
HAL Id: tel-02488655
https://theses.hal.science/tel-02488655

Submitted on 23 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Chaotic dynamics of spatially homogeneous spacetimes
Tom Dutilleul

To cite this version:
Tom Dutilleul. Chaotic dynamics of spatially homogeneous spacetimes. Mathematics [math]. Univer-
sité Paris 13 - Sorbonne Paris Cité, 2019. English. �NNT : �. �tel-02488655�

https://theses.hal.science/tel-02488655
https://hal.archives-ouvertes.fr


Université Paris 13

Doctoral School Galilée

University Department LAGA-Institut Galilée-Université Paris 13

Thesis defended by Tom Dutilleul

Defended on 12th November, 2019

In order to become Doctor from Université Paris 13

Academic Field Mathematics

Speciality Dynamical systems

Chaotic dynamics of spatially
homogeneous spacetimes

Thesis supervised by François Béguin

Committee members

Referees Jérôme Buzzi Senior Researcher at CNRS
Hans Ringström Professor at KTH in Stockholm

Examiners Julien Barral Professor at Université Paris 13
François Béguin Professor at Université Paris 13
Pierre Berger Senior Researcher at CNRS
Jérôme Buzzi Senior Researcher at CNRS
Cécile Huneau Junior Researcher at CNRS
Jacques Smulevici Professor at Sorbonne Université

Supervisor François Béguin Professor at Université Paris 13

https://www.univ-paris13.fr/
https://www.univ-paris13.fr/
https://ed-galilee.univ-paris13.fr/en/home/
https://www.math.univ-paris13.fr/laga/index.php/en/
mailto:tom.dutilleul@gmail.com




Université Paris 13

Doctoral School Galilée

University Department LAGA-Institut Galilée-Université Paris 13

Thesis defended by Tom Dutilleul

Defended on 12th November, 2019

In order to become Doctor from Université Paris 13

Academic Field Mathematics

Speciality Dynamical systems

Chaotic dynamics of spatially
homogeneous spacetimes

Thesis supervised by François Béguin

Committee members

Referees Jérôme Buzzi Senior Researcher at CNRS
Hans Ringström Professor at KTH in Stockholm

Examiners Julien Barral Professor at Université Paris 13
François Béguin Professor at Université Paris 13
Pierre Berger Senior Researcher at CNRS
Jérôme Buzzi Senior Researcher at CNRS
Cécile Huneau Junior Researcher at CNRS
Jacques Smulevici Professor at Sorbonne Université

Supervisor François Béguin Professor at Université Paris 13

https://www.univ-paris13.fr/
https://www.univ-paris13.fr/
https://ed-galilee.univ-paris13.fr/en/home/
https://www.math.univ-paris13.fr/laga/index.php/en/
mailto:tom.dutilleul@gmail.com




Université Paris 13

École doctorale Galilée

Unité de recherche LAGA-Institut Galilée-Université Paris 13

Thèse présentée par Tom Dutilleul

Soutenue le 12 novembre 2019

En vue de l’obtention du grade de docteur de l’Université Paris 13

Discipline Mathématiques

Spécialité Systèmes dynamiques

Dynamique chaotique des
espaces-temps spatialement

homogènes

Thèse dirigée par François Béguin

Composition du jury

Rapporteurs Jérôme Buzzi directeur de recherche au CNRS
Hans Ringström professeur au KTH in Stockholm

Examinateurs Julien Barral professeur à l’Université Paris 13
François Béguin professeur à l’Université Paris 13
Pierre Berger directeur de recherche au CNRS
Jérôme Buzzi directeur de recherche au CNRS
Cécile Huneau chargée de recherche au CNRS
Jacques Smulevici professeur à Sorbonne Université

Directeur de thèse François Béguin professeur à l’Université Paris 13

https://www.univ-paris13.fr/
https://www.univ-paris13.fr/
https://ed-galilee.univ-paris13.fr/en/home/
https://www.math.univ-paris13.fr/laga/index.php/en/
mailto:tom.dutilleul@gmail.com




This thesis has been prepared at

LAGA-Institut Galilée-Université Paris 13

99 Avenue Jean Baptiste Clément
93430 Villetaneuse
France

T +33 1 49 40 35 80
v +33 1 49 40 35 68
k dirlaga@math.univ-paris13.fr
Web Site https://www.math.univ-paris13.fr/laga/index.php/en/

https://www.math.univ-paris13.fr/laga/index.php/en/
mailto:dirlaga@math.univ-paris13.fr
https://www.math.univ-paris13.fr/laga/index.php/en/
https://www.math.univ-paris13.fr/laga/index.php/en/




A mes parents, Doumé et Marie,
pour leur amour

et leur soutien sans faille.
Merci de m’avoir offert autant de liberté

pour voyager dans cette vie.





Abstract xi

Chaotic dynamics of spatially homogeneous spacetimes
Abstract

In 1963, Belinsky, Khalatnikov and Lifshitz have proposed a conjectural description of the asymptotic geometry
of cosmological models in the vicinity of their initial singularity. In particular, it is believed that the asymptotic
geometry of generic spatially homogeneous spacetimes should display an oscillatory chaotic behaviour modeled
on a discrete map’s dynamics (the so-called Kasner map). We prove that this conjecture holds true, if not for
generic spacetimes, at least for a positive Lebesgue measure set of spacetimes.
In the context of spatially homogeneous spacetimes, the Einstein field equations can be reduced to a system of
differential equations on a finite dimensional phase space: the Wainwright-Hsu equations. The dynamics of
these equations encodes the evolution of the geometry of spacelike slices in spatially homogeneous spacetimes.
Our proof is based on the non-uniform hyperbolicity of the Wainwright-Hsu equations. Indeed, we consider the
return map of the solutions of these equations on a transverse section and prove that it is a non-uniformly
hyperbolic map with singularities. This allows us to construct some local stable manifolds à la Pesin for this
map and to prove that the union of the orbits starting in these local stable manifolds cover a positive Lebesgue
measure set in the phase space. The chaotic oscillatory behaviour of the corresponding spacetimes follows.
The Wainwright-Hsu equations turn out to be quite interesting and challenging from a purely dynamical system
viewpoint. In order to understand the asymptotic behaviour of (many of) the solutions of these equations, we
will in particular be led to:

• carry a detailed analysis of the local dynamics of a vector field in the neighborhood of degenerate non-
linearizable partially hyperbolic singularities,

• deal with non-uniformly hyperbolic maps with singularities for which the usual theory (due to Pesin and
Katok-Strelcyn) is not relevant due to the poor regularity of the maps,

• consider some unusual arithmetic conditions expressed in terms of continued fractions and use some rather
sophisticated ergodic properties of the Gauss map to prove that these properties are generic.

Keywords: non-uniformly hyperbolic dynamical systems, general relativity, cosmological models, ordinary
differential equations, lorentzian geometry, continued fractions

Dynamique chaotique des espaces-temps spatialement homogènes
Résumé

En 1963, Belinsky, Khalatnikov et Lifshitz ont proposé une description conjecturale de la géométrie asymptotique
des modèles cosmologiques au voisinage de leur singularité initiale. En particulier, il y est avancé que la géométrie
asymptotique des espaces-temps spatialement homogènes « génériques » devrait avoir un comportement
oscillatoire chaotique modelé sur la dynamique d’une application discrète : l’application de Kasner. Nous
démontrons que cette conjecture est vraie au moins pour un ensemble d’espaces-temps de mesure de Lebesgue
strictement positive.
Dans le contexte des espaces-temps spatialement homogènes, l’équation d’Einstein de la relativité générale se
réduit à un système d’équations différentielles sur un espace des phases de dimension finie : les équations de
Wainwright-Hsu. La dynamique de ces équations encode l’évolution de la géométrie des hypersurfaces spatiales
dans les espaces-temps spatialement homogènes. Notre preuve est basée sur l’hyperbolicité non-uniforme
des équations de Wainwright-Hsu. Nous considérons l’application de Poincaré associée aux solutions de ces
équations sur une section transverse au flot et nous démontrons qu’il s’agit d’une application non-uniformément
hyperbolique avec singularités. Ceci nous permet de construire des variétés stables locales « à la Pesin » pour
cette application et de montrer que la réunion des orbites passant par ces variétés stables locales recouvre
une partie de l’espace des phases de mesure de Lebesgue strictement positive. Le comportement oscillatoire
chaotique des espaces-temps correspondant à ces orbites est une conséquence de cette construction.
Du point de vue des systèmes dynamiques, les équations de Wainwright-Hsu se révèlent être très riches et
posent un certain nombre de défis. Pour comprendre le comportement asymptotique d’un nombre conséquent
de solutions de ces équations, nous serons amenés à :

• faire une analyse fine de la dynamique locale d’un champ de vecteurs au voisinage d’une singularité
partiellement hyperbolique dégénérée et non linéarisable,

• travailler avec des applications non-uniformément hyperboliques ayant des singularités, pour lesquelles la
théorie usuelle (due à Pesin et Katok-Strelcyn) ne s’applique pas à cause de la faible régularité de ces
applications,

• considérer des conditions arithmétiques exotiques exprimées en termes de fractions continues et utiliser des
propriétés ergodiques quelque peu sophistiquées de l’application de Gauss pour montrer que ces propriétés
sont génériques, etc.

Mots clés : systèmes dynamiques non uniformément hyperboliques, relativité générale, modèles cosmologiques,
équations différentielles ordinaires, géométrie lorentzienne, fractions continues
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Chapter1
Introduction

1.1 The BKL conjecture for Bianchi spacetimes

1.1.1 Bianchi spacetimes
In classical General Relativity, spacetime is modeled as a smooth 4-dimensional Lorentz manifold
(M, g) verifying the Einstein field equations

Ricg + (Λ −
1

2
Scalg) g = T (1.1)

where Ricg is the Ricci curvature tensor, Scalg is the scalar curvature, Λ is the cosmological constant
and T is the stress-energy tensor , which encodes the presence of matter, radiation and non-gravitational
force fields. Assuming that the gravitational force field only self-interacts and Λ is zero, (1.1) reduces
to the vacuum Einstein field equations

Ricg = 0 (1.2)

Informally, a Bianchi spacetime (also called Bianchi cosmological model) is a spacetime which is
spatially homogeneous. We will work with the following formal definition: a Bianchi spacetime is a
Lorentzian manifold of the form (M, g) = (I ×G,−ds

2 + hs) where I is an interval of the real line, G
is a simply-connected 3-dimensional real Lie group, s is a coordinate on I and hs is a left-invariant
Riemannian metric on {s}×G ≃ G for every s ∈ I. If the Lie group G is unimodular1, then the Bianchi
spacetime is said to be of class A, otherwise it is said to be of class B . We say that a Bianchi spacetime
is maximal if it cannot be embedded isometrically as a strict submanifold of another Bianchi spacetime.
In this work, we will restrict our attention to maximal vacuum (with zero cosmological constant) class
A Bianchi spacetimes2, that is, maximal class A Bianchi spacetimes solution to the vacuum Einstein
field equations (1.2). It is well known (see e.g. [CE79]) that, up to a change of time orientation, every
maximal vacuum class A Bianchi spacetime admits an initial singularity3 (often called Big-Bang). We
are mostly interested in the description of the past-asymptotic geometry of maximal vacuum class A
Bianchi spacetimes, i.e., in the description of their behaviour near their initial singularity.

1.1.2 BKL picture
In a series of papers, Belinskii, Khalatnikov and Lifshitz (see [BKL82] and [BKL70]) explained with
heuristic arguments that general singularities should have the following properties:

1. As a first order approximation, the behaviour of the curvature of a spacetime near its initial
singularity is dominated by the behaviour of its “spatially homogeneous part”.

1A Lie group is called unimodular if its left invariant Haar measure is also right invariant.
2For some literature on class B Bianchi spacetimes, we refer to [HW93], [HHW03] and [Rad16].
3Precisely, we say that a maximal vacuum class A Bianchi spacetime (M,g) = (I ×G,−ds2 + hs) admits an initial

singularity if I =]s−, s+[ with s− > −∞. Moreover, if this is the case, the curvature blows up when the time tends to s−
(see [Rin00]).
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2 CHAPTER 1. Introduction

2. Solutions of the Einstein field equations with matter are well approximated, in the vicinity of their
initial singularity, by solutions of the vacuum Einstein field equations. As the saying goes, near the
initial singularity, “matter does not matter”.

3. The geometry of the spatial hypersurfaces “oscillates” in a chaotic manner at the approach of the
initial singularity.

What precedes is often referred to as the BKL picture or the BKL conjecture.

1.1.3 Wainwright-Hsu equations

The Einstein field equations are, in local coordinates, a system of non linear partial differential equations
of order 2 about the coefficients of the metric g. A Bianchi spacetime can be seen as a family (hs)s∈I
of left-invariant Riemannian metrics on a simply-connected 3-dimensional real Lie group G. Since
the space of left-invariant Riemannian metrics on a given Lie group is finite-dimensional, the vacuum
Einstein field equations restricted to Bianchi spacetimes should translate as a system of ordinary
differential equations (abbreviated as ODEs) on a finite-dimensional phase space B. Adopting the
view-point of vector fields, this allows one to study the vacuum Einstein field equations restricted to
Bianchi spacetimes with dynamical systems methods. The first step to explicit the vacuum Einstein
field equations is to choose a particular frame field or, equivalently, a coordinates system. One of the
first successful attempts to do so has been made by Bogoyavlenski (see [Bog85]). Later on, Ellis and
MacCallum (see [EM69]) and then Wainwright and Hsu (see [WH89]) introduced useful coordinates
using the so-called orthonormal frame method.

In this work, we will use a Hubble-renormalized system of variables (N1, N2, N3,Σ1,Σ2,Σ3) closely
related to the one used by Wainwright and Hsu. These variables are dimensionless, which means that
they will not change if the spacetime metric is rescaled. Since these variables do not see the rescaling
operation, one can hope that they remain bounded in the vicinity of the singularity. Such a system
has been used by Heinzle and Uggla in [HU09] and Béguin in [Bég10]. We also choose a dimensionless
time variable t and an “anti-physical” time orientation4, which means that the initial singularities are
located in t = +∞.

Before we give more details about these variables, let us recall that the 3-dimensional real Lie
algebras have been classified by Luigi Bianchi in 1898. This is the reason why the Bianchi spacetimes
are called that way and why it is now standard to classify them according to their “Bianchi type” (see
table 1.1 and, e.g., [EM69],[HU09] and [Mil76]).

The numbers N1(t), N2(t), N3(t) describe the intrinsic curvature of the spacelike hypersurface
{t}×G (that is, the curvature of the left-invariant riemannian metric ht) and its Bianchi type. Actually,
these three numbers are, up to a renormalization, the structure constants of the Lie algebra of G in a
special basis (which depends on the metric ht). The numbers Σ1(t),Σ2(t),Σ3(t) describe the extrinsic
curvature of the spacelike hypersurface {t} ×G. These numbers verify two constraint equations:

Σ1 + Σ2 + Σ3 = 0 (1.3)

(this relation comes from the fact that the numbers Σ1(t),Σ2(t),Σ3(t) are the diagonal coefficients of
the trace-free part of the second fundamental form of the spacelike hypersurface {t} ×G) and

6 − (Σ
2
1 + Σ

2
2 + Σ

2
3) −

1

2
(N2

1 +N
2
2 +N

2
3 ) + (N1N2 +N2N3 +N3N1) = 0 (1.4)

(this relation comes from the Gauss formula, which connects the intrinsic and the extrinsic curvatures
of a given hypersurface to the curvature of the ambiant space, and the fact that the scalar curvature of
the spacetime (M, g) is null). The left-hand side of (1.4) can be thought as the renormalized density
parameter, which is null in the context of vacuum spacetimes. We will denote by B the phase space,
defined as the set of points (N1, N2, N3,Σ1,Σ2,Σ3) ∈ R6 verifying (1.3) and (1.4). In particular, it is
a non-singular and non-compact 4-dimensional quadric.

When the vacuum Einstein field equations are written in this system of variables, it gives rise to an

4It is denoted by −τ in [HU09] (they choose to respect the “physical” time-orientation.)
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autonomous system of six differential equations called the Wainwright-Hsu equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N
′
1 = −(q + 2Σ1)N1

N
′
2 = −(q + 2Σ2)N2

N
′
3 = −(q + 2Σ3)N3

Σ
′
1 = (2 − q)Σ1 + S1

Σ
′
2 = (2 − q)Σ2 + S2

Σ
′
3 = (2 − q)Σ3 + S3

(1.5)

where
q

def
=

1

3
(Σ2

1 + Σ
2
2 + Σ

2
3)

and
Si

def
=

1

3
(2N2

i −N
2
j −N

2
k + 2NjNk −NiNj −NiNk), {i, j, k} = {1, 2, 3}

The numbers S1(t), S2(t), S3(t) are, up to renormalization, the components of the traceless Ricci
tensor of the metric ht and q is called the deceleration parameter .

The corresponding vector field is called the Wainwright-Hsu vector field and is denoted by X .
The first thing to remark is the fact that the Wainwright-Hsu equations (1.5) respect the constraint
equations (1.3) and (1.4), i.e. the quadric B is invariant under the action of the flow of the Wainwright-
Hsu vector field. The correspondence between maximal solutions of the Wainwright-Hsu equations
contained in the phase space B and maximal vacuum class A Bianchi spacetimes will be discussed in
Chapter 2.

Within the Wainwright-Hsu presentation, we have the major advantage of being able to study all
the vacuum class A Bianchi spacetimes with the same equations (1.5) and in the same phase space
B ⊂ R6. It means that we can “compare” two different vacuum class A Bianchi spacetimes (even if
these spacetimes are of different Bianchi types) using the metric of our choice in R6 and this approach
has proved to be successful in the past (see e.g. [WH89], [Rin01],[Lie+11], [Bég10] and [Bre16]). Recall
that with our choice of an anti-physical time orientation, describing the past-asymptotic states of
a vacuum class A Bianchi spacetime amounts to describe the future-asymptotic states (that is, the
ω-limit set5) of the corresponding orbit of the Wainwright-Hsu vector field.

1.1.4 Stratification of the phase-space

The classification of 3-dimensional Lie algebras induces a stratification of the phase space B in six
strata invariant under the flow of the Wainwright-Hsu vector field X . This invariant stratification is
nothing more than the formalization of a simple fact: the signs of the variables Ni define a stratification
and, according to the Wainwright-Hsu equations (1.5), the signs of the variables Ni are invariant
along the orbits of the Wainwright-Hsu vector field. The different strata each correspond to a certain
Bianchi type and will be called Bianchi type I (resp. II, VI0, VII0, VIII and IX) stratum. The orbits
of the Wainwright-Hsu vector field X contained in the Bianchi type I (resp. II, VI0,. . . ) stratum
will be called type I (resp. II, VI0,. . . ) orbits. The Bianchi type I stratum is an Euclidean circle,
called the Kasner circle, and is denoted by K . There are three particular ellipsoids intersecting along
their common equator, which happens to be the Kasner circle K . The Bianchi type II stratum is the
union of these three ellipsoids minus the Kasner circle. Each one of these ellipsoids (minus the Kasner
circle) is contained in a subset of the form Ni ≠ 0, Nj = 0, Nk = 0, where {i, j, k} = {1, 2, 3}. These
two strata are respectively of codimension three and two in the phase space B. The Bianchi type VI0

and VII0 strata are both of codimension one while the Bianchi type VIII and IX strata are both open
Zariski subsets of B. We refer to section 3.2 for further details. Table 1.1 summarizes the preceding
description.

5Precisely, the ω-limit set of an orbit O(t) is defined as the set ω(O) def
= ∩s≥0{O(t) ∣ t ≥ s}. If O converges to a point

x in the future, then ω(O) = {x} and we say that x is the ω-limit point of O.
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Bianchi type Name of the
stratum

Dimension
of the
stratum

Signs of N1, N2, N3

modulo permutation of
the indices

Corresponding Lie algebra
up to isomorphism

I K or BI 1 0, 0, 0 R3

II BII 2 +, 0, 0 or −, 0, 0 Heisenberg’s algebra

VI0 BVI0 3
+,−, 0 isom(Min2)

VII0 BVII0 +,+, 0 or −,−, 0 isom(R2)
VIII BVIII 4

+,+,− or −,−,+ sl(2,R)
IX BIX +,+,+ or −,−,− su(2)

Table 1.1 – Stratification of the phase space.

1.1.5 Mixmaster attractor and past-asymptotic dynamics of Bianchi space-
times

The union of the Kasner circle and the Bianchi type II stratum is called the Mixmaster attractor and
is denoted by A . Geometrically, it is the union of three ellipsoids intersecting along their common
equator. The Mixmaster attractor is invariant under the flow of the Wainwright-Hsu vector field. The
importance of this particular subset is expressed by the following theorem (see [Rin01] and [Bre16] for
further details).

Theorem 1.1 (Ringström 2001, Brehm 2016). For Lebesgue almost all point q in the phase space
B, the distance between the orbit of the Wainwright-Hsu vector field with initial condition q and the
Mixmaster attractor A converges to 0 in the future. For such an orbit, it means that its ω-limit set is
included in A .

Given such an orbit converging to the Mixmaster attractor, one may ask the following question:
is its future-asymptotic dynamics related to the global dynamics of the Wainwright-Hsu vector field
restricted to the Mixmaster attractor? This question will be precised in the next paragraph and should
be perceived as the point 3 of the BKL picture.

1.1.6 Restriction of the phase space
From now on, we will restrict ourselves to the part of the phase space characterized by

N1 ≥ 0, N2 ≥ 0, N3 ≥ 0

In particular, we will only state results for orbits that are contained in this subpart of the phase space,
denoted by B

+. Remark that

• B
+ is invariant under the flow of the Wainwright-Hsu vector field.

• Generic orbits of B
+ are type IX orbits.

This restriction will greatly simplify the presentation of the main result of this thesis. In particular it
allows us to use simplified notations. We refer to the appendix A for a description of the results in the
full phase space B.

1.1.7 Basic facts about the dynamics of Bianchi spacetimes
We now state some well-known facts about the dynamics of the Wainwright-Hsu vector field in low
dimensional stratas, in particular in the Mixmaster attractor. Any point of the Kasner circle K = BI

is a critical point of the Wainwright-Hsu vector field X . This means that type I orbits are reduced to
stationnary points and correspond to self-similar spacetimes (see [WH89] and [Ear74]). More precisely
they correspond to Kasner spacetimes. There are three special points in the Kasner circle, called
the Taub points and denoted by T1, T2, T3, which will play a crucial role in the understanding of the
behaviour of the solutions of the Wainwright-Hsu equations.
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A

K
•
p

•
q

Figure 1.1 – A type II orbit connecting two points of the Kasner circle K .

Any type II orbit is a heteroclinic connexion between two points of the Kasner circle. This means
that any type II orbit converges in the future to a point q ∈ K and in the past to a point p ∈ K . We
will say that such an orbit starts at p and arrives at q. See figure 1.1. Of course, one should recall
that type II orbits never reach the Kasner circle, so it is an abuse of terminology. Type II orbits are
explicitly known. In particular, for every point p of the Kasner circle that is not a Taub point, there is
exactly one type II orbit starting at p in B

+. We refer to section 3.4 for further details.
The future-asymptotic behaviour of type VI0 or VII0 orbits is well-understood. Given such an

orbit, its ω-limit set is either a single point of the Kasner circle or a flat point of type VII0, the latter
being only possible if the orbit is constant. We refer to [Ren97] for further details.

1.1.8 Kasner map, heteroclinic chains and shadowing
The fundamental tool to describe the dynamics of the Wainwright-Hsu vector field restricted to the
Mixmaster attractor is the Kasner map. It is a map from the Kasner circle K to itself defined in such
a way that it encodes the dynamics of type II orbits. More precisely, it is defined as follows. Let p
be a point of the Kasner circle that is not a Taub point. The type II orbit starting at p converges to
another point of the Kasner circle, denoted by F (p). We will denote this type II orbit by Op→F(p). If
p is a Taub point, set F (p) ∶= p. This defines a continuous map

F ∶ K → K

called the Kasner map, whose dynamics is well understood:

• The Kasner map is topologically conjugated to θ ↦ −2θ on the cirle R/Z (see [Bég10]). In particular,
its dynamics is chaotic.

• There is an explicit “conjugation” between the Kasner map and an avatar of the Gauss transformation
on the continued fractions (see section 1.2.1 below).

• The Kasner map admits a very simple geometric construction (see section 3.5).

We refer to sections 3.5 and 3.7 for further details on the Kasner map. One may rephrase the question
asked in a preceding paragraph as follows: is the future-asymptotic dynamics of a generic type IX orbit
in B

+ “driven” by the Kasner map? We now introduce two concepts to make the preceding question
rigorous: heteroclinic chains and shadowing .

Let p be a point of the Kasner circle (such that, for every k ≥ 0, F
k(p) is not a Taub point).

The heteroclinic chain starting at p is the concatenation of the unique type II orbit starting at p and
arriving at F (p), then the unique type II orbit starting at F (p) and arriving at F

2(p), etc. Formally,
this is the sequence

(Op→F(p),OF(p)→F2(p),OF2(p)→F3(p), . . . ) (1.6)

Let t ↦ O(t) be a type IX orbit in B
+ converging to the Mixmaster attractor, p be a point of

the Kasner circle (such that, for every k ≥ 0, F
k(p) is not a Taub point) and H be the heteroclinic

chain (1.6) starting at p.

Definition 1.2 (Shadowing). We say that O shadows H (or H attracts O) if there exists a strictly
increasing sequence (tn)n∈N ⊂ R+ such that

1. d(O(tn),Fn(p)) −−−−−→
n→+∞

0.
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•
p Op→F(p)

•F (p)

OF(p)→F2(p)

F
2(p)
•

OF2(p)→F3(p)

•
O(t0)

•
O(t1)

•O(t2)

Figure 1.2 – Schematical representation of the first part of a heteroclinic chain shadowed by a type IX
orbit in B

+.

2. The Hausdorff distance between the orbit interval {O(t) ∣ tn < t < tn+1} and the type II orbit
OFn(p)→Fn+1(p) tends to 0 when n→ +∞.

See figure 1.2 for a schematical representation of the shadowing.

Given a type IX orbit in B
+, the concept of shadowing formalizes the idea that its future-asymptotic

dynamics is “driven” by the Kasner map. We can now refine our preceding questions: given a point
p of the Kasner circle (such that, for every k ≥ 0, F

k(p) is not a Taub point) and the heteroclinic
chain H starting at p, what is the geometrical structure of the union of all the type IX orbits in B

+

shadowing the heteroclinic chain H ? Are “typical” orbits driven by the Kasner map? More precisely,
does the union of all the type IX orbits in B

+ shadowing some heteroclinic chain has full Lebesgue
measure in the phase space B

+? If not, is it a set of positive measure?

1.1.9 Possible formalization of the BKL conjecture for Bianchi spacetimes

Using the preceding definitions, we propose6 the following rewording of the part 3 of the BKL picture:

1. Almost every heteroclinic chain is shadowed by some type IX orbits in B
+.

2. The union of all the type IX orbits in B
+ shadowing some heteroclinic chain has full Lebesgue

measure in the phase space B
+.

1.2 Statement of the results
In this work, we intend to give a proof of item 1 and a partial proof of item 2 above. Our results can
be stated in the following terms:

Theorem A. For Lebesgue almost every point p of the Kasner circle, if H denotes the heteroclinic
chain starting at p, then the union of all the type IX orbits shadowing H contains a 3-dimensional
Lipschitz immersed submanifold. Moreover, the union of all the type IX orbits shadowing some
heteroclinic chain has positive Lebesgue measure. More precisely, for all subset E of the Kasner circle
with positive 1-dimensional Lebesgue measure, the union of all the type IX orbits shadowing some
heteroclinic chain starting at a point of E has positive 4-dimensional Lebesgue measure.

Remark 1.3. Informally, this means that if one picks randomly a spatially homogeneous spacetime,
then this spacetime has a chaotic oscillatory past-asymptotic behaviour with nonzero probability.

6This formulation is classic and is based on the work of Beliinski, Khalatnikov and Lifschitz on one hand and Misner
on the other hand.
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The first part of Theorem A is a refinement of the work done by Reiterer & Trubowitz in [RT10].
To our knowledge, the second part of Theorem A is entirely new. It should be considered as the main
result of this thesis.

The purpose of the next two subsections is to explain what are the heteroclinic chains that we
manage to shadow with a sufficiently big set of type IX orbits. Let us say that a point p belonging to
the Kasner circle is admissible for the shadowing if the union of all the type IX orbits shadowing the
heteroclinic chain starting at p contains a 3-dimensional Lipschitz immersed submanifold. Let p be a
point of the Kasner circle. Roughly speaking, our proof of Theorem A shows that if the orbit of p
under the Kasner map “does not come too fast too close to the Taub points”, then p is admissible for
the shadowing . We are now going to introduce some tools to make this statement more precise.

1.2.1 Kasner parameter and Gauss transformation
The Kasner parameter ω ∶ K /S3 → [1,+∞], where S3 is the group of permutations of {1, 2, 3}, is
a bijective parametrization of K /S3 by [1,+∞] satisfying the relation ω(Ti) = +∞, for any Taub
point Ti. In this parametrization, the Kasner map F becomes an avatar of the Gauss transformation
on the continued fractions. More precisely, let us define

f(ω) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ω − 1 if ω ≥ 2
1
ω−1

if 1 < ω ≤ 2

+∞ if ω = 1 ou ω = +∞

The Kasner parameter is a C0-conjuguacy from (K /S3,F ) to ([1,+∞], f). It means that, for any
given point p of the Kasner circle, the dynamical behaviour of its orbit under the Kasner map F
depends on the continued fraction expansion of its Kasner parameter

ω(p) = [k0; k1, k2, k3, . . . ] = k0 +
1

k1 +
1

k2 +
1

k3 + . . .

We refer to section 3.7 for further details, see also [BCJ07].

1.2.2 Rephrasing of the results
Let p be a point of the Kasner circle and ω(p) = [k0; k1, k2, k3, . . . ] be its Kasner parameter. According
to the preceding paragraph, p is “close” to a Taub point if and only if k0 is “large”. Adopting the
view-point of the continued fractions, we can say that, roughly speaking, a point p is admissible for
the shadowing if the partial quotients ki of the continued fraction expansion of its Kasner parameter
ω(p) do not blow up “too fast”. A precise meaning is given by the following definition.

Definition 1.4 (Moderate growth condition). Let ω = [k0; k1, k2, . . . ] ∈ ]1,+∞[ \Q be a continued
fraction. We say that ω verifies the moderate growth condition if

k
4
n+4 = on→+∞ (

n

∑
i=1

k
5
i ) (MG)

Next lemma shows that the moderate growth condition is not too restrictive. A proof can be found
in Appendix B. Define

K(MG) = {p ∈ K ∣ ω(p) verifies (MG)}

Lemma 1.5. The set K(MG) is a full Lebesgue measure subset of K .

We are now able to give a more precise statement of Theorem A.
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Theorem B. Let p be a point of the Kasner circle. If ω(p) verifies the moderate growth condition (MG),
then the union of all the type IX orbits shadowing the heteroclinic chain starting at p contains a 3-
dimensional ball D(p) Lipschitz embedded in the phase space B

+. Moreover, for any E ⊂ K(MG)
of positive 1-dimensional Lebesgue measure, the union of all the balls D(p) for p ∈ E has positive
4-dimensional Lebesgue measure.

We do not know whether the union of the type IX orbits intersecting a ball D(p) for some p has
full Lebesgue measure in the phase space. Hence, the following questions remains open:

Question 1. Is the union of all type IX orbits shadowing a heteroclinic chain of type II orbits a full
Lebesgue measure subset of the phase space B

+?

1.2.3 Examples of dynamical and geometrical consequences

In order to know the past-asymptotic behaviour of a maximal vacuum class A Bianchi spacetime, it is
of prime interest to describe the ω-limit set of the corresponding orbit of the Wainwright-Hsu vector
field. Knowing that for almost all point p of the Kasner circle (with respect to Lebesgue measure),
the heteroclinic chain starting at p (seen as a subset of the phase space) is dense in the Mixmaster
attractor A , one gets the following result as a direct consequence of Theorem B.

Corollary 1.6. Let q be a point of the phase space B
+. With positive probability on q, the ω-limit set

of the orbit of the Wainwright-Hsu vector field with initial condition q is the entire Mixmaster attractor
A .

Theorem B says in particular that, with positive probability, a maximal vacuum class A Bianchi
spacetime will have an oscillatory past-asymptotic behaviour. However, oscillatory has multiple
meanings and they are not all equivalent. Corollary 1.7 below shows that the spacelike hypersurfaces
(when following time towards the initial singularity) alternate indefinitely between periods where they
are curved in a single direction and periods where they are curved in two or three directions.

Corollary 1.7. Let q be a point of the phase space B
+ and (M, g) = (]s−, s+[ ×G,−ds

2 + hs) be a
maximal vacuum class A Bianchi spacetime corresponding to the orbit of the Wainwright-Hsu vector
field with initial condition q, with s− > −∞. Denote by θmax(t), θmid(t), θmin(t) the three principal
curvatures of the second fundamental form of the spacelike hypersurface {t} × G in M , with the
convention ∣θmax(t)∣ ≥ ∣θmid(t)∣ ≥ ∣θmin(t)∣. With positive probability on q, there exists a sequence
(sn) strictly decreasing and converging to s− such that

1. limn→+∞
∣θmax(s2n)∣
∣θmid(s2n)∣

= +∞.

2. For every n ≥ 0, ∣θmax(s2n+1)∣
∣θmin(s2n+1)∣

≤ 3

1.2.4 Comparison with previous results

It was already known that some heteroclinic chains attract an injectively immersed manifold of
codimension one. In [Lie+11], Liebscher & al prove this result for a periodic heteroclinic chain. Their
method extend, with some technical work, to arbitrary heteroclinic chains bounded away from the
Taub points. F. Béguin proved a similar result for aperiodic heteroclinic chains in [Bég10]. One should
note that in both these papers, the set of heteroclinic chains that are shown to attract some type VIII
or IX orbits correspond to a null measure subset of the Kasner circle. In the preprint [RT10], Reiterer
& Trubowitz show that the set of points p for which the heteroclinic chains attract some type VIII
or IX orbits is a Lebesgue full measure subset of the Kasner circle. However, their result, while showing
that the union of all the type VIII or IX orbits shadowing a generic heteroclinic chain is in some
sense “3-dimensional”, does not describe its geometry as precisely as in [Lie+11] and [Bég10]. This is
mainly due to the lack of information near the Taub points, or at least, the difficulty to extract this
information.

The first part of Theorem B is essentially equivalent to the theorem proved by Reiterer & Trubowitz.
There are three main differences between these two results:
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• We do not work with the same equations. Indeed, while we use the orthonormal frame method, they
use the orthogonal frame method. It means that their variables are the diagonal coefficients of the
metric ht and the diagonal coefficients of the second fundamental form of the spacelike hypersurface
{t} ×G, while with the orthonormal frame method, as its name seems to indicate, the metric ht is
normalized (its diagonal coefficients are equal to 1).

• We do not obtain the same subsets of the Kasner circle. Indeed, the result of Reiterer & Trubowitz
applies to any point p of the Kasner circle such that the sequence (ki) of the partial quotients of
the continued fraction expansion of the Kasner parameter of p grows at most polynomially, that is,
such that the sequence (ki) satisfies the subpolynomial growth condition

there exists P ∈ R[X] such that for all n ∈ N, kn ≤ P (n) (sPG)

One can remark that between the two conditions (MG) and (sPG), neither is stronger than the
other one.

• We obtain a slightly finer description of the geometry of the union of all the type IX orbits shadowing
a generic heteroclinic chain. In our result, this set is proved to contain a Lipschitz manifold immersed
in the phase space B

+. In Reiterer & Trubowitz’s work, it is not clear if the set they obtain is
Lipschitz regular.

Moreover, our posture is quite different from Reiterer-Trubowitz’s. Their goal is to provide a proof
of their main theorem as concise as possible. On the contrary, our choice was to carry a rather
complete and systematic investigation of the properties of the Wainwright-Hsu vector field from the
viewpoint of non-uniformly hyperbolic systems theory. Theorem B appears as a kind of corollary of
this investigation.

On the other hand, the second part of Theorem B is entirely new and relies on the precise geometrical
description of the shadowing sets (i.e. the sets of orbits shadowing a heteroclinic chain).

As we already stated in Theorem 1.1, it was already known that the ω-limit set of almost all
the orbits of the Wainwright-Hsu vector field is contained in the Mixmaster attractor A . Moreover,
Ringström ([Rin01]) and Brehm ([Bre16]) proved that the ω-limit set of a generic orbit is not reduced
to a Taub point. This implies that almost all the orbits of the Wainwright-Hsu vector field have an
oscillatory future-asymptotic behaviour (a generic orbit has at least three different ω-limit points in
the Kasner circle), but this result does not give precise information about the oscillatory behaviour.
In particular, using only this result, we do not know if these generic orbits shadow some heteroclinic
chains or not.

Hence, we still do not know if corollary 1.6 holds for generic orbits of the Wainwright-Hsu vector
field. The question whether or not it is true is of particular importance, so let us state this open
question here.

Question 2. Is it true that for a generic point q of the phase space B
+ (with respect to Lebesgue

measure), the ω-limit set of the orbit of the Wainwright-Hsu vector field with initial condition q coincides
with the Mixmaster attractor A ?

1.3 Some interesting dynamical features of the Wainwright-
Hsu vector field

Even if one forgets its physical origin, the Wainwright-Hsu vector field appears to be very interesting
from a purely dynamical systems viewpoint.

A catalogue of classical examples of dynamical systems. First of all, it is quite amusing that
the Wainwright-Hsu equations somehow gathers in a single vector field several of the most classical
examples of chaotic dynamical systems that are presented in most introductory courses.

• The behaviour of the type II orbits is described by the so-called Kasner map, which is an avatar
of the most basic example of chaotic map: the angle-doubling map of the circle. More precisely,
being a (non-uniformly) expanding map of degree −2 of the circle, the Kasner map is topologically
conjugate to the map θ ↦ −2θ on R/Z.
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••

Figure 1.3 – Bowen’s eye attractor.

• As explained in the previous pages, the Kasner parameter conjugate the Kasner map (modulo a
finite quotient) to an avatar of the famous Gauss map x↦ 1

x
− ⌊ 1

x
⌋. As an immediate consequence,

the behaviour of the orbit of a point p under the Kasner map depends on the continued fraction
development of the Kasner parameter of p. Some properties of the Gauss map will indeed play a
crucial role in the proof of our main theorems (see Appendix B).

• Recall that the classical Bowen’s eye-attractor is obtained by considering a vector field in the plane
with an attracting cycle made of two heteroclinic orbits connecting two hyperbolic saddle-type
singularities (see figure 1.3). This example is well-known because it has a very bad statistical
behaviour: the Birkhoff sums along any orbit in the interior eye do not converge. The reason is
that such an orbit will spend some time close to the left corner of the eye, then a much longer time
close to the right corner of the eye, then a much much longer time close to the left corner of the
eye, etc. This behaviour forces the Birkhoff sums to oscillate. Now consider a periodic chain of
type II orbits in the Mixmaster attractor. It is nothing but a cycle of heteroclinic orbits connecting
(partially) hyperbolic saddle-type singularities. It was proved by Georgi, Härterich, Liebscher and
Webster that there is a three-dimensional set of type VIII or IX orbits that are attracted by this
cycle (see [Lie+11]). The same arguments as for the classical Bowen’s eye-attractor show that the
Birkhoff sum along these orbits do not converge. Hence, every periodic chain of type II orbits can
indeed be considered as a “generalized Bowen’s eye-attractor”. Therefore, the Mixmaster attractor
somehow contains a “bunch of infinitely many interlaced (generalized) Bowen’s eye-attractors”.

• Yet another classical system “hidden” in the Wainwright-Hsu vector field ! In some variables that
we will not use in this thesis, the flow of the restriction of the Wainwright-Hsu vector field to the
Mixmaster attractor becomes a billiard in a ideal hyperbolic triangle, the so-called cosmological
billiard (see e.g. [Dam] and [HU09]).

Non-linearizable degenerate partially hyperbolic singularities. When one tries to analyze
in details the behaviour of the Wainwright-Hsu vector field, one realizes that this vector field presents
some unusually complicated dynamical features.

For example, the starting point of the proof of our main theorems is the analysis of the dynamics
of the Wainwright-Hsu vector field X in the neighbourhood of a point p of the Kasner circle. Recall
that every such point p is a singularity of X . The eigenvalues of DX (p) vary with p, and there
often appears some resonance between them. As a consequence, there is a dense set of points p in the
neighbourhood of which the Wainwright-Hsu vector field is not linearizable. As a further consequence,
we are forced to study the local dynamics of X in the neighbourhood of such points p by very basic
methods (which roughly consist in using repeatedly Grönwall’s lemma to bound the effect of the
non-linear terms). Note that the situation we face (the local dynamics of a non-linear vector field in
the neighbourhood of a partially hyperbolic singularity in dimension 4, with arbitrarily bad resonances,
the vector field being C∞ flat in the central direction) seems to be more degenerate than what has
been studied by experts.
Remark 1.8. A result of F. Takens [Tak71] allows to linearize the dynamics in the neighbourhood of a
point p of the Kasner circle that is not pre-periodic for the Kasner map (these are exactly the points
whose eigenvalues are non-resonant). But this result does not provide any lower bound on the size of
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the linearization neighbourhood, nor any upper bound on the derivatives of the linearizing coordinates.
As a consequence, this result can only be used in order to build some local stable manifolds for chains
of type II orbits that do not accumulate on a periodic orbit of the Kasner map (this has been done
by F. Béguin in [Bég10]). Such chains are very rare: their union has zero Lebesgue measure in the
Mixmaster attractor.

A non-uniformly hyperbolic return map with poor regularity. The proof of our main theo-
rems relies on the non-uniformly hyperbolic behaviour of the Wainwright-Hsu vector field. In practice,
we will consider the second iterate of the Poincaré return map Φ̂ of the orbits of the Wainwright-Hsu
vector field on a transverse section S. We will prove some uniformly hyperbolic properties for this
return map Φ̂: for every point p in the intersection of the section S with the Mixmaster attractor A ,
if the return map Φ̂ is defined at p, then it contracts uniformly the direction transverse to A at p, and
expands uniformly the direction tangent to A . We insist on the fact that the contraction and expansion
constants are independent of the point p. Moreover, the contraction in the direction transverse to
A happens to be super-linear. Nevertheless, the map Φ̂ should be considered as a non-uniformly
hyperbolic map. Indeed, the size of the neighbourhood of the point p on which one can prove some
contraction/expansion properties is not bounded from below uniformly in p. This is due to:

• the presence of singularities: the return map Φ̂ is not defined everywhere (roughly speaking, an
orbit which falls on a Taub point never comes back in the section);

• the lack of regularity of the return map Φ̂: we are only able to prove that Φ̂ is Lipschitz. Actually,
Φ̂ might be C1, but some evidence indicate that the derivative of Φ̂, if it happens to exist, cannot
be α-Hölder for some uniform α > 0.

As a consequence of this non-uniformity:

• we will be able to prove the existence of local stable manifolds for almost every orbit of Φ̂, but not
for all orbits,

• the size of these stable manifolds will depend on the orbit, and will not be uniformly bounded from
below.

Although we will prove some non-uniformly hyperbolic properties for the return map Φ̂, the classical
Pesin’s theory of non-uniformly hyperbolic maps (see e.g. [BP13]) does not apply to Φ̂. The theory
of non-uniformly hyperbolic maps with singularities, as developed by A. Katok and J.-M. Strelcyn
(see [KS86] or [Sat92]) does not apply directly either. The reason is once again the lack of regularity
of Φ̂. Indeed, the above-mentioned theories concern maps whose derivatives may explode when one
approaches some singular set, but which are quite regular (at least C2) far from the singular set.
This is not the case of Φ̂: as explained above, we are not able to prove that Φ̂ is differentiable. The
hardest task in the proof of our main theorems is to obtain some hyperbolicity estimates for Φ̂, with
some explicit controls of the size of the neighbourhoods where these estimates hold. It will cover
chapters 4 to 9. Once we will have these estimates, we will need to « redo » Katok-Strelcyn’s work in
our specific context, using some Lipschitz estimates instead of the classical bounds on the first and
second derivatives. Appart from the low regularity of our map, there is another important difference
between Katok-Strelcyn’s setting and ours:

• roughly speaking, Katok-Strelcyn’s hypotheses are chosen so that the size of the neighbourhoods
on which one gets various types of estimates is always polynomial with respect to the distance to
the singularity;

• in our situation, we will often be forced to consider neighbourhoods with exponentially small size . . .

• . . . but the extremely small size of the neighbourhood on which we can prove interesting estimates
will be balanced by the super-linear contraction in the direction transverse to the Mixmaster
attractor.

Remark 1.9. Note that one really needs to use some specific properties of the Poincaré map Φ̂ to
compensate its poor regularity. Indeed, C. Bonatti, S. Crovisier and K. Shinohara have proved that
generic C1 non-uniformly hyperbolic diffeomorphisms (such diffeomorphisms are not C1+α for any
α > 0) do not admit non-trivial local stable manifolds (see [BCS14]).
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Some unusual arithmetic conditions. In a non-uniformly hyperbolic system with singularities, it
is not possible to construct non-trivial Pesin stable manifolds at every point p. A necessary condition
(among others) is that the orbit of p should wait a long time before coming very close to the singularities.
For the Wainwright-Hsu vector field, this means that we have to focus on points p of the Kasner circle
whose orbits under the Kasner map will wait a long time before coming very close to the Taub points.
Since the Kasner parameter turns the Kasner map into an avatar of the Gauss map, this naturally
translates as a condition on the continued fraction development of the Kasner parameter of the point p.
In other words, we will only be able to deal with points p whose Kasner parameter satisfies a certain
arithmetic condition.

Arithmetic conditions appear in various areas of dynamical systems. They are usually of one of the
following two types:

• Either one needs to consider real numbers that are badly approximated by rational numbers (so-
called Diophantine numbers and their generalizations). This is typically the case when one wants to
prove KAM-type results, solve cohomological equations, prove the convergence of a renormalization
scheme, etc. The terms (kn)n≥0 of the continued fraction development of such numbers grow slowly
with respect to n.

• Or one needs to consider real numbers that are very well-approximated by rational numbers (so-
called Liouville or super-Liouville numbers). This is typically the case when one wants to construct
exotic examples of elliptic dynamical systems as limits of periodic systems (for example, by using
the so-called Anosov-Katok method). The terms (kn)n≥0 of the continued fraction development of
such numbers grow very fast with respect to n.

The arithmetic condition (MG) we need to consider in our proof (which we call moderate growth
condition) is of neither of the two above types. The integers (kn)n≥0 that appear in a continued
fraction development satisfying this condition might grow either slowly or very fast with respect to n.
What is important is that the size of kn should be balanced by the size of k1, . . . , kn−1. This is due to
the competition between two phenomena. Consider a chain of type II orbits starting at some point p
of the Kasner circle, a type IX orbit whose initial condition is at distance ε≪ 1 of p and denote by
(kn)n≥0 the terms of the continued fraction development of the Kasner parameter of p.

• On the one hand, the contraction rate of the flow in the direction transversal to the Mixmaster
attractor between a small transverse section close to p and a small transverse section close to
F
k1+⋅⋅⋅+kn−1(p) depends on k1 + ⋅ ⋅ ⋅ + kn−1.

• On the other hand, the size of the neighbourhood of F
k1+⋅⋅⋅+kn−1(p) where we have a good control

of the behaviour of the orbits depends of kn.

So, very roughly speaking, the orbits starting at distance 1 of the Mixmaster attractor will hit the
neighbourhood of F

k1+⋅⋅⋅+kn−1(p) where we can control their behaviour provided that kn is small
compared to k1 + ⋅ ⋅ ⋅ + kn−1 (of course, we are oversimplifying). This is the reason why the moderate
growth condition (MG) comes into the game.

Remark 1.10. Proving that Lebesgue almost every real number satisfies the moderate growth condi-
tion (MG) (see Lemma 1.5) is not that easy. The argument that was suggested to us by S. Gouëzel
uses some rather sophisticated properties of the Gauss map (namely, the existence of a spectral gap
for the transfer operator associated with the Gauss map, acting on the space of L∞ functions with
bounded essential variation).

A complicated statistical behaviour. We have explained above that a periodic chain of type II
orbits of the Wainwright-Hsu vector field can be thought as a generalized Bowen’s eye-attractor. But
the global statistical behaviour of the Wainwright-Hsu vector field is certainly much more complicated
than those of a Bowen’s eye-attractor.

Indeed, for a classical Bowen’s eye-attractor, the set of all the limit points (in the space of probability
measures) of the Birkhoff sums is rather small: it is exactly the affine segment whose ends are the
Dirac masses supported by the two eye corners. Now consider a non-periodic chain of type II orbits in
the Mixmaster attractor. Such a chain will almost surely be dense in the Mixmaster attractor, i.e. the
corners of the chain will almost surely be dense in the Kasner circle. Moreover, Theorem B shows
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that such a chain will almost surely be shadowed by a three-dimensional set of type IX orbits of the
Wainwright-Hsu vector field. We are not able to compute exactly the set of limit points of the Birkhoff
sums along such orbits (in the general case). But some informal arguments show that this set should
typically be infinite dimensional. In any case, it is clear that the behaviour of the Birkhoff sums along
most orbits of the Wainwright-Hsu vector field must be very wild.

P. Berger has introduced a quantity which quantifies the statistical complexity of a dynamical
system: the emergence of the system. Roughly speaking, it measures the growth rate, as ε goes to 0,
of the number of probability measures that are necessary to ε-approximate the set of all limit points
of the Birkhoff sums along almost all the orbits (see [Ber16] for a precise definition). It is known
that there exists systems with arbitrarily large emergence (such systems are actually locally generic).
But the constructions rely on Baire arguments, and do not yield explicit examples. We guess that
the Wainwright-Hsu vector field might be an explicit example of a dynamical system with very large
emergence. So we conclude this section by the following problem:

Question 3. Is it possible to compute the emergence of the Wainwright-Hsu vector field? Is it
exponential?

A high emergence rate for the Wainwright-Hsu vector field would bring another evidence that
explicit models of physical systems might display a very wild dynamical behaviour . . .

1.4 Heuristic arguments underlying the proof of the main the-
orem

The proof of Theorem B is based on the following heuristic argumentation, which can be attributed
to Belinskii, Khalatnikov and Lifshitz (except for the very last part concerning the moderate growth
condition).

Consider a point p of the Kasner circle, so that p is not one of the Taub points. The point F (p)
(the image of p under the Kasner map) is a partially hyperbolic singularity of the Wainwright-Hsu
vector field X . More precisely, the linear part of X at F (p) has two negative eigenvalues −µs1 and
−µs2 (with µs2 ≥ µs1), one zero eigenvalue (corresponding to the direction tangent to the Kasner
circle), and one positive eigenvalue µu. The eigendirections associated with the two stable eigenvalues,
−µs1 and −µs2 , are tangent to the two type II orbits arriving at F (p) (hence, one of them, say the
one associated with −µs1 , is tangent to the type II orbit Op→F(p)) The eigendirection associated with
the unstable eigenvalue µu is tangent to the type II orbit OF(p)→F2(p) going from F (p) to F

2(p).
Consider a type IX orbit O traveling very close to the type II orbit Op→F(p). After some time, it

will enter a neighbourhood B1 of F (p). Let d1 be the distance between the orbits O and Op→F(p)
when they enter in B1. The orbit O will continue to follow Op→F(p) until it comes very close to the
point F (p) (going slower and slower since F (p) is a singularity). Then it will start to follow the
unstable manifold of F (p), that is, to follow the type II orbit OF(p)→F2(p). Now, suppose for some
moment that one could neglect the non-linear part of X . Then we can compute explicitly the flow of
X , and we see that the orbit O will exit B1 roughly at distance d

µs1/µu
1 from the orbit OF(p)→F2(p).

The crucial point is that the stable eigenvalues of the point of the Kasner circle are “stronger” than the
unstable one. In other words, µs1/µu is greater than 1 and therefore d

µs1/µu
1 is much smaller than d1.

Now, the orbit O will travel side to side with the type II orbit OF(p)→F2(p) until entering a small
neighbourhood B2 of the point F

2(p). It is impossible to control precisely the distance between O and
OF(p)→F2(p) during this travel: we face the global behaviour of a non-linear vector field. But in any
case, the travel from B1 to B2 will take a finite time T , and therefore the distance will grow at most
linearly, the dilatation factor λ being the upper bound of the derivative of the time T map of the flow.
As a consequence, the orbit O should enter the neighbourhood B2 roughly at distance d2 ∶= λd

µs1/µu
1

of the orbit OF(p)→F2(p), which is much smaller than d1 (if d1 is small enough). See figure 1.4.
Iterating the argument, the orbit O should go through the small neighbourhood B2 of F

2(p),
follow the type II orbit OF2(p)→F3(p), and enter in a neighbourhood of F

3(p) at a distance d3 ≪ d2,
go through the small neighbourhood of F

3(p), follow the type II orbit OF3(p)→F4(p), and enter in
a neighbourhood of F

4(p) at a distance d4 ≪ d3, . . . So we can hope to keep some control of the
behaviour of O forever and prove that it shadows the heteroclinic chain (Op→F(p),OF(p)→F2(p), . . . ).
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•F (p)

OF(p)→F2(p)

B1

F
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OF2(p)→F3(p)

B2

O

Figure 1.4 – The orbit O successively enters the neighbourhoods B1, B2,. . . Each time it passes inside
one of these neighbourhoods, it gets much closer to the heteroclinic chain starting at p, due to the
super-linear contraction.

Of course, this very rough heuristic argument dramatically oversymplifies the situation (otherwise
the proof of Theorem B would not fill more than 150 pages of this thesis !). Yet it will serve us as a
guideline, and our task will be to turn it into a rigorous proof.

The main difficulties that we will face are the following. When we analyze the behaviour of the
orbit O inside a neighbourhood of F

`(p), we need to take into account the effect of the non-linear
part of X . These non-linear terms will in particular induce a drift in the central direction, i.e. in the
direction of the Kasner circle. So the orbit O will deviate from the heteroclinic chain of type II orbits,
and we shall need to control this deviation, and prove that it is somehow balanced by the very strong
contraction due to the linear part of the vector field. We also have to take into account the fact that
the stable and unstable eigenvalues −µs1 , −µs2 and µu at the point F

`(p) critically depend on the
position of this point on the Kasner circle: −µs1 and µu tend to zero as the point F

`(p) approaches
one of the Taub points. This means that, when F

`(p) is very close to a Taub point, the hyperbolicity
of the linear part of X at F

`(p) is very weak, and therefore can only compensate the effect of the
non-linear part in an extremely small neighbourhood B` of F

`(p).
So there will be a competition. On the one hand, if the orbit O falls successively in the neigh-

bourhooods B1, B2, . . . , Bn of the points F
1(p),F 2(p), . . . ,Fn(p), then the distance between O

and the heteroclinic chain of type II orbits (Op→F(p),OF(p)→F2(p), . . . ) will undergo a very strong
contraction. Therefore the orbit O will have more chance to enter the neighbourhood Bn+1 of the
point F

n+1(p). On the other hand, if the point F
n+1(p) happens to be very close to one of the Taub

points, then the neighbourhood Bn+1 will be extremely small and it is quite likely that the orbit O
will fail to enter this neighbourhood, in which case the future behaviour of O will get out of control.
This is the reason why we will not always be able to prove the existence of type IX orbits shadowing
the heteroclinic chain (Op→F(p),OF(p)→F2(p), . . . ). Roughly speaking, we will need this heteroclinic
chain to “wait enough time before going close to the Taub points”.

In order to be more quantitative, let us consider the continued fraction expansion [1; k1, k2, . . . ]
of the Kasner parameter of the point p. On the one hand, if the orbit O falls in the neighbourhoods
B1, B2, . . . , Bn, then the contraction of the distance between O and the heteroclinic chain will roughly
be controlled by k5

1 + ⋅ ⋅ ⋅ + k
5
n. On the other hand, the size of the neighbourhood Bn+1 will roughly be

controlled by k4
n+4. So we will be able to keep some control on the behaviour of the orbit O if and

only if the continued fraction expansion satisfies the moderate growth condition (MG). Once again,
we are oversymplifying, but this is indeed the origin of the moderate growth condition.
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1.5 Strategy of the proof of the main theorem and organization
of the memoir

In the next few pages, we will describe the content of the different chapters of the memoir. We hope
that the strategy of the proof of our main theorems will arise from this description.

The vacuum Einstein field equations for Bianchi spacetimes. The purpose of Chapter 2 is
to explain briefly how the vacuum Einstein field equations translate into the Wainwright-Hsu equations
in the context of Bianchi spacetimes.

The Wainwright-Hsu vector field and the Mixmaster attractor. In Chapter 3, we describe
the dynamics of the Wainwright-Hsu vector field X in restriction to the Mixmaster attractor (linear
part of X at points of the Kasner circle, explicit expression of the type II orbits, Kasner map, Kasner
parameter, etc.). This dynamics is well-known. The only original part of Chapter 3 is the description
of a finite quotient of the classical phase space in which we shall work.

Local expression of the Wainwright-Hsu vector field in the neighbourhood of a point of
the Kasner circle. As explained above in heuristic terms, the proof of Theorem B is based on the
analysis of the local dynamics of the Wainwright-Hsu vector field X in the neighbourhood of a point
p of the Kasner circle. To carry this analysis, we use a quite standard strategy: we first construct a
coordinates system in which the vector field X has the simplest possible expression, and then, we use
this expression to control the deviation of the true orbits of X from those of the linear part DX (p)
of X .

Hence, our first task is to find a “nice” local coordinate system in the neighbourhood of a point p
of the Kasner circle (which is not one of the Taub points). Actually, the only property we need for
this coordinates system is that it straightens the stable, central and unstable manifold of X at the
point p. So the coordinates system will be provided by the stable manifold theorem. Yet we need
a quite precise version of this result: in particular, we need some lower bounds on the size of the
neighbourhoods on which the straightening coordinates are defined, and some upper bounds on the
norm of the derivative of these coordinates, with some explicit dependance on a parameter. We could
not find the appropriate statement in the literature, so we had to prove it (using some rather standard
techniques); this is done in Appendix C. Once we have the suitable statement of the stable manifold
theorem, we apply it three times (together with some other easy coordinate change) to get a local
coordinate system straightening the strong stable, weak stable, central and strong unstable manifolds
of p. Then we write the local expression of X in this “nice” local coordinate system, providing some
upper bounds on the non-linear terms showing up in this expression. This is done in Chapter 4.

Local sections and transition maps. In Chapter 5, we define some sections transverse to the
Wainwright-Hsu vector field X . For every point p in the Kasner circle (which is not one of the Taub
points), we define a local section Ssp that will be intersected by the orbits of X when they arrive in
a small neighbourhood of p. Similarly, we define a local section Sup that will be intersected by the
orbits of X when they get out from a small neighbourhood of p. The size of these sections (in the
different directions), as well as their distance to the point p, depend on several parameters. We also
define a global section S which is intersected by all the type IX orbits that could possibly shadow
some heteroclinic chain of type II orbits. Moreover, in order to understand the dynamics of the orbits
traveling between two sections, we are led to define some transition maps. The transition map from a
section S1 to a section S2 encodes, for an orbit O of X starting in S1, the first intersection point of O
with the section S2.

Local dynamics in the neighbourhood of a point of the Kasner circle. In Chapter 6, we
use the local expression of the Wainwright-Hsu vector field X in order to study the local dynamics
of X in the neighbourhood of a point p of the Kasner circle. More precisely, we want to understand
the transition map Υp of the orbits of X from a local section Ssp at the entrance of a neighbourhood
of p to a local section S

u
p at the exit of the same neighbourhood. The task consists in controlling

the effect of the non-linear terms in the local expression of X . The size of the neighbourhood of
p, the size of the local sections Ssp and Sup , and their distance to the point p, depend on the Kasner
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parameter of p. The outcome of the chapter is roughly the following: when the orbits of X cross a small
neighbourhood of the point p, the distance from these orbits to the Mixmaster attractor undergoes
a super-linear contraction, whereas the drift of the orbits in the direction tangent to the Mixmaster
attractor is extremely small. In other words, the transition map Υp is strongly contracting in the
direction transverse to the Mixmaster attractor (the contraction is super-linear), and almost isometric
in the direction tangent to the Mixmaster attractor. An important point is that the dependence of the
contraction (resp. drift) rate with respect to the Kasner parameter of p is explicit. Note that to get
this explicit dependence, we extend the methods employed in [Lie+11].

Dynamics in the neighbourhood of a type II orbit. Consider again a point p on the Kasner
circle. The purpose of Chapter 7 is to control the behaviour of a type IX orbit traveling very close to
the type II orbit Op→F(p). More precisely, we want to control the transition map Ψp of the orbits of X
from a local section Sup at the exit of a neighbourhood of p to a local section SsF(p) at the entrance of
a neighbourhood of the point F (p). The estimates we obtain are very loose, since we are considering
the long range behaviour of a non-linear vector field. The only thing we can do is to:

• find an upper bound of the travel time of the orbits between the sections Sup and SsF(p),

• apply Grönwall’s lemma to obtain some (very) rough control during this travel.

Dynamics along an epoch. Given a point p of the Kasner circle, the epoch transition map Φp is
the transition map of the orbits of X from a section Ssp at the entrance of a neighbourhood of the
point p to a section SsF(p) at the entrance of a neighbourhood of the point F (p). Observe that Φp is
nothing else than the composition of the maps Υp and Ψp considered in Chapters 6 and 7. So, we
will only need to concatenate the estimates proven for the maps Υp and Ψp to obtain some estimates
on Φp. The only difficulty is to find some size of the sections Ssp and SsF(p) so that the map Φp is
well-defined. This is done in Chapter 8. Once we know that Φp is well-defined and is the composition
of Υp and Ψp, we easily obtain some partial hyperbolicity properties for Φp: it is super-contracting
in the direction transverse to the Mixmaster attractor, and almost not contracting in the direction
tangent to the Mixmaster attractor (this direction may be expanded, or very weakly contracted).

Dynamics along an era. Consider the region K]1,2] of the Kasner circle where the Kasner parameter
ranges between 1 and 2 (roughly speaking, this is the region of the Kasner circle which is far from the
Taub points). Let p be a point in K]1,2], and denote by k1 the first term in the continued fraction
expansion of the Kasner parameter ω(p). The heteroclinic chain of type II orbits starting at p first
goes close (roughly at distance 1

k1
) to one of the Taub points, say T3, then bounces k1 − 1 times from

one side of T3 to the other, slowly escaping from the vicinity of T3, until it comes back in K]1,2].
An era is such a piece of heteroclinic chain, made of the concatenation of k1 type II orbits, which
starts and ends up in K]1,2]. See figure 1.5. The purpose of Chapter 9 is to study the behaviour
of the orbits of the Wainwright-Hsu vector field X along such an era. More precisely, we want to
study the era transition map, i.e. the transition map Φ̄p of the orbits of X from a local section Ssp at
the entrance of a neighbourhood of p to a local section SsFk1 (p) at the entrance of a neighbourhood
of the point F

k1(p). This map can be seen as the composition of the k1 epoch transition maps
Φp,ΦF(p), . . . ,ΦFk1−1(p) provided that we can find some size of sections so that this composition is
well-defined. We indeed manage to set up an induction scheme, based on the estimates of Chapter 8,
showing that the composition of the epoch transitions maps Φp,ΦF(p), . . . ,ΦFk1−1(p) is well-defined
on a tiny local section close to p.

It is natural to expect some uniform hyperbolicity properties for Φ̄p. Yet a minor (but quite
annoying) technical difficulty shows up. One soon realizes that the map Φ̄p cannot be uniformly
expanding in the direction tangent to the Mixmaster attractor. This can be easily overcome by
replacing Φ̄p by the “double era transition map” Φ̂p, which describes the behaviour of the orbits during
two eras instead of a single one. We are indeed able to prove some hyperbolicity properties for this
map: it contracts uniformly the direction transverse to the Mixmaster attractor and expands uniformly
the direction tangent to this attractor.

Moreover, the Φ̂p’s can be glued together, in order to get a global Lipschitz map Φ̂. This map is
the second iterate of the Poincaré’s return map of the orbits of the Wainwright-Hsu vector field X
on a global section S. We call it the double era return map. The section S is intersected by all the
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Figure 1.5 – First era of the heteroclinic chain starting at p, represented in projection on the plane
containing the Kasner circle.

orbits that could potentially shadow some heteroclinic chain. Yet, it is important to note that Φ̂ is
not well-defined on the whole section S. It is defined on a kind of hedge with variable height over the
interval ]1, 2]: the height of the hedge over the point ω ∈ ]1, 2] depends on the four first terms of the
continued fraction development of ω, and is equal to zero at certain points. The map Φ̂ is uniformly
hyperbolic on this hedge-shaped domain.

Construction of local stable manifolds for the double era return map. In Chapter 10, we
use the hyperbolicity of the double era return map Φ̂, together with the usual graph transform mapping
technique, in order to construct some local stable manifolds for Φ̂. The main difficulty is to find some
domains where the graph transform mapping can be iterated (recall that the map Φ̂ is not defined
on the whole section S). This is where the moderate growth condition (MG) shows up. Roughly
speaking, we can iterate the graph transform mapping over the orbit of a point p ∈ K]1,2] if and only
if the Kasner parameter of p satisfies the moderate growth condition. For such a point p, we obtain
a non-trivial two-dimensional local stable manifold W s(p, Φ̂). The size of this local stable manifold
depends on p. In particular, it depends on the time n0 one has to wait in order to “see” the domination
of k4

n+4 by the sum ∑n
i=1 k

5
i for all n ≥ n0.

Shadowing of heteroclinic chains. Consider a point p of the Kasner circle having a non-trivial
stable manifold W s(p, Φ̂) for the double era return map Φ̂, and a point q ∈W s(p, Φ̂). In Chapter 11,
we prove that the forward orbit of q (for the Wainwright-Hsu vector field) shadows (in the sense of
definition 1.2) the heteroclinic chain (Op→F(p),OF(p)→F2(p), . . . ). This easily follows from what has
been done earlier. Thanks to some estimates proven in Chapters 6, 7 and 9, we know that, since q is close
to p, the forward orbit of q will stay very close to the heteroclinic chain (Op→F(p),OF(p)→F2(p), . . . )
during two complete eras. But since q is in the stable manifold W s(p, Φ̂), this orbit hits the section S
very close to F̂ (p) ∶= F

k1+k2(p) (we call F̂ the double era Kasner map). So, using again the estimates
of Chapters 6, 7 and 9, we obtain that the forward orbit of q stays very close to the heteroclinic
chain during two more eras. Then it hits the section S even closer to F̂

2(p) = F
k1+k2+k3+k4(p).

Iterating this argument, we obtain that the forward orbit of q shadows the entire heteroclinic chain
(Op→F(p),OF(p)→F2(p), . . . ).

At this point, we have proved the first part of Theorem B, i.e. we have constructed a three-
dimensional set of type IX orbits that shadow the heteroclinic chain (Op→F(p),OF(p)→F2(p), . . . ) for
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every point p whose Kasner parameter satisfies the moderate growth condition (MG).

Absolute continuity of the local stable manifolds foliation. The second part of Theorem B
is proven in Chapter 12. Namely, we consider a set E of positive one-dimensional Lebesgue measure in
the Kasner circle, and we prove that the union of the type IX orbits shadowing a heteroclinic chain
(Op→F(p),OF(p)→F2(p), . . . ) with p ∈ E has positive four-dimensional Lebesgue measure in the phase
space. Without loss of generality, one can assume that E ⊂ K]1,2]. According to what has been
explained above, it is enough to prove that the union of the local stable manifolds W s(p, Φ̂) when p
ranges over E has positive three-dimensional Lebesgue measure in the transverse section S.

Remark 1.11. Readers that are not familiar with non-uniformly hyperbolic dynamics might think that
this is a straightforward consequence of the W s(p, Φ̂)’s being two-dimensional submanifolds which
depend continuously on p. However, a continuous dependance is not sufficient to apply a Fubini type
argument (recall that a continuous map might send positive Lebesgue measure sets to zero Lebesgue
measure sets). Examples of non-uniformly hyperbolic dynamical systems with pathological local stable
manifold “foliations” do exist.

We use a well-known strategy due to Pesin, which consists in considering the holonomy along the
“foliation” in local stable manifolds, and proving that this holonomy is made of absolutely continuous
maps. The absolute continuity of the holonomy maps follows from estimates on the action of these
maps on the volume of discs transverse to the “foliation” in local stable manifolds. Such estimates are
trivial for “big” discs. The trick is to turn small discs into big ones using the map Φ̂. Indeed the discs
are transversal to the stable manifold, hence can be considered as unstable disc, and therefore, their
images under Φ̂

n become larger and larger as n goes to infinity.
Our setting is easier than the usual general setting because the “foliation" in stable manifolds is

transversally one-dimensional, and therefore the discs transverse to the foliation are just arcs, whose
volume can be computed easily (in particular, it roughly coincide with the diameter of these arcs). On
the other hand, our setting is also more tricky because we have to work with a map Φ̂ which is not
defined everywhere, so we have to be very careful when we consider large iterates of Φ̂ to make the
discs grow.

Remark 1.12. One could be worried since it is well-known that Pesin’s absolute continuity techniques
only work for C1+α maps, and since we have explained previously that our map Φ̂ is only Lipschitz.
Actually, the C1+α-regularity is used for two purposes in Pesin’s proof. First, to find some lower bounds
for the size of the neighbourhoods of the points of the attractor where certain hyperbolicity estimates
hold. We already have computed such sizes in the previous chapters. Second, to get some Hölder
regularity on the unstable direction (tangent space to the attractor). In our case, this regularity is for
free, since we know explicitly the attractor, and since the intersection of this attractor with the section
S is extremely simple and regular: this is an affine interval in our local coordinates (which are at least
C

4). Hence the low regularity of the map Φ̂ is not a true problem for this precise proof.

Statement of the main theorem in the full phase space. For sake of simplicity, we have stated
Theorem B in the restricted phase space B+ (in particular, we have restricted ourselves to heteroclinic
chains that can be shadowed by type IX orbits). Nevertheless, our proof also works in the full phase
space, provided that we introduce a natural notion of coherent heteroclinic chain. The generalization
of Theorem B to the full phase space B is stated in Appendix A.

Continued fractions. Some classical material about continued fractions and the Gauss map is
gathered in Appendix B. This is also the place where we prove that the moderate growth condition is
generic in the measure-theoretical sense.

A stable manifold theorem with parameters. As explained above, in order to construct a nice
coordinates system in the neighbourhood of a point of the Kasner circle (Chapter 4), we need a version
of the stable manifold theorem with some explicit estimates. This version is stated and proved in
Appendix C.



Chapter2
The vacuum Einstein field equations for
Bianchi spacetimes

The purpose of this section is to explain how the Wainwright-Hsu equations (1.5) can be derived
from the vacuum Einstein field equations (1.2) for class A Bianchi spacetimes. Moreover, we want to
describe the correspondence between vacuum class A Bianchi spacetimes and solutions of (1.5). This
chapter follows mostly [Rin13], hence we refer to this book for more details.

First, let us recall the definitions we are using in this work.

Definition 2.1 (Vacuum Bianchi spacetime). A vacuum Bianchi spacetime is a Lorentzian manifold
of the form (M, g) = (I ×G,−ds2 + hs) satisfying the vacuum Einstein field equations

Ricg = 0

where I is an interval of the real line, G is a simply-connected 3-dimensional real Lie group, s is a
coordinate on I and hs is a left-invariant Riemannian metric on {s}×G ≃ G for every s ∈ I, such that

Definition 2.2. A Lie group is said to be unimodular if its left invariant Haar measure is also right-
invariant. A Lie algebra g is said to be unimodular if all the simply-connected Lie groups associated
with g are unimodular.

Definition 2.3 (Vacuum class A Bianchi spacetime). A vacuum Bianchi spacetime

(M, g) = (I ×G,−ds
2
+ hs)

is said to be of class A if the Lie group G is unimodular.

Definition 2.4 (Maximal vacuum class A Bianchi spacetime). A vacuum class A Bianchi spacetime
is maximal if it cannot be embedded isometrically as a strict submanifold of another vacuum class A
Bianchi spacetime.

Throughout this work, we will focus on maximal vacuum class A Bianchi spacetimes, in the sense
of the preceding definitions.

This section is divided in three parts. Firstly, we recall some general results on 3-dimensional Lie
groups and their algebras. Secondly, we show that every vacuum class A Bianchi spacetime admits a
particular frame field, called an orthonormal-parallel frame. Lastly, we explicit the coordinates for
which the vacuum Einstein field equations (1.2) transcribe precisely as the Wainwright-Hsu equations
(1.5).

2.1 3-dimensional unimodular real Lie groups and algebras
Proposition 2.5. Let G be a connected Lie group whose Lie algebra is denoted by g. The Lie group G
is unimodular if and only if, for all x ∈ g, the linear transformation ad(x) ∶ y ↦ [x, y] has trace zero.

19



20 CHAPTER 2. The vacuum Einstein field equations for Bianchi spacetimes

Proof. It is easy, see for example section 6 of Milnor’s article [Mil76].

Definition 2.6 (Canonical orthonormal frame). Let g be a 3-dimensional unimodular real Lie algebra,
h be a positive-definite quadratic form on g, ⟨⋅, ⋅⟩ be the inner product associated with h and
B = (e1, e2, e3) be an orthonormal frame of (g, ⟨⋅, ⋅⟩). We say that B is a canonical orthonormal frame
for (g, h) if there exists a triple (n1, n2, n3) of real numbers verifying

[e1, e2] = n3e3, [e2, e3] = n1e1, [e3, e1] = n2e2

If this is the case, we will call the numbers n1, n2, n3 (in that order) the structure constants for the
frame B in the Lie algebra g.

Next proposition shows that any 3-dimensional unimodular real Lie algebra equipped with a
positive-definite quadratic form admits a canonical frame that will greatly simplify computations with
the Lie bracket.

Proposition 2.7. If g is a 3-dimensional unimodular real Lie algebra and if h is a positive-definite
quadratic form on g, then there exists a canonical orthonormal frame B for (g, h).

Proof. We fix an orientation on g. We denote by ⟨⋅, ⋅⟩ the inner product associated with h. Since g is
3-dimensional and oriented, we can consider the cross product (u, v)↦ u × v on g associated with the
inner product ⟨⋅, ⋅⟩. Let us fix (f1, f2, f3) a direct orthonormal frame of (g, ⟨⋅, ⋅⟩) and let us define the
linear transformation L ∶ g→ g by L(fi) = [fi+1, fi+2] (where the index i is taken modulo 3). Since
fi = fi+1 × fi+2, we get that L(u × v) = [u, v] for all u, v ∈ g. Let B be an orthonormal frame of
(g, ⟨⋅, ⋅⟩). According to what precedes, B is a canonical orthonormal frame for (g, h) if and only if B
diagonalizes L. To conclude, we use Proposition 2.5 to get that tr(ad(fi)) = 0 for all i. This implies
that L is self-adjoint for the inner product ⟨⋅, ⋅⟩. Hence, L is diagonalizable in an orthonormal frame
for ⟨⋅, ⋅⟩.

Now let us discuss the “uniqueness” of the canonical orthonormal frame and the structure constants.
In the preceding proof, we saw that the canonical orthonormal frames for (g, h) are exactly the
orthonormal frames which diagonalize the map L. Remark that changing the orientation amounts to
consider the map −L instead of L, hence we did not loose any canonical orthonormal frame by fixing
the orientation in the preceding proof.

Let B = (e1, e2, e3) be an orthonormal frame which diagonalizes the map L. If the eigenvalues of L
are pairwise distinct, any other orthonormal frame diagonalizing L can be constructed from B via the
two following transformations:

• a permutation of the vectors e1, e2 and e3.

• taking the opposite of some vectors from e1, e2 and e3.

If some eigenvalues of L are equal, we can also allow the transformation of B by any isometry stabilizing
the eigenspaces of L.

As a consequence, it is easy to check that the structure constants do not depend on the canonical
orthonormal frame chosen, up to order and up to a sign reversal of the three ni’s.

According to the preceding discussion, one can choose B such that at most one of the structure
constants for B is strictly negative. The signs of the real numbers n1, n2, n3, with this convention and
considered modulo permutation of the indices, are an invariant of the 3-dimensional unimodular real
Lie algebras modulo isomorphism. This classification is summarized in the table 2.1.

Definition 2.8 (Canonical orthonormal frame field). Let h be a left-invariant riemannian metric on a
3-dimensional unimodular real Lie group G, of Lie algebra g. This metric induces a positive-definite
quadratic form on g, that we also denote by h. Let (e1, e2, e3) be a left-invariant orthonormal frame field
on (G, h). We say that (e1, e2, e3) is a canonical orthonormal frame field for (G, h) if (e1, e2, e3)(Id)
is a canonical orthonormal frame for (g, h) (in the sense of definition 2.6).

Remark 2.9. Any canonical orthonormal frame for (g, h) induces a canonical orthonormal frame field
for (G, h).
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Bianchi type Signs of n1, n2, n3 modulo permutation
of the indices

Corresponding Lie algebra
up to isomorphism

I 0, 0, 0 R3

II +, 0, 0 Heisenberg’s algebra

VI0 +,−, 0 isom(Min2)
VII0 +,+, 0 isom(R2)
VIII +,+,− sl(2,R)
IX +,+,+ su(2)

Table 2.1 – Classification of 3-dimensional unimodular Lie algebras.

Remark 2.10. If (e1, e2, e3) is a canonical orthonormal frame field for (G, h), then for all i ∈ {1, 2, 3},

[ei, ei+1] = ni+2ei+2 on G

where n1, n2, n3 are the structure constants for the frame (e1, e2, e3)(Id) in the algebra g. We will say
that n1, n2, n3 (in that order) are the structure constants for the frame field (e1, e2, e3).

Next proposition shows how the Ricci curvature can be expressed with the structure constants in a
canonical orthonormal frame field.

Proposition 2.11. Let h be a left-invariant riemannian metric on a 3-dimensional unimodular real
Lie group G. Let (e1, e2, e3) be a canonical orthonormal frame field for (G, h). The Ricci curvature
and the scalar curvature read as follows:

Rich(ei, ej) = 0 if i ≠ j (2.1a)

Rich(ei, ei) =
1

2
(n2
i − n

2
j − n

2
k) + njnk where {i, j, k} = {1, 2, 3} (2.1b)

Scalh = −
1

2
(n2

1 + n
2
2 + n

2
3) + n1n2 + n2n3 + n3n1 (2.1c)

where n1, n2, n3 are the structure constants for the frame B.

Proof of Proposition 2.11. Let ⟨⋅, ⋅⟩ be the inner product associated with h. Let x, y, z be three left-
invariant vector fields on G. When used with left-invariant vector fields, Koszul’s formula on the
Levi-Civita connexion ▽ simplifies as follows:

⟨▽xy, z⟩ =
1

2
(−⟨x, [y, z]⟩ − ⟨y, [x, z]⟩ + ⟨z, [x, y]⟩) (2.2)

Coming back to the canonical orthonormal frame (e1, e2, e3), we deduce from this formula that

▽e1 e2 = α1e3, ▽e2e3 = α2e1, ▽e3e1 = α3e2 (2.3)

where αi ∶= 1
2
(n1 +n2 +n3)−ni. Since ▽ is torsion-free, ▽ is entirely determined by (2.3). Moreover,

the curvature tensor is entirely determined by the connexion, hence formulas (2.1) are easily obtained
from (2.3).

2.2 Canonical orthonormal-parallel frame fields on vacuum
class A Bianchi spacetimes

Let (M, g) = (I × G,−ds
2 + hs) be a Lorentzian manifold where I is an interval of the real line,

G is a simply-connected 3-dimensional real Lie group of class A, s is a coordinate on I and hs is
a left-invariant Riemannian metric on {s} × G ≃ G for every s ∈ I. Let ⟨⋅, ⋅⟩ be the bilinear form
associated with g and ▽ be the Levi-Civita connection of g. We define the second fundamental form
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of the spacelike hypersurface {s} ×G by IIs(x, y) ∶= ⟨▽x
∂
∂s
, y⟩. As we already stated, we are going to

choose a coordinates system on M = I ×G and use it to explicit the vacuum Einstein field equations
Ricg = 0. This amounts to choose a frame field.

Definition 2.12 (Canonical orthonormal-parallel frame field). We call canonical orthonormal-parallel
frame field on (I ×G,−ds

2 + hs) any frame field (e0, e1, e2, e3) satisfying the following properties:

1. The vector field e0 is equal to ∂
∂s
. The vector fields e1, e2, e3 are tangent to the spacelike hypersurface

{s} ×G for all s ∈ I, and are left-invariant.

2. In restriction to {s}×G, (e1, e2, e3) is a canonical orthonormal frame field for (G, hs) (in the sense
of definition 2.8).

3. For all i ∈ {1, 2, 3}, we have ▽e0ei = 0.

4. The second fundamental form IIs of the spacelike hypersurface {s}×G is diagonalized in the frame
(e1, e2, e3)(s) for all s ∈ I. We denote by θ1(s), θ2(s), θ3(s) the diagonal coefficients of IIs.

Remark 2.13. Any canonical orthonormal-parallel frame field (e1, e2, e3) carries six variables: the struc-
ture constants n1(s), n2(s), n3(s) and the coefficients of the second fundamental form θ1(s), θ2(s), θ3(s).
Moreover, in this frame, the second fundamental form depends only on the θi. We will say that (ni, θi)
are the variables associated with the frame field (e1, e2, e3).

Next proposition gives a necessary and sufficient condition for a Lorentzian manifold of the
form (I × G,−ds

2 + hs) to be a vacuum class A Bianchi spacetime, using the notion of canonical
orthonormal-parallel frame field.

Proposition 2.14. Let (M, g) = (I ×G,−ds
2 + hs) be a Lorentzian manifold where I is an interval

of the real line, G is a simply-connected 3-dimensional real Lie group of class A, s is a coordinate on I
and hs is a left-invariant Riemannian metric on {s} ×G ≃ G for every s ∈ I.

If (M, g) is a vacuum class A Bianchi spacetime, then there exists a canonical orthonormal-parallel
frame field (e0, e1, e2, e3) on (M, g) and the variables (ni, θi) associated with this frame field satisfy
the three equations

dni
ds

= (θi − θj − θk)ni (2.4a)

dθi
ds

= −
1

2
(n2
i − n

2
j − n

2
k) − njnk − θiθ (2.4b)

0 =
1

2
(n2

1 + n
2
2 + n

2
3) − (n1n2 + n1n3 + n2n3) − θ2

+ θ
2
1 + θ

2
2 + θ

2
3 (2.4c)

where θ = θ1 + θ2 + θ3 and {i, j, k} = {1, 2, 3}. Moreover, if (ẽ0, ẽ1, ẽ2, ẽ3) is another canonical
orthonormal-parallel frame field, the variables (ñi, θ̃i) associated with this frame satisfy

ñi = εnσ(i), θ̃i = θσ(i), i ∈ {1, 2, 3} (2.5)

for some σ ∈ S3 and some ε ∈ {1,−1}.
Conversely, if there exists a canonical orthonormal-parallel frame field (e0, e1, e2, e3) on (M, g)

such that the variables (ni, θi) associated with this frame field satisfy the system (2.4), then (M, g) is
a vacuum class A Bianchi spacetime.

