
HAL Id: tel-02484830
https://theses.hal.science/tel-02484830v2

Submitted on 28 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Linked service integration on the semantic web
Mahdi Bennara

To cite this version:
Mahdi Bennara. Linked service integration on the semantic web. Web. Université de Lyon, 2019.
English. �NNT : 2019LYSEI055�. �tel-02484830v2�

https://theses.hal.science/tel-02484830v2
https://hal.archives-ouvertes.fr

N° d’ordre NNT : 2019LYSEI055

THÈSE DE DOCTORAT DE L’UNIVERSITÉ DE LYON
Opérée au sein de

L’INSA de Lyon

École Doctorale N° 512

Informatique et Mathématiques de Lyon

Spécialité/discipline de doctorat :

Informatique

Soutenue publiquement le 18/07/2019, par :

Mahdi BENNARA

Linked Service Integration

on the Semantic Web

Devant le jury composé de :

MURISASCO, Elisabeth Professeur Univ. de Toulon Rapporteure

FRONT, Agnès MCF–HDR Univ. de Grenoble Rapporteure

MARET, Pierre Professeur Univ. de Saint-Étienne Examinateur

SAVONNET, Marinette MCF–HDR Univ. de Bourgogne Examinatrice

AMGHAR, Youssef Professeur Univ. de Lyon Directeur de thèse

MRISSA, Michaël Professeur Univ. de Pau Codirecteur de thèse

Laboratoire de recherche
Laboratoire d’InfoRmatique en Image et Systèmes d’information (LIRIS) - UMR 5205

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

Département FEDORA – INSA Lyon - Ecoles Doctorales – Quinquennal 2016-2020

SIGLE ECOLE DOCTORALE NOM ET COORDONNEES DU RESPONSABLE

CHIMIE CHIMIE DE LYON

http://www.edchimie-lyon.fr
Sec. : Renée EL MELHEM
Bât. Blaise PASCAL, 3e étage
secretariat@edchimie-lyon.fr
INSA : R. GOURDON

M. Stéphane DANIELE
Institut de recherches sur la catalyse et l’environnement de Lyon
IRCELYON-UMR 5256
Équipe CDFA
2 Avenue Albert EINSTEIN
69 626 Villeurbanne CEDEX
directeur@edchimie-lyon.fr

E.E.A. ÉLECTRONIQUE,
ÉLECTROTECHNIQUE,
AUTOMATIQUE

http://edeea.ec-lyon.fr
Sec. : M.C. HAVGOUDOUKIAN
ecole-doctorale.eea@ec-lyon.fr

M. Gérard SCORLETTI
École Centrale de Lyon
36 Avenue Guy DE COLLONGUE
69 134 Écully
Tél : 04.72.18.60.97 Fax 04.78.43.37.17
gerard.scorletti@ec-lyon.fr

E2M2 ÉVOLUTION, ÉCOSYSTÈME,

MICROBIOLOGIE, MODÉLISATION

http://e2m2.universite-lyon.fr
Sec. : Sylvie ROBERJOT
Bât. Atrium, UCB Lyon 1
Tél : 04.72.44.83.62
INSA : H. CHARLES
secretariat.e2m2@univ-lyon1.fr

M. Philippe NORMAND
UMR 5557 Lab. d’Ecologie Microbienne
Université Claude Bernard Lyon 1
Bâtiment Mendel
43, boulevard du 11 Novembre 1918
69 622 Villeurbanne CEDEX
philippe.normand@univ-lyon1.fr

EDISS INTERDISCIPLINAIRE

SCIENCES-SANTÉ

http://www.ediss-lyon.fr
Sec. : Sylvie ROBERJOT
Bât. Atrium, UCB Lyon 1
Tél : 04.72.44.83.62
INSA : M. LAGARDE
secretariat.ediss@univ-lyon1.fr

Mme Emmanuelle CANET-SOULAS
INSERM U1060, CarMeN lab, Univ. Lyon 1
Bâtiment IMBL
11 Avenue Jean CAPELLE INSA de Lyon
69 621 Villeurbanne
Tél : 04.72.68.49.09 Fax : 04.72.68.49.16
emmanuelle.canet@univ-lyon1.fr

INFOMATHS INFORMATIQUE ET

MATHÉMATIQUES

http://edinfomaths.universite-lyon.fr
Sec. : Renée EL MELHEM
Bât. Blaise PASCAL, 3e étage
Tél : 04.72.43.80.46
infomaths@univ-lyon1.fr

M. Luca ZAMBONI
Bât. Braconnier
43 Boulevard du 11 novembre 1918
69 622 Villeurbanne CEDEX
Tél : 04.26.23.45.52
zamboni@maths.univ-lyon1.fr

Matériaux

MATÉRIAUX DE LYON

http://ed34.universite-lyon.fr
Sec. : Stéphanie CAUVIN
Tél : 04.72.43.71.70
Bât. Direction
ed.materiaux@insa-lyon.fr

M. Jean-Yves BUFFIÈRE
INSA de Lyon
MATEIS - Bât. Saint-Exupéry
7 Avenue Jean CAPELLE
69 621 Villeurbanne CEDEX
Tél : 04.72.43.71.70 Fax : 04.72.43.85.28
jean-yves.buffiere@insa-lyon.fr

MEGA MÉCANIQUE, ÉNERGÉTIQUE,

GÉNIE CIVIL, ACOUSTIQUE

http://edmega.universite-lyon.fr
Sec. : Stéphanie CAUVIN
Tél : 04.72.43.71.70
Bât. Direction
mega@insa-lyon.fr

M. Jocelyn BONJOUR
INSA de Lyon
Laboratoire CETHIL
Bâtiment Sadi-Carnot
9, rue de la Physique
69 621 Villeurbanne CEDEX
jocelyn.bonjour@insa-lyon.fr

ScSo ScSo*

http://ed483.univ-lyon2.fr
Sec. : Véronique GUICHARD
INSA : J.Y. TOUSSAINT
Tél : 04.78.69.72.76
veronique.cervantes@univ-lyon2.fr

M. Christian MONTES
Université Lyon 2
86 Rue Pasteur
69 365 Lyon CEDEX 07
christian.montes@univ-lyon2.fr

*ScSo : Histoire, Géographie, Aménagement, Urbanisme, Archéologie, Science politique, Sociologie, Anthropologie
Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

Acknowledgments

First of all, I would like to thank my respected supervisors Pr. Youssef AMGHAR and

Pr. Michaël MRISSA for their support, confidence, patience and encouragement all along

this long journey. Without their invaluable guidance and precious help this work would

not have been achieved. I shall eternally be indebted to their teachings and assistance.

I would also like to thank the SOC research team and the LIRIS laboratory scientific

staff for their valuable feedback, fruitful exchanges and for the very professional but also

relaxed work environment, which was an incredible asset in helping achieve this work.

I convey my heartiest appreciation to Mahmoud, Pierre, Mehdi, Karim and Pierre-

Antoine for their support, help and advice in writing and building many key components in

this work. Special thanks to my dear friends Abdelmalek and Yaakoub for their assistance,

for the shared good memories and for being there for me in the darkest of times.

Finally, I would like to express my deepest gratitude to Elisabeth MURISASCO and

Agnès FRONT for accepting to review this work. I extend my heartfelt acknowledgement

also to the examiners Pierre MARET and Marinette SAVONNET.

Mahdi BENNARA

v

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

To my parents, my wife and my daughter

vii

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

Contents

List of Figures xv

List of Algorithms xvii

List of Tables xix

1 Introduction 5

1.1 Global Context . 6

1.1.1 Linked Data and Linked Services 6

1.1.1.1 Linked Data . 6

1.1.1.2 Linked Services . 7

1.1.2 Semantic Web and the Web of Data 8

1.1.3 RESTful Linked Web Services . 10

1.1.4 Distributed Affordance . 12

1.2 Motivating Scenario . 13

1.2.1 Scenario Organization . 13

1.2.2 User Request Processing . 14

1.2.3 Enabling Distributed Affordance 16

1.2.4 Web Resources vs. Classic Web Services 16

1.3 Research Problems . 17

1.3.1 Description . 18

1.3.2 Discovery . 19

1.3.3 Selection . 20

ix

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

Contents

1.3.4 Composition . 21

1.3.5 Contribution summary . 22

1.4 Document Organization . 23

2 Semantic Description of RESTful Linked Services 25

2.1 Introduction . 26

2.1.1 REST and Service Description Models 27

2.1.2 Description Models on the Semantic Level 28

2.1.3 Sketching the Ideal Description Model 29

2.1.4 Ramifications of Description for Service Consumers 29

2.1.5 Contribution Summary . 30

2.2 Related Work : Description . 30

2.2.1 State of the Art of Service Description 31

2.2.1.1 Syntactic Description Solutions for Classic Web Services . 32

2.2.1.2 Semantic Description Solutions for Classic Web Services . 33

2.2.1.3 Description Solutions for Classic Web Services Adapted to

the REST Architectural Style 35

2.2.1.4 Description Solutions for REST Services 37

2.2.1.5 Lightweight Semantic Description Solutions for REST Ser-

vices . 39

2.2.1.6 Other Related Description Efforts 44

2.2.2 Synthesis and Discussion . 45

2.3 Contribution : The Descriptor . 48

2.3.1 Separation of Representations and Descriptions 51

2.3.2 Description Mechanisms . 52

2.3.2.1 Describing RESTful Linked Service Operations 56

2.3.2.2 Describing RESTful Linked Service Links 57

2.3.2.3 Describing Service Data and Non-Functional Properties . 58

2.3.3 Guiding Discovery, Selection and Composition 59

x

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

2.3.4 Applying the Description Mechanism to the Motivating Scenario . . 60

2.4 Implementation and Technical Design Choices 63

2.4.1 JSON-LD . 64

2.4.2 JSON-LD and RESTful Linked Services 65

2.4.3 Hydra core vocabulary . 66

2.4.4 Technical context of the specification 67

2.4.4.1 Java Servlet . 67

2.4.4.2 Jersey Framework . 67

2.4.4.3 Gson module . 68

2.4.4.4 Apache Tomcat . 68

2.4.5 Specification of the descriptions . 69

2.4.5.1 Specification of the operation descriptions 69

2.4.5.2 Specification of the links descriptions 70

2.4.5.3 Specification of the non-functional descriptions 71

2.4.5.4 Specification of the data and service descriptions 72

2.4.6 Summary . 72

2.5 Conclusion . 73

3 RESTful Linked Service Discovery and Selection 77

3.1 Introduction . 78

3.2 Related Work : Discovery and Selection . 80

3.2.1 State of the Art of Service Discovery 80

3.2.1.1 Centralized Discovery of Classic Web Services : UDDI . . 81

3.2.1.2 Discovery of RESTful Web Services 82

3.2.1.3 Social-Based Discovery Model : LinkedWS 83

3.2.1.4 Graph Discovery Algorithms 84

3.2.1.5 Synthesis . 85

3.2.2 State of the Art of Service Selection 86

3.2.2.1 Quality of Service in Service Oriented Web 86

xi

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

Contents

3.2.2.2 QoS-Based Web Service Selection 87

3.2.2.3 Synthesis . 88

3.3 The Description Role in Discovery and Selection 89

3.3.1 Descriptive information guiding the discovery and selection 90

3.3.2 A minimal QoS model for Web resources 91

3.3.3 QoS-based resource selection problem specification 91

3.4 Contribution : HATEOAS-Based Discovery Algorithm 92

3.5 Contribution : On-the-Fly Selection Algorithm 94

3.6 Discussion and Evaluation . 96

3.7 Conclusion . 99

4 RESTful Linked Service Composition 101

4.1 Introduction . 102

4.2 Related Work : Composition . 102

4.2.1 BPMN . 103

4.2.2 Linked USDL . 103

4.2.3 BPEL for REST . 104

4.2.4 Synthesis . 104

4.3 Contribution : Distributed Composition Directories 105

4.3.1 Challenges . 105

4.3.2 Composition Directories . 106

4.3.3 Discussion and Evaluation . 110

4.4 Conclusion . 110

5 General Conclusion 113

5.1 Research Problems . 114

5.1.1 Description . 114

5.1.2 Discovery . 114

5.1.3 Selection . 115

xii

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

5.1.4 Composition . 115

5.2 Contribution Summary . 115

5.2.1 Descriptors . 116

5.2.2 HATEOAS-based discovery algorithm 116

5.2.3 On-the-fly selection . 116

5.2.4 Composition Directories . 116

5.3 Perspectives . 117

5.3.1 Description . 117

5.3.2 Discovery . 118

5.3.3 Selection . 118

5.3.4 Composition . 118

5.3.5 Other Perspectives . 119

Bibliography 121

xiii

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

List of Figures

1.1 Scenario interactions . 15

1.2 Discovery Algorithm Results . 20

1.3 Selection Algorithm Results . 21

2.1 Accessing a resource’s descriptor URI . 54

2.2 Discovery of a resource descriptor . 55

2.3 Links between resources, descriptors and the universal descriptor 56

2.4 Descriptor example with annotated links 57

2.5 Service Discovery in our Scenario . 61

2.6 Structure of the descriptor from a conceptual point of view 69

2.7 Structure of a single operation description 70

2.8 Structure of a single link description . 71

2.9 Structure of non-functional descriptions . 72

2.10 Structure of data and service descriptions 73

3.1 Descriptor example with annotated links 90

3.2 Response time in ms . 98

3.3 Number of explored nodes . 98

4.1 Disposition of the different Composition Directories on the Web 107

4.2 Structure of a Composition Directory . 108

4.3 Structure of a single composition contained within a Composition Directory 109

xv

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

List of Algorithms

1 BFS-based discovery algorithm . 93

2 On-The-Fly optimized selection algorithm 95

3 Inserting the new candidates and removing the irrelevant ones using the

skyline approach . 96

4 Selection of n resources at a time instead of one 97

xvii

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

List of Tables

2.1 Comparative table of the different description approaches 47

3.1 Different on-the-fly selection setups . 94

xix

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

Résumé

L’informatique orientée service facilite l’interopérabilité entre les systèmes distribués.

Depuis quelques années, l’émergence du Web sémantique a posé de nouveaux défis pour

la communauté de recherche dans les calculs et la compatibilité sémantique des données.

L’approche ”services” et le Web sémantique constituent une piste prometteuse pour

remédier aux problèmes qui entravent les deux domaines. D’une part l’orientation services

permet d’assurer l’interopérabilité des données et des traitements au niveau sémantique,

et d’autre part le Web sémantique permet d’automatiser les tâches de manipulation de

services à un haut niveau.

Dans le cadre de notre travail de recherche, nous avons détaillé les défis que rencontre

la communauté des chercheurs dans l’intégration des pratiques de l’orientation service

dans le Web sémantique, et plus particulièrement l’intégration des services REST dans

l’implémentation du Web qui repose sur les principes du ”Linked Data” pour constituer ce

que l’on appelle les ”RESTful Linked Services”. Les défis en question sont : La description,

la découverte, la sélection et la composition.

Nous avons proposé une solution pour chacun de ces défis. Les contributions que

nous avons proposées sont : la structure de descripteur, un algorithme de découverte

sémantique, un algorithme de sélection basé sur Skyline et les répertoires de composition.

Nous pensons que l’ensemble de contributions que nous avons proposées peut être

adopté par les fournisseurs de services sur le Web afin de faciliter l’intégration des pratiques

du Web sémantique avec les technologies des services et de REST en particulier. Ceci

permettra donc d’automatiser les tâches de manipulation de services a un haut niveau,

tel que la découverte sur la base de concepts sémantiques, la sélection sur la base de

propriétés non-fonctionnelles et de qualité de service et la composition de plusieurs services

hétérogènes, sur le plan des données ainsi que sur le plan des traitements, afin d’obtenir

des services composites avec de la valeur ajoutée.

Mots-clés: Services Web, Web sḿantique, Web des donnés

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

Abstract

Service Oriented Computing allows interoperability between distributed systems.

In the last years, the emergence of the semantic Web opened new challenges for the

research community regarding semantic interoperability on the data and processing levels.

The convergence of service orientation and the semantic Web together is a promising

effort to solve the problems that hampered both research fields. On the one hand, service

orientation allows interoperability on the data and processing levels, and on the other

hand, semantic Web allows the automation of high-level service manipulation tasks.

In our research, we detail the challenges encountered by the research community to

integrate the service orientation practices with the semantic Web, more precisely, integrat-

ing REST-based services with the semantic Web implementation based on Linked Data

principles to obtain RESTful Linked Services. The challenges in question are : description,

discovery, selection and composition.

We proposed a solution for each of these challenges. The contributions we proposed

are : The descriptor structure, a semantically-enabled discovery algorithm, a Skyline-based

selection algorithm and composition directories.

We think that these contributions can be adopted by service providers on the Web in

order to allow a seamless integration of semantic Web practices with the service technolo-

gies and REST in particular. This allows the automation of high-level service manipulation

tasks, such as semantically-enabled discovery, QoS-based selection and the composition of

heterogeneous services, be it on the data or processing level, in order to create value-added

composite services.

Keywords: Web services, Semantic Web, Linked Data

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

Chapter 1

Introduction

Over the past twenty years, service-oriented computing has promoted interoperability

between distributed systems with the help of XML-based languages, protocols and tools

(SOAP, WSDL, UDDI). Service-oriented architectures or SOAs rely on centralized ap-

proaches for basic service tasks such as discovery, selection and composition. The SOAs

had success in the enterprise world, however they suffered from several problems such

as the lack of semantic interoperability and scalability issues. These problems hampered

their adoption on a large scale, and on the Web in particular, opening new challenges for

the research community. At the same time, semantic Web has promoted the publication of

data sets that refer to each other via interlinking, leading to a distributed dissemination

of data accessible via RESTful APIs, also known as Linked Data 1.

Nowadays, the convergence of the semantic Web and Web services into a single fra-

mework enabling read/write access to Linked Data is an ongoing research challenge for

the research community and normalization organizations 2. Most proposed solutions rely

on RDF-based services accessible through Web APIs. These services are called linked

services as they are described with and exchange Linked Data, mostly through RESTful

APIs. The mechanisms and algorithms for discovery, selection and composition typically

adopted in SOAs need to be revisited and adapted to the distributed setup and large scale

of the semantic Web that requires scalable solutions. Also, service descriptions must be

adapted and enriched to make the semantics of services, data, operations and links ex-

plicit supporting the automation of discovery, selection and composition. In our research

work, we propose solutions in the form of models and algorithms in order to address these

open challenges and allow service technologies to integrate seamlessly with the practices

of Linked Data and the semantic Web.

1. http://linkeddata.org

2. https://www.w3.org/ns/ldp

5

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

http://linkeddata.org
https://www.w3.org/ns/ldp

Chapter 1. Introduction

1.1 Global Context

The objective of this section is to present and define the general key concepts we use in

our research. Section 1.1.1 presents the concept of Linked Data and the way service tech-

nologies handle Linked Data in order to create what we call Linked services. Section 1.1.3

presents the RESTful architectural style for building Web services and details how the

different constraints contribute to the building of a Resource-oriented Web around Linked

Data. Section 1.1.2 briefly presents the Semantic Web and the Web of Data and how they

constitute the basis for building RESTful linked Web services. Section 1.1.4 introduces

the concept of distributed affordance, an important key concept that changes the vision of

building RESTful Web Services, whereby actions available for the user are automatically

calculated and translated into operations that can be executed by the client that interacts

with the Web services.

1.1.1 Linked Data and Linked Services

1.1.1.1 Linked Data

The term Linked Data 3 can be defined as a set of best practices for publishing and

connecting structured data on the Web. These best practices have been adopted by an

increasing number of data providers over the last years, leading to the creation of a global

data space called the Web of Data. In summary, Linked Data is simply about using the

Web to create typed links between data from different sources. These may be as diverse as

data sources maintained by two organizations in different geographical locations, or simply

heterogeneous systems within the same organization that have not easily inter-operated

at the data level previously.

Technically, Linked Data refers to data published on the Web in such a way that it

is machine-readable, its meaning is explicitly defined, it is linked to other external data

sources and can in turn be linked to from external data sources. While the primary units

of the hypertext Web are HTML 4 documents connected by untyped hyperlinks, Linked

Data relies on documents containing data in RDF 5 format. However, rather than simply

connecting these documents, Linked Data uses RDF to make typed statements that link

arbitrary things in the world. The result, which is referred to as the Web of Data, may

more accurately be described as a web of things in the world, described by data on the

Web [Bizer et al., 2009b].

3. https://www.w3.org/DesignIssues/LinkedData.html

4. HyperText Markup Language : https://www.w3.org/html

5. Resource Description Framework : https://www.w3.org/RDF/

6

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

https://www.w3.org/DesignIssues/LinkedData.html
https://www.w3.org/html
https://www.w3.org/RDF/

1.1. Global Context

The principles upon which Linked Data structures data, as outlined by its inventor

Tim Berners-Lee, are the following :

— Use URIs 6 as names for things.

— Use HTTP URIs so that people can look up those names.

— When someone looks up a URI, provide useful information using the standards

(RDF and SPARQL 7).

— Include links to other URIs, so that they can discover more things.

Linked Data uses a well-established stack of technologies :

— URI for identifying data in the form of resources.

— RDF for representing and interlinking data in the form of triples or assertions

annotated semantically using ontologies and vocabularies.

— SPARQL for querying RDF graphs and extracting data from identified resources.

— HTTP 8 for data retrieval, exchange and manipulation using the basic CRUD

(Create, Read, Update, Delete) operations.

Navigation through Linked Data in the Web of Data is very similar to navigation

through pages in the classic Web of hypertext documents. The difference is that there are

more challenges to overcome on the Web of Data due to the structuring and linking of data

in RDF compared to HTML documents. The Web of Data exposes machine-readable data

and allows flexible and automatic data processing and reasoning [Wilde, 2010a] [Domingue

et al., 2011].

1.1.1.2 Linked Services

A service, in general, can be defined as a software component in a distributed system

that provides the possibility of executing a business activity, where its functionality as well

as its inputs and outputs are well defined. Linked services can be seen as the combination

of service technologies and Linked Data practices. The increasing popularity of services on

the Web has exemplified the need for standardized mechanisms for publishing structured

data ; Linked Data was a great success in that regard. On top of that, RESTful Web

services (cf. section 1.1.3) rely on a stack of technologies very similar to Linked Data,

namely URIs for identification and HTTP for resource manipulation. This natural synergy

gave birth to Linked Services as a powerful tool for designing distributed applications in

an environment like the Web of Data.

The vision towards Linked Services is based on two simple ideas : publishing service

6. Uniform Resource Identifier : https://tools.ietf.org/html/rfc3986

7. Simple Protocol And RDF Query Language : https://www.w3.org/TR/sparql11-query/

8. HyperText Transfer Protocol : https://tools.ietf.org/html/rfc7231

7

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

https://tools.ietf.org/html/rfc3986
https://www.w3.org/TR/sparql11-query/
https://tools.ietf.org/html/rfc7231

Chapter 1. Introduction

descriptions in the Web of Data and creating services for the Web of Data (i.e., services

that process Linked Data and generate Linked Data). In a nutshell, Linked Services are

services described with Linked Data that consume and produce Linked Data. Therefore,

these service descriptions whereby their inputs and outputs, their functionality, their non-

functional properties and their links are described in terms of RDF-based vocabularies

and exposed following Linked Data principles, and thus contribute to expanding the in-

formation space of the Web of Data. Up until recent years, the Web of Data has been

constrained to be a read-only information space where applications retrieve and display

data without altering it. The advent of service technologies and their adoption on the

Web scale has enabled read/write access to the wealth of information in the Web of data.

As such, Linked Service descriptions represent highly valuable information which is

still to be provided in the Web of Data : data about reusable functionality on the Web. In

addition to that, thanks to these descriptions, Linked Services are therefore services that

can consume RDF from the Web of Data and can also generate additional RDF to be fed

back to the Web of Data. In other words, the advent of Linked Data has sparked the need

for a processing layer on top of the wealth of information currently available in the Web

of Data, which remains relatively unexploited [Pedrinaci et al., 2010a] [Domingue et al.,

2011].

1.1.2 Semantic Web and the Web of Data

The seeds of the idea which became known as the semantic Web can be traced back

to the earliest days of the World Wide Web by its inventor Tim Berners-Lee :

Evolution of objects from being principally human-readable documents to contain

more machine-oriented semantic information, allowing more sophisticated pro-

cessing [Berners-Lee et al., 1994].

The first step is putting data on the Web in a form that machines can na-

turally understand, or converting it to that form. This creates what I call a

Semantic Web - a web of data that can be processed directly or indirectly by

machines [Berners-Lee and Fischetti, 2000].

Semantic Web is an evolution of the classic Web of documents where data is semanti-

cally annotated with machine-readable and processable information allowing automation

of software functionality. Semantically annotated data offers a lot of potential in buil-

ding Web applications. These annotations allow many interactions to be automated thus

excluding the need for human intervention. For example, annotated links guide Web craw-

lers and annotated sets of data help Web applications determine how to automatically

8

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

1.1. Global Context

process them. These semantics can be utilized in conjunction with advanced reasoning

mechanisms and similarity interlinking to connect resources to each other opening new

possibilities to access and process them.

The Web of services has started an evolution towards semantic-level interoperability,

with a lot of work around semantically described Web services [Martin et al., 2004] [Ro-

man et al., 2005] [Kopeckỳ et al., 2007] [Vitvar et al., 2008] to allow services to exchange

semantically annotated data. Combining the REST architectural style with semantic an-

notations unlocks the full benefits of using Linked Data for Web applications. Automating

discovery and composition of RESTful services with the help of semantic Web technologies

is a key challenge to exploit the full potential of the semantic Web. In fact, the research

community is interested in making the same transition the Web of documents made from

the static read-only Web 1.0 to the dynamic read/write Web 2.0 (where users are central),

on the currently static and read-only Web of Data. The use of RESTful services is regar-

ded as the final ingredient to make this transition and allow dynamic access to the wealth

of Linked Data. Conversely, RESTful services are more focused on describing resources

than on linking the data within them and most current REST APIs are described using

natural language (documentations) and could really benefit from Linked Data.

Recent advances in the semantic Web research area have been promoting Linked

Data [Bizer et al., 2009a] and a set of technologies, languages and tools such as JSON-

LD [Sporny et al., 2014], RDF [Lassila and Swick, 1999], OWL 9 [Schreiber and Dean,

2004], SPARQL [Prud’hommeaux and Seaborne, 2008] and POWDER 10 [Archer et al.,

2009] that allow the annotation of data, resources and services on the Web with explicit

and machine-readable semantics. This evolution towards Linked Data gave birth to the

Web of Data which is considered the most successful approach in establishing a semantic

Web as imagined by [Berners-Lee and Fischetti, 2000]. The Web of Data, or Web of Linked

Data, shares the following properties with the classic Web of documents :

— It is generic and can contain any type of data.

— Anyone can publish data on it.

— Data publishers are not constrained by which data type or vocabulary to represent

and annotate their data with.

— Entities are connected by RDF links, creating a global graph that spans existing

data sources and enables discovery of new ones.

From an application development point of view the Web of Data has the following

characteristics :

— Data is strictly separated from formatting and presentation aspects.

9. Web Ontology Language

10. Protocol for Web Description Resources

9

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

Chapter 1. Introduction

— Data is self-describing, meaning if an application encounters data described with

an unfamiliar vocabulary, it should easily be able to dereference the URIs that

identify the terms in order to find their definitions.

— The use of HTTP as a standardized data access mechanism and RDF as a stan-

dardized data model simplifies data access.

— The Web of data is open meaning applications do not have to be implemented to

only work with a fixed set of data sources, but can discover new data sources at

runtime by following RDF links.

1.1.3 RESTful Linked Web Services

Contrary to classic RPC 11 oriented services, a RESTful Web service is a Web service

bound by the constraints of the REST 12 architectural style [Fielding, 2000] and utilizing

the stack of Web technologies for identification of resources (URI), data exchange (HTTP)

and data serialization (XML, JSON, HTML, etc.) . A RESTful linked Web service is

further bound by the constraints and principles of Linked Data (cf. section 1.1.1).

During the last few years, both the overall number of Web APIs exposed on the Web 13

and the increasing proportion of RESTful APIs has shown the interest of a resource-

oriented Web [Bülthoff and Maleshkova, 2014]. The success of RESTful Web services is

highlighted via Web sites such as www.programmableweb.com that referenced 103 APIs

available on the Web by the end of 2005 and more than 14903 RESTful APIs in 2017,

representing roughly 81,53% of all registered APIs 14.

REST imposes a set of constraints to designing and building APIs, the most relevant

of these, in the context of our research, are [Wilde, 2010b] :

— Resource Identification : Anything that is available for interactions should have an

identifier.

— Uniform Interface : Interaction with identified resources should be based on a uni-

form interface so that anything that is identified is readily available for interaction.

— Self-describing messages : interactions should be based on exchanges of messages

(documents or data) which should be labelled with their type, and therefore can

be treated by the corresponding software (typically a parser).

— Hypermedia driven application state : messages should be based on data formats

11. Remote Procedure Call

12. REpresentational State Transfer

13. http://www.programmableweb.com/api-research

14. https://www.programmableweb.com/news/which-api-types-and-architectural-styles-are-most-used/

research/2017/11/26

10

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

http://www.programmableweb.com/api-research
https://www.programmableweb.com/news/which-api-types-and-architectural-styles-are-most-used/research/2017/11/26
https://www.programmableweb.com/news/which-api-types-and-architectural-styles-are-most-used/research/2017/11/26

1.1. Global Context

that may contain typed links, and interactions with RESTful services means follo-

wing those links according to the goal of the service consumer and the semantics

of the link types.

— Stateless interaction : interactions are independent from each other. This decouples

interactions and enables loose coupling between clients and servers. Servers do not

need to remember clients, simplifying their design, and clients can take advantage of

scalability optimizations such as caching and replication, enhancing performance.

The adherence to the REST constraints guarantees desirable architectural properties,

the most relevant to our research are :

— Scalability : Scalability can be defined as the ability of a system to handle an

increasing load of computation without a loss in efficiency, while keeping the po-

tential for future extensions. The REST architectural style brings loose coupling

to the Web environment via client/server architecture and stateless interactions

which simplifies the design of flexible applications and high-performance services

while encouraging reuse.

