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Abstract

This thesis studies nodal sextics (algebraic curves of degree six), and in particular
rational sextics, in the real projective plane. Two such sextics with k nodes are called
rigidly isotopic if they can be joined by a path in the space of real nodal sextics with k
nodes. The main result of the first part of the thesis is a rigid isotopy classification of
real nodal sextics without real nodes, generalizing Nikulin’s classification of non-singular
sextics. In the second part we study sextics with real nodes and we describe the rigid
isotopy classes of such sextics in the case where the sextics are dividing, i.e., their real
part separates the complexification (the set of complex points) into two halves. As a
main application, we give a rigid isotopy classification for those nodal real rational sextics
which can be perturbed to maximal or next-to-maximal sextics in the sense of Harnack’s
inequality. Our approach is based on the study of periods of K3 surfaces, drawing on the
Global Torelli Theorem by Piatetski-Shapiro and Shafarevich and Kulikov’s surjectivity
theorem, as well as Nikulin’s results on symmetric integral bilinear forms.
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Résumé

Cette thèse est consacrée à l’étude des courbes sextiques nodales, et en particulier des
sextiques rationnelles, dans le plan projectif réel. Deux sextiques nodales réelles ayant k
points doubles sont dites rigidement isotopes si elles peuvent être reliées par un chemin
dans l’espace des sextiques nodales réelles ayant k points doubles. Le résultat principal
de la première partie de la thèse donne une classification à isotopie rigide près des
sextiques nodales irréductibles sans points doubles réels, généralisant la classification des
sextiques non-singulières obtenue par Nikulin. La seconde partie porte sur les sextiques
ayant des points doubles réels : une classification est obtenue pour les sextiques nodales
séparantes, c’est-à-dire celles dont la partie réelle sépare leur complexification (l’ensemble
des points complexes) en deux composantes connexes. Ce résultat est appliqué au cas
des sextiques rationnelles réelles pouvant être perturbées en des sextiques maximales
ou presque maximales (dans le sens de l’inégalité de Harnack). L’approche retenue
repose sur l’étude des périodes des surfaces K3, se basant notamment sur le Théorème
de Torelli Global de Piatetski-Shapiro et Shafarevich et le Théorème de Surjectivité
de Kulikov, ainsi que sur les résultats de Nikulin portant sur les formes bilinéaires
symétriques intégrales.

Mots-clés

Courbe algébrique réelle, isotopie rigide, surface K3, application des périodes
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Introduction

In the study of the topology of real algebraic varieties of low degree, there seems to be
a fine line separating rather easy problems from seemingly intractable ones. The most
classical problem of this kind is the first part of Hilbert’s 16th problem [15], asking for a
classification up to isotopy of real non-singular plane projective curves of a given degree.
This problem is easy up to degree five. The classification in degree six was completed
by Gudkov [13]. In degree seven it was obtained by Viro [42], and it remains open in
degrees eight and higher.

Instead of classifying curves up to isotopy, one can classify them up to rigid isotopy,
that is, isotopy within the space of non-singular algebraic curves of the given degree.
This refined classification is known for non-singular curves in RP2 up to degree six. In
degree six, it was obtained by Nikulin [32].

Given a real sextic in the projective plane, one can consider its set of real points
RC ⊂ RP2 as well as its set of complex points, also called its complexification, C ⊂ CP2.
When studying real plane curves of even degree, a very fruitful idea, due to Arnol’d [1],
is to deduce information about the topology of the pair (RP2,RC) from the complex
surface X obtained as a double cover of CP2 branched along the curve C, together with
an anti-holomorphic involution covering the complex conjugation on CP2. In particular,
useful invariants can be extracted from the action of this involution on the second
integral homology group of X. In the case of curves of degree six, the surface X is a K3
surface. Nikulin’s proof uses two main ingredients: the classification of involutions on
unimodular lattices, and the theory of periods of K3 surfaces, in particular the Global
Torelli Theorem by Piatetski-Shapiro and Shafarevich [34] and the surjectivity of the
period map, due to Kulikov [26]. This approach is very powerful, but unfortunately
limited to curves of degree six.

Instead of increasing the degree, one can study curves with certain singularities in
order to increase the complexity of the problem. The simplest singularities of plane
curves are non-degenerate double points, also called nodes. When studying nodal curves,
by a rigid isotopy one means an isotopy within the space of nodal curves of the same
degree and with the same number of nodes, or equivalently, of the same degree and
the same geometric genus. In his PhD thesis, Itenberg [18, 19] obtained a rigid isotopy
classification of real sextics with one node.

The goal of the present thesis is to extend this classification to real sextics with several
nodes. We are particularly interested in real rational sextics. These have ten nodes and
can be parameterized by real rational functions.
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Real rational plane curves naturally appear in different contexts. Examples are
real enumerative geometry (e.g. counting real rational plane curves of degree d passing
through 3d− 1 points in general position, cf. Welschinger [45]) and the study of real
algebraic knots in RP3, where plane curves appear as projections of algebraic space
curves, and can be thought of as real algebraic versions of knot diagrams (cf. Björklund
[5], Mikhalkin and Orevkov [28]).

For the classification of real rational plane curves of degree four, see Gudkov [12]
and the references therein, and D’Mello [7, 8]. In degree five, the isotopy classification
was obtained by Itenberg, Mikhalkin, and Rau [20], and the rigid isotopy classification
was obtained recently by Jaramillo Puentes [21] using real dessins d’enfants.

From the complex point of view, a node is a transverse intersection of two non-
singular branches of the curve. Nodes of a real plane curve may either be real, i.e.
belong to RP2, or non-real. Non-real nodes on real curves always appear in pairs, which
are interchanged by complex conjugation. Among the real nodes, one may further
distinguish between hyperbolic nodes, where both branches are real, and solitary nodes,
where the two branches are non-real and interchanged by complex conjugation.

An important characteristic of real irreducible curves is whether they are dividing
or not. A non-singular curve is called dividing if the set of real points RC divides the
set of complex points C into two connected components, called halves of the curve. An
irreducible nodal curve is called dividing if its normalization is dividing. A non-real
node on a dividing curve is called non-crossing if the two branches intersecting at this
node belong to the same half, and crossing otherwise.

The main results of this thesis are a rigid isotopy classification of real irreducible nodal
sextics without real nodes, and a classification up to rigid isotopy for those real nodal
rational sextics which can be perturbed into maximal or almost maximal (in the sense
of the Thom-Smith inequality) non-singular sextics. In the following, we outline the
contents of each chapter.

Chapter 1 contains preliminary material about integral lattices (Section 1.1) and
hyperbolic reflection groups (Section 1.2).

In Chapter 2, we investigate the connection between nodal sextics and real K3
surfaces of degree two. Here, we allow reducible sextics. With a real nodal plane sextic,
we associate a real weakly polarized K3 surface. The discrete homological invariants
of these K3 surfaces form the homological type of the K3 surface, and by extension, of
the sextic. The homological type encodes quite a lot of topological and geometrical
information about the sextic, such as its decomposition into irreducible components,
whether it is dividing or not, and how many crossing pairs of non-real nodes it has.
However, in general the homological type does not uniquely determine the rigid isotopy
class of a nodal sextic. For example, when a hyperbolic node is transformed into a
solitary node through a real cusp, this does change the rigid isotopy type but not
the homological type. The cornerstone for the classification of real nodal sextics is
Theorem 2.18, which gives a precise description of the rigid isotopy types corresponding
to a given homological type in terms of certain tilings of two hyperbolic spaces.
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In Chapter 3, we classify real irreducible nodal sextics without real nodes up to rigid
isotopy. This can be seen as a generalization of Nikulin’s classification of non-singular
sextics. We build on Nikulin’s results [33] to classify the homological types of such
sextics, and show that the homological type determines the rigid isotopy class in this
case. The classification states that rigid isotopy classes of real irreducible sextics with m
pairs of non-real nodes and without real nodes are completely determined by the isotopy
type of their real part, whether they are dividing or not, and—if they are dividing—the
number of pairs of non-real nodes which are crossing (Theorem 3.1). Moreover, we
show that any combination of isotopy type of the real part, dividing type, and number
of crossing pairs can be realized by such a sextic if this is not prohibited by classical
restrictions on non-singular sextics, Harnack’s inequality [14] or Rokhlin’s complex
orientation formula [35] for dividing curves (Theorem 3.2).

In Chapter 4, we study dividing real nodal sextics by viewing them as nodal
degenerations of sextics without real nodes. With each rigid isotopy type [C0] of
real nodal sextics without real nodes, we associate a pair of hyperbolic polytopes
(P+, P−). We show that rigid isotopy classes of irreducible nodal sextics obtained by
real degeneration from C0 are in bijection with certain pairs of faces of the polytopes
P+ and P−, considered up to certain symmetries (Theorem 4.21). In Section 4.2, we
present a version of what is called Donaldson’s trick: Using the hyperkähler structure of
K3 surfaces, one can represent real vanishing cycles as holomorphic curves with respect
to a different complex structure. This allows us to apply the intersection theory of
complex curves on complex surfaces to real vanishing cycles.

Chapter 5 is an excursion into the realm of hyperbolic polytopes. We develop a
technique – called descent – which allows us to describe faces of an infinite hyperbolic
polytope in terms of certain combinatorial data of another, higher-dimensional hyperbolic
polytope. It is a generalization of a similar method used by Itenberg [19]. We use this
method in Chapter 6 for the calculation of the rigid isotopy classes of real rational
sextics.

In Chapter 6, we study rigid isotopy classes of real rational sextics, using the results
of Chapters 3, 4 and 5. We present a rigid isotopy classification for real nodal rational
sextics which are degenerations of non-singular sextics with the maximal (eleven) or
next-to-maximal (nine) number of real components. (Sextics with ten real components
cannot be dividing.) We group these rigid isotopy classes by the type of their “dividing
perturbation”. For each group, we answer three questions: (1) How many rigid isotopy
classes of real rational sextics with the given “dividing perturbation” are there? (2) How
can these rigid isotopy classes be constructed, starting from explicitly constructed real
reducible sextics by perturbation of real singularities and contraction of empty ovals?
(3) To what extent can these rigid isotopy classes be distinguished by their position
with respect to auxiliary lines and conics?
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CHAPTER 1

Preliminaries

1.1 Lattices

In this section, we introduce basic definitions and statements about integral lattices and
their discriminant forms. All the needed results can be found in Nikulin’s article [32].
Another reference we found useful is Chapter 2 of the book [10] by Degtyarev, Itenberg,
and Kharlamov.

Definition 1.1. A lattice is a finitely generated free abelian group L endowed with an
integral symmetric bilinear form b : L × L → Z. We usually write x · y instead of
b(x, y) and x2 instead of b(x, x). A lattice L is even if x2 is even for all x ∈ L. The
correlation homomorphism of a lattice L is the homomorphism of L to its dual lattice
L∨ := Hom(L,Z) defined by x 7→ (y 7→ x · y). A lattice is called non-degenerate if its
correlation homomorphism is injective, and unimodular if its correlation homomorphism
is bijective. We denote the group of auto-isometries of a lattice L by O(L).

Let us introduce notations for some commonly used lattices. Let 〈a〉 (a ∈ Z)
denote the rank one lattice generated by an element x with x2 = a. Let U denote
the hyperbolic plane, i.e. the rank two lattice generated by two elements u1, u2 with
u2

1 = u2
2 = 0, u1 · u2 = 1. Let Ap (p ≥ 1), Dq (q ≥ 3) and Es (s = 6, 7, 8) denote the

negative definite lattices generated by the elliptic root systems of the same name:

a1 a2
. . .

ap

Ap (p ≥ 1)
d1

d2

d3

. . .
dq

Dp (q ≥ 3)
e1 e2 e3

e4

e5
. . .

es

Es (s = 6, 7, 8)

Let L(k) denote the lattice obtained by scaling a lattice L by a factor k ∈ Z, i.e., if
x1, . . . , xn are generators for L, let L(k) be the lattice generated by vectors y1, . . . , yn
with yi · yj = k(xi · xj).

Definition 1.2. A finite bilinear form is a pair (A, b), where A is a finite abelian group
and b : A× A → Q/Z is a symmetric bilinear form. A finite quadratic form is a pair
(A, q), where A is a finite abelian group and q : A→ Q/2Z is a map such that we have
q(nx) = n2q(x) for all x ∈ A,n ∈ Z, and b(x, y) := 1

2(q(x+ y)− q(x)− q(y)) defines a
finite bilinear form on A, which is called the bilinear form associated with q.
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Definition 1.3. The discriminant group of a non-degenerate lattice L is the finite abelian
group AL = L∨/L, the cokernel of its correlation homomorphism. We may view L∨ as
a subgroup of L⊗Q; therefore L∨ inherits a Q-valued bilinear form, inducing a bilinear
form bL : AL × AL → Q/Z, called the discriminant bilinear form of L. If L is even,
then the squares of elements in AL are well-defined modulo 2Z, i.e. we have a finite
quadratic form qL : AL → Q/2Z, called the discriminant (quadratic) form of L. Note
that the discriminant bilinear form can be recovered from the discriminant quadratic
form via the identity bL(x, y) = 1

2(qL(x+ y)− qL(x)− qL(y)).

Definition 1.4. Let L be a non-degenerate even lattice. An over-lattice of L is an
embedding of L into a non-degenerate even lattice M such that the quotient M/L is
finite. In this situation, we have a chain of embeddings L ⊂ M ⊂ M∨ ⊂ L∨. The
quotient SM := M/L embeds into AL = L∨/L as an isotropic subgroup, i.e., we have
qL
∣∣
SM

= 0.

Proposition 1.5 (Nikulin [32, Proposition 1.4.1]). The correspondence M 7→ SM de-
termines a bijection between over-lattices of L and isotropic subgroups of AL. The
discriminant form of an over lattice M is AM = S⊥M/SM .

An isometry f ∈ O(L) extends to an isometry of an over-lattice M if and only if
the induced isometry f∗ ∈ O(qL) maps SM ⊂ AL to itself.

Definition 1.6. A gluing of two even, non-degenerate lattices L1 and L2 is an over-lattice
L of L1 ⊕ L2 in which L1 and L2 are primitive sublattices.

A gluing is determined by an isotropic subgroup S ⊂ AL1⊕AL2 such that S∩AL1 =
S ∩AL2 = 0. Such a set S is the graph of an anti-isometry γ : H1 → H2, where H1 and
H2 are subgroups of AL1 and AL2 , respectively.

Proposition 1.7. Let L be a gluing of two lattices L1 and L2, corresponding to an anti-
isometry γ : H1 → H2. Let f1 be an isometry of L1. Then there is an isometry f of L
such that f

∣∣
L1

= f1 if and only if there is an isometry f2 of L2 such that the induced
maps (fi)∗ leave the subgroups Hi invariant, and γ ◦ (f1)∗

∣∣
H1

= (f2)∗
∣∣
H2
◦ γ.

Definition 1.8. Let V be a real vector space endowed with a non-degenerate bilinear
form. For any vector v ∈ V with v2 6= 0, let Rv : V → V denote the reflection in the
hyperplane orthogonal to v, that is, Rv(x) = x− 2 (x,v)

(v,v)v.
More generally, if U ⊂ V is a non-degenerate subspace, let RU : V → V denote the

“reflection in U”, that is RU (u+ w) = −u+ w for u ∈ U,w ∈ U⊥.

Lemma 1.9. Let L be a non-degenerate even lattice, and let v ∈ L be a primitive vector
with v2 6= 0. The reflection Rv maps L to itself if and only if v ∈ k L∨, where v2 = −2k.
In this case, [ vk ] is an element of order k in AL. In particular, if L is unimodular, then
v2 ∈ {±2}, and if the discriminant group of L is 2-periodic, then v2 ∈ {±2,±4}.
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Proof. Indeed,

Rv(x) = x+ (x,v)
k v ∈ L for all x ∈ L⇔ (x, v) ∈ kZ for all x ∈ L⇔ v ∈ kL∨.

Lemma 1.10. Let L be a non-degenerate even lattice, and let v ∈ L be a primitive vector
such that Rv is an automorphism of L. Then Rv acts trivially on the discriminant group
of L if and only if v2 ∈ {±2}.

Proof. Let v ∈ L be a primitive vector with v2 = −2k such that Rv maps L to itself.
Then Rv acts trivially on the discriminant if and only if

Rv(a)− a = (a,v)
k v ∈ L for all a ∈ L∨ ⇔ (a, v) ∈ kZ for all a ∈ L∨ ⇔ v ∈ kL.

Since v is primitive, this implies k ∈ {±1}.

Lemma 1.11. Let f : L→ L be an automorphism, and let v ∈ L be a primitive vector
such that Rv defines an automorphism of L. Then f ◦Rv = Rf(v) ◦ f .

Lemma 1.12. If L is a unimodular lattice and S ⊂ L is a primitive non-degenerate
sublattice with 2-periodic discriminant group, then RS is an automorphism of L.

1.2 Hyperbolic reflection groups and polytopes

In this section, we fix the notation and cite some results about hyperbolic polytopes
and hyperbolic reflection groups. All the material covered in this section can be found
in Vinberg’s articles [40, 41], and we refer there for proofs and more details.

Let V be a finite-dimensional real vector space of dimension n+ 1, endowed with
a bilinear form of signature (1, n). Consider the open cone C = {x ∈ V | x2 > 0}. It
consists of two connected components; name one of them C+ and the other one C−.
The hyperbolic space obtained from V is the quotient HV = C+/R>0, where R>0 acts
on C+ by homotethy. The isometry group of HV is the index two subgroup of O(V )
which maps the half-cone C+ to itself.

A (linear) hyperplane W ⊂ V is called hyperbolic if the bilinear form restricted to W
has signature (1, n− 1). This is the case if and only if the orthogonal complement of W
is a negative definite line. In this case, we view H = HW as a (hyperbolic) hyperplane
in HV .

For a vector e ∈ V with e2 < 0, let He = {[x] ∈ HV | (x, e) = 0} denote the
hyperplane orthogonal to e, and let H+

e = {[x] ∈ HV | (x, e) ≥ 0} and H−e = {[x] ∈
HV | (x, e) ≤ 0} denote the two half-spaces delimited by He.

Given two linearly independent vectors e, f ∈ V with e2 = f2 = −1, there is the
following trichotomy: If |(e, f)| < 1, then the hyperplanes He and Hf intersect at a
dihedral angle of α, where cosα = |(e, f)|. If |(e, f)| = 1, then He and Hf meet at
infinity, i.e. the corresponding linear hyperplanes in V intersect each other in an isotropic
subspace of V . If |(e, f)| > 1, then He and Hf do not intersect, and the hyperbolic
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distance between them is ρ, where cosh ρ = |(e, f)|.
A convex polytope in HV is a subset P ⊂ HV with non-empty interior which can

be defined as P = ⋂
i∈I H

+
ei

where {ei}i∈I ⊂ V is a set of vectors with negative square,
such that each bounded subset of HV intersects only finitely many of the hyperplanes
{Hei}i∈I . We may assume that such a presentation is non-redundant, in the sense that
P is strictly contained in ⋂i∈J H+

ei
for every proper subset J ⊂ I. The collection of

half-spaces in a minimal presentation is uniquely defined by the polytope P . Therefore,
the vectors ei are defined up to multiplication by a positive real number. They are
uniquely defined once we fix a normalization condition, such as e2

i = −1 for all i ∈ I,
or, if V = L⊗ R for some lattice L and P is defined over L⊗Q, that all the vectors ei
must be primitive vectors in L.

Let P = ⋂
i∈I H

+
ei

be an acute-angled hyperbolic polytope. This means that whenever
two hyperplanes Hei and Hej intersect, they do so at a dihedral angle of at most π/2
(where we consider the angle lying inside the polytope). For a subset J ⊂ I, the
intersection ⋂i∈J Hei is non-empty if and only if the subspace of V spanned by {ei}i∈J
is negative definite. In this case, let the face defined by J be the set F J = P ∩

⋂
i∈J Hei .

Acute-angled hyperbolic polytopes are simple, i.e., their polyhedral angles are simplicial
(cf. Vinberg [40, p. 34]). This implies that the set of vectors J defining a face F ⊂ P
is uniquely determined by F ; we have J(F ) = {i ∈ I | F ⊆ Hei}. Moreover, the
codimension of F J in P is equal to the cardinality of J .

A polytope P is called a Coxeter polytope if whenever two hyperplanes Hei and Hej

intersect, they do so at a dihedral angle of π/n for some n ≥ 2. Coxeter polytopes
can be represented graphically using Coxeter graphs. The Coxeter graph of a Coxeter
polytope P is a decorated graph, defined as follows. There is a vertex for each facet
of P . Two vertices are not connected if the hyperplanes H and H ′ containing the
corresponding facets are orthogonal; they are connected by an n-fold edge if H and H ′
intersect each other at a dihedral angle of π/(n+ 2), e.g. a simple edge ( ) for an
angle of π/3, a double edge ( ) for an angle of π/4; they are connected by a heavy
edge ( ) if H and H ′ meet at infinity; and they are connected by a dashed edge
( ) if H and H ′ neither intersect nor meet at infinity.

Let P = ⋂
i∈I H

+
ei
⊂ Hn be a Coxeter polytope. The group Γ ⊂ Isom(Hn) generated

by the reflections {Rei}i∈I has a presentation of the form 〈Rei | (ReiRej )nij 〉, where
Hei and Hej intersect at an angle of π/nij , and there is no relation between Rei and
Rej if Hei and Hej do not intersect. The group Γ acts discretely on HV , and P is a
fundamental domain for this action.

Theorem 1.13 (Vinberg [41]). Let Γ be a discrete group of isometries of Hn generated
by reflections in hyperplanes. Let H be the set of hyperplanes H ⊂ Hn for which the
reflection in H belongs to Γ. Then Γ acts simply transitively on the set of chambers
defined by H, i.e. the connected components of the complement of HV \

⋃
H∈H H.

Corollary 1.14 (Vinberg [41]). Let G be a discrete group of isometries of Hn, and
let Γ be a normal subgroup of G generated by reflections in hyperplanes. Let P be
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a fundamental polytope for Γ. Then G is a semi-direct product G = Γ o T , where
T = {g ∈ G | g(P ) = P}.

Given a hyperbolic reflection group Γ ⊂ IsomHn, the Coxeter graph of a fundamental
polytope P ⊂ Hn for Γ can be computed using Vinberg’s algorithm (see Vinberg [41]).

The reflection groups and polytopes we are interested in all arise from hyperbolic
lattices. Given an even non-degenerate lattice L of signature (1, n), one can extend the
bilinear form defined on L to the vector space V = L⊗ R, and consider its associated
hyperbolic space HV . We consider reflections Rv, where v ∈ L is a primitive vector such
that either v2 = −2, in which case we call v a short root, or v2 = −4, in which case we
call v a long root. In the Coxeter graph, we represent short roots by small circles ( )
and long roots by large circles ( ).
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CHAPTER 2

Nodal sextics, K3 surfaces and periods

In this chapter we review some facts about K3 surfaces and their periods, and in
particular the bijection between rigid isotopy classes of real sextics and chambers of
the corresponding real period space, up to the action of a discrete group. For details
about K3 surfaces and their periods in general, we refer to the book [3] by W. Barth,
K. Hulek, C. Peters and A. van der Ven. For details about “weakly polarized” K3
surfaces, see D. Morrison’s article [30]. The case of K3 surfaces obtained from complex
nodal sextics is also treated in D. Morrison and M. Saito’s article [31]. We borrow
most of the notation from A. Degtyarev [9]. The passage from the complex to the real
case is done in analogy with similar situations treated by A. Degtyarev, I. Itenberg,
V. Kharlamov and V. Nikulin [10, 18, 22, 32].

2.1 K3 surfaces obtained from nodal sextics

A K3 surface is a non-singular, compact complex surface X which is simply connected
and has trivial canonical bundle. Endowed with the intersection pairing, its second
cohomology group H2(X,Z) is an even unimodular lattice of signature (3, 19).

A weak polarization of a K3 surface X is an element h ∈ H2(X,Z) which is the class
of a big and nef line bundle on X, or equivalently, a class for which h2 > 0 and h ·D ≥ 0
for all irreducible curves D ⊂ X. A weakly polarized K3 surface is a pair (X,h) formed
by a K3 surface X and a weak polarization h of X. The number h2 ∈ N is called the
degree of h. The nodal classes of a weakly polarized K3 surface (X,h) are the elements
s ∈ H2(X,Z) which are the classes of smooth rational curves on X for which s · h = 0.
They are always roots, i.e. they have self-intersection −2.

Let C ⊂ CP2 be a reduced (not necessarily irreducible) nodal sextic. Let bl : V →
CP2 be the blow-up of CP2 in the nodes of C, and let C̃ ⊂ V be the strict transform
of C. Let η : X → V be the double covering of V branched along C̃, and denote the
composition bl ◦ η by π : X → CP2. Alternatively, π can be obtained by first taking the
(singular) double covering Y → CP2 branched along C and then taking the minimal
resolution X → Y , so we have the following commutative diagram:

X Y

C̃ ⊂ V CP2 ⊃ C

η
π

bl
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The surface X is a K3 surface. Let h ∈ H2(X,Z) be the pullback under π of the class
of OP2(1), which is Poincaré dual to the homology class of a line in CP2. It defines a
weak polarization of degree 2 of X, and we call (X,h) the weakly polarized K3 surface
obtained from C. Let σ ⊂ H2(X,Z) denote its set of nodal classes. The corresponding
smooth rational curves are the fibres of π above the nodes of C. In particular, the nodal
classes are pairwise orthogonal. Let Σ ⊂ H2(X,Z) denote the sublattice generated by
σ, and let S ⊂ H2(X,Z) denote the sublattice generated by σ and h.

2.2 Real structures

Suppose that C ⊂ CP2 is a real sextic, i.e. a sextic invariant under complex conjugation,
or equivalently, defined by a polynomial with real coefficients. Let (X,h) be the weakly
polarized K3 surface obtained from C. As above, let π : X → CP2 be the composition
bl ◦ η, where bl : V → CP2 denotes the blow-up of CP2 in the nodes of C and η : X → V

is the double covering of V branched along the strict transform of C. There are two real
structures c1, c2 on X which are compatible with the standard real structure on CP2,
i.e. such that π ◦ ci = conj ◦π, where conj : CP2 → CP2, [x0 : x1 : x2] 7→ [x̄0 : x̄1 : x̄2]
denotes the complex conjugation. The involutions c1 and c2 commute, and their product
is the deck transformation τ of the covering η : X → V .

Let Xc1 and Xc2 ⊂ X be the sets of fixed points of c1 and c2, respectively. We
have Xci = π−1(Bi), where B1 and B2 are the two (not necessarily connected) regions
delimited by RC inside RP2; more precisely, if f ∈ R[x0, x1, x2] is a polynomial defining
C, then we have B1 = {x ∈ RP2 | f(x) ≥ 0} and B2 = {x ∈ RP2 | f(x) ≤ 0} or vice
versa.

It is not possible to distinguish one of the two real structures simultaneously for
all irreducible real nodal sextics in a continuous way. This can be done, however, for
two smaller classes of real nodal sextics which are of interest to us: real nodal sextics
without real nodes and dividing real nodal sextics.

If C is an irreducible real nodal sextic without real nodes, then, like in the case
of non-singular sextics, exactly one of the two regions B1 and B2 is non-orientable.
The real structure c whose fixed points cover the non-orientable region of RP2 \ RC is
distinguished by the following homological property (see Nikulin [32, p. 163]):

There is an element x ∈ H2(X,Z) with c∗(x) = −x and x · h ≡ 1 (mod 2). (∗)

In the special case where the real part of the curve C is empty, one real structure has no
fixed points, and the fixed point set of the other real structure is a non-trivial unramified
covering of RP2. In this case the real structure with property (∗) is the one without
fixed points.

In the case of dividing irreducible real nodal sextics, there is a unique way of
perturbing the real nodes so that the resulting sextic (which has only non-real nodes)
is still dividing (cf. Section 4.1). We chose the real structure which leads to a real
structure with property (∗) on the perturbed sextic.
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2.3 Periods

2.3.1 Complex periods

The following proposition follows from Mayer’s and Saint-Donat’s results on linear
systems on K3 surfaces [27, 36]. See also Degtyarev [9, Proposition 3.3.1], Morrison and
Saito [31, Lemma 4.2] and Urabe [38].

Proposition 2.1. Let (X,h) be a weakly polarized K3 surface with h2 = 2, and let
σ ⊂ H2(X,Z) be its set of nodal classes. The linear system |h| determines a map
X → CP2 which is the minimal resolution of a double covering branched along a nodal
sextic C ⊂ CP2 if and only if the following conditions hold.

(1) The nodal classes are pairwise orthogonal.
(2) If s ∈ H2(X,Z) is a root such that 2s ∈ Σ, then s ∈ Σ.
(3) There is no root s ∈ σ such that s+ h is divisible by 2 in H2(X,Z).

We call a lattice L a K3 lattice if it is even, unimodular and of signature (3, 19). All
K3 lattices are isometric to each other.

Definition 2.2. Let L be a K3 lattice, h ∈ L a vector with h2 = 2, and σ ⊂ L a set
of roots orthogonal to h. Denote by Σ the sublattice of L generated by σ. The triple
(L, h, σ) is called a complex homological type if it satisfies the following conditions.

(1) The elements of σ are pairwise orthogonal.
(2) If s ∈ L is a root such that 2s ∈ Σ, then s ∈ Σ.
(3) There is no root s ∈ σ such that s+ h is divisible by 2 in L.

An isomorphism between two complex homological types (L, h, σ) and (L′, h′, σ′) is an
isometry ψ : L→ L′ which takes h to h′ and σ to σ′.

Definition 2.3. Let (L, h, σ) be a complex homological type.
– An (L, h, σ)-marking of a K3 surface X is an isometry µ : L → H2(X,Z) such

that µ(h) is a weak polarization of X with set of nodal classes of µ(σ).
– An (L, h, σ)-marked K3 surface is a pair (X,µ) formed by a K3 surface X and an

(L, h, σ)-marking µ of X.
– A nodal reduced sextic C ⊂ CP2 is of homological type (L, h, σ) if the weakly

polarized K3 surface obtained from C admits an (L, h, σ)-marking.

