor. On this field scale, flux focusing is corrected and the reference
signal is periodic as shown in the lower panel of Fig. IV.16c. Furthermore, the oscil-
lation frequency of the anomalous device is also periodic on this field scale as shown
in the upper panel of Fig. IV.16c. In this corrected field scale, the frequency ratio ω

ωref
is extracted from sinusoidal fit and plotted Fig. IV.16d. It provides the same result
as the first method : at large θ, the ratio is equal to the ratio of areas S/Sref ' 1,
however, for small θ, this ratio increases as 1/ tan(θ), indicating the presence of an
anomalous phase shift.

We retain the value extracted from the fit ϕ̇0φ0
2πSref

= 4.1 10−4 using the first method,
without flux focusing correction, to calculate the Rashba coefficient α. Using the ex-
pression of ϕ̇0 given above, we calculate a spin-orbit coefficient α = 0.38 eVÅ. This
value of the Rashba coefficient is consistent with the value extracted from spin-splitted
conduction band observed by photoemission measurements[153, 33]. A contribution
from the Dirac states is possible, however, despite their large effective Rashba coeffi-
cient, see chapter 1 section spin-orbit, about 4 eVÅ, their larger Fermi velocity makes
their contribution to the anomalous phase shift smaller than the spin-splitted bulk
states.

The symmetry analysis of Ref. [206], discussed in the previous section, also enume-
rates the parameters required for the appearance of an anomalous phase. Table IV.5
from Ref. [206] shows that the anomalous phase observed here must be the conse-
quence of finite Rashba coefficient α and in-plane magnetic field By. Indeed, while
Table IV.5 shows that disorder alone Vy is sufficient to generate an anomalous phase
shift, this disorder-induced anomalous phase shift should exist even at low magnetic
field and should not change with magnetic field. In contrast, the data in Fig. IV.14b
shows that the two devices are in-phase at low magnetic field and that the anomalous
phase shift is induced by the in-plane magnetic field. Thus, this observation implies
that disorder Vy is absent, which is plausible as the small Josephson junction is only
150 nm×150 nm, which is much smaller than the disorder length ld ≈1 µm observed
in AFM, see previous section. In the absence of disorder Vy, Table IV.5 shows that
the only way for an anomalous phase shift to be present is that the coefficient α be



Version du 29 octobre 2018, 07:41

104 Chapitre IV. Anomalous Josephson effect in Bi2Se3

a

b

c

d

Fig. IV.16 Comparison of the device frequencies : second method. a The
critical current is extracted and shown as a function of magnetic field. The red and
blue curves correspond to the reference and anomalous device respectively. b Critical
current as function of magnetic field. The background is subtracted to compare preci-
sely the oscillation frequencies of the two devices. The zeros of critical current of the
reference (red) are not regularly spaced due to flux focusing. c Critical current of the
anomalous (upper panel) and reference (lower panel) devices as a function of the cor-
rected magnetic field, Bcor. The zeros of critical current are now regularly spaced. The
frequencies for the reference and the anomalous devices are extracted from sinusoidal
fit shown as continuous lines. d Ratio of the oscillation frequencies ω

ωref
as a function of

the angle θ. This ratio diverges as 1
θ
for small θ due to the anomalous phase generated

by spin-orbit coupling.
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non-zero. Indeed, if α were zero, the first and third symmetry operations of Table IV.5
would not be broken even with finite By.

UH(ϕ)U†=H(−ϕ) Broken by
PyPx α, Vx, Vy
σzPyPx Bx, By, Vx, Vy
σxPyT Bx, α, Vy
σyPyT By, Vy

Table IV.5 From Ref. [206], symmetry operations U protecting H(ϕ) = H(−ϕ).
Which in turn results in ϕ0 = 0. The symmetry operations on the left column are
broken by one of the parameters on the right column. These parameters include the
in-plane magnetic fields Bx, By, the asymmetric disorder potentials Vx, Vy and the spin-
orbit term α which is the consequence of the structural inversion asymmetry (Rashba).
To generate an anomalous phase ϕ0, each symmetry operator, one per line of the table,
must be broken. For example, the combination of the magnetic field By and the spin
orbit coupling α is enough to break all the symmetries.

