
HAL Id: tel-02488856
https://theses.hal.science/tel-02488856v2

Submitted on 2 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deep learning methods for style extraction and transfer
Omar Mohammed

To cite this version:
Omar Mohammed. Deep learning methods for style extraction and transfer. Signal and Image pro-
cessing. Université Grenoble Alpes, 2019. English. �NNT : 2019GREAT035�. �tel-02488856v2�

https://theses.hal.science/tel-02488856v2
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ GRENOBLE ALPES
Spécialité : SIGNAL IMAGE PAROLE TELECOMS
Arrêté ministériel : 25 mai 2016

Présentée par

Omar MOHAMMED

Thèse dirigée par Gérard BAILLY , Directeur de recherche
et codirigée par Damien PELLIER, MCF, Communauté Université
Grenoble Alpes

préparée au sein du Laboratoire Grenoble Images Parole Signal
Automatique
dans l'École Doctorale Electronique, Electrotechnique,
Automatique, Traitement du Signal (EEATS)

Méthodes d'apprentissage approfondi pour
l'extraction et le transfert de style

Deep learning methods for style extraction
and transfer

Thèse soutenue publiquement le 12 novembre 2019,
devant le jury composé de :

Monsieur GERARD BAILLY
DIRECTEUR DE RECHERCHE, CNRS DELEGATION ALPES, Directeur
de thèse
Monsieur CHRISTIAN VIARD-GAUDIN
PROFESSEUR, UNIVERSITE DE NANTES, Rapporteur
Monsieur SYLVAIN CALINON
DIRECTEUR DE RECHERCHE, INSTITUT DE RECHERCHE IDIAP -
SUISSE, Rapporteur
Monsieur DAMIEN PELLIER
PROFESSEUR ASSOCIE, UNIVERSITE GRENOBLE ALPES, Co-
directeur de thèse
Monsieur ERIC GAUSSIER
PROFESSEUR, UNIVERSITE GRENOBLE ALPES, Président
Monsieur VINCENT BARRA
PROFESSEUR, UNIVERSITE CLERMONT AUVERGNE, Examinateur

Deep learning methods for style extraction and
transfer

Omar Mohammed
Thesis supervisor: Gérard Bailly

Thesis co-supervisor: Damien Pellier

To my late father and my uncle, the two inspirations and aspirations of my life.

A word and deserved
acknowledgement

Those three years are a lot of time. Many things happened, too many memories. I
started the PhD with a lot of confidence in my capability to do a great work in science,
with a lot of ideals that can seem naive sometimes. I was reading a lot for Richard
Feynman, Stephen Hawking, Richard Hamming1, John Nash, and many others.

I do not really consider myself as a scientist. I always identify myself as an
engineer first, manager second, and science enthusiast third. I still get very excited
with simple things (seeing the robot behavior after evolving its gait and morphology),
and even more excited when there is an unexpected problem that rise (if it is not a
programming or logical error, then this is awesome! it is time to do some science!!)2. I
love problems and puzzles, I love tackling them, analyzing them, looking at them from
different angles. I do not care much about what is that called.

Things did not exactly go as expected though, for reasons that are not its
place here to discuss. Not far from the starting line, things went from dreamy science
to crisis management. I do not want to complain much either, I have made my peace
with the past, and it is time to move on.

I think there are three main aspects that I think I won from the PhD, which
are completely different from my earlier expectations:

• I started to value the people around me much more than before. It was a hard
time for me on many levels. I am blessed and grateful for the amazing friends I
was so lucky to have. They provided solid support system. Without them, I can
not imagine going through this experience. It made it special.

• I had time to tinker with different problems. Even without authorization, I was
1I always appreciated his article You and Your Research, https://www.cs.virginia.edu/~robins/

YouAndYourResearch.html
2Thanks to my awesome Master-1 internship supervisor, Jean-Baptiste Mouret (INRIA Nancy), for

teaching me this attitude.

3

https://www.cs.virginia.edu/~robins/YouAndYourResearch.html
https://www.cs.virginia.edu/~robins/YouAndYourResearch.html

4

experimenting on my own ideas from time to time. Some results were quite
interesting, and I plan to pursue them further after the PhD.

• In my whole life, work has always taken the first priority, since my first year in
primary school, till most of the time in the PhD. This finally broke down, and I am
happy it happened. I am mentally free. I am happy to discover and appreciate
more the human aspect in my life, and learning how to enjoy life and appreciate
the current moment, more than being enslaved to work.

I would like to my thesis director, Gérard Bailly, for his dedication during my
PhD. Our relationship has gone through many phases, some of them were quite difficult.
We had our good share of agreements and disagreements. That being said though, I
appreciate the fact that Gérard always allocated time whenever I need to discuss with
him3. During the third year, I was becoming increasingly tired and exhausted, and this
especially became evident when I started writing this manuscript. I was literally losing
it. Gérard’s support and understanding during this period was crucial. The scientific
discussions were always interesting and enriching for me, given Gérard vast experience.
For all of that and more, thank you.

I want to thank my family, my mother for her unlimited love, support and
sacrifice, my brother for taking care of the family in my absence, and especially my
little sister Zynab: although 11 years younger than me, her beautiful personality and
heart always filled my life with love and warmth. For that, I am grateful.

One of the amazing things that happened during the PhD was that we or-
ganized a machine learning club, Machine Learning Seekers of Truth (MLST), with
Marielle Malfante, Gaël Le-Godais, Fanny Roche, Branislav Gerazov (Branko), Ludovic
Darmet, Julien Muzeau, Dawood El-Chanti, Pedro Rodrigues, Thomas Hueber, and oth-
ers who joined later. I hope this club will be revived again by the new PhD students,
since most of the core people either finished or getting busy with the third year.

I am quite grateful for the discussions with Marielle, Gaël, Fanny, Branko, Lu-
dovic, Thomas, Dawood and others during the PhD. These discussions on the technical
level were extremely rich. I can safely say that it contributed to the basis of the PhD
and the choices of directions of research.

Thanks a lot Firas, Andrei, Makia, Sophie, Anne, Adela, Remi, Gaël, Hélène,
Fanny, Branko, Dan, Alexandre Hennequin, Matthieu, Thibaut, Kaouther, Amgad, Ba-
harat, Christine, Sylvain Geranton, Silvain Gerber, Alexandre Serazin, Jean-Francois,
Julien, Sami, Quan, Duc-Canh, Jodie, Roxi, Insaf, Katia, Alexandra, Azadeh, Analisa, An-
neke and the others whom I hope I didn’t forget to mention, for being such an amazing
company. The words fall short in describing my feelings about you. Seeing you from
day to day gave me strength and reason to continue. I am grateful for all the good

3Something that rarely exists for many other PhD students.

5

experiences, memories, love and care that I enjoyed being with you. From all my heart,
thank you. I wish you all the best in your lives and your future choices. The fellowship
may sadly break, as we diverge in our choices in life after this stage, but our friendship
will last, and I keep faith that our paths will cross again.

I would like also to thank Eric Cartman4. Eric has been a model for me, in
being pragmatist, knowing how to manage complex situations, thinking out of the box,
and finding opportunities and victories in the most difficult scenarios. What I liked
about him is that he never distinguished between anyone, he dealt with everyone in
the same way.

I want also to thank planet Jupiter. Jupiter is one of those heroes which we
take for granted. Jupiter’s massive gravity and magnetic field has protected earth since
the beginning of time. We all have a chance in living because of it, thus, thanks are in
order here.

Last but not least, I would like to thank myself for making it through. Thanks
Omar :)

This chapter of my life is now peacefully concluded. It is time to move on :)

Omar Samir Mohammed
27th of January, 2020

Grenoble, France

4From the beautiful town of South Park.

6

Contents

I Introduction and Problem Description 25

1 Introduction 27

1.1 What is a style? . 27

1.2 What is the objective of this project? . 30

1.3 Why Handwriting? . 32

1.4 What is transfer learning? and why do we need it? 33

1.5 If we want to perform transfer learning, why extracting styles? 34

1.6 Contributions of this PhD . 36

1.7 Thesis outlines . 38

2 Datasets 41

2.1 Online Handwriting – IRONOFF . 43

2.2 Sketch Drawing – QuickDraw! . 44

2.2.1 General comments on QuickDraw! and IRONOFF 53

2.3 Data representation . 62

2.3.1 Continuous or Discrete representation? 63

2.3.2 Feature engineering: Direction and Speed 65

7

CONTENTS 8

2.3.3 QuickDraw! strokes preprocessing 66

2.4 Summary . 68

II Experiments 69

3 Generation, benchmarks and evaluation 71

3.1 Background . 73

3.1.1 Sequential data . 74

3.1.2 Recurrent Neural Networks and Sequence Modeling 75

3.1.3 Optimization Algorithms . 76

3.1.4 Inference: How to generate sequences from the network? 79

3.1.5 How to introduce prior to the model? (conditioning the model) . . 82

3.1.6 How to evaluate the quality of generation? 83

3.2 Putting it all together . 86

3.2.1 Our proposed evaluation metrics . 87

3.2.2 How to ground the metrics? . 89

3.2.3 Proposed model . 89

3.2.4 Results . 92

3.2.5 Examples of the generated letters . 94

3.3 Summary . 95

4 Framework 99

4.1 Background . 101

4.1.1 What is an auto-encoder? . 101

4.1.2 Sequence auto-encoder . 102

9 CONTENTS

4.1.3 Conditioned auto-encoder . 103

4.2 Putting it all together . 104

4.2.1 Model architecture . 105

4.2.2 Letter generation with style preservation 105

4.2.3 Style transfer . 107

4.2.4 Styles per letter . 109

4.3 Summary . 110

5 Style Extraction and Transfer 123

5.1 Transfer learning . 124

5.2 Putting it all together . 128

5.2.1 IRONOFF . 132

5.2.2 QuickDraw! . 134

5.2.3 A word of caution about confusion matrix 144

5.3 Are we actually capturing styles? . 144

5.4 Summary and take-away message . 145

III Perspectives and Closing Remarks 147

6 Prespective and future work 149

6.1 Challenges . 151

6.1.1 Choice of how to tackle the topic? . 151

6.1.2 Determine the scope of interest in the state-of-the art 151

6.1.3 Lack of Benchmarks, evaluation metrics 152

6.1.4 Deep learning: theory, hardware and software frameworks 153

CONTENTS 10

6.2 Limitations of the current work . 154

6.2.1 Style extraction and exploration using PCA and tSNE methods . . 154

6.2.2 Leak in the style module . 155

6.3 Future directions . 156

6.3.1 Disentanglement of latent space to uncover styles 156

6.3.2 Data efficiency . 157

6.3.3 Perceptual evaluation and system specification 157

6.3.4 Experimental protocol . 158

6.4 Summary . 159

7 Closing Remarks 161

7.1 At the beginning... 161

7.2 What did we do? . 162

IV Appendices and Resources 165

A Hyper-parameter tuning 167

B List of publications 169

B.1 International Conferences . 169

B.2 Journal articles . 170

B.3 Infomal communication . 170

C Adversarial evaluation 171

C.1 What is the problem? . 171

C.2 How to test this? . 174

11 CONTENTS

C.2.1 Experimental setup . 174

C.2.2 Models performance on the classification task 174

C.2.3 Using the oracles to train the generator 176

C.2.4 Diving into KNN . 176

C.3 What is the lesson learned? . 180

CONTENTS 12

List of Figures

1.1 Definition of style in Merriam-Webster dictionary 28

1.2 Multiple styles (different typefaces) for the same letters. 29

1.3 Example for style in case of online handwriting. Although both examples
looks the same when we look at it in the offline mode (the final draw-
ing), they are quite different when we consider the online aspect (the
dynamics of the pen when drawing them). Although not illustrated here,
it is important to note that some aspects of the online drawing dynamics
can be deduced from the offline drawing – in other words, the dynamics
can affect the end result – (Diaz et al., 2017). In this case, the starting
point and the direction of drawing (clockwise or counterclockwise) are
different. The solid line indicate a stroke, and the dotted line indicate
an air stroke (the transition of the pen in the air between two strokes).
The green dot is the starting point. 31