The Hodge decomposition of a K3 surface X is determined by the position of the
complex line H2,0(X) ⊂ H2(X;C). Every non-zero class ω ∈ H2,0(X) is represented
by a non-vanishing holomorphic 2-from on X. It satisfies ω2 = 0 and ω · ω̄ > 0. Let
LC denote the complex vector space L⊗Z C. The bilinear form defined on L naturally
extends to a C-valued bilinear form on LC.

Definition 2.4. Let (L, h, σ) be a complex homological type. The period space for

13



(L, h, σ)-marked K3 surfaces is defined as Ω0 = Ω \⋃v∈∆Hv, where

Ω = {ω ∈ LC | ω2 = 0, ω · ω̄ > 0, ω ⊥ h, ω ⊥ σ}
/
C∗ ⊂ P(LC),

Hv = {[ω] ∈ Ω | ω · v = 0} and ∆ = {v ∈ L | v2 = −2, v · h = 0, v 6∈ Σ}.

The period of an (L, h, σ)-marked K3 surface (X,µ) is defined as [µ−1
C (ω)] ∈ P(LC)

where ω is a non-zero class in H2,0(X) and µC denotes the extension of µ to a map
LC → H2(X,C). It turns out that the period is contained in Ω0. The period map is the
map {(L, h, σ)-marked K3 surfaces} → Ω0 assigning to each marked surface (X,µ) its
period.

Remark 2.5. The period space Ω0 is an open set (in the classical topology) in a quadric
of dimension 19− n, where n is the number of nodes. In particular, it is a non-compact
complex manifold.

Definition 2.6. A smooth family of complex manifolds is a proper surjective submersion
f : X → B with connected fibres, where X and B are connected smooth manifolds,
together with a complex structure defined on each fibre of f , varying smoothly along
the base.

Definition 2.7. A smooth family of (L, h, σ)-marked K3 surfaces is a pair (X, µ), where
f : X → B is a smooth family of K3 surfaces and µ : LB → R2f∗(Z) is an isomorphism
of local systems such that µb : L → H2(Xb,Z) is an (L, h, σ)-marking of Xb for each
b ∈ B.

The following theorem is a special case of a statement for weakly polarized marked
K3 surfaces, due to Morrison [30]. It is based on the Global Torelli Theorem for K3
surfaces by Piatetski-Shapiro and Shafarevich [34] and on the surjectivity of the period
map by Kulikov [26]. See also Beauville [4], Degtyarev [9, Theorem 3.4.1] and Morrison
and Saito [31, Theorem 4.3].

Theorem 2.8. The space Ω0 is a fine moduli space for (L, h, σ)-marked K3 surfaces, that
is, isomorphism classes of families of (L, h, σ)-marked K3 surfaces over B are naturally
in bijection with smooth maps from B to Ω0. In particular, there exists a universal
family of (L, h, σ)-marked K3 surfaces over Ω0.

Remark 2.9. The equivalence between (L, h, σ)-marked K3 surfaces and nodal sextics
extends to families of (L, h, σ)-marked K3 surfaces. More precisely, a family of (L, h, σ)-
marked K3 surfaces (X, µ) determines a bundle of projective planes P(E) → B and
an equisingular family of nodal sextics C ⊂ P(E) over B. Indeed, if (X, µ) is a family
of (L, h, σ)-marked K3 surfaces, then hb = µ−1

b (h) is a class of Hodge type (1, 1) on
the fibre Xb for each b ∈ B. By the variational Lefschetz theorem on (1, 1)-classes,
there is a line bundle L on X such that hb is the class of the restriction L|Xb

for each
b ∈ B. Since dim Γ(Xb,L|b) = 3 for all b ∈ B, the direct image sheaf π∗L is locally
free and defines a rank 3 vector bundle E → B. The line bundle L defines a morphism
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X → P(E) which is the minimal resolution of a double covering branched along an
equisingular family of nodal sextics C ⊂ P(E) over B.

2.3.2 Real periods

Consider a real weakly polarized K3 surface (X,h) obtained from a real nodal sextic,
and let c be one of the two real structures on X lifting the complex conjugation. It
induces an involutive isometry c∗ on the lattice H2(X,Z). If a complex curve D ⊂ X is
invariant under c, then the restriction of c to D is orientation-reversing. Therefore, we
have c∗(h) = −h and c∗(σ) = −σ, where σ is the set of nodal classes of (X,h). If s ∈ σ
is the class of an exceptional curve over a real node, then we have c∗(s) = −s. If s′ and
s′′ are the classes of the exceptional curves over a pair of non-real nodes, then we have
c∗(s′) = −s′′ and c∗(s′′) = −s′. Moreover, c∗ is an anti-Hodge isometry on H2(X;C), i.e.
it maps forms of type (p, q) to forms of type (q, p). Therefore, the map x 7→ c∗(x̄) defines
a real structure on the complex line H2,0(X). Let ω ∈ H2,0 be a nonzero class such
that c∗(ω̄) = ω. If we write ω = ω+ + iω− with ω± ∈ H2(X,R), then the conditions
ω2 = 0 and ω · ω̄ > 0 imply that ω2

+ = ω2
− > 0 and c∗(ω±) = ±ω±. Therefore the three

vectors h, ω+ and ω− are pairwise orthogonal and span a three-dimensional positive
definite subspace of H2(X,R). In particular, the c∗-invariant sublattice of H2(X,Z)
has one positive square.

Definition 2.10. Let (L, h, σ) be a complex homological type. An involutive isometry
φ on L is called geometric if φ(h) = −h, φ(σ) = −σ and the φ-invariant sublattice
L+ = {x ∈ L | φ(x) = x} has one positive square.

Definition 2.11. A real homological type is a quadruple (L, h, σ, φ), where (L, h, σ) is a
complex homological type and φ is a geometric involution on (L, h, σ). An isomorphism
between two real homological types (L, h, σ, φ) and (L′, h′, σ′, φ′) is an isomorphism ψ

between the complex homological types (L, h, σ) and (L′, h′, σ′) such that ψ ◦φ = φ′ ◦ψ.

Definition 2.12. Let (L, h, σ, φ) be a real homological type. An (L, h, σ, φ)-marking of
a real K3 surface (X, c) is an (L, h, σ)-marking of X such that µ ◦ φ = c∗ ◦ µ. An
(L, h, σ, φ)-marked K3 surface is a triple (X, c, µ) where (X, c) is a real K3 surface and
µ is an (L, h, σ, φ)-marking of (X, c). A real sextic C is of homological type (L, h, σ, φ)
if the real weakly polarized K3 surface obtained from C admits a (L, h, σ, φ)-marking.

Definition 2.13. Let (L, h, σ, φ) be a real homological type. The period space for
(L, h, σ, φ)-marked real K3 surfaces is defined as Ω0

φ = Ωφ \
⋃
v∈∆Hv, where

Ωφ = {ω ∈ LC | ω2 = 0, ω · ω̄ > 0, ω · h = 0, ω ⊥ σ, φ∗(ω) = ω̄}
/
R∗,

Hv = {[ω] ∈ Ωφ | ω · v = 0}, and ∆ = {v ∈ L | v2 = −2, v · h = 0, v 6∈ Σ}.

The period of an (L, h, σ, φ)-marked real K3 surface (X, c, µ) is defined as [µ−1
C (ω)],

where ω is a non-zero class in H2,0(X) such that c∗ω = ω̄, and µC denotes the extension

15



of µ to a map LC → H2(X,C). It turns out that the period is contained in Ω0
φ. The

real period map is the map {(L, h, σ, φ)-marked K3 surfaces} → Ω0
φ assigning to each

real marked K3 surface (X,µ, c) its period.

If φ is a geometric involution on a complex homological type (L, h, σ), then x 7→ φ(x̄)
defines a real structure on the complex period space Ω0, and the real period space
Ω0
φ ⊂ Ω0 is the set of real points for this real structure.

Definition 2.14. A family of real (L, h, σ, φ)-marked K3 surfaces is a triple (X, µ, c)
where (X, µ) is a family of (L, h, σ)-marked K3 surfaces and c is a real structure on
X, such that µb : L→ H2(Xb,Z) is an (L, h, σ, φ)-marking of (Xb, cb) for each b ∈ B,
where cb denotes the restriction of c to Xb.

Lemma 2.15. Let (L, h, σ, φ) be a real homological type, and let (X, µ) be a family of
(L, h, σ)-marked K3 surfaces whose periods are contained in Ω0

φ ⊂ Ω0. There exists a
unique real structure c on X such that (X, µ, c) is a family of (L, h, σ, φ)-marked real
K3 surfaces.

Proof. Consider the family X̄ obtained from X by inverting the complex structure
on each fibre. Then µ ◦ φ defines an (L, h, σ)-marking of X̄, and the periods of the
marked families (X, µ) and (X̄, µ ◦ φ) coincide. Since Ω0 is a fine moduli space for
(L, h, σ)-marked sextics, this implies that there is a unique isomorphism c : X → X̄

such that µ ◦ φ = c∗ ◦ µ. In other words, c defines a real structure on X such that
(X, µ, c) is a family of (L, h, σ, φ)-marked real K3 surfaces.

Corollary 2.16. The space Ω0
φ is a fine moduli space for (L, h, σ, φ)-marked real K3

surfaces, that is, isomorphism classes of families of (L, h, σ, φ)-marked K3 surfaces over
B are naturally in bijection with smooth maps from B to Ω0

φ. In particular, there exists
a universal family of (L, h, σ, φ)-marked K3 surfaces over Ω0

φ.

Proposition 2.17. The period map induces a one-to-one correspondence between rigid
isotopy classes of real nodal sextics of homological type (L, h, σ, φ) and connected com-
ponents of Ω0

φ modulo the action of the automorphism group Γ of the real homological
type (L, h, σ, φ).

Proof. Consider the space RP
(
H0(CP2,OCP2(6))∗

) ∼= RP27 parameterizing real plane
sextics, and let W ⊂ RP27 be the subset parameterizing real irreducible nodal sextics
C ⊂ CP2 of homological type (L, h, σ, φ). Rigid isotopy classes of such sextics are
connected components of W . Let U be the set of pairs (C, µ) where C ∈W and µ is an
(L, h, σ, φ)-marking of the weakly polarized real K3 surface obtained from C, and let
p1 : U →W be the map forgetting the marking, i.e. p1(C, µ) = C.

Consider the universal curve CW = {(C, x) ∈W×CP2 | x ∈ C} overW , and let XW

be the family of K3 surfaces obtained from CW ⊂W × CP2. The projection XW →W

is topologically a locally trivial fibration. Therefore, once we fix an open contractible
subset N ⊂W , we have natural isomorphisms between H2(XC ,Z) and H2(XC′ ,Z) for
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C,C ′ ∈ N , i.e. a marking can be extended from a sextic to nearby sextics. This defines
a topology on U such that the projection p1 : U →W is a regular unramified covering
with deck transformation group Γ. Therefore, p1 induces a bijection between π0(U)/Γ
and π0(W ).

Let p2 : U → Ω0
φ denote the period map. The group PGL3(R) naturally acts on U ,

and the period map is invariant with respect to this action. We claim that p2 : U → Ω0
φ

is in fact a PGL3(R)-principal bundle. Assuming this claim, it follows that p2 is a locally
trivial fibration with connected fibres. In particular, it induces a bijection between the
connected components of U and those of Ω0

φ. Moreover, since p2 is equivariant under the
action of Γ, it gives rise to a bijection between the quotients π0(U)/Γ and π0

(
Ω0
φ

)/
Γ,

which proves the proposition.
To prove the claim, consider the universal family (X, µ, c) of real (L, h, σ, φ)-marked

K3 surfaces over the real period space Ω0
φ. Let L → X be the line bundle defined

by the polarization and let E be the rank 3 vector bundle over Ω0
φ defined by π∗L

(cf. Remark 2.9). The real structure c induces a real structure on E; let RE denote
the real part of E, which is a real vector bundle. The elements (C, µ) ∈ p−1

2 ([ω])
naturally correspond to isomorphisms between P(RE[ω]) and a fixed real projective
plane. Therefore we can identify U with the projective frame bundle of RE, which is
indeed a PGL3(R)-principal bundle.

Let us reformulate Proposition 2.17 more conveniently. Fix a homological type
(L, h, σ, φ), and define lattices K+,K− as follows.

K+ = {x ∈ L | x⊥ h, σ and φ(x) = +x},
K− = {x ∈ L | x⊥ h, σ and φ(x) = −x}

Both K+ and K− are hyperbolic lattices, i.e. they have one positive square. The group
Γ of automorphisms of the real homological type (L, h, σ, φ) acts on the hyperboloids
{x+ ∈ K+ ⊗ R | x2

+ = 1} and {x− ∈ K− ⊗ R | x2
− = 1}; let G ⊂ Γ be the subgroup

leaving the sheets of these hyperboloids invariant. We have Γ = {1,−φ}×{1,−RS}×G.
Let H+ and H− be the hyperbolic spaces obtained from K+⊗R and K−⊗R, respectively.
Let

∆+ = {u ∈ K+ | u2 < 0 and ∃w ∈ Σ such that v = 1
2(u+ w) ∈ L and v2 = −2},

∆− = {u ∈ K− | u2 < 0 and ∃w ∈ Σ such that v = 1
2(u+ w) ∈ L and v2 = −2}.

The sets of hyperplanes {Hu}u∈∆+ and {Hu}u∈∆− define tilings of the spaces H+ and
H− respectively. We call the connected components of H+ \

⋃
u∈∆+ Hu positive tiles

and the connected components of H− \
⋃
u∈∆− Hu negative tiles. Let T+ and T− denote

the sets of positive and negative tiles, respectively. Since the sets ∆+ and ∆− are stable
under the action of G, the group G acts on the set T+ ×T−.

Theorem 2.18. Rigid isotopy classes of sextics of homological type (L, h, σ, φ) are in
bijection with pairs of tiles, i.e. elements of T+ ×T−, modulo the action of G.
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Proof. Consider the map Ωφ → H+ × H− sending an element [ω] ∈ Ωφ to the pair
([ω+], [ω−]) ∈ H+×H−, where ω = ω+ + iω−. This map is a trivial two-sheeted covering
with deck transformations {1,−φ}. Since ∆ is stable under φ, the union of the walls⋃
v∈∆Hv is preserved by φ. Therefore, the connected components of Ω0

φ modulo Γ are
in bijection with the connected components of (H+ ×H−) \⋃v∈∆Hv modulo G, where
we view Hv as a subspace of H+ ×H−. A subspace Hv ⊂ H+ ×H− can be empty, of
codimension one or of codimension two in H+ × H−. Since we are interested in the
connected components of their complement, we only need to consider the spaces Hv

which are of codimension one. We can write a vector v ∈ ∆ as v = 1
2(vΣ + v+ + v−),

where vΣ ∈ Σ̃, v+ ∈ K+ and v− ∈ K−. Then we have Hv = Hv+ × Hv− , where
Hv± = {[x] ∈ H± | x · v± = 0}. The subspace Hv± ⊂ H± is equal to H± if v± = 0,
it is a real hyperplane in H± if v2

± < 0, and it is empty otherwise. Therefore, Hv

is of codimension one in H+ × H− if and only if one of v+ and v− is equal to zero
and the other one has negative square, i.e. we have Hv = Hu × H− with u ∈ ∆+, or
Hv = H+ ×Hu with u ∈ ∆−.

2.4 Irreducible components

Our goal in this section is to determine the decomposition of C into irreducible com-
ponents using the homological data of the surface X obtained from C. We do not
need C ⊂ CP2 to be nodal or of degree six; let C ⊂ CP2 be a reduced plane curve
of degree 2k with simple singularities. We generalize the notations of Section 2.1 to
this situation. Let bl : V → CP2 be the minimal composition of blow-ups such that
the components of odd multiplicity of the total transform of C are non-singular and
pairwise disjoint. Let η, π, h, σ, Σ, S and τ be defined as in Section 2.1. Let S̃ denote
the primitive closure of S in H2(X,Z). We would like to extract the decomposition of
C into irreducible components from the quotient S̃/S. An important special case is
covered by the following result of Morrison and Saito:

Proposition 2.19 (Morrison and Saito [31, Lemma 4.1]). Let p ⊂ CP2 be a nodal sextic.
Then S ⊂ H2(X,Z) is primitive if and only if C is irreducible.

A more general result was obtained by Degtyarev:

Proposition 2.20 (Degtyarev [9, Theorem 4.3.1]). Let C ⊂ CP2 be a reduced curve of
degree 4m+2 with simple singularities. Then C is irreducible if and only if S̃/S contains
no elements of order 2.

We use a combination of ideas of the proofs of Morrison and Saito [31] and Degtyarev
[9]. We start with the following two lemmas:

Lemma 2.21. For every α ∈ NS(X), we have α+ τα ∈ S.

Proof. We have α + τα ≡ η∗(η∗ α) (mod Σ), and the image of η∗ is contained in
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S ⊂ H2(X,Z).

Lemma 2.22. For α ∈ S̃, the following are equivalent:
(i) 2α ∈ S,
(ii) τα− α ∈ S,
(iii) α is congruent modulo S to a τ -invariant element of S̃,
(iv) α is congruent modulo S to a sum of components of the ramification curve.

Proof. (i)⇒ (ii): By Lemma 2.21, we have α+ τα ∈ S. Subtracting 2α, it follows that
τα− α ∈ S.
(ii)⇒ (iii): We have τα− α = s ∈ Sτ , the τ -anti-invariant part of S. Since the action of
τ on Σ is induced by a permutation of σ, there is an element t ∈ S such that s = t− τt.
Then τ(α+ t)− (α+ t) = (τα− α)− (t− τt) = 0.
(iii)⇒ (iv): We may suppose α itself is τ -invariant. Adding a large enough multiple of h
to α, we may suppose α is effective. The involution τ acts on the linear system |α| as a
complex-linear involution, and such an involution always has fixed points. Therefore,
there is an effective divisor A ∈ |α| which is invariant under τ . For an irreducible
component B of the divisor A, there are four possibilities:

(a) B is contracted by π,
(b) B is a component of the ramification curve,
(c) B is a degree two cover of π(B), or
(d) B maps birationally to π(B), and τ(B) 6= B.

In case (c), note that π∗(B) = 2D for some curve D ⊂ P2, and π∗(D)−B is a sum of
exceptional curves. Therefore the divisor class of B is contained in S. In case (d), note
that since A is invariant under τ , such curves occur only in pairs interchanged by τ and
we can apply the argument of (c) to every pair B + τ(B). Thus α is congruent to a
sum of components of the ramification curve modulo S.
(iv)⇒ (i): It suffices to show that 2r ∈ S where r is the class of an irreducible component
of the ramification curve. We have 2r = r + τr, and hence 2r ∈ S by Lemma 2.21.

For every singular point p ∈ B, denote by Σp the subgroup of Σ generated by
the exceptional curves over p. For every local branch b of C at p, one can define the
associated divisor eb ∈ Σp by eb = π∗(b)− 2b̄, where b̄ is the strict transform of bl−1(b).
The following lemma was obtained by Degtyarev [9], using formulas by Yang [46].

Lemma 2.23 (Degtyarev [9, Lemma 4.2.2]). For a collection of local branches at a simple
plane curve singularity, the sum of the associated divisors is divisible by two if and only
if the collection is either empty or contains all the branches.

The following proposition is a consequence of this lemma.

Proposition 2.24. If C = C1 + · · · + Cn is the decomposition of C into irreducible
components, then the 2-periodic part of S̃/S is generated by elements [Ci], and the only
relation among them is ∑n

i=1[Ci] = 0 ∈ S̃/S.
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Proof. For each component Ci, denote by Ri ⊂ X the corresponding component of
the ramification divisor. Let ri be the class of Ri in NS(X). By Lemma 2.22, the
elements [ri] are of order 2 in S̃/S and they generate the 2-periodic part of S̃/S. Thus
it suffices to show the following: if T is a curve which consists of some, but not all of
the components of the ramification curve R, then the class of T is not contained in S.

We have 2ri = deg(Ci)h+∑
b eb, where the sum ranges over all the branches of Ci

at the singular points of C (see [9, Equation 4.2.1]). By Lemma 2.23, the divisor class
of T lies in S if and only if the degree of π∗(T ) ⊂ P2 is even and for every singular point
p of C, π∗(T ) contains either all or none of the local branches of C at p. Clearly, this
happens only if T is either empty or equal to R.

Corollary 2.25. If C is nodal, then the elements of S̃/S are in bijection with partitions
of the irreducible components of C into two sets. An element [x] ∈ S̃/S corresponding
to a decomposition C = C1 + C2, is given by

x ≡ 1
2
(∑

s+ deg(C1)h
)

mod S,

where the sum ranges over the classes s ∈ σ corresponding to nodes p ∈ C1 ∩ C2.

2.5 Dividing type

Recall that a real non-singular curve C is called dividing or of dividing type I1 if C \RC
consists of two connected components, and of dividing type II if C \ RC is connected.
We extend this notion to irreducible nodal curves by declaring that an irreducible nodal
curve C is dividing if its normalization C̃ is dividing with respect to the inherited real
structure. If C is a non-singular dividing curve, then the two connected components
of C \ RC are called halves of the curve. Note that if the real part of C is non-empty,
then C is dividing if and only if the class of RC̃ is trivial in H1(C̃,Z/2Z).

Recall that an element α of a non-degenerate lattice L is called characteristic if we
have x2 ≡ α · x (mod 2) for all elements x ∈ L. Characteristic elements always exist,
and they are uniquely defined up to 2L, i.e. the residue ᾱ ∈ L/2L does not depend on
the choice of α. A lattice is even if and only if zero is a characteristic element. Given
an involutive isometry φ on a lattice L, we may consider the twisted bilinear form given
by (x, y) 7→ x · φ(y). We say that an element α is characteristic for the involution φ if it
is characteristic for the corresponding twisted bilinear form.

Lemma 2.26 (Arnol’d [1]). Let (X, c) be a real surface such that H2(X,Z) has no
torsion. Let α ∈ H2(X,Z) be a characteristic element of the twisted bilinear form
(x, y) 7→ x · c∗(y), and let ᾱ be the mod 2 reduction of α. Then ᾱ is Poincaré dual to
the mod 2 fundamental class of the set of real points.

Let (X,h) be the weakly polarized K3 surface obtained from a real irreducible
1In the literature this is often simply called the type of a curve, but this might lead to confusion here

since we also use other notions of type, such as the homological type of a curve.
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nodal sextic C ⊂ CP2, and let c1 and c2 be the real structures on X which lift the
complex conjugation of CP2. Let α1 and α2 ∈ H2(X,Z) be characteristic elements for
the induced involutions c∗1 and c∗2 on H2(X,Z), and let ᾱ1 and ᾱ2 denote their residues
in H2(X;Z/2Z).

By Proposition 2.19, the sublattice S ⊂ H2(X,Z) is primitive, so that we have a
natural embedding S/2S ↪→ H2(X;Z/2Z). Recall that V is the blow-up of CP2 in the
nodes of C and that η : X → V is the double covering branched along C̃, with deck
transformation τ . The transfer map tr : H2(V, C̃;Z/2Z)→ H2(X;Z/2Z) is obtained
by mapping a relative 2-cell in V to the sum of its two preimages in X.

Lemma 2.27. The transfer map tr : H2(V, C̃;Z/2Z)→ H2(X;Z/2Z) is injective.

Proof. In this proof, we assume Z/2Z coefficients for all homology and cohomology
groups. Consider the Smith exact homology sequence for the pair (X, τ) (cf. for example
Degtyarev, Itenberg, and Kharlamov [10, p. 3]).

· · · → H3(X) η∗−→ H3(V, C̃) ∆−→ H2(V, C̃)⊕H2(C̃) tr +i∗−−−→ H2(X)→ · · ·

Here, i∗ is the homomorphism induced by the inclusion C̃ ↪→ X. The second component
of the connecting homomorphism ∆ is the boundary map ∂ : H3(V, C̃)→ H2(C̃) which
is injective because its kernel coincides with the image of H3(V ) = 0. To show that the
transfer map is injective, suppose x ∈ H2(V, C̃) lies in its kernel. Then (x, 0) lies in the
kernel of tr + i∗, which coincides with the image of ∆. Because ∆ is injective on the
second component, this implies x = 0.

Proposition 2.28. The elements ᾱ1, ᾱ2 ⊂ H2(X;Z/2Z) are contained in the image of
S/2S if and only if [RC̃] is trivial in H1(C̃;Z/2Z).

Proof. Again, we assume Z/2Z coefficients for all homology and cohomology groups.
Consider the following diagram, where the bottom row is part of the long exact homology
sequence for the pair (V, C̃):

H2(X)

· · · → H2(V ) H2(V, C̃) H1(C̃)→ · · ·ρ ∂

tr

Note that the composition tr ◦ρ corresponds to η∗ : H2(V ) → H2(X) under the
identification of homology and cohomology via Poincaré duality. A basis for H2(V ) is
given by the strict transform of a line in CP2 and the exceptional classes of the blow-up.
Therefore, the image of η∗ is generated by the mod 2 residues of h and σ, i.e., it is
S/2S ⊂ H2(X). Therefore, ᾱi is contained in S/2S if and only if [Xc1 ] is contained
in im(tr ◦ρ). Let B1 and B2 be the (not necessarily connected) regions delimited by
RC̃ in RP2. Recall that the fixed point sets Xci are double coverings of the regions Bi
under η, and hence we have [Xci ] = tr([Bi]). Suppose that [RC̃] is trivial in H1(C̃).
Since ∂[Bi] = [RC̃] = 0 in H1(C̃), the classes [Bi] lie in the image of ρ. Therefore,
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[Xci ] = tr([Bi]) is contained in im(tr ◦ρ) and ᾱi is contained in S/2S. Now suppose
that ᾱ1 and ᾱ2 are contained in S/2S. Then the classes [Xci ] lie in the image of tr ◦ρ.
Because the transfer map is injective by Lemma 2.27, this implies that the classes [Bi]
lie in the image of ρ, and therefore ∂[Bi] = [RC̃] = 0 in H1(C̃).

Remark 2.29. If C is dividing, then ᾱ1 and ᾱ2 are in fact contained in the c∗i -invariant
part of S/2S. If C has only non-real nodes, with classes s′1, s′′1, . . . , s′m, s′′m, then the
c∗i -invariant part of S/2S is generated by the mod 2 residues of h, s′1 + s′′1, . . . , s

′
m + s′′m.

Lemma 2.30. If C is an irreducible sextic with only non-real nodes, then ᾱ1 + ᾱ2 = h̄.

Proof. Note that RV ⊂ V is homologous to the preimage of a general line in CP2.
Indeed, RV intersects the preimage of a non-real line in one point and does not intersect
any of the exceptional curves since all the nodes are non-real. Therefore, η∗([RV ]PD) = h̄,
where xPD denotes the class Poincaré dual to x, and h̄ ∈ H2(X) denotes the mod 2
residue of h. As noted in the proof of Proposition 2.28, the map η∗ corresponds to tr ◦ρ
under Poincaré duality. Hence, we have

h̄ = η∗
(
[RV ]PD

)
= (tr ◦ρ [RV ])PD = (tr([B1] + [B2]))PD

= tr([B1])PD + tr([B2])PD = [Xc1 ]PD + [Xc2 ]PD = ᾱ1 + ᾱ2.

Corollary 2.31. If C is a dividing real irreducible sextic with only non-real nodes, then
exactly one of the classes ᾱ1 and ᾱ2 is contained in Σ/2Σ.

Lemma 2.32. Let C be a dividing real irreducible sextic with only non-real nodes. The
real structure with ᾱ ∈ Σ/2Σ is the one with property (∗) (see Section 2.2).

Proof. Suppose on the contrary that the real structure c with property (∗) has ᾱ 6∈ Σ/2Σ.
Then we can write ᾱ = h̄+ y for some y ∈ Σ/2Σ. By property (∗), there is an element
x ∈ H2(X,Z) such that c∗(x) = −x and x · h ≡ 1 (mod 2). By Remark 2.29, the
element y is a sum of elements of the form s′i + s′′i . We have x · s′i = c∗(x) · c∗(s′i) = x · s′′i ,
and hence x · (s′i + s′′i ) ≡ 0 (mod 2). This implies 0 ≡ −x2 = x · c∗(x) ≡ x ·α ≡ x ·h ≡ 1
(mod 2), a contradiction.

Remark 2.33. Lemma 2.32 also holds for curves with empty real part. The real structure
with property (∗) is the one without real points, and therefore ᾱ = 0.

2.6 Perturbation of nodes, crossing and non-crossing pairs of nodes

In this section we study how the homological data of a real nodal sextic changes (or
rather, does not change) under the perturbation of a real node or a pair of non-real
nodes.

We call a non-real node of a dividing curve crossing if the two branches intersecting
at the node belong to different halves of the normalization of the curve. A non-real
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node is crossing if and only if this is the case for its complex conjugate node, so that we
can speak about crossing and non-crossing pairs of non-real nodes.

As a corollary of the observations about the perturbation of the nodes, we show how
crossing pairs can be distinguished from non-crossing pairs using only homological data.

2.6.1 The complex case

Before treating the real case, let us consider the perturbation of a node on a complex
surface. Let X0 be a compact complex surface whose only singularity is an ordinary
double point at p ∈ X0. Let blp : Y0 → X0 be the blow-up of X0 at p. Then the induced
homomorphism bl∗p : H2(X0,Z)→ H2(Y0,Z) is injective and its image is the orthogonal
complement of s ∈ H2(Y0,Z), the class of the exceptional curve of the blow-up. The
self-intersection of s is −2.

Let f : X → D be a Lefschetz deformation of X0 over the unit disk D ⊂ C. By
this we mean that X is a 3-dimensional complex manifold, f−1(0) = X0, and f is a
proper surjective holomorphic map whose differential is non-zero everywhere except at
p ∈ X0 ⊂X.

The space X retracts by deformation to the special fibre X0. Indeed, a deformation
retraction r : X → X0 can be obtained by choosing a metric on X and using the
gradient flow of the function |f |2.

Let Xε = f−1(ε) be a general fibre of f , and let i : Xε ↪→X denote its inclusion. In
the following proposition we collect some facts about Lefschetz deformations. A proof
of these facts can be found for instance in chapter 3 of Voisin’s book [44].

