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INTEGRATIVE CHEMOINFORMATICS TO GUIDE DRUG DESIGN:
Application to re-design a clinical protein kinase inhibitor

Short abstract:
The main objective of this thesis is to improve the design of dabrafenib, a drug that is in clinical
use against cancer, but is rapidly metabolized and shows undesired adverse effects potentially
triggered through binding to a recently discovered secondary target. Therefore, the goal is an
improved drug that still binds its primary target, the oncogenic protein kinase mutant BRAF-V600E,
with high affinity, but not any more the secondary target, the nuclear receptor PXR. In order to
achieve this, computational tools are developed and applied, such as virtual compound synthesis,
virtual screening, machine learning, modelling and molecular dynamics coupled with MM-PBSA. A
central aim of the thesis is to obtain accurate affinity predictions, which are crucial for subsequent
design and development steps. The presented project also contains an experimental part, where the
binding of the synthesized molecule is verified by solving the protein-complexed structure via X-ray
crystallography.
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ABSTRACT

Despite years of intensive research and development, cancer remains one of the leading causes of
death worldwide. Chemotherapy is the most commonly used treatment for cancer, as surgery and
radiation therapy are often not effective in treating cancer at every location where it spreads. However,
drug resistance of cancer cells to chemotherapeutic agents and/or reduction in effectiveness of a drug
is the leading cause of failure of chemotherapy. Drugs are developed to bind efficiently to a given
therapeutic target, called the primary target. Unfortunately, drug treatments can suffer from binding
to a secondary target that perturbs drug activity and/or impacts its metabolism. The main aim of the
PhD project was to develop an integrative chemoinformatics approach to optimize drug design by
studying not only the primary target but also putative secondary effects at the atomic level in order to
compute more accurate binding modes and to derive better affinity estimates.

The presented drug design project aims for an improved inhibitor of the serine/threonine kinase
mutant BRAFV600E with simultaneous loss of binding to the secondary target PXR. Focus is on the
study of both, protein kinase BRAF and nuclear receptor PXR, which is involved in regulation of
xenobiotic metabolism. A machine learning model is first developed on the well studied nuclear
receptor ERα due to large amounts of experimental data, and subsequently similarly generated for
BRAFV600E. Despite its recognized importance in drug metabolism, we are still lacking sufficient
structural information and affinity measurements to develop machine learning models for PXR. So,
an alternative approach that relies on molecular dynamics combined with the Molecular Mechanics
Poisson-Boltzmann Surface Area method is employed in order to obtain a precise estimation of ligand
affinities. Finally, diverse computational tools are applied to design new derivatives of the initial drug,
which is too rapidly metabolized in many patients resulting in resistance and cancer relapse. The
properties of the new compounds prevent activation of metabolizing enzymes that are degrading the
original drug. This is expected to provide a new drug-candidate with much better pharmacokintics
properties and enhanced efficacy.

This thesis comprises a complete drug design pipeline and presents an integrated strategy that
includes modeling, in silico design and synthesis, virtual screening, affinity predictions, in vitro tests
and X-ray crystallography. The main focus is on the computational part that comprises complementary
approaches from the drug’s and from the proteins’ point of view.



RÉSUMÉ

Malgré des années de recherche et de développement intensifs, le cancer reste l’une des principales
causes de décès dans le monde. La chimiothérapie est le traitement le plus couramment utilisé contre
le cancer, car la chirurgie et la radiothérapie ne sont souvent pas efficaces pour traiter le cancer à tous
les endroits où il se propage. Cependant, la pharmacorésistance des cellules cancéreuses aux agents
chimiothérapeutiques et / ou la réduction de l’efficacité d’un médicament est la principale cause
d’échec de la chimiothérapie. Les médicaments sont développés pour se lier efficacement à une cible
thérapeutique donnée, appelée cible primaire. Malheureusement, les traitements médicamenteux
peuvent souffrir de la liaison à une cible secondaire qui perturbe l’activité du médicament et / ou
a un impact sur son métabolisme. L’objectif principal du projet de thèse était de développer une
approche chémo-informatique intégrative pour optimiser la conception de médicaments en étudiant
non seulement la cible primaire, mais également les effets secondaires putatifs au niveau atomique
afin de calculer des modes de liaison plus précis et d’obtenir de meilleures estimations d’affinité.

Le projet de conception de médicament présenté vise un inhibiteur amélioré du mutant de la
sérine/thréonine kinase BRAFV600E avec perte simultanée de la liaison à la cible secondaire, le
récepteur PXR. L’accent est mis sur l’étude à la fois de la protéine kinase BRAF et du récepteur
nucléaire PXR, impliqué dans la régulation du métabolisme xénobiotique. Un modèle d’apprentissage
automatique est d’abord développé sur le récepteur nucléaire bien étudié ERα en raison de grandes
quantités de données expérimentales, puis généré de manière similaire pour BRAFV600E. Malgré son
importance reconnue dans le métabolisme des médicaments, nous manquons toujours d’informations
structurelles et de mesures d’affinité suffisantes pour développer l’apprentissage automatique sur
PXR. Aussi, une approche alternative reposant sur la dynamique moléculaire associée à la méthode
«Molecular Mechanics Poisson-Boltzmann Surface Area» est utilisée afin d’obtenir une estimation
précise des affinités des ligands. Enfin, divers outils informatiques sont utilisés pour concevoir de
nouveaux dérivés du médicament initial, métabolisé trop rapidement chez de nombreux patients,
entraînant une résistance et une rechute du cancer. Les propriétés des nouveaux composés empêchent
l’activation des enzymes métabolisantes qui dégradent le médicament initial. Ceci devrait fournir un
nouveau médicament candidat aux propriétés pharmacocinétiques bien meilleures et à une efficacité
accrue.

Cette thèse comprend un pipeline complet de conception de médicaments et présente une stratégie
intégrée comprenant la modélisation, la conception et la synthèse in silico, le criblage virtuel, les pré-
dictions d’affinité, les tests in vitro et la cristallographie de rayon X. L’accent est mis principalement sur
la partie informatique qui comprend des approches complémentaires du point de vue du médicament
et des protéines.



PREFACE

This thesis is submitted to the Faculty of Science, University of Montpellier, as a partial fulfillment
of the requirements to obtain the PhD degree. The work presented was carried out in the years
2016-2019 in the group of Gilles Labesse at the Centre de Biochimie Structurale (CBS) of Montpellier,
which is affiliated to the CNRS, INSERM, and the University of Montpellier.

THESIS OBJECTIVES

The main aim of this thesis was to develop an integrative drug design strategy that makes use
of diverse computational and also experimental techniques to be able to take into account the
primary and the undesired secondary target. The work may be divided into interconnected
sub-topics: 1) in silico synthesis of producible compounds, 2) investigation on the proteins’
conformational flexibility, 3) development and calibration of computational tools for improved affin-
ity predictions, and 4) experimental confirmation of the drug binding mode by X-ray crystallography.

THESIS OUTLINE

The first chapter of the thesis provides a general introduction to drug design, introduces the protein
targets ERα and PXR (two nuclear receptors), and BRAF (an oncogenic protein kinase), as well as all
methods that are used within the scope of this thesis.

The second chapter is focused on the well studied nuclear receptor ERα. Here, advantage was taken
of the large amount of data that is available in different databases to develop and test a machine
learning method, which combines structure-based and ligand-based approaches. The method relies
on the random forest algorithm calibrated on 1500 known ligands of ERα, uses a combination
of structure-based virtual screening (with docking) and chemometrics and exploits ensembles on
different levels. This work is published and included in the Thesis. The developed tool should
help detecting potential endocrine disruptors and guide their modifications. In general, it can
also be used to check potential binding of any drug candidate, as this nuclear receptor can be an
unwanted secondary target. A Web-server gives access to the tool within a user-friendly pipeline
which allows for a quick evaluation of putative binders of the estrogen receptors (ERα and ERβ)
and the peroxisome proliferator-activated receptor (PPARγ). Although, primarily focus on the
theoretical and fundamental aspect of ligand docking on ERα, the approach can be generalized
straightforwardly to other nuclear receptors thanks to extensive characterization by means of X-ray
crystallography and affinity measurements.

The third chapter describes the drug design project that aims for an improved inhibitor of the
serine/threonine kinase mutant BRAFV600E with simultaneous loss of binding to the secondary
target PXR. The unexpected and unwanted binding to PXR was recently characterized by in vitro cell
assay and also by X-ray crystallography. These results explain the observed pharmacokinetics of
this drug at the atomic level. A new chemical series is derived from the initial drug currently used
against cancer, with the drug design procedures comprising several rounds of iterative improvement.
The crystal structure with the primary target BRAF confirmed the mode of binding of one designed
drug candidate and highlighted a sub-domain swapping previously undescribed for protein kinases.
The properties of the new compounds are expected to prevent activation of metabolizing enzymes
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that are degrading the original drug while maintaining the activity at the molecular and cellular
levels. This should provide a new drug-candidate with much better pharmacokinetics properties
and enhanced efficacy.

Finally, in chapter four the thesis is rounded up with a summary, discussion and conclusions on
the performed work and obtained results. As perspective, general current issues and trends in the
different fields are additionally presented.
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BACKGROUND

The first chapter introduces underlying concepts and highlights the motivation of the research conducted in the

thesis



14 1. Background

1.1 Drug design

Drug design, also known as rational drug design or simply rational design, is an umbrella term
for the ensemble of processes necessary for the development of a drug. It describes the inventive
procedure aimed at finding a new medication for a defined biological and medical relevant target.

In general, target-based drug design follows three main steps to create a new drug: First, a receptor
or enzyme that is relevant to the targeted disease needs to be identified. For full efficiency in drug
design this target needs to fulfill several tractability criteria. Often, in a second step, the structure
and function of this receptor or enzyme is elucidated. Subsequently, this information can be used to
design a drug molecule that interacts with the receptor or enzyme in a therapeutically beneficial
way, which is often performed from the key-lock model point of view for molecular interactions.
During all steps a lot of different factors have to be taken into account. For example, whether or not
the drug will bind to a specific target or more than one (single-target versus multi-target drugs and
polypharmacology). Polypharmacology may bring higher efficiency and lower the emergence of
resistance but binding to several targets might also involve more adverse effects. As a drug may also
have natural competitors addressing the same binding site, the minimal required affinity to the target
molecule needs to be clarified. Usually the chemical composition of the molecule(s), including shape
and charge, is investigated to determine the way it binds to the target. Subsequently, the ligand’s
properties have also to be investigated with respect to how they might affect absorption, distribution,
metabolization, and excretion by the body, shortly called ADME or pharmacokinetics. In a nutshell,
geometric and thermodynamic aspects need to be determined or predicted to rationalize drug design.

1.1.1 An overview of drug discovery and development

Pharmaceutical sciences target the development of medical health products with a major emphasis
on the development of drugs, which are supposed to interact in a specific manner with the processes
of life. A drug’s purpose is to interfere with the biological processes in a favorable manner so that an
improvement or cure of a disease is achieved. This is not a trivial task with respect to all possible
interfering interactions that can occur and are potentially unfavorable or even toxic in nature, e.g. off
target effects through unwanted binding to secondary targets, drug-drug interactions, or metabolic
effects. Therefore, the process of drug development involves many steps in conceptual design,
refinement, and testing that are repeated in a cyclic fashion and accompanied by security checks.

Currently, the drug discovery process follows a general pathway of target validation, experimental
assay development, small molecule library screening, Hit-to-Lead, Lead optimization, pre-clinical
drug development, and clinical drug development. So, the whole process begins with the identifica-
tion of a target macromolecule. This should be a molecule (usually a protein or a protein complex,
rarely also DNA or RNA) whose function is essential for the development or expression of a disease
and therefore a promising point of attack to fight the disease. The second step is the development
of specific assays for small molecule screening experiments, which are used to test the activity of a
large set of possible drug candidates. These assays are "artificial" measurements, but supposed to
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partially mimic "real life" (at the molecular level at least) by approximating biological interactions
in a minimalist way. Upon identification of good binders, which are termed as hit compounds, the
Hit-to-Lead optimization cycle starts as an iterative optimization cycle to further improve the affinity.
The most promising compounds are then used in pre-clinical and, if successful, in clinical tests. This
process is based on an enormous amount of molecules that have to be synthesized and tested in
order to (possibly) obtain one single drug.

A slightly different setting applies to Fragment-Based Drug Discovery (FBDD), which aims to find
low molecular weight compounds (fragments) that should serve as chemical starting points for drug
discovery. FBDD has become an established technique in industry and academia.1 In contrast to
the conventional high-throughput screening involving the screening of large numbers (from tens
of thousands to millions) of higher molecular weight compounds (MW 300–500 Da) usually via
in vitro bioassays, FBDD is based on the biophysical screening of a smaller number (thousands)
of low molecular weight compounds (MW < 250 Da) against target proteins. In FBDD typically
higher hit rates are attained,2 as with smaller sizes of the compounds the probability of matching
within the binding site increases and the likelihood of clashes decreases. Simultaneously, fragments
sample the chemical space more efficiently than larger drug-sized molecules at a similar library size.3

As fragments usually bind to their targets with much lower affinity (>1 mM)4 (due to the limited
numbers of potential interactions that can be formed), screening methods need to be sufficiently
sensitive to detect weak interactions, which is the case for biophysical methods, such as nuclear
magnetic resonance (NMR), thermal shift assay (TSA), surface plasmon resonance (SPR) and X-ray
crystallography. Vemurafenib, an inhibitor of the protein kinase BRAF for the treatment of late-stage
melanoma, was the first FDA-approved drug (in 2011) originating from FBDD,5 and was followed
by further approved drugs.

Despite the fact that the efforts and money pharmaceutical companies are investing in drug devel-
opment constantly increased during the last decades, the number of drug approvals stay almost
constant.6 Furthermore, about 81% of all new drug candidates fail,7 which is mainly caused by a
lack of drug efficiency and side effects associated with off-target binding. Therefore, it is very cost
and time intensive, consuming billions of dollars and taking up to 15 years.8 Considering these high
failure rates limitations in the current methods of drug development can be assumed.6 This reflects
the need for improvement of drug development methods.

In general, drug discovery and development require the integration of multiple scientific and
technological disciplines, such as chemistry, biology, pharmacology and extensive use of information
technology that rely on mathematical and physical concepts. Pharmaceutical or medical chemistry
is a highly interdisciplinary field dedicated to drug design, optimization of pharmacokinetics
and pharmacodynamics, and synthesis of new drug molecules and shows an increasing need for
computational developments in order to cope with all the recent advances in data generation and
availability (Big Data in healthcare). In particular pharmacoinformatics is considered as a rather new
discipline combining different informatics branches, such as bioinformatics and chemoinformatics,
into a single platform that aims for a systematic approach in drug discovery and development in
order to increase efficiency and safety.
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1.1.2 The drug’s life-cycle in the organism and associated effects

Pharmacology, a discipline that deals with the origin, nature, chemistry, effects, and uses of drugs, is
dedicated to the question how to deliver a drug to the living organism, which cures or ameliorates
a disease, while at the same time harmful effects should be kept minimal and eliminate in due
time. As chemical compounds promote multiple effects (beneficial ones and harmful ones) the
issue is highly complex. Further, the organism affects the drug itself, influencing its distribution, its
metabolism and its excretion from the body.

1.1.2.1 Pharmacokinetics / ADME

Pharmacokinetics, also termed ADME, refers to the four major aspects absorption, distribution,
metabolism and elimination.

Drug absorption and distribution

Absorption questions the first requirement of a drug, the fact that it has to enter the body. Often
blood circulation is a main destination making a further distribution possible. In order to reach this
destination a drug must overcome multiple biological barriers, with the cell membrane being the
most important. The cell membrane separates the cell’s intracellular space from the surrounding
extracellular space and is composed of a bilayer of phospholipids and proteins. The phospholipid
bilayer creates a barrier that hinders large hydrophilic drugs from entering the cell, while small
hydrophobic ones pass more easily, as they can solubilize in the cell membrane and are therefore
able to diffuse over it, although they do sometimes accumulate there when hydrophobicity is
too high, as they cannot solubilize in the aqueous environment within the cell. Due to the high
importance of lipophilicity in drug discovery, numerous log P (partition coefficient) calculators (e.g
AlogP,9 XlogP,10 etc) have been developed that can be used to filter drug candidates. For very small
hydrophilic compounds (< 100-200 Da) there is still the possibility to pass via water filled pores and
channels, situated within the membrane. Another possibility to pass the membrane (besides passive
diffusion) are transporters. Transporters are dedicated to facilitate the translocation of large and/or
hydrophilic compounds over the cell membrane that could otherwise not pass, fulfilling several
important roles, e.g. supplying the cell with water soluble nutrients, such as sugars and amino acids,
or exporting waste products from the cell formed during cell metabolism. Therefore, transporters
are mayor modifiers of the drugs distribution in the body. It may happen that a drug is hindered to
access an organ because a transporter pumps it actively out of the cells, in a faster rate than it could
diffuse passively inside. Among the ways of acquiring drug resistance in cancer cells is also the
upregulation of such transporters expelling the anti-cancer drug. Furthermore, a drug has also the
possibility to be taken up or excreted by a cell via vesicular transport, called endocytosis/exocytosis,
but this plays rather a minor role for the distribution of drugs. Depending on the drugs destination it
may have to pass other biological barriers on its way to the final destination. Such barriers, composed
of cells forming a densely packed structure that restricts the passage in between the cells are present
in certain areas of the body with the major ones being the gastrointestinal mucosa, the blood brain
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barrier, the epidermis and the placenta. All the barriers a drug has to pass constrain its desired
properties and are therefore affecting its conception. For example, if a swallowed drug shows too
low solubility, it may just pass through the intestine and be excreted without any uptake, as it is
not able to be dissolved in the gastrointestinal fluid upon release from the tablet. Moreover, drug
transport is majorly impacted by the drug’s metabolism within the organism.

Drug metabolism, elimination and toxicity

Metabolism can rapidly inactivate or eliminate a drug, for example by transforming a hydrophobic
compound into a more water soluble one in order to be easily excreted by the kidney into the urine.
Metabolism is a vital function of the organism and not only affecting drugs. It is also responsible
for treating xenobiotics and endogenous substances, such as hydrophobic compounds taken up via
the food, or hydrophobic metabolic side products produced by the body. The primary enzymes
that introduce polar groups (e.g. a hydroxy group) into a compound are the Cytochrome P450
monooxygenases (CYPs). Metabolism does not necessarily make a drug inactive. A modified drug
may be equally active on its target, or a drug may be even designed to become only active after a first
step of metabolization, converting a so called pro-drug to the active compound. A drug molecule
may also become toxic upon metabolization and/or subsequent drug interactions, such as enzymatic
inhibition or induction, which may lead to adverse effects.

It is equally important for a drug to be eliminated from the body, as accumulation of the drug will
eventually lead to long-term toxic effects. Excretion of substances happens primarily via the kidney,
as one of its functions is to clean the blood from "suspicious" components (xenobiotics absorbed from
the environment) and excrete them to the urine. For this to happen effectively the compounds to be
excreted need to be polar, as non-polar compounds will be passively reabsorbed through the cell
walls of the kidney tubuli cells and subsequently passed back to the blood. Thus, highly hydrophobic
compounds inert to metabolism (e.g. certain pesticides) cannot easily be removed by renal excretion
and are retained in the body with very long half lives, eventually leading to adverse effects.

The specific modelling of pharmacocinetics within an organism is represented as a field of research
by its own, termed systems biology, and falls beyond the scope of this thesis.

1.1.2.2 Selectivity

Besides all the behaviours and effects a drug can show during the ADME processes, it is essential to
investigate possible molecular interactions. Selectivity is one of the crucial issues in pharmacology.
A drug that binds to many different targets may trigger multiple pharmacological effects, including
undesired adverse ones. Therefore, binding to a single or only a few targets is being striven for
when designing a drug. Such a drug is highly selective. However, if the drug’s concentration is
high enough it may interact with quasi any protein. Therefore, selectivity of a given drug is not an
absolute value, but rather expressed as ratio of Kd values, the fold difference between two targets.
Finding highly selective molecules can be a difficult task, especially when a given target has many
structurally similar class members, which is the case for protein kinases with its more than 500 class
members encoded within the human genome. Thus, highly selective kinase inhibitors often still bind
several kinases.11–13 This reflects the great challenge of attaining selectivity among distinct members



18 1. Background

of protein superfamilies. Additionally, many functional protein domains are widely spread even
across different protein families.
Nonetheless, conventional chemotherapy is often not specific at all addressing cell divi-
sion/metabolism in general, but also comes along with severe adverse affects and damage of normal
tissues.14 In contrast, targeted drugs are supposed to act in a more specific manner on dedicated
subpopulations of cells, but are unfortunately often more prone to the development of resistance.

1.1.3 Drug-target interactions

The molecular mechanisms and mode of action of drugs is an important information that enables
further activity modulation and improvement. In many cases those are fairly well understood, but
in other cases they are still unknown. The conceptual design of a drug is based on the knowledge
about the mode of action and more precisely the molecular mode of interaction with the target. At
the same time, it is important to evaluate a drug’s effect not only with respect to its interaction with
one single target, but also by taking into account the other essential requirements for a drug, for
instance, the pharmacokinetic (ADME) and toxicological properties. Since biological organisms
are extremely complicated systems, the effect of a drug within an organism and the effect of the
organism’s response to the drug are multifaceted. Already a minor structural change aimed to
optimize one particular property of the drug can heavily impact another characteristic. Therefore,
the simultaneous fine tuning of many different drug characteristics is mandatory and makes drug
development so difficult. Keeping this in mind, it may be similarly beneficial to start from a licensed
drug and improve certain properties to achieve a higher efficacy, or reduced adverse side effects.
Another aspect is that it may take time to find out about adverse effects of drugs and how they are
caused, thus requiring later modifications of the drug. Moreover, completely different strategies
exist that are based on permanent inactivation via covalent inhibitors or on the removal of the target
protein via degradation induced by proteolysis targeting chimeras (PROTACs).

As drugs mediate their actions by interacting with their dedicated macromolecular target, the
way of interaction is of major concern. The biological macromolecules serving as drug targets
are primarily proteins, sometimes also DNA or RNA, but proteins with their higher structural
variability are thought to present much more versatile points of attack to engineer low molecular
weight compounds with very specific pharmacological effects. In general, proteins have either a
structural or functional role, whereas the functional role can be very diverse. Examples are enzymes,
transporter proteins, ion channels, or signalling proteins. One medically prominent example
for enzymes are kinases that phosphorylate their substrate and are involved in many cellular
pathways, and for signalling proteins such an example would be hormone receptors. Depend-
ing on the proteins function, drugs can be designed to interact in different ways to exert their function.



1.1. Drug design 19

1.1.3.1 Physicochemical basis of drug-target interactions

All types of proteins obey very similar chemical principles for exerting their pharmacological actions
and for establishing a drug-target or, more general, a ligand-receptor interaction.
Macroscopically, association or dissociation of the ligand-receptor complex can be seen as a reaction
in a chemical equilibrium:

L + R ⇋ LR (1.1)

Consequently, the dissociation constant Kd for the complex is defined as:

Kd =
[L][R]

[LR]
(1.2)

where [L], [R], and [LR] are the equilibrium concentrations of ligand L, receptor R, and the complex
LR, respectively. Generally, the smaller the dissociation constant, the stronger is the interaction
between ligand and receptor, and the higher is the affinity between them. Note that this is a simplistic
description of a ligand-receptor binding event, without taking into account more complicated
scenarios, such as different stoichiometry of ligand and receptor, or the occurrence of allosteric
effects, intermediate transition steps, or solvent effects.

Thermodynamics, Gibbs Energy & Entropy

The occurrence of interactions between ligand and target can be expressed in energetic terms and
can be related to the equilibrium constant for association (Ka) or dissociation (Kd) by the equation:

∆G = −RT ln Ka = RT ln Kd (1.3)

where ∆G is the Gibbs free energy, R is the gas constant and T is the absolute temperature in Kelvin.
For example, a decrease in free energy of 10 kcal/mol (≈ 42 kJ/mol) relates to an approximate Kd

of 10−7 mol/L. Following to the discovery that many developed drugs have the most favorable
binding enthalpy,15 the consideration of thermodynamic data is nowadays often included in the
drug development process.16

The formation of bonds between ligand and target is not only represented by the enthalpy. Also
the entropy has an impact on the change in Gibbs free energy. The Gibbs free energy (∆G) and the
change in the entropy (∆S) upon binding can be calculated using the relationship

∆G = ∆H − T∆S (1.4)

where ∆H is the enthalpy. If the Gibbs free energy decreases, binding occurs spontaneously and
energy is freed in form of heat. This is the case either when enthalpy decreases and/or when entropy
increases. Drug binding can be primarily enthalpy-driven or rather entropy-driven. Different classes
of ligands can have different enthalpy-entropy impact partitioning even on the same receptor17

and enthalpy-entropy compensation is a commonly observed effect in Lead optimization,18 which
is usually measured by Isothermal Titration Calorimetry (ITC). During optimization, while the
structure of the molecule is optimized to form more or better contacts with the target, which makes
∆H more negative, the introduced interactions can force the system into a more ordered state, which
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in turn changes ∆S unfavorably. Hence, drug design approaches tend to introduce constraints to the
movement of the molecule (e.g. through macro-cycles) simultaneously when adding new functional
groups with increased interactions (favorable enthalpy). This ligand restraining strategy aims to
reduce the entropic effect when the ligand is transferred from the free state in solution into the
more restraining binding pocket. Other approaches to reduce the entropic effect are focused on the
binding pocket. For example hydrogen bonds can be directed to already structured regions of the
protein or multiple hydrogen bonding interactions can be used from a single group to strengthen the
interaction, whereby the entropic penalty has already been paid.19 When thinking about the transfer
of the molecule from the solvated state into the binding pocket, there is another important factor to
be taken into account - the dehydration and with it the hydrophobic effect. The hydrophobic effect
is the preference of hydrophobic, non-polar molecules to aggregate in aqueous solution in order
to minimize the solvent exposed surface area towards the polar water molecules. It involves the
displacement of water molecules arranged around the hydrophobic surfaces of both the protein and
ligand. This effect can equally be described by the enthalpy-entropy compensation. For instance,
most water molecules that are located in the binding pocket prior to binding are relocated during the
binding event to leave space for the ligand. The water molecules displaced into the bulk water have
more freedom to form hydrogen bonds with the surrounding, leading to an increase in translational
and rotational entropy of the water molecules, resulting in a favorable entropy of water release. Not
only water molecules that are replaced from the binding pocket can contribute. Even subtle changes
in the water network surrounding a ligand can have a compensatory thermodynamic effect.20, 21

Wienen-Schmidt et al.20 demonstrate that an entropically more favored binding can even be mainly
caused by shedding the ligand’s hydration shell upon leaving the bulk water. In this case, the
termodynamic signature is affected by the ligand’s water trapping capabilities in aqueous solution
prior to binding and has nothing to do with the binding to the protein. Breiten et al.21 identify the
water molecules on the surface that contact the ligand from the outside (when the ligand is bound in
the binding site) as important contributors to the enthalpy-entropy compensation. Additionally,
the organization of the whole ligand-receptor complex has to be taken into account, as it could be
that the bound complex attains more flexibility compared to the unbound state, resulting in an
overall decreased order of the bound system. This highlights the complexity of dynamic processes
involved in drug binding, which cannot easily be analyzed by only taking into account single rigid
conformations of a given drug and target (as proposed by the rather simplistic key-lock model).

It has also been suggested that thermodynamic profiles could be of help for identifying inhibitors that
are optimized with respect to flexibility, water solubility and specificity. Optimizing flexibility can be
beneficial in case of rapid mutation of the target binding site to minimize drug resistance.22 Solubility
in water may be optimized to maximize the ligand’s efficiency with respect to polar interactions.23, 24

Specificity/selectivity is optimized to reduce side effects caused by binding to unwanted secondary
targets.25–27 All these molecular features are results from the atomic nature of the targets and ligands
which provide a wide range of possible interactions.

Intermolecular forces

For drug binding to occur intermolecular forces/interactions need to be established on a microscop-
ic/atomic level between the macromolecular target (and potentially its prosthetic groups) and one (or
several) ligand molecule(s). Some drugs react chemically with their targets and form covalent bonds,
which make the attachment generally irreversible (40-140 kcal/mol). In general, interactions depend
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on the atom type and therefore its properties. For many drugs the interactions are non-covalent in
nature and include electrostatic interactions, such as ionic bonds (5 kcal/mol), hydrogen bonds
(1-10 kcal/mol), and halogen bonds (1-40 kcal/mol), Van der Waals forces (0.5-1 kcal/mol), such as
dipole-induced dipole interactions (Debye forces), and London dispersion forces. The latter are the
weakest type of interaction, but the high number of occurring contacts in organic molecules can
sum up to large contributions. The direct environment of atoms modifies the formation capability
and strength of the particular interaction. Moreover, π-effects - molecular interactions with the
π-systems of conjugated molecules (π-π interactions, cation/anion-π interactions, and polar-π
interactions) - are often crucial for protein-ligand recognition, but difficult to model. Additionally,
chelation with metal ions within the binding site can occur impacting ligand binding.

1.1.3.2 Mechanisms of action - how drugs interfere with organisms

It is important to distinguish between the action and the effect of a drug. Drug action refers to the
initial consequence of a drug-target combination, the mechanisms by which the chemical produces a
response in an organism, whereas the drug effect refers to the biochemical and physiological changes
that occur as a consequence of drug action.

Depending on the actual site of binding, the interaction of the ligand/drug with the target can be
competitive or allosteric. Competitive binding takes place in the orthosteric binding site of the
target (or active site in case of enzymes) and the competition occurs between the drug and the natural
ligand (or substrate) that exerts a specific effect in the organism. Allostery refers to the binding of
an effector molecule at a site other than the orthosteric binding site, whereupon usually through a
flexibility/conformational change the activity of the target is modulated. Both ways of interaction,
competitive and allosteric, can be described for receptors and enzymes, but the term allostery is
more often used when describing enzyme modulation.

Another way of distinguishing mechanisms of action is based on the initial consequence of the
drug-target interaction, which can be positive or negative (activating or inhibiting) for receptors and
enzymes.

Receptor modulation - principle of agonism, inverse agonism and antagonism

Ligand-receptor interactions can be very precise modulators and result in different levels of activity.
Therefore, in the field of pharmacology the ligands/drugs are classified according to their effect on
the receptor. The term ’pharmacological receptor theory’ explains ligand behavior and classifies the
ligand-receptor activity. The main classes are agonist, inverse agonist and antagonist.
An agonist is a ligand that binds to a receptor and causes the increase of a biological response by
a direct activation of the receptor. Depending on the strength of the exerted stimulation, agonists
can further be distinguished between partial agonists and full agonists. An inverse agonist, causes
the opposing effect by directly reducing the receptor’s basal activity. Therefore, for the effect of
inverse agonism a prerequisite is that the receptor must have a basal level of activity in the absence
of any ligand in order to enable a reduction of activity. An antagonist blocks the action of the agonist
through competitive binding to the same binding site, but does not lower the basal activity. An
additional class are selective receptor modulators. They display an agonist response in some tissues
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and an antagonistic response in other tissues. To exert such a behavior, they are expected to promote
a conformation of the receptor that is closely balanced between agonism and antagonism and the
resulting effect in the tissue is depending on the concentrations of coactivators and corepressors.

The effect of agonism, inverse agonism, antagonism and intermediate effects can be explained by a
shift of equilibrium between conformational states. Overall, ligands have the ability to shift the
equilibrium between the conformational states of a protein, which in turn can be described by
distinct binding affinities of the ligand for the different states. The conformation with the highest
binding affinity for the ligand will be the most stabilized and therefore the most occurring in
complex with the ligand, but as energetic differences between several states may be small, a large
conformational diversity may occur in solution.

Enzyme modulation

The active site of an enzyme, also known as catalytic site, is the part of an enzyme at which catalysis
of a (or several) substrate(s) into a (or several) product(s) occurs. When drugs are designed to bind
within the active site (sometimes mimicking the natural substrate), they may block the catalytic
activity of the enzyme and therefore serve as enzyme inhibitors. This inhibition results in a reduced
availability of the product, which may cause an altered physiology and or an accumulation of
substrate. When inhibitors resemble the transition state of a catalyzed reaction, they are called
transition state analogs/inhibitors, and when the inhibitor during the catalysis reaction covalently
attaches to the target enzyme by forming an atomic bond, with a probability of detachment becoming
so small (quasi irreversible), it is called suicide inhibition.
When the drug target is an enzyme, the mechanism of action is usually inhibition. Activation of an
enzyme is usually more complicated and can generally only be achieved through allosteric binding.

Key points

⇒ Globally, a drug’s effect on an entire organism is difficult to predict, as a multitude of effects come
into play.

⇒ Locally, drug-target binding can be a complex event involving enthalpic and entropic effects
originating from the target, the ligand and the solution/environment.

⇒ An atomic structure is the basis for rational target-based drug design.
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1.1.4 Experimental methods for drug design - studying the target

The increased understanding of the molecular mechanisms of diseases has allowed the identification
of many biological macromolecules implicated in disease. Nonetheless, the identification of
promising targets is not sufficient to successfully develop medication. The target molecules, together
with their mode of action, need to be characterized, before they can be used as a starting point for
target-based drug design. The protein structures themselves are used in target identification and
selection (the assessment of the druggability or tractability of a target), as well as in the identification
of hits by virtual screening and in the screening of fragments. This highlights the key role of
structural biology within the process of drug development. Currently, the required atomic structures
are mainly delivered by X-ray crystallography and sometimes also by other structural techniques.

1.1.4.1 X-ray crystallography

X-ray crystallography is one of the most common techniques used to determine the three-dimensional
structure of biological macromolecules and plays an important role in structure-based drug design,
as it provides atomic details of the macromolecular structures. There has been an explosion in the
number of macromolecular structures that are available (mainly deposited in the PDB). The increased
pace for structure determination is probably due to several technical advances: the automation of
protein production and crystallogenesis including the establishing of crystallographic screening
platforms that opened the way to high throughput screening of small molecules crystallized within
their targets; the availability of powerful synchrotron radiation; as well as new algorithms and
software that automate many processes within data collection, structure solution and refinement.
X-ray crystallography is particularly well suited for drug discovery, as it can be used to determine the
structure for rather large heteromeric complexes, a very high (potentially atomic) resolution can be
attained, and it often reveals detailed experimental information about the binding mode of ligands
found in the crystal. The possibility to precisely visualize the architecture and the interactions
between ligand and target facilitates the understanding of mechanisms and drug activity at a
molecular level, but lacks information on the thermodynamics of the system.

As the crystallographic form implies a rather compact packing of the protein, one may wonder
whether the protein is totally rigid or distorted in a crystal. The answer to this question is ambiguous
and depends largely on the protein itself: On one side, it is not totally rigid, because the solvent
content within a crystal is generally about 50%,28 different protein conformations can co-exist within
a crystal,29, 30 a ligand can freely diffuse into a crystallized protein (soaking), and enzymatic activity
has even been observed within crystals.31 Furthermore, many proteins are crystallized in different
conformations, and even as differing independent assemblies within the same asymmetric unit of a
single crystal. On the other side, artifacts may occur, because the protein structure may be affected
by the crystallization conditions or the crystal packing, as conformational changes may occur, or be
restricted in some flexible regions of the protein due to the crystal packing.32, 33 Moreover, it may not
always be possible to "trap" important conformational states that occur in solution (especially those
requiring large structural rearrangements).
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Crystallogenesis - a long road

Crystallogenesis - the production of the crystal(s) - can be a long and tedious process, as it is not
always easy and straightforward to find the right crystallization conditions. First of all, the process
relies on a stable sample. Then, the process of crystal growth has to be initialized by trying to
find the nucleation zone. Generally, the aim during crystallogenesis is to moderately decrease the
protein’s solubility, while not affecting its stability. There are different crystallization methods, with
one of the most prominent ones being based on vapour diffusion. Nowadays, for screening many
different conditions in a reasonable time, automation is established in form of commercial pre-made
crystallization kits (with up to 2000 conditions) and robots for pipetting and monitoring. After a first
hit the conditions usually have to be further optimized in order to obtain exploitable crystals. This is
usually done by screening a matrix around the initial condition with slightly varied parameters, such
as pH, protein concentration, salt concentration and type, precipitant type, or temperature. Seeding
can be performed with previously obtained micro-crystals to favor larger crystals. Once conditions
are known, crystallogenesis is often highly reproducible and can be employed for screening and
drug design, even with low affinity fragments (either by soaking or co-crystallization).

A brief introduction to X-ray diffraction

Having finally obtained a crystal of the macromolecule or complex whose structure is to be deter-
mined, it is transferred to the X-ray radiation source, traditionally as frozen sample to better resist
radiation damage during the experiment when the X-ray beam is passed through the crystal. The
crystal is rotated within the X-ray beam and diffraction patterns (visible as spots) are recorded on a
detector behind the crystal. X-rays are scattered by interaction with the electrons of the material.There
are different types of interactions of X-rays: elastic scattering that is the main interaction and occurs
without loss of energy, inelastic scattering (Compton scattering) that contributes to the noise in
diffraction experiments, and absorbtion. When the X-ray waves pass through the crystal, the intrinsic
properties of a crystal are crucial for obtaining a detectable diffraction pattern. A crystal is a periodic
arrangement of molecules, perfectly repeated in a regular lattice, and all atoms are (or should be)
in the same relative position compared to any other atom, which results in the amplification of the
diffraction signal. Diffraction, a special case of elastic scattering, occurs when a wave meets an
ordered object (e.g. a crystal) causing constructive and destructive interference, which is described
by Braggs’ Law. The interference potency of diffracted rays in each direction and therefore the
intensity of each reflection (diffracted beam) depends on the constellation of all atoms within the
smallest repeating unit (unit cell) within the crystal. Thus, the information about the positions of all
the atoms in the crystal (real space) is encoded in the diffraction pattern (reciprocal space) and the
position of each atom in the crystal influences the intensities of all the reflections. To relate the points
in the diffraction pattern to the planes in the crystal lattice, a mathematical operation, the Fourier
transformation is employed. To obtain a map of electron density, where the peaks in the electron
density map correspond to the atomic positions, the intensities of the spots measured by the detector
are used for the Fourier transformation calculations. Nonetheless, each reflection is characterized by
its amplitude and phase. The amplitude can be obtained from the measured intensities, but the the
diffraction pattern does not provide direct information about reflection phases, which constitutes the
famous "phase problem", a mayor hurdle in structural crystallography.
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Phasing diffraction data and refining models

There are three types of methods to solve the phase problem: 1) direct methods, which use probabilis-
tic relations between certain groups of reflections to estimate the phases, 2) special-atom methods,
which are experimental phasing methods, and 3) molecular replacement, which uses a structural
model to infer the phases.

Direct methods require the diffraction data to extend to atomic resolution (∼ 1Å) and are usually
employed in small-molecule crystallography, and sometimes also on protein molecules. If a suitable
atomic model of the unknown crystal structure is available, molecular replacement is the method
of choice, being also the most commonly used method for solving protein structures (this success
can be attributed to the enormous growth of available structures in the PDB and to improvements
of computational tools). It exploits the Fourier transform of reflection intensities, wherein model
derived interatomic vectors compared to the experimental data reveal the orientation and location of
the model molecule in the unit cell.34 Improvements in the algorithms used in structure refinement
software, such as the implementation of maximum entropy methods, contributed to the great success
of molecular replacement. Moreover, there are software pipelines that automatically select useful
structures for molecular replacement from the PDB. Furthermore, molecular replacement can now be
combined with ab-initio structure prediction algorithms, as done by ROSETTA,35 to solve structures
that could not be solved otherwise.36 X-ray diffraction data can also be exploited simultaneously, or
combined with other experimental techniques (whereas the link between them is usually formed by
computational tools).
In general, model refinement is considered as successful if both crystallographic R values, Rwork

and Rfree, decrease during refinement. The R values Rwork and Rfree are used for validation of the
agreement between model and measured data. They are crystallographic quality measures of the
model that is obtained from the crystallographic data. Based on a built atomic model, R values
measure how well the simulated diffraction pattern matches the experimentally observed diffraction
pattern. Since refinement is aimed in improving the atomic model to make it fit better to the experi-
mental data and improve the R value, this can lead to a over-fitting of the data. Therefore, before
refinement, about 5% of the experimental observations are removed from the dataset, refinement is
only performed on the remaining data. The data used in refinement is subsequently used to calculate
Rwork and the previously removed 5% are used to calculate Rfree. Therefore, Rfree can be seen as a
relatively unbiased fitness function to examine model-data agreement.

One major limitation of X-ray crystallography is the fact that decently sized, homogeneous crystals
are required to perform a diffraction experiment. Therefore, difficulties in protein crystallization
due to limited solubility, elevated intrinsic flexibility, or other reasons, may even prevent any X-ray
experiment and thus require other structural techniques.

1.1.4.2 Other structural techniques: MicroED, CryoEM, NMR & MS

If single well-ordered crystals of sufficient size (> 1000µm3) cannot be obtained, a rather recent
technique called Micro-crystal Electron Diffraction (MicroED)37 can be the solution, as it works on
micro-crystals with sizes of less than 300 nm and it has been shown that crystals of minuscule size
compared to the size needed for X-ray crystallography can yield atomic-resolution structures.38 It is
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also a diffraction based method, but instead of an X-ray beam an electron beam is used to produce
the diffraction pattern. The experiment is performed using a transmission electron microscope with
a slightly adapted setup. Therefore, sample preparation, after obtaining the micro or nano-crystals,
is the same as for all other CryoEM techniques, including advantages and limitations. Instead of
using the imaging mode one uses the diffraction mode with an extremely low electron dose. Data
processing, in turn, is performed using standard X-ray crystallographic software.

If crystallogenesis is not an option, Cryo Electron Microscopy (CryoEM) has become a popular
option with increasing numbers in solved structures down to near-atomic resolution. CryoEM has
several advantages compared to X-ray crystallography: First, it allows structural study of proteins
that cannot be crystallized due to different reasons, such as intrinsic flexibility and solubility or
stability issues. It enables as well the visualization of very large macromolecules and complexes,
such as the nuclear pore complex, or the ribosome. Moreover, there are no crystallization effects that
may affect the protein’s structure, and it is possible to observe structures in different conformational
states (even within one experiment), giving more insights on structural heterogeneity. This can
include also post-translation modifications, such as methylation, acetylation, phosphorylation,
ubiquitination, and glycosylation, that are de-homogenizing the sample and would therefore not
be detectable within a crystal that requires a compact packing of a more homogeneous sample.
Nonetheless, the typical resolution of CryoEM structures is still much lower as compared to X-ray
structures, and CryoEM is still a low throughput technique and therefore, not employable for ligand
screens. Despite this, CryoEM can be used in a complementary way to X-ray crystallography:
Phases derived from CryoEM density maps may be used to solve X-ray structures by molecular
replacement. CryoEM experiments can provide help for finding and selecting the optimal conditions
for macromolecular stability (e.g. to guide optimal crystallization), and CryoEM data may also be
used to verify results and confirm, for example the biological assembly of a macromolecule.

Nuclear Magnetic Resonance (NMR) spectroscopy is a classical 3D protein structure solution
technique that also allows to study of the interaction of ligands with macromolecular targets. It
is capable of determining flexible elements of macromolecules that cannot be revealed in X-ray
experiments. Despite the fact that NMR is a rather low throughput technique compared to X-ray
crystallography and other methods, and the sample requirements are large (labelling is often
required), NMR experiments can simultaneously provide details about the structure, and the
thermodynamics and kinetics of binding processes. They allow for measuring affinity (Kd) and
for detecting flexibility changes, but on a low resolution level compared to X-ray crystallography.
Ligand-protein interactions can be detected by analyzing changes of the ligand’s signals in the
presence of the target (ligand-observed), or by analyzing changes of the target’s signals in the
presence of the ligand (target-observed). Ligand-observed NMR is rather fast and simple to employ
and very useful for fragment-based screening, because the high sensitivity enables detection of
very weak binders. Another advantage is the ability to identify a single binder from a mixture of
compounds. Target-observed NMR provides a higher quantity of information on ligand-target
interactions and is rather used to validate screening hits (to eliminate false-positives). The main
advantage is the ability to detect where and how the ligand binds to the target, in solution, and how
this affects the dynamics of the molecules.39, 40

Mass Spectrometry (MS) is a useful tool to test hypotheses in the case of ambiguous structural
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data. MS is an often label-free analytical technique that gives the accurate mass of molecules and
enables chemical identification. It has a wide range of applications and can be combined with various
other techniques. In general, MS requires that the proteins in solution or solid state are turned into
an ionized form in the gas phase. Fragmentation of the sample is usually part of the process and
allows for identification within the analysis. MS has a very low 3D resolution, but requires only
tiny amounts of protein. Therefore, it is used for molecular characterization and for evaluating the
molecule’s success chances for crystallogenesis.

In native MS the protein is not fragmented and therefore intact. It allows for ligand screening and
provides information on various aspects, such as the overall shape and the stoichiometry of the
protein-ligand complex (by measuring the mass of bound versus free target), binding reversibility
(by inducing dissociation), binding-site specificity (by competition assays), and complex affinity as
Kd (by titration).41, 42 Nonetheless, native MS has also drawbacks, such as experimental difficulties
with binding assay conditions, gas-phase dissociation and non-specific binding.43

Chemical cross-linking coupled with Mass Spectrometry (XL-MS) is a technique to get sparse
information about the overall structure of a protein or a complex by introducing covalent links
between two amino acids that are close in space (but can be far in sequence or belong to different
proteins). After a subsequent digestion of the protein, where the chemical links are remaining intact,
the linked parts can be identified by MS. This provides information about relative arrangements
between domains, subunits, or multi-protein complexes.44

Hydrogen-Deuterium exchange coupled with Mass Spectrometry (HDX-MS) can determine the
overall deuterium content of molecules that have undergone H/D exchange. The experiment gives
information about the solvent accessibility of various parts of the molecule. Thus, it sheds light
not only onto the overall tertiary structure of the protein, but also on the degree of accessibility
(as revealed by the speed of exchange) and therewith involved dynamic aspects, such as protein
conformation and stability shifts. HDX-MS can also be used to examine protein-protein and protein
small molecule interactions and has therefore potential in drug development.45

For structure determination of small molecules, X-ray crystallography is the most widely employed
technique (sometimes also NMR), but the rather new MicroED technique is becoming more and
more popular, especially when submicrometer-sized crystals are a limiting factor.46, 47

Not only the atomic molecular structures, but also the characterization of the dynamic interaction
between compound and target (often in form of affinity measurements) represents the basis for
structure-based drug design on which further strategies can be built on and which is therefore of
paramount importance in the process of drug development.

