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Résumé

Cette thèse est constituée de quatre chapitres indépendants, puisant leur origine en géné-
tique des populations et en biologie évolutive, et liés à la théorie des processus de fragmen-
tation ou de coalescence. Le chapitre 2 traite d’un arbre aléatoire binaire infini construit
à partir d’un processus ponctuel coalescent équipé de mutations poissonniennes le long de
ses branches et d’une mesure finie sur sa frontière. La partition allélique – partition de la
frontière en parties qui portent la même combinaison de mutations – est définie pour cet
arbre et sa mesure d’intensité est explicitée. Les chapitres 3 et 4 sont dédiés à l’étude de
processus de coalescence et de fragmentation emboîtés – plus précisément à valeurs dans les
couples de partitions emboîtées –, qui sont des analogues des Λ-coalescents et des fragmen-
tations homogènes. Ces objets visent à modéliser un arbre de gènes niché dans un arbre
d’espèces. Les coalescents emboîtés sont caractérisés par leurs coefficients de Kingman
et leurs mesures de coagulation (éventuellement bivariées), tandis que les fragmentations
emboîtées sont caractérisées par leurs coefficients d’érosion et leurs mesures de disloca-
tion (éventuellement bivariées). Enfin le chapitre 5 pose la construction de processus de
fragmentation à vitesses aléatoires, qui sont des processus de fragmentation où chaque
fragment possède une marque qui accélère ou ralentit son taux de fragmentation, et où les
marques de vitesse évoluent comme des processus de Markov positifs auto-similaires. Une
caractérisation de type Lévy-Khintchine de ces processus de fragmentation généralisés est
donné, ainsi que des conditions suffisantes pour l’absorption dans un état gelé, et pour
que la généalogie du processus ait une longueur totale finie.

Abstract

This thesis consists of four self-contained chapters whose motivations stem from population
genetics and evolutionary biology, and related to the theory of fragmentation or coales-
cent processes. Chapter 2 introduces an infinite random binary tree built from a so-called
coalescent point process equipped with Poissonian mutations along its branches and with
a finite measure on its boundary. The allelic partition – partition of the boundary into
groups carrying the same combination of mutations – is defined for this tree and its inten-
sity measure is described. Chapters 3 and 4 are devoted to the study of nested – i.e. taking
values in the space of nested pairs of partitions – coalescent and fragmentation processes,
respectively. These Markov processes are analogs of Λ-coalescents and homogeneous frag-
mentations in a nested setting – modeling a gene tree nested within a species tree. Nested
coalescents are characterized in terms of Kingman coefficients and (possibly bivariate)
coagulation measures, while nested fragmentations are similarly characterized in terms
of erosion coefficients and (possibly bivariate) dislocation measures. Finally Chapter 5
gives a construction of fragmentation processes with speed marks, which are fragmenta-
tion processes where each fragment is given a mark that speeds up or slows down its rate
of fragmentation, and where the marks evolve as positive self-similar Markov processes.
A Lévy-Khinchin representation of these generalized fragmentation processes is given, as
well as sufficient conditions for their absorption in finite time to a frozen state, and for
the genealogical tree of the process to have finite total length.
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Chapter 1

Introduction

Stochastic approaches to modeling genealogical or phylogenetic trees play a central role in
population genetics and modern evolutionary biology. In this thesis, I study new models
of random trees inspired by classic results and ideas in mathematical biology. Before going
into detail, I briefly present two problems that motivated my research over the last years.

1.1 Kingman coalescent and Ewens sampling formula

1.1.1 Kingman coalescent: a universal random genealogy

First, consider the classical Moran model, which describes the evolution of a population
of n individuals, where n ∈ N is constant in time. Its dynamics are as follows:

1. At any time t ∈ R, n distinct individuals are alive and labeled with [n] := {1, . . . , n}.

2. From any point in time, at rate
(n

2
)
an individual j is chosen uniformly among the

population; j is killed and replaced by an offspring of another individual i chosen
among the remaining population.

This simple model can be entirely described by a random set of points (t, i, j) ∈ M ⊂
R× [n]2, whereM is a Poisson point process with intensity

(n
2
)

dt⊗µ, where dt denotes the
Lebesgue measure and µ is the uniform probability on ordered pairs of distinct elements
of [n]. For two times t < s, the genealogy of individuals between those times is easily
recovered from the point processM by following lineages backward in time (see Figure 1.1).

As the point process M is invariant under time-shifts, let us focus on the population at
time 0. Note that going back in time, there exists a first time Tn > 0, which is almost
surely finite, such that all n individuals alive at time 0 share the same ancestor at time
−Tn. It is not hard to see that Tn is distributed as

Tn
(d)=

n∑
k=2

Xk,

where (Xk, k ≥ 1) are independent exponential random variables with parameter
(k

2
)
, and

that the genealogy of individuals at this time is a rooted tree with n leaves defined by the
following backward-in-time procedure:
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1. Start with n lineages labeled with [n].

2. Let each pair of lineages coalesce (i.e. merge into a single lineage) at rate 1.

This random tree is known as the Kingman n-coalescent [58]. Other than being the
genealogy of the Moran model, which is arguably the simplest toy model of population
genetics one could think of, the n-coalescent is in fact a universal object. Indeed, it appears
as the limiting genealogy of many population models, notably the Wright-Fisher model
and more generally any Cannings model under suitable assumptions (these models are
discrete population models that I do not describe here for conciseness – see e.g. [61] for
an overview of these models). Two key properties of the Kingman coalescent make it an
interesting mathematical object of study:

• it is sampling consistent, i.e. looking at the n first lineages in an m-coalescent for
m > n yields the n-coalescent.

• it comes down from infinity, i.e. it makes sense to define a coalescent started from
an infinite number of lineages, which coalesce into finitely many lineages for any
positive time.

We have identified a natural genealogy for a sample of individuals in a population. Now
in order to study the effect of evolution, we need an additional process modeling it, su-
perimposed on our random tree. This is the object of the next section.

1.1.2 Ewens sampling formula

Assume that individuals carry some genetic code (think of a long sequence of nucleotides)
that is entirely duplicated when a parent produces an offspring (clonal reproduction).
However, rare mutations, i.e. punctual changes in the sequence of an individual, may
occur at random times, so at a fixed time individuals may be partitioned into classes with
respect to the genetic code they share. A particular genetic sequence is called an allele so
this partition into (allelic) classes is called the allelic partition. Let us encode the allelic

t

s
1 2 3 4 5 1 2 3 4 5 2 51 4 3

Figure 1.1 – Moran model for n = 5, between times t < s. Time flows from top to bot-
tom, and events of replacement (u, i, j) are represented by horizontal blue arrows at time-
coordinate u, pointing from the vertical line indexed by i towards the vertical line indexed
by j. In this example, the ancestors at time t of the population at time s are individuals 2
and 3, respectively with descendants {1, 2, 4} (orange lineages) and {3, 5} (red lineages).
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partition by the sequence (A1, A2, . . . An), where Ak is the number of alleles shared by
exactly k co-existing individuals in the population.

We take for granted the following simplifying assumptions:

• the infinite allele assumption, stating that any mutation gives rise to an allele that
was never observed before.

• mutations are neutral, i.e. alleles do not affect the dynamics of the population in the
underlying model.

A natural mathematical model for the allelic partition of a population of size n under-
going neutral selection is for instance the n-coalescent endowed with a point process on
its branches recording where mutations have occurred. More precisely, given Tn the n-
coalescent and a real number θ > 0, assume that mutations arise at rate θ/2 along the
branches of Tn. Then the distribution of the allelic partition (Ak, 1 ≤ k ≤ n) is given by
the following so-called Ewens sampling formula.

P
(
A1 = a1, . . . , An = an

)
= n!
θ(θ + 1) · · · (θ + n− 1)

n∏
k=1

(
θ
k

)ak
ak!

,

for any sequence (a1, . . . , an) of nonnegative integers such that ∑k kak = n. This formula
is named after Ewens [42] who discovered it in the study of the Wright-Fisher model. This
sampling formula inspired Chapter 2 of this thesis, which aims at describing an analog of
the allelic partition (Ak, 1 ≤ k ≤ n) for some infinite trees – the so-called coalescent point
processes, which can also be seen as limits of supercritical birth-death trees endowed with
the uniform measure on leaves.

The other chapters of this thesis are connected to (or at least draw some inspiration from)
the second idea I present.

1.2 Markov branching trees and fragmentation processes

Markov branching trees (MBT) were introduced by Aldous [3] in an attempt to identify
some basic properties that models for phylogenetic trees should satisfy. Here, trees are
rooted discrete trees with labeled leaves and for simplicity let us consider only binary trees,
although the same ideas were developed for trees with any kind of degree distribution.

Definition 1.1. Let q = (qn, n ≥ 2) be a family of probability measures, such that qn is
supported on [n − 1] and for all i ∈ [n − 1], qn(i) = qn(n − i). The law of the Markov
branching tree with n leaves associated with (qn, n ≥ 2) is denoted by MBT(q, n) and
defined inductively by:

1. Let K ∼ qn, and conditional on K, let T ′ ∼ MBT(q,K) and T ′′ ∼ MBT(q, n −K)
be independent.

2. Define Tn as the grafting of T ′ and T ′′ on a root vertex, with uniformly relabeled
leaves. Then Tn is distributed as MBT(q, n).
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Note that in the last definition, qn is the distribution of the number of leaves to the left of
the root in the MBT with n leaves. It is immediate that these trees are exchangeable (i.e.
invariant under permutations of the labels of the leaves). Some MBTs, including natural
examples such as the uniform binary tree on n leaves or the Yule tree (where qn is uniform
on [n− 1]), are sampling consistent, meaning that if Tn+1 ∼ MBT(q, n+ 1), then the tree
obtained by erasing the leaf labeled n+ 1 in Tn+1 has law MBT(q, n).

The distributions (qn, n ≥ 2) associated with sampling consistent MBTs have been fully
characterized in the 2000’s, and in terms of binary Markov branching trees this translates
to the following result.

Theorem 1.2 (Haas et al. [53, Proposition 3]). Let q = (qn, n ≥ 2) be the branching laws
of a sampling consistent MBT. Then there is a measure µ on [0, 1] that is symmetric (i.e.
invariant under x 7→ 1− x) and satisfies∫

[0,1]
x(1− x)µ(dx) + µ({0, 1}) <∞,

such that for all n ≥ 2 and 1 ≤ k < n,

qn(k) = 1
αn

(
n

k

)(∫
(0,1)

xk(1− x)n−kµ(dx) + µ({0})1k=1 + µ({1})1k=n−1

)
, (1.1)

with
αn =

∫
(0,1)

1− xn − (1− x)nµ(dx) + nµ({0, 1}).

Furthermore, µ is unique up to a multiplicative constant.

Sampling consistent MBTs are in fact connected to the so-called exchangeable fragmenta-
tion processes with values in the partitions of N (see [10] for a comprehensive description
of this framework). Informally, they can be described as branching processes recording a
genealogy of fragments, which split independently of the others and in the same way as
the original fragment. This genealogy is always a Markov branching tree, and the previous
theorem establishes the converse. To be more specific, if µ satisfies the conditions of the
theorem and if one defines

ν := µ|(0,1) ◦ ϕ−1,

where ϕ : (0, 1)→ S ↓ :=
{
(s1, s2, . . .) ∈ [0, 1]N, s1 ≥ s2 ≥ . . . and ∑

i si ≤ 1
}
is the map

defined by

ϕ(x) =

(x, 1− x, 0, . . .) if x ≥ 1/2,
(1− x, x, 0, . . .) if x < 1/2,

then the genealogy of a fragmentation process with erosion coefficient µ({0, 1}) and dislo-
cation measure ν (see Chapter 3 in [10]) is a binary MBT with distribution given by (1.1).

Viewing exchangeable partition-valued fragmentation processes as natural candidates for
models of phylogenetic trees, I tried to study some of their generalizations in directions
that were inspired, to some extent, by evolutionary biology.
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1.3 Outline of the thesis

Chapter 2 is joint work with Amaury Lambert, and published in The Annals of Applied
Probability [37]. We study a coalescent point process with mutations, that is a random
infinite binary ultrametric real tree equipped with a point process of mutations on its
branches and with a finite measure ` on its boundary (i.e. its leaves). As I have stated at
the end of Section 1.1, this model of random tree can be seen as the limit as t→∞ of a
supercritical birth-death tree conditioned on non-extinction at time t and endowed with
a (rescaled) uniform measure on leaves. The allelic partition of this tree is represented by
a point measure ∑i δ`(Ai) recording the mass `(Ai) of each allelic class Ai.

We first study the clonal part of this tree, i.e. the subtree carrying the same allele as the
root. We show that the clonal boundary can be viewed as a random regenerative subset
of R whose distribution we characterize. From this, the intensity of the allelic partition
is deduced. Finally, we study a natural coupling of clonal subtrees for varying mutation
rates.

The rest of this thesis is set in the framework of exchangeable partition-valued fragmen-
tation and coalescent processes (generalizations of the Kingman coalescent; I refer again
to [10] for the theory).

More precisely, Chapter 3 and 4 are two sides (respectively, the coalescent side and the
fragmentation side) of the same coin, which is the modeling of nested trees – a gene tree
nested into a species tree, with terminology inspired by phylogenetics, and which meaning
will be made clear in the aforementioned chapters. In each of these chapters, we define
in a general way nested partition-valued processes (Πg(t),Πs(t), t ≥ 0), with Πg(t) finer
than Πs(t) for all t ≥ 0. The idea is the following: the genealogy of Πg models a gene tree,
which is nested into the genealogy of Πs modeling the species tree. Using exchangeability,
we characterize the possible distributions of these nested partition-valued processes, with
results similar to Theorem 1.2.

Chapter 3 is joint work with Airam Blancas, Amaury Lambert and Arno Siri-Jégousse,
and published in Electronic Journal of Probability [18]. In it, we only consider simple
nested coalescents, which are a nested version of Λ-coalescents. More precisely, these sim-
ple processes are such that each partition only undergoes one coalescence event at a time
(but possibly the same time). We characterize the law of these nested coalescents as fol-
lows. In the absence of gene coalescences, species blocks undergo Λ-coalescent type events
and in the absence of species coalescences, gene blocks lying in the same species block
undergo i.i.d. Λ-coalescents. Simultaneous coalescence of the gene and species partitions
are governed by an intensity measure νs on (0, 1]×M1([0, 1]) providing the frequency of
species merging and the law in which are drawn (independently) the frequencies of genes
merging in each coalescing species block. As an application, we also study the conditions
under which a simple nested coalescent comes down from infinity.

In Chapter 4 (in press in Annales de l’Institut Henri Poincaré, Probabilités et Statis-
tiques [36]), I characterize the possible distributions of nested fragmentation processes in
terms of erosion coefficients and dislocation measures. Three forms of erosion and two
forms of dislocation are identified – one being specific to the nested setting and relating
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to a bivariate paintbox process.

Chapter 5 (submitted to Advances in Applied Probability) aims at studying fragmentation
processes with speed marks. More precisely, each fragment is given a mark that speeds
up or slows down its rate of fragmentation, and the marks evolve as positive self-similar
Markov processes. These processes are a natural generalization of self-similar fragmen-
tations [11] and are comparable to the so-called self-similar growth-fragmentations of [9].
The main difference is that fragmentations with marks are still partition-valued processes
whereas growth-fragmentation processes only describe the branching process of the marks,
and need restrictive assumptions on their dynamics – notably binary, conservative splits.

Much like in previous work on fragmentation, I first give a Lévy-Khinchin representation
of these generalized fragmentation processes using techniques from positive self-similar
Markov processes and from classical fragmentation processes. Then I derive sufficient
conditions for their absorption in finite time to a frozen state, and for the genealogical
tree of the process to have finite total length.
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Chapter 2

Mutations on a random binary
tree with measured boundary

Joint work with Amaury Lambert. This chapter is published in The Annals of Applied
Probability [37].
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2.1 Introduction

In this paper, we give a new flavor of an old problem of mathematical population genetics
which is to characterize the so-called allelic partition of a population. To address this
problem, one needs to specify a model for the genealogy (i.e., a random tree) and a model
for the mutational events (i.e., a point process on the tree). Two typical assumptions that
we will adopt here are: the infinite-allele assumption, where each mutation event confers
a new type, called allele, to its carrier; and the neutrality of mutations, in the sense that
co-existing individuals are exchangeable, regardless of the alleles they carry. Here, our
goal is to study the allelic partition of the boundary of some random real trees that can
be seen as the limits of properly rescaled binary branching processes.

In a discrete tree, a natural object describing the allelic partition without labeling alleles is
the allele frequency spectrum (Ak)k≥1, where Ak is the number of alleles carried by exactly
k co-existing individuals in the population. In the present paper, we start from a time-
inhomogeneous, supercritical binary branching process with finite population N(t) at any
time t, and we are interested in the allelic partition of individuals ‘co-existing at infinity’
(t → ∞), that is the allelic partition at the tree boundary. To define the analogue of the
frequency spectrum, we need to equip the tree boundary with a measure `, which we do
as follows. Roughly speaking, if Nu(t) is the number of individuals co-existing at time t in
the subtree Tu consisting of descendants of the same fixed individual u, the measure `(Tu)
is proportional to limt↑∞Nu(t)/N(t). It is shown in Section 2.5 that the tree boundary
of any supercritical branching process endowed with the (properly rescaled) tree metric
and the measure ` has the same law as a random real tree, called coalescent point process
(CPP) generated from a Poisson point process, equipped with the so-called comb metric
[60] and the Lebesgue measure. Taking this result for granted, we will focus in Sections
2.2, 2.3 and 2.4 on coalescent point processes with mutations.

In the literature, various models of random trees and their associated allelic partitions have
been considered. The most renowned result in this context is Ewens’ Sampling Formula
[42], a formula that describes explicitly the distribution of the allele frequency spectrum
in a sample of n co-existing individuals taken from a stationary population with genealogy
given by the Wright-Fisher model with population size N and mutations occurring at birth
with probability θ/N . When time is rescaled by N and N → ∞, this model converges
to the Kingman coalescent [58] with Poissonian mutations occurring at rate θ along the
branches of the coalescent tree. In the same vein, a wealth of recent papers has dealt
with the allelic partition of a sample taken from a Λ-coalescent or a Ξ-coalescent with
Poissonian mutations, e.g., [5, 7, 47, 48].

In parallel, several authors have studied the allelic partition in the context of branching
processes, starting with [51] and the monograph [89], see [24] and the references therein.
In a more recent series of papers [22, 23, 33, 64], the second author and his co-authors
have studied the allelic partition at a fixed time of so-called ‘splitting trees’, which are
discrete branching trees where individuals live i.i.d lifetimes and give birth at constant
rate. In particular, they obtained the almost sure convergence of the normalized frequency
spectrum (Ak(t)/N(t))k≥1 as t→∞ [22] as well as the convergence in distribution of the
(properly rescaled) sizes of the most abundant alleles [23]. The limiting spectrum of these
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trees is to be contrasted with the spectrum of their limit, which is the subject of the
present study, as explained earlier.

Another subject of interest is the allelic partition of the entire progeny of a (sub)critical
branching process, as studied in particular in [14]. The scaling limit of critical branching
trees with mutations is a Brownian tree with Poissonian mutations on its skeleton. Cutting
such a tree at the mutation points gives rise to a forest of trees whose distribution is
investigated in the last section of [14], and relates to cuts of Aldous’ CRT in [4] or the
Poisson snake process [2]. The couple of previously cited works not only deal with the
limits of allelic partitions for the whole discrete tree, but also tackle the limiting object
directly. This is also the goal of the present work, but with quite different aims.

First, we construct in Section 2.2 an ultrametric tree with boundary measured by a
‘Lebesgue measure’ `, from a Poisson point process with infinite intensity ν, on which
we superimpose Poissonian neutral mutations with intensity measure µ. Section 2.2 ends
with Proposition 2.12, which states that the total number of mutations in any subtree is
either finite a.s. or infinite a.s. according to an explicit criterion involving ν and µ.

The structure of the allelic partition at the boundary is studied in detail in Section 2.3.
Theorem 2.15 ensures that the subset of the boundary carrying no mutations (or clonal
set) is a (killed) regenerative set with explicit Laplace exponent in terms of ν and µ and
measure given in Corollary 2.20. The mean intensity Λ of the allele frequency spectrum
at the boundary is defined by Λ(B) := E

∑
1`(R)∈B, where the sum is taken over all

allelic clusters at the boundary. It is explicitly expressed in Proposition 2.23. An a.s.
convergence result as the radius of the tree goes to infinity is given in Proposition 2.26
for the properly rescaled number of alleles with measure larger than q > 0, which is the
analogue of ∑k≥q Ak in the discrete setting.

Section 2.4 is dedicated to the study of the dynamics of the clonal (mutation-free) subtree
when mutations are added or removed through a natural coupling of mutations in the case
when µ(dx) = θdx. It is straightforward that this process is Markovian as mutations are
added. As mutations are removed, the growth process of clonal trees also is Markovian,
and its semigroup and generator are provided in Theorem 2.29.

Section 2.5 is devoted to the links between measured coalescent point processes and mea-
sured pure-birth trees which motivate the present study. Lemma 2.35 gives a represen-
tation of every CPP with measured boundary, in terms of a rescaled pure-birth process
with boundary measured by the rescaled counting measures at fixed times. Conversely,
Theorem 2.36 gives a representation of any such pure-birth process in terms of a CPP
with intensity measure ν(dx) = dx

x2 , as in the case of the Brownian tree.

2.2 Preliminaries and Construction

2.2.1 Discrete Trees, Real Trees

Let us recall some definitions of discrete and real trees, which will be used to define the
tree given by a so-called coalescent point process.

In graph theory, a tree is an acyclic connected graph. We call discrete trees such graphs
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that are labeled according to Ulam–Harris–Neveu’s notation by labels in the set U of finite
sequences of non-negative integers:

U =
⋃
n≥0

Zn+ = {u1u2 . . . un, ui ∈ Z+, n ≥ 0},

with the convention Z0
+ = {∅}.

Definition 2.1. A rooted discrete tree is a subset T of U such that

• ∅ ∈ T and is called the root of T

• For u = u1 . . . un ∈ T and 1 ≤ k < n, we have u1 . . . uk ∈ T .

• For u ∈ T and i ∈ Z+ such that ui ∈ T , for 0 ≤ j ≤ i, we have uj ∈ T and uj is
called a child of u.

For n ≥ 0, the restriction of T to the first n generations is defined by:

T|n := {u ∈ T , |u| ≤ n},

where |u| denotes the length of a finite sequence. For u, v ∈ T , if there is w ∈ U such that
v = uw, then u is said to be an ancestor of v, noted u � v. Generally, let u ∧ v denote
the most recent common ancestor of u and v, that is the longest word u0 ∈ T such that
u0 � u and u0 � v. The edges of T as a graph join the parents u and their children ui.

For a discrete tree T , we define the boundary of T as

∂T := {u ∈ T , u0 /∈ T } ∪ {v ∈ ZN+, ∀u ∈ U , u � v ⇒ u ∈ T },

and we equip ∂T with the σ-field generated by the family (Bu)u∈T , where

Bu := {v ∈ ∂T , u � v}.

Remark 2.2. With a fixed discrete tree T , a finite measure L on ∂T is characterized by
the values (L (Bu))u∈T . Reciprocally if the number of children of u is finite for each u ∈ T ,
by Carathéodory’s extension theorem, any finitely additive map L : {Bu, u ∈ T } → [0,∞)
extends uniquely into a finite measure L on ∂T .

By assigning a positive length to every edge of a discrete tree, one gets a so-called real
tree. Real trees are defined more generally as follows, see e.g. [41].

Definition 2.3. A metric space (T, d) is a real tree if for all x, y ∈ T,

• There is a unique isometry fx,y : [0, d(x, y)] → T such that fx,y(0) = x and
fx,y(d(x, y)) = y,

• All continuous injective paths from x to y have the same range, equal to
fx,y([0, d(x, y)]).

This unique path from x to y is written [[x, y]]. The degree of a point x ∈ T is defined as
the number of connected components of T \ {x}, so that we may define:
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• The leaves of T are the points with degree 1.

• The internal nodes of T are the points with degree 2.

• The branching points of T are the points with degree larger than 2.

One can root a real tree by distinguishing a point % ∈ T, called the root.

From this definition, one can see that for a rooted real tree (T, d, %), for all x, y ∈ T, there
exists a unique point a ∈ T such that [[%, x]] ∩ [[%, y]] = [[%, a]]. We call a the most recent
common ancestor of x and y, noted x ∧ y. There is also an intrinsic order relation in
a rooted tree: if x ∧ y = x, that is if x ∈ [[%, y]], then x is called an ancestor of y, noted
x � y.

We will call a rooted real tree a simple tree if it can be defined from a discrete tree by
assigning a length to each edge. From now on, we will restrict our attention to simple
trees.

Definition 2.4. A simple (real) tree is given by (T , α, ω), where T ⊂ U is a rooted
discrete tree, and α and ω are maps from T to R satisfying

ζ(u) := ω(u)− α(u) > 0,

∀u ∈ T , ∀i ∈ Z+, ui ∈ T =⇒ α(ui) = ω(u).

Here α(u) and ω(u) are called the birth time and death time of u and ζ(u) is the life
length of u.

We will sometimes consider simple trees (T , α, ω,L ) equipped with L a measure on
their boundary ∂T .

We call a reversed simple tree a triple (T , α, ω) where (T ,−α,−ω) is a simple tree.
We may sometimes omit the term “reversed” when the context is clear enough.

The restriction of A = (T , α, ω) to the first n generations is the simple tree defined by

A|n = (T|n, α|T|n , ω|T|n).

One can check that a simple tree (T , α, ω) defines a unique real rooted tree defined as the
completion of (T, d, %), with

% := (∅, α(∅)),
T := {%} ∪

⋃
u∈T
{u} × (α(u), ω(u)] ⊂ U × R,

d((u, x), (v, y)) :=

|x− y| if u � v or v � u,
x+ y − 2ω(u ∧ v) otherwise.

(2.1)

In particular, we have (u, x) ∧ (v, y) = (u ∧ v, ω(u ∧ v)).

In this paper, we construct random simple real trees with marks along their branches.
We see these trees as genealogical/phylogenetic trees and the marks as mutations that
appear in the course of evolution. We will assume that each new mutation confers a new
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type, called allele, to its bearer (infinitely-many alleles model). Our goal is to study
the properties of the clonal subtree (individuals who do not bear any mutations, black
subtree in Figure 2.1) and of the allelic partition (the partition into bearers of distinct
alleles of the population at some fixed time).

Figure 2.1 – Simple tree with mutations

2.2.2 Comb Function

Definition

We now introduce ultrametric trees, using a construction with comb functions following
Lambert and Uribe Bravo [60].

Definition 2.5. Let T > 0 and I = [0, T ]. Let also f : I → [0,∞) such that

#{x ∈ I, f(x) > ε} <∞ ε > 0.

The pair (f, I) will be called a comb function. For any real number z > maxI f , we
define the ultrametric tree of height z associated with (f, I) as the real rooted tree
Tf which is the completion of (Sk, %, df ), where Sk ⊂ I × [0,∞) is the skeleton of the
tree, and Sk, % and df are defined by

% := (0, z),
Sk := {0} × (0, z] ∪ {(t, y) ∈ I × (0, z], f(t) > y},

df :


Sk2 −−−→ [0,∞)

((t, x), (s, y)) 7−−−→

 |max(t,s] f − x|+ |max(t,s] f − y| if t < s,

|x− y| if t = s.

The set {0} × (0, z] ⊂ Sk is called the origin branch of the tree.

For t ∈ I, t > 0, we call the lineage of t the subset of the tree Lt ⊂ Tf defined as the
closure of the set

{(s, x) ∈ Sk, s ≤ t, ∀s < u ≤ t, f(u) ≤ x}.

For t = 0 one can define L0 as the closure of the origin branch.
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Remark 2.6. One can check that df is a distance which makes (Sk, df ) a real tree, and
so its completion (Tf , df ) also is a real tree. Furthermore, the fact that {f > ε} is finite
for all ε > 0 ensures that it is a simple tree, since the branching points in Sk are the points
(t, f(t)) with f(t) > 0. For a visual representation of the tree associated with a comb
function, see Figure 2.2, where the skeleton is drawn in vertical segments and the dashed
horizontal segments represent branching points.

t

f(t)

0

Figure 2.2 – Comb function and its associated tree.

Proposition 2.7. With the same notation as in Definition 2.5, for a fixed comb function
(f, I) and a real number z > maxI f , writing Tf for the associated real tree, the following
holds. For each t ∈ I, there is a unique leaf αt ∈ Tf such that

Lt = [[%, αt]].

Furthermore, the map α : t 7→ αt is measurable with respect to the Borel sets of I and Tf .

Proof. For t = 0, L0 is defined as the closure of the origin branch {0} × (0, z]. Since
df ((0, x), (0, y)) = |x− y|, the map

ϕ0 :

(0, z] −→ Sk
x 7−→ (0, x)

is an isometry, and since Tf is defined as the completion of the skeleton Sk, there is a
unique isometry ϕ̃0 : [0, z]→ Tf which extends ϕ0. Therefore we define α0 := ϕ̃0(0) ∈ Tf ,
which satisfies L0 = [[%, α0]] since ϕ̃0 is an isometry. Also α0 is a leaf of Tf because it
is in Tf \ Sk. Indeed, since Tf is the completion of Sk which is connected, Tf \ {α0} is
necessarily also connected, which means that α0 has degree 1.

Now for a fixed t ∈ I, t > 0, write (ti, xi)i≥0 for the (finite or infinite) sequence with values
in

{(0, z)} ∪ {(s, x) ∈ I × (0,∞), f(s) = x}
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defined inductively (as long as they can be defined) by (t0, x0) = (0, z) and

∀i ≥ 0, xi+1 := max
(ti,t]

f,

and ti+1 := max{s ∈ (ti, t], f(s) = xi+1}.

• If the sequence (ti, xi)i≥0 is well defined for all i ≥ 0, then since f is a comb function,
we necessarily have that xi → 0 as i→∞.

• On the other hand, the sequence (ti, xi)0≤i≤n is finite if and only if it is defined up
to an index n such that either tn = t or f is zero on the interval (tn, t]. In that case,
we still define for convenience xn+i := 0, tn+i := tn for all i ≥ 1.

Now it can be checked that we have
∞⋃
i=0

[xi+1, xi) \ {0} = (0, z),

and that Lt is defined as the closure of the set

At :=
∞⋃
i=0
{ti} × ([xi+1, xi) \ {0}) ⊂ Sk.

Also, by definition of the sequence (ti, xi)0≤i, the distance df satisfies, for
(s, x), (u, y) ∈ At,

df ((s, x), (u, y)) = |x− y|.

Therefore the following map is an isometry (and it is well defined because xi ↓ 0).

ϕt :

(0, z) −→ Sk
x 7−→ (ti, x) if x ∈ [xi+1, xi) for an index i ≥ 0.

As in the case t = 0, this isometry can be extended to ϕ̃t : [0, z] → Tf and we define
αt := ϕ̃t(0). It is a leaf of Tf satisfying Lt = [[%, αt]] for the same reasons as for 0.

It remains to prove that α : t 7→ αt is measurable. It is enough to show that it is right-
continuous, because in that case the pre-image of an open set is necessarily a countable
union of right-open intervals, which is a Borel set. Now for t < t′ ∈ I, by taking limits
along the lineages Lt and Lt′ , it is easily checked that the distance between αt and αt′ can
be written

df (αt, αt′) = 2 max
(t,t′]

f,

and since f is a comb function, necessarily we have

max
(t,t′]

f −−→
t′↓ t

0.

Hence α is right-continuous, therefore measurable.

It follows from Proposition 2.7 that the Lebesgue measure λ on the real interval I can be
transported by the map α to a measure on the tree Tf , or more precisely on its boundary,
that is the set of its leaves.
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Definition 2.8. With the same notation as in Definition 2.5 and Proposition 2.7, for any
fixed comb function (f, I) and z > maxI f , writing Tf for the associated real tree, we
define the measure on the boundary of Tf as the measure

` := λ ◦ α−1

which concentrates on the leaves of the tree. From now on, we always consider the tree
Tf associated with a comb function f as a rooted real tree equipped with the measure `
on its boundary.

The Coalescent Point Process

Here we will consider the measured tree associated to a random comb function. Let ν be
a positive measure on (0,∞] such that for all ε > 0, we have

ν(ε) := ν([ε,∞]) <∞,

and N be the support of the Poisson point process on [0,∞)× (0,∞] with intensity dt⊗ν.
Then we can define fN as the function whose graph is N .

fN (t) =

x if (t, x) ∈ N ,
0 if N ∩ ({t} × (0,∞]) = ∅.

Now fix z > 0 such that ν(z) > 0 and set

T (z) := inf{t ≥ 0, fN (t) ≥ z}.

Definition 2.9. The ultrametric random tree associated to I = [0, T (z)) and fN|I is called
coalescent point process (CPP) of intensity ν and height z, denoted by CPP(ν, z). It
is equipped with the random measure `, concentrated on the leaves, which is the push-
forward of the Lebesgue measure on [0, T (z)) by the map α.

Note that a coalescent point process is not directly related to coalescent theory, a canonical
example of which is Kingman’s coalescent [58], although there exist links between the two:
it is shown in [66] that a CPP appears as a scaling limit of the genealogy of individuals
having a very recent common ancestor in the Kingman coalescent.

Formally, a CPP is a random variable valued in the space of finitely measured compact
metric spaces endowed with the Gromov-Hausdorff-Prokhorov distance defined in [1] as an
extension of the more classical Gromov-Hausdorff distance. Actually, it is easy to check
that all the random quantities we handle are measurable, since we are dealing with a
construction from a Poisson point process.

2.2.3 Mutations on a CPP

Here we set up how mutations appear on the random genealogy associated with a CPP of
intensity ν. Let µ be a positive measure on [0,∞). We make the following assumptions:

∀x > 0, 0 < ν(x) := ν([x,∞]) <∞ and µ(x) := µ([0, x]) <∞,
µ([0,∞)) =∞,

ν and µ have no atom on [0,∞).
(H)
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We will now define the CPP of intensity ν and height z > 0 marked with rate µ.

Recall that the CPP is constructed from the support N of a Poisson point process with
intensity dt⊗ν on [0,∞)× [0,∞] and has a root % = (0, z). Define independently for each
point N := (t, x) of N ∪ {%} the Poisson point process MN of intensity µ on the interval
(0, x). Each atom y ∈ [0, x] of MN is a mark (t, y) on the branch {t} × (0, x) ⊂ Sk at
height y. The family (MN )N∈N therefore defines a point process M on the skeleton of the
CPP tree:

M :=
∑

(t,x)∈N∪{%}

∑
y∈M(t,x)

δ(t,y).

By definition, conditional on Sk, M is a Poisson point process on Sk whose intensity is
such that for all non-negative real numbers t and a < b, we have:

E
[
M({t} × [a, b])

∣∣∣ {t} × [a, b] ⊂ Sk
]

= µ([a, b]).

Definition 2.10. Let ν, µ be measures satisfying assumption (H). A coalescent point
process with intensity ν, mutation rate µ and height z, denoted CPP(ν, µ, z), is
defined as the random CPP(ν, z) given by N , equipped with the point process M on its
skeleton.

(i) The clonal subtree of the rooted real tree (T, %) equipped with mutations M is
defined as the subset of T formed by the points :

{x ∈ T,M([[%, x]]) = 0}.

Equipped with the distance induced by d, this is also a real tree.

(ii) Given the (ultrametric) rooted real tree (T, %) equipped with mutations M and the
application α from the real interval I = [0, T (z)) to T whose range is included
in the leaves of T, we can define the clonal boundary (or clonal population)
R = R(T,M, α) ⊂ I:

R := {t ∈ I,M([[%, αt]]) = 0)}.

Remark 2.11. This set R is studied in a paper by Philippe Marchal [69] for a CPP with
ν(dx) = dx

x2 and mutations at branching points with probability 1 − β. In that case the
sets Rβ have the same distribution as the range of a β-stable subordinator. In the present
case of Poissonian mutations, R is not stable any longer but we will see in Section 2.3 that
it remains a regenerative set.

Total number of mutations. Since µ is a locally finite measure on [0,∞), the number
of mutations on a fixed lineage of the CPP(ν, µ, z) is a Poisson random variable with
parameter µ([0, z]) <∞, and so is a.s. finite. However, it is possible that in a clade (here
defined as the union of all lineages descending from a fixed point), there are infinitely
many mutations with probability 1. For instance, if µ is the Lebesgue measure and if ν is
such that ∫

0
xν(dx) =∞,
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we know from the properties of Poisson point processes that the total length of any clade
is a.s. infinite. In this case, the number of mutations in any clade is also a.s. infinite so
that each point x in the skeleton of the tree has a.s. at least one descending lineage with
infinitely many mutations. Such a lineage can be displayed by choosing iteratively at each
branching point a sub-clade with infinitely many mutations.

One can ask under which conditions this phenomenon occurs. Conditional on the tree of
height z, the total number of mutations follows a Poisson distribution with parameter

Λ := µ(z) +
∑

(t,y)∈N ,t<T (z)
µ(y),

where T (z) is the first time such that there is a point of N with height larger than z.
Indeed, the origin branch is of height z and the heights of the other branches are the
heights of points of N . This number of mutations is finite a.s. on the event A := {Λ <∞}
and infinite a.s. on its complement. But by the properties of Poisson point processes, two
cases are distinguished: either A has probability 0 or it has probability 1.

Proposition 2.12. There is the following dichotomy:∫
0
µ(x)ν(dx) <∞ =⇒ the total number of mutations is finite a.s.∫

0
µ(x)ν(dx) =∞ =⇒ the number of mutations in any clade is infinite a.s.

In the former case, the total number of mutations has mean

E[Λ] = µ(z) + 1
ν(z)

∫
[0,z]

µ(x)ν(dx).

Proof. Conditional on T (z), the set N ′ := {(t, y) ∈ N , t < T (z)} is the support of a
Poisson point process on [0, T (z)] × [0, z] with intensity dt ⊗ ν. Therefore, from basic
properties of Poisson point processes, conditional on T (z), Λ = µ(z) + ∑

(t,y)∈N ′ µ(y) is
finite a.s. if and only if∫ T (z)

0

(∫
[0,z]

(
µ(x) ∧ 1

)
ν(dx)

)
dt <∞ a.s.,

and since T (z) is finite a.s. and µ is increasing, this condition is equivalent to the con-
dition of the proposition. Now let us write Ntot for the total number of mutations. The
conditional distribution of Ntot given Λ is a Poisson distribution with mean Λ. Therefore
we deduce

E[Ntot] = E[Λ]

= µ(z) + E

 ∑
(t,y)∈N ′

µ(y)


= µ(z) + E

[
T (z)

∫
[0,z]

µ(x)ν(dx)
]

= µ(z) + 1
ν(z)

∫
[0,z]

µ(x)ν(dx),

which concludes the proof.

24



2.3 Allelic Partition at the Boundary

In this section, we will identify the clonal boundary R in a mutation-equipped CPP, that
is the set of leaves of the tree which do not carry mutations, and characterize the reduced
subtree generated by this set.

2.3.1 Regenerative Set of the Clonal Lineages, Clonal CPP

Denote by Tz a CPP(ν, µ, z) where ν, µ satisfy assumptions (H). A leaf of Tz is said clonal
if it carries the same allele as the root. Recall the canonical map αz from the real interval
[0, T (z)) to the leaves of Tz (see Proposition 2.7). The clonal boundary (see Definition
2.10) of Tz is then the set Rz ⊂ [0, T (z)) defined as the pre-image of the clonal leaves by
the map αz.

We define the event
Oz := {M%([0, z]) = 0}

that there is no mutation on the origin branch of Tz. Note that this event has a positive
probability equal to e−µ(z). By definition, the point process of mutations on the origin
branchM% is independent of (MN )N∈N . Therefore conditioning on Oz amounts to consid-
ering the tree Tz equipped with the mutations on its skeleton which are given only by the
point processes (MN )N∈N . We now define a random set R̃, whose distribution depends
only on (ν, µ) and not on z, which will allow the characterization of the clonal boundaries
Rz conditional on the event Oz.

Definition 2.13. Recall the notations N and (MN )N∈N . For each fixed t ∈ [0,∞), let
(ti, xi)i≥1 be the (possibly finite) sequence of points of N such that

x1 = sup{x ∈ [0,∞], #N ∩ (0, t]× [x,∞] ≥ 1},
t1 = sup{s ∈ [0, t], (s, x1) ∈ N},

xi+1 = sup{x ∈ [0, xi), #N ∩ (ti, t]× [x,∞] ≥ 1},
ti+1 = sup{s ∈ (ti, t], (s, xi+1) ∈ N},

with the convention sup∅ = 0, and where the sequence is finite if there is a n ≥ 0 such
that xn = 0. We define the following random point measure on [0,∞):

Mt :=
∑

i≥1, xi>0
M(ti,xi)( · ∩ [xi+1, xi]).

Now we define the random set R̃ as:

R̃ := {t ∈ [0,∞), Mt([0,∞)) = 0}.

Remark 2.14. Recall that for a comb function (f, I) and a real number t ∈ I, in the proof
of Proposition 2.7, we defined a sequence (ti, xi)i≥0 in the same way as in the previous
definition and we remarked that the lineage Lt of t is the closure of the set⋃

i≥0, xi>0
{ti} × ([xi+1, xi) \ {0}) ⊂ Sk.
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It follows that in the case of the tree Tz equipped with the mutations M on its skeleton,
we have the equality between events

Oz ∩ {M([[%, αzt ]]) = 0} = Oz ∩ {Mt([0,∞)) = 0}.

Therefore, on the event Oz, the clonal boundary Rz of the tree Tz coincides with the
restriction of R̃ to the interval [0, T (z)), which explains why we study the set R̃.

The subtree of Tz spanned by the clonal boundary Rz is called the reduced clonal
subtree and defined as ⋃

t∈Rz
[[%, αzt ]].

Note that it is a Borel subset of Tz because it is the closure of⋂
n≥1

⋃
p≥n

⋃
x∈Cp

[[%, x]],

where Cp is the finite set {x ∈ Tz, d(x, %) = z(1 − 1/p), M([[%, x]]) = 0}. The set R̃ is
proven to be a regenerative set (see Appendix 2.A.3 for the results used in this paper and
the references concerning subordinators and regenerative sets), and the reduced clonal
subtree is shown to have the law of a CPP.

Theorem 2.15. The law of R̃ and of the associated reduced clonal subtree can be charac-
terized as follows.

(i) Under the assumptions (H) and with the preceding notation the random set R̃ is re-
generative. It can be described as the range of a subordinator whose Laplace exponent
ϕ is given by:

1
ϕ(λ) =

∫
(0,∞)

e−µ(x)

λ+ ν(x)µ(dx).

(ii) The reduced clonal subtree, that is the subtree spanned by the set R̃, has the distribu-
tion of a CPP with intensity νµ, where νµ is the positive measure on R+∪{∞} deter-
mined by the following equation. LettingW (x) := (ν(x))−1 andWµ(x) := (νµ(x))−1,
we have, for all x > 0,

Wµ(x) = W (0) +
∫ x

0
e−µ(z)dW (z).

Remark 2.16. The last formula of the theorem is an extension of Proposition 3.1 in [64],
where the case when ν is a finite measure and µ(dx) = θ dx is treated. Here, we allow ν

to have infinite mass and µ to take a more general form (provided (H) is satisfied).

Regenerative set. Here, we prove the first part of the theorem concerning R̃.

Proof of Theorem 2.15, (i). Let (Ft)t≥0 be the natural filtration of the marked CPP de-
fined by:

Ft = σ
(
N ∩ ([0, t]× R+),M(s,x), s ≤ t, x ≥ 0

)
.
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Figure 2.3 – Mutation-equipped CPP, regenerative set R̃ shown in green

To show first that R̃ is (Ft)-progressively measurable, we show that for a fixed t > 0, the
set

{(s, ω) ∈ [0, t]× Ω, s ∈ R̃(ω)}

is in B([0, t]) ⊗ Ft. Basic properties of Poisson point processes ensure there exists an
Ft-measurable sequence of random variables giving the coordinates of the mutations in
N ∩ ([0, t] × R+). Let (Ui, Xi)i be such a sequence, for instance ranked such that Xi is
decreasing as in Figure 2.4. We also define the following Ft-measurable random variables:

Ti := t ∧ inf{s ≥ Ui, (s, x) ∈ N , x ≥ Xi}.

Now we have
R̃ ∩ [0, t] =

⋂
i

([0, t] \ [Ui, Ti)),

which proves that the random set R̃ is (Ft)-progressively measurable, and almost-surely
left-closed.

X1

X4

X3

X2

U3 U1T4 = U2U4 t = T1T2T3

Figure 2.4 – Mutations localized by the variables (Ui, Xi, Ti)
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Let us now show the regeneration property of R̃. Define

H(s, t) := max{x ≥ 0, (u, x) ∈ N , s < u ≤ t},

the maximal height of atoms of N between s and t. We will note H(t) := H(0, t) for
simplicity. Remark that

R̃ = {t ≥ 0,Mt([0, H(t)]) = 0}.

Let S be a (Ft)-stopping time, and suppose that almost surely, S <∞, and S ∈ R̃ is not
isolated to the right. From elementary properties of Poisson point processes and the fact
that the random variables (M(s,x))s≥0,x≥0 are i.i.d, we know that the tree strictly to the
right of S is independent of FS and has the same distribution as the initial tree. Now
since S ∈ R̃ almost surely, we have, for all t ≥ S,

Mt([0, H(t)]) = Mt([0, H(S, t)]),

because Mt([H(S, t), H(0, t)]) = MS([H(S, t), H(0, t)]) = 0, in other words there are no
mutations on the lineage of t that is also part of the lineage of S. As a consequence,

R̃ ∩ [S,∞) = {t ≥ S,Mt([0, H(S, t)]) = 0},

which implies that R̃ ∩ [S,∞) − S has the same distribution as R̃ and is independent of
FS .

Therefore it is proven that R̃ has the regenerative property, so one can compute its Laplace
exponent. Here we are in the simple case where R̃ has a positive Lebesgue measure, and
we have in particular, for all t ∈ R+,

P(t ∈ R̃) = E
[
e−µ(Ht)

]
=
∫

[0,∞]
P(Ht ∈ dx)e−µ(x)

=
∫

(0,∞)
P(Ht ≤ x)e−µ(x)µ(dx)

=
∫

(0,∞)
e−tν(x)−µ(x)µ(dx).

The passage from the second to the third line is done integrating by parts thanks to the
assumption that µ is continuous and that µ has an infinite mass. The last displayed
expression is therefore the density with respect to the Lebesgue measure of the renewal
measure of R̃ (see Remark 2.45). This is sufficient to characterize our regenerative set,
and the expression given in the Proposition is found by computing the Laplace transform
of this measure:

1
ϕ(λ) =

∫ ∞
0

e−λt
(∫

(0,∞)
e−tν(x)−µ(x)µ(dx)

)
dt

=
∫

(0,∞)

e−µ(x)

λ+ ν(x)µ(dx),

which concludes the proof of (i).
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Remark 2.17. It is important to note that the particular case of a CPP with intensity
ν(dx) = dx

x2 has the distribution of a (root-centered) sphere of the so-called Brownian CRT
(Continuum Random Tree), the real tree whose contour is a Brownian excursion. This
is shown for example by Popovic in [77] where the term ‘Continuum genealogical point
process’ is used to denote what is called here a coalescent point process. The measure
ν(dx) = dx

x2 is the push-forward of the Brownian excursion measure by the application
which maps an excursion to its depth. In general, the sphere of radius say r of a totally
ordered tree is an ultrametric space whose topology is characterized by the pairwise dis-
tances between ‘consecutive’ points at distance r from the root. When the order of the
tree is the order associated to a contour process, these distances are the depths of the
‘consecutive’ excursions of the contour process away from r, see e.g. Lambert and Uribe
Bravo [60].
If in addition to ν(dx) = dx

x2 , we assume that µ(dt) = θ dt, which amounts to letting
Poissonian mutations at constant rate θ on the skeleton of the CRT, we have

1
ϕθ(λ) =

∫ ∞
0

θe−θx
λ+ 1/xdx.