Remark 2.15. The variables (ni, θi) are called the Ellis-MacCallum coordinates.

Remark 2.16. If there exist s0 ∈ I and i ≠ j such that ni(s0) = nj(s0) and θi(s0) = θj(s0) then
ni(s) = nj(s) and θi(s) = θj(s) for all s ∈ I. In this case, we say that (M, g) is a locally rotationally
symmetric (LRS) Bianchi spacetime. Any rotation in the plane spanned by ei(s0) and ej(s0) gives
rise to another canonical orthonormal-parallel frame field. If this is not the case, the canonical
orthonormal-parallel frame field is essentially unique, as discussed after Proposition 2.7. Indeed, remark
that a canonical orthonormal-parallel frame field is entirely defined by the choice of one canonical
orthonormal frame for (g, hs0) where s0 ∈ I is fixed.

Remark 2.17. One can check that the constraint equation (2.4c) is invariant under the flow of the
differential equations (2.4a) and (2.4b).
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Remark 2.18. Equation (2.4a) implies that the signs of the variables ni are constant. This is of course
coherent with the fact that these signs (modulo permutation and up to a simultaneous sign reversal of
the three ni’s) are invariant under Lie algebra’s isomorphisms, as discussed after Proposition 2.7 (see
table 2.1).

We stress that in this proposition, we will be using the vacuum Einstein field equations Ricg = 0 to
construct the canonical orthonormal-parallel frame field.

Proof of Proposition 2.14. Let e0 =
∂
∂s

and fix s0 ∈ I. We will begin with the construction of the
vector fields e1, e2, e3 in restriction to the spacelike hypersurface {s0} ×G. After that, we will extend
these vector fields on I ×G by parallel transport. Once this is done, we will only have to check that
the frame field (e0, e1, e2, e3) is a canonical orthonormal-parallel frame field.

Step 1: construction of the vector fields e1, e2, e3 in restriction to the spacelike hypersurface
{s0}×G. We fix a left-invariant orthonormal frame field (ê1, ê2, ê3) on ({s0}×G ≃ G, hs0). We denote
by (θ̂i,j) the (symmetrical) matrix of the second fundamental form of {s0}×G in this frame field, that
is,

θ̂i,j = ⟨▽êie0, êj⟩
We introduce the (symmetrical) matrix (n̂i,j) defined by

n̂i,j
def
=

3

∑
k,`=1

ε(j, k, `)Ĉik,` + ε(i, k, `)Ĉ
j
k,` (2.6)

where Ĉki,j ∶= ⟨[êi, êj], êk⟩ and ε(j, k, `) is the signature of the permutation (1, 2, 3) ↦ (j, k, `) if
{j, k, `} = {1, 2, 3} and is zero if two indices among j, k, ` coincide. Let us call (n̂i,j) the commutator
matrix associated with the frame field (ê1, ê2, ê3).

Claim 1. The matrix n̂ = (n̂i,j) is the unique matrix such that

Ĉ
i
k,` =

1

4

3

∑
m=1

ε(k, `,m)n̂m,i (2.7)

for all {k, `, i} = {1, 2, 3}. Moreover, if (ê′1, ê′2, ê′3) is another left-invariant orthonormal frame field on
({s0} ×G ≃ G, hs0) and A is the orthogonal matrix such that

ê
′
i =

3

∑
m=1

Am,iêm

then the commutator matrix n̂′ = (n̂′i,j) associated with the frame field (ê′1, ê′2, ê′3) satisfies the relation

n̂ = (detA)−1 t
A n̂

′
A (2.8)

Proof of claim 1. See [Rin13], Lemma 19.3, p. 206 and Lemma 19.6, p. 207. The main ingredient for
(2.7) is the fact that G is unimodular. It is used in the form given by Proposition 2.5: tr(ad(êi)) = 0
for all i.

Claim 2. The matrix (n̂i,j) is diagonal if and only if (ê1, ê2, ê3) is a canonical orthonormal frame
field for (G, hs0).

Proof of claim 2. Assume that (n̂i,j) is diagonal. Using (2.7), one can see that Ĉik,` = 0 whenever
i = k or i = `. Hence, (ê1, ê2, ê3) is a canonical orthonormal frame field for (G, hs0). Now assume that
(ê1, ê2, ê3) is a canonical orthonormal frame field for (G, hs0). If i ≠ j, either ε(j, k, `) or Ĉik,` vanishes,
hence n̂i,j = 0 by (2.6).

Claim 3. The matrices (n̂i,j) and (θ̂i,j) commute.
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Proof of claim 3. This is a consequence of the fact that Ricg(e0, êl) = 0 for all l ∈ {1, 2, 3}. Let us
develop the main arguments. As in the proof of Proposition 2.11, Koszul’s formula (2.2) gives

2⟨▽êl êm, êk⟩ = Ĉ
k
l,m − Ĉ

l
m,k − Ĉ

m
l,k (2.9)

Moreover, by developing the relation

Ricg(e0, êl) = −⟨Rge0,e0 êl, e0⟩ +
3

∑
k=1

⟨Rgêk,e0 êl, êk⟩

while using the fact that ▽e0e0 = 0 and the definition of the second fundamental form, we find that

Ricg(e0, êl) =
3

∑
k=1

3

∑
m=1

(−θk,m⟨▽êl êm, êk⟩ + θl,m⟨▽êk êm, êk⟩ + Ĉ
m
l,kθm,k) (2.10)

Plugging (2.9) into (2.10) and using the definition of (n̂i,j), we can see that Ricg(e0, êl) = 0 translates
as the commutation of the matrices (n̂i,j) and (θ̂i,j).

As a consequence, one can diagonalize the matrices (n̂i,j) and (θ̂i,j) in the same left-invariant
orthonormal frame field (e1, e2, e3). According to (2.8), the commutator matrix associated with
the frame field (e1, e2, e3) is also diagonal. Hence, claim 2 implies that (e1, e2, e3) is a canonical
orthonormal frame field for (G, hs0).

Step 2: extension of the frame field (e1, e2, e3) to I ×G. We extend this frame field on M = I ×G
by parallel transport along the orbits of the vector field e0. By definition, the frame field (e0, e1, e2, e3)
satisfies items 1 and 3 of definition 2.12 on (M, g). It also satisfies items 2 and 4 in restriction to the
spacelike hypersurface {s0} ×G. Moreover, recall that the inner product is invariant under parallel
transport. Hence, for all s ∈ I, (e1, e2, e3)(s) is a left-invariant orthonormal frame field on ({s}×G, hs).

Step 3: the frame (e0, e1, e2, e3) satisfies items 3 and 4 of definition 2.12. We generalize the
precedent matrices. Let us denote by (θi,j(s)) the matrix of the second fundamental form of the
spacelike hypersurface {s} ×G in the frame (e1, e2, e3)(s). Consider the matrix (ni,j(s)) defined by

ni,j(s)
def
=

3

∑
k,`=1

ε(j, k, `)Cik,`(s) + ε(i, k, `)C
j
k,`(s)

where Cki,j(s) ∶= ⟨[ei, ej], ek⟩∣{s}×G.

Claim 4. For all i, j ∈ {1, 2, 3}, the variable ni,j satisfies the differential equation

dni,j
ds

= −θni,j +
3

∑
l=1

θi,lnl,j + θl,jni,l (2.11)

Proof of claim 4. Using ▽e0ei = 0, we get that

dC
i
k,l

ds
= ⟨▽e0[ek, el], ei⟩

Using the fact that ▽ is torsion-free, the Jacobi identity, the definition of the second fundamental form
and once again the fact that the vector fields ei are parallel transported along the orbits of the vector
field e0, we obtain

dC
i
k,l

ds
=

3

∑
m=1

(Cmk,lθm,i + Cil,mθk,m − Cik,mθl,m)

Using the definition of ni,j and some painful algebraic manipulations, we find (2.11).
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Claim 5. For all i, j ∈ {1, 2, 3}, the variable θi,j satisfies the differential equation

dθi,j
ds

= −Richs(ei, ej) − θi,jθ (2.12)

where θ = tr(IIs) = θ1,1 + θ2,2 + θ3,3.

Proof of claim 5. Using ▽e0ei = 0 (for i ∈ {1, 2, 3, 4}), the definition of the curvature tensor and the
fact that ▽ is torsion-free, we get

dθi,j
ds

= ⟨Rge0,eie0, ej⟩ −
3

∑
m=1

θi,mθm,j

The equation Ricg(ei, ej) = 0 allows one to express ⟨Rge0,eie0, ej⟩ independently of e0:

⟨Rge0,eie0, ej⟩ = −
3

∑
k=1

⟨Rgek,eiej , ek⟩

Moreover, Gauss formula about the second fundamental form allows one to express the curvature
tensor Rg with the curvature tensor of the spacelike hypersurface Rhs and its second fundamental
form:

∀k ≥ 1, ⟨Rgek,eiej , ek⟩ = ⟨Rhsek,eiej , ek⟩ − θk,jθi,k + θk,kθi,j

With these relations, it is easy to finish the computation of dθi,j

ds
and to find (2.12).

Recall that ni,j(s0) = 0 = θi,j(s0) for all i ≠ j. Moreover, Richs(ei, ej) admits an expression in
function of the coefficients of the matrix (ni,j) and vanishes when this matrix is diagonal (see [Rin13],
Lemma 19.11, p. 209). Equations (2.11) and (2.12) form an ODE system of order 1. Since

∀i ≠ j, ni,j ≡ θi,j ≡ 0

is a solution of this ODE system, Cauchy-Lipschitz theorem implies that for all i ≠ j and all s ∈ I,
ni,j(s) = 0 = θi,j(s). As a consequence, items 2 and 4 of definition 2.12 hold true (using claim 2).

Step 4: equations satisfied by the variables (ni, θi). According to (2.7), ni,i = 4ni. Recall that
ni,j = 0 and θi,j = 0 whenever i ≠ j. Hence, (2.11) implies that

dni
ds

= −θni + 2θini = (θi − θj − θk)ni

i.e. (2.4a) holds true. By definition, θi = θi,i. Hence, equation (2.4b) is a direct consequence of (2.12)
and the expression of the Ricci curvature (2.1b).

According to Gauss formula about the second fundamental form, the equation Ricg(e0, e0) = 0
translates as

Scalhs + (tr IIs)2
− tr(II2

s) = 0 (2.13)

where II
2
s is an abuse of notation for the quadratic form whose matrix is the square of the matrix of

the quadratic form IIs in the frame (e1, e2, e3)(s). Plugging the expression of the scalar curvature
(2.1c) into (2.13), we get (2.4c).

Step 5: change of canonical orthonormal-parallel frame field. Formula (2.5) describing how the
variables (ni, θi) change if one changes the canonical orthonormal-parallel frame field follows from the
discussion about the “uniqueness” of a canonical orthonormal frame for (g, hs0).

Step 6: proof of the converse statement. Assume that there exists a canonical orthonormal-parallel
frame field (e0, e1, e2, e3) on (M, g) such that the variables (ni, θi) associated with this frame field
satisfy the system (2.4). The goal is to prove that Ricg = 0. This is done in three computations:

• The matrices (ni,j) and (θi,j) are diagonal, hence they commute. Careful reading of the computa-
tions done in the proof of claim 3 show that Ricg(e0, el) = 0 for all l ∈ {1, 2, 3}.
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• According to (2.1a), Richs(ei, ej) = 0 for all i ≠ j. Moreover, the matrices (ni,j) and (θi,j)
are diagonal, hence ni,j = 0 = θi,j for all i ≠ j. As a consequence, equation (2.12) holds for
i ≠ j. According to (2.1b) and (2.4b), equation (2.12) also hold for i = j. Careful reading of the
computations done in the proof of claim 5 show that Ricg(ei, ej) = 0 for all i, j ∈ {1, 2, 3}.

• Using the expression of the scalar curvature (2.1c), we get that Ricg(e0, e0) = 0 is equivalent to the
constraint equation (2.4c).

Proposition 2.14 shows that we can associate to any vacuum class A Bianchi spacetime a solution
of the system (2.4), well defined modulo the symmetry given by (2.5). Now we want to explain how we
can do the converse, that is, to construct a vacuum class A Bianchi spacetime from a solution of the
system (2.4). This will imply that there is a one-to-one correspondence between maximal vacuum class
A Bianchi spacetimes and maximal solutions of the system (2.4), modulo some simple symmetries.

Definition 2.19 (Isomorphism of maximal vacuum class A Bianchi spacetimes). Let

(M = I ×G, g = −ds
2
+ hs), (M̃ = Ĩ × G̃, g̃ = −ds̃

2
+ h̃s)

be two maximal vacuum class A Bianchi spacetimes. We say that (M, g) and (M̃, g̃) are isomorphic if

• I = Ĩ and s = s̃.

• There exists a global isometry ψ ∶ (M, g)→ (M̃, g̃) (i.e. a diffeomorphism such that ψ∗g = g̃) such
that for all (s, u) ∈M = I ×G, ψ(s, u) = (s, ϕ(u)) where ϕ ∶ G→ G̃ is a Lie group isomorphism.

If this is the case, we say that ψ is an isomorphism between (M, g) and (M̃, g̃).

Remark 2.20. For “generic” maximal vacuum class A Bianchi spacetimes (without too many symmetries),
any global isometry ψ ∶ (M, g) → (M̃, g̃) should be of the form described in definition 2.19, up to a
translation in time.

Proposition 2.21. Let s ↦ (ni(s), θi(s)) be a maximal solution of the system (2.4), defined on an
interval I. There exists a maximal vacuum class A Bianchi spacetime (M = I ×G, g) and a canonical
orthonormal-parallel frame field (e0, e1, e2, e3) on (M, g) such that the variables associated with this
frame are exactly the functions ni and θi. Moreover, this maximal vacuum class A Bianchi spacetime
is unique up to isomorphism (in the sense of definition 2.19).

Proof. Let s↦ (ni(s), θi(s)) be a maximal solution of the system (2.4), defined on an interval I. Fix
s0 ∈ I. We construct a Lie bracket on R3 as follows: denote by (f1, f2, f3) the canonical frame of
R3 and define [fi, fi+1] = ni+2(s0)fi+2 for i ∈ {1, 2, 3} (the indices i + 1 and i + 2 are taken modulo
3). This defines a real Lie algebra structure on R3. According to Lie’s third theorem, there exists a
3-dimensional simply-connected real Lie group G whose Lie algebra is (R3

, [., .]) defined above. The
frame (f1, f2, f3) induces a left-invariant frame field on G, that we still denote by (f1, f2, f3). Let
M = I ×G and equip M with the frame field ( ∂

∂s
, f1, f2, f3), i.e. we choose a frame field which does

not depend on s.
For i ∈ {1, 2, 3}, we define the function ai ∶ I → R by the formula

ai(s) = e∫
s

s0
θi(u)du

Using the equation (2.4a) governing the evolution of the variables ni, we easily obtain the relation

ak(s)
ai(s)aj(s)

nk(s0) = nk(s) (2.14)

for {i, j, k} = {1, 2, 3} and s ∈ I. Now consider the metric

g = −ds
2
+

3

∑
i=1

ai(s)2
df

∗
i ⊗ df

∗
i = −ds

2
+ hs
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where (f∗1 , f∗2 , f∗3 ) is the dual frame of (f1, f2, f3). Remark that g is well defined even if some of the
variables ni vanish. This is the reason why we used the coefficient ai(s)2 instead of nj(s0)nk(s0)

nj(s)nk(s)
. The

family (f1, f2, f3) is orthogonal for this metric and even orthonormal in the spacelike hypersurface
{s0} ×G.

We construct a new frame (e0 =
∂
∂s
, e1, e2, e3) on M as follows. On the spacelike hypersurface

{s} × G, we set ei = ai(s)−1
fi. By construction, (e0, e1, e2, e3) is an orthonormal frame on (M, g).

Using equation (2.14), it is easy to check that in restriction to the spacelike hypersurface {s} × G,
[ei, ei+1] = ni+2(s)ei+2, hence (e1, e2, e3) is a canonical orthonormal frame field for (G, hs). Using
Koszul’s formula, we get that the second fundamental form IIs is diagonal in the frame (e1, e2, e3),
with diagonal coefficients being exactly the numbers θ1(s), θ2(s) and θ3(s). Using the fact that the
Levi-Civita connexion is torsion-free, we get that

▽fie0 =▽e0fi = θiaiei + ai▽e0 ei

According to Koszul’s formula,
⟨▽fie0, fi⟩ = θia2

i

and if i ≠ j, then ⟨▽fie0, fj⟩ = 0. It follows that ▽fie0 = θifi = θiaiei. Hence, ▽e0ei = 0, i.e. the
frame field (e1, e2, e3) is parallel. As a consequence, (e0, e1, e2, e3) is a canonical orthonormal-parallel
frame field on (M, g) and the variables associated with this frame field are exactly the (ni, θi) which
satisfy the system (2.4) by definition. We can use Proposition 2.14 to conclude that Ricg = 0. Hence,
(M, g) is a vacuum class A Bianchi spacetime and (e0, e1, e2, e3) is a canonical orthonormal-parallel
frame field on (M, g) such that the variables associated with this frame are exactly the functions ni
and θi.

It is easy to see that the solution (M, g) is maximal using the maximality of the solution

s↦ (ni(s), θi(s))

Assume that (M̃ = I × G̃, g̃ = −ds
2 + h̃s) is a maximal vacuum class A Bianchi spacetime equipped

with a canonical orthonormal-parallel frame field (e0, ẽ1, ẽ2, ẽ3) such that the variables associated with
this frame are exactly the functions ni and θi. Define the Lie algebra isomorphism φ ∶ g → g̃ by
φ(ei(s0)) = ẽi(s0). This Lie algebra isomorphism arises from a Lie group isomorphism ϕ ∶ G → G̃
(see e.g. [Lee03], Theorem 20.15, p. 532). Define ψ ∶ M → M̃ by the formula ψ(s, u) = (s, ϕ(u)).
The map ψ is the desired isomorphism if and only if φ(ei(s)) = ẽi(s) for all s ∈ I. Recall that by
definition, ei(s) = ai(s)−1

ei(s0). Hence, we only need to prove that ẽi satisfies the same relation. Let
f̃i(s) ∶= ai(s)ẽi(s). Using the fact that ▽ is torsion-free, the relation ▽e0 ẽi = 0 and the relation
▽ẽie0 = θiẽi, we get that

[e0, f̃i] = 0

Hence, f̃i does not depend on s: for all s ∈ I, f̃i(s) = f̃i(s0) = ai(s0)ẽi(s0) = ẽi(s0). This concludes
the proof of Proposition 2.21.

Let us summarize the results of this section.

Proposition 2.22. There is a one-to-one correspondence between

• Maximal vacuum class A Bianchi spacetimes modulo isomorphism (in the sense of definition 2.19).

• Maximal solutions (ni, θi) of the system of equations (2.4) modulo permutation of the indices and a
simultaneous sign reversal of the three ni’s (see (2.5)).

Remark 2.23. A translation in time for a maximal solution of the system (2.4) amounts to the same
translation in time for the corresponding maximal vacuum class A Bianchi spacetime.

2.3 Some properties of the mean curvature
Let (M, g) be a maximal vacuum class A Bianchi spacetime. Let (e0, e1, e2, e3) be a canonical
orthonormal-parallel frame field on (M, g). The mean curvature of the spacelike hypersurface {s} ×G
is 1

3
θ(s) where

θ(s) = tr(IIs) = θ1(s) + θ2(s) + θ3(s)
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Remark that θ is independent of the choice of the canonical orthonormal-parallel frame field. Let us
consider three different properties for θ:

(Z∞) For all s ∈ I, θ(s) = 0.

(Z1) There exists a unique s0 ∈ I such that θ(s0) = 0.

(Z0) For all s ∈ I, θ(s) ≠ 0.

Next proposition shows that the set of vacuum class A Bianchi spacetimes is (non trivially) partitioned
by these three properties.

Proposition 2.24. Let (M = ]s−, s+[ ×G, g) be a maximal vacuum class A Bianchi spacetime. The
mean curvature must satisfy one of the three properties (Z∞), (Z1), (Z0). More precisely,

• The mean curvature satisfies (Z∞) if and only if (M, g) is the Minkowski spacetime.

• The mean curvature satisfies (Z1) if and only if the Lie algebra of G is of type IX. In that case,
there exists a unique s0 ∈ I such that θ > 0 in ]s−, s0[ and θ < 0 in ]s0, s+[. Moreover, θ is
decreasing, s− > −∞, s+ < +∞ and

lim
s→s−

θ(s) = +∞, lim
s→s+

θ(s) = −∞

• The mean curvature satisfies (Z0) if and only if (M, g) is not the Minkowski spacetime and the Lie
algebra of G is not of type IX. If the time orientation is chosen so that θ < 0 (anti-physical time
orientation), then s− = −∞ and s+ < +∞. Moreover, θ is decreasing and

lim
s→s−

θ(s) = 0, lim
s→s+

θ(s) = −∞

Remark 2.25. Changing the time orientation amounts to consider the spacetime

(M̃ = Ĩ ×G, g̃ = −ds̃
2
+ h̃s̃)

where Ĩ = −I, s̃ is the coordinate −s on Ĩ and h̃s̃ = h−s̃ for all s̃ ∈ Ĩ.

Proof. See [Rin13], Lemma 20.6, p. 218 and Lemma 20.9, p. 220. For the type IX case, see [LW90].

Definition 2.26. Let (M = ]s−, s+[ × G, g) be a maximal vacuum class A Bianchi spacetime of
type IX (i.e. the Lie algebra of G is of type IX). Let s0 be the unique time such that θ > 0 in
]s−, s0[ and θ < 0 in ]s0, s+[. We say that (M− = ]s−, s0[ ×G, g∣M−

) and (M+ = ]s0, s+[ ×G, g∣M+
)

are maximal half vacuum class A Bianchi spacetimes of type IX.

Remark 2.27. The set of maximal half vacuum class A Bianchi spacetimes of type IX is invariant under
metric rescaling, time orientation reversal, time translation and isomorphism.

2.4 Wainwright-Hsu coordinates and Wainwright-Hsu equa-
tions

In the preceding section, we described a correspondence between maximal vacuum class A Bianchi
spacetimes and maximal solutions (ni, θi) of the system (2.4). In other words, the vacuum Einstein
field equations Ricg = 0 is equivalent to the ODE system (2.4).

We are now going to introduce some new variables to replace the variables (ni, θi). For some
physical reasons, it is convenient to construct a new time variable using the mean curvature 1

3
θ of the

spacelike hypersurfaces and to divide the variables ni and θi by this mean curvature (see e.g. [WH89]).
Let us denote by σ1, σ2, σ3 the diagonal coefficients of the trace-less second fundamental form, i.e.

σi = θi −
1

3
θ
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where θ = θ1 + θ2 + θ3. By definition, σ1 + σ2 + σ3 = 0. Analogously, let us denote by s1, s2, s3 the
coefficients of the trace-less Ricci tensor, i.e.

si = Richs(ei, ei) −
1

3
Scalhs

According to Proposition 2.11, we have

si =
1

3
(2n

2
i − n

2
j − n

2
k + 2njnk − ninj − nink)

Recall that 1
3
θ(s) is the mean curvature of the spacelike hypersurface {s} ×G. Define

Ni =
3ni
θ
, Σi =

3σi
θ
, Si =

9si

θ2

The variables (Ni,Σi) are called the Wainwright-Hsu coordinates. Remark that

Si =
1

3
(2N

2
i −N

2
j −N

2
k + 2NjNk −NiNj −NiNk)

Now we consider the new time variable t defined by

dt

ds
(s) = −θ(s)

3

The mean curvature satisfies the differential equation

dθ

dt
= (1 + q)θ

where
q =

1

3
(Σ2

1 + Σ
2
2 + Σ

2
3) (2.15)

is sometimes called the deceleration parameter . Rewriting (2.4a) and (2.4b) with the normalized
variables Ni,Σi and with the time variable t, we obtain the Wainwright-Hsu equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N
′
1 = −(q + 2Σ1)N1

N
′
2 = −(q + 2Σ2)N2

N
′
3 = −(q + 2Σ3)N3

Σ
′
1 = (2 − q)Σ1 + S1

Σ
′
2 = (2 − q)Σ2 + S2

Σ
′
3 = (2 − q)Σ3 + S3

(2.16a)

where the notation ′ refers to differentiation with respect to the time variable t. The constraint equation
(2.4c) becomes

6 − (Σ
2
1 + Σ

2
2 + Σ

2
3) −

1

2
(N2

1 +N
2
2 +N

2
3 ) + (N1N2 +N2N3 +N3N1) = 0 (2.16b)

The left-hand side of (2.16b) can be thought as a normalized density parameter, which is why it is null
in the context of vacuum class A Bianchi spacetimes. Also, remark that we have another constraint
equation:

Σ1 + Σ2 + Σ3 = 0 (2.16c)

This is a direct consequence of the fact that the variables Σi are the renormalized coefficients of the
trace-less second fundamental form.

Remark 2.28. The choice to explicit the vacuum Einstein field equations in a canonical orthonormal-
parallel frame field (e0, e1, e2, e3) implies in particular that the coefficients of the metric g are constant,
hence they do not appear in the differential system (2.16a). The numbers Ni(t) are, up to renor-
malization, the structure constants of the Lie group G for the frame (e1(t), e2(t), e3(t)) while the
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numbers Σi(t) are, up to renormalization, the diagonal coefficients of the second fundamental form of
the spacelike hypersurface {t} ×G in the frame (e1(t), e2(t), e3(t)).
Remark 2.29 (On the choice of the time variable). The variable θ is called the Hubble’s variable. This
variable naturally appears when one studies the Einstein field equations for spatially homogeneous and
isotropic spacetimes (the so-called Friedmann–Lemaître–Robertson–Walker models). In this case, the
Einstein field equations becomes essentially a differential equation of order 1 on θ. If one thinks about
spatially homogeneous spacetimes as perturbations of the isotropic and spatially homogeneous model,
then it is natural to use θ to construct the time variable since θ possesses the desired properties in the
isotropic and spatially homogeneous case.

Remark 2.30 (On the orientation of time). We could choose dt
ds

=
θ
3
instead of dt

ds
= − θ

3
. This

corresponds to a choice of time orientation for Bianchi spacetimes. Our choice is anti-physical: oriented
solutions of the Wainwright-Hsu equations (2.16a) correspond to spacetimes in contraction, which will
end in a Big-Crunch but which do not have any Big-Bang in the past (this is of course the opposite
of our physical universe). As a consequence of this choice, the Wainwright-Hsu system (2.16a) will
present an attractor. Most authors do the opposite choice.

Remark 2.31 (On the Wainwright-Hsu variables). By dividing the variables ni and σi by the mean
curvature θ and by deciding to use a time variable t such that dt/ds = −θ/3, we loose some information.
More precisely, we loose during this process the spacelike hypersurfaces {s}×G of the Bianchi spacetime
(I ×G,−ds

2 + hs) whose mean curvature vanish. According to Proposition 2.24, this can only appear
in two cases:

• The Minkowski spacetime: all the spacelike hypersurface {s} ×G have zero mean curvature.

• For any maximal vacuum class A Bianchi spacetime (I ×G,−ds
2 + hs) of type IX (i.e. whose Lie

algebra is g = su(2)), there exists a unique real s0 ∈ I such that the mean curvature of the spacelike
hypersurface {s} ×G vanish. Hence, the spacelike hypersurface {s0} ×G “split” (I ×G,−ds

2 + hs)
into two vacuum class A Bianchi spacetimes, one where the mean curvature is strictly negative and
one where the mean curvature is strictly positive.

Moreover, the Wainwright-Hsu variables are dimensionless, which means that they will not change if
the spacetime metric is rescaled (see [WH89]).

Remark 2.32 (Lie algebra type and signs of the variables Ni). It is clear from the Wainwright-Hsu
equations that the signs of the variables Ni are constant. By construction, these signs are exactly the
signs of the variables ni. Hence, they encode the Lie algebra of G modulo isomorphism. This remark
allows us to transfer the vocabulary introduced for Lie algebras in the table 2.1 to solutions of the
Wainwright-Hsu equations. For example, we will say that a solution is of type IX if

N1 > 0, N2 > 0, N3 > 0 or N1 < 0, N2 < 0, N3 < 0

To have a clear picture of how the solutions of the Wainwright-Hsu equations are related to vacuum
class A Bianchi spacetimes, let us describe the relation betwenn the time coordinate s for vacuum class
A Bianchi spacetimes and the time coordinate t for the solutions of the Wainwright-Hsu equations.

Proposition 2.33. Let (M = ]s−, s+[×G, g) be a maximal vacuum class A Bianchi spacetime which
is not the Minkowski spacetime and which is not of type IX. Choose the orientation of time such that
θ < 0. The corresponding solution of the Wainwright-Hsu equations (2.16) is defined on R (hence it is
maximal) and

lim
s→s−

t(s) = −∞, lim
s→s+

t(s) = +∞

Proof. See [Rin13], Lemma 22.2, p. 234.

Proposition 2.34. Let (M = ]s−, s+[ × G, g) be a vacuum class A Bianchi spacetime of type IX.
Denote by s0 the unique real number such that θ > 0 in I− = ]s−, s0[ and θ < 0 in I+ = ]s0, s+[. The
solution of the Wainwright-Hsu equations corresponding to the interval I− is defined on ]t−,+∞[ with
t− > −∞ and

lim
s→s−

t(s) = +∞
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The solution of the Wainwright-Hsu equations corresponding to the interval I+ is defined on ]t+,+∞[
with t+ > −∞ and

lim
s→s+

t(s) = +∞

Proof. See [Rin13], Lemma 22.3, p. 234.

To conclude, we describe the correspondence between vacuum class A Bianchi spacetimes and
solutions of the system (2.16) formed by the Wainwright-Hsu equations and the two constraint
equations.

Proposition 2.35. The Minkowski spacetime does not correspond to any solution of the system (2.16).
There is a one-to-one correspondence between

• Maximal vacuum class A Bianchi spacetimes which are not of type IX (minus the Minkowski
spacetime), modulo isomorphism, metric rescaling, time orientation reversal and time translation.

• Maximal solutions of the system (2.16) which are not of type IX, modulo permutation of the indices,
simultaneous sign reversal of the three Ni’s and time translation.

There is a one-to-one correspondence between

• Maximal half vacuum class A Bianchi spacetimes of type IX, modulo isomorphism, metric rescaling,
time orientation reversal and time translation.

• Maximal solutions of type IX of the system (2.16), modulo permutation of the indices, simultaneous
sign reversal of the three Ni’s and time translation.
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Chapter3
The Wainwright-Hsu vector field and the
Mixmaster attractor

In this section, we will recall a number of well known facts about the Wainwright-Hsu vector field X ,
its dynamics in restriction to the Mixmaster attractor, the Kasner map and the Kasner parameter. A
good reference for these facts is [HU09]. However, there is something “new” in addition to what is
presented in [HU09]: we will define the quotient phase space and the induced Wainwright-Hsu vector
field X on that space (see section 3.6), as they will be more convenient to work with in what follows.

3.1 The Wainwright-Hsu vector field X

Phase space. Recall from Proposition 2.35 that Bianchi spacetimes will be described as solutions of
the system of equations (2.16). These solutions can be seen as the orbits of a certain flow on the phase
space

B = {(N1, N2, N3,Σ1,Σ2,Σ3) ∈ R6 satisfying (2.16c) and (2.16b)}

Observe that B is a non-singular and non-compact 4-dimensional quadric in R6.

Wainwright-Hsu vector field The Wainwright-Hsu vector field, denoted by X , is defined as the
vector field on B associated with the Wainwright-Hsu equations (2.16a), that is,

X (N1, N2, N3,Σ1,Σ2,Σ3) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−(q + 2Σ1)N1

−(q + 2Σ2)N2

−(q + 2Σ3)N3

(2 − q)Σ1 + S1

(2 − q)Σ2 + S2

(2 − q)Σ3 + S3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(3.1)

Symmetries. The Wainwright-Hsu vector field is equivariant for the action of the permutations
group S3:

σ.(N1, N2, N3,Σ1,Σ2,Σ3) = (Nσ(1), Nσ(2), Nσ(3),Σσ(1),Σσ(2),Σσ(3)) (3.2)

and for the action of the group Z/2Z = {Id, ε} given by:

ε.(N1, N2, N3,Σ1,Σ2,Σ3) = (−N1,−N2,−N3,Σ1,Σ2,Σ3)

One should remark that this implies that S3 is acting on the space of the orbits of the Wainwright-Hsu
vector field. Later on, to simplify the presentation, we will work in the quotient phase space B/S3

(see section 3.6).

33
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3.2 Stratification of the phase space B

Stratification of the phase space. According to (2.16a), the signs (positive, negative or null) of
the variables Ni are invariant along the orbits of the Wainwright-Hsu vector field. This fact leads
to a stratification of the phase space B in six subsets which are invariant under the flow of the
Wainwright-Hsu vector field X (see table 3.1). Recall that the variables Ni are closely related to
the structure constants of the Bianchi spacetime represented by the orbit. So this stratification is no
more than a reinterpretation of the classification of the 3-dimensional unimodular Lie algebras. This
stratification plays an important role in the study of the dynamics of the Wainwright-Hsu vector field
X . This is thanks to the following facts: the dynamics on the low dimensional strata (1 and 2) can be
described entirely explicitly and the reunion of these low dimensional strata forms an attractor on
which almost every orbit of the Wainwright-Hsu vector field accumulate.

Bianchi type Name of the
stratum

Dimension
of the
stratum

Signs of N1, N2, N3

modulo permutation of
the indices

Corresponding Lie algebra
up to isomorphism

I K or BI 1 0, 0, 0 R3

II BII 2 +, 0, 0 or −, 0, 0 Heisenberg algebra

VI0 BVI0 3 +,−, 0 isom(Min2)
VII0 BVII0 3 +,+, 0 or −,−, 0 isom(R2)
VIII BVIII 4 +,+,− or −,−,+ sl(2,R)
IX BIX 4 +,+,+ or −,−,− su(2)

Table 3.1 – Stratification of the phase space.

Restriction to the “positive” part of the phase space. As stated in the introduction, to avoid
clutter with notations and to simplify the presentation, we will restrict our attention to the dynamics
of the Wainwright-Hsu vector field in

B
+ def
= {(N1, N2, N3,Σ1,Σ2,Σ3) ∈ B ∣N1 ≥ 0, N2 ≥ 0, N3 ≥ 0}

Recall that

• B
+ is invariant under the flow of the Wainwright-Hsu vector field.

• Generic orbits of B
+ are type IX orbits.

We will denote B
+
II ∶= BII ∩B

+ and analogously for other stratas. Also, we will implicitly restrict the
Wainwright-Hsu vector field to B

+ from now on.

The Kasner circle. The stratum corresponding to abelian Lie algebra is one-dimensional. It is an
euclidean circle denoted by K and called the Kasner circle (because its points correspond to Kasner
spacetimes, see [WH89]):

K = {(N1, N2, N3,Σ1,Σ2,Σ3) ∈ B ∣N1 = N2 = N3 = 0}
= {(0, 0, 0,Σ1,Σ2,Σ3) ∈ R6 ∣ Σ1 + Σ2 + Σ3 = 0,Σ

2
1 + Σ

2
2 + Σ

2
3 = 6} (3.3)

The stratum B
+
II. The stratum B

+
II corresponding to Heisenberg Lie algebras is two-dimensional.

It is the reunion of three open hemiellipsoids (see later figure 3.2), each having the Kasner circle as
boundary:

B
+
II = B

1
II ⊔B

2
II ⊔B

3
II
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Figure 3.1 – Order of the eigenvalues.

where

B
1
II = {(N1, N2, N3,Σ1,Σ2,Σ3) ∈ B ∣N1 > 0, N2 = N3 = 0}

= {(N1, 0, 0,Σ1,Σ2,Σ3) ∈ R6 ∣N1 > 0,Σ1 + Σ2 + Σ3 = 0,Σ
2
1 + Σ

2
2 + Σ

2
3 +

1

2
N

2
1 = 6} (3.4)

The hemiellipsoids B
2
II and B

3
II are defined analogously.

The Mixmaster attractor. The reunion of the Kasner circle K and the stratum BII is called the
Mixmaster attractor and is denoted by A . We denote by A

+ ∶= K ∪B
+
II the positive part of the

Mixmaster attractor.

Generic orbits The strata B
+
IX corresponding to semi-simple Lie algebras is open and dense in B

+.
Generic orbits of the Wainwright-Hsu vector field X are contained in B

+
IX.

3.3 Linearization of the Wainwright-Hsu vector field along the
Kasner circle

Critical points. The critical points of the Wainwright-Hsu vector field correspond to self-similarly
expanding spacetimes (see [WH89]). Using (2.16a) and (3.3), one can see that any point of the Kasner
circle K is a critical point. The goal of this section is to describe the eigenvalues of DX (p) for any
point p of the Kasner circle.

Notations (see figure 3.1). There are three particular points in the Kasner circle called the Taub
points:

T1 = (0, 0, 0, 2,−1,−1)
T2 = (0, 0, 0,−1, 2,−1)
T3 = (0, 0, 0,−1,−1, 2)

These points split the Kasner circle in three open arcs K1, K2, K3 defined as following: Ki is the
connected component of K \ {T1, T2, T3} admitting Tj and Tk as end points, where {i, j, k} = {1, 2, 3}.
Alternatively, one can define Ki as the subset of K where

−2 < Σi < −1
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We denote by Q1, Q2, Q3 the diametrically opposite points of the Taub points in the Kasner circle,
that is,

Q1 = (0, 0, 0,−2, 1, 1)
Q2 = (0, 0, 0, 1,−2, 1)
Q3 = (0, 0, 0, 1, 1,−2)

One can remark that Qi is the middle of the arc Ki. As such, Qi divides Ki in two open arcs K(ijk)
and K(ikj) with respective end points Qi, Tk and Qi, Tj . Alternatively, one can define K(ijk) as the
subset of K where

Σi < Σj < Σk

Eigenvalues of the linearized vector field at points of the Kasner circle. In chapter 6, we
will study the behaviour of the orbits passing close to a point p of the Kasner circle. The first step
is to linearize the Wainwright-Hsu vector field at the points of the Kasner circle. Indeed, the local
behaviour of the orbits is determined, at the first order, by the linear part of the vector field.

Let p = (0, 0, 0,Σ1,Σ2,Σ3) be a point of the Kasner circle K . One can remark that

(Σ3 − Σ2)∂Σ1
+ (Σ1 − Σ3)∂Σ2

+ (Σ2 − Σ1)∂Σ3

is tangent to K at p and that

(∂N1
, ∂N2

, ∂N3
, (Σ3 − Σ2)∂Σ1

+ (Σ1 − Σ3)∂Σ2
+ (Σ2 − Σ1)∂Σ3

)

is a basis of TpB. In this basis, the matrix of DX (p) is

⎛
⎜⎜⎜⎜⎜
⎝

µ1 0 0 0
0 µ2 0 0
0 0 µ3 0
0 0 0 0

⎞
⎟⎟⎟⎟⎟
⎠

(3.5)

where
µi = −(2 + 2Σi) (3.6)

We summarize the main properties of the eigenvalues µi in Proposition 3.1 and figure 3.1.

Proposition 3.1. If {i, j, k} = {1, 2, 3}, then

1. On K(ijk), we have µk < µj < 0 < µi. Moreover, the unstable eigenvalue µi is “weaker” than the
stable eigenvalues µj and µk: µi < ∣µj∣ and µi < ∣µk∣.

2. At the point Ti, we have µi < 0 and µj = µk = 0.

3. At the point Qi, we have µi > 0 and µj = µk < 0.

Proof. This is a straightforward consequence of (3.6).

Remark 3.2. According to Proposition 3.1, the unstable direction and the weak stable direction swap
at the Taub points while the weak stable direction and the strong stable direction swap at the points
Qi, i = 1, 2, 3.

Moreover, each Taub point has a one dimensional stable manifold and a three dimensional central
manifold. Every other point of the Kasner circle has a two dimensional stable manifold, a one
dimensional unstable manifold and a one dimensional central manifold.
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Figure 3.2 – Type II orbits contained in B
i
II.

3.4 Type II orbits

The orbits contained in the stratum B
+
II are called type II orbits. These orbits can be explicitly

described in an easy manner. Let

M1 = (0, 0, 0,−4, 2, 2)
M2 = (0, 0, 0, 2,−4, 2)
M3 = (0, 0, 0, 2, 2,−4)

For i ∈ {1, 2, 3}, let P 2
i be the sheaf of two-dimensional affine planes passing through Mi and whose

direction contains ∂Ni . Type II orbits contained in B
i
II (see (3.4)) are exactly the intersection of B

i
II

with planes of the sheaf P 2
i (see figure 3.2). As a consequence, any type II orbit is a heteroclinic

connexion1 between two points of the Kasner circle. One easy way to see this is to remark that, for a
type II orbit contained in B

i
II, the Wainwright-Hsu equations (2.16a) lead to the conservation of the

quantity Σj−2

Σk−2
along the orbit (see [Rin01] for more details).

Local view-point. Let p ∈ K(ijk). There are exactly three type II orbits which establish a
heteroclinic connexion between p and another point of the Kasner circle. We are now going to
determine the “time direction” of these orbits, that is, to determine whether they admit p as an
ω-limit point or an α-limit point. Recall that the Wainwright-Hsu vector field admits three non trivial
eigenvalues µk < µj < 0 < µi at the point p. It follows that:

• The type II orbit contained in B
i
II, denoted by O

u
p , admits the point p as its α-limit point. We will

say that this orbit starts at p.

• The type II orbit contained in B
j
II (resp. B

k
II), denoted by O

s1
p (resp. O

s2
p ), admits the point p as

its ω-limit point. We will say that these orbits arrive at p.

Global view-point. B
i
II is foliated by type II orbits in a very specific way. Any type II orbit

contained in B
i
II starts in Ki and arrives in Kj ∪ {Ti} ∪Kk. More precisely, those starting in K(ijk)

1A heteroclinic connexion is an orbit “joining two different points”. More precisely it is an orbit t↦ O(t) such that
there exists two distinct points p and q verifying limt→+∞ O(t) = q and limt→−∞ O(t) = p.



38 CHAPTER 3. The Wainwright-Hsu vector field and the Mixmaster attractor

T1
•

T2 • T3•

Q2•Q3 •

Q1

•

M1

•

M2
•

M3
•

T1
•

T2 • T3•

Q2•Q3 •

Q1

•

M1

•

M2
•

M3
•

T1
•

T2 • T3•

Q2•Q3 •

Q1

•

M1

•

M2
•

M3
•

Figure 3.3 – Projections on the (Σ1,Σ2,Σ3)-plane of type II orbits contained in B
1
II, B

2
II and B

3
II (left

to right, top to bottom).

arrive in Kj and the one starting at Qi arrives at Ti. There is no type II orbit starting from a Taub
point.

Projection view-point. Another way to describe the type II orbits is to give their projection on the
(Σ1,Σ2,Σ3)-plane, that is, the two-dimensional plane containing the Kasner circle. Let P 1

i be the sheaf
of one-dimensional affine lines passing through Mi and contained in the (Σ1,Σ2,Σ3)-plane. According
to what precedes, the projections of the type II orbits contained in B

i
II are exactly the intersections of

the open disc delimited by the Kasner circle and the lines of the sheaf P 1
i (see figure 3.3).

3.5 The Kasner map F

Definition 3.3 (Kasner map). Let p ∈ K \ {T1, T2, T3}. The type II orbit O
u
p starting at p converges

(in the future) to a point of the Kasner circle denoted by F (p). Set F (Ti) = Ti for all i ∈ {1, 2, 3}.
This defines a continuous map F ∶ K → K , called the Kasner map (sometimes also called the BKL
map). The orbit O

u
p will also be denoted by Op→F(p).

Geometrical construction of F (p). Let p ∈ Ki. The line (Mip) intersects the Kasner circle at
two points. The closest to Mi is p while the farthest is F (p) (see figure 3.4). One can remark that
F (Qi) = Ti for i ∈ {1, 2, 3}.

Dynamics of the Kasner map. The dynamics of the Kasner map on the circle is chaotic (see
figure 3.5). One can verify that the Kasner map is C∞ and of degree −2, is non uniformly expanding
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Figure 3.4 – The Kasner map.

(the derivative is, in absolute value, strictly superior to 1 except at the Taub points where its absolute
value is equal to 1). By a classical argument (see [KH97]), the Kasner map is topologically conjugate
to θ ↦ −2θ (on the circle R/Z) which has a well understood dynamics. In particular, F has the
following properties:

• Periodic points of F are dense in K .

• There exists points in K whose forward orbit under F are dense in K . The set of all such points
is a Gδ dense.

• For every point p of the Kasner circle, the complete backward orbit of p under F is dense in K .

• The topological entropy of the Kasner map is positive (it is equal to log(2)).

• F possesses an invariant measure (of infinite mass) absolutely continuous with respect to Lebesgue
measure.

We will come back to the dynamics of the Kasner map in section 3.7, after introducing the Kasner
parameter and reducing the dynamics modulo symmetries.

Generalized heteroclinic chains. Let p be a point of the Kasner circle. One can consider the
orbit of p under the Kasner map (p,F (p),F 2(p),F 3(p), . . . ) and a chain of heteroclinic connexions
between the consecutive iterates of this sequence. This forms a continuous curve in the phase space B.
At every step, the heteroclinic connexion is the type II orbit OFn(p)→Fn+1(p).

The following notion of heteroclinic chain is standard.

Definition 3.4 (Heteroclinic chain). Let p be a point of the Kasner circle which is not one of the
Taub points. The heteroclinic chain starting at p is the sequence

H (p) def
= (Op→F(p),OF(p)→F2(p),OF2(p)→F3(p), . . . ) (3.7)

If there exists n ∈ N∗ such that F
n(p) is a Taub point, then the heteroclinic chain starting at p ends

at that point.

To simplify the definition of some transition maps that we will use later on, we extend the above
definition.

Definition 3.5 (Generalized heteroclinic chain). Let q ∈ B
+ \ K . Denote by O(q) the forward

X -orbit of q. The heteroclinic chain H (q) starting at q is defined as follows:
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Figure 3.5 – The Kasner map is chaotic.

• If O(q) converges to a point p of the Kasner circle which is not a Taub point, then H (q) is the
concatenation of O(q) with H (p):

H (q) def
= (O(q),Op→F(p),OF(p)→F2(p), . . . ) (3.8)

• Otherwise, H (q) is simply the orbit O(q).

It is well known that type IX orbits cannot converge to a Taub point. Hence, if q ∈ B
+
IX, the

heteroclinic chain starting at q is nothing but the forward X -orbit of q. Recall that we want to
describe the heteroclinic chains starting at points of the Kasner circle which are shadowed by some
type IX orbits (see definition 1.2).

3.6 Quotient phase space B
Recall that S3 acts on B by permutation of the indices 1, 2, 3 (see (3.2)). From now on, we will make
a systematic use of these symmetries. Let us define the quotient phase space and its positive part

B def
= B/S3, B+ def

= B
+/S3

as well as the natural projection map
π ∶ B → B (3.9)

Many results have a natural presentation in the quotient phase space B. The only case where it is
better to work in the phase space B is when one needs to use precisely the Wainwright-Hsu equations.
This will not happen often in our work. We will mainly use the properties described in sections 3.3
and 3.4: behaviour of type II orbits and eigenvalues of DX (p) for p ∈ K .

In order to have a better understanding of the quotient, one needs to describe the orbits under
the action of S3. Before going into the details in low dimensional strata, one can notice that S3 acts
freely and properly on B \ S where S is the singular set defined by

S
def
= {(N1, N2, N3,Σ1,Σ2,Σ3) ∈ B ∣ ∃i ≠ j,Ni = Nj and Σi = Σj}
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Hence, B is a 4-dimensional orbifold with singular locus π (S ). The fact that B is singular is not a
huge issue. Indeed, we will only work with heteroclinic chains which do not cross the singular locus.
The orbits shadowing such heteroclinic chains will not cross the singular locus either (at least after a
certain time).

Let us define the regular part of the quotient phase space by

Breg
def
= B \ π (S )

It will be convenient to work on a smaller part of the quotient phase space, so we define

B0
def
= {(N1, N2, N3,Σ1,Σ2,Σ3) ∈ B ∣∀i ≠ j,Σi ≠ Σj} (3.10a)

B
+
0

def
= {(N1, N2, N3,Σ1,Σ2,Σ3) ∈ B

+ ∣∀i ≠ j,Σi ≠ Σj} (3.10b)

B0
def
= π (B0) (3.10c)

B+0
def
= π (B+

0 ) (3.10d)

Observe that B0 is an open subset of Breg. Let

B(123)
def
= B ∩ {Σ1 < Σ2 < Σ3}

Proposition 3.6. The projection map π restricted to B(123) is a C∞-diffeomorphism from B(123) to
B0. In particular, B(123) is a fundamental domain of

π ∶ B0 → B0

Proof. π restricted to B(123) is injective and π is a local C∞-diffeomorphism everywhere on B(123) by
definition of the quotient manifold structure so the result follows immediately.

Orbits under the action of S3 on the Kasner circle. Let p ∈ K . If p is one of the three
exceptional points T1, T2, T3 (resp. Q1, Q2, Q3), then the orbit of p under the action of S3 is {T1, T2, T3}
(resp. {Q1, Q2, Q3}). On the other hand, if p is not one of the above points, then the orbit of p under
the action of S3 contains six points, one in each sixth of the Kasner circle K(ijk).

General orbits under the action of S3. Let p ∈ B. Similarly to the previous case, if p ∈ S ,
then its orbit under the action of S3 contains three points. On the other hand, if p ∉ S , then its orbit
under the action of S3 contains six points.

Stratification of the quotient phase space. The stratification of the phase space B induces a
stratification of the quotient phase space B (see table 3.2).

Bianchi type Name of the
stratum

Dimension of
the stratum

I K 1

II BII 2

VI0 BVI0 3
VII0 BVII0 3

VIII BVIII 4
IX BIX 4

Table 3.2 – Stratification of the quotient phase space.
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Induced Kasner segment According to what precedes, the projection in B of the Kasner circle K

K def
= K /S3

is in fact a topological segment (hence we will speak of the Kasner segment K). The end points of this
segment, denoted by T and Q, are respectively the projection of the Taub points and the projection of
the points Qi in the quotient phase space B. Let

K0
def
= K \ {T,Q}

be the (induced) Kasner interval . Any point p ∈ K0 possesses a fiber containing six points, one in
each sixth of the Kasner circle K(ijk). Observe that B0 is an open neighbourhood of K0.

Distance on the quotient phase space. The Euclidean distance dE on R6 induces a distance dB
on B:

dB (π(p), π(q)) def
= inf

σ∈S3

dE (p, σ.q) (3.11)

which we will always use to measure the radius of balls in B.

Induced coordinate functions. The coordinates N1, N2, N3,Σ1,Σ2,Σ3 on B induce a set of
smooth coordinates functions Nu, Ns1 , Ns2 ,Σu,Σs1 ,Σs2 on B0 (here smooth stands for C∞). They are
defined as following: let x ∈ B0 and choose a point y = (N1, N2, N3,Σ1,Σ2,Σ3) ∈ B0 in the fiber over
x. Let {i, j, k} = {1, 2, 3} such that Σi < Σj < Σk, then we define

Nu
def
= Ni, Ns1

def
= Nj , Ns2

def
= Nk

Σu
def
= Σi, Σs1

def
= Σj , Σs2

def
= Σk

This definition does not depend on the choice of y in the fiber of x, hence Nu, Ns1 , Ns2 , Σu, Σs1 , Σs2
are well defined on B0. One cannot extend them by continuity on B. In particular, beware of the fact
that induced type II orbits in B are not contained in B0, this implies that Nu, Ns1 , Ns2 , Σu, Σs1 , Σs2
are not continued functions along type II orbits in the quotient phase space (one cannot extend them
by continuity when the orbit cross B \ B0).

Note that the map

x↦ (Nu(x), Ns1(x), Ns2(x),Σu(x),Σs1(x),Σs2(x))

is a diffeomorphism from B0 to B0 where

B0
def
= {Nu, Ns1 , Ns2 ,Σu,Σs1 ,Σs2 ∈ R6 ∣ Σu + Σs1 + Σs2 = 0,

6 − (Σ
2
u + Σ

2
s1 + Σ

2
s2) −

1

2
(N2

u +N
2
s1 +N

2
s2) + (NuNs1 +Ns1Ns2 +Ns2Nu) = 0,

Σu < Σs1 < Σs2}

Induced Wainwright-Hsu vector field. The Wainwright-Hsu vector field X on B is equivariant
under the action of S3 and therefore induces a vector field X on B. Let p ∈ K0. According to the
discussion about the eigenvalues of the Wainwright-Hsu vector field X (see section 3.3), DX (p)
is diagonalizable. More precisely, ∂Nu , ∂Ns1 , ∂Ns2 and the direction tangent to K at p are four
eigendirections of DX (p) associated with the eigenvalues

µu(p)
def
= −(2 + 2Σu(p)), −µs1(p)

def
= −(2 + 2Σs1(p)), −µs2(p)

def
= −(2 + 2Σs2(p)) and 0

Beware of the fact that µs1 and µs2 denote the modulus of the stable eigenvalues. As a consequence of
Proposition 3.1, we have

0 < µu < µs1 < µs2 in K0
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Figure 3.6 – Half of the quotient Mixmaster attractor and some type II orbits.

Induced Kasner map. The Kasner map is equivariant under the action of S3 and therefore induces
a map

F ∶ K → K

called the (induced) Kasner map. We have in particular F(T ) = F(Q) = T .

Quotient Mixmaster attractor. Let us denote by

A def
= A /S3, A+ def

= A
+/S3

the quotient Mixmaster attractor and its “positive” part.

Induced type II orbits. One can remark that type II orbits in A
+ which do not arrive at some

Taub point do not cross the singular set S . Hence they induce orbits of X in A+. We will use the
following notations, where p ∈ K0 and q is a lift of p:

Op→F(p)
def
= π (Oq→F(q))

O∗
p

def
= π (O∗

q )

for ∗ ∈ {u, s1, s2}. In the positive part of the quotient Mixmaster attractor, type II orbits look like a
“loop” (see figure 3.6).

Induced heteroclinic chains.

Definition 3.7 (Induced heteroclinic chain). Let p ∈ B+ \ {T} and q ∈ B
+ be a lift of p. The

heteroclinic chain H (p) starting at p is the projection of H (q) by π.



44 CHAPTER 3. The Wainwright-Hsu vector field and the Mixmaster attractor

For example, if p is a point of the Kasner interval K0 such that, for every n ∈ N, Fn(p) is not a
Taub point, then

H (p) def
= (Op→F(p),OF(p)→F2(p),OF2(p)→F3(p), . . . ) (3.12)

3.7 Kasner parameter and Kasner map

The Kasner parameter. The main tool to study the dynamics of the Kasner map is the Kasner
parameter. The Kasner parameter is a bijection K → [1,+∞] which conjugates the (induced) Kasner
map F with the Gauss transformation on continued fractions (defined precisely in the next paragraph).

Definition 3.8 (Kasner parameter). For every p ∈ K, the Kasner parameter associated with p is
defined by

ω(p) =
µs2(p)
µs1(p)

∈ ]1,+∞[ if p ≠ T , p ≠ Q (3.13)

ω(Q) = 1

ω(T ) = +∞

This formula defines a bijection ω ∶ K → [1,+∞].

Let us also denote by µ∗ (∗ ∈ {u, s1, s2}) the eigenvalue µ∗ as a function of the Kasner parameter
so that, for every p ∈ K, µ∗ (ω(p)) ∶= µ∗(p). Formally this is an abuse of notations, but it will not
give rise to confusion. A simple computation shows that, for every ω ∈ [1,+∞],

µu (ω) =
6ω

1 + ω + ω2
(3.14a)

µs1 (ω) =
6(1 + ω)

1 + ω + ω2
(3.14b)

µs2 (ω) =
6ω(1 + ω)
1 + ω + ω2

(3.14c)

We refer to [HU09] for more details.

Conjugacy between the Kasner map and the Gauss transformation. As stated earlier, the
Kasner parameter ω ∶ K → [1,+∞] conjugates the Kasner map F ∶ K → K to the Gauss map
f ∶ [1,+∞]→ [1,+∞] defined by

f(ω) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ω − 1 if ω ≥ 2
1
ω−1

if 1 < ω ≤ 2

+∞ if ω = 1 or ω = +∞
(3.15)

We refer to [HU09] for more details. This conjugacy can be represented by the commutative diagram

K K

[1,+∞] [1,+∞]
ω

F

ω

f

We will also call f the Kasner map.

The era Kasner map. Let us define the era Kasner map f̄ ∶ ]1, 2[→ [1, 2[ by the formula

f̄(ω) = fr(ω)(ω) (3.16)

where r(ω) = ⌊ 1
ω−1

⌋ (here, ⌊.⌋ is the floor function).
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Interpretation of the dynamics of the Kasner map in terms of continued fractions. Let
ω0 ∈ ]1,+∞[. Let [k0; k1, k2, k3, . . . ] be the continued fraction expansion associated with ω0, that is,
the only (finite or infinite) sequence of integers such that

ω0 = k0 +
1

k1 +
1

k2+⋯

def
= [k0; k1, k2, k3, . . . ]

In terms of continued fractions, we have

f([k0; k1, k2, k3, . . . ]) = {[k0 − 1; k1, k2, k3, . . . ] if k0 ≥ 2

[k1; k2, k3, . . . ] if k0 = 1

and if 1 < ω0 < 2 (i.e. k0 = 1), we have

f̄([1; k1, k2, k3, . . . ]) = [1; k2, k3, . . . ]

In other words, the era Kasner map f̄ is a left-shift on the continued fractions.
In what follows, we assume that ω0 ∉ Q, so the continued fraction expansion associated with ω0

is infinite. Let (ωn)n≥0 ∈ [1,+∞[N be the sequence generated by the Kasner map f from ω0, i.e.
ωn+1 = f(ωn) for every n ≥ 0. Every term of this sequence is called an epoch. It is quite natural to
consider the subsequence (ω̂n)n≥1 defined by

ω̂n
def
= ωk0+k1+⋅⋅⋅+kn−1−1 = [1; kn, kn+1, . . . ]

This subsequence divides the sequence (ωn)n≥0 in eras of the form:

(f(ω̂n) =[kn; kn+1, kn+2, . . . ],
[kn − 1; kn+1, kn+2, . . . ],
. . . ,

[1; kn+1, kn+2, . . . ] = ω̂n+1)

On each era, (ωn)n≥0 is decreasing. Moreover, one can remark that f̄(ω̂n) = ω̂n+1 for any n ≥ 1.
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Chapter4
Local expression of the Wainwright-Hsu
vector field near the Kasner circle

In chapter 6, we will study the dynamics of the Wainwright-Hsu vector field X in the neighbourhood
of a point of the Kasner interval K0. The aim of the present section is to describe a “nice” system of
local coordinates ξ in the neighbourhood of K0 and to write a workable local form of X in these “nice”
coordinates. The key property of these coordinates is the fact that they straighten the stable and the
unstable manifolds of the points belonging to K0 for X . We now proceed to define those stable and
unstable manifolds.

For any ω ∈ ]1,+∞[, let us denote by Pω the unique point of K0 whose Kasner parameter is ω.
Recall that for every ω ∈ ]1,+∞[, there exist:

• one type II orbit, denoted by Ou
ω, which converges to the point Pω as time goes to −∞. This orbit

is asymptotically tangent to the direction ∂Nu ;

• two type II orbits, denoted by Os1
ω and Os2

ω , which converge to the point Pω as time goes to +∞.
They are respectively asymptotically tangent to the directions ∂Ns1 and ∂Ns2 .

Let us denote by
W

u(Pω,X ) def
= {Pω} ∪Ou

ω

the reunion of the point Pω with the type II orbit which converges to the point Pω as time goes to
−∞. This is a 1-dimensional smooth1 embedded submanifold of B+ tangent to the direction ∂Nu at
the point Pω. The notation Wu(Pω,X ) comes from the fact that it is the unstable manifold of the
point Pω for the vector field X . Indeed, it follows from the stable manifold theorem that the unstable
manifold of the point Pω for the vector field X is 1-dimensional. Moreover, from what precedes, we
get that Wu(Pω,X ) is included in the stable manifold of the point Pω for the vector field X . By
dimension, this inclusion must be an equality. In other words,

W
u(Pω,X ) = {x ∈ B+ ∣ X t(x) −−−−→

t→−∞
Pω}

Analogously, let

W
s1(Pω,X ) def

= {Pω} ∪Os1
ω

W
s2(Pω,X ) def

= {Pω} ∪Os2
ω

W
s1(Pω,X ) (resp. W s2(Pω,X )) is a 1-dimensional smooth embedded submanifold of B+ tangent

to the direction ∂Ns1 (resp. ∂Ns2 ) at the point Pω, called the “weak stable manifold” (resp. the
“strong stable manifold”). Note that W s1(Pω,X ) cannot be characterized as a stable manifold. Indeed,

1The word smooth will always stand for C∞ in this work.
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W
s1(Pω,X ) and W s2(Pω,X ) are both included in the stable manifold of the point Pω for the vector

field X :
W

s(Pω,X ) def
= {x ∈ B+ ∣ X t(x) −−−−→

t→+∞
Pω}

It follows from the stable manifold theorem that the stable manifold of the point Pω for the vector
field X is a 2-dimensional smooth embedded submanifold of B+.

The submanifolds {Wu(Pω,X )}ω∈]1,+∞[ foliate the 2-dimensional submanifold

W
u(K0,X ) def

= ⨆
ω∈]1,+∞[

W
u(Pω,X )

= {Ns1 = Ns2 = 0, Nu ≥ 0}

= {x ∈ B+ ∣ ∃p ∈ K0,X
t(x) −−−−→

t→−∞
p}

Analogously, the submanifolds {W s(Pω,X )}ω∈]1,+∞[ foliate the 2-dimensional submanifold

W
s(K0,X ) def

= ⨆
ω∈]1,+∞[

W
s(Pω,X )

= {Nu = 0, Ns1 ≥ 0, Ns2 ≥ 0}

= {x ∈ B+ ∣ ∃p ∈ K0,X
t(x) −−−−→

t→+∞
p}

Indeed, {Nu = 0, Ns1 ≥ 0, Ns2 ≥ 0} is a 3-dimensional submanifold of B+ containing W s(K0,X ) which
is also 3-dimensional (being continuously foliated by 2-dimensional submanifolds).

Definition 4.1. For any ω ∈ ]1,+∞[, C > 0 and n ∈ N, let us denote by

Bω,C,n
def
= B (Pω,

1

Cωn
) ⊂ B+0

the ball of center Pω and radius 1
Cωn

in the phase space B+0 (for the distance dB, see (3.11)) and by

Bω,C,n
def
= {(xu, xs1 , xs2 , xc) ∈ (R+)3

× ]1,+∞[ ∣ max(xu, xs1 , xs2 , ∣xc − ω∣) ≤
1

Cωn
}

the ball of center (0, 0, 0, ω) and radius 1
Cωn

in (R+)3
× ]1,+∞[ (for the sup-norm).

We now proceed to give formal statements of the main results of this section. We delay the proofs
until the following sections.

Proposition 4.2 (System of local coordinates). There exist two constants C > 0 and n ∈ N, an
open neighbourhood Uξ of K0 in B+0 (see (3.10c)), an open neighbourhood Uξ of {0R3} × ]1,+∞[ in
(R+)3

× ]1,+∞[ and a smooth system of local coordinates

ξ = (xu, xs1 , xs2 , xc) ∶ Uξ → Uξ

with the following properties:

1. We have
(xu, xs1 , xs2) = (Nu, Ns1 , Ns2) (4.1a)

and
xc = ω in restriction to K0 (4.1b)

In particular, ξ maps the Kasner interval K0 to {xu = xs1 = xs2 = 0} ∩ Uξ:

ξ (K0) = {0R3} × ]1,+∞[
= {xu = xs1 = xs2 = 0} ∩ Uξ

(4.2)
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2. The chart ξ straightens the stable and unstable manifolds foliations along the Kasner interval K0.
More precisely, for any ω ∈ ]1,+∞[, we have

ξ (Wu
loc(Pω,X ) ∩ Uξ) = {xs1 = xs2 = 0, xc = ω} ∩ Uξ (4.3a)

ξ (W s
loc(Pω,X ) ∩ Uξ) = {xu = 0, xc = ω} ∩ Uξ (4.3b)

ξ (W s1
loc(Pω,X ) ∩ Uξ) = {xu = xs2 = 0, xc = ω} ∩ Uξ (4.3c)

ξ (W s2
loc(Pω,X ) ∩ Uξ) = {xu = xs1 = 0, xc = ω} ∩ Uξ (4.3d)

3. The open sets Uξ and Uξ are “big enough”: for any ω ∈ ]1,+∞[,

Bω,C,n ⊂ Uξ and Bω,C,n ⊂ Uξ (4.4)

4. The C6-norm of ξ restricted to a neighbourhood of Pω admits an upper bound which is polynomial
in ω, and similarly for ξ−1. More precisely, for any ω ∈ ]1,+∞[,

∥ξ∥C6 ≤ Cω
n in restriction to Bω,C,n (4.5a)

ÂÂÂÂÂξ
−1ÂÂÂÂÂC6 ≤ Cω

n in restriction to Bω,C,n (4.5b)

From now on the system of local coordinates ξ given by Proposition 4.2 is fixed. We will use roman
letters for objects viewed in the system of local coordinates ξ. For example, we will denote by X the
vector field ξ∗X . The Wainwright-Hsu vector field X has a “nice” expression in the local coordinates ξ:

• The fact that ξ straightens the stable and the unstable manifolds of X implies that a lot of non
linear terms vanish in the development of X.

• The estimates on the C6 norm of ξ and ξ−1 allow one to get analogous estimates on the C3 norm
of the non linear terms appearing in the development of X. These estimates will eventually lead to
a C1 control of the non linear terms appearing in the development of the renormalized vector field
Xω (see Proposition 4.8).

Proposition 4.3 (Local expression of X). There exist two constants C > 0 and n ∈ N such that the
local vector field X admits the following expression on the open set ∪ω∈]1,+∞[Bω,C0,n0

⊂ Uξ:

X(x) =
⎛
⎜⎜⎜⎜⎜
⎝

µu(xc) 0 0 0
0 −µs1(xc) 0 0
0 0 −µs2(xc) 0
0 0 0 0

⎞
⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜
⎝

xu
xs1
xs2
xc

⎞
⎟⎟⎟⎟⎟
⎠
+

⎛
⎜⎜⎜⎜⎜⎜
⎝

X̄
u,u
u (x)x2

u + X̄
u,s1
u (x)xuxs1 + X̄

u,s2
u (x)xuxs2

X̄
u,s1
s1 (x)xuxs1 + X̄

s1,s1
s1 (x)x2

s1 + X̄
s1,s2
s1 (x)xs1xs2

X̄
u,s2
s2 (x)xuxs2 + X̄

s1,s2
s2 (x)xs1xs2 + X̄

s2,s2
s2 (x)x2

s2
X̄
u,s1
c (x)xuxs1 + X̄

u,s2
c (x)xuxs2

⎞
⎟⎟⎟⎟⎟⎟
⎠

(4.6)

Moreover, for every ω ∈ ]1,+∞[, the functions X̄∗,∗
∗ (where ∗ ∈ {u, s1, s2, c} and different occurrences

of ∗ are independent) appearing in the non linear part of (4.6) satisfy

∥X̄∗,∗
∗ ∥C3 ≤ Cω

n on Bω,C,n (4.7)

Remark 4.4. µu(xc), µs1(xc) and µs2(xc) defined in (3.14) are the nonzero eigenvalues of the derivative
DX(0, 0, 0, xc).

To further simplify the computations, we will renormalize the local vector field X (by multiplying
it by a positive function γω) in order to linearize the dynamics in the unstable direction. This trick
will allow us to compute explicit travel time between two local sections.

Let ω ∈ ]1,+∞[. We define the renormalization function γω in the neighbourhood of (0, 0, 0, ω)
by the formula

γω(x) =
µu(ω)

µu(xc) + X̄u,u
u (x)xu + X̄u,s1

u (x)xs1 + X̄
u,s2
u (x)xs2

(4.8)
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The renormalization function γω is chosen so that, according to (4.6), the coordinate of (γω.X) in the
direction ∂xu is µu(ω)xu. In other words, (γω.X) is “linear” in the direction ∂xu .

Lemma 4.5 (Domain of γω). There exist two constants C > 0 and n ∈ N such that for every
ω ∈ ]1,+∞[, for every x ∈ Bω,C,n, we have

µu(xc) + X̄u,u
u (x)xu + X̄u,s1

u (x)xs1 + X̄
u,s2
u (x)xs2 > 0 (4.9)

In particular, γω is well defined and positive on Bω,C,n.

Definition 4.6. We define the local vector field

Xω
def
= γω.X (4.10)

on Bω,C,n for C, n large enough so that, for every ω ∈ ]1,+∞[, the conclusion of Lemma 4.5 is
satisfied.

Remark 4.7. In restriction to Bω,C,n, the orbits of Xω are the same than the one of X, up to a time
reparametrization.

Proposition 4.8 (Local expression of Xω). There exist two constants C > 0 and n ∈ N such that for
every ω ∈ ]1,+∞[, the local vector field Xω admits the following expression on the open ball Bω,C,n:

Xω(x) =
⎛
⎜⎜⎜⎜⎜
⎝

µu(ω) 0 0 0
0 −µ̃ω,s1 (xc) 0 0
0 0 −µ̃ω,s2 (xc) 0
0 0 0 0

⎞
⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜
⎝

xu
xs1
xs2
xc

⎞
⎟⎟⎟⎟⎟
⎠
+

⎛
⎜⎜⎜⎜⎜⎜
⎝

0

X
u,s1
ω,s1(x)xuxs1 +X

s1,s1
ω,s1 (x)x2

s1 +X
s2,s1
ω,s1 (x)xs2xs1

X
u,s2
ω,s2(x)xuxs2 +X

s1,s2
ω,s2 (x)xs1xs2 +X

s2,s2
ω,s2 (x)x2

s2
X
u,s1
ω,c (x)xuxs1 +X

u,s2
ω,c (x)xuxs2

⎞
⎟⎟⎟⎟⎟⎟
⎠

(4.11)

where
µ̃ω,si (xc)

def
=

µu(ω)
µu(xc)

µsi(xc) (4.12)

Moreover, the functions X∗,∗
ω,∗ (where ∗ ∈ {u, s1, s2, c} and different occurrences of ∗ are independent)

appearing in the non linear part of (4.11) satisfy

∥X∗,∗
ω,∗∥C1 ≤ Cω

n on Bω,C,n (4.13)

Remark 4.9. µu(ω), −µ̃ω,s1 (xc), −µ̃ω,s2 (xc) are the nonzero eigenvalues of DXω(0, 0, 0, xc).

4.1 A straightening theorem for a stable manifold foliation
In this subsection, we present a general result on vector fields, Theorem 4.10 and its addendum, that
will be used to construct the system of local coordinates ξ given by Proposition 4.2. This result is a
reformulation and a simplification of Theorem C.5 and its addendum in our current context. We refer
to appendix C for an independent and complete proof of these general theorems.

The context is as follows. Let Ω be an open set of Rn, G a linear subspace of Rn and Y ∶ Ω→ Rn

be a smooth vector field vanishing on Ω0 ∶= Ω ∩G ≠ ∅. Assume that there exists a complement F of
G such that for every ω ∈ Ω0, F is stabilized and contracted by DY (ω) (Ω0 is said to be “normally
contracted”). Recall that we denote by W s(ω, Y ) the stable set of ω for Y , that is, the union of all
the orbits of Y which converge to the point ω as time goes to +∞. According to the standard stable
manifold theorem (see e.g. [KH97], [Irw01], [Rue89], [Rob99], [BS02] and [HPS06]), W s(ω, Y ) is a
smooth embedded submanifold passing through ω and the family of stable manifolds (W s(ω, Y ))ω∈Ω0

is a smooth foliation of a small neighbourhood Ω of Ω0. Moreover, the stable foliation (W s(ω, Y ))ω∈Ω0

can be straightened using smooth local charts.
The standard result explained above can be stated as following:
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Theorem 4.10 (Straightening of a stable foliation). Let Ω be an open set of Rn, G be a linear subspace
of Rn and Y ∶ Ω→ Rn be a smooth vector field such that

1. Y vanishes on Ω0
def
= Ω ∩G ≠ ∅;

2. There exists a complement F of G such that for every ω ∈ Ω0, the derivative

DY (ω) ∶ TωRn ≃ Rn → TωR
n
≃ Rn

stabilizes F and
µmax ((DY (ω))∣F ) < 0

where µmax ((DY (ω))∣F ) denotes the maximum of the real parts of the eigenvalues of (DY (ω))∣F .
Let ω0 ∈ Ω0. Then there exists a smooth local coordinate system ξ defined on a ball B ∶= BRn (ω0, R)
such that the family of stable manifolds (W s(ω, Y ))ω∈Ω0∩B foliates B and is straightened by ξ: for
every ω ∈ Ω0 ∩B,

ξ (W s(ω, Y ) ∩B) = (ω + F ) ∩ ξ (B)
We emphasize the fact that Theorem 4.10 is a straightforward consequence of the stable manifold

theorem. The point of appendix C is to prove the following addendum, which provides some explicit
estimates on the radius R and on the derivatives of all orders of ξ and ξ−1:

Addendum 4.11. For every r > 0 such that BRn(ω0, r) ⊂ Ω, one can find a radius R and a local
coordinate system ξ on BRn (ω0, R) as above satisfying the following properties:

1. The radius R admits a lower bound which is

• linear in r,
• polynomial in the spectral gap »»»»»µmax ((DY (ω0))∣F )

»»»»»,
• inversely linear in the norm of the second derivative of Y on the closed ball BRn(ω0, r),
• inversely polynomial in

– the norm of DY (ω0),
– the angle between the generalized eigenspaces of DY (ω0).

This lower bound depends only on the parameters cited above.

2. For every ε > 0, ξ restricted to BRn (ω0, εR) is ε-close to the identity in C1-norm.

3. The norms of the k-th derivatives of ξ and ξ−1 admit an upper bound which is

• polynomial in
– the norm of DY (ω0),
– the angle between the generalized eigenspaces of DY (ω0),
– the norms of the (k + 1) first derivatives of Y on the closed ball BRn(ω0, r)

• inversely polynomial in
– the spectral gap »»»»»µmax ((DY (ω0))∣F )

»»»»»
– r

This upper bound depends only on the parameters cited previously.

Moreover, identifying Rn = F ⊕G with F ×G the local coordinate system ξ has the following form:

ξ(x, y) = (x, y + ξ̃(x, y))

where ξ̃(0, y) ≡ 0.
Finally, the different charts are compatible in the following sense: for any two charts ξ and ξ′

defined respectively on B and B′, we have ξ = ξ′ in restriction to B ∩B′.

Remark 4.12. In order to get such estimates on R and ξ, one must choose a compact ball B(ω0, r) ⊂ Ω
on which one controls the derivatives of all orders of Y . There is no canonical choice and one can use
the parameter r to make a choice depending on its needs.
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4.2 System of local coordinates ξ

The existence of the system of local coordinates ξ which straightens the stable and the unstable
foliations of X (see Proposition 4.2) is a consequence of Theorem 4.10 and Addendum 4.11. The
proof will be divided in several steps. We first construct a chart which straightens K0, W

s(K0,X ) and
W

u(K0,X ). This is done by using the Kasner parameter and the radial projection on the Kasner circle.
We then apply Theorem 4.10 and Addendum 4.11 twice: in W

s(K0,X ) to straighten the foliation
{W s(Pω,X )}ω∈]1,+∞[ and in Wu(K0,X ) to straighten the foliation {Wu(Pω,X )}ω∈]1,+∞[. Finally, we
merge the two families of charts (of lower dimension since we restricted ourselves to submanifolds)
obtained above into a unique chart straightening both the stable foliation and the unstable foliation.

Proof of Proposition 4.2. It will be convenient for this proof to work in B0 instead of B+0 . The reason
is technical: the Kasner circle is in the boundary of B+0 and Theorem 4.10 and Addendum 4.11 apply
to a vector field defined on an open set of a vector space. Taking a chart of B+0 in the neighbourhood
of the Kasner circle, we cannot apply Theorem 4.10 and Addendum 4.11 to the push forward of X by
this chart.

Step 1: Straightening of K0, W
s(K0,X ) and Wu(K0,X ). Recall from section 3.6 that the map

ξ0 ∶ y ↦ (Nu(y), Ns1(y), Ns2(y),Σu(y),Σs1(y),Σs2(y))

is a diffeomorphism from B0 (see (3.10c)) to B0 where

B0
def
= {(Nu, Ns1 , Ns2 ,Σu,Σs1 ,Σs2) ∈ R6 ∣ Σu + Σs1 + Σs2 = 0,

6 − (Σ
2
u + Σ

2
s1 + Σ

2
s2) −

1

2
(N2

u +N
2
s1 +N

2
s2) + (NuNs1 +Ns1Ns2 +Ns2Nu) = 0,

Σu < Σs1 < Σs2}

Let us identify the Kasner interval K0 with the set

{(Σu,Σs1 ,Σs2) ∈ R3 ∣ Σu + Σs1 + Σs2 = 0,Σ
2
u + Σ

2
s1 + Σ

2
s2 = 6,Σu < Σs1 < Σs2}

The idea is to “straighten” B0 into a subset of the product R3 × K0. To do this, we use the radial
projection from the sixth of the (Σu,Σs1 ,Σs2)-plane

{(Σu,Σs1 ,Σs2) ∈ R3 ∣ Σu + Σs1 + Σs2 = 0,Σu < Σs1 < Σs2}

on the Kasner interval K0. In other words, we consider the chart

ξ1∶
B0 → ξ1 (B0) ⊂ R3 ×K0

(Nu, Ns1 , Ns2 ,Σu,Σs1 ,Σs2) ↦ (Nu, Ns1 , Ns2 ,
Σu√
q

2

,
Σs1√
q

2

,
Σs2√
q

2

)

where q is the deceleration parameter (see (2.15)) and more explicitly
√
q

2
=

√
1

6
(Σ2

u + Σ2
s1 + Σ2

s2)

Note that ξ1 is well defined because q ≠ 0 on B0. Moreover, the equality
√
q

2
=

√
1 −

1

12
(N2

u +N
2
s1 +N

2
s2) +

1

6
(NuNs1 +Ns1Ns2 +Ns2Nu)

which holds true on B0 shows that
√
q

2
is entirely determined by Nu, Ns1 and Ns2 . It follows that ξ1

is invertible and its inverse is

ξ
−1
1 ∶

ξ1 (B0) → B0

(Nu, Ns1 , Ns2 ,Σu,Σs1 ,Σs2) ↦ (Nu, Ns1 , Ns2 ,
√
q

2
Σu,

√
q

2
Σs1 ,

√
q

2
Σs2)
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Now recall that the Kasner parameter (defined in (3.13)) is a diffeomorphism from K0 to ]1,+∞[.
The composition of the Kasner parameter with the charts ξ1 and ξ0 leads to a smooth chart

ξ2 = (Nu, Ns1 , Ns2 , ω)∶
B0 → ξ2 (B0) ⊂ R3 × ]1,+∞[
y ↦ (Nu(y), Ns1(y), Ns2(y), ω(π2 ◦ ξ1 ◦ ξ0(y)))

(4.14)

where π2 is the projection R3 ×K0 → K0.
The chart ξ2 straightens K0, W

s(K0,X ) and Wu(K0,X ). Remark that ξ2 (B0) contains the open
set BR3(0, 1/2)× ]1,+∞[. Moreover, by a straightforward computation, there exist C2 > 0 and n2 ∈ N
such that for every ω ∈ ]1,+∞[, we have

∥ξ2∥C6 ≤ C2ω
n2 in restriction to Bω,C2,n2

(4.15a)
ÂÂÂÂÂξ

−1
2

ÂÂÂÂÂC6 ≤ C2ω
n2 in restriction to Bω,C2,n2

(4.15b)

Step 2: Straightening of the stable foliation of (ξ2)∗ X . Let Y s be the restriction of (ξ2)∗ X to
Ω
s ∶= ξ2 (B0) ∩ {Nu = 0}, that is, the stable manifold of {0R3} × ]1,+∞[ for (ξ2)∗ X . Identifying

R4 ∩ {Nu = 0} with R3 endowed with the coordinates Ns1 , Ns2 and ω, Ω
s is an open set of R3. Since

Ω
s
∩ {Ns1 = Ns2 = 0}

is the image of K0 by ξ2, Y
s vanishes on Ω

s∩{Ns1 = Ns2 = 0}. Let F ∶= R∂Ns1 ⊕R∂Ns2 and G ∶= R∂ω.
According to (3.5) and (4.14), for every ω ∈ ]1,+∞[, the decomposition F ⊕G = R3 is stabilized by
DY

s(0, 0, ω) and the eigenvalues µs1 and µs2 of (DY s(0, 0, ω))∣F are both (strictly) negative.
For ω ∈ ]1,+∞[, let

r(ω) def
= min (1

4
,
ω − 1

2
)

Observe that BR3((0, 0, ω), r(ω)) ⊂ Ω
s.

