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Abstract

The measurement of vertical concentration profiles of atmospheric trace gases provides a
better insight into air pollution, ozone destruction and climate change as well as a way to
validate chemical models and satellite observations. To that end, laser heterodyne radiometer
(LHR) offers significant benefits in terms of high spectral resolution, high sensitivity and
high vertical resolution in conjunction with a compact instrumental size deployable for field
applications.

The aim of this thesis is to develop a fully transportable mid-infrared (mid-IR) LHR
instrument for ground-based remote sensing of key trace gases in the atmospheric column.

In order to test our design and characterize its performance, a proof of concept (PoC)
mid-IR LHR receiver was first developed. Its field test was carried out on the QualAir
platform of the UniversitéPierre et Marie Curie (UPMC) with the help of a heliostat of the
TCCON-Paris station (TCCON : Total Carbon Column Observing Network). LHR
absorption spectrum of CHy, in the atmospheric column was extracted from the solar radiation
using the developed ground-based LHR receiver and it is in good agreement with the
spectrum measured by the TCCON-Paris station.

After this field test validation, a fully transportable mid-IR LHR instrument was
developed and deployed on the roof of the IRENE platform of the Universitédu Littoral C&e
d'Opale (ULCO) in Dunkerque. LHR spectrum of CH4 and N,O in the atmospheric column
was measured and in good agreement with the TCCON FT-IR spectrum of CH4 and N,O, as
well as in good agreement with the atmospheric transmission modelling.

The fully transportable mid-IR LHR instrument developed in this PhD work has high
potential for use in measurement of vertical concentration profiles of key atmospheric species

on spacecraft, on airborne or on ground-based platform.

Keywords : Laser heterodyne radiometer (LHR); Ground-based remote sensing; External-
cavity quantum cascade laser (EC-QCL); Mid-infrared (mid-IR); Polycrystalline IR fiber.
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Introduction

Objective

This thesis presents studies and development of laser heterodyne radiometer (LHR) for
ground-based remote sensing of vertical concentration profiles of atmospheric trace gases.
This introductive chapter describes the motivation behind developing LHR as well as other
passive remote sensing techniques for the measurements of vertical concentration profile.
This chapter will provide a brief history review of LHR techniques and outline the currently
state-of-the-art LHRs. At the end of this chapter, the composition of this dissertation is

introduced.

I. Remote sensing of vertical concentration profiles of atmospheric trace gases

Vertical concentration profiles of atmospheric trace gases, such as nitrous oxide (N»O),
methane (CH,;), water vapor (H,O), ozone (O3), carbon dioxide (CO;), and
dichlorodifluoromethane (CCI,F,) [1], are of significant interest, because of their crucial roles
in air pollution, ozone depletion, and climate change [2].

As is well known, vertical concentration variation of any trace gas strongly depends on
vertical air transport. As a point of reference, the vertical air transport (Fig. 1 left) in the
troposphere is faster than the horizontal transport (Fig. 1 right). Comparing with horizontal
variations of trace gas concentrations, their vertical concentration variations are thus larger.
The vertical air transport from the surface to the tropopause (~10 km) takes about one month
on average. Trace gases with lifetimes longer than one month tend to mix well vertically in
the troposphere, while trace gases with shorter lifetimes show great vertical concentration
variation. Under planet boundary layer (PBL), it takes even 1-2 days for air transport from
the PBL down to the surface. Due to the temperature inversion in the stratosphere, the air
exchange between the troposphere and the stratosphere is much slower than the mixing of the
troposphere. It takes 5-10 years for air transport from the troposphere to the stratosphere, and
1-2 years from the stratosphere down to the troposphere (Fig. 1 left) [3]. Therefore, trace
gases with atmospheric lifetimes (t) longer than 10 years show little vertical variation within

the troposphere [5].
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Figure 1 left: characteristic time scales for vertical transport; right: typical time scales for global horizontal

transport in the troposphere [4].

Both nitrous oxide (t~120 years) and methane (t~10 years) have uniform vertical
distributions throughout the troposphere due to their long atmospheric lifetimes and are
regulated under the Kyoto Protocol because of their contributions to global warming [5-7].
Compared to other tropospheric greenhouse gases (GHGs), although nitrous oxide has a
smaller concentration (~320 ppbv for parts per billion by volume), it is an influential global
warming molecule due to its particularly long lifetime [5]. Meanwhile nitrous oxide is rather
inert in the troposphere, the reduction in its concentration occurs in the stratosphere due to
photodissociation [8]. In addition, nitrous oxide is the dominant source of nitrogen oxides
active in stratospheric ozone depletion [9].

Similar to nitrous oxide, methane is also well-mixed throughout the troposphere (~1.8
ppmv for parts per million by volume) [10]. A combination of slower transport from the
troposphere to the stratosphere and reactions with OH generates lower methane
concentrations at stratospheric altitudes [11,12].

Water vapor in the troposphere is the most important greenhouse gas [13] and plays a
crucial role in climate change as a dominant feedback variable in association with radiative
effects and moist dynamics. In the lower troposphere, water vapor acts as the main resource
for precipitation in all weather systems, providing latent heating in the process and
dominating the structure of diabatic heating in the troposphere [5,14].

Ozone plays an important role in the chemical reaction occurring in the atmosphere, as
well as on the climate change [15,16,18]. On average, about 90% of the total ozone vertical
column is present in the stratosphere and only 10% exists in the troposphere. However,
important variations in the vertical distribution of ozone can be the result of photochemical
and dynamic processes. The tropospheric ozone concentration is particularly highly variable

in space and time [19]. In the boundary layer, photochemically produced ozone is a polluting



oxidant with major implications for human health starting at mixing ratios below 0.2 ppmv
[17].

Dichlorodifluoromethane (CCl,F,, commonly known as Freon-12), which originates from
ground-level anthropogenic sources and is photodissociated in the stratosphere, can deplete
the protective stratospheric ozone layer via a catalytic photochemical cycle reducing ozone to
oxygen [20] and has therefore been banned under the Montreal Protocol [21]. The highest
Freon-12 concentration (~500 pptv for parts per trillion by volume) is found in the
troposphere where it is evenly distributed due to its long lifetime (~100 years) [21-23]. In
addition, the long lifetime of Freon-12 [24] makes it an ideal tracer for dynamic processes,
such as subsidence [25], horizontal transport, and mixing [26].

The accelerating rise of global levels of carbon dioxide in the atmosphere, most likely due
to human activity and anthropogenic emissions, is believed to be the main driver of
(anthropogenic) climate change [27,28]. Carbon dioxide production and reduction primarily
occur on the ground and these variations are quite low in the atmosphere [29], where the
variation of CO; is likely to be the result of dispersion and transportation controlled by
meteorological factors [30]. In the free troposphere, CO, has been used as a tracer gas to
study the vertical transportation of air pollutants [31,32].

It is, therefore, important to measure the vertical concentration profiles of the key
atmospheric trace gases, which helps us to understand pollutant transport, climate change
[20,22-26,33-36], globally environmental parameters [37], and anthropogenic effects on
atmospheric chemistry [2]. Moreover, vertical concentration profiles provide a powerful
means for validating various atmospheric chemical and transport models and satellite
observations. Meanwhile, such profiles can also give a scientific and comprehensive basis for
environment assessment and the formulation of related policies. For these and other reasons
the study of atmospheric trace gas concentrations and their vertical profiles has been of long-
standing interest to atmospheric scientists, and over the years these studies have generated
plenty of data on vertical concentration profiles of atmospheric trace gases.

Atmospheric trace gas concentrations can be generally measured by local point
measurement and vertical profile remote sensing, respectively. In local point measurement of
trace gas concentrations, instrumentation is located directly at the point of interest and in
contact with the trace gas of interest. While vertical profile remote sensing can provide us not

only the concentration but also its vertical distribution.



I1. Techniques of passive remote sensing of vertical concentration profile

Global measurements performed from satellite platforms and localized measurements from
balloon/aircraft and ground-based platforms can be used for passive remote sensing of
vertical concentration profiles of atmospheric trace gases [10,38,39]. These techniques based
on three different platforms are complementary to each other to form a complete observation

system for atmospheric vertical profile sensing.

(1) Global measurements on satellite platforms

The satellite measurement platforms work in different modes including backscatter ultraviolet
(BUV), occultation, limb emission, and limb scattering modes. Each mode involves a
different viewing geometry that affects measurements of the atmospheric radiation and

vertical resolution.

(1-1) In BUV mode (Fig. 2), satellite-platform instruments directly measure the upwelling
solar UV light that is either reflected from the Earth’s surface or scattered back from the
atmosphere based on Nadir viewing geometry [40]. Nadir viewing describes a vertical
direction viewing on the Earth’s surface directly below the satellite [42].
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: Field of

View

Figure 2 Schematic diagram of the nadir viewing geometry in BUV mode.

BUV mode is widely used for measuring ozone vertical profile. Ozone has a strong
absorption at short UV wavelength, which results in UV light at long wavelength being able
to penetrate far into the atmosphere. The radiation at short UV wavelengths is significantly
absorbed at higher altitudes, so the backscattered radiation at specific UV wavelengths can
only be scattered from above a particular height. Below this level, all the radiation is

absorbed and there is no backscattered radiation. This allows satellite-platform instruments in



BUV mode to obtain ozone vertical profile by measuring radiation at a series of wavelengths.
In addition, this mode can be used to infer information on the concentration of other trace
species which absorb in the same wavelength region. Disadvantages of this mode are that it
cannot be used at night including the polar night and its vertical resolution is poor (~5-10 km).

GOME (Global Ozone Monitoring Experiment) instrument, launched on-board ERS-2
(European Remote-Sensing Satellite) in April 1995, relies on nadir viewing BUV mode for
globally monitoring of atmospheric ozone [41] using a nadir-scanning UV and visible
spectrometer to cover the UV- NIR (near-infrared) (240-790 nm) region. Since summer 1996,
ESA (European Space Agency) has been delivering to users three-day GOME global
observations of total ozone, nitrogen dioxide, water vapor, sulfur dioxide, chlorine and

bromine monoxide, and other trace constituents as well as the related cloud information [42].

(1-2) In occultation mode, one measures absorption amount of solar, lunar, and even stellar
radiation directly through the limb of the atmosphere at different wavelengths (e.g. UV,
visible, infrared (IR)) as the Sun, the Moon, and the stars rise and set (depending on which
celestial radiator is being used by the satellite instrument). In solar occultation mode (Fig. 3)
transmission of sunlight through the Earth's atmosphere is measured and ratioed to
exoatmospheric measurements (solar measurements recorded with no atmospheric
attenuation). This is carried out at a series of tangent altitudes (the altitude to which the
instrument can see), increasing in altitude during a sunrise or decreasing in altitude during a
sunset. From each of the atmospheric measurements a slant column is calculated which can
contain contributions from multiple atmospheric layers. The slant columns contain sufficient
information on vertical profiles of atmospheric constituents, such as Oz, NO,, and NOs. The
vertical resolution of measurements in this mode is typically about 1 to 2 km. However, the
measurements in solar occultation mode are only possible during orbital sunrises/sunsets.
This means that the instruments in this mode provide only limited spatial coverage per orbit.
HALOE (HALogen Occultation Experiment) instrument, on-board the UARS (Upper
Atmospheric Research Satellite), launched in 1991, is an instrument operational in
occultation mode. It measures solar occultation in the IR region at pre-selected specific
wavelengths to measure atmospheric constituents such as ozone, water vapor, methane,

hydrochloric acid, and reactive nitrogen species.



Figure 3 Solar occultation viewing geometry. Note : the distances are not scaled. Solar radiation passes through
space and arrives at the upper boundary of the Earth atmosphere. These solar radiations are attenuated by the
atmospheric constituents. The blue, green and gray lines indicate the atmospheric absorption lengths at layer 1, 2
and layer n, respectively. These attenuated solar radiations are recorded by the instruments on the satellite in a

set of tangent altitudes during an occultation [43].

(1-3) Limb scattering mode (Fig. 4) is a part of limb-sounding mode, whose viewing
geometry is similar to that of both limb emission (see (1-4)) and occultation modes. In limb
scattering mode, the UV-visible-NIR radiance from the Sun is scattered by the atmosphere
into the FoV of the instrument along the line of sight (LOS) [44]. In each scan of the
atmosphere, instrument in this mode observes the atmosphere above the Earth’s horizon and
records spectra at different tangent altitudes to which the instrument can see. The objective of
this type of measurements is to determine vertical profiles of trace gases, aerosols and
atmospheric parameters (such as temperature and pressure). Satellite measurement in limb
scattering mode combines high intrinsic vertical resolution (similar to that of measurements
in occultation mode) and rapid global coverage (comparable in BUV mode). But the viewing
geometry in limb scattering mode is more complex and the horizontal resolution is poor

comparing with other modes.
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Figure 4 Limb scattering viewing geometry with single scattering, surface reflection, and second order of

scattering, respectively (the atmosphere’s curvature is exaggerated) [45].



SCIAMACHY (Scanning Imaging Absorption Spectrometer for Atmospheric
CHartographY) instrument on-board ENVISAT (ENVIronmental SATellite) [45] is an
imaging spectrometer operated in limb scattering mode. The solar radiation transmitted in,
back scattered by and reflected from the Earth’s atmosphere or surface is recorded with
SCIAMACHY at relatively high spectral resolution (0.2-0.5 nm) in the spectral region of
240-1700 nm and 2000-2400 nm [47,48]. The high spectral resolution and the wide
wavelength range of SCIAMACHY make it possible to detect different trace gases as well as
detecting clouds and aerosols.

(1-4) Limb emission mode (Fig. 5), another limb-sounding mode, is used to retrieve vertical
profiles of atmospheric trace gases with an improved vertical resolution and increased
sensitivity for higher altitude and minor species [49]. Instruments in limb emission mode
measure long-wave (IR or microwave) radiation thermally emitted in the atmosphere along
the LOS of the instrument. Vertical profiles of the incoming limb radiances can be measured
by changing the elevation angle of the LOS of the instrument such that vertical scans through

the atmosphere are performed [50].
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Figure 5 Limb emission viewing geometry. The satellite instrument views toward the Earth’s horizon. The

point of the instruments’ LOS closest to the Earth’s surface is called tangent point [50].

The measurements in limb emission mode do not require background radiation source,
and the Earth’s atmosphere itself is the radiation emitter. Meanwhile, such measurements are
independent on the satellite position relative to the radiation source and can provide daytime
and nighttime measurements over the full globe (depending on inclination angle). Due to
lower temperatures of the atmosphere compared to stars, the Planck function’s peak is far

lower, and the peak position is shifted to longer wavelengths with lower SNR (signal-to-noise



ratio). The accuracy in this mode is slightly less than BUV mode, and the horizontal path is
quite long compared to the tangent altitude.

MIPAS (Michelson Interferometer for Passive Atmospheric Sounding) instrument on-
board ENVISAT [45] based on a Fourier transform spectrometer (FTS) is designed for
measurement in limb emission mode to detect the middle and upper atmosphere in a wide
spectral interval throughout the mid-IR region (4.15-14.6 pm) [51,52]. The detected features
can be spectroscopically identified and used as inputs to suitable algorithms for extracting
atmospheric vertical profiles of a number of target species.

Since passive remote sensing techniques using satellite platforms can cover the entire
Earth or any designated area for a long time, and they can be used to facilitate the remote
observation of vertical concentration profiles of the tropospheric trace gases, which would
allow us to better understand the source, trends and global distribution of atmospheric species
[53]. However, satellite-platform instruments involve complex instrumental characteristics
and physical processes [54], and the measured data must be validated to determine its
reliability and uncertainty before it can be used to solve practical scientific problems [55-57].
Meanwhile, satellite-plateform instruments have a high overhead cost and typically lose

sensitivity at lower altitudes [58].

(2) Passive remote sensing based on ground-based platforms

Ground-based platforms incorporate some of the same viewing geometry concepts mentioned
in the satellite platforms. Spectrometer on ground-based platforms is an instrument that infers
vertical column density of trace gas by measuring the amount of sunlight reaching the Earth’s
surface, and from this deducing how much trace gas absorption takes place. Three types of
spectrometers including MAX-DOAS (Multi-Axis Differential Optical Absorption
Spectrometer), SAOZ (Systéme d’Analyse par Observation Zénithale), and FTS (Fourier

Transform Spectrometer) are discussed below.
(2-1) Ground-based passive MAX-DOAS

MAX-DOAS (Multiple Axis, i.e. elevation scanning with DOAS spectral analysis) is a
widely used technique for remote sensing of vertical profiles of tropospheric trace gases [59].
It observes scattered sunlight at various slant elevation angles, where solar radiation travels
longer absorption paths [60]. Fig. 6 shows the principle of MAX-DOAS measurement. Most
often, the scattering event occurs in the lower troposphere due to higher air density and

higher particle loadings. For most MAX-DOAS observations, they can be assumed that the



stratospheric absorption is the same in all spectra taken during one elevation sequence

measurement.
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Figure 6 Principle of MAX-DOAS : Scattered sunlight is measured at different elevation angles o of the
telescope to obtain vertical profiles of the target trace gases, where solar zenith angle (SZA) 9 denotes the angle

between the position of the Sun and the zenith direction.

The MAX-DOAS technique analyses the recorded spectra using a DOAS method that
separates the spectra as fast and slow varying spectral structures using a Levenberg-
Marquardt (LM) fit. In the spectral fit, the rapidly varying part corresponds to the trace gas
absorption features, and the slowly varying part is caused by Rayleigh and Mie scatterings.
Usually the output of the MAX-DOAS spectral analysis is a slant column density (SCD), i.e.
the integrated trace gas concentration along the light path through the atmosphere. To derive
the trace gas vertical column density (VCD), a so called air mass factor (AMF) is applied,
which is defined as [61] :

SCD
AMF = 2=
VCD @)

The AMF is usually derived from numerical simulations of the atmospheric radiative
transfer. For MAX-DOAS observations, one basic prerequisite is the assumption that the
same air parcels are probed by the different viewing directions for accurate analysis of
tropospheric species. The MAX-DOAS data analysis can lead to large errors due to rapid
change of air masses, in extreme cases even ‘negative concentrations’ might be retrieved,
which is a major problem in the MAX-DOAS technique.

In the MAX-DOAS spectral analysis process, several trace gas absorption cross sections
(rapidly varying part), a polynomial of 2-5 orders (slowly varying part), a Fraunhofer
reference spectrum (FRS) and a Ring spectrum are involved. Here FRS is introduced to
correct for the solar Fraunhofer structure that is due to absorption in solar atmosphere (c.f.

Appendix 4). In most cases, spectra recorded at zenith direction of 90° have been used as



background FRS. The Ring spectrum is used to correct the Ring effect named by J. F.
Grainger and J. Ring (1962) [62]. The Ring effect is mainly caused by rotational Raman
scattering and manifests itself by reducing the optical density of the observed Fraunhofer
lines observed at large SZA. This reduction is on the order of a few percents. The Ring
spectrum can be modeled, as the main constituents of the atmosphere are nitrogen and
oxygen with known rotational states [63].

The MAX-DOAS technique has been widely used for measuring atmospheric vertical
profiles of halogen oxide (BrO, 10, OIO, CIO), Oz, NO3, NO,, SO,, HCHO and atmospheric
aerosols in the past decades. MAX-DOAS observations are not only limited to ground-based
applications, but also can be performed on different mobile platforms like cars, ships and
airplane. For car measurements, the view at low elevation angles (i.e. at a few degrees) is
often blocked by obstacles like buildings or trees. For airborne and ship observations,
viewing angles close to the horizon might be used. For ship MAX-DOAS observations,
vertical profile retrievals should be in general possible, but for airborne MAX-DOAS
observations, vertical profile retrievals might be possible outside from polluted regions or at
higher altitudes [64].

(2-2) Ground-based SAOZ

SAOZ spectrometer is a passive remote sensing instrument that was developed in the mid-
1980s [65] to measure total vertical column amounts of O3 and NO, at latitudes up to the
polar circle [66]. The SAOZ instrument is part of the international Network for the Detection
of Atmospheric Composition Change (NDACC). It consists of a conical mirror used for
sunlight collection, a commercial JobinYvon flat field spectrometer equipped with a concave
holographic grating, and a detector operated at ambient temperature comprising a Hamamatsu
512 or 1024 diode array with a 25 or 50 mm entrance slit, respectively. The optical scheme of
the SAOZ instrument is shown in Fig.7. The spectral range is 300-600 nm with a spectral
resolution of ~1 nm [67]. The SAOZ observes the zenith sky with a FoV of ~30°, measuring
light scattered downwards from a range of altitudes. At twilight (SZA ~90°) the zenith sky is
illuminated mainly by molecular scattering from high altitudes, which travels a longer path
through the stratosphere compared to a very short vertical path in the troposphere. Therefore,
absorption features in the spectra measured at this position are heavily biased towards the
stratosphere. This makes zenith-sky spectroscopy ideal for distinguishing stratospheric NO,
from boundary-layer pollution. SAOZ technique uses the DOAS method to analyse the

recorded spectra in order to retrieve vertical concentration profiles.
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Figure 7 Optical scheme of SAOZ instrument [67].

The SAOZ can be also used for on-board balloon and satellite measurements. However,
the SAOZ can only retrieve vertical columns of trace gases in the stratosphere, and is
insensitive to the concentration variations of trace gases in the troposphere [68].

Ground-based MAX-DOAS and SAOZ discussed above both only work in the UV-

visible range, for IR applications, other ground-based techniques will be presented below.
(2-3) Ground-based FTS

A sun-tracker collects and couples the solar radiation after transmission through the
atmosphere to a Michelson interferometer-based FTS (Fig. 8). An interferogram containing
sunlight absorption information by atmospheric trace gases is recorded. Infrared absorption
spectra of trace gases in the atmospheric column can be retrieved from Fourier transform of
the interferogram [69] and then the vertical concentration profiles of these atmospheric
constituents can be retrieved from the atmospheric trace gas column absorption spectra with

appropriate retrieval algorithms [70-75].
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Figure 8 Schematic of a FTS for retrieving vertical concentration profiles of atmospheric trace gases (BS: beam
splitter).

Currently, there are two well-known international networks established for measuring
vertical concentration profiles of atmospheric trace gases using ground-based solar FT-IR
instruments : the Total Carbon Column Observing Network (TCCON) [76-78] established in
2004 [79] and the Network for the Detection of Atmospheric Composition Change (NDACC)
established in 1991 [80]. TCCON uses the FTS to record near-IR broadband solar absorption
spectra to determine column-averaged abundances of trace gases, such as CO,, CH, N2O,
HF, CO, H,0, and HDO, with a spectral resolution up to 0.02 cm™ [79]. Today there are
around 26 operational TCCON sites (Fig. 9 upper). Their data can be used for validating data
obtained from GOSAT (Greenhouse gases observing satellite) [82], OCO-2 (Orbiting Carbon
Observatory-2) [83], etc. The NDACC data is obtained from solar FTS spectra recorded in
the mid-IR spectral range for the measurements of various constituents throughout the
troposphere and stratosphere up to the lower mesosphere. The NDACC currently consists of
23 sites (Fig. 9 lower) with measurements dating back up to 2 decades. The NDACC data can
also be used to validate atmospheric measurements from satellites, such as SCIMACHY
aboard ENVISAT and TANSO (Thermal And Near-infrared Sensor for carbon Observation)
on GOSAT [84,85].
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Figure 9 upper: map of the TCCON sites [76]; lower: map of the NDACC sites [81].

Compared to the ground-based MAX-DOAS and SAOZ measurements, the passive
ground-based FTS simultaneously measures atmospheric components using their IR
absorption spectra, while the measurements of ro-vibrational spectra in the IR request higher
spectral resolution. FTS instruments typically sacrifice spectral resolution for more compact
instrument size or for faster data collection time. Therefore, the amount of altitudinal
information that can be retrieved from emission/absorption data collected with a FTS is

limited.

(3) Passive remote sensing technique based on aircraft and balloon platforms
Aircraft and balloon platforms refer to measurement instruments (such as MAX-DOAS,
SAOZ and FTYS) installed on aircraft [86] and balloon [87] for high-altitude remote sensing.
The CARIBIC (Civil Aircraft for the Regular Investigation of the atmosphere Based on
an Instrument Container) aircraft project is an approach to obtain detailed long-term
observations over large sections of the globe [88], which uses the MAX-DOAS to measure
vertical profiles. NO, vertical profiles have been retrieved in nadir slant viewing direction
with a 100-200 m height resolution, and in both up and down viewing directions (+10°) with
a 400-800 m height resolution [88]. HIPPO (Hlaper Pole-to-Pole Observations), another
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airplane campaign, includes a suite of sensitive sensors to measure vertical profiles of CH,
and N,O on a flight path from the north pole to the south pole over the Pacific Ocean [10].
Balloon-based remote sensing instruments, such as balloon-based TELIS (TErahertz and
submillimeter LImb Sounder) and balloon-based DOAS, can investigate stratospheric trace
gas distributions with a vertical resolution of ~2-3 km below the balloon height [89].

Aircraft-based measurements can probe large latitudinal/longitudinal transsects in a short
time without cloud interference. Vertical profile measurements by aircraft/balloon-based
instruments are less affected by transport model errors, making them particularly useful in
constraining surface fluxes. Aircraft/balloon-based techniques are valuable links between
ground-based and satellite-based measurements [90]. However, lower few hundred meters of
the atmosphere, which contains a significant part of tropospheric species, are difficult to
reach. Moreover, they could not provide continuous measurements due to limited flight
missions.

In order to achieve flight-based measurement data at lower few hundred meters of the
atmosphere, unconventional flight platforms can become very useful, like an unmanned aerial
vehicle (UAV). UAVs are increasingly used in civilian applications, and a large variety of
UAYV platforms are now available as remote sensing platforms for scientific research [91].
UAYV platforms offer great potential for collecting measurement data with high spatial and

temporal resolutions.

Table 1 shows the comparisons among bove three kinds of platforms. In this context,

ground-based measurement is high desirable.

Table 1 Comparisons among satellite, ground, and airplane/balloon platforms.

Platform Advantage Disadvantage
1. Covering the entire earth or any | 1. Complex instrumental characteristics and
Satellite designated area for a long time physical processes
2. Retrievals of tropospheric vertical | 2. Data must be validated
profiles 3. High overhead cost

4. Low sensitivity at lower altitudes

Ground 1. Accurate and continuous measurements
near the ground

2. Validation of satellite observations

Airplane/ | 1. Large latitudinal/longitudinal transsects | 1. Lower few hundred meters of the

balloon in a short time without cloud atmosphere is difficult to measure
interference 2. Discontinuous measurement due to limited
2. Less affect from transport model errors flight missions

3. Valuable links between ground-based
and satellite-based measurements
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I11. Laser heterodyne radiometer

Laser heterodyne radiometer (LHR) is a ground-based passive instrument, like the FT-IR
spectrometer, using sunlight as a spectral source for long-range, long-term and continuous
remote measurements of trace gases in the atmospheric column. In comparison to the FTS,

LHR is advantageous in terms of spectral resolution, sensitivity and transportability. This

technique is particularly attractive in the mid-IR region, which corresponds to the emission or

absorption spectra of many key atmospheric molecules. LHR technique exhibits the
following merits :

(1) High spectral purity of laser emission line (~10 MHz), resulting in a high resolving
power : v/Av = 10°-10", which makes that LHR's spectral resolution is not limited by the
apparatus function, and only determined by the selected electronic filters. Commonly
applicable higher spectral resolution (~10 cm™) would allow one to achieve high vertical
resolution in vertical profile;

(2) Higher sensitivity (within a factor of 2-3 of the quantum limit), which allows lower
detection limit of gas species with high precision;

(3) Higher vertical resolution due to very small coherent FoV, which makes LHR have
ultrafine geographical coverage with less cloud interferences [92];

(4) Compact instrumental dimension making LHR easy for field deployment.

LO Atmospheric abs. specturm Vertical concentration profile
l ) - Retrieval
. @ Beat signal : algorithm ¢
— — — ¢
Photomixer 1.

Figure 10 Schematic of a LHR for retrieving vertical concentration profiles of atmospheric trace gases.

LHR (Fig. 10) is a kind of radiometer based on a heterodyne receiver that deals with input
sunlight radiation collected from a telescope by mixing it with radiation of a local oscillator
(laser) onto a photodetector used as a photomixer [96]. The amplitude of the resulting beat
signal from the photomixer varies with the absorption feature of atmospheric trace gases.
Scanning the local oscillator (LO) frequency across the absorption feature, atmospheric

absorption spectrum can be obtained. The vertical concentration profiles of the target trace
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gases can be retrieved based on the measured absorption spectra in the atmospheric column

with the help of an appropriate retrieval algorithm.

I11.1 History of the LHR technique

Heterodyne history began in 1902 referring to R. Fessenden’s patent for "wireless signalling™
[93]. The term “heterodyne” was created by J. L. Hogan in 1913 when he published a paper
entitled "The heterodyne receiving system and notes on recent Arlington-Salem tests" [94]
where it was suggested that only one wave was transmitted from the receiving station and a
second frequency was then generated and this produced LO [95]. For more than a century,
heterodyning of electromagnetic waves, which produces a low-frequency beat note, has been
widely used in radio wave engineering and instrumentation.

Heterodyning expanded in the field of optics even before the advent of lasers. As early as
1940s, A. T. Forrester and co-workers began studying the heterodyning of two waves with
very close frequencies and discussed the possibility of observing beat frequency from the
heterodyne detection [97,98]. The application of heterodyning in the field of optics took place
in 1955, in a classic experiment A. T. Forrester and co-workers observed a beat signal by
mixing two Zeeman components of incoherent visible spectral line in a special
photomultiplier tube [99]. In the meantime, the idea of the laser was developed and
demonstrated by T. H. Maiman in 1960 [100]. As soon as 1961, A. T. Forrester proposed the
concept of heterodyne spectrometers in an analogy to radio-receivers, in which coherent light
sources, i.e. lasers, acted as optical LOs, which can improve the intensity of the heterodyne
signal [101]. Demonstration and studies of heterodyne signals in the visible obtained using
two He-Ne lasers at 1.15 pm were subsequently conducted in 1962 by A. Javan and co-
workers [102]. Observation of the heterodyning of the axial modes of a ruby laser at 694.3
nm was carried out by B. J. McMurty and A. E. Siegman in 1962 [103].

With the advancement of infrared LO laser technology, the development for application
in spectroscopy emerged. The infrared spectral region is attractive due to the availability of
trace gas absorption lines and the wavelength dependence of heterodyne sensitivity [104]. In
the early arrangement of the heterodyne detection, the LO lasers, in the infrared region, were
usually continuous wave (CW) CO, lasers or tunable diode lasers (TDLS).

Extension of heterodyne technique to infrared was firstly carried out by M. C. Teich and
co-workers [105]. They developed a heterodyne system based on a CO; gas laser (LO)

working at 10.6 pm by mixing a laser radiation with scattered laser radiation. A minimum
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detectable power of 1.3 10-19 W in a 1 Hz bandwidth, which is within a factor of 10 of the
theoretically perfect photon counter, was obtained. This study demonstrated the high
sensitivity of the heterodyne technique for remote sensing of atmospheric trace gases.

The discovery of catalytic destruction of ozone by chlorofluoromethanes (ClO3) and
nitrogen (NOx) in 1970s by H. S. Johnston [108] in general and the report of ozone hole
phenomenon over Antarctic region during spring time in 1980s by C. B. Farman in particular
[109] generated an unprecedented surge of interest in the monitoring of ozone and other
related minor constituents in the atmosphere.

In the field of atmospheric observation, in 1971 R. T. Menzies firsly proposed that LHR
could be used for passive remote sensing of the atmospheric trace gases, whose rotation-
vibration transitions are nearly coincident to those of CO and CO, gas lasers (LOs) [106].
Laboratory demonstration using gas cells simulating the atmosphere was then carried out by
his team [104,107]. In 1976, R. T. Menzies et al. made a ground-based LHR measurement of
the total burden and the vertical concentration profiles of ozone using a CO, laser (LO) in the
9.5 pm wavelength region [110-112]. D. Sahoo et al. developed a LHR using a CO laser (LO)
in the 9.6 pm region which was deployed at Maitri, an Indian Antarctic station, during 1993-
1998 Antarctic summer as well as winter to obtain ozone profiles. It was the first application
for remote sensing vertical concentration profile of ozone over Antarctic region. Thus the
ability of the LHR to monitor ozone vertical profiles in the harsh enviroment conditions (like
Antarctica ozone hole period) [113,114] was successfully demonstrated. In 1993, D. Courtois
et al. successfully applied a LHR using a CO, laser (LO) around 10 pm for measuring
atmospheric ozone and CO, with a resolution of 5 MHz (~0.000167 cm™). The atmospheric
ozone and CO; concentrations versus altitudes were obtained [115,116].

A limitation of LHR systems using gas laser LOs as mentioned above is their highly
restricted tunability. In contrast, TDLs providing much greater frequency coverage [117] than
gas lasers were very promising.

In 1971, emerging lead salt semiconductor TDLs were proposed to serve as tunable LOs
for LHRs, hence allowing remote measurements of atmospheric species with greater
frequency agility [118]. Several early demonstrations were followed using gas cells in the
laboratory. In 1977, R. T. Ku and D. L. Spears [119] developed a LHR using a PbSnSe TDL
(LO) at 10.6 m and measured blackbody heterodyne absorption spectra of ethylene at high
spectral resolution. Eventually, in 1977, M. A. Frerking and D. J. Muehlner were the first
investigators to succeed in measuring solar absorption spectra of atmospheric ozone around
9.9 pm at a resolution of 70 MHz (~0.0023 cm™) using a LHR with a PbSnSe TDL (LO)
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[120] . At the end of the 1970s and the beginning of 1990s, several LHRs using Pb-salt
semiconductor TDL LOs were developed, and atmospheric spectra of ozone and CO; around
9.1 pm [121,122], HNO3, H,0 and CO, around 11.2 pm [121], N2O around 8.4 pm [122] and
CH, around 8.2 pm were recorded, respectively [123]. Finally at the end of 1990s a LHR
using a lead-salt TDL as a LO operating in the 9 um range for measuring atmospheric spectra
of ozone was constructed by B. Parvitte et al. in Reims, France for atmospheric applications
[124]. This apparatus was actually an evolution of the CO, laser-based LHRs developed by B.
Parvitte et al. during the 1980s [125-127].

As discussed above, Pb-salt diode TDLs had long been the only kind of the mid-IR
tunable LOs for LHR applications. Although promising results were obtained, some major
drawbacks, such as cryogenic cooling, low output optical power, frequency variations, and
mode-hop limited wavelength tuning range, have restricted the opportunities for the
development and the deployment of LHRs using Pb-salt diode TDLs (LOs).

Since the first experimental demonstration of a quantum cascade laser (QCL) emitting at
4.3 pm in 1994 [128], the laser’s performance has greatly improved (wide operation
wavelength range, high power level, room temperature operation [129], and narrow spectral
line width [130,131]). QCLs seem to have all the properties required for the development and
the deployment of LHRs. The first heterodyne experiment with a QCL was carried out with
the Kdn tuneable heterodyne infrared spectrometer (THIS) [132,133].

These historical elements sketching the development of LHR techniques are by no means
exhaustive, and starting from the mid 70’s onwards, many works in the development and the
deployment of LHRs have been reported. Progress has been continuously made toward the

Earth’s own atmosphere as well as astronomical atmosphere.

111.2 Local oscillator involved in LHR
(a) Mid-IR LO

Laser LO is the key element in LHR. It's a limiting factor to the performance of the LHR.
The 3-5 um and 8-12 pum atmospheric windows, which correspond to the emission or
absorption resulting from strong fundamental ro-vibrational transition of numerous key
atmospheric molecules, are very suitable for remote sensing of atmospheric trace gases.
Common laser sources being used as LOs in LHRs include color center lasers, CO and CO,
gas lasers, lead-salt diode lasers, interband-transition diode lasers, and intraband-transition
QCLs.
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CO; gas laser is one of the earliest mid-IR lasers [107] used as LOs for LHRs in the
1970s, with advantages of high laser power and narrower line width. However, CO, gas
lasers were not continuously tunable in wavelength, which limits the heterodyne
measurement at a small fraction (15%) of the CO; laser emission wavelength range in 9-12
um. CO;, gas lasers were also too bulky and large for field deployment.

Tunable lead-salt diode laser [134,135] was firstly used as a LO (at 10 pm) in a LHR in
2002 to determine vertical stratospheric ozone distribution [136]. In 2003, D. Weidmann and
co-workers used a 7.6 pm tunable lead-salt diode laser as a LO for on-line LHR measurement
of high-temperature water vapor emission in a combustion process with high spectral
resolution, which proves that LHR techniques are also relevant in combustion diagnostics
[137]. However, the lead-salt diode laser requires cryogenic cooling to achieve single-mode
operation, and the output optical power is relatively low, only about 0.1-0.5 mW. Thermal
cycling and aging can easily cause changes in laser frequency. Meanwhile, the mode-hop-free
spectral range of the lead-salt diode laser is very limited with a single laser.

The birth of QCL in 1994 [140] was a milestone for the development of modern LHRs
[138,139]. QCL can provide good temperature performance and operate at room temperature
in CW mode with high single-mode output optical power (tens of mW up to ~W) in the
spectral region of 3-15 pm [141]. Distributed feedback (DFB) QCL, external-cavity (EC)
QCL, as well as the recently available DFB interband cascade laser (ICL) all reactivate the
LHR techniques to confront nowadays atmospheric and environmental challenges.

In the mid-IR, CW DFB QCL can cover more than 1% of the wavenumber around the
laser center frequency (corresponding to a tuning range of a few cm™) with output power up
to 100 mW [142]. Recent advances on EC-QCLs have dramatically increased the accessible
frequency range. Tuning ranges of ~200 cm * have been demonstrated [143], and up to ~400
cm * is within reach via the development of broad-gain QCL structures [144]. A LHR with an
EC-QCL as a LO has been demonstrated in the laboratory to operate over a range larger than
100 cm™* [145-147]. This wide frequency tunning range is highly desirable for measurements
of atmospheric multi-component. In additon, EC-QCLs can provide high optical output
power up to 70 mW through distributed Bragg gratings for single-mode operation [148].
Therefore, EC-QCLs with wide and fast frequency tuning capacity, high optical output
power, compactness, long life time and room temperature operation [146,149,150] can be
excellent LOs in LHRs.
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(b) Near-IR LO

Though in the near-IR range, the overall line-intensities of target molecules are usually lower
than those in the mid-IR (and the detectable species are less too). For some key species (such
as CHy, CO,, H,0, etc.), the corresponding line-strengths are still strong enough. Meanwhile,
in the near-IR owing to the progress in the telecommunications industry [151], high
performance DFB lasers and photodetectors, fiber optic components, and fiber collimating
optics are very attractive in developing compact and portable miniaturized LHRs for field
applications (on ground, on aircraft, on balloon, etc.).

111.3 State of the art
The development of modern LHRs since 2010 is overviewed below :

In 2011, D. Weidmann et al. of Rutherford Appleton Laboratory (RAL, UK) developed
an EC-QC-LHR with a spectral tuning range of 118 cm™ (a spectral region of 1120-1238 cm’
!y and a FoV of ~0.087°. High-resolution (60 MHz or 0.002 cm™*) LHR spectra of solar
radiation and the corresponding vertical profiles of H,O, O3, N,O, CH,4, and CCI,F;, have
been measured and retrieved [146,147,151]. As shown in Fig. 11, solar radiation is captured
with an external solar tracker and directed into the laboratory, and it is filtered with a narrow-
band filter and amplitude modulated with a chopper. It is then directed to a beam splitter and
superimposed with the LO beam from an EC-QCL. The combined beams are imaged onto a
high-speed (1 GHz) mercury cadmium telluride (MCT) photomixer to produce a heterodyne
signal.
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Figure 11 Optical layout of the EC-QC-LHR developed by D. Weidmann et al [151]. M: mirror; BS: beam
splitter; D1: solar intensity detector; D2: mid-IR detector; OAEM: off-axis elliptical mirror; OAPM: off-axis

parabolic mirror; PM: photomixer.
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In 2013, E. L. Wilson et al. (NASA, USA) developed a near-IR LHR using a 1.573 pm
DFB laser as a LO, with a spectral resolution of 0.011 nm and a FoV of 0.2°, to measure CO;
in the atmospheric column with a measurement accuracy of 8 ppm [152] (Fig. 12). The
incoming sunlight is modulated with an optical chopper and injected into the LHR receiver
through a single-mode optical fiber. The sunlight is then superimposed with the light from the
DFB laser (LO) in a 50/50 single-mode fiber coupler. The superimposed lights are
photomixed in an InGaAs photodiode with a bandwidth of 5 GHz to generate a heterodyne
signal. The use of optical fiber greatly reduces the difficulty of optical coupling alignment in

free space and also the LHR system volume.
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Figure 12 Schematic of the mini-LHR developed by E. L. Wilson et al [152].

In 2014, A. Rodin et al. of Moscow Institute of Physics and Technology (MIPT, Russia)
reported a compact and lightweight 1.65 pm DFB laser-based LHR with a FoV of 0.005°
[153]. A single-mode silica fiber Y-coupler is served as a diplexer to combine the sunlight
and the LO light, the beams mixed in the single-mode fiber are detected by using balanced
detection, as shown in Fig. 13. LHR spectra of CO, and CH,4 were recorded with a spectral
resolution of 2.5 MHz. Inversion algorithm applied to the spectrum of CH, resulted in a
maximum mixing ratio of 2148+10 ppbv near the surface and a column density of (4.5940.02)

x10%%2 cm™.
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Figure 13 Schematic diagram of the experimental setup of R. Alexander et al. LO: local oscillator, SMOF:
single-mode optical fiber; FC: fiber coupler; OA: optical attenuator; T: microtelescope; RC: reference gas cell;
BD: balanced detector; AD: amplitude detector; ADC: analog-digital converter; PC: personal computer. fiber

connectors are shown as green boxes.

In 2019, J. Wang et al. of Anhui Institute of Optics and Fine Mechanics (AIOFM, China)
developed a LHR using an ICL (operating at 3.53 pm) as a LO with a tuning range of ~10
cm® (Fig. 14). LHR spectra of H,O and CH4 were recorded with a spectral resolution of
0.0033 cm™. Inversion algorithm applied to the spectra of H,O and CH,4 induced a CH,
volume mixing ratio of 1.8840.02 ppm [154].
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Figure 14 Schematic diagram of the experimental setup of a mid-IR LHR developed by J. Wang et al [154].

Combining the advantages of above mid- and near-IR LHR techniques, a fully
transportable LHR based on an EC-QCL operating in the mid-IR of 1223-1263 cm™ (~8 pm)
is developed in the present work. A newly commercially available IR fiber is exploited to
couple sunlight to the LHR receiver, equipped with an EKO sun-tracker, which renders the
mid-IR LHR highly transportable and stable. The developed LHR is deployed for field

remote sensing of CH4 and N,O in the atmospheric column.
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IV. Aim of this work

The objective of the present PhD work is to develop a fully transportable mid-IR LHR for

ground-based in situ measurement of trace gases in the atmospheric column.