1.1.4.3 Affinity measurements: ITC, TSA, SPR, fluorescence & reporter assays

One very accurate and commonly used method for measuring affinity is Isothermal Titration

Calorimetry (ITC). Besides binding affinity (in form of a Kd), it also provides information on
reaction stoichiometry. ITC measures the direct heat that is exchanged between interacting molecules
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and the solvent. One disadvantage is the high amount of (target) protein that is required that may
become limiting when protein production is not very abundant.19, 48

Another technique that has become popular for ligand screening is fluorescence-based Thermal

Shift Assay (TSA). This method assumes that protein stability will increase upon ligand binding.
The thermal stability of the target protein is tested by measuring the critical melting temperature
(unfolding occurs). The unfolding is reported by environmentally sensitive dyes that emit
fluorescence upon binding to exposed hydrophobic parts of a protein. Not only different ligands,
but also different buffer conditions can be screened, which may come handy for crystallization. TSA
is a versatile technique with a broad range of applications and mayor advantages are low cost, easy
employment, and high-throughput capabilities.49, 50 TSA already gives insights in thermodynamic
aspects of the protein structure, but an accurate quantitative analysis of protein-ligand interactions,
which is essential for drug design, cannot be performed. As indirect measure, it only provides a Kd

proxy.

Surface Plasmon Resonance (SPR) is an optical sensor technique that measures changes in optical
reflectivity when molecules bind to a functionalized surface. It is a label-free method and allows for
monitoring interactions between a large variety of different molecules and can be applied to drug
discovery in many ways, such as ligand screening (especially on membrane proteins), or monitoring
reaction rates. It does not only provide an affinity measure (Kd), but also the rate of association (kon)
and dissociation (koff), which are highly valuable in drug development.51

Other approaches for ligand binding affinity measurements are fluorescence-based methods, such as
Tryptophan fluorescence Quenching (TQ) and Förster/Fluorescence Resonance Energy Transfer

(FRET). In TQ binding affinity is calculated based on decreasing tryptophan fluorescence while
increasing ligand concentration, and therefore depends on the presence of a tryptophan close by
the ligand binding site. FRET is based on energy transfer between two light-sensitive molecules
(chromophores) and extremely sensitive to small changes in distance, but requires labeling of
protein and ligand with those chromophores, one being the donor that is excited by a laser, and
the other the acceptor that emits light when in close proximity (<10nm) to the donor. Moreover,
Time-Resolved FRET (TR-FRET) kinase activity assays have also been developed that use a labeled
peptide substrate, which upon kinase activity gets phoshorylated, and can then bind the second
fluorophore required for the FRET signal to occur.

Cell-based reporter assays are widely used tools in drug discovery applications and particularly
useful for evaluating a drug’s inhibition strength on a targeted enzyme within the cellular context.
Enzyme activity is linked to the expression of a reporter, which can then be detected. The inhibition
or activation strength of a drug can be evaluated by measuring the altered reporter signal compared
to a reference ligand. Reporter gene assays, such as the luciferase reporter assay, have been
increasingly used in high throughput screening to identify small molecule inhibitors and activators
of protein targets.52, 53

Commonly reported affinity measurements for enzymes are the inhibition constant Ki and IC50. The
Ki is the dissociation constant of the inhibitor and indicates its binding affinity. It is usually measured
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directly (by various methods) as the concentration of inhibitor needed to occupy 50% of receptors or
to determine the rate of an enzyme-catalyzed reaction it usually requires multiple measurements
(independently varying the concentration of substrate, and the concentration of inhibitor).54 IC50
represents the functional strength of the inhibitor. It can be measured using a functional assay or
a competition binding assay. In a functional assay it is measured as the concentration needed to
inhibit 50% of the maximum biological response of a reference ligand using a dose-response curve.
In a competition binding assay it is the concentration needed to displace 50% of a reference ligand
(e.g. radioligand) and determined with a competition curve. In case of a competitive inhibiting
compound the relationship of IC50 and Ki is stated by

IC50 = Ki

(

1 +
[S]

Km

)

, (1.5)

where [S] is the substrate concentration and Km the Michaelis constant of the substrate (S).54, 55

Obtaining an IC50 value requires less effort than a Ki, since it is determined at only one concentration
of substrate over a range of inhibitor concentrations. Thus, IC50 is the most commonly used target
activity metric and the IC50 datasets for a given target are usually much larger than the respective
Ki dataset. Nonetheless, it has to be kept in mind that IC50 is a relative value, whose magnitude
depends on the concentration of reference ligand/substrate used in the assay, whereas Ki is usually
a constant value for a given compound with a target.

For the development of prediction models special care has to be taken about data quality. Therefore,
more direct measures, such as the Ki, with supposedly lower measurement noise are often
preferentially chosen when the aim is to find out the most informative features for predicting
the given property. Nevertheless, a larger dataset size could be beneficial for extensive testing of
developed prediction models.

Key points

⇒ All experimental techniques have their limitations, but they can already provide a wealth of
information that can be used for drug design.

⇒ The limitations and the complementarity of the techniques highlight the benefit of combining the
resulting data, but the heterogeneity may be a major challenge.

⇒ As conclusion, the development of further computational methods for integrative molecular
modelling may be advantageous.
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1.2 Computational methods for screening and affinity estimation

In order to reduce time and cost consumption within the drug development process computer aided
methods have been implemented, which are often used for Hit identification and also for Lead
optimization. These include virtual screening (VS) campaigns, target modelling at different levels of
complexity and in later stages also computationally more expensive methods such as, molecular
dynamics (MD) based methods. Additionally, there is the need to check for chemical feasibility
of designed molecules, since real and virtual molecules are simultaneously under study for drug
design.

Nowadays, virtual screening plays a major role in the process of drug development, as it enables a
fast evaluation of hundreds or thousands of small molecules to select a smaller number for biological
testing. Virtual screening can be used to select compounds for screening from in-house databases,
to choose compounds to purchase from external suppliers, or to decide which compounds to
synthesize next. Structure-based and ligand-based virtual screening are two main techniques, which
are widely used.56, 57 Depending on the available information about the target or existing ligands
and the aim of research the applicable method is chosen.58, 59 To employ computational techniques,
a description of the compounds (and possibly the target) is required.

Molecular representations

To understand the properties of molecules, it is important to find common patterns, and in order to
find these patterns, the molecules must be represented in such a way that a degree of similarity
can be calculated. There are many different ways to represent molecules, e.g. by chemical graphs
(graph-based representations), using connection matrices or tables, or with line notations systems,
such as SMILES strings. SMILES stands for Simplified Molecular Input Line Entry Specification
and provides a simple syntax, containing each (non-hydrogen) atom with its element symbol and
additional constructs to specify charges, bond orders and stereochemistry. Starting from the SMILES
sting already a lot of molecular descriptors can be calculated, and in order to be able to compare
those among different molecules, or perform further calculations or analysis, fixed length descriptors
are often required. Thus, common descriptor representations of molecules are in the form of vectors
(see Figure 2 in Section 1.2.6).

1.2.1 Ligand-Based Virtual Screening (LBVS)

The basis of medicinal chemistry efforts and of all ligand-based virtual screening (LBVS) methods
is founded on the similar property principle, which states that structurally similar molecules tend
to have similar properties - despite the existence of "activity cliffs".60, 61 LBVS methods are based
on analyzing features of substructures and chemical properties related to activity of the ligand.
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They are used to extract similar compounds from libraries. Different approaches are similarity and
substructure searching62 that may be based on pharmacophores, shape-matching,63 or fingerprints.

Starting from one or several active molecule(s) similarity search may be a fast and relatively straight
forward approach to get first ideas about promising molecules (that may already have been syn-
thesized). Similarity-based virtual screening requires a way to evaluate the similarity of a pair
of compounds and is dedicated to rank order a database of compounds on similarity to a given
active reference structure. The top ranking compounds can then be selected for biological testing.
One major issue is that similarity is inherently subjective. Consequently, many different similarity
evaluation metrics have been proposed to provide a quantitative basis for structure ranking. One
limitation is that as "similar" considered molecules do not always share identical pharmacological
profiles.

A pharmacophore is defined by the IUPAC as an "ensemble of steric and electronic features that is
necessary to ensure the optimal supramolecular interactions with a specific biological target and to
trigger (or block) its biological response".64 Such a model can be used to compare the compatibility
of candidate ligands with it in order to decide whether the ligand could be a potential binder.
Shape-matching approaches are often combined with pharmacophore features and are based
on the superposition and comparison of the 3D shapes of a known binding molecule and a set
of ligands in question. Therefore, the selection of the initial query ligand represents one of the
crucial and most challenging tasks in the shape-matching approach.65 Usually, the conformation
of a ligand being present in the target’s crystal structure is used. If no structural data is available,
computational methods, such as docking, are needed to obtain a ligand pose. Moreover, when
dealing with structurally diverse or highly flexible compounds the structural alignment of ligands
can be particularly challenging.66 To overcome the limitations of employing a single model in LBVS,
ensemble methods could be a choice.

1.2.1.1 Molecular descriptors

Molecular descriptors are basically numerical values assigned to molecular structures or sub-
structures. Many different molecular descriptors have been proposed with the aim to find the
most information rich and and best suited descriptor to model a certain property. A classification
of the large amount of diverse descriptors can be done based on dimensionality (number of
geometrical dimensions the captured information takes into account) and/or based on the type of
information they contain. Thus they are usually classified as 0D, 1D, 2D, 3D, and 4D descriptors,
or as constitutional, topological, geometric, electronic, physicochemical, or quantum-mechanical
descriptors. 0D descriptors take into account the molecular formula and are sometimes referred to as
count descriptors, including for example atom or bond counts and molecular weight. 1D descriptors
include fragment information (groups of atoms within a molecule). 2D descriptors are based on the
chemical graph and use information from the atomic connectivity tables/matrices, e.g. topological
radius or diameter. 3D descriptors include information about the 3D geometry of a molecule, such
as shape descriptors, volume descriptors, or descriptors that require 3D coordinates (positions in
space). As molecules are flexible, 3D descriptors have been extended to 4D descriptors, adding for
example different conformations of a molecule as fourth dimension.
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1.2.1.2 Molecular fingerprints

Molecular fingerprints are vector representations of molecules. They can be fixed in length, or
not, and their way of construction may differ. In a bit format, either each bit corresponds to one
pre-defined feature (also termed structural keys), or instead several substructures may correspond to
the same bit. They can be binary (containing only zeros and ones), or may be extended to a count
format, where the vector of bits is extended to a vector of integers, accounting for the amount of
occurrences of the features. The common carateristic for all fingerprints is that the positions in the
fingerprint sequence are used to refer to specific features of the molecule.
A representative for substructure fingerprints that map pre-defined substructures to a certain bit
and have therefore a pre-defined fixed length are the commonly used MACCS (Molecular ACCess
System) keys fingerprints.67

For many other fingerprints the setting of the bits is performed by a hashing algorithm that translates
a feature to a bit position. Thus, they are often referred to as hashed fingerprints. As a result, a
given feature will always set the same bit, but multiple paths may also simultaneously set the same
bit. Therefore, similar molecules will have similar fingerprints, but similar (hashed) fingerprints do
not necessarily mean that molecules are similar.
Fingerprints can be constructed directly from the molecular graph, where a bit corresponds to one or
more paths in the graph. They are termed path-based fingerprints. For example, a path of length
two consists of three atoms that are connected by two bonds. The bits are usually set by a hashing
function.
Circular fingerprints, represent the molecules as sub parts, starting from a atom and looking at
surrounding atoms, and are also constructed using hashing functions. The Extended-Connectivity
Fingerprints (ECFPs)68 are the most well known and most commonly used circular fingerprints, with
e.g. ECFP4, where the number 4 corresponds to the diameter of the atom environments considered.

In general, 2D fingerprints are very good at identifying close analogues, but they also have their
limitations. One major limitation of traditional 2D descriptors is that they are usually not suited for
"scaffold hopping" - the identification of structurally novel compounds by modifying the central core
structure of the molecule. Scaffold hopping can be desired or required in different situations, for
example due to patent reasons, to move away from competitor compounds, or to provide alternate
Lead series if problems arise due to difficult chemistry or poor ADME properties. Descriptors that
can be used for scaffold hopping are for example reduced graphs, topological pharmacophore keys,
or 3D descriptors. Another limitation of descriptors is that they describe the molecules as static
model, while many chemical phenomena are not static and may depend on the local environment.
Examples are changes in geometry, in ionization state, or protonation state.
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1.2.1.3 Similarity coefficients

Similarity coefficients are used to calculate the score of similarity between two molecules representa-
tions, which is often an inverse of a measure of distance in descriptor space, so that the greater the
degree of similarity between two molecular representations the smaller the value of the coefficient.
The Tanimoto coefficient69 is the most commonly used coefficient to quantify similarity between two
sets of binary fingerprints and ranges from 0 to 1. It calculates the similarity of two bit strings as the
size of the intersection divided by the size of the union:

similarity(A, B) =
|A ∩ B|

|A|+ |B| − |A ∩ B|
(1.6)

where |A ∩ B| are the number of bits in common for both fingerprints, and |A| and |B| are the
number of bits set in each fingerprint individually. Many other types of similarity coefficient exist
that can be applied, e.g. cosine coefficient, Euclidean distance, Manhattan distance, or Tversky
index, but they are rather rarely used. In case of non-binary data more complex forms of similarity
measures are used, such as physicochemical property vectors.

1.2.2 Quantitative Structure-Activity Relationship (QSAR) modelling

If actives and inactive molecules for a given target are known, Quantitative Structure-Activity
Relationship (QSAR) modelling can be performed. In a nutshell, QSAR modelling uses knowledge
of known active and known inactive compounds to build a predictive model based on quantitative
"activity" data while employing machine learning methods. QSAR modelling can be used with data
consisting of diverse structural classes and multiple binding modes. In a standard QSAR approach
the biological activity of several compounds are studied using a biological assay whereupon a
mathematical relationship is created between the measured activity and the compound’s structure.
To establish such a relationship, also called model, data analysis and machine learning is performed.

1.2.2.1 Important considerations for data gathering and preparation

The standard procedure for building QSAR models starts with the assembly of a library of chemical
compounds. Already when selecting the compounds several considerations have to be taken
into account, such as availability of the molecules, or price and effort for molecule synthesis and
testing, the required chemical space and diversity of the molecules, and quality of data if activity
measures are provided (e.g. from an existing database). All these aspects have to be taken into
account carefully from the beginning, because the data setup heavily influences the predictability
of the final model. QSAR models can also be built in an iterative way, first covering a rather large
chemical space and then new compounds are designed based on results from previous designs,
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often narrowing down the chemical diversity.
If activity data is not already available, the compounds are tested for their activity using a biological
assay. Concerning the choice of assay, one has to consider the assay’s variability and the response
space. For example, there is a huge variability between assays performed in different laboratories,
but even in the same laboratory performed measures on different days or different time points have
a certain variability, and assays on large plates can further show inter-plate drifts so that the position
of the sample on the plate affects the result. The variability may be caused by differences in assay
conditions and the experimental protocol, in particular buffer composition, and by the stability of
used reagents and proteins. It is also worth checking the response space of an assay, because if all
compounds are about equally active due to high structural similarity, it will be difficult to construct
a meaningful model, and therefore, a range of different responses among the compounds (including
"good" and "bad" ones) is much more beneficial for a well performing model. The response of
an assay can be a continuous scale, such as the binding affinity for a target, or categorical, such
as "active" and "inactive". Therefore developed QSAR models are either regression models (for
continuous data), or classification models (for discrete classes).
Next, chemical descriptors need to be selected, calculated, and (if required) pre-processed for the
compounds. The selection of descriptors depends principally on the desired usage of the resulting
model. The type of available descriptors ranges from very simple, such as molecular weight or
bond counts, to very complex, which take into account the 3D structure and environment. Simple
descriptors are usually preferred when the goal is to develop very large and global QSAR models
based on thousands of compounds, as they are more apt to uncover general trends common to
compound subsets than uncovering detailed information about compound interactions (that they
would not be capable of doing anyway). In these cases, complex descriptors would only require
more computational effort without much benefit. In contrast, when the goal is to develop a local
QSAR model focused on a smaller set of compounds, the usage of sophisticated descriptors may
enable the study of finer details. This is for example the case when compound properties are to be
improved. Here descriptors are needed that refer to details of the chemical structure to suggest
molecular changes. Different pre-processing steps may be required depending on the nature of
the data (descriptors and responses) and the algorithm to be used for modelling afterwards. This
includes treating potentially missing data, transforming data, centering and scaling, and can even
extend to data engineering (creating new descriptors, e.g. by combining several ones). For example,
logarithmic transformations are often performed when values span several orders of magnitude,
and centering and scaling is used to avoid the "artificial" over/under-weighting of the importance of
a certain descriptor that may simply occur due to different value ranges.
Before passing to the actual training of the QSAR models the data needs to be split into training
and testing set, whereas the testing data is not used for model building. Setting away data for
external validation is important in order to estimate the models ability to predict the activity of
new molecules correctly. The fraction of the data that is set away depends on the size and the
homogeneity of the dataset and is often about 15-30%. Additionally, when activity is sampled an
even distribution of activities is desired in the training and the test set. This is obtained by stratified
sampling, which first attributes the compounds to activity bins before randomly distributing them
from each bin to training and testing set.
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1.2.2.2 Model building and validation

QSAR model building aims to provide an equation describing the relation between the molecular
descriptors and the biological activity. Many different algorithms are available via different
programming languages (common ones being R and Python) and also implemented in different
tools. Popular linear algorithms are for example partial least squares and ridge regression, and
among the non-linear algorithms support vector machines, random forest, and neural networks are
commonly used. In general, models of low complexity will only be able to explain partially the
response, whereas too complex models will result in overfitting. On top of that, all algorithms have
parameters that need to be adjusted to control model performance. This is usually done with the help
of internal cross-validation, where the data is split into groups, the model is trained on on the data
leaving out one group, and the left out group is used for validation. This process is repeated until all
groups have been left out once. For each round the parameters can be modified, which finally gives
the most suitable set of parameters for modelling the data. Moreover, the model’s performance can
be estimated using different metrics, the most frequently used ones are the dimensionless coefficient
of determination (R2), which represents the fraction of the explained variance of the predicted
variable, and the root mean square error (RMSE), which is in the units of the measured activity and
therefore useful to compare the accuracy of the model in relation to the measurement error.
Upon careful validation a QSAR model can be used for predictions and/or interpretations and serve
as ligand-based virtual screening tool, as it is possible to assess large chemical libraries due to the
high computation speed. However, a QSAR model can also be used to uncover particular properties
that are important for a biological effect.
A QSAR model that is built from a well-designed/balanced dataset is supposed to cover the required
chemical space well and has higher chances to be predictive within the covered descriptor range.
Nevertheless, it is important to keep in mind that QSAR model is only suited to make predictions
within (or very close to) the covered descriptor space, which is generally known as applicability
domain.

1.2.2.3 Applicability domain

When training a QSAR model, validation is performed internally, by evaluating its performance
for predictions within the dataset. When the descriptor values of the molecules to be predicted are
within the descriptor space covered by the training set, also called interpolation, predictions are
rather reliable. However, new compounds can have descriptor values that are outside the descriptor
space covered by the training set. In this case extrapolation is needed. While the developed model
may still perform well for compounds that are relatively similar to the training set, it is likely to
fail for compounds that are more different. Therefore, it is important to know the limits of each
model and to define whether the model’s assumptions are met. This is attempted by analyzing the
applicability domain, which should finally help to decide whether a QSAR model can be used for a
given set of compounds.70 While the term is conceptually easy to grasp, it is difficult to define. The
characterization of interpolation space is important for defining the applicability domain. Thus, it is
often defined using either the chemical similarity of compounds (the chemical space) or a similarity
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measure that is based on descriptors (the descriptor space). The restrictions imposed by the
applicability domain (primarily impacting pure ligand-based approaches), can be partially circum-
vented by approaches that are based on the target structure, such as structure-based virtual screening.

1.2.3 Machine learning algorithms

Nowadays, machine learning has many applications in virtual screening and ligand-based
approaches, as well as structure-based docking have benefited from machine learning algo-
rithms.57, 71, 72 Here, the focus is on supervised techniques that require a training set for model
development. The choice of a machine learning algorithm depends on many factors, such as the
envisioned goal, the complexity of the problem, the nature of the data, the required accuracy, and
the degree of required interpretability. Many non-linear methods, such as neural networks and
support vector machines are very performant and high accuracy of predictions can be obtained,
however they are rather suited for a "black box" employment mode, as they hardly allow for simple
interpretations on how a certain result was obtained. Linear models are more straightforward to
interpret, but they usually show sub-optimal performance if the relationship between the descriptor
and the predicted activity is not linear. Decision trees are also very useful for determining variable
importance. When combining single decision trees to larger ensembles, as done by the random
forest algorithm, the predictive power can be largely increased, with a trade-off in interpretability.
Choosing the most suitable algorithm among the multitude of available ones is therefore not an easy
task and often several ones are tested. The random forest algorithm and support vector machines
are popular representatives and are employed within this thesis work, and thus explained in more
details below.

1.2.3.1 Random Forest (RF) and other tree-based algorithms

The Random Forest (RF) algorithm is based on decision trees. The goal is to predict the value
of a target variable by learning simple decision rules inferred from the data features. The big
advantage of decision trees are that they are simple to understand and to interpret and that they can
be visualized.73 A decision tree represents the conjunction of a series of "rules". Decisions are taken
at each interior node to follow one branch or another. When visualized, its branching path structure
resembles an inverted tree. Each interior node corresponds to one of the input variables, for each
of the possible values of an input variable there are edges to children, and each leaf represents a
value of the target variable. Difference between classification and regression trees are found in the
procedure used to determine where to split.
A RF is an ensemble method, more precisely an ensemble of decision trees. Each decision tree is
constructed by using a random subset of the training data. Furthermore, during the construction, at
each node of a tree, a small group of input variables is selected at random to split on. The variable
that provides the best split, according to an objective function, is used to do the split on that node.
At the next node, another set of variables is chosen at random from all variables and the process
is continued. The single trees are grown to maximum size and they are not pruned. In terms of
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the ensemble method, the single trees are considered as the weak learners and the RF (comprising
all trees) is the combined strong learner. Therefore a RF has no visualization and is not as easy to
interpret as a single decision tree. Finally, when a new input is tested on the constructed RF, it is run
down all of the trees and the final result is the average of all of the terminal nodes that are reached in
case of regression, and the majority vote in case of classification.73

For the RF machine learning model implemented in the R package caret two parameters can be
varied to improve performance. The varied parameters are the amount of trees that are produced
(ntree), and the tuneLength. Upon generation of a candidate set of parameter values (by the train
function), the tuneLength argument controls how many of them are evaluated. Additionally, the
random seed is used to control the randomness in order to assure reproducible results. Since RF is a
stochastic algorithm, the seed is used by the random number generator. It utilizes random numbers
during the phase where parameters are estimated and also for choosing the resampling indices.

Examples for other tree-based ensemble algorithms (with more tunable hyperparameters) that are
used within this Thesis work are regularized Random Forest (rRF), global regularized Random
Forest (rRFglobal), Extreme Gradient Boosted Trees (xgbTree), and Extreme Gradient Boosted Trees
with dropout (xgbDART).
In order to find the best set of hyperparameters, different techniques can be applied: exhaustive grid
search, random search, or Bayesian optimization. In the presented work, Bayesian optimization was
employed to select the best hyperparameters (5 to 7 depending on the method), which demands a
substantially increase in computational expense compared to the one-variable optimization required
for the RF algorithm.

1.2.3.2 Support Vector Machine (SVM)

Support Vector Machines (SVMs) are considered to be among the best supervised learning algorithms.
The basic idea of support vector machines is to find an optimal hyperplane for linearly separable
patterns. In order to do so, the margine of the hyperplane, which is the distance to the nearest
training-data point of any class, is maximized. Support vectors are the coordinates of individual
observations.
For patterns that are initially not linearly separable a transformation of original data is used to map
the data to a higher dimensional space in order to gain a linear separation. The transformations
are performed using kernel functions, more precisely, every dot product is replaced by the kernel
function in the resulting algorithm. Therefore, the classifier is a hyperplane in the transformed
feature space, even though it may be nonlinear in the original input space.73

• SVM with Linear Kernel (SVM_L): (method = "svmLinear") This is the basic SVM form (xTxi,
where x and xi are vectors in the input space), also considered without kernel, since no
transformation is performed.

• SVM with Polynomial Kernel (SVM_P): (method = "svmPoly") The polynomial kernel has the
form: (xTxi + c)p, where c ≥ 0 is a parameter trading off the influence of higher-order versus
lower-order terms in the polynomial, and power p, a tunable parameter (often set to 2).
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• SVM with Radial Basis Function Kernel (SVM_R):] (method = "svmRadial") also called Gaus-
sian, has the form exp(||x − xi||

2/(2σ2)) as kernel, with σ as tunable parameter. It is one of the
most popular kernel functions.

1.2.4 Structure-Based Virtual Screening (SBVS)

Structure-based virtual screening (SBVS) can be performed if the structure of the macromolecular
target of interest and also a chemical library is available. Its aim is to predict whether (or not) a
molecule binds to a protein using 3D information. For probing the potential interactions of ligands
towards the target receptor in silico docking of these ligands into the macromolecule is performed.
SBVS can be used to predict the binding mode of drugs, to define the important specific interactions
between ligand and target and finally also to discover a way to improve the drug by guiding further
derivatization to optimize specificity and/or affinity.

SBVS includes the docking of candidate ligands into a protein target and a following evaluation
of the likelihood of binding in this pose using a scoring function. Therefore, it consists of 2 parts:
The first part, the search algorithm, is supposed to generate “poses” (comprising conformation,
position and orientation) of the ligand within the active site.The second part, the scoring function,
is supposed to identify the most likely pose for an individual ligand and to assign a priority order
to a set of ligands. In order to do so, a pseudo energy score is calculated that estimates the binding
affinity between protein and ligand.

The major problem in this approach is the fact that it involves many degrees of freedom (rotation,
conformation) and also solvent effects that should be taken into consideration. On the other hand, to
be able to perform VS on hundreds of ligands each docking needs to be very fast. In order to reach
the required performance the complexity and the computational cost to calculate protein-ligand
binding needs to be reduced significantly. This results in a trade-off between speed and accuracy.74

Since accuracy is critical for successful VS,75 one of the biggest limitations in molecular docking lies
in the scoring function and in particular in its accuracy, because it relies on several assumptions and
simplifications.76

One of the biggest limitations in the applicability of structure-based methods is the lack of an
experimentally determined target structure.77 Moreover, often several structures are required in
different biologically relevant conformations, to sample sufficiently the protein’s conformational
space. Structures for many therapeutically relevant target receptors remain unavailable despite
major advances in structure solving techniques (such as X-ray crystallography or NMR). Therefore, if
comparative (homology) crystal structures of the protein target (structures of homologous proteins)
are available, they are used to model the actual target and are also useful to complete or refine partial
structures (such as loops).

3D structure modelling for targets

Homology modelling relies on the observation that the structural conformation of a naturally folded
protein is more highly conserved than its amino acid sequence, and that small changes in sequence
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usually result in only small changes in the 3D structure. In cases where no homologous structure
is available ab initio modelling has to be performed. Nonetheless, the model needs a degree of
accuracy that is sufficient to obtain reliable results for the subsequent docking. In general, if the
sequence identity is greater than 70%, the predicted model is very accurate producing good and
highly reliable results in VS. In the range between 35-70% of sequence identity VS is still feasible,
but a more detailed analysis of the binding pocket is recommended. Schafferhans and Klebe78 and
Oshiro et al.79 for example found that a 40% sequence identity was needed in order to obtain reliable
results in VS. Below 35% of sequence identity VS results are not very reliable and moreover, the
20-30% homology range is also called "twilight zone", because the quality of those homology models
may vary widely.

3D structure prediction for ligands

On the ligand side, 3D structures need to be predicted based on the information provided by the
databases containing the small molecule libraries. They provide valuable information to understand
physical, chemical, and biological properties of small molecules, including how they interact with
other molecules. Moreover, low-energy conformations for small molecules are important for many
molecular modelling and drug design methods. Concerning SBVS methods the initial conformation
submitted to a docking program can have an impact on the docking result (on the pose generation),
since docking programs attempt to sample efficiently the conformational space, but cannot perform
an exhaustive conformational search. There are various tools available (free ones and commercial
ones) that are able to calculate 3D structures based on the often provided molecular string format
"SMILES", such as OpenBabel,80 Frog2,81 RDKit,82, 83 Balloon,84 and COSMOS85 as free examples, or
CORINA86 and OMEGA87 as commercial ones. Additionally, small molecule databases may provide
their own 3D generator. For example BindingDB offers a download option of 3D conformations
generated by VConf (and partial charges generated by VCharge).88 To perform 3D structure
prediction for ligands in a high-throughput mode basic generators are often data-driven tools that
use libraries of fragment and torsion angle parameters. As this approach may lack accuracy in
some cases (e.g. for very complex molecules), dedicated optimization tools for small molecule 3D
structures have been developed and are sometimes already implemented in the generators. Still,
the generation of conformations for small molecules represents a problem of continuing interest
and tools are under constant development for sampling the conformational space and to score
conformational stability.89

1.2.4.1 Inverse virtual screening

Inverse (or reverse) VS involves the docking of a ligand (or a few ligands) against an array of protein
structures. In contrast to classical SBVS, which aims to find specific ligands, for inverse VS the
target space serves as filter. Here, the ligand(s) is/(are) used to select the ligand-specific protein
targets.59 Docking a ligand to many proteins can lead to the identification of targets with a shared
and/or specific activity. Therefore, by browsing the target space inverse VS can be regarded as
a complementary tool to VS, which can reveal information about common features of the target
structures. Consequently, inverse docking is a useful approach to investigate the underlying
molecular mechanism of a biological effect.90 Inverse docking also involves challenges. First of all, a
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panel of target structures needs to be available (or modeled), into which the ligands can be docked.
Furthermore, proteins often exist in several closely related isoforms. To rank these small differences
might be a challenging task for the scoring functions, since they are mainly trained to rank different
protein-ligand complexes and many ligands against a smaller number of proteins.90 Additionally,
the panel of structures still represent an incomplete description of most targets, as flexibility (as
coverage of the conformational space) is often not considered in an extensive way.

1.2.4.2 Ligand Flexibility in SBVS

Since the binding process can also involve intrinsic conformational changes of the ligand and the
receptor, sampling is a fundamental challenge for protein-ligand docking methods. How to best
model flexibility is still an open question: whether the bound conformation of the ligand should be
sampled and therefore predicted prior to or during docking. Nevertheless, the way and also the
extend to which docking algorithms explore this conformational space differs between different
docking software.91

In molecular docking the scoring function has two tasks: The first is to assist the docking program to
efficiently explore the binding space of a ligand, which partially mirrors the ligand flexibility, and
the second is the evaluation of the binding affinity once the correct binding pose is identified. In
general, scoring functions can be roughly classified into three types: (i) Force field-based scoring
functions, which employ a classic force field to compute the noncovalent ligand-target interactions;
(ii) Empirical scoring functions, in which regression or machine learning methods are used to
compute for example the binding affinity and (iii) Knowledge-based scoring functions, which
evaluate the interactions between the ligand and the target as a sum of distance-dependent statistical
potentials by assigning energy-like terms to the structural features of protein-ligand interactions
depending on their occurrence frequency.
Concerning the coverage of the conformational space, docking programs are able to generate ligand
conformations very similar to the crystallographic one and correctly identify active molecules.92

Scoring functions are less successful at ranking first the correct binding mode, success rates are
mainly target-dependent and moreover, useful ligand binding affinity predictions represent a main
challenge, since there is often weak correlation found between docking scores and measured ligand
affinity.92 The latter limitation is most likely due to the large number of approximations used
by docking scores to improve computation efficiency. For instance, there is usually no term that
accounts for the full entropic contribution on the binding event.

1.2.4.3 Target Flexibility in SBVS

In the physiological cellular environment proteins are dynamic, which is often crucial for their
function and activity. The protein binding pocket often adapts to accommodate an entering ligand
or a certain conformation of the conformational space of the protein is stabilized by the bound
ligand. Erickson et al91 showed that docking accuracy falls off dramatically if an "average" or apo
structure is used instead of an experimental crystal structure with a bound ligand, suggesting that
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the binding event itself introduces important movements. Those conformational changes can range
from minor movements of single side-chains to large shifts of whole secondary structures or even
domains. Therefore, the experimentally obtained crystal structures can currently be regarded as
static snapshots of the dynamic conformational space of the protein. Nonetheless, this static view
can be extended by ensemble refinement, by subsequent molecular dynamics simulations, or by
combining multiple experimental structures.

Docking involves a trade-off between the speed of the docking algorithm and its accuracy. Therefore,
by adding flexibility to the protein structure used for docking higher accuracy can be achieved, but
this also adds noise to the computation and increases the computational cost intensively. Especially
in large-scale virtual database screening this comes into play, since due to the high number of
compounds to be screened there is a practical limit of available computational time per compound.90

Unfortunately, the degree of required flexibility is not known beforehand for new ligand types. All
this underlines the fact that target flexibility represents one of the greatest challenges for docking
programs.

One way to circumvent the problem of small rearrangements is to perform "soft docking".
Implemented in several docking programs, it allows a small overlap of the ligand and the receptor
by reducing the actual volume of the atom spheres and therefore avoiding VdW clashes.93

Unfortunately, this could introduce errors like the detection of false positives, as affinity cliffs may be
ignored, and it also does not account even for slightly larger conformational changes like side-chain
rotations.
But nowadays, the ability to include side-chain flexibility (for a limited amount of side-chains)
by using libraries of preferred conformational states (e.g. sets of torsion angles) is fortunately
implemented in several docking programs, such as PLANTS,94 which is used in this study. As for
ligand flexibility, the same question, whether the conformational space should be sampled prior to
or during the docking process, persists with respect to target flexibility.
A way to take into account the flexibility of a macromolecular structure prior to docking is to
built an ensemble of static models, called "ensemble docking". Such an ensemble of structures
can be composed of several available crystallographic structures, and since more recently also
of a crystallographic structure refined as ensemble.95 Conformation ensembles can be generated
computationally, for example, by molecular dynamics (MD) simulation.96, 97This should avoid a bias
towards one protein conformation while implicitly including protein flexibility. Therefore, especially
long MD simulations (or advanced sampling methods) could help to sample the conformational
space of the receptor prior to docking.58 The difficulty in ensemble docking lies in the selection of
appropriate target structures e.g. from a MD trajectory. Since it is not possible yet to simulate large
macromolecules on a long enough time scale that is relevant for domain movement, new attempts
are needed to obtain a set of structures which represents the important conformational space a
protein adopts during activation or activity. One attempt to select relevant target conformations
is normal mode analysis, which has been demonstrated to be an effective tool,98 depending on
the amplitude of the observed movement. Unfortunately, additional noise is introduced by each
extra conformation added to an ensemble, which may mask the beneficial information it provides.
Generally, docking results are very sensitive to small variations (in protein side-chain and ligand
positions), which is demonstrated by the fact that re-docking in the same structure from which
ligands were extracted gives usually better results than cross-docking in different conformations of
the same target.99, 100 Therefore, the choice of the most appropriate receptor conformations is key for
the success of the VS experiments and for the results to be representative. This problem highlights
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the need for clear guidelines to select the structures that should compose an ensemble.

1.2.5 MM-PBSA - a Molecular Dynamics based method

Molecular mechanics energies combined with the Poisson-Boltzmann or generalized Born and
surface area continuum solvation (MM-PBSA and MM-GBSA) are widely used techniques for
binding affinity estimation, which are not based on any training dataset. They can be applied
even on single conformations, but are usually applied on sets of structural conformations (that
simultaneously provide error estimations). To produce these conformations Molecular Dynamics
simulations are commonly employed.

1.2.5.1 Introduction to Molecular Dynamics (MD) simulations

Molecular Dynamics (MD) simulations are increasingly employed to study biological molecules of
biomedical interest, in particular in the drug discovery field, where they are being more and more
used.101–103 MD simulations have been combined with a wide variety of different approximations
to study mobility related effects, such as the impact of protein motions on catalytic activity104 and
binding of ligands.105–108

The central ideas in MD simulations are that biological activity is the result of time dependent inter-
actions between molecules, that macroscopic observables (as observed in laboratory experiments)
are related to microscopic behavior on the atomic level, and that the microscopic behavior of a
molecule can be calculated by MD simulations. Major mistakes that can be made by performing a
computational experiment, such as a MD simulation, are very similar to the ones when performing a
wet-lab experiment - e.g sample preparation has not been performed correctly, the measurement is
not long enough, the system undergoes an irreversible change, or the measured quantities do not
correspond to what one thinks. Advantages of MD simulations are that they allow the prediction
of static and dynamic properties of molecules directly from the underling interactions between the
molecules and they permit to gain insight into situations that are impossible or difficult to study
experimentally, especially with atomic resolution and on short time scales (pico to micro seconds).

In standard MD simulations a molecule is described as a series of charged points (atoms) linked
by springs (bonds) and potential energy functions model the basic interactions. MD simulations
solve Newton’s equations of motion (for a system of N interacting atoms), which implies the use of
classical mechanics to describe the motion of atoms:

Fi = mi · ai = mi ·
δvi

δt
= m ·

δ2ri

δt2 , with i = 1...N (1.7)

MD simulations calculate the motion of the atoms in a molecular assembly using Newtonian
dynamics to determine the net force and acceleration experienced by each atom at a given time t.
Each atom i at position ri, is treated as a point with a mass mi and a fixed charge qi. The integration
of the equations of motion gives the initial structure with an initial distribution of velocities v(t0).
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Starting from the initial coordinates a trajectory is calculated with positions as function of time. The
potential energy is a function of the positions, so the acceleration, and since the positions vary as a
function of time, so does the acceleration. Temperature is related to the microscopic description of
simulations through the kinetic energy and the kinetic energy is calculated from the atomic velocities.
Different algorithms can be used to integrate Newton’s equations of motion. The most common one
is the Verlet algorithm (or slight variations of it) that solves the differential equations numerically at
discrete time steps (usually 2 fs) to determine the trajectory of each atom.109

A force field is built up from the set of equations (called the potential functions) used to calculate the
potential energies and their derivatives, the forces, and the parameters used in this set of equations.
The potential functions that are used to model atomic interactions can be subdivided into three
parts: 1. non-bonded (Lennard-Jones or Buckingham, and Coulomb or modified Coulomb); 2.
bonded (covalent bond-stretching, angle-bending, improper dihedrals, and proper dihedrals); and 3.
restraints (position restraints, angle restraints, distance restraints, orientation restraints and dihedral
restraints). Several force fields are commonly used in MD simulations, including AMBER,110–112

CHARMM,113, 114 and GROMOS,97, 115 which differ principally in the way they are parameterized.
Besides the choice of force field a user also has to choose the representation of water molecules,
the so called water model, since most biological processes occur in aqueous solution. Moreover,
solvation effects play a crucial role in determining molecular conformation, electronic properties,
binding energies, etc. When explicitly treating the solvent, the actual solvent molecules are added
to the molecular system. An alternative to the explicit water models is to use an implicit solvation
model, also termed a continuum model, where the solvent is modeled as a continuum dielectric.

Ensembles in MD simulations

Systems can be described by statistical ensembles that depend on a few macroscopically observable
parameters, which are in statistical equilibrium. In the microcanonical ensemble, also called (NVE)
ensemble, the system is isolated and the total energy is conserved (E), the number of basic particles is
conserved (N), and there is a boundary/volume limit (V). When the simulated system is embedded in
an infinite heat bath, but does not have particle exchange with this bath, it forms a canonical ensemble.
In the canonical ensemble the system temperature is conserved (not absolutely constant) (T), the
number of basic particles is conserved (N), and there is either a boundary limit (V) or a constant
pressure (p). They are also called (NVT) ensemble or (NpT) ensemble. The isothermal–isobaric (NpT)
ensemble corresponds most closely to laboratory or cellular conditions with constant temperature
and pressure and is therefore frequently used.

Steps in a typical MD simulation are:

1. Preparation of the molecule(s)/system under investigation;

2. Minimization - to reconcile the system with the force field used;

3. Equilibration - to reach the desired quantities of the system (temperature, pressure, etc) and to
ensure that it is stable;

4. Production dynamics - the actual simulation under desired conditions (NVE, NpT, etc) and
collection of data;

5. Analysis - includes the collection of data and evaluation of observables (macroscopic level
properties), or a comparison to single molecule experiments.
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Intrinsic limitations of MD simulations

As classical mechanics is used in MD simulations, the force field is a function of the positions
of atoms only. This means that the electronic motions are not considered (Born-Oppenheimer
approximation) and electron transfer processes, electronically excited states and chemical reactions
cannot be treated. Most force fields cannot incorporate polarizabilities, and do not contain
fine-tuning of bonded interactions. The omission of polarizability also means that electrons in atoms
do not provide a dielectric constant as they should. The subsequent overestimation of long-range
electrostatic interactions is slightly compensated by the fact that long-range interactions are cut off,
but this introduces its own artifacts. The classical way to minimize edge effects in a finite system
(e.g. to avoid real phase boundaries) is to apply periodic boundary conditions. In order to do so,
the atoms of the system to be simulated are put into a space-filling box, which is surrounded by
translated copies of itself. Unfortunately, for small systems the periodic boundaries may enhance
internal correlation and introduce errors.

1.2.5.2 Advantages and limitations of MM-PBSA

Free energy calculations have been shown to be useful for drug optimization, as it enables the
prediction of inhibitor activity and gives insights into the drugs thermodynamic signature.116 MM-
PBSA and MM-GBSA are continuum-solvation methods to estimate the binding free energy between
a ligand and a receptor to form a complex.117–125 The GB approach is a computationally more
efficient approximation to the PB theory, and thus usually less accurate. MM-PBSA has a lower
computational costs, compared to free energy pathway methods, and has a more sophisticated
computation of the free energy components, compared to common scoring functions. This makes
MM-PBSA an attractive method for drug design. The binding free energy (∆Gbind) is calculated with
the following equations:

∆Gbind = ∆H − T∆S = ∆EMM + ∆Gsol − T∆S (1.8)

∆EMM = ∆Einternal + ∆Eelectrostatic + ∆EvdW (1.9)

∆Gsol = ∆GPB/GB + ∆GSA (1.10)

where ∆EMM, ∆Gsol and −T∆S are the changes of the gas phase molecular mechanics energy, the
solvation free energy, and the conformational entropy upon binding, respectively. ∆EMM is the sum
of ∆Einternal (bond, angle, and dihedral energies), ∆Eelectrostatic (electrostatic), and ∆EvdW (van der
Waals) energies. ∆Gsol contains ∆GPB/GB, the electrostatic solvation energy (polar contribution),
and ∆GSA, the nonelectrostatic solvation energy (nonpolar contribution). The polar contribution is
calculated using either the PB or GB implicit solvent model, which estimates the change in the free
energy upon transfer of a charged molecule from gas-phase (modeled as a homogeneous medium
with a dielectric constant ε often set to 1 or 2) to solvent (modeled as a homogeneous medium
with ε=80), while the nonpolar energy is estimated by solvent accessible surface area (SASA).
The configurational entropy (entropic contribution T∆S) is either estimated using a rigid-rotor
harmonic oscillator approximation, applying normal mode analysis or quasi-harmonic analysis, or
completely neglected if only the relative binding free energy of similar ligands shall be analyzed.
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Finally, the binding free energy can be calculated as the difference between the free energy of a
complex and the sum of the free energies of its components by applying a thermodynamic cycle.
This difference between the free energies of the complex and its components is calculated either
from a single trajectory of the complex (“single-trajectory approach”) or from separate trajectories of
complex, receptor, and ligand (“three-trajectory approach”). Although the singe-trajectory approach
neglects the conformational flexibility of the unbound components, it is the most commonly applied
approach, especially when no large structural changes upon binding are expected. It benefits from
the reduced computational cost (one instead of three trajectories) and from a reduction of noise due
to the cancellation of intramolecular contributions and thus, the MM-PBSA analyses can be based on
shorter simulations as well.
It has been previously reported that using MM-PB/GBSA long MD simulations seem not to
result in better predictions and short MD simulations can be adequate in calculating binding
affinities,126, 127 and moreover that MM-PBSA can be applied to single-minimized structures instead
of MD trajectories.121, 128 In order to achieve a higher precision it has been suggested to run many
short independent simulations (produced by e.g. replicate sampling) instead of a single long one,
which should avoid underestimation of the uncertainty.129 All together, this enforces the approach
of using a rather small set of uncorrelated structures, which should balance out the trade off
between efficient VS and statistical significance. In analogy, the usage of NMR ensembles instead
of MD simulations has been proposed,130 and X-ray structure ensembles still need to be tested.
Nevertheless, MM-PB/GBSA is a technique mainly used for predicting relative binding energies
and not absolute ones, since several effects such as hydration/dehydration, entropy and binding
pathway contributions can hardly be taken into account.

1.2.6 Methodological overview with a special look on endocrine disruptors

The following Mini-Review (published in the journal Endocrinology) provides a methodological
overview of various computer-assisted approaches that use ligands and targets properties to predict
binding and focuses on endocrine disruptor activities.
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Endocrine-disrupting chemicals (EDCs) are a broad class of molecules present in our environment that

are suspected to cause adverse effects in the endocrine system by interfering with the synthesis,

transport, degradation, or action of endogenous ligands. The characterization of the harmful in-

teraction between environmental compounds and their potential cellular targets and the devel-

opment of robust in vivo, in vitro, and in silico screeningmethods are important for assessment of the

toxic potential of large numbers of chemicals. In this context, computer-aided technologies that will

allow for activity prediction of endocrine disruptors and environmental risk assessments are being

developed. These technologies must be able to cope with diverse data and connect chemistry at the

atomic level with the biological activity at the cellular, organ, and organism levels. Quantitative

structure–activity relationship methods became popular for toxicity issues. They correlate the

chemical structure of compounds with biological activity through a number of molecular descriptors

(e.g., molecular weight and parameters to account for hydrophobicity, topology, or electronic

properties). Chemical structure analysis is a first step; however, modeling intermolecular interactions

and cellular behavior will also be essential. The increasing number of three-dimensional crystal

structures of EDCs’ targets has provided awealth of structural information that can be used to predict

their interactions with EDCs using docking and scoring procedures. In the present review, we have

described the various computer-assisted approaches that use ligands and targets properties to predict

endocrine disruptor activities. (Endocrinology 160: 2709–2716, 2019)

During the past decades, a large number of obser-

vations have shown that many exogenous sub-

stances can interfere with hormone levels or hormone

action and, in turn, induce toxic effects. This has led to

the identification of endocrine disrupting chemicals

(EDCs) as a new class of toxic agents that will not be

recognized, at first, by their chemical structure or by a

specific type of usage but, rather, by their mechanisms of

action (1–3). EDCs are exogenous substances that in-

terfere with the function of hormonal systems and

produce a range of developmental, reproductive, neu-

rologic, immune, or metabolic diseases in humans and

wildlife (4). Most EDCs are man-made chemicals pro-

duced by industry and released into the environment.

