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Mathematics is the art of giving the same name to different things.
Henri Poincaré

If a machine is expected to be infallible, it cannot also be intelligent.
Alan Turing

Every surface homeomorphic to a sphere must have at least one singularity: every
horse must have at least one mane.

Poincaré-Hopf theorem corollary
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lier NYC. Sacré coloc à New York ! Tristan (le végé et non-fumeur) s’en souvient
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dement appréciable de papi de la mécanique. Médéric pour sa motivation sans faille.
Florian pour son support de co-bureau. Marie pour avoir récemment choisi Hughes
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aussi ma plus profonde gratitude.
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Figure 1: Le gâteau IGA.
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Figure 2: Île de Porquerolles, CSMA 2019, Giens, FRANCE.
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Résumé

Ce travail présente un cadre générique pour la construction de maillages
isogéométriques volumiques à partir d’une géométrie complexe avec une topologie
arbitraire pour des applications relatives aux modèles d’ordres réduits. En effet, les
maillages structurés tels que les maillages isogéométriques ou hexahédriques sont
difficiles à obtenir de manière automatique. Les analyses statistiques de formes et
les modèles d’ordres réduits nécessitent des données structurées et ordonnées pour
être construits efficacement. Pour ce faire, nous utilisons les limites du modèle
solide triangulé, la B-Rep CAD (Boundary Representation in Computer Aided
Design). Tout d’abord, cette thèse inclut une intégration d’un algorithme de
décomposition en pantalons et en cuböıdes prenant en compte les caractéristiques
géométriques. La décomposition en cuböıdes divise une surface en un ensemble de
patchs quadrilatéraux qui peuvent aider à définir un volume associé. Des champs de
croix (cross fields), c’est-à-dire des champs de directions à 4 symétries, sont utilisés
pour guider une paramétrisation globale alignée de la surface. Ce paramétrage est
optimisé afin de minimiser la distorsion des éléments. Le processus d’optimisation
est pensé pour concevoir des champs de croix avec des contraintes topologiques et
géométriques. En utilisant la décomposition optimisée en cuböıdes, une structure
volumétrique est extraite. Sur la base de la paramétrisation globale et de la
structure volumétrique précédemment calculée, une paramétrisation isogéométrique
trivariée est déduite. Les propriétés topologiques invariantes sont analysées tout au
long du processus proposé. Pour finir, pour différentes occurrences géométriques de
même topologie mais possédant des géométries différentes, notre méthode permet
d’avoir la même représentation : des maillages isotopologiques isogéométriques
trivariés détenant la même connectivité. L’efficacité et la robustesse de l’approche
proposée sont illustrées par plusieurs exemples de modèles d’ordres réduits en
utilisant l’IGA (IsoGeometric Analysis).

Mots clés : Analyse IsoGéométrique ; Modèle d’Ordre Réduit ; Analyse
Statistique de Forme ; Topologie ; Paramétrisation ; Décomposition en cuböıdes ;
Géométrie Paramétrique.
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Summary

This work presents a generic framework to construct trivariate isogeometric meshes
of complicated geometry and arbitrary topology required for reduced order model
applications. Indeed, structured meshes such as isogeometric or pure hexahedral
ones are difficult to obtain in an automatic manner. Statistical shape analysis and
reduced order modeling require structured and ordered data to be efficient. For that
purpose, we use the triangulated solid 3D model’s boundary provided from B-Rep
CAD (Boundary-Representation in Computer Aided Design) models. Firstable,
the workflow includes an integration of a geometry-feature-aware pants-to-cuboids
decomposition algorithm. The input triangulated mesh is decomposed into a
set of cuboids in two steps: pants decomposition and cuboid decomposition.
Cuboid decomposition splits a surface into a set of quadrilateral patches which
can define a volumetric layout of the associated boundary surface. Cross fields,
i.e., 4-symmetry direction fields are used to guide a surface aligned global pa-
rameterization. Optimizing this parameterization, patches of the quadrilateral
layout inherited from the cuboid decomposition are re-positioned on the surface
in a way to achieve low overall distortion. The optimization process is thought
to design cross fields with topological and geometrical constraints. Using the
optimized cuboid decomposition, a volumetric layout is extracted. Based on the
global parameterization and the structured volumetric layout previously computed,
a trivariate isogeometric parameterization is deducted. Learning generalized forms
of theorems in the topology field, invariant topological properties are analyzed
throughout the proposed process. To finish, for different geometrical instances
with the same topology but different geometries, our method allows to have the
same representation: trivariate isogeometric isotopological meshes holding the
same connectivity. The efficiency and the robustness of the proposed approach
are illustrated through several examples of reduced order models using IGA
(IsoGeometric Analysis).

Keywords: IsoGeometric Analysis; Reduced Order Modeling; Statistical Shape
Analysis; Topology; Parameterization; Cuboid Decomposition; Parametric Geome-
try.
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0.3.2 Décomposition en cuböıdes . . . . . . . . . . . . . . . . . . . . 46
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B-Splines. (C) Structure volumique de référence. (D) Membre-α choisi
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des 50 premiers modes. 592 snapshots ont été nécessaires pour
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3.7 Sharp cutting curves generation. (A) The three temporary unit
square maps UT3, UT1 and UT2 (left to right). (B) Partial line in-
verse mapping using sharp cutting points in C performed in UT3, UT1

and UT2 (left to right). (C) Computed sharp cutting curves WS1, WS2

and WS3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

3.8 Quadrilateral layout arcs generation. (A) We keep WS3 passing
through all cutting sharp points. Into each relevant Uk, partial line
inverse mapping is performed using points in C and D as depicted in
(B). Notice that we can use points in O, but this set is not pictured.
(C) Shows curves in the physical space with supplementary traced
boundary curves. Other arcs are determined to have a valid quadri-
lateral layout or cuboid decomposition, in the parametric space (D)
and in the physical one (E). . . . . . . . . . . . . . . . . . . . . . . . 124

3.9 Smart model decomposition overview for mechanical applications.
Starting with a triangulated surface, we decompose into a set of topo-
logical pants understanding the geometry. Afterwards, depending on
the features embedded in the input mesh, cuboid configuration tem-
plates per pant are chosen. These templates are then mapped back
into the surface mesh yielding to a feature-aware cuboid decomposition.127

3.10 Smart model decomposition overview for biological applications.
Starting with a triangulated surface from medical imaging, we de-
compose into a set of topological pants understanding the geometry.
Cuboid configuration templates per pant are chosen. These templates
are then mapped back into the surface mesh yielding to a feature-
aware cuboid decomposition. . . . . . . . . . . . . . . . . . . . . . . . 128

3.11 Cuboid configuration templates C. To understand all the features of
a CAD model, a specific cuboid configuration has to be applied for
mapping purposes. (A) Represents the simplest cuboid configuration
C for a pant. (B) Configuration C with 8 cuboids. (C) Configuration
C with 10 cuboids. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

3.12 n-pant topological shapes. (A) 4-pant or spacesuit. (B) 3-pant or
suit. (C) 2-pant or shirt. (D) 1-pant or classical pant. . . . . . . . . . 130

3.13 n-pant cuboids library. (A) A n-pant decomposition of an arbitrary
B-Rep mesh M provided from CAD. (B) Adopted cuboid configu-
ration C chosen in the 1-pant column for the left part of (A). (C)
Adopted cuboid configuration C chosen in the 3-pant column for the
right part of (A). Green surfaces represent cuboid faces which are
mapped onto the boundaries of the M n-pant decomposition. (D)
Euler characteristic of the n-pant topological decomposition (A) us-
ing union operator ∪. . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
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4.1 Cross field discretization on triangulated meshes. (A) A 4-symmetry
direction field is a set of 4 directions {Uc,Vc,−Uc,−Vc} preserved by
rotations of π

2
around the face normal n. (B) To interpolate a field

between two discrete points and manage possibilities, the problem can
be solved by introducing a period jump pij or a connection angle wij.
Angles in adjacent faces can be expressed in a common coordinate
frame using κij and pij or wij. . . . . . . . . . . . . . . . . . . . . . . 135

4.2 Levi-Civita connection using triangulated mesh faces. (A) Transport-
ing a vector from face fi to fj of gravity centers Gi and Gj can be
done as follows: (B) unfold the faces isometrically to a plane, parallel
transport the vector along the oriented dual edge e∗ij and then (C)
fold back the face in its original configuration. . . . . . . . . . . . . . 137

4.3 Holonomy of a contractible loop l(s) demonstrated by the Gauss-
Bonnet theorem. For a disk, χ(M) = 1. Thus, the total geodesic and
Gaussian curvature of the black loop and pink surface is equal to 2π. 138

4.4 Discrete holonomy on triangulated meshes for a cycle γ. We observe
an angle defect δ between Vs and Ve using the classical Levi-Civita
connection along a cycle γ to transport a vector Vs. . . . . . . . . . . 139

4.5 Cross field topological design. (A) Input triangulated surface. (B)
Generated quadrilateral layout Q that define the cross field topolog-
ical properties. (C) Generated topologically compatible cross field.
(D) Detail of (C) near one of its 3 boundaries. The cross field has
a turning number of Tγ = 0 along this boundary cycle, but it does
not satisfy red boundary constraints. (E) Detail of (C) around one of
its 4 singularities. The associated turning number near this singular
zone is equal to Tγ = −5

4
. . . . . . . . . . . . . . . . . . . . . . . . . . 141

4.6 Cross field topological design with sharp features. (A) Input triangu-
lated surface. (B) Generated cross field which does not understanding
the geometrical features of the mesh. The turning number around the
red singularity remains consistent. . . . . . . . . . . . . . . . . . . . . 141

4.7 Relevant geometrical features which could be used for cross field in-
terpolation. Sharp corners, boundaries and principal curvature di-
rections refer to a certain global topological information embedded
on the geometry. The Gauss-Bonnet theorem states the link between
geometry and topology. . . . . . . . . . . . . . . . . . . . . . . . . . . 142

4.8 Cross field interpolation. (A) Sparse directions interpolation with a
standard vector field. Parameterized mesh is not a suitable result for
our objectives. (B) By using a cross field, i.e., a set of 4 directions,
the resulting parameterized quadrilateral mesh as a natural expected
geometry. Notice the period jump of 1, ensuring that the first red
direction of the cross field match with given constrained directions. . 143
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4.9 Cross field geometrical design. (A) Boundary red constraints inter-
polation. (B) Sharp edges red constraints interpolation. Across these
sharp edges, the period jump is equal to 1, because of the s = 1

4

singularity holded by the corner. . . . . . . . . . . . . . . . . . . . . . 144

4.10 Global parameterization strategy using a geometrical cross field. We
strive to find gradients ∇u and ∇v aligned to the first two parametric
directions Uc and Vc of the cross field, by modifying parametric values
(u, v) embedded in mesh vertices. . . . . . . . . . . . . . . . . . . . . 145

4.11 Abdominal aorta global parameterization optimization by Q’s nodes
relocation. (A) Input triangulated mesh from medical imaging. (B)
Global parameterization and quadrilateral layout after 1 iteration.
(C) Global parameterization and quadrilateral layout after 25 iterations.147

4.12 Aligned global parameterization worflow summary from geometry-
feature-aware pants-to-cuboid decomposition. (A) Initial quadrilat-
eral layout Q. (B) Geometrical cross field. (C) Aligned global param-
eterization without constraints. (D) Aligned global parameterization
with constraints. (E) Optimized quadrilateral layout embedding. (F)
Extracted quadrilateral mesh. . . . . . . . . . . . . . . . . . . . . . . 148

4.13 Mechanical quadrilateral mesh examples. (A) A pant part quadrilat-
eral mesh with its feature-aware cuboid decomposition. (B) Symmet-
ric wheel part quadrilateral mesh obtained by locating high valence
nodes on curved areas. . . . . . . . . . . . . . . . . . . . . . . . . . . 151
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5.1 Isotopological homologous concept between heart ventricle meshes.
(A) Quadrilateral layout used to obtain the quadrilateral mesh. (B) 2
heart ventricle meshes with different geometries (depicted in blue and
black wireframe) and their details. (C) Isotopological non homologous
linear mesh interpolation result. (D) Isotopological homologous linear
mesh interpolation yielding consistent results: a real ventricle geometry.158

5.2 Heart ventricle snapshots computation respecting sharp features. (A)
Optimized quadrilateral layout Q embedded in the triangular surface.
(B) 10 produced isotopological homologous snapshots using adapted
layouts Q for each shape. (C) Snapshots 1 to 5 (left to right, phase
0% to 40%). (D) Snapshots 6 to 10 (left to right, phase 50% to 90%).
See Figure 5.6 for more details. . . . . . . . . . . . . . . . . . . . . . 159

5.3 Abdominal aortas population suffering of an abdominal aortic
aneurysm. Each geometry is a vector in R3n. B is the reduced basis
with a better coordinate system which best reflects the shape varia-
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5.4 Principal component analysis on a heart ventricle during a cardiac
cycle. A given snapshot is a linear combination of modes with asso-
ciated coefficients αi. In the new reduced basis B, modes are its axis.
3 modes suffice to represent with a certain reliability the shape of a
given snapshot. First mode is homogeneous to a shape, others are
holding local effects. . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

5.5 Snapshots sampling with a sparse grid technique. (A) Level 1 sparse
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(A) Evaluation at phase 38.70%. (B) Evaluation at phase 81.00%.
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5.15 Medical devices implantation problematic with cerebral aneurysms.
Due to the human variability, surgeons have to pick one of the avail-
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5.16 Parameters used for the web deployment reduced order model demon-
strator. A web size of 9mm × 5mm is considered. Z represent the
lower height where the aneurysm is truncated along his height axis.
H being the dropping height of the web. Aneurysm emulated geome-
try is defined by an ellipsoid with radius parameters R1, R2 and R3.
R3 design the height of the aneurym whereas R1 and R2 are planar
radius in the plane composed by the ellipsoid center and an arbitrary
vector colinear to Z. Used range of parameters is detailed in Table 5.3.170

5.17 Web deployment reduced order model demonstrator validation. (A)
Reduced order model evaluation constructed with a DOE of 50 snap-
shots, using parameters in (F). (B) Snapshot with parameters in (F)
of the second DOE composed by 20 snapshots. (C) Pressure contact
color scale for (A) and (B). (D) Pressure contact error between (A)
and (B) using color scale (E). . . . . . . . . . . . . . . . . . . . . . . 171

5.18 Aneurysm mesh properties problematic solved by the GSM (Geomet-
rical Strain Method) method. (A) Comparison problematic between
2 topologically different aneurysms. (B) GSM method used to deter-
mine isotopological meshes of aneurysms. (C) Different strain criteria
which can be used for computing an isotopological pure quadrilateral
mesh population of aneurysms. . . . . . . . . . . . . . . . . . . . . . 174

5.19 Aneurysm treatment approach by learning methods. (A) Offline re-
duction of the human variability. (B) Arrival of a new patient. (C)
Near real-time web pressure contact result on a sick aneurysm ge-
ometry. Some of illustrations are coming from the IDsize R© software
module developed by Sim&Cure. . . . . . . . . . . . . . . . . . . . . 175

6.1 3-dimensional manifold V examples. Represented objects are filled
taking into account surfaces as boundaries. (A) Cylinder C3 can be
obtained by performing volumetric boolean operation. These pro-
cesses are widely used in CAD using surfaces boolean operations.
This volume has one cavity. (B) Coarse hexahedral mesh defined
from a surface torus T2. (C) Discrete case of (A). (D) Continuous
case of (B). This volume has one connected object, one hole or tunnel
but zero cavities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

6.2 Betti numbers for a 3-dimensional manifold. Number of connected
components is 1, so b0 = 1. Number of tunnels, or holes is 3, taking
into account the red torus embedded into the volume. There are
2 cavities in blue and red respectively, so: χ(V ) = b0 − b1 + b2 =
1− 3 + 2 = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

6.3 C to Cc conversion. (A) Closing boundaries in the parametric space.
(B) Closing boundaries in the physical space. . . . . . . . . . . . . . . 186
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6.4 Genus-0 closed cuboid configuration Cc examples with Euler charac-
teristic χ = 2. (A) Configuration with 28 nodes. (B) Configuration
with 36 nodes. (C) Configuration with 20 nodes. These configura-
tions are coming from Chapter 3. . . . . . . . . . . . . . . . . . . . . 187

6.5 Invalid cuboid configurations and limitations. (A) A valid quadri-
lateral layout, but involving an invalid closed cuboid configuration.
(B) Quadrilateral layout of a genus-1 geometry. Cc is invalid. (C)
Quadrilateral layout with 12 nodes of a closed cylinder. Cc is valid
but yielding to a flattened cuboid in the physical space. (D) Clos-
est expected valid cuboid configuration for (A). (E) Closest expected
cuboid configuration for (B). (F) Valid Cc of (C). . . . . . . . . . . . 188

6.6 3-dimensional volumetric manifold VC to B3 conversion using CW-
complexes. (A) g surfaces k2 are created for a g-torus (red surface),
i.e., for a tunnel. (B) Two edges k1 and one surface k2 are constructed
(red curves and surface) for a cavity. Black and blue objects are not
created beacause they are lying on a lower dimensional object than a
volume. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

6.7 Volumetric layouts straightforward examples. (A) Triangulated mesh
with sharp features. (B) Triangulated mesh with particularly marked
sharp features. (C) Proposed volumetric layout for (A). (D) Proposed
volumetric layout for (B). . . . . . . . . . . . . . . . . . . . . . . . . 194

6.8 Isotopological homologous properties of volumetric meshes. (A) Non-
isomorphic volumetric layouts. (B) Isomorphic layouts with a discon-
tinuous mapping function. (C) Isotopological trivariate isogeometric
meshes. (D) and (E) are representing the homologous concept for an
aortic valve using quadrilateral meshes. . . . . . . . . . . . . . . . . . 196

6.9 Isotopological isogeometric meshes constraints for reduced order mod-
eling. (A) Isogeometric mesh with a geometry A. (B) Isogeometric
mesh with a geometry B. (C) Associated volumetric layout of refer-
ence. (D) α-member chosen to represent the whole population. . . . . 197

6.10 Trivariate B-Spline volume construction from B-Spline surfaces. (A)
B-Spline surfaces extracted thanks to the parameterization. (B) Re-
constructed missing interior surfaces needed for the trivariate para-
metric domain. (C) Interpolated trivariate isogeometric control lat-
tice (depicted in red). . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

7.1 Hexahedral sampling method from B-Spline surfaces of degree 2. (A)
6 compatible B-Spline surfaces that bound a volume. Black lines
delimit surfaces elements. (B) 6 quadrilateral meshes evaluated at
physical positions of parametric values contained in vectors Uq and
Vq of Equation (7.1) (quadrilateral meshes and points are depicted in
blue). (C) Blue hexahedral patch computed using Coon’s interpolation.201
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7.2 Volumetric isogeometric parameterization of the half-seal part for
remeshing purposes. It is a genus-0 geometry with sharp features.
Euler characteristic is χ = −1 for the mesh with 3 specially located
boundaries. During the remeshing step, the parameterization is still
the same whereas the geometry is changing under loading. . . . . . . 202

7.3 Element quality comparison under loading for the half-seal part. (A)
The initial mesh at t = 0 with boundary conditions (left). The
remeshed case at t = 0.5 (right). (B) Element shape ratio at t = 0.5
without remeshing process (left). Element shape ratio at t = 0.5
with remeshing process (right). (C) Element shape ratio at the last
loading increment without remeshing process, t = 1 (left). Element
shape ratio at the last loading increment with remeshing process,
t = 1 (right). All deformed shapes are given with a scale factor of 1. . 204

7.4 Remeshing method. (A) Initial mesh at t = 0. (B) Deformed un-
remeshed mesh at t = 0.5 calculated with a modified standard FEA
code [Bower 2012]. (C) B-Rep extraction of the geometry (B) us-
ing ABAQUS and Rhinoceros 5. Please remark that the surface is
homeomorphic to a pant with 3 specific boundaries. (D) Isotopolog-
ical remeshing is done with our mapping method. The displacement
solution obtained at step (B) is mapped back on the new remeshed
geometry. (E) Final Von-Mises stress Paraview results at physical
Gauss points. Initial state computation is based on the deformation
gradient ¯̄F . The modified FEA code is then used to resume the cal-
culation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

7.5 Details of Von-Mises stress comparison at Gauss points. For each
hexahedral element, we build an associated linear hexahedral element
which geometry is described by its related Gauss points. (A) Stress
for the unremeshed case at t = 1. Elements made by Gauss points
of the remeshed part are depicted in black wireframe. (B) Stress for
the remeshed case at t = 1. Elements made by Gauss points of the
unremeshed part are depicted in black wireframe. . . . . . . . . . . . 206

7.6 ABAQUS Von-Mises stress results on the unremeshed half-seal part.
Notice that values are averaged on hexahedral elements nodes and the
color scale is interpolated at scalar values embedded on these nodes.
The Von-Mises value of 14.93 is not averaged and resides at a physical
Gauss point. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

7.7 Reduced order model building and evaluation for a plate with one
hole. Snapshots are calculated using isogeometric analysis. P1 and
P2 are geometrical parameters defining respectively the diameter and
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as many surfaces as there are modes in the reduced basis. . . . . . . . 208
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7.8 Parameters tensorial product. For each geometrical cases G, we
associate all loading cases P . Each loading parameter is then
combined with all mechanical cases M . This method resulting in
dim (G)× dim (P )× dim (M) snapshots. . . . . . . . . . . . . . . . . 209
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manifold built by kriging tools is evaluated to find preponderant co-
efficients attached to the first 60 modes. Isogeometric elements are
sampled with one hexahedron per element for viewing purposes in
Paraview. Used range of parameters is detailed in Table 7.1. . . . . . 211
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7.16 Wheel part distribution of parameters. 9 geometrical parameters are
settled. 1 load parameter P is applied and Young’s modulus E is
devoted to be a mechanical parameter. We use a constant Poisson’s
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Résumé étendu

0.1 Introduction et motivations

L’Analyse IsoGéométrique (IGA) est une technique d’analyse numérique qui uti-
lise les mêmes fonctions de base pour représenter la géométrie et pour les calculs
numériques des solutions approchées des éventuelles équations aux dérivées par-
tielles appliquées aux domaines concernés [Hughes, Cottrell et Bazilevs 2005 ;
Cottrell, Hughes et Bazilevs 2009]. L’un des défis les plus importants impli-
quant l’analyse isogéométrique est de construire des modèles 3D appropriés pour
le calcul à l’aide des volumes donnés par leur représentation de bords tel que les
modèles B-Rep (Boundary Representation) issus de la CAO (Conception Assistée
par Ordinateur). On pourra remarquer que l’IGA est une approche prometteuse
pour combler l’écart entre la CAO et la FEA (Finite Element Analysis), le besoin
de repasser par la géométrie pour raffiner le maillage n’étant plus nécessaire. Nous
invitons les lecteurs à se référer à la Figure 3 pour plus de détails.

Depuis quelques années, beaucoup d’applications dans le domaine des méthodes
numériques pour la mécanique sont dédiées aux modèles d’ordres réduits. De plus en
plus de simulations numériques demandent la détermination en temps réel ou quasi
réel de solutions complexes [Chinesta, Ammar et Cueto 2010 ; Chinesta, Lade-
veze et Cueto 2011 ; Lu, Blal et Gravouil 2018]. Les applications embarquées
en sont un exemple. Les modèles rencontrés récemment sont multi-paramétriques et
possèdent de plus en plus d’étapes gourmandes en temps de calcul afin de satisfaire
une certaine exigence de précision. On pourra se référer à la Figure 4 pour com-
prendre la démarche générale. Dans ces travaux de thèse, nous nous concentrerons
sur la qualité, mais aussi grandement sur les propriétés géométriques des modèles
mathématiques réalisés pour construire ces modèles réduits.

Néanmoins, une condition préalable à l’IGA est la disponibilité de modèles CAO
représentés par des NURBS (Non Uniform Rational B-Splines) volumiques. Cepen-
dant, les modeleurs CAO utilisent habituellement la méthode B-Rep pour décrire
les modèles volumiques et utilisent des opérations booléennes qui conduisent à des
modèles trimmés. Ainsi, la génération du modèle volumique à partir des frontières
décrites par des surfaces NURBS est nécessaire puisque la plupart des logiciels com-
merciaux ne savent pas représenter un volume mathématique ; ceci est encore plus
vrai pour les modèles volumiques utilisables directement pour l’IGA.
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Figure 3: Comment promouvoir l’IGA à la place de la FEA de nos jours. (A) Le pro-
cessus de FEA est linéaire : chaque étape est indépendante. (B) Le processus de l’IGA
imaginé pour demain. Un des arguments pour l’IGA est le suivant : une meilleure
géométrie pour une meilleure simulation. Un logiciel où toutes les étapes d’un pro-
cessus sont intégrées dans un même environnement semble être adapté à l’IGA. Nous
remarquerons que l’étape de conception peut être foncièrement différente de la CAO
classique.

L’étape de discrétisation en FEA est équivalente à paramétrer la géométrie en
IGA puisque les fonctions de base utilisées pour le calcul décrivent aussi la géométrie.
Le paramétrage volumique implique le paramétrage des surfaces qui le compose mais
aussi de l’intérieur du volume. Ce paramétrage volumique est toujours considéré
comme un grand défi [Cottrell, Hughes et Bazilevs 2009]. Pour le paramétrage
des surfaces nous utiliserons les coordonnées à valeurs moyennes dans le cas d’une
surface topologiquement équivalente à un disque [Floater 2003]. Pour des surfaces
à topologie plus complexe, des graphes de découpage nous permettrons de produire
une surface topologiquement égale à un disque. A l’aide de champs de croix (cross
fields) définis sur notre maillage triangulé issu de la CAO, une paramétrisation
globale alignée avec le champ de croix est calculée et optimisée [Bommes, Zimmer et
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Figure 4: La complexité des modèles augmente. Ceci est essentiellement expliqué
par le besoin de précision des simulations mais aussi par les avancées en terme
de puissance de calcul impliquant des méthodes numériques innovantes. Plusieurs
erreurs sont rencontrées au fil du processus.

Kobbelt 2009 ; Myles et al. 2010 ; Myles et Zorin 2012 ; Campen et Kobbelt
2014].

Le travail suivant est basé en partie sur les travaux effectués sur la disposition
en quadrilatères intégrée aux maillages triangulaires [Campen et Kobbelt 2014]
mais aussi sur les champs de croix [Crane 2010 ; Crane, Desbrun et Schröder
2010]. Nous utiliserons aussi le travail effectué dans la thèse précédente regroupant
quelques techniques présentées ci-dessus comme une base pour nos développements
[Al-Akhras 2016].

Ce travail se construit dans un premier temps à travers une segmentation ju-
dicieuse des surfaces triangulées représentant la géométrie. Nous segmenterons en
pantalons [Li, Gu et Qin 2009 ; Hajij, K. Dey et Li 2016], puis en cuböıdes ou
polycubes généralisés [Li et al. 2013]. Un champ de croix est ensuite calculé et une pa-
ramétrisation optimisée en est déduite. Le champ de croix est astucieusement généré
grâce à la compréhension de théorèmes et des propriétés des surfaces. Pour finir, des
volumes B-Spline sont interpolés utilisant les domaines paramétriques cubiques des
cuböıdes. Tout au long de ce processus, les propriétés et attributs d’une conversion
de surface à volume sont rigoureusement analysés. Ces approches mathématiques
sont soigneusement expliquées. Grâce à la paramétrisation interne des B-Splines,
chaque volume isogéométrique d’une pièce donnée peut être contraint pour obtenir
des maillages isotopologiques entre différentes instances géométriques pour une ap-
plication à la réduction de modèle, et ceci sans étapes de projection. Des applications
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à la réduction de modèle utilisant l’IGA avec des paramètres géométriques seront
présentées dans ce travail.

0.2 Pré-requis de topologie simplifiés

On introduit ici très brièvement la topologie, c’est à dire l’étude des propriétés
d’entités géométriques soumises à des transformations continues. On étudie donc les
propriétés de continuité, connexité lors de déformations continues incluant le pliage
et l’étirement mais pas le collage et le déchirement. Un espace topologique décrit
ces propriétés communes. Nous référons les lecteurs à la Définition 0.1 pour plus de
détails.

Définition 0.1. Espace topologique. Un espace topologique est espace
constitué d’ensembles munis d’une notion de voisinage autour de chaque point.
Ces voisinages satisfont des axiomes spécifiques entre eux.

Nous nous concentrons en particulier sur des espaces topologiques dits variétés
géométriques (la Figure 5 nous renseigne sur le type d’espaces utilisés dans ces tra-
vaux de thèse). Pour une compréhension rapide, nous donnons des illustrations en
Figure 6 pour comprendre les notions de déformations continues entre deux espaces
topologiques. Nous appelons un homéomorphisme une transformation possédant une
fonction continue et préservant les propriétés topologiques tout au long de la conver-
sion géométrique. Un homéomorphisme est aussi appelé un isomorphisme topolo-
gique.

Figure 5: Espaces topologiques étudiés. (A) Un double cone ne possède pas les pro-
priétés requises pour être une variété géométrique. (B) Mêmes conclusions que (A).
(C) Une courbe est une variété géométrique de dimension 1. (D) Un tore surfacique
est une variété géométrique de dimension 2.
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Figure 6: Homéomorphisme entre surfaces. (A) Une sphère est homéomorphique à
un cube (B). (C) Le tore possède des propriétés topologiques différentes de (A) et
(B).

0.3 Stratégie de décomposition de surface

0.3.1 Décomposition en pantalons

La décomposition en pantalons a été introduite par [Hatcher, Lochak et
Schneps 2000 ; Hatcher 2001] et de nombreux travaux ont été effectués pour trou-
ver la segmentation optimale en pantalons [Verdière et Lazarus 2007]. D’autres
méthodes plus récentes existent [Hajij, K. Dey et Li 2016]. Un pantalon est une
surface de genre 0 avec 3 frontières. Nous référons les lecteurs au Chapitre 2 pour
comprendre les notions de genre, frontière et caractéristique d’Euler. Autrement dit
un pantalon est topologiquement équivalent à une sphère à 3 trous, à un disque
à deux trous ou encore à un tuyau à trois voies. Plusieurs critères peuvent guider
une décomposition en pantalon comme le chemin le plus court, la règle de courbure
minimum et la symétrie. Rappelons que notre maillage d’entrée avant segmentation
est un maillage triangulé surfacique (surface combinatoire de triangles). Une notion
élémentaire de topologie est nécessaire pour définir un pantalon. Pour une surface
M de genre-g avec b frontières, la décomposition en pantalons est possible si et
seulement si l’Équation (1) est satisfaite. De plus, selon la caractéristique d’Euler
χ(M) de la surface M considérée, le nombre de patchs de pantalons est défini en
Équation (2).

χ(M) = 2− 2g − b ≤ −1, (1)
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NPatches = 2g + b− 2 = −χ(M) (Si− χ(M) ≥ 1). (2)

Notre algorithme de décomposition en pantalons (surface M avec −χ(M) ≥ 1 et
un critère géométrique) est très robuste et fonctionne très bien sur un maillage de
basse qualité et bruité. L’Algorithme 0.1 en est la composante principale. La donnée
de sortie est un ensemble globalement optimisé de patchs de pantalons. Un aperçu
rapide de la décomposition en pantalon sur une plaque à deux trous est illustré en
Figure 7. A noter deux importantes caractéristiques :

• Les boucles géométriques (handle et tunnel loops) sont optimales.

• L’espace topologique entier des décompositions en pantalons possibles est
énuméré et la meilleure décomposition est choisie à l’aide d’un critère
géométrique.

Algorithme 0.1. Main geometry-aware pants decomposition algorithm.

Input 1 : Triangulated genus-g surface M with b boundary components.
Input 2 : g geometrically relevant handle loops of M .
Input 3 : Global geometric criterion for L.
Output : Set of −χ(M) pants patches T = {T1, ..., T−χ(M)}, with M = ∪Ti.
01 : k = 1.
02 : Slice M along all its handle loops and get a surface Mk with 2g+b boundaries.
03 : Put all boundaries of Mk in a set W = {w1, ..., w2g+b}.
04 : While |W | > 3 do
05 : Build or reset an empty set of loops L = {0}.
06 : Compute Nc combinations : dim(Nc) = Size(W )!

2!(Size(W )−2)!
.

07 : For all couples [wi, wj] in Nc :
08 : Compute a cycle wij homotopic to wi ◦ wj (Algorithms 3.2 and 3.3).
09 : Add loop to L.
10 : End For
11 : Sort relevant loops in L = {l1, ..., ldim(Nc)} using a global geometric criterion.
12 : The optimal wij cycle is classified in L.
13 : {w1, wj, wij} bound a pants patch Tk. Remove Tk from Mk : Mk ← Mk \
Tk.
14 : Remove wi and wj from W , and add wij into W .
15 : k ← k + 1.
16 : End While

0.3.2 Décomposition en cuböıdes

Chaque pantalon est ensuite décomposé en 4 cuböıdes minimum. Un cuböıde
est une sphère topologique composée de 6 surfaces homéomorphes à un disque. On
remarquera qu’en fonction de la géométrie (angles, arrêtes vives, frontières) il existe
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Figure 7: Décomposition en pantalons. (A) Maillage triangulé issu de la CAO. (B)
Handle et tunnel loops calculées en utilisant des critères géométriques (les handle
loops en rouge, les tunnel loops en vert). (C) Segmentation en pantalon utilisant le
critère géométrique de la boucle de découpage la plus courte. (D) Segmentation en
pantalon utilisant un critère de symétrie.

en général une configuration en cuböıdes qui permet de respecter la géométrie d’un
pantalon donné. La Figure 8 nous montre trois exemples de configuration de cuböıdes
pour 3 différentes géométries de pantalons. Nous verrons par la suite qu’il est im-
portant de bien choisir la configuration en cuböıdes car elle affecte significativement
la paramétrisation volumique B-Spline. Il nous faut donc trouver des descripteurs
géométriques et topologiques de chaque pantalon afin de pouvoir déterminer la bonne
configuration possible. Une bonne configuration respecte la géométrie d’entrée avec
ses arrêtes vives et ses angles.

0.4 Paramétrisation de surface et optimisation

Les surfaces NURBS ou B-Spline ont besoin d’un domaine paramétrique rec-
tangulaire donc par conséquent homéomorphe à un disque dans l’espace physique.
De plus, un maillage de contrôle de quadrilatères est essentiel. Afin de pouvoir au
mieux construire ce maillage de contrôle, il nous est nécessaire de construire des
champs de directions. Par exemple un champ de lignes (2-symétrie) est utilisé pour
placer une texture, un champ de croix (4-symétrie) peut être utilisé pour remailler
en quadrilatères [Bommes, Zimmer etKobbelt 2009]. Nous devons donc concevoir
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Figure 8: Décomposition en cuböıdes. Pour chaque géométrie de pantalon,
une configuration en cuböıdes est optimale pour comprendre ces caractéristiques
géométriques. (A) La plus simple des configurations en cuböıdes pour un pantalon.
(B) Une configuration avec 8 cuböıdes. (C) Une configuration avec 10 cuböıdes.

un champ de croix topologiquement conforme avec la décomposition en cuböıdes et
correspondant aux directions principales et aux caractéristiques géométriques. Une
fois ce champ calculé, il est utilisé pour en déduire un maillage en quadrilatères
issu d’une paramétrisation globale surfacique alignée avec celui-ci. A noter que la
configuration en cuböıdes est une segmentation de surface et donc reste une en-
tité surfacique. L’intégration surfacique de cette décomposition est optimisée afin de
réduire la distorsion des éléments quadrilatèraux en utilisant l’approche de [Campen
et Kobbelt 2014]. La Figure 9 image très simplement le processus de paramétrage.

Figure 9: Mapping de configuration de cuböıdes. En utilisant les données topolo-
giques et géométriques de la configuration en cuböıdes ainsi que la paramétrisation
globale, un maillage en quadrilatères est calculé.
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applications de réduction de modèles

0.5 Conversion de maillages surfaciques en

maillages volumiques structurés pour des ap-

plications de réduction de modèles

Cette section vise à résumer rapidement comment les structures volumiques ser-
vant à la définition des volumes isogéométriques sont construites. Nous nous servons
de la décomposition optimisée en cuböıdes ainsi que du maillage en quadrilatères
résultant de la paramétrisation de surface. Tout au long de ce processus, nous ana-
lysons les attributs topologiques de cette conversion afin de déterminer la structure
volumique adéquate. En effet, lors de la conversion d’une surface à un volume,
des propriétés topologiques sont héritées d’une dimension à une autre. Par contre,
comme l’intérieur du volume n’est pas clairement défini et segmenté, il est important
de connaitre certaines prérogatives à la construction volumique. Nous conseillons vi-
vement aux lecteurs de lire le Chapitre 6 pour de plus amples détails. Ce chapitre
concernant la conversion volumique est un des développements majeur de ce travail
de thèse.

Dans un objectif de réduction de modèles incluant des simulations avec des
paramètres géométriques, nous donnons notre stratégie en Figure 10 pour les B-
Splines volumiques. Une structure volumétrique commune aux différentes instances
géométriques à étudier est déduite et un membre-α est choisi. Les contraintes de
maillages isotopologiques sont appliquées sur la population entière ; ceci résultant
en un ensemble de maillages ayant la même connectivité. La contrainte homologue
nous permet quant à elle de définir la comparaison point par point de maillage. Elle
traduit donc plus un aspect de géométrie que de topologie.

0.6 Application à la réduction de modèles avec

des paramètres géométriques utilisant l’ana-

lyse isogéométrique

La réduction de modèles est une tache fastidieuse surtout quand il s’agit d’y
introduire des paramètres géométriques [Lu, Blal et Gravouil 2018 ; Maquart
et al. 2019a ; Maquart et al. 2019b]. En effet on souhaite conserver la même struc-
ture de données (c’est à dire le maillage) pour chaque instance géométrique de notre
population. Avec notre processus, chaque volume isogéométrique d’une pièce donnée
peut être contraint pour obtenir des maillages isotopologiques entre différentes ins-
tances géométriques.

Nous montrons dans ce résumé deux exemples de modèles réduits. On utilise
l’analyse isogéométrique sur des modèles formés de B-Splines volumiques. Le premier
exemple en Figure 11 montre l’évaluation du modèle réduit de joint en temps réel
pour un jeu de paramètres arbitraires. Le second est donné en Figure 12.
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Figure 10: Construction de maillages isotopologiques pour des applications de
modèles réduits à paramètres géométriques. (A) Géométrie A d’un volume formé
de B-Splines. (B) Géométrie B d’un volume formé de B-Splines. (C) Structure
volumique de référence. (D) Membre-α choisi pour représenter la population de
géométries à étudier.

Seal part range Min Max
Radius 1 11 15
Radius 2 20 30
Radius 3 35 45
Height 1 28 35
Height 2 10 16
Length 1 50 80
Load intensity 100 N 175 N
Poisson’s ratio 0.28 0.34

Table 1: Plage de paramètres utilisée pour le modèle réduit de joint.

0.7 Conclusion

Nous avons introduit dans cet article une méthode de génération de maillages
volumétriques et isotopologiques entre eux. Ceci est réalisé à partir de la B-Rep issue
de la CAO. Nous avons montré que notre stratégie de maillage est bien adaptée à
la modélisation d’ordre réduit avec des paramètres géométriques. La comparaison
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Figure 11: Évaluation du modèle réduit de joint. La base réduite est constituée
des 50 premiers modes. 400 snapshots ont été nécessaires pour construire ce modèle
réduit. La plage des paramètres utilisée est donnée en Tableau 1.

Wheel part range Min Max
Radius 1 7.8 9.75
Radius 2 13.65 16.25
Radius 3 25.35 29.9
Radius 4 62.725 67.275
Radius 5 73.775 80.275
Radius 6 86.625 91.975
Height 1 26 32.5
Height 2 8.125 9.75
Length 1 39 43.875
Load intensity 100 N 175 N
Young’s modulus 200 GPa 230 GPa

Table 2: Plage de paramètres utilisée pour le modèle réduit de roue.

efficace des champs mécaniques se fait en prenant en compte le même paramétrage
pour toutes les instances géométriques de la population à étudier. L’introduction de
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Figure 12: Évaluation du modèle réduit de roue. La base réduite est constituée
des 50 premiers modes. 592 snapshots ont été nécessaires pour construire ce modèle
réduit. La plage des paramètres utilisée est donnée en Tableau 2.

paramètres géométriques dans un modèle d’ordre réduit permet par exemple d’op-
timiser la forme, ce qui est utile aujourd’hui dans un objectif de réduction du poids
d’une pièce. Un réel avantage a été déployé en définissant une méthode générique
pour surmonter la difficulté de génération fiable et automatique de maillages isoto-
pologiques. Les évaluations en temps réel présentées démontrent la robustesse et la
fiabilité de la méthode développée.