Chapter 1 depicts the principle of LHR (Sections 1.1 and 1.2). Section 1.3 deals with the
criteria on coupling efficiency of two light beams in a free-space coupling LHR. Instrument
noise sources, system SNR and sensitivity are discussed in Section 1.4 to1.5. The method for
extracting heterodyne signal is presented in Section 1.6. The SNR of the LHR is compared
with that of the FT-IR instrument in Section 1.7. The principle of vertical profile retrieval
from the LHR measured absorption spectrum in the atmospheric column is briefly stated in
Section 1.8.

Chapter 2 is devoted to introduction and discussion on practical instrumental
considerations and specifications of the devices involved in our mid-IR LHR system. Two
systems for sunlight collection are presented, including (1) free-space telescope system, and
(2) fiber coupling system.

Chapter 3 evaluates the performance of the EC-QCL being used as the LO in our LHR
through N,O detection in a chemical catalysis process by direct absorption spectroscopy in a
multi-pass cell. The laser performance was evaluated in terms of laser emission line width,
single-mode wavelength tunability, stabilization of the LO source and wavelength-dependent
baseline.

Chapter 4 presents the development of a proof of concept (PoC) mid-IR LHR. The
developed LHR was tested on the QualAir platform of the UniversitéPierre et Marie Curie
(UPMC), in collaboration with Dr. Tao TE of the «Laboratoire d’Etudes du Rayonnement et
de la Matiée en Astrophysique et Atmosphé&es (LERMA) > Ground-based measurements of
tropospheric CH,4 in the atmospheric column were performed.

Chapter 5 describes the development of a fully transportable mid-IR LHR prototype. A
mid-IR fiber was explored to couple the sunlight to the heterodyne receiver, which makes our
LHR, equipped with an EKO sun-tracker, fully transportable. The developed LHR instrument
was tested and validated via ground-based field measurements of tropospheric CH, and N,O
in the atmospheric column on the roof terrace of the IRENE (Innovation Recherche en
Environnement) platform in Dunkerque (51.05°N/2.34°E).

Finally, the major achievements in this PhD work are summarized and some future
directions for the ground-based LHR measurements of vertical concentration profiles of

atmospheric trace gases are prospected.
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Chapter 1 Principle of Laser Heterodyne Radiometer

Objective

Laser heterodyne radiometer (LHR) is one of the most important instruments for the
measurement of vertical profiles of atmospheric trace gases. The principle of a LHR is
described in Section 1.1 to 1.2. Section 1.3 deals with the criteria on coupling efficiency of
two light beams in a free-space coupling LHR. Instrument noise sources, system SNR and
sensitivity are discussed in Section 1.4 to 1.5. The method for extracting heterodyne signal is
presented in Section 1.6. The SNR of the LHR is compared with that of the FT-IR instrument
in Section 1.7. The principle of vertical profile retrieval from the measured absorption

spectrum in the atmospheric column is briefly presented in Section 1.8.

Principle of Laser Heterodyne Radiometer

In a LHR, the electromagnetic field of the sunlight Es(t) = Aso(®)cos(ot) at frequency o is
mixed in a photomixer with an electromagnetic field E_(t) = ALo(w)cos(w,t) at frequency w,
from a local oscillator (LO). A beat note at an intermediate frequency (IF, |o-y|), produced
from the photomixing, is amplified by a low-noise amplifier and filtered by a band-pass filter.
This heterodyne signal is then square-law detected and fed into a lock-in amplifier (LIA), the
output of the LIA is sampled by a laptop for further data processing.

Heterodyne absorption spectrum of atmospheric species can be recovered by scanning the
LO frequency across the absorption feature (leading to change in intensity of the resulting
radio frequency (RF) beat signal). The shape of the ground-recovered atmospheric absorption
spectrum contains information on vertical distributions of the target absorbers. It is possible
to retrieve trace gas abundances at different altitudes through a retrieval algorithm based on
an appropriate inversion model [1,2].

The principle of LHR is schematically shown in Fig. 1.1, which mainly includes four

parts : sunlight collection, photomixer, RF receiver and LIA.
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Figure 1.1 Basic concept of a typical LHR. LIA: lock-in amplifier; LO: local oscillator; RF: radio frequency.

1.1 Sunlight collection

An optical heterodyne receiver is, in effect, both a receiver and an antenna, which is
constrained by antenna property [3]. In heterodyne detection, only a fraction of sunlight
radiation contributes to heterodying. Indeed, only the part of the same extended sunlight
beam that superimposes with the LO will contribute to the heterodyne power. The rest of the
illuminating power will contribute to the continuous component and noise [3,4], as shown in
Fig. 1.2 (left).

For the simple case of a single flat mixing element, it is obviously necessary to maintain
the wavefronts of both sunlight and LO in phase over the photosensitive area if efficient
mixing is to be achieved. If an effective aperture of a mixer Ar is illuminated normally by a
plane wave LO, effective heterodyning will only occur for sunlight arriving from within a

solid angle Qg about the normal, given by antenna theory [3] :
A Q=7 (1.1)
where A is the radiation wavelength. The throughput is limited by the operating
wavelength when the diameter of the collecting optics is fixed. If the effective aperture of the

mixing element is known, the solid angle increases with the radiation wavelength, as shown
in Fig. 1.2 (right).
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Figure 1.3 Geometry restriction of the solid angle Qs and FoV in the antenna theory.

In the case of a LHR instrument which includes an optical system for collecting sunlight,
the geometric restriction of the antenna theory can be modified as Fig. 1.3, which always
follows the antenna theory [3]. Here, the solid angle through which a detector is sensitive to
electromagnetic radiation is usually expressed by FoV. From Fig. 1.3, the geometric

expressions of the solid angle Qs and FoV in a LHR system can be approximately written as :

7-R?
Qg = % = . (1.2)
FoV = Zf—R (1.3)

where f is the focal length of the collecting optics, R and A, are the radius and the area of the
optics used for collecting sunlight radiation, respectively.
From Egs. (1.1), (1.2), and (1.3), the FoV of a LHR system can thus be expressed by [5] :
Fov = 24 (1.4)
7-D

where D = 2R is the diameter of the collecting optics.
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A smaller FoV would be advantageous for monitoring localized phenomena and
increasing the number of useful observations between scattered clouds. Meanwhile, a FoV
smaller than the FoV (~0.5°) of the Sun ensures that it does not drift off the Sun throughout
the day [6].

1.2 Heterodyne receiver

A heterodyne receiver consists of four basic elements, as follows (Fig. 1.4) : (1) Photomixer,

(2) RF amplifier and band-pass filter, (3) Square law detector, (4) Lock-in amplifier.

I re IRF-B Prer S

b / ) )

Es(t)= Ao(@)cos(et) S\oro-ol  RF Band-pass| : | Squarelaw | ! Lock-in | :
> T— - ——p Output
E.(t)= Aol Jeoslayt) > Amplifier Filter Detector Amp e

Photomixer

Figure 1.4 Schematic diagram of a heterodyne receiver. i is the resulting photocurrent from the photomixer; i
is the IF component of the photomixer current i; i=g is the IF signal after amplification and band-pass filtering;

Puer is the resulting power from the square law detector; S is the demodulated heterodyne output from the LIA.

1.2.1 Photomixer

Classically, the total electromagnetic field E(t) (in [V/m]) entering the photomixer, as shown
in Fig. 1.5, is the sum of sunlight radiation Es(t) = Aso(w)cos(wt) and the LO radiation E,(t) =
Ao(op)cos(wrt), i.e. [6] :

E(t)= Es(t) + EL (t) = Asg(@)cos(et) + A (@, )cos(e, 1) (15)
where Aio(m) and Aso(w) are the amplitudes of electric fields of the LO and the sunlight,
respectively, o is the LO frequency, and o is the optical frequency of the sunlight that beats
with the LO light.

The resulting photocurrent i(t) from the photomixer is proportional to the total optical

intensity, i.e. to the square of the total electric field amplitude E(t) [7,8] :

()= 1= E*(t) == [As,(@)cos(@t) + Ao )cos( O]
h-v h-v
= Z—'s : { Aso() +2A5° () + ASZOZ(CU) cos(2at) + Afong ) cos(2m,t) + A, (@)A, o (@, {eos[(w + e, )t]+ cos(w— o, )t]}} (1.6)
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where 1 is the quantum efficiency of the photomixer, e = 1.6x10™° C is the elementary
electric charge, h = 6.62607x10 * J s is the Planck constant, and v is the frequency of the
radiation falling onto the photomixer.

The high frequency components (at 2o, 2o, and o+m.) and the constant DC components
are filtered out, leaving only the signal (beat note) at the intermediate frequency (mr=|w-w|)
for heterodyne detection. The beat note has an amplitude proportional to the product of the

electric field amplitudes (ALo(oL) X Aso(w)).

e

e ()= Al JAsg(@)oos{(e- o, )] (L7

Beam splitter

Solar radiation

Es (t) = Aso(a’)cos(a)t)

LO

E (t) =A, (wL )COS(th)

Figure 1.5 Schematic diagram of a LHR for photomixing of the sunlight beam and the LO beam.

1.2.2 RF amplifier and band-pass filter

The heterodyne beat signal at the intermediate frequency (wir=|m-®.|[), contains the spectral
information of the sunlight that can be amplified, detected, and analysed with appropriate RF
electronics. Typically, the intensity of the beat signal delivered by the photomixer is weak
and must be amplified by a RF amplifier. Furthermore, the spectral resolution (B in [Hz]) of
the LHR instrument can be defined by the used RF electrical filter bandwidth of B/2. B is
then the double-sideband bandwidth of the heterodyne receiver, and a LHR system will
respond to radiation signals in both IF sidebands of the LO frequency (Fig. 1.6). The
detection diagram is shown in Fig. 1.7.
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rectangular pass-band stretching from b Hz to b + B/2 Hz. (Note : b is the low cut-off frequency of the band-
pass filter.)
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Figure 1.7 Schematic diagram of a LHR for amplifying and filtering the RF signal.

Therefore, the IF signal after the amplifier and the band-pass filter (assuming its cut-off

frequency b is zero) can be expressed by [9] :

e o (0= G- Ay (@ )As(@)cosf(o—o, X]

when 27-v,-7-B<w<2r-v,+7-B (1.8)
where G is the gain of the amplifier. A careful choice of filter’s pass-band will be discussed

in Chapter 5.1.2.1 related to system noise analysis.

1.2.3 Square law detector

The square law detector is a nonlinear element whose output is proportional to the square of
the input, associated with an averaging device, often a low-pass filter [10]. After RF

quadratic detection, the resulting signal power Puer is thus given by [9] :

P <i2ol0)=[ 1| 6" Aol eos - X

44



:4.(%32 .G?-Py(w)P, (e, )- L+ cos[2 'Z(Q"G’L)t] (1.9)

where ps(w):Aszoz(“’) is the optical power of solar radiation, PL(wL)zAngwL) is the LO optical

power. After the averaging device (low-pass filter), the resulting signal power Pyer is given

by :

Pier Z(Z_ij -G*-P, (a))PL(a)L) (1.10)

From Eq. (1.10), the following expression can be obtained :
Pigr < B (a))PL(a)L) (1.11)

iIF»B(t) PHET
o|b B/2

Band-pass filter ~ Square law Det.

Ampl.

Beam splitter

Solar radiation

E, (t)= Aso(@)cos(et)

Photomixer
LO

E. (t) =A, (a)L )COS(a)Lt)

Figure 1.8 Schematic diagram of a LHR for power detection of the RF signal.

Thus, the heterodyne signal power (Pyer) is proportional to the product of the sunlight
power (Ps(w)) and the LO power (P (w.)) within the LHR instrument bandwidth B [4]. In
general, the sunlight power is weak, and the LO power is several orders of magnitude greater
than the sunlight. Eq. (1.11) therefore shows that heterodyne detection provides a form of
amplification of the sunlight power by a gain of P,.

1.2.4 Lock-in amplifier

In LHR, lock-in amplifier [12,13] is usually used for sensitive measurement (c.f. Fig. 1.1).
The sunlight is modulated through a mechanical chopper [6,14] in free-space configuration or

an optical switch [15] in fiber-coupling configuration at a modulation frequency wres. LIA,
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referenced to this frequency wrer, Only detects the heterodyne signal with frequencies at the
reference frequency using phase sensitive detection (PSD), noises at other frequencies are
removed by a low-pass filter (with a time constant RC) in the PSD and weak heterodyne
signal is then extracted from noise at this reference frequency.
The output of the LIA is proportional to the integrated Pyer through the transfer function
of the low-pass filter in the LIA, H(ja, ) as follows [6] :
S(w) o Pugr -H(jye ) (L12)
As a basic approximation, we consider the RC filter model, its transfer function is well

approximated by :

. 1
FNJwF)=I:jZ;; (1.13)
IF

where the time constant t = RC of the low-pass filter, and the corresponding cut-off

frequency f. = o / 2 =1/ (2nt). Eq. (1.12) can thus be expressed by :

S(a))oc Prer -H(ja)lF)OCZ-(n'eJ : 92 'Ps(w)PL(a)L) (1.14)
h-v) 1+ jogr

Therefore, heterodyne detection allows an "amplification™ of the weak incoming signal
(although there is no optical amplification involved). The beat signal at the intermediate
frequency within the bandwidth of the photomixer contains all spectral information, and is
processed further with a RF receiver. Atmospheric species absorption spectrum can thus be
recovered by scanning the LO frequency across the absorption feature.

1.3 Heterodyne efficiency

The heterodyne signal given in Eq. (1.7) is established for the ideal case of monochromatic
plane waves, phase front perfectly aligned, beam spot size fully matched, and perfectly co-
aligned onto the photomixer surface with their polarization state matched [16]. The general
form of the heterodyne efficiency is given in Eqg. (1.15), which bears similarity to overlap
integrals, with the added dependence on quantum efficiency of the photomixer n, including
its spatial distribution dependence [16,17].

£?77(r)-ES(r).EE(r)drr
[ 7lr)-EL(r)-E0(r)r-[* B (r)- Ex(r)or

Mhet = (1.15)
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where E (r) and Eg(r) are the LO and the sunlight field amplitude distributions on the
photomixer with a radius of ro, respectively, and n(r) is photomixer response distribution.
Therefore, the heterodyne efficiency of photomixing of the sunlight beam and the LO
beam is strongly conditioned by three main criteria influencing each other including [17-20] :
(1) Spatial distribution of the beams being mixed,;
(2) Polarization-sensitive photomixing;

(3) Coupling of the mixed beams to the mixer.

1.3.1 Spatial distribution of the beams being mixed

The effective photomixing efficiency depends explicitly on the spatial distribution of the
beams being mixed. The complete theoretical analysis of this issue has been addressed by S.
C. Cohen [17] and for more particular geometries by K. Tanaka [19]. Let us take S. C.
Cohen’'s results in the case closest to what will be ours, namely, an incoherent solar beam

having an uniform distribution and a Gaussian LO beam which is linearly polarized [17].

1.3.1.1 Beam spot size

In quasi-optics, a Gaussian beam is a beam of monochromatic electromagnetic radiation
whose transverse magnetic and electric field amplitude profiles are given by the Gaussian
function. It implies a Gaussian intensity (irradiance) profile. Mathematical expression for the
electric field amplitude is a solution to the paraxial Helmholtz equation [21]. Assuming
polarization in the x direction and propagation in the +z direction, the electric field in

complex notation is given by [21] :

E(r,2)= A, - x v:zi)'em(v;(;;}em(_ i(k 2+ k#z(z)—w(z)n (1.16)

where x is the unit vector, r is the radial distance from the center axis of the beam, z is the

axial distance from the beam waist, i is the imaginary unit, k = 27/ is the wave number (in
radians per meter) for a wavelength A, Ay = E(0,0), the electric field amplitude (and phase) at
the origin at time 0, w(z) is the Gaussian beam width at which the field amplitudes fall to 1/e
of their axial values, at the plane z along the beam, wy = w(0) is the waist size at z = 0, R(z) is
the radius of curvature of the beam’s wavefronts at z, and y(z) is the Gouy phase at z, an
extra phase term beyond that attributable to the phase velocity of light. Fig. 1.9 shows a

Gaussian intensity profile.
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r A Wavefront
Beam Width 1/¢”

Figure 1.9 Gaussian beam width w(z) as a function of the distance z along the beam. wy: beam waist; r: radial
distance from the center axis of the beam; R(z): radius of curvature of the beam’s wavefronts at z; zg: Rayleigh

range; 0: full angle divergence.

At a position z along the beam (measured from the waist), the spot size parameter w(z) is

given by [21]:
2
w(z)=w, - 1+[ij (1.17)
ZR
where 7z, = Wy’ is called the Rayleigh range.

The curvature of the wavefronts is zero at the beam waist and also approaches zero as z
— oo, It is equal to 1/R where R(z) is the radius of curvature as a function of position along

the beam, given by [21] :

R(z)= z{la{%‘jz:l (1.18)

From Eqgs. (1.17) and (1.18), the curvature of the wavefronts can be expressed by :

R@):M (1.19)

A-n? -1
w(z)

where n = ——~2.
WO

Consider the wavefronts of two Gaussian beams (w1, w, and R;, Rz) couple on a plan P
(Fig. 1.10) :
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Plan P

Figure 1.10 Coupling wavefronts of two Gaussian beams (Ry, R, are the curvatures of the wavefronts of two

Gaussian beams).

The coupling efficiency of two Gaussian beams is given by [20] :

i c1 1}
Ko [ W, W +(M).___ (1.20)
w,oow, A R R

In heterodyne experiment, the wavefronts of a Gaussian beam (w1, R;) and a plane beam

(W, R2) couple on a plan P (Fig. 1.11).

Plan P

Wo1

Figure 1.11 Coupling wavefronts of a Gaussian beam and a plane beam (R; is the curvature of the wavefront of

the plane beam with R,—0).

From this perspective, the curvature R, of the wavefront approaches +, so the coupling

efficiency of a Gaussian beam and a plane beam can be written as :
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Figure 1.12 Coupling efficiency of a Gaussian beam with a plane beam.

The calculation of the coupling efficiency between a Gaussian beam and a plane beam is
shown in Fig. 1.12. The maximum coupling efficiency K can be obtained when :
W, =W, (n1=1) (1.22)
The condition for maximum coupling efficiency requires wi=w, and the maximum coupling
efficiency decreases as the spot size of the Gaussian beam increases, i.e. the increase of n;
(w1/wos, Fig.1.12 green dot). Moreover, a larger n; needs a larger value of wi/w;, for obtaining
the maximum coupling efficiency.
Therefore, for the purpose of high-efficiency heterodyne mixing of two light beams, it is

necessary to make the beam sizes of the sunlight and the LO as close as possible.

1.3.1.2 Phase front alignment

The quality of the superposition of the two beams on the photomixer greatly has a significant
impact on the mixing efficiency. In order to obtain a maximum light-induced photocurrent,
the i1so-phase planes of the solar radiation and the LO light must coincide with each other as
well as the photosensitive surface of the photomixer i. e. the wavefronts of the sunlight field
and the LO field must be confused such that the photocurrents induced are in phase.
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The following is an analysis of the influence of the misalignment of the two beams on the

coherent detection. It is assumed that both the sunlight and the LO are plane waves, and there

is an angle ® between their wavefronts, as shown in the Fig.1.13.

LO 9[ Solar radiation

Figure 1.13 Photomixing illuminated by the solar radiation and the LO light. Phase fronts of the both beams

are normal to the propagation direction.

It is assumed that the photosensitive surface of the photomixer is a square having a side
length of d. In the analysis, it is assumed that the LO beam is incident in a direction
perpendicular to the surface of the photomixer, so that the LO field can be written as :

EL(t) = ALoeiwLt

The sunlight wavefront has a mismatch angle with the LO wavefront, the beam is

(1.23)

obliquely incident on the surface of the photomixer, and the sunlight field can be written as :

Eq(t)= A" " (1.24)
let S =ksin®, then the above formula is written as :
Eq ()= Age' ™ (1.25)
The total electric field incident on the surface of the photomixer is :
(1.26)

E(t): Es (t)+ EL(t)
and the instantaneous IF photocurrent generated by the photomixer (c.f. Section 1.2.1) is

written by :
i (t)oc [[ 28 4 Ae" > dxdy
dd

2'2
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d-g

sin——

=d® A AL 5 (1.27)

2

Because f=(2-7/4)-sin® , the magnitude of the instantaneous IF photocurrent is

related to the mismatch angle ®. Obviously when the sinc function v :

d-g

sin—*~

i.e. ® =0, the instantaneous IF photocurrent reaches a maximum value.

In practice, the mismatch angle ® is difficult to adjust to 0. In order to get the maximum
IF output as possible, it is highly desirable to set ® = 0 as possible. To satisfy this condition,
it would be :

d'T'B <<1 (1.29)

ie. sin@<<—— (1.30)
7['

A:8um —1mm
——0.5mm
——0.25mm

d:0.5mm ——8pum
—apm
——10.6 pm

/@A\A,é
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Figure 1.14 left: y as a function of the mismatch angle @ for several values d (at A=8 pum); right: y as a function

of mismatch angle ® for several values of A (with d=0.5 mm).

The effect of the mismatch angle on the output of the optical heterodyning is plotted in
the Fig.1.14. As can be seen, the photomixing efficiency dramatically decreases with
increasing the mismatch angle. A photomixer with a smaller size has a larger mismatch angle
and vice versa (Fig. 1.14 left). The shorter the wavelength is, the stricter the angular
requirement is, i.e. smaller mismatch angle is needed (Fig. 1.14 right). Therefore, optimal

spatial alignment for heterodyne detection is highly desired. Due to this strict spatial
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alignment requirement, stray light or background radiation that do not meet this requirement
will not contribute to the optical heterodyning, heterodyne detection exhibits thus a good

spatial filtering performance.

1.3.2 Polarization-sensitive photomixing

It is well known that the heterodyne detection is sensitive to polarization due to the fact that
the beat occurs when the field component of the sunlight beam is parallel to the polarization
of the LO beam [23,24]. Since we use an unpolarized/incoherent sunlight, optical power of

sunlight that can contribute to the heterodyne signal is thus halved.

1.3.3 Coupling of the mixed beams to the mixer

The last criteria is the spatial distribution of the mixed light beams on the photomixer (Fig.
1.15). That is, the focusing full-angle 26 of the incident beam should be less than the FoV of
the photomixer, and the focused beam size 2w, on the photomixer should be less than its

optical receiving area.

Mixer

Receiving size

Figure 1.15 Spatial distribution of the incident beams on the photomixer.

1.4 Noise sources

SNR (signal-to-noise ratio) is the most important parameter for evaluation of the LHR
sensitivity. It can be affected by system noises at the intermediate frequency. All noise
currents are referred to the photomixer. The noise sources are of three types : those which are
independent of LO power P, (see 1.4.1 below), those which depend on LO power P, (see

1.4.2 below), and those which depend on signal power Ps (see 1.4.3 below).
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1.4.1 Detection chain noise

In a heterodyne system, the detection chain noises originating from a photomixer and
preamplifiers, which are independent of the LO laser power (P,), include : (1) Johnson noise,
(2) Background noise, (3) Dark noise.

1.4.1.1 Johnson noise

Johnson noise is produced regardless of an applied voltage, and is generated by the random
thermal agitation of electrons inside a conductor of photomixer and amplifier at equilibrium

[25]. The Johnson noise in the receiver band is expressed by the mean-square noise

current (i} ) -

<i§>=4-k‘80-(;—M+MT'—AR] (1.31)
M A

where k = 1.38x10% J/K is the Boltzmann; Ry and Ra are the load resistance of the
photomixer and the resistance of the amplifier, respectively; Ty and Ta are the noise
temperatures of the photomixer and the amplifier, respectively; M is a parameter (< 1)
expressing an impedance mismatch between the photomixer and the amplifier [26].

When the photomixer is cooled and its Johnson noise is negligible compared with the

noise from the amplification system. Eq. (1.31) can thus become :

TA
MR,

(i5)=4-k-B,- (1.32)

1.4.1.2 Background noise

Thermal radiation outside of the receiving bandwidth of the heterodyne receiver, but inside
the total spectral range over which the photomixer will give a photocurrent response. On the
other hand, the thermal radiation inside the receiving bandwidth of the heterodyne receiver,
but outside the FoV of the heterodyne receiver will induce the photomixer to produce noise
currents. It follows that the optical power spectrally and spatially outside the heterodyne
receiver will affect the photomixer and generate a photocurrent. This photocurrent will not be
amplified by the heterodyne detection but it provides a continuous background noise to the
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detected signal. The background noise can be expressed by the mean-square noise

current (i ) :

‘P, B, (1.33)

where h is the Planck constant, v is the frequency, n stands for the quantum efficiency, e is
the electric charge, By is the bandwidth of the photomixer, and Pg is the thermal radiation
power radiating onto the photomixer.

The influence of the background noise can be reduced by the addition of spectral and
spatial filters in the optical path of the thermal source and the condition Pg << P is then
achieved. Therefore, the background noise («x Pg) can be rendered negligible compared with

laser induced-noise (o P, see 1.4.2).

1.4.1.3 Dark current noise

Dark current noise is a constant current which is due to the random generation of electrons
and holes within the depletion region of the photomixer when no photons are incident on the

photomixer [27]. The dark current noise in the photomixer is expressed by the mean-square
noise current<i,§K> ;
(iZc)=2-e-ipc - By (1.34)

where ipk is the average dark current of the photomixer.
Typically, dark current noise can be significantly reduced at low temperature and

therefore can be ignored.

1.4.2 Laser-induced noise

In a heterodyne system, laser-induced noises, which depend on the laser power (P.), include :
(1) Laser-induced shot noise, (2) Coherently detected thermal noise, (3) Laser excess noise.

1.4.2.1 Laser-induced shot noise

Shot noise, also called quantum noise, is caused by fluctuations of the detected photons,
which obeys Poisson statistic. In electronics shot noise originates from the discrete nature of
electric charge, and in photon counting in optical devices, it is associated with the particle

nature of light.
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In a LHR system, laser-induced shot noise arises due to fluctuations in the rate of arrival
of LO photons, but an expression for it can be obtained by considering the shot noise in the
LO radiation-induced current in the photomixer [26]. This current is dominated by i4, which
is the response of the photomixer to the incident LO power, so that the mean square laser-

induced shot noise current<ifSN> is proportional to the LO power on the photomixer and is

given by [11,26,28] :

. .@? .
<|ESN>=2-[7;‘VJ-PL~BO=2-e-|dC-BO (1.35)
and i = Z—e P, (1.36)
VvV

where h is the Planck constant, v is the frequency, n stands for the quantum efficiency, e is

the electric charge , Py is the LO power, and By is the bandwidth of the photomixer.

1.4.2.2 Coherently detected thermal noise

Radiation power from any unwanted thermal source (e.g. emission from the atmosphere in a
ground-based experiment) located in the FoV of the heterodyne receiver is coherently
detected and amplified by the usual heterodyne "amplification” process if within the
bandwidth of the heterodyne receiver [26]. In this case, the coherently detected thermal noise
must also be considered. For a thermal source of temperature Tg filling the FoV of the
heterodyne receiver, the coherently detected thermal noise has the same expression as

heterodyne signal (c.f. Eq. (1.10)) and it can be expressed by the mean-square noise current

(iZor ) [11,26] ;

2
<i§DT > = Z(U_ej Prg P (1.37)
h-v
Py =2h-v-5, B, (1.38)
h -1
and 5. = A ] 1.39
’ {exp(k'TBJ j ( )
Substituting Egs. (1.38) and (1.39) into Eq. (1.37), then :
. 4.n%.¢?
<|§DT>=;7—_V-5B~PL~BO (1.40)
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where h is the Planck constant, v is the frequency, n stands for the quantum efficiency, e is
the electric charge, k is the Boltzmann constant, P, is the LO power, Ptg is the radiation
power from any unwanted thermal source, and By is the bandwidth of the photomixer.

The contribution from the laser-induced shot noise (Eg. (1.35)) and the coherently
detected thermal noise (Eg. (1.40)) measured at the photomixer output can thus be expressed

by :

2
(iZen )+ (iZ7 ) = 2'h7 'Ve P,-B,-(1+2-7-5,) (1.41)

if hv >> KkTg, then &, =0, the laser-induced shot noise (quantum noise) dominates the
coherently detected thermal noise, and vice versa.

In an 8 pm EC-QCL-based LHR system, the temperature of the thermal source Tg (EQ.
1.39) is usually equal to the room temperature (300 K), the radiation frequency v is 3.75x10"
Hz and the quantum efficiency of the photomixer n is 0.5. In Eq. (1.41), the term 2:1-6g due
to the coherently detected thermal noise is thus calculated to be 0.0024 which is far smaller
than the term <1’ resulted from the laser-induced shot noise. Therefore, coherently detected
thermal noise can be neglected compared to the laser-induced shot noise in the 8 pm EC-
QCL-based LHR system.

1.4.2.3 Laser excess noise

Laser excess noise depends on the transmitted laser power within the measurement
bandwidth centred on the detection frequency. Both mode competition and optical feedback

to the laser due to scattering from components in the optical system influence the laser excess

noise. The mean square laser excess noise current<ifEN> is proportional to the square of the

LO power on the photomixer [29] and can be expressed approximately as :

2
. -€
<|5EN>OC(ZTJ .P?.B, (1.42)

where h is the Planck constant, v is the frequency, n stands for the quantum efficiency, e is

the electric charge, P is the LO power, and By is the bandwidth of the photomixer.

1.4.3 Signal-induced noise

In a heterodyne system, the signal-induced noises, which depend on the source power (Ps),

include : (1) Signal-induced shot noise, (2) Signal excess noise.
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1.4.3.1 Signal-induced shot noise

In a LHR system, signal-induced shot noise arises due to fluctuations in the rate of arrival of
source photons and it can be obtained by considering the shot noise in the source radiation-
induced current in the photomixer [26]. This current is dominated by i; , which is the
response of the photomixer to the incident source power, so that the mean square shot noise

current<i§SN> Is proportional to the source power on the photomixer and is given by [16,26] :

2 Yoo 1) p g _oeis.B 1.43

<ISSN>_ hoy | 8707 €1y - By (1.43)
-S 7]'9

and =1 P, (1.44)
vV

where h is the Planck constant, v is the frequency, n stands for the quantum efficiency, e is

the electric charge, Ps is the source power, and By is the bandwidth of the photomixer.

1.4.3.2 Signal excess noise

The signal excess noise depends on the transmitted source power within the measurement

bandwidth. The mean square signal excess noise current<i§EN> is proportional to the square of

the source power on the photomixer and is given by :

2
. -e
(iZ) OC[Z—VJ P2-B, (1.45)

where h is the Planck constant, v is the frequency, n stands for the quantum efficiency, e is

the electric charge, Ps is the source power, and By is the bandwidth of the photomixer.

Comparing Eq. (1.35) with Eq. (1.43) and Eq. (1.42) with Eq. (1.45), for Ps << P\ :
<i528N> << <iESN> (1.46)
and (iden) << (ifen) (1.47)

Therefore, if LO power is high enough, the signal-induced noise can be rendered

negligible.

In order to enhance sensitivity of the LHR system, i.e. to reach a shot-noise-limited
performance, suppression of the laser excess noise (1.4.2.3) or/and reduction of the Johnson

noise (1.4.1.1) are the best strategies. The Johnson noise (1.4.1.1) can be reduced by selecting
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an appropriate detector element with a low-noise preamplifier. The laser excess noise
(1.4.2.3), related to the LO power, optical feedback and mode competition, can thus be
controlled by adjusting LO power. Meanwhile, to obtain the laser-induced shot-noise-limited
performance in LHR system, it is necessary to increase P, so that the Johnson noise (1.4.1.1)
is far smaller than the laser-induced shot noise (1.4.2.1), that is (using Egs. (1.32) and (1.35)) :

<i§><<<iESN> (1.48)
2
ie. 4.K-By—12_ << 2| 1% | p.B (1.49)
M-R, h-v
then the required lowest limit on P_is given by :
PL> 2'k2'h'V'TA (150)
n-e-M-R,

With given parameters in an 8 pm EC-QCL-based LHR system, i.e. v = 3.75x10* 1= 0.5, M
=1, Ra=50 Qand Ta = 300 K, P_ must be greater than about 0.32 mW to ensure laser-
induced shot-noise-limited operation. Meanwhile, LO power has an additional caveat that this

power needs not to saturate the photomixer preamplifier either [16].

Based on the above introduction of the noise sources we are now discussing on instrument

SNR and its sensitivity in the following section.

1.5 Instrument SNR and sensitivity (limit of detection, LoD)

To characterize the performance of a developed LHR, a blackbody source (with high cavity
emissivity of ~0.99) is usually used. In this case, the BB source power Pg received by the

LHR system can be calculated by [5] :

=—-K- V, . . . .
P, ; (v, T)- A -2-B, (1.51)

-1
3 .
and 1(v,T)= 2-h2-v -8, and J =£exp( h-v ]—1} (1.52)
c k-Tg

From Egs. (1.51) and (1.52), the received source power Pscan be expressed by :
P,=2-x-h-v-B,-5 (1.53)
where « is the overall optical coupling efficiency defined as the fraction of the incoming

blackbody radiation passed by all the optical components in the instrument, which mainly
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accounts for transmission efficiency of the optics. I (v, T) is the Planck equation (spectral
radiance) for a blackbody at temperature Ts, and A? is the throughput of a single spatial mode
[5]. The one-half factor gives reason for heterodyne detection is inherently a polarization
dependent technique [30].
The heterodyne power obtained in the LHR system (c.f. Eq. (1.10)) is expressed by [9] :
(iz)= 2(%)2 PP (1.54)
The ideal laser-induced shot-noise-limited SNR of the LHR system at the output of the
photomixer preamplifier is given by :

(&) _pr
SNR_<ifSN>_h-V-SBO_2.77.’(.58 (1.55)

From Eg. (1.55), the final SNR of the LHR signal at the output of the RF filter with the
bandwidth B/2 (B<B,) and an integration time t is given by [9,26] :

T P
SNRLHR:@ﬂ.,/g.rﬂ_x\ﬁ:n.,{.@.,/B., (1.56)
<|LSN>BO:B h-v VB

where t is often the time constant in case using a LIA, the theoretical SNR increases with 1.
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Figure 1.16 Plot of SNR for an ideal LHR vs. wavelength, calculated with a quantum efficiency n of 0.5, a
temperature of blackbody radiation T of 1273 K, a bandwidth of the instrument B of 485 MHz, an integration

time T of 1 s, and an overall optical coupling efficiency of the blackbody radiation « of 0.4.

Fig.1.16 shows ideal SNR of a LHR as a function of wavelength with 1273 K blackbody
radiation, 485 MHz spectral resolution, 0.5 quantum efficiency, 1 s integration time and 0.4

overall optical coupling efficiency of the blackbody radiation. As can be seen, under this
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condition, the SNR of the LHR increases with the wavelength, i.e. the mid-IR is theoretically
more favorable than in the near infrared. In practice, optical losses, instabilities of the solar
image on the photomixer, and atmospheric effects degrade this SNR. In LHR, in order to
improve the SNR, pass-band of the RF filter must be carefully chosen to filter out low
frequency noise. In addition, according to the analysis in Section 1.3.1, making spot sizes of
two beams as close as possible and phase front misalignment angle as small as possible can

improve effectively heterodyne efficiency (Eq. (1.15)), thus increase the actual SNR.

A noise equivalent power (NEP in W/Hz) is introduced as a measure of the sensitivity of
a LHR system. Considering the source power before post-detection, the NEP corresponds to
the Ps that gives a SNR of unity, i. e. Eq. (1.55) is equal to 1, in a one hertz output bandwidth
[9,30,31] :

NEP = Pelowea _hv
B, n

The sensitivity of the LHR system in terms of minimum detectable sunlight power can be

defined by the limit of detection (LoD) [32]. From Egs. (1.53) and (1.56), the LoD, Ps min (in

W) of the LHR can be expressed by [7,30] :

(1.57)

P h-v |B
PS min — =T
' SNR| n \r

(1.58)

Assuming a quantum efficiency of 0.5 and an integration time of 1 ms, the Ps ni, for a 8
pm QCL-based LHR at different resolutions is shown in Fig. 1.17.

0.30

0.25 +

0.20

0.15

PS,mln (pW)

0.10

0.05 + 0.0347 pW

Wavelength (um)

Figure 1.17 Heterodyne radiometer sensitivity to thermal radiation (bandwidth of the LHR (B): 485 MHz;

integration time (t):1 ms; quantum efficiency (1): 0.5).
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When the atmosphere is transparent at a frequency corresponding to a wavelength near 8
m, with a 485 MHz bandwidth and a 1 ms integration time, the corresponding theoretical

sensitivity of the LHR to source radiation is about 0.0347 pW obtained from Fig. 1.17.

1.6 Extraction of heterodyne signal using a lock-in amplifier

In a LHR system, the heterodyne signal resulted from photomixing of a broadband incoherent
sunlight with a coherent laser LO in a photomixer is proportional to the product of the
intensities of the sunlight and LO. The heterodyne signal's frequency is the difference
frequency between the sunlight and LO frequencies at RF frequency. Molecular spectral
absorption information in the sunlight can be extracted by recording the heterodyne signal by
scanning the LO frequency. The heterodyne signal can be detected with the help of lock-in
amplifier.

LIA is an effective device capable of recovering weak signal buried in noise [33,34]
through removing the 1/f noise by using modulation techniques to shift the input signal away
from the base band and perform the detection at a relatively high frequency domain [35]. This
is usually realized by modulating the input signal at a specific reference frequency. Phase
sensitive detection is then carried out at this reference frequency for the demodulation of the
modulated signal within a narrow lock-in pass-band to remove 1/f noise [12]. A low-pass
filter with an appropriate cut-off frequency is used to extract the mean value of the amplified
signal. Meanwhile, both of heterodyne spectral line-shape and spectral line center will be
affected by the low-pass filter, which is determined by the LIA time constant. The details
related to this issue will be discussed in the following chapters.

In LHR, the sunlight radiation modulated with a light modulator (such as mechanical
chopper or optical switch) at a modulation frequency is synchronously detected by a LIA for
demodulation.

The most reported LHRs using LIAs for efficiently extracting the heterodyne signal are

shown in Fig. 1.18.

LO LIA
l Demodulator

. Input signal Low-pass Heterodyne
Photomixer ————— filer | ™ Signal

Light modulatior

iati ==
Solar Radiation M

\d

Reference frequency |

Figure 1.18 Schematic diagram of a LHR using a LIA.
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In general, heterodyne signal can also be extracted using digital signal processing (DSP).
AC-coupling part of the output signal from the photomixer includes total noise of the LHR
system (such as detection chain noise and laser-induced noise) and heterodyne signals. In this

way, a high-speed acquisition card is used to directly digitalize the output signal from the

photomixer, and the heterodyne signal (o7, related to Puer) is extracted by subtracting the
variance of the system total noises (o7,,.) (When there is no sunlight injection) from the
variance of the heterodyne signal plus system total noise (oZ,,) (when there is sunlight
injection) using DSP, that is [36] :

2 2 2
Ohet = Osum ~ O Noise (159)

1.7 Comparing the LHR with a Fourier Transform Spectrometer

It is interesting to briefly compare the LHR with a Fourier transform spectrometer, which
should have large optical path differences in order to achieve a high spectral resolution (e.g. a
Bruker IFS 125HR FTS (an optical path difference of 256 cm) with a spectral resolution of
0.02 cm™).

The SNR of a FTS can be expressed as [37] :

(v,T)-U.-£-B-D"-Jr (1.60)

VA

where U is the FTS throughput, & is the efficiency, B is the resolution, D* is the detectivity,

SNR =

and Ap is the physical area of the detector element. Dividing the SNR yr (Eq. (1.56)) by the
SNR for the FTS, quantitative comparison between them can be realized by :

SNR, :( 1 \/E 77"(}'1_3 (1.61)

SNRos |2-h-c U-é&.D" JB

The term in the bracket is a constant related to the system parameters, and the term out of
the bracket shows that LHR is more preferable at longer wavelength and higher resolution
(smaller B). Typical specifications for a commercial FTS operating at a wavelength of 10 pm,
are : Ap = 1 mm?, U = 0.01 cm?sr, £ = 0.1, and D* = 8 x10*° cm+/Hz W2, and assuming an
ideal LHR with a quantum efficiency n of 1 and an overall optical coupling efficiency of the
source radiation « of 1, the quantitative comparison between them in the resolution ranging
from 30 MHz to 360 MHz is plotted in Fig.1.19. It shows that with the given conditions, an
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ideal LHR at wavelengths longer than 7.7 pm and resolutions below 200 MHz has a greater
SNR than a FTS.

— 30 MHz
—— 60 MHz
51 — 90 MHz
——— 150 MHz
—— 200 MHz
250 MHz
300 MHz
3] —— 360 MHz

0-— T T T T T T T T T T T T T T
3 4 5 6 7 8 9 10 11
Wavelength (um)

Figure 1.19 Quantitative comparison between SNR g and SNRgys.

1.8 From atmospheric column absorption spectrum to vertical profile concentration

The atmospheric transmission spectrum obtained by the ground-based measurement (Fig.
1.20 (b)) is the integrated transmission spectrum from all species along the optical path in the
atmosphere (Fig. 1.20 (a)). The measured atmospheric transmission spectrum contains
information on the height distribution of the absorber up to altitudes (typically 35 km) [38] at
which Doppler effects overwhelm pressure broadening. It is possible to retrieve trace gas
abundance at different altitudes (Fig. 1.20 (c)) using a retrieval algorithm, given a decent
knowledge of additional atmospheric parameters, such as solar angle, atmospheric

temperature and pressure, atmospheric composition, and refractive index [2].

Integration g Retrieval
— ¢ ] J
algorithm

Altitude (km)

o] (b) (c)

T T r r r T y T T T T T T T T T T
12546 12548 1255.0 12552 12864 12544 12546 12548 12550 12552 12554 12556 04 06 08 10 12 14 16 18 20
Wavenumber (cm™) Wavenumber (cm™) CH, volume mixing ratio (ppmv)

Figure 1.20 (a) Calculated CH,4 absorption spectra at different altitudes in the infrared range of 1254.5-1255.5
cm™; (b) Atmospheric transmission spectrum of CH, obtained by integrating spectra in (a); (c) Vertical
concentration profile of atmospheric CH, at the location of TCCON-Paris station (WACCM model (Whole

Atmosphere Community Climate Model) [39]). (Note : all Figures here are only used for schematic diagrams).
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1.8.1 Retrieval principle

The retrieval algorithm is generally composed of two parts : atmospheric radiative transfer

forward model and inversion method in atmospheric vertical profile .

1.8.1.1 Atmospheric radiative transfer forward model

In order to retrieve vertical concentration profiles of atmospheric trace gases, atmospheric
radiative transfer equation (RTE) has to be applied. Because an exact analytic solution for
RTE in most of the cases cannot been found under realistic atmospheric medium and
multiple-scattering effects, a radiative transfer forward model has to be developed to get the
analytic solution. The most known forward models are 6sSecond Simulation of the Satellite
Signal in the Solar Spectrum (6S) [40], MODerate resolution TRANsmittance code
(MODTRAN), and Line-By-Line Radiative Transfer Model (LBLRTM) based on Fast
Atmospheric Signature CODE (FASCODE), etc [41].