— Semantic interoperability on the Web : Semantic interoperability opens up a lot of

opportunities allowing the exchange of machine-readable information and enabling

high-level computations such as inferencing, knowledge extraction and computable

logic. SOAP-based Web services have helped reaching syntactic level interoperabi-

lity for distributed applications on the Web. The REST architectural style revisited

the way we interact with services, highlighting important constraints such as uni-

form interface (and consequently generic clients), hypermedia-driven applications

(HATEOAS 15) and cacheability. With the help of Linked Data practices (as we

mentioned in section 1.1.1), RESTful Web services show promising potential for

enabling semantic interoperability in the Web of Data, which we intend to exploit

in our research work.

In the remainder of this thesis (unless explicitly specified), the terms (Web) service,

(Web) resource and (Web) API are used interchangeably and refer to RESTful linked

Web Services. In fact, when a server offers such a resource-centric and hypermedia-based

API, the concept of service as an invokable functionality gradually starts to fade, since the

client sees nothing but resources and the relationships between them and only interacts

with them through said API [Verborgh et al., 2012].

15. Hypermedia As The Engine Of the Application State

11

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

Chapter 1. Introduction

1.1.4 Distributed Affordance

In the context of the Web of resources, an affordance is the perceived action opportu-

nity provided by a resource. The idea behind the concept of distributed affordance [Ver-

borgh et al., 2013] is to dynamically create usage opportunities (affordances) for resources

based on the information already present in their representation combined with know-

ledge from distributed sources including the user’s preferences and independent, cross-

application action providers. This augments the affordances given by the representation

with additional controls that directly relate to the representation itself (such as a specific

book title), instead of merely to its context (books in general).

In more technical words, distributed affordance consists in automatically extending the

HATEOAS notion of REST by making actions from distributed providers on the Web,

other than those proposed by the application state (the resource publishers), available

in an actionable form such as a hyperlink or a form. In this case, the only information

needed from the resource publisher is the representation of the resource, there is no need

for the publishers to know, a priori, what are the actions the user desires to perform.

The main objective of the distributed affordance concept is to help solve discrepancy

problems between affordance publishers and consumers. Based on the user’s profile and

preferences, the most relevant affordances are constructed using the information about

his current browsing context. For example, for the user reading a book review, hyperlinks

to the e-book version and the user’s local library could be inserted automatically as

distributed affordance to enable the user to easily and directly buy the book from the

local library or view an abstract online, if possible.

The technical challenges to construct distributed affordances are :

1. Extracting the non-actionable information from the representation of the resource.

2. Organizing the knowledge about actions offered by providers.

3. Capturing the user’s preferences and context.

4. Combining the non-actionable information and the knowledge about action provi-

ders into possible actions.

5. Integrating affordances for these actions into the original resource representation

to enable easy and direct use.

Distributed affordance is a key concept that allows us to view from a different pers-

pective the Web of data and Web of services in order to fully exploit their potential.

The relevance of the distributed affordance concept to our research lies in the fact that

it enables to dynamically discover usage opportunities for certain services which can be

potentially useful in a composition scenario where a specific functionality is required.

12

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

1.2. Motivating Scenario

Additionally distributed affordance takes advantage of the semantic annotations of repre-

sentations of resources and services and their discovery (cf. section 1.3.1 and 1.3.2), which

makes it a good use case to measure the applicability of solutions we propose to address

the important challenges in our research.

1.2 Motivating Scenario

The objective of this section is to identify the key problems tackled in this thesis,

which are related to discovering and composing RESTful Web services, with the help of

a book selling scenario. This scenario illustrates and motivates the contributions of our

research. The scenario involves a human user, a Web client and the Web. The user wants

to buy a set of books and have them shipped to his address. He expresses his need via

a request written to the Web client. The Web client processes the request and extracts

information that helps it find the services to answer the user’s needs. The Web client also

stores data about the user preferences in terms of QoS 16, which are taken into account

when processing the request.

1.2.1 Scenario Organization

In order to understand how the scenario works, we need to detail each actor and his

role in this series of interactions.

The disposal of the scenario setup is detailed as follows :

— The user accesses the Web through his device that could be any type of terminal

able to access the Web (desktop computer, laptop, smartphone, tablet, etc.).

— The machine client is the software program responsible for interacting with the

user from one side thanks to a GUI 17, and the Web on the other using the HTTP

protocol. It is hosted on the user’s device. Most commonly, this is either a Web

browser or a mobile application with support for add-ons.

— The set of services involved in the book selling scenario are accessed by the client

through the Web. These services are designed and maintained by their respective

publishers, which are in most cases day-to-day businesses.

The Web services needed for this scenario are grouped in three different sets : com-

peting book selling services, competing shipping services and competing online payment

16. Quality of Service

17. Graphical User Interface

13

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

Chapter 1. Introduction

services 18. Every Web service has its own quality of service properties. The different Web

services, which are instantiated by a set of Web resources 19, are detailed in the following :

— The competing book selling Web services offer the same functionality and services,

but differ in QoS aspects and business-related data (book inventory for example).

They allow the user to browse books in their store, select few, place an order, edit

their shopping cart, etc.

— The competing shipping Web services allow users to specify an address and select

a delivery option for their online orders to be shipped together with the details of

their order and vendor (in this case the chosen book selling service).

— The competing online payment Web services are responsible for the secure money

transfer from the user’s bank account (through credit card, or paypal for example)

to the different vendors and shipping service providers, they also manage other

related activities such as billing, refunds, etc.

The setup and interactions of the scenario is shown in Fig 1.1. The user interacts with

the client using its GUI. The client in turn interacts with the services on the Web starting

with the book selling service initially (the entry point). The services provide links to other

services (these are RDF links, formally speaking) that help the user achieve his goal, in

this instance : the book selling service cannot function without a shipping service since

the books in this scenario are physical entities and have to be delivered in a materialized

way. Also, both the book selling and the shipping services need a payment service in order

to ensure the transfer of money from the user’s bank account to their own for revenue

generation. However, it is very important to note that these links are not hard-coded in

service descriptions, meaning there is a possibility to discover new providers for shipping

and payment as well as new actions other than shipping and payment, for example :

printing a poster of the book cover.

1.2.2 User Request Processing

The request explaining the user’s needs is given by the user to the client. From the

user’s point of view, he inputs information in the form of text, radio and check box choices,

forms etc. This request is combined with a set of QoS-related information about the user

(gathered and stored by the client previously) and is used to guide the machine client in

the processing of this request. We agree to call this set of information “user profile”. For

18. Note that competing in this instance indicates different providers. For example : Amazon and eBay.

19. Each Web service, in this instance, is represented its own set of resources. For example, book selling

service is comprised of different sets of resources, each manages a determined source of data : book

collections, client orders, shopping carts, etc. The later are also individual resources.

14

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

1.2. Motivating Scenario

Book selling
service

Online payment
service

Generic Web client

Shipping
service

User

The Web

Hypermedia
Link

Hypermedia
Link

Entry point

HTTP

GUI

Hypermedia
Link

Figure 1.1 – Scenario interactions

example, the user may want the services with the best performance and then the best

rated among these and does not care about their availability.

A client-side reasoner deduces from the request that it needs to discover a book selling,

a shipping service and a payment service. The process of deduction is achieved through

a reasoner with a simple subsumption technique. If we take the example of the user’s

request in the form of a text : “buy book”, the reasoner infers that there is a need for a

service that sells books in order to allow the user to buy books.

The client begins to crawl the Web looking for the resources needed to answer the user’s

request. The client needs to discover three services according to the reasoning conducted

on the request : the book selling service, the shipping service and the online payment

service. The entry point (in this case the book selling service) is either chosen by the user

himself when he inputs the request or is obtained by the client using other automated

means such as a search engine or by analyzing the user’s request history.

15

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

Chapter 1. Introduction

1.2.3 Enabling Distributed Affordance

Our objective is to help a user to achieve a complex goal, here buying a book online,

with an automated solution. Our work is motivated by the need to enable distributed

affordance, which means that the resource discovery process should be automated and

hypermedia-driven (consisting in following links between resources).

The advantages of distributed affordance, detailed in [Verborgh et al., 2013], include

the possibility of generating opportunities of use for resources while exploring the Web as

well as respecting the user preferences. Automating the discovery process can typically be

achieved with the help of semantic annotations that help the client decide what are the

relevant links to follow.

Building a solution to enable distributed affordance involves several elements :

— Semantic description of resources : discovering resources requires them to be

semantically described. Semantic annotations provide algorithms with the means

to reason about the functionality offered. Such a description should include details

about operations available as well as links to other resources according to the

HATEOAS principle (cf. section 1.1.3).

— Resource discovery algorithm : exploring the Web requires using a scalable

discovery algorithm. The latter must make appropriate use of the semantic anno-

tations on resources to automate the process and to optimize the search response

time.

The end user should only provide high level objectives to the client, as well as an entry

point (URI to start the discovery process). The client should be in charge of interpreting

the user request, finding out that buying a book online includes selecting a set of books,

choosing a delivery option and paying online. It should explore the Web to discover the

ones that help answering the query, orchestrate the interactions and execute the necessary

service calls.

1.2.4 Web Resources vs. Classic Web Services

If we were to implement this scenario in the form of classic SOAP-based Web services,

we would have the following problems :

1. The use of SOAP-based solutions for Web services would imply the use of XML 20

as a data format. As the Web shifts towards the Linked Data, using JSON-LD 21 as

a data format yields more benefits than XML-based formats in Web applications,

20. https://www.w3.org/TR/xml/

21. https://json-ld.org

16

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

https://www.w3.org/TR/xml/
https://json-ld.org

1.3. Research Problems

since XML-based formats are much more difficult to parse and also because JSON-

based formats can be parsed into ready-to-use JavaScript (the scripting language

for the Web) objects.

2. The discovery and selection of the services would need to go through a centralized

repository (UDDI for example) which leads into scalability problems, and slows

down the emergence of new providers.

3. The services would have been hard-coded in order to allow specific interactions

between different services which hampers the flexibility of the solution when it

comes to composing different features from different services, without mentioning

the increasing complexity over time and application portability issues.

The use of RESTful Web resources and Linked Data in this scenario solves the previous

problems respectively as follows :

1. Using JSON-LD as a data format in the Web of data allows for a full exploitation

of the Linked Data and Web of data potential, in addition to the benefits listed

above.

2. Discovering and selecting services by exploiting Linked Data advantages allows for

a scalable solution and gives the chance for new providers to emerge if their services

are enticing.

3. RESTful APIs are developed for no specific application and their adoption enables

the use of generic clients since the resources themselves have uniform interfaces by

definition. RDF descriptions of operations, inputs and outputs ease the composition

of different resources while avoiding incompatibility problems thanks to the loose

coupling property of the REST architectural style.

1.3 Research Problems

In this section we identify and explain the key scientific locks we try to address in

our work. These problems have been identified since the early stages of adopting service

technologies on the Web at large [Hansen et al., 2002]. We identify a set of problems with

the setup illustrated by the scenario in the previous section :

First, the client only disposes of the entry point at the beginning. There is a need

to enable the client to crawl through the services related to the entry point and then

the services related to them and so on. As we are working in the context of RESTful

Web services, the HATEOAS principle (cf. section 1.1.3) applies to all services the client

accesses. This means every time the client accesses a resource, the later should indicate

17

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

Chapter 1. Introduction

the links to the next accessible resources (the next application state). The client needs

to crawl the Web in order to find services that can provide the functionality needed to

answer the user’s request and has no other way of accessing them 22. The distributed

affordance concept also states that actions made possible by the application state may

not be enough to answer the user’s need, therefore the need to provide more actions to

the user by exploring the Web has to be satisfied.

Secondly, the client may find multiple services that fulfil each functionality and has

to choose one based on the user’s QoS requirements. It may also find only services that

match with the functionality but does not match with the user’s QoS requirements.

Finally the client needs to be able to automatically and dynamically compose the

discovered and selected services. The invocation of the involved services needs to be done

following a certain workflow for the sake of delivering the correct result to the user. The

client also needs to know what are the different data formats each service requests and

delivers, as well as their meaning.

As a result of the changes to the way we work with Web services and the emergence

of Linked Data, the typical approaches to discover, compose, orchestrate and utilize lin-

ked services on the Web require complete overhauling of existing technologies in order to

harness the full benefits provided by the REST principles, the semantic Web and Linked

Data. Reaping the benefits from these advances requires adapting the way information sys-

tems and applications interact with the Web. Using semantic Web advances to automate

resource discovery and composition is a recent topic and has only been explored by few

works [Kovatsch et al., 2015]. Some approaches extend BPEL with RESTful support [Pau-

tasso, 2009a], some focus on the semantic description of resources to drive the discovery

and composition algorithms [Alarcón et al., 2010] and some use reasoning techniques to

automate the resolution of user queries [Verborgh et al., 2011a].

1.3.1 Description

Describing a service consists in adding descriptive data elements to the service repre-

sentation. We define semantic description of a service as the act of annotating its data

elements and descriptions with machine-readable semantic information. The data elements

in question include business-level information (including potentially non-functional pro-

perties), service behaviour (interactions) and links to other services or resources. Web

service description is, in our view, the most important aspect to consider in the design of

any Web Service oriented architecture. The automation of service discovery, selection and

22. Except maybe through the user’s history or a search engine, but that remains unreliable.

18

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

1.3. Research Problems

composition on the Web cannot be achieved without properly described and semantically

annotated services. In order to exploit the full potential of Linked Web services, there is

a need for a detailed semantic description about its behaviour as well as its interlinking.

The semantic description of a service represents all the important information to iden-

tify the nature of the service’s inputs and outputs as well as the way it processes data.

Many efforts have been made by researchers to establish semantic description models for

services on the Web [Kopecký et al., 2008] [Alarcon and Wilde, 2010] [Verborgh et al.,

2011b] [John and Rajasree, 2013].

Resolving the problem of description revolves around constructing a generic set of in-

formation compliant with Semantic Web and REST principles. The main purpose of this

information is to facilitate the automation of interactions with Web clients. The exploi-

tation of this semantic description allows the clients to make more complex interactions

with these services and allow the construction of composite services that enable value-

added applications. Having a complete semantic description of linked Web services allows

dynamic and automatic answering to complex user requests that need to involve multiple

services at once. Semantic descriptions guide the discovery process and help clients decide

what is the next service to explore in order to look for the remaining features required

by the user’s request. It also contains vital information about Quality of Service attri-

butes, which is a major deciding element in the selection process. In the case where we

discover multiple services that can fulfil a required task within the user’s request (cf. sec-

tion 1.3.3), this descriptive information about non-functional properties helps make the

decision regarding what services to choose. It also contains the information about input

and output of the services for every available operation in order to facilitate the invoca-

tion and the composition of multiple services. One of the main challenges is to establish

a trade-off between the expressivity and complexity of descriptions in terms of data and

computations.

1.3.2 Discovery

Discovering consists in browsing or crawling a defined set of resources, often the Web,

in search for services capable of performing a desired action or task. Multiple service

candidates can be discovered for each action or task. As centralized solutions for service

discovery have proven not to scale well [Anadiotis et al., 2009a], the need for distributed

service discovery has emerged [Verborgh et al., 2013]. The discovery of services that fulfil

a certain task in the process of answering the user’s request also brings in the need

for selecting the most suitable of these candidates to actually execute the task needed.

Since Web application platforms have shifted from classic RPC-oriented Web services

19

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

Chapter 1. Introduction

Task 1 Task 2

…
URI1 Operation1 URI3 Operation3

URI2 Operation2 URI4 Operation4

… …

Figure 1.2 – Discovery Algorithm Results

into linked Web services and RESTful APIs, researchers have been focusing on adapting

existing discovery solutions to this new architecture [Anadiotis et al., 2009b] [Maamar

et al., 2011a].

The discovery problem in the context of Linked Web services can be formulated as

a directed labeled (sometimes weighted) graph search problem. The graph in question is

the Web. The nodes are the different services interlinked by semantically annotated RDF

links which constitute the edges of the graph. Resolving the discovery problem amounts

to constructing the algorithm that crawls through the Web starting from the entry point

given by the user and following the annotated links available on each node in order to

find at least one successful match for every task required by the user’s request. A match

between a task and a service (node) is successful if the service provides an operation that

can successfully perform the process required by the task and returns the desired results.

The result of the algorithm (namely, the solution to a given discovery problem) is a list

containing the different tasks and the URIs that point to services as well as the specific

operation within the service that actually performs the task in question. The results of the

algorithm are illustrated in Fig 1.2. The different URIs identify the services discovered

and the operations describe the exact operation to call. Other parameters related to

inputs/outputs, which are not illustrated, may also need to be specified.

1.3.3 Selection

Selection is the action of choosing a subset of candidates, from the entire set of services

discovered that complies with the discovery criteria. Selection is often done on the basis of

its own criteria such as QoS, non-functional properties, user requirements and preferences

etc. The Web contains a variety services that provide similar services but with a varying

degree of quality. Also, the user’s needs may vary depending on many variables including

the user’s location, language, personal preferences etc. This is why having a clear and

complete description of services and their operations as well as their QoS properties is

20

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

1.3. Research Problems

Task 1 Task 2
…

URI x Operation a URI y Operation b

Figure 1.3 – Selection Algorithm Results

paramount. Finding the optimal solution for the selection problem with multiple QoS

constraints is a NP-hard combinatorial optimization problem [Yu et al., 2007]. There

are many efforts made by the research community in order to propose solutions for this

problem, which resulted in a wide-variety of algorithms and meta-heuristics that give

approximately the best solutions [Alrifai et al., 2010] [Wang et al., 2011] [Zhao et al.,

2014].

The discovery algorithm returns several candidate Web services for every task needed

to answer the user’s request. Finding a solution amounts to select the best candidate for

each task in order to obtain the highest overall QoS and satisfying the user’s specific

constraints. In other words, we need an algorithm that takes the discovery process results

as input and returns a table with only one service selected for each task. The table in

question illustrated in Fig 1.3. The same remarks explained at the end of section 1.3.2

apply here.

In our work we follow a different setup where the search space of candidates is pro-

gressively discovered by following links between resources, rather than having the entire

discovery result in one iteration, which presents new challenges to overcome.

1.3.4 Composition

Composition can be defined as the process of invoking collaboratively and combining

inputs and outputs of more than one service in order to achieve an end-goal not possible to

achieve otherwise with only one service. We talk about value-added applications. Despite

the evolution of service technologies, the need for service composition to build complex

applications is still present because of the distributed nature of the Web. However, the

challenges we have to overcome have changed. Many notable research efforts have been

made in this area [Pautasso, 2009b] [Zhao and Doshi, 2009] [Stadtmüller, 2012] [Pedrinaci

et al., 2014a].

The interlinked nature of linked Web services opens more opportunities to discover

related services that can potentially contribute to solving the user’s request. However,

as linked RESTful services rely on uniform interfaces, stateless interactions and loose

21

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

Chapter 1. Introduction

coupling between client and services, composing linked services is different than in classic

SOA services. The composition engine in a resource-centric architecture is the client itself

since it is responsible for carrying out the transition in the application state according

to the HATEOAS constraint, which offers a great deal of flexibility, adaptability and

robustness [Stadtmüller, 2012]. The challenges lie in the full exploitation of the links

between services and their semantics to automate the composition process and eliminate

manual human intervention.

Furthermore, the diversity of data formats RESTful services exchange in the Web of

Data has to be taken into account by the client, which takes the responsibility of conso-

lidating and integrating the data from the different services involved in the composition.

Enabling distributed affordance in our approach opens more composition opportunities

that may be interesting for the user. Instead of relying on statically generated, inflexible

and hard-coded service mashups, we need to dynamically aggregate and ”mash” together

functionality and data from the discovered and selected services. Storing composition ma-

shups for future reuse and eventual sharing in a social-like model is also an important

challenge we aim to address.

1.3.5 Contribution summary

This thesis proposes the following solutions to address the aforementioned problems.

Firstly, we propose a model for semantic description of Web resources that incorpo-

rates semantic annotations over links, operations, QoS-related data and other business-

level descriptive elements. This model provides a clear description of the nature of the

links to the related resources and what to expect if the client decides to follow them as

well as clear details about functionality and features provided by the allowed operations

on the resource, the data inputs/outputs and also the error codes.

Secondly, we propose a discovery algorithm that exploits the semantic annotations over

the links present in the resource descriptions in order to search the most relevant services

needed to answer the user’s request. The identification of a suitable service is driven with

the help the annotations over its operations and the other informative functional semantics

present in the descriptions.

Thirdly, we propose a selection algorithm that uses both the user QoS preferences (in

the form of a user profile) and the QoS-related information in the resource descriptions

in order to perform the selection of the most suitable resource for a specific task in the

user’s request. The advantage of this algorithm is that it is executed in parallel with the

discovery process while it is crawling through the Web.

22

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

1.4. Document Organization

Lastly, we show how composition can be achieved with the help of the aforementioned

description model and algorithms and we propose a solution that allows users to store,

reuse and share flexible and dynamically generated composition workflows/mashups that

perform specific complex tasks otherwise impossible to perform with a single service.

Services part of a specific stored workflow can be replaced dynamically, if unavailable at

the time of the execution for example, without changing the whole process as long as it

offers similar functionality and its inputs/outputs are compatible.

1.4 Document Organization

The rest of this thesis is structured as follows :

Chapter 2 addresses the description problem. We present and analyse the different

efforts undertaken by the research community to describe RESTful linked Web services.

We also discuss the need for descriptions in context of today’s Web evolution. Finally, we

present and discuss our contribution, namely the Descriptor concept.

Chapter 3 addresses the discovery and selection problems. The problems of discovery

and selection are closely related. For the sake of clarity we have decided to treat the two

problems in one chapter. We start the chapter by presenting a state of the art of the dis-

covery and selection of RESTful linked Web services and discussing the important works

led in this domain. We also discuss the important role of the description in driving the

discovery and selection processes. Next, we present and discuss our contribution for the

discovery problem, namely a BFS-based algorithm that relies on the semantic annotations

in the description. Finally, we discuss the different setups possible for the selection pro-

cess and present our contribution for the selection problem, namely an algorithm that is

executed on the fly while the discovery process is running.

Chapter 4 addresses the composition problem. We start by presenting the different

approaches adopted by the research community to resolve the problem. We also enumerate

the different challenges that arise and show how descriptors and the discovery/selection

algorithms play a role in facilitating the composition. Finally, we present and discuss our

contribution, namely the Composition Directories.

Chapter 5 fences this document with a conclusion. We summarize the research pro-

blems raised in our work, discuss our contributions and how they collectively address the

problems and finally show possible avenues for future research.

23

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

Chapter 2

Semantic Description of RESTful

Linked Services

Contents

2.1 Introduction . 26

2.1.1 REST and Service Description Models 27

2.1.2 Description Models on the Semantic Level 28

2.1.3 Sketching the Ideal Description Model 29

2.1.4 Ramifications of Description for Service Consumers 29

2.1.5 Contribution Summary . 30

2.2 Related Work : Description . 30

2.2.1 State of the Art of Service Description 31

2.2.1.1 Syntactic Description Solutions for Classic Web Services 32

2.2.1.2 Semantic Description Solutions for Classic Web Services 33

2.2.1.3 Description Solutions for Classic Web Services Adap-

ted to the REST Architectural Style 35

2.2.1.4 Description Solutions for REST Services 37

2.2.1.5 Lightweight Semantic Description Solutions for REST

Services . 39

2.2.1.6 Other Related Description Efforts 44

2.2.2 Synthesis and Discussion . 45

2.3 Contribution : The Descriptor 48

2.3.1 Separation of Representations and Descriptions 51

2.3.2 Description Mechanisms . 52

2.3.2.1 Describing RESTful Linked Service Operations 56

2.3.2.2 Describing RESTful Linked Service Links 57

25

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

Chapter 2. Semantic Description of RESTful Linked Services

2.3.2.3 Describing Service Data and Non-Functional Properties 58

2.3.3 Guiding Discovery, Selection and Composition 59

2.3.4 Applying the Description Mechanism to the Motivating Scenario 60

2.4 Implementation and Technical Design Choices 63

2.4.1 JSON-LD . 64

2.4.2 JSON-LD and RESTful Linked Services 65

2.4.3 Hydra core vocabulary . 66

2.4.4 Technical context of the specification 67

2.4.4.1 Java Servlet . 67

2.4.4.2 Jersey Framework . 67

2.4.4.3 Gson module . 68

2.4.4.4 Apache Tomcat . 68

2.4.5 Specification of the descriptions 69

2.4.5.1 Specification of the operation descriptions 69

2.4.5.2 Specification of the links descriptions 70

2.4.5.3 Specification of the non-functional descriptions 71

2.4.5.4 Specification of the data and service descriptions . . . 72

2.4.6 Summary . 72

2.5 Conclusion . 73

In this chapter, we present an approach to describe services on the Web in the context

of Linked Data and the REST architectural style. Our contribution is a data structure

represented by an RDF document (using the concrete syntax of JSON-LD) containing

the interaction possibilities a RESTful service offers alongside the available semantically

annotated links to other related services. We call it a descriptor . The description model

proposed here supports the contributions presented in chapter 3 and chapter 4.

2.1 Introduction

During the last decade, the emergence of Web services has been a major success to

enable data interoperability on the Web. In parallel, the advent of Linked Data and the

adoption of its principles for data publishing on the Web has standardized the models

and formats Web services produce and consume on the data level. However, on the ser-

vice level, models for descriptions have yet to reach the level of maturity required for a

large scale such as the Web. Service description either rely on obsolete formats that are

not adapted to the nature of the data on the Web of Data or on heterogeneous description

26

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

2.1. Introduction

models that require significant efforts to enable interoperability on the service level. This

hampered the rise of standard solutions for a scalable discovery and an automatic com-

position. Moreover, the available description formats suffer from the lack of standardized

and explicit semantics that are required by the principles of Linked Data and focus each

on a specific aspect of service description while neglecting the other aspects.

2.1.1 REST and Service Description Models

The rise of the REST architectural style as a dominant paradigm for the design and

implementation of Web service APIs can not be denied. The adoption of RESTful services

changes the way services are designed, implemented and described. The typical API built

around functions and input/output parameters is slowly being abandoned. The manage-

ment of the application state, which was usually handled server-side, is now at the charge

of the client software (the browser or the application).

During the last few years, the typical Web services relying on the XML service techno-

logy stack (SOAP, WSDL, UDDI) is slowly being abandoned for the profit of REST-based

approaches. The success of RESTful Web services is highlighted via Web sites such as Pro-

grammableWeb 23 that counted 2125 SOAP-based APIs versus 6833 REST-based ones in

2013, and more than 18000 APIs in 2017 including almost 15000 RESTful APIs which

represent roughly 81% of the total number of APIs. The rise in popularity of RESTful

Web services is regarded as a huge boon for the research community and especially for

research activity about service description. The constraints imposed by REST directly

impact how a service should be described. On a formal level, the constraints relevant to

this context are the following [Fielding, 2000] :

— Resource identification : a service is exposed as a set of one or more Web resources

each one of them has its own unique identifier.

— Uniform interface : the interaction possibilities with exposed resources are well-

determined and the same for all resources.

— Self-descriptive messages : the messages exchanged during interactions should im-

ply (implicitly or explicitly) their format and how it should be parsed.

— Hypermedia driven application state : the messages may contain typed hypermedia

links that guide the interactions with the service.

Concretely, these constraints have led to the adoption of the following Web standard

technologies for service design and implementation, respectively :

— URIs for resource identification.

23. https://www.programmableweb.com/api-research

27

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

https://www.programmableweb.com/api-research

Chapter 2. Semantic Description of RESTful Linked Services

— HTTP as a uniform interface for message transfer and resource manipulation.

— the standard serialization formats such as XML, JSON and HTML as message

formats.

— Hyperlinks as a mechanism to allow a hypermedia driven application state.

The norm for service description on the syntactic level has moved towards this stack

of technologies, which have been adopted as the standard by normalization organizations

such as W3C 24 and IETF 25.

2.1.2 Description Models on the Semantic Level

Recent advances in the semantic Web research area have been promoting Linked

Data [Bizer et al., 2009a] and a set of languages and tools such as JSON-LD [Sporny et al.,

2014], RDF [Lassila and Swick, 1999], OWL [Schreiber and Dean, 2004], SPARQL [Pru-

d’hommeaux and Seaborne, 2008] and POWDER [Archer et al., 2009], that allow to

annotate Web data, resources and services with explicit, machine-readable semantics that

can be utilized in conjunction with advanced reasoning mechanisms and similarity inter-

linking to connect resources to each other in a way that allows advanced and automated

interactions.

On the semantic level there is still a lot of heterogeneity in service description for-

mats. This is mainly due to each solution relying on its own vocabulary or ontology to

annotate the description elements of services. This unwanted diversity in vocabularies for

service description was the result of the openness of the Web of Data to different models.

In theory, this openness allows services to be described using the format most adequate

for them, but in practice this leads service consumers to deal with all the various models

and tools required to interact with these services. This means that clients have to expect

heterogeneity in data models and service descriptions by design complicating their imple-

mentation [Wilde, 2010a]. Although Linked Data relies on RDF for data models, including

service descriptions, RDF is not a specific data model, but rather a data metamodel, or

a model for data models.

Gradually, the efforts to describe services started converging towards the reuse of

popular vocabularies of solutions that showed promising results, but until now no data

model has been adopted as the standard for RESTful service descriptions. Moreover,

there was little to no backward compatibility with services that relied on classic service

description formats and there was no support for incremental annotation of the service

24. World Wide Web Consortium : https://www.w3.org

25. Internet Engineering Task Force : https://ietf.org

28

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

https://www.w3.org
https://ietf.org

2.1. Introduction

data elements.

2.1.3 Sketching the Ideal Description Model

Reaping the benefits from the advances of semantic Web and service orientation re-

quires adapting the way information systems and applications interact with the Web. The

first step is to establish an efficient description model for linked services in order to faci-

litate the discovery and composition and provide the information needed for the service

to interact with external entities automatically, namely Web clients.

In this context, the description model must provide useful information to the Web

clients at different points in time :

— When searching a service that provides a certain functionality ; we are talking about

discovery.

— When choosing one amongst many services that provide the same functionality ;

we are talking about selection.

— When requesting the service to actually perform the functionality needed to answer

the user request ; we are talking about invocation in the context of a composition.

The way we see it, service description needs to take various aspects into account to

enable automatic discovery, selection and composition :

— Business data aspect : clients need to know the format and semantics of the data

they exchange with the service.

— Operation aspect : clients need to know how the behaviour of a service when they

call a specific operation provided by it.

— Interlinking aspect : clients need to be fed with links to other resources so they can

continue to advance the application state.