Une contribution clé est amenée pendant la segmentation de la surface d’entrée
fournie par la CAO. La théorie de la décomposition de surface est un outil essentiel
pour atteindre nos objectifs. Nous nous efforçons de comprendre à la fois la géométrie
et la topologie au cours de cette étape. Pour d’autres propriétés telles que les indices
des singularité des champs de croix et la paramétrisation globale de surface, nous
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Conclusion

avons utilisé le travail de [Campen et Kobbelt 2014] associé à nos améliorations
précédentes.

Nous avons montré de nouveaux outils mathématiques pour comprendre les pro-
priétés topologiques invariantes lors de la conversion de surface en volume formant
une autre avancée significative. Cette problématique continue de susciter un certain
intérêt dans les communautés du traitement de la géométrie, de la mécanique et de
la physique. Le contrôle des propriétés topologiques au cours du processus de conver-
sion est fondamental. En effet, les informations invariantes transmises de la surface
au volume sont essentielles pour construire les maillages volumétriques nécessaires
à notre méthode.

Malgré les capacités de nos algorithmes et outils présentés dans cette thèse,
traiter automatiquement toute géométrie complexe issue de la CAO reste un défi
majeur. Pour les cas complexes avec une géométrie arbitraire, la décomposition
en pantalons peut ne pas être cohérente. Nous pouvons résoudre ce problème en
ajoutant des entrées utilisateur au processus automatique. La décomposition en
cuböıdes générée est adaptée à la définition de la surface, ce qui donne une définition
arbitraire du volume intérieur. Toutefois, il est possible de s’y attaquer en adressant
à la méthode des entrées spécifiques.
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Introduction

Isogeometric representations for a better continu-

ity and geometry

Since its introduction in 2005, IsoGeometric Analysis has demonstrated several abil-
ities in terms of efficiency, accuracy and quality in analysis. By using the same math-
ematical representation for both geometry and analysis, isogeometric elements are
geometrically better than traditional finite elements. B-Spline and NURBS (Non-
Uniform Rational B-Splines) were initially introduced to construct complex parts
for graphical purposes but also for design softwares in the automotive industry. In-
deed, a coarse level of discretization suffice to represent complicated shapes. It has
the potential to reduce the numerical error related to the geometry discretization
compared to classical methods encountered in computational mechanics.

A particularly highlighted capability of IGA is to have the power to reunify the
worlds of Computer Aided Design and Computer Aided Engineering. Very recent
trends are to design a geometry while parameterizing its analysis model. With such
workflow, we avoid numerous time consuming back and forth between CAD and
CAE softwares currently used.

IGA possesses additional properties than the standard Finite Element Analysis.
Continuity is achieved thanks to high-order B-Spline basis functions. This is the
same functions which are used for model discretization and analysis. Such approach
has been successfully applied in many fields. Fluid mechanics, contact interfaces,
shape optimization, Fluid Structure Interaction are a non-exhaustive list of exam-
ples. For some applications, exhibited results with this method have been greatly
improved and accuracy goals have been reached.

Nevertheless, a specific need for IGA is the disponibility of mathematical models
which are analysis suitable. Not all geometries hold these requirements. To deal
with this problematic, various implementations of isogeometric analysis exists. Com-
mercial softwares, e.g. Abaqus, LS-Dyna and also RADIOSS have implemented or
have planned to use IGA. Obtaining analysis suitable geometries remains nonethe-
less a current challenging problematic: numerous analyzed parts are computed from
manual modeling or with prototype research codes. This thesis aims to give a con-
tribution in this field.
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Introduction

Reduced order modeling with geometric parame-

ters

Recent progresses in the computer industry, enable very large scale computations.
In fact, super computers and high performance computing solutions are able to
treat ever bigger complex problems. Fifteen years earlier, such computations would
not have been possible. However, we wish nowadays to better exploit disponible
resources. Mostly if onboard simulations are required, e.g. for immediate decision
making systems. Moreover, intense arithmetic tasks are energy consuming and are
not economically sustainable.

Reduced Order Models (ROMs) are known by their very low computational cost.
Real-time evaluations of complex solutions are thus made possible. The construc-
tion of a reduced order model requires prior computations. These precomputations
are called snapshots. Into a shape optimization process, standard procedures are
running parametric studies, in the way to find the best set of geometrical parame-
ters. Despite the current capacity of the actual computational power, accumulating
thousands of numerical simulations is not reasonable. That is why, some industries
prefer to over-size mechanical parts in order to avoid years of computations. Mass
reduction objectives are common in the aeronautical industry. Indeed, increasing
mass of a structure lead to increase its fuel consumption.

Modeling with geometric parameters is a problematic we want to tackle in this
thesis work. Changing the geometry meaning to deal with a different mesh, and
thus with a different structuration of the data between shapes. Nonetheless, ROMs
require solutions vectors with the same dimension, i.e., to avoid an inacurrate pro-
jection step between different instances.

Topology

Polygonal meshes are widely used discretizations with numerous applications in
computational mechanics, numerical simulation, computer graphics and so on. The
idea is to discretize the geometry into cells or simple geometrical entities. Trian-
gles and quadrilaterals are the most used polygonal entities for surface definition.
Quadrilateral meshes are well-suited for many tasks involving graphics and texture
mapping. Triangle meshes are easier to generate, because they present unstructured
properties. For instance, in CAD softwares, it is nowadays very easy to generate
triangle meshes from a NURBS design. However, discretized combinatorial arrange-
ments of triangles do not hold relevant topological attributes while geometry is well
replicated.

Since years, most researches have focused on converting unstructured meshes
to structured ones, whether it is applied for surface of volume entities. Indeed,
tetrahedral meshes are by far the most employed in numerical simulation. But, for
various reasons in different fields, current researches are trying to convert geometries
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Introduction

in order to obtain a superior structuration of the geometry. Isogeometric analysis is
based on smooth spline representations that are structured. Such geometrical trans-
formations are closely related to mathematics, and in particular in topology. This
thesis focuses on properties and theorems governing these reconstruction processes.

Followed strategies in this thesis

We give a method to compute quality 3D hexahedral or trivariate B-Spline meshes
with specific properties needed in parametric analysis. We strive to build isotopo-
logical meshes from triangulated surface provided by B-Rep CAD. Such meshes
are generated using objects with complex geometry and arbitrary topology. This
work is based on smart geometry-comprehensive algorithms which interact together.
Programming is an essential tool widely used throughout proposed approaches.

To do this, we present an integrated pipeline partitioning the input from trian-
gulated surface in relevant domains useful to compute comparable 3D hexahedral
meshes. Hexahedral meshes are degree-1 B-Spline meshes. Firstly, we seek to un-
derstand the geometry while decomposing the mesh. This is the first proposed en-
hancement involving geometry-aware pants decomposition and feature-aware-cuboid
decomposition algorithms. We treat input surfaces with pants decomposition ap-
proaches [Verdière and Lazarus 2007; Li, Gu, and Qin 2009; Zhang and Li 2014;
Hajij, K. Dey, and Li 2016]. Thereafter, we perform cuboid decomposition [Lin
et al. 2008; Li et al. 2013; Liu et al. 2015] splitting each pants patch into a coarse
quadrilateral mesh lying on triangulated mesh features as possible: the quadrilateral
layout.

Second novelty is brought by locating properly high valence nodes of the quadri-
lateral layout. A surface optimized global parameterization helps us to define a
high quality quadrilateral mesh. Based on the approach introduced by [Campen
and Kobbelt 2014], quadrilateral patches embedded on the studied surface are op-
timized in a way to minimize the surface parameterization distortion. We design
cross fields to guide the parameterization [Ray et al. 2008; Bommes, Zimmer, and
Kobbelt 2009; Crane, Desbrun, and Schröder 2010]. Topological properties of such
direction fields are entirely provided from the coarse quadrilateral layout.

The third main significant contribution is topology based. We use topology con-
cepts throughout the pipeline to design volumetric layouts from unstructured CAD
geometry. From the beginning to the end, decomposed topologies are constrained
and analyzed in order to build structured volumetric meshes using unstructured sur-
face ones. We present properties of 2, 3-dimensional manifolds embedded in R3 for
2-dimensional manifolds to 3-dimensional manifolds conversion. Close links between
quadrilateral layouts and volumetric layouts are then determined. Suitable volumet-
ric layouts are then an essential scheme to build required trivariate isogeometric and
pure hexahedral meshes.

Finally, the problem of generating isogeometric analysis suitable models for
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Introduction

ROMs is tackled. The fourth novelty is given by adressing the same parameteriza-
tion to different shapes. Mechanical fields are computed with isogeometric analysis
onto isotopological snapshots meshes. The snapshots are sampled in the way to
cover large parameters spaces involving many geometrical parameters.

Manuscript organization

This thesis work is organized in 7 chapters:

• Chapter 1 presents a state of the art concerning isogeometric analysis and
reduced order modeling. Methods followed to fulfill our objectives will be
detailed.

• Chapter 2 introduces topology prerequisites which are fundamental for the
next developments.

• In Chapter 3, the decomposition pipeline is revisited to understand the geom-
etry.

• Chapter 4 explains the used aligned global parameterization technique com-
puted from a geometrically relevant cross field. We then extract a suitable
quadrilateral mesh of the triangulated surface.

• Chapter 5 presents applications to statistical shape analysis and virtual charts
results based on quadrilateral meshes.

• Chapter 6 deal with topological properties and constraints during surface to
volume conversion.

• Chapter 7 presents results on reduced order models with geometric parameters.
Several illustrations demonstrate the efficiency of the method.

Used algebraic operators and notations are detailed in Appendix A.
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Chapter 1

Isogeometric analysis based
reduced order modeling

This chapter presents current main challenges concerning
computational mechanics. State of the art related on isogeometric

analysis and reduced order modeling is reviewed.

Contents
1.1 Computational mechanics . . . . . . . . . . . . . . . . . . . . 60

1.1.1 Global motivations for numerical simulation . . . . . . . . . . 60

1.1.2 Better simulation through better geometry using IGA . . . . 60

1.1.3 Real-time computations: the need for ROM . . . . . . . . . . 62

1.2 Isogeometric analysis . . . . . . . . . . . . . . . . . . . . . . . 64

1.2.1 Introduction and state of the art . . . . . . . . . . . . . . . . 64

1.2.2 Basic mathematical aspects . . . . . . . . . . . . . . . . . . . 65

1.2.3 Analysis-suitable parameterization . . . . . . . . . . . . . . . 69

1.3 Reduced order modeling . . . . . . . . . . . . . . . . . . . . . 70

1.3.1 Introduction to reduced order modeling . . . . . . . . . . . . 70

1.3.2 Singular value decomposition and statistical shape analysis . 72

1.3.3 Snapshots and parametric studies . . . . . . . . . . . . . . . . 74

1.3.4 Isotopological snapshots problematic for ROMs . . . . . . . . 76

1.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

59

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI033/these.pdf 
© [T. Maquart], [2019], INSA Lyon, tous droits réservés



1. Isogeometric analysis based reduced order modeling

1.1 Computational mechanics

1.1.1 Global motivations for numerical simulation

Simulation softwares are nowadays powerful and robust to be exploited into an
industrial objective. Such processes and tools have become indispensable in the
actual industry. They serve to design, optimize and validate products. Physics
phenomena must be understood as well as possible in order to provide and simulate
behavior of structures, fluids and so on. CAD seems to be an essential approach to
describe the geometry of the studied objects. For decades, it has been used as the
first step of an engineering process: the geometrical design. Physics are solved by
defining partial derivative equations on an approximated geometry provided from
CAD. This is the main task of a CAE software.

Despite today’s ability of CAD and CAE to lead increasing complex computa-
tions, one of our main motivation in this thesis is to better represent the geometry.
Indeed, the link between CAD and CAE worlds is brought by a discretization step.
Numerical analysis can not be performed directly through the CAD geometry. We
point out two different approaches: the FEA and IGA as depicted in Figure 1.1.
FEA represented in Figure 1.1 (A) is based on a mesh generation step while IGA in
Figure 1.1 (B) is already parameterized and can describe an exact geometry as well
as the CAD design process does. Although CAD can use same geometrical objects
as IGA, the geometry is not directly analysis-suitable due to boolean operations
widely prescribed in these designing pipelines.

Due to the increasing complexity of executed simulations and precision needs,
importance to hold a powerful discretization method is an actual problematic. The
principal motivation of IGA users, is to fill the gap between the worlds of CAD
and CAE by using a comprehensive geometry representation and parameterization.
Shape optimization purposes are thus straightforwardly adapted with the isogeo-
metric discretization.

1.1.2 Better simulation through better geometry using IGA

IGA is a recent numerical analysis method that is very promising for design and
analysis by replacing traditional finite elements with B-Splines and Non-Uniform
Rational B-Splines elements (NURBS). This method finds its origin in the work of
[Hughes, Cottrell, and Bazilevs 2005] and is detailed few years later by [Cottrell,
Hughes, and Bazilevs 2009]. B-Splines and NURBS functions (see e.g. [Rogers
2000; Farin 2002; Piegl and Tiller 2012]) were initially chosen for their free form
and deformation capacities in CAD softwares. IGA represents the geometry better
than standard FEA meshes and has better continuity properties between elements.
Indeed, this method uses the same type of mathematical representation for both
geometry and computation of solution fields. That is why this computational ap-
proach offers the possibility to fill the gap between design and analysis. Low degree
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Computational mechanics

Figure 1.1: Quick comparison between two discretization methods for numerical
analysis. (A) FEA discretization method passing by a mesh generation step yielding
an approximated geometry. FEA and CAD use different description for the geome-
try. (B) IGA discretization method represents the exact B-Rep CAD geometry and
the whole model is parameterized: IGA and CAD use the same description for the
geometry of the surface. Geometry can be changed using parameters P1 and P2
without modifying the parameterization. IGA allows parametric computations.

B-Splines and NURBS, i.e., quadratic or cubic, are particularly interesting for anal-
ysis. Indeed, their calculation cost is not much higher compared to conventional
finite elements and they allow a significant improvement for the solution quality
[Occelli 2018]. This is in particular due to the geometry description: as pointed
before, IGA gives the possibility to treat design and numerical simulation with the
same geometrical model. One of the most interesting aspects of classical B-splines is
that different kind of refinement strategies are possible while leaving the underlying
geometry and its parameterization intact [Cottrell, Hughes, and Bazilevs 2009].

Today’s challenges are to bring the IGA from the concept stage to a real tool
for industry. A contribution of this problematic is delivered in this work, see e.g.
Appendix B. The issues of an industrial finite element code are directly related to
the world of industry. Solutions must be effective, general and lead to quality results
while being as robust as possible. This is the main idea behind Figure 1.2. Figure
1.2 (A) shows the classical FEA workflow that is almost linear: the different stages
are done in different softwares. From design to simulation, communication between
numerical entities are not optimized. On the contrary, Figure 1.2 (B) depicts the
aim of the IGA process of tomorrow. Researchers are trying to incorporate design
and analysis in the same software [Coreform 2019]. But complexity of such hard
task is particularly related to geometry and topology problematics. This thesis aims
to understand them. Scientists usually insist on 5 main differences to sell or to prove
that IGA must be the future tool for numerical analysis that reunifies the worlds of
CAD and CAE [Derek et al. 2019]:
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1. Isogeometric analysis based reduced order modeling

• Accuracy of IGA.
Smooth basis functions improve the accuracy of the entire simulation process.

• Efficiency of IGA with better geometry.
Geometry can be understood with few degrees of freedom yielding to an im-
proved accuracy per degree of freedom.

• Robustness of IGA.
Larger mesh deformations are acceptable compared to traditional FEA: other
mechanical problems can be tackled.

• Adaptative refinement of IGA.
Depending on the type of used splines, local refinement is available for specific
simulation purposes.

• IGA is well-suited for all mechanical applications.
IGA capacities are larger than FEA: from design to parametric shape opti-
mization, IGA is successful.

Despite all mentionned benefits and capabilities of IGA, today’s problems are
the availability of solid models. B-Rep geometry from CAD offers trimmed surfaces
and poor topological information. These geometries coming from design can not
be used directly for analysis. Generating IGA models for analysis while designing
remains a hard task.

1.1.3 Real-time computations: the need for ROM

Since few years, numerous applications in computational physics are dedicated to
reduced order modeling, i.e., the construction of Reduced Order Models (ROMs).
Indeed, a real benefit is brought by determining complex solutions in real-time.
For example, onboard sophisticated computations in fighter aircrafts becomes pos-
sible. Nowadays problems are multiparametric models, see e.g. [Chinesta, Ammar,
and Cueto 2010; Chinesta, Ladeveze, and Cueto 2011]. Figure 1.3 gives a quick
approach on the current problematics involving increased complexity of numerical
simulations. Many modern models of real-life physical computations pose challenges
when used in numerical simulations, due to time complexity and large size. In fact,
calculations infrastructures are limited in terms of operations per second. In case of
complex studies, a issue exists between memory space and required simulation time.
Today problems in science and engineering remain intractable, in spite of the recent
progresses in the physics field. For the last decade, dealing with high numerical
complexity leads us to adopt learning approaches. As a consequence, novel methods
are required in order to tackle not only non-linear problems but also large scale
and parametric problems, mostly if onboard simulations are required. Domains of
applications are changing and new emerging issues in the physics world require reli-
able fast resolution. For example, [Niroomandi et al. 2008] have used an offline step
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Computational mechanics

Figure 1.2: How to sell IGA instead of FEA. Showdown is imminent between FEA
(A) and IGA (B). (A) Classical FEA process is linear: from design to simulation,
each step is independent yielding to a time consuming approach. Moreover, geo-
metrical aspects and features are not necessarily conserved until simulation. (B)
Tomorrow’s IGA process. An integrated software controlling the design, the mesh-
ing and numerical simulation seems to be the required efficient solution for today’s
problematics. Note that designing methods in (B) could be very different than cur-
rent processes. One of the main argument for IGA is the following: better geometry
for a better simulation.

to reduce non-linear responses of living tissues. The principal motivation behind
reduced order modeling is to enable real-time analysis. This is realized thanks to
its very low computational cost during solution evaluation.

Clusters and others supercomputers used for expensive computations, e.g. fluid
mechanics, are in constant evolution. Parallel progresses of numerical methods im-
plies an overall computational improvement [Glotzer et al. 2009]. ROMs aim to
lower the computational complexity of dedicated problems. Such reduced order
model techniques can be applied for numerous non-linear and linear problems. In
addition, parametric studies are then easily understood and large sets of data can
be analyzed. These learning methods consist in solving a problem into a reduced
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1. Isogeometric analysis based reduced order modeling

Figure 1.3: Increasing model complexity for more realistic simulations. Starting
from a classical study or a parametric one, numerous additional stages with expen-
sive computational costs can be added depending on the physics. Numerical result
is obtained after a few minutes for simple problems or months for FSI (Fluid Struc-
ture Interactions) studies. Such nested steps are subject to several errors: modeling,
discretization and numerical errors.

subspace which is trying to capture the most dominant trends of the studied fields.
The main important variations are embedded into modes. Thus, the goal is to eval-
uate a solution with few modes that best describe the main tendencies of the physics
phenomenon.

1.2 Isogeometric analysis

1.2.1 Introduction and state of the art

One of the major strengths of NURBS or other isogeometric representations are the
easy manipulation of the geometry by moving control points. Thus, the shape of
the underlying surface can be smoothly modified while preserving the continuity
between elements. The choice of NURBS functions is certainly due to their native
presence in CAD and graphics softwares. These functions can represent exactly a
wide range of common shapes, i.e., conical sections, spheres, cylinders, ellipsoids and
so on. But, notice that this is not the case for helical surfaces. Classical NURBS
and B-Splines functions possess an intrinsic structured aspect, thus local refinement
is not possible. However, B-Splines provide refinement possibilities and therefore
refinement does not require any interaction with the original geometry provided
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Isogeometric analysis

from CAD while FEA does. NURBS detain other useful properties for numerical
simulation and geometric modeling. Knot insertion, Cp−1 continuity for NURBS of
degree p and convex hull properties are profitable as pointed in [Cottrell, Hughes, and
Bazilevs 2009]. This is a non-exhaustive list. The differential quantities associated to
such functions are mathematically defined, thus avoiding approximations. A benefit
is brought for shape optimization purposes. Indeed, shape and sizing optimization
can be performed in an identical manner [Hirschler et al. 2018].

Understanding both limitations and potentials of classical NURBS or splines
objects [Piegl and Tiller 2012], nowadays isogeometric analysis community is grow-
ing. Some researchers employ the so-called T-Splines for volumetric reconstruction
[Zhang, Wang, and Hughes 2012; Wang et al. 2013; Harmel, Sauer, and Bommes
2016], for mesh optimization [Escobar et al. 2011] or for volumetric construction
using boolean operations [Liu, Zhang, and Hughes 2014]. Others are denominated
hierarchical B-Splines and allow local refinement [Occelli 2018]. Very recent trends,
are to use U-Splines [Coreform 2019; Derek et al. 2019] that unlock the full potential
of IGA for industrial purposes. U stands for unstructured; inventors are promising
local adaptivity, refinement at extraordinary points, integration of triangles and
backwards compatibility with older splines technologies.

Nevertheless, the native tensor product problematic of splines restricts the con-
version possiblity of standard spline models to IGA. In particular for volumetric
studies. Hence, geometries provided from CAD can not be used directly. The rea-
son is because CAD softwares use boolean operations yielding to trimmed geometries
for surface entities. The method is called the B-Rep (Boundary Representation) for
volumetric models. Moreover, design processes are often leading to connection prob-
lems between patches or a non-conform welding. [Lai et al. 2016; Lai et al. 2017]
tried to integrate the design directly into a CAE software, but it remains a hard task
to be efficient and time-preserving compared to classical FEA. Although generation
of volumetric spline models is difficult to obtain in an automatic manner, powerful
solutions will appear in the next years due to the craze in this field. [Cohen et al.
2010] showed that the quality of the volumetric parameterization has an important
impact on the analysis.

1.2.2 Basic mathematical aspects

1.2.2.1 B-Spline basis functions

A knot vector Ξ is a set of non-decreasing real numbers, defined in the parametric
space. It is composed of n+p+ 1 values. n being the number of univariate B-Spline
basis functions of order p as given in Equation (1.1). Where ξi ∈ R is ith knot, i is
the knot index and i = {1, 2, . . . , n + p + 1}. Knots divide the parametric space in
knot spans [ξi, ξi+1] and the global interval [ξ1, . . . , ξn+p+1] defines a patch. A knot
vector is called uniform if its knots are uniformly spaced. Otherwise, it is called a
non-uniform knot vector. It is also called non-periodic or open if its first and last
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1. Isogeometric analysis based reduced order modeling

knots are repeated p+ 1 times as pointed in Table 1.1 for quadratic splines. In this
thesis, for isogeometric analysis, only uniform and open knot vectors will be used.

Ξ = {ξ1, . . . , ξn+p+1}. (1.1)

Open or non-periodic
Uniform {0, 0, 0, 1, 2, 3, 4, 4, 4}
Non-uniform {0, 0, 0, 1, 3, 4, 4, 4}

Table 1.1: Non-exhaustive list of different knot vectors for quadratic B-Splines.

B-Splines are defined from a knot vector Ξ. They are constructed recursively
in the parametric space from linear combinations of B-Spline functions, beginning
with piecewise constants. Equation (1.2) gives the basis functions for p = 0. For
p ≥ 1, the basis is defined by the Cox-de Boor recursion formula [Piegl and Tiller
2012] as written in Equation (1.3). The constructed basis functions for a uniform
knot vector {0, 1, 2, 3, 4, . . .} are given in Figure 1.4.

Ni,0(ξ) =

{
1 if ξi ≤ ξ < ξi+1,

0 otherwise,
(1.2)

Ni,p(ξ) =
ξ − ξi
ξi+p − ξi

Ni,p−1(ξ) +
ξi+p+1 − ξ
ξi+p+1 − ξi+1

Ni+1,p−1(ξ). (1.3)

B-Spline basis functions defined by the global knot vector can be seen with a local
point of view. A knot vector of size n+p+1 will generate n linearly independent basis
functions of degree p on p + 2 knots for support. Each basis function support is a
part of the knot vector, where the corresponding function is non-zero. Reciprocally,
a knot span [ξi, ξi+1] is covered by p+1 B-Spline basis functions. According to these
considerations, a given open uniform knot vector Ξ = {0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 8, 8}
will define 10 quadratic B-Spline functions with 10 so-called local knots and 8 knot
intervals, see Figure 1.5. We then list some of the fundamental properties of B-Spline
basis functions:

• Continuity.
Across knots, basis functions will be Cp−m where p is the polynomial degree
or order and m is the multiplicity of the knot. B-Spline basis functions con-
structed from an open uniform knot vector are interpolatory, i.e., they are C0

at the extremities of the knot interval [ξ1, . . . , ξn+p+1], but are not in general
at the interior knots. In the case of the basis constructed from the knot vec-
tor Ξ = {0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 8, 8}, none of the middle knots is repeated.
Their multiplicity is then minimum, i.e., m = 1.
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Isogeometric analysis

Figure 1.4: B-spline basis functions of order p = 0, 1 or 2 for a uniform knot vector
{0, 1, 2, 3, 4, . . .}. Picture from [Cottrell, Hughes, and Bazilevs 2009].

0 2 4 6 8
0

1

Figure 1.5: Quadratic basis functions generated by the knot vector Ξ. All quadratic
basis functions generated by the knot vector Ξ = {0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 8, 8}.
Each individual basis function can be described using a local knot vector of p + 2
knots each. Picture from [Occelli 2018].

• Partition of the unity.
A B-Spline basis constructed from an open knot vector has the partition of
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1. Isogeometric analysis based reduced order modeling

unity property:

n∑
i=1

Ni,p(ξ) = 1, ∀ξ. (1.4)

• Linear independence.
A B-Spline basis is linearly independent:

n∑
i=1

ciNi,p(ξ) = 0⇔ ci = 0, ∀i ∈ {1, . . . , n}, ∀ξ. (1.5)

• Compact supports of B-Spline basis functions.
A B-Spline basis function has a compact support, i.e., the support of Ni,p is
included in [ξi, . . . , ξi+p+1].

1.2.2.2 B-Spline objects

B-Spline curves can be built in Rd by linear combination of B-Spline basis functions,
where d ≥ 1. Coefficients Bi ∈ Rd, ∀i = {1, 2, . . . , n} are called control points. They
are analogous to nodes for finite element analysis and define the control polygon.
Given n functions Ni,p, ∀i = {1, 2, . . . , n} of degree p and a knot vector Ξ =
{ξ1, . . . , ξn+p+1}, a B-Spline curve is defined in Equation (1.6). An example of a
cubic B-Spline curve is given in Figure 1.6 (A).

C(ξ) =
n∑
i=1

Ni,p(ξ)Bi. (1.6)

Given a control polygon Bi,j ∈ Rd, ∀i = {1, 2, . . . , n}, ∀j = {1, 2, . . . ,m}
and knot vectors for each parametric direction Ξ = {ξ1, . . . , ξn+p+1} and H =
{η1, . . . , ηm+q+1} respectively of degree p and q, a B-Spline surface can be constructed
using the global tensor product generalization of univariate B-Spline functions as
formulated in Equation (1.7). An example of a cubic B-Spline surface is given in
Figure 1.6 (B).

S(ξ, η) =
n∑
i=1

m∑
j=1

Ni,p(ξ)Mj,q(η)Bi,j. (1.7)

Given a control polygon Bi,j,k ∈ Rd, ∀i = {1, 2, . . . , n}, ∀j = {1, 2, . . . ,m},
∀k = {1, 2, . . . , l} and knots vectors Ξ = {ξ1, . . . , ξn+p+1}, H = {η1, . . . , ηm+q+1}
and Z = {ζ1, . . . , ζl+r+1}, respectively of degree p, q and r, a B-Spline volume can
be constructed in a similar way in Equation (1.8). Notice that 2D and 3D basis
functions have the same fundamental properties of 1D basis functions.
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Figure 1.6: Cubic B-spline curve and surface. (A) A B-Spline curve with knot
vector Ξ = {0, 0, 0, 0, 1, 2, 2, 2, 2}. (B) A B-Spline surface with knot vector Ξ =
{0, 0, 0, 0, 1, 2, 2, 2, 2} and H = {0, 0, 0, 0, 1, 2, 2, 2, 2}. Control points are depicted in
red, whereas physcial knot locations are in blue.

V(ξ, η, ζ) =
n∑

i=1

m∑
j=1

l∑
k=1

Ni,p(ξ)Mj,q(η)Lk,r(ζ)Bi,j,k. (1.8)

NURBS are constructed from B-Splines. They can be obtained by weighting the
B-Spline functions, assigning a weight to each of the control points. More specifically,
NURBS functions in Rd are built from projective transformations of B-Splines in
Rd+1. The main advantage of NURBS compared to B-Splines is their ability to
represent more geometric entities. NURBS can precisely represent conic sections,
such as circles and ellipses. We refer the readers to the books of [Cottrell, Hughes,
and Bazilevs 2009; Piegl and Tiller 2012] for more details. We recall that, in the
following, only uniform and open knot vectors will be used for B-Spline objects.

1.2.3 Analysis-suitable parameterization

One of the most challenging problematic in IGA, is to generate required suitable
meshes from an initial standard B-Rep CAD design. Given a solid model from
CAD, i.e., possibly trimmed NURBS surfaces defining the boundary of the volume,
generating an IGA mesh remains a hard task. Same issue exists when converting a
triangulated mesh or tetrahedral one into a structured pure hexahedral mesh. In-
deed, when designing in CAD softwares or using automatic meshing algorithms, the
initial geometry is hidden or defeatured. Important information is lost. Nowadays
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1. Isogeometric analysis based reduced order modeling

tasks in the geometry community is concentrated to recover these lost topological
aspects. In this work, we seek to understand all mathematics needed to retrieve
these properties.

There exists many different techniques to build analysis-suitable parameteriza-
tions for IGA. Recall that the problematic of generating a pure hexahedral mesh
from a B-Rep CAD is the same of designing an IGA mesh from a triangulated surface
geometry. [Martin, Cohen, and M. Kirby 2009] proposed a method that generates
generalized cylinders used to construct a volumetric isogeometric representation.
[Wang et al. 2008; Li et al. 2013] use generalized polycubes to fulfill the same ob-
jective of reparameterization. However, in terms of spline construction, cylinders
produce degenerated points along their axis. Polycubes are themselves more dedi-
cated to this parameterization approach. For genus-zero solids, other methods exist
[Zhang, Wang, and Hughes 2012; Wang et al. 2013].

In the biomedical field, geometries are obtained using scanning techniques. It
is nowadays reasonable to obtain meshes from various organs with powerful instru-
ments. Encountered procedures are mainly automatic. Scanners create a point cloud
that is triangulated by a specific reconstruction software [Hornung and Kobbelt
2006]. Technically speaking, delaunay triangulation in R3 is a starting point for
these meshing pipelines.

Our work investigates objects with complex geometry and arbitrary topology
given by a B-Rep model. We seek to generate a trivariate parameterization which
respects a given solid model defined by its B-Rep CAD or triangulated mesh of the
volume’s boundary. Figure 1.7 gives the two main studied workflows, i.e., the CAD
and biological ones.

1.3 Reduced order modeling

1.3.1 Introduction to reduced order modeling

ROMs are usually presented as computationally efficient mathematical represen-
tations that can offer the potential for near real-time analysis. Reduction means
finding an appropriate basis composed by less vectors than the number required to
define a snapshot. A snapshot is defined as a solution for a given set of parameters
that may include time, mechanical properties or shape parameters. Large amount
of time is saved when interrogating an appropriate basis that represents the major
trends of the physics phenomenon: the so-called reduced basis. Nevertheless, finding
a reduced basis providing both an attractive dimensional reduction and a relevant
solution is still challenging. Figure 1.8 shows today’s problematics concerning para-
metric studies for industry where model reduction methods can be useful.

Two different approaches of reduction methods exist. Roughly speaking, the
ROM world is divided between a posteriori and a priori approaches. The first one
consists in determining a reduced space before performing reduced order model com-
putations. Snapshots are obtained from mechanical experiments or simulations. The
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Reduced order modeling

Figure 1.7: Analysis-suitable parameterization examples. (A) B-Rep from CAD.
(B) Solid is considered by the computer as a combination of NURBS trimmed sur-
faces. (C) Smart segmentation and parameterization are mandatory to obtain a
trivariate isogeometric parameterization that conserves the features of (A). (D) Point
cloud and reconstructed triangulated mesh. (E) Surface isogeometric mesh and its
detail in (F). Heart surface parameterization has been computed by our IGA ROM
PlugIn (see Appendix B).

Figure 1.8: Parametric models generation. Reduced order modeling is a well-suited
tool for these designing pipelines. (A) A feature based parametric design done in
industries. (B) Applying loading parameters, boundary conditions and material
properties. (C) Parametric studies and geometries resulted from (A) and (B).

Proper Orthogonal Decomposition is computed from snapshots in order to obtain
the needed reduced basis. POD is based on the Singular Value Decomposition of a
matrix. As earlier said, reduced order model evaluation or computation generally
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1. Isogeometric analysis based reduced order modeling

require a low computational effort and thus it is particularly adapted for on-board
computations for large parametric problems. Numerous types of problems can be
resolved [Kunisch and Volkwein 2001; Ryckelynck et al. 2006; Kerfriden et al. 2011;
Amsallem, Zahr, and Farhat 2012]. Foremost introduced in fluid dynamics, a pos-
teriori methods have been then exploited in structural mechanics.

The second one, does not require prior knowledge about the solution. The re-
duced basis is determined and sized on-the-fly during the resolution process. We
name the Proper Generalized Decomposition a well-known kind of a priori approach
[Chinesta, Ammar, and Cueto 2010; Chinesta, Ladeveze, and Cueto 2011; Boucinha,
Gravouil, and Ammar 2013]. PGD was introduced to resolve non-linear problems
in mechanics involving large time increments.

More generally, efficient reductions use mixed approaches between a priori and a
posteriori ones. For example, given a reduced basis, some evaluations are computed
from a ROM and if the level of accuracy is not reached, the reduced basis is enriched.
This is the technique behind adaptive sparse grids [Lu 2017; Lu, Blal, and Gravouil
2018]. At the inverse, for a priori methods, previous calculations could be used as
a starting point. Relevant and reliable strategies rely on both methods, e.g. for
3D crack propagation [Galland 2011; Galland et al. 2011] or for frictional contact
[Giacoma 2014].

1.3.2 Singular value decomposition and statistical shape
analysis

Singular value decomposition is a powerful matrix factorization technique. It was
introduced in the 1870’s. It is a factorization for real and complex matrices and
generalizes the eigen decomposition of positive semi-definite normal matrices. In
the following, we focus only on real numbers. Computing the SVD of a matrix U
of dimensions n×m consists in computing its factorization under the form given in
Equation (1.9). For more technical details we refer the readers to [Giacoma 2014]
or [Galland 2011].

U = ΨΣΦt. (1.9)

Now, let U be a snapshot matrix, i.e., a matrix filled with ordered snapshots.
For instance, in dynamics, matrix dimension n represents the degrees of freedom
and dimension m the time steps as formulated in Equation (1.10).

U = [u(t1), . . . ,u(tm)] =


u1(t1) u1(t2) u1(t3) . . . u1(tm)
u2(t1) u2(t2) u2(t3) . . . u2(tm)

...
...

...
. . .

...
un(t1) un(t2) un(t3) . . . un(tm)

 . (1.10)

U ∈ Rn×m is a real rectangular matrix and u(tj) are the snapshots of the studied
field throughout the time variable t at step j. According to the singular value
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Reduced order modeling

theorem [Eckart and Young 1936], U can be factorized using SVD as explained in
Equation (1.11).

U = ΨΣΦt = [Ψ1Ψ2 . . .Ψn]


σ1 0 0 . . . 0
0 σ2 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . σr
0 0 0 . . . 0




Φt

1

Φt
2

Φt
3

...
Φt
m

 , (1.11)

where r = min(n,m) and Ψ ∈ Rn×n is an unitary matrix containing left-singular
vectors (also called modes). Φ ∈ Rm×m is also an unitary matrix containing right-
singular vectors. Σ ∈ Rn×m contains positive singular values σk in decreasing am-
plitudes. This decomposition is unique up to an arbitrary sign for the pair (Ψk,Φk).
The SVD factorization in Equation (1.9) can be rewritten into the following rank
one expansion as given in Equation (1.12).

U =
r∑

k=1

σkΨkΦ
t
k. (1.12)

Taking into account only the rom ≤ r first singular values of the SVD of U
allow to define a low rank approximation of U denoted by Ū as written in Equation
(1.13).

Ū =
rom∑
k=1

σkΨkΦ
t
k. (1.13)

According to the Eckart-Young’s low rank approximation theorem [Eckart and
Young 1936], Ū is the best approximation of rank rom of U with respect to the
Frobenius’ norm. Moreover, if rom = r then Ū = U. The relative error can be
measured analytically between the snapshot matrix U and its SVD approximation
of lower rank rom as reported in Equation (1.14).

ε(U) =

√∑r
i=rom+1 σ

2
i∑r

i=1 σ
2
i

. (1.14)

We remark that the smaller the rank approximation rom, the faster the reduced
order model computations. However, rom is generally chosen in the way that ε(U)
is lower than 0.1. For reducible problems, i.e., problems with highly energetic first
trends, few modes (rom� r) are then sufficient to arrive to an accurate goal. Having
introduced basics of SVD, we now seek to apply this technique to statistical shape
analysis. Consider a set of m shapes, i.e., snapshots that have a mesh structure
holding a connectivity. Connectivity is the same applied to all studied shapes, thus
n points are sufficient to define required snapshots Mj as formulated in Equation
(1.15). Geometries are included in the R3n space.
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1. Isogeometric analysis based reduced order modeling

Mj = [x1y1z1 . . . xnynzn]t. (1.15)

An existing snapshot Mj can be written exactly as a linear combination of left-
singular vectors Ψ augmented by coefficients. Remark that left-singular vectors are
orthogonal. Coefficients are computed from singular values contained in Σ and right-
singular vectors in Φ. Equation (1.16) shows the coefficients computation whereas
Equation (1.17) formulates the linear combination of a specific snapshot Mj. αjk
refers to the coefficient for the mode Ψk of the snapshot j.

αjk = σkφk(j), (1.16)

Mj =
r∑

k=1

σkΨkφk(j) =
r∑

k=1

αjkΨk. (1.17)

Modes captures the principal shape variations among all geometrical instances
given in the snapshot matrix U. First modes are the most energetic ones because
they are weighted by singular values σk sorted by a decreasing amplitude manner.
Similarly to previous equations, a snapshot Mj can be expressed into a low rank
approximation, see e.g. Equation (1.18).

M̄j =
rom∑
k=1

αjkΨk. (1.18)

An arbitrary snapshot Mj can be projected in such truncated basis rom or r, and
its coefficients are evaluated in Equation (1.19). The process consisting in finding
the most energetic modes for a set of shapes is called Principal Component Analysis.
On the contrary, given a well-known and suitable basis, a new shape (not a used
snapshot in the SVD) can be projected onto the basis rom or r. This is the idea
behind Equation (1.20). Statistical shape analysis aims to recover shape coefficients
of an unknown geometry Ms in order to extract main parameters defining the shape.
These main parameters are relative to the previously computed reduced basis. No-
tice that Ms must detain the same mesh connectivity to avoid a projection step.
Virtual meshes that statistically represent members of a population of snapshots
can be thus generated.

αjk = Mj.Ψk, (1.19)

αsk(Ms) = Ms.Ψk. (1.20)

1.3.3 Snapshots and parametric studies

Parametric studies focus on a parametric model for which parameters are well chosen
in order to fulfill the desired designing goal. For an input parameter or set of
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Reduced order modeling

parameters P1, the solution field u(P1) is computed using numerical simulation
for example. This is done with several sets of parameters in the way that the
parameter space is sufficiently covered. However, it strongly depends on the physics
phenomenon and as we already said, large parameter spaces are difficult to sample.
Remember that sparse grid techniques are a possible answer [Bungartz and Griebel
2004; Lu, Blal, and Gravouil 2018]. In solid mechanics, the solution field u could be
the displacement field for example. P1 could be a single shape parameter or a set of
mechanical parameters. Figure 1.9 (A) shows the field solutions u for discrete sets
of parameters.