The spectrum measured by the ground-based measurement has a high spectral resolution
(~0.001 cm™), the forward model used for calculating an atmospheric theoretical spectrum
should have a same or higher spectral resolution than the measured spectrum. Therefore,
LBLRTM with a higher spectral resolution of less than 0.001 cm™ [42,43] is desirable.

1.8.1.2 Inversion method in atmospheric vertical profile

The data retrieval is performed employing the optimal estimation method (OEM), introduced
by C. D. Rodgers [48,49], in which the Bayesian statistics theorem is used to find the
Gaussian probability distribution function (PDF) of the state of interest. The atmospheric
transmission spectrum of the solar radiance can be calculated using a radiative transfer model
F(x), called forward model, which describes the instrumental output by considering the
atmospheric transmission spectrum of the solar radiance and the instrumental model. The
relationship between pre-processed measured data and the atmospheric state vectors is
described as :

y=F(x,a,b,c)+e (1.62)
Where y is the measurement vector, i.e. atmospheric transmission spectrum measured with
the ground-based measurement; x is the state vector, considered in the forward calculation; &
is the measurement error vector; A second order polynomial baseline (with coefficients of a,
b and c) represents the non-selective absorption and uncorrected power contributions in the

target spectral region [50].
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To solve for x in Eqg. (1.62), the OEM data retrieval algorithm uses an iterative
Levenberg-Marquardt [51-53] approach to minimize the cost function, ¥, which is a measure
of the convergence of the fit with the measured data and the a priori knowledge, as defined in
the following equation [54] :

X = (y - F(Xi ))S;l(y - F(Xi ))T + (Xa =X )S;l(xa =X )T (1.63)

where X, is a priori state vector with an a priori covariance matrix S, based on the error
definitions, Xx; is the state vector at the i th iteration, and S, is the measurement error
covariance matrix based on the standard deviation of the measurement vector. The iterative

state vector X;.1 is calculated using the following equation :
Xig =% + [(1"'/1)8;1 +KISJK; Tl X [KiTS;l(yi —F(x ))"' S, =% )] (1.64)

where K is the Jacobian matrix (or weighting functions) describing the sensitivity of the

forward model to the state vector, and A is the LM parameter.

A flow chart for data retrieval is shown in Fig. 1.21, with the inputs of atmospheric
parameters (i.e. vertical profiles of pressure, temperature, H,O continuum, and atmospheric
species) [44,45], the spectroscopic parameters (i.e. line position, line intensity, pressure line
shift, and broadening parameters [46] those can be taken from the HITRAN 2016 database),
the instrument parameters (i.e. noise performance, gain, and the ILS function), a priori state
vector (i.e. an initial guess for the vertical profiles of target species that can be taken from
ECMWEF (European Center for Medium Range Weather Forecasts) [47] or WACCM), and
solar position (i.e. zenith angle for ray trace path calculation), the atmospheric transmission
spectrum of the solar radiance (yo) combined with a baseline and the corresponding
weighting function (K) are calculated by the forward model. In the inversion model (OEM),
given the measured and pre-processed measured spectrum (y), the a priori covariance matrix
(Sa), and the error covariance matrix (S;), the forward model is iteratively called to minimize
the cost function 4 (Eq. (1.63)) following LM algorithm (Eq. (1.64)). In a well-conditioned
retrieval, the ultimate cost function (x?) should be close to the number of the measurement
vector and the inversion program will yield a vertical concentration profile of target gas in the

atmospheric column.
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!

Pre-processed spectrum (y) Inversion model (OEM)
Measurement covariance matrix (S;) > LM iteration
a priori covariance matrix (S,) Minimize the cost function (x°)

Update state vector (x;)

Convergence ? N

Retrieved vertical profile

Figure 1.21 Flow chart of the data retrieval. VMRs : volume mixing ratios; LM : Levenberg-Marquardt [50].

1.8.2 Baseline treatment

The solar spectra obtained by the measurement system include system background baseline,
in order to obtain an absolute atmospheric absorption spectrum for retrieving vertical profile,
the system background baseline should be determined.

In case of known regular laser scanning waveform (sine waveform or rectangular
waveform), the baseline in the absence of absorption can be estimated

(1) by selecting spectral points excluding absorption peaks and fitting these points with
polynomial function;

(2) by fitting a baseline from near-by, non-absorbing wavelengths [14];

(3) in case of LHR baseline treatment, using a wavelength-modulated (WM) LO laser can
(i) provide baseline-free spectra, a superior SNR (so lower limits of detection), and better
precision and consistency than the conventional approach; (ii) open the door for cost-efficient

wide spectral range LHR in the near future [55,56].

67



1.8.3 Vertical resolution

One of the basic parameters in an algorithm for atmospheric profile retrieval concerns the
vertical resolution that is a measure of the smallest altitude over which an independent
information can be obtained by the measurement system. In order to estimate the vertical
resolution of the measurement system, an important quantity of the retrieval describing the
sensitivity of the retrieved state x to the true state vector x;, i.e. averaging kernel (AK) matrix
A is considered [57] :

A=§—:((t=[(S;1+KTSg1K)_lKTSg1]K (1.65)
Width of the AK can provide the vertical resolution of the measurement system at a certain
altitude and it can be quantified using a spread function, which is well defined by G. Backus

and F. Gilbert [58] and expressed by :
7—7'V A%(z,z')dz’
s(z)=12'[( ) Az, 2)
(f Az, z')dz')2

Substituting Eq. (1.65) into Eq. (1.66), the width of the AK at altitude z can be estimated [57],

(1.66)

therefore the vertical resolution of the retrieval is obtained.

The vertical resolution is closely associated with SNR and spectral resolution of the
measurement system [59]. The system SNR influences the error covariance matrix S, which
is used for estimating the width of AK (c.f. Eq. (1.65)), thereby influencing the vertical
resolution estimated by the width of AK. The spectral resolution of the measurement system
influences the width of the weighting function (K) used in the retrieval algorithm, thereby
affecting the vertical resolution generated by the algorithm. In addition, as the spectral
resolution increases (instrument bandwidth (B) decreases), the SNR decreases (c.f. Eq.
(1.56)). In a realistic measurement system, a compromise between the spectral resolution and

SNR should be made to achieve a vertical resolution as high as possible.

Conclusion

In this chapter, the principle of LHR has been presented. Through heterodyne detection,
atmospheric absorption spectrum can be recovered by scanning the LO frequency across the
absorption feature. Then, the heterodyne efficiency of two light beams in free-space LHR
dependant on three optical criteria has been discussed in detail. The high heterodyne

efficiency of the LO beam and sunlight beam can be obtained when phase fronts are perfectly
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aligned, beam spot sizes are fully matched, and beams are perfectly co-aligned onto the
photomixer surface with their polarization state matched. Based on the analysis of the three
major noise sources in a LHR, the LO power conditions for shot-noise-dominated heterodyne
detection, shot-noise-dominated SNR and the corresponding instrument sensitivity have been
discussed. SNR comparison of instrumental performance in terms of SNR between the LHR
and the FT-IR has been made and it illustrates that the theoretical SNR of the LHR is more
preferable over that of the FT-IR instrument at longer wavelengths and higher spectral
resolutions with the given system condition. At the end of this chapter, vertical profile
retrieval algorithm for retrieving vertical concentration profile from the measured

atmospheric spectrum as well as the vertical resolution have been briefly described.

In the next chapter, practical instrumental considerations and the specifications of the devices
involved in the LHR will be introduced and discussed.
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Chapter 2 Mid-IR LHR instrumental consideration and configuration

Objective

In this chapter, practical instrumental considerations and specifications of the devices
involved in our mid-IR LHR system (Fig. 2.1) are introduced and discussed.

Two systems for sunlight collection to the LHR receiver, including : (1) free-space telescope

system, and (2) fiber coupling system, will be presented as well.

Band-pass| RF Amplifier »| Square Law Detector ——» Lock-in [y LHR
Filter : Amp 1t Spectrum

_________________________________________________________________________________

RF receiver

LHR receiver

Figure 2.1 Schematic diagram of a typical LHR system.

2.1 Key devices involved in a mid-IR LHR
2.1.1 Sun-tracker

Sun-tracker system is usually used in a LHR instrument to real-time follow the movement of
the Sun for sunlight collection. The tracking mechanism of a sun-tracker is generally depicted
in Fig. 2.2. The sun-tracker mainly composes of a servo system (including a 4-quadrant
detector [1] (or a camera [2]) and a servo control loop), a zenith stepping motor (adjusting
zenithal angle 6,) and an azimuth stepping motor (adjusting azimuthal rotation angle 6,).
During initial operation, the zenith and azimuth stepping motors coarsely point the tracker
to the calculated position of the Sun (through a solar position algorithm based on the local
GPS coordinates and time of day). Then a 4-quadrant detector generates an error signal as a
result of an unbalanced solar power distribution and different sunlight beam shapes on four
identical photodiodes which compose the 4-quadrant detector [3]. The servo control loop uses
this error signal to drive the two stepping motors to center the Sun’s spot on the center of the
4-quadrant photodetector with the help of an optical system consisting of two elliptical plane
mirror 1 (M1) and mirror 2 (M2), as indicated in Fig. 2.2, in the sun-tracker. The zenithal and
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azimuthal angles are considered correct when the center of the Sun’s spot is consistent with

the center of the 4-quadrant photodiode.

Accurate and precise tracking of the Sun is required for remote sensing of the atmosphere
in order to avoid significant bias at the data retrieval stage. Indeed, the retrieval of vertical
profile of trace gas from an observed solar transmission spectrum is highly sensitive to the
effective air mass sounded [4]. For LHR measurement it is also necessary to keep a stable
sunlight power. So the center of the Sun’s spot must be perceived on the servo system for a
precise tracking, that is, the FoV of the sun-tracker is larger than the Sun’s angular diameter
(oo =9 mrad), as shown in Fig. 2.2. Therefore, a sun-tracker with a high tracking accuracy

and a large FoV is preferable.

Elevation

— a:angular diameter of the Sun

------- FoV of the sun-tracker

Lens

S Fov

Servo system

Figure 2.2 Schematic of sun tracker.

Three kinds of sun-trackers commercially available can be potentially used :
(1) Cimel sunphotometer (CSPHOT-CE318)

CSPHOT-CE318 sun-photometer (Fig. 2.3 left) is a multi-channel, automatic sun-and-sky
scanning radiometer with a tracking accuracy of 0.1° and a FoV of 1.2° (determined by the
design of the internal sun-viewing-collimator, as shown in Fig. 2.3 left). A 4-quadrant
detector precisely updates, with the help of a feedback control loop, the sun-tracker’s position.
Wilson and co-worker from NASA installed sunlight collection optics for the LHR (Fig. 2.3
right) on the sun-tracker, and the optical axis of the sunlight collection optics is parallel to
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that of the sun-viewing-collimator. They used this sun-photometer as sun-tracker to follow

the Sun in order to collect sunlight for their near-IR-LHR system (Fig. 2.3 right) [5].

Zenith motor

Figure 2.3 left: CSPHOT sun-photometer; right: sunlight collection optics (circled by green dotted line)
installed on the CSPHOT sun-photometer, involved in NASA's near-IR-LHR setup.

(2) Bruker A547N Solar Tracker

The Bruker A547N Solar Tracker consists of an optical collection system including two plane
elliptical mirrors (M1 and M2) held in 45 degrees relative to the vertical (Fig. 2.4), facing
each other. The sunlight is reflected into the servo system and spectrometer for applications

by these two mirrors.

Azimuth

Elevation

|

Camera

Fov —— Optical filter

Lens

Figure 2.4 Bruker A547N Sun tracker. M1, M2 : mirror 1 and mirror 2.
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The Sun’s spot is observed by a camera. An image processing software (called
CamTracker [2]) calculates the position of the center of the Sun related to the input aperture
of the collection system, and provides feedback signal to the sun-tracker stepping motors to
point the optical system to the Sun center with a tracking accuracy of 0.0167°. This kind of
sun-tracker with a NA (Numerical Aperture) of 0.0087° is mostly designed for Bruker’s FT-
IR spectrometer for ground-based measurements of trace gases in the atmospheric column.

(3) EKO sun-tracker

EKO sun-tracker (Model STR-21G, EKO Instruments CO, LTD) provides a FoV of 30° with
a tracking accuracy of 0.01° (Fig. 2.5).

§ Sunsensor -

Instrument mount

Figure 2.5 EKO sun-tracker (model STR-21G).

The sun-tracker can be operated in two modes to follow the Sun’s movement : (1)
Calculation mode : when the sun-tracker is just starting up or the Sun is absent, tracking
mode automatically changes to the calculation mode which will coarsely calculate the Sun’s
position (including zenith and azimuth angles) based on the received information from the
GPS sensor on latitude, longitude, date and time. (2) Sun-sensor mode : once the Sun is
within the FoV of the sun-tracker, tracking mode switches to this mode. A 4-quadrant
detector and an internal learning track function will accurately detect the Sun’s radiation (and
hence its position) and will compensate for misalignment of the sun-tracker to the Sun
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position with the help of a closed-loop control system of the sun-sensor, even if the tracker is
not oriented or levelled properly. In general, in order to maintain the highest tracking
accuracy possible, two tracking modes will be automatically switched according to the solar
radiation conditions.

This sun-tracker is equipped with an adjustable instrument mount which allows fine
optical alignment of the optical setup installed on this mount for sunlight collection.

Based on the specifications of above three kinds of sun-trackers, summarized in Table 2.1,
the EKO sun-tracker is selected for use in the present work to collect sunlight with a higher

tracking accuracy and lower price.

Table 2.1 Specifications of three commercially available sun-trackers.

Cimel CSPHOT Bruker A547N EKO STR-21G
FoV 1.2° 45° 30°
Tracking accuracy 0.1° 0.0167° 0.01°
Portability Yes No Yes
Price ~ 25000 USD ~ 20000 USD ~ 14000 USD

2.1.2 IR blackbody sources

Blackbody sources with stable radiation are highly requested for the development and the
performance characterization of LHR. In our experiments, an Oriel® blackbody source
(Model 67030, Newport Inc.) and an IR blackbody emitter (Model IR-Si217, Hawkeye
Technologies Inc.) are respectively used.

(1) Oriel® blackbody (Fig. 2.6 left) is a highly uniform and temperature stabilized
infrared radiation source, calibrated to a NIST (Natinal Institute of Standards and Technology,
USA) standard. The major functional components of the blackbody are cavity, heater and
dual thermocouples (Fig. 2.6 right). A ceramic sealed heater coil uniformly heats a stainless
steel cavity cylinder to provide blackbody radiation. The cavity is manufactured from special
stainless steel and processed to have a uniform and high emissivity coating which allows it to
produce an effective emissivity very near unity. An 8-position aperture wheel provides 7
different apertures and 1 open position. The aperture size is adjusted to be 15.2, 10.2, 5.1, 2.5,
1.3, 0.64, and 0.32 mm in diameters, respectively.
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Figure 2.6 left: blackbody source (Oriel® Model 67030, Newport Inc.); right: major components of the 67030

blackbody source.

Temperature of the blackbody can be adjusted with a digital temperature controller with a
precision of 0.1 °C from 50 to 1050 °C. Typical irradiance spectra of the blackbody at
different temperatures are shown in Fig. 2.7 (a). Fig. 2.7 (b) shows the emissivity of the
blackbody at 1000 °C with an aperture of 0.5 inch (12.7 mm). The emissivity in the range of
2-10 pm is close to 1. This blackbody is an ideal standard blackbody source for the

development of an infrared LHR instrument.
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Figure 2.7 (a) Typical irradiance spectra of the used blackbody at different temperatures; (b) Emissivity of the
blackbody at 1000 °C from a 0.5 inch (12.7 mm) aperture.

A digital temperature controller is used to provide fast stable temperature control via a
PID (proportional, integral and derivative) system and prevents excessive settling time and
temperature overshoot. All operating parameter adjustments, temperature and indicators are
adjusted and displayed through the temperature controller. A GPIB/IEEE-488 port is
available for interface with computer.

(2) IR-Si217 infrared emitter (Fig. 2.8 left) is a robust, efficient and very economic

infrared emitter. It features true blackbody radiation characteristics with low power
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consumption, high emissivity (0.8) and a long lifetime. It is manufactured using a patented
silicon carbide material. The used IR emitter is packaged in a compact aluminium block with
an emission size of 4.4x6.0 mm (Fig. 2.8 right). It is operated in DC power mode with an
operating current and voltage around 1.5 A and 7 V, respectively, which results in an
operating temperature of about 1385 °C providing an optical output power of about 800 mW
over all spectral region (1-20 pm).

Figure 2.8 left: emitter source IR-Si217; right: packaged emitter source with a CaF, window.

Fig. 2.9 shows calculated spectral radiances of the used two blackbody sources based on
the Planck's law. As can be seen, two blackbodies have almost the same spectral radiance at 8
pm. IR-Si217 infrared emitter exhibits the unique advantage for field applications owing to

its compact size and very low cost.

—— IRS-Si217 emitter (1385 °C and Emissivity of 0.8)

40000 —— Oriel Blackbody (1000 °C and Emissivity of 1)

30000 —

o /\

Wavelength (um)

Spectral Radiance(W/m?/um/sr)

Figure 2.9 Spectral radiances of an Oriel blackbody source (Model 67030, Newport Inc.) operating at 1000 °C
with an emissivity of 1 (red curve) and an IR-Si217 infrared emitter operating at 1385 °C with an emissivity of
0.8 (black curve).

2.1.3 Local oscillator (LO)

The LO is the key device for a high-performance LHR. The characteristics of the laser source

used as the LO determine the working spectral range (and thus the target molecule being
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measured) and the performance of the LHR. The following laser properties should be
considered : emission frequency, output power, emission line width, frequency stability,
single-mode tunability, and wavelength-dependent baseline.

In our LHR setup, a continuous wave (CW) external-cavity quantum cascade laser (EC-
QCL) operating in the mid-IR around 8 pm (1250 cm™) is used as the LO. The EC-QCL
(TLS-41000-MHF, Daylight solutions Inc.), shown in Fig. 2.10 (left), is controlled with a
specific controller (Model 1001-TLC, Daylight solutions Inc.) and continuously tunable in
frequency from 1223 to 1263 cm™ (7.91-8.17 pm) through its external-cavity tuning. The
laser provides optical output powers of more than 60 mW over 40 cm™ spectral coverage
(Fig. 2.10 right) with a power fluctuation less than 1% r.m.s (root-mean-square, the square
root of the average of the squared power fluctuations) over 5 minutes, according to the
manufacturer.

Wavenumber accuracy of the laser is +0.5 cm™ (uni-directional) with a laser emission line
width of 5 MHz, resulting in a laser resolving power (Av/v) of about 10”. The full spectral
scan can be realized by varying cavity grating angle of the EC-QCL with a step of 0.01 cm™
in automatic or manual step mode via the controller. Fine frequency scan over ~1 cm™ (at a
rate of up to 60 Hz) can be achieved using a sine-wave signal. The sine-wave signal from a
function generator is firstly amplified with a piezoelectric transducer (PZT) driver (3-Axis
Piezo Controller Model MDT690, Thorlabs) to about 100 V and then applied to the PZT
element of the EC-QCL to modulate the external-cavity grating angle and hence the external-
cavity length. Sine-waveform is used for laser frequency scan in order to avoid rapid changes
in the scan direction (such as in case of the use of a sawtooth or triangular ramp signal) which
will cause excitation of mechanical vibrations, rendering the laser output unstable and result

in permanent laser damage.

MHF Tuning Range

22—

1247 1239777 )
Wavenumber (cm-1)

Figure 2.10 left: CW Mode Hop-Free EC-QCL (Model CW-MHF 41000, Daylight Solution, Inc.); right: wide
tuning of 1223 to 1263 cm™ with output power of ~60 mW at 1223 cm™ and more than 80 mW at >1247 cm™,
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When the LO laser frequency is appropriately scanned across the target molecular

absorption line, the changes in the resulting RF beat signal amplitude correspond to the

molecular absorption

all molecules in prese

5.0x10% -
0.0

feature that is thus restituted from the total absorption of the sunlight by
nce in the atmosphere.

1.0x107" -
00 -

1.0x10™ -
0.0 -

4.0x10™ 1
0.0 -

‘AnlllllJ]lJ ll[l‘ l'

1.0x10% -
0.0

7.0x10°

Line intensities (cm/molecule)

0.0 4

1.0x10” -
00

L

—— CH4
N

bl | [

Ly

il Ll A

1220

T
1225

T
1230

T T T T
1235 1240 1245 1250

Wavenumber (cm™)

T
1255

T
1260

1
1265

@ 2.2x10% ]
3 20 7
3 2.0x10% ]
S 1.8x10%°
g -20 7
= 1.6x10 ]
< 1.4x10™
2 1.2x10%
@ 1.0x107°
c 21 1
S 8.0x107"
£ 21
o 6.0x10 ]

= 21

= 4.0x107 1

-

HONO

1252 1253 1254 1255 1256 1257

2.0x10™ 4
1.5x10™° ]
1.0x10™° ]
5.0x10™ ]

0.0 4

Crosse section (cm“/molecule)

N,O

275

12

T T T T T T T T T T T T T T T T T
00 1210 1220 1230 1240 1250 1260 1270 1280 1290 1300

Wavenumber (cm™)

Figure 2.11 upper: detectable molecules in the spectral coverage region of the EC-QCL used in the present
work, based on the HITRAN database [6]; lower: absorption spectra of HONO [8] and N,Os [7].
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Wide tuning range of more than some tens of cm™ of the used EC-QCL as the LO is
interesting, which offers the capacity of our LHR instrument to monitor multi-species or/and
broadband absorption/emission. Fig. 2.11 shows major molecules present in the frequency
tuning region of the used EC-QCL (based on the HITRAN database [6], the GEISA database
[7] and our laboratory measurements [8]).

The performance of the EC-QCL source, in term of laser emission line width, single
mode wavelength tunability and wavelength-dependent baseline, has been evaluated via
concentration measurement of N,O produced in a chemical catalytical reaction process
(described in Chapter 3).

2.1.4 Photomixer

Photomixer used for mixing LO radiation and sunlight to generate a heterodyne signal is a
core component of the LHR. In order to sensitively detect weak mid-IR sunlight intensity (in
the range of W) with high SNR, the responsivity and the detectivity of the photomixer with
a lower noise density must be as high as possible. Meanwhile, a photomixer with a wider
bandwidth can provide not only a faster response time but also a high flexibility for the
choice of filter pass-band of the RF receiver. In addition, a DC component output of the
photomixer can be used to monitor baseline variation in heterodyne signal (mainly due to the
variation in the LO power). Therefore a photomixer with both DC (for monitoring LO power
variation) and AC (for heterodyne RF signal) components, which can be separated through a
bias-T at the photomixer output, would be a favorable option. Currently, two photodetectors
are potentially suitable for use as photomixer for 8-pm LHR.

(1) DC-coupled photovoltaic detector PVMI-4TE-8 (VIGO System S.A.) equiped with a
four-stage thermoelectrical cooler and integrated with a preamplifier (MIP-DC-250M-F-M4)
(Fig. 2.12 left). It has a FoV of 35°.

#83616 - Ri, D* characteristics at 190K
8E+9
6E+9

4E+9

D*, cmHZY2/W
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Wav elength, pm

Figure 2.12 left: PVMI-ATE-8 VIGO detector; right: detector current responsivity and detectivity vs.

wavelength.
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The upper 3 dB cut-off frequency is 195 MHz with a current responsivity of 0.226 A/W
and a detectivity of 8.3E+9 cmHz"4/W (at A=8 pm), as shown in the Table 1. Fig. 2.12 (right)
shows its typical spectral performance.

(2) AC-coupled fast photovoltaic detector PVI-4TE-10.6 (VIGO System S.A.), four-stage
thermoelectric cooled with a FoV of 35° (Fig. 2.13 left). The upper 3 dB cut-off frequency is
800 MHz with a current responsivity of 4.2 A/W and a detectivity of 5E+9 cmHzY?/W (at
A=8 pm). The integrated preamplifier exhibits an electronic pass-band of 1 kHz-500 MHz.
Fig. 2.13 (right) shows its typical performance.

#12064 - Ri, D* characteristics at 293K
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Figure 2.13 left: PVI-4TE-10.6 VIGO detector; right: detector current responsivity and detectivity vs.
wavelength.

Main specifications of above two photomixers are summarized in Table 2.2. Comparing
their specifications, the DC-coupled PVMI-4TE-8 detector has a lower current responsivity
(of 0.226 A/W) and a higher output voltage noise density of 250 n\V/y/Hz. Based on these two
parameters, the AC-coupled fast PVI-4TE-10.6 detector with a higher responsivity (4.2 A/W)
and a lower output voltage noise density of 120 nV/v/Hz is selected for use as photomixer in

our LHR system though there is not a DC component output for monitoring LO power
variation.
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Table 2.2 Specifications of IR photomixers for LHR application.

Active Area 0.5*0.5 mm’ 1*1 mm’
Window BaF2 (3 deg wedged) BaF2 (wedged)
Wavelength Range 3to 12 um 2t0 12 um
Transimpedance @ R ppp =50 Q 6.0E+3 V/A 1.15E+4 V/A

Detectivity +20% @ 8 pm

5.0 E+09 cmy/Hz/W

8.3 E+09 cmv Hz/W

Current Responsivity £20% @ 8 um 4.2 A/W 0.226 A/W
Voltage Responsivity @ 8 um 2.52E+4 V/W 2.55E+3 V/W
Output Voltage Noise Density 120 nV/+/Hz 250 nV/+Hz

Immersion Type / FOV Hyperhemispherical / 35°  Hyperhemispherical / 35°
Dynamic Resistance 150 Q 1410 Q
Thermistor Resistance 320 kQ 470 kQ
Reverse Bias Voltage 650 mV oV
Stability of Temperature 0.01 K 0.01 K (estimated)

2.1.5 RF receiver

Heterodyne signal at radio frequency from the photomixer is further processed by a back-end
electronic RF receiver containing band-pass filter, RF amplifiers and a square law detector, as
shown in Fig. 2.1.

2.1.5.1 Band-pass filter

Spectral resolution of the LHR system is in general determined by the bandwidth of the used
band-pass filter, which may be easily changed to meet the spectral resolution requirements of
particular measurements. Bandwidth and the cut-off frequency of the filter can be adjusted
according to the noise density spectrum in the beat note, analyzed using a signal analyser
(N9000B, CXA X-Series, Keysight, Inc). Appropriate selection of their values can not only
provide the requested spectral resolution, but also effectively remove noises resulting from

the LO laser and electronic components. Various combinations of filters with different pass-
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bands, connected in cascade at the output of the photomixer, are applied to optimize the LHR

performance. The filers available for the present LHR development are listed in Table 2.3.

Table 2.3 Pass-bands of RF filters available for the present work.

Model BLP- | BLP- | BLP- | BBP- | BHP- | BBP- | BHP- | BHP- | BHP- | BHP-
300+ | 550+ | 800+ | 30+ 25+ 70+ | 150+ | 175+ | 200+ 250+

Pass-band | DC- DC- DC- 27- 27.5- 63- | 133- | 160- 185- 225-
(MHz) 270 520 720 33 800 77 270 270 270 270

2.1.5.2 RF amplifier

In the current RF receiver, 2 low-noise amplifiers (Model ZFL-500LN+, Mini-Circuits®),
with a gain of 24 dB and a pass-band of 0.1-500 MHz each (Fig. 2.14 left), are used for
amplification of the RF beat signal. Fig. 2.14 (right) shows the noise figure (NF) of the
selected amplifiers, which characterizes the degradation in SNR by the amplifier and is

expressed by :

SNR
NF =10lo IN 2.1
910( SNROUT] (2.1)

where SNRy and SNRoyr are the SNR at the input and output of the amplifier, respectively.
It would be preferred to select an amplifier with a higher gain, a pass-band covering the

bandwidth of the RF signal, and a NF as low as possible.

Noise Figure @ 15V
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Figure 2.14 left: RF amplifier (ZFL-500LN+); right: Noise Figure vs. frequency.

2.1.5.3 Square law detector

In order to rectify the RF beat signal, a square law detector is used, which plays a role of
envelope detection. The filtered and amplified RF beat signal is passed to a Schottky diode

(Model 8472B, Keysight Inc.), as called square law detector because its output is proportional
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to the square of the amplitude of the input beat signal (c.f. Fig. 2.15 lower, left). The used
square law detector is a low-barrier Schottky diode (LBSD) specially fabricated with low

origin resistance and low junction capacitance to cover DC to 18 GHz frequency range (Fig.

2.15 upper).
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Figure 2.15 upper: Keysight 8472B schottky diode; lower: typical detector's square-law response (left) and
diode V/I characteristics (right).

LBSD is widely used for continuous-wave or pulsed power detection and frequency
response test of microwave components. This diode detector does not require a DC bias,
making it very easy for use. It also offers very good ruggedness and burnout protection, easy
for integration with other circuit elements to minimize stray reactance and optimize
broadband performance. In the square-law region (Fig. 2.15 lower, left), the diode detector
typically operates within 0.5 dB of square-law from the tangential signal sensitivity level up
to -18 dBm. Fig. 2.15 lower (right) shows the characteristic transmission curves of a typical
Schottky diode detector and a LBSD. As can be seen, the LBSD has a higher voltage
transmission coefficient, i.e. higher sensitivity. LBSD provides also improved broadband
flatness and smaller standing wave ratio (SWR) over point-contact Schottky diode.

Two commercially available LBSDs (low-barrier Schottky diode Keysight 8472B and
zero-bias Schottky diode Herotek DHMO020BB) are compared and their specifications are
summarized in Table 2.4. The Keysight 8472B exhibits better performance, in terms of
broader frequency range, smaller frequency response, smaller SWR (i.e. smaller uncertainty

of power measurement) and smaller noise, except from its smaller low-level sensitivity.
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Table 2.4 Specifications of Keysight 8472B and Herotek DHMO020BB schottky diodes.

Model Frequency Frequency Low-level Noise Maximum input SWR
range response sensitivity* power

Keysight 8472B 0-18 GHz 0.2 dB > 0.5 mV/pw <50 uv 200 mW 1.2

DHMO020BB 100 kHz-2 GHz 0.3 dB 1.0 mV/pwW <100 pVv 200 mW 1.3

* Note : Schottky diodes are designed to rectify very low levels of RF power to produce a DC output voltage
proportional to the RF power. Therefore, the sensitivity of Schottky diodes is usually defined as low level
sensitivity [9].

2.1 6 Lock-in amplifier

In order to improve the SNR of the LHR signal, lock-in amplifier is usually used. The key
specifications of the used analog lock-in amplifier (Model 5110, AMETEK, Inc.) are listed in
Table 2.5.

In order to perform phase-sensitive LIA detection, sunlight is mechanically modulated
using a chopper. To avoid any truncation of sunlight by chopper slot aperture, sunlight beam
size should be smaller than the slot aperture of the chopper. In our designed LHR system, the
shaped sunlight beam size is about 12.5 mm. Therefore, a 10-slot blade with a widest aperture
of about 13 mm is usable. An optical chopper (Model MC1F10HP, Thorlabs, Inc.) is used. It
provides chopping frequencies ranging from 20 Hz to 1 kHz, with a frequency fluctuation of
20 ppm/°C. As presented in Section 2.4, the used photomixer is AC-coupled with a frequency
range of 1 kHz to 500 MHz, the chopper modulation frequency is set to 1 kHz to match the
pass-band of the photomixer.

Table 2.5 Specifications of lock-in amplifier (Model 5110, AMETEK, Inc.).

Frequency Voltage Minimum detection Input Time Dynamic Octave
response sensitivity sensitivity impedance constant reserve® roll-off
0.5 Hz-100 kHz | 100 nV-1V 100 nVv 1 MQ//30 pF | 1 ms-300 s 105 dB 6/12 dB

* Note : Dynamic reserve (the ratio by which input noise voltages may exceed the full-scale sensitivity value

without causing overload) : <105 dB (high reserve), < 85 dB (Normal), and <65 dB (high stability), respectively.
Time constant t (in [s]), related to the low-pass (LP) filter cut-off frequency in the LIA, is

a very critical parameter for the use of LIA, which impacts on noise suppression and

absorption line-shape. The cut-off frequency (f.) of the LP filter is driven by the LIA time
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constant T as f, ~1/2zr [10]. Longer time constant t can significantly filter out the noise,
but it also results in blueshift of the spectral line center (shifting to the frequency scan
direction / decrease in wavelength) and distort the line-shape (becoming broadened and
asymmetric) [10,11].

The frequency shift dv can be approximately expressed by [12] :

ov :d—vr:z)scr (2.2)
dt

where dv/dt=us (in [cm™/s]) is the frequency scanning speed, for frequency scan in
continuous mode, it is the ratio of the frequency scanning range Avgcan to the scanning period
T (in [s]) that is the reciprocal of the scanning frequency.

In order to avoid this unwanted effect, the LIA time constant t has to be appropriately
chosen with respect to the time AT, needed for scanning through the halfwidth Aviwym of
the absorption line profile, which depends upon the frequency scanning speed uvs.
Simulations of the impact of t have been performed in order to find optimal t with respect to
the experimentally applied frequency scanning speed. The effective transfer function of a

LIA can be equivalent to a LP filter [13], as shown in Figure 2.16.

o—MW+———o0

O * O

Figure 2.16 Effective transfer function of a LIA. R is the resistor; C is the capacitor.

According to Kirchhoff's Laws and the definition of capacitance :

_dvout(t)
dt

where R is the resistance; C is the capacitance. For simplicity, assuming that samples of the

Vin (t) 'Vout(t) =RC

(2.3)

input and output are taken at evenly spaced points in time separated by At, Eq. (2.3) can be

expressed in terms of V¢ at time k, Vi, at time k and V, at time k-1 :

Vo 1)V, )= R Yeul)Veulk 21 24)

Rearranging terms in Eq. (2.4) gives a recurrence relation :
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At RC
Vou(k)=V;, (k)- (mj +Vyu(k =1)- (mj (2.5)

The first term on the right side of Eq. (2.5) is the contribution from the input, and the
second term is the inertia from the previous output. This differential model of the LP filter
described in Eq. (2.5) provides a way to determine the output data based on the input and the
previous output values.

Based on Eq. (2.5), the effect of the LP filter is simulated by using
a pseudocode algorithm with the help of Matlab. In the simulation, Vi, is a Hitran simulation
spectrum of CH, around 1233.45 cm™, and Vo is the simulation outputs resulting from

different parameters : scanning period T, scanning speed v, scanning time AT, and time

constant t (see Table 2.6).

Table 2.6 Simulation of the effect of the LP filter on absorption line-shape with different <.

Halfwidth Aviwiw [cm™] 0.014 | 0.014 | 0.014 | 0.014 | 0.014 | 0.014 | 0.014 | 0.014 | 0.014 | 0.014

Scanning range Avse, [cm™] 1 1 1 1 1 1 1 1 1 1

Scanning period T [s] 0.3 0.5 1 15 2 25 3 5 10 30

Scanning speed vy, [cm™/s] 3.33 2 1 0.67 | 05 04 | 033] 0.2 0.1 | 0.033

= Aveean IT

Scanning time AT, [Ms] 417 | 6.95 | 13.9 | 20.85 | 27.8 | 34.75 | 41.7 | 69.5 | 139 | 417

0.1 0.1 0.1 0.1 0.1 0.3 0.3 0.3 1 1

03 | 03 | 03 0.3 0.3 1 1 1 3 3

T [ms] 1 1 1 1 1 3 3 3 10 10

10 10 10 10 10 30 30 30 100 | 100

30 30 30 30 30 - - - - 300

- | 100 | - - - - - - -
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Simulation results for frequency scan in continuous mode are shown in Fig. 2.17.
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Figure 2.17 Simulation output spectra from the LP filter using different parameters (see Table 2.6). Condition
of the Hitran simulation spectrum (input : black) : absorption line center: 1233.45 cm™, pressure: 250 mbar,

concentration: 0.1, and length of the absorption cell: 13 cm.

As can be seen from Fig. 2.17, when the scanning time ATscan (Aviawhm /Vsc) IS 9-23 times
of time constant t, the output spectrum (red) is consistent with the input spectrum (black).
The scanning time AT, (Table 2.6 in blue bold) as a function of the time constant t (Table
2.6 in red bold) is plotted (Fig. 2.18 square dot). The mathematical relationship between the
time constant t and the scanning time AT, IS obtained from a linear fit (r2:99.25), as shown
in Fig. 2.18 :

AT, = 2V g,

scan —

(2.6)

USC
Based on Eq. (2.6), with respect to the given frequency scanning speed in the continuous
mode and to the halfwidth of the spectrum to scan, the reasonable scanning time AT
should be approximately 14 times of the LIA time constant t in order to efficiently reduce the
noise without significant shift and distortion of the line-shape.

4004 = data
Linear fit
300
~
(2}
N~ 200 4
c
< g
o Equation y=a+bwx
|i) Weight No Weighting
Residual Sum 1043.48861
< 100 -1 of Squares
Pearson's r 0.99656
Adj. R-Square 0.99245
Value Standard Error
J Intercept 1.69483 3.38353
0 - J Slope 13.83824 0.36377
T T T T T T T
0 5 10 15 20 25 30
T (ms)

Figure 2.18 Plot of the time constant vs. ATy, associated with a linear fit.



In case of scanning laser frequency in point-by-point tuning mode, time-domain function

characteristic of the low-pass filter at time k could be considered as follows :
Vout(t):Vin(t)'(l_exp(_t/T» (27)

Plot of Vou(t) versus Vin(t) with time constant t is shown in Fig. 2.19. As can be seen,
when the time is 2.5 times time constant (t), Vou(t) is 91.8% of the input Viy(t), while when
the time is 6 times time constant (t), Vou(t) is 99.8% of the input Vin(t).

1.0 @3 0.951) (5% 0.993)
(255, 0918) ~(4¢, 6.082) " (6, 0.998)
0.8 -
£ 06
2
5
=]
> 0.4
0.2
0.0 , - I : I |
0 2 ) t/ ° 8 10
T

Figure 2.19 Plot of V(1) vs. Viy(t) in point-by-point frequency tuning mode.

Therefore, when tuning laser frequency in point-by-point mode, a time interval (i.e. the
time between two sampling points) longer than ~6 times of the LIA time constant t has to be

used to avoid deformation of line-shape of the spectrum [14,15].

2.2 LHR configurations

The devices involved in a LHR have been introduced and characterized in the previous
section, configurations of the PoC of mid-IR LHR being developed are discussed in this
section. Fig. 2.20 shows two configurations used in the present work for the development of a
LHR deployable for in situ ground-based measurements of vertical concentration profiles of
atmospheric trace gases : (1) using heliostat located on a roof terrace (University Paris V1) to
direct sunlight through a free-space telescope system to a developed LHR receiver which
allows us to test, characterize and improve its performance in the first stage of the LHR
development; (2) using an EKO sun-tracker to couple sunlight through a fiber to the LHR
receiver, which makes the LHR truly transportable for in situ measurement anywhere.
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Heliostat EKO sun-tracker

| |
Free space telescope Fiber coupling system

—»-| LHR receiver J

Figure 2.20 Scheme of the LHR configurations involved in the present work.

2.2.1 Sunlight collection using a free-space telescope cage system

In order to well couple the sunlight coming from the heliostat (c.f. Chapter 4.3.1), a Thorlabs

60 mm cage assembly system is used to realize a free-space telescope (Fig. 2.21).

Yy

; ((ﬂ 25 mm ° 12.5mm fg
E A P > T
5 \ ->J\j

Figure 2.21 upper: schematic of a free-space telescope cage system for coupling sunlight; lower: photo of the

developed telescope cage system. Lens 1 : f; = 150 mm, D;= 50 mm; Lens 2 : £,=75 mm, D,=25.4 mm.

For LHR measurement it is preferable to collect as much sunlight radiation as possible,
therefore, a mirror reflector with a large aperture diameter of 50 mm is used to well collect
sunlight from the heliostat (with a clear aperture of 78 mm) and then direct the collected
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sunlight to the LHR receiver. Whereas, if the sunlight beam size is too large, the focused
beam size as well as the focusing angle by a lens will exceed the size and FoV of the used
photomixer. In order to match the requirement for the size and FoV of the used photomixer
(c.f. Chapters 1.3.3 and 2.2.1.2), the incoming sunlight with a beam size of 25 mm for
heterodyne detection is chosen. A telescope in combination with an adjustable diaphragm
(LCP50S) is designed to constrain the sunlight beam size while keeping enough sunlight
power. The adjustable diaphragm located in front of the telescope is used as aperture stop for
the lens 1, and the amount of reflected sunlight admitted is controlled by the opening
diameter of the diaphragm.

Fig. 2.21 (upper) shows that the sunlight (considered as plane beam) is collected and size-
initialized by the mirror reflector to a beam size of 50 mm, then the collected sunlight is size-
controlled by the adjustable diaphragm to a beam size of 25 mm as required. The sunlight is
further shaped through a telescope consisted of two CaF; lenses for gathering sunlight power.
Iris 2, located at the focal point of the two CaF; lenses, is used as a field stop to eliminate the
stray light. The developed free-space telescope system based on a Thorlabs 60 mm cage
assembly system is shown in Fig. 2.21 (lower).

Sunlight beam emerging from lens 2 is directed to a beam splitter on which it is
superimposed with the LO beam. The free-space telescope system with a 50 mm diameter
mirror reflector collecting sunlight radiation at 8 um provided a FoV of ~0.2 mrad (0.011°)
for LHR system.

2.2.1.1 Sunlight beam contraction and laser beam expander

The LO beam (Gaussian beam) from the EC-QCL has a pre-collimated size of 2.5 mm that is
10 times smaller than the sunlight beam size of 25 mm, which results in a beam coupling
efficiency K of only 3.92% (c.f. Eq. (1.22)). In order to realize high-efficiency mixing of two
light beams, it is necessary to match the beam size of the collimated sunlight to that of the
collimated LO beam as close as possible (c.f. Chapter 1.3.1.1).

A 2xpeam contraction of sunlight to reduce the sunlight beam size by a factor of 2 and a
5x beam expander to enlarge LO beam size by a factor of 5 are designed, which can make
two light beams having the same beam size of about 12.5 mm, so as to ensure a maximum
beam coupling efficiency. A sunlight beam contraction and a laser beam expander systems
are designed using Kaplerian Telescopes. Kaplerian beam contraction/expander design

consideration can be expressed by the following equations :
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f

Magnification power = Tz (2.8)
1

Optical track length of the telescope= f, + f, (2.9)

where f1and f, are the focal length of two positive lenses, respectively. Design using two
positive lenses meets the magnification requirements (Eq. (2.8)) without exceeding the
designed overall system size (30 cm %30 cm determined by Eq. (2.9). As illustrated further,
these equations are first order equations, lens thickness and focus optimization might cause
slight deviation from these ideal values.

