
HAL Id: tel-02485781
https://theses.hal.science/tel-02485781v1

Submitted on 20 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

TEST TECHNIQUES FOR APPROXIMATE DIGITAL
CIRCUITS
Marcello Traiola

To cite this version:
Marcello Traiola. TEST TECHNIQUES FOR APPROXIMATE DIGITAL CIRCUITS. Micro and
nanotechnologies/Microelectronics. Université Montpellier, 2019. English. �NNT : 2019MONTS060�.
�tel-02485781�

https://theses.hal.science/tel-02485781v1
https://hal.archives-ouvertes.fr

iii

“No man ever steps in the same river twice, for it’s

not the same river and he’s not the same man. ”

Heraclitus

v

UNIVERSITY OF MONTPELLIER

Abstract
Graduate School for Information, Structures and Systems (I2S)

Laboratory of Computer Science, Robotics, and Microelectronics of Montpellier

(LIRMM)

Doctor of Philosophy

Test Techniques for Approximate Digital Circuits

by Marcello TRAIOLA

Approximate Computing (AxC) is increasingly emerging as a new design paradigm

to produce more efficient computation systems by meticulously reducing the com-

putation quality. In particular, AxC has been successfully applied to Integrated Cir-

cuits (ICs), in the last years. Hence, concerning the test of such new class of ICs,

namely Approximate Integrated Circuits (AxICs), new challenges – as well as new

opportunities – have emerged. In this thesis, we provide a thorough analysis of is-

sues related to testing procedures for AxICs and present innovative techniques to

deal with them. We resort to an illustrative example having the twofold aim of:

(i) guiding the reader through the AxIC testing challenges and (ii) illustrating the

proposed solutions to correctly overcome them, while suitably taking advantage of

opportunities coming from approximation. We analyze experimentally all the pro-

posed test techniques for AxICs. Experimental outcomes show that the synergy of

the proposed techniques leads to achieve important results.

HTTP://WWW.UMONTPELLIER.FR
http://www.edi2s.univ-montp2.fr
http://www.lirmm.fr
http://www.lirmm.fr

vii

Resumé (FR)

Au cours des dernières décennies, la demande d’efficacité informatique n’a cessé de

croître. L’avènement d’applications de nouvelle génération consommatrices d’énergie

d’un côté, et d’appareils portables basse consommation de l’autre, exige un nouveau

paradigme informatique capable de faire face aux exigences concurrentes des défis

technologiques actuels [1]. Ces dernières années, plusieurs études sur les applica-

tions dites (en anglais) de Recognition, Mining and Synthesis (RMS) ont été menées [1]–

[4]. Une particularité très intéressante a été identifiée : la résilience intrinsèque de ces

applications. Une telle propriété permet aux applications RMS d’être très tolérantes

aux erreurs. Ceci est dû à différents facteurs, tels que les données bruyantes traitées

par ces applications, les algorithmes non déterministes utilisés et les réponses non

uniques possibles [1]. Ces propriétés ont été exploitées par un nouveau paradigme

informatique de plus en plus établi : le calcul approximé (AxC) [1], [2].

L’AxC profite intelligemment de la résilience intrinsèque des applications RMS

pour réaliser des gains en termes de consommation électrique, de temps de fonc-

tionnement et/ou de surface de puce. En effet, en introduisant des assouplisse-

ments sélectifs des spécifications non critiques, certaines parties du système infor-

matique cible peuvent être simplifiées, pour finalement atteindre l’objectif de l’AxC.

De plus, l’AxC est capable de cibler différentes couches des systèmes informatiques,

du matériel au logiciel [2].

Dans cette thèse, nous nous concentrons sur les circuits intégrés approximés

(AxICs), qui sont le résultat de l’application AxC au niveau matériel. En partic-

ulier, nous nous concentrons sur l’approximation fonctionnelle des circuits intégrés,

utilisée au cours des dernières années afin de concevoir efficacement les AxICs [5]–

[25]. En raison de la pertinence croissante des AxICs, il devient important de relever

les nouveaux défis pour tester de tels circuits. À cet égard, certains travaux [26]–[29]

ont attiré l’attention sur les défis que représente l’approximation fonctionnelle pour

les procédures de test. En même temps, l’approximation fonctionnelle des circuits

intégrés offre également des possibilités. Plus en détails - d’une part - le concept

de circuit acceptable change : alors qu’un circuit est conventionnellement bon si ses

réponses ne sont jamais différentes de celles attendues, dans le contexte AxIC cer-

taines réponses inattendues peuvent encore être acceptables. Pour la même raison -

viii

d’autre part - certains fautes acceptables peuvent ne pas être détectées, ce qui mène à

un gain de rendement de production (c.-à-d., augmentation du pourcentage de cir-

cuits acceptables, parmi tous les circuits fabriqués). Pour mesurer l’erreur produite

par un AxIC, plusieurs métriques d’erreur ont été proposées dans la littérature [30].

Dans cette thèse, nous présentons un ensemble de techniques de test pour les cir-

cuits approximés. En particulier, nous nous concentrons sur trois phases fondamen-

tales du déroulement du test. Premièrement, la classification des fautes AxIC en non-

redundant et ax-redundant. (c.-à-d. catastrophique et acceptable, respectivement) en

fonction d’un seuil d’erreur (c.-à-d. la quantité maximale tolérable d’erreur). Cette

classification permet d’obtenir deux listes de fautes (c.-à-d. non-redundant et ax-

redundant). Ensuite, nous proposons une génération automatique de séquences de

test (en anglais Automatic Test Pattern Generation ou ATPG) qui soit “consciente

de l’approximation”. Les tests obtenus préviennent les défaillances catastrophiques

en détectant les fautes non-redundant. En même temps, ils minimisent la détec-

tion sur les ax-redundant. Enfin – puisque dans certains cas le gain de rendement

obtenu ne correspond toujours pas à celui attendu, à cause de la structure propre des

AxICs – nous proposons une technique pour classer correctement les AxICs dans les

catégories “catastrophiquement défectueux” et “acceptablement défectueux”, après

l’application du test.

1. Contexte et informations générales

Dans ce chapitre, nous rassemblons quelques informations de base, qui seront utiles

pour bien comprendre cette thèse et en tirer profit.

Tout d’abord, nous décrivons brièvement le test conventionnel de circuits inté-

grés. Nous rappelons les principes de base du test conventionnel pour les circuits

numériques intégrés. Après une brève classification des différents objectifs du test,

nous passons en revue la modélisation des fautes, les concepts de simulation des

fautes, la procédure de génération de test et quelques concepts de base de la con-

ception en vue du test, tels que la conception du boundary scan et le test automatique

intégré (BIST).

Deuxièmement, nous passons en revue différents aspects du calcul approximé

(AxC). En particulier, nous décrivons le problème abordé par l’AxC et les différents

contextes dans lesquels il a été appliqué. En effet, plusieurs travaux ont abordé

le problème de l’identification des parties appropriées d’un système informatique

pour l’application de l’AxC. Ensuite, nous avons montré que l’AxC a une très large

gamme d’applications. En effet, des études sur l’AxC au niveau logiciel, l’AxC au

niveau architectural et l’AxC au niveau circuit ont été menées au cours des deux

ix

dernières décennies. En particulier, nous décrivons les circuits intégrés approximés

(AxICs).

Enfin, nous regroupons ces deux thèmes, dont l’union fait l’objet de cette thèse.

Nous montrons comment les propriétés inhérentes aux AxICs nous ont conduit à

reconsidérer les procédures de test et à proposer de nouvelles solutions. En d’autres

termes, dans cette thèse, nous présentons des études sur les techniques de test matériel

pour les circuits intégrés approximés.

2. Test des circuits approximés

L’un des problèmes majeurs qui affectent aujourd’hui la technologie CMOS à l’échelle

nanométrique est ce qu’on appelle en anglais process variability ou variabilité. La vari-

abilité est le résultat de la nature aléatoire des processus physiques qui ont lieu pen-

dant la fabrication des circuits intégrés. Les circuits CMOS à l’échelle du nanomètre

subissent l’effet de la variabilité et des mécanismes de dégradation, qui mènent à

une baisse de rendement du procédé de fabrication [31].

L’AxC vise à transformer ce problème en opportunité. L’idée de base est d’accepter

les erreurs en tant que propriété intrinsèque des circuits intégrés et de concevoir

des circuits approximés optimisés fonctionnant indépendamment des erreurs. À

cet égard, l’objectif ultime est d’augmenter le rendement du procédé de fabrication

(c.-à-d. le pourcentage de circuits acceptables, parmi tous les circuits fabriqués), en

acceptant les circuits dégradés qui fonctionnent de façon acceptable. Pour atteindre

un tel objectif, les procédures de test doivent être repensées pour tenir compte de

l’approximation introduite.

Par conséquent, nous devons examiner l’impact d’AxC sur le rôle des tests au

niveau matériel. Dans le contexte des AxICs, le concept de circuit défectueux change

et nécessite une enquête approfondie. Comme décrit dans la section précédente,

l’approximation fonctionnelle vise à réaliser des gains d’efficacité (temps/surface/énergie)

en assouplissant certaines exigences de précision. Afin d’obtenir des résultats satis-

faisants, les concepteurs modifient attentivement la structure du circuit pour intro-

duire une erreur acceptable. Pour définir la signification de acceptable, les concepteurs

utilisent des métriques d’erreur. Ensuite, ils définissent des seuils d’erreur pour fixer

l’erreur maximale autorisée (c.-à-d. acceptable).

Dans le contexte des tests, l’impact des fautes qui peuvent apparaître dans un

circuit peut être mesuré et exprimé en erreur en utilisant de telles métriques. Si

la mesure obtenue s’avère supérieure au seuil acceptable, le circuit doit être rejeté.

Cependant, il peut arriver que l’erreur mesurée reste en dessous du seuil acceptable,

x

alors l’AxIC ne doit pas être rejeté. Par conséquent, dans ce contexte, les procédures

de test ont un double rôle :

• rejeter les circuits dont l’erreur observée est supérieure au seuil, et

• éviter de détecter les fautes acceptables.

Il en résulte une augmentation du rendement et possiblement une réduction des

coûts de test (c.-à-d. pour vérifier moins de défaillances, il faut moins de vecteurs de

test).

De plus, en fonction de la métrique d’erreur, l’impact de la faute change. En ef-

fet, en stimulant un AxIC défectueux avec un vecteur d’entrée i, on peut mesurer

l’erreur esi - causée par la faute fs - en utilisant une mesure M. En considérant le

même vecteur d’entrée i mais une autre métrique M̂, l’erreur due à la même faute fs

est mesurée comme êsi . Généralement, esi et êsi ont des valeurs différentes. De plus,

en stimulant le circuit défectueux avec deux vecteurs d’entrée différents i et j, les

erreurs mesurées seront esi et esj , pour la métrique M, et êsi et êsj , pour la métrique

M̂. Là encore, les quatre erreurs ont généralement des valeurs différentes. Par con-

séquent, la faute fs peut être considérée comme acceptable ou comme catastrophique

selon la (ou les) métrique(s) considérée(s) pour l’application finale. En conséquence,

les procédures de test doivent être attentivement repensées afin de relever les dé-

fis posés par l’approximation et de tirer profit des possibilités qui s’offrent. C’est

pourquoi les tests conscients de l’approximation entrent en jeu. Nous identifions

trois phases principales de tests conscients de l’approximation – ou Approximation-

Aware (AxA) testing :

AxA fault classification Dans cette phase, les fautes sont classées en catastrophique

(à tester) et acceptable (à ne pas tester), selon certains paramètres.

AxA test pattern generation Cette phase concerne la génération de vecteurs de test

capables de couvrir tous les fautes catastrophiques et de laisser - autant que

possible - les fautes acceptables non détectées.

AxA test set application Après l’application des séquences de test, une classifica-

tion supplémentaire doit être effectuée. L’AxIC testé est classé comme catas-

trophiquement défectueux, ou acceptablement défectueux, ou sans fautes.

Par conséquent, seuls les AxICs classifiés en tant que catastrophiquement défectueux

seront rejetés. Il en résulte une augmentation du rendement, puisque certains cir-

cuits défectueux - mais encore acceptables - ne seront pas rejetés.

xi

Dans cette thèse, nous analysons en détail les phases du test conscient de l’approximation.

De plus, nous présentons différentes techniques de mise en œuvre des tests con-

scients de l’approximation et d’optimisation de la qualité et de l’efficacité des tests.

Nous effectuons des expériences approfondies pour évaluer leur efficacité.

3. Classification des fautes consciente de l’approximation

La complexité de la classification des fautes est influencée par le choix de la métrique

d’erreur. En effet, l’erreur causée par une faute – ainsi que l’effort pour la mesurer –

peut changer de manière significative en fonction de la métrique considérée. Comme

nous l’avons souligné dans les sections précédentes, des métriques d’erreur sont

nécessaires pour déterminer l’approximation des systèmes informatiques. En ef-

fet, il est obligatoire de mesurer l’erreur introduite par les approximations pour

pouvoir produire des systèmes donnant de bons résultats. À différents niveaux

d’abstraction, nous pouvons définir des métriques d’erreur appropriées. Pour les

techniques d’approximation appliquées au niveau matériel, certaines mesures d’erreur

bien acceptées existent. Par exemple, parmi ces métriques, on peut compter l’erreur

absolue maximale, la probabilité d’erreur, l’erreur absolue moyenne. Pour classer une

faute comme non-redundant selon la métrique d’erreur absolue maximale, il suf-

fit de prouver une seule condition : l’existence d’une séquence de test conduisant

le circuit défectueux à présenter une erreur supérieure au seuil d’erreur. Au con-

traire, pour classer une faute comme non-redundant selon la métrique de proba-

bilité d’erreur et d’erreur absolue moyenne, il faut prouver que la probabilité et la

moyenne de l’erreur ne dépassent pas les seuils d’erreur. Pour y parvenir, la con-

tribution de l’ensemble exhaustif de vecteurs d’entrée doit être évaluée. En con-

séquence, il s’avère peu complexe d’évaluer l’impact d’une faute lorsqu’on con-

sidère des métriques pour lesquelles une seule condition doit être vérifiée, comme

l’erreur absolue maximale. Inversement, classer les fautes selon des métriques qui

impliquent le calcul d’une moyenne est un problème de complexité O(2n), où n est

le nombre de bits en entrée.

Dans ce chapitre, nous présentons deux techniques pour traiter de la classifica-

tion des fautes, en considérant les deux types de mesures. Les deux techniques sont

basées sur une architecture spécifique capable de classer les fautes en non-redundant

et ax-redundant en mesurant leur impact sur les sorties de l’AxIC. L’idée fondamen-

tale est de "cacher" les fautes ax-redundant au moyen d’une boîte de filtrage. Ainsi,

pour une faute donnée, une condition d’anomalie n’est générée que si la faute en-

traîne des erreurs catastrophiques. Une telle architecture de classification n’est ja-

mais fabriquée, mais seulement utilisée au moment de la conception pour classer les

xii

fautes.

4. Génération de vecteurs de test consciente de l’approximation

Dans ce chapitre, nous discutons du problème de génération des séquences de test

consciente de l’approximation et présentons nos propositions pour y remédier. Comme

précédemment indiqué, le rôle de la génération des séquences de test conscients de

l’approximation est double : (i) les vecteurs de test doivent détecter tous les fautes

non-redundant, afin d’éviter des erreurs catastrophiques aux sorties du circuit ; (ii)

les séquences de test devraient détecter le moins de fautes ax-redundant possible,

afin de ne pas considérer l’AxIC comme défectueux lorsqu’il est encore acceptable.

En d’autres termes, un ensemble de tests qualitativement bon devrait atteindre 100%

non-redundant FC (nR FC) et 0% ax-redundant FC (axR FC). Cependant, deux prob-

lèmes peuvent affecter la procédure de génération des séquences de test, en ce qui

concerne les AxICs :

1. Afin d’atteindre 100% nR FC, il n’est pas toujours possible d’éviter de tester

certains fautes ax-redundant (i.e., axR FC > 0%) ;

2. Les procédures conventionnelles de génération de tests pourraient ne pas être

capable d’obtenir un ensemble de tests de bonne qualité.

Le premier problème est intrinsèque à la structure de l’AxIC testé, le second est re-

latif aux algorithmes conventionnels de génération de test. Par conséquent, un AxIC

encore fonctionnel affecté par une faute ax-redundant serait rejetée en phase de test.

Le phénomène en raison duquel un bon produit est considéré comme défectueux par

le processus de test est communément appelé en anglais over-testing. Ce phénomène,

si mal géré, finira par entraîner une importante diminution du rendement.

Ensuite dans ce chapitre, nous montrons comment la technique de classification

des fautes présentée dans le chapitre précédent traite avec succès aussi la généra-

tion des séquences de test consciente de l’approximation, en détectant tous les fautes

non-redundant. Néanmoins, la technique est limitée par certaines conditions par-

ticulières (c.-à-d. que la métrique utilisée dans la classification est l’erreur absolue

maximale). De plus, nous montrons que en considérant différents ensembles de

tests obtenant une non-Redundant Fault Coverage (nR FC) de 100%, différentes

valeurs de ax-Redundant Fault Coverage (axRedundant Fault Coverage - axR FC)

sont obtenues. Les techniques existantes ne permettent pas de résoudre le prob-

lème de trouver le meilleur ensemble de tests, c.-à-d. celui qui atteint une nR FC de

100% et qui minimise l’axR FC. C’est pourquoi nous proposons une technique plus

xiii

générale - basée sur une sélection minutieuse des séquences de test - conçue spéci-

fiquement pour la génération des séquences de test consciente de l’approximation.

Enfin, nous comparons les résultats des différentes techniques de génération des

séquences de test, c.-à-d. la génération conventionnelle (ATPG ne prenant en compte

que les fautes non-redundant), la génération consciente de l’approximation (c.-à-d.

les séquences générées au même moment de la classification) et la génération con-

sciente de l’approximation avec sélection de séquences.

Bien que les résultats obtenus soient assez bons, ils sont encore loin des résul-

tats idéaux. Par conséquent, nous devons recourir à AxA test set application pour

améliorer encore la qualité des tests.

5. Application de vecteurs de test consciente de l’approximation

Pour améliorer la qualité finale du processus de test, l’application des tests consciente

de l’approximation joue un rôle important. Dans cette phase, nous avons besoin de

techniques capables - en observant les réponses du circuit - de distinguer entre la

détection d’une faute ax-redundant (le test passe) et celle d’une faute non-redundant

(l’AxIC est rejeté). Dans ce chapitre, nous présentons l’application de vecteurs de test

conscients de l’approximation. Tout d’abord, nous montrons et discutons les problèmes

liés à l’application des tests dans le contexte des AxICs. Nous montrons qu’il n’est

pas toujours possible d’éviter la détection de certains fautes ax-redundant, à cause

de la structure des AxICs.

Pour éviter le phénomène d’over-testing qui en résulte, nous devons reconsid-

érer la phase d’application du test. En détail, après l’application des séquences de

test à l’AxIC sous test, nous devons vérifier que la sortie de l’AxIC remplit certaines

conditions et pas seulement si elle diffère de la sortie attendue.

Dans la littérature, aucune technique n’a été présentée jusqu’à présent pour traiter

de cet aspect. Néanmoins, une technique présentée dans [32] pour les circuits con-

ventionnels, le threshold testing, peut être adapté aux AxICs. C’est pourquoi nous

essayons d’adapter cette technique aux AxICs. Malheureusement, des conditions

restrictives spécifiques doivent être remplies pour que la technique soit appliquée

avec succès.

Donc, nous proposons une nouvelle technique d’application des tests consciente de

l’approximation pour faire face aux limitations rencontrées. La technique est basée

sur le concept bien connu d’analyse de signature, appliqué aux architectures de test

automatique intégrées (BIST) dans les années 70 [33]. Le résultat obtenu avec la

technique proposée est vraiment bon. Nous décrivons également le phénomène de

xiv

l’aliasing dans le contexte des AxICs et évaluons quelques méthodes correctives pour

y faire face.

6. Conclusions

L’introduction du paradigme du calcul approximé dans le panorama des technolo-

gies de l’information a apporté de multiples possibilités à des degrés divers. L’objectif

fondamental du calcul approximé est d’améliorer l’efficacité du système (temps/surface/énergie)

en assouplissant les exigences de précision des résultats. Le calcul approximé a été

appliquée à différents niveaux des systèmes informatiques, du matériel au logiciel,

en passant par les architectures. Parmi tous les travaux des deux dernières décen-

nies, le calcul approximé a également été utilisé pour réaliser une nouvelle classe

de circuits intégrés, c.-à-d. des circuits intégrés approximés ou AxIC. L’introduction

d’une nouvelle classe de circuits a apporté de nouveaux défis, ainsi que de nou-

velles opportunités, concernant le test et la vérification des puces. En particulier, les

concepteurs de puces approximées modifient attentivement la structure du circuit

pour introduire une erreur acceptable, afin d’obtenir des résultats satisfaisants. Pour

définir correctement le concept d’erreur acceptable, les concepteurs utilisent métriques

d’erreur. Ensuite, ils définissent des seuils d’erreur pour fixer l’erreur maximale au-

torisée (c.-à-d., acceptable). Par conséquent, le concept de circuit défectueux change.

En effet, deux nouvelles catégories de défaillances sont introduites : les fautes ax-

redundant (c.-à-d. causant des erreurs acceptables) et les fautes non-redundant

(c.-à-d. causant des erreurs catastrophiques). Dans le contexte du test, la classe

d’une faute détectable peut être déterminée en mesurant l’erreur causée à la sortie

de l’AxIC. Si l’erreur mesurée est supérieure au seuil acceptable, le circuit doit être

rejeté. Cependant, il peut arriver que l’erreur mesurée reste en dessous du seuil ac-

ceptable, alors l’AxIC ne doit pas être rejeté. Par conséquent, dans ce contexte, le

rôle test change comme suit :

• les AxICs dont l’erreur observée est supérieure au seuil doivent être rejetés ;

• les AxICs affecté par des fautes acceptables ne doit pas être rejeté.

En conséquence, cela conduit à une augmentation du rendement de production.

En conséquence de ces considérations, nous introduisons les tests AxA, com-

posés essentiellement de trois phases : (i) Classification des fautes consciente de

l’approximation, (ii) Génération de séquences de test consciente de l’approximation,

et (iii) Application des tests consciente de l’approximation. Toutes les phases de test

conscientes de l’approximation apportent des contributions importantes à l’objectif

final du test, dans le contexte des AxICs. Tout au long de la thèse, nous discutons en

xv

détail de toutes les phases de test conscientes de l’approximation et nous présentons

plusieurs techniques pour traiter de chaque aspect. Nous montrons que la synergie

des techniques proposées permet d’obtenir des résultats optimaux.

xvii

Acknowledgements
I would like to thank some people for supporting me in the last three years. This

thesis would not have been possible without them.

Thanks to my thesis supervisors, Alberto Bosio, Patrick Girard and Arnaud Vi-

razel, for their precious guidance through this exciting and challenging path.

Thanks to the precursor of all this, Mario Barbareschi, for his valuable advice.

Thanks to Matteo Sonza Reorda and Olivier Sentieys for agreeing to review my

work and to join the thesis committee. Thanks to Lirida Naviner, for agreeing to join

the thesis committee.

Thanks to my family, my brother, my mother, my father, for being there for me,

always, no matter what. Thanks to my new family, the love of my life Ada, for

strongly supporting and lovingly encouraging me, every day more.

Thanks to my colleagues and friends, Bastien, Clement, Emanuele, Ilaria, Linh,

Mathieu, Safa, and all the others at LIRMM: they made this “journey” easier and

cheerful. Thanks to Caroline Lebrun, without whom all the administrative proce-

dures would have been impossible. Thanks to the LIRMM, where I learned a lot.

Thanks to Montpellier, where I spent three wonderful years,

Thanks to all the people who have shared with me a piece of their life.

xix

Contents

Abstract v

Resumé (FR) vii

Acknowledgements xvii

Introduction xxix

1 Context and background concepts 1

1.1 Conventional IC testing . 2

1.1.1 Defect modeling . 4

1.1.2 Fault simulation . 6

1.1.3 Test generation . 7

1.1.4 Built-In Self-Test . 9

1.2 Approximate computing (AxC) . 10

1.2.1 How to determine where to apply AxC? 11

1.2.2 Software-level AxC . 12

1.2.3 Architectural-level AxC . 13

1.2.4 Circuit-level AxC . 14

1.2.5 Error Metrics for Approximate Computing 15

1.3 Testing circuits in approximate context 16

1.4 Chapter summary . 18

2 Approximation-Aware (AxA) testing 21

2.1 AxA testing phases . 22

2.1.1 AxA Fault Classification . 22

2.1.2 AxA Test Pattern Generation . 23

2.1.3 AxA Test Set Application . 23

2.1.4 Relationships between AxA test phases 24

2.2 Related work . 24

2.3 Illustrative example . 25

2.4 Chapter summary . 26

xx

3 AxA fault classification 29

3.1 Problem statement . 30

3.2 SCT-metric-aware fault classification . 32

3.2.1 Proposed technique . 33

3.2.2 Experimental results . 34

3.2.3 Related works . 35

3.2.4 Comparison . 36

3.3 ME-metric-aware fault classification . 37

3.3.1 Proposed technique . 37

3.3.2 Experimental Results . 39

3.4 Chapter summary . 41

4 AxA test pattern generation 43

4.1 Problem statement . 44

4.2 An Ax-aware technique . 47

4.3 An ILP-formulated Pattern Selection Procedure 47

4.3.1 Optimization problem . 49

4.3.2 Ax-aware ATPG as an ILP problem 50

4.3.3 Experimental results . 55

4.4 Evaluation . 59

4.5 Chapter summary . 62

5 AxA test set application 65

5.1 Problem statement . 66

5.2 A state-of-the-art solution . 67

5.2.1 Suitability investigation . 68

5.2.2 Experimental results . 69

5.3 A new AxA test set application technique 70

5.3.1 Proposed technique . 71

5.3.2 Signature aliasing problem . 72

5.3.3 Experimental results . 73

5.4 Evaluation . 75

5.5 Chapter summary . 77

6 Discussion and conclusions 79

6.1 Summary and considerations . 80

6.1.1 Contributions . 81

6.1.2 Considerations . 82

6.2 Future perspectives . 83

xxi

6.2.1 Contexts of application . 83

6.2.2 Future research directions . 84

7 Scientific Contributions 87

Bibliography 91

xxiii

List of Figures

1 Inherent resiliency property [4] . xxix

1.1 Digital testing [34] . 2

1.2 Scan design . 8

1.3 Generic BIST process [34] . 10

1.4 Reliability decrease with technology scaling [85] 17

2.1 Schematics of the Full adder (a) and of its approximation (b) obtained

by re-synthesizing the circuit with Co = 0; (c): truth tables of both go-

den (i.e., non-approximate) and approximate versions. Output’s in-

teger representation for both circuits are also reported ("Int" column);

(d): approximate circuit’s error metric values. 26

3.1 (a) Error profile of the fault-free approximate circuit; (b) approximate

circuit error profile in presence of the S-at-0 fault at the a net; (c) ap-

proximate circuit error profile in presence of the S-at-1 fault at the a

net; (d) approximate circuit error profile in presence of the S-at-1 fault

at the e net. 31

3.2 SCT-metric-aware classification scheme 32

3.3 A schematic view of the proposed flow 33

3.4 Fault Filtering Architecture (FFA) . 37

3.5 Overall flow . 39

4.1 Proposed Approximation-Aware ATPG . 48

4.2 Average results for "non-redundant ndetects" (a), "all-faults ndetects"

(b), and "random" (c) vector generation methods 58

4.3 Conventional test pattern generation schema 60

4.4 Ax-aware test pattern generation schema 60

5.1 Proposed test application technique . 71

5.2 Aliasing effect . 73

6.1 ax-aware BIST hypothetical architecture 82

xxv

List of Tables

3.1 Approximate full adder error metric values for all possible Stuck-at

faults, under single-fault assumption. 30

3.2 EvoApprox8b Circuits’ WCE range . 34

3.3 ATPG-based fault classification results [88], in terms of expected Yield

Increase (eYI) . 34

3.4 SAT-based fault classification results [86] in terms of expected Yield

Increase (eYI) . 35

3.5 SAT-based fault classification results [94] in terms of expected Yield

Increase (eYI) . 36

3.6 EvoApprox8b Circuits’ EP, MAE and MSE ranges 39

3.7 ME-metric-aware fault classification results of [95], in terms of ex-

pected Yield Increase (eYI) . 39

3.8 ME-metric-aware fault classification results for random workload ex-

periments, in terms of expected Yield Increase (eYI). 40

4.1 Approximate full adder test vectors for all possible Stuck-at faults,

under single-fault assumption. 45

4.2 Test vector generation results when using an ideal ax-aware test vec-

tor generation and a conventional ATPG tool [87] on the example cir-

cuit in Figure 2.1. 46

4.3 Fault coverage (FC) report conceptual model 50

4.4 Fault coverage report, for the example circuit (see Figure 2.1). Faults

are classified according to MAE metric (threshold=1) 53

4.5 ILP problem solution . 54

4.6 Ax-unaware and ax-aware generated test vectors comparison 55

4.7 AxICs attributes and conventional ATPG ineffectiveness evidences . . 56

4.8 Ax-redundant FC (axR FC) and Yield Increase Loss (YIL) results. YIL

and axR FC indicate the absolute and the relative loss of yield in-

crease, respectively (see Section 2.1). 61

xxvi

4.9 Improvements obtained by using ax-aware generation and pattern se-

lection generation techniques, compared to conventional generation

technique. Higher is better. 62

5.1 Output (in integer format) of the example circuit (see Figure 2.1) for

different cases: precise (Fig 2.1a), fault-free approximate (see Fig 2.1b),

and faulty approximate with different Stuck-at faults. 66

5.2 Test set generated using an ideal ax-aware test vector generation and

a conventional ATPG tool [87] on the example circuit in Figure 2.1.