However, some naturally occurring EDCs can also be

found in plants or fungi. Exposure to EDCs occurs

through ingesting food, drinking water, breathing con-

taminated air, or skin contact. The group of molecules

acting as EDCs is highly heterogeneous and includes

compounds that are often distantly related to endoge-

nous ligands in terms of size or chemical structure. This

group contains substances such as plasticizers (e.g.,

bisphenols, phthalates), preservatives (e.g., parabens),

the byproducts of various industrial processes (e.g., di-

oxins), surfactants (e.g., alkylphenols, perfluoroalkyls),

biocides (e.g., organotins), flame retardants (e.g., halo-

genated bisphenols), and ultraviolet filters (e.g., ben-

zophenones) and natural compounds such as the

phytoestrogens genistein and daidzein or the mycoes-

trogen zearalenone.
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EDCs can affect the endocrine systems of an organism

in a wide variety of ways, for example, by mimicking

natural hormones, antagonizing their action, or modi-

fying their synthesis, metabolism, and transport through

their interference with multiple cellular targets. These

include membrane and nuclear receptors, the aryl hy-

drocarbon receptor, the enzymatic machineries involved

in hormone biosynthesis and metabolism, and various

carriers. Within the chemical regulations, criteria to

identify EDCs have been recently proposed, which re-

quire information on a chemical’s endocrine mode of

action and related adverse effects relevant for human

health. This involves the screening and testing of EDCs

and mainly incorporates internationally accepted test

methods developed under the Organization for Eco-

nomic Cooperation and Development. In this context,

the development of accurate in silico testing strategies

could help to elucidate or confirm the suspected mode of

actions and might suggest associated adverse effects by

predicting the repertoire of molecular targets of EDCs. It

might also provide guidelines to select or optimize

molecule usage or designed to prevent unwanted

activities.

Approaches to predict toxicity or activity against a

particular target for a putative EDC can be divided

according to the nature of data they are using and by their

demand in computational resources. One of the simplest

tools is ADME (Absorption, Distribution, Metabolism,

Excretion)-Tox filters often used by pharmaceutical

companies. Those can be based on composition rules (5),

for example, specific chemical groups that should be

avoided because they have shown adverse effects in the

past (6). Another method of investigating the problem is

drug-induced metabolic perturbation studies. These are

based on metabolic network modeling using large-scale

“omics” data, metabolic stability estimations, and mode

of action analyses (7–10). Some of them have been shared

with usual ADME-Tox issues such metabolization by

cytochromes P450. The general methods for in silico

toxicity prediction have been previously reviewed (7,

11–13). EDCs fall into particular niches of the available

chemical space optimized for other properties and only

partially mimicking natural hormones. They often differ

in chemical structure from most medicinal and endoge-

nous compounds and are encountered at unexpectedly

high concentrations in the environment and living or-

ganisms [e.g., bisphenol A (BPA), organotins]. Therefore,

dedicated approaches are needed to detect the endocrine

disruption potential.

The focus of the present review was centered on the

field of prediction methods that aim to qualify the in-

teraction between given small molecules, as potential

EDCs, and a focused set of macromolecular targets. This

is a very large field of research with many different

methods that have been developed. Each method has its

strengths, limitations, scope of application, and speci-

ficity of interpretation. The first questions to be asked

upfront include the following: How much data are

available? What is the nature of this data? How fast are

results required? What is the minimal required accuracy

of the prediction? What resources are available? Having

those questions in mind, the goal is to find the most

effective method. In addition to the classification into

high-, medium-, and low-throughput methods, the

available approaches can be classified further according

to the type of data used. Most often, chemoinformatics

methods will be classified as ligand-based and target

structure-based approaches (Fig. 1) (14). Depending on

the amount of data and the need for screening large data

sets, the corresponding method should be chosen. This

clearly involves a tradeoff between the amount of mol-

ecules, speed, and accuracy. However, combinations of

techniques are emerging to improve overall efficiency and

applicability. We first surveyed ligand-based virtual

screening techniques as quick filters and then the role of

structure-based virtual screening and discussed their

potential combination. In both cases, one must ade-

quately describe the studiedmolecules, which will usually

start by extracting or writing its chemical formula as a

linear string of atoms, such as SMILES (simplified

molecular-input line-entry system) (Fig. 2), to be sub-

sequently transformed into various other representations

[two-dimensional (2D), three-dimensional (3D)] either

for comparison with other molecules (i.e., similarity

searches, properties comparisons) in ligand-based virtual

screening or by docking into putative targets (i.e., in

structure-based virtual screening).

Ligand-Based Methods

The so-called quantitative structure activity relationship

(QSAR)/quantitative structure property relationship

prediction models have been developed to predict a

particular activity or property of the molecule in ques-

tion. The simplest approaches have been based on the

calculation of molecular descriptors that consider the

molecule as a whole entity and calculate one value for

the whole molecule (e.g., molecular weight). The least

expensive in terms of computational cost are models

based on binary representations of molecules, called

molecular fingerprints, or molecular descriptors (Fig. 2).

These fingerprint representations can be binary in nature

(property present or absent, yes or no, or 1 or 0), which

only reflects the presence (or not) of a given feature or a

count representation (sum of the instances for each

feature). Millions of compounds can be screened within a

2710 Schneider et al Prediction Methods for Endocrine Disruptors Endocrinology, November 2019, 160(11):2709–2716
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reasonable period. Different types of fingerprints repre-

sent different properties of molecules, and it is, therefore,

crucial to select an adequate type for modeling the desired

activity. Many different types of molecular descriptors

are available and might already be an output of a

property prediction. Molecular descriptors and chemical

fingerprints can be classified according to their di-

mensionality (Fig. 2). One-dimensional descriptors are

scalars that describe the molecule according to its

chemical formula (e.g., molecular weight, atom counts,

or bond counts). Two-dimensional descriptors are based

on the structural topology, such as fragment counts or

functional group counts (e.g., alcohol function or aro-

matic ring). Three-dimensional descriptors extract in-

formation from 3D coordinate representations and are,

therefore, based on the molecule’s geometry. Four-

dimensional descriptors are an extension of the 3D de-

scriptors, which consider multiple conformations. In

the case of 3D and four-dimensional descriptors, the

computational effort will have already increased sub-

stantially and the borders toward the so-called structure-

based methods will tend to vanish. All these descriptors

allow for a rather rapid similarity search and classifi-

cation to deduce or predict functional properties. Various

in silico QSAR tools and, even, servers, namely the

Organization for Economic Cooperation and Develop-

ment QSAR toolbox (https://qsartoolbox.org/), VEGA

HUB (https://www.vegahub.eu/), or CAESAR (http://

www.caesar-project.eu/), to cite a few, are available,

and open challenges have now been implemented to

evaluate them more fairly, such as the Tox21 (“toxicity

testing in the twenty-first century” initiative) project.

DeepTox, the winner of the “Tox21 Data Challenge

2014” obtained excellent performances with a deep

multitask neural network using ECFP4 fingerprint fea-

tures (15).

In general, ligand-based methods will be very re-

stricted to the chemical space of the molecules used for

Figure 1. Affinity prediction methods grouped by ligand-based and structure-based methods and ranked by accuracy, computational effort and

speed, and number of molecules that can be used. 1D, one-dimensional; 4D, four-dimensional.

Figure 2. Molecular representations used by different methods, which were classified by the overall methodology (ligand-based virtual screening and

structure-based virtual screening) and according to the dimensionality [one-dimensional (1D), 2D, 3D, four-dimensional (4D)] of the variables used.
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method development, especially if only a limited amount

of data are available for model training. This can cause

disappointing performances, especially in projections or

extrapolation to new and dissimilar compounds (16).

Therefore, the definition and declaration of an applica-

bility domain—a region in the chemical space for which a

QSAR model should make predictions with a given

reliability—is considered as a necessary good practice for

those model types (17). The quality of experimental data

is also essential for valuable modeling as recently illus-

trated on the estrogen receptors (ERa, ERb), which are

two of the most extensively studied targets with respect to

endocrine disrupting effects (18, 19). Regulation rules

have been devised by the US Food and Drug Adminis-

tration that require the assessment of estrogenic activity,

and effort have been made to predict for ER binding (20,

21), including a large collaborative project (22). The

latter, which compared numerous models and data sets,

showed that poorly evaluated data sets are of little help

for improving prediction quality despite providing ex-

perimental data for thousands of ligands. Similarly, other

steroid hormone receptors, such as the androgen re-

ceptor, have been targeted for model development

(23–26). To evaluate the risk of being EDCs, the pre-

diction of a specific mechanism such as binding to a

particular receptor is preferred for its expected greater

accuracy and low cost. General models that aim at

predictions on large protein families are less common.

EDCs are active against specific targets of diverse nature

(enzymes such as cytochromes P450 or DNA-binding

proteins such as nuclear receptors). Accordingly, dedi-

cated models might be required in agreement with their

experimental characterization.

Structure-Based Methods

The increasing knowledge of functional and structural

data has allowed for the evaluation or prediction of the

potential interactions of known or putative EDCs to

various targets using docking or more demanding ap-

proaches [e.g., molecular dynamics (MD); see the next

paragraph]. Structure-based methods, also called target-

based methods, use information from a protein target 3D

structure and are spanning a large scale in terms of

computational cost. Docking procedures are the most

widely used in virtual screening campaigns and can

manage to thousands of ligands. They are based on

sampling the conformational space of a given ligand in

the binding pocket of a target molecule and a subsequent

pose evaluation performed by scoring functions. Al-

though the sampling of many widely used algorithms has

seemed to be sufficient to find accurate poses (defined

by reproducing crystallographic poses), the scoring

functions still seem to suffer from diverse approximations

(27–29). Accordingly, docking, followed by various

rescoring procedures, is now commonly used to screen

large molecular data sets in drug discovery (27, 29). This

has been applied for endocrine disruption prediction on

the androgen receptor (24, 25, 30) and other nuclear

receptors (31–33). Automatic docking to 16 putative

targets of EDCs or 14 distinct nuclear receptors has been

made user-friendly through two servers, the Open-

VirualToxLab (34) and Endocrine Disruptome (35).

However, structure analysis has also revealed the im-

portance of protein flexibility. Adequately modeling

target flexibility is a major limitation that has been

addressed using structure ensembles, instead of single

conformations (36). One approach is to use multiple

experimental conformations in parallel for docking and

gather the results to extract the best or more likely poses.

A derivative of our server for comparative modeling

“@TOME” (37) now includes a docker (to be described

in more detail elsewhere). This allows for the selection of

the protein conformation best suitable to accommodate

a given ligand. This dedicated server called EDMon

(Endocrine Disruptor Monitoring; available at: http://

edmon.cbs.cnrs.fr/) is now available to screen for ERa,

ERb, and peroxisome proliferator–activated receptor-g

(PPARg). It predicts for affinities using a rescoring ap-

proach based on machine learning (38). However, the

problem is still severe for promiscuous proteins, such as

the nuclear receptors CAR (constitutive androstane re-

ceptor) and PXR (pregnane X receptor) (39). The dozen

of structures described to date for these receptors have

shown dramatic structural rearrangements on ligand

binding, and more experimental 3D structures are nec-

essary to reach a better description of the conformational

landscape they could access.

Alternatively, to unravel or model intrinsic protein

flexibility and possible ligand-induced fit, MD simula-

tions can be used but at a significantly greater compu-

tational cost (e.g., one to several weeks using a standard

workstation). MD-based prediction methods require

more effort with respect to system setup and analysis, and

they are usually not provided as simple “plug and play”

modules, such as is the case for many commercial or

noncommercial docking tools. To date, MD simulations

have already been used to study the structural flexibility

and the dynamics of binding events of several nuclear

receptors (40–45), with and without further investigation

of small molecule-binding affinities. The server Open-

VirualToxLab (34) provides easy access to focused MD,

which is used to refine and evaluate theoretical com-

plexes deduced from docking into 16 EDC targets. In

general, MD-based affinity estimation protocols can be

divided into two major groups: endpoint methods and

2712 Schneider et al Prediction Methods for Endocrine Disruptors Endocrinology, November 2019, 160(11):2709–2716
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free energy pathway methods. The endpoint methods, as

already indicated by the name, consider the two “end”

states of the system: the bound and the unbound mole-

cules. Two commonly used ones include the MM-PBSA

(molecular mechanics Poisson-Boltzmann surface area)

(46, 47) and MM-GBSA (molecular mechanics gen-

eralized born surface area) (47–49). These computa-

tions can be adjusted to a particular system through

parametrization within the so-called linear interaction

energy method (24, 50–52). For example, MD simula-

tions, followed by MM-PBSA calculations, have been

used to study the structural effects and interaction

mechanism of BPA with three human nuclear receptors,

ERa, ERRg (estrogen-related receptor-g), and PPARg

(53) or to determine the binding of bisphenols BPA,

bisphenol AF, and bisphenol S to ERa (54). These

computations require some expertise but can be per-

formed using a personal workstation and are now often

applied on several dozens of compounds against a given

target. They allow for rescoring of docking poses using

physics-based approaches; however, their usefulness has

continued to be debated. Furthermore, the standard MD

techniques can suffer from an insufficient sampling of the

conformational space of the target molecule. This can

occur for different reasons, such as large conformational

movements during binding, slow transitions between

states, rare events, or high-energy barriers that must be

overcome. In such cases, a set of different computational

methods has been proposed—the free energy pathway

methods such as transition path sampling, umbrella

sampling, steered-MD, and funnel-metadynamics (55–59).

Among the free energy pathway methods is a subgroup

of alchemical methods represented by the thermal in-

tegration (60, 61) and free energy perturbation (62, 63)

methods. Recently, a combination of methods has been

applied to toxicity studies for the identification of

possible ligand binding modes to PPARg (64). How-

ever, those approaches are even more demanding in

central processing unit time and are not commonly

performed for toxicity predictions.

Finally, extremely precise energy estimations can be

computed using quantum mechanics (QM) but at huge

computational cost. Thus, QM is often restricted to

modeling of the binding site. Mixed/hybrid approaches

will allow for computation locally of a QM procedure,

and a standard MD approach is applied to the rest of the

molecular system under study. Quantum effects might be

required to correctly estimate particular molecular in-

teractions when atomic bonds are broken or reformed

during the binding event or for predicting the reaction

rates in drug metabolism, which is the case for cyto-

chromes P450 (65–67). Free-energy estimation and QM

have been performed on a very limited number of

complexes. However, their exquisite characterization of

molecular structures and interactions might help to

precisely define various chemical properties (i.e., con-

formation, charge, reactivity) and/or to parametrize

quicker methods (e.g., for scoring or docking).

Current Limitations and Future Directions

Because the US ToxCast program and the European

Union’s Registration, Evaluation, Authorization, and

Restriction of Chemicals regulation aim to assess the

toxicity of more than 100,000 synthetic chemicals, a

strong demand exists for alternative test methods and, in

particular, such computational tools that will allow for

the reduction of the cost of the evaluation and in animal

lives. Despite recent major advances in the field of affinity

prediction resulting in numerous tools and diverse ap-

proaches, one must remember their limitations. One of

the major concerns of ligand-based in silico prediction

methods is its high dependency on experimental data.

The presence of inconsistent and erroneous data during

the training process can lead to biased and inaccurate

predictions and the applicability domain is a major

prerequisite that needs to fit for reliable predictions.

Large-scale high-throughput experimental testing to

generate coherent databases and curation of the existing

ones would help generate more accurate prediction

models. The QSAR approaches available usually display

applicability domain centered on the training data and

struggle to yield reasonable predictions for highly un-

balanced data sets. The current development and com-

bination of novel statistical and machine/deep learning

approaches are likely to generate novel in silico models

that could manage highly unbalanced data sets, allowing

for the applicability domain to expand beyond the

training data.

Concerning target-based methods, its dependency is

more reduced. However, the issue of potentially un-

known structural changes still exists. An inherent limi-

tation of any modeling tool is its parametrization for all

possible chemistries. Currently, knowledge is lacking

regarding the proper evaluation of protein–ligand in-

teractions involving halogen atoms, metals (e.g., orga-

notins), or newly used entities such as organoborans. In

addition, such compounds have been previously dem-

onstrated to act as EDCs. More crystal structures would

be necessary to reflect the conformational landscape of

the target receptors in a more comprehensive manner and

help in training docking tools with exotic atoms. This

suggests the need for tighter interactions between

structuralists and predictors to tune experimental works

to fill in the gaps in structural and/or functional data.

Another difficulty not easily manageable, especially for
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large chemical data sets, is the possibility for simulta-

neous binding of two or more cases of the same molecule

(especially for small compounds) and/or of distinct

molecules (mixtures) in a cooperative and/or allosteric

fashion. Developing dedicated tools will be necessary to

manage this task correctly to predict potential “cocktail

effects” (68). For different protein targets (16 listed to

date for EDCs), different techniques are already available

and have been applied with varying rates of success. Not

only for nuclear receptors or cytochromes P450, but also

for ion channels such as the hERG (human ether-a-go-

go-related gene) potassium channel, different methods

from ligand-based and target-based to systems biology

have been applied (69).

Finally, cascading prediction tools and filters will be

necessary to (i) account for potential metabolization that

creates unexpected or new chemical entities with new

properties, (ii) detect nonclassic properties [e.g., covalent

attachment (70), multiple binding], (iii) combine QSAR

and docking, or (iv) start to predefine structural en-

sembles for quicker estimation of receptor flexibility to

derive more accurate predictions. The latter might help in

accessing better description of flexible complexes and

avoid the burden of long simulations. Next, one could

dream of combining those studies with mathematical

models at the cellular level and in the endocrine system.

Hence, room exists for further improvements in which a

fruitful interplay between modeling and experimental

characterization should be promoted.
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50. Åqvist J, Medina C, Samuelsson J-E. A new method for predicting

binding affinity in computer-aided drug design. Protein Eng. 1994;

7(3):385–391.
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1.3 Fighting cancer: drug targets, antitargets and resistance

Cancer is an umbrella term for a large family of diseases that involve abnormal cell growth with
the potential to spread and invade other tissue. It is characterized by the presence of one or several
tumors that are formed upon transformation of initially normal cells. In a healthy organism the
immune system can usually cope with and eliminate cancer cells, nevertheless progression can occur
giving rise to tumor formation. The tumor transformation is initially caused by mutation and results
into a loss of control of the cell cycle, insensitivity to apoptosis, and abnormalities of DNA repair,
which finally leads to the abnormal cell growth. Cancers are classified according to the type of cell in
which the first transformation occurred, forming the primary tumor. The spreading of tumor cells
from the primary site to different sites, which may involve the invasion of other tissue, is called
metastasis and often means that chances for a complete cure of the cancer decrease. The mayor
strategies to fight cancer are surgery, immunotherapy, chemotherapy and radiotherapy.

Most chemotherapeutic drugs work by impairing cell division in different ways and tumors with
high growth rates are more sensitive to chemotherapy. Examples of non-specific drugs are cisplatine
that works in part by binding to DNA and inhibiting its replication, fluorouracil that is believed to
block DNA production by inhibiting thymidylate synthase, and antifolates that are antimetabolite
medications competing with folic acid and thus inhibiting cell division, DNA/RNA synthesis
and repair and protein synthesis. At the same time, many chemotherapeutic side effects can be
attributed to the damage of normal cells that divide rapidly, such as cells in the bone marrow,
digestive tract and hair follicles.14 Targeting the proteins that are activated upon mutation or proteins
involved in the affected pathways is a prominent approach when developing chemotherapeutic
drugs. Unfortunately, chemotherapy is not always effective, and it may not completely destroy the
cancer. Further problems related to ADME and toxicity issues may occur and differ between patients.
Resistance is also a major cause of treatment failure in chemotherapeutic drugs. There are different
possible causes of resistance in cancer, e.g gene amplification or alteration of gene expression (such
that cell division is not impaired), the drug’s metabolism (inactivation), the drug’s export from the
cells by pumps, and further mutations of involved proteins.

Within the presented work the focus is on three targets that are involved in cancer treatment in
different ways: The oncogenic protein kinase BRAF, which is the primary target of the presented
drug design project; the Pregnane X Receptor (PXR), a nuclear receptor that is dedicated to cell
detoxification (small molecule clearance) and therefore a potential secondary target to be avoided by
most drugs; the Estrogen Receptor alpha (ERα), a nuclear receptor as primary target for different
cancer types, in particular breast cancer, and a secondary target to be avoided by a broad spectrum
of drugs in order to avoid endocrine disruption.

1.3.1 Oncogenic protein kinase BRAF

BRAF is one of the three isoforms (with CRAF and ARAF) of the Rapidly Accelerated Fibrosarcoma
(RAF) family of catalytically competent serine/threonine protein kinases (two pseudokinases, KSR1
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and KSR2, are also included in the RAF family). BRAF plays a vital role in the RAS/RAF/MEK/ERK
signalling cascade, which is also known as mitogen-activated protein kinase (MAPK) pathway
(Figure 1.1), and participates in cell proliferation and survival.131 Upon induction of conformational
changes by RAS binding, stimulating the formation of active RAF homodimers or heterodimers, RAF
changes its phosphorylation status, which triggers its kinase activity that activates MEK (MEK1 and
MEK2), which in turn phosphorylates downstream ERK (ERK1 and ERK2). In contrast to the RAF
and MEK kinases, ERK has a broad substrate specificity and is able to phosphorylate houndreds of
different proteins.132 As RAS is mutated in approximately 30% of human cancers, the development
of inhibitors has been under investigation for a long while, but without significant success.133 In
addition, the oncogenic activation of BRAF induces constitutively and RAS-independently the
MAPK pathway leading to the uncontrolled amplification of downstream signalling, which involves
an increase of proliferation and finally tumorigenesis.134 Many mutations (>30) of the BRAF gene
associated with human cancers have been identified.135 These are involved in approximately 100%
of hairy cell leukemia,136 50% of melanomas, 45% of thyroid, 10% of colon, and 8% of ovarian
carcinomas.137 The most common mutation, accounting for approximately 90% of the detected
BRAF mutated cases, is the replacement of valine with glutamic acid at position 600 (shortly V600E),
which is located within the activation segment of the kinase domain and destabilizes the inactive
conformation. This mutation leads to a constitutive kinase activity that is about 500-fold increased
compared to wild type (WT) BRAF. Moreover, in contrast to the WT BRAF-V600E is signalling
as a monomer and insensitive to ERK negative feedback mechanisms.138 Therefore, inhibiting
BRAF-V600E is a promising strategy for cancer treatment.

Figure 1.1: MAPK pathway activation. RAS activation promotes the formation of RAF dimers. RAF phos-
phorylates MEK, which upon activation phosphorylates ERK. ERK phosphorylates many different targets
and also exerts a direct negative feedback by phosphorylating and thus regulating CRAF and MEK activity.
The BRAF-mutant V600E is constitutively signalling as a monomer and insensitive to ERK negative feedback
mechanisms. Paradoxical activation of ERK in BRAF-wild-type cells occurs via transactivation of RAF dimers.
The dotted hammers represent pathway-induced feedback inhibition.
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1.3.1.1 Structural basis of BRAF activation

BRAF is composed of a total of 766 amino acids and the overall architecture (from N to C terminus) is
the following: The most N-terminal can be found a BRAF specific domain (being absent in ARAF and
CRAF) that mediates homo- and hetero-dimerization139 and interacts with the two pseudokinases
(KSR1 and KSR2) of the RAF family.140 All three RAF isoforms (ARAF, BRAF, CRAF) share three
conserved regions, namely CR1, CR2, and CR3. CR1 contains a RAS-binding domain and a cysteine-
rich domain, interacting with RAS and membrane phospholipids. CR2 is a serine-threonine rich
domain, whose binding to the regulator protein 14-3-3 is followed by phosphorylation of serine 365
that inactivates the kinase.141 CR3 is composed of the protein kinase domain and a C-terminal tail,
which contains a regulatory serine residue (S729).

The protein kinase domain consists of 261 amino acids (residues 457–717), it has a typical kinase
structure with two domains, the N-terminal and C-terminal lobe, linked via a flexible hinge segment.
The small N-terminal lobe contains five β-strands (β1-5) and one α helix (αC). The large C-terminal
lobe contains seven helices (αD-I and αEF) and four β-strands (β6-9). The deep cleft between the
two lobes forms the active site pocket where ATP and peptide substrate or an inhibitor can bind.
The kinase domain has several structurally and functionally important regions: 1) the flexible
glycine-rich loop GSGSFG (residues 464-469), permitting ATP binding and ADP release during a
catalytic cycle, 2) the regulatory αC helix with a conserved glutamate (E501) forming a salt bridge
with the catalytic lysine (K483) in the β3-strand (as for all active kinases), 3) the hinge QWCEG
(residues 530-534) that permits the movement of the two lobes with respect to each other, 4) the
catalytic loop HRDLKSNN (residues 574-581), and 5) the flexible activation loop (a-loop) (residues
594-623), containing the activation segment, which is usually the phospho-acceptor site, starting
with the DFG-motif containing the magnesium-binding D594 and the regulatory F595. BRAF also
possesses the signature K/E/D/D (residues 483/501/576/594) required for catalysis, with lysine
and glutamate being located in the N-terminal lobe and the two aspartates in the C-terminal lobe.
The relative positioning of the αC helix and the DFG-motif orientation are important factors for
kinase activation. When the αC helix is positioned close to the ATP site (αC-in position), which
is required for an active conformation, the mentioned salt bridge between the β3-lysine and the
αC-glutamate is established. If this interaction is not possible, the αC helix is shifted away from the
ATP site (αC-out position), adopting an inactive conformation. The αC-in conformation is required,
but not sufficient for catalytic activity. In the active conformation the DFG-D is directed towards
the base of the αC helix and the active site (DFG-in conformation), where it can bind one of the
two magnesium ions required for catalysis, but it can also shift outwards (DFG-out conformation),
where the motif itself occupies part of the ATP binding site rendering the conformation inactive.
Moreover, the relative orientation and vertical alignment of certain hydrophobic residues, forming
the catalytic spine (residues A481, V471, F583, L584, I582, L537, L649, V645) and the regulator
spine (residues F516, L505, F595, H574, D638), is equally important for kinase activation. In brief,
structural requirements for a catalytically active kinase conformation are a closed configuration of
the two lobes, a DFG-in/αC-in conformation, and an extended a-loop with an unfolded activation
segment. The a-loop is highly flexible and large parts of it are unresolved in most BRAF crystal
structures. The BRAF active site can be subdivided into the adenine (ATP base), the ribose (ATP
ribose), hydrophobic, inhibitor type I and type II subpockets.
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Structural consequences of the BRAF V600E mutation

Several structural consequences may arise from the BRAF V600E mutation. In the WT structure
the activation segment (containing V600) can fold into a short helix and form hydrophobic
contacts with the αC helix stabilizing the inactive αC-out conformation. The consequent steric
clashes within this conformation upon V600E mutation may induce the active αC-in confor-
mation. Another mode of interaction of V600 that seems to facilitate an inhibited kinase state
(with folded a-loop) includes interactions of V600 with G-rich-loop residues. Accordingly, the
V600E mutation provokes unfolding of the activation segment and extension of the a-loop, pro-
moting the active state, which may be stabilized by a salt bridge between V600E and αC-lysine 507.142

1.3.1.2 BRAF inhibitors

ATP-competitive BRAF inhibitors, such as vermurafenib,143 sorafenib135 and dabrafenib144 have
been developed in order to block the MAPK signalling pathway and decrease tumor cell growth in
cells expressing the BRAF mutant V600E. Selective targeting of BRAF-V600E is a proven therapeutic
strategy for the treatment of metastatic melanoma and the drugs vemurafenib and dabrafenib
have been approved by the U.S. Food and Drug Administration (FDA) for treatment of late-stage
melanoma in 2011 and 2013, respectively.145–147 Both drugs show improved response rates and
overall survival of BRAF-V600 mutant melanoma patients, but unfortunately, due to rapidly acquired
resistance most patients relapse within a year.148

The paradoxical effect

The formation of homo- or heterodimers is an important step in the activation of wild type BRAF, as
the monomers are generally inactive due to autoinhibition by the N-terminal domain. Vemurafenib
and dabrafenib produce the paradoxical activation of the MAPK pathway in wild type BRAF cells.
While inhibiting the BRAF-V600E mutant the drugs induce the opposite behaviour in wild type cells,
leading to skin lesions and promoting growth and metastasis of tumor cells with RAS mutations.
Here, the clinical importance of RAF dimerization is apparent as essential factor, since the inhibitor
is most likely unsuccessful in targeting BRAF homodimers or BRAF-CRAF heterodimers. Activation
may occur when the inhibitor is not able to effectively inhibit both protomers of the dimer, leaving the
unoccupied protomer active. It has also been suggested (e.g. for vemurafenib) that the inhibitor may
induce a transactivation of the unoccupied protomer within the dimer as a result of a conformational
change.133, 142, 148

To avoid this paradoxical effect and to increase treatment efficacy and finally survival time, com-
bination therapies have been developed that target both BRAF and downstream MEK. The FDA
has approved three combinations BRAF and MEK1/2 inhibitors for the treatment of advanced
melanoma with a BRAFV600E mutation: vermurafenib and cobimetanib, dabrafenib and trametinib,
and encorafenib and binimetinib.133 Dabrafenib in combination with trametinib is since recently also
approved for metastatic non-small cell lung cancer harboring BRAF V600E mutations.149

To date, it can be distinguished between three generations of RAF kinase inhibitors. The first
generation contains only one inhibitor that is approved by the FDA, sorafenib, a biarylurea derivative.
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As it has demonstrated only weak affinity for the mutated BRAF-V600 and shows a broad specificity,
the clinical effects are supposed to arise from multikinase targeting. The second generation includes
vemurafenib and dabrafenib that show remarkable effectiveness in BRAF-V600E tumors, but no
effect on non-V600 mutants and the paradoxical activation in WT cells may lead to secondary
cancers. Both drugs vemurafenib and dabrafenib demonstrate a type I1/2 binding mode with BRAF
in αC-out/DFG-in conformation. They occupy the type I subpocket with their sulfonamide head
group and H-bonding to the DFG motif, the hydrophobic subpocket is occupied by the adjacent
di-/fluorophenyl group, and the adenine subpocket by the azaindole/aminopyrimidyl moiety
forming H-bonds with the backbone of hinge residues. Their binding differs only with respect
to the occupation of the ribose subpocket, which is only occupied by the butylthiazol group of
dabrafenib. Encorafenib, another second generation inhibitor, shows a particularly low off-rate from
BRAF compared to vemurafenib and dabrafenib,150 leading to a longer residence time and increased
selectivity for BRAF-V600E.151 Encorafenib, containing also a sulfonamide head group, is expected to
show a similar binding mode as vemurafenib and dabrafenib, type I1/2, with the BRAF conformation
αC-out/DFG-in.

Drug name Chemical structure Binding mode
PDB codes

(Resolution)

in vitro
IC50/Ki

[nM]

Vermurafenib 3OG7 (2.45Å)
4RZV (2.99Å)

31

Dabrafenib
4XV2 (2.5Å)

5CSW (2.66Å)
5HIE (3.0Å)

0.8

Encorafenib - - 0.3

Table 1.1: Details of the three FDA approved second generation BRAF inhibitors vermurafenib, dabrafenib and
encorafenib, with affinities for BRAF-V600E.142

Pharmacokinetics and metabolic drug-drug interactions of dabrafenib

Dabrafenib is a potent and selective inhibitor for BRAF-V600E, but it has been found that its
bioavailability decreases rather rapidly (with a half-life of ∼5 hours152), which is likely due to
induction of its own metabolism through cytochrome P450s (CYPs).152–158 It is estimated that
CYP-mediated oxidation contributes to over 70% to the metabolism of dabrafenib in vivo.154 The
metabolic pathway of dabrafenib (DB) and its three identified major metabolites hydroxy-dabrafenib
(HDB), carboxy-dabrafenib (CDB), and desmethyl-dabrafenib (DDB) is depicted in Figure 1.2.
Dabrafenib metabolism is mediated by CYP3A4 and CYP2C8. DB is metabolized to HDB (by
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CYP3A4 and CYP2C8), further oxidized to CDB (by CYP3A4), and decarboxylated to DDB
(pH-dependant). CYP3A4 is also involved in further metabolism of DDB to minor oxidative
metabolites.153, 155 The half-lifes of HDB, CDB, and DDB are estimated to 5.7, 17.5, and 20.4 hours,
respectively (based on a body mass study).152 CDB and DDB display elimination rate-limited
pharmacokinetics, whereas the pharmacokinetic profile of HDB parallels the one of DB. The relative
potency of of DB and its metabolites is found to be ranked as DB > HDB ∼ DDB ≫ CDB.156

Furthermore, DB was shown to induce CYP3A4 and 2B6 in hepatocytes, and to inhibit CYP2C8, 2C9,
2C19, and 3A4 in human liver microsomes.154 Thus, DB is supposed to be subject of drug-drug
interactions with strong inhibitors of CYP2C8 and/or CYP3A4.154–156 CYP3A4 and CYP2B6 mRNA
induction is indicating interactions of DB with the nuclear receptors Pregnane X Receptor (PXR)
and/or Constitutive Androstane Receptor (CAR).156

Figure 1.2: Metabolic pathway of dabrafenib (DB) and its three major metabolites hydroxy-dabrafenib (HDB),
carboxy-dabrafenib (CDB), and desmethyl-dabrafenib (DDB). DB is metabolized by CYP3A4 and CYP2C8 to
HDB, further oxidized to CDB (by CYP3A4), and decarboxylated to DDB (pH-dependant).153

1.3.2 Nuclear receptors

Nuclear receptors (NRs) are members of a large superfamily of evolutionary related DNA-binding
transcription factors. NRs mediate the effects of hormones and other endogenous ligands to regulate
the expression of specific genes and play an essential role in virtually all aspects of mammalian
development, metabolism, and physiology. Therefore, their dysfunction and the subsequent aberrant
signaling is associated with many diseases concerning reproduction, proliferation and metabolism.
Due to their ligand binding ability they are of interest for a broad scientific field as potential
pharmaceutical targets and for drug development and in toxicology and environmental science for
risk assessment.159

Regarding the mechanisms of action, NRs can either be inactive cytoplasmic receptors which,
upon ligand binding, are translocated to the nucleus, and activate gene transcription, or they are
permanently located in the nucleus, which is the case for most NRs, and are often bound to DNA in
the absence of any ligand.
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Structural aspects

NRs have a modular structure consistent of the functional domains from the N to C termini: the
variable modulator domain (referred to as A/B), the DNA-binding domain (DBD) (referred to as
C), the variable hinge region (referred to as D), and the ligand-binding domain (LBD) (referred to
as E).160 Some NRs have additional extensions at the N- or C-terminus. The N-terminal modulator
domain is the most variable domain and contains a ligand-independent transcriptional activation
function, referred to as AF-1. A second ligand-dependent AF-2 surface is located in the C-terminal
domain. Those activation domains are often responsible for mediating the binding of coactivators.
The DBD and LBD can function independently and are connected by the very flexible hinge region.160

The DBD is the region of highest sequence conservation including two zinc finger motifs and being
responsible for direct recognition of the target DNA sequence.161 The LBD, which is crucial for
most of the receptor functions because it binds the ligand, performs dimerization and interacts with
coregulators. The LBD has a general fold of a three-layered α-helical sandwich composed of 12
helices (H1-H12).

Current mechanistic view

Binding of agonist ligands to the ligand binding pocket of the LBD induces a conformation that
preferentially binds coactivator proteins. In contrast, binding of antagonist ligands induces a
conformation that prevents the binding of coactivator proteins and prefers the binding of corepressor
proteins. Furthermore, NRs can also directly interact with other transcription factors to regulate
gene transcription.

NRs are of high interest in the pharmaceutical field as both, primary target for direct treatment of
diseases and secondary target for avoiding side effects that can be provoked e.g. by endocrine
disruption or by induction of drug metabolism.

1.3.2.1 The Pregnane X Receptor (PXR)

The Pregnane X Receptor (PXR) belonging to NR subfamily I plays an unusual and outstanding
role as master regulator for xenobiotic metabolism. It is responsible for the organism’s defense
against foreign substances and therefore a main regulator for detoxification, acting as sensor to
a broad spectrum of ligands (endogenous metabolites, drugs and xenobiotics) with very diverse
characteristics (concerning composition, shape and size). Unfortunately, undesired drug binding
to PXR is causing many adverse effects. PXR forms heterodimers with the Retinoid X Receptor α

(RXRα) and subsequently binds to PXR responsive elements. As main transcriptional inducer of
cytochrome P450 enzyme CYP3A4, one of the main metabolizing enzymes for many drugs in clinical
use, it acts as key player for inducing drug degradation and can potentially cause undesirable
drug-drug interactions.162 Rapid metabolism decreases efficacy for many drugs, but drugs with
active metabolites can display increased drug effect and/or toxicity upon metabolism. Undesirable
drug-drug interactions are also a metabolic issue. When two drugs sharing a metabolism pathway
via the same enzyme compete for the same binding site, the one with higher potency predominates
and the metabolism of the competing drug is decreased. This, in turn, can lead to increased risks
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for toxic effects of the unmetabolized compound, as serum levels may be elevated. PXR is also
widely expressed in many different tumors (breast, colon, prostate and ovary) where it has been
shown to be involved in both the development of multi-drug resistance and enhanced cancer cells
aggressiveness.163–166 An increasing number of drugs are clinically tested in cancers with sometimes
rather limited success and it was also shown recently that some of them could be direct ligands of
PXR, thereby inducing their own metabolism or the metabolism of co-administered drugs. PXR
is classified as unwanted and harmful secondary target whose activation needs to be avoided in
order to simultaneously avoid the activation of the degradation pathway via CYP450 enzymes.
Accordingly, a limited interaction with PXR is required additionally to a drug’s efficient binding to
its primary target. Therefore, an improvement of drugs includes a fine tuning with chemical changes
that do not perturb other important characteristics, such as stability, bioavailability, etc., but prevent
PXR binding. Nonetheless, PXR has not yet been studied extensively and only a limited number of
25 crystallographic structures are available.

1.3.2.2 The Estrogen Receptor alpha (ERα)

The Estrogen Receptors (ERs) belong to the type I nuclear receptors, also called steroid receptors, and
occur in two subtypes, α and β. The Estrogen Receptor alpha (ERα) is among the most studied NRs.
It has been linked to osteoporosis, breast cancer, prostate cancer, obesity, inflammation, menopausal
problems and other diseases and is therefore an important target for medical treatment.167 ERα and
ERβ are similar in structure and sequence. They have 56% amino acid sequence identity in their LBD
and the residues that surround the ligand are nearly identical, varying only at two positions. The
LBD of the ER has the NR general fold of a three-layered α-helical sandwich including the 12 helices
(H1-H12).168 The ligand binding site is a mostly hydrophobic cavity located in the lower half of the
domain. Upon ligand binding a conformational change is induced in the receptor that promotes
translocation into the nucleus, homodimerization and subsequent binding to to hormone response
elements within the promoter of a target gene in order to regulate transcription. However, the direct
binding of an additional interaction partner, a coactivator protein, is needed for ligand-dependent
signaling to occur.168 In the case of agonist-bound structures the ligand-binding cavity is sealed by
the C-terminal helix H12 which is then referred to as the active conformation. This conformation
favors the recruitment of coactivators to the AF-2 surface. Cell-type and promoter-context dependent
activity of both ER AF-1 and AF-2 has been demonstrated.169 In case of antagonist-bound structures
the sealing of the binding cavity by H12 is not possible, because the usually larger antagonists bind
in such a mode that they reach further out of the binding cavity and occupy the space where H12
would be located in the agonist conformation.
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Key points

⇒ All three therapeutic targets - BRAF, PXR and ERα - dimerize to exert their biological function.
Nevertheless, they are studied as protomeric entities.

⇒ The high complexity of mode of actions does not yet permit to deal with all levels of flexibility, in
particular dimerization and allosteric effects e.g. via cofactors.

⇒ The amount of available data and the level of flexibility for each target impact the applicability
of diverse computational methods to predict/estimate binding affinities, including MD based
MM-PBSA calculations or supervised machine learning approaches.



2
ERα - A WELL STUDIED TARGET

This chapter focuses on the largely studied drug target Estrogen Receptor alpha (ERα) that serves as ideal

target for the development of an affinity prediction tool. Also the protein’s intrinsic flexibility is further studied

in detail.
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2.1 Affinity prediction method development on ERα

An integrated affinity prediction method was developed by exploiting data from structure ensembles
from the target’s and the ligands’ point of view and combined with a Random Forest (RF) machine
learning algorithm. The complete method development, testing and validation is described in the
publication "Towards accurate high-throughput ligand affinity prediction by exploiting structural
ensembles, docking metrics and ligand similarity", in the journal Bioinformatics, included on the
following pages.

Key points

⇒ SBVS and LBVS are combined by employing ML for affinity predictions.

⇒ Predictions are based on ensembles: structural (ligand and target ensembles) and computational
(averages from multi-docking, consensus scoring, and RF as ensemble learner).

⇒ The presented approach is very general and is extended to other well characterized targets.
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Abstract

Motivation: Nowadays, virtual screening (VS) plays a major role in the process of drug develop-

ment. Nonetheless, an accurate estimation of binding affinities, which is crucial at all stages, is not

trivial and may require target-specific fine-tuning. Furthermore, drug design also requires

improved predictions for putative secondary targets among which is Estrogen Receptor alpha

(ERa).

Results: VS based on combinations of Structure-Based VS (SBVS) and Ligand-Based VS (LBVS) is

gaining momentum to improve VS performances. In this study, we propose an integrated ap-

proach using ligand docking on multiple structural ensembles to reflect receptor flexibility. Then,

we investigate the impact of the two different types of features (structure-based and ligand molecu-

lar descriptors) on affinity predictions using a random forest algorithm. We find that ligand-based

features have lower predictive power (rP ¼ 0.69, R2 ¼ 0.47) than structure-based features (rP ¼ 0.78,

R2 ¼ 0.60). Their combination maintains high accuracy (rP ¼ 0.73, R2 ¼ 0.50) on the internal test set,

but it shows superior robustness on external datasets. Further improvement and extending the

training dataset to include xenobiotics, leads to a novel high-throughput affinity prediction method

for ERa ligands (rP ¼ 0.85, R2 ¼ 0.71). The presented prediction tool is provided to the community

as a dedicated satellite of the @TOME server in which one can upload a ligand dataset in mol2 for-

mat and get ligand docked and affinity predicted.

Availability and implementation: http://edmon.cbs.cnrs.fr.

Contact: schneider@cbs.cnrs.fr or labesse@cbs.cnrs.fr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Despite the fact that the efforts invested in drug development have

constantly increased during the last decades, the number of drug

approvals stays almost constant (Munos, 2009). Indeed, about 81%

of all new drug candidates fail (DiMasi et al., 2010), mainly due to a

lack of drug efficiency and/or side effects associated with off-target

binding. In order to reduce time and cost of drug development pro-

cess, various computer aided methods have been implemented. Two

main techniques, namely structure-based and ligand-based virtual

screening, are widely used (Lavecchia, 2015; Lionta et al., 2014).

They are now routinely used for hit identification in order to priori-

tize compounds for experimental assays and they are also gaining

interest for lead optimization.

VC The Author(s) 2019. Published by Oxford University Press. 1
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Ligand-based virtual screening (LBVS) methods are based on

analyzing features of substructures and chemical properties related

to activity of the ligand. They are useful to search chemical libraries

using global or substructure similarity (Mestres and Knegtel, 2000),

shape-matching (Nicholls et al., 2010) or pharmacophores (Yang,

2010). The algorithms used in those methods are in constant devel-

opment and recent LBVS methods are based on data mining and ma-

chine learning (Lavecchia, 2015). They do not require structural

knowledge of the receptor.

Structure-based virtual screening (SBVS) can be used to predict

the binding mode of drugs, to define the important specific interac-

tions between ligand and target and finally to discover a way to im-

prove a given drug by guiding further optimization. SBVS includes

docking of candidate ligands into a protein target, followed by

evaluation of the likelihood of binding in this pose using a scoring

function with an important trade-off between speed and accuracy

(Cerqueira et al., 2015). Compared to LBVS, which is restricted to

similar molecules the training had been performed on, SBVS is ap-

plicable to completely new molecules but it requires knowledge of

the targeted structure (or reliable theoretical models). Moreover,

very small changes or addition of the molecules that can create

strong repulsions (e.g. steric clashes) are more likely to be identified

by SBVS methods than by LBVS.

Combining LBVS with SBVS is emerging as a way to compensate

limitations of each of these complementary approaches. Indeed,

there are new attempts to combine both, thanks to the increasing

number of both atomic structures and affinity measurements.

Usually, the combination of LBVS and SBVS is performed in a se-

quential or parallel manner (Yu et al., 2018; Zhang et al., 2017).

The sequential approach uses both methods as filter steps in a hier-

archical procedure with increasing refinement. The parallel ap-

proach compares the selected compounds of both methods and

retrieves either a consensus (selected by both) or a complementary

selection (top molecules from each approach) (Lavecchia and Di

Giovanni, 2013). Alternatively, one might apply a weak similarity

restraint such as a molecular shape restraint for the ligand (to be

classified as a shape-matching LBVS method) during the docking

process in SBVS as it is implemented in the docking software

PLANTS (Korb et al., 2009).

In the present study, we take advantage of a new interface be-

tween PLANTS and the web server @TOME (Pons and Labesse,

2009) to screen multiple conformations in parallel (to be described

in more details elsewhere). It also allows us to systematically deduce

a shape restraint and binding site boundaries based on the geometry

of the original ligand from each crystal structure in a fully automatic

manner. Subsequent postprocessing is performed using various che-

moinformatics tools including several scoring functions to predict

protein–ligand affinity and select an optimal pose.

Ultimately, all the parameters computed to evaluate a ligand

pose can be used for machine learning. Indeed, the combination of

LBVS and SBVS with machine learning is an emerging approach to

improve affinity prediction (Wójcikowski et al., 2017). Therefore,

we evaluate applicability of machine learning on the docking out-

puts of @TOME and PLANTS and ligand similarity measurements.

In order to set up and evaluate this development, we focused on a

well-known therapeutic target—the estrogen receptor ERa.

The ERa is a steroid binding receptor playing a key role in a var-

iety of diseases due to its important role in development and physi-

ology. The most prominent examples are ER-based cancer therapies

that focus on blocking estrogen action in targeted tissues, with ERa

being the main target for treatment of ER-positive breast cancer

(Ma et al., 2009). The development of new and improved selective

ER modulators is therefore still of high interest for pharmaceutical

companies to target tissues selectively and to avoid resistance and

adverse effects (Baker and Lathe, 2018; Katzenellenbogen et al.,

2018; Wang et al., 2018).

Moreover, ERa can also be an unwanted target of drugs or xeno-

biotics (Baker and Lathe, 2018; Delfosse et al., 2012) and has been

identified as an anti-target that should be considered in toxicity tests

during drug development. Thus, a better understanding of the mech-

anism of ligand recognition by ERa is of paramount importance for

safer drug design. Previously, dedicated prediction methods have

been addressing the question of whether a molecule is binding or not

(Mansouri et al., 2016; Niu et al., 2016; Pinto et al., 2016; Ribay

et al., 2016), and traditional structure-activity relationship (QSAR)

modeling studies have also been performed with varying success on

this nuclear receptor (Asikainen et al., 2004; Hou et al., 2018;

Waller et al., 1995; Waller, 2004; Zhang et al., 2013, 2017).