1.4 The iCub humanoid robot (Nina). 32

1.5 Illustration for a practical case of using transfer learning, where we have
insufficient data on the new task, and we want to leverage the knowledge
learned from another relevant task in order to learn the new task. Source
of this image is (Jain). 35

1.6 Source: https://xkcd.com/ . 37

2.1 An example from IRONOFF (letter ’a’). Left, the image of the letter (i.e.,
offline-handwriting). Right, is an example of the format for the online-
handwriting. We have the writer’s ID, origin, handedness, age and gender.
The sequence of pen movement to draw the letter are then given: pen
state (PEN_DOWN, PEN_UP), X, Y coordinates, pen pressure, and time
(ms). 45

13

https://xkcd.com/

LIST OF FIGURES 14

2.2 IRONOFF : Statistics on the general direction of the drawings for the different categories. 46

2.3 Summary statistics about the writers in IRONOFF : the age, gender, coun-
try and handedness. Most of participants are around 20 years old, and
the majority are French. Although males are the dominant participants,
the data can be considered balanced in that regard, while on the aspect
of handedness, the vast majority of the participants are right handed. . . 47

2.4 Summary statistics strokes for all categories in IRONOFF dataset (up-
percase and lowercase letters, and digits), starting from the simplest to
the more complex. We can see that letters/digits like C, L, O, 0 are quite
simple, just one mostly one stroke and a small variances, whole letters
like H, I, E have more strokes, and more variance in the way they are
drawn. 48

2.5 Drawing time for all categories in IRONOFF dataset, arranged from the
smallest to the largest. Drawing time is an indication on the complexity
of the task. Categories like C,c,L,O,0 have small pausing time – since
they are mostly one stroke –, while categories like k,B,m,E have a longer
pausing time, since they do have multiple different strokes, or complex
stroke – like in case of letter m–. 49

2.6 Pausing time for all categories in IRONOFF dataset. Pausing time is one
indication on the complexity of the task, and in case of multiple strokes,
they can indicate of the strokes are repetitive or different, or that that
strokes are simple or complex (Séraphin-Thibon et al., 2019). Categories
like 2,C,0,3,6 have small pausing time – since they are mostly one stroke
–, while categories like F,J,Q,j have a longer pausing time, since they do
have multiple different strokes, or complex stroke – like in case of m–. . . 50

2.7 Examples from different categories in QuickDraw! dataset. Source of
the images are (Google, 2017). All-in-all, the data has 345 categories. . . 51

2.8 The roundness of the selected categories in QuickDraw!. 54

2.9 The recognized VS non-recognized drawings in QuickDraw! in each
of the selected categories. The majority of the shapes are recognized.
Unrecognized drawings usually have more strokes or longer than the
rest of the drawings. 55

15 LIST OF FIGURES

2.10 The distribution of the strokes in QuickDraw! for the recognized shapes,
for each category. We can see that most of the drawings, for the different
categories, have only one stroke, and the distribution spread slightly as
the shape gets more complicated. It was expected that the strokes will
have a different distribution – for the octagon, we were expecting to see
majority of the drawing around 8 strokes –. We believe this is due to
the use of the mouse during the drawing, and the non-mastery level of
participants in using the mouse for drawing. 56

2.11 QuickDraw! strokes statistics for each of the selected categories. Strokes
is an indication of the complexity of the drawing. Circle have the low-
est number of strokes, thus the simplest, while octagon has the largest
number – and largest variance –, thus it is the most complex shape. . . . 57

2.12 QuickDraw! pausing time statistics for each of the selected categories.
It is another indication on the complexity of the shape and its strokes.
Circle category has the least pausing time, while the octagon has the
largest one. 58

2.13 QuickDraw! drawing time statistics for each of the selected categories.
It is another indication on the complexity of the shape and its strokes.
Circle category has the least drawing time, while the octagon has the
largest one. 59

2.14 The most dominant countries for the players in QuickDraw! dataset. In
the sample we analyzed, there is players from around 160 countries, but
the majorty are from United States, followed by Great Britain. 60

2.15 A comparison between the drawing time of different round shapes in
both QuickDraw! and IRONOFF. We can see that, the average drawing
time in case of IRONOFF (270ms) is much lower than for QuickDraw!
(900ms). Also, the variance in the distribution is much higher in case of
QuickDraw!. This probably a result from the different drawing tools used
in both datasets – a mouse, or a finger on a tablet in case QuickDraw!,
and a pen in case of IRONOFF –, and also from the mastery level of the
different tools – usually people are more comfortable using the pen than
the mouse in drawing –. 61

2.16 Example of a single-hidden layer neural network. The circle units is the
sum of the weighted neurons connected to this unit, and the square units
is the application of the activation function on that sum. 63

LIST OF FIGURES 16

2.17 The performance of the simple linear activation function on two setups.
Left: in case of one-to-one mapping between the input and the output, it
performs well. Right: In case of one-to-many mapping, the function starts
to average over the seen observations, leading to undesirable behavior.
Source of this image is (Ha, 2015). 64

2.18 Example for freeman code representation for 8 directions. Each direction
is given a unique number. 66

2.19 The distribution of the strokes in QuickDraw! before and after our pre-
processing. The new distribution resolves the problem of sparsity, and
inline with our expectations. 67

3.1 A demonstration of how RNN works: the network is applied on each
token in the input (x1,x2, ...,xt), while update the hidden state variable
every time (h0,h1, ...,ht). The output at each step is a function of the
hidden state variable (not demonstrated here). Source of the image is
from (Kostadinov, 2017). 75

3.2 A demonstration for how a gradient descent algorithm work. The op-
timization process progress each step towards the global optima (the
indicated point in the center). 77

3.3 The process of gradient descent is iterative, and include 3 steps: evaluate
the quality of the current parameters (forward-pass step), get the error
value, use the error-value in order to update the parameters/getting new
set of parameters (Back-Propagation step). This process is repeated N
times, which is decided by either not observing any update in the error,
or we ran out of computational resources. 78

3.4 An example of using RNN in order to infer a sentence. The token to be
generated here is a character. At each time step, the model is given the
part of the sentence that has been generated so far, and asked to give
the probability distribution over the next character. This distribution is
then given to the selected sampling distribution, which sample the next
character, and so on. 80

3.5 Illustration of temperature sampling. When the temperature τ is very
low, it becomes greedy sampling. With the increase of temperature, we
can see more higher possibility of sampling the lower-probability tokens.
When the temperature is too high, it becomes uniform sampling. 81

3.6 Different conditioning method for RNN . 84

17 LIST OF FIGURES

3.7 Using BLEU score of different sizes, we compare segments of variable
length in the generated trace to the target trace. The smaller BLEU
scores evaluate the adequacy of the drawing, while the bigger BLEU
scores evalute the fluency (Papineni et al., 2002). 88

3.8 Left: architecture of the CNN letter classifier we used. Batch normaliza-
tion is used after each convolution layer. The Dense 1 layer – with a size
of 34 – is the embedding that is used to condition our generator. Right:
the autoencoder architecture we used. The output of the first Dense 34
layer provides the latent space used to condition the generator. 90

3.9 The conditioned-GRU model used in this work. During the training
mode 1, the input of the model is always the ground truth, and the
predicted value is compared to the ground truth. During the generation
mode 2, the input to the model at each step is the model prediction from
the previous step. The ’style info’ and the ’task info’ inputs are separated
here for illustration (they could be mixed). 91

3.10 We project the bottlenecks of both the autoencoder and the classifier,
using PCA, in order to get an idea about the reason these bottlenecks
lead to a very different performance. Figure 1 shows the autoencoder
latent space, there is no clear separation between letters; the encoding
is based on the similarity of the images only, while figure 2 shows the
classifier embedding, there is a clear separation between the letters -
with few exceptions -. 93

3.11 Examples of original letters. The blue x mark is the starting point. These
ones are generated using the letter + Writer bias. E and F are visually
harder to recognize, since we do not model the pen pressure, otherwise,
the rest of the letters are well recognizable. 96

3.12 Examples of generated letters. The blue x mark is the starting point.
These ones are generated using the letter + Writer bias. The general
quality of this quite acceptable. 97

4.1 An example for the main components of an auto-encoder, used on image
compression: an encoder takes the image, transfer it via a set of trans-
formations into a bottleneck code, which is a compressed representation
for that image. The decoder then takes this bottleneck code, and apply a
series of transformations on it, in order to reconstruct the original input
image. Source of this image is (Mohammed). 101

LIST OF FIGURES 18

4.2 An illustration for a sequence-to-sequence architecture, used for lan-
guage translation between English and German. The encoder summarize
the English sentence, and the decoder use it as to bias its own output,
to generate the equivalent German sentence. 103

4.3 Schematic diagram of the model we used. During the training time 4.31,
the input to the model is always the ground truth. During the inference
time 4.32 however, the input to the decoder (generator) part at each time
step is its own predication in the previous time step. 106

4.4 Input sequence to our model. The first time step contains the information
necessary to condition/bias our model. In case of the encoder, this first
time step (the bias) is not included. 107

4.5 Results of the manual annotation for the rotation of letter X drawings
over the whole dataset. Almost half the writers drew X clockwise, the
other half anti-clockwise. The undefined styles were unclear to determine.110

4.6 Projection for latent space for letter X using PCA. The colors show the
ground truth of the X rotation: blue is counter clockwise, orange is clock-
wise, and the few red points are undefined. The x-axis in this case
indicate the clockwise/counter clockwise feature. We expect the y-axis
to represent the different velocity of drawing, however, we did not inves-
tigate this assumption. 111

4.7 Examples for writing of letter X. Starting point is marked with the blue
mark. Each raw is randomly sampled from each cluster in the bottleneck.
The clusters shows that almost half the writers draw the letter clockwise
(first row, first cluster), and the other half draw it anti-clockwise (second
row, second cluster). 112

4.8 Projection for latent space for letter C using t-SNE. The cluster sur-
rounded by the red circle has a clear interpretation, where writers have
a cursive style. 113

4.9 Projection for latent space for letter A using PCA. 114

4.10 Examples for writing of letter C from the selected cluster (first row) versus
the rest of the letter drawings (second row). Starting point is marked
with the blue mark. The drawings from the selected cluster show people
with Edwardian style of handwriting. 115

19 LIST OF FIGURES

4.11 Examples for writing of letter A from the selected clusters. Starting point
is marked with the blue mark. Each row is from one cluster. The first row
show people who start drawing the letter from the top, going down, and
then continue the drawing of the letter. The second row show people
who start drawing from down directly. 116