(see Section 4.1) . 68

5.3 Example of test set application technique by [32] used on the FA ex-

ample (Figure 2.1). 69

5.4 Non-redundant FC results when using the test set application tech-

nique by [32]. 69

5.5 Ax-redundant FC (axR FC) and Yield Increase Loss (YIL) results when

using the test set application technique by [32]. 70

5.6 Ax-R faults detected with proposed technique compared to conven-

tional test . 75

5.7 Ax-redundant FC (axR FC) and Yield Increase Loss (YIL) results when

using the proposed test set application technique 76

xxvii

List of Abbreviations

ATE Automatic Test Equipment
ATPG Automatic Test Pattern Generation
AxA Approximation Aware
AxC Approximate Computing
AxIC Approximate Integrated Circuit
axR approximation-Redundant
AxRFM Ax-Redundant Fault Masking
BFE Bit-Flip Error
BIST Built-In Self-Test
DfT Design for Testability
DUT Device Under Test
EM Error Magnitude
EP Error Probability
eYI expected Yield Icrease
FA Full Adder
FC Fault Coverage
FFA Fault Filtering Architecture
IC Integrated Circuit
ILP Integer Linear Programming
IoT Internet of Things
MAE Mean Absolute Error
ME Mean Error
MSE Mean Squared Error
nR non-Redundant
RMS Recognition, Mining and Synthesis
RYG Relative Yield Gain
SaF Stuck-at-Fault
SAT Boolean SATisfiability
SCT Single-Condition-Test
TF Transition Fault
UUT Unit Under Test
WCBFE Worst Case Bit-Flip Error
WCE Worst Case Error
YIL Yield Increase Loss

xxix

Introduction

Despite significant energy efficiency improvements in the semiconductor industry,

computer systems keep consuming more and more energy [1]. Many widely used

applications – such as Recognition, Mining and Synthesis (RMS) applications – are

increasingly deployed as mobile applications and on Internet of Things (IoT) struc-

tures. Therefore, it is necessary to improve the next-generation silicon devices and

architectures on which these applications will run. The inherent resiliency property of

RMS applications has been thoroughly investigated over the last few years [1]–[4].

This interesting property leads applications to be tolerant to errors – as long as their

FIGURE 1: Inherent resiliency property [4]

results remain close enough to the expected ones. As shown in Figure 1, the main

sources of error tolerance for these applications are:

• noisy real-world inputs,

• redundant data,

• perceptual limitations of individuals who will use the computation output,

• non-deterministic algorithms which lead to non-unique outcomes, and

• self-healing capable systems.

xxx

Approximate Computing (AxC) [1], [2] is an emerging computing paradigm which

takes advantage of the inherent resiliency property. AxC has garnered increasing

interest in the scientific community in the last years. It is based on the intuitive

observation that selectively relaxing non-critical specifications may lead to improve-

ments in power consumption, run time, and/or chip area. AxC has been applied to

the whole digital system stack, from hardware to applications.

This work focuses on Approximate Integrated Circuits (AxICs). AxICs stem from

the application of AxC at hardware level. A widely used method to design those

circuits is functional approximation of conventional integrated circuits (ICs) [5]–[25].

We focus more specifically on the testing aspects of functionally approximate ICs.

Indeed, since approximation changes the functional behavior of ICs, we have to re-

visit techniques to test them. In fact, previous studies [26]–[29] have shown that

circuit approximation brings along challenges for testing procedures, but also op-

portunities. In particular, approximation procedures intrinsically lead the circuit to

produce errors, which have to be taken into account in test procedures. Error can

be measured according to different error metrics [30]. On the one hand, the occur-

rence of a defect in the circuit can lead it to produce unexpected catastrophic errors.

On the other hand, some defects can be tolerated, when they do not induce errors

over a certain threshold. This phenomenon could lead to a yield increase, if prop-

erly investigated and managed. To deal with such aspects, conventional test flow

should be revisited. Therefore, we introduce Approximation-Aware testing (AxA test-

ing). We identify three main AxA testing phases: (i) AxA fault classification, (ii) AxA

test pattern generation and (iii) AxA test set application. Briefly, the first phase has

to classify faults into catastrophic (to test) and acceptable (not to test); the test pattern

generation has to produce test vectors able to cover all the catastrophic faults and,

at the same time, to leave acceptable faults undetected; finally, the test set applica-

tion needs to correctly classify AxICs under test into catastrophically faulty, acceptably

faulty, fault-free. Only AxICs falling into the first group will be rejected.

In this thesis, we thoroughly discuss the three phases of AxA testing, and we

present a set of AxA test techniques for approximate circuits.

• Firstly, we work on the classification of AxIC faults into catastrophic and ac-

ceptable according to an error threshold (i.e. the maximum tolerable amount

of error). This classification provides two lists of faults (i.e. catastrophic and

acceptable).

• Then, we propose an approximation-aware (ax-aware) Automatic Test Pattern

Generation (ATPG). Obtained test patterns prevent catastrophic failures by de-

tecting catastrophic defects. At the same time, they minimize the detection of

xxxi

acceptable ones.

• Finally – since the AxIC structure often leads to a yield gain lower than ex-

pected – we propose a technique to correctly classify AxICs into “catastrophi-

cally faulty”, “acceptably faulty”, “and fault-free”, after the test application.

To evaluate the proposed techniques, we perform extensive experiments on state-of-

the-art AxICs.

1

Chapter 1

Context and background concepts

Contents

1.1 Conventional IC testing . 2

1.1.1 Defect modeling . 4

1.1.2 Fault simulation . 6

1.1.3 Test generation . 7

1.1.4 Built-In Self-Test . 9

1.2 Approximate computing (AxC) . 10

1.2.1 How to determine where to apply AxC? 11

1.2.2 Software-level AxC . 12

1.2.3 Architectural-level AxC . 13

1.2.4 Circuit-level AxC . 14

1.2.5 Error Metrics for Approximate Computing 15

1.3 Testing circuits in approximate context 16

1.4 Chapter summary . 18

2 Chapter 1. Context and background concepts

In this chapter, we put together some background information, which will be

useful for fully understand and profit from this thesis. Firstly, we briefly describe

conventional Integrated Circuit (IC) testing. IC testing represents the technical fo-

cus of this thesis. Secondly, we review different aspects of Approximate Computing

(AxC). In particular, we describe approximate integrated circuits (AxICs), that con-

stitute the context of this work. Finally, we put together the two aforementioned

topics, the union of which forms the subject of this thesis. We show how inherent

properties of AxICs led us to reconsider the test procedures and to propose new so-

lutions. In other words, in this thesis we present studies on hardware test techniques

for approximate integrated circuits.

1.1 Conventional IC testing

In this section we recall some basic principles of conventional IC testing, which will

be useful in different parts of this thesis. The concepts reported are not intended to

be exhaustive. Extensive disquisitions on the concepts reported below can be found

in [34].

As sketched in Figure 1.1, in digital testing, binary patterns (or test patterns) are

applied to circuit’s inputs. Responses are compared with the expected ones (golden

responses). If they match, the circuit is considered good, otherwise it is marked as

FIGURE 1.1: Digital testing [34]

faulty. VLSI testing can be classified depending on the goal it is intended to serve:

Verification testing Before sending a new design to production, its correctness and

adherence to specifications must be verified. In this phase, functional and

parametric tests are applied to ICs. Physical quantities (AC, DC) are measured

1.1. Conventional IC testing 3

under different operative conditions. As a result, the operating limits of the

chips are determined. Thus, correction on the design are performed and the

final specifications are set. Verification testing can be employed also during the

product lifetime to possibly improve the design and the process yield. Usually,

this is done on chips rejected by production test or in the field.

Production testing After chip manufacturing, production testing must determine

whether the actual fabricated devices meet specifications or not under normal

operating conditions. Test vectors must have a high coverage of modeled faults

and – since every device must be tested – test time (thus the cost) must be kept

short. Test is performed either at the speed required by the application of the

device or at the speed guaranteed by the supplier.

Burn-in testing Burn-in puts chips in high temperature environments, while ap-

plying production tests and over-voltage power supply. By doing this over a

certain period, the reliability of the tested devices is ensured. Indeed, some

chips that passed production tests can still fail after a very short time. Failures

of this kind are usually called infant mortality failures. Defects causing this kind

of failures must be detected early. In order to accelerate the occurrence of such

failures, high temperatures turn out to be effective. Depending on the desired

trade-off between reliability and cost, the burn-in time changes. Long burn-in

time is expensive but usually leads to have a more reliable device.

Incoming Inspection Before system integration, customer may want to inspect de-

vices. Indeed, discovering defective devices before the integration is by far

less expensive than perform a system diagnosis. Depending on the customer

needs, test procedures may be similar to production testing, more thorough or

dependent on the specific system application.

More in general, two types of tests are performed on VLSI chips:

Parametric Tests Necessary to decide whether the chip pins meet various non-functional

specifications, such as rise and fall times, setup and hold times, low and high

voltage thresholds, and low and high current.

Functional tests Necessary to determine whether the chip internal digital logic be-

haves as designed. Tests consist in driving input vectors to the Device Under

Test (DUT) and verifying that the corresponding responses match the expected

ones. The goal is testing the proper operation of internal chip nodes.

In this latter category, the manufacturing test (or hardware test) aims at discovering

any manufacturing defect. In 1959, Eldred proposed tests capable of observing the

4 Chapter 1. Context and background concepts

internal state of signals in large digital system, by propagating their effect at primary

outputs [35]. This type of tests are commonly referred to as structural test, because

they depend on the internal structure of the circuit. As a consequence, algorithms

based on IC’s internal structure can be developed. Fault models – briefly discussed

in next section – are the core of structural test algorithms. In this thesis, we focus on

structural tests.

Finally, functional and physical characteristics, type of device, technology, de-

sired reliability, and environment specification determine the type of test equipment

to use. Testers – popularly known as Automatic Test Equipment (ATE) – drive the

inputs and monitor the outputs of a DUT. Test data obtained from the ATE helps to

accept or reject the DUT. Moreover, information about the fabrication process and

about design problems can be extracted.

1.1.1 Defect modeling

To correctly describe an incorrect electronic system, different terms have to be de-

fined. Below, we report common definitions of Defect, Error and Fault.

Defect Unintended difference between the implemented hardware and its design.

Defects can occur during manufacture, as well as during the device lifetime.

Error A wrong output signal produced by a defective system. An error is caused by

some defect in the hardware.

Fault An abstraction model of a defect.

Even if a defect is present within an IC, its manifestation might never happen. In

general, given the list of all possible defects (modeled as faults) that can occur within

an IC, a subset of them is referred to as detectable faults. A fault is defined as de-

tectable if it exists an input pattern sensitizing and propagating the fault effect to

outputs. From now on in the text, we will refer to defect and to its model – the fault

– interchangeably.

Fault modeling is performed at different levels of abstraction:

Behavioral level Sometimes referred to as high level, behavioral level fault models

may not have correspondence in manufacturing defects. Mostly, they are used

in design verification rather than testing.

Logic level or Register-transfer level (RTL) At this level, we find fault models usu-

ally built by considering the netlist, i.e., the circuit component list and their

inter-connections. Stuck-at fault model is the most popular and used one in

1.1. Conventional IC testing 5

digital testing. Among others, we find delay fault model and bridging fault

model.

Component level At this level we find lower abstraction level, such as the transis-

tor level. Stuck-open fault model, which is a technology-dependent model, is

mainly used at this level. Mostly, analog circuit testing resorts to component

level fault models.

In this thesis, we focus on logic level fault models, since we address digital inte-

grated circuit testing.

In the following, we report some definitions concerning faults, in order to pro-

vide possible inexperienced readers with some useful terms for the rest of the thesis.

Stuck-at fault model In this abstraction, a circuit net is considered to be perma-

nently set at a constant value. By assigning a fixed (0 or 1) value to an input or

an output of a logic gate or to a flip-flop in the circuit, the SaF model represents

this condition. The SaF model is the most popular fault model used in practice

for digital IC testing. The most popular forms are the single stuck-at faults. In

this abstraction, a single fault line is assumed to be present in the IC, either

stuck-at-1 (sa1) or stuck-at-0 (sa0).

Delay fault model Defects modeled by delay fault model prevent the correct data

from reaching outputs at the right time. Among different types of delay faults

models we find transition faults, gate-delay faults, path-delay faults.

Redundant fault In a combinational circuit, a redundant fault does not modify the

circuit’s output for any input combination. Thus, a test detecting a redundant

fault cannot exist. Redundant faults are a subset of the more general untestable

faults. In sequential circuits, faults for which no test pattern can be found fall

into the untestable fault category.

Multiple fault The condition that simultaneous single faults affect the same circuit

is referred to as multiple fault. Multiple Stuck-at faults model is usually not

considered, due to the tremendous complexity. Moreover, a very high percent-

age of these faults are covered by single stuck-at faults tests.

Equivalent faults If two faults f1 and f2 lead a circuit to have the exact same func-

tion, they are defined as equivalent. A test detecting f1 detects also f2 and vice-

versa. This leads to fault collapsing: partitioning all the faults of a circuit into

disjoint equivalence sets and selecting one fault from each equivalence set to

test. For a circuit having n lines (thus 2n single stuck-at faults) the equivalence

6 Chapter 1. Context and background concepts

between 2(n2 − n) pairs of faults should be determined, which is complex.

Therefore, for stuck-at fault model, the fault equivalence is usually determined

between faults affecting each Boolean gate.

1.1.2 Fault simulation

In the design of VLSI circuits, the concept of simulation is of great importance. Firstly,

it serves the purpose of verifying the circuit correctness. Secondly, it verifies whether

and how efficiently a test set fulfill its purpose.

The circuit correctness verification is a fundamental step of the design activity.

After the synthesis process, the produced netlist is verified by a true-value simulator,

i.e., it produces the responses of the defect-free circuit. Since the goal is to verify the

circuit functionality according to the specification, the input stimuli applied by the

simulator to the circuit are based on the specification. Any errors lead to change the

design to make responses to all stimuli match the specification.

Simulation is also used for the development of manufacturing tests. A so-called

fault simulator acts like a true-value simulator with the capability to simulate a faulty-

circuit. Once the verified circuit netlist is available, the fault simulator can verify the

coverage of a given set of input stimuli (usually, the verification ones) for a given

fault list. Faults covered by the given set are marked as detected and the Fault Coverage

is measured.

Fault Coverage (FC) The ratio of the number of faults detected by a set of test pat-

terns to the total number of faults in the fault list.

An adequate FC (98% - 100%) is usually required in order to ship high quality de-

vices to the customers. A good-quality test is a test that can minimize the number of

faulty circuits sold, while keeping the test cost acceptable.

Test quality The test quality is expressed as defect level (or field reject rate): the frac-

tion of chips that, despite having passed the test, are actually faulty. Defect

level is expressed as parts per million (ppm). High quality tests are considered

as providing chips with a defect level of 100 ppm or lower.

Process variations, such as impurities in materials, dust particles, etc., can produce

defects during the manufacture. In turns, defects can cause circuits to fail. Process

variation effects reflect on the process yield:

Process yield The fraction (or percentage) of acceptable parts (thus, sold) among all

fabricated parts is commonly referred to as process yield, or simply as yield.

1.1. Conventional IC testing 7

In a typical case, a newly designed chip has a low yield, at its early manufactur-

ing period. Thanks to process diagnosis and correction, higher process maturity is

achieved and, thus, significantly higher yield.

While the role of conventional testing is rejecting defective circuits,

yet it cannot improve the process yield. All along this thesis, we will

discuss the role of IC testing when approximate computing comes into

play. It turns out that – in this particular context – test procedures have

a different role which includes the opportunity to increase the process

yield.

Verification stimuli may not produce an adequate FC. As shown in the next subsec-

tion, test generator programs can produce new test vectors to increase the FC.

1.1.3 Test generation

In late-fifties, Eldred highlighted the necessity for the structural testing of logic cir-

cuits to prevail over the classic functional test [35]. He argued that formulating test

conditions at the level of the components is "the only way in which all conditions of

operation of each logical function can be uniquely [...] defined and all logical components

within each logical function can be made to perform the task to which they are assigned [...]

thereby producing a minimum program which tests and detects failure". The goal of struc-

tural test is to verify the presence of the minimal set of faults in the circuit. Therefore,

the application of fault equivalence is important to reduce the final set of faults to

test.

Automatic Test Pattern Generation (ATPG) serves the purpose of producing pat-

terns to test the internal structure of a digital circuit, starting from its netlist descrip-

tion. The commonly used method in ATPG, namely path sensitization is based on

three steps:

1. fault injection in the circuit netlist;

2. fault activation;

3. fault effect propagation toward circuit outputs.

To briefly describe path sensitization, let us resort to the stuck-at fault model (see

Subsection 1.1.1). Let us assume that we want to test if a line l is stuck to a constant

value (say 1). The test vector v detecting that fault is composed of input values such

that:

• the line l is set to the opposite value of the fault (say 0). This is commonly

referred to as fault sensitization or activation or excitation;

8 Chapter 1. Context and background concepts

• the effect of the previous action is propagated to circuit outputs. This is com-

monly referred to as fault propagation or path sensitization.

By simulating the pattern with the fault-free circuit, we obtain the fault-free out-

put value (expected output). Now, let us assume that an actual stuck-at fault (say

Sa1) occurs at line l. In presence of the fault, circuit outputs will be different from

expected. Therefore, by applying the test vector v to the circuit and knowing the

expected output, we are able to detect the fault by observing a difference between

actual and expected outputs.

In the context of conventional IC test, even a little difference between

the nominal behavior and the manufactured IC’s leads to reject the cir-

cuit. Later in this thesis, we will discuss this aspect when approximate

computing is considered. In this particular context, the value of the dif-

ference between the nominal behavior and the manufactured IC’s is im-

portant. In fact – under specific conditions – the manufactured circuit

may be still accepted even if some defects occur.

Unfortunately, the described ATPG method works correctly only for combina-

tional circuits, i.e. without cycles. In fact, any circuit with cycles will lead the afore-

mentioned method to fall into an infinite loop. ATPG methods for sequential circuits

exist but are usually very resource-consuming and sometimes inefficient. The main

difficulty for sequential ATPG is to control and to observe the internal state of the

circuit.

Therefore, design-for-testability (DfT) comes into play. As stated by Agrawal and

Seth [36], "testability is the property of a circuit that makes it easy (and sometimes possi-

ble!) to test". DfT refers to the set of design techniques for ICs aiming at improv-

ing the testability of the target design. The most popular DfT technique is the scan

FIGURE 1.2: Scan design

design. Figure 1.2 depicts the scan design basic concept. This technique aims at in-

creasing controllability and observability of flip-flops in a sequential design. This

is done by connecting all the flip-flops together, to form a long shift register when

a test-mode is activated. By shifting logic values in and out, it is possible to control

and observe the internal state of the circuit. As a result, this approach converts the

ATPG problem for sequential circuits into a well-known and more tractable ATPG

1.1. Conventional IC testing 9

for combinational circuits. Of course, this comes at the cost of extra hardware, delay,

and test time. Such cost may be justified by time-to-market-driven decisions. In fact,

existing ATPG for sequential circuits often introduce design delay, while ATPG for

combinational logic has a predictable test development time.

1.1.4 Built-In Self-Test

As the VLSI matured, the complexity of microelectronic systems grew considerably.

As a consequence, performing IC testing became more and more difficult. As men-

tioned in the previous subsection, design-for-testability techniques contributed to

simplify the testing of circuits at the cost of some additional resources. In 1977, the

concept of signature was introduced by Frohwerk as a new method to determine IC

correctness [33].

Test signature The word resulting from the compaction of IC test responses is de-

fined test signature

This reduced the IC test to a comparison of two signatures. In details, after the de-

sign of the patterns to test the IC, the responses of the fault-free IC are compacted in

a test signature (golden signature). When the manufactured IC is tested by applying

the same patterns, the signature obtained by compacting the responses is compared

with the golden one. If they match, the circuit is considered fault-free. Otherwise, it

is marked as faulty. Sometimes, it can happen that the signature of a faulty circuit

matches the golden one. This is referred to as aliasing phenomenon.

Aliasing During the compaction of the circuit’s response, a signature of a bad device

may match the golden signature. This is due to the information loss during the

compaction. When aliasing occurs, a failing circuit might pass the test and be

shipped to the customer.

As a matter of fact, the real breakthrough was the application of signature analysis

to the so-called Built-In Self-Test (BIST).

Built-In Self-Test (BIST) A circuit which is capable to autonomously determine whether

it is fault-free or not has BIST capabilities.

In Figure 1.3 we report the generic BIST architecture as presented in [34]. In detail –

when the test mode is activated – test patterns are applied to the circuit and a signa-

ture is generated. Then, the latter is compared with the golden signature, which was

generated by the fault-free circuit and stored within the BIST architecture. If the two

signatures are identical, the circuit is considered fault-free. Otherwise, a malfunction

10 Chapter 1. Context and background concepts

FIGURE 1.3: Generic BIST process [34]

is detected. Different pattern generation and signature compaction methods exist in

the literature. An extensive review of those methods can be found in [34].

With the BIST introduction, test became part of the system functionalities rather

than a procedure performed only occasionally. Indeed, during its lifetime, a modern

digital system is tested very often. As a consequence, test must be performed in

the most rapid and efficient way possible. BIST serves this purpose very efficiently

and, when properly designed, the extra hardware cost is more than balanced by the

benefits in terms of reliability and reduced maintenance cost.

1.2 Approximate computing (AxC)

Let us now introduce the context of this thesis, the Approximate Computing (AxC).

Some definition of Approximate Computing have been provided in last years:

“Approximate computing [...] is based on the intuitive observation that

while performing exact computation or maintaining peak-level service demand

require high amount of resources, allowing selective approximation or occasional

violation of the specification can provide disproportionate gains in efficiency.” —

Mittal, 2016 [2]

“By relaxing the numerical equivalence between the specification and im-

plementation of error-tolerant applications, approximate computing deliberately

introduces ‘acceptable errors’ into the computing process and promises signifi-

cant energy-efficiency gains.” — Xu, Mytkowicz, Kim, 2016 [1]

“A new design paradigm, Approximate Computing (AxC), has been estab-

lished to investigate how computing systems can be more energy efficient, faster,

and less complex. Intuitively, instead of performing exact computation and,

consequently, requiring a high amount of resources, AxC aims to selectively re-

lax the specifications, trading accuracy off for efficiency.” — Bosio, Menard,

Sentieys, 2019 [37]

1.2. Approximate computing (AxC) 11

The three definitions above respectively highlight the problem, the context, and the

purpose of AxC.

The problem As energy-demanding applications more and more establish in the

information technology scene, it is expected that in the next decades the amount of

information will grow so much that it will exceed available resources [2].

The context The so-called Recognition, Mining and Synthesis (RMS) applications

have a very interesting peculiarity, i.e., error resiliency [4]. Indeed, RMS applications

turn out to be intrinsically tolerant to errors thanks to different factors, such as noisy

data processed, non-deterministic algorithms used, and possible non-unique out-

comes.

The purpose In the last decades, several works have been inspired by the opportu-

nity that aforementioned resilient applications brought along for energy-efficiency.

The purpose of AxC is to represent a new paradigm that drives the investigation of

new energy-efficient computing solutions.

AxC has drawn the attention of both academia and industry, and a lot of works

have focused on different aspects of AxC [1], [2].

1.2.1 How to determine where to apply AxC?

Approximation can be applied at different levels. Specifically – according to the

classification in [1] – there are three main categories of so-called approximate kernels:

Software-level, Architectural-level, and Circuit-level. All the three categories have in

common the need of identify and characterize the resilient parts of the target system.

Generally, when the approximable regions are somehow known, the target applica-

tions/systems are “annotated” to express the opportunity to approximate [38], [39].

Alternatively, the resiliency of the different parts of the system can be explored by

means of sensitivity analysis [4], [40]. Other techniques resort to dynamic output

monitoring to adapt the accuracy of the computation at run-time [41]–[44]. To suit-

ably identify the approximation opportunities, the above methods resort to metrics

to measure the accuracy loss as the approximation is introduced. As reported in [2],

several error metrics have been used in the literature, such as:

• Peak Signal-to-Noise Ratio (PSNR), Structural SIMilarity (SSIM), pixel difference

for image/video processing algorithms (e.g., JPEG, MPEG);

12 Chapter 1. Context and background concepts

• classification/clustering accuracy for the classification/clustering algorithms (e.g.,

k-means);

• ranking accuracy for document search algorithms (e.g., Supervised Semantic

Indexing).

Furthermore, more generic metrics can be used to evaluate approximate systems’

accuracy. For instance, the Error Probability (EP) measures the percentage of er-

roneous outputs produced by an approximate system/application compared to its

precise version.

1.2.2 Software-level AxC

At software level, AxC has been employed to provide programmers with the possi-

bility to realize complex yet energy-efficient programs. This task is possible thanks

to the abstraction of the approximation concept by means of approximation-aware (ax-

aware) programming languages, ax-aware correctness analysis engines, and ax-aware com-

pilers.

Ax-aware programming languages The main goal of programming languages is to

allow programmers to express what to do instead of how to do it, by using re-

source abstraction. Likewise, approximation-aware programming languages

help programmers expressing randomness [1]. Examples of such languages are

in [38], [39], [45], which provide the programmers with approximation-related

syntax.

Ax-aware correctness analysis The goal of analyzing an “ax-aware source code” is

to build a model of it. The goals are (i) to state whether the code is correct or

not and (ii) verifying if the code respects some properties about the produced

output error. To do so, probabilistic modeling is suitable [1]. Some probabilistic

model checking works have been proposed, such as [46], [47]. Other proposi-

tions focus on adapting conventional static and dynamic program analysis to

compute the probability of critical output deviations in the final program [48]–

[51].

Ax-aware compilers In general, the goal of compilers is to translate the source code

into a sequence of tasks that the underlying hardware system has to perform.

In addition, ax-aware compilers can exploit the information gathered from the

ax-aware source code and the ax-aware analysis to transform the program se-

mantics. The final goal is to sacrifice some accuracy (within some boundaries)

to improve energy consumption or performance. Examples are the use of loop

1.2. Approximate computing (AxC) 13

perforation (execute fewer iterations than usual) [52], and of operand bit-width

reduction [53].

1.2.3 Architectural-level AxC

At architectural level, the fundamental components are computing units, memories

and storage devices. When building a computer system, the ideal goal is to obtain

high-performance processing units at a low energy cost, and to obtain a good trade

off between performance and density, for memories and storage units [1]. AxC has

put into play a new parameter to push farther next generation hardware compo-

nents, i.e., the quality. Indeed, by sacrificing some quality, one can further improve

performance, density and energy efficiency.

Approximate computing units Classic computing units are usually grouped into

two broad categories: general purpose computing units and special purpose com-

puting units. General purpose units combine high-level instructions to realize

generic tasks. On the contrary, special purpose units are built to fast execute

a set of predefined actions. Along this same lines, AxC has been applied (i)

to enhance general purpose computing units that execute selected instruction

(or code segments) in an energy-efficient fashion [54], [55] and (ii) to transform

whole approximable algorithms into neural accelerators [56].

Approximate memories Some problems limit the energy efficiency of conventional

SRAMs and DRAMs, in the precise domain. SRAMs start producing errors

when the operating voltage decreases under a threshold, and they are also vul-

nerable to particle strikes if not properly protected by using big memory cells.

AxC profits from data resiliency by systematically storing the least significant

bits in energy-efficient small SRAM cells [57]–[59]. Conventional DRAMs need

to be refreshed periodically, which entails a big energy consumption. To take

advantage of error-resilient data, AxC techniques apply longer refresh peri-

ods to memory rows storing those data to improve energy-efficiency [60]–[62].

In [63], also multi-level approximate memory architecture based on data sig-

nificance analysis was proposed. Furthermore, the applicability for approxi-

mate computing of emerging non-volatile memories, such as the Spin Transfer

Torque Magnetic RAM (STTMRAM), has been evaluated in [64].

Approximate storage In solid-state storage units, a lot of effort in terms of energy/latency

is required to precisely store and retrieve multiple data. AxC comes into play

14 Chapter 1. Context and background concepts

when data precision can be relaxed, thus storage and retrieval can be per-

formed with less effort. Moreover, storing resilient data into overused storage

blocks increases the lifetime of the storage unit [65].

1.2.4 Circuit-level AxC

Finally, we come to circuit-level, where AxC has basically been applied in two ways:

(i) over-scaling and (ii) functional approximation. Over-scaling consists in lowering the

circuit supply voltage to reduce its energy consumption. If the circuit is systemati-

cally designed to profit from over-scaling [66], [67], the timing errors are negligible

compared to the energy gain. Nevertheless, the energy gain for over-scaling tech-

niques turns out to be still small [1]. Therefore, a considerable amount of works

has been presented on circuit functional approximation: the circuit functionality is

systematically changed – thus, some controlled errors are introduced – to achieve

energy-efficient circuits. So far, three main approaches have been used to design

approximate integrated circuits (AxICs):

Ad-hoc approximate circuits RMS applications mostly rely on simple arithmetic

operations, such as addition and multiplication. A lot of work have been done

to realize energy-efficient and performance-enhanced approximate adders [10],

[11], [22], [23], [25], [68]–[71]. A comprehensive review and comparison can

be found in [6]. Moreover, non-volatile logic-in-memory approximate adders

were proposed in [72]. Specifically, Spin Torque Transfer Magnetic Tunnel

Junction (STT-MTJ) was used to implement a magnetic full adder. Further-

more, also a lot of effort has been put in the design of approximate multipli-

ers [5], [7], [8], [13], [25].

Approximate circuit synthesis Unlike above discussed arithmetic circuits, for gen-

eral logic circuits we cannot use ad-hoc techniques, due to the exponential

complexity that VLSI circuits bring along. In the eighties, logic minimiza-

tion techniques were proposed to cope with this complexity and drive the

cutting-edge automated logic synthesis techniques [73]. First attempts of AxC-

oriented methodologies have been proposed in [14] and [74] to implement the

automated synthesis of AxICs. The main challenge was the absence of a well-

accepted error model for general circuits. In fact, only simple error models

were used. Therefore, some frameworks to flexibly represent the error were

proposed in [15], [20], [75]. Finally, also RTL-level [76] and HLS-level [77], [78]

languages were proposed to guide the approximation-oriented logic synthesis.