Despite the fact that ERa is an already well characterized thera-

peutic target (Ekena et al., 1997; Nettles et al., 2004), we are still

lacking an efficient and robust method for predicting the binding

mode and affinity of docked ligands. A large number of ERa crystal

structures in complex with ligands are now known and the binding

affinity of hundreds of chemical compounds have been experimen-

tally determined. Therefore, ERa represents a perfect example to at-

tempt a full characterization by combining SBVS with LBVS and

employing machine learning in order to better predict binding affin-

ity and potential future drug profiles.

2 Approach

Here, we present an integrated approach for high accuracy affinity

predictions on the well-known and intensively studied drug target

ERa. First, a training set and several testing sets were built by sys-

tematic docking of chemical compounds extracted from the

BindingDB, the FDA and from in-house experiments, into the avail-

able crystal structures of ERa. An interesting feature of the approach

is the fact that we take advantage of structural ensembles for the re-

ceptor and the ligand to simulate flexibility. Scoring functions and

other chemometric information were gathered for the corresponding

complexes through the @TOME server and for the ligands through

the CDK. All virtual screening results are made available at http://

atome4.cbs.cnrs.fr/htbin-post/AT23/MULTI-RUN/FILTER/showform.

cgi? WD¼AT23/EG/38751543. Seeing that the accuracy of scoring

functions is not sufficient for fine ligands ranking, we employ a

random forest machine learning algorithm on diverse features,

including structure-based docking metrics and ligand-based molecu-

lar descriptors. We also tested various subsets of descriptors, such as

MACCS fingerprints, and different algorithms. The developed

prediction tool is provided to the community as an automatic

prediction extension within the @TOME-EDMon server (http://

edmon.cbs.cnrs.fr). The developed machine learning method is

equally applied on and provided for ERb and PPARc.

3 Materials and methods

3.1 Ligand datasets

3.1.1 BindingDB dataset

Two sets of experimentally tested ligands for the human ERa

(UniProtID: P03372) were extracted from BindingDB (Gilson et al.,

2016; Liu et al., 2007) (2018 dataset, updated 2018-04-01). One set

contains ligands with known inhibitory constant (Ki) as affinity

2 M.Schneider et al.
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measure, and a second set contains ligands with half maximal inhibi-

tory concentration (IC50) as an affinity proxy.

A few peptides and a series of boron cluster containing molecules

were removed from both datasets, as it was not possible to generate

proper 3D conformations or charges for these molecules. The final

sets contained 281 ligands (Ki set) and 1641 ligands (IC50 set), re-

spectively, with an overlap of 48 common compounds. Overall,

both datasets show a similar compound diversity (compare

Supplementary Fig. S1). For training, we preferred to focus on the

Ki dataset since it corresponds to more direct measurements while

the IC50 dataset was used as a larger dataset for method testing.

3.1.2 In-house xenobiotic dataset

The xenobiotic chemical data that was used first as an external test-

ing dataset and afterwards to build an extended training set, is an

in-house dataset of 66 ligands with measured affinities for ERa

(Grimaldi et al., 2015). These extra compounds correspond mostly

to bisphenols, halogenated compounds, as well as phytoestrogens

(natural fused heterocycles and macrocycles partially micmicking

estradiol).

3.1.3 FDA ERa dataset

In order to have a second external validation, we used the Estrogen

Receptor targeted dataset from the Endocrine Disruptor Knowledge

Base (EDKB) provided by the U.S. Food & Drug Administration

(FDA), named here ER-EDKB dataset. The dataset contains 130 ER

binders and 101 non-ER binders including natural ligands and xeno-

chemicals that are structurally different from drug-like molecules.

For ER binders, the binding affinity measure is reported as a relative

binding activity (RBA), which is based on an assay using rat uteri.

Those cell-based measurements are influenced by different factors,

such as cellular permeability, and are unfortunately not directly

comparable with direct Ki measures. Nevertheless, we predicted

affinities using all models and transformed the measured RBA values

back to pIC50 values (pIC50 ¼ log10ðRBAÞ ÿ 8).

Interestingly, affinity distributions of the datasets cover a wide

range of about ten orders of magnitude without major gaps for dis-

tinct affinity ranges (see Supplementary Fig. S2).

3.2 Generation of ligand conformations

On the ligand side, there are two factors that can have an impact on

docking. One is the initial conformation submitted to a docking pro-

gram. Indeed, providing the bound conformation is a well-known

bias to improve the success of a docking tool as previously recog-

nized (Cross et al., 2009; Plewczynski et al., 2011). The generated

ligand conformations can also differ significantly due to ambiguities

in molecular descriptions (e.g. multiple conformations of heterocyc-

lic alkyl moieties are possible from usual SMILES strings) and to the

optimization procedure after ab initio building. Indeed, we notice

that some steroid compounds highlighted improperly distorted con-

formation (data not shown). The second factor is the atomic partial

charges that have an impact on ligand pose evaluation and can be

calculated using different models (e.g. Gasteiger and MMFF94). In

PLANTS, the atomic partial charges affect hydrogen bond donor/ac-

ceptor properties (e.g. for aromatic carbons) impacting significantly

the docking itself and hence its subsequent scoring.

The initial ligand sets were downloaded from BindingDB (BDB)

and have 3D conformations generated by VConf and partial charges

generated by VCharge (Chang and Gilson, 2003). We also tested

two other charge models (Gasteiger and MMFF94 charges) instead

of the default charge for the 3D conformers built by Vconf.

Two other 3D generators [OpenBabel (O’Boyle et al., 2011) and

Frog2 (Miteva et al., 2010)] using their default charge. This resulted

in a total of five ligand sets. The ligand sets were then grouped based

on variation on their 3D generation, their charges or all together as

depicted in Figure 1.

Noteworthy, by training on distinctly generated datasets in par-

allel we prevent dependencies and bring more versatility.

Consequently, the user would be able to provide compounds with-

out the need for further conversion that could possibly introduce

errors.

3.3 Structure-based ligand docking

3.3.1 Ensemble docking

First, all liganded ERa structures available in the PDB (461 mono-

mers) were gathered using the @TOME server (Pons and Labesse,

2009) by submitting the ‘canonical’ amino acid sequence of ERa

(UniProt identifier: P03372-1) with a specified sequence identity

threshold of 90%. All gathered 461 monomers had a sequence iden-

tity between 95 and 100% with the submitted sequence and corres-

pond to point mutants of the human ERa. Missing or substituted

side-chains were modeled using SCWRL 3.0 (Wang et al., 2008)

using the strictly conserved side-chains fixed. By default, for each

ligand to be docked (e.g. from BDB), a set of 20 different template

structures were automatically selected among all available PDB

structures. This selection is based on the highest similarity

(Tanimoto score) between the uploaded ligand and the co-

crystallized ligand present in a template. The automatic virtual

screening procedure implemented in the @TOME server uses the

docking program PLANTS with its shape restraint functionality

(with a weighting of -3, the default value suggested by the software

manual), using the original ligand of the screened structure as a

pharmacophore. Of note, this ligand is also used to define the

Fig. 1. Structure-based dataset generation approach. The ligand dataset was

extracted from the BindingDB (BDB), which uses VConf for 3D conformation

generation and VCharge for charge assignment. Two more partial charge

models (MMFF and Gasteiger) and two other 3D conformation generators

(OpenBabel and Frog2) were employed to generate a total of five ligand sets.

Those were submitted to the @TOME server for docking and complex evalu-

ation. The @TOME output datasets ‘MMFF’, ‘Gast’, ‘BDB’, ‘OB3D’ and

‘Frog3D’ (containing the results of 20 dockings per ligand in different struc-

tures) were grouped in three combined datasets, a different charge dataset

‘dCharge’, a different conformation dataset ‘dConf’, and an ‘ALL’ dataset

High-throughput ligand affinity prediction by exploiting structural ensembles, docking metrics and ligand similarity 3
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boundaries of the binding site to be screened (using a distance cutoff

of 8 Å). So, not only the protein conformation is (slightly) distinct

but various cavity volume and extent are used in this parallel dock-

ing procedure. For each template screened, only one pose was com-

puted by PLANTS. After docking and structure alignment, the 20

computed poses were clustered by conformation similarity, and the

most likely pose is selected automatically among the largest cluster

using a dedicated heuristics. Accordingly, we perform ligand dock-

ing on conformational ensemble as an optimal procedure for SBVS.

3.3.2 Structure-based molecular descriptors

Each docking pose is evaluated by various chemoinformatics tools

(see Table 1). Here, in order to predict protein–ligand affinities, we

take advantage of several re-scoring functions [namely MedusaScore

(Yin et al., 2008), DSX (Neudert and Klebe, 2011) or X-SCORE

(Wang et al., 2002)) recently embedded in @TOME to derive a con-

sensus score [including also ChemPLP as used in PLANTS (Korb

et al., 2006)]. Here, we used both, raw output from these scoring

functions, and linear regression based on a study of PDBbind (to be

described elsewhere). In addition, other evaluations are performed

on the server, such as the model quality of the receptor [QMean

(Benkert et al., 2008)] and the evaluation of the ligand conformation

[such as LPC (Sobolev et al., 1999) or AMMP energy computed by

AMMOS (Pencheva et al., 2008)]. Other scores measure the similar-

ity between the docked ligand and the pharmacophoric anchor used

to guide the docking. For instance, AnchorFit (as computed by

PLANTS) evaluates their shape similarity, and the Tanimoto score

(computed by OpenBabel) evaluates compositional similarity.

Finally, we also implemented two new scoring metrics, one compar-

ing ligand–receptor interactions as a sequence-based profile (named

PSim for Profile Similarity), and the other predicting a pose RMSD

based on a support vector machine (named LPE for Ligand Position

Error). These evaluation metrics will be described in more detail

elsewhere.

The above parameters were important for structure-based

screening, and they were complemented by other information

regarding the chemical nature of ligands using additional molecular

descriptors.

3.3.3 Ligand molecular descriptors

In order to include more information about the small molecules

being screened, molecular descriptors were calculated using the

Chemistry Development Kit (CDK) (Willighagen et al., 2017), a col-

lection of open source Java libraries for chemoinformatics, through

its R interface rcdk (Guha, 2007). The descriptors were selected

based on their ability to represent the diversity of the ligand dataset,

taking into account their orthogonality, and based on their variable

importance score during model training. The final set of 11 QSAR

molecular descriptors includes topological, geometrical, constitu-

tional and charge based descriptors and is listed in Table 2 with

CDK descriptor name, the used abbreviation and a short

description.

3.3.4 Combined structure/ligand descriptors

All 5 docking datasets (originating from the 5 different ligand sets)

provided 19 structure-based docking metrics for the 20 docking

poses computed for each ligand. For each metric, median and stand-

ard deviation were computed and used as a unified instance. Ligand-

based variables (11 CDK molecular descriptors) were added to the

19 structure-based metrics. A correlation matrix with all descriptors

used for the Ki-BDB dataset is provided as heatmap (see

Supplementary Fig. S5). Alternatively, the commonly used MACCS

fingerprints (166 features) (Durant et al., 2002; Taylor, 2007) were

also tested for comparison.

3.4 Machine learning approaches

3.4.1 Algorithm selection and training

For all analyses, calculations and machine learning, the R language

(version 3.2.4) was used with RStudio (employed packages are listed

in Supplementary Table S1). In an initial test on the BDB Ki dataset

we assessed the performance of 7 machine learning algorithms (see

Supplementary Fig. S3): Random Forest (RF), Gradient Boosting

Table 1. Structure-based docking metrics

Metric name Short description

PlantsFull PLANTS score (with anchor weight) (Korb et al., 2006)

Plants PLANTS ChemPLP score (without weight)

PlantsLR PLANTS pKa (calculated by linear regression on

PDBbind)

MedusaScore Medusa original score (Yin et al., 2008)

MedusaLR MedusaScore pKa (calculated by linear regression on

PDBbind)

XScore XScore affinity score (pKa) (Wang et al., 2002)

DSX DSX original score (Neudert and Klebe, 2011)

DSXLR DSX pKa (calculated by linear regression on PDBbind)

AtomeScore @TOME pKa ¼ mean(PLANTS, XScore,

MedusaScore, DSX)

Tanimoto Similarity between candidate ligand and anchor ligand

AtomSA S.A. @TOME score

QMean QMean score of receptor model

AnchKd Affinity calculated between receptor/anchor (pKa)

AnchorFit Candidate/ligand superimposition score (PLANTS

software)

LigandEnergy Internal energy of ligand (AMMP force field)

LPC LPC software score (receptor/ligand complementarity

function)

PSim Similarity to receptor/ligand interaction profile in PDB

template

CpxQuality Complex quality consensus score

LPE Ligand Position Error (SVM multi-variable linear

regression)

Table 2. Ligand-based molecular descriptors

Abbrv. CDK descriptor name Short description

MW Weight molecular weight

VABC VABC volume descriptor

nAtom AtomCount number of atoms

nBond BondCount number of bonds

nRotBond RotatableBondsCount number of rotatable bonds

nAromBond AromaticBondsCount number of aromatic bonds

nHBDon HBondDonorCount number of hydrogen bond

donors

nHBAcc HBondAcceptorCount number of hydrogen bond

acceptors

TPSA TPSA Topological Polar Surface

Area

XLogP XLogP prediction of logP based on

the atom-type method

called XLogP

HybRatio HybridizationRatio fraction of sp3 carbons to sp2

carbons

4 M.Schneider et al.
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Machine (GBM), support vector machine (SVM) with a radial ker-

nel (SVM_R), a polynomial kernel (SVM_P) and a linear kernel

(SVM_L), linear regression (LinReg), decision tree (CARTree) and

Partial Least Squares (PLS). All algorithms were employed with de-

fault variable settings with the R package ‘caret’. In order to avoid

over-fitting of the models, we used stratified 10-fold cross validation

repeated 10 times for all models in this study (unless otherwise

indicated).

Alternatively, an external test set was built by taking a stratified

selection of 20% of the whole dataset. The remaining 80% was

used as training set for the models.

3.4.2 Comparison of different tree-based algorithms

The RF algorithm we used, has only one tunable hyperparameter

that can be adjusted for the present dataset. Therefore, we wondered

whether other tree-based ensemble algorithms with more tunable

hyperparameters offer an improved prediction accuracy when tuned

more carefully. In total, five different tree-based algorithms were

employed on the same Ki BindingDB2018 dataset for affinity predic-

tion and subsequent performance comparison. They are: random

forest (RF), regularized random forest (rRF), global regularized ran-

dom forest (rRFglobal), Extreme Gradient Boosted Trees (xgbTree)

and Extreme Gradient Boosted Trees with dropout (xgbDART).

Here, Bayesian optimization was employed to select the best hyper-

parameters (5 to 7 depending on the method), which demands a

substantially increase in computational expense compared to the

one-variable optimization required for the RF algorithm. The per-

formance of the different models are compared based on the left out

data during cross-validation (see Supplementary Fig. S4).

3.5 Random Forest regression modeling

Random forest models were trained on each dataset separately

(‘MMFF’, ‘Gast’, ‘BDB’, ‘OB3D’ and ‘Frog3D’), on the combination

of the three different 3D conformation datasets ({‘BDB’, ‘OB3D’,

‘Frog3D’} ¼ ‘dConf’), on the combination of the three different par-

tial charge datasets ({‘MMFF’, ‘Gast’, ‘BDB’} ¼ ‘dCharge’) and on

all five datasets combined (‘ALL’) (compare Fig. 1).

Besides the Pearson correlation (rP), two further regression

evaluation metrics were used to evaluate the model performance on

the external test set. First, the coefficient of determination (R2) is

calculated using the sum of squares method. The second metric,

the Root Mean Square Error (RMSE) is the average deviation of the

predictions (predicted affinities) from the observations (measured

affinities). In some cases, we also indicate the Spearman rank correl-

ation (rS).

4 Results and discussion

We developed and tested an automated and integrated structure-

and ligand-based approach to predict quickly accurate binding affin-

ities for ERa. This approach takes into account structural variability

from the ligand side by using different 3D generators and different

charge models, and from the receptor side by using 20 structures for

each ligand to be docked. Here, we give access to the docking poses

while we evaluate thoroughly the affinity predictions performed

using various methods.

4.1 Predictions using re-scoring methods

In a first attempt, the predictive power of the four different scoring

functions implemented in the @TOME server was assessed.

The Pearson correlations between affinity measurement and the

median scores (calculated on 20 docking poses per ligand) are very

low for all generated datasets (see Table 3). Even the most recent

scoring functions (MedusaScore and DSX) performed poorly in this

test. Interestingly, the selection of the best pose among the 20 com-

puted ones slightly improves the correlation between predicted and

measured affinities for 3 scoring functions but for MedusaScore

which appeared as the most robust and the best for the various lig-

and description schemes.

However, the overall correlation is too low for fine ligand affin-

ity prediction and indicates a limitation of the general-purpose scor-

ing functions, but the better Spearman correlation (see

Supplementary Table S2) suggested a better ranking that could be

useful to guide machine learning. This prompted us to develop a

more sophisticated method that should be able to combine advan-

tages of different docking evaluations (structure-based and ligand-

based ones) and potentially take into account specific features.

4.2 Random Forest regression—model training

First, we did some model optimization using parameter tuning, vari-

able selection and engineering (e.g. to better take into account rotat-

able bounds, see below).

4.2.1 Structure-based and ligand-based partial models

To investigate the actual affinity prediction capabilities of structure-

based and ligand-based variables, partial models were trained using

the 19 structure-based metrics or the 11 ligands-based metrics on

the same dataset named BDB. Affinity predictions made on the held-

out 20% test set are shown in Supplementary Figure S6. The

docking-metrics only model (rP ¼ 0.78, rS ¼ 0.77 and R2 ¼ 0.60)

outperforms the molecular-descriptors only model (rP ¼ 0.69, rS ¼

0.70 and R2 ¼ 0.47). Interestingly, the combined model (trained on

BDB using simultaneously Vconf and Vcharge data) has Pearson

correlation coefficient, Spearman’s rank and R2 value in between

the reduced-variable models (rP ¼ 0.73, rS ¼ 0.74 and R2 ¼ 0.50).

4.2.2 Random Forest model trained on MACCS fingerprints

In this context, it might be interesting to add more information

regarding the chemical nature of the ligands studied. Instead of using

a reduced set of ligand-based parameters, we turned to use a more

Table 3. Pearson correlations (rP) on all five datasets between ex-

perimental affinities and scores from four scoring functions Plants,

MedusaScore, DSX and XScore, of (1) the best pose selected by

@TOME, and of (2) the median scores of the four scoring functions,

calculated on 20 dockings per ligand on all five datasets

Dataset name Plants MedusaScore DSX XScore

(1) rP on predictions

for the best pose

Gast 0.042 0.154 0.129 0.060

MMFF 0.063 0.182 0.157 0.082

BDB 0.038 0.111 0.118 0.076

OB3D 0.109 0.180 0.143 0.129

Frog3D 0.022 0.132 0.118 0.040

(2) rP on predictions

over 20 poses

Gast ÿ0.031 0.204 0.019 0.049

MMFF ÿ0.025 0.192 0.038 0.054

BDB ÿ0.019 0.087 0.022 0.059

OB3D ÿ0.017 0.175 0.008 0.050

Frog3D ÿ0.048 0.199 0.005 0.036

High-throughput ligand affinity prediction by exploiting structural ensembles, docking metrics and ligand similarity 5
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thorough description based on an extended and popular finger-

prints: MACCS. A new random forest model was trained on

MACCS fingerprints representing the ligands only, without provid-

ing any structural docking data. This resulted in a Pearson correl-

ation (rP) of 0.76, Spearman’s coefficient (rS) of 0.76 and an R2 of

0.57 on the Ki test set, midway between the two partial models com-

pared above (molecular descriptors only model and docking metrics

only model). Combining MACCS with docking-based features

improves the overall performance on the training and left-out testing

dataset (rP ¼ 0.81, rS ¼ 0.82 and R2 ¼ 0.61) but further evaluation

using external datasets suggested some overfitting (see below).

4.2.3 Combined models—trained on single and multiple combined

datasets

Then, we compared the various models trained on either single data-

sets (‘MMFF’, ‘Gast’, ‘BDB’, ‘OB3D’ and ‘Frog3D’) or multiple

combined datasets (‘nf’, ‘dCharge’ and ‘ALL’). Whereas the five

models trained on single datasets have an R2 of 0.66 (60.01), an

RMSE of 0.82 (60.01) and an explained variance of 63.4 (60.8)

during training, the three models trained on multiple datasets have a

better R2 of 0.68 (60.004), a lower RMSE of 0.78 (60.008) and an

explained variance of 90.6 (63.7). Also evaluation on the 20% left-

out test set demonstrates improved predictions for the models

trained on multiple combined datasets (‘dConf’, ‘dCharge’ and

‘ALL’) with a mean Pearson correlation (rP) of 0.77 (and standard

deviation of 0.014), compared to the models trained on single data-

sets with a mean rP of 0.73 (and standard deviation of 0.029).

The boosted tree models xgbTree and xgbDART appeared to out-

perform slightly the RF model on this ‘ALL’ dataset. But the reverse

was true when evaluating the corresponding models onto the FDA data-

set (see below). Most of the differences are weak and may not be signifi-

cant. Accordingly, the more complex implementations did not provide

significant increase in performance and they were not studied further.

4.3 Random Forest regression—model testing

Most remarkable is the strong increase in accuracy when using ei-

ther the ‘dConf’ model trained on the three different 3D conform-

ation datasets (‘BDB’, ‘OB3D’ and ‘Frog3D’) or the model trained

on the fully combined ‘ALL’ dataset comprising all five datasets

(‘MMFF’, ‘Gast’, ‘BDB’, ‘OB3D’ and ‘Frog3D’) (compare also

Supplementary Fig. S7). Interestingly, using different charge models

improves affinity predictions, but slightly less efficiently than using

different 3D conformations. This is probably due to the fact that the

binding pocket of ERa is mostly hydrophobic and therefore the

ligands show the same property and partial charges are predomin-

antly found to differ only marginally.

4.4 Analysis of variable importance

To assess the impact of the various parameters from structure-based

and ligand-based scoring functions, the variable importance was

tracked during training of the RF models. The 30 most important

variables for the models trained on the ‘ALL’ dataset is shown in

Figure 2. Overall, all models have a rather similar variable import-

ance profile (data not shown).

Noteworthy, the most important variable ‘Tanimoto_Med’ is the

same for all trained models showing its outstanding importance. It

represents the median Tanimoto score calculated between the docked

ligand and the 20 shape restraints (or ‘anchors’) present in the tar-

geted structure. This may reflect the importance of using structures

bound to similar ligand to ensure proper affinity predictions.

The second and third most important variables are ‘nRotB.nB’

and ‘XLogP’. ‘nRotB.nB’ estimates ligand flexibility, deduced

from the number of rotatable bonds ‘nRotB’ and the total number

of bonds ‘nB’ by simply dividing them (‘nRotB’/’nB’). During

variable testing, this combined variable showed an increased import-

ance compared to the original variables (data not shown), which

were therefore removed for the final model training. The particular

importance of ‘nRotB.nB’ indicates the important role of entropy

cost for binding flexible ligands. Obviously, this parameters is not

easily handled in a systematic manner by general scoring functions

while it is an important parameter for affinity predictions. In the

particular case of ERa, it likely discriminates rather small and rigid

agonists from larger and more flexible antagonists to prevent overes-

timating the affinity of the latter. In agreement, the fifth variable is

the molecular weight (‘MW’) which may also compensate for the

additive terms of most scoring functions dedicated to affinity

predictions.

Another predominantly important and high-rank variable (se-

cond in the ‘ALL’ model and third in the ‘dCharge’ and ‘dConf’

models) is ‘XLogP’. Representing hydrophobicity and solubility of

the ligand, it is expected to be an important factor with respect to

the mainly hydrophobic binding pocket of ERa. Moreover, ‘XLogP’

may reflect solvent-driven entropic effects that are not easily taken

into account by usual scoring functions. Indeed, flexibility and

solvation-linked metrics can be regarded as useful for a crude esti-

mate of some entropic effects and counterbalance the enthalpy-

oriented affinity prediction approach of usual scoring functions.

Finally, the different scoring functions (DSX, Plants,

MedusaScore and X-score; through their means and standard devia-

tions) show a smaller importance than the three above parameters,

which could be in agreement with the poor correlations described

above. It may also arise from the intrinsic redundancy of our

selected variables as several affinity predictions are used in parallel.

Fig. 2. Variable importance of the top 30 variables, tracked during model

training for the model trained on the ‘ALL’ dataset with the full variable set.

Structure-based docking metrics have an extension (_Med or _SD). The suffix

_Med stands for the calculated median of the variable for a ligand’s 20 dock-

ings and _SD is the respective standard deviation of this variable

6 M.Schneider et al.
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Overall, this result underlines the importance of developing dedi-

cated models for each target under investigation, in order to account

for some specific features including particular desolvation and flexi-

bility properties.

4.5 Model evaluation on different datasets

4.5.1 Model evaluation on an in-house xenobiotic dataset

We took advantage of a complementary and independent dataset—

the xenobiotic chemical data of 66 ERa binders to evaluate the

robustness of our models. Our models performed rather poorly on

this dataset with a Pearson correlation (rP) of 0.48 for the best

Random Forest model BDB-Ki (and 0.40 with the BDB-KiþMACCS

model). For the partial models, docking-metrics-only and

molecular-descriptors-only, as well as the MACCS-only model, cor-

relations are even lower with rP of 0.45, 0.31 and 0.13, respectively.

This underlines the improved robustness of the BDB-Ki model com-

bining SBVS and LBVS features (compare also Supplementary Fig.

S8). Importantly, the chemical nature of most xenobiotics differs sig-

nificantly from most of the drug-like compounds from the BDB

dataset used for training. As such, small xenobiotics (including the

small bisphenols) occupy only partially the hydrophobic cavity and

often also present numerous halogen substitutions (that are notori-

ously hard to model). Furthermore, for some of the small xenobiot-

ics we cannot rule out the possibility that two molecules may bind

simultaneously (with synergetic effects). This result prompted us to

combine these xenobiotics and BDB Ki dataset into an extended

training set to build a new RF model with improved performance

(Fig. 3).

4.5.2 Model evaluation on FDA ER-EDKB dataset

We then evaluated our two best models on a reference dataset com-

prising both 322 drug-like and xenobiotic compounds (see Table 4

and Supplementary Table S3). At the first glance, the predictions

made using the original model (trained on only BDB-Ki) showed a

lower performance especially on the edges of the affinity ranges with

both overestimated affinities for small and weak binders (e.g. alkyl-

phenol) and underestimated predictions for tight binders such as

rigid and compact agonists. Indeed, the BDB dataset is mainly com-

posed of large and high-affinity antagonists. Accordingly, some

FDA compounds such as high affinity agonists, appear as strong

outliers.

Most remarkable is the benefit of adding a complementary data-

set of 66 xenobiotic compounds to the initial 281 ligands from

BindingDB (see Table 4). Here, the best Pearson correlation (rP) of

0.75 is attained with the model trained on ‘ALL’ datasets including

the xenobiotics and the model trained on a single dataset (BDB)

including the xenobiotics also shows a high rP of 0.71. Accordingly,

the nature and diversity of the ligands matter, so that, proper cover-

age of the studied chemical space, in the training dataset compared

to the testing one is essential. The model trained on a single dataset

without the xenobiotics has already a decreased rP of 0.58, whereas

the partial models, docking-metrics-only and molecular-descriptors-

Fig. 3. Performance evaluation of extended models on their respective 20%

left-out test sets. The initial dataset of 281 ligands is extended by a set of 66

xenochemicals. The heatmap shows Pearson correlations between predictions

and measures for all combinations of training model and prediction set. The

different training models are listed as rows and the test sets, on which the pre-

dictions were made, are listed as columns. RF models were trained on each

dataset separately (‘MMFF’, ‘Gast’, ‘BDB’, ‘OB3D’, ‘Frog3D’), on the combin-

ation of the three different 3D conformation datasets ({‘BDB’, ‘OB3D’, ‘Frog3D’}

¼ ‘dConf’), on the combination of the three different partial charge datasets

({‘MMFF’, ‘Gast’, ‘BDB’} ¼ ‘dCharge’) and on all five datasets combined (¼

‘ALL’). The predictions with the Pearson correlation highlighted in the heatmap

(black box) is plotted as scatter-plot for details below. The scatter plot shows

the actual predicted versus measured affinities together with a regression line

(dashed line), the optimal prediction line (solid diagonal) and the evaluation

metrics—Pearson correlation coefficient (rP), coefficient of determination (R2)

and root-mean-square error (RMSE). All evaluation metrics were calculated

with respect to the actual values (solid diagonal), not the regression line

Table 4.Model performances on the FDA ER-EDKB test set

Algorithm Training set Variable type Pearson

correlation

RF ALLþXeno @TOMEþLD 0.748

RF ALLþXeno @TOMEþLDþMACCS 0.740

RF ALL @TOMEþLD 0.663

RF ALL @TOMEþLDþMACCS 0.648

RF BDBþXeno @TOMEþLD 0.712

RF BDBþXeno @TOMEþLDþMACCS 0.688

RF BDB @TOMEþLD 0.584

RF BDB @TOMEþLDþMACCS 0.542

RF BDBþXeno MACCS only 0.487

Note: The presented models employ all the RF algorithm and differ in

training set composition concerning used molecules and in type of variables

used. @TOMEþLD ¼ docking evaluation variables from the @TOME server

þ ligand descriptors calculated with CDK.

High-throughput ligand affinity prediction by exploiting structural ensembles, docking metrics and ligand similarity 7
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only, and the MACCS-only model, show poor performances with rP
of 0.49, 0.47 and 0.41, respectively (compare Supplementary Fig.

S9). This underlines again the increased robustness of our feature

type combination.

4.5.3 Model evaluation on BindingDB—IC50 dataset

Finally, the most extended and reliable dataset we used for evaluating

our RF models is the BindingDB 2018 IC50 dataset which includes

1641 entities. Interestingly, the model trained on the Ki dataset already

performed well against IC50 data suggesting a strong robustness.

Training and testing the IC50 dataset (1641 compounds versus 281

for the Ki dataset) also provides some insights into dataset size require-

ments for the studied target. First, the performance on the IC50 test set

(rP ¼ 0.87) is better than on the Ki dataset (rP ¼ 0.77) (compare

Table 5). Then, cross-predictions were computed by either using the

model constructed on the Ki dataset for predictions on the IC50 data-

set, or employing the model constructed on the IC50 dataset for pre-

dicting the Ki dataset. In that case, it seems that the small Ki test set

(56 compounds) does not allow optimal validation as it shows a signifi-

cant drop in performance compared to the Ki training set (0.49 versus

0.64). On the contrary, the Ki-ALL model showed similar performance

on both the IC50 training and testing sets (1319 versus 322 entities).

We also evaluated our last model trained on the extended dataset

including both the Ki dataset and the xenobiotic dataset on the larg-

est available IC50 dataset from BindingDB (compare Table 6).

Good predictions were observed for the IC50 dataset although the

addition of the xenobiotic dataset did not bring any improvement

(nor any deterioration) for that particular dataset. For comparison

of all trained model see Supplementary Figure S10. Again, these

results suggests that our final model is rather robust.

5 Conclusion

We provide an original in silico method for accurate binding affinity

predictions that takes advantage of structural ensembles, of a limited

number of structure-based metrics (19) and of ligand-based descrip-

tors (11) in a unique combination. This combination led to a predic-

tion tool outperforming our other models based either on SBVS or

on LBVS features when we take into account not only the overall

performance on the internal testing set but also the robustness on a

range of distinct datasets. This is true also with the use of many

more features as exemplified here with the MACCS fingerprints

(166bits). Our work also confirmed the performance of Random

Forest over other machine learning approaches as previously noticed

(Russo et al., 2018). In some cases, higher accuracy was reported

but for smaller compound libraries (Hou et al., 2018). Accordingly,

our results present one of the largest validation surveys (1641

ligands from the BDB IC50 dataset) and best performing tools for

affinity prediction against ERa. As major advantages, RF algorithms

handle non-linearities, numerical and categorical variables, and they

give estimates of variable importance and generalization error.

By training our model in parallel on various types of partial

charges and/or 3D builders, we believe our tool will be more versa-

tile and robust to variations in the way the submitted compound

libraries are generated. Noteworthy, the user has simply to upload

one single dataset to EDMon, where the submitted chemical com-

pounds will automatically be docked and their theoretical affinity

for ERa be computed. With this tool, one can easily and rapidly

evaluate new compounds either to find putative binders of ERa or to

check the absence of binding to this frequent secondary target, in

order to avoid potential side-effects.

Interestingly, the same approach yields very similar performan-

ces on two other nuclear receptors (ERb and PPARc) (see

Supplementary Figs S11 and S12, respectively) and their automatic

affinity prediction is also implemented in EDMon. The method also

provided excellent results for a protein-kinase (to be described else-

where) and we see no reason for any limitation as soon as dozens or

hundreds of structures and affinity points are known. Areas for fur-

ther improvements are probably: increasing the accuracy in ligand

docking, a possible addition of complementary evaluation metrics

for the protein–ligand interactions, as well as using deep learning.

Testing challenging compounds is also an important way to guide

improvement and we expect our web server to be thoroughly tested

with novel compounds.
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2.2 The flexibility universe of ERα

Protein structure flexibility was probed for the drug target ERα using different computational
techniques that revealed particular aspects of distinct conformational states (agonist vs antagonist)
on a global (secondary structure) and local (binding pocket side-chain) level.

Key points

⇒ A detailed comparison of differently generated structure ensembles is provided (set of static
X-ray structures, refined ensembles, MD simulations, NMA).

⇒ The presented approach is very general and can be extended to other well characterized targets.
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analysis and virtual screening
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ABSTRACT

Motivation: Protein flexibility is challenging for both experimental-

ists and modellers and represents an emerging issue especially for

drug design. Estrogen Receptor alpha (ERα) is a well-known ther-

apeutic target with an important role in development and physiology

and an extensively studied Nuclear Receptor (NR). It is also one of the

main off-targets in standard toxicity tests trying to detect endocrine

disruption. Here, we aim to evaluate the possibility to accurately

describe the conformational space and macromolecular flexibility of

this well-characterized drug target by exploiting information from hun-

dreds of crystallographic structures, molecular dynamics simulations

and exhaustive virtual screening.

Results: The analysis of hundreds of crystal structures enables

us not only to distinguish two main conformational states ’agonist’

and ’antagonist’, but also to highlight the most frequent local flexibil-

ity patterns. Indeed, besides the large reorientation of the C-terminal

helix H12, the receptor showed small loop rearrangements as well

as side-chain displacements in the active site. Interestingly, standard

molecular dynamics simulations and crystal structure refinement as

ensemble recapitulate most of the features involved in loop mobility

detected by crystal structure superpositions. In parallel, we investi-

gate on the kind and extent of flexibility that is required to achieve

convincing docking for all high affinity ERα ligands present in Bind-

ingDB. Exhaustive docking for these ERα ligands is achieved by

incorporating flexibility in two ways: either by using one antagonist

conformation but including side-chain flexibility or, by using parallel

docking on conformational ensembles. Both approaches result in pre-

cise and highly similar pose predictions. Accordingly, we identified

the minimal and optimal flexibility requirements to accommodate all

known high affinity ligands. Moreover, the identified focused flexibility

is in agreement with the overall conformational landscape available

for ERα. The molecular details provided here could guide new drug

design strategies for ERα, both as a primary and as secondary tar-

get.

Contact: schneider@cbs.cnrs.fr, labesse@cbs.cnrs.fr

Keywords: ERα, flexibility, crystallographic structures, ensem-

bles, molecular dynamics, virtual screening

1 INTRODUCTION

In the physiological cellular environment, proteins are dynamic,

which is often crucial for their function and activity. For a long

while, structure-based virtual screening of small organic compounds

has been performed on single rigid conformations of the target.

However, various biophysical characterizations of biological macro-

molecules have illustrated their intrinsic flexibility - at various

scales. The protein binding pocket often adapts to accommodate

an entering ligand or a certain conformation of the conformational

space of the protein is stabilized by the bound ligand. Erickson et

al. [1] showed that docking accuracy falls off dramatically if an ”av-

erage” or apo structure is used instead of an experimental crystal

structure with a bound ligand.Those conformational changes can

range from minor movements of single side-chains to large shifts

of whole secondary structures or even domains. Therefore, the ex-

perimentally obtained crystal structures can be regarded as static

snapshots of the whole dynamic conformational space of the pro-

tein. Theoretical models have been developed to simulate those

conformational changes but accuracy and speed are still important

limitations for general use in combination with virtual screening.

In parallel, the number of atomic structures for many therapeu-

tic targets of interest has been growing, bringing a very detailed

view of their structure but also their conformational variability, al-

though crystal packing can represent a severe limitation in that

case. Nevertheless, refinement as structure ensemble demonstrate

some structural breathing even in crystal structures solved at 100K.

While some proteins show large structural rearrangements it seems

that most (potentially two-thirds [2]) experience only limited vari-

ations with low overall RMSD (less than 3 Å) between known

end-points. In this context, it is still unknown whether the confor-

mation space accessible for structurally well-characterized proteins

can be already described accurately and efficiently for drug design

and virtual screening. Indeed, improving virtual screening will re-

quire to better model protein conformational flexibility. This would

open up access to better entropy estimation on top of standard en-

thalpy computation, although the latter is sometimes complemented

with imperfect extrapolation of the entropy part. In order to do so,

the use of structure-ensembles is gaining popularity nowadays. Nev-

ertheless, extracting the most fruitful target conformations is not yet

straightforward and easily feasible in routine.

Docking involves a trade-off between the speed of the docking

algorithm and its accuracy. Therefore, by adding flexibility to the

protein structure used for docking higher accuracy can be achieved,

but this also adds noise to the computation and usually increases

the computational cost intensively. Especially in large-scale virtual

database screening this comes in to play a role, since due to the

high number of compounds to be screened there is a practical limit

of available computational time per compound [3]. Unfortunately,

the degree of required flexibility is not known in beforehand for

new ligand types. All this underlines the fact that target flexibility

represents one of the greatest challenges for docking programs.

One way to circumvent the problem of small rearrangements is

to perform ”soft docking”. Implemented in several docking pro-

grams, it allows a small overlap of the ligand and the receptor by

reducing the actual volume of the atom spheres [4]. Unfortunately,
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this could introduce errors, such as the detection of false positives,

and it also does not even account for slightly larger conformational

changes, such as side-chain rotations. Nowadays, the ability to in-

clude side-chain flexibility (for a limited amount of side-chains) by

using libraries of preferred conformational states (e.g. sets of torsion

angles) is fortunately implemented in several docking programs,

such as PLANTS [5], which is used in this study. Another way

to take into account the flexibility of a macromolecular structure

is to built an ensemble of static models, called ”ensemble dock-

ing”. The ensemble structures can be generated, for example, by

molecular dynamics (MD) simulation [6, 7]. This addresses both

flexibility problems, the flexibility of the receptor and of the ligand,

at once. Additionally, it should avoid a bias towards one protein

conformation while implicitly including protein flexibility. One ap-

proach is to perform a long MD simulation that could help to sample

the conformational space of the receptor prior to docking [8]. The

difficulty in ensemble docking lies in the selection of appropriate

target structures e.g. from a MD trajectory. One attempt to select

relevant target conformations is normal mode analysis, which has

been demonstrated to be an effective tool [9]. Unfortunately, ad-

ditional noise is introduced by each extra conformation added to

an ensemble, which may mask/counterbalance the beneficial infor-

mation it provides. Therefore, the choice of the most appropriate

receptor conformations is key for the success of the VS experiments

and for the results to be representative. This problem highlights the

need for clear guidelines to select the experimental structures that

should compose an ensemble.

Thorough analysis of available experimental structures (espe-

cially high resolution crystal structures) remain to be performed

to evaluate the conformational space eventually observed in those

frozen conformations, and compare it with the one actually explored

by the protein. Docking successfully all known high-affinity ligands

could be a step toward delimiting the type and number of confor-

mations truly accessible by a given target. The approach discussed

above was implemented here on a well-characterized therapeutic

target with hundreds of crystal structures already solved as well as

hundreds of ligands with high affinity among which many lack an

experimentally observed binding mode.

The Estrogen Receptor alpha (ERα) is among the most studied

NRs. It has been linked to osteoporosis, breast cancer, prostate

cancer, obesity, inflammation, menopausal problems and other dis-

eases and is therefore an important target for medical treatment [10].

NRs have a modular structure consistent of the functional domains

from the N to C termini: the variable modulator domain (referred

to as A/B), the DNA-binding domain (DBD) (referred to as C), the

variable hinge region (referred to as D), and the ligand-binding do-

main (LBD) (referred to as E) [11]. The LBD, which is crucial for

most of the receptor functions because it binds the ligand, performs

dimerization and interacts with coregulators. The LBD of the ER

has the NR general fold of a three-layered α-helical sandwich in-

cluding the 12 helices (H1-H12) [12]. The ligand binding site is a

mostly hydrophobic cavity located in the lower half of the domain.

Upon ligand binding a conformational change is induced in the re-

ceptor that promotes homodimerization and subsequent binding to

hormone response elements within the promoter of a target gene in

order to regulate transcription. However, the direct binding of an ad-

ditional interaction partner, a coactivator or corepressor protein, is

needed for ligand-dependent signaling to occur [12]. In the case of

agonist-bound structures the ligand-binding cavity is sealed by the

C-terminal helix H12 which is then referred to as the active con-

formation. This conformation favors the recruitment of coactivators

(having a short leucine-rich motif) to the AF-2 surface. Cell-type

and promoter-context dependent activity of both ER AF-1 and AF-2

has been demonstrated [13]. In case of antagonist-bound structures

the sealing of the binding cavity by H12 is not possible, because the

usually larger antagonists bind in such a mode that they reach further

out of the binding cavity and occupy the space where H12 would be

located in the agonist conformation. This antagonist conformation

prevents the binding of coactivators and leads to preferential binding

of corepressors (having a longer leucine-rich motif) [14]. Neverthe-

less, besides full agonists or antagonists there is a third group of

molecules, called selective estrogen receptor modulators (SERMs)

that show mixed agonistic/antagonistic behavior depending on the

tissue [15, 16, 14]. Thus, SERMs can show agonist behavior in a

tissue rich in coactivators but have antagonist effects in tissues rich

in corepressors [15, 17, 14, 10]. SERMs were the first examples of

selective modulators identified [18], but due to the development of

resistances [16] and severe adverse effects there is still a high need

for developing new SERMs [15]. This reveals a complex mechanism

of regulation despite minor apparent changes besides H12 relocation

that is also investigated by Srinivasan et al. [19]. Nonetheless, a pos-

sible full coverage of the conformational space is not interrogated.

2 APPROACH

In the present study we aim to probe the complete conformational

space of the promiscuous nuclear receptor ERα based on freely

available experimental data. We are addressing the problem from

two sides: from the protein side by exploiting all available crystal-

lographic data and performing MD simulations, and from the ligand

side by making use of the known ligand space.

2.1 Exhaustive structure ensemble analysis

As a first approach for probing the receptor’s flexibility all available

crystallographic structures complexed with a ligand are analyzed

as ensemble. Light is shed on the whole receptor, ranging from a

global perspective to a focused binding site analysis by taking into

account differences of the two dominant conformations, agonist and

antagonist.

2.2 Molecular dynamics for ensemble generation

As a second approach 5 replicas of 50ns molecular dynamics (MD)

simulations are performed on three liganded ERα complexes in ag-

onist and antagonist conformation (PDB-IDs: 2YJA, 2OUZ and

3UUC) to investigate the intrinsic dynamics and the ensemble

generation capabilities. Additionally, to investigate the effect of

the ligands, the same protocol is repeated for the three structures

without their respective ligands (in their apo form).

2.3 X-ray structure refinement for ensemble generation

The refinement of crystal structures as structure-ensembles has been

recently described [20] and should provide an additional view of

protein flexibility taking advantage of short molecular dynamics
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supplemented with X-ray data. Ensemble refinement is equally per-

formed on the three liganded ERα complexes 2YJA, 2OUZ and

3UUC.

2.4 Exhaustive virtual screening

As a third approach for probing the receptor’s flexibility information

from known ligands is used in virtual screenings (VS), while aiming

for exhaustiveness. For the local flexibility VS two representa-

tive crystallographic target structures (agonist 2YJA and antagonist

3UUC) are selected and in the global flexibility VS all available

PDB structures are used within the @TOME server.

The two main research questions are:

• Can we sufficiently cover the conformational space of our

target receptor ERα?

• What is needed to perform successful exhaustive ligand dock-

ing in terms of flexibility?

3 MATERIALS AND METHODS

3.1 Ensemble analysis of 440 ERα structures

All liganded ERα structures currently available in the PDB (461 protomers)

were gathered using the @TOME server by submitting the canonical amino

acid sequence of ERα (UniProt identifier: P03372-1) with a specified se-

quence identity threshold of 90%. 19 protomers (originating from 12 PDB

entries) did not contain the C-terminal H12 and were therefore removed from

the analysis dataset. Additionally, 2 outlier protomers (chain A and B, orig-

inating from PDB-ID: 1A52) were identified, having an ambiguous electron

density for H12 (an incorrectly modelled domain swap of H12), a rather low

resolution (2.8 Å) and containing gold atoms, and were therefore also ex-

cluded for further analysis. The resulting structural dataset contained 440

ERα protomers.

All analysis and image generation was performed using R, R-Studio, in

particular the ’bio3d’ package, and PyMOL.

3.2 Selected crystallographic structures

For MD simulation, ensemble refinement and local flexibility virtual screen-

ing (with PLANTS) representative structures of ERα are selected from the

PDB (listed in Table 1). As representative agonist conformation 2YJA is

used, containing the natural ligand estradiol (EST). Two representative an-

tagonist are chosen, 2OUZ in complex with Lasofoxifene (C3D) a selective

estrogen receptor modulator (SERM) and approved drug that is representa-

tive for antagonists in terms of size and shape, and 3UUC in complex with

bisphenol C 2 (0D1), an endocrine disruptor that represents the smallest

pharmacophore structure as antagonist. Besides criteria such as the ago-

nist/antagonist functionality, a wild-type sequence and the nature of their

co-crystallized ligands, they are selected due to their good resolution (1.82

Å 2.1 Å and 2.1 Å respectively). The structures have a Diffraction Preci-

sion Index (DPI) [21] of 0.14 Å for 2YJA, 0.18 Å for 2OUZ and 0.27 Å for

3UUC.

3.3 Molecular dynamics simulation

The crystal structures 2YJA, 2OUZ and 3UUC are downloaded from the

RCSB protein data bank (PDB). Structure 2YJA does contain only one ERα

monomer (chain B) and no missing residues and can directly be used for MD.