In particular, for all θ, c > 0, we can compute:

ϕθ(cλ) = cϕθ/c(λ).

This implies the equality in distribution cRθ
(d)= Rθ/c. Nevertheless Rθ is not a so-called

‘stable’ regenerative set, contrary to the sets Rα in [69].

Reduced clonal subtree. To show that the reduced clonal subtree is a CPP, let us
exhibit the Poisson point process that generates it. Let σ be the subordinator with drift
1 whose range is R̃ and let N ′ be the following point process:

N ′ := {(t, x), t ∈ R+, x = H(σt−, σt) > 0},

where H(s, t) := max{x, (u, x) ∈ N , s ≤ u ≤ t}. This point process generates the reduced
clonal subtree, because H(σt−, σt) is (up to a factor 1/2) the tree distance between the
consecutive leaves σt− and σt in R̃. To complete the proof of the theorem, it is sufficient
to show that conditional on the death time ζ of the subordinator σ, N ′ is a Poisson point
process on [0, ζ)× R+ with intensity dt⊗ νµ.

Proof of Theorem 2.15, (ii). This is due to the regenerative property of the process. For
fixed t ≥ 0, σt is a (Ft)-stopping time which is almost surely in R̃ on the event {σt <
∞} = {ζ > t}. This implies that conditional on {σt < ∞}, the marked CPP strictly to
the right of σt is equal in distribution to the original marked CPP and is independent of
Fσt . In particular:(

{(s, x) ∈ R2
+, (σt + s, x) ∈ N}, R̃ ∩ [σt,∞)− σt

) (d)= (N , R̃).

This implies that N ′ ∩ ([t,∞) × R+) − (t, 0) has the same distribution as N ′ and is
independent of Fσt . For fixed ε > 0, let (Ti, Xi)i≥1 be the sequence of atoms of N ′ such
that Xi > ε, ranked with increasing Ti. Then Ti is a (Fσt)-stopping time and the sequence
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(Ti − Ti−1, Xi)i≥1 is i.i.d., with T0 := 0 for convenience. It is sufficient to observe that T1
is an exponential random variable to show that N ′ has an intensity of the form dt⊗ νµ:

P(T1 > t+ s | T1 > t) = P(H(0, σt+s) ≤ ε | H(0, σt) ≤ ε)
= P(H(σt, σt+s) ≤ ε | H(0, σt) ≤ ε)
= P(H(0, σs) ≤ ε) = P(T1 > s).

It remains to characterize the measure νµ by computing Wµ(x). Note that the following
computations are correct thanks to the assumption that ν has no atom, so that W is
continuous. To simplify the notation, let Ht := H(0, t) = max{x, (u, x) ∈ N , 0 ≤ u ≤ t}.
Then we can compute:

Wµ(x) =
∫ ∞

0
e−tνµ(x)dt

= E
[∫ ∞

0
1{Hσt≤x}dt

]
= E

[∫ ∞
0

1{Hu≤x}1{u∈R̃}du
]
.

(2.2)

Letting F (y) := P(Hu ≤ y) = e−uν(y), we have

P(Hu ≤ x, u ∈ R̃) = P(Hu = 0) +
∫ x

0
P(Hu ∈ dy)e−µ(y)

= F (0) +
∫ x

0
e−µ(y)dF (y).

Now dF (y) = ue−uν(y)ν(dy), hence

Wµ(x) =
∫ ∞

0
e−uν(0)du+

∫ x

0

(∫ ∞
0

ue−uν(y)du
)

e−µ(y)ν(dy)

= 1
ν(0) +

∫ x

0

1
ν(y)2 e−µ(y)ν(dy)

= W (0) +
∫ x

0
e−µ(y)dW (y),

which concludes the proof.

Remark 2.18. Equality (2.2) becomes, letting x→∞,

Wµ(∞) = E[λ(R̃)].

Remark 2.19. In Remark 2.17, we explained that when the contour of a random tree is
a strong Markov process as in the case of Brownian motion, the root-centered sphere of
radius r of this tree is a CPP. In addition, the intensity measure of this CPP is the measure
of the excursion depth under the excursion measure of the contour process (away from r).
Let nc denote the excursion measure of the process (B(c)

t − infs≤tB(c)
s )t≥0 away from 0,

with B(c) a Brownian motion with drift c, and let h denote the depth of the excursion. In
the case ν(dx) = dx

x2 = n0(h ∈ dx) and µ(dx) = θ dx, we have

W θ(x) = 1− e−θx
θ

= nθ/2(h ∈ [x,∞])−1.
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This is consistent with Proposition 4 in [2], which shows that putting Poissonian random
cuts with rate θ along the branches of a standard Brownian CRT yields a tree whose
contour process is (e(s)−θs/2)s≥0 stopped at the first return at 0, where e is the normalized
Brownian excursion.

2.3.2 Measure of the Clonal Population

Recall that for a CPP(ν, µ, z), conditional on Oz (no mutation on the origin branch), the
Lebesgue measure λ(R̃ ∩ [0, T (z)) is equal to the measure `(Rz) of the set of clonal leaves
.

Corollary 2.20. Let ν, µ be two measures satisfying assumptions (H).

(i) With the notation of Theorem 2.15, the random variable λ(R̃) follows an exponential
distribution with mean Wµ(∞).

(ii) In a CPP(ν, µ, z), conditional on Oz, the measure `(Rz) of the set of clonal leaves
is an exponential random variable of mean Wµ(z).

Proof. Given a subordinator σ with drift 1 and range R̃, it is known (a quick proof of this
can be found in [12]) that

λ(R̃) = inf{t > 0, σt =∞}.

Now the killing time of the subordinator σ is an exponential random variable of parameter
ϕ(0), where ϕ is the Laplace exponent of σ. We already know from Remark 2.18 the mean
of that variable:

ϕ(0)−1 = E
[
λ(R̃)

]
= Wµ(∞).

With a fixed height z > 0, one is interested in the law of λ(R̃∩[0, T (z))). By the properties
of Poisson point processes, stopping the CPP at T (z) amounts to changing the intensity
measure ν of the CPP for ν̂, with

ν̂ = ν( · ∩ [0, z]) + ν(z)δ∞.

Then if Ŵ (x) := ν̂([x,∞])−1, we have

Ŵ (x) =
(
ν([x,∞] ∩ [0, z]) + ν(z)

)−1

=
(
ν([x ∧ z, z]) + ν([z,∞])

)−1

=
(
ν([x ∧ z,∞])

)−1

= W (x ∧ z),

and because of the characterization ofWµ given in Theorem 2.15, we also have
(
Ŵ
)µ

(x) =
Wµ(x ∧ z). Therefore

(
Ŵ
)µ

(∞) = Wµ(z), and we can conclude that λ(R̃ ∩ [0, T (z)]) is
an exponential random variable of mean Wµ(z).
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Probability of clonal leaves. Here, we consider a CPP(ν, µ, z) and aim at computing
the probability of existence of clonal leaves in the tree.

Proposition 2.21. In a CPP(ν, µ, z), under the assumptions (H) and with the notation
of Theorem 2.15, there is a mutation-free lineage with probability

W (z) e−µ(z)

Wµ(z) .

Remark 2.22. Using a description of CPP trees in terms of birth-death trees (see Section
2.5), the previous result could alternatively be deduced from the expression of the survival
probability of a birth-death tree up to a fixed time (see Proposition 2.37 in the appendix).

Proof. Suppose the CPP(ν, µ, z) is given by the usual construction with the Poisson point
processes N and (MN )n∈N . We use the regenerative property of the process with respect
to the natural filtration (Ft)t≥0 of the marked CPP defined by:

Ft = σ
(
N ∩ ([0, t]× R+),M(s,x), s ≤ t, x ≥ 0

)
.

Let X be the first clone on the real half-line.

X := inf{x ∈ [0, T (z)), M([[%, αx]]) = 0},

with the convention inf ∅ = ∞ and with the usual notation. Then X is a (Ft)-stopping
time, and conditional on {X < ∞}, the law of the tree on the right of X is the same
as that of the original tree conditioned on having no mutation on the origin branch. Let
Cz := {X < ∞} denote the event of existence of a mutation-free lineage. Recall that Rz
denotes the set of clonal leaves and that Oz denotes the event that there is no mutation
on the origin branch. Then we have

E [`(Rz)] = P(Cz)E [`(Rz) | Cz]
= P(Cz)E [`(Rz ∩ [X,∞)−X) | X <∞]
= P(Cz)E [`(Rz) | Oz]
= P(Cz)Wµ(z),

where the last equality is due to Corollary 2.20 (ii). Furthermore,

E [`(Rz)] = E
∫ T (z)

0
1{t∈R̃} dt

=
∫ ∞

0
P(t ∈ R̃, t < T (z)) dt

=
∫ ∞

0
e−tν(z)e−µ(z) dt

= e−µ(z)

ν(z) = W (z) e−µ(z).

Therefore, the probability that there exists a clone of the origin in the present population
is

P(Cz) = W (z) e−µ(z)

Wµ(z) ,

which concludes the proof.
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2.3.3 Application to the Allele Frequency Spectrum

Intensity of the Spectrum

From now on we fix two measures ν, µ satisfying assumptions (H), and we further assume
for simplicity that ν(z) ∈ (0,∞) for all z > 0. We denote by Tz a CPP(ν, µ, z).

Under the infinitely-many alleles model, recall that each mutation gives rise to a new type
called allele, so that the population on the boundary of the tree can be partitioned into
carriers of the same allele, called allelic partition. The key idea of this section is that
expressions obtained for the clonal population of the tree allow us to gain information on
quantities related to the whole allelic partition. We callm ∈ Tz a mutation ifM({m}) 6= 0
and denote by Tzm the subtree descending from m. If f is a functional of real trees (say
simple, marked, equipped with a measure on the leaves), one might be interested in the
quantity

ϕ(Tz, f) :=
∑
m∈Tz

mutation

f(Tzm), (2.3)

or in its expectation
ψ(z, f) := E [ϕ(Tz, f)] .

For each mutation m ∈ Tz, we define the set Rzm of the leaves carrying m as their last
mutation

Rzm := {t ∈ R+, the most recent mutation on the lineage of αzt is m}.

We define the random point measure putting mass on the measures of the different allelic
clusters

Φz :=
∑
m∈Tz

mutation

1{Rzm 6=∅} δλ(Rzm).

The intensity of the allele frequency spectrum is the mean measure Λz of this point mea-
sure, that is the measure on R+ such that for every Borel set B of R+,

Λz(B) = E[Φz(B)].

The analog for this measure when the number of individuals in the population is finite is
the mean measure (EA(k))k>0 of the number A(k) of alleles carried by exactly k individuals
(notation Aθ(k, t) in [64] and [22]). The goal here is then to identify Λz, by noticing that
for a Borel set B,

Φz(B) = ϕ(Tz, fB) and Λz(B) = ψ(z, fB),

with fB(T) := 1`(R)∈B, where T is an ultrametric tree with point mutations and measure
` supported by its leaves, and R denotes the set of its clonal leaves.

Proposition 2.23. In a CPP(ν, µ, z), under the assumptions (H) and with the notation
of Theorem 2.15, the intensity of the allele frequency spectrum has a density with respect
to the Lebesgue measure:

Λz(dq)
dq = W (z)

(
e−µ(z)

Wµ(z)2 e−q/Wµ(z) +
∫

[0,z)

e−µ(x)

Wµ(x)2 e−q/Wµ(x)µ(dx)
)
.
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Remark 2.24. This expression is to be compared with Corollary 4.3 in [22] (the term
(1− 1

W θ(x))k−1 with discrete k becoming here e−q/Wµ(x) with continuous q).

Remark 2.25. Integrating this expression, we get the expectation of the number of dif-
ferent alleles in the population:

Λz(R+) = E[Φz(R+)] = W (z)
(

e−µ(z)

Wµ(z) +
∫

[0,z)

e−µ(x)

Wµ(x)µ(dx)
)
.

Note that W (z) is the expectation of the total mass of the measure ` in a CPP(ν, µ, z). It
is then natural to normalize by this quantity and then let z →∞. In (H) we assumed that
µ([0,∞)) = ∞, and since Wµ(z) is an increasing, positive function of z, we have clearly
e−µ(z)

Wµ(z) → 0 when z →∞. Therefore we have

lim
z→∞

E[Φz(R+)]
W (z) =

∫
[0,∞)

e−µ(x)

Wµ(x)µ(dx).

This provides us with a limiting spectrum intensity, written simply Λ:

Λ(dq)
dq := lim

z→∞
1

W (z)

(Λz(dq)
dq

)
=
∫

[0,∞)

e−µ(x)

Wµ(x)2 e−q/Wµ(x)µ(dx). (2.4)

Note that in the Brownian case ν = dx/x2, we get a simple expression Λ(dq) = (θ/q)e−θqdq.

Proof of Proposition 2.23. We aim at computing ψ(z, f), for f a measurable non-negative
function of a simple real tree T with point mutations equipped with a measure ` on
its leaves. Suppose the mutations (Mn)n≥1 on the tree T are numbered by increasing
distances from the root. Here we use the fact that a CPP can be seen as the genealogy of
a birth-death process (see Section 2.5 for the development of this argument), a Markovian
branching process whose time parameter is the distance from the root. This description
implies that, for all n ≥ 1, conditional on the height Hn of mutation Mn, the subtree
growing from Mn has the law of THn . Set

f̃(x) := E[f(Tx)].

Denoting Hz
n the height of the n-th mutation M z

n of Tz, we get

ψ(z, f) = E
[∑
n

f({subtree of Tz growing from M z
n})
]

=
∑
n

E [f({subtree of Tz growing from M z
n})]

=
∑
n

E
[
f̃(Hz

n)
]

= E
[∑
n

f̃(Hz
n)
]
.

34



Now this expression is simple to compute knowing f̃ and the intensity of the point process
giving mutation heights. Indeed, by elementary properties of Poisson point processes

E
[∑
n

f̃(Hz
n)
]

= E

f̃(z) +
∑

y∈M(0,z)

f̃(y) +
∑

(t,x)∈N , t≤T (z)

 ∑
y∈M(t,x)

f̃(y)


= f̃(z) +

∫
[0,z)

f̃(x)µ(dx) + E
[
T (z)

∫
[0,z)
ν(dy)

∫
[0,y)

f̃(x)µ(dx)
]

= f̃(z) +
∫

[0,z)
f̃(x)µ(dx) + 1

ν(z)

∫
[0,z)

f̃(x)(ν(x)− ν(z))µ(dx)

= f̃(z) +W (z)
∫

[0,z)

f̃(x)
W (x)µ(dx).

Now consider, for a fixed q > 0, the function f given by f(T) := 1`(R)>q, where T is a
generic ultrametric tree with point mutations and measure ` supported by its leaves, and R
denotes the set of its clonal leaves. This allows us to compute the expectation Λz((q,∞))
of the number of mutations carried by a population of leaves of measure greater than q.
Since the law of the measure of clonal leaves is known for a CPP, (see Corollary 2.20), we
deduce

f̃(z) = P(Cz)P(`(Rz) > q | Cz)
= P(Cz)P(λ(R̃ ∩ [0, T (z))) > q)

= W (z)e−µ(z)

Wµ(z) e−q/Wµ(z),

where Cz again denotes the event of existence of clonal leaves in Tz and R̃ is the set
defined in Definition 2.13. Thus we have

Λz((q,∞)) = E[Φz((q,∞))]

= W (z)
(

e−µ(z)

Wµ(z)e−q/Wµ(z) +
∫

[0,z)

e−µ(x)

Wµ(x)e−q/Wµ(x)µ(dx)
)
.

Differentiating the last quantity yields the expression in the Proposition.

Convergence Results for Small Families

Recall the construction of a CPP from a Poisson point process N in Section 2.2.2, and
the point processes of mutations (MN )N∈N . Since a CPP(ν, µ, z) is given by the points of
N with first component smaller than T (z), this construction yields a coupling of (Tz)z>0,
where for each z > 0, Tz is a CPP(ν, µ, z). Recall the notation Φz from the previous
subsection. Then, similarly to Theorem 3.1 in [64], we have the following almost sure
convergence.

Proposition 2.26. Under the preceding assumptions, and further assuming ν({∞}) = 0,
for any q > 0, we have the convergence:

lim
z→∞

Φz((q,∞))
T (z) =

∫
[0,∞)

e−µ(x)

Wµ(x)e−q/Wµ(x)µ(dx) = Λ((q,∞)) a.s.
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Remark 2.27. Recall that Φz((q,∞)) is the number of alleles carried by a population of
leaves of measure larger than q in the tree Tz, and T (z) is the total size of the population
of Tz. The result is a strong law a large numbers: it shows that the number of small
families (with a fixed size) grows linearly with the total measure of the tree at a constant
speed given by the measure Λ defined by (2.4) as the limiting allele frequency spectrum
intensity.

Proof. We will use the law of large numbers several times. Let us first introduce some
notation. For z > 0, define (Ti(z))i≥1 as the increasing sequence of first components of
the atoms of N with second component larger than z, that is T1(z) = T (z) and for any
i ≥ 1

Ti+1(z) = inf{t > Ti(z), ∃x > z, (t, x) ∈ N}.

For z < z′, let N(z, z′) := #{(t, x) ∈ N : t ≤ T (z′), x > z}, that is the unique number n
such that

Tn(z) = T (z′).

Notice that the assumptions ν(z) ∈ (0,∞) for all z > 0 and ν({∞}) = 0 imply that
T (z′) → ∞ and N(z, z′) → ∞ as z′ → ∞, for a fixed z. Because the times (Ti+1(z) −
Ti(z))i≥1 are i.i.d. exponential random variables with mean W (z) and since we have

T (z′) = T (z) +
N(z,z′)∑
i=2

(Ti+1(z)− Ti(z)),

it is clear by the strong law of large numbers that

T (z′)
N(z, z′) −→z′→∞

W (z) a.s.

Also, write Tz1, . . . ,TzN(z,z′) for the sequence of subtrees of height z within Tz′ that are
separated by the branches higher than z. That is, Tzi is the ultrametric tree generated by
the points of N with first component between Ti−1(z) and Ti(z). From basic properties
of Poisson point processes, they are i.i.d. and their distribution is that of Tz.

Now, write h(T) for the height of an ultrametric tree (i.e., the distance between the root
and any of its leaves), and take any non-negative, measurable function f of simple trees,
such that

f(T) = 0 if h(T) > z. (∗)

Recall the definition of ϕ(T, f). Since f satisfies (∗), we can write

ϕ(Tz′ , f) =
N(z,z′)∑
i=1

ϕ(Tzi , f). (2.5)

Therefore, again by the strong law of large numbers, we have the following convergence

ϕ(Tz′ , f)
N(z, z′) −→z′→∞

E[ϕ(Tz, f)] = ψ(z, f) a.s. (2.6)
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Combining the two convergence results, it follows that

ϕ(Tz′ , f)
T (z′) −→

z′→∞

ψ(z, f)
W (z) a.s.

Let us apply this to the function f(T) = 1`(R)>q. This function f does not satisfy (∗) for
any z > 0, so we cannot apply (2.6) directly because (2.5) does not hold. However, we
can artificially truncate f by defining the restriction fz:

fz(T) := f(T)1h(T)<z,

which does satisfy (∗). Now since fz ≤ f , we have the inequality between random variables

ϕ(Tz′ , fz) ≤ ϕ(Tz′ , f),

and by taking limits,
ψ(z, f)
W (z) ≤ lim inf

z′→∞

ϕ(Tz′ , f)
T (z′) a.s.

But we have ψ(z, f) = Λz((q,∞)) and as a consequence of Proposition 2.23, we have

Λz((q,∞))
W (z) = e−µ(z)

Wµ(z)e−q/Wµ(z) +
∫

[0,z)

e−µ(x)

Wµ(x)e−q/Wµ(x)µ(dx)

−→
z→∞

∫
[0,∞)

e−µ(x)

Wµ(x)e−q/Wµ(x)µ(dx),

which is Λ((q,∞)) by definition. Therefore, we now have the inequality

Λ((q,∞)) ≤ lim inf
z′→∞

ϕ(Tz′ , f)
T (z′) a.s.

The converse inequality stems from a simple remark. There are at most N(z, z′) mutations
of height greater than z giving rise to an allele carried by some leaves of Tz′ . This is simply
because a population of n individuals can exhibit at most n different alleles. Therefore,
we have

ϕ(Tz′ , f) ≤ ϕ(Tz′ , fz) +N(z, z′),

which gives by taking limits

lim sup
z′→∞

ϕ(Tz′ , f)
T (z′) ≤ ψ(z, f) + 1

W (z) −→
z→∞

Λ((q,∞)) a.s.

We can finally conclude
ϕ(Tz, f)
T (z) −→

z→∞
Λ((q,∞)) a.s.,

which is the announced result.

2.4 The Clonal Tree Process

In this section we consider the clonal subtree Az of a random tree Tz with distribution
CPP(ν, µ, z), where ν, µ are measures satisfying assumptions (H) and z > 0. We further
assume ν([0,∞)) = ∞, that is we ignore the case when Tz is a finite tree almost surely.
We will focus on the case when µ(dx) = θ dx.
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2.4.1 Clonal Tree Process

There is a natural coupling in θ of the Poisson processes of mutations, in such a way that
the sets of mutations are increasing in θ for the inclusion. Let M denote a Poisson point
process with Lebesgue intensity on R2

+, and define for θ ≥ 0,

Mθ := M([0, θ]× · ).

ThenMθ is a Poisson point process on R+ with intensity θ dx, and the sequence of supports
of Mθ increases with θ. Let us use this idea to couple mutations with different intensities
on the random tree Tz. Recall the construction of a CPP with a Poisson point process N
in Section 2.2. For each point N = (t, x) of N ∪{(0, z)}, letMN be a Poisson point process
on R+ × [0, x] with Lebesgue intensity. For fixed θ ≥ 0, we get the original construction
with µ(dx) = θ dx when considering

M θ
N := MN ([0, θ]× · ).

Therefore a natural coupling of mutations of different intensities (M θ)θ∈R+ is defined on
the random tree Tz. Denote Azθ the clonal subtree of height z at mutation level θ, that is
the subtree of Tz defined by

Azθ := {x ∈ Tz,M θ([[%, x]]) = 0}.

It is natural to seek to describe the decreasing process of clonal subtrees (Azθ)θ∈R+ . As θ
increases, it is clearly a Markov process since the distribution of Azθ+θ′ given Azθ is the law
of the clonal tree obtained after adding mutations at a rate θ′ along the branches of Azθ.
We will now study the Markovian evolution of the time-reversed process, as θ decreases.
Its transitions are relatively simple to describe using grafts of trees.

2.4.2 Grafts of Real Trees

Given two real rooted trees (T1, d1, %1), (T2, d2, %2), and a graft point g ∈ T1, one can
define the real rooted tree that is the graft of the root of T2 on T1 at point g by

T1 ⊕g T2 := (T1 t T2 \{%2}, d, %1),

with the new distance d defined as follows. For any x, y ∈ T1 t T2,

d(x, y) := di(x, y) if x, y ∈ Ti for i ∈ {1, 2},

and
d(x, y) := d1(x, g) + d2(%2, y) if x ∈ T1, y ∈ T2.

For real simple trees, this graft has a nice representation when the graft point is a leaf of
the first tree.

Definition 2.28. For a simple tree A = (T , α, ω), define the buds of A as the set B(A)
of leaves of T that live a finite time

B(A) := {b ∈ T , b0 /∈ T , ω(b) <∞}.
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For two simple trees Ai = (Ti, αi, ωi) with i ∈ {1, 2}, and for b ∈ B(A1), we define the
graft of A2 on A1 on the bud b, denoted A1 ⊕b A2 by:

T := T1 ∪ bT2,

α(b) := α1(b), ω(b) := ω1(b) + ζ2(∅),
∀u ∈ T1 \ {b}, α(u) := α1(u), ω(u) := ω1(u),

∀u ∈ T2 \ {∅},

α(bu) := ω(b) + (α2(u)− ω2(∅)),
ω(bu) := α(bu) + ζ2(u),

A1 ⊕b A2 := (T , (α(u), ζ(u), ω(u))u∈T ).
It is then clear that B(A1 ⊕b A2) := B(A1) \ {b} ∪ bB(A2). See Figure 2.5 for an example.
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Figure 2.5 – Simple tree graft

2.4.3 Evolution of the Clonal Tree Process

We study the increasing clonal tree process as we remove mutations (decreasing θ). We
therefore reverse time by denoting η = − ln θ, and defining Xz

η := Aze−η . Denote Qzη the
distribution of Xz

η with values in the set of reversed (i.e., with time flowing from z to 0)
simple binary trees. See Figure 2.6 for a sketch of the tree growth process. The increasing
process (Xz

η )η∈R is nicely described in terms of grafts.

Theorem 2.29.

(i) The process (Xz
η )η∈R is a time-inhomogeneous Markov process, whose transitions

conditional on Xz
η can be characterized as follows.

• The buds of Xz
η are the leaves b of height ω(b). Independently of the others,

each bud b is given an exponential clock Tb of parameter 1.

• At time η′ = η + Tb, a tree is grafted on the bud b, following the distribution
Qω(b)
η′ , and each newly created bud b′ is given an independent exponential clock

Tb′ of parameter 1.

(ii) The infinitesimal generator evaluated at a function ϕ of simple trees which depends
only on a finite number of generations (i.e. such that the property ∃n ≥ 0, ϕ( · ) =
ϕ( · |n) holds) can be written as follows

Lηϕ(A) =
∑

b∈B(A)

(
Qω(b)
η [ϕ(A⊕b Y )]− ϕ(A)

)
,
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where Y is the random tree drawn under the probability measure Qω(b)
η .

(iii) Write τz for the first time the clonal tree process reaches the boundary, that is the
first time there is a leaf x ∈ Xz

η with d(%, x) = z, (where d is the distance in the real
tree Xz

η ):
τz = inf{η ∈ R : ∃x ∈ Xz

η , d(%, x) = z}.

Then the distribution of τz is given by

P(τz ≤ η) = W (z) e−e−ηz

Wη(z)
,

where as previously W (z) = ν(z)−1, and

Wη(z) = W (0) +
∫

(0,z]
e−e−ηxdW (x),

that is Wη = Wµ with µ(dx) = e−η dx.
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∅ grows at time η2

211
212

η1

1

22

η2 η3
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Figure 2.6 – Markovian evolution of an increasing tree process. In this example, the time
η2−η1 is an exponential time of parameter 1 and η3−η2 is an exponential time of parameter
3.

We first state a result that is already interesting in itself, which ensures that CPP trees
are reversed pure-birth trees (see next Section for details on birth-death trees and their
links with CPPs). We refer the reader to Subsection 2.A.2, where a more general result is
proved.

Lemma 2.30. Let ν and µ be diffuse measures on [0,∞), satisfying assumptions (H) and
ν([0,∞)) = ∞. Fix z0 ∈ [0,∞) such that ν(z0) = 1 and let J = (0, z0]. Then for z ∈ J ,
a CPP(ν, z) is the genealogy of a reversed (i.e. with time flowing from z to 0) pure-birth
process with birth intensity β defined as the Laplace-Stieltjes measure associated with the
nondecreasing function − log ν, started from z.

Proof of Theorem 2.29. From Lemma 2.30, we can express the CPP in terms of a pure-
birth tree, with time flowing from z to 0 (but measured from 0 to z) and birth intensity
dβ = d(log ◦W ). Let T ⊂ U denote the complete binary tree

T :=
⋃
n≥0
{0, 1}n
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Then we can define recursively (α(u), ω(u))u∈T by setting α(∅) = z, and for u = vi, with
i ∈ {0, 1}:

α(u) = ω(v) = sup[0, α(v)) ∩Bv,
with the convention sup∅ = 0, and where (Bv)v∈T are i.i.d. Poisson point processes
on [0, z] with intensity β. This defines the random reversed simple tree (T , α, ω) as the
genealogy of a pure-birth process with birth intensity β, with time flowing from z to 0. In
other words, by the definition of β, (T , α, ω) is the reversed simple tree with distribution
CPP(ν, z).

Now we define independently of (T , α, ω), a family (Mu)u∈T of i.i.d. Poisson point pro-
cesses on [0,∞)× [0, z] with Lebesgue intensity. Writing for η ∈ R and u ∈ T ,

Mη
u = Mu([0, e−η]× · ),

we define a coupling ((Mη
u )u∈T )η∈R of point processes with intensity e−ηdx on the branches

of (T , α, ω).

Now let us define the process (Yη)η∈R by Yη = (Tη, αη, ωη), with

Tη := {u ∈ T , ∀v ≺ u, Mη
v ([α(v), ω(v)]) = 0},

αη(u) := α(u) ∀u ∈ Tη,
and ωη(u) := sup ({ω(u)} ∪ {s < α(u), Mη

u ([s, α(u)]) = 0}) ∀u ∈ Tη,

By definition, one can check that Yη is the clonal simple tree associated with the tree
(T , α, ω) and the point process of mutations (Mη

u )u∈T . Therefore (Yη)η∈R has the same
distribution as (Xz

η )η∈R. We define the filtration (Fη)η∈R as the natural filtration of the
process (Yη)η∈R, which we may rewrite:

Fη := σ
(
(αη′)η′≤η, (ωη′)η′≤η

)
.

From our definitions, for u ∈ T , we have:

ωη(u) = inf{s ∈ [0, α(u)], Mu([0, e−η]× [s, α(u)]) = 0 and Bu([s, α(u)]) = 0},

and sinceMu and Bu are independent Poisson point processes, it is known that conditional
on Fη, we have: Mu∩ [0,∞)× [0, ωη(u)) and Bu∩ [0, ωη(u)) are independent Poisson point
processes, with intensity Lebesgue for Mu and β for Bu, on their respective domains.

We can further notice that on the event {u is a bud of Yη}, conditional on Fη, the families
of point processes

(Muv ∩ [0,∞)× [0, ωη(u)))v∈T and (Buv ∩ [0, ωη(u)))v∈T

are independent families of independent Poisson point process with intensity Lebesgue for
Muv and β for Buv, on their respective domains.

Also, since Mu and Bu are independent and with diffuse intensities, we have the a.s.
equalities between events

{u is a bud of Yη}
= {ωη(u) = inf{s ∈ [0, α(u)], Mu([0, e−η]× [s, α(u)]) = 0}}
= {Bu({ωη(u)}) = 0}.
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Moreover, since Mu is a Poisson point process with Lebesgue intensity on [0,∞)2, it
is known that on this event, conditional on ωη(u), the point process Mu restricted to
[0, e−η]× [0, ωη(u)] has the conditional distribution of:

δ(U, ωη(u)) + M̂,

where U is a uniform random variable on [0, e−η] and M̂ is an independent Poisson
point process on [0, e−η] × [0, ωη(u)) with Lebesgue intensity. Hence on the event A :=
{u is a bud of Yη}, the distribution of

η̂ = inf{η′ ≥ η, Mu([0, e−η′ ]× {ωη(u)}) = 0}
= sup{η′ ≥ η, Mu([0, e−η′ ]× {ωη(u)}) = 1}

is given by

P(η̂ − η ≥ t | A) = P(Mu([0, e−(η+t)]× {ωη(u)}) = 1 | A)
= P(U ∈ [0, e−(η+t)])
= e−t,

And so if u is a bud of Yη, the first time η̂ such that ωη̂(u) is lower than ωη(u) satisfies
that η̂ − η has an exponential distribution with parameter 1.

We may now prove the first point (i) of the theorem. Fix η ∈ R, and write (b1, b2, . . .) for
the distinct buds of Yη. We define, for i ≥ 1 and η′ ≥ η:

T̃ iη′ := {u, biu ∈ Tη′},
α̃iη′(∅) := ωη(bi) and for u ∈ T \ {∅}, α̃iη′(u) := αη′(biu),

ω̃iη′(u) := ωη′(biu),

Ỹ i
η′ :=

(
T̃ iη′ , α̃iη′ , ω̃iη′

)
.

This definition formulates that for η′ ≥ η, Ỹ i
η′ is the unique simple tree such that Yη′ =

A⊕bi Ỹ i
η′ for another simple tree A in which bi is a bud, with ωA(bi) = ωη(bi). Note that

when writing Yη′ = A⊕bi Ỹ i
η′ , A may be different from Yη, even for η′ arbitrarily close to

η, since other grafts may have occurred (possibly infinitely many grafts if Yη has infinitely
many buds).

Since b1, b2, . . . are the buds of Yη, the sets b1T , b2T , . . . are disjoint. Thus, from our
construction, the following families of random variables are independent conditional on
Fη:

(Bb1u)u∈T , (Bb2u)u∈T . . . , (Mb1u)u∈T , (Mb2u)u∈T , . . .

Furthermore, we know how to describe their distributions conditional on Fη because of
the previous observations. It follows that the trees (Ỹ i

η′)i≥1 are independent conditional
on Fη and the distribution of (Ỹ i

η′)η′≥η can be described by:

There is a random variable η̂ such that

• η̂ − η is exponentially distributed with parameter 1.
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• For η ≤ η′ < η̂, we have ωη′(bi) = ωη(bi) so Ỹ i
η′ is the empty tree (or rather contains

only one point, the root).

• Conditionally on η̂, the process (Ỹ i
η′)η′≥η̂ is distributed as our construction of the

process (Yη′)η′≥η̂, with the initial condition α(∅) = ωη(bi).

This concludes the proof of (i).

For (ii), write T for the set of simple binary trees and suppose we have a bounded mea-
surable map ϕ : T→ R and a number n ≥ 0 such that

ϕ(A) = ϕ(A|n) A ∈ T.

Consider a fixed tree A = (T , α, ω) ∈ T. There is a finite number of buds b1, . . . , bm in the
first n generations T|n, therefore for a fixed η ∈ R, conditional on {Xz

η = A}, the process
(ϕ(Xz

η′))η′≥η is a continuous time Markov chain. It follows from (i) that this Markov chain
jumps after an exponential time with parameter m to a new state where one of the buds,
uniformly chosen, grows into a new tree. That is, denoting Lη the infinitesimal generator
of the process (Xz

η )η≥η0 ,

Lηϕ(A) =
m∑
i=1

(
Qω(bi)
η [ϕ(A⊕bi Y )]− ϕ(A)

)
,

where Y is the random tree drawn under the probability measure Qω(bi)
η .

For (iii), note that the existence of a leaf in the clonal subtree at a distance z from
the root coincides a.s. with the existence of a clonal leaf in Tz, where Tz is the original
CPP(ν, z) with mutation measure µ(dx) = e−η dx. Then the formula in the proof follows
from Proposition 2.21, which gives the probability that there is a clonal leaf in a CPP.

The branching random walk of the buds. Forgetting the structure of the tree and
considering only the height of the buds, the process becomes a rather simple branching
random walk. Write χzη := ∑

b∈B(Xz
η ) δω(b) for the point measure on R+ giving the heights

of the buds in Xz
η . Then (χzη)η≥η0 is a branching Markov process where each particle

stays at their height z′ during their lifetime (an exponential time of parameter 1), then
splits at their death time η according to the distribution of χz′η . Similarly to the preceding
paragraph, one can describe the infinitesimal generator of this process as follows. For a
map f : R+ → R+ that is zero in a neighborhood of 0 and a Radon point measure Γ on
(0,∞) (i.e. such that Γ([x,∞)) <∞ ∀x > 0), write ϕf (Γ) for the sum

ϕf (Γ) :=
∫
f(z)Γ(dz).

Then the infinitesimal generator Lη at time η of the time-inhomogeneous process (χη)η∈R,
evaluated at ϕf , is given by

Lηϕf (Γ) =
∫
Qzη[ϕf (χ)] Γ(dz)− ϕf (Γ).
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2.5 Link between CPP and Birth-Death Trees

2.5.1 Birth-Death Processes

An additional well-known example of random tree is given by the genealogy of a birth-death
process, which will appear as an alternative description of our CPP trees. Here, a birth-
death process is a time-inhomogeneous, time-continuous Markovian branching process
living in Z+ with jumps in {−1, 1}. In a general context, we will define the genealogy
of a birth-death process as a random simple tree, which we may equip with a canonical
limiting measure on the set of its infinite lineages.

Let J = [t0, t∞) be a real interval, with −∞ < t0 < t∞ ≤ ∞. Suppose there are
two measures on J , β and κ, respectively called the birth intensity measure and death
intensity measure, or simply birth rate and death rate, which satisfy for all t ∈ J

β([t0, t]) <∞, κ([t0, t]) <∞
β({t}) = 0, κ({t}) = 0.

(2.7)

In other words, β and κ are diffuse Radon measures on J .

Informally, the population starts with one individual at time t0, and each individual alive
at time t ≥ t0 may give birth to a new individual at rate β(dt), and die at rate κ(dt).

Definition 2.31. Let J = [t0, t∞) be a real interval, with −∞ < t0 < t∞ ≤ ∞, and β

and κ measures on J satisfying (2.7). Independently for each u ∈
⋃
n{0, 1}n, we define

Bu and Du two independent point processes, such that Bu (resp. Du) is a Poisson point
process on J with intensity β (resp. κ).

The genealogy of a (β, κ) birth-death process started from t ∈ J is the random binary
simple tree (T , α, ω) defined recursively by:

1. ∅ ∈ T , with α(∅) = t.

2. For each u ∈ T , we set TB(u) := inf Bu∩(α(u), t∞), and TD(u) := inf Du∩(α(u), t∞).
Then there are three different possibilities:

• if TB(u) < TD(u), then we set u0, u1 ∈ T , and α(u0) = α(u1) = ω(u) := TB(u),

• if TD(u) < TB(u), then we set ω(u) = TD(u), and u0, u1 /∈ T ,

• if TB(u) = TD(u) = t∞, then we set ω(u) = t∞, and u0, u1 /∈ T .

Birth-death processes have been known for a long time. They have been studied thoroughly
as early as 1948 [56]. In the case of pure-birth processes with infinite descendance, we
introduce a canonical measure on the boundary of the tree.

Definition 2.32. Under the assumption κ = 0 and β(J) = ∞, the tree (T , α, ω) is said
to be the genealogy of a pure-birth process. It may then be equipped with a measure
L on its boundary ∂T = {0, 1}N defined by

L (Bu) := lim
s↑t∞

Nu(s)
eβ([t0,s])

u ∈ T ,
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where Bu = {v ∈ ∂T , u ≺ v} is defined as in Definition 2.4, and Nu(s) is the number of
descendants of u at time s:

Nu(s) := #{v ∈ T , u � v, α(v) < s ≤ ω(v)}.

Remark 2.33. The limits in the definition are well-defined because for each u ∈ T ,
conditional on α(u), the process

(
Nu(s)

eβ([t0,s])

)
s≥α(u)

is a non-negative martingale. Also, the
fact that the map u 7→ Nu(s) is additive combined with Remark 2.2 justifies that the
measure L is well defined.

Finally, let us introduce random mutations on a birth-death tree as a random discrete set
of points.

Definition 2.34. Let µ be a diffuse Radon measure on J , and let # denote the counting
measure on ⋃n{0, 1}n. A birth-death tree (T , α, ω) may be equipped with a set M of
neutral mutations at rate µ by defining, independently of the preceding construction, a
Poisson point process M̃ on (⋃n{0, 1}n)× J with intensity #⊗ µ, and then defining:

M := {(u, s) ∈ M̃, u ∈ T , α(u) < s ≤ ω(u)}.

This point process M is then a discrete subset of the skeleton of the real tree (defined as
in (2.1)) associated with (T , α, ω).

Example. The Yule tree is the genealogy of a pure-birth process with J = [0,∞) and a
birth rate β equal to the Lebesgue measure, which means that the branches separating two
branching points are i.i.d exponential random variables with parameter 1. Every pure-
birth tree with β(J) = ∞ can be time-changed into a Yule tree, with the time-change
ϕ : J → [0,∞), t 7→ β([t0, t]) (see Proposition 2.39).

2.5.2 Link between CPP and Supercritical Birth-Death Trees

We first provide a refined version of Lemma 2.30 which is proved in Subsection 2.A.2.

Lemma 2.35. Under the assumptions of Lemma 2.30, the CPP(ν, z) with boundary
measured by ` is the genealogy of a reversed pure-birth process with birth intensity dβ =
−d log ν started from z, with boundary measured by L .

Let J = [t0, t∞) be a real interval, with −∞ < t0 < t∞ ≤ ∞, and let β and κ be diffuse
Radon measures on J , i.e. measures satisfying (2.7). Consider a birth-death process
started from t0 with birth rate β and death rate κ. Let us define

It :=
∫

[t,t∞)
e−β([t,s])+κ([t,s]) β(ds)

β∗(dt) := β(dt)
It

In a birth-death process with β(J) = ∞, we say that an individual i alive at time t
has an infinite progeny if Ni(s) > 0 for any time s > t. It is known (see [56]) that the
process is supercritical (i.e., the event {lim inft→t∞ N∅(t) > 0} has positive probability) if
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and only if It0 < ∞, and that the probability of non-extinction for a process started at
time t ∈ J is then I−1

t . Also, if the birth-death process with rates (β, κ) is supercritical,
then conditional on non-extinction, the subtree of individuals with infinite progeny is a
pure-birth tree with birth rate β∗.

Now we assume Poissonian neutral mutations are set on the genealogy of a (β, κ) super-
critical birth-death process, according to a rate µ, where µ is a diffuse Radon measure
on J . We also assume β∗(J) = ∞ so that limt→t∞ N∅(t) = +∞ conditional on non-
extinction. Conditional on non-extinction, the subtree of individuals with infinite progeny
is a measured simple tree equipped with mutations (T , α, ω,L ,M), where:

• (T , α, ω,L ) is a random simple binary tree constructed (see Definition 2.32) from a
pure-birth process with birth rate β∗.

• With M̂ a Poisson point process on (⋃n≥0{0, 1}n) × J with intensity # ⊗ µ, the
mutations on the branches of T are defined as the set

M = {(i, t) ∈ M̂, i ∈ T , α(i) < t ≤ ω(i)}

One may study this measured tree with mutations as the limit in time of the genealogy
of the birth-death process with neutral mutations. We show that this measured tree with
mutations is in fact a time-changed CPP tree.

Theorem 2.36. Let J = [t0, t∞) be a real interval, with −∞ < t0 < t∞ ≤ ∞, and let
β and µ be diffuse Radon measures on J , with β(J) = ∞. Let T = (T , α, ω,M,L ) be a
random measured simple tree representing the genealogy of a pure-birth process with rate
β started from t0, equipped with mutations at rate µ. Let ϕ : J → (0, 1] be the time-change
defined by

ϕ : t 7→ e−β([t0,t)).

Then the time-changed tree ϕ(T) (see Proposition 2.39) has the distribution of a
CPP

(
dx
x2 , µ ◦ ϕ−1, 1

)
.

Proof. Thanks to Lemma 2.35, we only need to exhibit a correct time change to prove
the Theorem. We know that a time-changed birth-death tree is still a birth-death tree:
this is explicitly stated in Proposition 2.39 in the appendix. This implies here that the
time-changed tree ϕ(T) is a (reversed) pure-birth process with birth rate β ◦ ϕ−1, started
from ϕ(t0) = 1, and equipped with mutations with rate µ ◦ ϕ−1. Let us first check that
β ◦ϕ−1(dx) = d log(x). Since β is diffuse, ϕ is continuous decreasing, so for all x ∈ (0, z0],
we have ϕ(ϕ−1(x)) = x, where ϕ−1 is the right-continuous inverse of ϕ. Therefore we
have, for all a < b ∈ (0, 1]:

β ◦ ϕ−1([a, b]) = β([ϕ−1(b), ϕ−1(a)])
= logϕ(ϕ−1(b))− logϕ(ϕ−1(a))
= log(b)− log(a).

Now notice that for x ∈ (0, 1],

− log
(∫ ∞

x

1
y2 dy

)
= log x,
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so according to Lemma 2.35, a CPP
(

dx
x2 , µ ◦ ϕ−1, 1

)
is a pure-birth process with birth rate

β(dx) = d log(x), started from 1 and equipped with mutations at rate µ ◦ ϕ−1. Therefore
its distribution is identical to the distribution of ϕ(T).

2.A Appendix

2.A.1 Birth-Death Processes

Proposition 2.37. Let J = [t0, t∞) be a real interval, with −∞ < t0 < t∞ ≤ ∞, and β
and κ diffuse Radon measures on J (i.e. satisfying (2.7)). Let Pt denote the distribution
of the genealogy of a (β, κ) birth-death process started with one individual at time t ∈ J ,
and let NT be the number of individuals alive at time T ∈ J . For T > t and α ≥ 0, we
have:

Et(e−αNT ) = 1− (1− e−α)
eκ([t,T ])−β([t,T ]) + (1− e−α)

∫
[t,T ] eκ([t,s])−β([t,s])β(ds)

,

and in particular,

Pt(NT > 0) =
(

eκ([t,T ])−β([t,T ]) +
∫

[t,T ]
eκ([t,s])−β([t,s])β(ds)

)−1

.

Remark 2.38. Note that the previous proposition shows that conditional on being non-
zero, NT is a geometric random variable, which is a known fact about birth-death processes
(see for instance [56]). We still provide a proof in our case where the birth and death
intensity measures are not necessarily absolutely continuous with respect to Lebesgue.

Proof. With a fixed time horizon T ∈ J and a fixed real number α ≥ 0, write for t < T ,

q(t) = Et(e−αNT ).

We use a different description of the birth-death process than the one used in Section
2.5, and consider a population where individuals die at rate κ, and during their lifetime,
produce a new individual at rate β. Notice that for any s > t, the number of individuals
alive at time s has the same distribution in both models.

Thus we writeD for the death time of the first individual, and Bi for the possible birth time
of her i-th child. With our description, D has the distribution of the first atom of a Poisson
point process on [t, t∞) with intensity κ and conditional on D, the set {B1, B2, . . . , BN} is
a Poisson point process on [t,D] with intensity β. Also, write Ñ i

T for the number of alive
descendants of the i-th child at time T . Since we have NT = 1D>T +∑

i Ñ
i
T , we have

q(t) = Et
[
e−α1D>T ∏i e−αÑ i

T

]
,

where we define by convention Ñ i
T = 0 if Bi > T . Now conditional on D and (Bi), (Ñ i

T )
are independent, with Ñ i

T equal to the distribution of NT under PBi . Hence

q(t) = Et
[
e−α1D>T ∏i q(Bi)

]
,
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where we use the convention q(u) := 1 if u > T . Now conditional on D, (Bi) are the
atoms of a Poisson point process with intensity β(ds) on [t,D], so we have

q(t) = Et

[
e−α1D>T exp

(
−
∫

[t,D]
(1− q(s))β(ds)

)]

=
∫

[t,∞)
κ(du) e−κ([t,u))e−α1u>T exp

(
−
∫

[t,u]
(1− q(s))β(ds)

)
,

which implies by differentiation

dq(t) = −κ(dt) + q(t) [κ(dt) + (1− q(t))β(dt)] ,

which in turn may be rewritten

d
( 1

1− q(t)

)
= −β(dt) +

( 1
1− q(t)

)
(β(dt)− κ(dt)).