4.12 Projection for latent space for letter S using t-SNE. We manage to inter-
pret the indicated cluster as the Edwardian style in drawing. The other
two clusters (not indicated) did not show clear difference in the style,
but this is an expected behavior from using the t-SNE algorithm, since
it does not try to cluster styles as an objective. 117

4.13 Examples for writing of letter S from the selected cluster (first row) versus
the other two clusters (second row). Starting point is marked with the
blue mark. The drawings from the selected cluster is always Edwardian
style. 118

4.14 Examples of generated letters. The blue mark is the starting point. The
traces in green is the ground truth, and the red is the generated ones
by our model. 119

4.15 Examples of generated letters. The blue mark is the starting point. The
traces in green is the ground truth, and the red is the generated ones
by our model. 120

5.1 Convolution Neural Networks filters shape 127

5.2 An illustration for model we use. The part identified by the gray area
– the style extraction module – is what we transfer (i.e., what we freeze
from the source task, and use in the target task). Since we give the model
the task content/identity, the gray part is expected to focus more on the
style extraction. During the exposure to the source task, all the different
components of the model are being trained. During the exposure to the
target task, the gray area is the trained one on the source task, with
frozen parameters. The other parts will be trained. 130

5.3 IRONOFF experimental protocol . 133

5.4 IRONOFF - log cross-entropy of prediction results for different tasks . . 135

LIST OF FIGURES 20

5.5 IRONOFF!: Confusion matrix for strokes for both baseline (left) and trans-
fer (right) models, on the uppercase, lowercase letters and digits (in or-
der). A small difference may appear in the total number between the
baseline and the transfer confusion matrix is a result of us removing the
column when it has a low/insignificant value (for aesthetic reason only,
and to make the message focused). 137

5.6 Flow chart explaining the experiment protocol used in QuickDraw! dataset.139

5.7 QuickDraw!: cross-entropy of prediction of test dataset for different com-
binations of source/target tasks, with 30 repetitions. We can see that, in
all possible source/target task combinations, the transfer learning gives
better advantage than just learning from scratch on the target task. The
stars indicate the statistical significance level (1 for < 0.05, 2 for < 0.01
and 3 for < 0.001). 140

5.8 QuickDraw! Confusion matrix for strokes for both baseline (left) and
transfer (right) models, on the different tasks. A small difference may ap-
pear in the total number between the baseline and the transfer confusion
matrix is a result of us removing the column when it has a low/insignificant
value (for aesthetic reason only, and to make the message focused). . . . 143

C.1 The ground truth decision boundary that separates data into two classes.
This decision boundary is unknown in advance. The objective of machine
learning is to estimate/approximate/learn this decision boundary. 172

C.2 The machine learning model estimate the decisions boundary based on
the given examples. The estimation is not perfect, and not necessarily
matches the ground truth boundary. 172

C.3 Using the test data, sometimes we do not get a sense for the limitations
of the model approximation. Even when the model shows errors, it is not
possible to estimate the boundaries of the model approximation from this
information. 173

C.4 Adversarial examples exploit the fact that the model only approximates
the ground truth decision boundary, thus, there is a gap between them.
Using this gap can easily misguide the model and lead to misclassification.173

C.5 MNIST is a popular offline handwriting dataset for digits from 0-9. 70K
examples are available, 60K for training/validation and 10K for testing.
The images size is 64x64. 174

21 LIST OF FIGURES

C.6 The setup of the experiment to understand the effect of using an oracle
as the guidance for training a generator. The oracles were trained on
MNIST dataset in order to classify the digits, and the generator is op-
timized based on what the oracle output. The generator objective is to
generate images for different digits. 175

C.7 Results of using different oracles in order to train a generator. Each
generated image has the target digit and the final oracle confidence
about it. Logistic regression, MLP and KNN were fooled very easily,
with absolute confidence about the meaning of the different images. . . . 177

C.8 KNN analysis: comparing the difference in the distance between the test
data and the adversarial examples relative to the training data. We can
see that the adversarial examples have a much higher distance than the
test data. 178

C.9 How adversarial examples are developed to fool KNN: the generator
simply tries to put the malicious examples as far as possible from the
clusters. In the same time, the KNN algorithm just classifies examples
based on the nearest neighbors, aside from the distance. 179

C.10 KNN results after modifying the optimization objective: instead of only
maximize the likelihood of the intended digit, I also added a penalty on
the distance to the training data. The images are more relevant and
comprehensible in this case. 180

C.11 Illustration for the performance of KNN after having the modified objec-
tive function (the likelihood of the oracle and the distance to the training
data). While the results are quite good, the resulting images are reflect-
ing the average/mean of the different images in for the required digits,
thus, no diverse set of images for each digit are generated. 181

LIST OF FIGURES 22

List of Tables

1 Comparing different approaches for style extraction using clipped n-grams.
The higher the value, the better. 94

2 Pearson correlation coefficients and associated p-values for the EOS dis-
tributions of the different style biases. A letter + writer bias performs
much better than others biases, while the image autoencoder bias per-
forms the worse. This confirms with our expectations about the relative
power of the different biases. 94

1 BLEU scores for conditioned-autoencoder (style extractor) in comparison
with the benchmark model (biased by the identity of the writer and the
letter). The conditioned-autoencoder performs better than the bench-
mark, thus indicating the advantage of the conditioned-autoencoder in
extracting style. 107

2 BLEU scores for different models for style extraction for 30 new writers
(style transfer). The benchmark model (biased by the identity of the
writer and the letter) is trained on those writers, while the style extractor
was not exposed to those writers, the style extractor still outperforms the
benchmark. This could be an indication that the number of styles are
limited afterall, and that the extra 30 writers do not necessarily add that
much information about styles in handwriting. 108

3 Pearson correlation coefficients for the End-of-Sequence (EoS) distribu-
tions for the conditioned-autoencoder framework (style extractor) com-
pared to the baseline (with letter and writer information only), on the
generated letters compared to the ground truth. We can see that the
(style extractor) outperforms the baseline. 108

23

LIST OF TABLES 24

4 Pearson correlation coefficients for the End-Of-Sequence (EoS) distribu-
tions for the different models on 30 new writers (style transfer). Even
though the baseline model is given explicit information about the writer,
the style extractor still outperforms the baseline. This could be an indi-
cation that the there is a limited number of styles after-all. 108

1 IRONOFF : BLEU score results on the generated letters, for the baseline
models (trained on the target task only), and the transfer models (the en-
coder – style extractor – is trained on the source task, while the decoder
is trained on the target task). The results show the advantage of using
transfer learning. 136

2 IRONOFF : Krippendorff correlation coefficients for the End-Of-Sequence
(EoS) distributions between the transfer and baseline, for all tasks. . . . 136

3 IRONOFF : Krippendorff correlation coefficients for the strokes distribu-
tions between the transfer and baseline, for all tasks. Except for the
uppercase case, transfer learning seems to perform well in the lower-
case and the digits tasks. 136

4 QuickDraw!: BLEU score results on the generated letters, for the base-
line models (trained on the target task only), and the transfer models
(the encoder – style extractor – is trained on the source task, while the
decoder is trained on the target task). The results show an advantage
in using transfer learning. 141

5 QuickDraw!: Krippendorff correlation coefficients for the end-of-sequence
distributions between the generated letters and the ground truth letters. 141

6 QuickDraw!: Krippendorff correlation coefficients for the strokes distribu-
tions between the generated letters and the ground truth letters. Trans-
fer learning achieves better results than the baseline on all the different
tasks. 141

7 Results of manual annotation for CW-CCW on 716 drawings (octagon/circles)
in QuickDraw! dataset. Sometimes the drawing is not clear, so we did
not include. The selected examples are the clear ones only. It can be
seen that the data is not balanced. 145

1 The accuracy of the different classifiers used. The models perform well
on the MNIST data. All the models have a satisfying performance. 175

Part I

Introduction and Problem
Description

25

Chapter 1

Introduction

Contents
1.1 What is a style? . 27
1.2 What is the objective of this project? . 30
1.3 Why Handwriting? . 32
1.4 What is transfer learning? and why do we need it? 33
1.5 If we want to perform transfer learning, why extracting styles? 34
1.6 Contributions of this PhD . 36
1.7 Thesis outlines . 38

In one sentence, Our thesis focus on the extraction, characterization and trans-
fer of styles or personas, isolated from a task, using deep neural networks.

1.1 What is a style?

Style is generically defined in Merriam-Webster dictionary (figure 1.1), or as the manner
of doing things (Gallaher, 1992). To get more sense of what style is, it is better to give
some examples first, to get an idea about what we are dealing with.

• When we say the word "seriously?". Depending on the manner we say it, it
will carry different meaning (sarcastic or surprise for example). One word, two
different manners to say it.

• Handwriting: You can write down the same the letter (the task), but with multiple
typefaces (the style) (figure 1.2).

27

1.1. WHAT IS A STYLE? 28

Figure 1.1: Definition of style in Merriam-Webster dictionary

29 CHAPTER 1. INTRODUCTION

• A movie setting: the script is provided to the actor. There are, however, many
ways for the actor to perform what is written in the script, in order to convey
different messages/experiences to the audience.

• Clothing and fashion: different groups of people have different general style lines
– depending on the region, ethnicity . . . etc –. Within each group, we can see
people having diverse styles within this general defining style.

Figure 1.2: Multiple styles (different typefaces) for the same letters.

In these two examples, we see a basic structure:

• A fixed part: the word to be said, or the letter identity. We will call this the
content.

• A variable part: the manner we say the word, or the manner we write the letter.
We will call this the style.

• Together, a style and a content forms a task.

The mention of styles is quite a lot in the literature in multiple domains, for
example:

• Speech synthesis: (Tachibana et al., 2004) defines speaking style in a high-level
manner, in terms of emotions expressed by the speaker, like ’joy’, ’sad’, or the
interpolation between them, when reading a text. (Wang et al., 2018) looks at the
speech style in a more detailed manner, considering different aspects of speech
prosody, like the paralinguistic information, intonation and stress.

• Car driving: there are multiple ways to categorize the different driving styles. It
can be based on the safety aspect (Johnson and Trivedi, 2011), aggressiveness of

1.2. WHAT IS THE OBJECTIVE OF THIS PROJECT? 30

the maneuver (Dörr et al., 2014; Xu et al., 2015b), the impact on fuel consump-
tion (Manzoni et al., 2010; Neubauer and Wood, 2013). Many other identification
basis for driving styles are summarized nicely in (Martinez et al., 2017).

• Handwriting: handwriting can be offline (the final image of the letter) or online
(recording the movement of the pen/drawing tool). Depending on which one con-
sidered, the style profile can change. Figure 1.2 is an example of different offline
styles (the typefaces). But when we consider the online aspect of the drawing, we
can see different aspects, like in figure 1.3, where we see that the same drawing
can be in clockwise or counterclockwise direction (we will expand more on this
point in chapter 4.2.4).

One thing we would like to highlight here: that styles are not thing we all
agree on. It can be hierarchical as well. In the clothing example earlier, people are
affected by the style group they belong to, but within this cluster, people have diverse
individual styles. The same happens in handwriting: education and culture affects the
style cluster people belong to, but we can observe a wide range of individual styles in
each cluster.