In physics, we are expecting that the solution fields do not vary randomly with
input parameters P . But in some cases, small variations of P can lead to big
variations of the solution field. That is why physics regularity properties have to
be understood before computing these fields with arbitrary parameters P . The
solution field u ∈ Rm is embedded in the space Rn > Rm. It is assumed that all
possible solutions taking into account the range of parameters P do not cover the
entire space Rm. Figure 1.9 (B) explains this idea. Thankfully, with reduced order
modeling tools, a lower dimensional subspace B can describe the field variation with
reliability.

Figure 1.9: Parametric studies and associated dimensional manifolds. (A) u(P1),
u(P2) and u(P3) are precomputed solution fields involving sets of parameters P1, P2

and P3. These solutions reside in the Rn space. (B) Assuming that the physics has
not a random behavior, a lower dimensional manifold of dimension m in red can
be determined: S : Rm → Rn. New green solution u(P4) is directly evaluated and
computation time is saved.

Nevertheless, some prerequisites are mandatory for ROM construction. ROM
computations can not handle large geometrical variations of parameters and topol-
ogy issues. This work focuses on topological properties of meshes and other geo-
metrical attributes. We aim to build snapshots using morphing techniques between
different geometrical instances. This is done in order to compare isotopological infor-
mation, i.e., same connectivity for meshes and hence same number of nodes. Indeed,
in the matrix U, snapshots must have the same dimension. Figure 1.10 illustrates
interesting possible morphings.
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Figure 1.10: Geometrical snapshots morphing issues. (A) Reference mesh shape
of studied geometries. (B) Meshes that don’t have the same topology can not be
morphed and hence, same connectivity between meshes can not be achieved: (A)
and (B) can not be snapshots in the same matrix U. (C) High geometrical variation
produces high distorted elements. (D) Mesh can be morphed in (A) and inversely.
Same snapshot dimension and mesh connectivity can be determined even if depicted
meshes do not hold the same mesh discretization for (D). Morphing properties,
i.e., homeomorphism properties between topological spaces are not related to mesh
discretization, see e.g. Chapter 2.

1.3.4 Isotopological snapshots problematic for ROMs

The construction of parametric studies holding geometrical parameters requires a set
of geometries with strong regularity properties. Snapshots are then different shape
instances coupled with mechanical parameters, and geometrical ones. Isotopologi-
cal meshes are required for reduced order modeling with geometrical parameters to
avoid an inaccurate projection step. The presented methods in the following are
used to obtain such properties of meshes. A first method is presented for quadrilat-
eral meshes (the MEG-IsoQuad strategy), and a second one for volumetric meshes
including pure hexahedral and trivariate isogeometric representations (the MEG-
IsoHex strategy). Due to the consistent structure of isogeometric meshes and their
intrinsic parameterization properties, generating isotopological meshes is more nat-
ural.
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1.3.4.1 Quadrilateral meshes for mechanical and biomechanical applica-
tions

Problem 1.1. (Quadrilateral meshes problematic for ROMs) We want
to compute quadrilateral meshes embedded in the topological space R3 whose
properties belong to a very restricted class. The goal is to be able to compare
different shapes, i.e., different geometries of the same topology class. These
geometries could be used for reduced order modeling objectives. The problematic
is illustrated with abdominal aortas in Figure 1.11. We seek to differenciate
meshes that have the following desirable properties:

• Minimum number of singularities that are defined to be the nodes with a
valency different from 4.

• Alignement with features, curvature directions and boundaries.

• High quality elements, close to a square.

• Constrain the number of elements, connectivity and features locations to
enable relevant comparison between studied shapes: homologous compar-
ison with isotopological meshes.

Figure 1.11: Quadrilateral meshes problematic for ROMs of different meshes
with the same topology. Problematic is illustrated with abdominal aortas. To
overcome this issue, a proposed strategy is given in Strategy 1.1.
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Strategy 1.1. (The MEG-IsoQuad strategy)

Figure 1.12: The MEG-IsoQuad strategy. Building isotopological ho-
mologous feature-aligned quadrilateral meshes from triangulated meshes with
the same topology. Resulting isotopological meshes have non-uniform isotropy.
Quadrilateral meshes have been computed by our IGA ROM PlugIn (see Ap-
pendix B).

1.3.4.2 Isogeometric and hexahedral meshes for computational mechan-
ics
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Problem 1.2. (Isogeometric and hexahedral meshes problematic for
ROMs) We seek to build volumetric meshes whose properties are specific to
reduced order modeling applications. The aim is to be able to compare different
shapes with different geometries but with the same structure, i.e., with the
same topology. In other words, we want to analyze field differences between
distinctives meshes of a population. Since spline meshes need to be structured,
relevant hexahedron extraction is straightforward. The most desirable mesh
properties usually are:

• Minimum number of high valence nodes.

• Alignement with features, curvature directions and boundaries.

• High quality elements, close to a hexahedron.

• Constrain the number of elements, connectivity and features locations to
enable relevant comparison between studied shapes: homologous compar-
ison with isotopological meshes.

Figure 1.13: Isogeometric and hexahedral meshes problematic for ROMs of
different meshes with the same topology. Problematic is given as an answer
using trivariate splines. To overcome this issue, a proposed strategy is given in
Strategy 1.2. Trivariate spline meshes have been computed by our IGA ROM
PlugIn (see Appendix B).
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Strategy 1.2. (The MEG-IsoHex strategy)

Figure 1.14: The MEG-IsoHex strategy. Building isotopological homolo-
gous feature-aligned hexahedral or spline meshes from triangulated meshes with
the same topology. Resulting isotopological meshes have non-uniform isotropy.
Trivariate spline meshes have been computed by our IGA ROM PlugIn (see
Appendix B).

1.4 Conclusion

IGA is a powerful recent analysis technique that uses the same basis functions for
solving partial derivate equations and for shape representation. However, automatic
generation of trivariate isogeometric meshes remains challenging. CAD models use
B-Rep of solids, but in general these geometries are not directly suitable for analysis
due to their trimmed nature. The parameterization property of splines objects are
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greatly appreciated to generate volumetric meshes that have controlled number of
elements.

ROMs are mathematical objects used to solve complex physics in near real-time.
Construction of such objects requires to accumulate snapshots. Snapshots are pre-
computed solutions obtained from accurate numerical simulations or experiments.
Parametric studies are nowadays more and more used in the industry, e.g. for shape
optimization. Thus, these studies must include geometrical aspects. In order to
build a ROM with geometrical parameters, studied shapes of the population, i.e.,
meshes that compose the study have to be isotopological. By isotopological we mean,
meshes holding the same connectivity and hence the same number of elements. SVD
techniques require snapshots with the same dimension: precomputations have to be
performed on isotopological meshes.

This work aims to overcome the issue of having isotopological description of a
set of geometries needed for snapshots. IGA is naturally chosen because of the
structured properties that holds. Moreover, geometrical aspects are also useful:
splines were introduced to describe a geometry. In this spirit and to fulfill our
goals, strategies are proposed. Strategy 1.1 is introduced for quadrilateral meshes.
Strategy 1.2 is suggested for volumetric isogeometric or hexahedral meshes.
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Chapter 2

Topology and parameterization
prerequisites

This chapter presents a state of the art in geometry and topology.
Surface decomposition methods, parameterization techniques and

related theorems for continuous and discrete surfaces will be
explained.
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2. Topology and parameterization prerequisites

2.1 Topology for geometry processing

2.1.1 Introduction to topology

We briefly introduce needed background in topology for the next developments.
Topology is the study of properties like continuity, connectedness and boundaries
of a space that are preserved under continuous deformations, such as bending and
stretching, but not tearing and gluing. A topological space describes these common
properties (see Definition 2.1 for a simplified topological space definition).

Definition 2.1. Topological space. Topological space can be viewed as a set
of points and related neighborhoods of these points satisfying specific axioms
between them.

A homeomorphism is an isomorphism that admits a continuous function between
two topological equivalent spaces that has a continous inverse function as written
in Equation (2.1) contained in Definition 2.2. Homeomorphic spaces admit a home-
omorphism between them, thus topological spaces are equivalent. Figure 2.1 gives
an example of homeomorphic properties. We are interested in transformations that
preserve all the topological properties of a given space. In other words, our study
focuses on properties of different geometries with same topological attributes. We
refer the readers to the books of [Hatcher, Lochak, and Schneps 2000; Hatcher 2001]
for more details.

Definition 2.2. Homeomorphism. Homeomorphism is a topological isomor-
phism, i.e., a continuous deformation function f between two topological spaces
with different geometries G1 and G2, a mapping that preserves all the the topo-
logical properties of the space:

f : G1 ⇒ G2. (2.1)

Where f is continuous and bijective. f−1 is continuous.

2.1.2 Surface manifolds properties and topological decom-
position

2.1.2.1 2-manifold definition and examples

We focus on surfaces, i.e., 2-dimensional topological manifolds as defined in Defi-
nition 2.3. For the sake of simplicity, surfaces will be abbreviated 2-manifolds or
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Figure 2.1: Homeomorphic properties of surfaces. (A) A sphere is homeomorphic
to the cube (B). Sharp edges are only geometrical aspects not to consider in topo-
logical properties. (C) A torus possesses different topological properties than (A)
and (B), thus (A) and (C) are non-homeomorphic.

2-dimensional manifolds in the following. Surface manifolds evolve in an euclidean
topological space. Euclidean spaces are spaces where each point belongs to a neigh-
borhood homeomorphic to the same euclidean space. 2-manifolds represent surfaces,
thus they are embedded in R2 or R3. Points with closed half plane R2

+ neighborhood
are defined to be on the boundary ∂M of the surface M . We give in particular the
Definition 2.4 for surfaces with borders. Boundaries of surfaces are lower dimen-
sional manifolds: they are 1-dimensional manifolds. In the Euclidean topological
space R2, it is not possible to draw a finite surface without boundaries. For in-
stance, the sphere or torus are embedded in R3 and have no boundaries. Figure 2.2
depicts some examples and counterexamples of manifolds.

Definition 2.3. 2-dimensional manifold. A 2-dimensional manifold or 2-
manifold M is a topological space in which each point has a neighborhood
homeomorphic to the plane R2.

Definition 2.4. 2-dimensional manifold with boundaries. A 2-dimensional
manifold with boundaries or 2-manifold with boundariesM is a topological space
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in which each point has a neighborhood homeomorphic to either the plane R2

or the closed half plane R2
+.

Figure 2.2: 1-manifolds and 2-manifolds. A 1-manifold is topological space that
locally looks like to the Euclidean space R1. A 2-manifold is topological space that
locally looks like to the Euclidean space R2. (A) Double cone is a 2-manifold with
boundaries everywhere except in the depicted black point location: double cone
is thus a pseudo-manifold with boundaries. (B) Black point neighborhood is not
homeomorphic to R2. (C) 1-manifold. (D) 2-manifold or surface torus.

Connected surfaces are surfaces with only one connected component. In other
words, we can walk on the surface without jumping to rejoin another region of the
surface. It is a topological space which can not be represented as the disjoint union
of non-empty surface subsets. Figure 2.3 (A) represents a disconnected surface
whereas Figure 2.3 (B) is a connected one. Orientable surfaces are topological
entities such that is possible to establish a difference between two sides. Onto a non-
orientable surface, we can draw a connected path which bring us back to the starting
point without span a boundary. For instance, the Klein bottle, Möbius underpants
or Möbius strip are non-orientable geometric entities as represented in Figure 2.3
(C) for the strip. The cylinder in Figure 2.3 (D) is orientable: we distinguish
two differents normals in the same point, the inside and outside ones. Compact
surfaces are made with a finite number of triangles, they are composed of a finite
number of elements. Surface entities without boundaries are denominated as closed
surfaces. Closed surfaces are made compact. In the following we investigate only
connected, orientable and compact surfaces possibly with boundaries. In addition,
the differentiable property will be mandatory for specific needs.

2.1.2.2 Topological invariants

We now strive to study topological attributes of surfaces in order to estimate topo-
logical invariants for surface classification purposes. In this objective, genus of a
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Figure 2.3: Surfaces or 2-dimensional manifolds additional attributes. (A) Dis-
connected surface. (B) Connected surface. (C) Non-orientable Möbius strip. (D)
Orientable cylinder.

surface is given in Definition 2.5. Genus is an integer that states how the surface
is self-connected. For instance, a n-torus is a genus-n surface. The genus of a con-
nected, compact and orientable surface with borders corresponds to the genus of the
same surface without boundaries. Indeed, adding a finite number of boundaries onto
a surface will not change its genus. Figure 2.4 illustrates the two main topological
attributes of surfaces: boundaries and genus.

Definition 2.5. Genus of a surface or a 2-dimensional manifold. Genus
of a connected, compact and orientable surface M , i.e., a 2-manifold embedded
in R3, is the maximum number of non-intersecting closed curves which can be
drawn on it without disconnecting the surface, the complement of these curves
staying connected. Genus-g surface will refer to the surface genus g.

Figure 2.4: Main topological attributes of surfaces. Boundaries are highlighted in
black. (A) A cylinder with 2 boundaries. (B) A torus is a genus-1 surface. (C)
Genus-1 torus with 1 boundary component.

With this definition, taking into account a genus-g surface M possibly with
b boundary components, we can now define a relevant topological invariant. This
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invariant used to classify surfaces is called the Euler characteristic χ(M) of a surface
M given in Equation (2.2). Surfaces with different Euler characteristic can not be
homeomorphic. Notice that the reciprocal is not always true. For instance, a torus
and a cylinder have the same χ(M). Moreover, surfaces with different number of
boundaries can not be mapped into each other by a continuous function f . To our
best knowledge, genus g and number of boundaries b can not be directly related to
homeomorphic properties between 2 arbitrary topological spaces, but for connected,
closed surfaces the following Theorem 2.6 is explicit. Theorems 2.7 and 2.8 are also
useful to evaluate the Euler characteristic knowing further explicited properties of
surfaces.

χ(M) = 2− 2g − b. (2.2)

If M is a triangulated surface with vertices V , edges E and faces F , we can
define the characteristic as written in Equation (2.3). For this discrete purpose, 3
geometrically different meshes are computed in Figure 2.5. All depicted meshes M
are homeomorphic if an associated continuous surface is considered.

χ(M) = dim(V )− dim(E) + dim(F ). (2.3)

Figure 2.5: Different homeomorphic surfaces with the same Euler characteris-
tic χ(M) = dim(V ) − dim(E) + dim(F ) = 2. (A) Cube triangulated mesh. (B)
Sphere triangulated mesh. (C) Pear-shaped thorium 223 nucleus triangulated mesh
[Maquart et al. 2017].

The Euler characteristic can be also obtained simply from Betti numbers. Betti
numbers are used to differentiate topological spaces. Figure 2.6 shows some examples
of common shapes and their associated Betti numbers. The first Betti number, b0
counts the number of connect components. Thus, if a connected surface is being
considered, b0 = 1. b1 is an integer value which tells us the maximum amount of
cuts that must be made before separating the surface M in two parts. These cuts
are executed by joining two boundaries or by making a closed curve. The integer
b2 examines the number of independent cavities. Betti numbers vanish above the
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dimension of a space, i.e., they equal 0 beyond the dimension of the considered
topological space. Similarly to the discrete case, the Euler characteristic is expressed
with Betti numbers in Equation (2.4).

Figure 2.6: Betti numbers for surfaces. Blue curves represent independent 1-
dimensional manifolds whereas red ones are dependent or can be continuously shrunk
into a point. (A) A surface torus has b0 = 1, b1 = 2 and b2 = 1. (B) A sphere has
no independent 1-dimensional manifolds thus b0 = 1, b1 = 0 and b2 = 1. Like
the torus, the sphere possesses one independent cavity. (C) A 3-way pipe has 2
independent 1-manifolds since the third can be composed by the others blue curves,
so b0 = 1, b1 = 2 and b2 = 0.

χ(M) = b0 − b1 + b2. (2.4)

2.1.2.3 Graph theory and cut graphs

A graph G is formed by edges and vertices. Let G = (V,E) be a graph, with a
set of vertices V and an edge set E. An embedding of the graph G in a surface
mesh M is a mapping between some of vertices and edges of M and G. Graphs
are useful 1-dimensional topological entities that are used for lot of applications on
discrete surfaces. There exists many different types of graphs depending on certain
properties they are holding. For instance, tree graphs are graphs where only one
path is possible between two distinct vertices. They are undirected, so there is no
privilegiate direction between two vertices. A spanning tree, is a special case of a
tree graph that can be particularly embedded into a mesh M which includes all
the vertices of M . Forest of trees are disjoint union of tree graphs. Other graphs
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are said to be complete, i.e., all vertices are connected with all others by edges. In
Chapter 3 the well-known Dijkstra’s algorithm [Dijkstra 1959] is used to compute
shortest paths on meshes resulting in shortest-paths trees. Weighted graphs are used
to determine such particular paths: edges are assuming a specific metric.

Among the large abundance of different graphs types, one is useful for futher
developments: the cut graph. A cut graph G is an embedding of a graph G in a
surface M whose compliment is a topological disk. In other words, when slicing a
mesh along the edges of G, it allows to deal with a surface which is homeomorphic to
a disk; a surface with only one boundary and Euler characteristic equal to χ(M) = 1.

2.1.2.4 Homotopy and homology theories

First stage of homotopy comprehension objectives is to define the notion of homo-
topic paths on surfaces as defined in Equation (2.5) contained in Definition 2.6. A
path p on a surface M is continuous map mp : [0, 1]→M . Homotopy is a topology
branch that investigates continuous deformations between topological spaces, i.e., 1-
dimensional or 2-dimensional manifolds and so on. Difference to homeomorphism is
that topological properties are not necessarily conserved during the transformation.
For instance, a disk can be continuously deformed into a point, but the topological
spaces have different properties. In the following developments, genus-g surface M
with b boundary components ∂M are studied. ∂M represents the set of b borders
belonging to the surface. Loops are considered as closed paths. By closed we mean
a path with the same endpoints. Paths or loops can be drawn on surfaces and hold
specific properties. This is the idea depicted in Figure 2.7. Figure 2.7 (A) shows
homotopic paths whereas Figure 2.7 (C) depicts non-homotopic loops.

Definition 2.6. Homotopic paths on a surface M . Two paths p1 and p2

are homotopic if and only if one path can be continuously deformed into the
other by passing through a family of paths on the surface M . More formally,
a homotopy between p1 and p2 with endpoints a and b, is a continuous map
h : [0, 1]× [0, 1]→M such that [Verdière and Lazarus 2007]:

h(0, q) = p1, h(1, q) = p2, h(r, 0) = a & h(r, 1) = b ∀ q, r ∈ [0, 1]. (2.5)

We introduce a chain γ as an oriented 1-manifold embedded in M . Chains are not
necessarily connected and can be composed of multiple components. A cycle is thus
defined as a chain with no boundaries, i.e., without 0-dimensional manifold: ∂γ = ∅.
Cycles can be viewed as loops for paths but with chains attributes. Properties of
chains and cycles are defined in Property 2.1. Figure 2.7 (D) represents two chains;
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the chain γ1 that is composed by two connected components. Figure 2.7 (E) and
(F) are showing different cases of homological cycles.

Property 2.1. Chains and cycles properties. These properties have been
extracted from the papers of [Ray et al. 2008] and [Erickson and Whittlesey
2005]. Some definitions are slightly modified to suit the following developments.

• A chain γ is oriented, thus it as a unique tangent vector tγ. With this
tangent vector and the surface normal n, defining an orthonormal frame
is straightforward. (tγ,nγ,n) being the direct frame.

• The reversal of a chain −γ is the chain with opposite orientation: t−γ =
−tγ. −nγ is associated to t−γ in order to conserve the same surface normal.

• ∂ is called the boundary operator, such that ∂M is the subset of points
of the surface M with a neighborhood homeomorphic to the half plane.
This subset is a cycle γ composed by many connected components. We
can choose an orientation for this cycle by requiring its conormal to point
outwards the surface. In this case, we say that the cycle is a boundary.

• A chain is called exact if there exists a submanifold Sub(M), i.e., a part
of the surface M such that Sub(∂M) = γ. An exact chain is a cycle which
is also a boundary.

• If M is a sphere, all cycles which can be drawn on the surface are said
to be contractibles cycles, i.e., they can be shrunk into a point. In other
words, it is homotopic to the null loop or constant loop.

• Two cycles γ1 and γ2 are homological cycles if and only if γ1 − γ2 or
γ1 ∪ −γ2 is exact. The union ∪ is omitted in the following. Homological
cycles can have different number of connected components. Homology is
a more flexible concept than homotopy. We can compose cycles with the
homology concept, with operations on cycles such as splitting or fusionning.
Homotopy does not accept this kind of discontinuous transformations.

We briefly introduce the concept of homotopy basis. For that purpose, we refer
the readers to the work of [Erickson and Whittlesey 2005] or [Verdière and Lazarus
2005] for visual elements. We define a system of loops as a cut graph G with
only one node: the common node of all loops in the system. Here, we focus on
continuous surfaces, a system of loop is thus a set of loops drawn on a surface, but
they are intersecting into only one specific location: the only node of the system of
loops without others self-intersections. A homotopy basis is a generalization of this
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Figure 2.7: Homotopy and homology properties of paths, loops and chains. (A)
Homotopic paths. (B) Homotopic loops. (C) Non-homotopic loops. (D) Two chains.
(E) γ1−γ2 or γ1∪−γ2 is exact, thus they are homologic. Black curve is an arbitrary
surface boundary. (F) γ1 + (−γ2) is also exact: they are boundaries of the red
surface. Blue and red vectors represent nγ.

concept. It consists of a set of 2g loops for a closed genus-g surface M as shown in
Figure 2.8 (A). Every system of loops is a homotopy basis, but the reciprocal is not
true. Like we said before, homotopy basis is a less flexible concept than homology
basis. Self-intersections or intersections generate additional nodes in the homotopy
basis. These additional nodes can not be removed by continuous functions f , i.e.,
by homotopy processes.

Aiming to define a homology basis that requires less properties than homotopy
because of the acceptance of discontinuous transformations with cycles, the defini-
tion is given in Definition 2.7. For a closed genus-g surface M , this homology basis
is composed by a set of 2g loops as depicted in Figure 2.8 (B). An homotopy basis
is also an homology basis, but the reciprocal is not true. We recall for readers that
these considerations are made for compact, connected and orientable surfaces [Er-
ickson and Whittlesey 2005]; to our best knowledge, it has to be studied carefully in
the general case for arbitrary topological spaces. Indeed, cycles in a homology basis
do not have a common point in the general case. The tunnel and handle loops are
defined to be an homology basis for a closed genus-g surface M . [Dey et al. 2008]
gives a formal definition of such relevant loops. Suppose a closed surface M ⊂ R3

which separates the topological space R3 into a bounded space I and an unbounded
space O. A loop l1 is a tunnel if it spans a disk in the unbounded space O. A

92

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI033/these.pdf 
© [T. Maquart], [2019], INSA Lyon, tous droits réservés



Topology for geometry processing

loop l2 is a handle if it spans a disk in the bounded space I. These loops have been
widely studied in the geometry community [Verdière and Lazarus 2005; K. Dey,
Li, and Sun 2007; Verdière and Lazarus 2007; Dey et al. 2008; K. Dey, Fan, and
Wang 2013]. In Figure 2.8 (B) handle and tunnel loops form a homology basis of
the surface M .

Definition 2.7. Homology basis by [Ray et al. 2008]. The non-empty set
of cycles H1(M) = {γHi }i∈[1,n] define a homology basis for a genus-g surface M
with borders b if it satisfies:

• Linear independence condition:
∑
aiγ

H
i ≡l ∅ ⇔ a1 = ... = an = 0,

• Spanning condition: ∀γ, ∃a ∈ Zn such that γ ≡l
∑n

i=1 aiγ
H
i .

Any cycle embedded in M is homological to a formal sum of the basis cycles.
n represents the number of cycles contained into the basis. ≡l denotes the
homological equivalence.

To be more precise, and for futher developments we define homology basis com-
ponents as written in Proposition 2.1. Classes of homotopy and homology are ex-
plicted in Proposition 2.2. We are only interested on the first group of homotopy
π1(M,x) and first group of homology H1(M). We refer the readers again to more
formal topological developments in the books of [Stillwell 1993; Hatcher 2001] or
papers of [Erickson and Har-Peled 2004; Erickson and Whittlesey 2005]. Homology
groups are relevant information to evaluate the Euler characteristic of a surface M .
Since homotopy basis is also an homology basis, homotopy groups are also impor-
tant information for the topological invariant χ. Homology and homotopy groups
are profound and useful topological invariants, but they are very far from sufficient
to classify spaces up to homeomorphism in the general case. Important thing is
that the Betti number bn represents the rank or length of the homology group Hn,
composed by n-dimensional objects.

Proposition 2.1. Homology basis components. For a compact, connected
and orientable genus-g surface M with b boundary components, the number of
cycles has length dim(γHi ) = n = 2g + b− 1. This comes from the fact that the
last boundary of a genus-0 surface can be composed by the others by homology
theory. We name the 2g cycles as homology generators. b − 1 boundary cycles
and homology generators form a homology basis. Notice that for the sphere, it
is not applicable [Ray et al. 2008].
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Proposition 2.2. Homotopy groups, homology groups and associated
classes.

• A homotopy group π1(M,x) is a set of loops which are 1-dimensional enti-
ties with a basepoint x embedded on the surface M . Into the set π1(M,x),
each loop can be continuously deformed into its influence zone on the
surface. Thus a homotopy class defines all possibilities of homotopic tran-
formations on M for a given loop in π1. We call this an homotopy class
on the surface M .

• A homology groupH1(M) is a set of cycles which are 1-dimensional entities
without basepoint embedded on the surface M . H1(M) is composed by
2g and b − 1 cycles. On M , each cycle contained in H1(M) belongs to
its own homology class: two cycles of a same class are homologic. Two
homology cycles are in the same homology class if one can be continuously
deformed into the other via a deformation that may include splitting cycles
at self-intersection points, merging intersecting pairs of cycles, or adding
or deleting separating cycles [Erickson and Whittlesey 2005].

Figure 2.8: Homotopy basis and homology basis for a closed genus-g surface M : a
double torus. (A) System of loops which is a homotopy basis with its red basepoint
x. (B) Homology basis. Handle loops are depicted in red whereas green curves are
tunnels loops. Tunnel loops are shortest as possible in terms of arc length in this
example.

2.1.2.5 Basics of pants decomposition

A pant is a basic genus-0 topological object M with 3 boundaries and Euler char-
acteristic χ(M) = −1. It is a canonical domain like the sphere, the disk or the
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cylinder but a little bit more complicated from a topological point of view. For a
complicated surface, with an arbitrary topology, work has been done for years to
find such pants decompositions [Hatcher, Lochak, and Schneps 2000]. Finding the
optimal segmentation of a given surface into relevant pants patches has been tack-
led by [Verdière and Lazarus 2007] using the shortest homology basis [K. Dey, Sun,
and Wang 2010]. Geometry-aware pants decomposition has been also investigated
by [Zhang and Li 2014]. [Li, Gu, and Qin 2009] developed a pants decomposition
framework to compute maps between surfaces with arbitrary topologies. An exam-
ple of pants decomposition using a homology basis is shown in Figure 2.9. More
recently [Hajij, K. Dey, and Li 2016] tried to segment surfaces into pants using a
morse function.

Figure 2.9: Pants decomposition of a double torus mesh computed from a CAD
model by our IGA ROM PlugIn (see Appendix B). A double torus is a genus-2
surface without boundary and has Euler characteristic χ = 2− 2g − b = −2. Pants
decomposition provides two pants (gray and blue meshes) by cutting along handle
loops and using symmetry (symmetry loop is depicted in cyan). Homology basis
is composed by two handle loops and two tunnel loops respectively depicted in red
and green.

Let Mg,b be a surface of genus g with b boundary components. A pants de-
composition of Mg,b is a collection of pairwise disjoint simple cycles that splits the
surface into pants patches. Each pants patch is a genus-0 surface with 3 boundaries.
We assume that M is a surface with negative Euler characteristic, i.e., M is none
of the surfaces M0,0 (topological sphere), M0,1 (topological disk), M0,2 (topological
cylinder) and M1,0 (topological torus). In this case, pants decompositions of M do
exist, and each pants decomposition consists of 3g + b − 3 curves and divides M
into 2g + b − 2 = −χ(M) pants patches. For Mg,b, pants decomposition is possi-
ble if and only if Equation (2.6) is satisfied. Figure 2.10 illustrates a famous pant
decomposition result working on a level-1 Sierpinski sponge.

χ(M) = 2− 2g − b ≤ −1. (2.6)
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Figure 2.10: Pants decomposition of a level-1 Sierpinski sponge computed by our
IGA ROM PlugIn (see Appendix B). It is a genus-5 surface without boundaries.
Red and green loops define the homology basis composed by 2g loops. Red ones are
handle loops, green ones are tunnel loops. Some of loops are hidden by the volume.
χ(M) = −8, so 8 topological pants are depicted in different colors (7 are visible).

2.1.3 Geometric representations

2.1.3.1 Continuous case

Representing surfaces can be made by different techniques. In this work, we focus
on mappings, i.e., parametric surfaces which are one of the three differents classes
of surfaces types. We name implicit, explicit and parametric representations. The
parametric one attracts our attention. The concept is to describe a surface through
a mapping with two coordinates: f(u, v) : Ω → R3 as depicted in Figure 2.11 for a
continuous surface. A relation is established between the parametric domain Ω ⊂ R2

and the embedded surface in the topological space R3.

Figure 2.11: Continuous mapping of a surface. Ω ⊂ R2 is the parametric domain.
f is the mapping function which maps Ω to a surface embedded in R3.
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2.1.3.2 Mesh representations

In computer graphics and numerical methods communities, the most used discrete
representation is the triangle mesh for surfaces or tetrahedral mesh for volumes.
Surface meshes are the classical representation of surfaces in R3. A surface mesh
M = (V,E, F ) is a composition of three sets: the vertices V , the edges E and the
faces F . Each vertex vi ∈ V is a vector in R3. Each edge ei ∈ E is a pair of two
vertices: ei = (vj, vk). Each face fi ∈ F is composed by vertices and edges which are
connected respecting a specific connectivity to form a suitable topological polygon.

We introduce some useful vocabulary for meshes. Two elements are said to be
incident if the vertices of one are a subset of the vertices of the other. In other words,
faces can be incident at a common vertex. Incidence describes the neighborhood
relation between elements of different dimensions, adjacency is a similar concept
for entities of equal dimension. Adjacent vertices are incident to a common edge,
adjacent edges are incident to a common vertex and adjacent faces overlap at a
common edge [Al-Akhras 2016].

The valence of a vertex is the number of edges incident to him. An edge of a
given mesh M is on a boundary, i.e., is a boundary and a 1-dimensional manifold
of M if it is incident to a single face. We call an interior edge an edge incident to
two different faces. If an edge is incident to more than two faces, thus the discrete
surface mesh M is considered to be non-manifold.

Dual mesh is characterized by M∗ = (V ∗, E∗, F ∗) constructed from the primal
one M = (V,E, F ). This dual entity is an isomorphism which is a one-to-one
mapping between the primal n-dimensional entities of the structure to the (2− n)-
dimensional entities. The process can be inversed. 0-dimensional entities are known
for vertices V , 1-dimensional entities for edges E and 2-dimensional for faces F .
More formally, each vertex vi is mapped to a dual face f ∗i , each edge ei is mapped
to a dual edge e∗i and each face fi is mapped to a dual vertex v∗i . Remark that the
connectivity of the dual mesh is inherited from the primal mesh.

A simplicial complex is a union of discrete n-dimensional counterparts. Into such
simplicial complexes, we can find a 0-simplex which is a point, a 1-simplex which
is a line, a 2-simplex which is a face and so on. The term simplices designates
a set constituted by many simplex. A simplicial complex is then denominated as
a simplicial n-complex depending on the higher n-dimensional counterpart in his
composition.

Triangles possess an intrinsic parameterization. Each triangle with points pi, pj
and pk can be parameterized by the barycentric linear mapping B(u, v) = u× pi +
v×pj + (1−u−v)×pk with u, v > 0 and u+v ≤ 1. In practice, all these individual
triangle mappings are often combined into one piecewise linear mapping. That is
why triangles are useful to compute inverse mappings.

Nowadays, quadrilateral meshes are widely studied. They are preferred because
of their superior structure, regular shape and level of accuracy for numerical meth-
ods. Quadrilateral meshes are often used over triangle meshes especially in anima-
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2. Topology and parameterization prerequisites

tion and mostly for texture rendering purposes [Dischler et al. 2002]. However, it is
important to notice that in general, a quadrilateral mesh is not a geometry repre-
sentation comparable to a triangle mesh. In contrast to a triangle, a quadrilateral
might be non-planar and possibly non-convex.

2.1.4 Useful theorems

Useful theorems for following developments will be detailed here. They are adapted
to suit the further explanations linked with our problematic. Theorems concerning
geometry, topology and parameterization are explicited. Some of them are funda-
mental tools used to fulfill mathematical needs. Others are given for a general com-
prehension throughout the next chapters. Explicited form of Theorem 2.1 serves to
analyze fields (or n-symmetry direction fields which are developed in the succeeding
part) behavior on surfaces M and more particularly the properties of singularities.
Theorem 2.2 is an equivalent formulation which introduces the notion of boundary.
A famous corollary of the Poincaré-Hopf theorem is also formulated in Corollary
2.1. The Gauss-Bonnet theorem is an important result in the topology field that
states the link between topology and geometry in an integral manner (see Theorem
2.3). The Radó-Kneser-Choquet theorem is defined in Theorem 2.4 and informs
on bijective mappings for parameterization goals. Indeed, bijective mappings avoid
fold-overs. The formulation in Theorem 2.5 evaluates some properties of mappings.
To close the list of useful theorems, Theorems 2.6, 2.7 and 2.8 are closely related
with the Euler characteristic.

2.1.4.1 Poincaré-Hopf theorem and corollary

Theorem 2.1. Poincaré-Hopf theorem. Let M be a compact differentiable
manifold and d be a 4-symmetry direction field with ns isolated singularities of
indices I id embedded in vertices v or points P in the surface M . If M has some
boundaries, the field must be pointed outward the normal direction along them, i.e.,
relative to the following boundary number theorem in Theorem 2.2:

ns∑
i=1

I id = χ(M). (2.7)

Where χ(M) is the Euler characteristic of the surface M . In the context of this
thesis, we are interested only on connected, compact and oriented differentiable
manifolds possibly with boundaries.
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Corollary 2.1. Poincaré-Hopf corollary. Every surface homeomorphic to a
sphere must have at least one singularity: every horse must have at least one
mane.

2.1.4.2 Boundary number theorem

Theorem 2.2. Boundary number theorem. Let M be a compact differentiable
2-manifold embedded in R3 with boundaries ∂M and d be a n-symmetry direction
field, then:

Td(∂M) = −χ(M). (2.8)

Where χ(M) is the Euler characteristic of the surface M and ∂M is the set of
boundaries. We can demonstrate that the boundary turning number theorem is
equivalent to the Poincaré-Hopf theorem (see Theorem 2.1) with a proper definition
of the index of singularity [Ray et al. 2008]. For that purpose, we refer the readers
to a personal recent work [Maquart 2018]. We recall that, in this thesis, interesting
surfaces are only connected, compact and oriented differentiable manifolds possibly
with boundaries.

2.1.4.3 Gauss-Bonnet theorem

Theorem 2.3. Gauss-Bonnet theorem. This theorem links the total Gaussian
curvature and total geodesic curvature to a topological invariant. In other words,
this theorem states the connection between topology and geometry:∫

M

KdS +

∫
∂M

kg ds = 2πχ(M). (2.9)

Where K is the Gaussian curvature on the surface of area S and kg the geodesic
curvature along boundary cycles γ(s) ∈ ∂M . s is an arc length parameter, which
parameterizes the cycle γ(s). More formally, this theorem investigates compact 2-
dimensional Riemannian manifolds with boundaries. For connected, compact and
oriented differentiable 2-manifolds M , Equation (2.9) remains valid.

2.1.4.4 Radó-Kneser-Choquet theorem
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Theorem 2.4. Simplified Radó-Kneser-Choquet theorem. Suppose f as a
harmonic function of a mapping process. The parametric space Sm of the mapping
is convex, Sm ⊂ R2 and the boundary ∂M of a topological disk M is mapped
homeomorphically to ∂Sm, thus f is bijective. With these conditions and positive
vertices weights for discrete maps, f has to be bijective.

2.1.4.5 Isometric theorem

Theorem 2.5. Simplified isometric theorem. Any mapping with a function
f is said to be isometric if angles and surfaces are conserved. In other words, an
isometric mapping preserves length if this mapping is conformal (angle preserving)
and equiareal (area preserving). Developable surfaces admit this kind of isometric
map.

2.1.4.6 Euler characteristic related theorems

Theorem 2.6. Classification theorem. Two connected, closed and orientable
surfaces M1 and M2, i.e., 2-manifolds, are homeomorphic if they have the same
Euler characteristic:

χ(M1) = χ(M2). (2.10)

This theorem is applicable to surfaces which are also non-orientable; but we consider
only compact, connected and orientable surfaces in this development: this theorem
holds.

Theorem 2.7. Topological invariance theorem. The Euler characteristic is a
topological invariant. For two topological spaces X and Y , if X is homeomorphic
to Y , then:

χ(X) = χ(Y ). (2.11)
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Theorem 2.8. Homotopy invariance theorem. The Euler characteristic is a
homotopy invariant. For two topological spaces X and Y , if X is homotopic to Y ,
then:

χ(X) = χ(Y ). (2.12)

2.1.5 Continuous fields on surfaces

Many algorithms in computer graphics and geometry processing are based on smooth
direction fields, i.e., unit tangent vector fields defined on a surface M . For instance,
such direction fields were used to steer the orientation of features in texture synthesis
[Praun, Finkelstein, and Hoppe 2000; Turk 2001], or to remesh a surface with cells
aligned with the principal curvature directions [Alliez et al. 2003; Marinov and
Kobbelt 2004]. Encountered recent applications use objects of higher symmetry
than simple unit vector fields. Using objects invariant by rotation of π or π/2
around the surface normal allow us to increase the symmetry properties of the field.
These objects are called n-symmetry direction fields. N being the symmetry of the
field. At every point of the surface M we associate N unit vectors forming equal
angles between radially consecutive directions. For instance, 2-symmetry direction
fields are lines, 4-symmetry direction fields are cross fields. Cross fields are used
for quadrilateral meshing purposes [Bommes, Zimmer, and Kobbelt 2009; Bommes
2012; Campen and Kobbelt 2014] and 6-symmetry fields helped to remesh with
hexagons.

Direction fields hold different properties than classical vector fields. They have
been introduced to better understand the topology of the studied surfaceM . because
they have a unit norm, their singularities can not be defined as zeroes. Holes solve
the problem. In quadrilateral meshing processes, the singularities are important
information not to neglect. Indeed, they guide the mesh irregular connectivity.
Reseachers have proposed a large set of methods to compute a suitable 4-symmetry
direction field with prescribed properties. [Ray et al. 2008] were the first to present a
robust pipeline mathematically and firmly anchored to design such n-symmetry fields
for arbitrary surfaces. Different approaches exist to compute the field behavior which
is partially based on related singularities. A number of methods tackle user-defined
locations of singularities [Ray et al. 2008; Crane 2010; Crane, Desbrun, and Schröder
2010; Lai et al. 2010] and other methods solve singularity positions automatically
[Bommes, Zimmer, and Kobbelt 2009; Ray et al. 2009; Knöppel et al. 2013]. Such
fields are subject to the Poincaré-Hopf theorem and boundary number theorem [Ray
et al. 2008] (see Theorem 2.1 and Theorem 2.2 respectively). Illustrated singularities
can be found in [Li et al. 2006], for 2-symmetry direction fields able to hold indices
of 1/2.
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2.1.5.1 Continuous n-symmetry direction field representation

A direction field defined on a surface M is a tangent unit vector field: at each point
of the surface, there exists a direction u such that ‖u‖ = 1 and u.n = 0, where n
is the normal of M . A n-symmetry direction field d is a multivalued direction field:
at each point of the surface M , there exists a n-symmetry direction U which is a
set of N directions {U1,U2, ...,UN−1,UN} preserved by rotations of 2π/N around the
normal n of M . We introduce in particular a 4-symmetry direction field C, i.e., a set
of 4 directions {Uc,Vc,−Uc,−Vc} preserved by rotations of 2π

4
around the normal

n. 4-symmetry direction fields are named cross fields C due to their 4-symmetry
properties. These cross fields are used later in Chapter 4.

2.1.5.2 Field singularities and turning numbers

The singularities of a vector field or a n-symmetry direction field embedded on a
surface are commonly a set of a finite dimension. If we define a vector field on a
surface M such as d : R2 → R2, the set of zeroes are the singularities, i.e., the set
of d that respect: {d(x, y) = 0} for each singularity placed at (x, y). Depending on
the n-symmetry of the field, the singularities can be classified by their index Id(Pi)
around a neighborhood Ω of points Pi in place of singularities as written in Equation
(2.13).