Proposition 2.34.
(1) The kernel of i∗ : H2(Xε;Z) → H2(X;Z) is generated by the class of a two-

dimensional sphere in Xε, called a vanishing cycle. Let δ ∈ H2(Xε,Z) be the
class Poincaré dual to a vanishing cycle. It is well-defined up to sign and has
self-intersection number −2.

(2) The monodromy action on H2(Xε,Z) is given by the Picard-Lefschetz map:

Rδ : H2(Xε,Z)→ H2(Xε,Z)
x 7→ x+ (x, δ) · δ

(3) The map i∗ : H2(X,Z)→ H2(Xε,Z) is injective and its image consists of the
classes invariant under Rδ, i.e., the orthogonal complement of δ.

Proposition 2.35. There are two isometries ψ : H2(Y0,Z)→ H2(Xε,Z) which make the
following diagram commute. One maps s to δ, the other one to −δ.

H2(Y0,Z) H2(Xε,Z)

H2(X0,Z) H2(X,Z)

ψ

bl∗p

r∗

i∗
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Proof. The composition i∗ ◦ r∗ ◦ (bl∗p)−1 defines an isomorphism between the orthogonal
complements 〈s〉⊥ ⊂ H2(Y0,Z) and 〈δ〉⊥ ⊂ H2(Xε,Z). It can be extended to an
isomorphism ψ : H2(Y0,Z) → H2(Xε,Z) by gluing it to an isomorphism between 〈s〉
and 〈δ〉. Such an isomorphism must map s either to δ or to −δ.

Remark 2.36. This observation can also be obtained by explicitly constructing the two
possible resolutions of the deformation f : X → D, cf. Atiyah [2].

Remark 2.37. If we perturb several nodes simultaneously, the situation is very similar.
Let X0 be a surface with n nodes at p1, . . . , pn, let s1, . . . , sn ∈ H2(Y0,Z) be the
exceptional classes of the blow-up, and let δ1, . . . , δn ∈ H2(Xε,Z) denote the classes of
the corresponding vanishing cycles. If the sublattice generated by s1, . . . , sn is primitive
in H2(Y0,Z), then there are 2n different isomorphisms ψ making the above diagram
commute. By the gluing condition, si must be mapped either to δi or −δi, and the signs
can be chosen independently.

2.6.2 The real case

If the surface X0 is equipped with a real structure c : X0 → X0, then we may choose the
Lefschetz deformation to be real, i.e., so that c extends to a real structure c : X →X

which lifts the complex conjugation on D. In this situation, we take the general fibre
Xε over a real point ε ∈ D∗ ∩ R, so that c defines a real structure on Xε. The maps
r∗, i∗ and bl∗p above are equivariant with respect to the real structures.

Proposition 2.38 (Perturbation of a real node). Let X0 be a real surface with a real node.
Choose a real Lefschetz deformation f : X → D, and let ψ : H2(Y0,Z) → H2(Xε,Z)
be an isomorphism as in Proposition 2.35. If φ0 : H2(Y0,Z) → H2(Y0,Z) and φε :
H2(Xε,Z)→ H2(Xε,Z) denote the involutions induced by the respective real structures,
then we have

φε =
{
ψ ◦ φ0 ◦ ψ−1 or
ψ ◦ φ0 ◦ ψ−1 ◦Rδ

depending on the sign of ε, where Rδ denotes the Picard-Lefschetz map.

Proof. Since all the involved maps are equivariant with respect to the real structures, it
follows from the commutative diagram above that φε agrees with ψ ◦ φ0 ◦ ψ−1 on the
orthogonal complement of δ. Therefore φε acts on 〈δ〉 as ±1. It remains to show that
this sign really depends on the sign of ε. To see this, consider a path γ connecting ε with
−ε in the upper half plane (see Figure 2.1) and let M(γ) : H2(Xε,Z) → H2(X−ε,Z)
denote the monodromy along γ. Let γ̄ denote the inverse path, i.e. γ̄(t) := γ(1 − t).
Because f is real (that is, f ◦ c = conj ◦f), we have M(conj ◦ γ̄) = φε ◦M(γ̄) ◦ φ−ε.
Moreover, since the concatenation of the paths γ and conj ◦ γ̄ makes a full turn around
0, the composition M(conj ◦ γ̄) ◦M(γ) is the Picard-Lefschetz map Rδ. It follows that
φε = M(γ)−1 ◦ φ−ε ◦M(γ) ◦ Rδ. Therefore, if φε maps the vanishing cycle δε to aδε,
a ∈ {±1}, then φ−ε maps the vanishing cycle δ−ε to −aδ−ε.
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ε−ε

γ

conj ◦ γ̄

D

R

Figure 2.1

Proposition 2.39 (Perturbation of a pair of non-real nodes). Let X0 be a real surface with
a pair of non-real nodes. Choose a real Lefschetz deformation f : X → D of this pair.
Then there is an isomorphism ψ : H2(Y0,Z)→ H2(Xε,Z) such that φε = ψ ◦ φ0 ◦ ψ−1.

Proof. Let s′, s′′ ∈ H2(Y0,Z) denote the classes of the exceptional curves, and let
δ′, δ′′ ∈ H2(Xε,Z) be the corresponding vanishing cycles. By Proposition 2.35 and
Remark 2.37, there is an isomorphism ψ : H2(Y0,Z) → H2(Xε,Z) with ψ(s′) = δ′,
ψ(s′′) = δ′′, and such that φε agrees with ψ ◦ φ0 ◦ψ−1 on the orthogonal complement of
〈δ′, δ′′〉. Moreover, ψ ◦ φ0 ◦ ψ−1 maps δ′ to −δ′′, and φε must map δ′ either to −δ′′ or
to δ′′. In the former case we are done, and in the latter case it suffices to replace ψ by
Rδ′ ◦ ψ.

Corollary 2.40. Let C be a real irreducible sextic whose only singularities are non-real
nodes, and let C ′ be a real non-singular sextic obtained from C be perturbing all the
nodes. Let (X,h, c) and (X ′, h′, c′) be the weakly polarized real K3 surfaces obtained
from C and C ′ respectively. Then there is an isomorphism ψ : H2(X,Z)→ H2(X ′,Z)
such that ψ(h) = h′ and ψ ◦ c∗ = c′∗ ◦ ψ.

Corollary 2.41. Let C be a dividing real irreducible sextic whose only singularities
are non-real nodes, let (X,h, c) be the associated weakly polarized real K3 surface, let
α ∈ H2(X,Z) be a characteristic element of c∗ and let σ = {s′1, s′′1, . . . , s′m, s′′m} denote
the set of nodal classes. Then we have α ≡∑i∈I s

′
i + s′′i mod 2, where I ⊂ {1, . . . ,m}

is the set of indices of the crossing pairs.

Proof. By Remark 2.29 and Lemma 2.32, we can write α ≡∑i∈I s
′
i+s′′i mod 2 for some

set I ⊂ {1, . . . ,m}. To see whether a particular i ∈ {1, . . . ,m} belongs to I, consider a
curve C ′ obtained from C by perturbing the pair of nodes in question while keeping all
the other nodes. Let (X ′, h′, c′) be the corresponding weakly polarized real K3 surface,
with set of nodal classes σ′. Let ψ : H2(X;Z) → H2(X ′;Z) be an isomorphism as in
Proposition 2.39. A characteristic element for c′∗ is given by α′ := ψ(α). The i-th pair
of non-real nodes is crossing if and only if C ′ is not dividing. By Proposition 2.28, this
is the case if and only if α′ is not contained (modulo 2) in the subgroup generated by
σ′, which is equivalent to α not being contained (modulo 2) in the subgroup generated
by ψ−1(σ′) = σ \ {s′i, s′′i }. This happens if and only if i ∈ I.

25





CHAPTER 3

Real nodal sextics without real nodes

3.1 Overview and statement of the results

In this section, we consider real nodal irreducible sextics without real nodes, i.e., sextics
whose only singularities are pairs of non-real nodes, and we classify them up to rigid
isotopy. This classification can be seen as a generalization of Nikulin’s classification of
real non-singular sextics up to rigid isotopy [32].

We proceed in two steps: In the first step (in Section 3.2), we classify the real
homological types of real nodal irreducible sextics without real nodes, drawing on
Nikulin’s classification of “involutions with conditions” on unimodular lattices [33].
In the second step (in Section 3.3) we show, using Theorem 2.18, that to each real
homological type corresponds a unique rigid isotopy type.

Let us now formulate the statement of the classification. We associate the following
invariants with a real irreducible sextic C ⊂ CP2 whose only singularities are m pairs of
non-real nodes:

– Isotopy type of the real part.
– Dividing type.
– Number of crossing pairs (only defined for dividing curves).

These three characteristics are invariant under rigid isotopies. Our first theorem states
that they determine the rigid isotopy class.

Theorem 3.1. Two real irreducible sextics with m pairs of non-real nodes are rigidly
isotopic if and only if their real parts are isotopic, they are of the same dividing type
and, if they are dividing, they have the same number of crossing pairs.

By comparison, Nikulin’s theorem [32] states that non-singular real sextics are rigidly
isotopic if and only if they are isotopic and of the same dividing type.

The second question we consider is which combinations of isotopy type, dividing
type and number of crossing pairs are realized by real irreducible sextics C with m pairs
of non-real nodes. There are several geometric conditions which must be satisfied.

(1) Existence of the smoothing. Smoothing the non-real nodes leads to a non-singular
real sextic whose real part has the same isotopy type as the original curve. The
smoothed curve is dividing if and only if the original curve is dividing and
without crossing pairs. Therefore, a sextic with prescribed isotopy type, dividing
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type and number of crossing nodes can only exist if there exists a non-singular
sextic with the same isotopy type and the appropriate dividing type. (Necessary
and sufficient conditions for this are given by Nikulin [32].)

(2) Harnack’s inequality for C̃. The normalization C̃ is a smooth real curve of genus
g = 10− 2m. Harnack’s inequality (see Harnack [14] and Klein [23, p. 154] for a
topological proof) for C̃ states that l ≤ g + 1 = 11− 2m, where l denotes the
number of ovals of RC. Moreover, the equality l = 11− 2m is only possible if C
is dividing.

If C is dividing, then there are further restrictions. The set of real points of a real
sextic without real nodes it topologically a union of circles, which must be embedded in
RP2 so that they bound a disc. These circles are called ovals. Let l be the number of
ovals. A first important restriction for dividing curves is Klein’s congruence (see Klein
[23, p. 172]), stating that l ≡ k (mod 2) for curves of degree d = 2k. More refined
restrictions come from Rokhlin’s complex orientation formula (see Rokhlin [35]). The
orientation of each of the halves of C̃ induces a boundary orientation on the real part
RC. A pair of ovals in RC is called injective if one oval is contained in the disk bounded
by the other oval. An injective pair is called positive if the orientation of the two ovals is
induced by an orientation of the annulus bounded by these ovals, and negative otherwise.
Let Π+ and Π− denote the numbers of positive and negative injective pairs, respectively.
In our case, Rokhlin’s complex orientation formula states that

2(Π− −Π+) + l = 9− 2r,

where l is the number of ovals and r is the number of crossing pairs. This implies the
following relations between the topology of the real part and the number r of crossing
pairs for dividing curves:

(3) Arnold’s congruence. An oval is called even if it lies inside an even number of
other ovals, and odd otherwise. Arnold’s congruence states that

oeven − oodd ≡ 9− 2r mod 4,

where oeven and oodd denote the numbers of even and odd ovals, respectively.

(4) Restriction for curves without injective pairs. For curves without injective pairs,
the complex orientation formula implies

l = 9− 2r.

Our second theorem states that the conditions (1)–(4) are sufficient for the existence
of a real sextic with prescribed isotopy type, dividing type and number of crossing pairs.

Theorem 3.2. A triple consisting of an isotopy type, a dividing type and a number of
crossing pairs (if the dividing type is I) is realized by a real irreducible sextic whose
only singularities are m pairs of non-real nodes if and only if it satisfies the conditions
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(1)–(4) above.

Corollary 3.3. The rigid isotopy classes of real irreducible nodal sextics without real
nodes are those listed in Figures 3.1 and 3.2. In total, there are 78 classes of dividing
sextics and 125 classes of non-dividing sextics.

To describe the isotopy type of the real part, also called real scheme, we use Viro’s
notation: the symbol 〈n〉 stands for a collection of n empty ovals; 〈1〈A〉〉 is obtained
from A by adding an oval containing all of ovals A in its interior; if A and B are
collections of ovals, then 〈A tB〉 denotes the disjoint union of A and B, such that no
oval of A lies in the interior of an oval of B and vice versa.
mmax

0 〈1 t 1〈9〉〉
{0}

〈5 t 1〈5〉〉
{0}

〈9 t 1〈1〉〉
{0}

1 〈1〈8〉〉
{0}

〈1 t 1〈7〉〉
{1}

〈2 t 1〈6〉〉
{0}

〈3 t 1〈5〉〉
{1}

〈4 t 1〈4〉〉
{0}

〈5 t 1〈3〉〉
{1}

〈6 t 1〈2〉〉
{0}

〈7 t 1〈1〉〉
{1}

〈9〉
{0}

2 〈1〈6〉〉
{1}

〈1 t 1〈5〉〉
{0, 2}

〈2 t 1〈4〉〉
{1}

〈3 t 1〈3〉〉
{0, 2}

〈4 t 1〈2〉〉
{1}

〈5 t 1〈1〉〉
{0, 2}

〈7〉
{1}

3 〈1〈4〉〉
{0, 2}

〈1 t 1〈3〉〉
{1, 3}

〈2 t 1〈2〉〉
{0, 2}

〈3 t 1〈1〉〉
{1, 3}

〈5〉
{2}

4 〈1〈2〉〉
{1, 3}

〈1 t 1〈1〉〉
{2, 4}

〈3〉
{3}

〈1〈1〈1〉〉〉
{0}

5 〈1〉
{4}

Figure 3.1 – Rigid isotopy classes of dividing real nodal sextics with m pairs of
non-real nodes of which r are crossing. The set below each real scheme indicates
the possible values for the number of crossing pairs r. The total number of
pairs m can take any value between r and the upper bound mmax indicated on
the left of each row.

3.2 Classification of the homological types

Our aim in this section is to classify the real homological types corresponding to real
irreducible nodal sextics without real nodes. We fix the number m ≥ 1 of pairs of
non-real nodes. (The case m = 0 corresponds to non-singular sextics, for which the
homological types are classified by Nikulin [32]. We exclude it here to avoid dealing
with certain boundary conditions.)

3.2.1 Invariants and statement of the classification

We recall that a homological type corresponding to real nodal irreducible sextics without
real nodes is a quadruple (L, h, σ, φ), where L is a K3 lattice, h ∈ L is a vector of square
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mmax

0 〈1〈9〉〉 〈1 t 1〈8〉〉 〈4 t 1〈5〉〉 〈5 t 1〈4〉〉 〈8 t 1〈1〉〉 〈10〉

0 〈1〈8〉〉 〈1 t 1〈7〉〉 〈3 t 1〈5〉〉 〈4 t 1〈4〉〉 〈5 t 1〈3〉〉 〈7 t 1〈1〉〉 〈9〉

1 〈1〈7〉〉 〈1 t 1〈6〉〉 〈2 t 1〈5〉〉 〈3 t 1〈4〉〉 〈4 t 1〈3〉〉 〈5 t 1〈2〉〉 〈6 t 1〈1〉〉 〈8〉

1 〈1〈6〉〉 〈1 t 1〈5〉〉 〈2 t 1〈4〉〉 〈3 t 1〈3〉〉 〈4 t 1〈2〉〉 〈5 t 1〈1〉〉 〈7〉

2 〈1〈5〉〉 〈1 t 1〈4〉〉 〈2 t 1〈3〉〉 〈3 t 1〈2〉〉 〈4 t 1〈1〉〉 〈6〉

2 〈1〈4〉〉 〈1 t 1〈3〉〉 〈2 t 1〈2〉〉 〈3 t 1〈1〉〉 〈5〉

3 〈1〈3〉〉 〈1 t 1〈2〉〉 〈2 t 1〈1〉〉 〈4〉

3 〈1〈2〉〉 〈1 t 1〈1〉〉 〈3〉

4 〈1〈1〉〉 〈2〉

4 〈1〉

5 ∅

Figure 3.2 – Rigid isotopy classes of non-dividing real nodal sextics with m
pairs of non-real nodes. The number of pairs of non-real nodes m can take any
value between 0 and the upper bound mmax indicated on the left of each row.

2, σ ⊂ L is a set of 2m pairwise orthogonal roots orthogonal to h such that the sublattice
S generated by h and σ is primitive in L, and φ : L → L is a geometric involution
(see Definition 2.10) satisfying property (∗) (see Section 2.2) such that there is no root
s ∈ σ with φ(s) = −s. An isomorphism between two homological types (L1, h1, σ1, φ1)
and (L2, h2, σ2, φ2) is an isometry ρ : L1 → L2 such that ρ(h1) = h2, ρ(σ1) = σ2 and
φ2 ◦ ρ = ρ ◦ φ1.

The following lemma can either be proved directly (see e.g. Morrison and Saito [31,
Theorem 3.2]) or geometrically, using the fact that the irreducible sextics with n nodes
form a connected family.

Lemma 3.4. The complex homological type (L, h, σ) corresponding to irreducible sextics
with 0 ≤ n ≤ 10 nodes is unique up to isomorphism.

Therefore, we can assume that L, h and σ are fixed, and only the involution φ is
variable. We label the roots σ = {s′1, s′′1, . . . , s′m, s′′m}. Let ϑ : S → S be the involutive
isometry defined by ϑ(h) = −h and ϑ(s′i) = −s′′i for all i ∈ {1, . . . ,m}.

Lemma 3.5. Each real homological type corresponding to real nodal irreducible sextics
without real nodes is isomorphic to a homological type (L, h, σ, φ) such that the restriction
of φ to S coincides with ϑ.

Proof. Let (L, h, σ, φ) be a real homological type corresponding to real nodal irreducible
sextics without real nodes. Clearly there is an isometry ρ0 : S → S such that ρ0 ◦ φ =
ϑ ◦ ρ0. Let K denote the orthogonal complement of S inside L. It is indefinite of
rank 21 − 2m, its discriminant group is AK ≡ (Z/2Z)2m+1, with discriminant from
qK = [1

2 ]2m⊕ [−1
2 ]. By Nikulin [32, Theorem 1.14.2] the homomorphism O(K)→ O(qK)

is surjective. Therefore, ρ0 extends to an isometry ρ : L → L. Then the homological
type (L, h, σ, ρ ◦ φ ◦ ρ−1) is isomorphic to (L, h, σ, φ) and has the desired property that
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(ρ ◦ φ ◦ ρ−1)
∣∣
S

= ϑ.

From now on, we assume that the involution φ is chosen so that φ
∣∣
S

= ϑ.

Definition 3.6. We define invariants a, t, δ and r for a homological type (L, h, σ, φ) of
irreducible real nodal sextics without real nodes as follows.

a : Since φ is an involution on a unimodular lattice, the discriminant group of the
invariant sublattice L+, which we denote by Aq, is of period 2. Let a be the length
of this group, i.e. the number a such that Aq ∼= (Z/2Z)a.

t : Let t be the number of negative squares of the invariant lattice L+.
δ : Let α ∈ L be a characteristic element of the involution φ, and let ᾱ be its residue

in L/2L (see section 2.5). Recall that S/2S is naturally embedded in L/2L. Let
δ = 0 if ᾱ ∈ S/2S and δ = 1 otherwise.

r : The invariant r is only defined if δ = 0. In that case, the characteristic element α
can be expressed as a sum

α ≡
∑
i∈I

s′i + s′′i mod 2

for some subset I ⊂ {1, . . . ,m}, cf. Remark 2.29 and Lemma 2.32. We define r as
the cardinality of the set I.

Note that a, t, δ and r only depend on the homological type up to isomorphism.
The following two theorems give a complete classification of the real homological types
corresponding to real nodal irreducible sextics without real nodes in terms of the
invariants a, t, δ and r. The rest of this section is devoted to the proof of these theorems.

Theorem 3.7. Two homological types of irreducible real nodal sextics without real nodes
are isomorphic if and only if they have the same invariants (a, t, δ, r).

Theorem 3.8. A homological type (L, h, σ, φ) of irreducible real nodal sextics without
real nodes with invariants (a, t, δ, r) exists if and only if a, t, δ and r satisfy the following
conditions.

(i) a ≤ 1 + t ≤ 20− a.
(ii) a ≡ 1 + t mod 2.
(iii) 2m ≤ a, with equality only if δ = 0.
(iv) If δ = 0, then 2r ≡ 1− t mod 4.
(v) If δ = 0 and a = 1 + t, then 2r ≡ a− 2 mod 8.

3.2.2 Nikulin’s “involutions with condition”

As mentioned above, to prove Theorems 3.7 and 3.8 we rely on Nikulin’s classification
of “involutions with condition”, which are defined as follows.

Definition 3.9 (Nikulin [33]). A condition on an involution is a triple (S, ϑ,G) formed
by an even lattice S, an involution ϑ : S → S and a normal subgroup G of the group
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{g ∈ O(S) | g ◦ϑ = ϑ ◦ g}. A (unimodular) involution with condition (S, ϑ,G) is a triple
(L, i, φ) formed by a (unimodular) even lattice L, a primitive embedding i : S ↪→ L and
an involution φ on L such that φ ◦ i = i ◦ ϑ. Two triples (L1, i1, φ1) and (L2, i2, φ2) are
called isomorphic if there is an isometry ρ : L1 → L2 such that ρ ◦φ1 = φ2 ◦ ρ and there
is an element g ∈ G such that ρ ◦ i1 = i2 ◦ g.

Given a condition (S, ϑ,G), Nikulin [33] defines invariants which uniquely determine
the genus of involutions with condition (S, ϑ,G). (Roughly speaking, two triples
(L1, φ1, i1) and (L2, φ2, i2) have the same genus if they are isomorphic over Q and over
the p-adic numbers Zp for all primes p.) Moreover he describes all the values these
invariants can take, and he gives conditions under which the genus of an involution
determines the involution up to isomorphism.

The classification of homological types of irreducible real nodal sextics without
real nodes fits into this framework. The condition in our case is the triple (S, ϑ,G),
where S is the lattice with orthogonal basis {h, s′1, s′′1, . . . , s′m, s′′m}, the involution ϑ

is given by ϑ(h) = −h and ϑ(s′i) = −s′′i for all i ∈ {1, . . . ,m}, and G is the group
{g ∈ O(S) | g(h) = h, g(σ) = σ and g ◦ϑ = ϑ◦g}. The group G is a semi-direct product
(Z/2Z)m o Sm, where a permutation f ∈ Sm takes s′i to s′f(i) and s′′i to s′′f(i), and the
i-th basis vector ei ∈ (Z/2Z)m acts by flipping the pair {s′i, s′′i } and leaving the other
basis vectors fixed.

Lemma 3.10. Isomorphism classes of homological types of irreducible real nodal sextics
without real nodes are in bijection with isomorphism classes of involutions with condition
(S, ϑ,G), say (L, φ, i), where L is the fixed K3 lattice, and φ is a geometric involution
with property (∗).

In [33, Theorem 1.6.3], Nikulin gives a complete system of invariants for the genus
of involutions with condition. In order to prove Theorem 3.7, it suffices to show that
the isomorphism classes are determined by their genus, and that the invariants m, a, t,
δ and r (see Definition 3.6) determine Nikulin’s invariants for the genus.

3.2.3 Uniqueness in the genus

Given a homological type (L, h, σ, φ) of irreducible real nodal sextics without real nodes,
we define the following sublattices of L.

L+ = {x ∈ L | φ(x) = x} L− = {x ∈ L | φ(x) = −x}
S+ = L+ ∩ S S− = L− ∩ S
K+ = L+ ∩ S⊥ K− = L− ∩ S⊥

To show that the isomorphism classes of the involutions with condition under
consideration are unique in their genera, we use the following result:

Remark 3.11 (Nikulin [33, Remark 1.6.2]). For an isomorphism class of an involution
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with condition to be unique in its genus, it is sufficient that

(1) the lattices K± are unique in their genera, and
(2) the natural homomorphisms O(K±)→ O(k±) are surjective.

Note that the lattices K± for homological types of real nodal sextics without real
nodes have one positive square and their discriminant form is of period 4.

Proposition 3.12. Let K be an even lattice with one positive square whose discriminant
form k is of period 4. Then K is unique in its genus and the homomorphism O(K)→
O(k) is surjective.

Proof. The statement clearly holds for lattices of rank one. Let us now assume that
K is of rank at least two, and therefore indefinite. If the length of the discriminant
group k is smaller than the rank of the lattice K, the statement follows from Nikulin
[32, Theorem 1.14.2]. If the length of k is equal to the rank of K and at least 3, the
statement follows from Miranda and Morrison [29, Chapter 8, Corollary 7.8]. For lattices
of rank 2 with k of period 4, the statement can be verified by hand; the only such
lattices are U, 〈2〉 ⊕ 〈−2〉, U(2), 〈2〉 ⊕ 〈−4〉, 〈4〉 ⊕ 〈−4〉 and U(4).

Corollary 3.13. For a homological type (L, h, σ, φ) of real nodal sextics without real nodes,
the lattices K+ and K− are unique in their genera, and the natural homomorphisms
O(K±) → O(k±) are surjective. In particular, the homological type is unique in its
genus.

3.2.4 Invariants for the genus

In the following we define Nikulin’s invariants of the genus and show that for involutions
with condition (S, ϑ,G) as in Lemma 3.10, they are determined by the invariants m, a,
t, δ and r (see Definition 3.6).

Invariants of (L, φ).

Let Aq be the discriminant group of the lattice L+, and let q be the discriminant form
defined on it. The invariants characterizing (L, φ) are the rank and signature of L, the
rank and signature of L+ and the invariants of q. Since L is the fixed K3 lattice, its
rank and signature are fixed. Since φ is a geometric involution, L+ has one positive
square. Therefore, its rank and signature are determined by t, its number of negative
squares. Finally the group Aq is of period 2, and hence q is determined by the length of
Aq, which is a, and by the parity of q (cf. [32, Theorem 3.6.2]). The form q is even if
and only if the characteristic element ᾱ ∈ L/2L is zero. This is the case if and only if
δ = 0 and r = 0.
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The groups H+ and H−.

Let AS+ and AS− be the discriminant groups of the lattices S+ and S−, respectively.
Following Nikulin [33], we define subgroups Γ± and H± of AS± as follows.

Γ± = {x ∈ S∗± | ∃y ∈ S∗∓ such that x+ y ∈ S}/S± ⊂ S∗±/S± = AS±

H± = {x ∈ S∗± | ∃y ∈ L∗∓ such that x+ y ∈ L}/S± ⊂ S∗±/S± = AS±

Note that the subgroups Γ+ and Γ− depend only on the condition (S, ϑ,G), whereas the
subgroups H± depend a priori on the involution φ. However, it turns out that in our case
H+ and H− do not depend on φ. We have S+ = 〈p1, . . . , pm〉 and S− = 〈n1, . . . , nm, h〉
where pi = s′i − s′′i and ni = s′i + s′′i . The groups AS± and Γ± are given as follows.

AS+ =
〈
[p1

4 ], . . . , [pm

4 ]
〉 ∼= (Z/4Z)m

AS− =
〈

[n1
4 ], . . . , [nm

4 ], [h2 ]
〉

∼= (Z/4Z)m ⊕ Z/2Z

Γ+ =
〈
[p1

2 ], . . . , [pm

2 ]
〉 ∼= (Z/2Z)m ⊂ AS+

Γ− =
〈
[n1

2 ], . . . , [nm
2 ]
〉 ∼= (Z/2Z)m ⊂ AS−

The group H+ contains Γ+ and is contained in the 2-torsion subgroup of AS+ . Since Γ+
is the 2-torsion subgroup of AS+ , we have H+ = Γ−. Similarly, H− contains Γ− and
is contained in the 2-torsion subgroup of AS− . The group Γ− is of index two in the
2-torsion subgroup of AS− , so H− must be either Γ− or Γ− ⊕ 〈[h2 ]〉. Because we chose
the real structure with property (∗), the vector h does not glue to L+, hence we have
[h2 ] 6∈ H− and therefore H− = Γ−.

The finite quadratic form qr.

The lattice S determines an anti-isometry γ : Γ+ → Γ−. We define the lattice H+⊕γH−
as the gluing of H+ and H− along γ. More precisely, let

H+ ⊕γ H− = (Γγ)⊥H+⊕H−
/

Γγ ,

where Γγ ⊂ Γ+⊕Γ− is the graph of γ. There is a natural embedding γr : H+⊕γH− ↪→ q,
inducing a finite quadratic form qr on H+ ⊕γ H−. In general (if Γ+ ⊕γ Γ− is strictly
contained in H+ ⊕γ H−) this form qr depends on the embedding i : S ↪→ L and on the
involution φ. Since in our case we have Γ± = H± however, the form qr is determined
by S and θ.

Invariants of the embedding γr.

Let vq ∈ Aq be the characteristic element of q, i.e. the element for which (vq, x) = x2

mod 1 for all x ∈ Aq. We have vq =
[
α
2
]
∈ Aq, where α ∈ L is a characteristic element

for the involution φ. The embedding γr is characterized by whether vq is contained
in γr(qr), and if this is the case, by the orbit G · γ−1

r (vq) ⊂ qr. But vq is contained in
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γr(qr) if and only if ᾱ ∈ L/2L is contained in S/2S, which is by definition if and only
of δ = 0. In this case we have α ≡ ∑i∈I s

′
i + s′′i mod 2L, where the sum ranges over

the indices of the crossing pairs. Therefore, γ−1
r (vq) = ∑

i[pi
2 ] ∈ qr is determined (up to

the action of G, which permutes the indices) by r.

3.2.5 Proof of Theorem 3.7

Proof of Theorem 3.7. Let (L, h, σ, φ1) and (L, h, σ, φ2) be two real homological types
of real nodal irreducible sextics without real nodes which have the same invariants a, t, δ
and r. We have shown in the preceding section that a, t, δ and r determine Nikulin’s
invariants for the genus. Therefore, by Nikulin’s theorem [33, Theorem 1.6.3], the
homological types (L, h, σ, φ1) and (L, h, σ, φ2) belong to the same genus. Since by
Corollary 3.13 the genus determines the homological type up to isomorphism, it follows
that (L, h, σ, φ1) and (L, h, σ, φ2) are isomorphic.