Lens clear aperture also needs to be taken into account during the selection, as the lens

size must be two times the incoming beam size in order to avoid any beam truncation.

(1) Design of a 2xKaplerian beam contraction and a 5% Kaplerian beam expander

A two-singlet Kaplerian telescope involving two lenses of f;=150 mm and f,=75 mm with a
reasonable system size less than 300 mm long is designed for the 2> beam contraction.
Regarding the 5> beam expander, a Kaplerian telescope system using two lens of f;=20 mm
and f,=100 mm is realized to meet the expander requirement.

It's worth noting, in a two singlet Kaplerian telescope system, wavefront quality would
increase with increasing optical track, i.e. a combination of a 20-mm and a 100-mm lens
would have a better wavefront quality than that of the combination of a 10-mm and a 50-mm
lens for the same magnification power. In addition, the quality of the wavefront is improved
by using a lens with a plane surface, such as plano-convex or plano-concave, rather than one
with curvature on both surfaces. With plano lenses and a Kaplerian layout, orienting the
convex surface towards the input beam tends to avoid the laser damage from the first plano
surface, even if it's anti-reflection coated.

As the maximum beam size is also limited by the clear aperture of the lens, a 50 mm
diameter plano-convex lens with 150 mm focal length, (lens 1, #89-169, Edmund Inc.) and a
25.4 mm diameter bi-convex lens with 75 mm focal length (lens 2, LB5247, Thorlabs Inc.)
are used to construct a 2xbeam contraction Keplerian telescope. A 12.7 mm diameter plano-
convex lens with 20 mm focal length (lens 3, LA5317, Thorlabs Inc.) and a 25.4 mm
diameter plano-convex lens with 100 mm focal length (lens 4, LA5817, Thorlabs Inc.) are

used to realize a 5> Kaplerian beam expander.
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(2) Design optimization using Zemax

Because of using stock lenses, the only variable involved in Zemax lens data editors for the

design is the distance between two lenses, i.e. the value of the thickness of surface 3 as shown

in Tables 2.7 and 2.8. Figs. 2.22 and 2.23 show the lens layout of the beam contraction and

expander in a confocal mode, respectively.

Lens 1 (f1:150, D2 :50)

Surf2 11 Surf3 Lens 2 (f1:75,D2:25.4)
_— Surf4 - Surf5
STO:25 e IMA :12.5
(Input beam) I'. ————————— (Output beam)
] 0'!, b " H
[ ] [ ] 0 " [ ]
[ ] | M | " [ ]
[ ] [ ] [ ] " [ ]
b e
:‘20':‘7’:‘ 282.2 ’::‘30):
[ ] [ ] [ ] " [ ]

Figure 2.22 Beam contraction layout (surf : surface of lens, f : focal length, D : lens diameter, STO : Stop

surface, IMA : Image surface). All dimensions are in [mm].

Table 2.7 Lens data editor of the beam contraction.

Surf:Type Comment Radius Thickneas Glass Semi-Diemeter

0BJ Standard Infinity Infinity 0.000000
STO* Standard Infinity| | ST0ui2: 20.000000 Input beam : 12.500000|T
2% Standard 9.300000| | Swf2Suf: 7.000000( | lensimaterial: CAFZ| |lensl; 25.000000|U
3% Standard Infinity| | SwSufd: 282.202272)V 25.000000|0
44 Standard 64_400000| | syfssufs: 4-500000( | lens2material: CRFZ| |lens2:  12.700000|U
g% Standard -§4.400000| | SwfsMA:  30.000000 12.700000|0
i Standard Infinity - Outputheam: €.250000{U
Note : Thickness indicates relative distance between two surfaces. The setting variables are radius, thickmess,

glass and semi-diameter, respectively. The optimal distance between two lenses for the beam contraction is

highlighted in a green frame.

Lens 3 (f1:20,D2:12.7)

Lens 4 (f1:100,D2:25.4)

Surf4 _ Surf5
sT0: 25 S”'fzms‘"ﬁ IMA : 12.5
(Input beam) ;’ (Output beam)
1
[ I | [} it [}
[ I | L] [ I ] L]
v 0 0143 390 ¢ ]
i N
5,0 144.1
Mo R L
[ I | L] [ ] L]

Figure 2.23 Beam expander layout (surf : surface of lens, f:

focal length, D : lens diameter, STO : Stop surface,

IMA : Image surface). All dimensions are in [mm].
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Table 2.8 Lens data editor of the beam expander.

Surf:Type Comment Radius Thickness Glass Semi-Diameter
0BJ Standard Infinity Infinity 0.000000
810+ Standard Infinity| |qogm:  5-000000 obean: 1250000
2 Standard 8.700000| |SlSifh  4.300000( | lmsimbil:  CAR2| (leml: 5,350000|U
3 Standard Infinicy| (Sl 144.1000000Y aasoooclu
g Standard 43.400000( |Gk 3.900000( | [ewlmatel:  CAEZ| |l): lE.?DOOOOIU
|  standaxa Infinity| (Wbl 10.000000 12.700000fu
0| Stendard Infinity - Nipthan: 62500000

Note : Thickness indicates relative distance between two surfaces. All setting variables are radius, thickmess,
glass and semi-diameter, respectively. The optimal distance between two lenses for the beam contraction is

highlighted in a green frame.

The distance between two lenses is optimized in two systems using Zemax in order to
obtain the same emerging beam size of 12.5 mm (c.f. IMA semi-diameter in Tables 2.8 and
2.9) in both systems. 25 mm and 2.5 mm (c.f. STO semi-diameter in Tables 2.8 and 2.9,
respectively) are set as input beam sizes with normal incident angle for sunlight beam
contraction and for laser beam expander.

After optimization of the distance between two lenses (so called the thickness of surface
3), optimal distance between two lenses for the beam contraction and the beam expander are

282.2 mm and 144.1 mm, respectively.

2.2.1.2 Coupling of sunlight and LO beams to the mixer

According to the last criteria mentioned in chapter 1.3.3, the focusing angle 20 (Fig. 2.24) of
the light beam on the detector should be less than the FoV of the detector (35°), and the
focused size 2wo would be less than the optical receiving area of the detector (0.5 mm x 0.5

mm). These parameters are both dependent upon the incoming sunlight beam size.

After optimization of beam expander and beam contraction with Zemax sequential mode,
two optimal designs are integrated into Zemax non-sequential mode to make a final
simulation and optimization of the entire system related with the optimal position. The lens
editor and system layout are shown in Table 2.9 and Fig. 2.24, respectively. The optimal

distance between the focusing lens and the photomixer detector is 52.3 mm.
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Table 2.9 The Lens editor.

Object Type Comment Material X position Y position Z position Tilt About X
(Vertical) (Horizontal)  (in degree)

2 Standard Lens Lens 3 : LA5317 CAF2 0.000000 120.000000 320.000000 180.000000
3 Standard Lens Lens 4 : LA5817 CAF2 0.000000 120.000000 175.926504 180.000000
4 Standard Lens Mirror1:PF10-03-M01  MIRROR  0.000000 120.000000 130.000000 45.000000
5 Standard Lens Mirror 2: PF10-03-M01  MIRROR  0.000000 60.000000 130.000000 135.000000
6 Standard Lens Mirror 3 : PF10-03-M01  MIRROR  0.000000 60.000000 340.000000  0.000000
| 7 SourceEllipse  Sunight 0000000 0000000  0.000000  0.000000 |
8 Standard Lens Lens 1: #89-169 CAF2 0.000000 0.000000 20.000000 0.000000
9 Standard Lens Lens 2 : LB5247 CAF2 0.000000 0.000000  302.200000 0.000000
10 Standard Lens Splitter. POB CAF2 0.000000 0.000000  340.000000 135.000000
11 Standard Lens Lens 5 : LA5370 CAF2 0.000000 0.000000 360.000000 0.000000

|12 DetectorRect VIO 0000000 412300000  0.000000 |

Note : Y and Z positions both indicate relative distance between two objects. The optimal distance between the
focusing lens and the photomixer detector is 52.3 mm, which is equal to the relative distance between Object 11
(360.0 mm) and Object 12 (412.3 mm).

459 i 144.1 >' : §,,0,,,,,:

Detector

plitter

a0 2822 g

Figure 2.24 Optical layout of a free-space coupling mid-IR LHR (All size parameters are in [mm]).

In order to make sure that the size and the focusing angle 26 of the beams emerging from
lens 5 are both smaller than the optical area (0.5 mm x 0.5 mm) and the FoV (35°) of the
VIGO photomixer, the size and the focusing angle 26 of the emerging beams are studied as a
function of the incident sunlight size. The results are shown in Figs. 2.25 and 2.26,
respectively. The emerging beam size decreases as the sunlight size decreases, and its
focusing angle decreases with the sunlight size. Meanwhile, the distance between two lenses
of the sunlight beam contraction as a function of the sunlight size is built, as shown in Fig.
2.27. It would be practical to adjust the distance between two lenses, given the sunlight size.
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Figure 2.25 Emerging beam size after lens 5 as a function of the sunlight size.
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Figure 2.26 Focusing angle of the emerging beam by lens 5 as a function of the sunlight size.
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Figure 2.27 Distance needed between two lenses (f1=150 mm and f2=75 mm) for the beam contraction as a

function of the sunlight size.
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However, in a heterodyne system, collecting more sunlight energy is highly desired for
sensitive remote sensing. Therefore, a trade-off between sunlight beam size and the emerging
beam size has to be made. An incident sunlight size of 25 mm is chosen in the present work,
the resulting emerging beam size and the focusing angle 26 after lens 5 are 0.16 mm and
10.1°, respectively, based on the simulation. They meet both the requirement of being smaller
than the VIGO photomixer's parameters mentioned above : detector size = 0.5 mm 0.5 mm
and FoV = 35°.

2.2.2 Sunlight collection using a fiber coupling system

2.2.2.1 Description of a fiber coupling system for sunlight collection

Mid-IR Fiber >
—_— (Length : 1.5m) :

Figure 2.28 Schematic of the fiber system for sunlight coupling.

A portable EKO sun-tracker is used for the development of a fully transportable LHR. A mid-
IR fiber is employed to couple solar radiation to the LHR receiver (Fig. 2.28). The mid-IR
fiber coupling system, installed on the sun-tracker, includes lens 1 (in CaF,, f1=100 mm,
D1=25.4 mm), associated with a Ge-filter to filter out radiation out of the spectral region of
interest to minimize shot noise resulting from the signal source. Sunlight is focused by lens 1
into a polycrystalline fiber (NA=0.3 corresponding to an acceptance half-angle 6 of 17.46°
that is bigger than the half focusing angle of 7.47° of lens 1). The beam emerging from the
fiber is collimated with lens 2 (in CaF,, f2=50 mm, D1=12.7 mm) and directed, in free-space,

toward a beam splitter on which it is superimposed with the LO beam.
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Figure 2.29 Schematic of a fully transportable LHR involving a mid-IR fiber coupling sunlight system.

The schematic of a full transportable LHR prototype involving a mid-IR fiber coupling
sunlight system is shown in Fig.2.29. The sunlight is coupled to the LHR through the fiber
coupling system as shown in Fig.2.28. The emerging sunlight from lens 2 is first amplitude
modulated with a chopper, and then directed to a beam splitter. The transmitted light is
overlapped with the LO beam from the EC-QCL. The mixed beams are focused and injected
into the VIGO photomixer, the output signal from the VIGO photomixer is processed by the
RF receiver.

The fiber used for sunlight-coupling (Fig. 2.30 left) is a polycrystalline infrared (PIR)
fiber (PIR900/1000-150-TI/SMA-TI/SMA-PE32, art photonics Inc.). The PIR-fiber is non-
toxic, very flexible, transparent across a broad spectral range of 3-18 pum with high
transmittance and a large NA (0.3), as shown in Fig. 2.30 (right), suitable for laser power of
up to 40 W (CW), and capable of operating over a temperature range of -50-140 °C without
aging effect.

103



Wavelength (um)
6

14 12 10 8
70 7 T T T T 70

Transmission (%)
(%) uoissiwsuel|

T T T
650 1300 1950 2600 3250
Wavenumber (cm™)

Figure 2.30 left: polycrystalline IR-fiber coupling system; right: transmission spectra of the PIR fiber.

Table 2.10 Specifications of the PIR fiber.

Fiber Specification
Core diameter [jum] 860 £20
Minimum bend radius [mm] 150
Transmission Range [pm] 3-18
Core material AgClo s Bros
Cladding material AgClos0Broso
Core refractive index 2.15
Effective NA 0.30 +0.03
Operating temperature [°C] -50< T <140
Maximum transmitted Power [W] 40 (CW)
Length [m] 1.5 +0.05

2.2.2.2 Test of the fiber coupling and sun-tracking performance

In order to test the coupling ability of the polycrystalline IR-fiber as well as to test the sun-
tracker performance, measurement of the sunlight radiation was carried out over 5 hours on
the roof of the IRENE (Innovation Recherche en Environnement) platform in Dunkerque
(51.05°N/2.34°E).
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In this test, two operation modes of the EKO sun-tracker were tested to obtain
information on latitude, longitude, date and time. One is "GPS mode", which can
automatically achieve such geographical location and time information through a built-in
GPS sensor. The other is "manual mode", in which such information should be set manually

via a specific software “STRconfig”, as shown in Fig. 2.31.

&4 STRConfig Ver3.3.4 X

" Manual Mode (¢ GPS Mode
YYYY MM DD HH MM SS

UTG o fo o [o o fo— | UTC  [3019/03/08 08:36:05

(E/W)123.45'67"—>(+/-)123.7686

Loneitude 0 Loneitude | 99678
(N/S)1234'56" ->(+/-)125822
Latitude 0 Latitude | 510353
Read | write | GPS Status [GoOD
Event Log | Close |
&4 STRConfig Ver3.3.4 %
{» Manual Mode " GPS Mode

YYYY MM DD HH MM 55
UTo  [a079 [0z [os [08 [7 o5 | | UTC |

(E/W) 128 45'67" ->(+/-)128 7686

Longitude 23678 Longitude |
(N/S)12.34'66" ->{+/-)125822
Latitude 51.0353] Latitude |

Read | Write | GPS Status I—

Event Log | Close |

Figure 2.31 “STRConfig” Setting screen : GPS mode (upper) and manual mode (lower).

Fig. 2.32 shows the sunlight radiation measured from 11:40 to 16:40 (blue curve) in
comparison with the global solar radiation data (black curve) recorded at the same date and
the same place with a "Davis Vantage Pro2". Global solar radiation represents the total
amount of solar energy received at the Earth’s surface (W/m?). This can account for 50%,
43%, and 7% of the visible (0.4-0.76 um), the infrared (>0.76 um), and the ultraviolet (<0.4
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um) spectral regions, respectively. As can be seen, the trends of the two curves are roughly
the same. In addition, the measured mid-IR solar radiation is around 38% of the global solar
radiation, the difference from empirical value (43%) is mainly resulted from the PIR-fiber
transmission of about 54% and optical coupling of the sunlight to the fiber. This experiment
confirms the coupling ability of the polycrystalline IR-fiber and the tracking performance of
the sun-tracker.
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Figure 2.32 Measured sunlight intensities (blue curve) in comparison with a reference from a "Davis Vantage
Pro2" weather station (black curve). Note : conversion from the measured intensity (in [V]) to the radiation (in

[W/m?]) is given in Appendix 3.

Conclusion

In this chapter, instrumental considerations and device specifications for design of a LHR,
such as sun-tracker, blackbody, LO laser, photomixer, RF receiver (amplifier, band-pass filter,
and square law detector), and LIA are introduced. Two sunlight collection configurations
including free-space telescope cage system adapted to a heliostat and mid-IR fiber coupling
system adapted to an EKO sun-tracker are considered and designed. The polycrystalline mid-
IR fiber coupling sunlight system is tested and evaluated, which confirms the fiber coupling
ability and the tracking performance of the sun-tracker.

Two LHR prototypes have been developed during this PhD works for field
measurements : (1) a proof of concept mid-IR LHR involving a free-space cage system for
sunlight coupling, and (2) a fully transportable LHR involving a polycrystalline IR-fiber

coupling sunlight system.
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Chapter 3 Performance evaluation of the local oscillator being used

Objective

This chapter will present the evaluation of the performance of an external-cavity quantum
cascade laser (EC-QCL) that will be used as a local oscillator (LO) in our mid-IR LHR
system. The performance was evaluated, in terms of laser emission line width, single mode
wavelength tunability, stabilization of the LO source and wavelength-dependent baseline, via
real-time monitoring of nitrous oxide (N.O) produced in a chemical catalysis process. This
work was carried out in collaboration with the « Unitéde Chimie Environnementale et
Interactions sur le vivant (UCEIV) >»>of the ULCO.

In the context of climate change mitigation, reuse of carbon dioxide (CO,) represents a great
interest for applications in chemical industry and power generation. For this purpose, CO;
must be purified. Combustion processes lead to high amounts of CO, but still with impurities
and also accompanied by toxic gases (mainly NO and CO). A catalytic reduction process of
NO (to N,) while oxidizing CO into CO, is a promising method to purify the CO; in
combustion processes. However, nitrous oxide (N2O), having a global warming potential of
300 times greater than CO,, may be a by-product from this process. It is therefore necessary

to optimize the chemical reaction conditions to minimize N,O production.

3.1 Introduction

The characteristics of a laser source used as a LO largely determine the performance of a
LHR instrument. The laser source should primarily fulfill the following requirements :
narrow laser emission line width (for high spectral resolution and hence high spatial
resolution in LHR measurements), single-mode emission and mode-hop free wavelength
tunability (high precision spectroscopic measurement), as well as a wavelength-dependent
baseline as smooth as possible (for high quality spectral normalization). Performance of the
external-cavity quantum cascade laser (EC-QCL) being used as a LO was evaluated via the
concentration measurement of trace gas N,O produced during a chemical catalysis process of
carbon dioxide (CO,) purification.

COs, is responsible for 55-60% of anthropogenic radiative forcing on global warming. To
reduce CO; injected into the atmosphere, reuse of CO, is a promising and alternative solution,
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because CO, is a valuable industrial gas for chemical industrial applications and power
generation [1]. For this purpose, CO, should be as pure as possible. Purification of CO, can
be performed through the oxyfuel-combustion which allows one to obtain a rich CO, stream
with the highest purity (80%-98%) [2]. In an oxyfuel system, the combustion flow consists of
0O, and CO,. This Process emits also water vapor (H,O), unburned components such as
carbon monoxide (CO) generated by incomplete combustion and nitrogen monoxide (NO)
due to the oxidation of nitrogen (N>) included in the fuel. Purifying CO; in an exhaust flow
from the oxyfuel-combustion can be realized through the reduction of NO to N, by oxidizing
CO into CO, over catalysts [2], as shown in Eq. (3.1) below [4] :

2NO +2 CO — 2 CO; + N3 (expected process) (3.1)

However, products from the chemical process above is, like any chemical reaction,
depending upon the reaction conditions (quantity of NO and CO, temperature, pressure,
presence of oxygen and water vapor or not), kind of catalyst (active phase, metal dispersion,
support type) and synthesis method, etc. NoO may be a by-product from the above NO-CO

reaction [3] :
6 NO +4 CO — 4 CO;, + 2 N, + N,O (unexpected process) (3.2

As N,O is a very powerful greenhouse gas with a global warming potential of 300 times
greater than CO,, it is therefore necessary to optimize the catalytic reaction conditions to

minimize the N,O production.

In the present work, tunable diode laser absorption spectroscopy (TDLAS) technique is

applied to in situ monitor the production of N,O during the catalytic reaction of NO with CO.

3.2 Experimental details
3.2.1 N,O monitoring by long optical path absorption spectroscopy

The experimental setup is shown in Fig. 3.1. A continuous-wave EC-QCL (TLS-41000-MHF,
Daylight solutions Inc.), being used as a LO in our mid-LHR experiment, is coupled to a
modified-Herriot multi-pass cell. The EC-QCL frequency is scanned across an appropriate
N0 absorption line to determine its concentration-dependent integrated absorbance by fitting
the experimental absorption spectrum to a Voigt profile model. The fine frequency tuning of
the EC-QCL is realized by applying a 50 Hz sine-wave signal (with an amplitude of +3.0 Vpp
and an offset of +1.6 Vpc) from a function generator to the PZT (Piezoelectric ceramic
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transducer) element of the external cavity of the EC-QCL. As shown in Fig. 3.1 (left), 10%
reflected laser beam is sent to a Fabry-Perot etalon for laser frequency calibration, and 90%
transmitted laser beam is directed into the multi-pass cell to probe long optical path
absorption of N,O.
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Figure 3.1 Experimental setup used for N,O monitoring of a chemical catalysis reaction of NO with CO. BS:
beam splitter; GC: gas chromatograph; MFC 1, 2, 3, 4, 5, 6: mass flow controllers; Th 1: thermocouple in the
oven, Th 2: thermocouple in the blank, Th 3: thermocouple in the reactor, Th 4: thermocouple in the saturator;
Prs: pressure sensor; VIGO: thermoelectrically cooled infrared photovoltaic detector; DAQ: data acquisition

card.

The used 3.2 L modified-Herriot multi-pass cell (New Focus, Model 5612) is formed with
two high reflectivity mirrors (separated by ~55 cm). Laser light enters and exits the multi-
pass cell through a common hole equipped with a wedged coupling window at the front of the
cell. In the present work, 90 passes were made between the mirrors resulting in an effective
optical path length of 50 m. The exiting laser beam from the multi-pass cell is focused into a
thermoelectrically cooled infrared photovoltaic detector (PVI-4TE-10.6, VIGO System S.A).
A National Instruments data acquisition card (PCI 6251, NI Inc.), controlled with a
LabVIEW program, is used for data sampling and acquisition. The recorded data is
digitalized and transferred to a laptop for further data processing to retrieve N,O

concentration.
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3.2.2 Selection of a N,O absorption line for sensitive and selective concentration

measurement

High spectral resolution is required in spectroscopic measurement for discrimination of the
target gas absorption from absorptions of other interfering species. Careful selection of
appropriate absorption line(s) well isolated from other interference absorptions was
performed. Fig. 3.2 shows a simulation spectrum of the selected N,O absorption line
(centered at 1261.0598 cm™ with a line intensity of 9.677E-20 cm/molecule), based on the
HITRAN database [5]. The simulation was calculated using 300 ppbv (parts per billion by
volume) N,O in a 50-m long absorption cell at 120 mbar. Meanwhile, potential interferences
from 450 ppmv (parts per million by volume) CO, and 1% H,O vapor were taken into
account in the simulation. As can be seen in Fig. 3.2, this selected line is well isolated and
spectral interference free from CO, and H,O. It is a good tradeoff between the required
sensitivity and selectivity for quantitative measurement of N,O by direct absorption

spectroscopy in a 50-m long optical path at 120 mbar.
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Figure 3.2 Simulation spectra of 300 ppbv N,O, 1% H,0, and 450 ppmv CO, absorptions in a multi-pass cell
(Ler=50 m) at 120 mbar.

3.2.3 Frequency metrology and N,O absorption spectrum retrieval

The N0 absorption signal was recorded versus the data point number when scanning the EC-
QCL frequency around 1261.0598 cm™ using PZT scan mode. For the conversion of this
absorption signal (a) to an absorption spectrum (d) (Fig. 3.3), interference fringes from a
home-made Fabry-Perot etalon with a free spectral range (FSR) of 1 GHz (~0.0333 cm™)

were recorded (b) and used to determine the relationship between the data point number and
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the corresponding frequency in wavenumber (c). The absolute frequency was determined
with the help of the N,O absorption frequency provided by the HITRAN database [5].

2 3
0.8 (a) Lo %
= 074 L2 2
8 064 4 o
Le T
g 0.5 Ol 8 2
$ 0.4 F-10 §
- - - 3
£ 03 L :11121 <
g 0.2 L6 5
@ 0.1 (© f183
T T T T T T -20
0 2000 4000 6000 8000 10000

Data point number

0.16 (d)
0.12 4
0.08

0.04 4

Absorbance

0.00 —

T T T T T T T T T
1261.000 1261.025 1261.050 1261.075 1261.100 1261.125

Wavenumber (cm™)

Figure 3.3 Absorption signal of 5 ppmv N,O at 120 mbar (a) and its absorption spectrum (d), obtained using
the relative wavenumber calibration curve (c) which allows one to convert “data point number” into

“wavenumber” through the FSR of the used etalon (b).

3.2.4 N,O concentration retrieval

N20O concentration can be determined based on the Beer-Lambert law using known spectral
parameters (such as absorption frequency, line intensity, etc.). In the present work, the N,O
concentration was deduced from a calibration curve of concentrations vs. integrated
absorbances (over the scanned spectral range [6]). For this purpose, N,O samples with
different standard concentrations were produced using a high-precision gas dilutor (Model
PPA 2000M, Calibrage Inc.).

A N,O cylinder with a standard concentration of 1000 ppmv (Cinitiai) With different flow
rates D; was mixed with N, gas (at a fixed flow rate D) in the gas dilutor. The concentration
of the diluted N,O (Ciinal) Was calculated using the following equations :

C..=C...IK (3.3)

final — “initial

K =(D,+D,)/D, (3:4)

where K is the dilution factor, and D, is fixed at a constant rate of 2086 ml/min. Different
N20 concentrations were produced at 0.24, 0.51, 0.99, 1.46, 2.01, 2.48, 3.37 and 5.03 ppmv
for calibration in the present work. The relevant settings and the obtained final concentrations

are presented in Table 3.1.
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Table 3.1 Relevant settings and the diluted concentration.

D1 [ml/min] K Cinitiat [PPMV] Cinat [PPbV]
0.50 4173.0 1000 239.64
1.06 1968.9 1000 507.89
2.06 1013.6 1000 986.56
3.06 682.7 1000 1464.77
4.20 497.7 1000 2009.38
5.16 405.3 1000 2467.53
7.06 296.5 1000 3373.05
10.55 198.7 1000 5032.08

The multi-pass cell was initially rinsed with pure nitrogen (N,) before the measurements
of N,O. The ambient N,O absorption spectra centered at 1261.0598 cm™ and N,O at different
concentrations produced by dilution were recorded at 120 mbar, as shown in Fig. 3.4 (a). The
relationship between the integrated absorbance A, obtained from nonlinear least-square fitting
of Voigt profile and the corresponding N,O concentration (Fig. 3.4 (b)) was obtained from a
linear fit (r>=99.6) which allowed us to express N,O concentration from the measured A,
through this calibration slope k :

_A (3.5)

N,O — K
where k = 7.7656E-4.

Based on this calibration formula, the ambient N,O concentration was determined to be
about 3257 ppbv. The total relative uncertainty of about 4% is mainly attributed to the
uncertainties in the linear fit (Ak/k <2 %) and in the Voigt profile fitting (AA/A,; <2 %).
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Figure 3.4 (@) N,O absorption spectra at different concentrations at 120 mbar; (b) Plot of the integrated
absorbance vs. concentration, associated with a linear fit. Error bars are one standard deviation of the integrated

absorbance from \Voigt profile fit.

3.2.5 Laser line width evaluation

The line width of the EC-QCL emission being used as a LO plays a key role in the spectral
resolution of the LHR. This parameter was evaluated in the present work using spectroscopic
method. As shown in Fig. 3.5, Voigt profile was fitted to an experimental absorption line of
6.13 ppm N,O at a pressure of 120 mbar. In Voigt fit, the line width w_ is resulted from
pressure induced collision broadening (Lorentzian line width, Av,), while the line width Awg
is the convolution of the Gaussian line width (Avg) due to Doppler effect and the line
broadening related to instrument function (laser line width, Av_a). The Voigt line width (Avy)

can be expressed as follows [11] :

Av, =0.5346Aw, +(0.2166Aw,” + Awg?)!' = 0.5346A v, +4/0.2166Av, > +(AV2 + AVZ, ) (3.6)

where the Lorentz line width, Av. (FWHM, for Full Width at Half Maximum) was calculated
to be 0.017035 cm™ [5] at 120 mbar. The Gaussian line width, Avg of 0.00236 cm™ was
calculated from Eq. (3.7) [9] :

Avg =7.16-107 -vo\/g (3.7)

with vo the absorption center frequency (1261.0598 cm™), T the working temperature (300 K),

and M the molecular mass (44 g/mole).

Based on the fitted Awg value of 0.00238 cm™, the laser line width Av, A can be given

approximately by [10] :
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AV, = /AWE — AVE (3.8)

A laser line width (FWHM) of 9.2 MHz (0.000307 cm™) was experimentally deduced,
which corresponds to a laser resolving power (viaser/Avia) of about 10°. This result
demonstrates that the EC-QCL is very suitable for use as a LO in the LHR system being
developed and it could ensure the high spectral resolution requirement (Avpa < conventional

electronic filter bandwidth ranging from ~10 MHz to some tens of MHz).

— Absorption spectrum of 6.13 ppm N,O

- Vogit profile fitting
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Figure 3.5 Absorption spectrum of 6.13 ppmv N,O (black curve) at 120 mbar, accompanied with a Voigt

profile fit (red curve).

3.2.6 Measurement precision and limit of detection (LoD)

Stability of an analytical instrument is an important parameter that affects the detection
sensitivity and the measurement precision. Signal averaging is usually used to improve the
detection sensitivity and the measurement precision. However, due to the instability of the
instrument (such as changes in light intensity, laser wavelength shifts and detector dark noise
drifts, temperature drifts, moving fringes, changes in background spectra, etc.), any actual
system is only stable for a limited time, i.e. an optimal averaging time should be determined
via an Allan variance analysis [7] in order to determine the max. averaging number, i.e. the
best measurement precision.

Time series measurements of 1 ppmv N,O absorption spectra were carried out for the
Allan variance analysis to determine the optimal averaging time. 9000 consecutive direct
absorption spectra of N,O were experimentally recorded, with an acquisition time of 0.2 s per
spectrum. Fig. 3.6 plots an Allan deviation as a function of the averaging time [8] based on
the time series measurements of N,O absorption spectra. The decaying slope (red dashed line)

shows the efficient white noise reduction by signal averaging within a maximum averaging
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time (system stability time) of about 236 s, which is mainly limited by the temperature and
current stability of the QCL controller, but also constrained by other factors : stability of the
optical setup (optical cell), or of the injected gas mixture. The corresponding measurement
precision is 5.2 ppbv, leading to a relative uncertainty in measurement precision of 0.5%.
After 236 s, the Allan deviation increases (blue dashed line), i.e. the instabilities of the
instrumental system nevertheless counterbalances the noise reduction given by time-
consuming average.

It's worth noting that this max. stabilization time of 236 s evinces also that the stability
time of the used EC-QCL is at least as good as 236 s, which is very suitable for acquisition of
LHR spectra (~ minute per spectrum).

16

14 F
12
10F

8f

Allan deviation (ppbv)

Time (s)

Figure 3.6 Allan deviation plot.

In the present work on monitoring a chemical reaction, a measurement precision of 10.8
ppbv (corresponding to a relative precision uncertainty of 1.1%) in 12 s was used to real-time
track N,O production.

Fig. 3.7 shows an experimental absorption spectrum of N,O (Av.=240 in 12 s) in air at a
pressure of 120 mbar, which resulted in a N,O concentration of 325 ppbv. Based on the
signal-to-noise ratio (SNR~10) deduced from the residual of the Voigt profile fit to the
experimental absorption spectrum of ambient N;O, a 1o (SNR=1) limit of detection was
determined to be 32.5 ppbv in 12 s.
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Figure 3.7 upper panel: absorption spectrum of N,O in air (black curve) at 120 mbar, accompanied with a Voigt

profile fit (red curve); lower panel: fit residual.

3.3 Experimental results and discussions

Fig. 3.8 (left) shows the experimental setup of the studied catalytic reaction. Reactant gases
composed of 20% CO,, 10% O,, 0.5% CO, 0.02% NO and He (eluent gas) with a total flow
rate of 200 mL/min. The products of CO, and N, from the catalytic reduction of NO by
oxidizing CO were analyzed by an on-line gas chromatography (TranceGC 1300 XXL,
Global Analyzer Solutions G.A.S, Inc.), NO was analyzed with a NO analyzer (Xentra 4900C,
Servomex Inc.), NO, was measured with the same NO analyzer after conversion of NO; to
NO by a converter BUNOXx (Bihler Technologies Inc.), while N,O was monitored by the EC-

QCL-based laser sensor as discussed above (Fig. 3.8 right).

Figure 3.8 left: experiment of catalytic reaction of NO with CO to purify CO, in exhaust gas flow from oxyfuel-
combustion; right: EC-QCL-based sensor of N,O.
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3.3.1 N,O evolution in catalytic reaction of NO with CO

The catalytic reaction of NO with CO over a Pt/SiO, catalyst in the temperature range of 50-
500 °C was performed, N,O production was real-time monitored and analyzed using the
developed EC-QCL sensor.

A typical N,O absorption spectrum recorded during the process of NO reaction with CO
over a Pt/SiO, catalyst at 190 °C is shown in Fig. 3.9. It was recorded at a pressure of 120
mbar in the multi-pass cell with 240 spectral averages in 12 s.
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Figure 3.9 Absorption spectrum of 6.13 ppmv N,O during a catalytic reaction of NO with CO over a Pt/SiO,
catalyst at 190 °C at 120 mbar.

Fig. 3.10 shows time series measurement (with a step of 1°C from 50 to 500 °C) of N,O
concentrations produced during the NO-CO reaction over the Pt/SiO, catalyst. A max.

concentration of ~6.1 ppmv N,O was observed at 190 °C.

190 °C, 6.13143 ppm Catalyst : Pt/SiO,

N20O concentration (ppm)
w
1

.

T T T T T T T T
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Figure 3.10 Time series measurement of N,O concentration during a NO-CO reaction over a Pt/SiO, catalyst

VS. temperature.
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Based on the real-time monitoring of N,O concentration, optimal catalytic reaction

condition for zero N,O production was experimentally determined [12].

Conclusion

In this chapter, the performance of an EC-QCL, that will be used as a LO in the LHR system,
was evaluated in terms of laser emission line width, single-mode wavelength tunability,
stabilization of the LO source and wavelength-dependent baseline. Based on the analysis of
the measured N,O absorption spectra, the EC-QCL emission line width of 9.2 MHz was
deduced. A stable operation time of the LO as good as 236 s was estimated using Allan
variance analysis, it is suitable for LHR measurement of molecular absorption spectrum. The
EC-QCL is mode-hop free continuously tunable with a smooth baseline. In fact, in a LHR
instrument, spectral baseline is mainly determined by the laser (LO) power variation when
scanning the laser wavelength across the target molecular absorption feature. It's thus highly
desirable to have a laser power induced spectral baseline as smooth as possible in order to

obtain high quality retrieval of atmospheric LHR spectrum.

This work allowed us not only to evaluate the spectral performance of the EC-QCL for use as
a LO in our mid-IR LHR instrument being developed, but also to demonstrate the potential of
the EC-QCL for in-situ, real time and direct monitoring (without any sample preparation) of

chemical catalysis process
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Chapter 4 Development of a proof of concept mid-IR LHR

Objective

In this Chapter, the development of a proof of concept (PoC) mid-IR LHR is presented. The
developed LHR was tested on the QualAir platform of the universitéPierre et Marie Curie
(UPMC), in collaboration with the «Laboratoire d’Etudes du Rayonnement et de la Matiére
en Astrophysique et Atmosphé&es (LERMA) > of the UPMC (Dr. Yao TE). Ground-based

measurements of tropospheric CH, in the atmospheric column were performed.

4.1 A PoC LHR operating at 8 m

The developed PoC LHR is schematically shown in Fig. 4.1. A typical LHR receiver includes
a sunlight collection system associated with a sun-tracker, a local oscillator, a photomixer, a
RF receiver, a signal modulation and demodulation module, as well as a frequency metrology
module (in our case direct absorption of the target molecule in a 12.5-cm long single-pass
reference cell was used). To characterize and optimize the performance of the developed
PoC LHR receiver, a stable blackbody source was used as sunlight. Heterodyne
measurements of CH, absorption spectra were performed in a 12.5-cm single-pass cell in

laboratory.
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N\, Mirror
N
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“Sunlight” ﬂ : | : Photomixer
\‘L_ 1 RF receiver
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"""""""""""""""""""" . ' ) Detector |
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Figure 4.1 upper: schematic of the developed LHR receiver. BS: Beam splitter; OAPM: off axis parabolic
mirror; photomixer: VIGO detector (Model PVI-4TE-10.6, VIGO System S.A.); BP Filter: band-pass filter (27-
33MHz, Model 15542, Mini-Circuits®); LIA: lock-in amplifier; lower: picture of the developed 8-um mid-IR
LHR in the present work. Orange dot line : blackbody beam path; red dot line : He-Ne laser beam path; blue dot
line : LO (EC-QCL) beam path; green dot line : combined LO-BB beams to photomixer.

Radiation from a blackbody (BB, MODELS 67030, Newport Inc.) is collected and
collimated with off-axis parabolic mirror (OAPM) 1 (f1 = 120 mm) and OAPM 2 (f2 = 75
mm). The BB beam is filtered by an optical filter (in Germanium in order to limit the
bandwidth of the incident radiation and let only the transmission of the radiation at
wavelengths longer than 7 pm and shorter than 12 in our case to minimize detected source
shot noise [1]). Amplitude modulation of the injected BB beam is made at 1 kHz using a
chopper located at the real focal point of OAPM2. It is then directed to a 5%R / 95%T beam
splitter (in CaF,). The BB beam will be superimposed with the LO beam from the EC-QCL
(TLS-41000-MHF, Daylight solutions Inc.) which is size-expanded by two OAPMs (f3 =
12.7 mm and f4 = 38.1 mm), intensity-controlled and polarization-adjusted using a wideband
IR polarizer (2 pm-12 pm, PGC-5, Innpho. Inc.). The combined beams are focused by
OAPM 5 (f5 = 12.7 mm) onto a VIGO photomixer (PVI-4TE-10.6, VIGO System S.A.).

The beat note signal at |o-w._ | in the radio frequency (RF) domain, generated from the
photomixer, enters the RF receiver through a 27-33 MHz band-pass filter (Model 15542,
Mini-Circuits®) followed by 2-stage low noise amplifiers (Model ZFL-500LN+, Mini-
Circuits®) with a gain of 24 dB each. After that, the amplified beat signal is connected to a
square-law Schottky diode (Model 8472B, Keysight Inc.) for power measurement of the RF
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signal that is proportional to the square of the input beat signal amplitude. The output signal
from the square law detector is demodulated with a lock-in amplifier (LIA, Model 5110,
AMETEK Inc.). A National Instruments data acquisition card (PCI 6251, NI Inc.) is used to
digitalize the output signal from the LIA via a LabVIEW program. The data is then

transferred to a laptop for further data processing.

4.2 LHR performance characterization
4.2.1 Beat signal generation

Beat signal was generated by mixing the blackbody (67030, Newport Inc.) radiation and the
EC-QCL (LO) light (the frequency was set at a non-absorption position to avoid any air
absorption within the optical path). Time series measurements of the RF signal from the lock-
in amplifier were carried out. During the experimental measurements, the effective LO
power-induced amplitude measured with the photomixer was 2.5 V. Time constant of the

lock-in amplifier was set at 1 s and using LP filters (12 dB/oct).

4.2.1.1 SNR of the beating signal

SNR of the generated beat signal was experimentally determined to investigate the quality of
the generated beat signal. Based on the measurement of a beat note amplitude of 79.82 LV
and a noise level (1 standard deviation) of 0.67V in the beat note (Fig. 4.2), a SNR of ~119

was deduced for the generated beat signal.
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Figure 4.2 Beat note signal measured at the output of the LIA.

Blackbody temperature was set at Tgg = 1000°C. Throughout the optical system up to the
photomixer, overall optical coupling efficiency (k) of the blackbody radiation in the free-
space LHR receiver is 0.82, and it is mainly resulted from a silver-plated OAPM (assumed
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reflectance ~0.97), two gold-plated OPAMs (assumed reflectance ~0.98), an optical filter
(transmission ~0.975), a beam splitter (transmission ~0.95) and a BaF, wedged window in
front of the photomixer (transmission ~0.95). The quantum efficiency of the photomixer n is
0.5 at 8 pm (provided by the manufacturer). The LHR double side bandwidth is 12 MHz and
the time constant of the LIA is 1 s. Under these conditions, at fixed LO frequency (1242.3
cm * or 3.73x10™ Hz), the calculated ideal SNR (c.f. Eq. 1.57 in Chapter 1.5) is :

SNR.  —_ TKNDPT VBz

ideal — hl)
exp| — |—-1
Xp(ij

~ 356 (4.1)

This value is different from the experimentally deduced value of ~119. The reason for this

kind of difference will be discussed in Chapter 5.1.2.1.

4.2.1.2 Beating level vs. the LO power

Beat signal level as a function of the LO (EC-QCL) power was experimentally investigated
(note : different experimental conditions from Section 4.2.1.1). The EC-QCL power
intensities were monitored at the output of the photomixer and the beating levels were
deduced from the difference of the LIA outputs with and without the injection of LO light.
Beat signal amplitude versus LO signal level (in [mV]) is plotted in Fig. 4.3. As can be seen,
the beat note increases linearly with the LO power, as predicted by Eq. (1.12) in Chapter
1.2.3. Heterodyning conversion efficiency can be deduced from the slope of the linear fit :

Pher (in mV) = 0.09 * P o (in [V]), i.e. a heterodyning conversion efficiency of ~10™,

® exp. data
= |inear fit
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Figure 4.3 Beat note amplitude vs. LO power.
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4.2.2 Laser heterodyne spectrum of CH,4
4.2.2.1 CH,4 absorption line selection for sensitive and selective heterodyne measurement

Spectral interference between atmospheric species, in particular with ubiquitous water vapor
(H20) and carbon dioxide (CO,) in the atmosphere, is a serious issue in a complex
environment. Selection of suitable spectral lines for field test should be carefully addressed.
Fig. 4.4 (a) shows an atmospheric absorption spectrum recorded with a high-resolution
Fourier transform spectrometer (Bruker IFS 125HR) on the QualAir platform of the
UniversitéPierre et Marie Curie (UPMC), accompanied with a HITRAN database-based [2]
simulation spectrum of 5-km long absorption on the ground at atmospheric pressure. The
following molecular species were taken into account : 0.5% H,0O, 2 ppm CHy, 450 ppm CO,
and 320 ppb N2O (Fig. 4.4 (b)).
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Figure 4.4 (a) Atmospheric absorption spectrum recorded with a Bruker IFS 125; (b) Simulation spectrum of
multi-GHG using 0.5% H,0, 2 ppm CH,, 450 ppm CO, and 320 ppb N,O in the range of 1223-1263 cm™.