Id(Pi) =
1

2π

∫
∂Ω(Pi)

dθ. (2.13)

In addition, if we design a cycle γ(s) to be equal to the boundary of the neigh-
borhood Ω, we can express the field singularities as in Equation (2.14). Recalling
that s is an arc length parameter, which parameterizes the cycle γ(s).

Id(Pi) =
1

2π

∫
γ(s)=∂Ω(Pi)

κdds. (2.14)

Where κd is the field curvature. With the previous correct definitions of field
singularities, we now describe the number of turns a field d can make along a given
cycle γ(s). Turns of the field are accomplished in a specific frame [Ray et al. 2008].
This amount of turns is called the turning number Td(γ) of d along the cycle γ(s)
as formulated in Equation (2.15).

Td(γ) =
1

2π

∫
γ(s)

(κd − κγ)ds. (2.15)

Where κγ is the cycle γ geodesic curvature. We can reasonably show that the
turning number in R2 can be also expressed in Equation (2.16) with the index of
singularity.

Td(∂Ω(Pi)) = Id(Pi)− 1. (2.16)
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Fields embedded on surfaces can contain relevant invariant information. Turning
numbers have fundamental properties which make them useful to compare fields
topologies. These information are straightforward to study fields on 2-manifolds.
Topology of a field is related by its turning numbers along boundary cycles, homology
generators and around singularities [Ray et al. 2008; Campen and Kobbelt 2014] as
defined in Equation (2.17) contained in Definition 2.8. Field topological degrees of
freedom are explained in Property 2.2.

Definition 2.8. Field or n-symmetry direction field topological equiva-
lence. Two n-symmetry direction fields d1 and d2 defined over a surface M are
homotopic if and only if they have the same turning numbers along the cycles of
their homology basis H1(M) and around singularities minus one, which depends
on the others via the Poincaré-Hopf theorem (see Theorem 2.1). This yields to
the following statement:

d1 ≡t d2 ⇔ ∀γHi ∈ H1(M), Td1(γ) = Td2(γ) (2.17)

Where H1(M) is the homology basis of the surface M . Singularities are omitted
in this formulation: we deal with a continuous field without singularities. Hence,
at least one border b must exist to place singularities (see the boundary number
theorem in Theorem 2.2) in the case of χ(M) 6= 0. Notice that ≡t denotes the
topological equivalence of the studied surface M .

Property 2.2. Field or n-symmetry direction field topological degrees
of freedom. Topological degrees of freedom of a n-symmetry direction field are:

• Turning numbers Td(γ) around 2g homology generators.

• Turning numbers Td(γ) around b boundary cycles.

• Turning numbers Td(γ) around s− 1 singularities.

Since the Poincaré-Hopf theorem establishes that the sum of indices of singularity
depends on the Euler characteristic of M , the total number of degrees of freedom
is: 2g + b + s − 1, if the surface has at least one boundary b or singularity s.
For a torus, χ(M) = 0, b = 0 and g = 1. Thus, we can design a field without
singularities and also without borders to place them. This design process yields
2 degrees of freedom for the torus.
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Figure 2.12: Singularity indices and associated turning numbers examples of dif-
ferent vector fields. We use black points Pi for singularities and black cycles γ(s)
for turning numbers. The indice of singularity is the number of counter-clockwise
rotations that the vector make as we travel counter-clockwise around Pi. The turn-
ing number is the number of counter-clockwise rotations that the vector make as we
travel counter-clockwise around γ(s) minus the geodesic curvature of γ(s), i.e., in
R2 minus 2π/2π. (A) Id(Pi) = 0 and Td(γ) = −1. (B) Id(Pi) = +1 and Td(γ) = 0.
(C) Id(Pi) = +1 and Td(γ) = 0. (D) Id(Pi) = −1 and Td(γ) = −2.

2.1.6 Advanced topology prerequisites

2.1.6.1 Gaussian curvature distribution

While having defined discrete geometry with triangulated meshes, we can now adapt
into a discreet manner some topological quantities used in above theorems. The
Gaussian curvature of an embedded vertex v on a triangulated mesh can be expressed
like formulated in Equation (2.18). Nv is the number of edges incident to v, and θi
the angle in R3 between successive pairs of edges.

Kv = 2π −
Nv∑
i=1

θi. (2.18)

The geodesic curvature kg along boundary cycles γ(s) catches the topological
information embedded in boundaries. In discrete geometry at a vertex v, on a
triangulated mesh, Equation (2.19) gives the formulation. αr is one of the two
discrete curve angles at v, on the right or left side of the discrete oriented cycle
γ(s). Changing the αr side modifies the sign of kgv. With both discrete equations,
namely the discrete Gaussian curvature and discrete geodesic one, we are now able
to resolve the Gauss-Bonnet theorem on triangulated meshes (see Theorem 2.3).
Resolved curvatures are depicted in Figure 2.13.

kgv =
2π∑Nv

i=1 θi
(

∑Nv

i=1 θi
2

− αr) = π(1− 2αr∑Nv

i=1 θi
). (2.19)
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Figure 2.13: Gaussian curvature color mapping on discrete triangulated meshes
computed by our IGA ROM PlugIn (see Appendix B). For each shape, the color
scale is different: scale is inflated or shrunk between examples to better show the
curvature distribution. Purple areas are subjected to geodesic curvature. Blue color
represents negative Gaussian curvature whereas red areas hold a positive curvature.
Green zones have mostly zero curvature. All examples are a direct application of the
Gauss-Bonnet theorem in Equation (2.9). (A) A torus with positive and negative
curvature, χ(M) = 0. (B) Sphere has a constant positive curvature, χ(M) = 2.
(C) Cylinder has zero Gaussian curvature everywhere, χ(M) = 0. (D) Female bust,
χ(M) = −1. Remark the negative curvature observed under the arms. (E) Half-seal
mechanical part with localized negative curvature, χ(M) = −1.

After some necessarily formulated discrete quantities, the following is dedicated
to the Gaussian curvature distribution. Gaussian curvature distribution stands for
sampling the singularities on a mesh M where the topology is locally concentrated
on the geometry [Maquart et al. 2019c]. Technically speaking, the goal is to find
links between the Poincaré-Hopf and Gauss-Bonnet theorem. We seek for a new
formulation helping us to understand the properties between geometry and topol-
ogy and hence giving us valuable information on indices, number and locations of
singularities. For that purpose, we proceed on triangulated meshes. We store at
each vertex v a value of the discrete Gaussian curvature. Depending on the com-
puted value, we classify each vertex in one of the six following cases as explained in
Equation (2.20).
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2π −
Nv∑
i=1

θi =



Kv ' 2π Sharp,

Kv ' π
2

Spherical,

Kv ' 0 Euclidean,

Kv ' −π
2

Hyperbolic,

Kv ' −π Ultrahyperbolic,

Kv ' −2π Solid angle.

(2.20)

Afterwards, we deal with an associated closed meshMc without boundaries which
is in fact related to an open mesh M with boundaries. Closing boundaries b of
triangulated meshes is straightforward. Aiming to cut the mesh in a smart manner,
for ns singularities of a 4-symmetry direction field embedded on the closed mesh Mc

of M , we define an associated ring. A 1-ring neighborhood is a surface composed by
faces incident to the vertex v in place of the singularity. It allows us to express the
Gauss-Bonnet theorem for each ring. ns rings are homemorphic to a disk yielding
χ(Rvn) = 1 for each singularities as explicited in Equation (2.21). Please note that
the geodesic curvature is signed depending on the way we turn.

Rv1

∫
MRv1

K1dS +
∫
∂MRv1

kg1 ds = 2πχ(Rv1),

Rv1 = 2π −
∑Nv1

i=1 θi + kgv1 = 2π,

... ...,

Rvn

∫
MRvn

KndS +
∫
∂MRvn

kgn ds = 2πχ(Rvn),

Rvn = 2π −
∑Nvn

i=1 θi + kgvn = 2π.

(2.21)

Extraction of the ns rings to the closed mesh gives us a mesh denoted Mns with
ns boundaries and discrete geodesic curvatures kgvi . Euler characteristic of Mns

now equals to χ(Mns) = 2 − 2g − ns. Recall that g is the genus of the considered
surface. Let us define the Gauss-Bonnet theorem for Mns in the following Equation
(2.22). Taking into account geodesic curvatures of all rings, we can define the new
form written in Equation (2.23).∫

Mns

KdS +

∫
∂Mns

kg ds = 2πχ(Mns) = 2π(2− 2g − ns), (2.22)

∫
Mns

KdS −
ns∑
i=1

∫
∂MRvi

kgi ds = 2πχ(Mns). (2.23)

Therefore we can make geodesic curvature abstraction, i.e., boundary abstrac-
tion. More formally, this means that geodesic curvature is substituted by the Gauss-
Bonnet theorem. This idea in then described in Equation (2.24) and has for discrete
form the Equation (2.25). nt is defined as the total number of vertices of Mns except-
ing boundary vertices. Nvj is the number of edges incident to vj. Kvi is the discrete
Gaussian curvature at vi in place of singularities. Finally, we introduce singularity
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indices I id of a potential n-symmetry direction field d in order to obtain a global
form which links strong mathematical notions between topological and geometrical
aspects in Equation (2.26a) and Equation (2.26b).∫

Mns

KdS −
ns∑
i=1

[
2π −

∫
MRvi

KidS
]

= 2πχ(Mns), (2.24)

nt∑
j=1,j3∂Mns

[
2π −

Nvj∑
i=1

θi

]
−

ns∑
i=1

[
2π −Kvi

]
= 2πχ(Mns), (2.25)

nt∑
j=1,j3∂Mns

[
2π −

Nvj∑
i=1

θi

]
=

ns∑
i=1

[
2π −Kvi

]
+ 2πχ(Mns), (2.26a)

nt∑
j=1,j3∂Mns

[
2π −

Nvj∑
i=1

θi

]
=

ns∑
i=1

[
2π −Kvi

]
+ 2π

[ ns∑
i=1

I id −
ns∑
i=1

1
]
. (2.26b)

Hence Equation (2.26) can be minimized to locate properly a specific amount
ns of desired singularity indices. In this thesis, only the mathematical concept is
kept, Equation (2.26) is not directly minimized but shows where the singularities
must go. This equation can be named Gauss-Bonnet-Euler-Poincaré-Hopf due to its
formulation. It is clearly noticed that there are nested properties between Gaussian
curvature, Euler characteristic and singularity indices in this new expression. Since
the Gauss-Bonnet theorem establishes a relation between geometry and topology, it
is better to locate field singularities I id near non-Euclidean areas. On surface Mc,
indices can be estimated using Equation (2.27) if a 4-symmetry direction field is
being considered: values have been determined by the symmetry n of the field and
above topological considerations.

I id =



Sharp Non-defined,

Spherical +1
4
,

Euclidean 0,

Hyperbolic −1
4
,

Ultrahyperbolic −1
2
,

Solid angle Non-defined.

(2.27)

2.1.6.2 Disk-sphere field duality theorem

This part treats useful personal work [Maquart 2018]. The reformulated theorem
extracted from the related paper is given in Theorem 2.9. This theorem shows that
it is possible to define a field without indices of singularity if at least one boundary
exists. This example states the trade between the boundary number theorem and
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the Poincaré-Hopf theorem. In the same spirit of the previous formulated Poincaré-
Hopf theorem corollary, a disk-sphere field duality theorem corollary is proposed in
Corollary 2.2.

Theorem 2.9. Disk-sphere field duality theorem. For two singularities on a
sphere, one embedded in a vertex v and one located at Pi, they have opposite turning
numbers corresponding to the following duality:

Td(∂v) = Id(v)− 1 = −(I1
d(Pi)c − 1) = −Td(∂Ω(Pi)). (2.28)

Where ∂v is the cycle around the vertex v, Id(v) the index of singularity at v and
∂Ω(Pi) the cycle around the point Pi. I

1
d(Pi)c refers to the index of singularity at

Pi on the closed surface S of the associated disk D used to show this formulation in
[Maquart 2018].

Corollary 2.2. Disk-sphere field duality theorem corollary. Hair im-
plantation problematic for the hairdresser is to understand body hair behavior.

2.2 Parameterization techniques

2.2.1 Related work on parameterization

Quadrilateral remeshing is a long time interest, especially in the graphics community.
Indeed, surveys exist [Floater and Hormann 2005; Alliez et al. 2008; Bommes et al.
2013b; Campen and Zorin 2017]. A particular work for simulation and animation
is proposed by [Bommes 2012]. Previous decade tried to determine quadrilateral
elements orientation with the understanding of principal curvature directions [Alliez
et al. 2003; Marinov and Kobbelt 2004]. Most recent parameterization based tech-
niques are very powerful to compute oriented quadrilateral meshes. [Ray et al. 2006;
Huang et al. 2008; Zhang et al. 2010] present pipelines in order to find the cross field
singularities automatically. Others are solving a mixed integer problem [Bommes,
Zimmer, and Kobbelt 2009] to elucidate such properties of embedded fields on sur-
faces. Mixed integer problems have been also studied by [Bommes, Zimmer, and
Kobbelt 2010; Bommes et al. 2013a]. These methods give good results, but they
are not in communication, i.e., they are not aware of the placement of the others
singularities. The optimization of quad meshes is an inherently global problem since
local changes affect the whole mesh quality. [Bommes, Lempfer, and Kobbelt 2011]

108

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI033/these.pdf 
© [T. Maquart], [2019], INSA Lyon, tous droits réservés



Parameterization techniques

developed an algorithm to optimize quadrilateral meshes and improve its global
structure. Last year, [Huang et al. 2018] produces structured meshes with many
fewer singularities based on an existing algorithm.

To overcome this potential issue for complicated surfaces, papers exploit topolog-
ical information derived from a patch layout. Such patches decompose the surface
into a coarse quadrilateral mesh which has the same topology of the input triangu-
lated one. A quadrilateral layout is an embedded graph on the triangulated surface
which partitions the surface into a set of non-overlapping quadrilateral patches. Each
patch has 4 nodes and 4 polyline edges, i.e., a polyline is a set of multiple lines. If all
patches of the layout are topogical quadrilaterals, thus we call this a quadrilateral
layout of the surface. [Dong et al. 2006; Bommes, Vossemer, and Kobbelt 2008] con-
struct patches manually whereas automatic methods exist [Campen, Bommes, and
Kobbelt 2012; Bommes et al. 2013a; Campen and Kobbelt 2014; Razafindrazaka,
Reitebuch, and Polthier 2015] and a recent survey can be found here [Campen 2017].
This task induces cutting charts, i.e., a cut graph due to the non-trivial topology of
the surface [Campen, Bommes, and Kobbelt 2015] to parameterize the whole mesh.
In the context of this thesis, we will use our method explained in the next Chapter
3 to compute such relevant layouts. The novelty is to add other properties in order
to construct a further volumetric parameterization and to fit features of the mesh.

Recent advances in quadrilateral meshing are abundant. Very recent work are
very different. Geometrical theories help to convert a triangulated mesh into a
quadrilateral one, e.g. by foliation theory [Lei et al. 2017]. Others solve partial
differential equations on a surface mesh so as to arrive to a quadrilateral meshing
goal [Kowalski, Ledoux, and Frey 2013; Beaufort et al. 2017]. Singularities are
determined automatically and global quadrilateral structure is determined by tracing
streamlines from singularity positions.

In the following, we consider two different parts. The first is based for its majority
on classical harmonic parameterization. The second aims to parameterize the whole
surface in one shot, namely the global parameterization.

2.2.2 Weights based disk-like surface parameterization and
other similar methods

Many different techniques of mapping exist. In our case, we are interested in map-
pings or parameterizations which map a surface M embedded in R3 to a canonical
domain D in R2. Mapping serves to define a new distribution of the geometry and
hence permits to remesh with quadrilaterals. Nice surveys exist, see e.g. [Li and
Iyengar 2014]. The ideal parameterization is isometric, i.e., it fully preserves ar-
eas and angles as previously formulated in Theorem 2.5. For surfaces, an isometric
parameterization is not possible in the general case due to Gaussian curvature. In
particular cases, an appropriate cut graph G permits such parameterization without
face overlapping. But it strongly depends on the embedded curvature. Therefore,
approaches to 2-dimensional manifold attempt to find a mapping which is either
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2. Topology and parameterization prerequisites

conformal with no angular distortion, or equiareal with no area distortion. Confor-
mal mappings always exist into one of the three following canonical domains: the
sphere, the plane, and the hyperbolic space. As already said, the isometric theo-
rem guarantees that a conformal equiareal mapping is isometric. In the following
we consider a triangulated surface M with vertices V , edges E and faces F , and
only disk-like surfaces for parameterization. We note that some techniques to map
a multiply connected surface, i.e., a genus-0 surface with multiple boundaries exist
[Zeng et al. 2009a]. Attempts consist in finding quasi-conformal mapping between
surfaces by solving Beltrami equations [Zeng et al. 2009b]. Parameterization based
quadrilateral meshing methods are abundant [Marinov and Kobbelt 2004; Dong
et al. 2006; Tong et al. 2006; Huang et al. 2008; Zhang et al. 2010]. We use dis-
crete harmonic mapping to solve such parameterizations. Harmonic mappings have
attributes derived from conformal parameterization, but there is no guarantee on
angles. Such mappings are trying to minimize a given defined energy. To proceed,
we construct a harmonic function f : M −→ R such that ∆f = 0. Harmonic maps
minimize Dirichlet energy ED(f) as formulated in Equation (2.29).

ED(f) =
1

2

∫
M

‖∇f‖2dS. (2.29)

The surface boundary ∂M is first mapped to the boundary of the parametric
domain and then the parameterization for the interior vertices is obtained by solving
the linear system written in Equation (2.30).

∆wf(vi) =
∑
j∈Ni

wij(f(vj)− f(vi)) = 0. (2.30)

Where vi, vj ∈ V , Ni is the neigborhood of vi, and wij is the scalar weight
assigned to the oriented edge eij(vi, vj). Different parameterization methods as-
sign different weights wij. The first definition of weight was introduced by [Tutte
1963]. In the parameter space, each vertex is placed at the barycenter of its neigh-
bors. Recently [Saboret, Alliez, and Lévy 2016] have implemented a CGAL package
handling some of the state-of-the-art surface parameterization methods such as the
least squares conformal maps, discrete conformal map, discrete authalic parameter-
ization, Floater mean value coordinates or Tutte barycentric mapping. To the best
of our knowledge, the most used weights are the mean value coordinates weights
introduced by [Floater 2003]. These weights are formulated in Equation (2.31). γij
and δij are the two incident angles to the edge eij(vi, vj). These angles are defined
at vi. Normalized weights λij are expressed in Equation (2.32).

wij =
tan(γij/2) + tan(δij/2)

‖vj − vi‖
, (2.31)

λij =
wij∑
k∈Ni wik

. (2.32)
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Conclusion

To finalize the introduction on parameterization, we summarize discrete bijective
mapping by the Radó-Kneser-Choquet theorem previously developed in Theorem
2.4. Indeed, our needs is a mapping where f is harmonic, the parametric space ⊂ R2

is convex and the boundary ∂M is mapped homeomorphically in the parametric
space. With these conditions and positive vertices weights for discrete maps, f
has to be bijective. Mean value weights are always positive, thus they are taken
for the next harmonic parameterizations. To show the ability of the presented
harmonic parameterization tools and weights to produce mappings, a first example
is depicted in Figure 2.14. Due to the constrained border of the parametric space,
calculated quadrilaterals have different sizes. A second is given for an aortic valve
[Morganti et al. 2015; Vy et al. 2016]. To do this specific parameterization and
understand features of the valve, we segment the mesh into different square domains
in Figure 2.15 (A). Afterwards, with the harmonic mapping per patch and treating
connectivity, a pure quadrilateral mesh is extracted in Figure 2.15 (C). However,
this kind of mapping induces high distortion between computed patches and does
not take into account the global properties of the shape.

2.2.3 Aligned global parameterization

We develop here the concept of aligned global parameterization but only as intro-
duction purposes. We invite the readers to Chapter 4 for more specific details. An
aligned global parameterization is based on a guidance field, i.e., in general a cross
field. The cross field is generated while respecting some prescribed features of the
mesh. The global parameterization consists in finding a global coordinate system of
the shape aligned with the cross field. In this case, a global parameterization is a
piecewise linear map from the mesh M ∈ R3 to a topological disk domain Ω ∈ R2.
Disk domain is achieved by computing an appropriate cut graph G (see Section
2.1). Since the parameterization should be piecewise linear, assigning a couple of
parameters (u, v) to each face vertex of the triangulated mesh is sufficient. Previous
idea is depicted in Figure 2.16.

Quadrilateral remeshing techniques strive to generate an integer grid map
[Bommes et al. 2013a]. In other words, it is a parameterization of the input surface
into R2 such that the canonical grid of integer isolines forms a quadrilateral mesh
when mapped back onto the surface integrated in R3. They seek to minimize an
alignement energy with the computed cross field [Bommes, Zimmer, and Kobbelt
2009; Bommes, Zimmer, and Kobbelt 2010; Myles et al. 2010; Myles and Zorin 2012;
Ebke et al. 2013; Myles and Zorin 2013; Campen and Kobbelt 2014].

2.3 Conclusion

Above developed topological formulations and theorems are fundamental tools for
the next chapters. By doing such investigation process onto the topology field and
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2. Topology and parameterization prerequisites

Figure 2.14: Harmonic parameterization using mean value weights computed by
our IGA ROM PlugIn (see Appendix B). (A) A CAD torus and its homology basis.
(B) Such depicted homology basis is a homotopy basis and even a system of loops.
The cut graph is then straightforward. Using the cut graph, we parameterize the
mesh into a square. (C) Real vertebrae from medical imaging which is homeomorphic
to a torus. (D) Produced inverse mapping and pure quadrilateral mesh. Workflows
of (A) and (B) have been followed.

parameterization techniques, a strong mathematical basis is built. Complicated
surfaces with an arbitrary topology and geometry are now understood.

Surface smart decomposition requires to evaluate topological invariants such as
the well-known Euler characteristic. Comprehension of the homotopy and homology
theories is also a way to sort surfaces understanding loops and cycles, but mainly
remain serious ones for manifold segmentation: Chapter 3 is devoted to the surface
partitioning. These theories are closely related to χ, and hence they hold invariant
properties too. Since the Poincaré-Hopf theorem states a tight relation between sin-
gularity indices and Euler characteristic, designing fields on surfaces is related with
the topological invariant χ. Chapter 4 is dedicated to discrete n-symmetry direc-
tion field computation; related theorems are compulsorily used. Nested properties
have been elucidated from the previous explanations coming from the literature
or from this thesis’s work. Such intricated relations between some of described
above theorems are essential when considering a surface with borders. Moreover,
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Conclusion

Figure 2.15: Aortic valve harmonic parameterization using mean value weights
computed by our IGA ROM PlugIn (see Appendix B). (A) The quadrilateral layout.
(B) Scanned mesh obtained via medical imaging techniques. (C) Extracted pure
quadrilateral mesh from parameterization.

Figure 2.16: Basic approach of the global parameterization. (A) Input triangu-
lated mesh. (B) Grid and parameterized domain in R2. Cross field is undepicted
but brought to these red and blue transparent integer isolines. A cut graph G is
computed and drawn in black. As early explained, non-overlapping faces in R2 can’t
be achieved due to Gaussian curvature in the general case. (C) Resulting quadri-
lateral mesh is obtained by inverse mapping, i.e., mapping from the parameterized
domain R2 to the physical space in R3. Specific conditions are required along edges
of G in order to obtain a conform structured mesh.
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2. Topology and parameterization prerequisites

the comprehensive study of the Gauss-Bonnet theorem gives us an integral formu-
lation between geometry and topology which will be very useful in the following to
place singularities on a mesh. Chapter 6 is strongly based on presented topological
prerequisites and thence will permit to go even further.

Methods relying on parameterization have been introduced in the way to follow
the next Chapter 3. Harmonic method is particularly highlighted: the method is
applicated in our quadrilateral layout partitioning algorithm. Chapter 4 uses the
aligned global parameterization in order to compute quality quadrilateral meshes.
With all of these essentials, the next steps will be straightforward. As a summary
and for assimilation purposes, Figure 2.17 gives an overview of theorems and their
application fields.

Figure 2.17: Theorems overview and application fields.
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Chapter 3

Smart model decomposition

This chapter presents a surface decomposition approach in two
steps: pants (in Section 3.1) and cuboid decomposition (in Section

3.2). We seek to segment the input surface in order to obtain a
cuboid decomposition of a complex geometry with an arbitrary

topology. From this chapter to the end, all computations are made
with our IGA ROM PlugIn (see Appendix B).
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3. Smart model decomposition

3.1 Geometry-aware pants decomposition

First step of surface decomposition is done by dividing a triangulated surface into
a set of pants patches. Pants decomposition provides a canonical decomposition
scheme for common surfaces. As already explained in the previous Chapter 2,
χ = −1 for a pants patch, therefore a pant is the simplest topology after the sphere,
disk, cylinder and torus. Many algorithms take as input handle loops for genus-g
surfaces to segment into pants patches [Li, Gu, and Qin 2009]. Handle loops required
for automatic pants decomposition are computed using a technique introduced by
[K. Dey, Li, and Sun 2007]. In this algorithm, loops are lying on the triangulated
geometry and topologically compatible entities are sorted with a geometric criterion.
In other words, the set of handle and tunnel loops are geometrically small in terms
of length for the considered geometry. An improvement of this process was also de-
veloped by [Dey et al. 2008]. More recently, [K. Dey, Fan, and Wang 2013] exposed
another method using reeb graphs; this technique is used in our developments.

3.1.1 Improved algorithm: geometry comprehensive

We explain our improved pants decomposition algorithm mainly based on the work
of [Al-Akhras 2016; Al-Akhras et al. 2016] to decompose an arbitrary surface M
into geometry-aware pants patches. We deal with homology generators, i.e., basis
with entities formed by handle and tunnel loops.

First stage is done by taking a subset H composed of g simple pairwise disjoint
handle loops {h1, ..., hg}. Slicing the surface M with b boundary components along
its g handle loops will lead to a genus-0 surface with 2g + b boundary components
denoted as W = {w1, ..., w2g+b}. We then iteratively pick two boundaries wi and
wj among all non-repeating and commutative combinations in W and compute a
new cycle wij to bound them, i.e., wij is homotopic to wi ◦ wj. New improvement
is brought by analyzing all possible conbinations among a given set of boundary
components in W when picking the two current boundaries wi and wj in order to
determine all cycles wi ◦ wj. Optimal cycle wij is then found by sorting loops in
L handling a global geometric criterion. The three cycles wi, wj and wij bound
a pants patch Tk. We remove this pants patch Tk from M . The remaining patch
is still genus-0 but its boundary number reduces by 1: the two cycles wi and wj
are removed, and one new cycle wij is inserted. This is iteratively performed until
|W | = 3.

The main process is formulated in Algorithm 3.1, and the operation that traces a
cycle wij homotopic to cycle wi◦wj is formulated in Algorithm 3.2. Remark that, for
geometry-aware decompositions needs, we have proposed a new enhanced algorithm
which computes a cycle wi ◦wj passing through user-defined relevant mesh points in
Algorithm 3.3. Algorithm time complexity is expressed in Algorithm 3.4 thinking
with one arbitrary pant patch decomposition as elementary operation. We refer the
readers again to [Al-Akhras 2016] for more visual details.
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Geometry-aware pants decomposition

Algorithm 3.1. Main geometry-aware pants decomposition algorithm.

Input 1: Triangulated genus-g surface M with b boundary components.
Input 2: g geometrically relevant handle loops of M .
Input 3: Global geometric criterion for L.
Output: Set of −χ(M) pants patches T = {T1, ..., T−χ(M)}, with M = ∪Ti.
01: k = 1.
02: Slice M along all its handle loops and get a surface Mk with 2g+b boundaries.
03: Put all boundaries of Mk in a set W = {w1, ..., w2g+b}.
04: While |W | > 3 do
05: Build or reset an empty set of loops L = {0}.
06: Compute Nc combinations: dim(Nc) = Size(W )!

2!(Size(W )−2)!
.

07: For all couples [wi, wj] in Nc:
08: Compute a cycle wij homotopic to wi ◦ wj (Algorithms 3.2 and 3.3).
09: Add loop to L.
10: End For
11: Sort relevant loops in L = {l1, ..., ldim(Nc)} using a global geometric criterion.
12: The optimal wij cycle is classified in L.
13: {w1, wj, wij} bound a pants patch Tk. Remove Tk from Mk: Mk ← Mk \
Tk.
14: Remove wi and wj from W , and add wij into W .
15: k ← k + 1.
16: End While

Algorithm 3.2. Homotopic cycle computation.

Input 1: Genus-0 surface M with b boundary components {w1, ..., wb}.
Input 2: Geometric criterion.
Output: A cycle wij homotopic to cycle wi ◦ wj.
01: Compute the shortest path connecting wi to wj.
02: Slice M along this path to get one new large boudary cij.
03: Connect all other boundaries together using shortest paths.
04: Slice M along these paths to get one new large boundary ck.
05: M becomes a topological cylinder.
06: Compute the shortest path γ connecting cij and ck.
07: Slice M along the path γ.
08: Every point pi ∈ γ (n+ 1 points) is splitted into a pair (pi, pi).
09: Trace all shortest paths connecting points pairs (pi, pi).
10: Among these paths, the cycle wij satisfies the geometric criterion.

Algorithm 3.3. Sharp homotopic cycle computation.

Input 1: Genus-0 surface M with b boundary components {w1, ..., wb}.
Input 2: Set of np sharp points S = {s0, ..., snp}.
Output: A cycle wij homotopic to cycle wi ◦ wj.
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3. Smart model decomposition

01: Compute the shortest path connecting wi to wj.
02: Slice M along this path to get one new large boudary cij.
03: Connect all other boundaries together using shortest paths.
04: Slice M along these paths to get one new large boundary ck.
05: M becomes a topological cylinder.
06: Compute the shortest path γ connecting cij and ck.
07: Slice M along the path γ.
08: Every point pi ∈ γ (n+ 1 points) is splitted into a pair (pi, pi).
09: {p0, p0, pn, pn} are setted to be the corners of a square harmonic mapping.
10: Partial line inverse mapping passing through np points in S is performed.
11: The cycle wij is reconstructed using line segments.

Algorithm 3.4. Pants decomposition algorithm time complexity.

Input: A pant patch decomposition is used as elementary operation.
Output: Time complexity CT (χ(M)).
Note 1: We denote CT (χ(M)) as time complexity related to the surface M .
Note 2: B = {b0 = 4, b1 = 5, ..., bi = −χ(M) + 2} and dim(B) = −χ(M)− 1.

01: CT (χ(M)) =
∑−χ(M)−2

i=0
bi(χ(M))!

2!(bi(χ(M))−2)!
.

All shortest paths computations on triangulated meshes have been realized by
an adaptation of the well-known Dijkstra’s algorithm [Dijkstra 1959] for weighted
tree graphs. A CGAL package exists to compute these paths which was developed
by [Kiazyk, Loriot, and Verdière 2016]. Different geometric criteria can be used to
guide the pants decomposition. Geometric criterion can be adapted to M , i.e., for
meshes provided from medical imaging or meshes for mechanical applications. In
Algorithm 3.1, the specified geometric criterion can be different of the one used in
Algorithm 3.2. For instance, we can sort loops in L with loops passing through areas
of minimum curvature [Lee et al. 2005], symmetry or shortest length.

In Figure 3.1 (C) pants decomposition is performed using loops with minimum
length, whereas in Figure 3.1 (D) decomposition is made by symmetry. In Figure
3.2, user selectionned sharp points are given to guide the pants decomposition. This
guiding yields a geometry-aware decomposition. A common surface admits infinitely
many pants decompositions. In general, not all pants decomposition results are
suitable for the next step of our algorithm. However, if the pants decomposition
is guided by the different geometric criteria presented above, we obtain satisfying
results for all our test cases.

3.1.2 Pants decomposition examples

As example, we give few computed results in pictures in Figure 3.3. Another example
is depicted in Chapter 2 for a level-1 Sierpinski sponge. With above developments,
shortest length and symmetry criteria have been used to state depicted decomposi-
tions. In the following, some of presented pants segmentations will be used for the

118

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI033/these.pdf 
© [T. Maquart], [2019], INSA Lyon, tous droits réservés



Geometry-aware pants decomposition

Figure 3.1: Genus-2 plate pants decomposition. (A) Input triangulated surface.
(B) Surface with its handle and tunnel loops, depicted in red and green respectively.
Pants decomposition using loops with shortest distance (C) and with symmetry (D).

Figure 3.2: Geometry-aware pants decomposition with sharp points. (A) Double
T is decomposed into pants using 4 sharp points given by the user or determined
automatically. (B) A 2-torus pants decomposition passing through sharp points.
Notice that using shortest length loops, the result will be the same for (B).

next step consisting in finding a suitable decomposition of a pant into feature-aware
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3. Smart model decomposition

cuboids.

Figure 3.3: Pants decomposition examples. All blue and gray parts are both genus-
0 surfaces with 3 boundaries. (A) Abdominal aorta with 4 boundaries. χ(M) = −2.
Decomposition was made with a prescribed set of points S. (B) Female body with
4 boundaries. χ(M) = −2. Shortest length criterion allows this decomposition. (C)
Casting part. χ(M) = −8, yielding to 8 pants calculated using symmetry properties.
(D) Wheel part. χ(M) = −3. Symmetry properties were used to segment this mesh.
(E) Double curved T part. χ(M) = −2. (F) Seal part. χ(M) = −2.

3.2 Feature-aware cuboid decomposition

This section aims to decompose each pant patch into a set of cuboids that under-
stands the input geometry. Pants patches provide a very simple topology, and each
pant patch can be treated separately. [Li et al. 2013] presented a method that gen-
erates the same quadrilateral patches number per pants patch with a given user
data input. [Al-Akhras 2016] improves this method to perform the decomposition
in a way that it does not require any input from the user. The last idea is to gen-
erate corners and polyedges on each pants patch and decompose it into a set of 4
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Feature-aware cuboid decomposition

cuboids, each having 8 corners and 12 polyedges in order to construct a volumetric
parameterization; but it is not a suitable segmentation in the general case.

In our work we present an extended algorithm to handle more complicated geom-
etry especially with sharp features. On each pant patch the number of quadrilateral
patches is set to respect sharp vertices and sharp edges. Feature-aware cuboid de-
composition is made to respect the topology of the input triangulated surface and
consider sharp features. Of course, optimal number of cuboids depends on the fea-
tures embedded into the considered pant patch. This decomposition approximates
very roughly the geometry while faithfully replicating its topology taking into ac-
count sharp features. That is why we talk about feature-aware cuboid decomposi-
tion. Due to the patch regular structure of the quadrilateral layout, it can serve as
parametric domain needed for pure 3D surface quadrilateral mesh computation. To
go further, we will see in the following the useful properties of cuboid decomposition
for building volumetric meshes.

3.2.1 Quadrilateral layout and cuboid decomposition defi-
nition

Quadrilateral layouting strive to decompose a surface into a set of quadrilateral
patches, see e.g. [Campen, Bommes, and Kobbelt 2012; Campen, Bommes, and
Kobbelt 2015]. Indeed, thanks to square domains, it is easier to parameterize.
We name Q a quadrilateral layout decomposing the input triangulated surface into
patches with 4 corners and 4 polylines or polyedges composed by many segments
embedded in the unstructured mesh M . We call C the cuboid configuration that is a
specific quadrilateral layout Q that authorize further volumetric parameterizations.
Both C and Q are surface topological entities, i.e., 2-dimensional manifolds. In
addition, because C and Q are surfaces, they can have boundaries. We insist on
the fact that C is a surface, not a volume. Pertinence of pictured boundaries to
illustrate C in figures will be determined case by case. We strive to conserve the
cuboid aspect throughout the studied method. Above given definitions are sufficient
to move to the next developments, they will be redefined in Chapter 6 in order to
better characterize their topological properties. Figure 3.4 shows the mapping of a
quadrilateral layout that is a cuboid configuration onto a triangulated geometry.

3.2.2 Improved algorithm: feature comprehensive

3.2.2.1 Algorithms steps

The following is dedicated to the feature-aware cuboid decomposition algorithm. As
input, we have a set of pants patches. The 3 boundaries of a given pant patch will
be arbitrary denoted by B1, B2 and B3. We process these pants patches one by one
in an arbitrary order. To guarantee cuboid corner alignment, when we determine
one pant patch’s result, we transfer its corners on the boundaries of the adjacent
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3. Smart model decomposition

Figure 3.4: Cuboid configuration mapping onto a triangulated geometry yielding
to a cuboid decomposition of the mesh. C and Q are both surface entities possibly
with boundaries. C holds additional properties to build a volume due to its cuboid
structure.

pants patches if they are not processed yet. This algorithm is robust even for low-
quality and noisy meshes. Step 1 to step 3 are dedicated to the feature-aware cuboid
decomposition procedure.

Figure 3.5: Temporary cutting curves generation. (A) Discrete harmonic function
f3. Blue color represents parametric values close to 0, red ones are close to 1. Using
a set C of nc sharp cutting points, f2 and f1, the three temporary cutting curves
are computed in (B).

Step 1. We generate 3 sharp cutting curves WS1, WS2 and WS3:

[A]

We compute 3 discrete harmonic functions: f1, f2 and f3. To compute fi,
we set fi = 0 for vertices on the boundary Bi and fi = 1 for vertices on the
remaining two boundaries Bj and Bk . Then we solve ∆fi = 0 using mean
value coordinates. Figure 3.5 (A) for f3.
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Feature-aware cuboid decomposition

Figure 3.6: Boundary seed points computation. Temporary patches PT3, PT1 and
PT2 respectively in (A), (B) and (C). Using an approach close to circular conformal
mapping of [Zeng et al. 2009a], temporary seed points sTk are determined into each
respective patch PTk.

Figure 3.7: Sharp cutting curves generation. (A) The three temporary unit square
maps UT3, UT1 and UT2 (left to right). (B) Partial line inverse mapping using sharp
cutting points in C performed in UT3, UT1 and UT2 (left to right). (C) Computed
sharp cutting curves WS1, WS2 and WS3.

[B]

Each harmonic function fi has one minimum component and two maximum
components. Among a set C of nc sharp cutting points C = {c0, ..., cnc}, let
fi = min[fi(cj)], ∀cj ∈ C. Then a temporary non-sharp cutting curve WT i is
defined as the isoparametric curve of the function fi for the value fi. Figure
3.5 (B).

[C]

We remove a long branch, i.e., by cutting along its temporary cutting curve
WTk. After filling the cutting hole, the resulting patch is a topological cylinder
with 2 boundaries Bi and Bj. We denote this temporary patch by PTk. Figure
3.6 (A), (B) and (C).
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3. Smart model decomposition

Figure 3.8: Quadrilateral layout arcs generation. (A) We keepWS3 passing through
all cutting sharp points. Into each relevant Uk, partial line inverse mapping is
performed using points in C and D as depicted in (B). Notice that we can use
points in O, but this set is not pictured. (C) Shows curves in the physical space
with supplementary traced boundary curves. Other arcs are determined to have a
valid quadrilateral layout or cuboid decomposition, in the parametric space (D) and
in the physical one (E).

[D]

Using previously computed temporary patches PTk, we first set u = 0 for
vertices on Bi and u = 1 for vertices on Bj, then solve ∆u = 0. Using
an approach close to [Zeng et al. 2009a], among all iso-v curves along ∇u
starting from Bi and Bj, we automatically select two relevant curves which are
intersecting the filled boundary Bk, one starting from temporary seed point
sT ik on Bi and one starting from temporary seed point sTjk on Bj. Figure 3.6
(A), (B) and (C).

[E]

By performing this previous task on each temporary patch PTk, we obtain 6
temporary seed points sT ij, sT ik, sTji, sTjk, sTki and sTkj. Working on all
patches PTk, we plot an iso-v curve along ∇u from the seed vertex sT ik on
the boundary Bi to the seed vertex sTjk on boundary Bj. We slice PTk along
this iso-curve and get two duplicated boundary paths. We finally set v = 0
and v = 1 on them respectively and solve ∆v = 0 to obtain the 3 oriented
temporary unit-square maps denoted UTk with corners {sT ik, sTjk, sT ik, sTjk}.
sT ik and sTjk are duplicated points of sT ik and sTjk respectively. Notice that
triangles from filling are removed during UTk computation. Figure 3.7 row (A).
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Feature-aware cuboid decomposition

[F]

Points in C are mapped into each unit-square map UTk and automatically
classified using parametric coordinates u and v. Then we perform partial line
inverse mapping between each classified cutting points cj related to associated
relevant UTk and merge computed lines to obtain valid sharp cutting curves
WS1, WS2 and WS3. Figure 3.7 row (B) and (C).