— Non-functional aspect : clients need to know the non-functional and QoS properties

of the service so that they can decide whether or not to interact with it.

The description of these aspects needs to be explicit and expressive enough to achieve

the level of automation desired, but at the same time we have to take into account the

complexity of the descriptions at the calculation and data level. In short, there is a trade-

off to make between the expressivity and complexity of descriptions.

2.1.4 Ramifications of Description for Service Consumers

Having a complete description of services allows flexible answering to complex user

requests that need to involve multiple services at once. Descriptions guide the discovery

29

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

Chapter 2. Semantic Description of RESTful Linked Services

process and help clients decide what is the next service to explore in order to look for

the remaining services required by the user’s request. It also contains vital information

about Quality of Service, which is a major deciding element in the selection process. In

the case where we discover multiple services that can fulfil a required task, this descriptive

information about service performance, cost, etc. help make the decision regarding what

service to choose. It also contains the information about the behaviour, inputs and outputs

of operations in order to facilitate the invocation and the composition of multiple services.

Regrouping all this information into one data structure, that is associated with the

resource it describes, trivializes the access to descriptions for clients and simplifies their

design and implementation.

2.1.5 Contribution Summary

In this chapter, we propose a solution to describe linked services based on REST

and Linked Data principles. We dub our proposal the descriptor mechanism. It is a data

structure based on the Hydra core vocabulary [Lanthaler and Guetl, 2013] and using

JSON-LD [Sporny et al., 2014] as a serialization format. JSON-LD is a concrete RDF

syntax, meaning that descriptors are formally RDF graphs.

Descriptors are a mechanism to describe RESTful linked Web services that complies

with the practices of Linked Data and semantic Web and achieves semantic interoperabi-

lity on the data and service level on the Web scale. Descriptors are the first step in the

integration of service technologies on the semantic Web.

2.2 Related Work : Description

Description of Web services has been an active research field since the introduction

of the service paradigm into the World Wide Web. Researchers have been particularly

interested by the description of service API functionality and typing their inputs and

outputs. Until recently, there was not much effort put into describing the semantics of the

operations and data let alone linking and describing links to other services or resources.

The advent of the semantic Web technologies as well as Linked Data and the Web of data

has shed light on the need to semantically annotate various aspects of services.

Many efforts have been made in this regard especially annotating data elements that

services manipulate. This was a necessary step forward in order to allow the integration

of service practices on the semantic Web and allow services to consume the wealth of

information on the Web of data that remained, until recently, unexploited. The annotation

30

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

2.2. Related Work : Description

of the data services produce and consume means that services can now consume and

produce Linked Data. In other words, Web services can now benefit from and contribute

to the linked information space of the Web of Data. We talk about linked services (cf.

section 1.1.1), services described with Linked Data that produce and consume Linked

Data [Pedrinaci et al., 2010a].

Meanwhile, efforts to annotate linked service operations and interlinking have been

sparse. This is made more apparent by the fact that more complex service manipulations

such as discovery and composition for linked services are still made manually or without

enough automation. On one hand, discovery of linked services relies either on centralized

repositories (a la UDDI) which come with their fair share of drawbacks [Anadiotis et al.,

2009c] most notable of which is being a SPoF 26 or on general-purpose search engines which

do not yield satisfactory results and are unreliable mainly because they rely on keyword

search rather than semantic terms and do not incorporate search parameters specific to

Web service discovery or filtering [Hatzi et al., 2012]. On the other hand, composition of

services is still made using hard-coded, rigid and inflexible mashups.

This, combined with the success of the Web of Data [Pedrinaci et al., 2010b], has

sparked the need for semantic descriptions of service operations, links and other non-

functional properties such as QoS. The solutions proposed in this area have been lacking

however. They either focus on one aspect and fail to describe the other aspects or fail to

integrate with the practices of semantic Web and Linked Data. The increasing popularity

of REST APIs also meant that service descriptions must adhere to REST constraints,

mainly self-descriptive messages, stateless interactions and hypermedia driven application

state.

In this section we present a detailed study of different existing efforts that attempt to

solve the problem of description in the context of Linked Data and the REST architecture.

We categorize these existing related works in a pseudo-chronological classification.

2.2.1 State of the Art of Service Description

Although a lot of research has been conducted in the field of RESTful linked service

description [Lanthaler et al., 2010] [Lanthaler and Gütl, 2010] [M’Barek and Tata, 2008],

and even though some of them are W3C recommendations, none of the proposed solu-

tions gained enough traction, and their widespread amongst Web service providers has

been limited by many factors [Verborgh et al., 2011b]. In fact, most description solutions

completely ignore the HATEOAS constraint of REST which makes those descriptions not

26. Single Point of Failure

31

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

Chapter 2. Semantic Description of RESTful Linked Services

adapted to enable automatic discovery and composition. Some of the efforts violate other

REST constraints and introduce unnecessary coupling between clients and servers.

The earlier research activity yielded solutions that are considered too verbose and

heavyweight for the lightweight approach of RESTful Web APIs. In addition to that the

earlier formats focused on the description of inputs, outputs, data types and exceptions

which are typical to classic RPC-oriented services, while the resource and hypermedia-

oriented REST architecture is centred around functionality and links.

In the following, we propose a classification of existing related efforts to describe RES-

Tful linked services. As we see it, these works can be categorized as follows :

2.2.1.1 Syntactic Description Solutions for Classic Web Services

The first solutions offered for describing the classic RPC-based Web services offer

no semantics in descriptions, and thus no automatic service manipulation can be done

with service described like this. The most notorious solution and the de-facto description

language for classic Web services in the WS-* technology stack is WSDL.

WSDL

Web Services Description Language 27 [Christensen et al., 2001] or WSDL is an XML

description language for Web services based on the XML protocol SOAP. It is the main

description language for classic RPC based Web service technology stack. It describes Web

services from a RPC message-oriented point of view. It is purely a syntactic description

of service interfaces, operations, and inputs/outputs and does not convey any semantics

of the service it describes.

Although WSDL has the word ”‘Web”’ in the name, it is hardly adapted to the ar-

chitecture of the Web since it is RPC-oriented and thus incompatible with the resource

oriented nature of the Web today, where REST offers more advantages such as scalability

and Linked Data offers semantic interoperability. It is optimized for closed-world systems,

typically adopted in the enterprise world, and offers little scalability for an open informa-

tion space such as the World Wide Web. It is also considered too verbose and inflexible to

change, since a lot of the element it describes are already fixed by the REST constraints.

Also, the RPC paradigm that uses SOAP as a protocol for message exchange does not

fully use the power of HTTP because the latter is only a tunnelling protocol for SOAP

messages, which is reflected in the WSDL descriptions.

27. https://www.w3.org/TR/2001/NOTE-wsdl-20010315

32

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

https://www.w3.org/TR/2001/NOTE-wsdl-20010315

2.2. Related Work : Description

2.2.1.2 Semantic Description Solutions for Classic Web Services

After the advent of the semantic Web, the huge potential of semantically annotated

Web service descriptions became apparent. These solutions offer a level of semantic des-

cription to different service aspects in order to support automatic processing of these

descriptions by clients or agents so that tasks such as discovery and composition can be

automated. They are still targeted towards RPC-oriented classic Web services, although

some can be used to describe REST services with considerable efforts, and most of them

build on WSDL in order to add semantic annotations on its descriptive elements or try

to alleviate some of its inherent limitations in the semantic Web environment. They are

considered too heavyweight and complex for the REST’s lightweight resource-oriented

approach and do not support scalability on the Web.

SAWSDL

Semantic Annotations for WSDL and XML Schema 28 [Kopeckỳ et al., 2007] or SAWSDL

is a description language that allows adding semantics to WSDL description components

such as interfaces, operations and inputs/outputs. SAWSDL is thus an incremental ap-

proach at semantically annotating WSDL descriptions.

SAWSDL defines how semantic annotations are added using references to ontologies

and other semantic models without specifying the language to represent them, but rather

how to reference the concepts from within the descriptions. This is achieved thanks to two

extension attribute types : modelReference which allows multiple semantic annotations

to be associated with a WSDL or XML Schema component and liftingSchemaMapping

/loweringSchemaMapping which allow to specify a mapping between the descriptive XML

elements and a semantic model.

One of the main drawbacks of SAWSDL are its annotations, which are aimed at dis-

covery in a central registry such as UDDI and not a scalable information space such as

the Web. Also, SAWSDL does not support defining non-functional properties and does

not specify any specific formal semantics to annotate the service description elements. Al-

though it brings machine-readable semantic annotations, it still inherits the disadvantages

from WSDL and is thus considered to be inflexible to change and complex.

OWL-S

OWL-S 29 [Martin et al., 2004] is a semantic ontology based on the W3C standard

28. https://www.w3.org/TR/sawsdl/

29. https://www.w3.org/Submission/OWL-S/

33

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

https://www.w3.org/TR/sawsdl/
https://www.w3.org/Submission/OWL-S/

Chapter 2. Semantic Description of RESTful Linked Services

OWL 30 for describing semantic Web services in RDF. It was designed to allow the disco-

very, invocation and composition of services with automation in mind.

OWL-S distinguishes three separate description aspects : service profile, service model

and service grounding. In a nutshell, the service profile is the primary information used

to advertise and discover the service being described, the service model is the primary

information about how the service operates and is used by clients to interact with the

service and the service grounding describes the way the service communicates and how

it interoperates. In other words, there is a separation between the descriptions aimed at

interaction from descriptions aimed to enable discovery.

The usability of the semantic annotations added to OWL-S descriptions is unfortu-

nately too low to achieve a level of automation of discovery and composition required

by today’s Web. OWL-S also has a considerable level of perceived complexity for the

lightweight approach of RESTful services. There is also little support for interlinking in

OWL-S descriptions which is not enough to enforce REST’s HATEOAS constraint in des-

cribed services. In addition to that, OWL-S does not impose constraint for the coherence

on some of its description aspects, notably service profile and service model.

WSMO

Web Service Modeling Ontology 31 [Roman et al., 2005] or WSMO provides a formal

language to semantically describe various Web service aspects. It has been designed in or-

der to exploit the semantic annotations in service descriptions and automatically discover

and compose services on the Web.

WSMO identifies four top-level elements as the main concepts that have to be described

in order to define a semantic Web service description :

— Ontologies provide machine-readable formal definitions of other WSMO description

elements and the domain-related data.

— Web services represent the actual Web service descriptions of interfaces, capabilities

and internal functioning of the service entities.

— Goals describes aspects related to the requested functionality while taking into

account the user’s end-goal and desires.

— Mediators handle the interoperability concerns by proposing mappings to resolve

heterogeneities at the data, process and protocol levels.

WSMO allows the discovery of Web services based on a goal-oriented approach, mea-

ning that starting from a high level user’s request, the client can automatically discover

30. Web Ontology Language : https://www.w3.org/OWL/

31. https://www.w3.org/Submission/WSMO/

34

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

https://www.w3.org/OWL/
https://www.w3.org/Submission/WSMO/

2.2. Related Work : Description

WSMO-described services based on the elemental goals in that user’s request.

Despite the fact that WSMO offers a comprehensive framework for describing various

aspects of Web services, the main critics of WSMO remain its sheer complexity and

sizeable descriptions. Also, WSMO lacks explicit semantic descriptions for the actual

operations that have to be called by clients in order to execute the desired functionality.

In addition to that, WSMO has been developed in isolation from the standards established

by W3C as mentioned by the comment on the sumbission in [Bournez, 2005]. A thorough

analysis and critical evaluation of WSMO can be found here [Sharifi and Bayram, 2016].

2.2.1.3 Description Solutions for Classic Web Services Adapted to the REST

Architectural Style

After it became apparent that description mechanisms for RPC-oriented services were

not adapted to the resource-oriented REST architecture of the Web, researchers started

tailoring the description models to directly support the REST constraints and trying

to move from the input-operation-output description format towards a more resource-

oriented and REST-friendly format of resources/functionality/links. However, the fact

that these solutions had to be able to describe classic Web services as well was a double-

edged sword. On the one-hand, it enabled a unified approach to describe, discover and

compose services regardless of their underlying architectural design, but on the other

hand, they remained complex and inflexible compared to the lightweight approach of the

REST architecture.

WSDL 2.0

WSDL 2.0 32 [Chinnici et al., 2007] is a description language for services that tries to

address the problems of WSDL and support the description of REST services. It maps the

HTTP methods available in RESTful resources to the services being described. WSDL

2.0 provides a unified description format for both RPC-based services and REST-based

services irrespective of their underlying architectural design.

Although WSDL 2.0 allows the description of REST services, it does so in an RPC-

oriented approach still and thus eclipses a lot of the properties offered by the REST

architecture. It also still suffer from some of the problems as WSDL, namely complexity

and lack of meaningful semantic annotations.

WSMO-Lite

32. https://www.w3.org/TR/wsdl20/

35

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

https://www.w3.org/TR/wsdl20/

Chapter 2. Semantic Description of RESTful Linked Services

WSMO-Lite 33 [Vitvar et al., 2008] is an effort that defines a service description on-

tology and uses the SAWSDL description language as an annotation mechanism for Web

service descriptions. It builds an incremental layer on top of existing Web service descrip-

tions.

WSMO-Lite was designed with regards to the W3C standards established at the time

and the need for a lightweight service ontology. It adopts WSMO’s semantics and makes its

semantics lighter by allowing the use of ontology languages with RDF syntax. WSMO-Lite

distinguishes the following service description elements :

— Information Model : defines the data model for inputs, outputs and fault messages.

— Functional Description : defines what a service can offer to its clients when it is

invoked, in other words service functionality.

— Non-Functional Description : defines any incidental details specific to a service

provider, or the service implementation or its running environment.

— Behavioural Description : defines external (public choreography) and internal (pri-

vate workflow) behaviour.

— Technical Description : defines messaging details, such as message serializations,

communication protocols, and physical service access points.

WSMO-Lite ontology concepts are reused by many of the relatively recent efforts at

proposing a description mechanism for RESTful linked Web services. Contrary to WSMO,

the goal-oriented discovery and Behavioural descriptions are made implicit in WSMO-Lite,

in order to reduce the complexity of its description model.

Linked USDL

Linked Unified Service Description Language [Pedrinaci et al., 2014a] or Linked USDL

is a vocabulary for capturing and sharing service descriptions aimed at supporting service

trading on the Web. This work focuses on the technical, operational, economic, social, legal

and business contexts of services to enable multiple cross-domain services from various

service providers to interoperate.

Linked USDL builds upon USDL 34, which the authors considered too complex and

inflexible to extensions, and combine it with Web-centric technologies such as semantic

Web and Linked Data in order to support an open and automatic trading of potentially

heterogeneous services on the Web scale. The model uses URIs for service and resource

identification, links to point to related resource and complementary services and HTTP

as an interaction protocol with services. It promotes the reuse of formal ontology repre-

33. https://www.w3.org/Submission/WSMO-Lite/

34. https://www.w3.org/2005/Incubator/usdl/

36

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

https://www.w3.org/Submission/WSMO-Lite/
https://www.w3.org/2005/Incubator/usdl/

2.2. Related Work : Description

sentation languages and widely used vocabularies to capture service semantics according

to Linked Data practices. It captures service interaction interfaces, pricing models, service

level agreements and related legal issues.

While the aim of Linked USDL is to provide a good level of interoperation between

highly heterogeneous cross-domain services, it imposes on service providers the use of

vocabularies, albeit popular and widely used, to capture the semantics of domain-specific

data. Despite its aim to reduce USDL’s complexity, we still think that Linked USDL

descriptions are rather complex for Web services in today’s lightweight-friendly resource-

oriented Web.

2.2.1.4 Description Solutions for REST Services

Researchers started realizing that unified description efforts were not the ideal so-

lution to describe REST services. With the rapid rise in popularity of RESTful APIs

and the decline of classic Web services, new solutions specifically tailored towards captu-

ring descriptive aspects of REST services while recognizing the REST constraints started

emerging. These solutions still suffer from the verbosity and fail to adopt the lightweight

extensible approach advocated by the combination of REST architecture with Linked

Data and semantic Web practices.

WADL

Web Application Description Language 35 [Hadley, 2006] or WADL is an XML-based

syntactic description language specifically designed to describe REST services that aims

at the proper usage of HTTP as a transfer protocol for messages. Resources, which are

identified by predefined URI patterns, are at the center of descriptions and WADL cap-

tures the relationship between them. Service interfaces are modelled in descriptions by

constructing requests containing the HTTP method, the inputs, outputs and response

status code.

Although WADL is aimed at the description of REST services, most of the time it

violates REST constraints especially hypermedia driven application state and introduces

unnecessary coupling between clients and servers with the predefined URI patterns for

resource and input/output parameters, which imposes constraints on server URI defining

schemes. Also, even though it is aimed at describing lightweight REST services, WADL

descriptions are considered complex and require a lot of effort and knowledge to establish.

35. https://www.w3.org/Submission/wadl/

37

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

https://www.w3.org/Submission/wadl/

Chapter 2. Semantic Description of RESTful Linked Services

hRESTS

HTML format for describing RESTful Services [Kopeckỳ et al., 2008] or hRESTS

is a microformat for labeling Web service APIs with machine-readable descriptions. It

describes the main aspects of a service interface such as the operations and their in-

puts/outputs. hRESTS was primarily designed to enrich existing service descriptions, in

the form of human-readable documentation, in HTML.

hRESTS’ human-first approach is tailored towards assisting Web service designers

and developers that use these services to construct mashups and integrate the services in

more advanced hardcoded applications, and thus is not better suited for generic machine

clients that perform tasks such as automatic discovery and composition. In fact, although

hRESTS describes service interfaces and operations with machine-readable information,

other aspects of the service such as the exchanged data schemas and inputs/ouputs are

not explicitly described semantically, there is only labels containing human-readable des-

criptions on these elements.

SA-REST

Semantic Annotation for REST 36 [Lathem et al., 2007] or SA-REST is a format that

allows to add additional metadata to REST APIs descriptions in HTML. It provides

a list of input and output parameters, methods and URIs exposed by a REST service

by means of property-value pairs or RDFa annotations. SA-REST allows to add semantic

information to descriptions from ontologies and other semantic models in order to facilitate

the discovery of the services and their composition not only by humans, which can do so

using natural language descriptions and documentation, but also by machine-clients, which

exploit the semantic annotations on these human-readable documentations to automate

the discovery and composition processes.

SA-REST lacks support for the interoperability of heterogeneous services, especially

on the data level. Also, even though the main reason behind developing SA-REST was to

provide semantic metadata to service descriptions, the machine-processable annotations

do not support a truly automated discovery and composition without humans intervention

in the form of manual mashup creation and manual service retrieval.

MicroWSMO

MicroWSMO 37 [Kopecky and Vitvar, 2008] is a service ontology extension that builds

on hRESTS to add semantic annotations to service descriptions and documentation

36. https://www.w3.org/Submission/SA-REST/

37. http://www.wsmo.org/TR/d38/v0.1/20080219/

38

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

https://www.w3.org/Submission/SA-REST/
http://www.wsmo.org/TR/d38/v0.1/20080219/

2.2. Related Work : Description

in HTML. It was specifically designed to describe RESTful services with the REST

constraints and automation of discovery and composition in mind. Its main purpose is

to extend hRESTS with semantic annotations to exchanged data and inputs/outputs.

MicroWSMO focuses on the description of semantics of the HTTP operations, espe-

cially POST, since it does not have explicit semantics in the HTTP specification, and

it also focuses on semantically annotating data formats used as inputs and outputs in

resource representations. The structure of descriptions in MicroWSMO is similar to the

one used in WSMO-Lite but with several differences due to the constraints imposed by

REST which simplify some aspects :

— Information model : represents data in resource representations using a domain-

related ontology, namely inputs and outputs.

— Functional semantics : specify the functionality provided by the service and parti-

cularly HTTP method POST.

— Behavioural descriptions : describe the hypermedia structure of the resources ma-

king the Web service.

— Technical descriptions : this is generally the service URI, since other technical

details are fixed by REST’s constraints.

— Non-Functional Description : service policies or other details specific to the imple-

mentation or running environment of a service.

Additionally MicroWSMO specifies grounding of these annotations to the data ele-

ments in resource representations in the form of lowering/lifting mappings. As mentioned

in [Lanthaler et al., 2010], MircoWSMO and SAWSDL both can use WSMO-Lite onto-

logy semantics which allows service manipulations such as discovery and composition to

be done independently from the underlying service implementation [Maleshkova et al.,

2009].

2.2.1.5 Lightweight Semantic Description Solutions for REST Services

After is became apparent that lightweight extensible approaches for describing REST-

ful Web services were superior to heavyweight ones because REST defines and fixes a lot of

descriptions by design, the research community started to move towards more lightweight

description models with reuse of existing vocabularies for semantic annotations rather

than inventing new ones. Also the convergence of semantic Web technologies with REST

architecture has led to the adoption of Linked Data principles in description solutions.

Siren

39

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

Chapter 2. Semantic Description of RESTful Linked Services

The Siren project 38 is a hypermedia specification using the JSON format 39 for des-

cribing entities for Web APIs similarly to how HTML represents documents on a Web

site. It supports a resource-oriented design style which is well adapted to RESTful Web

APIs. Using Siren allows to easily provide a action-based interface through Web APIs

with support for hypermedia.

Siren offers a variety of structures to describe the elements within a Web API. An entity

represents a URI-addressable resource. Each entity has a description used to communicate

information about the entity itself and the data it contains. This description includes a

title field that textually describes the entity in question, a class field that describes

the concept of the entity (for example book), a properties field that contains a set of

key-value pairs describing the entity and an entities field that contains a list of related

sub-entities. An entity has also an action field that lists a set of available actions on the

current entity, described with the corresponding HTTP method as well as a links field

that lists items containing navigational links including link to itself.

Siren was the first format we used to inspire our description model in [Bennara et al.,

2014a]. Although Siren offers a good resource-oriented and hypermedia-based description

with its descriptive elements, using it revealed its limitations in the context of our research.

First it does not support explicit semantics of its descriptive data elements, all that is

provided is textual descriptions in human language for Web developers and no machine-

readable semantics are given. It also uses JSON as a serialization format instead of JSON-

LD, that supports Linked Data principles and allows the use of vocabularies and name

spaces to describe properties with semantic annotations. Also, although extensible, it does

not propose a way to describe non-functional properties of Web APIs.

RESTdoc

RESTdoc [John and Rajasree, 2013] is a description solution that combines multiple

micro-formats in order to semantically describe RESTful service elements in HTML using

the JSON format. It uses RDFS annotations in order to enable interlinking of RESTful

resources and offers the possibility of converting the descriptions into RDF and vice-versa.

RESTdoc reuses the special purpose annotations provided by HTML and JavaScript

in order to annotate the service elements. It describes elements such as service name, URI

and a set of annotated attributes/properties. It offers also a discovery mechanism that

uses HTML Link element on a Web resource in order to point to other resource descrip-

tions. Composition is achieved by constructing an RDF graph of converted descriptions

38. urlhttps ://github.com/kevinswiber/siren

39. application/vnd.siren+json internet media type to be precise

40

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

2.2. Related Work : Description

of discovered resources and using a reasoner to determine how to compose the chosen

services to carry out the composition process.

While the HTTP POST method semantics have not been defined by any standards

and are left open to service-specific functionality, RESTdoc restricts its semantics to

be a write-once operation for the creation of a resource. Also annotations provided by

RESTdoc do not allow the discovery of resources based on their functionality. Even though

resource interlinking is enabled by implicit RDFS annotations, it does not fully support

the HATEOAS constraint of REST.

ReLL

Resource Linking Language [Alarcon and Wilde, 2010] or ReLL is a solution for the

description of RESTful Web services that focuses on their Hypermedia property (HA-

TEOAS constraint of REST).

Descriptions in ReLL consider a RESTful service as a set of resources related to each

other. Every resource in the set has its unique identifier in addition to its name, description

in human readable language together with other optional properties. ReLL also explicitly

indicates if a resource has multiple representations (that can be independent from the ser-

ver’s internal representation) in different serialization formats and supports using a URI

pattern for each representation in order to avoid introducing coupling between the server

and client in URI construction for requests. These representations contain in turn the links

to other resource representations and constitute the means by which interlinking of the

resource is established. Links in ReLL have link types that have their own name and des-

cription. These link types represent the semantics of the link in question and consequently

the relation between the two resources being linked. When it comes to domain-specific

annotations, ReLL allows description authors to explicitly use the vocabulary of their

choice, since it does not impose any constraints on data specific ontologies.

Although ReLL does a good job capturing the interlinking of services and their re-

sources, it does not capture explicitly the functionality aspects of a service. Functionality

is implicitly indicated by link types and does not facilitate determining the behaviour

of the linked resources to a given request. Also there is no support for non-functional

properties and QoS aspects in ReLL descriptions.

RESTdesc

RESTdesc [Verborgh et al., 2011b] [Verborgh et al., 2012] is a resource-oriented and

hyperlink-based description method for RESTful linked Web services. While it entirely

relies on existing vocabularies and technologies, its novelty lies in how it combines their

41

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

Chapter 2. Semantic Description of RESTful Linked Services

concepts to describe functional service elements. It uses Notation3 40 [Berners-Lee, 1998]

or N3, a semantic Web syntax built upon RDF, to express service descriptions as well

as the HTTP vocabulary in RDF 41 to semantically annotate the HTTP methods and

accompanying concepts to allow clients to build HTTP requests for the described services.

From a technical perspective, RESTdesc allows service providers the freedom of choo-

sing the vocabulary that suits the application domain of their services and adapts to it,

allowing flexibility and interoperability on the data level. It also reuses the already settled

stack of technologies of the semantic Web such as RDF and Notation3 and is thus com-

patible with existing tools such as the well established N3 reasoners. In addition to that,

RESTdesc describes the precise task the service performs and leaves the semantic anno-

tation of inputs and outputs at the charge of the description authors. On a higher level of

abstraction, RESTdesc provides a scalable solution for clients to automatically discover

new functionality-based interaction patterns on services instead of input/output-based

ones. This is achieved by establishing preconditions and postconditions and specifying

how the HTTP request should be built to perform the action and make the transition

from preconditions to postconditions, rather than just semantically annotating inputs

and outputs. The mentioned HTTP requests are built at runtime and are not hard-coded

which enables clients to flexibly adapt to changing circumstances. It achieves that by

describing relationships between resources involved in a service call and establishing the

HTTP request that instantiates the functionality of those relationships.

While RESTdesc expresses descriptions of functionality in terms of preconditions and

postconditions is certainly a creative and non-conventional approach, we think that the

N3 powerful reasoning mechanisms on this format of description do not justify the added

complexity for descriptions and client implementations. The use of simpler mechanisms

for direct description via semantic annotations and semantic inferencing is, in our opinion,

more advantageous and easier to integrate with Linked Data and REST practices and for

description authors, who do not need a lot of background knowledge on semantic Web,

to understand. Also, RESTdesc format suggests to rely on the HTTP OPTIONS method

for the retrieval of descriptions, which has several drawbacks 42 most important of which

being non-cacheable which conflicts with one of REST’s main constraints, cacheability,

especially since descriptions can be rather sizeable in the context of certain service business

activities. Additionally, RESTdesc does not support any description of non-functional

aspects of services, which makes selection of services hard to automate, and have to rely

either on user intervention or other solutions such as service ranking and rating.

40. https://www.w3.org/TeamSubmission/n3/

41. https://www.w3.org/TR/HTTP-in-RDF10/

42. https://www.mnot.net/blog/2012/10/29/NO_OPTIONS

42

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

https://www.w3.org/TeamSubmission/n3/
https://www.w3.org/TR/HTTP-in-RDF10/
https://www.mnot.net/blog/2012/10/29/NO_OPTIONS

2.2. Related Work : Description

Hydra core vocabulary

The Hydra core vocabulary 43 [Lanthaler and Guetl, 2013] is the work we build upon to

design our description model. It is a modular, lightweight and extensible vocabulary aimed

to describe RESTful Web APIs. All of these characteristics are desired in a vocabulary

for RESTful link service description :

— Modular means that descriptions are broken down into small, independent and

reusable fragments, which allows partial retrieval of descriptions if needed.

— Lightweight means that description models based on Hydra are simple from a data

and computation point of view, while remaining expressive.

— Extensible means that more expressive semantic annotations can be added where

needed, which is exactly what we intend to do in this chapter.

Also, previous research shows that, on the Web, lightweight ontologies together with the

possibility to provide custom extensions prevail against more complex models [Pedrinaci

et al., 2010b] [Pedrinaci et al., 2010a]. Hydra only relies on and reuses RDFS data model-

ling vocabulary in order to define its own concepts, which is further proof of its simplicity,

and although some of its concepts sometimes overlap with other vocabularies, the authors

have chosen not to make dependencies with them because the reuse is too small to be

justified.

The reason Hydra was presented as a vocabulary rather than a description model

is to move from the closed-world assumption on service descriptions where description

properties are defined within their own classes to the RDF’s open and distributed world

assumption where properties are described using vocabularies publicly available. This

ensures that concept semantics are shared and reused across different application domains

and service providers.

The purpose of developing the Hydra vocabulary is to simplify the development of

RESTful APIs by leveraging the advantages offered by Linked Data by augmenting service

descriptions to support hypermedia controls to comply with REST’s HATEOAS principle,

since RDF does not support hypermedia natively. Hydra aims at describing affordances

offered by the Web APIs (cf. section 1.1.4) through generic concepts such as Operation

and Link and uses them to augment resource representations. It describes operations at a

higher level of abstraction than HTTP methods. The latter are mapped to these operations

together with HTTP status codes and semantically described inputs and outputs. In

addition to that it also supports semantic description of collections (similarly to W3C’s

LDP 44 collections) and machine readable API documentations.

43. https://www.hydra-cg.com/spec/latest/core/

44. https://www.w3.org/TR/ldp/

43

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

https://www.hydra-cg.com/spec/latest/core/
https://www.w3.org/TR/ldp/

Chapter 2. Semantic Description of RESTful Linked Services

All these descriptions can be exchanged between the client and the server at run-time

and interactions are not hard-coded into client at design time. Hence, the clients can

be decoupled from the servers and adapt their execution and method calls according to

changes, thus supporting loose coupling property of REST. In short words, clients can be

generic.

Although Hydra supports some degree of automatic discovery with its descriptions

thanks to operations and API documentation, we believe that it is not enough to cope with

the large scale of the Web and is not adapted to applications such as the one illustrated

by our scenario (cf. section 1.2). In fact , Hydra lacks support for cross-provider service

discovery because of the way it presents the Link class that links resources to each other,

which we deem not expressive enough. Also, Hydra was designed primarily to allow Web

developers to describe services without much knowledge of semantic Web technologies,

in order to allow a more gradual integration of service orientation with semantic Web.