Another thing to highlight is that there is no one definition for styles. It
depends on the aspect of interest that we want to observe and study – in car driving,
safety and fuel consumption are two areas of interest, leading to different type of styles
–. This leads to an important characteristic of styles, that it is an ill-defined concept.
We know that styles are rich in information and important in communication between
humans. They are needed in order to convey meaning. As noted in (Taylor, 2009) –
in the context of speech synthesis –, a proper rendering of styles affects the overall
perception. However, we can not completely remove the ambiguity in this definition.

1.2 What is the objective of this project?

Our long-term objective is to enable our humanoid iCub robot Nina 1.4, to exhibit
personalized behavior suitable for the person interacting with it. This will enhance
the user experience, and will allow for a more natural interaction with the robot. It is
shown that a robot which exhibit a personalized behavior is more likable acceptable by
humans, and perceived as an intelligent entity (Churamani et al., 2017). Humans have
different preferences when interacting with each other, or interacting with the robot,
and taking them into account does improve the quality of interaction, and the potential
of success for the task (Kashi and Levy-Tzedek, 2018).

At the moment, we successfully used machine learning approaches in order
to build models of human-robot interaction (Bailly et al., 2018; Mihoub et al., 2016;
Nguyen et al., 2017). However, when using these models to generate behaviors, this

31 CHAPTER 1. INTRODUCTION

1 Offline drawing

2 Online drawing

Figure 1.3: Example for style in case of online handwriting. Although both examples
looks the same when we look at it in the offline mode (the final drawing), they are quite
different when we consider the online aspect (the dynamics of the pen when drawing
them). Although not illustrated here, it is important to note that some aspects of the
online drawing dynamics can be deduced from the offline drawing – in other words, the
dynamics can affect the end result – (Diaz et al., 2017). In this case, the starting point
and the direction of drawing (clockwise or counterclockwise) are different. The solid
line indicate a stroke, and the dotted line indicate an air stroke (the transition of the
pen in the air between two strokes). The green dot is the starting point.

1.3. WHY HANDWRITING? 32

behavior usually represents an average over the learned behaviors (which is expected).
The goal is to learn models of styles, and use it to bias the models of interaction that
we have, in order to generate more personalized behaviors. We want the robot to adapt
to the human partner on different levels, and not just act in a reactive manner to the
human actions. It has been shown that a suitable cognitive model for human-robot
interaction takes into account long term styles – for example, the person age, gender
and if he/she is shy or not –, and short term decision making – in talking with the human
for example – (Bailly et al., 2010; Thórisson, 2002). The ability to identify, extract and
use the human style traits will enable biasing the robot model to adapt for the human
partner.

Figure 1.4: The iCub humanoid robot (Nina).

1.3 Why Handwriting?

As mentioned earlier, the final objective of this project is to extract and transfer styles
in the context of human-robot interaction. What this has to do with handwriting?

The usage of deep learning in HRI is still in its infancy, mainly because of the
lack of datasets. The issue is not collecting the data (there are many small open-source
datasets available online), but having a unified set of objective and platforms for HRI,
which is not an easy challenge. We envision that this problem will be resolved, as there
is a growing interest in the community to address it.

33 CHAPTER 1. INTRODUCTION

Thus come handwriting. We use it as a proxy platform to understand, build
and test different approaches to use deep learning. It has many advantages to make it
a good proxy, including:

• Availability of datasets: several datasets already exist, with large quantities of
data.

• Diverse of tasks and styles: there are many tasks (letters) in handwriting, ranging
from simple (like letter ’C’) to complex (like letter ’E’), and the writers exhibit a
diverse set of styles on the different tasks, making handwriting a good candidate
to explore the problem of styles.

• Several style aspects are accessible to investigate visually, making it more acces-
sible for in-depth analysis, and getting insight on how the model behaves.

• Several datasets provide information about the writers, like the age, handedness,
gender and the origin. This data is interesting in some aspects of the style
problem.

• We have a clear idea about the content of each task (the identify of the letter or
the shape). Usually, the task is presented to us with the content and the style
mixed together. How to disentangle the content from the style is an open question,
and the fact the styles is an ill-defined problem makes it more ambiguous. With
the assumption that we know the content, we can focus our effort on the styles
problem1.

While the subjects are interacting with the environment (the pen, tablet . . . etc) – which
is observed and recorded –, there are no human interaction aspects in this domain
of data, which is a disadvantage. However, style embeddings are likely to bias a
sequence-to-sequence mappings in the same way.

1.4 What is transfer learning? and why do we need it?

We will discuss transfer learning in more detail in chapter 5, but for now, we want to
motivate having this as one of the PhD objectives.

Transfer of knowledge deals with the problem of leveraging the knowledge
learned from one task, to accelerate/improve the learning of a new task. This is a
skill humans do naturally, for example, if you learn Mathematics, and you want to learn
Physics, you can easily leverage the knowledge of Mathematics to bootstrap your learn-
ing of Physics. This, intuitive as it seems, is not straightforward for machine learning

1We will argue later that the task identity is not necessarily a good representation for the task content.

1.5. IF WE WANT TO PERFORM TRANSFER LEARNING, WHY EXTRACTING STYLES? 34

models. A change in the distribution of the input to the model leads to significant
degradation in performance (Shimodaira, 2000).

Transfer learning is thus a field of machine learning, concerned with developing
algorithms and procedures, to enable the transfer of knowledge between different tasks.
Many techniques are available for transfer learning, but there is always a common
assumption, that the transfer has the potential of success if the tasks are related (i.e.,
if there is common knowledge between the tasks), otherwise, a transfer learning can at
best lead to no improvement, or even reduce the performance of the new model (Weiss
et al., 2016).

Why do we need transfer learning? We do not always have the availability of
a large datasets on the tasks that we want. In many cases, the acquisition and/or the
annotation of large dataset can be prohibitively expensive. For example:

• In robotics (Konidaris et al., 2012a,b), collecting data can be quite expensive
process, due to hardware limitations from one side, and human limitation as well
(in case of human-robot interaction scenarios). In addition, with techniques like
reinforcement learning (Sutton and Barto, 2018), where the robot learns by trial
and error, the process can be prohibitively slow, with safety concerns sometimes.
Also, no data augmentation techniques does exist in the literature for HRI, thus
synthesizing extra data is not possible. Thus, we need to be able to transfer the
knowledge from the task where we have large amount of data, to a relevant task
where we do not have this advantage (figure 1.5).

• In underwater acoustics (Malfante, 2018), an essential task is collecting and clean-
ing the data about the different fish sounds. This is a tediously manual job, and
any change (type of fish, time of the day or place in the ocean) degrades the
quality of prediction a lot. Transfer learning can be very useful in this case, to
reduce the effort needed to collect, clean and annotate the data.

What we want to achieve in this thesis is to transfer the styles between
different tasks. We hypothesize that, when the tasks are relevant (but different tasks,
with different contents), that humans share leverage styles between the different tasks.
In case of handwriting for example, we can reuse the strokes that we learn in the
uppercase letters in order to learn the lowercase letters and digits. We will test this
hypothesis in details in chapter 5.

1.5 If we want to perform transfer learning, why extracting styles?

It is important not to forget our goal while being consumed by the shiny light of machine
learning. It is easy to fall into the trap of "getting the extra 0.1% accuracy", figure 1.6.

35 CHAPTER 1. INTRODUCTION

Figure 1.5: Illustration for a practical case of using transfer learning, where we have
insufficient data on the new task, and we want to leverage the knowledge learned from
another relevant task in order to learn the new task. Source of this image is (Jain).

1.6. CONTRIBUTIONS OF THIS PHD 36

Extracting styles enables us to have an idea of what the model actually learned (i.e.,
it makes the model more interpretable). But why do we need interpretability? Many
reasons:

• Debugging: Neural networks are notoriously known for being black box mod-
els. Extracting styles gives us some indication on what the system learned, and
whether it learned relevant information about the task.

• Discovery of new things: in the era of big data, trying to reason on the data
directly is no longer feasible. Instead, a good approach is to reason on a model
that fits these data (i.e., the model compresses the data into fewer dimensions).
We would like to use this model to reason and discover new things about the
data. After all, the goal of science is to gain knowledge about the world, and an
understanding of how it works. One thing we are interested in is to illuminate
the workspace of interaction: what are the limits of possible actions, expected
reactions and end results. These kind of questions will benefit a lot understanding
what the model actually learned.

• Understanding why: in some cases (e.g., in case of unexpected events), it is human
curiosity to understand the reasoning behind the different decisions. We would
like to get insight on why the model led to that particular decision.

• Developing safety measures: in many applications (like when dealing with the
robots), it is important to be sure that the robot is a 100% safe for the human.
Understanding what the model learned can give us insight on the shortcomings
of the model, allowing us to fix or improve.

• Social acceptance: humans always tries to attribute beliefs, intentions, person-
ality traits and desires to different objects (Heider and Simmel, 1944). An inter-
pretable machine will reinforce these sensations in humans.

• Improve social interactions: when the robot can explain itself and its perception
of the world, it creates a common understanding with the human. This allows the
humans to build a mental model for what the robot is actually trying to do, thus,
building trust between humans and the robot.

For further details, we strongly recommend the book (Molnar, 2019) on the
topic of machine learning interpretability.

1.6 Contributions of this PhD

In this manuscript, we discuss the different contribution of this PhD, addressing different
aspects of the styles:

37 CHAPTER 1. INTRODUCTION

Figure 1.6: Source: https://xkcd.com/

https://xkcd.com/

1.7. THESIS OUTLINES 38

1. Propose a manner of thinking about styles: traditionally, a lot of work has been
done in order to manually extract and annotate styles, and deal with styles in
terms of predictability (using the extracting styles in a regression/classification
problem). In this PhD, we propose to implicitly evaluate styles by observing
the generative aspects of the model (letting the model generates behaviors, and
trying to evaluate the distance between these behaviors and the target/ground
truth ones). This is discussed in chapter 3.

2. Propose and build benchmarks and evaluation metrics, and ground those met-
rics, in order to compare and evaluate future style extraction methods. This is
discussed in chapter 3.

3. Propose a generic framework to study styles, using a conditioned-autoencoder.
We evaluate this framework in its basic form against the benchmarks. We further
validate this framework by extracting verbose styles from it, including ones that
are not known from the literature. This is discussed in chapter 4.

4. Last, we address the problem of style transfer. We show how to use our proposed
framework in order to transfer styles. We perform extensive experiments in a lot
of combinations of tasks, on two different datasets. We also enhance and expand
on the evaluation metrics we use in order to quantify the quality of transfer. This
is discussed in chapter 5.

1.7 Thesis outlines

We start in chapter 2 by explaining the datasets used in this PhD, and explore their
different characteristics, and the preprocessing performed on them. In chapter 3, we
discuss first the different aspect of deep learning that we are using in this PhD. We
then discuss the different benchmarks and evaluation metrics we propose, and how can
we ground them.

Once this step is done, it paves the way to discuss our proposed framework
to study styles in chapter 4. We start first by presenting the relevant literature, then
move on to the experimental part, where we show the performance of the proposed
framework relative to the benchmarks. We conclude this chapter by a section on style
extraction, where we shade some light on what the model actually learned.

With the elements in place, we can explore the topic of style transfer, in
chapter 5. As usual, we study with literature over transfer learning, followed by the
proposed experiments in order address our hypotheses. We perform a wide range of
experiments, to solidify our conclusions about style transfer. We also discuss another
possibility to interpret what the model actually learned in section 5.3.