3.2.6 Existence of involutions: proof of Theorem 3.8

Proof of Theorem 3.8. By Lemma 3.10, the homological types we consider correspond
to involutions with condition (S, ϑ,G). Therefore, we can deduce Theorem 3.8 from
Nikulin’s existence theorem for involutions with conditions [33, Theorem 1.8.3]. To do
this, we need to check that the conditions (i) – (v) of Theorem 3.8 are equivalent to
the conditions for the existence of an involution with condition given by Nikulin in [33,
Conditions 1.8.1 and 1.8.2].

For the most part, this verification is straightforward. The only more technical step,
which we consider in detail, is the equivalence of condition (v) of Theorem 3.8 with
boundary condition 1 in [33, Conditions 1.8.2], in the case δ = 0. This boundary condition
guarantees the existence of a lattice K+ with prescribed discriminant quadratic form
k+ and index of inertia (1, t−m), using Nikulin’s theorem [32, Theorem 1.10.1] on the
existence of an indefinite even lattice with prescribed rank, signature and discriminant
form. In our setting, boundary condition 1 in [33, Conditions 1.8.2] is equivalent to the
following condition:

If a = 1 + t, then 1− t ≡ 4 εv+ + cv (mod 8), (BC1)

where cv and εv+ are invariants taking values in Z/8Z and Z/2Z respectively, whose
definition we give below. We need to show that (BC1) is equivalent to condition (v)
which states that

if a = 1 + t, then 2r ≡ a− 2 (mod 8).

The equivalence between (BC1) and (v) follows from Lemma 3.16 below.

In the following, suppose that δ = 0. Recall from Section 3.2.4 that vq denotes the
characteristic element of the finite quadratic form q.

Definition 3.14. The invariant cv ∈ Z/8Z is defined such that 1
2cv = q(vq) mod 2 (see
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[33, p. 113]) and cv ∈ {−1, 0, 1, 2} mod 8 (see Nikulin [33, p. 118]).

Before defining εv+ , we introduce two auxiliary finite quadratic forms, γ+ and η.
Let γ+ be the finite quadratic form

γ+ =
{[1

2
]
⊕
[
−1

2
]

if r is even,[1
2
]
⊕
[1

2
]

if r is odd

and let x1 and x2 be the standard generators of γ+ (cf. Nikulin [33, p. 117, Equa-
tion 8.14]). The characteristic element of γ+ is vγ+ = x1 + x2, and we have v2

γ+ ≡ r

(mod 2).
Let AS+ be the discriminant group of the lattice S+, and let s+ be the finite

quadratic form defined on it. Recall that AS+ is generated by the elements e1, . . . , em,
where ei = [ s

′
i−s
′′
i

4 ]. Since qr ∼= Γ+ ⊂ AS+ , we may view v = γ−1
r (vq) as an element

of AS+ (see Section 3.2.4 for the definition of qr and γr). We have v = ∑
i∈I 2ei. Let

vη = v + vγ+ ∈ s+ ⊕ γ+. Note that v2
η = 0. Hence we can define the quadratic form

η = 〈vη〉⊥(s+⊕ γ+)/〈vη〉,

(which is called “(qS2
+

)v” in Nikulin [33, p. 117, Equation 8.15]). Let K(η2) be a 2-adic
lattice of minimal length whose discriminant quadratic form is η. The discriminant
of K(η2) is an element of Z2/(Z∗2)2. There are two such lattices K(η2), and their
discriminants differ by a sign.

Definition 3.15. The invariant εv+ ∈ Z/2Z is defined by the equation

5εv+ = ±discrK(η2) ∈ Q2/(Q∗2)2.

Note that the group Q∗2/(Q∗2)2 is isomorphic to (Z/2Z)3, with representatives
{1,−1} × {1, 2} × {1, 5} (cf. for example Serre [37, p. 18]).

Lemma 3.16. If δ = 0, then 4 εv+ + cv + 2r ≡ 0 mod 8.

Proof. Recall that vq = ∑
i∈I [pi

2 ] ∈ qr. We have q(vq) ≡ r mod 2. Therefore,

cv ≡
{

0 (mod 8) if r is even,
2 (mod 8) if r is odd.

Hence, to prove the lemma, it remains to show that

εv+ ≡
{

0 (mod 2) if r ≡ 0, 3 (mod 4),
1 (mod 2) if r ≡ 1, 2 (mod 4).

Up to the action of G, we may suppose that I = {1, . . . , r}. Then a basis of the finite
quadratic form η defined above is given by

{ei + x1}ri=1 ∪ {ei}mi=r+1.
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We define a new basis {fi}mi=1 for η by

fi =
{

[2(e1 + · · ·+ ei−1) + ei + x1] if i ∈ {1, . . . , r}
[ei] if i ∈ {r + 1, . . . ,m}.

Note that this basis is orthogonal, and we have

f2
i =

{
−5

4 if i ≤ r and i is odd,
−1

4 otherwise.

Now K(η2) can be defined as the 2-adic lattice with orthogonal basis b1, . . . , bm, where

b2i =
{
−5 · 4 if i ≤ r and i is odd,
−1 · 4 otherwise.

We calculate the discriminant of K(η2) with respect to this basis. Since the basis is
orthogonal, the discriminant is just the product b21 · b22 · · · b2m. The invariant εv+ is the
number of occurrences of the factor 5 in this product, counted modulo 2. This is equal
to the number of odd integers between 1 and r, and it is finally easy to check that

εv+ ≡
⌈r

2
⌉
≡
{

0 if r ≡ 0, 3 mod 4
1 if r ≡ 1, 2 mod 4 (mod 2).

3.3 Homological type determines rigid isotopy class

In this section, we prove the following proposition.

Proposition 3.17. For real irreducible nodal sextics without real nodes, the rigid isotopy
class is determined by the homological type.

Proof. Recall from Section 2.3 that we denote by H+ and H− the hyperbolic spaces
obtained from K+ ⊗ R and K− ⊗ R, respectively, and let

∆+ = {u ∈ K+ | u2 < 0 and ∃w ∈ Σ such that v = 1
2(u+ w) ∈ L and v2 = −2},

∆− = {u ∈ K− | u2 < 0 and ∃w ∈ Σ such that v = 1
2(u+ w) ∈ L and v2 = −2}.

The sets of hyperplanes {Hu}u∈∆+ and {Hu}u∈∆− define tilings of the spacesH+ andH−
respectively. By Theorem 2.18, the rigid isotopy classes of curves with homological type
(L, h, σ, φ) are in bijection with pairs of tiles, modulo automorphisms of the homological
type. Hence, to show that there is only one rigid isotopy class for a given homological
type, we need to show that the automorphisms of the homological type act transitively
on the pairs of tiles. For this, it is sufficient to show the following: For each u ∈ ∆± there
is an automorphism ρ of the homological type which acts on H+ ×H− by a reflection
in Hu. Let u ∈ ∆ε (ε = ±1), and let w ∈ Σ be a vector such that v = 1

2(u + w) ∈ L
with v2 = −2. Since u2 and w2 are both non-positive and u2 + w2 = (2v)2 = −8, we
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have w2 ∈ {0,−2,−4,−6}. Therefore, the vector w ∈ Σ is either zero or a sum of
up to three elements of ±σ. We label the nodal classes σ = {s′1, s′′1, . . . , s′m, s′′m}, such
that φ(s′i) = −s′′i and φ(s′′i ) = −s′i. Since v − εφ(v) = 1

2(w − εφ(w)) ∈ L, a root s′i
appears in w if and only if s′′i does. This leaves two possibilities: either w = 0, or
w = ± s′k ± s′′k for some k. In the first case (w = 0) we have v = u

2 , and ρ = Rv is an
automorphism of (L, h, σ, φ) which acts on H+×H− by reflection in Hu. Let us consider
the second case, where w = ± s′k ± s′′k for some k. Changing the signs if necessary,
we may assume w = s′k + εs′′k. Then v and φ(v) are orthogonal to each other, and
ρ0 = Rv ◦Rφ(v) = Rw ◦Ru is an automorphism of L which acts on H+×H− by reflection
in Hu. However, it does not necessarily map the set σ to itself. More precisely, it acts
on Σ by reflection in the hyperplane orthogonal to v = s′k + εs′′k. To ensure that the set
σ is mapped to itself, we compose ρ0 with a rotation in the plane 〈s′k, s′′k〉 if ε = 1: We
define ρ = ρ0 ◦Rs′

k
◦Rs′′

k
if ε = 1, and ρ = ρ0 if ε = −1. Then ρ is an automorphism of

(L, h, σ, φ) which acts on H+ ×H− by reflection in Hu.

3.4 Proof of Theorems 3.1 and 3.2

Proposition 3.18 (Geometrical interpretation of a, t, δ and r). Let C ⊂ CP2 be a real ir-
reducible sextic whose only singularities are m pairs of non-real nodes, and let (L, h, σ, φ)
be its homological type. Then the invariants (a, t, δ, r) have the following geometrical
interpretation: if RC is empty, we have a = 10, t = 9, δ = 0 and r = 0; if RC is not
empty, we have

a = 11− l, where l is the number of ovals of C,
t = 9 + χ(B), where B denotes the non-orientable half of RP2 \ RC,

δ =
{

1 if C is dividing and
0 otherwise,

r is the number of crossing pairs of C.

Proof. The interpretations for a and t are well-known for non-singular sextics, cf. [32,
Theorem 3.10.6]. If C ⊂ CP2 is a real irreducible sextic whose only singularities are m
pairs of non-real nodes, consider a real non-singular sextic C ′ ⊂ CP2 obtained from C

be perturbing all the nodes. The perturbation does not change the isotopy type of the
real part, so the right hand side of the equations does not change when passing from
C to C ′. If the homological type of C is (L, h, σ, φ), then the homological type of the
perturbed sextic C ′ is (L, h, ∅, φ) for a suitable marking (see Section 2.6), and thus a
and t do not change when passing from C to C ′. The statement about δ follows from
Proposition 2.28, and the statement about r follows from Corollary 2.41.

Proof of Theorem 3.1. Let C1 and C2 be two real irreducible sextics whose only sin-
gularities are m pairs of non-real nodes. Suppose that C1 and C2 have isotopic real
parts, are of the same dividing type and, if they are dividing, have the same number of
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crossing pairs. Then by Proposition 3.18, the invariants m, a, t, δ, r of their homological
types are the same. Hence by Theorem 3.7 their homological types are isomorphic and
by Proposition 3.17 the curves C1 and C2 are rigidly isotopic.

Given an isotopy type of a collection of ovals in RP2, a dividing type, and, if the
dividing type is I, a number r of crossing pairs, we can define values a, t, δ and r by
taking the geometric interpretation in Proposition 3.18 as a definition.

Lemma 3.19. If an isotopy type, a dividing type and a number of crossing pairs satisfy
conditions (1)–(4) given in the introduction, then the corresponding values a, t, δ and r
satisfy the conditions (i)–(v) of Theorem 3.8.

Proof. Properties (i) and (ii) follow from analogous properties for non-singular sextics
(see [32, Theorem 3.4.3]) using the existence of a non-singular sextic with the given isotopy
type and the required dividing type (1). Using Proposition 3.18, it is straightforward
to verify that the properties (iii), (iv) and (v) follow from Harnack’s inequality (2) for
C̃, Arnold’s congruence (3) and the complex orientation formula for curves without
injective pairs (4), respectively.

Lemma 3.20. Different combinations of isotopy type, dividing type and number of
crossing pairs, satisfying conditions (1)–(4), lead to different invariants a, t, δ and r.

Proof. This follows essentially from the fact that, for non-singular real sextics, the rigid
isotopy type is determined by a, t and δ (see [32]).

Proof of Theorem 3.2. It is clear that the conditions (1)–(4) of Theorem 3.2 are necessary
for the existence of a sextic with the desired invariants. To show that they are sufficient,
suppose we are given an isotopy type of the real part, a dividing type, a number of
pairs of nodes, and (if the dividing type is I) a number of crossing pairs, subject to
the conditions (1)–(4). By Lemma 3.19, the corresponding values (a, t, δ, r) satisfy
the conditions (i)–(v) of Theorem 3.8. Hence by Theorem 3.8, there is a homological
type (L, h, σ, φ) with these invariants. By Theorem 2.18, there are sextics with this
homological type. Finally, Lemma 3.20 guarantees that such sextics indeed have the
desired isotopy type, dividing type and number of crossing pairs.
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CHAPTER 4

Dividing real nodal sextics

4.1 Perturbations of real nodes

Before we start discussing the classification of dividing sextics, we recall some well-known
facts about perturbations of real nodes on real plane curves. For more details and
references, see for example Viro [43, Section 2.3].

Real nodes are either hyperbolic, with two real branches (with local equation f(x, y) =
x2−y2 = 0) or solitary, with two imaginary, complex-conjugated branches (local equation
f(x, y) = x2 + y2 = 0). A perturbation of a real node is modeled by the equation
f(x, y) = ε, where ε is a real parameter. The topology of the result of the perturbation
depends on the sign of ε. From the complex point of view, a node is a transverse
intersection of two smooth branches, i.e., two points on the normalization of the curve
are “glued together”. Perturbing a node corresponds topologically to first removing
disks around both of the points which are glued together and then gluing an annulus
along the boundary of these disks. When looking at real curves, different signs of ε
result in different real structures on this annulus, as shown in Figure 4.1.

From this, one can the deduce the following important, well-known observation.

Lemma 4.1. For a real node on a dividing curve, precisely one of the two possible
perturbations results in a dividing curve. For solitary nodes, this is always the pertur-
bation creating a new empty oval. For hyperbolic nodes, it is the perturbation which is
compatible with the complex orientation.

This leads us to the following definition.

Definition 4.2. Given a nodal dividing curve, its dividing perturbation is obtained by
perturbing all the real nodes in such a way that the resulting curve remains dividing,
while not perturbing the non-real nodes.

Note that Brusotti’s theorem (see Brusotti [6]) guarantees that the signs of pertur-
bation for the different real nodes can be chosen independently of each other.
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(a) – Perturbations of a hyperbolic node (b) – Perturbations of a solitary node

Ɛ > 0�

Ɛ = 0�

Ɛ < 0�

Figure 4.1 – Perturbations of a real node. The left half (a) shows the possible
perturbations of a hyperbolic node, and the right half (b) shows the possible
perturbations of a solitary node. For both cases, the figure contains three rows.
The middle row corresponds to the singular curve, while the upper and lower
rows show the two possible perturbations. In each row, a part of the complex
curve is depicted on the left, and a neighborhood of the singularity in the real
plane is depicted on the right. The dotted lines in the middle row indicate that
two points—one on each branch of the node—are identified. The real part of
the curve is drawn using think lines.

4.2 Seeing degenerations as polytope faces

In this section, we study the rigid isotopy classes of dividing real nodal sextics by seeing
them as nodal degenerations of sextics with only non-real nodes. When talking about
dividing curves, we always suppose these curves to be irreducible. As discussed in the
preceding section, if we perturb a real node on a dividing curve, then precisely one of
the two possible perturbations results in a curve that is still dividing. By perturbing
all the real nodes in this way, we obtain a real nodal sextic without real nodes. Hence,
for each real nodal sextic C there is a unique rigid isotopy type of dividing real nodal
sextics without real nodes of which C is a degeneration. This allows us to classify the
rigid isotopy classes of all real nodal sextics by classifying the real nodal degenerations
for each rigid isotopy class of dividing real nodal sextics without real nodes.

In Chapter 3 we classified real nodal sextics without real nodes up to rigid isotopy.
In particular, we found that for each homological type of such sextics, there is a unique
rigid isotopy class (Proposition 3.17). Fix a homological type (L, h, σ0, φ0) of real
irreducible nodal dividing sextics without real nodes. We denote the non-real roots by
σ0 = {s′1, s′′1, . . . , s′m, s′′m} where φ0(s′i) = −s′′i . Our goal is to identify, using the period
space, the rigid isotopy classes of real irreducible nodal sextics which can be obtained
from sextics of homological type (L, h, σ0, φ0) by real nodal degenerations. We introduce
the following notations. Let

– Γ be the group of automorphisms of the homological type (L, h, σ0, φ0),
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– Σ0 be the sublattice of L generated by σ0,
– S0 be the sublattice of L generated by σ0 and h, and
– K denote the orthogonal complement of S0 inside L.

4.2.1 Reflections in the period space

Lemma 4.3. The only element g ∈ Γ acting trivially on K is the identity.

Proof. Suppose g ∈ Γ is an automorphism whose restriction to K is the identity. A
priori, g can act on the set of roots σ0 by a permutation f . However, if g acts trivially on
K, then it acts trivially on the discriminant group AK , and therefore the permutation
f of σ0 must act trivially on the discriminant group AΣ0 = 〈{[ s2 ]}s∈σ0〉, and this implies
that f is the identity.

The (anti-)invariant transcendental lattices K+ = {x ∈ L | x⊥ S0, φ0(x) = x} and
K− = {x ∈ L | x⊥ S0, φ0(x) = −x} both have one negative square; let

H+ = {x ∈ K+ ⊗ R | x2 = 1}
/
{±1} and

H− = {x ∈ K− ⊗ R | x2 = 1}
/
{±1}

be the associated hyperbolic spaces. Let G ⊂ Γ be the subgroup formed by elements
which do not exchange the sheets of the hyperboloids {x ∈ K± ⊗ R | x2 = 1}. Proposi-
tion 4.3 implies that G acts faithfully on the product H+ ×H−.

Let R+ (respectively, R−) be the subgroup of G generated by the elements
which act trivially on H− (respectively, H+) and which act on H+ (respectively, H−)
by a reflection in a hyperplane. Fix a fundamental polytope P+ ⊂ H+ (respectively,
P− ⊂ H−) for the action of R+ (respectively, R−). Let T be the subgroup of G formed by
the elements mapping the product polytope P+ × P− to itself. We call the G-translates
of P+ ⊂ H+ (respectively, P− ⊂ H−) chambers.

Proposition 4.4. The direct product R+ ×R− acts simply transitively on all the pairs
of chambers. Moreover, G is a semi-direct product (R+ ×R−) o T .

Proof. By Theorem 1.13, the group R+ (respectively, R−) acts simply transitively on
the set of chambers in H+ (respectively, H−). Hence, R+ ×R− acts simply transitively
on all the pairs of chambers.

Proposition 4.5. Let v ∈ K± be a primitive vector with v2 < 0. There is an element
g ∈ G which acts on K as the reflection Rv if and only if either v2 = −2, or v2 = −4
and v ≡ s′i + s′′i mod 2L for some i ∈ {1, . . . ,m}.

Proof. The discriminant groups AS0 and AK are 2-periodic. Hence by Lemma 1.9, the
vector v must be either of square −2 or of square −4. If v2 = −2, then Rv is an element
of G which acts trivially on S0. If v2 = −4, then Rv acts on AK as x 7→ x+ 2(x, a) · a
for all x ∈ AK , where a = [ v2 ] ∈ AK . Let b ∈ AS0 be the element which is glued to
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a ∈ AK . A basis for AS0 is given by {[ s2 ]}s∈σ0 ∪ {[h2 ]}. The reflection Rv extends to an
element g ∈ G if and only if there is a permutation f of σ0 such that f ◦ φ0 = φ0 ◦ f
and f glues to Rv, i.e.

f(y) = y + 2(y, b) · b (4.1)

for all y ∈ AS . Since the action of Rv on AK is non-trivial (see Lemma 1.10), the
permutation f cannot be trivial. Take a root s ∈ σ0 for which f(s) 6= s. Substituting
y = [ s2 ] in (4.1) gives [ s+f(s)

2 ] = 2([ s2 ], b) · b, which is only possible if b = [ s+f(s)
2 ].

Therefore, f must be a transposition. Finally, the condition f ◦ φ0 = φ0 ◦ f implies that
b = [ s

′
i+s
′′
i

2 ] for some i ∈ {1, . . . ,m}.

Definition 4.6. A hyperplane H ⊂ H± is called a reflection wall if it is the orthogonal
complement of a vector v ∈ K± satisfying the conditions of Proposition 4.5.

4.2.2 Face and degeneration tilings

Definition 4.7. An admissible configuration of roots is a pair (σ+, σ−), where σ+ ⊂ K+
and σ− ⊂ K− are sets of pairwise orthogonal roots such that the sublattice S ⊂ L

generated by h, σ0, σ+ and σ− is primitive, and there is no root s ∈ σ+ ∪ σ− for which
s+ h ∈ 2L. Given an admissible configuration of roots (σ+, σ−), we use the following
notations. Let

– σ = σ0 ∪ σ+ ∪ σ−,
– Σ be the sublattice on L generated by σ,
– S be the sublattice of L generated by σ and h, and
– φ = φ0 ◦Rs1 ◦ · · · ◦Rsk

, where σ+ = {s1, . . . , sk}.
We call the quadruple (L, h, σ, φ) the homological type corresponding to (σ+, σ−).

Let (σ+, σ−) be an admissible configuration of roots. Denote by Hσ+
+ the subspace

of H+ orthogonal to σ+, and by Hσ−
− the subspace of H− orthogonal to σ−.

Definition 4.8. A hyperplane H ⊂ Hσ+
+ is a degeneration wall if there is a root v ∈ L

orthogonal to h such that H = {[x] ∈ Hσ+
+ | x · v = 0}. A hyperplane H ⊂ Hσ+

+ is a face
wall if it is the intersection of Hσ+

+ with a reflection wall in H+. Degeneration walls and
face walls in Hσ−

− are defined analogously.
Accordingly, we define two tilings of the spaces Hσ+

+ and Hσ−
− : a face tiling, for which

tiles are delimited by face walls, and a degeneration tiling, whose tiles are delimited by
degeneration walls.

Lemma 4.9. Face walls are degeneration walls. Therefore, the degeneration tiling is a
refinement of the face tiling.

Proof. Let H ⊂ Hσ±
± be a face wall, and let v ∈ K± be a primitive vector orthogonal

to the corresponding reflection wall. If v2 = −2, the the vector v can be used in
Definition 4.8 to show that H is a degeneration wall. If v2 = −4 and v + s′i + s′′i ∈ 2L,
then w = 1

2(v + s′i + s′′i ) can be used.
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Definition 4.10. Denote by T
σ+
face (resp., T

σ−
face) the set of tiles for the face tiling, and

by T
σ+
deg (resp., T

σ−
deg) the set of tiles for the degeneration tiling in Hσ+

+ (resp., Hσ−
− ). Let

Tdeg =
⊔

(σ+, σ−)

{
(σ+, σ−)

}
×T

σ+
deg ×T

σ−
deg ,

Tface =
⊔

(σ+, σ−)

{
(σ+, σ−)

}
×T

σ+
face ×T

σ−
face,

where the unions range over all admissible configurations of roots (σ+, σ−).

Note that the group G acts on the set of admissible configurations of roots (σ+, σ−),
and on the sets Tdeg and Tface.

Proposition 4.11. Let (σ+, σ−) and (σ′+, σ′−) be two admissible configurations of roots,
with corresponding homological types (L, h, σ, φ) and (L, h, σ′, φ′). An element g ∈ G
maps (σ+, σ−) to (σ′+, σ′−) if and only if g is an isomorphism between the homological
types (L, h, σ, φ) and (L, h, σ′, φ′).

Proof. Suppose g is an isomorphism between the homological types (L, h, σ, φ) and
(L, h, σ′, φ′). First, note that g must map non-real roots to non-real roots, i.e. g(σ0) = σ0.
Since g◦φ = φ′◦g, the isometry g maps the characteristic element of φ to the characteristic
element of φ′. The characteristic elements of φ and φ′ are αφ = αφ0 +∑

s∈σ+ [s] and
αφ′ = αφ0 +∑

s∈σ′+
[s], respectively. Therefore, g must map σ+ to σ′+ and σ− to σ′−,

and it follows that g ◦ φ0 = φ0 ◦ g. The converse implication is straightforward.

The following proposition is a direct application of Theorem 2.18.

Proposition 4.12. For a fixed admissible configuration (σ+, σ−) with corresponding
homological type (L, h, σ, φ), the rigid isotopy classes of curves of homological type
(L, h, σ, φ) are in bijection with elements of T

σ+
deg ×T

σ−
deg modulo automorphisms of the

homological type (L, h, σ, φ).

The following corollary is a consequence of Propositions 4.11 and 4.12.

Corollary 4.13. The elements of the quotient Tdeg/G are in bijection with rigid isotopy
classes of real irreducible nodal sextics which can be obtained from sextics of homological
type (L, h, σ0, φ0) by real nodal degenerations.

4.2.3 Comparison of the two tilings

Let (σ+, σ−) be an admissible configuration of roots, and let H be a degeneration wall
in Hσ+

+ or Hσ−
− . The goal of this section is to show that either H is a face wall, or there

is an element g ∈ G, mapping σ to itself, which acts on Hσ+
+ ×Hσ−

− by a reflection in H.
Let v ∈ L be a root orthogonal to h such that H is the intersection of Hσ+

+ or
Hσ−
− with the orthogonal complement of v. We write v = vΣ + vK , where vΣ ∈ Σ⊗Q,

vK ∈ K ⊗Q, v2
K < 0 and φ0(vK) = εvK , where ε is +1 if H is a wall in Hσ+

+ , and −1
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if H is a wall in Hσ−
− . Note that vΣ ∈ Σ∨ = 1

2Σ. Therefore we have 2vΣ ∈ Σ, with
(2vΣ)2 ∈ {0, 2, 4, 6}. Hence, we may suppose that 2vΣ is either zero or a sum of up to
three roots in σ, i.e. we can write vΣ = 1

2
∑
s∈σv

s, for some subset σv ⊂ σ with at most
three elements.

Definition 4.14. We call s ∈ σv a non-real root if s ∈ σ0, a same-side root if s ∈ σε and
a opposite-side root if s ∈ σ−ε.

Lemma 4.15. Non-real roots only appear in pairs in σv, i.e. a non-real root s′i belongs
to σv if and only if s′′i does.

Proof. We have v − εφ0(v) = vΣ − εφ0(vΣ) = 1
2
∑
s∈σv

(
s− εφ0(s)

)
. The contribution

coming from the real roots in this sum is contained in L since for real roots, we have
φ0(s) = ±s. Therefore, the sum of the contributions of the non-real roots

1
2

∑
s∈σv∩σ0

(s− εφ0(s)) (4.2)

must also lie in L. Since we assume that curves of homological type (L, h, σ0, φ0)
are irreducible, the sublattice Σ0 ⊂ L is primitive, and hence the expression (4.2) is
contained in Σ0. This implies that s′i belongs to σv if and only if s′′i does.

Lemma 4.16. If the homological type under consideration is dividing, then the number
of opposite-side roots in σv is even.

Proof. Since the homological type (L, h, σ0, φ0) is dividing, the characteristic element
of φ0 can be written in the from α = ∑

i∈I(s′i + s′′i ), where I is the set indexing the
crossing pairs (see Section 2.5). By Lemma 4.15, the non-real roots in σv appear in
pairs. Therefore, v · φ0(v) = v ·

(∑
i∈I(s′i + s′′i )

)
is even. This implies that the square of

the vector v − εφ0(v) is divisible by 4. Hence, the number of opposite-side roots in σv
must be even.

Proposition 4.17. Let (σ+, σ−) be an admissible configuration of roots, and let H be a
degeneration wall in Hσ+

+ or Hσ−
− . Then either H is a face wall, or there is an element

g ∈ G, mapping σ to itself, which acts on Hσ+
+ ×Hσ−

− by a reflection in H.

Proof. Lemmas 4.15 and 4.16 leave the eight possibilities listed in the following table,
where omitted entries stand for zeroes.

(a) (b) (c) (d) (e) (f) (g) (h)

number of non-real roots |σv ∩ σ0| – – – – – – 2 2
number of opposite-side roots |σv ∩ σ−ε| – – – – 2 2 – –
number of same-side roots |σv ∩ σε| – 1 2 3 – 1 – 1

In the cases (a), (b), (c) and (d), the vector v lies in Kε, and hence H is a face wall.
In case (g), the vector 2vK is of square −4 and glues to a vector of the form s′i + s′′i ,
and therefore H is a face wall. In cases (f) and (h), the vector 2vK is of square −2,
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and therefore H is again a face wall. The only case of a degeneration wall which is
not a face wall is case (e), where σv consists of two opposite-side roots. Changing the
signs, we may suppose that we have vΣ = s− t for some roots s, t ∈ σ−ε. In this case,
the isometry g = Rv ◦Rφ0(v) = Rs−t ◦R2vK belongs to G, maps the sets σ+ and σ− to
themselves, and acts on Hσ+

+ ×Hσ−
− as a reflection in the wall H.

Corollary 4.18. The map Tdeg → Tface which maps a degeneration tile to the face tile
containing it induces a bijection between the quotients Tdeg/G and Tface/G.

Definition 4.19. A pair of faces f+ × f− of P+ × P− is called admissible if (σ+, σ−) is
an admissible configuration of roots, where σ+ and σ− are the sets of roots defining the
faces f+ ⊂ P+ and f− ⊂ P−, respectively.

Proposition 4.20. The equivalence classes of elements in Tface modulo G are in bijection
with equivalence classes of pairs of admissible faces of P+ × P− modulo T .

Proof. For each element (σ+, σ−, f+, f−) ∈ Tface, there is a unique pair (Q+, Q−) of
chambers such that f+ is a face of the polytope Q+ ⊂ H+ defined by σ+, and f− is
a face of the polytope Q− ⊂ H− defined by σ−. This defines a G-equivariant map
from Tface to the set of pairs of chambers. Then we can identify the admissible faces of
P+ × P− with the elements of Tface mapped to the pair P+ × P− by this map.

Since G acts transitively on the set of pairs of chambers (Proposition 4.4), every
equivalence class in Tface/G is represented by an admissible pair of faces if P+ × P−,
and this pair of faces is uniquely defined modulo T , the stabilizer of P+ × P−.