1.2. Approximate computing (AxC) 15

Hardware neural accelerators The intrinsic approximate nature of neural acceler-

ators are particularly suitable to implement approximate functions. Different

works have been proposed on hardware neural network implementations both

with digital logic circuits [56] (precise and reliable) and analog circuits [79]

(compact and energy-efficient). Furthermore, also ReRAM crossbar arrays

were used to implement really energy-efficient solutions [80]. However, chal-

lenges related to the interfacing energy overhead and to the premature tech-

nology still have to be faced.

1.2.5 Error Metrics for Approximate Computing

As highlighted in previous subsections, error metrics are needed to drive the ap-

proximation of computing systems. Indeed, it is mandatory to measure the error in-

troduced by approximations to correctly produce systems delivering good-enough

results. At different abstraction levels, we can define suitable error metrics. For low-

level-abstraction approximation techniques, such as circuit-level ones, some well-

accepted error metrics exist. Among commonly used metrics for AxICs we can

mention Error Magnitude (EM), Bit-Flip Error (BFE), Worst Case Error (WCE), Mean

Absolute Error (MAE), Mean Squared Error (MSE), Error Probability (EP), and Worst

Case Bit-Flip Error (WCBFE) [30], defined as follows:

EMi =
∣∣∣Oapprox

i −Oprecise
i

∣∣∣ , i ∈ I (1.1)

BFEi =
n−1

∑
j=0

(Oapprox
i,j)⊕ (Oprecise

i,j), i ∈ I (1.2)

WCE = max
∀i∈I

∣∣∣Oapprox
i −Oprecise

i

∣∣∣ (1.3)

MAE =

∑
∀i∈I

∣∣∣Oapprox
i −Oprecise

i

∣∣∣
2n (1.4)

MSE =

∑
∀i∈I

∣∣∣Oapprox
i −Oprecise

i

∣∣∣2
2n (1.5)

EP = ∑
∀i∈I : Oapprox

i 6=Oprecise
i

1
2n . (1.6)

WCBFE = max
∀i∈I

n−1

∑
j=0

(Oapprox
i,j)⊕ (Oprecise

i,j) (1.7)

where:

16 Chapter 1. Context and background concepts

i ∈ I input value within the set of all possible inputs I

Oprecise
i precise output integer representation, for input i

Oapprox
i approximate output integer representation, for input i

n number of input signals to the circuit

Oi,j j-th bit of the Oi output (precise or approx)

However, as it can be deduced from Subsection 1.2.1, for higher abstraction

levels, error metrics are application-dependent. Thus, approximation techniques

should take into account the final application that the approximate system will ex-

ecute. Unfortunately, this not happens at all levels, yet. Authors in [81] show

that, while circuit-level approximations provide a promising energy gain, this is

not reflected at application level. Indeed, they compared carefully sized (via trun-

cation and rounding) fixed-point arithmetic operators and state-of-the-art approxi-

mate arithmetic circuits. They used both the approaches to implement different real-

life applications and discovered that low-level approximated circuits (or low-level

operators) lead to a lower gain compared to carefully sized arithmetic (high-level)

operators. This happens because low-level operator approximation is performed by

ignoring the context where such operator will be used (i.e., other operations in the

application).

The relationships between metrics at different levels has not been thoroughly

studied, yet. Preliminary studies have been proposed to evaluate the impact of lo-

cal approximations on real-life application output by using error propagation mod-

els [82]–[84].

1.3 Testing circuits in approximate context

In this section, we introduce the topic of this thesis: test techniques for approximate

circuits. In order to correctly understand the motivations of this work, we firstly

need to present one of the major problems nowadays affecting nano-scale CMOS

technology, i.e. process variation or variability:

“Random errors, usually denoted as variability, are the result of the stochas-

tic nature of many physical processes that take place during the fabrication of

integrated circuits. [...] Continuous scaling of CMOS technologies into the

nanometer range has increased the effect of variability and degradation mecha-

nisms on the yield and reliability of CMOS circuits and systems.” — Gielen et

al. 2008 [31].

1.3. Testing circuits in approximate context 17

FIGURE 1.4: Reliability decrease with technology scaling [85]

As depicted in Figure 1.4 from [85], the continuous technology scaling of CMOS

technology is affecting more and more the reliability of integrated circuits. In fact,

as the technology shrinking process further pushes the miniaturization of CMOS

transistors, the normal lifetime of ICs is the more and more reduced.

AxC, as described in the last section, aims at transforming this problem into an

opportunity. The basic idea is to “embrace” errors as an intrinsic property of inte-

grated circuits and systematically design optimized approximate circuits function-

ing regardless of errors. In this regard, the ultimate goal is to increase the production

yield (i.e., the percentage of acceptable circuits, among all fabricated circuits), by ac-

cepting degraded circuits that still work acceptably. To achieve such a goal, test

procedures have to be re-designed to be aware of the introduced approximation.

Therefore, we need to consider how AxC impacts on the role of hardware testing.

In the context of AxICs, the concept of faulty circuit changes and needs a thorough

investigation. As described in previous section, functional approximation aims to

achieve gains in efficiency (time/area/energy) by relaxing some accuracy require-

ments. In order to still obtain satisfying results, designers carefully modify the cir-

cuit structure to introduce acceptable error. In order to define the concept of acceptable

error, designers resort to error metrics. Then, they define error thresholds to fix the

maximum allowed (i.e., acceptable) error.

In the testing context, the impact of detectable faults can be measured and ex-

pressed as error by using such metrics. If the obtained measure turns out to be

18 Chapter 1. Context and background concepts

higher than the acceptable threshold, then the circuit has to be rejected. However, it

may happen that the measured error stays below the acceptable threshold, then the

AxIC must not be rejected. Therefore, in this context, test procedures have a twofold

role:

• reject circuits whose observed error is greater than the threshold, and

• avoid detecting acceptable faults.

This ultimately leads to yield increase and possibly to the test cost reduction (i.e.,

fewer test vectors are needed to test fewer faults).

Besides, depending on the error metric, the fault impact changes. Indeed, by

stimulating a faulty AxIC with an input vector i, we can measure the error esi –

caused by the fault fs – by using a metric M. By considering the same input vector i

but another metric M̂, the error due to the same fault fs is measured as êsi . Usually, esi

and êsi have different values. Therefore, the fault fs can be considered as acceptable

or as catastrophic depending on the metric(s) considered for the final application.

As a result of this consideration, test procedures have to be carefully redesigned in

order to address the challenges introduced by the approximation and to profitably

take advantage of the opportunities. And that is why Approximation-Aware (AxA)

testing comes into play. We identify three main AxA testing phases:

AxA fault classification In this phase faults are classified into catastrophic (to test)

and acceptable (not to test), according to some metrics.

AxA test pattern generation This phase addresses the generation of test vectors able

to cover all the catastrophic faults and to leave – as much as possible – accept-

able faults undetected.

AxA test set application After the application of the test patterns, a further clas-

sification needs to be performed. The AxIC under test is classified either as

catastrophically faulty, or acceptably faulty, or fault-free.

As a result, only AxICs falling into the catastrophically faulty group will be re-

jected. This ultimately leads to a yield increase, since some faulty circuits – yet still

acceptable – will not be rejected.

1.4 Chapter summary

In this chapter we reviewed the background notions on which this thesis relies. In

Section 1.1, we recalled basic principles of conventional testing for integrated digital

1.4. Chapter summary 19

circuits. After a brief classification of test’s different goals, we reviewed defect mod-

eling, fault simulation concepts, test generation procedure, and some basic design-

for-test approaches, such as scan design and built-in self-test.

Afterwards, in Section 1.2, we reviewed the basic principles of Approximate

Computing (AxC) paradigm. In particular, we described the problem addressed by

AxC and the different contexts in which it has been applied. Indeed, several works

addressed the problem of identifying the suitable parts of a computing system for

applying AxC. Then, we showed that AxC has a very wide range of application. In-

deed, studies on software-level AxC, architectural-level AxC, and Circuit-level AxC

have been conducted in the last two decades.

Finally, we discussed the impact of AxC on the existing test procedures for logic

integrated circuits (ICs). Specifically, AxC led to the creation of a new class of IC, the

Approximate ICs (AxICs). As a consequence, test procedures for AxICs has to face

some challenges. However, AxICs introduced also some opportunities from which

test procedures can profit to improve test outcomes. This is, indeed, the topic of this

thesis: we propose techniques to suitably deal with the test of AxICs and profit from

the opportunities brought along by approximate computing.

21

Chapter 2

Approximation-Aware (AxA)

testing

Contents

2.1 AxA testing phases . 22

2.1.1 AxA Fault Classification . 22

2.1.2 AxA Test Pattern Generation 23

2.1.3 AxA Test Set Application . 23

2.1.4 Relationships between AxA test phases 24

2.2 Related work . 24

2.3 Illustrative example . 25

2.4 Chapter summary . 26

22 Chapter 2. Approximation-Aware (AxA) testing

In the context of approximate circuits (AxICs), test role has to be reconsidered.

Indeed, in presence of a fault, the actual error value at circuit’s output becomes

significant. According to [86], we classify AxIC faults into two groups, i.e., non-

redundant faults and approximation-redundant (ax-redundant) faults. Non-redundant

faults lead to error values higher than the acceptable threshold (catastrophic faults).

Those faults must be detected in the testing phase. Conversely, ax-redundant faults

cause error values lower than the threshold (acceptable faults). Those faults must

not lead to AxIC rejection. Therefore, in this context, the test objective is twofold:

1. avoiding that AxICs affected by non-redundant faults are shipped to the cus-

tomer;

2. ensure that AxICs affected by ax-redundant faults are not rejected.

The general and fundamental underlying assumption is the single fault condition,

widely used in test techniques [34]. The AxA testing key advantage is the yield in-

crease. Indeed, avoiding the detection of ax-redundant faults leads to reject fewer

circuits, while guaranteeing that AxICs shipped to customers still respect error con-

straints.

2.1 AxA testing phases

We identify three phases in AxA testing, i.e. fault classification, test pattern generation,

and test set application. Each phase needs some adaptations, compared to the con-

ventional testing approach, to be properly applied to AxICs. Below, we describe the

different phases and introduce some useful metrics that we use all along this thesis

to evaluate the AxA testing techniques.

2.1.1 AxA Fault Classification

While in conventional test techniques faults are classified into detectable, redundant

and undetectable w.r.t. their detectability, in AxA testing the fault classification needs

to be extended w.r.t. error metrics. In this perspective, the detectable class is ex-

tended by including, as sub-classes, the two aforementioned ax-redundant and non-

redundant classes. The part of detectable faults classified as ax-redundant consti-

tutes the expected Yield Increase (eYI), expressed as follows:

eYI =
ax-redundant faults

total faults
(2.1)

The purpose of such a metric is to establish an upper bound to the achievable yield

gain. To turn eYI in an actual gain, we have to go through the other two phases.

2.1. AxA testing phases 23

2.1.2 AxA Test Pattern Generation

In conventional testing, we generate input vectors to test all the faults classified as

detectable. In AxA testing, test vectors should target only non-redundant faults,

in order to prevent catastrophic errors at circuit outputs. Moreover, the obtained

test vectors should detect as few ax-redundant faults as possible. Indeed, a test

vector testing a non-redundant fault could also detect an ax-redundant fault. This,

in turn, would lead to consider the AxIC as faulty, although it is still acceptable. This

phenomenon is also known as over-testing, i.e., a good product is considered as faulty

by the test process. This can lead to a yield increase lower than expected. Therefore,

the concept of test set quality needs to be revisited by dividing the fault coverage (FC)

into ax-redundant FC (axR FC) and non-redundant FC (nR FC), as defined below:

axR FC =
detected ax-redundant faults

ax-redundant faults
(2.2)

nR FC =
detected non-redundant faults

non-redundant faults
(2.3)

The first one has to be kept as low as possible, the second one has to be maximized.

2.1.3 AxA Test Set Application

In the conventional test set application phase, observing a circuit response different

from the expected one always leads to circuit rejection. On the contrary, in AxA

testing, whether the erroneous response is due to an ax-redundant fault or to a non-

redundant fault must be taken into account. The test still passes if an ax-redundant

fault caused the error, otherwise it fails.

We use another metric to evaluate the effect of the AxA testing procedures on the

yield, the Yield Increase Loss (YIL), defined below:

YIL =
detected ax-redundant faults

total faults
(2.4)

It describes the value of the yield increase not achieved due to the detection of ax-

redundant faults. The YIL is in the range [0, eYI]. We can observe that the YIL can

be expressed also as follows:

YIL = axR FC · eYI (2.5)

This means that the axR FC metric represents the part of eYI that is not actually

achieved, after the whole test procedure application. Therefore, if axR FC = 0

then YIL = 0 (i.e., maximum yield increase). On the contrary, if axR FC = 1 then

24 Chapter 2. Approximation-Aware (AxA) testing

YIL = eYI, thus the achieved yield increase is null.

2.1.4 Relationships between AxA test phases

Below, we describe how the three AxA testing phases influence each other.

Fault classification impact on test pattern generation The result of the fault classi-

fication impacts on the effort needed in the test pattern generation. For in-

stance, let us consider a generic AxIC where a lot of faults are classified as

ax-redundant. Generating test vectors detecting all the non-redundant faults

and avoiding the detection of all the ax-redundant ones would be a hard task,

maybe impossible. On the contrary, an AxIC with a few ax-redundant faults

would more probably lead to a high-quality test vector generation. Ultimately,

as discussed in Chapter 1, this depends on the error metric.

Test pattern generation impact on test set application The test set quality, obtained

in generation phase, determines the effort necessary in test set application

phase to correctly detect faults. Indeed, if the generation phase succeeds in ob-

taining a 0% axR FC, then no extra effort is required in test application phase

compared to the conventional one. Conversely, if the axR FC cannot be kept at

0%, then extra effort is necessary in test application phase to distinguish non-

redundant faults from ax-redundant ones. This aspect is especially critical in

the context of self-testing hardware (see Chapter 6).

2.2 Related work

The three AxA testing phases can be separated or somehow mixed together. In [32],

threshold testing principle was introduced and applied to conventional circuits in or-

der to increase the production yield. Although the threshold testing was not applied

in the AxICs context, it is an example of non-conventional testing. In this technique,

the criterion to identify acceptable faults is defining a threshold based on the nu-

merical error magnitude (see Equation 1.1) observed at circuit outputs. By imposing

vector generation constraints, authors were able to produce test vectors targeting

non-acceptable faults. Specifically, given an input vector, it could generate either an

error higher than the threshold or lower, in presence of a detectable fault. In the first

case, authors classified such fault as non-acceptable. Thus, they included the vector

in the test-set. Conversely, if no input vector could sensitize above-threshold errors

for the given fault, they classified it as acceptable. In this way, they were capable

of classifying faults and generating test vectors only for non-acceptable faults at the

2.3. Illustrative example 25

same time. Nevertheless, a test vector detecting a non-acceptable fault could still de-

tect an acceptable one. Therefore, authors modified the test set application phase to

verify whether the test responses were under the threshold or not. Threshold testing

was applied only to non-approximate ICs and by considering only error magnitude

metric. Thus, it can be considered as a special case of AxA testing [26]. In the next

section, we introduce an illustrative example and briefly summarize the AxA testing

purpose.

2.3 Illustrative example

Let us now introduce the simple example in Figure 2.1. We will refer to it all along

the thesis to discuss the different aspects of the AxA testing.

In the figure, we report a 1-bit Full Adder (FA) (2.1a) and an approximate version

of it (2.1b). We obtained the approximate version by simply setting the output Co = 0

in the FA and re-synthesizing the circuit. This functional approximation led to a

more efficient circuit, i.e. with reduced area (2 logic gates instead of 5) and lower

delay (2 logic levels instead of 3), but with some errors at outputs. Figure 2.1c reports

the truth tables of both the circuits. For the reader convenience, we also report the

integer representation of both the circuit outputs (see “Int” column). As reported in

Figure 2.1d, by considering all the possible circuit inputs i ∈ I , we can calculate the

error values according to metrics described by Equations 1.3, 1.4, 1.5, 1.6, and 1.7.

Values reported in Figure 2.1d are a direct consequence of the approximation. They

constitute the error threshold values of the AxIC, fixed by specification and known

at design time.

Depending on the application context within which the AxIC will be utilized,

considering a specific error threshold can be more appropriate than another. Erro-

neous values produced by the AxIC are supposed to be never higher than the thresh-

old considered for the final application. However, in the manufacturing phase, some

defects can occur. As a result, the output’s error value can unexpectedly be higher

than the threshold. Therefore, the fault classification has to recognize faults lead-

ing to such condition (i.e., non-redundant faults) and faults that cause error lower

than the threshold (i.e., ax-redundant faults). Afterwards, the test pattern generation

aims at producing high quality test sets, i.e. able to maximize nR FC and to mini-

mize axR FC (see Equations 2.2 and 2.3). Finally, the test set application analyzes test

responses to avoid over-testing, ultimately increasing the final yield.

26 Chapter 2. Approximation-Aware (AxA) testing

(A) Golden circuit

(B) Approximate
Circuit

Input (I)
Golden

output (Oprecise
i)

Approximate
output (Oapprox

i)
i Ci X Y Co S Int Co S Int
0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 1 1 0 1 1
2 0 1 0 0 1 1 0 1 1
3 0 1 1 1 0 2 0 0 0
4 1 0 0 0 1 1 0 1 1
5 1 0 1 1 0 2 0 0 0
6 1 1 0 1 0 2 0 0 0
7 1 1 1 1 1 3 0 1 1

(C) Truth tables

Error
Metric Value

WCE 2
MAE 1
MSE 2
EP 0.5

WCBFE 1

(D) Error metric table

FIGURE 2.1: Schematics of the Full adder (a) and of its approxima-
tion (b) obtained by re-synthesizing the circuit with Co = 0; (c): truth
tables of both goden (i.e., non-approximate) and approximate ver-
sions. Output’s integer representation for both circuits are also re-
ported ("Int" column); (d): approximate circuit’s error metric values.

2.4 Chapter summary

In this chapter we introduced the Approximation-Aware (AxA) testing. We clas-

sified faults affecting an AxIC into approximation-redundant (ax-redundant) and

non-redundant. Respectively, those are acceptable and catastrophic faults.

AxA testing has two basic objectives: (i) detecting all non-redundant faults af-

fecting an AxIC and (ii) ensure that AxICs affected by ax-redundant faults are not

rejected. In particular, the second objective has e key advantage, i.e. the yield in-

crease.

AxA testing is composed of three phases: (i) fault classification, test pattern gen-

eration and test set application. Briefly, classification has to classify faults into non-

redundant (to test) and ax-redundant (not to test). Test pattern generation produces

2.4. Chapter summary 27

test vectors to cover all the non-redundant faults and to leave ax-redundant ones

undetected. Test set application classifies AxICs into catastrophically faulty, acceptably

faulty, fault-free.

We presented an illustrative example to suitably describe the proposed tech-

niques all along the thesis. We also defined some metrics to evaluate the techniques.

29

Chapter 3

AxA fault classification

Contents

3.1 Problem statement . 30

3.2 SCT-metric-aware fault classification 32

3.2.1 Proposed technique . 33

3.2.2 Experimental results . 34

3.2.3 Related works . 35

3.2.4 Comparison . 36

3.3 ME-metric-aware fault classification 37

3.3.1 Proposed technique . 37

3.3.2 Experimental Results . 39

3.4 Chapter summary . 41

30 Chapter 3. AxA fault classification

In this chapter, firstly we discuss how the fault classification complexity is im-

pacted by the error metric choice (Section 3.1). Indeed, as previously discussed, the

error caused by a fault – along with the effort to measure it – can change significantly

depending on the considered metric. Then, in Sections 3.2 and 3.3, we describe the

issues related to classifying faults when considering different error metrics. Fur-

thermore, we introduce two techniques to realize the fault classification in different

conditions. Finally, in Section 3.2.3, we show related works on AxA fault classifica-

tion.

3.1 Problem statement

In Table 3.1, we report the error threshold value alterations caused by all possible

Stuck-at faults in the approximate FA (Figure 2.1). The fault list was generated with

a commercial tool [87] with the fault collapsing option active. We highlight in red

solid-bordered boxes the non-acceptable error values, i.e. higher than the respec-

tive thresholds t (Table 2.1d). Hereinafter, we use the notation SaX@N to indicate

Net Fault WCE MAE MSE EP WCBFE
t=2 t=1 t=2 t=0.5 t=1

a Sa0 3 1 2 0.625 2
a Sa1 2 1.25 2 0.875 2
b Sa0 3 1 2 0.625 2
b Sa1 2 1.25 2 0.875 2
c Sa0 2 1 1.5 0.75 2
c Sa1 3 1.25 2.5 0.75 2
d Sa0 3 1 2 0.625 2
d Sa1 2 1.25 2 0.875 2
e Sa0 3 1.5 3 0.875 2
e Sa1 2 0.75 1 0.625 2

TABLE 3.1: Approximate full adder error metric values for all possi-
ble Stuck-at faults, under single-fault assumption.

a "stuck-at-X affecting the net N", where X can be either the value 1 or 0 and N is

the label of the net. Please, refer to Figure 2.1-b for the net labels. By observing

the table, we can firstly remark that not all the metrics are impacted by the same

faults. While all the faults impact EP and WCBFE, some faults affect the WCE and

not MAE and MSE, some others have an effect on the MAE and not on WCE and

MSE. Furthermore, in some particular cases, faults even reduce the observed error

(green dash-bordered boxes in Table 3.1). Moreover, we report in Figure 3.1-a the er-

ror magnitude (EM) profile of the fault-free approximate circuit (i.e. the circuit produces

errors due to the approximation and not due to manufacturing defects); also, three

EM profiles in presence of a fault are reported. Specifically, we show the EM profile

3.1. Problem statement 31

for the following faults: Sa0@a (Figure 3.1-b), Sa1@a (Figure 3.1-c), and Sa1@e (Fig-

ure 3.1-d). The figures show how the EM profile changes differently, depending on

00
0

00
1

01
0

01
1

10
0

10
1

11
0

11
1

Input value

0

1

2

3

E
rr

or
 M

ag
ni

tu
de

Fault free AxIC

00
0

00
1

01
0

01
1

10
0

10
1

11
0

11
1

Input value

'S-at-0 @ a' effect

00
0

00
1

01
0

01
1

10
0

10
1

11
0

11
1

Input value

'S-at-1 @ a' effect

00
0

00
1

01
0

01
1

10
0

10
1

11
0

11
1

Input value

WCE: 2
MAE: 1
MSE: 2
EP: 0.5
WCBFE: 1

WCE: 3
MAE: 1
MSE: 2
EP: 0.625
WCBFE: 2

WCE: 2
MAE: 1.25
MSE: 2
EP: 0.875
WCBFE: 2

WCE: 2
MAE: 0.75
MSE: 1
EP: 0.625
WCBFE: 2

'S-at-1 @ e' effect

(a) (b) (c) (d)

FIGURE 3.1: (a) Error profile of the fault-free approximate circuit; (b)
approximate circuit error profile in presence of the S-at-0 fault at the a
net; (c) approximate circuit error profile in presence of the S-at-1 fault
at the a net; (d) approximate circuit error profile in presence of the

S-at-1 fault at the e net.

the fault. As a result, the errors measured by the different metrics change, too. The

fault impact on MAE and MSE depends on the variation of each bar in the graph. In

other words, it depends on the EM of the AxIC for each possible input. Similarly, the

impact of the fault on the EP depends on the variation of the total number of input

vectors generating an error. WCE and WCBFE values change only if the maximum

possible error changes, as a result of the fault.

Let us focus on WCE as the relevant metric for a final application. To classify

the fault as non-redundant, it is sufficient to prove the existence of an input vector

leading the error to exceed the WCE threshold (i.e., 2). This is the case for Sa0@a

(Figure 3.1-b). The input vector ’111’ leads to EM = 3. Conversely, if we can prove

that such input vector does not exist (as for some other faults, in the example), we

can classify the fault as ax-redundant w.r.t. the WCE metric.

On the other hand, when performing the classification according to metrics such

as MAE, MSE and EP, the task becomes more complex. Since each input vector

contributes to the final error measure, finding a single input vector i for which the

fault effect increases the EM is not enough to classify the fault as non-redundant

w.r.t. MAE, MSE and EP. In fact, we could find another vector j "balancing" the

effect of i. In our example, in the case in Figure 3.1-b, we can see how the vectors

’010’, ’011’, ’110’, and ’111’ "balance" each other effects: some vectors increase the

error value, some others decrease it, ultimately leading to a null effect according

to the metric. Therefore, we need to measure the fault impact on the final error

for all possible circuit input vectors. When the complexity of the measure becomes

unmanageable, a workload-dependent subset of input vectors may be used.

In conclusion, it turns out to be less complex to evaluate the impact of a fault

when considering metrics for which only a single condition has to be verified, as

the WCE. Henceforth, we refer to those metrics as single-condition-test (SCT) metrics.

32 Chapter 3. AxA fault classification

Conversely, classifying faults according to metrics which involve the calculation of

a mean is a O(2n) complexity problem, where n is the number of input bits. We refer

to such metrics as Mean Error metrics (ME metrics).

3.2 SCT-metric-aware fault classification

A common idea characterizes all the works in the literature related to AxIC fault

classification, when considering SCT-metrics. To present it, let us refer to the afore-

mentioned FA example (Figure 2.1), using the WCE as SCT metric. The maximal

amount of allowed error (treshold t) according to the WCE is 2. The AxIC is con-

sidered faulty if it produces any deviation δ from the golden value which is greater

than 2. Any fault f modifying the AxIC output can either lead to reject the circuit

(δ > 2, non-redundant fault) or not (δ ≤ 2, ax-redundant fault). Therefore, to clas-

sify a fault as non-redundant, the existence of an input vector I leading the faulty

AxIC to exhibit δ > 2 has to be demonstrated. If such vector does not exist, then

the fault is classified as ax-redundant. To do so, a delta module calculating the devia-

tion caused by f can easily be embedded in the scheme represented in Figure 3.2. A

FIGURE 3.2: SCT-metric-aware classification scheme

digital circuit can easily implement the mentioned scheme. By using an automatic

test pattern generation (ATPG), one can find the aforementioned input vector I, if

it exists. Likewise, one can also resort to a Boolean SATisfiability problem (SAT)

formulation to represent the scheme. By solving the SAT problem, one can prove

whether the input vector I exists or not. Both SAT and ATPG-based techniques for-

mally prove whether the vector I exists or not [26]. Concerning the FA example,

the I vector exists for five out of ten faults, classified as non-redundant according to

WCE metric (see Table 3.1).

3.2. SCT-metric-aware fault classification 33

3.2.1 Proposed technique

In [88], we propose an ATPG-based fault classification for AxICs. We exploit the effi-

cient ATPG structural algorithms to classify faults according to the WCE metric and,

at the same time, to obtain test vectors detecting non-redundant faults (see Chap-

ter 4). As mentioned, the underlying idea is to embed the AxIC into the architecture

shown in Figure 3.2. Let us call it ax-redundant fault masking (AxRFM) architecture.

Then, we use the ATPG to correctly classify the faults. The AxRFM fundamental

property is that, in absence of faults, no inputs violates the delta module condition

(i.e., no unacceptable errors are produced). Therefore, only faults leading to an EM

greater than the threshold can violate the delta module condition. As a result, the

ax-redundant faults cannot violate the delta condition, thus they cannot be detected

by the ATPG. Figure 3.3 depicts the overall flow of the proposed approach, that is

Approximate
Circuit Netlist

AxRFM
Generator

Non-redundant
Fault List

AxRFM

ATPG

Test Set

Error Metric/Threshold
Precise Circuit

Netlist

 Fault list

FIGURE 3.3: A schematic view of the proposed flow

composed of two main steps:

1. the AxRFM Generation,

2. the ATPG.

The first step requires as inputs both precise and approximated circuit netlists, the

knowledge of the SCT error metric and the corresponding threshold. The obtained

AxRFM is able to determine whether a given input vector produces unacceptable

errors (i.e., an output with an EM exceeding the threshold) or not. By targeting

only AxIC’s faults, in the second step the ATPG will be able to sensitize only non-

redundant faults. As it can be imagined, the AxRFM will never be manufactured.

Its only purpose is the fault classification at design time.

34 Chapter 3. AxA fault classification

3.2.2 Experimental results

We applied the ATPG-based classification technique on a large set of approximate

arithmetic circuits from the public approximate component library EvoApprox8b [25].

Specifically, we carried out experiments on more than 1100 different AxICs, namely

8-bit adders (Add8), 8-bit, 16-bit and 32-bit multipliers (Mul8, Mul16, Mul32). Au-

thors of [25] obtained adders by functional approximation of a Ripple-Carry Adder

(RCA), a Carry-Select Adder (CSA), a Carry-Look-ahead Adder (CLA), a multiple

Tree Adder (TA) and a Higher Valency Tree Adder (HVTA). As for multipliers, they

were obtained by functional approximation of Ripple-Carry Array, multiple Carry-

Save Array and Wallace Tree architectures. Table 3.2 reports, for each family, the

Circuit family Units WCE range
Add8 448 1 - 168
Mul8 471 1 - 3204
Mul16 60 3.9 · 104 - 8.5 · 108

Mu32 153 7.3 · 1010 - 1.8 · 1018

TABLE 3.2: EvoApprox8b Circuits’ WCE range

number of circuits (Units column) and the WCE range. For example, in the 8-bit

Adders family we have 448 circuits with a WCE between 1 and 168. In the exper-

iments, we resorted to Stuck-at-Fault (SaF) and Transition Fault (TF) models and

a commercial ATPG [87], instrumented using the conventional options. Table 3.3

shows experimental results from [88]. As discussed in Section 2.1, the results of

SaF TF
eYI* Avg. eYI* Avg.