As semantic Web and Linked Data principles become more widely adopted and accepted,

we think that Hydra descriptions should be more expressive in order to support the

automation of service discovery and composition. Another drawback we observed is the

lack of explicit support for non-functional properties and QoS aspects of services, which

we think is vital to certain processes such as service selection.

In our work, we use Hydra as a vocabulary to annotate, with machine-readable in-

formation, descriptive elements in service descriptions. We are particularly interested in

extending hydra with more expressive semantic annotations on the Link concept in order

to support service discovery on the Web scale. We also extend it with support for non-

functional properties and QoS attributes in order to allow service selection. We believe

that these extensions would be enough to support automatic complex service manipula-

tions such as discovery, selection and composition.

2.2.1.6 Other Related Description Efforts

Although, these are not description models in themselves, they are widely used by

other description formats and are relevant to our efforts to establish an ideal description

model for RESTful linked Web services.

POWDER

The Protocol for Web Description Resources 45 or POWDER aims at providing the

means to describe a collection of resources belonging to the same organization, usually

45. https://www.w3.org/TR/powder-dr/

44

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

https://www.w3.org/TR/powder-dr/

2.2. Related Work : Description

exposed as one or more services identified by the same URI pattern and assigned a given

class, by providing meta data in the form of, inter alia, annotation properties such as

seealso which identifies a related resource, label which identifies a natural language

description and comment that identifies a comment on the resource (for example a comment

on an image)

Even though POWDER provides semantics for properties to describe resources, it

does not specify explicit semantics to support clients in discovering functionality within

the described resources, which renders it limited in the context of functionality-focused

discovery.

POWDER features the RDF property describedby, a property that indicates seman-

tic linkage between two resources. The expression (formally RDF triple) :

ResourceURI1 describedby ResourceURI2

means that the resource identified by ResourceURI2 provides a machine-readable se-

mantic description of the resource identified by ResourceURI1. We use describedby in

our solution in order to establish a semantic link between a resource and its description

directly without the need to retrieve its representation through the HTTP Link header.

HTTP Vocabulary in RDF

HTTP Vocabulary in RDF 46 is a W3C effort at semantically describing the HTTP

protocol element properties including HTTP methods, HTTP header elements and HTTP

status codes in RDF. It gives a set of RDF classes and properties aiming to represent the

HTTP specification as concepts. It also introduces new HTTP headers to facilitate the

transfer of certain information regarding requests and responses.

This vocabulary aims at bridging the gap between the semantic Web practices and

the practices of the REST architectural style. Many description research activities rely

on this vocabulary in order to semantically annotate HTTP related description elements

such as HTTP request construction patterns or header/body related elements.

2.2.2 Synthesis and Discussion

The bottom line from our bibliographic research on RESTful linked service description

is that there is no widely accepted description model which would fulfil the role that

WSDL plays within classic RPC Web services. Many researchers even debated whether

the descriptions are needed in the case of RESTful Web services since the constraints of

46. https://www.w3.org/TR/HTTP-in-RDF10/

45

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

https://www.w3.org/TR/HTTP-in-RDF10/

Chapter 2. Semantic Description of RESTful Linked Services

REST define and determine a lot of the behaviours and properties of RESTful services.

We do not agree with this statement. We think that descriptions are very much needed

in order to allow the interoperation of services from different providers. Descriptions are

also needed in order to define semantics on the data and the service level. This allows

clients and agents to automatically interact with and manipulate the services, discovering

services that perform the needed functionality and composing multiple services for more

complex tasks.

Table 2.1 is a comparative table that showcases the properties and aspects supported

by the different works we presented above. This can also be considered as a different

approach at categorizing them. There is several remarks we wish to discuss about this

comparison.

Firstly, even though many of the description research activities have been approved

by the W3C and some of them are even recommendations, this has not allowed them to

gain significant adoption by service providers for the reasons we discussed above.

Secondly, we can see that the earlier propositions have used XML as a markup language

to write the descriptions. Later on, XML started being abandoned in favour of more

lightweight serialization formats such as JSON and JSON-LD.

Thirdly, as research community started to move towards a more lightweight approach

for service descriptions, some proposals have opted to embed the descriptions directly

into the services themselves. The emergence of the so called microformats has allowed

an easy and lightweight description of services with a minimum required knowledge of

the description mechanisms. The drawback is that there is a need to rewrite the code for

the services when embedding the descriptive information, although human users will not

perceive the changes directly.

Fourthly, the proposals that adopted to separate descriptions from the services and

their representations allow to enforce the principle of separation of concerns [Dijkstra,

1982], which advocates maintaining two separate entities : the entity that provides the

functionality (service or resource) and its description. This also has the advantage of

having an easier process of incrementally describing services with machine-readable me-

tadata, by adding only links to descriptions instead of the actual complete descriptions,

which have to be maintained separately. The drawback is that providers have to maintain

two different resources related to the same service.

Lastly, contrary to the early proposals that define and use their own semantic model,

recent solutions tend to reuse the vocabularies and semantic models that are already

established and approved by the normalization organizations and the research community.

Some propositions try to reuse as few concepts as possible in order to keep the models

46

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

2.2. Related Work : Description

Solution Year
Approval

by W3C

Language

used for

descriptions

Semantic

model for

annotations

Level of

integration

with service

WSDL 2000 Submission XML No semantics Separate

SAWSDL 2007
Recommen-

dation
XML Not specified Separate

OWL-S 2004 Submission XML OWL Separate

WSMO 2005 Submission XML WSML Separate

WSDL 2.0 2007
Recommen-

dation
XML No semantics Separate

WSMO-Lite 2008 Submission
Language

independent
RDFS Either

Linked USDL 2014 No
Language

independent

Reuses other

vocabularies
Separate

WADL 2009 Submission XML No semantics Separate

hRESTS 2008 No HTML RDFS
Embedded

(Microformat)

SA-REST 2007 Submission HTML RDFa
Embedded

(Poshformat)

MicroWSMO 2008 No HTML WSMO-Lite
Embedded

(Microformat)

Siren 2012 No JSON No semantics Separate

RESTdoc 2013 No JSON
Reuses other

vocabularies
Embedded

ReLL 2010 No Multiple
Reuses other

vocabularies
Separate

RESTdesc 2011 No Notation3
Reuses other

vocabularies
Separate

Hydra 2013 No JSON-LD RDFS Separate

Table 2.1 – Comparative table of the different description approaches

47

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

Chapter 2. Semantic Description of RESTful Linked Services

simple and the descriptions lightweight.

In the next section we present and discuss in depth our proposal for describing RESTful

linked Web services.

2.3 Contribution : The Descriptor

The Web is a big network of documents resources and services. In order for a user to

find the right elements that answer his requests, however complex they may be, there is

a need to :

1. Automatically identify what are the basic needs that compose his request. We agree

to call these basic needs tasks.

2. Automatically identify software on the Web that can answer each of the required

tasks.

The answer for the first issue can be achieved by exploring the advances of language

analysis as well as semantic reasoning on the concepts identified on the user’s request.

Both are out of the scope of our research work. We work under the assumption that this

process takes as input the user’s request, in the form of a text string or a data structure

derived using a form or any other user interface configuration, and returns in response the

list of the semantic concepts that describe the actions that need to be executed to answer

the request. If we take our scenario, the request would be for example something like :

”‘Buy a book online”’, a sting entered in a web browser or an application. The result of the

process would be three semantic concepts each describing the three following operations

respectively :

— Order a book.

— Choose a delivery option.

— Pay via an online transaction.

The answer for the second one, however, is not simple in the context of today’s Web.

The vast majority of services in the Web today do not include any machine-readable

information that helps the client identify the semantics of its functionality or the seman-

tics of the data exchanged in order to answer the user’s request. The services that do

contains descriptions about their functionality and behaviour feature either only syntac-

tic descriptions or descriptions with very heterogeneous formats and differ from the rest

of services on the Web. This heterogeneity complicates the design of the clients that use

these services.

48

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

2.3. Contribution : The Descriptor

We aim to propose a generic and simple means to describe all RESTful services in the

Web with the solution featured in the next sections. The generic aspect of our solution

allows designing RESTful linked Web services in a way that promotes the construction

of generic clients which can work with any service described this way in order to allow

a scalable discovery and semantically interoperable distributed software on the data and

service level, and ultimately allow the automatic answering of user’s request. On the

other hand, the simplicity aspect of our solution allows an easy way for existing services

to integrate such lightweight descriptions, and future services to incorporate them in their

development without requiring a lot of knowledge on the intricacies of the semantic Web

technologies.

Here, we identify an important need to add descriptive metadata to the services. There

are four important aspects that need to be included in the service description :

1. describe the meaning of data used by resource representations as well as inputs/out-

puts on the business level, by allowing the use of domain-specific ontologies chosen

by the service publisher.

2. describe what is the functionality provided by each available operation.

3. describe the different relations the service has with other services on the Web.

4. describe the Quality of Service and non-functional behavioural aspects.

The first aspect is about defining the semantics of the data resources are represented in,

as well as the semantics of the inputs and outputs of the different operations offered by the

service. Also, since REST imposes that messages be self-descriptive and that interactions

between clients and servers be stateless, these descriptions become even more important in

defining the semantics of the data in the messages and requests exchanged. In the context

of our scenario (presented in section 1.2), these descriptions would allow the client to

know for example what is a book title, an ISBN or an author.

The second aspect allows the discovery process identify the services that can potentially

be used in the composition process in order to answer the user’s request. The discovery

process crawls through the Web looking for the services that offer at least one functionality

that can answer one of the tasks required by the user’s request. The only information

capable of identifying whether an operation can provide an answer to one of the tasks is

the description of the operation itself, which is part of the description of the service as a

whole. Semantically annotating each operation with a domain-specific ontology concept

allows a more precise identification of the suitable services by semantically matching the

concepts describing the operations of a service and the concepts describing the tasks

required by the user’s request. The information regarding the operations of a service

49

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

Chapter 2. Semantic Description of RESTful Linked Services

also describes the input and output required by this operations. This is helpful in the

composition process where the client handles the data input and output between the

different services involved in the composition. In the context of our scenario, all the client

has to do in order to find a service that sells books (or that can perform the task Order

a book) is to crawl through the Web from a given starting point until it finds a service

that provides an operation that matches the concept Order a book.

The third aspect is another very important set of information that is required by the

discovery process. As the Web contains a big network of services where each service links

to another set of services in the same network, there is a need to have information about

each link. This information describes why there is a link between the two services as

well as the nature of this link. This is extremely vital for the discovery process, because

exploring a branch in the Web instead of another can yield completely different results.

The presence of the links is one of the main characteristics of an interconnected Web of

services, links are what made the Web the huge information space it is, it is also one of

the principles of Linked Data :

Include links to other URIs, so that they can discover more things. [Bizer et al.,

2009b]

Also, another important aspect in describing links is that they should be dynamic. In

other words, there shouldn’t be a fixed set of links, link descriptions must allow links to

be added, updated and removed in order to benefit from the dynamic nature of the Web

and support the scalability of service discovery. In the context of our scenario, the book

selling service can link to the shipping service in order to allow the delivery of physical

copies of books to the buyers. It can also add new shipping service to its links if the

latter can retrieve books from the inventory of the provider and perform deliveries in

the geographical areas covered. In case one of the shipping services becomes permanently

unavailable for example, the corresponding link should be systematically removed.

The fourth aspect helps the selection process decide what is the most suitable service

for a given operation in the case where the discovery identified multiple candidates for

each task. This information combined with the information about user’s preferences and

behaviour help make the decision of selecting the service that will likely satisfy the user.

In the context of our scenario, the client has to access the QoS descriptive data of each

service it searches and compares the relevant attributes indicated by the user and then

filters in the services whose QoS attributes are the closest to the users requirements.

Finally, in order to integrate with the practices of Linked Data, and consequently with

the semantic Web, the service descriptions must be in RDF or a data format that can

be converted to RDF and allowing the extraction of RDF triples. The semantic annota-

50

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

2.3. Contribution : The Descriptor

tions have to reuse existing vocabularies and when necessary define new domain-specific

vocabularies that respect the principles of Linked Data and use their concepts in the des-

criptions. Also, service providers are encouraged to link the resources of their services with

other related resources in order to contribute to and benefit from the interconnections of

data in the Web of Data. The description in our proposal uses JSON-LD [Sporny et al.,

2014], a W3C recommendation 47, which is a simple format that offers easy and compatible

migration from JSON-based Web services along with the possibility of integrating Linked

Data into the service description. JSON-LD is considered an RDF concrete syntax.

2.3.1 Separation of Representations and Descriptions

Most of the recent description solutions that apply for RESTful linked services we

discussed in section 2.2 embed the descriptive information directly into the resource re-

presentation of RESTful services. The main drawback of this approach is the fact that

service representation now contains information about both the code and data of the

service and the description of its elements, operations and other related entities such as

links and operations, which makes it hard for clients and applications to parse the data

being described (the actual service) and the data that describes (the description) but also

makes it hard for developers of clients and applications to keep track of descriptive data

and complicates the building of services and the software that interacts with them.

These two sets of information address each a completely different problem. The re-

presentation of the resource is the set of data that answers the question : ”what does the

resource contain and what are its components ?” The description of the resource is the

set of data that answers the question : ”what is the nature and meaning of the resource

components and data and how does the service offered and its components behave ?”

The distinction between these two sets of information can be difficult if they are not

clearly separated. There is a need to separate the two sets of data in order to allow the

addressing of two different problems separately, according to the separation of concerns

principle proposed by Edsger Dijkstra [Dijkstra, 1982].

It is what I sometimes have called ”the separation of concerns”. [...] This is

what I mean by ”focussing one’s attention upon some aspect” : it does not

mean ignoring the other aspects, it is just doing justice to the fact that from

this aspect’s point of view, the other is irrelevant..

The main focus of our work of describing linked Web services is to highlight the des-

criptive data but also give access to the information contained in the actual representation

47. https://www.w3.org/TR/json-ld/

51

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

https://www.w3.org/TR/json-ld/

Chapter 2. Semantic Description of RESTful Linked Services

of the service. This separation aids in our effort to enable automated complex interactions

between Web clients and linked Web services. While the use of the actual service is en-

abled through the exposition of its representation, more complex service manipulations,

such as : discovery, selection and composition, are made possible through the exposition

of the description which is accessed by the Web client performing the aforementioned

manipulations.

Our proposal also separates the description of the service behaviour (the operations

allowed on the service) and the description of the service relations (the links to other

related services). The available operations are easily accessed by Web clients that want

to interrogate the service for a certain information (HTTP operation GET or HEAD),

to create or alter the content of a certain entry in the service (HTTP operation POST

or PUT) or delete a given information (HTTP operation DELETE). The service links

are also made available for Web clients that wish to access other related services in case

the current service does not provide an operation that help the client answer the user’s

request or simply look for another service that can perform the required operation better

(better QoS properties, better match with the user’s requirements, etc.).

2.3.2 Description Mechanisms

In order to regroup all the description aspects we talked about previously, we opted

for a single data structure we call descriptor [Bennara et al., 2014a] [Bennara et al.,

2015a] [Bennara et al., 2016b] [Bennara et al., 2016a]. Our description model details

semantics of data, specific interaction possibilities with services on the Web, semantically

typed links and non-functional properties of the service. We extend the representation of

each of the service resources with another separate resource that contains metadata about

the resource together with information about related services as well as quality of service

aspects.

We explained in the previous section why we chose to separate the descriptions from

the representations. In the following, we are going to explain how the descriptions are

made available if we have the URI of a resource. When The URI of a resource is available

to the client, it is easy to access the URI of its descriptor resource, following a generic

interaction pattern. To make this interaction possible, we use the HTTP LINK header,

whose semantics have been defined by the IETF 48 and W3C 49 as the means to provide the

clients with more metadata about the requested resource. This is achieved by providing a

link to the URI of the resource containing the metadata as well as a relationship between

48. https://tools.ietf.org/html/rfc5988#section-5

49. https://www.w3.org/wiki/LinkHeader

52

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

https://tools.ietf.org/html/rfc5988#section-5
https://www.w3.org/wiki/LinkHeader

2.3. Contribution : The Descriptor

the requested resource and the resource linked by the URI, like this :

Link : <metadataURI> ; rel=relationship

In order to describe the relationship we chose to use the POWDER [Archer et al.,

2009] describedby property, expressed in RDF, in order to annotate the given link with

explicit machine-readable semantics that indicate to the client that the resource being

linked is the descriptor of the requested resource. The list of possible rel values is defined

by the IANA 50, and semantics of the describedby relation are defined using the W3C’s

POWDER recommendation 51. Instead of linking to a POWDER document though, the

link in question links to the data structure containing the descriptive information (the

descriptor) :

Link : <.../descriptor.md> ; rel=describedby

Figure 2.1 shows the discovery of a resource and how the LINK field is accessed in the

HTTP header. The client that wishes to access the description of a resource can do so by

requesting an HTTP HEAD on its URI and retrieving the HTTP header. An HTTP GET

would result in the same, but will prompt a response with the entire representation of the

resource, and if the client is only interested in the header, this would be inefficient. After

the client retrieves the header of the response, he can access the description by retrieving

the value of the LINK header whose relation is describedby. The resource containing the

description (the descriptor) can be hosted anywhere, we do not impose any condition on

its URI. However, since most of the service providers would store the descriptions on the

same servers as the resources they expose for efficiency, we chose to establish the following

pattern for the construction of the URI of the descriptor 52 :

descriptor URI = resource URI + ”/” + descriptor name + ”.md”

where :

— resource URI is the URI of the resource being described.

— descriptor name is the name chosen for the descriptor resource, it could be the name

of the resource or some generic name like the string ”descriptor” or ”metadata”.

— The symbol + represents string concatenation.

— ”md” stand for meta data, any other extension could be used, for example ”jsonld”,

since descriptors are written in JSON-LD format, it can also be completely omitted.

The descriptor describes the resources pointing at it by giving semantically annotated

information on what HTTP operation are available on the resource, together with infor-

50. Internet Assigned Numbers Authority

51. https://www.iana.org/assignments/link-relations/link-relations.xhtml

52. This is not a requirement, it is just a recommendation.

53

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

https://www.iana.org/assignments/link-relations/link-relations.xhtml

Chapter 2. Semantic Description of RESTful Linked Services

Generic
machine-client

HTTP HEAD (or GET)
http://example.com/resource

Header
…
LINK: <http://example.com/resource/resource.md>;
 rel=describedby

…

Body
…

(Not present if HEAD)

HTTP response

Message

request/
response

client

resource

Web
resource

message

Figure 2.1 – Accessing a resource’s descriptor URI

mation on available sub-resources, data, non-functional properties and on other related

external resources, as illustrated in Figure 2.2. We call the information describing opera-

tions an Interaction Model, since it is the information that defines how a client interacts

with a given resource.

We must underline the fact that all descriptors are resources as well according to

the REST principles. Since the descriptor is also modelled as a resource, the description

mechanism recursively applies. According to our proposition, every resource must have a

descriptor containing metadata about it. One can get the descriptor of a descriptor via

the Link field of the HTTP header received after a GET or HEAD operation on the URI

of the said descriptor.

However, in this case, the Link field in the HTTP header contains a link to the universal

descriptor that describes all descriptors 53. Figure 2.3 shows how resources, descriptors and

53. Note that a GET or HEAD on the descriptor of all descriptors returns a link to itself. As the

54

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

2.3. Contribution : The Descriptor

Generic
machine-client

HTTP GET
http://example.com/resource/resource.md

Header
…
LINK: <http://example.com/resource/resource.md/universal.md>;

…

Body

Message

Links to other
resources

…
Link a Information a
Link b Information b
…
Link z Information z
…

Interaction model

…
GET InformationW
POST InformationX
PUT InformationY
DELETE InformationZ
…

HTTP response

request/
response

client

resource
descriptor

message

Web
resource

descriptor

Data annotations Non-functional
properties

Figure 2.2 – Discovery of a resource descriptor

the universal descriptor are linked to each other. Links that exist between other resources

are not showcased here because we are only interested on how resources describe each

other.

The way clients get access to internal and external resources is homogeneous. A client

accesses related resources with the required information about each of them, helping

to decide which path to follow. In other words, there is no distinction between related

resources that are supported by the same provider and the other resources on the Web

that are supported by other providers.

The information available in the link to another resource must be helpful for the client

to decide whether it should interact with the target resource or not. It must describe

the semantics of the relation with the current resource and any other useful piece of

information. However, the link information must not give too much details on the resource

universal descriptor is also a descriptor, it should imperatively describe itself.

55

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

Chapter 2. Semantic Description of RESTful Linked Services

Resource 2 Descriptor 2

Resource 1 Descriptor 1

Resource 3 Descriptor 3

Resource n Descriptor n

Universal
Descriptor

… …

describedby

descriptor
(resource)

resource

Figure 2.3 – Links between resources, descriptors and the universal descriptor

to avoid redundancy, data consistency and bandwidth-related problems. Details about a

resource can be found in its own descriptor.

The best compromise is to only give the information that allows the client, at a gi-

ven point, to decide whether to follow the path linked resource or not according to the

HATEOAS REST constraint.

In the following sections we detail how different aspects of services are described in

their descriptors. We emphasize on the description of operations and links since it plays

a vital role in discovering functionality of services on the Web.

2.3.2.1 Describing RESTful Linked Service Operations

Describing the HTTP operations allowed on a given resource is useful for automating

user request resolution, particularly when it contains information on how to correctly use

the corresponding operation. Since REST defines a uniform interface for the interaction

with resources in the context of the Web, that is the use of the HTTP operations to

manipulate the state of resources, there is little need to define the low level semantics of

the HTTP operations. The HTTP vocabulary in RDF presented in section 2.2 and the

IETF HTTP protocol specification 54 already define the semantics of the GET, PUT and

DELETE operations. The only operation whose semantics are not defined is the POST

operation which can be used by the services for more specific functionality, and can be

given the proper semantics to describe the functionality in question.

From a higher level of semantics perspective, we rely one the Hydra vocabulary [Lan-

54. https://www.ietf.org/rfc/rfc2616.txt

56

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

https://www.ietf.org/rfc/rfc2616.txt

2.3. Contribution : The Descriptor

Operations

GET bs:consultBooks
PUT bs:updateBookList

bs: http://soc.univ-lyon1.fr/bookselling.owl
rr : http://soc.univ-lyon1.fr/resourcerelation.owl

 Links

http://amazon.com rr:IsSimilar
http://dhl.com rr:IsComplementary
http://paypal.com rr:IsIncompatible

Figure 2.4 – Descriptor example with annotated links

thaler and Guetl, 2013] in order to describe the operations of our resources from a CRUD

point of view. The information consists first of all in a description of the data-models

expected and to be returned when the HTTP operation is called. The HTTP status codes

that can be returned with additional details on the circumstances of each code gives de-

tails on the use of the HTTP operation. Other annotations on the operation itself, such

as the CRUD basic operations (creates/reads/updates/deletes) and other advanced ope-

rations (initializes, cancels, confirms, etc.) can be useful for certain clients. Hydra defines

three types of operations CreateResourceOperation, ReplaceResourceOperation and De-

leteResourceOperation. Annotations on the data manipulated by the operation makes its

semantics explicit in order to allow a better exploitation by the client.

2.3.2.2 Describing RESTful Linked Service Links

Our descriptor-based solution allows generic clients to crawl from one resource to

another in order to select interesting resources to answer the user’s query. However, due to

the huge number of resources on the Web, there is a need to help the discovery algorithm

to only select the most interesting resources. We optimize our descriptions on links in

order to work with the BFS (Breadth First Search) algorithm, as this is the best general

crawling algorithm for the Web structure (We talk about this in detail in Chapter 3).

We introduce semantic annotations on descriptor links. The semantic annotations on

links will guide the algorithm by excluding irrelevant links to the current application and

taking into account the links that potentially point to resources that offer functionality

that can answer part of the user’s request. Fig 2.4 gives an example, relating to our

scenario, of the semantic annotation of descriptor links. The ontology namespaces used

for operations are for illustration purpose only, in a real world application the semantics

would be given by domain-specific vocabularies, since our description approach does not

impose any vocabulary to annotate operations.

As for describing links, the semantics are inspired from existing work [Maamar et al.,

2011b] to define the properties that link resources to each other. We define that :

— Two resources are similar if they provide functionally substitutable services, so-

metimes varying in terms of non-functional properties.

57

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

Chapter 2. Semantic Description of RESTful Linked Services

— Two resources are complementary if they can be combined in the same process

to answer user’s needs, for example : a flight booking service and a hotel booking

service inthe context of a trip.

— Two resources are incompatible if they cannot be involved together in the same

process because of a given reason, for example : the eBay online seller could decide

not to work with the UPS delivery company.

Since, our description model is modular and extensible, other types of semantic anno-

tation could be used to annotate links between resources, we chose this one in order to

support the discovery solution we propose in chapter 3.

2.3.2.3 Describing Service Data and Non-Functional Properties

In order for clients to be able to deduce the meaning of the data exchanged with the

service, annotating the data elements and the operation inputs/outputs is necessary. Our

description model does not impose any specific vocabularies for the description of data.

Description authors and service providers are free to use the domain vocabulary of their

choice, or the one most adequate to the business domain of the service.

As for non-functional properties, there are some research activities in order to define

common ontologies to describe the semantics of the properties. For the purposes of illus-

tration of our research, we chose to use a very simple ontology that defines semantics of a

limited number of chosen properties, but our model does not specify that service providers

have to use it in service descriptions. The minimal QoS model is defined and discussed in

chapter 3.

There are also some descriptions that need to be implemented in the descriptor as

well, but they are irrelevant in the context of our research, as our main focus is to allow

the automatic answer of a user’s request involving Web services. Such descriptions include

information about provider, human-readable description, provenance data, service area,

language, location, statistics, etc.

In order to support the traceability of discovery and composition processes in our

solution we can rely on the fact that resources can keep track of the interactions they

have been involved in, and publish these traces, after processing, via their descriptor.

Several possibilities exist to record resource interaction, such as storing the addresses of

incoming requests, these addresses may lead to other related resources which the provider

may add later by analysing this data. Another solution is to extract well-known mashups

from Web sites such as ProgrammableWeb and other similar data-bases and add links to

services that are used the most in conjunction with their own. How to build and maintain

58

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

2.3. Contribution : The Descriptor

such a list is out of the scope of our research work.

2.3.3 Guiding Discovery, Selection and Composition

We talked in previous sections about the important role the descriptions of a service

in determining how it is discovered and how it helps clients decide which service to call

upon for a certain task. In the following, we are going to explain how different description

parts contribute to discovering, selecting and composing services in order to answer the

user’s request.

Our solution relies on a generic client that interacts with the different services through

their respective APIs on one side and with the user through its GUI on the other. The

client needs to be able to automate the process of discovering, selecting and composing

the functionality of a number of services in order to answer the user’s query.

The main information that guides the discovery is the description of functionality

(operations/inputs/outputs) and links. The description of functionality helps the client

answer the questions :

— Does this service provide a functionality needed to perform a task required by the

user’s request ?

— What are the requirements on inputs ?

— What are the outputs/results to expect after I call upon the current service ?

For example, in our scenario it helps the client decide if the service currently being

discovered offers the possibility of buying a book online, offers shipping of books bought

from an online store or offers the possibility to make a cashless payment to an online

service.

The description of links helps the client answer the question : ”Where can I find

services that provide functionality similar or complementary to the current service ?” or

more generally ”Where can I find more services related to the current service ?”. This is

what allows the client to explore the huge graph of services on the Web. The efficiency

the of discovery algorithm depends on this information. The semantic annotations on the

links are what determines the order they are traversed and consequently the quality and

relevance of the results of discovery.

As for selection, the main information that drives the process is non-functional descrip-

tions about the services being discovered. It helps the client make the decisions regarding

whether or not the context of execution of the service is relevant to the user’s context and

also whether its quality of service attributes match the user’s expectations. For example,

in the context of our scenario the information about the service’s operating geographical

59

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

Chapter 2. Semantic Description of RESTful Linked Services

area, the book languages, the currency used, etc. is exploited by the selection algorithm

and compared to the user’s profile in order to compute the eligibility of the services dis-

covered to be used to perform the tasks required by the user’s request. Also, the clients

expectations in terms of pricing, availability, shipping delays, etc. are taken into account

by the selection algorithm and compared to the discovered services descriptions to filter

out the ones that are not up to the requirements.

When it comes to composition, after the discovery and selection processes have deter-

mined a service for each task, the composition algorithm starts orchestrating the different

calls to those services and handles the data flow between different operation inputs and

outputs. The descriptions of the semantics of the data resource representations as well as

operation inputs and outputs contain the information necessary to carry out this process.

In the example of our scenario, the client can determine with the help of these description

elements if the shipping service can deliver the user’s order on the book selling service,

knowing the order’s weight and dimensions for example. Also, it can determine if the

payment service can retrieve money from the user’s bank account and transfer it to the

vendors’.

We dedicate chapter 3 to a more detailed discussion about discovery and selection and

chapter 4 to a more detailed discussion about composition of services described according

to the mechanisms we detailed earlier in this chapter.

2.3.4 Applying the Description Mechanism to the Motivating

Scenario

The applicability of our description proposal and in particular that of the discovery

process is demonstrated with the help of our scenario presented in section 1.2. We im-

plement a generic client that takes advantage of the given descriptors in order to decide,

at every moment and according to the user’s needs, what resource links it should follow.

While interacting with the different resources, the generic client handles the application

state until it fulfils the user’s goal. The transitions of the application state are dictated

by the client on the basis of the representation and the description of the resource being

accessed as well as previous interactions with other resources. Figure 2.5 shows how our

generic client discovers the different resources needed in our scenario. The entry point,

which is the URI of the homepage of the book selling service, is given to the client that

follows the links in that resource searching for services and resources that can fulfil the

tasks dictated by processing the user’s request.

We present here the scenario and how it operates according to the elements of our

60

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

2.3. Contribution : The Descriptor

Shipments Payments

Orders

Books

Shipping
Options

Book selling
service

Online
payment
service

Shipping
service

Generic
machine-client

discovers

client

resource

Figure 2.5 – Service Discovery in our Scenario

contribution. Typically, a HEAD (or GET) HTTP operation on any resource should re-

turn the URI of the resource description (http://example.com/resource/resource.md,

where md stands for metadata) in the LINK field of the HTTP header, as described in

Fig. 2.1.