According to Theorem 4.10 and Addendum 4.11, there exist two constants Cs > 0 and ns ∈ N such
that, for any ω0 ∈ ]1,+∞[, there exist an open set V sω0

⊂ Ω
s and a smooth chart

ξ
s
3,ω0

∶
V
s
ω0

→ ξ
s
3,ω0

(V sω0
) ⊂ R3

(Ns1 , Ns2 , ω) ↦ (Ns1 , Ns2 , ω + ξ̃
s
2,ω0

(Ns1 , Ns2 , ω))

where ξ̃s3,ω0
(0, 0, ω) ≡ 0, such that ξs3,ω0

straightens the stable foliation of Y s in V sω0
:

ξ
s
3,ω0

(W s((0, 0, ω̄), Y s) ∩ V sω0
) = {(Ns1 , Ns2 , ω) ∣ ω = ω̄} ∩ ξ

s
3,ω0

(V sω0
) (4.16)

Moreover, V sω0
and ξs3,ω0

(V sω0
) both contain the open set2

B
s
ω0

def
= BR2 (0, Rsω0

) × ]ω0 −min (Rsω0
,
ω0 − 1

2
) , ω0 +min (Rsω0

,
ω0 − 1

2
)[

where
R
s
ω0
∶=

1

Csω
ns
0

,

and
∥ξs3,ω0

∥
C6 ,

ÂÂÂÂÂ(ξ
s
3,ω0

)−1ÂÂÂÂÂC6 ≤ Csω
ns
0 (4.17)

Remark that the particular form of ξs3,ω0
assures that the invariant manifolds W s1(Pω,X ) and

W
s2(Pω,X ) are both straightened automatically by the “composition” of ξs3,ω0

with ξ2:

ξ
s
3,ω0

(ξ2 (W s1(Pω̄,X )) ∩ V sω0
) = {(Ns1 , Ns2 , ω) ∣Ns2 = 0, ω = ω̄} ∩ ξs3,ω0

(V sω0
) (4.18a)

ξ
s
3,ω0

(ξ2 (W s2(Pω̄,X )) ∩ V sω0
) = {(Ns1 , Ns2 , ω) ∣Ns1 = 0, ω = ω̄} ∩ ξs3,ω0

(V sω0
) (4.18b)

2The result of the addendum gives a ball. Here, we adapt the result to our current context: the frontier ω = 1 is only
technical and is not the manifestation of some estimates that will degenerate when ω → 1, unlike the frontier ω = +∞.
One can use some plateau map to obtain the desired result from the addendum.
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Step 3: Straightening of the unstable foliation of (ξ2)∗ X . This step will be treated analogously to
step 2. Let Y u be the restriction of (ξ2)∗ X to Ω

u ∶= ξ2 (B0) ∩ {Ns1 = Ns2 = 0}, that is, the unstable
manifold of {0R3}× ]1,+∞[ for (ξ2)∗ X . Remark that the unstable foliation of Y u is exactly the stable
foliation of −Y u. Identifying R4 ∩ {Ns1 = Ns2 = 0} with R2 endowed with the coordinates Nu and ω,
Ω
u is an open set of R2. Since Ω

u ∩ {Nu = 0} is the image of K0 by ξ2, Y
u vanishes on Ω

u ∩ {Nu = 0}.
Let F ∶= R∂Nu and G ∶= R∂ω. According to (3.5) and (4.14), for every ω ∈ ]1,+∞[, the decomposition
F ⊕G = R2 is stabilized by D (−Y u) (0, ω) and the eigenvalue µu of (D (−Y u) (0, ω))∣F is (strictly)
negative.

According to Theorem 4.10 and Addendum 4.11, there exist two constants Cu > 0 and nu ∈ N such
that, for any ω0 ∈ ]1,+∞[, there exist an open set V uω0

⊂ Ω
u and a smooth chart

ξ
u
3,ω0

∶
V
u
ω0

→ ξ
u
3,ω0

(V uω0
) ⊂ R2

(Nu, ω) ↦ (Nu, ω + ξ̃u3,ω0
(Nu, ω))

where ξ̃u3,ω0
(0, ω) ≡ 0, such that ξu3,ω0

straightens the stable foliation of −Y u in V uω0
:

ξ
u
3,ω0

(W s((0, ω̄),−Y u) ∩ V uω0
) = {(Nu, ω) ∣ ω = ω̄} ∩ ξu3,ω0

(V uω0
) (4.19)

Moreover, V uω0
and ξu3,ω0

(V uω0
) both contain the open set

B
u
ω0

def
= ]−Ruω0

, R
u
ω0

[ × ]ω0 −min (Ruω0
,
ω0 − 1

2
) , ω0 +min (Ruω0

,
ω0 − 1

2
)[

where
R
u
ω0
∶=

1

Cuω
nu
0

,

and
∥ξu3,ω0

∥
C6 ,

ÂÂÂÂÂ(ξ
u
3,ω0

)−1ÂÂÂÂÂC6 ≤ Cuω
nu
0 (4.20)

Since a stable manifold of −Y u is an unstable manifold of (ξ2)∗ X , it follows that ξu3,ω0
straightens

the unstable foliation of (ξ2)∗ X restricted to Ω
u.

Step 4: Straightening of both the stable and the unstable foliation of (ξ2)∗ X . Let ω0 ∈ ]1,+∞[.
Let

Vω0
= {(Nu, Ns1 , Ns2 , ω) ∣ (Ns1 , Ns2 , ω) ∈ V

s
ω0
, (Nu, ω) ∈ V uω0

}
and let

ξ3,ω0
∶

Vω0
→ R4

(Nu, Ns1 , Ns2 , ω) ↦ (Nu, Ns1 , Ns2 , ω + ξ̃
s
3,ω0

(Ns1 , Ns2 , ω) + ξ̃
u
3,ω0

(Nu, ω))
(4.21)

According to Addendum 4.11, the map ξ̃s3,ω0
(resp. ξ̃u3,ω0

) restricted to Bsω0
(resp. Buω0

) where Rsω0

(resp. Ruω0
) is replaced by εRsω0

(resp. εRuω0
) is ε-close to 0 with respect to the C1-norm. It follows that

there exist two constants C3 ≥ max(Cs, Cu) and n3 ≥ max(ns, nu) such that for every ω0 ∈ ]1,+∞[,
ξ3,ω0

is invertible on

Bω0
∶= BR3 (0, Rω0

) × ]ω0 −min (Rω0
,
ω0 − 1

2
) , ω0 +min (Rω0

,
ω0 − 1

2
)[

where
Rω0

∶=
1

C3ω
n3

0

From now on, we make the abuse of notation to consider that ξ3,ω0
is restricted to Bω0

. Using (4.17)
and (4.20), we get

∥ξ3,ω0
∥
C6 ,

ÂÂÂÂÂ(ξ3,ω0
)−1ÂÂÂÂÂC6 ≤ C3ω

n3

0 (4.22)

By local uniqueness (see Addendum 4.11) of the charts ξs3,ω0
and ξu3,ω0

, the charts {ξ3,ω0
}ω0∈]1,+∞[
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glue together and induce a global chart ξ3 on the neighbourhood

V ∶= ⋃
ω0∈]1,+∞[

Bω0
⊂ R3

× ]1,+∞[ (4.23)

One can remark that V contains the open set BR3 (0, 1
C32n3

) × ]1, 2[: the size of V does not shrink
when ω → 1, it only shrinks when ω → +∞.

According to (4.16) and (4.19), ξ3 straightens the stable and the unstable foliations of (ξ2)∗ X :

ξ3 (W s((0, 0, 0, ω̄), (ξ2)∗ X ) ∩ V ) = {(Nu, Ns1 , Ns2 , ω) ∣Nu = 0, ω = ω̄} ∩ ξ3 (V ) (4.24a)

ξ3 (Wu((0, 0, 0, ω̄), (ξ2)∗ X ) ∩ V ) = {(Nu, Ns1 , Ns2 , ω) ∣Ns1 = Ns2 = 0, ω = ω̄} ∩ ξ3 (V ) (4.24b)

Step 5:Straightening of both the stable and the unstable foliation of X . Let us define

ξ = (xu, xs1 , xs2 , xc)
def
= ξ3 ◦ ξ2

The chart ξ is well defined on the open set Uξ ∶= ξ
−1
2 (V ) ⊂ B0. Let Uξ ∶= ξ (Uξ). We now proceed to

check all the properties of ξ announced in Proposition 4.2.
Properties (4.1) and (4.2) follow immediately from (4.14) and (4.21).
Properties (4.3) follow immediately from from (4.18) and (4.24).
The fact that there exist two constants C > 0 and n ∈ N such that estimates (4.4) and (4.5) hold

true for any ω ∈ ]1,+∞[ is an immediate consequence of (4.15), (4.22) and (4.23).

Remark 4.13. In step 3, we used the same argument as in step 2. Nevertheless, one do not need
Theorem 4.10 and Addendum 4.11 to straighten the unstable foliation of (ξ2)∗ X . Indeed, the leaves
of this foliation are all type II orbits explicitly known: all the computations could be done explicitly
without the help of a general result.

4.3 Proofs of the main results on the local expression of the
Wainwright-Hsu vector field

Fix C0 > 0 and n0 ∈ N such that Proposition 4.2 holds true with these constants. We begin this
subsection with a proof of Proposition 4.3.

Proof of Proposition 4.3. Denote by X̄u, X̄s1 , X̄s2 , X̄c the coordinates of X and let

UX
def
= ⋃

ω∈]1,+∞[
Bω,C0,n0

According to Proposition 4.2, ξ is smooth. Since X is also smooth, it follows that X is smooth. Using
the invariance of the set {Nu = 0} by the flow of X and (4.1a), we get that the set {xu = 0} is invariant
by the flow of X. Using the standard Hadamard’s lemma in differential calculus, we get the existence
of some smooth functions X̄u,u

u , X̄u,s1
u and X̄u,s2

u defined on the open set UX such that

X̄u(x) = µu(xc)xu + X̄u,u
u (x)x2

u + X̄
u,s1
u (x)xuxs1 + X̄

u,s2
u (x)xuxs2

Analogously, the sets {xs1 = 0} and {xs2 = 0} are invariant so (4.6) holds true for the first three
coordinates. For any xc ∈ ]1,+∞[, the stable manifold of (0, 0, 0, xc) for X is invariant by the flow of
X. Using (4.3b), it follows that X̄c(0, xs1 , xs2 , xc) ≡ 0 and we get the existence of a smooth function
X̄
u
c defined on UX such that

X̄c(x) = xuX̄u
c (x)

The unstable manifold of (0, 0, 0, xc) for X being also invariant, it follows by (4.3a) that there exist
two smooth functions X̄u,s1

c and X̄u,s2
c defined on UX such that

X̄
u
c (x) = X̄u,s1

c (x)xs1 + X̄
u,s2
c (x)xs2
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We can conclude that (4.6) holds true on UX .
The functions X̄∗,∗

∗ depend on the second derivatives of X. A C
3 control of these functions involves

a C5 control of X and a C6 control of ξ. A C
6 control of ξ is given by (4.5) while a C5 control of X is

trivial: there exists a constant C1 > 0 such that ∥X∥C5 ≤ C1 on UX . The conjunction of these two
controls implies that (4.7) holds true for some C > 0, n ∈ N large enough.

We now give a proof of Lemma 4.5.

Proof of Lemma 4.5. For every C > 0 and n ∈ N, let us denote by EC,n the set of all (ω, x) such that
ω ∈ ]1,+∞[ and x ∈ Bω,C,n ⊂ Uξ. Recall that

Bω,C,n = {(xu, xs1 , xs2 , xc) ∈ (R+)3
× ]1,+∞[ ∣ max(xu, xs1 , xs2 , ∣xc − ω∣) ≤

1

Cωn
}

According to 3.14a, for every ω ∈ ]1,+∞[ and for every x ∈ Uξ such that xc ≤ 2ω, we have

µu(xc) ≥
1
ω (4.25)

According to (4.7), there exist C1 ≥ C0 and n1 ≥ n0 such that for every (ω, x) ∈ EC1,n1
, we have

∣X̄u,u
u (x)xu + X̄u,s1

u (x)xs1 + X̄
u,s2
u (x)xs2∣ ≤ C1ω

n1 max(xu, xs1 , xs2) (4.26)

Inequalities (4.25) and (4.26) imply that for every (ω, x) ∈ E2C1,n1+1, we have

∣X̄u,u
u (x)xu + X̄u,s1

u (x)xs1 + X̄
u,s2
u (x)xs2∣ < µu(xc)

which concludes the proof.

Next lemma gives estimates on γω and its derivatives, which will be useful to obtain estimates on
Xω later on.

Lemma 4.14 (Control of γω and its derivatives). There exist two constants C > 0 and n ∈ N such
that for every ω ∈ ]1,+∞[, for every x ∈ Bω,C,n, we have

1

2
≤ γω(x) ≤

3

2
(4.27)

and, for every 1 ≤ k ≤ 3, ÂÂÂÂÂD
k
γω(x)

ÂÂÂÂÂ ≤ Cω
N (4.28)

Proof of Lemma 4.14. For every C > 0 and n ∈ N, let us denote by EC,n the set of all (ω, x) such that
ω ∈ ]1,+∞[ and x ∈ Bω,C,n ⊂ Uξ. Fix 3/4 < α < 1.

Proof of (4.27). Let X̄u(x) ∶= X̄u,u
u (x)xu + X̄u,s1

u (x)xs1 + X̄
u,s2
u (x)xs2 . According to Lemma 4.5,

there exist C0 > 0 and n0 ∈ N such that for every C ≥ C0, every n ≥ n0 and every (ω, x) ∈ EC,n, (4.9)
holds true and it follows that

1

2
≤ γω(x) ≤

3

2
⟺ µu(xc) + X̄u(x) ≤ 2µu(ω) ≤ 3(µu(xc) + X̄u(x))

⟺ {X̄u(x) ≤ 2µu(ω) − µu(xc)
2µu(ω) − 3µu(xc) ≤ 3X̄u(x)

According to 3.14a and the mean value theorem, for every ω ∈ ]1,+∞[ and for every x ∈ Uξ such that
∣xc − ω∣ ≤ 1

6ω
, we have

∣µu(xc) − µu(ω)∣ ≤
1
ω

and it follows that
2µu(ω) − µu(xc) ≥

1
ω (4.29)
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Analogously, for every ω ∈ ]1,+∞[ and for every x ∈ Uξ such that ∣xc − ω∣ ≤ 1
24ω

, we have

∣µu(xc) − µu(ω)∣ ≤
1

4ω

and it follows that
2µu(ω) − 3µu(xc) ≤ −

1

2ω
(4.30)

According to (4.7), (4.29) and (4.30), there exist C1 ≥ C0 and n1 ≥ n0 such that for every C ≥ C1, every
n ≥ n1 and every (ω, x) ∈ EC,n, we have X̄u(x) ≤ 2µu(ω) − µu(xc) and 2µu(ω) − 3µu(xc) ≤ 3X̄u(x)
so (4.27) holds true.

Proof of (4.28). Recall that

γω(x) =
µu(ω)

µu(xc) + X̄u(x)
and

Dγω(x) =
−γω(x)2

µu(ω)
(Dµu(xc) +DX̄u(x)) (4.31)

According to (3.14a) and (4.7), there exist C2 ≥ C1 and n2 ≥ n1 such that for every C ≥ C2, every
n ≥ n2, every (ω, x) ∈ EC,n and every 1 ≤ k ≤ 3, we have

ÂÂÂÂÂD
k
µu(xc)

ÂÂÂÂÂ ≤ C2ω
n2 (4.32)

and ÂÂÂÂÂD
k
X̄u(x)

ÂÂÂÂÂ ≤ C2ω
n2 (4.33)

Using (4.27), (4.31), (4.32), (4.33) and the inequality µu(ω) ≥ 2
ω
, we get that there exist C3 ≥ C2 and

n3 ≥ n2 such that for every C ≥ C3, every n ≥ n3, every (ω, x) ∈ EC,n and every 1 ≤ k ≤ 3, we have

ÂÂÂÂÂD
k
γω(x)

ÂÂÂÂÂ ≤ C3ω
n3

so (4.28) holds true.

We now have everything to prove the main result on Xω.

Proof of Proposition 4.8. Expression (4.11) follows from (4.8) and analogous computations to the ones
detailed for Proposition 4.3.

Estimate (4.13) follows from (4.5), Lemma 4.14, a C
5 control of X on an arbitrary compact

neighbourhood of K and analogous computations to the ones detailed for Proposition 4.3.
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Chapter5
Local sections and transition maps

The purpose of this chapter is to define some sections for the Wainwright-Hsu vector field, together
with some transitions maps describing how the orbits of the flow travel from one section to another.
All these sections will be located in the vicinity of the Kasner circle and will be defined in the local
coordinate system ξ constructed in the previous chapter. The transition maps between the sections
will play a central role in our investigation of the dynamics of the Wainwright-Hsu vector field.

We will first recall some properties of the local coordinate system ξ (section 5.1). Then we will
define a “global section” Sh (section 5.2). The dynamics of the Wainwright-Hsu vector field is almost
completely captured by the return map Φ̄ of the orbits of this vector field on the global section Sh.
Therefore, understanding the dynamical properties of Φ̄ will be our long-term goal. But, since this
goal cannot be achieved directly, it is necessary to decompose Φ̄ as a product of a large number of
“local transitions maps”. This will lead us to introduce some local sections (section 5.3), and some
transitions maps describing how the orbits move from one local section to another (section 5.4).

5.1 Reminder on the local coordinate system ξ. The pseudo-
norms ∥.∥⊥, ∥.∥//

and the projection ProjA

In order to define the global and local sections, we first need to recall a few facts on the “nice” local
coordinate system ξ = (xu, xs1 , xs2 , xc) constructed in the previous chapter, and to introduce some
pseudo-norms and projections related to this coordinate system.

Recall that the local coordinate system ξ = (xu, xs1 , xs2 , xc) is defined on a neighbourhood Uξ of the
Kasner interval K0 in the quotient phase space B+. The range of ξ, denoted by Uξ, is a neighbourhood
of {0R3} × ]1,+∞[ in (R+)3

× ]1,+∞[.
The local coordinate system ξ maps the Kasner interval K0 to the interval {0R3} × ]1,+∞[.

Moreover, in restriction to K0, the coordinate xc is nothing but the Kasner parameter. In other words,
the coordinates of the point Pω ∈ K0 are (xu, xs1 , xs2 , xc) = (0, 0, 0, ω).

For ω ∈]1,+∞[, there is one type II orbit, denoted by Ou
ω, starting at Pω and two type II orbits,

denoted by Os1
ω and Os2

ω , arriving at Pω. These orbits are mapped by ξ to the straight lines

O
u
ω

def
= {xu > 0, xs1 = xs2 = 0, xc = ω} (5.1a)

O
s1
ω

def
= {xs1 > 0, xu = xs2 = 0, xc = ω} (5.1b)

O
s2
ω

def
= {xs2 > 0, xu = xs1 = 0, xc = ω} (5.1c)

More precisely, the connected component of Ou
ω ∩ Uξ starting1 at Pω is mapped to Ouω ∩ Uξ, and

similarly for the two other type II orbits. We will abusively call the sets Ouω, O
s1
ω and Os2ω “type II

orbits”.

1Any connected component of Ouω ∩ Uξ is oriented by the flow of the Wainwright-Hsu vector field X .

59
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The Mixmaster attractor A is mapped by ξ to the set

A
def
= {xu = xs1 = 0} ∪ {xu = xs2 = 0} ∪ {xs1 = xs2 = 0} (5.2)

that is, ξ(A ∩ Uξ) = A ∩ Uξ.
Recall that our goal is to compare the behaviour of the type IX orbits winding around the Mixmaster

attractor with the dynamics on the Mixmaster attractor itself. In view to that goal, it will be convenient
to project the type IX orbits (or at least some of their points) on the Mixmaster attractor.

Definition 5.1 (Projection on the Mixmaster attractor). Let us denote by ∆ the set of all x =

(xu, xs1 , xs2 , xc) such that two of the three coordinates xu, xs1 , and xs2 are equal and larger than the
third one, that is, the set

{(xu, xs1 , xs2 , xc) ∣ xu = xs1 ≥ xs2 or xu = xs2 ≥ xs1 or xs1 = xs2 ≥ xu}

We define a projection ProjA ∶ (R+)
3
× ]1,+∞[ \ ∆→ A by the formula

ProjA(xu, xs1 , xs2 , xc)
def
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(xu, 0, 0, xc) if xu > max(xs1 , xs2)
(0, xs1 , 0, xc) if xs1 > max(xu, xs2)
(0, 0, xs2 , xc) if xs2 > max(xu, xs1)

(5.3)

Remark 5.2. According to the equation of the Mixmaster attractor in local coordinates (5.2), one can
see that ProjA(x) is the closest point to x (both for the Euclidean standard norm and the sup-norm)
belonging to the Mixmaster attractor A. This is why we say that ProjA(x) is the projection of x on
the Mixmaster attractor.

For x = (xu, xs1 , xs2 , xc) ∈ R4, we denote

∥x∥∞ = max (∣xu∣ , ∣xs1∣ , ∣xs2∣ , ∣xc∣)

It will be convenient to discriminate the direction ∂xc from the other directions, for dynamical reasons.
This leads us to introduce two pseudo-norms.

Definition 5.3 (Pseudo-norms). For any x = (xu, xs1 , xs2 , xc) ∈ R4, we define

∥x∥⊥
def
= max (∣xu∣ , ∣xs1∣ , ∣xs2∣)

∥x∥//

def
= ∣xc∣

Remark 5.4. For any x ∈ R4, ∥x∥∞ = max(∥x∥⊥ ,∥x∥//).
Remark 5.5. If the projection ProjA(x) of x on the Mixmaster attractor is well defined (see defini-
tion 5.1), then ∥x − ProjA(x)∥⊥ = ∥x − ProjA(x)∥∞ is the distance between x and the Mixmaster
attractor A.

5.2 The global section Sh, the era return map Φ̄h and the double
era return map Φ̂h

Definition 5.6 (Global section). For h > 0, we define the global section Sh ∶= S
s1
h ∪ S

s2
h where

S
s1
h

def
= {x = (xu, xs1 , xs2 , xc) ∣ xs1 = h, 0 ≤ xu ≤ h, 0 ≤ xs2 ≤ h, 1 < xc < 2} (5.4)

and analogously for Ss2h . If h is small enough, the global section is included in the range Uξ of the
local coordinate system ξ. In this case, we consider the geometric global section

Sh
def
= ξ

−1 (Sh)

Suppose that h is small enough, so that the geometric global section Sh is well-defined. On the one
hand, for every ω ∈]1, 2[, the two type II orbits Os1ω , Os2ω intersect the global section Sh. On the other
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hand, formula (3.15) shows that, for every ω ∈]1,+∞[\Q, the forward orbit of ω under the Kasner
map f passes infinitely many times in the interval ]1, 2[. It follows that every heteroclinic chain of
type II orbits either converges to a Taub point, or crosses infinitely many times the global section
Sh. Hence all type IX orbits that possibly shadow a heteroclinic chain of type II orbits must cross
infinitely many times the global section Sh. This is the reason why we say that Sh is a global section.

The above discussion shows that our main Theorem B can be proved by investigating the dynamical
properties of the return map of the orbits on the global section Sh, called the era return map. We will
now proceed to the formal definition of this map. This definition is not completely straightforward for
two reasons:

• the global section Sh was defined in the local coordinate system ξ but the segments orbits (or
heteroclinic chains) travelling from Sh to Sh do not remain inside the open set where this local
coordinate system is defined,

• we want to consider not only the returns of orbits, but also the return of heteroclinic chains.

Recall that, for every point q ∈ B+ which is not a Taub point, we have defined a generalized
heteroclinic chain H (q) starting at q (see definitions 3.5 and 3.7). In particular, H (q) is nothing but
the forward orbit of q when q ∈ B+IX.

Definition 5.7. For x = (xu, xs1 , xs2 , xc) ∈ Uξ, we will denote by H (x) the heteroclinic chain starting
at the point in B+ of coordinates x.

Definition 5.8 (Era return map). Let h > 0 be small enough so that the global section Sh is included
in the range Uξ of the local coordinate system ξ. We define the era return map

Φ̄h ∶ Sh → Sh

as follows. Let x ∈ Sh. If the heteroclinic chain H (x) intersects the section Sh, then Φ̄h(x) is the
4-tuple of coordinates of the first intersection point of H (x) with Sh. Otherwise, Φ̄h is not defined at
the point x.

If xu, xs1 , xs2 > 0, then the heteroclinic chain H (x) is nothing but the forward X -orbit of the point
ξ
−1(x). As a consequence, in restriction to {xu, xs1 , xs2 > 0}, the era return map Φ̄h is nothing but the
first return map of the orbits of the Wainwright-Hsu vector field on the global section Sh, expressed in
local coordinates.

For technical reasons (namely, because we will discover that Φ̄h fails to be uniformly expanding in
the direction parallel to the Kasner interval), we will be led to replace Φ̄h by its square. This motivates
the following definition.

Definition 5.9 (Double era transition map). Let h > 0 be small enough so that the global section
Sh is included in the range Uξ of the local coordinate system ξ. We define the double era return map
Φ̂h ∶ Sh → Sh by the formula

Φ̂h
def
= Φ̄h ◦ Φ̄h (5.5)

The goal of the remainder of the memoir is to find a subset of Sh where the double era return map
Φ̂h is well-defined, to prove that Φ̂h has nice hyperbolicity properties on this subset, to construct some
local stable manifolds for the map Φ̂h and finally to prove that the union of these local stable manifold
cover a subset of positive Lebesgue measure in Sh. Our main Theorem B will follow easily.

5.3 The local sections Suω,h, S
s1

ω,h and S
s2

ω,h

Definition 5.10. Let ω ∈ ]1,+∞[ and h > 0. We denote respectively by Puω,h, P
s1
ω,h, P

s2
ω,h the points

on the type II orbits Ouω, O
s1
ω and Os2ω that are at distance h from the Kasner interval, that is,

P
u
ω,h

def
= (h, 0, 0, ω) , P

s1
ω,h

def
= (0, h, 0, ω) , P

s2
ω,h

def
= (0, 0, h, ω)

If h is small enough, the points Puω,h, P
s1
ω,h and P s2ω,h are in the range Uξ of the local coordinate system

ξ. In this case, we denote Puω,h ∶= ξ
−1(Puω,h), Ps1ω,h ∶= ξ

−1(P s1ω,h) and Ps2ω,h ∶= ξ
−1(P s2ω,h).
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We now define three local sections that intersect respectively the type II orbits Ouω, O
s1
ω and Os2ω .

These local sections will be crossed by the orbits traveling close to the heteroclinic chain passing
through the point Pω. They will serve as gates controlling the entrance in (resp. the exit from) a
neighbourhood of the point Pω.

Definition 5.11 (Local sections). Let ω ∈ ]1,+∞[ and h = (h, h⊥, h//) where h, h⊥ and h// are some
positive numbers. We consider the local sections

S
u
ω,h

def
= {x = (xu, xs1 , xs2 , xc) ∣ xu = h, ∥x − Puω,h∥⊥ ≤ h⊥, ∥x − Puω,h∥//

≤ h//}
= {x = (xu, xs1 , xs2 , xc) ∣ xu = h, 0 ≤ xs1 ≤ h⊥, 0 ≤ xs2 ≤ h⊥, ω − h// ≤ xc ≤ ω + h//}

and

S
s1
ω,h

def
= {x = (xu, xs1 , xs2 , xc) ∣ xs1 = h,

ÂÂÂÂÂx − P
s1
ω,h

ÂÂÂÂÂ⊥ ≤ h⊥,
ÂÂÂÂÂx − P

s1
ω,h

ÂÂÂÂÂ//
≤ h//}

= {x = (xu, xs1 , xs2 , xc) ∣ xsi = h, 0 ≤ xu ≤ h⊥, 0 ≤ xsj ≤ h⊥, ω − h// ≤ xc ≤ ω + h//}

The local section Ss2ω,h is defined analogously, permuting the roles of s1 and s2. See figure 5.1 for a
representation of Ss1ω,h and Suω,h. Finally, set

S
s
ω,h

def
= S

s1
ω,h ⊔ S

s2
ω,h

If the sections Suω,h, S
si
ω,h are included in the range Uξ of the local coordinate system ξ, then we define

the geometric local sections

Suω,h
def
= ξ

−1 (Suω,h) ⊂ B+, Ssiω,h
def
= ξ

−1 (Ssiω,h) ⊂ B+

Remark 5.12. The local sections Suω,h, S
s1
ω,h and S

s2
ω,h are included in the range Uξ of the local

coordinate system ξ as soon as the parameters h, h⊥ and h// are chosen small enough. More precisely,
there exists C > 0 and n ∈ N such that for every ω ∈ ]1,+∞[ and every h = (h, h⊥, h//), if
max (h, h⊥, h//) ≤ (Cωn)−1, then the local sections Suω,h, S

s1
ω,h and Ss2ω,h are included in Uξ. This is a

direct consequence of Proposition 4.2 on the local coordinate system ξ.

Remark 5.13. Let ω ∈ ]1,+∞[ and h = (h, h⊥, h//) where h, h⊥ and h// are positive. Let x ∈ Ss1ω,h.

• Assume that 0 < h⊥ < min(h, h//). The (in)equalities

max(xu, xs2) =
ÂÂÂÂÂx − P

s1
ω,h

ÂÂÂÂÂ⊥ ≤ h⊥ < h = xs1

show that the projection ProjA(x) of x on the Mixmaster attractor is well defined, andÂÂÂÂÂx − P
s1
ω,h

ÂÂÂÂÂ⊥ = ∥x − ProjA(x)∥⊥. In other words, ÂÂÂÂÂx − P
s1
ω,h

ÂÂÂÂÂ⊥ is the distance from x to the
Mixmaster attractor. Hence, h⊥ can be seen as the size of the section in the direction transversal
to the Mixmaster attractor A.

• Assume again that 0 < h⊥ < min(h, h//). The section S
s1
ω,h is a 3-dimensional “rectangle” in

(R+)3
× ]1,+∞[. Using the fact that the Kasner interval corresponds to xu = xs1 = xs2 = 0 and

the preceding item, we see that

– h is the distance from the section Ss1ω,h to the Kasner interval K0.

– h⊥ is the size of Ss1ω,h in the direction transversal to the Mixmaster attractor.

– h// is the size of Ss1ω,h in the direction parallel to the Kasner interval K0.

The section Ss1ω,h cuts the type II orbit Os1ω at the point P s1ω,h. Its intersection with the Mixmaster
attractor A is the segment {0} × {h} × {0} × [ω − h//, ω + h//]. See figure 5.1.

• Moreover, one can interpret the terms ÂÂÂÂÂx − P
s1
ω,h

ÂÂÂÂÂ⊥ and ÂÂÂÂÂx − P
s1
ω,h

ÂÂÂÂÂ//
as follows: ÂÂÂÂÂx − P

s1
ω,h

ÂÂÂÂÂ⊥ is
the distance between x and the type II orbit Os1ω in the direction transverse to the Mixmaster
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Figure 5.1 – Sections Ss1ω,h and Suω,h. We omit the xs2 -direction since we cannot draw in four dimensions.
The Mixmaster attractor A is represented in green. The Kasner interval ξ(K0) is represented in red.
The type II orbits arriving and starting at Pω are represented in blue.
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attractor while ÂÂÂÂÂx − P
s1
ω,h

ÂÂÂÂÂ//
is the distance between x and the type II orbit Os1ω in the direction

tangent to the Mixmaster attractor.

Similar remarks hold for the sections Suω,h and Ss2ω,h as well.

5.4 Transition maps

We will now construct some transition maps between the local sections that were defined in section 5.3.
These maps describe the behaviour of the orbits of the Wainwright-Hsu vector field in some specific
regions (in the neighbourhood of a point of the Kasner circle, in the neighbourhood of a type II orbit,
etc). Our goal is to decompose the era return map Φ̄h as a product of elementary transition maps,
that are easier to understand than Φ̄h itself.

5.4.1 The era transition map Φ̄ω,h and the double era transition map Φ̂ω,h

The orbits of the Wainwright-Hsu vector field can follow very different routes between two intersections
with the global section Sh. For example, some orbits come back rather quickly to the global section
Sh, whereas some others will spend a very long time oscillating in the vicinity of the Taub point T
before coming back to Sh. For that reason, we cannot study the era return map Φ̄h globally : we need
to define some localized version of Φ̄h (and Φ̂h).

Definition 5.14 (Era transition map Φ̄ω,h and double era transition map Φ̂ω,h). Let ω ∈ ]1, 2[ and
h = (h, h⊥, h//) so that the sections Ssω,h and Sh are included in the range Uξ of the local coordinate
system ξ. We define the era transition map

Φ̄ω,h ∶ S
s
ω,h ∩ Sh → Sh

as the restriction of Φ̄h to the section S
s
ω,h. See figure 5.2. Analogously, we define the double era

transition map
Φ̂ω,h ∶ S

s
ω,h ∩ Sh → Sh

as the restriction of Φ̂h to the section Ssω,h.

Definition 5.15 (Maps Φ̄
A
ω,h and Φ̂

A
ω,h). Let ω ∈ ]1, 2[ and h = (h, h⊥, h//) so that the sections Ssω,h

and Sh are included in Uξ and so that the projection ProjA is well defined on the section Ssω,h. We
define the map Φ̄

A
ω,h ∶ S

s
ω,h ∩ Sh → Sh by the formula

Φ̄
A
ω,h

def
= Φ̄ω,h ◦ ProjA

Analogously, we define the map Φ̂
A
ω,h ∶ S

s
ω,h ∩ Sh → Sh by the formula

Φ̂
A
ω,h

def
= Φ̂ω,h ◦ ProjA

Consider a point x ∈ Ssω,h ∩ Sh ∩B
+
IX. On the one hand, Φ̄h(x) is the first intersection point of the

forward orbit of the point x with the section Sh. On the other hand, Φ̄
A
ω,h(x) is the first intersection

point of the heteroclinic chain H (ProjA(x)) with the section Sh. Since the point ProjA(x) belongs to
the Mixmaster attractor, H (ProjA(x)) is a heteroclinic chain of type II orbits. As a consequence, the
comparison between the maps Φ̄ω,h(x) and Φ̄

A
ω,h(x) will allow us to understand whether the type IX

orbits follow (or deviate from) the heteroclinic chains of type II orbits.

Remark 5.16. The map Φ̄
A
ω,h admits an explicit expression. Recall that the era Kasner map is defined

by
f̄([1; k1, k2, . . . ]) = [1; k2, k3, . . . ]

and see (3.16) for more details. Both f̄ and Φ̄
A
ω,h encode the behaviour of heteroclinic chains of type II
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•
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s
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•
Pf(ω)

•
Pf2(ω)

•
Pf3(ω)

•
Pfk1−1(ω)

•
Pf̄(ω)

Figure 5.2 – A type IX orbit O (in black) traveling close to the first era of the heteroclinic chain
starting at Pω (in melon), where ω = [1; k1, k2, . . .]. The local sections Ssω,h0

, Ssf(ω),h1
, . . . , Ssf̄(ω),hk1

are represented in green, while the local sections Suω,h′0 , S
u
f(ω),h′1 , . . . , S

u
f̄(ω),h′k1

are represented in blue.
The era transition map Φ̄ω,h0

encodes the travel of the orbit O between the local section Ssω,h0
and the

global section Sh (in yellow). One can decompose the era transition map into several epoch transition
maps, encoding the travel of the orbit O between two consecutive green sections.
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orbits. Hence, they are naturally related. More precisely, one easily checks that:

Φ̄
A
ω,h(x) = {(0, h, 0, f̄(xc)) if k1(xc) ≥ 2

(0, 0, h, f̄(xc)) if k1(xc) = 1
where xc = [1; k1(xc), k2(xc), . . . ] (5.6)

Analogously,

Φ̂
A
ω,h(x) = {(0, h, 0, f̂(xc)) if k2(xc) ≥ 2

(0, 0, h, f̂(xc)) if k2(xc) = 1
where xc = [1; k1(xc), k2(xc), . . . ] (5.7)

where f̂ is the double era Kasner map defined by

f̂(ω) def
= f̄ ◦ f̄(ω)

5.4.2 The epoch transition map Φω,h,h′

Consider a type IX orbit orbit traveling between Ssω,h ∩ Sh and Sh. Typically, this orbit stays close
to the piece of heteroclinic chain connecting successively the points Pω, Pf(ω), . . . , Pf̄(ω). Since the
global behaviour of this orbit is rather complex, it is a good idea to focus on a smaller part of this
travel, namely a transition between a neighbourhood of a point Pfj(ω) and a neighbourhood of the
point Pfj+1(ω). This leads to the definition of the epoch transition map.

Since the travel of the orbits of the Wainwright-Hsu vector field between Ssω,h ∩ Sh and Sh is
complex, we can study it piece by piece. During this travel, an orbit stays close to the piece of
heteroclinic chain connecting successively the points Pω, Pf(ω), . . . , Pf̄(ω). Hence, it is a good idea to
focus on a transition between a neighbourhood of a point Pfj(ω) and a neighbourhood of the point
Pfj+1(ω). This leads to the definition of the epoch transition map.

Definition 5.17 (Epoch transition map Φω,h,h′). Let ω ∈ ]1,+∞[ \ {2}, h = (h, h⊥, h//) and h
′
=

(h′, h′⊥, h′//) so that the sections Ssω,h and Ssf(ω),h′ are included in Uξ. We define the epoch transition
map

Φω,h,h′ ∶ S
s
ω,h → S

s
f(ω),h′

as usual: if the heteroclinic chain H (x) intersects the section Ssf(ω),h′ , then Φω,h,h′(x) is the 4-tuple of
coordinates of the first intersection point of H (x) with Ssf(ω),h′ , otherwise Φω,h,h′ is not defined at the
point x. See figures 5.2 and 5.3.

In restriction to the set {xu > 0}, the epoch transition map Φω,h,h′ is simply the transition map
of the orbits of the Wainwright-Hsu vector field X between the section Ssω,h and the section Ssf(ω),h′ ,
expressed in local coordinates.

If xu = 0, then x is contained in the stable manifold of the point Pxc = (0, 0, 0, xc). So the
heteroclinic chain H (x) is the concatenation of the orbit of x, the type II orbit OPxc→Pf(xc)

, the type II

orbit OPf(xc)→Pf2(xc)
, etc. Hence, for any reasonable choice of the parameters h and h

′, the point
Φω,h,h′(x) is the first intersection point of the type II orbit OPxc→Pf(xc)

with the section Ssf(ω),h′ . That
is,

Φω,h,h′(0, xs1 , xs2 , xc) = {(0, h
′
, 0, f(xc)) if ω > 2

(0, 0, h′, f(xc)) if 1 < ω < 2
(5.8)

This formula deserves some explanations. If ω > 2, then Ou
xc = Os1

f(xc) and in that case, the first
intersection point of Ou

xc with the section Ssf(ω),h′ is in Ss1
f(ω),h′ , otherwise it is in Ss2

f(ω),h′ .

Definition 5.18 (Map Φ
A
ω,h,h′). Let ω ∈ ]1,+∞[ \ {2}, h = (h, h⊥, h//) and h

′
= (h′, h′⊥, h′//) so that

the sections Ssω,h and Ssf(ω),h′ are included in Uξ and so that ProjA is well defined on the section Ssω,h.
We define the map Φ

A
ω,h,h′ ∶ S

s
ω,h → S

s
f(ω),h′ by the formula

Φ
A
ω,h,h′(x)

def
= Φω,h,h′ ◦ ProjA(x)



5.4. Transition maps 67

S
s
ω,h

•
Pω

S
u
ω,h′′

O
OPω→Pf(ω)

S
s
f(ω),h′

Υω,h,h′′

Ψω,h′′,h′

Φω,h,h′

•
Pf(ω)

Figure 5.3 – A type IX orbit O (in red) traveling between the section Ssω,h and the section Ssf(ω),h′ .
During this travel, the orbit O stays close to a piece of heteroclinic chain (in melon) passing through
the point Pω. For a good choice of parameters h, h′ and h

′′, the epoch transition map Φω,h,h′ is equal
to the composition of Ψω,h′′,h′ with Υω,h,h′′ , i.e. the orbit O does not intersect the section Ssf(ω),h′
before it intersects the section Suω,h′′ .
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Remark 5.19. According to (5.8), the map Φ
A
ω,h,h′ admits an explicit expression. For any reasonable

choice of the parameters h and h
′,

Φ
A
ω,h,h′(x) = {(0, h

′
, 0, f(xc)) if ω > 2

(0, 0, h′, f(xc)) if 1 < ω < 2
(5.9)

Recall that Ssω,h is the “entry gate” (for the orbits of the Wainwright-Hsu vector field) of a
neighbourhood of the point Pω while Ssf(ω),h′ is the “entry gate” of a neighbourhood of the point Pf(ω).
As a consequence, when an orbit travels between Ssω,h and Ssf(ω),h′ , there is a first phase where it is
close to the point Pω (and, a fortiori, it is close to the Kasner interval) and a second phase where it is
far away from the Kasner interval but close to the type II orbit OPω→Pf(ω) . This leads us to introduce
two more transition maps, Υω,h,h′′ and Ψω,h′′,h′ , such that Φω,h,h′ = Ψω,h′′,h′ ◦ Υω,h,h′ . Each one of
these maps depicts the behaviour of the orbits during one of the two phases described above.

Note that until the end of this chapter, we will assume that all the local sections considered are
included in Uξ. We will also implicitly assume that ProjA is well defined on these local sections. This
is to avoid a lot of repetition in the following definitions, as they are all modeled on definitions 5.17
and 5.18.

5.4.3 The transition map Υω,h,h′

We start with the transition map Υω,h,h′ capturing the behaviour of the orbits in the neighbourhood
of the point Pω.

Definition 5.20 (Transition map Υω,h,h′). Let ω ∈ ]1,+∞[, h = (h, h⊥, h//) and h
′
= (h′, h′⊥, h′//).

We define the transition map
Υω,h,h′ ∶ S

s
ω,h → S

u
ω,h′

as usual: if the heteroclinic chain H (x) intersects the section Suω,h′ , then Υω,h,h′(x) is the 4-tuple of
coordinates of the first intersection point of H (x) with Suω,h′ , otherwise Υω,h,h′ is not defined at the
point x. See figure 5.3.

Definition 5.21 (Map Υ
A
ω,h,h′). Let ω ∈ ]1,+∞[, h = (h, h⊥, h//) and h

′
= (h′, h′⊥, h′//). We define

the map Υ
A
ω,h,h′ ∶ S

s
ω,h → S

u
ω,h′ by the formula

Υ
A
ω,h,h′(x)

def
= Υω,h,h′ ◦ ProjA(x)

Remark 5.22. We can do the same remarks as for the epoch transition map Φω,h,h′ . In particular, if
h
′
// ≥ h//, then for every x ∈ Ssω,h such that xu = 0, we have

Υω,h,h′(x) = (h′, 0, 0, xc) (5.10)

In other words, Υω,h,h′(x) is the unique intersection point of the type II orbit Ouxc with Suω,h′ . As a
consequence, the map Υ

A
ω,h,h′ admits an explicit expression: if h′// ≥ h//, then

Υ
A
ω,h,h′(x) = (h′, 0, 0, xc) (5.11)

5.4.4 The transition map Ψω,h,h′

We conclude with the transition map Ψω,h,h′ capturing the behaviour of the orbits in the neighbourhood
of the type II orbit OPω→Pf(ω) .

Definition 5.23 (Transition map Ψω,h,h′). Let ω ∈ ]1,+∞[\{2}, h = (h, h⊥, h//) and h
′
= (h′, h′⊥, h′//).

We define the transition map
Ψω,h,h′ ∶ S

u
ω,h → S

s
f(ω),h′

as usual: if the heteroclinic chain H (x) intersects the section Ssf(ω),h′ , then Ψω,h,h′(x) is the 4-tuple of
coordinates of the first intersection point of H (x) with Ssf(ω),h′ , otherwise Ψω,h,h′ is not defined at the
point x. See figure 5.3.
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Definition 5.24 (Map Ψ
A
ω,h,h′). Let ω ∈ ]1,+∞[, h = (h, h⊥, h//) and h

′
= (h′, h′⊥, h′//). We define

the map Ψ
A
ω,h,h′ ∶ S

u
ω,h → S

s
f(ω),h′ by the formula

Ψ
A
ω,h,h′(x)

def
= Ψω,h,h′ ◦ ProjA(x)

Remark 5.25. The map Ψ
A
ω,h,h′ admits an explicit expression. More precisely, if h′// is large enough

compared to h//, then for every x ∈ Suω,h,

Ψ
A
ω,h,h′(x) = {(0, h

′
, 0, f(xc)) if ω > 2

(0, 0, h′, f(xc)) if 1 < ω < 2
(5.12)

The explanation is the same than for formula (5.8).

In the next four chapters, we will study these transition maps. More precisely, we will study
the transition map Υω,h,h′ in Chapter 6, then the transition map Ψω,h,h′ in Chapter 7, then the
epoch transition map Φω,h,h′ in Chapter 8 and finally the era transition map Φ̄ω,h and the double era
transition map Φ̂ω,h in Chapter 9.
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Chapter6
Dynamics in the neighbourhood of a point
of the Kasner circle

The goal of this section is to give some sharp estimates on the transition map Υω,hs,hu (see defini-
tion 5.20). Recall that Υω,hs,hu describes the transition of the orbits of the Wainwright-Hsu vector
field from the section Ssω,hs to the section Suω,hu . Both sections Ssω,hs and Suω,hu are close to the point
Pω ∶= (0, 0, 0, ω) belonging to the Kasner circle in local coordinates. Actually, Ssω,hs should be thought
as the “entrance gate” to the neighbourhood of Pω for the orbits, whereas Suω,hu should be thought as
the “exit gate”. We will choose the parameters hs and h

u so that the orbits starting in the section Ssω,hs
hit the section Suω,hu before they exit a small neighbourhood of Pω where the local vector field Xω is
defined. Recall that the orbits of Xω are the same as those of X. Hence, we are left to investigate, for
any ω ∈ ]1,+∞[, the dynamics generated by the local vector field Xω near the point Pω. The methods
we use are generalizations and refinements of those used in the work of Liebscher & al. [Lie+11].

The following proposition is the main result of this section. For a technical reason explained below,
we will often encounter the quantity ω−1

4
in the estimates. Hence, we introduce the notation

d(ω) def
=
ω − 1

4

Proposition 6.1 (Control of the transition maps Υω,hs,hu). There exist two constants C > 0 and
n ∈ N such that for every ω ∈ ]1,+∞[, every 0 < h ≤ (Cωn)−1, every 0 < h⊥ < min(h, d(ω)), for
h
s
= (h, h⊥,min(h, d(ω))) and h

u
= (h, h, 2h), the transition map

Υω,hs,hu ∶ S
s
ω,hs → S

u
ω,hu

is well defined. Moreover, for every x, x̃ ∈ S
s
ω,hs , we have the following estimates where we denote

Υ ∶= Υω,hs,hu and Υ
A ∶= Υ

A
ω,hs,hu :

(Distance to the Mixmaster attractor)

dist∞ (Υ(x), A) = ÂÂÂÂÂΥ(x) −Υ
A(x)ÂÂÂÂÂ⊥ ≤ h

ω+2
ω+1

⊥ h
−1 (6.1)

(Drift in the direction tangent to the Mixmaster attractor)

ÂÂÂÂÂΥ(x) −Υ
A(x)ÂÂÂÂÂ//

≤ h⊥hCω
n (6.2)

(Lipschitz control in the direction transverse to the Mixmaster attractor)

ÂÂÂÂÂ(Υ(x) −Υ(x̃)) − (ΥA(x) −Υ
A(x̃))ÂÂÂÂÂ⊥ ≤ h

1
ω+1

⊥ h
−1 ∥x − x̃∥∞ (6.3)

71
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(Lipschitz control in the direction tangent to the Mixmaster attractor)

ÂÂÂÂÂ(Υ(x) −Υ(x̃)) − (ΥA(x) −Υ
A(x̃))ÂÂÂÂÂ//

≤ Cω
n
h∥x − x̃∥⊥ + Cω

n
h⊥ ∥x − x̃∥// (6.4)

Remark 6.2 (Purpose of Proposition 6.1). Recall that Υ describes the behaviour of all the orbits of the
local vector field Xω near K and A while Υ

A describes the behaviour of the heteroclinic chains in A.
The purpose of Proposition 6.1 is to compare the dynamics of Υ to the one of Υ

A.
Remark 6.3 (Explanation of the different estimates). To fix the ideas, consider an orbit τ ↦ x(τ) of the
local vector field Xω traveling between the sections Ss1ω,hs and S

u
ω,hu . Denote by xin

= (xin
u , h, x

in
s2 , x

in
c ) ∈

S
s
ω,hs its initial condition. Estimate (6.1) means that the distance between the orbit x and the Mixmaster

attractor is contracted during its travel. Moreover, it shows that this contraction degenerates when
ω → +∞, that is, when x travels very close to a Taub point. Estimate (6.2) means that the more xin

is close to the Mixmaster attractor, the more the orbit x does not deviate, in the direction tangent
to the Mixmaster attractor, from the type II orbit passing through the point (0, h, 0, xin

c ). Estimates
(6.3) and (6.4) prove that Υ −Υ

A is Lipschitz and explicit a Lipschitz constant for this map. As a
summary, one can remember the following fact. There is a competition between two factors for the
above estimates:

• The more the points are close to the Mixmaster attractor, the more the estimates are precise.

• The more the points are close to a Taub point, the less the estimates are precise.

Remark 6.4. Estimate (6.2) could be rewritten in a simpler way as ∣Υ(x)c − xc∣ ≤ h⊥hCωn. We did
not make this choice to make it clear here that we compare Υ and Υ

A. Same remark goes for (6.4).
Remark 6.5. If x ∈ Suω,hu , then for all y ∈ Suω,hu ∩A

dist∞ (x,A) = ∥x − y∥⊥

Now remark that if x ∈ Ssω,hs , then Υ
A(x) ∈ Suω,hu ∩A. This is the reason why

dist∞ (Υ(x), A) = ÂÂÂÂÂΥ(x) −Υ
A(x)ÂÂÂÂÂ⊥

Remark 6.6 (Technical detail). The quantity ω−1
4

in the upper bound on the size of the sections is
purely technical. It is closely related to the fact that the coordinates are not defined for xc = 1.
Basically, we need to make sure that the orbits do not start too close to this frontier so that they
intersect the section Suω,hu before they possibly encounter this frontier and cease to exist.

To prove Proposition 6.1, we divide the study in two parts. In section 6.1, we study the behaviour
of one orbit of Xω. This will lead to estimates (6.1) and (6.2). In section 6.2, we compare the behaviour
of two orbits. This will lead to estimates (6.3) and (6.4).

Following the notations of Proposition 4.2, we will denote by x = (xu, xs1 , xs2 , xc) the coordinates
of any point x ∈ Uξ ⊂ R4.

Recall from Proposition 4.8 that the differential equations associated with Xω have the following
form ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x
′
u = µu(ω)xu
x
′
s1 = −µ̃ω,s1 (xc)xs1 + X

u,s1
ω,s1(x)xuxs1 +X

s1,s1
ω,s1 (x)x2

s1 +X
s2,s1
ω,s1 (x)xs2xs1

x
′
s2 = −µ̃ω,s2 (xc)xs2 + X

u,s2
ω,s2(x)xuxs2 +X

s1,s2
ω,s2 (x)xs1xs2 +X

s2,s2
ω,s2 (x)x2

s2

x
′
c = X

u,s1
ω,c (x)xuxs1 +X

u,s2
ω,c (x)xuxs2

(6.5)

Remark 6.7. Let ω ∈ ]1,+∞[ and τ ↦ x(τ) be an orbit of the local vector field Xω. Denote by xin its
initial condition. Using (6.5), one can see that the coordinate xu is strictly increasing. It follows that
the section Suω,hu is intersected by the orbit x at most once. If this is the case, the time of first (and
unique) intersection of the orbit x with the section Suω,hu is

τ
out(x, ω, h) def

=
1

µu(ω)
ln

h

xin
u

(6.6)

where h
u
= (h, h⊥, h//).
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We should insist on the fact that we are talking about the local vector field Xω and its orbits. The
“real” orbits for the Wainwright-Hsu vector field X can intersect the section Suω,hu infinitely many
times. The local vector field Xω being a renormalization of X in a neighbourhood U of the point Pω
on the Kasner circle, an orbit of Xω is exactly a connected component of an orbit of X intersected
with U (modulo the local coordinate system ξ).

To conclude this introduction, we state the first ingredient for the shadowing theorem (see chap-
ter 11).

Proposition 6.8 (Shadowing near the Kasner circle). There exist two constants C ≥ 1 and n ∈ N
such that the properties below hold for every ω ∈ ]1,+∞[, every i ∈ {1, 2}, every 0 < h ≤ (Cωn)−1,
every 0 < h⊥ ≤ min( 1

3
h, d(ω)), for h

s
= (h, h⊥, h⊥) and for h

u
= (h, h, 2h). Let τ ↦ x(τ) be an orbit

of the local vector field Xω whose initial condition xin ∶= x(0) belongs to the section Ssω,hs and such
that xin

u ≠ 0. See figure 6.1. Set

τ
∗
= τ

∗
ω,h(xin) def

=
1

µu(ω) + 4
5
µs1(ω)

ln
4

5

µs1(ω)h
µu(ω)xin

u

Then

1. 0 ≤ τ
∗
≤ τ

out where τout
= τ

out(x, ω, h).

2. The point x(τ∗) is very close to the point Pω on the Kasner circle. More precisely,

∥x(τ∗) − Pω∥∞ ≤ 8h
1
3

⊥ (6.7)

3. The orbit segment joining xin to x(τ∗) is very close to the type II orbit interval joining P siω,h ∈ S
si
ω,hs

to Pω with respect to the Hausdorff distance. More precisely,

dH (x ([0, τ∗]) , [P siω,h, Pω[) ≤ 8h
1
3

⊥ (6.8a)

4. The orbit segment joining x(τ∗) to xout is very close to the type II orbit interval joining Pω to
P
u
ω,h ∈ S

u
ω,hu with respect to the Hausdorff distance. More precisely,

dH (x ([τ∗, τout]) , ]Pω, Puω,h]) ≤ 8h
1
3

⊥ (6.8b)

6.1 Control of one orbit

Our goal is, for any given ω ∈ ]1,+∞[, to study the behaviour of the orbits of the local vector field
Xω which travel between two given sections Ssω,hs and Suω,hu .

We first study the behaviour of the orbits that are assumed to stay in a small neighbourhood of
Pω, where the dynamics is “almost linear”. Lemma 6.14 shows that, for such an orbit τ ↦ x(τ), the
coordinate xu is exponentially increasing (if it is not identically zero), the coordinates xs1 and xs2 are
exponentially decreasing (if they are not identically zero) and the variation of the coordinate xc is
small. Then, we prove that for hs and h

u well chosen, any orbit crossing Ssω,hs will eventually cross
S
u
ω,hu and stays in a small neighbourhood of Pω during its travel between those two sections. To do

this, we need two preliminary tools:

• A control of the eigenvalues −µ̃ω,s1 (xc) and −µ̃ω,s2 (xc) of DXω(0, 0, 0, xc). This is done in
corollary 6.11.

• An estimate on the quantity

χ = xu ∥xs1,s2∥1
= xu(xs1 + xs2)
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S
si
ω,hs

S
u
ω,hu

xsi

xu

xc

ξ(K0)

•x(0)

•
x(τout)

•x(τ∗)

•P
si
ω,h

•Pω •Puω,h

Figure 6.1 – Notations for local shadowing.

used to bound the variation of the coordinate xc. Lemma 6.12 shows that this map is exponentially
decreasing along the orbits of the local vector field Xω which travel sufficiently close to the point
Pω.

Lemma 6.9 (Control of the eigenvalues µu, µs1 et µs2). Let ω ∈ ]1,+∞[ and α ∈]0, 1[. For every
ω
′
∈ ]1,+∞[ such that

»»»»»ω
′
− ω

»»»»» ≤
1 − α

3ω

we have

α ≤
µu(ω′)
µu(ω)

,
µs1(ω

′)
µs1(ω)

,
µs2(ω

′)
µs2(ω)

≤ α
−1 (6.9)

Proof. According to (3.14a),

»»»»»»»
dµu
dω

(ω′)
»»»»»»»
= 6

»»»»»»»»»»

1 − ω′2

(1 + ω′ + ω′2)2

»»»»»»»»»»
≤ 6

Let ω′ ∈ ]1,+∞[ such that
»»»»»ω

′
− ω

»»»»» ≤
1 − α

3ω

According to the mean value theorem,

»»»»»µu(ω
′) − µu(ω)

»»»»» ≤ 6
1 − α

3ω
≤ 6

(1 − α)ω
1 + ω + ω2

= (1 − α)µu(ω)

Observe that 1 − α ≤ α−1 − 1. Hence, (6.9) holds true for µu. The computations are analogous for µs1
and µs2 .

Recall from Proposition 4.8 that

µ̃ω,si (ω
′) = µu(ω)

µu(ω′)
µsi(ω

′)
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is an eigenvalue of DXω(0, 0, 0, ω′).

Proposition 6.10 (Control of the eigenvalue µ̃ω,si). Let ω ∈ ]1,+∞[ and α ∈]0, 1[. For any i ∈ {1, 2}
and any ω′ ∈ ]1,+∞[ such that

»»»»»ω
′
− ω

»»»»» ≤
1 − α

6ω
,

the eigenvalue µ̃ω,si (ω
′) of DXω(0, 0, 0, ω′) satisfies

α ≤
µ̃ω,si (ω

′)
µsi(ω)

≤ α
−1 (6.10)

Proof. Using the formula
µ̃ω,si (ω

′)
µsi(ω)

=
µu(ω)
µu(ω′)

µsi(ω
′)

µsi(ω)
and the straightforward inequality

1 − α
6

≤
1 −

√
α

3

we get the estimate (6.10) from Lemma 6.9 applied twice with
√
α instead of α.

Corollary 6.11 below is a refinement of Proposition 6.10 easier to use in the proof of Lemma 6.12.

Corollary 6.11 (Control of the eigenvalue µ̃ω,si , second version). Let ω ∈ ]1,+∞[ and α ∈]0, 1[.
For every ω′ ∈ ]1,+∞[ such that

»»»»»ω
′
− ω

»»»»» ≤
1 − α

24ω2
,

for i = 1, 2, the eigenvalue µ̃ω,si (ω
′) of DXω(0, 0, 0, ω′) satisfies

α
′
≤

µ̃ω,si (ω
′)

µsi(ω)
≤ α

′−1 (6.11)

where

α
′
=

1−α
2
µu(ω) + 1+α

2
µs1(ω)

µs1(ω)

Proof. Using (3.14), it is straightforward to check that

1 − α

24ω2
≤

1 − α

12(1 + ω)ω =
1 − α′

6ω
for every ω ∈ ]1,+∞[ and every α ∈]0, 1[.

Hence, (6.11) follows immediately from Proposition 6.10.

Lemma 6.12 (Control of χ). There exist two constants C > 0 and n ∈ N such that for every
ω ∈ ]1,+∞[, every 3/4 < α < 1, every t ≥ 0 and every orbit τ ↦ x(τ) of the local vector field Xω

satisfying

max (xu(τ), xs1(τ), xs2(τ), ∣xc(τ) − ω∣) ≤
1 − α
Cωn

for every τ ∈ [0, t]

the function χ(τ) = xu(τ)(xs1(τ) + xs2(τ)) satisfies

χ(t) ≤ e−α(µs1 (ω)−µu(ω))tχ(0) (6.12)

Remark 6.13. Recall that µs1(ω) ≥ µu(ω). Hence, χ is exponentially decreasing along the orbits of
the local vector field Xω.

Proof. Basically, the proof amounts to obtain a differential inequation on χ and then to use a Gronwall
estimate. For every C > 0 and every n ∈ N, we denote by EC,n the set of all (ω, α, t, x) such that
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ω ∈ ]1,+∞[, 3/4 < α < 1, t ≥ 0 and τ ↦ x(τ) is an orbit of the local vector field Xω satisfying

max(xu(τ), xs1(τ), xs2(τ), ∣xc(τ) − ω∣) ≤
1 − α
Cωn

for every τ ∈ [0, t] (6.13)

Let C > 0 and n ∈ N be large enough such that for every ω ∈ ]1,+∞[, Xω is well defined on
the open ball Bω,C,n (see definition 4.6). Let (ω, α, t, x) ∈ EC,n. We compute the derivative of
χ ∶ τ ↦ xu(τ)(xs1(τ) + xs2(τ)) by replacing the derivatives of xu, xs1 and xs2 by their respective
expressions according to (6.5). The time τ ∈ [0, t] is implicit in the following computations.

χ
′
= µu(ω)xu(xs1 + xs2)

+ xu (−µ̃ω,s1 (xc)xs1 +X
u,s1
ω,s1(x)xuxs1 +X

s1,s1
ω,s1 (x)x2

s1 +X
s2,s1
ω,s1 (x)xs2xs1)

+ xu (−µ̃ω,s2 (xc)xs2 +X
s1,s2
ω,s2 (x)xs1xs2 +X

u,s2
ω,s2(x)xuxs2 +X

s2,s2
ω,s2 (x)x2

s2)

According to the estimate on the non-linear terms (4.13), the inequality (6.13) and the fact that
µ̃ω,s1 ≤ µ̃ω,s2 , there exist C0 ≥ 24 and n0 ≥ 2 such that for every C ≥ C0, every n ≥ n0 and every
(ω, α, t, x) ∈ EC,n, we have

χ
′
≤ [(µu(ω) − µ̃ω,s1 (xc)) + C0ω

n0 max(xu, xs1 , xs2)]χ (6.14)

According to the estimate (6.11) on the eigenvalues and the inequality (6.13), for every C ≥ C0, every
n ≥ n0 and every (ω, α, t, x) ∈ EC,n, we have the following control on µ̃ω,s1 :

− µ̃ω,s1 (xc) ≤ −α
′
µs1(ω) (6.15)

where

α
′
=

(1 − 1+α
2

)µu(ω) + 1+α
2
µs1(ω)

µs1(ω)
Plugging (6.15) into (6.14), it follows that for every C ≥ C0, every n ≥ n0 and every (ω, α, t, x) ∈ EC,n,
we have

χ
′
≤ [(µu(ω) − α′µs1(ω)) + C0ω

n0 max(xu, xs1 , xs2)]χ

≤ [1 + α
2

(µu(ω) − µs1(ω)) + C0ω
n0 max(xu, xs1 , xs2)]χ (6.16)

According to (3.14),

µs1(ω) − µu(ω) ≥
2

ω2
(6.17)

It follows by (6.16) and (6.17) that for every C ≥ C0, every n ≥ n0 + 2 and every (ω, α, t, x) ∈ EC,n,
we have

χ
′
≤ α(µu(ω) − µs1(ω))χ

which is the desired differential inequation. Indeed, one just needs to apply the standard Gronwall’s
lemma to obtain (6.12).

Lemma 6.14 (Control of one orbit close to Pω). There exist two constants C > 0 and n ∈ N such
that for every ω ∈ ]1,+∞[, every 3/4 < α < 1, every time t ≥ 0 and every orbit τ ↦ x(τ) of the local
vector field Xω satisfying

max(xu(τ), xs1(τ), xs2(τ), ∣xc(τ) − ω∣) ≤
1 − α
Cωn

for every τ ∈ [0, t]

we have the following controls:

(Control in the unstable direction)

xu(t) = eµu(ω)txu(0) (6.18a)
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(Control in the stable direction) For every i ∈ {1, 2},

xsi(t) ≤ e
−αµs1 (ω)txsi(0) (6.18b)

(Control in the central direction)

∣xc(t) − xc(0)∣ ≤ Cωnxu(0)(xs1(0) + xs2(0)) (1 − e
−α(µs1 (ω)−µu(ω))t) (6.18c)

Proof. The three controls are proven independently. The first one is a direct consequence of the
evolution equation of xu in (6.5).

For every C > 0 and every n ∈ N, we denote by EC,n the set of all (ω, α, t, x) such that ω ∈ ]1,+∞[,
3/4 < α < 1, t ≥ 0 and τ ↦ x(τ) is an orbit of the local vector field Xω satisfying

max(xu(τ), xs1(τ), xs2(τ), ∣xc(τ) − ω∣) ≤
1 − α
Cωn

for every τ ∈ [0, t] (6.19)

Control of the coordinate xs1 (the case of xs2 being analogous). We compute the derivative of xs1
using (6.5). The time τ is implicit in the following computations. According to (4.13) and (6.19), there
exist C0 ≥ 24 and n0 ≥ 2 such that for every C ≥ C0, every n ≥ n0 and every (ω, α, t, x) ∈ EC,n, we
have

x
′
s1 ≤ (−µ̃ω,s1 (xc) + C0ω

n0 max(xu, xs1 , xs2))xs1 (6.20)

According to the estimate (6.11) on the eigenvalues and the inequality (6.19), for every C ≥ C0, every
n ≥ n0 and every (ω, α, t, x) ∈ EC,n, we have the following control on µ̃ω,s1 :

− µ̃ω,s1 (xc) ≤ −α
′
µs1(ω) ≤ −

1 + α
2

µs1(ω) (6.21)

where

α
′
=

(1 − 1+α
2

)µu(ω) + 1+α
2
µs1(ω)

µs1(ω)
It follows from (6.20) and (6.21) that, for every C ≥ C0, every n ≥ n0 and every (ω, α, t, x) ∈ EC,n, we
have

x
′
s1 ≤ (−1 + α

2
µs1(ω) + C0ω

n0 max(xu, xs1 , xs2))xs1 (6.22)

Using (3.14), we get

µs1(ω) ≥
4

ω2
(6.23)

According to (6.22) and (6.23), for every C ≥ C0, every n ≥ n0 + 2 and every (ω, α, t, x) ∈ EC,n, we
have

x
′
s1 ≤ −αµs1(ω)xs1

Hence, Gronwall’s lemma gives the desired control (6.18b) on xs1(t).
Control of the coordinate xc. We compute the derivative of xc using (6.5). The time τ is implicit

in the following computations. According to (4.13) and (6.19), there exist C1 ≥ C0 and n1 ≥ n0 such
that for every C ≥ C1, every n ≥ n1 and every (ω, α, t, x) ∈ EC,n, we have

»»»»»x
′
c
»»»»» ≤ C1ω

n1χ (6.24)

where χ(τ) = xu(τ)(xs1(τ) + xs2(τ)). According to (6.24) and Lemma 6.12, there exist C2 ≥ C1 and
n2 ≥ n1 such that for every C ≥ C2, every n ≥ n2 and every (ω, α, t, x) ∈ EC,n, we have

∣xc(t) − xc(0)∣ ≤ C1ω
n1 ∫

t

0
e
−α(µs1 (ω)−µu(ω))τχ(0)dτ

so

∣xc(t) − xc(0)∣ ≤ C1ω
n1χ(0)1 − e−α(µs1 (ω)−µu(ω))t

α(µs1(ω) − µu(ω))
(6.25)
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Using (3.14), we get

µs1(ω) − µu(ω) ≥
2

ω2
(6.26)

Recall that α > 3/4. It follows by (6.25) and (6.26) that for every C ≥ max(C2,
8
3
C1), every

n ≥ max(n2, n1 + 2) and every (ω, α, t, x) ∈ EC,n, we have

∣xc(t) − xc(0)∣ ≤ Cωnχ(0) (1 − e
−α(µs1 (ω)−µu(ω))t)

which concludes the proof.

We are now ready to formulate, for any given ω ∈ ]1,+∞[, two statements about the orbits
τ ↦ x(τ) of the local vector field Xω starting in the section Ssω,hs . Proposition 6.15 deals with the
generic orbits whose initial condition xin verifies xin

u ≠ 0 (generic case) while Proposition 6.18 deals
with the exceptional orbits for which xin

u = 0.
More precisely, Proposition 6.15 below gives an explicit interval where the orbit x is well defined.

On this interval, x will satisfy the controls of Lemma 6.14. Recall that d(ω) = ω−1
4

and τout(x, ω, h) =
1

µu(ω)
ln h

xin
u

(see remark 6.7).

Proposition 6.15 (Behaviour of generic orbits). There exist two constants C > 0 and n ∈ N such
that for every ω ∈ ]1,+∞[, every 0 < h ≤ (Cωn)−1 and for h

s
= (h,min (h, d(ω)) ,min (h, d(ω))),

the following properties hold true. Let τ ↦ x(τ) be an orbit of the local vector field Xω. If its initial
condition xin

= (xin
u , x

in
s1 , x

in
s2 , x

in
c ) ∶= x(0) belongs to the section Ssω,hs and satisfies xin

u ≠ 0 then x is
defined (at least) on [0, τout(x, ω, h)]. Moreover, if 3/4 < α < 1 and h ≤ (1 − α)(Cωn)−1, then for
every τ ∈ [0, τout(x, ω, h)], we have the following controls:

(Control in the unstable direction)

xu(τ) = eµu(ω)τxin
u (6.27a)

(Control in the stable direction) For i ∈ {1, 2},

xsi(τ) ≤ e
−αµs1 (ω)τx

in
si (6.27b)

(Control in the central direction)

»»»»»xc(τ) − x
in
c
»»»»» ≤ Cω

n
x
in
u max (xin

s1 , x
in
s2) (1 − e

−α(µs1 (ω)−µu(ω))τ) (6.27c)

Proof. For every C > 0 and every n ∈ N, we denote by EC,n the set of all (ω, α, h, x) such that
ω ∈ ]1,+∞[, 3/4 < α < 1, 0 < h ≤ (1 − α)(Cωn)−1 and τ ↦ x(τ) is an orbit of the local vector
field Xω such that xin ∶= x(0) ∈ Ssω,hs where h

s
= (h,min(h, d(ω)),min(h, d(ω))) and xin

u ≠ 0 (hence
x

in
u > 0). Let C0 > 0 and n ∈ N be large enough such that we can apply Lemma 6.14 with these

two constants and such that for any ω ∈ ]1,+∞[ the local vector field Xω is well defined on the
open ball Bω,C0,n in (R+)3 × ]1,+∞[ (see definition 4.1 and Proposition 4.8). Let C1 = 100C0 and
(ω, α, h, x) ∈ EC1,n. We are going to show that the orbit x is well defined on [0, τout(x, ω, h)] and
that for every τ ∈ [0, τout(x, ω, h)], we have max(xu, xs1 , xs2 , ∣xc − ω∣) ≤ 1−α

C0ω
n .

Let us denote by ]τ−, τ+[ the maximal existence interval of x (with τ− < 0 and τ+ > 0). For every
τ ∈]τ−, τ+[, let

N⊥(τ)
def
= max(xu(τ), xs1(τ), xs2(τ))

N//(τ)
def
= ∣xc(τ) − ω∣

Remark that N⊥(0) ≤ min(h, d(ω)) < 1−α
C0ω

n and N//(0) ≤ min(h, d(ω)) < min( 1−α
C0ω

n ,
ω−1

2
). Let us

denote by τmax the supremum of all time t0 ∈ [0, τ+[ such that for every τ ∈ [0, t0], N⊥(τ) ≤ 1−α
C0ω

n
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and N//(τ) ≤ min( 1−α
C0ω

n ,
ω−1

2
). By definition, for every τ ∈ [0, τmax[, we have N⊥(τ) ≤ 1−α

C0ω
n and

N//(τ) ≤ min( 1−α
C0ω

n ,
ω−1

2
). It follows that x must be defined at τ = τmax since it cannot blow up. Now

assume that τmax ≤ τ
out(x, ω, h). By continuity, for every τ ∈ [0, τmax], we have N⊥(τ) ≤ 1−α

C0ω
n and

N//(τ) ≤ min( 1−α
C0ω

n ,
ω−1

2
). As a consequence, we can use Lemma 6.14 on [0, τmax] to get

xu(τmax) ≤ eµu(ω)τ
out(x,ω,h)

x
in
u = h ≤

1 − α
C1ω

n <
1 − α
C0ω

n ,

xs1(τmax), xs2(τmax) ≤ h <
1 − α
C0ω

n ,

and

∣xc(τmax) − ω∣ ≤
»»»»»xc(τmax) − xin

c
»»»»» +

»»»»»x
in
c − ω

»»»»»
≤ 2C0ω

n
hmin(h, d(ω)) +min(h, d(ω))

< min (1 − α
C0ω

n ,
ω − 1

2
)

which contradicts the maximality of τmax by continuity. Hence, τmax > τ
out(x, ω, h). This proves that

the orbit x is well defined on [0, τout(x, ω, h)] and that for every τ ∈ [0, τout(x, ω, h)], N⊥(τ) ≤ 1−α
C0ω

n

and N//(τ) ≤ min( 1−α
C0ω

n ,
ω−1

2
). As a consequence, we can use Lemma 6.14 on [0, τout(x, ω, h)], which

proves (6.27a), (6.27b) and (6.27c).
Now remark that x is well defined on the interval [0, τout(x, ω, h)], which is independant of α.

Hence, we should find a condition that is also independant of α, as stated in Proposition 6.15. Let
C = 5C1. If ω ∈ ]1,+∞[, 0 < h ≤ (Cωn)−1 and x is an orbit of the local vector field Xω such that
x

in ∶= x(0) ∈ Ssω,hs where hs = (h,min(h, d(ω)),min(h, d(ω))) and xin
u ≠ 0, then (ω, 4/5, h, x) ∈ EC1,n

and we can apply the above reasoning to x. This proves that x is well defined on [0, τout(x, ω, h)] and
this concludes the proof.

Corollary 6.16 below complements Proposition 6.15. It shows that if Ssω,hs and S
u
ω,hu are two

sections “close enough” to Pω and if Ssω,hs is “sufficiently small”, then any generic orbit of the local
vector field Xω starting in Ssω,hs will eventually pass through Suω,hu before leaving the neighbourhood
of Pω where Xω is well defined. Moreover, it gives precise estimates about the position of the orbit in
the section Suω,hu .

Corollary 6.16 (Estimates in the section S
u
ω,hu). There exist two constants C > 0 and n ∈ N

such that for every ω ∈ ]1,+∞[, every 0 < h ≤ (Cωn)−1, every 0 < h⊥ < min(h, d(ω)), for
h
s
= (h, h⊥,min (h, d(ω))) and h

u
= (h, h, 2h), the following properties hold true. Let τ ↦ x(τ) be an

orbit of the local vector field Xω. If its initial condition x
in ∶= x(0) belongs to the section Ssω,hs and

satisfies xin
u ≠ 0, then x intersects the section Suω,hu exactly at the time τ = τout(x, ω, h). Moreover, if

3/4 < α < 1 and h ≤ (1 − α)(Cωn)−1, then

(Distance to the Mixmaster attractor)

ÂÂÂÂÂΥ(xin) −Υ
A(xin)ÂÂÂÂÂ⊥ ≤ (h⊥)1+α

ω h
−α
ω (6.28a)

(Drift in the direction tangent to the Mixmaster attractor)

ÂÂÂÂÂΥ(xin) −Υ
A(xin)ÂÂÂÂÂ//

≤ h⊥hCω
n (6.28b)

Remark 6.17. Choosing α = max ( ω
ω+1

, 4
5
), estimate (6.28a) will lead to estimate (6.1) and estimate

(6.28b) will lead to estimate (6.2).

Proof. Let C0 > 0 and n0 ∈ N be large enough such that we can apply Proposition 6.15 with these two
constants. Let C1 = 2C0 and n1 = n0 + 1. Fix ω ∈ ]1,+∞[, 3/4 < α < 1, 0 < h ≤ (1 − α)(C1ω

n1)−1,



80 CHAPTER 6. Dynamics in the neighbourhood of a point of the Kasner circle

0 < h⊥ < min(h, d(ω)) and an orbit τ ↦ x(τ) of the local vector field Xω whose initial condition
x

in ∶= x(0) belongs to the section S
s
ω,hs where h

s
= (h, h⊥,min(h, d(ω))) and such that xin

u ≠ 0.
According to Proposition 6.15, x is well defined on [0, τout(x, ω, h)].

Using (6.27a), we get
xu(τout(x, ω, h)) = eµu(ω)τ

out(x,ω,h)
x

in
u = h

According to (6.27b),
xs1(τ

out(x, ω, h)), xs2(τ
out(x, ω, h)) ≤ h

and according to (6.27c),
»»»»»xc(τ

out(x, ω, h)) − ω»»»»» ≤ 2h

It follows that x(τout(x, ω, h)) ∈ Suω,hu where hu = (h, h, 2h). Recall from remark 6.7 that τout(x, ω, h)
is the unique time of intersection. Hence, Υ(xin) = x(τout(x, ω, h)) is well defined.

Remark that xin
u ≤ h⊥, max (xin

s1 , x
in
s2) ≤ h and (Υ

A(xin))
c
= x

in
c so (6.28b) is a direct consequence

of (6.27c) applied with τ = τout(x, ω, h).
Let α′ = (1−α)µu(ω)+αµs1 (ω)

µs1 (ω)
. Using (3.14), one can remark that

α
′µs1(ω)
µu(ω)

− 1 = α
µs1(ω) − µu(ω)

µu(ω)
=
α
ω

and

1 − α
′
= (1 − α)

µs1(ω) − µu(ω)
µs1(ω)

=
1 − α
1 + ω

≥
1 − α

2ω

Hence,

h ≤
1 − α
C1ω

n1
=

1 − α
2ω

1

C0ω
n0

≤
1 − α′

C0ω
n0

Since ÂÂÂÂÂΥ(xin) −Υ
A(xin)ÂÂÂÂÂ⊥ = max (xs1(τ

out(x, ω, h)), xs2(τ
out(x, ω, h))) ,

(6.28a) follows from (6.27b) applied with τout(x, ω, h) instead of τ and with α′ instead of α.
Now remark that the fact that x intersects the section Suω,hu is independant of α. Hence, we should

find a condition that is also independant of α, as stated in corollary 6.16. Let C = 5C1, ω ∈ ]1,+∞[,
0 < h ≤ (Cωn1)−1 and 0 < h⊥ ≤ min(h, d(ω)). Let x be an orbit of the local vector field Xω whose
initial condition xin ∶= x(0) belongs to the section Ssω,hs where h

s
= (h, h⊥,min(h, d(ω))) and such

that xin
u ≠ 0. Remark that h ≤ 1/5(C1ω

n1)−1. Hence, we can apply the above reasoning to x with
α = 4/5. This proves that x intersects the section Suω,hu (where h

u
= (h, h, 2h)) and concludes the

proof.

We now deal with the exceptional orbits τ ↦ x(τ) whose initial condition x
in verifies xin

u = 0.
Recall that the local coordinate system ξ is constructed in such a way that the stable manifold of a
point (0, 0, 0, x̄c) for the local vector field Xω has for equation “xu = 0, xc = x̄c” (see (4.3b)). Hence,
any exceptional orbit converges to a point of {0R3} × ]1,+∞[ (which is the Kasner interval in local
coordinates).

Proposition 6.18 (Behaviour of exceptional orbits). There exist two constants C > 0 and n ∈ N such
that for every ω ∈ ]1,+∞[, every 3/4 < α < 1, every 0 < h ≤ (1 − α)(Cωn)−1, for h

s
= (h, h, h) and

for every orbit τ ↦ x(τ) of the local vector field Xω whose initial condition x
in ∶= x(0) belongs to

the section Ssω,hs and such that xin
u = 0, x is well defined on [0,+∞[ and stays forever in the stable

manifold of the point (0, 0, 0, xin
c ), i.e. for every τ ≥ 0, xu(τ) = 0 and xc(τ) = xin

c .
Moreover, the orbit x converges exponentially fast to (0, 0, 0, xin

c ). More precisely, for i = 1, 2 and
for every τ ≥ 0,

xsi(τ) ≤ e
−αµs1 (ω)τx

in
si (6.29)

Proof. Using the equations (6.5), this is a straightforward consequence of Lemma 6.14.
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Next corollary shows that if the section Ssω,hs is small enough, any orbit of the local vector field
Xω will intersect it at most once. This is useful for two reasons. Firstly, it allows us to define a time of
intersection without ambiguity (see definition 6.20). Secondly, it implies that the time length between
two consecutive intersections of an orbit t↦ x(t) of the Wainwright-Hsu vector field X with the section
Ssω,hs cannot be arbitrary small, i.e. admits a uniform positive lower bound (see Lemma 7.10).

Again, we insist on the fact that corollary 6.19 below is about the local vector field Xω and its
orbits. The “real” orbits for the Wainwright-Hsu vector field X can intersect the section Ssω,hs infinitely
many times. The local vector field Xω being a renormalization of X in the neighbourhood of the point
Pω on the Kasner circle, an orbit of Xω is exactly a connected component of an orbit of X (modulo
the local coordinate system ξ).

Corollary 6.19 (Unique intersection with Ssω,hs). There exist two constants C > 0 and n ∈ N such
that for every ω ∈ ]1,+∞[, every 0 < h ≤ (Cωn)−1, for h

s
= (h,min (h, d(ω)) ,min (h, d(ω))) and for

every orbit τ ↦ x(τ) of the local vector field Xω whose initial condition x(0) belongs to the section
S
s
ω,hs , x does not intersect Ssω,hs again in the future nor in the past.

Proof. Let C0 > 0 and n ∈ N be large enough such that we can apply Proposition 6.15 and Propo-
sition 6.18 with these two constants. Let C = 10C0 and α = 4

5
. Let ω ∈ ]1,+∞[, 0 < h ≤ (Cωn)−1,

h
s
= (h,min(h, d(ω)),min(h, d(ω))) and τ ↦ x(τ) be an orbit of the local vector field Xω whose

initial condition x
in ∶= x(0) belongs to the section S

s
ω,hs . Let us denote by ]τ−, τ+[ the maximal

existence interval of x. By symmetry, it is enough to prove that x does not intersect again Ssω,hs in the
future.

First, assume that xin
u ≠ 0. Using Proposition 6.15 with C0 and α, we can apply (6.27b) to get that

for every τ ∈ ]0, τout(x, ω, h)] and every i ∈ {1, 2}, xsi(τ) < h so x(τ) ∉ Ssω,hs . Analogously, we can
apply (6.27a) to get that for every τ ∈ ]τout(x, ω, h), τ+[, xu(τ) > h so x(τ) ∉ Ssω,hs .

We are left to deal with the case where xin
u = 0. Using (6.29), we get that for every τ > 0 and every

i ∈ {1, 2}, xsi(τ) < h. Hence, x(τ) ∉ S
s
ω,hs . This concludes the proof.

We can now give a proof of the proposition on the shadowing of a heteroclinic chain, stated in the
introduction of the present section.

Proof of Proposition 6.8. To simplify the proof, let us treat the case i = 1. Let C0 ≥ 1 and n ∈ N be
large enough such that we can apply Proposition 6.15 and corollary 6.16 with these two constants.
Let C1 = 5C0 and α =

4
5
. Remark that C−1

1 = (1 − α)C−1
0 . Let ω ∈ ]1,+∞[, 0 < h ≤ (C1ω

n)−1,
0 < h⊥ ≤ min( 1

3
h, d(ω)) and τ ↦ x(τ) be an orbit of the local vector field Xω whose initial condition

x
in ∶= x(0) belongs to the section Ssω,hs (where h

s
= (h, h⊥, h⊥)) and satisfies xin

u ≠ 0 (hence xin
u > 0).