Remark that with F (t) := eβ([t,T ])−κ([t,T ]), we have dF (t) = F (t)(κ(dt)− β(dt)), so that

d
(

F (t)
1− q(t)

)
= −F (t)β(dt),

and since q(T ) = e−α, we have by integration on [t, T ]:

1
1− e−α −

F (t)
1− q(t) = −

∫
[t,T ]

F (s)β(ds),

that is
1− q(t) = (1− e−α)

eκ([t,T ])−β([t,T ]) + (1− e−α)
∫

[t,T ] eκ([t,s])−β([t,s])β(ds)
.

This characterizes the distribution of NT under Pt for all T . In particular, letting α→∞,
we get

Pt(NT > 0) =
(

eκ([t,T ])−β([t,T ]) +
∫

[t,T ]
eκ([t,s])−β([t,s])β(ds)

)−1

,

which concludes the proof.

Proposition 2.39 (Time-changed birth-death processes). Let J = [t0, t∞) be a real in-
terval, with −∞ < t0 < t∞ ≤ ∞, and β, κ, and µ diffuse Radon measures on J (i.e.
satisfying (2.7)). Let ϕ : J → R be an increasing function, and define t′0 := ϕ(t0),
t′∞ := limt↑t∞ ϕ(t) and J ′ = [t′0, t′∞). We assume that ϕ satisfies

∀t < t∞, ϕ(t) < t′∞.

Let T = (T , α, ω,M) be the genealogy of a (β, κ) birth-death process, started at t ∈ J

and equipped with Poissonian mutations with rate µ, as in Definition 2.34. We define the
time-changed simple tree:

ϕ(T) := (T , ϕ ◦ α,ϕ ◦ ω, {(u, ϕ(s)), (u, s) ∈M}).
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If β ◦ϕ−1 and κ ◦ϕ−1 (the push-forwards of β and κ by ϕ) still have no atoms, then ϕ(T)
has the distribution of the genealogy of a (β ◦ ϕ−1, κ ◦ ϕ−1) birth-death process, started at
ϕ(t) ∈ J ′ and equipped with Poissonian mutations with rate µ ◦ ϕ−1.

Also, if κ = 0 and β(J) = ∞, then κ ◦ ϕ−1 = 0 and β ◦ ϕ−1(J ′) = ∞, and the measures
LT and Lϕ(T) on ∂T , defined for T and for ϕ(T), are the same.

Proof. Suppose T is constructed as in Definition 2.31 with independent Poisson point
processes Bu and Du with respective intensities β and κ, for each u ∈

⋃
n{0, 1}n. This

implies that the random sets defined by

ϕ(Bu) := {ϕ(s), s ∈ Bu},
ϕ(Du) := {ϕ(s), s ∈ Du},

are independent Poisson point processes on the interval J ′ with respective intensities
β ◦ ϕ−1 and κ ◦ ϕ−1. Remark that by assumption, for η ∈ {β, κ}, for all t′ ∈ J ′, we
have η ◦ ϕ−1({t′}) = 0, so we a.s. have t′ /∈ ϕ(Bu) and t′ /∈ ϕ(Du). Now since α(u) is
independent of Bu and Du, we have also a.s.

ϕ ◦ α(u) /∈ ϕ(Bu) ∪ ϕ(Du). (2.8)

By definition, we have ∅ ∈ T and α(∅) = t, so ϕ ◦ α(∅) = ϕ(t). Then, if u ∈ T , with
TB(u) = inf Bu ∩ (α(u), t∞), and TD(u) = inf Du ∩ (α(u), t∞), the following assertions
hold.

• Since we have (2.8), we know that a.s. for all s ∈ Bu∩ (α(u), t∞), we have ϕ(α(u)) <
ϕ(s). This ensures that ϕ(TB(u)) = inf ϕ(Bu) ∩ (ϕ ◦ α(u), t′∞).

• For the same reason, we have ϕ(TD(u)) = inf ϕ(Du) ∩ (ϕ ◦ α(u), t′∞).

• Because ϕ(Bu) is independent of ϕ(Du) and because β ◦ϕ−1 and κ ◦ϕ−1 are diffuse
by assumption, we have ϕ(Bu) ∩ ϕ(Du) = ∅ almost surely. Therefore, we have:

– ϕ(TB(u)) < ϕ(TD(u)) ⇐⇒ TB(u) < TD(u), which implies u0, u1 ∈ T , and
ϕ ◦ α(u0) = ϕ ◦ α(u1) = ϕ ◦ ω(u) = ϕ(TB(u)),

– ϕ(TD(u)) < ϕ(TB(u)) ⇐⇒ TD(u) < TB(u), which implies ϕ ◦ ω(u) =
ϕ(TD(u)), and u0, u1 /∈ T ,

– ϕ(TB(u)) = ϕ(TD(u)) = t′∞ ⇐⇒ TB(u) = TD(u) = t∞, which implies ϕ ◦
ω(u) = t′∞, and u0, u1 /∈ T .

Thus (T , ϕ◦α,ϕ◦ω) is defined as a (β ◦ϕ−1, κ◦ϕ−1) birth-death process, started at ϕ(t).

For the neutral mutations, we assume there is, as in Definition 2.34, a Poisson point process
M̃ on (⋃n{0, 1}n)× J with intensity #⊗ µ, and such that:

M = {(u, s) ∈ M̃, u ∈ T , α(u) < s ≤ ω(u)}.

Now {(u, ϕ(s)), (u, s) ∈ M̃} is a Poisson point process on (⋃n{0, 1}n)× J ′ with intensity
#⊗ µ ◦ ϕ−1, so

{(u, ϕ(s)), (u, s) ∈M} = {(u, ϕ(s)), (u, s) ∈ M̃, u ∈ T , α(u) < s ≤ ω(u)}
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is the definition of random neutral mutations at rate µ ◦ϕ−1 on the tree (T , ϕ ◦ α,ϕ ◦ ω).

It remains to prove that in the case κ = 0 and β(J) =∞, the measures LT and Lϕ(T) are
the same. By definition, we have for u ∈ ⋃n{0, 1}n,

Lϕ(T)(Bu) = lim
s′↑t′∞

N ′u(s′)
eβ◦ϕ−1([t′0,s′])

= lim
s↑t∞

N ′u(ϕ(s))
eβ◦ϕ−1([t′0,ϕ(s)]) ,

where N ′u(s′) := #{v ∈ T , u � v, ϕ ◦ α(v) < s ≤ ϕ ◦ ω(v)} is the number of descendants
of u in the time-changed tree at time s′. But we have a.s. for all s ∈ J , N ′u(ϕ(s)) = Nu(s),
and also β ◦ ϕ−1([t′0, ϕ(s)]) = β([t0, s]), so finally

Lϕ(T)(Bu) = lim
s↑t∞

N ′u(ϕ(s))
eβ◦ϕ−1([t′0,ϕ(s)]) ,

= lim
s↑t∞

Nu(s)
eβ([t0,s])

= LT(Bu),

which ends the proof.

Proposition 2.40 (Characterization of pure-birth processes). Let J = [t0, t∞) be a real
interval, with −∞ < t0 < t∞ ≤ ∞, and β a diffuse Radon measure on J , such that
β(J) =∞.

There is a unique family (Pt)t∈J of distributions on simple trees (T , α, ω,L ) equipped with
a measure L on ∂T := {0, 1}N, such that for all t ∈ J

(i) T = ⋃
n{0, 1}n and α(∅) = t Pt-almost surely.

(ii) Pt(ω(∅) > s) = e−β([t,s)).

(iii) Under Pt, L (∂T ) is an exponential r.v. with mean e−β([t0,t)).

(iv) Under Pt, define for i ∈ {0, 1}, αi(u) := α(iu), ωi(u) := ω(iu), Li the measure on
∂T such that Li(Bu) = L (Biu) for all u ∈ T and finally Ti := (T , αi, ωi,Li). Then
the conditional distribution of the pair of trees (T0,T1) given ω(∅) is P⊗2

ω(∅), i.e. they
are independent with the same distribution Pω(∅).

Furthermore, for all t ∈ J , Pt is the distribution of the genealogy of a pure-birth process
with birth rate β started with one individual at time t ∈ J , equipped with L the measure
on ∂T introduced in Definition 2.32.

Proof. Let Qt be the law of the genealogy of a β pure-birth process started from t. We
will first show that the family (Qt)t∈J satisfies the assertions (i)-(iv) of the theorem.

(i) By definition α(∅) = t. Also, the fact that for all t ∈ T , β([t, t∞)) = ∞, implies that
for each Poisson point process with intensity β on J , there are infinitely many points in
[t, t∞). This implies that each individual in the process will eventually split into two, so
that T = ⋃

n{0, 1}n Pt-almost surely.
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(ii) Under Qt, ω(∅) is distributed as the first point of a Poisson point process B∅ on
[t, t∞) with intensity β. Therefore,

Qt(ω(∅) > s) = Qt(#B∅ ∩ [t, s) = 0) = e−β([t,s)).

(iii) By Proposition 2.37, writing Et for the expectation under Qt, we have for t < T < t∞,

Et(e−αNT ) = 1− (1− e−α)
e−β([t,T ]) + (1− e−α)(1− e−β([t,T ]))

.

Replacing α by αe−β([t0,T ]) and letting T → t∞, we have by dominated convergence:

Et(e−αL (∂T )) = 1
αe−β([t0,t)) + 1,

which implies that L (∂T ) is an exponential random variable with mean e−β([t0,t)).

(iv) Let us define a family (Bu)u∈T of independent Poisson point processes on J with inten-
sity β. Let us write F for the deterministic function such that for all t ∈ J , F (t, (Bu)u∈T )
is the simple tree T = (T , α, ω,L ) constructed as in Definition 2.31, which follows the
distribution Qt. By assumption, the two families (B0u)u∈T and (B1u)u∈T are independent,
and by construction, we have

T0 = F (ω(∅), (B0u)u∈T ) and T1 = F (ω(∅), (B1u)u∈T ),

where T0 and T1 are defined as in the statement of the Proposition. Therefore, under Qt,
the conditional distribution of (T0,T1) given ω(∅) is P⊗2

ω(∅).

Now, let us show that if a family (Pt)t∈J satisfies the assertions (i)-(iv) of the Proposition,
it satisfies also the following one. Let Tn be the complete binary tree with n generations

Tn :=
n⋃
k=0
{0, 1}k,

and let Pnt be the distribution of (α(u), ω(u),L (Bu))u∈Tn , where (T , α, ω,L ) has distri-
bution Pt. Now we view Pnt as a probability measure on the space
(R3)Tn = {(x(u), y(u), z(u)), u ∈ Tn}. Then we have

1. x(∅) := t Pnt -almost surely.

2. For all m ≤ n and u ∈ Tm, conditional on x(u) and independently of the variables
(x(v), y(v))v∈Tm\{u}, the distribution of y(u) is given by:

Pnt (y(u) > s) = e−β([x(u),s)) s ≥ x(u).

3. For all u ∈ {0, 1}n, conditional on x(u) and independently of the rest, z(u) is defined
as an exponential random variable with mean e−β([t0,x(u))).

4. For all u ∈ Tn−1, x(u0) = x(u1) := y(u).

5. For all u ∈ Tn−1, z(u) := z(u0) + z(u1).
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Indeed, assertion 1 is directly deduced from (i), 5 is trivial because L is additive, and 2,
3 and 4 are proved by induction on n using (iv). One can check that 2 stems from (ii)
and (iv), 3 from (iii) and (iv), and 4 from (i) and (iv).

Now it is clear that these five assumptions define Pnt uniquely for n ≥ 0 and t ∈ J .
Also, a measured simple tree (T , α, ω,L ) for which T = ⋃

n{0, 1}n is entirely described
by (α(u), ω(u),L (Bu))u∈T ∈ (R3)T . This implies that Pt is uniquely determined by its
marginal distribution (Pnt )n≥0.

Finally, we have shown that the family (Qt)t∈J , where Qt is the law of the genealogy of
a β pure-birth process started from t, satisfies assertions (i)-(iv). In addition, we have
shown that there is at most one family (Pt) of simple tree distributions satisfying assertions
(i)-(iv). Therefore, such a family exists and is unique, which concludes the proof.

2.A.2 Proof of Lemmas 2.30 and 2.35

Let us write Pz for the distribution of a CPP(ν, z). Let N be a Poisson point process with
intensity dt⊗ ν as in our construction of CPP trees. Recall that T (z) = inf{t ≥ 0, (x, t) ∈
N , x ≥ z} and define

Nz := N ∩ ([0, T (z))× [0, z]).

Define also Tz as the comb function tree given by Nz with distribution denoted Pz. Write
Pz for the distribution of the pair (Nz, T (z)).

In Proposition 2.40, we characterized the distributions of pure-birth processes. As a result,
to conclude the present proof, it is sufficient to show that the family (Pz)z∈J satisfies the
following conditions:

(i) We have T = ⋃
n{0, 1}n and α(∅) = z Pz-almost surely.

(ii) We have Pz(ω(∅) < x) = e−β((x,z]).

(iii) Under Pz, L (∂T ) is an exponential r.v. with mean e−β((z,z0]).

(iv) Under Pz, define for i ∈ {0, 1}, αi(u) := α(iu), ωi(u) := ω(iu), Li the measure on
∂T such that Li(Bu) = L (Biu) for all u ∈ T and finally Ti := (T , αi, ωi,Li). Then
the conditional distribution of the pair of trees (T0,T1) given ω(∅) is P⊗2

ω(∅), i.e. they
are independent with the same distribution Pω(∅).

Let us now prove each assertion.

(i) Since ν([0,∞)) =∞ we have a.s. for any 0 ≤ a < b ≤ T (z):

#(Nz ∩ [a, b]× [0,∞)) =∞.

Also, since ν is diffuse, we have a.s. for all x > 0 that #(N ∩ [0,∞)×{x}) ≤ 1 Those two
conditions imply that Tz is a complete binary tree.

(ii) – (iii) The first branching point of the tree Tz is ω(∅) = max{x > 0, (t, x) ∈ Nz}.
Also the total mass of the tree is L (∂T ) = T (z), which is an exponential random variable
with mean (ν(z))−1 = e−β((z,z0]). We can easily compute the distribution of ω(∅) under
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Pz, since conditional on T (z), Nz is a Poisson point process on [0, T (z)) × [0, z] with
intensity dt⊗ ν. Therefore, for x ∈ (0, z]:

Pz(ω(∅) < x) =
∫ ∞

0
P(T (z) ∈ dt)e−tν([x,z])

=
∫ ∞

0
ν(z)e−ν(z)te−t(ν(x)−ν(z))dt

=
∫ ∞

0
ν(z)e−ν(x)tdt

= ν(z)
ν(x) = e−β((x,z]).

(iv) It remains to prove the branching property for the family (Pz)z∈(0,z0].

Under Pz, conditional on ω(∅), let (N1, T1) and (N2, T2) be independent random variables
of identical distribution Pω(∅). We concatenate N1 and N2, adding a point of height ω(∅)
between the two sets:

Ñ = N1 ∪ {(T1, ω(∅))} ∪ {(T1 + t, x), (t, x) ∈ N2}.

We claim that the following equality in distribution holds:

(Ñ , T1 + T2) (d)= (Nz, T (z)), (2.9)

which formulates the branching property for the family (Pz)z∈(0,z0].

From basic properties of Poisson point processes, we know that conditional on T (z), the
highest atom of Nz is (U,Z), with U having a uniform distribution on [0, T (z)] and Z :=
ω(∅) independent of U , such that

Pz(Z ≤ x | T (z)) = e−T (z)(ν(x)−ν(z)).

The joint distribution of (Z, T (z)) is therefore given by:

E[f(T (z))1Z≤x] =
∫ ∞

0
ν(z)e−ν(z)te−t(ν(x)−ν(z))f(t)dt

=
∫ ∞

0
ν(z)e−ν(x)tf(t)dt

=
∫ ∞

0
ν(z)

∫ ∞
ν(x)

te−utdu f(t)dt

=
∫ ∞
ν(x)

ν(z)
u2

∫ ∞
0

tu2e−utf(t)dt du

In other words, the random variable ν(Z) has a density ν(z)
u2 1u≥ν(z)du, and conditional on

ν(Z), T (z) follows a Gamma distribution with parameter (ν(Z), 2). As U/T (z) is uniform
on [0, 1] and independent of Z, one can check that (Z, T (z), U) has the same distribution
as (Z, T1 + T2, T1), where conditional on Z, the variables T1 and T2 are independent with
the same exponential distribution with parameter ν(Z). This concludes the proof of (2.9)
since conditional on (Z, T (z), U) (resp. (Z, T1+T2, T1)), Nz\{(U,Z)} (resp. Ñ \{(T1, Z)})
is a Poisson point process on [0, T (z))× [0, Z] (resp. on [0, T1 +T2)× [0, Z]) with intensity
dt⊗ ν.
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2.A.3 Subordinators and Regenerative Sets

We use some classical results about regenerative sets and subordinators, whose proofs can
be found in the first two sections of Bertoin’s Saint-Flour lecture notes [12].

Definition 2.41. A subordinator is a right-continuous, increasing Markov process (σt)t≥0
started from 0 with values in [0,∞], where∞ is an absorbing state, such that for all s < t,
conditional on {σs <∞}, we have

σt − σs
(d)= σt−s.

Theorem 2.42. The distribution of a subordinator is characterized by its Laplace ex-
ponent defined as the increasing function ϕ : [0,∞)→ [0,∞), such that for all λ, t ≥ 0,

E[e−λσt ] = e−tϕ(λ),

with the convention e−λ∞ = 0 for all λ ≥ 0. The Laplace exponent can be written under
the form

ϕ(λ) = k + dλ+
∫

(0,∞)
(1− e−λx)π(dx),

where k is called the killing rate, d the drift coefficient and π the Lévy measure of
the subordinator. Necessarily, we have k, d ≥ 0 and π satisfies∫

(0,∞)
(1 ∧ x)π(dx) <∞.

Letting ζ := inf{t ≥ 0, σt =∞} be the lifetime of the subordinator, ζ follows an exponen-
tial distribution with parameter k (if k = 0, then ζ ≡ ∞). Also we have almost surely for
all t < ζ,

σt = dt+
∑
s≤t

∆σs,

and the set of jumps {(s,∆σs), ∆σs > 0} is a Poisson point process with intensity ds⊗π.

The renewal measure of a subordinator is defined as the measure U(dx) on [0,∞) such
that for any non-negative measurable function f∫

[0,∞)
f(x)U(dx) = E

[∫ ζ

0
f(σt)dt

]
.

This renewal measure characterizes the distribution of σ since its Laplace transform is the
inverse of ϕ

1
ϕ(λ) =

∫
[0,∞)

e−λxU(dx).

Remark also that setting Lx := inf{t ≥ 0, σt > x} the right-continuous inverse of σ, we
have

U(x) := U([0, x]) = E
[∫ ∞

0
1σt≤x dt

]
= E[Lx].

Definition 2.43. Given a probability space (Ω,F ,P) equipped with a complete, right-
continuous filtration (Ft)t≥0, a regenerative set R is a random closed set containing 0
for which the following properties hold
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• Progressive measurability. For all t ≥ 0, the set {(s, ω) ∈ [0, t]× Ω, s ∈ R(ω)} is in
B([0, t])⊗Ft.

• Regeneration property. For a (Ft)t≥0-stopping time T such that a.s. on {T < ∞},
T ∈ R and T is not right-isolated in R, we have:

R ∩ [T,∞[−T (d)= R,

where R ∩ [T,∞[−T is defined formally as the set {t ≥ 0, T + t ∈ R}.

We define the range of a subordinator σ as the closed set {σt, t ≥ 0}, and see that all
regenerative sets can be expressed in this form.

Theorem 2.44. The range of a subordinator is a regenerative set. Conversely, if R is
a regenerative set without isolated points, there exists a subordinator σ whose range is R
almost surely.

Remark 2.45. In the case where λ(R) > 0 a.s., one can define such a subordinator as

σt := inf{x ≥ 0, λ([0, x] ∩R) > t}.

Then σ is the unique subordinator with drift 1 and range R, and its renewal measure
is U(dx) = P(x ∈ R) dx. Notice that λ(R) = inf{t ≥ 0, σt = ∞} = ζ by definition.
Therefore λ(R) is an exponential random variable with parameter k, the killing rate of σ.
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Chapter 3

Trees within trees: Simple nested
coalescents

Joint work with Airam Blancas, Amaury Lambert and Arno Siri-Jégousse. This chapter
is published in Electronic Journal of Probability [18].
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3.1 Introduction

In the framework of population biology, one can see asexual organisms, but also DNA
sequences or even species, as replicating particles. The genealogical ascendance of co-
existing replicating particles can always be represented by a tree whose tips are labelled
by the names of these particles [61, 63, 85]. Even if species are not strictly speaking
replicating particles, ancestral relationships between species are also usually represented by
a tree whose nodes are interpreted as speciation events, i.e., the emergence of two or more
species from one single species. The inference of the so-called gene tree of contemporary
DNA sequences from their comparison has a decade-long history. It is considered as a field
in its own right, called molecular phylogenetics [43, 72], which relies heavily on the theory
of Markov processes. (This can be misleading, but the species tree, much more often than
the gene tree, is called a phylogeny.)
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When one type of replicating particle is physically embedded in another type of particle,
like a virus in its host, their common history can be depicted as a tree within a tree [35,
68, 74]: tree of dividing parasites inside the tree of dividing hosts, tree of paralogous
genes (i.e. distinct DNA segments resulting from gene duplication and coding for similar
functions) inside the gene family tree, gene tree inside the species tree. In many such cases,
biologists are more interested in the coarser tree rather than in the finer tree. Typically,
the finer tree is a gene tree and is inferred thanks to methods developed in molecular
phylogenetics. One of the current methodological challenges in quantitative biology is to
devise fast statistical algorithms able to also infer the coarser tree. When the genes are
sampled from infecting pathogens of the same species (Influenza, HIV...), the coarser tree
is the epidemic transmission process [50, 91]. When the genes are sampled from (any kind
of) different species, the coarser tree is the species tree [54, 73, 88]. It is often required to
use several gene trees nested in the same species tree to infer the latter.

In terms of stochastic modeling, the standard strategy is to define the two nested trees
in a hierarchical model referred to as the multispecies coalescent model [32, 78] (see also
[14, 40] for recent surveys on general coalescent theory and applications to population ge-
netics). First, the species tree is fixed or drawn from some classic probability distribution
(e.g., pure-birth process stopped at some fixed time, viewed as present time). Second,
each gene sequence is assigned to the contemporary species it is (supposed to be) sam-
pled from. Recall that each contemporary species is in correspondence with a tip of the
species tree. Third, conditional on the species tree, each gene lineage can then be traced
backwards in time inside the species tree, starting from the tip species harboring it and
traveling through its ancestral species successively. In addition, gene lineages are assumed
to coalesce according to the censored Kingman coalescent [58], i.e., each pair of lineages
lying in the same species independently coalesces at constant rate.

In the case when the species tree is also distributed as a Kingman coalescent, the former
two-type coalescent process is a Markov process as time runs backward, that we call the
nested Kingman coalescent (or ‘Kingman-in-Kingman’) [19, 31, 65]. Our goal here is to
display a much richer class of Markov models for trees within trees, called simple nested
exchangeable coalescent (SNEC) processes, where multiple species lineages can merge into
one single species lineage, and where simultaneously, within those merging species, multiple
gene lineages can merge into one single gene lineage. To make this more precise, we show
in the next display some valid and invalid coalescence events from an initial state where
six genes, labeled from 1 to 6, are grouped by pairs in three species lineages. We represent
this situation in the next display by a pair of partitions

(πs
πg
)
, as in the left-hand side of

the display. Event (A) is valid because the first two species merge and simultaneously,
within these species, genes labeled 1, 2 and 3 coalesce. On the contrary, event (B) is not
a valid transition because there are two distinct gene coalescences (1 with 2, and 3 with
4), which is proscribed, and event (C) is not valid because the gene coalescence (5 with 6)
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is outside the species coalescence.(
{ 1, 2 }{ 3, 4 }{ 5, 6 }
{ 1 }{ 2 }{ 3 }{ 4 }{ 5 }{ 6 }

)
→
(

{ 1, 2, 3, 4 }{ 5, 6 }
{ 1, 2, 3 }{ 4 }{ 5 }{ 6 }

)
(A)

6→
(

{ 1, 2, 3, 4 }{ 5, 6 }
{ 1, 2 }{ 3, 4 }{ 5 }{ 6 }

)
(B)

6→
(

{ 1, 2, 3, 4 }{ 5, 6 }
{ 1 }{ 2 }{ 3 }{ 4 }{ 5, 6 }

)
(C)

In brief, SNEC processes are the generalization of Λ-coalescents to processes valued, not
in partitions of N, but in pairs of nested partitions of N. The class of Λ-coalescents [76,
79], for which only one coalescence event can occur at a time, is a subclass of Markov,
exchangeable processes with possibly non-binary nodes, called Ξ-coalescents, where several
coalescence events can be simultaneous [10, 83].

Non-binary nodes in species trees can be interpreted as unresolved nodes (a sequence
of binary nodes following each other too closely in time for their order to be inferred
correctly) or radiation events (periods of frequent speciations due to the opening of new
ecological opportunities that can be exploited by different, new species). In gene trees,
non-binary nodes are increasingly recognized as a conspicuous sign of natural selection
both by biologists [70, 90] and by mathematicians and physicists [8, 21, 34, 38, 71, 84] ; it
is also well understood that non-binary nodes could be consequences of bottlenecks as well
as large variance in offspring distributions [39, 82]. The class of SNEC processes includes all
these features. They can distinguish unresolved nodes (sequence of stochastically close,
binary coalescences) from radiations (multiple merger in the species tree). Under the
interpretation of non-binary nodes as a result of natural selection, SNEC processes can
model the appearance of alleles responsible for positive selection (multiple merger in the
gene tree) or for divergent adaptation (multiple merger simultaneously in the gene tree
and in the species tree).

From a mathematical point of view as well, SNEC processes open up the door to many
possible new investigations. For example some of us are currently studying the speed of
coming down from infinity of SNEC processes [19, 65] as well as similar extensions (see
Chap. 4) to fragmentation processes [10]. It will be interesting to investigate how the
nested trees generated by SNEC processes can be cast in the frameworks of multilevel
measure-valued processes [31] and flows of bridges [15, 16] as well as of exchangeable
combs [46, 63]. It would also be natural to study the extension of Ξ-coalescents to nested
partitions.

Organization of the article. In Section 3.2, we introduce some notation, and give
examples of nested coalescent processes whose distributions are characterized by four pa-
rameters. Section 3.3 formally defines our object of study, the SNEC processes. We prove
our main result in Section 3.4, and show in Section 3.5 how SNEC processes can be con-
structed from a collection of Poisson point processes. Finally, Section 3.6 gives a necessary
and sufficient condition under which SNEC processes come down from infinity.
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3.2 Statement of results and notation

3.2.1 Statement of results and examples

An exchangeable partition is a random partition of N whose law is invariant by permu-
tations of N (with finite support). A Λ-coalescent is a Markov process valued in the
exchangeable partitions of N typically starting from the partition 0∞ of N into single-
tons, and such that only one coalescence event can occur at a time. The generator of a
Λ-coalescent R = (R(t), t ≥ 0) is characterized by a σ-finite measure ν on (0, 1] called
the coagulation measure and a non-negative real number a called the Kingman coefficient.
Then R can be constructed from a Poisson point process as follows.

For x ∈ (0, 1], let Px denote the law of a sequence of i.i.d. Bernoulli(x) r.v.’s and define

P :=
∫

(0,1]
ν(dx)Px

Also define Ki,i′ the (Dirac) law of the sequence with only zero entries except a 1 at
positions i and i′ and set

K :=
∑

1≤i<i′
Ki,i′

Finally, let M be a Poisson point process with intensity measure dt⊗ (P + aK). Roughly
speaking, at each atom (t, (Xi, i ≥ 1)) of M , R(t) is obtained from R(t−) by merging
exactly the i-th block of R(t−) together, for all i such that Xi = 1. The rigorous descrip-
tion is given through restrictions of R to [n] := {1, . . . , n} and by applying Kolmogorov
extension theorem. See [10] for details. Note that for this description to apply (i.e., for
restrictions of R to [n] to have positive holding times), one needs the coagulation measure
to satisfy ∫

(0,1]
x2 ν(dx) <∞. (3.1)

The finite measure x2 ν(dx) is usually denoted Λ(dx), hence the name Λ-coalescent.

We can now draw the parallel with the results obtained in this paper. We want to define
a Markov process R = ((Rs(t),Rg(t)), t ≥ 0) valued in exchangeable bivariate, nested
partitions of N, in the sense that the gene partition Rg(t) is finer than the species partition
Rs(t) for all t a.s.

We now have to allow for coalescences in both the gene partition and the species partition.
To this aim, we will consider a doubly indexed array of 0’s and 1’s Z = (X, (Yi, i ≥ 1)) =
(Xi, Yij , i, j ≥ 1). The goal is to give a characterization and a Poissonian construction
of R under the assumptions that the semigroup of R is exchangeable and that both Rs
and Rg undergo only one coalescence at a time (but possibly the same time), as detailed
in forthcoming Definition 3.2. Roughly speaking, and similarly as previously, Xi will
determine whether the i-th species block participates in the coalescence in the species
partition Rs, and Yij whether the j-th gene block of the i-th species block participates in
the coalescence in the gene partition Rg.

Let us start with the Kingman-type coalescences. Let Ksi,i′ be the (Dirac) law of the array
Z with only zero entries except Xi = Xi′ = 1 and let Kgi;j,j′ be the (Dirac) law of the array
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Z with only zero entries except Xi = Yij = Yij′ = 1. Finally, define

Ks =
∑

1≤i<i′
Ksi,i′ and Kg =

∑
1≤i

∑
1≤j<j′

Kgi;j,j′

Let us carry on with multiple gene mergers without simultaneous species coalescences.
Let x ∈ (0, 1] and i ∈ N. Let P gi,x be the distribution of the array Z with only zero entries
except at row i, where Xi = 1 and the (Yij , j ≥ 1) are i.i.d. Bernoulli(x) r.v.’s. Let us
define

P gx :=
∑
i≥1

P gi,x

Finally, let us consider multiple species mergers, with possible simultaneous gene mergers.
Let x ∈ (0, 1] and µ ∈M1([0, 1]). Let (Xi, i ≥ 1) be a sequence of i.i.d. Bernoulli(x) r.v.’s
and let (Qi, i ≥ 1) be an independent sequence of i.i.d. r.v.’s of [0, 1] with distribution
µ. Then for each i ≥ 1, conditional on Xi and Qi, let (Yij , j ≥ 1) be an independent
sequence of i.i.d. Bernoulli(Qi) r.v.’s. if Xi = 1 and the null array otherwise. Let us write
P sx,µ for the distribution of the array Z thus defined.

Our main result is that for any simple nested exchangeable coalescent (SNEC) process R,
there are

• two non-negative real numbers as and ag;

• a σ-finite measure νg on (0, 1];

• a σ-finite measure νs on (0, 1]×M1([0, 1]),

such that R can be constructed from a Poisson point process M with intensity dt⊗ ν(dZ)
where

ν := asKs + agKg +
∫

(0,1]
νg(dx)P gx +

∫
(0,1]×M1([0,1])

νs(dx, dµ)P sx,µ.

Similarly as explained previously, at each atom (t,Z) of M , the double array Z prescribes
which blocks have to merge at time t. For the finite restrictions of R to have positive
holding times, the measures νs and νg are required to satisfy the forthcoming conditions
(3.7) and (3.8) respectively, which are the analogs to (3.1).

Note that coagulations of the Kingman type cannot occur simultaneously in the species
partition and in the gene partition.

We now give a couple of examples of SNEC processes.

If νs(dp, dµ) = ν ′s(dp) δδ0(dµ), species and genes never coalesce simultaneously and the
nested coalescent is a multispecies coalescent (see Introduction), where the species tree is
given by the Λ-coalescent with coagulation measure ν ′s and Kingman coefficient as, while
the genes in the same species block undergo independent Λ-coalescents with coagulation
measure νg and Kingman coefficient ag. In particular, when ν ′s and νg are zero, the SNEC
process is a nested Kingman coalescent (Kingman-in-Kingman).

Whenever νs is not under the form νs(dp, dµ) = ν ′s(dp) δδ0(dµ), species blocks and gene
blocks can coalesce simultaneously. For example if νs(dp, dµ) = ν ′s(dp) δδx(dµ) for x ∈
(0, 1], at each species coalescence event, a proportion x of gene blocks contained in the
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species blocks participating in the coalescence event, are simultaneously merged together.
In particular, if x = 1, the gene tree coincides with the species tree on lineages situated
after a species coalescence event. Recall that there are conditions (see (3.7)) for νs to be
a correct SNEC measure, which in this case translate to∫

(0,1]
ν ′s(dp) p2 <∞ and

∫
(0,1]

ν ′s(dp) p x2 <∞,

which is simply equivalent to ∫
(0,1]

ν ′s(dp) p <∞.

Otherwise the simplest sort of measure νs can be obtained by parameterizing its second
component µ, for example if µ is a Beta distribution µa,b(dq) = ca,b q

a−1(1 − q)b−1 dq,
where a, b > 0 and ca,b = Γ(a+b)

Γ(a) Γ(b) , we can consider νs under the form

νs(dp, dµ) = ν ′s(dp, da, db) δµa,b(dµ).

In this case, the condition (3.7a) reads∫
(0,1]×(0,∞)×(0,∞)

ν ′s(dp, da, db) p2 <∞,

and (3.7b) becomes∫
(0,1]×(0,∞)×(0,∞)

ν ′s(dp, da, db) p
∫

[0,1]
ca,b q

a+1(1− q)b−1 dq <∞,

which can be rewritten∫
(0,1]×(0,∞)×(0,∞)

ν ′s(dp, da, db)
pa(a+ 1)

(a+ b)(a+ b+ 1) <∞.

Note that the idea to use a Beta distribution here is inspired by the Λ-coalescent setting
[76], where Beta distributions appear as natural candidates for the parametrization of the
measure Λ, as the coalescence rate of each k-tuple of blocks among a total number of b
blocks is expressed in the form ∫ 1

0
xk−2(1− x)b−kΛ(dx).

3.2.2 Notation

For any n ∈ N̄ := N∪{+∞}, let Pn be the set of partitions of [n] . A partition π is called
simple if at most one of its non-empty blocks is not a singleton. We denote the set of
simple partitions of [n] by P ′n, that is,

P ′n = {π ∈ Pn, Card{i, |πi| > 1} ≤ 1}

where π1, π2, . . . denote the blocks of π ordered by their least element and |πi| stands for
the number of elements in the block πi. Recall that a partition π can be viewed as an
equivalence relation, in the sense that i π∼ j if and only if i and j belong to the same block
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of the partition π. If πg and πs belong to Pn, we will say that the bivariate partition
π = (πs, πg) is nested (or equivalently that πg is finer than πs) when

i
πg∼ j =⇒ i

πs∼ j.

Note that this is defines a natural partial order on Pn, and we can write πg � πs if
(πg, πs) is nested. The set of nested partitions of [n] is denoted in the sequel by Nn.
We will sometimes use the notation 1n := {[n]} for the coarsest partition of [n], and
0n := {{1}, {2}, . . .} for the finest partition of [n].

Example 3.1. An example of nested partition of {1, 2, . . . , 10} is given by

πs =
{
{1, 5, 7}, {2, 4, 8, 10}, {3, 6, 9}

}
πg =

{
{1}, {2, 4}, {3}, {5, 7}, {6, 9}, {8}, {10}

}
.

The notation (πs, πg) owes to our modeling inspiration (see Introduction) where gene
lineages are enclosed into species lineages.

Notation related to and properties of Pn can naturally be extended to the framework
of bivariate partitions. For the sake of completeness we specify here the ones we will
use repeatedly. The number of non-empty blocks of a bivariate partition π = (π1, π2) ∈
Pn1 × Pn2 is merely |π| := (|π1|, |π2|). If m1 < n1 and m2 < n2, we write π|m1×m2 for the
restriction of π to Pm1 × Pm2 , that is, π|m1×m2 = (π1 |m1 , π2 |m2). If m ≤ min(n1, n2), we
will write π|m := π|m×m for its restriction to P2

m := Pm × Pm. A sequence π(1), π(2), ... of
elements of P2

1 ,P2
2 , ... is called consistent if for all integers k′ ≤ k, π(k′) coincides with the

restriction of π(k) to [k′]2. Moreover, a sequence of partitions (π(n) : n ∈ N) is consistent
if and only if there exists π ∈ P2

∞ such that π|n = π(n) for every n ∈ N.

Given a nested partition we can use the coagulation operator Coag (more details in Chapter
3 in Bertoin [10]) to write the species partition in terms of the labels of the gene partition.
Recall that if π ∈ Pn and π̃ ∈ Pm with m ≥ |π|, then define π′ = Coag(π, π̃) as the
partition of Pn such that

π′j =
⋃
i∈π̃j

πi.

For every n ∈ N̄, let π = (πs, πg) be an element of Nn and write m = |πg|. The unique
partition π̄ ∈ Pm such that πs = Coag(πg, π̄) is called the link partition of π. We
sometimes say that π is linked by π̄. To illustrate the previous definition, observe that the
nested partition defined in Example 3.1 has link partition π̄ = {{1, 4}, {2, 6, 7}, {3, 5}}.

We can next get a partition of Pn1×Pn2 through the coagulation of two pairs of partitions.
More precisely, if (π1, π̃1) ∈ Pn1 × Pn′1 and (π2, π̃2) ∈ Pn2 × Pn′2 with n′1 ≥ |π1| and n′2 ≥
|π2|, then (Coag(π1, π̃1),Coag(π2, π̃2)) is well defined and it is an element of Pn1 × Pn2 .
If we denote π = (π1, π2) and π̃ = (π̃1, π̃2) we will say that the pair (π, π̃) is admissible
and denote the latter operation by Coag2(π, π̃). In the following we will sometimes call
the partition π̃ as the recipe partition.

In the sequel, we are interested in the coagulation of a nested partition, say π = (πs, πg),
with a pair of simple partitions π̃ = (π̃s, π̃g). Nevertheless, we should observe that the
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resulting partition, Coag2(π, π̃) is not necessarily nested. For instance, if we coagulate the
partition π of Example 3.1, with π̃s = {{1, 2}, {3}}, and π̃g = {{1, 3}, {2}, {4}, {5}, {6}, {7}}
then Coag(πg, π̃g) is not nested in Coag(πs, π̃s). In order to maintain the nested property
while coagulating a nested partition we need to watch out the way the gene blocks do
merge together and if they respect the species structure. To this end, for any n ∈ N̄
and π ∈ Nn, we can define the set P̃(π) ⊂ (P ′n)2 of simple recipe partitions permitting a
consistent merger of species and genes, i.e.

P̃(π) =
{
π̃ = (π̃s, π̃g) ∈ (P ′n)2, i

π̃g∼ j =⇒ i
π̄∼ j, or k π̃s∼ l, where πgi ⊂ πsk and πgl ⊂ π

s
l

}
,

where π̄ denotes as usual the link partition of π. Simply put, P̃(π) is the subset of (P ′n)2

such that
π̃ ∈ P̃(π) ⇐⇒ Coag2(π, π̃) ∈ Nn.

Finally the natural partial order on partitions can be extended to bivariate partitions by
defining (π1,s, π1,g) � (π2,s, π2,g) ⇐⇒ π1,s � π2,s and π1,g � π2,g. This partial order
allows us to see coalescent processes as nondecreasing processes in the space of nested
partitions.

3.3 Simple nested exchangeable coalescents

In the aim to describe the joint dynamics of the species and gene partitions, we will now
define a nondecreasing process with values in the nested partitions, called nested coalescent
process. In this work we are only interested in simple nested coalescents in the sense that
at any jump event, called coalescence event, all blocks undergoing a modification merge
into one single block. Simple exchangeable coalescent processes were first introduced
independently by Pitman [76] and Sagitov [79], and are usually called in the literature
Λ-coalescents (see Introduction). Here we use the term simple as in [10], to denote the
analog of a Λ-coalescent process in the case of (nested) bivariate partitions.

Note that for any partition π ∈ P∞ and any injection σ : N→ N, there is a partition σ(π)
defined by

i
σ(π)∼ j ⇐⇒ σ(i) π∼ σ(j).

For bivariate partitions we define in the same way σ(πs, πg) := (σ(πs), σ(πg)). For random
partitions, exchangeability is usually defined as invariance under the action of permuta-
tions σ : N→ N. Here, to avoid degenerate processes we will define our processes as being
invariant under the action of all injections σ : N→ N. Indeed, by making this assumption
we avoid dependence on, for instance, the total number of blocks of the partition. An
example of what we consider here a degenerate process with values in P∞ would be a
modified Kingman coalescent where any pair of blocks merge at rate a = a(n), a function
of n the total number of blocks. While this process would be invariant under permutations
of N, it is in general not invariant under injections, as their action can change the total
number of blocks in a partition of N. Furthermore, given (Π(t), t ≥ 0) such a process and
n an integer, the restriction (Π(t)|n, t ≥ 0) would not be a Markov process, as the jump
rates of Π(t)|n depend on the whole partition Π(t). Invariance under injections ensures
us that processes can be consistently defined, i.e. that (Π(t)|n, t ≥ 0) will always be a
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Markov process. It will also be useful in forthcoming proofs to consider invariance under
injections rather than only permutations.

Since we consider processes with values in the space P∞, let us endow it with the natural
topology generated by the sets of the form {π′ ∈ P∞, π′|n = π} for n ∈ N and π ∈ Pn.
It is readily checked that this topology is metrizable and makes P∞ compact. Also, note
that the product topology on P2

∞, and that induced on N∞ also makes them compact.

Definition 3.2. Let R := ((Rs(t),Rg(t)), t ≥ 0) be a càdlàg Markov process with values
in P2

∞. This process is called a simple nested exchangeable coalescent, SNEC for short, if

i) For any t ≥ 0, R(t) is nested;

ii) The process (R(t), t ≥ 0) evolves with simple coalescence events, that is for any
time t ≥ 0 such that R(t−) 6= R(t), there is a random bivariate partition R̃(t) =
(R̃s(t), R̃g(t)) taking values in P̃(R(t−)) such that

R(t) = Coag2(R(t−), R̃(t));

iii) The semigroup of the process (R(t), t ≥ 0) is exchangeable, in the sense that for
any t, t′ ≥ 0 and any injection σ : N→ N,

(
σ(R(t+ t′)) | R(t) = π

) (d)=
(
R(t+ t′) | R(t) = σ(π)

)
. (3.2)

To start the analysis of SNEC processes we would like to make some observations related
to Definition 3.2. First note that R is a N∞-valued process such that for every t, t′ ≥ 0,
the conditional distribution of R(t + t′) given R(t) = π is the law of Coag2(π, π̃), where
π̃ ∈ P̃(π), hence the law of π̃ depends on t′ but also on π. Also, it will be clear from our
main result (see Theorem 3.5) that (Rs(t), t ≥ 0) is an exchangeable coalescent, however
(Rg(t), t ≥ 0) is not a Markov process in general, because the distribution of Rg(t + t′)
may depend on Rs(t).

We now turn to investigate the transitions of the restrictions of a SNEC to finite partitions,
which relies on the following lemma.

Lemma 3.3 (Projective Markov property). Let R = (R(t), t ≥ 0) be a process with
values in N∞ and for every integer n, write R|n = (R|n(t), t ≥ 0) for its restriction to
Nn. Then R is a SNEC in N∞ if and only if for all n ∈ N, R|n is a continuous-time
Markov chain on the space Nn satisfying the analog of statements i) – iii) of Definition
3.2, namely:

i) For all t ≥ 0, R|n is nested;

ii) For %, π ∈ Nn, the rate from % to π is zero if π can not be obtained from a simple
coalescence event;

iii) The Markov chain (R|n(t), t ≥ 0) is exchangeable, in the sense that for any t, t′ ≥ 0,
%, π ∈ Nn and σ permutation of n, the rate from % to π is equal to that from σ(%)
to σ(π).
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Proof. Let R be a SNEC in N∞ and let n ∈ N. Let us prove that R|n satisfies the claimed
properties. Let % ∈ Nn. Pick %? ∈ N∞ such that %?|n = %, and which contains an infinite
number of species blocks, each of which containing an infinite number of gene blocks, each
of them being an infinite subset of N. Now for any %′ ∈ N∞ such that %′|n = %, there is an
injection σ : N→ N such that σ(%?) = %′ and such that σ|[n] = id[n], so for any t, t′ ≥ 0,

(R|n(t+ t′) | R(t) = %′) (d)= (R|n(t+ t′) | R(t) = σ(%?))
(d)= (σ(R)|n(t+ t′) | R(t) = %?)
(d)= (R|n(t+ t′) | R(t) = %?).

Since this is valid for any %′ such that %′|n = %, this conditional distribution depends only
on {R|n(t) = %}, which proves that R|n is a Markov process. Now the assumption that R
has càdlàg paths ensures us that the process R|n stays some positive time in each visited
state a.s. Therefore R|n is a continuous-time Markov chain. Now statements i) – iii) are
easily deduced from Definition 3.2.

Conversely, let R = (R(t), t ≥ 0) be a process with values in N∞ such that for all n ∈ N,
R|n is a Markov chain satisfying i) – iii) of the lemma. Then i) and ii) of Definition 3.2
follow immediately, and it remains to check that for any injection σ : N→ N, the equality
in distribution (3.2) holds.

Let σ : N → N be an injection and fix n ∈ N. Define N = max{σ(1), σ(2), . . . , σ(n)},
and consider σ̃ : [N ] → [N ] a permutation such that for all 1 ≤ i ≤ n, σ̃(i) = σ(i). For
instance, one can define inductively for n+ 1 ≤ i ≤ N ,

σ̃(i) := min([N ] \ {σ(1), σ(2), . . . , σ(i− 1)}).

Now notice that for any t ≥ 0 and any π ∈ N∞,

σ(π)|n = σ̃(π|N )|n,

which enables us to write, for any t, t′ ≥ 0,

(σ(R)|n(t+ t′) | R(t) = π) (d)= (σ̃(R|N (t+ t′))|n | R(t) = π)
(d)= (R|N (t+ t′)|n | R|N (t) = σ̃(π|N ))
(d)= (R|n(t+ t′) | R|n(t) = σ̃(π|N )|n)
(d)= (R|n(t+ t′) | R|n(t) = σ(π)|n)
(d)= (R|n(t+ t′) | R(t) = σ(π)).

The passage to the second line in the last display is a consequence of iii) of the lemma,
and we used the fact that restrictions are Markov chains, i.e. (R|n(t+ t′) | R|n(t) = π|n) (d)=

(R|n(t+ t′) | R(t) = π). Since n is arbitrary in (σ(R)|n(t+ t′) | R(t) = π) (d)= (R|n(t+ t′) |
R(t) = σ(π)), we have shown (3.2), concluding the proof.

This key lemma enables us to give the following first properties of SNEC processes.
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Proposition 3.4. Let R be a SNEC.

• If the process R starts from an exchangeable nested partition R(0), then for any
t ≥ 0, Rg(t) and Rs(t) are exchangeable partitions.

• The process R is a Feller process, so in particular it satisfies the strong Markov
property.