A GET operation on the URI of the link returns the descriptor, which is also a resource.

The descriptor contains links and all the necessary information about the sub-resources of

the resource it describes (for example containers), and about external related resources.

As we talk about a unified method for semi-automatic discovery, the descriptions of the

internal sub-resources and external ones are homogeneous and are processed the same

way on the client side.

The description allows the generic client to explore both internal and external inter-

action possibilities according to the information given on each resource. The client knows

what is the best HTTP operation to apply to the resource according to its needs and the

61

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

http://example.com/resource/resource.md

Chapter 2. Semantic Description of RESTful Linked Services

information available in the obtained description.

In the following, we present the resources modelled in our scenario and give their

corresponding URIs. The particular resources are stored in their respective repositories

(books, shipping options, shipments, payments) and have the following URI patterns :

— Particular book : /bookselling/books/book123

— Particular orders : /bookselling/orders/order123

— Particular shipping options : /shipping/options/option123

— Particular shipments : /shipping/shipments/shipment123

— Particular payments : /payment/payments/payment123

The interactions between the user/client and the different services are detailed in the

following. The user wants to browse the different books offered by the book selling service.

The book selling service URI is either chosen by the user at first as the entry point for

the client, or discovered by the client using the high level request given to it by the user,

using the entry point given. The book selling service allows the users to create a virtual

shopping cart and add books they browse to it. After the user is done picking up books,

the shopping cart is submitted and an order is created. The user has to chose a shipping

option for the delivery of his books. After that, he has to pay both the book vendor and

the shipping service provider via a payment service, where he has to enter his credit card

details (the client can also add this automatically or the payment service could offer to

auto-complete the details if the user gave permission to remember his details in a previous

purchase), and submit the payment that validates his purchase and terminates the book

buying process. From the point of view of the machine client, the steps necessary to carry

out such an interaction is detailed in the following.

Firstly, the user wants to browse book descriptions 55 (GET on books repository

resource) to select one or several book resources, whose detailed descriptions are then

stored client-side. The problem is that the client at first does not know the URI of the

books repository. It discovers this URI using the descriptor of the book selling resource.

The link to this descriptor is found in the HTTP response to a HEAD (or GET) operation

on the entry point, we suppose known by the client, represented by the URI of the book

selling service /bookselling/. More precisely, in the very beginning of the execution flow,

the client executes a HEAD operation on the entry point URI. It gets the URI that

corresponds to the describedby property attached to the Link Header field of the HTTP

response, which is /bookselling/bookselling.md in our scenario. Then, it performs a GET

operation on this link to get the descriptor of the book selling service. In this descriptor,

the client finds multiple links to other related resources. It chooses the one pointing at the

55. We refer here to the actual book description with its URI, author, title, price, and so on.

62

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

2.4. Implementation and Technical Design Choices

book repository using the semantics provided with the link and according to the user’s

needs. Another question that our contribution answers is : how does the client know what

HTTP operation to execute in order to obtain book descriptions. The answer is : the client

accesses the metadata on allowed HTTP operations and decides which one responds to

the objective of getting a book description, in this case it is the GET operation.

Secondly, there is a need to create an order (POST) on the orders repository

resource. The latter is referenced via the metadata contained in “bookseller.md” retrieved

from the book selling also exactly the same as the books repository resource. The

HTTP operation to execute is retrieved exactly as explained above. Once the order

resource created, it remains in the status “Unpaid”. It can be updated (PUT) to “Paid”

once the payment is confirmed. The client is not responsible for verifying whether or not

the payment is successful. This is achieved via automatic, inter-service interactions that

are out of the scope of our scenario 56. Then, the link to the shipment service is extracted

with the help of the “bookseller.md” resource that includes external resources.

Thirdly, a shipment option 57 is selected (GET) and a new shipment is created (POST)

and set to the status“Unpaid”, waiting for an update on the payment confirmation (PUT).

The shipment created is associated with the created order and the information necessary

for the delivery is also stored with it. The link to the “payment” service is also retrieved

by accessing the “bookseller.md” or “shipping.md” resource.

Finally, the payment resource is created (POST) using the user’s credit card or bank

account details and is submitted to the payment service, who then performs the necessary

bank transactions, and if everything is okay the payment is confirmed as effective and the

order and shipment resources are marked as paid.

2.4 Implementation and Technical Design Choices

In this section, we give the specification of our proposed solution for the description

of RESTful linked Services. First, we start by introducing JSON-LD, the data format

we use to represent our descriptions. We debate why it is suited to describe RESTful

Linked services, present its features, discuss its backwards compatibility with JSON and

enumerate its goals. The descriptor uses JSON-LD as a data format to present descriptions

in a machine-readable format to the machine clients and agents, in order to automate their

56. For the sake of brevity, we omit security concerns, but such an exchange may involve key sharing

and secured protocols such as Oauth (http://oauth.net/).

57. By shipment option, we mean the different modes of delivery this kind of services offer, such as

delivery under 24 hours, or one week, etc.

63

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

http://oauth.net/

Chapter 2. Semantic Description of RESTful Linked Services

service manipulation tasks. After that, we specify the structure of the descriptor which is

divided into four different parts : operation descriptions, link descriptions, non-functional

descriptions and data/service descriptions. Lastly we discuss and illustrate the structure

of the descriptor and the impact of the design choices we made.

2.4.1 JSON-LD

JSON-LD 58 [Sporny et al., 2014] is a lightweight Linked Data format. It is easy for

humans to read and write. It is based on the already successful JSON format and provides

a way to help JSON data interoperate at Web-scale. JSON-LD is an ideal data format

for REST-based Web services because it can be easily parsed into ready-to-use JavaScript

objects. As of now, JSON-LD is a W3C recommendation 59 and is still being developed 60.

The syntax of JSON-LD is designed specifically to integrate into deployed systems

that already use JSON, and provides a smooth upgrade path from JSON to JSON-LD.

Its design allows existing JSON to be interpreted as Linked Data with minimal changes.

JSON-LD is primarily intended to be a way to use Linked Data in Web-based programming

environments, to build interoperable Web services, and to store Linked Data in JSON-

based storage engines. Since JSON-LD is 100% compatible with JSON, the large number

of JSON parsers and libraries available today can be reused. In addition to all the features

JSON provides, JSON-LD introduces :

— a universal identifier mechanism for JSON objects via the use of IRIs 61,

— a way to disambiguate keys shared among different JSON documents by mapping

them to IRIs via a context,

— a mechanism in which a value in a JSON object may refer to a JSON object on a

different site on the Web,

— the ability to annotate strings with their language,

— a way to associate data types with values such as dates and times,

— and a facility to express one or more directed graphs, such as a social network, in

a single document.

JSON-LD is designed to be usable directly as JSON, with no knowledge of RDF. It is

also designed to be usable as RDF, if desired, for use with other Linked Data technologies

like SPARQL. Developers who require any of the facilities listed above or need to serialize

an RDF Graph or RDF Dataset in a JSON-based syntax will find JSON-LD of interest.

58. https://json-ld.org

59. https://www.w3.org/TR/2014/REC-json-ld-20140116/

60. https://www.w3.org/2018/jsonld-cg-reports/json-ld/

61. Internationalized Resource Identifiers https://tools.ietf.org/html/rfc3987

64

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

https://json-ld.org
https://www.w3.org/TR/2014/REC-json-ld-20140116/
https://www.w3.org/2018/jsonld-cg-reports/json-ld/
https://tools.ietf.org/html/rfc3987

2.4. Implementation and Technical Design Choices

People intending to use JSON-LD with RDF tools will find it can be used as another

RDF syntax, like Turtle. The syntax is designed to not disturb already deployed systems

running on JSON, but provide a smooth upgrade path from JSON to JSON-LD. Since the

shape of such data varies wildly, JSON-LD features mechanisms to reshape documents

into a deterministic structure which simplifies their processing.

JSON-LD is designed to satisfy the following goals :

— Simplicity : No extra processors or software libraries are necessary to use JSON-LD

in its most basic form. The language provides developers with a very easy learning

curve. Developers only need to know JSON and two keywords (@context and @id)

to use the basic functionality in JSON-LD.

— Compatibility : A JSON-LD document is always a valid JSON document. This

ensures that all of the standard JSON libraries work seamlessly with JSON-LD

documents.

— Expressiveness : The syntax serializes directed graphs. This ensures that almost

every real world data model can be expressed.

— Terseness : The JSON-LD syntax is very terse and human readable, requiring as

little effort as possible from the developer.

— Usable as RDF : JSON-LD is usable by developers as idiomatic JSON, with no

need to understand RDF. JSON-LD is also usable as RDF, so people intending to

use JSON-LD with RDF tools will find it can be used like any other RDF syntax.

— Zero Edits, most of the time : JSON-LD ensures a smooth and simple transition

from existing JSON-based systems. In many cases, zero edits to the JSON docu-

ment and the addition of one line to the HTTP response should suffice. This allows

organizations that have already deployed large JSON-based infrastructure to use

JSON-LD’s features in a way that is not disruptive to their day-to-day operations

and is transparent to their current customers.

2.4.2 JSON-LD and RESTful Linked Services

As the Web shifts towards the Linked Data, using JSON-LD as a data format yields

more benefits than the classically used XML-based formats in Web applications, since

XML-based formats are much more difficult to parse and also because JSON-based for-

mats can be parsed into ready-to-use JavaScript objects. In addition to that, using JSON-

LD as a data format in the Web of data allows for a full exploitation of the Linked Data

and Web of data potential, which remained, until the last few years, largely unexploi-

ted [Pedrinaci et al., 2010a] [Pedrinaci et al., 2010b]. Since JSON-LD is a concrete RDF

syntax, this means that descriptors are formally RDF graphs. JSON-LD supports Linked

65

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

Chapter 2. Semantic Description of RESTful Linked Services

Data principles and allows the use of vocabularies and name spaces to describe properties

with semantic annotations. JSON-LD is a simple format that offers easy and compatible

migration from JSON-based Web services along with the possibility of integrating Linked

Data into the service descriptions.

2.4.3 Hydra core vocabulary

Hydra [Lanthaler and Guetl, 2013] is a modular, lightweight and extensible vocabu-

lary aimed to describe RESTful Web APIs. Modular means that descriptions are broken

down into small, independent and reusable fragments, which allows partial retrieval of

descriptions if needed. Lightweight means that description models based on Hydra are

simple from a data and computation point of view, while remaining expressive. Exten-

sible means that more expressive semantic annotations can be added where needed. As

we discussed in section 2.2, lightweight solutions for description combined with the possi-

bility to provide custom extensions are superior to more complex models, in the general

context of the Web. The purpose of developing the Hydra vocabulary is to simplify the

development of RESTful APIs by leveraging the advantages offered by Linked Data by

augmenting service descriptions to support hypermedia controls to comply with RES-

T’s HATEOAS principle, since RDF does not support hypermedia natively. Hydra aims

at describing generic concepts such as Operation and Link and uses them to augment

resource representations.

Our description model is built upon the concepts introduced by the Hydra core voca-

bulary. We extend the basic descriptive structure supported by Hydra in order to allow

automatic service discovery, selection and composition. Although Hydra’s operations and

links support some degree of automation in service discovery, there is not enough semantic

annotations given to these elements to support a fully automatic service description in

a Web of resources. To this end, we dedicate more semantic annotations over operations

as well as links in order to support the machine client responsible for carrying out the

discovery process (cf. section 2.3 for more conceptual details). Also, we extend the Hydra

model with a QoS model to support the description of non-functional properties and allow

a fully automated selection process (cf. section 2.3). Combining the results of the discovery

and selection together with the data/service descriptions, the composition process can be

automatically carried out with a full knowledge of the semantics of the functionality as

well as the inputs/output of the different services involved in the composition.

66

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

2.4. Implementation and Technical Design Choices

2.4.4 Technical context of the specification

In order to demonstrate the feasibility of our proposals, we opted implement the ser-

vices and resources involved in the scenario we introduced in chapter 1. The method of

choice we opted for to implement the scenario services is Java Servlets using the Jersey

framework, which is based on the JAX RS API. Our IDE 62 of choice to organize and

edit the difference projects for each Java Servlet is Eclipse. In order to accommodate and

expose the Java Servlets representing services on the Web, we use Apache Tomcat as an

application server (Java Servlet container). We use Gson module in order to ensure the

serialization/deserialization of POJOs 63 into/from JSON(-LD). We also use JavaScript

in our generic client as a client-side scripting language.

2.4.4.1 Java Servlet

In a general context, a Java Servlet is a software component written in Java acting as

a server in a client-server architecture. It is capable of handling requests (most commonly

HTTP requests on the Web) and constructing a response to those requests. In other words,

Java Servlets are used to construct server-side Web applications in a request-response

interaction model, using Java.

In the context of our work, Java Servlets are used to construct RESTful services that

provide functionality on the Web. From the developer’s point of view, the servlet handles

all the HTTP requests targeted at the service they represent and at the sub-resources

contained within it. From the client’s point of view, the service provided by the servlet

is a set of individual resources each capable of responding to a determined set of HTTP

requests.

In order to host and expose the functionality provided by the Java Servlet, we need

to use a servlet container in order to handle the incoming request on a lower and more

technical level.

2.4.4.2 Jersey Framework

The Jersey 64 is an open source RESTful Web Services framework for developing RES-

Tful Web Services in Java. Jersey’s main goal is to simplify the development of RESTful

Web services and their clients in Java. It aims to abstract away the low-level details of the

62. Integrated Development Environment

63. Plain Old Java Object (or simply Java Object)

64. https://jersey.java.net/

67

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

https://jersey.java.net/

Chapter 2. Semantic Description of RESTful Linked Services

client-server communication and to seamlessly support exposing data in a variety of repre-

sentation media types. Jersey also exposes numerous extension APIs so that developers

may extend to best suit their needs.

In the context of our work, we use Jersey to implement and define the APIs of the

different scenario services, in the form of Java Servlets. It allows the handling of HTTP

requests such as GET, POST, PUT and DELETE as well as the representation of other

HTTP related concepts such as a URI path, media types, HTTP request body and header,

HTTP response body and header, etc.

2.4.4.3 Gson module

Gson 65 is a Java library that can be used to convert Java Objects into their JSON

representation. It can also be used to convert a JSON string to an equivalent Java object.

Gson can work with arbitrary Java objects including pre-existing objects that you do not

have source-code of. There are a few open-source projects that can convert Java objects

to JSON. However, most of them require that you place Java annotations in your classes ;

something that you can not do if you do not have access to the source-code. Most also do

not fully support the use of Java Generics. Gson aims to fulfill the following goals :

— Provide simple toJson() and fromJson() methods to convert Java objects to JSON

and vice-versa.

— Allow pre-existing unmodifiable objects to be converted to and from JSON.

— Extensive support of Java Generics.

— Allow custom representations for objects.

— Support arbitrarily complex objects (with deep inheritance hierarchies and exten-

sive use of generic types).

In the context of our work, we simply use Gson in order to serialize/deserialize Java

Objects in the Java Servlets into JSON-LD that is exposed on the Web as descriptions

and representations of the resources constituting the different scenario services.

2.4.4.4 Apache Tomcat

In the context of our work, Tomcat 66 is an open source Java Servlet container that can

host, expose and run server-side Java code provided by the said Java Servlets. In other

words, a Tomcat server represents the server-side application that receives and handles

HTTP requests from clients and executes the code provided by Java Servlets in order to

65. https://code.google.com/p/google-gson/

66. http://tomcat.apache.org/

68

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

https://code.google.com/p/google-gson/
http://tomcat.apache.org/

2.4. Implementation and Technical Design Choices

Operation Descriptions

Link Descriptions

Non-functional Descriptions
Performance
Availability
Rating
…

Data/Service Descriptions
Provider
Language
Data1
Data2
…

Operation1

HTTP Method1
Input1
Output1
StatusCodes1
Type1

Operation2

HTTP Method2
Input2
Output2
StatusCodes2
Type2

…

Link1

LinkURI1
Relation1

Link2

LinkURI2
Relation2 …

Figure 2.6 – Structure of the descriptor from a conceptual point of view

construct HTTP responses to these requests and return them to the requesting clients.

2.4.5 Specification of the descriptions

From a high level of abstraction, the descriptor of a resource is a data structure in

JSON-LD comprised of four different description aspects. Figure 2.6 illustrates the struc-

ture of a descriptor from this point of view.

2.4.5.1 Specification of the operation descriptions

This section presents how we describe the functional aspects of the resource being

described, by semantically annotating its operations and its inputs/outputs. This is the

69

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

Chapter 2. Semantic Description of RESTful Linked Services

descriptive information that allows users and clients to identify what a resource does in

the context of its service.

On a more technical level, the operation descriptions contain multiple descriptions for

each operation. Each operation description contains the properties defined by hydra na-

mely : the HTTP method, the inputs/outputs and the expected statues codes. In addition

to these properties, we introduce the Type attribute that allows to annotate the operation

in question with a semantic concept from a domain ontology matching the functionality

provided by the said operation. This property is the main guiding element for the au-

tomation of the discovery process. In other words, the discovery algorithm relies on the

Type property in order to determine whether or not the functionality provided by the

described operation matches with the discovery criteria.

Figure 2.7 illustrates the structure of a single operation description. If the resource

being described supports more operations, the descriptions for these operations can be

found alongside it. Note that we omit the definition of certain properties such as the

JSON-LD @context and @id for the sake of brevity.

Operation Description

{
…
"HTTP Method" : Method1
"Input" : {Input1, Input2, …}

"Output" : {Output1, Output2, …}

"StatusCodes" : {StatusCode1, StatusCode2, …}

"Type" : Type1
…
}

Figure 2.7 – Structure of a single operation description

2.4.5.2 Specification of the links descriptions

This section details the way we describe the links a resource contains, that point to

related resources. The links in question either point to internal resources related to the

functioning of the current resource or external resources that relate somehow to the service

that the current resource is part of.

On a more technical level, the link descriptions, like their operation counterparts, in-

clude multiple descriptions for each link available to other resources. Each link description

70

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

2.4. Implementation and Technical Design Choices

contains two properties : LinkURI and Relation. LinkURI contains the URI of the target

resource, and can be used by the client to access the resource and its descriptor. Relation

describes the nature of the relationship (the directed arc, if we talk in a graph context)

that binds the current resource with the target resource. As discussed in section 2.3 and

chapter 3, we chose to use values to express the compatibility between the services being

linked (Similar, Complementary, Incompatible). This choice was made in order to support

the Relation property and illustrate the feasibility of a fully automatic service discovery

based on semantic annotations on operations and links. Our description model remains

flexible and extensible however, meaning another set of values can be used instead as long

as it provides a solid base upon which the discovery algorithm can discover new services

that perform the functionality needed by the client. Our link descriptions differ from the

link descriptions provided by Hydra because we think that Hydra links are lacking the

necessary expressivity to support a fully automated service discovery process.

Figure 2.8 illustrates the structure of a single link description. More link descriptions

can be found alongside if the resource has other links.

Link Description

{
…
"LinkURI" : URI1
"Relation" : Relationship1
…
}

Figure 2.8 – Structure of a single link description

2.4.5.3 Specification of the non-functional descriptions

In this section, we present the details of the non functional aspects descriptions and

their semantic annotations. As we stated in section 2.3 and chapter 3, we do not use

a complete Quality of Service model, but only a minimal one to demonstrate how the

selection process filters out the unwanted services located by the discovery process, on the

fly.

On a more technical level, the non-functional descriptions contain quality of service

properties. As discussed in chapter 3, the QoS model we went with is minimal and only

serves an illustration purpose. Again, the flexibility and extensibility of our proposal allow

the use of a more elaborated QoS model that better reflects the simple and more intricate

71

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

Chapter 2. Semantic Description of RESTful Linked Services

business-level quality properties and requirements that have to be up to the level required

by the user. What is important is that the properties represented in this part of the

description can be compared with the user requirements in order to filter out undesired

services that do not match with user expectations.

Figure 2.9 illustrates the non-functional descriptions using the minimal QoS model

presented in chapter 3.

Non-functional Descriptions

{
…
"Performance" : Value1
"Availability" : Value2
"Rating" : Value3
…
}

Figure 2.9 – Structure of non-functional descriptions

2.4.5.4 Specification of the data and service descriptions

We detail, in this section, the way data and service element descriptions are presented

in the context of their resource descriptor. These descriptions include the semantic an-

notations given to different data and service related properties contained in the resource

representation. These descriptions are important because they allow the client that in-

vokes the service to understand the meaning of the data the resource provides. They also

allow the client to access important service related information such as provenance and

service statistics.

Figure 2.10 illustrates the general structure of data and service descriptions within

their resource descriptor.

2.4.6 Summary

We presented in this section the specification for our proposed contribution. We de-

monstrated how service descriptions are separated and represented in JSON-LD. JSON-

LD descriptions ensure backwards compatibility with systems that already work with

JSON, whose popularity is increasing with the rise of RESTful APIs as the dominant

service-oriented implementation. JSON-LD is also a developer-friendly format due to its

72

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

2.5. Conclusion

Data/Service Descriptions

{
…
"Provider" : ProviderValue
"Language" : LanguageValue
…
"Data1" : Value1
"Data2" : Value2
…
}

Figure 2.10 – Structure of data and service descriptions

inherent simplicity and terseness in addition to supporting Linked Data and RDF for

more expressive and semantically annotated descriptions. We also discussed how we reuse

the Hydra core vocabulary in order to support and extend the notions of Operation and

Link. We explained how we extend the Hydra concepts in our descriptors to support a

fully automated discovery, selection and composition of RESTful Linked Services. We de-

tailed and illustrated the different descriptive information contained within the descriptor

and explained the role each description plays and we explained how the flexibility and

extensibility of our solution allows for more detailed and expressive descriptions when

needed.

2.5 Conclusion

In this chapter, we studied the different research activities aimed at describing RES-

Tful linked Web services. We highlighted the difficulties the research community had in

describing RESTful services and integrating the descriptions with the emerging Linked

Data publication practices. We revealed that the classic Web service description models

are obsolete in the context of a RESTful architecture and that more lightweight, modular

and extensible solutions for descriptions are superior. However, even the later solutions

showed some limitations, mainly due the fact that they do not adhere to the full set

of constraints advocated by the REST architectural style, or they focus on either over-

describing links or operations and ignoring other important descriptive information.

We sketched a description model that allows the integration of the RESTful service

orientation with Linked Data practices and the semantic Web and we proposed a novel

approach to concretely describe RESTful linked Web services, we dubbed Descriptors. Our

73

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

Chapter 2. Semantic Description of RESTful Linked Services

proposal relies on the information needed to answer a complex user request in order to

identify exactly what information needs to be present in the description of a Web service.

We identified that interaction models and interlinking of resources in services are the most

important aspects that drive client discovery of new services to answer the user’s request.

Thanks to this description mechanism the client responsible for answering the user’s

request can carry out the process by exploring descriptions of discovered services and

decides if it is useful or not and if it is how is the client going to use it thanks to the

semantic annotations. With the help of the scenario, we demonstrated the feasibility of

our contribution and how we overcame the challenges.

Our proposal consists in attaching a descriptor resource to each Web service. A link to

the descriptor is obtained from the LINK header of a HTTP HEAD (or GET) response

from the resource URI. Ultimately, all resources including descriptors need to be described,

which led us to conceive a universal descriptor describing all descriptors of resources

including itself. A resource descriptor contains useful information about the service, its

operations, its behaviour and the related services.

A descriptor contains useful information about the resource and how it interacts with

clients and other resources. It contains links and information about how other resources

relate to it. By following these links and making use of the available information about the

available operations, the client handles the discovery, selection and composition processes

in order to fulfil the user’s objectives.

The generic client is responsible for carrying the process of answering the user’s request

by accessing resource descriptions, discovering new resources, selecting the relevant ones

and carrying our the data exchanges from one resource to another to finally show the

results to the user.

From another perspective, our resource/descriptor model implicates separating the re-

presentation and the description aspects of a service. This separation several implications.

The most notable one is that accessing the descriptive information requires two HTTP

operations : the first one on the service URI itself and the second one on the resource’s

descriptor URI. The drawback is that extensive accessing to different services generates

additional computing time for the Web client because the first time it performs an ad-

ditional operation in order to gain access to the descriptor contents. This drawback, in

our view, is largely compensated with the fact that the description process of already

existing resources can be performed incrementally with minimal effort and knowledge of

the intricacies of the semantic Web technologies.

The design of new services is also simplified by the fact that separation of represen-

tations and descriptions follows the guidelines of the separation of concerns advocated

74

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

2.5. Conclusion

by Dijkstra. Also, additional access to the same resource now require less actions (and

thus less computing time) thanks to the cashing mechanisms which are guaranteed by the

principles of REST. This means that accessing the same resource in order to execute a

repetitive user’s request, for example, will have a positive impact on the response time.

As a future work, a response time study could be made comparing different setups

where resource representations and descriptions are either separated (like in our proposal)

or merged (while keeping the descriptor structure, or embedding descriptions directly into

service elements). Different scenarios can be taken into consideration where resources are

either accessed repetitively for the same (or similar) task or where resources are diverse

and rarely accessed twice.

In the remainder of this thesis, we show how we use this descriptive information in

order to facilitate the discovery of services and help make decisions in the selection process

about what services to be selected for the different tasks. We also show how the description

of data and inputs/outputs of operations help carrying out the composition process.

The next step in our work is to carry out the discovery and selection processes given

the information present in descriptors.

75

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

Chapter 3

RESTful Linked Service Discovery

and Selection

Contents

3.1 Introduction . 78

3.2 Related Work : Discovery and Selection 80

3.2.1 State of the Art of Service Discovery 80

3.2.1.1 Centralized Discovery of Classic Web Services : UDDI 81

3.2.1.2 Discovery of RESTful Web Services 82

3.2.1.3 Social-Based Discovery Model : LinkedWS 83

3.2.1.4 Graph Discovery Algorithms 84

3.2.1.5 Synthesis . 85

3.2.2 State of the Art of Service Selection 86

3.2.2.1 Quality of Service in Service Oriented Web 86

3.2.2.2 QoS-Based Web Service Selection 87

3.2.2.3 Synthesis . 88

3.3 The Description Role in Discovery and Selection 89

3.3.1 Descriptive information guiding the discovery and selection . . 90

3.3.2 A minimal QoS model for Web resources 91

3.3.3 QoS-based resource selection problem specification 91

3.4 Contribution : HATEOAS-Based Discovery Algorithm 92

3.5 Contribution : On-the-Fly Selection Algorithm 94

3.6 Discussion and Evaluation . 96

3.7 Conclusion . 99

77

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

Chapter 3. RESTful Linked Service Discovery and Selection

Automating discovery and composition of RESTful services with the help of semantic

Web technologies is a key challenge to exploit the full potential of today’s Web. Recently,

resource oriented computing has changed the way Web applications are designed. Because

of the increasing number of RESTful APIs, centralized repositories are no longer a viable

option for discovery. As a consequence, a decentralized approach is needed in order to

enable value-added applications.

In this chapter, we show how semantic annotations on resource descriptions can drive

scalable discovery algorithms on the Web. We propose a semantically-enabled variant

of the BFS discovery algorithm that aims at minimizing the number of links explored

while maximizing result diversity. Our algorithm calculates semantic distances between

resource descriptions and user request concepts to rank explored resources accordingly.

We demonstrate the applicability of our solution with the help of the motivating scenario.

At the same time, since the graph of services the discovery algorithm traverses is not fully

visible at the start, we propose a client-side QoS-based selection algorithm that can be

executed along with the discovery process. Our solution provides different setups based

on the skyline approach to select resources and maintain acceptable time performance.

3.1 Introduction

The subject of service discovery has seen a fair amount of research activity since the

introduction of Web services. With the introduction of the service orientation to the Web

at large, there has been a lot of work in order to propose solutions that allow a scalable

way of discovering functionality on the Web. The introduction and emergence of the Lin-

ked Data and the semantic Web technologies has allowed the interlinking of huge amounts

of semantically annotated data on the Web, which prompted the need for software that

provides functionality to process this huge amount of data. The advent and spread of

RESTful APIs has allowed to provide such functionality on an architecture that is sca-

lable, and Linked Data allowed the semantic interoperability on the data level. On the

service level however, there has been a lot of research in order to allow the interopera-

tion of heterogeneous services in the form of description models to describe syntactically

and semantically the functionality of services so that clients and automated agents could

discover functionality that processes the huge amount of linked data on the Web.

The discovery of functionality on the Web in the form of service discovery has been

hampered by the fact that no solution to describe Web services has gained enough trac-

tion with the service providers to overcome the heterogeneity on the service level. The

78

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

3.1. Introduction

majority of RESTful services are only described in human-readable labels and in order

to use their functionality there is a need to perform manual discovery in centralized API

repositories or using general purpose search engines, both come with a hefty amount of

drawbacks. Semantically described RESTful services are not very common and use hete-

rogeneous description formats and vocabularies for annotations, which does not make the

task of automatic discovery easy for clients and agents, which have to be hardcoded with

some domain-specific ontologies and description format-dependant code in order to allow

the interoperation of the services in question. Besides, fully semantically described Web

services have never really left the academic research area to gain wide adoption on the

Web for the reasons explained above.

In short, the discovery of services and functionality on the Web scale has either been

achieved by (1) description format-dependant algorithms which discover only the services

that use that description format and consequently suffer from its disadvantages or (2)

general-purpose discovery algorithms that do not fully exploit the potential and power of

the technologies of semantic Web and Linked Data (semantic interlinking and annotations

on links, data and operations).

At the same time, service selection plays an important role in helping the users to

automatically choose, from numerous and varying candidates, the services that will carry

out the tasks required by their request. Selection is based on the non-functional descrip-

tions and the Quality of service attributes as well as the user’s context, preferences and

settings. In a distributed environment, where the entire set of services to choose from

is not known at the beginning of the discovery process, it is necessary to continuously

compare the new services discovered to the ones the client has already selected in order

to determine whether or not the freshly accessed services are better suited to answer one

or more of the user’s task.

In chapter 2, we presented a description model that allows the semantic annotation of

service aspects such as functionality provided (operations) and interlinking. We discussed

its simplicity, modularity, extensibility and the reasons we think it would be a beneficial

approach to establish as a standard for describing RESTful APIs on the Web. We believe

that if a similar model were to be largely adopted by the RESTful linked service provi-

ders, it would allow easy, scalable and robust discovery of functionality on the Web. The

adherence of service providers to this description model and to quality of service models

would also provide a solid base upon which a fair market of services would be offered to

the users on the Web to allow automatic discovery and composition of functionality on a

semantic Web of services.