Let hu = (h, h, 2h). Using (3.14a), (3.14b), (6.6) and the fact that xin
u ≤

1
3
h, it is straightforward to

check that 0 ≤ τ
∗
≤ τ

out where τout
= τ

out(x, ω, h). According to corollary 6.16, x is well defined on
[0, τout(x, ω, h)]. According to (6.27a), (6.27b) and (6.27c), we have

∥x(τ∗) − Pω∥∞ ≤ e
µu(ω)τ∗x

in
u + e

−αµs1 (ω)τ
∗

h + 2h⊥ (6.30)

Using (3.14a), (3.14b), we get that

e
µu(ω)τ∗

≤ e
2
3

ln
αµs1 (ω)h
µu(ω)xinu

≤ 4h
2
3 (xin

u )−
2
3 (6.31)

and

e
−αµs1 (ω)τ

∗

≤ e
− 1

3
ln
αµs1 (ω)h
µu(ω)xinu

≤ 2h
− 1

3 (xin
u )

1
3 (6.32)

Plugging (6.31) and (6.32) into (6.30), we get that (6.7) holds true.
Recall that

[P s1ω,h, Pω[ = {(0, z, 0, ω) ∣ 0 < z ≤ h}
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According to (6.27a), (6.27b), (6.27c) and (6.31), we have, for every τ ∈ [0, τ∗], 0 ≤ xs1(τ) ≤ h and

∥x(τ) − (0, xs1(τ), 0, ω)∥∞ ≤ 4h
2
3h

1
3

⊥ + 3h⊥ ≤ 7h
1
3

⊥ (6.33)

Moreover, using (6.7), we have, for every z ∈ ]0, xs1(τ
∗)],

∥x(τ∗) − (0, z, 0, ω)∥∞ ≤ ∥x(τ∗) − Pω∥∞ ≤ 6h
2
3h

1
3

⊥ + 2h⊥ ≤ 8h
1
3

⊥ (6.34)

Finally, for every z ∈ [xs1(τ
∗), h = xs1(0)], there exists τ ∈ [0, τ∗] such that z = xs1(τ) and we can

use (6.33) and (6.34) to conclude that

dH (x ([0, τ∗]) , [P s1ω,h, Pω[) ≤ 8h
1
3

⊥

Analogously, we recall that
]Pω, Puω,h] = {(z, 0, 0, ω) ∣ 0 < z ≤ h}

and we get by a straightforward computation that

dH (x ([τ∗, τout]) , ]Pω, Puω,h]) ≤ 8h
1
3

⊥

Hence, (6.8a) and (6.8b) hold true.

6.2 Comparison of two orbits

In this section, we are going to precisely compare two orbits of the local vector field Xω which
simultaneously intersect a section Suω,hu . This will lead to the Lipschitz estimates (6.3) and (6.4) on Υ.

Until the end of this section, we fix C0 ≥ 2 and n0 ∈ N large enough such that we can apply
Proposition 6.15, corollary 6.16 and corollary 6.19 with these two constants. In particular, for every
C ≥ C0 > 0, every n ≥ n0 ∈ N, every 0 < h ≤ (Cωn)−1, for hs = (h,min(h, d(ω)),min(h, d(ω))), for
h
u
= (h, h, 2h) and for any orbit τ ↦ x(τ) of the local vector field Xω, if x intersects Ssω,hs at least

once, then it intersects Ssω,hs and Suω,hu exactly once.

Definition 6.20 (Time of intersection with Ssω,hs). With the same notations as above, if x intersects
S
s
ω,hs then we denote by τ in(x, ω,hs) the unique time τ ∈ R such that x(τ) ∈ Ssω,hs .

Definition 6.21 (Pair of synchronized orbits). Let ω ∈ ]1,+∞[, 0 < h ≤ (Cωn)−1, h
s
=

(h,min(h, d(ω)),min(h, d(ω))) and h
u
= (h, h, 2h). Let τ ↦ x(τ) and τ ↦ x̃(τ) be two orbits

of the local vector field Xω. We say that (x, x̃) is a pair of (Ssω,hs , Suω,hu)-synchronized orbits if

1. x(0) ∈ Ssω,hs .

2. x̃ intersects Ssω,hs before x, i.e τ in(x̃, ω,hs) < 0.

3. x and x̃ intersect Suω,hu at the same time, i.e. τout(x, ω, h) = τout(x̃, ω, h).

If this is the case, we define

x
in def
= x(τ in(x, ω,hs)) ∈ Ssω,hs

x̃
in def
= x̃(τ in(x̃, ω,hs)) ∈ Ssω,hs

x
out def

= x(τout(x, ω, h)) ∈ Suω,hu

x̃
out def

= x̃(τout(x̃, ω, h)) ∈ Suω,hu

See also figure 6.2.
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xu = x
in
u

S
s
ω,hs

S
u
ω,hu

xs1 , xs2

xu

xc

K

•x̃
in

•
x̃(0)

•
x̃

out

•xin

•
x

out

Figure 6.2 – A pair of (Ssω,hs , Suω,hu)-synchronized orbits.

Remark 6.22. Let (x, x̃) be a pair of (Ssω,hs , Suω,hu)-synchronized orbits. Since x and x̃ both intersect
S
u
ω,hu , it follows that x

in
u > 0 and x̃in

u > 0. With these notations, it is straightforward to check that

τ
in(x, ω,hs) = 0

τ
in(x̃, ω,hs) = − 1

µu(ω)
ln
x

in
u

x̃in
u

≤ 0

τ
out(x, ω, h) = τout(x̃, ω, h) = 1

µu(ω)
ln

h

xin
u

Remark 6.23. If (x, x̃) is a pair of (Ssω,hs , Suω,hu)-synchronized orbits, then for every τ ∈ R such that
x(τ) and x̃(τ) are well defined, we have xu(τ) = x̃u(τ) (see figure 6.2).

Remark 6.24. Up to reparametrization, any pair of orbits which both intersect the section Ssω,hs is a
pair of (Ssω,hs , Suω,hu)-synchronized orbits. More precisely, let τ ↦ x(τ) and τ ↦ x̃(τ) be two orbits
of the local vector field Xω which both intersect the section Ssω,hs . Up to a translation in time of x,
one can assume that x(0) ∈ S

s
ω,hs . According to corollary 6.16, x and x̃ both intersect the section

S
u
ω,hu . Up to a translation in time of x̃, one can assume that x and x̃ intersect simultaneously the

section Suω,hu . Up to symmetry, one can assume that x̃ intersects the section Ssω,hs before x. With
these conventions, (x, x̃) is a pair of (Ssω,hs , Suω,hu)-synchronized orbits.

Given a pair (x, x̃) of (Ssω,hs , Suω,hu)-synchronized orbits, the following lemma provides some controls
about the orbit x̃ at the time t = 0.

Lemma 6.25. There exist two constants C > 0 and n ∈ N such that for every ω ∈ ]1,+∞[, every
0 < h ≤ (Cωn)−1, for h

s
= (h,min(h, d(ω)),min(h, d(ω))), hu = (h, h, 2h) and for every pair (x, x̃)

of (Ssω,hs , Suω,hu)-synchronized orbits, we have the following estimates:



84 CHAPTER 6. Dynamics in the neighbourhood of a point of the Kasner circle

(Control in the stable direction) For every i ∈ {1, 2},

»»»»»x̃si(0) − x̃
in
si

»»»»» ≤ Cωh
1

xin
u

»»»»»x
in
u − x̃

in
u
»»»»» (6.36)

(Control in the central direction)

»»»»»x̃c(0) − x̃
in
c
»»»»» ≤ Cω

n
h
x̃
in
u

xin
u

»»»»»x
in
u − x̃

in
u
»»»»» (6.37)

Proof. The two controls are proven independantly.
For every C > 0 and every n ∈ N, we denote by EC,n the set of all (ω, h, x, x̃) such that ω ∈ ]1,+∞[,

0 < h ≤ (Cωn)−1 and (x, x̃) is a pair of synchronized orbits of the local vector field Xω (with respect
to the sections Ssω,hs and Suω,hu , where h

s
= (h,min(h, d(ω)),min(h, d(ω))) and h

u
= (h, h, 2h)). Fix

3/4 < α < 1.

Control of the coordinate x̃c. Recall that τ in(x̃, ω,hs) = − 1
µu(ω)

ln x
in
u

x̃in
u
. Applying (6.27c) on the

time interval [τ in(x̃, ω,hs), 0] (using a translation in time), we get that for every C ≥ C0, every n ≥ n0

and every (ω, h, x, x̃) ∈ EC,n, we have

»»»»»x̃c(0) − x̃
in
c
»»»»» =

»»»»»»»»»
x̃c(0) − x̃c (−

1

µu(ω)
ln
x

in
u

x̃in
u

)
»»»»»»»»»

≤ C0ω
n0 x̃

in
u h

⎛
⎜⎜⎜
⎝

1 − ( x̃
in
u

xin
u

)
α
µs1 (ω)−µu(ω)

µu(ω) ⎞
⎟⎟⎟
⎠

Moreover, using (3.14), we get that αµs1 (ω)−µu(ω)
µu(ω)

=
α
ω
< 1. Recall that 0 <

x̃
in
u

xin
u
≤ 1. Hence,

estimate (6.37) is a consequence of the above inequality.

Control of the coordinate x̃si (i ∈ {1, 2}). Let C ≥ C0, n ≥ n0 and (ω, h, x, x̃) ∈ EC,n. According
to (6.5), x̃si is a solution of the following first order linear differential equation of variable y:

y
′
= −µ̃si(x̃c)y +Xsi(x̃)x̃si

where
Xsi(x̃)

def
= X

u,si
si (x̃)x̃u +Xs1,si

si (x̃)x̃s1 +X
s2,si
si (x̃)x̃s2

Using variation of parameters, we get an implicit expression of x̃si(0), which can be written as follows:

x̃si(0) − x̃
in
si = A1 +A2

where
A1 = (e∫

0

τin(x̃,ω,hs) −µ̃si (x̃c(w))dw
− 1) x̃in

si

and

A2 = ∫
0

τ in(x̃,ω,hs)
e
∫0

w
−µ̃si (x̃c(σ))dσ

Xsi(x̃(w))x̃si(w)dw

Control of ∣A1∣. Applying (6.27c) once again on the time interval [τ in(x̃, ω,hs), 0], we get that
for every τ ∈ [τ in(x̃, ω,hs), 0],

∣x̃c(τ) − ω∣ ≤
»»»»»x̃c(τ) − x̃

in
c
»»»»» + h ≤ 2h (6.38)

There exist C1 ≥ C0 and n1 ≥ n0 such that for every C ≥ C1, every n ≥ n1 and every 0 < h ≤ (Cωn)−1,
we have 2h ≤ 1−α

6ω
. It follows from (6.38) and (6.10) that for every C ≥ C1, every n ≥ n1 and every
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(ω, h, x, x̃) ∈ EC,n, we have

»»»»»»»
e
∫0

τin(x̃,ω,hs) −µ̃si (x̃c(w))dw
− 1

»»»»»»»
≤ 1 − e

−αµs2 (ω)τ
in(x̃,ω,hs)

≤ 1 − ( x̃
in
u

xin
u

)
α
µs2 (ω)
µu(ω)

Hence,

∣A1∣ ≤ h
⎛
⎜⎜⎜
⎝

1 − ( x̃
in
u

xin
u

)
α
µs2 (ω)
µu(ω) ⎞

⎟⎟⎟
⎠

Moreover, we have the elementary fact

for every 0 < z < 1 and every v > 0, 1 − z
v
≤ max(1, v)(1 − z) (6.39)

Let us apply (6.39) with z = x̃
in
u

xin
u

and v = αµs2 (ω)
µu(ω)

= α(1 + ω) ≥ 1. It gives:

∣A1∣ ≤ hα(1 + ω) (1 −
x̃

in
u

xin
u

) ≤ 2ωh
1

xin
u

»»»»»x
in
u − x̃

in
u
»»»»» (6.40)

Control of ∣A2∣. According to (6.10), for every C ≥ C1, every n ≥ n1 and every (ω, h, x, x̃) ∈ EC,n,
we have

e
∫0

w
−µ̃si (x̃c(σ))dσ

≤ e
αµs1 (ω)w

Hence, according to (4.13) and Proposition 6.15, there exist C2 ≥ C1 and n2 ≥ n1 such that for every
C ≥ C2, every n ≥ n2 and every (ω, h, x, x̃) ∈ EC,n, we have

∣A2∣ ≤ C2ω
n2h

2 ∫
0

τ in(x̃,ω,hs)
e
αµs1 (ω)w dw

≤
C2ω

n2h
2

αµs1(ω)
⎛
⎜⎜⎜
⎝

1 − ( x̃
in
u

xin
u

)
αµs1 (ω)
µu(ω) ⎞

⎟⎟⎟
⎠

Let us apply (6.39) with z = x̃
in
u

xin
u

and v = αµs1 (ω)
µu(ω)

= α 1+ω
ω

. One can remark that v < 1 for every ω large
enough and µs1(ω) ∼ω→+∞ 6

ω
. It follows that there exist C3 ≥ C2 such that for every C ≥ C3, every

n ≥ n3 ∶= n2 + 1 and every (ω, h, x, x̃) ∈ EC,n, we have

∣A2∣ ≤ C3ω
n3h

2 1

xin
u

»»»»»x
in
u − x̃

in
u
»»»»» ≤ h

1

xin
u

»»»»»x
in
u − x̃

in
u
»»»»» (6.41)

It follows from (6.40) and (6.41) that for every C ≥ C3, every n ≥ n3 and every (ω, h, x, x̃) ∈ EC,n,
we have

»»»»»x̃si(0) − x̃
in
si

»»»»» ≤ 3ωh
1

xin
u

»»»»»x
in
u − x̃

in
u
»»»»»

so estimate (6.36) holds true with C = max(C3, 3) and n = n3.

We are now going to prove the main technical result of this section. The following proposition gives
Lipschitz estimates on the distance between two synchronized orbits when intersecting the section
S
u
ω,hu . We prove that the Lipschitz constant mostly depends on the distance between their initial

conditions in the section Ssω,hs and the Mixmaster attractor.

Proposition 6.26 (Lipschitz estimates in the section Suω,hu). There exist two constants C > 0 and
n ∈ N such that for every ω ∈ ]1,+∞[, every 3/4 < α < 1, every 0 < h ≤ (1 − α)(Cωn)−1, every
0 < h⊥ ≤ min(h, d(ω)), for h

s
= (h, h⊥,min(h, d(ω))), hu = (h, h, 2h) and for every pair (x, x̃) of

(Ssω,hs , Suω,hu)-synchronized orbits, we have the following estimates:
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(Lipschitz estimate in the direction transverse to the Mixmaster attractor)

ÂÂÂÂÂx
out
− x̃

outÂÂÂÂÂ⊥ ≤ (h⊥)
α
ω Cω

n
h
−α
ω
ÂÂÂÂÂx

in
− x̃

inÂÂÂÂÂ∞ (6.42)

(Lipschitz estimate in the direction tangent to the Mixmaster attractor)

ÂÂÂÂÂ(x
out
− x̃

out) − (xin
− x̃

in)ÂÂÂÂÂ//
≤ Cω

n
h
ÂÂÂÂÂx

in
− x̃

inÂÂÂÂÂ⊥ + Cω
n
h⊥

ÂÂÂÂÂx
in
− x̃

inÂÂÂÂÂ//
(6.43)

Proof. We can assume that xin
≠ x̃

in. Otherwise, the orbits τ ↦ x(τ) and τ ↦ x̃(τ) coincide and the
estimates in Proposition 6.26 are trivial.

Notations. For every C > 0 and every n ∈ N, we denote by EC,n the set of all (ω, α, h, h⊥, x, x̃)
such that ω ∈ ]1,+∞[, 3/4 < α < 1, 0 < h ≤ (1 − α)(Cωn)−1, 0 < h⊥ ≤ min(h, d(ω)) and (x, x̃) is a
pair of (Ssω,hs , Suω,hu)-synchronized orbits, where h

s
= (h, h⊥,min(h, d(ω))) and h

u
= (h, h, 2h)). Let

C0 > 0 and n0 ∈ N be large enough such that we can apply Proposition 4.8 and Lemma 6.25 with
these two constants. For every C ≥ C0, every n ≥ n0 and every (ω, α, h, x, x̃) ∈ EC,n, let

τ
out def

=
1

µu(ω)
ln

h

xin
u

= τ
out(x, ω, h) = τout(x̃, ω, h)

dc(τ)
def
= ∫

τ

0

»»»»»»»
dxc
dτ

(z) − dx̃c
dτ

(z)
»»»»»»»

dz for every τ ∈ [0, τout]

ds(τ)
def
= ∣xs1(τ) − x̃s1(τ)∣ + ∣xs2(τ) − x̃s2(τ)∣ for every τ ∈ [0, τout]

α0
def
=

(1 − α)µu(ω) + αµs1(ω)
µs1(ω)

α
′
0

def
=

1−α0

2
µu(ω) + 1+α0

2
µs1(ω)

µs1(ω)

First, remark that ÂÂÂÂÂx
out − x̃outÂÂÂÂÂ⊥ ≤ ds(τ

out). Secondly, remark that

1 − α0 =
1 − α
1 + ω

(6.44)

and

α0

µs1(ω)
µu(ω)

− 1 = α (
µs1(ω)
µu(ω)

− 1) = α
ω (6.45)

Idea of the proof. We are looking for upper bounds of dc(τout) and ds(τout). The idea is to obtain
cross estimates on both dc(τ) and ds(τ), and then to progress step by step to some controls that are
independant from each other by using Gronwall estimates.

Step 1: control of ds(0). According to (6.36), for every C ≥ C0, every n ≥ n0 and every
(ω, α, h, x, x̃) ∈ EC,n, we have

ds(0) ≤ 2C0ωh
1

xin
u

»»»»»x
in
u − x̃

in
u
»»»»» +

»»»»»x
in
s1 − x̃

in
s1

»»»»» +
»»»»»x

in
s2 − x̃

in
s2

»»»»» (6.46)

Step 2: control of ∣xc(τ) − x̃c(τ)∣ for τ ∈ [0, τout]. According to (6.37), for every C ≥ C0, every
n ≥ n0 and every (ω, α, h, x, x̃) ∈ EC,n, we have

∣xc(τ) − x̃c(τ)∣ ≤ dc(τ) + ∣xc(0) − x̃c(0)∣
≤ dc(τ) +

»»»»»x̃c(0) − x̃
in
c
»»»»» +

»»»»»x
in
c − x̃

in
c
»»»»»

≤ dc(τ) + C0ω
n0h

x̃
in
u

xin
u

»»»»»x
in
u − x̃

in
u
»»»»» +

»»»»»x
in
c − x̃

in
c
»»»»»
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Moreover, C0ω
n0h ≤ 1 and x̃

in
u

xin
u
≤ 1 so

∣xc(τ) − x̃c(τ)∣ ≤ dc(τ) +
ÂÂÂÂÂx

in
− x̃

inÂÂÂÂÂ⊥ +
ÂÂÂÂÂx

in
− x̃

inÂÂÂÂÂ//
(6.47)

Step 3: a control of ds(τ) depending on dc(τ). From now on, τ will often be implicit in the
estimates. Those estimates are valid for every τ ∈ [0, τout]. By definition, we have

dds
dτ

=
x̃s1 − xs1
∣xs1 − x̃s1∣

(
dx̃s1
dτ

−
dxs1
dτ

) +
x̃s2 − xs2
∣xs2 − x̃s2∣

(
dx̃s2
dτ

−
dxs2
dτ

)

According to (6.5),

dx̃s1
dτ

−
dxs1
dτ

= −µ̃ω,s1(x̃c)(x̃s1 − xs1) + (µ̃ω,s1 (xc) − µ̃ω,s1(x̃c))xs1
+Xω,s1(x̃)(x̃s1 − xs1) + (Xω,s1(x̃) −Xω,s1(x))xs1 (6.48)

where Xω,s1(x) = X
u,s1
ω,s1(x)xu+X

s1,s1
ω,s1 (x)xs1 +X

s2,s1
ω,s1 (x)xs2 . According to (6.27c), there exist C1 ≥ C0

and n1 ≥ n0 such that for every C ≥ C1, every n ≥ n1 and every (ω, α, h, x, x̃) ∈ EC,n, we have

∣x̃c − ω∣ ≤
1 − α

24(1 + ω)ω2
(6.49)

Using (6.49) with (6.44) and (6.11), we get

− µ̃ω,s1(x̃c) ≤ −α
′
0µs1(ω) ≤ −

1 + α0

2
µs1(ω) (6.50)

According to the expression of µ̃ω,s1 (see (4.12)) and formulas (3.14), for every C ≥ C1, every n ≥ n1

and every (ω, α, h, x, x̃) ∈ EC,n, we have

∣µ̃ω,s1 (xc) − µ̃ω,s1(x̃c)∣ ≤ 6 ∣xc − x̃c∣ (6.51)

According to (4.13), for every C ≥ C1, every n ≥ n1 and every (ω, α, h, x, x̃) ∈ EC,n, we have

∣Xω,s1(x̃)∣ ∣xs1 − x̃s1∣ ≤ C0ω
n0h ∣xs1 − x̃s1∣

∣Xω,s1(x̃) −Xω,s1(x)∣xs1 ≤ C0ω
n0 (∥x − x̃∥⊥ + ∣xc − x̃c∣)xs1

(6.52)

We can control in the same way the terms that appear in the expression of dx̃s2
dτ

−
dxs2
dτ

. It follows from
(6.48), (6.50), (6.51) and (6.52) (and similar estimates for s2 instead of s1) that there exist C2 ≥ C1

and n2 ≥ n1 such that for every C ≥ C2, every n ≥ n2 and every (ω, α, h, x, x̃) ∈ EC,n, we have

dds
dτ

≤ −
1 + α0

2
µs1(ω)ds + C2ω

n2 ∣xc − x̃c∣ (xs1 + xs2) + C2ω
n2hds

+ C2ω
n2 (∥x − x̃∥⊥ + ∣xc − x̃c∣) (xs1 + xs2)

For every τ ∈ [0, τout], we have xu(τ) = x̃u(τ). Hence, ∥x − x̃∥⊥ ≤ ds. Using (xs1 + xs2) ≤ 2h, it
follows that for every C ≥ C2, every n ≥ n2 and every (ω, α, h, x, x̃) ∈ EC,n, we have

dds
dτ

≤ (−1 + α0

2
µs1(ω) + 3C2ω

n2h) ds + 2C2ω
n2 ∣xc − x̃c∣ (xs1 + xs2)

Using (3.14), we get

µs1(ω) ≥
2
ω (6.53)

According to (6.44) and (6.53), there exist C3 ≥ 2C2 and n3 ≥ n2 such that for every C ≥ C3, every
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n ≥ n3 and every (ω, α, h, x, x̃) ∈ EC,n, we have

3C2ω
n2h ≤

1 − α0

2
µs1(ω)

Hence, for every C ≥ C3, every n ≥ n3 and every (ω, α, h, x, x̃) ∈ EC,n, we have

dds
dτ

≤ −α0µs1(ω)ds + C3ω
n3 ∣xc − x̃c∣ (xs1 + xs2) (6.54)

According to (6.44), there exist C4 ≥ 2C3 and n4 ≥ n3 such that for every C ≥ C4, every n ≥ n4 and
every (ω, α, h, x, x̃) ∈ EC,n, we can apply the control (6.27b) to (ω, α0, h, x) and obtain the following
control on (xs1 + xs2):

(xs1(τ) + xs2(τ)) ≤ e
−α0µs1 (ω)τ(xs1(0) + xs2(0)) (6.55)

Plugging (6.47) and (6.55) into (6.54) and using the fact that (xs1(0) + xs2(0)) ≤ 2h, we get that for
every C ≥ C4, every n ≥ n4 and every (ω, α, h, x, x̃) ∈ EC,n,

dds
dτ

(τ) ≤ −α0µs1(ω)ds(τ) + C4ω
n3he

−α0µs1 (ω)τ(dc(τ) +
ÂÂÂÂÂx

in
− x̃

inÂÂÂÂÂ⊥ +
ÂÂÂÂÂx

in
− x̃

inÂÂÂÂÂ//
)

which can be rewritten in the form

e
α0µs1 (ω)τ dds

dτ
(τ) + α0µs1(ω)e

α0µs1 (ω)τds(τ) ≤ C4ω
n3h (dc(τ) +

ÂÂÂÂÂx
in
− x̃

inÂÂÂÂÂ⊥ +
ÂÂÂÂÂx

in
− x̃

inÂÂÂÂÂ//
)

We recognize the derivative of eα0µs1 (ω)τds(τ) in the left side of the above inequality. By integrating
between 0 and τ , we find:

ds(τ) ≤ e−α0µs1 (ω)τds(0)

+ C4ω
n3he

−α0µs1 (ω)τ (∫
τ

0
dc(z)dz + τ (ÂÂÂÂÂx

in
− x̃

inÂÂÂÂÂ⊥ +
ÂÂÂÂÂx

in
− x̃

inÂÂÂÂÂ//
)) (6.56)

Step 4: an integral inequation for dc(τ). According to (6.5) and the fact that xu(τ) = x̃u(τ) for
every τ ∈ [0, τout], we have

ddc
dτ

= xu ∣Xu,s1
c (x̃)(x̃s1 − xs1) + (Xu,s1

c (x̃) −Xu,s1
c (x))xs1

+X
u,s2
c (x̃)(x̃s2 − xs2) + (Xu,s2

c (x̃) −Xu,s2
c (x))xs2∣

According to the estimate (4.13) on the non linear terms, there exist C5 ≥ C4 and n5 ≥ n4 such that
for every C ≥ C5, every n ≥ n5 and every (ω, α, h, x, x̃) ∈ EC,n, we have

ddc
dτ

≤ C5ω
n5xu(ds + ∣xc − x̃c∣ (xs1 + xs2)) (6.57)

Plugging (6.47) and (6.55) into (6.57), using the formula xu(τ) = eµu(ω)τxin
u and the estimate

(xs1(0) + xs2(0)) ≤ 2h

we get that, for every C ≥ C5, every n ≥ n5 and every (ω, α, h, x, x̃) ∈ EC,n:

ddc
dτ

(τ) ≤ C5ω
n5e

µu(ω)τx
in
u ds(τ)

+ 2C5ω
n5he

(µu(ω)−α0µs1 (ω))τx
in
u (dc(τ) +

ÂÂÂÂÂx
in
− x̃

inÂÂÂÂÂ⊥ +
ÂÂÂÂÂx

in
− x̃

inÂÂÂÂÂ//
) (6.58)

Plugging (6.56) into (6.58), there exist C6 ≥ C5 and n6 ≥ n5 such that for every C ≥ C6, every n ≥ n6
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and every (ω, α, h, x, x̃) ∈ EC,n, we have

ddc
dτ

(τ) ≤ C6ω
n6e

(µu(ω)−α0µs1 (ω))τx
in
u [ds(0)

+h (dc(τ) + ∫
τ

0
dc(z)dz + (1 + τ) (ÂÂÂÂÂx

in
− x̃

inÂÂÂÂÂ⊥ +
ÂÂÂÂÂx

in
− x̃

inÂÂÂÂÂ//
))]

For any C ≥ C6, any n ≥ n6 and any (ω, α, h, x, x̃) ∈ EC,n, let

T (x, x̃) def
= sup {t ≥ 0 ∣∀τ ∈ [0, t] , dc(τ) ≤

ÂÂÂÂÂx
in
− x̃

inÂÂÂÂÂ⊥ +
ÂÂÂÂÂx

in
− x̃

inÂÂÂÂÂ//
} > 0

T̂ (x, x̃) def
= min (T (x, x̃), τout)

By definition of T (x, x̃), for every C ≥ C6, every n ≥ n6, every (ω, α, h, x, x̃) ∈ EC,n and every
τ ∈ [0, T̂ (x, x̃)], we have

ddc
dτ

(τ) ≤ C6ω
n6he

(µu(ω)−α0µs1 (ω))τx
in
u dc(τ)

+ 2C6ω
n6e

(µu(ω)−α0µs1 (ω))τx
in
u (ds(0) + h(1 + τ) (

ÂÂÂÂÂx
in
− x̃

inÂÂÂÂÂ⊥ +
ÂÂÂÂÂx

in
− x̃

inÂÂÂÂÂ//
))

and by using formula (6.45) under the form µu(ω) − α0µs1(ω) = −α(µs1(ω) − µu(ω)), we get

ddc
dτ

(τ) ≤ C6ω
n6he

−α(µs1 (ω)−µu(ω))τx
in
u dc(τ)

+ 2C6ω
n6e

−α(µs1 (ω)−µu(ω))τx
in
u (ds(0) + h(1 + τ) (

ÂÂÂÂÂx
in
− x̃

inÂÂÂÂÂ⊥ +
ÂÂÂÂÂx

in
− x̃

inÂÂÂÂÂ//
)) (6.59)

Using the fact that dc(0) = 0, integration of the inequality (6.59) between 0 and τ gives

dc(τ) ≤ γ1(τ) + ∫
τ

0
γ2(z)dc(z)dz

where

γ1(τ) = 2C6ω
n6x

in
u (ds(0) + h (ÂÂÂÂÂx

in
− x̃

inÂÂÂÂÂ⊥ +
ÂÂÂÂÂx

in
− x̃

inÂÂÂÂÂ//
))∫

τ

0
e
−α(µs1 (ω)−µu(ω))z dz

+ 2C6ω
n6x

in
u h (ÂÂÂÂÂx

in
− x̃

inÂÂÂÂÂ⊥ +
ÂÂÂÂÂx

in
− x̃

inÂÂÂÂÂ//
)∫

τ

0
ze
−α(µs1 (ω)−µu(ω))z dz

and
γ2(τ) = C6ω

n6he
−α(µs1 (ω)−µu(ω))τx

in
u

Using Gronwall’s lemma, we obtain the following control of dc(τ) for τ ∈ [0, T̂ (x, x̃)]:

dc(τ) ≤ γ1(τ) + ∫
τ

0
γ1(z)γ2(z)e∫

τ

z
γ2(σ)dσ

dz (6.60)

Here, the proof is essentially complete. Indeed, (6.60) is an explicit estimate on dc(τ) and by plugging
it in (6.56), we obtain an explicit estimate on ds(τ). We are left to find upper bounds on the explicit
functions γ1 and γ2.

Step 5: controls of γ1 and γ2 on [0, T̂ (x, x̃)]. Using (3.14), we get

µs1(ω) − µu(ω) ≥
2

ω2
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Hence, for every C ≥ C6, every n ≥ n6, every (ω, α, h, x, x̃) ∈ EC,n and every τ ∈ [0, T̂ (x, x̃)], we have

∫
τ

0
e
−α(µs1 (ω)−µu(ω))z dz ≤

1

α(µs1(ω) − µu(ω))
≤

2

3
ω

2

∫
τ

0
ze
−α(µs1 (ω)−µu(ω))z dz ≤

1

α2(µs1(ω) − µu(ω))2
≤

4

9
ω

4
(6.61)

According to (6.61) and using the fact that xin
u ≤ h, there exist C7 ≥ C6 and n7 ≥ n6 such that for

every C ≥ C7, every n ≥ n7, every (ω, α, h, x, x̃) ∈ EC,n, every τ ∈ [0, T̂ (x, x̃)] and every 0 ≤ z ≤ τ ,
we have

∫
τ

z
γ2(σ)dσ ≤ C7ω

n7h
2 (6.62)

According to (6.61), there exist C8 ≥ C7 and n8 ≥ n7 such that for every C ≥ C8, every n ≥ n8, every
(ω, α, h, x, x̃) ∈ EC,n and every τ ∈ [0, T̂ (x, x̃)], we have

γ1(τ) ≤ C8ω
n8x

in
u (ds(0) + h (ÂÂÂÂÂx

in
− x̃

inÂÂÂÂÂ⊥ +
ÂÂÂÂÂx

in
− x̃

inÂÂÂÂÂ//
)) (6.63)

Plugging (6.46) into (6.63), it follows that there exist C9 ≥ C8 and n9 ≥ n8 such that for every C ≥ C9,
every n ≥ n9, every (ω, α, h, x, x̃) ∈ EC,n and every τ ∈ [0, T̂ (x, x̃)], we have

γ1(τ) ≤ C9ω
n9h

»»»»»x
in
u − x̃

in
u
»»»»» + C9ω

n9x
in
u (»»»»»x

in
s1 − x̃

in
s1

»»»»» +
»»»»»x

in
s2 − x̃

in
s2

»»»»» +
»»»»»x

in
c − x̃

in
c
»»»»») (6.64)

Step 6: control of dc and proof of (6.43). Plugging the estimates obtained in the preceding step
into (6.60), it follows that there exist C10 ≥ C9 and n10 ≥ n9 such that for every C ≥ C10, every
n ≥ n10, every (ω, α, h, x, x̃) ∈ EC,n and every τ ∈ [0, T̂ (x, x̃)], we have

dc(τ) ≤ C10ω
n10h

»»»»»x
in
u − x̃

in
u
»»»»» + C10ω

n10x
in
u (»»»»»x

in
s1 − x̃

in
s1

»»»»» +
»»»»»x

in
s2 − x̃

in
s2

»»»»» +
»»»»»x

in
c − x̃

in
c
»»»»») (6.65)

Let C11 = 2C10 and n11 = n10. For every C ≥ C11, every n ≥ n11 and every (ω, α, h, x, x̃) ∈ EC,n, we
have

C10ω
n10h ≤

1

6
(6.66)

Let C ≥ C11, n ≥ n11 and (ω, α, h, x, x̃) ∈ EC,n. Assume that T (x, x̃) < τout. Using (6.65) and (6.66),
we have,

dc(T (x, x̃)) ≤
1

2
(ÂÂÂÂÂx

in
− x̃

inÂÂÂÂÂ⊥ +
ÂÂÂÂÂx

in
− x̃

inÂÂÂÂÂ//
)

Since dc is well defined and continuous (at least) on [0, τout], the above inequality contradicts the
maximality of T (x, x̃). It follows that

T (x, x̃) ≥ τout (6.67)

By definition of dc, we have

»»»»»(x̃
out
c − x

out
c ) − (x̃in

c − x
in
c )»»»»» ≤ dc(τ

out) + »»»»»x̃c(0) − x̃
in
c
»»»»» (6.68)

Plugging (6.65) into (6.68) and using (6.37), it follows that there exists C12 ≥ C11 and n12 ≥ n11 such
that for every C ≥ C12, every n ≥ n12 and every (ω, α, h, x, x̃) ∈ EC,n, we have

ÂÂÂÂÂ(x
out
− x̃

out) − (xin
− x̃

in)ÂÂÂÂÂ//
≤ C12ω

n12h
ÂÂÂÂÂx

in
− x̃

inÂÂÂÂÂ⊥ + C12ω
n12h⊥

ÂÂÂÂÂx
in
− x̃

inÂÂÂÂÂ//

Hence, (6.43) holds true.

Step 7: control of ds and proof of (6.42). According to (6.67) and (6.56), for every C ≥ C12, every
n ≥ n12, every (ω, α, h, x, x̃) ∈ EC,n and every τ ∈ [0, τout], we have

ds(τ) ≤ e−α0µs1 (ω)τds(0) + 2C4ω
n3hτe

−α0µs1 (ω)τ (ÂÂÂÂÂx
in
− x̃

inÂÂÂÂÂ⊥ +
ÂÂÂÂÂx

in
− x̃

inÂÂÂÂÂ//
) (6.69)

Plugging (6.46) into (6.69), it follows that there exist C13 ≥ C12 and n13 ≥ n12 such that for every
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C ≥ C13, every n ≥ n13, every (ω, α, h, x, x̃) ∈ EC,n and every τ ∈ [0, τout], we have

ds(τ) ≤ C13ω
n13he

−α0µs1 (ω)τ ÂÂÂÂÂx
in
− x̃

inÂÂÂÂÂ∞ ( 1

xin
u

+ τ) (6.70)

It remains to evaluate this inequality for t = τout. According to formula (6.45), we have

ÂÂÂÂÂx
out
− x̃

outÂÂÂÂÂ⊥ ≤ C13ω
n13h(x

in
u

h
)
α0

µs1 (ω)
µu(ω) ÂÂÂÂÂx

in
− x̃

inÂÂÂÂÂ∞ ( 1

xin
u

+
1

µu(ω)
ln

h

xin
u

)

≤ C13ω
n13 (x

in
u

h
)
α
ω ÂÂÂÂÂx

in
− x̃

inÂÂÂÂÂ∞ (1 −
h

µu(ω)
x

in
u

h
ln
x

in
u

h
)

Moreover, z ↦ z ln z is bounded on [0, 1] and µu(ω) ∼ω→+∞ 6/ω (see (3.14)) so there exist C14 ≥ C13

and n14 ≥ n13 such that for every C ≥ C14, every n ≥ n14 and every (ω, α, h, x, x̃) ∈ EC,n, we have

ÂÂÂÂÂx
out
− x̃

outÂÂÂÂÂ⊥ ≤ (h⊥)
α
ω C14ω

n14h
−α
ω
ÂÂÂÂÂx

in
− x̃

inÂÂÂÂÂ∞ (6.71)

Hence, (6.42) holds true.

6.3 Control of the transition maps Υω,hs,hu

Recall that
d(ω) = ω − 1

4

Proof of Proposition 6.1. Let C0 > 0 and n0 ∈ N be large enough such that we can apply corollary 6.16
and Proposition 6.26 with these two constants.

Proof of (6.1) and (6.2). There is nothing to prove when xu = 0 since in that case the left hands
of the inequalities vanish (see (5.10)). For every C > 0 and every n ∈ N, we denote by EC,n the
set of all (ω, h, h⊥, x) such that ω ∈ ]1,+∞[, 0 < h ≤ (Cωn)−1, 0 < h⊥ < min(h, d(ω)) and x is an
orbit of the local vector field Xω whose initial condition x

in ∶= x(0) belongs to the section S
s
ω,hs

where h
s
= (h, h⊥,min(h, d(ω))) and such that xin

u ≠ 0. For every C ≥ C0, every n ≥ n0 and every
(ω, h, h⊥, x) ∈ EC,n, we denote h

s ∶= (h, h⊥,min(h, d(ω))) and h
u ∶= (h, h, 2h) and Υ ∶= Υω,hs,hu .

For every ω ∈ ]1,+∞[, let
α(ω) def

= max ( ω

ω + 1
,

4

5
)

Observe that
1 − α(ω) = min ( 1

ω + 1
,

1

5
) ≥ 1

5ω

Set C1 = 5C0 and n1 = n0 + 1. Let C ≥ C1, n ≥ n1 and (ω, h, h⊥, x) ∈ EC,n. Observe that

h ≤
1

Cωn
≤

1 − α(ω)
C0ω

n0

It follows that we can apply corollary 6.16 to (ω, α(ω), h, h⊥, x). This yields

ÂÂÂÂÂΥ(xin) −Υ
A(xin)ÂÂÂÂÂ⊥ ≤ (h⊥)1+α(ω)

ω h
−α(ω)

ω

ÂÂÂÂÂΥ(xin) −Υ
A(xin)ÂÂÂÂÂ//

≤ h⊥hC0ω
n0
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Moreover, we have

α(ω)
ω < 1,

1 +
α(ω)
ω ≥

ω + 2

ω + 1
,

and 0 < h⊥ < 1. Hence,

(h⊥)1+α(ω)
ω h

−α(ω)
ω ≤ h

ω+2
ω+1

⊥ h
−1

This concludes the proof of (6.1) and (6.2).

Continuity of Υ. Recall that for every z ∈ S
s
ω,hs such that zu = 0, we have Υ(z) = (h, 0, 0, zc)

(see (5.10)). According to (6.1) and (6.2), for every z ∈ Ssω,hs such that zu = 0, we have

lim
x→z

Υ(x) = (h, 0, 0, zc) = Υ(z)

so Υ is continuous at z.

Proof of (6.3) and (6.4). By symmetry, we can reduce the problem to the case where x̃u ≤ xu.
By continuity of the map Υ at points z such that zu = 0, we can reduce the problem to the case
where 0 < x̃u ≤ xu. For every C > 0 and every n ∈ N, we denote by FC,N the set of all (ω, h, h⊥, x, x̃)
such that ω ∈ ]1,+∞[, 0 < h ≤ (Cωn)−1, 0 < h⊥ < min(h, d(ω)) and (x, x̃) is a pair of (Ssω,hs , Suω,hu)-
synchronized orbits, where h

s ∶= (h, h⊥,min(h, d(ω))) and h
u ∶= (h, h, 2h). For every C ≥ C1, every

n ≥ n1 and every (ω, h, h⊥, x, x̃) ∈ FC,N , we have

h ≤ (Cωn)−1
≤

1 − α(ω)
C0ω

n0

Hence, we can apply Proposition 6.26 to (ω, α(ω), h, h⊥, x), which yields

ÂÂÂÂÂΥ(xin) −Υ(x̃in)ÂÂÂÂÂ⊥ ≤ (h⊥)
α(ω)
ω C0ω

n0h
−α(ω)

ω
ÂÂÂÂÂx

in
− x̃

inÂÂÂÂÂ∞ÂÂÂÂÂ(Υ(xin) −Υ(x̃in)) − (xin
− x̃

in)ÂÂÂÂÂ//
≤ C0ω

n0h
ÂÂÂÂÂx

in
− x̃

inÂÂÂÂÂ⊥ + C0ω
n0h⊥

ÂÂÂÂÂx
in
− x̃

inÂÂÂÂÂ//

One can remark that there exists 4/5 < d < 1 such that for every ω ∈ ]1,+∞[, α(ω)
ω

≤ d. Moreover,
for every C2 ≥ C1 and every n2 ≥ n1 such that

C
1−d
2 ≥ C0 and n2(1 − d) ≥ n0

every ω ∈ ]1,+∞[ and every 0 < h ≤ (C2ω
n2)−1, we have C0ω

n0h
−α(ω)

ω ≤ h
−1. Hence, for every

C ≥ C2, every n ≥ n2 and every (ω, h, h⊥, x, x̃) ∈ FC,N , we have

ÂÂÂÂÂΥ(xin) −Υ(x̃in)ÂÂÂÂÂ⊥ ≤ h
1
ω+1

⊥ h
−1 ∥x − x̃∥∞

ÂÂÂÂÂ(Υ(xin) −Υ(x̃in)) − (xin
− x̃

in)ÂÂÂÂÂ//
≤ C0ω

n0h
ÂÂÂÂÂx

in
− x̃

inÂÂÂÂÂ⊥ + C0ω
n0h⊥

ÂÂÂÂÂx
in
− x̃

inÂÂÂÂÂ//

Since
ÂÂÂÂÂΥ(xin) −Υ(x̃in)ÂÂÂÂÂ⊥ =

ÂÂÂÂÂ(Υ(xin) −Υ(x̃in)) − (Υ
A(xin) −Υ

A(x̃in))ÂÂÂÂÂ⊥ÂÂÂÂÂ(Υ(xin) −Υ(x̃in)) − (xin
− x̃

in)ÂÂÂÂÂ//
=

ÂÂÂÂÂ(Υ(xin) −Υ(x̃in)) − (Υ
A(xin) −Υ

A(x̃in))ÂÂÂÂÂ//

this concludes the proof of (6.3) and (6.4).



Chapter7
Dynamics in the neighbourhood of a type II
orbit

The goal of this section is to give some estimates on the transition map Ψω,hu,hs (see definition 5.23).
We will show that this map is “very close” to the Kasner map f . Recall that Ψω,hu,hs describes the
behaviour of the orbits of the Wainwright-Hsu vector field X in the neighbourhood of the type II orbit
OPω→Pf(ω) . More precisely, Ψω,hu,hs is the transition map from the section Suω,hu (which intersects
OPω→Pf(ω) close to its “initial point” Pω) to the section Ssf(ω),hs (which intersects OPω→Pf(ω) close to
its “final point” Pf(ω)) Observe that the situation is quite different from those of chapter 6. We are no
more studying the local dynamics of a vector field in the vicinity of a singular point, but rather the
large scale dynamics of a non-linear vector field. As a consequence, the estimates proven here for the
map Ψω,hu,hs will be far less precise than the ones obtained in Proposition 6.1 for the map Υω,hs,hu .

Define, for any ω ∈ ]1,+∞[ \ {2},

i(ω) def
= {1 if ω > 2

2 if 1 < ω < 2
(7.1)

Recall that for any ω ∈ ]1,+∞[ \ {2}, the type II orbit OPω→Pf(ω) is tangent to the direction ∂xsi(ω)
at

the final point Pf(ω). As a consequence, by continuity of the flow, if the section Suω,hu is sufficiently
small, the orbits starting in Suω,hu will intersect the section Ssf(ω),hs for the first time in Ssi(ω)

f(ω),hs .

For a technical reason explained below, we will often encounter the quantity min (1, (ω − 2)2) in
the estimates. Hence, we introduce the notation

m(ω) def
= min (1, (ω − 2)2)

Recall that ProjA is the projection on the Mixmaster attractor (see definition 5.1) and recall that
Ψ
A
ω,hu,hs = Ψω,hu,hs ◦ ProjA. Moreover, the map Ψ

A
ω,hu,hs admits an explicit expression (see (5.12)).

We can now give a formal statement of the main results of this section.

Proposition 7.1 (Control of the transition map Ψω,hu,hs). There exist two constants C̃1 ≥ 1 and
ñ1 ∈ N such that the properties below hold for ω ∈ ]1,+∞[ \ {2}, 0 < h

u
≤ (C̃1ω

ñ1)−1, 0 < h
s
≤

(C̃1f(ω)ñ1)−1, h = min (hu, hs), 0 < h⊥ ≤ h
C̃1ω, hu = (hu, h⊥m(ω), hC̃1ωm(ω)) and h

s
= (hs, hs, hs).

The transition map
Ψω,hu,hs ∶ S

u
ω,hu → S

s
f(ω),hs

is well defined and takes its values in S
si(ω)
f(ω),hs . Moreover, for every y, ỹ ∈ Suω,hu we have the following

estimates, where Ψ ∶= Ψω,hu,hs and Ψ
A ∶= Ψ

A
ω,hu,hs :

(Control of the distance to the Mixmaster attractor)

dist∞ (Ψ(y), A) = ÂÂÂÂÂΨ(y) −Ψ
A(y)ÂÂÂÂÂ⊥ ≤ h⊥h

−C̃1ω (7.2)

93
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(Control of the drift tangential to the Mixmaster attractor)

ÂÂÂÂÂΨ(y) −Ψ
A(y)ÂÂÂÂÂ//

≤ h⊥h
−C̃1ω (7.3)

(Lipschitz control in the direction transverse to the Mixmaster attractor)

ÂÂÂÂÂ(Ψ(y) −Ψ(ỹ)) − (Ψ
A(y) −Ψ

A(ỹ))ÂÂÂÂÂ⊥ ≤ (∥y − ỹ∥⊥ + h⊥ ∥y − ỹ∥//)h
−C̃1ω (7.4)

(Lipschitz control in the direction tangent to the Mixmaster attractor)

ÂÂÂÂÂ(Ψ(y) −Ψ(ỹ)) − (Ψ
A(y) −Ψ

A(ỹ))ÂÂÂÂÂ//
≤ (∥y − ỹ∥⊥ + h⊥ ∥y − ỹ∥//)h

−C̃1ω (7.5)

Remark 7.2. Proposition 7.1 describes the behaviour of the orbits of the Wainwright-Hsu vector field
X traveling from a section Suω,hu to a section Ssf(ω),hs . The vector field is non-linear and the traveling
time is very long (it tends to infinity as h→ 0 or ω → +∞). As a consequence, to ensure that an orbit
starting in Suω,hu will cut the section Ssf(ω),hs , the size of the section Suω,hu must be very small. This is
why, in Proposition 7.1, the size

h
C̃1ωm(ω)

of the section Suω,hu is “extremely small” compared to the parameters hu and hs, especially when ω is
very large, i.e. when the type II orbit OPω→Pf(ω) is “close” to the Taub point.

Remark 7.3 (Technical detail). The quantity m(ω) appear in the upper bound of the size of the section
S
u
ω,hu for some purely technical reasons. If ω = 2, the type II orbit Ou

ω arrives at the point Pf(ω) of
Kasner parameter f(ω) = 1. However, the local coordinate system ξ = (xu, xs1 , xs2 , xc) is not defined
in the neighbourhood of this point. For this reason, we do not want the section Suω,hu to cross the
hyperplane ω = 2.

The second result of this section will be used in Chapter 11 to prove that certain orbits shadow a
heteroclinic chain.

Proposition 7.4 (Shadowing of a type II orbit). For every ε > 0, there exists η > 0 such that
for ω ∈ ]1,+∞[ \ {2}, 0 < h

u
≤ (C̃1ω

ñ1)−1, 0 < h
s
≤ (C̃1f(ω)ñ1)−1, h = min (hu, hs), h

u
=

(hu, ηhC̃1ωm(ω), ηhC̃1ωm(ω)), hs = (hs, hs, hs) and q ∈ Suω,hu , the Hausdorff distance between two
(minimal) orbit segments joining the section Suω,hu and the section Ssf(ω),hs (in that order) is less than
ε.

We now define a hitting time with the section Ssf(ω),hs for the orbits in B+.

Definition 7.5 (Hitting time). Let ω ∈ ]1,+∞[ \ {2}, hs > 0 and h
s
= (hs, hs, hs). Assume that

S
s
f(ω),hs is included in the range of the local coordinates ξ, so that the geometrical section Ssf(ω),hs is

well defined. For every q ∈ B+, we define

τω,hs(q)
def
= inf {t > 0 ∣ X t(q) ∈ Ssf(ω),hs} ∈ ]0,+∞]

Remark 7.6. With the notations of Proposition 7.1, for q ∈ Suω,hu , τω,hs(q) is the traveling time between
q and its image by the transition map Ψω,hu,hs . In particular, τω,hs(Puω,hu) is the traveling time of
the type II orbit OPω→Pf(ω) between the sections Suω,hu and Ssf(ω),hs .

Organization of the proof of Proposition 7.1. The main difficulty is to find some estimates on
the traveling time τω,hs . Once we will have proven these estimates on τω,hs , we will easily deduce
the estimates on the transition map Ψω,hu,hs using Gronwall’s lemma. To study τω,hs , we proceed as
follows:

1. We first obtain an estimate on τω,hs(Puω,hu) using directly the Wainwright-Hsu equations (2.16a).
This is possible because τω,hs(Puω,hu) is the traveling time of the type II orbit OPω→Pf(ω) between
the sections Suω,hu and Ssf(ω),hs and this orbit is explicit.
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t

N1(t)

0

−h
u

−h
s

Tend

−1
1000ω

t2t1

Figure 7.1 – Graph of t↦ N1(t). Tend = τω,hs(Puω,hu).

2. Then we construct a flow box in the neighbourhood of the point Psi(ω)
f(ω),hs and we bound the flow

box coordinates. Recall that Psi(ω)
f(ω),hs = X τω,hs (Puω,hu )(Puω,hu) = ξ−1 ◦Ψω,hu,hs ◦ ξ(Puω,hu).

3. Finally, we use a formula for Ψω,hu,hs depending on X , the traveling time τω,hs(Puω,hu) and the
flow box to get the desired estimates on Ψω,hu,hs .

7.1 Traveling time of type II orbits
Recall that τω,hs(Puω,hu) is the traveling time of the type II orbit OPω→Pf(ω) from the section Suω,hu to
the section Ssf(ω),hs .

Proposition 7.7 (Estimates on the traveling time of type II orbits). There exist two constants C̃2 > 0

and ñ2 ∈ N such that for every ω ∈ ]1,+∞[, every 0 < h
u
≤ (C̃2ω

ñ2)−1, every 0 < h
s
≤ (C̃2f(ω)ñ2)−1

and for h = min (hu, hs), the traveling time satisfies

ω

C̃2

≤ τω,hs(Puω,hu) ≤ C̃2ω ln ( 1

h
) (7.6)

Proof. According to Proposition 4.2, there exist C0 > 0 and n0 ≥ 1 such that for any ω ∈ ]1,+∞[, the
range Uξ of the local coordinate system contains the ball Bω,C0,n0

. We can and we will assume that
C0 ≥ 2000. Let ω ∈ ]1,+∞[, 0 < h

u
≤ (C0ω

n0)−1, 0 < h
s
≤ (C0f(ω)n0)−1 and h = min (hu, hs). To

control the traveling time τω,hs(Puω,hu), we can lift the type II orbit OPω→Pf(ω) into B
+. Recall that

OPω→Pf(ω) has six lifts in B
+. Two of these lifts are such that N1 > 0, N2 = 0 and N3 = 0. We choose

one, denoted by
t↦ O(t) = (N1(t), 0, 0,Σ1(t),Σ2(t),Σ3(t))

Using a time translation, we can and we will assume that O(0) is a lift of Puω,hu . This property is
equivalent to N1(0) = hu and N ′

1(0) > 0. With this parametrization, τω,hs(Puω,hu) is the unique time
T verifying N1(T ) = hs and N ′

1(T ) < 0. Moreover, O(τω,hs(Puω,hu)) is a lift of Psi(ω)
f(ω),hs . See figure 7.1.

Denote by Pω the lift of Pω such that O starts at Pω, i.e. limt→−∞ O(t) = Pω. Recall that near the
point Pω, N1 = xu, while near the point F (Pω), N1 = xsi(ω) .

Recall the evolution equations

N
′
1 = −(q + 2Σ1)N1 (7.7)

Σ
′
1 =

1

6
N

2
1 (Σ1 + 4) (7.8)
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where q = 1
3
(Σ

2
1 + Σ

2
2 + Σ

2
3). To control the traveling time, one must control the quantities q + 2Σ1

and N2
1 . Next lemma shows that these two quantities cannot be simultaneously “too small”.

Claim 1. For every point (N1, 0, 0,Σ1,Σ2,Σ3) in the type II orbit O, either N1 >
1

1000ω
or ∣q + 2Σ1∣ ≥

1
ω
.

Proof of claim 1. Let (N1, 0, 0,Σ1,Σ2,Σ3) be a point in the type II orbit O. Let M =

(0, 0, 0,Σ1,Σ2,Σ3) be its projection onto the (Σ1,Σ2,Σ3)-plane. Denote by d the Euclidean dis-
tance on R6. The proof essentially follows from the formula

q + 2Σ1 =
1

3
d(M,Q1)2

− 2 (7.9)

which proves that q + 2Σ1 varies as a squared distance. Using (3.14) and the fact that at the point
Pω, the quantity −(q + 2Σ1) coincide with the unstable eigenvalue of the Wainwright-Hsu vector field
−(2 + 2Σ1), it follows from (7.9) that

»»»»»»»
1

3
d(Pω, Q1)2

− 2
»»»»»»»
≥

2
ω (7.10)

Analogously, we have »»»»»»»
1

3
d(F (Pω), Q1)2

− 2
»»»»»»»
≥

2
ω (7.11)

Recall the constraint equation (3.4):

6 − 3q =
1

2
N

2
1 (7.12)

and observe that 3q is the square of the distance between the point M and the center of the Kasner
circle and 6 is the square of the radius of the Kasner circle. The constraint equation (7.12) implies
that, if N1 is small, then M is very close to the Kasner circle. Since M belongs to the projection of
the type II orbit O, M must be close to one of the two end points Pω and F (Pω). More precisely,
one easily checks that if N1 ≤

1
1000ω

, then

min (d (M,Pω) , d (M,F (Pω))) ≤
1

100ω
(7.13)

Using (7.10), (7.11) and (7.13), we get that if N1 ≤
1

1000ω
, then »»»»»

1
3
d(M,Q1)2 − 2

»»»»» ≥
1
ω
. The claim

follows from (7.9).

We know that N1 is increasing and then decreasing along the type II orbit. Moreover, re-
call that N1(0) = h

u and N1(τω,hs(Puω,hu)) = h
s (see figure 7.1). Hence, ∣N1(0)∣ < 1

1000ω
and

∣N1(τω,hs(Puω,hu))∣ < 1
1000ω

. It follows that there exist 0 < t1 < t2 < τω,hs(Puω,hu) such that

1. On [0, t1], N1 is increasing and N1(t) ≤ 1
1000ω

.

2. On ]t1, t2[, N1(t) > 1
1000ω

.

3. On [t2, τω,hs(Puω,hu)], N1 is decreasing and N1(t) ≤ 1
1000ω

.

Upper bound for t1 and τω,hs(Puω,hu)− t2. Using the evolution equation (7.7) and claim 1 on [0, t1],
we get that for every t ∈ [0, t1],

»»»»»N
′
1(t)

»»»»» ≥
1
ω
N1(t). By integrating this inequality between 0 and t1,

we get

t1 ≤ ω ln
1

hu
≤ ω ln

1

h
(7.14)

By an analogous reasoning on [t2, τω,hs(Puω,hu)], we get

τω,hs(Puω,hu) − t2 ≤ ω ln
1

hs
≤ ω ln

1

h
(7.15)

Lower and upper bounds for t2 − t1.



7.2. Construction of a flow box 97

Claim 2. For every point (N1, 0, 0,Σ1,Σ2,Σ3) in the type II orbit O, we have

N1 ≤
100
ω (7.16)

Proof of claim 2. Let (N1, 0, 0,Σ1,Σ2,Σ3) be a point in the type II orbit O. Let M =

(0, 0, 0,Σ1,Σ2,Σ3) be its projection onto the (Σ1,Σ2,Σ3)-plane. The projection of O onto the
(Σ1,Σ2,Σ3)-plane is explicitly known: it is the chord whose end points are Pω and F (Pω). Using
the coordinates of Pω and F (Pω), one can get that d(Pω,F (Pω)) ≤ 18

√
2

ω
. Hence, d(M,K ) ≤ 100

ω2 .
Recall that 3q is the square of the distance between the point M and the center of the Kasner circle
and 6 is the square of the radius of the Kasner circle. It follows that 3q ≥ 6 − 1000

ω2 and, using the
constraint equation (7.12), we get N1 ≤

100
ω
. This concludes the proof of claim 2.

We are left to find some lower and upper bounds for the variation of Σ1 on ]t1, t2[. According
to the constraint equation (7.12), q(t1) = q(t2). According to claim 1, (q + 2Σ1) (t2) ≥

1
ω

and
(q + 2Σ1) (t1) ≤ − 1

ω
. Hence,

Σ1(t2) − Σ1(t1) ≥
1
ω (7.17)

Moreover, Σ1 is increasing along the type II orbit and its variation Σ1(t2) − Σ1(t1) is smaller than its
variation between Pω and F (Pω). Using (3.14), we get

Σ1(t2) − Σ1(t1) ≤
12
ω (7.18)

Using the estimate (7.16), the fact that 2 ≤ Σ1 + 4 ≤ 6 and the evolution equation (7.8), we get that
for every t ∈ ]t1, t2[,

1

107ω2
≤ Σ

′
1(t) ≤

10
4

ω2
(7.19)

Integrating (7.19) between t1 and t2, estimates (7.17) and (7.18) give

ω

104
≤ t2 − t1 ≤ 10

9
ω (7.20)

Estimates (7.14), (7.15) and (7.20) give the desired control on τω,hs(Puω,hu). This concludes the proof
with C̃2 ∶= max (C0, 10

10) and ñ2 ∶= n0.

7.2 Construction of a flow box

Given ω ∈ ]1,+∞[, i ∈ {1, 2} and a small constant h > 0, we are going to construct a flow box in a
neighbourhood of the point Psiω,h. The usual flow box theorem states that, since Psiω,h is a non singular
point for X , there exists a neighbourhood of Psiω,h (called a “flow box”) and a local coordinate system
on this neighbourhood such that the integral curves of the vector field X are parallel straight lines in
this local coordinate system.

The following lemma, in addition to give a precise statement of the flow box theorem in our context,
gives estimates about the size of the flow box and the C2-norm of the local coordinate system.

To study the map map Ψω,hu,hs , we will apply this lemma at f(ω) instead of ω.

Lemma 7.8 (Construction of a flow box). There exist two constants C̃3 ≥ C̃2 and ñ3 ≥ ñ2 such that
for every ω ∈ ]1,+∞[, every i ∈ {1, 2}, every 0 < h ≤ (C̃3ω

ñ3)−1, for

r
box

= min (h2(C̃3ω
ñ3)−1

,
ω − 1

2
)

h
box

= (h, rbox, rbox)

there exist a neighbourhood Vω,h of Psiω,h in B+ and a C2-diffeomorphism

θω,h ∶ Vω,h → [−rbox, rbox] × [0, rbox]2
× [−rbox, rbox] ⊂ R4
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with the following properties. If we denote by (x1, x2, x3, x4) the coordinates on the space R4 where
θω,h takes its values, then

1. θω,h (Psiω,h) = (0, 0, 0, 0).

2. Vω,h contains the section Ssi
ω,hbox and θω,h maps Ssi

ω,hbox to {0} × [0, rbox]2
× [−rbox, rbox].

3. θω,h straightens the vector field X onto the vector field ∂
∂x1

.

4. The C2-norm of θω,h admits an upper bound which is polynomial in ω
h
. More precisely:

∥Dθω,h∥∞ ≤
C̃3ω

ñ3

h2

ÂÂÂÂÂD
2
θω,h

ÂÂÂÂÂ∞ ≤
C̃3ω

ñ3

h6

(7.21)

5. The C2-norm of θ−1
ω,h admits an upper bound which is polynomial in ω. More precisely:

ÂÂÂÂÂθ
−1
ω,h

ÂÂÂÂÂC2 ≤ C̃3ω
ñ3 (7.22)

6. For every 0 < r
′
≤ r

box, θ−1
ω,h ([−r′, r′] × [0, r′]2

× [−r′, r′]) contains the ball B (Psiω,h, r
box
r
′) open

in Uξ and

θ
−1
ω,h ({0} × [0, r′]2

× [−r′, r′]) = Ssi
ω,(h,r′,r′) ⊂ Vω,h (7.23)

Remark 7.9. Items 2 and 3 imply that for every y ∈ Vω,h, −x1(θω,h(y)) is the unique time t ∈
[−rbox

, r
box] such that X t(y) ∈ Ssi

ω,hbox . In particular, for a flow box around the point Psi(ω)
f(ω),h, if

−x1(θf(ω),h(y)) > 0, then τω,h(y) = −x1(θf(ω),h(y)).
In order to make the proof of Lemma 7.8 easier to read, we extract here an independant result

that will be used in the course of the proof. Roughly speaking, this result states that the orbits of the
Wainwright-Hsu vector field X crossing a section Ssiω,h do not cross it again “too fast”.

Lemma 7.10 (No loop in small time). There exist two constants C > 0 and n ∈ N such that
the following property holds for ω ∈ ]1,+∞[ and 0 < h ≤ (Cωn)−1. Let t ↦ q(t) be an orbit of
the Wainwright-Hsu vector field X whose initial condition q(0) belongs to the section Ssω,h where
h = (h, h

2
, h

2
). Then, q is well defined (at least) on the time interval [0, ln 2

12
] and does not cross the

section Ssω,h for t ∈ ]0, ln 2
12

].
Proof. Let C0 > 0 and n0 ∈ N be large enough such that we can apply Proposition 6.15, Proposition 6.18
and corollary 6.19 with these two constants. Let ω ∈ ]1,+∞[, 0 < h ≤ (C0ω

n0)−1 and t↦ q(t) be an
orbit of the vector field X whose initial condition q(0) belongs to the section Ssω,h where h = (h, h

2
, h

2
).

Let yin ∶= ξ(q(0)) ∈ Ssω,h and denote by t ↦ y(t) the orbit of the vector field X = ξ∗X with initial
condition y(0) = yin. Remark that y = ξ ◦ q whenever y is well defined.

Case yinu = 0. In that case, the orbit y converges exponentially fast to the point (0, 0, 0, yc) and
according to (6.29), for every t > 0 and every i ∈ {1, 2}, yi(t) < h/2. This implies that for every t > 0,
y(t) ∉ Ssω,h. Hence, q does not cross the section Ssω,h for t > 0.

Case yinu > 0. Denote by t↦ x(t) the orbit of the renormalized local vector field Xω = γω.X (see
definition 4.10) with initial condition x(0) = yin. Remark that x is a reparametrization of the orbit y.
According to Proposition 6.15, x is at least defined for t ∈ [0, τ loc] where

τ
loc

=
1

µu(ω)
ln

h

yin
u

≥
ln 2

6

Using the estimate (4.27) about the renormalization function γω, we get that the orbit y is at least
defined for t ∈ [0, ln 2

12
] and there exists a C1-map s ∶ [0, ln 2

12
] → [0, ln 2

6
] such that s(0) = 0 and
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for every t ∈ [0, ln 2
12

], y(t) = x(s(t)). Moreover, x intersects the section Ssω,h at most one time (see
corollary 6.19) so y intersects the section Ssω,h at most one time on [0, ln 2

12
]. It follows that q intersects

the section Ssω,h at most one time on [0, ln 2
12

]. This concludes the proof.

Proof of Lemma 7.8. To fix the ideas, we will only treat the case i = 2, that is, we will construct a
flow box around the point Ps2ω,h = (0, 0, h, ω).

For every C > 0 and every n ∈ N, we denote by EC,n the set of all (ω, h) such that ω ∈ ]1,+∞[ and
0 < h ≤ (Cωn)−1. Let C0 ≥ 100 and n0 ∈ N be large enough such that we can apply Proposition 4.2
and Lemma 7.10 with these two constants.

We will use several times in this proof that the vector field X is bounded on every compact subset
of B for the C2-norm. In particular, even if it means taking C0 larger, we can assume that ∥X∥C2 ≤ C0

on a compact set containing all the orbits playing a role in this proof.
For every C ≥ C0, every n ≥ n0 and every (ω, h) ∈ EC,n, let

r
def
= min (h2(Cωn)−1

,
ω − 1

2
)

h
def
= (h, r, r)

D
def
= [0, r]2

× [−r, r]

let

χ∶
D → Ss2ω,h

(xu, xs1 , xc) ↦ ξ
−1(xu, xs1 , h, xc + ω)

and let

ϕ∶
[−r, r] ×D → Uξ

(t, z) ↦ X t(χ(z))

where X t denotes the flow of the Wainwright-Hsu vector field X . The map χ is a bijective C2

parametrization of the section Ss2ω,h such that χ(0) = Ps2ω,h. The map ϕ is a C2 map such that, for
every z ∈ D, t↦ ϕ(t, z) is a (local) parametrization of the orbit of the Wainwright-Hsu vector field
X passing through the point χ(z) ∈ Ss2ω,h at t = 0. Note that the domain of ϕ depends on C, n and
(ω, h). Roughly speaking, the map θω,h will be obtained as the inverse of ϕ.

Claim 1. For every C ≥ C0, every n ≥ n0 and every (ω, h) ∈ EC,n, ϕ is injective on [−r, r] ×D.

Proof of claim 1. Let C ≥ C0, n ≥ n0 and (ω, h) ∈ EC,n. Let (t, z), (t′, z′) ∈ [−r, r] ×D and assume

that ϕ(t, z) = ϕ(t′, z′). By symmetry, one can assume that t ≤ t′. We have χ(z) = X t
′−t(χ(z′)) and

since r < ln 2
24

, we have 0 ≤ t
′ − t ≤ ln 2

12
. According to Lemma 7.10, we necessarily have t = t′. It follows

that χ(z) = χ(z′) and since χ is injective, we have z = z′. It follows that ϕ is injective.

Claim 2. There exist C1 ≥ C0 and n1 ≥ n0 such that for every C ≥ C1, every n ≥ n1 and every
(ω, h) ∈ EC,n, ∥ϕ∥C2 ≤ C1ω

n1 .

Proof of claim 2. Let C ≥ C0, n ≥ n0 and (ω, h) ∈ EC,n. The first and second derivatives of the flow
(t, y)↦ X t(y) are controlled by the C2-norm of X (which is bounded by C0) and the size of the time
interval on which we study the flow. This time interval is [−r, r] so its size is bounded independantly
of (ω, h). Moreover, according to the estimate (4.5) about the adapted system of local coordinates ξ,
we have ∥χ∥C2 ≤ C0ω

n0 . Since ϕ(t, z) = X t(χ(z)), this leads to the desired result.

Claim 3. There exist C2 ≥ C1 and n2 ≥ n1 such that for every C ≥ C2, every n ≥ n2 and every
(ω, h) ∈ EC,n, the derivative Dϕ(0) is invertible and ÂÂÂÂÂ(Dϕ(0))

−1ÂÂÂÂÂ ≤
C2ω

n2

h2

Proof of claim 3. Let C ≥ C1, n ≥ n1 and (ω, h) ∈ EC,n. Observe that

Dϕ(0) = ( X (Ps2ω,h) ∣ ∂ξ
−1

∂xu
(P s2ω,h) ∣ ∂ξ

−1

∂xs1
(P s2ω,h) ∣ ∂ξ

−1

∂xc
(P s2ω,h) )
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and
X (Ps2ω,h) = Dξ

−1(P s2ω,h).X (P s2ω,h)

Recall from the formula (4.6) that X (P s2ω,h) is collinear to the vector ∂
∂xs2

. It follows that

X (Ps2ω,h) = a
∂ξ

−1

∂xs2
(P s2ω,h) (7.24)

for a certain a ∈ R and
∣detDϕ(0)∣ = ∣a∣ »»»»»detDξ

−1(P s2ω,h)
»»»»» (7.25)

According to (4.5), there exist C ′1 ≥ C1 and n
′
1 ≥ n1 such that for every C ≥ C

′
1, n ≥ n

′
1, for every

(ω, h) ∈ EC,n,
»»»»»detDξ

−1(P s2ω,h)
»»»»» ≥

1

C ′1ω
n′1

(7.26)

and ÂÂÂÂÂÂÂÂÂ
∂ξ

−1

∂xs2
(P s2ω,h)

ÂÂÂÂÂÂÂÂÂ
≤ C

′
1ω

n
′
1 (7.27)

According to (4.1a) and the expression of the vector field X induced by (2.16a), we have

Σs2 (X (Ps2ω,h)) =
1

6
Ns2 (P

s2
ω,h)

2 (Σs2 (P
s2
ω,h) + 4)

=
1

6
h

2 (Σs2 (P
s2
ω,h) + 4)

≥
1

3
h

2

so
ÂÂÂÂÂX (Ps2ω,h)

ÂÂÂÂÂ ≥
h

2

3
(7.28)

Using (7.24), (7.25), (7.26), (7.27) and (7.28), we find that for every C ≥ C
′
1, every n ≥ n

′
1 and every

(ω, h) ∈ EC,n, we have

∣detDϕ(0)∣ ≥
ÂÂÂÂÂX (Ps2ω,h)

ÂÂÂÂÂÂÂÂÂÂÂ
∂ξ−1

∂xs2
(P s2ω,h)

ÂÂÂÂÂÂ

»»»»»detDξ
−1(P s2ω,h)

»»»»» ≥
h

2

3 (C ′1ωn
′
1)2

(7.29)

In particular, Dϕ(0) is invertible. Denote by t
Co(A) the adjugate of a square matrix A. Using (7.29),

the standard formula
(Dϕ(0))−1

=
1

detDϕ(0)
t
Co(Dϕ(0))

and claim 2, it follows that there exist C2 ≥ C1 and n2 ≥ n1 such that for every C ≥ C2, every n ≥ n2

and every (ω, h) ∈ EC,n, Dϕ(0) is invertible and ÂÂÂÂÂ(Dϕ(0))
−1ÂÂÂÂÂ ≤

C2ω
n2

h2 .

Next claim relies on a standard argument for the local inversion theorem. Denote

Vω,h
def
= ϕ ([−r, r] ×D)

Claim 4. There exist C3 ≥ C2 and n3 ≥ n2 such that for every C ≥ C3, every n ≥ n3 and every
(ω, h) ∈ EC,n, ϕ is a C2-diffeomorphism from [−r, r] ×D onto Vω,h and ÂÂÂÂÂDϕ

−1ÂÂÂÂÂ∞ ≤
C3ω

n3

h2 .

Proof of claim 4. Let C ≥ C2, n ≥ n2 and (ω, h) ∈ EC,n. Let u = Dϕ(0) and η = Dϕ(0) −Dϕ. We
haveDϕ = u(Id−u−1

η). According to claim 2 and the mean value theorem, ∥η∥∞ ≤ C1ω
n1r. According

to claim 3, ÂÂÂÂÂu
−1ÂÂÂÂÂ ≤

C2ω
n2

h2 . It follows that, for every C ≥ C3 ∶= 2C1C2, every n ≥ n3 ∶= n1 + n2 and
every (ω, h) ∈ EC,n,

ÂÂÂÂÂu
−1
η
ÂÂÂÂÂ∞ ≤

1
2
. Hence, for every C ≥ C3, every n ≥ n3 and every (ω, h) ∈ EC,n,

Dϕ is invertible on [−r, r] × D and ÂÂÂÂÂDϕ
−1ÂÂÂÂÂ∞ ≤

2C2ω
n2

h2 ≤
C3ω

n3

h2 . Recall from claim 1 that ϕ is
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injective. So, according to the global inversion theorem, ϕ is a C2-diffeomorphism from [−r, r] ×D to
Vω,h.

Let us denote by θ the inverse of ϕ. By construction, it is clear that θ (Ps2ω,h) = (0, 0, 0, 0). Next
claim is also a standard computation for the local inversion theorem.

Claim 5. There exist C4 ≥ C3 and n4 ≥ n3 such that for every C ≥ C4, every n ≥ n4 and every
(ω, h) ∈ EC,n, ∥Dθ∥∞ ≤

C4ω
n4

h2 and ÂÂÂÂÂD
2
θ
ÂÂÂÂÂ∞ ≤

C4ω
n4

h6 .

Proof of claim 5. Let C ≥ C3, n ≥ n3 and (ω, h) ∈ EC,n. Let us denote by I ∶M ↦M
−1 the inversion

in GL(R4). We have Dθ = I ◦Dϕ ◦ θ and D2
θ = DI(Dϕ ◦ θ)D2

ϕ(θ)Dθ. According to claims 2 and 4
and the inequality ∥DI(Dϕ ◦ θ)∥∞ ≤ ∥Dθ∥2

∞, we get the desired result.

Next claim is a double statement. First part is a standard consequence of the mean value theorem.
Second part is a direct consequence of the definition of ϕ and Ss2

ω,(h,r′,r′).

Claim 6. For every C ≥ C4, every n ≥ n4, every (ω, h) ∈ EC,n and every 0 < r
′
≤ r,

θ
−1 ([−r′, r′] × [0, r′]2

× [−r′, r′]) contains the open ball B (Ps2ω,h, rr
′) in Uξ and

θ
−1
ω,h ({0} × [0, r′]2

× [−r′, r′]) = Ss2
ω,(h,r′,r′) ⊂ Vω,h

Proof of claim 6. Let C ≥ C4, n ≥ n4, (ω, h) ∈ EC,n and 0 < r
′
≤ r. Let us denote by R the supremum

of every δ > 0 such that

B(Ps2ω,h, δ) ⊂ θ
−1 ([−r′, r′] × [0, r′]2

× [−r′, r′])

Recall that θ (Ps2ω,h) = (0, 0, 0, 0). Using the mean value theorem and claim 5, we get that

r
′
≤ ∥Dθ∥∞R ≤

C4ω
n4

h2
R

Hence,

R ≥ r
′ h

2

C4ω
n4

≥ r
′
r

Moreover,

θ
−1
ω,h ({0} × [0, r′]2

× [−r′, r′]) = ϕ ({0} × [0, r′]2
× [−r′, r′])

= χ ([0, r′]2
× [−r′, r′])

= ξ
−1 ([0, r′]2

× {h} × [−r′, r′])
= Ss2

ω,(h,r′,r′) ⊂ Vω,h

This concludes the proof of claim 6.

As a particular case with r
′
= r, it follows from claim 6 that θω,h maps the section Ss2ω,h to

{0}× [0, r]2 × [−r, r]. Moreover, by definition of ϕ, ∂ϕ
∂t

(t, z) = X (ϕ(t, z)) so Dθ(ϕ(t, z))X (ϕ(t, z)) =
∂
∂x1

. Hence, θω,h straightens the vector field X onto the vector field ∂
∂x1

.
This shows that Lemma 7.8 holds with C̃3 ∶= C4 and ñ3 ∶= n4.

7.3 Hitting time

Lemma 7.11 (Hitting time). There exist two constants C̃4 ≥ C̃3 and ñ4 ≥ ñ3 such that the properties
below hold for ω ∈ ]1,+∞[ \ {2}, 0 < h

u
≤ (C̃4ω

ñ4)−1, 0 < h
s
≤ (C̃4f(ω)ñ4)−1, 0 < η ≤ 1,

h = min (hu, hs), hu = (hu, ηhC̃4ωm(ω), ηhC̃4ωm(ω)) and h
s
= (hs, hs, hs).
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1. For every q ∈ Suω,hu , the forward X -orbit of q intersects the section Ssf(ω),hs and its first intersection
point belongs to Ssi(ω)

f(ω),hs . Moreover,

τω,hs(q) = τω,hs(Puω,hu) − x1 (θf(ω),hs (X τω,hs (Puω,hu )(q))) (7.30)

2. For every q ∈ Suω,hu and every t ∈ [0, 2τω,hs(q)], we have

dB (X t(q),X t(Puω,hu)) ≤ η (7.31)

Proof. Setting. For every C > 0 and every n ∈ N, we denote by EC,n the set of all (ω, hu, hs, η) such
that ω ∈ ]1,+∞[ \ {2}, 0 < h

u
≤ (Cωn)−1, 0 < h

s
≤ (Cf(ω)n)−1 and 0 < η ≤ 1. Let C0 ≥ C̃3 and

n0 ≥ ñ3 be large enough such that we can apply Proposition 4.2, Proposition 7.7 and Lemma 7.8 with
these two constants.

For every C ≥ C0, every n ≥ n0 and every (ω, hu, hs, η) ∈ EC,n, let h = min (hu, hs), h
u
=

(hu, ηhCωm(ω), ηhCωm(ω)), hs = (hs, hs, hs) and define the map g ∶ Suω,hu → R by the formula

g(q) = τω,hs(Puω,hu) − x1 (θf(ω),hs (X τω,hs (Puω,hu )(q)))

Remark that g(q) is well defined if and only if X τω,hs (Puω,hu )(q) belongs to the flow box Vf(ω),hs .
According to remark 7.9, if g(q) is well defined then X g(q)(q) ∈ Ssf(ω),hbox ⊂ Ssf(ω),hs where

r
box

= min( (hs)2

C̃3f(ω)ñ3
,
f(ω) − 1

2
)

h
box

= (hs, rbox
, r

box)

We are going to prove that

1. If C and n are large enough, then, for every q ∈ Suω,hu , g(q) is well defined and g(q) > 0 (claim 1).

2. If C and n are large enough, then, for every q ∈ Suω,hu , g(q) is the first time such that the forward
X -orbit of q intersects the section Ssf(ω),hs (claims 2 and 3). More precisely, first we prove that
g(q) is the first time such that the forward X -orbit of q intersects a small section Ssi(ω)

f(ω),h̃ (defined
below) and then we extend this result to our initial section Ssf(ω),hs .

As an immediate consequence of these results, we will get that g = τω,hs on Suω,hu . Inequality (7.31) will
be proved along the way. The main arguments are the logarithmic upper bound (7.6) of τω,hs(Puω,hu),
Gronwall’s lemma, and the lower bound on the size of the flow box Vf(ω),hs .

Using (3.15), it is straightforward to check that for every ω ∈ ]1,+∞[, we have

f(ω) − 1 ≥ ∣ω − 2∣

Hence, there exist C1 ≥ C0 and n1 ≥ n0 such that for every C ≥ C1, every n ≥ n1 and every
(ω, hu, hs, η) ∈ EC,n, we have

(C0f(ω)n0)2 (hs)4

C1f(ω)n1
m(ω) < 1

2
(rbox)2

(7.32)

For every C ≥ C1, every n ≥ n1 and every (ω, hu, hs, η) ∈ EC,n, let

r̃ =
(hs)4

C1f(ω)n1
m(ω)

h̃ = (hs, r̃, r̃)
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Claim 1. There exist C̃4 ≥ C1 and ñ4 ≥ n1 such that for all C ≥ C̃4, n ≥ ñ4, (ω, hu, hs, 1) ∈ EC,n

and q ∈ Suω,hu , g(q) is well defined, g(q) > 0 and X g(q)(q) ∈ Ssi(ω)

f(ω),h̃ ⊂ Ssi(ω)
f(ω),hs .

Proof of claim 1. Since X is bounded on every compact, Gronwall’s lemma implies that there exist
C2 ≥ C1, n2 ≥ n1 and A > 0 such that for every C ≥ C2, every n ≥ n2, every (ω, hu, hs, η) ∈ EC,n,
every q ∈ Suω,hu and every t ∈ [0, 4τω,hs(Puω,hu)], we have

dB (X t(q),X t(Puω,hu)) ≤ e4Aτω,hs (Puω,hu )
dB (q,Puω,hu) (7.33)

By definition of the size of the section Suω,hu in the direction transverse to the Mixmaster attractor, the
distance between q and the Mixmaster attractor in local coordinates is less than ηhCωm(ω). Hence,
according to the estimate (4.5b) on the derivative of the local coordinate system and the mean value
theorem,

dB (q,Puω,hu) ≤ C0ω
n0ηh

Cω
m(ω) (7.34)

Recall from (7.6) that

τω,hs(Puω,hu) ≤ C̃2ω ln ( 1

h
)

Take C3 ≥ C2 and n3 ≥ n2 such that for every C ≥ C3, every n ≥ n3 and every (ω, hu, hs, η) ∈ EC,n,
we have

h
−4AC0ωC0ω

n0h
Cω

≤ 1 (7.35)

It follows from (7.33), (7.34), (7.35) and (7.6) that for every C ≥ C3, every n ≥ n3, every (ω, hu, hs, η) ∈
EC,n, every q ∈ Suω,hu and every t ∈ [0, 4τω,hs(Puω,hu)], we have

dB (X t(q),X t(Puω,hu)) ≤ ηm(ω) (7.36)

Using (7.36) with η = h(C−C3)ω, we get that there exists C̃4 ≥ C3 such that for every C ≥ C̃4, every
n ≥ ñ4 ∶= n3, every (ω, hu, hs, 1) ∈ EC,n, every q ∈ Suω,hu and every t ∈ [0, 4τω,hs(Puω,hu)], we have

dB (X t(q),X t(Puω,hu)) <
1

2

r̃r
box

C0f(ω)n0
(7.37)

In particular, for t = τω,hs(Puω,hu), we obtain

dB (X τω,hs (Puω,hu )(q),Psi(ω)
f(ω),hs) = dB (X τω,hs (Puω,hu )(q),X τω,hs (Puω,hu )(Puω,hu)) < r̃rbox

Using point 6 of Lemma 7.8, it follows from the above inequality that for every C ≥ C̃4, every n ≥ ñ4,
every (ω, hu, hs, 1) ∈ EC,n and every q ∈ Suω,hu we have

X τω,hs (Puω,hu )(q) ∈ θ−1
f(ω),hs ([−r̃, r̃] × [0, r̃]2

× [−r̃, r̃]) ⊂ Vf(ω),hs

Hence, g is well defined on Suω,hu . Moreover, using (7.23), we get that X g(q)(q) ∈ Ssi(ω)

f(ω),h̃ ⊂ Ssf(ω),hs .
Now, remark that according to the lower bound (7.6) on τω,hs(Puω,hu),

»»»»»»x1 (θf(ω),hs (X τω,hs (Puω,hu )(q)))»»»»»» < r̃ <
1

2
r
box

≤
1

2C̃3

≤
1

2C̃2

≤
ω

2C̃2

≤
1

2
τω,hs(Puω,hu) (7.38)

It follows that g(q) > 0. Hence, the forward X -orbit of q intersects the section Ssf(ω),hs . This concludes
the proof of claim 1.

Let us fix C ≥ C̃4, n ≥ ñ4, (ω, hu, hs, 1) ∈ EC,n and q ∈ Suω,hu until the end of this proof.

Claim 2. g(q) is the time of first intersection of the forward X -orbit of q with the section Ssi(ω)

f(ω),h̃.