39 CHAPTER 1. INTRODUCTION

We conclude the manuscript by a general discussion over this thesis (chapter
6), the difficulties it faced, and the possible future research directions based on the
results. We believe that this thesis answered multiple questions, but it also created
more questions and research interests for further investigation. We then make a short
summary and conclusions about the work performed in this thesis in chapter 7.

1.7. THESIS OUTLINES 40

Chapter 2

Datasets

Contents
2.1 Online Handwriting – IRONOFF . 43

2.2 Sketch Drawing – QuickDraw! . 44

2.2.1 General comments on QuickDraw! and IRONOFF 53

2.3 Data representation . 62

2.3.1 Continuous or Discrete representation? 63

2.3.2 Feature engineering: Direction and Speed 65

2.3.3 QuickDraw! strokes preprocessing 66

2.4 Summary . 68

In order to test the different hypotheses and ideas presented in the introduc-
tion chapter, we need to select suitable domain to carry out the experiments, which
is determined by the data. The choice of the data is a selection between different
trade-offs: relevance (i.e., it contains the relevant information to perform the study) VS
readiness of the data (i.e., is it already available? and how expensive it is to acquire the
data?), simplicity VS realism (simple data has less noise and less irrelevant patterns,
but the ability to handle realistic data provides stronger support for the hypothesis),
and the amount of data available.

It is traditional in the machine learning community to use two or more datasets
to address the questions. This way, it is possible to detect issues like having a very
specific method that work only in a limited context1, and to avoid the effect of unknown
contributing variables.

1This is not wrong in itself, it depends on the objective of the work. In our case, we want to show an
indication that our methods can generalize.

41

42

We settled on the domain of handwriting and drawing. In this chapter we
present two datasets: online English letters handwriting dataset, IRONOFF, and online
sketch drawing dataset, QuickDraw!2. We present general information and exploratory
statistics about both datasets, and discuss the categories/tasks in each dataset, and
argue why both datasets are suitable for this study.

Points addressed in this chapter

• Present IRONOFF handwriting dataset.

• Present QuickDraw! sketch drawing dataset.

• Motivate the suitability of these datasets for this study.

2IRONOFF is collected in a lab on a more limited scale, while QuickDraw! is crowd-source collected
on large scale.

43 CHAPTER 2. DATASETS

2.1 Online Handwriting – IRONOFF

IRONOFF (Viard-Gaudin et al., 1999) is a cursive handwriting dataset. It consists of
isolated letters, thus allowing us to focus on the problem of styles with a reasonable
complexity, and giving us the advantage that the content of the task is well known
beforehand (i.e, the identity of the letter). Other cursive handwriting datasets do exist,
like IAM Handwriting Database (Marti and Bunke, 1999). However, they use whole
sentences/paragraphs, instead of individual letter, thus making the problem more com-
plicated.

Basic information about IRONOFF dataset as a whole:

• Around 700 writers in total. We use the 412 writers who have written isolated
letters.

• 10,685 isolated lower case letters, 10,679 isolated upper case letters, 4,086 iso-
lated digits and 410 euro signs.

• The gender, handedness, age and nationality of the writers.

• For each writer/task (letter or digit) example, we have that example’s image -
with size of 167x214 pixels, and a resolution of 300 dpi -, pen movement timed
sequence comprising continuous X, Y and pen pressure, and also discrete pen
state. This data is sampled every 10ms at maximum, on a Wacom UltraPad A4,
but the actual sampling rate is not uniform3. Figure 2.1 shows an example for
format of the the provided data.

We explored the information available about the writers in the dataset (see
figure 2.3), we can see that almost all the participants are of French nationality, and
majority of them are less than 30 years old. The data is almost balanced between
males and females, but largely unbalanced between left and right handed people (but
this is fair representation of reality though, where 10% of the people are left-handed,
and 90% are right-handed).

We then explored the handwriting examples from multiple points of view. In
figure 2.4, we can see the frequency of strokes for different tasks. We can see that
letters like C and L needs one stroke only, while I and E requires the most number
of strokes in order to draw properly. By combining this with observation about the
drawing time for different tasks (see figure 2.5) and the pausing time (see figure 2.6),
we can have a good indication about the complexity of each task relative to the other
tasks. The more strokes the task has, the more drawing and pausing time is needed,
and the more complex the task is.

3To be treated in the preprocessing step.

2.2. SKETCH DRAWING – QUICKDRAW! 44

Another aspect is the general direction of the drawing (see figure 2.2), to
determine in general if it is clockwise or anti-clockwise. This is an important aspect of
style, but it also depends on the task. Interesting to see that most round categories,
like O o 0, in general, are being drawn anti-clockwise. In categories X x however, we
can see that the drawing can equally be clockwise or anti-clockwise. We will use this
insight later in our analysis of the our model behavior.

One challenging issue with this dataset however is that we have only one
example for each writer-letter combination. This makes the task more difficult, because
it is hard to extract a writer style using very few items (the 64 unique letters/digits per
writer in this case).

2.2 Sketch Drawing – QuickDraw!

Around 50 million drawings have been collected by players of the game Quick, Draw! (Jonas Jonge-
jan and Team, 2017), where players are asked to draw one of 345 categories. A neural
network has been trained to classify the drawings into the right categories. With more
data collected and labeled, the network gets better (it learns from the flagged errors).
The collected dataset is available online for free (Google, 2017). Example of the shapes
collected are in figure 2.7.

Each sample in the dataset contains the following data:

• key_id: a unique identifier for this sample.

• word: the category the player was asked to draw.

• recognized: if the neural network did recognize the drawing as part of this cate-
gory.

• time-stamp: to mark the creation time of the drawing.

• country code: the location of the player when the drawing was made.

• drawing: an array containing the X , Y trajectories, and the time T for each point
in the trajectory. Points belonging to each stroke are grouped together.

In order to focus on the styles aspect, we selected 5 categories: circle, triangle,
square, hexagon and octagon. Our reasoning is that the more complex the task gets
(cats for example), the harder it is to have a subjective opinion about the styles, and
harder to give insights about the results. This is not a limitation on the methods we
are proposing though.

45 CHAPTER 2. DATASETS

Figure 2.1: An example from IRONOFF (letter ’a’). Left, the image of the letter (i.e.,
offline-handwriting). Right, is an example of the format for the online-handwriting.
We have the writer’s ID, origin, handedness, age and gender. The sequence of pen
movement to draw the letter are then given: pen state (PEN_DOWN, PEN_UP), X, Y
coordinates, pen pressure, and time (ms).

2.2. SKETCH DRAWING – QUICKDRAW! 46

Figure
2.2:

IRO
N

O
FF

:Statistics
on

the
generaldirection

ofthe
draw

ings
for

the
differentcategories.

47 CHAPTER 2. DATASETS

Fi
gu

re
2.

3:
Su

m
m

ar
y

st
at

is
tic

s
ab

ou
tt

he
w

rit
er

s
in

IR
O

N
O

FF
:t

he
ag

e,
ge

nd
er

,c
ou

nt
ry

an
d

ha
nd

ed
ne

ss
.M

os
to

fp
ar

tic
i-

pa
nt

s
ar

e
ar

ou
nd

20
ye

ar
s

ol
d,

an
d

th
e

m
aj

or
ity

ar
e

Fr
en

ch
.

Al
th

ou
gh

m
al

es
ar

e
th

e
do

m
in

an
t

pa
rt

ic
ip

an
ts

,t
he

da
ta

ca
n

be
co

ns
id

er
ed

ba
la

nc
ed

in
th

at
re

ga
rd

,w
hi

le
on

th
e

as
pe

ct
of

ha
nd

ed
ne

ss
,t

he
va

st
m

aj
or

ity
of

th
e

pa
rt

ic
ip

an
ts

ar
e

rig
ht

ha
nd

ed
.

2.2. SKETCH DRAWING – QUICKDRAW! 48

Figure
2.4:Sum

m
ary

statistics
strokes

forallcategories
in

IRO
N

O
FF

dataset(uppercase
and

low
ercase

letters,and
digits),

starting
from

the
sim

plest
to

the
m

ore
com

plex.
W

e
can

see
that

letters/digits
like

C,L,O
,0

are
quite

sim
ple,just

one
m

ostly
one

stroke
and

a
sm

allvariances,w
hole

letters
like

H
,I,E

have
m

ore
strokes,and

m
ore

variance
in

the
w

ay
they

are
draw

n.

49 CHAPTER 2. DATASETS

Fi
gu

re
2.

5:
D

ra
w

in
g

tim
e

fo
ra

ll
ca

te
go

rie
s

in
IR

O
N

O
FF

da
ta

se
t,

ar
ra

ng
ed

fro
m

th
e

sm
al

le
st

to
th

e
la

rg
es

t.
D

ra
w

in
g

tim
e

is
an

in
di

ca
tio

n
on

th
e

co
m

pl
ex

ity
of

th
e

ta
sk

.
Ca

te
go

rie
s

lik
e

C,
c,L

,O
,0

ha
ve

sm
al

lp
au

si
ng

tim
e

–
si

nc
e

th
ey

ar
e

m
os

tly
on

e
st

ro
ke

–,
w

hi
le

ca
te

go
rie

s
lik

e
k,

B,
m

,E
ha

ve
a

lo
ng

er
pa

us
in

g
tim

e,
si

nc
e

th
ey

do
ha

ve
m

ul
tip

le
di

ffe
re

nt
st

ro
ke

s,
or

co
m

pl
ex

st
ro

ke
–

lik
e

in
ca

se
of

le
tte

r
m

–.

2.2. SKETCH DRAWING – QUICKDRAW! 50

Figure
2.6:

Pausing
tim

e
for

allcategories
in

IRO
N

O
FF

dataset.
Pausing

tim
e

is
one

indication
on

the
com

plexity
ofthe

task,and
in

case
ofm

ultiple
strokes,they

can
indicate

ofthe
strokes

are
repetitive

or
different,or

that
that

strokes
are

sim
ple

orcom
plex

(Séraphin-Thibon
etal.,2019).Categories

like
2,C,0,3,6

have
sm

allpausing
tim

e
–

since
they

are
m

ostly
one

stroke
–,w

hile
categories

like
F,J,Q

,j
have

a
longer

pausing
tim

e,since
they

do
have

m
ultiple

different
strokes,or

com
plex

stroke
–

like
in

case
ofm

–.

51 CHAPTER 2. DATASETS

Fi
gu

re
2.

7:
Ex

am
pl

es
fro

m
di

ffe
re

nt
ca

te
go

rie
s

in
Q

ui
ck

D
ra

w
!

da
ta

se
t.

So
ur

ce
of

th
e

im
ag

es
ar

e
(G

oo
gl

e,
20

17
).

Al
l-i

n-
al

l,
th

e
da

ta
ha

s
34

5
ca

te
go

rie
s.

2.2. SKETCH DRAWING – QUICKDRAW! 52

We sampled 20K samples from each task to perform exploratory analysis on
them. In terms of strokes (see figure 2.11), we can see that there is a large variance
surrounding the mean of each category. This trend continues when we look at the
drawing time (see figure 2.13) and the pausing time (see figure 2.12). In the sample we
analyzed, there are players from around 160 countries, figure 2.14 – mostly from US and
Great Britain –. This is one indication to the increase of the complexity QuickDraw!
dataset presents compared to IRONOFF dataset.