• Conditional on R(t), if R̄(t) denotes the link partition of R(t) then for any t, t′ ≥ 0,
the distribution of Rg(t + t′) is the law of Coag(Rg(t), π̃g), where π̃g is a random
partition such that σ(π̃g) d= π̃g for any permutation σ preserving R̄(t) i.e., such that

i
R̄(t)∼ j ⇒ σ(i) R̄(t)∼ σ(j). (3.3)

Another property is that the process (Rs(t), t ≥ 0) is a simple exchangeable coalescent
process, but we do not prove it at this point as it will be clear from Theorem 3.5.

Proof. The first point of the proposition is immediate considering iii) of Definition 3.2.

As for the second point, recall that N∞ is endowed with the topology generated by the sets
of the form {π ∈ N∞, π|n = π̂}, for n ∈ N, π̂ ∈ Nn. It is easy to see that this topology is
metrized by d(π, π′) := (sup{n ∈ N, π|n = π′|n})−1 (with (supN)−1 = 0) and that (N∞, d)
is compact.

We need to show that for any continuous (then bounded) function f : N∞ → R, the
function Ptf : π 7→ Eπf(R(t)) (where Eπ(·) = E(· |R(0) = π)) is continuous, and that
Ptf(π) → f(π) as t → 0. By definition the process is càdlàg so we have almost surely
f(R(t)) → f(R(0)) so clearly by taking expectations Ptf(π) → f(π) as t → 0. Now to
show that Ptf is continuous, consider n ∈ N and let {π̂1, . . . , π̂k} be an enumeration of
Nn. We pick π1, . . . , πk ∈ N∞ such that πi|n = π̂i, and define f̂n : N∞ → R by

f̂n(π) = f(πi) if π|n = π̂i.

Now since f is continuous on (N∞, d) which is compact, f is uniformly continuous, which
means that

ωn := sup
π∈N∞

|f(π)− f̂n(π)| → 0 as n→∞.

For t > 0 and π, π′ ∈ N∞, we have

|Ptf(π)− Ptf(π′)| ≤
∣∣∣Eπf̂n(R(t))− Eπ′ f̂n(R(t))

∣∣∣+ 2ωn. (3.4)

Now suppose π|n = π′|n. Since f̂n depends only on π|n and by Lemma 3.3 the process R|n
has the same distribution under Pπ or Pπ′ , we have the equality Eπf̂n(R(t)) = Eπ′ f̂n(R(t)),
and plugging that into (3.4), we get

sup{|Ptf(π)− Ptf(π′)|, π, π′ ∈ N∞, π|n = π′|n} ≤ 2ωn → 0 as n→∞,

showing that Ptf is continuous.

For the third point of the proposition, Rg(t + t′) is clearly of the form Coag(Rg(t), π̃g),
where π̃ = (π̃s, π̃g) is a random recipe partition whose distribution depends on R(t) and
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t′. Let us show that the conditional distribution of π̃ given R(t) is invariant under the
action of permutations preserving R̄(t).

Without loss of generality, we can work under the conditioning {R(t) = (%,0∞)}, where
% is any partition and 0∞ is the partition into singletons, so that for all π, we have
Coag(Rg(t), π) = π. In particular, note that in this case we have Rg(t + t′) = π̃g, and
R̄(t) = %. Let σ be a permutation such that σ(%) = %. The problem then reduces to
showing that(

σ(Rg(t+ t′)) | R(t) = (%,0∞)
) (d)=

(
Rg(t+ t′) | R(t) = (%,0∞)

)
,

which is now an immediate consequence of iii) in Definition 3.2.

Let us now investigate the transition rates of the Markov chains R|n appearing in Lemma
3.3, for every n ∈ N. In this direction fix n ∈ N, let % ∈ N∞ and π ∈ Nn and denote the
jump rate of R|n from %|n to π by

qn(%, π) := lim
t→0+

1
t
P%(R|n(t) = π) (3.5)

where P%(·) = P(· |R(0) = %). The index n is not necessary in the notation as it can be
read in the partition π. However we keep it as it will ease reading. Remind that qn(%, π)
only depends on % through %|n. As is remarked in Lemma 3.3, qn(%, π) equals zero if π
is not obtained from %|n by coagulating blocks according to a partition in P̃(%|n), that is
by merging some species blocks of %s|n into one and some gene blocks of the new species
into one. Also observe that the rates do not depend on the sizes of the gene blocks in
the starting configuration so there is no loss of generality if we consider that %g = 0∞,
the trivial partition made of singletons. Of course changing the starting partition % has
some effect on the arrival partition π. This is why we will need to write transition rates
in another way, giving more emphasis on the dependence of the coagulation mechanism
upon the starting partition.

Fix n ∈ N̄ and suppose that R|n starts from n singleton gene blocks allocated into b

species. Since labels of genes do not affect the transition rates, we will keep the data of
the number of genes in each species in a vector g = (g1, . . . , gb). This vector suffices to
describe the starting position. Indeed |g| = b gives the number of species and ∑b

i=1 gi = n

gives the number of genes.

Now the coagulation mechanism will be described by two terms. We will say that a gene
block participates in the coalescence event if it merges with other gene blocks. We will say
that a species block participates in the coalescence event if it merges with other species
blocks or if it contains gene blocks that participate in the coalescence event.

The behaviour of the species blocks will be encoded in a vector s = (s1, . . . , sb) with
coordinates taking values in {0, 1}. Namely, si = 1 if the i-th species participates in the
coalescence event and si = 0 otherwise. The total number of species involved in the event
is k = ∑b

i=1 si.

The behaviour of the gene blocks will be encoded by an array c = (c1, . . . , cb) where ci is a
vector describing which gene blocks in the i-th species participate in the coalescence event.
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If si = 1 (i-th species block participating in the coalescence event), then ci = (ci1, . . . , cigi)
is such that cij = 1 if j-th gene block inside i-th species block participates in the coalescence
event and cij = 0 otherwise. If si = 0, the i-th species block is not participating in the
event and so neither will the gene blocks within it. In this case we set ci = (0, 0, . . . , 0) = 0
and nothing happens at the gene level. Note that the number of gene blocks participating
in the coalescence event is ∑i,j cij .

Note that all such arrays (g, s, c) do not necessarily code for observable coalescence events,
so we will define a restricted set of arrays of interest for our study. First, note that one
needs to have ∑i si ≥ 2 in order to observe a species merger. If ∑i si = 1, then there is a
gene coalescence if and only if ∑i,j cij ≥ 2. Also, we will restrict ourselves to the arrays
(g, s, c) such that ∑i,j cij 6= 1, because a sole gene coalescing is not distinguishable from
no gene coalescing.

Formally, we consider finite arrays (g, s, c) satisfying the assumptions

If |g| = b, then s ∈ {0, 1}b and c = (c1, . . . , cb), ci ∈ {0, 1}gi with si = 0 =⇒ ∀j, cij = 0

(H1)∑
i,j

cij < 2 =⇒
∑
i

si ≥ 2, (H2)

and
∑
i,j

cij 6= 1. (H3)

We denote by C the set of arrays (g, s, c) satisfying (H1), (H2) and (H3).

We then denote the transition rate of R|n from a partition described by g (such that∑
gi = n) to a new partition obtained by merging species and genes according to s and c

by
qb,k(g, s, c).

Here again indices b and k are not necessary but permit to read easily the coalescence
event at the species level (k = ∑

si species merging among b = |g|). We insist on the fact
that we consider only arrays (g, s, c) ∈ C when we study the rates qb,k(g, s, c), and that
these quantities determine uniquely the law of a SNEC R, since they describe completely
the rates associated to each finite-space continuous-time Markov chain R|n.

We introduce a notation that we will use in the next result for ease of writing. For
µ a probability on [0, 1], consider any probability space where Z1, Z2, . . . are i.i.d. with
distribution µ and denote the expectation Eµ. Now take a vector (gi, i ∈ S) of integers,
where S is a finite subset of N. We define

U(µ, (gi, i ∈ S)) = Eµ
[∑
i∈S

giZi(1− Zi)gi−1 ∏
j∈S : j 6=i

(1− Zj)gj
]

=
∑
i∈S

gi

∫
[0,1]

µ(dq)q(1− q)gi−1 ∏
j∈S : j 6=i

∫
[0,1]

µ(dq)(1− q)gj .
(3.6)

This can be thought of as the probability that a random array (cij , i ∈ S, 1 ≤ j ≤ gi) does
not satisfy (H3), where conditional on (Zi, i ∈ S) the variables (cij) are independent, and
for all i, j, cij = 1 with probability Zi. We can now state our main result.
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Theorem 3.5. There exist two non-negative real numbers as, ag ≥ 0 and two measures:

• νs on E = (0, 1]×M1([0, 1]);

• νg on (0, 1];

such that ∫
E
νs(dp, dµ)p2 <∞, (3.7a)∫

E
νs(dp, dµ)p

∫
[0,1]

µ(dq)q2 <∞, (3.7b)

and
∫

(0,1]
νg(dq)q2 <∞, (3.8)

and such that for any array (g, s, c) ∈ C such that |g| = b,
∑
i si = k and

∑
j cij = li,

qb,k(g, s, c) =
∫
E
νs(dp, dµ)pk(1− p)b−k

( ∏
i : si=1

∫
[0,1]

µ(dq)qli(1− q)gi−li

+ 1{c = 0}U(µ, (gi, 1 ≤ i ≤ b with si = 1))
)

+ as1{k = 2, c = 0}

+ 1{k = 1}
(
ag1{lI = 2}+

∫
(0,1]

νg(dq)qlI (1− q)gI−lI
)
,

(3.9)

where the functional U is defined in (3.6) and I = I(g, s, c), in the case k = 1, is the
unique index in {1, 2, . . . , b} such that sI = 1.

Furthermore, this correspondence between laws of SNEC processes and quadruplets (as, ag, νs, νg)
satisfying (3.7) and (3.8) is bijective.

Remark 3.6. We will show the surjective part of the theorem’s last statement in Sec-
tion 3.5, using an explicit Poissonian construction. For now we prove the existence and
uniqueness of the characteristics (as, ag, νs, νg).

3.4 Proof of Theorem 3.5

Consider a SNEC process R = ((Rs(t),Rg(t)), t ≥ 0) with values in N∞ and recall its
jump rates qn(%, π) defined in (3.5). Also recall the alternative notation qb,k(g, s, c). Here,
g is a vector of size b such that ∑ gi = n, s is a vector having the same size as g with
coordinates in {0, 1} such that ∑ si = k, and c is a family of |g| elements denoted by
c1, c2 . . . where ci is a vector of {0, 1}gi if si = 1 and ci = 0 if si = 0.

Lemma 3.7. For any initial value % = (%s, %g) ∈ N∞, there exists a unique measure µ%
on N∞ such that

µ%({%}) = 0 and ∀n ≥ 1, µ%(Π|n 6= %|n) <∞ (3.10)
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and such that the transition rate of the Markov chain R|n from %|n to π ∈ Nn is given by

qn(%, π) = µ%(Π|n = π). (3.11)

Furthermore, for any permutation σ : N→ N,

µ%(σ(Π) ∈ ·) = µσ(%)(Π ∈ ·). (3.12)

Note that we write µ%(Π ∈ A) instead of µ%(A) because we implicitly work on the canonical
space N∞ and we denote by Π the generic element of N∞.

Proof. Let n < m. We first note that since R|m and R|n = (R|m)|n are Markov chains,
the transition rates can be expressed, for any π ∈ Nn \ {%|n},

qn(%, π) =
∑

π′∈Nm : π′|n=π
qm(%, π′). (3.13)

Let us now check that this consistency property along with Carathéodory’s extension
theorem ensures us that there exists a measure µ% on N∞ \ {%} satisfying (3.11).

Here the family A :=
{
{Π|n = π}, n ∈ N, π ∈ Nn \ {%|n}

}
∪ {∅} clearly forms a semi-ring

of subsets of N∞, and it remains to check that the functional µ̃ : A → [0,+∞], defined by

µ̃(∅) := 0 and µ̃({Π|n = π}) := qn(%, π),

is a pre-measure. Equation (3.13) shows that µ̃ is finitely additive, and the only difficulty
lies in understanding that µ̃ is countably additive. Now observe that the topology of
N∞ \ {%} is generated by A, and that each of the non-empty sets in A is both open and
closed (thus compact), because

N∞ \ {Π|n = π} =
⋃

%∈Nn\{π}
{Π|n = %}.

This implies that if (An)n≥1 is a family of pairwise disjoint elements of A such that⋃
nAn ∈ A, then at most a finite number of the An are non-empty (because since ⋃nAn

is compact, there is a finite subcover), so countable additivity reduces to finite additivity.
Therefore Carathéodory’s extension theorem applies, hence the existence of a measure µ%
on N∞ \ {%} satisfying (3.11).

Considering µ% as a measure on N∞ such that µ%({%}) = 0, we check easily (3.10) by
noticing that

µ%(Π|n 6= %|n) =
∑

π∈Nn\{%|n}
qn(%, π) <∞.

Furthermore, for any n, π ∈ Nn \ {%|n} and σ : N → N permutation, we have by the
exchangeability property (3.2) of a SNEC, that

µ%(σ(Π)|n = π) = lim
t→0

1
t
P%(σ(R(t))|n = π) = lim

t→0

1
t
Pσ(%)(R|n(t) = π) = µσ(%)(Π|n = π),

which proves that (3.12) holds on A. Since the topology of N∞ is generated by A, the
proof is complete.

72



The latter lemma implies that there exists a family of exchangeable measures on N∞
characterizing (i.e. acting as an analog of a Markov kernel for continuous-space pure-jump
Markov chains) the SNEC process R. Furthermore, since we are dealing with a simple
coalescent, it is clear from the characterization (3.11) that µ% is simple in the sense that
it is supported by all the possible bivariate partitions obtained from a simple coalescence
from %. To put it simply,

µ%
(
N∞ \ {Coag2(%, π̃), π̃ ∈ P̃(%)}

)
= 0.

The measure µ% can be translated as a measure on arrays of random variables in {0, 1}.
Informally, we can associate to each species in % a 1 entry if it participates in the coalescence
and a 0 entry otherwise. Inside the species participating to the coalescence event, we
can also associate a 1 entry to the genes participating in the coalescence event and a 0
entry otherwise. To tally with the definition of the SNEC we will need a certain partial
exchangeability structure for this array. This picture can be formalized as follows. Let
((Xi, (Yij , j ∈ N)), i ∈ N) be an array of Bernoulli random variables and denote by Zi the
i-th line vector (Xi, (Yij , j ∈ N)). We say that this array is hierarchically exchangeable if

(A1) the family (Zi, i ∈ N) is exchangeable;

(A2) for any i ∈ N, the family (Xi, (Yij , j ∈ N)) is invariant under any permutation over
the j’s.

We also naturally extend this definition to measures on the space ({0, 1} × {0, 1}N)N. We
say that such a measure µ is hierarchically exchangeable if it is invariant both under the
permutations of the rows, and the permutations within a row.

For an initial state % = (%s, %g) ∈ N∞ and an arrival state π = Coag2(%, π̃) ∈ N∞, with π̃ a
simple bivariate partition π̃ = (π̃s, π̃g) ∈ (P ′∞)2, define the array Z(%, π) = (X,Y1,Y2, . . .)
by

Xi = 1 if the i-th block in %s has coalesced in π,
Yij = 1 if the I(i, j)-th block in %g has coalesced in π,

(3.14)

where I(i, j) := k if the k-th block of %g is the j-th gene block of the i-th species block.

Now choose a state % with an infinite number of species blocks, each containing an infinite
number of gene blocks. Let ν be the push-forward of µ% by the application

π 7−→ Z(%, π).

Then the exchangeability property of µ% (3.12) implies that ν is a hierarchically exchange-
able measure on ({0, 1} × {0, 1}N)N, and (3.10) implies that

ν(Z = 0) = 0, and ν

 n∑
i=1

Xi ≥ 2 or ∃i ≤ n,
n∑
j=1

Yij ≥ 2

 <∞, (3.15)

where 0 denotes the null array on ({0, 1} × {0, 1}N)N. Also, note that the map (µ%, % ∈
N∞) 7→ ν is one-to-one. Indeed, we can conversely define for any Z and any nested
partition % ∈ N∞, the nested partition C(%,Z) ∈ N∞ obtained from % by merging exactly
the blocks that participate in the coalescence where
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• The i-th block of %s participates iff Xi = 1;

• The j-th block in %g of the i-th block of %s participates iff Xi = 1 and Yij = 1.

With this definition, µ% is obtained as the push-forward of ν by the application Z 7→
C(%,Z).

Now recall the alternative notation qb,k(g, s, c) for the transition rate of R|n (where n =∑
i gi) from a nested partition with b species blocks and g1, . . . , gb gene blocks inside them,

to a nested partition obtained by merging k species blocks according to the vector s and
gene blocks inside those species according to the array c. For any array (g, s, c) ∈ C, note
that (3.11) translates in terms of our push-forward ν in the following way:

qb,k(g, s, c) = ν
(
∀1 ≤ i ≤ b, Xi = si, and ∀1 ≤ j ≤ gi, Yij = cij

)
+ 1{c=0}ν

∀1 ≤ i ≤ b, Xi = si, and
b∑
i=1

gi∑
j=1

Yij = 1

 . (3.16)

Indeed, the first line is quite straightforward and comes from our representation of coa-
lescence events by those arrays (g, s, c) ∈ C (see Section 3.3) which basically means that
blocks participating in a coalescence event are those associated with a 1. However in the
case when c = 0, there is an additional probability to observe the coalescence of species
blocks associated to s with no coalescence of gene blocks (the case when all the Yij ’s are
0 is included in the first term), which is when exactly one of the Yij ’s is equal to 1. This
gives rise to the second line of (3.16).

We now have to establish a de Finetti representation of hierarchically exchangeable arrays
to express the measure of an event of the form {∀1 ≤ i ≤ b, Xi = si, and ∀1 ≤ j ≤
gi, Yij = cij}. Note that we consider random measures in the following, but only on Borel
spaces (S,S) (i.e. spaces isomorphic to a Borel subset of R endowed with the Borel σ-
algebra), which will enable us to use de Finetti’s theorem [55]. For this we writeM1(S)
for the space of probability measures on S, which is endowed with the σ-algebra generated
by the maps µ 7→ µ(B) for all B ∈ S. The spaces (S,S) that we consider will be for
instance [0, 1] with its Borel sets or {0, 1}N equipped with the product σ-algebra, which
are clearly Borel spaces.

Proposition 3.8. Let Z = (Zi, i ∈ N) = ((Xi, (Yij , j ∈ N)), i ∈ N) be a hierarchically
exchangeable array (with variables in {0, 1}). Then there exists a unique probability mea-
sure Λ on E′ = [0, 1]×M1([0, 1])×M1([0, 1]) (and we will write any element µ of E′ as
(p, µ0, µ1)) such that for all n ≥ 1

P(Xi = xi, Yij = yij , i, j ∈ [n])

=
∫
E′

Λ(dµ)
n∏
i=1

(p1{xi=1} + (1− p)1{xi=0})
∫

[0,1]
µxi(dqi)

n∏
j=1

(qi1{yij=1} + (1− qi)1{yij=0})

 .
(3.17)

Proof. Let us first observe that if a sequence (X, (Yj , j ∈ N)) satisfies Hypothesis (A2),
then, conditional on X = x ∈ {0, 1}, the sequence (Yj , j ∈ N) is exchangeable. We
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can thus apply de Finetti’s theorem: conditional on X = x there is a unique probability
measure µx giving the distribution of the asymptotic frequency q of the variables (Yj , j ∈
N), and conditional on q they are i.i.d. Bernoulli with parameter q. This implies that, for
any {0, 1}-valued finite sequence (x, y1, y2, . . . , yk),

P(X = x, Y1 = y1, . . . , Yk = yk) = P(X = x)
∫

[0,1]
µx(dq)

k∏
j=1

(q1{yj=1} + (1− q)1{yj=0}).

(3.18)
Also observe that since X is binary, there exists p ∈ [0, 1] such that P(X = x) = p1{x=1}+
(1− p)1{x=0}.

As a consequence of Hypothesis (A1), we can apply once again de Finetti’s theorem:
there exists a unique law Λ̃ on M1({0, 1}N) such that the law of (Zi, i ∈ N) equals∫
M1({0,1}N) Λ̃(dµ̃)⊗i≥1 µ̃. Furthermore it has been seen that µ̃ can be expressed as in
(3.18).

Now let F stand for the measurable mapping such that F (µ̃) = (p, µ0, µ1) ∈ E′ and let
Λ be the push-forward of Λ̃ by the mapping F . We obtain that if A and (Bi, i ∈ A) are
finite subsets of N, then

P(Xi = xi, Yiji = yiji , i ∈ A, ji ∈ Bi)

=
∫
E′

Λ(dµ)
∏
i∈A

(p1{xi=1} + (1− p)1{xi=0})
∫

[0,1]
µxi(dqi)

∏
ji∈Bi

(qi1{yiji=1} + (1− qi)1{yiji=0})

 .
This ends the proof.

This result is almost enough to express (3.16) but one has to be careful because the
measure ν might not be finite. However, it is σ-finite because by (3.15),

ν = lim
n→∞

↑ ν


n∑
i=1

Xi ≥ 2 or ∃i ≤ n,
n∑
j=1

Yij ≥ 2

 ∩ ·
 ,

and those events have finite measure. The idea behind the following lemma is to make use
of those events and hierarchical exchangeability to express ν as a limit of finite measures
which, thanks to an application of Proposition 3.8, have a representation under the form
(3.17).

Let us introduce some notation that will enable us to make this argument formal. For a
fixed vector (g, s, c) ∈ C, such that |g| = b, let us examine the event

A = A(g, s, c) := {∀1 ≤ i ≤ b, Xi = si, and ∀1 ≤ j ≤ gi, Yij = cij}

and its measure ν(A). Let us define, for all n ≥ 1 the shifted random array

Zn := (Xi+n, Y(i+n)j , i, j ∈ N). (3.19)

We decompose naturally A = (A ∩ {Zb 6= 0}) ∪ (A ∩ {Zb = 0}), where b = |g|.

Recall that the array Z encodes which species blocks and which gene blocks are partici-
pating in a coalescence. Therefore the event A∩{Zb 6= 0} indicates that there are merging
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species blocks outside of the first b blocks. In fact we will see that this implies that such
merging blocks are infinitely many (a random proportion p of them), and within each of
these blocks, a random proportion q of gene blocks are also participating in the coalescence
event. The following technical lemma makes this statement rigorous.

Lemma 3.9. For an array (g, s, c) satisfying assumptions (H1) and (H2), there exists a
unique measure νs on E = (0, 1]×M([0, 1]) such that

ν(A ∩ {Zb 6= 0}) =
∫
E
νs(dp, dµ)pk(1− p)b−k

∏
i : si=1

∫
[0,1]

µ(dq)qli(1− q)gi−li , (3.20)

where b := |g|, k := ∑
i si and li := ∑

j cij. Moreover, νs satisfies (3.7).

Proof. We define some events that will be used to express ν(A ∩ {Zb 6= 0}).

An = An(g, s, c) := {∀1 ≤ i ≤ b, Xi+n = si, and ∀1 ≤ j ≤ gi, Y(i+n)j = cij}

Bn :=
{

n∑
i=1

Xi ≥ 2
}

B′n = B′n(g, s, c) :=


b+n∑
i=b+1

Xi ≥ 2

 .
Note that (g, s, c) satisfies (H1) and (H2), so we have A ⊂ {∑m

i=1Xi ≥ 2 or ∑m
i,j=1 Yij ≥

2} for m = max(b, g1, . . . gb). Now because ν satisfies (3.15), necessarily ν(A) <∞, which
implies that

ν(A ∩ {Zb ∈ ·})
is a finite hierarchically exchangeable measure on ({0, 1} × {0, 1}N)N. The de Finetti rep-
resentation (Proposition 3.8) implies that on the event A, Zb is either 0, or has an infinite
number of entries with value 1. In particular, A∩{Zb 6= 0} = A∩{Zb has at least two entries at 1}
therefore, there is the equality

A ∩ {Zb 6= 0} =
⋃
n≥1

A ∩B′n,

where the union is increasing. Therefore,

ν(A ∩ {Zb 6= 0}) = lim
n→∞

ν(A ∩B′n).

= lim
n→∞

ν(Bn ∩An),

where we used the hierarchical exchangeability of ν to get the second equality. Now we
know from (3.15) and because ν is exchangeable that the measure

ν(Bn ∩ {Zn ∈ ·})

is a finite hierarchically exchangeable measure on ({0, 1} × {0, 1}N)N. Because it is finite
we can apply Proposition 3.8 to deduce that there exists a finite measure Λn on E′ =
(0, 1]×M([0, 1])2 such that

ν(Bn ∩An)

=
∫
E′

Λn(dp, dµ0, dµ1)
b∏
i=1

(p1{si=1} + (1− p)1{si=0})
∫

[0,1]
µsi(dqi)

gi∏
j=1

(qi1{cij=1} + (1− qi)1{cij=0})

 .
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We can simplify this expression since ν is supported by the set {∀i ∈ N, Xi = 0 ⇒
∀j ∈ N, Yij = 0}. This implies that Λn-a.e. the measure µ0 is δ0 the Dirac measure at 0.
Therefore we write Λ̃n for the push forward measure on E := (0, 1] ×M([0, 1]) of Λn by
the application (p, µ0, µ1) 7→ (p, µ1). We now have

ν(Bn ∩An) =
∫
E

Λ̃n(dp, dµ)pk(1− p)b−k
∏

i : si=1

∫
[0,1]

µ(dq)qli(1− q)gi−li . (3.21)

To be able to pass to the limit, let us check that the sequence of measures (Λ̃n) is increasing.
Indeed, recall that Λn is obtained from two applications of de Finetti’s theorem to the
exchangeable array Zn, so the asymptotic parameters p and µ appearing in (3.21) are a
deterministic, measurable functional of Zn. Let us write this functional F (Zn) = (p, µ),
so now Λ̃n is simply the measure

ν(Bn ∩ {F (Zn) ∈ ·}).

But p and µ are asymptotic quantities of the array Zn, which do not depend on the first
row of Zn, so F (Zn+1) = F (Zn) and we have

Λ̃n = ν(Bn ∩ {F (Zn) ∈ ·})
= ν(Bn ∩ {F (Zn+1) ∈ ·})
≤ ν(Bn+1 ∩ {F (Zn+1) ∈ ·})
= Λ̃n+1,

where the passage from the second to the third line is simply because Bn ⊂ Bn+1. There-
fore there is a limiting measure νs on E such that

ν(A∩{Zb 6= 0}) = lim
n→∞

ν(Bn∩An) =
∫
E
νs(dp, dµ)pk(1−p)b−k

∏
i : si=1

∫
[0,1]

µ(dq)qli(1−q)gi−li ,

so we recover (3.20). To prove the uniqueness of this measure, consider any measure ν ′s
on E such that (3.20) holds. Then we have simply

Λ̃n(dp, dµ) = ν(Bn ∩ {F (Zn) ∈ (dp, dµ)}) = (1− (1− p)n − np(1− p)n−1)ν ′s(dp, dµ),

where the first equality is by definition and the second because we assumed that (3.20)
holds for ν ′s. Taking limits on both sides yields

νs(dp, dµ) = ν ′s(dp, dµ).

It remains to prove (3.7). Note that the condition (3.15) implies that

ν(X1 = X2 = 1) <∞ and ν(X1 = 1, Y1,1 = Y1,2 = 1) <∞.

Translating these conditions with the formula (3.20), we recover exactly (3.7).

Let us now examine ν(A ∩ {Zb = 0}). Recall that the event A ∩ {Zb = 0} indicates that
there are no other merging species blocks than those within the first b blocks. The next
lemma shows that this implies that we are either in a Kingman-type coalescence (a pair
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of species blocks are merging, occurring at rate as, or a pair of gene blocks within one
species are merging, occurring at rate ag), or in a multiple gene coalescence within a single
species block (in which case a random proportion q of gene blocks are merging).

The key idea is to use exchangeability and the σ-finiteness property (3.15) of the measure
ν to show by contradiction that ν(A ∩ {Zb = 0}) is zero in certain cases.

Lemma 3.10. For an array (g, s, c) satisfying assumptions (H1) and (H2), there exist
unique real numbers as, ag ≥ 0 and a unique measure νg on (0, 1] satisfying (3.8) such that

ν(A ∩ {Zb = 0}) = as1{k = 2, c = 0}

+ 1{k = 1}
(
ag1{lI = 2}+

∫
(0,1]

νg(dq)qlI (1− q)gI−lI
)
,

(3.22)

where b := |g|, k := ∑
i si, li := ∑

j cij and in the case k = 1, I is the unique index in
{1, 2, . . . , b} such that sI = 1.

Proof. The measure ν(X ∈ ·) is an exchangeable measure on {0, 1}N such that, because
of (3.15), ν(X1 = X2 = X3 = 1) < ∞. Note that exchangeability implies that for any
n, i ≥ 3,

ν({X1 = X2 = X3 = 1} ∩ {Zn = 0}) = ν({X1 = X2 = Xi = 1} ∩ {Zi = 0}), (3.23)

But the events ({X1 = X2 = Xi = 1} ∩ {Zi = 0}, i ≥ 3) are disjoint and all included in
{X1 = X2 = 1}, so that∑

i≥3
ν({X1 = X2 = Xi = 1} ∩ {Zi = 0}) ≤ ν({X1 = X2 = 1}) <∞.

From (3.23) we deduce ν({X1 = X2 = X3 = 1}∩{Zn = 0}) = 0. This implies immediately
that for a finite array (g, s, c) such that k = ∑

i si > 2, we have ν(A ∩ {Zb = 0}) = 0.

• In the case k = 2 (suppose s1 = s2 = 1), one must examine several cases.

– Suppose first c1,1 = c1,2 = 1. This means that the first two gene blocks of the
first species block coalesce while the first two species blocks coalesce. Then we
note that for any n, i ≥ 2,

ν({X1 = X2 = 1, Y1,1 = Y1,2 = 1} ∩ {Zn = 0})
= ν({X1 = Xi = 1, Y1,1 = Y1,2 = 1} ∩ {Zi = 0}).

However,∑
i≥2

ν({X1 = Xi = 1, Y1,1 = Y1,2 = 1} ∩ {Zi = 0}) ≤ ν({Y1,1 = Y1,2 = 1}) <∞,

so that necessarily ν({X1 = X2 = 1, Y1,1 = Y1,2 = 1} ∩ {Zn = 0}) = 0. So in
the case c1,1 = c1,2 = 1, we have ν(A ∩ {Zb = 0}) = 0.
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– Now suppose c1,1 = c2,1 = 1, and all the other cij are zero. From our previous
point, note that

ν({X1 = X2 = 1, Y1,1 = Y2,1 = 1, and ∃j ≥ 2, Y1,j = 1} ∩ {Zn = 0}) = 0,

which implies that the events ({X1 = X2 = 1, Y1,j = Y2,1 = 1}∩{Zn = 0}, j ≥
1) are ν-a.e. disjoint. Therefore for any n ≥ 2,∑
j≥1

ν({X1 = X2 = 1, Y1,j = Y2,1 = 1} ∩ {Zn = 0}) ≤ ν({X1 = X2 = 1}) <∞,

So necessarily ν({X1 = X2 = 1, Y1,j = Y2,1 = 1}∩{Zn = 0}) = 0. This implies
that in the case c1,1 = c2,1 = 1, we have ν(A ∩ {Zb = 0}) = 0.

– The previous two points show that in the case k = 2, the only way to have
ν(A ∩ {Zb = 0}) > 0 is if c = 0. In that case, define

as := ν({X1 = X2 = 1} ∩ {Z2 = 0})
= ν({X1 = X2 = 1} ∩ {Y = 0 and ∀k /∈ {1, 2}, Xk = 0}).

Then by exchangeability, for all i, j ∈ N with i 6= j, we have

as = ν({Xi = Xj = 1} ∩ {Y = 0 and ∀k /∈ {i, j}, Xk = 0}),

and in conclusion, for any array (g, s, c) such that k = 2, we have

ν(A ∩ {Zb = 0}) = 1{c=0}as.

• In the case k = 1, suppose that s1 = 1. On the event

{X1 = 1, X2 = X3 = · · · = Xb = 0} ∩ {Zb = 0},

we have simply Z1 = 0, and then the measure

ν ′ := ν
(
{(Y1,j)j∈N ∈ ·} ∩ {X1 = 1, Z1 = 0}

)
is an exchangeable measure on {0, 1}N such that for all n ∈ N, ν ′

(∑n
j=1 Yj ≥ 2

)
<∞.

Therefore (see for instance Bertoin [10]) there exist a unique constant ag ≥ 0 and νg
a unique measure on (0, 1] satisfying (3.8) such that ν ′ can be written

ν ′(Y1 = y1, Y2 = y2, . . . , Yn = yn) = ag1l=2 +
∫

(0,1]
νg(dq)ql(1− q)n−l,

for any vector (y1, y2, . . . , yn) ∈ {0, 1}n \ {0} such that l := ∑
i yi ≥ 2.

Putting all the previous considerations together yields (3.22).

Now it remains to put together Lemma 3.9 and Lemma 3.10. Recall that we restricted
the rate function q to arrays in C, i.e. satisfying (H1) to (H3). The reason for assuming
(H3) is that then we can always write qb,k(g, s, c) as in (3.16), that is

qb,k(g, s, c) = ν
(
∀1 ≤ i ≤ b, Xi = si, and ∀1 ≤ j ≤ gi, Yij = cij

)
+ 1{c=0}ν

∀1 ≤ i ≤ b, Xi = si, and
b∑
i=1

gi∑
j=1

Yij = 1

 .
Using the previous two lemmas to decompose the two lines on the events {Zb 6= 0} and
{Zb = 0}, we obtain the formula (3.9), concluding the proof of Theorem 3.5.
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3.5 Poissonian construction

The goal of the present section is to show how any simple nested exchangeable coalescent
can be constructed from a Poisson point process. Consider two real coefficients as, ag ≥ 0
and two measures: νs on E = (0, 1]×M1([0, 1]) satisfying (3.7), and νg on (0, 1], satisfying
(3.8). Recall the measures Ks, Kg, P gx and P sx,µ introduced in Section 3.2, and the measure
ν(dZ) defined on the space Ê of doubly indexed arrays of 0’s and 1’s Z = (X, (Yi, i ≥
1)) = (Xi, Yij , i, j ≥ 1)

ν := asKs + agKg +
∫

(0,1]
νg(dx)P gx +

∫
(0,1]×M1([0,1])

νs(dx, dµ)P sx,µ.

Note that ν characterizes the distribution of the SNEC through the relation (3.16). The
key idea of the construction is that ν necessarily satisfies (3.15), which is easily shown
using exchangeability and conditions (3.7) and (3.8). First, note that ν(Z = 0) = 0 is
trivial from our definitions, and that a straightforward union bound yields

ν
(∑n

i=1Xi ≥ 2 or ∃i ≤ n,∑n
j=1 Yij ≥ 2

)
≤

∑
1≤i<i′≤n

ν(Xi = Xi′ = 1) +
n∑
i=1

∑
1≤j<j′≤n

ν(Xi = Yij = Yij′ = 1)

= n(n− 1)
2 ν(X1 = X2 = 1) + n2(n− 1)

2 ν(X1 = Y1,1 = Y1,2 = 1),

therefore we need only check that these two quantities are finite. Now by definition, we
have

Ks(X1 = X2 = 1) = 1, Ks(X1 = Y1,1 = Y1,2 = 1) = 0,
Kg(X1 = X2 = 1) = 0, Kg(X1 = Y1,1 = Y1,2 = 1) = 1,
P gx (X1 = X2 = 1) = 0, P gx (X1 = Y1,1 = Y1,2 = 1) = x2,

P sx,µ(X1 = X2 = 1) = x2, P sx,µ(X1 = Y1,1 = Y1,2 = 1) = x

∫
[0,1]

µ(dq)q2.

Integrating the last two lines with respect to νg and νs and summing, we see that (3.7)
and (3.8) imply that both ν(X1 = X2 = 1) and ν(X1 = Y1,1 = Y1,2 = 1) are finite, proving
(3.15).

Now to start the construction of our process, consider an initial partition π0 ∈ N∞. Let
M be a Poisson point process on (0,∞)× Ê with intensity dt⊗ ν(dZ). We will construct
on the same probability space the processes Rn = (Rn(t), t ≥ 0), for n ∈ N thanks to M .

Recall that for any Z = (X, (Yi, i ≥ 1)) = (Xi, Yij , i, j ≥ 1) and any nested partition
π ∈ Nn, we denote by C(π,Z) the nested partition of Nn obtained from π by merging
exactly the blocks that participate in the coalescence where

• The i-th block of πs participates iff Xi = 1;

• The j-th block in πg of the i-th block of πs participates iff Xi = 1 and Yij = 1.

Fix n ∈ N, and let Mn denote the subset of M consisting of points (t,Z) such that∑n
i=1Xi ≥ 2 or ∃i ≤ n, Xi

∑n
j=1 Yij ≥ 2. Because of (3.15), there are only a finite number
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of such points with t in a compact set of [0,+∞). Therefore one can label the atoms of
the set Mn := {(tk,Z(k)), k ∈ N} in increasing order, i.e. such that 0 ≤ t1 ≤ t2 . . .

We set Rn(t) = (π0)|n for t ∈ [0, t1). Then define recursively

Rn(t) = C(Rn(ti−),Z(i)), for every t ∈ [ti, ti+1).

These processes are consistent in n as we show in the following result.

Proposition 3.11. For every t ≥ 0, the sequence of random bivariate partitions (Rn(t), n ∈
N) is consistent. If we denote by R(t) the unique partition of N∞ such that R|n(t) = Rn(t)
for every n ∈ N, then the process R = (R(t), t ≥ 0) is a SNEC started from π0, with rates
given as in Theorem 3.5.

The proof uses similar arguments as in the proof of consistency of exchangeable coalescents
given in Proposition 4.5 of [10].

Proof. The key idea (basically (4.4) in [10]) is that by definition, the coagulation operator
satisfies

Coag2(π, π̃)|n = Coag2(π|n, π̃) = Coag2(π|n, π̃|n) (3.24)

for any π, π̃ and n for which this is well defined.

Recall that we defined Mn as the subset of M consisting of points (t,Z) such that∑n
i=1Xi ≥ 2 or ∃i ≤ n, Xi

∑n
j=1 Yij ≥ 2. Fix n ≥ 2 and write (t1,Z(1)) for the first

atom of Mn on (0,∞)× Ê. Plainly, Rn−1(t) = Rn|n−1(t) = (π0)|n−1 for every t ∈ [0, t1).

Consider first the case when ∑n−1
i=1 X

(1)
i ≥ 2 or ∃i ≤ n − 1, X(1)

i

∑n−1
j=1 Y

(1)
ij ≥ 2. Then

(t1,Z(1)) is also the first atom of Mn−1 and by definition and using (3.24), Rn−1(t1) =
Rn|n−1(t).

Now suppose ∑n−1
i=1 X

(1)
i ≤ 1 and ∀i ≤ n − 1, X(1)

i

∑n−1
j=1 Y

(1)
ij ≤ 1. This implies that at

time t1, there is no species (resp. genes) coalescence between the n− 1 first species (resp.
genes) of Rn(t1−). Therefore the coalescence event in Rn at time t1 leaves the first n− 1
blocks of Rn(t1−)s or Rn(t1−)g unchanged, though there may be a coalescence involving
the n-th block (in that case, necessarily a singleton {n}) and one of the n− 1 first blocks.
So finally Rn(t1)|n−1 = Rn(t1−)|n−1 = Rn−1(t1).

In both cases we have Rn(t1)|n−1 = Rn−1(t1), and by an obvious induction this is true for
any further jump of the process Rn, so that for all t ≥ 0,

Rn(t)|n−1 = Rn−1(t).

This shows the existence of R such that for all n, R|n = Rn.

From this Poissonian construction Rn is a Markov process, and by definition the arrays
Z(i)
|[n]2 are hierarchically exchangeable, which implies that Rn is an exchangeable process.

Clearly by construction Rn(t) is nested for all t, and the only jumps of the process Rn are
coalescence events. According to Lemma 3.3, the process R is a SNEC process. Because
the arrays Z, where (t,Z) ∈M , are the same arrays that appear in the proof of Theorem
3.5, it is clear that the jump rates of Rn are those given in Theorem 3.5.
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3.6 Marginal coalescents – Coming down from infinity

Consider a SNEC process R = (Rs,Rg), with rates given as in Theorem 3.5 by two
coefficients as, ag ≥ 0 and two measures, νs on E = (0, 1] ×M1([0, 1]) and νg on (0, 1]
satisfying (3.7) and (3.8).

It is obvious from Proposition 3.11 that (Rs(t), t ≥ 0) is a simple coalescent process, with
Kingman coefficient as and coagulation measure ν̂s satisfying (3.1) which is the push-
forward of νs(dp, dµ) by the application (p, µ) 7→ p. Let us call this univariate coalescent
the (marginal) species coalescent of the SNEC process R.

Now, notice that under an initial condition with a unique species block (i.e., Rs is constant
to the coarsest partition 1∞), the process (Rg(t), t ≥ 0) also behaves as a simple coalescent
process, with Kingman coefficient ag and coagulation measure ν̂g defined by

∀B Borel set of (0, 1], ν̂g(B) := νg(B) +
∫

(0,1]×M1([0,1])
νs(dp, dµ)p µ(B).

We call the simple coalescent thus defined the (marginal) gene coalescent of the SNEC
process R.

Equivalently, in terms of Λ-coalescents, the marginal species coalescent is a Λs-coalescent
with Λs defined by

∀B Borel set of [0, 1], Λs(B) = asδ0(B) +
∫
B×M1([0,1])

νs(dp, dµ)p2, (3.25)

and the marginal gene coalescent is a Λg-coalescent with Λg defined for all B Borel set of
[0, 1] by

Λg(B) = agδ0(B) +
∫
B
νg(dq)q2 +

∫
(0,1]×M1([0,1])

νs(dp, dµ)p
∫
B
µ(dq)q2. (3.26)

These two marginal processes allow us to express properties of the initial bivariate SNEC
process. Consider an initial state %0 ∈ N∞ with infinitely many species blocks, each
containing infinitely many gene blocks. In a way analogous to the one-dimensional case,
recalling that |Rg(t)| ≥ |Rs(t)| for all t ≥ 0, we will say that a SNEC comes down from
infinity (CDI) if for all t > 0

|Rg(t)| <∞ P%0-a.s.

In the univariate case, characterizing which coalescent processes come down from infinity
has been solved [81] for Λ-coalescents, with the following necessary and sufficient condition
for coming down from infinity:

∑
n≥2

(
n∑
k=2

(k − 1)
(
n

k

)∫
[0,1]

Λ(dp)pk−2(1− p)n−k
)−1

<∞.

Note that the previous condition is true as soon as Λ has an atom at 0 (Λ({0}) is the King-
man coefficient of the process). An equivalent criterion (see [16], and [7] for a probabilistic
proof) is the integrability of 1/ψ near +∞, where

ψ(q) :=
∫

[0,1]

(
e−qx − 1 + qx

)
x−2 Λ(dx). (3.27)

82



We will now see that in the case of simple nested coalescents, we can give a general
characterization of the different CDI properties of a SNEC process, depending only on the
properties of the marginal species and marginal gene coalescents.

First notice that if the marginal gene coalescent does not CDI, then any species block with
infinitely many gene blocks at some time t clearly keeps infinitely many gene blocks for
any t′ ≥ t. Also in any case the process Rs has the distribution of the marginal species
coalescent, so determining whether the number of species comes down from infinity is
trivial.

Proposition 3.12. We assume here that ν̂s({1}) = ν̂g({1}) = 0 and that the marginal
gene coalescent comes down from infinity (CDI). Then we have the following three cases.

i) If the marginal species coalescent CDI as well, then R CDI.

ii) If the marginal species coalescent does not CDI but
∫

[0,1]
ν̂s(dx)x =∞, then for any

initial condition with infinitely many species blocks and for each time t > 0, the
number of gene blocks in each species block of R(t) is infinite a.s.

iii) If the marginal species coalescent does not CDI and
∫

[0,1]
ν̂s(dx)x <∞, then for any

initial condition and for each time t > 0, the number of gene blocks in each species
block of R(t) is finite a.s.

As a consequence of this proposition, it is clear that R comes down from infinity if and
only if both the marginal species coalescent and the marginal gene coalescent come down
from infinity.

A simple example of a SNEC process coming down from infinity is the nested Kingman
coalescent (‘Kingman in Kingman’), given by its marginal rates as, ag > 0, defined so that
each pair of species coalesces at rate as independently of the others, and each pair of genes
within the same species coalesces at rate ag independently of the rest. Since the marginal
coalescents are precisely two Kingman coalescents, they both come down from infinity.

Note that the Bolthausen-Sznitman coalescent [20] (denoted U -coalescent in [76] because
the measure Λ is uniform on [0, 1]) satisfies the conditions of the peculiar case ii). So for
a SNEC R defined by a Kingman gene coalescent evolving within a species U -coalescent,
at each positive time the number of gene blocks within a species block is infinite (if the
initial state %0 has an infinite number of species blocks).

Case iii) can easily be obtained by considering a “slow” species coalescent, such as a δx-
coalescent for x ∈ (0, 1), or any β(a, b)-coalescent with a > 1, b > 0 (that is a Λ-coalescent
with Λ(dx) = ca,bx

a−1(1− x)b−1dx).

Proof. i) Suppose both marginal coalescents come down from infinity, and consider an
initial state % ∈ N∞ with infinitely many species blocks, each containing infinitely many
gene blocks.

Choose t > 0. Since Rs comes down from infinity, we have P%(|Rs(t/2)| < ∞) = 1, and
necessarily, Rs stays constant on an interval [t/2, T [, where T is its next jump time. Now
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on the interval [t/2,min(T, t)[, within each of the |Rs(t/2)| species block, the gene blocks
undergo independent coalescent processes which CDI, therefore there are finitely many
gene blocks in each species at time min(T, t), which implies

P%(|Rg(t)| <∞) = 1.

Let us say a few words before proving ii) and iii). Pick t > 0 and focus on the species
containing 1 (the first species). To this aim, writeM(t) for the number of genes within the
first species, at time t. By exchangeability, to show ii) it is sufficient to show P%(M(t) =
∞) = 1, for any initial condition % with infinitely many species blocks, and to show iii) it
is sufficient to show P%(M(t) <∞) = 1, for any initial condition %.

ii) Suppose
∫
[0,1] ν̂s(dx)x = ∞. First, note that since the species coalescent does not

CDI and ν̂s({1}) = 0, there are at all times t ≥ 0 infinitely many species blocks (see for
instance [76, Proposition 23]). Now let us fix δ ∈ (0, t] and ε ∈ (0, 1], and investigate
the random number of coalescence events in the time interval [t − δ, t] involving the first
species and at least a proportion ε of all other species. More precisely, we consider the
number of atoms (s,Z) in the Poissonian construction such that s ∈ [t − δ, t], X1 = 1
and limn→∞

∑n
i=1Xi/n ≥ ε. From the Poissonian construction, it is easy to see that this

number is a Poisson random variable with mean

δ

∫
[ε,1]

ν̂s(dx)x.

Pick any A ∈ N and η > 0. We will show P%(M(t) ≤ A) < 2η, which is sufficient to
conclude that M(t) = ∞ a.s. Note that we assumed that the marginal gene coalescent
CDI, so for Π = (Π(t), t ≥ 0) a version of this univariate coalescent started from 0∞, we
have P(|Π(δ)| <∞) = 1 for all δ > 0. In addition, Π is right-continuous, so |Π(δ)| ↑ ∞ as
δ → 0. Therefore, one can choose δ > 0 small enough, and then ε > 0 such that

P(|Π(δ)| ≤ A) < η and e(ε) :=
∫

[ε,1]
ν̂s(dx)x ≥ − log(η)

δ
. (3.28)

Now consider the stopping time defined by

T := inf{s ≥ t− δ, the first species participates at time s in a coalescence event
involving at least a proportion ε of other species}.