Figs. 4.5 (a) and 4.6 (a) show atmospheric absorption spectra in the frequency range of
1241.3-1242.5 cm™ and 1261.2-1262.8 cm™, respectively; accompanied with HITRAN
database [2] simulation spectra of multi-GHG (0.5% H,0, 2 ppm CHy, 450 ppm CO, and 320
ppb N20O) in a 5-km long direct absorption scheme at atmospheric pressure (Figs. 4.5 (b)
black and 4.6 (b) black). Figs. 4.5 (b) and 4.6 (b) simultaneously provide individual spectra of
0.5% H,0 (blue), 2 ppm CH, (orange), 450 ppm CO, (pink) and 320 ppb N,O (green) for the
HITRAN database [2] simulation.
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Figure 4.5 (a) Atmospheric absorption spectrum; (b) Simulation spectrum of multi-GHG using 0.5% H,0, 2
ppm CHy, 450 ppm CO, and 320 ppb N,O (black); Individually simulated absorption spectra of 0.5% H,O
(blue), 2 ppm CH, (orange), 450 ppm CO, (in pink) and 320 ppb N,O (green) in the range of 1241.3-1242.5 cm
! (Note : the absorption peak located at 1242.24 cm™ is H,0).
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Figure 4.6 (a) Atmospheric absorption spectrum; (b) Simulation spectrum of multi-GHG using 0.5% H,O, 2
ppm CH,, 450 ppm CO, and 320 ppb N,O (black); Individual Simulation spectra of 0.5% H,O (blue), 2 ppm
CH, (orange), 450 ppm CO, (pink) and 320 ppb N,O (green) in the range of 1261.2-1262.8 cm™.

Based on the comparison and analysis, the CH,4 absorption lines (shown in Table 4.1)

were selected in the present work for heterodyne measurement of atmospheric CHy

absorption.
Table 4.1 Selected CH, and N,O absorption lines.
Mol. HITRAN FTS*
Wavenumber (cm™) | Line intensity (cm/molecule) | Wavenumber (cm™)
CH, 1241.8632 6.590E-21 1241.8626
CH, 1241.9489 6.596E-21 1241.9474
CH, 1261.6450 1.834E-20 1261.6370
N,O 1261.9871 1.044E-19 1261.9854
CH, 1262.2249 2.748E-20 1262.2321

* FTS frequencies were obtained from the atmospheric absorption spectrum recorded with a FTS (Bruker IFS
125HR) on the QualAir platform of the UPMC (TCCON-Paris station).
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4.2.2.2 Laser heterodyne spectrum of CH,4 absorption at 8 pm

In order to validate the spectroscopic performance of the developed LHR receiver, laser
heterodyne spectrum and direct absorption spectrum of CH4 at 8 pm were simultaneously
measured and compared.

In this work, laser heterodyne spectrum of CH, absorption at 1233.46 cm™ was recorded

with the experimental conditions as follows :

- temperature of the BB : 1000 °C,

- LO center frequency : 1233.25 cm™,

- scanning frequency : 100 mHz,

- scanning voltage and offset of a sine-wave signal : 3.0 V and 1.6 V, respectively,
- electronic filter bandwidth : 6 MHz (pass-band : 27-33 MHz),

- sensitivity and time constant of the LIA : 100 mV and 100 ms, respectively.

Radiation from the blackbody was collected and collimated with OAPM 1. It was then
focused and directed by OAPM 2 towards a 12.5-cm long single-pass cell filled with CH,4
mixture in air at atmospheric pressure. The beam emerging from the cell was amplitude
modulated at 1 kHz using the chopper. The beam filtered by an optical filter was directed to a
beam splitter on which it was superimposed with the LO beam from the EC-QCL. The
combined beams were focused by OAPM 5 onto the VIGO photomixer.

One part of the EC-QCL radiation separated by a beam splitter (CaF, window) was
injected into a 12.5-cm single-pass cell filled with the CH, mixture in air at atmospheric
pressure. The direct absorption spectrum of CH, in the single-pass cell was used to evaluate
the laser heterodyne spectrum of CH,4 absorption.

A PZT driven by a sine-wave signal was used to scan the LO (EC-QCL) frequency, direct
CHy, absorption spectrum of the LO in the single-pass cell (Fig. 4.7 upper) and its heterodyne
absorption spectrum of the incident BB radiation (Fig. 4.7, lower) were recorded
simultaneously. Heterodyne and direct CH, absorption spectra were both fitted to a Lorentz
profile (Fig. 4.7 red) with a fixed center absorption frequency at 1233.45545 cm™,
respectively. The FWHM (Full Width at Half Maximum) of the Lorentz line width of
~0.1065 cm™) for the heterodyne CH, absorption spectrum (Fig. 4.7 lower) is well consistent
with that of ~0.1068 cm™ for the direct CH, absorption spectrum (Fig. 4.7 upper). The
difference in absoption depth was resulted from strong background signal of LHR system.
This work demonstrates the functionality of the PoC LHR.
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Figure 4.7 upper: direct absorption used as spectrum reference (black) fitted with a Lorentz profile (red); lower:

heterodyne spectrum of CH, absorption near 8 jum (black) fitted with a Lorentz profile (red).

4.2.2.3 Frequency scanning speed vs. time constant of the LIA

The time constant (1) in the LIA is a very critical parameter that impacts on noise suppression
and absorption line-shape of the measured LHR spectrum. Longer time constant t can
significantly reduce the noise, but it also results in a shift of the spectral line center and
distorts the line-shape [3]. In order to minimize such undesired effects, the time AT, for
scanning through the halfwidth Avwiam of the absorption line should be at least equal to 14

times of the time constant t of the LIA (c.f. Chapter 2.1.6).

Experimental investigation on BB-based heterodyne spectra using different t and v
combination was carried out. Heterodyne spectra of CH,; were recorded using four

combinations of different T and v (Table 4.2). The results are shown in Figs. 4.8-4.11(black).

Table 4.2 Used time constants at a given scanning speed of the LO frequency vg. (Note : the spectral half

width Avpwim of the used CH, line around 1233.46 cm™ is 0.0538 cm™ [2] at ambient pressure.)

Scanning frequency (mHz) 20 50 100 250
Scanning period T (s) 25 10 5 2
Scanning range Avean (cm™) 0.787 0.787 0.787 0.787
halfwidth Aviwiam (cm™) 0.0538 0.0538 0.0538 0.0538
; -1
Scanning speed v (cm™/s) 0.03148 | 00787 | 0.1574 | 0.3935
= AVgean IT
Scanning time AT, (MS) 1709 654 342 137
= Avpwhm / O
100 30 10 1
7 (ms) 300 100 30 10
1000 300 100 30
- 1000 300 -
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Figure 4.8 BB-based heterodyne spectra of CH, absorption at a scanning speed v, of 0.03148 cm™/s (a

scanning time AT, of 1709 ms) combined with different time constants, respectively.

Table 4.3 Analysis of BB-based heterodyne spectra of CH, absorption at the scanning speed of the LO

frequency (us) of 0.03148 cm™/s (the scanning time (AT«n) of 1709 ms) with different time constants (z) (Fig.

4.8) (1 o : Standard deviation).

(crln)?; ) A(:T-]SSC;” (n:s) SNR (cAn:_bl) Absorption depth (c?nv'l) Fit ;els(:;jual
100 5 0.0545 0.0126 0.0032 0.0026

0.03148 1709 300 8 0.0656 0.0114 0.0095 0.0015
1000 8 0.0711 0.0062 0.0325 0.0008
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Figure 4.9 BB-based heterodyne spectra of CH, absorption at a scanning speed v of 0.0787 cm™/s (a scanning

time ATy of 684 ms) combined with different time constants, respectively.

Table 4.4 Analysis of BB-based heterodyne spectra of CH, absorption at the scanning speed of the LO
frequency (vs) of 0.0787 cm™/s (the scanning time (AT ) of 684 ms) with different time constants (t) (Fig. 4.9)

(1 o : Standard deviation).

ATecan A . 5 Fit residual
bse > N SNR o Absorption depth v
(cm™/s) (ms) (ms) (cm™) (cm™) (10)
30 5 0.0548 0.01258 0.0031 0.00230
0.0787 684 100 6 0.0640 0.01244 0.0081 0.00210
300 6 0.0722 0.01154 0.0243 0.00180
1000 6 0.1222 0.00570 0.0821 0.00089
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Figure 4.10 BB-based heterodyne spectra of CH, absorption at a scanning speed vy of 0.1574 cm™/s (a

scanning time AT, of 342 ms) combined with different time constants, respectively.

Table 4.5 Analysis of BB-based heterodyne spectra of CH, absorption at the scanning speed of the LO

frequency (vs) of 0.1574 cm™Y/s (the scanning time (ATn) Of 342 ms) with different time constants (t) (Fig.
4.10) (1 o : Standard deviation).

ATscan A . 5 Fit residual
Vs > ! SNR o Absorption depth v
(cm™/s) (ms) (ms) (cm™) (cm™) (10)
10 5 0.0550 0.01251 0.0016 0.00230
01574 342 30 6 0.0627 0.01204 0.0048 0.00209
100 7 0.0672 0.01101 0.0181 0.00156
300 7 0.0812 0.00824 0.0490 0.00115
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Figure 4.11 BB-based heterodyne spectra of CH, absorption at a scanning speed vy of 0.3935 cm™/s (a

scanning time AT, of 137 ms) combined with different time constants, respectively.

Table 4.6 Analysis of BB-based heterodyne spectra of CH, absorption at the scanning speed of the LO

frequency (vs) of 0.3935 cm™/s (the scanning time (ATn) of 137 ms) with different time constants (t) (Fig.
4.11) (1 o : Standard deviation).

ATeean A . 5 Fit residual
Vs > ! SNR o Absorption depth v 1t restcd
(cm™/s) (ms) (ms) (cm™) (cm™) (10)
1 7 0.0541 0.01261 0.0004 0.00174
0.3935 137 10 9 0.0599 0.01181 0.0041 0.00129
30 8 0.0733 0.00736 0.0120 0.00096

Based on the analysis of the heterodyne absorption spectra shown in Figs. 4.8-4.11

(black), SNR, line width broadening (Awy), absorption depth, line shift (5v), and noise level

(1o) of these spectra were analyzed from the Lorentz profile fits (Figs. 4.8-4.11 red and blue)

and summarized in Table 4.3-4.6, the optimal time constants (t) at given scanning speeds of
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LO frequency (vs) and scanning times (ATscan) Were obtained for the current work, as shown
in Table 4.3-4.6 in bold and Fig.4.8-4.11 in red.

As can be seen, selection of the LIA time constant should be well matched to the
scanning speed of the LO frequency as well as the scanning time. When the time constant is
too small, the noise will increase. While longer (than the optimal one) time constant would
result in reduced absorption depth, in shift in absorption center frequency and in distortion of
absorption line-shape.

Comparing above four optimal combinations for heterodyne detection, summarized in
Table 4.7, the combination of the scanning speed of the LO frequency of 0.3935 cm™/s (the
scanning time of 137 ms) and the LIA time constant of 1 ms has a relatively low noise level,
highest absorption depth, no significant shift in absorption center frequency and no distortion

of absorption line shape (Table 4.7 in bold).

Table 4.7 Analysis of BB-based heterodyne spectra of CH,4 absorption with optimal t at given v, and AT,

(c;?;/s) A(I]SSC;” (rr:s) SNR (CAr:_bl) Absorption depth (c?:'l) Fit Eii:;j ual
0.03148 1709 300 8 0.0656 0.01143 0.0095 0.00148
0.0787 684 100 6 0.0640 0.01244 0.0081 0.00210
0.1574 342 100 7 0.0672 0.01101 0.0181 0.00156
0.3935 137 1 7 0.0541 0.01261 0.0004 0.00174

In principle, the relationship between the scanning time (ATsan) and the LIA time
constant (t) should be (c.f. Chapter 2.1.6) :

AT, = AVewsn 514, (4.2)

scan
Usc

According to ATsen and t in Table 4.7, the combination of the scanning time of 137 ms
and the time constant of 1 ms meets well Eq. (4.2) which can efficiently reduce the noise
without causing obvious shift and distortion of the line-shape, and is consistent with our
spectral analysis as discussed above. This combination was therefore selected for our further

LHR measurements.
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4.3 Field measurement in Paris

The developed PoC LHR was field tested on the QualAir platform of the UPMC, in
collaboration with the <« Laboratoire d’Etudes du Rayonnement et de la Matiére en
Astrophysique et Atmosphe&es (LERMA) »of the UPMC in Paris. (Dr. Yao TE).

The Paris' instrument is part of the TCCON (TCCON-Paris station). The TCCON is a
network of ground-based Fourier transform spectrometers recording direct atmospheric
absorption spectra in the infrared spectral region. From these spectra, accurate and precise
column-averaged abundances of CO,, CH4, N,O, HF, CO, H,0, and HDO are retrieved

(http://www.tccon.caltech.edu/). The QualAir platform Fourier transform spectrometer

(Bruker’s IFS 125HR) with a spectral resolution of 0.02 cm™ is adapted for ground-based
remote sensing of molecular species in the atmospheric column. Connected to a sun-tracker
on the roof terrace (Fig. 4.12 left), the QualAir FTS (Fig. 4.12 right) operates in the solar
absorption configuration and enables the detection of a large number of atmospheric

pollutants.

Figure 4.12 left: external heliostat (sun-tracker) installed on the roof terrace; right: Bruker IFS 125HR located

in the lower-level experimental room (TCCON-Paris station).

4.3.1 LHR involving a telescope system for free-space coupling of sunlight

In order to couple the sunlight, collected by the heliostat on the QualAir platform, to our LHR,
a Thorlabs 60 mm cage assembly system was utilized for a free-space coupling telescope
system. Cage assembly system using four rigid steel rods on which optical components can
be mounted along a common optical axis, provides a convenient way to construct stable opto-

mechanical systems with an established line of precision-machined building blocks designed
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for high flexibility and accurate alignment.

The used cage system for sunlight coupling consists of a mirror mounted in a rotating
cube to reflect the sunlight from the heliostat to our LHR, a diaphragm used to control the
sunlight beam size, and two lenses (in CaF,, f1 = 150 mm and f2 = 75 mm) used for 2><beam

contraction, as shown in Fig. 4.13.

150 mm 75 mm

WV

Figure 4.13 upper: schematic of a telescope system for free-space coupling of sunlight; lower: photo of the

telescope system.

The experimental setup deployed on the QualAir platform is schematically shown in Figs.
4.14 and 4.15. Solar radiation is captured by an external heliostat installed on the roof terrace
and directed down towards the low-level laboratory. The sunlight is first reflected, collimated
and shaped by the cage system. The shaped sunlight beam is filtered with an optical filter (for
removing the UV and the visible radiations and limiting the bandwidth of the incident
radiation in the infrared region) and amplitude modulated with a chopper at 1 kHz. It is then
directed towards a beam splitter on which it is superimposed with the LO beam from the EC-
QCL. The LO laser beam size is firstly expanded by OAPM 3-OAPM 4, intensity-controlled
and polarization adjusted using a wideband IR polarizer. The combined beams are focused
with OAPM 5 onto the VIGO photomixer. The LO power reflected by a beam splitter (CaF,
window) is used for frequency metrology, through direct absorption of CHy4 in a single-pass
cell at atmospheric pressure, or through a 12.5-cm long home-made etalon in Ge to record

etalon fringes for relative frequency calibration.
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Figure 4.14 Schematic of the LHR deployed for the field test on the QualAir platform at the UPMC.
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Figure 4.15 upper: sun-tracker installed on the roof terrace on the QualAir platform; lower: a free-space

telescope coupling system used for sunlight coupling to the LHR in a field test at the UPMC. Red dot line :

sunlight beam path; Orange dot line : blackbody beam path; Yellow dot line : He-Ne laser beam path; Blue dot

line : EC-QCL beam path; Green dot line : combined LO-BB beams to the photomixer.
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4.3.2 Preliminary field test results of the developed PoC LHR
4.3.2.1 LHR baseline treatment

To retrieve the atmospheric vertical column, baseline treatment is a key issue which needs to
be seriously considered. Traditional baseline treatment in applied spectroscopy using an
absorption cell/cavity is to vacuum the cell and then fill the cell with nitrogen or zero air in
the same experimental conditions to measure target molecule-free baseline. This method is,
however, no longer applicable for open-path remote sensing like LHR monitoring. According
to the formula (Pyer oc Ps % PL), the heterodyne signal intensity (Pyet) is proportional to the
product of the sunlight intensity (Ps) and the LO laser power (P.). Since the frequency
scanning range of the LO EC-QCL is very small (~1 cm™), the sunlight power can be
considered as a constant. The baseline feature of the LHR spectrum can be reasonably
considered as determined by variation in the LO laser power during frequency scan.

In the present work, frequency scan of the used EC-QCL is realized by applying a sine-
wave signal to a PZT element that scans the laser external cavity. Compared to LHR working
with a DFB laser as a LO whose frequency is scanned using a sawtooth-wave signal, the
baseline feature in our case is more complex. In addition, structured baseline resulting from
dysfunction of our used LO EC-QCL is inevitable at some frequencies of interest. Therefore
it is unable to describe the baseline with a standard curve fitting. In this study, blackbody
radiation was used to replace sunlight which allowed us to record the baseline (rather than
LO laser power variation curve) of the heterodyne spectrum.

Sunlight-coupled heterodyne spectral signal was recorded (Fig. 4.16 (b)), and under the
same experimental conditions (LO power), blackbody-coupled heterodyne spectral signal
(baseline) was recorded (Fig. 4.16 (c)). As can be seen, both of these spectra have similar
variation features and both are similar to the LO variation baseline (Fig. 4.16 (a)) which
shows that the LHR spectral baseline is mainly determined by the LO power variation when
scanning the LO frequency. Fig. 4.16 (a) shows also that the used LO power variation is not a

regular sine-wave signal applied to the PZT.
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Figure 4.16 (a) Local oscillator signal; (b) Sunlight-coupled heterodyne signal; (c) Blackbody-coupled

heterodyne signal.

The BB-coupled heterodyne baseline was thus used to simulate the baseline of the
sunlight-coupled heterodyne spectrum. Heterodyne signals from sunlight and from blackbody
radiation were normalized to obtain baseline-corrected LHR spectra in the atmospheric
column,

In this study, LHR receiver parameters were set as follows : LO center frequency at
1231.00 cm™, scanning frequency : 250 mHz, scanning voltage : 3.0 V, scanning voltage
offset : 1.6 V, electronic filter bandwidth : 6 MHz (27-33 MHz), and sensitivity and time

constant of the LIA are 100 mV and 1 ms, respectively.

4.3.2.2 Heterodyne measurement of atmospheric CH,4 absorption spectrum

Atmospheric CH,4 absorption signal was field extracted using the developed LHR. In this
study, LHR receiver parameters were set as follows : LO (EC-QCL) was scanned using PZT
scan mode around 1242.00 cm™ with a scanning frequency of 250 mHz. The scanning
voltage is 3.0 V with an offset of 1.6 V. Electronic filter bandwidth is 6 MHz (27-33 MHz),
and sensitivity and time constant of the LIA are 100 mV and 1 ms, respectively.

In Fig.4.17 (a), red curve shows an atmospheric CH,4 absorption spectrum measured with
the LHR coupled to sunlight, while the black curve shows the LHR baseline when the
blackbody radiation was coupled into the LHR. Due to the difference in light intensity
between sunlight and blackbody radiation, the spectra recorded in Fig.4.17 (a) were
normalized by data post-processing, the corresponding normalized spectra are shown in

Fig.4.17 (b). Fig.4.17 (c) shows the atmospheric CH, absorption signal after normalization.
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Figure 4.17 (a) LHR CH, absorption signal (red) associated with a polynomial-fitted baseline of sunlight (blue)
and BB-based LHR baseline (black) associated with a polynomial-fitted baseline of blackbody (pink); (b)
Normalized LHR atmospheric CH, absorption signal (red) obtained by dividing the absorption signal ((a), red)
by the polynomial-fitted baseline ((a), blue) and LHR baseline (black) obtained by dividing the BB-based LHR
baseline ((a), black) by the polynomial-fitted baseline ((a), pink); (c) Post-processed LHR atmospheric CH,
transmission signal (blue) obtained by dividing the normalized LHR spectrum ((b), red) by the normalized BB
baseline (((b), black).

In order to confirm this CH, LHR spectrum, under the same experiment conditions, the
LO center frequency was tuned to a nearby non-absorbing frequency at 1231.45 cm™, the
experimental process was repeated. The results are shown in Fig.4.18. In Fig.4.18 (a), the red
curve shows the original heterodyne signal measured with sunlight, the black curve shows the
original LHR baseline with blackbody radiation coupled into the LHR. In Fig.4.18 (b), the
red and the black curves show their corresponding normalized heterodyne signal, respectively.
The blue curve in Fig.4.18 (c) shows the result of normalization by dividing the normalized
heterodyne signal by the normalized baseline. As can be seen, no absorption feature was
observed, which confirms the absorption feature (blue) in Fig.4.17 resulting from
atmospheric CH, absorption.
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Figure 4.18 (a) Recorded LHR signal (red) and baseline (black); (b) Normalized LHR signal (red) and baseline
(black); (c) Normalized signal (blue) by dividing the red curve by the black one, both shown in (b).
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Experimentally extracted atmospheric LHR spectrum of CH,; was compared with a
spectrum from a high-resolution Bruker IFS 125HR Fourier transform spectrometer and from
an atmospheric transmission model. The three spectra are plotted in Fig. 4.19.

Due to the structured baseline resulting from the LO, atmospheric LHR spectrum of CH,4
(Fig. 4.19 (b)) has to be extracted from a BB-based baseline. In addition, the background
signal of LHR system (when there is no LO injection) was not corrected. The absorption
depth is inconsistent with the corresponding atmospheric FTS spectrum (Fig. 4.19 (a)) and
the atmospheric transmission modelling CH,4 spectrum (Fig. 4.19 (c)). Nevertheless, the

overall spectral line-shape is consistent with the corresponding reference spectra.
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Figure 4.19 Atmospheric absorption spectrum of CH, recorded with a Bruker IFS 125HR FTS in Paris (a),

with our LHR (b), and from an atmospheric transmission model (c).

Conclusion

In this chapter, a PoC mid-IR LHR was developed and its performance was evaluated and
optimized with the help of a high temperature IR blackbody used as sunlight with stable
intensity. BB-based heterodyne spectra of CH, in a single cell at ~8 pm were used for
characterization of the developed LHR. The developed LHR was then deployed for field tests
on the QualAir platform at the UPMC. Ground-based measurement of tropospheric CH, in
the atmospheric column was obtained. Though suffered from the structured baseline resulting
from the dysfunction of the used LO EC-QCL, extracted LHR spectrum of CH,; was
confirmed by the nearby non-absorption LHR measurement and by comparison with the FTR
spectrum measured by a Bruker IFS 125HR FTS and with an atmospheric transmission

modelling spectrum.
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In the following work, great efforts were devoted to make the mid-IR LHR transportable
and compact for in situ measurement, and to move the LO frequency to another molecular

line to avoid the laser structured baseline as much as possible.
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Chapter 5 Development of a transportable mid-IR LHR prototype

Objective

In Chapter 4, a PoC mid-IR LHR was developed and validated via ground-based
measurements of CH,4 through an external sun-tracker installed on the roof terrace of the
QualAir platform (48°50'47"N/2°21'21"E, 60 m above sea level) of the Universit€&Pierre et
Marie Curie (UPMC). In this Chapter, development of a fully transportable mid-IR LHR
prototype is described. We explored a mid-IR fiber to couple the sunlight to the heterodyne
receiver, which makes our LHR, equipped with an EKO sun-tracker, fully transportable. The
developed LHR instrument was tested and validated via ground-based field measurements of
tropospheric CH; and N,O in the atmospheric column on the roof terrace of the IRENE

(Innovation Recherche en Environnement) platform in Dunkerque (51.05°N/2.34°E).

5.1 LHR prototype involving a mid-IR fiber to couple blackbody radiation

5.1.1 Instrumental description

In order to test and characterize the performance of the newly commercially available mid-IR
fiber used for LHR application, a LHR setup using fiber coupling of blackbody radiation was
realized (Figs 5.1 and 5.2).

Radiation from the blackbody (Model 67030, Newport Inc.) is collected and collimated
with a CaF;, lens (f1 = 40 mm, dia. = 25.4 mm) and then coupled to an 860-um-core
polycrystalline fiber through a second CaF, lens (f2 = 20 mm, dia. = 12.7 mm). The
blackbody radiation emerging from the fiber is then collimated and filtered using a lens3 (f3
=50 mm, dia. = 12.7 mm) in Germanium with AR coating for 3-12 um region in order to
filter out radiation out of the spectral region of interest to minimize shot noise resulting from
the BB source [1]). The BB beam is amplitude modulated at 1 kHz using a mechanical
chopper (Model MC2000B, Thorlabs, Inc.) and is then directed to a 5% (R) - 95% (T) beam
splitter (BS, in CaF,). The BB beam is superimposed with the LO beam from the EC-QCL.
The LO light is size-expanded by a factor of 3 through two OAPMs (OAPM4: f4 = 12.7 mm
and OAPMS5: f5 = 38.1 mm). It is intensity-controlled and polarization-adjusted using a
wideband IR polarizer (2-12 pm). The combined BB and LO beams are then focused by an
OAPMBG6 (f6 = 38.1 mm) onto a VIGO photomixer (PVI-4TE-10.6, VIGO System S.A.). The
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RF beat note signal from the photomixer enters the same RF receiver involved in the PoC

mid-IR LHR (c.f. Chapter 4) except for the RF filter having a pass-band of 27.5-270 MHz
instead of 27-33 MHz (c.f. 5.1.2.2.11).
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Figure 5.1 Schematic of a mid-IR LHR prototype using a fiber to couple blackbody radiation.

Figure 5.2 LHR prototype involving a mid-IR fiber to couple blackbody radiation (upper: front view; lower:

top view). Orange dot line : blackbody beam path; red dot line : He-Ne laser beam path; blue dot line : LO (EC-
QCL) beam path; green dot line : combined LO-BB beams to photomixer.
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5.1.2 Performance characterization of the LHR prototype
5.1.2.1 SNR of the beating signal
I. SNR of the LHR using fiber coupling system

In order to characterize the LHR performance using a fiber coupling system for sunlight
collection, investigation in terms of SNR of the LHR signal was performed using a calibrated
blackbody source. In this study, the blackbody's temperature was set to 1000 °C. Time series
measurements of the RF signal from the LIA with and without LO radiation injection were
carried out. The effective LO and BB powers were measured at the output of the photomixer
and displayed on oscilloscope (in [V]). These light powers are expressed in this work in terms
of photocurrent, in [lUA], induced by the incident light power, which is obtained by dividing
the light power in [V] by the photomixer transimpedance of 6000 V/A.

LO and BB power-induced photocurrents, were 610 A and 117 pA, respectively. Based
on the measurement (Fig. 5.3) of a beat note amplitude of 150.18 | and a noise level (1 o)
of 0.36 |V in the beat note, a SNR of ~419 was deduced.
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Figure 5.3 SNR measurement of the beat note at the output of the LIA. The mixed LO and BB power measured
at the output of the photomixer were 3.66 V and 0.70 V, respectively. A filter with a pass-band of 27.5-270
MHz was used. A time constant of 1 s combined with LP filters (12 dB/oct) was used for the LIA.

The theoretical shot-noise-limited SNR of the LHR can be expressed by Eqg. (5.1) [2] (c.f.
Eg. 1.57 in Chapter 1.5). This equation can be used to assess the experimental LHR
performance when referenced to the ideal shot-noise-limit. In other words, it corresponds to

the expected performance of an ideal LHR in which shot noise is the sole noise [3] :
n-P-vBr n-x-vB-r

n-vB ”““'exp(h-v)_l
k-T

SNR=17,,, - (5.1)

where the overall optical coupling efficiency « is defined as the fraction of the incoming

signal radiation transmitted through all the optical components to the photomixer [3]. For the
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blackbody, this accounts for two CaF, lenses (transmission ~0.92 each), the polycrystalline
IR-fiber (transmission ~0.54), the Germanium lens (transmission ~0.99), the beam splitter
(transmission ~0.95), the silver-plated OAPM (assumed reflectance ~0.97) and the BaF;
wedged window in front of the photomixer (transmission ~0.95) which results in an overall
coupling efficiency of 0.396. The heterodyne efficiency nnet of photomixing of the sunlight
beam and the LO beam is considered to be 1 in the ideal case (c.f. Chapter 1.3), the quantum
efficiency n of the photomixer provided by the manufacturer at this wavelength is 0.5. Under
these conditions, given a LHR double side bandwidth of 485 MHz (for a RF pass band of
27.5-270 MHz) and 1 s time constant of the LIA at a LO frequency (1242.3 cm™* or
3.73x10" Hz), a shot-noise-limited SNR of about 1430 was obtained. The theoretical shot-
noise-limited SNR is 3.4 higher than the measured SNR at a photocurrent of 610 A, or a
factor p of 0.29 in theoretical SNR is observed. The factor of 0.29 (=419/1430) may come
from the unexpected performance of the developed LHR.

Please note that in the following experiment description, the LO and BB power will both

be expressed as photocurrent (in [|HA]).

1.1 Noise sources in LHR system

In order to understand the difference between the measured and the calculated ideal SNRs,
the noises in various parts of the LHR system were investigated with the help of a signal
analyzer (N9000B, CXA X-Series, Keysight, Inc.). In this study, the parameters of the signal

analyzer were set as Table 5.1.

Table 5.1 Parameter setting on the Signal Analyzer.

RBW VBW Frequency scan range | Average count

100 kHz 51 Hz 1 kHz-500 MHz 1

where the RBW (Resolution BandWidth) is the frequency span of the final filter applied to
the input signal in the signal analyzer. Smaller RBW provides finer frequency resolution. The
VBW filtering is a time-domain low-pass filter, mathematically equivalent to the mean or
average. The main effect of the VBW filter is to smooth the signal and decrease noise. The
VBW (Video BandWidth) affects therefore the displayed signal quality.

In this study, the total noise density N (NV /+/Hz) of the LHR system can be expressed by
(c.f. Chapter 1.4) :
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N = \/Néet + NEIN + N82IN (5.2)
Niw = Nisy + Ny (5.3)
and N = Nésy + Nee (5.4)
where Npe, Ny @and Ngyn are the noise from the detection chain , the laser-induced noise and
signal-induced noise, respectively. The laser-induced noise includes laser-induced shot noise

Nisn and laser excess noise Nign, respectively. While the signal-induced noise includes

signal-induced shot noise Nssy and signal excess noise Nsgn.

The contribution of each type of noises in the above expressions is discussed below in
detail.

(1) Noise from the detection chain (Npet)

As mentioned in Chapter 1.4.1, noise from the detection chain Npg includes the background
noise, the Johnson noise resulted from the amplifier associated to the photodetector, and the
dark noise. It can be measured when there is no light incident on the detector.

In order to identify noise sources, signals at the RF output of the photomixer were
measured with the signal analyzer under different conditions :

(A) input of the signal analyzer directly connected to a resistance of 50 Q (Fig. 5.4, (1)
blue curve) for the measurement of the background noise Nsa of the signal analyzer.

(B) with only detector output connected to the signal analyzer (Fig. 5.4, (2) red curve),
representing the sum of the signal analyzer's background noise Nsa and the detection chain
noise Npet.

(C) with the presence of the LO but without BB radiation injection (Fig. 5.4, (3) green
curve), representing the sum of the signal analyzer's background noise Nsa, the detection
chain noise Npet and the laser-induced noise N n.

(D) with the presence of both LO and BB radiations (Fig. 5.4, (4) black curve),
representing the sum of heterodyne signal, the signal analyzer's background noise Nsa, the
detection chain noise Npe, the laser-induced noise Ny and the BB source-induced noise
Nsin.

Comparing the RF output (after the associated amplifier to the photodetector) of the
photomixer with both LO and BB radiation injections (Fig. 5.4, (4) black curve) to that of the
photomixer with only LO injection (Fig. 5.4, (3) green curve), two signals were almost
overlapped, which indicates that there was almost no additional noise contribution from the

BB radiation, i.e. signal-induced noise Ng\ can be neglected at this stage analysis.
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Figure 5.4 upper: noise amplitude spectra of the heterodyne system in the bandwidth of 1kHz-500 MHz; lower:
zoom of the upper figure in the bandwidth of 1kHz-160 MHz.

Therefore, the total noise density Nt (EQ. (5.2)) of the LHR system becomes :

Ntotal = \Y NIget + NEIN (55)

As can be seen in Fig. 5.4 upper, the LHR system noise (measured at the RF output of the
photomixer) was mainly distributed in the range of 1 kHz-100 MHz, which is enlarged in Fig.
5.4 lower. It is seen that the noise is mainly composed of 1/f and white noises. In the low
frequency range, the noise is dominated by 1/f, and then the noise distribution tends to be flat.
Therefore, the pass-band should be selected in the higher frequency range where 1/f is
significantly reduced. In order to study the characteristics of white noise in the high
frequency range, the detection chain noise Npe Was analyzed at 150 MHz where the noise is
dominated by white noise.

Given the readings from the signal analyzer at 150 MHz : 0.00709 mV for the noise
amplitude of the signal analyzer's background noise (Fig. 5.4, (1) blue curve), and 0.02370
mV for the noise amplitude (Fig. 5.4, (2) red curve) resulting from the signal analyzer
background noise and the detection chain noise, the detection chain noise amplitude can be
deduced from Eq. (5.6) :
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1/0.02370% —0.00709° =0.02261 (in [mV]) (5.6)
This was the integrated detection chain noise level within the set RBW of 100 kHz, the
corresponding detection chain noise density Npe; was thus :

Ny, =0.02261mV /+/10°Hz =71.5nV //Hz (.7)

Comparing the signal levels with LO injection (Fig. 5.4, (3) green curve) and without LO
injection (Fig. 5.4, (4) black curve), the increase in the noise level was observed which
indicates primarily an influence of the LO injection, which includes laser-induced shot noise
and laser excess noise and both resulted from the used EC-QCL LO.

Fig. 5.5 left shows noise levels at the RF output of the photomixer in the bandwidth of
1kHz-500 MHz with two different LO power-induced photocurrents (black curve: 587 A,
(red curve: 410 pA), respectively. The LO power was adjusted through a polarizer in front of
the LO laser. As can be seen in Fig. 5.5 (right), which is the enlarged scale of Fig. 5.5 (left),
higher LO photocurrent will contribute more laser-induced shot noise N sy and laser excess

noise Nien.

—— with stronger LO photocurrent
—— with weaker LO photocurrent

—— with stronger LO photocurrent
—— with weaker LO photocurrent
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Noise amplitude (mV)
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Figure 5.5 left: noise amplitude spectra of the RF output of the photomixer in the bandwidth of 1kHz-500 MHz
with different LO photocurrents; right: enlarged scale in the bandwidth of 1kHz-150 MHz.

Next, laser-induced noise Ny including laser-induced shot noise N sy and laser excess noise

N_en is analyzed.
(2) Laser-induced noise (N )

In order to quantitatively analyze contributions of laser-induced shot noise N sy and laser
excess noise Nign, detailed study was carried out. The LO power injected into the
photomixer was adjusted through a polarizer in front of the LO laser and the LO power-

induced photocurrent was used as indicator of the LO power injected in the photomixer.
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Figure 5.6 upper: noise density spectra from the RF output of the photomixer at different LO power-induced
photocurrents measured with a signal analyzer; lower: zoom of the upper figure in the pass-band of 27.5-270
MHz.

Noise from the RF output of the photomixer within its pass-band of 1kHz-500 MHz was
analyzed using the signal analyzer, as shown in Fig. 5.6 upper, at different LO photocurrents

(note : here the signal analyzer background noise has all been subtracted).

The system total noise density N in [nV/\/m] (Fig. 5.7, (2) black square) was
calculated by dividing the mean of all total noise amplitudes (including detection chain noise
Npet and laser-induced noise Ny ) measured in the pass-band of 27.5-270 MHz (i.e. the pass-
band of the used RF filter) (Fig. 5.6 lower) by the square root of the RBW (100 kHz). Given

the detection chain noise density of 71.5nV /\Hz (Fig. 5.7, (1) red line) determined above
(Eg. (5.7)), the laser-induced noise Ny (Fig. 5.7, (3) blue triangle) was calculated by
subtracting the detection chain noise Npet (Fig. 5.7, (1) red line) from the system total noise
density Nt (Fig. 5.7, (2) black square) based on Eq. (5.5).
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Figure 5.7 Plots of : (1) detection chain noise density Npe (red line), (2) measured system total noise density
Niotar (black square), deduced from dividing the total noise amplitude measured at 150 MHz (Fig. 5.6 lower) by
the square root of the RBW (100 kHz), and (3) the laser-induced noise N,y (blue triangle) deduced by
subtracting the detection chain noise Npe ((1) red line) from the total noise Ny ((2) black square), vs. LO

photocurrents.

Based on the laser-induced noise Ny deduced as shown in Fig. 5.7, laser-induced shot noise
and laser excess noise are studied in detail.
(2.1) Laser-induced shot noise (Nsn)

Voltage Vsy and current Igy of the laser-induced shot noise can be calculated with Eqgs. (5.8)
and (5.9), respectively [4] :

Ven (V): Ry - len (A) (5.8)
ISN(A):\/Z’e'IDc(ﬂA)'lo_G'B (5-9)
and loc (IUA)=VDC (V)'106/Rti (5.10)

where R = 6000 V/A is the transimpedance of the photomixer, e = 1.602x10*° C is the
electric charge, B = 5x10° Hz is the bandwidth of the photomixer over which the noise is
considered, Ipc is the DC LO photocurrent induced by the LO laser power in the photomixer,
Vpc is the DC LO voltage induced by LO laser power monitored at the output of the
photomixer and 10° represents the unit conversion from V to V.

From Egs. (5.8) (5.9) and (5.10), the laser-induced shot noise density Nisy (in

[nV/ JVHz ]) can be expressed as [5] :
Ny gn (MV/VHZ )=V (V)10° 1VB =4/2- - e (1A) 10 -RZ 10° =3.396 [T (1A)  (5.11)

where 10° represents the unit conversion from V to nV and 10° represents the unit

conversion from pA to A.
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The calculated laser-induced shot noise density N, s is plotted in Fig. 5.8 (curve (4)). The

total laser-induced noise, determined and shown in Fig. 5.7 is plotted again in Fig. 5.8 (curve
3)).

(2.2) Laser excess noise (N gn)

The laser excess noise Nign (Fig. 5.8, (5) green star) can then be calculated (Eqg. (5.3)) by

subtracting the laser-induced shot noise Ny sy (Fig. 5.8, (4) black circle), determined using Eq.

(5.11), from the laser-induced noise N\ (Fig. 5.8, (3) blue triangle).

160 4 — (1) Detection chain noise (Npet) (Eq. (5.7))

A (3) Laser-induced noise (NLIN, as Fig. 5.7 (3))

® (4) Laser-induced shot noise (Nusn) (Eq. (5.11))
(5) Laser excess noise (NLen) (Eq. (5.3))
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Figure 5.8 Densities of laser-induced noise Ny ((3) blue triangle), laser-induced shot noise N sy ((4) black
circle), laser excess noise N gy ((5) green star), and detection chain noise Npg ((1) red line) vs. photocurrent of
the LO laser, respectively.

As can be seen from Fig. 5.8, at LO photocurrents Ipc < 450 A the detection chain noise
Npet ((1) red line) is larger than the laser-induced shot noise Nisn ((4) black circle), only in
the range of 450 PA < Ipc < 656 PA the laser excess noise Ny gy ((5) green star) and the
detection chain noise Npe ((1) red line) are both smaller than the laser-induced shot noise
Nisn ((4) black circle), and the LHR system operates in shot-noise dominated regime (with
shot-noise limited high sensitivity performance). The higher LO photocurrent limit could not
be verified, because the saturation of detector preamplifier for optical powers above 733 PA

was observed.

1.2 Theoretical SNR vs. measured SNR

Based on the above analysis of the system noises, compared to the measured SNR (~419)
with the theoretical SNR (~1430), the factor of 0.29 (=419/1430) is analyzed as follows :
(1) At a LO power-induced photocurrent of 610 A, at which SNR=419 was determined,

the laser excess noise Ny gy (Fig. 5.8, (5) green star) and the detection chain noise Npe (Fig.
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5.8, (1) red line) were 0.9 times and 0.9 times the laser-induced shot noise N sy (Fig. 5.8, (4)
black circle), respectively. The total noise of the LHR system Ny, exceeds thus the laser-
induced shot noise Ny sy by (using Egs. (5.2) (5.3) and (5.4)) :

Ntotal = \/Néet + NESN + NEEN = \/(0-9' NLSN )2 + NESN +(0-9' NLSN )2 =1.62- NLSN (5-12)

The system total noise N IS 1.62 times laser-induced shot noise Nisy, a correction
factor p; of 0.62 (=1/1.62) is obtained for the theoretically calculated SNR under ideal shot-
noise condition.

(2) The overall optical coupling efficiency k of 0.40 for the blackbody radiation, based on
the transmission of each optical component given by the manufacturer, would be
overestimated. The measured overall optical coupling efficiency was about 0.27, and this
difference between 0.27 and 0.40 in x may be due to the long-time exposure of these optical
components to a humid and salty environment at the seaside. An additional correction factor
p2 0f 0.68 (=0.27/0.40) was obtained.

(3) The heterodyne efficiency npne of 1 for the ideal case (c.f. Chapter 1.3) would be over
estimated. The difference in shaped beam sizes of sunlight (12.5 mm) and LO light (7.5 mm)
caused a heterodyne efficiency of ~0.8 (c.f. Fig. 1.12). As well the photomixer has a small
photo-sensitive area of 0.5%0.5 mm? even a small mismatch angle would result in a
heterodyne efficiency of ~0.9 (c.f. Fig. 1.14 left). Anadditional correction factor pzof 0.72 (=
0.8>0.9) was achieved.

Based on the above analysis, a total correction factor pey, for the theoretical SNR, resulted
from the above reasons, is :

Pexp = P1>P2 X3 =0.30 (5.13)

This value is comparable to the factor p of 0.29.

We dealt with the noise sources in Section 1.1 and then the analysis for understanding the
difference between the theoretical SNR and the experimentally measured SNR in section 1.2.
In next section, the heterodyne signal and SNR of the LHR as function of LO power (in terms

of photocurrent) will be discussed.

1.3 Heterodyne signal and SNR of the LHR vs. LO photocurrent

Based on the study performed on the noises as function of LO power-induced photocurrent,

we now investigate the heterodyne signal and the corresponding SNR as the function of the
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LO photocurrent. The LO power was varied by adjusting a polarizer in front of the LO output,
both the mean heterodyne signal and its standard deviation were measured from which, the

corresponding SNR was derived. The results are shown in Fig. 5.9.
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Figure 5.9 Evolution of heterodyne signal (black square) and SNR (red square) as a function of LO

photocurrent.

Fig. 5.9 clearly shows that the amplitude of the heterodyne signal increases almost

linearly at low LO photocurrent (black square), which is consistent with P, o< P, xP,_,

before reaching a rollover point at an LO photocurrent of ~610 pA. The SNR increases with
the LO power and reaches a maximum when LO photocurrent is equal to 610 A too. Above
610 A, the heterodyne signal became smaller and the noise on the heterodyne signal rapidly
increased (c.f. Figs. 5.7 and 5.8), that is, the SNR significantly decreased. The data shows
that the maximum SNR of the LHR can be obtained with an optimum LO photocurrent. The
optimum LO photocurrent is highly dependent on detector (used as photomixer) technology
and characteristics [3]. For each type of detector the optimum LO photocurrent must be
determined because saturation effects, detection chain noise and detector response
homogeneity will affect the performance.