Not all examples are recognizable during the game though. In many cases,
the players do not draw the required shape, or draw something quite complicated. The
results of the recognition can be seen in figure 2.9, with the relation between number
of strokes and length of the drawing. We can conclude that, for the selected categories,
the more complex the drawing is (more length or more strokes), the less likely it is to
become a recognizable drawing.

We also studied the general direction of the drawings in the selected cate-
gories in QuickDraw! (see figure 2.8). In the circle and square categories, we can see
that the majority of the drawings are clockwise, while in the triangle category, there is
a fair division between clockwise and anticlockwise, and majority of anticlockwise for
the hexagon categories.

This dataset is considerably more challenging than IRONOFF, for several
reasons:

• Even though the players are asked to perform a particular task (draw a circle for
example), in several cases, there is no clear resemblance between the drawing
and task (e.g., when drawing an octagon, a lot of the recognized drawings do not
really resemble an octagon).

• The players used a mouse in order to perform the drawing4. This sometimes
lead to weird behaviors in terms of speed of movement (too slow, too fast), and
the number of strokes (players sometimes tend to simplify complex shapes, by
drawing the whole shape in one stroke, and sometimes they spend too much time
to draw it well, with too many strokes).
This is unlike handwriting, where the writers usually tend to follow some rules (Séraphin-
Thibon et al., 2019), which is not mostly the case in this dataset.

• Thus, some extra parts of pre-processing will need to be added in order to reduce
these effects of the mouse, and make the data more closer to handwriting behavior.

• As mentioned earlier, the variance for each of the selected categories in this
dataset is considerable higher than IRONOFF.

4Although there is no reporting about the tools used in the drawing, it is a valid assumption to assume
that the mouse is the main tool.

53 CHAPTER 2. DATASETS

Since these drawings are done using the mouse, an interesting aspect for
the recognizable images is the simplicity of strokes used – easier for player – (see
figure 2.11). If a pen is used in the drawings, this particular behavior would not be
observed. For example, in case of hexagon and octagon, one can expect a higher density
on the 6 and 8 strokes respectively, and much less on 1 stroke. Our observation is that
it is easier with the mouse to draw the whole shape with one (or few) strokes only.
This has two consequences:

• It is difficult to generate the strokes: One/few strokes means that a direct stroke
representation is quite sparse, there is a single value (representing the end of
the stroke). This problem has also been noted in the work done in (Ha and Eck,
2017), and it is a challenging task to tackle.

• Unlike in IRONOFF dataset, where the strokes is a contributing feature in iden-
tifying the letter and the rules of drawing it, the strokes are not expected to play
the same rule in QuickDraw – unless further processing is done –.

For each class, we randomly – without replacement – sampled only from the
recognized drawings, traces with less than 200 time steps long. 2K samples (total is
10K samples). 1K is used for test, 900 for validation, and the rest is the training data.

2.2.1 General comments on QuickDraw! and IRONOFF

Since participants in both data sets use different methods in order to perform the draw-
ing/writing, it is interesting to investigate this aspect. Figure 2.15 shows a comparison
between the drawing time for the different round shapes in both datasets – letters O, o
and digit 0 in IRONOFF, and the circle in QuickDraw! –. We can see that the drawing
speed IRONOFF is much faster than QuickDraw!. The average for IRONOFF is 270ms,
compared to 900ms for QuickDraw!. Also, the variance in QuickDraw! is much larger
than IRONOFF. We believe this is a result from the drawing tools used – a mouse,
or a finger on a tablet in case QuickDraw!, and a pen in case of IRONOFF –. Also,
a mastery of the drawing tool has an important effect on the speed; it reduces the
anticipation time, allowing faster performance.

An important note that we would like to emphasis is that multi-modal aspect
of styles. Although ill-defined, some aspects can be identified, like the length of draw-
ings, distribution of strokes, direction of drawings...,etc. We established this argument
through the analysis provided before for both datasets. In later chapters, we will ad-
dress this issue during the evaluation through the use of multiple evaluation metrics,
instead of focusing on getting one number for the whole system.

2.2. SKETCH DRAWING – QUICKDRAW! 54

Figure
2.8:

The
roundness

ofthe
selected

categories
in

Q
uickD

raw
!.

55 CHAPTER 2. DATASETS

Fi
gu

re
2.

9:
Th

e
re

co
gn

iz
ed

VS
no

n-
re

co
gn

iz
ed

dr
aw

in
gs

in
Q

ui
ck

D
ra

w
!

in
ea

ch
of

th
e

se
le

ct
ed

ca
te

go
rie

s.
Th

e
m

aj
or

ity
of

th
e

sh
ap

es
ar

e
re

co
gn

iz
ed

.U
nr

ec
og

ni
ze

d
dr

aw
in

gs
us

ua
lly

ha
ve

m
or

e
st

ro
ke

s
or

lo
ng

er
th

an
th

e
re

st
of

th
e

dr
aw

in
gs

.

2.2. SKETCH DRAWING – QUICKDRAW! 56

Figure
2.10:

The
distribution

ofthe
strokes

in
Q

uickD
raw

!
for

the
recognized

shapes,for
each

category.
W

e
can

see
that

m
ost

ofthe
draw

ings,for
the

different
categories,have

only
one

stroke,and
the

distribution
spread

slightly
as

the
shape

gets
m

ore
com

plicated.Itw
as

expected
thatthe

strokes
w

illhave
a

differentdistribution
–

forthe
octagon,w

e
w

ere
expecting

to
see

m
ajority

ofthe
draw

ing
around

8
strokes

–.
W

e
believe

this
is

due
to

the
use

ofthe
m

ouse
during

the
draw

ing,and
the

non-m
astery

levelofparticipants
in

using
the

m
ouse

for
draw

ing.

57 CHAPTER 2. DATASETS

Fi
gu

re
2.

11
:

Q
ui

ck
D

ra
w

!
st

ro
ke

s
st

at
is

tic
s

fo
r

ea
ch

of
th

e
se

le
ct

ed
ca

te
go

rie
s.

St
ro

ke
s

is
an

in
di

ca
tio

n
of

th
e

co
m

pl
ex

ity
of

th
e

dr
aw

in
g.

Ci
rc

le
ha

ve
th

e
lo

w
es

t
nu

m
be

r
of

st
ro

ke
s,

th
us

th
e

si
m

pl
es

t,
w

hi
le

oc
ta

go
n

ha
s

th
e

la
rg

es
t

nu
m

be
r

–
an

d
la

rg
es

tv
ar

ia
nc

e
–,

th
us

it
is

th
e

m
os

tc
om

pl
ex

sh
ap

e.

2.2. SKETCH DRAWING – QUICKDRAW! 58

Figure
2.12:

Q
uickD

raw
!

pausing
tim

e
statistics

for
each

of
the

selected
categories.

It
is

another
indication

on
the

com
plexity

ofthe
shape

and
its

strokes.Circle
category

has
the

leastpausing
tim

e,w
hile

the
octagon

has
the

largestone.

59 CHAPTER 2. DATASETS

Fi
gu

re
2.

13
:

Q
ui

ck
D

ra
w

!
dr

aw
in

g
tim

e
st

at
is

tic
s

fo
r

ea
ch

of
th

e
se

le
ct

ed
ca

te
go

rie
s.

It
is

an
ot

he
r

in
di

ca
tio

n
on

th
e

co
m

pl
ex

ity
of

th
e

sh
ap

e
an

d
its

st
ro

ke
s.

Ci
rc

le
ca

te
go

ry
ha

s
th

e
le

as
td

ra
w

in
g

tim
e,

w
hi

le
th

e
oc

ta
go

n
ha

s
th

e
la

rg
es

to
ne

.

2.2. SKETCH DRAWING – QUICKDRAW! 60

Figure
2.14:

The
m

ost
dom

inant
countries

for
the

players
in

Q
uickD

raw
!

dataset.
In

the
sam

ple
w

e
analyzed,there

is
players

from
around

160
countries,butthe

m
ajorty

are
from

U
nited

States,follow
ed

by
G

reatBritain.

61 CHAPTER 2. DATASETS

Fi
gu

re
2.

15
:

A
co

m
pa

ris
on

be
tw

ee
n

th
e

dr
aw

in
g

tim
e

of
di

ffe
re

nt
ro

un
d

sh
ap

es
in

bo
th

Q
ui

ck
D

ra
w

!
an

d
IR

O
N

O
FF

.W
e

ca
n

se
e

th
at

,t
he

av
er

ag
e

dr
aw

in
g

tim
e

in
ca

se
of

IR
O

N
O

FF
(2

70
m

s)
is

m
uc

h
lo

w
er

th
an

fo
r

Q
ui

ck
D

ra
w

!
(9

00
m

s)
.

Al
so

,
th

e
va

ria
nc

e
in

th
e

di
st

rib
ut

io
n

is
m

uc
h

hi
gh

er
in

ca
se

of
Q

ui
ck

D
ra

w
!.

Th
is

pr
ob

ab
ly

a
re

su
lt

fro
m

th
e

di
ffe

re
nt

dr
aw

in
g

to
ol

s
us

ed
in

bo
th

da
ta

se
ts

–
a

m
ou

se
,o

r
a

fin
ge

r
on

a
ta

bl
et

in
ca

se
Q

ui
ck

D
ra

w
!,

an
d

a
pe

n
in

ca
se

of
IR

O
N

O
FF

–,
an

d
al

so
fro

m
th

e
m

as
te

ry
le

ve
lo

ft
he

di
ffe

re
nt

to
ol

s
–

us
ua

lly
pe

op
le

ar
e

m
or

e
co

m
fo

rt
ab

le
us

in
g

th
e

pe
n

th
an

th
e

m
ou

se
in

dr
aw

in
g

–.

2.3. DATA REPRESENTATION 62

2.3 Data representation

The choices of data representation is a key factor in the success or failure of the machine
learning based approaches. This choice, however, is also entangled with the task to be
done (in this case, the study of styles).

A good representation tries to:

• Maximize the density of data/patterns ratio: machine learning algorithms are
statistical algorithms. It performs better when we have more examples for the
patterns we want to learn (e.g., in case of cat/dog image recognition, having
more example images for these two categories will always lead to a better perfor-
mance). Another way is to reduce the number of irrelevant/unnecessary patterns
to be learned from the data. This is the task of feature selection, which is a
fundamental step in machine learning. The target is to increase the amount of
signal-to-noise ratio in the data. All-in-all, the objective is to increase the ra-
tio of data/patterns, either by adding more data (if it is possible, or by using
synthetic data using methods like Generative Adversarial Networks (Goodfellow
et al., 2014)), or removing irrelevant patterns.

• Simplify the learning procedure (differentiability/richness of distributions): while
working with deep neural networks provide us with a lot of power in modeling a
large variety of tasks, it also imposes some constraints. For example, the whole
learning pipeline must be differentiable (this is a limitation imposed by the op-
timization methods, which will be discussed later). There are a lot of already
available off-the-shelf functions that can be used, but care must be in the design
of the experiment, to make it fit with these functions. Sometimes however, these
functions are not enough to model the task properly. Thus, there is a need to
adapt new tools to fit within the neural networks paradigm. This including find-
ing a proper way to differentiate them, or, if not possible, to move around the
non-differentiability problem (usually by finding a surrogate function to optimize),
which is not always a straightforward task for deep learning practitioners.