By the Poisson construction, T − (t−δ) is an exponential random variable with parameter
e(ε), so from (3.28) we deduce

P%(T ≥ t) ≤ η.

Now since T is a coalescence time for the first species, we have M(T ) =∞ almost surely.
Indeed, the assumption ν̂g({1}) = 0 implies that not every gene participates in the coa-
lescence. But since an infinite number of species participate in the coalescence, the law
of large numbers implies that in the newly formed species, there is an infinite number of
genes which do not coalesce at time T . SinceM(T ) =∞, we can define a random injection
σ : N → N mapping k to the first element of the k-th gene of the first species at time T .
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We then define Π̃(u) := σ(Rg(T + u)), which has by the strong Markov property the dis-
tribution of a marginal gene coalescent started from 0∞, independent of T . Furthermore,
by construction we have M(T + u) ≥ |Π̃(u)| a.s., so that finally

P%(M(t) ≤ A) ≤ P%(T > t) + P%(t− δ ≤ T ≤ t)P%(|Π̃(t− T )| ≤ A | t− δ ≤ T ≤ t)
≤ P%(T > t) + P(|Π(δ)| ≤ A)
≤ 2η.

iii) Now supposing
∫

[0,1] ν̂s(dx)x < ∞, with the same argument as previously, the first
species participates in coalescence events at some random times 0 < T1 < T2 < . . .,
distributed as a Poisson process with parameter

∫
[0,1] ν̂s(dx)x, and all these events involve

infinitely many species blocks (recall the marginal species coalescent does not CDI and
so in particular has as = 0). Let T0 := 0 by convention and for each i, we can define a
random injection σi : N → N mapping k to the first element of the k-th gene of the first
species at time Ti. Now because the first species does not change during the intervals
[Ti, Ti+1), the process Π̃i defined by

Π̃i(u) := σi(Rg(Ti + u))

is a marginal gene coalescent (and so CDI by assumption), which is independent of Ti,
and there is the following equality between processes, for u < Ti+1 − Ti,

M(Ti + u) = Π̃i(u).

Finally, we have for any t > 0, and any initial % ∈ N∞,

P%(M(t) <∞) =
∑
i≥0
P%(Ti < t < Ti+1)P%(M(t) <∞ | Ti < t < Ti+1)

=
∑
i≥0
P%(Ti < t < Ti+1)P%(Π̃i(t− Ti) <∞ | Ti < t < Ti+1)

=
∑
i≥0
P%(Ti < t < Ti+1) = 1,

which concludes the proof.
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Chapter 4

Trees within trees II: Nested
fragmentations

This chapter is accepted for publication in Annales de l’Institut Henri Poincaré, Probabil-
ités et Statistiques [36].
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4.1 Introduction

Evolutionary biology aims at tracing back the history of species, by identifying and dating
the relationships of ancestry between past lineages of extant individuals. This information
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is usually represented by a tree or phylogeny [62, 85], species corresponding to leaves of
the tree and speciation events (point in time where several species descend from a single
one) corresponding to internal nodes.

In modern methods, one analyzes genetic data from samples of individuals to statistically
infer their phylogenetic tree. Probabilistic tree models have been well-developed in the
last decades – either from individual-based population models like the classical Wright-
Fisher model [14, 40, 61, 85], or from forward-in-time branching processes, where the
branching particles are species (see for instance Aldous’s Markov branching models [3]
and the surrounding literature [26, 27, 44, 53]) – allowing for inference from genetic data.
A challenge is that trees inferred from different parts of the genome generally fail to
coincide, each of them being understood as an alteration of a “true” underlying phylogeny
(which we call the species tree).

To understand the relation between gene trees and the species tree, our goal is to identify
a class of Markovian models coupling the evolution of both trees, making the assumption
that in general, several gene lineages coexist within the same species, and at speciation
events one or several gene lineages diverge from their neighbors to form a new species,
i.e. we model the problem as a tree within a tree [35, 68, 73, 74], or nested tree. See
Figure 4.1 for an instance of a simple nested genealogy where discrepancies arise between
the resulting gene tree and species tree.

Figure 4.1 – Example of a nested tree where the gene tree (in black) does not coincide with
the species tree (in gray).

Recent research aims at defining mathematical processes giving rise to such nested trees,
generalizing several well-studied univariate (we will sometime use this term as opposed to
nested) processes. Some work in progress involves a nested version [19, 65] of the Kingman
coalescent [58] (considered the neutral model for evolution, appearing as a scaling limit
of many individual-based population models). In Chapter 3 we have studied a nested
generalization of Λ-coalescent processes [10, 76, 79] and characterize their distribution.
Our present goal is to generalize the forward-in-time branching models originated from
Aldous [3]. His assumptions (which will be formally defined for our context in Section
4.3) are basically that the random process of evolution is homogeneous in time and that
the law of the process is invariant under both relabeling and resampling of individuals (we
then say the process is exchangeable and sampling consistent). We are interested in the
partition-valued processes satisfying these assumptions, i.e. the so-called fragmentation
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processes [10, 53], and in this article we generalize their definition to nested partition-
valued processes to model jointly a gene tree within a species tree.

Crane [27] also generalizes Aldous’s Markov branching models to study the gene tree/species
tree problem but uses a different approach to the one we use here. Indeed, his model is
such that first the entire species tree t is drawn according to some probability, and then the
gene tree t′ is constructed thanks to a generalized Markov branching model that depends
on t. In the meantime, our goal is to characterize the class of models in which there is a
joint Markov branching construction of both the gene tree and the species tree, under the
assumptions of exchangeability and sampling consistency.

In particular our main result Theorem 4.14, which will be formally stated in Section 4.5,
shows that nested fragmentation processes satisfying natural branching properties are
uniquely characterized by

• three erosion parameters cout, cin,1 and cin,2 (rates at which a unique lineage can
fragment out of its mother block, in three different situations);

• two dislocation measures νout and νin that are Poissonian intensities of how blocks
instantaneously fragment into several new blocks with macroscopic frequencies.

The article is organized as follows. Section 4.2 introduces some notation used throughout
the paper, and the definition of nested fragmentations. We also recall some results in the
univariate case which we seek to generalize to the nested case. In Section 4.3 we study our
so-called strong exchangeability assumption, and show its relation to a projective Markov
property, in order to define characteristic kernels of nested fragmentation processes. In
Section 4.4 we use the so-called outer branching property, simplifying the representation
of characteristic kernels of fragmentations, and giving a natural Poissonian construction
of such processes. Focusing on the inner branching property, Section 4.5 is dedicated to
the full characterization of the semi-group of nested fragmentations, in terms of erosion
and dislocation measures. It is shown that dislocations, similarly as in the univariate case,
can be understood as (bivariate) paintbox processes. Finally Section 4.6 briefly shows how
our main result, Theorem 4.14, translates in simpler terms when we make the classical
biological assumption that all splits are binary.

4.2 Definitions and examples

4.2.1 Definitions, notation

For a set S, write PS for the set of partitions of S:

PS := {π ⊂ P(S) \ {∅}, ∀A 6= B ∈ π,A ∩B = ∅ and ⋃
A∈π A = S},

where P(S) denotes the power set of S. Throughout the paper, whenever a subset π′ ⊂
P(S) is defined in a way such that π′ = π ∪ {∅} for a certain π ∈ PS , we will implicitly
identify π′ and π to avoid the formal and cumbersome notation π′ \ {∅}.

For S, S′ two sets, π ∈ PS and σ : S′ → S an injection, we write

πσ := {σ−1(A), A ∈ π},
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and if µ is a measure on PS then we write µσ for the push-forward of µ by the map π 7→ πσ.

Note that if S′′ τ→ S′
σ→ S are injections, then we have πστ = (πσ)τ , and µστ = (µσ)τ .

For S′ ⊂ S, there is a natural surjective map rS,S′ : PS → PS′ called the restriction,
defined by

rS,S′(π) = π|S′ := {A ∩ S′, A ∈ π}.

Note that π|S′ = πσ for σ : S′ → S, x 7→ x the canonical injection.

There is always a partial order on PS , denoted � and defined as:

π � π′ if ∀(A,B) ∈ π × π′, A ∩B 6= ∅⇒ A ⊂ B,

that is π � π′ if π is finer than π′. From now on, we prefer to write ζ or ξ for partitions
and π for pairs of partitions. Also, throughout the paper we will say if ζ � ξ that the pair
(ζ, ξ) is nested. Let us introduce the space of pairs of nested partitions,

P2,�
S :=

{
(ζ, ξ) ∈ P2

S , ζ � ξ
}
,

which we equip with a partial order � defined naturally as

(ζ, ξ) � (ζ ′, ξ′) if ζ � ζ ′ and ξ � ξ′.

We will use 0S or sometimes, with some abuse of notation, 0 when the context is clear, to
denote the partition of S into singletons. Similarly, we will denote 1S or 1 the partition
in one block {S}. For S′ ⊂ S and π = (ζ, ξ) ∈ P2,�

S , we define naturally the restriction

π|S′ := (ζ|S′ , ξ|S′) ∈ P2,�
S′ .

Let us now define, for n ∈ N, [n] := {1, . . . , n} and [∞] := N, and for n ∈ N ∪ {∞}:

Pn := P[n] and P2,�
n := P2,�

[n]

We will generally label the blocks of a partition ξ = {ξ1, ξ2, . . .}, in the unique way such
that

min ξ1 < min ξ2 < . . .

The space P2,�
∞ is endowed with a distance d which makes it compact, defined as follows:

d(π, π′) =
(
sup{n ∈ N, π|[n] = π|[n]}

)−1
,

with the convention (supN)−1 = 0. Note that the same expression can be used to define
a distance on P∞, making it a compact space as well.

For k ≤ n ≤ ∞, σ : [k]→ [n] an injection and π = (ζ, ξ) ∈ P2,�
n , we write

πσ := (ζσ, ξσ) ∈ P2,�
k .

A key property of the space P2,�
∞ is that for any n ∈ N, and any π ∈ P2,�

n , there is a
π? ∈ P2,�

∞ satisfying:

• π?|[n] = π;
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• for any π′ ∈ P2,�
∞ such that π′|[n] = π, there is an injection σ : N→ N which satisfies

σ|[n] = id[n] and (π?)σ = π′.

Indeed, it is clear that one can choose a π? = (ζ?, ξ?) such that π?|[n] = π, such that ζ?
has infinitely many infinite blocks and no finite blocks, ξ? has infinitely many blocks, and
each of them contains infinitely many distinct blocks of ζ?. This partition immediately
satisfies the required property. We will call any such π? a universal element of P2,�

∞
with initial part π whenever we need to use one.

A measure µ on Pn or on P2,�
n is said to be exchangeable if for any permutation σ :

[n]→ [n], we have
µσ = µ.

A random variable Π taking values in Pn or in P2,�
n is said to be exchangeable if for any

permutation σ : [n]→ [n], we have
Πσ (d)= Π,

that is if its distribution is exchangeable. Similarly, a random process (Π(t), t ≥ 0) taking
values in Pn or in P2,�

n is said to be exchangeable if for any initial state π0 and any
permutation σ : [n]→ [n], we have

(Π(t)σ, t ≥ 0) under Pπ0
(d)= (Π(t), t ≥ 0) under Pπσ0 , (4.1)

where Pπ is the distribution of the process started from π.

Finally, a measure or a random process with values in P∞ or P2,�
∞ will be called strongly

exchangeable if its distribution is invariant under the action of injections N→ N. Note
that while it is easily checked that for measures the two properties are equivalent, for
processes this is a strictly stronger assumption than being exchangeable. Indeed, since
the number of blocks of a partition is invariant under the action of permutations but
not under the action of injections, one can define exchangeable Markov jump processes
(Π(t), t ≥ 0) with jump rates depending on the total number of blocks of Π(t), preventing
strong exchangeability. The reason we prefer to assume strong exchangeability is the
following. Consider a strong exchangeable process Π (say with values in P2,�

∞ ) and a
universal initial state π. Then for any π′ ∈ P2,�

∞ , there is an injection σ : N → N such
that π′ = πσ, so strong exchangeability (4.1) ensures us that if Π ∼ Pπ, then Πσ ∼ Pπ′ .
In other words, the process Π under Pπ – i.e. started from π – is a coupling of all possible
distributions Pπ′ , for π′ ∈ P2,�

∞ , which will often be convenient.

In the following we only consider time-homogeneous Markov processes. We can now
define nested fragmentation processes in a way that extends naturally the definition of
fragmentation processes in the univariate case.

Definition 4.1. Let Π = (Π(t), t ≥ 0) = ((ζ(t), ξ(t)), t ≥ 0) be a Markov process with
values in P2,�

∞ . We say Π is a nested fragmentation process if:

(i) Π is strongly exchangeable, with nonincreasing càdlàg sample paths.

(ii) Outer branching property. For any initial state π = (ζ, ξ) with ξ = {ξ1, ξ2, . . .}
and given bijections σi : [#ξi] → ξi, where #ξi denotes the cardinality of block ξi,
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the processes (
(Πσi(t), t ≥ 0), i ≥ 1

)
are mutually independent under Pπ.

(iii) Inner branching property. The process (ζ(t), t ≥ 0), with values in P∞, is a
homogeneous univariate fragmentation process, as in [10, Definition 3.2].

In words, the branching properties (ii) and (iii) imply that different blocks at a given time
undergo independent fragmentations in the future. Throughout the rest of the paper,
unless stated otherwise, we consider an alternative, more convenient definition, which we
will prove to be equivalent to Definition 4.1, and whose idea is the following: distinct
blocks fragment at distinct times.

Definition 4.1’. Let Π = (Π(t), t ≥ 0) = ((ζ(t), ξ(t)), t ≥ 0) be a Markov process with
values in P2,�

∞ . We say Π is a nested fragmentation process if:

(i) Π is strongly exchangeable, with nonincreasing càdlàg sample paths.

(ii’) Π satisfies the outer branching property:
Almost surely for all t such that Π(t−) 6= Π(t), there is a unique block B ∈ ξ(t−)
such that Π(t−)|B 6= Π(t)|B.

(iii’) Π satisfies the inner branching property:
Almost surely for all t such that ζ(t−) 6= ζ(t), there is a unique block B ∈ ζ(t−)
such that ζ(t−)|B 6= ζ(t)|B.

Note that we will show in Section 4.3 that a nested fragmentation process according to
Definition 4.1 satisfies also Definition 4.1’, and then in Corollary 4.15 it will appear the
converse is true.

Before describing our results in the setting of nested fragmentations, let us recall the
concepts of mass partitions and paintbox processes in the univariate setting. These ideas,
which will ultimately be extended to the nested case, are paramount in understanding the
possible transitions of fragmentation processes.

4.2.2 Univariate results, mass partitions

Random exchangeable partitions π ∈ P∞ and their relation to random mass partitions is
well known [see 10, Chapter 2]. We denote the space of mass partitions by

S ↓ :=
{

s = (s1, s2, . . .) ∈ [0, 1]N, s1 ≥ s2 ≥ . . . ,
∑
k sk ≤ 1

}
. (4.2)

For s ∈ S ↓, one defines an exchangeable distribution on P∞, by the following so-called
paintbox construction:

• for k ≥ 0, define tk = ∑k
k′=1 sk′ , with t0 = 0 by convention.

• let (Ui, i ≥ 1) be an i.i.d. sequence of uniform random variables in [0, 1].

• define the random partition π ∈ P∞ by setting

i ∼π j ⇐⇒ i = j or ∃k ≥ 1, Ui, Uj ∈ [tk−1, tk).
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Then the distribution of π is exchangeable and is denoted %s. Notice that the set π0 :=
{[tk−1, tk), k ≥ 1} ∪ {{t}, ∑k≥1 sk ≤ t ≤ 1} is a partition of [0, 1], and that we have
π = πσ0 , where σ : N → [0, 1] is the random injection defined by σ : i 7→ Ui. Also, note
that by definition some blocks are singletons (blocks {i} such that Ui ∈ [∑k≥1 sk, 1]), and
by construction we have

#{i ∈ [n], {i} ∈ π}
n

−→
n→∞

s0 := 1−∑k≥1 sk.

These integers that are singleton blocks are called the dust of the random partition π and
the last display tells us there is a frequency s0 of dust.

Conversely, any random exchangeable partition π has a distribution that can be expressed
with these paintbox constructions %s. Indeed, π has asymptotic frequencies, i.e.

|B| := lim
n→∞

#(B ∩ [n])
n

exists a.s. for all B ∈ π.

Let us write |π|↓ ∈ S ↓ for the nonincreasing reordering of (|B|, B ∈ π), ignoring the zero
terms coming from the dust. It is known [58, Theorem 2] that the conditional distribution
of π given |π|↓ = s is %s, so we have

P(π ∈ · ) =
∫
P(|π|↓ ∈ ds)%s( · ).

This means that any exchangeable probability measure on P∞ is of the form %ν where ν
is a probability measure on S ↓, and

%ν( · ) :=
∫

S ↓
%s( · )ν(ds).

Furthermore, Bertoin [10, Theorem 3.1] shows that any exchangeable measure µ on P∞
such that

µ({1}) = 0 and ∀n ≥ 1, µ(π|[n] 6= 1[n]) <∞ (4.3)
can be written µ = ce + %ν , where c ≥ 0, ν is a measure on S ↓ satisfying

ν
(
{(1, 0, 0, . . .)}

)
= 0 and

∫
S ↓

(1− s1)ν(ds) <∞, (4.4)

and e is the so-called erosion measure, defined by

e := ∑
i∈N δ{{i},N\{i}}.

As a result, each fragmentation process with values in P∞ is characterized by its erosion
coefficient c and characteristic measure ν, in such a way that its rates can be described as
follows:

A block of size n fragments, independently of the other blocks, into a partition
with k different blocks of sizes n1, n2, . . . , nk at rate

c1{k = 2, and n1 = 1 or n2 = 1}+
∫

S ↓
ν(ds)

∑
i
sn1
i1
· sn2
i2
· · · snkik ,

where s0 is defined to be 1 − ∑i≥1 si, and the sum is over the vectors i =
(i1, . . . , ik) ∈ {0, 1, . . .}k such that ij may be 0 only if nj = 1, and if j 6= j′

and ij 6= 0, then ij′ 6= ij .
A similar result will be shown in the setting of nested fragmentations.
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4.2.3 Transitions of nested fragmentation processes

In this article we show that nested fragmentations are processes for which five different
fragmentation events – jumps for the Markov process Π – need to be distinguished. All
nested fragmentation processes are entirely characterized by the rates at which those
fragmentation events occur. While the main result, Theorem 4.14, cannot be stated at
this time because much notation needs to be introduced first, let us briefly explain what the
five typical events of a nested fragmentation are with an example. Assume that the nested
fragmentation Π = (ζ, ξ) jumps at time t, with (restricting each partition to {1, . . . , 12})

ξ(t−) = {1, 4, 6}, {2, 5, 7, 8, 9, 10, 11, 12}, {3}
ζ(t−) = {1, 4}, {6}, {2, 9, 10, 12}, {5}, {7, 8}, {11}, {3}.

Then the five following events may occur:

• Outer erosion: Each inner block erodes out of its outer block at a constant rate.
For example, if the block {7, 8} erodes out of its outer block at time t, then we have

ξ(t) = {1, 4, 6}, {2, 5, 9, 10, 11, 12}, {7, 8}, {3}
ζ(t) = {1, 4}, {6}, {2, 9, 10, 12}, {5}, {11}, {7, 8}, {3}.

Note that a macroscopic – i.e. non-singleton – inner block can erode out of its outer
block. This may seem counterintuitive as erosion is usually seen as a continuous loss
of mass, but here the idea is simply that a single inner block – not a macroscopic
proportion of blocks – separates from its outer block.

• Inner erosion: Each integer erodes out of its inner block at a constant rate. For
example, if the integer 2 erodes out of its inner block at time t, then we have

ξ(t) = {1, 4, 6}, {2, 5, 7, 8, 9, 10, 11, 12}, {3}
ζ(t) = {1, 4}, {6}, {2}, {9, 10, 12}, {5}, {7, 8}, {11}, {3}.

• Inner erosion with creation of new species: Each integer erodes out of its inner
and outer blocks at a constant rate. If the integer 2 erodes out of its inner and outer
blocks at time t, then we have

ξ(t) = {1, 4, 6}, {2}, {5, 7, 8, 9, 10, 11, 12}, {3}
ζ(t) = {1, 4}, {6}, {2}, {9, 10, 12}, {5}, {7, 8}, {11}, {3}.

• Outer dislocation: An outer block can split into two or more outer blocks. Each
of the inner blocks then decides, according to a Kingman paintbox procedure [57],
which outer block to join. For example, if the outer block containing 2 splits into
three outer blocks, then the partitions at time t can be

ξ(t) = {1, 4, 6}, {2, 9, 10, 11, 12}, {5}, {7, 8}, {3}
ζ(t) = {1, 4}, {6}, {2, 9, 10, 12}, {11}, {5}, {7, 8}, {3}.

Recall that a paintbox process is a way to draw random exchangeable partitions of a
(countable) set I: given a partition of [0, 1] into intervals, throw a sequence (Ui)i∈I
of i.i.d. uniform random variables on [0, 1]; the blocks of the random partition are
composed of the i that lie in the same interval. A paintbox procedure corresponding
to the example would be Figure 4.2.
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Figure 4.2 – Usual paintbox process, where the interval partition is composed of three
intervals of lengths s1 ≥ s2 ≥ s3.

• Inner dislocation: An inner block could split into two or more inner blocks, with
each of the new inner blocks choosing either to stay in the outer block in which it
resided before – its mother block –, or move to one of two or more new outer blocks
that are created. For example, if the block {2, 9, 10, 12} splits into four singletons,
with {2} choosing to stay in the mother block while the other three integers move
to one of two newly created outer blocks. Then the partitions at time t can be

ξ(t) = {1, 4, 6}, {2, 5, 7, 8, 11}, {9, 12}, {10}, {3}
ζ(t) = {1, 4}, {6}, {2}, {5}, {7, 8}, {11}, {9}, {12}, {10}, {3}.

Note that a bivariate paintbox process is needed to construct inner dislocation events:
see Figure 4.3 for a paintbox corresponding to this example.

Figure 4.3 – Bivariate paintbox process, built from two nested interval partitions, the coarser
(drawn in blue) with interval lengths ū, s̄1, s̄2, . . ., and the finer (drawn in red) with interval
lengths u1, u2, s1,1, s1,2, s2,1, etc. In this example, the variable U2 falls into the distinguished
interval with length ū, meaning that the integer 2 remains in its mother outer block. The
variables U9 and U12 fall in the same outer interval but in distinct inner intervals so an outer
block {9, 12} is formed, containing two inner blocks {9} and {12}. Similarly, {10} forms a
new outer and inner block.

Note that not all decreasing transitions are valid. For instance, consider the transition
from the initial state above to

ξ(t) = {1, 4}, {6}, {2, 5, 7, 8, 9, 10, 11, 12}, {3}
ζ(t) = {1, 4}, {6}, {2}, {9, 10, 12}, {5}, {7, 8}, {11}, {3},

where both the inner block A = {2, 9, 10, 12} and the outer block B = {1, 4, 6} simultane-
ously undergo fragmentation. In fact since they are not nested (A 6⊂ B) we will see that
this transition is impossible. Also, consider the transition

ξ(t) = {1, 4, 6}, {2, 5, 9, 10, 12}, {7, 8, 11} {3}
ζ(t) = {1, 4}, {6}, {2}, {9, 10, 12}, {5}, {7, 8}, {11}, {3}.
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Now inner block A undergoes fragmentation at the same time as its mother block B =
{2, 5, 7, 8, 9, 10, 11, 12}. However, the transition is invalid because the fragmentation of
block B separates, in particular, sites 5 and 7, while neither of them is in A. It will be clear
along the proof of Theorem 4.14 that such events are impossible for nested fragmentation
processes (essentially because if such transitions had positive rates, exchangeability would
imply that those rates are infinite).

Let us now start the analysis of nested fragmentation processes by exploiting their strong
exchangeability property.

4.3 Projective Markov property – characteristic kernel

The goal of this section is to show that nested fragmentations are processes Π for which
the following projective Markov property holds:

For all n ≥ 1, the process Πn := (Π(t)|[n], t ≥ 0) is a continuous-time Markov
chain in the finite state space P2,�

n , whose distribution under Pπ depends only
on π|[n].

We already made use of this property in Lemma 3.3 in the context of nested coalescent
processes. Here it is exposed in a slightly more general way since we show that for a large
class of Markov processes with values in P2,�

∞ or P∞ (not only coalescent or fragmentation
processes, but any càdlàg exchangeable process), the projective Markov property is in fact
equivalent to strong exchangeability.

Proposition 4.2. Let Π = (Π(t), t ≥ 0) be an exchangeable Markov process taking values
in P2,�

∞ or P∞ with càdlàg sample paths. The following propositions are equivalent:

(i) Π is strongly exchangeable.

(ii) Π has the projective Markov property, i.e. Πn := (Π(t)|[n], t ≥ 0) is a Markov chain
for all n ∈ N.

Remark 4.3. Crane and Towsner [28, Theorem 4.26] show that the projective Markov
property is equivalent to the Feller property for exchangeable Markov process taking values
in a Fraïssé space (i.e. a space satisfying general “stability and universality” assumptions
[see 28, Definitions 4.4 to 4.11]). In particular the space of partitions and the space of
nested partitions are Fraïssé spaces (the argument essentially being the existence of so-
called universal elements π? defined in Section 4.2), so for the processes we consider, strong
exchangeability is equivalent to the Feller property.

Proof. (i) ⇒ (ii): Let n ∈ N and π ∈ P2,�
n . Fix a universal π? ∈ P2,�

∞ with initial part
π. Now take any π0 ∈ P2,�

∞ such that (π0)|[n] = π, and an injection σ : N → N such that
σ|[n] = id|[n] and (π?)σ = π0. Now we have

Pπ0(Πn ∈ ·) = Pπ?((Πσ)n ∈ ·)
= Pπ?(Πn ∈ ·),
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so this distribution depends only on π, which proves that Πn is a Markov process. Now
the assumption that Π has càdlàg sample paths ensures that the process Πn stays some
positive time in each visited state a.s. Therefore Πn is a continuous-time Markov chain.

(ii) ⇒ (i): Let σ : N → N be an injection. For n ∈ N, let τ be a permutation of N such
that τ|[n] = σ|[n]. This property implies (πτ )|[n] = (πσ)|[n] for any π ∈ P2,�

∞ . We deduce

Pπ((Πσ)n ∈ ·) = Pπ((Πτ )n ∈ ·)
= Pπτ (Πn ∈ ·)
= Pπσ(Πn ∈ ·),

where the last equality is a consequence of the projective Markov property (the distribution
of Πn under Pπ depends only on the initial segment π|[n]). Since it is true for all n, we
have Pπ(Πσ ∈ ·) = Pπσ(Π ∈ ·), which proves the property of strong exchangeability.

Corollary 4.4. A nested fragmentation as defined by Definition 4.1 satisfies the assump-
tions of Definition 4.1’.

Proof. Consider a nested fragmentation process Π = (ζ, ξ) satisfying Definition 4.1. Note
that (i) of Definition 4.1 implies that Π satisfies the projective Markov property. Fix any
initial state π = (ζ, ξ) ∈ P2,�

∞ and an integer n ∈ N, and write ξ|[n] = {ξ1, ξ2, . . . , ξk},
for some 1 ≤ k ≤ n. Now define bijections σi : [#ξi] → ξi for each integer 1 ≤ i ≤ k.
Assumption (ii) and the projective Markov property imply that the processes(

(Πσi(t), t ≥ 0), 1 ≤ i ≤ k
)

are mutually independent under Pπ, and such that Πσi has distribution Π#ξi started from
πσi = (ζσi ,1). Independent continuous-time Markov chains have distinct jump times
almost surely, so in particular the first jump time Tn1 of Πn started from π|[n] is the
first jump time of some Πσi , for a unique i. So there is a unique block B ∈ ξ(0)|[n] =
ξ(Tn1 −)|[n] such that Π(Tn1 −)|B 6= Π(Tn1 )|B. By induction and the Markov property applied
to successive jumps times Tn1 , Tn2 , . . . of the Markov chain Πn, it is clear that almost surely,
for all t ≥ 0 such that Πn(t−) 6= Πn(t), there is a unique block B ∈ ξn(t−) such that
Π(t−)|B 6= Π(t)|B. Since this is true for all n ∈ N, the outer branching property as
described in (ii’) holds.

It is a result of the univariate theory of fragmentations [10], that (iii) implies (iii’).

The next proposition is the direct consequence of the projective Markov property in the
space P2,�

∞ . It is essentially Lemma 3.7, from which the proof is easily adapted, the ar-
gument being entirely independent from any monotonicity (coalescence or fragmentation)
assumption.

Proposition 4.5. Let Π = (Π(t), t ≥ 0) be a stochastic process with values in P2,�
∞

which satisfies the projective Markov property. Then Π is a Markov process, whose
distribution is characterized by a transition kernel K from P2,�

∞ to P2,�
∞ (i.e. Kπ( · ) is a

nonnegative measure on P2,�
∞ for all π ∈ P2,�

∞ and π 7→ Kπ(B) is measurable for any B
Borel set of P2,�

∞ ) such that
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• for all π ∈ P2,�
∞ , we have Kπ({π}) =∞,

• for all π ∈ P2,�
∞ , n ∈ N and π′ ∈ P2,�

n \{π|[n]}, the Markov chain Πn has a transition
rate from π|[n] to π′ equal to

qnπ,π′ = Kπ

(
r−1
n ({π′})

)
<∞,

where rn( · ) = ·|[n] denotes the restriction operation.

This kernel K will be called the characteristic kernel of the process Π. Furthermore,
if Π is exchangeable, then K is strongly exchangeable, in the sense that for any π ∈ P2,�

∞
and any injection σ : N→ N, we have

Kπσ = Kσ
π .

Proof. See Lemma 3.7.

Remark 4.6. Note that the transition rates of the Markov chains Πn are given by the
collection of σ-finite measures Kπ( · ∩ P2,�

∞ \ {π}), for π ∈ P2,�
∞ . The value Kπ({π}) is

irrelevant for the distribution of the process Π, and for uniqueness, we set Kπ({π}) =∞,
whereas it is conventional for a transition kernel that this value is taken to be 0. However,
setting this value to be infinite is necessary so that strong exchangeability Kπσ = Kσ

π

holds in general for all injections σ : N → N. Indeed, note that if σ is a bijection, then
Kσ
π ({πσ}) = Kπ({π}), but in general, when σ is an injection, one can have Kσ

π ({πσ}) =
Kπ({π}) + a, where a > 0. For instance assume – we will see that it is the case for
characteristic kernels of nested fragmentation – that K is such that if π0 = (ζ, ξ) has at
least two outer blocks B 6= B′ ∈ ξ, then

Kπ0({π|B 6= (π0)|B} ∩ {π|B′ 6= (π0)|B′}) = 0.

Then if σ : N→ N is an injection with image σ(N) ⊂ B, then one has

Kπ0({πσ = πσ0 }) ≥ Kπ0({π|B = (π0)|B}) ≥ Kπ0({π = π0}) +Kπ0({π|B′ 6= (π0)|B′}),

where Kπ0({π|B′ 6= (π0)|B′}) may be greater than 0 if K is not trivial.

Let us emphasize that the kernel K essentially gives us the infinitesimal generator of the
Markov process Π. Indeed, note that the generator Gn of the continuous-time finite-space
Markov chain Πn is then given by

Gnf(π|[n]) =
∑

π′∈P2,�
n \{π|[n]}

qnπ,π′(f(π′)− f(π|[n]))

=
∫
P2,�
∞

Kπ(dπ′)
(
f(π′|[n])− f(π|[n])

)
,

for any function f : P2,�
n → R and π ∈ P2,�

∞ . As an obvious consequence, the generator
G of the process Π can be applied to any function g : P2,�

∞ → R of the form g = f ◦ rn for
some n ∈ N and some function f : P2,�

n → R, and is written

Gg(π) =
∫
P2,�
∞

Kπ(dπ′)
(
g(π′)− g(π)

)
.
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4.4 Outer branching property

In this section we study the outer branching property – as stated in Definition 4.1’ – to
analyze the characteristic kernel of nested fragmentations. The aim is to show that it is
entirely characterized by a measure on partitions of N2 satisfying some invariance property.

4.4.1 Simpler kernel

First, the following proposition expresses that the jump rates from initial states with a
single outer block are sufficient to characterize the whole process.

Proposition 4.7. Let Π = (Π(t), t ≥ 0) = ((ζ(t), ξ(t)), t ≥ 0) be a strongly exchangeable
Markov process with values in P2,�

∞ and nonincreasing càdlàg sample paths. Write K for
its exchangeable characteristic kernel.

If Π satisfies the outer branching property, then K is characterized by a simpler kernel
κ from P∞ to P2,�

∞ which is defined as

κζ( · ) := K(ζ,1)( · ),

where 1 denotes the partition of N with only one block. The simpler kernel is also strongly
exchangeable.

The kernel K is determined by κ in the following way: fix π0 = (ζ, ξ) ∈ P2,�
∞ and for

simplicity suppose that all the blocks of ξ are infinite. For all B ∈ ξ, define the injection
σB : N → N as the unique increasing map whose image is B, and τB : B → N such that
σB ◦ τB = idB. By definition, (π0)σB is of the form (ζB,1), with ζB = ζσB . Now define
fB as the function which maps π ∈ P2,�

∞ to the unique ω ∈ P2,�
∞ such that

• ω � ({B,N \B}, {B,N \B}),

• ω|B = πτB and ω|N\B = (π0)|N\B.

Then for any Borel set A ⊂ P2,�
∞ , we have

Kπ0(A) =
∑
B∈ξ

κζB
(
{fB(π) ∈ A}

)
. (4.5)

Remark 4.8.

• This proposition shows how Kπ0 is expressed in terms of the kernel κ only for π0 =
(ζ, ξ) such that all the blocks of ξ are infinite. In fact this is enough to characterize
K entirely since if π0 does not satisfy this property, there exists a nested partition
π′0 = (ζ ′, ξ′), where ξ′ has infinite blocks, and an injection σ : N → N such that
π0 = (π′0)σ. Then we have Kπ0 = Kσ

π′0
, which is determined by κ.

• This result implies that different outer blocks undergo independent fragmentations,
in other words a nested fragmentation (recall that we only assume Definition 4.1’)
satisfies (ii) of Definition 4.1. Indeed, one interprets the sum (4.5) as: independently
for each block B ∈ ξ, (π0)|B is replaced by πτB at rate κζB (π ∈ ·), which is a measure
which depends only on (π0)|B.
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Proof. First note that the fact that Π has decreasing sample paths implies that for any
π0 ∈ P2,�

∞ , the support of the measure Kπ0 is included in {π � π0}. Indeed, since
{π � π0} = ∩n≥1{π|[n] � (π0)|[n]}, we have

Kπ0({π � π0}) = lim
n→∞

Kπ0(π|[n] � (π0)|[n]),

where for any n ≥ 1, the right-hand side is equal to the (finite) transition rate of the
Markov chain Πn from (π0)|[n] to any π for which π � (π0)|[n]. But Πn is a decreasing
process by assumption, so this rate is zero, so we conclude

Kπ0(π � π0) = 0 (4.6)

Using the same argument, it is clear that the outer branching property implies that for
any π0 = (ζ, ξ) ∈ P2,�

∞ , we have

Kπ0

( ⋃
B1 6=B2∈ξ

{π|B1 6= (π0)|B1 and π|B2 6= (π0)|B2}
)

= 0. (4.7)

Now without loss of generality (see Remark 4.8), suppose that all the blocks of ξ are
infinite, and let us define for all B ∈ ξ, the maps σB, τB and fB as in the proposition.
Equations (4.6) and (4.7) imply that for any B ∈ ξ, on the event {π|B 6= (π0)|B}, we have

π = fB(πσB ) Kπ0-a.e.,

where fB is the map defined in the proposition. Then to show (4.5) for any Borel set
A ⊂ P2,�

∞ \ {π0}, we have

Kπ0(A) = Kπ0(∪B∈ξ(A ∩ {π|B 6= (π0)|B}))
=
∑
B∈ξ

Kπ0(A ∩ {π|B 6= (π0)|B})

=
∑
B∈ξ

Kπ0({fB(πσB ) ∈ A} ∩ {πσB 6= (π0)σB})

=
∑
B∈ξ

K(π0)σB ({fB(π) ∈ A} ∩ {π 6= (π0)σB}),

where we use the strong exchangeability of the kernel K in the last line. Now, note that
for every B ∈ ξ, by definition of fB we have {fB(π) 6= π0} = {π 6= (π0)σB}, therefore
{fB(π) ∈ A} ⊂ {π 6= (π0)σB}, so one can simply rewrite

Kπ0(A) =
∑
B∈ξ

K(π0)σB ({fB(π) ∈ A}),

In general, if A is a Borel subset of P2,�
∞ with π0 ∈ A, we have Kπ0(A) =∞, and for each

B ∈ ξ, K(π0)σB ({fB(π) ∈ A}) ≥ K(π0)σB ({fB(π) = π0}) = K(π0)σB ({π = (π0)σB}) = ∞,
so the equality still holds. Now by definition of σB, (π0)σB is of the form (ζB,1), which
concludes the proof that Kπ0 can be expressed with the simpler kernel κ. Finally, by
definition, it is clear that κ inherits strong exchangeability from K.

Now, to further analyze the simplified characteristic kernel κ of an nested fragmentation,
we need to introduce some tools, reducing the problem to study exchangeable (with respect
to a particular set of injections M) partitions of N2.
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4.4.2 M-invariant measures

Let M be the monoid of functions N2 → N2 consisting of injective maps of the form

(i, j) 7−→ (σ(i), σi(j)),

where σ and σ1, σ2, . . . are injections N → N. Let us write πR for the rows partition
{{(i, j), j ≥ 1}, i ≥ 1} ∈ PN2 , which has the property that an injection τ : N2 → N is in
M if and only if πτR = πR.

Note that in P∞ any universal element π has the property that κπ characterize κ entirely,
but there is no natural choice for π. The reason for studying partitions of N2 is that the
rows partition πR is a natural universal element of PN2 . The following proposition shows
that one can make sense of a measure essentially defined as “κπR”, which then characterize
κ and therefore the distribution of a nested fragmentation.

Proposition 4.9. Let κ be a strongly exchangeable kernel from P∞ to P2,�
∞ , and let π0

denote a universal element of P∞, i.e. a partition of N with infinitely many infinite blocks
(and no finite block). Choose a bijection σ : N2 → N such that πσ0 = πR.

Then µ := κσπ0 is a measure on P2,�
N2 which is M-invariant, in the sense that for all

τ ∈ M , µ = µτ . Moreover, µ does not depend on π0 or σ and the mapping κ 7→ µ is
bijective from the set of strongly exchangeable kernels to the set of M -invariant measures
on P2,�

N2 .

Thinking of κ as the jump kernel of a nested fragmentation process, one can see this
measure µ as the measure giving the infinitesimal jump rates from the nested partition
(πR,1), where each row of N2 is an inner block.

Proof. Fix τ ∈ M and a Borel set A ⊂ P2,�
N2 . We need to prove µ(πτ ∈ A) = µ(A).

Consider ϕ = σ ◦ τ ◦ σ−1. This map satisfies ϕ ◦ σ = σ ◦ τ and πϕ0 = π0, so we have

µ(πτ ∈ A) = κπ0(πσ◦τ ∈ A)
= κπ0(πϕ◦σ ∈ A)
= κπϕ0 (πσ ∈ A)

= µ(A).

This proves that µ is M -invariant. Let us now prove that µ does not depend on π0 or σ:
fix π1, π2 ∈ P∞ (both with infinitely many infinite blocks and no finite block) and σ1, σ2
bijections from N2 to N such that πσii = πR. We need to show

κπ1(πσ1 ∈ · ) = κπ2(πσ2 ∈ · ).

Let ϕ be a bijection such that πϕ1 = π2. Note that πσ
−1
2 ◦ϕ

−1◦σ1
R = πϕ

−1◦σ1
2 = πσ1

1 = πR, i.e.
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σ−1
2 ◦ ϕ−1 ◦ σ1 ∈M . Now we have

κπ1(πσ1 ∈ · ) = κπ1

(
(πϕ)ϕ−1◦σ1 ∈ ·

)
= κπ2

(
πϕ
−1◦σ1 ∈ ·

)
= κπ2

(
(πσ2)σ

−1
2 ◦ϕ

−1◦σ1 ∈ ·
)

= κπ2 (πσ2 ∈ · ) ,

where the last equality follows from theM -invariance of κπ2 (πσ2 ∈ · ). So µ is well defined
and depends only on κ.

We now prove that κ 7→ µ is bijective. For any injection σ : N→ N2, we write 2σ for the
map

2σ :

N −→ N2

n 7−→ 2σ(n) = (2i, 2j) where σ(n) = (i, j).

Note that for any injection σ : N → N2, we have πσR = π2σ
R . Now let σ1, σ2 be any two

injections such that πσ1
R = πσ2

R . Then there exists a τ ∈M such that

τ ◦ σ1 = 2σ2.

Indeed one such τ can be defined in the following way. First let us define an injection
ϕ : N → N, which will serve as a mapping for rows. For any i ∈ N, there are two
possibilities:

• either there is a j ∈ N such that (i, j) ∈ im(σ1), and then there is an even integer
i′ ∈ N such that 2σ2(σ−1

1 (i, j)) = (i′, k) for some k ∈ N. This number i′ does not
depend on j because of the fact that πσ1

R = πσ2
R . Indeed if j1, j2 ∈ N are such that

(i, j1), (i, j2) ∈ im(σ1), then by definition σ−1(i, j1) and σ−1(i, j2) belong to the same
block of πσ1

R = πσ2
R , and so σ2(σ−1(i, j1)) and σ2(σ−1(i, j2)) belong to the same block

of πR. So in that case we can define ϕ(i) := i′.

• or im(σ1) ∩ {(i, j), j ≥ 1} = ∅, and then we define ϕ(i) = 2i− 1.

The map ϕ is a well-defined injection, and we may now define

τ :

(i, j) ∈ im(σ1) 7−→ 2σ2(σ−1
1 (i, j))

(i, j) /∈ im(σ1) 7−→ (ϕ(i), 2j − 1)

It is easy to check that τ ∈ M and that τ ◦ σ1 = 2σ2. We can now fix µ an M -invariant
measure on P2,�

N2 . Consider a partition π0 ∈ P∞ and an injection σ0 : N → N2 such that
πσ0

R = π0. Now for any other σ1 such that πσ1
R = π0, let τ ∈M be such that τ ◦ σ1 = 2σ0.

By M -invariance of µ, we have

µ(πσ1 ∈ · ) = µ(πτ◦σ1 ∈ · )
= µ(π2σ0 ∈ · ).

Therefore this measure does not depend on σ1 but only on π0, so we may define

κπ0 := µ(πσ0 ∈ · ),

104



which is a measure on P2,�
∞ , for all π0. Now it remains to check that for any injection

σ : N→ N, we have κσπ0 = κπσ0 . But if π
σ0
R = π0, then πσ0◦σ

R = πσ0 , so

κσπ0 = µ((πσ0)σ ∈ · )
= µ(πσ0◦σ ∈ · )
= κπσ0 ,

so κ is a strongly exchangeable kernel from P∞ to P2,�
∞ , and it is easy to check that the

M -invariant measure associated with κ is µ.

Note that for K a characteristic kernel of a nested fragmentation, we have set (see Re-
mark 4.6) Kπ({π}) = ∞ for any π ∈ P2,�

∞ , which implies that µ({(πR,1)}) = ∞ for the
correspondingM -invariant measure. This is only technical and for our processes this value
µ({(πR,1)}) has no relevance. Therefore we will from now on abuse notation and identify
M -invariant measures on P2,�

N2 with their restriction to P2,�
N2 \ {(πR,1)}. More precisely,

in the rest of the article, we extend the definition of M -invariance to all measures µ on
P2,�
N2 such that for all τ ∈M , µ and µτ coincide on P2,�

N2 \ {(πR,1)}. As such, we will now
only consider M -invariant measures µ satisfying µ ({(πR,1)}) = 0.

Putting together Proposition 4.7 and Proposition 4.9 gives us:

Theorem 4.10. Let Π = (Π(t), t ≥ 0) be a nested fragmentation process. Then its
distribution is characterized by a unique M -invariant measure µ on P2,�

N2 satisfying

µ (π ⊀ (πR,1)) = 0

and ∀n ∈ N, µ
(
π|[n]2 6= (πR,1)|[n]2

)
<∞.

(4.8)

The characterization is in the sense that for any π0, π1 ∈ P∞ with infinitely many infinite
blocks, for any Borel sets A ⊂ P2,�

N2 \ {(πR,1)} and B ⊂ P2,�
∞ \ {(π1,1)},

µ(A) = κσ0
π0(A) and κπ1(B) = µσ1(B),

where κ is the simplified characteristic kernel of Π, σ0 : N2 → N is any injection such that
πσ0

0 = πR and σ1 : N→ N2 is any injection such that πσ1
R = π1.

Conversely, for any such measure µ, there is a strongly exchangeable Markov process with
values in P2,�

∞ , nonincreasing càdlàg sample paths and the outer branching property with
characteristic measure µ.

Remark 4.11. An explicit construction for the converse part of the theorem is described
in the next section (Lemma 4.12).

4.4.3 Poissonian construction

Consider µ an M -invariant measure on P2,�
N2 satisfying (4.8), and let Λ be a Poisson point

process on N × [0,∞) × P2,�
N2 with intensity # ⊗ dt ⊗ µ, where # denotes the counting

measure and dt the Lebesgue measure.
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Fix n ∈ N. Because of (4.8), the points (k, t, π) ∈ Λ such that k ≤ n and π|[n]2 6= (πR,1)|[n]2

can be numbered

(kni , tni , πni , i ≥ 1) with tn1 < tn2 < . . . and tni −−−→
i→∞

∞.

Fix any initial value π0 ∈ P2,�
∞ . Let us define a process (Πn

i , i ≥ 0) with values in P2,�
[n] ,

by Πn
0 = (π0)|[n] and by induction, conditional on Πn

i = (ζ, ξ):

• if ξ has less than kni+1 blocks, then set Πn
i+1 := Πn

i

• if ξ has a kni+1-th block, say B, then let τ : B → [n]2 be the injection such that
τ(k) = (i′, j′) iff k ∈ B is the j′-th element of the i′-th block of ζ|B.

Then define Πn
i+1 as the only element π ∈ P2,�

n such that π � Πn
i , π|B = (πni )τ and

π|[n]\B = (Πn
i )|[n]\B.

Now we define the continuous-time processes (Πn(t), t ≥ 0) by

Πn(t) := Πn
i iff t ∈ [tni−1, t

n
i ).

Lemma 4.12. The processes Πn built from this Poissonian construction are consistent in
the sense that we have for all m ≥ n ≥ 1 and t ≥ 0,

Πm(t)|[n] = Πn(t).

Therefore, for all t ≥ 0, there is a unique random variable Π(t) with values in P2,�
∞ such

that Π(t)|[n] = Πn(t) for all n, and the process (Π(t), t ≥ 0) is a strongly exchangeable
Markov process with càdlàg, nonincreasing sample paths, satisfying the outer branching
property, and whose characteristic M -invariant measure is µ.