Therefore, the LO power should be precisely adjusted in order to significantly reduce the

noise on heterodyne signal to achieve high SNR while without any device saturation.

Section | mainly analyzed the noise sources and SNR of the LHR system using fiber for
sunlight coupling to the LHR receiver. The following section will compare the performance,
in terms of SNR, of LHRs using free-space coupling and using fiber coupling for BB source

collection.
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Il. SNR comparison between LHRs using free-space coupling and fiber coupling for

sunlight collection

In the LHR using free-space coupling system, an experimental SNR of ~119 (with an injected
BB power-induced photocurrent of 207 pA, an LO power-induced photocurrent of 417 A, a
LIA time constant of 1 s and a pass-band of 27-33 MHz) was obtained, in comparison with a
calculated ideal SNR of ~356, as discussed in Chapter 4.

The experimental SNR of the LHR using fiber coupling was ~419 (with an injected BB
power-induced photocurrent of 117 A, an LO power-induced photocurrent of 610 pA, a
LIA time constant of 1 s and a pass-band of 27.5-270 MHz) and it was about 3.52 times
higher than that obtained in the free-space coupling configuration (~119). This difference is
analyzed as follows.

(1) As SNR is proportional to the LHR double-sideband bandwidth (B) (c.f. Eq. (5.1)),
the difference in SNR between these two optical coupling systems is mainly attributed to the

difference in the bandwidths of the used RF filters in two system, a factor oy of ~6.36
(=/485/12 where Byiper=485 MHz=2>(270-27.5) MHz for the fiber coupling system against

Bfree-space=12 MHZz=2>(33-27) MHz for the free-space coupling system) in favor of the fiber
coupling LHR.

(2) As SNR is proportional to BB photocurrent (c.f. Eq. (5.1)), the difference in SNR is
related to the difference in the BB photocurrent, a factor a, of ~0.57 (= 117/207 the BB
photocurrent ratio between two LHR systems).

The total difference in the SNRs due to above two reasons is :

oy Xap=6.36 <0.57 = 3.63 (5.14)

which is comparable to the factor of 3.52.

Summarizing Section 5.1.1, the noise sources, heterodyne signal and SNR of the LHR
prototype are analyzed, the optimum operating LO photocurrent (~610 4A) is experimentally
obtained. Spectroscopic performance of the LHR system will be evaluated in the following

section under the optimal LO photocurrent.
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5.1.2.2 Spectroscopic performance

The capacity of the mid-IR optical fiber used to couple broadband source (BB or sunlight)
was evaluated in this section. To that end, the same blackbody source as used in Chapter 4
was coupled to a direct absorption cell through the optical fiber. The common parameters
were set as follows :

(1) temperature of the blackbody : 1000 °C;

(2) LO center frequency was scanned with a PZT driven by a sine-wave of 3.0 V with an
offset of 1.6 V.

I. BB-laser heterodyne spectrum of CH, absorption at 8 pm

Two very adjacent absorption lines of CH, were chosen (centered at 1241.8632 cm™ and
1241.9489 cm™ with a line intensity of 6.590E-21 cm/molecule and 6.596E-21 cm/molecule,
respectively [6]). Heterodyne spectrum of these CH, lines were recorded and compared with
its direct laser absorption spectrum. The experimental parameters were set as follows :

(1) LO center frequency : 1242.00 cm™;

(2) frequency scanning rate : 500 mHz;

(3) electronic filter pass-band : 27.5-270 MHz;

(4) LIA sensitivity and time constant : 10 mV and 10 ms, respectively.

In order to record direct absorption spectrum of CH,, one part of the EC-QCL radiation
separated by a beam splitter was injected into a 12.5-cm long single-pass cell filled with a
mixture of CH, in air at 260 mbar.

Using a PZT, driven by a sine-wave signal, to scan the external cavity of the LO laser and
hence the laser frequency, direct laser absorption signal of CH4 (Fig. 5.10 left, black),
background (Fig. 5.10 left, red) and the corresponding direct absorption spectrum (Fig. 5.10
left, blue) in a single-pass cell were recorded. The BB-based laser heterodyne absorption
signal of CH, (Fig. 5.10 right, black), background (Fig. 5.10 right, red) and the
corresponding heterodyne absorption spectrum (Fig. 5.10 right, blue) in another single-pass
cell were measured as well. Heterodyne (Fig. 5.10 right, blue) and direct (Fig. 5.10 left, blue)
CH, absorption spectra were both fitted to a VVoigt profile (Fig. 5.10 left and right, green).
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Figure 5.10 left: background (red) and direct absorption signal of CH,4 at 260 mbar (black); direct absorption
spectrum (blue) fitted with a Voigt profile (green); right: background (red) and heterodyne absorption signal of
CH, at 260 mbar (black); heterodyne spectrum of CH, absorption (blue) fitted with a VVoigt profile (green).

It is seen that two adjacent CH, absorption lines of the LHR spectrum (Fig. 5.10 right)
were resolved and in good agreement with the CH, direct absorption spectrum (Fig. 5.10 left).
As can be observed in the spectral comparison, the heterodyne spectrum with a fitted Voigt
linewidth (FWHM) of 0.0457 cm™ (Fig. 5.10 right, green) is significantly broader than the
direct absorption spectrum with a experimentally fitted Voigt linewidth of 0.0239 cm™ (Fig.
5.10 left, green).

The theoretical Voigt line width (Avy, FWHM) can be approximately expressed as follow
(c.f. Chapter 3.2.5) [7] :

Av, =0.5346Av, +,/0.2166Av, % +(AVZ + AVZ ) (5.15)

where the Lorentz linewidth Avy is 0.0221 cm™ [6] at 260 mbar, the instrument function of
the LHR system Avis is 0.0162 cm™ mainly determined by the doubled RF filter bandwidth
of 485 MHz (for the pass-band of 27.5-270 MHz), the Av\ys for the direct absorption
spectrum measurement is determined by the laser emission linewidth of 9.2 MHz (or 0.00031
cm™), and the Gaussian linewidth Avg of 0.00383 cm™ is calculated from Eq. (3.7) [8] with
vo of 1241.8632 cm™, T of 300 K, and M of 16 g/mole.

With above parameters, the theoretical Voigt linewidths of the LHR and direct absorption
spectra of 0.0314 cm™ and 0.0228 cm™ are calculated using Eq. (5.15), respectively. As can
be seen, the significant broadening characteristic in heterodyne spectrum is due to the wider

instrument function.
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Table 5.2 Comparisons between theoretical Voigt linewidths and measured Voigt linewidths of the LHR and

the direct absorption spectra.

LHR Direct

Theoretical Voigt linewidth (cm™) | 0.0314 | 0.0228

Measured Voigt linewidth (cm™) 0.0457 | 0.0239

Table 5.2 shows comparisons of theoretical Voigt linewidths to the measured \Voigt
linewidths of the LHR and the direct absorption spectra. It is seen that the measured \Voigt
linewidth of the direct absorption spectrum was comparable to the theoretical value, while the
measured Voigt linewidth of LHR spectrum was obviously wider than the theoretical value.
The broadening reasons are addressed as follows :

(1) The used LIA time constant of 10 ms was not adapted to the scanning time of
ATsan=14 ms needed to scan across the halfwidth of the absorption line (i.e. the used time

constant cannot meet AT, ... >14-7), that would broaden the heterodyne spectral line width

(c.f. 5.1.2.2 (111)), in this case the scanning speed of LO frequency vs. is 0.787 cm™/s and the
Avihwhwm is 0.0111 cm™).

(2) A uncertainty of ~15% in the pressure measurement resulting from the single-cell
leakage would cause a broadening of 0.0033 cm™ (corresponding to a AP=39 mbar where the
pressure-broadening coefficient y is 0.0861 cm™atm™ [6]).

This work demonstrated that the 860-um-core polycrystalline fiber is suitable for
application of coupling mid-IR BB radiation to LHR. According to the analysis of the
broadening effects, the impact of LHR instrument function (such as RF filter pass-band, LIA
time constant with respect to the scanning speed of LO frequency, etc.) on LHR spectrum

will be studied in the following sections.

Il. Impact of RF pass-band on LHR spectrum

To investigate the impact of the RF filter pass-band on the LHR spectral signal, heterodyne
absorption spectra of CH, in a single-pass cell were experimentally extracted and analysed
with different pass-bands of RF filters. The experimental parameters were the same as those

set above, except for :

(1) LO center frequency : 1255.00 cm™;

(2) frequency scanning rate : 500 mHz;
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(3) pressure of the CH4 mixture in air in the single-pass cell : 280 mbar;

(4) LIA sensitivity and time constant : 5 mV and 10 ms, respectively.

LHR noise has been investigated at first. Fig. 5.11 shows a noise amplitude spectrum of
LHR signal from the RF output of the photomixer recorded using a signal analyzer (with a
RBW of 100 kHz). As can be seen, there are strong 1/f noises in the low frequency range

which has to be filtered out.

1
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Figure 5.11 Noise amplitude spectrum from the RF output of the photomixer in the 1kHz-500 MHz range.

The noise densities within different pass-bands of the RF filters available in the present
work were estimated by dividing the integral noise over each pass-band by both the
bandwidth and the square root of the RBW (100 kHz) (Table 5.3). As shown in Table 5.3, the
noise density of the RF filter with a pass-band of 27.5-270 MHz was lowest and the
corresponding SNR was highest because of its wider filter bandwidth (at the cost of lower

spectral resolution).

Table 5.3 Noise density with different RF filter pass-bands.

Pass-band (MHz) DC-270 | DC-520 DC-720 27-33 27.5-270

Noise density (v /+/Hz) 0.396 0.239 0.239 0.180 0.149

LHR CH, absorption spectra were then recorded with these five available RF filters, as
shown in Fig. 5.12. The LHR CHy, absorption spectra measured with AC-coupling band-pass
RF filters (Fig. 5.12 left), which can significantly filter out low frequency noises, have higher
SNR and better spectral line-shape, while the spectra measured with DC-coupling low-pass
RF filters (Fig. 5.12 right) are noisy resulted from high 1/f noise.
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Fig. 5.12 Heterodyne spectra of CH, extracted with different RF filter pass-bands.

It's seen that the noise level of the spectrum measured with the RF filter with a pass-band
of 27.5-270 MHz (Fig. 5.12 left in black) is lower than that measured with a pass-band of 27-
33 MHz (Fig. 5.12 left in red). Moreover, there is no obvious difference in spectral line
widths between two LHR CH, absorption spectra. The reason is that the theoretical spectral
line width (FWHM) of CH, absorption around 1255.00 cm™ at 280 mbar is 0.034 cm™ (1020
MHz [9] that is wider than the doubled RF filter bandwidths (12 MHz and 485 MHz) and
therefore there is no any obvious effect of the RF filter bandwidths on the measured line
widths.

Based on such analysis, the RF filter with a pass-band of 27.5-270 MHz was selected for
the current LHR system.

I11. LHR spectral line-shape vs. scanning speed of LO frequency

As discussed in Chapter 2.1.6 and Chapter 4.2.2.3, in order to obtain high-precision
heterodyne spectrum (with minimized line shape shift and distortion), the scanning time
ATcan across the halfwidth of the absorption line Aviwim (in [cm™]), which is also dependent
on the scanning speed of the LO frequency v (in [cm™/s]), should be appropriately adapted

to a LIA time constant T such that AT,

scan = AViwam /Use =14 - 7. Experimental investigation
on BB-based heterodyne spectra using different scanning speeds with a selected LIA time
constant of 1 ms were carried out.

In this study, the experimental parameters were the same as those set above, except for :

(1) LO center frequency : 1242.00 cm™;

(2) RF filter pass-band : 27.5-270 MHz,

(3) pressure of the CH,4 mixture in air in the single-pass cell : 280 mbar;
(4) LIA sensitivity : 2 mV (Model SR830, Stanford Research Inc.).

162



LHR CH, absorption spectra recorded by scanning the LO frequency at different speeds
(see Table 5.4) using the same LIA time constant of 1 ms are plotted in Fig. 5.13. As can be
seen, selection of the scanning speed of the LO frequency should be well matched to the
applied LIA time constant. Comparing these four heterodyne absorption spectra of CH4, SNR,
linewidth broadening Av, (FWHM), line shift dv, and noise level (1c) of these heterodyne
absorption spectra were analyzed based on Voigt profile fit (Fig. 5.13, blue) and summarized
in Table 5.4. It is seen that the combination of 1 ms time constant and the 0.3935 cm™/s
scanning speed (with a scanning time of 36 ms), the heterodyne spectrum has a lower noise
level and a smaller line shift while keeping high spectral resolution (Fig. 5.13 (b) and Table
5.4 in bold).
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Figure 5.13 Heterodyne absorption spectra of CH, (red), fitted with VVoigt profiles (blue).

Table 5.4 Analysis of BB-based heterodyne spectra (Fig. 5.13) of CH,4 absorption with the used time constants
(tr) of 1 ms at different scanning speeds of the LO frequency (vs). (Note : the halfwidth of the used CH, line
AVihwnm at 280 mbar is 0.014 cm™ [6].)

T Usc ATgean Avy Absorption dv Fit residual
my | em'y | my) | N (o) depth (e (10)
0.1574 89 13 0.038 0.1142 1.6E-4 0.0091
1 0.3935 36 24 0.042 0.1037 4.0E-4 0.0043
0.7870 18 30 0.048 0.0975 8.2E-4 0.0032
1.1799 12 43 0.079 0.0909 1.2E-3 0.0021

1 ¢ : Standard Deviation (SD)
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Meanwhile, it is generally considered that the scanning speed of the LO frequency vs set

to a slower value, which meets well AT,

scan = AViwim /Usc 2147, can limit the distortion of
the line shape.

As can be seen from Table 5.4, at a LO frequency scanning speed of 0.1574 cm™/s, the
scanning time of 89 ms was far more than 14 times the applied LIA time constant of 1 ms. In
this case, the measured line shift was smallest, the absorption depth was deepest, the
linewidth Avy, (Table 5.4) was narrowest and close to the theoretical value of ~0.036 cm™
calculated from Eg. 5.15 using Av, of 0.028 cm™, Avins of 0.0162 cm™ and Avg of 0.0038
cm? (c.f. 5.1.2.2 (1)). However, the noise (1 o : 0.0091) was highest and SNR (~12) was
lowest (Table 5.4). A trade-off has to be made. Therefore at the LIA time constant of 1 ms,
the scanning speed of the LO frequency of 0.3935 cm™/s (the scanning time of 36 ms), with
which the noise (1 o : 0.0043) was relatively low, the SNR of system (~24) was relatively
high, the line shift (~0.0004 cm™) was relatively small and the achievable spectral resolution
(spectral line width of ~0.042 cm™) was relatively high, was thus selected for the LHR

prototype measurement.

5.2 LHR prototype involving a mid-IR fiber to couple sunlight radiation

5.2.1 Instrumental description

The developed LHR prototype using a mid-IR polycrystalline fiber to couple sunlight to the
LHR receiver is schematically shown in Fig. 5.14 and Fig. 5.15. The LHR prototype uses an
EKO sun-tracker to real-time follow the Sun's movement. Collection of the sunlight in the
atmospheric column into a mid-IR fiber is achieved through a lens associated with an optical
filter in Germanium. The collection optics is installed on the instrument mount of the sun-
tracker. The Ge-filter in front of the fiber is used to protect the fiber input terminal from
damage caused by the direct exposure to the intense ultraviolet and visible part of the sunlight,
and to limit the optical bandwidth of the incident radiation and let only the transmission of
the solar radiation at wavelengths longer than 7 pm in our case to minimize shot noise
resulting from the solar radiation [1].

The emerging sunlight from the fiber is collimated with a lens3 (in Germanium, AR
coating (3-12 um)) and injected into free-space. The sunlight is then amplitude modulated at
a rate of about 1 kHz and directed to a beam splitter. The sunlight beam of 12.5 mm in

diameter is superimposed on the beam splitter with a LO beam of 7.5 mm from the EC-QCL
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beforehand size-expanded by two OAPMs (OAPM3: f3 = 12.7 mm and OAPM4: f4 = 38.1
mm), intensity-adjusted using an IR polarizer (2-12 pm). The combined beams focused by an

OAPM2 are injected into the VIGO photomixer for heterodyne detection.

Fiber coupling sunlight system
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Figure 5.14 Schematic of the MIR-LHR prototype involving a fiber to couple sunlight to the LHR receiver

Figure 5.15 LHR prototype in use for a field measurement test.

One part of the LO beam (transmitted LO power from the beam splitter) is directed to
either a 12.5 cm single-pass cell filled with a CH, mixture in air for absolute frequency
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determination, or to a 12.5 cm long home-made Ge-etalon (FSR = 0.0333 cm™) for relative

frequency calibration when the LO frequency is tuned.

5.2.2 Heterodyne measurement of atmospheric CH, and N,O absorption spectrum

The developed LHR prototype was deployed on the roof of the ULCO-IRENE platform in
Dunkerque (51.05°N/2.34°E) for ground-based remote sensing of trace gases in the
atmospheric column.

When checking the system noise at the RF output port of the photomixer with the signal
analyzer, it was found that the system noise was enhanced within 110 MHz, and became
especially significant around 100 MHz, as shown in Fig. 5.16. This enhanced system noise
may be resulted from the instability of the external cavity of the laser due to frequent field
deployments.

— Signal analyzer background

Signal due to LO and blackbody injection
No blackbody injection

No LO injection

0.1+

Noise amplitude (mV)

o
o
2

I

T T T T T T T T 1
0 50 100 150 200°°°2507/9300 350 400 450 500
Frequency (MHz)

Figure 5.16 Noise amplitude spectra of the RF output from the photomixer within the bandwidth of 1kHz-500
MHz.

Therefore the previously optimized RF filter pass-band of 27.5-270 MHz was no longer
adapted, a new RF filter with a pass-band of 225-270 MHz was selected to remove this

excess noise. The LHR operational parameters were set as follows :

(1) LO center frequency : 1262.00 cm™, scanned at a frequency of 250 mHz with a
scanning voltage of 3.8 V and an offset of 2.0 V;

(2) LIA sensitivity and time constant : 10 mV and 1 ms, respectively;

(3) acquisition time per spectrum : 60 s;

(4) averaging number of spectra : 15.

The LO frequency was scanned around 1262.00 cm™ using PZT scan mode, atmospheric

CH,4 and N,O absorption spectrum was measured in the atmospheric column. Fig. 5.17 shows
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a heterodyne absorption spectrum of atmospheric CH4 and N,O around 1262.00 cm™ (left).
Fig. 5.17 also shows simulation spectra (right) for spectral identification.
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Figure 5.17 left: LHR spectrum of CH4 and N,O absorptions in the atmospheric column (Sun position: 16.69°
Zenith / 156.47° Azimuth, 24 m above sea level, 18 Nov. 2018); right: simulation spectrum of multi-GHG (olive)
using 0.5% H,O (green), 2 ppm CH, (orange), 450 ppm CO, (pink) and 320 ppb N,O (cyan) in the range of
1261.2-1262.8 cm™, accompanied with individual simulation spectra of all species mentioned above.

Fig. 5.18 shows a comparison of our experimentally extracted LHR spectrum (black) with
a FT-IR spectrum (red) measured using a high-resolution Bruker IFS 125HR Fourier
transform spectrometer on the QualAir platform of the UPMC (48°50'47"N/2°21"21"E, 60 m

above sea level), as well as with a spectrum from an atmospheric transmission model (blue).
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Figure 5.18 (a) Atmospheric absorption spectrum of CH, and N,O from 1261.3 to 1262.3 cm™ recorded using a
Bruker IFS 125HR FTS on the TCCON observation site in Paris; (b) the corresponding laser heterodyne

spectrum of CH, and N,O absorptions in the atmospheric column; (c) the atmospheric transmission modelling
spectrum.
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As can be seen in Fig. 5.18, the absorption line positions of CH4 and N,O from the LHR
spectrum were in good agreement with those of the FT-IR spectrum as well as with an
atmospheric transmission modeling. As water vapor was interfering with the LHR spectrum
of CH4-N2O (shown in Fig. 5.17), and the water vapor distribution changes with time and
space [9-11], the line-shape of the LHR spectrum was slightly different from the FT-IR
spectrum and the atmospheric transmission modelling spectrum, made at different locations
and different time under different atmospheric conditions. The overall spectral line-shapes of
all three spectra were consistent.

Comparing to the FT-IR spectrometer used for ground-based remote measurements of
trace gases in the atmospheric column, LHR is advantageous in terms of room temperature
operation, a compact size, portability, higher spectral resolution, and smaller FoV, as
summarized in Table 5.5.

Table 5.5 Comparisons between LHR and FTS

Spectr.al FoV Operation temperature | Instrument size / weight
resolution
LHR 0.003 cm™* ~0.4 mrad Room temperature ~0.6 x1.5 m*/ ~30 kg
-1 _ Liquid nitrogen-cooled ~ 2,
FTS 0.02cm 2.39 mrad detector 2 x4 m°/~700 kg

Conclusion

In this chapter, a full transportable LHR prototype involving a mid-IR fiber to collect sunlight
through an EKO sun-tracker was developed. Evaluation and optimization of the developed
LHR prototype with the help of a stable high temperature blackbody radiation to simulate the
sunlight was performed. The developed LHR instrument was then tested and validated via
ground-based field measurements of tropospheric CH4 and N,O in the atmospheric column
on the roof of the IRENE platform of the ULCO in Dunkerque (51.05°N/2.34°E). The
extracted spectrum by the LHR was in a good agreement with the FT-IR spectrum measured
using a Bruker IFS 125HR FTS and with an atmospheric transmission modelling spectrum,
which demonstrated that the developed portable LHR prototype could be used for ground-

based atmospheric sounding measurements of GHGs in the atmospheric column.

In the future work, vertical profiles of GHGs in the atmospheric column will be retrieved

from the ground-based measured LHR spectrum using a retrieval algorithm, given a decent

168



knowledge of additional atmospheric parameters, like solar angle, atmospheric temperature,

atmospheric pressure, composition of the atmosphere, and refractive index [12].
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Summary and perspectives

LHR is advantageous in terms of high spectral resolution, high sensitivity and high vertical
resolution in conjunction with a compact instrumental size deployable for field remote
sensing of vertical concentration profiles of key trace gases in the atmospheric column.

In this PhD thesis, my work has focused on the development of a fully transportable mid-
IR LHR instrument for ground-based remote sensing of CH4; and N,O in the atmospheric
column,

First, the performance of the EC-QCL being used as the LO in our LHR was evaluated
via the N,O measurement produced in a chemical catalysis process by direct absorption
spectroscopy in a multi-pass cell. The evaluation, performed from the aspects of laser
emission line width, single-mode wavelength tunability, stabilization of the LO source and
wavelength-dependent baseline, illustrated that the EC-QCL is suitable for being the LO in
our LHR.

Second, in order to test our design of a fully transportable mid-IR LHR instrument and
characterize its performance, a PoC mid-IR LHR receiver involving a free-space telescope
system for sunlight coupling was developed. The developed LHR receiver was field tested on
the QualAir platform of the UPMC with the help of the heliostat of the TCCON-Paris station.
LHR absorption spectrum of CH,4 in the atmospheric column was extracted from the solar
radiation using the developed ground-based LHR receiver and in good agreement with the
spectrum measured by the TCCON-Paris station.

Finally, based on the developed ground-based LHR receiver, a full transportable mid-IR
LHR prototype was developed. A mid-IR fiber combined with an EKO sun-tracker was
exploited to collect sunlight for heterodyne detection, which renders the LHR fully
transportable. The developed LHR prototype was field deployed on the roof of the IRENE
platform of the ULCO in Dunkerque. The extracted LHR spectrum of CH4 and N,O in the
atmospheric column was in a good agreement with the TCCON FT-IR spectrum of CH,4 and
N0, as well as in good agreement with the atmospheric transmission modelling spectrum.
This field measurement validates that the developed fully transportable mid-IR LHR
instrument could be used for ground-based measurements of key trace gases in the
atmospheric column. In addition, it also has high potential for applications on spacecraft or
on airborne platform.

Compared to other currently existed LHR instruments, the developed LHR is

advantageous due to the following two characteristics :
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(1) fully transportable in the mid-IR : a mid-IR polycrystalline fiber with high flexibility
and high transmission at 8 um was firstly applied to couple the sunlight to the LHR receiver
which makes LHR system fully transportable.

(2) very compact in the mid-IR : a commercially available and mature EC-QCL from
Daylight Inc. was firstly used as the LO. It operates at room temperature and has high output

optical power and narrow emission line width.

Ground-based measurement of vertical concentration profiles of trace gases with high
spectral resolution, high sensitivity and high vertical resolution is a key challenge in
atmospheric science and climate change research. For the developments on going, the

following considerations are taken into account :

(1) In order to well match the theoretical atmospheric absorption spectrum, LHR baseline
and LHR background signal should be subtracted, and variation in solar power should be
corrected.

(2) The tracking accuracy of the sun-tracker is 0.01° which may result in a minor
oscillation that can be seen in the LHR baseline when scanning the LO frequency. To
calibrate this oscillation, a beam splitter in combination with a mid-IR photodetector should
be introduced as a reference channel performing simultaneous monitoring of the solar
radiation. This channel is sensitive to the accuracy of the sun-tracker as well as drops in the
signal due to cloud covering.

(3) To satisfy the demands for the measurements of vertical concentration profiles of the
key atmospheric trace gases, it is quite necessary to make a profound research about the
retrieval algorithm in collaboration with Moscow Institute of Physics and Technology (MIPT)
who has well developed a retrieval algorithm.

(4) Unlike the near-IR, in the mid-IR, there is no commercially available fiber collimating
optics, coupling sunlight into the mid-IR fiber with a spatially separated optics is thus a big
challenge which needs a very professional and precise alignment. Furthermore following the
movement of the Sun, the fiber should be long enough and also can be bended, which
increases the power loss. Therefore all integrated fiber coupling system having a potential to
highly increase the heterodyne efficiency is a good choice for compensating for above losses
(c.f. Appendix 1).

(5) In the next 5 or 10 years, we propose to develop a next generation laser heterodyne

radiometer (NexLHR) based on the nowadays modern photonic integrated circuits (ICs)
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technology. The objective is to realize a “on-chip” LHR receiver. It will make the NexLHR
cost-effective, energy efficient, autonomous and ultra-portable. It will be most suitable for
field deployment for the measurements of atmospheric vertical profiles of key atmospheric
species through in situ ground-based measurements, aircraft and satellite observations, as
well as for integration into currently operational worldwide observation networks. Meanwhile,
the proposed infrared LHR instrument presents high potential for technology transfer and

commercialization.
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R&ume

La mesure des profils de concentration verticale des gaz traces dans lI'atmosphee est d'une
grande importance pour comprendre la physique, la chimie, la dynamique et le budget de
rayonnement de I'atmosphé&e ainsi que pour valider les réultats des modées chimiques et
des satellites observations.

RHL offre des avantages combinés significatifs pour la t@&léection passive des profils
de concentration verticale des gaz traces atmosphé&iques : (1) puretéspectrale éeveée de la
ligne d'énission laser (~10 MHz), r&ultant en une puissance de réolution : 10°-10°, ce qui
rend la résolution spectrale du RHL non limité& en fonction de I'appareil et est déerminé par
les filtres @ectroniques séectionné. Géné&alement, une réolution spectrale applicable plus
devé (10° cm™) permettrait d'atteindre ; (1) une réolution verticale @evé dans le profil de
concentration verticale ; (2) une sensibilitéplus devé (dans un facteur de 2-3 de la limite
quantique), ce qui permet une limite de déection plus faible des espeses de gaz avec une
grande pre&eision; (3) une résolution verticale plus devée due aune trés petite FoV cohé&ente,
ce qui rend RHL ont une couverture gégraphique ultrafine avec moins d'interfé&ences
nuageuses; (4) une dimension instrumentale compacte rendant RHL facile pour le
déloiement sur le terrain.

RHL est une sorte de radiométre basé sur un reésepteur hé&é&odine qui traite du
rayonnement solaire d'entrée comme source spectrale recueillie apartir d'un téescope en le
méangeant avec le rayonnement d'un laser utilis€ comme oscillateur local (OL) sur un
photodéecteur utilis€comme photomixteur. L'amplitude du signal de battement réultant du
photomixteur varie en fonction de la caracté&istique d'absorption des gaz traces
atmosphé&iques. En scannant la fré&uence OL & travers cette caratéistique, le spectre
d'absorption atmosphé&ique peut &re obtenu. Les profils de concentration verticale des gaz
traces atmosphé&iques cibles peuvent &re r&eup&& en se basant sur les spectres d'absorption
mesuré&s par RHL dans la colonne atmosphé&ique al'aide d'un algorithme de réupé&ation
approprié

L'objectif de cette thése consiste a développer un instrument RHL entiéement
transportable pour la télédétection au sol, dans le domaine de I’infrarouge moyen (mi-IR), de
gaz al'é&at de traces présents dans la colonne atmosphéique.

Afin de tester notre appareil et de caract&iser ses performances, un recepteur RHL mi-IR
a éémis au point comme Preuve de Concept (PdC). Il a @évalidésur la plate-forme QualAir
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de I’Université Pierre et Marie Curie (UPMC) associé¢ a un héliostat de la station TCCON-
Paris. Ainsi, le spectre d'absorption du CH4 préent dans la colonne atmosphé&ique a &é
extrait du rayonnement solaire &al'aide de notre réepteur RHL. Il est en bon accord avec le
spectre mesurépar la station TCCON-Paris.

Apres cette validation d'essai sur le terrain, un instrument LHR mi-IR (~8 pm)
entieéement transportable a é&é& développé Une fibre IR nouvellement disponible dans le
commerce est exploité pour coupler la lumiée du soleil au réeepteur RHL, &uipéd'un EKO
sun-tracker, ce qui rend le RHL mid-IR trés transportable et stable. Le prototype RHL
développéest déployésur le toit de la plate-forme IRENE de I'Universitédu Littoral CGe
d'Opale (ULCO) aDunkerque pour la téé&léection sur le terrain de CH,; et N,O dans la
colonne atmosphé&ique. Le spectre LHR de CH,4 et N,O dans la colonne atmosphé&ique est en
bon accord avec le spectre FT-IR de CH4 et N,O et la mod@isation de la transmission
atmosphé&ique.

L’instrument LHR mi-IR entié&ement transportable mis au point dans le cadre de cette
thése posseéde un fort potentiel d’utilisation dans la mesure des profils verticaux de
concentration d’espéces clés atmosphérique. Il peut potentiellement étre positionné sur des

engins spatiaux, sur des plates-formes aé&oporté&s ou au sol.

i. Evaluation de la performance de I'oscillateur local utilisé

Dans un premier temps, la performance d'un EC-QCL qui sera utilisécomme OL dans notre
systame RHL mid-IR, en termes de largeur de ligne d'énission laser, de ré&lage de longueur
d'onde en mode unique, de stabilisation de la source OL et de ligne de base déendante de la
longueur d'onde, a &é& &aluée par la surveillance en temps ré&l de N,O produit dans un
processus de catalyse chimique. Ce travail a &éréliséen collaboration avec I'UCEIV de
I'ULCO. (Note : Dans cette partie, pour les figures, les tableaux et les formules, veuillez vous

ré&er au Chapitre 3.)

i.1. Surveillance N,O par spectroscopie optique d'absorption de longue trajectoire

La configuration exp&imentale est montrée dans la Fig. 3.1. Une onde continue EC-QCL, est
utilis& comme OL dans notre expé&ience mi-RHL, est couplé& aune cellule multi-pass
hermanti-Herriot modifiés. La fré&uence EC-QCL est numé&isee sur une ligne d'absorption
N,O approprié pour déerminer son absorption intéreée dépendante de la concentration en

adaptant le spectre d'absorption exp&imental aun modéde de profil Voigt. Le réglage de
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fréguence fine de I'EC-QCL est r&liséen appliquant un signal de 50 Hz sinusod-ondes (avec

une amplitude de 3,0 Vpp et un de&salage de 1,6 Vpc) apartir d'un généateur de fonction a
I'@ément PZT de la cavitéexterne de I'EC-QCL. Comme le montre la Fig. 3.1 (agauche),

10 % de faisceau laser réfl&hi est envoyéaun etalon Fabry-Perot pour I'é&alonnage de la

fréguence laser, et 90 % du faisceau laser transmis est dirigeévers la cellule multi-pass pour

sonder I'absorption de long chemin optique de NO.

La cellule multi-pass modifiée de 3,2 L utilisée est formé de deux miroirs de réflectivité
deveés (séparés par 55 cm). La lumiére laser entre et sort de la cellule multi-pass atravers un
trou commun &uipéd'une fen&re d'accouplement coincée alavant de la cellule. Dans le
préent travail, 90 parcours ont &ée faites entre les miroirs, ce qui a donnéune longueur
optique efficace de 50 m. Le faisceau laser sortant de la cellule multi-pass est concentrédans
un déecteur thermo@ectrique de photovolta®jue infrarouge refroidi. Une carte d'acquisition
de donnéss de National Instruments, contrdeée par un programme LabVIEW, est utilisé& pour
I'&hantillonnage et l'acquisition de donnéss. Les donnés enregistrées sont nume&isess et
transfé&é&s sur un ordinateur portable pour un traitement ulté&ieur des données afin de

reeupé&er la concentration N,O.

i.2. Evaluation de la largeur de la ligne laser

La largeur de la ligne de I'énission EC-QCL utilisée comme OL joue un rde clédans la
résolution spectrale du RHL. Ce paramétre a ééé&valuédans le travail actuel en utilisant la
meéhode spectroscopique.

Une largeur de ligne de laser (FWHM) de 9.2 MHz a éédé&luite exp&imentalement qui
correspond &une puissance de réolution de laser d'environ 10’. Ce réultat dénontre que
I'EC-QCL est trés appropriépour une utilisation comme OL dans le systéme RHL en cours de
développement et il pourrait assurer I'exigence de réolution spectrale éeveé (la largeur de la
ligne laser-bande de filtre éectronique classique allant de 10 MHz aquelques dizaines de
MHz).

i.3. Pre&ision de mesure et LoD

La stabilitéd'un instrument d'analyse est un paramétre important qui affecte la sensibilitéde
déection et la pr&ision de mesure. La moyenne des signaux est gené&alement utilisé pour
am@iorer la sensibilité ala déection et la pre&ision de la mesure. Cependant, en raison de

I'instabilitéde I'instrument (tels que les changements dans l'intensit&lumineuse, les désalages
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de longueur d'onde laser et les dé&ives sonores sombres de déecteur, les dé&ives de
tempé&ature, les franges mobiles, les changements dans les spectres de fond, etc.), n'importe
quel systéme réel n'est stable que pour un temps limit& donc qu'un temps moyen optimal
devrait @re precisé€ par une analyse de variance Allan afin de déerminer le maximum.
moyenne, c-ad., la meilleure preeision de mesure.

Mesures de la s&ie chronologique de spectre d'absorption 1 ppmv N,O ont &éeffectuees
pour l'analyse de variance d'Allan afin de déerminer le temps moyen optimal. 9000 spectres
conseeutifs d'absorption directe de N,O ont &é&enregistrés exp&imentalement, avec un temps
d'acquisition de 0,2 s par spectre. La Fig. 3.6 pré&ente une déviation d’Allan en fonction du
temps moyen basésur les mesures de la s&ie chronologique des spectres d'absorption NO.
La pente en dé&eomposition (ligne pointillé rouge) montre la ré&luction efficace du bruit blanc
en signalant en moyenne dans un déai moyen maximal (temps de stabilitédu systéme)
d'environ 236 s, ce qui est principalement limitépar la tempé&ature et la stabilitéactuelle du
contrdeur QCL. La pre&eision de mesure correspondante est de 5,2 ppbv, ce qui conduit &aune
incertitude relative dans la préeision de mesure de 0,5%. Apres 236 s, I'éart Allan augmente
(ligne pointillé bleue), c-ad., les instabilités du systéme instrumental contrebalancent
nénmoins la r&luction de bruit donnée par la moyenne de temps.

Il est important de noter que ce max. du temps de stabilisation de 236 s prouve éjalement
que le temps de stabilitéde I'EC-QCL utiliséest au moins aussi bon que 236 s, ce qui est tres
appropriépour l'acquisition de spectres RHL (~ minute par spectre).

i.4. Conclusion

La performance d'un EC-QCL, qui sera utilis€ comme OL dans le systéne RHL, a &é&
&alué en termes de largeur de ligne d'énission laser, de réglage de longueur d'onde en
mode unique, de stabilisation de la source OL et de ligne de base dépendante de la longueur
d'onde. En se basant sur I'analyse des spectres d'absorption N,O mesurés, la largeur de la
ligne d'é@nission EC-QCL de 9,2 MHz a &édéluite. Un temps de fonctionnement stable de la
OL aussi bon que 236 s a ééestiméal‘aide de I'analyse de variance d’Allan, il est adé&juat
pour la mesure RHL du spectre d'absorption moléeulaire. L'EC-QCL est en réglage continu
mode-hop sans interruption avec une ligne de base lisse. En fait, dans un instrument RHL, la
ligne de base spectrale est principalement déerminé par la variation de puissance du laser
(OL) lors de la numéisation de la longueur d'onde laser par le biais de la caracté&istique

d'absorption molé&ulaire cible. Il est donc fortement souhaitable d'avoir une ligne de base
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spectrale induite par la puissance laser aussi lisse que possible afin d'obtenir une ré&upé&ation

de haute qualitédu spectre RHL atmosphé&ique.

ii. Dé&eloppement d'une preuve de concept mid-IR RHL

Deuxianement, afin de tester notre conception d'un instrument RHL amid-IR entiéement
transportable et de caract&iser ses performances, un reéepteur RHL de mid-IR PdC
impliquant un systéme de t&escope spatial libre pour le couplage de la lumiée du soleil a &&
développé

Le reepteur RHL développéa éétestésur la plate-forme QualAir de 'UPMC avec l'aide
de I'h@iostat de la station TCCON-Paris. Le spectre d'absorption RHL de CH4 dans la
colonne atmosphé&ique a éé&extrait du rayonnement solaire al'aide du ré&epteur RHL au sol
développéet en bon conformitéavec le spectre mesurépar la station TCCON-Paris. (Note :
Dans cette partie, pour les figures, les tableaux et les formules, veuillez vous réé&er au
Chapitre 4.)

ii.1. Un RHL PdC fonctionnant a8 pm

Le RHL PdC déreloppéest schénatiquement préentédans la Fig. 4.1. Un ré&epteur RHL
typique comprend un systéne de collecte de lumié&e du soleil associ€éaun traceur solaire, un
oscillateur local, un photomixeur, un ré&epteur RF, un module de démodulation et de
modulation du signal, ainsi qu'un module de mérologie de fr&uence (dans notre cas,
I'absorption directe de la moléule cible dans une cellule de ré&ence apassage unique de
12,5 cm de long a ééutilisé&). Pour caracté&iser et optimiser les performances du réepteur
PdC RHL développé& une source stable de corps noir a ééutilisée comme lumiée du soleil.
Des mesures d'hé&é&odyne des spectres d'absorption de CH,4 ont ééexéeutées dans une cellule
de 12,5 cm apassage unique en laboratoire.

Le rayonnement d'un corps noir est collectéet collimatéavec le miroir parabolique hors
axe (OAPM) 1 et OAPM2. Le faisceau BB est filtrépar un filtre optique (en Ge). La
modulation d'amplitude du faisceau BB injecté&est faite &l kHz al'aide d'un couperet situ€au
point focal ré&l de OAPM2. Il est ensuite dirigévers un séarateur de faisceau. Le faisceau
BB sera superpos€avec le faisceau OL de I'EC-QCL qui est &argi par deux OAPM, contrdé
par l'intensitéet la polarisation ajustée al'aide d'un polariseur IR alarge bande. Les faisceaux
combiné sont concentré& par OAPM5 sur un photomixeur VIGO. Le signal de la note de

s -z

battement a |w-w.| dans le domaine RF, géné&é apartir du photomixeur, entre dans le
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resepteur RF par un filtre de 27-33 MHz passe-bande suivi par des amplificateurs afaible
bruit &2 éapes avec un gain de 24 dB chacun. Apres cela, le signal de battement amplifiéest
reliéaune diode Schottky de loi carrée pour la mesure de puissance du signal RF qui est
proportionnelle au carréde I'amplitude de signal de battement d'entré. Le signal de sortie du
déecteur de droit carré est dénodu. Une carte d'acquisition de données de National
Instruments est utilis& pour numéiser le signal de sortie de la LIA via un programme
LabVIEW. Les donnés sont ensuite transfé&ées sur un ordinateur portable pour un traitement

ult&ieur.

ii.2. Spectre d'h&é&odie laser de I'absorption de CH; &8 pm

Afin de valider les performances spectroscopiques du réepteur RHL développé€ le spectre
d'hé&é&odene laser et le spectre d'absorption directe de CH4 &8 pm ont é&ésimultanénent
mesurés et comparés. Dans ce travail, le spectre d'hé&&odéne laser de I'absorption de CH, a
1233.46 cm™ a &&enregistréavec la fréuence de balayage de 100 mHz et une LIA constante
de temps de 100 ms.

Le rayonnement du corps noir a éécollectéet collimatéavec OAPML. Il a ensuite &é&
concentréet dirigepar OAPM2 vers une cellule de passage unique de 12,5 cm de long,
remplie de mé&ange CH, dans l'air &la pression atmosphé&ique. Le faisceau énergeant de la
cellule a été I’amplitude modulée a 1 kHz a 1'aide de 1'couperet. Le faisceau filtrépar un filtre
optique a &édirigévers un séparateur de faisceau sur lequel il a &€ superpos€ avec le
faisceau OL de I'EC-QCL. Les faisceaux combiné& ont &e& concentré&s par OAPM5 sur le
photomixeur VIGO.

Une partie du rayonnement EC-QCL séparée par un séparateur de faisceau a &€injectée
dans une cellule &passage unique de 12,5 cm remplie du mé&ange CH, dans l'air &la pression
atmosphé&ique. Le spectre d'absorption directe de CH,4 dans la cellule apassage unique a éé
utilisépour &aluer le spectre d'hé&é&odene laser de I'absorption du CH,.