Proof of claim 2. Let us denote by tmin ∈ [0, g(q)] the time of first intersection of the forward X -orbit
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of q with the section Ssi(ω)

f(ω),h̃. We have tmin = g(q) if and only if

tmin − τω,hs(Puω,hu) = −x1 (θf(ω),hs (X τω,hs (Puω,hu )(q)))

Moreover
X tmin−τω,hs (Puω,hu )(X τω,hs (Puω,hu )(q)) = X tmin(q) ∈ Ssi(ω)

f(ω),h̃ ⊂ Ssi(ω)
f(ω),hbox

and −x1 (θf(ω),hs (X τω,hs (Puω,hu )(q))) is, according to remark 7.9, the unique time t ∈ [−rbox
, r

box]
such that X t(X τω,hs (Puω,hu )(q)) ∈ Ssi(ω)

f(ω),hbox . Hence, it is sufficient to prove that

∣tmin − τω,hs(Puω,hu)∣ < rbox (7.39)

According to (7.38), we have

tmin ≤ g(q) ≤ τω,hs(Puω,hu) +
»»»»»»x1 (θf(ω),hs (X τω,hs (Puω,hu )(q)))»»»»»» ≤ 2τω,hs(Puω,hu) (7.40)

Using (7.37), (7.32), the estimate (4.5b) on the local coordinate system ξ and the mean value theorem,
we get

dB (X tmin(Puω,hu),P
si(ω)
f(ω),hs) ≤ dB (X tmin(q),Psi(ω)

f(ω),hs) + dB (X tmin(q),X tmin(Puω,hu)) < (rbox)2

Hence, using point 6 of Lemma 7.8, X tmin(Puω,hu) ∈ Vf(ω),hs . Moreover, the type II orbit OPω→Pf(ω)

passes through the section Ssi(ω)

f(ω),h̃ exactly one time so, according to remark 7.9,

−x1 (θf(ω),hs (X tmin(Puω,hu)))

is the unique time t ∈ R such that X t(X tmin(Puω,hu)) ∈ Ssi(ω)

f(ω),h̃ and it satisfies

»»»»»x1 (θf(ω),hs (X tmin(Puω,hu)))
»»»»» < r

box (7.41)

Since
X τω,hs (Puω,hu )−tmin(X tmin(Puω,hu)) = X τω,hs (Puω,hu )(Puω,hu)) = Psi(ω)

f(ω),hs ∈ Ssi(ω)

f(ω),h̃

it follows that
τω,hs(Puω,hu) − tmin = −x1 (θf(ω),hs (X tmin(Puω,hu))) (7.42)

Hence, (7.39) is a consequence of (7.41) and (7.42). This concludes the proof of claim 2.

We now extend claim 2 to the full section Ssf(ω),hs .

Claim 3. g(q) is the time of first intersection of the forward X -orbit of q with the section Ssf(ω),hs .

Proof of claim 3. Let j(ω) = 2 if i(ω) = 1 and j(ω) = 1 if i(ω) = 2. By definition, τω,hs(q) ≤ g(q).
Assume that τω,hs(q) < g(q). This implies that either X τω,hs (q)(q) ∈ Ssj(ω)

f(ω),hs or X τω,hs (q)(q) ∈
Ssi(ω)
f(ω),hs \ S

si(ω)

f(ω),h̃, otherwise it would contradict claim 2. According to (7.40), we can use (7.37) to get

dB (X τω,hs (q)(q),X τω,hs (q)(Puω,hu)) <
1

2

r̃r
box

C0f(ω)n0
(7.43)

According to the estimate (4.5b) on the local coordinate system ξ and the mean value theorem, we
have

ÂÂÂÂÂξ (X
τω,hs (q)(q)) − ξ (X τω,hs (q)(Puω,hu))

ÂÂÂÂÂ∞ ≤ C0f(ω)n0dB (X τω,hs (q)(q),X τω,hs (q)(Puω,hu)) (7.44)

We are now going to treat the two cases differently.
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Case X τω,hs (q)(q) ∈ Ssj(ω)
f(ω),hs . Remark that the orbit of the Wainwright-Hsu vector field X starting

at Puω,hu is a type II orbit passing through the section Ssi(ω)
f(ω),hs . Hence,

h
s
≤

»»»»»xsj(ω) (X
τω,hs (q)(q)) − xsj(ω) (X

τω,hs (q)(Puω,hu))
»»»»» ≤

ÂÂÂÂÂξ (X
τω,hs (q)(q)) − ξ (X τω,hs (q)(Puω,hu))

ÂÂÂÂÂ∞
(7.45)

It follows from (7.43), (7.44) and (7.45) that hs ≤ 1
2
r̃r

box, which is absurd.

Case X τω,hs (q)(q) ∈ Ssi(ω)
f(ω),hs \ S

si(ω)

f(ω),h̃. In that case, we have

ÂÂÂÂÂξ (X
τω,hs (q)(q)) − P si(ω)

f(ω),hs
ÂÂÂÂÂ∞ > r̃

and
xsi(ω) (ξ (X

τω,hs (q)(q))) = xsi(ω) (P
si(ω)
f(ω),hs) = h

s

Moreover, since the orbit of the Wainwright-Hsu vector field X starting at Puω,hu is a type II orbit
passing through the section Ssi(ω)

f(ω),hs at the point Psi(ω)
f(ω),hs , it follows that ξ (X τω,hs (q)(Puω,hu)) and

P
si(ω)
f(ω),hs have the same coordinates except for the coordinate xsi(ω) . Hence,

ÂÂÂÂÂξ (X
τω,hs (q)(q)) − ξ (X τω,hs (q)(Puω,hu))

ÂÂÂÂÂ∞ > r̃ (7.46)

It follows from (7.43), (7.44) and (7.46) that r̃ ≤ 1
2
r̃r

box, which is absurd. This concludes the proof of
claim 3.

It follows that τω,hs(q) = g(q). To finish the proof, remark that (7.31) is a consequence of
estimates (7.36) and (7.38).

7.4 Control of the transition map Ψω,hu,hs

With the context and notations of Lemma 7.11, item 1 of Lemma 7.11 implies that the map Ψω,hu,hs

is well defined at every point of the section Suω,hu and is C2. Recall that for every y ∈ Suω,hu ,

Ψ
A
ω,hu,hs(yu, ys1 , ys2 , yc) = Ψω,hu,hs ◦ ProjA(yu, ys1 , ys2 , yc) = Ψω,hu,hs(yu, 0, 0, yc)

Using standard Hadamard’s lemma, we get that there exists a C1 map Ψ
∆
ω,hu,hs from S

u
ω,hu into the

space of (4 × 2) real valued matrices such that for every y ∈ Suω,hu ,

Ψω,hu,hs(yu, ys1 , ys2 , yc) = Ψ
A
ω,hu,hs(yu, ys1 , ys2 , yc) +Ψ

∆
ω,hu,hs(yu, ys1 , ys2 , yc).(ys1 , ys2) (7.47)

One can think about the map Ψ
∆
ω,hu,hs as a tool to measure the “deviation” of the transition map

Ψω,hu,hs from the map Ψ
A
ω,hu,hs . Since the map Ψ

A
ω,hu,hs is essentially the Kasner map f , it amounts

to study the deviation of generic orbits from type II orbits. Next lemma gives some estimates on
Ψ

∆
ω,hu,hs .

Lemma 7.12 (Control of Ψ
∆
ω,hu,hs). There exist two constants C > 0 and n ∈ N such that for every

ω ∈ ]1,+∞[ \ {2}, every 0 < h
u
≤ (Cωn)−1, every 0 < h

s
≤ (Cf(ω)n)−1, for h = min (hu, hs),

h
u
= (hu, hCωm(ω), hCωm(ω)) and h

s
= (hs, hs, hs), we have

ÂÂÂÂÂΨ
∆
ω,hu,hs

ÂÂÂÂÂC1 ≤ h
−Cω (7.48)

Proof. For every C > 0 and every n ∈ N, we denote by EC,n the set of all (ω, hu, hs) such that
ω ∈ ]1,+∞[ \ {2}, 0 < h

u
≤ (Cωn)−1 and 0 < h

s
≤ (Cf(ω)n)−1. For every C ≥ C̃4, every n ≥ ñ4 and

every (ω, hu, hs) ∈ EC,n, define h, hu and h
s as in Lemma 7.12.

According to the standard Hadamard’s lemma, estimates on the k-th derivative of Ψ
∆
ω,hu,hs follow

from estimates on the (k + 1)-th derivative of Ψω,hu,hs . By definition of the transition map Ψω,hu,hs



106 CHAPTER 7. Dynamics in the neighbourhood of a type II orbit

and the hitting time τω,hs , for every q ∈ Suω,hu ,

ξ
−1
◦Ψω,hu,hs ◦ ξ(q) = X τω,hs (q)(q)

Hence, estimates on Ψω,hu,hs are consequences of estimates on the local coordinate system ξ, the flow
of the Wainwright-Hsu vector field and the hitting time τω,hs .

According to Proposition 7.7, τω,hs(Puω,hu) ≤ −C̃2ω lnh. Moreover, X is bounded on every compact.
Hence, Gronwall’s lemma implies that there exist C1 ≥ C0 and n1 ≥ n0 such that for every C ≥ C1,
every n ≥ n1, every (ω, hu, hs) ∈ EC,n, every q ∈ Suω,hu and every t ∈ [0, 2τω,hs(Puω,hu)], we have

ÂÂÂÂÂDt,qX
t(q)ÂÂÂÂÂ ≤ h

−Cω and ÂÂÂÂÂD
2
t,qX

t(q)ÂÂÂÂÂ ≤ h
−Cω (7.49)

According to the expression of the hitting time (7.30), the estimate (7.21) on the derivative of the flow
box coordinates and the preceding control on the flow of the Wainwright-Hsu vector field X , there
exist C2 ≥ C1 and n2 ≥ n1 such that for every C ≥ C2, every n ≥ n2, every (ω, hu, hs) ∈ EC,n and
every q ∈ Suω,hu , we have

∥Dτω,hs(q)∥ ≤ h−Cω and ÂÂÂÂÂD
2
τω,hs(q)

ÂÂÂÂÂ ≤ h
−Cω (7.50)

Using (7.49) and (7.50), we get some estimates on the first and second derivatives of Ψω,hu,hs : there
exist C3 ≥ C2 and n3 ≥ n2 such that for every C ≥ C3, every n ≥ n3, every (ω, hu, hs) ∈ EC,n and
every q ∈ Suω,hu , we have

ÂÂÂÂÂD(ξ−1
◦Ψω,hu,hs ◦ ξ)(q)

ÂÂÂÂÂ ≤ h
−Cω and ÂÂÂÂÂD

2(ξ−1
◦Ψω,hu,hs ◦ ξ)(q)

ÂÂÂÂÂ ≤ h
−Cω (7.51)

Estimates (7.51) together with estimates (4.5) on the local coordinate system ξ yield some estimates on
the first and second derivatives of Ψω,hu,hs . These estimates give the desired estimates on Ψ

∆
ω,hu,hs .

At this point, Proposition 7.1 on the transition map Ψω,hu,hs must be seen as a straightforward
consequence of Lemma 7.12.

Proof of Proposition 7.1. Let C0 ≥ C̃4 and n0 ≥ ñ4 be large enough such that we can apply
Lemma 7.12 with these two constants. For every C > 0 and n ∈ N, we denote by EC,N the set
of all (ω, hu, hs, h⊥, y, ỹ) such that ω ∈ ]1,+∞[ \ {2}, 0 < h

u
≤ (Cωn)−1, 0 < h

s
≤ (Cf(ω)n)−1,

0 < h⊥ ≤ h
Cω and y, ỹ ∈ Suω,hu where h = min (hu, hs) and h

u
= (hu, h⊥m(ω), hCωm(ω)). For every

C ≥ C0, every n ≥ n0 and every (ω, hu, hs, h⊥, y, ỹ) ∈ EC,N , we use the notations h
s
= (hs, hs, hs),

Ψ = Ψω,hu,hs , Ψ
A
= Ψ

A
ω,hu,hs and Ψ

∆
= Ψ

∆
ω,hu,hs .

Let C ≥ C0, n ≥ n0 and (ω, hu, hs, h⊥, y, ỹ) ∈ EC,N . According to Lemma 7.11, Ψ is well defined.
According to (7.47), we have

Ψ(y) −Ψ
A(y) = Ψ

∆(y)ys1,s2
where ys1,s2 = (ys1 , ys2). Hence, using (7.48), we get

ÂÂÂÂÂΨ(y) −Ψ
A(y)ÂÂÂÂÂ//

≤
ÂÂÂÂÂΨ

∆(y)ys1,s2
ÂÂÂÂÂ//

≤
ÂÂÂÂÂΨ

∆ÂÂÂÂÂC1 ∥ys1,s2∥∞ ≤ h
−Cω

h⊥

This proves estimate (7.3). Estimate (7.2) is proven analogously. According to (7.47), we have

(Ψ(y) −Ψ(ỹ)) − (Ψ
A(y) −Ψ

A(ỹ)) = (Ψ
∆(y) −Ψ

∆(ỹ)) ys1,s2 +Ψ
∆(ỹ) (ys1,s2 − ỹs1,s2)

Moreover,

ÂÂÂÂÂ(Ψ
∆(y) −Ψ

∆(ỹ)) ys1,s2 +Ψ
∆(ỹ) (ys1,s2 − ỹs1,s2)

ÂÂÂÂÂ∞ ≤
ÂÂÂÂÂΨ

∆ÂÂÂÂÂC1 (∥y − ỹ∥∞ h⊥ + ∥ys1,s2 − ỹs1,s2∥∞)

≤
ÂÂÂÂÂΨ

∆ÂÂÂÂÂC1 (∥y − ỹ∥∞ h⊥ + ∥y − ỹ∥⊥)

≤ 2h
−Cω (∥y − ỹ∥// h⊥ + ∥y − ỹ∥⊥)
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using (7.48). There exist C1 ≥ C0 and n1 ≥ n0 such that for every (ω, hu, hs, h⊥, y, ỹ) ∈ EC,N , we have

2h
−C0ω

≤ h
−C1ω

This proves estimates (7.4) and (7.5). This shows that Proposition 7.1 holds true with C̃1 ∶= C1 and
ñ1 ∶= n1.

We finish this section with a short proof of Proposition 7.4.

Proof of Proposition 7.4. Using the notations of Proposition 7.4, this is a straightforward consequence
of the Gronwall’s estimate (7.31) and the fact that τω,hs(q) is uniformly arbitrary close to τω,hs(Puω,hu)
when η is taken small enough.
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Chapter8
Dynamics along an epoch

The goal of this chapter is to give some estimates on the epoch transition map Φω,hω,hf(ω) (see
definition 5.17). Recall that this map describes the behaviour of the orbits of the Wainwright-Hsu
vector field between the sections Ssω,hω and Ssf(ω),hf(ω) . In other words, it describes the behaviour of
the orbits between the moment they arrive in the neighbourhood of the point Pω and the moment
they arrive in the neighbourhood of the point Pf(ω).

Our first task will be to prove that we can write the epoch transition map Φω,hω,hf(ω) as a
composition

Φω,hω,hf(ω) = Ψω,hu,hf(ω) ◦Υω,hω,h
u (8.1)

of the transition maps Ψω,hu,hf(ω) and Υω,hω,h
u studied in the two preceding chapters. This amounts to

prove that, for hω, h
u and hf(ω) well chosen, any orbit starting in the section Ssω,hω will pass through

the section Suω,hu before hitting the section Ssf(ω),hf(ω) .
Once the relation (8.1) will be proven, we will be able to combine the estimates proven in the two

preceding chapters and deduce from them some estimates on the map Φω,hω,hf(ω) . More precisely, we
will show that this map is a strong contraction in the direction transversal to the Mixmaster attractor
while it is very close to the Kasner map f in the direction tangential to the Mixmaster attractor. The
key point is the fact that the super-linear contraction of Υω,hω,h

u in the direction transversal to the
Mixmaster attractor dominates everything else.

From now on, we will systematically use the continued fraction expansion of the Kasner parameter ω.
This will make our results easier to formulate and to read. Recall that we denote by [k0; k1, k2, k3, . . . ]
the unique (infinite) continued fraction

k0 +
1

k1 +
1

k2 +
1

k3 + . . .

Moreover, we denote by [k0(ω); k1(ω), k2(ω), . . . ] the continued fraction expansion of a real number
ω ∈ ]0,+∞[ \Q. Also, recall that

m(ω) = min (1, (ω − 2)2) , i(ω) = {1 if ω > 2

2 if 1 < ω < 2

Remind that ProjA is the projection on the Mixmaster attractor (see definition 5.1) and Φ
A
ω,hω,hf(ω) =

Φω,hω,hf(ω) ◦ ProjA.
Now, let us introduce some constants that will be used to quantify the dilatation properties of the

Kasner map. Define, for ω ∈ ]1,+∞[ \Q,

Kf(ω)
def
= {

36
25

if 1 < ω < 5
3

1 if ω > 5
3

(8.2)

109
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Lipf(ω)
def
= {16k1(ω)2 if 1 < ω < 2

1 if ω > 2
(8.3)

and

Lipf ′(ω)
def
= {128k1(ω)3 if 1 < ω < 2

0 if ω > 2
(8.4)

We will prove that, on the one hand, Kf(ω) is a local expansion constant for the Kasner map and, on
the other hand, Lipf(ω) and Lipf ′(ω) are some local Lipschitz constants for the Kasner map and its
derivative in the neighbourhood of ω.

Proposition 8.1 is the main result of this chapter, it shows that the decisive parameter to control the
epoch transition map is the size h⊥ of the section Ssω,hω in the direction transverse to the Mixmaster
attractor. Its proof does not require new ideas, it is just the concatenation of Proposition 6.1 and
Proposition 7.1.

Proposition 8.1 (Control of the epoch transition map). There exist two constants C̃5 ≥ 1 and
ñ5 ∈ N such that the properties below hold for ω ∈ ]1,+∞[ \ Q, 0 < hω ≤ (C̃5ω

ñ5)−1, 0 < hf(ω) ≤

(C̃5f(ω)ñ5)−1, h = min (hω, hf(ω)), 0 < h⊥ ≤ h
C̃5k0(ω)3m(ω), hω = (hω, h⊥, hC̃5k0(ω)m(ω)) and

hf(ω) = (hf(ω), hf(ω), hf(ω)). If k0(ω) = k1(ω) = 1, assume that hω = hf(ω). The epoch transition map

Φω,hω,hf(ω) ∶ S
s
ω,hω → S

s
f(ω),hf(ω)

is well defined and takes its values in S
si(ω)
f(ω),hf(ω)

. Moreover, for every x, x̃ ∈ S
s
ω,hω , we have the

following estimates, where Φ ∶= Φω,hω,hf(ω) and Φ
A ∶= Φ

A
ω,hω,hf(ω) :

(Control of the distance to the Mixmaster attractor)

dist∞ (Φ(x), A) = ÂÂÂÂÂΦ(x) − Φ
A(x)ÂÂÂÂÂ⊥ ≤ h

k0(ω)+4

k0(ω)+3

⊥ (8.5)

(Control of the drift tangential to the Mixmaster attractor)

ÂÂÂÂÂΦ(x) − Φ
A(x)ÂÂÂÂÂ//

≤ 2h⊥ Lipf(ω) (8.6)

(Contraction in the direction transverse to the Mixmaster attractor)

∥Φ(x) − Φ(x̃)∥⊥ ≤ h
1

k0(ω)+3

⊥ ∥x − x̃∥∞ (8.7)

(Lipschitz control in the direction tangential to the Mixmaster attractor)

ÂÂÂÂÂ(Φ(x) − Φ(x̃)) − (ΦA(x) − Φ
A(x̃))ÂÂÂÂÂ//

≤ h
1

k0(ω)+3

⊥ ∥x − x̃∥∞ + Lipf(ω) ∥x − x̃∥⊥ (8.8)

(Expansion in the direction tangential to the Mixmaster attractor)

∥Φ(x) − Φ(x̃)∥// ≥ Kf(ω) ∥x − x̃∥// − h
1

k0(ω)+3

⊥ ∥x − x̃∥∞ − C̃5k0(ω)ñ5hω ∥x − x̃∥⊥ (8.9)

(Global lipschitz constant)

∥Φ(x) − Φ(x̃)∥∞ ≤ 4 Lipf(ω) ∥x − x̃∥∞ (8.10)

8.1 Some estimates about the Kasner map
In this section, we explore two properties of the Kasner map f : the fact that it is locally expansive
and the fact that it is locally Lipschitz. Those properties are direct consequences of the explicit
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formula (3.15). We detail them because we need a precise local control of the Kasner map. Next
proposition shows that Kf(ω) (defined by formula (8.2)) is a local expansion constant for f in the
neighbourhood of ω.

Proposition 8.2 (Local expansion constant for f). For ω ∈ ]1,+∞[ \ Q, the Kasner map f is
Kf(ω)-expansive on the interval ]ω − η, ω + η[ where η = min (ω−1

2
,
∣ω−2∣

2
).

Proof. We divide the proof in three cases: ω > 2, 5
3
< ω < 2 and 1 < ω < 5

3
. If ω > 2, then f = Id on

]ω − η, ω + η[ according to (3.15). Using (3.15), remark that for every x ∈ ]1, 2[,

f
′(x) = − 1

(x − 1)2

and f is monotonous on ]1, 2[. Let y, ỹ ∈ ]ω − η, ω + η[. If 5
3
< ω < 2, then

∣f(y) − f(ỹ)∣ ≥ min
x∈]ω−η,ω+η[

»»»»»f
′(x)»»»»» ∣y − ỹ∣ ≥

»»»»»f
′ (2)»»»»» ∣y − ỹ∣ ≥ Kf(ω) ∣y − ỹ∣

If 1 < ω < 5
3
, then

∣f(y) − f(ỹ)∣ ≥ min
x∈]ω−η,ω+η[

»»»»»f
′(x)»»»»» ∣y − ỹ∣ ≥

»»»»»»»»
f
′ (11

6
)
»»»»»»»»
∣y − ỹ∣ ≥ Kf(ω) ∣y − ỹ∣

Hence, Proposition 8.2 has been proved for all ω.

Next proposition shows that Lipf(ω) and Lipf ′(ω) (see (8.3) and (8.4)) are some local Lipschitz
constants for f and its derivative f ′ in the neighbourhood of ω.

Proposition 8.3 (Local lipschitz constant for f and f ′). For ω ∈ ]1,+∞[ \ Q, the Kasner map f
is Lipf(ω)-Lipschitz and its derivative f ′ is Lipf ′(ω)-Lipschitz on the interval ]ω − η, ω + η[ where
η = min (ω−1

2
,
∣ω−2∣

2
).

Proof. If ω > 2, then f = Id on ]ω − η, ω + η[ according to (3.15). If 1 < ω < 2, then (3.15) implies
that

max
x∈]ω−η,ω+η[

»»»»»f
′(x)»»»»» ≤

»»»»»»»»
f
′ (ω + 1

2
)
»»»»»»»»
≤

4

(ω − 1)2
≤ 16k

2
1

and
max

x∈]ω−η,ω+η[
»»»»»f
′′(x)»»»»» ≤

»»»»»»»»
f
′′ (ω + 1

2
)
»»»»»»»»
≤

16

(ω − 1)3
≤ 128k

3
1

The statement follows immediately from these inequalities and the mean value theorem.

8.2 Travels along an epoch
In this section, we state a proposition that gives some conditions under which we can write Φω = Ψω◦Υω.
Equivalently, we give some conditions on hω, h

u and hf(ω) under which every orbit starting in the
section S

s
ω,hω will pass through the section S

u
ω,hu before hitting the section S

s
f(ω),hf(ω) . There are

essentially two cases depending on ω = [k0; k1, k2, . . . ] ∈ ]1,+∞[\Q: the first case is when k0 = k1 = 1
and the second case is when either k0 ≥ 2 or (k0 = 1 and k1 ≥ 2). For the first case, we use the
contraction in the direction transversal to the Mixmaster attractor. For the second case, we use the
gap between the sections Ssω and Ssf(ω) in the direction tangential to the Mixmaster attractor. The
first case is special, in the sense that we need to choose more carefully the parameters for the sections
than in the second case.

Lemma 8.4. There exist two constants C > 0 and n ∈ N such that the properties below hold true
for ω ∈ ]2,+∞[ \ Q, 0 < hω ≤ (Cωn)−1, 0 < hf(ω) ≤ (Cf(ω)n)−1, h = min (hω, hf(ω)), hω =

(hω, hCk0(ω)m(ω), hCk0(ω)m(ω)), hu = (hω, hC̃1ωm(ω), hC̃1ωm(ω)) and hf(ω) = (hf(ω), hf(ω), hf(ω)).
If k0(ω) = k1(ω) = 1, assume that hω = hf(ω). The epoch transition map

Φω,hω,hf(ω) ∶ S
s
ω,hω → S

s
f(ω),hf(ω)
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is well defined and takes its values in S
si(ω)
f(ω),hf(ω)

. The map Ψω,hu,hf(ω) ◦Υω,hω,h
u is also well defined

on the section Ssω,hω . Moreover,

Φω,hω,hf(ω) = Ψω,hu,hf(ω) ◦Υω,hω,h
u

Proof. For every C > 0 and every n ∈ N, we denote by EC,n the set of all (ω, hω, hf(ω)) such that
ω = [k0; k1, k2, . . . ] ∈ ]1,+∞[ \Q, 0 < hω ≤ (Cωn)−1, 0 < hf(ω) ≤ (Cf(ω)n)−1 such that hω = hf(ω)
if k0(ω) = k1(ω) = 1. We also define h, hω, h

u, hf(ω) as in Lemma 8.4. Let C0 ≥ 100 and n0 ∈ N be
large enough such that we can apply Proposition 6.1, Proposition 6.15 and Proposition 7.1 with these
two constants. Take C1 ≥ C0 such that for every C ≥ C1, every n ≥ n0 and every (ω, hω, hf(ω)) ∈ EC,n,
we have

(hCk0
ω m(ω))

ω+2
ω+1 h

−1
ω ≤ h

C̃1ω
ω m(ω) (8.11a)

h
Ck0
ω m(ω) (hωC0ω

n0 + 1) ≤ hC̃1ω
ω m(ω) (8.11b)

Let C ≥ C0, n ≥ n0 and (ω, hω, hf(ω)) ∈ EC,n. According to Proposition 7.1, Ψω,hu,hf(ω) is well
defined on S

u
ω,hu and takes its values in S

si(ω)
f(ω),hf(ω)

. According to Proposition 6.1, we know that
Υω,hω,(hω,hω2hω) is well defined so Υω,hω,h

u is well defined if

Υω,hω,(hω,hω2hω) (S
s
ω,hω) ⊂ S

u
ω,hu (8.12)

Let x ∈ Ssω,hω . According to (6.1) and (8.11a), we have

ÂÂÂÂÂΥω,hω,(hω,hω2hω)(x) −Υ
A
ω,hω,(hω,hω2hω)(x)

ÂÂÂÂÂ⊥ ≤ (hCk0
ω m(ω))

ω+2
ω+1 h

−1
ω ≤ h

C̃1ω
ω m(ω)

According to (6.2), we have

∥Υω,hω,(hω,hω2hω)(x) − x∥//
≤ h

Ck0
ω m(ω)hωC0ω

n0

so, using (8.11b), we get

∥Υω,hω,(hω,hω2hω)(x) − P
u
ω,hω∥//

≤ ∥Υω,hω,(hω,hω2hω)(x) − x∥//
+ ∥x − Puω,hω∥//

≤ h
Ck0
ω m(ω)hωC0ω

n0 + h
Ck0
ω m(ω) ≤ hC̃1ω

ω m(ω)

It follows that for every C ≥ C1, every n ≥ n0 and every (ω, hω, hf(ω)) ∈ EC,n, (8.12) holds true.
Hence, the maps Υω,hω,h

u and Ψω,hu,hf(ω) ◦Υω,hω,h
u are well defined on the section Ssω,hω . Moreover,

the map Ψω,hu,hf(ω) ◦Υω,hω,h
u takes its values in S

si(ω)
f(ω),hf(ω)

. This implies that the epoch transition
map Φω,hω,hf(ω) is well defined. We are left to prove that Φω,hω,hf(ω) = Ψω,hu,hf(ω) ◦ Υω,hω,h

u . Let
x ∈ S

s
ω,hω .

First case: xu = 0. According to (5.8), (5.10) and (5.12),

Φω,hω,hf(ω)(x) = Ψω,hu,hf(ω) ◦Υω,hω,h
u(x)

Second case: xu ≠ 0. By definition of Ψω,hu,hf(ω) , we only need to prove that the orbit t↦ y(t) of
the locally renormalized Wainwright-Hsu vector field Xω starting from x does not intersect the section
S
s
f(ω),hf(ω) before it intersects the section Suω,hu .
Assume that k0 = k1 = 1. It follows from (6.27b) that during its travel between Ssω,hω and Suω,hu ,

the orbit y satisfies ys1(t) < hω and ys2(t) < hω. Since hω = hf(ω), y(t) does not belong to the section
S
s
f(ω),hf(ω) .
Assume that k0 = 1 and k1 ≥ 2. It follows from (6.27c) that during its travel between Ssω,hω and

S
u
ω,hu , the orbit y satisfies ∣yc(t) − ω∣ ≤ 2h

C
f(ω) ≤

1
8
. Hence, yc(t) ≤ 13

8
. Moreover, hf(ω) ≤ 1

8
and

f(ω) ≥ 2 so any point z belonging to the section Ssf(ω),hf(ω) must satisfy zc ≥ 2 − 1
8
=

15
8
. Hence, y(t)

does not belong to the section Ssf(ω),hf(ω) .
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Assume that k0 ≥ 2. Having in mind that in this case, f(ω) = ω − 1, one can repeat the above
argument.

This shows that Ψω,hu,hf(ω) ◦ Υω,hω,h
u(x) is the first intersection point of y with the section

S
s
f(ω),hf(ω) . Hence Φω,hω,hf(ω)(x) = Ψω,hu,hf(ω) ◦Υω,hω,h

u(x).

8.3 Control of the epoch transition map Φω,hω,hf(ω)

In this section, we prove Proposition 8.1 using the decomposition Φω = Ψω ◦ Υω (see Lemma 8.4),
the estimates on Υω proven in Chapter 6 (see Proposition 6.1) and the estimates on Ψω proven in
Chapter 7 (see Proposition 7.1).

Proof of Proposition 8.1. For every C > 0 and every n ∈ N, we denote by EC,n the set of
all (ω, hω, hf(ω), h⊥, x, x̃) such that ω = [k0; k1, k2, . . . ] ∈ ]1,+∞[ \ Q, 0 < hω ≤ (Cωn)−1,

0 < hf(ω) ≤ (Cf(ω)n)−1 such that hω = hf(ω) if k0(ω) = k1(ω) = 1, 0 < h⊥ ≤ h
Ck

3
0m(ω) where

h = min (hω, hf(ω)) and x, x̃ ∈ S
s
ω,hω where hω = (hω, h⊥, hCk0m(ω)). Let C0 > 0 and n0 ∈ N be

large enough such that we can apply Proposition 6.1, Proposition 7.1 and Lemma 8.4 with these two
constants. For every C ≥ C0, every n ≥ n0 and every (ω, hω, hf(ω), h⊥, x, x̃) ∈ EC,n, define h

u and
hf(ω) as in Proposition 8.1 and let Υ ∶= Υω,hω,h

u , Ψ ∶= Ψω,hu,hf(ω) and Φ ∶= Φω,hω,hf(ω) .

Step 1: estimates (8.5) and (8.6).

Let C ≥ C0, n ≥ n0 and (ω, hω, hf(ω), h⊥, x, x̃) ∈ EC,n. Recall that
ÂÂÂÂÂΦ(x) − Φ

A(x)ÂÂÂÂÂ⊥ = dist∞ (Φ(x), A) = ∥Φ(x) − y∥⊥

for any y ∈ S
si(ω)
f(ω),hf(ω)

∩A. Hence,

ÂÂÂÂÂΦ(x) − Φ
A(x)ÂÂÂÂÂ⊥ =

ÂÂÂÂÂΨ ◦Υ(x) −Ψ ◦Υ
A(x)ÂÂÂÂÂ⊥ using Lemma 8.4

=
ÂÂÂÂÂΨ ◦Υ(x) −Ψ

A
◦Υ(x)ÂÂÂÂÂ⊥

It follows that

ÂÂÂÂÂΦ(x) − Φ
A(x)ÂÂÂÂÂ⊥ ≤

ÂÂÂÂÂΥ(x) −Υ
A(x)ÂÂÂÂÂ⊥ h

−C̃1ω using (7.2)

≤ h
ω+2
ω+1

⊥ h
−1
ω h

−C̃1ω using (6.1) (8.13)

To simplify the estimate found above, let us fix C1 ≥ C0 such that for every C ≥ C1, every n ≥ n0 and
every (ω, hω, hf(ω), h⊥, x, x̃) ∈ EC,n, we have

h
ω+2
ω+1

⊥ h
−1
ω h

−C̃1ω
≤ h

k0+4

k0+3

⊥ (8.14)

Plugging (8.14) into (8.13), we get that estimate (8.5) holds true.

According to (6.2), there exists C2 ≥ C1 such that for every C ≥ C2, every n ≥ n0 and every
(ω, hω, hf(ω), h⊥, x, x̃) ∈ EC,n, we have

∣Υ(x)c − ω∣ ≤ min (ω − 1

4
,
∣ω − 2∣

2
) (8.15)
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Let C ≥ C2, n ≥ n0 and (ω, hω, hf(ω), h⊥, x, x̃) ∈ EC,n. We have

ÂÂÂÂÂΦ(x) − Φ
A(x)ÂÂÂÂÂ//

=
ÂÂÂÂÂΨ ◦Υ(x) −Ψ

A
◦Υ

A(x)ÂÂÂÂÂ//
using Lemma 8.4

≤
ÂÂÂÂÂΨ ◦Υ(x) −Ψ

A
◦Υ(x)ÂÂÂÂÂ//

+
ÂÂÂÂÂΨ

A
◦Υ(x) −Ψ

A
◦Υ

A(x)ÂÂÂÂÂ//

≤
ÂÂÂÂÂΥ(x) −Υ

A(x)ÂÂÂÂÂ⊥ h
−C̃1ω + Lipf(ω)

ÂÂÂÂÂΥ(x) −Υ
A(x)ÂÂÂÂÂ//

using (7.3), (8.15) and proposition 8.3

≤h
ω+2
ω+1

⊥ h
−1
ω h

−C̃1ω + Lipf(ω)h⊥hωC0ω
n0 using (6.1) and (6.2)

≤h
k0+4

k0+3

⊥ + h⊥ Lipf(ω) using (8.14)

≤2h⊥ Lipf(ω)

Hence, estimate (8.6) holds true.

Step 2: estimates (8.7), (8.9) and (8.10). Using estimates (6.1), (6.3) and (6.4) and taking C3

large enough, we get that

(∥Υ(x) −Υ(x̃)∥⊥ +
ÂÂÂÂÂΥ(x) −Υ

A(x)ÂÂÂÂÂ⊥ ∥Υ(x) −Υ(x̃)∥//)h
−C̃1ω

≤ (h
1
ω+1

⊥ h
−1
ω + h

ω+2
ω+1

⊥ h
−1
ω (1 + C0ω

n0hω + C0ω
n0h⊥))h−C̃1ω ∥x − x̃∥∞

≤h
1

k0+2

⊥ h
−C3k0 ∥x − x̃∥∞

(8.16)

Plugging (8.16) into (7.4), we get that there exists C4 ≥ C3 such that for every C ≥ C4, every n ≥ n0

and every (ω, hω, hf(ω), h⊥, x, x̃) ∈ EC,n, we have

∥Φ(x) − Φ(x̃)∥⊥ ≤ h
1

k0+2

⊥ h
−C3k0 ∥x − x̃∥∞ ≤ h

1
k0+3

⊥ ∥x − x̃∥∞

Hence, estimate (8.7) holds true.

Plugging (8.16) into (7.5), we get that

ÂÂÂÂÂ(Φ(x) − Φ(x̃)) − (Ψ
A
◦Υ(x) −Ψ

A
◦Υ(x̃))ÂÂÂÂÂ//

≤ h
1

k0+2

⊥ h
−C3k0 ∥x − x̃∥∞ (8.17)

Recall that Ψ
A is essentially the Kasner map (see remark 5.25), hence

∥Φ(x) − Φ(x̃)∥//

≥
ÂÂÂÂÂΨ

A
◦Υ(x) −Ψ

A
◦Υ(x̃)ÂÂÂÂÂ//

−
ÂÂÂÂÂ(Φ(x) − Φ(x̃)) − (Ψ

A
◦Υ(x) −Ψ

A
◦Υ(x̃))ÂÂÂÂÂ//

≥Kf(ω) ∥Υ(x) −Υ(x̃)∥// − h
1

k0+2

⊥ h
−C3k0 ∥x − x̃∥∞ using (8.15), proposition 8.2 and (8.17)

It follows that

∥Φ(x) − Φ(x̃)∥//

≥Kf(ω) ∥x − x̃∥// −Kf(ω)C0ω
n0hω ∥x − x̃∥⊥ −Kf(ω)C0ω

n0h⊥ ∥x − x̃∥//

− h
1

k0+2

⊥ h
−C3k0 ∥x − x̃∥∞ using (6.4)

≥Kf(ω) ∥x − x̃∥// − C5k
n0

0 hω ∥x − x̃∥⊥ − h
1

k0+2

⊥ h
−C5k0 ∥x − x̃∥∞ for C5 large enough

According to the above inequality, there exists C6 ≥ max(C4, C5) such that for every C ≥ C6, every
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n ≥ n0 and every (ω, hω, hf(ω), h⊥, x, x̃) ∈ EC,n, we have

∥Φ(x) − Φ(x̃)∥// ≥ Kf(ω) ∥x − x̃∥// − C5k
n0

0 hω ∥x − x̃∥⊥ − h
1

k0+3

⊥ ∥x − x̃∥∞

Hence, estimate (8.9) holds true.

We have

∥Φ(x) − Φ(x̃)∥//

≤
ÂÂÂÂÂΨ

A
◦Υ(x) −Ψ

A
◦Υ(x̃)ÂÂÂÂÂ//

+
ÂÂÂÂÂ(Φ(x) − Φ(x̃)) − (Ψ

A
◦Υ(x) −Ψ

A
◦Υ(x̃))ÂÂÂÂÂ//

≤Lipf(ω) ∥Υ(x) −Υ(x̃)∥// + h
1

k0+2

⊥ h
−C3k0 ∥x − x̃∥∞

using (8.15), Proposition 8.3 on the Kasner map and (8.17)

≤ (h
1

k0+2

⊥ h
−C3k0 + 3 Lipf(ω)) ∥x − x̃∥∞ using (6.4)

≤4 Lipf(ω) ∥x − x̃∥∞ for C ≥ C4

It follows from the above inequality and (8.7) that estimate (8.10) holds true.

Step 3: estimate (8.8). Let C ≥ C6, n ≥ n0 and (ω, hω, hf(ω), h⊥, x, x̃) ∈ EC,n. We have

ÂÂÂÂÂ(Φ(x) − Φ(x̃)) − (ΦA(x) − Φ
A(x̃))ÂÂÂÂÂ//

≤
ÂÂÂÂÂ(Φ(x) − Φ(x̃)) − (Ψ

A
◦Υ(x) −Ψ

A
◦Υ(x̃))ÂÂÂÂÂ//

+

ÂÂÂÂÂ(Ψ
A
◦Υ(x) −Ψ

A
◦Υ(x̃)) − (Ψ ◦Υ

A(x) −Ψ ◦Υ
A(x̃))ÂÂÂÂÂ//

(8.18)

The first term of the right hand side of (8.18) is controlled by (8.17). To control the second term of
the right hand side of (8.18), let us define the map

λ ∶ x↦ Ψ ◦Υ
u(x) −Ψ ◦Υ

A(x)

where Υ
u
= ProjA ◦Υ. Remark that the second term is equal to ∥λ(x) − λ(x̃)∥// so we are left to

apply the mean value theorem to λ. Remark that λ is continuous on Ssω,hω and smooth on IntS
s
ω,hω

(we do not know if it is smooth on the hyperplane {xu = 0}). Let us identify the tangent space
Tx S

s1
ω,hω

= Vect ∂
∂xu

⊕ Vect ∂
∂xs2

⊕ Vect ∂
∂xc

with R3 (and analogously for Tx S
s2
ω,hω

, permuting the
roles of s1 and s2). Assume that x, x̃ ∈ IntS

s
ω,hω and x ≠ x̃. We will only prove estimate (8.8) in the

case where ∥x − x̃∥⊥ ≤ ∥x − x̃∥// (this is the only case useful later on and the other case is similar).
Let v = (v1, v2, v3) ∈ R3 such that ∥(v1, v2)∥∞ ≤ α ∣v3∣, where α = ∥x−x̃∥⊥

∥x−x̃∥//
. We have

Dλ(x).v = (DΨ(Υu(x)) −DΨ(ΥA(x)))DΥ
u(x).v +DΨ(ΥA(x)) (DΥ

u(x).v −DΥ
A(x).v)

Recall that
Υ
u(x) = (hω, 0, 0,Υ(x)c)

Using (5.12), (6.4) and Proposition 8.3 (with (8.15)), we get

ÂÂÂÂÂDΨ(ΥA(x)) (DΥ
u(x).v −DΥ

A(x).v)ÂÂÂÂÂ//
≤ Lipf(ω)

ÂÂÂÂÂDΥ
u(x).v −DΥ

A(x).vÂÂÂÂÂ//

≤ Lipf(ω) (α + C0ω
n0h⊥) ∥v∥∞

Using (5.12), (6.2), (6.4) and Proposition 8.3 (with (8.15)), we get

ÂÂÂÂÂ(DΨ(Υu(x)) −DΨ(ΥA(x)))DΥ
u(x).vÂÂÂÂÂ//

≤ Lipf ′(ω) ∥Υ(x) − x∥// ∥DΥ
u(x).v∥

//

≤ Lipf ′(ω)h⊥hωC0ω
n0 (1 + C0ω

n0(hωα + h⊥)) ∥v∥∞

There exist C8 ≥ C7 ≥ C6 such that for every C ≥ C8, every n ≥ n0 and every (ω, hω, hf(ω), h⊥, x, x̃) ∈
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EC,n, we have

Lipf(ω)C0ω
n0
≤ h

−C7k0

Lipf ′(ω)hωC0ω
n0 (1 + C0ω

n0(hωα + h⊥)) ≤ h−C7k0

3h
1

k0+2

⊥ h
−C7k0

≤ h
1

k0+3

⊥

Applying the mean value theorem to the last coordinate of λ, it follows that

ÂÂÂÂÂ(Φ(x) − Φ(x̃)) − (ΦA(x) − Φ
A(x̃))ÂÂÂÂÂ//

≤h
1

k0+2

⊥ h
−C3k0 ∥x − x̃∥∞ + Lipf(ω) ∥x − x̃∥⊥ + 2h⊥h

−C7k0 ∥x − x̃∥∞

≤h
1

k0+3

⊥ ∥x − x̃∥∞ + Lipf(ω) ∥x − x̃∥⊥

Hence, estimate (8.8) holds true on IntS
s
ω,hω and then on Ssω,hω by continuity. To conclude, Proposi-

tion 8.1 holds true with C̃5 = C8 and ñ5 = n0.



Chapter9
Dynamics along an era

The goal of this section is to give some estimates on the era return map Φ̄h ∶ Sh → Sh and the double
era return map Φ̂h ∶ Sh → Sh (see definitions 5.8 and 5.9). Recall that Φ̄h ∶ Sh → Sh is essentially the
first return map of the orbits of the Wainwright-Hsu vector field on the global section Sh and that
Φ̂h ∶ Sh → Sh is just the square of Φ̄h.

Our first task will be to prove that, for any ω ∈ ]1, 2[ \ Q, we can write the era transition map
Φ̄ω,h as a composition of k1(ω) epoch transition maps,

Φ̄ω,h = Φk1(ω)−1 ◦ ⋅ ⋅ ⋅ ◦ Φ0 (9.1)

where Φj is the epoch transition map from a section Ssfj(ω),hj at the entrance of a neighbourhood of
Pfj(ω) to a section Ssfj+1(ω),hj+1

at the entrance of a neighbourhood of Pfj+1(ω).
Once the relation (9.1) will be proven, we will be able to use the estimates proven in the preceding

section on the epoch transition maps (see Proposition 8.1) to get some estimates on the era transition
map Φ̄ω,h (see Proposition 9.4). The main technical difficulty will be to set up an induction on the
length of the era. Analogously to the epoch transition maps, we will show that the era transition map
Φ̄ω,h is a strong contraction in the direction transversal to the Mixmaster attractor while it is very
close to the era Kasner map f̄ (see (3.16)) in the direction tangential to the Mixmaster attractor.

We want to prove that the era transition map Φ̄ω,h admits some hyperbolic properties. Unfortunately,
it does not expand enough in the direction tangential to the Mixmaster attractor. Indeed, the era
transition map is “close” to the era Kasner map f̄ in the direction tangential to the Mixmaster attractor
and f̄ does not expand uniformly in the neighbourhood of ω = 2. Nevertheless, since f̄ expands
uniformly on every interval ]1, 2 − ε[ and since f̄ (]2 − ε, 2[) ⊂ ]1, 2 − ε[ for ε small enough, it follows
that f̂ ∶= f̄ ◦ f̄ expands uniformly on ]1, 2[. This is the reason why we introduce the double era
transition map Φ̂ω,h.

Before we give the estimates on the double era transition map Φ̂ω,h, we need some definitions. Let
K̂f̂ ∶=

36
25
. Let us explain why K̂f̂ is a local expansion constant for the double era Kasner map f̂ .

Recall that we denote by Kf(ω) a local expansion constant for the Kasner map f in the neighbourhood
of ω (see Proposition 8.2). Let ω = [1; k1, k2, . . . ] ∈ ]1, 2[ \Q and 1 ≤ j ≤ k1 − 1. Using formula (8.2),
we get that

Kf(f j(ω)) = 1

Hence,
k1−1

∏
j=0

Kf(f j(ω)) = Kf(ω)

As a consequence, Kf(ω) is also a local expansion constant for the era Kasner map f̄ in the neigh-
bourhood of ω. As a consequence, Kf(f̄(ω))Kf(ω) is a local expansion constant for the double era
Kasner map f̂ in the neighbourhood of ω. Using formula (8.2), it is easy to check that

Kf(f̄(ω))Kf(ω) ≥ K̂f̂

117
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We are going to prove that the double era transition map is, as the double era Kasner map, expansive
in the direction tangent to the Mixmaster attractor with a slightly lesser constant, say

Kc
def
=

1 + K̂f̂

2
(9.2)

Later on (see chapter 10), we will show that there exists a cone field invariant by the double era
transition map, say of width σ̂. This invariant cone field will allow us to define a graph transformation
that maps σ̂-Lipschitz graphs to σ̂-Lipschitz graphs. We will construct a local stable manifold for the
double era transition map as an invariant graph for the graph transformation. The condition for this
transformation graph to be a contraction mapping is

Kc (1 − σ̂
2) > 1 (9.3)

Hence, we fix now a positive constant σ̂ satisfying (9.3) and we will prove an expansion estimate for
the double era transition map that is adapted to this particular constant. Remark that σ̂ < 1/2.

Definition 9.1. For any ω ∈ ]1, 2[ \Q, let us define

s2(ω)
def
= k1(ω)2

+ k2(ω)2
+ k3(ω)2

+ k4(ω)2

s4(ω)
def
= k1(ω)4

+ k2(ω)4
+ k3(ω)4

+ k4(ω)4

Define, for any ω ∈ ]1, 2[ \Q,

î(ω) def
= {1 if k2(ω) ≥ 2

2 if k2(ω) = 1
(9.4)

Proposition 9.2 (Double era transition map). There exist two constants C̃8 ≥ 1 and ĥ > 0 such that
the properties below hold for every ω ∈ ]1, 2[ \Q and 0 < h⊥ ≤ e

−C̃8s4(ω). Let h = (ĥ, h⊥, e−C̃8s2(ω)).
The double era transition map

Φ̂ω,h ∶ S
s
ω,h ⊂ Sĥ → Sĥ

is well defined and takes its values in S
sî(ω)

ĥ
. Moreover, for every x, x̃ ∈ Ssω,h, we have the following

estimates, where Φ̂ ∶= Φ̂ω,h and Φ̂
A ∶= Φ̂

A
ω,h:

(Control of the distance to the Mixmaster attractor)

dist∞ (Φ̂(x), A) = ÂÂÂÂÂΦ̂(x) − Φ̂
A(x)ÂÂÂÂÂ⊥ ≤ h

1+ k1(ω)
4

+ k2(ω)
4

⊥ (9.5)

(Control of the drift tangential to the Mixmaster attractor)

ÂÂÂÂÂΦ̂(x) − Φ̂
A(x)ÂÂÂÂÂ//

≤ 306h⊥k1(ω)2
k2(ω)2 (9.6)

(Contraction in the direction transverse to the Mixmaster attractor)

ÂÂÂÂÂΦ̂(x) − Φ̂(x̃)ÂÂÂÂÂ⊥ ≤ h
k1(ω)
100

+ k2(ω)
100

⊥ ∥x − x̃∥∞ (9.7)

(Lipschitz control in the direction tangential to the Mixmaster attractor)

ÂÂÂÂÂ((Φ̂(x) − Φ̂(x̃)) − (Φ̂
A(x) − Φ̂

A(x̃))ÂÂÂÂÂ//
≤

(h
1

26k1(ω)
⊥ + h

1
26k2(ω)
⊥ )∥x − x̃∥∞ + 16

2
k1(ω)2

k2(ω)2 ∥x − x̃∥⊥ (9.8)
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(Expansion in the direction tangent to the Mixmaster attractor)

ÂÂÂÂÂΦ̂(x) − Φ̂(x̃)ÂÂÂÂÂ//
≥ K̂f̂ ∥x − x̃∥// −

K̂f̂ −Kc

1 + 1
σ̂

∥x − x̃∥∞ (9.9)

9.1 Control of the era transition map Φ̄ω,h

The purpose of this section is to give some estimates on the era transition map Φ̄ω,h. Proposition 9.4
below shows that the decisive parameter to control the era transition map is the size h⊥ of the section
S
s
ω,h in the direction transverse to the Mixmaster attractor.
Recall that for all ω ∈ ]1,+∞[ \Q,

m(ω) = min (1, (ω − 2)2)

and define for all ω ∈ ]1, 2[ \Q,
m̄(ω) def

= min
0≤j≤k1(ω)

m(f j(ω))

Lemma 9.3. For all ω ∈ ]1,+∞[ \Q,

m(ω) ≥

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
(4k2(ω))2

if k0(ω) = 1
1

(2k1(ω))2
if k0(ω) = 2

1 if k0(ω) ≥ 3

(9.10)

For all ω ∈ ]1, 2[ \Q,

m̄(ω) ≥ 1

(4k2(ω)k3(ω))2
(9.11)

Proof. Estimate (9.10) is straightforward. Let ω ∈ ]1, 2[ \ Q. Remark that k0(f j(ω)) ≥ 3 for
1 ≤ j ≤ k1 − 2 and

k0(fk1−1(ω)) = 2 k1(fk1−1(ω)) = k2

k0(fk1(ω)) = 1 k2(fk1(ω)) = k3

Hence, (9.11) follows from (9.10).

Recall that ñ5 is a constant fixed in Proposition 8.1.

Proposition 9.4 (Era transition map). There exists a constant C̃6 ≥ C̃5 such that the properties
below hold for ω ∈ ]1, 2[ \ Q, 0 < h ≤ C̃

−1
6 , h̃ = hk1(ω)−ñ5 , 0 < h⊥ ≤ h̃

C̃6(k1(ω)+1)3
m̄(ω)2. Let

h = (h, h⊥, h̃C̃6(k1(ω)+1)
m̄(ω)2). The era transition map

Φ̄ω,h ∶ S
s
ω,h ⊂ Sĥ → Sĥ

is well defined and takes its values in S
sī(ω)

ĥ
. Moreover, for every x, x̃ ∈ Ssω,h, we have the following

estimates, where Φ̄ = Φ̄ω,h and Φ̄
A
= Φ̄

A
ω,h:

(Control of the distance to the Mixmaster attractor)

dist∞ (Φ̄(x), A) = ÂÂÂÂÂΦ̄(x) − Φ̄
A(x)ÂÂÂÂÂ⊥ ≤ h

1+ k1(ω)
4

⊥ (9.12)

(Control of the drift tangential to the Mixmaster attractor)

ÂÂÂÂÂΦ̄(x) − Φ̄
A(x)ÂÂÂÂÂ//

≤ 34h⊥k1(ω)2 (9.13)
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(Contraction in the direction transverse to the Mixmaster attractor)

∥(Φ̄(x) − Φ̄(x̃)∥
⊥
≤ h

k1(ω)
25

⊥ ∥x − x̃∥∞ (9.14)

(Lipschitz control in the direction tangential to the Mixmaster attractor)

ÂÂÂÂÂ((Φ̄(x) − Φ̄(x̃)) − (Φ̄
A(x) − Φ̄

A(x̃))ÂÂÂÂÂ//
≤ h

1
k1(ω)+4

⊥ ∥x − x̃∥∞ + 16k1(ω)2 ∥x − x̃∥⊥ (9.15)

(Control of the expansion in the direction tangent to the Mixmaster attractor)

∥Φ̄(x) − Φ̄(x̃)∥
//
≥ Kf(ω) ∥x − x̃∥// − h

1
k1(ω)+4

⊥ ∥x − x̃∥∞ − hC̃6 ∥x − x̃∥⊥ (9.16)

(Global lipschitz constant)

∥Φ̄(x) − Φ̄(x̃)∥∞ ≤ 4
k1(ω)+2

k1(ω)2 ∥x − x̃∥∞ (9.17)

First, we will show that the map Φ̄ω,h can be expressed as a composition of several epoch transition
maps. Once this is done, we will be left to apply recursively Proposition 8.1 to obtain the estimates on
the era transition map.

From now on, assume that C̃4 ≥ 1, C̃5 ≥ 1000C̃4 and ñ5 ≥ 1000. Fix ω ∈ ]1, 2[ \Q and 0 < h ≤ C̃
−1
5 .

For the remainder of this section, We now proceed to define the epoch transition maps that we will be
using to decompose the era transition map. Let h̃ ∶= hk1(ω)−ñ5 and

hj
def
= {h if 1 ≤ j ≤ k1(ω) − 1

h̃ if j = 0 or j = k1(ω)

Define, for 0 ≤ j ≤ k1(ω), the section parameters

hj,⊥
def
= h̃

C̃5(k1(ω)−j+1)3
m̄(ω)2

, hj,//
def
= h̃

C̃5(k1(ω)−j+1)
m̄(ω)2

and
hj

def
= (hj , hj,⊥, hj,//) , h

′
j

def
= (hj , hj , hj)

We will use the epoch transition maps

Φj
def
= Φfj(ω),hj ,h′j+1

∶ S
s
fj(ω),hj → S

s
fj+1(ω),h′j+1

, 0 ≤ j ≤ k1(ω) − 1

Define, for 0 ≤ j ≤ k1(ω) − 1,

Φ
∗
j

def
= Φj ◦ ⋅ ⋅ ⋅ ◦ Φ0, Φ

∗A
j

def
= Φ

∗
j ◦ ProjA

Our goal is to prove that
Φ̄ω,h0

= Φ
∗
k1(ω)−1

To simplify the notations, let

S
s
j

def
= S

s
fj(ω),hj , 0 ≤ j ≤ k1(ω)

Remark that the sections we consider become larger as j increases from 0 to k1(ω). The departure
section Ss0 and the arrival section Ssk1(ω) are at distance h from the Kasner circle. The intermediate
sections Ssj (0 < j < k1(ω)) are chosen much closer to the Kasner circle, at distance h̃≪ h.

Lemma 9.5. For every 0 ≤ j ≤ k1(ω) − 1, the epoch transition map Φj is well defined on the section
S
s
j .
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Proof. Remark that

k0(f j(ω)) = k1(ω) − j + 1, for all 1 ≤ j ≤ k1(ω)

and min(h, h̃) = h̃. Moreover, recall that

m̄(ω) ≤ m(f j(ω)), for all 0 ≤ j ≤ k1(ω)

Hence, Lemma 9.5 is a direct consequence of Proposition 8.1.

Lemma 9.6. For every 0 ≤ j ≤ k1(ω) − 1, Φj (Ssj ) ⊂ Ssj+1.

Proof. Let x ∈ Ss0 . According to (8.5),

dist∞ (Φ0(x), A) = ÂÂÂÂÂΦ0(x) − Φ
A
0 (x)ÂÂÂÂÂ⊥ ≤ h

5
4

0,⊥ ≤ h0,⊥ ≤ h1,⊥

According to (8.6) and Proposition 8.3 on the local Lipschitz constant for the Kasner map,

ÂÂÂÂÂÂΦ0(x) − P s2f(ω),h̃
ÂÂÂÂÂÂ//

≤
ÂÂÂÂÂΦ0(x) − Φ

A
0 (x)ÂÂÂÂÂ//

+
ÂÂÂÂÂÂΦ

A
0 (x) − P si(ω)

f(ω),h̃
ÂÂÂÂÂÂ//

≤ 2h0,⊥ Lipf(ω) + Lipf(ω)h0,//

≤ 16k1(ω)2 (2h̃
C̃5(k1(ω)+1)3

+ h̃
C̃5(k1(ω)+1)) m̄(ω)2 using Lipf(ω) = 16k1(ω)2

≤ h̃
C̃5k1(ω)m̄(ω)2

× 48k1(ω)2
h̃
C̃5

Since C̃5 ≥ 1000 and ñ5 ≥ 1000, one can check that 48k1(ω)2
h̃
C̃5
≤ 1. Hence,

ÂÂÂÂÂÂΦ0(x) − P s2f(ω),h̃
ÂÂÂÂÂÂ//

≤ h1,//

and we can conclude that Φ0 (Ss0) ⊂ Ss1 . Now, fix 1 ≤ j ≤ k1(ω) − 1 and x ∈ Ssj . According to (8.5),

dist∞ (Φj(x), A) = ÂÂÂÂÂΦj(x) − Φ
A
j (x)

ÂÂÂÂÂ⊥ ≤ h
k1(ω)−j+5

k1(ω)−j+4

j,⊥ ≤ hj,⊥ ≤ hj+1,⊥

According to (8.6) and Proposition 8.3 on the local Lipschitz constant for the Kasner map,

ÂÂÂÂÂÂΦj(x) − P s1fj(ω),h̃
ÂÂÂÂÂÂ//

≤
ÂÂÂÂÂΦj(x) − Φ

A
j (x)

ÂÂÂÂÂ//
+

ÂÂÂÂÂÂΦ
A
j (x) − P s1fj(ω),h̃

ÂÂÂÂÂÂ//

≤ 2hj,⊥ Lipf(f
j(ω)) + Lipf(f

j(ω))hj,//
≤ (2h̃

C̃5(k1(ω)−j+1)3
+ h̃

C̃5(k1(ω)−j+1)) m̄(ω)2 using Lipf(f
j(ω)) = 1

≤ hj+1,// × 3h̃
C̃5

≤ hj+1,//

Hence, Φj (Ssj ) ⊂ Ssj+1. This concludes the proof of Lemma 9.6.

Define, for any ω ∈ ]1, 2[ \Q,

ī(ω) def
= {1 if k1(ω) ≥ 2

2 if k1(ω) = 1
(9.18)

Corollary 9.7. The map Φ
∗
k1(ω)−1 is well defined on the whole section Ss0 and takes its values in the

global section S
sī(ω)
h .

Proof. Recall that Sh = S
s1
h ∪ S

s2
h where

S
s1
h

def
= {x = (xu, xs1 , xs2 , xc) ∣ xs1 = h, 0 ≤ xu ≤ h, 0 ≤ xs2 ≤ h, 1 < xc < 2}
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and analogously for Ss2h . The fact that Φ
∗
k1(ω)−1 is well defined on the section Ss0 is a direct consequence

of Lemma 9.6. Moreover, Lemma 9.6 informs us that Φ
∗
k1(ω)−1 takes its values in the section Ssk1(ω).

Hence, for any x ∈ Ss0 , ÂÂÂÂÂΦ
∗
k1(ω)−1(x) − Φ

∗A
k1(ω)−1(x)

ÂÂÂÂÂ⊥ ≤ hk1(ω),⊥ ≤ h

and
ÂÂÂÂÂΦ

∗
k1(ω)−1(x) − P

sī(ω)
f̄(ω),h

ÂÂÂÂÂ//
≤ hk1(ω),// ≤

1

2
m̄(ω) ≤ min ( f̄(ω) − 1

2
,

2 − f̄(ω)
2

)

Since 1 < f̄(ω) < 2 and xc (P
sī(ω)
f̄(ω),h) = f̄(ω), the above inequality implies that

1 < xc (Φ∗
k1(ω)−1(x)) < 2

Hence, Φ
∗
k1(ω)−1(x) ∈ Sh. More precisely, Proposition 8.1 implies that Φ

∗
k1(ω)−1 takes its values in

S
sī(ω)
h .

Lemma 9.8. The era transition map Φ̄ω,h0
is well defined on the whole section Ss0 and takes its values

in S
sī(ω)
h . Moreover,

Φ̄ω,h0
= Φ

∗
k1(ω)−1 = Φk1(ω)−1 ◦ ⋅ ⋅ ⋅ ◦ Φ0 (9.19)

Proof. In this proof, we will denote k1 = k1(ω) and we will assume that k1 ≥ 2. Indeed, if k1 = 1,
the era transition map coincide with the epoch transition map and Lemma 9.8 is a straightforward
consequence of Proposition 8.1.

Claim 1. The era transition map Φ̄ω,h0
is well defined on S

s
0 ∩ BIX and Φ̄ω,h0

(x) = Φ
∗
k1−1(x) for

every x ∈ Ss0 ∩BIX.

Proof of claim 1. Let x ∈ S
s
0 ∩ BIX and q be the orbit of the Wainwright-Hsu vector field X with

initial condition q(0) = ξ
−1(x). Let q0

= ξ
−1(x) and q

j
= ξ

−1(Φ∗
j−1(x)) for any 1 ≤ j ≤ k1. Since

x ∈ BIX, we have xu ≠ 0, xs1 ≠ 0 and xs2 ≠ 0. It follows by induction that for any 0 ≤ j ≤ k1 − 1,
we have qju ≠ 0 and qj+1 is the first intersection point of the orbit of the Wainwright-Hsu vector field
X starting at qj with the section Ssj+1 ∶= ξ (Ssj+1). Hence, qk1 is a point belonging both to the orbit
starting at q0

= ξ
−1(x) and to the global section Sh. This proves that the era transition map Φ̄ω,h0

is
well defined on Ss0 ∩BIX.

We are now going to prove that Φ̄ω,h0
(x) = Φ

∗
k1−1(x), i.e. that ξ−1(Φ∗

k1−1(x)) is the first intersection
point of the orbit q with the section Sh. Let t

s
0 = 0 and let tu0 be the first time t > 0 such that q(t) ∈ Suω,h′0 .

By induction, define, for every 1 ≤ j ≤ k1 − 1,

t
s
j = min {t > tuj−1 ∣ q(t) ∈ Ssj }

t
u
j = min {t > tsj ∣ q(t) ∈ Sufj(ω),h′j}

t
s
k1
= min {t > tuk1−1 ∣ q(t) = ξ−1(Φ∗

k1−1(x))}

With these notations, we are left to prove that for any t ∈ ]0, tsk1
[, q(t) does not belong to Sh. The

general idea is simple: either q(t) is close to a type II orbit that is far away from the section Sh or
q(t) is close to the Kasner circle and we can use the local estimates of chapter 6.

Case t ∈ ]tsj , tuj ], 0 ≤ j ≤ k1 − 1. According to Proposition 6.15 and corollary 6.16, qs1 and qs2 are
exponentially decreasing. Hence, qs1(t) < qs1(t

s
j) ≤ h and qs2(t) < qs1(t

s
j) ≤ h. This implies that q(t)

does not belong to the section Sh.

Case t ∈ ]tu0 , ts1]. Recall that the local coordinates (xu, xs1 , xs2 , xc) are defined on the open ball
Bω,C̃5,ñ5

, i.e. Bω,C̃5,ñ5
⊂ Uξ (see definition 4.1). Let tout

0 be the first time t > tu0 when the orbit ξ ◦ q
leaves the open ball Bω,2C̃5,ñ5

. On ]tu0 , tout
0 ], qu is strictly increasing and qu(tu0) = h so q(t) does not

belong to the section Sh.
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Let us denote by p the (type II) orbit with initial condition p(tu0) = Puω,h. For every t ∈ ]tu0 , ts1], we
have

dB (q(t), p(t)) ≤
∥ξ(q(tu0)) − Puω,h∥⊥

h̃C̃4ωm(ω)
using (7.31)

≤
(h0,⊥)

ω+2
ω+1h

−1

h̃C̃4ωm(ω)
using (6.1)

≤
h̃
C̃5(k1+1)3

m̄(ω)2

h̃C̃4ωm(ω)
≤ h̃

100
m̄(ω)

≤
1

C̃5f(ω)ñ5ωñ5

h

1000
m̄(ω) (9.20)

According to (9.20) and the control (4.5b) on the local coordinate system ξ, for every t ∈ ]tu0 , tout
0 ], we

have ξ ◦ p(t) ∈ Bω,C̃5,ñ5
⊂ Uξ. It follows from the evolution equations (6.5) that pu is increasing on

]tu0 , tout
0 ]. Since p is a type II orbit, p(t) = (pu(t), 0, 0, ω) on ]tu0 , tout

0 ]. As a consequence, estimate (9.20)
together with the control (4.5b) on the local coordinate system ξ imply that

qs1(t
out
0 ) < 1

2C̃5ω
ñ5
, qs2(t

out
0 ) < 1

2C̃5ω
ñ5
,

»»»»»qc(t
out
0 ) − ω»»»»» < min ( 1

2C̃5ω
ñ5
,
ω − 1

2
)

Recall that the orbit ξ◦q leaves the open ball Bω,2C̃5,ñ5
at time t = tout

0 . Hence, qu(tout
0 ) = 1

2C̃5ω
ñ5
≥ 3h.

Using (9.20) together with (4.5b) once again, we get that pu(tout
0 ) ≥ 2h. It follows that for every

t ∈ [tout
0 , t

s
1], one of the three following properties hold:

1. pu(t) ≥ 2h (roughly, before p leaves Uξ)

2. p(t) ∉ Uξ

3. pc(t) = f(ω) (roughly, after p re-enters Uξ)

Let t ∈ [tout
0 , t

s
1] and assume that q(t) ∈ Sh. Estimate (9.20) implies that p(t) belongs to the domain

Uξ of the local coordinates system ξ. If pu(t) ≥ 2h, then we get qu(t) > h using (9.20) with (4.5b). If
pc(t) = f(ω), then we get

∣qc(t) − f(ω)∣ ≤
f(ω) − 2

2

using (9.20) with (4.5b) once again. Since f(ω) > 2, it follows that qc(t) > 2. In both cases, q(t) ∉ Sh
so this is absurd.

Case t ∈ [tuj , tsj+1], 1 ≤ j ≤ k1 − 2. Let us denote by p the (type II) orbit with initial condition
p(tuj ) = Pu

fj(ω),h̃. Recall that

k1 − j + 1 ≤ f
j(ω) = [k1 − j + 1; k2, . . . ] ≤ k1 − j + 2
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For every t ∈ [tuj , tsj+1], we have

dB (q(t), p(t)) ≤
ÂÂÂÂÂξ(q(t

u
j )) − Pu

fj(ω),h̃
ÂÂÂÂÂ⊥

h̃C̃4f
j(ω)m(f j(ω))

using (7.31)

≤
(hj,⊥)

f
j (ω)+2

fj (ω)+1 h̃
−1

h̃C̃4f
j(ω)m(f j(ω))

using (6.1)

≤
h̃
C̃5(k1−j+1)3

m̄(ω)2

h̃C̃4f
j(ω)m(f j(ω))

≤
1

C̃5f
j(ω)ñ5f j+1(ω)ñ5

h

1000
m̄(ω) (9.21)

Let t ∈ [tuj , tsj+1] and assume that q(t) ∈ Sh. It follows from (9.21) and the control (4.5b) on the
local coordinate system ξ that p(t) ∈ Uξ. Since p is a type II orbit, we have either pc(t) = f j(ω) or
pc(t) = f j+1(ω). Moreover, estimate (9.21) together with the control (4.5b) on the local coordinate
system implies that

∣qc(t) − pc(t)∣ ≤
f
j+1(ω) − 2

2

Since 2 < f
j+1(ω) < f j(ω), it follows that qc(t) > 2. This contradicts the fact that q(t) belongs to the

section Sh.

Case t ∈ [tuk1−1, t
s
k1
]. Assume that there exists t ∈ [tuk1−1, t

s
k1
[ such that q(t) ∈ Sh. Then it must

satisfy q(t) ∈ Sh \Ssf̄(ω),h′k1(ω)
because ξ−1(Φ∗

k1−1(x)) is the first intersection point of the orbit starting

at q(tuk1−1) with the section Ssf̄(ω),h′k1(ω)
. But estimate (9.21) with j = k1− 1 is also valid on [tuk1−1, t

s
k1
]

and implies that q(t) ∈ Ssf̄(ω),h′k1(ω)
. This is absurd.

This concludes the proof of claim 1.

Claim 2. The era transition map Φ̄ω,h0
is well defined at every point of Ss0 ∩ BII and Φ̄ω,h0

(x) =
Φ
∗
k1−1(x) for every x ∈ Ss0 ∩BII.

Proof of claim 2. Let x ∈ Ss0 ∩BII. In particular, xu = 0. Iteration of formula (5.8) gives

Φ
∗
k1−1(x) = {(0, h, 0, f

k1(xc)) if k1 ≥ 2

(0, 0, h, fk1(xc)) if k1 = 1

Morevoer, if we denote by [1; k1(xc), k2(xc), . . . ] the continued fraction associated with xc, formula
(5.6) can be rewritten as follows:

Φ̄ω,h(x) = {(0, h, 0, f
k1(xc)(xc)) if k1(xc) ≥ 2

(0, 0, h, fk1(xc)(xc)) if k1(xc) = 1

We are left to prove that k1(xc) = k1. This is a consequence of Proposition B.6 together with the fact
that ∣xc − ω∣ ≤ h0,// < (10k1(ω)2

k2(ω)k3(ω))−1. This concludes the proof of claim 2.

Claim 3. The era transition map Φ̄ω,h0
is well defined at every point of Ss0 ∩BVII0 and Φ̄ω,h0

(x) =
Φ
∗
k1−1(x) for every x ∈ Ss0 ∩BVII0 .

Proof of claim 3. This is a mix of claim 1 (before the orbit starting at x converges to a point of the
Kasner circle) and claim 2 (after the orbit starting at x converges to a point of the Kasner circle).

This concludes the proof of Lemma 9.8, since Ss0 = (Ss0 ∩BII) ⊔ (Ss0 ∩BVII0) ⊔ (Ss0 ∩BIX).

Proof of Proposition 9.4. As in the preceding proof, we will denote k1 = k1(ω) and we will assume
that k1 ≥ 2. The proof of Proposition 9.4 relies on the decomposition (9.19) of the era transition
map Φ̄ω,h0

as a product of k1 epoch transition maps, together with the estimates on these epoch
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transition maps stated in Proposition 8.1. In other words, estimates (9.12), . . . , (9.16) will be obtained
by applying k1 times the corresponding estimates of Proposition 8.1. More precisely, we are going to
prove Proposition 9.4 for a restriction of the map Φ̄ω,h0

. Let C ≥ C̃5 and define

h̃0,⊥
def
= h̃

C(k1+1)3
m̄(ω)2

, h0,//
def
= h̃

C̃5(k1(ω)+1)
m̄(ω)2

Let 0 < h⊥ ≤ h̃0,⊥, h = (h, h⊥, h0,//), x, x̃ ∈ Ssω,h, Φ̄ = Φ̄ω,h and Φ̄
A
= Φ̄

A
ω,h. We are left to prove the

following statement: provided that C is large enough, estimates (9.12), . . . , (9.16) hold true. From
now on, we will use the notation Φ0 ∶= Φω,h,h′1 . Beware of the fact that this is the restriction of the
former epoch transition map Φ0 to the smaller section Ssω,h.

Proof of estimate (9.12). Define a0 = h⊥ and

aj = sup
x∈Ssω,h

ÂÂÂÂÂΦ
∗
j−1(x) − Φ

∗A
j−1(x)

ÂÂÂÂÂ⊥ , 1 ≤ j ≤ k1

Claim 1. For all 1 ≤ j ≤ k1,

aj ≤ h
5
4

k1+4

k1−j+5

⊥ (9.22)

Proof of claim 1. Recall that k0(ω) = 1. Applying (8.5) to the epoch transition map Φ0, we get that

a1 ≤ h
5
4

⊥. Assume that aj ≤ h
5
4

k1+4

k1−j+5

⊥ for some 1 ≤ j ≤ k1−1. We are now going to apply Proposition 8.1
with h⊥ = aj . More precisely, we apply (8.5) to the epoch transition map Φj restricted to the section
S
s
fj(ω),(hj ,aj ,hj,//). We get that

aj+1 ≤ a

k0(fj (ω))+4

k0(fj (ω))+3

j = a
k1−j+5

k1−j+4

j ≤ h
5
4

k1+4

k1−j+4

⊥

By induction on j, claim 1 holds true.

Since Φ̄ = Φ
∗
k1−1, estimate (9.12) is a direct consequence of estimate (9.22) with j = k1.

Proof of estimate (9.13). Define

bj = sup
x∈Ssω,h

ÂÂÂÂÂΦ
∗
j−1(x) − Φ

∗A
j−1(x)

ÂÂÂÂÂ//
, 1 ≤ j ≤ k1

Using (8.6) and the fact that Lipf(ω) = 16k
2
1 (see the explicit formula (8.3)), we get

b1 ≤ 2h⊥ Lipf(ω) ≤ 32k
2
1h⊥ (9.23)

We are now going to find a relation between bj+1 and bj . Let 1 ≤ j ≤ k1 − 1. Remark that

ÂÂÂÂÂΦ
∗
j (x) − Φ

∗A
j (x)ÂÂÂÂÂ//

≤
ÂÂÂÂÂΦj (Φ∗

j−1(x)) − Φ
A
j (Φ∗

j−1(x))
ÂÂÂÂÂ//
+
ÂÂÂÂÂΦ

A
j (Φ∗

j−1(x)) − Φ
A
j (Φ

∗A
j−1(x))

ÂÂÂÂÂ//
(9.24)

As a direct consequence of estimate (8.6) applied to the epoch transition map Φj restricted to the
section Ss

fj(ω),(h̃,aj ,hj,//), we get that

ÂÂÂÂÂΦj (Φ∗
j−1(x)) − Φ

A
j (Φ∗

j−1(x))
ÂÂÂÂÂ//

≤ 2aj Lipf(f
j(ω)) ≤ 2aj (9.25)

since f j(ω) > 2 implies that Lipf(f j(ω)) = 1 by the explicit formula (8.3). Moreover, recall that the
xc-coordinate of Φ

A
j is essentially the Kasner map (see (5.9)). Hence, Proposition 8.3 implies that

ÂÂÂÂÂΦ
A
j (Φ∗

j−1(x)) − Φ
A
j (Φ

∗A
j−1(x))

ÂÂÂÂÂ//
≤ Lipf(f

j(ω)) ÂÂÂÂÂΦ
∗
j−1(x) − Φ

∗A
j−1(x)

ÂÂÂÂÂ//
≤ bj (9.26)

Pluging (9.25) and (9.26) in (9.24), we get that bj+1 ≤ 2aj + bj . Hence, using (9.22) and (9.23), it
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follows that for all 1 ≤ j ≤ k1,

bj ≤ 2

j−1

∑
r=1

ar + b1 ≤ 2k1h⊥ + 32k
2
1h⊥ ≤ 34k

2
1h⊥ (9.27)

Since Φ̄ = Φ
∗
k1−1, estimate (9.13) is a direct consequence of estimate (9.27) with j = k1.

Proof of estimate (9.17). Let 0 ≤ l ≤ k1 − 1. Recall that Φ
∗
l is defined as the product of l+ 1 epoch

transition maps. Using l + 1 times inequality (8.10), we obtain the following Lipschitz estimate for Φ
∗
l :

∥Φ
∗
l (x) − Φ

∗
l (x̃)∥∞ ≤ (

l

∏
j=0

4 Lipf(f
j(ω))) ∥x − x̃∥∞

Recall that Lipf(.) is defined by the explicit formula (8.3) which yields

(
l

∏
j=0

4 Lipf(f
j(ω))) = 4

l+1
16k

2
1

since f j(ω) > 2 for 1 ≤ j ≤ k1 − 1. Hence, we obtain

∥Φ
∗
l (x) − Φ

∗
l (x̃)∥∞ ≤ 4

l+3
k

2
1 ∥x − x̃∥∞ (9.28)

Taking l = k1 − 1, we obtain the desired estimate (9.17) for the era transition map Φ̄ = Φ
∗
k1−1.

Proof of estimate (9.14). Let us turn to the contraction estimate (9.14). The idea is to decompose
the era transition map Φ̄ = Φ

∗
k1−1 as Φk1−1 ◦ Φ

∗
k1−2 and to use the contraction estimate (8.7) for the

epoch transition map Φk1−1 restricted to the section Ss
fk1−1(ω),(h̃,ak1−1,hk1−1,//) as well as the Lipschitz

estimate (9.28) for Φ
∗
k1−2. For 1 ≤ l ≤ k1 − 1,

∥Φ
∗
l (x) − Φ

∗
l (x̃)∥⊥

=∥Φl(Φ∗
l−1(x)) − Φl(Φ∗

l−1(x̃))∥⊥

≤a

1

k0(fl(ω))+3

l ∥Φ
∗
l−1(x) − Φ

∗
l−1(x̃)∥∞ using (8.7) for Φl restricted to Ssf l(ω),(h̃,al,hl,//)

≤a
1

k1−l+4

l 4
l+2
k

2
1 ∥x − x̃∥∞ using (9.28) and k0(f l(ω)) = k1 − l + 1 (9.29)

Taking l = k1 − 1, we get

∥Φ
∗
k1−1(x) − Φ

∗
k1−1(x̃)∥⊥ ≤ a

1
5

k1−14
k1+1

k
2
1 ∥x − x̃∥∞

≤ h
k1
24

⊥ 4
k1+1

k
2
1 ∥x − x̃∥∞ using (9.22)

≤ h
k1
25

⊥ ∥x − x̃∥∞ provided that C is large enough

Since Φ̄ = Φ
∗
k1−1, estimate (9.14) is a direct consequence of the above inequality.

Proof of estimate (9.16). The idea is to decompose the era transition map Φ̄ as the product of the
k1 epoch transition maps Φj and then to apply recursively the expansion estimate (8.9) to these epoch
transition maps. Define,

Λ1 = 4
3
k

2
1a

1
k1+3

1 + C̃5k
ñ5

1 h̃h
1
4

⊥

Λj = 4
j+1

k
2
1 (4a

1
k1−j+4

j + C̃5(k1 − j + 1)ñ5 h̃a
1

k1−j+5

j−1 ) 2 ≤ j ≤ k1 − 1
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According to (8.9), we have

∥Φ0(x) − Φ0(x̃)∥// ≥ Kf(ω) ∥x − x̃∥// − h
1
4

⊥ ∥x − x̃∥∞ − C̃5h∥x − x̃∥⊥

Let 1 ≤ j ≤ k1 − 1. Remark once again that

∥Φ
∗
j (x) − Φ

∗
j (x̃)∥//

= ∥Φj (Φ∗
j−1(x)) − Φj (Φ∗

j−1(x̃))∥//

Hence, expansion estimate (8.9) applied to the epoch transition map Φj restricted to the section
S
s

fj(ω),(h̃,aj ,hj,//) gives

∥Φ
∗
j (x) − Φ

∗
j (x̃)∥//

≥ Kf(f j(ω)) ∥Φ
∗
j−1(x) − Φ

∗
j−1(x̃)∥//

− a
1

k1−j+4

j ∥Φ
∗
j−1(x) − Φ

∗
j−1(x̃)∥∞ − C̃5(k1 − j + 1)ñ5 h̃∥Φ

∗
j−1(x) − Φ

∗
j−1(x̃)∥⊥

Remark that f j(ω) > 5
3
, hence Kf(f j(ω)) = 1 by the explicit formula (8.2). If j = 1, use (9.28) to

estimate the term ∥Φ
∗
j−1(x) − Φ

∗
j−1(x̃)∥∞ and (8.7) to estimate the term ∥Φ

∗
j−1(x) − Φ

∗
j−1(x̃)∥⊥. This

gives
∥Φ

∗
1(x) − Φ

∗
1(x̃)∥//

≥ ∥Φ
∗
0(x) − Φ

∗
0(x̃)∥//

− Λ1 ∥x − x̃∥∞
If 2 ≤ j ≤ k1 − 1, use (9.28) to estimate the term ∥Φ

∗
j−1(x) − Φ

∗
j−1(x̃)∥∞ and (9.29) to estimate the

term ∥Φ
∗
j−1(x) − Φ

∗
j−1(x̃)∥⊥. This gives

∥Φ
∗
j (x) − Φ

∗
j (x̃)∥//

≥ ∥Φ
∗
j−1(x) − Φ

∗
j−1(x̃)∥//

− Λj ∥x − x̃∥∞

By induction on j, it follows that

∥Φ
∗
k1−1(x) − Φ

∗
k1−1(x̃)∥//

≥ Kf(ω) ∥x − x̃∥// − (h
1
4

⊥ +
k1−1

∑
j=1

Λj)∥x − x̃∥∞ − C̃5h∥x − x̃∥⊥

Using (9.22), one can see that if C is large enough, then

h
1
4

⊥ +
k1−1

∑
j=1

Λj ≤ h
1

k1+4

⊥

Hence, if C is large enough, then

∥Φ
∗
k1−1(x) − Φ

∗
k1−1(x̃)∥//

≥ Kf(ω) ∥x − x̃∥// − h
1

k1+4

⊥ ∥x − x̃∥∞ − C̃5h∥x − x̃∥⊥

which is precisely the desired estimate (9.16).