Proof. Choose an integer n ∈ N and consider the variable (kn+1
1 , tn+1

1 , πn+1
1 ). It is clear

from the definition that (Πn+1
0 )|[n] = Πn

0 . Now let us show that (Πn+1
1 )|[n] = Πn(tn+1

1 ).

We distinguish two cases:
1) If tn+1

1 = tn1 , then we have necessarily kn+1
1 = kn1 ≤ n and (πn+1

1 )|[n]2 = (πn1 )|[n]2 6=
(πR,1)|[n]2 . Let us write Πn+1

0 = (ζn+1, ξn+1) and Πn
0 = (ζn, ξn). Since (Πn+1

0 )|[n] = Πn
0 ,

it is clear that the kn1 -th block of ξn+1 includes the kn1 -th block of ξn, and may at most
contain one other element, the integer n+ 1. In other words we have

Bn+1 ∩ [n] = Bn,

where Bn+1 and Bn denote those two blocks. Now let us write τn+1, τn for the respective
injections in N2 defined in the construction. Because we defined the injections according
to the ordering of the blocks of ζ and with the natural order on N, it is clear that

τn+1
|Bn = τn.

Therefore we deduce ((πn1 )τn+1)|Bn = (πn1 )τn , which allows us to conclude (Πn+1
1 )|[n] =

Πn
1 = Πn(tn+1

1 ).

2) If tn+1
1 < tn1 , then we have to further distinguish two possibilities:
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a) kn+1
1 = n + 1. In that case the (n + 1)-th block of ξn+1 can either be empty or the

singleton {n + 1}. Then by definition, we necessarily have Πn+1
1 = Πn+1

0 , so we can
conclude (Πn+1

1 )|[n] = Πn
0 = Πn(tn+1

1 ).
b) kn+1

1 ≤ n, and then necessarily (πn+1
1 )|[n]2 = (πR,1)|[n]2 . In that case, let B be the

kn+1
1 -th block of ξ and τ : B → [n + 1]2 the injective map defined in the construction.

By definition, we have (πR,1)τ = (ζ, ξ)|B. Also by definition of τ , for any k ≤ n, we
have τ(k) ∈ [n]2. Therefore, we can conclude that

((πn+1
1 )τ )|B∩[n] = ((πn+1

1 )|[n]2)τ|B∩[n] = (πR,1)τ|B∩[n] = (ζ, ξ)|B∩[n].

This shows that (Πn+1
1 )|[n] = (Πn+1

0 )|[n], which allows us to conclude (Πn+1
1 )|[n] = Πn

0 =
Πn(tn+1

1 ).

By induction and the strong Markov property of the Poisson point process Λ, this proves
that (Πn+1

i )|[n] = Πn(tn+1
i ) for all i ≥ 1, so Πn+1(t)|[n] = Πn(t) for all t ≥ 0, which

concludes the first part of the proof.

It remains to show that the process (Π(t), t ≥ 0) is a strongly exchangeable Markov process
with the outer branching property, and whose characteristic M -invariant measure is µ.

First, notice that from the construction, we deduce immediately that for any n, Πn is a
Markov chain, and at any jump time tni , the partitions Πn

i−1 and Πn
i differ at most on

one block of ξ, where Πn
i−1 = (ζ, ξ). Therefore the distribution of the Markov chain Πn is

given by the transition rates of the form

qnπ0,π1 ,

with π0 = (ζ, ξ) ∈ P2,�
∞ , and with π1 � (π0)|[n] such that, for some B ∈ ξ|[n], (π1)|[n]\B =

(π0)|[n]\B and (π1)|B ≺ (π0)|B. Now for such π0, π1, write τ : B → N2 for the injection
such that τ(k) = (i, j) iff k is the j-th element of the i-th block of ζ|B. By elementary
properties of Poisson point processes we have

qnπ0,π1 = µ
(
πτ = (π1)|B

)
, (4.9)

Now recall from Proposition 4.2 that since Π satisfies the projective Markov property and
is exchangeable (this is immediate from theM -invariance of µ), Π is strongly exchangeable,
with a characteristic kernel K such that with the same notation as in (4.9),

Kπ0(π|[n] = π1) = qnπ0,π1 . (4.10)

Now the outer branching property is immediately deduced from the construction of the
process, where it is clear that at any jump time, at most one block of the coarser partition is
involved. Therefore by Proposition 4.7, the law of Π is characterized by the simpler kernel
κ defined by κζ = K(ζ,1), for ζ ∈ P∞. Now putting this together with (4.10) and (4.9),
since the coarsest partition 1[n] only contains one block B = [n], we have simply

κζ(π|[n] = π1) = µ
(
(πτ )|[n] = π1

)
,

where τ is an injection such that πτR = ζ. In other words with these definitions, the
measures κζ and µτ coincide on P2,�

∞ \ {(ζ,1)}, which shows that µ is the characteristic
M -invariant measure of the process Π.
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4.5 Inner branching property

In the previous section we only exploited the outer branching property of Definition 4.1’.
This section will instead focus on the inner branching property, which will allow us to
further the analysis of theM -invariant measure µ appearing in Theorem 4.10. To introduce
the next theorem and main result of this article, let us first give examples of M -invariant
measures that give rise to the types of transitions already discussed in Section 4.2.3.

4.5.1 Some examples

Pure erosion For i ≥ 1, let ξ(i)
out be the partition of N2 with two blocks such that one

of them is the i-th line {i} × N, i.e.

ξ
(i)
out :=

{
{i} × N, N2 \ ({i} × N)

}
and define the outer erosion measure eout := ∑

i≥1 δ(πR, ξ
(i)
out), where for readability we

denote without subscripts δ(ζ, ξ) the Dirac measure on (ζ, ξ).

Similarly, for i, j ≥ 1, we define

ζ
(i,j)
in :=

{
{(i, j)}

}
∪
{
({i} × N) \ {(i, j)}

}
∪
{
{k} × N, k ≥ 1, k 6= i

}
,

ξ
(i,j)
in :=

{
{(i, j)}, N2 \ {(i, j)}

}
,

and the inner erosion measures

ein,1 :=
∑
i,j≥1

δ(ζ(i,j)
in ,1) and ein,2 :=

∑
i,j≥1

δ(ζ(i,j)
in , ξ

(i,j)
in ).

Now, given three real numbers cout, cin,1, cin,2 ≥ 0, the M -invariant measure µ = coute
out +

cin,1e
in,1 + cin,2e

in,2 clearly satisfies (4.8), so by Theorem 4.10 there exists a fragmentation
process having µ as M -invariant measure.

From the construction, we see that the rates of such a process can be described informally
as follows:

• any inner block erodes out of its outer block at rate cout, i.e. it does not fragment
but forms, on its own, a new outer block.

• any integer erodes out of its inner block at rate cin,1, forming a singleton inner block,
within the same outer block as its parent.

• any integer erodes out of its inner and outer block at rate cin,2, forming singleton
inner and outer blocks.

Outer dislocation Recall the definition of the space of mass partitions s = (s1, s2, . . .) ∈
S ↓ and of the measures %s from Section 4.2.2. We define in a similar way, a collection
of probability measure %̂s on P2,�

N2 , by constructing π = (ζ, ξ) ∼ %̂s with the following
so-called paintbox procedure:

• for k ≥ 0, let tk := ∑k
k′=1 sk′ , with t0 = 0 by convention.
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• let U1, U2, . . . be a sequence of i.i.d. uniform r.v. on [0, 1] and define the random
partition ξ � πR on N2 by

(i, j) ∼ξ (i′, j′) ⇐⇒ i = i′ or Ui, Ui′ ∈ [tk, tk+1) for a unique k ≥ 0.

• %̂s is now defined to be the distribution of the random nested partition π = (πR, ξ).

Now for νout a measure on S ↓ satisfying (4.4), we define

%̂νout( · ) :=
∫

S ↓
νout(ds) %̂s( · ).

It is straight-forward to check that %̂νout is an M -invariant measure measure on P2,�
N2 sat-

isfying (4.8), so there exists a fragmentation process having %̂νout as M -invariant measure.

In intuitive terms, such a process can be described by saying that the outer blocks in-
dependently dislocate around their inner blocks with outer dislocation rate νout. In a
dislocation event, inner blocks are unchanged, and they are indistinguishable. By con-
struction, each newly created outer block selects a given frequency of inner blocks among
those forming the original outer block.

Inner dislocation The upcoming example is the most complex on our list, exhibiting
simultaneous inner and outer fragmentations. However, in construction it is very similar
to the previous example, and it should pose no difficulties to get a good intuition of the
dislocation mechanics.

Let us first formally define a space which will serve as an analog of the space of mass
partitions S ↓.

Definition 4.13. We define a particular space of bivariate mass partitions

S ↓
� ⊂ [0, 1]N × [0, 1]N2 × [0, 1]× [0, 1]N

as the subset consisting of elements p = ((ul)l≥1, (sk,l)k,l≥1, ū, (s̄k)k≥1) satisfying the fol-
lowing conditions.

u1 ≥ u2 ≥ . . . and
∑
l ul ≤ ū,

∀k ≥ 1, sk,1 ≥ sk,2 ≥ . . . and
∑
l sk,l ≤ s̄k,

s̄1 ≥ s̄2 ≥ . . . ,
ū+∑

k s̄k ≤ 1,
if s̄k = s̄k+1, then (l0 = inf{l ≥ 1, sk,l 6= sk+1,l} <∞)⇒ (sk,l0 > sk+1,l0).

(4.11)

We claim that S ↓
� is Polish with respect to the product topology. Indeed, recall [see e.g.

87, Theorem 2.2.1] that any Gδ subset – i.e. a countable intersection of open sets – of a
Polish space is Polish. Now, it is readily checked that every condition in (4.11) is closed
in the compact space X := [0, 1]N × [0, 1]N2 × [0, 1] × [0, 1]N except the last one, but the
subset of X satisfying this condition can be written

⋂
k≥1

[
{s̄k 6= s̄k+1} ∪

( ⋂
l≥1
{∃i < l, sk,i 6= sk+1,i} ∪ {sk,l ≥ sk+1,l}

)]
,
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so finally S ↓
� can be written as a countable intersection of open and closed sets in X,

which are all Gδ (recall that closed subsets of any metrizable space are Gδ). Therefore
considering this topology, S ↓

� is Polish and we will have no trouble considering measures
on S ↓

�.

Now, given a fixed i ≥ 1 and p = ((ul)l≥1, (sk,l)k,l≥1, ū, (s̄k)k≥1) ∈ S ↓
�, one can define a

random element π(i) = (ζ(i), ξ(i)) ∈ P2,�
N2 with the following paintbox procedure:

• for k ≥ 0, define t̄k = ū+∑k
k′=1 s̄k′ .

• for l ≥ 0, define t?,l = ∑l
l′=1 ul′ .

• for k ≥ 1 and l ≥ 0, define tk,l = t̄k−1 +∑l
l′=1 sk,l′ .

• write π0 = (ζ0, ξ0) for the unique element of P2,�
[0,1] such that the non-dust blocks of

ξ0 are
[0, ū) and [t̄k−1, t̄k), k ≥ 1,

and such that the non-singleton blocks of ζ0 are

[t?,l−1, t?,l), l ≥ 1 and [tk,l−1, tk,l), k, l ≥ 1.

• let (Uj , j ≥ 1) be an i.i.d. sequence of uniform random variables on [0, 1].

• define the random element π(i) ∈ P2,�
N2 as the unique element π(i) = (ζ(i), ξ(i)) �

(πR,1) such that

– (ζ(i), ξ(i))|(N\{i})×N = (πR,1)|(N\{i})×N, i.e. only the i-th row may dislocate.

– On the i-th row, we have

(i, j) ∼ζ(i) (i, j′) ⇐⇒ Uj ∼ζ0 Uj′ ,

(i, j) ∼ξ(i) (i, j′) ⇐⇒ Uj ∼ξ0 Uj′ ,

and also
(i, j) ∼ξ(i) (i+ 1, 1) ⇐⇒ Uj ∈ [0, ū),

where it should be noted that (i+ 1, 1) could be replaced by any element (i′, j′)
with i′ 6= i.

See Figure 4.4 for a representation of the bivariate paintbox process. In words, π(i)

is a random nested partition such that the outer partition ξ(i) has a distinguished
block containing (N \ {i})×N, which also contains a proportion ū of elements of the
i-th row. Other non-singleton blocks of ξ(i) can be indexed by k ≥ 1, each containing
a proportion s̄k of elements of the i-th row. The blocks of the inner partition ζ(i) are
the entire rows, except for the i-th row where non-singleton blocks can be indexed
by (?, l) and (k, l) for k, l ≥ 1, each respectively containing a proportion ul or sk,l
of elements of the i-th row. As the notation suggests, inner blocks with frequency
sk,l (resp. ul) are included in the outer block with frequency s̄k (resp. ū) on the i-th
row.
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Figure 4.4 – Paintbox construction of π(i)

The distribution of π(i) obtained with this construction is a probability on P2,�
N2 that we

denote %̃(i)
p . We finally define

%̃p =
∑
i≥1

%̃
(i)
p .

It is clear from the exchangeability of the sequence (Uj , j ≥ 1) that %̃p is M -invariant.

Now consider a measure νin on S ↓
� satisfying

νin({u1 = 1 or s1,1 = 1}) = 0, and
∫

S ↓�

(1− u1) νin(dp) <∞. (4.12)

Similarly as in the previous example, we define

%̃νin( · ) =
∫

S ↓�

%̃p( · ) νin(dp).

It is again straight-forward to check that %̃νin is an M -invariant measure on P2,�
N2 satisfy-

ing (4.8), so there exists a fragmentation process having %̃νin as M -invariant measure.

In intuitive terms, such a process can be described by saying that the inner blocks inde-
pendently dislocate with inner dislocation rate νin. In a dislocation event, new inner
blocks are formed, each with a given proportion of the original block, and regroup, either
in the original outer block (with a total proportion ū with respect to the original inner
block) or in newly created outer blocks.

A combination of the above The mechanisms we discussed in the three proposed
examples can be added in a parallel way, each event arising at its own independent rate
and events from distinct mechanisms occurring at distinct times. More precisely, for a
set of erosion coefficients cout, cin,1, cin,2 ≥ 0, an outer dislocation measure νout on S ↓

satisfying (4.4) and an inner dislocation measure νin on S ↓
� satisfying (4.12), the measure

µ := coute
out + cin,1e

in,1 + cin,2e
in,2 + %̂νout + %̃νin

is a valid M -invariant measure on P2,�
N2 satisfying (4.8), and thus corresponds to a frag-

mentation process exhibiting simultaneously all the discussed mechanisms at the rates
described above. The main result of this article is to prove that any nested fragmentation
process admits such a representation.
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4.5.2 Characterization of nested fragmentations

Theorem 4.14. Let Π = (Π(t), t ≥ 0) = ((ζ(t), ξ(t)), t ≥ 0) be a nested fragmentation
process. Then there are

• an outer erosion coefficient cout ≥ 0 and two inner erosion coefficients cin,1, cin,2 ≥ 0;

• an outer dislocation measure νout on S ↓ satisfying (4.4);

• an inner dislocation measure νin on S ↓
� satisfying (4.12);

such that the M -invariant measure µ of the process can be written

µ = coute
out + cin,1e

in,1 + cin,2e
in,2 + %̂νout + %̃νin .

Corollary 4.15. Definition 4.1 is equivalent to Definition 4.1’.

Proof. We have shown most of the equivalence in Corollary 4.4 and Remark 4.8. What
remains is to show that if Π = (ζ, ξ) is a nested fragmentation process according to
Definition 4.1’, then ζ is a homogeneous fragmentation process in P∞. Now if µ is given by
the expression of the preceding theorem, using the Poissonian construction of Section 4.4.3
one easily checks that ζ has the same transition rates as a homogeneous fragmentation
with erosion coefficient c = cin,1 + cin,2 and dislocation measure ν = νin ◦ S−1, where
S : S ↓

� → S ↓ is the map given by

S(p) := nonincreasing reordering of {ul, l ≥ 1} ∪ {sk,l, k, l ≥ 1}.

The rest of Section 4.5 is dedicated to proving Theorem 4.14. Let µ be the M -invariant
characteristic measure on P2,�

N2 associated with Π. Recall that πR denotes the rows parti-
tion, defined by

πR =
{
{(i, j), j ≥ 1}, i ≥ 1

}
.

First, notice that the inner branching property implies that µ-a.e. we have

∃i ∈ N, ζ|(N\{i})×N = (πR)|(N\{i})×N,

where ζ is the first coordinate in the standard variable π = (ζ, ξ) ∈ P2,�
N2 . This will enable

us to decompose µ further. Let us write

µout := µ( · ∩ {ζ = πR}),

for i ∈ N, µin,i := µ
(
{ζ|{i}×N 6= 1{i}×N} ∩ ·

)
,

such that µin := µ( · ∩ {ζ 6= πR}) = ∑
i≥1 µin,i

and µ = µout + µin.

(4.13)

On the event {ζ = πR}, we have
ξ = f(ξσ),

where σ : N → N2 is the injection i 7→ (i, 1), and f : P∞ → PN2 is the map such that
(i, j) ∼f(π0) (i′, j′) ⇐⇒ i ∼π0 i′. By M -invariance of µ, the measure

µ̃out := µ ({ζ = πR} ∩ {ξσ ∈ · })
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is an exchangeable measure on P∞, of which µout is the push-forward by the map (πR, f( · )).

Also, note that µ satisfies the σ-finiteness assumption (4.8), which implies that µ̃out sat-
isfies (4.3), showing (see Section 4.2.2) that it can be decomposed

µ̃out = coute + %νout ,

where cout ≥ 0 and νout is a measure on S ↓ satisfying (4.4). Thanks to our definitions,
this immediately translates into

µout = coute
out + %̂νout ,

and to prove Theorem 4.14, it only remains to show that we can write

µin = ∑
i≥1 µin,i = cin,1e

in,1 + cin,2e
in,2 + %̃νin .

To that aim, note that by exchangeability we have µin,i = µ
τ1,i
in,1 where τ1,i : N2 → N2

denotes the bijection swapping the first and i-th rows, so the measure µin,1 is sufficient to
recover µin entirely. Let us examine the distribution of ξ under µin,1. We claim that µ-a.e.
on the event {ζ|{1}×N 6= 1{1}×N}, the equality ξ|(N\{1})×N = 1(N\{1})×N holds. Indeed, if
this was not the case, by M -invariance we would have

a := µ(ζ|{1}×N 6= 1{1}×N, and (2, 1) �ξ (3, 1)) > 0.

Let us then show that in fact a = 0. By M -invariance of µ, we have for any i ≥ 4,

a = µ(ζ|{i}×N 6= 1{i}×N, and (2, 1) �ξ (3, 1)),

but because of the inner branching property, we have seen that the events {ζ|{i}×N 6=
1{i}×N} have µ-negligible intersections. Now we have

∞ > µ(π|[3]2 6= (πR,1)|[3]2) ≥ µ
(
(2, 1) �ξ (3, 1)

)
≥ µ

(
∪i≥4{ζ|{i}×N 6= 1{i}×N, and (2, 1) �ξ (3, 1)}

)
= ∑

i≥4 a.

This shows that necessarily a = 0.

Now in order to further study µin,1 we need to introduce exchangeable partitions on a space
with a distinguished element. Results in that direction have been established by Foucart
[45], where distinguished exchangeable partitions are introduced and used to construct a
generalization of Λ-coalescents modeling the genealogy of a population with immigration.
Here we need to define in a similar way distinguished partitions in our bivariate setting.
Informally, we will see that in a gene fragmentation, certain resulting gene blocks remain
in a distinguished species block, that one can interpret as the mother species.

Definition 4.16. For n ∈ N∪{∞}, we define [n]? := [n]∪{?}, where ? is not an element
of N. We define P2,�

n,? as the set of nested partitions π = (ζ, ξ) ∈ P2,�
[n]? such that ? is

isolated in the finer partition ζ:

P2,�
n,? :=

{
π = (ζ, ξ) ∈ P2,�

[n]? , {?} ∈ ζ
}
.
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We define the action of an injection σ : [n]→ [n] on an element π ∈ P2,�
n,? as the action of

the unique extension σ̃ : [n]? → [n]? such that σ̃(?) = ?, and define exchangeability for
measures on P2,�

n,? as invariance under the actions of such injections σ : [n]→ [n].

Let us come back to the decomposition of µin,1. We define an injection

τ :


[∞]? −→ N2

j ∈ N 7−→ (1, j)
? 7−→ (2, 1).

Note that here we could have chosen any value τ(?) = (i, j) with i ≥ 2, since µ-a.e. on
the event {ζ|{1}×N 6= 1{1}×N} those elements are all in the same block of ξ. The argument
above shows that on the event {ζ|{1}×N 6= 1{1}×N}, we have µ-a.e. the equality

π = (ζ, ξ) = g(πτ ),

where g : P2,�
∞,? → P2,�

N2 is a deterministic function which we can define by: g(π0) is the
only π ∈ P2,�

N2 such that

πτ = π0, π � (πR,1N2)
and π|(N\{1})×N = (πR,1N2)|(N\{1})×N.

Let us now write
µ̃in := µin,1(πτ ∈ · ). (4.14)

Note that the push-forward of this exchangeable measure on P2,�
∞,? by the map g is µin,1.

Also, note that the σ-finiteness assumption (4.8) and the fact that µin,1-a.e. we have
ζ|{1}×N 6= 1{1}×N imply that µ̃in satisfies

µ̃in({ζ|[∞] = 1}) = 0, and ∀n ≥ 1, µ̃in(π|[n]? 6= πn) <∞. (4.15)

where πn := ({{?}, [n]}, 1[n]?) denotes the coarsest partition on P2,�
n,? .

We can summarize the previous discussion in the following lemma.

Lemma 4.17. The characteristic M -invariant measure µ of a nested fragmentation pro-
cess in P2,�

∞ can be decomposed

µ = coute
out + %̂νout + µin,

where cout ≥ 0, νout is a measure on S ↓ satisfying (4.4), and µin := µ( · ∩ {ζ 6= πR}).
Also, there exists an exchangeable measure µ̃in on P2,�

∞,? which satisfies (4.15) and such
that µin = ∑

i µ
τ1,i
in,1, where

• µin,1 is a measure on P2,�
N2 which is the push-forward of µ̃in by the map g defined in

the previous paragraph.

• τ1,i : N2 → N2 is the bijection swapping the first row with the i-th row.

In the next section, we will develop tools to analyze and further decompose the measure
µ̃in into terms of erosion and dislocation.
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4.5.3 Bivariate mass partitions

Recall our space of bivariate mass partitions defined in Definition 4.13,

S ↓
� ⊂ [0, 1]N × [0, 1]N2 × [0, 1]× [0, 1]N,

as the subset consisting of elements p = ((ul)l≥1, (sk,l)k,l≥1, ū, (s̄k)k≥1) satisfying condi-
tions (4.11). We wish to match exchangeable measures on P2,�

∞,? and measures on S ↓
�, and

to that aim we need some further definitions. We say that an element π = (ζ, ξ) ∈ P2,�
∞,?

has asymptotic frequencies if ζ and ξ have asymptotic frequencies, and we write

|π|↓ = ((ul)l≥1, (sk,l)k,l≥1, ū, (s̄k)k≥1) ∈ S ↓
�

for the unique – because of the ordering conditions in (4.11) – element satisfying:

• the block B ∈ ξ containing ? has asymptotic frequency |B| = ū and the nonincreasing
reordering of the asymptotic frequencies of the blocks of ζ ∩ B is the sequence
(ul, l ≥ 1).

• for any other block B ∈ ξ with a positive asymptotic frequency, there is a k ∈ N
such that |B| = s̄k and the nonincreasing reordering of the asymptotic frequencies
of the blocks of ζ ∩B is the sequence (sk,l, l ≥ 1).

• the mapping B 7→ k is injective, and for any k such that s̄k > 0, there is a block
B ∈ ξ such that |B| = s̄k.

4.5.4 A paintbox construction for nested partitions

We first adapt the construction used in our third example of Section 4.5.1 to our new
partition space P2,�

∞,?. Note that if p = ((ul)l≥1, (sk,l)k,l≥1, ū, (s̄k)k≥1) ∈ S ↓
�, then one can

define a random element π = (ζ, ξ) ∈ P2,�
∞,? with a paintbox procedure very similar to the

one described in the inner dislocation example in Section 4.5.1. For the sake of readability,
let us recall the notation and construction:

• for k ≥ 0, define t̄k = ū+∑k
k′=1 s̄k′ .

• for l ≥ 0, define t?,l = ∑l
l′=1 ul′ .

• for k ≥ 1 and l ≥ 0, define tk,l = t̄k−1 +∑l
l′=1 sk,l′ .

• write π0 = (ζ0, ξ0) for the unique element of P2,�
[0,1] such that the non-dust blocks of

ξ0 are
[0, ū) and [t̄k, t̄k+1), k ≥ 1,

and such that the non-singleton blocks of ζ0 are

[t?,l−1, t?,l), l ≥ 1 and [tk,l−1, tk,l), k, l ≥ 1.

• let (Ui, i ≥ 1) be an i.i.d. sequence of uniform random variables on [0, 1] and define
the random injection σ : i ∈ N 7→ Ui ∈ [0, 1].

115



• finally define the random element π ∈ P2,�
∞,? as the unique π = (ζ, ξ) such that

π|N = πσ0 , and the block of ξ containing ? is equal to:

{?} ∪ {i ≥ 1, Ui < ū}.

The distribution of π obtained with this construction is a probability on P2,�
∞,? that we

denote %̄p. It is clear from the exchangeability of the sequence (Ui, i ≥ 1) that %̄p is ex-
changeable, and from the strong law of large numbers, that %̄p-a.s., π possesses asymptotic
frequencies equal to |π|↓ = p. For a measure ν on S ↓

�, we will define a corresponding
exchangeable measure %̄ν on P2,�

∞,? by

%̄ν( · ) =
∫

S ↓�

%̄p( · ) ν(dp).

The following lemma shows that every probability measure on P2,�
∞,? is of this form.

Lemma 4.18. Let π = (ζ, ξ) be a random exchangeable element of P2,�
∞,?. Then π has

asymptotic frequencies |π|↓ ∈ S ↓
� a.s. and its distribution conditional on |π|↓ = p is %̄p.

In other words, we have

P(π ∈ · ) =
∫

S ↓�

P(|π|↓ ∈ dp) %̄p( · ).

Proof. Independently from π, let (Xi, i ≥ 1) and (Yi, i ≥ 1) be i.i.d. uniform random
variables on [0, 1]. Conditional on π, we define a random variable Zn ∈ [0, 1]×([0, 1]∪{?})
for each n ∈ N by

Zn :=

(XAn , YBn) if ? �ξ n,
(XAn , ?) if ? ∼ξ n,

where

An := min{m ∈ N, m ∼ζ n}
Bn := min{m ∈ N, m ∼ξ n}.

It is straight-forward that we recover entirely π from the sequence (Zn, n ≥ 1) because we
have

n ∼ζ m ⇐⇒ x(Zn) = x(Zm),
n ∼ξ m ⇐⇒ y(Zn) = y(Zm),
n ∼ξ ? ⇐⇒ y(Zn) = ?,

(4.16)

where x and y denote respectively the projection maps from [0, 1] × ([0, 1] ∪ {?}) to the
first and second coordinates. Now, notice that the exchangeability of π implies that the
sequence (Zn, n ≥ 1) is an exchangeable sequence of random variables. Then, by an
application of de Finetti’s theorem, we see that there is a random probability measure P
on [0, 1]× ([0, 1] ∪ {?}) such that conditional on P , the sequence (Zn, n ≥ 1) is i.i.d. with
distribution P .

Now notice that if P is a probability measure on [0, 1]× ([0, 1] ∪ {?}), we can define

|P |↓ = ((ul)l≥1, (sk,l)k,l≥1, ū, (s̄k)k≥1) ∈ S ↓
�

by setting the following, where everything is numbered in an order compatible with our
conditions (4.11).
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• ū := P (y = ?).

• s̄k := P (y = yk), where (yk, k ≥ 1) is the injective sequence of points of [0, 1] such
that P (y = yk) > 0.

• ul := P (x = x?,l, y = ?) where (x?,l, l ≥ 1) is the injective sequence of points of [0, 1]
such that P (x = x?,l, y = ?) > 0.

• sk,l := P (x = xk,l, y = yk) where (xk,l, l ≥ 1) is the injective sequence of points of
[0, 1] such that P (x = xk,l, y = yk) > 0.

It should now be clear that defining with (4.16) a random π ∈ P2,�
∞,? from a sequence

(Zn, n ≥ 1) of P -i.i.d. random variables is in fact the same as defining π from a paintbox
construction %̄p with p = |P |↓. Therefore, the distribution of π is given by

P(π ∈ · ) =
∫

S ↓�

P(|P |↓ ∈ dp) %̄p( · ),

which concludes the proof since for any p we have %̄p-a.s. that |π|↓ exists and is equal
to p.

4.5.5 Erosion and dislocation for nested partitions

As in the standard P∞ case, we can decompose any exchangeable measure µ on P2,�
∞,? sat-

isfying some finiteness condition similar to (4.3) in a canonical way. To ease the notation,
recall that we define for n ∈ N ∪ {∞}, πn the maximal element in P2,�

n,?

πn := ({{?}, [n]}, 1[n]?).

We also define two erosion measures e1 and e2 by

e1 =
∑
i≥1

δ({{?},{i},[∞]\{i}},1[∞]? ),

e2 =
∑
i≥1

δ({{?},{i},[∞]\{i}}, {{i},[∞]?\{i}}).

Proposition 4.19. Let µ be an exchangeable measure on P2,�
∞,? satisfying (4.15), namely

µ({ζ|[∞] = 1}) = 0, and ∀n ≥ 1, µ(π|[n]? 6= πn) <∞.

Then there are two real numbers c1, c2 ≥ 0 and a measure ν on S ↓
� satisfying (4.12),

namely
ν({u1 = 1 or s1,1 = 1}) = 0, and

∫
S ↓�

(1− u1) ν(dp) <∞

such that µ = c1e
1 + c2e

2 + %̄ν . Conversely, any µ of this form is exchangeable and
satisfies (4.15).

Proof. The proof follows closely that of Theorem 3.1 in [10], as our result is a straight-
forward extension of it. We first define µn := µ( · ∩{π[n]? 6= πn}) which is a finite measure,
and

←−µ n := µθnn ,
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where θn : N → N is the n-shift defined by θn(i) = i + n. We can check that ←−µ n is an
exchangeable measure on P2,�

∞,?. Indeed let us take σ : N→ N a permutation, and consider
τ : N→ N the permutation defined by

τ :

i ≤ n 7−→ i

i > n 7−→ n+ σ−1(i− n).

We have clearly τ ◦ θn ◦ σ = θn and τ|[n] = id[n], so we can use the τ -invariance of µ to
conclude

←−µ n(πσ ∈ · ) = µn(πθn◦σ ∈ · )
= µ({πθn◦σ ∈ · } ∩ {π|[n]? 6= πn})
= µ({πτ◦θn◦σ ∈ · } ∩ {(πτ )|[n]? 6= πn})
= µ({πθn ∈ · } ∩ {π|[n]? 6= πn})
=←−µ n( · ),

which proves that ←−µ n is exchangeable. Since it is also finite, Lemma 4.18 implies that
|(πθn)|↓ = |π|↓ exists µ-a.e. on the event {µ|[n]? 6= πn}, and that we have

←−µ n( · ) =
∫

S ↓�

µn(|π|↓ ∈ dp) %̄p( · ). (4.17)

Now since ∪n{π|[n]? 6= πn} = {π 6= π∞} and µ({π = π∞}) ≤ µ({ζ|[∞] = 1}) = 0,
necessarily the existence of |π|↓ ∈ S ↓

� holds µ-a.e.

For simplicity, denote 1 ∈ S ↓
� as the element ((ul)l≥1, (sk,l)k,l≥1, ū, (s̄k)k≥1) ∈ S ↓

� with
ū = u1 = 1 (note that %̄1 = δπ∞), and define ϕ( · ) := µ( · ∩ {|π|↓ 6= 1}). Fix k ∈ N, and
consider the measure ϕ(π|[k]? ∈ · ) on P2,�

k,? . Note that

{|π|↓ 6= 1} =
⋃
n≥1
{|π|↓ 6= 1, (πθk)|[n]? 6= πn},

where the union is increasing, so one can write

ϕ(π|[k]? ∈ · ) = µ
(
{π|[k]? ∈ · } ∩ {|π|

↓ 6= 1}
)

= lim
n→∞

µ
(
{π|[k]? ∈ · } ∩ {|π|

↓ 6= 1, (πθk)|[n]? 6= πn}
)
. (4.18)

Now let us use invariance of µ under the permutation σ : N→ N defined by

σ :


i ∈ {1, . . . k} 7→ i+ n,

i ∈ {k + 1, . . . , k + n} 7→ i− k,
i ≥ k + n+ 1 7→ i,

to obtain

µ
(
{π|[k]? ∈ · } ∩ {|π|

↓ 6= 1, (πθk)|[n]? 6= πn}
)

= µ
(
{(πθn)|[k]? ∈ · } ∩ {|π|

↓ 6= 1, π|[n]? 6= πn}
)
.
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Now by definition of µn and ←−µn, this expression is exactly

µn
(
{(πθn)|[k]? ∈ · } ∩ {|π|

↓ 6= 1}
)

=←−µ n

(
{π|[k]? ∈ · } ∩ {|π|

↓ 6= 1}
)
.

Plugging this into (4.18) and then using (4.17), we obtain

ϕ(π|[k]? ∈ · ) = lim
n→∞

←−µ n

(
{π|[k]? ∈ · } ∩ {|π|

↓ 6= 1}
)

= lim
n→∞

∫
S ↓�\{1}

µn(|π|↓ ∈ dp) %̄p(π|[k]? ∈ · ).

Finally, note that the sequence of measures µn is increasing and converges to µ, in the
sense that µn(B) ↑ µ(B) when n→∞ for any Borel set B ⊂ P2,�

∞,?. This allows us to take
the limit in the last display:

ϕ(π|[k]? ∈ · ) =
∫

S ↓�\{1}
µ(|π|↓ ∈ dp) %̄p(π|[k]? ∈ · ).

Since this is true for all k ∈ N, we have

ϕ( · ) =
∫

S ↓�\{1}
µ(|π|↓ ∈ dp) %̄p( · ) = %̄ν ,

with ν( · ) = µ({|π|↓ ∈ · } ∩ {|π|↓ 6= 1}). Now notice that the paintbox construction of the
probability measures %̄p implies that

%̄ν(π|[n]? 6= πn) =
∫

S ↓�

ν(dp)
(

1−
∑
l≥1

unl

)
,

and that since u1 ≥ u2 ≥ . . . and
∑
l ul ≤ 1, we have for n ≥ 2,

1− u1 ≤ 1− u1
∑
l u

n−1
l ≤ 1−∑l u

n
l ≤ 1− un1 ≤ n(1− u1).

Integrating this with respect to ν, we find that clearly %̄ν satisfies the right-hand side
of (4.15) iff ν satisfies the right-hand side of (4.12). For the left-hand side, notice that by
construction ν({u1 = 1 or s1,1 = 1}) = %̄ν({ζ|[∞] = 1}) = 0.

We now write ψ( · ) := µ( · ∩ {|π|↓ = 1}) so that µ = ϕ + ψ = %̄ν + ψ. Take an integer
n ∈ N. We know that ←−ψ n( · ) := ψ

(
{πθn ∈ · } ∩ {π|[n]? 6= πn}

)
is a finite exchangeable

measure on P2,�
∞,? such that |π|↓ = 1

←−
ψ n-a.e. Now recall that %̄1 = δπ∞ . A consequence

of Lemma 4.18 is that π = π∞
←−
ψ n-a.e., which in turn implies that ψ-a.e. on the event

{π|[n]? 6= πn}, we have πθn = π∞. Since there is only a finite number of elements π ∈ P2,�
∞,?

such that πθn = π∞, we have

ψ( · ∩ {π|[n]? 6= πn}) =
∑
i

aiδπ̂i ,

where the sum is finite, and for each i, we have π̂θni = π∞. Now suppose we have ψ({π̂}) >
0, for a π̂ ∈ P2,�

∞,? such that π̂θn = π∞. Let I(π̂) := {π̂σ, σ permutation}. By the
exchangeability of ψ, we have necessarily ψ({π}) = ψ({π̂}) > 0 for any π ∈ I(π̂). Since
for any m ∈ N we have ψ(π|[m]? 6= πm) <∞, we deduce

#{π ∈ I(π̂), π|[m]? 6= πm} ≤ ψ(π|[m]? 6= πm)/ψ({π̂}) <∞. (4.19)
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We claim that the elements π̂ = (ζ̂, ξ̂) ∈ P2,�
∞,? satisfying π̂θn = π∞ and (4.19) for any

m are such that ζ̂ and ξ̂ have no more than two blocks, and in that case one of the
blocks is a singleton. Indeed if 1 ∼ 2 � 3 ∼ 4 for ξ̂ or ζ̂, then the permutations σi =
(2, i+2)(4, i+4), written as a composition of two transpositions, are such that for i 6= j ≥ n
and m ≥ 3, π̂σi 6= π̂σj and π̂σi|[m]? 6= πm. So having two blocks with two or more integers
contradicts (4.19). One can check in the same way that the situation 1 � 2 � 3 is also
contradictory.

Putting everything together, we necessarily have

• either π̂ = ({{?}, {i},N \ {i}},1[∞]?) for an i ∈ N,

• or π̂ = ({{?}, {i},N \ {i}}, {{i}, [∞]? \ {i}}) for an i ∈ N.

We conclude using the exchangeability of ψ that there exists two real numbers c1, c2 ≥ 0
such that ψ = c1e

1 + c2e
2, enabling us to write

µ = ϕ+ ψ = %̄ν + c1e
1 + c2e

2,

which concludes the proof.

Applying this result to µ̃in implies the existence of cin,1, cin,2 ≥ 0 and νin a measure on S ↓
�

satisfying (4.12) such that
µ̃in = cin,1e

1 + cin,2e
2 + %̄νin .

This concludes the proof of Theorem 4.14 because with our definitions in Section 4.5.1,
this equality translates into

µin = cin,1e
in,1 + cin,2e

in,2 + %̃νin .

Combining this with Lemma 4.17, we conclude

µ = coute
out + cin,1e

in,1 + cin,2e
in,2 + %̂νout + %̃νin .

4.6 Application to binary branching

Consider a nested fragmentation process (Π(t), t ≥ 0) = (ζ(t), ξ(t), t ≥ 0) with only
binary branching. The representation given by Theorem 4.14 then becomes quite simpler,
because the dislocation measures νout and νin necessarily satisfy

s1 = 1− s2 νout-a.e.

and 
u1 = 1− u2

or s1,1 = 1− s1,2

or u1 = 1− s1,1

νin-a.e.,

i.e. their support is the set of mass partitions with only two nonzero terms, and no dust.
See Figure 4.5 for an example of a nested discrete tree illustrating the three possible
dislocation events corresponding to νin.
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Figure 4.5 – Binary nested tree exhibiting the three different inner dislocation events. Time
flows from top to bottom, and the right-hand side of the picture shows the sequence of nested
partitions picked at chosen times between events, in the form π = (ζ � ξ). The first event
corresponds to the case u1 = 1− u2, where the inner block {1, 2, 3, 4} splits into two blocks
{1, 2} and {3, 4} and the outer block remains unchanged. The second dislocation is of the
type u1 = 1− s1,1, that is the block {3, 4} splits into two distinct blocks, one of which (the
singleton {3}) stays in the mother outer block. The other new inner block {4} forms a new
outer block identical to itself. The last and third dislocation is of the type s1,1 = 1 − s1,2,
meaning that {1, 2} splits into {1} and {2}, these two blocks together forming a new outer
block, distinct from the mother block – i.e. the one containing {3}.

Therefore, we can decompose νout and νin into four measures on [0, 1] defined by

ν̄out( · ) := νout(s1 ∈ · ) + νout(1− s1 ∈ · )
ν̄in,1( · ) := 1{u1 = 1− u2}(νin(u1 ∈ · ) + νin(1− u1 ∈ · ))

ν̄in,2( · ) := 1{s1,1 = 1− s1,2}(νin(s1,1 ∈ · ) + νin(1− s1,1 ∈ · ))
ν̄in,3( · ) := 1{u1 = 1− s1,1}νin(u1 ∈ · ).

Thus defined, and because of the σ-finiteness conditions (4.4) and (4.12), those measures
satisfy the following

ν̄out, ν̄in,1 and ν̄in,2 are (x 7→ 1− x)-invariant (4.20)∫
[0,1]

ν(dx)x(1− x) <∞, for ν ∈ {ν̄out, ν̄in,1} (4.21)

ν̄in,2([0, 1]) <∞ (4.22)∫
[0,1]

ν̄in,3(dx)(1− x) <∞. (4.23)

For the sake of completeness, let us use those measures to express the transition rates
qnπ,π′ of the Markov chain Πn := (Π(t)|[n]) from one nested partition π = (ζ, ξ) ∈ P2,�

n to
another π′ = (ζ ′, ξ′) ∈ P2,�

n \ {π} in the following way:

• If π′ cannot be obtained from a binary fragmentation of π, then qnπ,π′ = 0.

• If π′ can be obtained from a binary fragmentation of π, with B ∈ ζ and C ∈ ξ two
blocks of π participating in the fragmentation, but such that B 6⊂ C, then qnπ,π′ = 0.
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• Otherwise, let us write B ⊂ C, with B ∈ ζ and C ∈ ξ for (the) two blocks of π
participating in the fragmentation, and B1, B2 ∈ ζ ′, C1, C2 ∈ ξ′ the resulting blocks,
chosen in a way that B1 ⊂ C1. Note that B or C might not fragment, in which case
we let B2 or C2 be the empty set ∅. Now define X1 := #B1 and X2 := #B2 the
cardinality of the resulting blocks of ζ ′. Also, we define Y1 := #ζ ′|C1

the number of
inner blocks in C1 in the resulting partition π′, and similarly Y2 := #ζ ′|C2

.

With those definitions, the transition rates for the Markov chain Πn can be written

qnπ,π′ = cout(1{ζ ′ = ζ, Y1 = 1}+ 1{ζ ′ = ζ, Y2 = 1})
+ cin,1(1{ξ′ = ξ,X1 = 1}+ 1{ξ′ = ξ,X2 = 1})
+ cin,2(1{X1 = Y1 = 1}+ 1{B2 = C2 and X2 = Y2 = 1})

+ 1{ζ ′ = ζ}
∫

[0,1]
ν̄out(dx)xY1(1− x)Y2

+ 1{ξ′ = ξ}
∫

[0,1]
ν̄in,1(dx)xX1(1− x)X2

+ 1{B1 ∪B2 = C1}
∫

[0,1]
ν̄in,2(dx)xX1(1− x)X2

+ 1{ζ ′ = ζ}
∫

[0,1]
ν̄in,3(dx)

(
(1− x)#C11{Y1 = 1}

+ (1− x)#C21{Y2 = 1}
)

+ 1{ζ ′ 6= ζ}
∫

[0,1]
ν̄in,3(dx)

(
xX2(1− x)X11{Y1 = 1}

+ xX1(1− x)X21{Y2 = 1}
)
.

(4.24)

Note that several indicator functions in the last display may be equal to 1 for the same
pair (π, π′). This explicit formula allows for computer simulations of binary nested frag-
mentations, although to that aim it might be simpler to adapt the Poissonian construction
(Section 4.4.3) and use nested partitions of arrays [n]2. Also, one could exactly compute
the probability of a given nested tree under different nested fragmentation models, which
would be a first step towards statistical inference.
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Chapter 5

Fragmentations with self-similar
branching speeds

This chapter is submitted to Advances in Applied Probability.
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5.1 Introduction

A fragmentation process is a system of particles evolving in time in a Markovian way, where
each particle is assigned a mass and may dislocate at random times, distributing its mass
among newly created particles. It is usually assumed that particles evolve independently
of one another, in a way depending only on their mass. Self-similar fragmentations are
processes where the speed of fragmentation of a particle is accelerated proportionally to a
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function of its mass – which then must be a power function, characterized by an exponent
α ∈ R. These processes are said to be homogeneous when α = 0. Homogeneous and
self-similar fragmentations have been characterized in the early 2000s (see [6, 11], or [10]
for a general introduction), and their connections to random trees have been developed in
e.g. [4] or [52, 53].

These studies have been made under a conservative assumption, which prevents the total
mass in the system from increasing. This assumption allows for instance the representation
of fragmentation processes in terms of exchangeable partition-valued processes, which are
convenient objects allowing one to naturally recover discrete genealogical structures in
fragmentation processes.

The primary goal of this article is to extend the self-similar assumption while staying
in a conservative setting. To this aim, we assume that particles are described by a pair
mass-mark which evolves jointly in a Markovian way, such that a) the total mass does
not increase, and b) it is now the mark – which may a priori fluctuate in any way – of a
particle which determines the speed at which it fragments. The conservative assumption
allows us to model this idea with Markov processes taking values in marked partitions of
the integers, with very little restriction concerning marks. Consequently, if one ignores
the masses of particles, our processes essentially give constructions for quite general non-
conservative fragmentations. Related and inspiring works include self-similar branching
Markov chains [59], the recent so-called branching Lévy processes of [17], as well as many
recent developments which have been published on self-similar growth-fragmentation pro-
cesses (see e.g. [29, 49, 86]), introduced by Bertoin [9], which allow masses of particles to
fluctuate as a positive Markov process.

The article is organized as follows. In the remainder of the introduction, we recall some
definitions and basic results of usual self-similar fragmentations, and define the space of
marked partitions in which our processes live. In Section 5.2 we define our extended
self-similar fragmentation (ESSF) processes, and point out their basic properties. We
characterize ESSF processes with a type of Lévy-Khinchin representation in Section 5.3,
and then give sufficient conditions for a process to almost surely a) reach an absorbing
state in finite time b) have a genealogy where the sum of lengths of all branches is finite.
Because most proofs are somewhat technical, we defer them to Appendix 5.A to ease the
exposition.

5.1.1 Self-similar fragmentations

To study processes with values in the space of partitions of N, let us recall some classical
notation and definitions. First define [n] := {1, 2, . . . , n} for n ∈ N and [∞] := N :=
{1, 2, . . .}. Now for n ∈ N∪{∞}, we denote by Pn the space of partitions of [n]. We often
see a partition π ∈ Pn as the equivalence relation ∼π it represents on [n]. We will denote
by 0n (resp. 1n) the partition of [n] into singletons (resp. the partition with a single block
{[n]}). We will often omit the subscript n and write only 0 or 1 when the context is clear.

For n < m ≤ ∞ and π ∈ Pm, we denote by π|[n] its restriction to the set [n] ⊂ [m]. P∞
may be understood as the projective limit of the sets (Pn, n ∈ N), and as such, a natural
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metric which makes this space compact may be defined on it by

d(π, π′) = sup{n ∈ N, π|[n] = π′|[n]}
−1,

where by convention (supN)−1 = 0. We will consider the action of permutations of N on
P∞, and more generally we can define, for any 1 ≤ n ≤ m ≤ ∞, any injection σ : [n]→ [m]
and any π ∈ Pm, the partition πσ ∈ Pn defined by:

i ∼πσ j ⇐⇒ σ(i) ∼π σ(j), i, j ∈ [n].