Avg. Max. Min. Time(s) Avg. Max. Min. Time(s)
Add8 19% 99% 0% 0.64 25% 99% 0% 0.64
Mul8 55% 85% 1% 0.91 55% 84% 1% 1.01
Mul16 62% 94% 28% 0.96 64% 97% 23% 1.04
Mul32 85% 99% 41% 2.60 87% 99% 42% 2.78
*eYI: expected Yield Increase

TABLE 3.3: ATPG-based fault classification results [88], in terms of
expected Yield Increase (eYI)

the AxA Fault Classification phase can be described by using the expected Yield In-

crease (eYI) metric (Equation 2.1), which measures the portion of faults classified as

ax-redundant. Therefore, for a given AxIC, eYI value expresses the upper bound for

the final achievable yield gain. In the experiments, for the majority of the circuits,

eYI was above 50%, on average. Only for 8-bit adders it was on average around

19%, when using the SaF model, and 25%, when using the TF model. Concerning

the execution time, we performed all the classifications in less than 3 seconds, on

average.

3.2. SCT-metric-aware fault classification 35

3.2.3 Related works

In the literature, some studies dealing with AxA fault classification according to

SCT-metrics have been presented. In [86], authors propose a SAT-based solution.

Briefly, a SAT problem is defined as the problem of determining whether a combi-

nation of Boolean variables assignments satisfying a given Boolean formula exists,

(i.e., the final value of the formula is TRUE). Basically, they exploit the so-called Ap-

proximation Miter (AxMi) presented in [89] to perform the fault classification. For

each fault in the fault list, an AxMi is constructed, having the structure shown in

Figure 3.2. Then, they derive a SAT problem instance out of it. The resolution of

the SAT problem provides the fault classification. With the AxMi designed in this

way, it is possible to identify a combination of Boolean variable values such that

the given error threshold is violated. If an input is found, the current fault is clas-

sified as non-redundant; otherwise, it is classified as approximation-redundant. Af-

terwards, they use conventional ATPG to generate test vectors, by targeting only

the non-redundant faults. They address only SCT metrics (i.e., WCE and WCBFE).

Authors performed experiments on a large set of AxICs. Specifically, they used

16-bit adders from [11], [22], [23], [70], some arithmetic designs proposed in [90],

along with EPFL [91] and ISCAS-85 [92] benchmarks. All the mentioned circuits are

precise. Therefore, they applied a previously proposed dedicated approximation

scheme [93]. Furthermore, they performed experiments on 11 state-of-the-art ap-

proximate 16-bit adders from [11], [22], [23], [70]. They targeted the Stuck-at-Fault

model. Table 3.4 reports experimental results from [86]. Results show significant

WCE WCBFE
eYI* Avg. eYI* Avg.

Avg. Max. Min. Time(s) Avg. Max. Min. Time(s)
Ax 16-bit adders1 58% 71% 42% 16 29% 68% 10% 5

Arith designs2 47% 77% 18% 3355 35% 81% 3% 89
EPFL bench3 33% 62% 7% 5833 44% 62% 11% 10291

ISCAS-85 bench4 40% 81% 9% 302 45% 78% 3% 1517
*eYI: expected Yield Increase
1from [11], [22], [23], [70] 2from [90] 3from [91] 4from [92]

TABLE 3.4: SAT-based fault classification results [86] in terms of ex-
pected Yield Increase (eYI)

expected Yield Increase (eYI) (Equation 2.1) values, especially when considering the

WCE metric. Indeed, on average, the eYI is between 33% and 58% with a maximum

of 81%. For the WCBFE metric, results show an average between 29% and 45% with

again a maximum of 81%.

In [94] another SAT-based solutions is proposed to classify faults according to the

36 Chapter 3. AxA fault classification

WCE metric and obtain test vectors to detect non-redundant faults (see Chapter 4).

Authors performed experiments on some circuits developed in [24]. Specifically,

they used some floating-point circuits (Adder, Comparator, Multiplier, Divider, and

Sqrt) and two fixed-point circuits (Multiplier and Divider) with variable fraction

parts (5, 8 and 11 bits). They targeted the Stuck-at-Fault model and considered dif-

ferent accepted error margins ranging from 5% to 30%. In [94] authors expressed

their results in terms of Fault Reduction (FR). For example, for a non-redundant

faults reduction from 100 to 80 (thus leaving 20 ax-redundant faults), they expressed

the result as FR = 100
80 = 1.25. To be consistent with other results reported, we

converted their results in terms of eYI by applying the subsequent formula:

eYI = 1− 1
FR

. (3.1)

In the above example, eYI = 1− 1
1.25 = 0.2. By resorting to Equation 2.1, we find the

correct number of ax-redundant faults, i.e. 20.

Floating-point circuits Fixed-point multiplier Fixed-point divider
Error

margin
5% 10% 15% 20% 25% 30% 5% 10% 15% 20% 25% 30% 5% 10% 15% 20% 25% 30%

eYI*
Avg. 13% 32% 52% 64% 73% 78% 20% 43% 55% 65% 71% 76% 15% 37% 52% 63% 69% 73%
Max. 19% 39% 58% 71% 80% 84% 30% 55% 66% 73% 77% 80% 23% 50% 64% 72% 76% 80%
Min. 7% 29% 47% 58% 65% 68% 7% 20% 35% 44% 53% 62% 3% 14% 29% 39% 47% 55%

Average Time (s): 4376
*eYI: expected Yield Increase

TABLE 3.5: SAT-based fault classification results [94] in terms of ex-
pected Yield Increase (eYI)

In Table 3.5, we report the eYI results. Also in this work, results show a significant

eYI. On average, they obtained result in the range between 13% and 78% eYI.

3.2.4 Comparison

Now, let us make some observations. As reported in [26], both SAT and ATPG-

based techniques formally prove whether a fault is non-redundant or ax-redundant.

Therefore, state-of-the-art techniques [86], [94], as well as our proposed one [88]

(Subsection 3.2.1), are able to correctly classify faults into non-redundant and ax-

redundant. Moreover, circuits on which the experiments have been performed are

different. However, they are fairly comparable in size and complexity. Thus, to

compare the proposed technique with the state-of-the-art ones, we can refer to the

execution time.

The technique presented in [86] required, on average, from 5 to 1.0291 ∗ 104 sec-

onds to complete the classification task for different circuit classes (see Table 3.4).

Similarly, the technique presented in [94] reported an average execution time of

4.376 ∗ 103 seconds (see Table 3.5). On the contrary, our proposed technique entails

3.3. ME-metric-aware fault classification 37

a much shorter execution time. Indeed, as reported in Table 3.3, proposed technique

average execution time is shorter than 3 seconds.

3.3 ME-metric-aware fault classification

As highlighted in Section 3.1, classifying faults according to ME metrics is more

complex compared to SCT metrics. As shown in Figure 3.1-b, concerning MAE

and MSE metrics (Equations 1.4 and 1.5) we are interested in studying the impact

of a fault on the error magnitude for all input combinations (i.e., the variation of

EMi ∀i ∈ I). Alternatively, an application-workload-related subset of input vectors

J ⊂ I can be used. The goal is to understand whether a fault impact increases or

not the value of the sum of all the errors, for all input combinations (i.e., the term

∑
∀i∈I

∣∣∣Oapprox
i −Oprecise

i

∣∣∣). As for EP (Equation 1.6), we want to measure the impact of

a fault on the number of inputs combinations which cause Oapprox 6= Oprecise.

3.3.1 Proposed technique

In [95], we address the fault classification problem by considering ME metrics. We

propose the Fault Filtering Architecture (FFA) shown in Figure 3.4. Given a fault, an

input vector i, and a ME metric, the FFA is able to determine whether such fault

changes or not the metric value for the given vector (i.e., a single bar in Figure 3.1-a)

and also to compute the magnitude of the error variation (δi in the figure). Moreover,

since we measure the error variation δi, we do not need to know the actual error

threshold value. To show the idea behind this approach, we consider a faulty (fa)

FIGURE 3.4: Fault Filtering Architecture (FFA)

generic AxIC affected by a fault f and a fault-free (ff) AxIC. We use the MAE metric

38 Chapter 3. AxA fault classification

(Equation 1.4) to calculate the error in both cases, as follows:

MAE f f =

∑
∀i∈I

∣∣∣Oapprox f f
i −Oorig

i

∣∣∣
2n =

∑
∀i∈I

EM f fi

2n (3.2)

MAE f a =

∑
∀i∈I

∣∣∣Oapprox f a
i −Oorig

i

∣∣∣
2n =

∑
∀i∈I

EM f ai

2n (3.3)

Then, since we are interested in the MAE variation, we calculate the difference (δ),

as follows:

δ (MAE) = MAE f a −MAE f f =

∑
∀i∈I

EM f ai − EM f fi

2n =

∑
∀i∈I

δ (MAE)i

2n (3.4)

The δ (MAE)i value is the output of the FFA when input i is applied and MAE met-

ric is considered. Equation 3.4 represents the target value of the investigation: the

variation of the metric value, due to the fault. To obtain δ (MAE), the evaluation

of δ (MAE)i , ∀i ∈ I has to be performed. Finally, if δ (MAE) is less than or equal

to zero, then the fault f is classified as ax-redundant and filtered. Otherwise, the

fault is classified as non-redundant. The same considerations can be applied to the

MSE metric. Thus, the number of faults that will be filtered is the same for the two

metrics.

Concerning EP metric, let us introduce the following function:

u(EMi) =

1, if EMi > 0

0, if EMi = 0
(3.5)

By combining Equation 3.5 with EP metric (Equation 1.6), we calculate the EP of

fault-free (ff) and faulty (fa) generic AxICs as follows:

EPf f =

∑
∀i∈I

u
(
EM f fi

)
2n (3.6)

EPf a =

∑
∀i∈I

u
(
EM f ai

)
2n (3.7)

δ (EP) = EPf a − EPf f =

∑
∀i∈I

u
(
EM f ai

)
− u

(
EM f fi

)
2n =

∑
∀i∈I

δ (EP)i

2n (3.8)

The δ (EP)i value is the output of the FFA when input i is applied and EP metric is

considered. To obtain δ (EP), the evaluation of δ (EP)i , ∀i ∈ I has to be performed.

3.3. ME-metric-aware fault classification 39

Circuit family Units EP range MAE range MSE range
Add8 448 0.4% - 98.4% 0.25 - 31.5 0.25 - 3040
Mul8 471 0.1% - 99.1% 0.248 - 649.211 0.248 - 7.286·105

Mul16 60 100% 5.92·103 - 3.69·108 N/A
Mu32 153 100% 1.36·1010 - 8·1017 N/A

TABLE 3.6: EvoApprox8b Circuits’ EP, MAE and MSE ranges

If the δ (EP) value is less than or equal to zero, then the fault f can be considered as

ax-redundant. Otherwise, the fault is classified as non-redundant.

In conclusion, by using the exhaustive set of input vectors I , we perform the

classification. An application-workload-related subset J ⊂ I can be used if the

complexity of I is not manageable. Simulating vectors belonging to I (or J), while

Simulation
FFA

Inputs
AxIC
fault
list

δ report

Metric

Precise
IC netlist

AxIC
netlist

Report
analysis

Injection

FIGURE 3.5: Overall flow

injecting – one by one – all the faults, allows us to measure all the δi values. Figure 3.5

sketches the overall flow. The FFA is never manufactured. It is only used to support

the fault classification.

3.3.2 Experimental Results

In [95], we applied the FFA-based technique on small circuits (i.e., 8-bit adders and

multipliers from EvoApprox8b library [25]) by using the exhaustive set of input vec-

tors I . The simulation produced a detailed report about the fault impact on the EM

profile. In Table 3.7, we report the results. We performed the fault classification

MAE and MSE EP
eYI* Avg. eYI* Avg.

Avg. Max. Min. Time(s) Avg. Max. Min. Time(s)
Add8 2% 12% 0% 448 1% 9% 0% 107
Mul8 7% 21% 0% 72165 3% 10% 0% 924
*eYI: expected Yield Increase

TABLE 3.7: ME-metric-aware fault classification results of [95], in
terms of expected Yield Increase (eYI)

40 Chapter 3. AxA fault classification

by using MAE, MSE and EP metrics and the Stuck-at-fault model. It was possible

to perform the analysis of both MAE and MSE metrics with the same experiments.

Therefore, the eYI obtained was the same. In the case of multipliers, up to 21% eYI

was obtained when analyzing the MAE and MSE metrics and up to 10% when eval-

uating EP metric. For 8-bit adders, we achieved up to 12% eYI when considering

MAE and MSE metrics and up to 9% in the case of EP. When looking at the average

results, for 8-bit multipliers, 7% eYI was achieved for MAE and MSE and 3% for the

EP. For 8-bit adders, only 2% eYI for MAE and MSE and 1% for EP were attained.

Concerning the average execution time, results showed that it is quite long. This is

due to the intrinsic complexity of the problem.

Afterwards, we extended the experimental results by adding those obtained with

the rest of the EvoApprox8b library [25], specifically the 16-bit and 32-bit approxi-

mate multipliers. The whole set of possible inputs for 16-bit multipliers is composed

of 232 vectors (i.e., all the combinations of two 16-bit operands). For 32-bit multipli-

ers, we reach 264 vectors. Therefore, exhaustive analysis is quite time- and energy-

consuming. A workload-dependent analysis helps to cope with such a high com-

plexity. Thus, we performed experiments by using an input vector subset J ⊂ I
generated randomly. In Table 3.8, we report results obtained with a random in-

put vector set composed of 212 vectors. Note that the table reports only results for

MAE and MSE
eYI* Avg.

Avg. Max. Min. Time(s)
Mul16 12% 61% 1% 181
Mul32 21% 82% 1% 1765
*eYI: expected Yield Increase

TABLE 3.8: ME-metric-aware fault classification results for random
workload experiments, in terms of expected Yield Increase (eYI).

MAE and MSE, since EP values are already 100% by design (i.e., due to the ap-

proximation), for the examined circuits (see Table 3.6). Consequently, all the faults

are ax-redundant by design. As reported in Table 3.8, an average of 12% eYI was

achieved for 16-bit multipliers and 21% for 32-bit multipliers. When analyzing re-

sults, we have also to bear in mind that examined circuits have intrinsic quite high

ME-metrics thresholds, due to aggressive approximation (see Table 3.6). This con-

tributes to the higher eYI values. As expected, execution time of workload-related

experiments is reduced, compared to exhaustive ones.

In conclusion, the task itself is complex if addressed exhaustively. Nevertheless,

if workload-dependent analysis are carried out, complexity becomes manageable. In

the context of approximate computing this a fair assumption, since the performed

3.4. Chapter summary 41

approximations are application-dependent. As a consequence, application-related

workload can be used to classify faults.

As last observation, no other techniques to classify faults according to ME-metrics

have been proposed, so far. Therefore, any comparisons would not be significant.

3.4 Chapter summary

In this chapter we presented the AxA fault classification. We showed and discussed

the issues related to the fault classification in the context of AxICs. In particular,

we observed that the complexity of the task drastically changes depending on the

considered error metric. We showed how some metrics – referred to as Single Con-

dition Test (SCT) metrics – entail a smaller effort for the fault classification compared

to metrics based on the calculation of a mean – referred to as Mean Error (ME) met-

rics.

Firstly, we presented a technique to deal with fault classification when consider-

ing SCT metrics. The technique is based on a classifying architecture. Such a structure

allows classifying faults into non- and ax-redundant by measuring their impact on

AxIC’s output. The basic idea is to “hide” ax-redundant faults by using a filtering

box. Thus, for a given fault, an anomaly condition is generated only if the fault leads

to catastrophic output errors. The classifying architecture is never manufactured. It

is only used at design time to classify faults. We also presented related works in the

literature dealing with AxA fault classification. By comparing results obtained with

our proposed technique with those obtained by state-of-the-art techniques, we high-

lighted the reduced execution time entailed by our proposition (less than 3 seconds,

on average).

Secondly, we presented a technique to deal with fault classification when consid-

ering ME metrics. Again, the idea is to individuate non-redundant faults by using a

filtering mechanism. For a given fault, we were able to state whether the consequent

errors were catastrophic or acceptable. So far and to the best of our knowledge, the

presented technique is the first of its kind.

43

Chapter 4

AxA test pattern generation

Contents

4.1 Problem statement . 44

4.2 An Ax-aware technique . 47

4.3 An ILP-formulated Pattern Selection Procedure 47

4.3.1 Optimization problem . 49

4.3.2 Ax-aware ATPG as an ILP problem 50

4.3.3 Experimental results . 55

4.4 Evaluation . 59

4.5 Chapter summary . 62

44 Chapter 4. AxA test pattern generation

In this chapter we discuss the AxA test pattern generation problem and show our

propositions to address it. As discussed in Section 2.1, the role of AxA test pattern

generation is twofold: (i) test vectors should detect all non-redundant faults, in order

to prevent catastrophic errors at circuit outputs; (ii) the test set should detect as few

ax-redundant faults as possible, in order to not consider the AxIC as faulty when it

is still acceptable. In other words, a qualitatively good test set should achieve 100%

non-redundant FC (nR FC) and 0% ax-redundant FC (axR FC). However, two problems

can affect the test pattern generation procedure, as far as it concerns AxICs:

1. in order to achieve 100% nR FC, it is not always possible to avoid testing some

ax-redundant faults (i.e., axR FC > 0%);

2. conventional test generation procedures might not be able to achieve a quali-

tatively good test set.

The first problem is intrinsic to the structure of the AxIC under test, the second one is

relative to conventional test generation algorithms. Consequently, a still-good AxIC

affected by an ax-redundant fault would be rejected in test phase, leading to a yield

decrease. The phenomenon due to which a good product is considered as faulty

by the test process is commonly referred to as over-testing. This phenomenon, if not

properly managed, will eventually cause some yield reduction.

Let us put aside for a moment the first problem. Discussion and propositions

regarding it are postponed to Chapter 5. In Section 4.1, we discuss the second

problem in details. In Section 4.2 we show how the technique presented in Sub-

section 3.2.1 [88] partially addresses the issue. Then, in Section 4.3, we present a

new technique designed specifically to address AxA test pattern generation.

4.1 Problem statement

Let us refer to the FA example in Figure 2.1 to illustrate the mentioned problems.

In Table 4.1, we indicate again the error threshold value alterations caused by all

possible Stuck-at faults in the approximate FA. Furthermore, we report all the in-

put vectors detecting each fault. Firstly, let us assume that the fault classification

is performed by using the MSE metric (threshold t = 2). Table 4.1 shows that two

faults lead the error to be catastrophic, Sa1@c (MSE = 2.5) and Sa0@e (MSE = 3).

Both vectors 4 and 7 detect the two faults. However, both vectors detect also three

ax-redundant faults (37.5% axR FC). Moreover, there is no vector detecting all the

non-redundant faults and achieving 0% axR FC. This highlights the first aforemen-

tioned problem: to achieve 100% nR FC, it is not always possible to have also 0% axR

FC. This, in turns, leads to a yield increase lower than expected (YIL > 0). The same

4.1. Problem statement 45

Net Fault
WCE MAE MSE EP WCBFE Test vectors∗

t=2 t=1 t=2 t=0.5 t=1 0 1 2 3 4 5 6 7
a Sa0 3 1 2 0.625 2 x x x x
a Sa1 2 1.25 2 0.875 2 x x x x
b Sa0 3 1 2 0.625 2 x x x x
b Sa1 2 1.25 2 0.875 2 x x x x
c Sa0 2 1 1.5 0.75 2 x x x x
c Sa1 3 1.25 2.5 0.75 2 x x x x
d Sa0 3 1 2 0.625 2 x x x x
d Sa1 2 1.25 2 0.875 2 x x x x
e Sa0 3 1.5 3 0.875 2 x x x x
e Sa1 2 0.75 1 0.625 2 x x x x
∗0="000", 1="001",..., 7="111"

TABLE 4.1: Approximate full adder test vectors for all possible Stuck-
at faults, under single-fault assumption.

phenomenon occurs when considering the MAE metric (threshold t = 1). In this

case, five non-redundant faults are detected (Sa1@a, Sa1@b, Sa1@c, Sa1@d, Sa0@e).

The best test vector combination turns out to be {0, 4}, having 100% nR FC and still

40% axR FC. We can find other combinations, such as {0, 1}, {0, 2}, and {1, 4}, which

achieve 100% nR FC but also 60% axR FC. Thus, they have a lower quality. So, we

begin to see the second mentioned problem, well illustrated by resorting to the WCE

metric (threshold t = 2). Five non-redundant faults emerge from the classification

(Sa0@a, Sa0@b, Sa1@c, Sa0@d, Sa0@e). Among all the vector combinations that test

the five faults, some have a higher quality than others. For example, the combination

{1, 3, 6} attains 100% nR FC but also 100% axR FC. The combination {3, 4} achieves

100% nR FC and 80% axR FC. The best solution is to use only the vector {7}, which

indeed covers 100% of non-redundant faults, while having 0% axR FC. An ideal AxA

test pattern generation technique should produce the qualitatively best test set for the

relative metric.

Conventional ATPG algorithms do not give any guarantee of high-quality test

vector generation, when it comes to AxICs. To illustrate the phenomenon, we used

a commercial ATPG [87] to create test sets for the approximate FA of our example

(Figure 2.1). We instrumented the ATPG using the conventional options (static and

dynamic compaction) and used the Stuck-at-Fault model. For each metric, we used

the corresponding non-redundant fault list and we executed the ATPG to generate

test vectors. This is the test flow used in other state-of-the-art works [27], [86], [95]. In

Table 4.2, we report, for each metric, the solutions obtained with conventional ATPG

in term of test sets, axR FC and YIL, along with the ideal solutions (i.e., solutions that

an ax-aware generation should find: 100% nR FC and axR FC as low as possible).

We report also the non-redundant fault lists obtained from the fault classification,

46 Chapter 4. AxA test pattern generation

Conventional ATPG solution1 Ideal solution1

Metric Test sets axR FC2 YIL2 Test sets axR FC2 YIL2

MSE {4} 37.50% 30% {4} or {7} 37.50% 30%
WCE {1, 6, 0} 100.00% 50% {7} 0.00% 0%
MAE {1, 7, 0} 100.00% 50% {0, 4} 40.00% 20%

1100% non-redundant FC always achieved 2Lower is better

non-redundant fault lists:
MSE: Sa1@c, Sa0@e
WCE: Sa0@a, Sa0@b, Sa1@c, Sa0@d, Sa0@e
MAE: Sa1@a, Sa1@b, Sa1@c, Sa1@d, Sa0@e

axR FC = Ax-redundant FC
YIL = Yield Increase Loss

TABLE 4.2: Test vector generation results when using an ideal ax-
aware test vector generation and a conventional ATPG tool [87] on

the example circuit in Figure 2.1.

for each metric. Firstly, as expected, 100% nR FC was achieved for all experiments.

For the MAE metric, the conventional ATPG test set was {1,7,0} and led to an axR FC

of 100% (50% YIL). As already mentioned, the best test set {0,4} achieves 40% axR

FC (20% YIL). Concerning the WCE metric, results were even worse: conventional

ATPG generated {1,6,0}, leading to 100% axR FC (50% YIL), while the single vector

{7} achieves 0% axR FC (0% YIL). Only for MSE metric results were optimal with

both approaches. Note that when considering EP or WCBFE, all the faults are non-

redundant and need to be tested. In this case, no approximation-aware technique is

needed. Therefore, we did not include EP and WCBFE metrics in the experiment. In

conclusion, conventional ATPG techniques do not guarantee qualitatively the best

solutions. This is due to the fact that state-of-the-art ATPG algorithms have not been

designed to avoid testing some faults while generating test vectors.

An ideal AxA test pattern generation technique generates qualitatively the best

possible test set. Nevertheless, the AxIC structure may still lead to obtain axR FC >

0%, as shown in the example above. This problem is addressed in Chapter 5. In next

section, we report the techniques that we propose to address the AxA test pattern

generation.

Proposed AxA pattern generation techniques

We propose basically two techniques to deal with AxA test pattern generation. The

first one, proposed in [88] and referred to as ax-aware generation technique, is shown

in Subsection 4.2. The application of the first technique is limited to some particular

cases. Therefore, in [96], we proposed a more general technique based on a careful

pattern selection. We show it in Subsection 4.3.

4.2. An Ax-aware technique 47

4.2 An Ax-aware technique

As discussed in Section 3.2, in [88] we propose an ATPG-based technique to clas-

sify faults into ax-redundant and non-redundant, when considering an SCT metric.

Simultaneously the technique produces test vectors to detect only non-redundant

faults. By resorting to Figures 3.2 and 3.3, one can see that – thanks to the delta

module – the ATPG produces test vectors which activate and sensitize only non-

redundant faults. This implies that:

• test vectors testing all the non-redundant faults are produced;

• when the AxIC is affected by a non-redundant fault, at least one test vector

produces an output Oapprox such that the deviation δ =
∣∣Oprecise −Oapprox

∣∣ > t.

Nevertheless, in test phase – i.e. after AxIC manufacturing (thus without delta mod-

ule) – some test vectors might still detect an ax-redundant fault affecting the AxIC.

This is due, in part, to the fact that test vectors are generated to detect only non-

redundant faults but no effort was made to minimize the axR FC. Moreover, the

technique is only applicable when the fault classification is made by using an SCT

metric. These consideration are also applicable to works in [32], [94]. For these rea-

sons, we introduced a more general technique based on a careful pattern selection.

4.3 An ILP-formulated Pattern Selection Procedure

In [96], we propose a new Approximation-Aware ATPG (Ax-Aware ATPG) whose goal

is to produce test vectors reducing the axR-FC, compared to conventional ATPG,

while not impacting nR-FC. This ultimately leads to actually increase the yield. The

novel technique relies on a new engine capable of finding, among a set of input vec-

tors, the smallest subset minimizing the axR-FC coverage. Specifically, the engine

generates an input vector set S and searches within it for the optimal combination

V which attains the required coverage. Generally, the set S will be itself a sub-set of

the exhaustive input vector set. Indeed, while for the FA example introduced in Sec-

tion 2.3 it was feasible to search within the exhaustive vector set (see Section 4.1), this

will not be feasible for big circuits. In line with all conventional ATPG techniques,

the ax-aware ATPG only needs as inputs the AxIC under test and its fault list. The

only additional constraint is that the AxIC’s faults have to be formerly classified

into non- and ax-redundant. This is possible by using one of the state-of-the-art

fault classification techniques (see Chapter 3). Figure 4.1 depicts the proposed test

generation flow. While the approach used in previous works – here referred to as

conventional generation – uses only non-redundant fault list to generate test vectors,

48 Chapter 4. AxA test pattern generation

FIGURE 4.1: Proposed Approximation-Aware ATPG

the proposed one utilizes also the ax-redundant fault list. In this way, it is possible

to discern which faults have not to be covered. Hereafter, we detail the proposed

ATPG approach, as illustrated in Figure 4.1. Ax-aware ATPG is composed of three

main phases: (i) input vector subset generation, (ii) fault simulation and (iii) op-

timization problem formulation and resolution. The first phase takes as input the

AxIC and generates a configurable number of input vectors. In this phase, different

algorithms for input vector generation can be used. As already discussed, all of them

should generate a sub-set S of the exhaustive vector set. The final result will change

depending on the generated S . Fault simulation phase takes as input the generated

S , the AxIC and the two fault lists (ax-redundant and non-redundant). The output of

the fault simulation phase is a fault coverage (FC) report which records, for each fault,

all the input vectors in S covering it. Finally, the goal of the third phase is to find

the smallest subset V ⊂ S which minimizes the axR-FC and achieves total nR-FC. If

S corresponds to the exhaustive vector set (see example in Section 4.1), the output

solution will be the global optimal one (i.e., the best possible vector combination).

When S is a sub-set of the exhaustive vector set, the third phase will produce a local

optimal final solution (i.e., the best combination, among vectors in S). To accomplish

this task, we formulate an optimization problem, by using the fault coverage report,

the vector set S and the fault lists. This leads to a system of linear inequalities whose

solution will be the final ax-aware test set.

The proposed ax-aware ATPG is independent of the specific fault classification

technique and of the error metrics and thresholds. Indeed, as long as a fault clas-

sification is correctly produced, the ax-ATPG is applicable. In the next subsection,

we briefly recall the mathematical formalization of an optimization problem and,

specifically, of an integer linear programming problem. Indeed, the ax-aware ATPG

problem, as we formulate it, falls into this category.

4.3. An ILP-formulated Pattern Selection Procedure 49

4.3.1 Optimization problem

Largely used in several fields of Engineering, Finance and Economics, mathematical

optimization helps with the selection of an optimal element, among a set of avail-

able alternatives, while respecting some criteria. In practice, mathematical opti-

mization aims at finding the minimum/maximum of a so-called objective function

f (x0, x1, .., xn−1) by systematically assigning values to its so-called decision variables

(x0, x1, .., xn−1). The final solution has to respect a given set of constraint equations.

The geometric region delimited by those constraints is usually called feasible region.

A linear programming (LP) problem is an optimization problem where the objective

function is linear, meaning that it has the following form:

f (x0, ..., xn−1) = c0x0 + c1x1 + ... + cn−1xn−1 (4.1)

for some coefficients ci ∈ R, i = 0, ..., n− 1. The feasible region is the set of solutions

to a finite number of linear inequalities, of the form:

a0,0x0 + a0,1x2 + ... + a0,n−1xn−1 ≤ b0

a1,0x1 + a1,1x2 + ... + a1,n−1xn−1 ≤ b1
...

am−1,0x1 + am−1,1x2 + ... + am−1,n−1xn−1 ≤ bm−1

(4.2)

for some coefficients aji ∈ R, j = [0, m− 1] i = [0, n− 1].

Furthermore, an LP problem whose variables are restricted (totally or partially) to be

integers is referred to as an integer linear programming (ILP) problem. An ILP problem

can be expressed in a canonical form, as follows:

min/max cTx

subject to Ax ≤ b,

x ≥ 0,

and x ∈ Zn.