• Keep enough patterns to perform the intended study: it is quite tempting to
focus on the scores of the machine learning algorithm, while forgetting about
the original task. In our case, machine learning is a tool to help us perform our
analysis, but not the final objective. For example, a low-level quantization of the
X and Y traces of the pen will remove a lot of patterns, and will make it easier
for the algorithm to learn the data distribution. But it will also remove essential
information about the styles in this case.

In the following subsections, we will discuss two different data representation
choices (continuous versus discrete representation, and the features used), and the

63 CHAPTER 2. DATASETS

implications of each of them on the machine learning, and the study of the styles.

2.3.1 Continuous or Discrete representation?

The X, Y and pressure of handwriting tracings are always recorded as continuous values,
while the pen state is discrete (categorical). Thus, it probably makes sense to model
the data in their native form. In the neural network design, a typical design choice
will be to use a linear activation function as output function, and the Minimum Square
Error (MSE) as loss function. Unfortunately, it is not that straightforward.

Continuous Data Representation To understand the problem, we first need to con-
sider how a simple feed-forward neural network works, figure 2.16. The input is x, the
output of the network is a, and we want to predict y. The neural network tries to project
x to a new space z21 through a series of continuous folding of space. Then, the rule of
the last activation layer is to model P(y|z21).

Figure 2.16: Example of a single-hidden layer neural network. The circle units is
the sum of the weighted neurons connected to this unit, and the square units is the
application of the activation function on that sum.

Although a linear activation is very simple, y = z21, it is also shown to have
limitations. In (Bishop, 1994), a simple example is shown (see figure 2.17). If each
input x gets a unique output y (one-to-one mapping), then linear activation performs
well (figure 2.17, left). But if the input can have multiple possible outputs (one-to-
many), the model learns to average over these outputs (figure 2.17, right). The author
concludes that a simple linear activation function is not powerful enough to represent
a complex/rich distributions. He then proposed the use of a Gaussian Mixture Model
(GMM) (Murphy, 2012) as the final activation of the neural network, which is powerful
enough to enable modeling complex continuous distributions, and avoids the problems
of a simple linear activation function. This combination of neural network and GMM

2.3. DATA REPRESENTATION 64

is called Mixture Density Network (MDN). The loss function in this case is changed
from the MSE to the a posterior log-likelihood of the GMM. The neural network output
in this case is not the required prediction directly, but the parameters of the GMM
(means, variances, weights, correlations). The required prediction is then sampled from
this parameterized GMM.

Figure 2.17: The performance of the simple linear activation function on two setups.
Left: in case of one-to-one mapping between the input and the output, it performs well.
Right: In case of one-to-many mapping, the function starts to average over the seen
observations, leading to undesirable behavior. Source of this image is (Ha, 2015).

The work done in Graves (2013) demonstrated a system which generates im-
pressive results on handwriting demonstration. He used an adaptation of the MDN
for temporal data. Other applications for MDN can also be found in speech synthe-
sis (Wang et al., 2016, 2017a; Zen and Senior, 2014). While there is no question about
the power the MDN approach provides, it was reported in (Graves, 2013) that train-
ing model kept collapsing (the explosion of gradients, the loss going to in f or NaN),
thus requiring tweaks and tricks in order to train properly. This is in-line with the
experiments I performed with MDN, leading to similar conclusions.

Discrete Data Representation Discrete representation of originally continuous data
requires transforming the data via feature engineering and/or quantization step on the
raw data. While it is guaranteed there will be some information loss in the discrete
data, discretization provide a lot of robustness to noise (this is why it is used in digital
communication for example), and flexibility (many tools based on information theory do
exist to handle digital data). Plus, a categorical distribution does not make assump-
tion of the shape of the data distribution, unlike continuous distributions. The use of
discrete distribution and how to infer from a discrete distribution will be covered later
in section 3.1.

65 CHAPTER 2. DATASETS

The challenge in this case is to choose a good quantization technique, that
preserve the relevant information in the original signal one one side, and while keeping
the dimensionality of the problem to a tractable level. For example, in case of speech
synthesis, the authors in (Oord et al., 2016a,b) showed that applying the µ-law to the
raw speech signal to quantize it (non-linear quantization), revealed a superb sound
quality. This is better than performing naive linear quantization on the data, and saves
a lot of memory as well: with non-linear quantization, they only need 256 levels. To get
a similar behavior with linear quantization, around 65K quantization levels or required.

2.3.2 Feature engineering: Direction and Speed

Following the emphasis of the previous section, we choose discrete representation for
our data. A requirement for a good quantization scheme should keep the important
information in the original signal5

In case of IRONOFF, the letters tracings has been cleaned by removing points
related to false starts or corrections as well extra strokes. Tracings were re-sampled at
100Hz, and the ones with length exceeding 1 second has been removed. This is because
they are quite rare, thus, their existence would significantly degrade the performance
of our model.

For QuickDraw!, the re-sampling frequency is 50Hz, and consider tracings that
are less than 200 time steps. This is because the tracings tend to be longer than in
IRONOFF. This starts to become clearer when the task gets more complex (the octagon
being the most complex one).

We represent each letter tracing by two features: direction and speed. Each
feature is quantized into 16 levels and represented as a one-hot encoded vector.

Freeman coding (Freeman, 1961) is used in order to encode the direction
feature. It belongs to a family of compression algorithms called Chain Codes. This set
of algorithms proved to be useful to encode an image with connected components. They
can transform a sparse matrix to just a small fraction of the size of the image, in the
form of a sequence of codes. Thus, they are being used as compression algorithms as
well.

Freeman codes can N-directional codes (where N are the directions), depend-
ing on the needed resolution. It is quite simple as it encodes each direction with a
unique number from 0 to N-1. A direction is defined as the directed vector connecting
two neighboring pixels on the contour of a connected component in the image.

5In some applications, like in digital communications for example, the quantization (or digitization
process) has other rules, like compressing the signal, increasing the signal-to-noise ratio, and increase
the robustness of the signal. This is outside the scope of our work however.

2.3. DATA REPRESENTATION 66

We compute the change of directions between three consecutive points. Then,
we map this change to its corresponding freeman code number, as shown in figure 2.18.
Last, we transform the direction number into one-hot encoding scheme, and use this
as input to our network. We also quantize the speed of each displacement. We find
that a linear speed quantization works well for IRONOFF, while a logarithmic speed
quantization is better for QuickDraw!.

Figure 2.18: Example for freeman code representation for 8 directions. Each direction
is given a unique number.

2.3.3 QuickDraw! strokes preprocessing

As mentioned earlier, QuickDraw! drawings was done mainly using the mouse, which
leads to different characteristics than IRONOFF, mainly in terms of strokes. As shown
in the exploratory analysis of the strokes distribution, the participants usually perform
the drawings in fewer strokes than expected. This creates a problem for us in the
machine learning part, as the strokes are very sparse, and hard to learn. The work
done in (Ha and Eck, 2017) reports the same issue. Early experiments on our side on
the machine learning part showed great difficulty in learning the proper strokes.

In order to get around this issue, we processed the data in order to generate
more balanced distribution of strokes. After some exploration, we first identify that the
problem is that the participants do not release the stroke, instead, they wait or slow
instead of performing a stroke. The period we find is 90 ms. We monitor the time used
during the drawing, and search for this ’waiting’ period during the drawing. We identify
this waiting period as a stroke. This process helped us having a better distribution,
thus, enhancing the performance of our machine learning models. See figure 2.19 for
the comparison between the original and the processed strokes.

67 CHAPTER 2. DATASETS

Fi
gu

re
2.

19
:

Th
e

di
st

rib
ut

io
n

of
th

e
st

ro
ke

s
in

Q
ui

ck
D

ra
w

!
be

fo
re

an
d

af
te

r
ou

r
pr

e-
pr

oc
es

si
ng

.
Th

e
ne

w
di

st
rib

ut
io

n
re

so
lv

es
th

e
pr

ob
le

m
of

sp
ar

si
ty

,a
nd

in
lin

e
w

ith
ou

r
ex

pe
ct

at
io

ns
.

2.4. SUMMARY 68

2.4 Summary

In this chapter, we explored two datasets: Cursive Handwriting dataset, IRONOFF
and sketch drawing dataset QuickDraw!. Each of these datasets contains several
tasks/categories (the letters/digits in case of IRONOFF, and the shapes in case of
QuickDraw!), and we can explore the styles around each of those tasks. We explored
basic information about each task (number of strokes, drawing time, and the pausing
time).

We motivate the use of these datasets because we can see that there is a
variance in these information of each task, suggesting different styles for each task.
This variance differs a lot depending on the complexity of tasks: in IRONOFF for
example, letter c seems to be the simplest task, thus, the variance in it is relatively not
that large. This variance increases as the task get more complex (letter E for example).
In QuickDraw! dataset, a similar trend can be observed (the circle being the simplest
task, and the octagon being the most complex one).

Last, we argue that although that QuickDraw! has simpler tasks than IRONOFF,
it is actually more complicated. We hypothesize that this is due to the fact that there
is a huge variety in the players (many different countries, compared to mostly French
people in IRONOFF). The players use mostly the mouse in order to draw6, which leads
to behaviors usually unobserved with hand drawing/writing. Also, in such environment,
it is expected that the human curiosity will prevail, and people will try to draw complex
shapes, outside the limit of the required task, in order to see if the neural network
classifier will recognize it correctly or not.

We will consider that there are two hierarchies of tasks in IRONOFF : the
first is uppercase, lowercase letters, and digits. The second is the individual letters
and digits. When we perform transfer learning, we will do it on the tasks of the first
hierarchy only (for computational reasons).

We will use QuickDraw! side-by-side to IRONOFF in our last part of our
work in order to validate our approach and conclusions, but the first two parts will be
done on IRONOFF only.

6The players did not receive any special training on drawing with the mouse beforehand.

Part II

Experiments

69

Chapter 3

Generation, benchmarks and
evaluation

Contents
3.1 Background . 73

3.1.1 Sequential data . 74
3.1.2 Recurrent Neural Networks and Sequence Modeling 75
3.1.3 Optimization Algorithms . 76
3.1.4 Inference: How to generate sequences from the network? 79
3.1.5 How to introduce prior to the model? (conditioning the model) 82
3.1.6 How to evaluate the quality of generation? 83

3.2 Putting it all together . 86
3.2.1 Our proposed evaluation metrics . 87
3.2.2 How to ground the metrics? . 89
3.2.3 Proposed model . 89
3.2.4 Results . 92
3.2.5 Examples of the generated letters 94

3.3 Summary . 95

Since styles are ill-defined, they can not be evaluated explicitly (we can not
quantify them in advance). Thus, we need a proxy method in order to implicitly evaluate
them. We can do this by using them in order to generate behaviors (i.e., synthesis
handwriting traces), and evaluate the quality of those behaviors relative to the ground-
truth behaviors (i.e., the original letters traces). In other words, to study styles, we
would like to reconstruct the target behaviors using generative models, only informed
by the task and the styles to perform the behavior. In this chapter, we discuss the
recent advances in neural generative models: how are they trained? how do we infer

71

72

from them? Then we look at paradigm for reconstruct target behaviors, with focus on
the usage of neural networks.

After we generate the behaviors, we need to evaluate them in a manner that
evaluates the styles. This is still an open research question, and a complicated one
as well. It also goes hand-in-hand with the choices made in generative models. We
discuss the used evaluation metrics across different domains (e.g., text, speech and
handwriting evaluation). We also discuss the difficulties associated with finding the
suitable evaluation metric.