Combining Corollary 4.13, Corollary 4.18 and Proposition 4.20, we obtain the
following theorem, which is the main result of this section:

Theorem 4.21. Let (L, h, σ0, φ0) be a homological type of real irreducible nodal dividing
sextics without real nodes. The pairs of admissible faces of P+ × P− modulo T are in
bijection with rigid isotopy classes of real irreducible nodal sextics which can be obtained
from sextics of homological type (L, h, σ0, φ0) by real nodal degenerations.

4.2.4 Curves corresponding to non-admissible pairs of faces

Theorem 4.21 establishes a correspondence between admissible pairs of faces of P+×P−
and rigid isotopy classes of irreducible nodal degenerations. Points on non-admissible
pairs of faces correspond to degenerations which are either not nodal or not irreducible.
We cannot prove that there is a bijection between rigid isotopy classes and equivalence
classes of pairs of faces in general. At least, Proposition 4.17 (the equivalence between
the face tiling and the degeneration tiling) holds for a slightly larger class of faces, as
we explain below. This will be useful in Chapter 6 for deducing the isotopy type of
certain curves.

Definition 4.22. Consider a pair (σ+, σ−), where σ+ ⊂ K+ and σ− ⊂ K− are sets of
pairwise orthogonal roots. Let Σ denote the (not necessarily primitive) sublattice of L
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generated by σ = σ0 ∪ σ+ ∪ σ−, and let Σ̃ denote its primitive closure. We call (σ+, σ−)
an almost admissible configuration of roots if there is no root s ∈ Σ̃ for which s+h ∈ 2L.

If (σ+, σ−) is an almost admissible configuration of roots, we define the spaces Hσ+
+

and Hσ−
− and the face and degeneration tilings on them like in the case of admissible

configurations.

Remark 4.23. Proposition 4.17 still holds if we consider an almost admissible config-
uration of roots (σ+, σ−). Consequently, one can associate a rigid isotopy class of a
degeneration with each pair of faces of P+×P− which is defined by an almost admissible
configuration of roots.

Proof. Let (σ+, σ−) be an almost admissible configuration of roots, and let v be a
vector defining a degeneration wall. Consider the decomposition v = vΣ + vK , where
vΣ ∈ Σ⊗Q, vK ∈ K ⊗Q. We have vΣ ∈ Σ̃∨. Since Σ̃ is an over-lattice of Σ, we have
Σ̃∨ ⊂ Σ∨. Therefore, we can still conclude that vΣ ∈ Σ∨ = 1

2Σ. The rest of the proof is
not affected by the fact that Σ is not a primitive sublattice of L.

4.3 Donaldson’s trick

In this section, we use the hyperkähler structure of K3 surfaces to deduce certain
properties of the Coxeter graph of the polytopes P+ and P−. More precisely, we use the
fact that on a K3 surface obtained from a real sextic one can define a different complex
structure J with respect to which the real structure c turns out to be holomorphic,
while the deck transformation τ becomes anti-holomorphic. This section is inspired
by the very similar treatment in Chapter 15 of the book by Degtyarev, Itenberg, and
Kharlamov [10], where the original idea is attributed to Donaldson [11].

4.3.1 Hyperkähler structure for smooth K3 surfaces

Theorem 4.24 (Yau [47]). Let X be a K3 surface, and let κ be a Kähler class on X.
There is a unique Kähler form φ of class κ whose associated metric g is Ricci-flat. The
metric g is called the Kähler-Einstein-metric of (X,κ).

For a K3 surface X with complex structure I, let ωI denote a non-zero holomorphic
(2, 0)-form on X (which is uniquely defined up to multiplication by a scalar), and let
E(ωI) ⊂ H2(X,R) denote the positive definite oriented two-plane with oriented basis
(ReωI , ImωI). The hyperkähler structure on X implies that the complex structures on
X with respect to which g is Kähler are parameterized by a sphere. More precisely, we
have the following theorem.

Theorem 4.25 (Barth et al. [3, Section VIII.13]). Let X be a K3 surface with complex
structure I, and let κI be a Kähler class on X. Let g be the Kähler-Einstein metric of
(X,κI), and let E ⊂ H2(X,R) the positive definite three-dimensional subspace spanned
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by κI and E(ωI).
(1) If J is another complex structure on X with respect to which the metric g is

Kähler, then E is the direct sum of E(ωJ) and 〈κJ〉, where κJ is the Kähler
class associated with g and J .

(2) The map sending such a complex structure J to the subspace E(ωJ) ⊂ E gives
a bijection between complex structures on X with respect to which the metric g
is Kähler, and oriented two-planes contained in E.

Let us fix a K3 surface X with complex structure I, and let κ be a Kähler class on
X. Let g be the Kähler-Einstein metric of (X,κ), and let φ denote the corresponding
Kähler form. The following two lemmas are direct consequences of Theorems 4.24 and
4.25.

Lemma 4.26. Let f be an (anti-)holomorphic involution on X, i.e. an involution such
that f∗I = εI with ε = ±1, such that f∗κ = εκ. Then f∗φ = εφ and hence f is an
isometry for g.

Proof. Note that εf∗φ is a Kähler form of class κ on X whose Kähler metric f∗g is
Ricci-flat. The uniqueness part of Theorem 4.24 then implies εf∗φ = φ. It follows that
(f∗g)(u, v) = (f∗φ)(u, (f∗I)v) = εφ(u, εIv) = φ(u, Iv) = g(u, v).

Lemma 4.27. Let f be an isometric involution on (X, g) such that f∗κ = εκ, with
ε = ±1. Then f is (anti-)holomorphic, i.e. we have f∗I = εI.

Proof. Since the metric g is preserved by f , it is Kähler for the complex structure εf∗I,
and the corresponding Kähler polarization is κ. Then part (2) of Theorem 4.25 implies
that εf∗I = I.

Let (X, c, h) be the real polarized K3 surface obtained from a non-singular real sextic
C ⊂ CP2, with complex structure I and real period (ω+, ω−). Let g be the Kähler-
Einstein metric of (X,h). Recall that τ : X → X denotes the deck transformation of
the covering X → CP2. Let J and K be the complex structures on X corresponding
to the oriented planes 〈ω−, h〉 and 〈h, ω+〉 respectively (via the bijection mentioned in
Theorem 4.25).

Proposition 4.28. The involutions τ , c and cτ are (anti-)holomorphic with respect to
the complex structures I, J and K according to the following table, where “+” and “−”
stand for holomorphic and anti-holomorphic maps, respectively.

complex structure I J K

Kähler class h ω+ ω−

period plane 〈ω+, ω−〉 〈ω−, h〉 〈h, ω+〉
τ + − −
c − + −
cτ − − +

Proof. By Lemma 4.26, the involutions τ , c and cτ preserve the metric g. Then the
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claim follows from Lemma 4.27.

4.3.2 Generalization to nodal K3 surfaces

We would like to apply Proposition 4.28 to K3 surfaces obtained from nodal sextics.
However, such K3 surfaces are singular, or if we desingularize them, the class h is
not Kähler, and therefore Theorems 4.24 and 4.25 cannot be applied. Fortunately,
these theorems have been generalized to generalized K3 surfaces (i.e., compact complex
surfaces with Du Val singularities whose desingularization is a K3 surface) by Kobayashi
and Todorov [25].

In the following, we consider a nodal K3 surface Y , i.e. a generalized K3 surface
whose only singularities are ordinary double points.

Remark 4.29. In differential geometric terms, nodal K3 surfaces are orbifolds: in the
neighborhood of an ordinary double point, a surface looks like the quotient of C2 by the
involution (u, v)↔ (−u,−v). This allows us to define differential geometric objects such
as differential forms and metrics on nodal surfaces in an orbifold sense: for example, an
orbifold differential form in the neighborhood of a node is defined to be a differential
form on C2 which is invariant under the map (u, v) 7→ (−u,−v). Likewise, orbifold
Riemannian metrics, orbifold Kähler forms etc. can be defined.

Definition 4.30. Let Y be a generalized K3 surface, and let π : X → Y be its desingu-
larization. A class κ ∈ H2(Y,R) is called a generalized Kähler class if π∗κ belongs to
the boundary of the Kähler cone of X, and we have π∗κ · C = 0 for a smooth rational
curve C ⊂ X if and only if C is contracted by π.

Theorem 4.31 (Kobayashi and Todorov [25]). Let Y be a nodal K3 surface, π : X → Y

its desingularization, and κ a generalized Kähler class on Y . There exists a unique
orbifold Kähler form on Y whose associated orbifold metric g is Ricci-flat. The metric
g is called the orbifold Kähler-Einstein metric of (Y, κ).

Theorem 4.32 (Kobayashi and Todorov [25]). Let Y be a nodal K3 surface with complex
structure I, and let κI be a generalized Kähler class on Y . Let g be the orbifold Kähler-
Einstein metric of (Y, κI), and let E ⊂ H2(Y,R) the positive definite three-dimensional
subspace spanned by κI and E(ωI).

(1) If J is another complex structure on Y with respect to which the orbifold metric
g is Kähler, then E is the direct sum of E(ωJ) and 〈κJ〉, where κJ is the Kähler
class associated with g and J .

(2) The map sending a such a complex structure J to the subspace E(ωJ) ⊂ E

induces a bijection between complex structures on X with respect to which the
orbifold metric g is Kähler, and oriented two-planes contained in E.

Thanks to these generalizations, Lemmas 4.26 and 4.27 and Proposition 4.28 and
their proofs apply to nodal K3 surfaces, and in particular to the nodal K3 surfaces
obtained from nodal sextics.
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4.3.3 Representing vanishing cycles by smooth rational curves

Let (X,h, c) be the real weakly polarized K3 surface obtained from a real nodal sextic
C ⊂ CP2 without real nodes, and let µ be a real marking of (X,h, c). Let P+ ⊂ H+ and
P− ⊂ H− be the polytopes defined in Section 4.2. We may assume that the real period
(ω+, ω−) of (X,µ) is contained in P+ × P−. In the following, we consider degenerations
of X corresponding to facets of P+. The same applies mutatis mutandis to degenerations
corresponding to facets of P−.

Lemma 4.33. For each short root v ∈ K+ defining a facet of the polytope P+, there is a
real degeneration of X whose vanishing cycle is Poincaré dual to v.

Proof. Since Ω0
φ is a fine moduli space for (L, h, σ, φ)-marked K3 surfaces (Corollary 2.16),

such a degeneration can be obtained by choosing a path connecting ω+ with a point
contained in the facet of P+ defined by v.

In the following, we suppose that C has been chosen such that the orthogonal
complement of 〈ω−, h〉 in L is K+. This is a very general condition, i.e., it holds for
curves whose periods avoid a countable union of hyperplanes in P+ × P−.

Proposition 4.34. Each short root v ∈ K+ defining a facet of the polytope P+ is repre-
sented by a unique smooth sphere S ⊂ Y which is holomorphic (i.e., a smooth rational
curve) with respect to the complex structure J .

Proof. Let Y be the nodal K3 surface obtained from X be contracting all the nodal
classes. Let YJ denote the nodal K3 surface Y endowed with the complex structure J .
Because of the “very general” assumption above, the Néron-Severi group of YJ is K+.
Let XJ denote the desingularization of YJ . Its Néron-Severi group is the primitive hull
of K+ ⊕ Σ0. The walls used to define the polytope P+ are precisely the hyperplanes
which are orthogonal to roots in the Néron-Severi group of XJ (see Proposition 4.5).
Therefore, the cone over the hyperbolic polytope P+ coincides with the face of the
ample cone of XJ orthogonal to Σ0. Moreover, a root defines a facet of the ample cone
if and only if it is represented by smooth rational curve (see for example Huybrechts
[16, Chapter 8]).

Proposition 4.35. Let S ⊂ X be a vanishing sphere as in Proposition 4.34. The sphere
S is stable under the maps c and τ , and the triple (S, c, τ) is conjugate to one of the
five triples (CP1, c, τ) given below, where z is an affine coordinate on CP1 = C ∪ {∞}.
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(a) (b) (c) (d) (e)

c (z) z z −z −z −z
τ (z) z̄ −1/z̄ z̄ 1/z̄ −1/z̄

(cτ)(z) z̄ −1/z̄ −z̄ −1/z̄ 1/z̄

(CP1)c CP1 CP1 {0} ∪ {∞} {0} ∪ {∞} {0} ∪ {∞}
(CP1)τ R ∪ {∞} ∅ R ∪ {∞} S1 ∅
(CP1)cτ R ∪ {∞} ∅ iR ∪ {∞} ∅ S1

(CP1)〈c,τ〉 R ∪ {∞} ∅ {0} ∪ {∞} ∅ ∅

contraction – conjunction creation –

Proof. Since c and τ are (anti-)holomorphic with respect to J , they map the J-
holomorphic sphere S to a J-holomorphic sphere. Since the class of S is (anti-)invariant
under c and τ , and smooth rational curves of K3 surfaces are rigid, this implies that S
is invariant under c and τ . For the classification of the triple (S, c, τ), first note that
(anti-)holomorphic involutions on CP1 are linear. There are two conjugacy classes of
holomorphic involutions: the identity and z 7→ −z. There are two conjugacy classes of
anti-holomorphic involutions: the standard one z 7→ z̄ and the antipodal map z 7→ −1/z̄.
If c is the identity, then the two possibilities are (a) and (b), according to the conjugacy
class of τ . Otherwise, we may assume that c(z) = −z. Since c and τ commute, the
points 0 and ∞ must be either fixed or interchanged by τ . This leaves the possibilities
(c), (d) and (e) up to conjugation.

Lemma 4.36. Let S ⊂ X be a vanishing sphere as above, and let {Xt}t∈[0,1] be a corre-
sponding real Lefschetz degeneration. Then there is a 〈c, τ〉-equivariant homeomorphism
between the nodal K3 surface X0 and the topological quotient X/S.

Proof. The degeneration can be chosen such that ω+ moves to the boundary of the
polytope P+ while ω− stays fixed. Therefore, the complex structure J does not change
along the degeneration, i.e. the family {Xt}t∈(0,1] is trivial with respect to the complex
structure J , and the trivialization is unique by the Global Torelli Theorem. Hence, we
have a canonical way of identifying the different fibers Xt. Also, the (anti-)holomorphic
maps c and τ remain constant with respect to this trivialization. This allows us to
define a canonical retraction from X = X1 to X0 which contracts the sphere S to a
point.

Lemma 4.37. If v is a vector defining a face of the polytope P+ such that v 6≡ h mod 2,
then the 〈c, τ〉-action on the corresponding vanishing sphere S is of type (a), (c) or
(d) (cf. Proposition 4.35). If it is of type (a), then the corresponding degeneration
is a contraction of the empty oval π(Sτ ). If it is of type (c), then the corresponding
degeneration is a conjunction of the ovals containing the two points π(Sc), along the
path π(Scτ ). If it is of type (d), then the corresponding degeneration is a creation of an
isolated node, in the region containing the point π(Sc).
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Proof. By Proposition 4.35, the 〈c, τ〉-action on S must be of one of the types (a)–(e).
The condition v 6≡ h mod 2 implies that the vanishing of S is a nodal degeneration
of the sextic (see Proposition 2.1). Using Lemma 4.36, this implies that S has to
intersect the ramification curve π−1(C) ⊂ X = Xτ in a circle. Therefore, types (b)
and (e) can be excluded. The correspondence between types (a), (c) and (d) on one
hand and contractions, conjunctions and creations on the other hand also follows from
Lemma 4.36.

Lemma 4.38. Let X be a smooth surface, and let f be a holomorphic involution on X
whose fixed locus Xf is a disjoint union of smooth curves. A smooth rational curve
S ⊂ X invariant under f is either a connected component of Xf , or it intersects Xf

transversely in two points.

Proof. The restriction f |S is a holomorphic involution on S ∼= CP1. Up to conjugation,
the only such involutions are the identity and the map given by z 7→ −z in an affine chart,
which has two fixed points. Let p be one of these fixed points, and let dfp : TpX → TpX

denote the action of f on the tangent space to X in p. We have dfp
∣∣
TpS

= −1 and
dfp

∣∣
TpXf = 1. Therefore, S and Xf intersect transversely.

Lemma 4.39. Let X be a smooth surface, and let f be a holomorphic involution on X
whose fixed locus is a disjoint union of smooth curves. The intersection number between
two curves S1, S2 ⊂ X which are invariant under f , but not point-wise fixed, is even.

Proof. Let Y be the quotient surface X/f , and let π : X → Y denote the projection.
The condition on the fixed locus guarantees that Y is non-singular. Let T1, T2 ⊂ Y

denote the images of S1, S2 under π. We have π∗Ti = Si and π∗Si = 2Ti, since the
restriction π|Si : Si → Ti is a map of degree 2. Therefore, the intersection number
S1 · S2 = π∗T1 · S2 = T1 · π∗S2 = 2(T1 · T2) is even.

The following proposition summarizes the implications for the Coxeter graphs of
the polytopes P+ and P− of dividing real irreducible sextics without real nodes.

Proposition 4.40. The short vertices of the Coxeter graphs of P+ and P− fall into three
types:

– those corresponding to contractions of empty ovals (“contraction vectors”, ),
– those corresponding to conjunctions (“conjunction vectors”, ), and
– those not corresponding to a nodal degeneration (“exceptional vectors”, ).

Let v1, . . . , vk denote the contraction vectors, and let x be the class of the component of
Xc which is not a sphere.

(1) The contraction vectors are pairwise orthogonal.
(2) A conjunction vector intersects x+ v1 + · · ·+ vk twice.
(3) Conjunction vectors intersect each other evenly.

In particular, after removing the exceptional vectors and all the multiple edges, the
Coxeter graph is a bipartite graph.
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Proof. The fact that there are three types follows from Lemma 4.37. (Note that creations
cannot occur for dividing curves.) The statement (1) follows from the fact that the
corresponding spheres are pairwise disjoint. The statement (2) follows from Lemma 4.38,
and the statement (3) follows from Lemma 4.39.
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CHAPTER 5

Descent

In this chapter, we study the method of descent which allows us in certain situations to
classify the faces of a hyperbolic polytope, up to certain symmetries of the polytope, in
the case where the Coxeter graph of the polytope is infinite. The method we present is
inspired by and a generalization of a similar method used by Itenberg [19] to classify
sextics with one node. The Sections 5.1 and 5.2 are preparations for the main part of
this chapter, which starts with Section 5.3.

5.1 Polytopes emanating from a subspace

Let V be a finite-dimensional real vector space endowed with a hyperbolic bilinear form,
and let HV be the associated hyperbolic space. Let W be a locally finite collection of
hyperplanes in HV . (We do not require here that W is invariant under reflections in
hyperplanes belonging to W.) It divides the space HV into a number of polytopes; let
PW denote the set of these polytopes. Let E ⊂ V be a hyperbolic subspace of V such
that HE ⊂ HV is the intersection of some of the hyperplanes belonging to W, and let
N be the orthogonal complement of E in V . The walls of W containing HE induce a
subdivision of the Euclidean space N into a finite number of cones; let CW(E) denote
the set of these cones. The walls of W intersecting HE transversely define some tiling
of HE ; let TW(E) denote the set of tiles.

Definition 5.1. We say that a polytope P ∈PW touches the subspace HE if P intersects
HE in a tile, i.e., the dimension of P ∩HE is equal to the dimension of HE . We call two
polytopes adjacent if they intersect each other in a common face of codimension one.

Lemma 5.2. For each tile T ∈ TW(E) and each cone C ∈ CW(E), there is a unique
polytope P ∈PW touching HE in T such that the orthogonal projection of P to N is
contained in the cone C ⊂ N .

Definition 5.3. In the situation of the previous proposition, we say that P is the polytope
emanating from T in the direction C.

Definition 5.4. Let P, P ′ ∈PW be two polytopes touching HE . We say that P and P ′
are tile adjacent if they emanate from adjacent tiles in the same direction, and they are
direction adjacent if they emanate from the same tile in adjacent directions.
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Note that this definition only makes sense relative to a fixed subspace HE . Also,
note that two polytopes which are tile adjacent with respect to a subspace HE are not
in general adjacent as polytopes in HV . The following statement is a consequence of
Lemma 5.2.

Proposition 5.5. Any two polytopes P, P ′ ∈ PW touching HE can be connected by a
sequence of polytopes {Pi}ni=0 touching HE, where P0 = P and Pn = P ′, such that for
each i ∈ {0, . . . , n− 1}, the polytopes Pi and Pi+1 are either tile adjacent or direction
adjacent.

5.2 “Reflecting back” a chamber

Note that the considerations in the preceding subsection can be adapted to the case
where the ambient space V is Euclidean instead of hyperbolic. In this section we consider
the special case where W is the system of walls of a finite reflection group and the
subspace E is one-dimensional.

Let R be a root system in an Euclidean space V , and Let W be the set of hyperplanes
in V orthogonal to the roots. Let (v1, . . . , vn, ṽ) be a basis of R, defining a chamber
P ⊂ V . Let E ⊂ V be the line orthogonal to the vectors v1, . . . , vn. There are two
possibilities for a wall: either it contains the line E, or it intersects it in the origin.
Hence, here the set of “tiles” TW(E) is formed by the two rays in E emanating from
the origin. Let us call the ray in which P touches E the negative ray, and the opposite
ray the positive ray. Using the terminology introduced in Definition 5.3, let P ′ be the
chamber emanating from the positive ray in the same direction in which P emanates
from the negative ray. Let ρ(v1, . . . , vn; ṽ) denote the element in the Weyl group of R
which maps P to P ′.

Example 5.6. Let V = R2, and let R be a root system of type A2, with basis (v1; ṽ).
We have ρ(v1; ṽ) = Rṽ ◦Rv1 , as can be verified in the following illustration.

E

P

ṽ

v1

P ′

The way in which ρ(v1, . . . , vn; ṽ) can be written as a composition of the basic
reflections Rv1 , . . . , Rvn , Rṽ only depends on the Gram matrix of the basis (v1, . . . , vn, ṽ).
In particular, ρ(v1, . . . , vn; ṽ) behaves well under conjugation: for an isometry g, we
have g ◦ ρ(v1, . . . , vn; ṽ) ◦ g−1 = ρ(g(v1), . . . , g(vn); g(ṽ)).
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5.3 Setting for the descent

Consider a hyperbolic space HV , and let Γ ⊂ Isom(HV ) be a hyperbolic reflection
group (cf. Section 1.2) acting on it. Let P0 ⊂ HV be a fundamental polytope for
this action. Consider a face T0 ⊂ P0, defined by the roots v1, . . . , vk, and let W ⊂ V

denote the orthogonal complement of {v1, . . . , vk}, so that HW is the smallest subspace
of HV containing T0. Let G be the subgroup of Γ fixing each of the roots v1, . . . , vk.
It acts faithfully on the hyperbolic subspace HW ⊂ HV . Let Γ̄ be the subgroup of G
generated by reflections in hyperplanes. Let P̄ ⊂ HW be the fundamental polytope for
Γ̄ containing the face T0, and let G0 be the subgroup of G which maps P̄ to itself. Then
G is a semi-direct product G = G0 n Γ̄.

The goal of the descent is to represent equivalence classes of faces of P̄ modulo G0
by combinatorial data in the Coxeter graph of the polytope P0. The details are given in
the following subsections.

5.4 Tiles and tile markings

The polytope P̄ is tessellated by faces of the Γ-translates of P0. For each tile T , there
is a unique such translate P emanating from T in the same direction as P0 emanates
from T0, i.e. such that we have (x, vi) ≥ 0 for all x ∈ P for all i = 1, . . . , n. Since Γ acts
simply transitively on its chambers, there is a unique element gT ∈ Γ mapping P0 to P .
In particular, we can associate with each tile T a face g−1

T (T ) of P0.

Definition 5.7. The tile marking corresponding to a tile T is defined as µT = (g−1
T (v1),

. . . , g−1
T (vk)), i.e. it is the (ordered) collection of vectors defining g−1

T (T ) as a face of P0.
We visualize a tile marking as a collection of vertices in the Coxeter graph of P0.

Lemma 5.8. The tile markings of two tiles T1, T2 ⊂ P̄ coincide if and only T1 is mapped
to T2 by an element of G0.

Proof. If T1 and T2 are two tiles whose tile markings coincide, then the composition
g = gT2

◦ g−1
T1

maps vi to itself for i ∈ {1, . . . , n}, i.e. it belongs to G. Since g maps
T1 ⊂ P̄ to T2 ⊂ P̄ , it must map the polytope P̄ to itself, and hence belong to G0.
Conversely, if g ∈ G0 maps a tile T1 to a tile T2, then it must also map the polytope
P1 emanating from T1 to the polytope P2 emanating from T2. Since G0 ⊂ Γ acts
simply transitively on these polytopes, we have g = gT2

◦ g−1
T1

, and this implies that the
markings of T1 and of T2 coincide.

To determine which ordered collections of vertices in the Coxeter graph of P are tile
markings of some tile T ⊂ P̄ , we use an inductive approach: We know that the collection
(v1, . . . , vk) is a tile marking, corresponding to the “base tile” T0. Any other tile T can
be connected to the base tile T0 by a sequence of tiles {Ti}ni=0, with Tn = T , where
subsequent tiles are adjacent to each other, i.e. have a facet in common. Therefore, it is
sufficient to study how the marking changes as we pass from a tile T1 to an adjacent tile
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T2. This defines some elementary transitions from one marking to another one, which
we call moves. Then, the admissible markings are precisely those which can be reached
by a sequence of moves starting from the initial collection (v1, . . . , vk).

To describe the allowed moves, consider an admissible marking µ1 corresponding
to a tile T1, and let T2 be a tile adjacent to T1. The intersection T1 ∩ T2 is a face
of the polytope P1 = gT1(P0), defined by the vectors v1, . . . , vk plus one additional
vector, say ṽ. There is a unique element in the finite reflection group generated by
{Rv1 , . . . , Rvk

, Rṽ} which maps an interior point of gT1(P ) to an interior point of gT2(P ).
Namely, this is the element ρ(v1, . . . , vk; ṽ) described in Section 5.2. Since Γ acts simply
transitively on these polytopes, we must have gT2 = ρ(v1, . . . , vk; ṽ) ◦ gT1 and hence
µ2 = (g−1

1 ◦ ρ(v1, . . . , vk; ṽ)−1 ◦ g1) (µ1) = ρ(µ1; g−1
1 (ṽ))−1(µ1). In particular, µ2 only

depends on µ1 and the choice of the additional vector u = g−1
1 (ṽ) in the Coxeter graph

of P0.

The tile markings which can be obtained by a move from µ1 are of the form
µ2 = ρ(µ1;u)−1(µ1), where u is any vector in the Coxeter graph of P0 such that u does
not belong to µ1, the vectors µ1 ∪ {u} form an elliptic subscheme of the Coxeter graph
of P0, and the root system generated by µ1 and u does not contain a root orthogonal to
µ1. The last condition ensures that the facet of T1 represented by u does not lie on the
boundary of P̄ . In concrete examples, the possible moves can be described explicitly:

Example 5.9. Suppose that T0 ⊂ P0 is a face of codimension one, defined by a single
vector v1. This is the particular case of descent which was introduced by Itenberg
[19] to classify sextics with one node, and it served as an inspiration for the more
general framework we present here. In this case, a tile marking is just the choice of one
vertex x1 in the Coxeter graph of P0. For a supplementary vector u, the dihedral angle
between Hx1 and Hu could be π/2, π/3 or π/4. If it is π/2, then u is orthogonal to x1,
corresponding to a face at the boundary of P̄ . If it is π/4, then Rṽ(v1) is orthogonal to
v1, also corresponding to a face at the boundary of P̄ . The only remaining possibility is
an angle of π/3, i.e. that u is connected to x1 by a simple edge in the Coxeter graph of
P0. In this case, we have ρ(x1;u) = Ru ◦ Rx1 (cf. Example 5.6). Hence, the new tile
marking is µ2 = ρ(x1;u)−1(µ1) = (Ru ◦Rx1)−1(x1) = Rx1 ◦Ru(x1) = Rx1(x1 + u) = u.
This means that whenever a vertex u is connected by a simple edge to the marked
vertex, the tile marking can move to u. Therefore, the possible tile markings are all the
vertices in the Coxeter graph of P0 which are connected to the vertex v1 by a path of
simple edges.

Example 5.10. Let T0 ⊂ P0 be a face of codimension 3, defined by three vectors
(v1, v2, v3) forming an A3 root system. For simplicity, assume that the Coxeter graph of
P0 does not contain multiple edges, i.e. the only dihedral angles occurring are π/2 and
π/3. Consider a marking µ1 = (x1, x2, x3). There are three types of moves, depending
on how the additional vector u intersects x1, x2 and x3:
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x1 x2 x3 u µ2 = (x2, x3, u)(a)

x1 x2 x3u µ2 = (u, x1, x2)(b)

x1 x2 x3

u

µ2 = (x3, x2, x1)(c)

5.5 Representing faces by faces of tiles

Definition 5.11. Let F be a face of P̄ , and let T ⊂ P̄ be a tile touching F , i.e., such
that dimT ∩ F = dimF . For such a pair (T, F ), let {f1, . . . , fm} be the additional
roots such that the vectors v1, . . . , vk, f1, . . . , fm define T ∩ F as a face of gT (P0). The
face marking of the pair (T, F ) is the pair (µT , ν(T,F )), where µT is the tile marking (cf.
Definition 5.7) and ν(T,F ) = {g−1

T (f1), . . . , g−1
T (fm)}. That is, a face marking consists of

an ordered collection µ of vertices in the Coxeter graph of P0, describing the tile T , and
an additional unordered collection ν of vertices in the Coxeter graph of P0 describing
the face F .

Lemma 5.12. A face marking (µ, ν) determines a face F ⊂ P̄ up to the action of the
group G0.

Proof. By Lemma 5.8, the tile marking µ determines a tile up to the action of the group
G0. Once we choose a tile T such that g−1

T (v1, . . . , vk) = µ, the vectors {v1, . . . , vk} ∪
gT (ν) define a face T ∩ F of gT (P0) and hence a face F of P̄ .

Lemma 5.13. For each face F of P̄ there are corresponding face markings.

Proof. It suffices to show that for each face F there is some tile T touching F . The
tile F is stratified by faces of tiles, and tiles touching F correspond to full-dimensional
strata.