Structure 2OUZ also contains only one ERα monomer (chain A), but several

side chains are missing. Therefore, the completed and re-refined structure is

downloaded from PDB-REDO databank [22] (created with version 7.15).

For 3UUC, the most complete protomeric structure (chain D) (with gaps in

Table 1. Selected ERα crystal structures. The calculated Diffraction Pre-

cision Index (DPI) [21] is listed for each structure. The respective ligands

present in the structures are listed with their Ligand IDs and their activity

described in the respective publications.

PDB-ID Resolution DPI Ligand ID Activity

2YJA 1.82 (Å) 0.14 (Å) EST agonist

2OUZ 2.0 (Å) 0.18 (Å) C3D antagonist

3UUC 2.1 (Å) 0.27 (Å) 0D1 antagonist

4 loop regions) is prepared for MD with an in-house script using Modeller

[23] for modelling missing residues with sequences given in the PDB file.

Hydrogen atoms of the respective ligands were modeled with OpenBabel

at pH 7. All simulations were carried out with Gromacs 2018 [7]. The lig-

and topologies were generated using the ACPYPE/ANTECHAMBER [24]

program of AmberTools17 [25] with partial charges generated by the em-

pirical charge model AM1-BCC. The ligands parameters are based on the

General Amber Force Field (GAFF) and the Amber FF14SB force field was

employed for the proteins. Each complex was solvated in a TIP3P water

dodecahedral box, with periodic boundary conditions and a minimum dis-

tance of 1.0 nm from the surface of the complex to the edge of the box.

Each system was neutralized by adding NA+ and Cl- ions to physiological

concentration of 150 mM. A completely free steepest descent energy mini-

mization for 2000 steps was followed by a 100-ps NVT equilibration and a

100-ps NpT equilibration with Parrinello-Rahman pressure coupling. NVT

and NpT equilibrations were performed at a reference temperature of 300

K with ligand restraints of 1000 kJ/mol nm2 in x,y,z directions. Finally, 50

ns unrestrained production runs were performed with a 2 fs time-step in the

NpT ensemble and snapshots were saved every 10 ps. For the simulations

without ligands, the ligands are simply removed from the initial structures

before starting the MD protocol. Analysis and plotting is performed with

Gromacs tools, R and Python scripts.

3.4 Ensemble refinement of X-ray data

The Phenix tool phenix.ensemble_refinement models the exper-

imental X-ray data by an ensemble of structures obtained by maximum-

likelihood time-averaged restrained MD simulation. Within the calculations,

a large amount of sets of coordinates are sampled and the reported number of

structures is reduced by selecting the minimal number of structures, equally

distributed over the sampling time, that reproduces the Rfree value of the

whole trajectory within a 0.1% tolerance [20]. In order to run the ensemble

refinement a structure .pdb file, a structure .cif file and a ligand .cif file are

required. The structure files are downloaded from the PDB and the ligand .cif

file is generated using the Grade webserver (http://grade.globalphasing.org).

The generation of structure-ensembles is streamlined by the in-house script,

which runs the ensemble refinement simulation for different sets of param-

eters, since they affect heavily the running and the outcome and cannot be

determined a priori. The two main empirical parameters are pTLS, which de-

fines the fraction of atoms included in the TLS fitting, and wxray (or Tbath),

which controls the X-ray weight by a temperature bath offset (in K). Tested

values for pTLS are (0.6, 0.7, 0.8, 0.9 and 1.0) and for wxray (2.5, 5 and

10). A third variable, the relaxation time (or memory time) tx (in ps) of the

time-averaged restraints, is used in the simulation. tx changes the amount

of structures contributing to the target function and is automatically selected

based on the dataset resolution. Additionally, values of 2 × automated tx

and 0.5 × automated tx are also tested, as suggested by the authors. In total,

45 separate simulations are performed for an exhaustive parameter test. The

ensemble with the lowest Rfree is selected for further analysis.
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3.5 The BindingDB dataset

Two affinity containing dataset were chosen from the BindingDB 2018:

One containing all available Ki affinity measures for ERα comprising 283

molecules and a second one containing all available IC50 affinity measures

for ERα comprising 1641 molecules. Since the two affinity measures are not

directly comparable, the datasets are kept separately, but compared in terms

of structural diversity and spread of binding affinities. The smaller Ki dataset

is used in for the manual screening with PLANTS while investigating local

side-chain rearrangements and the larger IC50 dataset is additionally used in

the automated structure ensemble approach on the @TOME server in order

to extrapolate to larger quantities and better statistics.

3.6 Virtual screening

3.6.1 Local flexibility VS on ERα with PLANTS

In order to obtain a first insight into receptor specific, structure depen-

dent difficulties within the ligand screening, involving characteristics such

as flexibility of single side-chains but also the movement of whole protein

parts, a ligand screening is performed on a two selected ERα structures. The

workflow consists of the following steps:

1. Extraction of experimentally tested ligands for the respective recep-

tor from BindingDB. (Extracted ligands are numbered according to

decreasing binding affinity.)

2. Selection of different protein structures from the PDB with focus

on good resolutions of the crystal structures and the discrimination

between agonist, reverse agonist and antagonist conformations.

3. Structure preparation using Spores and Babel.

4. Performing the ligand docking using PLANTS.

5. Visual validation of results using PyMOL.

6. Re-performing step 4 and 5, the ligand docking with PLANTS and

subsequent validation, using improved input settings as for example a

different protein conformation, different ligand restraints and different

flexible protein side chains, until all ligands can be docked in a plausi-

ble binding position.

3.6.2 Global flexibility VS on ERα with @TOME server

In order to obtain a broad overview of possible binding modes in addition

with more sophisticated information, such as binding affinities, the previ-

ously selected set of ligands is screened on respective structure-ensembles

using the meta server @TOME instead of only taking single structures. For

a large range of NRs @TOME already provides a pre-calculated set of com-

plex supports which are either crystallographic or modeled structures. The

envisioned ensemble of structures, here, all crystallographic ligand bind-

ing domain (LBD) structures of ERα containing a ligand, is gathered using

the @TOME’s Modelling module. The settings contain an activated screen-

ing module, the ’selected tools’ are Psi-Blast (PDB) and HHSearch (PDB),

with a ’low limit of identity between query and template’ of 90%, and the

’maximum number of additional complexes’ set to ’All’.

One further feature of the @TOME server is the comparative virtual

screening module, which is based on the PLANTS software. It performs

docking of candidate ligands that are uploaded by the user, taking into con-

sideration the crystallographic ligands being present in the templates and

their profile of contacts with the protein. The selection of the model com-

plexes to guide the docking can be done manually according to different

criteria. In the automatic mode, which is used here, @TOME selects the

structures containing the closest ligands, defined by the Tanimoto similarity

score between the uploaded ligand (termed as candidate) and the crystallo-

graphic ligand (termed as anchor). Here, the number of template structures

to be selected for each ligand is set to 20. So, each candidate ligand is

docked into the 20 structures containing the anchors with the highest sim-

ilarity score, meaning that the selected structures are not necessarily the

same for all uploaded ligands and can differ depending on the chemical and

structural nature of the candidate.

@TOME furthermore performs a ligand position clustering. This means

that for each candidate ligand the newly calculated complexes are super-

imposed. Based on the superimposition different orientation clusters are

detected and ranked. The cluster containing the highest number of detected

orientations is termed as P1, which should represent the most probable ori-

entation. Then follows P2, P3, and so on. During and after this processes a

range of different parameters are calculated by @TOME. In order to evaluate

the calculated complexes different descriptors are taken into account:

• the calculated binding affinity (pKa, also termed AtomeScore), which

is an average of the results of the 4 scoring functions PLANTS,

MedusaScore, XScore and DSX,

• the similarity to the crystallographic template (PSim), showing the

similarity of the ligand-receptor contact profile towards homologous

complexes in the PDB (in %), and

• the Tanimoto score between the candidate and the anchor (calculated

with Open Babel using FP2 fingerprints)

• the AnchorFit, which is a candidate/anchor superimposition score

(provided by PLANTS)

• the Quality of complex, which is a consensus score including features

such as internal energy of the ligand, complementarity function be-

tween ligand and binding site, quality of receptor structure and type of

contacts. It ranges from 0 to 1, while 1 represents the best quality and

0 the lowest quality.

Furthermore, @TOME calculates a Ligand Position Error (LPE) in

Ångstrom, which is a theoretical RMSD, using a support vector machine

multi-variable regression method (JL. Pons & G. Labesse, to be described

elsewhere). The average LPE for each position cluster indicates the most

probable orientation of the ligand. The final output of the @TOME server is

analyzed using the interactive web interface and contains a high quantity of

information (20 instances - docking structures - for each screened ligand and

47 variables).

4 RESULTS AND DISCUSSION

4.1 Global flexibility analysis

4.1.1 Structural variability of 440 crystal structures

In order to get a complete view on ERα’s intrinsic flexibility all

available crystallographic structures (which were also available for

the automated virtual screening) are clustered and analyzed as

structural ensemble.

All liganded ERα structures currently available in the PDB (461

protomers) had a sequence identity between 95% and 100% (of

them 99% or 100%) with the canonical amino acid sequence of ERα
(UniProt identifier: P03372-1) and correspond to point mutants of

ERα. This set of structures is also freely available for automated

virtual screening campaigns on the @TOME server. After removal

of 21 protomers (originating from 13 PDB entries) from the analysis

dataset as they are lacking H12 or have ambiguous solutions (de-

tails in Methods), the resulting structural dataset contains 440 ERα
protomers (originating from 232 PDB entries) with 210 different

co-crystallized ligands.
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Figure 1. Hierarchical clustering of all 440 protomeric structures based on

(A) distance in PC space and (B) RMSD. (C) Principal Component Analysis

with plots for PC 1 to 3 and their respective proportion of variance. Coloring

is based on RMSD cluster attribution.

To reveal ERα’s global flexibility concerning larger rearrange-

ments such as domain movements, secondary structure reposition-

ing, or loop conformation variability, the following analysis is

performed on 440 protomeric structures:

• clustering based on RMSD and Principal Component Analysis

(PCA)

• ensemble Normal Mode Analysis (eNMA)

• RMSF analysis

• detailed comparison of agonist and antagonist subsets

Two different clustering methods (hierarchical and k-means) are

employed on two different distance measures (RMSD and PC) to

identify the main structural conformations of ERα. All four cluster-

ing approaches result in the same partitioning of the 440 structures

(compare Figure 1 and S3) into two main subsets, a larger one with

358 protomers and smaller one with 82 protomers. The two subsets

are identified as ERα active agonist and inactive antagonist con-

formations, respectively, as shown by the superimposed structures

colored by conformer cluster (Figure S4).

Principal Component Analysis (PCA) of the full ensemble of 440

structures demonstrates an outstanding role of the first principal

component PC1 (compare Figure 2C). PC1 has a high proportion

of variance of 88.59%, compared to the second PC, which reflects

only 1.65% of structural variance. Furthermore, when looking at the

overall residue contribution to the first three principal components

(compare Figure 2A), it is remarkable that PC1 is solely directed by

the protein’s C-terminus and thus represents the movement of H12,

as demonstrated by the PC1 trajectory representation (see Figure

2B).

Ensemble Normal Mode Analysis (eNMA) of the 440 protomeric

structures (see Figure 3) grouped by conformer cluster (agonist

and antagonist) does not reveal any concerted movement, such as

sub-domain or secondary structure rearrangements (except for the

C-terminal H12), but instead shows distinct tendencies of loop

variability. Agonist conformations show highest fluctuations within

Figure 2. A) Principal Component (PC) residue contribution for the first

three PCs and B) PC1 represented as trajectory.

Figure 3. Ensemble Normal Mode Analysis (eNMA) with fluctuations per

residue. The 440 protomeric structures are grouped by conformer cluster

(agonist - black and antagonist - red) and spread for better comparison.

loop L8-9, followed by a second peak at loop L2-3. Antagonist

however, show lower fluctuations for loop L8-9, but even higher

fluctuations for loop L2-3. Fluctuation values for loop L11-12

are also increased for antagonists compared to agonists, and most

extreme values are attained for the C-terminal H12.

The RMSF analysis of all 440 aligned structures points out the

high importance of the C-terminal H12, as depicted in Figure 4.

The C-terminus of the protein shows a sharp increase in RMSF with

values of up to 20.4 Å for Cα atoms, whereas fluctuations for the

rest of the protein’s Cα atoms stay below 5.2 Å, with maxima at the

N-terminus and loop L11-12 (adjacent to H12) and two further main

peaks at loops L2-3 and L8-9.

When comparing RMSFs of the two subsets, agonists (with 358

protomers) and antagonists (with 82 protomers), similar tendencies

as revealed by eNMA are apparent (see Figure 5). Agonists and an-

tagonists show RMSF peaks within the same regions (the termini

and loop regions L2-3, L6-7, L8-9 and L11-12), whereat the ampli-

tude of fluctuation differs for the two conformer clusters. Agonists
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Figure 4. Cα Root Mean Square Fluctuations (RMSF) calculated on all 440

protomeric ERα structures, superimposed on their common core Cα atoms.

A) Cα RMSF plotted by residue with annotated secondary structures (α he-

lix in dark grey, β strand in light grey). Gap positions (residues not present

in all structures) are excluded from the plot. B) Superimposed structures col-

ored by Cα RMSF including gap positions (coloring scheme = rainbow, with

a range of 0 to 20.4 Å).

Figure 5. Cα Root Mean Square Fluctuations (RMSF) of common-core su-

perimposed ERα structures calculated on either the agonist subset (A and B)

or the antagonist subset (C and D). Gap positions are included. The super-

imposed structures are colored by Cα RMSF for the agonist subset (B) and

the antagonist subset (D) (coloring scheme = rainbow, with a range of 0 to

7.39 Å).

show higher fluctuations for the N-terminus and L8-9. Antagonists

have maximal RMSF values for the C-terminus (the extension of

H12), helix H12, and the loops L2-3 and L11-12.

4.1.2 Molecular dynamics of ligand-bound complexes

Three systems are investigated, the agonist 2YJA with the natural

ligand estradiol (EST) and the two antagonists 2OUZ with Lasofox-

ifene (C3D) and 3UUC with bisphenol C 2 (OHT), by performing

Figure 6. A) & C) RMSF averaged per residue of 5x 50ns MD simulations

for agonist conformation 2YJA and antagonist conformation 2OUZ, respec-

tively. B) & D) respective visualization of 55 frames extracted from MD-1

to MD-5 (1 frame every 5ns = 11 frames per MD) colored by RMSF aver-

age per residue averaged across all 5 MD simulations (coloring scheme =

rainbow, with a range of 0 to 6 Å for B and D).

50ns MD runs, repeated 5 times with different initial velocities,

resulting in a total of 250ns simulation time for each of the three

systems. To investigate the effect of the ligands, the protocol is re-

peated for the tree systems without their respective ligands. For the

six simulated systems all 5 replicas show a stable and rather rigid

behavior over 50ns simulation time, as backbone RMSDs stay low

along the trajectories with fluctuations of usually less than 2.5 Å

(compare Figure S5). RMSF values averaged per residue, including

backbone and side-chain atoms, are showing baseline fluctuations

between about 1 - 2 Å (see Figure 6 A and C, and Figure 4). The

largest RMSF contributions come from H12 and flexible loop re-

gions (compare Figure 6 B and D). While the mean RMSF per

residue averaged over all 5 MD simulations attains a maximum of

3.8 Å for the agonist 2YJA at residue Lys467, located within loop

L8-9, the antagonist 2OUZ attains a maximum of 8.6 Å at the C-

terminus. If we exclude H12 for 2OUZ, two mean RMSF peaks are

visible with maxima of 4.5 Å at Phe337/Ser338, within loop L2-3,

and 4.6 Å at Lys531, within loop L11-12. Interestingly, antagonist

3UUC shows rather similar behavior as the agonist 2YJA with a

maximum of 5.5 Å at residue Lys467. It has to be pointed out that

the ligand in 3UUC is bisphenol C 2, a rather unusual and very small

antagonist, an endocrine disruptor and environmental pollutant.

4.1.3 Ensemble refinement of X-ray data

The crystallographic structures 2YJA, 2OUZ and 3UUC were sub-

mitted to the ensemble-refinement procedure implemented in the

crystallographic refinement package Phenix (for more details see

Methods and [20]). For 2YJA the selected ensemble with the lowest
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Figure 7. A) & C) RMSF averaged per residue of ensemble-refined agonist

conformation 2YJA and antagonist conformation 2OUZ, respectively. B) &

D) respective visualization of the single-refined (cyan) and the ensemble-

refined (green) structures.

Rfree (of 0.203) has an Rwork of 0.142 and the refinement parame-

ters: pTLS = 0.9, wxray = 5 and tx = 1.2. The ensemble refined

structure shows an improved agreement between the model and the

experimental diffraction data compared to the initial refinement of

2YJA as single model with Rwork/Rfree = 0.198/0.234. For 2OUZ

the selected ensemble has an Rfree of 0.267 and an Rwork of 0.199

and the refinement parameters are: pTLS = 1.0, wxray = 2.5 and

tx = 1.0. Here, the ensemble refined structure does not show any

improvement compared to the initial refinement of 2OUZ as single

model with Rwork/Rfree = 0.199/0.269. For 3UUC the selected

ensemble with the lowest Rfree (of 0.263) has the following refine-

ment parameters: pTLS = 0.9, wxray = 5 and tx = 0.5. The

best refined ensemble with its Rwork/Rfree = 0.184/0.263 lies in

the same range as the initial refinement of 3UUC as single model

with Rwork/Rfree = 0.214/0.255. This may indicate that the ERα
structure 3UUC has a rather restrained flexibility within the crys-

tal and a refinement as single model is sufficient to represent this

crystallographic data.

Overall, the ensemble-refinement explores a slightly larger con-

formational space compared to the standard MD simulations with

larger RMSF values and increased variability in loop regions (com-

pare Figure 7, S7, and S8).

4.2 Ligands and conformational preferences

One would expect that a certain ligand favors one over the other

conformer and therefore only crystallizes in one protein conforma-

tion. Nonetheless, we find three co-crystallized ligands to be present

in both, the agonist and the antagonist conformer. The PDB ligand

IDs are ”EST”, ”KN1” and ”KN3”. ”EST”, the natural 17-beta-

estradiol is a pure agonist, but crystallized in a triple cysteine to

serine mutant which adopts an antagonist conformation (PDB-ID:

1QKT) [26]. ”KN1” and ”KN3” are dynamic WAY-derivatives that

are partial agonists and cristallyzed in both the canonical active and

inactive antagonist conformations (PDB-IDs: 2QZO, 3OS9, 3OSA

and 4IW8) [27, 19]. Similarly, we expected the different protomers

of a single PDB entry to adopt the same overall conformation and

thus being all attributed the same class. Nonetheless, also here we

find an exception: The PDB entry 5TLP contains two ERα pro-

tomers in complex with two different ligands that induce the distinct

conformers agonist and antagonist [28]. Those findings suggest that

agonist-antagonist classification of ligands is not a trivial task and

that the two ligand binding concepts ’induced-fit’ and ’conforma-

tion selection’ are likely inter-knotted in a complex way that also

depends on the local environment, such as the presence of specific

cofactors.

Finally, the structures that were initially excluded from the anal-

ysis dataset (13 PDB entries) are manually attributed to the agonist

or antagonist cluster according to the annotation of the bound ligand

in the respective publication. This complete classified list of ERα
structures enables the analysis of target selection preferences within

the automated virtual screening process in @TOME. Here we find

that for the xenobiotics and the FDA dataset primarily agonist con-

formations are selected as support (across 20 dockings per ligand),

whereas the BindingDB Ki and IC50 dataset have a rather even se-

lection distribution among agonist and antagonist supports (compare

Figure 8). When only taking into account the ’best’ docking per lig-

and selected by the @TOME server (instead of the mean of all 20

dockings) the mentioned agonist-antagonist support partitioning is

even more pronounced. The proportion of agonist vs. antagonist as

docking support are for the BDB-IC50 dataset 53.1% vs. 46.9%, for

the BDB-Ki dataset 45.2% vs. 54.8%, for the FDA dataset 91.8%

vs. 8.2%, and for the Xeno dataset 87.9% vs. 12.1%.

4.2.1 Ligands’ chemical space

Agonists, antagonists, as well as all currently known groups of

SERMs, Triphenylethylen SERMs, Benzothiophene SERMs, and

Indole and tetrahydronaphthalene SERMs are present in both data

sets (Ki and IC50). SERMs are chemically diverse compounds that

lack the steroid structure of estrogens and are therefore classified

based on the chemical structure of their scaffold.

Appropriate structural diversity of screened ligands

The Tanimoto score is the most common metric in chemoinfor-

matics for comparing molecules and has been shown to be an

appropriate choice for fingerprint-based similarity calculations [29].

Thus, it is used here to report structural diversity of the used data set

and applied on different molecular fingerprints. For all used finger-

print types (CDK extended, circular, PubChem and MACCS) the

Tanimoto score distributions report a diverse dataset as shown in

Figure S2. Moreover, when comparing the Ki dataset (containing

281 molecules) to the IC50 dataset (containing 1641 molecules), a

very high similarity between the Tanimoto score distributions across

all fingerprint types can be stated (compare Figure S1). This indi-

cates a similar composition and similar chemical diversity of the

two datasets.

Appropriate spread of binding affinities

Even though the affinity measures Ki and IC50 cannot directly be

compared, the histogram of affinities (Figure S2) demonstrate a
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Figure 8. Template class usage profiles for screened ERα ligands across 20

dockings on the @TOME server.

wide spread covering more than six orders of magnitude for both

datasets, IC50 and Ki.

4.3 Local flexibility within the binding pocket

4.3.1 Structural variability of 440 crystal structures

The ER ligand binding pocket is manly hydrophobic. Nevertheless,

two polar residues located at the end of the pocket play a major role

in ligand binding. Glutamic acid 353 on helix H3 and arginine 394

on helix H5 contribute to the formation of two hydrogen bonds with

the respective ligand (also called tweezers).

A more detailed regard onto the flexibility of the binding pocket

reveals further pathways for drug design campaigns. Here we define

the binding pocket of ERα by taking into account all residues within

a distance of 4 Å of any co-crystallized ligand. This results in a list

of 56 residues that potentially contribute to ligand binding.

Particularly, the frequency of involvement in binding for all the

identified residues (shown in Figure 9 A) reveals insights into

binding requirements and conformer cluster particularities. For ex-

ample, Leu540 is identified as binding site residue in 56.7% of

agonist structures, but only in a single antagonist structure. The

antagonist conformations also have their unique fingerprint in the

binding pocket. Five residues (Asp351, Leu354, Pro535, Val533

and Leu539) are uniquely identified in antagonists with occurrences

of over 30%. Pro535 and Val533 are part of the hinge between H11

and H12 and Leu539 is located within H12, which are for antago-

nist in a ligand accessible position. On the other hand, Asp351 and

Leu354 are part of H3, but with a spacial close location to Pro535

and Leu539 in antagonist conformations. Thus, those residues form

a distinct area that is only accessed by ligands crystallized in the

antagonist conformation.

Figure 9. A) Frequency of involvement in ligand binding per residue (or-

dered from highest to lowest) for all 440 structures and for the conformer

cluster subsets agonist and antagonist. B) All-atom mean RMSF per binding

site residue, with residue ordering as in A.

Moreover, the flexibility of the 56 identified residues contributing

to ligand binding is reflected by their all-atom mean RMSF across

all 440 structures and across the conformer subsets (compare Figure

9 B).

The four selected side chains for flexible virtual screening

(Met343, Met421, Met528 and His524) are among the frequently

identified residues (93.6%, 97.3%, 41.1%, and 89.3% occurrence,

respectively) and additionally have increased RMSF values. In par-

ticular, Met343 has a rather high RMSF across all structures, which

is the same for the agonist subset, but reduced by half for the

antagonist subset. This indicates that the variability is dominated

by the agonists. In contrast Met421 has a remarkably high RMSF

(of 4.7 Å) only across the antagonist subset. Met528 and His524

show a third behavior with high RMSF values for the whole set

but low values within both of the subsets. This indicates that the

variability is mainly observed when a switch between the two main

conformations (agonist and antagonist) occurs.

4.3.2 Molecular dynamics shows rigid ligand-bound state

Concerning the 56 identified binding pocket residues 2OUZ shows

only larger RMSF values for some residues (Asn532, Lys531, and

Glu339). Otherwise, the binding pocket residues show in general
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Figure 10. All-atom mean RMSF per binding site residue from 5x 50ns MD

simulations, with residue ordering as in Figure 9. The height of the bars is

the mean of the 5 replica simulations and the error bars indicate lowest and

highest values of the 5 replicas.

Figure 11. All-atom mean RMSF per binding site residue of the ensemble-

refined crystal structures 2YJA and 2OUZ, with residue ordering as in Figure

9.

rather low RMSF values, especially for 2YJA and 3UUC (com-

pare Figure 10 and S10). This indicates a rather rigid ligand-bound

conformation that might be restrained by the ligand itself.

4.3.3 Ensemble refinement of X-ray data

Accordingly, the 56 identified binding site residues show increased

RMSF values, as depicted for 2YJA and for 2OUZ in Figure 11,

and for the four protomers (chain A-D) of 3UUC in Figure S12.

RMSF values are very variable among the four protomers of 3UUC

(chain A-D), which may be due to chain breaks, as none of the four

protomers is complete, and due to lack of crystallographic data for

those areas.

4.4 Required side-chain flexibility in the binding pocket

Upon analysis of different crystal structures, it seems to be crucial

that the ligand’s polar moiety (if present) is placed in such a way

that the hydrogen bonds can be established. Also the docking re-

sults from PLANTS seem to confirm this observation, since all the

binding ligands (extracted from BindingDB) show a very similar po-

sitioning of the polar moiety, usually a hydroxyl group, towards the

tweezer formed by the two residues involved in hydrogen bonding

(Arg and Glu). The hydroxyl group is often bound to a phenyl ring.

Therefore, the ligands seem to be oriented by two types of contacts:

hydrogen bonding at one (or two) end(s) and hydrophobic van der

Waals contacts along the body of the molecule.

In order to probe to which extend local flexibility is required in the

binding pocket VS is performed on two selected crystallographic

structures in the two main conformations (agonist and antagonist)

using the PLANTS software. In this approach an anchor is used

in form of a co-crystallized ligand and selected side-chains are ad-

ditionally set flexible to accommodate more ligands. Flexibility is

added in a step-wise manner by choosing different sets of flexible

side-chains in an iterative manner for each screening in order to

stay at a minimal level of punctually introduced flexibility and to

minimize the production of artifacts generated by improbable side-

chain orientations. In general, rotamer libraries are often insufficient

to sample the conformations of protein side-chains finely enough

to yield in natural, probable and collision-free conformations.[30]

Alternatively, it is possible that the used side-chain flexibility is

required to compensate for minor main-chain motions in the ERα
structures upon ligand binding.

The ERα LBDs of the two selected structures 3UUC and 2YJA

are shown in Figure 12. The two structures are superimposed un-

derlining the conformational difference of H12 positioning (on the

left hand) being the the characteristic difference between agonist

and antagonist conformations. The close-up on the binding pocket

shows the same positioning for the hydrogen bond forming side-

chains Glu353 and Arg394 and the ligand’s hydroxyl group for both

conformations.

Figure 12. Superimposed ERα LBD domains of 3UUC (blue) in complex

with bisphenol C 2 (orange) and 2YJA (green) in complex with estradiol

(yellow). The inset shows a close-up on the binding pocket with the two

superimposed ligands depicted as sticks and the two hydrogen bond forming

side-chains Glu353 and Arg394 in line representation.

Virtual screening results

Small ligands, usually agonists can be docked successfully in a very

similar and convincing mode into both selected conformations, the

agonist (2YJA) and the antagonist (3UUC) as shown in Figure 13

A. In contrast, larger ligands, having a bulkier extension are usually

antagonist ligands and do only fit properly into the binding pocket

of the antagonist conformation 3UUC (compare Figure 13 B and
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C). Docking results for such ligands into 2YJA either show very

unusual and unconvincing binding modes (see Figure 13 B) or they

are placed outside the binding pocket (see Figure 13 C).

The docked ligand poses generated using the 3UUC conformation

are considered here as more reliable since the ligand poses show

common, frequently appearing features. The ligands’ polar moieties

are positioned similarly, providing hydrogen bonding to Glu353 and

Arg394, which is apparently important for good binding affinities,

since more than a hundred of the strongest binding ligands (down to

25 nM) all contain a hydrogen bond forming moiety at this position.

Moreover, a conjugated ring system, representing a common core

structure, is usually oriented in the same plane indicating prefer-

ential hydrophobic interactions connected to this orientation. Most

extensions from this core structure are characteristic for antagonist

ligands, since they are preventing the positioning of helix H12 at

the same position to close the binding pocket. Therefore, those ex-

tensions are usually pointing out of the binding pocket, in the same

direction. A frequently occurring piperidine moiety located at the

end of such an outreaching extension (pointing towards the sol-

vent) supports the reliability of the binding pose, since this moiety

is usually used to increase the solubility of a ligand.

It has to be mentioned that certain ligands are discarded for

the analysis of virtual screening results, because their stereochem-

istry is not represented properly in three dimensions. This con-

cerns especially carborane containing ligands due to the improper

representation of boron atoms and some steroids.

As one might expect, not all the ligands with high affinities can be

docked successfully into 3UUC, as exemplified in Figure 13. There-

fore, in order to be able to dock more ERα ligands into 3UUC two

side-chains in the binding pocket are set as flexible, Met343 and

Met421. As result, more convincing binding modes are obtained for

most ligands.

Nevertheless, this is not sufficient for one class of large ligands

being composed of a steroid core with a large extension connected to

the D-ring via a rigid alkyne entity (-C≡C-), which is often followed

by a phenyl ring. The strongest binder among them shows an affinity

of 25 pM (Ki). The fact that those ligands contain the same steroid

moiety, but are often not fitting into the binding pocket suggests

that further flexibility is needed to accommodate their extensions.

Therefore, in order to dock this class of ligands four side-chains are

set flexible, the previously mentioned two methionines (Met343 and

Met421) together with two further side-chains, Met528 and His524,

which are all located in close proximity to the D-ring. This results

in more convincing ligand binding modes, as the binding pocket is

extended, enabling the accommodation of the ligands.

The choice for introducing flexibility to certain side-chains fol-

lows certain criteria. These are the proximity of the side-chains to

the docked ligands, an appearing difference of the positioning of the

side-chains between the agonist and the antagonist conformations,

and the proximity to the position of ligand extensions when com-

paring ligands with similar core structures. Moreover, side-chains

having an elevated intrinsic flexibility are selected preferentially.

The selection of the flexible side-chains was validated a poste-

riori by comparing the initial side-chain conformations of 2YJA

and 3UUC. The comparison of side-chain positions (see Figure 14)

shows larger variations for the conformations of Met343, Met421,

Met528 and His524 between structure 2YJA and 3UUC, whereas

other binding pocket side-chains are rather equally oriented.

Figure 13. Exemplified docking results for three ERα ligands (A,B,C). The

docked ligands are shown in purple (docked into 2YJA) and yellow sticks

(docked into 3UUC), the protein structures are shown in green (2YJA) and

cyan (3UUC) in line representation. Expected hydrogen bonds to Glu353

and Arg394 are depicted as yellow dotted lines. Ligand A shows convinc-

ing poses in both structures; whereat ligands B and C can only be docked

successfully into 3UUC.

Virtual screening on multiple crystallographic conformations is

performed to account for structural flexibility on a more global level

- including possible protein backbone fluctuations. Here, structure-

ensembles are used for virtual screening in an automatic manner, a

functionality implemented in the @TOME server that is also based

on the PLANTS docking software. Assuming that crystal struc-

tures show the protein side-chains in favorable conformations, this

second approach attempts to sample the available side-chain con-

formational space by the use of side-chain conformers from multiple

X-ray structures. It makes use of all available conformations of ERα
(being present in the PDB). Here we find about 70% of poses se-

lected as best pose by the server equivalent to the manual screening

with included flexibility for the BindingDB ERα Ki dataset. Most of

the remaining ligands have a convincing pose among the remaining

19 @TOME poses that were not selected.

5 CONCLUSION

For ERα large scale movements are dominated by a major rear-

rangement of helix H12 that distinguishes the two main conforma-

tions - agonist and antagonist - that has an important impact on the
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Figure 14. Comparison of side-chain conformations between structure

2YJA (in dark green) and 3UUC (in light green). The natural ligand estradiol

is represented (in pink) for binding pocket localization. The selected four

flexible side-chains (Met343, Met421, Met528 and His524), are located at

the bottom of the binding pocket (highlighted in thicker stick representation).

feasibility of ligand accommodation. The comparison of the various

ensembles of conformations (as extracted from the whole crystal

structure set, from the refined ensembles, and from the classical MD

simulations) highlights a very good qualitative agreement. Indeed,

the same regions are found variable and/or flexible (loops L2-3, L6-

7, L8-9, and L11-12) with distinct intensity variation patterns for

agonist and antagonist conformations. Interestingly, the refined en-

sembles seem to recapitulate the side-chain flexibility better than

classical MD simulations with respect to the variability found in

the whole crystal structure set. Accordingly, they may be used for

ligand docking and possibly MM-PBSA affinity calculations in the

near future. We shall evaluate their use via the @TOME server

very soon. Concerning small scale side-chain flexibility within the

binding pocket, our exhaustive virtual screening approach revealed

the required flexibility of residues Met343, Met421, Met528 and

His524, which are equally found to display increased variability

within the crystal structure set.

For the first time, to our knowledge, an exhaustive virtual screen-

ing campaign is performed to probe a receptor’s intrinsic flexibility

dictated by its ligands’ nature. The results obtained from the virtual

screening approach (as view from the ligand side) are confirmed

by the results from the protein structure ensemble analysis (as view

from the protein side). Those two complementary approaches pro-

vide a complete view of the receptor’s flexibility. We show that

making use of experimental data (ligands with measured affinities

from BindingDB and crystallographic structures from the PDB). In

this paper, we have described exhaustive docking results on ERα
that will serve as reference for detailed VS campaigns and are made

available online.
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Figure S1. Tanimoto score distributions calculated on four different fin-

gerprints of the Ki dataset (281 molecules) and the IC50 dataset (1641

molecules).

Figure S2. Ligand affinity spread of both datasets, IC50 and Ki

Figure S3. k-means clustering of all 440 protomeric structures based on (A)

distance in PC space and (B) RMSD.

Figure S4. 440 superimposed ERα structures colored by conformer cluster

- 358 agonist in grey and 82 antagonist in red.
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Schneider et al.

Figure S5. Backbone RMSD over time of 5x 50ns MD simulations for

2YJA (A), 2OUZ (C), and 3UUC (E), and of simulations without the

respective ligands (as apo structures), (B), (D), and (F) respectively. Figure S6. RMSF averaged per residue of 5x 50ns MD simulations for

agonist conformation 2YJA (A) and antagonist conformations 2OUZ (C)

and 3UUC (E), and of simulations without the respective ligands (as apo

structures), (B), (D), and (F) respectively.

Figure S7. RMSF per residue for the four protomers (chain A-D) of the

ensemble-refined crystal structure 3UUC.
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ERα structural flexibility

Figure S8. Protomer A of crystal structure 3UUC refined as single structure

(cyan) and as ensemble (green).

Figure S9. All-atom mean RMSF per binding site residue from 5x 50ns MD

simulations, with residue ordering as in Figure 9. The height of the bars is

the mean of the 5 replica simulations and the error bars indicate lowest and

highest values of the 5 replicas.

Figure S10. All-atom mean RMSF per binding site residue from 5x 50ns

MD simulations, with residue ordering as in Figure 9. The height of the bars

is the mean of the 5 replica simulations and the error bars indicate lowest

and highest values of the 5 replicas.

Figure S11. All-atom mean RMSF per binding site residue from 5x 50ns

MD simulations, with residue ordering as in Figure 9. The height of the bars

is the mean of the 5 replica simulations and the error bars indicate lowest

and highest values of the 5 replicas.

Figure S12. All-atom mean RMSF per binding site residue from the four

protomers (chain A-D) of the ensemble-refined crystal structure 3UUC, with

residue ordering as in Figure 9. The four protomer RMSF values are grouped

per residue (four bars per residue for chain A-D).
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3
THE DRUG DESIGN PROJECT

This chapter contains a detailed description of the diverse (sometimes iterated) steps within the drug design

project that is aimed at finding a potent inhibitor of the oncogenic protein kinase BRAF-V600E with minimal

affinity for the nuclear receptor PXR.
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3.1 Motivation

The aim of this project (as depicted in Figure 3.1) is to set up an integrated approach for drug
refinement. The biological system under investigation is focused on the protein kinase inhibitor (PKI)
dabrafenib and possible derivatives taking into account both the primary target serine/threonine
kinase BRAF, but also the unwanted and harmful secondary target PXR, in order to avoid the
activation of the degradation pathway via CYP450 enzymes.

Figure 3.1: Motivation: The anti-cancer drug does not only bind to its primary target BRAF, but also to the
nuclear receptor PXR, which subsequently induces the transcription of CYP450 resulting in drug degradation
and adverse effects. The new drug should still bind its primary target BRAF, but not any more PXR.
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3.2 Protein structure flexibility - a global view on BRAF & PXR

Proteins are not strictly static objects, but populate ensembles of conformations. Which of the states
are happening to be the most populated and therefore most occurring depends on their overall
energy in equilibrium and on the transition energies between the conformations.

The stability of a certain conformation and the protein’s overall flexibility are closely related. Stability
of a conformation of a globular protein depends on the interplay of three factors: the unfavorable
conformational entropy change, which favors random chains and therefore a rather unfolded state,
the favorable enthalpy contribution arising from intramolecular side group interactions, and the
favorable entropy change arising from the shielding of hydrophobic groups from the aqueous solvent
through burying within the molecule.

Transitions between different conformational states are often functionally relevant and can occur on
a variety of time scales (ns to s) and length scales (Å to nm). Furthermore, stability-activity trade-
offs can exist, as proteins have not evolved to maximize stability, but rather to preserve adequate
stability, and to exert an ’optimal’ activity. However, sometimes stability and activity are selected
at the expense of the other, such that some mutations in the active site of a protein are more stable
but less active (e.g. in the case of a binding pocket charge compensation by mutation, whereas
the compensation is usually performed by an oppositely charged ligand), or a mutation leads to
a reduced stability of the inactive conformation, provoking in turn to constitutive activity (as for
BRAFV600E). This highlights the importance of the intrinsic flexibility and its balanced fine-tuning
for the protein’s functionality. Within the study of protein dynamics two levels of flexibility are often
distinguished:

1. Local flexibility, concerning the movement of atoms and residues (e.g. side-chains switching
between separate discrete rotamers and energy minima), usually happening in the picosecond
to nanosecond scale;

2. Global flexibility, concerning secondary structure re-locations or domain movements, usually
happening in the microsecond to second scale.

However, the transition between the two levels can be continuous. For example, the movement of
single residues can be coupled, transferring to a larger scale. The coupling of residue movement
may have an effect across the whole protein (e.g. when coupled residues are forming pathways and
linking functionally important parts of a protein). By such means, the coupling may also participate
or even be the driving force in allosteric signaling.

Different proteins show varying degrees of conformational flexibility on the different levels.

3.2.1 Analysis of X-ray structures

Analyzing the sequence, structure and conformational heterogeneity of proteins is one of the
first steps for investigating the protein’s potential for rational drug design. The examination of
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diverse protein conformers can help to identify important structural and dynamic features that
may affect ligand binding and the quantitative comparison of the different conformers may lead to
new predictions for structural dynamics. Therefore, the information deduced from interconformer
relationships is a valuable factor to take into account for drug design approaches.

3.2.1.1 PXR - global analysis

In the case of PXR we have a completely different starting point compared to the previously
studied nuclear receptor ERα. For ERα there are many structures available in the PDB (248) with
overall good resolutions (more than 90% < 2.7 Å) and the two dominant conformations, the
agonist and the antagonist form are represented and well described with their respective ligands.
For PXR there are only a few crystallographic structures available (23 PDB entries in total with
34 protomeric PXR structures) and most of them have a rather low resolution (> 2.7 Å for 9
PDB entries). Moreover, unlike most NRs that tend to be specialized for a set of ligands with
structural homologies, PXR is able to bind a large number of structurally diverse ligands. Its
binding pocket is very large, mostly hydrophobic with 8 evenly distributed polar residues and
possesses a high deformability and adaptability to accommodate a large variety of chemical scaffolds.

Figure 3.2: Rigid core superpositioning result (left) of 34 PXR protomers with ’rigid core’ residues highlighted
in red (calculated with a cumulative volume cutoff at 0.5 Å3); and subsequent RMSF calculation across the
protomers with rainbow color coding (from 0Å in blue to a maximum of 9.95Å in red).

In the present structure ensemble analysis all PXR chains/protomeric structures that are present
in the PDB entries are taken into account. Therefore, the number of analyzed structures increase
from 23 to 34. The protomers are superimposed based on a rigid core calculated using the function
core.find from the R package bio3d. The function core.find performs iterated rounds of structural
superposition to identify the most invariant region in an aligned set of protein structures. It refines
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an initial structural superposition determined from a multiple alignment. At each round of iteration
the position(s) displaying the largest differences is(are) excluded from the defined "rigid core", until
one of the stopping criteria, either a minimal core size (of 15 residues), or a minimal cumulative
volume (e.g. 6 0.5 Å3) is reached. The superimposed structures are subsequently investigated by
RMSD/RMSF analysis, Principal Component Analysis (PCA), clustering, and ensemble Normal
Mode Analysis (NMA).

The identified rigid core of the PXR ensemble (see Figure 3.2) comprises 107 residues when calculated
with a cumulative volume cutoff at 0.5 Å3 (and 141 residue with a cutoff at 1 Å3). This represents a
large portion of the protein structure with its 231 non-gap residues (excluding all gap residues not
resolved in a structure) and a total sequence of 289 analyzed residues.

Based on the structural alignment Root Mean Square Fluctuations (RMSFs) across all 34 PXR
protomers are calculated and visualized as color code on the aligned structures in Figure 3.2 and
as diagram along the sequence in Figure 3.3. The RMSF analysis of the PXR ensemble pictures a
rigid receptor. Only one loop (L2-3), which is not completely resolved in any protomeric structure
(residues 179-185 are missing in all the 34 crystallographic protomers), shows a particularly increased
variability with large RMSF values (up to 9.95 Å) for adjacent residues (compare Figure 3.2 and
3.3). Along the rest of the sequence RMSF peaks with values of maximal 3.9 Å are attained at the
N-terminus, at the beginning of H3 (just after the missing loop), at loop L6-7 (after β5) and at loop
L9-10. Large parts of the whole sequence (except the previously mentioned parts) stay even below
an RMSF value of 1 Å.

Figure 3.3: RMSF calculation across the 34 PXR protomers plotted along the sequence with secondary structure
annotation from a reference structure (PDB-ID: 4S0T chain B).
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Figure 3.4: Principal Component Analysis (PCA) of the PXR conformational ensemble (top row) with clustering
in PC space (PC1-2), 2D plots of the first three PCs and the proportion of the variance covered by the PCs. RMSD
conformer clustering (bottom row) with cluster overlap shown by RMSD dendrogram colored by PC cluster.

Visualized on the atomic structure, the PCs do not show significant amplitudes concerning
conformational changes, as PC1 is an artifact resulting from modelling issues at a chain break. PC2
can be visualized principally governed by a movement of the external loop L9-10 (see Figure 3.5)
and minor contributions of other areas, which due to their small amplitudes can rather be connected
to vibrational differences of the structure. Unfortunately, we cannot obtain a complete view of the
accessible conformational space for PXR, which is indicated by comparing the PCA plots for PXR,
where we see separated sparse dots and for ERα, where whole connected clouds are visible.
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Figure 3.5: Principal Component Analysis of the PXR conformational ensemble: per residue contributions to
the first two PCs (left), and structural representations of the second PC with vectors (grey arrows) calculated
using the modevectors module in PyMol (right).

3.2.1.2 PXR - binding pocket analysis

Also for PXR a binding pocket analysis is performed (with all parameter settings as for the analysis
of BRAF and ERα). Among the 23 PXR containing PDB entries six (1ILG, 1M13, 3CTB, 4J5W, 4S0S,
4XAO) are not complexed with a ligand, and can therefore not be used for binding pocket analysis,
reducing the set of protomeric complexes to 25.

Figure 3.6: Residues implied in ligand binding of 25 liganded PXR protomers (left), colored by the frequency
they are identified being within a radius of 4 Å around the ligand. A representative protein structure (PDB-ID:
4S0T, chain B) (right) is used to visualize the location of the identified residues within the structure. The
side-chains of the 43 identified residues are shown in line representation on the protein structure and the
coloring is also based on identification frequency.
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Figure 3.7: All-atom mean RMSF of residues implied in ligand binding of 25 liganded PXR protomers (left).
The 43 residues are ordered based on identification frequency (compare Figure 3.6). A representative protein
structure (PDB-ID: 4S0T, chain B) (right) is used to visualize the location of the identified residues within the
structure. The side-chains of the 43 identified residues are shown in line representation on the protein structure
and the coloring is also based on the all-atom mean RMSF in Å.

Residues are identified as involved in binding when located within a radius of 4 Å around the ligand
(see Figure 3.6). The identified residues show a rather continuous decrease in their identification
frequency, from one residue being identified in all 25 structures (100%) down to nine residues
identified in two structures (8%) and six residues identified in only one structure (4%). The maximal
RMSF value among the 43 identified residues of 7.40 Å is attained by CYS301, but which is only
identified for two structures. Among the frequently identified residues (residues listed towards the
left in Figure 3.7) there are three residues with particularly increased RMSF values: TRP299 with 4.96
Å, GLN285 with 5.86 Å, and PHE288 with 5.18 Å (ordered based on identification frequency). Those
are followed by a set of 9 residues with slightly increased RMSF values between 1.90 Å and 3.17 Å.
All others (30 residues) are showing a very rigid behaviour with RMSF values below 1.24 Å.
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3.2.1.3 PXR - ensemble refinement

Since we have to rely on a very limited number of crystallographic structures, it is not possible to
extract a rather complete view on the receptor’s flexibility like for ERα. In order to obtain a better
view on PXR’s intrinsic flexibility in the crystalline state ensemble refinement95 (as implemented in
the refinement software PHENIX and automated in an in-house script testing different value ranges
for three parameters) is employed. Here, an ensemble generation is considered as successful if both
crystallographic R values, Rwork and Rfree, decrease during refinement.

The ensemble refinement for most of the PXR structures shows a better agreement with the experi-
mental reflections compared to the refinement as single conformation, as indicated by improved Rfree

values (compare Table 3.1 column ’initial PDB’ and column ’ensemble refinement’). Improvements
are in the range of 0.012 to 0.058 in Rfree difference. Only four structures, 2O9I, 4J5W, 4J5X and 4XAO
demonstrate worsened Rfree values upon ensemble refinement with Rfree differences of 0.016, 0.019,
0.034 and 0.003, respectively.