Proof of estimate (9.15). Define, for 0 ≤ j ≤ k1 − 1,

Nj,// =
ÂÂÂÂÂ(Φ

∗
j (x) − Φ

∗
j (x̃)) − (Φ

∗A
j (x) − Φ

∗A
j (x̃))ÂÂÂÂÂ//

Let 1 ≤ j ≤ k1 − 1. Decompose Φ
∗
j as Φj ◦ Φ

∗
j−1 and Φ

∗A
j as Φj ◦ Φ

∗A
j−1. Using standard triangle

inequality, we get

Nj,// ≤
ÂÂÂÂÂ(Φj(Φ

∗
j−1(x)) − Φj(Φ∗

j−1(x̃))) − (Φ
A
j (Φ∗

j−1(x)) − Φ
A
j (Φ∗

j−1(x̃)))
ÂÂÂÂÂ//

+
ÂÂÂÂÂ(Φ

A
j (Φ∗

j−1(x)) − Φ
A
j (Φ∗

j−1(x̃))) − (Φ
A
j (Φ∗A

j−1(x)) − Φ
A
j (Φ∗A

j−1(x̃)))
ÂÂÂÂÂ//

(9.30)

Let us begin with the second term. Recall that the xc-coordinate of Φ
A
j is essentially the Kasner map

f (see (5.9)). Moreover, f(u) = u − 1 for all u ≥ 2 and the xc-coordinates of the four points Φ
∗
j−1(x),
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Φ
∗
j−1(x̃), Φ

∗A
j−1(x) and Φ

∗A
j−1(x̃) are all greater than 2. Hence,

ÂÂÂÂÂ(Φ
A
j (Φ∗

j−1(x)) − Φ
A
j (Φ∗

j−1(x̃))) − (Φ
A
j (Φ∗A

j−1(x)) − Φ
A
j (Φ∗A

j−1(x̃)))
ÂÂÂÂÂ//

=
ÂÂÂÂÂ(Φ

∗
j−1(x) − Φ

∗
j−1(x̃)) − (Φ

∗A
j−1(x) − Φ

∗A
j−1(x̃))

ÂÂÂÂÂ//
= Nj−1,// (9.31)

Let us now turn to the first term. Using the Lipschitz estimate (8.8) with the epoch transition map Φj
restricted to the section Ss

fj(ω),(h̃,aj ,hj,//), we get

ÂÂÂÂÂ(Φj(Φ
∗
j−1(x)) − Φj(Φ∗

j−1(x̃))) − (Φ
A
j (Φ∗

j−1(x)) − Φ
A
j (Φ∗

j−1(x̃)))
ÂÂÂÂÂ//

≤

a
1

k1−j+4

j ∥Φ
∗
j−1(x) − Φ

∗
j−1(x̃)∥∞ + Lipf(f

j(ω)) ∥Φ
∗
j−1(x) − Φ

∗
j−1(x̃)∥⊥

Since f j(ω) < 2, explicit formula (8.3) implies that Lipf(f j(ω)) = 1. Now, use (9.22) to estimate

a
1

k1−j+4

j and (9.28) to estimate ∥Φ
∗
j−1(x) − Φ

∗
j−1(x̃)∥∞. We obtain

ÂÂÂÂÂ(Φj(Φ
∗
j−1(x)) − Φj(Φ∗

j−1(x̃))) − (Φ
A
j (Φ∗

j−1(x)) − Φ
A
j (Φ∗

j−1(x̃)))
ÂÂÂÂÂ//

≤

h
5
4

1
k1−j+4

⊥ 4
j+2

k
2
1 ∥x − x̃∥∞ + ∥Φ

∗
j−1(x) − Φ

∗
j−1(x̃)∥⊥

If j = 1, use (8.7) to estimate the term ∥Φ
∗
j−1(x) − Φ

∗
j−1(x̃)∥⊥. This gives

ÂÂÂÂÂ(Φ1(Φ∗
0(x)) − Φ1(Φ∗

0(x̃))) − (Φ
A
1 (Φ∗

0(x)) − Φ
A
1 (Φ∗

0(x̃)))
ÂÂÂÂÂ//

≤ (h
5
4

1
k1+3

⊥ 4
3
k

2
1 + h

1
4

⊥)∥x − x̃∥∞

≤ h
5
4

1
k1+3

⊥ 4
4
k

2
1 ∥x − x̃∥∞ (9.32)

If 2 ≤ j ≤ k1 − 1, use (9.29) to estimate the term ∥Φ
∗
j−1(x) − Φ

∗
j−1(x̃)∥⊥. This gives

ÂÂÂÂÂ(Φj(Φ
∗
j−1(x)) − Φj(Φ∗

j−1(x̃))) − (Φ
A
j (Φ∗

j−1(x)) − Φ
A
j (Φ∗

j−1(x̃)))
ÂÂÂÂÂ//

≤ (h
5
4

1
k1−j+4

⊥ 4
j+2

k
2
1 + a

1
k1−(j−1)+4

j−1 4
j+1

k
2
1)∥x − x̃∥∞

≤ h
5
4

1
k1+3

⊥ 4
j+3

k
2
1 ∥x − x̃∥∞ (9.33)

Plugging (9.31), (9.32) and (9.33) into (9.30), we get

Nj,// ≤ h
5
4

1
k1+3

⊥ 4
j+3

k
2
1 ∥x − x̃∥∞ +Nj−1,//

By induction on j, it follows that

Nk1−1,// ≤ h
5
4

1
k1+3

⊥ 4
k1+3

k
3
1 ∥x − x̃∥∞ +N0,//

As a direct consequence of the Lipschitz estimate (8.8) applied to the epoch transition map Φ0, we get

N0,// ≤ h
1
4

⊥ ∥x − x̃∥∞ + 16k
2
1 ∥x − x̃∥⊥

Hence, provided that C is large enough,

Nk1−1,// ≤ h
1

k1+4

⊥ ∥x − x̃∥∞ + 16k
2
1 ∥x − x̃∥⊥

which is the desired estimate (9.15).
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This concludes the proof of Proposition 9.4.

9.2 Control of the double era transition map Φ̂ω,h

Proof of Proposition 9.2. Let us fix ĥ > 0 small enough such that

ĥC̃6 ≤
1

4

K̂f̂ −Kc

1 + 1
σ̂

(9.34)

Let ω = [1 ∶ k1, k2, . . . ] ∈ ]1, 2[ \Q. Let h = (ĥ, h⊥, e−Cs2(ω)), where 0 < h⊥ ≤ e
−Cs4(ω) and C is some

large constant. The idea is to decompose the double era transition map Φ̂ω,h as

Φ̂ω,h = Φ̄f̄(ω),hf̄(ω) ◦ Φ̄ω,h (9.35)

where
hf̄(ω) = (ĥ, (ĥk−ñ5

2 )C̃6(k2+1)3
m̄(f̄(ω))2

, (ĥk−ñ5

2 )C̃6(k2+1)
m̄(f̄(ω))2)

One should remark that the section Ssω,h is much more smaller than what we need. Indeed, recall from
Lemma 9.3 that m̄(ω) ≥ 1

(4k2k3)2
and m̄(f̄(ω)) ≥ 1

(4k3k4)2
. Hence, according to (9.12) and (9.13), it

would be enough to take h equal to

(ĥ, (ĥk−ñ5

1 )C(k1+1)3 (ĥk−ñ5

2 )C(k2+1)3
m̄(ω)2

m̄(f̄(ω))2
, (ĥk−ñ5

1 )C(k1+1) (ĥk−ñ5

2 )C(k2+1)
m̄(ω)2

m̄(f̄(ω))2)

with C large enough for (9.35) to hold true. Nevertheless, computations will be much more easier with
our choice of size for the section Ssω,h. While being smaller than needed, it will still be large enough
for the graph transformation to be implemented.

Since, for C large enough, the map Φ̄ω,h maps the section Ssω,h into the section Ssf̄(ω),h′ where

h
′ def
= (ĥ, h1+ k1

4

⊥ , (ĥk−ñ5

2 )C̃6(k2+1)
m̄(f̄(ω))2)

one can apply Proposition 9.4 twice to get Proposition 9.2: once with Φ̄f̄(ω),hf̄(ω) restricted to the
section Ssf̄(ω),h′ and once with Φ̄ω,h.

9.3 Shadowing of a heteroclinic chain along an era
Let ω ∈ ]1, 2[ \Q. Let us call the point P si

ω,ĥ
the center of the section Ssiω,h. The following proposition

states that if x ∈ Sĥ is close to the center P si
ω,ĥ

of the section Ssiω,h, then the orbit segment [x, Φ̄ω,h(x)]
passes through the sections Ss21 , Ss12 , . . . , Ss1k1(ω)−1 close to their respective centers, i.e. the intersection
points of [x, Φ̄ω,h(x)] with the sections S

sl(j)
j (where l(j) = 2 if j = 1 and l(j) = 1 if j ≥ 2) and the

intersection points of the heteroclinic chain starting at P si
ω,ĥ

with the sections S
sl(j)
j are respectively

close to each other. Moreover, the estimates can be made uniform on ω. Recall that Φ
∗
j = Φj ◦ ⋅ ⋅ ⋅ ◦Φ0.

Recall that ñ5 is a constant fixed in Proposition 8.1. Recall that s2(ω) and s4(ω) are defined by (9.1).

Proposition 9.9 (Shadowing along an era). There exists a constant C̃9 ≥ C̃8 such that the property
below holds for ω ∈ ]1, 2[\Q, i ∈ {1, 2} and 0 < ε ≤ 1. Let x ∈ Ssiω,h where h = (ĥ, e−C̃8s4(ω), e−C̃8s2(ω)).
If ÂÂÂÂÂÂx − P

si

ω,ĥ

ÂÂÂÂÂÂ∞ ≤ εe
−C̃9s4(ω)

then, for any 1 ≤ j ≤ k1(ω) − 1,

ÂÂÂÂÂÂΦ
∗
j−1(x) − Φ

∗
j−1 (P siω,ĥ)

ÂÂÂÂÂÂ∞ ≤ ε (ĥk−ñ5

1 )C̃5f
j(ω)

m(f j(ω)) (9.36)
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Proof. There exists a constant C̃9 ≥ C̃8 such that for every ω = [1; k1, k2, . . . ] ∈ ]1, 2[ \Q and every
1 ≤ j ≤ k1 − 1, we have

50k
2
1e
−C̃9s4(ω)

≤ (ĥk−ñ5

1 )C̃5f
j(ω)

m(f j(ω)) (9.37)

Let 0 < ε ≤ 1, ω = [1; k1, k2, . . . ] ∈ ]1, 2[ \Q and x ∈ Ssiω,h where h = (ĥ, e−C̃8s4(ω), e−C̃8s2(ω)). Assume
that ÂÂÂÂÂÂx − P

si

ω,ĥ

ÂÂÂÂÂÂ∞
e−C̃9s4(ω)

≤ ε

Let 1 ≤ j ≤ k1 − 1. Using estimate (9.22) with h⊥ =
ÂÂÂÂÂÂx − P

si

ω,ĥ

ÂÂÂÂÂÂ⊥, we get

ÂÂÂÂÂÂΦ
∗
j−1(x) − Φ

∗
j−1 (P siω,ĥ)

ÂÂÂÂÂÂ⊥ ≤
ÂÂÂÂÂÂx − P

si

ω,ĥ

ÂÂÂÂÂÂ

5
4

⊥

≤ εe
−C̃9s4(ω)

≤ ε (ĥk−ñ5

1 )C̃5f
j(ω)

m(f j(ω)) using (9.37)

Remark that
ÂÂÂÂÂÂΦ

∗
j−1(x) − Φ

∗
j−1 (P siω,ĥ)

ÂÂÂÂÂÂ//
≤

ÂÂÂÂÂΦ
∗
j−1(x) − Φ

∗A
j−1 (x)

ÂÂÂÂÂ//
+

ÂÂÂÂÂÂΦ
∗A
j−1 (x) − Φ

∗
j−1 (P siω,ĥ)

ÂÂÂÂÂÂ//

Using estimate (9.27) with h⊥ =
ÂÂÂÂÂÂx − P

si

ω,ĥ

ÂÂÂÂÂÂ⊥, we get

ÂÂÂÂÂΦ
∗
j−1(x) − Φ

∗A
j−1 (x)

ÂÂÂÂÂ//
≤ 34k

2
1

ÂÂÂÂÂÂx − P
si

ω,ĥ

ÂÂÂÂÂÂ⊥ ≤ 34k
2
1εe

−C̃9s4(ω)

Using Proposition 8.3 on the local Lipschitz constant for the Kasner map, we get

ÂÂÂÂÂÂΦ
∗A
j−1 (x) − Φ

∗
j−1 (P siω,ĥ)

ÂÂÂÂÂÂ//
≤ (

j−1

∏
l=0

Lipf(f
l(ω))) ÂÂÂÂÂÂx − P

si

ω,ĥ

ÂÂÂÂÂÂ//
≤ 16k

2
1εe

−C̃9s4(ω)

Hence, using (9.37), we get

ÂÂÂÂÂÂΦ
∗
j−1(x) − Φ

∗
j−1 (P siω,ĥ)

ÂÂÂÂÂÂ//
≤ 50k

2
1εe

−C̃9s4(ω)
≤ ε (ĥk−ñ5

1 )C̃5f
j(ω)

m(f j(ω))

This concludes the proof of Proposition 9.9.

Next proposition allows one to use Proposition 9.9 twice during a double era.

Proposition 9.10 (Shadowing along two eras). There exists a constant C̃10 ≥ C̃9 such that the property
below holds for ω ∈ ]1, 2[\Q, i ∈ {1, 2} and 0 < ε ≤ 1. Let x ∈ Ssiω,h where h = (ĥ, e−C̃8s4(ω), e−C̃8s2(ω)).
Let Φ̄ = Φ̄ω,h. If

ÂÂÂÂÂÂx − P
si

ω,ĥ

ÂÂÂÂÂÂ∞ ≤ εe
−C̃10s4(ω)

then, ÂÂÂÂÂÂΦ̄(x) − Φ̄ (P si
ω,ĥ

)ÂÂÂÂÂÂ∞ ≤ εe
−C̃9s4(Φ̄(ω)) (9.38)

Proof. This is a straightforward consequence of (9.12) and (9.13). Computations are similar to the
ones in the proof of Proposition 9.9.



Chapter10
Local stable manifolds of the double era
return map

The purpose of this chapter is to construct some local stable manifolds for the double era return
map Φ̂ ∶= Φ̂ĥ. These local stable manifolds play a central role in the proof of our main Theorem. In
Chapter 11, we will prove that any type IX orbit whose starting point lies in the local stable manifold
of a point p will shadow the heteroclinic chain starting at p. In Chapter 12, we will prove that the
union of these local stable manifolds over a positive 1-dimensional Lebesgue measure subset of the
Kasner circle has positive 3-dimensional Lebesgue measure. Their construction rely on the estimates
proven in Chapter 9.

Recall that for any ω ∈ ]1, 2[ \Q,

s2(ω) = k1(ω)2
+ k2(ω)2

+ k3(ω)2
+ k4(ω)2

s4(ω) = k1(ω)4
+ k2(ω)4

+ k3(ω)4
+ k4(ω)4

Recall that we have fixed a constant ĥ in the preceding section (see (9.34) and Proposition 9.2).
According to Proposition 9.2, the double era return map Φ̂ is well defined on the set

⋃
ω∈]1,2[\Q

S
s
ω,hω ⊂ Sĥ

where hω = (ĥ, e−C̃8s4(ω), e−C̃8s2(ω)).
Recall that Pω = (0, 0, 0, ω) denotes the point (in local coordinates) of Kasner parameter ω on the

Kasner interval K0. Moreover, P s1
ω,ĥ

= (0, ĥ, 0, ω) and P s2
ω,ĥ

= (0, 0, ĥ, ω) denote the intersection points
of the two type II orbits arriving at Pω with the global section Sĥ (see definition 5.10).

Definition 10.1 (Local stable set). Let ω ∈ ]1, 2[ \Q, i ∈ {1, 2} and η > 0. We call local stable set of
P
si

ω,ĥ
of size η and we denote by W s

η (P si
ω,ĥ
, Φ̂) the set of all x ∈ Sĥ such that for every n ≥ 0, Φ̂

n(x) is
well defined and satisfies ÂÂÂÂÂÂΦ̂

n(x) − Φ̂
n (P si

ω,ĥ
)ÂÂÂÂÂÂ∞ ≤ η

We want to prove that for Lebesgue almost all ω ∈ ]1, 2[ and for η small enough, the local stable
set W s

η (P si
ω,ĥ
, Φ̂) contains a Lipschitz graph.

Definition 10.2 (Rooted graph). Let ω ∈ ]1, 2[ and 0 < a ≤ ĥ. A graph of size a rooted at P s1
ω,ĥ

is a
set γ ⊂ Ss1

ĥ
of the form

γ = Graph
s1 (ζ) def

= {(xu, ĥ, xs2 , ζ(xu, xs2)) ∣ (xu, xs2) ∈ [0, a]2}

131
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where ζ ∶ [0, a]2
→ R is a map such that ζ(0, xs2) = ω for all xs2 ∈ [0, a]. We define analogously the

graphs rooted at P s2
ω,ĥ

.

Remark 10.3. We say that γ = Graph
s1 (ζ) is a graph rooted at P s1

ω,ĥ
because P s1

ω,ĥ
= (0, ĥ, 0, ζ(0, 0)).

Remark 10.4. Recall from Proposition 4.2 that the local coordinates xu, xs1 and xs2 are positive. This
is why the map ζ is defined on [0, a]2.

The map ζ is entirely determined by γ = Graph
s1 (ζ). Recall that σ̂ is a constant that has been

fixed in the preceding section (see (9.3)). We say that a graph γ is σ̂-Lipschitz if it is associated to a
σ̂-Lipschitz map ζ (for the infinite norm).

We can now state the main theorem of this chapter, which describes the local stable manifolds of
the double era return map Φ̂. We refer to Theorem 10.20 for a version that characterizes the size of
the local stable manifolds. Recall that C̃8 is the constant fixed in Proposition 9.2 on the double era
transition map.

Theorem 10.5 (Local stable manifolds of the double era return map). There exists a full Lebesgue
measure set Ωgraph ⊂ ]1, 2[ with the following properties. For all ω ∈ Ωgraph and all i ∈ {1, 2}, for η
small enough, the local stable set W s

η (P si
ω,ĥ
, Φ̂) of P si

ω,ĥ
of size η contains a σ̂-Lipschitz graph of size η

rooted at P si
ω,ĥ

. Moreover, for all x belonging to this graph and all n ≥ 0,

ÂÂÂÂÂÂΦ̂
n(x) − Φ̂

n (P si
ω,ĥ

)ÂÂÂÂÂÂ∞ ≤
ÂÂÂÂÂÂx − P

si

ω,ĥ

ÂÂÂÂÂÂ⊥ e
−C̃8∑2n

j=1 kj(ω)
5

(10.1)

Remark 10.6. Note that e−C̃8∑2n
j=1 kj(ω)

5

≪ e
−2C̃8n. Hence, we have a super exponential convergence to

the Mixmaster attractor for the orbits starting in those graphs.

We are going to prove Theorem 10.5 using the so-called Hadamard graph transformation method.
Let us describe informally our strategy, which may not be the most standard one.

The first step is to show that the double era return map Φ̂ satisfies some hyperbolic properties. We
prove the existence of two invariant cone fields, namely: the unstable cone field containing the direction
tangent to the Mixmaster attractor and the stable cone field containing the direction transverse to
the Mixmaster attractor. The unstable cone field is forward invariant while the stable cone field is
backward invariant. Moreover, the map Φ̂ expands the length of the vectors in the unstable cone field
and contracts the length of the vectors in the stable cone field. See Proposition 10.8.

Once we know that the double era return map Φ̂ satisfies some hyperbolic properties, we can show
that the preimage of a σ̂-Lipschitz graph rooted at P

sî(ω)

f̂(ω),ĥ by the double era transition map Φ̂»»»»»S
si
ω,h

is

a σ̂-Lipschitz graph rooted at P si
ω,ĥ

. To make this statement correct, one must carefully choose the size

of the graph rooted at P
sî(ω)

f̂(ω),ĥ and the size of the section Ssiω,h. See Lemma 10.11.
Next step consists in constructing a space Γ of families of σ̂-Lipschitz graphs invariant by the preim-

age procedure described in the above paragraph. For Ωgraph ⊂ ]1, 2[ \Q and ĥ⊥ ∶ Ωgraph → ]0,+∞[
fixed, define

Γ
def
= {γ = (γω,i)ω∈Ωgraph,i∈{1,2} ∣ γω,i is a σ̂-Lipschitz graph of size ĥ⊥(ω) rooted at P si

ω,ĥ
}

Roughly speaking, the graph transformation Φ̂
∗ ∶ Γ→ Γ is defined as follows. For γ ∈ Γ, (Φ̂

∗
γ)
ω,i

is the

preimage of γf̂(ω),̂i(ω) by a suitable restriction of the double era return map Φ̂»»»»»S
si
ω,h

(see definition 10.17).
Our goal is to find a full Lebesgue measure set Ωgraph ⊂ ]1, 2[ invariant by the double era Kasner map
f̂ and a function ĥ⊥ ∶ Ωgraph → ]0,+∞[ such that the graph transformation Φ̂

∗ defined above is well
defined. See definition 10.14 and Proposition 10.15.

Using the hyperbolic properties of Φ̂, the graph transformation Φ̂
∗ will be proved to be a contraction

mapping. The standard contraction mapping theorem will provide a fixed point γ̂ = (γ̂ω,i) ∈ Γ.
Final step consists in checking that γ̂ω,i is contained in the local stable set of the point P si

ω,ĥ
for the

double era return map Φ̂ for all ω and i.
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10.1 Cone field invariant by the double era return map

Recall that σ̂ has been fixed in the preceding section (see (9.3)). This parameter will serve as the angle
of the invariant cone field.

Definition 10.7 (Cones). Let ω ∈ ]1, 2[ \ Q, h = (ĥ, h⊥, h//) with min(h⊥, h//) > 0, i ∈ {1, 2} and
x ∈ S

si
ω,h. We define the tangential cone at x as

V
//

ω,h,i (x)
def
= {x̃ ∈ Ssiω,h ∣ ∥x − x̃∥⊥ ≤ σ̂ ∥x − x̃∥//}

As usual in hyperbolic dynamical system theory, we define the interior of V //

ω,h,i (x) as

IntV
//

ω,h,i (x)
def
= {x} ∪ {x̃ ∈ Ssiω,h ∣ ∥x − x̃∥⊥ < σ̂ ∥x − x̃∥//}

In other words, IntV
//

ω,h,i (x) is the union of the topological interior of V //

ω,h,i (x) and its vertex {x}.
Analogously, we define the transverse cone at x as

V
⊥
ω,h,i (x)

def
= {x̃ ∈ Ssiω,h ∣ ∥x − x̃∥// ≤ σ̂ ∥x − x̃∥⊥}

and the interior of V ⊥ω,h,i (x) as

IntV
⊥
ω,h,i (x)

def
= {x} ∪ {x̃ ∈ Ssiω,h ∣ ∥x − x̃∥// < σ̂ ∥x − x̃∥⊥}

Recall that Kc > 1 is an explicit constant fixed in the preceding section (see (9.2)).

Proposition 10.8 (Hyperbolic properties of the double era return map). There exists a constant
C̃11 ≥ C̃10 such that the properties below hold for ω ∈ ]1, 2[\Q, i ∈ {1, 2}, h = (ĥ, e−C̃11s4(ω), e−C̃8s2(ω))
and h

′
= (ĥ, ĥ, ĥ).

(Forward invariance of the tangential cone field) For all x ∈ Ssiω,h,

Φ̂ (V //

ω,h,i (x)) ⊂ IntV
//

f̂(ω),h′ ,̂i(ω) (Φ̂(x)) (10.2)

(Backward invariance of the transverse cone field) For all x ∈ Ssiω,h,

(Φ̂»»»»»S
si
ω,h

)
−1

(V ⊥f̂(ω),h′ ,̂i(ω) (Φ̂(x))) ⊂ IntV
⊥
ω,h,i (x) (10.3)

(Expansion in the tangential cone field) For every x, x̃ ∈ Ssiω,h, if x̃ ∈ V
//

ω,h,i (x), then

ÂÂÂÂÂΦ̂(x) − Φ̂(x̃)ÂÂÂÂÂ//
≥ Kc ∥x − x̃∥// (10.4)

(Contraction in the transverse cone field) For every x, x̃ ∈ Ssiω,h, if Φ̂(x̃) ∈ V ⊥
f̂(ω),h′ ,̂i(ω) (Φ̂(x)),

then
ÂÂÂÂÂΦ̂(x) − Φ̂(x̃)ÂÂÂÂÂ⊥ ≤ e

−C̃8(k1(ω)5+k2(ω)5) ∥x − x̃∥⊥ (10.5)

See figures 10.1 and 10.2.

Proof. Let C ≥ 100C̃8 such that

e
− C

100 (1 +
1

σ̂
)K−1

c < σ̂ (10.6)

Fix ω ∈ ]1, 2[ \ Q and x, x̃ ∈ S
si
ω,h (i ∈ {1, 2}). Let h = (ĥ, e−Cs4(ω), e−C̃8s2(ω)) and h

′
= (ĥ, ĥ, ĥ).
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S
si
ω,h

•
x

V
//

ω,h,i (x)•
x̃

Φ̂

S
sî(ω)

f̂(ω),h′

•
Φ̂(x)

Φ̂ (V //

ω,h,i (x))•
Φ̂(x̃)

Figure 10.1 – Forward invariance of the tangential cone field.

S
si
ω,h

•x

(Φ̂»»»»»S
si
ω,h

)
−1

(V ⊥
f̂(ω),h′ ,̂i(ω) (Φ̂(x)))

•x̃

(Φ̂»»»»»S
si
ω,h

)
−1

S
sî(ω)

f̂(ω),h′

•Φ̂(x)

V
⊥

f̂(ω),h′ ,̂i(ω) (Φ̂(x))

•Φ̂(x̃)

Figure 10.2 – Backward invariance of the transverse cone field.

Recall that σ̂ < 1. Hence,

x̃ ∈ V
//

ω,h,i (x) ⟹ ∥x − x̃∥∞ = ∥x − x̃∥// (10.7a)

x̃ ∈ V
⊥
ω,h,i (x) ⟹ ∥x − x̃∥∞ = ∥x − x̃∥⊥ (10.7b)

Expansion estimate (10.4). According to (10.7a), if x̃ ∈ V //

ω,h,i (x), then

∥x − x̃∥∞ = ∥x − x̃∥// ≤ (1 +
1

σ̂
)∥x − x̃∥//

Hence, expansion estimate (9.9) implies that the expansion estimate (10.4) holds true.

Forward invariance of the tangential cone field (10.2). If x̃ ∈ V //

ω,h,i (x), then

ÂÂÂÂÂΦ̂(x) − Φ̂(x̃)ÂÂÂÂÂ⊥ ≤ (e−Cs4(ω))
( k1

100
+ k2

100
)
∥x − x̃∥∞ using (9.7)

≤ e
− C

100 ∥x − x̃∥// using (10.7a)

≤ e
− C

100K
−1
c

ÂÂÂÂÂΦ̂(x) − Φ̂(x̃)ÂÂÂÂÂ//
using (10.4)

< σ̂
ÂÂÂÂÂΦ̂(x) − Φ̂(x̃)ÂÂÂÂÂ//

using (10.6)

Hence, Φ̂(x̃) ∈ IntV
//

f̂(ω),h′ ,̂i(ω) (Φ̂(x)).

Backward invariance of the transverse cone field (10.3). Assume that ∥x − x̃∥⊥ ≤
1
σ̂
∥x − x̃∥//.

Hence,

∥x − x̃∥∞ ≤ (1 +
1

σ̂
)∥x − x̃∥// (10.8)

As a consequence, the expansion estimate (10.4) remains true in that case:

ÂÂÂÂÂΦ̂(x) − Φ̂(x̃)ÂÂÂÂÂ//
≥ Kc ∥x − x̃∥// (10.9)



10.2. Local graph transformation 135

Hence,

ÂÂÂÂÂΦ̂(x) − Φ̂(x̃)ÂÂÂÂÂ⊥ ≤ (e−Cs4(ω))
( k1

100
+ k2

100
)
∥x − x̃∥∞ using (9.7)

≤ e
− C

100 (1 +
1

σ̂
)∥x − x̃∥// using (10.8)

≤ e
− C

100 (1 +
1

σ̂
)K−1

c
ÂÂÂÂÂΦ̂(x) − Φ̂(x̃)ÂÂÂÂÂ//

using (10.9)

<
1

σ̂
ÂÂÂÂÂΦ̂(x) − Φ̂(x̃)ÂÂÂÂÂ//

using (10.6) and σ̂ ≤
1

σ̂
(10.10)

Backward invariance of the transverse cone field is a straightforward consequence of (10.10) by
contraposition, i.e. (10.3) holds true.

Contraction estimate (10.5). Assume that Φ̂(x̃) ∈ V ⊥
f̂(ω),h′ ,̂i(ω) (Φ̂(x)). By backward invariance of

the trasnverse cone field, we have x̃ ∈ V ⊥ω,h,i (x). Hence,

ÂÂÂÂÂΦ̂(x) − Φ̂(x̃)ÂÂÂÂÂ⊥ ≤ (e−Cs4(ω))
( k1

100
+ k2

100
)
∥x − x̃∥∞ using (9.7)

≤ e
− C

100
(k5

1+k
5
2) ∥x − x̃∥⊥ using (10.7b)

≤ e
−C̃8(k5

1+k
5
2) ∥x − x̃∥⊥ using C ≥ 100C̃8

which is the desired estimate (10.5).

Remark 10.9. Let us describe precisely how we will use Proposition 10.8. The forward invariance of
the tangential cone field (10.2) together with the expansion estimate (10.4) are used two times:

1. To show that the preimage of a σ̂-Lipschitz graph is a graph.

2. To show that the graph transformation is a contraction mapping.

Knowing that the preimage of a σ̂-Lipschitz graph rooted at P
sî(ω)

f̂(ω),ĥ by the double era transition

map Φ̂»»»»»S
si
ω,h

is a graph rooted at P si
ω,ĥ

, the backward invariance of the transverse cone field (10.3)
implies that this graph is also σ̂-Lipschitz. This property is essential to show that the set of σ̂-Lipschitz
graphs families is invariant by the graph transformation.

Finally, the contraction estimate in the transverse cone field (10.5) is used to prove the exponential
convergence (10.1) for a point in a graph constructed as the fixed point of the graph transformation. It
also proves that this graph is contained in the local stable set of some point for the double era return
map.

10.2 Local graph transformation

Our next task is to understand the preimage of a σ̂-Lipschitz graph by the double era return map Φ̂.
This is the purpose of Lemma 10.11 below. To make the computations in coordinates easier to follow,
let us identify the section Ss1

ĥ
with a subset of R3, forgetting the coordinate xs1 which is constant

equal to ĥ on Ss1
ĥ
. More precisely, we identify the point (xu, ĥ, xs2 , xc) ∈ S

s1

ĥ
with (x⊥, x//) ∈ R2 × R

where x⊥ = (xu, xs2) and x// = xc. We will use the same notation in Ss2
ĥ
, letting x⊥ = (xu, xs1). We

will not work in both sections at the same time, hence this notation will not be ambiguous. Remark
that with these coordinates, a graph of size a rooted at P si

ω,ĥ
is a subset γ of R2 × R of the form

Graph(ζ) = {(x⊥, ζ(x⊥)) ∣ x⊥ ∈ [0, a]2}

where ζ ∶ [0, a]2
→ R satisfies ζ(0, z) = ω for all z ∈ [0, a].

Remark 10.10. Recall from Proposition 4.2 that the local coordinates xu, xs1 and xs2 are positive.
This is why the map ζ is defined on [0, a]2.
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S
si
ω,h

∂
∂x//

∂
∂x⊥

V
⊥
ω,h,i (P siω,ĥ)

(Φ̂»»»»»S
si
ω,h

)
−1

(Graph (γ))

•
P
si

ω,ĥ

(Φ̂»»»»»S
si
ω,h

)
∗

S
sî(ω)

f̂(ω),h′

∂
∂x//

∂
∂x⊥

V
⊥

f̂(ω),h′ ,̂i(ω) (P
sî(ω)

f̂(ω),ĥ)

Graph (γ)

•
P
sî(ω)

f̂(ω),ĥ

Figure 10.3 – The graph transformation.

Lemma 10.11 (Graph transformation over one point). There exists a constant C̃12 > C̃11 such that

the property below holds for ω ∈ ]1, 2[ \Q, i ∈ {1, 2}, 0 < a ≤ e
−C̃12s4(ω), a′ ≥ ae−C̃8(k1(ω)5+k2(ω)5) and

h = (ĥ, a, e−C̃8s2(ω)). If γ is a σ̂-Lipschitz graph of size a′ rooted at P
sî(ω)

f̂(ω),ĥ, then its preimage by the

double era transition map Φ̂»»»»»S
si
ω,h

is a σ̂-Lipschitz graph of size a rooted at P si
ω,ĥ

. See figure 10.3.

Remark 10.12. Beware of the fact that, in Lemma 10.11, γ denotes a single graph and not a family of
graphs as in the definition of Γ.

Before we prove Lemma 10.11, let us state a simple property of the σ̂-Lipschitz graphs.

Lemma 10.13. Let ω ∈ ]1, 2[ \ Q, i ∈ {1, 2}, h = (ĥ, e−C̃8s4(ω), e−C̃8s2(ω)), 0 < a ≤ e
−C̃8s4(ω) and γ

be a graph of size a rooted at P si
ω,ĥ

. The graph γ is σ̂-Lipschitz if and only if for all x ∈ γ,

γ ⊂ V
⊥
ω,h,i (x)

Proof of Lemma 10.13. This is a straightforward consequence of the definition of the cone V ⊥ω,h,i (x).

Proof of Lemma 10.11. Take C̃12 ≥ 4C̃11 large enough so that for every ω ∈ ]1, 2[ \Q,

σ̂ (e−C̃12s4(ω))
1+ k1

4
+ k2

4
+ 306e

−C̃12s4(ω)k1(ω)2
k2(ω)2

≤ 4e
−C̃8s2(ω) (10.11)

Fix ω = [1; k1, k2, . . . ], i, a, a′ and γ as in the statement. There exists a unique map ζ ∶ [0, a]2
→ R

such that γ = Graph
sî(ω) (ζ). Let h = (ĥ, a, e−C̃8s2(ω)), h′ = (ĥ, ĥ, ĥ), Φ̂

si
= Φ̂»»»»»S

si
ω,h

and Φ̂
A,si

= Φ̂
A»»»»»S
si
ω,h

.

To prove that (Φ̂si)−1 (γ) is a graph of size a rooted at P si
ω,ĥ

, we first need a technical claim. Define

Iω ∶= [ω − e−C̃8s2(ω), ω + e−C̃8s2(ω)].

Claim 1. Fix x⊥ ∈ [0, a]2. Define a map λ ∶ Iω → R by the formula

λ(x//)
def
= (Φ̂

si(x⊥, x//))
//
− ζ ((Φ̂

si(x⊥, x//))⊥)

The map λ is well defined. Moreover, λ (ω + e−C̃8s2(ω)) ≥ 0 and λ (ω − e−C̃8s2(ω)) ≤ 0. See figure 10.4.

Proof of claim 1. Recall that C̃12 ≥ 4C̃11 ≥ 4C̃8. According to (9.5), for every x// ∈ Iω, we have

ÂÂÂÂÂΦ̂
si(x⊥, x//) − Φ̂

A,si(x⊥, x//)
ÂÂÂÂÂ⊥ ≤ a

1+ k1+k2
4 ≤ ae

−C̃8(k5
1+k

5
2)
≤ a

′
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S
si
ω,h

•x

ω x//
ω + e−C̃8s2(ω)

e
−C̃8s2(ω)

x⊥

Φ̂

S
sî(ω)

f̂(ω),h′

•
Φ̂(x)

•

ζ (Φ̂(x)⊥) Φ̂(x)//

λ(x//)

Φ̂(x)⊥

γ

Figure 10.4 – Interpretation of the map λ. If x// = ω + e
−C̃8s2(ω), then Φ̂(x̃) is on the right side of γ. If

x// = ω − e
−C̃8s2(ω), then Φ̂(x̃) is on the left side of γ.

This means that (Φ̂
si(x⊥, x//))⊥ ∈ [0, a′]2

. Since γ is a graph of size a′, the map λ is well defined.

Roughly speaking, since x⊥ is “small”, (Φ̂
si(x⊥, x//))//

is close to f̂(x//) and (Φ̂
si(x⊥, x//))⊥ is close to

(0, 0). Using this approximation and the fact that γ is a graph rooted at P
sî(ω)

f̂(ω),ĥ, we get

λ (ω + e−C̃8s2(ω)) ≃ f̂ (ω + e−C̃8s2(ω)) − f̂(ω)

Using the fact that f̂ is increasing on Iω (see Proposition B.7), we get

λ (ω + e−C̃8s2(ω)) ≥ 0

We are now going to make rigorous this computation. Remark that

λ (ω + e−C̃8s2(ω)) = [(Φ̂
si (x⊥, ω + e−C̃8s2(ω)))

//
− f̂ (ω + e−C̃8s2(ω))]

+ [f̂ (ω + e−C̃8s2(ω)) − f̂(ω)] + [f̂(ω) − ζ ((Φ̂
si (x⊥, ω + e−C̃8s2(ω)))

⊥
)]

We will compare the three terms in the right-hand side of the above equation. Recall from (5.7) that

Φ̂
A,si(x) = {(0, ĥ, 0, f̂(xc)) if k2(xc) ≥ 2

(0, 0, ĥ, f̂(xc)) if k2(xc) = 1
where xc = [1; k1(xc), k2(xc), . . . ]

Hence, estimate (9.6) gives

»»»»»»»
(Φ̂

si (x⊥, ω + e−C̃8s2(ω)))
//
− f̂ (ω + e−C̃8s2(ω))

»»»»»»»
≤ 306ak1(ω)2

k2(ω)2 (10.12)

According to Proposition B.7 about the Gauss transformation, we have the expansion estimate

»»»»»»f̂ (ω + e−C̃8s2(ω)) − f̂(ω)»»»»»» ≥ 4e
−C̃8s2(ω) (10.13)

Moreover, using the fact that γ is a graph rooted at P
sî(ω)

f̂(ω),ĥ, we get

»»»»»»f̂(ω) − ζ ((Φ̂
si (x⊥, ω + e−C̃8s2(ω)))

⊥
)»»»»»» =

»»»»»»ζ(0, 0) − ζ ((Φ̂
si (x⊥, ω + e−C̃8s2(ω)))

⊥
)»»»»»» (10.14)
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Since γ is σ̂-Lipschitz, it follows that

»»»»»»ζ(0, 0) − ζ ((Φ̂
si (x⊥, ω + e−C̃8s2(ω)))

⊥
)»»»»»» ≤ σ̂

ÂÂÂÂÂÂ(Φ̂
si (x⊥, ω + e−C̃8s2(ω)))

⊥

ÂÂÂÂÂÂ∞
≤ σ̂

ÂÂÂÂÂÂΦ̂
si (x⊥, ω + e−C̃8s2(ω)) − Φ̂

A,si (x⊥, ω + e−C̃8s2(ω))ÂÂÂÂÂÂ⊥
(10.15)

According to the estimate (9.5), we have

ÂÂÂÂÂÂΦ̂
si (x⊥, ω + e−C̃8s2(ω)) − Φ̂

A,si (x⊥, ω + e−C̃8s2(ω))ÂÂÂÂÂÂ⊥ ≤ a
1+ k1

4
+ k2

4 (10.16)

Putting together (10.14), (10.15) and (10.16), we get

»»»»»»f̂(ω) − ζ ((Φ̂
si (x⊥, ω + e−C̃8s2(ω)))

⊥
)»»»»»» ≤ σ̂a

1+ k1
4
+ k2

4 (10.17)

It follows from (10.12), (10.13), (10.17) and (10.11) that

»»»»»»»
(Φ̂

si (x⊥, ω + e−C̃8s2(ω)))
//
− f̂ (ω + e−C̃8s2(ω))

»»»»»»»
+

»»»»»»f̂(ω) − ζ ((Φ̂
si (x⊥, ω + e−C̃8s2(ω)))

⊥
)»»»»»»

≤
»»»»»»f̂ (ω + e−C̃8s2(ω)) − f̂(ω)»»»»»»

Hence, λ (ω + e−C̃8s2(ω)) and (f̂ (ω + e−C̃8s2(ω)) − f̂(ω)) have the same sign. Since f̂ is increasing on

Iω, we get that λ (ω + e−C̃8s2(ω)) ≥ 0. The arguments are analogous for λ (ω − e−C̃8s2(ω))

Claim 2. (Φ̂si)−1 (γ) is a graph of size a rooted at P si
ω,ĥ

.

Proof of claim 2. Fix x⊥ ∈ [0, a]2. First, let us prove that there exists a unique x// ∈ Iω, denoted by
(Φ̂si)∗ζ(x⊥), such that Φ̂

si(x⊥, x//) ∈ γ. This will show that

(Φ̂
si)−1 (γ) = {(x⊥, (Φ̂si)∗ζ(x⊥)) ∣ x⊥ ∈ [0, a]2} = Graph

si ((Φ̂si)∗ζ)

Remark that for x = (x⊥, x//) with x// ∈ Iω,

Φ̂
si(x) ∈ γ ⟺ (Φ̂

si(x))
//
= ζ ((Φ̂

si(x))
⊥
) ⟺ λ(x//) = 0

Since ζ is σ̂-Lipschitz and Φ̂
si is continuous, λ is continuous on Iω. According to claim 1 and the

intermediate value theorem, there exists x// ∈ Iω such that λ(x//) = 0.
Let x//, x̃// ∈ Iω such that λ(x//) = λ(x̃//) = 0. Set x = (x⊥, x//) ∈ Ssiω,h and x̃ = (x⊥, x̃//) ∈ Ssiω,h.

By definition of the tangential cone, we have

x̃ ∈ V
//

ω,h,j (x)

and by forward invariance of the tangential cone field (see (10.2)), we get

Φ̂
si(x̃) ∈ V //

f̂(ω),h′ ,̂i(ω) (Φ̂
si(x))

Moreover, Φ̂
si(x) and Φ̂

si(x̃) both belong to γ which is a σ̂-Lipschitz graph so Lemma 10.13 implies
that

Φ̂
si(x̃) ∈ V ⊥f̂(ω),h′ ,̂i(ω) (Φ̂

si(x))
It follows that

Φ̂
si(x̃) = Φ̂

si(x)
Using the expansion estimate (10.4) in the direction tangent to the Mixmaster attractor, we get
x// = x̃//.
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Let z ∈ [0, a]. We have

ζ ((Φ̂
si((0, z), ω))

⊥
) = ζ(0, 0) = f̂(ω) = (Φ̂

si((0, z), ω))
//

Hence, Φ̂
si((0, z), ω) ∈ γ. By uniqueness, we get that (Φ̂si)∗ζ(0, z) = ω. This concludes the proof of

claim 2.

Claim 3. (Φ̂si)−1 (γ) is a σ̂-Lipschitz graph.

Proof of claim 3. Let x⊥, x̃⊥ ∈ [0, a]2. Set

x = (x⊥, (Φ̂si)∗ζ (x⊥)) ∈ (Φ̂si)−1 (γ) and x̃ = (x̃⊥, (Φ̂si)∗ζ (x̃⊥)) ∈ (Φ̂si)−1 (γ)

The graph γ is σ̂-Lipschitz so Lemma 10.13 implies that

Φ̂
si(x̃) ∈ V ⊥f̂(ω),h′ ,̂i(ω) (Φ̂

si(x))

and by backward invariance of the transverse cone field (see (10.3)), we get

x̃ ∈ V
⊥
ω,h,i (x)

Using Lemma 10.13 once again, we get that (Φ̂si)−1 (γ) = Graph
si ((Φ̂si)∗ζ) is σ̂-Lipschitz.

This concludes the proof of Lemma 10.11.

10.3 The set of admissible points for the graph transformation

According to Lemma 10.11, we have a graph transformation over one point ω ∈ ]1, 2[ \Q, pulling-back
a graph rooted at P

sî(ω)

f̂(ω),ĥ. Recall that our goal is to define a graph transformation over a full-measure
set Ωgraph ⊂ ]1, 2[ \ Q, called the set of admissible points for the graph transformation. To do this,
we need to iterate the procedure described in Lemma 10.11. This means that the set Ωgraph must be
invariant under the Kasner double era map f̂ . Hence, it is a reunion of orbits (ω, f̂(ω), f̂2(ω), . . . ).

Roughly speaking, the idea is to attach a graph to each point ω ∈ Ωgraph and to replace the graph
rooted at P si

ω,ĥ
by the preimage of the graph rooted at P

sî(ω)

f̂(ω),ĥ by the double era return map Φ̂. If we
go into the technical details, there are two sections Ss1ω and Ss2ω above each point ω ∈ Ωgraph so we
need to consider two graphs rooted at each point. Let us temporarily simplify the discussion by acting
as if there were only one section, say Ssω.

The graph transformation acts above the orbit (ω, f̂(ω), f̂2(ω), . . . ) as follows: for all n ≥ 0, the
graph rooted at P s

f̂n(ω),ĥ is replaced by the preimage of the graph rooted at P s
f̂n+1(ω),ĥ by the double era

return map. Informally, the graph transformation is well defined above the orbit (ω, f̂(ω), f̂2(ω), . . . )
if there exists a sequence (an)n≥0 of positive real numbers such that for any family (γn)n≥0 where γn
is a σ̂-Lipschitz graph of size an rooted at P s

f̂n(ω),ĥ, the following property holds: for all n ≥ 0, the
preimage of the graph γn+1 by the double era return map defines a σ̂-Lipschitz graph of size an rooted
at P s

f̂n(ω),ĥ. Remark that for all n ≥ 0, k1(f̂n(ω)) = k2n+1(ω), k2(f̂n(ω)) = k2n+2(ω), etc. Hence,
Lemma 10.11 gives a sufficient condition: if there exists a sequence (an)n≥0 of positive real numbers
such that for every n ≥ 0,

an ≤ e
−C̃12s4(f̂n(ω))

= e
−C̃12(k2n+1(ω)4+k2n+2(ω)4+k2n+3(ω)4+k2n+4(ω)4)

and
ane

−C̃8(k2n+1(ω)5+k2n+2(ω)5)
= ane

−C̃8(k1(f̂n(ω))5+k2(f̂n(ω))5)
≤ an+1

then the graph transformation is well defined above the orbit (ω, f̂(ω), f̂2(ω), . . . ). This leads to the
following definition.
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Definition 10.14 (Admissible points for the graph transformation). Let ω ∈ ]1, 2[ \Q and h⊥ > 0.
We associate with ω and h⊥ a sequence (an(ω, h⊥))n≥0 defined by

{
a0(ω, h⊥) = h⊥
an+1(ω, h⊥) = an(ω, h⊥)e−C̃8(k2n+1(ω)5+k2n+2(ω)5)

We say that ω is admissible (for the graph transformation) if there exists h⊥ > 0 such that for every
n ≥ 0, an(ω, h⊥) ≤ e−C̃12s4(f̂n(ω)). If ω is admissible, we define

ĥ⊥(ω)
def
= sup {h⊥ > 0 ∣∀n ≥ 0, an(ω, h⊥) ≤ e−C̃12s4(f̂n(ω))} (10.18)

We denote by Ωgraph the set of all admissible points in ]1, 2[ \Q.

Proposition 10.15. The set of the admissible points is invariant in the future and the past by the
Kasner double era map, i.e. f̂−1(Ωgraph) = Ωgraph.

Proof. One can remark that for every ω ∈ ]1, 2[ \Q, for every h⊥ > 0 and for every n ≥ 0,

an (f̂(ω), a1(ω, h⊥)) = an+1(ω, h⊥) (10.19)

Proposition 10.15 is a straightforward consequence of formula (10.19).

Recall that ω ∈ ]1, 2[ \Q is said to satisfy the moderate growth condition if

kn+4(ω)4
= on→+∞ (

n

∑
i=1

ki(ω)5) (MG)

Also, recall that the moderate growth condition is Lebesgue generic (see Lemma B.1).

Proposition 10.16 (Genericity of the admissible points). Any point ω ∈ ]1, 2[ \ Q satisfying the
moderate growth condition (MG) is admissible. In particular, Ωgraph is a Lebesgue full measure subset
of ]1, 2[ \Q.

Proof. Let ω ∈ ]1, 2[ \Q. Observe that

an(ω, h⊥) = h⊥e−C̃8∑2n
i=1 ki(ω)

5

,

As a consequence, ω ∈ Ωgraph as soon as

s4(f̂n(ω)) = on→+∞ (
2n

∑
i=1

ki(ω)5) (10.20)

On the other hand, (MG) clearly implies (10.20).

10.4 Global graph transformation Φ̂
∗

Now that the set Ωgraph and the function ĥ⊥ ∶ Ωgraph → ]0,+∞[ are defined, recall that

Γ
def
= {γ = (γω,i)ω∈Ωgraph,i∈{1,2} ∣ γω,i is a σ̂-Lipschitz graph of size ĥ⊥(ω) rooted at P si

ω,ĥ
}

Beware of the fact that in this definition, γ is not a graph but a family of graphs.
For ω ∈ ]1, 2[ \Q, define a “canonical” triplet of parameters

ĥω
def
= (ĥ, ĥ⊥(ω), e−C̃8s2(ω))

The double era return map defines a natural transformation Φ̂
∗ ∶ Γ→ Γ.
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Definition 10.17 (Graph transformation). The graph transformation Φ̂
∗ ∶ Γ→ Γ is defined by the

formula

(Φ̂
∗
γ)
ω,i

def
= (Φ̂»»»»»»S

si

ω,ĥω

)
−1

(γf̂(ω),̂i(ω))

for all γ ∈ Γ, all ω ∈ Ωgraph and all i ∈ {1, 2}.

Proposition 10.18. The graph transformation Φ̂
∗ ∶ Γ→ Γ is well defined.

Proof. This is a straightforward consequence of Lemma 10.11 and Proposition 10.15.

10.5 Local stable manifolds of the double era return map

For γ ∈ Γ, there exists a unique family of maps ζ = (ζω,i) where ζω,i is a map from [0, ĥ⊥ (ω)]2
to R

and γω,i = Graph
si (ζω,i). We will denote γ = Graph (ζ).

We endow Γ with the distance

dgraph (Graph (ζ) ,Graph (ζ̃)) def
= sup

ω∈Ωgraph,i∈{1,2}

ÂÂÂÂÂζω,i − ζ̃ω,i
ÂÂÂÂÂ∞,[0,ĥ⊥(ω)]2

where ÂÂÂÂÂζω,i − ζ̃ω,i
ÂÂÂÂÂ∞,[0,ĥ⊥(ω)]2

def
= sup

x⊥∈[0,ĥ⊥(ω)]
2

ÂÂÂÂÂζω,i(x⊥) − ζ̃ω,i(x⊥)
ÂÂÂÂÂ∞

Remark that (Γ, dgraph) is a complete space.

Lemma 10.19 (Fixed point of the graph transformation). The graph transformation Φ̂
∗ is a contraction

mapping of the complete metric space (Γ, dgraph) with

Lip Φ̂
∗
≤

1

Kc(1 − σ̂2)

As a consequence, Φ̂
∗ admits a unique fixed point in Γ, denoted by γ̂ = Graph (ζ̂).

Proof. Let γ = Graph (ζ) , γ̃ = Graph (ζ̃) ∈ Γ. We are going to prove that

dgraph (Φ̂
∗
γ, Φ̂

∗
γ̃) ≤ 1

Kc(1 − σ̂2)dgraph (γ, γ̃)

If we denote Graph (Φ̂
∗
ζ) = Φ̂

∗
γ and Graph (Φ̂

∗
ζ̃) = Φ̂

∗
γ̃, then it is enough to prove that for all

ω ∈ Ωgraph and all i ∈ {1, 2},

ÂÂÂÂÂÂ(Φ̂
∗
ζ)
ω,i
− (Φ̂

∗
ζ̃)
ω,i

ÂÂÂÂÂÂ∞,[0,ĥ⊥(ω)]2
≤

1

Kc(1 − σ̂2)
ÂÂÂÂÂζf̂(ω),̂i(ω) − ζ̃f̂(ω),̂i(ω)

ÂÂÂÂÂ∞,[0,ĥ⊥(f̂(ω))]2 (10.21)

Let ω ∈ Ωgraph, i ∈ {1, 2} and y ∈ [0, ĥ⊥(ω)]2. Consider two points with the same first coordinate:

x = (y, (Φ̂
∗
ζ)
ω,i

(y)) ∈ (Φ̂
∗
γ)
ω,i

z = Φ̂(x) ∈ γf̂(ω),̂i(ω)

x̃ = (y, (Φ̂
∗
ζ̃)
ω,i

(y)) ∈ (Φ̂
∗
γ̃)
ω,i

z̃ = Φ̂(x̃) ∈ γ̃f̂(ω),̂i(ω)

Since x⊥ = x̃⊥, we have ∥x − x̃∥⊥ = 0. It follows that x̃ ∈ V //

ω,ĥω,i
(x). By forward invariance of the

tangential cone field (see (10.2)), we have z̃ ∈ V //

f̂(ω),ĥf̂(ω) ,̂i(ω)
(z) which means

∥z − z̃∥⊥ ≤ σ̂ ∥z − z̃∥// (10.22)
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Hence,

∥z − z̃∥// =
»»»»»ζf̂(ω),̂i(ω)(z⊥) − ζ̃f̂(ω),̂i(ω)(z̃⊥)

»»»»»
≤

»»»»»ζf̂(ω),̂i(ω)(z⊥) − ζf̂(ω),̂i(ω)(z̃⊥)
»»»»» +

ÂÂÂÂÂζf̂(ω),̂i(ω) − ζ̃f̂(ω),̂i(ω)
ÂÂÂÂÂ∞,[0,ĥ⊥(f̂(ω))]2

≤ σ̂ ∥z − z̃∥⊥ +
ÂÂÂÂÂζf̂(ω),̂i(ω) − ζ̃f̂(ω),̂i(ω)

ÂÂÂÂÂ∞,[0,ĥ⊥(f̂(ω))]2

≤ σ̂
2 ∥z − z̃∥// +

ÂÂÂÂÂζf̂(ω),̂i(ω) − ζ̃f̂(ω),̂i(ω)
ÂÂÂÂÂ∞,[0,ĥ⊥(f̂(ω))]2 using (10.22)

or equivalently

∥z − z̃∥// ≤
1

1 − σ̂2

ÂÂÂÂÂζf̂(ω),̂i(ω) − ζ̃f̂(ω),̂i(ω)
ÂÂÂÂÂ∞,[0,ĥ⊥(f̂(ω))]2 (10.23)

Recall that x̃ ∈ V //

ω,ĥω,i
(x). By expansion in the tangential cone field (see (10.4)), we have

∥z − z̃∥// ≥ Kc ∥x − x̃∥// = Kc

»»»»»»(Φ̂
∗
ζ)
ω,i

(x⊥) − (Φ̂
∗
ζ̃)
ω,i

(x⊥)
»»»»»» (10.24)

Using (10.23) and (10.24), we get

»»»»»»(Φ̂
∗
ζ)
ω,i

(x⊥) − (Φ̂
∗
ζ̃)
ω,i

(x⊥)
»»»»»» ≤

1

Kc(1 − σ̂2)
ÂÂÂÂÂζf̂(ω),̂i(ω) − ζ̃f̂(ω),̂i(ω)

ÂÂÂÂÂ∞,[0,ĥ⊥(f̂(ω))]2

Hence, (10.21) holds true. According to (9.3), Kc (1 − σ̂2) > 1 so Φ̂
∗ is a contraction mapping. Using

the standard contraction mapping theorem, we get that Φ̂
∗ admits a unique fixed point in Γ. This

concludes the proof.

Theorem 10.20 (Local stable manifolds of the double era return map). For every ω ∈ Ωgraph and every
i ∈ {1, 2}, the local stable set of P si

ω,ĥ
of size ĥ⊥(ω) contains a Lipschitz submanifold of dimension 2.

More precisely,
γ̂ω,i ⊂W

s

ĥ⊥(ω) (P
si

ω,ĥ
, Φ̂)

Moreover, the convergence is exponential in the graph: for every x ∈ γ̂ω,i and every n ≥ 0,

ÂÂÂÂÂÂΦ̂
n(x) − Φ̂

n (P si
ω,ĥ

)ÂÂÂÂÂÂ∞ ≤
ÂÂÂÂÂÂx − P

si

ω,ĥ

ÂÂÂÂÂÂ⊥ e
−C̃8∑2n

i=1 ki(ω)
5

(10.25)

Proof. Let ω = [1; k1, k2, . . . ] ∈ Ωgraph, i ∈ {1, 2} and x ∈ γ̂ω,i = Graph
si (ζ̂ω,i). By definition,

γ̂ = Φ̂
∗
γ̂. Hence, for every n ≥ 0 and every j ∈ {1, 2},

Φ̂ (γ̂f̂n(ω),j) ⊂ γ̂f̂n+1(ω),̂i(f̂n(ω))

Using the fact that ζ̂f̂n+1(ω),̂i(f̂n(ω)) is σ̂-Lipschitz with σ̂ ≤ 1, we get that for every n ≥ 0,

γ̂f̂n+1(ω),̂i(f̂n(ω)) ⊂ S
s

f̂n+1(ω),ĥf̂n+1(ω)

By induction, we get that for every n ≥ 0, Φ̂
n(x) is well defined and belongs to Ss

f̂n(ω),ĥf̂n(ω)
.

Let n ≥ 0. Since Φ̂
n+1(x) and Φ̂

n+1 (P si
ω,ĥ

) both belong to γ̂f̂n+1(ω),̂i(f̂n(ω)), it follows from
Lemma 10.13 that

Φ̂
n+1(x) ∈ V ⊥f̂n+1(ω),h′ ,̂i(f̂n(ω)) (Φ̂

n+1 (P si
ω,ĥ

))

where h
′
= (ĥ, ĥ, ĥ). Hence, the contraction estimate (10.5) in the transverse cone gives

ÂÂÂÂÂÂΦ̂
n+1(x) − Φ̂

n+1 (P si
ω,ĥ

)ÂÂÂÂÂÂ⊥ ≤
ÂÂÂÂÂÂΦ̂

n(x) − Φ̂
n (P si

ω,ĥ
)ÂÂÂÂÂÂ⊥ e

−C̃8(k5
2n+1+k

5
2n+2) (10.26)
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Moreover,

ÂÂÂÂÂÂΦ̂
n+1(x) − Φ̂

n+1 (P si
ω,ĥ

)ÂÂÂÂÂÂ//
=

ÂÂÂÂÂÂζ̂f̂n+1(ω),̂i(f̂n(ω)) ((Φ̂
n+1(x))

⊥
) − ζ̂f̂n+1(ω),̂i(f̂n(ω)) ((Φ̂

n+1 (P si
ω,ĥ

))
⊥
)ÂÂÂÂÂÂ

≤ σ̂
ÂÂÂÂÂÂΦ̂

n+1(x) − Φ̂
n+1 (P si

ω,ĥ
)ÂÂÂÂÂÂ⊥ (10.27)

Using (10.26), (10.27) and the fact that σ̂ ≤ 1, we get that for every n ≥ 0,

ÂÂÂÂÂÂΦ̂
n+1(x) − Φ̂

n+1 (P si
ω,ĥ

)ÂÂÂÂÂÂ∞ ≤ e
−C̃8(k5

2n+1+k
5
2n+2) ÂÂÂÂÂÂΦ̂

n(x) − Φ̂
n (P si

ω,ĥ
)ÂÂÂÂÂÂ⊥

By induction, we get that for every n ≥ 0,

ÂÂÂÂÂÂΦ̂
n(x) − Φ̂

n (P si
ω,ĥ

)ÂÂÂÂÂÂ∞ ≤
ÂÂÂÂÂÂx − P

si

ω,ĥ

ÂÂÂÂÂÂ⊥ e
−C̃8∑2n

i=1 ki(ω)
5

(10.28)

Hence, x ∈W s

ĥ⊥(ω) (P
si

ω,ĥ
, Φ̂) and the convergence is exponential in the graph. This concludes the proof

of Theorem 10.20.

10.6 Continuity of the local stable manifolds

We want to show that the graphs γ̂ω,i depend continuously on ω ∈ Ωgraph. Equivalently, we can
show that the maps ζ̂ω,i depend continuously on ω ∈ Ωgraph. Now remark that if P si

ω,ĥ
and P

sj

ω̃,ĥ

are close to each other, then i = j. Hence, we can fix i = 1 and discuss the regularity of the map
ζ̂1 ∶ ω ∈ Ωgraph ↦ ζ̂ω,1.

Recall that for all ω ∈ Ωgraph, ζ̂ω,1 ∶ [0, ĥ⊥(ω)]
2
→ R is a σ̂-Lipschitz map such that ζ̂ω,1(0, z) = ω

for all z ∈ [0, ĥ⊥(ω)]. We want to compare two different maps ζ̂ω,1 and ζ̂ω̃,1 when ω and ω̃ are close

together. The most natural way to compare ζ̂ω,1 and ζ̂ω̃,1 is to restrict them to [0,min (ĥ⊥(ω), ĥ⊥(ω̃))]
2

and then to use the sup-norm. We do not want the function min (ĥ⊥(ω), ĥ⊥(ω̃)) to collapse to 0 while
ω̃ tends to ω so we will restrict ourselves to points ω that satisfy ĥ⊥(ω) ≥ h⊥ where h⊥ > 0 is an
arbitrary fixed number. This leads us to define the following subset of Ωgraph:

Ωgraph (h⊥) = {ω ∈ Ωgraph ∣ ĥ⊥(ω) ≥ h⊥}

One should note that Ωgraph = ⋃n≥1 Ωgraph ( 1
n
). According to Proposition 10.16, for h⊥ small

enough, Ωgraph (h⊥) has positive Lebesgue measure. In the following proposition, Liph⊥ denotes the
set of all real valued σ̂-Lipschitz map defined on [0, h⊥]2.

Proposition 10.21. For every h⊥ > 0, the map ζ̂1,h⊥ ∶ ω ∈ Ωgraph (h⊥) ↦ (ζ̂ω,1)∣[0,h⊥]2 ∈ Liph⊥ is
continous for the sup-norm topology on Liph⊥ .

Proof. Let ε > 0, h⊥ > 0 and Kparam = [1; k1, k2, . . . ] ∈ Ωgraph (h⊥). We are going to show that
there exists η > 0 (depending only on ε and ω) such that for all ω̃ ∈ Ωgraph (h⊥), if ∣ω − ω̃∣ ≤ η, thenÂÂÂÂÂζ̂ω,1 − ζ̂ω̃,1

ÂÂÂÂÂ∞ ≤ ε (where the sup-norm is to be understood over [0, h⊥]2). Let γ = Graph (ζ) ∈ Γ

be the “constant” graph family, defined by ζz,i ≡ z for all z ∈ Ωgraph and all i ∈ {1, 2}. Since Φ̂
∗ is a

contraction mapping (see Lemma 10.19), there exists an integer n such that

dgraph (γ̂, (Φ̂
∗)n γ) ≤ ε
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From now on, we fix such a n. Denote (Φ̂
∗)n γ = Graph ((Φ̂

∗)n ζ). We then have

ÂÂÂÂÂζ̂ω,1 − ζ̂ω̃,1
ÂÂÂÂÂ∞

≤
ÂÂÂÂÂÂζ̂ω,1 − ((Φ̂

∗)n ζ)
ω,1

ÂÂÂÂÂÂ∞ +
ÂÂÂÂÂÂ((Φ̂

∗)n ζ)
ω,1
− ((Φ̂

∗)n ζ)
ω̃,1

ÂÂÂÂÂÂ∞ +
ÂÂÂÂÂÂ((Φ̂

∗)n ζ)
ω̃,1
− ζ̂ω̃,1

ÂÂÂÂÂÂ∞
≤
ÂÂÂÂÂÂ((Φ̂

∗)n ζ)
ω,1
− ((Φ̂

∗)n ζ)
ω̃,1

ÂÂÂÂÂÂ∞ + 2ε

One can remark that for every Graph (Λ) ∈ Γ and every z, z̃ ∈ Ωgraph (h⊥) close enough, we have

ÂÂÂÂÂÂ(Φ̂
∗
Λ)

z,1
− (Φ̂

∗
Λ)

z̃,1

ÂÂÂÂÂÂ∞,[0,h⊥]2
≤ λ

ÂÂÂÂÂΛf̂(z),1 − Λf̂(z̃),1
ÂÂÂÂÂ∞,[0,h⊥e−C̃8(k1(z)5+k2(z)5)]

2 (10.29)

where λ = 1
Kc(1−σ̂2) . This inequality follows from the very same argument as in Lemma 10.19. One

just needs to check that if z̃ is close enough to z, we can indeed use the invariant cone field from
Proposition 10.8. Now remark that if ω̃ is close enough to ω, then for every 0 ≤ j ≤ n, f̂ j(ω̃) is close
enough to f̂ j(ω) so that estimate (10.29) holds true with z = f̂ j(ω) and z̃ = f̂ j(ω̃). By induction, we
get

ÂÂÂÂÂÂ((Φ̂
∗)n ζ)

ω,1
− ((Φ̂

∗)n ζ)
ω̃,1

ÂÂÂÂÂÂ∞,[0,h⊥]2
≤ λ

n ÂÂÂÂÂζf̂n(ω),̂i(f̂n−1(ω)) − ζf̂n(ω̃),̂i(f̂n−1(ω̃))
ÂÂÂÂÂ∞,[0,h⊥e−C̃8∑2n

i=1 k
5
i ]

2

≤ λ
n »»»»»f̂

n(ω) − f̂n(ω̃)»»»»»
Moreover, if ω̃ is close enough to ω, then

f̂
n(ω) = fk1+⋅⋅⋅+k2n(yc) and f̂

n(ω̃) = fk1+⋅⋅⋅+k2n(ω̃)

Hence, using Proposition 8.3 on the Kasner map, we get that

ÂÂÂÂÂÂ((Φ̂
∗)n ζ)

ω,1
− ((Φ̂

∗)n ζ)
ω̃,1

ÂÂÂÂÂÂ∞,[0,h⊥]2
≤ (λn

2n

∏
i=1

16k
2
i ) ∣ω − ω̃∣

Take η > 0 such that η (λn∏2n
i=1 16k

2
i ) ≤ ε. If ∣ω − ω̃∣ ≤ η, then

ÂÂÂÂÂζ̂ω,1 − ζ̂ω̃,1
ÂÂÂÂÂ∞ ≤ 3ε

which concludes the proof.
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Shadowing of heteroclinic chains

If p is a point of the Kasner circle K , let us denote by Shad(p) the union of all the type IX orbits in
B
+ shadowing the heteroclinic chain H (p) starting at p. Recall that ω ∈ ]1,+∞[ \Q satisfies the

moderate growth condition if

kn+4(ω)4
= on→+∞ (

n

∑
i=1

ki(ω)5) (MG)

We are now ready to prove the first part of Theorem B stated in the introduction. Let us recall the
statement.

Theorem 11.1 (Theorem B, first part). Let p be a point of the Kasner circle. If ω(p) verifies the
moderate growth condition (MG), then Shad(p) contains a 3-dimensional ball Lipschitz embedded in
the phase space B

+.

We will reduce Theorem 11.1 to a more technical statement, see Theorem 11.4 below. Let us
recall some notations. For any ω ∈ ]1, 2[ \ Q, we denote by Pω the unique point belonging to the
Kasner interval K0 whose Kasner parameter is ω and by H (ω) the heteroclinic chain starting at Pω
(see definition 3.7). Recall that γ̂ = (γ̂ω,i) denotes the fixed point of the graph transformation, that
is, the graph family invariant by the double era return map Φ̂ constructed in Chapter 10. Roughly
speaking, we will prove that the orbits starting in γ̂ω,i will shadow the heteroclinic chain H (ω) (see
definition 1.2). In practice, we need to impose a stronger condition on ω : the moderate growth
condition (MG).

Definition 11.2. We denote by Ωshad the set of all the points ω ∈ ]1, 2[ \Q satisfying the moderate
growth condition (MG).

Proposition 11.3. Ωshad ⊂ Ωgraph (see definition 10.14) and Ωshad is a Lebesgue full measure subset
of ]1, 2[ \Q. Moreover, if ω ∈ Ωshad, then

k2n+1(ω)4
+ k2n+2(ω)4

+ k2n+3(ω)4
+ k2n+4(ω)4

= on→+∞ (
2n

∑
i=1

ki(ω)5) (11.1)

Proof. The first part of Proposition 11.3 is a direct consequence of Proposition 10.16 and Lemma B.1.
The fact that (MG) implies (11.1) is straightforward.

11.1 Shadowing theorem
Recall that γ̂ = (γ̂ω,i) denotes the fixed point of the graph transformation. Recall that the type IX
points are those satisfying, in local coordinates, the condition

xu > 0, xs1 > 0, xs2 > 0

In particular, any point in the interior of γ̂ω,i is of type IX. Recall that Shad(ω) is the union of all the
type IX orbits in B+ shadowing H (ω).
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Theorem 11.4 (Partial description of the shadowing sets). For every ω ∈ Ωshad, every i ∈ {1, 2}
and every point q0 ∈ ξ

−1 (γ̂ω,i) of type IX, the orbit of the Wainwright-Hsu vector field starting
at q0 shadows the heteroclinic chain H (ω). In particular, the shadowing set Shad(ω) contains a
3-dimensional injectively immersed Lipschitz manifold, namely the set

⋃
t∈R

X t (ξ−1 (γ̂ω,i) ∩ BIX)

where X t is the flow of the induced Wainwright-Hsu vector field X .

Proof of Theorem 11.4. The proof relies on the following ingredients: Theorem 10.20, Proposition 9.10,
Proposition 9.9, Proposition 7.4 and Proposition 6.8. To make the proof easier to read, we will
sometimes identify a point in Uξ ⊂ B+ with its image by the local coordinate system ξ. Let ω =

[1; k1, k2, . . . ] ∈ Ωshad, i ∈ {1, 2}, q0 ∈ ξ
−1 (γ̂ω,i) be a type IX point and q ∶ t ↦ q(t) be the forward

X -orbit of q0.
Our goal is to prove that q ∶ t ↦ q(t) shadows the heteroclinic chain H (ω). Recall that H (ω)

is the concatenation of the type II orbit OPω→Pf(ω) with OPf(ω)→Pf2(ω) and so on. Hence, the orbit

(ωn)n≥0 = (ω, f(ω), f2(ω), . . . ) will play a fundamental role. It will be convenient to gather the terms
of this sequence by eras, that is, to look at it as the double sequence

(ωj,l)(j,l)∈Eω = (ω0,0 = ω, ω0,1 = f(ω), . . . , ω0,k1−1 = f
k1−1(ω),

ω1,0 = f̄(ω), ω1,1 = f(f̄(ω)), . . . , ω1,k2−1 = f
k2−1(f̄(ω)),

ω2,0 = f̄
2(ω), ω2,1 = f(f̄2(ω)), . . . )

where
Eω = {(j, l) ∈ N2 ∣ 0 ≤ l ≤ kj+1 − 1}

is endowed with the lexicographical order. We will alternate between those two points of view, using
the increasing bijection ϕ ∶ Eω → N defined by

ϕ(j, l) = l +
j

∑
m=1

km

In other words, we associate with any formal sequence (an)n∈N a sequence (aj,l)(j,l)∈Eω where aj,l ∶=
aϕ(j,l) and conversely.

According to Theorem 10.20, q0 belongs to the local stable manifold of P si
ω,ĥ

of size ĥ⊥(ω). In

particular, Φ̂
j(q0) is well defined for all j ≥ 0 and, a fortiori, Φ̄

j

ĥ
(q0) is also well defined for all j ≥ 0.

Let T0,0 = 0, T1,0, T2,0, . . . be the successive times when the orbit q intersects the section Sĥ. For j ≥ 0,

define h⊥,2j,0 = e
−C̃10s4(f̂j(ω)), h2j,0 = (ĥ, h⊥,2j,0, e−C̃8s2(f̂j(ω))) and S2j,0 = S

s

f̂j(ω),h2j,0
.

Claim 1. For all j ≥ 0, X T2j,0(q0) ∈ S2j,0.

Proof of claim 1. Recall that ĥ⊥(ω) ≤ h⊥,0,0 and ζ̂ω,i is σ̂-Lipschitz, hence the claim is trivial for j = 0.
For j ≥ 1, remark that

X T2j,0(q0) = Φ̂
j(q0) ∈ Graph

sî(f̂j−1(ω)) (ζ̂f̂j(ω),̂i(f̂j−1(ω))) ⊂ S
s

f̂j(ω),ĥf̂j (ω)
⊂ S2j,0

For j ≥ 0, define h⊥,2j+1,0 ∶= e
−C̃9s4(f̄2j+1(ω)), h2j+1,0 ∶= (ĥ, h⊥,2j+1,0, e

−C̃8s2(f̄2j+1(ω))) and
S2j+1,0 ∶= S

s
f̄2j+1(ω),h2j+1,0

.

Claim 2. For all j ≥ 0, X T2j+1,0(q0) ∈ S2j+1,0.

Proof of claim 2. This is an immediate consequence of claim 1 and Proposition 9.10.
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For j ≥ 0 and 1 ≤ l ≤ kj+1 − 1, define h⊥,j,l = (ĥk−ñ5

j+1 )
C̃5f

l(f̄j(ω))
m(f l(f̄ j(ω))), hj,l =

(ĥk−ñ5

j+1 , h⊥,j,l, h⊥,j,l) and Sj,l = S
s
f l(f̄j(ω)),hj,l . Let j ≥ 0. According to Lemma 9.8 and Proposi-

tion 9.9, the orbit segment [X Tj,0(q0),X Tj+1,0(q0)] passes through all the sections Sj,1, Sj,2, . . . ,
Sj,kj+1−1 in that order. We denote by

Tj,0 < Tj,1 < ⋅ ⋅ ⋅ < Tj,kj+1−1 < Tj+1,0

the successive first times Tj,l such that X Tj,l(q0) ∈ Sj,l for all 1 ≤ l ≤ kj+1 − 1. More precisely,
Tj,1 < ⋅ ⋅ ⋅ < Tj,kj+1−1 are defined recursively as follows

Tj,1 = min {t > Tj,0 ∣ X t(q0) ∈ Sj,1}
Tj,2 = min {t > Tj,1 ∣ X t(q0) ∈ Sj,2}
. . .

Tj,kj+1−1 = min {t > Tj,kj+1−2 ∣ X t(q0) ∈ Sj,kj+1−1}

Let (Pn)n≥0 be the sequence of the successive intersection points of the heteroclinic chain H (P si
ω,ĥ

)
with the sections S0, S1, etc. According to Proposition 9.10, if X T2j,0(q0) is close to P2j,0 (relatively
to the size h⊥,2j,0 of the section S2j,0 in the direction transverse to the Mixmaster attractor), then
X T2j+1,0(q0) is close to P2j+1,0 (relatively to the size h⊥,2j+1,0). More precisely, if

ÂÂÂÂÂX
T2j,0(q0) − P2j,0

ÂÂÂÂÂ∞
h⊥,2j,0

≤ ε

with 0 < ε ≤ 1, then ÂÂÂÂÂX
T2j+1,0(q0) − P2j+1,0

ÂÂÂÂÂ∞
h⊥,2j+1,0

≤ ε

According to Proposition 9.9, if X Tj,0(q0) is close to Pj,0 (relatively to the size h⊥,j,0), then, for
every 1 ≤ l ≤ kj+1 − 1, X Tj,l(q0) is close to Pj,l (relatively to the size h⊥,j,l). For (j, l) ∈ Eω, define

hj,l = {ĥ if l = 0

ĥk
−ñ5

j+1 if l ≥ 1

and
tn = Tn + τ

∗
fn(ω),hn (X Tn(q0))

where τ∗ is defined in Proposition 6.8. According to Proposition 6.8 together with Proposition 6.1 and
Proposition 7.4, if X Tn(q0) is close to Pn (relatively to the size h⊥,n), then

1. X tn(q0) is close to Pfn(ω).

2. The orbit segment [X Tn(q0),X Tn+1(q0)] is close to the heteroclinic chain segment [Pn, Pn+1] for
the Hausdorff distance.

Hence, we are left to prove that the ratio between ÂÂÂÂÂX
T2j,0(q0) − P2j,0

ÂÂÂÂÂ∞ and h⊥,2j,0 tends to 0 as
j tends to +∞. One can rewrite (10.25) as follows:

ÂÂÂÂÂX
T2j,0(q0) − P2j,0

ÂÂÂÂÂ∞ ≤ ∥q0 − P0∥⊥ e
−C̃8∑2j

m=1 k
5
m

Hence, ÂÂÂÂÂX
T2j,0(q0) − P2j,0

ÂÂÂÂÂ∞
h⊥,2j,0

≤ ∥q0 − P0∥⊥ e
C̃10s4(f̂j(ω))−C̃8∑2j

m=1 k
5
m
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To conclude, recall that ω ∈ Ωshad. Equation (11.1) implies that

lim
j→+∞

e
C̃10s4(f̂j(ω))−C̃8∑2j

m=1 k
5
m
= 0

Hence, the orbit q ∶ t ↦ q(t) shadows the heteroclinic chain H (ω). This concludes the proof since
Shad(ω) is clearly invariant by the flow of the Wainwright-Hsu vector field X .

Proof of Theorem 11.1. Let p be a point of the Kasner circle such that ω(p) verifies the moderate
growth condition (MG). One can find an iterate F

j(p) such that ω(F j(p)) ∈ ]1, 2[ \Q. Moreover,
Shad(p) = Shad(F j(p)) and ω(F j(p)) verifies the moderate growth condition (MG). Hence, one can
assume that ω = ω(p) ∈ ]1, 2[ \Q without loss of generality. According to Proposition 11.3, ω ∈ Ωshad.
Remark that γ̂ω,i ∩BIX is a 2-dimensional Lipschitz manifold. Since the local coordinate system ξ is a
diffeomorphism, it follows that

ξ
−1 (γ̂ω,i) ∩ BIX

is a 2-dimensional Lipschitz manifold as well. According to Theorem 11.4, for all point q0 ∈ ξ
−1 (γ̂ω,i)

of type IX, the orbit of the Wainwright-Hsu vector field starting at q0 shadows the heteroclinic chain
H (ω). In other words

⋃
t∈R

X t (ξ−1 (γ̂ω,i) ∩ BIX) ⊂ Shad(ω)

Moreover, for ε > 0 small enough, the set

⋃
t∈]−ε,ε[

(ξ−1 (γ̂ω,i) ∩ BIX)

is a 3-dimensional ball Lipschitz embedded in the phase space B+. Hence, the shadowing set Shad(ω)
contains a 3-dimensional ball Lipschitz embedded in the phase space B+. Recall that B+ is a quotient
of B

+ (see section 3.6). As a consequence, Shad(p) contains a 3-dimensional ball Lipschitz embedded
in the phase space B

+. This concludes the proof of Theorem 11.1.



Chapter12
Absolute continuity of the stable manifolds
foliation

If p is a point of the Kasner circle K , recall that we denote by Shad(p) the reunion of all the type IX
orbits in B

+ shadowing the heteroclinic chain starting at p. The purpose of this last chapter is to
prove the second part of Theorem B stated in the introduction. Let us recall the statement.

Theorem 12.1 (Theorem B, second part). If E ⊂ K has positive 1-dimensional Lebesgue measure,
then ⋃p∈E Shad(p) has positive 4-dimensional Lebesgue measure in the phase space B

+.

We can reduce Theorem 12.1 to the following proposition. Recall that Ωshad ⊂ Ωgraph ⊂ ]1, 2[. In
Chapter 10, we constructed a graph included in the local stable set of P si

ω,ĥ
for all ω ∈ Ωgraph, denoted

by γ̂ω,i (see Theorem 10.20). For F ⊂ Ωgraph and i ∈ {1, 2}, let

W
si (F, Φ̂) def

= ⨆
ω∈F

γ̂ω,i

Proposition 12.2. If E ⊂ Ωshad has positive 1-dimensional Lebesgue measure, then W s1 (E, Φ̂) has

positive 3-dimensional Lebesgue measure. The same result holds true with W s2 (E, Φ̂).

Proof of Theorem 12.1 using Proposition 12.2. Assume that Proposition 12.2 holds true. Fix E ⊂ K
of positive 1-dimensional Lebesgue measure. Let ω(E ) ∶= {ω(p) ∣ p ∈ E }. Since the map ω ↦ Pω
is absolutely continuous, we get that ω(E ) has positive 1-dimensional Lebesgue measure. As in
the proof of Theorem 11.1, one can assume that ω(E ) ∩ ]1, 2[ has positive 1-dimensional Lebesgue
measure without loss of generality. Recall from Proposition 11.3 that Ωshad is a Lebesgue full measure
subset of ]1, 2[. Hence, E ∶= Ωshad ∩ ω(E ) has positive 1-dimensional Lebesgue measure. Now apply
Proposition 12.2 with the set E. We get that

W
s1 (E, Φ̂) ⊂ Ss1

ĥ

has positive 3-dimensional Lebesgue measure. Since the local coordinate system ξ is a diffeomorphism,
it follows that

ξ
−1 (W s1 (E, Φ̂)) ⊂ Ss1

ĥ

has positive 3-dimensional Lebesgue measure as well. Hence, the set

⋃
t∈R

X t (ξ−1 (W s1 (E, Φ̂)))

has positive 4-dimensional Lebesgue measure in B+. Moreover, according to Theorem 11.4,
⋃ω∈E Shad(ω) contains the above set. Recall that B+ is a finite quotient of B

+ (see chapter 3.6). As
a consequence, ⋃p∈E Shad(p) contains a 4-dimensional Lebesgue measure set. Hence, Theorem 12.1
holds true.
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S
s1
ω,h

Hy

R

Ly

W
s1 (E, Φ̂)

γ̂ω,1 γ̂ω′,1

•
ω

•
Hy(ω)

•
Hy(ω′)

•
ω
′

Figure 12.1 – The map Hy.

To prove Proposition 12.2, we will use a strategy due to Pesin, which consists in considering the
holonomy along the “foliation” in local stable manifolds, and proving that this holonomy is made of
absolutely continuous maps. This strategy is well-known in the context of non-uniformly hyperbolic
maps. We call “foliation” in local stable manifolds the set

{γ̂ω,i ∣ ω ∈ E, i ∈ {1, 2}}

According to Proposition 10.21, the map ζ̂ω depends continuously on ω. Now let us explain why
Proposition 12.2 is not a direct consequence of this continuity. Consider a set E ⊂ Ωshad of positive
1-dimensional Lebesgue measure. For y ∈ [0, ĥ]2

, introduce the horizontal line

Ly
def
= {(xu, ĥ, xs2 , xc) ∈ S

s1

ĥ
∣ (xu, xs2) = y}

Recall that ĥ⊥(ω) is the “size” of the graph γ̂ω,i (see definition (10.18) and Theorem 10.20). To simplify
the discussion, assume that there exists h⊥ such that for all ω ∈ E, the graph γ̂ω,1 has a size larger than
h⊥, i.e. ĥ⊥(ω) ≥ h⊥. According to Fubini’s theorem, the set W s1 (E, Φ̂) has positive 3-dimensional

Lebesgue measure if and only if there exists a set Y ⊂ [0, ĥ]2
of positive 2-dimensional Lebesgue

measure such that for all y ∈ Y , Ly ∩W
s1 (E, Φ̂) has positive 1-dimensional Lebesgue measure. For

y ∈ [0, h⊥]2, define the map Hy ∶ E → Ly ∩W
s1 (E, Φ̂) by the formula

Hy(ω) = ζ̂ω,1(y)

See figure 12.1. Remark that
Hy(E) = Ly ∩W s1 (E, Φ̂)

If one wants to deduce the fact that W s1 (E, Φ̂) has positive 1-dimensional Lebesgue measure from
the fact that E has positive 1-dimensional Lebesgue measure using the maps Hy, one needs to show
that these maps send positive Lebesgue measure sets onto positive Lebesgue measure sets for all
y ∈ Y ⊂ [0, h⊥]2 where Y has positive 2-dimensional Lebesgue measure. However, Proposition 10.21
only implies thatHy is a homeomorphism and it is well known that not all homeomorphisms send positive
Lebesgue measure sets onto positive Lebesgue measure sets. In other words, some homeomorphisms
send non-zero Lebesgue measure sets onto zero Lebesgue measure sets. Hence, Proposition 12.2 is not
a straightforward consequence of Proposition 10.21. We must show that the maps Hy send positive
Lebesgue measure sets onto positive Lebesgue measure sets using another method. Let us now describe
this method, which is due to Pesin.