Note that in this paper, a permutation σ : N → N is a bijection with finite support
{n ∈ N, σ(n) 6= n}. We usually label the blocks of a partition π = {π1, π2, . . .} in the
unique way such that the sequence (min πk, k ≥ 1) is increasing. This way, π1 is necessarily
the block containing 1, π2 is the block containing the lowest integer not in the same block
as 1, etc. By convention, if π has a finite number of blocks, say K, we define πK+l = ∅ for
all l ≥ 1. It will be useful to define a fragmentation operator Frag : P∞ × (P∞)N → P∞
by

Frag(π, π(·)) = {πk ∩ π(k)
l , k, l ≥ 1},

where (πk) are the ordered blocks of π and (π(k)
l ) the ordered blocks of π(k). In words,

blocks of the new partition are formed from the restriction of the k-th partition of the
sequence π(·) to πk, for each k ≥ 1.

Now let us recall the definition of partition-valued fragmentation processes (see e.g. [10]).
For this definition, we restrict ourselves to the space of partitions that have asymptotic
frequencies, i.e. π ∈ P∞ such that for all k ≥ 1,

|πk| := lim
n→∞

#πk ∩ [n]
n

exists.

In this case, we write |π|↓ for the nonincreasing reordering of the sequence (|π1|, |π2|, . . .).
Let us write P ′∞ for the space of partitions of N with asymptotic frequencies.

Definition 5.1. A self-similar fragmentation process is a càdlàg Markov process (Π(t), t ≥
0) with values in P ′∞, such that almost surely for all k ∈ N, the map t 7→ |Πk(t)| is right-
continuous and for which the following properties hold.

(i) Exchangeability: for all π ∈ P ′∞, for all σ : N→ N permutation,

(Π(t)σ, t ≥ 0) under Pπ
(d)= (Π(t), t ≥ 0) under Pπσ ,

where Pπ denotes the distribution of the process started from π.

(ii) Self-similar branching: there exists α ∈ R such that if (Ω,P) is a probability space
where (Π(·)(t), t ≥ 0) is a sequence of independent copies of the process started from
1, then for any π ∈ P ′∞, we have

(Π(t), t ≥ 0) under Pπ
(d)= (Frag(π, Π̃(·)(t)), t ≥ 0) under P, (5.1)

where Π̃(·) is the sequence of time-changed processes defined by

Π̃(k)(t) = Π(k)(|πk|αt), k ≥ 1, t ≥ 0.
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Note that a fragmentation with self-similarity index α = 0 is called homogeneous. It
is well-known (we refer to [10, Section 1 to 3] for a detailed account on the theory of
partition-valued fragmentations) that self-similar fragmentations can be characterized in
terms of their self-similarity index α, a so-called erosion coefficient c ≥ 0 and a dislocation
measure ν on the (metric and compact when equipped with the uniform distance) space

S ↓ :=
{
s = (s1, s2, . . .) ∈ [0, 1]N where s1 ≥ s2 ≥ . . . ≥ 0 and

∑
k

sk ≤ 1
}
,

satisfying ∫
S ↓

(1− s1) ν(ds) <∞.

In words, c is the rate at which each singleton detaches from “macroscopic” blocks and ν is
a measure giving the rates of “sudden dislocations”, i.e. a block with asymptotic frequency
x fragments at rate ν(ds) into (possibly infinitely many) blocks with frequencies given by
xs = (xs1, xs2, . . .) – these dislocations of blocks are usually represented by a so-called
paintbox process, which we will define in the context of marked partitions in the next
section. The self-similarity index α of a fragmentation encodes, through property (5.1),
the speed at which blocks fragment, depending on their size. For instance, if α is negative,
then there is a random time T which is finite almost surely at which Π(T ) is the partition
into singletons, whereas it is never the case when α ≥ 0 and ν(s1 = 0) = 0. Note that
α = 0 means that there is no time change – in that case the sequence Π̃(·) in (5.1) is simply
Π(·) – the process is then said to be homogeneous.

Our goal is to generalize these objects and define processes (Π(t),V(t), t ≥ 0), where Π
is partition-valued and V(t) = (Vn(t), n ≥ 1) is a random map N → [0,∞) playing the
role of (|πk|α, k ≥ 1), i.e. dictating the speed of fragmentation of different blocks of Π. To
define this we need first to introduce the formalism of marked partitions and processes in
this space.

5.1.2 Partitions with marks

Let us consider partitions where each block is decorated with a mark. For convenience,
we consider that the space of marks is the space [0,∞] where 0 is identified with ∞.
Topologically it is a circle so we will denote it by S1, but throughout the paper elements
of S1 will be identified with their unique representative in [0,∞), and this enables us to
consider for instance the maps

mx : v 7→ xv and pα : v 7→ vα

as well-defined and continuous, where x is in S1 or [0,∞) and α ∈ R \ {0}. Note that for
a technical reason, we choose to use throughout the article the convention 00 = 0, so that
0α = 0 for any α ∈ R, and v0 = 1v 6=0 for any v ∈ S1. For convenience and with a slight
abuse we will often identify an element of [0,∞) with the corresponding element of S1.

For n ∈ N ∪ {∞}, we consider the space of marked partitions defined by

Mn :=
{
x = (π,v) ∈ Pn × (S1)[n], ∀i, j ∈ [n], i ∼π j =⇒ vi = vj

}
.
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It is a closed subset of Pn× (S1)[n], which, endowed with the product topology, is compact
metrizable, therefore Polish. Note that by definition, if (π,v) ∈ Mn where π = 1 is the
partition into a single block, then v is of the form (v, v, . . .) for a unique v ∈ S1. For this
reason we will use the abuse of notation (1, v) to denote this element. We see x = (π,v)
as the partition π where each block is given a mark. Therefore, we will sometimes say B
is a block of x with mark v if B ∈ π and vi = v for some (hence all) i ∈ B. Similarly, we
will use the notation i ∼x j if i and j are in the same block of π.

Note that for n < m ≤ ∞ and x = (π,v) ∈Mm, we can naturally consider the restrictions
x|[n] = (π,v)|[n] := (π|[n], (v1, v2, . . . , vn)) ∈Mn, which are clearly continuous maps.

Similarly, we can extend the action of injections σ : [n] → [m] to our context and define
for x = (π,v) ∈Mm,

xσ = (π,v)σ = (πσ,vσ) := (πσ, (vσ(i), i ∈ [n])) ∈Mn.

We say that a random variable X with values inM∞ is exchangeable if for all σ : N→ N
permutations,

Xσ (d)= X.

Finally we can also extend the fragmentation operator Frag to marked partitions by setting

Frag
(
(π,v), (π(·),v(·))

)
:=
(
Frag(π, π(·)), ṽ

)
,

where, for i ≥ 1, ṽi is defined by vivi(ki), where ki is the label of the block containing i –
so that i is in the ki-th block of π.

We say that a marked partition x ∈M∞ is non-degenerate if every finite block has mark
0, and we denote the space of non-degenerate marked partitions by

M?
∞ :=

{
x = (π,v) ∈M∞, ∀i ≥ 1, i in a finite block of π =⇒ vi = 0

}
.

In particular for singleton blocks, {i} ∈ π implies vi = 0. Note that this space is still
Polish [see e.g. 87, Theorem 2.2.1] as a Gδ-subset – a countable intersection of open sets –
ofM∞. Indeed, letting for all i ∈ N, Ni :M∞ → N ∪ {∞} be the map associating (π,v)
with the cardinality of the block of π containing i, then, taking d to be any metric on S1

compatible with its topology, we can write

M?
∞ =

⋂
i≥1
{Ni <∞ =⇒ vi = 0}

=
⋂

i,j,k≥1

(
{Ni ≥ j} ∪ {d(vi, 0) < 1/k}

)
,

which is a countable intersection of open subsets of M∞. Note that if n is finite, one
cannot define an analogous property of non-degeneracy for marked partitions inMn.

Now let us define paintbox processes for exchangeable marked partitions. Consider the
space ([0, 1] × [0,∞),�) equipped with the lexicographic order, that is if z = (s, v) ∈
[0, 1]× [0,∞) and z′ = (s′, v′) ∈ [0, 1]× [0,∞), then

z � z′ ⇐⇒ s < s′ or (s = s′ and v ≤ v′).
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Let us define

Z ↓
0 :=

{
z = (z1, z2, . . .) ∈

(
[0, 1]× [0,∞)

)N
, z1 � z2 � . . . , and

∑
k

sk ≤ 1
}
,

and note that, endowed with the product topology, it is a Polish space. Indeed, it can be
written

Z ↓
0 =

{∑
k

sk ≤ 1
}
∩
⋂
i≥1

({
si > si+1

}
∪
{
si = si+1 and vi ≥ vi+1

})
,

which is a countable intersection of closed and open subsets of
(
[0, 1] × [0,∞)

)N. This
space being Polish, closed sets are Gδ, and so Z ↓

0 is Polish. Because this will be consistent
with our previous definition of M?

∞, we want to ignore the possible indices k ≥ 1 such
that sk = 0. Therefore, we will rather use the space

Z ↓ :=
{
z ∈ Z ↓

0 , ∀k ≥ 1, sk = 0 =⇒ vk = 0
}

=
⋂
k,l≥1

{
z ∈ Z ↓

0 , sk > 0 or vk < 1/l
}
,

which is still Polish.

Similarly as in the usual case, we say that x = (π,v) ∈ M∞ has asymptotic frequencies
if π has asymptotic frequencies. In that case, we define |x|↓ ∈ Z ↓ as the nonincreasing
reordering (with respect to the lexicographic order � on [0, 1]× [0,∞)) of the sequence of
pairs(

(|Bi|, vi), Bi is the i-th infinite block of x such that |Bi| > 0 and with mark vi
)
.

Note that we consider only blocks B satisfying |B| > 0 in the previous display since in
general the set {(|Bi|, vi), Bi is the i-th block of x, with mark vi} may be impossible to
enumerate in nonincreasing order.

Now let us introduce a paintbox construction for marked partitions. Consider z = (s,v) ∈
Z ↓, and let (Un, n ≥ 1) be an i.i.d. sequence of [0, 1]-uniform random variables. Define
X = (Π,V) as theM?

∞-valued random variable given by the following relation:

i ∼Π j ⇐⇒ i = j or ∃n ≥ 1, tn−1 ≤ Ui, Uj < tn,

Vi :=

vn if tn−1 ≤ Ui < tn, for n ≥ 1,
0 if ∑k sk ≤ Ui,

where tn := ∑n
k=1 sk, with t0 := 0 by convention. It is easily checked that the random

variable X is exchangeable. Also, recall the definition of asymptotic frequencies for a
marked partition, and note that the law of large numbers implies |X|↓ = z almost surely.
We denote by %z the distribution of X. We will also make use of the distribution of X|[n]
for n ∈ N, which we denote by %nz . Note that for any v ∈ S1, if z = (s,v) ∈ Z ↓ is the
unique element such that s1 = 1 and v1 = v, then %z = δ(1,v). For this reason, we will
again abuse notation and let (1, v) ∈ Z ↓ denote this element, so that %(1,v) = δ(1,v).

It is well-known since the work of Kingman [57] that the law of an exchangeable partition
can be expressed as a mixture of paintbox processes. Using the same arguments, one
obtains the following result for marked partitions.
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Proposition 5.2. Let X be an exchangeable random variable with values in M?
∞. Then

there exists a unique probability measure ν on Z ↓ such that

P
(
X ∈ ·

)
=
∫

Z ↓
%z(·) ν(dz). (5.2)

Proof. See Appendix 5.A.1.

This setting of marked partitions being in place, we can now define our objects of study.

5.2 Extended self-similar fragmentations

5.2.1 Definitions, first properties

Let us now define self-similar fragmentation processes with values in M∞. For this, let
us introduce a family of self-similar fragmentation operators (ssFragα, α ∈ R), defined as
follows. For n ∈ N ∪ {∞}, consider a marked partition x = (π,v) ∈ Mn and a sequence
x̄(·) of càdlàg maps x̄(k) : [0,∞)→Mn, satisfying x̄(k)(0) = (1, 1). Writing for all k ≥ 1
and t ≥ 0, x̄(k)(t) = (π̄(k)(t), v̄(k)(t)), we define

ssFragα(x, x̄(·)) := (π̂, v̂)

as the map [0,∞)→Mn such that

v̂i(t) = viv̄
(ki)(vαi t)

i ∼π̂(t) j ⇐⇒ i ∼π j and i ∼ j in π̄(ki)(vαi t),

where ki is defined as the label of the block of π containing i (i.e. such that i is in the ki-th
block of π). Note that thanks to this definition, if a block B of x has mark 0, then the
process ssFragα(x, x̄(·)) is frozen at block B, in the sense that for all t ≥ 0, B is a block of
π̂(t), and every j ∈ B will have v̂j(t) = 0. Also, the assumptions on the maps x̄(k) imply
that ssFragα(x, x̄(·)) is càdlàg and satisfies ssFragα(x, x̄(·))(0) = x.

Remark 5.3.

(i) Consider here a convergent sequence xn = (πn,vn)→ x = (π,v) ∈M∞, and assume
that vn,i = 0 for all n ≥ 1 whenever vi = 0 for some i. If additionally we have for
some t ≥ 0, for all i ≥ 1 such that vi > 0, and for all k ≥ 1,

x̄(k)(vαn,it) −→n→∞ x̄(k)(vαi t),

then it is a straightforward consequence of the definition that

ssFragα(xn, x̄(·))(t) −→
n→∞

ssFragα(x, x̄(·))(t).

(ii) Note that one could define ssFragα in terms of Frag because we have the equality

ssFragα
(
x, x̄(·))(t) = Frag

(
x, x̄(·)(wα(·)t)

)
,

where w(·) is the vector defined by w(k) = vi, for any i in the k-th block of π.
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We can now define the following generalization of self-similar fragmentations.

Definition 5.4. Let X(t) = (Π(t),V(t), t ≥ 0) be a stochastic process with values in
M∞. We say that X is an extended self-similar fragmentation (ESSF) process if it is a
stochastically continuous strong Markov process with càdlàg sample paths, for which the
following properties hold:

(i) Exchangeability: for all permutations σ : N→ N, for all x ∈M∞,

(X(t)σ, t ≥ 0) under Px
(d)= (X(t), t ≥ 0) under Pxσ ,

where Px denotes the distribution of the Markov process started from x.

(ii) Self-similar branching: there exists α ∈ R such that for all x ∈M∞,

X under Px
(d)= ssFragα

(
x,X(·)),

where X(·) is an i.i.d. sequence of copies of the process started from (1, 1). As
usual, we call α the index of self-similarity, and we will say for conciseness that X
is an α-ESSF. For the special case α = 0, we will sometimes say the process X is
homogeneous.

An ESSF process X will be called non-degenerate if for all x ∈ M?
∞, the process has

sample paths inM?
∞, Px-almost surely.

Remark 5.5.

(i) Consider X = (Π,V) an α-ESSF and γ ∈ R \ {0}. Let us define Y := (Π,Vγ),
where Vγ(t) is simply the vector (Vi(t)γ , i ≥ 1). Then it is easily checked that Y
is an ESSF again, with index of self-similarity α/γ. Therefore, if α 6= 0 and β 6= 0,
taking γ = α/β, one can transform any α-ESSF into a β-ESSF, but note that one
cannot get a homogeneous process with this transformation. As a result, there are
really two classes of ESSF processes to consider: the α-ESSF with α 6= 0, which
are a simple transformation away from being 1-ESSF processes, and the so-called
homogeneous 0-ESSF processes.

(ii) Note that this definition extends the classical case of Definition 5.1. Indeed, if Π is a
usual α-self-similar fragmentation process started from 1, then by definition, almost
surely for all t ≥ 0 and i ∈ N, Π(t) has asymptotic frequencies and one can define
Vi(t) := |B| if B is the block containing i in Π(t). Now consider an independent
sequence X(·) of copies of (Π,V), and define for any x ∈M∞,

Xx = ssFragα
(
x,X(·)).

Then Xx is the distribution of an α-ESSF started from x, which extends the usual
self-similar fragmentation Π – consider x = (1, 1) to obtain the original process. Note
also that in this case X is non-degenerate, because finite blocks have asymptotic
frequency equal to 0.
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As a first remark about ESSF processes, let us show a projective Markov property. It is
very analogous to [18, Lemma 3.2] and [Duc18], but we need another statement in the
present context.

Lemma 5.6. Let X be an ESSF process. Then for any n ∈ N, the process (X(t)|[n], t ≥ 0)
is Markovian in Mn. More precisely, there exists a transition kernel (pnt , t ≥ 0) on Mn

such that for any initial state x ∈M∞,

Px(X(t)|[n] ∈ ·) = pnt (x|[n], · ).

Proof. We only need to prove that

Px
(
X(t)|[n] ∈ ·

)
= Px′

(
X(t)|[n] ∈ ·

)
for any two initial states x, x′ ∈M∞ such that x′|[n] = x|[n].

Consider a probability space (Ω,P) such that X(·) is a sequence of i.i.d. copies of the
ESSF process started from (1, 1), and let α ∈ R be the self-similarity index of X. By the
branching property, we have

Px
(
X(t)|[n] ∈ ·

)
= P

(
ssFragα(x,X(·))(t)|[n] ∈ ·

)
and Px′

(
X(t)|[n] ∈ ·

)
= P

(
ssFragα(x′, X(·))(t)|[n] ∈ ·

)
.

It remains to notice that by definition, ssFragα(x,X(·))(t)|[n] is in fact a functional which
depends only on x|[n] and X(·). Therefore, because x′|[n] = x|[n], we have

ssFragα(x,X(·))(t)|[n] = ssFragα(x′, X(·))(t)|[n]

everywhere on Ω, which implies by the preceding display that

Px
(
X(t)|[n] ∈ ·

)
= Px′

(
X(t)|[n] ∈ ·

)
,

concluding the proof.

The previous lemma shows that given an ESSF process X, one can define its law started
from any x0 ∈Mn, for any n ∈ N, as the law of the restriction X|[n] of the initial process
started from any x ∈M∞ such that x|[n] = x0.

As a result, the restriction X|[1] of an ESSF process X = (Π,V) to M1 = P1 × S1 is a
Markov process. Since the space P1 is a singleton, the lemma implies that the real-valued
process V1 = (V1(t), t ≥ 0) is a Markov process in S1 and note that by exchangeability,
the process Vi has the same marginal distribution for all i ≥ 1. Further, Definition 5.4
implies that it is an a.s. càdlàg strong Markov process satisfying a self-similar property;
more precisely, for v ≥ 0 let Pv denote the distribution of V1 started at v on the Skorokhod
space of càdlàg maps [0,∞)→ S1, and let V denote the canonical process on that space.
Then

(V (t), t ≥ 0) under Pv
(d)= (vV (vαt), t ≥ 0) under P1,

where α is the self-similarity index of X. In other words, V is a positive self-similar
Markov process (pssMp). Note that in the literature, the index of self-similarity of a
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pssMp refers in general to −α [75] or −1/α when α 6= 0, e.g. in [67] where Lamperti
calls this the order of the process rather than the index. Here we use the convention
found in the self-similar fragmentation literature, e.g. [6, 11, 59]. Let us summarize in a
proposition some properties of V that can be deduced from the well-developed theory of
self-similar Markov processes. First, if X = (Π,V) is an ESSF process, for each i ≥ 1
define ζi := inf{t ≥ 0, Vi(t) = 0}, and for t ∈ [0, ζi],

ϕi(t) :=
∫ t

0
Vi(t)α ds.

Note that ϕi is continuous and increasing. We define its right-continuous inverse τi(t), for
t ∈ [0,∞), by

τi(t) :=

ϕ
−1
i (t) if t < ϕi(ζi),
∞ if t ≥ ϕi(ζi).

We need a convention for infinite times, so we let Vi(∞) ≡ 0, so that Vi(τi(t)) is always
defined. Also, note that the definition of the Frag operator implies that a.s., Π has
nonincreasing sample paths for the finer-than partial order – π is finer than π′ if the
blocks of π′ can be written as unions of blocks of π. Since a.s. for all n ≥ 1, Π(t)|[n] is
nonincreasing in a finite set, it is eventually constant. This implies that Π(t) converges
a.s. when t→∞, and we may denote its limit by Π(∞). Let us now state the proposition.

Proposition 5.7. Let X = (Π,V) be an α-ESSF process and i ≥ 1, and define

ζi := inf{t ≥ 0, Vi(t) = 0},

ϕi(t) :=
∫ t

0
Vi(t)α ds, t ∈ [0, ζi]

τi(t) := ϕ−1
i (t), t ≥ 0

Then the following properties hold.

• Either ζi <∞ P(1,1)-a.s., or ζi =∞ P(1,1)-a.s.

• Either ϕi(ζi) <∞ P(1,1)-a.s., or ϕi(ζi) =∞ P(1,1)-a.s.

• In the case ζi < ∞, either Vi reaches 0 continuously P(1,1)-a.s., or Vi eventually
jumps to 0 P(1,1)-a.s.

• ϕi(ζi) =∞ iff Vi reaches 0 continuously.

• The process ξi := log(Vi ◦ τi), – i.e. defined by

ξi(t) = log Vi(τi(t)), 0 ≤ t < ϕi(ζi),

is a (killed in the case ϕi(ζi) < ∞) Lévy process called the inverse Lamperti trans-
form of Vi.

Proof. These are classical results on pssMp, we refer to [67] for a proof.

This proposition tells us that it is natural to consider the time-changed processes Vi ◦ τi
for n ≥ 1, which behave as exponentials of Lévy processes. However, there is no unique

134



time-change that could make the whole process X behave nicely. Instead, we have to rely
on stopping lines, which are tools generalizing stopping times in the context of branching
Markov processes (see e.g. [25] for their use in branching Brownian motion, or [10, 11] in
the context of fragmentations).

5.2.2 Stopping lines, changing the index of self-similarity

First let us define some filtrations associated with an ESSF process X = (Π,V). To this
aim, let us endow the power set 2N := {A ⊂ N} with the topology generated by the metric
d(A,B) :=

(
sup{n ∈ N, A ∩ [n] = B ∩ [n]}

)−1, which makes 2N a compact space. Now for
i ∈ N, let us define the block process (Bi(t), t ≥ 0) as the 2N-valued càdlàg process such
that for all t ≥ 0, Bi(t) is the block of Π(t) containing i, that is:

Bi(t) = {j ∈ N, i ∼Π(t) j}.

Now we can define a sequence of natural filtrations associated to X by

Gi = (Gi(t), t ≥ 0) with Gi(t) = σ
(
Bi(s), Vi(s), s ∈ [0, t]

)
, i ≥ 1, t ≥ 0.

Definition 5.8. Let X = (Π,V) be an ESSF process. A sequence L = (Li, i ≥ 1) of
random variables with values in [0,∞] is called a stopping line if

(i) for all i ≥ 1, Li is a Gi-stopping time.

(ii) for i, j ≥ 1, if i ∼Π(Li) j, then Li = Lj .

Since (ii) entails that i ∼Π(Li) j is an equivalence relation, its equivalence classes form a
well-defined partition of N which we denote by Π(L) with a slight abuse of notation. Also,
denoting V(L) as the vector (Vi(Li), i ≥ 1), it is clear that X(L) := (Π(L),V(L)) is a
well-defined (random) element ofM∞.

Remark 5.9. A fixed time t ≥ 0 can be seen as a stopping line (an L for which Li ≡ t

for all i ≥ 1), and it is easily checked that for a stopping line L, one can define L+ t and
L ∧ t by

(L+ t)i = Li + t and (L ∧ t)i = Li ∧ t,

which are again stopping lines. Thus for a stopping line L we will be able to consider the
processes X(L + ·) := (X(L + t), t ≥ 0) and X(L ∧ ·) := (X(L ∧ t), t ≥ 0). Since it will
be useful, we define the following σ-algebra:

GL := σ
(
X(L ∧ t), t ≥ 0

)
.

We can now state the Markov property for stopping lines, which is analogous to what can
be found in [10, Lemma 3.14].

Proposition 5.10 (Stopping line Markov property). Let X be an α-ESSF, and L be a
stopping line. Then conditional on GL, the following equality in distribution holds:

X(L+ ·) (d)= ssFragα
(
X(L), X(·)), (5.3)

where X(·) is an independent, i.i.d. sequence of copies of the process started from (1, 1).
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Proof. See Appendix 5.A.2.

The next step in the analysis of ESSF processes is to bring the index of self-similarity to
0. This will be done via the random time changes (τi(t), i ≥ 1, t ≥ 0) defined above by

τi(t) := ϕ−1
i (t), where ϕi(u) :=

∫ u

0
Vi(s)α ds, u ≥ 0.

These time changes enable us to turn an α-ESSF into a homogeneous ESSF. The following
proposition makes this claim more precise.

Proposition 5.11. Let X = (Π,V) be an α-ESSF, with α ∈ R. Let β ∈ R and define the
random times

τβi (t) =
(∫ ·

0
Vi(s)β ds

)−1
(t), i ≥ 1, t ≥ 0,

Then for each t ≥ 0, τβ(t) is a stopping line, and the process X ◦τβ := (X(τβ(t)), t ≥ 0) is
an (α−β)-ESSF. Furthermore, if X is non-degenerate, then X ◦τβ is also non-degenerate.

Proof. See Appendix 5.A.3.

By bringing the index of self-similarity to 0 we can transform any ESSF into a homogeneous
process. Let us now study further those 0-ESSF.

5.3 Main results

5.3.1 Decomposition of ESSF processes

Let us consider here a homogeneous 0-ESSF process X = (Π,V), started from (1, 1). We
know by Lemma 5.6 that it satisfies a projective Markov property, i.e. for all n ∈ N, X|[n]
defines a Markov process with values in Pn. Let n ∈ N be fixed, and define the stopping
time

Tn := inf{t ≥ 0, Π(t)|[n] 6= 1n or V1(t) = 0},

as well as the killed process

ξ̃n := (log V1(t), 0 ≤ t < Tn).

Note that homogeneity implies that the pair (ξ̃n − log v, Tn) has the same distribution
under every P(1,v) for all v ∈ S1 \ {0}. Therefore for t ≥ 0, conditional on {Tn > t},
the Markov property applied at time t shows that (ξ̃n(t+ ·)− ξ̃n(t), Tn − t) has the same
distribution as (ξ̃n, Tn) under P(1,1). This shows that the killed process ξ̃n is distributed
as

ξ̃n
(d)= (ξn(t), 0 ≤ t < Tn),

where ξn is a Lévy process and Tn is an independent exponential random variable. Note
that this implies that if Tn < ∞, then V1(Tn−) = exp(ξn(Tn)) > 0. Now for n ∈ N such
that Tn <∞ almost surely, consider Dn, the dislocation (or freezing) at time Tn, defined
by

Dn := (Π(Tn),V(Tn)/V1(Tn−))|[n] ∈Mn,
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where the division V(Tn)/V1(Tn−) is to be understood coordinate-wise. Equivalently, Dn

is the unique random marked partition such that

X(Tn)|[n] = Frag
(
X(Tn−)|[n], Dn

)
,

with a slight abuse of notation in this case since X(Tn−)|[n] has only one block (Dn is not
a sequence but additional terms are useless to define a fragmentation of a single block).

Note that this implies that Dn has the same distribution under every P(1,v) for all v ∈
S1 \ {0}. Thus for any bounded measurable maps g : R → R, h : Mn → R and t ≥ 0,
applying the Markov property at time t ≥ 0, one gets

E(1,1)[g(ξn(t))1Tn>th(Dn)] = E(1,1)[g(ξn(t))1Tn>t]E(1,1)h(Dn),

which shows that the killed Lévy process (ξn, Tn) and the marked partition Dn are inde-
pendent. Let us define Dn as the law of Dn, and notice also that exchangeability of X|[n]
implies that Dn is an exchangeable probability measure onMn.

Since (ξn, Tn) is a killed Lévy process, one can define uniquely dn ∈ R, βn ≥ 0, Jn ≥ 0
and λn a measure on R \ {0} satisfying

∫
1 ∧ y2 λn(dy) <∞, such that

• the process ξn is a Lévy process with characteristic exponent

ψn(θ) := logE[eiθξn(1)] = idnθ −
βn
2 θ2 +

∫
R

(
eiθy − 1− iθy1|y|≤1

)
λn(dy),

• ξn is killed at rate is Jn = 1/ETn, which may be 0 if Tn =∞ almost surely.

Remark 5.12. Note that knowing (ψn, Jn,Dn) for n ∈ N is enough to reconstruct the
process X. Indeed, starting from (1, v), the process X|[n] up to time Tn has distribution
equal to that of

Yn :=
(
(1n, veξn(t)), 0 ≤ t < Tn

)
,

and at time Tn jumps to (Π, veξn(Tn−)V), where (Π,V) is independently drawn according
to Dn.

By the branching property, one only needs to iterate this construction at each jump time,
independently for each marked block, to get the whole process X|[n]. By Kolmogorov’s ex-
tension theorem – since (X|[m])|[n] = X|[n] for each n ≤ m – these distributions characterize
the distribution of X.

Let us now state our main result which identifies the form that those characteristics can
take.

Theorem 5.13. Let X be a non-degenerate 0-ESSF and for each n, write (ψn, Jn,Dn) for
the characteristics describing the law of X|[n]. Then there is a unique quadruple (c, d, β,Λ),
where c, β ≥ 0, d ∈ R, and Λ is a measure on Z ↓ \ {(1, 1)}, which satisfies necessarily∫

Z ↓

(
1− s11v1>0 + (log v1)2 ∧ 1

)
Λ(dz) <∞, (5.4)

such that for all n ∈ N,
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(i) ψn(θ) = idθ − β

2 θ
2 +

∫
Z ↓

∑
j≥1
vj>0

snj
(
eiθ log vj − 1

)
− iθ log v11|log v1|≤1 Λ(dz).

(ii) Jn = nc+
∫

Z ↓

(
1−

∑
i≥1
vi>0

sni

)
Λ(dz).

(iii) if Jn > 0, Dn = 1
Jn

( n∑
i=1

cδeni +
∫

Z ↓
%nz
(
· ∩{π 6= 1n or (π,v) = (1n, 0)}

)
Λ(dz)

)
,

where %nz is the paintbox process defined in Section 5.1.2, and δeni denotes the Dirac
point measure on eni , the marked partition defined as

eni :=
({

[n] \ {i}, {i}
}
, (1, . . . , 1, 0︸︷︷︸

i−th index

, 1, . . . , 1)
)
.

Conversely if c, β ≥ 0, d ∈ R and Λ is a measure on Z ↓ \ {(1, 1)}, satisfying (5.4), then
there exists a 0-ESSF with characteristics as above.

Proof. See Appendix 5.A.4.

Remark 5.14. It is an immediate consequence of the theorem that the process describing
the block of X containing 1 can be constructed in the following Poissonian way. Consider
N a Poisson point process on [0,∞)×M?

∞ with intensity

dt⊗
( ∞∑
i=1

cδeni +
∫

Z ↓
%nz
(
·
)

Λ(dz)
)
,

and define

N ′ :=
{
(t, log v1), (t, x) ∈ N with x = (π,v) and v1 /∈ {0, 1}

}
,

which has intensity dt⊗ λ1, where λ1 is defined by∫
R
f dλ1 =

∫
Z ↓

∑
j≥1

vj /∈{0,1}

sj f(log vj) Λ(dz),

and is the Lévy measure of the process ξ1. It is clear that one can build a Lévy process
(ξ1(t), t ≥ 0) having characteristic exponent ψ1 given by (i) in the theorem and whose
point process of jumps is exactly N ′.

Define (B(t), t ≥ 0) as the 2N-valued process given by

B(t) =
⋂

0≤s<t
(s,x)∈N

A(x),

where A(x) ⊂ N denotes the block of x containing 1. Also, for any n ∈ N, define

T̃n := inf
{
t ≥ 0, (t, x) ∈ N with x = (π,v) such that π|[n] 6= 1 or v1 = 0

}
∼ Exp(Jn).
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Now (B(t), eξ1(t), 0 ≤ t < T̃1) is distributed as the marked block containing 1 in X and by
construction, we also get the following equality in distribution(

X(Tn)|[n], n ∈ N
) (d)=

((
πn, eξ1(T̃n−)vn

)
|[n], n ∈ N

)
,

where xn = (πn,vn) is the element ofM?
∞ such that (T̃n, xn) ∈ N .

Combining Theorem 5.13 with Proposition 5.11, we get the following characterization of
all ESSF processes.

Corollary 5.15. Let X be a non-degenerate α-ESSF. Then there exists a unique quadruple
(c, d, β,Λ) as in Theorem 5.13 such that if (τα(t), t ≥ 0) are the stopping lines as defined
in Proposition 5.11, then X ◦ τα is a homogeneous ESSF with characteristics (c, d, β,Λ).

Let us point out that condition (5.4) is surprisingly nonrestrictive. There are no integra-
bility assumptions concerning the marks of the smallest blocks (with labels greater than
1). Consequently, the point measure ∑k δṼk(t), where Ṽk(t) denotes the mark of the k-th
block in X(t), might assign infinite mass to any interval (a, b) ⊂ [0,∞) for any t > 0.
Indeed it suffices for instance that Λ(dz) be of the form∫

Z ↓

∏
i≥1

Fi(si, vi) Λ(dz) =
∫

(0,1)×S1
F1(s1, v1)E

∏
i≥2

Fi

(1− s1
2i−1 , Zi

)
ν(dz1),

where ν is a measure on (0, 1)× S1 with infinite mass and satisfying∫
(0,1)×S1

(
1− s11v1>0 + (log v1)2 ∧ 1

)
ν(dz1) <∞,

and Z2, Z3, . . . are i.i.d. Exp(1) random variables. On the other hand, if one assumes an
integrability condition such as∫

Z ↓

(∑
i≥1

vθi
)
− 1− θ log v11|log v1|≤1 Λ(dz) <∞

for some θ ∈ R, then one observes a process of point measures (∑k δṼk(t), t ≥ 0) that is
nice in the sense that for all t ≥ 0, E∑k Ṽk(t)θ <∞. This is the object of the next section.

5.3.2 Absorption in finite time

Consider here a non-degenerate α-ESSF with characteristics (c, d, β,Λ), started from (1, 1).
We are interested in the case where the pssMp V1 reaches 0 in finite time and, if Ti denotes
the hitting time of 0 by the process Vi, we aim at giving a sufficient condition for which

sup
i∈N

Ti <∞ a.s.

If this holds, then at this random time the process is frozen in a stateX(∞) = (Π(∞),V(∞))
where V(∞) = 0 = (0, 0, . . .), and we say the process X is absorbed in finite time. We
first put aside a trivial case and assume that

c > 0 or
∫

Z ↓
(1− s1) Λ(dz) > 0,
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since otherwise Π would be almost surely constant equal to the coarsest partition {N}.
Recall that a classical self-similar fragmentation which is absorbed in finite time (this is
always true when α < 0 [13, Proposition 2]) is always totally fragmented in the limit, in the
sense that Π(∞) is the partition of N into singletons. Clearly in our case, because of the
possible freezing of blocks at dislocation events, Π(∞) is almost surely totally fragmented
if and only if

∀i ≥ 1, si > 0 =⇒ vi > 0 Λ-a.e. on Z ↓.

A stronger property than absorption in finite time is the following: we say X has finite
total length if ∫ ∞

0
#X(t) dt <∞ a.s.,

where #x denotes the number of blocks with positive mark in the marked partition x.
One can interpret this quantity as the total length of the tree describing the genealogy
of blocks in the fragmentation, hence the name. Note that this implies that for a fixed
time t ≥ 0, #X(t) is almost surely finite, which is well-known [13, Proposition 2] in the
classical self-similar fragmentation case for α < −1.

In this section our aim is to provide sufficient conditions for ESSF processes to be absorbed
in finite time and to have finite total length. The following result extends the classical
setting, and makes use of natural martingales appearing in the homogeneous case. In order
to be able to state it, we need a couple of additional definitions. For a marked partition
x = (π,v) ∈Mn with n ∈ N ∪ {∞}, and θ ∈ R, let us write

Sθ(x) :=
∑
k∈N

ṽθk, (5.5)

where ṽk denotes the mark associated with the k-th block of x. Let us also introduce
κ : R→ (−∞,∞] defined by

κ(θ) := dθ + β

2 θ
2 +

∫
Z ↓

(∑
i≥1

vθi
)
− 1− θ log v11|log v1|≤1 Λ(dz). (5.6)

Note that the integral in the last display is well-defined with values in (−∞,∞], since

1 + θ log v11|log v1|≤1 −
∑
i≥1

vθi ≤
(
1 + θ log v11|log v1|≤1 − vθ1

)
+

≤ C
(
(log v2

1) ∧ 1
)

where C is a positive constant which depends on θ, so the negative part of the integrand
in the definition of κ is Λ-integrable.

Proposition 5.16. Let X be a non-degenerate 0-ESSF with characteristics (c, d, β,Λ)
started from (1, 1). For all θ ∈ R and t ≥ 0,

ESθ(X(t)) = etκ(θ),

with Sθ and κ(θ) respectively defined as in (5.5) and (5.6), and where these quantities may
be infinite. If there is θ ∈ R such that κ(θ) <∞, then the process(

e−tκ(θ)Sθ(X(t)), t ≥ 0
)

is a martingale. If there is θ 6= 0 such that κ(θ) < 0, then for any α ∈ R:
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• if −α/θ > 0, the α-ESSF with characteristics (c, d, β,Λ) is absorbed in finite time.

• if −α/θ ≥ 1, the α-ESSF with characteristics (c, d, β,Λ) has finite total length.

Proof. See Appendix 5.A.5.

Remark 5.17. For a classical self-similar fragmentation with erosion coefficient c ≥ 0
and dislocation measure ν, we have

κ(θ) = −cθ +
∫

S ↓

(∑
i≥1

sθi − 1
)
ν(ds).

Since ∑i si ≤ 1 ν-a.e., for all θ > 1 we have κ(θ) < 0, so we recover absorption in finite
time for any α < 0 and finite total length for any α < −1.

Remark 5.18. Let us also mention that one can model branching Brownian motion in
our setting. Indeed, consider a homogeneous ESSF where the logarithm of marks follow
drifted Brownian motion and blocks dislocate at rate one into two blocks (say both with
asymptotic frequency equal to half of the mother block) carrying the same mark. More
precisely, take a 0-ESSF with characteristics c = 0, d ∈ R, β = 1 and with Λ(dz) a Dirac
measure on ((1

2 , 1), (1
2 , 1), 0, . . .).

Then the point process recording the positions of the logarithm of marks∑
k∈N

δlog Ṽk(t), t ≥ 0

is a classical binary branching Brownian motion with drift d. One gets a cumulant function

κ(θ) = dθ + θ2

2 + 1.

This polynomial in θ takes negative values if and only if d2 − 2 > 0, and we essentially
recover the well-known fact that if d >

√
2, the lowest particle of a branching Brownian

with drift d goes to +∞.

5.A Proofs

5.A.1 Proof of Proposition 5.2

Let us write as usual X = (Π,V). First, note that Π is an exchangeable partition with
values inM?

∞, therefore it has asymptotic frequencies – so |X|↓ exists almost surely – and
the finite blocks of Π (if any) are necessarily singletons. For the uniqueness part of the
proposition, notice that any ν satisfying (5.2) must be equal to P(|X|↓ ∈ ·).

For the existence, let (Uk, k ≥ 1) be an i.i.d. sequence of uniform random variables on
[0, 1], independent of X. For every i ∈ N, let Zi = (Uk, Vi) ∈ [0, 1] × S1, where k is
the label of the block containing i. Then the sequence (Zi, i ≥ 1) is exchangeable, with
values in a Polish space. Therefore by de Finetti’s theorem, there is a random probability
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measure θ ∈ M1([0, 1] × S1) such that conditional on θ, the sequence (Zi, i ≥ 1) is i.i.d.
with distribution θ. Let

(ak, k ≥ 1) = (uk, vk, k ≥ 1)
denote the collection of atoms of θ. Note that i ∼X j iff Zi = Zj , and therefore the law
of large numbers ensures us that the blocks of X correspond to those atoms, i.e. for each
k ≥ 1, there is a block B of X with an asymptotic frequency |B| = θ(ak) and a mark
equal to vk. Conversely any block which is not reduced to a singleton must be formed in
this way. Furthermore, note that singleton blocks have mark 0 because of the assumption
that X ∈ M?

∞, so the knowledge of the atoms (ak, k ≥ 1) and their mass is sufficient to
reconstruct the sequence (Zi, i ≥ 1), and therefore the marked partition X.

Now define for all k ∈ N, zk := (θ(ak), vk). Up to a reordering, we can assume that
z = (zk, k ≥ 1) is in Z ↓ (if the sequence of atoms is finite, we concatenate to z infinitely
many (0, 0) terms). The previous discussion means that conditional on θ, the asymptotic
frequencies of X are exactly

|X|↓ = z ∈ Z ↓,

and conditional on z, the marked partition X is drawn according to %z. Note that the map
θ 7→ z is measurable. Indeed, by standard point processes arguments [see e.g. 30, Lemma
9.1.XIII], there exists a measurable enumeration (ak, k ≥ 1) of the atoms of θ, and it is
elementary that the nonincreasing reordering of this sequence is measurable. Therefore,
defining ν = P(|X|↓ ∈ ·), which is the push-forward of the distribution of θ by the map
θ 7→ z, we see that it satisfies (5.2).

5.A.2 Proof of Proposition 5.10

In this section, it will be helpful to consider the restriction of an ESSF process X to a
more general (and possibly random) subset A ⊂ N, considered as a random variable living
on the compact space 2N. We first consider a fixed – non random – A ⊂ N with cardinality
#A ∈ N ∪ {∞}, and define a canonical enumeration of A by

σA :

[#A] → N
i 7→ min{n ∈ N, #(A ∩ [n]) = i},

such that A = {σA(1), σA(2), . . .}, with σA(1) < σA(2) < . . .. Now recall the definition
of the action of injections on M∞. For any x ∈ M∞, one can see xσA ∈ M#A as the
restriction of x to the set A.

As an inverse operation, for any x′ ∈M#A, x
′′ ∈M#Ac , where Ac := N\A, we can define

x′
A
⊕ x′′ ∈M∞

as the pair (π,v) such that

∀i, j ∈ N, i ∼π j ⇐⇒

 i, j ∈ A and σ−1
A (i) ∼π′ σ−1

A (j)
or i, j ∈ Ac and σ−1

Ac (i) ∼π′′ σ−1
Ac (j)

and vi =


v′
σ−1
A (i) if i ∈ A

v′′
σ−1
Ac (i) if i ∈ Ac.

142



Similarly, for processes X ′ = (X ′(t), t ≥ 0) and X ′′, we write for conciseness

X ′
A
⊕X ′′ :=

(
X ′(t)

A
⊕X ′′(t), t ≥ 0

)
For x = (π,v) ∈ M∞ and A ⊂ N, we will say that A is x-compatible if it is a union of a
family of blocks of π – i.e. if A is such that i ∈ A, j /∈ A =⇒ i �π j. These definitions
enable us to reformulate the branching property as follows.

Lemma 5.19. Let X be an ESSF process, x = (π,v) ∈M∞, and A ⊂ N an x-compatible
set. Defining X ′ := XσA and X ′′ := XσAc , then under Px, X ′ and X ′′ are two independent
copies of the process X, respectively started at xσA and xσAc , and

X = X ′
A
⊕X ′′.

Proof. This is an immediate consequence of the branching property (ii) of Definition 5.4
and of the definition of the ssFrag operator.

Let us now tackle the proof of the Markov property for stopping lines (5.3). We write as
usual X = (Π,V). We first assume that there exist 0 ≤ t1 < t2 < . . . < tk ≤ ∞ such that
for all i ∈ N, Li takes values in the finite set {t1, . . . tk}. We prove the Markov property for
such stopping lines by induction on k. For k = 1 and t1 <∞, this amounts to the simple
Markov property, so (5.3) holds by definition. If t1 = ∞, then for all t ≥ 0, for all i ≥ 1,
Li + t ≡ ∞. By convention V(∞) is the null vector, and by definition ssFrag

(
X(L), X(·))

is the process which is a.s. constant equal to X(∞) = (Π(∞),V(∞)), so (5.3) holds again.

Now assume that k > 1, and that the stopping line Markov property has been proven
for all stopping lines taking at most k − 1 distinct values. By Remark 5.9, L ∧ tk−1 is a
stopping line taking at most k− 1 distinct values. Therefore, one can apply the induction
hypothesis, which says that conditional on GL∧tk−1 , the process X(L ∧ tk−1 + ·) has the
distribution of a copy of X started from X(L ∧ tk−1). Now we define the random set

A := {i ∈ N, Li = tk},

which is GL∧tk−1-measurable. Indeed let us show that {i ∈ A} ∈ GL∧tk−1 . Since {Li =
tk} = {Li > tk−1} ∈ Gi(tk−1), one can write the indicator of this event as 1{Li>tk−1} =
F (Bi(s), Vi(s), s ∈ [0, tk−1]) for a measurable functional F – recall that Gi(tk−1) =
σ(Bi(s), Vi(s), s ∈ [0, tk−1]), where Bi(s) is the block of Π(s) containing i. Now on the
event {Li ≥ tk−1}, we have

F (Bi(s), Vi(s), s ∈ [0, tk−1]) = F
(
Bi(s ∧ Li ∧ tk−1), Vi(s ∧ Li ∧ tk−1), s ∈ [0, tk−1]

)
,

therefore we can write

{i ∈ A} = {Li ≥ tk−1}∩
{
F
(
Bi(s∧Li∧tk−1), Vi(s∧Li∧tk−1), s ∈ [0, tk−1]

)
= 1

}
∈ GL∧tk−1 ,

so finally A is GL∧tk−1-measurable. Now notice that because L is a stopping line, A
is compatible with Π(L ∧ tk−1) in the sense that A is necessarily a union of blocks of
Π(L ∧ tk−1). Therefore, it is immediate by definition that

X(L ∧ tk−1 + ·) = X ′
A
⊕X ′′,
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with

X ′ = X(L ∧ tk−1 + ·)σA

and X ′′ = X(L ∧ tk−1 + ·)σAc .

Now by Lemma 5.19, conditional on GL∧tk−1 , X ′ and X ′′ are two independent copies of X
started respectively from X(L ∧ tk−1)σA and X(L ∧ tk−1)σAc .

Also, notice that by definition of the random set A, we have the equality

X(L+ ·) = X ′(tk − tk−1 + ·)
A
⊕X ′′, (5.7)

and for the same reason, the following equality between σ-algebras holds:

GL = GL∧tk−1 ∨ σ
(
X ′(s), s ∈ [0, tk − tk−1]

)
.

Clearly X ′ and X ′′ are still independent conditional on GL, and the distribution of X ′(tk−
tk−1 + ·) conditional on GL is by the Markov property at time tk−tk−1 the law of X started
from X ′(tk − tk−1) = X(L)σA . Finally, using again Lemma 5.19, conditional on GL, the
process

X ′(tk − tk−1 + ·)
A
⊕X ′′

has simply the distribution of a copy of X started at X(L). So by (5.7) the Markov
property for stopping lines holds for L, and so by induction it holds for all stopping lines
taking at most a finite number of values.