Furthermore, missing loops are rebuilt and ensemble refinement is performed subsequently. The
results show that this rebuilt loops do not contribute to a better agreement with the data as worse
Rfree values are obtained compared to the ensemble refinement without those loops. This can be
explained by the fact that the missing loop regions are reflected by equivalently missing reflection
data from the experimental side and therefore a reconstruction could lead to a bias during the
refinement. In contrary to the missing loops, the building of missing side chains does not worsen R

values remarkably compared to the ensemble refinement with the initial PDB structure. Thus, our
findings strengthen the phenix.ensemble_refinement authors’ recommendation to use completed
side chains, but not rebuilding longer sequences of highly disordered regions. In total, 5 of the 20
PXR structures currently available in the PDB could not be used due to missing experimental data.

Additionally, the recent structure of PXR complexed with dabrafenib (PDB-ID: 6HJ2) is submitted to
the PDB-REDO webserver170 (that includes the construction of missing side chains) and subsequently
subjected to ensemble refinement. The respective Rwork and Rfree values for the initial PDB are 0.190
and 0.232, for the output of PDB-REDO they are 0.193 and 0.221 (note the improved Rfree), and for
the ensemble refined PDB-REDO output they are 0.166 and 0.226 (note the improved Rwork, but no
improvement in Rfree).
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PDB ID &

resolution

initial

PDB

ensemble

refinement

with added

side chains

with

loops

1ilg a Rwork 0.215 0.185 0.174 -
2.52 Å Rfree 0.279 0.248 0.249 -

1ilh Rwork 0.222 0.166 0.166 -
2.76 Å Rfree 0.282 0.245 0.249 -

1m13 Rwork 0.212 0.166 0.167 0.171
2.15 Å Rfree 0.246 0.222 0.233 0.248

1nrl d c Rwork 0.216 0.161 0.160 -
2.0 Å Rfree 0.240 0.216 0.221 -

1skx Rwork 0.218 0.182 none -
2.8 Å Rfree 0.266 0.241 missing -

2o9i d c Rwork 0.228 0.175 none -
2.8 Å Rfree 0.240 0.256 missing -

3r8d Rwork 0.238 0.171 0.170 0.170
2.8 Å Rfree 0.289 0.248 0.246 0.263

4j5w a t Rwork 0.250 0.213 0.224 -
2.8 Å Rfree 0.298 0.317 0.323 -

4j5x t c Rwork 0.245 0.233 0.227 -
2.8 Å Rfree 0.298 0.332 0.336 -

4ny9 Rwork 0.228 0.170 none 0.171
2.8 Å Rfree 0.298 0.240 missing 0.275

4x1f Rwork 0.182 0.153 0.161 -
2.0 Å Rfree 0.210 0.190 0.195 -

4x1g Rwork 0.174 0.167 0.166 -
2.25 Å Rfree 0.218 0.206 0.211 -

4xao Rwork 0.189 0.167 0.163 -
2.58 Å Rfree 0.239 0.242 0.246 -

4xhd Rwork 0.198 0.163 0.166 0.162
2.4 Å Rfree 0.242 0.218 0.217 0.232

5a86 d Rwork 0.231 0.208 none -
2.25 Å Rfree 0.255 0.233 missing -

Table 3.1: Summary of ensemble refinement results for PXR. Column ’initial PDB’ are the single structure
refinement values from the structure deposited in the PDB, column ’ensemble refinement’ are the values
obtained by refining the initial PDB structure as ensemble, followed by the columns of ensemble refined
structures with added side chains and added loops. In all ensemble refinements the dataset with the best Rfree
is chosen. a = apo-structure, d = homodimer, t = heterotetramer with RXRα c = with SRC-1 coactivator.
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3.2.1.4 BRAF - global analysis

All available liganded crystallographic BRAF structures of the protein kinase domain are gathered
using the @TOME server, resulting in a total number of 96 liganded BRAF protomers, originating
from 52 unique PDB entries. All protomeric sequences have a sequence identity between 93%
and 100% with the canonical BRAF sequence (UniProt-ID: P15056). The liganded protomers are
superimposed based on a rigid core calculated using the function core.find from the R package bio3d171

(see Figure 3.8). For the BRAF ensemble comprising 96 protomers a rigid core of 82 residues (out of
199 non-gap residues, being present in all protomers and a total sequence of 276 analyzed residues)
is identified with a cumulative volume cutoff at 0.5 Å3 (and 110 positions with a cumulative volume
6 1 Å3). Subsequently, based on the structural alignment Root Mean Square Fluctuations (RMSFs)
across all 96 BRAF protomers are calculated and visualized as color code on the aligned structures in
Figure 3.8 and as diagram along the sequence in Figure 3.9.

Figure 3.8: Rigid core superpositioning result (left) of 96 liganded BRAF protomers with ’rigid core’ residues
highlighted in red (calculated with a cumulative volume cutoff at 0.5 Å3); and subsequent RMSF calculation
across the protomers with rainbow color coding (from 0 Å in blue to a maximum of 9.1 Å in red).

For the BRAF ensemble the rigid core is composed of residues primarily located within the C-lobe.
Furthermore, the highest RMSF values are detected for the activation loop (residues 594-623). Here,
it has to be mentioned that the complete activation loop is only resolved in very few (9) of the 96
protomers, indicating already a high level of flexibility. The N-lobe shows overall an increased
flexibility, and when having a closer look, a gradual tendency can be observed, with the highest
fluctuations located just above the activation loop, which are decreasing towards the back and
the interior of the protein - towards the connection with the C-lobe. This observation suggests a
concerted movement of the N-lobe with the conformation of the activation loop.

To investigate this effect in more detail, Normal Mode Analysis (NMA) is performed on the single,
complete and representative BRAF structure 5HID (chain B), and Principal Component Analysis
(PCA), as well as conformer clustering are performed on the ensemble of 96 protomers. The NMA
of the single structure, depicted as vector field representation in Figure 3.10, shows very well the
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Figure 3.9: RMSF calculation across the 96 BRAF protomers plotted along the sequence with secondary structure
annotation from a reference structure (PDB-ID: 4MBJ chain B).

Figure 3.10: Normal mode analysis of BRAF structure 5HID (chain B). The modevectors (color-coded by
direction) visualized on the protein structure (in sand colored tube representation) (left) and without the
structure (right). The vector field representation is generated with the bio3d function pymol.modes and PyMol.
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opening of the binding cleft by a concerted, outwards directed rotary movement of the two lobes,
with slightly increased amplitudes (longer vectors) within the N-lobe.

Additionally, deformation energies and fluctuations are calculated based on the first three normal
modes of 5HID (using the bio3d functions deformation.nma and fluct.nma). Deformation analysis
provides information about the amount of local flexibility in the protein structure, such as atomic mo-
tion relative to neighboring atoms. Fluctuations (e.g. RMSF values), in contrast, provide amplitudes
of the absolute atomic motion. The deformation analysis of the normal modes of 5HID highlights
three high energy hot-spots on the structure (compare Figure 3.11 - left), the activation loop, C532
within the hinge region, and N500 within the αC helix. Concerning the fluctuations (Figure 3.11 -
right), the normal mode amplitudes have increased values within the N-lobe compared to rest of the
structure, as already reflected by the vector field representation in Figure 3.10.

Figure 3.11: Deformation energies (left) and fluctuations (right) based on the first three normal modes of BRAF
structure 5HID (chain B) color coded (rainbow: blue to red) onto the structure. Values range from 0.10 to 11.42
for the deformation energies, and from 0.00 to 0.31 for the fluctuations.

To investigate whether the ensemble of 96 BRAF protomers reflects the same tendencies as the
NMA on a single structure, or gives different insights into the conformational variability, PCA and
conformer clustering are performed on the ensemble. PCA has the advantage that it highlights the
regions of the protein which are varying across the ensemble. Therefore, it is a suitable technique
to identify outliers. PCA offers even more very useful features: It is a tool for data reduction, as a
large amount of variance can often be explained by a small number of PCs; the first PC explains the
highest proportion of variance, and subsequent PCs explain decreasing proportions of the variance;
and all PCs are uncorrelated with one another, due to their orthogonality. To apply PCA, the protein
structures have to be reduced in complexity, which is done here by simply using matrices of the
distances between the atomic Cartesian coordinates of the Cα atoms (to avoid that the variation
would be dominated by the movements of surface side-chains) and omitting all other information.

PC analysis of the BRAF conformational ensemble (see Figure 3.12) shows a distinct importance of
the first PC (PC1), explaining 51.8% of the variance, followed by PC2 with 13.0%. Concerning the
residue contribution PC1 is principally governed by the activation loop (a-loop) and by the N-lobe
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as a whole, whereas PC2 is primarily directed by movement of the αC helix and slightly also by the
a-loop.

As PCA has the potential to classify calculated structures according to the correlated struc-
tural variation across the ensemble, it is used for conformer clustering, in parallel to RMSD
based hierarchical clustering. The two employed methods, RMSD and PCA clustering (see
Figure 3.13) clusters the conformers in a similar way, but not completely identical. Neverthe-
less, the same trends are visible, as both clustering methods distinguish between differences
in N-lobe positioning, especially differences of the glycine-rich loop and of the orientation of helix αC.

Figure 3.12: Principal Component Analysis of the BRAF conformational ensemble: Proportion of the variance
covered by the PCs (top left), per residue contributions to the first two PCs (bottom left), and structural
representations of the first two PCs with vectors (grey arrows) calculated using the modevectors module in PyMol
(right).
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Figure 3.13: Hierarchical clustering based on RMSD (top row) and clustering in PC-space (bottom row) of 96
liganded BRAF protomers. The dendrogram inset in the bottom row shows the cluster overlap of the two
methods by coloring the PC-space dendrogram based on RMSD clusters. The superimposed structures are
colored based on the identified clusters.

3.2.1.5 BRAF - binding pocket analysis

To investigate the importance of specific residues, the frequency of implication in ligand binding is
tracked across 96 liganded BRAF protomers, which are all available liganded PDB structures. A
residue is identified as ’implied’ if any of its atoms is found within a radius of 4 Å around any atom of
the ligand. This results in a list of 52 identified residues with varying implication frequencies (Figure
3.14). Nonetheless, a ’high frequency’ stet of 15 residues, identified in more than 79% of the structures,
can be distinguished (see Figure 3.14 residues with coloring red to orange), as the next highest
frequency is only 50% (green color), marking a significant step. Two further light steps can be ob-
served, one from 30% to 22% (cyan to lightblue), and another from 17% to 10% (lightblue to darkblue).



108 3. The drug design project

Figure 3.14: Residues implied in ligand binding of 96 liganded BRAF protomers (left), colored by the frequency
they are identified being within a radius of 4 Å around the ligand. A representative protein structure (PDB-ID:
5HID, chain B) (right) is used to visualize the location of the identified residues within the structure. The
side-chains of the 52 identified residues are shown in line representation on the protein structure and the
coloring is also based on identification frequency.

Figure 3.15: All-atom mean RMSF of residues implied in ligand binding of 96 liganded BRAF protomers (left).
The 52 residues are ordered based on identification frequency (compare Figure 3.14). A representative protein
structure (PDB-ID: 5HID, chain B) (right) is used to visualize the location of the identified residues within the
structure. The side-chains of the 52 identified residues are shown in line representation on the protein structure
and the coloring is also based on the all-atom mean RMSF in Å.

3.2.1.6 BRAF - ensemble refinement

For protein kinase BRAF six crystallographic structures are subjected to ensemble refinement (see
Table 3.2). Missing side chains were not rebuild, as only one or none were missing. Note that large
parts of the activation loop are completely unresolved in most structures (no backbone present)
and are thus not modelled prior to ensemble refinement (in agreement with author suggestions of
ensemble refinement95). Only for two of the six crystallographic BRAF structures (4XV3 and 4XV9)
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the ensemble refinement shows better agreement with the experimental reflections compared to the
refinement as single conformation, as indicated by improved Rfree values. Thus, BRAF is expected
to obtain a rather rigid conformation within the crystal for the resolved parts (excluding e.g. the
non-resolved activation loop).

PDB ID &

resolution

initial

PDB

ensemble

refinement

with added

side chains

4XV1 Rwork 0.234 0.201 only LYS 522
2.47 Å Rfree 0.273 0.284 missing

4XV2 Rwork 0.212 0.169 only LYS 522
2.50 Å Rfree 0.244 0.233 missing

4XV3 Rwork 0.258 0.221 only LYS 522
2.80 Å Rfree 0.296 0.310 missing

4XV9 Rwork 0.205 0.142 only LYS 522
2.00 Å Rfree 0.238 0.181 missing

5CSW Rwork 0.217 0.205 none
2.66 Å Rfree 0.282 0.286 missing

NEW* Rwork 0.195 0.176 none
2.37 Å Rfree 0.250 0.256 missing

Table 3.2: Summary of ensemble refinement results for BRAF. Column ’initial PDB’ are the single structure
refinement values from the structure deposited in the PDB, column ’ensemble refinement’ are the values
obtained by refining the initial PDB structure as ensemble. In all ensemble refinements the dataset with the best
Rfree is chosen. * newly solved structure in complex with a drug candidate.

Key points

⇒ For the nuclear receptor PXR there is only a limited number of crystallographic structures
available, compared to ERα, and PXR’s intrinsic (side-chain) flexibility is expected to be elevated
due to the versatility of binding ligands and it’s detoxification role within the organism.

⇒ Protein kinase BRAF is a well studied drug target with 52 liganded PDB entries. Its activation
loop represents the part with the highest variability/flexibility.

⇒ The efficient, accurate and representative sampling of the conformational space represents a
major challenge.



110 3. The drug design project

3.3 Where to modify the drug?

3.3.1 Drug binding in target (BRAF) and anti-target (PXR)

The binding modes of dabrafenib (PDB-chemicalID: P06) in both, primary target BRAF and anti-target
PXR, were analyzed (see Figure 3.16 and 3.17).

Figure 3.16: The binding mode of dabrafenib in its primary target BRAF (PDB-ID: 4XV2, chain A, downloaded
from PDB-REDO).

Figure 3.17: The binding mode of dabrafenib in its anti-target, the nuclear receptor PXR (PDB-ID: 6HJ2, chain A,
processed with PDB-REDO).
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The interactions of P06 with both of its targets that were identified by the PLIP web-server172 and
are depicted in Figure 3.16 and 3.17 are listed with further details in Figure 3.18 and 3.19.

Figure 3.18: PLIP interactions of dabrafenib in its primary target BRAF (PDB-ID: 4XV2, chain A, downloaded
from PDB-REDO).

Figure 3.19: PLIP interactions of dabrafenib in its anti-target, the nuclear receptor PXR (PDB-ID: 6HJ2, chain A,
processed with PDB-REDO).



112 3. The drug design project

As BRAF structure 4XV2 is crystallized in a dimeric form, with both chains being complexed with
dabrafenib, it is possible to compare the interactions identified by PLIP from chain A (Figure 3.16
and 3.18) with the ones from chain B (see Figure 3.20). In chain B there is a water molecule in the
binding site that forms a water bridge from the nitrogen of the aminosulfoxide moiety of the ligand
to Lys483, substituting the direct hydrogen bonding to Lys483, which is found in chain A (at a rather
large D-A distance of 3.65 Å). The hydrophobic interactions are identical between the two chains
(in chain B there are two more interactions listed than in A, which are interactions with the same
residues already listed in A - Leu505 and Leu514 - and therefore considered as transient additional
interactions).

Figure 3.20: The binding mode of dabrafenib in its primary target BRAF (PDB-ID: 4XV2, chain B, downloaded
from PDB-REDO).

3.3.2 BRAF structures with similar ligands

An additional approach to define the parts of the molecule that can be modified was to search for
BRAF structures with similar ligands. These structures give insights on the expected variability
of the binding mode and the adaptability of the binding pocket. Upon an inverse screening with
P06 on all available liganded BRAF structures on the @TOME server, the four complexes with the
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highest ligand Tanimoto scores (ranging from 0.84 to 0.33) were extracted and the protein structures
were superimposed (see Figure 3.21). All four ligands show a highly similar binding pose with the
ring systems positioned in the same way, the sulfoxide moiety at the same position and with the
same orientation, and a highly similar position of the nitrogen atoms within the hinge-binding
moiety establishing hydrogen bonds to the hinge backbone residues. The high similarity of the poses
(despite larger chemical discrepancies) indicates a good and stable fit within the binding pocket. The
highest variability can be found at the two ends of the molecules that are pointing outside the binding
pocket, 1) the extension of the hinge binding segment, which is still largely in contact with the protein,
and 2) the extension towards the binding pocket entry (a tertiary butyl moiety in P06), which is
only present in the two most similar molecules (P02 and CQE), but shows a higher location variability.

Figure 3.21: PDB structures of BRAF with ligands similar to dabrafenib (P06) with superimposed protein struc-
tures and comparison of the crystallographic ligands’ chemistry and binding mode. Coloring by crystallographic
complex (as for the PDB entry codes) and ligand IDs in grey.

3.3.3 Interfering with drug metabolism

An important aspect of the drug design strategy is the reduction of the fast metabolism of dabrafenib
into its three identified major metabolites hydroxy-dabrafenib (HDB), carboxy-dabrafenib (CDB),
and desmethyl-dabrafenib (DDB) (see Figure 1.2 in Chapter 1). Since the point of attack for
CYP-mediated oxidation is the tertiary butyl moiety of dabrafenib, the modification of this moiety is
expected to reduce the metabolism of dabrafenib and should therefore hopefully lead to increased
bio-availability and reduced secondary effects.
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Key points

⇒ The layout of the drug design approach is based on the attempt to reduce drug metabolism and
on the comparison of the binding modes of dabrafenib (P06) in its primary target BRAF and its
secondary target PXR, and of similar ligands in BRAF.
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3.4 In silico synthesis of drug candidates

Potential drug candidates are synthesized in silico by performing the following steps:

1. Analyzing dabrafenib’s chemical synthesis on SciFinder (https://www.cas.org/products/
scifinder);

2. Defining the modification step within the synthesis pathway: the tertiary butyl moiety of
dabrafenib can be replaced by substituting the pathway reactant containing a thioamide moiety
that leads to cyclization of the 2-amino group attached to the pyrimidine. The corpus of the
molecule except of the part to be modified (the tertiary butyl moiety) is defined as scaffold;

3. Searching for purchasable fragments containing a thioamide moiety to replace the trimethyl
moiety of dabrafenib: 179 molecules were found by substructure search on Enamine Chemi-
cal Supplier (https://www.enaminestore.com/search) using enamine structure: thioamide
"NH2-C(=S)-CH2" and the "Advanced Filters: Stock amount (mg) = 100" (due to availability
reasons);

4. Then, the 179 thioamide containing reactants (termed fragments) are used within a KNIME
workflow that performs in silico chemical reactions with the pre-dabrafenib (termed scaffold)
to produce the final three-dimensional drug candidates (see Figure 3.22).

5. An additional step is included within the KNIME workflow that removes three different
protecting groups from the drug candidates. A protecting group is usually introduced into
a molecule to "protect" a functional/reactive group and therefore obtain chemoselectivity,
which ensures the desired reaction. Protecting groups are frequently used in multistep organic
synthesis and are removed before the final product is obtained. The three different protecting
groups present within the set of 179 fragments are BOC (20x), phthalimide (4x), and benzyl
carbamate (1x).

Moreover, the defined scaffold is also modified, resulting in a selection of five different scaffolds
(that are named after their PDB-ligand-IDs):

• P02 - molecule closest related to dabrafenib available in the PDB (PDBID: 4XV3) and supposed
to avoid paradoxical activation of WT-BRAF,

• P02C - P02 having a carbon atom instead of the nitrogen connecting the methyl-ethyl moiety,

• P06 - the original dabrafenib scaffold,

• P06F - P06 with one fluor atom shifted from cis to trans position at the di-fluorophenyl ring,

• P06FCl - P06F with an additional chlorine atom added in para to the central fluorophenyl ring.

This protocol resulted in a final set of 179 drug candidates per scaffold in 3D mol2 or sdf format
(among which there are a few duplicates as result from the deprotection step). Each molecule name
contains the scaffold ID (’P02’, ’P02C’, ’P06’, ’P06F’, or ’P06FCl’) and the fragment ID from the
supplier to ensure easy identification and purchase later on.
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Figure 3.22: In silico synthesis of drug candidates - KNIME workflow.
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3.5 Computational approaches investigating targets and ligands

3.5.1 Molecular modelling and molecular dynamics

Molecular dynamics (MD) simulations can give valuable insights into the dynamic behavior of
the target protein alone, as well as in complex with potential drug candidates. Moreover, the
MD simulation snapshots can subsequently be used for affinity estimation calculations (e.g. by
MM-PBSA).

Before an MD simulation can be performed, the structure to be simulated needs to be prepared.
Important points to be considered are the modelling of missing side-chains, entire residues or even
whole loops that are not present in the crystallographic structure, the definition of proper protonation
states of protein and ligand, and of the respective parameters that are used during simulation and
which need to be compatible with the employed force field.

MD simulations were performed on a variety of complexes, including variations of the BRAF
structure and different ligands, which were either already present in the crystal structure, or docked
into the protein by using the crystallographic ligand as molecular shape restraint (anchor) with
PLANTS.173

Initial investigations started with the crystallographic complex of BRAF and dabrafenib (abbreviated
as DB or P06) at the best available resolution of 2.5 Å (PDB-ID: 4XV2), and with the use of crystallo-
graphic complexes with the highly similar ligands P02 and CQE (PDB-IDs: 4XV3 and 4CQE, with
resolutions of 2.8 Å and 2.3 Å, respectively). Subsequently, crystallographic ligands were replaced
with DB, its three major metabolites, and several designed drug candidates.

The impact of different protein conformations was evaluated by using different starting models for
MD simulation. MD simulation replicas were generated with differing initial velocities that result in
different trajectories of the systems. Both approaches help to evaluate the expected error for affinity
estimations performed by subsequent MM-PBSA calculations, for which an additional statistical
error estimation method, namely bootstrapping, was tested.

3.5.1.1 Molecular modelling - BRAF and its loops

The glycine-rich loop (G-rich loop) and the activation loop (a-loop) are two essential parts for
the function of a kinase. The G-rich loop is important for the access of the binding site and often
interacting with the ligand. The a-loop is known to be present in an extended, unfolded conformation
when the enzyme is active. As very flexible region, it is typically not resolved in the crystal structure,
especially not for the constitutively active V600E mutant. Only eleven among 98 available protomeric
structures have a completely resolved a-loop (PDB-ID_chain-ID: 3SKC_B, 3TV4_B, 3TV6_B, 4E4X_B,
4EHE_B, 4H58_C, 4MBJ_B, 4MNE_B, 4PP7_B, 4RZV_B, 5HID_B). It is only complete in one protomer



118 3. The drug design project

when the structure is resolved at least as dimer. This is indicative for a required stabilizing effect of
the dimerization. Furthermore, the a-loop can adopt a folded, helical structure in an inactive kinase
conformation. This helical conformation is only observed in wild-type BRAF, as the V600E mutation
would lead to steric clashes with the αC helix (see Figure 3.24). Additionally, smaller loops, such as
the flexible G-rich loop are also frequently missing in the crystallographic structures. 4XV2 (chain A)
has 25 missing internal residues, with 18 of them in the a-loop (597-614), but a completely resolved
G-rich loop; 4XV3 (chain A) has 26 missing internal residues, with 17 of them in the a-loop (597-613)
and 3 of the G-rich loop (466-468); 4CQE (chain A) has 22 missing internal residues, with 18 of them
in the a-loop (597-614) and 2 of the G-rich loop (467,468).

In order to perform MD simulations the structures need to be completed to avoid unnatural artifacts
produced by the chain breaks. In the present work, models were generated using the Modeller
software174, 175 within an in-house python script. The script employs sequence and PDB utili-
ties (Bio.SeqIO and Bio.PDB) from Biopython,176 the multiple dynamic programming alignment
(MALIGN) of Modeller and customizes Modeller’s automodel and loopmodel classes with an auto-
matic loop selection. The selection of loop residues to be modelled is based on an upstream structure
analysis and sequence alignment that selects only the internal non-resolved (missing) residues, plus
one adjacent residue upstream and downstream the missing part (to avoid "kinking" artifacts from
terminal residues modelled wrongly in ambiguous X-ray data, such as the often occurring confusion
between main-chain and side-chain density of the terminal residue). This procedure allows for
keeping the exact coordinates of atoms present in the template, which may have an important
structural and functional impact e.g. in ligand binding.

Five different models of the complete BRAF kinase domain were used for simulations and
subsequent MM-PBSA calculations:
First, three BRAF models based on sequence and structure present in the PDB structures 4XV2,
4XV3 and 4CQE were generated, resulting in different loop conformations, in particular for the
long and usually unresolved activation loop (see Figure 3.23). The three PDB structures do not
only contain the oncogenic V600E mutation but also 16 solubilizing mutations (I543A, I544S, I551K,
Q562R, L588N, K630S, F667E, Y673S, A688R, L706S, Q709R, S713E, L716E, S720E, P722S, and K723G -
permitting kinase domain overexpression in bacteria), with 13 of them being present in the structure
(the last 3 of them, S720E, P722S, and K723G, are located in the unresolved C-terminus).

Furthermore, as crystallographic BRAF structures differ from the canonical BRAF WT sequence in
∼16 residues, due to purification/solubility reasons, the modelling approach was extended to the
WT sequence and a sequence with the single oncogenic mutation V600E (otherwise as WT).
BRAF-V00E complexed with dabrafenib was modelled based on PDB structure 4XV2 (chain A) with
the canonical sequence except for V600 mutated to glutamate (E).
The BRAF-WT model was generated using a further extended structure homology approach. Here,
the BRAF-WT sequence, PDB structure 4XV2 (chain A) and PDB structure 3SKC (chain B) were used
for building a (homology) model that has the BRAF-WT sequence, atomic coordinates of 4XV2 for
all resolved atoms and a-loop coordinates as close as possible to the structure of 3SKC.
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Figure 3.23: Two loop-complete models with mutated BRAF sequences: 1) a loop-model based on PDB structure
4XV2 (chain A) (rose) with an extended a-loop that is folded back onto the structure, and interacting with
the G-rich loop and 2) a loop-model based on PDB structure 4CQE (chain A) (yellow) with an extended and
free a-loop. All mutated residues are shown in stick representation. These are the V600E mutation and 13
solubilizing mutations (I543A, I544S, I551K, Q562R, L588N, K630S, F667E, Y673S, A688R, L706S, Q709R, S713E,
L716E - permitting kinase domain overexpression in bacteria).

3.5.1.2 Molecular dynamics simulations

Molecular dynamics simulation - methods

All simulations were carried out with Gromacs 2018.97 The ligand topologies were generated using
the ACPYPE/ANTECHAMBER177 program of AmberTools17112 with partial charges generated by
the empirical charge model AM1-BCC. The ligands’ parameters are based on the General Amber
Force Field (GAFF) and the Amber FF14SB force field was employed for the proteins. Each complex
was solvated in a TIP3P water dodecahedral box, with periodic boundary conditions and a minimum
distance of 1.0 nm from the surface of the complex to the edge of the box. Each system was neutralized
by adding NA+ and Cl- ions to physiological concentration of 150 mM. A completely free steepest
descent energy minimization for 2000 steps was followed by a 100-ps NVT equilibration and a 100-ps
NpT equilibration with Parrinello-Rahman pressure coupling. NVT and NpT equilibrations were
performed at a reference temperature of 300 K with ligand restraints of 1000 kJ/mol nm2 in x,y,z
directions. Finally, 50 ns unrestrained production runs were performed with a 2 fs time-step in
the NpT ensemble and snapshots were saved every 10 ps. For each complex, usually five replica
simulations were run with different randomly assigned initial velocities, resulting in a total of 250 ns
simulation per complex.



120 3. The drug design project

Figure 3.24: Two complete models with naturally occurring sequences: BRAF-V600E with extended a-loop
(orange) and BRAF-WT (V600) with structured a-loop conformation (violet). Residue 600 is shown in stick
representation and also ligand P06 (grey).

Analysis and visualization was performed with Gromacs tools, PyMol, VMD, Chimera, and Python
scripts.

Helix formation of the activation loop

For all simulations of the WT model with the structured helical activation loop, the loop stays stable
in this structured form. For the simulation of V600E the unstructured activation loop shows different
degrees of mobility with varying fluctuation amplitudes. Interestingly, during one simulations an
unstructured activation loop forms a complete helix (residues 611-620) within a simulation time of
100 ns (see Figure 3.25). Visual analysis of the MD trajectory shows that the helix starts forming from
residue Met620 and gradually extends upstream the sequence, reaching residue Glu611 at the end of
the 100 ns simulation. Thus, a further extension of the helix during longer simulation is probable.
Secondary structure analysis was performed using DSSP178 via the Gromacs suite.
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Figure 3.25: Helix formation during MD simulation. Left: The starting conformation of BRAF-V600E (orange)
and the last frame after 100 ns of MD simulation (sand). Whereas the starting conformation has a completely
unstructured activation loop, the last conformation shows an α-helix for residues Glu611 - Met620. Right:
Secondary structure calculation from DSSP along the trajectory for the whole protein sequence, with the
residues forming the helix highlighted in a black box.

3.5.2 Machine learning methods for drug design from two perspectives

Machine learning models addressing the affinity prediction and molecule prioritization issue from
different angles were trained, evaluated and finally employed to provide ideas for molecular drug
design candidates.
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ABSTRACT

Predicting the interactions between small molecules and receptors

plays a critical role in drug discovery and development. Especially,

when having a dedicated set of molecular data with biological activity

measurements at hand, machine learning methods became an exten-

sively used tool to exploit the best combinations for guiding new drug

designs. In the present study we set up, compare and evaluate com-

monly used techniques for affinity prediction in drug design by taking

the example of a drug design campaign based on the clinical pro-

tein kinase inhibitor dabrafenib. We shed light on affinity predictions

for drug design from two perspectives: broad structure-based meth-

ods that are aimed to give information on any kind of small molecule

and are trained on rather large and very diverse molecular datasets,

and tailored ligand-based methods that are dedicated to predicting

on a defined chemical space with a confined applicability domain.

Prediction performances for six different types of fingerprints are com-

pared and evaluated on the basis of newly designed molecule sets.

Additionally, we showcase the integrated usage of different feature

selection methods, resulting in improved predictions for the tailored

models.

Keywords: machine learning, drug design, structure-based,

ligand-based, dabrafenib, BRAF kinase

1 INTRODUCTION

Nowadays, computational techniques became crucial for medicinal

chemistry and drug design. This is mainly due to development of

new software, improvements in hardware, and the constantly in-

creasing amount of available data, which is related to the rise of

new experimental techniques that increased experimental through-

put, such as the large availability of high-throughput screening

platforms. Rational drug design, referring to the development of

medications based on the study of the structures and functions of tar-

get molecules, should also largely benefit from those developments.

Computational methods for filtering drug-like compounds and eval-

uating their binding to a given target protein can take advantage

of the increased amounts of data. Generally they can be classified

based on the information content they use for predictions, namely

structure-based and ligand-based approaches. The structure-based

approaches that are dedicated to treat large amounts of molecules

(e.g. in silico high-throughput screening of large databases) are usu-

ally based on docking of the compounds into the protein binding

site, followed by subsequent scoring. As those methods are dedi-

cated to screen large quantities of very diverse molecules, they often

go along with a trade-off in accuracy. When the set of molecules is

already narrowed down to a more restricted chemical space, but still

containing a large number, dedicated ligand-based approaches are

often preferred.

In particular Quantitative Structure-Activity Relationship (QSAR)

modelling - a ligand-based approach - is one of the major compu-

tational tools employed in drug design and medicinal chemistry in

general. It involves modelling a continuous activity for quantitative

prediction of the activity of previously unseen compounds. Feature

selection is an important part of QSAR modelling, as the features

are often large in number, with some of them having a rather low

information gain for a certain prediction aim, and too many features

also reduces the model’s interpretability and increase the risk for

overfitting [1]. Usually, a feature selection method is chosen and ap-

plied to the dataset before employing the actual learning algorithm.

There have been a few studies on the combined impact of choices

of feature selection method and learning method with different con-

clusions on the combinations that should work best [2, 3, 4, 5].

The aim of this project is to set up an integrated approach for drug

refinement. With this study we want to highlight that the prediction

aim and desired accuracy of a model affects the type of model that

should be used, and that it becomes a highly important aspect how

it is set up, requiring careful investigations on the descriptors im-

portance. We investigate different molecular descriptor types and

their ability to distinguish between different newly designed drug

scaffolds that are similar to some of the training molecules, which

is a standard drug design setting during lead generation and refine-

ment. The approach presented in this study is of interest, as to our

knowledge, there are no studies combining different feature selec-

tion methods to form a consensus selection, and particularly doing

so across different types of fingerprints for targeted QSAR mod-

elling.

Freely available datasets from two widely used databases, Bind-

ingDB [6] and PubChem BioAssay [7], are used to showcase two

different drug design approaches (that are usually applied at differ-

ent development stages): 1) the employment of a broad tool that

can cope with and is developed on a large chemical diversity and

is less restricted by a given applicability domain, as being based on

docking results and very global descriptors, and 2) the development

of a tailored QSAR approach, which is based on a confined set of

molecules and different chemical fingerprint types for model train-

ing.

c© . 1



The biochemical system under investigation is the protein kinase

inhibitor dabrafenib and possible designed derivatives taking into

account the primary target, the oncogenic serine/threonine kinase

BRAF, and the available ligand space of this target with experi-

mental affinity measures. Dabrafenib is a drug approved by the

U.S. Food and Drug Administration (FDA) for treatment of ad-

vanced melanoma and metastatic non-small cell lung cancer with

a BRAFV600E mutation [8, 9, 10]. It shows improved response

rates and overall survival of BRAF-V600 mutant cancer patients,

but unfortunately, resistance is rapidly acquired [11]. Thus, the de-

sire to modify the existing drug in a way that possibly reduces the

side effects, e.g. by slowing down its fast metabolism rates (half-life

of ∼5 hours [12]), which may diminish the acquired resistances.

Furthermore, dabrafenib has been shown to produce the paradoxi-

cal activation of the downstream pathway in wild type BRAF cells.

While inhibiting the BRAF-V600E mutant the drug induces the

opposite behaviour in wild type cells, leading to skin lesions and

promoting growth and metastasis of tumor cells with RAS mutations

[11, 13, 14].

2 METHODS AND RESULTS

2.1 Small molecule datasets

2.1.1 The two ligand datasets used for model generation

In this study two ligand datasets are used for model training that

differ in size, molecular diversity and overall data quality.

• BindingDB [6] BRAF-V600E (2018) with annotated IC50

affinity measures - 2193 molecules

• PubChemAssay [7] AID:1257566 with annotated IC50 affin-

ity measures (produced by one laboratory and labelled as

confirmatory) - 103 molecules

Note that the BindingDB BRAF-V600E dataset contains also the

PubChemAssay molecules.

2.1.2 The prediction datasets - designed candidates

Within the drug design project we aim for molecules that (1)

are derivatives of the clinical drug dabrafenib, (2) show improved

binding affinities, (3) are supposed to avoid the paradoxical ef-

fect through small scaffold variations, and (4) have a modifica-

tion/extension of dabrafenib’s tertiary butyl, as this moiety is the

main access point for metabolism, where one methyl is transformed

into a hydroxy, a carboxy, and then completely eliminated [15].

The different extensions attached to the scaffold are purchasable

fragments that contain the reaction entity (thioamide) for addition to

the scaffolds (from Enamine Chemical Supplier: 179 fragments).

As scaffold we define a pre-step in the synthesis pathway of the

drug before the part to be modified (the tertiary butyl) is added to

the molecule by cyclization of the 2-amino group attached to the

pyrimidine. This scaffold is also modified, resulting in a selection of

five different scaffolds (see Figure 1): P02 - molecule closest related

to dabrafenib available in the PDB (PDBID: 4XV3) and supposed

to avoid paradoxical activation of WT-BRAF, P02C - P02 having

a carbon atom instead of the nitrogen connecting the methyl-ethyl

moiety, P06 - the original dabrafenib scaffold, P06F - P06 with one

fluor atom shifted from cis to trans position at the di-fluorophenyl

ring, and P06FCl - P06F with an additional chlorine atom added in

para to the central fluorophenyl ring.

The following molecules are used for visualizations:

• P02 - 179 molecules

• P02C - 179 molecules

• P06 - 179 molecules

• P06FCl - 179 molecules

The complete molecules are synthesized in silico with an in-house

KNIME [16] workflow, which additionally removes the protecting

groups BOC, phthalimide and benzyl carbamate.

Figure 1. Drug-design scaffolds (P02, P02C, P06, P06F, and P06FCl),

where R stands for the 179 different fragments that are used for obtaining

the 179 drug candidates per scaffold.

2.2 Investigation on applicability domain

To ensure that the training datasets are eligible for prediction we

first investigate on the chemical space that is covered by the three

different molecular datasets. Here, the chemical space of a molecu-

lar datasets is captured by performing principal component analysis

on generated PubChem fingerprints of the two training sets Bind-

ingDB BRAF-V600E and PubChemAssay AID:1257566. In order

to ensure that these sets can be trustfully used to predict the new

molecules, the P06FCl molecules (also represented by PubChem

fingerprints) are projected onto the PCs of the two training datasets

(see Figure 3 and 4). Additionally, for comparison with the P06FCl

molecules, the smaller PubChemAssay training set is also pro-

jected onto the PCs of the larger BindingDB BRAF-V600E dataset

(see Figure 2). Noteworthy, the PubChemAssay molecules are con-

tained in the much larger BindingDB dataset. Indeed, the P06FCl

molecules and the PubChemAssay molecules have a very similar

location on the PC scatter plots spanned by the BindingDB BRAF-

V600E dataset. Furthermore, all P06FCl molecules are covered by

the PC scatter plot spanned by the PubChemAssay (Figure 4). Ad-

ditionally, the affinity ranges covered by the two employed training

sets are large and similar for both datasets, as visualized in Figure 5.

Nonetheless, the distribution of the PubChemAssay is more skewed

to higher affinities than the large BindingDB BRAF-V600E dataset.

2.3 Machine learning for affinity prediction

For all analysis, calculations and machine learning the R language

(version 3.4.4) and RStudio are used. First, to obtain an overview of

the data exploratory data analysis is performed. For the training of

all machine learning algorithms in this study mainly the R package

caret [17] (version 6.0-81) is used. In order to avoid over-fitting of

the models 10-fold cross validation repeated 10 times is used for

all models. Training of machine learning algorithms in regression

2



Figure 2. Scatterplot of the first two principal components (PCs) of the

BRAF-V600E-BDB molecules (black dots) and the P06FCl-molecules pro-

jected onto these PCs (purple dots). The PCs are calculated based on the

molecules’ PubChem fingerprints.

Figure 3. Scatterplot of the first two principal components (PCs) of

the BRAF-V600E-BDB molecules (black dots) and the PubChemAssay

molecules projected onto these PCs (orange dots). The PCs are calculated

based on the molecules’ PubChem fingerprints.

Figure 4. Scatterplot of the first two principal components (PCs) of the

PubChemAssay molecules (black dots) and the P06FCl-molecules projected

onto these PCs (purple dots). PCs are calculated based on the molecules’

PubChem fingerprints. The PubChemAssay points are encircled using R

package ”ggalt” by drawing a polygon with slightly smoothened corners

(s shape=0.9) and a default expansion factor of 0.05.

Figure 5. Density distribution of measured affinities for the two training sets

BRAF-V600E-BDB and PubChemAssay.
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mode was performed based on the two ligand datasets BindingDB

BRAF-V600E (2018) and PubChemAssay AID:1257566.

2.4 Broad structure-based affinity prediction

In a first approach structural data from a docking campaign of the

BindingDB BRAF-V600E (2018) dataset on our @TOME server

[18] is employed. Here, every molecule is docked into 20 dif-

ferent protein structures in parallel using PLANTS [19] and the

20 cocrystallized ligands as molecular shape restraints. Subse-

quently, the generated complexes are evaluated by different metrics

on the server. The whole procedure is repeated for the same set

of molecules with different initial 3D conformations and different

partial charges. Finally, global ligand-based molecular descriptors

(e.g. molecular weight, number of rotatable bonds, XLogP, etc.)

are added and engineered. This forms the final dataset that is

used for the broad structure-based affinity prediction. The complete

procedure is explained in details in a previous publication [20].

2.5 Tailored ligand-based affinity prediction

PubChemAssay AID:1257566 entitled ”Raf/Mek amplified lumi-

nescence proximity homogeneous assay” is used to set up the

tailored ligand-based prediction models. As the assay is labelled

as ”confirmatory” it represents result from multiple concentration

test and we expect the results to be reliable and coherent. The tai-

lored approach follows a rather traditional QSAR approach, as it is

based on different types of fingerprints (FPs) from the CDK, com-

puted through the rcdk package [21] on the PubChemAssay dataset

composed of 103 molecules. The used FP types are:

• MACCS - 166 bit MACCS keys described by MDL [22]

• PubChem - 881 bit FPs defined by PubChem

• extended - hashed FPs, with a default length of 1024 bits and

default search depth of 6, considers paths of a given length and

takes rings and atomic properties into account

• graph - hashed FPs, with a default length of 1024 bits and

default search depth of 6, considers connectivity

• shortestpath - hashed FPs, with a default length of 1024 bits and

default search depth of 6, based on the shortest paths between

pairs of atoms and takes into account ring systems, charges etc.

• circular - implementation of the ECFP6 fingerprint, with a

length of 1024 bits and default search depth of 6 [23]

Choices for initial bit length and search depth are made based
on recommendations provided by ChemAxon (https://docs.
chemaxon.com/display/docs/Chemical+Fingerprints). For

all six FP types bits with zero variance across the 103 molecules are re-

moved, which leads to reduced FP bit sizes of 51 for MACCS, 141 for

PubChem, 238 for extended, 156 for graph, 691 for shortestpath, and 428

for circular FPs.

In order to exploit the FP data in an exhaustive way, two different, widely

used algorithms, Support Vector Machine (SVM) with a radial kernel, and

Random Forest (RF) are employed on all six FP sets individually.

2.5.1 Investigation on variable importance
During model training optimal parameters were selected by caret’s auto-

matic grid search with 10 values per parameter (tuneLength=10). In the case

of RF variable importance is tracked during training as the mean decrease in

node impurity (see Figure 6).

Figure 6. Variable importance tracked by RF for the six FP types MACCS,

PubChem, extended, graph, shortestpath, and circular.

Moreover, quantile Random Forest (qFR) [24] is employed on all six

FP types with variable importance tracking (see Figure S1). qFR is a gen-

eralisation of random forest. It gives a non-parametric way of estimating

conditional quantiles for high-dimensional predictor variables. The trained

qFR models show lower cross-validation performances than the RF models.

Therefore qRF is only used for variable importance confirmation, not for

affinity prediction. Aditionally, two further algorithms, Multivariate Adap-

tive Regression Splines (MARS) [25] and Boruta, an all relevant feature

selection wrapper algorithm [26], are employed to identify important vari-

ables for all six FP types (see Figure S2 and S3, respectively). MARS is

a non-parametric regression technique that automatically models nonlinear-

ities and interactions between variables. It can be seen as an extension of

linear models. Boruta iteratively compares importances of attributes with

importances of shadow attributes, created by shuffling original ones. It does

a sharp classification of features rather than ordering. Being an all relevant

method, it aims to find all features connected with the decision and therefore,

it also includes redundant features. (By default the ranger package Random

Forest implementation is used.)

2.5.2 Tailored FP selection for model training
In analogy to the problem-solving principle of ”Occam’s Razor” we seek a

model with the smallest number of descriptors that yield a reasonable model.

4



Table 1. Selected FPs for every FP type

FP type Selected FPs

MACCS 111, 93, 104

PubChem 354, 466, 822, 759, 339

extended 527, 823, 632, 420, 616, 63, 372

graph 988, 47, 775, 952, 369, 839, 899

shortestpath 941, 164, 563, 720, 722, 825, 135

circular 400, 330, 305, 440, 592, 197, 153, 439, 434, 158, 391

Figure 7. Performance comparison of all trained models on internal cross-

validation of training set.

Often, a small number of descriptors affords a model that outperforms more

complex ones. Therefore, the results of the four algorithms employed for in-

vestigating variable importance are compared and the most distinct features,

the most highly ranked by the algorithms are extracted for every FP type

(see Table 1) and subsequently combined as custom ’selection’ comprising

40 FPs.

On this selection new SVM and RF models are trained. For comparison,

SVM and RF models are also trained on the combination of all generated FPs

(not including the ones with zero variance). The ’selected’ models and ’all’

models are compared with the previously trained models on single FP types

by performance on cross-validation during training (see Figure 7). Remark-

ably, the ’selected’ SVM and RF models show the best performance, with

lowest RMSE and highest R2 values. They are followed by the SVM all

model, whereas the RF all model is situated much lower, in the midfield

among all trained SVM and RF models. In general, the SVM algorithm

shows slightly improved performances over RF on the same FPs.

2.6 Affinity prediction for designed molecules

The broad structure-based prediction model trained on the BindingDB

BRAF-V600E (2018) dataset, named ’BDB-IC50’, and the two best per-

forming models from the tailored ligand-based approach, ’SVM selected’

and ’RF selected’ are used for affinity prediction of the newly designed

molecule sets (named by their molecular scaffold) P02, P02C, P06, and

P06FCl (see Figure 8, 9, and 10).

The ’SVM selected’ and ’RF selected’ predictions show clear distribution

shifts between the four molecular scaffolds with a ranking of P02 - P02C -

P06 - P06FCl, from lowest to highest affinity. This separation is not visible

for the predictions of the ’BDB-IC50’ model. Only the P02 set is predicted

Figure 8. Affinity predictions of ’BDB-IC50’ model for four molecule sets

differing in their ’scaffold’ (P02, P02C, P06, and P06FCl) and containing

179 compounds each.

Figure 9. Affinity predictions of ’RF selected’ model for four molecule sets

differing in their ’scaffold’ (P02, P02C, P06, and P06FCl) and containing

179 compounds each.

with overall lower affinities. The ’RF selected’ predictions have the most

pronounced discrimination between the scaffold sets and cover the largest

affinity range (7.2 to 9.5), whereas the ’SVM selected’ predictions cover

a smaller range (7.8 to 8.6). Molecules with the best predictions from the

5



Figure 10. Affinity predictions of ’SVM selected’ model for four molecule

sets differing in their ’scaffold’ (P02, P02C, P06, and P06FCl) and contain-

ing 179 compounds each.

’SVM selected’ and ’RF selected’ model with scaffold P06 and P06FCl are

depicted in Figures S4, S5, S6 and S7. These sets of molecules served as

inspiration basis for subsequent drug design rounds including the synthesis

and experimental testing of selected compounds.