Step 2. We generate 3 feature-aware oriented unit-square maps denoted
Uk:

[A]
We remove a long branch by cutting along its sharp cutting curve WSk. We
proceed like Step 1 [C] to obtain a feature-aware cutting patch Pk.

[B] Using the same workflow of Step 1 [D] sharp seed points sik and sjk are
determined.

[C]
Using the same workflow of Step 1 [E], we obtain 6 sharp seed points sij, sik,
sji, sjk, ski and skj. Then 3 feature-aware oriented unit-square maps Uk are
extracted.

Step 3. We generate all arcs of Q:

[A]
According to Step 1 [F] sharp cutting arcs WSk have already been computed.
We keep WS3 passing through all cutting sharp points. Figure 3.8 (A).

[B]

Among a set D of nd sharp boundary points D = {d0, ..., dnd}, we map these
points into corresponding maps Uk. Using automatic classification with para-
metric coordinates u and v, we pair on each relevant Uk points in D with
sharp cutting points in C. We perform partial line inverse mapping to obtain
arcs of the quadrilateral layout. Boundary arcs are determined directly in the
physical space. Figure 3.8 (B) and (C).

[C]
Consider a non-empty set O of no common sharp points O = {o0, ..., ono}. We
proceed like Step 3 [B] by pairing on each relevant Uk points in O possibly
with C or D.

[D]

Remaining arcs of the quadrilateral layout or cuboid decomposition are com-
puted using partial line inverse mapping into relevant Uk with points in D,
O or in C. Other arcs and points are then obtained by line-line intersection
analysis. Figure 3.8 (D) and (E).

The proposed algorithm steps are given for a simple case of 4 cuboids per pant
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3. Smart model decomposition

patch. We can easily add other sharp features to handle more complex geometry
cases. With sharp points in C or other sharp points in D or O used in Step 3 [C],
a huge variety of shapes can be decomposed into feature-aware cuboids. Note that
these sharp points or features can be integrated into a specific automatic algorithm
to avoid manual selection.

3.2.2.2 Workflow overview

We split our geometry-feature-aware pants-to-cuboids decomposition approach in
two main parts: the mechanical and biological workflows respectively in Figure
3.9 and in Figure 3.10. These illustrations provide keys points of the proposed
method demonstrated with simple cuboid templates composed by 4 cuboids. Indeed,
depending on the studied application, we can generate quadrilateral layout arcs in
a different manner. [Al-Akhras 2016] has used specific quadrilateral layouts for
biological purposes without prescribed sharp points.

In order to summarize, given a consistent pants decomposition, our algorithm is
capable to decompose a triangulated surface into quadrilateral patches suitable for
further volumetric parameterizations. This previous task is done by specifying rele-
vant sharp points relative to a given quadrilateral layout Q or cuboid configuration
C template. In addition, computed relevant parametric spaces Uk are important
aspects not to neglect. To compute line inverse mapping on constrained square
parametric spaces, more complex is the geometry, better has to be the square pa-
rameterization. Besides in Figure 3.9, remark that curves and 4-valency nodes of
Q are not particularly lying and sitting on features. In fact, due to the harmonic
parameterization and geometry of considered parametric spaces, arcs of C have not
been constrained onto sharp edges.

3.2.3 Cuboid decomposition templates

Depending on the geometry provided by a specific pant patch, we need a precise
cuboid configuration template to be mapped into the surface. This idea is illustrated
in Figure 3.11 and configurations properties are examined in Chapter 6. Like we
developed before, all features of the input triangulated geometry, i.e., sharp vertices,
corners and edges must be replicated in the chosen cuboid configuration. For ex-
ample, a set of sharp edges of a specific region may have an associated cuboid arc.
This process, similar to a coarse one-to-one mapping for features is fundamental in
order to obtain a suitable surface segmentation.
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Towards hybrid n-pant topology surface decomposition

Figure 3.9: Smart model decomposition overview for mechanical applications.
Starting with a triangulated surface, we decompose into a set of topological pants
understanding the geometry. Afterwards, depending on the features embedded in
the input mesh, cuboid configuration templates per pant are chosen. These tem-
plates are then mapped back into the surface mesh yielding to a feature-aware cuboid
decomposition.

3.3 Towards hybrid n-pant topology surface de-

composition

3.3.1 n-pant topology definition

Decomposing a surface can be done by really differents approaches. We have chosen
to segment surface M into pants because of the topological characteristic equal to
χ(M) = 1. Moreover, the pants decomposition method allows to treat T-junctions
because of three 1-manifolds, i.e., boundaries of the pant surface. But in general,
in encountered mechanical parts, segmenting only with classical pants is not an
optimal method. Aiming to map a cuboid configuration into a pant geometry, it is
more suitable to consider n-pant divisions of the input surface. In Definition 3.1, we
give properties of n-pant topologies in Equation (3.1). 1-pant topology is known as
the classical pant with 3 boundaries.
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3. Smart model decomposition

Figure 3.10: Smart model decomposition overview for biological applications.
Starting with a triangulated surface from medical imaging, we decompose into a
set of topological pants understanding the geometry. Cuboid configuration tem-
plates per pant are chosen. These templates are then mapped back into the surface
mesh yielding to a feature-aware cuboid decomposition.
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Towards hybrid n-pant topology surface decomposition

Figure 3.11: Cuboid configuration templates C. To understand all the features of a
CAD model, a specific cuboid configuration has to be applied for mapping purposes.
(A) Represents the simplest cuboid configuration C for a pant. (B) Configuration
C with 8 cuboids. (C) Configuration C with 10 cuboids.

Definition 3.1. n-pant topology. n-pant topology is a genus-0 connected,
compact and oriented 2-manifold M with a number of boundaries b ∈ [3, 4, 5, 6]:




1-pant : χ(M1p) = −1 & b = 3,

2-pant : χ(M2p) = −2 & b = 4 : χ(M1p �M1p) = χ(M1p) + χ(M1p),

3-pant : χ(M3p) = −3 & b = 5 : χ(M2p �M1p) = χ(M2p) + χ(M1p),

4-pant : χ(M4p) = −4 & b = 6 : χ(M3p �M1p) = χ(M3p) + χ(M1p).

(3.1)

Where � is the disjoint union operator for 2-manifolds. The Euler characteristic
of the disjoint union is the sum of Euler characteristics. For instance, a 2-pant is
composed by two distinct 1-pants. By merging these 1-pants along one of their
boundaries, this process reduces the number of boundaries by 2. Disjoint union is
achieved and true because of the exclusion-inclusion principle due to the topological
nature of χ(M1p ∩M1p). Indeed, χ(M1p ∩M1p) is a circle composed by vertices and
edges in the same quantity without faces: χ(M1p ∩M1p) = V − E + F = 0. Figure
3.12 illustrates topological shapes of all possible n-pant topologies. For the sake of
comprehension, 2-pants are called shirts, 3-pants are denominated suits and 4-pants
are spacesuits due to the air inlet hole.
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3. Smart model decomposition

Figure 3.12: n-pant topological shapes. (A) 4-pant or spacesuit. (B) 3-pant or
suit. (C) 2-pant or shirt. (D) 1-pant or classical pant.

3.3.2 n-pant cuboids library

Building a library which classifies admissible cuboid configurations per n-pant
topologies is legitimate. Our approach is to first decompose the unstructured surface
M into geometry-aware n-pants. Each pant of dimension n is chosen to respect the
embedded features of the geometry in an optimal cuboid decomposition goal. By
optimal we mean a cuboid configuration that can be mapped into the triangulated
geometry and replicate sharp edges, corners and other relevant geometrical features.
We seek to have less cuboids as possible while doing appearing of the geometry
characteristics into the cuboid configurations C.

Once we have decomposed the mesh M into pants, shirts, suits or spacesuits,
a cuboid configuration is associated per n-pant. We construct the library in the
way that the number of volumes is increasing from the simplest C admissible for a
given n-pant topology. This draft idea is depicted in Figure 3.13. Figure 3.13 (A) is
composed by a pant and a suit, Figure 3.13 (B) and Figure 3.13 (C) are adopted to
be mapped onto the physical space, i.e., onto the mesh M to replicate the features.

3.4 Conclusion

We have greatly enhanced existing methods consisting in pants-to-cuboids decom-
position [Li et al. 2013; Al-Akhras 2016] to geometry-feature-aware pants-to-cuboids
decomposition. The first step toward this objective is the segmentation-aware pants
decomposition. Such division decomposes a complicated surface into shapes with
a trivial topology. We seek in addition to understand both topology and geometry
while segmenting. Improvements were done by analyzing all topologically admissible
pants decompositions by coupling all combinations of boundaries. Thus, homotopic
cycles wij have a better shape according to a given global geometric criterion. In
addition, sharp considerations were made to segment into pants along relevant edges
or regions. The second step is done by associating a cuboid configuration to each
pant and map it into the physical space. Such mapping is performed by solving
harmonic functions on meshes, i.e., dealing with linear matrix systems. The novelty
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Conclusion

Figure 3.13: n-pant cuboids library. (A) A n-pant decomposition of an arbitrary B-
Rep meshM provided from CAD. (B) Adopted cuboid configuration C chosen in the
1-pant column for the left part of (A). (C) Adopted cuboid configuration C chosen
in the 3-pant column for the right part of (A). Green surfaces represent cuboid faces
which are mapped onto the boundaries of the M n-pant decomposition. (D) Euler
characteristic of the n-pant topological decomposition (A) using union operator ∪.

is brought by constraining some of irregular nodes of the cuboid configuration C
onto sharp corners. Moreover, the process has been designed in the way to be a
geometrical feature one-to-one mapping between cuboid configuration and the real
decomposition on the mesh M .

To go further, other decompositions types have been analyzed. n-pant topolo-
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3. Smart model decomposition

gies provide topological tools to expand the geometry comprehension of M during
segmentation. n-pant approach bridge the gap for the notion of optimal cuboid de-
composition of an arbitrary surface with a complex topology. Surface T-junctions,
i.e., 3-way directions inside a volume enclosed by a surface are understood by 1-
pants; but 4-way surface junctions are not. 4-pant or spacesuit handles 6 directions
and permit to map suitable cuboid configurations.

Remembering that cuboid configurations are considered as surfaces or 2-
manifolds, the next Chapter 4 will treat the triangulated surface parameterization
in a global manner. This parameterization must conform with the cuboid structure
and follow the features of the input CAD model.
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Chapter 4

Model surface aligned global
parameterization

This chapter presents surface global parameterization tools
essential to build quadrilateral meshes from triangulated geometry.

Contents
4.1 n-symmetry direction field generation . . . . . . . . . . . . . 134

4.1.1 Discretization on triangulated meshes . . . . . . . . . . . . . 134

4.1.2 Field smoothness . . . . . . . . . . . . . . . . . . . . . . . . . 136

4.1.3 Geometrical field generation . . . . . . . . . . . . . . . . . . . 136

4.2 Aligned global parameterization from geometrical direc-
tion field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

4.2.1 Seamless parameterization . . . . . . . . . . . . . . . . . . . . 144

4.2.2 Quadrilateral layout and nodes embedding optimization . . . 146

4.3 Pure quadrilateral meshes from aligned global parameter-
ization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

4.3.1 Quality fundamentals . . . . . . . . . . . . . . . . . . . . . . 149

4.3.2 Results examples on quadrilateral meshes . . . . . . . . . . . 149

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

133

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI033/these.pdf 
© [T. Maquart], [2019], INSA Lyon, tous droits réservés



4. Model surface aligned global parameterization

4.1 n-symmetry direction field generation

Introduced in Section 2.1, 4-symmetry directions fields (i.e., cross fields C) are
widely used to determine an aligned global parameterization [Bommes, Zimmer, and
Kobbelt 2009; Bommes et al. 2013a; Myles and Zorin 2013; Campen and Kobbelt
2014]. Designing a smooth cross field C on a surface is done with a given set of con-
straints. We categorize these constraints in two groups: topological and geometrical
constraints. Topological constraints are imposed singularities and numbers induced
by the surface topology with its homology generators or boundaries. Geometrical
constraints are intrinsically embedded on the surface and depends on the local ge-
ometry behavior. Thus, we seek a cross field C which is smooth, aligned with local
geometry and topologically compatible, i.e., defined by the surface properties. The
quadrilateral layout Q or cuboid configuration C from Chapter 3 contains topolog-
ical properties whereas the surface M holds the geometrical information. In the
following, we study discrete cross fields embedded on triangulated surfaces. Impor-
tant notions such as connection angles and period jumps are explicited and lead us
to correctly define properties of these discrete fields.

4.1.1 Discretization on triangulated meshes

In order to represent discrete 4-symmetry direction fields, we consider a triangulation
of the surfaceM , assumed to be a 2-dimensional manifold of genus-g with b boundary
components. Directions will be stored at faces F to avoid definition of supplementary
tangent planes. Hence, in the following, direction fields will be represented at faces F
of the mesh M , or equivalently at vertices V ∗ of the dual mesh M∗. M is consistently
oriented: normals are coherent, edges E are oriented and allow to define a unique
orientation of dual edges E∗.

The first step of the discretization consists in finding a reference direction in each
triangle. This is done by choosing a local orthonormal frame (x,y) attached on each
face f . x is a unit vector along one of the oriented edges of face f , and y = n× x,
n being the normal of f . A direction Uc on f can be formulated in terms of polar
coordinates. Due to the unit norm of such directions, it is completely parameterized
by the polar angle α it forms with x. Thus, we denote α the direction angle. We
deal with a 4-symmetry direction field, i.e., a set of 4 directions {Uc,Vc,−Uc,−Vc}
preserved by rotations of π

2
around the normal n. This is the idea depicted in Figure

4.1 (A).

By unfolding adjacent triangles isometrically to a plane along their common
edge, angles can be expressed in a common coordinate frame. In other words, we
can formulate an angle on face fi in fi’s adjacent faces. However, by calculating the
direction field only at a set of points, it remains an infinite number of interpolation
possibilities. This ambiguity can be solved between two points by specifying an
integer pij ∈ Z called the period jump [Li et al. 2006; Ray et al. 2008] between face
fi and face fj with references xi and xj. The period jump specifies the number of
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n-symmetry direction field generation

π
2
turns the direction U i

c undergoes to be compared with U j
c when walking along

a dual edge e∗ij. Other works introduce an angle wij named connection angle to
solve the ambiguity [Crane 2010; Crane, Desbrun, and Schröder 2010]. Figure 4.1
(B) shows the used discretizations. κij ∈] − π, π] represents the angle between a
reference direction xi on face fi and xj on face fj. α

i
i and αj

j are respectively angles
expressed on their native faces.

Figure 4.1: Cross field discretization on triangulated meshes. (A) A 4-symmetry
direction field is a set of 4 directions {Uc,Vc,−Uc,−Vc} preserved by rotations of π

2

around the face normal n. (B) To interpolate a field between two discrete points and
manage possibilities, the problem can be solved by introducing a period jump pij
or a connection angle wij. Angles in adjacent faces can be expressed in a common
coordinate frame using κij and pij or wij.

In the following we consider two different discretizations: period jump based
discretization and connection angle based discretization as summarized in [Al Akhras
et al. 2017]. The first discretization computes an angle pαj

i from face fi expressed
in adjacent face fj which is in general different from αj

j as given in Equation (4.1).
The attached cross field curvature pκC(e

∗
ij) of the period jump based discretization

along oriented dual edge e∗ij is computed as the difference between native angle αj
j

expressed on face fj and
pαj

i , see Equation (4.2).

pαj
i = αi

i + κij +
2π

4
pij �= αj

j , (4.1)

pκC(e
∗
ij) = αj

j − pαj
i = αj

j − [αi
i + κij +

2π

4
pij]. (4.2)

The second discretization computes an angle cαj
i from face fi expressed in adja-

cent face fj which is in general equal to αj
j as given in Equation (4.3). wij is the

connection angle when walking on the dual edge linking face fi to face fj.
cκC(e

∗
ij)
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4. Model surface aligned global parameterization

is the cross field curvature for the connection angle based discretization along the
oriented dual edge e∗ij as expressed in Equation (4.4).

cαji = αii + κij + wij, (4.3)
cκC(e

∗
ij) = wij. (4.4)

In the following we will use connection angle based discretization for topological
design and period jump based discretization for geometrical design of the cross field.
Notice that we need a direction angle and all connection angles to completely define
the direction field with discretization in Equation (4.3). For Equation (4.1) all
direction angles and all period jumps are required.

4.1.2 Field smoothness

An important requirement for a cross field is smoothness. Measuring smoothness
of a cross field reduces to measuring the smoothness of one of the four directions if
the topology is fixed. In case of a field without prescribed topology, the smoothness
is closely related to connection angles wij. This smoothness energy can be simply
calculated as its integrated squared curvature κC(e

∗
ij) [Ray et al. 2008]. This is

typically the sum of all curvatures endorsed along all oriented dual edges e∗ij of the
mesh M . We minimize the first energy cE(C) in Equation (4.5) to determine the field
topology and the second energy pE(C) to compute the field geometry in Equation
(4.6).

cE(C) =
∑
e∗ij∈E∗

‖cκC(e∗ij)‖2, (4.5)

pE(C) =
∑
e∗ij∈E∗

‖pκC(e∗ij)‖2. (4.6)

4.1.3 Geometrical field generation

4.1.3.1 Topological design

Aiming to compute the cross field topology, we wish a smooth cross field C that is
singular only at specified vertices: the position of irregular nodes of Q. By irregular
we mean a valence different than 4. Technically speaking, we want to restrict the
field to a given topology, i.e., to fix all its degrees of freedom as explained in Chapter
2. We first focus on the method to set the topology understanding properties and
theorems making it admissible on a given surface. Then, interesting topological
degrees of freedom will be detailed.

For the topological step, we use parallel transport to map a direction between
to distinct tangent planes [Crane 2010]. Generally, two adjacent mesh faces do
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n-symmetry direction field generation

not have the same tangent planes as reference. For a mesh M , the connection
angle wij can be integrated on the oriented dual edge e∗ij when passing from one
face fi to face fj. If connection angles are set to zero, this gives us the usual
Levi-Civita connection. Figure 4.2 shows the Levi-Civita connection between two
adjacent triangles of gravity centers Gi and Gj having two different tangent planes.

Figure 4.2: Levi-Civita connection using triangulated mesh faces. (A) Transport-
ing a vector from face fi to fj of gravity centers Gi and Gj can be done as follows:
(B) unfold the faces isometrically to a plane, parallel transport the vector along the
oriented dual edge e∗ij and then (C) fold back the face in its original configuration.

For a curved meshM in the topological space R3, a direction parallel transported
around a loop l(s) by a connection will not return to its original orientation. This
angle difference is called the holonomy δ along a loop l(s). Holonomy is explicited in
Definition 4.1 with Equation (4.7) to Equation (4.9). This angle defect is related to
the Gaussian curvature of the surface and geodesic curvature of l(s). For instance,
for contractible cycles, i.e., cycles or loops l(s) which can be reduced into a point,
the holonomy of the connection is equal to the Gaussian curvature over the region.
Readers are advised to see Equation (4.10) as demonstrated in Figure 4.3 contained
in Proof 4.1. Indeed, for a sphere with a constant non-zero Gaussian curvature, an
initial vector Vs is not mapped back to itself. This vector is mapped to Ve because
of the holonomy.

Definition 4.1. Holonomy along a cycle or a loop l(s). Holonomy is equal
to zero when zero Gaussian curvature is present into the whole the mesh, i.e., it
can be a surface integrated into the R2 topological space. So, for a disk in R2,
holonomy should be equal to zero:

∫

M

KdS +

∫

l(s)

kgds+ δ = 2π, (4.7)

0 +

∫

l(s)

kgds+ δ = 2π, (4.8)

∫

l(s)

kgds = −δ + 2π. (4.9)
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4. Model surface aligned global parameterization

We notice that in R2, all loops l(s) have a geodesic curvature equal to 2π. Holon-
omy is set as the angle defect between 2π and the classical geodesic curvature
in the topological space R2.

Proof 4.1. Holonomy of a contractible cycle or a loop l(s). In case of
contractible cycles or loops l(s), the holonomy around the loop is equal to the
total Gaussian curvature over the region englobed by l(s):

∫

M

KdS = δ. (4.10)

Figure 4.3: Holonomy of a contractible loop l(s) demonstrated by the Gauss-
Bonnet theorem. For a disk, χ(M) = 1. Thus, the total geodesic and Gaussian
curvature of the black loop and pink surface is equal to 2π.

The holonomy [Ray et al. 2008; Myles and Zorin 2012; Myles and Zorin 2013]
of a Levi-Civita connection is defined in Figure 4.4 in Example 4.1 for used discrete
cases. Around a vertex v, the holonomy of a cycle γ is equal to the discrete Gaussian
curvature at this vertex. Since Gaussian curvature measures angle defects, holonomy
can be viewed as the angle defect for geodesic curvature.
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n-symmetry direction field generation

Example 4.1. (Discrete holonomy of a loop or cycle γ) For discrete meshes
embedded in R3, a direction parallel tranported along a cycle γ is in general not
mapped back to itself. Path of transport is formed by dual edges e∗ij when passing
from face fi to face fj. The discrete holonomy measures this quantity along γ. si are
the signs associated to angles ki depending on the direction of rotation and triangles
connectivity. There are typically nt triangles crossed by the cycle γ.

Figure 4.4: Discrete holonomy on triangulated meshes for a cycle γ. We observe
an angle defect δ between Vs and Ve using the classical Levi-Civita connection along
a cycle γ to transport a vector Vs.

The issue of holonomy for fields embedded on surfaces has been tackled for
example by [Crane 2010]. Such work gives an algorithm for the computation of con-
nection angles wij needed for topological design. To respect theorems such as the
Gauss-Bonnet theorem, we have to distribute smartly the Gaussian curvature. Zero
holonomy for all possible cycles stands for zero Gaussian curvature everywhere. To
overcome this major issue in order to map back transported vectors, [Crane, Des-
brun, and Schröder 2010] presented a connection with globally vanishing holonomy
yielding to path independent mappings. Total curvature is distributed on the mesh
in a way that does not interfere with parallel transport. If a surface must have
Gaussian curvature somewhere, curvature is concentrated at boundaries or singu-
larities in increments of π

2
. According to [Ray et al. 2008], the turning number Td(γ)

associated to a cycle γ formed by dual edges e∗ is the number of turns a direction
makes before coming back to its starting point as written in Equation (4.11). For
the sake of simplicity, the field notation is now omitted: Td(γ) = Tγ.

Tγ =
1

2π
[
∑
e∗∈E∗

cκC(e
∗)−

nt∑
i=1

siki]. (4.11)

With this definition, the cross field curvature using connection angle discretiza-
tion can be expressed in Equation (4.12) for an holonomy δγ associated to a consid-
ered cycle γ. This allows us to add curvature along cycles γ to cancel the holonomy
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4. Model surface aligned global parameterization

found by the Levi-Civita connection. In terms of connections, we can add some
curvature that cancels the holonomy in order to respect the Gauss-Bonnet theorem.∑

e∗∈E∗

cκC(e
∗) = 2πTγ + 2π − δγ. (4.12)

Once we know the topological behavior of fields understanding holonomy aspects
to compute a globally consistent cross field, we want to fix all these topological
degrees of freedom. We wish to restrict the 4-symmetry direction field with desired
properties inherited from the quadrilateral layout Q. These topological degrees
of freedom are identified to be turning numbers along 2g homology generators, b
boundary cycles and s−1 singularities [Ray et al. 2008; Campen and Kobbelt 2014]
as already detailed in Chapter 2. Typically, for a sphere which has no homology
generators and boundaries, we add at least one singularity in order to respect the
Poincaré-Hopf theorem. We use the approach of [Campen and Kobbelt 2014] to
determine interesting turning numbers from the input quadrilateral layout. For that
purpose, we use turning numbers referenced in Table 4.1. vi refers to the valence of
node i belonging to Q. nn is the number of nodes in the closest homotopic cycle γc
whereas na is associated to the number of arcs crossed by γ. The sign is determined
by the relative orientation between γc and γ.

Turning numbers Location
Tγ = −vi/4 Around nodes vi of Q
Tγ = ±1/4(nn − na) Around homology generators of Q
Tγ = ±1/4(nn − na) Around boundary cycles Q

Table 4.1: Turning numbers of the field determined by the quadrilateral layout Q.

[Crane, Desbrun, and Schröder 2010] introduced an algorithm that, given these
turning numbers, determines the appropriate connection angles wij only by solving a
sparse linear system based on the minimization of Equation (4.5). We still need one
direction angle to completely define the required direction field, thus we choose an
arbitrary initial angle α0. Figure 4.5 shows a topological field computation pipeline
result on a 3-way pipe. χ(M) = −1, so it is a topological pant as depicted in
Figure 4.5 (A). We then use the quadrilateral layout Q computed from Chapter 3 to
determine turning numbers around interesting cycles γ previously defined in Table
4.1 in Figure 4.5 (B). Figure 4.5 (C) gives the resulting cross field with topological
constraints. In the detail of Figure 4.5 (D), we can notice that the field does not spin
around the boundary cycle in red, resulting in a turning number Tγ = ±1

4
(nn−na) =

±1
4
(4 − 4) = 0. Same process is done around singularities, i.e., irregular nodes of

Q, where in Figure 4.5 (E), Tγ = −vi
4

= −5
4
. Remember the behavior of turning

numbers near a singularity embedded in point P previously explained in Chapter
2, T (∂Ω(P )) + 1 = Tγ + 1 = I(P ) = −1

4
. Same analogy for boundary cycles can be

done with homology generators if considering a genus-g surface.
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n-symmetry direction field generation

Figure 4.5: Cross field topological design. (A) Input triangulated surface. (B)
Generated quadrilateral layout Q that define the cross field topological properties.
(C) Generated topologically compatible cross field. (D) Detail of (C) near one of its
3 boundaries. The cross field has a turning number of Tγ = 0 along this boundary
cycle, but it does not satisfy red boundary constraints. (E) Detail of (C) around
one of its 4 singularities. The associated turning number near this singular zone is
equal to Tγ = −5

4
.

Going back to topological field generation using properties of Q, another example
of topological field generation is provided in Figure 4.6 (A) for a pant topology with
sharp features. Because the field is topological, it does not respect sharp edges
geometry and expected behavior near boundaries as shown in Figure 4.6 (B). Indeed,
we need in addition a smooth cross field perfectly aligned to features we want to
replicate in the new parameterization.

Figure 4.6: Cross field topological design with sharp features. (A) Input triangu-
lated surface. (B) Generated cross field which does not understanding the geomet-
rical features of the mesh. The turning number around the red singularity remains
consistent.
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4. Model surface aligned global parameterization

In a topological designing process additional comprehension, properties of sin-
gularities can be estimated. Gaussian curvature distribution explained before in
Section 2.1 is a method to locate and determine attributes of such singularities.
This task can be done without quadrilateral layout Q. Indeed, these fields can be
generated with user specifications as long as the field properties are admissible with
the surface topology.

4.1.3.2 Geometrical design

For a given topological cross field, we wish now to compute a smooth field that
interpolates relevant principal curvature directions, sharp features and boundaries
restricted to a given topology. In other words, geometrically, C must follow these
geometrical features as depicted in Figure 4.7. Sharp features and boundaries con-
straints are obvious whereas principal curvature directions are not. In fact, for an
arbitrary embedded point on the surface, we define the principal curvature direc-
tions as the product between 2 scalar quantities. They are calculated in 2 distinct
perpendicular planes. We name k1 and k2 the minimum and maximum principal
curvature such as K = k1k2. Where K is the Gaussian curvature at a point surface.
Directions are then defined by intersecting reference planes with the surface.

Figure 4.7: Relevant geometrical features which could be used for cross field in-
terpolation. Sharp corners, boundaries and principal curvature directions refer to
a certain global topological information embedded on the geometry. The Gauss-
Bonnet theorem states the link between geometry and topology.

We search the smoothest field taking into account constrained directions αc con-
tained in a subset of faces Fc ⊂ F . Because the field topology is restricted, the
period jumps of the field are fixed. The direction angles α are the only remaining
variables used for the constrained minimization problem of the energy in Equation
(4.6). For further comprehension, [Ray et al. 2008] showed that the topology of a
cross field is entirely defined by its periods jumps. Using a technique presented by
[Bommes, Zimmer, and Kobbelt 2009] and later exploited by [Al Akhras et al. 2017],
we strive to minimize the constrained Equation (4.13). The geometrical field is a
solution of a linear system obtained by setting the gradient of Equation (4.13) to
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n-symmetry direction field generation

zero. We refer the readers to the work of [Bommes, Zimmer, and Kobbelt 2009] for
futher details.

min
α∈R|F |

∑
e∗ij∈E∗

‖pκC(e
∗
ij)‖2 = min

α∈R|F |
‖Aα− b‖2 s.t. αi = αc, ∀fi ∈ Fc. (4.13)

With A ∈ R|E|×|F |, b ∈ R|E|, and α ∈ R|F |. Remark that α ∈ R|F | is the vector
of unknown direction angles embedded on each face of the mesh M . For more details
in matrix construction we refer the readers again to [Bommes, Zimmer, and Kobbelt
2009; Al-Akhras 2016]. This previous minimization can be also modified to integrate
soft constraints. Figure 4.8 (B) shows the process using cross fields. Figure 4.8 (A)
gives an interpolation using standard vector fields that do not yield a suitable result
for a quadrilateral mesh purpose.

Figure 4.8: Cross field interpolation. (A) Sparse directions interpolation with a
standard vector field. Parameterized mesh is not a suitable result for our objectives.
(B) By using a cross field, i.e., a set of 4 directions, the resulting parameterized
quadrilateral mesh as a natural expected geometry. Notice the period jump of 1,
ensuring that the first red direction of the cross field match with given constrained
directions.

To illustrate the geometrical interpolation, Figure 4.9 (A) shows the field aligne-
ment result with the boundary constraints. We observe that, the field behavior near
the boundary cycle is perfectly aligned on each face. Figure 4.9 (A) is related to
sharp edges constraints. With this particular mesh with sharp features, we com-
pute a field aligned to edges belonging to faces with a certain normal vector angle
threshold difference. Geometrical designing is done while respecting the imposed
field topology. Consistent geometrical fields results then serve as reference to com-
pute a suitable parameterization. This is done understanding surface topology and
features of the input discrete triangulated mesh.
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4. Model surface aligned global parameterization

Figure 4.9: Cross field geometrical design. (A) Boundary red constraints interpo-
lation. (B) Sharp edges red constraints interpolation. Across these sharp edges, the
period jump is equal to 1, because of the s = 1

4
singularity holded by the corner.

4.2 Aligned global parameterization from geo-

metrical direction field

We now compute an aligned global parameterization, i.e., a map from the mesh M
to a disk-like surface parameter domain Ω ∈ R2 as already explicited in Chapter
2. We have to assign a couple (u, v) of parameters values on each vertex of M .
The parameterization should be locally aligned with the features of the mesh, thus,
this is done using the guiding geometrical cross field previously computed. In fact,
replicating sharp features, sharp edges, boundaries and reliable principal curvature
directions captured by the suitable geometrical cross field is our parameterization
goal. Such parameterization implies that the gradients ∇u and ∇v of the discrete
scalar field must follow the cross field directions on each face. This is the idea
depicted in Figure 4.10.

4.2.1 Seamless parameterization

A planar parameterization of a mesh M embedded in R3 into a parametric domain
Ω embedded in R2 is in general done by computing a cut graph G. Indeed, a planar
isometric parameterization is in general impossible due to Gaussian curvature in the
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Aligned global parameterization from geometrical direction field

Figure 4.10: Global parameterization strategy using a geometrical cross field. We
strive to find gradients ∇u and ∇v aligned to the first two parametric directions Uc

and Vc of the cross field, by modifying parametric values (u, v) embedded in mesh
vertices.

topological space R3. A cut graph G is a connected graph formed by edges of M
that splits the mesh into a disk-like surface mesh Md. Seams are then defined as
duplicated paths of G. Transitions across seams need to belong to a very restricted
class. We search for rigid transformations with a rotation angle multiple of π

2
because

of the symmetry of cross fields. Moreover, across each seam edge or vertex, the
corresponding transition must be integral, i.e., relative to an integer. Thus we
talk about integral seamless parameterization [Kälberer, Nieser, and Polthier 2007;
Bommes, Zimmer, and Kobbelt 2009; Myles and Zorin 2012; Myles, Pietroni, and
Zorin 2014]. We target the cross field first and second directions Uc and Vc for the
gradients of the parametric coordinates ∇u and ∇v. The parameterization is then
computed as the solution of a constrained minimization problem written in Equation
(4.14) subject to constraints referenced in Equation (4.15).

min
u,v

∑
f∈F

[‖∇u− uC‖2 + ‖∇v − vC‖2]Af s.t. Equation (4.15), (4.14)

v
′

1 = R
mij
π
2

v1 + tij & v
′

2 = R
mij
π
2

v2 + tij. (4.15)

Where Af is the area of the considered face f ∈ F . v
′
1 and v

′
2 are the correspond-

ing final positions for a cut edge eij from face i to face j with endpoints vertices
v1 ∈ R2 and v2 ∈ R2 in the parametric domain. Given a side of the cut by picking
v1 and v2, the parameterization on the other side is determined by these previous
transitions. mij ∈ Z is defined as the matching between the two local charts which
specify the rotation operator R. Rotations are made by angles multiple of π

2
. tij ∈ Z2

is an integer translation across a cut edge eij.

Aligned global parameterization can also integrate sharp edges and boundary
constraints to ensure that a connected relevant set of sharp edges are mapped to
an isoparametric curve [Bommes, Zimmer, and Kobbelt 2009]. This integration add
constraints in the global parameterization in Equation (4.14).
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4. Model surface aligned global parameterization

4.2.2 Quadrilateral layout and nodes embedding optimiza-
tion

4.2.2.1 Arcs embedding optimization

Once a valid quadrilateral layout and consistent geometrical cross field are provided,
we wish to restrict each arc. Each arc is restricted in a way that the two incident
nodes are lying on a common isoparametric curve. With isoparametric we mean
that either the u or v parameter is constant along the curve when taking transi-
tions in Md into account. The minimization problem in Equation (4.14) is then
constrained using nodes connection constraints. These constraints are derived from
the quadrilateral layout Q. Typically, each arc with endpoints n1 and n2 must lie
on a common isoparametric curve taking seams transitions into account. Thus, the
complete constraint has the form written in Equation (4.16) and in Equation (4.17)
for the u and v parametric directions respectively [Myles et al. 2010]. Developments
leading to these two equations are detailed in Appendix C.

n2u = [(
m∏
i=0

R(m−i)+1)n1u + (
m−1∑
i=0

(
m−1−i∏
j=0

R(m−j)+1)ti+1
u ) + tm+1

u ], (4.16)

n2v = [(
m∏
i=0

R(m−i)+1)n1v + (
m−1∑
i=0

(
m−1−i∏
j=0

R(m−j)+1)ti+1
v ) + tm+1

v ]. (4.17)

In this formulation, we consider a path crossing cut edges ei, ∀i ∈ {0, 1, ...,m−
1,m} and rotation operators |R| = |t| = m+1 linking node n1 and n2. n2u is defined
as the linked u parametric value for n1u. Thus, we are able to compute a suitable
global parameterization of the mesh M , handling connection constraints provided
by the quadrilateral layout Q.

4.2.2.2 Nodes embedding optimization

Depending on geometry and position of Q’s nodes, a better parameterization can be
found using node relocation. Depending on the nature of the quadrilateral layout,
fixed nodes rise to large distortions or even local non-injectivities. Mathematically
speaking we are going to optimize Equation (4.14). The nodes are re-positionned
based on the gradient of the parameterization’s objective functional with respect to
their positions. This is done iteratively until a global embedding quality is reached.
Selective optimization of nodes can be also performed with given user specifications.
We follow the method developed by [Campen and Kobbelt 2014] and exploited by
[Campen, Bommes, and Kobbelt 2015; Al-Akhras 2016] to perform such optimiza-
tion. These researchers use a geodesic polar map of the node’s 1-ring [Welch and
Witkin 1994]. Details of the process can be found in the appendix of [Campen and
Kobbelt 2014]. Moreover, we give mathematical specific aspects in Appendix C to
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Aligned global parameterization from geometrical direction field

characterize the needed moving direction of nodes in order to decrease the energy
given in Equation (4.14).

Figure 4.11 (A) shows an abdominal aorta scanned mesh retrieved from medical
imaging. Figure 4.11 (B) illustrate the global parameterization optimization after
1 iteration using an arbitrary valid quadrilateral layout Q. In Figure 4.11 (C),
we observe the final global parameterization quality and nodes relocation after 25
iterations. The obtained aligned global parameterization is greatly improved. Thus,
feature-aligned quadrilateral meshes are then constructed based on the optimized
embedding of parametric values. Due to patch structure of the quadrilateral layout,
such quadrilateral meshes can be computed patch by patch according to connectivity
constraints.

Figure 4.11: Abdominal aorta global parameterization optimization by Q’s nodes
relocation. (A) Input triangulated mesh from medical imaging. (B) Global param-
eterization and quadrilateral layout after 1 iteration. (C) Global parameterization
and quadrilateral layout after 25 iterations.

4.2.2.3 Aligned global parameterization workflow summary

To summarize all used tools to compute a suitable global parameterization, the im-
portant steps are outlined in Figure 4.12. We start with a feature-aware cuboid
decomposition per pant topology in Figure 4.12 (A) (see Chapter 3). We then
determine turning numbers of a topologically compatible cross field using Q’s prop-
erties. Remember that Table 4.1 gives the relevant needed turning numbers. Then,
a geometrical cross field is built interpolating sharp features as depicted in Figure
4.12 (B). Global parameterization computation is achieved with the guiding field.
Constraints formulated in Equation (4.15) and also sharp edges constraints are in-
tegrated to Equation (4.14) and yield results in Figure 4.12 (D). For instance, in
Figure 4.12 (C) no constraints are provided to the parameterization. Thereafter,
arcs constraints inherited from the quadrilateral layout are incorporated in Equa-
tion (4.15) as shown in Figure 4.12 (E). Arcs of the layout are belong to common
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4. Model surface aligned global parameterization

isoparametric curves lying on relevant sharp edges. Global quality of the parame-
terization could be improved if needed, using node embedding optimization. For the
sake of simplicity, this example is given without nodes relocation process. Finally,
the parametric values u and v attached to each node of the triangulated mesh and
the patch structure of the layout yields to a quadrilateral mesh in Figure 4.12 (F).

Figure 4.12: Aligned global parameterization worflow summary from geometry-
feature-aware pants-to-cuboid decomposition. (A) Initial quadrilateral layout Q.
(B) Geometrical cross field. (C) Aligned global parameterization without con-
straints. (D) Aligned global parameterization with constraints. (E) Optimized
quadrilateral layout embedding. (F) Extracted quadrilateral mesh.
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Pure quadrilateral meshes from aligned global parameterization

4.3 Pure quadrilateral meshes from aligned global

parameterization

4.3.1 Quality fundamentals

The issue of generating such 4-sided elements quality into the whole mesh has re-
ceived a lot of attention recently [Bommes, Lempfer, and Kobbelt 2011; Bommes
2012; Kowalski, Ledoux, and Frey 2013; Campen 2017]. The reason why this prob-
lem is widely tackled in the geometry processing field, is that quadrilateral meshes
are structured in way that they support texturing and other shape modification. As
underlined before, quadrilateral meshing from unstructured geometry is a tedious
task that requires to understand the entire shape and its topology. Quality crite-
ria to differenciate them and state needed mesh properties are diverse. The most
encountered quality aspects are:

• Element quality.
The quadrilateral element should be as close to a parametric quadrilateral as
possible, i.e., edges with the same length and angles between them.

• Alignement.
Sharp edges, corners and boundaries must be correctly replicated in order to
minimize the distance between triangulated mesh and sampled quadrilateral
elements on the parameterized mesh.

• Orientation.
Into the whole mesh, quadrilateral edges should be oriented to principal cur-
vature directions, this yields to a more natural behavior.

• Global consistency from theorems.
Achieving global structure is done by sampling singularities properly in areas
with a high angle deviation compared to the topological space R2. Theorems
of the topology field state that the singularities need to capture high Gaussian
curvature zones to be consistently located.

• Computational mechanics.
In applications such as FEA, and other computational mechanics purposes,
elements close to a square are often preferred. These meshes support high
deformations better than triangulated ones and lead to accurate simulations.