Lemma 5.14. A pair (µ, ν) is a face marking of some pair (T, F ) if and only if µ is a
tile marking (cf. Section 5.4), and there is a set of roots ν̂ orthogonal to µ such that
〈µ, ν〉Q = 〈µ, ν̂〉Q.

Proof. Let µ = (x1, . . . , xk) be tile marking of some tile T ⊂ P̄ , and let ν = {f1, . . . , fm}
be a set of additional roots. Let P = gT (P0) be the polytope emanating from the tile
T . Then (µ, ν) is the face marking of a pair (T, F ) if and only if the face of P defined
by the vectors v1, . . . , vk, gT (f1), . . . , gT (fm) is contained in a face of P̄ of codimension
m. This is the case if and only if there is a set of m roots ν̂ orthogonal to µ such that
〈µ, ν〉Q = 〈µ, ν̂〉Q.

Remark 5.15. The second condition of Lemma 5.14 is obviously satisfied if the vectors
f1, . . . , fm are already orthogonal to the vectors x1, . . . , xk. However, this is not the
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only possibility. There are also situations where there is a non-trivial gluing between
〈µ〉 and 〈ν̂〉, i.e. the cone in whose direction T emanates from T ∩ F can be strictly
smaller than the cone in whose direction P̄ emanates from F . For example, consider
four vectors x1, f1, f2, f3 forming a graph of type D4, with the central vertex being x1.
Then, one can choose ν̂ = {x2 + f1 + f2, x1 + f1 + f3, x1 + f2 + f3}.

5.6 Equivalences between face markings

To classify the faces of P̄ modulo the action of G0 by means of face markings, it remains
to see when two face markings (µ1, ν1) and (µ2, ν2) represent the same face modulo G0.

To do this, fix a face F of P̄ and consider the set of all tiles T touching F . We
apply the considerations of Section 5.1 to the tiles touching F . By Proposition 5.5, any
two tiles T , T ′ touching F can be connected be a sequence of tiles {Ti}ni=1 touching F ,
with T1 = T and Tn = T ′, such that for each i ∈ {1, . . . , n− 1}, either Ti and Ti+1 are
direction adjacent, i.e. they have a facet in common and Ti ∩ F = Ti+1 ∩ F , or they are
tile adjacent, i.e. they emanate from F in the same direction, and Ti ∩ F is adjacent to
Ti+1 ∩ F .

It remains to see how the face marking (µ, ν) changes as we pass from a pair (T1, F )
to a pair (T2, F ), where T1 and T2 are either tile adjacent or direction adjacent. Like in
Section 5.4, this determines a set of moves connecting face markings representing the
same face, such that two face markings represent the same face if and only if they can
be connected by a sequence of such moves.

First we consider the case where T1 and T2 are tile adjacent. Let (µ1, ν1) be the
face marking of the pair (T1, F ), where µ1 = (x1, . . . , xk) and ν1 = {f1, . . . , fm}. The
face g−1

T1
(F ∩ T1 ∩ T2) ⊂ P0 is defined by a set of the from µ1 ∪ ν1 ∪ {u}, where

u is some additional root. Let P1 = gT1(P0) and P2 = gT2(P0). Let ṽ = gT1(u),
and ei = gT1(fi). There is a unique element in the finite reflection group gener-
ated by {Rv1 , . . . , Rvk

, Re1 , . . . , Rem , Rṽ} which maps P1 to P2. Using the notation
introduced in Section 5.2, this element is ρ(v1, . . . , vk, e1, . . . , em; ṽ). It follows that
gT2 = ρ(v1, . . . , vk, e1, . . . , em; ṽ) ◦ gT1 . Hence, we have µ2 = ρ(µ1, ν1;u)−1(µ1), and
likewise ν2 = ρ(µ1, ν1;u)−1(ν1). Starting from a marking (µ1, ν1), this move can be
applied for every additional vector u such that µ1 ∪ ν1 ∪ {u} is an elliptic subscheme
and (µ, ν ∪ {u}) is not a face marking, i.e. the face of P1 defined by gT1(µ ∪ ν ∪ {u}) is
not contained in the boundary of F .

Example 5.16. Consider again the case where the face T0 ⊂ P0 is of codimension one,
defined by a single root v1. Let (µ1, ν1) be a face marking, where µ1 = x1 and ν1 is
a set of pairwise orthogonal vectors, orthogonal to x1. The following three moves are
possible, where the diagrams only show the vectors of ν1 not orthogonal to u.
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x1 u
µ2 = u, ν2 = ν1(a)

x1 u fi
µ2 = fi, ν2 = ν1 ∪ {x1} \ {fi}(b)

x1 u fi

fj
µ2 = x1, ν2 = ν1 (This “move” has
no effect on the marking.)(c)

Next, we consider the moves corresponding to pairs of tiles which are direction
adjacent. Let T1 and T2 be two tiles touching F such that T1∩F = T2∩F , and such that
T1 and T2 have a face in common. Let ṽ be the vector such that the face T1 ∩ T2 ⊂ P1
is defined by the set of roots {v1, . . . , vk, ṽ}, and let u = g−1

T1
(ṽ). Note that u must be a

vector belonging to ν which is not orthogonal to µ. Here, the tile marking changes as
described in Section 5.4, i.e., we have µ2 = ρ−1(µ1;u)(µ1). Moreover, T1 ∩ F = T2 ∩ F
implies that µ1 ∪ ν1 = µ2 ∪ ν2.

Example 5.17. We consider again the case where T0 ⊂ P0 is defined by a single root.
Consider a face marking (µ1, ν), where µ1 = x1 and ν1 = {f1, f2, f3} intersect as in the
following diagram.

f1 x1 f2

f3

There are three possible “direction adjacency” moves: the tile marking x1 can move to
f1, f2 of f3.

This completes the description of the possible moves connecting face markings which
are either tile adjacent or direction adjacent. Let us call two face markings equivalent if
they can be connected by a sequence of such moves. The explanations above, together
with Lemma 5.12 and Proposition 5.5, imply the following theorem.

Theorem 5.18. Faces of P̄ modulo the action of G0 are in bijection with equivalence
classes of face markings.

5.7 Adding more symmetries

Let h be an isometry of HV which maps walls to walls, maps the set {v1, . . . , vk} to
itself and maps the polytope P̄ to itself. Let σ be the permutation on {1, . . . , k} such
that h(vi) = vσ(i) for i ∈ {1, . . . , k}. There is a unique element ĥ of hΓ = Γh which
maps the polytope P0 to itself.

Consider a tile T ⊂ P̄ , with tile marking µT = (x1, . . . , xk). Note that we have
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g−1
h(T ) ◦ h ◦ gT = ĥ. The tile marking of the tile h(T ) is given by

µh(T ) = g−1
h(T )(v1, . . . , vk) = (g−1

h(T ) ◦ h ◦ h
−1)(v1, . . . , vk)

= (g−1
h(T ) ◦ h)(vσ−1(1), . . . , vσ−1(k))

= (g−1
h(T ) ◦ h ◦ gT )(g−1

T (vσ−1(1), . . . , vσ−1(k)))

= ĥ(xσ−1(1), . . . , xσ−1(k)).

Similarly, for a face F and a tile T touching F , we have ν(h(T ),h(F )) = ĥ
(
ν(T,F )

)
.

Let H be a group of isometries of HV which map walls to walls, map the set
{v1, . . . , vk} to itself and map the polytope P̄ to itself. Moreover, suppose that H
contains G0. As explained above, with each element h ∈ H we can associate a pair
(σ, ĥ), where σ is the permutation of {1, . . . , k} such that h(vi) = vσ(i), and ĥ is the
unique element in hΓ = Γh mapping the polytope P0 to itself. This defines a group
homomorphismH → Perm({1, . . . , k})×Sym(P0). Let Ĥ ⊂ Perm({1, . . . , k})×Sym(P0)
denote the image of this morphism. It acts on tile markings and face markings as
explained above. Moreover, if the Coxeter graph of the polytope P0 is finite, then the
group Ĥ is finite as well.

Corollary 5.19. Faces of P̄ modulo the action of H are in bijection with face markings
up to moves and modulo Ĥ.
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CHAPTER 6

Real rational nodal sextics

6.1 Overview

Our goal in this chapter is to classify nodal real rational sextics up to rigid isotopy, using
the techniques developed in the earlier chapters. It should be possible to classify all
nodal rational sextics up to rigid isotopy using our approach, but we only carry out the
explicit classification for the nodal real rational sextics which are close to the maximal
ones—more precisely, those whose dividing perturbation is an M -curve (with 11 ovals)
or an (M–2)-curve (with 9 ovals). In some of the other cases, there are additional
technical difficulties and too many classes for an explicit classification.

By a real rational curve we understand a real algebraic curve of geometric genus zero
such that the real structure on its normalization CP1 is the standard one. Let us consider
a nodal real rational sextic C. Such a curve is dividing. Its dividing perturbation (see
Definition 4.2) is a dividing real nodal sextic without real nodes. The rigid isotopy types
of such curves are classified by the Theorems 3.1 and 3.2.

To classify nodal real rational sextics up to rigid isotopy, we first group them by the
type of their dividing perturbation. To classify the nodal real rational curves with a
fixed type of dividing perturbation, we use Theorem 4.21, which states that the rigid
isotopy classes of such sextics are in bijection with certain pairs of faces of the hyperbolic
polytopes P+ and P−, modulo the action of a symmetry group T .

For each type of dividing perturbation C0, we would like to answer the following
three questions:

(a) How many rigid isotopy classes of nodal real rational sextics with dividing
perturbation C0 are there?

(b) What is the topology for each of these sextics?
(c) Given two such rigid isotopy types, how can they be distinguished geometrically?
If the Coxeter graphs of the polytopes P+ and P− are finite, they can be computed

using Vinberg’s algorithm (see Section 1.2). For each vertex in the Coxeter graphs, we
determine if the corresponding root is a contraction vector, a conjunction vector or an
exceptional vector (cf. Proposition 4.40). We can also determine the group T explicitly:
elements of T are symmetries of the polytopes P+ and P−. To determine T , it suffices
to check which pairs of symmetries glue together to give an isometry of the K3 lattice
L (cf. Section 1.1).

Once we know the Coxeter graphs of P+ and P− as well as the group T , question
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(a) can be answered using the following algorithm:
1. Consider all collections formed by 10 independent vertices which correspond to

contraction or conjunction vectors in the Coxeter graphs of P+ and P−.
2. For each of them, check if it corresponds to a nodal real rational sextic. Concretely,

this is the case if and only if the sublattice S generated by h and all the nodal
vectors is a primitive sublattice of L (cf. Proposition 2.19).

3. Count these collections modulo T .
Since the number of cases grows rapidly with the size of the Coxeter graphs, it is

not practical to count all the cases by hand, and we automated this counting using a
computer program.

If at least one of the Coxeter graphs is infinite, the number of faces corresponding
to nodal real rational sextics is infinite. In these cases, we use additional symmetries
(for degenerations of 〈1〈8〉〉) or the method of descent explained in Chapter 5 (for
degenerations of 〈7 t 1〈1〉〉 and 〈9〉).

By an oval of a nodal real rational curve we mean a connected component of RP2\RC
homeomorphic to a disc which is transformed into the interior of an oval under the
dividing perturbation.

With each dividing real nodal sextic we associate its conjunction graph: It contains
a vertex for each oval, and an edge for each hyperbolic node of the curve, connecting the
vertices of the ovals which meet in that node. Two ovals can be connected by several
edges, and the graph may also contain loops, corresponding to conjunctions of an oval
with itself. Note that the conjunction graph can be read off the corresponding collection
of vectors in the Coxeter graphs of P+ and P−.

To answer question (b) concerning the topology of each of the rigid isotopy classes,
we use an indirect approach: We consider auxiliary sextics which are reducible and which
have many hyperbolic nodes. They also correspond to certain faces of the polytope
P+ × P− (see Section 4.2.4). It is often easier to determine the topology of such curves,
since their irreducible components are of lower degree, and therefore less complicated and
better understood. Using Corollary 2.25, we can determine for each conjunction vector
the irreducible components intersecting each other at the corresponding hyperbolic node.
This information, together with the conjunction graph, turns out to be sufficient to
infer the topology of these reducible sextics in all the examples we encountered. Like
this we obtain a topologically correct drawing of the real part of such curves, where
each crossing is identified with a conjunction vector and each oval is identified with a
contraction vector.

Consider a nodal real rational curve C corresponding to a face of P+ × P− defined
by a certain number of conjunction and contraction vectors. If the conjunction vectors
are (up to a symmetry belonging to the group T ) a subset of the conjunction vectors
used to define the auxiliary reducible curve, then we can read the topology of the
curve C off the topological drawing of the auxiliary curve. It suffices to perturb the
superfluous hyperbolic nodes, and then contract the non-singular ovals corresponding
to the contraction vectors.

Let us now consider question (c), how to distinguish different rigid isotopy types
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geometrically. The most obvious criterion to distinguish rigid isotopy types is the isotopy
type. However, this is not sufficient in most of the cases. In Section 6.2 we define a
refined equivalence relation called semi-rigid isotopy, which takes into account both the
isotopy type and the order of the ovals with respect to real line pencils.

For many (but not all) types of the dividing perturbation we consider, we can show
that two sextics of this type of the dividing perturbation are rigidly isotopic if and only
if they are semi-rigidly isotopic.

6.2 Semi-rigid isotopies

In this section we introduce the notion of semi-rigid isotopy between real plane sextics,
which is defined by considering the position of a sextic with respect to auxiliary lines
and conics. It is well-known that auxiliary lines and conics can be used to define a
reversible cyclic order on the set of empty ovals of a non-singular sextic (see Itenberg
and Itenberg [17]).

Consider a non-singular real sextic with real scheme 〈b t 1〈a〉〉, where a ≥ 1 and
b ≥ 0 (for the notation see p. 29). We call the empty ovals contained in the interior of
the non-empty oval inner ovals, and the empty ovals not contained inside another oval
outer ovals.

Consider a line passing through a point p lying in the interior of an inner oval. Such
a line must intersect both the inner oval containing p and the non-empty oval in at
least two points. Since by Bézout’s theorem a line intersects a sextic in at most six real
points, such a line may pass through at most one more empty oval. If we let the line
turn around p, it sweeps out the whole plane and will meet every empty oval at some
point. Associate with each empty oval different from i the (circular) interval formed by
the angles of the lines trough p which intersect this oval. This defines a cyclic order
on the set of all empty ovals apart from i, where the orientation of the line pencil is
induced by the fixed orientation of the non-empty oval. Note that this cyclic order
cannot change when we move the point p inside i or under a rigid isotopy of the curve
C, as long as p stays inside the inner oval.

If there is only one inner oval, this defines a cyclic order on the set of outer ovals. If
there is more than one inner oval, we have to check to which extent the different orders
are compatible, so that they can be “glued” together.

Lemma 6.1. The cyclic orders obtained from the inner ovals separate the inner ovals
from the outer ovals.

Proof. If there are less than three inner ovals or less than two outer ovals, the statement
is clearly true. Let us suppose a ≥ 3 and b ≥ 2. Let i, i′ and i′′ be three inner ovals,
and let o′, o′′ be two outer ovals. We want to show that the cyclic order obtained from
a line pencil though a point p in i separates the inner ovals i′, i′′ from the outer ovals
o′, o′′. Trace a conic E through p and four more points, one inside each of the four
ovals i′, i′′, o′ and o′′. By Bézout’s theorem, E intersects C in at most twelve points.
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However, E must intersect each of the five empty ovals as well as the non-empty oval
at least twice. So there are exactly twelve real intersection points, two with each of
the five empty ovals and two with the non-empty oval. Since the conic intersects the
non-empty oval in two points, the intersection of their interiors is a disk, so that we
can orient the conic in a way compatible with the orientation of the non-empty oval.
The order in which the four ovals i′, i′′, o′ and o′′ appear along E agrees with the cyclic
ordering obtained from the line pencil passing through i. Since E only intersects the
non-empty oval in two points, this cyclic order must separate the inner ovals from the
outer ovals.

If there are at least two inner ovals and there is at least one outer oval, the cyclic
orders break into two linear orders, one for the outer ovals and one for the inner ovals
(apart from the one containing the base point).

Lemma 6.2. Suppose there are at least two inner ovals, and at least five empty ovals in
total. Then the linear orders on the outer ovals defined using line pencils through the
inner ovals all agree with each other.

Proof. Suppose we want to compare two outer ovals, say o′ and o′′, using the orders
defined by two inner ovals i′ and i′′. Trace a conic through the interior of these four
ovals and through a fifth empty oval. Using the same argument as above, we see that
the order of o′ and o′′ on the line pencil defined by i′ agrees with the order in which they
appear on the conic. The same holds for the order on the line pencil defined by i′′.

Lemma 6.3. Suppose that there are at least three inner ovals and there is at least one
outer oval. Then there is a linear order on the inner ovals which is compatible with the
partial linear orders obtained from the line pencils.

Proof. Given two inner ovals, we can always compare them using a line pencil passing
through a third inner oval. First we show that this does not depend on the choice of
a third oval. We may suppose that there are at least four inner ovals, since otherwise
there is no ambiguity. Let i′ and i′′ be the ovals we wish to compare, and let i1 and i2
be inner ovals we want to use to compare them, and let o be any outer oval. Again,
if we trace a conic through these five ovals, we see that the orders must agree. This
defines a total anti-symmetric relation on the set of inner ovals, which agrees with the
partial orders obtained from the line pencils. To show that this relation defines an
order, it remains to check that it is transitive. If there are at least four inner ovals, the
transitivity for three ovals can be checked on the partial order obtained from the line
pencil through a fourth inner oval. If there are at least five ovals in total, it can also
be checked using the order coming from a conic. The only remaining case, which is
〈1t1〈3〉〉, requires a separate argument. Choose three points p1, p2, p3 in the three inner
ovals i1, i2, i3, and trace the three lines through any two of them. This divides RP2 into
four triangles. One of them lies in the interior of the non-empty oval, and one contains
the outer oval. Up to isotopy, the situation has to be as shown in Figure 6.1. We can
check directly that the order is indeed transitive: if we choose the counter-clockwise
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i1

i3i2 o

Figure 6.1 – Sextic with real scheme 〈1 t 1〈3〉〉

orientation for the non-empty oval, we get i1 < i2, i2 < i3 and i1 < i3.

Lemma 6.4. Suppose there are no outer ovals and at least five inner ovals. Then there
is a cyclic order on the inner ovals which in compatible with the partial cyclic orders
obtained from the line pencils.

Proof. We can use conics passing though five inner ovals to see that the different cyclic
orders are compatible. Note that a conic through five inner ovals intersects the non-
empty oval either in zero or in two points, but in any case the interior of the conic
intersects the interior of the non-empty oval in a disk, so that we can orient the conic
consistently.

The type of order (linear or cyclic) defined on the sets of inner and outer ovals,
depending on the number of inner and outer ovals, is summarized in the diagram in
Figure 6.2. Since we chose an orientation of the non-empty oval in the beginning, all
these orders have to be considered up to simultaneous inversion of the orders defined on
the inner and outer ovals.

0 1 2 3 4 5 6
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number of inner ovals
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inner and outer linear

inner linear

inner cyclic

Figure 6.2 – The type of order defined on the sets of inner and outer ovals, up
to simultaneous inversion, depending on the number of inner and outer ovals.
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Definition 6.5. Let C1 and C2 be two real sextics with non-singular real parts. A
semi-rigid isotopy between C1 and C2 is an isotopy which preserves the (linear or cyclic)
orders defined on the sets of inner and outer ovals. We call C1 and C2 semi-rigidly
isotopic if they can be connected by a semi-rigid isotopy.

We extend the notion of semi-rigid isotopy to nodal sextics by considering pertur-
bations of the real nodes. Consider a real nodal sextic C, and choose a direction of
perturbation for each of its real nodes. Under such a perturbation, some 1-cycles and
some solitary nodes of RC are deformed into ovals. This allows us to define (linear or
cyclic) orders on these “proto-ovals”, i.e. 1-cycles and solitary nodes which are deformed
into ovals. Consider an isotopy between two real sextics C1 and C2 with real nodes.
Each choice of perturbation of C1 can be pushed along the isotopy to give a perturbation
of C2, and this allows us to compare the (linear or cyclic) orders on the inner and outer
“proto-ovals” of C1 with the (linear or cyclic) orders on the inner and outer “proto-ovals”
of C2. We call the isotopy semi-rigid if it preserves these orders for each choice of
perturbation of the real nodes.

6.3 Notations

Let us introduce some notation needed to carry out the calculations. We fix a K3 lattice
L = U⊕U⊕U⊕E8⊕E8. Let {u1, u2}, {w1, w2} and {z1, z2} be canonical generating sets
for the hyperbolic planes and let {e1, . . . , e8} and {f1, . . . , f8} be canonical generating
sets for the two lattices of type E8. Let {e∗1, . . . , e∗8} (respectively, {f∗1 , . . . , f∗8 }) denote
the dual basis of {e1, . . . , e8} (respectively, {f1, . . . , f8}). Moreover, let us fix the
polarization vector h = z1 + z2 ∈ L, and let y = z1 − z2, so that the orthogonal
complement of h in L is generated by {u1, u2, w1, w2, y, e1, . . . , e8, f1, . . . , f8}.

Let us introduce the following notation for sublattices of L: If x1, . . . , xk ∈ L

form a canonical generating set for a lattice S which is one of the standard lattices
〈a〉,U,Ap,Dq,Es defined in Section 1.1, then we use the symbol Sx1,...,xk to denote this
lattice —for example Uu1,u2 , 〈−2〉y,Ee1,...,e7

7 , 〈−2〉e∗8 , etc. In some of the cases treated
in the following subsections, one of the E8 lattices is split into two D4 lattices. For
convenience, we define the following vectors:

c1 = f∗2 − f∗4 d1 = f∗4 − f∗5 + f∗7

c2 = f1 d2 = f6

c3 = f2 d3 = f7

c4 = f∗2 − f∗5 d4 = f8

Both {c1, . . . , c4} and {d1, . . . , d4} generate a lattice of type D4, and one is the orthogonal
complement of the other inside Ef1,...,f8

8 .
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6.4 Degenerations of 〈1 t 1〈9〉〉

Let L+ = Uw1,w2 ⊕ Ee1,...,e8
8 ⊕ Ef1,...,f8

8 , and L−h = Uu1,u2 ⊕ 〈−2〉y. The lattice L+ is
unimodular, while the discriminant from of L−h is the two-element finite quadratic form
[1
2 ], which has no non-trivial automorphisms. The Coxeter graphs of the polytopes P+
and P− are both finite; they are shown in Figure 6.3.

Coxeter graph of P−

v1 v2 v3
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Figure 6.3

The polytope P− has no symmetries. The polytope P+ has a Z/2Z symmetry.
Since the discriminant forms of L+ and L−h don’t have non-trivial automorphisms, this
symmetry extends to L, i.e. we have T ∼= Z/2Z. The only exceptional vector is v3.

Lemma 6.6. The contraction vectors are {v1, v4, v6, v9, v11, v13, v15, v17, v20, v22}.

Proof. Since v6 and v20 have degree 3 in the Coxeter graph, they must be contraction
vectors. Then it follows from Proposition 4.40 that among the vectors defining P+, the
contraction vectors are {v4, v6, v9, v11, v13, v15, v17, v20, v22}. Either v1 or v2 must be a
contraction vector, and the other one must correspond to a conjunction of the outer oval
with the non-empty oval. It remains to decide which one is which. Let x ∈ K− be the
class of the genus 9 component of the real part. We can write x = a1u1 +a2u2 + by, with
a1, a2, b ∈ Z. We have x2 = 2g − 2 = 16. There are two possibilities: If the contraction
vector is v1, then (x, v1) = 0 and (x, v2) = 1. The only solution for x in this case is
x = 3(u1 + u2) − y. If the contraction vector is v2, then (x, v2) = 1 and (x, v1) = 0.
The only solution for x in this case is x = −4u1 − 3u2 + 2y. In the second case, we
have (x, v3) = −4 < 0. This is not possible, since both x and v3 are represented by
holomorphic curves with respect to the twisted complex structure J (see Section 4.3).
Hence, v1 must be the contraction vector.
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Lemma 6.7. The face of P+ × P− orthogonal to all conjunction vectors corresponds to
a reducible nodal curve C consisting of a real conic and a real rational quartic, where
the vectors corresponding to intersections between the conic and the quartic are v7, v8,
v10, v12, v14, v16, v18 and v19. The isotopy type of C is shown in Figure 6.4.

Figure 6.4 – A reducible degeneration C of a curve of type 〈1 t 1〈9〉〉.

Proposition 6.8. (1) All rigid isotopy types of real rational curves obtained by real
nodal degeneration from a curve of type 〈1 t 1〈9〉〉 can be obtained from the
reducible sextic C by first perturbing some of the nodes and then contracting
empty ovals.

(2) Two such real rational sextics are rigidly isotopic if and only if they are semi-
rigidly isotopic.

(3) There are 124 rigid isotopy types for such curves.

Proof. (1) Since C contains all the possible conjunctions, this is clear.
(2) For the curve 〈1t1〈9〉〉, there is a linear order on the set of inner ovals, defined up to
inversion (see Section 6.2). Given a rational curve obtained by real nodal degeneration
from a curve of type 〈1 t 1〈9〉〉, one can identify the inner ovals with the contraction
vectors in the Coxeter graph, up to the Z/2Z symmetry. Once such an identification is
chosen, the conjunction vector corresponding to each hyperbolic node of the curve is
uniquely determined by the pair of ovals it connects, since for each pair of ovals, there
is at most one corresponding conjunction vector in the Coxeter graph.
(3) This count is obtained by enumerating the admissible pairs of faces of P+ × P−
modulo T .

6.5 Degenerations of 〈5 t 1〈5〉〉

Let L+ = Uu1,u2 ⊕ Ee1,...,e8
8 , and L−h = Uw1,w2 ⊕ Ef1,...,f8

8 ⊕ 〈−2〉y. The lattice L+ is
unimodular, while the discriminant from of L−h is the [1

2 ]. The Coxeter graphs of the
polytopes P+ and P− are both finite; they are shown in Figure 6.5.

The polytopes P+ and P− have no symmetries. The only exceptional vector is v22.

Lemma 6.9. The contraction vectors are {v1, v3, v6, v8, v10, v11, v13, v16, v18, v20}.

Proof. Since v3 and v13 have degree 3 in the Coxeter graphs, they must be contrac-
tion vectors. Then it follows from Proposition 4.40 that the contraction vectors are
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Figure 6.5

{v1, v3, v6, v8, v10, v11, v13, v16, v18, v20}.

Lemma 6.10. The face of P+ × P− orthogonal to all conjunction vectors corresponds to
a reducible nodal curve C consisting of a line and a rational quintic, where the vectors
corresponding to intersections between the line and the quintic are v14, v15, v17, v19 and
v21. The isotopy type of C is shown in Figure 6.6 (a).

(a) – correct inner orientation (b) – wrong inner orientation

Figure 6.6 – For the reducible degeneration C of a curve of type 〈5 t 1〈5〉〉 (cf.
Lemma 6.10), there are a priori two possible isotopy types, (a) and (b). It turns
out that (a) is the correct one.

Proof. From the conjunction graph and the information how the irreducible components
intersect each other, one can deduce that the isotopy type of C has to be as shown in
Figure 6.6 (a) or (b). To decide which of the two is correct, we use the classification up to
isotopy of real rational quintics by Itenberg, Mikhalkin, and Rau, see [20, Table 3].

Proposition 6.11. (1) All rigid isotopy types of real rational curves obtained by real
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nodal degeneration from a curve of type 〈5 t 1〈5〉〉 can be obtained from the
reducible sextic C by first perturbing some of the nodes and then contracting
empty ovals.

(2) Two such real rational sextics are rigidly isotopic if and only if they are semi-
rigidly isotopic.

(3) There are 234 rigid isotopy types for such curves.

Proof. (1) Since C contains all the possible conjunctions, this is clear.
(2) For the curve 〈5 t 1〈5〉〉, there are linear orders on the set of inner and outer ovals,
defined up to simultaneous inversion (see Section 6.2). There is a unique rigid isotopy
type corresponding to the curve with 10 isolated nodes. If not all empty ovals are
contracted, then there must be a conjunction between an empty oval and the non-empty
oval, corresponding to one of the vectors v4 and v14. This conjunction breaks the
symmetry and allows us to identify the ovals with the corresponding contraction vectors.
The conjunction vector corresponding to each hyperbolic node of the curve is then
uniquely determined by the pair of ovals it connects, since for each pair of ovals, there
is at most one corresponding conjunction vector in the Coxeter graph.
(3) This count is obtained by enumerating the admissible pairs of faces of P+ × P−
modulo T .

6.6 Degenerations of 〈9 t 1〈1〉〉

Let L+ = Uu1,u2 and L−h = Uw1,w2 ⊕ Ee1,...,e8
8 ⊕ Ef1,...,f8

8 ⊕ 〈−2〉y. The lattice L+ is
unimodular, while the discriminant from of L−h is the two-element finite quadratic form
[1
2 ], which has no non-trivial automorphisms. The Coxeter graphs of the polytopes P+
and P− are both finite; they are shown in Figure 6.7. The Coxeter graph of P− was
first calculated by Vinberg [41].

The symmetry group of the polytope P− is S3. Since the discriminant forms of L+
and L−h don’t have non-trivial automorphisms, all symmetries extend to L, i.e. we have
T ∼= S3. The vectors not corresponding to conjunctions or contractions are v19, v24, v25.

Lemma 6.12. The contraction vectors are {v1, v2, v4, v7, v9, v10, v12, v15, v17, v18}.

Proof. Since the vertices v4, v12 and v18 have degree 3 in the Coxeter graph, they must
be contraction vectors. Then it follows from Proposition 4.40 that the contraction
vectors are {v1, v2, v4, v7, v9, v10, v12, v15, v17, v18}.

Lemma 6.13. The face of P+ × P− orthogonal to all conjunction vectors corresponds to
a reducible nodal curve C consisting of three lines L1, L2, L3 and a nonsingular cubic E.
The isotopy type of C is shown in Figure 6.8.