The six RF models trained on different single FP types (MACCS, Pub-

Chem, extended, graph, shortestpath, and circular) show different perfor-

mances with respect to discrimination capacities between the scaffold sets

(see Figure 11). Four models (MACCS, PubChem, extended, and graph) are

identifying scaffold P02 as the worst binding, whereas the MACCS, Pub-

Chem, and extended models also agree on the following scaffold ranking:

P02 - P02C - P06 - P06FCl (from worst to best). The graph FP based model

sets apart the P02 scaffold as worst binding and identifies P06FCl as best

scaffold, but does not distinguish between P02C and P06. The shortestpath

FP based model does not discriminate between the four scaffolds at all, in

contrast to the circular PF based model that clearly separates all four scaf-

folds, but in a different order: P02C - P02 - P06FCl - P06 (from worst to

best). Interestingly, the models developed on all FPs are showing the scaf-

fold ranking P02 - P02C - P06 - P06FCl (from worst to best), but are not

able to discriminate very well between the different scaffolds (see Figure

12), whereas the SVM model shows a slightly better performance, by clearly

setting apart the P02 scaffold.

2.6.1 Experimental testing of synthesized molecules
One molecule was synthesized for the P02C scaffold, followed by 12

molecules with the P06F scaffold and finally, two further molecules con-

taining the P06FCL scaffold. Experimental testing on BRAF confirmed the

lower activity of P02C (85% inhibition at 1000 nM). The P06 molecules

were effective in the low nanomolar range (4-6 nM), while the two com-

pounds with the PO6FCl scaffold were active at 2 nM.

3 DISCUSSION AND CONCLUSION

In this project, we aim to understand the effect of different machine learning

approaches with respect to the composition of the molecular training set and

variations in the nature of employed features within a drug design pipeline.

Figure 11. Affinity predictions of six RF models trained on different FP

types (MACCS, PubChem, extended, graph, shortestpath, and circular FPs,

from upper left to bottom right) for four molecule sets differing in their

’scaffold’ (P02, P02C, P06, and P06FCl) and containing 179 compounds

each.

Figure 12. Affinity predictions of ’RF all’ and ’SVM all’ model for four

molecule sets differing in their ’scaffold’ (P02, P02C, P06, and P06FCl) and

containing 179 compounds each.

We make sure that the training datasets are adequate for model devel-

opment by evaluating the applicability domain based on the molecules’

chemical space.
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The importance of feature selection for dedicated drug design is high-

lighted by the improved results from models with particularly selected

features. Here we present an approach that employs different feature se-

lection algorithms and methods and combines the results into a consensus

selection weighted by the performance of previously trained models. This

combination of automated identification of informative features with a bal-

anced evaluation of the models’ importance weighting (based on previous

performance results) is performed across different types of fingerprints

and results into improved prediction performances during cross-validation.

Moreover, with the trained models we succeed to distinguish between our

designed scaffolds, among which selected molecules were synthesized and

their affinities tested in vitro on BRAF-V600E.
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Figure S1. Variable importance tracked by qRF for the six FP types

MACCS, PubChem, extended, graph, shortestpath, and circular.

Figure S2. Variable importance tracked by MARS for the six FP types

MACCS, PubChem, extended, graph, shortestpath, and circular.
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Figure S3. Variable importance tracked by Boruta for the six FP types

MACCS, PubChem, extended, graph, shortestpath, and circular.
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Figure S4. The 16 P06-scaffold molecules with best affinity predictions by the ’RF selected’ model.
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Figure S5. The 16 P06-scaffold molecules with best affinity predictions by the ’SVM selected’ model.
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Figure S6. The 16 P06FCl-scaffold molecules with best affinity predictions by the ’RF selected’ model.
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Figure S7. The 16 P06FCl-scaffold molecules with best affinity predictions by the ’SVM selected’ model.
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3.6 Drug design synthesis rounds - a chronological overview

Round 1

Drug synthesis round 1 is based on the scaffold P02C (see Figure 3.26), as the publication of P02
suggests its capacity of avoiding the paradoxical effect, and additionally, better affinities are predicted
for molecules with a carbon atom instead of P02’s original nitrogen. The selection of the attachment
fragments forming the molecular extensions is based first on a pre-selection from the RF machine
learning approach on BRAF (best predicted ∼20 candidates) and then further refined according to a
size criteria (the extension should be larger than the original tertiary butyl moiety) and favorable
pharmacokinetics properties of thioamides (regarding cell penetration and solubility), resulting in
four candidates.

Figure 3.26: The selected molecules for drug synthesis round 1 - scaffold P02C, their predicted affinity by the
RF model (trained on the BindingDB dataset), and their docking pose within the BRAF structure.

Round 2

As drug synthesis round 1 showed decreased affinities for BRAF compared to dabrafenib (P06),
the P02C scaffold is not further continued. Additionally, machine learning models and MM-PBSA
computations predict improved affinities for the P06F scaffold, which is basically P06 with one
of the fluor atom shifted from cis to trans position at the di-fluorophenyl ring. Therefore, this
scaffold is exemplified with four different extensions as replacement of the tertiary butyl moiety: the
extension 1-cyclopropylpiperidine (CPP), which is present in PDB molecule CQE, 3-piperidine (Pip),
5-morpholine (Mor), and propylamine (PrA). On top of that, the pyrimidine moiety is extended by
an additional acetyl (-ac) for the four molecules, resulting in a total of eight compounds (see Figure
3.27).
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Figure 3.27: Molecules of drug synthesis round 2 - scaffold P06F.

Round 3

To investigate the effect of the different scaffolds drug synthesis round 3 comprises the four modified
scaffolds based on P06 (P06F, P06FF, P06FCl, and P06FFCl, where the amount of Fs indicate the
number of shifted fluor atoms, and Cl indicates an additional chlorine atom, compared to P06) with
the original tertiary butyl extension and the morpholino (Mor) extension, resulting again in eight
compounds (see Figure 3.28).

Figure 3.28: Molecules of drug synthesis round 3 - includes the four modified scaffolds based on P06 (P06F,
P06FF, P06FCl, and P06FFCl) with the original tertiary butyl extension and the morpholino (Mor) extension.

Round 4

The designed molecules for synthesis round 4 were inspired by the newly solved structure of BRAF
with P06F-Mor and the Mor-extension’s proximity to polar residues. Four molecules were built
by adding new substituents - azetidine (2Az), pyrrolidine (2Py), piperidine (2Pi), piperazine (2PA)
- instead of the morpholine group to the P06F scaffold, resulting in a total of four compounds
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(see Figure 3.29). Round 4 was aimed to test the interaction between BRAF’s G-rich loop and the
extensions and attempted to form a hydrogen bond between the extensions and the Asp of the DFG
motif.

Figure 3.29: Molecules of drug synthesis round 4 - scaffold P06F.

As the synthesis of all proposed molecules would require increased expenses a thorough evaluation
by machine learning, molecular dynamics and MM-PBSA affinity calculation was performed.
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3.7 MM-PBSA affinity calculations for designed molecules

MM-PBSA is a widely used technique to estimate binding affinities based on structural conformations.
Whereas the conformational ensembles used for MM-PBSA calculations are usually generated by
molecular dynamics simulations, the technique is applicable to differently generated structures.

MM-PBSA calculation - methods

For MM-PBSA calculation the 50-ns MD production trajectories were reduced to 501 frames each, by
extracting a frame every 100 ps. The resulting snapshots of the MD simulations were utilized for
post-processing free energies by the single-trajectory MM-PBSA method implemented in g_mmpbsa.
Different dielectric constants (ε=(2,4,6,8,12,20)) were tested for the binding pocket, while the solution
dielectric constant was kept constant at ε=80. Calculations are performed based on a homogeneous
medium with a range of dielectric constants for the solute, an ionic strength of 150 mM, an ionic
radius of 0.95 Å for positive charged ions and 1.81 Å for negative charged ions, and a solvent probe
radius of 1.4 Å. An example configuration file for g_mmpbsa is provided within the supplements of
Section 3.7.1. Other parameters influencing the grid dimensions of the calculation, such as ’cfac’,
’gridspace’ and ’fadd’ were varied from suggested defaults (1.5, 0.5 and 10, respectively) showing
only marginal variations in the results and therefore not further changed.

Analysis and visualization is performed with Gromacs tools, PyMol, VMD, Chimera, Python scripts,
and provided scripts from the g_mmpbsa package.

3.7.1 MM-PBSA approaches with dabrafenib and its metabolites

The widely used MM-PBSA affinity calculation approach (based on structural snapshots from MD
simulations) was evaluated on the drug dabrafenib and its known major metabolites, whereas
the importance of the solute dielectric constant became apparent as major concern with respect to
ranking of newly designed compounds for protein kinase drug design.
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ABSTRACT

Predicting the interactions between a set of small molecules and its

target plays a critical role in drug discovery and development. Espe-

cially in later stages of the drug design process, when a reduced set

of molecules is in focus, reliable and accurate binding affinity estima-

tions are important for targeted modifications of given lead molecules.

Current limitations in affinity prediction originate from the lack of ac-

curate estimates for solvation energy and entropy. MM-PBSA and

the related MM-GBSA aim at providing better estimates. From our

studies we infer that the common approach using one dielectric con-

stant for the binding pocket may be misleading (here in the case of

a kinase), especially when designed ligands/drugs contain charges.

Thus, a range of selected values for the solute dielectric constant is

preferred for better and more reliable comparisons.

Keywords: MM-PBSA, drug design, kinase, B-RAF, dielectric

constant

1 INTRODUCTION

While a relative and approximate ranking of the stability of differ-

ent complexes might be sufficient for an initial screening protocol, a

finer and more accurate evaluation of the binding free energy may be

necessary for a fine tuning in later stages of drug design. Free energy

estimates require simulation of complex flexibility and desolvation

upon binding of both partners in order to deduce the entropy term

instead of a simple extrapolation of the enthalpy term with a very

rough and partial prediction of the entropy part as in usual and quick

affinity prediction methods. For the most accurate methods, very

long simulations are required and limit their use. If accurate ener-

gies are needed, the methods of choice are sophisticated MD-based

calculations, such as thermodynamic integration (TI) [1, 2] and

free energy perturbation (FEP) [3]. Since they are computationally

very expensive, extremely time-consuming and exhaustive confor-

mational and statistical sampling is needed to obtain converged

results, they are not widely used in structure-based drug design.

Among the approximate methods, there are the linear interaction

energy (LIE) [4], the molecular mechanics Poisson-Boltzmann sur-

face area (MM-PBSA) [5] and the related molecular mechanics

generalized Born surface area (MM-GBSA) methods [6]. LIE is a

semi-empirical method, based on the assumption that the binding

free energy between the ligand and the receptor can be modelled

as a linear-response combining weighted electrostatic and Van der

Waals interactions with coefficients varying for different systems

[4, 7]. Unlike the LIE method, MM-PBSA and MM-GBSA do not

employ empirical parameters within their calculations, which makes

them promising methods for ranking very different compounds.

They both use molecular mechanics force fields with continuum

solvent models. The GB equation is simply an approximation of

the PB equation [8], resulting in an increased calculation speed

(about 5 times faster), but often goes along with an accuracy trade-

off [9, 10, 11]. They are both frequently used in structure-based

drug design due to their rather high accuracy and relative high

computational efficiency. Another advantage is that they have no

varying parameters for different protein-ligand systems while using

sets of physically well-defined energy terms and they do not require

training set calculations.

It has been previously reported that using MM-PBSA long MD

simulations seem not to result in better predictions and short

MD simulations can be adequate in calculating binding affinities

[12, 13]. In order to achieve a higher precision it has been sug-

gested to run many short independent simulations (produced by

e.g. replicate sampling) instead of a single long one, which should

avoid underestimation of the uncertainty [14]. Additionally, if one

is only interested in the relative order of binding affinities, the rank-

ing of compounds with similar structures and binding modes, the

entropy contribution to the binding free energy can be omitted,

which is often recommended as it reduces the computational cost

and avoids adding an additional non-negligible error margin. It has

been found that MM-PB/GBSA performances generally vary with

the tested system and also depend on the used force fieldand the

solute dielectric constant [12, 15, 8].

Here, we wanted to reassess the use of MM-PBSA for fine rank-

ing of a drug, dabrafenib, and its known metabolites in aim at

predicting a potential impact of its pharmacokinetics, its metab-

olization on its efficacy on its primary target the protein-kinase

BRAF.

Dabrafenib [16] is a BRAF kinase inhibitor, which inhibits

BRAF V600 mutation-positive cancer cell growth. It is an FDA

approved drug indicated for the treatment of adult patients with

unresectable or metastatic melanoma with a BRAF V600 muta-

tion [17, 18] and as combination therapy since recently also for

metastatic non-small cell lung cancer harboring BRAF V600E mu-

tations [19]. Despite improved response rates and overall survival of

BRAF-V600 mutant cancer patients, resistance is rapidly acquired,

resulting in a relapse of most patients within a year [20]. This ef-

fect may be partially due to the fast metabolism of dabrafenib (with

a half-life of ∼5 hours [21]). There are three major metabolites of

dabrafenib that have been identified with potential pharmacologi-

cal effects: hydroxy-dabrafenib (HDB), carboxy-dabrafenib (CDB),

and desmethyl-dabrafenib (DDB), whereas HDB appears to con-

tribute significantly to the pharmacological activity [22].
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2 METHODS

2.1 Structure preparation and modelling

The crystal structure of BRAF with dabrafenib as co-crystallized

ligand, PDB-ID: 4XV2, was downloaded from the RCSB protein

data bank (PDB). The protomeric structure (chain A) was prepared

for MD with an in-house Python script using Modeller [23] for mod-

elling missing residues to match the canonical sequence (UniProt

identifier: P15056-1), but for the position V600 mutated to E. Here,

the coordinates for atoms present in structure 4XV2 are kept fixed

and only the missing loops (plus one adjacent residue, to avoid unre-

alistic geometries caused by ambiguous termini atom positions) are

modelled. The complexes with the three metabolites CDB, HDB,

and DDB are generated by docking them with PLANTS [24] into

the previously generated complete protein structure with dabrafenib

as an anchor. Hydrogen atoms of the respective ligands were mod-

eled with OpenBabel at pH 7. This results in zero net charge for

DB, HDB, and DDB and a negative net charge for CDB, due to the

deprotonated carboxy group.

2.2 Electrostatic potential and dielectric constant maps

The BRAF-DB complex structure was used to calculate electrostatic

potential maps and dielectric maps with DelPhi [25, 26]. DelPhi is a

free command line tool that calculates the electrostatic potential for

biomolecules by solving the Poisson Boltzmann equation.

2.3 Molecular dynamics simulation

All simulations were carried out with Gromacs 2018 [27]. The lig-

and topologies were generated using the ACPYPE/ANTECHAM-

BER [28] program of AmberTools17 [29] with partial charges

generated by the empirical charge model AM1-BCC. The ligands

parameters are based on the General Amber Force Field (GAFF) and

the Amber FF14SB force field was employed for the proteins. Each

complex was solvated in a TIP3P water dodecahedral box, with pe-

riodic boundary conditions and a minimum distance of 1.0 nm from

the surface of the complex to the edge of the box. Each system

was neutralized by adding NA+ and Cl- ions to physiological con-

centration of 153.6 mM. A completely free steepest descent energy

minimization for 2000 steps was followed by a 100-ps NVT equi-

libration and a 100-ps NpT equilibration with Parrinello-Rahman

pressure coupling. NVT and NpT equilibrations were performed at

a reference temperature of 300 K with ligand restraints of 1000 kJ/-

mol nm2 in x,y,z directions. Finally, 50 ns unrestrained production

runs were performed with a 2 fs time-step in the NpT ensemble and

snapshots were saved every 10 ps. For each of the four ligands (DB,

CDB, HDB, and DDB) five replica simulations were run with dif-

ferent randomly assigned initial velocities, resulting in a total of 250

ns simulation per ligand.

2.4 MM-PBSA calculation

For MM-PBSA calculation the 50-ns MD production trajectories

were reduced to 501 frames each, by extracting a frame every 100

ps. The resulting snapshots of the MD simulations were utilized for

post-processing free energies by the single-trajectory MM-PBSA

method implemented in g mmpbsa. Six different dielectric con-

stants (ǫ=(2,4,6,8,12,20)) were used for the binding pocket, while

the solution dielectric constant was kept constant at ǫs=80. Cal-

culations are performed based on a homogeneous medium with a

range of dielectric constants for the solute, an ionic strength of 153.6

mM, an ionic radius of 0.95 Å for positive charged ions and 1.81

Å for negative charged ions, and a solvent probe radius of 1.4 Å.

An example configuration file for g mmpbsa is provided within the

supplements (Listing 1). Other parameters influencing the grid di-

mensions of the calculation, such as ’cfac’, ’gridspace’ and ’fadd’

were varied from suggested defaults (1.5, 0.5 and 10, respectively)

showing only marginal variations in the results and therefore not

further changed.

Analysis and visualization is performed with provided scripts

from the g mmpbsa package [30], Chimera [31], PyMol [32] and

Python scripts.

3 RESULTS

With this study we provide a basis for important considerations

when employing MM-PBSA based affinity estimations on kinases.

The oncogenic protein kinase BRAF-V600E together with the clini-

cal drug dabrafenib serve as example for pointing out methodical

issues that can arise when computing affinities in standard drug

design projects.

As the binding mode of dabrafenib in BRAF-V600E is experi-

mentally known (PDB-ID: 4XV2), we take advantage of this com-

plex for further calculations and use it as template for docking the

dabrafenib metabolites. Unfortunately the experimental structure is

not complete and for chain A the missing loop residues (432-448,

488, 489, 597-614, 627-631, 721-723) had to be modelled.

3.1 Electrostatic potential and dielectric constant

distribution of BRAF kinase

Electrostatics plays an important role in regulating interactions be-

tween biological macromolecules. The electrostatic potential map

of the protein-ligand complex BRAF-dabrafenib at pH 7 shows re-

markable variations at different slicing depths within the binding

pocket, whereas the values within protein stay rather constant (see

Figure 1).

Figure 1. Electrostatic potential (φ) map calculated on the protein-ligand

complex structure. Six consecutive slices through the protein that sample

the depth of the binding pocket, where the coloring shows the electrostatic

potential at the slicing surface. The φ-map is calculated with DelPhi and

visualized with Chimera.
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The dielectric constant map equally points out variations inside

the binding pocket in contrast to the protein interior (compare Figure

2). In particular, the tri-methyl moiety of dabrafenib is pointing out-

side the binding pocket and lies outside the cutoff where an epsilon

value of 80 is reached (see Figure 2 closeup on binding pocket).

This indicates that it is completely solvent accessible and should be

considered as solvated.

Figure 2. Dielectric constant (ǫ) map calculated on the protein-ligand com-

plex structure with a complete view of the complex (left) and a close-up on

the ligand (right). The ǫ-map is calculated with DelPhi and visualized with

Chimera.

3.2 MM-PBSA, the dielectric constant and ligand

charges

MM-PBSA binding affinity calculations based on 50ns MD simula-

tions for dabrafenib (DB) and its metabolites carboxy-dabrafenib

(CDB), desmethyl-dabrafenib (DDB), and hydroxy-dabrafenib

(HDB) with BRAF-V600E (see Figure 3) and with BRAF-WT with

a structured, helical activation loop (see Figure S2) are dependant

on the solute dielectric constant (ǫ). Especially the charged CDB

shows an inverted behaviour compared to the other three molecules.

Whereas the binding energy for DB, DDB and HDB gradually de-

creases with increasing ǫ (ranging from 2 to 20), CDB has an

extremely low energy at ǫ=2, which rapidly increases when shifting

to a slightly higher ǫ=4, but stays constant from ǫ=8 onward.

3.2.1 Energetic contribution of protein residues to ligand binding

To investigate the reason for the extreme discrepancies between

calculations at different dielectric constants residue-wise energetic

contributions to ligand binding are investigated using the free energy

decomposition scheme of g mmpbsa. For visualization the energies

given as kJ per mole are mapped onto the structure (see Figure 4

and S1). The energetic contributions per residue along the protein

sequence between a dielectric constant of 2 and 8 (shown in Figure

5) highlights extreme discrepancies for CDB, whereas only the CDB

pattern with ǫ=8 agrees with the patterns for DB, DDB and HDB,

which are very similar. Therefore, calculations performed with a di-

electric constant of 2 are considered as untrustworthy and protein

residues with most important energetic contributions are compared

between the DB and its metabolites at ǫ=8 (see Figure 6). The contri-

butions appear to be highly similar, except for Lys483, which shows

Figure 3. Averaged MM-PBSA binding energies (only enthalpic contribu-

tion) for BRAF-V600E with dabrafenib (DB) and its metabolites carboxy-

dabrafenib (CDB), desmethyl-dabrafenib (DDB), and hydroxy-dabrafenib

(HDB). The averages are calculated for each ligand based on 2505 complex

conformations from five replica MD trajectories at six different dielectric

constants (2,4,6,8,12, and 20). The error bars are standard deviations across

the five replica MD trajectories for each dielectric constant.

increased variations and tends to more favorable energies for DB

than its metabolites.

Figure 4. Energetic contribution of protein residues to ligand binding for the

charged metabolite carboxy-dabrafenib (CDB) calculated with different di-

electric constants of 2 (left) and 8 (right). Color coding = blue-white-red,

with a minimum of -33 and a maximum of +33 kJ/mol (visualized with

PyMol)

3.2.2 Complex evaluation by scoring function DSX

As external validation of the binding poses of the docked metabo-

lites CDB, DDB and HDB the knowledge-based scoring function

DSX (via DSX-online [33]) was used to evaluate the docked

complexes that served as starting structures for MD simulations.

Providing a score for protein-ligand complexes together with a vi-

sualization of the per-atom score contributions DSX-online allows
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Figure 5. Energetic contribution of protein residues to ligand binding for

DB and its metabolites CDB, DDB and HDB, calculated with dielectric

constants of 2 and 8.

Figure 6. Protein residues with most important energetic contributions (ab-

solute value larger than 10 kJ/mol for at least one simulation) to ligand

binding for DB and its metabolites CDB, DDB and HDB, calculated with

a dielectric constant of 8. The bar heights are the average values across the 5

replicas and the error

for investigating possible reasons for binding discrepancies. DSX

scoring (using CSD potentials) provides the following ranking (from

best to worst, with respective scores):

DB (-168.6) - HDB (-137.7) - CDB (-135.7) - DDB (-124.9).

The four molecules are scored highly favorable, very similar and

the visualization of the per-atom score contributions showed only

marginal variations for the moieties differing between the molecules

(see Figure S3). Only minor unfavorable distances were detected

between a few atoms of the identical parts of the metabolites and

surrounding protein residues (that are supposedly due to tiny pose

variations upon docking).

The evaluation by DSX suggests that the metabolites have highly

similar binding affinities, which is equally the case for the MM-

PBSA calculations with a dielectric constant of 8 (see Figure 3 and

S2) and therefore, additionally confirms the parameter choice ǫ=8

for the protein kinase.

3.2.3 Affinity prediction by docking and machine learning

In order to further evaluate the proper ranking of the four

compounds (DB, CDB, DDB and HDB), we applied a second

completely independent affinity prediction method based on ma-

chine learning. The method is described in details in a previous

publication [34]. Training of the random forest machine learning

algorithm in regression mode was performed based on the lig-

and dataset BRAF-V600E (with annotated IC50 affinity measures

- 2193 molecules) from BindingDB (2018). The method relies on

data from multi-structure docking and pose evaluation of the ligand

dataset on the @TOME server [35] taking into account all available

BRAF structures, and ligand-based molecular descriptors. The ma-

chine learning method predicted the following affinity ranking (from

highest to lowest) with pIC50 values ([−log10(M)]):

DB (8.42) - HDB (8.19) - CDB (8.05) - DDB (8.00).

Remarkably, the machine learning based ranking is the same as for

the DSX evaluation, also predicting highly similar binding affinities

for the metabolites and an increased affinity for DB. This again,

confirms the validity of the choice of the dielectric constant (ǫ=8),

at with this tendency is equivalently reproduced.

3.2.4 Comparison with reported affinity measures from literature

GlaxoSmithKline published studies on the activity of their drug

Dabrafenib and the three mayor metabolites [36, 37]. Interestingly,

measured half-lives for CDB and DDB were longer than for DB

and HDB [36]. The study of Ellens et al. [37] reports that, based

on in vitro antiproliferative IC50 measures, HDB and DDB should

be potent inhibitors of BRAF-V600E, slightly less active than DB

whereas the activity of CDB is largely reduced. Comparison of

the affinity measures with the affinity ranking using MM-PBSA

suggests that high values of the dielectric constant (ǫ > 8) are

appropriate to obtain the equivalent ranking of DB - HDB/DDB -

CDB, from best to worst (compare Figure 3).

4 DISCUSSION

Most biological processes are influenced or even governed by

electrostatic effects. Structure-function correlations in general and

ligand-receptor interactions in particular are heavily dependant on

accurate electrostatic calculations. Just as the electrostatic contri-

bution to the solvation / desolvation process has proved to be of

paramount importance. However, the need for discriminatory case

studies has not received the attention it deserves. The PB and GB

models, provide very performant tools for modelling the effect of the

solvent around the protein and they are widely used techniques for

binding affinity estimation. The electrostatic contribution is mod-

eled here as a dielectric linear response to the electric field generated

by the atomic charges. There have been several previously reported

promising results with excellent correlations with experimental data

[38, 39, 40].
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It has been shown that in implicit solvent simulations that use PB

forces employing a dielectric constant of 1.0 (as used in many force

fields) the resulting MD trajectories do not always preserve native

structures (using different protocols and programs). To reduce sol-

vation forces, a common technique is to raise the dielectric constant

[6]. The dielectric constant for a protein has traditionally been esti-

mated below, or at around 4 [41, 42], but can also be significantly

larger, as large as 10, in sites of catalytic importance [43]. The opti-

mal value differs between systems and are for example set to 4 [44]

or even to 17 [45]. For implicit solvent simulations the proper di-

electric constant of the solute is a controversial issue in the literature

(see, e.g., [46]).

However, MM-PB/GBSA is a technique mainly used for predict-

ing relative binding energies and not absolute ones, since several

effects such as hydration/dehydration, entropy and binding pathway

contributions can hardly be taken into account. Thus the dielectric

constant becomes only an important factor when the ranking of po-

tential ligands is impacted. This is in particular the case when partial

charges differ largely among the ligands to be ranked.

By definition, the concept of a dielectric constant is used to de-

scribe the collective behavior of matter and does not describe effects

on the atomic level. In practice, using low dielectric constants for

the solute (protein), such as ǫ=2, accounts for electronic polariz-

ability and is more sensitive to changes in the molecules, and can

therefore be very useful for distinguishing between rather similar

ligands. Nonetheless, as we point out with this study, the standard

employment of such low dielectric constants may lead to wrong as-

sumptions on the relative ranking of ligands, particularly when they

differ in charges. Special care needs to be taken to adjust the di-

electric constant for the system under investigation in order to avoid

artefacts (e.g. contributions from polar residues located far from the

binding site). Based on this study we suggest the use of a rather el-

evated solute dielectric constant of about 8 for kinases, in particular

when investigating charged ligands.
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Figure S1. Energetic contribution of protein residues to ligand binding for

the charged metabolite carboxy-dabrafenib (CDB) calculated with six differ-

ent dielectric constants ǫ=(2,4,6) top row, and ǫ=(8,12,20) bottom row, from

left to right. Color coding = blue-white-red, with a minimum of -33 and a

maximum of +33 kJ/mol (visualized with PyMol).

Figure S2. Averaged MM-PBSA binding energies (only enthalpic contri-

bution) for BRAF-WT with dabrafenib (DB) and its metabolites carboxy-

dabrafenib (CDB), desmethyl-dabrafenib (DDB), and hydroxy-dabrafenib

(HDB). The averages are calculated for each ligand based on 2505 complex

conformations from five replica MD trajectories at six different dielectric

constants. The error bars are standard deviations across the five replica MD

trajectories for each dielectric constant.

Figure S3. DSX evaluation: visualization of the per-atom score contribu-

tions of DB and its metabolites CDB, DDB and HDB in the binding pocket

(visualized with PyMol). Favorably interacting atoms are surrounded by

blue spheres and disfavorable interactions are shown in red. The sizes of

the spheres correspond to the values of the contributing per-atom scores.

Listing 1. MM-PBSA example configuration file for g mmpbsa with ǫ=6
;Polar calculation: "yes" or "no"

polar = yes

;=============

;PSIZE options

;=============

;Factor by which to expand molecular dimensions to get

coarsegrid dimensions.

cfac = 1.5

;The desired fine mesh spacing (in A)

gridspace = 0.5

:Amount (in A) to add to molecular dimensions to get fine

grid dimensions.

fadd = 10

;Maximum memory (in MB) available per-processor for a

calculation.

gmemceil = 4000

;=============================================

;APBS kwywords for polar solvation calculation

;=============================================

;Charge of positive ions

pcharge = 1

;Radius of positive charged ions

prad = 0.95

;Concentration of positive charged ions

pconc = 0.1536

;Charge of negative ions

ncharge = -1

;Radius of negative charged ions

nrad = 1.81
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;Concentration of negative charged ions

nconc = 0.1536

;Solute dielectric constant

pdie = 6

;Solvent dielectric constant

sdie = 80

;Reference or vacuum dielectric constant

vdie = 1

;Solvent probe radius

srad = 1.4

;Method used to map biomolecular charges on grid. chgm =

spl0 or spl2 or spl4

chgm = spl4

;Model used to construct dielectric and ionic boundary.

srfm = smol or spl2 or spl4

srfm = smol

;Value for cubic spline window. Only used in case of srfm

= spl2 or spl4.

swin = 0.30

;Numebr of grid point per Aˆ2. Not used when (srad = 0.0)

or (srfm = spl2 or spl4)

sdens = 10

;Temperature in K

temp = 300

;Type of boundary condition to solve PB equation. bcfl =

zero or sdh or mdh or focus or map

bcfl = mdh

;Non-linear (npbe) or linear (lpbe) PB equation to solve

PBsolver = lpbe

;========================================================

;APBS kwywords for Apolar/Non-polar solvation calculation

;========================================================

;Non-polar solvation calculation: "yes" or "no"

apolar = yes

;Repulsive contribution to Non-polar

;===SASA model ====

;Gamma (Surface Tension) kJ/(mol Aˆ2)

gamma = 0.0226778

;Probe radius for SASA (A)

sasrad = 1.4

;Offset (c) kJ/mol

sasaconst = 3.84982

;===SAV model===

;Pressure kJ/(mol Aˆ3)

press = 0.234304

;Probe radius for SAV (A)

savrad = 1.29

;Offset (c) kJ/mol

savconst = 0

;Attractive contribution to Non-polar

;===WCA model ====

;using WCA method: "yes" or "no"

WCA = no

;Probe radius for WCA

wcarad = 1.20

;bulk solvent density in Aˆ3

bconc = 0.033428

;displacment in A for surface area derivative calculation

dpos = 0.05

;Quadrature grid points per A for molecular surface or

solvent accessible surface

APsdens = 20

;Quadrature grid spacing in A for volume integral

calculations

grid = 0.45 0.45 0.45

;Parameter to construct solvent related surface or volume

APsrfm = sacc

;Cubic spline window in A for spline based surface

definitions

APswin = 0.3

;Temperature in K

APtemp = 300

8
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3.7.2 MM-PBSA approaches on BRAF and PXR with designed drugs

3.7.2.1 The impact of protein structure loop-model on MM-PBSA results

The impact of the loop-models generated based on the two different crystallographic PDB strctures
(4XV2 and 4CQE) is investigated for the molecules from synthesis round 2 (see Figure 3.30). Based on
the MM-PBSA calculation on 500 frames extracted from single 50ns MD simulations a general trend
of slighly higher affinities in the 4XV2 model compared to the 4CQE model can be stated (which
is the case for all P06F molecules except P06F-Pip). However, the error bars, which are based on
the variability among the 500 frames per simulation, are overlapping in most cases, indicating an
elevated uncertainty for this conclusion.

Figure 3.30: MM-PBSA binding energy of the 8 molecules from synthesis round 2 (drug scaffold P06F) at a
dielectric constant of 8 in two different loop-model structures: 4XV2 and 4CQE. The errors are based on the
variability among the selected 500 frames from a 50ns MD simulation for each complex.

As the loop conformation seems to have an impact on the affinity estimation, P06 is evaluated in the
four different loop-model structures: 4XV2, 4CQE, V600E and the structured WT (see Figure 3.31).
The tendency of lower affinity estimations for the 4CQE model is confirmed for P06. Furthermore,
the V600E model, as well as the structured WT model, seem to result in similar affinity estimations
as the 4XV2 model. This indicates that the three models 4XV2, V600E and the structured WT may
equally be useful for distinguishing molecules that are derivatives of P06.
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Figure 3.31: MM-PBSA binding energy of P06 at a dielectric constant of 8 in four different loop-model structures:
4XV2, 4CQE, V600E and the structured WT. The errors are based on the variability among the selected 500
frames from a 50ns MD simulation for each complex.

3.7.2.2 The effect of different drug scaffolds

MM-PBSA affinity differences between different drug scaffolds

In order to investigate the impact of the different scaffolds MM-PBSA calculations were performed
on 5 replicas of 50ns MD simulations from which 500 frames were extracted for each simulation. The
molecules with a morpholine (Mor) extension and the four different scaffolds, P02C, P06F, P06FCl,
and P06FFCl, are simulated as complex with the BRAF-V600E model. The error estimates across
the 5 replicas (see Figure 3.32a) tend to be smaller, or in a similar range as the error estimates from
single MD simulations (see Figure 3.32b) and show lesser overlaps. Thus, when performing several
replicas, the molecules with different scaffolds become distinguishable by average binding affinity
with a distinct ordering, which is not clearly apparent from calculations based on single simulations.
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(a) The bar heights are the MM-PBSA result averages across the 5 MD replicas and the errors are based on the
variability across the 5 MD replicas, for each complex.

(b) The MM-PBSA results from the 5 MD replicas are plotted separately and the errors are based on the
variability among the selected 500 frames from a 50ns MD simulation for each complex.

Figure 3.32: MM-PBSA binding energy of molecules with four different scaffolds (P02C, P06F, P06FCl, and
P06FFCl) and a morpholine (Mor) as extension in the BRAF-V600E model, at a dielectric constant of 8.

To evaluate the effect of different scaffolds with respect to PXR binding MM-PBSA affinity
estimations are performed using the crystallographic PXR structure 6HJ2 that is co-crystallized
with P06 (processed by PDB-REDO and completed by the loop-modelling procedure). As the
crystallographic pose of P06 is used for the modified drugs and larger replacements of the tertiary
butyl moiety of P06 (e.g. by a morpholine) would clash with the PXR structure, the tertiary butyl
moiety is kept to investigate scaffold effects in PXR. Without any change of the tertiary butyl moiety
we expected the MM-PBSA affinities to stay rather close to the one for P06, which is in particular the
case for the very similar molecule P06F (see Figure 3.33), having only one flour atom shifted from cis
to trans position at the di-fluorophenyl ring compared to P06. In contrast, adding an additional
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chlorine atom in para to the central fluorophenyl ring, as for P06FCl and P06FFCl seems to increase
affinity to PXR.

(a) The bar heights are the MM-PBSA result averages across the 5 MD replicas and the errors are based on the
variability across the 5 MD replicas, for each complex.

(b) The MM-PBSA results from the 5 MD replicas are plotted separately and the errors are based on the
variability among the selected 500 frames from a 50ns MD simulation for each complex.

Figure 3.33: MM-PBSA binding energy of molecules with four different scaffolds (P06, P06F, P06FCl, and
P06FFCl) containing the original tertiary butyl moiety of P06 in the PXR model based on 6HJ2, at a dielectric
constant of 2.
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Hydrogen bonding network between drug and protein

Furthermore, the hydrogen bonding of the ligands with the BRAF protein is investigated along the
50ns MD simulations. To do so, the VMD H-bonds plugin is used with the following criteria for
the formation of a hydrogen bond: A hydrogen bond is formed between an atom with a hydrogen
bonded to it (the donor, D) and another atom (the acceptor, A) provided that the distance D-A is
less than the cut-off distance (default of 3.0 Å, set to 3.5 Å) and the angle D-H-A is less than the
cut-off angle (default of 20◦, set to 35◦). H-bonds are calculated between protein and ligand for
all frames, with both molecules as donor and acceptor. The H-bond occupancy is calculated per
residue, by summing up the occupancies of all contributions from a protein residue, and averaged
across the 5 replicas for each drug. Residues that formed at least in one MD simulation hydrogen
bonds with occupancy >10 are listed in Figure 3.34. H-bond occupancy varies largely among the
different replicas. Nonetheless, Cys532, Asp594 and Phe595 seem to be of major importance for
drug binding, whereas the hydrogen bonding to Phe595 seems to be more transient, as it is not
maintained throughout the whole trajectories (maximal 70%). These three residues have also been
identified to form hydrogen bonds by the PLIP web server for P06 (compare Figure 3.18).

Figure 3.34: H-bond occupancy per residue averaged across the 5 MD replicas per complex. H-bonds are
calculated between protein and ligand for all trajectory frames using the VMD H-bonds plugin and occupancies
of all contributions from a protein residue are summed up. Residues that formed at least in one MD simulation
hydrogen bonds with occupancy >10 are listed. The errors are based on the variability across the 5 MD replicas
per complex. Note that the occupancy can be larger than 100% for a residue, as more than one h-bond can be
formed per residue.
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3.7.3 MM-PBSA approaches on ensemble-refined BRAF structures

For structure-based VS and affinity estimations, such as MM-PBSA calculations, ensembles of
structural conformations are used to be able to provide statistically sound values and to estimate
error intervals. Nevertheless, the way of constructing such conformational ensembles is still a highly
discussed topic and several approaches for generation of receptor conformational ensembles exist.
Usually protein receptor conformations are identified using molecular dynamics (MD) simulations.
Within this thesis work, not only conformations extracted from MD simulations, but also ensemble-
refined structures were employed for MM-PBSA affinity calculations. Two differently generated
ensembles were investigated, one without ligand hydrogens during refinement, and another
including ligand hydrogens during refinement. For each refinement the ensemble with the lowest
Rfree value was selected for MM-PBSA calculations. Moreover, the ensemble structures were not
only used as is for MM-PBSA calculations, but also in a second approach additionally minimized
(for maximal 200 steps, using GROMACS and the Amber14SB force field) before submitting to
MM-PBSA calculations. Four crystallographic BRAF complexes were investigated (with their
crystallographic ligands): 4XV3 (with P02), 4XV2 (with P06), 5CSW (with P06) and the newly solved
structure (with the designed drug candidate P06F-Mor), and the MM-PBSA results are listed in
Table 3.3. All MM-PBSA calculations for BRAF complexes were performed with a solute dielectric
constant of ε=8, and all protomers (identified here by chain) that are complexed with a ligand were
analyzed separately.

PDB-ID -
ligand-ID

chain
(-H)

ensemble
(-H)

minimized
(+H)

ensemble
(+H)

minimized

4XV3 - P02 A 3253.1 (± 6212.4) -93.6 (± 70.3) -29.2 (± 178.9) -93.8 (± 45.8)
A -140.8 (± 304.3) -83.9 (± 85.7) -232.2 (± 282.3) -42.8 (± 74.3)

4XV2 - P06
B -194.3 (± 192.4) -372.0 (± 23.1) -313.3 (± 62.4) -396.9 (± 19.3)
A -315.4 (± 57.0) -351.8 (± 128.8) -344.5 (± 25.4) -129.2 (± 215.2)

5CSW - P06
B 38.9 (± 520.1) -181.9 (± 178.2) -289.7 (± 64.6) -77.1 (± 185.6)
A - - -289.8 (± 122.0) -360.3 (± 28.1)NEW -

P06F-Mor B - - -316.4 (± 38.1) -361.4 (± 24.0)

Table 3.3: MM-PBSA affinity calculations on ensemble-refined BRAF structures (with solute dielectric constant
ε=8). Binding energies are provided in kJ/mol. Ensembles originating from two different ensemble-refinement
runs were used, one without ligand hydrogens and one with ligand hydrogens included during refinement
(indicated by (-H) and (+H), respectively). The ensembles with lowest Rfree values were selected for calculations.
Each ensemble was employed directly for MM-PBSA calculations (indicated by "ensemble") and the structures
were minimized prior to MM-PBSA calculations (indicated by "minimized").

When ligand hydrogens were not included during refinement they were subsequently added to
the ensembles, prior to MM-PBSA calculations. This introduced atomic (VdW) clashes for some
conformations in most systems (except 5CSW chain A), resulting in high energies (compare Table
3.3). Thus, the more recent protocol, including the ligand hydrogens during ensemble-refinement
(indicated by (+H)) is expected to reduce or avoid the additional error caused by misplaced hydrogens
(which are generally considered very flexible). Detailed (per conformation) results from those (+H)
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refinement ensembles are displayed for structure 4XV3 with P02 in Figure 3.35 (that contains the
ligand P02 only in one (chain A) of the two protomers), for structure 4XV2 with P06 in Figure 3.36, for
structure 5CSW with P06 in Figure 3.37, and for the newly solved BRAF structure with the designed
drug candidate P06F-Mor in Figure 3.38.
For the (+H) refinement ensembles minimization generally reduced the error intervals intensively by
solving the atomic clashes, except for structure 5CSW. Investigation of the atomic model deposited
in the PDB revealed that the model building was not carefully performed for 5CSW, as even binding
site side-chains were not properly placed into the electron densities. Whereas the original ensemble
provided rather reasonable values and error intervals, the minimization results in extensive errors.
One protomer of structure 4XV2 (chain A) also shows remaining issues, since the error interval
stays relatively high upon minimization, although it is largely reduced compared to the error of
the original ensemble. Nonetheless, a remarkable difference between the ligands P02 and P06 is
in agreement with machine learning predictions and affinity measurements (see Section 3.5.2 and
3.8.1.1, respectively).

(a) chain A.

Figure 3.35: MM-PBSA results for the crystallographic ensemble-refined BRAF structure 4XV3 with P02.

Generally, it is important to keep in mind that the resolution of the diffraction data may have a
non-negligible impact on the model quality, especially on the accuracy of the positioning of the ligand
and protein side-chains. Consequently, the starting model quality may have an important impact on
the ensemble-refined structures and on their usability for subsequent MM-PBSA calculations. In
order to get a first glance onto general applicability rules the resolution and Diffraction Precision
Index (DPI) of the investigated BRAF crystal structures are listed in Table 3.4.

Based on the obtained results a preliminary suggestion for ensemble-refinement applicability would
be to use structures with a resolution ≤ 2.5 Åand a DPI ≤ 0.35, and additionally verify the model
quality of the binding site (side-chain positioning within the electron density) in case of binding
energy evaluation.
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PDB-ID Resolution DPI

4XV3 2.80 Å 0.417
4XV2 2.50 Å 0.262
5CSW 2.66 Å 0.385
NEW 2.37 Å 0.290

Table 3.4: Resolution and Diffraction Precision Index (DPI, calculated by Online-DPI179) of BRAF crystal
structures.

(a) chain A.

(b) chain B.

Figure 3.36: MM-PBSA results for the crystallographic ensemble-refined BRAF structure 4XV2 with P06.
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(a) chain A.

(b) chain B.

Figure 3.37: MM-PBSA results for the crystallographic ensemble-refined BRAF structure 5CSW with P06.
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(a) chain A.

(b) chain B.

Figure 3.38: MM-PBSA results for the newly solved crystallographic ensemble-refined BRAF structure with
P06F-Mor.

Comparison with MM-PBSA results from MD simulations

For comparison, the MM-PBSA calculations based on 500 snapshots from single 50 ns MD simulations
provided the following binding energies (in kJ/mol):

4XV3 (with P02): -384.6 (± 22.0)
4XV2 (with P06): -385.7 (± 30.8)
5CSW (with P06): -300.5 (± 39.7)

The obtained binding energies from minimized ensemble-refined structures and MD simulation
snapshots are providing similar value ranges, also concerning the error intervals (compare also with
Figure 3.30, 3.31 or 3.32).
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Key points

⇒ For the BRAF kinase the conformation of the activation loop and the G-rich loop impact MM-
PBSA based binding affinity estimations, shown by differences among four BRAF loop model
conformations.

⇒ From the methodological point of view the present study underlines the importance of replica MD
simulations for subsequent MM-PBSA calculations and also for direct quantitative investigations,
such as hydrogen bond analysis.

⇒ Ensemble-refinement may provide an additional promising tool for generating structural en-
sembles for structure-based VS and affinity estimations to be further investigated in the near
future.
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3.8 Experimental work

3.8.1 Activity tests by collaborators

Molecules are synthesized and the affinity on BRAFV600E is tested by AGV discovery. Cellular
assays are performed by the team of Patrick Balaguer (IRCM - Institut de Recherche en Cancérologie
de Montpellier). For BRAF, proliferation inhibition tests are performed on the cancer cell line A375,
and for PXR, induction tests are performed on the cell line HG5LN expressing human PXR.

Kinase activity assay

Upon chemical synthesis, a LanthaScreen kinase activity assay provided by ThermoFisher is
performed with BRAFV600E. ThermoFisher explains the assay as following: "In a LanthaScreen
kinase activity assay, kinase, fluorescein-labeled substrate, and ATP are allowed to react. Then EDTA
(to stop the reaction) and terbium-labeled antibody (to detect phosphorylated product) are added.
In a LanthaScreen kinase reaction, the antibody associates with the phosphorylated fluorescein
labeled substrate resulting in an increased TR-FRET value. The TR-FRET value is a dimensionless
number that is calculated as the ratio of the acceptor (fluorescein) signal to the donor (terbium)
signal. The amount of antibody that is bound to the tracer is directly proportional to the amount of
phosphorylated substrate present, and in this manner, kinase activity can be detected and measured
by an increase in the TR-FRET value."

A375 cells cytotoxicity assays

A375 cell proliferation was assessed using the standard MTT assay as previously described.168 Briefly,
A375 cells were seeded at a density of 500 cells per well in 96-well tissue culture plates and grown in
test culture medium. Test compounds were added 24 h after seeding. Cell lines were incubated for 4
days at 37 ◦C. After the incubation period, the medium containing test compounds was removed
and replaced by test culture medium containing 0.4 mg/ml MTT. After incubation (4 h), viable
cells cleaved the MTT tetrazolium ring into a dark blue formazan reaction product, whereas dead
cells remained colorless. The MTT-containing medium was gently removed and DMSO was added
to each well. After shaking, the plates were read in absorbance at 540 nm. Tests were performed
in quadriplicate in at least 3 independent experiments. Data were expressed as % of the maximal
activity obtained in absence of ligand.