4.3.2 Results examples on quadrilateral meshes

This section presents some of non-exhaustive quadrilateral meshes results involving
our global parameterization workflow and previously described quality criteria. We
illustrate 3 major examples to give an overview of the meshing possibilities. Figure
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4. Model surface aligned global parameterization

4.13 (A) shows a feature-aware cuboid decomposition of a topological pant and its
associated quadrilateral mesh. Figure 4.13 (B) is a symmetric wheel with a more
complicated shape, and we notice that the high valence nodes of the quadrilateral
layout Q are mainly located in curved areas. To sweep all kind of possible shapes, we
give a particular exemple on a biological shape, e.g. a female body in Figure 4.14.
In this application, the quadrilateral layout’s nodes are re-positionned to achieve
a global quadrilateral elements quality. Other optimized meshes satisfying items
explained in Section 4.3 are depicted in Figure 4.15.

4.4 Conclusion

Aligned global parameterization adapts the parameterization, i.e., the (u, v) couple
to the geometry because of its gradient alignement with the geometrical cross field.
Indeed, the parameters u and v attached to the nodes of the triangulated mesh are
computed taking into account a guiding geometrical cross field. This field serves as
geometry reference and interpolates boundary behavior, sharp features and principal
curvature directions. With this understanding, we strive to compute the so-desired
parameterization based on the geometrical field. Thus, the task of adressing a good
parameterization reduces to the computation of a good cross field.

First we determined a topologically compatible cross field whose turning numbers
properties were derived from the quadrilateral layout Q. The topological cross field
is singular only at the positions of irregular vertices of the layout. Afterwards,
we calculated a field interpolating features of the mesh. Interpolation was realized
thanks to the symmetry of the cross field. Topological and geometrical constraints
are designed only by solving two sparse linear systems.

The parameterization was locally oriented to the guiding geometrical field as
much as possible. Thus, the gradients ∇u and ∇v of the piecewise linear scalar
fields u and v should follow the cross field first and second directions Uc and Vc.
In addition, we optimize the parameterization using nodes relocation process based
on the gradient of the parameterization objective functional. This is done so as to
obtain a local optimum of global embedding quadrilateral mesh quality.

Presented quadrilateral mesh examples states the reliability of the followed
method. Such quadrilatral meshes fully satisfy needed quality criteria explicited
in Section 4.3. Extraction of structured grid of points is now straightforward in or-
der to fit B-Spline surfaces. Reduced order modeling and statistical shape analysis
are based on such structured geometries in the next Chapter 5.
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Conclusion

Figure 4.13: Mechanical quadrilateral mesh examples. (A) A pant part quadrilat-
eral mesh with its feature-aware cuboid decomposition. (B) Symmetric wheel part
quadrilateral mesh obtained by locating high valence nodes on curved areas.
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4. Model surface aligned global parameterization

Figure 4.14: Biological quadrilateral mesh example on a female body.
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Conclusion

Figure 4.15: Optimized quadrilateral meshes computed from an aligned global
parameterization and a geometry-feature-aware pants-to-cuboid decomposition.
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Chapter 5

Quadrilateral meshes for statistical
shape analysis and geometrical

reduced order modeling

This chapter presents reduced order modeling and statistical shape
analysis applications using quadrilateral meshes. These reduced

order models hold only geometrical parameters for most of them.
Some of used meshes are coming from a global parameterization

previously introduced in Chapter 4.
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5. Quadrilateral meshes for statistical shape analysis and geometrical reduced
order modeling

5.1 Isotopological homologous quadrilateral

meshes

This section introduces mesh properties and geometrical notions recommended to
compare meshes with different geometries. Some of following mesh characteristics
are well-suitable for reduced order modeling calculations due to a certain data struc-
turation.

5.1.1 Isotopological and homologous concept definitions

Isotopological properties of a set of meshes and the homologous concept are tackled
here. The problematic exposed in Chapter 1 for quadrilateral meshes will be detailed
for specific needs of this chapter. Given a set of input triangulated meshes, we strive
to find 3D surface quadrilateral meshes which respect the four following properties:

• Pure quadrilaterals with low distortion.
With the definition of a quadrilateral layout replicating perfectly the topology
of the input triangulated surface mesh, it is possible to define a pure quadri-
lateral mesh. Low distortion is achieved by minimizing the alignement of the
global parameterization with the guiding field.

• Feature aligned.
Sharp edges, vertices and principal curvature directions are important features
of meshes. Alignement to these features is required on all instances to fully
conserve significant features. Thus the input quadrilateral layout must contain
all the sharp edges and vertices to ensure right feature alignement into all input
meshes.

• Isotopological with homologous points into other geometric instances.
A sufficient condition to have isotopological meshes is to hold the same con-
nectivity. But it is not a sufficient condition to compare meshes because of
orientation. That is why we want each point of the computed mesh to have a
homologous point into all other geometric instances of the considered set. It
is achieved globally by patch connectivity, locally by classifying sharp features
and by applying patch parameterization.

• Non-uniform isotropy.
Mesh non-uniform isotropy provides the freedom between isotopological
meshes from different geometrical instances. Non-uniform isotropy is intrinsi-
cally set because of patch connectivity and discretization.

We then follow the Strategy 1.1 to compute the required meshes. The same
concepts are adapted to volumetric meshes in Section 6.3.
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Applications on quadrilateral meshes

5.1.2 Population constraints

To respect above definitions on 3D isotopological homologous quadrilateral meshes,
we first set the discretization sampling. This is done by choosing one ideal member
of the population. We call him the α-member. This member is ideally chosen as the
most representative member of the population, e.g. the representative patient for
heart geometries. For instance, Principal Component Analysis is a serious way to
evaluate this geometry from biological scanned ones. For mechanical applications
with geometrical parameters, the α-member is given as the barycenter of all design-
ing parameters. The quadrilateral discretization is then based on this particular
geometry. Taking into consideration features and geometry of the representative
mesh, we set for all members of the studied population the isotopological property
and homologous constraints.

The homologous concept is illustrated in Figure 5.1 taking a specific quadri-
lateral layout in Figure 5.1 (A) constructed to capture some of the geometrically
relevant mesh features aspects. Isotopological meshes are not necessarily suitable for
a point per point comparison. Figure 5.1 (B) shows a linear interpolation between
two isotopological meshes. If meshes hold the same connectivity, the interpolated
quadrilateral structure remains globally consistent as depicted in Figure 5.1 (C). But
the suitable result is found with homologous constraints in Figure 5.1 (D). Once cor-
rect wishes on mesh properties are fixed, all snapshots can be calculated involving
a mapped quadrilateral layout, see Figure 5.2 (A). For instance, we illustrate 10
steps of a heart ventricle contraction cycle in Figure 5.2 (B). It is stressed that for
statistical shape analysis and reduced order modeling applications given in Section
5.2, meshes must not differ by a rigid body transformation.

5.2 Applications on quadrilateral meshes

This section presents applications for the statistical shape analysis procedure us-
ing biological scanned meshes, but also virtual charts of 3D quadrilateral meshes.
Firstly, we introduce the statistical method consisting in finding major trends of
shape variation. Secondly, we will focus on mechanical parts. To finish, a draft
project lead by the ANSYS research team using reduced order model techniques is
presented. Reduced order models are built with an ANSYS proprietary software,
the ROM builder.

5.2.1 Biological main features extraction

Statistical shape analysis is an investigation of the geometrical attributes of some
set of shapes by statistical methods. Medical surgery is one of the application field.
In fact, this tool is useful to determine normal and pathological aortas or blood
vessels just by analyzing shapes differences. A related work has been done on the
human femur to retrieve a given patient shape using PCA and morphing methods
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Figure 5.1: Isotopological homologous concept between heart ventricle meshes. (A)
Quadrilateral layout used to obtain the quadrilateral mesh. (B) 2 heart ventricle
meshes with different geometries (depicted in blue and black wireframe) and their
details. (C) Isotopological non homologous linear mesh interpolation result. (D)
Isotopological homologous linear mesh interpolation yielding consistent results: a
real ventricle geometry.

[Hraiech 2010]. Estimating mean shapes that best represent the studied population
is one of the abilities of shape analysis. For instance, in bones, shape and density
distribution can vary a lot between individuals due to the human variability [Grassi
et al. 2014]. One of the main used methods to tackle these issues is PCA. In addition,
this approach allows to generate virtual meshes, virtual patients that respect the
main distribution of the shape variation. Recently, [Alliez, Pion, and Gupta 2016]
built a CGAL package to compute this particular analysis. Such techniques require
morphing for all members of a given set, i.e., a possibly random set of meshes of a
given population. Global surface parameterization and tools earlier presented can
be really useful to represent all geometrical data in an isotopological manner.

To illustrate above discussed methods, we first focus our attention on abdominal
aortas. AAA (Abdominal Aortic Aneurysm) is a pathology that affects abdominal
aortas. It is a localized enlargement such that the diameter is greater than 3cm
or more than 50% larger than normal diameter. Involving our worlflow to build
isotopological homologous meshes from a scanned set of geometries obtained by
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Figure 5.2: Heart ventricle snapshots computation respecting sharp features. (A)
Optimized quadrilateral layout Q embedded in the triangular surface. (B) 10 pro-
duced isotopological homologous snapshots using adapted layouts Q for each shape.
(C) Snapshots 1 to 5 (left to right, phase 0% to 40%). (D) Snapshots 6 to 10 (left
to right, phase 50% to 90%). See Figure 5.6 for more details.
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tomograhic processes, we plot some results in Figure 5.3. As previously introduced
in Section 1.3, statistical shape analysis is working only on geometry. The goal is
to find a new relevant subspace B that best describes the distribution of the input
data. The computed subspace B contains less coordinates than the classic R3n

space. Indeed, each shape, i.e., each isotopological mesh is vector in R3n. n being
the number of nodes of the discretized geometry. Needed subspace is computed with
a PCA approach using SVD tools.

Figure 5.3: Abdominal aortas population suffering of an abdominal aortic
aneurysm. Each geometry is a vector in R3n. B is the reduced basis with a better
coordinate system which best reflects the shape variation. B has fewer coordinates
than R3n.

Secondly, we give illustrations for the spatial basis of the singular value decom-
position. In fact, modes capture the principal variations of the population and they
are the new axis of the reduced basis B. This is the idea showed in Figure 5.4 with a
heart ventricle into a basis composed by the 3 first modes. Representing a snapshot
in the reduced basis is done by linear combination between modes and coefficients.
αi are the coefficients relative to a given mode for a specific snapshot. They are
obtained from singular values σi and right singular vectors φi(j) for a considered
snapshot j. We refer the readers to Section 1.3 for mathematical details. We have
used the quadrilateral layout Q from Figure 5.2 (A) to compute a snapshot at a
given contraction time. We demonstrate that, taking only the first 3 modes and a
learning of 10 snapshots (see Figure 5.2 (B)) during a cardiac cycle, the geometry
approximation remains nonetheless consistent and reliable. Gray and red meshes il-
lustrate the error comparison in Figure 5.4. We remark that the first mode represent
a scaling whereas others are holding local effects and variations.
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Figure 5.4: Principal component analysis on a heart ventricle during a cardiac
cycle. A given snapshot is a linear combination of modes with associated coefficients
αi. In the new reduced basis B, modes are its axis. 3 modes suffice to represent
with a certain reliability the shape of a given snapshot. First mode is homogeneous
to a shape, others are holding local effects.

5.2.2 Virtual quadrilateral meshes models

5.2.2.1 Snapshots sampling

Sampling of parameters have been done using a sparse grid technique, see [Bungartz
and Griebel 2004; Lu 2017; Lu, Blal, and Gravouil 2018]. Adopting this method in a
low level manner, i.e., by populating only axis of parameters, we are then able to fill
large parameter spaces [Chinesta, Ammar, and Cueto 2010]. Many models encoun-
tered in science and engineering are defined in multidimensional spaces, as the ones
involved in chemistry, mechanics or financial mathematics [Chinesta, Ladeveze, and
Cueto 2011]. Indeed, sparse grids are especially more suitable for high-dimensional
problems. In this development, a sparse grid method is used for sampling snapshots
among a large parameter space and it will be an efficient solution for a fast a poste-
riori learning strategy. Sparse grids representations are shown in Figure 5.5. First
refinement of the level 1 sparse grid is then adopted in the following, only for some
specified mechanical examples.
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Figure 5.5: Snapshots sampling with a sparse grid technique. (A) Level 1 sparse
grid of a 3-dimensional parameter space. (B) First refinement of the level 1 sparse
grid. (C) 2D representation of a level 1 sparse grid of a 4-dimensional parameter
space.

5.2.2.2 Heart ventricle

Heart ventricle geometrical reduction is dedicated to a specific biological application.
Scanned data from medical imaging related to one patient is provided during one
cardiac cycle uniformly sampled by 10 meshes. These scanned meshes are called
phases. They start from 0 to 90 as depicted in Figure 5.6. The volumetric capacity
during a cardiac cycle admit a large variation because of its well-known function.

Figure 5.6: Heart ventricle volumetric capacity during a cycle.

Using a specific pipeline well-suited for these particular meshes, a quadrilateral
layout is computed by modifying the scanned mesh topology from disk to cylinder.
We add a little hole at the bottom of the ventricule (see Figure 5.2 (A) in Section
5.1) for that purpose. Afterwards, an optimized aligned global parameterization
is extracted using leaflet, (i.e., the leaflet of the aortic valve) principal curvature
direction interpolation for the geometrical cross field. Mapping of the layout to
obtain snapshots is shown in Figure 5.7. A reduced order model is built using the
phase parameter and previously computed isotopological homologous population of
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meshes. For instance, two geometries have been evaluated at phase 38.7% (systole,
i.e., contraction phase) and 81% (diastole, i.e., expansion phase) in Figure 5.8 (A)
and Figure 5.8 (B) respectively. This is done in real-time, less than 1 second is
required to evaluate data with the depicted discretization.

Figure 5.7: Quadrilateral mesh parameterization of the heart ventricle. We apply
the same parameterization among all members of the population to obtain isotopo-
logical comparable quadrilateral meshes.

Figure 5.8: Heart ventricle reduced order model real-time geometry evaluation.
(A) Evaluation at phase 38.70%. (B) Evaluation at phase 81.00%. Truncated basis
is constructed with the first 3 modes.

For a given patient, we have built a virtual geometrical chart of its cardiac cycle.
With only 10 tomographic snapshots, we are able to reconstruct with fidelity any
geometry at a given intermediate phase. Reliability is mainly achieved thanks to
the homologous concept and with the understanding of features. Structured meshes
are also an important key. These results can be further exploited for isotopological
hexahedral mesh generation in order to run Fluid Structure Interactions simulations
to design aortic valves devices. This problem is currently tackled by the ANSYS
research team.
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5.2.2.3 Pant part

We introduce the pant part for a rapid understanding of our global approach ex-
plained in previous chapters. This pant part has a very simple topology: χ = 1
because of its genus-0 and b = 3 properties. Thus pants decomposition is use-
less. For introductory purposes, we define the number and the range of geometrical
parameters for an arbitrary study.

The input meshes come from a standard CAD software. Each input triangulated
mesh has an attached set of 9 geometrical parameters based on the zero reference of
3 distinct local coordinate frames as illustrated in Figure 5.9 (A). Then a feature-
aware cuboid decomposition is performed involving a pant mesh as topological input
in Figure 5.9 (B) for the whole population. Thereafter, an optimized aligned global
parameterization is computed with the quadrilateral layout. Hence, this gives us the
desired quadrilateral mesh with required geometrical and connectivity properties.
We proceed the workflow on all 37 input geometrical instances in order to generate
all isotopological homologous meshes. Indeed, sampling is involving 37 meshes with
a first refinement of the level 1 sparse grid. The mapping process is given in Figure
5.10.

Figure 5.9: Geometrical snapshots generation of the pant part. (A) Zero reference
of geometrical parameters in the attached local frames. (B) Feature-aware cuboid
decomposition of all geometrical instances.

Figure 5.10: Quadrilateral mesh parameterization of the pant part. We apply the
same parameterization among all members of the population to obtain isotopological
comparable quadrilateral meshes.
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Once the reduced order model is built, we can generate in real-time all desired
geometries. Demonstration example is exhibited in Figure 5.11. The entire pipeline,
i.e., pants-to-cuboid decomposition to quadrilateral mesh generation takes a certain
amount of time. The set of needed quadrilateral meshes have been computed in less
than a hour. Thus, our approach is still relevant since geometrical evaluations are
done in less than 1 second.

Figure 5.11: Pant part reduced order model real-time geometry evaluation. Trun-
cated basis is constructed with the first 12 modes. Used range of parameters is
detailed in Table 5.1.

5.2.2.4 Casting part

This casting part is a classical one that can be found in mechanical systems for
coupling shafts together. This part remains more complex than the previous pant
part. Genus-5 surface is considered involving many different possibilites of consistent
and non-consistent pants decompositions. Starting with a given feature-aware pants
decomposition, we apply a specific cuboid configuration and map it into each pant
as shown in Figure 5.12 to capture features.

Then, the worflow is very similar to the pant part. The sampling of the 6
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Pant part range Min Max
X1 boundary 1 -40 40
Y1 boundary 1 -40 40
Z1 boundary 1 -35 35
X2 boundary 2 -40 40
Y2 boundary 2 -40 40
Z2 boundary 2 -35 35
X3 boundary 3 -40 40
Y3 boundary 3 -40 40
Z3 boundary 3 -35 35

Table 5.1: Range of parameters used for the pant part geometrical reduced order
model.

Figure 5.12: Quadrilateral mesh parameterization of the casting part. We apply
the same parameterization among all members of the population to obtain isotopo-
logical comparable quadrilateral meshes.

input geometrical parameters (see Figure 5.13) was made in a random manner so
as to generate 65 triangulated meshes covering as best as possible the R6 space.
Parameters ranges have been defined like an industrial case with large and short
variations.

We generate in real-time all desired geometries handling the same process already
explicited. Due to the mesh size, evaluation of an arbitrary geometry takes around
3 seconds to be computed. Moreover, during the isotopological meshing process
to produce snapshots, user intervention was mandatory to segment with suitable
pants geometries. A total time of 4 hours was necessary to build this geometrical
virtual chart. This time has to be compared with nowadays industrial techniques
which requires days or weeks to obtain such quality meshes suitable for reduced
order modeling.
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Figure 5.13: Casting part distribution of parameters. 6 geometrical parameters
are settled.

Figure 5.14: Casting part reduced order model real-time geometry evaluation.
Truncated basis is constructed with the first 15 modes. Used range of parameters is
detailed in Table 5.2.

5.2.3 Statistical shape analysis based reduced order biolog-
ical models

5.2.3.1 Medical devices problematic

Many modern surgery methods use medical devices to treat pathological diseases. A
medical device can be seen as an apparatus, material or software used for treatment,
prevention or diagnosis. We focus here on devices which are apparatus designed for
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Casting part range Min Max
Length 80 81
Radius B 120 125
Radius H 35 40
Radius I 20 25
Height B 15 25
Height H 140 160

Table 5.2: Range of parameters used for the casting part geometrical reduced order
model.

treatments. In particlar those used for endovascular applications. An endovascular
surgery is used to treat a specific pathology by passing into vessels. In general it
involves the placement of a medical material, e.g. an expandable stent or web. This
kind of surgery is appreciated due to its opposition with open surgery which can
have heavy health consequences. However, due to huge human variability, surgeons
must have experience and great applied knowledge. They have to look after a given
patient whose treatment have to be personalized. In fact, to reduce human decision
parameters during the surgical act, a recent trend exists. Using computational
physics solutions to guide professionals is nowadays widely possible. Human and
machine are both the new surgeon couple of the next decade. Nonetheless, FSI
or deformable mechanics have an high computational cost and time is important
in such surgical operations. We illustrate this problematic into Figure 5.15 with
cerebral aneurysm pathology. Statistical shape analysis and reduced order mdeling
methods are well-suited for the medical problematic [Luboz et al. 2018], they have
the following advantages:

• Metric of the human variability is quantified. For a new patient, the closest
successfully treated patient can be found in the database by projection. Physi-
cians can retrieve information and parameters of the previous operation. This
task can decrease significantly the human error.

• Virtual patients can be generated to test other devices or surgical configura-
tions.

• Population variability is computed and devices manufacturers can enlarge their
product range until limits of this variability.

5.2.3.2 Web deployment reduced order model demonstrator

We aim to build a reduced order model in order to evaluate in near real-time stent
or web deployment in cerebral aneurysms. Our objective is to determine contact
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Figure 5.15: Medical devices implantation problematic with cerebral aneurysms.
Due to the human variability, surgeons have to pick one of the available devices
based on their knowledge and experience. If the human variablity of the considered
pathology depends on two parameters P1 and P2, there is still many possibilities
of numerical simulations.

pressure between the aneurysm (considered as an undeformable surface) and the
deployed device. Then the pressure contact information is given to surgeons as key
data to lead real surgery designing process.

We first decide to build a demonstrator, i.e., with emulated aneurysms geometries
in the spirit of the true major geometrical variations of such diseases. For that
purpose we use not real geometrical parameters but real surgical ones. One size of
device is considered. Indeed, demonstrating with other sizes will be straightforward.
Used parameters can be seen in Figure 5.16 taking into account a web size of 9mm×
5mm. For the sake of simplicity, the 3 most relevant parameters are variable, others
are fixed (see Table 5.3 for details).

Once correct surgical and geometrical parameters have been settled, we build
a Design Of Experiment of 50 snapshots. This DOE is then used to construct
the reduced order model. Technically speaking, we take 50 differents sets of 3
parameters that best fill the R3 parameter space. A second DOE of 20 snapshots is
independently determined for future ROM validation. We then perform mechanical
computations with ANSYS to obtain web deformation and pressure contact results.
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Figure 5.16: Parameters used for the web deployment reduced order model demon-
strator. A web size of 9mm×5mm is considered. Z represent the lower height where
the aneurysm is truncated along his height axis. H being the dropping height of the
web. Aneurysm emulated geometry is defined by an ellipsoid with radius parame-
ters R1, R2 and R3. R3 design the height of the aneurym whereas R1 and R2 are
planar radius in the plane composed by the ellipsoid center and an arbitrary vector
colinear to Z. Used range of parameters is detailed in Table 5.3.

Web and aneurysm range Min Max Remark Type
Radius 1 3.5 4 Variable Geometrical
Radius 2 3.5 4 Variable Geometrical
Radius 3 14 14 Constant Geometrical
Dropping height H 0 2.8 Variable Surgical
Height Z 5.6 5.6 Constant Geometrical and surgical
Angle α 0.15 0.15 Constant Geometrical and surgical

Table 5.3: Range of parameters used for the web deployment reduced order model
demonstrator.

Reduced order model is built with the first 16 modes and gives relevant results.
We compare the validation DOE with the reduced order model and find a contact
pressure mean error of 1.25% over the 20 snapshots. The max error 2.15% is found
for the couple presented in Figure 5.17. We analyze these two specific computations.
Figure 5.17 (A) shows the evaluation result of R1 = 3.5625, R2 = 3.6375 and
H = 2.31. Figure 5.17 (B) is the snapshot of the second DOE involving the same
parameters. Error is given in Figure 5.17 (E) according to the scale in Figure 5.17
(F).

We have presented a concrete ROM example with applications in the medical
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Figure 5.17: Web deployment reduced order model demonstrator validation. (A)
Reduced order model evaluation constructed with a DOE of 50 snapshots, using pa-
rameters in (F). (B) Snapshot with parameters in (F) of the second DOE composed
by 20 snapshots. (C) Pressure contact color scale for (A) and (B). (D) Pressure
contact error between (A) and (B) using color scale (E).

field. Although aneurysm geometries are not real ones, surgical parameters and
mechanical computations previously performed are. Moreover, followed simulations
are consistent due to the experience feedback of surgeons with whom we talked.
Mechanical properties of implied devices were given by manufacturers. Efficiency
of the approach is demonstrated by the near real-time results. Around a second
is necessary to evaluate the pressure contact, instead of 2 until 5 minutes for a
standard snapshot calculation time. Due to the potential dangerous pathological
patient situation, 2 minutes are too much to evaluate such contact pressure. In
fact, medical professionals have to test several web deployments to find the best size
deployed in the suitable configuration. That’s why reduced order modeling is really
adapted to the problematic. Observed errors are very acceptable according to the
truncated basis size and number of computed snapshots in the R3 parameter space.

5.2.3.3 Towards biological cerebral aneurysm web contact pressure re-
duced order model

Aiming to build a real web deployment solution, we focus here on real aneursym
geometries. Like we said before, we have to reduce the human variability parameters
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of pathological cerebral aneurysms in order to correctly adapt a future endovascular
treatment. To do this, we develop a specific method suitable to deal with highly
different meshes. By different, we mean geometrically and topologically different
as depicted in Figure 5.18 (A). For example, number of boundaries and genus can
be really different while treating the same pathology. Surface meshes which do not
have the same Euler characteristic χ can not have the same connectivity. In fact, an
isotopological population of meshes can not be found for the statistical shape analysis
process. In addition, scanned meshes contain problems such as non-manifold zones
and possibly redondant faces and vertices. Physicians are not trained to fix the mesh
properties. It becomes not feasible to analyze and patch combinatorial geometries
in near real-time during a surgery process.

To overcome this major issue, previous tools such as segmentation, global pa-
rameterization are not suitable. We decide to exploit a hand made topologically
controlled method. We call it the GSM (Geometrical Strain Method) as explained
in Figure 5.18 (B). A representative topology with a constant Gaussian curvature
is used, i.e., a geometrical sphere to control the morphing topology. We drop the
sphere at a relevant point into the aneurysm. Then, the spherical object is inflated
step by step until geometrical contact is found or strain criterion is reached for
all elements. Taking into account contact points, at each iteration i of the sphere
radius Ri, an edge lj is set to be converged if Equation (5.1) is satisfied. The mor-
phed isotopological geometry is computed in few seconds. Different strain criteria
can be adapted to suit the population variation or the disease intensity in order to
determine the required isotopological population in Figure 5.18 (C).

∀Ri, εj(Ri) ≥
∆lj(Ri)

lj(Ri)
. (5.1)

A complete user-friendly software distributed in hospitals, available for surgeons
and medical professionals remains a tedious task to execute. We give main steps of
a complete surgical process, including an offline learning approach and a real-time
treatment in Figure 5.19. Figure 5.19 (A) refers to the statistical shape analysis
offline process done before the first patient’s arrival in Figure 5.19 (B). Once accu-
rate isotopological morphing of the studied population is computed and statistical
methods are performed, we are ready to retrieve shape coefficients of the new pa-
tient. This is done by projecting the new shape into the statistical reduced basis.
This basis is formed by the most energetic modes. Remark that, modes are com-
posed by rigid body aspects due to the disease location into the brain. We follow
the same mechanical computations as done before for the web deployment of the
demonstrator presented above. The reduced order model based on the displacement
field can be realized with real isotopological aneurysms shapes. Same task is done
involving pressure contact field. Surgeons will give the remaining parameters, such
as dropping height and web or stent size, in order to evaluate in near real-time the
contact pressure solution mapped on the deformed geometry in Figure 5.19 (C).
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5.3 Conclusion

We have shown many reduced order models constructed with 3D surface quadri-
lateral meshes. Most of determined isotopological structured meshes have been
computed with the generalized process presented in previous chapters. Others have
been determined especially for nowadays real problematics in the medical field.

Thanks to the mesh properties introduced in this chapter, we are able to per-
form various surface meshing of a given population with a certain accuracy. Accu-
racy means meshes that respect sharp features, principal curvature directions and
boundary constraints for the whole studied population. The homologous concept
was introduced to answer to this problematic not captured by topological properties
of meshes.

The results we shown on reduced order models validate our approach for model-
ing with geometrical parameters. Indeed, including geometrical parameters in such
studies is not straightforward. The isotopological process allows to map surface
geometries with fidelity in order to perform a relevant comparison. For biologi-
cal applications, the holomogous concept is even more important. In fact, point per
point consistent analogy between different geometries is useful and accurate, e.g. for
statistical shape or principal component analysis. For all these reasons, evaluations
are trustworthy for a reasonable amount of snapshots depending on the parameter
space dimension.
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Figure 5.18: Aneurysm mesh properties problematic solved by the GSM (Geomet-
rical Strain Method) method. (A) Comparison problematic between 2 topologically
different aneurysms. (B) GSM method used to determine isotopological meshes
of aneurysms. (C) Different strain criteria which can be used for computing an
isotopological pure quadrilateral mesh population of aneurysms.
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Figure 5.19: Aneurysm treatment approach by learning methods. (A) Offline
reduction of the human variability. (B) Arrival of a new patient. (C) Near real-time
web pressure contact result on a sick aneurysm geometry. Some of illustrations are
coming from the IDsize R© software module developed by Sim&Cure.
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Chapter 6

Surface to volumetric manifolds
using surface global

parameterization for reduced
order modeling

This chapter aims to build structured volumes from surface global
parameterization. In addition, throughout this process, topological

properties are analyzed in the way to build valid volumes of
interest.
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Poincaré-Hopf theorem and Euler characteristic for higher dimensional manifolds

6.1 Poincaré-Hopf theorem and Euler character-

istic for higher dimensional manifolds

In this section we present a generalization of needed topological theorems and prop-
erties for higher dimensional manifolds. In fact, converting 2-dimensional mani-
folds into 3-dimensional ones requires to understand invariant volume information.
Such theorems govern fields on surfaces, on volumes and for n-dimensional mani-
folds. Generalized properties give structural information of surfaces, volumes and
n-dimensional manifolds restricted to a given topology. In the following, theoretical
background in surface topology is needed as earlier presented in Chapter 2. More-
over, for consistent needs, we use M to refer to a topological space that locally looks
like an Euclidean space near each point, i.e., a n-dimensional topological manifold:

Definition 6.1. n-dimensional manifold with boundaries. A n-manifold
M is a topological space such that for each point p ∈ M , there exists an open
neighborhood U of p in M and a continuous bijective mapping x : D −→ U ,
where D is either an open set in Rn or an open set in the half space Rn

+.

6.1.1 Generalized Poincaré-Hopf theorem

We would like to point out that the Poincaré-Hopf theorem can be generalized for
higher dimensional manifolds. For instance, we give a formulation of the general-
ized Poincaré-Hopf theorem for compact oriented differentiable manifolds of higher
dimensions. Such generalization will support our further developments and some
results will be used to base the reasoning in the next mathematical needs. Work
has been done recently to generalize this theorem [Jubin 2009]. In the mathematics
field, older important researches exist. Efforts have been spent for decades to find
formulation of the Poincaré-Hopf theorem for higher dimensional manifolds [Pugh
1968; Feßler 1995]. We first want to establish summation properties of singularities
as given in Proposition 6.1.

Proposition 6.1. Sum of singularity indices. Let d be a vector field or
a n-symmetry direction field with isolated zeros on the compact oriented n-
dimensional manifold M . If M has boundaries ∂M , the total index of singularity
is defined to be the sum of its indices on the interior and on the boundaries [Jubin
2009]:

ns=ni+nb∑
i=1

I id =

ni∑
i=1

I id +

nb∑
i=1

I id. (6.1)
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6. Surface to volumetric manifolds using surface global parameterization for
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ni represents the number of singularities embedded on surface whereas nb repre-
sents the number of singularities on boundaries. Afterwards, we express the summa-
tion of indices involving the dimension of the considered manifolds dim(M), yielding
to the following Proposition 6.2:

Proposition 6.2. Sum of singularity indices and dimension. Let d be a
vector field or a n-symmetry direction field with isolated zeros on the compact
oriented n-dimensional manifold M with boundaries ∂M , then [Jubin 2009]:

ns=ni+nb∑
i=1

I i-d = (−1)dim(M)

ns=ni+nb∑
i=1

I id. (6.2)

Note that Equation (6.1) and Equation (6.2) serve us to state the generalized
Poincaré-Hopf theorem in Equation (6.3) contained in Theorem 6.1.

Theorem 6.1. Generalized Poincaré-Hopf theorem. Let d be a vector field
or a n-symmetry direction field with ns isolated zeros on the compact oriented n-
dimensional manifold M with boundaries ∂M , then [Jubin 2009]:

ns∑
i=1

I id =

{
χ(M) if dim(M) = {2n|n ∈ N},
0 if dim(M) = {2n+ 1|n ∈ N}.

(6.3)

Using this generalized form, we wish to securely anchor developments on 3-
dimensional manifolds using some of properties of lower dimensional manifolds, i.e.,
surface manifolds. Antecedent propositions and theorems are then used to achieve
next improvements.

6.1.2 Generalized Euler characteristic

In this section we provide well-known results on the generalized Euler characteristic.
Generalized Euler characteristic is introduced for the following purposes. Firstable,
we define cohomology groups. They are invariant information attached to a specific
group as expressed in Definition 6.2.
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Poincaré-Hopf theorem and Euler characteristic for higher dimensional manifolds

Definition 6.2. Cohomology groups. The cohomology group Hn looks at
the group action between a group G in an associated G−module M . Elements
of a n-dimensional group Gn representing n-simplices:

Hn = H(Gn,M). (6.4)

Thus, we can characterize the general formulation of Euler characteristic us-
ing previous definition of cohomology groups. Characteristic is computed regarding
the properties of the associated simplicial complex in cases of meshes, i.e., their n-
dimensional counterparts. Simplicial complexes have a certain combinatorial nature
and allow numerical computations. We want to define geometrical objects with both
continous and combinatorial properties. CW-Complex (also known by Closure-finite
Weak-topology) entities ki have been introduced to answer the needs of homotopy
theory in simplicial complexes. In other words, properties that allow continuous
deformations for combinatorial structures are needed. Generalized Euler character-
istic of a compact n-dimensional manifold M is the alternate sum of the lengths of
the cohomology groups Hi as written in Equation (6.5). This characteristic can be
also obtained simply from Betti numbers bi. Betti numbers are used to differentiate
topological spaces, it can be also used for simplicial complexes or CW-complexes.

χ(M) =
n<∞∑
i=0

(−1)i|Hi| =
n<∞∑
i=0

(−1)iki(M) =
n<∞∑
i=0

(−1)ibi(M). (6.5)

Such previous formulations help us to connect the gap between discrete and
continuous cases. Indeed, we strive to work with meshes intrinsically having a com-
binatorial structure, but also with continuous concepts. Needed key topological
aspects were elucidated by CW-Complexes. Furthermore, generalized Euler charac-
teristic was given to found invariant properties of n-dimensional manifolds. Techni-
cally speaking, invariant information attached to a n-manifold, e.g. a 3-dimensional
manifold. These important concepts previously explained will be used in Section
6.3.

6.1.3 Volumetric manifold examples

Into an illustration purpose, exhibition of volumetric manifolds will be given. For a
classic visualization and understanding human eyes and brain limits, only volumes
in the R3 topological space are depicted. Thus, a particular interest is accorded to 3-
dimensional manifolds in R3. Volumes embedded in the R3 or Rn, n ≥ 3 topological
spaces are defined in Definition 6.3. For higher-dimensional manifolds, we refer the
readers to the previous definition already given in Definition 6.1.
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Definition 6.3. 3-dimensional manifold. A volume V is a 3-manifold, i.e.,
a topological space in which each point has a neighborhood homeomorphic to
either the sphere S3 in R3 or the closed half sphere S3

+ in R3
+.

For instance, Euler characteristic of some familiar sets will be imaged to make
the developments more visual [Simsek, Ozdaglar, and Acemoglu 2007]. Bn is the
one-boundary n-dimensional manifold and Sn the sphere n-dimensional manifold.
Examples are shown in Equation (6.6).

Bn ⇒ χ(Bn) = 1,

Sn ⇒ χ(Sn) = 2 if n = {2n|n ∈ N},
Sn ⇒ χ(Sn) = 0 if n = {2n+ 1|n ∈ N}.

(6.6)

Examples are given considering a 3-dimensional manifold V in Equation (6.7).
Geometrical view of a cylinder C3 and an associated volumetric manifold V of a
surface torus T2 are provided in Figure 6.1. We use Betti numbers bi for continuous
manifolds and simplicial complex entities ki for discrete ones as described in Table
6.1 and Table 6.2. Betti numbers bi with i > 2 are equal to zero for a volume
integrated in R3. Additional comprehension for Betti numbers is given in Figure
6.2.



Betti numbers χ(V ) =
∑3

i=0(−1)ibi(M),

CW-Complexes χ(V ) =
∑3

i=0(−1)iki(M),

Figure 6.1 (A) χ(V ) = b0 − b1 + b2 − b3 = 1− 0 + 1− 0 = 2,

Figure 6.1 (B) χ(V ) = k0 − k1 + k2 − k3 = 32− 64 + 40− 8 = 0,

Figure 6.1 (C) χ(V ) = k0 − k1 + k2 − k3 = 28− 70 + 60− 16 = 2,

Figure 6.1 (D) χ(V ) = b0 − b1 + b2 − b3 = 1− 1 + 0− 0 = 0.

(6.7)

Betti number Description
b0 Number of connected components (volumes are considered)
b1 Number of holes or tunnels (1-dimensional independent entity)
b2 Number of cavities (2-dimensional independent entity)
b3 Number of 3D holes (3-dimensional independent entity)

Table 6.1: Betti numbers description adapted for 3-dimensional objects.
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Quadrilateral layout to cuboid configuration

Simplicial complex entity Description
k0 Number of vertices
k1 Number of edges
k2 Number of faces
k3 Number of volumes

Table 6.2: Simplicial complex entities description.

Figure 6.1: 3-dimensional manifold V examples. Represented objects are filled
taking into account surfaces as boundaries. (A) Cylinder C3 can be obtained by
performing volumetric boolean operation. These processes are widely used in CAD
using surfaces boolean operations. This volume has one cavity. (B) Coarse hexahe-
dral mesh defined from a surface torus T2. (C) Discrete case of (A). (D) Continuous
case of (B). This volume has one connected object, one hole or tunnel but zero cav-
ities.

6.2 Quadrilateral layout to cuboid configuration

As used in Chapter 3, Chapter 4 and Chapter 5, a quadrilateral layout Q is a coarse
quadrilateral mesh. In this development, we will define correctly a quadrilateral
layout and its properties. Moreover, we will show that additionnal properties are
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Figure 6.2: Betti numbers for a 3-dimensional manifold. Number of connected
components is 1, so b0 = 1. Number of tunnels, or holes is 3, taking into account
the red torus embedded into the volume. There are 2 cavities in blue and red
respectively, so: χ(V ) = b0 − b1 + b2 = 1− 3 + 2 = 0.

required to build a volume. In this particular case we call C a valid associated
cuboid configuration of Q. C is then used as a bridge to construct a volumetric
layout.

6.2.1 Quadrilateral layout and cuboid configuration defini-
tion

A quadrilateral layout Q is formed by arcs and nodes embedded in the input trian-
gulated surface. We refer the readers to our previous work to have more visual data
about quadrilateral layouts [Al Akhras et al. 2017; Maquart et al. 2019a] and also
to other papers in the field [Campen, Bommes, and Kobbelt 2012; Myles, Pietroni,
and Zorin 2014; Razafindrazaka, Reitebuch, and Polthier 2015; Campen 2017]. To
firmly anchor our further developments, we formulate more precisely the quadrilat-
eral layout’s definition in Definition 6.4.
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Quadrilateral layout to cuboid configuration

Definition 6.4. Quadrilateral layout. A quadrilateral layout is a coarse
quadrilateral mesh topologically equivalent to the input unstructured triangu-
lated mesh. Arcs are not necessarily formed by only one simplex, they are
combinations of simplices inherited from the input triangulated surface. Nodes
are embedded on surface vertices.

Irregular vertices of the layout Q hold singularities of the associated 4-symmetry
direction field. These irregular locations can be determined by Gaussian curvature
distribution [Maquart et al. 2019c] or other methods suitable to locate them prop-
erly depending on the geometry. Indices and number of singularities can be also
estimated. Aim is to characterize valid quadrilateral layout by its associated cuboid
configuration, if it exists. Cuboid configurations decompose a surface into a set of
quadrilateral patches which are ready for hexahedral meshing. They are special cases
of Q with additional properties. To remove ambiguity between cuboid configuration
and quadrilateral layout definition, valid quadrilateral layouts Q exist if Equation
(6.8a) is satisfied for surfaces without boundaries ∂M . For surfaces with boundaries
∂M , Equation (6.8b) will be satisfied. Valence 2 nodes are not being considered.
Additional quadrilateral layout constraints to build a valid cuboid configuration C
are introduced in Equation (6.9).