(4.3)

We use the notation A and x to express that A is a matrix and x is a vector. Finding a

solution to the above system of linear inequalities means finding the objective func-

tion’s min/max values which lies in the feasible region. Thus, the solution will be a

combination of the decision variable values.

In the next subsection, we detail how we represent the ax-aware ATPG problem

as an ILP problem.

50 Chapter 4. AxA test pattern generation

4.3.2 Ax-aware ATPG as an ILP problem

Let us now discuss how the ax-aware ATPG problem can be represented as an ILP

problem. The input vector subset S , the two fault lists (i.e., non- and ax-redundant)

and the fault coverage report are used for this goal. A conceptual model of the fault

coverage report, mentioned in Subsection 4.3, is shown in Table 4.3. As shown, the

v0 v1 v2 vd−2 vd−1
fnr0 x x
faxr0 x x
fnr1 x x x

...

.
...
.

...

.
...
.

...

.
...
.

...

.

faxrl−1 x x x
fnrh−1 x x

TABLE 4.3: Fault coverage (FC) report conceptual model

report contains all the correspondences between each fault and the input vectors

covering it. Non-redundant faults are expressed as fnrk and ax-redundant faults as

faxrj , for k ∈ [0, h− 1] and j ∈ [0, l − 1]. Vectors are expressed as vi, for i ∈ [0, d− 1].

Each vector vi ∈ S covers a number vi(nr) of non-redundant faults and a num-

ber vi(axr) of ax-redundant faults. Among those input vectors, we want to find

the smallest subset V covering the smallest number of ax-redundant faults and the

whole set of non-redundant ones. Therefore, to build the ILP problem, we firstly

define the decision variables vector as follows:

x = { faxr, fnr, v} (4.4)

where faxr, fnr and v represent ax-redundant faults, non-redundant faults and in-

put vectors, respectively. All the variables composing the x vector are binary. Each

variable expresses whether the corresponding fault (or vector) is included or not in

the final solution. Then, we need to express our goals as an objective function. We

want to minimize two functions: the number of covered ax-redundant faults and the

number of test vectors. The resulting multi-objective function is as follows:

min

(
d−1

∑
i=0

vi ,
l−1

∑
j=0

faxrj

)
, (4.5)

where vi ∈ {0, 1} ∀i ∈ [0, d − 1] and faxrj ∈ {0, 1} ∀j ∈ [0, l − 1] (i.e., binary vari-

ables). As it can be easily remarked, we deal with two competing objectives. Thus,

a Pareto front of multiple optimal solutions is defined by this problem formulation.

Therefore, we want to find an optimal solution laying on the Pareto front. In order

to choose among all the optimal solutions, we use the weighted sum scalarization

4.3. An ILP-formulated Pattern Selection Procedure 51

method [97] to transform the multi-objective optimization problem into a single-

objective one. This allows us to use single-objective resolution methods to resolve a

multi-objective problem. The resulting function is as follows:

min

(
w1

d−1

∑
i=0

vi + w2

l−1

∑
j=0

faxrj

)
, (4.6)

where the weights w1 and w2 define the importance of minimizing the two objective

functions, respectively. Since we consider the two objectives equally important, we

assign the same weight to both the functions (w1 = w2 = 1). Certainly, other weight

value combinations can be used (see Subsection 4.3.3). Finally, the resulting objective

function is as follows:

min

(
d−1

∑
i=0

vi +
l−1

∑
j=0

faxrj

)
(4.7)

Concerning the vector c in Equation 4.3, it is composed of unitary coefficients corre-

sponding to v and faxr components and of zeros corresponding to fnr components.

Finally, we want to ensure that the final solution lies within the feasible region. Thus,

by means of the fault coverage report, we set up some constraints as follows:

(i) the nR-FC has to be maximum:

h−1

∑
k=0

fnrk = Tnr f (4.8)

where fnrk ∈ {0, 1} ∀k ∈ [0, h − 1] and Tnr f is the total number of non-redundant

faults;

(ii) the solution must contain at least one test vector:

d−1

∑
i=0

vi ≥ 1 (4.9)

where vi ∈ {0, 1} ∀i ∈ [0, d− 1];

(iii) If a fault is involved in the solution, at least one vector covering it has to be

in the solution, too:
d−1

∑
i=0

vi faxrj
≥ faxrj ∀j ∈ [0, l − 1] (4.10)

d−1

∑
i=0

vi fnrk
≥ fnrk ∀k ∈ [0, h− 1] (4.11)

where vi faxrj
and vi fnrk

are binary variables expressing whether the vector vi covers

or not the faults faxrj and fnrk , respectively. This information is obtained from FC

report;

52 Chapter 4. AxA test pattern generation

(iv) If a vector is involved in the solution, all the faults it covers have to be in the

solution, too:
l−1

∑
j=0

faxrjvi ≥ vi(axr) · vi ∀i ∈ [0, d− 1] (4.12)

h−1

∑
k=0

fnrkvi ≥ vi(nr) · vi ∀i ∈ [0, d− 1] (4.13)

where faxrjvi and fnrkvi are binary variables expressing whether the faults faxrj and

fnrk are covered by the vector vi, respectively (obtained from FC report). vi(axr) and

vi(nr) are the number of ax-redundant faults and of non-redundant faults covered

by vi, respectively. All the above described constraint equations contribute to form

the A matrix and the b vector of Equation 4.3. In the next subsection, we discuss the

resolution method we used to solve the ILP problem.

ILP problem resolution As reported in many studies (such as [98], [99]), while

LP problems are solvable in polynomial time, ILP problems are NP-Hard. In order

to find a solution to the ax-aware ATPG ILP problem, we use a method for solv-

ing combinatorial optimization problems, the Branch and Bound (B&B). The method

relaxes the integrality constraint of the variables and solves the resulting LP prob-

lem in polynomial time. Then, if the solution does not contain all integer variables,

the method splits the problem into two disjoint sub-problems and repeats the com-

putations ending up in a tree exploration. The procedure iterates until a feasible

integer solution is found. Illustrating the (B&B) algorithm is out of the scope of this

manuscript. Details on the algorithm can be found in [100]. If it exists, the B&B

will find the ILP problem’s optimal integer solution. This means that - among the

generated input vectors (see phase I in sec 4.3) - B&B will find the smallest subset

achieving the smallest possible axR-FC and the total nR-FC (Tnr f in Equation 4.8).

Therefore, generating different input vector sets will lead to different solutions. To

give a preliminary hint on the validity of the proposed approach, we applied it to

our example (see Section 2.3). Next subsection details the results.

Proof of concept The inputs to the ax-aware ATPG are the AxIC and its non-

redundant and ax-redundant fault lists. The latter are produced as output of the

fault classification phase. Without loss of generality, in this example we use the

MAE (Equation 1.4) as error metric to classify faults. Ax-aware ATPG’s first phase

is the input vector generation. Given the tiny size of this example, we use the ex-

haustive input vector set. Then, we perform the fault simulation and we obtain the

fault coverage report summarized in Table 4.4. The input vector name convention

is: vector ‘0’ = 000, vector ‘1’ = 001, , vector ‘7’ = 111. Finally, the fault coverage

4.3. An ILP-formulated Pattern Selection Procedure 53

Fault MAE Classification1 v0 v1 v2 v3 v4 v5 v6 v7

Sa0@a 1 ax-red. faxr0 x x x x
Sa1@a 1.25 non-red. fnr0 x x x x
Sa0@b 1 ax-red. faxr1 x x x x
Sa1@b 1.25 non-red. fnr1 x x x x
Sa0@c 1 ax-red. faxr2 x x x x
Sa1@c 1.25 non-red. fnr2 x x x x
Sa0@d 1 ax-red. faxr3 x x x x
Sa1@d 1.25 non-red. fnr3 x x x x
Sa0@e 1.5 non-red. fnr4 x x x x
Sa1@e 0.75 ax-red. faxr4 x x x x
1Faults classified according to MAE. Threshold = 1 v0 = 000, v1 = 001, ..., v7 = 111

TABLE 4.4: Fault coverage report, for the example circuit (see Fig-
ure 2.1). Faults are classified according to MAE metric (threshold=1)

report is used in the third phase: formulate the optimization problem. To correctly

model the ILP problem, we set the parameters as follows: d = 8, l = 5, h = 5, and

Tnr f = 5.

The objective function is expressed as follows:

min

(
7

∑
i=0

vi +
4

∑
j=0

faxrj

)
(4.14)

where vi ∈ {0, 1} ∀i ∈ [0, 7] and faxrj ∈ {0, 1} ∀j ∈ [0, 4]. The ax-redundant (axR)

faults (faxrj) are all listed in Table 4.4.

Concerning constraints, we define the following:

(i):

4

∑
k=0

fnrk = 5 (4.15)

where fnrk ∈ {0, 1} ∀k ∈ [0, 4]; The non-redundant (nR) faults (fnrk) are all listed in

Table 4.4.

(ii):

7

∑
i=0

vi ≥ 1 (4.16)

where vi ∈ {0, 1} ∀i ∈ [0, 7];

(iii):

7

∑
i=0

vi faxrj
≥ faxrj ∀j ∈ [0, 4] (4.17)

54 Chapter 4. AxA test pattern generation

7

∑
i=0

vi fnrk
≥ fnrk ∀k ∈ [0, 4] (4.18)

where – for each fnrk and faxrj – the values of vi fnrk
and vi faxrj

are 0 or 1 depending on

whether vi covers fnrk and faxrj or not. From the report in Table 4.4, we can deduce

those values. Specifically, the ’x’ symbol expresses that the vector vi covers the cor-

respondent fault.

(iv):

4

∑
j=0

faxrjvi ≥ vi(axr) · vi ∀i ∈ [0, 7] (4.19)

4

∑
k=0

fnrkvi ≥ vi(nr) · vi ∀i ∈ [0, 7] (4.20)

where – for each vi – the values of faxrjvi and fnrkvi are 0 or 1 depending on whether

fnrk and faxrj are covered by the vector vi or not. vi(axr) and vi(nr) are the num-

ber of ax-redundant faults and of non-redundant faults covered by vi. Again, from

Table 4.4 we can deduce this information. For instance, for vector 2, from the table

we can deduce v2(axr) = 2, v2(nr) = 3. The faults covered by vector 2 are Sa0@a,

Sa1@b, Sa0@c, Sa1@d, and Sa0@e.

By solving the problem, we obtain the results in Table 4.5. As shown, the solu-

tion to the ILP problem led to a reduction of the covered ax-redundant faults from

five (conventional ATPG Table 4.2) to two, while still covering all the non-redundant

faults. Table 4.6 reports the comparison between conventional and ax-aware gener-

Non-redundant Covered1 Ax-redundant Covered2

Sa1@a 3 Sa0@a 7
Sa1@b 3 Sa0@b 7
Sa1@c 3 Sa0@c 7
Sa1@d 3 Sa0@d 3
Sa0@e 3 Sa1@e 3

V = {0,4}
13 is desired; 27 is desired

TABLE 4.5: ILP problem solution

ated test vectors, in terms of covered axR faults. The ax-aware ATPG relative im-

provement over the conventional one is calculated as the difference between the

covered axR faults divided by the conventional ATPG covered axR faults. More-

over, the obtained solution is an optimal one. Indeed, as discussed in Subsection 4.1,

the vector subset V = {0, 4} is optimal, thus there is no other subset leading to a lower

axR-FC. The B&B resolving method finds the optimal solution among the analyzed

4.3. An ILP-formulated Pattern Selection Procedure 55

Conventional
ATPG

Ax-aware
ATPG

Test Vector Number 0 1 7 0 4
Test Vector Value 000 001 111 000 100

Covered AxR faults 5 2
Relative 5−2

5 · 100 = 60%Improvements

TABLE 4.6: Ax-unaware and ax-aware generated test vectors compar-
ison

vectors. Since we have used the exhaustive input vector set, for this example the

B&B finds an absolute optimal solution.

The illustrated example shows two important results: on the one hand, it is pos-

sible to drastically reduce the axR-FC; on the other hand, some ax-redundant faults

cannot remain undetected. This issue is discussed and addressed in Chapter 5. In

the next section, we report experimental results obtained by applying the proposed

methodology to a set of state-of-the-art AxICs. Moreover, we used three different

input vector generation algorithms and compared their performance.

4.3.3 Experimental results

In this paragraph, we report results presented in [96] for the proposed ax-aware

ATPG technique, which aims at mitigating the over-testing effects. We performed

experiments on some state-of-the-art AxICs. Specifically, we analyzed Accuracy-

Configurable Approximate (ACA) adders from [11], Gracefully-Degrading Adders

(GDA) from [22], Generic Accuracy configurable (GeAr) adders from [23], Error Tol-

erant Adders (ETAII) from [70], and some EvoApprox8b library AxICs [25] (add8_051,

add8_036, add8_012, add8_045).

Firstly – without loss of generality – we performed the fault classification by

using the technique proposed in [88] and we used the WCE (Equation 1.3) as error

metric. Thus, for each AxIC, we obtained ax-redundant and non-redundant fault

lists.

Secondly, we used the conventional ATPG to produce the test set and we mea-

sured the nR FC and axR FC. The goal was to compare ax-aware ATPG and con-

ventional ATPG results to evaluate the improvements. To determine both nR-FC

and axR-FC, we fault simulated the two fault lists with the test set obtained with

the conventional ATPG. As expected, results showed that 100% of non-redundant

faults were detected, for all the AxICs. Concerning axR-FC, in Table 4.7, we report

the results (along with the AxICs attributes in terms of total fault number Ftot, non-

redundant fault number FnR, and ax-redundant fault number FaxR). As it can be

56 Chapter 4. AxA test pattern generation

Circuit Ftot FnR FaxR
conventional ATPG
axR-FC1 Vectors1

add8_051 156 152 4 4 (100.00%) 10
add8_036 126 111 15 12 (80.00%) 10
add8_012 99 93 6 6 (100.00%) 10
add8_045 72 71 1 1 (100.00%) 9
GeAr_N8_R2_P2 154 75 75 55 (73.33%) 5
ACA_I_N8_Q5 216 57 113 77 (68.14%) 5
GDA_St_N8_M8_P3 202 73 123 100 (81.30%) 6
GeAr_N16_R6_P4 159 57 102 89 (87.25%) 5
ACA_II_N16_Q8 188 68 120 83 (69.17%) 4
ETAII_N16_Q8 237 71 166 118 (71.08%) 6
GDA_St_N16_M4_P4 366 69 297 267 (89.90%) 10
GDA_St_N16_M4_P8 375 54 321 246 (76.64%) 6
GeAr_N16_R4_P4 188 68 120 83 (69.17%) 4
GeAr_N16_R4_P8 199 49 150 105 (70.00%) 6
GeAr_N16_R2_P4 275 43 232 152 (65.52%) 6
ACA_II_N16_Q4 356 33 323 245 (75.85%) 5
ETAII_N16_Q4 356 33 323 245 (75.85%) 5
ACA_I_N16_Q4 454 52 402 302 (75.12%) 7
Average 79.35%

1Lower is better

TABLE 4.7: AxICs attributes and conventional ATPG ineffectiveness
evidences

seen, the conventional ATPG produces test vectors covering on average 79% of ax-

redundant faults. In the best case, conventional ATPG covered 65% of ax-redundant

faults. For some AxICs, 100% of the ax-redundant faults were detected, ultimately

leading to totally undermine the fault classification effort.

Finally, we generated the test set with the proposed technique and analyzed the

improvements w.r.t. conventional ATPG. In the next two sections we discuss the

experimental setup and the results.

Setup We performed experiments by formulating the ILP problem objective func-

tion in two ways: (i) as described in Equation 4.7 – to which we refer as multi-

objective (MO) – and (ii) by considering only the single-objective (SO) function min-

imizing the covered ax-redundant faults, as follows:

min

(
l−1

∑
j=0

faxrj

)
. (4.21)

The latter corresponds to setting w1 = 0 and w2 = 1 in Equation 4.6. We used this

objective function to verify if the choice of not minimizing the test set lenght has an

impact on axR-FC reduction. We express the results as the improvement percentage

compared to the conventional ATPG’s results, which are reported in the previous

subsection (Table 4.7). We used the following equations to calculate improvements

4.3. An ILP-formulated Pattern Selection Procedure 57

in terms of axR-FC and produced test vectors:

axR FC improv. = conventional ATPG axR-FC−ax-aware ATPG axR-FC
conventional ATPG axR-FC · 100 (4.22)

vectors improv. = conventional ATPG vectors−ax-aware ATPG vectors
conventional ATPG vectors · 100 (4.23)

Furthermore, we used three different input vector generation methods in the ex-

periments. Indeed, as discussed in Subsection 4.3, different input vector generation

methods (phase I of the ax-ATPG technique) can give different results. The goal was

to produce input vector subsets of different dimensions and by using different tech-

niques, in order to compare results. Intuitively, the larger the input vector subsets

(i.e., the ILP problem search space), the better the results.

1. The first method we used to generate input vector subsets was the conven-

tional ATPG with the option for generating input vectors covering each fault

up to n times (namely "ndetects n") and by targeting only non-redundant faults.

We refer to this input vector generation method as "non-redundant ndetects".

Note that, despite the misleading method’s name, we used the conventional

ATPG only to generate input vector subsets (i.e., phase I in Subsection 4.3). We

performed experiments for different values of n, namely 10, 20, and 30.

2. Then, we performed experiments by using another input vector generation

method. We employed again the conventional ATPG with the "ndetects n"

option and we targeted the whole AxIC fault list (both ax-redundant and non-

redundant faults). We refer to this vector generation method as "all-faults nde-

tects". Experiments were carried out for different values of n (10, 20, and 30).

3. Finally, we carried out experiments by using random input vector sets of dif-

ferent dimensions (32, 64, 128, 256, and 512) generated by using a software

library for pseudo-random sequences. In this case, in order to achieve the re-

quired nR-FC, we slightly modified the input vector generation phase: after

generating a random sequence, we fault-simulated it. If the nR-FC did not sat-

isfy the requirement, we generated a new random sequence. The process was

re-iterated until the random sequence satisfied the required coverage. This

was necessary especially with tiny random set (i.e., 32).

Result discussion In Figure 4.2, we report the experimental results. Figure 4.2a

reports the improvements achieved with the non-redundant ndetect input vector gen-

eration method. Improvements achieved with the all-faults ndetect input vector gen-

eration method are shown in Figure 4.2b. Finally, Figure 4.2c reports achieved im-

provements for random ndetect input vector generation method. Note that nR-FC is

58 Chapter 4. AxA test pattern generation

Ndetect 10 Ndetect 20 Ndetect 30

a
x
R

−
F

C
 a

ve
ra

g
e

im
p

ro
ve

m
e

n
t*

T
im

e
 a

ve
ra

g
e

V
e

c
to

rs
 a

ve
ra

g
e

im
p

ro
ve

m
e

n
t*

MO SO MO SO MO SO

0

10

20

30

0

5000

10000

15000

−200

−100

0

Objective Function

P
e

rc
e

n
ta

g
e

 	
		

 S
e

c
o

n
d

s
 	

	
P

e
rc

e
n

ta
g

e

MO: multi−objective SO: single−objective

non−redundant ndetects

(A)

Ndetect 10 Ndetect 20 Ndetect 30

a
x
R

−
F

C
 a

ve
ra

g
e

im
p

ro
ve

m
e

n
t*

T
im

e
 a

ve
ra

g
e

V
e

c
to

rs
 a

ve
ra

g
e

im
p

ro
ve

m
e

n
t*

MO SO MO SO MO SO

0

10

20

30

0

20000

40000

−300

−200

−100

0

Objective Function

P
e

rc
e

n
ta

g
e

 	
		

 S
e

c
o

n
d

s
 	

	
P

e
rc

e
n

ta
g

e

MO: multi−objective SO: single−objective

all−faults ndetects

(B)

32 vectors 64 vectors 128 vectors 256 vectors 512 vectors

a
x
R

−
F

C
 a

ve
ra

g
e

im
p

ro
ve

m
e

n
t*

T
im

e
 a

ve
ra

g
e

V
e

c
to

rs
 a

ve
ra

g
e

im
p

ro
ve

m
e

n
t*

MO SO MO SO MO SO MO SO MO SO

0

10

20

30

0

5000

10000

15000

20000

−400

−300

−200

−100

0

Objective Function

P
e

rc
e

n
ta

g
e

 	
		

 S
e

c
o

n
d

s
 	

	
P

e
rc

e
n

ta
g

e

MO: multi−objective SO: single−objective

Random

(C)

∗proposed technique improvements w.r.t. conventional ATPG (see Table 4.7) — higher is better

FIGURE 4.2: Average results for "non-redundant ndetects" (a), "all-
faults ndetects" (b), and "random" (c) vector generation methods

not mentioned in the figures since, for all the experiments, it was the same as the

conventional ATPG (i.e., 100%). Results confirmed that an important improvement

is possible over the conventional ATPG. On average, the proposed ax-aware ATPG

- for both MO and SO functions - led to an improvement spanning from 19% up

to 36% of axR-FC reduction, compared to conventional ATPG. In some cases, we

were able to totally avoid covering ax-redundant faults, thus achieving 100% im-

provement. In general, for circuits with low error values it was possible to achieve a

4.4. Evaluation 59

more important improvement. For few cases, it was not possible to find a better test

vector subset than the one produced by conventional ATPG. This phenomenon was

more likely to happen when we used tiny input vector subset (e.g., "random 32"). In

those cases, the resulting ILP search space was not big enough to allow the solving

algorithm to find a suitable solution. Nevertheless, for the "all-faults ndetects" exper-

iment campaigns, we did not experience this phenomenon. The "all-faults ndetects",

indeed, turned out to be the input vector generation method who gave better re-

sults. On average, results obtained by using this input generation method spanned

from 29% up to 36% axR-FC reduction improvement and, as mentioned above, for

all experiments we achieved an actual axR-FC reduction. Moreover, by using the

all-fault ndetect 10 method, we obtained a larger axR-FC improvement (30%) than by

using the non-redundant ndetect 20 method (25%), in a shorter time (~1800 s VS ~4800

s). Finally, no substantial differences were observed between MO and SO functions.

Indeed, in both cases, a very similar average axR-FC improvement was achieved in

a fairly comparable amount of time.

As far as it concerns test set dimension, on average the ax-aware ATPG did not

have a significant impact on test set length, when resorting to MO function. Indeed,

the test set dimension improvement w.r.t. conventional ATPG spanned from -5%

and +9%, on average. Conversely, when resorting to SO function, the test set was

always larger compared to conventional ATPG, on average. Indeed, average test set

dimension improvement in this case spanned from -27% to -390% (≈ 4 times larger).

Therefore, the ax-aware ATPG with the MO function turned out to be preferable

to obtain a significant axR-FC improvement over the conventional ATPG while fairly

not impacting the test length.

4.4 Evaluation

In this section we compare the conventional test pattern generation with the proposed

solutions. Hereafter, as conventional generation we will refer to techniques that use the

conventional ATPG to generate test sets (see Figure 4.3): the non-redundant fault list

is generated by using a fault classification technique and then used as target for the

ATPG. [86] and [95] use this kind of pattern generation. Then, as ax-aware gener-

ation we refer to techniques that simultaneously individuate non-redundant faults

and generate test vectors covering them. This technique is used in [32], [88], [94].

Figure 4.4 sketches the ax-aware generation technique flow. Finally, we refer to the

technique presented in [96] as pattern selection. We recall that, for the pattern selec-

tion technique, we need to generate a set of input vectors from which we choose

60 Chapter 4. AxA test pattern generation

FIGURE 4.3: Conventional test pattern generation schema

FIGURE 4.4: Ax-aware test pattern generation schema

the best subset by building and solving a combinational problem. For those ex-

periments we used as input vector generation method a mixed approach, based on

the insights in [88] and [96]. Specifically, we used the test set generated by the ax-

aware technique and enriched it as follows: we exploited the "non-redundant nde-

tects" method [96] (see Subsection 4.3.3) in the context of the schema in Figure 4.4,

presented in [88]. More intuitively, the goal was to generate a lot of ax-aware input

vectors and then select the set detecting as few ax-redundant faults as possible.

To fairly compare the quality of the test sets produced by the different approaches,

we performed experiments on AxICs from the EvoApprox8b library [25], introduced

in Section 3.2. We considered the WCE as error metric. Firstly, we performed the

fault classification. Then, we obtained test patterns by using the three approaches,

i.e. conventional, ax-aware, and pattern selection generation. Then, we performed

a fault-simulation by using the generated patterns and the two fault lists (i.e., non-

redundant and ax-redundant faults) in order to measure nR and axR FCs (see Equa-

tions 2.2 and 2.3).

The achieved nR FC was always 100%, which confirms that all the techniques

achieve the first objective of AxA testing (see Chapter 2). Then, in Table 4.8, we

report results in terms of axR FC for the four AxIC groups (8-bit adders and 8-, 16-,

and 32-bit multipliers), as well as in terms of Yield Increase Loss (YIL).

As shown, conventional generation technique exhibits an average axR FC be-

tween 65% and 92%, with peaks at 100%, corresponding to a YIL between 14% and

50%. Significant lower (thus better) axR FC and YIL values were achieved by using

ax-aware and pattern selection techniques. Ax-aware generation technique showed

4.4. Evaluation 61

Conventional generation1

Add8 Mul8 Mul16 Mul32
axR FC2 YIL2 axR FC2 YIL2 axR FC2 YIL2 axR FC2 YIL2

Min 0.00% 0.00% 73.55% 5.20% 64.00% 16.53% 72.06% 33.00%
Max 100.00% 77.45% 99.37% 73.92% 100.00% 50.00% 97.73% 75.79%
Avg 65.81% 14.04% 91.43% 43.20% 92.08% 31.63% 90.94% 50.55%

Time3 0.61 0.87 0.91 2.3

Ax-aware generation1

Add8 Mul8 Mul16 Mul32
axR FC2 YIL2 axR FC2 YIL2 axR FC2 YIL2 axR FC2 YIL2

Min 0.00% 0.00% 17.81% 1.02% 51.90% 16.62% 11.03% 6.47%
Max 100.00% 71.57% 95.43% 74.18% 96.88% 40.00% 85.86% 39.87%
Avg 43.17% 9.66% 83.03% 39.62% 77.11% 26.02% 47.61% 24.98%

Time3 0.64 0.91 0.96 2.60

Pattern selection generation1

Add8 Mul8 Mul16 Mul32
axR FC2 YIL2 axR FC2 YIL2 axR FC2 YIL2 axR FC2 YIL2

Min 0.00% 0.00% 17.81% 1.02% 48.00% 14.33% 11.03% 6.47%
Max 84.85% 54.95% 91.16% 69.51% 91.98% 36.36% 85.65% 39.87%
Avg 33.49% 7.61% 76.48% 36.39% 72.97% 24.78% 47.46% 24.90%

Time3 5 2275 21230 2343
1100% non-redundant FC always achieved 2Lower is better 3Average time in seconds

axR FC = Ax-redundant FC YIL = Yield Increase Loss

TABLE 4.8: Ax-redundant FC (axR FC) and Yield Increase Loss (YIL)
results. YIL and axR FC indicate the absolute and the relative loss of

yield increase, respectively (see Section 2.1).

average axR FC between 43% and 83%, corresponding to a YIL between 9% and 39%

(lower is better). Pattern selection generation further improved results, by obtaining

axR FC between 33% and 76%, corresponding to a YIL between 7% and 36%. Con-

cerning execution time, we can easily see that the proposed pattern selection gener-

ation technique entails a much longer time. This is due to the intrinsic complexity of

the ILP problem.

By using Equation 4.22, we can calculate the improvement of the two techniques

(higher is better) compared to conventional technique (see Table 4.9). The average

obtained axR FC improvement for ax-aware generation technique was between 9%

(for Mul8) and 47% (for Mul32), corresponding to a YIL improvement between 8%

and 50%. For pattern selection generation, the improvement compared to conven-

tional technique was between 16% and 49% for axR FC and between 15% and 50%

for YIL.

Even though obtained results are quite good, they are still far to be ideal. In-

deed, while generating ax-aware test patterns improve the test quality, it turns out

that some ax-redundant faults are still detected. Ultimately, this leads to a yield

62 Chapter 4. AxA test pattern generation

Ax-aware generation
Add8 Mul8 Mul16 Mul32

axR FC YIL axR FC YIL axR FC YIL axR FC YIL
Improv.1 34.40% 31.20% 9.19% 8.29% 16.26% 17.74% 47.65% 50.58%

Pattern selection generation
Add8 Mul8 Mul16 Mul32

axR FC YIL axR FC YIL axR FC YIL axR FC YIL
Improv.1 49.11% 45.80% 16.35% 15.76% 20.75% 21.66% 47.81% 50.74%
1Higher is better

TABLE 4.9: Improvements obtained by using ax-aware generation
and pattern selection generation techniques, compared to conven-

tional generation technique. Higher is better.

increase lower than expected (YIL > 0%). This is due to the intrinsic structure of

the AxICs, as discussed at the beginning of the Chapter. Nevertheless, we have to

consider that the reported results were obtained by using conventional test set appli-

cation techniques, i.e. no effort was made to distinguish between ax-redundant and

non-redundant faults, in test application phase. Therefore, by introducing proper

AxA test set application techniques, the test quality can be augmented. Next chapter

addresses such aspects.

4.5 Chapter summary

In this chapter we presented the AxA test pattern generation. We showed and dis-

cussed the issues related to the test pattern generation in the context of AxICs. In

particular, test patterns have to cover all non-redundant faults and as few as possi-

ble ax-redundant ones. The technique presented in Subsection 3.2.1, as well as other

techniques in the literature [32], [94], successfully deal with the generation of test

patterns detecting all the non-redundant faults.

Nevertheless, these techniques are limited by some specific conditions (i.e., the

considered metric used in the fault classification is an SCT metric). Moreover, we no-

ticed that different test sets achieving 100% non-Redundant Fault Coverage (nR FC)

achieve different values of ax-Redundant Fault Coverage (axR FC). Existing tech-

niques do not address the problem of finding the best test set, i.e. minimizing the

axR FC. Therefore, we proposed a more general technique – based on a careful pat-

tern selection – designed specifically to address AxA test pattern generation.