In this chapter, we introduce a set of algorithms for discovering and selecting se-

79

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

Chapter 3. RESTful Linked Service Discovery and Selection

mantically described resources. As we work in the context of resource oriented Web, the

discovery of new resources that can potentially participate in answering the user’s request

is done progressively following the principle of HATEOAS. We rely on semantic annota-

tions developed in previous work [Bennara et al., 2015b] to describe resources. Such des-

criptions include data-related semantic annotations, available HTTP operations, relations

with other resources and non-functional service properties. We also rely on breadth-first

search algorithm combined with a skyline-based approach [Borzsony et al., 2001] to select

the appropriate resources while maintaining acceptable performance.

The remainder of this chapter is organized as follows : section 3.2 presents the state

of the are of service discovery, section 3.2.2 presents the state of the are of service selec-

tion, section 3.3 details the important role the descriptions play in guiding the processes

of discovery of functionality and selection of services that provide the functionality, sec-

tion 3.4 presents our contribution for the problem of discovery, section 3.5 presents our

contribution for the problem of selection and in section 3.6 we discuss and evaluate the

different proposals and contributions.

3.2 Related Work : Discovery and Selection

3.2.1 State of the Art of Service Discovery

Discovery of classic RPC Web services has seen a fair amount of research activity

dedicated to it with a lot of solutions that allow discovery of Web services based on

functionality, inputs and outputs. Some solutions propose centralized registries like UDDI,

which simplified the process of discovery but proven to scale poorly especially in an open

environment like the Web. Centralized solutions have only been successful in the enterprise

environment, where services are exposed only to a limited amount of users within the same

business.

Distributed versions of these centralized solutions have been proposed, but they did

not provide the needed scalability for the increasing amount of data and users on the

Web, plus they still suffered from the same problems as their centralized counterparts.

This sparked the need for completely different class of solutions where the services are

completely distributed, no central repository or registry exists. These solutions rely on

the interlinked nature of the Web and huge amount of data sources and services that refer

to each other using hypermedia links.

The emergence and spread of RESTful APIs and the advent of the Linked Data as

a standard for publishing structured data on the Web has prompted the need to create

80

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

3.2. Related Work : Discovery and Selection

service descriptions that comply with the constraints imposed by REST architecture and

Linked Data. Researcher have started realizing the potential of integrating the two stan-

dards together in order to achieve the automated discovery and composition of functiona-

lity on the World Wide Web. However the heterogeneous description formats proposed by

the research community, and the non adherence of the service providers to any of them

at a significant scale, has hampered this ambition and researchers have started proposing

discovery solutions based on their own description formats.

In the following, we present some of the solutions researchers have proposed in order

to address the problem of service discovery on the Web, and in RESTful resource oriented

Web in particular.

3.2.1.1 Centralized Discovery of Classic Web Services : UDDI

Universal Description Discovery and Integration [Clement et al., 2004] or UDDI was

the standard for the discovery of Web services based on the XML stack of technologies

(SOAP and WSDL). It was established as a standard by OASIS 67. It was used as a

centralized registry for businesses and enterprises to publish the WSDL descriptions of

the interfaces of the Web services they provide.

The discovery of services using UDDI was done in a centralized manner, meaning that

all discoverable services were available at once in the registry. The client performing the

discovery could do so based on the interfaces described by the WSDL descriptions together

with the other information regarding the service provider and its context. The discovery

process was relatively simple, given the centralized nature of the registry, but the diversity

of the results was limited by the fact that new service providers have to register themselves

before making their services available for discovery. This allowed popular and influential

services to gain monopoly on certain service applications and slowed the emergence of

new service providers for those applications.

UDDI suffered from a considerable amount of drawbacks, hindering its applicability on

the Web, most notable of which are its non scalability in a huge information environment

and also its technical problems such as being a Single Point of Failure, meaning that if

the access to the centralized registry is blocked the discovery of the services within it

becomes impossible. Some semi-decentralized solutions where clusters of UDDI registries

are exposed rather than a single massive registry, but they suffered from the same problems

and introduced more complexity to the solution such as synchronisation between the

different separate registries and registry consistency.

67. https://www.oasis-open.org/

81

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

https://www.oasis-open.org/

Chapter 3. RESTful Linked Service Discovery and Selection

3.2.1.2 Discovery of RESTful Web Services

RESTdoc

RESTdoc [John and Rajasree, 2013] is a description solution that combines multiple

micro-formats in order to semantically describe RESTful resources. For a more detailed

discussion about the description model of RESTdoc, refer to the state of the art section in

chapter 2. The discovery mechanism proposed by the authors of RESTdoc allows locating

related or similar services given a description of a particular service. It distinguishes two

different aspects of RESTful service discovery problem :

— The discovery as a client concerns the client-side browsers. This is the mode of

discovery we address in our research, it describes how a machine client can discover

new services and resources using the representation and the description of the

service being currently browsed. It relies on HTML Link element on a Web site

in order to point to other resource descriptions. Since RESTdoc descriptions use

microformats and are embedded directly to the service’s representation, the client

is guided directly by these annotations in order to determine whether or not the

links being provided are relevant to the current search.

— The discovery as a service which is is the ability for a service to access and link to

other related resources in the same application domain. This mode of discovery can

be used by services themselves in order to locate other related or complementary

services that can be linked to in their representations. This can also be used by ser-

vices that require other services to perform their functionality, but the availability

of the services they usually cooperate with is not guaranteed. This is achieved by

building a sub graph of related resources and storing it for later access where the

graph is traversed by the discovery mechanism and the services that are needed

are called upon.

The discovery solution provided by RESTdoc relies on the semantic annotations atta-

ched to the HTML elements in the services being described. This means that if a service

on the Web does is not described according the description format advocated by RESTdoc

this discovery mechanism cannot be applied. In other words, although the discovery solu-

tion describes a fully peer to peer mechanism, it is dependant on the description format

and is thus not applicable to the entirety of services on the Web. In addition to that, RES-

Tdoc description proposal imposes service providers to provide the semantic annotations

on the actual service and resource representations, which is not an easy and incremental

approach to describe the services, and thus their visibility to general purpose discovery

algorithms will be limited.

82

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

3.2. Related Work : Discovery and Selection

RESTdesc

RESTdesc [Verborgh et al., 2011a] is a work about semantic description of Web APIs

based on the Notation3 RDF syntax. The purpose of the description is to allow for an

efficient way to discover the features that Web APIs offer, based on their functionality

instead of the classic approach of input-operation-output. It uses operational semantics

of Notation3 in order to allow a flexible discovery thanks to the powerful and robust N3

reasoners.

Similarly to RESTdoc, the descriptions of services and resources in RESTdesc allow

the discovery algorithm to access the semantic annotations on different service elements in

order to determine whether or not the service matches the search criteria. The important

difference here, is that RESTdesc descriptions are external to the actual service represen-

tations. This means that general purpose discovery algorithms can be easily repurposed

in order to use RESTdesc descriptions as the determining factor in the discovery process.

This is made possible by the fact that such descriptions can be integrated with services

easily, and are made available through different mechanisms such as the HTTP method

OPTIONS, for example.

Furthermore, RESTdesc is all about explicitly describing functionality. This simplifies

the discovery algorithm by comparing the functionality description published in the servi-

ce’s description with the functionality required in order to to perform the task in question.

Also, RESTdesc describes preconditions and postconditions of the said functionality, mea-

ning that if the preconditions of the application state meet with the preconditions of the

service being discovered, it can be called upon to make the transition to the next appli-

cation state where the postconditions of the functionality become new preconditions for

the next iteration, and so on.

Although adding RESTdesc’s functionality oriented descriptions to services can be

achieved relatively easily, the problem lies in the inherent complexity of such descrip-

tions. Despite Notation3’s logic-oriented syntax and the powerful tools built around it,

the knowledge threshold and effort required to describe services using this description

format is considerable and adhering to this description format on a wide scale would be

costly for service providers.

3.2.1.3 Social-Based Discovery Model : LinkedWS

LinkedWS [Maamar et al., 2011b] is a Web service discovery model based on human

interactions in social networks in the context of a service oriented architecture. The idea

behind LinkedWS is to establish a social network of Web services where nodes are actual

83

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

Chapter 3. RESTful Linked Service Discovery and Selection

Web services and edges are relations between these Web services. It describes the relation-

ships between services on the basis of the interactions that happen between them, using

a model based on social relationships between people in social media networks. In other

words, the approach proposed analyses the interactions between services in the same way

the interactions and relationships between people in social media networks are establi-

shed, and creates relationships between services in order to facilitate their discovery once

the discovery algorithm accesses a service in the network.

LinkedWS takes advantage of the advances of social media networking, that has seen

a considerable and fruitful research activity in the last few years, and establishes a model

to enable a scalable discovery of service functionality. It promotes the use of relation-

ships between services such as substitutions (services that offer the same functionality,

that can be substituted to each other) and collaborations (services that can collaborate

together to provide a value-added composite service). This supports both the discovery

process and the selection process. In case the automated client want more candidates for

a given task, it can explore the similar services in order to discover more services that

can perform the task in question, and if the selection process filters out a certain service

because its non-functional properties do not comply with the user’s context, services that

can be substitutes for it may have the desirable non-functional properties to satisfy the

users needs. Also, in order to discover more services that perform other tasks, which are

potentially complementary and are usually performed in collaboration to answer certain

popular user requests, the links to complementary services are explored. Complementary

services are services that are usually called upon in the context of frequent requests, such

as booking a flight to a given city and a hotel room in the same city. The establishment

of such links with semantic annotations indicating their relationships to other services,

which can potentially be used in collaboration with them, is a major enabler for a scalable

and distributed discovery of services in a resource-oriented Web.

What is really important about this proposal in the current chapter is the categori-

zation established on exposed functionality. We use a similar model in order to annotate

semantic links in our service descriptions, and we build our discovery solution upon these

semantic annotations in order to propose a scalable and semantically enabled discovery

algorithm.

3.2.1.4 Graph Discovery Algorithms

Exploring very large graphs such as the Web requires efficient algorithms in order to

have acceptable response times. As we are discovering resources on the Web, the effi-

ciency of the exploration algorithm is one of the most important elements of our research

84

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

3.2. Related Work : Discovery and Selection

work. Practically the classic algorithms are not used as such because they may result in

important response times due to the Web size. Instead, variants of these algorithms are

used with specific parameters (often limiters) in order to yield reasonable response times

and acceptable results. The most known examples of algorithms are Breadth First Search

and Depth First Search algorithms. Other algorithms include variants of these two with

limiting parameters, for example limiting the depth of the search (number of consecutive

edges counting from the root) also known as depth-limited search or limiting the total

number of nodes accessed during the whole process [Russell et al., 1995] [Förster and

Wattenhofer, 2012].

According to [Najork and Wiener, 2001] the Breadth-First Search graph traversal

algorithm yields high-quality pages early on in a crawl. In other words, the most relevant

pages/resources to the search are discovered early on in the process. In our work, this

means Breadth-First Search finds the most relevant resources to answer a user’s request

by finding multiple (or single) resources that can perform the tasks needed in order to

answer the request. In addition to that, Breadth-First Search is a very natural search

strategy in the context of Web. Also, compared to other efficient search algorithms, it has

a relatively low computational cost for a large scale graph such as the Web.

3.2.1.5 Synthesis

As centralized solutions for discovery of services on the Web has proven to be in-

sufficient to cope with the huge and increasing amount of service being exposed, new

approaches began to emerge to enable scalable discovery of functionality on the Web.

Furthermore, the emergence of Linked Data and semantic Web compliant service des-

criptions has opened new challenges to allow a semantically-enabled service discovery.

The bottom line from our bibliographical RESTful linked service discovery is that the

formalism of service description highly influences the efficiency of the discovery process.

Although some proposals specify description models that can more or less be easily inte-

grated with existing services, semantically-enabled discovery remains a difficult scientific

lock to address due to the heterogeneity of the description formats used by the services

on one hand, and the slow adoption of said description formats on a large scale.

The application of efficient general-purpose discovery solutions to allow a semanti-

cally enabled discovery depends on the simplicity of the description format used, this is

why lightweight, modular and extensible description formats are considered superior to

complex and verbose ones. The description model we proposed in chapter 2 is specifi-

cally aimed at simplifying the application of these general-purpose graph traversal and

discovery solutions on services described using our proposal.

85

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

Chapter 3. RESTful Linked Service Discovery and Selection

The contribution we propose in this chapter relies on exploring the semantic annota-

tions over the links between resources, which are found in descriptors, in order to guide

the discovery process into the links with the most potential to match with the request

concepts. We reuse the Hydra core vocabulary in order to establish these descriptions.

However Hydra does not provide a good support for semantic annotations over links and

operations. We extend hydra in order to allow resources description to have semantically

annotated elements that can be exploited by discovery, selection and composition algo-

rithms in order to enable a completely automated process to answer user’s requests. The

simplicity of our solution lies in the separation between resource representation and des-

cription as well as the separation between links and operations in the descriptions. In

order to discover resources that can answer the user’s request, the generic client has to

start exploring the description of the resource given as an entry point by the user. Based

on the semantic annotations given by the description, the decision making of (1) whether

or not to account the current service in the final composition and (2) what are the next

resources to explore is easy to establish.

3.2.2 State of the Art of Service Selection

Selection of services has been an active research topic since the spread of Web services

in the World Wide Web. Quality of service data about different services and service

providers has been the main deciding factor in selection algorithms proposed, together

with the user preferences and requirements. Capturing these two aspects has also been

a topic that interested researchers that worked on service description and Web client

interactions. A lot of models for quality of service have been proposed as well as models

to capture user preferences when it comes to service usage. In the following we are going

to present key research proposals that address the problem of quality of service modelling

and service selection.

3.2.2.1 Quality of Service in Service Oriented Web

During the last years, the description of the non-functional properties of services as well

as quality of service attributes has seen a considerable research activity by the research

community.

Ran [Ran, 2003] proposed a model for QoS in Service oriented Web that divides QoS

attributes into several different categories. This is one of the efforts to provide a complete

set of attributes that describe the QoS aspects of a service. It is designed for the service-

oriented architectures and particularly the Web. It proposes an extension to UDDI in order

86

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

3.2. Related Work : Discovery and Selection

to support non-functional properties of Web services in the descriptions published on the

registry. Also, the authors propose the role of certifiers, which take the responsibility to

verify the QoS claims of different service providers, similarly to how rating agencies rate

the quality of real life services in various domains.

Although the quality of service model proposed here is aimed for the classic Web

services, it is very much relevant to RESTful services in the context of semantic Web. The

non-functional aspects of services need to be described semantically however, in order

to allow the automated clients and agents to reason about their meaning and allow the

comparison with the user’s requirements. A semantically-enabled QoS model based on the

model proposed here could be established in services descriptions in order to automate

the selection process.

AgFlow [Zeng et al., 2004] is a solution that enables quality-driven discovery and

composition of Web services. The authors propose a model to collaboratively evaluate the

overall quality of service of a composite service, where each task is potentially performed by

a service from a different provider. It proposes two interesting different approaches to select

Web services for a given task within a composite service. The local optimization approach,

on one hand, suggests to perform the selection of the best candidate for a given task solely

in the context of that task. In other words, the other tasks and the services to be selected

for them are not taken into account when filtering out the candidates that can perform a

given task. In this approach the selection is left to the last possible moment until all the

available candidates are known, and then the selection process is executed. Although the

QoS is maximized for each individual task, the overall QoS, which is calculated using the

proposed model, can be suboptimal. In the global planning approach, on the other hand,

the selection is done for each task individually but by taking into account the other tasks.

This ensures that the overall QoS of the composite service is optimal This also allows the

automated client to readjust the selected candidate for a given task while discovering new

services.

Using the global planning approach to carry out the selection process is an interesting

take on the selection problem, but the computations to ensure such criteria can be very

costly when the composite service involves a large number of tasks.

3.2.2.2 QoS-Based Web Service Selection

The problem of selection of Web services is a part the composition process that in-

volves the QoS aspect to choose the most suitable services for the user. Finding the optimal

solution for this problem with multiple QoS constraints is a NP-hard combinatorial op-

timization problem [Yu et al., 2007]. This problem can be modelled as follows : the user

87

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

Chapter 3. RESTful Linked Service Discovery and Selection

emits a request that requires several Web services to be answered. The solution for this

request is divided into several tasks, every task can be performed by a single Web service.

For every task, the client can potentially discover several candidate Web services. Finding

a solution amounts to choosing the best candidate for each task in order to obtain the

highest overall QoS, or choosing the best candidates to ensure the maximum overall QoS

for the composite application. In our research, we follow a different setup where the search

space of candidates progressively discovered by following links between resources.

Wang et al. [Wang et al., 2011] propose an approach for selecting services based on

Generic and Domain-related QoS attributes (DGQOS). Generic QoS attributes (GQoS)

can apply on any type of Web service. Domain QoS attributes (DQoS) apply only on a

certain class of Web services. The authors define evaluation models for DQoS and GQoS

attributes, which help calculate the overall QoS of composite Web services based on its

components. They use the C-MMAS (Cultural Min-Max Ant System) algorithm in order

to solve the selection problem.

Alrifai et al. [Alrifai et al., 2010] propose a solution for selection Web services based

on the skyline approach. The goal is to identify for each task the services that will never

be part of the final solution simply because they are outclassed by another candidate

service in every QoS-related aspect. The authors try to keep the set of candidates as

small as possible in order to apply constraint optimization algorithms to obtain the best

solution. They also propose a solution to further reduce the size of the set of candidates by

identifying representative candidates that replace a subset of candidates that have similar

QoS parameters.

3.2.2.3 Synthesis

Many models to capture the non-functional properties of services have been proposed

in the literature. Semantically-enabled selection can be achieved on the basis of such

models, by allowing the semantic annotation of the QoS attributes exposed in service

descriptions. Also, many solutions have been proposed to filter the discovered services

and choose individually or collectively the set of candidates for each task in order to

achieve the maximum satisfaction of the user’s requirement.

In the context of RESTful Web services, the set of candidate resources to be selected is

progressively discovered, since the graph of the possible service candidates is traversed by

the discovery algorithm, and is not visible from the start. In fact, the setup of a centralized

registry for all resources is not adapted to the distributed and large scale nature of the

Web. Therefore, the discovery process gradually discovers resources that can fulfil a given

task and does not have all the candidates until the end of the algorithm. Plus, the space

88

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

3.3. The Description Role in Discovery and Selection

of solutions expands as the discovery algorithm finds new candidates which increases the

computational cost of the selection process. Here, we face two possibilities. The first one is

to run the selection algorithm while the discovery algorithm is exploring the resources on

the Web. When a new candidate is discovered, it may be a part of the final solution. The

second possibility is to run the selection algorithm at the end after having all candidates

for every resource, the selection algorithm is run a single time after the end of the discovery

algorithm.

Also, the criteria for the selection can be defined on the local (per task) level or the

global (the entire process) level. A middle-ground would be dividing the process into

sub-processes where the dependencies between the tasks are stronger inside a sub-process

than between tasks in different sub-processes. Regardless, there is a trade-off to be made

between computational costs and best overall QoS for the composite application.

3.3 The Description Role in Discovery and Selection

Our descriptor-based solution allows generic clients to crawl from one resource to ano-

ther in order to select interesting resources to answer the user’s query. However, due to the

huge number of resources on the Web, there is a need to improve the discovery algorithm

that we use (i.e. BFS [Kozen, 1992]) to only select the most interesting resources. The

vocabulary we use to implement the descriptor concept is Hydra core vocabulary [Lantha-

ler and Guetl, 2013]. We introduce semantic annotations on descriptor links, and extend

the BFS algorithm to take advantage of these annotations. The semantic annotations will

guide the algorithm by excluding irrelevant links to the current application. Fig 3.1 illus-

trates the semantic annotation of descriptor links. Our semantic annotation is inspired

from existing work [Maamar et al., 2011b] to define the properties that link resources to

each other. We define that :

— Two resources are similar if they provide functionally substitutable services, so-

metimes varying in terms of non-functional properties.

— Two resources are complementary if they can be combined in the same process

to answer user’s needs, for example : a flight booking service and a hotel booking

service in the context of a trip.

— Two resources are incompatible if they cannot be involved together in the same

process because of a given reason, for example : the eBay online seller could decide

not to work with the UPS delivery company.

89

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

Chapter 3. RESTful Linked Service Discovery and Selection

Operations

GET bs:consultBooks
PUT bs:updateBookList

bs: http://soc.univ-lyon1.fr/bookselling.owl
rr : http://soc.univ-lyon1.fr/resourcerelation.owl

 Links

http://amazon.com rr:IsSimilar
http://dhl.com rr:IsComplementary
http://paypal.com rr:IsIncompatible

Figure 3.1 – Descriptor example with annotated links

3.3.1 Descriptive information guiding the discovery and selec-

tion

Our solution builds a generic client that interacts with the resources through their

respective APIs. The client software program needs to be able to automate the process

of composing the functionality of the three resources of the scenario to answer the user’s

query. This includes the discovery of the resources. The maximum number of similar

links to be operated can be limited in order to increase the performance of the BFS

algorithm. However, this will limit the choices given to the user. A compromise between

performance and result diversity is to be established using this parameter.

We also propose a solution inspired by the weight-based approach presented in [Ge

and Qiu, 2008] in order to :

— Sort the links on a resource description in order to guide the discovery algorithm

while exploring similar links.

— Sort the results obtained after positive matching with a query concept

In other words, the set of similar resources inside a resource descriptor are sorted

from the most similar link into the least similar one. Based on the query nature, the

discovery algorithm starts exploring the most similar resources if the priority is to find

more alternatives to the current resource or the least similar resources if the priority is

to find more complementary and diverse resources. Many formulas to calculate semantic

distance have been proposed in the state of the art [Ge and Qiu, 2008,Hau et al., 2005].

The one we adopt in our work is weight-based formula proposed in [Ge and Qiu, 2008]

because it can be directly used with our approach without any further calculation of

additional parameters. Note that the work of annotating links and sorting them is not

done during the discovery.

We consider a user request that involves a set of tasks, each task is represented by an

ontology concept. The set of tasks is organized as a workflow that represents the series

of actions that the client needs to perform in order to deliver the result to the user. The

Web resource that can fulfill a specific task is not unique due to the nature of the Web

and the client can discover many candidate resources to fulfill the given task. However,

not all these candidates match the user requirements in terms of QoS, and therefore a

90

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

3.3. The Description Role in Discovery and Selection

selection phase is needed in order to determine the most suitable candidate for each task.

T = {OntologyConcept}N is the set of tasks in the workflow, where N is the total

number of tasks.

Ci = {(URI, operation)}mi is the set of candidates for a task ti, where mi is the total

number of candidates for the task ti. The candidate number j for the task ti is therfore

cij.

Finding a solution for the user’s request amounts to finding the set of candidates

ck for each task tk, where every candidate meets the hard constraints for the user at

least (and preferably the soft constraints) and the overall QoS of the set is the best

among all combinations. We define hard constraints as conditions that must be fulfilled

by a discovered resource otherwise it is not eligible for the task. On the other hand soft

constraints are optional conditions that are not necessary to select a candidate for a task.

As we have opted for a hypermedia-driven approach for exploring the Web, we need

an on-the-fly selection strategy in order to be able to select relevant resources along the

discovery process. In the remainder of this section, we detail a “select while you discover”

strategy to enable on-the-fly selection.

3.3.2 A minimal QoS model for Web resources

To present our solution, we rely on a minimal model based on [Ran, 2003] in order to

describe some important non-functional properties of a Web resource. QoS :

{

Performance : [0-10],

Availability : [0-100],

Reputation : [0-5]

}

3.3.3 QoS-based resource selection problem specification

The problem of selection of resources is part of the composition problem. This problem

has been proven to be NP-Complete. The process of reasoning on the user’s request, as

described in the scenario, can be assimilated to a Web service selection problem. Every

task of the composite solution can be fulfilled by a resource, that has to be discovered.

Multiple resources can be candidates for a single task. Tasks are semantically identified

by the concepts the reasoner infers after analyzing the user’s request. We start with N

91

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

Chapter 3. RESTful Linked Service Discovery and Selection

tasks and for each task i we have Mi candidates. The problem is to identify the set of

candidates S where each candidate sj fulfills the task tj and the overall QoS of the set is

the best according to the user’s preferences.

3.4 Contribution : HATEOAS-Based Discovery Al-

gorithm

The discovery algorithm [Bennara et al., 2016b] details are given in Algorithm 1.

The algorithm takes as input three parameters :

— conceptList (array) : contains the list of concepts that describe the operations

needed in order to answer the user’s query.

— currentLink (string) : contains the URI of the resource being processed.

— similarLimit(int) : is the maximum number of similar links per resource to be

taken into account by the algorithm.

The algorithm returns as output the result array which contains all the pairs [concept,URI]

where the resource identified by URI can perform an operation that semantically matches

the paired concept classified by semantic distance from the query concept.

The set of variables used in this algorithm are the following :

— The bfsQueue is the queue that contains the ordered set of URIs for the next nodes

to be explored by the BFS algorithm.

— The visited array contains URIs of resources already traveled. This variable’s

main objective is to prevent loops if the graph is cyclic. Further improvements on

this part of the algorithm are possible in order to obtain better performance.

— The similarCount variable introduced in line 12 counts the number of similar

links that are inserted in the BFS queue to be traveled. This counter cannot exceed

similarLimit.

The algorithm consists of a main While loop. The exit condition is verified when there

are no concepts to look for or no further resources in the graph to travel or when a certain

amount of time passed since the beginning of the loop (timeout). Each iteration of this

loop discovers a single resource whose link is currentLink. The algorithm verifies if it has

not been visited yet, if not it is marked as visited. If the resource has not been processed

yet, the algorithm gets its descriptor then checks if any of the operations provided by the

resource is annotated by one of the remaining concepts. If so, the concept along with the

resource URI are inserted into result then the concept is removed from conceptList.

After that, the algorithm inserts the URIs of the related resources into bfsQueue, while

92

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

3.4. Contribution : HATEOAS-Based Discovery Algorithm

Algorithm 1: BFS-based discovery algorithm

Input: conceptList : array of string

Input: currentLink : string

Input: similarLimit : integer

Output: result : array of string

1 bfsQueue : array of string

2 visited : array of string

3 while not conceptList.empty() and not bfsQueue.empty() do

4 if not currentLink in visited then

5 visited.insert(currentLink)

6 Descriptor descriptor = getDescriptor(currentLink)

7 foreach operation in descriptor.operations do

8 foreach concept in conceptList do

9 if conceptMatch(operation.annotation, concept) then

10 result.insert([concept, currentLink])

11 conceptList.remove(concept)

12 similarCount : integer = 0

13 foreach link in descriptor.links do

14 if link.annotation = IsComplementary then

15 bfsQueue.insert(link)

16 else

17 if link.annotation = IsSimilar and similarCount < similarLimit

then

18 bfsQueue.insert(link)

19 similarCount = similarCount + 1

20 //and if it is incompatible we do not take it into account in the first

place

21 currentLink = bfsQueue.next()

respecting the fact that similar resources links inserted cannot exceed similarLimit.

93

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

Chapter 3. RESTful Linked Service Discovery and Selection

Setup Advantage Drawback

Selection of the first

solution that matches

the user’s QoS profile

Fast solution

Low overall QoS, may

not match with the

user’s soft constraints

Selection of the best

candidate for each

task

Selection of the best

candidate for each

task

May not be the best

solution to obtain the

best overall QoS

Selection of the best

solution, by exploring

all combinations

Ensures the best

solution amongst all

combinations

Slow solution,

exponential

processing time

Selection of the best

solution while

eliminating irrelevant

candidates using

skyline approach

Ensures the best

solution amongst all

combinations, while

having less candidates

to work with

Still a relatively

solution but a lot

better than naive

exploring of all

combinations

Table 3.1 – Different on-the-fly selection setups

3.5 Contribution : On-the-Fly Selection Algorithm

The selection process is executed at the same time as the discovery goes on. Each time

a resource is discovered, the selection algorithm is run in order to verify if this new resource

can be the best candidate for its task among the other previously discovered resources

for that same task while, at the same time, making sure the set of selected candidates

for all the tasks verify certain conditions (best overall QoS matching with user’s profile,

compatibility between resources, etc.).

In table 3.1, we present four different setups to enable the on-the-fly selection (select

as you discover)

The general selection algorithm takes as input the set of all candidates T for each

resource, the current set of best candidates s and the new candidate c resource as well

as the user’s QoS preferences qos and returns a new set of best candidates and updates

If it is selected the set of best candidates is updated with the better new solution. For

this purpose, we consider a discovered candidate as an object composed of two attributes

resource URI and HTTP operation (uri and operation) plus the concept that matches

is with the operation (concept). In the context of the algorithms presented below, we

define the concept of domination as follows : a candidate c1 dominates another candidate

94

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

3.5. Contribution : On-the-Fly Selection Algorithm

c2 if all of c1’s QoS attributes are equal of better compared to c2’s QoS attributes.

Algorithm 2 [Bennara et al., 2016a] shows the optimized global planning method.

This algorithm eliminates the candidates that will not be part of the final solution before

reevaluating the solution. If the new candidate cannot be added to the set of candidates

(is irrelevant), the algorithm does nothing and skips this iteration.

Algorithm 2: On-The-Fly optimized selection algorithm

Input: s : array of Candidate

Input: c : Candidate

Input: qos : QoSprofile

Input: T : array of array of Candidate

Output: s : array of Candidate

1 var s2 : array of Candidate = s

2 // If the new candidate matches user requirements :

3 if QoSmatch(c, qos) then

4 // add c while removing irrelevant candidates

5 // if c is irrelevant quit if (skyline(T, c) = true) return

6 // and verify if there is a new best solution :

7 for i = 0 to T.size do

8 for j = 0 to T[i].size do

9 s2[i] = T[i,j]

10 if QoScalculate(s2, qos) > QoScalculate(s, qos) then

11 s = s2

Algorithm 3 shows how to insert the new candidate and how the irrelevant ones are

removed right after.

N-Periodic Selection

Launching the selection every time we have N new candidates for a given task can

reduce processing time for the selection phase, with the skyline based setup. Note that

the number of new candidates for a given task t is nt where
M∑
i=1

nt = N (M being is the

total number of tasks).