An interesting perspective would be to generate an anomalous phase through spin-
orbit coupling without magnetic field. Indeed, several studies have shown that injecting
a normal current through a material with strong spin-orbit coupling result in a spin
polarization at the surface, an effect known as the Edelstein effect[209]. It could poten-
tially be used to replace the magnetic field in Table IV.5 and generates an anomalous
phase.

IV.5 Current injection across a Bi2Se3 Josephson junc-
tion

IV.5.1 Current induced spin polarization
We fabricate single junction and interferometer devices with additional gold elec-

trodes on top of the Bi2Se3 to inject a normal current across the Josephson junction.
Such device is sketched in Fig. IV.17c.

Similar devices have been fabricated with Nb-Au-Nb Josephson junction where
a normal current was injected in the region carrying the supercurrent[210, 61]. In
Ref. [61] a transition to a π junction has been induced by changing the electron energy
distribution in the junction. This is achievable when the time spent by an injected
electron between the two reservoirs is smaller than the inelastic scattering time. It is
not the case in our experiment, as we did not try to reduce the spacing between the
reservoirs. We used a different approach where the injected current generates a spin
polarization at the surface. Indeed as sketched in Fig. IV.17ab, the electronic bands
of Bi2Se3 are spin textured at the surface, as discussed in the first chapter. When no
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Fig. IV.17 Current induced spin polarization. a Dirac cone (blue) and spin
split Rashba states (red). b Electronic bands at the Fermi energy in the kx-ky plane. c
Sketch of a Josephson junction (gray) and two gold electrodes (yellow) used for current
injection. d A current shifts the Fermi surface in opposite direction. It results in a net
spin polarization perpendicular to the current. The Rashba states are not represented
for simplicity.

current is applied, the summation over the spin of all k vectors results in zero net spin
polarization[211] :

S = 1
2π2

∫
E(~k)<EF

s(~k)dkxdky = 0

A finite current density ~j induces a shift of the Fermi surface in reciprocal space ∆~k,
as shown in Fig. IV.17d. Thus, the summation over the spin of all k vectors results in
a net spin accumulation. This current induced spin accumulation has been detected
by spin-torque measurements where a ferromagnetic electrode is deposited on top of
Bi2Se3[212, 213].

To estimate the energy associated with the spin accumulation, we approximate the
shift in momentum as ∆~k ≈ m∗~j

en~ and the associated energy as α∆~k ≈ 10 µV for a
current I = 10 µA across an area 4 µm × 20 nm. This energy is larger than the thermal
energy at 30 mK. Also, it corresponds to a Zeeman energy induced by a magnetic field
of 10 mT with a Landé factor g=20.
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IV.5.2 Effect of heating
We show the result of current injection for the Josephson interferometer shown in

Fig. IV.18a. An additional Yokogawa source is used to inject a current Icontrol in the
Bi2Se3. Its ground is different and isolated from that of the junction. It insures that the
injected current which enters by the top electrode is equal to the current which exits
by the bottom electrode denoted "ground yoko" in Fig. IV.18a. The critical current
of the junction is shown as a function of the control current Icontrol in Fig. IV.18b.
The Josephson current vanished above 2 µA and superconductivity above 3 µA. We
attribute this effect to an increase in temperature due to dissipation in the film. The
resistance between the two electrodes used for current injection is R = 1.1 kΩ. Thus,
an electrical power P = RI2

control is dissipated by phonons through electron-phonon
coupling. It is expressed with the relation[214] :

P = ΓV (T 5
el − T 5

ph)

where Γ is the electron-phonon coupling strength and is typically 1 nW.µm−3.K−5,
V = 4µm × 25µm × 20nm is the volume of the film and Tel (Tph) is the electron
(phonon) temperature. If we consider Tel >> Tph or Tph = 0, we find, for a current
Icontrol = 2 µA, an electron temperature Tel ≈ 1.2 K which is larger than the critical
temperature of the aluminum Tc = 0.75 K. Therefore at low temperature, electron-
phonon coupling is weak and it is easy to increase the electron temperature. This
imposes a serious limitation on the current induced spin polarization for device made
with aluminum.