Finally, we compared the outcomes of the different test pattern generation tech-

niques, i.e. the conventional generation (i.e., ATPG considering only non-redundant

faults [86], [95]), the ax-aware generation (i.e., test patterns generated at the same

time of the classification [32], [88], [94]) and the ax-aware generation with pattern

4.5. Chapter summary 63

selection [96]. Results showed an average axR FC improvement spanning from 9%

to 47% for the ax-aware generation compared to conventional one. Moreover, the ax-

aware generation with pattern selection technique pushed the limits even further, by

delivering from 16% to 49% axR FC improvements compared to conventional gen-

eration.

Although results were quite good, they are still quite far from the ideal ones.

Therefore, in next chapter we introduce the AxA test set application to further improve

test quality.

65

Chapter 5

AxA test set application

Contents

5.1 Problem statement . 66

5.2 A state-of-the-art solution . 67

5.2.1 Suitability investigation . 68

5.2.2 Experimental results . 69

5.3 A new AxA test set application technique 70

5.3.1 Proposed technique . 71

5.3.2 Signature aliasing problem 72

5.3.3 Experimental results . 73

5.4 Evaluation . 75

5.5 Chapter summary . 77

66 Chapter 5. AxA test set application

As shown in the previous chapter, test pattern generation techniques can gener-

ate qualitatively different test sets. To improve the final test process quality, Test set

application plays an important role. In this phase, we need techniques able – by ob-

serving circuit’s responses – to distinguish between the detection of an ax-redundant

fault (i.e., the test passes) and a non-redundant one (i.e., the AxIC is rejected). In

Section 5.1 we show and discuss the issue. In literature, no techniques have been

presented to deal with such aspect so far. Nevertheless, a technique originally pre-

sented for conventional ICs [32], the threshold testing (see Subsection 2.2), can be

adapted to AxICs. In Section 5.2, we investigate the threshold testing suitability in

the AxIC testing context. Afterwards, in Section 5.3, we propose a new AxA test set

application technique and evaluate it.

5.1 Problem statement

As mentioned in the previous section, the proper structure of an AxIC usually makes

impossible for a test set to avoid the detection of some ax-redundant faults [96].

To show the issue, we resort to our example introduced in Section 2.3, i.e., the

approximate full adder.

Input I Fault-free Faulty †Oapprox

i Ci X Y
∗Oprecise

†Oapprox Sa0@a Sa1@a Sa0@b Sa1@b Sa0@c Sa1@c Sa0@d Sa1@d Sa0@e Sa1@e
0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1
1 0 0 1 1 1 1 0 0 1 0 1 1 0 0 1
2 0 1 0 1 1 0 1 1 0 0 1 1 0 0 1
3 0 1 1 2 0 1 0 1 0 0 1 0 1 0 1
4 1 0 0 1 1 1 0 1 0 1 0 0 1 0 1
5 1 0 1 2 0 0 1 1 0 1 0 1 0 0 1
6 1 1 0 2 0 1 0 0 1 1 0 1 0 0 1
7 1 1 1 3 1 0 1 0 1 1 0 0 1 0 1
Fault classification (MAE‡): ax-red. non-red. ax-red. non-red. ax-red. non-red. ax-red. non-red. non-red. ax-red.
∗Precise output;
†Approximate output;
‡Mean Average Error (MAE) = 1

Value : vector i detects the fault→ Value is different from fault-free Oapprox
i

Value : approximate circuit output. → Value is different from Oprecise
i .

TABLE 5.1: Output (in integer format) of the example circuit (see Fig-
ure 2.1) for different cases: precise (Fig 2.1a), fault-free approximate
(see Fig 2.1b), and faulty approximate with different Stuck-at faults.

In the left part of Table 5.1, we report the outputs of the precise IC (Oprecise) and

of the fault-free AxIC (Oapprox), for each input vector i ∈ [0, 7]. Output values are

reported as integer (e.g., 00 = “0", 01 = “1", etc.). To measure the error, we used

the Mean Average Error (MAE) metric (Equation 1.4). The MAE in the example is

1. This is the threshold value, which must not be altered by the presence of defects

introduced during the manufacturing phase.

In order to illustrate the problem, we report in the right part of Table 5.1 the

impact of each stuck-at fault on the AxIC output. As already shown in Chapter 3,

5.2. A state-of-the-art solution 67

based on the difference between the obtained faulty outputs (faulty Oapprox
i) and the

precise output (Oprecise
i), faults are classified. If the MAE is greater than the threshold

(
∑
∀i∈I

∣∣∣Oapprox
i −Oprecise

i

∣∣∣
2n > 1, in the example), the fault is non-redundant. Otherwise, if the

MAE is lower that or equal to the threshold (
∑
∀i∈I

∣∣∣Oapprox
i −Oprecise

i

∣∣∣
2n ≤ 1, in the example),

the fault is ax-redundant. We report the class of each fault in the last row of the table.

Secondly, in the table we report in red solid-bordered boxes the faulty Oapprox
i val-

ues that differ from the fault-free Oapprox
i ones. Thanks to this output difference, in

test application phase we can detect whether a fault affected the AxIC or not. While

in conventional test each difference between actual and expected outputs leads to

reject the circuit, when it comes to AxICs we have to reconsider this mechanism.

Indeed, a test vector intended to detect a non-redundant fault can also detect an

ax-redundant one, ultimately rejecting a still-acceptable circuit. For example, in Ta-

ble 5.1, we can remark that the vector 4 detects four non-redundant faults (Sa1@a,

Sa1@b, Sa1@c, Sa0@e), but also one ax-redundant fault (Sa0@d). As reported in last

chapter, in [96] we proposed a technique to generate test patterns which detects all

the non-redundant faults but also minimize the number of detected ax-redundant

faults (see Section 4.3). Unfortunately, it is often impossible to avoid the detection

of some ax-redundant faults. For instance, we can easily note that – among all the

possible test sets – the best is the couple {0, 4}. The two vectors detect 100% of the

non-redundant faults (i.e., five faults). Nevertheless, they detect also 40% of ax-

redundant faults (two out of five). Specifically, Sa1@e is detected by vector 0 and

Sa0@d by vector 4. Therefore, while the expected yield gain is of five faults out of ten

(i.e., the five ax-redundant faults), by using the classic test application, we still de-

tect two ax-redundant faults. In other words, from 50% expected yield gain (five ax-

redundant faults avoided, out of ten total faults) we drop to 30% (three ax-redundant

faults avoided, out of ten total faults).

To avoid this over-testing phenomenon, we need to reconsider the test applica-

tion phase. In details, after the application of the test patterns to the AxIC under

test, we need to verify that the actual output meets some conditions and not only

whether it differs from the expected output.

5.2 A state-of-the-art solution

As discussed in Subsection 2.2, the approach proposed in [32] (i.e., the threshold test-

ing) can be considered as a special case of AxA testing [26]. In threshold testing,

after test vectors for the intolerable faults (i.e., non-redundant) are created, authors

68 Chapter 5. AxA test set application

go through a slightly modified test set application phase, by adding a further ver-

ification, as follows. Once a test vector is applied to the IC, the test responses are

compared with the golden ones (those produced by a fault-free IC). If the difference

is lower than a given threshold, the circuit is considered still acceptable.

We apply the threshold testing to AxICs as follows. For each test vector applied

to the AxIC, test responses are compared with the golden ones (i.e., those produced

by the non-approximated circuit). If the arithmetic difference (i.e., the Error Magni-

tude (EM)) is not greater than the threshold, the test passes. Otherwise, the circuit is

rejected.

5.2.1 Suitability investigation

In order to preliminary study the technique suitability for AxICs we apply it to our

FA example (Figure 2.1). We consider the WCE and the MAE as error metrics. In

Section 4.1, we obtained different test sets for our FA example, by using conven-

tional and ax-aware generation techniques. We report them in Table 5.2. Now, we

use them to preliminary evaluate the threshold testing technique. Therefore, we

WCE MAE

Ax-aware Conventional Ax-aware Conventional

Test set∗ {7} {1, 6, 0} {0, 4} {1, 7, 0}
∗0="000", 1="001", ... , 7="111"

TABLE 5.2: Test set generated using an ideal ax-aware test vector gen-
eration and a conventional ATPG tool [87] on the example circuit in

Figure 2.1. (see Section 4.1)

simulate each vector for all the test sets in presence of each fault (both ax-redundant

and non-redundant) and we obtain the EM of the circuit’s output. We report results

in Table 5.3. Then, if the Error Magnitude (EM) is greater than the threshold t, the

circuit is considered faulty and rejected, otherwise the test passes.

Two key observations emerge from the results:

• As shown at the top of the table, the technique worked only for the WCE

metric;

• the technique worked only when using ax-aware vectors.

Indeed, all the non-redundant faults classified with WCE metric (t = 2) and tested

by ax-aware test vectors gave an EM value higher than the threshold (> 2). All the

ax-redundant faults gave an EM value under the threshold (≤ 2). Conventional

ATPG vectors were not able to attain the same result. Moreover, as shown in the

bottom of the table, for MAE metric (t = 1) the technique did not work at all. In fact,

5.2. A state-of-the-art solution 69

Non-redundant fault list
(result must be > threshold)

Ax-redundant fault list
(result must be ≤ threshold)

Metric threshold WCE = 2 Sa0@a Sa0@b Sa1@c Sa0@d Sa0@e Sa1@a Sa1@b Sa0@c Sa1@d Sa1@e
Ax-aware

vectors vector 7 EM: 3 3 3 3 3 3 3 3 3 3 2 3 2 3 2 3 2 3 2 3

Conventional
ATPG
vectors

vector 1 EM: 0 7 1 7 0 7 0 7 1 7 1 3 0 3 1 3 1 3 0 3
vector 6 EM: 1 7 2 7 2 7 1 7 2 7 2 3 1 3 1 3 2 3 1 3
vector 0 EM: 0 7 0 7 1 7 0 7 0 7 1 3 1 3 0 3 1 3 1 3

3EM > 2 7EM ≤ 2 3EM ≤ 2 7EM > 2

Metric threshold MAE = 1 Sa1@a Sa1@b Sa1@c Sa1@d Sa0@e Sa0@a Sa0@b Sa0@c Sa0@d Sa1@e
Ax-aware

vectors
vector 0 EM: 1 7 1 7 1 7 1 7 0 7 0 3 0 3 0 3 0 3 1 3
vector 4 EM: 2 3 2 3 1 7 1 7 2 3 1 3 1 3 2 7 2 7 1 3

Conventional
ATPG
vectors

vector 1 EM: 1 7 0 7 0 7 1 7 1 7 0 3 1 3 1 3 0 3 0 3
vector 7 EM: 2 3 2 3 3 3 2 3 3 3 3 7 3 7 2 7 3 7 2 7
vector 0 EM: 1 7 1 7 1 7 1 7 0 7 0 3 0 3 0 3 0 3 1 3

3EM > 1 7EM ≤ 1 3EM ≤ 1 7EM > 1
3= good decision 7 = bad decision

TABLE 5.3: Example of test set application technique by [32] used on
the FA example (Figure 2.1).

some non-redundant faults were masked and some ax-redundant were detected by

using both ax-aware and conventional vectors. In conclusion, to properly apply the

threshold testing technique [32] to AxICs, three constraints need to be satisfied:

1. Golden circuit test responses must be known.

2. The considered metric must be an SCT metric (e.g., WCE, WCBFE).

3. AxIC test vectors must be produced with an ax-aware generation technique.

5.2.2 Experimental results

To corroborate the statement, we applied the technique to AxICs from the EvoAp-

prox8b library [25]. We considered the WCE as error metric. We used test sets ob-

tained by using both conventional and ax-aware generation techniques, as shown in

Section 4.1. In Tables 5.4 and 5.5, we report experimental results. By comparing

Conventional pattern generation Ax-aware pattern generation2

Add8 Mul8 Mul16 Mul32 Add8 Mul8 Mul16 Mul32

nR FC1
Min 27.78% 62.98% 68.63% 77.18% 100% 100% 100% 100%
Max 100% 100% 100% 100% 100% 100% 100% 100%
Avg 97.23% 91.60% 93.60% 94.60% 100% 100% 100% 100%

1Should be always 100% 2with and without pattern selection

TABLE 5.4: Non-redundant FC results when using the test set appli-
cation technique by [32].

results with those in Table 4.8, we can clearly notice that the technique gave optimal

results (i.e., 100% nR FC and 0% axR FC) when ax-aware test patterns were used.

Conversely, not very good outcomes were achieved when using conventional test

patterns. Indeed, although axR FC (Table 5.5) gave better results w.r.t. Table 4.8, the

70 Chapter 5. AxA test set application

Conventional pattern generation
Add8 Mul8 Mul16 Mul32

axR FC1 YIL1 axR FC1 YIL1 axR FC1 YIL1 axR FC1 YIL1

Min 0.00% 0.00% 0.84% 0.50% 2.38% 0.57% 2.92% 1.49%
Max 100.00% 10.71% 70.00% 15.29% 45.24% 17.92% 41.41% 18.28%
Avg 26.85% 3.28% 14.69% 5.47% 15.31% 5.40% 17.85% 8.18%

Ax-aware pattern generation (with and without pattern selection)
Add8 Mul8 Mul16 Mul32

axR FC1 YIL1 axR FC1 YIL1 axR FC1 YIL1 axR FC1 YIL1

Min 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Max 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Avg 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
1Lower is better

TABLE 5.5: Ax-redundant FC (axR FC) and Yield Increase Loss (YIL)
results when using the test set application technique by [32].

nR FC (Table 5.4) did not always reach 100%. This leads to undermine the first key

aspect of the AxA testing, i.e. detecting all the non-redundant faults, which cause

catastrophic errors.

In conclusion, the test set application technique from [32] guarantees a high-

quality test outcomes for AxICs only under certain conditions.

5.3 A new AxA test set application technique

The limitations of threshold testing technique [32] led us to propose a new approximation-

aware test application technique [101] to mitigate the over-testing effect. We drew our

inspiration from a concept introduced in late seventies, the signature analysis [33],

which – as discussed in Chapter 1 – is mostly used in self-testing hardware tech-

niques. In particular, Built-In Self-Test (BIST) approach compacts test responses to-

gether into a signature, which is used to verify whether the Unit Under Test (UUT)

is faulty or not. In detail, when the test mode is activated, test patterns are applied

to UUT and a signature is generated. Then, the latter is compared with the golden

signature, which was generated by the fault-free circuit and stored within the BIST

architecture. If the two signatures are identical, the circuit is considered fault-free.

Otherwise, a malfunction is detected. Different compaction methods can be used to

produce the signature. An extensive review of those methods can be found in [34].

Basically, we propose to generate multiple signatures, one for each ax-redundant

fault, and compare them with test responses. If there is at least one match, then

the AxIC is considered acceptable. Otherwise, the circuit is rejected. The proposed

technique is intended to be used for external test (i.e., test are applied by using an

Automatic Test Equipment (ATE)). Of course, it can be also used in a BIST context.

5.3. A new AxA test set application technique 71

(A) phase 1, design time

(B) phase 2, test time (post-
manufacturing)

FIGURE 5.1: Proposed test application technique

5.3.1 Proposed technique

The proposed technique is independent of the specific metric considered during the

fault classification process, of the precise circuit test responses and of the specific test

pattern generation technique. We assume as preconditions to have:

• ax-redundant and non-redundant fault lists;

• the test patterns detecting non-redundant faults.

As depicted in Figure 5.1, the proposed test application technique is composed of

two phases, described below:

At design time we simulate test patterns with the AxIC netlist and compact the re-

sponses together to form a golden signature (1.1). Then, we perform the same

procedure while injecting, one by one, all the ax-redundant (axR) faults into

the AxIC netlist. This results in ax-redundant signatures (1.2). Hence, we ap-

ply the same process to non-redundant (nR) faults, in order to obtain non-

redundant signatures (1.3). Finally, we perform the union between golden and

ax-redundant signatures, hence we remove signatures in common with non-

redundant ones (if any) (1.4). We usually refer as aliasing to the phenomenon

for which some bad signatures overlap good ones [34] (see Subsection 1.1.4).

The output of this phase is what we call ax-aware signature set.

72 Chapter 5. AxA test set application

At test time (post-manufacturing) after applying test patterns to the manufactured

AxIC, we compact test responses and compare the actual signature with all the

signatures in the ax-aware signature set. If at least one of the comparisons

matches, than the test passes, otherwise the circuit is rejected.

It can be easily deduced that the proposed technique is independent of the specific

fault classification and pattern generation techniques employed. Indeed, it is based

only on the analysis of the AxIC’s test responses.

As mentioned in the beginning of the section, different response compaction

methods can be used. Moreover, the proposed technique can be used for both exter-

nal testing and self-testing. Concerning external testing, the Automatic Test Equipment

(ATE) software can be modified to implement any compaction (e.g., hashing algo-

rithm such as MD5, SHA, etc.). On the other hand, concerning self-testing hardware

approaches as the BIST, other techniques exist, such as one-count, transition count,

Linear Feedback Shift Register (LFSR), etc [34].

5.3.2 Signature aliasing problem

As previously mentioned, the overlapping phenomenon of two signatures is usually

referred to as aliasing. In details, as reported in Chapter 1, during the test response

compaction, a signature of a faulty circuit can match the fault-free circuit one. This

is due to the loss of information caused by the compaction itself [34].

We extend the meaning of the aliasing in the context of AxIC testing. Let us

resort to a tiny example to show the issue. In Figure 5.2a, we depict a hypothet-

ical circuit where some logic produces three signals (a,b,c) which drive the circuit

outputs (O1O0) through two logic gates. Figure 5.2b reports the truth table of the

two output signals as function of a, b, and c. The column ‘int’ reports the integer

representation of the fault-free circuit output. Let us assume that the faults Sa1@a

and Sa1@b are classified as non-redundant and ax-redundant respectively. To test

these two faults we can use different vectors (e.g., vector 0 or vector 1). If the test

pattern generator selects the vector 0 to test the two faults, then the signature will be

identical for both Sa1@a and Sa1@b, because the faulty output is the same for both

faults when vector 0 is applied . This will lead our technique to reject the circuit even

when Sa1@b (ax-redundant) occurs. Therefore, we extend the definition of aliasing

as follows:

Aliasing During the test response compaction, a non-redundant signature can match

an ax-redundant one.

5.3. A new AxA test set application technique 73

(A)

Vector i a b c O1 O0 int Sa1@a Sa1@b . . .
0 0 0 0 0 0 0 2 2 . . .
1 0 0 1 0 0 0 3 2 . . .
2 0 1 0 1 0 2 2 2 . . .
3 0 1 1 1 0 2 3 2 . . .
4 1 0 0 1 0 2 2 2 . . .
5 1 0 1 1 1 3 3 3 . . .
6 1 1 0 1 0 2 2 2 . . .
7 1 1 1 1 1 3 3 3 . . .

Fault classification: non-red. ax-red . . .
Value : vector i detects the fault. Value is different from ‘inti’

(B)

FIGURE 5.2: Aliasing effect

A simple solution to reduce the aliasing probability is to generate test patterns to

detect faults multiple times. Nevertheless, this also increments the final number of

test length, thus the cost.

Another solution is to impose some constraints to the test pattern generator to

systematically select patterns to avoid aliasing. In the example shown, selecting

vector 1 instead of vector 0 would solve the problem. Indeed, the faulty output when

applying vector 1 is different for the two faults, thus the signatures will differ, as well.

5.3.3 Experimental results

In this paragraph we discuss experimental results reported in [101]. To evaluate the

technique effectiveness, we applied it to a set of AxICs taken from the literature.

Specifically, we used Accuracy-Configurable Approximate (ACA) adders from [11],

Gracefully-Degrading Adders (GDA) from [22], Generic Accuracy configurable (GeAr)

adders from [23], Error Tolerant Adders (ETAII) from [70], and some EvoApprox8b

library AxICs [25] (add8_051, add8_036, add8_012, add8_045). Without loss of gen-

erality, we used the technique in [88] to perform the fault classification, by resorting

to the WCE (Equation 1.3) as error metric. In this way, for each AxIC, we obtained

ax-redundant and non-redundant fault lists. Then, we generated test patterns with

a commercial ATPG tool [87], instrumented with the classic options (static and dy-

namic compaction). To generate the patterns, we targeted only the non-redundant

74 Chapter 5. AxA test set application

fault list. This is the conventional test flow used in [86], [95]. It is worth repeating that

any techniques for fault classification and test pattern generation can be employed

and any error metric can be used.

Finally, we applied the proposed technique. In details, we simulated the ob-

tained test patterns with the AxIC netlist while injecting the different faults and com-

pacted the responses to obtain the ax-aware signature set, as shown in Figure 5.1a.

To compact test responses into signatures, we used a software approach. Specifically,

once collected test responses into regular computer files, we used the md5sum com-

puter program to calculate MD5 hashes out of them. This constituted the ax-aware

signature set. In the actual test phase, after the AxIC manufacture, the ax-aware sig-

nature set has to be employed, as shown in Figure 5.1b.

To measure the technique efficacy, in [101] we introduce a metric, namely Rela-

tive Yield Gain (RYG), expressed as follows:

RYG = 1− detected ax-redundant faults
total ax-redundant faults

= 1− axR FC (5.1)

The RYG measures the part of expected yield gain that is actually achieved as a

result of the whole AxA test process. RYG values range from 0 to 1. RYG = 0

means that all the ax-redundant faults are detected by test procedure; thus all the

faulty, yet acceptable, AxICs are rejected. RYG = 1 means that the detection of all

ax-redundant faults is avoided, thus the yield gain is as high as expected. To count

the number of ax-redundant faults still detected, we enumerated the ax-redundant

signatures overlapping the non-redundant ones.

In Table 5.6, we show experimental results. In the first column, we report the

name of the analyzed circuits. In the second column, we report the percentage of ax-

redundant faults detected with the conventional test (i.e., without our technique).

Then, third column reports results obtained with the proposed technique. As it can

be seen, the relative yield gain was drastically improved. On average, we achieved

99.84% RYG. For fourteen circuits out of eighteen (~ 77%) the obtained relative yield

gain was 100%. For the remaining four circuits, the RYG was always greater than

98%. Such RYG reduction was due to the phenomenon described in Subsection 5.3.2,

i.e. aliasing.

To mitigate the aliasing effect, we generated test patterns to detect faults twice.

In details, we instrumented the ATPG with the option -ndetects 2. As reported in the

fourth column of Table 5.6, the aliasing phenomenon was correctly overcome for all

the four circuits. The cost of detecting the faults twice was to double the number of

test patterns.

5.4. Evaluation 75

Circuit
1Relative Yield Gain (%)
with conventional test

1Relative Yield Gain (%)
with proposed technique

Execution
Time (s)

Single
detection

Double
detection

add8_051 0.00% 100.00% - 0.648
add8_036 20.00% 100.00% - 0.636
add8_012 0.00% 100.00% - 0.532
add8_045 0.00% 100.00% - 0.496
GeAr_N8_R2_P2 26.67% 100.00% - 0.636
ACA_I_N8_Q5 31.86% 99.46% 100.00% 0.764
GDA_St_N8_M8_P3 18.70% 100.00% - 0.704
GeAr_N16_R6_P4 12.75% 100.00% - 0.724
ACA_II_N16_Q8 30.83% 100.00% - 0.772
ETAII_N16_Q8 28.92% 98.58% 100.00% 0.924
GDA_St_N16_M4_P4 10.10% 100.00% - 1.324
GDA_St_N16_M4_P8 23.36% 100.00% - 1.276
GeAr_N16_R4_P4 30.83% 100.00% - 0.78
GeAr_N16_R4_P8 30.00% 99.40% 100.00% 0.852
GeAr_N16_R2_P4 34.48% 99.62% 100.00% 1.016
ACA_II_N16_Q4 24.15% 100.00% - 1.152
ETAII_N16_Q4 24.15% 100.00% - 1.22
ACA_I_N16_Q4 24.88% 100.00% - 1.476
Average 20.65% 99.84% 100.00% 0.89 s
1 Higher is better

TABLE 5.6: Ax-R faults detected with proposed technique compared
to conventional test

Clearly, ad hoc methods can be implemented to overcome aliasing. As an ex-

ample, some test pattern generation techniques discussed in Chapter 4 generate test

patterns that intrinsically avoid the aliasing phenomenon [32], [88], [94]. Indeed,

those techniques generate test patterns that always produce error values greater

than the threshold when detecting non-redundant faults. On the contrary, error

values lower than the threshold are produced when detecting ax-redundant faults.

Therefore, non-redundant signatures cannot overlap ax-redundant ones. Next sec-

tion shows results also with ad hoc methods. Finally, concerning the experiment

execution time, the table’s last column shows a run-time always smaller than 1.5

seconds (0.89 seconds, on average).

5.4 Evaluation

In this subsection we evaluate whether the proposed technique resolves the prob-

lem highlighted at the end of last chapter: in Section 4.4, we remarked that, while

test ax-aware test pattern generation techniques (with and without pattern selection)

provide good improvements compared to conventional ATPG, some ax-redundant

76 Chapter 5. AxA test set application

faults are still detected in the test application phase. This is due to the intrinsic struc-

ture of AxICs.

Therefore, we applied the proposed technique to AxICs from the EvoApprox8b

library [25], as earlier, to evaluate the improvements. We used the same experimen-

tal setup as in Section 5.2, i.e. we used test sets obtained by using both conven-

tional and ax-aware generation techniques, considered WCE as error metric, and

used MD5 hashes to generate signatures. To be compliant with results shown all

Conventional pattern generation1

Add8 Mul8 Mul16 Mul32
axR FC2 YIL2 axR FC2 YIL2 axR FC2 YIL2 axR FC2 YIL2

Min 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Max 66.67% 3.28% 50.00% 1.62% 5.26% 1.82% 2.60% 0.98%
Avg 1.05% 0.13% 0.88% 0.30% 0.45% 0.16% 0.30% 0.12%

Ax-aware pattern generation (with and without pattern selection)1

Add8 Mul8 Mul16 Mul32
axR FC2 YIL2 axR FC2 YIL2 axR FC2 YIL2 axR FC2 YIL2

Min 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Max 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Avg 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
1100% non-redundant FC always achieved 2Lower is better

TABLE 5.7: Ax-redundant FC (axR FC) and Yield Increase Loss (YIL)
results when using the proposed test set application technique

along the manuscript, in Table 5.7, we report experimental results in terms of axR

FC and YIL. As reported, results prove a drastic improvement. In the upper part

of the table, it can be seen that the axR FC and YIL were drastically reduced when

conventionally generated patterns were used. On average, we achieved axR FC be-

tween 0.3% and 1.05% and a corresponding YIL in the range 0.12% – 0.3%. The gap

between ideal results – i.e., 0% for both axR FC and YIL – and the obtained ones is

due to the aliasing phenomenon, discussed in Subsection 5.3.2. By using corrective

methods, results can be further improved.

Indeed, as reported in the lower part of the table and as predicted in Section 5.3.3,

for ax-aware generated patterns, the yield gain was always maximum, i.e. the actual

yield increase was always equal to expected Yield Increase (eYI), established in fault

classification phase (see Chapter 3). Indeed, in experiments both axR FC and YIL

were always 0%.

More importantly, in contrast with threshold testing [32], for all the experiments

nR FC was always 100%.

5.5. Chapter summary 77

5.5 Chapter summary

In this chapter we presented the AxA test set application. Firstly, we showed and

discussed the issues related to the test set application in the context of AxICs. We

showed with an example that it is not always possible to avoid detecting some ax-

redundant faults, due to the AxIC structure.

Then, we tried to adapt an existing technique for conventional ICs to AxICs (the

threshold testing [32]). Unfortunately, we discovered that specific conditions have

to be met in order to use the technique.

Therefore, we proposed a new AxA test set application technique to deal with the

encountered limitations. The technique is based on the well-know signature analysis

concept, successfully applied to built-in self-test architectures in the seventies [33].

Result obtained with the proposed technique were really good. We also described

the aliasing phenomenon in the AxIC context and evaluated some corrective meth-

ods to deal with it.

79

Chapter 6

Discussion and conclusions

Contents

6.1 Summary and considerations . 80

6.1.1 Contributions . 81

6.1.2 Considerations . 82

6.2 Future perspectives . 83

6.2.1 Contexts of application . 83

6.2.2 Future research directions . 84

80 Chapter 6. Discussion and conclusions

In this Chapter, we briefly review the concepts and techniques presented all

along this thesis and draw the future directions.

6.1 Summary and considerations

The introduction of approximate computing paradigm in the panorama of informa-

tion technology, brought multiple opportunities to different extents. The fundamen-

tal goal of approximate computing is to improve the system efficiency (time/area/energy)

by relaxing result’s accuracy requirements. Approximate computing has been ap-

plied at different levels of the computing systems, from hardware to software, pass-

ing through architectures. Among all the works of the last two decades, approximate

computing has been also employed to realize a new class of integrated circuits, i.e.

approximate integrated circuits or AxICs. The introduction of a new class of circuits

brought along new challenges, as well as new opportunities, concerning chip test

and verification. In particular, approximate chip designers carefully modify the cir-

cuit structure to introduce acceptable error, in order to still obtain satisfying results. To

correctly define the acceptable concept, designers resort to error metrics. Then, they de-

fine error thresholds to fix the maximum allowed (i.e., acceptable) error. Therefore, the

concept of faulty circuit changes. Indeed, two new classes of faults are introduced:

ax-redundant faults (i.e., faults causing acceptable errors) and non-redundant faults

(i.e., faults causing catastrophic errors). In the testing context, the class of a de-

tectable fault can be determined by measuring the caused error at AxIC’s output. If

the measured error is higher than the acceptable threshold, then the circuit has to be

rejected. However, it may happen that the measured error stays below the accept-

able threshold, then the AxIC must not be rejected. Therefore, in this context, test

role changes as follows:

• circuits whose observed error is greater than the threshold must be rejected;

• circuit affected by acceptable faults must not be rejected.

This ultimately leads to yield increase and possibly to test cost reduction.