Algorithm 4 shows how to apply the skyline approach to reduce the size of candidates

for a given task t when nt new candidates are discovered in each iteration of the selection

process, instead of only one.

95

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

Chapter 3. RESTful Linked Service Discovery and Selection

Algorithm 3: Inserting the new candidates and removing the irrelevant ones using

the skyline approach

Input: c : Candidate

Input: T : array of array of Candidate

Output: T : array of array of Candidate

1 var x : type = init

2 // if c is not dominated by any other candidate for the same task

3 for i = 0 to T[c.concept].size do

4 if dominate(T[c.concept][i], c) then

5 return true

6 // insert it T[c.concept].insert(c) ;

7 // remove candidates dominated by c foreach c2 in T[c.concept] do

8 if dominate(c, c2) then

9 T[c.concept].remove(c2) ;

10 return false

We know that the set of old candidates for the task t is a skyline i.e. no old candidate

in T [t] is dominated by another one in the same set. The first step is to eliminate the

new candidates in (N [t]) that are dominated at least one candidate of the same set. After

that, we eliminate the new candidates (which is now a skyline) that are dominated by at

least one old candidate (T [t]). Next, we eliminate old candidates dominated by at least

one new candidate. Now we know that no candidate in T [t] or N [t] is dominated by any

other candidate in the two sets. Finally, we merge the two sets in order to obtain the

skyline of candidates for the task t.

3.6 Discussion and Evaluation

The resources composing the services previously presented in the scenario are imple-

mented using Java TM Servlets using Jersey framework 7. We use Apache Tomcat 8 as

a server-side software in order to accommodate our resources. The demonstration Web

page can be found here : https://liris.cnrs.fr/~mbennara/doku.php?id=medi2016.

We show the number of traveled nodes as well as response time (in milliseconds) gain

compared to the raw BFS algorithm respectively in Fig 3.2 and Fig 3.3. Each column

represents a separate query that involves an increasing number of resources in the Web.

We get better response times for the same request with the enhanced algorithm because it

96

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

https://liris.cnrs.fr/~mbennara/doku.php?id=medi2016

3.6. Discussion and Evaluation

Algorithm 4: Selection of n resources at a time instead of one

Input: N : array of array of Candidate

Input: T : array of array of Candidate

Output: T : array of array of Candidate

1 // apply the skyline on the set of new candidates first

2 for i = 0 to N[t].size do

3 for j = i+1 to N[t].size do

4 if dominate(N[t][i], N[t][j]) then

5 N[t].remove(j) ;

6 if dominate(N[t][j], N[t][i]) then

7 N[t].remove(i) ; break ;

8 // remove new candidates dominated by old ones

9 for i = 0 to N[t].size do

10 for j = 0 to T[t].size do

11 if dominate(T[t][j], N[t][i]) then

12 N[t].remove(i) ; break ;

13 // remove old candidates dominated by new ones

14 for i = 0 to T[t].size do

15 for j = 0 to N[t].size do

16 if dominate(N[t][j], t[t][i]) then

17 T[t].remove(i) ; break ;

18 // merge the two new sets

19 T[t].merge(N[t]) ;

explores less nodes than the regular. This is due to the fact that when we travel the Web

graph, we find more similar resources. The similar resources are ignored by the enhanced

algorithm but taken into account by the regular one. However, this decrease in response

time can also be accompanied by a decrease in result diversity.

Enabling semantic annotations on links between resources allows the automation of

the discovery process. Without the semantic annotations, the discovery algorithm has to

explore every link in order to search for resources to answer the user’s query. Having similar

and complementary annotations on links allows the algorithm to explore the requested

links based on selectivity measures. The maximum number of similar links to be explored

is limited. This limit determines the performances of the discovery algorithm as well as

97

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

Chapter 3. RESTful Linked Service Discovery and Selection

0

100

200

300

400

500

600

700

800

1 2 3 4 5 6

Response time with regular
algorithm (ms)

Response time with
enhanced algorithm (ms)

Figure 3.2 – Response time in ms

0

10

20

30

40

50

60

1 2 3 4 5 6

Number of explored nodes
with regular algorithm

Number of explored nodes
with enhanced algorithm

Figure 3.3 – Number of explored nodes

the diversity of the results obtained. The lack of diversity is due to the possibility for

similar resources to contain links into useful complementary resources. Sorting the similar

resource links in the description is important in order to optimize the discovery algorithm.

Depending on the user’s query, the discovery process will prioritize the most or the least

similar links while taking into account the similar limit as well.

Executing the selection algorithm every time a new candidate is discovered can hinder

the processing performance to answer the user’s request. With the skyline-based solution

the overall execution time can be optimized through waiting for N new candidates to start

the selection.

Lets suppose the number of new candidates for each task t is mt, where
N∑
i=1

mi = n

where N is the number of tasks. Let us suppose the number of the old candidates for each

task is lt.

In the worst case (i.e no new nor old candidate is dominated by another), the number

of iterations is exactly the same with One-periodic or N-periodic selection : 2ltmt+
m(m−1)

2
.

But in the general case, the number of iterations in N-periodic selection is lower. Indeed,

we eliminate the irrelevant candidates in the set s1 of the newly discovered n candidates

to obtain a set s2 of m ≤ n candidates. After that, we consider s2 and eliminate the

candidates that are dominated by at least one element of T1 to obtain s3 with |s3| ≤ |s2|.
Next, we consider the complete set of candidates T1 and eliminate the candidates that

are dominated by at least one element of s2 to obtain a new set T2 where |T2| ≤ |T1|.
Finally we merge T2 and s3 to obtain the final set T3 that represents the whole set of

candidates without irrelevant candidates.

98

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

3.7. Conclusion

Selection algorithms of the skyline set of services

After reducing the number of candidates with the skyline algorithm, we need to choose

the best solution for selection. In our contribution we show the naive combinatorial al-

gorithm in order to explore the reduced space of solutions. We use a double loop in

order to explore the two dimension array of candidates. There are some optimized algo-

rithms [Wolsey and Nemhauser, 2014] specifically aimed at obtaining better performances

for this class of optimization problems.

In some cases, the size of the set of candidates is very large that, even with the

algorithms we proposed, the solution can not be obtained in a reasonable amount of time.

Some solutions have been proposed to resolve this problem, such as the representative

skyline services proposed in [Alrifai et al., 2010].

3.7 Conclusion

In this chapter we propose an annotation of Web resource descriptions based on a social

model that relies on similar and complementary relations. These annotations provide

information for the discovery process in order to respond to the user’s request faster

and more accurately. Then, we provide a semantically-enhanced BFS-based algorithm to

discover resources. It relies on the semantic annotations in order to determine whether a

resource is worth exploring.

Future work includes exploring advanced heuristics to reach a better compromise bet-

ween performance and result diversity. We envision to extend our model to support quality

of service aspects in order to further enhance the discovery and selection processes. We

aim also to enable an automatic service composition process in order to fully automate

answering users’ requests.

In this chapter, we propose a skyline-based approach to enable Web resource selection.

We show that a solution based on the HATEOAS principle, where we select the Web

resource candidates along the discovery stage, is more efficient for selection than a classical

solution that consists in waiting for discovery results before the selection stage. We rely

on a minimal QoS model to demonstrate our approach. We provide four different setups

in order to satisfy the user requirements according to the QoS profile and preferences. We

enhance the performance of our solution with a skyline-based algorithm in order to reduce

the set of candidates for a given task and demonstrate that it gives the same output as

with a fully combinatorial algorithm but with less candidates and therefore less overall

computational time.

99

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

Chapter 3. RESTful Linked Service Discovery and Selection

As future work, we envision to consider constraints between candidates for different

tasks while running the selection process. In other words, the set of candidates for a given

task can be different depending on the chosen candidate for other tasks and also on the

user’s preferences.

100

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

Chapter 4

RESTful Linked Service

Composition

Contents

4.1 Introduction . 102

4.2 Related Work : Composition . 102

4.2.1 BPMN . 103

4.2.2 Linked USDL . 103

4.2.3 BPEL for REST . 104

4.2.4 Synthesis . 104

4.3 Contribution : Distributed Composition Directories 105

4.3.1 Challenges . 105

4.3.2 Composition Directories . 106

4.3.3 Discussion and Evaluation . 110

4.4 Conclusion . 110

The use of RESTful Web services promotes stateless service interaction and decentra-

lized hypermedia-driven discovery and composition. However, there is a need for models

and tools to drive user interaction as well as description, discovery and composition of

RESTful services. In this chapter, we provide a solution to help users manage, share and

discover workflows of RESTful Web services. We annotate RESTful Web services with se-

mantic information, and introduce the notion of composition directory as a Web resource

that assists a user in sharing, managing and discovering workflows. Users’ composition

directories form a decentralized repository of service workflows connected by hypermedia

links.

101

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

Chapter 4. RESTful Linked Service Composition

4.1 Introduction

The Web has moved from a Web of documents to a distributed application platform

where applications are exposed as Web resources, as witnesses the growing number of

available APIs 68. Leading research topics are related to discovery, composition and in-

vocation of Web resources via their API. In addition, the emergence of semantic Web

technologies gives the opportunity to improve the use of APIs with semantic annotation

over Web resources. Semantic annotation helps to drive the interaction with APIs by

providing explicit description of domain-specific information about resources.

Another key concept that drives today’s Web is distributed affordance. Affordance is

the ability for a user to use a Web resource. The idea is to dynamically create affordance

based on the information already present in a resource representation, with knowledge

from distributed sources [Verborgh et al., 2013]. Distributed affordance combines the in-

formation on resources and the knowledge on service providers, as well as user profiles

in order to generate possibilities for manipulating Web resources. It should allow client-

side software to dynamically drive the interaction with Web resources, therefore service

providers do not have to anticipate user interaction and avoid deploying static business

processes that constrain users. Using this information, affordances can be created dyna-

mically. Users can chose to execute one affordance, this will result in the application of

the service offered by the provider on the representation of the resource.

In order to enable distributed affordance, Web resources must be semantically descri-

bed, and user agents needs to be able to exploit such descriptions. In this chapter, we

build on previous work to semantically annotate Web resources [Bennara et al., 2014b]

and facilitate resource discovery and browsing. We introduce the concept of composition

directory to help users manage and share compositions, and show that the breadth-first

search algorithm can be used in this context to crawl and discover resources according to

a composition workflow the user provides.

4.2 Related Work : Composition

Researchers are interested in the problem of describing the semantics of the sequences

in the executions flows, many solutions have been proposed. The first solutions relied on

syntactic descriptions of Web services in order to determine the nature of the inputs and

outputs of each service call, and the orchestration of the actual composition had to be

carried out manually, since there were no semantics associated with the descriptions of

68. http://www.programmableweb.com

102

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

http://www.programmableweb.com

4.2. Related Work : Composition

services.

The rise in popularity of RESTful APIs also meant that classic service composition so-

lutions were no longer feasible due to the different design of services in a resource-oriented

Web, where the service interfaces were uniform and fixed by the architectural constraints.

Also, the transition to a client-based application state rather than a service-based one

meant that the composition engine in such applications is no longer the server, but the

client. The adoption of the semantic Web practices in service descriptions meant that the

clients could perform composition of services automatically by relying on the annotations

present in the descriptions, thus eliminating (or limiting) the human intervention in the

composition process.

4.2.1 BPMN

One of the most important works in this domain is the BPMN 69 [Wong and Gibbons,

2008] specification. BPMN specifies a set of flow control sequences that allows us to

describe the progressing of a process. The main interest of BPMN for us is that it can

be used in order to construct and store dynamic service composition processes which can

be reused afterwards by another user that wants to do similar service composition. The

use of BPMN relies on a Process-oriented approach rather than being Resource-oriented.

This may conflict with the principles of the REST architectural style, nevertheless some

concepts can be used naturally on resource oriented architectures.

4.2.2 Linked USDL

Linked USDL 70 [Pedrinaci et al., 2014b], is another work in this perspective. Unlike,

BPMN, Linked USDL vocabulary has been designed especially for the service-oriented

domain, making it easier to adapt for our solution. Some of the important concepts in-

troduced by this vocabulary include : Service, ServiceOffering, InteractionPoint as well as

services roles including : Producer, Provider, Intermediary, etc. which constitute the main

semantic concepts of workflow control in service-oriented architectures. Linked USDL is

being used in many projects, and it proved its efficient for the service community.

69. Business Process Modelling Notation

70. Unified Service Description Language

103

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

Chapter 4. RESTful Linked Service Composition

4.2.3 BPEL for REST

BPEL for REST [Pautasso, 2009a] is a work that proposes to reuse the BPEL language

principles and apply it on the REST architectural style. BPEL for REST either uses the

WSDL 2.0 description language without changing the current BPEL or The solution relies

on the new HTTP binding element introduced in WSDL 2.0. The RESTful Web resource

API is wrapped behind a WSDL document that acts as an interface between the REST

Web resource and the BPEL code, using the HTTP binding with the REST resource

and operation invocation on the BPEL side. The second way to use BPEL with REST

resources is more direct than the first one but it requires an extension to extends BPEL

in order to be able to support HTTP operations on the resource API. The main drawback

of BPEL comes with its centralized approach that relies on a static composition engine,

which does not fit with the HATEOAS principle. Additionally, a centralized execution

process makes it less interesting in the large scale context of the Web, for which RESTful

Web services have been designed. Our approach aims to use work-flows in order to enable

reuse of popular compositions. This is also a flexible way of composing resources as the

work-flows can be duplicated and edited.

4.2.4 Synthesis

The constraints of the REST architectural style have changed the way we discover and

compose services on the Web. Many solutions have tried to adapt the existing solutions

to compose classic Web services to the REST environment. A lot of the solutions rely

on the description formats they propose in order to carry out an automatic composition,

which hinders the applicability of a general-purpose composition solution. Also, most of

the proposals provide a static composition process where the tasks can be performed by

very specific services, which does not take advantage of the dynamic nature of RESTful

Web services.

In the following we present the challenges we meet when establishing a solution for

the composition problem. We propose a solution to represent the composition process

as a dynamic workflow where each task can be performed by an abstract service. The

discovery and selection algorithms we proposed in chapter 3 are used to locate and filter

the concrete services whose descriptions match with the abstract service in question.

Also, since the usage of composite applications is a routinely practice we propose a

solution to store, reuse and share the compositions a user has generated. In these entities,

the services that perform each task can be replaced dynamically when the user’s context

changes or when the availability/non-functional properties of one or more services no

104

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

4.3. Contribution : Distributed Composition Directories

longer meet the user’s requirements.

4.3 Contribution : Distributed Composition Directo-

ries

4.3.1 Challenges

In the context of our work, Web services are seen as Web resources that comply

with the REST architectural style. The REST architectural style is based on the notion

of resource as a conceptual entity that represents abstract or concrete things such as

books, orders, payments, etc. Resources are identified by URIs, their state is passed to the

client through representations using the adequate media type according to the principle

of context negotiation. In this chapter we consider a RESTful Web service as a set of

resources that provide a coherent access to the state and functionality of the software it

represents [Pautasso, 2009a].

Another principle that drives the REST architectural style is the HATEOAS 71 prin-

ciple. Using HATEOAS requires hyperlinks to be established between Web resources that

form an open and very large graph. HATEOAS means that the discovery process is rea-

lized progressively, user agents should be able to discover other Web resources accessible

from any given resource in the graph.

In this context, we identified several challenges to address, which can be summarized

as follows :

— Web resource description and interlinking : resources need to be appropriate des-

cribed with semantic annotations and also linked to each other with hyperlinks to

enable client-side discovery (how to interact with the resource) and crawling (how

to discover other resource from a given one according to the HATEOAS principle).

— Web Resource discovery : as a follow-up to the first challenge, user agents should

be able to implement an efficient algorithm to crawl between resources and exploit

their annotations to realize users’ objectives.

In order to answer these challenges, we build on previous work to annotate resources.

We introduce the notion of composition directory [Bennara et al., 2015a] to manage and

share composition workflows and we show that the breadth-first search algorithm can be

used to crawl through and and efficiently discover Web resources.

71. Hypermedia As The Engine Of Application State

105

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

Chapter 4. RESTful Linked Service Composition

4.3.2 Composition Directories

Based on the related work presented above, we have built our solution that promotes

the concept of composition directory. Our solution must respect the following requirements

in order to facilitate resource discovery and composition :

— Scalability : the increasing number of today’s Web APIs makes the scalability of

solutions important.

— Responsiveness : the increasing number of users generates an important load of

requests on servers. We want server responses to be as fast as possible in order to

handle all the requests in a reasonable time.

— Diversity : We want our resource descriptions to propose rich and diverse links to

other resources in order to give them a chance for being used. In other words, the

users which make a request should have different propositions rather than only

popular services in a given field and thus giving the chance to less popular services

to emerge if the users are interested in the services they offer.

— Dynamism : the results of the resource discovery process should not be static, in

other words it should be different from one request to another, because on one

hand the availability of resources involved in the request as well as the context of

the request may have changed in the meantime, and on the other hand, the user

context may also have changed, which implies that users might not get same results

because they browsed new resources which may impact the response.

— Serendipity : the serendipity concept allows APIs to be used in a non-specific

process. In other words we do not want the clients to use APIs in a deterministic

way where every next API to use is already known in advance

Today, the main advances in Web resource composition are centered around the des-

cription of the resources. The focus of these advances is how to describe a resource in

order to give as much information as possible to identify the nature of the resource, its

activity and what type of data it exchanges. Too few efforts focus on how it links to other

resources and how to follow these links, as well as how to manage and share composition

workflows. The latter aspects are presented in the following in order to enable value-added

resource discovery and composition.

In order to enable users to record, reuse, manage and share their composition work-

flows, we propose a specific resource called composition directory. The Composition Di-

rectory resource contains information about its owner and stores sub-resources called the

composition workflows the user creates. The Composition Directory of a user links to other

connected users Composition Directories. Note that this is completely compatible with

the descriptor concept because the links to other Composition Directories, the Repository

106

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

4.3. Contribution : Distributed Composition Directories

and the created compositions scenarios represent the external part of our descriptor.

Figure 4.1 illustrates an example of the disposition of the different Composition Di-

rectories on the Web. Each user has its own Composition Directory, which may contain

links to other Composition Directories the user chooses to link with its own.

Generic Web client

User1

Generic Web client

User2

The Web

Composition
Directory 2

Composition
Directory 1

…

S3
S1

S2

S4

The Web of
Services

…

Figure 4.1 – Disposition of the different Composition Directories on the Web

Figure 4.2 illustrates the structure of a single Composition Directory. Each Composi-

tion Directory contains information about its owner as well as the composition workflows

the user chooses to store in it, these are usually the routinely executed requests that the

user wishes to automate. For example : buy a book online, book a trip with a hotel, taxi

to hotel and a rented car, etc.

Figure 4.3 illustrates an example of a single composition contained within a Com-

position Directory. Each one of the compositions involves a number of services that are

107

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

Chapter 4. RESTful Linked Service Composition

Composition Directory

User-related Information
{
 "Name" : "Mahdi BENNARA",
 "CreationDate" : "18/07/2019",
 "Description" : "This is …",
 …
}

Composition1
(Book shopping)

Composition2
(Trip booking)

…

Figure 4.2 – Structure of a Composition Directory

abstracted on the workflow, and the candidates for each service is contained within the

same composition. Also the client may retrieve other candidates from the Web or from

the linked Composition Directories.

So, in order for a Composition Directory to be accessed by another one, the later should

contain a simple hypermedia link to the first in its descriptor’s external part. However the

reusing of the compositions may be done using two possible ways :

1. The user U1 that wants to use a composition C1 stored in another user U2’s

Composition Directory should do a GET operation on that composition and reuse

it without storing it for further uses or updates.

Advantage : We have no composition redundancy.

Drawback : If U2 updates C1 it may not remain interesting for U1.

2. U2 should do a GET operation on the URI of C1 stored in the Composition Di-

rectory of U2 and then stores it in his Composition directory.

Advantage : U2 can update his own version of C1 to create newer versions that

suit him.

Drawback : We will have redundancy and problems of versioning.

The two solutions can be combined to mix their advantages and omit their drawbacks.

This can be achieved by annotating the Compositions that are shared by U2, and according

to its nature, type and possibility to be updated, U1 will follow the most proper solution.

We define the following API in order to qualify possible interactions with Composition

Directories

108

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

4.3. Contribution : Distributed Composition Directories

Single Composition

Service1 : {Candidate1.1, Candidate1.2, …}
Service2: {Candidate2.1, Candidate2.2, …}
Service2: {Candidate3.1, Candidate3.2, …}
…

Workflow

Service1 Service2

Service3

Generic Web client

…

Figure 4.3 – Structure of a single composition contained within a Composition Directory

1. GET on the base URI of a Composition Directory should send back the information

about this Composition Directory and its owner.

2. GET on the Repository of the Composition Directory should send back the set of

links to every composition on the Repository.

3. GET on a specific composition URI should send back the representation of the

composition. This may require an authentication and may send a 401 code (Unau-

thorized) in case the authentication fails.

4. POST from the user on the Repository of his Composition Directory should create

a new composition. Composition attributes and its accessibility should be indicated

by the use beforehand in the representation.

5. POST from the user on his own composition directory in order to add a new

Composition Directory URI of another user that exposes interesting compositions

for him.

This offers many advantages, first it is a scalable, decentralized and distributed solu-

tion as every user stores a part of compositions on the web, it also respects the serendipity

concept as a given client may find part of the solution to the user’s problem in another

user’s composition set. Our model includes access control features relying on HTTP au-

thentication. We define public compositions that everyone on the Web can access from its

109

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

Chapter 4. RESTful Linked Service Composition

URI, and private compositions that are not disclosed and require authentication.

4.3.3 Discussion and Evaluation

In this section, we discuss the choices of our implementation and the impact of these

choices on the challenges and the properties we want to achieve. As we are using the

REST architectural style to build our solution, the respect of Web constraints is ensured

by design.

Composition directories allow users to create, store and share compositions of Web

resources. Compositions can be thereafter entirely of partially reused by the user himself

or other authorized users. This solution allows for dynamic creation of new compositions

rather than follow inflexible server-side compositions. It allows also a large scale sha-

ring of popular compositions that users find useful and offers flexible ways to reuse and

adapt compositions to user’s needs. We do not rely on a central repository to store the

compositions.

The scenario illustrates these statements : the first user can create a composition for

the process of buying a book involving the shipping and online payment services. He can

share this composition with the second user to buy things online with goods delivery

and payment services. The second user can reuse the same composition if he wants to

buy a book, or only a part of this composition if he wants to buy computer accessories.

The creation of a new composition as well as its reuse depend on the discovery process

discussed below.

4.4 Conclusion

Composition can be defined as the process of invoking collaboratively and combining

inputs and outputs of more than one service in order to achieve an end-goal not possible

to achieve otherwise with only one service. Despite the evolution of service technologies,

the need for service composition to build complex applications is still present because of

the distributed nature of the Web. However, the challenges we have to overcome have

changed.

The interlinked nature of linked Web services opens more opportunities to discover

related services that can potentially contribute to solving the user’s request. However,

as linked RESTful services rely on uniform interfaces, stateless interactions and loose

coupling between client and services, composing linked services is different than in classic

SOA services.

110

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

4.4. Conclusion

Automating the process of composing multiple services’ functionality in order to ans-

wer to a user’s high level request remains an open research problem. The advent of RES-

Tful Web services has changed the way service composition is done because of the REST

architectural style constraints that force a uniform interface on services and make the

client manage the application state. This means that the server no longer stores the ap-

plication state, and the composition has to be carried out by the client. Many solutions

have been proposed, some of them adapt the classic Web service approaches to the REST

architecture. Some of them rely on very specific semantic description format in order to

automated the process of composition with the help of discovery and selection.

In this chapter, we show how composition can be achieved with the help of the afore-

mentioned description model and algorithms and we propose a solution that allows users

to store, reuse and share flexible and dynamically generated composition workflows/ma-

shups that perform specific complex tasks otherwise impossible to perform with a single

service. Services part of a specific stored workflow can be replaced dynamically, if una-

vailable at the time of the execution for example, without changing the whole process as

long as it offers similar functionality and its inputs/outputs are compatible.

In future work, we aim to enable automatic reuse of compositions by reasoning about

their semantic annotations in order to respond to a user’s request. Composition directories

allow clients to answer complex user requests that involve multiple services on the Web.

Another interesting perspective that builds upon this, is to allow a context based service

composition. In other words, if the user’s context has changed, adapt the services used in

the composition process according to the new variables. This could prompt the execution

of the discovery and selection algorithms in order to account for the changes that happen

on the service level as well.

111

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

Chapter 5

General Conclusion

The convergence of the Web service technologies and the service orientation with

the technologies of the semantic Web, Linked Data and the Web of data is a promising

research area. Creating a framework where functionality is provided by services and data

is published according to Linked Data practices would be a huge step forward towards

achieving true automation of task resolution on the Web.

On the one hand, services, as well-defined, independent and distributed pieces of func-

tionality, are a very powerful tool for developing distributed systems and allowing the

processing of data on-demand. On the other hand, Linked Data provides the means to

publish interconnected data described with machine-readable semantic annotations that

adhere to the principles and practices of the semantic Web.

The advent of the REST architectural style as a dominant paradigm for the design and

implementation of services and APIs on the Web has changed the way clients interact with

the Web. The classic Web services using the XML stack of technologies such as SOAP,

WSDL and UDDI is slowly being abandoned in favour of the RESTful APIs. On the

one hand, the properties REST offers are desirable in an open information space like the

Web. Scalability of the REST architecture allows it to accommodate an ever increasing

amount of data and users, without loss in efficiency. The simplicity and reliability of

services and clients attracts more businesses to expose their services on the Web at low

costs. On the other hand, however, the constraints imposed by REST require revisiting

the mechanisms typically adopted in the RPC-oriented classic Web services regarding

many aspects. Of particular interest is the resource-oriented nature of the Web rather

than the input-operation-output paradigm adopted in classic Web services. Description

of service functionality, interlinking and other properties is the first aspect. Since REST

imposes the constraint of a uniform interface, which is done by the HTTP protocol on

the Web, the description of operations, and consequently functionality, is done differently

113

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

Chapter 5. General Conclusion

than describing operations offered by a SOAP-based service. The HATEOAS constraint

imposes that links in resource representations drive the application state, which is kept on

the client side, rather than service side like in classic approaches. Discovery and selection

of services is the second aspect. Making functionality, in the form of services, searchable

is of utmost importance in order to allow the reuse of distributed software on the Web.

Client need to be able to access the Web to locate and filter services based on their

functionality, using service descriptions. Composition of services is the third aspect. We

can no longer rely on manually made service mashups that are inflexible to the dynamic

nature of the Web. Automated clients should be able to discover functionality and the

Web and orchestrate, with the help of descriptions, the functionality from different service

providers in order to answer complex user requests in a fully automated manner.

5.1 Research Problems

5.1.1 Description

The current solutions for describing RESTful linked Web services are limited. The

solutions that worked for classic Web services are considered too complex, verbose and

heavyweight for the resource-oriented and lightweight nature of the RESTful APIs. The

proposals for the specific description of RESTful services are either still too complex or do

not take into account the entirety of the REST constraints, ignoring important concepts

such as the hypermedia-driven application state.

This is why there is a need to establish a description model that takes into account

all the properties of the REST architecture, while at the same time remain modular,

extensible and lightweight. In order to support the automatic discovery, selection and

composition of RESTful services, the service description must include explicitly semantic

descriptions of the functionality and inputs/outputs of the service, its interlinking with

other resources in the Web as well as other descriptive information such as non-functional

properties and annotations of data contained in the resources offered by the service. The

reuse of vocabularies for the semantic annotation of descriptions is important in order to

allow a seamless integration with the Linked Data practices.

5.1.2 Discovery

The centralized solutions to discover classic Web services have suffered from many pro-

blems, most important of which was scalability on the Web. In order to make functionality

114

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

5.2. Contribution Summary

searchable on the Web, there is a need to describe the operations provided by RESTful

services as well as their inputs and outputs. We need also to make services link to each

other, while describing the nature of the links in question. This makes the Web of ser-

vices a huge directed, labelled and sometimes weighted multigraph. Discovery consists in

traversing this huge graph to locate services providing the functionality needed to answer

a user’s request.

5.1.3 Selection

Discovery of functionality on the Web can sometimes give huge number of matches. We

need to offer a solution to filter the results of the discovery algorithm and only offer the user

the most relevant service for the requested task, while taking into account his preferences

and requirements. Selection uses the descriptions of the non-functional properties of the

service in order to filter the service matches.

5.1.4 Composition

The composition of service using mashups has a number of limitations, such the in-

flexibility and the need to remake the mashup if a service is no longer available. With

explicitly described services and an automatic discovery of functionality on the Web, the

automatic composition of functionality can be achieved. The composition engine in a RES-

Tful architecture is the client, which is responsible for making calls to service operations

and integrating the results of the different alls in order to achieve the user’s goal.

5.2 Contribution Summary

With the help of a motivating scenario we demonstrated the need for solutions to the

problems we presented earlier. We took the example of a user that wishes to buy a book

online. All the user has to do is enter a high level request to the client, which has to

automatically answer the request by discovering services on the Web that answer each of

the tasks required by the request. We used the scenario as a proof of concept illustration

for the contributions we summarize in the following.

115

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

Chapter 5. General Conclusion

5.2.1 Descriptors

We propose a description model to semantically annotate different aspects of RESTful

services, namely :

— The data in the resource representations.

— The operations provided by the service.

— The links to related resources.

— The non-functional properties of the service.

We group this descriptive information in a single data structure we call a descriptor,

link each resource representation to its descriptor and annotate the link with explicit

semantics.

5.2.2 HATEOAS-based discovery algorithm

We propose a discovery algorithm that discovers services that can provide functionality

to answer each of the tasks required by the user’s request. The algorithm uses the semantic

annotations on the service operations to determine whether or not a service is a candidate

to perform the task in question. The algorithm relies on the semantically annotated links

between resources in order to traverse the graph of services formed by the links. We opted

for a breadth-first approach in order to maximize the result diversity since most of the

services include links to related services in their root resource.

5.2.3 On-the-fly selection

We propose a selection algorithm using a skyline-based approach in order to filter the

candidates for each task. The algorithm is executed in parallel with the discovery process

and takes as input the results being discovered. We detailed multiple configurations of the

algorithm in order to make a compromise between performance and result accuracy.

5.2.4 Composition Directories

We propose the concept of Composition Directories as an alternative to mashups.