From now on and until the end of this section, we fix a set E ⊂ Ωshad of positive 1-dimensional
Lebesgue measure. We are going to replace E by a subset Ẽ such that we have some uniform estimates
on the continued fraction expansion of points of Ẽ and such that Ẽ still has positive 1-dimensional
Lebesgue measure. Define

F
s1 def
= {γ̂ω,1 ∣ ω ∈ Ẽ}
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π

S
s1

ĥ

R

•
z

•y

W
s1 (Ẽ, Φ̂)

•
π(z)

•
π(y)

•x

•
π(x)

Figure 12.2 – The projection map π.

Remark that Ωshad is totally disconnected, hence F s1 is the family of connected components of
W

s1 (Ẽ, Φ̂). Even if F s1 is not a foliation of the section Ss1
ĥ
, we will call F s1 the local stable manifolds

“foliation” of the double era return map Φ̂. Remark that the F s1 is leaf-invariant by Φ̂. The uniform
estimates on points of Ẽ will be crucial to prove that the local stable manifolds “foliation” of the double
era return map Φ̂ is absolutely continuous. We now proceed to define Ẽ. According to Lemma B.1,
there exists n0 and l0 such that the set

Ẽ
def
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ω ∈ E

»»»»»»»»»»»»»»»»»»»»»

∀n ≥ n0,
2n

∑
i=1

ki(ω)5
≥ n

5− 1
10

∀n ≥ n0, k2n+1(ω)4
+ k2n+2(ω)4

+ k2n+3(ω)4
+ k2n+4(ω)4

≤ n
4+ 1

10

∀1 ≤ n ≤ 2n0, kn(ω) ≤ l0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

(12.1)

has positive 1-dimensional Lebesgue measure. Remark that the quantity

e
C̃12s4(f̂n(ω))−C̃8∑2n

i=0 ki(ω)
5

is uniformly bounded from above for ω ∈ Ẽ. Hence, according to the very definition of ĥ⊥(ω)
(see (10.18)),

δ⊥,0
def
= inf

ω∈Ẽ
ĥ⊥(ω) > 0 (12.2)

In other words, the size of the graph γ̂ω,1 is uniformly bounded from below by δ⊥,0 for ω ∈ Ẽ.
In a second time, let us introduce a projection map π which is somehow the inverse of Hy. Roughly

speaking, we will project points of W s1 (Ẽ, Φ̂) onto the Mixmaster attractor along the foliation F s1

and then project to the last coordinate. See figure 12.2.

Definition 12.3 (Projection map). The projection map π ∶W s1 (Ẽ, Φ̂) = ⨆ω∈Ẽ γ̂ω,1 → R is defined
by π(x) = ω for all x ∈ γ̂ω,1.

Remark 12.4. The restriction π∣Ly of the projection map is the inverse of Hy.

Remark 12.5. To make the reading easier, we will make the abuse of notation to write π(G) instead of
π (G ∩W s1 (Ẽ, Φ̂)) for any set G ⊂ Sĥ.

We denote by Lebn the n-dimensional Lebesgue measure. Lemma 12.6 states precisely that the
projection map π is absolutely continuous in restriction to horizontal lines. For y ∈ [0, ĥ]2

, let πy be
the restriction of π to the horizontal line Ly.

Lemma 12.6. There exists 0 < h⊥ ≤ δ⊥,0 such that for all y ∈ [0, h⊥]2 and all G ⊂ Ly ∩W
s1 (Ẽ, Φ̂),

Leb1(G) = 0 ⟹ Leb1 (π(G)) = 0 (12.3)

Proof of Proposition 12.2 using Lemma 12.6. Assume that Lemma 12.6 holds true. Take 0 < h⊥ ≤ δ⊥,0
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as in the statement of Lemma 12.6. Assume that

Leb3 (W s1 (E, Φ̂)) = 0

This implies that
Leb3 (W s1 (Ẽ, Φ̂)) = 0

Using Fubini’s theorem, we get that for Lebesgue almost all y ∈ [0, h⊥]2,

Leb1 (Ly ∩W s1 (Ẽ, Φ̂)) = 0 (12.4)

Fix such a transversal Ly.

Claim 1. πy (W s1 (Ẽ, Φ̂)) = Ẽ.

Proof of claim 1. The inclusion πy (W s1 (Ẽ, Φ̂)) ⊂ Ẽ is obvious by definition of π. Let ω ∈ Ẽ. Since
h⊥ ≤ δ⊥,0, the size ĥ⊥(ω) of the graph γ̂ω,1 is larger than h⊥ (see (12.2)). Hence, γ̂ω,1 intersects the
horizontal line Ly exactly one time, say at x. By definition, we have πy(x) = ω. This concludes the
proof of claim 1.

According to (12.3) and (12.4), we have

Leb1 (πy (W s1 (Ẽ, Φ̂))) = 0

Using claim 1, we get that
Leb1 (Ẽ) = 0

This is the desired contradiction. Hence,

Leb3 (W s1 (E, Φ̂)) > 0

and Proposition 12.2 holds true.

We are left to prove Lemma 12.6. Let us explain the general strategy of the proof. Consider a set
G ⊂ Ly ∩W

s1 (Ẽ, Φ̂) such that Leb1(G) = 0. We will cover G by a countable union of little horizontal
segments. We need two definitions to make this idea precise.

Definition 12.7 (Diameter). Let G ⊂ Sĥ. We define the diameter (in the direction tangential to the
Mixmaster attractor) of G by

∣G∣ def
= sup

x,x̃∈G
∥x − x̃∥// = sup

x,x̃∈G
∣xc − x̃c∣

Definition 12.8 (Horizontal segment centered above ω). Let ω ∈ Ẽ and D ⊂ S
s1

ĥ
. We say that D is

an horizontal segment if there exists y ∈ [0, ĥ]2
such that D is a compact and connected subset of Ly.

If this is the case, there exists a unique pair (x, x̃) ∈ Ly such that ∣D∣ = x̃c − xc. In other words,

D = {z = (zu, ĥ, zs2 , zc) ∈ S
s1

ĥ
∣ (zu, zs2) = y, xc ≤ zc ≤ x̃c}

We call x and x̃ the end points of D. Moreover, we say that D is centered above ω if y ∈ [0, ĥ⊥(ω)]
2

and if the middle of the segment [xc, x̃c] coincides with vc, where v denotes the intersection point
between Ly and γ̂ω,1. See figure 12.3.

Since G has zero 1-dimensional Lebesgue measure, one can find a countable family (Di)i∈N of
horizontal segments centered above points of Ẽ covering G and satisfying

+∞

∑
i=0

Leb1(Di) ≤ ε
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S
s1

ĥ

Ly•
v

•
x̃

•
x

ωvc x̃cxc

D

γ̂ω,1

Figure 12.3 – Segment D centered above ω with its end points.

where ε is an arbitrary fixed positive number. Assume that there exists a constant M (independant of
the choice of the segments Di) such that for all i ∈ N,

Leb1(π (Di)) ≤M Leb1(Di)

We get that π(G) is covered by the countable union of sets π (Di) whose total measure is arbitrary
small. As a consequence, π(G) has zero 1-dimensional Lebesgue measure. Hence, we are left to control
the projection of an horizontal segment D by the map π. Informally, we will prove the following
statement.

Informal statement. There exists a constant M > 0 with the following property. Take an horizontal
segment D centered above a point ω ∈ Ẽ. If D is sufficiently close to the Mixmaster attractor and has
a sufficiently small diameter, then

Leb1(π (D)) ≤M Leb1(D)

As stated earlier, the strategy used to prove the above statement is borrowed from Pesin’s work
on non-uniformly hyperbolic dynamical systems. First, remark that if D has a diameter δ// and is
positioned at distance δ⊥ from the Mixmaster attractor with δ⊥ ≤ δ//, then the above result is easy
to prove. Indeed, recall that the graphs γ̂ω,1 are all 1

2
-Lipschitz. Hence, the projection π (D) has a

diameter less than δ⊥ + δ// ≤ 2δ//. For the general case, one can try to “push by Φ̂” the horizontal
segment D so that Φ̂

n(D) is in the configuration of the previous situation. Indeed, recall that Φ̂
contracts the direction transverse to the Mixmaster attractor and expands the direction tangent to the
Mixmaster attractor. Hence, for n large enough, Φ̂

n(D) will have a “large” diameter and will be “close”
to the Mixmaster attractor. As a consequence, the result should hold true if we replace D by Φ̂

n(D).
To conclude, one needs to tackle two difficulties.

The first one is the ability to “come back to D”. In other words, we need to prove that if the result
holds true for Φ̂

n(D), then it holds true for D as well. This amounts to prove the following thing: Φ̂
n

expands D in the tangent direction to the Mixmaster attractor and f̂n expands π (D) with almost the
same factor, independantly of n. This is the distorsion estimate proved in Proposition 12.10.

The second one is the fact that n must be “well chosen”: large enough so that Φ̂
n(D) has a “large”

diameter and is “close” to the Mixmaster attractor but not too large because we need to ensure that
for all 0 ≤ j ≤ n, Φ̂

j(D) is contained in a small section Ss
f̂j(ω),hj(ω) where all the objects of interest are

well defined and well controlled.

12.1 Distorsion estimate

Recall that we introduced a constant C̃12 in Lemma 10.11, when we described the preimage of a
σ̂-Lipschitz graph by the double era return map Φ̂. Let us fix C̃13 ≥ C̃12 large enough so that for all
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a ≥ 1,

128
2
a

6
e
−C̃13a

≤
1

8
(12.5)

For ω ∈ ]1, 2[ \Q and j ≥ 0, define

mj(ω)
def
= s2(f̂ j(ω)) + max

1≤l≤2j
kl(ω),

hj(ω)
def
= (ĥ, e−C̃13s4(f̂j(ω)), e

−C̃13mj(ω))

and the interval
Ij(ω)

def
= [f̂ j(ω) − e−C̃13mj(ω), f̂

j(ω) + e−C̃13mj(ω)]

Remark 12.9. m0(ω) = s2(ω).
For ω ∈ ]1, 2[ \Q, D an horizontal segment and n a positive integer, define the property

(Hω,D,n) ∶ {
∀0 ≤ j ≤ n − 1, Φ̂

j(D) ⊂ Ss
f̂j(ω),hj(ω)

∀0 ≤ j ≤ n − 1, f̂
j (π (D)) ⊂ Ij(ω)

Property (Hω,D,n) implies that all the objects playing a role in the distorsion estimate are well defined
and well controled for n iterates. Next proposition gives a precise statement about the distorsion
estimate we need.

Proposition 12.10 (Distorsion estimate). There exists a constant ∆ ≥ 1 and a constant δ⊥,2 > 0

such that the following property holds true for ω ∈ Ẽ, y ∈ [0, δ⊥,2]2 and n ≥ 0. Let D ⊂ Ly be an
horizontal segment centered above ω. If (Hω,D,n) holds true, then

»»»»»Φ̂
n (D)»»»»»»»»»»f̂

n (π (D))»»»»»
≤ ∆

∣D∣
∣π (D)∣

Roughly speaking, the distorsion estimate means that D and π (D) are “similarly” expanded by Φ̂
n

and f̂n respectively, uniformly with respect to n.
The first step to prove this distorsion estimate is to show that under the hypotheses of Propo-

sition 12.10, the j-th iterate of the horizontal segment D by the double era return map is almost
horizontal.

Recall that C̃8 is the constant defined in Proposition 9.2 on the double era transition map. Remark
that

δ⊥,0 ≤ inf
ω∈Ẽ

e
−C̃8s4(ω)

For ω ∈ Ẽ and n ≥ 0, let

αn(ω)
def
=

e
−
√
n

4 × 162k2n+1(ω)2k2n+2(ω)2

For ω ∈ ]1, 2[ \Q, let
hω

def
= (ĥ, e−C̃8s4(ω), e

−C̃8s2(ω))

Proposition 12.11 (Decreasing angle with the Mixmaster attractor). There exists 0 < δ⊥,1 ≤ δ⊥,0

such that the following property holds for ω ∈ Ẽ, y ∈ [0, δ⊥,1]2, x, x̃ ∈ Ly and n ≥ 0. Suppose that both
Φ̂
j(x) and Φ̂

j(x̃) are well-defined and belong to the section Ss
f̂j(ω),hf̂j (ω)

for 0 ≤ j ≤ n − 1, then

ÂÂÂÂÂΦ̂
n(x) − Φ̂

n(x̃)ÂÂÂÂÂ⊥ ≤ αn(ω)
ÂÂÂÂÂΦ̂

n(x) − Φ̂
n(x̃)ÂÂÂÂÂ//

(12.6)

Remark 12.12. The ratio
ÂÂÂÂÂΦ̂

n(x)−Φ̂
n(x̃)ÂÂÂÂÂ⊥ÂÂÂÂÂΦ̂n(x)−Φ̂n(x̃)ÂÂÂÂÂ//

measures the angle between the segment [Φ̂n(x), Φ̂n(x̃)] and
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the horizontal direction (the direction tangent to the Mixmaster attractor). Proposition 12.11 states
that this angle decreases at a rate of a “stretched exponential”.

Proof of Proposition 12.11. The proof relies on the fact that the double era return map Φ̂ contracts
the direction transverse to the Mixmaster attractor and expands the direction tangent to the Mixmaster
attractor. We begin with the definition of the size δ⊥,1. For any ω = [1; k1, k2, . . . ] ∈ Ẽ and any j ≥ 0,
let

h̃⊥,j
def
= e

− C̃8
4
∑2j
i=1 k

5
i

Using the uniform estimates (12.1) for points of Ẽ, we get that there exists n1 ≥ n0 (depending only
on n0) such that for every ω = [1; k1, k2, . . . ] ∈ Ẽ and every j ≥ n1, we have

h̃

1
26k2j+1

⊥,j + h̃
1

26k2j+2

⊥,j ≤
1

4

and

h̃
k2j+1

100
+
k2j+2

100

⊥,j ≤
1

2
(4 × 16

2
k

2
2j+3k

2
2j+4)−1

e
−
√
j+1

=
1

2
αj+1(ω)

Since the coefficients k1(ω), . . . , k2n1
(ω) of any point ω ∈ Ẽ admit a uniform upper bound depending

only on n0 and n1 (see (12.1)), one can find a constant 0 < δ⊥,1 ≤ δ⊥,0 such that for every ω =

[1; k1, k2, . . . ] ∈ Ẽ and every j ≥ 0, we have

(δ⊥,1h̃⊥,j)
1

26k2j+1 + (δ⊥,1h̃⊥,j)
1

26k2j+2 ≤
1

4
(12.7a)

and

(δ⊥,1h̃⊥,j)
k2j+1

100
+
k2j+2

100
≤

1

2
αj+1(ω) (12.7b)

Let ω = [1; k1, k2, . . . ] ∈ Ẽ, y, x, x̃ as in the statement of Proposition 12.11. Assume that x ≠ x̃. Let
n ≥ 0 such that for every 0 ≤ j ≤ n − 1, we have

Φ̂
j(x) ∈ Ssf̂j(ω),hf̂j (ω)

and Φ̂
j(x̃) ∈ Ssf̂j(ω),hf̂j (ω)

For 0 ≤ j ≤ n, let

h⊥,j = max (ÂÂÂÂÂΦ̂
j(x) − (Φ̂A)j(x)ÂÂÂÂÂ⊥ ,

ÂÂÂÂÂΦ̂
j(x̃) − (Φ̂A)j(x̃)ÂÂÂÂÂ⊥)

h//,j = e
−C̃8s2(f̂j(ω))

αj =

ÂÂÂÂÂΦ̂
j(x) − Φ̂

j(x̃)ÂÂÂÂÂ⊥ÂÂÂÂÂΦ̂j(x) − Φ̂j(x̃)ÂÂÂÂÂ//

According to (9.5) and the fact that both Φ̂
j(x) and Φ̂

j(x̃) belong to the section S
s

f̂j(ω),hf̂j (ω)
for

0 ≤ j ≤ n − 1, we get by induction on j that for every 0 ≤ j ≤ n,

h⊥,j ≤ δ⊥,1e
− C̃8

4
∑2j
i=1 k

5
i (12.8)

Claim 1. For all 0 ≤ j ≤ n, αj ≤ αj(ω).

Proof of claim 1. By hypothesis, x and x̃ belong to a same horizontal line, hence ∥x − x̃∥⊥ = 0. In
other words, α0 = 0 so α0 ≤ α0(ω) holds true. Fix 0 ≤ j ≤ n − 1 and assume that αj ≤ αj(ω) holds
true. We apply (9.8) to the map Φ̂ restricted to the section Ss

f̂j(ω),(ĥ,h⊥,j ,h//,j)
:

ÂÂÂÂÂ(Φ̂ (Φ̂
j(x)) − Φ̂ (Φ̂

j(x̃))) − (Φ̂
A (Φ̂

j(x)) − Φ̂
A (Φ̂

j(x̃)))ÂÂÂÂÂ//
≤

(h
1

26k2j+1

⊥,j + h
1

26k2j+2

⊥,j + 16
2
k

2
2j+1k

2
2j+2αj)

ÂÂÂÂÂΦ̂
j(x) − Φ̂

j(x̃)ÂÂÂÂÂ∞ (12.9)
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Plugging (12.8) into (12.7a), we get

h

1
26k2j+1

⊥,j + h
1

26k2j+2

⊥,j ≤
1

4
(12.10)

Using the hypothesis αj ≤ αj(ω), we get

16
2
k

2
2j+1k

2
2j+2αj ≤

1

4
(12.11)

Plugging (12.10) and (12.11) into (12.9), we get

ÂÂÂÂÂ(Φ̂ (Φ̂
j(x)) − Φ̂ (Φ̂

j(x̃))) − (Φ̂
A (Φ̂

j(x)) − Φ̂
A (Φ̂

j(x̃)))ÂÂÂÂÂ//
≤

1

2
ÂÂÂÂÂΦ̂

j(x) − Φ̂
j(x̃)ÂÂÂÂÂ∞ (12.12)

Moreover, the Kasner map being expansive (see Proposition 8.2), we have

ÂÂÂÂÂΦ̂
A (Φ̂

j(x)) − Φ̂
A (Φ̂

j(x̃))ÂÂÂÂÂ//
≥

ÂÂÂÂÂΦ̂
j(x) − Φ̂

j(x̃)ÂÂÂÂÂ//
=

ÂÂÂÂÂΦ̂
j(x) − Φ̂

j(x̃)ÂÂÂÂÂ∞ (12.13)

It follows from (12.12) and (12.13) that

ÂÂÂÂÂΦ̂
j+1(x) − Φ̂

j+1(x̃)ÂÂÂÂÂ//
≥

1

2
ÂÂÂÂÂΦ̂

j(x) − Φ̂
j(x̃)ÂÂÂÂÂ∞ (12.14)

Now we apply (9.7) to the map Φ̂ restricted to the section Ss
f̂j(ω),(ĥ,h⊥,j ,h//,j)

:

ÂÂÂÂÂΦ̂ (Φ̂
j(x)) − Φ̂ (Φ̂

j(x̃))ÂÂÂÂÂ⊥ ≤ h
k2j+1

100
+
k2j+2

100

⊥,j
ÂÂÂÂÂΦ̂

j(x) − Φ̂
j(x̃)ÂÂÂÂÂ∞ (12.15)

Plugging (12.8) into (12.7b), we get

(h⊥,j)
k2j+1

100
+
k2j+2

100 ≤
1

2
αj+1(ω) (12.16)

Plugging (12.16) into (12.15), we get

ÂÂÂÂÂΦ̂
j+1(x) − Φ̂

j+1(x̃)ÂÂÂÂÂ⊥ ≤
1

2
αj+1(ω)

ÂÂÂÂÂΦ̂
j(x) − Φ̂

j(x̃)ÂÂÂÂÂ∞ (12.17)

According to (12.14) and (12.17), we have

αj+1 ≤ αj+1(ω)

This concludes the proof of claim 1.

In particular, αn ≤ αn(ω) holds true, which is the desired result. This concludes the proof of
Proposition 12.11.

Proof of Proposition 12.10. We begin with the definition of the size δ⊥,2. For ω = [1; k1, k2, . . . ] ∈ Ẽ
and j ≥ 0, recall that

h̃⊥,j = e
− C̃8

4
∑2j
i=1 k

5
i

Using the uniform estimates (12.1) for points of Ẽ, we get that there exists n1 ≥ n0 (depending only
on n0) such that for every ω = [1; k1, k2, . . . ] ∈ Ẽ and every j ≥ n1, we have the following estimates

h̃

1
26k2j+1

⊥,j + h̃
1

26k2j+2

⊥,j ≤
1

4
e
−
√
j

h̃⊥,j128
2
k

3
2j+1k

3
2j+2 ≤

1

4
e
−
√
j

Since the coefficients k1(ω), . . . , k2n1
(ω) of any point ω ∈ Ẽ admit a uniform upper bound depending

only on n0 and n1 (see (12.1)), one can find a constant 0 < δ⊥,2 ≤ δ⊥,1 such that for every ω =
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S
s1
ω,h

D

π (D)

•
x

•
x̃

•
x
′

•
x̃
′

•
v

•
ω

γ̂ω,1

Φ̂
j

S
s

f̂j(ω),hj(ω)

f̂
j(π (D))

Φ̂
j(D)

•
x
′
j

•
x̃
′
j

•
xj

•
x̃j

•
f̂
j(ω)

•
vj

γ̂f̂j(ω),̂i

z
′
j

zj

Figure 12.4 – Iteration of the two horizontal segments. To avoid clutter, we denote î = î(f̂ j−1(ω)).

[1; k1, k2, . . . ] ∈ Ẽ and every j ≥ 0, we have

(δ⊥,2h̃⊥,j)
1

26k2j+1 + (δ⊥,2h̃⊥,j)
1

26k2j+2 ≤
1

4
e
−
√
j (12.18a)

δ⊥,2h̃⊥,j128
2
k

3
2j+1k

3
2j+2 ≤

1

4
e
−
√
j (12.18b)

Fix ω ∈ Ẽ and y ∈ [0, δ⊥,1]2. Fix D ⊂ Ly an horizontal segment centered above ω. Fix n ≥ 0 such
that (Hω,D,n) holds true. Denote by x and x̃ the end points of D. Analogously, let x′ = inf π (D)
and x̃′ = supπ (D). The forward invariance of the tangential cone field and the expansion estimate
(10.4) imply that, for all 0 ≤ j ≤ n, Φ̂

j (D) is an arc “almost horizontal” in the section Ss
f̂j(ω),hj(ω). In

particular, its diameter satisfies the relation

»»»»»Φ̂
j (D)»»»»» = ∥xj − x̃j∥//

where xj ∶= Φ̂
j(x) and x̃j ∶= Φ̂

j(x̃). Using the expansion of the double era Kasner map (see
Proposition 8.2), one has an analogous result for π (D), letting x′j ∶= f̂

j(x′) and x̃′j ∶= f̂
j(x̃′). See

figure 12.4.

Using the points xj , x̃j , x
′
j and x̃

′
j , one can write

»»»»»Φ̂
n (D)»»»»»»»»»»f̂

n (π (D))»»»»»

∣π (D)∣
∣D∣ =

ÂÂÂÂÂΦ̂
n(x) − Φ̂

n(x̃)ÂÂÂÂÂ//

∥x − x̃∥//

»»»»»x
′ − x̃′

»»»»»»»»»»f̂
n(x′) − f̂n(x̃′)»»»»»

=

n−1

∏
j=0

ÂÂÂÂÂΦ̂(xj) − Φ̂(x̃j)
ÂÂÂÂÂ//

∥xj − x̃j∥//

n−1

∏
j=0

»»»»»x
′
j − x̃

′
j
»»»»»»»»»»f̂(x

′
j) − f̂(x̃′j)

»»»»»

=

n−1

∏
j=0

ÂÂÂÂÂΦ̂(xj) − Φ̂(x̃j)
ÂÂÂÂÂ//

ÂÂÂÂÂΦ̂A(xj) − Φ̂A(x̃j)
ÂÂÂÂÂ//

n−1

∏
j=0

ÂÂÂÂÂΦ̂
A(xj) − Φ̂

A(x̃j)
ÂÂÂÂÂ//

∥xj − x̃j∥//

»»»»»x
′
j − x̃

′
j
»»»»»»»»»»f̂(x

′
j) − f̂(x̃′j)

»»»»»
= R1R2 (12.19)

where

R1
def
=

n−1

∏
j=0

ÂÂÂÂÂΦ̂(xj) − Φ̂(x̃j)
ÂÂÂÂÂ//

ÂÂÂÂÂΦ̂A(xj) − Φ̂A(x̃j)
ÂÂÂÂÂ//

and R2
def
=

n−1

∏
j=0

ÂÂÂÂÂΦ̂
A(xj) − Φ̂

A(x̃j)
ÂÂÂÂÂ//

∥xj − x̃j∥//

»»»»»x
′
j − x̃

′
j
»»»»»»»»»»f̂(x

′
j) − f̂(x̃′j)

»»»»»
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For 0 ≤ j ≤ n, let

h⊥,j = max
z∈{x,x̃}

ÂÂÂÂÂΦ̂
j(z) − (Φ̂A)j(z)ÂÂÂÂÂ⊥

h//,j = e
−C̃13mj(ω)

According to (9.5), we get by induction on j that for every 0 ≤ j ≤ n,

h⊥,j ≤ δ⊥,2e
− C̃8

4
∑2j
i=1 k

5
i (12.20)

Let

C1
def
=

1

2

+∞

∑
j=0

e
−
√
j

Claim 1. R1 ≤ e
C1 .

Proof of claim 1. Let 0 ≤ j ≤ n − 1. We apply (9.8) to the map Φ̂ restricted to the section
S
s

f̂j(ω),(ĥ,h⊥,j ,h//,j)
:

ÂÂÂÂÂ(Φ̂(xj) − Φ̂(x̃j)) − (Φ̂
A(xj) − Φ̂

A(x̃j))
ÂÂÂÂÂ//

≤

(h
1

26k2j+1

⊥,j + h
1

26k2j+2

⊥,j )∥xj − x̃j∥∞ + 16
2
k

2
2j+1k

2
2j+2 ∥xj − x̃j∥⊥ (12.21)

Plugging (12.20) into (12.18a), we get

h

1
26k2j+1

⊥,j + h
1

26k2j+2

⊥,j ≤
1

4
e
−
√
j (12.22)

According to (12.6),

16
2
k

2
2j+1k

2
2j+2 ∥xj − x̃j∥⊥ ≤ 16

2
k

2
2j+1k

2
2j+2αj(ω) ∥xj − x̃j∥//

≤
1

4
e
−
√
j ∥xj − x̃j∥∞ (12.23)

where we used ∥xj − x̃j∥//
= ∥xj − x̃j∥∞. Plugging (12.22) and (12.23) into (12.21), we get

ÂÂÂÂÂ(Φ̂(xj) − Φ̂(x̃j)) − (Φ̂
A(xj) − Φ̂

A(x̃j))
ÂÂÂÂÂ//

≤
1

2
e
−
√
j ∥xj − x̃j∥∞ (12.24)

Recall that the map Φ̂
A is essentially the double era Kasner map (see (5.7)). Moreover, the Kasner

map is expansive (see Proposition 8.2), hence

ÂÂÂÂÂΦ̂
A(xj) − Φ̂

A(x̃j)
ÂÂÂÂÂ//

≥ ∥xj − x̃j∥//
= ∥xj − x̃j∥∞ (12.25)

It follows from (12.24) and (12.25) that

»»»»»»»»»»»»

ÂÂÂÂÂΦ̂(xj) − Φ̂(x̃j)
ÂÂÂÂÂ//

ÂÂÂÂÂΦ̂A(xj) − Φ̂A(x̃j)
ÂÂÂÂÂ//

− 1

»»»»»»»»»»»»
≤

1

2
e
−
√
j

As a consequence of the above estimate, we get

lnR1 =

n−1

∑
j=0

ln

ÂÂÂÂÂΦ̂(xj) − Φ̂(x̃j)
ÂÂÂÂÂ//

ÂÂÂÂÂΦ̂A(xj) − Φ̂A(x̃j)
ÂÂÂÂÂ//

≤

n−1

∑
j=0

1

2
e
−
√
j
≤ C1

This concludes the proof of claim 1.
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Recall that Kc > 1 is the expansivity constant in the tangential cone field (see (10.4)). Let

C2
def
=

1

4
(
+∞

∑
j=0

K
−j
c +

+∞

∑
j=0

e
−
√
j)

Claim 2. R2 ≤ e
C2 .

Proof of claim 2. Recall that the last coordinate of the double era return map restricted to the
Mixmaster attractor is exactly the double era Kasner map, hence

R2 =

n−1

∏
j=0

»»»»»f̂ ((xj)c) − f̂ ((x̃j)c)
»»»»»

∣(xj)c − (x̃j)c∣

»»»»»x
′
j − x̃

′
j
»»»»»»»»»»f̂(x

′
j) − f̂(x̃′j)

»»»»»

Applying the mean value theorem to the function f̂ , we get that

R2 =

n−1

∏
j=0

»»»»»f̂
′(zj)

»»»»»»»»»»f̂
′(z′j)

»»»»»

where zj ∈ [(xj)c, (x̃j)c] and z
′
j ∈ [x′j , x̃′j] (see figure 12.4). Let 0 ≤ j ≤ n − 1. According to

Proposition 8.3, »»»»»f̂
′(zj) − f̂ ′(z′j)

»»»»» ≤ 128
2
k

3
2j+1k

3
2j+2

»»»»»zj − z
′
j
»»»»»

Let us denote by v the intersection point of D with γ̂ω,1. Let vj = Φ̂
j(v). Remark that (vj)c ∈

[(xj)c, (x̃j)c] and f̂ j(ω) ∈ [x′j , x̃′j]. According to the above estimate,

»»»»»f̂
′(zj) − f̂ ′(z′j)

»»»»» ≤ 128
2
k

3
2j+1k

3
2j+2 (∣zj − (vj)c∣ +

»»»»»(vj)c − f̂
j(ω)»»»»» +

»»»»»f̂
j(ω) − z′j

»»»»»)
≤ 128

2
k

3
2j+1k

3
2j+2 (∥xj − x̃j∥//

+
»»»»»(vj)c − f̂

j(ω)»»»»» +
»»»»»x
′
j − x̃

′
j
»»»»») (12.26)

According to the forward invariance of the tangential cone field and the expansion estimate (10.4),

∥xj − x̃j∥//
≤ K

j+1−n
c ∥xn−1 − x̃n−1∥// ≤ K

j+1−n
c e

−C̃13mn−1(ω) (12.27)

One has an analogous estimate for »»»»»x
′
j − x̃

′
j
»»»»». Putting together (12.27) and (12.5) (with a =

max1≤l≤2n kl), we get

128
2
k

3
2j+1k

3
2j+2 (∥xj − x̃j∥//

+
»»»»»x
′
j − x̃

′
j
»»»»») ≤

1

4
K
j+1−n
c (12.28)

Since v belongs to the graph γ̂ω,1, (10.25) implies that

»»»»»(vj)c − f̂
j(ω)»»»»» ≤ δ⊥,2e

−C̃8∑2j
i=1 k

5
i

Using (12.18b), it follows from the above estimate that

128
2
k

3
2j+1k

3
2j+2

»»»»»(vj)c − f̂
j(ω)»»»»» ≤

1

4
e
−
√
j (12.29)

Plugging (12.28) and (12.29) into (12.26), we get

»»»»»f̂
′(zj) − f̂ ′(z′j)

»»»»» ≤
1

4
K
j+1−n
c +

1

4
e
−
√
j
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Since f̂ is expansive (see Proposition 8.2), it follows that»»»»»f̂
′(z′j)

»»»»» ≥ 1 and

»»»»»»»»»»»

»»»»»f̂
′(zj)

»»»»»»»»»»f̂
′(z′j)

»»»»»
− 1

»»»»»»»»»»»
≤

1

4
K
j+1−n
c +

1

4
e
−
√
j

As in the proof of claim 1, we get as a consequence of the above estimate that

lnR2 ≤
1

4
(
n−1

∑
j=0

K
j+1−n
c +

n−1

∑
j=0

e
−
√
j) ≤ 1

4
(
n−1

∑
j=0

K
−j
c +

n−1

∑
j=0

e
−
√
j) ≤ C2

This concludes the proof of claim 2.

Using claim 1 and claim 2 together with (12.19), we get that

»»»»»Φ̂
n (D)»»»»»»»»»»f̂

n (π (D))»»»»»

∣π (D)∣
∣D∣ ≤ e

C1+C2

Hence, Proposition 12.10 holds true with ∆ ∶= eC1+C2 .

12.2 Absolute continuity of the projection map π

Define

δ//
def
= inf

ω∈Ẽ

e
−C̃13s2(ω)

2
> 0

For G a subset of Ss1
ĥ
, define the “maximal gap” between G and the Mixmaster attractor by

dist⊥ (G,A) def
= sup

x∈G
dist∞ (x,A) = sup

x∈G
max (xu, xs2)

and analogously if G is a subset of Ss2
ĥ
.

Next lemma gives a sufficient condition so that we can control all the iterates Φ̂
j (D), 0 ≤ j ≤ n− 1,

for a time n sufficiently large so that the distance between the Mixmaster attractor and Φ̂
n (D) is

smaller than its diameter in the direction tangential to the Mixmaster attractor.

Lemma 12.13. There exists a constant 0 < δ⊥,3 ≤ δ⊥,2 such that the following property holds for
ω ∈ Ẽ and y ∈ [0, δ⊥,3]2. Let D ⊂ Ly be an horizontal segment centered above ω. If

∣D∣ ≤ δ//

then there exists an integer n (D) ≥ 0 such that the property (Hω,D,n(D)) holds true and such that

dist⊥ (Φ̂
n(D) (D) , A) ≤ »»»»»Φ̂

n(D) (D)»»»»» (12.30)

Proof. We begin with the definition of the size δ⊥,3. For ω = [1; k1, k2, . . . ] ∈ Ẽ and j ≥ 0, recall that

h̃⊥,j = e
− C̃8

4
∑2j
i=1 k

5
i

Using the uniform estimates (12.1) for points of Ẽ, we get that there exists n1 ≥ n0 (depending only
on n0) such that for every ω = [1; k1, k2, . . . ] ∈ Ẽ and every j ≥ n1, we have the following estimates

h̃⊥,j ≤ e
−C̃13s4(f̂j(ω))

h̃⊥,j ≤
e
−C̃13mj(ω)

2
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Since the coefficients k1(ω), . . . , k2n1
(ω) of any point ω ∈ Ẽ admit a uniform upper bound depending

only on n0 and n1 (see (12.1)), one can find a constant 0 < δ⊥,3 ≤ min (δ//, δ⊥,2) such that for every
ω = [1; k1, k2, . . . ] ∈ Ẽ and every j ≥ 0, we have

δ⊥,3h̃⊥,j ≤ e
−C̃13s4(f̂j(ω)) (12.31a)

δ⊥,3h̃⊥,j ≤
e
−C̃13mj(ω)

2
(12.31b)

Fix ω = [1; k1, k2, . . . ] ∈ Ẽ, y ∈ [0, δ⊥,3]2 and D ⊂ Ly an horizontal segment centered above ω.
Assume that

∣D∣ ≤ δ//
Recall that

Ij(ω) = [f̂ j(ω) − e−C̃13mj(ω), f̂
j(ω) + e−C̃13mj(ω)]

hj(ω) = (ĥ, e−C̃13s4(f̂j(ω)), e
−C̃13mj(ω))

Define

n (D) def
= max{n ∈ N ∣∀0 ≤ j ≤ n − 1,

»»»»»Φ̂
j (D)»»»»» ≤

e
−C̃13mj(ω)

2
}

N (D) def
= max {n ∈ N ∣∀0 ≤ j ≤ n − 1, Φ̂

j (D) ⊂ Ssf̂j(ω),hj(ω)}

N (π (D)) def
= max {n ∈ N ∣∀0 ≤ j ≤ n − 1, f̂

j (π (D)) ⊂ Ij(ω)}

Saying that (Hω,D,n(D)) holds true amounts to saying that N(D) ≥ n(D) and N(π (D)) ≥ n(D).
According to (9.5), we get by induction on j that for every 0 ≤ j ≤ N (D),

dist⊥ (Φ̂
j (D) , A) ≤ δ⊥,3e−

C̃8
4
∑2j
i=1 k

5
i
= δ⊥,3h̃⊥,j (12.32)

Claim 1. N(D) ≥ n(D).

Proof of claim 1. We need to prove that for all 0 ≤ j ≤ n(D) − 1,

Φ̂
j (D) ⊂ Ssf̂j(ω),hj(ω)

For 0 ≤ j ≤ n(D) − 1, define the property

(Pj) ∶ Φ̂
j (D) ⊂ Ssf̂j(ω),hj(ω)

Recall that D is centered above ω. Hence, for all x ∈ D,

∣xc − ω∣ ≤ ∣xc − vc∣ + ∣vc − ω∣ ≤ δ// + δ⊥,3 ≤ 2δ//

where v denotes the intersection point of D with γ̂ω,1. Using (12.31a) and the definition of δ//, we get
that D ⊂ S

s
ω,h0(ω). Hence, (P0) holds true. Fix 0 ≤ l ≤ n(D) − 2 and assume that for all 0 ≤ j ≤ l,

(Pj) holds true. It follows that l + 1 ≤ N(D). Let x ∈ D. Plugging (12.32) into (12.31a), we get

ÂÂÂÂÂΦ̂
l+1(x) − (Φ̂A)l+1(x)ÂÂÂÂÂ⊥ ≤ e

−C̃13s4(f̂ l+1(ω))

By standard triangle inequality, we get

ÂÂÂÂÂÂΦ̂
l+1 (x) − Φ̂

l+1 (P s1
ω,ĥ

)ÂÂÂÂÂÂ//
≤

ÂÂÂÂÂΦ̂
l+1 (x) − Φ̂

l+1(v)ÂÂÂÂÂ//
+

ÂÂÂÂÂÂΦ̂
l+1(v) − Φ̂

l+1 (P s1
ω,ĥ

)ÂÂÂÂÂÂ//
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Sĥ

••

••
J
•

δ⊥,3h̃⊥,N(π(D))

Φ̂
N(π(D))(D)

γ̂f̂N(π(D))(ω),̂i

Figure 12.5 – π (Φ̂
N(π(D)) (D)) ⊂ J with ∣J∣ ≤ »»»»»Φ̂

N(π(D)) (D)»»»»» + δ⊥,3h̃⊥,N(π(D)). To avoid clutter, we

denote î = î(f̂N(π(D))−1(ω)).

According to (10.25),

ÂÂÂÂÂÂΦ̂
l+1(v) − Φ̂

l+1 (P s1
ω,ĥ

)ÂÂÂÂÂÂ//
≤

ÂÂÂÂÂÂv − P
s1

ω,ĥ

ÂÂÂÂÂÂ⊥ e
−C̃8∑2(l+1)

i=1 k
5
i

≤ δ⊥,3e
−C̃8∑2(l+1)

i=1 k
5
i

≤
e
−C̃13ml+1(ω)

2
using (12.31b)

Moreover,

ÂÂÂÂÂΦ̂
l+1 (x) − Φ̂

l+1(v)ÂÂÂÂÂ//
≤

»»»»»Φ̂
l+1 (D)»»»»»

≤
e
−C̃13ml+1(ω)

2
using l + 1 ≤ n(D) − 1

It follows that

ÂÂÂÂÂÂΦ̂
l+1 (x) − Φ̂

l+1 (P s1
ω,ĥ

)ÂÂÂÂÂÂ//
≤
e
−C̃13ml+1(ω)

2
+
e
−C̃13ml+1(ω)

2
≤ e

−C̃13ml+1(ω)

Hence, Φ̂
l+1 (x) ∈ S

s

f̂ l+1(ω),hl+1(ω) and (Pl+1) holds true. By induction, we get that for all 0 ≤ j ≤

n(D) − 1, (Pj) holds true. This concludes the proof of claim 1.

Claim 2. N(π (D)) ≥ n(D).

Proof of claim 2. Assume that N(π (D)) < n(D). Recall that the local stable manifolds “foliation”
F
s1 of the double era return map Φ̂ is made of σ̂-Lipschitz graphs with σ̂ ≤ 1

2
(see (9.3)). Using (12.32)

with j = N(π (D)) ≤ N (D) (see claim 1), we get that

»»»»»π (Φ̂
N(π(D)) (D))»»»»» ≤

»»»»»Φ̂
N(π(D)) (D)»»»»» + δ⊥,3h̃⊥,N(π(D))

See figure 12.5. Since N(π (D)) < n(D),

»»»»»Φ̂
N(π(D)) (D)»»»»» ≤

e
−C̃13mN(π(D))(ω)

2

According to (12.31b),

δ⊥,3h̃⊥,N(π(D)) ≤
e
−C̃13mN(π(D))(ω)

2
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It follows that »»»»»π (Φ̂
N(π(D)) (D))»»»»» ≤ e

−C̃13mN(π(D))(ω)

Recall that the local stable manifolds “foliation” F s1 is leaf-invariant by Φ̂. Hence, π semi-conjugate Φ̂
and f̂ :

π ◦ Φ̂ = f̂ ◦ π

As a consequence,
»»»»»f̂
N(π(D)) (π (D))»»»»» ≤ e

−C̃13mN(π(D))(ω)

Moreover, f̂N(π(D)) (ω) ∈ f̂N(π(D)) (π (D)), hence

f̂
N(π(D)) (π (D)) ⊂ IN(π(D))(ω)

This contradicts the maximality of N(π (D)) and this concludes the proof of claim 2.

It follows from claim 1 and claim 2 that (Hω,D,n(D)) holds true. Using (12.32) with j = n (D) ≤
N (D) (see claim 1), we get that

dist⊥ (Φ̂
n(D) (D) , A) ≤ δ⊥,3h̃⊥,n(D)

By definition of n(D), we have

»»»»»Φ̂
n(D) (D)»»»»» >

e
−C̃13mn(D)(ω)

2
(12.33)

According to (12.31b) and (12.33), we have

δ⊥,3h̃⊥,n(D) ≤
»»»»»Φ̂

n(D) (D)»»»»»
Hence,

dist⊥ (Φ̂
n(D) (D) , A) ≤ »»»»»Φ̂

n(D) (D)»»»»»
This concludes the proof of Lemma 12.13.

Proposition 12.14 (Absolute continuity of the projection map). Let ω ∈ Ẽ, y ∈ [0, δ⊥,3]2 and
D ⊂ Ly be an horizontal segment centered above ω. If

∣D∣ ≤ δ//

then
Leb1 (π (D)) ≤ 2∆ Leb1 (D) (12.34)

Proof. According to Lemma 12.13, we can apply Proposition 12.10 to get

»»»»»Φ̂
n(D) (D)»»»»»»»»»»f̂

n(D) (π (D))»»»»»
≤ ∆

∣D∣
∣π (D)∣

Hence,

∣π (D)∣ ≤ ∆

»»»»»f̂
n(D) (π (D))»»»»»»»»»»Φ̂
n(D) (D)»»»»»

∣D∣ (12.35)

Claim 1. »»»»»f̂
n(D) (π (D))»»»»» ≤ 2

»»»»»Φ̂
n(D) (D)»»»»».

Proof of claim 1. Recall that the local stable manifolds “foliation” F s1 of the double era return map
Φ̂ is made of σ̂-Lipschitz graphs with σ̂ ≤ 1

2
(see (9.3)). Hence, estimate (12.30) implies that

»»»»»π (Φ̂
n(D) (D))»»»»» ≤

»»»»»Φ̂
n(D) (D)»»»»» + dist⊥ (Φ̂

n(D) (D) , A)
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Now recall that the integer n(D) was chosen so that dist⊥ (Φ̂
n(D) (D) , A) ≤

»»»»»Φ̂
n(D) (D)»»»»» (see

Lemma 12.13) so we get
»»»»»π (Φ̂

n(D) (D))»»»»» ≤ 2
»»»»»Φ̂

n(D) (D)»»»»»
The conjugacy relation π ◦ Φ̂ = f̂ ◦ π implies that π (Φ̂

n(D) (D)) = f̂n(D) (π (D)). This concludes the
proof of claim 1.

Claim 1 together with (12.35) gives

∣π (D)∣ ≤ 2∆ ∣D∣

Remark that Leb1 (π (D)) ≤ ∣π (D)∣ and Leb1 (D) = ∣D∣. Hence

Leb1 (π (D)) ≤ 2∆ Leb1 (D)

which is the desired estimate. This concludes the proof of Proposition 12.14.

Proof of Lemma 12.6. Let y ∈ [0, δ⊥,3]2 and G ⊂ Ly ∩W
s1 (Ẽ, Φ̂). Assume that Leb1 (G) = 0. To

show that Leb1 (π(G)) = 0, cover G by a countable union of small horizontal segments and use the
estimate (12.34).



AppendixA
Statement of the main theorem in the entire
phase space

In this appendix, we explain how to extend Theorem B to type VIII orbits. To this end, we show how
some objects defined in the introduction (especially type II orbits, the Kasner map and heteroclinic
chains) can be generalized to the entire phase space. A technical complication arises since most abstract
heteroclinic chains cannot be shadowed by any type VIII or IX orbit for elementary reasons. This will
lead us to introduce a notion of coherent heteroclinic chain.

Type II orbits. Recall that in B
+, for every point p of the Kasner circle that is not a Taub point,

there is exactly one type II orbit starting at p. When looking at the full phase space B, we have the
following result. For every point p of the Kasner circle that is not a Taub point, there are exactly two
type II orbits starting at p. These two orbits are exchanged by the symmetry

(N1, N2, N3,Σ1,Σ2,Σ3)↦ (−N1,−N2,−N3,Σ1,Σ2,Σ3)

fixing the points of the plane (N1 = N2 = N3 = 0) containing the Kasner circle. As an immediate
consequence, these two type II orbits converge to the same point of K in the future.

Kasner map Let p be a point of the Kasner circle which is not a Taub point. When we restrict
ourselves to B

+, there is exactly one type II orbit starting at p and this orbit converges to a point
denoted by F (p) (the image of p by the Kasner map). This is indeed how we defined the Kasner
map (see section 3.5). As stated above, in B, there are two (symmetrical) type II orbits starting at p.
Since they are symmetrical, they both converge to the same point of the Kasner circle, that is, the
point F (p). We will denote these two type II orbits by O

+
p→F(p) and O

−
p→F(p), O

+
p→F(p) being the one

entirely contained in B
+.

Coherent heteroclinic chains

Definition A.1 (Heteroclinic chains). Let p be a point of the Kasner circle (such that, for every k ≥ 0,
F
k(p) is not a Taub point). A heteroclinic chain (starting at p) is a concatenation of one type II orbit

starting at p and arriving at F (p), then one type II orbit starting at F (p) and arriving at F
2(p),

etc. Formally, this is a sequence of the form

(Oε0
p→F(p),O

ε1
F(p)→F2(p),O

ε2
F2(p)→F3(p), . . . ) (A.1)

where εn ∈ {±} corresponds to a choice of one of the two symmetrical type II orbits starting at F
n(p).

As we will see, some heteroclinic chains cannot be shadowed by type VIII or type IX orbits. First,
let us recall the definition of shadowing, generalized to the full phase space in a straightforward manner.

165



166 APPENDIX A. Statement of the main theorem in the entire phase space

Definition A.2 (Shadowing). Let t ↦ O(t) be a type VIII or IX orbit in B, p be a point of the
Kasner circle (such that, for every k ≥ 0, F

k(p) is not a Taub point) and H be a heteroclinic
chain (A.1) starting at p. We say that O shadows H (or H attracts O) if there exists a strictly
increasing sequence (tn)n∈N ⊂ R+ such that

1. d(O(tn),Fn(p)) −−−−−→
n→+∞

0.

2. The Hausdorff distance between the orbit interval {O(t) ∣ tn < t < tn+1} and the type II orbit
O
εn
Fn(p)→Fn+1(p) tends to 0 when n→ +∞.

Recall that any type II orbit is contained in a subset of the phase space of the form

{Ni > 0, Nj = 0, Nk = 0} or {Ni < 0, Nj = 0, Nk = 0}

where {i, j, k} = {1, 2, 3}. Consider for example a heteroclinic chain made of an infinite number of
type II orbits traveling in {N1 > 0, N2 = 0, N3 = 0} and an infinite number of type II orbits traveling
in {N1 < 0, N2 = 0, N3 = 0}. Let t↦ O(t) = (N1(t), N2(t), N3(t),Σ1(t),Σ2(t),Σ3(t)) be a type VIII
or IX orbit. Recall that the signs of the variables Ni are constant. Hence, it is obvious that O cannot
shadow this heteroclinic chain, as it would violate the fact that the sign of N1 is constant along O.
This means that any heteroclinic chain “alternating” between two signs as in the example above has
zero chance to attract some type VIII or IX orbits.

This leads us to the definition of coherent heteroclinic chains . Recall that the Mixmaster attractor
is the union of three ellipsoids and each of these ellipsoids is the union of two symmetrical hemiellipsoids
(they correspond to opposite signs for one of the three variables Ni). In other words,

A = B
1,+
II ∪B

1,−
II ∪B

2,+
II ∪B

2,−
II ∪B

3,+
II ∪B

3,−
II

where

B
1,+
II

def
= {(N1, N2, N3,Σ1,Σ2,Σ3) ∈ B ∣N1 > 0, N2 = N3 = 0}

B
1,−
II

def
= {(N1, N2, N3,Σ1,Σ2,Σ3) ∈ B ∣N1 < 0, N2 = N3 = 0}

and analogously for the other hemiellipsoids.

Definition A.3 (Coherent heteroclinic chain). A heteroclinic chain of type II orbits is coherent if it
is included in the union of three hemiellipsoids (in three different directions) bounded by the Kasner
K , that is, if it is included in a set of the form

B
1,ε1
II ∪B

2,ε2
II ∪B

3,ε3
II ∪K

For every point p of the Kasner circle (such that, for every k ≥ 0, F
k(p) is not a Taub point),

there are exactly eight coherent heteroclinic chains starting at p corresponding to the eight different
choices of three hemiellipsoids (or, analogously, corresponding to the eight different choices of three
signs for the variables Ni). One should remark that a type VIII orbit cannot shadow the same coherent
heteroclinic chain than a type IX orbit. Among the eight coherent heteroclinic chains starting at p, six
can be shadowed by type VIII orbits and two by type IX orbits.

Having this definition in mind, it is clear that Theorem B must be generalized by replacing the
unique heteroclinic chain in B

+ starting at p by one of the eight coherent heteroclinic chains in B
starting at p. Recall that K(MG) denotes the set of all the points p ∈ K such that ω(p) verifies the
moderate growth condition (MG).

Theorem C. Let p be a point of the Kasner circle and let H be a coherent heteroclinic chain starting
at p. If ω(p) verifies the moderate growth condition (MG), then the union of all the type VIII or IX
orbits shadowing the heteroclinic chain H contains a 3-dimensional ball D(p,H ) Lipschitz embedded
in the phase space B

+. Moreover, for any E ⊂ K(MG) of positive 1-dimensional Lebesgue measure,
the union of all the balls D(p,H ) for p ∈ E and H a coherent heteroclinic chain starting at p has
positive 4-dimensional Lebesgue measure.



AppendixB
Continued fractions

In this appendix, we gather the results about continued fractions that are used in the memoir. The
main result is Lemma 1.5. We also prove a result on the expansivity of the Gauss transformation.

We first need to introduce some notations. Set Ω = [0, 1] \ Q. For every x ∈ Ω, there exists a
unique sequence (kn(x))n≥1 of integers larger than 1 such that x = limn→+∞[k1(x), . . . , kn(x)] where

[k1(x), . . . , kn(x)] =
1

k1(x) +
1

k2(x) +
1

⋅ ⋅ ⋅ +
1

kn(x)

We use the notation
[k1(x), k2(x), . . . ]

def
= lim

n→+∞
[k1(x), . . . , kn(x)]

Lemma 1.5 is a straightforward consequence of the following lemma.

Lemma B.1. For Lebesgue almost every x ∈ Ω, there exists n0 ∈ N such that for every n ≥ n0,

2n

∑
i=1

ki(x)5
≥ n

5− 1
10 (B.1)

and
k2n+1(x)4

+ k2n+2(x)4
+ k2n+3(x)4

+ k2n+4(x)4
≤ n

4+ 1
10 (B.2)

Inequality (B.1) is a consequence of a standard fact: for Lebesgue almost every point x ∈ Ω, the
sequence (ki(x))i≥0 of the partial quotients does not grow “too fast” (see corollary B.3). Inequality
(B.2) is a consequence of a less standard result: for Lebesgue almost every point x ∈ Ω and for every
n ∈ N large enough, there is at least one partial quotient among k1(x), . . . , kn(x) that is “large” (see
Proposition B.4). More precisely, the standard result can be rigorously stated as follows.

Proposition B.2. Let ϕ ∶ N∗ → R∗+. Either the set

Ex
def
= {n ∈ N∗ ∣ kn(x) ≥ ϕ(n)}

is finite for Lebesgue almost all x ∈ Ω, or it is infinite for Lebesgue almost all x ∈ Ω. More precisely,
this dichotomy depends on ϕ as follows:

1. If ∑ 1
ϕ(n) is divergent, then for Lebesgue almost all x ∈ Ω, there exists infinitely many n ∈ N∗ such

that kn(x) ≥ ϕ(n).

2. If ∑ 1
ϕ(n) is convergent, then for Lebesgue almost all x ∈ Ω, there exists n0(x) ∈ N∗ such that for

every n ≥ n0(x), kn(x) < ϕ(n).
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Proof. See [Khi64].

Corollary B.3. Let ε > 0. For Lebesgue almost every point x ∈ Ω, there exists n0 ∈ N such that for
every n ≥ n0, kn(x) ≤ n1+ε.

Proof. For any ε > 0, the serie ∑n
−1−ε is convergent.

We now give a precise formulation of the second result needed to prove Lemma B.1.

Proposition B.4. For Lebesgue almost all x ∈ Ω, for every ε > 0, there exists n0(x, ε) ≥ 1 such that
for every n ≥ n0(x, ε), there exists an integer 1 ≤ j ≤ n such that kj(x) ≥ n1−ε.

Let us introduce some tools that will be needed to prove Proposition B.4. We denote by τ ∶ Ω→ Ω

the Gauss transformation defined by τ(x) = { 1
x
} where {x} = x − ⌊x⌋ denotes the fractional part of x.

The very definition of τ implies that, for every continued fraction [k1, k2, . . . ],

τ([k1, k2, . . . ]) = [k2, k3, . . . ]

In other words, τ is conjugated to the left shift on the space of sequences (kn)n≥1 of integers larger
than 1.

Let us denote by γG the Gauss measure, defined by

γG(A) = 1

ln 2
∫
A

1

x + 1
dλ(x) for every Borel set A of [0, 1] (B.3)

where λ denotes the Lebesgue measure. One can remark that the Gauss measure γG is equivalent to
the Lebesgue measure λ on [0, 1]. The fundamental fact is that γG is τ -invariant, i.e.

γG (τ−1 (A)) = γG (A) for every Borel set A of [0, 1].

For any map f ∶ [0, 1]→ C, let

var f
def
= sup

n−1

∑
i=1

∣f(ti+1) − f(ti)∣

where the supremum is taken on all the finite sequences 0 ≤ t1 < ⋅ ⋅ ⋅ < tn ≤ 1, n ≥ 2. If var f < +∞,
then we say that f is of bounded variation. For any map f ∈ L∞λ ([0, 1]), we call essential variation of
f and we denote by v(f) the number inf var f̃ where the infimum is taken on all the maps f̃ equal
to f mod 0. If v(f) < +∞, then we say that f is of bounded essential variation. Let us denote by
BEV([0, 1]) the set of all maps f ∈ L∞λ ([0, 1]) such that v(f) < +∞. Let us equip BEV([0, 1]) with
the norm

∥f∥BEV = v(f) + ∥f∥1

We define the Perron-Frobenius operator U as the “dual” of the composition operator induced by τ .
More precisely, U is defined as the unique bounded linear operator L1

λ([0, 1])→ L
1
λ([0, 1]) satisfying,

for every f ∈ L1
λ([0, 1]) and for every g ∈ L∞λ ([0, 1]),

∫
1

0
(g ◦ τ) ⋅ f dγG = ∫

1

0
g ⋅ Uf dγG

Proposition B.5 (Spectral gap for the Perron-Frobenius operator). The Perron-Frobenius operator
has a spectral gap: there exists 0 < α < 1 and C > 0 such that, for every f ∈ BEV([0, 1]),

ÂÂÂÂÂÂÂÂ
U
n
f − ∫

1

0
f dγG

ÂÂÂÂÂÂÂÂ1

≤ Cα
n ∥f∥BEV

Proof. See [IK13].
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Proof of Proposition B.4. 1 Let us define, for n ≥ 2 and ε > 0 small:

Xn,ε = {x ∈ Ω ∣ k1(x) < n1−ε}
Yn,ε = {x ∈ Ω ∣∀1 ≤ j ≤ n, kj(x) < n1−ε}

According to the Borel-Cantelli lemma, it is enough to prove that

∑
n≥1

γG (Yn,ε) < +∞ (B.4)

One can remark that
Yn,ε = ⋂

0≤j≤n−1

τ
−j (Xn,ε)

so

γG (Yn,ε) = ∫
1

0

n−1

∏
j=0

1Xn,ε ◦ τ
j(x)dγG(x)

Let c = ⌊n
ε
2 ⌋ and K = ⌊n−1

n
ε
2
⌋. We can estimate the above integral by keeping only the terms whose

indices are multiples of c:

γG (Yn,ε) ≤ ∫
1

0

K

∏
j=0

1Xn,ε ◦ τ
jc(x)dγG(x)

= ∫
1

0
1Xn,ε(x).((

K−1

∏
j=0

1Xn,ε ◦ τ
jc) ◦ τ c(x)) dγG(x)

= ∫
1

0
(U c1Xn,ε(x)) .(

K−1

∏
j=0

1Xn,ε ◦ τ
jc(x)) dγG(x)

However, the family (1Xn,ε)n is uniformly bounded by 2 in BEV([0, 1]) and ∏K−1
j=0 1Xn,ε ◦ τ

jc is
bounded by 1 in L∞λ ([0, 1]) so according to the Proposition B.5,

γG (Yn,ε) ≤ γG (Xn,ε)∫
1

0

K−1

∏
j=0

1Xn,ε ◦ τ
jc(x)dγG(x) +On→∞ (αc)

By induction, we get
γG (Yn,ε) ≤ γG (Xn,ε)K+1

+On→∞ (Kαc)

However, Xn,ε = Ω ∩ ] 1
⌊n1−ε⌋+1

, 1[ and using (B.3), we get that

γG (Xn,ε) =
1

ln 2
∫

1

1

⌊n1−ε⌋+1

1

x + 1
dx = 1 −

1

n1−ε ln 2
+On→+∞ ( 1

n2−2ε
)

Moreover,

(⌊n − 1

n
ε
2

⌋ + 1) ln (1 −
1

n1−ε ln 2
+On→+∞ ( 1

n2−2ε
)) = − 1

ln 2
n
ε
2 + on→+∞(1)

Hence,

γG (Xn,ε)K+1
∼n→+∞ e

− 1
ln2

n
ε
2

and γG (Xn,ε)K+1 is the general term of a convergent series. Analogously, Kαc is the general term of
a convergent series. Hence, (B.4) holds true. This concludes the proof of Proposition B.4.

Proof of Lemma B.1. Inequalities (B.1) and (B.2) are straightforward consequences of corollary B.3
1We would like to thank Sébastien Gouëzel for explaining to us how to use the Perron-Frobenius operator here.

https://www.math.sciences.univ-nantes.fr/~gouezel/
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and Proposition B.4 respectively, with ε = 10
−2.

The following result provide some explicit conditions ensuring that the continued fraction expansion
of two nearby real numbers start by the same integer. It is used to prove Lemma 9.8. In particular,
it is useful to find a sufficiently small size for the section Ssω,hω so that all the points (in fact, their
coordinate xc) in S

s
ω,hω have the same first partial quotient.

Proposition B.6. For x, x′ ∈ Ω, if

»»»»»x − x
′»»»»» <

1

10

1

k1(x)2k2(x)k3(x)

then k1(x′) = k1(x).

Proof. Fix x = [k1, k2, . . . ] ∈ Ω. Let x′ = [k′1, k′2, . . . ] ∈ Ω such that

»»»»»x − x
′»»»»» <

1

3

1

k2
1k2k3

One can remark that
[k1 + 1] < [k1, k2, k3 + 1] < x < [k1, k2, k3] < [k1]

By a straightforward computation, one get

[k1] − [k1, k2, k3] ≥
1

3k2
1k2k3

and
[k1, k2, k3 + 1] − [k1 + 1] ≥ 1

10k2
1k2k3

It follows that
[k1 + 1] < x′ < [k1]

Hence, k′1 = k1.

The following result provide some explicit conditions ensuring that the continued fraction expansion
of two nearby real numbers start by the same first two integers. Moreover, it shows that the double
Gauss transformation τ2 is expansive. It is particularly useful to prove Lemma 10.11.

Proposition B.7 (Expansivity of τ2). For x, x′ ∈ Ω, if

»»»»»x − x
′»»»»» <

1

24

1

k1(x)2k2(x)2k3(x)k4(x)

then k1(x′) = k1(x), k2(x′) = k2(x) and

»»»»»τ
2(x) − τ2(x′)»»»»» ≥ 4

»»»»»x − x
′»»»»»

Proof. Fix x = [k1, k2, . . . ] ∈ Ω. Let x′ = [k′1, k′2, . . . ] ∈ Ω such that

»»»»»x − x
′»»»»» <

1

24

1

k2
1k

2
2k3k4

One can remark that

[k1, k2] < [k1, k2, k3, k4] < x < [k1, k2, k3, k4 + 1] < [k1, k2 + 1]
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By a straightforward computation, one get

[k1, k2 + 1] − [k1, k2, k3, k4 + 1] = 1 + (k3 − 1)(k4 + 1)
(k1(k2 + 1) + 1) ((k1k2k3 + k3 + k1)(k4 + 1) + k1k2 + 1)

≥
1

24

1

k2
1k

2
2k3k4

and

[k1, k2, k3, k4] − [k1, k2] =
k4

(k1k2 + 1)((k1k2 + 1)(k3k4 + 1) + k1k4)

≥
1

10

1

k2
1k

2
2k3

It follows that
[k1, k2] < x′ < [k1, k2 + 1]

Hence, k′1 = k1 and k′2 = k2. Writing

x =
1

k1 +
1

k2+τ
2(x)

, x
′
=

1

k1 +
1

k2+τ
2(x′)

leads to

x − x
′
=

τ
2(x) − τ2(x′)

(k1k2 + k1τ
2(x) + 1)(k1k2 + k1τ

2(x′) + 1)
Since k1k2 + 1 ≥ 2, we get »»»»»τ

2(x) − τ2(x′)»»»»» ≥ 4
»»»»»x − x

′»»»»»
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AppendixC
Stable manifold theorem with parameters

In this appendix, we investigate the standard stable manifold theorem in the context of a partially
hyperbolic singularity of a vector field depending on a parameter. As stated in the introduction,
we need some precisions on this theorem in order to construct the local coordinate system ξ used
throughout this memoir. We will prove some estimates on the size of the neighbourhood where the
local stable manifold is known to be the graph of a function, and some estimates about the derivatives
of all orders of this function. We will make explicit the different constants arising and their dependance
on the vector field. As an application, we consider the situation where a vector field vanishes on a
submanifold N and contracts a direction transverse to N . We prove some estimates on the size of the
neighbourhood of N where there are some charts straightening the stable foliation while giving some
controls on the derivatives of all orders of the charts.

C.1 Introduction

Fix a smooth1 vector field Y on a Riemannian manifold M and let x be a singularity of the vector
field Y , that is, a point of M such that Y (x) = 0. For any γ < 0 and for any η > 0, the local γ-stable
set W s,γ

η (x, Y ) of x for Y is the set of points in M whose forward orbit under the flow of Y stay in
the η-neighbourhood of x and converge to x faster than eγt as t → +∞ (see (C.3d)). This is one of
the most fundamental objects when one tries to understand the asymptotic dynamics of the flow of Y
near x. Its geometry is very well understood in the context of a hyperbolic (or partially hyperbolic)
singularity, as explained in what follows.

C.1.1 Stable manifold theorem

Assume that the singularity x is partially hyperbolic: up to replacing Y by −Y , this means that there
exists a non trivial decomposition TxM = F ⊕ G of the tangent space at x such that F and G are
stabilized by DY (x) and there exists a negative real γ such that the real parts of the eigenvalues of
DY (x)∣F are strictly less than γ and the real parts of the eigenvalues of DY (x)∣G are strictly more
than γ. In this context, the Stable Manifold Theorem asserts that for any positive η small enough,
the local γ-stable set W s,γ

η (x, Y ) is an embedded submanifold of M tangent to F at x, called the
local γ-stable manifold. It can be seen as the graph of a smooth map φ ∶ U ⊂ F → V ⊂ G, from
a neighbourhood U of 0 in F to a neighbourhood V of 0 in G, satisfying φ(0) = 0 and Dφ(0) = 0.
Moreover, if Y depends smoothly on a parameter µ ∈ Rs, then this is also the case for the local γ-stable
set W s,γ

η (x, Y ), that is, φµ(z) = φ(z, µ) is smooth as a map of the two variables z ∈ U , µ ∈ Rs.
Though this standard theorem has been presented and generalized in many articles (see e.g. [Irw70],

[HP70]) and books (see e.g. [KH97], [Irw01], [Rue89], [Rob99], [BS02] for classical introductory readings
and [HPS06] for a deeper treatment but a tougher reading), we have not found a version of this result
that gives explicit estimates on the Ck-norms of φ(z, µ) (k ∈ N∗) and on the size of the neighbourhood
where these estimates hold true. In most of the books, authors state that if Y is Cr, then φµ is also

1Recall that in this work, smooth stands for C∞.
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C
r and µ↦ φµ is a continuous map from Rs to the space of Cr maps equipped with the Cr topology,

which is a weaker statement than saying that φ(z, µ) is smooth. The closest result to what we were
looking for has been found in [Chu+98] (chapter 5). In that book, it is proven that the map φ(z, µ) is
smooth but do not provide explicit estimates. This reference has been the main starting point of this
appendix, whose purpose is to give such estimates. Since we are only interested by local estimates, we
may (and do) assume that M = Rn and x = 0 (it suffices to work in a local chart and to multiply the
vector field by a smooth plateau map in the neighbourhood of 0).

The classical stable manifold theorem (which can be found in the above references) can be stated
as follows:

Theorem C.1 (Stable manifold theorem with parameters). Let X = (Xµ)µ∈Rs be a smooth family of
smooth vector fields on Rn such that

1. For every µ ∈ Rs, the origin of Rn is a singularity of Xµ, i.e.

Xµ(0) = 0

2. The endomorphism A ∶= DxX(0, 0) admits a partially hyperbolic splitting Rn = F ⊕G such that

λmax (A∣F ) < min (0, λmin (A∣G))

where λmax (A∣F ) (resp. λmin (A∣G)) denotes the maximum (resp. minimum) of the real parts of the
eigenvalues of A∣F (resp. A∣G). Let γ ∈ ]λmax (A∣F ) ,min (0, λmin (A∣G))[. Then there exists ε > 0
and η > 0 such that for every µ ∈ BRs(0, ε), the local γ-stable set W s,γ

η (0, Xµ) is the graph of a smooth
function φµ ∶ F → G intersected with the ball BRn(0, η). Moreover, the map

φ ∶ (z, µ) ∈ F ×BRs(0, ε)↦ φµ(z) ∈ G

is smooth, for every µ ∈ BRs(0, ε), φµ(0) = 0 and Dφ0(0) = 0.

As explained above, our goal is to supplement this result by providing explicit estimates on the
constants ε and η and on the derivatives of all orders of φ. What we prove is summarized in the
following addendum (for a precise version, see Theorem C.19):

Addendum C.2. For every r > 0, one can find a radius ε, a size η and a map φ as above satisfying
the following properties:

• the radius ε is linear in r, polynomial on the distance between γ and the real part of the spectrum of
A, inversely linear on the norm of the second derivative of X on the closed ball BRn×Rs(0, r) and
inversely polynomial on the norm of A and the angle between the generalized eigenspaces of A.

• the size η is linear in r, polynomial on the spectral gap min (0, λmin (A∣G))− λmax (A∣F ), inversely
linear on the norm of the second derivative of X on the closed ball BRn×Rs(0, r) and inversely
polynomial on the norm of A and the angle between the generalized eigenspaces of A.

• the norm of the k-th derivative of φ on BF (0, η)×BRs(0, η) is a polynomial function of degree ≃ nk2

depending on the norm of A, the angle between the generalized eigenspaces of A, the inverse of r,
the norms of the (k + 1) first derivatives of X on the closed ball BRn×Rs(0, r) and the inverse of
the spectral gap.

Remark C.3. The parameter r describes quantitatively how the local γ-stable manifold is, indeed, a
local object. It allows one to get some information on the size of the local γ-stable manifold when one
is only using a control of X over the ball of radius r.

Remark C.4. The strategy used to prove Theorem C.1 is standard. We find the orbits contained
in a stable manifold as the fixed points of an “integral” operator (depending on the parameter µ)
on a suitable space of functions. The construction of the operator is natural and gives the desired
description of the stable manifolds as graphs of some family of maps φµ. This is the technique used in
[Chu+98], but with a major simplification. We directly prove that on the one hand the operator is
smooth with respect to all variables including the parameters and on the other hand it is a contraction
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mapping with respect to the space of functions, thus we obtain that the family of graphs φ is smooth
with respect to the variable in the phase space and the parameter, using a global version of the implicit
function theorem (which can be seen as a contraction mapping theorem with parameters). This makes
the proof easier and more natural compared to the one in [Chu+98]. Indeed, in this reference, the
authors do not prove that the operator is smooth and thus need to use a family of truncated operators
to obtain the smoothness of the fixed point.

C.1.2 Vector fields vanishing on submanifolds

Theorem C.1 allows us to describe the stable foliation associated with a normally contracted submanifold
on which a vector field vanishes. The context is as follows. Let M be a smooth manifold of dimension
n and let N be a smooth submanifold of M . Let Y be a smooth vector field on M vanishing on N such
that for every point x ∈ N , there exists a direction transverse to TxN which is stabilized and contracted
by DY (x). Recall that, given x ∈ N , the stable set W s(x, Y ) of x for Y is the set of points in M
whose forward orbit under the flow of Y converge to x. It is well known (this is an easy consequence of
Theorem C.1) that the family of stable manifolds (W s(x, Y ))x∈N foliates a neighbourhood W of N
and the stable foliation

Fs def
= {W s(x, Y ) ∩W ∣ x ∈ N}

can be locally smoothly straightened.
Fixing a point x ∈ N and a local chart (independantly of Y ) centered around x which straightens

N , and looking at the situation in this chart, we “can assume that” M is an open set Ω of Rn and N is
the set Ω0 ∶= Ω ∩G ≠ ∅ where G is a linear subspace of Rn. The standard result explained above can
be stated as follows:

Theorem C.5 (Straightening of a stable foliation). Let Ω be an open set of Rn, G be a linear subspace
of Rn and Y ∶ Ω→ Rn be a smooth vector field such that

1. Y vanishes on Ω0 ∶= Ω ∩G;

2. For every µ ∈ Ω0, there exists a decomposition Fµ ⊕G = Rn stabilized by Aµ ∶= DY (µ) and such
that

λmax ((Aµ)∣Fµ) < 0

Let µ0 ∈ Ω0. Then there exists a smooth local coordinate system ξ defined on a ball B ∶= BRn (µ0, R)
such that the family of stable manifolds (W s(µ, Y ))µ∈Ω0∩BRn (µ0,R) foliates B and is straightened by ξ:
for every µ ∈ Ω0 ∩B,

ξ (W s(µ, Y ) ∩B) = (µ + Fµ0
) ∩ ξ (B)

We emphasize the fact that Theorem C.5 is a straightforward consequence of the stable manifold
theorem. Once again, our goal is to provide some explicit estimates on the radius R and on the
derivatives of all orders of ξ and ξ−1. What we prove is summarized in the following addendum (for a
precise version, see Theorem C.22):

Addendum C.6. For every r > 0 such that BRn(µ0, r) ⊂ Ω, one can find a radius R and a local
coordinate system ξ on BRn(µ0, r) as above satisfying the following properties:

• The radius R admits a lower bound which is linear in r, polynomial in the spectral gap»»»»»λmax ((Aµ0
)∣Fµ0

)»»»»», inversely linear in the norm of the second derivative of Y on the closed

ball BRn(µ0, r), inversely polynomial in the norm of Aµ0
and the angle between the generalized

eigenspaces of Aµ0
. This lower bound depends only on the parameters listed above.

• For every ε > 0, ξ restricted to BRn (µ0, εR) is ε-close to the identity in C1-norm.

• The norms of the k-th derivatives of ξ and ξ−1 admit an upper bound polynomial in the norm
of Aµ0

, the angle between the generalized eigenspaces of Aµ0
and the norms of the (k + 1) first

derivatives of Y on the closed ball BRn(µ0, r) and inversely polynomial in the spectral gap and r.
Moreover, this upper bound depends only on the parameters listed previously.
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Remark C.7. In order to get such estimates on R and ξ, one must choose a compact ball B(µ0, r) ⊂ Ω
on which one controls the derivatives of all orders of Y . There is no canonical choice and one can use
the parameter r to make a choice depending on his/her needs.

This appendix is organized as follows. Section C.2 compiles some notations used throughout the
appendix. In section C.3, we prove Theorem C.1. We first treat the global case (see Proposition C.8),
which is the main technical result of this appendix, and then we apply it to the local case. In chapter C.4,
we prove Theorem C.5 using Theorem C.1. Appendix C.5 recalls some well-known estimates of linear
algebra that are extensively used throughout this appendix.

C.2 General notations.

For any n ∈ N, we denote by ∥.∥ the Euclidean norm on Rn. For any family (E1,∥.∥1), . . . , (Er,∥.∥r),
(F,∥.∥F ) of normed vector spaces (possibly of infinite dimension), for any continuous r-linear map
L ∶ E1 × ⋅ ⋅ ⋅ × Er → F , we will usually denote by ⦀L⦀ its subordinate norm, that is,

⦀L⦀ = sup
(x1,...,xr)∈∏r

i=1Ei

∥L(x1, . . . , xr)∥F
∏r

i=1 ∥xi∥i

For any linear subspaces F,G of Rn, let us recall that the angle between F and G, denoted by
∢ (F,G), is defined as the minimal (unsigned) angle between a vector in F and a vector in G. The
angle between F and G is strictly positive if and only if F ∩G = {0}. If this is the case, let

m (F,G) def
= ( 2

1 − cos∢ (F,G))
1
2

We generalise this notion by defining the angle between a finite family E1, . . . , Er of linear subspaces
of Rn as follows:

∢ (E1, . . . , Er)
def
= min

1≤j≤r
∢ (Ej , ⊕

i≠j
Ei)

For A ∈Mn(R), define

λmax (A) def
= max

λ∈SpC(A)
Re(λ), (C.1a)

λmin (A) def
= min

λ∈SpC(A)
Re(λ), (C.1b)

m (A) def
= ( 2

1 − cos∢ (E1, . . . , Er)
)
r−1
2

(C.2a)

where E1, . . . , Er are the generalized eigenspaces of A,

M(A) def
= max (1,⦀A⦀)n−1

m (A) (C.2b)

where ⦀.⦀ is the subordinate norm with respect to the Euclidean norm, and

M̂(A) def
= 2

2n−2(n − 1)n−1
M(A) (C.2c)

Given a Riemannian manifold M with distance d, a smooth vector field Y on M with flow Y
t and

a singularity x of Y , we define the following stable sets:

• The global stable set W s(x, Y ) of x for Y is the set of points in M whose forward orbit under the
flow of Y converge to x, that is,

W
s(x, Y ) = {y ∈M ∣ lim

t→+∞
d (Y t(y), x) = 0} (C.3a)

• For any γ < 0, the global γ-stable set W s,γ (x, Y ) of x for Y is the set of points in M whose forward
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orbit under the flow of Y converge to x at least as fast as eγt, that is,

W
s,γ (x, Y ) = {y ∈M ∣ d (Y t(y), x) = Ot→+∞ (eγt)} (C.3b)

• For any η > 0, the local stable set W s
η (x, Y ) of x for Y is the set of points in W

s(x, Y ) whose
forward orbit under the flow of Y stay in the η-neighbourhood of x, that is,

W
s
η (x, Y ) = {y ∈W s(x, Y ) ∣∀t ≥ 0, d (Y t(y), x) < η} (C.3c)

• For any γ < 0, for any η > 0, the local γ-stable set W s,γ
η (x, Y ) of x for Y is the set of points in

W
s,γ (x, Y ) whose forward orbit under the flow of Y stay in the η-neighbourhood of x, that is,

W
s,γ
η (x, Y ) = {y ∈W s,γ (x, Y ) ∣∀t ≥ 0, d (Y t(y), x) < η} (C.3d)

One can remark that if one chooses a distance d′ equivalent to d, then the stable sets for d′ coincide
with the stable sets for d.

C.3 Estimates for the stable manifold theorem with parameters

C.3.1 Setup

Fix an integer n ≥ 2 and an integer s ∈ N∗. We define a smooth family of vector fields (Xµ)µ∈Rs as a
smooth map

X∶
Rn × Rs → Rn

(x, µ) ↦ Xµ(x)
where Rn is the phase space and Rs is the set of parameters. Given such a X, let us consider some
hypotheses:

Hypothesis 1. For every µ ∈ Rs, the origin is a singularity of Xµ, i.e.

Xµ(0) = 0

Hypothesis 2. The endomorphism A ∶= DxX(0, 0) admits a partially hyperbolic splitting (F,G),
i.e. there exists a non trivial decomposition Rn = F ⊕G such that F and G are stabilized by A and

λmax (A∣F ) < min (0, λmin (A∣G))

Given such a partially hyperbolic splitting, we will consider the interval:

IA
def
= ]λmax (A∣F ) ,min (0, λmin (A∣G))[ (C.4)

and the “inverse of the spectral gap”:

σ (A) def
= min (1,min (0, λmin (A∣G)) − λmax (A∣F ))−(n−1) (C.5)

Hypothesis 3. Given a partially hyperbolic splitting (F,G), the first derivative of X satisfies

sup
(x,µ)∈Rn×Rs

⦀DxX(x, µ) −A⦀ ≤ (2
3n−1(n − 1)n−1√

2M(A)σ (A))−1

Hypothesis 4. The derivatives of all orders of X are bounded, i.e. for every k ≥ 1,

sup
(x,µ)∈Rn×Rs

ÅÅÅÅÅD
k
x,µX(x, µ)ÅÅÅÅÅ < +∞

In subsection C.3.2, we will assume that X satisfies all the above hypotheses and we will prove a
global stable manifold theorem with global estimates while in section C.3.3, we will only assume that
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the first two hypotheses hold true and we will prove a local stable manifold theorem where we make
explicit the local estimates and the size of the neighbourhood where these estimates hold true. The
local theorem will be a consequence of the global one. The idea is to multiply the non linear part of X
by a smooth plateau map on a small neighbourhood of (0, 0) such that the new X satisfies all the
above hypotheses.

C.3.2 Global estimates

In this section, we state and prove a (global) stable manifold theorem with parameters for smooth
families of vector fields (Xµ)µ∈Rs satisfying the hypotheses 1, 2, 3 and 4. For such a X, let

M1 (X) def
= sup

(x,µ)∈Rn×Rs
⦀DxX(x, µ) −A⦀

where A ∶= DxX(0, 0), and for every integer k ≥ 2, let

Mk (X) def
= sup

2≤j≤k
sup

(x,µ)∈Rn×Rs
ÅÅÅÅÅD

j
x,µX(x, µ)ÅÅÅÅÅ

and
M̄k (X) def

= max (1,Mk (X))
Let us recall that in the current context, for any µ ∈ Rs and γ < 0, the global γ-stable set of 0 for Xµ

is
W

s,γ (0, Xµ) = {x0 ∈ Rn ∣ ÂÂÂÂÂX
t
µ(x0)

ÂÂÂÂÂ = Ot→+∞ (eγt)} (C.6)

For any γ < 0, let
dA(γ)

def
= min(1, d (γ,Re(SpC(A))))n−1

where d is the usual distance on R.

Proposition C.8 (Global estimates for the stable manifold theorem with parameters). There exists a
positive constant C and a sequence of positive constants (C1,k)k∈N (depending only on the dimension
n of the phase space) such that for every smooth family of vector fields (Xµ)µ∈Rs satisfying the
hypotheses 1, 2, 3 and 4, and every partially hyperbolic splitting (F,G) of A ∶= DxX(0, 0), there exists
a unique smooth map

φ∶
F × Rs → G
(z, µ) ↦ φµ(z)

such that

1. Graph structure of the global γ-stable set: for every µ ∈ Rs and every γ ∈ IA (see (C.4)) satisfying

M1 (X) ≤ 1

C1

dA(γ)
M(A) (C.7)

where C1 = 2
2n(n−1)n−1√

2, the stable set W s,γ (0, Xµ) is exactly the graph of the map φµ ∶ F → G.
In particular, W s,γ (0, Xµ) does not depend on the choice of such a γ.