As a consequence of these considerations, we introduced AxA testing, basically

composed of three phases: (i) AxA fault classification, (ii) AxA test pattern gener-

ation, and (iii) AxA test set application. All AxA testing phases bring important

contributions to the final test goal, in the context of AxICs:

AxA fault classification separates catastrophic faults from the acceptable ones. Re-

sults of this phase determine the expected Yield Increase (eYI). Achieving an actual

yield increase as much close as possible to eYI is one of the AxA testing final goals,

6.1. Summary and considerations 81

along with the detection of all catastrophic faults. The actual yield increase is the

result of the synergy between AxA test pattern generation and AxA test set applica-

tion.

AxA test pattern generation produces test sets to detect all the catastrophic faults,

while detecting as few acceptable ones as possible. Unfortunately, avoiding the de-

tection of some acceptable faults is not always possible. The percentage of covered

acceptable fault is measured by using the approximation-Redundant Fault Coverage

(axR FC).

AxA test set application must distinguish catastrophic faults from acceptable ones,

by observing test responses. In this way axR FC is further reduced and thus the yield

is actually increased.

6.1.1 Contributions

All along the thesis we thoroughly discussed all the AxA test phases and presented

techniques to deal with each aspect. In Chapter 3, we presented techniques to suc-

cessfully deal with the fault classification task, when considering different types of

metrics. The proposed techniques are based on building a classifying architecture,

which allows the fault classification into non-redundant and ax-redundant by mea-

suring fault impact on AxIC’s output. In Chapter 4, we presented two techniques

to generate test patterns with different properties. The first one is based on the

simultaneous fault classification (discussed in Chapter 3) and test pattern genera-

tion. The resulting test patterns generate output errors always greater than the error

threshold when detecting non-redundant faults. This technique is particularly suit-

able with SCT metrics. Moreover, as shown in Section 5.4, the technique leads to

ideal results in terms of yield increase, when AxA test set application techniques

are employed [32], [101]. The second test pattern generation technique is based on

a systematic test pattern selection. In brief, different test patterns detecting differ-

ent faults are examined and the best subset – achieving 100% nR FC and minimizing

axR FC – is chosen. The selection is performed by formulating and solving an integer

linear programming problem. By merging the two proposed test pattern generation

approaches – as shown in the experimental Section 4.4 – further improvements can

be obtained, compared to the conventional ATPG. We also discovered that AxICs

present some intrinsic structural limitations. Indeed, it is often impossible avoiding

the detection of some ax-redundant faults. For this reason, in Chapter 5, we pre-

sented a test set application technique to drastically improve the yield increase. The

82 Chapter 6. Discussion and conclusions

technique is based on the well-know signature analysis concept, successfully ap-

plied to built-in self-test architectures in the seventies [33]. The proposed technique

allowed us to reach ideal results almost in all cases. In summary, we showed that

the synergy of the techniques proposed for these last two phases (i.e., test pattern

generation and test application) led to achieve optimal results.

6.1.2 Considerations

Now, let us express some further considerations. Concerning AxA test set appli-

cation, the technique that we introduced in Section 5.3 achieved very good results

even when no particular AxA test pattern generation techniques were employed

(see results in Section 5.4). We could claim that there is no need to include AxA

test pattern generation techniques in the test flow to achieve a final high quality

AxA test. However, we have to take into account the cost of implementing the pro-

posed AxA test set application technique. In external test (post-manufacturing), it

can be implemented without a big overhead. Indeed, the Automatic Test Equipment

(ATE) software can be modified to implement a signature analysis, as discussed in

Section 5.3. Nevertheless, when it comes to self-testing hardware, a non-negligible

overhead has to be taken into account. As an example, we can consider the BIST

architecture (discussed in Section 1.1.4). In BIST, given a test set, test responses are

compacted together into a signature. The latter is compared with the golden one

(i.e., the signature generated by the fault-free circuit), stored within the BIST archi-

tecture. If the two signature are identical, the circuit is considered fault-free. As

FIGURE 6.1: ax-aware BIST hypothetical architecture

suggested by Figure 6.1, to turn the conventional BIST into an ax-aware BIST, the

technique discussed in Section 5.3 can be implemented. Thus, multiple ax-redundant

signatures need to be stored within the circuit, leading to area overhead and to extra

time to perform the test (i.e., to compare the test response with all the ax-redundant

signatures). The number of ax-redundant signatures depends on the quality of the

6.2. Future perspectives 83

generated AxA test set. The higher the quality (low axR FC), the fewer the number

of ax-redundant signatures, thus the overhead. Therefore, from the perspective of

self testing, improving the AxA test pattern generation, as discussed in Chapter 4,

becomes important.

In conclusion, combining AxA test pattern generation and test application tech-

niques turns out to be necessary to improve the overall AxA test quality. Anyhow,

the choice of which AxA test techniques to embed in the test flow depends on testing

requirements.

6.2 Future perspectives

In this section, we discuss further potential contexts of application for the proposed

work, besides approximate integrated circuits. Furthermore, we draw future re-

search directions.

6.2.1 Contexts of application

The techniques presented in this thesis were designed in the context of AxIC testing.

Nevertheless, they can be adapted to any kind of domain needing the selective test

of fault subsets in integrated circuits. For instance, in [102] and [103], faults that can-

not produce any failures in the operational conditions of embedded processor cores

were classified as functionally untestable. In [104], the classification was extended to

special purpose systems (i.e., built to perform a single application). In this scenario

faults that cannot produce any failures, due to the specific application code executed

by the CPU, are classified as on-line functionally untestable. According to the ISO26262

automotive standard terminology, these faults are called “safe faults application de-

pendent”. In safety critical applications, achieving a sufficient fault coverage ac-

cording to the target reliability figure (e.g. ISO 26262 for automotive, DO-254 for

avionics, IEC 61508 for industrial systems) is crucial. To do this, the identification of

functionally untestable faults and their exclusion from the testing process are neces-

sary. Moreover, this permits reducing over-testing effects, which, in turns, increase

the yield and thus the profit of semiconductor companies. In [102]–[104], authors

particularly focused on identifying functionally untestable faults. However, no tech-

niques were proposed to actually generating test patterns to avoid the detection of

such faults, nor to actually increase the yield. Therefore, test pattern generation and

test set application techniques described in Chapters 4 and 5 may be useful to extend

the framework presented in [103]. Indeed, as long as faults are properly classified,

the proposed techniques are applicable.

84 Chapter 6. Discussion and conclusions

Another possible context of application is represented by the Deep Neural Net-

works (DNNs). DNNs have gained prominence in recent years, also in safety critical

applications. As an example, they are being deployed on hardware accelerators in

self-driving cars for real-time image classification. Several DNN hardware accelera-

tion techniques have been proposed in last years [105]–[107]. The application context

in which such systems are deployed involves human lives. Therefore, DNN hard-

ware accelerators must be compliant with safety standards. As a result, works to as-

sess the reliability of these systems, are emerging. For example, in [108] and [109] the

impact of soft errors and of permanent faults on DNN systems was characterized.

It turned out that the DNN resilience depends on multiple factors, (e.g., data types,

actual values, data reuses, and network structure). This means that faults can affect

two similar systems in different ways, depending on those aforementioned factors.

A catastrophic fault for a system can be totally harmless to another. Basing on this

insight, the online test efficiency of DNN hardware accelerators can be improved by

using the techniques proposed in this thesis. Indeed, fault classification techniques

inspired by the ones proposed in [88], [95] (Chapter 3) can be designed to classify

faults into acceptable and catastrophic. Consequently, the test pattern generation

technique proposed in [96] (Chapter 4) can produce test patterns detecting all the

catastrophic conditions and as less acceptable ones as possible. Finally, the test set

application technique proposed in [101] (Chapter 5) can cope with the classification

of faulty scenarios into catastrophic and acceptable.

6.2.2 Future research directions

As highlighted in the last section, all the AxA testing phases contribute to the high-

quality test of AxICs. However, all the mentioned techniques do not come without

cost. In particular, while acceptable faults constitute an opportunity of increasing

the production yield, unfortunately their detection is not straightforward to avoid.

In fact, AxA test techniques introduce some overhead (e.g., more difficult test pattern

generation, overhead in test set application, especially in BIST) to achieve this goal.

An immediate solution that comes to mind is to eliminate the problem at source:

by drawing inspiration from Design for Testability, Approximation for Testability (AfT)

could suitably tackle the issue. Carefully introducing acceptable faults into the AxIC

until only catastrophic ones are left would bring two advantages:

1. further (safe!) approximation, thus gains in (area/power/timing) and

2. testability increase.

To do so, an iterative process composed of (i) fault classification, (ii) fault injec-

tion, and (iii) circuit re-synthesis should be implemented. As a result, testing a

6.2. Future perspectives 85

so-obtained AxIC would not require more effort than conventional test, since no ac-

ceptable faults would be present anymore. Moreover, the introduced approximation

would respect the error threshold by definition.

This and other AfT techniques might represent future directions for the testing

of approximate integrated circuits.

87

Chapter 7

Scientific Contributions

In this chapter, we list our scientific contributions relevant to the treated topic.

Publications in International Journals

1. L. Anghel, M. Benabdenbi, A. Bosio, M. Traiola, and E. I. Vatajelu, “Test and re-

liability in approximate computing”, Journal of Electronic Testing, vol. 34, no. 4,

pp. 375–387, 2018, ISSN: 1573-0727. DOI: 10.1007/s10836-018-5734-9

2. M. Traiola, A. Virazel, P. Girard, M. Barbareschi, and A. Bosio, “A test pattern

generation technique for approximate circuits based on an ilp-formulated pat-

tern selection procedure”, IEEE Transactions on Nanotechnology, pp. 1–1, 2019,

ISSN: 1536-125X. DOI: 10.1109/TNANO.2019.2923040

3. M. Traiola, A. Virazel, P. Girard, M. Barbareschi, and A. Bosio, “A survey of

testing techniques for approximate integrated circuits”, Proceedings of IEEE (un-

der review), 2020

Publications in Proceedings of International Conferences

1. I. Wali, M. Traiola, A. Virazel, P. Girard, M. Barbareschi, and A. Bosio, “To-

wards approximation during test of integrated circuits”, in 2017 IEEE 20th In-

ternational Symposium on Design and Diagnostics of Electronic Circuits Systems

(DDECS), 2017, pp. 28–33. DOI: 10.1109/DDECS.2017.7934574

2. M. Traiola, A. Virazel, P. Girard, M. Barbareschi, and A. Bosio, “Towards digital

circuit approximation by exploiting fault simulation”, in 2017 IEEE East-West

Design Test Symposium (EWDTS), 2017, pp. 1–7. DOI: 10.1109/EWDTS.2017.

8110108

3. M. Traiola, A. Virazel, P. Girard, M. Barbareschi, and A. Bosio, “Testing ap-

proximate digital circuits: Challenges and opportunities”, in 2018 IEEE 19th

https://doi.org/10.1007/s10836-018-5734-9
https://doi.org/10.1109/TNANO.2019.2923040
https://doi.org/10.1109/DDECS.2017.7934574
https://doi.org/10.1109/EWDTS.2017.8110108
https://doi.org/10.1109/EWDTS.2017.8110108

88 Chapter 7. Scientific Contributions

Latin-American Test Symposium (LATS), 2018, pp. 1–6. DOI: 10.1109/LATW.

2018.8349681

4. M. Traiola, A. Virazel, P. Girard, M. Barbareschi, and A. Bosio, “On the com-

parison of different atpg approaches for approximate integrated circuits”, in

2018 IEEE 21st International Symposium on Design and Diagnostics of Electronic

Circuits Systems (DDECS), 2018, pp. 85–90. DOI: 10.1109/DDECS.2018.00022

5. L. Sekanina, Z. Vasicek, A. Bosio, M. Traiola, P. Rech, D. Oliveria, F. Fernandes,

and S. Di Carlo, “Special session: How approximate computing impacts verifi-

cation, test and reliability”, in 2018 IEEE 36th VLSI Test Symposium (VTS), 2018,

pp. 1–1. DOI: 10.1109/VTS.2018.8368628

6. M. Traiola, A. Virazel, P. Girard, M. Barbareschi, and A. Bosio, “Investigation of

mean-error metrics for testing approximate integrated circuits”, in 2018 IEEE

International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology

Systems (DFT), 2018, pp. 1–6. DOI: 10.1109/DFT.2018.8602939

7. M. Traiola, A. Virazel, P. Girard, M. Barbareschi, and A. Bosio, “Maximizing

yield for approximate integrated circuits”, in Design, Automation Test in Europe

Conference Exhibition (DATE), 2020

Publications in International Workshops without Proceedings

1. I. Wali, M. Traiola, A. Virazel, P. Girard, M. Barbareschi, and A. Bosio, “Can we

approximate the test of integrated circuits?”, in 3rd Workshop On Approximate

Computing (WAPCO), 2017, pp. 1–7. [Online]. Available: https://wapco.e-

ce.uth.gr/papers/SESSION2/paper_2_1.pdf

2. M. Traiola, A. Virazel, P. Girard, M. Barbareschi, and A. Bosio, “Testing inte-

grated circuits for approximate computing applications”, in 4rd Workshop On

Approximate Computing (WAPCO), 2018, pp. 1–7

3. M. Traiola, A. Virazel, and P. Girard, “On the testing of approximate inte-

grated circuits for embedded applications considering average-error metrics”,

in AxC18 3rd Workshop on Approximate Computing (in conjuction with European

Test Symposium (ETS)), 2018, pp. 1–7

Publications in National Conferences without Proceedings

1. M. Traiola, A. Virazel, P. Girard, and A. Bosio, “A case study on the approxi-

mate test of integrated circuits”, in Colloque du GDR SoC2, 2017, pp. 1–7

https://doi.org/10.1109/LATW.2018.8349681
https://doi.org/10.1109/LATW.2018.8349681
https://doi.org/10.1109/DDECS.2018.00022
https://doi.org/10.1109/VTS.2018.8368628
https://doi.org/10.1109/DFT.2018.8602939
https://wapco.e-ce.uth.gr/papers/SESSION2/paper_2_1.pdf
https://wapco.e-ce.uth.gr/papers/SESSION2/paper_2_1.pdf

Chapter 7. Scientific Contributions 89

2. M. Traiola, A. Virazel, P. Girard, and A. Bosio, “Automatic test pattern gen-

eration for approximate integrated circuits”, in Colloque du GDR SoC2, 2018,

pp. 1–7

3. M. Traiola, A. Virazel, P. Girard, and A. Bosio, “Test techniques for approxi-

mate integrated circuits”, in Colloque du GDR SoC2, 2019, pp. 1–7

91

Bibliography

[1] Q. Xu, T. Mytkowicz, and N. S. Kim, “Approximate computing: A survey”,

IEEE Design Test, vol. 33, no. 1, pp. 8–22, 2016, ISSN: 2168-2356. DOI: 10.1109/

MDAT.2015.2505723.

[2] S. Mittal, “A survey of techniques for approximate computing”, ACM Com-

put. Surv., vol. 48, no. 4, 62:1–62:33, Mar. 2016, ISSN: 0360-0300. DOI: 10.1145/

2893356.

[3] J. Han and M. Orshansky, “Approximate computing: An emerging paradigm

for energy-efficient design”, in 2013 18th IEEE European Test Symposium (ETS),

2013, pp. 1–6. DOI: 10.1109/ETS.2013.6569370.

[4] V. K. Chippa, S. T. Chakradhar, K. Roy, and A. Raghunathan, “Analysis and

characterization of inherent application resilience for approximate comput-

ing”, in 2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC), 2013,

pp. 1–9. DOI: 10.1145/2463209.2488873.

[5] S. Rehman, B. S. Prabakaran, W. El-Harouni, M. Shafique, and J. Henkel,

“Heterogeneous approximate multipliers: Architectures and design method-

ologies”, in Approximate Circuits: Methodologies and CAD, S. Reda and M. Shafique,

Eds. Springer International Publishing, 2019, pp. 45–66, ISBN: 978-3-319-99322-

5. DOI: 10.1007/978-3-319-99322-5_3.

[6] H. Jiang, J. Han, and F. Lombardi, “A comparative review and evaluation of

approximate adders”, in Proceedings of the 25th Edition on Great Lakes Sympo-

sium on VLSI, ser. GLSVLSI ’15, Pittsburgh, Pennsylvania, USA: ACM, 2015,

pp. 343–348, ISBN: 978-1-4503-3474-7. DOI: 10.1145/2742060.2743760.

[7] P. Kulkarni, P. Gupta, and M. Ercegovac, “Trading accuracy for power with

an underdesigned multiplier architecture”, in 2011 24th Internatioal Conference

on VLSI Design, 2011, pp. 346–351. DOI: 10.1109/VLSID.2011.51.

[8] S. Rehman, W. El-Harouni, M. Shafique, A. Kumar, and J. Henkel, “Architectural-

space exploration of approximate multipliers”, in Proceedings of the 35th Inter-

national Conference on Computer-Aided Design, ser. ICCAD ’16, Austin, Texas:

ACM, 2016, 80:1–80:8, ISBN: 978-1-4503-4466-1. DOI: 10.1145/2966986.2967005.

https://doi.org/10.1109/MDAT.2015.2505723
https://doi.org/10.1109/MDAT.2015.2505723
https://doi.org/10.1145/2893356
https://doi.org/10.1145/2893356
https://doi.org/10.1109/ETS.2013.6569370
https://doi.org/10.1145/2463209.2488873
https://doi.org/10.1007/978-3-319-99322-5_3
https://doi.org/10.1145/2742060.2743760
https://doi.org/10.1109/VLSID.2011.51
https://doi.org/10.1145/2966986.2967005

92 Bibliography

[9] V. Gupta, D. Mohapatra, S. P. Park, A. Raghunathan, and K. Roy, “Impact:

Imprecise adders for low-power approximate computing”, in IEEE/ACM In-

ternational Symposium on Low Power Electronics and Design, 2011, pp. 409–414.

DOI: 10.1109/ISLPED.2011.5993675.

[10] J. Miao, K. He, A. Gerstlauer, and M. Orshansky, “Modeling and synthesis of

quality-energy optimal approximate adders”, in 2012 IEEE/ACM International

Conference on Computer-Aided Design (ICCAD), 2012, pp. 728–735.

[11] A. B. Kahng and S. Kang, “Accuracy-configurable adder for approximate

arithmetic designs”, in DAC Design Automation Conference 2012, 2012, pp. 820–

825. DOI: 10.1145/2228360.2228509.

[12] V. K. Chippa, S. Venkataramani, S. T. Chakradhar, K. Roy, and A. Raghu-

nathan, “Approximate computing: An integrated hardware approach”, in

2013 Asilomar Conference on Signals, Systems and Computers, 2013, pp. 111–117.

DOI: 10.1109/ACSSC.2013.6810241.

[13] A. Momeni, J. Han, P. Montuschi, and F. Lombardi, “Design and analysis of

approximate compressors for multiplication”, IEEE Transactions on Comput-

ers, vol. 64, no. 4, pp. 984–994, 2015, ISSN: 0018-9340. DOI: 10.1109/TC.2014.

2308214.

[14] D. Shin and S. K. Gupta, “Approximate logic synthesis for error tolerant ap-

plications”, in Design, Automation Test in Europe Conference Exhibition (DATE),

2010, pp. 957–960. DOI: 10.1109/DATE.2010.5456913.

[15] S. Venkataramani, A. Sabne, V. Kozhikkottu, K. Roy, and A. Raghunathan,

“Salsa: Systematic logic synthesis of approximate circuits”, in DAC Design

Automation Conference 2012, 2012, pp. 796–801. DOI: 10.1145/2228360.2228504.

[16] S. Venkataramani, K. Roy, and A. Raghunathan, “Substitute-and-simplify:

A unified design paradigm for approximate and quality configurable cir-

cuits”, in Design, Automation Test in Europe Conference Exhibition (DATE), 2013,

pp. 1367–1372. DOI: 10.7873/DATE.2013.280.

[17] J. Miao, A. Gerstlauer, and M. Orshansky, “Multi-level approximate logic

synthesis under general error constraints”, in 2014 IEEE/ACM International

Conference on Computer-Aided Design (ICCAD), 2014, pp. 504–510. DOI: 10.

1109/ICCAD.2014.7001398.

[18] Y. Wu and W. Qian, “An efficient method for multi-level approximate logic

synthesis under error rate constraint”, in 2016 53nd ACM/EDAC/IEEE Design

Automation Conference (DAC), 2016, pp. 1–6. DOI: 10.1145/2897937.2897982.

https://doi.org/10.1109/ISLPED.2011.5993675
https://doi.org/10.1145/2228360.2228509
https://doi.org/10.1109/ACSSC.2013.6810241
https://doi.org/10.1109/TC.2014.2308214
https://doi.org/10.1109/TC.2014.2308214
https://doi.org/10.1109/DATE.2010.5456913
https://doi.org/10.1145/2228360.2228504
https://doi.org/10.7873/DATE.2013.280
https://doi.org/10.1109/ICCAD.2014.7001398
https://doi.org/10.1109/ICCAD.2014.7001398
https://doi.org/10.1145/2897937.2897982

Bibliography 93

[19] D. Shin and S. K. Gupta, “A new circuit simplification method for error toler-

ant applications”, in Design, Automation Test in Europe (DATE), 2011, pp. 1–6.

DOI: 10.1109/DATE.2011.5763248.

[20] A. Ranjan, A. Raha, S. Venkataramani, K. Roy, and A. Raghunathan, “Aslan:

Synthesis of approximate sequential circuits”, in Design, Automation Test in

Europe Conference Exhibition (DATE), 2014. DOI: 10.7873/DATE.2014.377.

[21] L. Holik, O. Lengal, A. Rogalewicz, L. Sekanina, Z. Vasicek, and T. Vojnar,

“Towards formal relaxed equivalence checking in approximate computing

methodology”, 2nd Workshop On Approximate Computing (WAPCO), 2016. [On-

line]. Available: https://wapco.e-ce.uth.gr/2016/papers/SESSION2/

wapco2016_2_1.pdf.

[22] R. Ye, T. Wang, F. Yuan, R. Kumar, and Q. Xu, “On reconfiguration-oriented

approximate adder design and its application”, in 2013 IEEE/ACM Interna-

tional Conference on Computer-Aided Design (ICCAD), 2013, pp. 48–54. DOI:

10.1109/ICCAD.2013.6691096.

[23] M. Shafique, W. Ahmad, R. Hafiz, and J. Henkel, “A low latency generic accu-

racy configurable adder”, in 2015 52nd ACM/EDAC/IEEE Design Automation

Conference (DAC), 2015, pp. 1–6. DOI: 10.1145/2744769.2744778.

[24] A. Yazdanbakhsh, D. Mahajan, H. Esmaeilzadeh, and P. Lotfi-Kamran, “Axbench:

A multiplatform benchmark suite for approximate computing”, IEEE Design

Test, vol. 34, no. 2, pp. 60–68, 2017, ISSN: 2168-2356. DOI: 10.1109/MDAT.2016.

2630270.

[25] V. Mrazek, R. Hrbacek, Z. Vasicek, and L. Sekanina, “Evoapprox8b: Library

of approx adders and multipliers for circuit design and benchmarking of ap-

proximation methods”, in Design, Automation Test in Europe Conference Exhibi-

tion (DATE), 2017, pp. 258–261. DOI: 10.23919/DATE.2017.7926993.

[26] I. Polian, “Test and reliability challenges for approximate circuitry”, IEEE Em-

bedded Systems Letters, vol. 10, no. 1, pp. 26–29, 2018, ISSN: 1943-0663. DOI:

10.1109/LES.2017.2754446.

[27] A. Chandrasekharan, D. Große, and R. Drechsler, Design Automation Tech-

niques for Approximation Circuits: Verification, Synthesis and Test. Springer, 2019.

DOI: 10.1007/978-3-319-98965-5.

[28] L. Anghel, M. Benabdenbi, A. Bosio, M. Traiola, and E. I. Vatajelu, “Test and

reliability in approximate computing”, Journal of Electronic Testing, vol. 34,

no. 4, pp. 375–387, 2018, ISSN: 1573-0727. DOI: 10.1007/s10836-018-5734-9.

https://doi.org/10.1109/DATE.2011.5763248
https://doi.org/10.7873/DATE.2014.377
https://wapco.e-ce.uth.gr/2016/papers/SESSION2/wapco2016_2_1.pdf
https://wapco.e-ce.uth.gr/2016/papers/SESSION2/wapco2016_2_1.pdf
https://doi.org/10.1109/ICCAD.2013.6691096
https://doi.org/10.1145/2744769.2744778
https://doi.org/10.1109/MDAT.2016.2630270
https://doi.org/10.1109/MDAT.2016.2630270
https://doi.org/10.23919/DATE.2017.7926993
https://doi.org/10.1109/LES.2017.2754446
https://doi.org/10.1007/978-3-319-98965-5
https://doi.org/10.1007/s10836-018-5734-9

94 Bibliography

[29] L. Sekanina, Z. Vasicek, A. Bosio, M. Traiola, P. Rech, D. Oliveria, F. Fer-

nandes, and S. Di Carlo, “Special session: How approximate computing im-

pacts verification, test and reliability”, in 2018 IEEE 36th VLSI Test Symposium

(VTS), 2018, pp. 1–1. DOI: 10.1109/VTS.2018.8368628.

[30] J. Liang, J. Han, and F. Lombardi, “New metrics for the reliability of approxi-

mate and probabilistic adders”, IEEE Transactions on Computers, vol. 62, no. 9,

pp. 1760–1771, 2013, ISSN: 0018-9340. DOI: 10.1109/TC.2012.146.

[31] G. Gielen, P. D. Wit, E. Maricau, J. Loeckx, J. Martin-Martinez, B. Kaczer, G.

Groeseneken, R. Rodriguez, and M. Nafria, “Emerging yield and reliability

challenges in nanometer cmos technologies”, in Design, Automation and Test

in Europe (DATE), 2008, pp. 1322–1327. DOI: 10.1109/DATE.2008.4484862.

[32] Z. Jiang and S. K. Gupta, “An atpg for threshold testing: Obtaining acceptable

yield in future processes”, in Proceedings. International Test Conference, 2002,

pp. 824–833. DOI: 10.1109/TEST.2002.1041836.

[33] R. A. Frohwerk, “Signature analysis: A new digital field service method”,

1977.

[34] M L. Bushnell and V D. Agarwal, Essentials of Electronic Testing for Digital,

Memory, and Mixed-Signal VLSI Circuits. Jan. 2000. DOI: 10.1007/b117406.

[35] R. D. Eldred, “Test routines based on symbolic logical statements”, J. ACM,

vol. 6, no. 1, pp. 33–37, Jan. 1959, ISSN: 0004-5411. DOI: 10.1145/320954.

320957.

[36] V. Agrawal, S. Seth, and I. C. Society, Tutorial test generation for VLSI chips.

Computer Society Press, 1988, ISBN: 9780818687860. [Online]. Available: https:

//books.google.fr/books?id=WC1TAAAAMAAJ.

[37] A. Bosio, D. Menard, and O. Sentieys, A Comprehensive Analysis of Approxi-

mate Computing Techniques: From Component- to Application-Level, DATE 2019

- 22nd IEEE/ACM Design, Automation and Test in Europe, Mar. 2019. [On-

line]. Available: https://hal.inria.fr/hal-01941757.

[38] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and D. Gross-

man, “Enerj: Approximate data types for safe and general low-power compu-

tation”, in Proceedings of the 32Nd ACM SIGPLAN Conference on Programming

Language Design and Implementation, ser. PLDI ’11, San Jose, California, USA:

ACM, 2011, pp. 164–174, ISBN: 978-1-4503-0663-8. DOI: 10.1145/1993498.

1993518.

https://doi.org/10.1109/VTS.2018.8368628
https://doi.org/10.1109/TC.2012.146
https://doi.org/10.1109/DATE.2008.4484862
https://doi.org/10.1109/TEST.2002.1041836
https://doi.org/10.1007/b117406
https://doi.org/10.1145/320954.320957
https://doi.org/10.1145/320954.320957
https://books.google.fr/books?id=WC1TAAAAMAAJ
https://books.google.fr/books?id=WC1TAAAAMAAJ
https://hal.inria.fr/hal-01941757
https://doi.org/10.1145/1993498.1993518
https://doi.org/10.1145/1993498.1993518

Bibliography 95

[39] J. Bornholt, T. Mytkowicz, and K. S. McKinley, “Uncertain< t >: A first-order

type for uncertain data”, Tech. Rep. MSR-TR-2013-46, 2013. [Online]. Avail-

able: https://www.microsoft.com/en-us/research/publication/uncertaint-

a-first-order-type-for-uncertain-data/.

[40] Qian Zhang, F. Yuan, R. Ye, and Q. Xu, “Approxit: An approximate com-

puting framework for iterative methods”, in 2014 51st ACM/EDAC/IEEE De-

sign Automation Conference (DAC), 2014, pp. 1–6. DOI: 10.1109/DAC.2014.

6881424.

[41] M. Samadi, J. Lee, D. A. Jamshidi, A. Hormati, and S. Mahlke, “Sage: Self-

tuning approximation for graphics engines”, in 2013 46th Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO), 2013, pp. 13–24.

[42] W. Baek and T. Chilimbi, “Green: A framework for supporting energy-conscious

programming using controlled approximation”, ACM SIGPLAN, 2010. [On-

line]. Available: https://www.microsoft.com/en-us/research/publication/

green-framework-supporting-energy-conscious-programming-using-

controlled-approximation/.

[43] M. Ringenburg, A. Sampson, I. Ackerman, L. Ceze, and D. Grossman, “Moni-

toring and debugging the quality of results in approximate programs”, SIGARCH

Comput. Archit. News, vol. 43, no. 1, pp. 399–411, Mar. 2015, ISSN: 0163-5964.

DOI: 10.1145/2786763.2694365.

[44] D. S. Khudia, B. Zamirai, M. Samadi, and S. Mahlke, “Rumba: An online

quality management system for approximate computing”, in 2015 ACM/IEEE

42nd Annual International Symposium on Computer Architecture (ISCA), 2015,

pp. 554–566. DOI: 10.1145/2749469.2750371.