Un PZT entramépar un signal d'onde sinuso'fjue a &éutilis€pour numéiser la longueur
d'onde OL (EC-QCL), le spectre d'absorption direct du CH,4 de la OL dans la cellule &une
seule passe (Fig. 4.7 supé&ieur) et son spectre d'absorption hé&é&odiste du rayonnement BB
incident (Fig. 4.7, infé&ieur) ont &é&enregistrés simultanénent. Les spectres d'absorption de
I'hnéé&odie et du CH, direct ont tous deux éérespectivement ajusté sur un profil Lorentz
(Fig. 4.7 rouge) avec une fréuence d'absorption centrale fixe a 1233,45545 cm™,

respectivement. La largeur de la ligne Lorentz de 0,1065 cm™ pour le spectre d'absorption de

179



I'hé&é&odéne CH, (Fig. 4,7 inf&ieur) est bien compatible avec celle de 0,1068 cm™ pour le
spectre d'absorption direct du CH, (Fig. 4,7 supé&ieur). Ce travail dénontre la fonctionnalité
du PdC RHL.

ii.3. Vitesse de balayage de fréjuence par rapport ala constante de temps de la LIA

La constante de temps (1) de la LIA est un paramére trés critique qui a un impact sur la
suppression du bruit et la forme de la ligne d'absorption du spectre RHL mesuré Une
constante de temps t plus longue peut réluire considé&ablement le bruit, mais elle entrame
&jalement un déplacement du centre spectral de ligne et dé&orme la forme de ligne. Afin de
minimiser ces effets indé&sirables, le temps AT, de numéisation de la demi-largeur Aviywim
de la ligne d'absorption doit &re au moins &jal &l4 fois de la constante temporelle de la LIA
(c.f. Chapitre 2.1.6).

Une éude exp&imentale sur les spectres d'hé&é&odéne abase de BB al'aide de diffé&entes
combinaisons de 1 et de vy, a &ée effectué. Les spectres d'hé&é&odie de CH, ont &é
enregistrés al'aide de quatre combinaisons de diffé&ents t et de vy (tableau 4.2). Les réultats
sont pré&enté& dans Figs. 4.8-4.11 (noir). Sur la base de I'analyse des spectres d'absorption
hé&é&odine montré dans Figs. 4.8-4.11 (noir), SNR, &argissement de la largeur de la ligne
(Awp), profondeur d'absorption, décalage de ligne (6v) et niveau de bruit (1) de ces spectres
ont &éanalysés apartir des ajustements de profil Lorentz (Figs. 4.8-4.11 rouge et bleu) et
résumeéss dans le tableau 4.3-4.6, les constantes de temps optimales (t) ades vitesses de
balayage donnés de la fré&uence OL (vs) et des temps de numé&isation (ATsn) Ont &&
obtenues pour les travaux en cours, comme le montre le tableau 4.3-4.6 en gras et Fig.4.8-
4.11 en rouge.

Comme nous le constatons, la séection de la constante de temps LIA doit &re bien
adaptée ala vitesse de numéisation de la fréguence OL ainsi que le temps de numéisation.
Lorsque la constante de temps est trop petite, le bruit augmentera. Tandis que gaund elle est ,
plus longue (que la constante optimale), la constante de temps se traduirait par une réluction
de la profondeur d'absorption, dans le dé&alage de la fréguence du centre d'absorption et dans
la distorsion de la forme de la ligne d'absorption.

En comparant au-dessus de quatre combinaisons optimales pour la déection de
I'hné&é&odie, ré&sumées dans le tableau 4.7, la combinaison de la vitesse de balayage de la
fréuence OL de 0,3935 cm™/s (le temps de balayage de 137 ms) et de la constante de temps
LIA de 1 ms a un niveau de bruit relativement faible, une profondeur d'absorption la plus
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deves, aucun changement significatif de la fré&uence du centre d'absorption et aucune

distorsion de la forme de la ligne d'absorption (tableau 4.7 en gras).
En principe, la relation entre le temps de numé&isation (ATsan) doit &re égale ou

supérieure a 14 fois la constante de temps de la LIA (t) (c.f. Chapitre 2.1.6).

Selon ATscan €t T dans le tableau 4.7, la combinaison du temps de balayage de 137 ms et
de la constante de temps de 1 ms s’accorde bien K. (4.

2) qui peut reduire efficacement le bruit sans causer de changement é&rident et de
distorsion de la forme de la ligne, et est compatible avec notre I'analyse spectrale comme
discutéci-dessus. Cette combinaison a donc é&éséectionné pour nos autres mesures RHL.

ii.4. Mesure de terrain aParis

Le PAC RHL dérelopp€a é&étestésur le terrain sur la plate-forme QualAir de 'UPMC, en
collaboration avec le LERMA de I'UPMC aParis (Dr. Yao TE).

L'instrument parisien fait partie du TCCON (gare De Paris). Le TCCON est un réeau de
spectrometres fourier Transform au sol enregistrant des spectres d'absorption atmosphé&ique
directe dans la ré&ion spectrale infrarouge. A partir de ces spectres, des abondances pregises
et cohé&entes de CO, CH4; N;O, HF, CO, H,O et HDO sont ré&up&éss
(http://www.tccon.caltech.edu/). La plate-forme QualAir Fourier transforme le spectromére
(Bruker's IFS 125HR) avec une réolution spectrale de 0,02 cm™ adapté ala tdé&léection au
sol des espeees moléeulaires dans la colonne atmosphé&ique. Connectéaun traceur solaire
sur la terrasse sur le toit (Fig. 4.12 agauche), le QualAir FTS (Fig. 4.12 adroite) fonctionne
dans la configuration d'absorption solaire et permet de déecter un grand nombre de polluants

atmosphé&iques.

ii.4.1. RHL impliquant un systéme de téescope pour le couplage de I'espace libre de la

lumiére du soleil

Afin de coupler la lumiée du soleil, recueillie par I'n@iostat sur la plate-forme QualAir, a
notre RHL, un systéme d'assemblage de cages Thorlabs de 60 mm a &é& utilis€ pour un
systame de téescope de couplage en espace libre. Le systéme d'assemblage de cage utilisant
quatre tiges rigides en acier sur lesquelles les composants optiques peuvent &re montés le
long d'un axe optique commun, fournit un moyen commode pour construction des systames
opto-mé&aniques stables avec une ligne é&ablie de blocs de construction de pré&ision-

machines con@is pour une grande flexibilitéet un alignement pré&eis.
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Le systane de cage utilisépour lI'accouplement de la lumiee du soleil se compose d'un
miroir montédans un cube rotatif pour refléer la lumiee du soleil de I'h&iostat anotre RHL,
un diaphragme a &é&utilisépour contrder la taille du faisceau de lumiere du soleil, et deux
lentilles (en CaF,, f1 = 150 mm et f2 = 75 mm) ont &éutilisé pour 2 > contraction de
faisceau, comme le montre la Fig. 4.13.

La configuration exp&imentale déployee sur la plate-forme QualAir est pré&enté par
schéma dans Figs. 4.14 et 4.15. Le rayonnement solaire est captépar un hé&iostat externe
installé&sur la terrasse du toit et dirigévers le laboratoire de bas niveau. La lumiée du soleil
est d'abord refleté, collimatéet fagonnée par le systame de cage. Ce dernier est filtrépar un
filtre optique (pour enlever les rayons UV et les rayonnements visibles et limiter la bande
passante du rayonnement incident dans la ré&ion infrarouge) et I'amplitude modulé avec un
couperet a1 kHz. Il est ensuite dirig€ vers un séparateur de faisceau sur lequel il est
superpos€ avec le faisceau OL de I'EC-QCL. La taille du faisceau laser OL est d'abord
augmenté par OAPM3-OAPM4, avec une intensitécontrollable et une polarisation ajustée a
I'aide d'un polariseur IR alarge bande. Les faisceaux combinés sont concentré&s avec OAPM5
sur le mixer VIGO. La puissance OL réfléhie par un séparateur de faisceau (fen&re CaF,)
est utilisée pour la mérologie de fréguence, par lI'absorption directe de CH4 dans une cellule
de passage unique ala pression atmosphé&ique, ou par un etalon fait maison de 12,5 cm de

long dans Ge pour enregistrer des franges etalon pour une fréuence relative &alonnage.

ii.4.2. Pr&iminaires des essais sur le terrain du RHL PdC développé

Le signal d'absorption atmosphé&ique du CH,; a é&éextrait sur le champ alaide du RHL
développé Dans cette éude, les paramétres du régepteur RHL ont &éfixé comme suit : OL
(EC-QCL) a &@énuméiséal‘aide du mode de balayage PZT autour de 1242,00 cm™ avec une
fréguence de balayage de 250 mHz. La tension de balayage est de 3,0 V avec un désalage de
1,6 V. Bande passante de filtre &ectronique et LIA constante de temps sont 6 MHz et 1 ms,
respectivement.

Le spectre RHL atmosphé&ique extrait exp&imentalement de CH, a &€& comparéaun
spectre d'un Bruker IFS 125HR FTS ahaute ré&olution et &aun modde de transmission
atmosphé&ique. Les trois spectres sont tracé dans la Fig. 4.19. Bien qu'en raison de la ligne
de base structureée ré&ultant du OL, le spectre RHL atmosphé&ique du CH4 (Fig. 4.19 (b)) doit
é@re extrait d'une ligne de base basé sur BB, la forme spectrale globale de ligne est

compatible avec le spectre atmosphé&ique correspondant de FTS (Fig. 4.19 (a)) et la
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mod@isation de la transmission atmosphé&ique du spectre CH,4 (Fig. 4.19 (c)).

ii.5. Conclusion

Un RHL de mid-IR de PdC a é&déeloppeéet sa performance a @é€évaluee et optimisé a
I'aide d'un corps noir d'IR &haute tempé&ature utilis€comme lumié&e du soleil avec l'intensité
stable. Des spectres d’'hé&é&odene bb-basé de CH,4 dans une seule cellule &a~8 pm ont éé
employé&s pour la caract&isation du RHL développé Le RHL développéa ensuite éedéploye
pour des essais sur le terrain sur la plate-forme QualAir al'UPMC. La mesure au sol du CH4
troposphé&ique dans la colonne atmosphé&ique a é&obtenue. Bien qu'il ait subit &la ligne de
base structuree résultant du dysfonctionnement du OL EC-QCL utilis€ le spectre RHL extrait
de CH; a &é confirmé par la mesure de non-absorption RHL d’a proximité et par une
comparaison avec le spectre FTR mesurépar un Bruker IFS 125HR FTS et avec un spectre
de moddisation de la transmission atmosphé&ique.

Dans les travaux suivants, de grands efforts ont &éconsacres pour rendre le RHL mid-IR
transportable et compact pour la mesure in situ, et de déplacer la longueur d'onde OL aune

autre ligne molé&ulaire pour é&viter la ligne de base structuré au laser autant que possible.

iii. Déeloppement d'un prototype RHL moyen-IR transportable

Enfin, sur la base du réepteur RHL au sol développ€& un prototype complet de RHL mid-IR
transportable a éédéveloppé Nous avons exploréune fibre mid-IR pour coupler la lumiere
du soleil au réepteur hé&é&odin, ce qui rend notre RHL, &uipédun EKO sun-tracker,
entiéement transportable. L'instrument RHL développéa éétestéet validéau moyen de
mesures au sol sur le terrain du CH4 et du N,O troposphé&iques dans la colonne
atmosphé&ique sur la terrasse du toit de la plate-forme IRENE aDunkerque (51.05N/2.34E).
(Note : Dans cette partie, pour les figures, les tableaux et les formules, veuillez vous réféer
au Chapitre 5.)

iii.1. Prototype RHL impliquant une fibre mid-IR pour coupler le rayonnement du
corps noir

iii.1.1. Description instrumentale

Afin de tester et de caracté&iser les performances de la fibre mid-IR nouvellement disponible
dans le commerce utilisépour l'application RHL, une configuration RHL utilisant le couplage

de fibres de rayonnement du corps noir a &éré&lisee (Figs 5.1 et 5.2).
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Le rayonnement du corps noir est collectéet collimatéavec une lentille CaF,, puis couplé
aune fibre polycrystalline de 860 pum-noyau atravers une deuxieme lentille CaF,. Le
rayonnement du corps noir énergeant de la fibre est ensuite collimatéet filtréal'aide d'une
lens3 dans Germanium avec rev&ement AR pour 3-12 um région. L’amplitude du faisceau
BB est amplitude modulé al kHz al‘aide d'un couperet meeanique et est ensuite dirigévers
un séparateur de faisceaux. Le faisceau BB est superpos€avec le faisceau OL de I'EC-QCL.
La lumiee OL est éendue de taille par un facteur de 3 &deux OAPM, avec une intensité
controllable et une polarisation ajustée al'aide d'un polariseur IR alarge bande. Les faisceaux
combinég BB et OL sont ensuite concentrés par un OAPM6 (f6 &38,1 mm) sur un
photomixeur VIGO. Le signal de note de battement RF du photomixer introduit le méne
regepteur RF impliquédans le PAC mid-IR RHL (c.f. Chapitre 4) &al'exception du filtre RF
ayant une bande de passage de 27,5-270 MHz au lieu de 27-33 MHz.

iii.1.2. Caractérisation des performances du prototype RHL
iii.1.2.1. RSB du signal de battement

Afin de caracté&iser la performance RHL al‘aide d'un systéne de couplage de fibres pour la
collecte de la lumiere du soleil, I'enqué&e en termes de RSB du signal RHL a &éé&effectuee a
I'aide d'une source de corps noir calibré Dans cette éude, la tempé&ature du corps noir a éé&
fixé a1000 °C. Des mesures de sé&ie de temps du signal RF du LIA avec et sans injection de
rayonnement de OL ont &é&effectuées. Les puissances efficaces de OL et de BB ont &é&
mesuré&s ala sortie du photomixer et affiché sur I'oscilloscope (en [V]). Ces puissances de
lumiére sont exprimé& dans ce travail en termes de photocourant, en [A], induit par la
puissance lumineuse incidente, qui est obtenue en divisant la puissance de lumiére en [V] par
la transimpedance photomixeur de 6000 V/A.

Les photocourants induits par I'éergie OL et BB &aient respectivement de 610 et 117 pA.
D'apres la mesure (Fig. 5.3) d'une amplitude de note de battement de 150,18 | et d'un
niveau de bruit (1 o) de 0.36 |V dans la note de battement, un RSB de ~419 a &éd&luit.

Le RSB théarique limitéau bruit de tir du RHL peut &re exprimé&par I'&uation. (5.1), ot
I'efficacitéglobale de couplage optique « est d'environ 0,396. L'efficacitéhé&&odydine nhe: du
photomixage du faisceau de lumiére du soleil et du faisceau OL est considé&é comme 1 dans
le cas idéal (c.f. Chapitre 1.3), I'efficacité quantique n du photomixteur fourni par le fabricant
acette longueur d'onde est de 0,5. Dans ces conditions, avec une bande passante double RHL

de 485 MHz (pour une bande de passage RF de 27,5-270 MHz) et une constante de temps de
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1 s de la LIA &une fréuence OL (1242,3 cm™ ou 3.73x10" Hz), un RSB limité&par le bruit
de tir d'environ 1430 a &éobtenu. Le RSB théorique limitépar le bruit de tir est 3,4 plus
deveéque le RSB mesuréaun photocourant de 610 A, otiun facteur p de 0,29 dans le RSB
théorique est observé Le facteur de 0,29 (=419/1430) peut provenir de la performance
inattendue du RHL dérveloppé

A noter que dans la description de I'exp€&ience suivante, la puissance OL et BB sera

exprimés en photocourant (en [lHA]).

iii.1.2.2. Sources de bruit dans le systéne RHL

Afin de comprendre la diffé&ence entre les RSB idéux mesurés et calculés, les bruits dans
diverses parties du systéme RHL ont éeéudié& al'aide d'un analyseur de signaux. Dans cette

éude, les paramétres de I'analyseur de signaux ont é&éfixés comme le montre le tableau 5.1.

Dans cette éude, la densité sonore totale N (NV / JHz ) du systéne RHL peut é&re
exprimée par Egs. (5.2)-(5.4) (c.f. Chapitre 1.4), 00Npe, Ny et Ngjy sont respectivement : le
bruit de la chame de déection, le bruit induit par laser et le bruit induit par le signal. Le bruit
induit par laser inclut le bruit de tir induit par laser N sy et le bruit excessif de laser N gy,
respectivement. Tandis que le bruit induit par le signal inclut le bruit de tir induit par le signal

Nssn et le bruit excessif de signal Nsgn.

La contribution de chaque type de bruits dans les expressions ci-dessus est discuté ci-
dessous en déail.

(1) Bruit de la chame de déection (Npet)

Comme mentionnédans le chapitre 1.4.1, le bruit de la chame de déection Npe; comprend le
bruit de fond, le bruit Johnson ré&ultant de I'amplificateur associ€au photodéecteur, et le
bruit sombre. 1l peut &re mesurélorsqu'il n'y a pas d'incident I&er sur le déecteur.

Afin d'identifier les sources de bruit, les signaux ala sortie RF du photomixteur ont &é&
mesureés avec l'analyseur de signaux dans des conditions diffé&ents :

(A) entrée de l'analyseur de signal directement relié a une résistance de 50 Q (Fig. 5.4, (1)
courbe bleue) pour la mesure du bruit de fond Nsa de I'analyseur de signal.

(B) avec seulement sortie de déecteur connecté alanalyseur de signal (Fig. 5.4, (2)
courbe rouge), repréentant la somme du bruit de fond de I'analyseur de signal Nsa et du bruit

de chame de déection Npet.
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(C) avec la preésence du OL mais sans injection de rayonnement BB (Fig. 5.4, (3) courbe
verte), repréentant la somme du bruit de fond de I'analyseur de signal Nsa, le bruit de chame
de déection Npg et le bruit induit par laser Ny .

(D) avec la préence de rayonnements OL et BB (Fig. 5.4, (4) courbe noire), représentant
la somme du signal d'hé&é&odie, le bruit de fond de I'analyseur de signal Nsa, le bruit de
chame de déection Npg, le bruit induit par laser N et le bruit induit par la source BB Ng)n.

En comparant la sortie RF (apres l'amplificateur associé au photodéecteur) du
photomixeur avec des injections de rayonnement OL et BB (Fig. 5.4, (4) courbe noire) acelle
du photomixeur avec seulement injection OL (Fig. 5.4, (3) courbe verte), deux signaux
s’étaient presque chevauchés, ce qui indique qu'il n'y a presque pas eu de contribution sonore
supplémentaire du rayonnement BB, c'est-adire que le Nsin, qui induit par le signal, peut &re
né&yligéace stade d'analyse.

Par consé&juent, la densitésonore totale N (E0. (5.2)) du systéne RHL devient K.
(5.5). Comme on peut le voir dans la Fig. 5.4 (en haut), le bruit du systéne RHL (mesuréala
sortie RF du photomixeur) a &éprincipalement distribuédans la gamme de 1 kHz-100 MHz,
qui est agrandi dans Fig. 5.4 plus bas. On voit que le bruit est principalement composéde 1/f
et de bruits blancs. Dans la plage de basse fréguence, le bruit est dominépar 1/f, puis la
distribution du bruit tend &ére plate. Par conséguent, la bande passante doit &re séectionnee
dans la plage de fréguence séninudre ot 1/f est considéablement résuite. Afin d'é@udier les
caracté&istiques du bruit blanc dans la plage de haute fréguence, le bruit de chame de
déection Npe; a é€analyséals0 MHz oulle bruit est dominépar le bruit blanc.

Compte tenu des lectures de l'analyseur de signaux a 150 MHz : 0,00709 mV pour
I'amplitude sonore du bruit de fond de I'analyseur de signaux (Fig. 5.4, (1) courbe bleue), et
0,02370 mV pour I'amplitude sonore (Fig. 5.4, (2) courbe rouge) réultant de l'analyseur de
signaux bruit de fond et le bruit de la chame de déection, I'amplitude du bruit de la chame de
déection peut &re déluite de I'Eg. (5.6). Il s'agissait du niveau de bruit de la chame de
déection intégré dans le set RBW de 100 kHz, la densitésonore correspondante de la chame

de déection Npe; a &éainsi calculé pour @re 71.5nV /+/Hz (c.f. Eg. (5.7)).

En comparant les niveaux de signal avec l'injection OL (Fig. 5.4, (3) courbe verte) et sans
injection OL (Fig. 5.4, (4) courbe noire), l'augmentation du niveau de bruit a &&observee qui
indique principalement une influence de l'injection OL, comprenant le bruit de tir induit par

le laser et le bruit excessif de laser et les deux résultant de I'utilisation de L'EC-QCL OL.

186



Ensuite, le bruit induit par laser N n, y compris le bruit de tir induit par laser N sy et le

bruit exceélentaire laser N gy est analysé
(2) Bruit induit par le laser (N )

Une éude d&aill& a ééeffectué afin d'analyser quantitativement les contributions du bruit
de tir induit par laser Nsy et du bruit excessif de laser Ny gy,.
La puissance OL injecté dans le photomixeur a é&é&ajusté par un polariseur devant le laser
OL et le photocourant induit par la puissance OL a éé& utilis€ comme indicateur de la
puissance OL injecté& dans le photomixer.

Le bruit de la sortie RF du photomixteur dans sa bande de passage de 1kHz-500 MHz a
é¢eanalysé alaide de l'analyseur de signaux, comme le montre la Fig. 5.6 (en haut), a
diffé&ents photocourants OL (note : ici, le bruit de fond de I'analyseur de signaux a tous &é

soustrait).

La densitésonore totale du syst@me N dans [ NV /\/E] (Fig. 5.7, (2) black square) a
é@écalculé en divisant la moyenne de toutes les amplitudes totales de bruit (y compris le
bruit de chame de déection Np et le bruit induit par laser Ny n), mesuré dans la bande de
passage de 27.5-270 MHz (c.-ad. la bande passaante du filtre RF utilis@ (Fig. 5.6 en bas) par
la racine carré du RBW (100 kHz). Compte tenu de la densitésonore de la chame de
déection de (Fig. 5.7, (1) ligne rouge) déerminé ci-dessus (Eq. (5.7)), le bruit induit par le
laser Nun (Fig. 5.7, (3) triangle bleu) a é&écalculéen soustrayant le bruit de la chame de
déection Npe: (Fig. 5.7, (1) ligne rouge) du total du systame densitésonore Niow (Fig. 5.7, (2)

carrénoir) basésur Eq. (5.5).

Basésur le bruit induit par laser Ny dé&luit comme indiquédans la Fig. 5.7, le bruit de tir
laser-induit et le bruit excessif de laser sont éudiés en déail.

(2.1) Bruit de tir par le laser induit (N_sn)

La tension Vsy et le courant Isy du bruit de tir induit par le laser peuvent &re calculé& avec
des Egs. (5.8)- (5.10), respectivement, oGiR; 6000 V/A est la transimpedance du photomixer,
e = 1.602x 10* C est la charge @ectrique, B = 5x10° Hz est la bande passante du
photomixeur sur lequel le bruit est consid&é€ Ipc est le photocourant DC OL induit par la
puissance laser OL dans le photomixer, Vpc est la tension DC OL induite par la puissance

laser OL surveillé& ala sortie du photomixeur et 10° repréente la conversion de l'unitéde V

V.
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De Egs. (5.8) - (5.10), la densitéde bruit de tir induite par laser Ny (en [nV /~/Hz ]])
peut &re exprimés en Ej. (5.11), ot110° repréente la conversion unitaire de V en nV et 10
représente la conversion unitaire de A en A.

La densitéde bruit de grenaille induite par laser calculé N sy est repré&entee sur la figure
5.8 (courbe (4)). Le bruit total induit par laser, dé&erminéet repré&sentésur la figure 5.7, est &
nouveau tracésur la figure 5.8 (courbe (3)).

(2.2) Bruit excessif de laser (N en)

L'excés de bruit laser Ny gy (Fig. 5.8, (5) &oile verte) peut ensuite &re calculé(Ej. (5.3)) en
soustrayant le bruit de tir induit par laser Ny sy (Fig. 5.8, (4) cercle noir), d&erminéal'aide
d'Eqg. (5.11), apartir du bruit induit par laser N (Fig. 5.8, (3) triangle bleu).

Comme on peut le voir apartir de la fig. 5.8, 20L photocurrents Ipc <450 A le bruit de
chame de déection Npe ((1) ligne rouge) est plus grand que le bruit de tir induit par laser
Nisn ((4) cercle noir), seulement dans la gamme de 450 <A Ipc <656 A I'excés de laser le
bruit Nien ((5) éoile verte) et le bruit de chame de déection Npe: ((1) ligne rouge) sont tous
deux plus petits que le bruit de tir induit par le laser N sy ((4) cercle noir), et le systeme RHL
fonctionne dans le r&ime dominépar le bruit de tir (avec des performances de sensibilité
deve limitées au bruit de tir). La limite photocurrente OL plus éeveée n'a pas pu &re vé&ifiee,
parce que la saturation du pré@mplificateur de déecteur pour les puissances optiques au-
dessus de 733 WA a é€observes.

iii.1.2.3. RSB thérique vs RSB mesuré

Sur la base de I'analyse ci-dessus des bruits du systéme, par rapport au RSB mesuré&(419)
avec le RSB thérique (1430), le facteur de 0,29 (=419/1430) est analysécomme suit :

(1) A un photocourant induit par la puissance OL de 610 A, au cours duquel le RSB-
419 a été déterminé, le bruit d’excés du laser N gy (Fig. 5.8, (5) éoile verte) et le bruit de
chame de déection Npe (Fig. 5.8, (1) ligne rouge) &aient 0,9 fois et 0,9 fois le bruit de tir
induit par laser N sy (Fig. 5.8, (4) cercle noir), respectivement. Le bruit total du systéme de
RHL Niota dépasse ainsi le bruit de tir induit par laser Ni sy de 1,62 (en utilisant des Eqs.
(5.2)-(5.4)).

Le bruit total du systéme N st 1,62 fois le bruit de tir induit par laser Ny sy, un facteur
de correction p; de 0,62 (1/1,62) est obtenu pour le RSB thériquement calculédans un éat

id&l de bruit de tir.
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(2) L'efficaciteglobale du couplage optique de 0,40 pour le rayonnement du corps noir,
basée sur la transmission de chaque composant optique donné par le fabricant, serait
surestimee. L'efficacitéglobale mesurée du couplage optique éait d'environ 0,27, et cette
diffé&ence entre 0,27 et 0,40 po peut &re due al'exposition along terme de ces composants
optiques aun environnement humide et saléau bord de la mer. Un facteur de correction
supplémentaire de p, de 0,68 (0,27/0,40) a &&obtenu.

(3) L'efficacitéhé&é&ododine npet de 1 pour le cas idél (c.f. chapitre 1.3) serait surestimes.
La diffé&ence dans la taille des faisceaux en forme de la lumi&e du soleil (12,5 mm) et de la
lumiee OL (7,5 mm) a causéune efficacitéhé&&odé&ine de ~0,8 (c.f. Fig. 1.12). De plus, le
photomixteur a une petite zone photo-sensible de 0,5%0,5 mm? méne un petit angle
d'inadeguation se traduirait par une efficacitéhé&éodine de ~0,9 (c.f. Fig. 1,14 agauche). Un
facteur de correction supplénentaire de p3 de 0,72 (0,8>0,9) a &éatteint.

D'apres I'analyse ci-dessus, un facteur de correction total , exp pour le RSB thérique, a

resultédes raisons ci-dessus, est de p1>p,>p3 = 0.30 qui est comparable au facteur de 0,29.

iii.1.2.4. Signal hé&é&odeéne et RSB du Photocurrent RHL vs OL

En se basant sur I'é@ude ré&lisé sur les bruits en fonction du photocourant induit par la
puissance OL, nous éudions maintenant le signal hé&&odene et le RSB correspondant
comme fonction du photocourant OL. La puissance OL a &é& modifié en ajustant un
polariseur devant la sortie OL, ala fois le signal moyen d'hé&é&odie et son €art standard ont
éé mesuré&s apartir de desquels, le RSB correspondant a &é d&ivé Les ré&ultats sont
pré&enté ala Fig. 5.9.

Fig. 5.9 montre clairement que Il'amplitude du signal hé&é&odiste augmente presque

lin&irement &faible OL photocurrent (carrénoir), ce qui est compatible avec P o« Py xP, ,

avant d'atteindre un point de roulement &un photocourant OL de 610 4A. Le RSB augmente
avec la puissance OL et atteint un maximum lorsque OL photocurrent est &al &~610 A trop.
Au-dessus de 610 A, le signal hé&é&odyne est devenu plus petit et le bruit sur le signal
hé&&odéne a rapidement augmenté (c.f. Figs. 5.7 et 5.8), c'est-adire que le RSB a
considéablement diminué Les donnés montrent que le RSB maximum du RHL peut &re
obtenu avec un photocourant OL optimal. Le photocourant OL optimal déend fortement de
la technologie et des caracté&istiques du déecteur (utilis€comme photomixeur). Pour chaque

type de déecteur, le photocourant OL optimal doit &re déerminéparce que les effets de
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saturation, le bruit de la chame de déection et I'hnomogenétéde la réonse du déecteur
affecteront les performances.

Par conseéguent, la puissance OL doit &re ajusté& avec preeision afin de ré&luire
considéablement le bruit sur le signal hé&é&odene pour atteindre une RSB éevé sans aucune
saturation de l'appareil.

En se basant sur I'analyse ci-dessus, les performances spectroscopiques du systéne RHL

seront éaluées dans la section suivante sous le photocourant OL optimal.

iii.1.2.5. Performance spectroscopique

La capacitéde la fibre optique mid-IR utilisé& pour coupler la source alarge bande (BB ou
lumiere du soleil) a @€évaluée dans cette section. Pour cette raison, la mé&ne source de corps
noir utilisé dans le chapitre 4 a é&couplé aune cellule d'absorption directe atravers la
fibre optique. Les paramétres communs ont &&fixés comme suit :

(1) tempé&ature du corps noir : 1000 °C;

(2) la fréguence du centre OL a é@énumé&isé avec un PZT entramépar une onde sinuel
de 3,0 V avec un dézalage de 1,6 V.

(a) Impact de la bande de passe RF sur le spectre RHL

Pour éudier I'impact de la bande de passage du filtre RF sur le signal spectral RHL, les
spectres d'absorption hé&é&odine du CH,4 dans une cellule &passage unique ont &éextraits
exp&imentalement et analysé& avec diffé&entes bandes de transmission de filtres RF. Les
parametres exp&imentaux éaient les ménes que ceux fixés ci-dessus, al'exception de :

(1) fréuence centrale OL : 1255,00 cm™;

(2) taux de balayage de fréjuence : 500 mHz;

(3) pression du mé&ange CH, dans l'air dans la cellule aune passage unique : 280 mbar;

(4) LIA constante de temps : 10 ms, respectivement.

Le bruit de RHL a &é é&udié dans un premier temps. Fig. 5.11 montre un spectre
d'amplitude sonore du signal RHL apartir de la sortie RF du photomixteur enregistréal‘aide
d'un analyseur de signaux (avec un RBW de 100 kHz). Nous remarquons, il ya des forts
bruits 1 / f dans la gamme de basse fréguence qui doit &re filtré

Les densités de bruit dans les diffé&entes bandes de passage des filtres RF disponibles
dans le présent travail ont é@é&estimees en divisant le bruit intéral sur chaque bande de

passage par la bande passante et la racine carré du RBW (100 kHz) (tableau 5.3). Comme le
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montre le tableau 5.3, la densitésonore du filtre RF avec une bande de passage de 27,5 a270
MHz é&ait la plus faible et la RSB correspondante éait la plus éevé en raison de sa bande
passante filtraire plus large (au prix d'une résolution spectrale plus faible).

Des spectres d'absorption RHL CH, ont ensuite é&é&enregistrés avec ces cing filtres RF
disponibles, comme le montre la Fig. 5.12. Les spectres d'absorption RHL CH,; mesurés par
des filtres RF acol de bande AC (Fig. 5.12 agauche), qui peuvent filtrer considé&ablement
les bruits de basse fréguence, ont une RSB plus devé et une meilleure forme spectrale de
ligne, tandis que les spectres mesurés avec des filtres RF &faible passage acouplage DC (Fig.
5.12 adroite) sont bruyants ré&ultant d'un son éevéde 1/1.

C’est montré que le niveau de bruit du spectre mesuré avec le filtre RF avec une bande de
passage de 27,5-270 MHz (Fig. 5.12 en noir) est infé&ieur acelui mesuréavec une bande de
passage de 27-33 MHz (Fig. 5.12 en rouge). De plus, il n'y a pas de diffé&ence & idente dans
les largeurs spectrales des lignes entre deux spectres d'absorption CH4 RHL. La raison en est
que la largeur thérique de la ligne spectrale (FWHM) de I'absorption CH,4 autour de 1255,00
cm™ &280 mbar est de 0,034 cm™ (1020 MHz qui est plus large que les bandes passantes de
filtre RF doublées (12 MHz et 485 MHz) et donc il n'y a pas d'effet évident des largeurs de
bande du filtre RF sur les largeurs de ligne mesurées.

En se basant sur cette analyse, le filtre RF avec une bande de passage de 27,5-270 MHz a

éésdectionnépour le systéme RHL actuel.

(b) RHL spectral line-shape vs vitesse de balayage de la fréjuence OL

Comme nous l'avons vu dans les chapitres 2.1.6 et 4.2.2.3, afin d'obtenir un spectre
d'hé&é&otheéne de haute preéeision (avec un deéealage et une distorsion de la forme de la ligne
minimisée), le temps ATsan de balayage de I'ensemble de la demi-largeur de la ligne
d'absorption Avpwem (en [em™]), qui dépend éalement de la vitesse de balayage de la
fré&uence OL vy (en [cm™/s]), devrait &re adapté&de maniée appropriée &une constante

temporelle de la LIA 1, telle que AT.,,=AV,um/Usc =14-7 . Des recherches

scan
exp&imentales sur les spectres d'hé&é&odene abase de BB al'aide de diffé@entes vitesses de
balayage avec une constante de temps LIA s@ectionnée de 1 ms ont &éeffectuéss. Dans cette
éude, les paramétres exp&imentaux éaient les mé&nes que ceux fixés ci-dessus, al'exception
de:

(1) fréuence centrale OL : 1242,00 cm™;

(2) pression du mé&ange CH, dans l'air dans la cellule aune seule passe : 280 mbar;
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Les spectres d'absorption RHL CH,4 enregistré en scannant la fréquence OL adiffé&entes
vitesses (voir le tableau 5.4) al'aide de la mé&ne constante de temps LIA de 1 ms sont
pré&enté&s ala Fig. 5.13. Comme nous ’observons, la sélection de la vitesse de numérisation
de la fréquence OL doit &re bien adaptée ala constante de temps LIA appliqueée. En
comparant ces quatre spectres d'absorption hé&&odydine de CH,4, RSB, dargissement de la
largeur de ligne Av, (FWHM), décalage de ligne et niveau de bruit (16) de ces spectres
d'absorption hé&é&odyne ont &éanalysés en fonction de I'ajustement du profil Voigt (Fig. 5.13,
bleu) et résumé dans le tableau 5.4. Nous remarquons que la combinaison de 1 ms de la
constant de temps et la vitesse de balayage 0,3935 cm™/s (avec un temps de numéisation de
36 ms), le spectre h&é&odiste a un niveau de bruit plus faible et un changement de ligne plus
faible tout en gardant une réolution spectrale deveé (Fig. 5.13 (b) et tableau 5.4 en gras).

Pendant ce temps, il est géné&alement considéé que la vitesse de numéisation de la
fréguence OL wvs est réglée a une valeur plus lente, qui s’accord avec bien

AT an = AViwim /Usc =147, peut limiter la distorsion de la forme de la ligne.

Comme constatéapartir du tableau 5.4, aune vitesse de balayage de fréguence OL de
0.1574 cm™/s, le temps de numé&isation de 89 ms &ait beaucoup plus de 14 fois la constante
de temps LIA appliqué de 1 ms. Dans ce cas, le dé&alage de ligne mesurééait le plus petit,
la profondeur d'absorption éait la plus profonde, la largeur de la ligne Avy, (tableau 5.4) éait
la plus éroite et proche de la valeur thédrique de ~0,036 cm™ calculé& apartir de Eq. 5,15 a
partir de: Av_ de 0,028 cm™, Avins de 0,0162 cm™ et de 0,0038 cm™ (c.f. 5,1,2.2) II.
Cependant, le bruit (1o : 0,0091) était le plus élevé et le RSB (~12) était le plus faible
(tableau 5.4). Un compromis doit &re fait. Par conséjuent, ala constante de temps LIA de 1
ms, la vitesse de balayage de la fré&juence OL de 0.3935 cm™/s (le temps de numéisation de
36 ms), avec laquelle le bruit (1o : 0,0043) éait relativement faible, le RNS du systéme (~24)
&ait relativement devé, le déalage de ligne (~0,0004 cm™) &ait relativement faible et la
résolution spectrale rélisable (largeur spectrale de la ligne spectrale de ~0,042 cm™) &ait

relativement devee, elle a donc éésdectionné pour la mesure du prototype RHL.

iii.2. Prototype RHL impliquant une fibre mid-IR pour coupler le rayonnement solaire

iii.2.1. Description instrumentale

Le prototype RHL dé&eloppé utilisant une fibre polycrystalline mid-IR pour coupler la
lumiére du soleil au ré&epteur RHL est schénmatiqguement montrédans les Fig. 5.14 et Fig.

5.15. Le prototype RHL utilise un EKO sun-tracker pour suivre en temps rél le mouvement
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du Soleil. La collecte de la lumiee du soleil dans la colonne atmosphé&ique dans une fibre
mid-IR est ré&lisé par une lentille associé aun filtre optique dans Germanium. L'optique de
collecte est installé sur la monture d'instrument du sun-tracker. Le filtre Ge en face de la
fibre est utilisé pour protéger le terminal d'entrée de fibres contre les degats causés par
I'exposition directe al'ultraviolet intense et la partie visible de la lumiée du soleil, et pour
limiter la bande passante optique du rayonnement incident et de laisser seulement la
transmission du rayonnement solaire ades longueurs d'onde sup€&ieures &7 pm.

La lumiée du soleil énergente de la fibre est collimatéavec une lens4 et injectée dans
l'espace libre. L’amplitude de la lumicre du soleil est ensuite modulée a une vitesse d'environ
1 kHz et dirigeée vers un séparateur de faisceau. Le faisceau solaire de 12,5 mm de diamére
est superpos€au séparateur de faisceau avec un faisceau OL de 7,5 mm de I'EC-QCL a
I'avance de taille &argie par deux OAPM, en ajustant son intensitéal‘aide d'un polariseur IR.
Les faisceaux combinés concentré& par un OAPM2 sont injectés dans le photomixteur VIGO
pour la déection de I'né&é&odie.

Une partie du faisceau OL (puissance OL transmise par le séarateur de faisceau) est
dirigée soit vers une cellule de passage unique de 12,5 cm remplie d'un mé&ange CH, dans
I'air pour une déermination de fr&uence absolue, soit vers un Ge-etalon fait maison de 12,5
cm (FSR &0,0333 cm™) pour une calibration de fré&juence relative lorsque la fréjuence OL

est rgle.

iii.2.2. Mesure de I'hé&é&odie du spectre d'absorption atmosphé&ique CH,4 et N,O

Le prototype RHL développéa &édeéployésur le toit de la plate-forme ULCO-IRENE a
Dunkerque (51.05N/2.34<E) pour la t@&léection au sol des gaz traces dans la colonne
atmosphé&ique.

Lors de la vé&ification du bruit du systéme au port de sortie RF du photomixteur avec
I'analyseur de signaux, il a &@&constatéque le bruit du systéne a &€augmentédans les 110
MHz, et est devenu particuliéement important autour de 100 MHz, comme le montre la Fig.
5.16.

Par conséguent, la bande de filtre RF pré&é&lemment optimisée de 27,5-270 MHz n'é&ait
plus adaptés, un nouveau filtre RF avec une bande de passage de 225-270 MHz a &é
sé@ectionnépour @iminer cet exces de bruit. Les paraméres op&ationnels du RHL ont &é
fixé comme suit :

(1) fréuence centrale OL : 1262,00 cm™, numé&isé& aune fr&uence de 250 mHz avec
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une tension de balayage de 3,8 V et un dé&salage de 2,0 V;

(2) LIA constante de temps : 1 ms;

(3) temps d'acquisition par spectre : 60 s;

(4) nombre moyen de spectres : 15.

La fré&uence OL a &énumé&isé autour de 1262,00 cm™ al'aide du mode de balayage
PZT, le spectre atmosphé&ique d'absorption CH4 et N,O a &é& mesuré dans la colonne
atmosphé&ique. La figue 5.17 montre un spectre d'absorption hé&e&odine de CH4 et N,O
atmosphé&iques autour de 1262,00 cm™ (&gauche). La figue 5.17 montre éalement des
spectres de simulation (adroite) pour l'identification spectrale.

Fig. 5.18 pré&ente une comparaison de notre spectre RHL extrait exp&imentalement (noir)
avec un spectre FT-IR (rouge) mesuréalaide d'un spectromére de transformation Bruker
125HR  Fourier haute résolution sur la plate-forme QualAir de I'UPMC
(48°50'47"N/2°21"21"E, 60 m au-dessus du niveau de la mer), ainsi qu'avec un spectre d'un
modée de transmission atmosphé&ique (bleu).

Comme illustréala Fig. 5.18, les positions des lignes d'absorption de CH, et de N,O a
partir du spectre RHL é&aient en bon accord avec celles du spectre FT-IR ainsi qu'avec une
mod@&isation de la transmission atmosphé&ique. Comme la vapeur d'eau interfé&ait avec le
spectre RHL de CH4-N,O (indiqguéau Fig. 5.17), et que la distribution de vapeur d'eau
change avec le temps et l'espace, la forme de la ligne du spectre RHL é&ait I&&ement
difféente du spectre FT-IR et de l'atmosphé&e spectre de moddisation de transmission,
fabriqué adiffé&ents endroits et adiffé&ents endroits dans des conditions atmosphé&iques
diffé&entes. Les lignes spectrales globales des trois spectres éaient cohé&entes.

En comparant le spectromére FT-IR utilis€pour les mesures adistance au sol des gaz
traces dans la colonne atmosphé&ique, RHL est avantageux en termes de : fonctionnement de
la température ambiante, taille compacte, portabilité, résolution spectrale plus élevée, et d’un

FoV plus petit, comme ré&umeédans le tableau 5.5.

iii.3. Conclusion

Un prototype RHL transportable complet impliquant une fibre mid-IR pour recueillir la
lumiére du soleil atravers un EKO sun-tracker a @éédéveloppé L'évaluation et I'optimisation
du prototype RHL dé&veloppé a l'aide d'un rayonnement stable de corps noir a haute
tempé&ature pour simuler la lumiée du soleil ont &&effectuees. L'instrument RHL développé

a ensuite éétestéet validéau moyen de mesures au sol sur le terrain de CH4 et N,O
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troposphé&iques dans la colonne atmosphé&ique sur le toit de la plate-forme IRENE de
I'ULCO aDunkerque (51.05N/2.34<E). Le spectre extrait par le RHL é&ait en bon accord
avec le spectre FT-IR mesuréal'aide d'un Bruker IFS 125HR FTS et avec un spectre de
mod@isation de la transmission atmosphé&ique, ce qui démontrait que le prototype RHL
portable développépouvait &re utilisépour des mesures de sondage atmosphé&ique au sol des
GHGs dans la colonne atmosphé&ique.