PXR transactivation assays

To characterize the PXR activity, already established HG5LN GAL4-hPXR reporter cell lines180

were used. In brief, HG5LN cells were obtained by integration of a GAL4-responsive gene
(GAL4RE5-bGlob-Luc-SV-Neo) in HeLa cells.181 The HG5LN GAL4(DBD)-hPXR(LBD) cell line
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was obtained by transfecting HG5LN cells with a plasmid [pSG5-GAL4(DBD)-hPXR(LBD)-puro],
which enables the expression of the DNA binding domain of the yeast activator GAL4 (Met1–Ser147)
fused to the ligand binding domain of hPXR (Met107–Ser434) and confers resistance to puromycin.
HG5LN and HG5LN GAL4-hPXR cells were cultured in Dulbecco’s Modified Eagle Medium:
Nutrient Mixture F-12 (DMEM/F-12) containing phenol red and 1 g/l glucose and supplemented
with 5% fetal bovine serum, 100 units/ml of penicillin, 100 µg/ml of streptomycin and 1 mg/ml
geneticinin at 5% CO2 humidified atmosphere at 37 ◦C. HG5LN GAL4-hPXR cells were cultured
in the same medium supplemented with 0.5 µg/ml puromycin. For transactivation experiments,
HG5LN and HG5LN-PXR were seeded at a density of 25,000 cells per well in 96-well white opaque
tissue culture plates (Greiner CellStar) in Dulbecco’s Modified Eagle Medium: Nutrient Mixture
F-12 (DMEM/F-12) without phenol red and 1 g/l glucose and supplemented with 5% stripped fetal
bovine serum, 100 units/ml of penicillin, 100 µg/ml of streptomycin (test medium). Compounds
to be tested were added 24 h later, and cells were incubated at 37 ◦C for 16 h. At the end of the
incubation period, culture medium was replaced with test medium containing 0.3 mM luciferin.
Luciferase activity was measured for 2 s in intact living cells using a MicroBeta Wallac luminometer
(PerkinElmer). Tests were performed in quadriplicate in at least 3 independent experiments. Data
were expressed as % of the maximal activity obtained in absence of ligand (HG5LN cells) or with
SR12813 3 µM (HG5LN PXR cells).

3.8.1.1 Results of the drug design rounds

Round 1

The only compound tested (P02C-4Pi) was not completely inhibiting (84%) at 1 µM (single measure
on BRAF-V600E). Therefore, the P02/P02C scaffold was not further pursued.

Round 2

Molecules 1-4 from synthesis round 2 could be tested (see Table 3.5), but unfortunately, the molecules
5-8 with the pyrimidine moiety extended by an additional acetyl were not stable.

molecule P06F-CPP P06F-Pip P06F-Mor P06F-PrA

IC50 [nM] 4.40 4.52 5.98 6.27

molecule P06F-CPP-ac P06F-Pip-ac P06F-Mor-ac P06F-PrA-ac

IC50 [nM] - - - -

Table 3.5: IC50 affinity measurements for the synthesized drug candidates from synthesis round 2 on BRAF-
V600E.

In agreement with the predictions by machine learning (see Section 3.5.2), the various substitutions
with the P06F scaffold yielded compounds with affinity in the low nanomolar range. Two
compounds (P06F-CPP and P06F-Mor) were also tested successfully against the A375 cell line with
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activity ranging from 53% to 79% relative to dabrafenib. This suggests that the cell permeability
was not affected, which was expected from the nature of their substituent (cyclopropylpiperidine
and morpholine). In parallel, assays on hPXR reporter cells highlighted an intensively decreased
activation of PXR compared to dabrafenib (by a factor of 15 and 555 for P06F-CPP and P06F-Mor,
respectively).

Round 3

For synthesis round 3, two compounds of the eight designed ones were finally synthesized and
tested: P06FCl and P06FCl-Mor.

molecule P06F P06FF P06FCl P06FFCl

IC50 [nM] - - 3.61 -

molecule P06F-Mor P06FF-Mor P06FCl-Mor P06FFCl-Mor

IC50 [nM] - - 2.01 -

Table 3.6: IC50 affinity measurements for the synthesized drug candidates from synthesis round 3 on BRAF-
V600E.

The results listed in table 3.6 show a small increase in affinity for molecules with the additional
chlorine atom (scaffold P06FCl) compared to the previous synthesis rounds, which is in agreement
with predictions by both, machine learning (see Section 3.5.2) and MM-PBSA calculations (see Section
3.7.2). The cell activity was maintained at ∼70% compared to dabrafenib for P06FCl and P06FCl-Mor.
Also in agreement with our predictions, the cellular activity against PXR was only marginally lower
(by a factor of 2) for P06FCl (containing the original tertiary butyl moiety) and largely decreased (by
a factor of 417) for P06FCl-Mor. Indeed, the chlorine atom is rather well accommodated in the PXR
pocket.

The two compounds were additionally measured with BRAF-WT giving the following IC50 values:
P06FCl 1.71 nM and P06FCl-Mor 1.65 nM.

Round 4

In synthesis round 4, four molecules were built by adding new substituents - azetidine (2Az),
pyrrolidine (2Py), piperidine (2Pi), piperazine (2PA) - instead of the morpholine group to the P06F
scaffold. The selection was inspired by the newly solved structure of BRAF with P06F-Mor.

molecule P06F-2Az P06F-2Py P06F-2Pi P06F-2PA

IC50 [nM] 2.10 1.75 1.73 5.92

Table 3.7: IC50 affinity measurements for the synthesized drug candidates from synthesis round 4 on BRAF-
V600E.

In agreement with our crystal structure (see Section 3.9 below), the substitution of the morpholine
with different heterocycles still harboring a nitrogen atom (in order to maintain a hydrogen bond to
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the aspartate D594) improved the affinity toward purified BRAF in three of four cases (as shown in
Table 3.7). Only the piperazine containing molecule (P06F-2PA) showed the same affinity as the
morpholine derivative (P06F-Mor). Unfortunately, most of these compounds are affected in the cell
permeability. They also seemed to still activate PXR.

3.8.2 BRAF crystallogenesis

Expression and purification

A Pet28a(+) vector with DNA encoding the BRAF kinase domain residues 448-723 containing the
V600E mutation, 16 solubilizing mutations (I543A, I544S, I551K, Q562R, L588N, K630S, F667E,
Y673S, A688R, L706S, Q709R, S713E, L716E, S720E, P722S, and K723G - permitting kinase domain
overexpression in bacteria), encoding as well an N-terminal His tag, and a thrombin cleavage
site between the protein and the His tag, was provided by Dr. Michael Grasso (Marmorstein
Lab, Department of Chemistry, University of Pennsylvania, Philadelphia, USA). The protein was
expressed in E.coli (Stellar) cells, with an overnight pre-culture at 37◦C in LB, followed by 6h at 37◦C
and an overnight incubation at 25◦C on an auto-inductive kanamycin medium, spun down the next
day, lysed in lysis buffer (buffer A supplemented with lysozyme), frozen, thawed, and sonicated.
The lysate was then spun down at 18 000 rpm, and the supernatant was incubated on a His-trap
nickel column at 4◦C for 1h. The supernatant was then eluted, the column washed with buffer A,
and the BRAF proteins eluted with buffer B (wich is buffer A supplemented with 300 mM imidazole).
Protein was then dialyzed into buffer C (wich does not contain imidazole) and applied to a 16/60
Superdex 75 gel filtration column in a final buffer D. Protein was frozen and stored for future use.
Used buffers are:

• Buffer A (50 mM Tris, pH 7.0, 250 mM NaCl, 5% glycerol, 2 mM β-Mercaptoethanol),

• Buffer B (Buffer A and 300 mM imidazole),

• Buffer C (25 mM Tris, pH 7.0, 75 mM NaCl, 5% glycerol, 1 mM EDTA, 10 mM dithiothreitol
(DTT)),

• Buffer D (20 mM HEPES at pH 7.0, 150 mM NaCl, 5% glycerol, 10 mM dithiothreitol (DTT)).

Crystallization and data collection

BRAFV600E-16M at 9 mg/mL was mixed with 10% of a 10 mM DMSO inhibitor solution, and
after initial screenings using the commercial kits "PACT", "PEGs-I", and "PEGs-II" from QIAGEN
on 96-Well plates, trays were set up screening around a crystallization condition of 100 mM
BisTrisPropane at pH 7.0-8.0, 20% PEG monomethyl ether 2000/3350/4000, and 100-350 mM
Na-formate using the hanging-drop vapor diffusion method at 18◦C. Crystal formation took ∼14
days, resulting in maximal crystal sizes of ∼50x100 µm (see Figure 3.39). Crystals were flash frozen
in liquid nitrogen. X-ray diffraction data was collected at a wavelength of 0.979 Å and a beam size
fitted to the crystal dimensions (adjustable between 50-300(H) x 6-100(V) µm2) at the synchrotron
ALBA (Barcelona, Spain), at beamline BL13 - XALOC. Finally, a diffraction dataset was obtained
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from a crystal from the drop shown in Figure 3.39b.

(a) Crystallization condition of
100 mM BisTrisPropane at pH 8.0,
20% PEG 3350, and 250 mM Na-formate.

(b) Crystallization condition of
100 mM BisTrisPropane at pH 8.0,
20% PEG 3350, and 300 mM Na-formate.

Figure 3.39: Crystals of BRAFV600E protein with the designed ligand P06F-Mor.

3.8.3 Crystallographic structure determination

The structure was determined by molecular replacement in PHENIX182 using Phaser using PDB
5ITA as a search model. The molecular replacement search model was used as monomer and had
its ligand removed. Model building and refinement were performed using Coot183 and PHENIX.
NCS was used, as two BRAF monomers were present in the asymmetric unit. The CIF file for the
inhibitor was generated using the Grade Web Server (at http://grade.globalphasing.org). The
atomic dimeric structure is refined to a final resolution of 2.37 Å after uncovering and subsequent
modelling of a domain swap.
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3.9 Crystal structure analysis

The classical BRAF dimer interface ("back-to-back")

As seen in diverse crystallographic BRAF structures, the newly resolved structure also presents the
typical "back-to-back" interface with a second monomer in a symmetric unit cell (visualized through
Coot by displaying the symmetric molecule, see Figure 3.40).

(a) side view (b) bottom view

Figure 3.40: The classical BRAF dimer ("back-to-back").

The new BRAF domain swap dimer - a mutual embrace

Interestingly, during refinement it became apparent that the structure forms also another dimeric
interface. It can be described as "face-to-face" interface (in contrast to the "back-to-back" interface of
the classical BRAF dimer). In this interface the two protomer partners are highly interwoven and
even perform a domain swap with one another. The atomic models along with the electron density
difference maps (2Fobs − Fcalc and Fobs − Fcalc) are shown before and after the domain swap has been
modelled in Figure 3.41. After several refinement steps, but before modelling the domain swap there
were still several discrepancies apparent between the model and the observed data (as shown by the
Fobs − Fcalc difference map in Figure 3.41a) and the 2Fobs − Fcalc density map indicated a continuation
of the structure from one protomer to the neighboring one. After modelling the domain swap most
discrepancies disappeared and the shape of the electron density became more defined, clearly tracing
the path of the atomic structure (see Figure 3.41b).
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(a) before modelling of the domain swap (b) after modelling of the domain swap

Figure 3.41: Modelled atomic structures within the respective electron density difference maps (2Fobs − Fcalc in
blue and Fobs − Fcalc in green for positive density and red for negative density, contoured at 1.0σ).

Upon modelling of the domain swap the activation loop protrudes far into the neighboring protomer
within the C-lobe (see Figure 3.42). Additionally, the αC helices are having a large contact area
with each other (see Figure 3.43) and even the G-rich loop conformation is largely impacted by the
dimerization. However, the ligand is not in direct contact with any residue of the partner protomer.

Figure 3.42: The refined crystallographic BRAFV600E structure (chain A in green and chain B in cyan) with the
designed ligand P06F-Mor (violet). The dimeric structure shows a domain swap of the activation loop. Residues
within a 5 Å distance of any ligand atom are shown in line representation.

In the newly resolved structure the activation loop adopts a partially structured helical conformation
(compare with the completely resolved activation loop of chain B). Stating from Trp604 there is a clear
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α-helix until Gln612, followed by a helical structure that forms a turn, and again a clear α-helix from
Pro622 to Gln628. For chain A residues 598-613 are not resolved, but the residue stretches Ser614 to
Ala621 are also forming a helical turn followed by a clear α-helix from Pro622 to Asp629. The latter
α-helix is swapped with the partner protomer and located at the exact same position compared to a
non-swap conformation (see Figure 3.42).

BRAF domain swap dimer interface ("face-to-face")

The interface of the crystallographic BRAF domain swap dimer is analyzed visually in PyMol (see
Figure 3.43) and further explored by using the PDBePISA web server (see Figure 3.44).

Figure 3.43: The refined crystallographic BRAFV600E structure (chain A in green and chain B in cyan) with
the designed ligand P06F-Mor (violet). The interface of the two protomers (as identified by the PyMol tool
interfaceResidue) is highlighted in rose with its surface in dot representation.

PDBePISA (Proteins, Interfaces, Structures and Assemblies)184 is an interactive tool for the explo-
ration of macromolecular interfaces. It reports on structural and chemical properties of macromolec-
ular surfaces and interfaces. It is used here, to evaluate the interface between the two protomers
A and B of the newly resolved crystallographic BRAFV600E structure (see Figure 3.44). A rather
large portion of the total solvent-accessible area of the two chains is identified as interface (15.6%
and 15.8%), and the portion of number of residues is even 23.9%. Furthermore, 32 hydrogen bonds
and 9 salt bridges are established between the two chains in the crystal structure. Thus, the interface
is estimated to be stable in solution.



166 3. The drug design project

Figure 3.44: PDBePISA184 server output of the refined crystallographic BRAFV600E structure with the designed
ligand P06F-Mor. The interface of the two protomers A and B is evaluated concerning size and electrostatic
bonding.

As both dimer interfaces (the classical "back-to-back" and the new "face-to-face") are large in size and
are expected to be stable in solution, a fiber-like macromolecular structure is expected (see Figure
3.45).

(a) top view, colored by asymmetric unit present in the crystal ("face-to-face" dimer)

(b) side view, colored by asymmetric unit present in the crystal ("face-to-face" dimer)

(c) side view, colored by protomer (chain A in green and chain B in cyan)

Figure 3.45: The refined crystallographic BRAFV600E structure with the symmetric unit cell replicated in
one axis, as present in the protein crystal (generated using Coot by displaying the symmetric molecules and
visualized in PyMol).
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BRAF dimer flexibility

Visualization of crystallographic b-factors in Figure 3.46 (range: 21.42 - 106.55 Å) shows differences
between the two protomers.

Figure 3.46: The refined crystallographic BRAFV600E structure colored by b-factor with a range of 21.42 - 106.55
Å (rainbow: blue to red).

Ligand binding mode

The electron density map for the ligands are clear in both protomers and permit an accurate position-
ing of the molecules (see Figure 3.47).

(a) in chain A (b) in chain B

Figure 3.47: Electron density and atomic structures of the designed drug P06F-Mor in the two protomers (chain
A and B) of the crystal structure.
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Molecular interactions detected by the PLIP webserver172 of the ligand P06F-Mor with chain A (see
Figure 3.48) and chain B (see Figure 3.49) are significantly different. Whereas in both binding sites
a rather large network of hydrophobic interactions is established, only in protomer A the water
molecule present in the binding site, forming three water bridges between protein and ligand, is
detected. Nonetheless, the water molecule is present in both protomers (compare Figure 3.50).
Remarkably, the nitrogen of the morpholine moiety takes part in the hydrogen bond network
formation with the water molecule and the residues Lys483 and Asp594 (D of the DFG motif).
Additionally, in protomer A the formation of a π-stacking of the ligands hinge binding pyrimidine
moiety and Phe583 is detected by PLIP.

Figure 3.48: PLIP interactions of designed drug P06F-Mor with chain A in its crystal structure.
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Figure 3.49: PLIP interactions of designed drug P06F-Mor with chain B in its crystal structure.

(a) in chain A (b) in chain B

Figure 3.50: Hydrogen bond network (yellow dashed lines) that is presumably established between the designed
drug P06F-Mor (in purple), a water molecule (red sphere) present in the binding site and the residues Lys483
and Asp594 (in stick representation) in the two protomers (chain A and B) of the crystal structure.

BRAF domain swap dimer - impact on signalling

A possible impact of the new "face-to-face" domain-swap dimer on the downstream signalling cas-
cade, especially the activation of the protein kinase MEK (being a direct substrate) was investigated
by structural alignment of the new dimer structure with the crystallographic complex of BRAF and
MEK (PDB-ID: 6U2G). Apparently, the structure of the crystallographic BRAF domain-swap dimer
is not compatible with MEK binding, as the MEK binding site overlaps partially with the second
BRAF domain-swap protomer (see Figure 3.51).
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(a) side view

(b) top view (c) bottom view

Figure 3.51: The refined crystallographic BRAFV600E structure with the designed ligand P06F-Mor as domain
swap dimer (chain A in green and chain B in cyan, as in Figure 3.42) and crystallographic structure 6U2G
containing BRAF (chain B, in dark cyan) and MEK (chain A, in bordeaux), whereas the respective B chains (cyan
and dark cyan) are superimposed.
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Key points

⇒ The binding mode of the designed drug candidate P06F-Mor in the crystal structure confirms the
predicted binding mode (by docking), but an expected hydrogen bond to the Asp of the DFG
motif is not formed. (This result inspired synthesis round 4.)

⇒ An original dimeric domain swapping conformation is detected (that was previously unseen and
therefore unpredictable), which could potentially lead to fiber formation.





4
CONCLUSIONS AND PERSPECTIVES

This chapter summarizes and concludes on the employed techniques and obtained results within this thesis

work and discusses general current issues and future trends within the area of drug design that have been

encountered by performing the presented work.
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4.1 Summary, discussion and conclusions

In this PhD project, one aim is to understand the effect of differently generated structural ensembles
for ligand screening and binding affinity estimation under different conditions in terms of target
flexibility. Another aim is the rational design of modified drug candidates by taking into account the
primary target and an unwanted secondary target that both represent distinct biological systems.

4.1.1 The biological systems

This thesis presents detailed investigations on two different nuclear receptors and a protein kinase:

• a nuclear receptor - ERα - being a primary target and secondary target simultaneously,

• another nuclear receptor - PXR - being a secondary target by function/biological role, and

• a protein kinase - BRAF - being the primary target for rational drug design (while simultane-
ously avoiding secondary targets, such as PXR).

For ERα a broad characterization is provided by employing several computational techniques,
highlighting the different levels of flexibility, which are important for the proteins functionality.
On PXR focused structural studies provide routes for avoiding drug binding, and for BRAF a
combination of methods provides both, a broad overview of the protein’s conformational flexibility
and detailed information for targeted drug design.

The presented PhD project shows how the protein’s nature and the available amount of data
influence or even dictate the tools that can be used for investigations and the degree of exploitation
and instrumentalization that can be attained.
For all three targets there are crystallographic structures available, as well as sets of ligands with
associated experimental affinity measures. Nonetheless, the quantity differs largely. For ERα’s
LBD there are currently 260 PDB entries, for PXR’s LBD 23, and for BRAF’s kinase domain 65.
Concerning tested ligands, for ERα there are 281 ligands with Ki affinity measures and 1641
with IC50 measures available in BindingDB, for PXR 47 with IC50 values, and for BRAFV600E
2193 with IC50 values. The availability of crystal structures permits the employment of MD
simulations and the refinement of crystal structures as ensemble (Sections 2.2 and 3.2). Based on
the MD simulations on BRAF and PXR together with diverse drug derivatives MM-PBSA affinity
calculations are performed (Sections 3.7.1 and 3.7.2). The ensembles of available crystal structures
enables the analysis of the structural variability of the proteins on different levels, ranging from
side-chain mobility to reorientation of whole loops and secondary structures (Section 2.2 for ERα

and 3.2 for PXR and BRAF). The abundant data for ERα and BRAF further allows for the develop-
ment of machine learning models dedicated to affinity prediction (Sections 2.1 and 3.5.2, respectively).
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The designed drugs and perspectives for cancer treatment of BRAFV600 mutants

A result of this thesis work is the proposal of designed drug candidates that bind to the primary
target BRAF with high affinities and avoid binding to the unwanted secondary target PXR. The
procedure was based on iterative design, computation, synthesis and testing rounds. Concerning
the testing (by collaborators), affinities were measured in vitro through kinase activity assays and
efficacy was tested through A375-cell cytotoxicity assays and PXR transactivation assays (Section
3.8). Moreover, the atomic structure of one designed drug (P06F-Mor) co-crystallized with the
BRAF-V600E protein kinase was solved at a resolution of 2.37 Å and a clear electron density for the
ligand (in both protomers of the dimeric structure) was obtained, confirming the expected binding
mode and allowing for precise analysis.
Based on the presented results, potential future patients should benefit from largely reduced side
effects, as avoiding PXR should prevent the induction of cytochrome P450. Additionally, a decrease
of the previously fast drug metabolism is expected due to the alteration of the initial drugs site
of metabolic modification. This could lead to an increased bioavailability of the drug, requiring
potentially a lower administration dose, which in turn should additionally reduce side effects (due
to reduced off-target binding) and may also reduce the rate of acquired resistance and relapse.
In the future, antagonists of BRAF mutants (without the paradoxical activation of the wild type)
may be the cornerstone in the treatment of many cases of what has up until now been untreatable
metastatic.

From single-target to multi-target approaches

Currently, one of the main approaches in drug discovery is the development of target-specific
inhibitors with high-fold potency and selectivity towards one isoform or one specific mutant. For the
oncogenic mutant BRAF-V600E this is a requirement in order to avoid harming healthy cells through
inhibition of the BRAF-WT or other protein kinases and reducing severe side effects. Nevertheless,
this is a reductionism approach that could or should be extended, as organisms can affect a drug’s
effectiveness through compensatory ways. For instance, cancer is a complicated disease, affecting
several pathways and moreover, many patients develop resistance to drugs via different ways. This
promotes a multi-targeted therapy as a sometimes more promising approach to achieve the desired
treatment.14 The transition from the one-drug-one-target model to a multiple-target approach is
gaining momentum within the area of drug development185 and becomes a highly interdisciplinary
task including fields such as systems biology186 and chemogenomics,185, 187 which already by itself
combines chemoinformatics and bioinformatics in an interdisciplinary field. This thesis project aims
also for a broader view than the one-drug-one-target model, as not only the primary target BRAF,
but also the secondary target PXR are taken into account. Within the presented drug design process
approaches from different fields (structural biology, computational biology, chemoinformatics) are
combined in an interdisciplinary way. However, predictions on the effects on the whole organism,
such as pathway modelling, lies beyond the scope, but would be of interest in future studies.
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The reductionist view of the protomeric system

Another reductionist approach, often found in structure-based drug design, is the focus on the
protomeric system. Even though all proteins of interest within this study, BRAF, PXR, and ERα, are
active as dimers, the focus is on the protomeric structures and their interactions with ligands. This
reductionist view of the proteins as protomeric system allows 1) for circumventing technical issues
when treating the structures as ensembles, 2) for more extensive MD simulations (as a much smaller
box volumes are required, which reduces the simulations computational cost), and 3) for neglecting
(to some extent) additional crystallization effects that may play a role for the relative positioning
of multimeric structures. Nevertheless, if the proteins occur in a dimeric state within the crystal
structure this is taken into account within the refinement of the crystal structures, both as single
model, or as ensemble model, and is therefore indirectly also represented in the resulting protomeric
structure or structure ensemble. The dimeric conformational state is accounted for, in particular,
when calculating MM-PBSA binding affinities based on the ensemble refined structures, since the
ensemble is generated in the conformational composition present in the crystal (which is a dimeric
state for all the used systems). For the interpretation of results it is important to keep in mind which
structural state is investigated to be able to account for particular bias or errors that may occur
when either neglecting a di-/multimeric state, or when taking into account the one present in e.g. a
crystallographic structure. Thus, within the presented study the systems are investigated under
different angles: the protomeric behaviour is analyzed in solution with MD simulations (whereas
the initial conformations coming from the crystallographic dimer are free to relax into conformations
that are not biased by the crystal packing), and the ensemble refinement is performed and ana-
lyzed as pure crystallographic dimer, which comprises conformational dimer restraints (and/or bias).

4.1.2 Molecular modelling

Molecular modelling has become a fundamental tool to medicinal chemists for drug design. Models
are central for the understanding of chemistry and biological processes at the molecular level.
Molecular modelling provides tools for investigating, explaining and discovering diverse biological
processes and new phenomena. Knowledge of the atomic structure of a given target is of mayor
importance when designing drugs.

The experimental basis for model generation

In the field of structure determination X-ray crystallography is still ahead of all the different tech-
niques in terms of deposited structures per year and has established computational structure mod-
elling methods and tools. Nevertheless, due to lacking experimental data, not all structures can be
solved successfully and many of them are not complete (missing side-chains, residues, or whole
segments), which is the case for most BRAF structures. This causes problems in particular when the
missing structural parts impact the drug’s binding site (directly or indirectly). Detailed investigations
are often required for properly taking into account the resulting effects and to obtain accurate models
that are able to provide useful insights into the natural process. Worth mentioning is also that an
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error in atomic positions specified as Diffraction Precision Index (DPI) of 0.3 - 0.5 Å has to be taken
into account for most crystallographic structures.

Extending/completing experimental models

In a nutshell, the difficulty in modelling lies in getting the right model and proper interpretation.
Loop modelling is such a case where a multitude of ambiguous solutions are available, among which
several may co-exist in nature. In the example of protein kinase BRAF one is confronted by the
question weather it is better to take the exact atomic positions of a structure that accommodates a
very closely related ligand and model the missing parts (loops) around, or to take a structure that is
more complete, but not complexed with a similar ligand. Within this thesis work, the first option
is preferred, as one of the aims is the development of an improved drug and the positioning of the
binding site residues may have an impact on subsequent affinity predictions. Moreover, as the newly
designed drug (as being similar to the already crystallized one) was expected to obtain a highly
similar pose within the binding pocket and also to favor a highly similar overall conformation of the
protein, starting from the available exact conformation seemed the better choice. The non-resolved
loop sections were additionally expected to be highly mobile for the attained conformation within
the crystal. Nonetheless, in order to take into account the effect of the modelled parts, several models
were generated and MD simulations with subsequent MM-PBSA calculations were compared. One
model, named BRAF-WT, is even a "homology fusion" of two crystal structures, taking all present
atomic positions from the structure with the drug of interest and for the missing parts adding atomic
positions of another structure with a completely resolved and structured loop. Two observations
indicated that the final models were appropriate and that additionally the conformational exchange
between the unstructured extended loop and the structured one may have a rather low energy
barrier and may frequently occur in solution: First, the obtained MM-PBSA affinity calculations
were very similar for the different selected models based on snapshots from 50 ns MD simulations.
Second, one unstructured loop model folded into the structured helical form within just 100 ns of
simulation time without applying any particular restraint.

Conformational ensembles and the combination of experiment and computation

Most molecules exist in multiple conformations, as they experience fluctuations in their natural
environment. The preferred conformation(s) of a molecule is/are a structural characteristic feature
that is in a balanced equilibrium and arises as a response to the force of attraction and repulsion, and
can thus be modified by the environment. As the biological function is tightly connected with the
conformational dynamics of a protein, the representation of the protein structure as conformational
ensemble may be more adequate and also more informative when investigating the functional
activity. Revealing conformationally heterogeneous states experimentally is not a trivial task, since
macroscopic properties are usually ensemble averages over a representative statistical ensemble
(either equilibrium or non-equilibrium) of molecular systems. Experimental methods that can pro-
vide information about conformational fluctuations are NMR, SAXS/WAXS, FRET, and CryoEM.188

In general, the mayor critical point when trying to distinguish between conformational states is
the observation time compared to the conversion between the states, which is usually much longer
for the mentioned experimental setups. Nonetheless, single-molecule FRET (smFRET) measuring
specific distances at a scale of 1-10 nm of single molecules can yield a distribution of the observable
over the complete ensemble with additional time resolution. Unfortunately, those experiments do
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not provide a complete picture of the molecule, but can only provide information on small parts of
the structures. In contrast, SAXS experiments can provide a probability distribution of the distances
between all pairs of atoms and therefore an overall shape of the ensemble can be obtained, but
at a much lower resolution. As currently none of the present methods is able to provide a com-
plete picture of all the conformational states at an atomic level, but diverse methods can provide
complementary information, a combination of the obtainable information may be highly beneficial.
However, one has to take into account that experimental data is not perfect and all experiments are
to some extend affected by random and systematic errors and sometimes provide only sparse or
even ambiguous data, representing a big challenge for modelling in general and in particular for
modelling of conformational ensembles.189

Pure computational methods for generating conformational ensembles are already established, such
as standard (atomistic) MD simulations, which are employed within this thesis work, coarse-grained
MD simulations, and statistical methods, such as Monte-Carlo. Those also have their own limitations,
such as force field inaccuracies and a restricted time scale limiting the sampling of the conformational
space. Additionally, extensions for several computational tools have been developed that allow
for supplying experimental data as additional restraints, such as the PLUMED module PLUMED-
ISDB,190 which enables implementation of several NMR observables, FRET, SAXS and cryoEM
data.

Computational methods are already needed for obtaining a single structure based on experimental
techniques. For example, in form of refinement tools they help to transform and interpret the
obtained data. In the case of NMR, which is often used to characterize conformational fluctuations
of proteins, the obtained model is an ensemble of structures. In the case of X-ray crystallography, the
data is usually refined as single structure. Nonetheless, computational tools exist that extend the
interpretation of the data to obtain ensembles, such as the ensemble refinement tool95 implemented
in the crystallographic refinement software PHENIX, which is used here for all three targets (ERα,
PXR and BRAF) and most extensively for PXR, where the method was expected to provide additional
information on the dynamics of the protein, as only a limited amount of crystallographic structures
was available. The ensemble refinement of PXR structures reflects the protein’s increased intrinsic
flexibility, as for most structures the agreement between model and experimental data (measured by
the crystallographic R factors) improved. Such a general improvement tendency is not detected for
ERα ensemble-refined structures, neither for BRAF structures. This may indicate that both proteins
are rather rigid in their crystals (excluding the unresolved parts). From the performed MM-PBSA
approaches on ensemble-refined (BRAF) crystal structures it is apparent that the ensembles may
contain artifacts, such as high energy conformations. Nevertheless, those ensembles can be seen
as focused and experimentally validated dynamic extract, which could be sufficient to sample
the important parts of the conformational space that is needed for successful VS and/or affinity
prediction.

Integrated structural approaches can also be a solution to obtain structures or structural ensembles
of drug targets that have been impossible to solve and therefore extend opportunities for rational
structure-based drug design. Integrated structural biology is an emerging field, in particular for
solving the structure of large molecules or multi-molecular assemblies. Recent advances have been
made in the development of computational methods that interface different experimental techniques
to combine them and bring them in agreement with resulting structural models.

There are no strict borders any more between experiment and computation for studying dynamics in
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structural biology, as it becomes hard to distinguish between experimental data that is modelled by
the help of computational tools and computations that are supplemented by experimental data, and
the transition is rather gradual.
Hybrid methods that combine experiment with computational methods may be highly beneficial to
efficiently generate conformational ensembles. Since the proper sampling of the conformational
space is one of the most important limitations in free energy calculation, hybrid methods may also
have a positive impact on affinity predictions. Such a pioneering usability evaluation for affinity
predictions is attempted within the presented study by employing MM-PBSA calculations on
ensemble-refined crystallographic structures and comparing them with results obtained based on
MD simulations (see Section 3.7.3).

4.1.3 Affinity prediction

Affinity determination is one of the cornerstones of modern drug design. Many experimental and
computational techniques are available to evaluate a drug’s affinity towards its target, each having
advantages and limitations. However, accurately predicting the binding affinity between a drug
molecule and target protein remains challenging, also for recent computational methods including
machine learning approaches.

The issue of data quality

As machine learning is based on data mining, the performance of the models are directly affected by
the amount and quality of the available data. Deep-learning, for example, particularly relies on very
large datasets, but the quality is an issue for all machine learning techniques. As experimental data
in public databases is often not measured with the same biological assays, methods, or conditions,
the data contains very large measurement errors, to the extend that data points are not comparable
any more, and on top of that data sets may also contain contradictory entries. This heavily limits the
performance of developed models and also makes the pre-cleaning of the data sets a great challenge.
In the presented studies the focus is on compound data from BindingDB that for the given target
(ERα and BRAFV600E) has either a large enough dataset with direct Ki affinity measurements, or
IC50 measures and removed duplicates. Additional targeted prediction methods are based on a
particular PubChemAssay with annotated IC50 values, which are produced by a single laboratory
and labelled as confirmatory. Therefore, the measurements are expect to be reliable and coherent,
and thus suitable for model development.

The required prediction accuracy

In a drug development pipeline requirements for high-throughput and accuracy usually change
along the road. First, to screen an initial large amount of putative candidates often faster but
less reliable techniques are used. General SBVS methods (involving docking and scoring) are
often employed for molecule filtering at the Hit generation stage. Subsequently, to characterize
promising Leads it is usually necessary to rely on more precise methods. This can be achieved
either by development of dedicated machine learning models (see Section 3.5.2), or by rather precise
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case-by-case computations that are based on the molecular structures of ligand and target. Popular
examples are quantum mechanics-based methods, MM-PBSA as force field-based method, enhanced
sampling MD methods to sample the targets conformational space, and alchemical free energy
methods, which are based on rigorous statistical thermodynamics.
MM-PBSA is usually based on MD simulations and intermediate in both accuracy and computational
expense between SBVS and alchemical methods. It is limited by several intrinsic approximations,
such as the lack of conformational entropy and complete neglect of water molecules in the binding
site, but still provides information on binding energies calculated on an atomic level including
changes over time and provides error estimates. Therefore, MM-PBSA can be highly valuable for
detailed investigations of a drug’s behaviour within the binding site and associated flexibility effects
and for relating them to a certain binding affinity. Within this thesis work the MM-PBSA method
is employed and evaluated on the two drug development targets BRAF and PXR, highlighting
limitations and providing valuable insights for directing the drug design strategy (see Section 3.7.1
and 3.7.2).

4.1.4 Selected and tested drug candidates

The aim of the drug design project was to reduce adverse effects provoked by binding of the anti-
cancer drug dabrafenib (P06) to the secondary target PXR, while maintaining the drugs activity on
the oncogenic primary target BRAFV600E. The design strategy was established based on knowledge
about a) the binding mode of P06 in its primary and secondary target, b) the access points for
metabolism of P06 (via CYP450s), c) other existing binders of the primary target (that are rather simi-
lar to P06) and their binding mode, and d) literature indications about reasons for the "paradoxical
effect".

Five series of (theoretically) synthesizeable molecules with differing scaffolds were constructed in

silico (see also Section 3.4): P02 - molecule closest related to dabrafenib available in the PDB (PDBID:
4XV3) and supposed to avoid paradoxical activation of WT-BRAF, P02C - P02 having a carbon atom
instead of the nitrogen connecting the methyl-ethyl moiety, P06 - the original dabrafenib scaffold,
P06F - P06 with one fluor atom shifted from cis to trans position at the di-fluorophenyl ring (or P06FF

with two fluor atoms shifted), and P06FCl - P06F with an additional chlorine atom added in para to
the central fluorophenyl ring. Subsequent to machine learning based method/tool development (see
Section 3.5.2) the molecule series were subjected to affinity prediction by different developed models.
The resulting suggested molecules were further filtered and adapted based on criteria concerning a)
a sufficiently large and/or polar extension to avoid PXR binding, b) a slightly restricted flexibility
with respect to entropy loss, c) expected cell permeability, and d) chemical stability.
The selection of compounds to be synthesized was adapted in iterative rounds based on the feedback
from testing on cellular assays (by collaborators). The first synthesis trial (round 1) dedicated to
avoid the "paradoxical effect" showed that alteration of P06’s scaffold to P02C reduces the affinity to
the primary target BRAF, as equally predicted by the machine learning models, and was therefore
not further pursued. The second synthesis round indicated that extensions with higher flexibility
(such as the propylamine extension of P06F-PrA) may reduce binding affinity, while more restraint,
but equally large extensions showed improved IC50 values on the purified protein. Simultaneously,
more polar extensions showed extensively decreased cellular activation of the secondary target PXR.
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Synthesis round three indicated that the addition of a chlorine atom to the scaffold slightly improves
affinity for the primary target, and only marginally decreases cellular activity of the secondary target.
The fourth synthesis round revealed that very polar extensions decrease cell permeability, as the
cellular assays provided poor results, even though direct affinity measurements on the purified
target were promising.

To conclude, the presented synthesis rounds accompanied with detailed computational and
experimental investigations revealed that a) the polarity of the molecule’s extension heavily impact
cell permeability and thus needs to be fine-tuned carefully together with affinity improvement
attempts, and b) P06F-CPP, P06F-Mor and P06FCl-Mor represent highly promising drug candidates
that are supposedly efficient inhibitors of the primary target BRAF (including cellular activity) and
simultaneously avoid binding to the secondary target PXR.
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4.2 General current issues and trends

Drug design / development is a multi-disciplinary research field, which highly benefits from a
critical point of view (from different angles) that keeps in mind the diverse limitations of employed
methods and approaches, and simultaneously tries to improve or overcome the encountered issues.
Thus, new trends are also of high interest for both, academic research and the pharmaceutical
industry.

4.2.1 Molecular dynamics in drug development

Molecular dynamics simulations with a wide-variety of different approximations, have become
increasingly useful in studying biological systems of biomedical interest, and have been particularly
successful in studying the impact of protein motions on ligand binding. This fuels the discussion
of the interplay of different levels of conformational change, from the local perspective, such as
changes in active site geometries, via coupled protein fluctuations, to a rather global perspective,
involving secondary structure or domain movements. Moreover, the smooth transition between
those levels highlight that within a single protein conformation long-range coupling networks exist
that may be sensitive to interactions with different ligands. With increasing computational power
MD simulations became an accessible tool for a large amount of different systems and for answering
dynamics related questions on larger scales, which involves many use-cases in drug-discovery and
development. Nonetheless, challenges remain. Constructing a representative ensemble of structures,
covering sufficiently the required conformational space of a system is not always a straightforward
task, but important, as subsequent determination of the free energies are impacted by the ensemble
quality, particularly when ligands are (or should be) conformationally-selective. Another challenge
is the analysis of the MD simulation itself. A major difficulty here is the amount of information that
can be obtained from simulations, and the question where to look for dynamic effects or differences
with respect to a reference system. When employing MD simulations (especially in rather short time
scales) it is of high importance to consider the quantification of uncertainty and sampling quality.
The desired shift from a rather visual and qualitative analysis towards a more quantitative analysis is
a task that is increasingly addressed by new statistical methods, such as machine learning methods,
applied to MD trajectories. The large amount of data constitutes a valuable source of information,
but currently the extracted knowledge is used to conclude only on the particular system at hand.
Beyond that, the information from simulations could be used to train machine learning models that
enable further predictions, in such a way that the gained knowledge can be used to generalize it to
other systems.
Currently, the trade-off between accuracy and sampling limits the possibility to apply MD
simulations within drug design campaigns, particularly on a large scale and in a high-throughput
mode. Various different methods, with their advantages and limitations, have been developed
to address the sampling problem, which still is a large field of research. On top of that, the
approximations of the force fields used in MD currently result in the lack of a guarantee that
the modelled systems are behaving like in reality and that torn conclusions are correct. Here,
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in particular, the parametrization of small molecule ligands, with sometimes complicated and
environment dependant polarization effects, represents a mayor challenge. The rather streamlined
generation of improved partial charges, chemical topology/geometry, and parameters is addressed,
for example, by the recent web tool PrimaDORAC.191 Still, there are several approximations required
to obtain a decent calculation speed and the issue may further be tackled in the future by the use of
machine learning force fields, which are trained with quantum mechanics simulations. One type of
deep learning method that shows high performances in machine vision, the deep convolutional
neural networks (CNNs) have become increasingly popular for learning from structural biology
by treating proteins as 3D images. Also other deep neural network types are currently under
exploration and combined with different molecular representations (e.g. graphs).

4.2.2 Machine learning in drug development

Big data in medical biology

Over the past decade, following the emergence of new experimental techniques, such as parallel
synthesis and high-throughput screening, there has been a remarkable increase in the amount of
available biomedical data and compound activity data. When data is growing, at some point a human
being is not capable any more of retrieving useful information without the help of computational
tools. Therefore, also in the field of biomedicine and drug development the task of efficiently mining
large-scale chemistry data becomes a crucial problem.192 Moreover, the combination of large data
volumes and increased automation technology has promoted further the use of machine learning
and there are new emerging fields connected to this trend, such as precision medicine.193 However,
data quality stays as major concern.
In the field of medicinal chemistry machine learning has made big leaps for predicting feasible
synthesis paths for many new chemicals. Machine learning and particularly performant deep-
learning applications connected to drug design are diverse and include already ligand binding
site detection, ligand pose prediction, ligand active/inactive classification, ligand binding affinity
prediction, protein design, a.o.

The issue of the applicability domain - "conformal prediction" a solution?

Particularly for ligand-based approaches it is crucial to consider the chemical space a model has
been developed on. Even if high quality data and meaningful descriptors have been used with
careful validation for parameter adjustments, a given model (ligand-based) can not be expected to
predict well far outside the modelled domain. This represents one of the major drawbacks of pure
ligand-based approaches, as it is not always easy to judge whether a prediction on a given molecule is
reliable or not. Outlier detection and similarity approaches can be indicative, but are rather subjective
as they can be defined based on various measures. There is a new approach for applicability domain
estimation, called "conformal prediction", which transforms classifiers and regressors into confidence
predictors by providing error bounds on a per-instance basis.194–196 It is based on a so called
nonconformity score that measures how unusual an example looks relative to previous examples,
and the conformal algorithm turns this nonconformity measure into prediction regions. As it can
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be used with any machine learning algorithm and does not require prior probabilities (unlike
Bayesian learning) - the only requirements are identically distributed training and test data, and
exchangeability (order of observations is irrelevant) - it has a wide application field and is gaining
momentum for QSAR models in the field of drug discovery.197

Information content of descriptors - the reason why there are so many different ones

As each property of a molecule is dependant on some feature in the molecule, the molecular
descriptors, representing the molecule, contain some information about the molecule. The multitude
of representation possibilities for molecules and modelling purposes are the major reasons for the
large selection of very different descriptors that have been developed to find the ones that are most
relevant to study a given problem. For instance, to investigate solubility the dipole of the molecule
should be represented within the descriptors, and to model affinity of a drug one may need to
describe the effect of induced fit and/or conformational selection with respect to ligand and target
conformations. However, most descriptors describe a static view of the molecules, while most
biological or chemical processes, including drug binding, are dynamic events, where molecules can
undergo geometrical changes and can change their ionization state or polarization depending on
the local environment. The effects of those dynamic changes on the predicted properties can be
large and are not straight forward to incorporate into the models. This challenge is addressed here
(Section 2.1), within the development of a machine learning approach taking into account ensembles
of the ligand and the receptor.

The future of QSAR - PCM?

QSAR is nowadays a well established method in academia and industry and of high importance
particularly in drug discovery and development. Unfortunately, large databases containing valuable
high quality information are usually kept private by pharmaceutical companies. This represents a
hurdle when aiming for higher productivity for pharmaceutical drug development. For example,
toxicity tests with positive results may be not exploitable by the company, but of high value for
machine learning attempts that equally need positive and negative data in order to provide reliable
predictions. A general limitation for most QSAR models is that they are purely based on information
from the ligands’ chemical space, whereas information from the target may be required for a more
detailed view and the development of models that are more accurate and/or have an increased
ability to generalize.

A different way to combine information from the ligand side and the protein side is proteochemo-
metrics (PCM). PCM is an emerging technology that can use genetic information for the targets
without the need for solving the 3D structure and provides the possibility to investigate many
targets or mutant variants simultaneously. It can be seen as extension of QSAR that uses not only
information from series of chemical compounds, but also information from series of biological
targets and therefore, requires activity data of the organic compounds with the investigated targets.
Like for QSAR models the compounds and targets are represented by chemical descriptors, but as
the targets are usually much larger than the compounds, the type of descriptors is different. Target
descriptors can be classified into the ones that are based on the primary amino acid sequence, and
the ones based on the 3D structure, but the best way to represent them is still an open question and
the 3D approach has not been studied extensively yet, as it is again based on the knowledge of the 3D
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target structure. PCM adds another dimension to the modelling as it predicts for all targets and pro-
vides opportunities to investigate in greater details the chemical interactions of compound and target.

4.2.3 The trend to target biological networks

The identification of the molecular mechanisms of drug action represents the basis for designing
therapeutic strategies aimed at modifying disease processes. However, in order to achieve an
efficient and safe treatment with the least side effects possible, the therapeutic strategy needs
to consider the whole organism. Therefore, the emerging trend of pathology-directed systems
pharmacology is based on the combination of the entire research fields of human genetics, molecular
biology and systems biology.198 There are several challenging aspects of diseases, such as the
development of resistance, the observation that drug-drug interactions occur and therefore, the
combined effect of two drugs might be larger or smaller than the sum of separate effects, that
homeostatic feedback mechanisms exist, that different molecular mechanisms and pathways might
lead to the same effect, and that all this can differ among patients.199 Therefore, not only multi-target
drugs or combinations of drugs targeting complex biological networks are a big trend, but also
personalized precision treatments that are based on the patients particular circumstances and genetic
disposition. The modelling of pharmacodynamic interactions becomes an important aspect, as well
as safety assessment in early stages of drug development.200

Already at the start of a standard drug development pipeline target selection is crucial for estimating
the potential and risks in safety and efficacy and is compared with other target alternatives during
target validation. Here, in order to perform a sophisticated, save and efficient target selection one
important aspect is the extension of the target space and its characterization in terms of tractability
and druggability.

4.2.4 Target tractability & druggability

Target identification is the prerequisite for successful drug development. The assessment of target
druggability comprises the assessment of the potential of a target to result in a successful delivery of a
novel therapeutics, which is not easy to predict, but of high interest for the pharmaceutical sector.201

Target tractability (a.k.a. ligandability) is defined by Brown et al.202 as "the likelihood of identifying a
modulator that interacts effectively with the target/domain (or pathway)." In contrast to druggability,
tractability does not consider whether the modulator molecule would be suitable as potential drug
candidate. Thus, tractability is a necessary but not sufficient condition for druggability and is
therefore less restrictive. It has the advantage that it focuses on the properties of potential binding
sites and is experimentally accessible (e.g. by screening of compound libraries).203 To predict the
level of ligandability most computational methods are based on cavity detection to identify pockets
or suitable surface patches to predict their likelihood to act as ligand binding sites.203 One limitation
is that these methods usually require an atomic structure to accurately evaluate the ligandability of a
target. Nonetheless, if the target structure is unknown, there may be other available information
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that could serve as indicator for target tractability and additionally, there are more parameters that
are crucial for successful drug development, such as target location and the potential for off-target
effects. This is taken into account in new approaches that combine genome wide assessment of
tractability, data mining from different data bases, data integration and structure-based tractability
assessment.202 These approaches are not restricted to targets with available structures and open up
possibilities to detect targets previously considered undruggable or simply not known. However,
they still benefit from structural information, which may be delivered in larger numbers through the
development of new integrative experimental and hybrid computational structural approaches.
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