We compare the critical current oscillation of the device without current injection
in Fig. IV.18c and with an injected current Icontrol = 0.5 µA in Fig. IV.18d. We only
observed a drop in the critical current of both junctions, no shift in magnetic field
were detected for the oscillation. We also checked the effect of current injection on the
Fraunhofer pattern of single junction. No anomalous behaviour were observed.

IV.6 Anomalous Shapiro steps
Due to the anomalous Josephson effect it should be possible to observe Shapiro

steps induced by the coupling of a Josephson junction to the magnetic field instead of
the electric field. If the microwave energy ~ω matches the Zeeman energy, transition
between the two spin states can be induced at the microwave frequency. Therefore,
the anomalous phase will oscillate, ϕ0(t) = A(1 +C cos(ωt)), with A = EzLα

(~vF )2 and AC
the oscillation amplitude. The usual expression for the Shapiro steps, see Eq. IV.3.2,
becomes :

IJ = Ic
∑

(−1)nJn(2eV1

~ω
+ AC) sin(cst+ 2eV0t

~
− nωt)
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5 µm

a b

c dIcontrol = 0 Icontrol = 0.5 µA

Icontrol

ground yoko

Fig. IV.18 Heating effect. a SEM image of a Josephson interferometer. Two addi-
tional gold electrodes are present to inject a current Icontrol in the Bi2Se3. b Critical
current of the device as a function of the control current. c Critical current as a func-
tion of perpendicular magnetic field measured without current injection. d Critical
current as a function of magnetic field for a finite control current corresponding to
Vcontrol = 20 mV.

By placing the junction in a tunable cavity[215] the usual Shapiro steps will be
observed at an electric field maximum corresponding to 2eV1

~ω >> AC. By tuning the
cavity such that the junction is at an electric field node and a magnetic field maximum
2eV1
~ω << AC, Shapiro steps resulting from the coupling to the magnetic field could be
observed.

IV.7 Conclusion and perspectives
To summarize, the simultaneous measurements of the CPR in two Josephson inter-

ferometers, making an angle of 90◦ with respect to the in-plane magnetic field, enabled
the identification of the anomalous phase shift ϕ0 induced by the combination of the
strong spin-orbit coupling and in-plane magnetic field. We estimated that an in-plane
magnetic field of 0.25 T generates an anomalous phase shift of 2π. This anomalous
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phase shift can be employed to fabricate a phase battery, a device of intense interest
for the design and fabrication of superconducting circuits[216, 217].

It will be worth trying to measure the Shapiro steps on thicker Bi2Se3 films. Indeed,
the 4π phase periodicity of the Josephson current in three dimensional topological
insulators has only been detected in thick samples[166, 164] ; possibly due to a better
decoupling of the two surfaces.

As discussed in section IV.5, an interesting perspective will be to probe spin-orbit
related phenomena without magnetic field. We encounter a heating problem when
trying to induce a spin polarization by injecting a current in Bi2Se3. This difficulty
could be overcome in a non-local geometry in the spirit of Ref. [218]. Indeed, by using
a material with a long spin coherence length, like InAs, one could inject a current
far (≈ 1 µm[219]) from the junction and detect the phase shift induced by the spin
polarization, as sketch in Fig. IV.19.

I

Ls

ф

Fig. IV.19 Non local spin injection in a Josephson junction. A current I is
injected across a material with spin-orbit coupling (yellow). In blue, a SQUID device
with a tunnel junction (black) and a SNS junction on the spin-orbit coupled material.
Due to the spin Hall effect, a spin current is induced in the SNS junction and can result
in a detectable flux in the SQUID. Ls should be of the order of the spin coherence
length.