Now fix a general stopping line L, a time t ≥ 0, and let us assume that our probability
space contains an independent sequence X(·) of i.i.d. copies of the process started from
(1, 1). To conclude, it is enough to prove that conditional on GL,

X(L+ t) (d)= ssFragα
(
X(L), X(·))(t), (5.8)

because then for any 0 ≤ t1 < t2 < . . . tk one can apply successively (5.8) to the stop-
ping lines L + ti, 1 ≤ i ≤ k, which implies that (5.3) holds for any finite dimensional
distributions. Therefore it remains only to prove

E [F (X(L+ t))Z] = E
[
F
(
ssFragα

(
X(L), X(·))(t))Z]

for any fixed continuous bounded map F : M?
∞ → R and Z a GL-measurable bounded

random variable. To show this, consider the sequence of stopping lines (Ln, n ≥ 1) defined
by

Lni = 2−nd2nLie1Li≤n +∞1Li>n, i ≥ 1,

where d·e denotes the usual ceiling function. This is a classical transformation for stopping
times, and it is easily checked that Ln is a stopping line for all n ≥ 1. Furthermore, right-
continuity of the process implies that X(Ln + t) converges a.s. to X(L+ t) as n tends to
∞. Therefore

E [F (X(Ln + t))Z] −→
n→∞

E [F (X(L+ t))Z] ,

Now because Ln only takes values in a finite set for all n, we can apply (5.3), so

E [F (X(Ln + t))Z] = E
[
F
(
ssFragα

(
X(Ln), X(·))(t))Z] . (5.9)
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This holds because Z is GLn-measurable since GL ⊂ GLn for all n ≥ 1. For the convergence
of the right-hand side, recall that X(Ln + t)→ X(L+ t) and note also that if Vi(Li) = 0
for i ≥ 1, then since Li is a stopping time, by the strong Markov property Vi(Li + t) is
also zero for all t ≥ 0, and in particular Vi(Lni ) = 0 for all n ≥ 1. Now by definition an
ESSF process is stochastically continuous, so in particular for any i ≥ 1, on the event
{Vi(Li) > 0}, we have

X(j)(Vi(Li)αt) −→
n→∞

X(j)(Vi(Li)αt) ∀j ≥ 1 a.s.

We can now invoke the continuity property of the operator ssFragα pointed out in Remark
5.3 and deduce

ssFragα
(
X(Ln), X(·))(t) −→

n→∞
ssFragα

(
X(L), X(·))(t) a.s.

Taking limits in (5.9) yields the equality needed to end the proof.

5.A.3 Proof of Proposition 5.11

Let X = (Π,V) be an α-ESSF process, t ≥ 0, and recall the definition of τβ(t) as in the
proposition, i.e.

τβi (t) =
(∫ ·

0
Vi(s)β ds

)−1
(t), i ≥ 1,

where the inverse is to be understood as the right-continuous inverse. For conciseness and
because β is fixed, let us write simply τ instead of τβ throughout the proof. First, let us
see that τ(t) is a stopping line. Fix i ∈ N, and note that for T ≥ 0,

{τi(t) ≤ T} =
{∫ T

0
Vi(s)β ds ≥ t

}
∈ Gi(T ),

so τi(t) is a Gi-stopping time. Furthermore, conditional on τi(t) = T , for any i, j ∈ N, if
i ∼ j in Π(T ), then almost surely for all 0 ≤ s ≤ T , we have i ∼ j in Π(s) so Vi(s) = Vj(s),
and necessarily τj(t) = τi(t) = T .

Therefore τ(t) is indeed a stopping line, so the process X ◦ τ = (X(τ(t), t ≥ 0) is well
defined. We claim that its sample paths are càdlàg in M∞. Indeed, by definition, for
each i ∈ N, τi is a non-decreasing right-continuous map. Now almost surely the following
holds: X has càdlàg sample paths, so for each i ∈ N, and t ∈ [0,∞),

X(τi(s))−→
s↓t

X(τi(t)) and X(τi(s))−→
s↑t

X(τi(t)−) if t > 0.

Now note that for each stopping line L and integer n ∈ N, by definition X(L)|[n] is a
(deterministic) continuous functional of the variables (X(L1), . . . , X(Ln)). Applying this
to L = τ(s) and letting s→ t, it follows that almost surely

X(τ(s))|[n]−→
s↓t

X(τ(t))|[n] and X(τ(s))|[n] converges inMn when s ↑ t, in the case t > 0.

The integer n being generic, this shows that X ◦ τ is an almost surely càdlàg process.

Let t ≥ 0 be fixed. Since τ(t) is a stopping line, we can apply Proposition 5.10, and assume
that the process X(τ(t) + ·) is given by

ssFragα
(
X(τ(t)), X(·)),
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where X(·) is an independent sequence of i.i.d. copies of the process started from (1, 1).
For each k ∈ N, let (τ (k)(s), s ≥ 0) denote the stopping lines corresponding to X(k), i.e.

τ
(k)
i (s) =

(∫ ·
0
V

(k)
i (u)β du

)−1
(s), i ≥ 1, s ≥ 0.

Our aim is to show that

X(τ(t+ ·)) = ssFragα−β
(
X(τ(t)), X(·) ◦ τ (·)). (5.10)

Now let us fix i ∈ N, and work conditional on Gτ(t). On the event {Vi(τi(t)) = 0}, then
by definition of the operators ssFragα, the block containing i is constant in time and has
mark 0 in both processes in (5.10), so there is equality for index i. Now we condition on
Vi(τi(t)) = v with v > 0. Note that {Vi(τi(t)) > 0} ⊂ {τi(t) <∞}, so in that case we have
τi(t) <∞ almost surely, so there is the equality∫ τi(t)

0
Vi(s)β ds = t.

Therefore we can write, for s ≥ 0,

τi(t+ s) =
(∫ ·

0
Vi(u)β du

)−1
(t+ s)

= τi(t) +
(∫ ·

0
Vi(τi(t) + u)β du

)−1
(s).

Now for all u ≥ 0, because X(τ(t) + ·) = ssFragα(X(τ(t)), X(·)), we have Vi(τi(t) + u) =
vV

(k)
i (vαu), for k such that i is in the k-th block of Π(τ(t)). This implies

τi(t+ s)− τi(t) =
(∫ ·

0
Vi(τi(t) + u)β du

)−1
(s)

=
(∫ ·

0
vβV

(k)
i (vαu)β du

)−1
(s)

=
(
vβ−α

∫ vα·

0
V

(k)
i (u)β du

)−1

(s)

= v−α
(∫ ·

0
V

(k)
i (u)β du

)−1
(vα−βs)

= Vi(τi(t))−ατ (k)
i (Vi(τi(t))α−βs).

Now, defining Li(s) as the quantity given by the preceding display, the definition of the
operators ssFragα yields for all s ≥ 0,

X(τ(t+ s)) = ssFragα
(
X(τ(t)), X(·))(Li(s))

= ssFragα−β
(
X(τ(t)), X(·) ◦ τ (·))

)
(s),

showing that X ◦ τ is an (α− β)-ESSF.

Finally, note that if X is non-degenerate, then for all x ∈ M?
∞, Px-almost surely for any

time t ≥ 0, any block of X(t) is either infinite or has mark 0. So Px-almost surely, for all
possible stopping lines L, the blocks of X(L) satisfy the same condition, i.e. X(L) ∈M?

∞.
Therefore, Px-almost surely X ◦ τ has sample paths with values inM?

∞.
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5.A.4 Proof of Theorem 5.13

Note that the whole process (X(t), t ≥ 0) defines a coupling of all ξn for n ≥ 1. By
definition, one has

ξn+1(t) = ξn(t), ∀t ≤ Tn+1,

and at time Tn+1, either ξn is killed on the event {Tn = Tn+1}, or, conditional on {Tn >
Tn+1}, the process ξn jumps, independently of the past, according to the probability

ηn+1(·) := Dn+1
(

log v1 ∈ · | π|[n] = 1n and v1 6= 0
)
,

and goes on independently of the past, its remaining part (ξn(Tn+1 + t) − ξn(Tn+1), 0 ≤
t ≤ Tn−Tn+1) being independent from ξn+1 and equal in distribution to ξn by the strong
Markov property. Let us first compute the probability pn that Tn+1 = Tn, which is by
construction

pn = Dn+1(π|[n] 6= 1n or v1 = 0). (5.11)

From the previous description, one can write

Tn = Tn+1 + ZT ′n,

where Z = 1{Tn 6=Tn+1} ∼ Be(1−pn) is a Bernoulli random variable with parameter (1−pn),
and T ′n is a random variable equal in distribution to Tn, and independent from Tn+1 and
Z. Then, Tn+1, Z and T ′n are independent because Z is simply a function of the marked
partition Dn+1 = (Π(Tn+1),V(Tn+1)/V1(Tn+1−))|[n+1] which is independent from ξn+1,
and T ′n is independent of (ξn+1, Dn+1) because of the strong Markov property and the fact
that α = 0. Taking expectations yields

1
Jn

= 1
Jn+1

+ 1− pn
Jn

,

which implies that pn = Jn/Jn+1.

Now let us rebuild the coupling between ξn and ξn+1 to show that their respective Lévy
measures λn and λn+1 satisfy

λn = λn+1 + (Jn+1 − Jn)η̃n+1, (5.12)

where

η̃n+1 := ηn+1
(
· ∩ R\{0}

)
= Dn+1

(
{log v1 ∈ ·} ∩ {v1 6= 1} | π|[n] = 1n and v1 6= 0

)
. (5.13)

Consider the process ξn+1 a Lévy process with characteristic exponent ψn+1, and let
Tn ∼ Exp(Jn) independent. Now independently define T ′ ∼ Exp(Jn+1 − Jn), and let
Tn+1 := Tn ∧T ′. We see that Tn+1 ∼ Exp(Jn+1), that it is independent of ξn+1 and of the
event {Tn = Tn+1}, which has probability Jn/Jn+1 = pn. Now conditional on (Tn, Tn+1),
let us define

Dn+1 =

D′ if Tn = Tn+1, where D′ ∼ Dn+1(· | π|[n] 6= 1n or v1 = 0)
D′′ if Tn 6= Tn+1, where D′′ ∼ Dn+1(· | π|[n] = 1n and v1 6= 0),
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where D′ and D′′ are mutually independent and independent of everything else. Note
that Dn+1 is independent of Tn+1 and of ξn+1, and because of (5.11), Dn+1 has indeed
distribution Dn+1. Let us define J = log v1, where v1 is the mark associated with the
integer 1 in the marked partition Dn+1, and ξn a Lévy process with characteristic exponent
ψn. Now putting everything together, define ξ̃n+1 as the killed Lévy process (ξn+1(t), 0 ≤
t < Tn+1), and define ξ̃n as

ξ̃n(t) =

ξn+1(t) if t < Tn+1

ξn+1(Tn+1) + J + ξn(t− Tn+1) if Tn+1 ≤ t < Tn.

By construction, the joint distribution of (ξ̃n, ξ̃n+1) is equal to the one we get from the
original process X, and it should now be clear that the point process of jumps of ξn is equal
in distribution to the point process of jumps of ξn+1 with additional jumps distributed as
J = log v1, arising at rate (Jn+1−Jn). Note that by construction, J has distribution ηn+1,
so finally we have proven (5.12). The fact that (λn, n ≥ 1) is a nonincreasing sequence of
σ-finite measures ensures the existence of a limiting measure λ∞ on R \ {0} such that for
all n ∈ N,

λn = λ∞ +
∑
k>n

(Jk − Jk−1)η̃k. (5.14)

Recall that we wrote the characteristic exponent of ξn in the following way:

ψn(θ) = idnθ −
βn
2 θ2 +

∫
R

(
eiθy − 1− iθy1|y|≤1

)
λn(dy).

From the previous discussion, one can construct a coupling between the two Lévy processes
such that (ξn(t)−ξn+1(t), t ≥ 0) is simply a compound Poisson process with jump measure
(Jn+1 − Jn)η̃n+1, so it is clear that necessarily βn = βn+1, and

dn = dn+1 + (Jn+1 − Jn)
∫
|y|≤1

y η̃n+1(dy) = dn+1 +
∫
|y|≤1

y (λn − λn+1)(dy).

To summarize, letting β := β1, the following holds for all n ∈ N

βn = β and dn = d1 −
∫
|y|≤1

y (λ1 − λn)(dy), (5.15)

where (λ1 − λn) denotes the positive measure given by

(λ1 − λn) =
n∑
k=2

(Jk − Jk−1)η̃k.

Let us now examine the consistency properties of the measures Dn. From this point on,
for the sake of clarity, we decompose the proof in a series of steps.

Step 1. We prove the existence and uniqueness of a measure D onM∞ satisfying

D(π = 1 and v1 6= 0) = 0 (5.16)

and such that for all n ∈ N,

D
(
{x|[n] ∈ ·} ∩ {π|[n] 6= 1n or v1 = 0}

)
= JnDn, (5.17)
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then we show that this measure is exchangeable.

First, note that for the previous construction to be consistent, the random variable D′|[n]
must have distribution Dn. Indeed, on the event {Tn+1 < Tn}, the strong Markov property
at time Tn+1 implies that the process X|[n] jumps according to Dn, independently of the
past, so on the complement this must hold as well, so

Dn+1
(
x|[n] ∈ · | π|[n] 6= 1n or v1 = 0

)
= Dn,

which can be rewritten

Jn+1Dn+1
(
{x|[n] ∈ ·} ∩ {π|[n] 6= 1n or v1 = 0}

)
= JnDn. (5.18)

Now for all integers n ≤ m, let us define a measure onMm by

µmn := JmDm
(
· ∩{π|[n] 6= 1n or v1 = 0}

)
, m ≥ n.

Let us prove that for all integers n ≤ k ≤ m, we have

µmn (x|[k] ∈ ·) = µkn. (5.19)

Note that there is nothing to prove in the case k = m. Now suppose this is proven for
fixed n ≤ k ≤ m. Then,

µm+1
n (x|[k] ∈ ·) = Jm+1Dm+1

(
{x|[k] ∈ ·} ∩ {π|[n] 6= 1n or v1 = 0}

)
= Jm+1Dm+1

(
{(x|[m])|[k] ∈ ·} ∩ {(π|[m])|[n] 6= 1n or v1 = 0}

∩ {π|[m] 6= 1m or v1 = 0}
)

= JmDm
(
{x|[k] ∈ ·} ∩ {π|[n] 6= 1n or v1 = 0}

)
= µmn (x|[k] ∈ ·) = µkn,

where we have used (5.18) and the fact that {π|[n] 6= 1n or v1 = 0} ⊂ {π|[m] 6= 1m or v1 =
0}. By induction on m this proves (5.19) for any integers n ≤ k ≤ m. Note that in
particular, taking k = n, we see that the total mass of µmn is equal to that of µnn, which
is Jn. In summary, for any n ∈ N, the sequence (Mm, µ

m
n /Jn,m ≥ n) defines a inverse

system of compact probability spaces, and by the Kolmogorov extension theorem, there
exists a unique measure µn (with total mass Jn) on the inverse limit lim←−mMm = M∞
such that for each m ≥ n, µn(x|[m] ∈ ·) = µmn . Now notice that by definition, for any
integers n1 ≤ n2 ≤ m, we have

µmn2(· ∩ {π|[n1] 6= 1n1 or v1 = 0}) = µmn1 ,

which implies by construction

µn2(· ∩ {π|[n1] 6= 1n1 or v1 = 0}) = µn1 .

This means that the sequence of measures (µn, n ≥ 1) onM∞ is increasing, and one can
define the limit as D. This measure then satisfies by construction

D
(
{x|[n] ∈ ·} ∩ {π|[n] 6= 1n or v1 = 0}

)
= µn(x|[n] ∈ ·)
= µnn

= JnDn,
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which is indeed (5.17).

Secondly, note that since for any n ∈ N, clearly µn(π = 1 and v1 6= 0) = 0, where µn are
the measures defined above, so in the limit (5.16) holds. Let us now show uniqueness. If
a measure D′ onM∞ satisfies (5.17) and (5.16) then

D′(· ∩ {π|[n] 6= 1n or v1 = 0}) = µn,

and letting n→∞, D′ = D, which proves uniqueness.

Finally, D is exchangeable. Indeed if σ : N → N is a permutation, let m ∈ N such that
σ(k) = k for all k ≥ m. Now for all n ≥ m, using the exchangeability of the probability
measures (Dk, k ≥ 1), we get

D((xσ)|[n] ∈ ·) = lim
k→∞

D
(
{(xσ)|[n] ∈ ·} ∩ {π|[k] 6= 1k or v1 = 0}

)
= lim

k→∞
JkDk((xσ)|[n] ∈ ·)

= lim
k→∞

JkDk(x|[n] ∈ ·)

= lim
k→∞

D({x|[n] ∈ ·} ∩ {π|[k] 6= 1k or v1 = 0})

= D(x|[n] ∈ ·).

As this is true for all n ≥ m, necessarily D(xσ ∈ ·) = D, i.e. D is exchangeable.

Step 2. We prove that D(M∞ \M?
∞) = 0 by using that X is non-degenerate. For this,

we need to show first that the process (B1(t), t ≥ 0) of the block of X containing 1 is
equal in distribution to a process (B(t), t ≥ 0) constructed from a Poisson point process
of intensity dt⊗D.

More precisely, define N a Poisson point process on [0,∞)×M∞ with intensity dt⊗ (D+
λ̃∞), where λ̃∞ is the push-forward of λ∞ by the map y ∈ R 7→ (1, ey) ∈ M?

∞. Let us
define

N ′ :=
{
(t, log v1), (t, x) ∈ N with x = (π,v) and v1 /∈ {0, 1}

}
,

which is then a Poisson point process on [0,∞)× R with intensity

dt⊗
(
D
(
{log v1 ∈ ·} ∩ {v1 /∈ {0, 1}}

)
+ λ∞

)
.

However, note that using (5.16), (5.17) and finally (5.13), we get

D
(
{log v1 ∈ ·} ∩ {v1 /∈ {0, 1}}

)
=
∑
n∈N
D
(
{log v1 ∈ ·} ∩ {π|[n] = 1n and v1 /∈ {0, 1}} ∩ {π|[n+1] 6= 1n+1}

)
=
∑
n∈N

Jn+1Dn+1
(
{log v1 ∈ ·} ∩ {π|[n] = 1n and v1 /∈ {0, 1}}

)
=
∑
n∈N

(Jn+1 − Jn)η̃n+1,

and by (5.14), we find D
(
{log v1 ∈ ·} ∩ {v1 /∈ {0, 1}}

)
+ λ∞ = λ1. Therefore, it is possible

to define a Lévy process ξ with characteristic exponent ψ1, such that the point process of

150



its jumps is precisely N ′. Let us also define a process B = (B(t), t ≥ 0) with càdlàg sample
paths with values in 2N the subsets of N, such that B has the distribution of (B1(t), t ≥ 0)
the block containing 1 in X. First define T as the first time t ∈ [0,∞) such that there is
an atom (t, (π,v)) ∈ N with v1 = 0. If there is none, then let T = ∞. Then, for each
n ∈ N, let (t1, x1), (t2, x2), . . . be the whole sequence (finite or infinite) of atoms of N with
t1 < t2 < . . . ≤ T such that for each i, xi = (πi,vi) with (πi)|[n] 6= 1n and (vi)1 > 0 (or
such that (vi)1 = 0 for the possible last atom, at time T ). We can define B̃n

0 = [n], and
inductively for each i ≥ 1

B̃n
i := B̃n

i−1 ∩ (Ai ∩ [n]),

where Ai is the block of πi containing 1. Now define, for t ∈ [0,∞),

Bn(t) = B̃n
i if t ∈ [ti, ti+1),

where we let t0 := 0, and in the case T <∞, i.e. if the sequence of atoms is finite, say with
length k ∈ N, we let tk+1 := ∞. It is readily checked that this construction is consistent
in the sense that for each t ≥ 0 there is a single B(t) ∈ 2N such that Bn(t) = B(t) ∩ [n].
Let us show that this process (B(t), ξ(t), t ≥ 0) has the same distribution as the marked
block containing 1 in X, i.e. (B1(t), log V1(t), t ≥ 0). For fixed n ∈ N and x ∈ Mn, recall
that

X|[n] under Px
(d)= ssFrag0(x,X(·)),

where X(·) is an independent i.i.d. sequence of copies of X started from (1, 1). Using the
same notation, for any A ⊂ [n] with 1 ∈ A and v > 0, the law of the process (B1(t) ∩
[n], log V1(t), t ≥ 0) started from (A, log v) can be deduced from that ofX(1) = (Π(1),V(1)).
More precisely, log V1(t) behaves as a Lévy process with characteristic exponent ψn started
from log v, until an independent time Tn ∼ Exp(Jn) when Π(1)

|[n] first jumps. At that time,
D

(1)
n = (Π(1)(Tn),V(1)(Tn)/V1(Tn−))|[n] is independently drawn according to Dn and then

writing D(1)
n = (π,v),

log V1(Tn) = log V1(Tn−) + log v1 and B1(Tn) = B1(Tn−) ∩A1 = A ∩A1,

where A1 is the block of π containing 1. Note that there is a non-zero probability that
B1(Tn) = B1(Tn−) (even with v1 > 0) when A 6= [n]. Now in our construction, if (t1, x) is
the first atom of N such that π 6= 1n or v1 = 0, where x = (π,v), then t1 is exponentially
distributed with parameter D(π|[n] 6= 1n or v1 = 0) = Jn, and x is independent of t1,
distributed as

1
Jn
D(· ∩ {π 6= 1n or v1 = 0}),

so that x|[n] has distribution Dn. It remains only to show that (ξ(s), 0 ≤ s < t1) is
distributed as a Lévy process with characteristic exponent ψn (killed at t1). The point
process of its jumps is

N ′ ∩ [0, t1)× R,

which conditional on t1 has intensity

dt⊗
(
D
(
{log v1 ∈ ·} ∩ {π|[n] = 1n and v1 /∈ {0, 1}}

)
+ λ∞

)
.
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Let us show that this intensity is equal to dt⊗ λn. Note that

D
(
{log v1 ∈ ·} ∩ {π|[n] = 1n and v1 /∈ {0, 1}}

)
=
∑
m≥n
D
(
{log v1 ∈ ·} ∩ {π|[m] = 1m and v1 /∈ {0, 1}} ∩ {π|[m+1] 6= 1m+1}

)
=
∑
m≥n

Jm+1Dm+1
(
{log v1 ∈ ·} ∩ {π|[m] = 1m and v1 /∈ {0, 1}}

)
=
∑
m≥n

(Jm+1 − Jm)η̃m+1,

so (5.14) shows that

λn = λ∞ +D
(
{log v1 ∈ ·} ∩ {π|[n] = 1n and v1 /∈ {0, 1}}

)
(5.20)

therefore the Lévy measure of (ξ(s), 0 ≤ s < t1) is indeed λn. In the end, we have shown
that

(B(t), ξ(t), t ≥ 0) (d)= (B1(t), log V1(t), t ≥ 0).

From this construction, we see that for each atom (t, x) ∈ N , the process B jumps, with

B(t) = B(t−) ∩A,

where A is the block of x containing 1. Let us show that this implies D(M∞ \M?
∞) = 0.

Assuming the opposite, there is a non-zero probability that there is an atom (t, x) ∈ N with
t < T such that x contains a finite block with mark not equal to zero. By exchangeability
of D, and from the description of the jumps of B, there is a non-zero probability that there
is a jump B(t) = B(t−)∩A where A is finite and t < T . This contradicts the assumption
of non-degeneracy of X, as then we would have X(t) ∈M∞ \M?

∞.

From now on, we view D as an exchangeable measure onM?
∞, satisfying (5.16) and the

σ-finiteness assumption

∀n ∈ N, D
(
π|[n] 6= 1n or v1 = 0

)
= Jn <∞.

It remains essentially to study D in order to express it as a mixture of paintbox processes.

Step 3. Let us decompose

D = D
(
· ∩{π = 1}

)
+D

(
· ∩{π 6= 1 and |π|↓ = 1}

)
+D

(
· ∩{π 6= 1 and |π|↓ 6= 1}

)
and show that there exist c ≥ 0 a constant and Λ′ a σ-finite measure on Z ↓ such that

(a) D
(
· ∩{π = 1}

)
= D(π = 1)δ(1,0),

(b) D
(
· ∩{π 6= 1 and |π|↓ = 1}

)
= c

∑
n∈N

δen , where

en :=
({
{n},N \ {n}

}
, (1, . . . , 1, 0︸︷︷︸

n−th index

, 1, . . .)
)
∈M?

∞,

(c) D
(
· ∩{π 6= 1 and |π|↓ 6= 1}

)
=
∫

Z ↓
%z(·) Λ′(dz),
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We use similar arguments as in [10, Theorem 3.1], as we have already done in the context of
nested fragmentations [Duc18]. First note that by (5.16), D-a.e. on the event {π = 1} we
have x = (1, 0), in other words (a) holds. Note also that D(π = 1) ≤ D(v1 = 0) = J1 <∞.

Let us now study the measure D(· ∩ {π 6= 1}). Note that D({π ∈ ·} ∩ {π 6= 1}) is an
exchangeable measure on P∞ satisfying for all n ≥ 1,

D(π|[n] 6= 1n) <∞.

A consequence of [10, Theorem 3.1] is that π has asymptotic frequencies D-a.e. – recall
that |π|↓ ∈ S ↓ ⊂ [0, 1]N denotes the nonincreasing reordering of asymptotic frequencies
of blocks of π – and one can write

D({π ∈ ·} ∩ {π 6= 1 and |π|↓ = (1, 0, 0, . . .)}) = c
∑
n∈N

δ{{n},N\{n}},

where c ≥ 0. For conciseness – and again with some abuse of notation – we will from now
on let 1 := (1, 0, 0 . . .) ∈ S ↓. Now let us examine the distribution of x = (π,v) on the
event

{
π = {{n},N \ {n}}

}
. Since x ∈ M?

∞ D-a.e., the singleton block must have mark
0, while the other block may have a positive mark. Let η be the distribution of this mark
on S1, that is

η := D
(
{v1 ∈ ·} ∩

{
π = {{n},N \ {n}}

})
,

which is a measure of total mass c, for any fixed n > 1 (by exchangeability, η does not
depend on the value of n). First, note that η({0}) = 0. Indeed, since the events{

π = {{n},N \ {n}}
}
, n > 1

are disjoint, the following holds.∑
n>1

η({0}) =
∑
n>1
D
({
v1 = 0 and π = {{n},N \ {n}}

})
= D

( ⋃
n>1

{
v1 = 0 and π = {{n},N \ {n}}

})
≤ D(v1 = 0)
= J1 <∞,

which implies necessarily η({0}) = 0. Now recall that D
(
{log v1 ∈ ·} ∩ {v1 /∈ {0, 1}}

)
is a

Lévy measure, so for all ε > 0,∑
n>1

η(|log v1| > ε) =
∑
n>1
D
({
|log v1| > ε and π = {{n},N \ {n}}

})
= D

( ⋃
n>1

{
|log v1| > ε and π = {{n},N \ {n}}

})
≤ D

(
|log v1| > ε and v1 6= 0

)
<∞,

which implies necessarily η(|log v1| > ε) = 0. Letting ε → 0, we have η(|log v1| > 0) = 0,
so in the end η = cδ1, and (b) follows.

Let us now decompose the measure D(· ∩ {|π|↓ 6= 1}). Recall that by construction,

D(· ∩ {π|[n] 6= 1 and |π|↓ 6= 1}) ≤ D(· ∩ {π|[n] 6= 1 or v1 = 0}) = µn,
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which is a finite measure with total mass Jn. Now let us introduce the injection θn : N→
N, k 7→ n+ k, and consider

←
µn := D

(
{xθn ∈ ·} ∩ {π|[n] 6= 1 and |π|↓ 6= 1}

)
,

which can be seen as the distribution of the marked partition restricted to {n + 1, n +
2, . . .}, on the event {π|[n] 6= 1 and |π|↓ 6= 1}. It is readily checked that this measure is
exchangeable onM?

∞ and since it is finite, by Proposition 5.2,

←
µn =

∫
Z ↓

%z(·) Λn(dz),

with Λn = ←
µn(|x|↓ ∈ ·) a finite measure on Z ↓. Asymptotic frequencies are such that

|x|↓ = |xθn |↓ for all x ∈M?
∞, therefore Λn can also be written

Λn = D
(
{|x|↓ ∈ ·} ∩ {π|[n] 6= 1 and |π|↓ 6= 1}

)
,

and taking nondecreasing limits one can define

Λ′ := D
(
{|x|↓ ∈ ·} ∩ {π 6= 1 and |π|↓ 6= 1}

)
.

To show (c), fix k, n ∈ N and consider the permutation τ : N→ N given by

τ(i) =


i+ k if i ≤ n
i− n if n < i ≤ n+ k

i otherwise.

Now notice that

D
(
{x|[k] ∈ ·}∩{π 6= 1 and |π|↓ 6= 1}

)
= lim

n→∞
D
(
{x|[k] ∈ ·}∩{(πθk)|[n] 6= 1n and |π|↓ 6= 1}

)
,

which can be written, using the exchangeability of D,

D
(
{x|[k] ∈ ·} ∩ {(πθk)|[n] 6= 1n and |π|↓ 6= 1}

)
= D

(
{(xτ◦θn)|[k] ∈ ·} ∩ {(πτ )|[n] 6= 1n and |πτ |↓ 6= 1}

)
= D

(
{(xθn)|[k] ∈ ·} ∩ {π|[n] 6= 1n and |π|↓ 6= 1}

)
=
∫

Z ↓
%kz(·) Λn(dz),

where %kz is the paintbox process restricted to k elements defined in Section 5.1.2. Taking
limits and because k is generic, we have indeed (c).

Step 4. It remains to define the measure Λ correctly and we will be able to complete
the proof of Theorem 5.13. Recall the definition of λ̃∞ as the push-forward of λ∞ by the
map y ∈ R 7→ (1, ey) ∈M?

∞, and note that

λ̃∞ =
∫

Z ↓
%z(·) λ̂∞(dz),

where λ̂∞ is the push-forward of λ∞ by the map y ∈ R 7→ (1, ey) ∈ Z ↓. In the end, let us
define

Λ = Λ′ +D(π = 1)δ(1,0) + λ̂∞.
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Putting everything together, we have

D + λ̃∞ = c
∑
n∈N

δen +
∫

Z ↓
%z(·) Λ(dz).

We can almost complete the proof. First, fix n ∈ N and recall that by definition Jn =
D(π|[n] 6= 1n or v1 = 0). Since by definition λ̃∞(π|[n] 6= 1n or v1 = 0) = 0 for all n, point
(ii) of Theorem 5.13 is proven:

Jn = nc+
∫

Z ↓

(
1−

∑
i≥1
vi>0

sni

)
Λ(dz).

This implies that
(
1−∑ i≥1

vi>0
sni
)
is Λ-integrable for any n ≥ 1. Furthermore, note that for

any z = (s,v) ∈ Z ↓,

1− s1 ≤ 1− s1
( ∑
i≥1
vi>0

si
)
≤ 1−

∑
i≥1
vi>0

s2
i , and s11v1=0 ≤ 1−

∑
i≥1
vi>0

si,

therefore summing the two expressions yields∫
Z ↓

1− s11v1>0 Λ(dz) <∞. (5.21)

We keep this in mind for later use and go back to the expression of the measures Dn. If
Jn > 0, then Dn = D

(
{x|[n] ∈ ·} ∩ {π|[n] 6= 1n or v1 = 0}

)
/Jn, so point (iii) of Theorem

5.13 is proven:

Dn = 1
Jn

( n∑
i=1

cδeni +
∫

Z ↓
%nz
(
· ∩{π 6= 1n or v1 = 0}

)
Λ(dz)

)
,

where eni ∈Mn is defined as

eni :=
({

[n] \ {i}, {i}
}
, (1, . . . , 1, 0︸︷︷︸

i−th index

, 1, . . . , 1)
)
.

It remains for the first part of the theorem to express ψn correctly and to show the
integrability condition (5.4). Recall from (5.20) that λn = λ∞ +D

(
{log v1 ∈ ·} ∩ {π|[n] =

1n and v1 /∈ {0, 1}}
)
, which shows that

ψn(θ) = idnθ −
β

2 θ
2 +

∫
Z ↓

∑
j≥1
vj>0

snj

(
eiθ log vj − 1− iθ log vj1|log vj |≤1

)
Λ(dz),

but, from (5.15), we have

dn = d1 −
∫
|y|≤1

y (λ1 − λn)(dy)

= d1 −
∫

Z ↓

∑
j≥1
vj>0

sj(1− sn−1
j ) log vj1|log vj |≤1 Λ(dz)
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where we used (λ1 − λn) = D
(
{log v1 ∈ ·} ∩ {π|[n] 6= 1n and v1 6= 0}

)
which is again

deduced from (5.20). Putting the last two displays together, we get

ψn(θ) = id1θ −
β

2 θ
2 +

∫
Z ↓

∑
j≥1
vj>0

(
snj
(
eiθ log vj − 1

)
− iθsj log vj1|log vj |≤1

)
Λ(dz).

In order to simplify this notation, note that∣∣∣∣ ∑
j≥1
vj>0

sj log vj1|log vj |≤1 − log v11|log v1|≤1

∣∣∣∣ ≤ (1− s11v1>0)|log v1|1|log v1|≤1 +
∑
j≥2
vj>0

sj

≤ 2(1− s11v1>0),

which we proved to be Λ-integrable in (5.21). Therefore, we can finally define

d := d1 +
∫

Z ↓
log v11|log v1|≤1 −

∑
j≥1
vj>0

sj log vj1|log vj |≤1 Λ(dz)

in order to get point (i) of Theorem 5.13, that is

ψn(θ) = idθ − β

2 θ
2 +

∫
Z ↓

∑
j≥1
vj>0

snj
(
eiθ log vj − 1

)
− iθ log v11|log v1|≤1 Λ(dz).

Now let us show (5.4). From (5.21), it remains only to check that (log v1)2 ∧ 1 is Λ-
integrable. Since λ1 must be a Lévy measure, we have∫

R
(y2 ∧ 1)λ1(dy) =

∫
Z ↓

∫
R

(y2 ∧ 1) %1
z
(
{log v1 ∈ dy} ∩ {v1 6= 0}

)
Λ(dz)

=
∫

Z ↓

∑
i≥1
vi>0

si
(
(log vi)2 ∧ 1

)
Λ(dz) <∞.

Now note that for all z ∈ Z ↓,

(log v1)2 ∧ 1 ≤ s11v1>0
(
(log v1)2 ∧ 1

)
+ (1− s11v1>0)

≤
∑
i≥1
vi>0

sni
(
(log vi)2 ∧ 1

)
+ (1− s11v1>0),

which is Λ-integrable. This proves (5.4), and ends the proof of the main result of Theorem
5.13.

For the converse part, let (c, d, β,Λ) be a given quadruple, where c, β ≥ 0, d ∈ R, and
Λ is a measure on Z ↓ \ {(1, 1)} satisfying (5.4). Then (ψn, Jn,Dn) for all n ∈ N are
well-defined as in the theorem if one checks that∫

Z ↓

∑
i≥1
vi>0

sni
(
(log vi)2 ∧ 1

)
Λ(dz) <∞

and
∫

Z ↓

(
1−

∑
i≥1
vi>0

sni

)
Λ(dz) <∞.

(5.22)
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To that aim, note that for all z ∈ Z ↓,∑
i≥1
vi>0

sni
(
(log vi)2 ∧ 1

)
+
(
1−

∑
i≥1
vi>0

sni

)
≤ sn1

(
(log v1)2 ∧ 1

)
+
∑
i≥2
vi>0

sni +
(
1−

∑
i≥1
vi>0

sni

)

≤
(
(log v1)2 ∧ 1

)
+ (1− sn11v1>0)

≤
(
(log v1)2 ∧ 1

)
+ n(1− s11v1>0),

which is Λ-integrable by (5.4), so (5.22) is proven. Now the construction of a 0-ESSF X

with characteristics as above is done via Remark 5.12.

5.A.5 Proof of Proposition 5.16

Consider a non-degenerate homogeneous ESSFX = (Π,V) with characteristics (c, d, β,Λ).
We make use of a natural genealogy appearing in our construction: jointly for all n ∈ N,
we define processes (Fn(t), t ≥ 0) taking values in the subsets of N, starting at Fn(0) = [n],
whose role is to “follow” integers along a discrete genealogy of blocks. We will make this
statement more precise, but first let us explain the idea. We will build the Fn determin-
istically from a sample path of X, such that for each time t ≥ 0,

[n] ⊂ Fn(t) ⊂ Fn+1(t),

and so by defining
S

(n)
θ (t) =

∑
B block of X(t)|Fn(t)

ṼB(t)θ, (5.23)

where ṼB(t) denotes the mark of a block B of X(t), it is clear that

S
(n)
θ (t) ≤ S(n+1)

θ (t) −→
n→∞

Sθ(X(t)) =
∑

B block of X(t)
ṼB(t)θ.

The way to define the sets Fn is the following. Recall that for any n ∈ N, Tn denotes
the first time t when [n] is no longer part of a unique block with positive mark in X(t).
Therefore let Fn(t) = [n] for any 0 ≤ t < Tn. Since X is homogeneous, Tn is an exponential
random variable with parameter Jn, and conditional on Tn, the mark (V1(t), 0 ≤ t < Tn)
behaves as the exponential of a Lévy process ξn with characteristic exponent

ψn : θ 7→ idθ − β

2 θ
2 +

∫
Z ↓

∑
j≥1
vj>0

snj
(
eiθ log vj − 1

)
− iθ log v11|log v1|≤1 Λ(dz).

Then at time Tn, (Π(Tn),V(Tn)/V1(Tn−))|[n] is independent of the past and has distribu-
tion Dn. Let us recall that Dn is expressed in terms of Λ by

Dn = 1
Jn

( n∑
i=1

cδeni +
∫

Z ↓
%nz
(
· ∩{π 6= 1n or (π,v) = (1n, 0)}

)
Λ(dz)

)
.

At this time, for each block B among the newly created blocks of X(Tn), if B ∩ [n] 6= ∅
and if B has positive mark, let FB ⊂ B be the subset consisting of exactly the first n
integers that are part of block B (necessarily B contains infinitely many integers so the
first n ones exist). Now we define

Fn(Tn) := Fn(Tn−) ∪
⋃
B

FB,
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where the union is taken over all newly created blocks of X(Tn) with positive mark and
nonempty intersection with Fn(Tn−). After this first step, X(Tn)|Fn(Tn) consists of a
random but finite (bounded by n) number of blocks, those with positive marks contain-
ing exactly n integers. The construction is recursive: if at time t the marked partition
X(t)|Fn(t) contains K blocks of size n, then after an exponential time T with parameter
KJn, one of them dislocates exactly as in the first step and n integers are selected for each
newly created block in this dislocation. At the time of dislocation Fn(t + T ) is modified
accordingly, and between time t and t + T , the branching property ensures us that each
block has a mark behaving independently as eξn , where ξn is a Lévy process with charac-
teristic exponent ψn. This recursion defines the process for all t ≥ 0, and the construction
is designed so that if S(n)

θ is defined by (5.23), then

(S(n)
θ (t), t ≥ 0) (d)=

(∑
i

eθξin(t), t ≥ 0
)
,

where
(
ξin(t), i ≥ 1, t ≥ 0

)
is a system of branching particles started from a unique particle

at position 0, which can be described by:

• particles move independently as Lévy processes equal to ξn in distribution.

• a particle branches at rate Jn into a random set of K particles at positions y +
(y1, . . . , yK), where y is the position of the mother particle at the time of branching
and (y1, . . . , yK) is a vector independent of the past and with distribution given by

Ef(y1, . . . , yK) =
∫
Mn

f(log v1, . . . , log vK)Dn(dx),

where in the right-hand side integrand, the vector (v1, . . . , vK) denotes the non-zero
marks of x.

At this point we need the following lemma, which results from standard branching pro-
cesses arguments. I could not find a reference which proves this result entirely in this
form, so a short, straightforward proof is given below.

Lemma 5.20. We have

ES(n)
θ (t) = etκ(n)(θ), with κ(n)(θ) = A(n)(θ) + JnB

(n)(θ), (5.24)

where A(n) corresponds to the movement of particles, with

A(n)(θ) = dθ + β

2 θ
2 +

∫
Z ↓

∑
i≥1
vi>0

sni
(
vθi − 1

)
− θ log v11|log v1|≤1 Λ(dz) (5.25)

and B(n) corresponds to the branching, with

B(n)(θ) =
∫
Mn

(
Sθ(x)− 1

)
Dn(dx)

= 1
Jn

∫
Z ↓

∫
{π 6=1n or v1=0}

(
Sθ(x)− 1

)
%nz (dx) Λ(dz).
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Proof. It is standard in the theory of Lévy processes (see e.g. [80, Theorem 25.17]) that
A(n)(θ) <∞ if and only if Eeθξn(t) <∞ for all t ≥ 0, and in that case Eeθξn(t) = etA(n)(θ).
Now fix 0 < s < t and consider the event

Ats := {the initial particle branches at time s and no other branching occurs before time t}.

Then conditional on Ats, the branching construction yields

E
[∑

i

eθξn(t)
∣∣∣ Ats] = E

[ ∫
Mn

∑
i

eθ(ξn(s)+log vi+ξ̃(i)
n (t−s))Dn(dx)

∣∣∣ Ats]
=
(∫
Mn

∑
i

vθi Dn(dx)
)
E
[
eθ(ξn(s)+ξ̃(1)

n (t−s))
]

=
(∫
Mn

Sθ(x)Dn(dx)
)
Eeθξn(t)

=
(
B(n)(θ) + 1

)
etA(n)(θ),

where ξn and the ξ̃(i)
n , i ≥ 1 are i.i.d. Lévy processes started from 0. This quantity does

not depend on s, so one may write, if At is the event of a single branching occurring before
time t,

E
[∑

i

eθξin(t)
∣∣∣ At] =

(
B(n)(θ) + 1

)
etA(n)(θ).

and in particular,

ES(n)
θ (t) = E

[∑
i

eθξin(t)
]
≥ P(At)

(
B(n)(θ) + 1

)
etA(n)(θ),

which shows that if A(n)(θ) =∞ or B(n)(θ) =∞, then ES(n)
θ (t) =∞. Now let us assume

that both quantities are finite, and prove (5.24). First note that the argument above
readily extends to

E
[∑

i

eθξin(t)
∣∣∣ At,k] =

(
B(n)(θ) + 1

)k Eeθξn(t).

where At,k is the event of exactly k particles branching before time t. We now bound from
above the probability of At,k. Let t0 := 0 < t1 < t2 < . . . denote the branching times in
our particle system. Note that as particles produce at most n offspring, the time between
consecutive branching times tj − tj−1 is greater than an exponential random variable with
parameter nJnj. Therefore we can compare the process counting branching times in our
process and a Yule process with birth rate nJn, which yields

P(At,k) ≤ P(tk < t) ≤ (1− e−tnJn)k.

Now if t∗ is small enough so that (B(n)(θ) + 1)(1− e−tnJn) < 1 for all 0 ≤ t ≤ t∗, then we
have

∀0 ≤ t ≤ t∗, ES(n)
θ (t) =

∑
k≥0

P(At,k)
(
B(n)(θ) + 1

)k Eeθξn(t) <∞,

so the map f : t 7→ ES(n)
θ (t) takes finite values before time t∗. Now note that for any times

t, s ≥ 0 the branching property applied at time t yields E[Sθ(t + s) | Sθ(t)] = Sθ(t)f(s),
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and so taking expectations, f(t+ s) = f(t)f(s). Since f takes finite value for 0 ≤ t ≤ t∗,
this shows that f(t) is finite for all t ≥ 0. Now let us compute f(t) by applying the
branching property at the first branching time t1:

f(t) = P(t1 > t)Eeθξn(t) +
∫ t

0

∫
Mn

∑
i

Eeθ(ξn(s)+log vi)f(t− s)Dn(dx)P(t1 ∈ ds)

= e−JntetA(n)(θ) +
∫ t

0
Jne−JnsesA(n)(θ)(B(n)(θ) + 1

)
f(t− s) ds,

and it is easily checked that the only solution of this equation is indeed

ES(n)
θ (t) = f(t) = et(A(n)(θ)+JnB(n)(θ)) = etκ(n)(θ),

so (5.24) is proved.

Now note that for any z ∈ Z ↓, one can write∑
i≥1
vi>0

sni
(
vθi − 1

)
=
∫
{π=1n and v1>0}

(
Sθ(x)− 1

)
%nz (dx),

so plugging this into the expression (5.25) for A(n)
θ and putting everything together, we

have

κ(n)(θ) = dθ + β

2 θ
2 +

∫
Z ↓

∫
Mn

(
Sθ(x)− 1

)
%nz (dx)− θ log v11|log v1|≤1 Λ(dz).

Now it is a consequence of the law of large numbers that for all z ∈ Z ↓, the following
convergence holds (and is nondecreasing)∫

Mn

(
Sθ(x)− 1

)
%nz (dx) −→

n→∞

∑
i≥1

vθi − 1,

and in the end, Lemma 5.20 and monotone convergence yield

ESθ(X(t)) = etκ(θ).

Now if κ(θ) is finite, it is a simple consequence of the Markov property of the process X
that (e−tκ(θ)Sθ(X(t)), t ≥ 0) is a martingale. Since it is nonnegative it converges almost
surely as t→∞ so it is almost surely bounded by a random variable which we denote by
C = Cθ > 0. Now assume furthermore that κ(θ) < 0 for some θ 6= 0. Notice that almost
surely for all i ≥ 1 and t ≥ 0,

Vi(t)θ ≤ Sθ(X(t)) ≤ Cetκ(θ),

so for any α ∈ R such that −α/θ > 0,

Vi(t)−α ≤
(
Cetκ(θ))−α/θ,

and so almost surely,

sup
i≥1

∫ ∞
0

Vi(t)−α dt ≤ θC−α/θ

ακ(θ) <∞. (5.26)
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Now recall the stopping lines

τ−αi (t) =
(∫ ·

0
Vi(s)−α ds

)−1
(t), i ≥ 1, t ≥ 0,

which we used to change the self-similarity index. Proposition 5.11 tells us that the time-
changed process X ◦ τ−α is an α-ESSF process with characteristics (c, d, β,Λ), and note
that for each i ≥ 1, the integral

ζi =
∫ ∞

0
Vi(s)−α ds

is the hitting time of 0 by the pssMp Vi ◦ τ−αi . Clearly (5.26) shows that X ◦ τ−α reaches
absorption before time θC−α/θ

ακ(θ) .

It remains to show the finite total length property in the case −α/θ ≥ 1. Recall that

Sθ(X(t)) =
∑
k≥1

Ṽk(t)θ ≤ Cetκ(θ).

It is elementary (because for any summable sequence u, ‖u‖p ≤ ‖u‖1 for any p ≥ 1) that
for any α such that −α/θ ≥ 1 this implies

S−α(X(t)) =
∑
k≥1

Ṽk(t)−α ≤
(
Cetκ(θ))−α/θ.

We claim the time change is such that∫ ∞
0

#X ◦ τ−α(t) dt =
∫ ∞

0
S−α(X(t)) dt ≤ θC−α/θ

ακ(θ) <∞ a.s.

To make this claim entirely justified, let us define for all x ∈ M?
∞ the (finite of infinite)

set I(x) = {i1, i2, . . .} where ik is the first integer contained in the k-th block with positive
mark of x. Notice that by definition for any i ≥ 1, for all t ≤ ζi, dτi(t) = V α

i (τ−αi (t))dt,
therefore ∫ ∞

0
#X ◦ τ−α(t) dt =

∫ ∞
0

∑
i∈I(X◦τ−α(t))

1 dt

=
∑
i≥1

∫ ∞
0

1i∈I(X(τ−αi (t)))
V α
i (τ−αi (t)) dt
V α
i (τ−αi (t))

=
∑
i≥1

∫ ∞
0

1i∈I(X(t))V
−α
i (t) dt

=
∫ ∞

0
S−α(X(t)) dt

and the proof is complete.
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