∀vi ∈ Q,
nQ∑
i=1

(1− vi
4

) = χ(Mc) = 2− 2g, (6.8a)

∀vmi ∈ [Q \ ∂M ] & ∀vbi ∈ ∂M,

nmQ∑
i=1

(1− vmi
4

) +

nbQ∑
i=1

(1− vbi
3

) = χ(M). (6.8b)

∀γQ ∈ C, nγQ ≥ 4 & nγQ ∈ {2nγQ|nγQ ∈ N}. (6.9)

Where Mc is the associated closed mesh. We note that, for obvious purposes,
only associated closed mesh is taken for computations. Topologically, our goal is to
determine volumes, thus surface boundaries have to be closed. A quadrilateral layout
is composed by arcs and nQ nodes of valence vi. v

m
i and vbi refer to the valence of

interior and boundary quadrilateral layout’s vertices respectively. Associated cuboid
configuration of a quadrilateral layout Q exists by analyzing number of nodes nγQ
contained in cycles γQ formed by arcs. C can be viewed as a structured template
to build a pure hexahedral mesh. Because this cuboid configuration comes from
a surface quadrilateral layout embedded in R3, the interior volume is not clearly
defined. Aiming to build a volumetric objects, we have to close boundaries of the
2-dimensional manifold, in order to have a surface enclosing a volume. This process
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is shown in Figure 6.3, yielding to closed cuboid configurations Cc. In the following,
Cc will be used for volumetric purposes.

Figure 6.3: C to Cc conversion. (A) Closing boundaries in the parametric space.
(B) Closing boundaries in the physical space.

6.2.2 Examples and limitations

Large variety of cuboid configurations exist. Depending on the features we want to
replicate in the final structured mesh, configurations have to be well thought out.
By features we mean sharp edges, corners and high curvature areas. Figure 6.4
shows us some of used closed cuboid configurations Cc in this manuscript. Cc are
known for the closed configurations if no boundary exists. Indeed, no boundaries,
i.e., 1-dimensional manifolds, have to remain to construct a volume. These partic-
ularly depicted cuboid arrangements are genus-0 (like surfaces ready to be mapped
onto pants geometries). Mapping process considers pants boundaries and designates
quadrilateral patches of the cuboid configuration which have to be on the boundary.

To illustrate some of valid quadrilateral layouts which are examined to be valid
or invalid cuboid configurations, we draw 2 key examples. The first considers a
triangular cylinder (genus-0 with 2 boundaries) whose topology is replicated with
a valid quadrilateral layout in Figure 6.5 (A). Equation (6.8a) states that we are
not in the presence of a suitable quadrilateral layout when closing its 2 bound-
aries. On the other hand, Equation (6.8b), which is boundary-aware, validates the
quadrilateral layout. Topologically and geometrically, this layout is conform for a
surface quadrilateral application. Expected closest valid cuboid configuration is rep-
resented in Figure 6.5 (D). The second example succeeds the first testing equations,

186

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI033/these.pdf 
© [T. Maquart], [2019], INSA Lyon, tous droits réservés



Cuboid configuration to volumetric layout

Figure 6.4: Genus-0 closed cuboid configuration Cc examples with Euler charac-
teristic χ = 2. (A) Configuration with 28 nodes. (B) Configuration with 36 nodes.
(C) Configuration with 20 nodes. These configurations are coming from Chapter 3.

i.e., Equation (6.8) due to the torus topology. γQ cycle analysis shows us the lack
of nodes. In this topological situation, this quadrilateral layout is rejected to be a
cuboid configuration thanks to Equation (6.9).

Despite large improvements onto constraining topological properties during tri-
angulated mesh to valid cuboid configuration generation, some particular geometry
cases are determined taking into account some precautions. Effectively, previous
tests are done topologically, meaning that no consideration is accorded to the phys-
ical space. It is typically the given demonstration behind the geometry of Figure
6.5 (C). Associated cuboid configuration in the parametric space is shown in Figure
6.5 (F). Physically, Q suits the geometry perfectly but we can not define all cuboids
with a non-zero volume with this specific embedded quadrilateral layout.

We have defined properties and constraints required to a quadrilateral layout to
become valid and if needed for volumetric purposes, to become a cuboid configura-
tion. As well as thinking surface to volumetric conversion, further developments will
use cuboid configurations to define a volumetric layout and its properties. Cuboid
configurations can be seen as connected information between the surface and volumic
worlds.

6.3 Cuboid configuration to volumetric layout

Once a valid cuboid configuration has been determined for a triangulated surface, we
seek to turn it into a real volume, i.e., a 3-dimensional manifold. As we said before
in Section 6.2, cuboid configurations are valid quadrilateral layouts with additional
properties. These better properties make them ready to construct a volume. We will
explain invariant properties of computed volumes relying on strong mathematical
tools from the topology field. Precisely, we will expose in the following one of our
most important contributions in this Chapter 6.
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Figure 6.5: Invalid cuboid configurations and limitations. (A) A valid quadrilat-
eral layout, but involving an invalid closed cuboid configuration. (B) Quadrilateral
layout of a genus-1 geometry. Cc is invalid. (C) Quadrilateral layout with 12 nodes
of a closed cylinder. Cc is valid but yielding to a flattened cuboid in the physical
space. (D) Closest expected valid cuboid configuration for (A). (E) Closest expected
cuboid configuration for (B). (F) Valid Cc of (C).

6.3.1 Volumetric layout definition

We introduce volumetric layout to serve as coarse hexahedral mesh whose boundary,
i.e., a 2-dimenional manifold is topologically equivalent to the input unstructured
closed triangulated mesh. Our volumetric layout vision is described in Definition
6.5. Volumetric layouts are particularly studied for their trivariate form, allowing
tensor product. In the litterature many different definitions and uses of trivariate
layouts exist. Some of them are trying to turn cuboids or polycubes [Tarini et
al. 2004] from a surface representation [Li et al. 2013] into a volumetric map [Lin
et al. 2008; Fu, Bai, and Liu 2016]. For instance, work has been done by [Yu et
al. 2013] to optimize mapping of polycubes. Others are treating these structured
trivariate objects to construct continuous mathematical volumes [Wang et al. 2008;
Li et al. 2010; Massarwi and Elber 2016]. Various possibilities of such volumetric
generations are currently explored, e.g. [Liu et al. 2015] determines polycubes from
a skeleton curve capturing features of a triangulated mesh. Techniques coming
from the geometrical processing and the topology fields are widely used to compute
hexahedral meshes [Hu and Zhang 2016; Lyon, Bommes, and Kobbelt 2016; Lei et
al. 2017]. Hexahedral dominant meshes are also currently tackled [Ray et al. 2017;
Reberol 2018].
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Cuboid configuration to volumetric layout

Definition 6.5. Volumetric layout. Volumetric layout is a coarse hexahe-
dral mesh topologically equivalent to the input unstructured tetrahedral mesh
embedded in the volume. If volumetric layout is constructed from a cuboid con-
figuration, volumetric layout’s boundary is topologically equivalent to the input
unstructured closed triangulated mesh. Arcs are not necessarily formed by only
one simplex, they are combinations of simplices inherited from the input trian-
gulated surface in case of the volumetric layout’s boundary. Otherwise they can
be integrated inside the volume with or without a combinatorial form. Nodes
are embedded on surface vertices or inside the volume.

6.3.2 Mathematical formulations and properties from gen-
eralized theorems

We strive to found cuboid configurations C with an associated 3-dimensional man-
ifold VC that respects some constraints inherited from topological and geometrical
properties of a surface mesh M . We seek for constraints provided from the surface
to be mapped into the volume manifold. We focus here on quadrilateral and hex-
ahedral meshes, i.e., simplicial complexes. Into a volumetric layout VC the number
of volumes k3 is defined by Equation (6.10a).

k3 = −χ(VC) + k0 − k1 + k2, (6.10a)

s.t. {k0C − k1C + k2C = χ(∂VC) = χ(Cc) & |∂VC| = 1}. (6.10b)

This equation yields more than one possibility in the general case. kiC are the
CW-complex entities of the closed cuboid configuration Cc. Cc is provided from a
configuration C possibly with boundaries. Since Equation (6.10a) has overabundant
unknown terms, and in general not enough constraints in Equation (6.10b), one
closed cuboid configuration Cc can refer to many non-isomorphic associated volu-
metric layouts VC. The constraint |∂VC| = 1 is trivial. We build volumetric manifolds
only from one connected 2-dimensional manifold. Hence, for one given closed cuboid
configuration Cc, there exists different possible volumetric layouts satisfying above
constraints. Depending on the surface or mesh features, we can choose the best
volumetric layout by analyzing geometry. It leads us to the following statement in
Proposition 6.3.

Proposition 6.3. Non-isomorphic associated volumetric layouts. Let
Cc be a valid closed cuboid configuration of a compact oriented 2-dimensional
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manifold M . If we want to turn Cc into a volumetric manifold VC, there exists a
set UVC with an infinite size of non-isomorphic volumetric structures that satisfies
constraints provided in Equation (6.10b):

Cc ⇒ V i
C 6≡iso V

j
C ,∀i, j < |UVC| =∞. (6.11)

Where ≡iso denotes the isomorphic equivalence.

Non-isomorphism between different volumetric layouts VC differ just by num-
ber of volumes k3, number of surfaces k2 and number of edges k1. In other words,
two volumetric layouts are isomorphic if they have the same number of simplices of
each dimension n, n ∈ {0, 1, 2, 3}, in allowing mapping with a discontinuous func-
tion. Homeomorphic configurations are isomorphic configurations holding exactly
the same simplicial complex connectivity. The set UVC has an infinite size as clarified
in Proof 6.1.

Proof 6.1. Infinite size of the set UVC . The set of non-isomorphic associated
volumetric layouts UVC of an associated closed cuboid configuration Cc has an
infinite size because of the properties of the 3-simplex subdivision. It is always
possible to subdivide a n-simplex in the way that (n−1)-simplices of the bound-
ary remains topologically the same; and the created manifold is also embedded
in the same n-dimensional topological space, so:

|UVC| =∞,∀VC. (6.12)

Taking into account previous definitions and constraints, we now seek to find
which volumetric Euler characteristic χ(VC) is interesting. In other words, we mean
a 3-dimensional manifold embedded in R3 with specific properties inherited from
the input surface and its associated closed cuboid configuration Cc. Then, we want
a volume which lies in R3 with only one (n − 1)-dimensional compact, connected
and orientable entity. However, we can not accept any 1-dimensional entity, i.e.,
boundaries of 2-dimensional manifolds. Finally, Equation (6.13) in Proposition 6.4
states our interesting volumetric Euler characteristics.

Proposition 6.4. Equation 2χ(VC) = χ(Cc). In R3, a 3-dimensional manifold
VC constructed from compact oriented 2-dimensional manifolds Cc with at least
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one 2-dimensional compact, connected and orientable entity is restricted to the
following volumetric Euler characteristic χ(VC):

χ(VC) =
χ(Cc)

2
= 1− g. (6.13)

Using g as the genus of the cuboid configuration C or Cc, i.e., g(C) or g(Cc).
Indeed, adding 1-dimensional manifold entities to a 2-dimensional one does not
change its genus g.

This result can be demonstrated using CW-complex properties and Betti num-
bers in a topological space R3 [Damiand 2010], see Equation (6.14) in Proof 6.2.
Meshes are simplicial complexes due to their combinatorial form. Remember that
CW-complexes are themselves both simplicial complexes and continuous entities on
which homotopy theory is applicable.

Proof 6.2. Equation 2χ(VC) = χ(Cc). To turn any 3-dimensional volumetric
manifold VC embedded in R3 into a topological object homeomorphic to B3, we
have to add CW-complex objects to VC. We first create g surfaces k2, i.e., for each
tunnel or 1-dimensional independent manifold (see Figure 6.6 (A)). Secondly, we
create two edges k1 and one surface k2 for each 2-dimensional cavity (see Figure
6.6 (B)):

χ(VC) = k0 − (k1 + 2b2) + (k2 + b1 + b2)− k3, (6.14a)

= k0C − k1C + k2C − 2b2 + b1 + b2 − k3, (6.14b)

= χ(Cc) + b1 − b2 − 1, (6.14c)

= χ(Cc)− χ(VC)⇒ 2χ(VC) = χ(Cc). (6.14d)

Where b3 = 0 (considering the topological space R3). k0 = k0C , k1 = k1C and
k2 = k2C (Cc remains unchanged). k3 = 1 (we consider only one connected
volume).

This previous equation establishes the topological relation between associated
volume VC of a cuboid configuration Cc. To go further we can express in Equation
(6.15) the Betti numbers of VC using the previous results.

b0 = 1,

b1 = b0 + b2 − χ(Cc)
2
,

b2 = |M |.
(6.15)
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Figure 6.6: 3-dimensional volumetric manifold VC to B3 conversion using CW-
complexes. (A) g surfaces k2 are created for a g-torus (red surface), i.e., for a tunnel.
(B) Two edges k1 and one surface k2 are constructed (red curves and surface) for a
cavity. Black and blue objects are not created beacause they are lying on a lower
dimensional object than a volume.

With |M | the number of connected 2-dimensional manifolds used to define VC
minus one. As we said before, only one surface manifold is used for our purposes,
so |M | = 0 . We now can re-write Equation (6.10) to include interesting volumetric
characteristics and needed topological space constraints. This idea is formulated in
Equation (6.16).

k3 = g − 1 + k0 − k1 + k2, (6.16a)

s.t. {k0C − k1C + k2C = χ(∂VC) = χ(Cc)} and (6.16b)

{|∂VC| = 1 & VC ∈ R3 & ∂VC ≡ Cc}. (6.16c)

Where ≡ denotes the classic geometric equivalence. ∂VC and Cc are topologically
and geometrically the same. ∂VC replicates perfectly the associated closed cuboid
configuration. This is a necessary condition to bound a volume. To be more precise,
in Equation (6.16b) and Equation (6.16c), constraints are not independent. Since
∂VC is provided from Cc, |∂VC| and χ(∂VC) are already set.

With previous developments and theorems, we recall that the volumetric Euler
charcateristic χ(VC) can not be directly related to the n-symmetry direction field d
embedded in the volume. This reminder is formulated in Remark 6.1 with Equation
(6.17).
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Remark 6.1. 3-dimensional manifold Euler characteristic is in general different of
the singularity indices summation, see Equation (6.3):

χ(VC) = 1− g(Cc) 6=
ns∑
i=1

I id, d ∈ VC. (6.17)

In addition, for the 3-dimensional sphere S3, whose reprentation is only possible
in the R4 topological space, its Euler charcacteristic can be expressed in the same
spirit of Equation (6.8a) using a volumetric layout V . Precedent idea is written
in Conjecture 6.1 with Equation (6.18). This given equation has to be proved and
demonstrated using topology concepts available in the litterature, e.g. [Hatcher,
Lochak, and Schneps 2000; Hatcher 2001; Damiand 2010].

We finally remark that, according to [Huang et al. 2011], representing vector
fields in 3D is not possible. [Huang et al. 2011] have proposed a method with
a frame representation to overcome the issue. More recently, [Ray and Sokolov
2015] have introduced a method to compute a 3D frame field based on the previous
representation. [Chemin et al. 2018] presented an approach with high order tensors.
Over researches generalize the concept of octahedral fields embedded in volumes
[Solomon, Vaxman, and Bommes 2017; Liu et al. 2018]. Such fields are subject
to singularities which are lying on a 1-dimensional manifold. In other words, they
are located on a singularity graph. In volumetric objects represented in the R3

topological space, the fourth dimension can help to characterize singularities, like
the third dimension define the positive or negative rotation direction for vector fields
integrated on surfaces.

Conjecture 6.1. We suppose that the Euler characteristic of the 3-dimensional
sphere can be related directly to its nodes valencies vi, nV being the number of
nodes in the corresponding simplicial complex or volumetric layout V :

∀vi ∈ V,
nV∑
i=1

(1− vi
6

) = χ(S3). (6.18)

6.3.3 Volumetric layout examples from standard CAD

To illustrate some of presented above mathematical formulations, we give two vol-
umetric layout examples with a basic geometry in Figure 6.7. B-Rep triangulated
meshes hold genus-0 and χ = 2 properties. Thus they are topological spheres. Fig-
ure 6.7 (A) and (B) are the triangulated geometries whereas Figure 6.7 (C) and
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6. Surface to volumetric manifolds using surface global parameterization for
reduced order modeling

(D) are the associated volumetric layouts that best describe and replicate the sharp
features. Firstly, we inspect the couple (A) and (C). By analyzing number of n-
simplices of each dimension n, this brought us to χ(VC) = k0 − k1 + k2 − k3 = 1.
In fact, Cc is also a genus-0 surface and VC is homeomorphic to the 1-boundary
3-dimensional manifold B3 in R3. For the pair (B) and (D) it seems to be not as
obvious as the previous couple was. However, we should have to evaluate directly
Equation (6.13). Since volumetric characteristics χ(VC) of interesting volumetric
layouts in the R3 topological space are entirely defined by the genus of the associ-
ated closed cuboid configuration Cc with an additional integer, χ(VC) = 1 while the
number of 3-simplices were changed as depicted in Figure 6.7 (D).

Figure 6.7: Volumetric layouts straightforward examples. (A) Triangulated mesh
with sharp features. (B) Triangulated mesh with particularly marked sharp features.
(C) Proposed volumetric layout for (A). (D) Proposed volumetric layout for (B).

6.3.4 Isotopological volumetric layouts

Understanding significance of above developments, we reformulate here the problem-
atic exposed in Chapter 1 for volumetric purposes. Given a set of input triangulated
meshes, we strive to find an isotopological trivariate isogeometric meshes population
which respect to the four following properties:

• Pure hexahedrons with low distortion for the trivariate control lattice.
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Cuboid configuration to volumetric layout

• Feature aligned with geometry inherited from the triangulated surface.

• Isotopological with homologous points into other geometric instances.

• Non-uniform isotropy for a morphing to all members of the population.

We then follow the Strategy 1.2 to compute required meshes. Same concepts
have been already developed for 3D quadrilateral meshes in Section 5.1.

6.3.4.1 Isomorphic to isotopological homologous

We want to tackle here isotopological properties of volumetric meshes. Firstly, we
introduce the notion of isomorphic meshes. Isomorphic meshes are meshes with
the same number of n-simplices of each dimension n. Isomorphism is a structure
preserving application admitting a continuous inverse function between the 2 consid-
ered simplicial complexes. In our definition, non-continuous functions are tolerated
in the specific case of meshes. Figure 6.8 (A) and (B) illustrate the structure mis-
matching. Indeed, if we think with continuous manifolds, there exists a continuous
transformation with a continuous function between two connected, compact and
orientable volumes if and only if they have the same Euler characteristic and num-
ber of 2-dimensional boundary components with the same attached surface Euler
characteristic and yielding to the same homotopy groups (we are not taking into
account volumes created by more than one surface with VC). Remark that, in the
general case, homotopy groups are not sufficient to classify topological spaces up to
homotopy equivalence: it has to be deeply studied with papers in the related field.
Interesting considerations are made in the topological space R3. We also notice that
Betti numbers do not inform on isomorphism properties since the cylinder C3 and
the sphere S2 have the same Betti numbers. Homology and homotopy groups are
relevant information to state the homeomorphic properties between two topological
spaces, but they are not sufficient. However and fortunately, the inverse is true
[Hatcher 2001; Damiand 2010]: homeomorphic spaces have the same homotopy and
homology groups.

Isotopological meshes are isomorphic meshes with a continuous inverse function
and holding the same element connectivity as presented in Figure 6.8 (C). Homolo-
gous property is not directly evident. The structure has to respect the same feature
location, i.e., we can compare the same node identificator in the same interesting
zone among all instances of related meshes. It is done by constraining the disposal of
the volumetric layout and taking into account principal curvature directions. This
concept, similar with quadrilateral meshes is shown in Figure 6.8 (D) and (E).

6.3.4.2 Population constraints

To build isotopological meshes for a specific set of related meshes, the discretization
sampling is based on one representative member of the population: the α-member.
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6. Surface to volumetric manifolds using surface global parameterization for
reduced order modeling

Figure 6.8: Isotopological homologous properties of volumetric meshes. (A) Non-
isomorphic volumetric layouts. (B) Isomorphic layouts with a discontinuous map-
ping function. (C) Isotopological trivariate isogeometric meshes. (D) and (E) are
representing the homologous concept for an aortic valve using quadrilateral meshes.

This idea was already conceptualized in Section 5.1 for quadrilateral meshes. Taking
into consideration features and geometry of the α-member mesh, isotopological and
homologous constraints are then settled for all members. Non-uniform isotropy is
therefore intrinsically set because of volume number, connectivity and discretiza-
tion. We recall that for mechanical applications with geometrical parameters, the
α-member is chosen as the middle of all designing parameters. Constraints and
relations between the volumetric layout, mesh isogeometric discretization and an
arbitrary representative member are depicted in Figure 6.9. This process is then
used in our following developments to construct reduced order models based on ge-
ometrical design rules. It is emphasized that for reduced order modeling objectives
developed in Chapter 7, meshes must not differ by a rigid body transformation.
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Cuboid configuration to volumetric layout

Figure 6.9: Isotopological isogeometric meshes constraints for reduced order mod-
eling. (A) Isogeometric mesh with a geometry A. (B) Isogeometric mesh with a
geometry B. (C) Associated volumetric layout of reference. (D) α-member chosen
to represent the whole population.

6.3.5 B-Spline volume reconstruction

In order to generate a volumetric parameterization of given solids models, different
steps have to be considered. Our input is generated thanks to a global parameteri-
zation aligned with a cross field. Using the quadrilateral mesh generated from this
parameterization as done in Chapter 4, a structured grid of points is extracted on
each patch of the cuboid configuration Cc. Such grids are then used to fit B-Spline
surfaces. Depending on the volumetric layout VC, missing surfaces are evaluated
with curves embedded into the volume or into the volume’s boundary. A technique
close to the Coons patch surface reconstruction is endorsed [Farin and Hansford
1999; Piegl and Tiller 2012]. In the context of this thesis, the software [McNeel
2017b] and related library [McNeel 2017c] were adopted for surface determination
and manipulation.

Once all mathematical surfaces are provided, we can now proceed to volumet-
ric parameterization. Since the volumetric layout structure is regular, it serves as
the parametric domain required for tensor product trivariate B-Spline surfaces. For
each cube contained in VC, the B-Spline patch solid is obtained using reconstructed
B-spline surfaces as boundary conditions. Keeping the boundary control points
fixed, the interior control points of the B-Spline solid are computed with trivariate
Coons interpolation. We follow the method of [Wang and Qian 2014] recovered by
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[Al-Akhras 2016] to compute such volumetric designing. To improve isogeometric
trivariate mesh quality, control points can be adjusted [Ma and Kruth 1995; Wang
and Qian 2014] and potential G1 smoothness between patches could be settled. To
illustrate the process, we consider a mechanical part, see, e.g. Figure 6.10. In this
example only harmonic parameterization is used to compute B-Spline boundary sur-
faces [Tong et al. 2006; Martin, Cohen, and M. Kirby 2009]. Figure 6.10 (A) shows
the B-Splines arising from surface parameterization. Thereafter, missing surfaces are
determined to form volumetric cubes composed by 6 surface entities in Figure 6.10
(B). In Figure 6.10 (C) volume is achieved with a Coons 3D interpolation technique.

Figure 6.10: Trivariate B-Spline volume construction from B-Spline surfaces. (A)
B-Spline surfaces extracted thanks to the parameterization. (B) Reconstructed miss-
ing interior surfaces needed for the trivariate parametric domain. (C) Interpolated
trivariate isogeometric control lattice (depicted in red).

6.4 Conclusion

We have presented new useful mathematic material to convert surface parameteriza-
tion into structured volumetric one. Rigorous definitions and properties of topolog-
ical quantities have been given when passing in the third dimension. Indeed, from
the quadrilateral layout to the volumetric layout VC, invariant properties and con-
straints were analyzed with strong mathematical tools arised from the topology field.
According to these developments, we are able to know if the surface to volumetric
transformation is possible and what characteristics are expected. This was mainly
achieved thanks to the cuboid configuration C. Thus, these properties help us to
correctly determine volumetric layouts required for trivariate isogeometric B-Spline
construction.

We have also introduced isotopological constraints and the homologous concept
in order to build suitable isogeometric meshes for reduced order modeling purposes.
In fact, addressing the same parameterization for all geometrical instances to be
compared, avoids a projection step and brought us to accurate further mesh com-
parison. That’s what we will demonstrate in the next Chapter 7.
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Chapter 7

Trivariate isogeometric reduced
order modeling applications

This chapter presents applications focusing on reduced order
models built using isogeometric analysis [Maquart et al. 2019b].
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7. Trivariate isogeometric reduced order modeling applications

7.1 Hexahedral remeshing

This section presents pure hexahedral meshing from trivariate B-Spline solids and
a related meshing application for reduced order modeling. We will first describe
how hexahedral meshes are constructed from such mathematical solids. In a second
time, a standard FEA code is modified to show that our worflow is well-suited for
remeshing purposes during analysis. Isotopological meshing process is naturally
adapted to this kind of problematic. The method explicited in Chapter 1 will be
used for hexahedral meshes generation.

7.1.1 Hexahedral sampling method from B-Spline surfaces

As well as aiming to build trivariate B-Spline solids from a surface global param-
eterization, we give a similar method to obtain hexahedral meshes from B-Spline
surfaces. 6 surfaces are being considered and form the boundary of an isogeometric
volume. We proceed patch by patch like as presented in Section 6.3. For each set of 6
compatible boundary spline surfaces, the hexahedral patch is obtained using recon-
structed quadrilateral meshes from surfaces as boundary conditions. Compatibility
of surfaces is achieved with same the surface degree, number of knots and control
points. Degree could be different if global parametric directions for the new volume
are taken into account. In addition, at each surface interface, physical locations of
the control points must be the same. A simplified procedure from [Wang and Qian
2014] is adopted. By sampling linearly the square parametric domain of surfaces,
we obtain a parametric grid as a function of the number of control points. Techni-
cally speaking, we sample with n and m points in the first and second parametric
directions, resulting in n − 1 and m − 1 quadilateral elements; n and m being the
number of control points in u and v parametric directions respectively. Sampling is
explicited in Equation (7.1) for a degree 2 surface with uniform open knot vectors
U and V as defined in Chapter 1. The 6 quadrilateral meshes are extracted with
physical positions of previously computed parametric values Uq and Vq. A finer grid
can be computed if a refinement is needed.

p = 2 : U = {0, 0, 0, 1, 2, 3, 4, 5, 6, 6, 6},
p = 2 : V = {0, 0, 0, 1, 2, 3, 4, 5, 6, 6, 6},
n = 8 : Uq = {0, 6

7
, 12

7
, 18

7
, 24

7
, 30

7
, 36

7
, 6},

n = 8 : Vq = {0, 6
7
, 12

7
, 18

7
, 24

7
, 30

7
, 36

7
, 6}.

(7.1)

As surfaces come from a global parameterization, they are mathematical surfaces
fitted from an arranged grid of points derived from the triangulated B-Rep surface.
Estimating a new structured grid on a physical spline surface allow us to better
capture the major trends of curvature, especially for scanned geometries provided
from medical imaging. Figure 7.1 shows the method based on the sampling vectors
Uq and Vq of Equation (7.1). In the final stage in Figure 7.1 (C) the position of the
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interior control points are then adjusted by minizing a Laplacian based energy.

Figure 7.1: Hexahedral sampling method from B-Spline surfaces of degree 2. (A)
6 compatible B-Spline surfaces that bound a volume. Black lines delimit surfaces
elements. (B) 6 quadrilateral meshes evaluated at physical positions of parametric
values contained in vectors Uq and Vq of Equation (7.1) (quadrilateral meshes and
points are depicted in blue). (C) Blue hexahedral patch computed using Coon’s
interpolation.

7.1.2 Large deformations: neo-hookean material applica-
tion

7.1.2.1 Introduction to meshing during large deformations

The following developments present a remeshing application for large deformation
during a mechanical analysis. We study the use of our algorithms to perform the
isotopological remeshing during a hyperelastic simulation. Although no reduced
order model is introduced in this example, hyperelastic large strain calculation is a
case in which classical a posteriori reduced order models are not efficient because
of the needed remeshing during the calculation of a given snapshot. Indeed when
high strains are encountered, standard finite element meshes often lead to poor
element shapes during the computation, and remeshing is unavoidable to be able
to perform the simulation until the end. As for geometric parametric studies, the
use of isotopological meshes is required for ROM algorithm to perform efficiently
when remeshing is needed. This example is presented to show that our meshing
pipeline described in previous Chapters 3, 4 and 6 has a real ability for isotopological
remeshing purposes during computations. It can be further applied to overcome
computation halt under excessive element deformation due to specific mechanical
conditions, as observed for example by [Elguedj et al. 2008] and [Lipton et al. 2010].

7.1.2.2 Mechanical problem description

In this example, we consider a simple compressible Neo-Hookean material, see e.g.
[Lemaitre and Chaboche 1994; Simo and Hughes 2006], and use our mesh genera-
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7. Trivariate isogeometric reduced order modeling applications

tion algorithms on a half-seal part composed by one pants patch. For this particular
case, we consider degree 1 B-Splines which are nothing more than standard piecewise
linear hexahedrons classically used in FEA. The corresponding isogeometric param-
eterization involving our method, resulting in a trivariate B-Spline is presented in
Figure 7.2. The same parameters (cuboid configuration, singular points, number of
nodes and connectivity) will be used to create a deformed mesh of the model at a
given time of the simulation. The input mesh and boundary conditions are given in
Figure 7.3 (A). We consider a quasi static computation with a ramp loading from
t = 0 to t = 1 and use the following values for the material parameters: µ = 3
MPa and κ = 20 MPa for the shear and bulk modulus respectively. These mate-
rial parameters imply a Poisson’s ratio equal to ν = 0.3636, which correspond to
a compressible material. Lower values than ν = 0.45 are recommended to avoid
non desired element locking. The finite element calculation is classically performed
using a total Lagrangian approach [Bower 2012; Belytschko et al. 2013], again see
e.g. [Simo and Hughes 2006].

For a hyperlastic material, the first Piola-Kirchhoff stress tensor ¯̄P can be ex-
pressed in terms of the Helmholtz free energy W . This energy function depends
locally only on the deformation gradient ¯̄F ( ¯̄X). Thus we use W ( ¯̄X, ¯̄F ( ¯̄X)) to define
the stress tensor in Equation (7.2). Indeed, an objective formulation of the hypere-
lastic density energy is adopted, i.e., the polar decomposition allows us to write W
as a function of ¯̄C; ¯̄C being the right Cauchy-Green tensor.

¯̄P ( ¯̄X) =
∂W ( ¯̄X, ¯̄F ( ¯̄X))

∂ ¯̄F ( ¯̄X)
. (7.2)

Figure 7.2: Volumetric isogeometric parameterization of the half-seal part for
remeshing purposes. It is a genus-0 geometry with sharp features. Euler char-
acteristic is χ = −1 for the mesh with 3 specially located boundaries. During
the remeshing step, the parameterization is still the same whereas the geometry is
changing under loading.
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7.1.2.3 Proposed remeshing method

The main steps of our remeshing strategy are described taking into account the
material behavior. A simplified description is depicted in Figure 7.4. Based on the
results of the full calculation without remeshing, we observe that element quality
metrics of the deformed mesh start to deteriorate significantly after t = 0.5. Con-
sequently, we extract the deformed geometry at this particular time and use our
algorithms to create a new isotopological mesh to improve element aspect ratio and
overall quality. The new mesh used form t = 0.5 can be seen in Figure 7.3 (A).
In order to evaluate mesh quality, we use as a metric the element shape ratio Sr
classically available in commercial softwares such as ANSYS. Sr = A

B
measures the

stretching of the element, where A is the maximum distance from the hexahedral
centroid to one of the eight corners and B is computed as the minimum value of
the normal distance between the cell centroid and face centroids (computed as a dot
product of the distance vector and the face normal). Therefore, for a unit cube we
have Sr = 1.732.

In our calculation with remeshing, once we have created the new mesh with
the strategy from Chapter 1, the displacement field is mapped from the old to the
new mesh using standard techniques. The finite element calculation is resumed by
considering an initial deformation state computed using the deformation gradient
after projection onto the new mesh.

Element shape ratio computed at t = 0.5 and t = 1 on both meshes are shown
in Figure 7.3 (B) and Figure 7.3 (C). We can observe that at t = 0.5 the remeshing
reduces the maximum value of Sr by approximately 30%. A similar observation
can be done at the final time t = 1, where the element shape ratio is even further
reduced compared to the full simulation with the initial mesh.

With above developments coming from Chapter 6 and understanding large vari-
ety of element quality criteria, we have chosen to investigate a new quality criterion
based on topological aspects. Although Sr was used here to fulfill our discussion,
we invite the readers to take a look in Appendix C.

All different transformations are summarized in Equation (7.3) using composi-
tion, i.e., simply contracted matrix product yielding to a total deformation gradient
¯̄Ftot; this task involving 4 transformations as shown in Figure 7.4. ¯̄Fr and ¯̄Fi are
relative to the remeshing and displacement interpolation accuracy respectively. ¯̄Fb
is the deformation from t = 0 to t = 0.5 whereas ¯̄Ff is related for the second final
loading time until t = 1.

¯̄Ftot = ¯̄Ff
¯̄Fi

¯̄Fr
¯̄Fb. (7.3)

7.1.2.4 Mechanical results discussion

We seek to compare the Von-Mises stresses at the final time for both cases to check
that the remeshing and mapping steps lead to the correct solution. Figure 7.5 shows
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7. Trivariate isogeometric reduced order modeling applications

Figure 7.3: Element quality comparison under loading for the half-seal part. (A)
The initial mesh at t = 0 with boundary conditions (left). The remeshed case at
t = 0.5 (right). (B) Element shape ratio at t = 0.5 without remeshing process (left).
Element shape ratio at t = 0.5 with remeshing process (right). (C) Element shape
ratio at the last loading increment without remeshing process, t = 1 (left). Element
shape ratio at the last loading increment with remeshing process, t = 1 (right). All
deformed shapes are given with a scale factor of 1.
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Figure 7.4: Remeshing method. (A) Initial mesh at t = 0. (B) Deformed un-
remeshed mesh at t = 0.5 calculated with a modified standard FEA code [Bower
2012]. (C) B-Rep extraction of the geometry (B) using ABAQUS and Rhinoceros 5.
Please remark that the surface is homeomorphic to a pant with 3 specific boundaries.
(D) Isotopological remeshing is done with our mapping method. The displacement
solution obtained at step (B) is mapped back on the new remeshed geometry. (E)
Final Von-Mises stress Paraview results at physical Gauss points. Initial state com-
putation is based on the deformation gradient ¯̄F . The modified FEA code is then
used to resume the calculation.

the corresponding results for the unremeshed case (A) and remeshed case (B) at final
time t = 1. For visualisation and comparison purposes, we build an associated linear
hexahedral mesh which geometry is described by the Gauss points of the underlying
FE mesh. We can see that for both cases the closest Gauss point near the corner
have very similar Von-Mises stress values, in the same difference range as can be
observed by comparing simulation results using commercial FE packages such as
ANSYS and ABAQUS (see Figure 7.6) for the same example with the same mesh
density. For instance, we correlate the Von-Mises values of the two unremeshed cases
for the same physical Gauss point identificator in a high deformed zone. A value
of 14.93 is found instead of 13.79 with our FEA code in the unremeshing process,
which are slightly different of 8%. The remeshing process holds 15% of difference
with the commercial simulation.
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7. Trivariate isogeometric reduced order modeling applications

These results clearly show the efficient of our method to improve the mesh quality
during a highly deformed hyperelastic simulation while preserving correctness of the
finite element solution. In addition, for large deformations, remeshing avoid a very
bad element geometry which can lead to a computation halt.

Figure 7.5: Details of Von-Mises stress comparison at Gauss points. For each hex-
ahedral element, we build an associated linear hexahedral element which geometry
is described by its related Gauss points. (A) Stress for the unremeshed case at
t = 1. Elements made by Gauss points of the remeshed part are depicted in black
wireframe. (B) Stress for the remeshed case at t = 1. Elements made by Gauss
points of the unremeshed part are depicted in black wireframe.

7.2 Trivariate B-Spline reduced order models

In this section we deal with reduced order models whose snapshots are computed
using isogeometric analysis [Hughes, Cottrell, and Bazilevs 2005; Cottrell, Hughes,
and Bazilevs 2009; Al Akhras et al. 2017; Lai et al. 2017]. Only linear elastic
problems are considered. Reduced order models based on an a posteriori approach
are built from standard algorithms. Demonstrations on models solutions evaluation
in near real-time will be given. The method explicited in Chapter 1 will be used for
volumetric B-Spline models generation.
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Figure 7.6: ABAQUS Von-Mises stress results on the unremeshed half-seal part.
Notice that values are averaged on hexahedral elements nodes and the color scale
is interpolated at scalar values embedded on these nodes. The Von-Mises value of
14.93 is not averaged and resides at a physical Gauss point.

7.2.1 Pipeline introduction

7.2.1.1 Algorithms

Triangulated B-Rep CAD to reduced order model evaluation algorithm is entirely
incorporated into a Rhinoceros 5 [McNeel 2017b] Plug-In implemented in VB.NET.
C++ processes are called from the Plug-In. For more details, we refer the readers
to Appendix B. Some prerequisites are mandatory, such as a consistent pants-to-
cuboids decomposition, as developed in Chapter 3. Cuboid decomposition templates
per pant have to be correctly handled for special complex geometry cases. We use
for that purpose the ROM builder proprietary software developed by ANSYS. This
ROM solution works using classical SVD algorithms. Response surfaces reconstruc-
tion are made with kriging tools. Figure 7.7 gives the standard principle of oper-
ation. Related research done by ANSYS employees exists [Hraiech 2010; Galland
2011; Galland et al. 2011; Grassi et al. 2014]. For other purposes under dynamic
loads, the problem is currently tackled in the ANSYS research team. Recently, this
builder has been used to prevent excessive compression of buttock’s soft tissues by
bony structures [Luboz et al. 2018] in real-time for paraplegic persons.

7.2.1.2 Workflow reminder

Using our technique of pants-to-cuboid decomposition understanding features of in-
put triangulated meshes, a cuboid configuration Cc template is associated to each
pant composing the B-Rep surface geometry as presented in Chapter 3. Aligned
global parameterization (see developments in Chapter 4) is computed and boundary
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7. Trivariate isogeometric reduced order modeling applications

Figure 7.7: Reduced order model building and evaluation for a plate with one hole.
Snapshots are calculated using isogeometric analysis. P1 and P2 are geometrical
parameters defining respectively the diameter and the position of the hole along
his height. P3 is a loading parameter. Response surfaces S are embedded in 4-
dimensional space. There are as many surfaces as there are modes in the reduced
basis.

B-Spline surfaces are fitted. We then extract an isotopological homologous vol-
umetric parameterization of our input geometries due to the properties of VC as
formulated in Chapter 6.

7.2.2 Snapshots sampling

Sampling of geometrical parameters is done with a sparse grid technique, the same
used before for quadrilateral meshes in Section 5.2 explicited in Figure 5.5. However,
due to high-dimensional problems that we are going to deal with, a larger amount of
relevant snapshots are required. We want to tackle here reduced basis constructed
with both geometrical and mechanical parameters. We sample as follows: for each
isotopological geometry, for each loading parameters and then for each mechanical
properties, a snapshot is produced and resolved using IGA. This process is depicted
in Figure 7.8. Range of parameters and sampling along parameters’s axis refer to
the sparse grid technique with the existence of a hypercenter of the n-dimensional
space. Hypercenter is naturally the set composed by averaged values of parameters.
We design a α-member of the geometrical population as being the isotopological
snapshot of averaged values of geometrical parameters (see Section 5.1 and Section
6.3 for the α-member definition or properties). Equation (7.4) is showing the distri-
bution of parameters. G refers to the number of different isotopological geometries,
P to the number of loading cases and M is the number of material cases. Sampling
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is resulting in a tensorial form between 3 different quantities. This strategy yields a
designing of Ns snapshots. First refinement of the level 1 sparse grid is then adopted
for the following. Each snapshot is a vector in the R6n space due to the displacement
vectors supplementary information.

dim (G⊗ P ⊗M) = dim (G)× dim (P )× dim (M) = Ns. (7.4)

Figure 7.8: Parameters tensorial product. For each geometrical cases G, we as-
sociate all loading cases P . Each loading parameter is then combined with all
mechanical cases M . This method resulting in dim (G)× dim (P )× dim (M) snap-
shots.

7.2.3 Pant part

Parameterization is performed with useful tools previously presented. Pant param-
eterization of a genus-0 surface with 3 boundaries is given as a key example for
reduced order modeling with geometric parameters. Firstable, a cuboid configura-
tion is choosen to suit the initial geometry, i.e., to fit as well as possible the sharp
features of the B-Rep geometry. After few steps, an isogeometric volume with ap-
propriate sharp features is created. The process is shown in Figure 7.9.