[45] M. Carbin, S. Misailovic, and M. C. Rinard, “Verifying quantitative reliability

for programs that execute on unreliable hardware”, SIGPLAN Not., vol. 48,

no. 10, pp. 33–52, Oct. 2013, ISSN: 0362-1340. DOI: 10.1145/2544173.2509546.

[46] J.-P. Katoen, I. S. Zapreev, E. M. Hahn, H. Hermanns, and D. N. Jansen, “The

ins and outs of the probabilistic model checker mrmc”, Performance Evalua-

tion, vol. 68, no. 2, pp. 90 –104, 2011, Advances in Quantitative Evaluation of

Systems, ISSN: 0166-5316. DOI: 10.1016/j.peva.2010.04.001.

[47] M. Kwiatkowska, G. Norman, and D. Parker, “Prism: Probabilistic symbolic

model checker”, in Computer Performance Evaluation: Modelling Techniques and

Tools, T. Field, P. G. Harrison, J. Bradley, and U. Harder, Eds., Berlin, Heidel-

berg: Springer Berlin Heidelberg, 2002, pp. 200–204, ISBN: 978-3-540-46029-9.

DOI: 10.1007/3-540-46029-2_13.

https://www.microsoft.com/en-us/research/publication/uncertaint-a-first-order-type-for-uncertain-data/
https://www.microsoft.com/en-us/research/publication/uncertaint-a-first-order-type-for-uncertain-data/
https://doi.org/10.1109/DAC.2014.6881424
https://doi.org/10.1109/DAC.2014.6881424
https://www.microsoft.com/en-us/research/publication/green-framework-supporting-energy-conscious-programming-using-controlled-approximation/
https://www.microsoft.com/en-us/research/publication/green-framework-supporting-energy-conscious-programming-using-controlled-approximation/
https://www.microsoft.com/en-us/research/publication/green-framework-supporting-energy-conscious-programming-using-controlled-approximation/
https://doi.org/10.1145/2786763.2694365
https://doi.org/10.1145/2749469.2750371
https://doi.org/10.1145/2544173.2509546
https://doi.org/10.1016/j.peva.2010.04.001
https://doi.org/10.1007/3-540-46029-2_13

96 Bibliography

[48] S. Chaudhuri, S. Gulwani, R. Lublinerman, and S. Navidpour, “Proving pro-

grams robust”, in Proceedings of the 19th ACM SIGSOFT Symposium and the

13th European Conference on Foundations of Software Engineering, ser. ESEC/FSE

’11, Szeged, Hungary: ACM, 2011, pp. 102–112, ISBN: 978-1-4503-0443-6. DOI:

10.1145/2025113.2025131.

[49] S. Misailovic, M. Carbin, S. Achour, Z. Qi, and M. C. Rinard, “Chisel: Reliability-

and accuracy-aware optimization of approximate computational kernels”,

SIGPLAN Not., vol. 49, no. 10, pp. 309–328, Oct. 2014, ISSN: 0362-1340. DOI:

10.1145/2714064.2660231.

[50] M. Rinard, “Probabilistic accuracy bounds for fault-tolerant computations

that discard tasks”, in Proceedings of the 20th Annual International Conference

on Supercomputing, ser. ICS ’06, Cairns, Queensland, Australia: ACM, 2006,

pp. 324–334, ISBN: 1-59593-282-8. DOI: 10.1145/1183401.1183447.

[51] A. Sampson, P. Panchekha, T. Mytkowicz, K. S. McKinley, D. Grossman, and

L. Ceze, “Expressing and verifying probabilistic assertions”, SIGPLAN Not.,

vol. 49, no. 6, pp. 112–122, Jun. 2014, ISSN: 0362-1340. DOI: 10.1145/2666356.

2594294.

[52] S. Misailovic, S. Sidiroglou, H. Hoffmann, and M. Rinard, “Quality of service

profiling”, in Proceedings of the 32Nd ACM/IEEE International Conference on

Software Engineering - Volume 1, ser. ICSE ’10, Cape Town, South Africa: ACM,

2010, pp. 25–34, ISBN: 978-1-60558-719-6. DOI: 10.1145/1806799.1806808.

[53] E. Schkufza, R. Sharma, and A. Aiken, “Stochastic optimization of floating-

point programs with tunable precision”, SIGPLAN Not., vol. 49, no. 6, pp. 53–

64, Jun. 2014, ISSN: 0362-1340. DOI: 10.1145/2666356.2594302.

[54] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Architecture support

for disciplined approximate programming”, SIGARCH Comput. Archit. News,

vol. 40, no. 1, pp. 301–312, Mar. 2012, ISSN: 0163-5964. DOI: 10.1145/2189750.

2151008.

[55] U. R. Karpuzcu, I. Akturk, and N. S. Kim, “Accordion: Toward soft near-

threshold voltage computing”, in 2014 IEEE 20th International Symposium on

High Performance Computer Architecture (HPCA), 2014, pp. 72–83. DOI: 10 .

1109/HPCA.2014.6835977.

[56] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Neural acceleration

for general-purpose approximate programs”, in 2012 45th Annual IEEE/ACM

International Symposium on Microarchitecture, 2012, pp. 449–460. DOI: 10.1109/

MICRO.2012.48.

https://doi.org/10.1145/2025113.2025131
https://doi.org/10.1145/2714064.2660231
https://doi.org/10.1145/1183401.1183447
https://doi.org/10.1145/2666356.2594294
https://doi.org/10.1145/2666356.2594294
https://doi.org/10.1145/1806799.1806808
https://doi.org/10.1145/2666356.2594302
https://doi.org/10.1145/2189750.2151008
https://doi.org/10.1145/2189750.2151008
https://doi.org/10.1109/HPCA.2014.6835977
https://doi.org/10.1109/HPCA.2014.6835977
https://doi.org/10.1109/MICRO.2012.48
https://doi.org/10.1109/MICRO.2012.48

Bibliography 97

[57] S. Z. Gilani, N. S. Kim, and M. Schulte, “Scratchpad memory optimizations

for digital signal processing applications”, in 2011 Design, Automation Test in

Europe, 2011, pp. 1–6. DOI: 10.1109/DATE.2011.5763158.

[58] D. J. Palframan, N. S. Kim, and M. H. Lipasti, “Precision-aware soft error

protection for gpus”, in 2014 IEEE 20th International Symposium on High Per-

formance Computer Architecture (HPCA), 2014, pp. 49–59. DOI: 10.1109/HPCA.

2014.6835966.

[59] M. Shoushtari, A. BanaiyanMofrad, and N. Dutt, “Exploiting partially-forgetful

memories for approximate computing”, IEEE Embedded Systems Letters, vol. 7,

no. 1, pp. 19–22, 2015, ISSN: 1943-0663. DOI: 10.1109/LES.2015.2393860.

[60] S. Liu, K. Pattabiraman, T. Moscibroda, and B. G. Zorn, “Flikker: Saving dram

refresh-power through critical data partitioning”, SIGARCH Comput. Archit.

News, vol. 39, no. 1, pp. 213–224, Mar. 2011, ISSN: 0163-5964. DOI: 10.1145/

1961295.1950391.

[61] A. Raha, S. Sutar, H. Jayakumar, and V. Raghunathan, “Quality configurable

approximate dram”, IEEE Transactions on Computers, vol. 66, no. 7, pp. 1172–

1187, 2017, ISSN: 0018-9340. DOI: 10.1109/TC.2016.2640296.

[62] M. Jung, D. M. Mathew, C. Weis, and N. Wehn, “Invited: Approximate com-

puting with partially unreliable dynamic random access memory — approx-

imate dram”, in 2016 53nd ACM/EDAC/IEEE Design Automation Conference

(DAC), 2016, pp. 1–4. DOI: 10.1145/2897937.2905002.

[63] Y. Chen, X. Yang, F. Qiao, J. Han, Q. Wei, and H. Yang, “A multi-accuracy-

level approximate memory architecture based on data significance analy-

sis”, in 2016 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), 2016,

pp. 385–390. DOI: 10.1109/ISVLSI.2016.84.

[64] N. Sayed, F. Oboril, A. Shirvanian, R. Bishnoi, and M. B. Tahoori, “Exploit-

ing stt-mram for approximate computing”, in 2017 22nd IEEE European Test

Symposium (ETS), 2017, pp. 1–6. DOI: 10.1109/ETS.2017.7968217.

[65] A. Sampson, J. Nelson, K. Strauss, and L. Ceze, “Approximate storage in

solid-state memories”, in 2013 46th Annual IEEE/ACM International Sympo-

sium on Microarchitecture (MICRO), 2013, pp. 25–36.

[66] D. Mohapatra, V. K. Chippa, A. Raghunathan, and K. Roy, “Design of voltage-

scalable meta-functions for approximate computing”, in 2011 Design, Au-

tomation Test in Europe, 2011, pp. 1–6. DOI: 10.1109/DATE.2011.5763154.

https://doi.org/10.1109/DATE.2011.5763158
https://doi.org/10.1109/HPCA.2014.6835966
https://doi.org/10.1109/HPCA.2014.6835966
https://doi.org/10.1109/LES.2015.2393860
https://doi.org/10.1145/1961295.1950391
https://doi.org/10.1145/1961295.1950391
https://doi.org/10.1109/TC.2016.2640296
https://doi.org/10.1145/2897937.2905002
https://doi.org/10.1109/ISVLSI.2016.84
https://doi.org/10.1109/ETS.2017.7968217
https://doi.org/10.1109/DATE.2011.5763154

98 Bibliography

[67] R. Ragavan, B. Barrois, C. Killian, and O. Sentieys, “Pushing the limits of

voltage over-scaling for error-resilient applications”, in Design, Automation

Test in Europe Conference Exhibition (DATE), 2017, 2017, pp. 476–481. DOI: 10.

23919/DATE.2017.7927036.

[68] W. Liu, L. Chen, C. Wang, M. O’Neill, and F. Lombardi, “Inexact floating-

point adder for dynamic image processing”, in 14th IEEE International Confer-

ence on Nanotechnology, 2014, pp. 239–243. DOI: 10.1109/NANO.2014.6967953.

[69] Z. Yang, A. Jain, J. Liang, J. Han, and F. Lombardi, “Approximate xor/xnor-

based adders for inexact computing”, in 2013 13th IEEE International Confer-

ence on Nanotechnology (IEEE-NANO 2013), 2013, pp. 690–693. DOI: 10.1109/

NANO.2013.6720793.

[70] N. Zhu, W. L. Goh, and K. S. Yeo, “An enhanced low-power high-speed

adder for error-tolerant application”, in Proceedings of the 2009 12th Interna-

tional Symposium on Integrated Circuits, 2009, pp. 69–72.

[71] T. Ban, B. Wang, and L. Naviner, “Design, synthesis and application of a

novel approximate adder”, in 2018 IEEE 61st International Midwest Symposium

on Circuits and Systems (MWSCAS), 2018, pp. 488–491. DOI: 10.1109/MWSCAS.

2018.8624023.

[72] H. Cai, Y. Wang, L. A. B. Naviner, Zhaohao Wang, and W. Zhao, “Approxi-

mate computing in mos/spintronic non-volatile full-adder”, in 2016 IEEE/ACM

International Symposium on Nanoscale Architectures (NANOARCH), 2016, pp. 203–

208. DOI: 10.1145/2950067.2950101.

[73] R. K. Brayton, A. L. Sangiovanni-Vincentelli, C. T. McMullen, and G. D. Hachtel,

Logic Minimization Algorithms for VLSI Synthesis. Norwell, MA, USA: Kluwer

Academic Publishers, 1984, ISBN: 0898381649. DOI: 10.1007/978-1-4613-

2821-6.

[74] J. Miao, A. Gerstlauer, and M. Orshansky, “Approximate logic synthesis un-

der general error magnitude and frequency constraints”, in 2013 IEEE/ACM

International Conference on Computer-Aided Design (ICCAD), 2013, pp. 779–786.

DOI: 10.1109/ICCAD.2013.6691202.

[75] M. Traiola, A. Virazel, P. Girard, M. Barbareschi, and A. Bosio, “Towards dig-

ital circuit approximation by exploiting fault simulation”, in 2017 IEEE East-

West Design Test Symposium (EWDTS), 2017, pp. 1–7. DOI: 10.1109/EWDTS.

2017.8110108.

https://doi.org/10.23919/DATE.2017.7927036
https://doi.org/10.23919/DATE.2017.7927036
https://doi.org/10.1109/NANO.2014.6967953
https://doi.org/10.1109/NANO.2013.6720793
https://doi.org/10.1109/NANO.2013.6720793
https://doi.org/10.1109/MWSCAS.2018.8624023
https://doi.org/10.1109/MWSCAS.2018.8624023
https://doi.org/10.1145/2950067.2950101
https://doi.org/10.1007/978-1-4613-2821-6
https://doi.org/10.1007/978-1-4613-2821-6
https://doi.org/10.1109/ICCAD.2013.6691202
https://doi.org/10.1109/EWDTS.2017.8110108
https://doi.org/10.1109/EWDTS.2017.8110108

Bibliography 99

[76] A. Yazdanbakhsh, D. Mahajan, B. Thwaites, J. Park, A. Nagendrakumar, S.

Sethuraman, K. Ramkrishnan, N. Ravindran, R. Jariwala, A. Rahimi, H. Es-

maeilzadeh, and K. Bazargan, “Axilog: Language support for approximate

hardware design”, in 2015 Design, Automation Test in Europe Conference Exhi-

bition (DATE), 2015, pp. 812–817. DOI: 10.7873/DATE.2015.0513.

[77] K. Nepal, Y. Li, R. I. Bahar, and S. Reda, “Abacus: A technique for automated

behavioral synthesis of approximate computing circuits”, in 2014 Design, Au-

tomation Test in Europe Conference Exhibition (DATE), 2014, pp. 1–6. DOI: 10.

7873/DATE.2014.374.

[78] Chaofan Li, Wei Luo, S. S. Sapatnekar, and Jiang Hu, “Joint precision opti-

mization and high level synthesis for approximate computing”, in 2015 52nd

ACM/EDAC/IEEE Design Automation Conference (DAC), 2015, pp. 1–6. DOI:

10.1145/2744769.2744863.

[79] R. S. Amant, A. Yazdanbakhsh, J. Park, B. Thwaites, H. Esmaeilzadeh, A.

Hassibi, L. Ceze, and D. Burger, “General-purpose code acceleration with

limited-precision analog computation”, in 2014 ACM/IEEE 41st International

Symposium on Computer Architecture (ISCA), 2014, pp. 505–516. DOI: 10.1109/

ISCA.2014.6853213.

[80] B. Li, P. Gu, Y. Shan, Y. Wang, Y. Chen, and H. Yang, “Rram-based analog

approximate computing”, IEEE Transactions on Computer-Aided Design of In-

tegrated Circuits and Systems, vol. 34, no. 12, pp. 1905–1917, 2015, ISSN: 0278-

0070. DOI: 10.1109/TCAD.2015.2445741.

[81] B. Barrois, O. Sentieys, and D. Menard, “The hidden cost of functional ap-

proximation against careful data sizing — a case study”, in Design, Automa-

tion Test in Europe Conference Exhibition (DATE), 2017, 2017, pp. 181–186. DOI:

10.23919/DATE.2017.7926979.

[82] M. Traiola, A. Savino, M. Barbareschi, S. D. Carlo, and A. Bosio, “Predict-

ing the impact of functional approximation: From component- to application-

level”, in 2018 IEEE 24th International Symposium on On-Line Testing And Ro-

bust System Design (IOLTS), 2018, pp. 61–64. DOI: 10 . 1109 / IOLTS . 2018 .

8474072.

[83] M. Traiola, A. Savino, and S. D. Carlo, “Probabilistic estimation of the application-

level impact of precision scaling in approximate computing applications”, to

appear in Microelectronics Reliability, 2019.

https://doi.org/10.7873/DATE.2015.0513
https://doi.org/10.7873/DATE.2014.374
https://doi.org/10.7873/DATE.2014.374
https://doi.org/10.1145/2744769.2744863
https://doi.org/10.1109/ISCA.2014.6853213
https://doi.org/10.1109/ISCA.2014.6853213
https://doi.org/10.1109/TCAD.2015.2445741
https://doi.org/10.23919/DATE.2017.7926979
https://doi.org/10.1109/IOLTS.2018.8474072
https://doi.org/10.1109/IOLTS.2018.8474072

100 Bibliography

[84] J. Castro-Godínez, S. Esser, M. Shafique, S. Pagani, and J. Henkel, “Compiler-

driven error analysis for designing approximate accelerators”, in 2018 Design,

Automation Test in Europe Conference Exhibition (DATE), 2018, pp. 1027–1032.

DOI: 10.23919/DATE.2018.8342163.

[85] S. Hamdioui, “Electronics and computing in nano-era: The good, the bad and

the challenging”, in 2015 10th International Conference on Design Technology of

Integrated Systems in Nanoscale Era (DTIS), 2015, pp. 1–1. DOI: 10.1109/DTIS.

2015.7127342.

[86] A. Chandrasekharan, S. Eggersglüß, D. Große, and R. Drechsler, “Approximation-

aware testing for approximate circuits”, in 2018 23rd Asia and South Pacific

Design Automation Conference (ASP-DAC), 2018, pp. 239–244. DOI: 10.1109/

ASPDAC.2018.8297312.

[87] (). Tetramax, [Online]. Available: https://www.synopsys.com/.

[88] M. Traiola, A. Virazel, P. Girard, M. Barbareschi, and A. Bosio, “Testing ap-

proximate digital circuits: Challenges and opportunities”, in 2018 IEEE 19th

Latin-American Test Symposium (LATS), 2018, pp. 1–6. DOI: 10.1109/LATW.

2018.8349681.

[89] A. Chandrasekharan, M. Soeken, D. Große, and R. Drechsler, “Precise er-

ror determination of approximated components in sequential circuits with

model checking”, in 2016 53nd ACM/EDAC/IEEE Design Automation Confer-

ence (DAC), 2016, pp. 1–6. DOI: 10.1145/2897937.2898069.

[90] T. U. Aoki Laboratory. (2016), [Online]. Available: http://www.aoki.ecei.

tohoku.ac.jp/arith.

[91] L. Amarú, P.-E. Gaillardon, and G. D. Micheli. (2015). The epfl combina-

tional benchmark suite, [Online]. Available: http://infoscience.epfl.ch/

record/207551.

[92] M. C. Hansen, H. Yalcin, and J. P. Hayes, “Unveiling the iscas-85 benchmarks:

A case study in reverse engineering”, IEEE Design Test of Computers, vol. 16,

no. 3, pp. 72–80, 1999, ISSN: 0740-7475. DOI: 10.1109/54.785838.

[93] M. Soeken, D. Große, A. Chandrasekharan, and R. Drechsler, “Bdd minimiza-

tion for approximate computing”, in 2016 21st Asia and South Pacific Design

Automation Conference (ASP-DAC), 2016, pp. 474–479. DOI: 10.1109/ASPDAC.

2016.7428057.

https://doi.org/10.23919/DATE.2018.8342163
https://doi.org/10.1109/DTIS.2015.7127342
https://doi.org/10.1109/DTIS.2015.7127342
https://doi.org/10.1109/ASPDAC.2018.8297312
https://doi.org/10.1109/ASPDAC.2018.8297312
https://www.synopsys.com/
https://doi.org/10.1109/LATW.2018.8349681
https://doi.org/10.1109/LATW.2018.8349681
https://doi.org/10.1145/2897937.2898069
http://www.aoki. ecei.tohoku.ac.jp/arith
http://www.aoki. ecei.tohoku.ac.jp/arith
http://infoscience.epfl.ch/record/207551
http://infoscience.epfl.ch/record/207551
https://doi.org/10.1109/54.785838
https://doi.org/10.1109/ASPDAC.2016.7428057
https://doi.org/10.1109/ASPDAC.2016.7428057

Bibliography 101

[94] A. Gebregiorgis and M. B. Tahoori, “Test pattern generation for approximate

circuits based on boolean satisfiability”, in 2019 Design, Automation Test in

Europe Conference Exhibition (DATE), 2019, pp. 1028–1033. DOI: 10.23919/

DATE.2019.8714898.

[95] M. Traiola, A. Virazel, P. Girard, M. Barbareschi, and A. Bosio, “Investigation

of mean-error metrics for testing approximate integrated circuits”, in 2018

IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nan-

otechnology Systems (DFT), 2018, pp. 1–6. DOI: 10.1109/DFT.2018.8602939.

[96] ——, “A test pattern generation technique for approximate circuits based on

an ilp-formulated pattern selection procedure”, IEEE Transactions on Nan-

otechnology, pp. 1–1, 2019, ISSN: 1536-125X. DOI: 10 . 1109 / TNANO . 2019 .

2923040.

[97] S. Gass and T. Saaty, “The computational algorithm for the parametric ob-

jective function”, Naval Research Logistics Quarterly, vol. 2, no. 1-2, pp. 39–45,

1955. DOI: 10.1002/nav.3800020106.

[98] R. Kannan and C. L. Monma, “On the computational complexity of integer

programming problems”, in Optimization and Operations Research, R. Henn,

B. Korte, and W. Oettli, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg,

1978, pp. 161–172, ISBN: 978-3-642-95322-4. DOI: 10.1007/978-3-642-95322-

4_17.

[99] C. H. Papadimitriou, “On the complexity of integer programming”, J. ACM,

vol. 28, no. 4, pp. 765–768, Oct. 1981, ISSN: 0004-5411. DOI: 10.1145/322276.

322287.

[100] A. H. Land and A. G. Doig, “An automatic method of solving discrete pro-

gramming problems”, Econometrica, vol. 28, no. 3, pp. 497–520, 1960, ISSN:

00129682, 14680262. [Online]. Available: http://www.jstor.org/stable/

1910129.

[101] M. Traiola, A. Virazel, P. Girard, M. Barbareschi, and A. Bosio, “Maximizing

yield for approximate integrated circuits”, in Design, Automation Test in Eu-

rope Conference Exhibition (DATE), 2020.

[102] P. Bernardi, M. Bonazza, E. Sanchez, M. Sonza Reorda, and O. Ballan, “On-

line functionally untestable fault identification in embedded processor cores”,

in 2013 Design, Automation Test in Europe Conference Exhibition (DATE), 2013,

pp. 1462–1467. DOI: 10.7873/DATE.2013.298.

https://doi.org/10.23919/DATE.2019.8714898
https://doi.org/10.23919/DATE.2019.8714898
https://doi.org/10.1109/DFT.2018.8602939
https://doi.org/10.1109/TNANO.2019.2923040
https://doi.org/10.1109/TNANO.2019.2923040
https://doi.org/10.1002/nav.3800020106
https://doi.org/10.1007/978-3-642-95322-4_17
https://doi.org/10.1007/978-3-642-95322-4_17
https://doi.org/10.1145/322276.322287
https://doi.org/10.1145/322276.322287
http://www.jstor.org/stable/1910129
http://www.jstor.org/stable/1910129
https://doi.org/10.7873/DATE.2013.298

102 Bibliography

[103] A. Riefert, R. Cantoro, M. Sauer, M. Sonza Reorda, and B. Becker, “A flexible

framework for the automatic generation of sbst programs”, IEEE Transactions

on Very Large Scale Integration (VLSI) Systems, vol. 24, no. 10, pp. 3055–3066,

2016, ISSN: 1063-8210. DOI: 10.1109/TVLSI.2016.2538800.

[104] R. Cantoro, A. Firrincieli, D. Piumatti, M. Restifo, E. Sanchez, and M. S. Re-

orda, “About on-line functionally untestable fault identification in micropro-

cessor cores for safety-critical applications”, in 2018 IEEE 19th Latin-American

Test Symposium (LATS), 2018, pp. 1–6. DOI: 10.1109/LATW.2018.8349679.

[105] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam, “Dian-

nao: A small-footprint high-throughput accelerator for ubiquitous machine-

learning”, SIGPLAN Not., vol. 49, no. 4, pp. 269–284, Feb. 2014, ISSN: 0362-

1340. DOI: 10.1145/2644865.2541967.

[106] Y. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture for energy-efficient

dataflow for convolutional neural networks”, in 2016 ACM/IEEE 43rd Annual

International Symposium on Computer Architecture (ISCA), 2016, pp. 367–379.

DOI: 10.1109/ISCA.2016.40.

[107] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J. Dally,

“Eie: Efficient inference engine on compressed deep neural network”, in Pro-

ceedings of the 43rd International Symposium on Computer Architecture, ser. ISCA

’16, Seoul, Republic of Korea: IEEE Press, 2016, pp. 243–254, ISBN: 978-1-4673-

8947-1. DOI: 10.1109/ISCA.2016.30.

[108] G. Li, S. K. S. Hari, M. Sullivan, T. Tsai, K. Pattabiraman, J. Emer, and S. W.

Keckler, “Understanding error propagation in deep learning neural network

(dnn) accelerators and applications”, in Proceedings of the International Confer-

ence for High Performance Computing, Networking, Storage and Analysis, ser. SC

’17, Denver, Colorado: ACM, 2017, 8:1–8:12, ISBN: 978-1-4503-5114-0. DOI: 10.

1145/3126908.3126964.

[109] A. Bosio, P. Bernardi, A. Ruospo, and E. Sanchez, “A reliability analysis of a

deep neural network”, in 2019 IEEE Latin American Test Symposium (LATS),

2019, pp. 1–6. DOI: 10.1109/LATW.2019.8704548.

[110] M. Traiola, A. Virazel, P. Girard, M. Barbareschi, and A. Bosio, “A survey of

testing techniques for approximate integrated circuits”, Proceedings of IEEE

(under review), 2020.

[111] I. Wali, M. Traiola, A. Virazel, P. Girard, M. Barbareschi, and A. Bosio, “To-

wards approximation during test of integrated circuits”, in 2017 IEEE 20th

https://doi.org/10.1109/TVLSI.2016.2538800
https://doi.org/10.1109/LATW.2018.8349679
https://doi.org/10.1145/2644865.2541967
https://doi.org/10.1109/ISCA.2016.40
https://doi.org/10.1109/ISCA.2016.30
https://doi.org/10.1145/3126908.3126964
https://doi.org/10.1145/3126908.3126964
https://doi.org/10.1109/LATW.2019.8704548

Bibliography 103

International Symposium on Design and Diagnostics of Electronic Circuits Systems

(DDECS), 2017, pp. 28–33. DOI: 10.1109/DDECS.2017.7934574.

[112] M. Traiola, A. Virazel, P. Girard, M. Barbareschi, and A. Bosio, “On the com-

parison of different atpg approaches for approximate integrated circuits”, in

2018 IEEE 21st International Symposium on Design and Diagnostics of Electronic

Circuits Systems (DDECS), 2018, pp. 85–90. DOI: 10.1109/DDECS.2018.00022.

[113] I. Wali, M. Traiola, A. Virazel, P. Girard, M. Barbareschi, and A. Bosio, “Can

we approximate the test of integrated circuits?”, in 3rd Workshop On Approxi-

mate Computing (WAPCO), 2017, pp. 1–7. [Online]. Available: https://wapco.

e-ce.uth.gr/papers/SESSION2/paper_2_1.pdf.

[114] M. Traiola, A. Virazel, P. Girard, M. Barbareschi, and A. Bosio, “Testing inte-

grated circuits for approximate computing applications”, in 4rd Workshop On

Approximate Computing (WAPCO), 2018, pp. 1–7.

[115] M. Traiola, A. Virazel, and P. Girard, “On the testing of approximate inte-

grated circuits for embedded applications considering average-error met-

rics”, in AxC18 3rd Workshop on Approximate Computing (in conjuction with Eu-

ropean Test Symposium (ETS)), 2018, pp. 1–7.

[116] M. Traiola, A. Virazel, P. Girard, and A. Bosio, “A case study on the approxi-

mate test of integrated circuits”, in Colloque du GDR SoC2, 2017, pp. 1–7.

[117] ——, “Automatic test pattern generation for approximate integrated circuits”,

in Colloque du GDR SoC2, 2018, pp. 1–7.

[118] ——, “Test techniques for approximate integrated circuits”, in Colloque du

GDR SoC2, 2019, pp. 1–7.

https://doi.org/10.1109/DDECS.2017.7934574
https://doi.org/10.1109/DDECS.2018.00022
https://wapco.e-ce.uth.gr/papers/SESSION2/paper_2_1.pdf
https://wapco.e-ce.uth.gr/papers/SESSION2/paper_2_1.pdf

	Abstract
	Resumé (FR)
	Acknowledgements
	Introduction
	Context and background concepts
	Conventional IC testing
	Defect modeling
	Fault simulation
	Test generation
	Built-In Self-Test

	Approximate computing (AxC)
	How to determine where to apply AxC?
	Software-level AxC
	Architectural-level AxC
	Circuit-level AxC
	Error Metrics for Approximate Computing

	Testing circuits in approximate context
	Chapter summary

	Approximation-Aware (AxA) testing
	AxA testing phases
	AxA Fault Classification
	AxA Test Pattern Generation
	AxA Test Set Application
	Relationships between AxA test phases

	Related work
	Illustrative example
	Chapter summary

	AxA fault classification
	Problem statement
	SCT-metric-aware fault classification
	Proposed technique
	Experimental results
	Related works
	Comparison

	ME-metric-aware fault classification
	Proposed technique
	Experimental Results

	Chapter summary

	AxA test pattern generation
	Problem statement
	An Ax-aware technique
	An ILP-formulated Pattern Selection Procedure
	Optimization problem
	Ax-aware ATPG as an ILP problem
	Experimental results

	Evaluation
	Chapter summary

	AxA test set application
	Problem statement
	A state-of-the-art solution
	Suitability investigation
	Experimental results

	A new AxA test set application technique
	Proposed technique
	Signature aliasing problem
	Experimental results

	Evaluation
	Chapter summary

	Discussion and conclusions
	Summary and considerations
	Contributions
	Considerations

	Future perspectives
	Contexts of application
	Future research directions

	Scientific Contributions
	Bibliography