Proof. To determine the decomposition of C into irreducible components, we explicitly
calculate the quotient S̃/S and apply Proposition 2.24. To do this, we write down a
matrix for the embedding S ↪→ L in standard bases, reduce the coefficients modulo
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2 and compute its null-space (still over F2). The result of this computation is that
S̃/S ∼= (Z/2Z)3, generated by the elements l1 := 1

2(v5 + v6 + v8 + v20 + v21 + h),
l2 := 1

2(v13 + v14 + v16 + v20 + v22 + h) and l3 := 1
2(v3 + v5 + v11 + v13 + v23 + h).

In particular, it follows that C is nodal. Applying Corollary 2.25, it follows that C
consists of three lines L1, L2, L3 and a residual cubic E, and the conjunction vectors
corresponding to the intersections between the irreducible components are as follows:

∩ L2 L3 E

L1 v20 v5 v6, v8, v21
L2 v13 v14, v16, v22
L3 v3, v11, v23

The isotopy type of C can now be deduced from this table together with the conjunction
graph, which can be read off the Coxeter graph. We start by drawing three lines L1, L2,
L3 and mark their intersection points v5, v13 and v20. Then we choose one region next
to the intersection marked v20 and decide that it belongs to the oval corresponding to
the vector v18. From there, we can trace the non-contractible part of the cubic E and
at each step, the conjunction graph determines how it must intersect the three lines. In
the end, it can be seen that the oval of E must be inserted as shown in Figure 6.8. to
make sure that C can be perturbed into a curve of type 〈9 t 1〈1〉〉.
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Figure 6.8 – A reducible degeneration C of a curve of type 〈9 t 1〈1〉〉.

Proposition 6.14. (1) All rigid isotopy types of real rational curves obtained by real
nodal degeneration from a curve of type 〈9 t 1〈1〉〉 can be obtained from C by
first perturbing some of the nodes and then contracting empty ovals.

(2) Two such real rational sextics are rigidly isotopic if and only if they are semi-
rigidly isotopic.

(3) There are 136 rigid isotopy types for such curves.

Proof. (1) Since C contains all the possible conjunctions, this is clear.
(2) For the curve 〈9 t 1〈1〉〉, there is a cyclic order on the set of outer, defined up to
inversion (see Section 6.2). There is a unique rigid isotopy type corresponding to the
curve with 10 isolated nodes. If not all empty ovals are contracted, then there must be
a conjunction between an empty oval and the non-empty oval, corresponding to one of
the vectors v5, v13, v20. This conjunction allows to identify the tree ovals which can
conjunct with the non-empty oval, and therefore allows us to identify the ovals with
the corresponding contraction vectors, up to the symmetry group S3. Once such an
identification is chosen, the conjunction vector corresponding to each node of the curve
is uniquely determined by the pair of ovals it connects, since for each pair of ovals, there
is at most one corresponding conjunction vector in the Coxeter graph.
(3) This count is obtained by enumerating the admissible pairs of faces of P+ × P−
modulo T .

6.7 Degenerations of 〈2 t 1〈6〉〉

6.7.1 Curves with only real nodes

Let L+ = Uw1,w2⊕Ee1,...,e8
8 ⊕Dc1,...,c4

4 and L−h = Uu1,u2⊕Dd1,...,d4
4 ⊕〈−2〉y. The Coxeter

graphs of the polytopes P+ and P− are both finite; they are shown in Figure 6.9.

Lemma 6.15. The symmetry group is T = S3, permuting the set of pairs {(v6, v21),
(v7, v22), (v8, v23)}. The only exceptional vector is v1. The contraction vectors are v3,
v5, v9, v11, v14, v16, v18 and v20.

74



Coxeter graph of P−

v1 v2 v3 v4

v5

v6

v7

v8

Coxeter graph of P+

v9 v10 v11

v12

v13 v14 v15 v16 v17 v18 v19

v20

v21

v22

v23

v1 = y

v2 = u2 − y
v3 = u1 − u2

v4 = u2 + d∗
3

v5 = d3

v6 = d1

v7 = d2

v8 = d4

v9 = e1

v10 = e2

v11 = e3

v12 = e4

v13 = e5

v14 = e6

v15 = e7

v16 = e8

v17 = w2 + e∗
8

v18 = w1 − w2

v19 = w2 + c∗
3

v20 = c3

v21 = c1

v22 = c2

v23 = c4

Figure 6.9
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Proof. The discriminant form of L+ is the discriminant form of the lattice D4, which is
the finite quadratic form V2 defined as follows: The underlying group is (Z/2Z)2, and
the quadratic form has value 1 on the three non-zero elements (cf. [10, p. II.5.2]). The
automorphism group of V2 is S3, permuting the three non-zero elements. Given a root
system of type D4 with basis d1, d2, d3, d4, it is easy to see that there is an isomorphism
between symmetries of this basis and automorphisms of the discriminant form. Hence,
a permutation of {c1, c2, c4} glues to a unique permutation of {d1, d2, d4}. We defined
c1, . . . , c4 and d1, . . . , d4 so that the symmetry ci 7→ cσ(i) glues to di 7→ dσ(i), where σ is
a permutation of the set {1, 2, 4}.

Lemma 6.16. Let C be a curve corresponding to the face defined by all conjunction
vectors. It has a D6 singularity and eight nodes, and its irreducible components are
a line, a conic and a rational cubic. Its isotopy type is shown in Figure 6.10 on the
left hand side. Let Ca, Cb and Cc be curves defined by the sets of vectors Scom ∪
{v6, v7, v8, v21}, Scom ∪ {v6, v7, v21, v23} and Scom ∪ {v6, v21, v22, v23} respectively, where
Scom = {v2, v4, v10, v12, v13, v15, v17, v19}. The curves Ca, Cb and Cc can be obtained
from C by perturbing the D6 singularity as shown in Figure 6.10 on the right hand side.
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Figure 6.10 – Reducible degenerations of a curve of type 〈2t1〈6〉〉. The isotopy
type of the curve C is shown on the left, with the D6 singularity marked in
gray. The small figures (a), (b), (c) and (d) on the right show four different
ways of perturbing the D6 singularity, resulting in reducible nodal curves Ca,
Cb, Cc and Cd, respectively. The curves Ca, Cb and Cc have twelve real nodes,
while the curve Cd has ten real nodes and a pair of non-real nodes.

Proposition 6.17. (1) All rigid isotopy types of real rational curves obtained by real
nodal degeneration from a curve of type 〈2 t 1〈6〉〉 without real nodes can be
obtained from one of the curves Ca, Cb, Cc by first perturbing some of the nodes
and then contracting empty ovals.

(2) Two such real rational sextics are rigidly isotopic if and only if they are semi-
rigidly isotopic.
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(3) There are 460 rigid isotopy types for such curves.

Proof. (1) A set of pairwise orthogonal vectors in the Coxeter graph corresponds to a
nodal curve if and only if it contains no two of the three pairs (v6, v21), (v7, v22) and
(v8, v23). This implies that up to symmetry, the conjunction vectors in such a set are
contained in one of the sets corresponding to the curves Ca, Cb and Cc.
(2) Each set of vectors corresponding to an irreducible nodal curve contains either a
conjunction of an inner oval with the non-empty oval or at least two conjunctions of
one outer oval with the non-empty oval. This determines the identification between
empty ovals and contraction vectors. If the conjunction multi-graph is the same, but the
corresponding faces of P+×P− are not equivalent, then the order of the conjunctions on
the non-empty oval is different. This can be checked case by case, using Figure 6.10 (a),
(b), (c). The only such cases (up to equivalence) are {v6, v21} vs. {v6, v22}, {v6, v7, v21}
vs. {v6, v7, v23} and {v6, v21, v22} vs. {v6, v22, v23}.
(3) This count is obtained by enumerating the admissible pairs of faces of P+ × P−
modulo T .

6.7.2 Curves with a pair of non-real nodes

Using the notations of the previous subsection, we let the vectors corresponding to the
non-real roots be 1

2(l1 ± l2), where l1 = v8 − v7 and l2 = v23 − v22. The Coxeter graphs
of the polytopes orthogonal to l1, l2 are shown in Figure 6.11.

Coxeter graph of P−

v1 v2 v3 v4 v5

v6

v7 + v8

Coxeter graph of P+

v9 v10 v11

v12

v13 v14 v15 v16 v17 v18 v19 v20

v21

v22 + v23

Figure 6.11

The polytopes P+ and P− have no symmetries. Therefore, the group T is trivial.

Lemma 6.18. Let Cd be a curve corresponding to the face orthogonal to the vectors
{l1, v2, v4, v6, l2, v10, v12, v13, v15, v17, v19, v21}. It is nodal, and its irreducible components
are a line, a conic and a rational cubic. It can be obtained from the curve C defined in
Lemma 6.16 by perturbing the D6 singularity into two real and two non-real nodes, as
shown in Figure 6.10 (d).

Proposition 6.19. (1) All rigid isotopy types of real rational curves obtained by real
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nodal degeneration from a curve of type 〈2 t 1〈6〉〉 with a pair of non-real nodes
are obtained from the curve Cd by first perturbing some of the real nodes and
then contracting the empty ovals.

(2) There are 222 rigid isotopy types for such curves.

Proof. (1) Since Cd contains all the possible conjunctions, this is clear.
(2) This count is obtained by enumerating the admissible pairs of faces of P+ × P−.

Remark 6.20. Not all these curves can be distinguished by semi-rigid isotopy. For
example, consider a curve corresponding to the face orthogonal to {v2, v4, v9, v11, v14,
v16, v18, v20}, and another curve corresponding to the face orthogonal to {v4, v6, v9, v11,
v14, v16, v18, v20}. These two curves are semi-rigidly isotopic, but not rigidly isotopic.
Their isotopy type is shown in Figure 6.12.

Figure 6.12

6.8 Degenerations of 〈6 t 1〈2〉〉

6.8.1 Curves with only real nodes

Let L+ = Uu1,u2⊕Dd1,...,d4
4 and L−h = Uw1,w2⊕Ee1,...,e8

8 ⊕Dc1,...,c4
4 ⊕〈−2〉y. The Coxeter

graphs of the polytopes P+ and P− are both finite; they are shown in Figure 6.13.

Lemma 6.21. The symmetry group is T = S3 × Z/2Z, where the factor S3 permutes
the set of ordered triples {(v1, v15, v23), (v2, v16, v24), (v4, v18, v25)}, and the factor Z/2Z
acts on the Coxeter graph of P− as a reflection in a vertical axis in the representation
given in Figure 6.13. The exceptional vectors are v26 and v27. The contraction vectors
are v3, v5, v7, v9, v12, v14, v17 and v19.

Proof. One can check that the Z/2Z symmetry acts trivially on the discriminant. For
the S3 factor, the reasoning is analogous to the one given in the proof of Lemma 6.15

Lemma 6.22. Let C1 be a curve corresponding to the face of P+×P− defined by the vec-
tors Scom ∪ {v1, v2, v15, v16}, where Scom = {v4, v6, v8, v10, v11, v13, v20, v21, v22, v25}. Its
singularities are an ordinary triple point and nine nodes, and its irreducible components
are three lines and a rational cubic. Its isotopy type is as shown in Figure 6.14 (1).
Let C1a and C1b be curves corresponding to the faces defined by the sets of vectors
Scom ∪ {v1, v15, v16} and Scom ∪ {v1, v2, v15}, respectively. They are both nodal with 12
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nodes. They can be obtained from C1 by perturbing the triple point into three real nodes,
as shown in Figure 6.14 (1.a) and (1.b) respectively.

Lemma 6.23. Let C2 be a curve corresponding to the face of P+ × P− defined by the
vectors {v1, v6, v8, v10, v11, v13, v15, v16, v18, v20, v21, v22}. It is nodal, and its irreducible
components are two lines and a rational quartic. Its isotopy type is as shown in
Figure 6.14 (2).

Proposition 6.24. (1) All rigid isotopy types of real rational curves obtained by real
nodal degeneration from a curve of type 〈6 t 1〈2〉〉 without real nodes can be
obtained from one of the curves C1a, C1b, C2 by first perturbing some of the
nodes and then contracting empty ovals.

(2) Two such real rational sextics are rigidly isotopic if and only if they are semi-
rigidly isotopic.

(3) There are 803 rigid isotopy types for such curves.

Proof. (1) A set of pairwise orthogonal vectors in the Coxeter graph corresponds to a
nodal curve if and only if it contains no two of the three pairs (v1, v15), (v2, v16) and
(v4, v18), and no two of the three pairs (v1, v23), (v2, v24) and (v4, v25). This implies that
up to symmetry, the conjunction vectors in such a set are contained in one of the sets
corresponding to the curves C1a, C1b and C2.
(2) We use an argument analogous to the one used to prove Proposition 6.17 (2), by
considering both the graph of conjunctions and the order of the conjunctions on the
non-empty oval. Among the vectors {v1, v2, v4, v15, v16, v18, v23, v24, v25}, the ambiguous
pairs that we need to distinguish are, up to symmetry:

– {v1, v15} vs. {v1, v16}: distinguished using C1a
– {v1, v15, v25} vs. {v2, v15, v25}: distinguished using C1b
– {v1, v15, v16} vs. {v1, v16, v18}: distinguished using C2
– {v1, v15, v16, v25} vs. {v4, v15, v16, v25}: distinguished using C1a
– {v1, v2, v15} vs. {v2, v4, v15}: see below
– {v1, v15, v25} vs. {v2, v15, v25}: distinguished using C1b

The only pair which cannot be distinguished using the order of the conjunctions on the
non-empty oval is {v1, v2, v15} vs. {v2, v4, v15}. However, it turns out that there are no
rational nodal curves whose corresponding face is orthogonal to the vectors {v2, v4, v15}.
(3) This count is obtained by enumerating the admissible pairs of faces of P+ × P−
modulo T .

6.8.2 Curves with a pair of non-real nodes

Using the notations of the previous subsection, we let the vectors corresponding to the
non-real roots be 1

2(l1 ± l2), where l1 = v2 − v1 and l2 = v16 − v15. The Coxeter graphs
of the polytopes orthogonal to l1, l2 are shown in Figure 6.15.

The group T is of order two. The only symmetry is the one which acts in the Coxeter
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Figure 6.14 – Reducible degenerations of a curve of type 〈6 t 1〈2〉〉. (1)—The
isotopy type of the curve C1 is shown on the left, with the triple point marked
in gray. The small figures (1.a), (1.b), (1.c) on the right show three different
ways of perturbing the triple point, resulting in reducible nodal curves C1a, C1b
and C1c, respectively. The curves C1a and C1b have 13 real nodes, while the
curve C1c has ten real nodes and a pair of non-real nodes. (2)—Isotopy type of
the nodal curve C2.
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Figure 6.15

graph of P− as a reflection in a vertical line in the representation given in Figure 6.15.

Lemma 6.25. Let C1c be a curve corresponding to the face orthogonal to the vectors
{l1, v4, v6, l2, v8, v10, v11, v13, v20, v21, v22, v25}. It is nodal, and its irreducible components
are two lines and a rational quartic. It can be obtained from the curve C1 defined in
Lemma 6.22 by perturbing the triple point into a pair of non-real nodes, as shown in
Figure 6.14 (1.c).

Proposition 6.26. (1) All rigid isotopy types of real rational curves obtained by real
nodal degeneration from a curve of type 〈6 t 1〈2〉〉 with a pair of non-real nodes
are obtained from the curve C1c by first perturbing some of the real nodes and
then contracting the empty ovals.

(2) Two such real rational sextics are rigidly isotopic if and only if they are semi-
rigidly isotopic.

(3) There are 204 rigid isotopy types for such curves.

Proof. (1) Since the vectors v18 and v25 cannot be chosen at the same time, we
may assume that, up to symmetry, the conjunction vectors involved are a subset
of {v4, v6, v8, v10, v11, v13, v20, v21, v22, v25}.
(2) Either the inner ovals are both contracted, or they can be identified with the corre-
sponding contraction vectors, since only one of them can conjunct with the non-empty
oval. For the outer ovals, we can choose an identification between the ovals and the
contraction vectors in P−. The two possible choices are equivalent, since there is an
symmetry in T which reverses the order of the ovals. Once such an identification is
chosen, the conjunction vector corresponding to each node of the curve is uniquely
determined by the pair of ovals it connects, since for each pair of ovals, there is at most
one corresponding conjunction vector in the Coxeter graph.
(3) This count is obtained by enumerating the admissible pairs of faces of P+ × P−.
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6.9 Degenerations of 〈4 t 1〈4〉〉

6.9.1 Curves with only real nodes

Let L+ = U(2)u1+w1,u2+w2 ⊕ Ee1,...,e8
8 and L−h = U(2)u1−w1,u2−w2 ⊕ Ef1,...,f8

8 ⊕ 〈−2〉y.
The Coxeter graphs of the polytopes P+ and P− are both finite; they are shown in
Figure 6.16.

Coxeter graph of P+

v1 v2 v3

v4

v5 v6 v7 v8

v9

v10

Coxeter graph of P−

v11

v12 v13 v14

v15

v16 v17

v18v19

v20

v21v22

v23

v24

v1 = e1

v2 = e2

v3 = e3

v4 = e4

v5 = e5

v6 = e6

v7 = e7

v8 = e8

v9 = e∗
8 + u2 + w2

v10 = e∗
8 + u1 + w1

v11 = f∗
1 + u1 − w1

+ u2 − w2 − y
v12 = f1

v13 = f2

v14 = f3

v15 = f4

v16 = f5

v17 = f6

v18 = f7

v19 = f8

v20 = f∗
8 + u1 − w1

v21 = f∗
8 + u2 − w2

v22 = u2 − w2 − y
v23 = u1 − w1 − y
v24 = y

Figure 6.16

Lemma 6.27. The symmetry group is T = Z/2Z, exchanging each of the pairs (v9, v10),
(v20, v21) and (v22, v23)}. The only exceptional vector is v24. The contraction vectors
are v1, v3, v6, v8, v12, v14, v17 and v19.

Lemma 6.28. Let C1 be a curve corresponding to the face of P+ × P− defined by the
vectors Scom ∪ {v9, v10, v20, v21}, where Scom = {v2, v4, v5, v7, v11, v13, v15, v16, v18}. Its
singularities are an ordinary triple point and nine nodes, and its irreducible components
are a line, a conic and a rational cubic. Its isotopy type is as shown in Figure 6.17 (1).
Let C1a be a curve corresponding to the face defined by the set of vectors Scom ∪
{v9, v20, v21}. It is nodal with 12 nodes, and it can be obtained from C1 by perturbing
the triple point into three real nodes, as shown in Figure 6.17 (a).

Let C2 be a curve corresponding to the face of P+ × P− defined by the vectors
Scom ∪ {v9, v10, v20, v22}. Its is nodal, and its irreducible components are three lines and
a rational cubic. Its isotopy type is as shown in Figure 6.17 (2).

Let C3 be a curve corresponding to the face of P+ × P− defined by the vectors
Scom ∪ {v9, v22, v23}. Its is nodal, and its irreducible components are two lines and a
rational quartic. Its isotopy type is as shown in Figure 6.17 (3).
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Figure 6.17 – Reducible degenerations of a curve of type 〈4 t 1〈4〉〉. (1)—The
isotopy type of the curve C1 is shown on the left, with the triple point marked
in gray. The small figures (a), and (b) on the right show two different ways
of perturbing the triple point, resulting in reducible nodal curves C1a and C1b
respectively. The curve C1a has 12 real nodes, while the curve C1b has nine real
nodes and a pair of non-real nodes. (2), (3)—Isotopy type of the nodal curves
C2 and C3.
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Proposition 6.29. (1) All rigid isotopy types of real rational curves obtained by real
nodal degeneration from a dividing curve of type 〈4 t 1〈4〉〉 without real nodes
can be obtained from one of the curves C1a, C2, C3 by first perturbing some of
the nodes and then contracting empty ovals.

(2) Two such real rational sextics are rigidly isotopic if and only if they are semi-
rigidly isotopic.

(3) There are 1088 rigid isotopy types for such curves.

Proof. (1) A set of pairwise orthogonal vectors in the Coxeter graph corresponds to a
nodal curve if and only if it does not contain one of the quadruples {v9, v10, v20, v21},
{v9, v10, v22, v23}. This implies that up to symmetry, the conjunction vectors in such a
set are contained in one of the sets corresponding to the curves C1a, C2 and C3.
(2) We use an argument analogous to the one used to prove Proposition 6.17 (2), by
considering both the graph of conjunctions and the order of the conjunctions on the
non-empty oval. Among the vectors {v9, v10, v20, v21, v22, v23}, the ambiguous pairs that
we need to distinguish are, up to symmetry:

– {v9, v20} vs. {v9, v21}: distinguished using C1a;
– {v9, v22} vs. {v9, v23}: distinguished using C2;
– {v9, v20, v22} vs. {v10, v20, v22}: distinguished using C3.

(3) This count is obtained by enumerating the admissible pairs of faces of P+ × P−
modulo T .

6.9.2 Curves with a pair of non-real nodes

Using the notations of the previous subsection, we let the vectors corresponding to the
non-real roots be 1

2(l1 ± l2), where l1 = v9 − v10 and l2 = v20 − v21. The Coxeter graphs
of the polytopes orthogonal to l1, l2 are shown in Figure 6.18.

Coxeter graph of P+

v1 v2 v3

v4

v5 v6 v7 v8
v9 + v10

Coxeter graph of P−

v11

v12 v13 v14

v15

v16 v17

v18v19

v20 + v21

v22 + v23

v24
4

Figure 6.18
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Lemma 6.30. Let C1b be a curve corresponding to the face orthogonal to the vectors
{l1, v2, v4, v5, v7, l2, v11, v13, v15, v16, v18}. It is nodal, and its irreducible components are
a line and a rational quintic. It can be obtained from the curve C1 defined in Lemma 6.28
by perturbing the triple point into a pair of non-real nodes, as shown in Figure 6.17 (b).

Proposition 6.31. (1) All rigid isotopy types of real rational curves obtained by real
nodal degeneration from a dividing curve of type 〈4t1〈4〉〉 with a pair of non-real
nodes are obtained from the curve C1b by first perturbing some of the real nodes
and then contracting the empty ovals.

(2) Two such real rational sextics are rigidly isotopic if and only if they are semi-
rigidly isotopic.

(3) There are 98 rigid isotopy types for such curves.

Proof. (1) Since C1b contains all the possible conjunctions, this is clear.
(2) Either all the empty ovals are contracted, or they can be identified with the contraction
vectors, since all the possible conjunctions of empty ovals with the non-empty oval are
asymmetrical. Then, the conjunction vector corresponding to each node of the curve is
uniquely determined by the pair of ovals it connects, since for each pair of ovals, there
is at most one corresponding conjunction vector in the Coxeter graph.
(3) This count is obtained by enumerating the admissible pairs of faces of P+ × P−.

6.10 Degenerations of 〈5 t 1〈3〉〉

We first calculate the Coxeter graphs for curves of type 〈5t1〈3〉〉 without non-real nodes.
Let L+ = 〈2〉u1+u2⊕Ee1,...,e7

7 and L−h = Uw1,w2⊕Ef1,...,f8
8 ⊕〈−2〉e∗8 ⊕〈−2〉u1−u2⊕〈−2〉y.

The Coxeter graphs of the polytopes P+ and P− are both finite; they are shown in
Figure 6.19.

We let the vectors corresponding to the non-real roots be 1
2(l1±l2), where l1 = v8−v7

and l2 = v20 − v19. The Coxeter graphs of the polytopes orthogonal to l1, l2 are shown
in Figure 6.20.

The polytopes P+ and P− have no symmetries. The contraction vectors are
v1, v3, v5, v9, v11, v14, v16 and v17.

Lemma 6.32. Let C0 be a curve corresponding to the face defined by the vectors
{v2, v4, v5, v7, v8, v10, v12, v13, v15, v19, v20, v21, v24, v25}, and let C be a curve correspond-
ing to the face defined by the vectors {l1, v2, v4, v5, l2, v10, v12, v13, v15, v21, v24, v25}. The
singularities of C0 are an ordinary triple point and ten nodes, and its irreducible com-
ponents are three lines and a rational cubic. Its isotopy type is shown in Figure 6.21.
The curve C is nodal with ten real nodes and a pair of non-real nodes. Its irreducible
components are two lines and a rational quartic. It can be obtained from C0 by perturbing
the triple point into a pair of non-real nodes, as shown in Figure 6.21.

Proposition 6.33. (1) All rigid isotopy types of real rational curves obtained by real
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Figure 6.19
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Figure 6.21 – Reducible degenerations of a curve of type 〈5 t 1〈3〉〉. The large
picture shows a reducible curve C0 with a triple point and nine real nodes. The
detail shows how the triple point can be perturbed into a pair of non-real nodes,
resulting in the curve nodal C with nine real nodes and a pair of non-real nodes.

nodal degeneration from a curve of type 〈5 t 1〈3〉〉 with a pair of non-real nodes
are obtained from the curve C by first perturbing some of the real nodes and
then contracting the empty ovals.

(2) There are 255 rigid isotopy types for such curves.

Proof. (1) Since C contains all the possible conjunctions, this is clear.
(2) This count is obtained by enumerating the admissible pairs of faces of P+ × P−.

Remark 6.34. Not all these curves can be distinguished by semi-rigid isotopy. For
example, consider a curve corresponding to the face orthogonal to {v1, v4, v5, v9, v11,
v14, v16, v17}, and another curve corresponding to the face orthogonal to {v2, v4, v6, v9,
v11, v14, v16, v17}. These two curves are semi-rigidly isotopic, but not rigidly isotopic.
Their isotopy type is shown in Figure 6.22.

Figure 6.22
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6.11 Degenerations of 〈3 t 1〈5〉〉

We first calculate the Coxeter graphs for curves of type 〈3t1〈5〉〉 without non-real nodes.
Let L+ = Ee1,...,e8

8 ⊕Uw1,w2⊕〈−2〉u1−u2⊕〈−2〉f∗8 and L−h = Ef1,...,f7
7 ⊕〈2〉u1+u2⊕〈−2〉y.

The Coxeter graphs of the polytopes P+ and P− are both finite; they are shown
in Figure 6.23.

Coxeter graph of P+
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v4 = e4

v5 = e5

v6 = e6

v7 = e7

v8 = e8

v9 = w1 − w2

v10 = f∗
8

v11 = u1 − u2

v12 = e∗
8 + w2

v13 = w2 − e∗
8

v14 = w2 − (u1 − u2)
v15 = f1

v16 = f2

v17 = f3

v18 = f4

v19 = f5

v20 = f6

v21 = f7

v22 = y

v23 = f7 + 2f8 + f∗
8 + (u1 + u2)

v24 = u1 + u2 − y + f∗
1 − f∗

8

Figure 6.23

We let the vectors corresponding to the non-real roots be 1
2(l1±l2), where l1 = v10−v11

and l2 = v23 − v21. The Coxeter graphs of the polytopes orthogonal to l1, l2 are shown
in Figure 6.24.

The polytopes P+ and P− have no symmetries. The contraction vectors are
v1, v3, v6, v8, v9, v15, v17 and v20.

Lemma 6.35. Let C0 be a curve corresponding to the face defined by the vectors
{v2, v4, v5, v7, v12, v13, v14, v16, v18, v19, v21, v23, v24}, and let C be a curve corresponding
to the face defined by the vectors {l1, v2, v4, v5, v7, v12, l2, v16, v18, v19, v24}. The singular-
ities of C0 are an ordinary triple point and nine nodes, and its irreducible components
are a line, a conic and a rational cubic. Its isotopy type is shown in Figure 6.25. The
curve C is nodal with nine real nodes and a pair of non-real nodes. Its irreducible
components are a line and a rational quintic. It can be obtained from C0 by perturbing
the triple point into a pair of non-real nodes, as shown in Figure 6.25.
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Coxeter graph of P+
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Figure 6.25 – Reducible degenerations of a curve of type 〈3 t 1〈5〉〉. The large
picture shows a reducible curve C0 with a triple point and nine real nodes. The
detail shows how the triple point can be perturbed into a pair of non-real nodes,
resulting in the curve nodal C with nine real nodes and a pair of non-real nodes.

90



Proposition 6.36. (1) All rigid isotopy types of real rational curves obtained by real
nodal degeneration from a curve of type 〈3 t 1〈5〉〉 with a pair of non-real nodes
are obtained from the curve C by first perturbing some of the real nodes and
then contracting the empty ovals.

(2) There are 90 rigid isotopy types for such curves.

Proof. (1) Since C contains all the possible conjunctions, this is clear.
(2) This count is obtained by enumerating the admissible pairs of faces of P+ × P−.

Remark 6.37. Not all these curves can be distinguished by semi-rigid isotopy. For
example, consider a curve corresponding to the face orthogonal to {v1, v3, v6, v8, v9,
v15, v18, v19}, and another curve corresponding to the face orthogonal to {v1, v3, v6, v8,
v9, v16, v18, v20}. These two curves are semi-rigidly isotopic, but not rigidly isotopic.
Their isotopy type is shown in Figure 6.26.

Figure 6.26

6.12 Degenerations of 〈1 t 1〈7〉〉

Let L+ = 〈2〉w1+w2⊕Ee1,...,e8
8 ⊕Ef1,...,f7

7 , and L−h = Uu1,u2⊕〈−2〉f∗8 ⊕〈−2〉w1−w2⊕〈−2〉y.
Let l1 = w1 +w2 +2f8 +f∗8 , and l2 = w1−w2−f∗8 . The Coxeter graphs of the polytopes
P+ and P− are both finite; they are shown in Figure 6.27.

The symmetry group T is Z/2Z, acting as a reflection in a horizontal line in the
representation of the Coxeter graph of P+ given in Figure 6.27. The only exceptional
vector is v20. The contraction vectors are {v1, v3, v6, v8, v10, v12, v15, v22}.

Lemma 6.38. Let C be a curve corresponding to the face defined by the vectors {l1, v2,
v4, v5, v7, v9, v11, v13, v14, l2, v21}. It is nodal, and its irreducible components are a
conic and a rational quartic. Its isotopy type is shown in Figure 6.28.

Proposition 6.39. (1) All rigid isotopy types of real rational curves obtained by real
nodal degeneration from a curve of type 〈1 t 1〈7〉〉 can be obtained from C by
first perturbing some of the nodes and then contracting empty ovals.