Figure 7.9: Volumetric isogeometric parameterization of the pant part. It is a
genus-0 geometry with sharp features. Euler characteristic is χ = −1 for the asso-
ciated mesh M with 3 boundaries. We apply the same parameterization among all
members of the population to obtain isotopological comparable isogeometric meshes.
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7. Trivariate isogeometric reduced order modeling applications

Snapshots sampling is done involving 9 geometrical parameters G and 1 load-
ing parameter P . Blue basis define the parameters G based on the hypercenter
of the sparse grid constructed with only geometrical parameters. Loadings have
been settled along the Y+ axis. Figure 7.10 (A) and (C) explain the distribution of
parameters whereas (B) present the cuboid decomposition of the 37 different geome-
tries. 222 isogeometric simulations were computed. Reduced order model is built
and evaluations are determined in near real-time, e.g. Figure 7.11 is estimated with
a random set of parameters.

Figure 7.10: Pant part distribution of parameters and snapshots. (A) 9 geometrical
parameters are settled. Geometrical parameters are defined into blue local basis.
(B) Snapshots cuboid decomposition population. (C) 1 load parameter P is applied
on the isogeometric model. We use a constant Young’s modulus E = 210 GPa
and Poisson’s ratio ν = 0.3. Loads and boundary conditions are distributed on
concerned nodes.

Pant part range Min Max
X1 boundary 1 -40 40
Y1 boundary 1 -40 40
Z1 boundary 1 -35 35
X2 boundary 2 -40 40
Y2 boundary 2 -40 40
Z2 boundary 2 -35 35
X3 boundary 3 -40 40
Y3 boundary 3 -40 40
Z3 boundary 3 -35 35
Load intensity 50 N 300 N

Table 7.1: Range of parameters used for the pant part reduced order model.
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Figure 7.11: Pant reduced order model real-time evaluation. A 10-dimensional
manifold built by kriging tools is evaluated to find preponderant coefficients attached
to the first 60 modes. Isogeometric elements are sampled with one hexahedron per
element for viewing purposes in Paraview. Used range of parameters is detailed in
Table 7.1.

7.2.4 Seal part

Seal part has a more complex topology and geometry than the pant. It is a genus-1
surface due to its 1-torus topology. By choosing a specific pant decomposition and
analyzing symmetry properties, a reliable volumetric parameterization is extracted
(see Figure 7.12).

This example holds 6 geometrical parameters G, 1 loading parameter P and 1
mechanical parameter M . Loadings have been settled along the X+ axis. Figure
7.13 presents parameters attributes. 400 snapshots were simulated. Evaluation of
the constructed reduced order model is done in Figure 7.14.
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7. Trivariate isogeometric reduced order modeling applications

Figure 7.12: Volumetric isogeometric parameterization of the seal part. It is a
genus-1 geometry with sharp features. Euler characteristic is χ = 0 for the associated
closed mesh Mc. We apply the same parameterization among all members of the
population to obtain isotopological comparable isogeometric meshes.

Figure 7.13: Seal part distribution of parameters. 6 geometrical parameters are
settled. 1 load parameter P is applied and Poisson’s ratio ν is devoted to be a
mechanical parameter. We use a constant Young’s modulus E = 210 GPa. Loads
and boundary conditions are distributed on concerned nodes.

7.2.5 Wheel part: large geometrical reduced order model

Targeting the same worflow as for the seal part but with a higher complexity, the
parameterization of the wheel part is illustrated in Figure 7.15. Genus-3 wheel is
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Figure 7.14: Seal reduced order model real-time evaluation. A 9-dimensional
manifold built by kriging tools is evaluated to find preponderant coefficients attached
to the first 50 modes. Isogeometric elements are sampled with one hexahedron per
element for viewing purposes in Paraview. Used range of parameters is detailed in
Table 7.2.

Seal part range Min Max
Radius 1 11 15
Radius 2 20 30
Radius 3 35 45
Height 1 28 35
Height 2 10 16
Length 1 50 80
Load intensity 100 N 175 N
Poisson’s ratio 0.28 0.34

Table 7.2: Range of parameters used for the seal part reduced order model.

considerably more complex than others examples. On the one hand, the geometry
and topology are fundamentally different and refer, for instance, to much more pants-
to-cuboid decomposition possibilities. Indeed, parameterization workflow imply a
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7. Trivariate isogeometric reduced order modeling applications

computation time which is increased when treating these larger geometries. On the
other hand, 9 geometrical parameters coupled with 2 naturally different parameters
represent a large amount of snapshots of 592. It takes a real effort during offline
simulations. Figure 7.16 informs on parameters assignation. Loadings have been
settled along the Z+ axis. Evaluation in near real-time is done in Figure 7.17.

Wheel part range Min Max
Radius 1 7.8 9.75
Radius 2 13.65 16.25
Radius 3 25.35 29.9
Radius 4 62.725 67.275
Radius 5 73.775 80.275
Radius 6 86.625 91.975
Height 1 26 32.5
Height 2 8.125 9.75
Length 1 39 43.875
Load intensity 100 N 175 N
Young’s modulus 200 GPa 230 GPa

Table 7.3: Range of parameters used for the wheel part reduced order model.

7.2.6 Results discussion

Snapshot production is done by considering a standard B-Rep CAD as input. De-
pending on the triangle discretization of the CAD geometry, our segmentation al-
gorithms such as the pants-to-cuboids decomposition take more or less computing
time. We mean in particular that the algorithmic complexity is high during specific
steps. For instance, the number of pants decomposition possibilities to be tested
increase in a factorial way with the Euler characteristic as demonstrated in Section
3.1. Cuboid decomposition is mainly based on a harmonic parameterization of a
triangulated domain. SuperLU [Demmel et al. 1999] is used to solve these sparse
linear systems. In addition, for solving other sparse linear systems for direction
field generation and surface parameterization, CHOLMOD [Chen et al. 2008] and
CoMISo [Bommes, Zimmer, and Kobbelt 2010]. Notice that it is a non-exhaustive
list of used solvers. To summarize, due to large various solvers needed to support
our workflow, minutes are required to obtain a surface parameterization to be trans-
formed into a volumetric isogeometric one, helped with the volumetric layout VC.
Technically speaking, for the genus-3 wheel part, 4 minutes are necessary to obtain
a surface quadrilateral mesh snapshot.

ROM evaluations were done in near real-time, i.e., few seconds for above pre-
sented examples. It takes around 2 seconds for the pant part and a few more seconds
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Figure 7.15: Volumetric isogeometric parameterization of the wheel part. It is
a complex genus-3 geometry with sharp features. Euler characteristic is equal to
χ = −4, involving a decomposition in 4 pants. We apply the same parameteri-
zation among all members of the population to obtain isotopological comparable
isogeometric meshes.

for the wheel part example with 11 parameters. Indeed, the wheel part holds 9 geo-
metrical parameters and 2 mechanical ones, thus the response surfaces are embedded
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7. Trivariate isogeometric reduced order modeling applications

Figure 7.16: Wheel part distribution of parameters. 9 geometrical parameters are
settled. 1 load parameter P is applied and Young’s modulus E is devoted to be
a mechanical parameter. We use a constant Poisson’s ratio ν = 0.3. Loads and
boundary conditions are distributed on concerned nodes.

in a higher dimensional space than other examples. In addition, more complex the
geometry is, more the solution vectors are lengthy. Reduced basis are composed by
the first 50 modes for the seal and wheel part respectively, leading to 50 coefficients
to be determined.

Fortunately, isotopological meshes are efficient in terms of point per point com-
parison because they are synonymous of structured data. Intermediate computation
such as mesh interpolation, or hazardous structured morphing is unnecessary. Ac-
curacy of evaluations, including geometry and mechanical fields is greatly improved
thanks to homologous meshes.
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Conclusion

Figure 7.17: Wheel reduced order model real-time evaluation. A 11-dimensional
manifold built by kriging tools is evaluated to find preponderant coefficients attached
to the first 50 modes. Isogeometric elements are sampled with one hexahedron per
element for viewing purposes in Paraview. Used range of parameters is detailed in
Table 7.3.

7.3 Conclusion

Thanks to isotopological meshes, we have introduced many geometrical parameters
into the learning process of mechanical reduced order modeling. Results are shown
for geometrical virtual charts that can be used for shape optimization or an indus-
trial sizing purpose. Comparing mechanical fields efficiently is done by adressing
the same parameterization for different geometrical instances. We constrain the
parameterization among all meshes composing the population to be reduced. Pro-
jection steps are thus avoided. In fact, avoiding a projection step with structured
information and setting homologous parameterizations yield to accurate reduced
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7. Trivariate isogeometric reduced order modeling applications

order models. In addition for accuracy, homologous concepts allow to compare in-
formation at the same location, i.e., in a the same relevant geometry zone for all
geometrical instances. Moreover, introducing geometrical parameters enables shape
optimization that is useful nowadays in a part weight reduction objective. Multi-
dimensional models are more and more encountered and today’s physicists have to
deal with. We gave answers to sample large parameter spaces formed by many ge-
ometrical designing parameters. Presented near real-time evaluations demonstrate
the robustness and the reliability of the developed method.
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Conclusions

We have presented in this thesis a volumetric isotopological mesh generation method
from B-Rep CAD. The input is a standard model with a triangulated geometry. For
most of them, CAD softwares are not able to represent real mathematical volumes.
We give answers to a widely studied problematic. By using surface segmentation
approaches, a cuboid decomposition splits the surface. Splitting is done with respect
to the input surface topology and theorems related on embedded fields on surfaces.
This segmentation serves to parameterize the entire B-Rep of the solid’s bound-
ary. Cuboid decomposition is then topologically analyzed in the way to construct a
consistent volumetric layout. Understanding all mathematical properties and con-
straints among all steps of this process, a volumetric parameterization is extracted.
The final goal is then fulfilled thanks to the B-Rep mapping and constructed relevant
volumetric layout.

We have shown that our meshing strategy is well-suited for reduced order mod-
eling with geometric parameters. Comparing mechanical fields efficiently is done
by adressing the same parameterization to different geometrical instances. In fact,
avoiding a projection step and setting homologous parameterizations yield to ac-
curate reduced order models. Moreover, introducing geometrical parameters into a
reduced order model enables shape optimization that is useful nowadays in a part
weight reduction objective. A real benefit for the computational mechanics com-
munity has been deployed by defining a generic method to overcome the difficulty
to generate isotopological meshes. Our method is introduced to solve the problem
in a universal form. This helps us to define a set of 3D volumetric isotopological
homologous meshes. Presented real-time evaluations demonstrate the robustness
and the reliability of the developed method.

A first key contribution is done in the segmentation of the input surface provided
by the CAD. We have drastically enhanced the pants decomposition process by
giving more geometrical tools. Surface decomposition theory is an essential tool to
fulfill our objectives. We strive to understand both geometry and topology during
this step. A second improvement is to position the singularities in the best possible
way. Gaussian curvature distribution is naturally defined to locate them if curvature
is sampled in a few vertices on the mesh. In fact, the cuboid decomposition is not
anymore chosen just involving topology criteria but with coupled topological and
geometrical ones.

After performing the proposed smart segmentation approaches, the next step
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toward a volumetric parameterization is the surface parameterization. We parame-
terize the B-Rep triangulated mesh using well-known global parameterization tech-
niques [Campen and Kobbelt 2014]. Aligned global parameterization adapts the
mapping by fitting its gradient to a smooth cross field. Computing a global param-
eterization is reduced to defining a suitable topological and geometrical cross field
interpolating relevant features. That is why it is crucial to understand such fields
behavior on surfaces. Into a third enhancement, programming work has been done
to couple these algorithms with our developments for futher reduced order model-
ing needs. In fact, automatic meshing process are appreciated for reduced order
modeling applications related to different geometries.

Chapter 6 is one of our biggest contribution for the computational mechanics
community. We gave new mathematical tools to understand properties during sur-
face to volume conversion. Such hard conversion problematic continues to find a
certain interest in geometry processing and physics communities. We have shown
that controlling topological properties during the conversion process is fundamental.
Indeed, topology and mathematical features of manifolds have to be considered at
the highest level. Invariant information transmitted from the surface to the volume
is essential to build volumetric meshes needed by our method.

The efficiency and the robustness of the proposed approach are illustrated by
several examples coming from the mechanical and medical domains. Applications
involving statistical shape analysis techniques were given. Evaluations of reduced
order models have demonstrated the ability of the method for geometric parametric
analysis problems. For instance, the wheel reduced order model has 11 parameters
which 9 are purely geometric ones. Smart sampling of snapshots coupled with our
isotopological volumetric parameterization method yields to an accurate model
reduction. Moreover, it has been successfully applied to B-Rep models with features
and non-trivial geometry. We have given a robust and approved method to study
geometrical differences of a population.

Limitations

Despite the abilities of our algorithms and tools presented in this thesis, treating
any arbitrary and complex CAD geometry automatically is still a challenge. For
complex cases with an arbitrary geometry, pants decomposition can be not con-
sistent: [Zhang and Li 2014] has shown that topological pants decompositions are
not always geometry-aware. Moreover, the pant topology is not always adapted to
the geometry. Indeed, pants patches are topologically equivalent to 3-way pipes.
But this is in general not suitable for the following cuboid decomposition. In fact,
distorted pants lead to poor volumetric parameterization quality. Chapter 3 gives
some alternatives using the n-pant topology. Specific user proposals incorporated
into the automatic process can help.

Cuboid decomposition is dependent on a fixed border harmonic parameteriza-
tion. For highly curved shapes or disproportionate geometries, numerical compu-
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tation of square parametric domains is misfit. Free border or ARAP (As Rigid As
Possible) mappings are a possible answer.

During the surface parameterization, the positioning of irregular nodes of the
quadrilateral layout is crucial. Indeed, they lead the surface topology but also the
link with features if hard constraints are settled. Thus, a suitable mapping solution
is not always found due to sharp edges constraints or unadapted layouts. Nodes
embedding optimization is limited in the way that moving regular nodes does not
necessarily minimize the parameterization energy; but their location is essential.
Spacement constraints or non-integer grid maps could solve partially these issues.

Generated cuboid decompositions are adapted to surface definition resulting in
an arbitrary definition of the interior volume. In Chapter 6, we have given mathe-
matical properties conserved during surface to volume conversion. Nevertheless, it
has shown that there is a lack of topological information. It has been clearly shown
that the interior volumetric parameterization has an infinite number of possiblities
given an arbitrary surface as input.

To finish, we need a stronger link between geometry and topology. It has been
shown a long time ago that the Gauss-Bonnet theorem is helpful. But triangulated
surface to structured surface reconstruction remains a big current challenge.
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Perspectives

To extend the presented work, we give several perspectives or possible improvements
that can be studied to go further. Indeed, progresses have been made for modeling
with geometric parameters by given methods in this thesis. But, aiming to go
forward, some reflexions are detailed.

• We believe strongly in IGA. Current computational mechanics methods have
to evolve. Due to the craze in this field, powerful IGA meshing solutions will
be found in the next years, see e.g. [Coreform 2019; Geomiso 2019]. This mo-
mentum has several benefits. First, it allows to change used techniques which
have decades and enables the construction of smart mathematical models to
solve mechanics. Secondly, structured data extraction will be straightforward
due to the intrinsic parameterization of these new methods. So, learning ap-
proaches are served.

• In order to build reduced order models for dedicated applications, we rec-
ommend today to start directly with parameterized solids if it is possible.
Commercial softwares exist for feature-based modeling applications. We can
use [McNeel 2017a] to script a modeling with geometrical parameters. More
and more editors implement reverse engineering techniques. SpaceClaim and
solidThinking are some of growing tools for industrial uses.

• To obtain more topological information for volumetric parameterization in-
volving presented methods in this thesis, starting with a tetrahedral mesh
instead of triangulated one will be a possibility. Nowadays mesh generation
algorithms are robust enough so as to generate a volumetric unstructured
tetrahedral mesh from a B-Rep CAD. In fact, used cuboid decomposition and
surface parameterization techniques do not give a definition of the interior
volume. Thus, the volumetric parameterization is far to being unique for a
given surface and cuboid decomposition. Recent trends are to compute octa-
hedral fields, i.e., fields embedded in volumes [Ray and Sokolov 2015; Sokolov
et al. 2016; Solomon, Vaxman, and Bommes 2017; Liu et al. 2018]. Notice
that recent automatic techniques for polycube decomposition exist [Fang et
al. 2016].

• In a reduced order model designing goal for large variations of parameters

223

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI033/these.pdf 
© [T. Maquart], [2019], INSA Lyon, tous droits réservés



Perspectives

or complicated geometry, immersed methods are attractive. They can con-
serve a specific mesh structure between different geometrical instances, see
e.g. [Courard 2016]. Immersogeometric applications exist [Kamensky et al.
2017].
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Appendix A

Mathematical notations and
algebraic operators

We describe, in this appendix, the main used notations in the
manuscript together with algebraic operators.

Contents
A.1 General notations and operators . . . . . . . . . . . . . . . . 226

A.2 Non-exhaustive lists of used notations . . . . . . . . . . . . . 226
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A. Mathematical notations and algebraic operators

A.1 General notations and operators

Main used notations are summarized in Table A.1. Following conventions are gen-
erally respected for notations and algebraic operators:

• The scalar values are written with normal typology or in capital letters. (a, b,
A, B,).

• Vectors are written in bold or in calligraphy mode for capital letters. (a, b,
A, B).

• Matrices are written in bold and capital letters. (A, B).

• Second order tensors for mechanical purposes are written in capital letters
with double bars. ( ¯̄A, ¯̄B).

• Parameters spaces, topological spaces, layouts and configurations are written
in doubled capital letters. (A, B).

• Matrix product between two second order tensors is denoted without any op-
erator: ¯̄A = ¯̄B ¯̄C.

• Tensorial product is classically denoted: ⊗.

• Scalar product is classically denoted with a point: ., it is also denominated
dot product.

• Vector product is classically denoted: ×.

Global symbol General description Example Description

a Scalar p First B-Spline degree

A Scalar K Gaussian curvature

a Vector d Vector or direction field

A Vector U Knot vector u

A Matrix U Snapshot matrix
¯̄A Second order tensor ¯̄F Deformation gradient

A Topological information R3 3D topological space

Table A.1: Main used notations.

A.2 Non-exhaustive lists of used notations

Reserved letters and notations are described in Tables A.2 and A.3. Some of nota-
tions can refer to multiple notions in other chapters. Multiple notations can describe
same notions in different contexts.
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Non-exhaustive lists of used notations

Letter Description Letter Description

Md Disk-like mesh tij Integer translations

mij Matching rotation Af Area of face f

G Cut graph G Graph or tree graph

Ω Domain α Direction angle

fi Face i pκC Field curvature p
cκC Field curvature c k1 Principal curvature dir. 1

k2 Principal curvature dir. 2 Tγ Turning number along γ

na Number of arcs nn Number of nodes

δγ Holonomy along γ γ Cycle

γc Closest homotopic cycle si Signs

nt Total number of triangles ki Discrete angles

kg Geodesic curvature l(s) Loop

K Gaussian curvature v Vertex

Gi Gravity center of fi Ve End vector

E(C) Cross field energy κij Angle difference

sij Seed point ij D Set of boundary points

O Set of common points C Set of cutting points

Uk Square map k Bi Boundary i

WS1 Sharp cutting curve S1 PTk Temporary patch k

fi Harmonic function i CT Time complexity

pi Point i wij Cycle for pants ij

wi Cycle for pants i wj Cycle for pants j

S Sharp points Ti Pant patch i

Nc Set of combinations W Set of boundaries

hi Handle loop i wij Parameterization weights

δij Angle for weights γij Angle for weights

Td Turning number of d nt Total number of vertices

Kv Vertex Gaussian curvature Rv1 Ring 1 of vertex v

bi Boundary i H1(M) First homology group

π1(M,x) First homotopy group γHi Cycle in H1(M)

I Bounded space O Unbounded space

C(ξ) B-Spline curve S(ξ, η) B-Spline surface

V(ξ, η, ζ) B-Spline volume Bi Control point i

Ni,p(ξ) First B-Spline basis Ξ First knot vector

Table A.2: Table 1 of reserved letters.
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A. Mathematical notations and algebraic operators

Letter Description Letter Description

S Surface D 2-manifold disk

M Set of mechanical param. M Mesh

M n-dimensional manifold I Index of singularity

Ns Number of snapshots Qh
3π
2

Gaussian quality criterion

C3 3-manifold cylinder Q Quadrilateral layout

C Cuboid configuration Cc Closed cuboid configuration

χ Euler characteristic VC Volumetric layout of Cc

ns Number of singularities ni Interior singularities num.

d Vector or n-direction field nb Boundary singularities num.

Hn Cohomology groups ki CW-complex entities

bi Betti numbers S3 3-manifold sphere

B3 3-manifold disk vi Vertices valencies

vi Vertices or vertex i vmi Interior vertices

vbi Boundary vertices g Genus of a 2-manifold

b Number of boundaries Mc Closed mesh

nQ Number of nodes of Q γQ Cycle of Q
UVC Set of non-isomorphic VC nV Nodes of the vol. layout V

∂VC Boundaries of VC ∂M Boundaries of the M manifold

Bn n-manifold disk Sn n-manifold sphere

dim(M) Dimension of M |M | Num. of components of M - 1

εj(Ri) Strain of edge j at Ri Md Disk-like mesh

s Index of singularity M∗ Dual mesh

V ∗ Set of dual vertices E∗ Set of dual edges

e∗ Dual edge E Set of edges

V Set of vertices C Cross field

Uc First direction of C Vc Second direction of C
p Period jump wij Connection angle

p First B-Spline degree q Second B-Spline degree

r Third B-Spline degree ∇u Parametric gradient u

H Second knot vector Z Third knot vector

G1 Geometry 1 U Snapshot matrix

B Subspace P Set of parameters

αjk SVD coefficient Ψk Mode k

σk Singular value k Φ Right sing. matrix

Table A.3: Table 2 of reserved letters.
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Appendix B

IGA ROM PlugIn

IGA ROM PlugIn presentation and associated algorithms.
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B. IGA ROM PlugIn

B.1 IGA ROM PlugIn flowchart

B.1.1 PlugIn context and simplified flowchart

In order to manipulate various types of geometrical objects and also for visualization
purposes a relevant software has to be chosen. Our choice was therefore focused on
Rhinoceros 5. Indeed, we want an integrated environment where NURBS, B-Splines
and meshes can already been represented. Moreover, additional requirements are the
availability of scripting and debugging into an existing operating system. Rhinoceros
5 has these needed skills. PlugIns can be developed in VB.NET or C#.

Secondly, for ROMs computations, automatic workflows are mandatory. Han-
dling large amounts of snapshots requires communication between entities and ex-
ternal softwares. User interactions and inputs have to be drastically reduced to the
minimum. That is why, significant time was spent in this thesis to integrate auto-
matic processes. The quantity of provided programming work is explained in Figure
B.1. Remark that for ROMs computations using IGA, reduced order models can
not be directly computed through the PlugIn. Thus, dedicated applications have to
be constructed using programmed objects and classes.

In Figure B.1, code metrics such as number of lines were estimated in debug
mode, i.e., by counting useful lines of code into the VB.NET text editor. The
cyclomatic complexity is usually given to state about a program complexity. In
other words, it is created by calculating the number of different code paths in the
flow of the program. A program that has a complex flow will requires more tests to
achieve good code coverage. VB.NET and C++ objects are formulated respecting
the programming standards as well as possible into a research context.

B.1.1.1 IGA ROM.dll

IGA ROM.dll is the PlugIn library containing new commands which can be operated
directly in Rhinoceros. This library provides modules, functions and graphics related
to the previous commands. Moreover, some of demonstrated applications in this
thesis are dedicated and thus included in IGA ROM.dll: it is the case for ROMs
using volumetric B-Splines. Main objects and classes are called from this file.

B.1.1.2 IGAExt.dll

IGAExt.dll contains newly developed objects in relation with volumetric layouts
and its properties but also on B-Splines objects. This file provides important iso-
topological information needed for ROM computations and isogeometric volumes
definition. Moreover, one of its capabilities is to automatically class geometrical
objects while conserving topological properties. It is done by parallel programming
and smart nested classes.
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IGA ROM PlugIn flowchart

Figure B.1: Simplified flowchart of the IGA ROM PlugIn. New developments
made in this thesis are depicted with a gray background. [1]: [Campen and Kobbelt
2014]. [2]: [Bommes, Zimmer, and Kobbelt 2010]. [3]: [Crane, Desbrun, and
Schröder 2010]. [4]: [K. Dey, Fan, and Wang 2013]. [5]: [Al-Akhras 2016]. NC
stands for Non Communicated. Real names of used scripts or programs are given
whatever it is english or not. Lot of dependencies are related to all named softwares
and scripts.
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B. IGA ROM PlugIn

B.1.1.3 RhinoExt.dll

RhinoExt.dll has been originally developed by [Al-Akhras 2016]. It provides mesh
objects and also classes for cross field representation and global parameterization
post-processing. Initial model segmentation techniques were implemented. New
scripting was brought by improving segmentation algorithms, such as pants and
cuboid decomposition. Several new objects have been developed in order to optimize
existing ones. Most of automatic processes and links between external programs are
programmed and called from this file.

B.1.2 PlugIn external scripts and softwares

Diverse scripts or research codes are linked to the PlugIn. For instance, CppPlu-
gIn.exe is coming from the graphics and geometry communities. It serves to compute
a constrained cross field which properties are derived from the quadrilateral layout;
but also for determining a global parameterization and optimizing it. File routine.py
is used for isogeometric analysis. At the beginning, the LaMCoS (Laboratory of
Structural Mechanics and Contacts) developed an user interface and subroutine in-
tegrated into ABAQUS for IGA purposes [Elguedj et al. 2012]. Named abqNURBS,
it is scripted in C++, Python and FORTRAN. The file routine.py is partially based
on these internal laboratory developments but only FORTRAN routines are kept
from the original project. These FORTRAN routines holding main NURBS prop-
erties have been later wrapped and integrated into Python scripts for IGA based
shape optimization problems [Hirschler et al. 2018]. According to this recent work,
slight modifications have been brought to Python files in order to use isogeometric
analysis for reduced order models presented in this thesis. Thus, we name routine.py
a hybrid software in Figure B.1.

B.2 Highlighted PlugIn functionalities

Presented functionalities can describe a part of the work related to previous chapters
but also other independent capabilities. A non-exhaustive list is given and only few
relevant scripts are explained.

B.2.1 Arbitrary non-arranged B-Spline surfaces to B-
Splines volumes

Efforts have been deployed for isogeometric analysis concerning pre-processors, in-
tegrated analysis (like abqNURBS presented above) and post-processors. A IGA
weakness is the availability of automatic model generation. As already explained in
Chapter 1, various properties are required to perform an analysis trough a classic
CAD design. Here, we contribute by adding a pre-processor tool. Proposed algo-
rithm converts B-Spline surfaces into volumetric splines in a fully automatic manner
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Highlighted PlugIn functionalities

without any user interaction as depicted in Figure B.2. Properties are required when
designing boundary surfaces; same number of control points at surface interfaces and
same polynomial degrees are mandatory. Moreover, each volume must have exactly
6 boundary surfaces. Despite these strong requirements, the input pre-processor
files (for abqNURBS or other softwares) are automatically generated. A consistent
isogeometric volume is created and will be analysis suitable even if:

• Surface knot values are different for a same parametric direction.

• Borders of surfaces are not geometrically compatible (we need at least 2 inter-
polation control points).

• There is duplicated surfaces.

• Surfaces are not particularly oriented.

• Surfaces are selectionned in a group or in an arbitrary manner.

Script is based on combination properties between surfaces, volumes but also
on volume orientation possibilities. Useful graphs are determined so as to arrive to
a consistent volumetric solution. This algorithm does not conserve isotopological
informations between different trivariate isogeometric instances. Since it is fully
automatic, we need at least one user input which will be distributed among all
meshes of the population. Additional requirements are thus mandatory. An example
of such fast isogeometric model construction is given in Figure B.3.

Figure B.2: Wheel fully automatic trivariate isogeometric parameterization. (A)
Surfaces with required properties from CAD. (B) Computed trivariate parameteriza-
tion. Boundary surfaces of the parameterization are represented in semi-transparent:
color could be different depending on the normal orientation. CAD to isogeometric
analysis suitable model is achieved in 15 seconds.
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B. IGA ROM PlugIn

Figure B.3: Hybrid FEA/IGA model solved in RADIOSS [Occelli 2018]. Trivariate
parameterization of curved parts was partially made by our IGA ROM PlugIn.
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Highlighted PlugIn functionalities

B.2.2 Isotopological abqNURBS input file generation algo-
rithm

This robust algorithm aims to generate pre-processor files (for abqNURBS or other
softwares) from independent but compatible isogeometric connected volumes. In
other words, given a set of trivariate isogeometric control lattices, it determines the
global connectivity, class the geometrical entities and obtain global trivariate para-
metric directions of a complex part. It is done in parallel taking into account iso-
topological considerations: manipulated datas are stored into thread-safe VB.NET
objects during concurrent accesses. In addition, powerful well-known cryptography
hashing algorithms are ensured that the isotopological information is kept. This al-
gorithm is incorporated into the PlugIn and used for above pre-processing purposes
but also to determine files for routine.py (see Figure B.1). Simple boundary condi-
tions and loads can be added to the model directly into Rhinoceros while computing
the pre-processing files. Figure B.4 illustrates the study inputs of the seal part.

Figure B.4: Inputs of a volumetric isogeometric model in order to build pre-
processing files. Conditions are settled directly into Rhinoceros 5. (A) Boundary
conditions and loads applied to the trivariate isogeometric model boundary surfaces.
(B) Blue surface holding boundary conditions. Red surfaces are subject to loads in
(C).

B.2.3 Reduced order model evaluation

Trivariate isogeometric reduced order model evaluation is made directly into the Plu-
gIn interface embedded into Rhinoceros. Dedicated form with appropriated scrolling
bars is automatically generated, e.g. see Chapter 7. During this process the software
RomBuilder.exe (see Figure B.1) from ANSYS (U.S. patent application 16/253,635
filed January 22, 2019) is interrogated and a solution vector is provided. Then, other

235

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI033/these.pdf 
© [T. Maquart], [2019], INSA Lyon, tous droits réservés



B. IGA ROM PlugIn

Python routines are called to reconstruct the isogeometric model with required prop-
erties from evaluation; thus generating a VTU (Visualization Toolkit Unstructured)
file for Paraview.

B.2.4 IGA ROM PlugIn main tabs

Figure B.5: File tab.

Figure B.6: Mesh tab.
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Highlighted PlugIn functionalities

Figure B.7: Mathematics tab.

Figure B.8: Parameterizing tab.

Figure B.9: Partitioning tab.

Figure B.10: Global parameterization tab.
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B. IGA ROM PlugIn

Figure B.11: Nurbs tab.

Figure B.12: Volumetric tab.

Figure B.13: Rom tab.

Figure B.14: Analysis tab.
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Highlighted PlugIn functionalities

Figure B.15: Help tab.
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Appendix C

Additional developments

Additional developments of the manuscript.
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C. Additional developments

C.1 Quadrilateral layout arcs embedding opti-

mization

Firstable, we refer the readers to the work of [Myles et al. 2010]. We briefly de-
velop the constraints attached to an isoparametric curve of the quadrilateral layout
Q used in surface mesh global parameterization (see Chapter 4). Into a disk-like
parameterization embedded in R2, when spanning a seam, connection between 2
nodes n1 and n2 is related by rigid body motion in R2. This is the reasoning be-
hind Equation (C.1). We notice that in general, disk-like parameterizations may
contain overlapping areas depending on the Gaussian curvature and kind of surface
parameterization.

n2u,v = R1n1u,v + t1u,v, across one seam, (C.1a)

n2u,v = R2[R1n1u,v + t1u,v] + t2u,v, across two seams, (C.1b)

n2u,v = R3[R2[R1n1u,v + t1u,v] + t2u,v] + t3u,v, across three seams, (C.1c)

n2u,v = R3R2R1n1u,v +R3R2t
1
u,v +R3t

2
u,v + t3u,v, with reorganization. (C.1d)

This is done successively among all seams crossed by an arc. This yielding to
the generalized form given in Equation (C.2). Remark that either u or v parameter
can be taken into account. Parametric rotations R are restricted to π

2
due to the

4-symmetry nature of the field. Translations t are integers. m+ 1 is the number of
crossed seams.

n2u,v = [(
m∏
i=0

R(m−i)+1)n1u,v + (
m−1∑
i=0

(
m−1−i∏
j=0

R(m−j)+1)ti+1
u,v ) + tm+1

u,v ]. (C.2)

C.2 Quadrilateral layout nodes embedding opti-

mization

Needed moving directions of nodes of Q in order to minimize Equation (4.14) will be
explained. We invite the readers to read the appendix of [Campen and Kobbelt 2014]
for more details. Objective function is defined in Equation (C.3) per 1-ring with
triangles T of the interesting node. Ep(x, y) refers to the parameterization energy
for the 1-ring. The gradient descent vector coordinates which give the direction of
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New topology based element quality criterion

moving are formulated in Equation (C.4). Remember that a geodesic polar map is
used [Welch and Witkin 1994], and for the sake of simplicity dependent variables
will be denoted as x and y for the related node of Q.

Ep(x, y) =
∑
f∈T

[‖∇u− uC‖2Af (x, y) + ‖∇v − vC‖2Af (x, y)], (C.3)

∂ET
p (x, y)

∂x
= [

∂Af (x, y)

∂x
‖∇u− uC‖2 +

∂Af (x, y)

∂x
‖∇v − vC‖2+

2(∇u− uC).
∂∇u
∂x

Af (x, y) + 2(∇v − vC).
∂∇v
∂x

Af (x, y),

(C.4a)

∂ET
p (x, y)

∂y
= [

∂Af (x, y)

∂y
‖∇u− uC‖2 +

∂Af (x, y)

∂y
‖∇v − vC‖2+

2(∇u− uC).
∂∇u
∂y

Af (x, y) + 2(∇v − vC).
∂∇v
∂y

Af (x, y).

(C.4b)

Thus, an embedded node a of Q of coordinates (x, y) (computed in a specific
coordinate system) of Q has be moved in the direction given in Equation (C.5).
This direction d(a) is expressed for the 1-ring, with summation over the triangles
f ∈ T incident to the node a.

d(a) = −(
∂Ep(x, y)

∂x
,
∂Ep(x, y)

∂y
) = −

∑
f∈T

(
∂ET

p (x, y)

∂x
,
∂ET

p (x, y)

∂y
). (C.5)

C.3 New topology based element quality criterion

Several mesh metrics exist to quantify hexahedral mesh quality such as aspect ratio,
scaled Jacobian, distortion, parallel deviation and so on. Jacobian ratio is widely
used and indicates if the mapping between element space and real space is becoming
computationally unreliable. For a hexahedral element, this is in general the ratio of
the maximum to the minimum sampled value of Ri. Ri are scalar values at given
points and represent the magnitude of the mapping function between element natural
coordinates and real space. They are sampled in corner nodes of the hexahedral
element. In an ideally shaped element, Ri are relatively constant over the element,
and do not change sign.

Here, we want to explicit a new formulation of hexahedral element quality based
on topological properties of the 8-node brick. By topological we mean topology,
i.e., the link between geometry and topology for the element. Indeed, we want to
tackle and characterize the difference between the parametric space and physical
space of the element. This approach is quite similar to the Jacobian ratio, but it

243

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI033/these.pdf 
© [T. Maquart], [2019], INSA Lyon, tous droits réservés



C. Additional developments

can be measured from the point of view of the Gauss-Bonnet theorem (see Theorem
2.3). In this spirit, we define the 3π

2
Gaussian curvature quality metric. It estimates

at each hexahedral node the angle deviation from the classic cube angle of 3π
2

.
Element quality scalar value is then determined by the deviation summation over
the 8 nodes. Values are ranking from 0 to 6π. Equation (C.6) establishes the Gauss-
Bonnet theorem for a single brick of 8 nodes both in the continuous and discrete
case: ∫

S

KdS = 2πχ(S) =
8∑
i=1

[
2π −

3∑
j=1

βji
]

= 4π, (C.6)

where S is the boundary surface of the element, χ(S) the Euler characteristic
of the hexahedral simplicial complex, K the Gaussian curvature and βji the angle
related to the node i between all of its 3 incident edges, j ∈ {1, 2, 3}. The new
quality metric Qh is expressed in Equation (C.7).

Qh =
8∑
i=1

|3π
2
−

3∑
j=1

βji |. (C.7)

For a perfect cube, Qh = 0 is trivial. Qmax
h is not immediatly obvious. In R3, by

concentrating the Gaussian curvature at 2 nodes on a brick, we obtain Qmax
h = 6π

as written in Equation (C.8b). Each of the 2 nodes collecting all the Gaussian
curvature in R3, whether K = 0 for concerned nodes in Equation (C.8a) in order to
respect theorems. ∫

S

KdS =
2∑
i=1

2π − 0 +
8∑
i=3

2π − 2π = 4π, (C.8a)

Qmax
h =

2∑
i=1

|3π
2
− 0|+

8∑
i=3

|3π
2
− 2π| = 6π. (C.8b)

In other words, it is geometrically a line embedded in the R3 space. A quality
metric value example Qb

h can be demonstrated by flattening the hexahedral element
into the R2 plane. Equation (C.9) refer to maximum value admissible with this
metric in practical cases. Figure C.1 shows an example of the metric applied to
large deformations.

Qb
h =

4∑
i=1

|3π
2
− 2π|+

8∑
i=5

|3π
2
− π| = 4π. (C.9)

Depending on the geometry, this criterion does not always capture element vol-
ume variation in particular when stretching along faces normals, if considering a
perfect cube.
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New topology based element quality criterion

Figure C.1: 3π
2
Gaussian curvature element quality metric. Example is shown using

meshes from Chapter 7. (A) Element quality for the half-seal undeformed shape.
(B) Element quality for the associated deformed shape of (A) at the intermediate
loading step, t = 0.5. Element quality has been computed by our IGA ROM PlugIn
(see Appendix B).
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Hraiech, Najah (2010). “Morphing de maillage et indexation de forme pour la
modélisation du fémur humain”. PhD thesis. Rennes 1.

K. Dey, Tamal, Jian Sun, and Yusu Wang (2010). “Approximating Cycles in a
Shortest Basis of the First Homology Group from Point Data”. ACM 26th Annual
Symposium on Computational Geometry, pp. 166–175.

Lai, Yu-Kun et al. (2010). “Metric-driven rosy field design and remeshing”. IEEE
Transactions on Visualization and Computer Graphics 16.1, pp. 95–108.

Li, Bo et al. (2010). “Generalized PolyCube Trivariate Splines”. Shape Modeling
International Conference (SMI), 2010, pp. 261–265.

Lipton, Scott et al. (2010). “Robustness of isogeometric structural discretizations
under severe mesh distortion”. Computer Methods in Applied Mechanics and
Engineering 199.5-8, pp. 357–373.

Myles, Ashish et al. (2010). “Feature-aligned T-meshes”. ACM Transactions on
Graphics (TOG). Vol. 29. 4. ACM, p. 117.

Zhang, Muyang et al. (2010). “A wave-based anisotropic quadrangulation method”.
ACM Transactions on Graphics (TOG). Vol. 29. 4. ACM, p. 118.

Bommes, David, Timm Lempfer, and Leif Kobbelt (2011). “Global structure opti-
mization of quadrilateral meshes”. Computer Graphics Forum. Vol. 30. 2. Wiley
Online Library, pp. 375–384.

Chinesta, Francisco, Pierre Ladeveze, and Eĺıas Cueto (2011). “A short review on
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de LYON, École Doctorale MEGA ED 162.

253

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI033/these.pdf 
© [T. Maquart], [2019], INSA Lyon, tous droits réservés



Bibliography

Al-Akhras, Hassan et al. (2016). “Isogeometric analysis-suitable trivariate NURBS
models from standard B-Rep models”. Comput. Methods Appl. Mech. Engrg.
307, pp. 256–274.

Alliez, Pierre, Sylvain Pion, and Ankit Gupta (2016). “Principal Component Anal-
ysis”. CGAL User and Reference Manual. 4.9. CGAL Editorial Board.

Courard, Amaury (2016). “PGD-Abaques virtuels pour l’optimisation géométrique
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Maquart, G et al. (2017). “Backbending in the pear-shaped Th 90 223 nucleus:
Evidence of a high-spin octupole to quadrupole shape transition in the actinides”.
Physical Review C 95.3, p. 034304.

McNeel, Robert (2017a). Grasshopper for Rhinocéros 5.
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