It has been proposed that the edges of quantum spin Hall insulator should carry
an anomalous Josephson current with an in-plane magnetic field[220]. As discus-
sed in section IV.1, signatures of supercurrent at the edges of HgTe/CdTe[167] and
InAs/GaSb[174] hetero-structures have been reported. Even in the non topological
regime, the anomalous Josephson effect in these systems should be measurable as
the g-factor is large (g≈ 10) as well as the Rashba coefficient α ≈ 0.1 eV.A for
InAs/GaSb[221] and α ≈ 0.2 eV.A for HgTe/CdTe[222]. Moreover, in the quantum
spin Hall insulator regime, which is accessible by tuning the gate voltage, the anoma-
lous phase shift should be controlled by an effective Rashba coefficient, solely related
to the Fermi velocity vF. The quasi one dimensional edge states could also be used as
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Dayem bridges in nano-SQUID devices[9].
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Conclusion

In this thesis, we studied the electronic properties of semiconductor junctions bet-
ween two superconductors.

We presented the theory describing these devices. In the case where the semicon-
ductor is a quantum dot, the ground state of the system depends on the coupling
with the superconductor, the charging energy and the energy difference between the
quantum dot level and the Fermi energy. In the case of negligible Kondo screening, the
ground state of the system determines the sign of the Josephson current and a ground
state transition can induced an offset of π in the Josephson current phase relation.
When the semiconductor is a two dimensional system with strong spin-orbit coupling,
applying a magnetic field results in an offset ϕ0 different from 0 or π in the current
phase relation. Thus, the ϕ0 offset is related to the spin-orbit coupling parameters of
the semiconductor.

We have presented the fabrication of superconducting devices based on Si doped
InAs nanowires and Bi2Se3 thin films coupled to superconducting aluminium elec-
trodes.

At low temperature, we observed that the InAs nanowires were in the regime of
Coulomb blockade. We observed a discrete energy spectrum due to quantum confi-
nement of the electronic states. The mean level spacing of this spectrum, extracted
from Coulomb peak measurements, was in agreement with a quantum dot of volume
corresponding to the nanowire between the superconducting leads. We have probed
the sub gap resonances at voltages eV < 2∆, which result from Andreev reflections
and observed transition between ground states when changing the occupancy of the
quantum dot or the coupling with the superconducting leads. By applying large nega-
tive gate voltage, we induced a metal insulator transition and observed an evolution
of the sub gap resonances in agreement with the theoretical phase diagram describing
Andreev quantum dots.

Within the field of hybrid semiconducting-superconducting devices, numerous theo-
retical works have appeared proposing different means of breaking time-reversal and
inversion symmetry to induce an anomalous phase shifts ϕ0 in Josephson junctions.
We presented recent studies of Andreev quantum dots and showed that an anomalous
phase shift, has been reported in Josephson interferometers based on nanowires by the
Kouwenhoven’s group.

For this thesis, we fabricated Josephson junctions and SQUIDs based on Bi2Se3 thin
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films. The Josephson current dependence to microwave irradiation and magnetic field
was studied. An asymmetric Fraunhofer pattern has been observed by applying an in-
plane magnetic field. We developed a simple model, involving disorder and spin-orbit
coupling, to reproduce the experimental observations. We designed and performed an
experiment where the disorder contribution could be well separated from the spin-orbit
contribution. An anomalous phase shift ϕ0 in the current phase relation of Josephson
interferometer devices was detected. We showed that this offset ϕ0 is solely related to
the interplay between the magnetic field and spin-orbit coupling. The observation of
this phase offset, in systems where the band structure can be modulated by strain,
or where the position of the Fermi energy can be changed by a field effect, will be of
great interest to identify distinct topological phases within the Josephson junctions.
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A - Josephson ϕ0 interferometer