Composition directories allow the client to automatically discover new services for certain

tasks in order to replace the ones that are no longer available. This allows the emergence

of new and enticing service providers as alternatives. They also allow users to share their

composition directories with other users in a social-media-like setup.

116

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

5.3. Perspectives

5.3 Perspectives

5.3.1 Description

We discussed previously how separating representations and descriptions allows an

incremental annotation of services with semantics, and allows to describe existing services

with minimal effort and cost. As we move forward, and the integration of RESTful linked

Web services on the semantic Web becomes more popular and widely spread, we can

directly embed the descriptions inside service representations, the same way some of the

description proposals do with microformats on HTML code. This offers the advantage of

having to maintain only the representation of the resource with the descriptions included,

and the retrieval of descriptions can be done at the same time of representation, at the

moment of manipulating the resource.

As the practices of Linked Data and the semantic Web become more popular, we

noticed the emergence of service wrappers that expose data contained in data silos, which

previously operated in private environments, as Linked Data. These interfaces represent

Linked Services that expose Linked Data on the Web. However, describing such services

in a manner that complies with our proposal for description has not been explored in this

thesis. Proposing a process that can automatically generate semantic descriptions for such

service wrappers can be an interesting initiative in order to allow a better integration of

the newly exposed data on the Semantic Web.

When it comes to service descriptions, user-related feedback and rating can be of

utmost importance in deciding whether or not to use a service and its links in answering

the user’s request. Although the objective of our work is to automate service manipulation

tasks, we do not exclude completely the intervention of the human user in guiding these

tasks. In fact, human intervention can be sometimes desired by the user in order to

steer the machine client in the right direction when it comes to answering his request.

Integrating such dynamic descriptive information onto descriptors and exploiting it to

refine the discovery and selection processes opens new interesting challenges. Also, the idea

of semantically annotating such descriptive information related to user rating and feedback

allows the exploitation of the semantic Web technologies and Linked Data principles in

order to automate the generation of these descriptions and embedding them to resource

representations.

117

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

Chapter 5. General Conclusion

5.3.2 Discovery

We used a very basic variant of the breadth first search algorithm for our discovery

solution in order to illustrate how semantic descriptions enable a semantically guided au-

tomatic discovery process. Using advanced heuristics can help reach a better compromise

between performance and result diversity. Exploring links based on a dynamically calcu-

lated similarity, between the current resource and the target resource on one hand, and

the similarity between the desired concept and the concepts describing operations on the

target resource on the other hand, can help increasing consistency of the results while

saving time by not exploring entire branches not relevant to the request.

Also, we need to address the issue of allowing service providers link their services with

other complementary services on the business and data level. This can be achieved by

implementing automated agents that crawl through the descriptions of services on the

Web and create links based on the semantics of the functionality and data provided by

services as well as business defined criteria (partnerships for example).

5.3.3 Selection

We used a minimal quality of service model in order to illustrate our selection algo-

rithm. The model we used does not reflect how real business services evaluate their quality,

price, availability, etc. An interesting perspective would be to integrate a complete quality

of service model to the descriptions we provide to services and resources. The selection

algorithm’s consistency would be vastly enhanced.

Also, capturing the user’s preferences can be expanded in order to include more

context-based information related to the user’s browsing history, location, language, time

of the day, time of the year, the device being used and many more elements that can help

the selection process to automatically make the decision of using a certain service instead

of the other.

5.3.4 Composition

Composition directories allow clients to answer complex user requests that involve

multiple services on the Web. An interesting perspective that builds upon this, is to allow

a context based service composition. In other words, if the user’s context has changed,

adapt the services used in the composition process according to the new variables. This

could prompt the execution of the discovery and selection algorithms for another iteration

in order to account for the changes that happen on the service level as well, or prompt

118

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

5.3. Perspectives

the exploration of linked composition directories in order to assess whether or not some

of the new trending services used by the other users can be used to obtain better results.

Also, we do not treat in our work data conversion between incompatible services. This

idea allows the interoperation of initially incompatible services by introducing interme-

diary services that can act as data converters in order to transform the outputs of a service

into usable inputs for the next service despite them being incompatible.

5.3.5 Other Perspectives

Another interesting perspective for future work is handling data concerns in RESTful

linked service environments. Important questions such as :

— how to ensure the quality of data stored and exchanged by RESTful linked services ?

— how to make sure the data provided by RESTful linked services is reliable ?

— how to bestow protection and handle security problems when it comes to client-

service exchanges ?

arise and need to be answered in order to enable a solid and robust service-oriented

environment on the semantic Web.

119

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

Bibliography

[Alarcon and Wilde, 2010] Alarcon, R. and Wilde, E. (2010). Linking data from restful

services. In Third workshop on linked data on the web, raleigh, north carolina (april

2010).

[Alarcón et al., 2010] Alarcón, R., Wilde, E., and Bellido, J. (2010). Hypermedia-Driven

RESTful Service Composition. In Maximilien, E. M., Rossi, G., Yuan, S.-T., Ludwig,

H., and Fantinato, M., editors, ICSOC Workshops, volume 6568 of Lecture Notes in

Computer Science, pages 111–120.

[Alrifai et al., 2010] Alrifai, M., Skoutas, D., and Risse, T. (2010). Selecting skyline ser-

vices for qos-based web service composition. In Proceedings of the 19th international

conference on World wide web, pages 11–20. ACM.

[Anadiotis et al., 2009a] Anadiotis, G., Kotoulas, S., Lausen, H., and Siebes, R. (2009a).

Massively scalable web service discovery. In Awan, I., Younas, M., Hara, T., and Durresi,

A., editors, The IEEE 23rd International Conference on Advanced Information Networ-

king and Applications, AINA 2009, Bradford, United Kingdom, May 26-29, 2009, pages

394–402. IEEE Computer Society.

[Anadiotis et al., 2009b] Anadiotis, G., Kotoulas, S., Lausen, H., and Siebes, R. (2009b).

Massively scalable web service discovery. 2009 International Conference on Advanced

Information Networking and Applications, pages 394–402.

[Anadiotis et al., 2009c] Anadiotis, G., Kotoulas, S., Lausen, H., and Siebes, R. (2009c).

Massively scalable web service discovery. In 2009 International Conference on Advanced

Information Networking and Applications, pages 394–402. IEEE.

[Archer et al., 2009] Archer, P., Smith, K., and Perego, A. (2009). Protocol for web des-

cription resources (powder) : Description resources. W3C Working Draft (April 2009)

http ://www. w3. org/TR/powder-dr.

[Bennara et al., 2015a] Bennara, M., Amghar, Y., and Mrissa, M. (2015a). Managing

web resource compositions. In 2015 IEEE 24th International Conference on Enabling

Technologies : Infrastructure for Collaborative Enterprises, pages 176–181. IEEE.

121

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

Bibliography

[Bennara et al., 2015b] Bennara, M., Amghar, Y., and Mrissa, M. (2015b). Managing web

resource compositions. In Reddy, S., editor, 24th IEEE International Conference on En-

abling Technologies : Infrastructure for Collaborative Enterprises, WETICE Workshops

2015, Larnaca, Cyprus, June 15-17, 2015, pages 176–181. IEEE.

[Bennara et al., 2014a] Bennara, M., Mrissa, M., and Amghar, Y. (2014a). An approach

for composing restful linked services on the web. In Proceedings of the 23rd International

Conference on World Wide Web, pages 977–982. ACM.

[Bennara et al., 2014b] Bennara, M., Mrissa, M., and Amghar, Y. (2014b). An approach

for composing restful linked services on the web. In Chung, C., Broder, A. Z., Shim,

K., and Suel, T., editors, 23rd International World Wide Web Conference, WWW ’14,

Seoul, Republic of Korea, April 7-11, 2014, Companion Volume, pages 977–982. ACM.

[Bennara et al., 2016a] Bennara, M., Mrissa, M., and Amghar, Y. (2016a). Linked service

selection using the skyline algorithm. In International Conference on Model and Data

Engineering, pages 88–97. Springer.

[Bennara et al., 2016b] Bennara, M., Mrissa, M., and Amghar, Y. (2016b). Semantic-

enabled and hypermedia-driven linked service discovery. In International Conference

on Model and Data Engineering, pages 108–117. Springer.

[Berners-Lee, 1998] Berners-Lee, T. (1998). Notation3. http ://www. w3. org/DesignIs-

sues/Notation3. html.

[Berners-Lee et al., 1994] Berners-Lee, T., Dimitroyannis, D., Mallinckrodt, A. J., and

McKay, S. (1994). World wide web. Computers in Physics, 8(3) :298–299.

[Berners-Lee and Fischetti, 2000] Berners-Lee, T. and Fischetti, M. (2000). Weaving the

Web : the past, present and future of the World Wide Web. Texere.

[Bizer et al., 2009a] Bizer, C., Heath, T., and Berners-Lee, T. (2009a). Linked data - the

story so far. Int. J. Semantic Web Inf. Syst., 5(3) :1–22.

[Bizer et al., 2009b] Bizer, C., Heath, T., and Berners-Lee, T. (2009b). Linked data-the

story so far. Semantic Services, Interoperability and Web Applications : Emerging

Concepts, pages 205–227.

[Borzsony et al., 2001] Borzsony, S., Kossmann, D., and Stocker, K. (2001). The skyline

operator. In Data Engineering, 2001. Proceedings. 17th International Conference on,

pages 421–430. IEEE.

[Bournez, 2005] Bournez, C. (2005). Team comment on web service modeling ontology

(wsmo) submission. W3C Submissions.

[Bülthoff and Maleshkova, 2014] Bülthoff, F. and Maleshkova, M. (2014). Restful or res-

tless - current state of today’s top web apis. In Presutti, V., Blomqvist, E., Troncy,

122

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

R., Sack, H., Papadakis, I., and Tordai, A., editors, The Semantic Web : ESWC 2014

Satellite Events - ESWC 2014 Satellite Events, Anissaras, Crete, Greece, May 25-29,

2014, Revised Selected Papers, volume 8798 of Lecture Notes in Computer Science,

pages 64–74. Springer.

[Chinnici et al., 2007] Chinnici, R., Moreau, J.-J., Ryman, A., and Weerawarana, S.

(2007). Web services description language (wsdl) version 2.0 part 1 : Core language.

W3C recommendation, 26(1) :19.

[Christensen et al., 2001] Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.,

et al. (2001). Web services description language (wsdl) 1.1.

[Clement et al., 2004] Clement, L., Hately, A., Riegen, C., and Rogers, T. (2004). Univer-

sal description discovery & integration (uddi) 3.0. 2. Organization for the Advancement

of Structured Information Standards (OASIS). Specification.

[Dijkstra, 1982] Dijkstra, E. W. (1982). On the role of scientific thought. In Selected

writings on computing : a personal perspective, pages 60–66. Springer.

[Domingue et al., 2011] Domingue, J., Pedrinaci, C., Maleshkova, M., Norton, B., and

Krummenacher, R. (2011). Fostering a relationship between linked data and the internet

of services. In Domingue, J., Galis, A., Gavras, A., Zahariadis, T. B., Lambert, D.,

Cleary, F., Daras, P., Krco, S., Müller, H., Li, M., Schaffers, H., Lotz, V., Alvarez, F.,

Stiller, B., Karnouskos, S., Avessta, S., and Nilsson, M., editors, The Future Internet

- Future Internet Assembly 2011 : Achievements and Technological Promises, volume

6656 of Lecture Notes in Computer Science, pages 351–366. Springer.

[Fielding, 2000] Fielding, R. T. (2000). Architectural styles and the design of network-

based software architectures. PhD thesis, University of California, Irvine. AAI9980887.

[Förster and Wattenhofer, 2012] Förster, K.-T. and Wattenhofer, R. (2012). Directed

graph exploration. In Principles of Distributed Systems, pages 151–165. Springer.

[Ge and Qiu, 2008] Ge, J. and Qiu, Y. (2008). Concept similarity matching based on

semantic distance. In Semantics, Knowledge and Grid, 2008. SKG’08. Fourth Interna-

tional Conference on, pages 380–383. IEEE.

[Hadley, 2006] Hadley, M. J. (2006). Web application description language (wadl). W3C

member submission.

[Hansen et al., 2002] Hansen, M., Madnick, S., and Siegel, M. (2002). Data integration

using web services. In Efficiency and Effectiveness of XML Tools and Techniques and

Data Integration over the Web, pages 165–182. Springer.

[Hatzi et al., 2012] Hatzi, O., Batistatos, G., Nikolaidou, M., and Anagnostopoulos, D.

(2012). A specialized search engine for web service discovery. In 2012 IEEE 19th

International Conference on Web Services, pages 448–455. IEEE.

123

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

Bibliography

[Hau et al., 2005] Hau, J., Lee, W., and Darlington, J. (2005). A semantic similarity

measure for semantic web services. In Web Service Semantics Workshop at WWW,

pages 10–14.

[John and Rajasree, 2013] John, D. and Rajasree, M. S. (2013). RESTDoc : Describe,

Discover and Compose RESTful Semantic Web Services using Annotated Documenta-

tions. International Journal of Web & Semantic Technology (IJWesT), 4(1).

[Kopecký et al., 2008] Kopecký, J., Gomadam, K., and Vitvar, T. (2008). hrests : An html

microformat for describing restful web services. 2008 IEEE/WIC/ACM International

Conference on Web Intelligence and Intelligent Agent Technology, 1 :619–625.

[Kopeckỳ et al., 2008] Kopeckỳ, J., Gomadam, K., and Vitvar, T. (2008). hrests : An html

microformat for describing restful web services. In 2008 IEEE/WIC/ACM International

Conference on Web Intelligence and Intelligent Agent Technology, volume 1, pages 619–

625. IEEE.

[Kopecky and Vitvar, 2008] Kopecky, J. and Vitvar, T. (2008). microwsmo : Semantic

description of restful services (wsmo working draft). Technical report, Technical report,

WSMO, 2008. http ://www.wsmo.org/TR/d38/v0.1.

[Kopeckỳ et al., 2007] Kopeckỳ, J., Vitvar, T., Bournez, C., and Farrell, J. (2007).

Sawsdl : Semantic annotations for wsdl and xml schema. IEEE Internet Computing,

11(6) :60–67.

[Kovatsch et al., 2015] Kovatsch, M., Hassan, Y. N., and Mayer, S. (2015). Practical se-

mantics for the internet of things : Physical states, device mashups, and open questions.

In Internet of Things (IOT), 2015 5th International Conference on the, pages 54–61.

IEEE.

[Kozen, 1992] Kozen, D. (1992). Depth-first and breadth-first search. In The Design

and Analysis of Algorithms, Texts and Monographs in Computer Science, pages 19–24.

Springer New York.

[Lanthaler et al., 2010] Lanthaler, M., Granitzer, M., and Gütl, C. (2010). Semantic web

services : state of the art. In Proceedings of the IADIS international conference-Internet

technologies and society 2010, pages 107–114. IADIS Press.

[Lanthaler and Guetl, 2013] Lanthaler, M. and Guetl, C. (2013). Hydra : A Vocabulary

for Hypermedia-Driven Web APIs. In Bizer, C., Heath, T., Berners-Lee, T., Hausenblas,

M., and Auer, S., editors, LDOW, volume 996 of CEUR Workshop Proceedings. CEUR-

WS.org.

[Lanthaler and Gütl, 2010] Lanthaler, M. and Gütl, C. (2010). Towards a restful service

ecosystem. In 4th IEEE International Conference on Digital Ecosystems and Techno-

logies, pages 209–214. IEEE.

124

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

[Lassila and Swick, 1999] Lassila, O. and Swick, R. R. (1999). Resource description fra-

mework (rdf) : Model and syntax specification. Recommendation, World Wide Web

Consortium. http://www.w3.org/TR/REC-rdf-syntax/.

[Lathem et al., 2007] Lathem, J., Gomadam, K., and Sheth, A. P. (2007). Sa-rest and (s)

mashups : Adding semantics to restful services. In International conference on semantic

computing (ICSC 2007), pages 469–476. IEEE.

[Maamar et al., 2011a] Maamar, Z., Wives, L. K., Badr, Y., Elnaffar, S., Boukadi, K.,

and Faci, N. (2011a). Linkedws : A novel web services discovery model based on the

metaphor of social networks. Simulation Modelling Practice and Theory, 19(1) :121–132.

[Maamar et al., 2011b] Maamar, Z., Wives, L. K., Badr, Y., Elnaffar, S., Boukadi, K.,

and Faci, N. (2011b). Linkedws : A novel web services discovery model based on the

metaphor of ”social networks”. Simulation Modelling Practice and Theory, 19(1) :121–

132.

[Maleshkova et al., 2009] Maleshkova, M., Kopecký, J., and Pedrinaci, C. (2009). Adap-

ting sawsdl for semantic annotations of restful services. In OTM Workshops.

[Martin et al., 2004] Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D.,

McIlraith, S., Narayanan, S., Paolucci, M., Parsia, B., Payne, T., et al. (2004). Owl-s :

Semantic markup for web services. W3C member submission, 22(4).

[M’Barek and Tata, 2008] M’Barek, N. O. A. and Tata, S. (2008). Services web : revue

des approches de description sémantique. In SIIE 2008 : Système d’Information et

Intelligence Economique, pages 1–7.

[Najork and Wiener, 2001] Najork, M. and Wiener, J. L. (2001). Breadth-first crawling

yields high-quality pages. In Proceedings of the 10th international conference on World

Wide Web, pages 114–118. ACM.

[Pautasso, 2009a] Pautasso, C. (2009a). Restful web service composition with bpel for

rest. Data Knowl. Eng., 68(9) :851–866.

[Pautasso, 2009b] Pautasso, C. (2009b). Restful web service composition with bpel for

rest. Data Knowl. Eng., 68 :851–866.

[Pedrinaci et al., 2014a] Pedrinaci, C., Cardoso, J., and Leidig, T. (2014a). Linked usdl :

a vocabulary for web-scale service trading. In European Semantic Web Conference,

pages 68–82. Springer.

[Pedrinaci et al., 2014b] Pedrinaci, C., Cardoso, J., and Leidig, T. (2014b). Linked usdl :

A vocabulary for web-scale service trading. In Presutti, V., d’Amato, C., Gandon, F.,

d’Aquin, M., Staab, S., and Tordai, A., editors, ESWC, volume 8465 of Lecture Notes

in Computer Science, pages 68–82. Springer.

125

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

http://www.w3.org/TR/REC-rdf-syntax/

Bibliography

[Pedrinaci et al., 2010a] Pedrinaci, C., Domingue, J., et al. (2010a). Toward the next

wave of services : Linked services for the web of data. J. ucs, 16(13) :1694–1719.

[Pedrinaci et al., 2010b] Pedrinaci, C., Domingue, J., and Krummenacher, R. (2010b).

Services and the web of data : An unexploited symbiosis. In 2010 AAAI Spring Sym-

posium Series.

[Prud’hommeaux and Seaborne, 2008] Prud’hommeaux, E. and Seaborne, A. (2008).

Sparql query language for rdf. recommendation, w3c.

[Ran, 2003] Ran, S. (2003). A model for web services discovery with qos. SIGecom

Exchanges, 4(1) :1–10.

[Roman et al., 2005] Roman, D., Keller, U., Lausen, H., De Bruijn, J., Lara, R., Stollberg,

M., Polleres, A., Feier, C., Bussler, C., and Fensel, D. (2005). Web service modeling

ontology. Applied ontology, 1(1) :77–106.

[Russell et al., 1995] Russell, S., Norvig, P., and Intelligence, A. (1995). A modern ap-

proach. Artificial Intelligence. Prentice-Hall, Egnlewood Cliffs, 25.

[Schreiber and Dean, 2004] Schreiber, G. and Dean, M. (2004). Owl web ontology lan-

guage reference. http://www.w3.org/TR/2004/REC-owl-ref-20040210/.

[Sharifi and Bayram, 2016] Sharifi, O. and Bayram, Z. (2016). A critical evaluation of

web service modeling ontology and web service modeling language. In International

Symposium on Computer and Information Sciences, pages 97–105. Springer.

[Sporny et al., 2014] Sporny, M., Longley, D., Kellogg, G., Lanthaler, M., and Lindström,

N. (2014). Json-ld 1.0. W3C Recommendation, 16 :41.

[Stadtmüller, 2012] Stadtmüller, S. (2012). Composition of linked data-based restful ser-

vices. In International Semantic Web Conference, pages 461–464. Springer.

[Verborgh et al., 2013] Verborgh, R., Hausenblas, M., Steiner, T., Mannens, E., and

de Walle, R. V. (2013). Distributed affordance : an open-world assumption for hyper-

media. In Carr, L., Laender, A. H. F., Lóscio, B. F., King, I., Fontoura, M., Vrandecic,

D., Aroyo, L., de Oliveira, J. P. M., Lima, F., and Wilde, E., editors, WWW (Compa-

nion Volume), pages 1399–1406. International World Wide Web Conferences Steering

Committee / ACM.

[Verborgh et al., 2011a] Verborgh, R., Steiner, T., Deursen, D. V., Roo, J. D., de Walle,

R. V., and Vallés, J. G. (2011a). Description and Interaction of RESTful Services for

Automatic Discovery and Execution. In Proceedings of the FTRA 2011 International

Workshop on Advanced Future Multimedia Services.

[Verborgh et al., 2012] Verborgh, R., Steiner, T., Van Deursen, D., Coppens, S., Vallés,

J. G., and Van de Walle, R. (2012). Functional descriptions as the bridge between hy-

126

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

http://www.w3.org/TR/2004/REC-owl-ref-20040210/

permedia apis and the semantic web. In Proceedings of the third international workshop

on restful design, pages 33–40. ACM.

[Verborgh et al., 2011b] Verborgh, R., Steiner, T., Van Deursen, D., De Roo, J., Van de

Walle, R., and Vallés, J. G. (2011b). Description and interaction of restful services for

automatic discovery and execution. In 2011 FTRA International workshop on Advanced

Future Multimedia Services (AFMS 2011). Future Technology Research Association

International (FTRA).

[Vitvar et al., 2008] Vitvar, T., Kopecký, J., Viskova, J., and Fensel, D. (2008). Wsmo-lite

annotations for web services. In ESWC.

[Wang et al., 2011] Wang, Z.-J., Liu, Z.-Z., Zhou, X.-F., and Lou, Y.-S. (2011). An ap-

proach for composite web service selection based on dgqos. The International Journal

of Advanced Manufacturing Technology, 56(9-12) :1167–1179.

[Wilde, 2010a] Wilde, E. (2010a). Linked data and service orientation. In International

Conference on Service-Oriented Computing, pages 61–76. Springer.

[Wilde, 2010b] Wilde, E. (2010b). Linked data and service orientation. In Maglio, P. P.,

Weske, M., Yang, J., and Fantinato, M., editors, Service-Oriented Computing - 8th In-

ternational Conference, ICSOC 2010, San Francisco, CA, USA, December 7-10, 2010.

Proceedings, volume 6470 of Lecture Notes in Computer Science, pages 61–76.

[Wolsey and Nemhauser, 2014] Wolsey, L. A. and Nemhauser, G. L. (2014). Integer and

combinatorial optimization. John Wiley & Sons.

[Wong and Gibbons, 2008] Wong, P. Y. H. and Gibbons, J. (2008). A process semantics

for bpmn. In Liu, S., Maibaum, T. S. E., and Araki, K., editors, ICFEM, volume 5256

of Lecture Notes in Computer Science, pages 355–374. Springer.

[Yu et al., 2007] Yu, T., Zhang, Y., and Lin, K. (2007). Efficient algorithms for web

services selection with end-to-end qos constraints. TWEB, 1(1).

[Zeng et al., 2004] Zeng, L., Benatallah, B., Ngu, A. H. H., Dumas, M., Kalagnanam, J.,

and Chang, H. (2004). Qos-aware middleware for web services composition. IEEE

Trans. Software Eng., 30(5) :311–327.

[Zhao and Doshi, 2009] Zhao, H. and Doshi, P. (2009). Towards automated restful web

service composition. 2009 IEEE International Conference on Web Services, pages 189–

196.

[Zhao et al., 2014] Zhao, X., Wen, Z., and Li, X. (2014). Qos-aware web service selection

with negative selection algorithm. Knowledge and Information Systems, 40(2) :349–373.

127

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

FOLIO ADMINISTRATIF

THESE DE L’UNIVERSITE DE LYON OPEREE AU SEIN DE L’INSA LYON

Nom : BENNARA Date de soutenance : 18/07/2019

Prénoms : Mahdi

Titre : Linked Service Integration on the Semantic Web

Nature : Doctorat Numéro d'ordre : 2019LYSEI0466

École doctorale : Informatique et Mathématiques de Lyon

Spécialité : Informatique

Résumé :

L'informatique orientée services facilite l'interopérabilité entre les systèmes distribues. Depuis quelques années, l'émergence
du Web sémantique a posé de nouveaux défis pour la communauté de recherche dans les calculs et la compatibilité
sémantique des données.
L'approche «services» et le Web sémantique constituent une piste prometteuse pour remédier aux problèmes qui entravent les
deux domaines. D'une part l'orientation services permet d'assurer l'interopérabilité des données et des traitements au niveau
sémantique, et d'autre part le Web sémantique permet d'automatiser les taches de manipulation de services à un haut niveau.
Dans le cadre de notre travail de recherche, nous avons détaillé les défis que rencontre la communauté de chercheurs dans
l'intégration des pratiques de l'orientation services dans le Web sémantique, et plus particulièrement l'intégration des services
REST dans l'implémentation du Web qui repose sur les principes du «Linked Data» pour constituer ce que l'on appelle les
«RESTful Linked Services». Les défis en question sont : La description, la découverte, la sélection et la composition.
Nous avons proposé une solution pour chacun de ces défis. Les contributions que nous avons proposées sont : la structure de
descripteur, un algorithme de découverte sémantique, un algorithme de sélection base sur Skyline et les répertoires de
composition.
Nous pensons que l'ensemble de contributions que nous avons proposées peut être adopté par les fournisseurs de services
sur le Web afin de faciliter l'intégration des pratiques du sémantique Web avec les technologies des services et de REST en
particulier. Ceci permettra donc d'automatiser les taches de manipulation de services a un haut niveau, tel que la découverte
sur la base de concepts sémantiques, la sélection sur la base de propriétés non-fonctionnelles et de qualité de services et la
composition de plusieurs services hétérogènes, sur le plan des données ainsi que sur le plan des traitements, afin d'obtenir des
services composites avec de la valeur ajoutée.

Mots-Clés : Services Web, Web sémantique, Web des données

Laboratoire de recherche : Laboratoire d’InfoRmatique en Image et Systèmes d’information (LIRIS) - UMR 5205

Directeurs de thèse: Youssef AMGHAR & Michaël MRISSA

Président de jury :

Composition du jury :

MURISASCO, Elisabeth Professeur Univ. de Toulon Rapporteure
FRONT, Agnès MCF–HDR Univ. de Grenoble Rapporteure

MARET, Pierre Professeur Univ. de Saint-Étienne Examinateur
SAVONNET, Marinette MCF–HDR Univ. de Bourgogne Examinatrice

AMGHAR, Youssef Professeur Univ. de Lyon Directeur de thèse
MRISSA, Michaël Professeur Univ. de Pau Codirecteur de thèse

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

Bibliography

130

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI055/these.pdf
© [M. Bennara], [2019], INSA Lyon, tous droits réservés

	Notice XML
	Page de titre
	List of Figures
	List of Algorithms
	List of Tables
	Introduction
	Global Context
	Linked Data and Linked Services
	Linked Data
	Linked Services

	Semantic Web and the Web of Data
	RESTful Linked Web Services
	Distributed Affordance

	Motivating Scenario
	Scenario Organization
	User Request Processing
	Enabling Distributed Affordance
	Web Resources vs. Classic Web Services

	Research Problems
	Description
	Discovery
	Selection
	Composition
	Contribution summary

	Document Organization

	Semantic Description of RESTful Linked Services
	Introduction
	REST and Service Description Models
	Description Models on the Semantic Level
	Sketching the Ideal Description Model
	Ramifications of Description for Service Consumers
	Contribution Summary

	Related Work: Description
	State of the Art of Service Description
	Syntactic Description Solutions for Classic Web Services
	Semantic Description Solutions for Classic Web Services
	Description Solutions for Classic Web Services Adapted to the REST Architectural Style
	Description Solutions for REST Services
	Lightweight Semantic Description Solutions for REST Services
	Other Related Description Efforts

	Synthesis and Discussion

	Contribution: The Descriptor
	Separation of Representations and Descriptions
	Description Mechanisms
	Describing RESTful Linked Service Operations
	Describing RESTful Linked Service Links
	Describing Service Data and Non-Functional Properties

	Guiding Discovery, Selection and Composition
	Applying the Description Mechanism to the Motivating Scenario

	Implementation and Technical Design Choices
	JSON-LD
	JSON-LD and RESTful Linked Services
	Hydra core vocabulary
	Technical context of the specification
	Java Servlet
	Jersey Framework
	Gson module
	Apache Tomcat

	Specification of the descriptions
	Specification of the operation descriptions
	Specification of the links descriptions
	Specification of the non-functional descriptions
	Specification of the data and service descriptions

	Summary

	Conclusion

	RESTful Linked Service Discovery and Selection
	Introduction
	Related Work: Discovery and Selection
	State of the Art of Service Discovery
	Centralized Discovery of Classic Web Services: UDDI
	Discovery of RESTful Web Services
	Social-Based Discovery Model: LinkedWS
	Graph Discovery Algorithms
	Synthesis

	State of the Art of Service Selection
	Quality of Service in Service Oriented Web
	QoS-Based Web Service Selection
	Synthesis

	The Description Role in Discovery and Selection
	Descriptive information guiding the discovery and selection
	A minimal QoS model for Web resources
	QoS-based resource selection problem specification

	Contribution: HATEOAS-Based Discovery Algorithm
	Contribution: On-the-Fly Selection Algorithm
	Discussion and Evaluation
	Conclusion

	RESTful Linked Service Composition
	Introduction
	Related Work: Composition
	BPMN
	Linked USDL
	BPEL for REST
	Synthesis

	Contribution: Distributed Composition Directories
	Challenges
	Composition Directories
	Discussion and Evaluation

	Conclusion

	General Conclusion
	Research Problems
	Description
	Discovery
	Selection
	Composition

	Contribution Summary
	Descriptors
	HATEOAS-based discovery algorithm
	On-the-fly selection
	Composition Directories

	Perspectives
	Description
	Discovery
	Selection
	Composition
	Other Perspectives

	Bibliography