2. Local γ-stable set: for every γ ∈ IA satisfying (C.7), every µ ∈ Rs, every η > 0 and every
0 < δ ≤ η

CM(A)σ(A) ,

W
s,γ
η (0, Xµ) ∩BRn(0, δ) = Graph (φµ) ∩BRn(0, δ) (C.8)

3. Controls on φ: for every (z, µ) ∈ F × Rs,

∥φ(z, µ)∥ ≤ C1,0σ (A)M(A)M1 (X) ∥z∥ (C.9a)
⦀Dzφ(z, µ)⦀ ≤ C1,1σ (A)M(A)M1 (X) (C.9b)

⦀Dµφ(z, µ)⦀ ≤ C1,1σ (A)M(A)M2 (X) ∥z∥ (C.9c)
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and more generally, using the norm ∥(z, µ)∥ = ∥z∥ + ∥µ∥ on F × Rs, we have, for all k ≥ 2,

ÅÅÅÅÅD
k
φ(z, µ)ÅÅÅÅÅ ≤ C1,k (σ (A)2

M(A)2
M̄k+1 (X)max (1,∥z∥))2k−1

(C.9d)

where σ (A) is defined by (C.5).

Remark C.9. If one is working with a different norm than the Euclidean one, one will have the same
result but with different constants C1, C1,0, C1,1, . . .

Remark C.10. Hypothesis 3 is not fundamentally necessary for Proposition C.8 to be true. This
hypothesis implies that there exists a γ ∈ IA satisfying (C.7) in item 1, so it is only a convenient and
explicit sufficient condition for the proposition to not be empty. When proving the local version in
section C.3.3, we will not check that hypothesis 3 holds true, we will directly work with a given γ and
check that (C.7) holds true.

The proof of Proposition C.8 is heavily based on the contraction mapping theorem, applied in the
Banach space introduced in definition C.12 below.

Definition C.11 (γ-norm). For any γ ∈ R and (z, v) ∶ [0,+∞[→ Rp × Rq, we define the γ-norm of
(z, v) by

∥(z, v)∥γ
def
= sup

t≥0
max(∥z(t)∥ ,∥v(t)∥)e−γt ∈ [0,+∞]

Definition C.12 (Function space Hγ). Let γ ∈ R. Denote by Hγ the vector space of continuous
maps (z, v) ∶ [0,+∞[→ Rp × Rq whose γ-norm are finite. The vector space Hγ endowed with the
γ-norm is a Banach space.

Remark C.13. For any γ < γ ′, Hγ
⊂ H

γ
′

and for every (z, v) ∈ Hγ , ∥(z, v)∥γ ′ ≤ ∥(z, v)∥γ .
Remark C.14. It will be useful to see Hγ

n ∶= H
γ as the cartesian product Hγ

p ×H
γ
q when n = p + q.

Proof of Proposition C.8. Before we make explicit the strategy of the proof, we need some preparatory
work. Fix a smooth family of vector fields (Xµ)µ∈Rs satisfying the hypotheses 1, 2, 3 and 4 and a
partially hyperbolic splitting (F,G) of A ∶= DxX(0, 0). Let p = dimF and q = dimG. Fix γ ∈ IA
satisfying

M1 (X) ≤ 1

22n(n − 1)n−1
√

2

dA(γ)
M(A) (C.10)

Conjugation of X. We start by conjugating X in such a way that F and G become orthogonal
linear subspaces of Rn. For that purpose, let us fix an isomorphism L ∶ Rn → Rn ≃ Rp × Rq such that
L∣F (resp. L∣G) is an isometry from F (resp. G) to Rp × {0} ≃ Rp (resp. {0} × Rq ≃ Rq). According
to Lemma C.24,

∥L∥ ≤ m (F,G) , ÂÂÂÂÂL
−1ÂÂÂÂÂ ≤

√
2 (C.11)

We now define

X̃∶
Rp × Rq × Rs → Rp × Rq

(z, v, µ) ↦ L(Xµ(L−1(z, v))) (C.12)

One can remark that for every k ≥ 1,

Mk (X̃) ≤
√

2
k
m (F,G)Mk (X) (C.13)

Let

Ã
def
= Dz,vX̃(0, 0, 0) = LAL−1

= (Ã1 0

0 Ã2
)

where Ã1 = Ã∣Rp and Ã2 = Ã∣Rq , with respect to the canonical basis. Using the fact that L is an
isometry in restriction to F and G, we have the following properties on Ã1 and Ã2:

SpC(Ã1) = SpC(A∣F ), SpC(Ã2) = SpC(A∣G) (C.14a)

m (Ã1) = m (A∣F ) , m (Ã2) = m (A∣G) (C.14b)

M(Ã1) =M(A∣F ), M(Ã2) =M(A∣G) (C.14c)
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Property (C.14a) implies that dÃ(γ) = dA(γ).

Differential equation view-point. Let µ ∈ Rs. The differential equation associated with the vector
field X̃µ can be written in the following form

{z
′
= Ã1z + f(z, v, µ)

v
′
= Ã2v + g(z, v, µ)

(C.15)

where (f, g) ∶ Rp × Rq × Rs → Rp × Rq is a smooth map defined by

(f(z, v, µ)
g(z, v, µ)) = X̃(z, v, µ) −Dz,vX̃(0, 0).(z, v)

and satisfying

(f, g)(0, 0, µ) = 0 for all µ ∈ Rs (C.16a)
D(f, g)(0, 0, 0) = 0 (C.16b)

⦀Dz,v(f, g)(z, v, µ)⦀ ≤M1 (X̃) for all (z, v, µ) ∈ Rp × Rq × Rs (C.16c)
ÅÅÅÅÅD

k(f, g)(z, v, µ)ÅÅÅÅÅ ≤MN (X̃) for all N ≥ 2, 2 ≤ k ≤ N and (z, v, µ) ∈ Rp × Rq × Rs (C.16d)

Property (C.16a) implies that

∀µ ∈ Rs, ∀k ∈ N, D
k
µ(f, g)(0, 0, µ) = 0 (C.16e)

Estimates on exponential of matrices. We now state an estimate that will be used several times
throughout this proof. Let

α =
γ + λmax (A∣F )

2
, β =

γ + λmin (A∣G)
2

According to Lemma C.26 and (C.14c), we have, for every s ≥ 0,

ÅÅÅÅÅÅe
sÃ1

ÅÅÅÅÅÅ ≤
M̂(A∣F )
dA(γ)

p−1

n−1

e
αs

ÅÅÅÅÅÅe
−sÃ2

ÅÅÅÅÅÅ ≤
M̂(A∣G)
dA(γ)

q−1

n−1

e
−βs

(C.17)

where M̂(.) is defined by (C.2c). Beware of the fact that the integer n must be replaced by p (resp. q)
for M̂(A∣F ) (resp. M̂(A∣G)).

Main operator of the proof. Let us define the operator

Oγ
∶

H
γ × Rp × Rs → H

γ

((z, v), ω, µ) ↦ Oγ
ω,µ(z, v)

by the formula

Oγ
ω,µ(z, v)(t) = (e

tÃ1ω + ∫ t
0
e
(t−s)Ã1f(z(s), v(s), µ)ds

− ∫+∞
t

e
−(s−t)Ã2g(z(s), v(s), µ)ds

)

where Ã1, Ã2, f and g are defined in (C.15).

Strategy of the proof. Fix µ ∈ Rs. We want to prove that the global γ-stable set W s,γ (0, X̃µ)
is a graph over Rp. This amounts to prove that for every ω ∈ Rp, there exists a unique v0 ∈ Rq

such that (ω, v0) ∈W s,γ (0, X̃µ). This is also equivalent to say that, for every ω ∈ Rp, there exists a
unique solution (z, v) of (C.15) such that z(0) = ω and (z, v) ∈ Hγ . We introduced the operator Oγ

ω,µ

because its fixed points are exactly the solutions (z, v) of (C.15) such that z(0) = ω and (z, v) ∈ Hγ

(see Lemma C.18). Hence, it is enough to prove that Oγ
ω,µ admits a unique fixed point in Hγ , denoted
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Rp

Rq

0

•(z∗ω,µ(0), v∗ω,µ(0))

ω

Figure C.1 – (z∗ω,µ, v∗ω,µ) is the unique orbit of X̃µ contained in the global γ-stable set W s,γ (0, X̃µ)
with initial condition of the form (ω, v0), v0 ∈ Rq.

by (z∗ω,µ, v∗ω,µ) (see Lemma C.16). See figure C.1. The estimates on the graph follow from estimates
on v∗ω,µ (see Lemma C.16) which themselves follow from estimates on Oγ (see Lemma C.15).

Technical details of the proof. We now state and prove three lemmas which constitute the main
part of the proof.

For every k ≥ 0, we denote by Lk (Hγ × Rs, Hγ) the space of k-linear maps from (Hγ × Rs)k to
H
γ and we define the operator

Λk ∶ H
γ
× Rs → Lk (Hγ

× Rs, Hγ)

by the following formula: for every ((z, v), µ) ∈ Hγ × Rs, ((zi, vi), µi)1≤i≤k ∈ (Hγ × Rs)k, t ≥ 0,

Λk((z, v), µ).((zi, vi), µi)(t) = ( ∫ t
0
e
(t−s)Ã1D

k
f(z(s), v(s), µ).((zi(s), vi(s)), µi)ds

− ∫+∞
t

e
−(s−t)Ã2D

k
g(z(s), v(s), µ).((zi(s), vi(s)), µi)ds

)

We also define the operator

Γ∶

Rp → H
γ

ω ↦ [t↦ (e
tÃ1ω
0

)]

In the next lemma, we will use the following norm on Hγ × Rp × Rs:

∥((z, v), ω, µ)∥ = ∥(z, v)∥γ + ∥ω∥ + ∥µ∥

Lemma C.15. The operator Oγ is smooth. For all k ≥ 1, ((z, v), ω, µ) ∈ H
γ × Rp × Rs and

((zi, vi), ωi, µi)1≤i≤k ∈ (Hγ × Rp × Rs)k,

D
kOγ((z, v), ω, µ).((zi, vi), ωi, µi) = {Γ(ω1) + Λ1((z, v), µ).((z1, v1), µ1) if k = 1

Λk((z, v), µ).((zi, vi), µi) if k ≥ 2
(C.18)

Moreover, the derivatives of Oγ satisfy the following estimates: for every ((z, v), ω, µ) ∈ Hγ ×Rp ×Rs,
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⦀Dz,v O
γ((z, v), ω, µ)⦀

γ
≤

1

2
(C.19a)

⦀Dω O
γ((z, v), ω, µ)⦀γ ≤

M̂(A∣F )
dA(γ)

p−1

n−1

(C.19b)

⦀DµO
γ((z, v), ω, µ)⦀

γ
≤

2 max (M̂(A∣F ), M̂(A∣G))
dA(γ)

M2 (X̃) ∥(z, v)∥γ (C.19c)

where ⦀.⦀γ denotes the standard norm of continuous linear maps from H
γ (resp. Rp, resp. Rs) to

H
γ and, for every k ≥ 2,

ÅÅÅÅÅD
kOγ((z, v), ω, µ)ÅÅÅÅÅγ

≤

2 max (M̂(A∣F ), M̂(A∣G))
dA(γ)

(Mk (X̃) +Mk+1 (X̃) ∥(z, v)∥γ) (C.19d)

where ⦀.⦀γ denotes the standard norm of continuous k-linear maps from (Hγ × Rp × Rs)k to Hγ .

Proof of Lemma C.15. One can remark that Oγ is the sum of two operators, the first one being the
linear map Γ and the second one being Λ0. Since Rp is a finite dimensional vector space, Γ is smooth.
It follows that we only need to prove that the operator Λ0 ∶ H

γ × Rs → H
γ is smooth to prove the

first part of the lemma. Using the classical algebraic identification

Lk+1 (Hγ
× Rs, Hγ) ≃ L (Hγ

× Rs,Lk (Hγ
× Rs, Hγ))

we are going to prove that for every k ≥ 0, Λk is differentiable and DΛk = Λk+1.

Step 1. For every k ≥ 0, Λk is well defined and for every k ≥ 1 and ((z, v), µ) ∈ H
γ × Rs,

Λk((z, v), µ) is a continuous k-linear map. Let k ≥ 0, ((z, v), µ) ∈ Hγ × Rs and ((zi, vi), µi)1≤i≤k ∈

(Hγ × Rs)k. For every s ≥ 0,

D
k(f, g)(z(s), v(s), µ).((zi(s), vi(s)), µi)1≤i≤k =

∑
0≤l≤k
σ∈Sk(l)

D
l
z,vD

k−l
µ (f, g)(z(s), v(s), µ).(σ.((zi, vi), µi)1≤i≤k)

where

σ.((zi, vi), µi)1≤i≤k = ((zσ(1)(s), vσ(1)(s)) , . . . , (zσ(l)(s), vσ(l)(s)) , µσ(l+1), . . . , µσ(k))

and Sk(l) is the set of all permutations of {1, . . . , k} which are increasing on both the integer intervals
J1, lK and Jl + 1, kK. Using estimates (C.16) and the mean value theorem, we obtain the following
estimates. For all s ≥ 0,

∥(f, g)(z(s), v(s), µ)∥ ≤M1 (X̃) ∥(z(s), v(s))∥ ≤ eγsM1 (X̃) ∥(z, v)∥γ

∥Dz,v(f, g)(z(s), v(s), µ).(z1(s), v1(s))∥ ≤M1 (X̃) ∥(z1(s), v1(s))∥ ≤ eγsM1 (X̃) ∥(z1, v1)∥γ
∥Dµ(f, g)(z(s), v(s), µ).µ1∥ ≤M2 (X̃) ∥(z(s), v(s))∥∥µ1∥ ≤ eγsM2 (X̃) ∥(z, v)∥γ ∥µ1∥
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For all s ≥ 0, 0 ≤ l ≤ k and σ ∈ Sk(l),

ÂÂÂÂÂD
l
z,vD

k−l
µ (f, g)(z(s), v(s), µ).(σ.((zi, vi), µi)1≤i≤k)

ÂÂÂÂÂ

≤Mk (X̃)
l

∏
i=1

∥(zσ(i)(s), vσ(i)(s))∥
k

∏
j=l+1

∥µσ(j)∥

≤ e
lγs
Mk (X̃)

l

∏
i=1

∥(zσ(i), vσ(i))∥γ
k

∏
j=l+1

∥µσ(j)∥

When l = 0, the above estimate is not useful since there is no exponential decay, so we replace it with
an estimate using Mk+1 (X̃) instead of Mk (X̃):

ÂÂÂÂÂD
k
µ(f, g)(z(s), v(s), µ).(µi)1≤i≤k

ÂÂÂÂÂ ≤Mk+1 (X̃) ∥(z(s), v(s))∥
k

∏
i=1

∥µi∥

≤ e
γs
Mk+1 (X̃) ∥(z, v)∥γ

k

∏
i=1

∥µi∥

We now summarize the above (useful) estimates, using the inequality elγs ≤ e
γs for l ≠ 0. For any

s ≥ 0, 0 ≤ l ≤ k and σ ∈ Sk(l), we get

ÂÂÂÂÂD
l
z,vD

k−l
µ (f, g)(z(s), v(s), µ).(σ.((zi, vi), µi)1≤i≤k)

ÂÂÂÂÂ ≤

{e
γs
Mk+1 (X̃)∏k

i=1 ∥µi∥∥(z, v)∥γ if k ≥ 0, l = 0

e
γs
Mk (X̃)∏l

i=1 ∥(zσ(i), vσ(i))∥γ∏
k
j=l+1 ∥µσ(j)∥ if k ≥ 1, l ≠ 0

(C.20)

It follows from (C.20) that the map s ↦ e
−(s−t)Ã2D

k
g(z(s), v(s), µ).((zi(s), vi(s)), µi)1≤i≤k is inte-

grable on [t,+∞[, so Λk is well defined.

According to (C.17) and (C.20), and using the inequality elγs ≤ eγs, we have, for every t ≥ 0,

ÂÂÂÂÂÂÂÂ
∫
t

0
e
(t−s)Ã1D

k
f(z(s), v(s), µ).((zi(s), vi(s)), µi)1≤i≤k ds

ÂÂÂÂÂÂÂÂ
≤

1
γ − α

M̂(A∣F )
dA(γ)

p−1

n−1

e
γt
× {M1 (X̃) ∥(z, v)∥γ if k = 0

(Mk (X̃) +Mk+1 (X̃) ∥(z, v)∥γ)∏k
i=1 ∥((zi, vi), µi)∥ if k ≥ 1

(C.21)

where we used the equality

∑
0≤l≤k
σ∈Sk(l)

l

∏
i=1

∥(zσ(i), vσ(i))∥γ
k

∏
j=l+1

∥µσ(j)∥ =
k

∏
i=1

(∥(zi, vi)∥γ + ∥µi∥) =
k

∏
i=1

∥((zi, vi), µi)∥

Of course, we have an analogous estimate for g: for every t ≥ 0,

ÂÂÂÂÂÂÂÂ
∫
+∞

t
e
−(s−t)Ã2D

k
g(z(s), v(s), µ).((zi(s), vi(s)), µi)1≤i≤k ds

ÂÂÂÂÂÂÂÂ
≤

1

β − γ

M̂(A∣G)
dA(γ)

q−1

n−1

e
γt
× {M1 (X̃) ∥(z, v)∥γ if k = 0

(Mk (X̃) +Mk+1 (X̃) ∥(z, v)∥γ)∏k
i=1 ∥((zi, vi), µi)∥ if k ≥ 1

(C.22)

According to (C.21), (C.22) and the fact that max(p, q) ≤ n − 1,

∥Λ0((z, v), µ)∥γ ≤
2 max (M̂(A∣F ), M̂(A∣G))

dA(γ)
M1 (X̃) ∥(z, v)∥γ (C.23a)



184 APPENDIX C. Stable manifold theorem with parameters

and for all k ≥ 1,

∥Λk((z, v), µ).((zi, vi), µi)1≤i≤k∥γ ≤
2 max (M̂(A∣F ), M̂(A∣G))

dA(γ)
(Mk (X̃) +Mk+1 (X̃) ∥(z, v)∥γ)

k

∏
i=1

∥((zi, vi), µi)∥ (C.23b)

According to (C.23b), for every k ≥ 1, Λk((z, v), µ) is a continuous k-linear map whose subordinate
norm satisfies

⦀Λk((z, v), µ)⦀γ ≤

2 max (M̂(A∣F ), M̂(A∣G))
dA(γ)

(Mk (X̃) +Mk+1 (X̃) ∥(z, v)∥γ) (C.24)

Step 2. For every k ≥ 0, for every ((z, v), µ) ∈ H
γ × Rs, Λk is differentiable at the point

((z, v), µ) and DΛk((z, v), µ) = Λk+1((z, v), µ). Let k ≥ 0, ((z, v), µ), ((∆z,∆v),∆µ) ∈ Hγ ×Rs and
((zi, vi), µi)1≤i≤k ∈ (Hγ × Rs)k. According to Taylor-Lagrange formula, for every s ≥ 0,

ÂÂÂÂÂD
k(f, g)(z(s) +∆z(s), v(s) +∆v(s), µ +∆µ).((zi(s), vi(s)), µi)1≤i≤k−

D
k(f, g)(z(s), v(s), µ).(((zi(s), vi(s)), µi)1≤i≤k)−

D
k+1(f, g)(z(s), v(s), µ).(((zi(s), vi(s)), µi)1≤i≤k, (∆z(s),∆v(s),∆µ))

ÂÂÂÂÂ ≤
1

2
sup

w∈[0,1]

ÂÂÂÂÂΦ
′′
s(w)ÂÂÂÂÂ

where Φ
′′
s(w) is the second derivative with respect to w of the real function w ↦ Φs(w) defined by

Φs(w) = Dk(f, g)((z(s), v(s), µ) + w(∆z(s),∆v(s),∆µ)).((zi(s), vi(s)), µi)1≤i≤k

By (C.20) and computations similar to the ones done in the preceding step,

sup
w∈[0,1]

ÂÂÂÂÂΦ
′′
s(w)ÂÂÂÂÂ ≤ e

γs
O((∆z,∆v),∆µ)→0 (∥((∆z,∆v),∆µ)∥2)

k

∏
i=1

∥((zi, vi), µi)∥

so

⦀Λk(((z, v), µ) + ((∆z,∆v),∆µ)) − Λk((z, v), µ) − Λk+1((z, v), µ).((∆z,∆v),∆µ)⦀γ =

O((∆z,∆v),∆µ)→0 (∥((∆z,∆v),∆µ)∥2)

By a staightforward induction on k, this implies that Λ0 is smooth and for every k ≥ 1, Dk
Λ0 = Λk.

As a further consequence, Oγ is smooth and formula (C.18) holds true.

Step 3. Proof of estimates (C.19). First, notice that estimate (C.19d) is a direct consequence
of (C.24) and estimate (C.19b) is a direct consequence of (C.17) and (C.18). To prove (C.19a) and
(C.19c), let ((z, v), ω, µ) ∈ H

γ × Rp × Rs and ((∆z,∆v),∆µ) ∈ H
γ × Rs. According to (C.18), we

have
Dz,v O

γ((z, v), ω, µ).(∆z,∆v) = Λ1((z, v), µ).((∆z,∆v), 0)
By (C.20) and similar computations to the ones done in the first step,

∥Λ1((z, v), µ).((∆z,∆v), 0)∥γ ≤
2 max (M̂(A∣F ), M̂(A∣G))

dA(γ)
M1 (X̃) ∥(∆z,∆v)∥γ

so, by (C.10), (C.13), (C.2c) and the fact that max (M(A∣F ),M(A∣G))m (F,G) ≤M(A), we have

2 max (M̂(A∣F ), M̂(A∣G))
dA(γ)

M1 (X̃) ≤ 1

2
(C.25)
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so estimate (C.19a) holds true. By similar computations, we obtain

∥Λ1((z, v), µ).((0, 0),∆µ)∥γ ≤
2 max (M̂(A∣F ), M̂(A∣G))

dA(γ)
M2 (X̃) ∥(z, v)∥γ ∥∆µ∥

which implies the estimate (C.19c). This concludes the proof of Lemma C.15.

Lemma C.16. For every (ω, µ) ∈ Rp × Rs, the operator Oγ
ω,µ admits a unique fixed point, which is

independant of the choice of γ and is denoted by (z∗ω,µ, v∗ω,µ). This fixed point satisifes the following
inequality: for every t ≥ 0,

∥(z∗ω,µ(t), v∗ω,µ(t))∥ ≤
2
√

2M̂(A∣F )
dA(γ)

p−1

n−1

∥(z∗ω,µ(0), v∗ω,µ(0))∥ (C.26)

Moreover, the map

(z∗, v∗)∶ Rp × Rs → H
γ

(ω, µ) ↦ (z∗ω,µ, v∗ω,µ)
is smooth and, using the norm ∥(ω, µ)∥ = ∥ω∥ + ∥µ∥ on Rp × Rs, we have the following estimates:
for every (ω, µ) ∈ Rp × Rs,

∥v∗ω,µ∥γ ≤
4M̂(A∣F )M̂(A∣G)

dA(γ)
M1 (X̃) ∥ω∥ (C.27a)

⦀Dωv
∗
ω,µ⦀γ

≤
4M̂(A∣F )M̂(A∣G)

dA(γ)
M1 (X̃) (C.27b)

⦀Dµv
∗
ω,µ⦀γ

≤
8M̂(A∣F )M̂(A∣G)

dA(γ)
M2 (X̃) ∥ω∥ (C.27c)

and, more generally, for every k ≥ 2,

ÅÅÅÅÅD
k
v
∗
ω,µ

ÅÅÅÅÅγ
≤ ak

⎛
⎜⎜
⎝

max (M̂(A∣F ), M̂(A∣G))
2

dA(γ)2
M̄k+1 (X̃)max (1,∥ω∥)

⎞
⎟⎟
⎠

2k−1

(C.27d)

where ak is a positive constant independant of X, (F,G), ω and µ.

Remark C.17. To conclude the proof of Proposition C.8, we only need estimates on v∗, this is why we
did not give estimates on z∗ in the above statement. Such estimates will be used in the following proof
though.

Proof of Lemma C.16. According to (C.19a) and the contraction mapping theorem, for all (ω, µ) ∈
Rp × Rs, Oγ

ω,µ admits a unique fixed point

(z∗γ,ω,µ, v∗γ,ω,µ)

Let γ ′ ∈]λmax (A∣F ) ,min(0, λmin (A∣G))[ satisfying (C.10). According to remark C.13, we have

H
min(γ,γ ′)

⊂ H
max(γ,γ ′)

so the fixed point (z∗min(γ,γ ′),ω,µ, v
∗
min(γ,γ ′),ω,µ) is also a fixed point of Omax(γ,γ ′)

ω,µ . By uniqueness, this
proves that the two fixed points coincide. Denote this unique fixed point by (z∗ω,µ, v∗ω,µ).

To prove that the fixed point depends smoothly on (ω, µ), the idea is to apply the global inverse
function theorem to the map

G
γ
∶

H
γ × Rp × Rs → H

γ × Rp × Rs

((z, v), ω, µ) ↦ (Oγ
ω,µ(z, v) − (z, v), ω, µ)
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Indeed, according to Lemma C.15, Gγ is smooth and according to (C.19a), Gγ is injective and its
differential is at any point invertible. According to the global inverse function theorem,

V
γ def
= G

γ(Hγ
× Rp × Rs)

is an open set of Hγ ×Rp ×Rs, the map Gγ ∶ Hγ ×Rp ×Rs → V
γ is a diffeomorphism and its inverse

is smooth. Denote by
(Gγ)−1

1 ∶ V
γ
→ H

γ

the first coordinate of (Gγ)−1. By definition of (z∗, v∗), for every (ω, µ) ∈ Rp × Rs,

G
γ((z∗ω,µ, v∗ω,µ), ω, µ) = ((0, 0), ω, µ)

so
(z∗ω,µ, v∗ω,µ) = (Gγ)−1

1 ((0, 0), ω, µ)

Since (Gγ)−1 is smooth, this completes the first part of the proof of Lemma C.16.

Fix (ω, µ) ∈ Rp × Rs. From the fixed point equation

(z∗ω,µ, v∗ω,µ) = Oγ
ω,µ (z∗ω,µ, v∗ω,µ) (C.28)

and (C.17), (C.23a), it follows that for all t ≥ 0,

∥(z∗ω,µ, v∗ω,µ)(t)∥ ≤
M̂(A∣F )
dA(γ)

p−1

n−1

e
αt ∥ω∥ +

2 max (M̂(A∣F ), M̂(A∣G))
dA(γ)

M1 (X̃) eγt ∥(z∗ω,µ, v∗ω,µ)∥γ

so, according to (C.25) and the inequality eαt ≤ eγt,

∥(z∗ω,µ, v∗ω,µ)∥γ ≤
2M̂(A∣F )
dA(γ)

p−1

n−1

∥ω∥ (C.29)

Plugging (C.22) (case k = 0) into (C.28), we obtain, for all t ≥ 0,

∥v∗ω,µ(t)∥ ≤
1

β − γ

M̂(A∣G)
dA(γ)

q−1

n−1

e
γt
M1 (X̃) ∥(z∗ω,µ, v∗ω,µ)∥γ (C.30)

Plugging (C.29) into (C.30) and using p+ q = n, we obtain estimate (C.27a). Note that (C.26) follows
from (C.29).

Taking the derivative of (C.28) with respect to the variable ω and using (C.19a) and (C.19b), we
get

⦀Dω(z∗ω,µ, v∗ω,µ)⦀γ
≤

2M̂(A∣F )
dA(γ)

p−1

n−1

(C.31)

Moreover, taking the derivative of (C.28) with respect to the variable ω, we obtain, for every ω1 ∈ Rp

and every t ≥ 0,

Dωv
∗
ω,µ.ω1(t) = −∫

+∞

t
e
−(s−t)Ã2 (Dz,vg(z∗ω,µ(s), v∗ω,µ(s), µ).Dω(z∗ω,µ, v∗ω,µ).ω1(s)) ds

so using (C.17) and (C.20), we obtain

⦀Dωv
∗
ω,µ⦀γ

≤
1

β − γ

M̂(A∣G)
dA(γ)

q−1

n−1

M1 (X̃)⦀Dω(z∗ω,µ, v∗ω,µ)⦀γ
(C.32)

Plugging (C.31) into (C.32) and using p + q = n, we get estimate (C.27b).

Taking the derivative of (C.28) with respect to the variable µ and using (C.19a) and (C.19c), we
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get

⦀Dµ(z∗ω,µ, v∗ω,µ)⦀γ
≤

4 max (M̂(A∣F ), M̂(A∣G))
dA(γ)

M2 (X̃) ∥(z∗ω,µ, v∗ω,µ)∥γ (C.33)

Moreover, taking the derivative of (C.28) with respect to the variable µ, we obtain, for every µ1 ∈ Rs

and every t ≥ 0,

Dµv
∗
ω,µ.µ1(t) = −∫

+∞

t
e
−(s−t)Ã2 (Dz,vg(z∗ω,µ(s), v∗ω,µ(s), µ).Dµ(z∗ω,µ, v∗ω,µ).µ1(s)) ds

− ∫
+∞

t
e
−(s−t)Ã2 (Dµg(z∗ω,µ(s), v∗ω,µ(s), µ).µ1) ds

so using (C.17) and (C.20), we obtain

⦀Dµv
∗
ω,µ⦀γ

≤
1

β − γ

M̂(A∣G)
dA(γ)

q−1

n−1

(M1 (X̃)⦀Dµ(z∗ω,µ, v∗ω,µ)⦀γ
+M2 (X̃) ∥(z∗ω,µ, v∗ω,µ)∥γ) (C.34)

Plugging (C.33) into (C.34), we get

⦀Dµv
∗
ω,µ⦀γ

≤
1

β − γ

M̂(A∣G)
dA(γ)

q−1

n−1

M2 (X̃) ∥(z∗ω,µ, v∗ω,µ)∥γ
⎛
⎜
⎝

1 +
4 max (M̂(A∣F ), M̂(A∣G))

dA(γ)
M1 (X̃)

⎞
⎟
⎠

Using (C.2c), (C.10), (C.13), the inequality

max (M(A∣F ),M(A∣G))m (F,G) ≤M(A)

and the inequality max(p, q) < n, we get

4 max (M̂(A∣F ), M̂(A∣G))
dA(γ)

M1 (X̃) ≤ 1

so

⦀Dµv
∗
ω,µ⦀γ

≤ 2
1

β − γ

M̂(A∣G)
dA(γ)

q−1

n−1

M2 (X̃) ∥(z∗ω,µ, v∗ω,µ)∥γ (C.35)

Plugging (C.29) into (C.35) and using p + q = n, we get estimate (C.27c).

We are now going to prove (C.27d). To avoid clutter with constants independant of X, (F,G), ω
and µ in the following estimates, we introduce the following notation: for any real positive functions
δ1, δ2 depending on (X,F,G, ω, µ) we define the order relation ≾ by

δ1 ≾ δ2 ⟺ ∃C > 0, δ1 ≤ Cδ2 (C.36)

For every k ≥ 2 and (ω, µ) ∈ Rp × Rs, let

uk
def
=

max (M̂(A∣F ), M̂(A∣G))
dA(γ)

max (1,∥(z∗ω,µ, v∗ω,µ)∥γ) M̄k (X̃) (C.37)

Note that (uk) is increasing. We are going to prove by induction on k that, for every k ≥ 1,

ÅÅÅÅÅD
k(z∗ω,µ, v∗ω,µ)

ÅÅÅÅÅγ
≾ u

2k−1
k+1 (C.38)

Inequalities (C.31) and (C.33) yield

⦀D(z∗ω,µ, v∗ω,µ)⦀γ
≾ u2
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which proves (C.38) in the case k = 1. Let k ≥ 2. Deriving (C.28), we get

D
k(z∗ω,µ, v∗ω,µ) = Dz,v O

γ((z∗ω,µ, v∗ω,µ), ω, µ).Dk(z∗ω,µ, v∗ω,µ)

+
k

∑
j=2

∑
i1,...,ij≥1
i1+⋅⋅⋅+ij=k

Ci1,...,ijD
j Oγ((z∗ω,µ, v∗ω,µ), ω, µ).

(Di1((z∗ω,µ, v∗ω,µ), ω, µ), . . . , Dij((z∗ω,µ, v∗ω,µ), ω, µ)) (C.39)

where the Ci1,...,ij are the constants appearing in the standard Faà di Bruno’s formula. According
to (C.19d), for all j ≥ 2

ÅÅÅÅÅD
j Oγ((z∗ω,µ, v∗ω,µ), ω, µ)

ÅÅÅÅÅγ
≾ uj+1 (C.40)

Plugging estimates (C.19a) and (C.40) into (C.39) and using the induction hypothesis, we get

ÅÅÅÅÅD
k(z∗ω,µ, v∗ω,µ)

ÅÅÅÅÅγ
≾ max

2≤j≤k
i1,...,ij≥1
i1+⋅⋅⋅+ij=k

uj+1

j

∏
l=1

u
2il−1
il+1

≾ uk+1 max
2≤j≤k

i1,...,ij≥1
i1+⋅⋅⋅+ij=k

u
∑jl=1(2il−1)
k+1

≾ u
2k−1
k+1

which proves (C.38) for all k ≥ 1 by induction. According to (C.29),

max (1,∥(z∗ω,µ, v∗ω,µ)∥γ) ≾
max (M̂(A∣F ), M̂(A∣G))

dA(γ)
max (1,∥ω∥) (C.41)

Plugging (C.41) into (C.38), we finally obtain estimate (C.27d). This concludes the proof of Lemma C.16.

Let us define the map

φ̃∶
Rp × Rs → Rq

(ω, µ) ↦ φ̃µ(ω) ∶= v∗ω,µ(0)

Lemma C.18. For every µ ∈ Rs, the global γ-stable set W s,γ (0, X̃µ) is exactly the graph of the
map φ̃µ ∶ R

p
→ Rq. Moreover, φ̃ is smooth and for every k ≥ 0, every (ω, µ) ∈ Rp × Rs and every

(ωi, µi)1≤i≤k ∈ (Rp × Rs)k, the following formula holds:

D
k
φ̃(ω, µ).(ωi, µi)1≤i≤k = D

k
v
∗
ω,µ.(ωi, µi)1≤i≤k(0) (C.42)

Proof of Lemma C.18. Fix µ ∈ Rs. Let (ω, v0) ∈ Rp × Rq. We are going to prove the following
equivalence:

(ω, v0) ∈W s,γ (0, X̃µ) ⟺ v0 = φ̃µ(ω)
Let (z, v) ∶ [0,+∞) → Rp × Rq be a continuous map such that z(0) = ω. By a straighforward
computation, (z, v) is an orbit of X̃µ (that is, a solution of (C.15)) if and only if for every 0 ≤ t ≤ τ ,

z(t) = etÃ1ω + ∫
t

0
e
(t−s)Ã1f(z(s), v(s), µ)ds

v(t) = e−(τ−t)Ã2v(τ) − ∫
τ

t
e
−(s−t)Ã2g(z(s), v(s), µ)ds

If we assume that (z, v) ∈ H
γ , then, according to (C.16a), (C.16c) and (C.17), the second integral

above converges as τ goes to +∞. Letting τ tend to +∞, we get that (z, v) ∈ H
γ and (z, v) is a
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solution of (C.15) if and only if (z, v) ∈ Hγ and for every t ≥ 0,

z(t) = etÃ1ω + ∫
t

0
e
(t−s)Ã1f(z(s), v(s), µ)ds

v(t) = −∫
+∞

t
e
−(s−t)Ã2g(z(s), v(s), µ)ds

(C.43)

i.e. if and only if (z, v) is a fixed point of Oγ
ω,µ.

From now on (z, v) denotes the orbit of X̃µ starting from (ω, v0) at t = 0, that is, (z(t), v(t)) =
X̃
t
µ(ω, v0). We have the following equivalences:

(ω, v0) ∈W s,γ (0, X̃µ)
⟺ (z, v) ∈ Hγ by (C.6)

⟺ (z, v) is a fixed point of Oγ
ω,µ by the above reasoning

⟺ (z, v) = (z∗ω,µ, v∗ω,µ) by Lemma C.15

⟺ (z(0), v(0)) = (z∗ω,µ(0), v∗ω,µ(0)) by uniqueness in Cauchy-Lipschitz theorem

⟺ (ω, v0) = (ω, φ̃µ(ω)) by definition of φ̃µ

which conclude the first part of the proof. Let E0 be the “evaluation at time t = 0” map

E0∶
H
γ
q → Rq

v ↦ v(0)

By definition of the γ-norm, E0 is a linear continuous map (with ∥E0∥ ≤ 1) and as such is smooth.
Since

φ̃ = E0 ◦ v
∗

it follows from Lemma C.15 that φ̃ is smooth and (C.42) holds true. This concludes the proof of
Lemma C.18.

Plugging estimates (C.27) into (C.42) and using (C.13), (C.2c) and the fact that

M(A∣F )M(A∣G)m (F,G) ≤M(A)

we have, for every (ω, µ) ∈ Rp × Rs,

ÂÂÂÂÂφ̃(ω, µ)
ÂÂÂÂÂ ≾

M(A)
dA(γ)

M1 (X) ∥ω∥ (C.44a)

ÅÅÅÅÅDωφ̃(ω, µ)
ÅÅÅÅÅ ≾

M(A)
dA(γ)

M1 (X) (C.44b)

ÅÅÅÅÅDµφ̃(ω, µ)
ÅÅÅÅÅ ≾

M(A)
dA(γ)

M2 (X) ∥ω∥ (C.44c)

and, more generally, for every k ≥ 2,

ÅÅÅÅÅD
k
φ̃(ω, µ)ÅÅÅÅÅ ≾ (M(A)2

dA(γ)2
M̄k+1 (X)max (1,∥ω∥))

2k−1

(C.44d)

where ≾ is defined by (C.36). Let us now define

φ∶
F × Rs → G

(ω, µ) ↦ L
−1 (φ̃µ(L(ω)))

One can remark that
L (Graphφ) = Graph φ̃
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and, according to (C.12), we have, for every µ ∈ Rs,

L (W s,γ (0, Xµ)) =W s,γ (0, X̃µ)

so, according to Lemma C.18, we get that item 1 of Proposition C.8 holds true.
We are now going to prove estimates (C.9). According to the fact that L∣F and (L−1)∣Rq

are isometries, it follows that estimates (C.44) hold true for φ instead of φ̃, up to a formal re-
placement of ω ∈ Rp by z ∈ F . To conclude, it suffices to remark that these estimates are
valid for all γ ∈ IA satisfying (C.10). It is straightforward to check that the function dA(γ)
defined for all γ ∈]λmax (A∣F ) ,min(0, λmin (A∣G))] satisfying (C.10) is maximal at the point
min (0, (λmax (A∣F ) + λmin (A∣G)) /2) and its maximum is more than (2n−1

σ (A))−1, where σ (A)
is defined by (C.5). Letting γ tend to min (0, (λmax (A∣F ) + λmin (A∣G)) /2) in estimates (C.44), it
follows that estimates (C.9) hold true for some constants C1,0, C1,1, . . . independant of X, (F,G), ω
and µ.

It remains to prove item 2. Fix µ ∈ Rs. Let (z, v) be an orbit of Xµ. By definition of X̃µ, L(z, v)
is an orbit of X̃µ. According to (C.26), we have, for all t ≥ 0,

∥L(z(t), v(t))∥ ≤
2
√

2M̂(A∣F )
dA(γ)

p−1

n−1

∥L(z(0), v(0))∥

so, using (C.11), we get

∥(z(t), v(t))∥ ≤
4M̂(A∣F )m (F,G)

dA(γ)
p−1

n−1

∥(z(0), v(0))∥

Letting γ tend to min (0, (λmax (A∣F ) + λmin (A∣G)) /2) in the above estimate, there exists a positive
constant C (independant of X, (F,G), ω, µ and (z, v)) such that for all t ≥ 0,

∥(z(t), v(t))∥ ≤ CM(A)σ (A) ∥(z(0), v(0))∥

The above estimate implies that for every η > 0 and every 0 < δ ≤ η

CM(A)σ(A) ,

W
s,γ (0, Xµ) ∩BRn(0, δ) ⊂W s,γ

η (0, Xµ) ∩BRn(0, δ)

The other inclusion being straightforward, item 2 follows. This concludes the proof of Proposition C.8.

C.3.3 Local estimates

In this section, we state and prove a precise version of the local stable manifold theorem. This version
is given by Theorem C.19 below. Recall that we defined four hypotheses on smooth families of vector
fields in subsection C.3.1. Given a parameter r > 0 and a smooth family of vector fields (Xµ)µ∈Rs
satisfying the hypotheses 1 and 2, let

M1 (X, r)
def
= sup

(x,µ)∈B((0,0),r)
⦀DxX(x, µ) −A⦀

where A ∶= DxX(0, 0), and for every integer k ≥ 2, let

Mk (X, r)
def
= sup

2≤j≤k
sup

(x,µ)∈B((0,0),r)

ÅÅÅÅÅD
j
X(x, µ)ÅÅÅÅÅ

where B((0, 0), r) is the closed ball in Rn × Rs of center (0, 0) and radius r and let

M̄k (X, r)
def
= max (1,Mk (X, r)) (C.45)

Theorem C.19 (Local estimates for the stable manifold theorem with parameters). There exists
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a positive constant C2 ≥ 1 and a sequence of positive constants (C2,k)k∈N (both depending on the
dimension n) such that for every smooth family of vector fields (Xµ)µ∈Rs satisfying the hypotheses 1
and 2, every partially hyperbolic splitting (F,G) of A ∶= DxX(0, 0) and every r > 0,

1. Uniqueness of the stable sets: for every γ, γ ′ ∈ IA (see (C.4)) and every µ ∈ Rs such that

∥µ∥ ≤ 1

C2
min

⎛
⎜
⎝

min (dA(γ), dA(γ ′))
M(A)M̄2 (X, r)

, r
⎞
⎟
⎠

one has
W

s,γ (0, Xµ) =W s,γ
′

(0, Xµ) (C.46)

2. Graph structure: there exists a (non unique) smooth map

φ∶
F × Rs → G
(z, µ) ↦ φµ(z)

such that for every γ ∈ IA, every µ ∈ Rs such that

∥µ∥ ≤ 1

C2
min

⎛
⎜
⎝

min (dA(γ), σ (A)−1)
M(A)M̄2 (X, r)

, r
⎞
⎟
⎠

every 0 < η ≤ η̃ and every 0 < δ ≤ η

CM(A)σ(A) , the following equality holds:

W
s,γ
η (0, Xµ) ∩BRn(0, δ) = Graph (φµ) ∩BRn(0, δ) (C.47)

where
η̃ =

1

C2
min ((σ (A)M(A)M̄2 (X, r))−1

, r) (see (C.2b) and (C.5))

3. Controls on φ: for every (z, µ) ∈ BF (0, δ̃) ×BRs (0, δ̃),

∥φ(z, µ)∥ ≤ C2,0σ (A)2
M(A)2

M2 (X, r) (∥z∥ + ∥µ∥)∥z∥ (C.48a)

⦀Dzφ(z, µ)⦀ ≤ C2,1σ (A)2
M(A)2

M2 (X, r) (∥z∥ + ∥µ∥) (C.48b)

⦀Dµφ(z, µ)⦀ ≤ C2,1σ (A)M(A)M2 (X, r) ∥z∥ (C.48c)

where
δ̃ =

1

C2σ (A)M(A) min ((σ (A)M(A)M̄2 (X, r))−1
, r)

and more generally, using the norm ∥(z, µ)∥ = ∥z∥ + ∥µ∥ on F × Rs, for all k ≥ 2,

ÅÅÅÅÅD
k
φ(z, µ)ÅÅÅÅÅ ≤ C2,k (σ (A)2

M(A)2
max (σ (A)M(A)M̄2 (X, r) , r−1)k−1

M̄k+1 (X, r))
2k−1

(C.48d)

Remark C.20. If the singularity is hyperbolic (i.e. λmin (A∣G) > 0), then the global γ-stable set
W

s,γ (0, Xµ) coincide with the global stable set W s(0, Xµ) (for µ sufficiently small).

Remark C.21. If one is working with a different norm than the Euclidean one, one will have the same
result but with different constants C2, C2,0, C2,1, . . .

Proof of Theorem C.19. Fix a smooth family of vector fields (Xµ)µ∈Rs satisfying the hypotheses 1
and 2, a partially hyperbolic splitting (F,G) of A = DxX(0, 0) and r > 0. Fix a smooth plateau map
χ ∶ [0,+∞]→ [0, 1] such that

χ(u) = {1 if 0 ≤ u ≤ 1

0 if u ≥ 2
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For every k ≥ 1, let ak = max (1, supu≥0
»»»»»χ

(k)(u)»»»»»). For any 0 < ξ ≤ 1, let us define the “truncated”
smooth family of vector fields (Xξ

µ)µ∈Rs by

∀(x, µ) ∈ Rn × Rs, Xξ(x, µ) = Ax + χ(∥(x, µ)∥
2

ξ2
) θ(x, µ)

where θ(x, µ) = X(x, µ) −Ax. We now state a claim about Xξ.

Claim 1. There exists a sequence of constants (ck)k≥1, ck ≥ 1, independant of X, (F,G) and r, such
that for every 0 < ξ ≤ min(1, r/

√
2),

1. Xξ is a smooth family of vector fields satisfying the hypotheses 1, 2 and 4.

2. DxX
ξ(0, 0) = A.

3. The derivatives of Xξ satisfy

M1 (Xξ) ≤ c1ξM2 (X, r) (C.49a)

∀k ≥ 2,Mk (Xξ) ≤ ckξ2−k
Mk (X, r) (C.49b)

Moreover, for every γ ∈ IA, every 0 < ξ ≤ ξ(γ) where

ξ(γ) def
= min ( 1

c1C1

dA(γ)
M(A)M̄2 (X, r)

,
r√
2
) ∈ ]0,min(1, r/

√
2)] (C.50)

every µ ∈ Rs such that ∥µ∥ ≤ ξ/2, every 0 < η ≤ ξ/2 and every 0 < δ ≤ η

CM(A)σ(A) , the following
equality holds:

W
s,γ
η (0, Xµ) ∩BRn(0, δ) =W s,γ (0, X

ξ
µ) ∩BRn(0, δ) (C.51)

Proof of claim 1. Fix 0 < ξ ≤ min(1, r/
√

2). Let (x, µ) ∈ Rn × Rs. By definition of χ,

X
ξ(x, µ) = {X(x, µ) if ∥(x, µ)∥ ≤ ξ

Ax if ∥(x, µ)∥ ≥ ξ
√

2
(C.52)

It follows from (C.52) that DxX
ξ(0, 0) = A and Xξ satisfies the hypotheses 1, 2 and 4.

We are now going to prove estimates (C.49). According to (C.52), we only need estimates on the
derivatives of Xξ on BRn×Rs(0, ξ

√
2). As in the proof of Lemma C.16 (see (C.36)), we introduce a

notation to avoid clutter with constants independant of X, ξ, r, x and µ in the following estimates:
for any real positive functions δ1, δ2 depending on (X, ξ, r, x, µ) where 0 < ξ ≤ min(1, r/

√
2) and

(x, µ) ∈ B(0, ξ
√

2), we define the order relation ≾ by

δ1 ≾ δ2 ⟺ ∃C > 0, δ1 ≤ Cδ2 (C.53)

Using θ(0, 0) = 0, Dθ(0, 0) = 0 and Dk
θ = D

k
X for all k ≥ 2, if follows from the mean value theorem

that

∥θ(x, µ)∥ ≾ ξ2
M2 (X, r)

⦀Dθ(x, µ)⦀ ≾ ξM2 (X, r)
∀k ≥ 2,Mk (θ) =Mk (X, r)

(C.54)

For every (x, µ) ∈ B(0, ξ
√

2), let

N
ξ(x, µ) = ∥(x, µ)∥2

ξ2

and let χξ = χ ◦Nξ. Using the standard Faà di Bruno’s formula, we obtain, for all j ≥ 1,

ÅÅÅÅÅD
j
χ
ξ(x, µ)ÅÅÅÅÅ ≾ ξ

−j (C.55)
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Using estimates (C.54) and (C.55), we get

ÅÅÅÅÅDX
ξ(x, µ) −AÅÅÅÅÅ ≾ ξ

−1
ξ

2
M2 (X, r) + ξM2 (X, r) ≾ ξM2 (X, r)

Since A = DxX
ξ(0, 0), it follows that estimate (C.49a) holds true for some constant c1 ≥ 1 independant

of X, (F,G), ξ and r. Using Leibniz formula and estimates (C.54), (C.55), we obtain, for all k ≥ 2,

ÅÅÅÅÅD
k(χξθ)(x, µ)ÅÅÅÅÅ ≾ ξ

2−k
Mk (X, r)

Since Dk(χξθ) = D
k
X
ξ for all k ≥ 2, it follows that (C.49b) holds true for some constant ck ≥ 1

independant of X, (F,G), ξ and r.
Now, let us fix γ ∈ IA. Let 0 < ξ ≤ ξ(γ) (see (C.50)). According to (C.49a), condition (C.7) is

satisfied for γ and Xξ so according to item 2 of Proposition C.8, we obtain, for every µ ∈ Rs, every
η > 0 and every 0 < δ ≤ η

CM(A)σ(A) ,

W
s,γ
η (0, Xξ

µ) ∩BRn(0, δ) =W s,γ (0, X
ξ
µ) ∩BRn(0, δ)

According to (C.52), for every µ ∈ Rs such that ∥µ∥ ≤ ξ/2 and every 0 < η ≤ ξ/2,

W
s,γ
η (0, Xµ) =W s,γ

η (0, Xξ
µ)

Hence, (C.51) holds true. This concludes the proof of claim 1.

According to claim 1, for every 0 < ξ ≤ min(1, r/
√

2), Xξ is a smooth family of vector fields
satisfying the hypotheses 1, 2 and 4 and (F,G) is a partially hyperbolic splitting of DxX

ξ(0, 0) = A.
Denote by φξ the smooth map associated with Xξ and (F,G) by Proposition C.8 (well defined for all
ξ small enough by (C.49a)).

Let γ, γ ′ ∈ IA. Let ξ = min(ξ(γ), ξ(γ ′)) (see (C.50)). Estimate (C.49a) implies that γ and γ
′

satisfy (C.7) for Xξ. In particular φξ is well defined. Let µ ∈ Rs such that ∥µ∥ ≤ ξ/2, 0 < η ≤ ξ/2
and 0 < δ ≤ η

CM(A)σ(A) . We have

W
s,γ
η (0, Xµ) ∩BRn(0, δ) =W s,γ (0, X

ξ
µ) ∩BRn(0, δ) using (C.51)

= Graph (φξµ) ∩BRn(0, δ) using item 1 of Proposition C.8

and since the above computation holds true for γ ′ as well, it follows that

W
s,γ
η (0, Xµ) ∩BRn(0, δ) =W s,γ

′

η (0, Xµ) ∩BRn(0, δ)

and finally,
W

s,γ (0, Xµ) =W s,γ
′

(0, Xµ) (C.56)

It follows that item 1 of Theorem C.19 holds true.
Let

γ̃
def
=
λmax (A∣F ) +min (0, λmin (A∣G))

2

One can remark that
dA(γ̃) ≥ (2

n−1
σ (A))−1

Let
ξ̃

def
= min ((c1C12

n−1
σ (A)M(A)M̄2 (X, r))

−1
,
r√
2
) ≤ ξ(γ̃) (C.57)

Let φ def
= φ

ξ̃. Estimate (C.49a) implies that γ̃ satisfies (C.7) for X ξ̃ so φ is well defined. According
to Proposition C.8 and claim 1, for every µ ∈ Rs such that ∥µ∥ ≤ ξ̃/2, every 0 < η ≤ ξ̃/2 and every
0 < δ ≤ η

CM(A)σ(A) ,

W
s,γ̃
η (0, Xµ) ∩BRn(0, δ) = Graph (φµ) ∩BRn(0, δ)
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According to (C.56), it follows that for every γ ∈ IA, every µ ∈ Rs such that ∥µ∥ ≤ min(ξ̃, ξ(γ))/2,
every 0 < η ≤ ξ̃/2 and every 0 < δ ≤ η

CM(A)σ(A) ,

W
s,γ
η (0, Xµ) ∩BRn(0, δ) = Graph (φµ) ∩BRn(0, δ) (C.58)

Hence, item 2 of Theorem C.19 holds true.

We are now going to prove estimates (C.48). Using (C.51), one can remark that for every 0 < ξ ≤ ξ̃
and every ∥µ∥ ≤ ξ/2,

Graph (φµ) ∩BRn(0, δ(ξ)) = Graph (φξµ) ∩BRn(0, δ(ξ))

where
δ(ξ) def

=
ξ

2CM(A)σ (A)
It follows that for every 0 < ξ ≤ ξ̃, every ∥µ∥ ≤ ξ/2 and every z ∈ F such that ∥z + φµ(z)∥ < δ(ξ),

φµ(z) = φξµ(z)

In order to obtain the estimates about φ and its derivatives at a given point (z, µ), the idea is to
remark that it will be the same estimates for φξ for some well chosen ξ = ξ(z, µ). Plugging (C.49a)
into (C.9a), we obtain, for every (z, µ) ∈ F × Rs,

∥φ(z, µ)∥ ≤
C1,0

2n−1C1

∥z∥

It follows from the previous estimate that for every (z, µ) ∈ F × Rs \ {(0, 0)} such that

∥z∥ < (CM(A)σ (A))−1
min

⎛
⎜⎜⎜
⎝

1

8c1(C1 + C1,0)2n−1
(σ (A)M(A)M̄2 (X, r))−1

,
r

8
√

2 (1 +
C1,0

2n−1C1
)

⎞
⎟⎟⎟
⎠

∥µ∥ < (CM(A)σ (A))−1
min ( 1

8c1C12n−1
(σ (A)M(A)M̄2 (X, r))−1

,
r

8
√

2
)

(C.59)

the number
ξ(z, µ) def

= 4CM(A)σ (A) ((1 +
C1,0

2n−1C1

)∥z∥ + ∥µ∥) (C.60)

satisfies 0 < ξ(z, µ) ≤ ξ̃ and the following property: for every (z′, µ′) ∈ F × Rs,

(ÂÂÂÂÂz
′ÂÂÂÂÂ < 2∥z∥ and ÂÂÂÂÂµ

′ÂÂÂÂÂ < 2∥µ∥) ⟹ (ÂÂÂÂÂz
′
+ φµ′(z′)

ÂÂÂÂÂ < δ(ξ(z, µ)) and ÂÂÂÂÂµ
′ÂÂÂÂÂ ≤ ξ(z, µ)/2)

Let us now fix (z, µ) ∈ F × Rs \ {(0, 0)} satisfying (C.59). According to the above arguments, the
maps φ and φξ(z,µ) coincide on BF (0, 2∥z∥) ×BRs(0, 2∥µ∥), in particular all their derivatives at the
point (z, µ) coincide. Hence, we get

∥φ(z, µ)∥ = ÂÂÂÂÂφ
ξ(z,µ)(z, µ)ÂÂÂÂÂ

≤ C1,0σ (A)M(A)M1 (Xξ(z,µ)) ∥z∥ using (C.9a)

≤ c1C1,0σ (A)M(A)ξ(z, µ)M2 (X, r) ∥z∥ using (C.49a)

≤ 4c1C1,0C (1 +
C1,0

2n−1C1

)σ (A)2
M(A)2

M2 (X, r) ∥z∥ (∥z∥ + ∥µ∥) using (C.60)

so estimate (C.48a) holds true (for some different constants). By the same arguments, we obtain
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estimates (C.48b) and (C.48c). Using (C.49b), we get, for all k ≥ 2,

M̄k+1 (X ξ̃) ≤ max (1, ck+1ξ̃
1−k

Mk+1 (X))

≤ ck+1ξ̃
1−k

M̄k+1 (X, r)

Using (C.57), we get, for all k ≥ 2,

M̄k+1 (X ξ̃) ≤ ck+1 max
⎛
⎜
⎝
(c1C12

n−1
σ (A)M(A)M̄2 (X, r))

k−1
,(

√
2
r )

k−1⎞
⎟
⎠
M̄k+1 (X, r)

≤ ck+1 max ((c1C12
n−1)k−1

,
√

2
k−1)max (σ (A)M(A)M̄2 (X, r) , r−1)k−1

M̄k+1 (X, r)

Plugging this estimate into (C.9d) applied to φξ̃ = φ, it follows that (C.48d) holds true. This concludes
the proof of Theorem C.19.

C.4 Estimates for vector fields vanishing on submanifolds

Fix n ∈ N and a linear subspace G of Rn. Denote by ∥.∥ the Euclidean norm on Rn. Let Ω be an
open neighbourhood of 0 in Rn. Fix a smooth vector field Y ∶ Ω→ Rn. Assume that

1. Y vanishes on Ω0 ∶= Ω ∩G;

2. For every µ ∈ Ω0, there exists a decomposition Fµ ⊕G = Rn stabilized by Aµ ∶= DY (µ) and such
that

λmax ((Aµ)∣Fµ) < 0

For every µ ∈ Ω0, let

β(µ) def
= min (1,

»»»»»λmax ((Aµ)∣Fµ)
»»»»»)
n−1

(see (C.1a)) (C.61)

Let Fs be the stable foliation associated with the contracted subspace G on which the vector field
Y vanishes, that is, the partition

Fs def
= {W s(µ, Y ) ∣ µ ∈ Ω0}

where the stable manifolds W s(µ, Y ) are called the leaves of the foliation Fs.
For every integer k ≥ 2, every µ ∈ Ω0 and every r > 0 such that BRn(µ, r) ⊂ Ω, let

Mk (Y, µ, r)
def
= sup

2≤j≤k
sup

y∈BRn (µ,r)

ÅÅÅÅÅD
j
Y (y)ÅÅÅÅÅ

and
M̄k (Y, µ, r)

def
= max (1,Mk (Y, µ, r))

Our next theorem states that in this context, the foliation Fs can be locally smoothly straightened
in the neighbourhood of any point µ ∈ Ω0.

Theorem C.22 (Local straightening of the stable foliation of a vector field). There exists two positive
constants C3 ≥ C

′
3 ≥ 1, a sequence of positive constants (C3,k)k≥2 and a sequence of integers (Nk)k≥2

(all independant of Y ) such that for every map r ∶ Ω0 → ]0, 1] satisfying

∀µ ∈ Ω0, BRn(µ, r(µ)) ⊂ Ω

there exists

• two families (Uµ)µ∈Ω0
and (Vµ)µ∈Ω0

of open sets of Rn;
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•µ0

Vµ0

•µ

(µ + Fµ0
) ∩ Vµ0

G

ξµ0

•µ0

Uµ0

•µ

W
s(µ, Y ) ∩ Uµ0

G

Figure C.2 – The local coordinate system ξµ0
straightens the stable foliation induced by Fs on Uµ0

.

• a family of smooth diffeomorphisms

(ξµ ∶ Uµ → Vµ)µ∈Ω0

satisfying the following properties. Given µ0 ∈ Ω0:

1. Both Uµ0
and Vµ0

are neighbourhoods of µ0. More precisely, they both contain the open ball
BRn (µ0, Rµ0

) where

Rµ0

def
=

β(µ0)
C3m (Fµ0

, G)2
M(Aµ0

)
min( β(µ0)

M(Aµ0
)M̄2 (Y, µ0, r(µ0))

, r(µ0)) (C.62)

and M(Aµ0
) is defined by (C.2b).

2. Fs foliates Uµ0
and ξµ0

is a local coordinate system straightening the stable foliation Fs (see
figure C.2). More precisely,

Uµ0
= ⨆
µ∈Ω0∩Uµ0

W
s(µ, Y ) ∩ Uµ0

and, for every µ ∈ Ω0 ∩ Uµ0
,

ξµ0
(W s(µ, Y ) ∩ Uµ0

) = (µ + Fµ0
) ∩ Vµ0

Moreover, for every µ ∈ Ω0 ∩ Uµ0
,

W
s(µ, Y ) ∩ Uµ0

=W
s,γ
η (µ, Y ) ∩ Uµ0

where

γ = −

»»»»»λmax ((Aµ0
)∣Fµ0

)»»»»»
2

η =
1

C ′3
min( β(µ0)

M(Aµ0
)M̄2 (Y, µ0, r(µ0))

, r(µ0))

3. Identifying Rn and Fµ0
×G, the local coordinate system has the following form:

ξµ0
(z, µ) = (z, µ) + (0, ξ̃µ0

(z, µ))

where ξ̃µ0
(0, µ) = 0.

4. For every 0 < ε ≤ 1, ξµ0
restricted to BRn (µ0, εRµ0

) is ε-close to the identity with respect to the
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C
1-norm:

∥ξµ0
− Id∥

C1 ≤ ε in restriction to BRn (µ0, εRµ0
)

ÂÂÂÂÂξ
−1
µ0
− Id

ÂÂÂÂÂC1 ≤ ε in restriction to BRn (µ0, εRµ0
)

5. The Ck-norms have a sub-polynomial growth with respect to β(µ0)−1: more precisely, for every
k ≥ 2,

∥ξµ0
∥
Ck
,
ÂÂÂÂÂξ

−1
µ0

ÂÂÂÂÂCk ≤ C3,k (
M(Aµ0

)M̄k+1 (Y, µ0, r(µ0))
β(µ0)r(µ0)

)
Nk

6. For every µ1 ∈ Ω0, ξµ0
and ξµ1

“coincide” on Uµ0
∩Uµ1

modulo the choice of the direction on which
the stable manifolds are projected. More precisely, if we denote by πµ the linear projection along G
onto Fµ for every µ ∈ Ω0, we have

ξµ0
− ξµ1

= πµ0
− πµ1

in restriction to Uµ0
∩ Uµ1

Remark C.23. The charts (ξµ0
)µ0∈Ω0

do not form a foliation coordinate atlas because ξµ0
straightens

the leafW s(µ, Y )∩Uµ0
onto the affine subspace µ+Fµ0

which depends on µ0. Nevertheless, identifying
Rn and Fµ0

×G, one only needs to compose ξµ0
with (π∣Fµ0

, IdG) where π denotes a linear projection
along G onto a fixed complement of G (for example G⊥) to obtain a foliation coordinate atlas. This
would change the estimates on the norms of the derivatives of ξ−1

µ0
by a factor m (Fµ0

, G) and would
make ξµ0

close to (π∣Fµ0
, IdG) in item 4. We did not make this choice for two reasons: there is no

canonical complement of G and we want to obtain the fact that ξµ0
can be made arbitrarily close to

Id with respect to the C1-norm.

Proof. Presentation of the proof as a consequence of Theorem C.19. Fix a map r ∶ Ω0 → ]0, 1]
satisfying

∀µ ∈ Ω0, B(µ, r(µ)) ⊂ Ω

Fix µ0 ∈ Ω0. Even if it means translating the vector field Y , one can assume that µ0 = 0. So, we will
prove the desired result in the neighbourhood of 0. Recall that we want to straighten, for all µ ∈ G
small enough, the local stable manifold W s

η (µ, Y ) for some η depending on µ. This leads us to define,
for every µ ∈ G and x ∈ Rn such that µ + x ∈ Ω,

X(x, µ) def
= Xµ(x) = Y (µ + x)

We will prove later on that the local stable manifolds of Y coincide with the local γ-stable manifolds
for some γ < 0 well chosen (see (C.66)). Hence, we focus on the description of those local γ-stable
manifolds. The local γ-stable manifold of µ ∈ Ω0 for Y is exactly the translation of the local γ-stable
manifold of 0 for Xµ by tµ ∶ x↦ µ + x. More precisely, for every µ ∈ Ω0 and every 0 < δ ≤ r(µ),

µ +W
s,γ
δ (0, Xµ) =W s,γ

δ (µ, Y ) (C.63)

According to the above equation, we are left to straighten the local γ-stable manifolds W s,γ
δ (0, Xµ) for

µ small enough.

Construction of ξµ0
. We are now going to extend X so that we can apply Theorem C.19. One

can remark that X is well defined on a neighbourhood of the closed ball BRn×G((0, 0), r(µ0)/2).
Multiplying X by a smooth plateau map equal to 1 on BRn×G((0, 0), r(µ0)/2) and vanishing outside of
a small neighbourhood of BRn×G((0, 0), r(µ0)/2), we obtain a smooth family of vector fields (as defined
in subsection C.3.1) defined on Rn ×G, still denoted by X. With this new smooth family of vector
fields, equation (C.63) implies: for every µ ∈ G such that ∥µ∥ ≤ r(µ0)/4 and every 0 < δ ≤ r(µ0)/4,
we have

µ +W
s,γ
δ (0, Xµ) =W s,γ

δ (µ, Y ) (C.64)

By hypothesis 1 on Y , for every µ ∈ G, Xµ(0, 0) = (0, 0). By hypothesis 2 on Y , (Fµ0
, G) is a partially

hyperbolic splitting of Aµ0
= Dz,vX(0, 0, 0) so X ∶= (Xµ)µ∈G is a smooth family of vector fields
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satisfying the hypotheses 1 and 2. Using the estimate

∀k ≥ 2, M̄k (X, r(µ0)/2) ≤ M̄k (Y, µ0, r(µ0)) (see (C.45))

it follows from Theorem C.19 applied to (X,Fµ0
, G) with r = r(µ0)/2 that there exists a smooth map

φ∶
Fµ0

×G → G
(z, µ) ↦ φµ(z)

such that for every µ ∈ BG (0, η̃), every 0 < η ≤ η̃ and every 0 < δ ≤
ηβ(µ0)

CM(Aµ0 )
,

W
s,γ
η (0, Xµ) ∩BRn(0, δ) = Graph (φµ) ∩BRn(0, δ) (C.65)

where

γ
def
= −

»»»»»λmax ((Aµ0
)∣Fµ0

)»»»»»
2

(C.66)

η̃
def
=

1

4C2
min( β(µ0)

M(Aµ0
)M̄2 (Y, µ0, r(µ0))

, r(µ0)) (see (C.2b)) (C.67)

Moreover, for every (z, µ) ∈ BFµ0
(0, δ̃) ×BG (0, δ̃),

∥φ(z, µ)∥ ≤ C2,0β(µ0)−2
M(Aµ0

)2
M̄2 (Y, µ0, r(µ0)) (∥z∥ + ∥µ∥)∥z∥ (C.68a)

⦀Dzφ(z, µ)⦀ ≤ C2,1β(µ0)−2
M(Aµ0

)2
M̄2 (Y, µ0, r(µ0)) (∥z∥ + ∥µ∥) (C.68b)

⦀Dµφ(z, µ)⦀ ≤ C2,1β(µ0)−1
M(Aµ0

)M̄2 (Y, µ0, r(µ0)) ∥z∥ (C.68c)

where

δ̃
def
=

β(µ0)
4C2M(Aµ0

) min( β(µ0)
M(Aµ0

)M̄2 (Y, µ0, r(µ0))
, r(µ0))

and more generally, using the norm ∥(z, µ)∥ = ∥z∥ + ∥µ∥ on Fµ0
× Rs, we have, for all k ≥ 2,

ÅÅÅÅÅD
k
φ(z, µ)ÅÅÅÅÅ ≤ C2,k [(

M(Aµ0
)

β(µ0)
)

2

×

max(
M(Aµ0

)M̄2 (Y, µ0, r(µ0))
β(µ0)

,
2

r(µ0)
)
k−1

M̄k+1 (Y, µ0, r(µ0))
⎤⎥⎥⎥⎥⎥⎥⎥⎦

2k−1

(C.68d)

Let

ψ∶
Fµ0

×G → Fµ0
×G

(z, µ) ↦ (z, µ + φ(z, µ)) (C.69)

One can rewrite (C.69) as ψ = Id+h where h(z, µ) = (0, φ(z, µ)). According to (C.68a), (C.68b),
(C.68c) and the mean value theorem, there exists a constant K ≥ 1 (independant of Y , r and µ0) such
that for every 0 < ε ≤ 1 and every (z, µ) ∈ BFµ0

(0, εδ̃
K
) ×BG (0, εδ̃

K
), we have

⦀Dh(z, µ)⦀ ≤ ⦀Dφ(z, µ)⦀ ≤
ε

2
(C.70)

and

Vµ0
⊂ BRn (0,

η̂

2
) (C.71a)

Uµ0
⊂ BRn (0,

η̂

2
) (C.71b)
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where

Vµ0

def
= L (Ṽµ0

)

Ṽµ0

def
= BFµ0

(0,
δ̃

K
) ×BG (0,

δ̃

K
)

Uµ0

def
= L (Ũµ0

)

Ũµ0

def
= ψ (BFµ0

(0,
δ̃

K
) ×BG (0,

δ̃

K
))

η̂
def
=

η̃β(µ0)
CM(Aµ0

)

and L ∶ Fµ0
×G → Rn is the canonical isomorphism (z, µ) ↦ z + µ. According to Lemma C.24, we

have
⦀L⦀ ≤ 1,

ÅÅÅÅÅL
−1ÅÅÅÅÅ ≤ m (Fµ0

, G) , (C.72)

the linear spaces Rn, Fµ0
and G being equipped with the Euclidean norm and the linear space Fµ0

×G
being equipped with ∥(z, µ)∥ = ∥z∥+ ∥µ∥. Using (C.70) with ε = 1, we get that ψ is injective on Ṽµ0

and according to the global inverse function theorem, ψ is invertible on Ṽµ0
. Let us define ξ̃µ0

as the
local inverse of ψ:

ξ̃µ0

def
= (ψ∣Ṽµ0

)−1
∶ Ũµ0

→ Ṽµ0

and let
ξµ0

= L ◦ ξ̃µ0
◦ L

−1
∶ Uµ0

→ Vµ0
(C.73)

Proof of item 2. The first thing to remark is the fact that ψ is constructed so that it maps straight
lines to the graphs induced by φ: more precisely, we have, for every µ ∈ G,

ψ (Fµ0
× {µ}) = (0, µ) +Graphφµ (C.74)

Identifying Graphφµ ⊂ Fµ0
×G with its image in Rn, we have, for every µ ∈ BG (0, δ̃

K
),

(µ +Graphφµ) ∩ Uµ0
= µ + (Graphφµ) ∩ (Uµ0

− µ)

⊂BRn (0,η̂)

using (C.71b)

= (µ +W s,γ
η̃ (0, Xµ)) ∩ Uµ0

using (C.65)

so, using (C.64), we get that

(µ +Graphφµ) ∩ Uµ0
=W

s,γ
η̃ (µ, Y ) ∩ Uµ0

(C.75)

Since the family (W s,γ
η̃ (µ, Y ))

µ∈BG(0, δ̃
K

) is pairwise disjoint, the family

((µ +Graphφµ) ∩ Uµ0
)
µ∈BG(0, δ̃

K
)



200 APPENDIX C. Stable manifold theorem with parameters

is also pairwise disjoint. The preceding remark allows us to write

Uµ0
= ξ

−1
µ0

(Vµ0
)

= ξ
−1
µ0

⎛
⎜⎜⎜⎜
⎝

⨆
µ∈BG(0, δ̃

K
)

(µ + Fµ0
) ∩ Vµ0

⎞
⎟⎟⎟⎟
⎠

= ⨆
µ∈BG(0, δ̃

K
)

ξ
−1
µ0

((µ + Fµ0
) ∩ Vµ0

) by injectivity of ξ−1
µ0

⊂ ⨆
µ∈BG(0, δ̃

K
)

(µ +Graphφµ) ∩ Uµ0
using (C.74)

⊂ ⨆
µ∈BG(0, δ̃

K
)

W
s,γ
η̃ (µ, Y ) ∩ Uµ0

using (C.75)

⊂ Uµ0

where ⊔ denotes a disjoint union. It follows that all the preceding inclusions must be equalities. As
consequences, we get that the family (W s,γ

η̃ (µ, Y ))
µ∈BG(0, δ̃

K
) foliates Uµ0

:

Uµ0
= ⨆
µ∈BG(0, δ̃

K
)

W
s,γ
η̃ (µ, Y ) ∩ Uµ0

(C.76)

and for every µ ∈ BG (0, δ̃
K
),

ξ
−1
µ0

((µ + Fµ0
) ∩ Vµ0

) =W s,γ
η̃ (µ, Y ) ∩ Uµ0

(C.77)

Let µ ∈ BG (0, δ̃
K
). Since any orbit contained in W

s(µ, Y ) must eventually enter Uµ0
, it follows

from (C.76) and the fact that such an orbit converges to µ, that

W
s,γ
η̃ (µ, Y ) ∩ Uµ0

=W
s(µ, Y ) ∩ Uµ0

(C.78)

According to (C.77) and (C.78), we have, for every µ ∈ BG (0, δ̃
K
),

ξ
−1
µ0

((µ + Fµ0
) ∩ Vµ0

) =W s(µ, Y ) ∩ Uµ0

so item 2 holds true.

Proof of item 3. This is a direct consequence of (C.69) and the fact that φ(0, µ) = 0 (see (C.68a)).

Proof of items 1 and 4. We have Dξ̃−1
µ0
= Id+Dh so

Dξ̃µ0
= Id+∑

k≥1

(−1)k (Dh)k (C.79)

Using (C.70), it follows that for every 0 < ε ≤ 1 and every (z, µ) ∈ BFµ0
(0, εδ̃

K
) ×BG (0, εδ̃

K
),

ÅÅÅÅÅDξ̃µ0
(z, µ) − Id

ÅÅÅÅÅ ≤ ε (C.80)

According to (C.71b), (C.80), the mean value theorem and the fact that φ(0, 0) = (0, 0), there exists a
contant K ′

≥ K (independant of Y , r and µ0)) such that

BFµ0
(0,

δ̃

K ′ ) ×BG (0,
δ̃

K ′ ) ⊂ Ũµ0
∩ Ṽµ0
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Then, we use (C.72) to obtain that, for every 0 < ε ≤ 1,

BRn(0, εRµ0
) ⊂ L(BFµ0

(0,
ε

m (Fµ0
, G)

δ̃

K ′ ) ×BG (0,
ε

m (Fµ0
, G)

δ̃

K ′ )) ⊂ Uµ0
∩ Vµ0

where Rµ0
is defined by (C.62) for some constant C3 large enough (independant of Y , r and µ0). The

above inclusion with ε = 1 proves that item 1 holds true. Even if it means taking C3 larger, item 4 holds
true as well, using (C.70), (C.72), (C.80), the mean value theorem and the fact that φ(0, 0) = (0, 0).

Proof of item 5. This is a consequence of (C.79), (C.69), (C.68d), (C.72) and the fact that the
sequence (M̄k (Y, µ0, r(µ0)))k≥2 is increasing.

Proof of item 6. One can construct, for any µ ∈ Ω0, a local coordinate system ξµ satisfying items 1-5
in the same way than ξµ0

(and with the same constants). Let µ1 ∈ Ω0. By construction of ξµ0
and ξµ1

(see (C.69) and (C.73)), for all µ ∈ Ω0 ∩ Uµ0
∩ Uµ1

and for all y ∈W s,γ
η̃ (µ, Y ) ∩ Uµ0

∩ Uµ1
, we have

{ξµ0
(y) = µ + πµ0

(y)
ξµ1

(y) = µ + πµ1
(y)

where πµ denotes the linear projection along G onto Fµ. It follows that for all y ∈ Uµ0
∩ Uµ1

, we have

ξµ0
(y) − ξµ1

(y) = πµ0
(y) − πµ1

(y)

so item 6 holds true. This completes the proof of Theorem C.22.

C.5 Some linear algebra lemmas
We recall here some elementary facts of linear algebra used throughout this appendix. We refer to
section C.2 for the notations.

Lemma C.24. Let n ∈ N and let F,G be two linear subspaces of Rn such that F ∩ G = {0}. For
every x = xF + xG ∈ F ⊕G,

∥xF∥2 + ∥xG∥2 ≤ m (F,G) ∥x∥2

Proof. Recall that m (F,G) = ( 2
1−cos∢(F,G))

1
2 . Let x = xF + xG ∈ F ⊕G. It is sufficient to prove the

straightforward inequality
a

2 + b2 + 2ab

a2 + b2 − 2abc
≤

2

1 − c

where a = ∥xF∥2
2, b = ∥xG∥2

2 and c = cos∢ (F,G) ∈ [0, 1[.

Lemma C.25. Let n ∈ N and A ∈ Mn(R). Let Rn = ⊕1≤i≤rEi be the decomposition of Rn as
the direct sum of the generalized eigenspaces of A. Accordingly, for any x ∈ Rn, we will use the
decomposition x = ∑r

i=1 xi where xi ∈ Ei. The following control holds true for every x ∈ Rn:

r

∑
i=1

∥xi∥2 ≤ m (A) ∥x∥2

Proof. The proof is a straightforward induction on the number r of generalized eigenspaces of A, using
Lemma C.24.

Lemma C.26. Let n ∈ N and A ∈Mn(R). We have, for every α > λmax (A) and every s ≥ 0,

ÅÅÅÅÅe
sAÅÅÅÅÅ2

≤ 2
n−1(n − 1)n−1 max (1,⦀A⦀2)

n−1
m (A)

min (1, α − λmax (A))n−1
e
αs

Proof. Fix λmax (A) < α ≤ λmax (A) + 1 and s ≥ 0. Let

Rn = ⊕1≤i≤r Ker (A − µi Id)di
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be the decomposition of Rn as the direct sum of the generalized eigenspaces of A. Fix x = ∑r
i=1 xi ∈ Rn,

where xi ∈ Ker (A − µi Id)di . For every 1 ≤ i ≤ r,

ÂÂÂÂÂe
sA
xi
ÂÂÂÂÂ2

=
ÂÂÂÂÂe

sµi Id
e
s(A−µi Id)

xi
ÂÂÂÂÂ2

=

ÂÂÂÂÂÂÂÂÂÂ
e
sµi Id

di−1

∑
j=0

s
j

j!
(A − µi Id)jxi

ÂÂÂÂÂÂÂÂÂÂ2

≤ e
sRe(µi) ∥xi∥2

di−1

∑
j=0

s
j

j!
(2⦀A⦀2)

j

≤ e
sα ∥xi∥2 2

di−1
max (1,⦀A⦀2)

di−1
e
s(Re(µi)−α)(1 + s)di−1

where we used the fact that ∣µi∣ ≤ ⦀A⦀2 by Browne theorem. By a straightforward computation, we
obtain

max
t≥0

e
t(Re(µi)−α)(1 + t)di−1

≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(di−1)di−1

(α−Re(µi))di−1 if α − Re(µi) ≤ di − 1

1 if α − Re(µi) > di − 1

It follows that

ÂÂÂÂÂe
sA
x
ÂÂÂÂÂ2

≤ e
sα

2
n−1(n − 1)n−1 max (1,⦀A⦀2)

n−1

min (1, α − λmax (A))n−1

r

∑
i=1

∥xi∥2

Using Lemma C.25, we obtain the desired inequality.
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Chaotic dynamics of spatially homogeneous spacetimes
Abstract

In 1963, Belinsky, Khalatnikov and Lifshitz have proposed a conjectural description of the asymptotic geometry
of cosmological models in the vicinity of their initial singularity. In particular, it is believed that the asymptotic
geometry of generic spatially homogeneous spacetimes should display an oscillatory chaotic behaviour modeled
on a discrete map’s dynamics (the so-called Kasner map). We prove that this conjecture holds true, if not for
generic spacetimes, at least for a positive Lebesgue measure set of spacetimes.
In the context of spatially homogeneous spacetimes, the Einstein field equations can be reduced to a system of
differential equations on a finite dimensional phase space: the Wainwright-Hsu equations. The dynamics of
these equations encodes the evolution of the geometry of spacelike slices in spatially homogeneous spacetimes.
Our proof is based on the non-uniform hyperbolicity of the Wainwright-Hsu equations. Indeed, we consider the
return map of the solutions of these equations on a transverse section and prove that it is a non-uniformly
hyperbolic map with singularities. This allows us to construct some local stable manifolds à la Pesin for this
map and to prove that the union of the orbits starting in these local stable manifolds cover a positive Lebesgue
measure set in the phase space. The chaotic oscillatory behaviour of the corresponding spacetimes follows.
The Wainwright-Hsu equations turn out to be quite interesting and challenging from a purely dynamical system
viewpoint. In order to understand the asymptotic behaviour of (many of) the solutions of these equations, we
will in particular be led to:

• carry a detailed analysis of the local dynamics of a vector field in the neighborhood of degenerate non-
linearizable partially hyperbolic singularities,

• deal with non-uniformly hyperbolic maps with singularities for which the usual theory (due to Pesin and
Katok-Strelcyn) is not relevant due to the poor regularity of the maps,

• consider some unusual arithmetic conditions expressed in terms of continued fractions and use some rather
sophisticated ergodic properties of the Gauss map to prove that these properties are generic.

Keywords: non-uniformly hyperbolic dynamical systems, general relativity, cosmological models, ordinary
differential equations, lorentzian geometry, continued fractions

Dynamique chaotique des espaces-temps spatialement homogènes
Résumé

En 1963, Belinsky, Khalatnikov et Lifshitz ont proposé une description conjecturale de la géométrie asymptotique
des modèles cosmologiques au voisinage de leur singularité initiale. En particulier, il y est avancé que la géométrie
asymptotique des espaces-temps spatialement homogènes « génériques » devrait avoir un comportement
oscillatoire chaotique modelé sur la dynamique d’une application discrète : l’application de Kasner. Nous
démontrons que cette conjecture est vraie au moins pour un ensemble d’espaces-temps de mesure de Lebesgue
strictement positive.
Dans le contexte des espaces-temps spatialement homogènes, l’équation d’Einstein de la relativité générale se
réduit à un système d’équations différentielles sur un espace des phases de dimension finie : les équations de
Wainwright-Hsu. La dynamique de ces équations encode l’évolution de la géométrie des hypersurfaces spatiales
dans les espaces-temps spatialement homogènes. Notre preuve est basée sur l’hyperbolicité non-uniforme
des équations de Wainwright-Hsu. Nous considérons l’application de Poincaré associée aux solutions de ces
équations sur une section transverse au flot et nous démontrons qu’il s’agit d’une application non-uniformément
hyperbolique avec singularités. Ceci nous permet de construire des variétés stables locales « à la Pesin » pour
cette application et de montrer que la réunion des orbites passant par ces variétés stables locales recouvre
une partie de l’espace des phases de mesure de Lebesgue strictement positive. Le comportement oscillatoire
chaotique des espaces-temps correspondant à ces orbites est une conséquence de cette construction.
Du point de vue des systèmes dynamiques, les équations de Wainwright-Hsu se révèlent être très riches et
posent un certain nombre de défis. Pour comprendre le comportement asymptotique d’un nombre conséquent
de solutions de ces équations, nous serons amenés à :

• faire une analyse fine de la dynamique locale d’un champ de vecteurs au voisinage d’une singularité
partiellement hyperbolique dégénérée et non linéarisable,

• travailler avec des applications non-uniformément hyperboliques ayant des singularités, pour lesquelles la
théorie usuelle (due à Pesin et Katok-Strelcyn) ne s’applique pas à cause de la faible régularité de ces
applications,

• considérer des conditions arithmétiques exotiques exprimées en termes de fractions continues et utiliser des
propriétés ergodiques quelque peu sophistiquées de l’application de Gauss pour montrer que ces propriétés
sont génériques, etc.

Mots clés : systèmes dynamiques non uniformément hyperboliques, relativité générale, modèles cosmologiques,
équations différentielles ordinaires, géométrie lorentzienne, fractions continues
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