Dans les futurs travaux, les profils verticaux des GHGs dans la colonne atmosphé&ique
seront r&upé&é& a partir du spectre RHL mesuré au sol & l'aide d'un algorithme de
reeup&ation, compte tenu d'une connaissance desente des parametres atmosphé&iques supplé
mentaires, comme l'angle solaire, I'atmosphe&re la tempé&sature, la pression atmosphé&ique, la

composition de I'atmosphére et I'indice de réfraction.
Mots-clé&s : Oscillateur Local (OL); Radiomére hé&é&odyne laser (RHL); Té&é&léection au sol;

Laser acascade quantique acavitéexterne (EC-QCL); Infrarouge moyen (IR moyen); Fibre

IR polycrystalline.

195



Appendix

Appendix 1 All fiber-coupled LHR

A compact mid-IR laser heterodyne radiometer involving an all fiber-coupled optical system
in principle could significantly improve photomixing efficiency, system stability and
flexibility (Fig. 1).

Solar radiation Atmospheric
\3/_ 4 vertical column
D &

computer E
)

Lock-in
Amplifier

Chopper

— || pzT .
Modulation Driver N
Band-pass Square-law

T Photomixer
| filter detector

Temperatll:re ---»| EC-QCL - N
Controller Fiber terminal RF receiver

Lens

Fiber terminal

Figure 1 Schematic of an all fiber-coupled mid-IR LHR.

Sunlight is coupled to a polycrystalline fiber via a lens associated with a Ge-filter to block
the solar radiation with wavelength short than the near-IR. The outgoing beam from the fiber
is coupled to a 320-um-core single-mode fiber by a collimator. This incoming sunlight is
amplitude modulated at a rate of about 1 kHz. Light from the EC-QCL laser (LO) is also
coupled to a 320-um-core single-mode fiber. These two fiber-coupled light beams are
superimposed in a larger 1000-um-core multi-mode fiber and injected into the VIGO
photomixer via free-space coupling. Before the design of such all fiber-coupled optical
transmission system, the beam coupling loss due to the fiber modes is studied.

(1) Fiber coupling efficiency to the HE;, modes

When a Gaussian beam is on-axis focused into a hollow fiber, only the HE;, modes are
excited. The spatial profiles of the HE;, modes in a fiber can be approximated by the zero-

order Bessel function, that is :
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r
E(r) = EO‘]O(Mm gj 1)

where 0 <r <a. A Gaussian beam with a waist g can be expressed by :
E(r)=E,e0p(-r*/e}) )
The power coupling efficiency of the incident beam to each HE;,, mode can be expressed

by the overlap integral :

2
|:Ioaexp (— r’lw? )\]o(ﬂlm ;jrdr}

©)
.[:exp (~2r?/w? )reran(ylm ;err

m=

This equation describes the amount of light power coupled to the HE;,, modes in the fiber
for a given light spot size to fiber core size ratio me/a. According to this equation, calculation
was performed using MATLAB to obtain theoretical coupling efficiency curves of the first

five HE;, modes in 320-, and 1000-um-core hollow-glass fiber, respectively (Figs. 2 and 3).

f-number

0 5 10 15 20 25 30
1.0

320 pm bore

08

06

o o4

02|

0.0
0.0 0.2 0.4 0.6 0.8 1.0

Figure 2 Calculated coupling efficiency curves of the first five HE;,, modes in a 320-um-core hollow-glass
fiber.
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Figure 3 Calculated coupling efficiency curve of the first five HE;,, modes in a 1000-um-core hollow-glass
fiber.
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As can be seen in Figs. 2 and 3, the highest coupling efficiency were obtained when :
wola = 0.64 (4)
for HE11 mode in a 320-, and 1000-pum-core hollow-glass fiber, respectively

(2) Attenuation coefficients for the HE;, modes inside the fiber

For a hollow fiber with a single dielectric film, the minimum loss occurs when the films

thickness d is given by [1] :

A n
d=—"—tan"| —— ()
27z /nf -1 L/nj —J
where ng is the wavelength-dependent refractive index of the dielectric films. The assumption
is that there is no absorption in the films. Here :
0.239 1920 2678 1.233
TR TR T

At 8 pm, ng (A1) = 1.9512 which leads to a thickness of d = 43 pm.

n,(1)=1.956 — (6)

The attenuation coefficients of the various HE, fiber modes can be expressed as :

A =| = | — x3—|1+—=; , HE1m modes 7
2z ) a’\n®+«? 2 In? -1 "

where n and « are the real and imaginary parts of the complex index of the metallic guide,

b is the mth root of the zero-order Bessel function, A is the wavelength, and a is the core

radius. The pum values for the first five HE1, modes are given in Table 1.

Table 1 Values of L, for the first five HE,,, modes.

M1 | 2.40482555769577

2 | 5.52007811028631

s | 8.65372791291101

s | 11.7915344390142

s | 14.9309177084877

Calculation of the attenuation coefficients for the first four HE;, modes in an Ag/Agl
hollow-glass fiber is made according to Eq. (9). These four curves show the 1/a°

dependence of loss as well as the dramatic increase in loss for the higher order modes (Fig. 4).
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Figure 4 Calculated attenuation coefficients of the first four HE,,, modes in an Ag/Agl hollow-glass fiber.

As can be seen in Fig. 4, the HE;; mode will have the smallest attenuation coefficients, i.e.

the lowest transmission loss.

(3) Total loss in hollow fibers

To make an estimation on the theoretical transmission losses in a hollow fiber, one needs to
take into account both the attenuation and coupling efficiency to each of the modes.

Accordingly, the transmission in a length z, P, can be expressed as :
P, = 1, &0 (-2,2) 8)

where the factor 2 is resulted from squaring the electric field to get the intensity. It is
particularly important to sum over all possible modes when calculating a theoretical loss for
fiber used under poor launch conditions since it may excite many higher order modes. The
theoretical total loss L, can be expressed as :

L, =-10log 3" 7, exp(~2c1,.2) ©)

Fig. 5 shows the coupling conditions necessary to achieve minimal loss through 1-m-long,
320-pm-core and 1000-um-core hollow fibers. Maximum transmission occurs at a f-number

( f —number = f/D=%"
22

with D the beam diameter) :

For 320-pm-core hollow fiber : f —number = £/20, that is : wo/ a = 0.62;
For 1000-m-core hollow fiber : f —number =f/51, that is : oo/ a = 0.52.
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Figure 5 Min-loss coupling conditions for 1-m-long, 320-um-core and 1000-pum-core hollow fibers.

As indicated by the simulation results, the launch condition for maximum transmission
(min-loss) requires a smaller value of wy/a than that for optimal coupling to the HE;; mode
(wo/a = 0.64). The difference depends on fiber core size and is more severe for the larger core
fibers. As can be seen in Figs. 2 and 3, more power is coupled to the higher order modes at
smaller f-numbers (wo/a < 0.64) (Fig. 6 (a)), and the focused spot becomes larger than the
fiber core diameter (2a) at larger f-numbers (wo/a > 0.64) (Fig. 6 (c)). In this case, the beam is
clipped by the fiber walls.

In a large-bore fiber, attenuation to the higher order modes is not significantly greater
than that of the HE;; mode (Fig. 4), so the elimination of beam clipping by reducing the input
beam spot size does not have an obvious effect on the total loss. In addition, for high-power
applications, laser energy cannot hit the fiber walls to avoid any damage. Thus, the possibility
of damaging the input can be eliminated by reducing the input beam spot size with the help of

the smaller f-number (wo/a < 0.64) launch.

'Iﬂ\“—\\ h \II
| @ O © |
A Vi / /

Figure 6 Light coupling with a ratio of light spot size to fiber core size wy/a. (a) mg/a < 0.64; (b) wg/a = 0.64; ()
wg/a > 0.64.

(4) Output beam divergence

The divergence of the beam emerging from the hollow fiber depends on the modes
propagating in the fiber as well as on the core size. The HE1, modes will couple to free-space

modes with a half-angle beam divergence 6 given by [2] :
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0 =sing, = “at (10)
2ma

Calculations for the beam divergence of the first four HE;, modes as a function of core

size are given in Fig. 7. As expected, the lowest order mode gives the smallest beam
divergence, as shown in Fig. 7.

250 — :

Beam divergence (mrad)

L L L L L L L
300 400 500 600 700 800 900 1000

Bore diameter (um)

Figure 7 Calculated beam divergence of the first four HE,,, modes exciting a hollow fiber.

(5) Fiber-coupled LHR system

A fiber-coupled optical assembly is shown in Fig. 8, two single lenses are used to couple
sunlight and laser light into the hollow fibers, respectively, and then a 2 to 1 hollow core fiber
coupler is used to realize beams overlapping.

The design work mainly focuses on improving the fiber coupling efficiency issues.

CPIMWLW350-SMA-DMHF

Laser
2T1FB3201000MW-SMA-0.5m/0.5m
D=12.7mm lens - CLF2ZMWLWS5025
ID = 320 um Hollow Fibers ID = 1000 um Hollow Fiber -SMA-T/M

I

: ] -
D = 25mm lens, * v i

L=05m L=05m
Sunlight
L=1m

CP25MWLW250-SMA-DMIHF

Figure 8 Fiber-coupled LHR assembly.

From above theoretical analysis, the coupling efficiency of a fiber-coupled LHR system
depends on the light beam mode coupling to the hollow fibers. The efficiency of light

coupling to the fiber is limited by two facts, e.g. the focused spot size and the beam focusing
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angle after the light coupling lens. Normally, coupling light into a hollow fiber is relatively
simple, given the relatively large core. However, both transmission and beam quality can be
adversely affected if the proper focal length optic is not used. In general, the beam should
enter straight into the fiber with a relatively gradual focus. The curves drawn in Figs. 2 and 3

show that optimal coupling into the lowest order mode occurs when the ratio of the focused

spot size (2wmo) to the fiber core diameter (2a) : wo/ a = 0.64 (where w, = 2—’%%) ). The beam
T

quality that coupled into the fiber will be highest with the lowest loss. So the calculation for

an optimal focus ( f,, =0.167 x(2a)x b ) assumes an ideal collimated Gaussian input
opt ﬂ

beam, and a non-ideal beam will have a larger focused spot. For this reason, selecting a focal
length that is either equal to or less than the optimal focal length is recommended, which can
in turn satisfy the smaller f-number (wo/a < 0.64) launch condition.

Due to the core size limitation of the 2 to 1 hollow fiber (the maximum option of the core
diameter is 1000 um in our case), S0 the maximum size of each single fiber core for coupling
sunlight/LO is 320 pm.

In our LHR prototype system, the sunlight is collected and collimated with a telescope,
the output beam size is specially filtered by a diaphragm, and the final beam size of sunlight
is D=12.5 mm. Hence, the fo for coupling the sunlight into the fiber should be equal to or
less than 250 mm.

As we know, hollow fibers utilize total internal reflection (TIR) in order to confine and
guide light within a solid or liquid structure. Within the fiber, a critical angle of incidence
exists such that light will reflect off the core/cladding interface rather than refract into the
surrounding medium. To fulfill the TIR conditions in a fiber, the incidence angle of the light
launched into a fiber must be as close as possible to the acceptance half-angle 6 of the fiber.
The numerical aperture (NA) is a dimensionless quantity used by fiber manufacturers to

specify the acceptance angle of an optical fiber and is defined as :
NA=nsin@=sin@ (n =N, = ) (11)
For the 320-um-core hollow fiber, the acceptance full-angle is 2.29°. Because the
focusing angle increases with the decrease of the focal length of the coupling lens, we use

Zemax to make a simulation of the coupling lens, the focusing full-angle 6, after the coupling

lens is about 2.3° when the coupling lens with 250 mm focal length is used, which is
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approaching the acceptance angle of the fiber. Therefore, the focal length 250 mm of the
coupling lens is selected for coupling sunlight.

For a laser with a TEMOO output mode like our Daylight laser, it is sufficient to take into
account only the contribution from the HE;; mode, and to couple as much power as possible
to the HE;1; mode (at wo/a~0.64) into a hollow fiber. Consistent with the fiber core size used
for coupling sunlight, the fiber core size used for coupling the laser beam (with D=2.5 mm) is
also 320 um. The corresponding focal length fo of the coupling lens should be equal to and
less than 50 mm. when the coupling lens with a 50 mm focal length is used, the result of the
simulation shows that the focusing full-angle 0, after the coupling lens is about 2.88°, which
is a little larger than the acceptance full-angle of the fiber. Considering the focused spot size,
the focal length 50 mm is still selected for coupling laser.

Two beams, transmitted by two 320-um-core hollow fibers, separately, will be coupled
into a 1000-um-core fiber in which they are well overlapped. Finally, the output beam from
the 1000-um-core fiber will be focused into VIGO detector using a dual lens
collimating/focusing assembly. The beam focusing full-angle after the dual lens
collimating/focusing assembly should be less than the acceptance angle (35°) of the VIGO
detector. In order to verify this, the beam focusing full-angle is simulated by Zemax, the

result is about 15.3° (as shown in Fig. 9), which is less than 35°.

[ S S
e ¥$_j\*ﬁ ———
—————— — {ﬁ?——;};—’
— e
f1 = 50.8 mm L] L f2=25.4 mm

Figure 9 Dual lens collimating/focusing assembly

Finally, the FoV of the fiber-coupled LHR system is calculated based on the Eq. (1.4).
The fiber system with a D=25 mm diameter lens collecting radiation at A=8 pum would
provide a FoV of ~0.4 mrad (0.023°).

From above analysis, the elements of the fiber-coupled LHR system are as follows :

1. Coupling sunlight : Opton-CP25MWLW250-SMA-DMHF (lens in Ge, AR coating

(3-12 um) with a focal length of 250 mm and 25 mm in diameter).

2. Coupling laser : Opton-CPIMWLW50-SMA-DMHF (lens in Ge, AR coating (3-12
pm) with a focal length of 50 mm and 12.7 mm in diameter), mounted directly to the
Daylight Solution laser head.

3. Fiber-coupled beam mixing : OKSI Opton-2T1FB3201000MW-SMA-0.5m/0.5m (2

to 1 hollow core fiber bundle).
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4. Collimating/focusing : OKSI Opton-CLF2ZMWLW5025-SMA-T/M (lens in Ge, AR
coating (3-12 um) with a focal length of 25.4 mm and 12.7 mm in diameter).

For this configuration, during the field realization, the problem is that the 2 to 1 fiber cannot
be bent on the sun-tracker, and due to the limitation of the sun-tracker, it is not practical to
install a coaxial telescope as shown in Fig. 1. Therefore, it is not possible to follow the Sun’s

movement to collect the solar radiation.
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Appendix 2 Optimization using Zemax

In computer-aided sequential lens design, rays are traced from one surface to the next in the
order in which they are listed. To do this, ZEMAX uses a spreadsheet format called the Lens
Data Editor (LDE).

Upon opening ZEMAX, a blank LDE will appear within the main ZEMAX window. The
LDE is the primary spreadsheet where the majority of the lens data is entered. Some of the
main entries include the following :

- Surf : Type : the type of surface (Standard, Even Asphere, Diffraction Grating, etc),

- Comment : an optional field for typing in surface specific comments,

- Radius : surface radius of curvature (the inverse of curvature) in lens units,

- Thickness : the thickness in lens units separating the vertex of the current surface to the
vertex of the following surface,

- Glass : the material type (glass, air, etc.) which separates the current surface and the next
surface listed in the LDE,

- Semi-Diameter : the half-size of the surface in lens units.

The Lens Data Editor

Surf:Type Comment Radius Thickness Elass Semi-Dismeter Conic

OBJ Standard Infinity Infinity 0.000000 0.000000

STO* Standard Infinity 20.000000 12.500000
2% Standard 5.300000 7.000000 CAFZ 25.000000

0.000000

0.000000

4% Standard 64400000 4.500000 CAFZ 12_700000

u
u

e Standard Infinity 2B2.202272|V 25.000000(T 0.000000
u 0.000000
u

5% Standard -54_400000 30.000000 12700000 0.000000

™R Standard Infinity - 5.931170 0.000000

Each row within the LDE represents a single surface. In sequential ZEMAX, each optical
system begins at the object (OBJ) and ends at the image (IMA). In addition to the object and
image planes, one of the surfaces must be defined as the aperture stop (STO).

Data can be entered into the LDE by typing in the required values in the highlighted cell.
The cursor keys or the mouse may move the highlighted bar to whichever column is desired.

Once the system settings have been defined, information specific to each surface can be
entered into the Lens Data Editor. To reiterate, each row in the LDE represents a single
surface. Therefore, two surfaces separated by glass comprise a single element. So, for the

purposes of the beam contraction, a total of 7 surfaces are needed :

1. Surface (OBJ) : the location where rays are launched is infinity (Thickness);
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2. Surface (STO) : the location of the diaphragm is 20 mm (Thickness) and the semi-
diameter (U means the value is set by user) of the diaphragm is 12.5 mm;

3. Surface (2) : the front surface of the first lens where the rays enter this lens. The
curvature radius of this surface is 69.3 mm (Radius), the lens thickness is 7 mm (Thickness),
the material is CaF, (Glass), and the semi-diameter of lens is 25 mm;

4. Surface (3) : the back surface of the first lens where the rays exit the first lens back
into air. The curvature radius of this surface is infinity (Radius), the distance between the two
lenses is optimized to 282.202272 mm (Thickness (V) : Variable set as the "Solve Type" can
be optimized), and the semi-diameter of lens is 25 mm;

5. Surface (4) : the front surface of the second lens where the rays enter this lens. The
curvature radius of this surface is 64.4 mm (Radius), the lens thickness is 4.5 mm (Thickness),
the material is CaF, (Glass), and the semi-diameter of lens is 12.7 mm;

6. Surface (5) : the back surface of the second lens where the rays exit the second lens
back into air. The curvature radius of this surface is -64.4 mm (Radius), the distance between
the two lenses is optimized to 30 mm (Thickness), and the semi-diameter of lens is 12.7 mm;

7. Surface (IMA) : the location where the ray trace stops. No surfaces can be located
after the image surface in the LDE. Note that this surface does not necessarily have to be at

an acutal image location.

Because of using stock lenses, the only variable we assign here is the distance between
two lenses, that is, the value of the thickness of surface 3 shown in Table.
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Appendix 3 Conversion from the measured intensity (in [V]) to the radiation (in [W/m?])

In order to convert the measured intensity (in [\V]) to the radiation (in [W/m?]), the following

conversion process has been executed :
1. The relationship between the outputs of the detector and the lock-in amplifier
Labview reading from the output of the lock-in amplifier : V5= 0.27456 V,

Oscilloscope reading from the Vigo detector : Vge= 920 mV;
The relationship between the detector output Vs and lock-in amplifier output Ve
Vaa(V)=3.3508xV,,,(V ) (1)
2. The relationship between the intensity and power

The response characteristics of the Vigo detector from the datasheet :

(1) The voltage responsivity (acc. £20% at 10.6 m) : R = 2.7E + 4 V/W;

(2) The active area : S = 0.5 mm x 0.5 mm.

The relationship between the intensity (in [V]) and the power (in [W]) :

Power(W) 1 W
Intensity (V) R(X) =37k 5(V) @)
W

Here, the intensity is Ve, then the power in function of the intensity is obtained by :
Power (W )= 3.7E —5* Intensity (V,,,in[V ) =1.24E —4*V,_ (V) 3)
3. The conversion between the measured intensity (in [V]) and the radiation (in [W/m?])

Power(W) 1.24E—-4*V, (V)
Area(m?)  0.5E —3*0.5E -3

Radiation = =496*V,, (V) (4)
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Appendix 4 Solar emission spectrum

Solar emission spectrum is the distribution of the radiation energy associated with the given
wavelengths. More than 99.9% of the energy is concentrated in the wavelength range from
0.2-10.0 pm, and the peak radiation is at 0.48 pm. The energy in the ultraviolet band (<0.40
um), the visible light band (0.40-0.76 um) and the infrared band (>0.76 um) account for
about 9%, 44%, and 47% of the total energy, respectively. The solar emission spectrum is a
continuous spectrum, but when the visible light below the Sun's surface passes through the
layers above the photosphere and chromosphere, some light at particular wavelengths is
absorbed by atoms and ions and so it seems missing in the solar emission spectrum that we
can see. When there is no light, it appears as black in the solar emission spectrum. These
absorption lines are called Fraunhofer lines, and there are more than 2000 Fraunhofer lines of
the solar atmosphere when the Sun is viewed from moderate to high resolution [1].

Fig. 1 shows a solar irradiance spectrum in the range of 1223-1263 cm™ computed
through a Model by G. Wang [2], and there are no Fraunhofer lines in the range of 1241.4-
1242.4 cm™ (Fig. 2 (a)). In the range of 1261.3-1262.5 cm™ (Fig. 2 (b)), there is a very weak
Fraunhofer line which can be neglected compared with the atmospheric absorption lines for
our research.
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Figure 1 Solar irradiance spectrum in the range of 1223-1263 cm™ computed through a Model by G. Wang [2].
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Figure 2 (a) Solar irradiance spectrum in the range of 1241.4-1242.4 cm™; (b) Solar irradiance spectrum in the
range of 1261.3-1262.5 cm™ computed through a Model by G. Wang [2].
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Appendix 5 Article : Real-time monitoring of N,O production in a catalytic reaction
process using mid-infrared quantum cascade laser

Real-time monitoring of N,O production in a catalytic reaction process
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Abstract

In the context of climate change mitigation, reuse of carbon dioxide (CO;) represents an
alternative with important applications in chemical industry and power generation. Therefore,
CO; must be purified. Combustion processes lead to high amounts of CO, but still with
impurities and also accompanied by toxic gases (mainly NO and CO). A catalytic reduction
process of NO (to N2) while oxidizing CO into CO; is a promising method to purify the CO..
However, nitrous oxide (N,O) with a global warming potential of 300 times greater than CO,
may be a by-product from this process. It is therefore necessary to optimize the chemical
reaction conditions to minimize N,O production. A room-temperature continuous-wave (CW)
external-cavity quantum cascade laser (EC-QCL)-based optical sensor was developed for
real-time monitoring N,O production during the whole catalytic reaction process. A well-
isolated N,O absorption line, located at 1261.0598 cm™, of the v; fundamental vibrational
band was selected for sensitive and selective measurement of N,O concentration by direct
absorption spectroscopy. Using a modified-Herriot multi-pass cell with an effective path-
length of 50 m, the limit of detection (1o) of 32.3 ppbv was obtained in 12 s with 1.1%
relative uncertainty in measurement precision. N,O productions through the catalytic
reduction of NO by CO over Pt/SiO, catalyst under different temperatures were investigated.
High N,O production of up to ~ 6.1 ppmv at 190 °C was observed. The optimal reaction
conditions for zero N,O production were found at a temperature higher than 340 °C where
47% of NO was converted to No.

Keywords: Catalytic reaction process; NO-CO reaction; Pt/SiO, catalyst; Quantum cascade
laser; Long-path laser absorption spectroscopy.
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1 Introduction

Carbon dioxide (CO,) is responsible for 55-60% of anthropogenic radiative forcing on
global warming. The wvast majority of anthropogenic CO, emissions come
from combustion of fossil fuels (principally coal, oil, and natural gas) [1]. To reduce CO,
injected into the atmosphere, reuse of CO; represents a promising and alternative solution
because CO, is a valuable industrial gas for chemical industrial applications and power
generation [2]. For this purpose, CO, should be as pure as possible. Purification of CO; can
be performed through the following methods: (1) pre-combustion [3], (2) post-combustion [4]
and (3) oxyfuel-combustion. Compared to the first two methods, oxyfuel-combustion allows
one to obtain a rich CO, stream with the highest purity (80%-98%) [5]. In an oxyfuel system,
the combustion flow consists of O, and CO,. This Process emits also water (H,O) vapor,
unburned components such as carbon monoxide (CO) generated by incomplete combustion
and nitrogen monoxide (NO) due to the oxidation of nitrogen (N,) included in the fuel.
Because NOx (including NO and NO,) is considered as one of the main environmental
pollutants responsible for production of photochemical smog and acid rain, as well as for
ozone layer depletion [6], its production should be minimized.

Purifying CO, in an exhaust flow from the oxyfuel-combustion can be realized through
the reduction of NO to N, by oxidizing CO into CO; over catalysts [5]. Products from the
chemical process of NO reduction via reaction with CO is, like any chemical reaction,
depending upon the reaction conditions (quantity of NO and CO, temperature, pressure,
presence of oxygen and water vapor or not), kind of catalyst (active phase, metal dispersion,
support type) and synthesis method, etc. The main reactions are given by the following
equations [7]:

2NO +2 CO — 2 CO, + Ny (expected process) Q)
6 NO +4 CO — 4 CO;, + 2 N, + N,O (unexpected process) 2

As shown in Equation (2), in an unexpected process, N,O may be a by-product from the
NO-CO reaction [6]. As N,O is a very powerful greenhouse gas with a global warming
potential of 300 times greater than CO,, it is therefore necessary to optimize the catalytic
reaction conditions to minimize the N,O production. In the present work, a N,O sensor based
on a continuous-wave external-cavity quantum cascade laser (EC-QCL) has been developed
for real-time on-line monitoring of N,O during the catalytic reduction process of NO by CO.

The analytical techniques currently used to measure N,O concentration are described as
follows:

(1) Gas Chromatograph (GC) which separates different chemical components from a
mixture based on the molecular-specific retention times in a separation column, the eluted
analyte components from the column may be detected using a thermal conductivity detector
(TCD) based on the fact that their thermal conductivities are different from that of the
reference carrier gas. However, the retention time for N,O and CO, are almost the same. In
case of a huge CO, amount in the gas composition, this cross-interference will result in
hiding the small N,O signal [8], which makes GC technique unsuitable for quantifying N,O
in this work.
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(2) Mass Spectrometry (MS) in which the gas sample is firstly ionized to electrically
charged fragments. By subjecting and accelerating them in an electric or magnetic field, they
will be separated according to their mass-to-charge ratio (MCR) [9] which determines the
deflection of the moving ion's trajectory inside the electric or magnetic field. They will be
detected using an electron multiplier capable of detecting charged particles. The molecular
species can thus be identified and quantified via the information on their MCR and the
detected ion abundance [10]. As summarized in Table 1, the mass fragments of N,O are 44,
30, 28, 16 (in [kg/C]) that can be also found in CO, (44, 28, 16) and in NO (30 and 16).
These interferences will significantly impact N,O quantification using MS.

Table 1. Mass-to-charge (m/z) ratio of the mass fragments of the main exhaust gases from
oxyfuel-combustion.

Fragment m/z (in [Kg/C])
N.O 44 30 28 16
NO 30 15 16
NO, 30 46 16
CcoO 28 16
CO; 44 28 16

(3) Tunable diode laser absorption spectroscopy (TDLAS) which identifies and quantifies
gaseous species of a mixture based on the Beer-Lambert law. High spectral resolution
TDLAS could enable in-situ, real-time, interference-free quantification of target molecular
species with high-accuracy and without any sample preparation [11].

In this paper, we report on the development of a N,O sensor based on a continuous-wave
(CW) external-cavity quantum cascade laser (EC-QCL) operating at ~ 8 pm, coupled to a
modified-Herriot multi-pass cell. Working at an optimal gas pressure of 120 mbar, a 16 (SNR
= 1) limit of detection of 32.3 ppbv was achieved in 12 s averaging time with a relative
uncertainty of 1.1% in measurement precision. Productions of N,O through catalytic
reduction of NO by oxidizing CO into CO, over Pt/SiO, catalyst under different temperatures
were experimentally monitored. N,O concentration of up to ~ 6.1 ppmv at 190 °C was
observed and analyzed. The optimal catalytic reaction condition for zero N,O production was
experimentally determined.

2 Experimental details
2.1 N,O monitoring by long optical path absorption spectroscopy

The experimental setup is shown in Fig. 1. An EC-QCL (TLS-41000-MHF, Daylight
solutions Inc.) was coupled to a modified-Herriot multipass cell. The EC-QCL frequency was
scanned across an appropriate N,O absorption line to determine its concentration-dependent
integrated absorbance by fitting the experimental absorption spectrum to a Voigt profile
model. The fine frequency tuning of the EC-QCL was realized by applying a 50 Hz sine-
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wave (with an amplitude of +3 Vpp and an offset of +1.6 Vpc) from a function generator to
the PZT (Piezoelectric ceramic transducer) element of the external cavity of the EC-QCL. As
shown in Fig. 1, a 10% reflected laser beam is sent to a Fabry-Perot etalon for laser frequency
calibration, and the 90% transmitted laser beam is directed into the multi-pass cell to perform
long optical path absorption.
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Fig. 1. Experimental setup used for N,O monitoring. BS : Beam-splitter; GC : Gas chromatograph; MFC 1, 2, 3,
4,5, 6 : Mass Flow Controllers; Th 1 : Thermocouple oven, Th 2 : Thermocouple blank, Th 3 : Thermocouple
reactor, Th 4 : Thermocouple saturator; Prs : Pressure sensor; VIGO : Thermoelectrically cooled infrared
photovoltaic detector; DAQ : Data Acquisition card.

VIGO

The used modified-Herriot multi-pass cell (New Focus, Model 5612) was formed with
two high reflectivity mirrors with a volume of 3.2 L. Laser light entered and exited the cell
through a common hole equipped with a wedged entrance window at the front of the cell. In
the present work, 90 passes were made between the mirrors (the mirror separation is 55 cm)
resulting in a fixed effective optical path of 50 m. The exiting laser beam from the cell was
focused into a thermoelectrically cooled infrared photovoltaic detector (PVI-4TE-10.6, VIGO
System S.A.). A National Instruments data acquisition card (PCI 6251, NI Inc.), controlled
using a LabVIEW program was applied for data sampling. The recorded data were
transferred to a laptop for further data processing to retrieve N,O concentration.

2.2 Selection of a N,O absorption line for sensitive and selective trace gas monitoring

High spectral resolution is required in spectroscopic measurement for discrimination of
the target gas absorption from the absorption of other interfering species. Careful selection of
appropriate absorption line(s) well isolated from other interference lines was performed. Fig.
2 shows a simulation spectrum of the selected N,O absorption line (centered at 1261.0598
cm™ with a line intensity of 9.677E-20 cm/molecule), based on the HITRAN database [12],
The simulation was calculated using 300 ppbv N,O in a 50 m long absorption cell at 120
mbar. Meanwhile, potential interferences from 450 ppmv CO, and 1% H,O vapor were taken
into account in the simulation. As can be seen in Fig. 3, this selected line, well isolated from
spectral interferences of CO, and H,O, is a good tradeoff between the required sensitivity and
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selectivity for monitoring N,O by direct absorption spectroscopy in a 50-m long optical path
at 120 mbar.
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Fig. 2. Simulation of 300 ppbv N,O absorption spectrum in a multi-pass cell (L¢=50 m) at 120 mbar.

2.3 Frequency metrology and N,O absorption spectrum retrieval

The N,O absorption signal was recorded versus the data point number when scanning the
EC-QCL frequency around 1261.0598 cm™ using PZT scan mode. For the conversion of this
absorption signal (a) to an absorption spectrum (d) (Fig. 3), interference fringes from a home-
made Fabry-Perot etalon with a free spectral range (FSR) of 1 GHz (~ 0.0333 cm™) were
recorded (b) and used to determine the relationship between the data point number and the
frequency in wave number (c). The absolute frequency was determined with the help of N,O
absorption frequency provided by the HITRAN database [12].
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Fig. 3. Absorption signal of 5 ppmv N,O at 120 mbar (a); the corresponding absorption spectrum (d) obtained
by using the relative wavenumber calibration curve (c¢) which allows one to convert “data point number” into
“wave number” by means of the FRS of the used etalon (b).

2.4 N,O concentration retrieval

N,O concentration can be determined based on the Beer-Lambert law using known
spectral parameters (such as absorption frequency, line intensity, etc.). In the present work,
the N,O concentration was deduced from a calibration curve of concentration vs. integrated
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absorbance (absorbance integrated over the scanned spectral range [13]). For this purpose,
N,O samples with different standard concentrations were produced using a high-precision gas
dilutor (Model PPA 2000M, Calibrage Inc.).

A N0 cylinder with a standard concentration of 1000 ppmv (Cinitiar) With different flow
rate (D;) was mixed with N gas at a fixed flow rate (D) in the gas dilutor. The concentration
of the diluted N,O (Ciinal) Was calculated using the following equations :

Cinat = Cinitiar | K 3

K :(D1+Dz)/D1 (4)

where K is the dilution factor, D, is fixed at a constant rate of 2086 ml/min. Different N,O
concentrations were produced at 0.24, 0.51, 0.99, 1.46, 2.01, 2.48, 3.37 and 5.03 ppmv for the
calibration in the present work. The relevant settings and the obtained final concentrations are
presented in Table 2.

Table 2. Relevant settings and the diluted concentration.

D1 [ml/min] K Cinitiar [PPMV]  Cfinar [PPMV]
0.50 4173.0 1000 0.24
1.06 1968.9 1000 0.51
2.06 1013.6 1000 0.99
3.06 682.7 1000 1.46
4.20 497.7 1000 2.01
5.16 405.3 1000 2.48
7.06 296.5 1000 3.37
10.55 198.7 1000 5.03

The multi-pass cell was initially rinsed with pure nitrogen (N;) before the N,O
measurement. The N,O absorption spectra centered at 1261.0598 cm™ of ambient air and of
different concentrations produced by dilution were recorded at 120 mbar, as shown in Fig. 4
(a). The relationship between the integrated absorbance A, and the corresponding N,O
concentration (Fig. 4 (b)) was obtained from a linear fit :

_A
Cuo =4 ©)

where k = 7.7656E-4. Based on this calibration formula, the ambient N,O concentration was
determined to be about 32537 ppbv. The relative uncertainty of about 4% is mainly
contributed by the uncertainties in the linear fit (Ak/k < 2 %) and in the Voigt profile fitting
(AAVA <2 %).
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Fig. 4. (a) N,O absorption spectra at different concentrations at 120 mbar; (b) Plot of the integrated absorbance
vs. concentration, associated with a linear fit.

2.5 Measurement precision and limit of detection (LoD)

Analytical instrument stability is an important issue that affects the detection sensitivity
and the measurement precision. In general, signal averaging is used to improve the detection
sensitivity and the measurement precision. However, due to the instability of the instrument
(such as changes in light intensity, laser wavelength shift and detector dark noise drift, etc.),
any actual system is only stable for a limited time, i.e. an optimal averaging time should be
determined via an Allan variance analysis [14].

In the present work, time series measurements of 1 ppmv N,O absorption spectra were
carried out for the Allan variance analysis to determine the optimal averaging time. 9000
consecutive direct absorption spectra of N,O were experimentally recorded, with an
acquisition time of 0.2 s for each spectrum. Fig. 5 plots an Allan deviation as a function of the
averaging time [15] based on the time series measurements of N,O absorption spectra. The
decaying slope (red dashed line) shows the efficient white noise reduction by signal
averaging with a maximum averaging time (system stability time) of about 236 s, which is
mainly limited by the temperature and current stability of the QCL controller. The
corresponding measurement precision is 5.2 ppbv, leading to a relative uncertainty in
measurement precision of 0.5%. After 236 s, the Allan deviation increases (blue dashed line),
where the system instability plays a major role which surmounts the noise reduction by
increasing averaging time.
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Fig. 5. Allan deviation plot.
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In the present work on monitoring a chemical reaction, a measurement precision of 10.8
ppbv (corresponding to a relative precision uncertainty of 1.1%) in 12 s was used to real-time
track N,O production.

Fig.6 shows an experimental absorption spectrum of N,O in air at a pressure of 120 mbar
with 240 averaged spectra in 12 s, the concentration retrieved was 325 ppbv. Based on the
signal-to-noise ratio (SNR = 10.1) deduced from the Voigt profile fit to an experimental
absorption spectrum of N,O in air and the fit residual, a 16 (SNR = 1) limit of detection was
determined to be 32.3 ppbv in 12 s.
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Fig. 6. Upper panel : Absorption spectrum of N,O in air (black curve) @ 120 mbar accompanied with a Voigt
profile fit (red curve). Lower panel: Fit residual.

3 Results and discussions

Before performing the catalytic reaction of NO with CO, a Pt/SiO, catalyst was pre-
treated in a flow of He with a flow rate of 40 mL/min at 200 °C for 1.5 hours. The catalyst
was sieved in order to retain particles of a diameter between 0.315 and 0.500 mm which aims
to select particles with the same diameter because the diameter of the catalyst has an
influence on the catalytic activity. It was then diluted to a constant volume by SiC (not active
in CO; purification from 50 to 500 °C). CO, purification was then carried out by catalytic
reduction of NO by CO in a fixed-bed flow reactor containing 150 mg Pt/SiO, catalyst at
ambient pressure. All above experiments were carried out at a GHSV (Gas Hour Space
Velocity : the ratio between the volumetric flow rate and the volume of the catalyst) of 2.24
10*h™,

In a typical catalytic reaction process (Fig. 7 left), the flow of the reactant gases was
composed of 20% CO,, 10% O,, 0.5% CO, 0.02% NO and He (eluent gas) with a total flow
rate of 200 mL/min. The products of CO, and N, from the catalytic reduction of NO by
oxidizing CO were analyzed by an on-line gas chromatography (TranceGC 1300 XXL,
Global Analyzer Solutions G.A.S., Inc.), NO was analyzed with a NO analyzer (Xentra
4900C, Servomex Inc.), NO, was measured with the same NO analyzer after conversion of
NO, to NO by a converter BUNOXx (Bthler Technologies Inc.), while N,O was monitored by
the EC-QCL-based Laser sensor (Fig. 7 right).
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Fig. 7. left: Experience of catalytic reduction of NO to purify CO, in exhaust gas flow from oxyfuel-combustion,
right; EC-QCL-based Laser sensor.

3.1 N,O evolution in catalytic reaction of NO with CO

The catalytic reaction of NO with CO over the pre-treated Pt/SiO, catalyst in the
temperature range of 50-500 °C was performed, N,O production was monitored and analyzed
by the developed EC-QCL sensor.

A N0 absorption spectrum recorded during the process of NO reaction with CO over a
Pt/SiO, catalyst at 190 °C is shown in Fig. 8. It was recorded at a pressure of 120 mbar in the
multi-pass cell with 240 spectral averages in 12 s.
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Fig. 8. Absorption spectrum of 6.13 ppmv N,O during a catalytic reaction of NO with CO over a Pt/SiO,
catalyst at 190 °C @ 120 mbar.

Fig. 9 shows time series measurement (with a step of 1°C from 50 to 500 °C) of N,O
concentrations produced during the NO-CO reaction over the Pt/SiO, catalyst. A maximum
concentration of ~ 6.1 ppmv N,O was observed at 190 °C.

3.2 Result analyses and conclusion

According to the chemical reaction mechanism shown in Eq. (2), combining the result
shown in Fig. 9 with a given initial NO concentration (0.02% or 200 ppmv) in the catalytic
reaction process, one can determine the conversion efficiency of NO to N,O using the
concentration ratio of N,O to NO.
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Fig. 9. Concentration of N,O in a NO-CO reaction over a Pt/SiO, catalyst vs. temperature.

Efficiencies of the catalytic conversion using Pt/SiO, catalyst are plotted in Fig. 10 in the
temperature range of 50-500 °C. The conversion efficiencies of NO to N, (red) by reduction,
to NO; (blue) by oxidation and to N,O (green) by reduction; as well as the conversion
efficiency of CO to CO; (black) are shown in the figure. It can be seen that both N, (red data)
and NO; (blue data) are the primary by-products, while N,O (green data, the data in curve are
magnified 10 times) is a secondary product with a very small amount after 100% conversion
of CO to CO; (black data) at 180 °C. At the temperature of max. N,O production, the
reduction efficiencies of NO to N, (red data) and to N,O (green data) reach about 59% and
6%, respectively, and the oxidation efficiency of NO to NO, (blue data) is around 31%,
accompanied with 100% oxidation efficiency of CO (black data) to COs.

As shown in Fig. 10, at 250 °C, the reduction efficiency of NO to N, (red data) is 63%,
nearly 4% to N,O (green data), and 30% oxidation efficiency of NO to NO, (blue data).

As can be seen, NO, (blue data) was produced after the full CO-CO, conversion (black
data) through oxidation of NO by the residual O, in the exhaust gas flow, which reached 20%
at 160 °C. The maximum favorable reduction efficiency of NO to N, (red data) was 63% at
250 °C. The optimal catalytic reaction conditions for zero N,O production was observed at a
temperature higher than 340 °C where 47% of NO is converted to N, (red data) and 26% of
NO converted to NO; (blue data) and still 27% residual NO in the exhaust flow gas. All NO
conversion efficiencies at specific temperatures discussed above are summarized in Table 3.
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Fig. 10. Conversion efficiency of NO to N, (red), NO, (blue) and N,O (green, the values are magnified 20
times); and CO to CO, (black) over Pt/SiO, vs. temperature.

Table 3. Conversion efficiency of NO to N, N,O and NO, vs. temperature.

Temperature NO conversion efficiency
(C) NO—N, | NO-N;O | NO—NO, NO
190 59% 6% 31% 4%
250 63% 4% 30% 3%
340 47% 0% 26% 27%

4 Conclusions

We demonstrated the application of an 8 um EC-QCL to real-time optical monitoring of
N,O evolution in a catalytic reaction of NO-CO. Productions of N,O through catalytic
reduction of NO by oxidizing CO over a Pt/SiO, catalyst were experimentally investigated
under different temperatures, which allowed us to study the conversion efficiency of NO to
N0 and to determine the optimal catalytic reaction temperature for zero N,O production.
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Laser Heterodyne Radiometry for Ground-based Measurement of CH4; and N,O in the

Atmospheric Column
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Laboratoire d'Etudes du Rayonnement et de la Matiée en Astrophysique et Atmosphéres, UniversitéPierre et
Marie Curie, Paris, France, (3) Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences,
Hefei, China

Measurements of vertical concentration profiles of the key atmospheric trace gases, such as ozone (Os) [1,2],
carbon dioxide (CO,) [3,4], methane (CH,) [2,4], nitrous oxide (N,O) [2] and water vapor (H,O) [2], is

extremely important for our understanding of regional air quality and global climate change trends.

In this context, a portable mid-infrared laser heterodyne radiometer (mid-IR LHR) has been developed [5] in the

present work which aims at ground-based remote measurements of trace gases in the atmospheric column.

The solar radiation undergoing absorption by multi-species in the atmosphere was coupled into an optical fiber
through a telescope that was installed on a sun tracker following the Sun’s movement. An external cavity
quantum cascade laser (EC-QCL) tunable from 1223 to 1263 cm™ was used as local oscillator (LO) to mix the
Sun light in a fast photodetector to generate a beat note at radio frequency (RF). Scanning the LO frequency
across absorption lines allows one to recover the absorption feature of the target molecular trace gases from the

total absorption of the solar radiation in the atmospheric column.

A field test has been performed on the roof of the laboratory in Dunkerque (51.05N/2.34<E). The preliminary
result of heterodyne measurement of tropospheric CH, and N,O in the atmospheric column will be presented
and discussed.
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