(2) Two such real rational sextics are rigidly isotopic if and only if they are semi-
rigidly isotopic.

(3) There are 130 rigid isotopy types for such curves.

Proof. (1) Since C is obtained by degenerating all the conjunction vectors, this is clear.
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Figure 6.28 – Reducible nodal degeneration C of a curve of type 〈1 t 1〈7〉〉.
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(2) For curves of type 〈1t 1〈7〉〉, there is a linear order on the set of inner ovals, defined
up to inversion. Given a rational curve obtained by real nodal degeneration from a
curve of type 〈1 t 1〈7〉〉, one can identify the inner ovals with the contraction vectors in
the Coxeter graph, up to the Z/2Z symmetry. Once such an identification is chosen, the
conjunction vector corresponding to each node of the curve is uniquely determined by the
pair of ovals it connects, since for each pair of ovals, there is at most one corresponding
conjunction vector in the Coxeter graph.
(3) This count is obtained by enumerating the admissible pairs of faces of P+ × P−
modulo T .

6.13 Degenerations of 〈1〈8〉〉

6.13.1 Curves with only real nodes

Let L+ = U(2)u1+w1,u2+w2 ⊕ Ee1,...,e8
8 ⊕ Ef1,...,f8

8 , and L−h = U(2)u1−w1,u2−w2 ⊕ 〈−2〉y.
The Coxeter graph of the polytope P− is finite; it is shown in Figure 6.29. The Coxeter
graph of the polytope P+ is infinite. Let P 0

+ ⊂ P+ be a smaller polytope delimited by
walls orthogonal to vectors v ∈ K+ of square −2 as well as vectors v ∈ K+ of square
−4 such that v ∈ 2L∨. This smaller polytope is finite. Its Coxeter graph is shown in
Figure 6.29.

The symmetry group of P− is Z/2Z, exchanging v24 and v25. The symmetry group
of P+ can be decomposed into two parts: the symmetries of the smaller polytope P 0

+,
and the reflection group generated by the reflections in the hyperplanes orthogonal to
the long roots v21 and v22. The latter is a parabolic reflection group of type Ã1, that is,
an infinite dihedral group D∞. The former is the symmetry group of the square, D4.
The complete symmetry group of the polytope P+ is the semi-direct product D4 nD∞.
To determine the group T , we need to see how the symmetries of P+ and those of P−
glue together, i.e. how they act on the discriminant group. The discriminant form of the
lattice U(2) has two automorphisms: the identify and the one induced by exchanging
two vectors forming a hyperbolic basis.

The non-trivial symmetry of P− acts non-trivially on the discriminant group. There-
fore, any symmetry of P+ glues either to the identity of P− or to the non-trivial
symmetry. Hence, the group T is isomorphic to D4 nD∞.

The only exceptional vector is v23. The contraction vectors are {v1, v3, v5, v7, v9,
v11, v13, v15}.

Consider a face F of P+ defined by a set of pairwise orthogonal roots. Applying an
element of the group D∞ generated by the reflections in hyperplanes orthogonal to the
vectors v21 and v22, we may assume that F intersects the polytope P 0

+. As a face of
P 0

+, the intersection F ∩ P 0
+ is either defined by a set of pairwise orthogonal short roots,

or it is defined by a set of pairwise orthogonal short roots plus a long root (v21 or v22)
intersecting one of the short roots. In the former case, we say that the face F is of the
first kind, and in the latter case, we say that it is of the second kind.

Given a face F of the second kind, up to a symmetry of P 0
+, we may assume that
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Coxeter graph of P 0
+

v1

v3

v5

v7

v9

v11

v13

v15

v2

v4

v6

v8v10

v12

v14

v16

v17

v18

v19

v20

v21

v22

Coxeter graph of P−

v23v24 v25

v1 = f8

v2 = u1 + w1 + u2

+ w2 + e∗
1 + f∗

8

v3 = e1

v4 = e2

v5 = e3

v6 = e5

v7 = e6

v8 = e7

v9 = e8

v10 = u1 + w1 + u2

+ w2 + e∗
8 + f∗

1

v11 = f1

v12 = f2

v13 = f3

v14 = f5

v15 = f6

v16 = f7

v17 = u2 + w2 + f∗
8

v18 = e4

v19 = u2 + w2 + e∗
8

v20 = f4

v21 = u1 + w1 − (u2 + w2)
v22 = 3(u1 + w1) + 5(u2 + w2)

+ 2e∗
4 + 2f∗

4

v23 = y

v24 = u2 − w2 − y
v25 = u1 − w1 − y

Figure 6.29
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the short root and the long root intersecting it are v17 and v21, respectively. Then, as
a face of P+, the face F is defined by the short roots defining F ∩ P 0

+ as a face of P 0
+

together with the vector v26 := Rv21(v17) = v17 + v21.

Lemma 6.40. Let C1 be a curve corresponding to the face of P+×P− defined by the vectors
{v2, v4, v6, v8, v10, v12, v14, v16, v17, v18, v20, v24, v26}, and let C2 be a curve corresponding
to the face defined by the vectors {v2, v4, v6, v8, v10, v12, v14, v16, v17, v18, v19, v20,
v24, v25}. The curves C1 and C2 are both nodal. The irreducible components of C1 are
two lines and two conics. The irreducible components of C2 are four lines and a conic.
The isotopy types of C1 and C2 are shown in Figure 6.30 (1) and (2), respectively.

Proposition 6.41. (1) All rigid isotopy types of real rational curves obtained by real
nodal degeneration from a dividing curve of type 〈1〈8〉〉 with only real nodes can
be obtained from one of the curves C1 and C2 by first perturbing some of the
nodes and then contracting empty ovals.

(2) Two such real rational sextics are rigidly isotopic if and only if they are semi-
rigidly isotopic.

(3) There are 477 rigid isotopy types for such curves.

Proof. (1) Curves corresponding to faces of the first kind can be obtained from C2,
since C2 contains all the possible conjunctions. For curves corresponding to faces of
the second kind, we may assume that the short root and the long root intersecting it
are v17 and v21, respectively. Moreover, there may be at most one of the vectors v24
and v25, since otherwise the corresponding curve is not nodal. We can assume that this
vector, if it is present, is v24. Indeed, the composition Rv21 ◦Rv24−v25 defines an element
of T which interchanges the pairs {v24, v25} and {v17, v26} and leaves the other vectors
invariant. (Note that v19 cannot appear because it is not orthogonal to v26.)
(2) Note that a curve corresponds to a face of the second kind if and only if there
is an empty oval which conjuncts twice with the non-empty oval. We treat curves
corresponding to faces of the first kind and those corresponding to faces of the second
type separately.
Let us first consider curves corresponding to faces of the second kind. We may assume
that the oval which conjuncts twice with the nonempty oval corresponds to the vector v1.
The cyclic order on the empty ovals allows us to identify the remaining ovals with the
remaining contraction vectors, up to a Z/2Z symmetry. After choosing one of the two
identifications, we can also identify the conjunctions with the conjunction vectors, since
for each pair of ovals there is at most vector corresponding to a conjunction between
those ovals. The only remaining question is, if the non-empty oval conjuncts with itself,
if this self-conjunction corresponds to the vector v24 or v25. However, we have shown
above that these vectors are equivalent, using the symmetry Rv21 ◦Rv24−v25 . Therefore,
the isotopy type together with the order of the ovals determines the face of P+ × P−
modulo T .
Now consider a curve corresponding to a face of the first kind. If not all the empty ovals
are contracted, then there must be a conjunction of an empty oval with the non-empty
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Figure 6.30 – Reducible nodal degenerations C1, C2, C3 of a curve of type 〈1〈8〉〉.
The curves C1 and C2 have only real nodes, while C3 has a pair of non-real
nodes. In figure (2), the labels 24 and 25 mark the intersection points of the
parallel lines at infinity.
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oval. This allows us to identify the ovals with the corresponding contraction vectors, up
to a symmetry in D4. Such an identification also determines the vectors corresponding
to the conjunctions, using the same argument as above. It remains to see how to
distinguish the two vectors v24 and v25 which correspond to self-conjunctions of the
non-empty oval. If there is no such self conjunction or if there are two, no distinction is
necessary. Therefore, we may assume that the non-empty oval has one self-conjunction.
Since there are eight ovals and only real nodes, the graph of conjunctions must contain
two cycles. Since we assume that there is one self-conjunction of the non-empty oval,
this leaves one cycle among the conjunctions corresponding to vectors in P+. Such a
cycle must contain precisely two conjunctions between empty ovals and the non-empty
oval. There are two cases: either the two corresponding conjunction vectors lie opposite
to each other with respect to the cyclic order (like v17 and v19), or they are adjacent
(like v17 and v18). In the former case, the vectors v24 and v25 are equivalent, using a
symmetry like Rv21 ◦Rv24−v25 . In the latter case, the two choices are different, and they
can be distinguished looking at the cyclic order of the conjunctions along the non-empty
oval, which can be read off Figure 6.30 (2).
(3) This count is obtained by enumerating the admissible pairs of faces of P 0

+ × P−
modulo T .

6.13.2 Curves with a pair of non-real nodes

Using the notations of the previous subsection, we let the vectors corresponding to the
non-real roots be 1

2(l1± l2), where l1 = v21 and l2 = v24−v25. The Coxeter graphs of the
polytopes orthogonal to l1, l2 are as follows, where v27 := 2v17 + v21 and v28 := v19 + v21.

Coxeter graph of P+

v1

v3

v5

v7

v9

v11

v13

v15

v2

v4

v6

v8v10

v12

v14

v16

v27

v18

v28

v20

Coxeter graph of P−

v23 v24 + v254

Figure 6.31

The group T is the symmetry group of the polytope P+, which is Z/2Z× Z/2Z.

Lemma 6.42. Let C3 be a curve corresponding to the face of P+×P− defined by the vectors
{l1, v2, v4, v6, v8, v10, v12, v14, v16, v18, v20, l2}. It is nodal, and its irreducible components
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are three conics. The isotopy type of C3 is shown in Figure 6.30 (3).

Proposition 6.43. (1) All rigid isotopy types of real rational curves obtained by real
nodal degeneration from a dividing curve of type 〈1〈8〉〉 with a pair of non-real
nodes can be obtained from C3 by first perturbing some of the real nodes and
then contracting empty ovals.

(2) Two such real rational sextics are rigidly isotopic if and only if they are semi-
rigidly isotopic.

(3) There are 52 rigid isotopy types for such curves.

Proof. (1) Since C3 contains all the possible conjunctions, this is clear.
(2) There is only one face corresponding to a contraction of all the empty ovals. If not
all ovals are contracted, then an empty oval must conjunct with the non-empty oval.
Using the cyclic order on the set of empty ovals, this allows us to identify the empty
ovals with the corresponding contraction vectors, up to a symmetry of the polytope P+.
Since for each pair of ovals there is at most one possible conjunction between them, this
also determines the conjunction vector corresponding to each conjunction. Hence, the
isotopy type together with the order of the ovals determines the corresponding face of
P+ × P− modulo T .
(3) This count is obtained by enumerating the admissible pairs of faces of P+ × P−
modulo T .

6.14 Degenerations of 〈7 t 1〈1〉〉

Consider the lattice N = Uw1,w2⊕Ee1,...,e8
8 ⊕Ef1,...,f8

8 ⊕〈−2〉y. Let P0 ⊂ HN be a polytope
delimited by hyperplanes orthogonal to short roots. (This is the polytope P− for curves
of type 〈9t 1〈1〉〉.) The Coxeter graph for P0 is shown in Figure 6.7. It contains a cycle
of length 18, and its symmetry group is S3. Consider an A3 subscheme of this Coxeter
graph, formed by three vertices a1, a2, a3, that is, a1 and a3 are orthogonal, and a2 is
connected to both a1 and a3 by a single edge. Let K− be the orthogonal complement
of 〈a1, a2, a3〉 in N , and let K+ = Uu1,u2 ⊕ 〈−4〉a1+a3 . Let the vectors corresponding
to the non-real nodes be s′ = a1 + a2 and s′′ = a2 + a3. The Coxeter graph of the
polytope P+ is shown in Figure 6.32. It has no symmetries. It contains only one vertex
corresponding to a short root. This root must be a contraction vector, corresponding to
the inner oval. Since there are no other short roots, there are no conjunctions possible,
i.e., the inner oval cannot conjunct with the non-empty oval. Therefore, the inner oval
must be contracted.

Coxeter graph of P+

u1 − u2

2u2 − (a1 + a3)

a1 + a3

Figure 6.32

98



To obtain all the admissible faces of P− modulo symmetries, and therefore the rigid
isotopy classes of real rational curves obtained by real nodal degeneration from a curve
of type 〈7t 1〈1〉〉 with a pair of non-real nodes, we use descent (see Chapter 5), starting
from the polytope P0 ⊂ HN . Note that all the walls defining P− ⊂ H− are intersections
of H− with hyperplanes in HN defined by a short root. The tile marking µ = (x1, x2, x3)
can move as shown in Figure 6.33 (a). Therefore, all the possible subschemes of type
A3 in the Coxeter graph of P0 are admissible tile markings.

x1 x2 x3 u

l

u x1 x2 x3

(a)

x1 x2 x3 u fi

l

fi u x1 x2 x3

(b)

Figure 6.33 – The possible moves in the A3 descent

The face markings corresponding to admissible faces are of the form (µ, ν), where
µ = (x1, x2, x3) is a tile marking (see above), and ν = {f1, . . . , f7} is a set of seven
pairwise orthogonal vectors in the Coxeter graph of P0 which are orthogonal to µ. The
possible moves of the face markings are those shown in Figure 6.33 (a) and (b). Each
symmetry of the polytope P̄ can be extended to an automorphism of N which maps
the set {a1, a2, a3} to itself. Let H be the group consisting of all automorphisms of N
which map the set {a1, a2, a3} to itself and which maps the polytope P̄ to itself. The
corresponding group Ĥ ⊂ Perm({a1, a2, a3})×Sym(P0) is isomorphic to Sym(P0) ∼= S3,
where the odd elements of S3 interchange a1 and a3. By Corollary 5.19, the faces of P̄
modulo symmetries are in bijection with face markings up to moves modulo Ĥ. This
allows us to enumerate all the admissible faces of P+ × P− modulo T .

Let C be a curve whose rigid isotopy type corresponds to the face defined by the
marking (µ1, ν), where µ1 = (v22, v17, v16) and ν = {v3, v5, v6, v8, v11, v13, v14, v20, v21,
v23}, using the notation of Figure 6.7.

Lemma 6.44. The curve C is nodal, and its irreducible components are three lines and
a cubic. Its isotopy type is as shown in Figure 6.34.

Lemma 6.45. Every face marking (µ, ν) is equivalent (up to moves and symmetries) to
a face marking (µ′, ν ′) where µ′ is either µ1 = (v22, v17, v16) or µ2 = (v17, v16, v15).

Proof. For the convenience of the reader, we reproduce a part of the Coxeter graph of
P0 here. (The full Coxeter graph is given in Figure 6.7.)

. . .
v21 v18

v20

v22 v17 v16 v15
. . .
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Figure 6.34 – Reducible nodal degeneration C of a curve of type 〈7t 1〈1〉〉 with
a pair of non-real nodes.

The possible tile markings are, up to symmetry, µ1 = (v22, v17, v16), µ2 = (v17, v16, v15),
µ3 = (v18, v22, v17), µ4 = (v21, v18, v22), µ5 = (v20, v18, v22). A face marking (µ3, ν) can
either move to (µ1, ν) (by a move of type (a), if v15 6∈ ν), or to (µ2, ν ∪ {v18} \ {v15})
(by a move of type (b), if v15 ∈ ν). Similarly, a face marking (µ4, ν) can either move to
(µ3, ν) or to (µ1, ν ∪ {v21} \ {v16}), and likewise, a face marking (µ5, ν) can either move
to (µ3, ν) or to (µ1, ν ∪ {v20} \ {v16}).

Proposition 6.46. (1) All rigid isotopy types of real rational curves obtained by real
nodal degeneration from a curve of type 〈7 t 1〈1〉〉 with a pair of non-real nodes
is obtained from the reducible curve C by first perturbing some of the real nodes
and then contracting empty ovals.

(2) Two such real rational sextics are rigidly isotopic if and only if they are semi-
rigidly isotopic.

(3) There are 82 rigid isotopy types for such curves.

Proof. (1) Each rigid isotopy type corresponds to a face of P− modulo symmetries, and
each such face is represented by a face marking (µ, ν) as described above, which is
uniquely determined up to moves and symmetries. By Lemma 6.45, we may suppose
that µ is either µ1 or µ2. If we disregard the vectors of ν corresponding to contractions
of empty ovals, we may assume that µ = µ1 (using the argument used in the proof of
Lemma 6.45). Then, ν must be a subset of {v3, v5, v6, v8, v11, v13, v14, v20,v21,v23}, and
hence the corresponding rigid isotopy type can be obtained by deforming some of the
nodes of the curve C and then contracting empty ovals.
(2) We associate with each rigid isotopy type its conjunction graph. Then we check
(case by case, using a computer) that the conjunction graph together with the cyclic
order of the ovals determines the face marking up to moves and symmetries.
(3) This number is obtained by counting (using a computer) all the face markings,
modulo moves and symmetries, which correspond to rigid isotopies of real rational
sextics.
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6.15 Degenerations of 〈9〉

6.15.1 Curves with only real nodes

Let L+ = U(2)u1+w1,u2+w2 and L−h = U(2)u1−w1,u2−w2 ⊕ Ee1,...,e8
8 ⊕ Ef1,...,f8

8 ⊕ 〈−2〉y.
The lattice L+ = U(2) contains no vectors of square −2. Therefore, we have

P+ = H+. Its “symmetry group” (the group of automorphisms of L+ which map H+ to
itself) is Z/2Z.

Note that all automorphisms of the discriminant form of L−h fix the element [y2 ].
Hence, all the automorphisms of the lattice L−h can be glued to an automorphism of
the lattice K+. Therefore, the group T consists of all the automorphisms of the negative
polytope P−. Let P̄ ⊂ P− be a polytope delimited by all hyperplanes H such that the
reflection in H defines an automorphism of L+. The faces of P− modulo symmetries of
P− are in bijection with those faces of P̄ which are contained in the boundary of P−,
modulo symmetries of P̄ .

To compute the faces of P̄ modulo symmetries, we use the descent explained in
Chapter 5. Note that the lattice L−h is isomorphic to 〈2〉 ⊕ E8 ⊕ E8 ⊕ 〈−2〉 ⊕ 〈−2〉.
Therefore, it can be seen as the orthogonal complement of a short root in the lattice
M = U⊕E8⊕E8⊕〈−2〉⊕〈−2〉. Let P0 ⊂ HM be a polytope delimited by all hyperplanes
H such that the reflection in H defines an automorphism of M . The Coxeter graph
of the polytope P0 is finite. It has been computed by Vinberg and Kaplinskaja [39].
Following [39], we distinguish between three types of vertices in the Coxeter graph
of P0: basic vertices, vertices of the first kind and vertices of the second kind. Basic
vertices correspond short roots v (i.e. with v2 = −2) such that v glues non-trivially to
its orthogonal complement, vertices of the first kind correspond to long roots (i.e. with
square −4), and vertices of the second kind correspond to short roots v such that there
is no gluing between 〈v〉 and its orthogonal complement. There are 25 basic vectors, 5
vectors of the first kind and 20 vectors of the second kind. The basic vertices form a
subdivision of the Petersen graph; the symmetry group of the Coxeter graph if S5. It
acts transitively on the vertices of the first kind and on the vertices of the second kind.
For a complete description of the Coxeter graph of P0, we refer to [39].

We distinguish six different types of face markings (µ, ν) which define faces of P−
corresponding to rigid isotopy classes of real nodal rational sextics. In each case, the
tile marking µ is a basic vector x. In detail, the six types are explained below.

Type A: The set ν consists of 10 basic vectors which are orthogonal to x and pairwise
orthogonal.

The two possible moves are those listed in Example 5.16. In the first move, the
vertex x moves to a vertex u, where x and u are connected by a simple edge, and both
x and u are orthogonal to ν. In the second move, the vector x can be swapped with a
vector f ∈ ν if there is a vector u which is connected to both x and f by a simple edge
and orthogonal to the other vertices of ν.

Type B: The set ν consists of 9 basic vectors which are orthogonal to x and pairwise
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orthogonal, and one vector of the second kind, orthogonal to x and the 9 basic vectors.
The possible moves are the same as for type A. In particular, the vector of the

second kind cannot move. Since the symmetry group S5 acts transitively on the set of
vectors of the second kind, we may fix the vector of the second kind. Then, we have to
consider the face markings up to moves and up to the actions of the stabilizer of the
chosen vector of the second kind, which is isomorphic to S3.

Type C: The set ν consists of 8 pairwise orthogonal basic vectors, a vector of the
first kind a and a vector of the second kind b, where (a, b) = 2, i.e. the corresponding
vertices are connected by a double edge in the Coxeter graph.

Again, the possible moves are the same as for types A and B. In particular,
the vectors of the first and second kind cannot move. The symmetry group S5 acts
transitively on the pairs (a, b) formed by a vector of the first kind and a vector of the
second kind which are connected by a double edge. Therefore, we may assume that a
and b are fixed, and consider the face markings of type C up to the allowed moves and
up to the action of the stabilizer of a and b, which is isomorphic to Z/2Z.

Type D: The set ν consists of 9 pairwise orthogonal basic vectors and one vector
of the first kind, which is orthogonal to 8 of the basic vectors and connected to the
remaining basic vector by a double edge in the Coxeter graph.

Again, the possible moves are the same as for types A and B, but only the 8 basic
vectors orthogonal to the vector of the first kind can move. The vector of the first
kind and the basic vector attached to it cannot move. The symmetry group S5 acts
transitively on the pairs (a, b) formed by a vector of the first kind a and a basic vector b
which are connected by a double edge. Therefore, we may assume that a and b are fixed,
and consider the face markings of type C up to the allowed moves and up to the action
of the stabilizer of a and b, which is isomorphic to the dihedral group of order eight.

Type E: The set ν consists of 10 pairwise orthogonal basic vectors. Three of them
are connected to the vector x by a simple edge, while the other seven are orthogonal to
it.

For this type of face marking, we have to consider “tile adjacency moves” as well as
“direction adjacency moves” (cf. Example 5.17). The direction adjacency moves allow
to exchange the tile marking vector x with one of the three adjacent vectors belonging
to ν. Up to such moves, we can assume that the tile marking vector is always the one
central one in the D4 subscheme. There are no tile adjacency moves.

Since the symmetry group S5 acts transitively on the subschemes of type D4 in
the Coxeter graph, we may assume that the position of the D4 subscheme is fixed,
and consider the choices of the remaining seven basic vectors up to the action of the
stabilizer of the D4 subscheme, which is isomorphic to dihedral group of order 12.

Type F: The set ν consists of nine pairwise orthogonal basic vectors and one vector
of the second kind. Three of the basic vectors are connected to the vector x by a
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simple edge, while the other six are orthogonal to it. The vector of the second kind is
orthogonal to x and the basic vectors.

As for type E, there are no tile moves, and we can assume that the tile marking
vector x lies at the center of the D4 subscheme. The symmetry group S5 acts transitively
on the choices of pairs formed by a D4 subscheme and a vector of the second kind.

Remark 6.47. There are face markings other than the ones of types A, B, C, D, E
and F described above which correspond to faces of P− defined by a set of pairwise
orthogonal roots. For example, the tile marking vector x might be connected to a vector
of the first kind, or there might be a subscheme of type F4. However, the corresponding
configurations of roots are not homological types corresponding to irreducible sextics,
since the sublattice spanned by h and the roots is not primitive.

Proposition 6.48. There are 565 rigid isotopy types of real rational curves obtained by
real nodal degeneration from a curve of type 〈9〉 with only real nodes. The number of
rigid isotopy types corresponding to each type of face marking is as follows:

Type A B C D E F

Number of rigid isotopy types 46 41 135 174 78 91

Proof strategy. The description of the six types of face markings together with the
possible moves and symmetries allows us to generate, with the help of a computer
program, a list of all the possible faces of P− defined by a set of pairwise orthogonal roots
modulo symmetry. For each face, we check (again using a computer) if the corresponding
homological type corresponds to a real rational sextic.

Proposition 6.49. Two real rational curves obtained by real nodal degeneration from a
curve of type 〈9〉 with only real nodes are rigidly isotopic if and only if they are isotopic.

Proof strategy. With each rigid isotopy type, we can associate its graph of conjunctions
—a graph whose vertices correspond to the empty ovals, and whose edges correspond to
conjunctions between the respective ovals. Multiple edges and loops are allowed. The
graph of conjunctions is determined (up to isomorphism) by the isotopy type of a curve.
Therefore, it is sufficient to show that different rigid isotopy types have different graphs
of conjunctions. To do this, we proceed in two steps: First, we show how the graph of
conjunctions determines the type of the face marking (A up to F ) of the corresponding
face. Then, we check, again with the help of a computer, that within each of the six
types of face markings, no two equivalence classes of face markings have isomorphic
graphs of conjunctions. To distinguish the types A to F , we look at short cycles in the
graph of conjunctions. Note that the shortest cycle made up from pairwise orthogonal
basic vectors in the Coxeter graph of P0 is of length 4. Shorter cycles can be created in
different ways: Vectors of the second kind correspond to self-conjunctions, i.e. cycles of
length one. A vector of the first kind a connected to a vector b by a double edge results
in a second conjunction vector intersecting the contraction vectors in the same way as b.
If b is a vector of the second kind, this given tow self-conjunctions of the same ovals. If
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b is a basic vector, this gives a cycle of length two. Finally, the subschemes of type D4
appearing in types E and F lead to cycles of length three. The numbers of short cycles
for each type are summarized in the following table:

Type A B C D E F

Cycles of length 1 – 1 2 – – 1
Cycles of length 2 – – – 1 – –
Cycles of length 3 – – – – 1 1

Therefore, the conjunction graph determines the type of the face marking. It remains to
check that within each type, the equivalence classes of face markings are distinguished
by their conjunction graphs. We verify this case by case, using a computer program.

Proposition 6.50. There are ten reducible nodal sextics, Ca, Cb, C ′b, Cc, C ′c, C ′′c , Cd,
C ′d, Ce and Cf , such that each real rational sextic obtained by real nodal degeneration
from a dividing curve of type 〈9〉 with only real nodes can be obtained from one of these
ten curves by first perturbing some nodes and then contracting the empty ovals. More
precisely, curves whose face marking is of type A can be obtained from Ca, curves whose
face marking is of type B can be obtained from Cb or C ′b, and so on. The isotopy types
of the ten curves are shown in Figure 6.35.

Proof startegy. For each of the reducible curves we fix a corresponding face marking.
Then we check (using the computer) that for each face marking corresponding to a rigid
isotopy type of a real rational sextic, the conjunction vectors are, up to equivalence by
moves and symmetries, a subset of the vectors appearing in the marking corresponding
of one of the ten curves. To deduce the isotopy types of the reducible curves, we use the
conjunction graphs and the data determining which irreducible components intersect
each other at each node, obtained using Corollary 2.25.

6.15.2 Curves with a pair of non-real nodes

Let L+ and L−h be defined as in the preceding subsection. Let the vectors corresponding
to the non-real nodes be s′ = u1−u2 and s′′ = w1−w2. Then the latticeK+ is of type 〈4〉,
so the polytope P+ is of dimension zero, i.e. a single point. The lattice K+ is isomorphic
to the orthogonal complement of a short root in the lattice N = U⊕ E8 ⊕ E8 ⊕ 〈−4〉.
Therefore, we can use a descent from N to describe the polytope P+. Let P1 be a
fundamental polytope in HN delimited by hyperplanes H such that the reflection in H
defines an automorphism of N . The polytope P1 can be seen as a slice of the polytope
P0 ⊂ HM defined in the preceding subsection orthogonal to a vector of the first kind.
The Coxeter graph of P1 was also calculated by Vinberg and Kaplinskaja [39]. Again,
following [39], we distinguish basic vertices, vertices of the first kind and vertices of the
second kind. The Coxeter graph consists of 22 basic vertices, 3 vertices f the first kind
and 12 vertices of the second kind. The symmetry group of P1 is S4.

104



(f)

(a) (b) (b′)

(c) (c′) (c′′)

(d) (d′) (e)

Figure 6.35 – Isotopy types of reducible nodal degenerations of a sextic of type
〈9〉 with only real nodes. The nodes marked with small gray circles belong to
the short cycles in the graph of conjunctions (see Proposition 6.49).
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Face markings (µ, ν) corresponding to rigid isotopy classes of real rational sextics
consist of a singe basic vector µ = x and a collection ν of 8 pairwise orthogonal basic
vectors, which are all orthogonal to x. The possible moves between the face markings
are the same as those for type A in the case with only non-real nodes.

Consider the nodal sextic C, whose irreducible components are two conics and two
lines, shown in Figure 6.36.

Figure 6.36 – Isotopy type of the reducible sextic C whose dividing perturbation
is of type 〈9〉 with a pair of non-real nodes.

Proposition 6.51. (1) All rigid isotopy types of real rational curves obtained by real
nodal degeneration from a dividing curve of type 〈9〉 with a pair of non-real
nodes can be obtained from C by first perturbing some of the real nodes and then
contracting empty ovals.

(2) There are 53 rigid isotopy types for such curves, but only 37 different isotopy
types.

Proof strategy. (1) We fix a face marking corresponding to C. Then we check (using a
computer) that for all the face markings corresponding to real rational nodal sextics,
the conjunction vectors are (up to moves and symmetries of the face marking) contained
in the fixed face marking corresponding to the curve C. To ensure that the curve C
corresponding to the fixed face marking indeed looks as depicted above, we again use
the conjunction graph in combination with information about the intersection between
the different irreducible components obtained using Corollary 2.25.
(2) The number of rigid isotopy classes is obtained by enumerating (using a computer)
the number of admissible face markings modulo moves and symmetries. For each rigid
isotopy class, we can calculate its graph of conjunctions. In each case where the graph
of conjunction does not determine the rigid isotopy class, it is a tree with at most
one vertex of degree at least three. Therefore, it determines the isotopy type of the
corresponding curves.
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