Consider a Josephson junction with the current phase relation Ic,1 sin(ϕ1), in paral-
lel with another junction described by the anomalous Josephson current phase relation
Ic,2 sin(ϕ2 + ϕ0), the total current reads :

I = Ic,1 sin(ϕ1) + Ic,2 sin(ϕ2 + ϕ0)

If the device inductance can be neglected, the two phase differences are linked by
the relation :

ϕ1 − ϕ2 = 2πφ
φ0

and the critical current is obtained by maximizing over one of the phase difference :

Ic = maxϕ1

[
Ic,1 sin(ϕ1) + Ic,2 sin(ϕ1 −

2πφ
φ0

+ ϕ0)
]

If Ic,1 >> Ic,2, the phase ϕ1 stays fixed at π/2 to insure a maximum current
through the junction of larger critical current. The flux is φ = BS where S is the
surface enclosed by the device. Then :

Ic = Ic,1 + Ic,2 cos(2πBS
φ0

+ ϕ0)

If ϕ0 depends linearly on the magnetic field B, ϕ0 = aB with a constant, the
oscillation frequency of the device is modified due to the anomalous phase :

Ic = Ic,1 + Ic,2 cos
((2πS

φ0
+ a

)
B
)
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Sujet : Transport d’Andreev dans des boîtes quantiques
et effet Josephson dans des couches minces à fort

couplage spin-orbite

Résumé : Les jonctions Josephson sont les briques de base des circuits supraconducteurs. Elles
sont constituées de deux supraconducteurs séparés par une barrière isolante. Dans cette thèse,
nous présentons deux expériences où la barrière isolante est remplacée par un semi-conducteur.
Dans la première, nous étudions des nanofils dans le régime du blocage de Coulomb, où le nombre
d’électrons peut être controlé, un par un, jusqu’à induire une transition entre un régime métallique
et un régime isolant. A travers cette transition, nous avons observé qu’un spin électronique se
comporte comme une impureté magnétique et donne lieu à la formation d’états électroniques
discrets entre les électrodes supraconductrices. La compréhension de ces dispositifs est essentielle
pour le développement de la nanoélectronique à base de supraconducteur.
Dans la seconde expérience, nous étudions l’effet Josephson dans des couches minces où le mou-
vement des électrons dépend de leur orientation de spin. Ce couplage spin-orbite est essentiel
dans un grand nombres de travaux théoriques visant à découvrir des nouvelles phases de la ma-
tière. Nous démontrons par cette expérience que le couplage spin-orbite peut être sondé par des
mesures sensibles à la différence de phase entre les électrodes supraconductrices qui forment la
jonction Josephson.

Mots clés : Josephson, Andreev, Boîtes quantiques, Spin-orbite, Supraconducteurs, Semi-
conducteurs, Nanofils, InAs, Couches minces, Bi2Se3

Subject : Andreev transport in quantum dots and
Josephson effect in spin-orbit coupled thin films

Abstract: Josephson junctions are the building blocks of superconducting electronics. They are
made of two superconductors separated by an insulating barrier. In this thesis, we present two
experiments where the insulating barrier is replaced by a semiconductor.
In the first one, we study nanowires in the regime of Coulomb blockade, where the number of
electrons can be controlled, one by one, until a metal-insulator transition is induced. Across
this transition, we observed that a single electronic spin behaves like a magnetic impurity and
leads to the formation of discrete electronic states between the superconducting electrodes. The
understanding of such devices is crucial for the development of superconducting nanoelectronics.
In the second experiment, we study the Josephson effect in thin films where the electron motion
is coupled to its spin. This spin-orbit interaction is essential in a wide number of theoretical works
aiming at discover new phases of matter. We demonstrate that spin-orbit coupling can be probed
by phase sensitive measurements of the Josephson current.

Keywords : Josephson, Andreev, Quantum dots, Spin-orbit, Superconductors, Semicon-
ductors, Nanowires, InAs, Thin films, Bi2Se3
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