We then present the experiments done in order generate drawings and ground
our proposed evaluation metrics. We will explain our choices for the model design, the
inference methods, and our approach to ground the metrics.

Questions addressed in this chapter

• How to generate handwritten letters using deep learning framework?

• How to evaluate the generated traces?

• What benchmarks are suitable to compare to?

73 CHAPTER 3. GENERATION, BENCHMARKS AND EVALUATION

3.1 Background

We start by introducing the different basis for our work in the literature. Most of this
work uses deep learning and generative models. How and why deep learning emerged
in the last few years is quite important to keep in mind, since it is the starting point
for any successful usage of deep learning. We then explore a particular aspect of deep
learning: generative models. In particular, we focus on the domain of sequential data,
where the problem gets more challenging. A direct consequence for using generative
models is the challenge of evaluating what is generated. Generation, after all, has
an artistic aspect, unlike well-defined machines learning tasks like regression and
classification. We try to make sense of what exists in the literature, and try to deduce
what would be a good criteria for evaluation metrics for a generative task.

Deep learning is a subset of machine learning (Goodfellow et al., 2016; LeCun
et al., 2015), mainly applicable on neural networks. These set of techniques perform
remarkably well nowadays on a wide range of tasks and benchmarks (for example, in
image recognition (He et al., 2016; Krizhevsky et al., 2012; Simonyan and Zisserman,
2014), speech synthesis (Oord et al., 2016a), image segmentation, handwriting recog-
nition, image captioning (Karpathy and Fei-Fei, 2015; Vinyals et al., 2014), language
translation (Sutskever et al., 2014b), even outperforming humans in some of them (GO
game (Silver et al., 2016)).

Before deep learning, in order to use classical machine learning algorithms,
an important step was feature engineering: extracting the relevant features from the
data, in order to get the relevant information needed to perform the task. In images,
techniques like Scale-invariant feature transform (SIFT) (Lowe et al., 1999), and in
speech, feature like Mel-frequency cepstrum (MFCC) and Probabilistic Linear Discrim-
inate Analysis (PLDA) (Narang and Gupta, 2015), were quite dominant at that time.
There is no one solution that fits all here; it depends on the task in hand, and that
required experience. Thus, feature engineering was quite challenging.

The advantage of deep learning techniques is that it overcome (to a big extent)
the need for the daunting task of feature engineering. Instead, it tries to learn, from
the raw data, hierarchy of features, that are optimal in order to solve the task in hand
(i.e., it performs automated feature engineering). In our work for example, we did not
need to do any kind of temporal feature extraction1.

A detailed discussion into the basics of deep learning is out of the scope of this
document (and has been done properly in many books and tutorial available online).
We refer you to the book (Goodfellow et al., 2016) for more theoretical treatment of
deep learning, and to (Chollet, 2017; Géron, 2017) for a more practical aspect.

1When it comes to spatial features, we performed feature-extraction using Freeman codes and Speed
modalities, as discussed in the previous chapter.

3.1. BACKGROUND 74

3.1.1 Sequential data

Sequential data appears in a lot of our daily life, for example: text, speech, the weather
status, etc. In a more formal manner, a sequential data example is formed of tokens,
and can be represented as x1,x2, ...,xN , where xn is one token, and N is the total length
of this sequential data point.

Let’s take a more concrete example: text. We have multiple sentences in a
given text. We can consider each sentence as a data point/example. If we consider
an example sentence: the cat is eating the food, and we define our tokens to be the
words2. In this case, x1 = the, x2 = cat . . . etc.

What is common between all the sequential data (and what also distinguish
them from non-sequential data points) is that each token is dependent on the previous
token/s. In general, when we want to model sequential data, we in essence want to
learn the following probability distribution:

(3.1) p(x1,x2, ...,xN) = p(x1)× p(x2|x1)× p(x3|x2,x1)×× p(xN |x1...xN−1)

In order to model such a distribution using neural networks, we can either:

1. Adding a state variable in order to factorize the problem. In this case, we introduce
an intermediate state variable, h, which model the dependency on the previous
tokens. Our objective in this case will be

(3.2) p(hn) = p(hn−1,xn)

This can be done using Recurrent Neural Networks (RNN), which will be ex-
plained later in detail (section 3.1.2). In this case, the network is looping over the
tokens one-by-one, updating the state variable each time.

2. Use the whole sequential data (all its tokens) as input to the network in the
same time. In this case, the network is trying to model equation 3.1 heads-on.
This approach has gained popularity recently with the work done in (Gehring
et al., 2017; Oord et al., 2016a), using convolution networks in order to model
sequential data (signals for the first and text for the second). The advantages of
this approach is removing the sequential aspect of the network, and leveraging
parallelism when treating the whole sequence. This results in faster training,
while still achieving state-of-the art results.

2There is no rule here for how we define the tokens. We can, for example, define the letters to be
our tokens. In the case of text, it is a trade-off: considering words as tokens allow the model to be more
fluent, but it also means that the learning space is very large (sometimes the number of unique words to
predict at each time step is in the order of tens of thousands). If we consider letters as tokens however,
it makes the model job more tractable (all the letters, symbols, digits, can be in the order of tens), but it
leads to less quality for the model.

75 CHAPTER 3. GENERATION, BENCHMARKS AND EVALUATION

Figure 3.1: A demonstration of how RNN works: the network is applied on each token
in the input (x1,x2, ...,xt), while update the hidden state variable every time (h0,h1, ...,ht).
The output at each step is a function of the hidden state variable (not demonstrated
here). Source of the image is from (Kostadinov, 2017).

There is no one solution that fits all here, it simply depends on the problem
and the constraints on the solution. In case of variable-length sequential data, the first
approach is the one to go for. In the case of fixed-length sequential data, the second
approach should be considered (easier to train the model, faster to optimize, faster to
infer from).

3.1.2 Recurrent Neural Networks and Sequence Modeling

As mentioned briefly in the previous section (3.1.1), Recurrent Neural Networks (RNN)
is a type of neural networks, that can handle sequential aspect in data. In its simplest
format, it is a simple feed-forward network, applied on each token in the sequential
data point, while carrying the information about the previous tokens using a latent
variable h, commonly referred to as the hidden state variable. This is demonstrated in
figure 3.1.

To describe it in a more formal manner, let’s first assume the following:

• The input x is first processed by a set of weights, Wih, and bias bih.

• From each step to the other, the hidden state h is processed via a set weights,
Whh, and bias bhh.

• Last, the output is given by processing the hidden state h via another set of
weights, Who, and bias bho.

3.1. BACKGROUND 76

If we assume that output activation is a simple linear layer (thus, it is a
regression task), then the equations of this simple RNN are the following:

zn =Wih · xn +bih

hn =Whh · [hn−1,zn]+bhh

yn =Who ·hn +bho

(3.3)

Where the brackets [] indicate a concatenation process. In case of a simple
regression task, a typical loss function is the Minimum Square Error, which can be
formulated as:

(3.4) Loss =
1

T ×N

N

∑
n

T

∑
t
(yn,t − ˆyn,t)

2

where T is the length of the sequence, and the N is the number of sequential data
points available, and ˆyn,t is predicted output by the model, while ˆyn,t is the ground truth
output.

Given this formalization, the objective is to find the set of weights and bi-
ases of the network, that will minimize the chosen loss function. We will explore the
optimization algorithms in section 3.1.3.

3.1.3 Optimization Algorithms

One of the important factors in the recent success of deep learning is the advances
in optimization algorithms. These algorithmic advances make the optimization easier,
converge to a better solution, and require less tweaking in order to achieve a good
performance. All these methods are derivatives of gradient descent optimization (Boyd
and Vandenberghe, 2004).

If the function to be optimized is convex (Ben-Tal and Nemirovski, 2001) –
differentiable, and have a global optima –, then gradient descent can find this global
optima. An example for the different optimization iteration can be seen in figure 3.2.

Gradient descent can be formalize by the following equation:

(3.5) θt+1 = θt −α× dLoss(θt)

dθt

where θ refers to the parameters we want to optimize, t, t +1 refers to the current and
the next iterations respectively, α is the learning rate (how large the step to take at each
iteration), and Loss is the loss/objective function we want to optimize our parameter
for. Optimization by gradient descent is a batch optimization: the loss function and its

77 CHAPTER 3. GENERATION, BENCHMARKS AND EVALUATION

Figure 3.2: A demonstration for how a gradient descent algorithm work. The optimiza-
tion process progress each step towards the global optima (the indicated point in the
center).

gradient is calculated all given data examples. This iterative process keeps going till we
do not observe a tangible change in the performance of the parameters, or we exhaust
our computational budget. An illustration for this process can be seen in figure 3.3.

In case of recurrent neural networks, an adaptation from of Back-Propagation
step is used, called Back-Propagation Through Time (BPTT) (Mozer, 1995; Robinson
and Fallside, 1987; Werbos, 1988). It simply works by unfolding the recurrent neural
network to the length of the input sequence – with each copy of the network having the
same parameters –, and then apply the normal Back-Propagation step consequently
on each step, in order to find the proper network parameters.

Before we dive into the different optimization methods currently used, it is im-
portant first to stress on an important characteristic of all modern deep neural networks,
which are (Goodfellow et al., 2016):

• Differentiability: All the components of the neural networks (activation function,
loss objective, regularization, ...etc) are differentiable components. This issue is
not about mandatory by theory, but by convenience: good optimizers exist that
can use this feature in order to optimize the network faster, while being able to
scale with appropriately with the given number of data points and the number of
parameters to be optimized.

• Non-convexity: While the neural network is built of convex parts, the composition
of those parts together is not convex. The reasoning for this particular point is out
of the scope of this document. We refer you to the book (Goodfellow et al., 2016)

3.1. BACKGROUND 78

Figure 3.3: The process of gradient descent is iterative, and include 3 steps: evaluate
the quality of the current parameters (forward-pass step), get the error value, use the
error-value in order to update the parameters/getting new set of parameters (Back-
Propagation step). This process is repeated N times, which is decided by either not
observing any update in the error, or we ran out of computational resources.

79 CHAPTER 3. GENERATION, BENCHMARKS AND EVALUATION

for more details –. While this seems to be a disadvantage, it is actually a powerful
advantage of the neural network. Neural networks are universal approximators,
meaning that they can approximate/learn any function. A convex function can not
approximate non-convex function, but the other way around works (De Sa, 2017).

Using gradient descent optimization methods in this case leads to convergence
to local optima points. The initial conditions of the network (the initial random
parameters, and the strategy of their selection) and the optimization strategy and
parameters (learning rate, decay factor...,etc) will play an important rule to deter-
mine the convergence characteristics (speed of convergence, and local optima) of
the neural network.

Another important aspect of the success of deep learning is the availability of
large amount of data. To optimize the parameters of a deep neural network (can be
the order of millions of parameters) using large amount of data (can be in the order of
millions of data examples) using gradient descent, is not physically feasible. We do not
have the hardware capability to process all of these data in the same time.

To get around this issue, mini-batch optimization is used: instead of performing
gradient descent based on the information from the whole data, we divide the data into
chunks (mini-batches). For each mini-batch, we calculate the loss and the gradient,
and update the parameters, and then move on the next batch. The gradient descent
in this case is called Stochastic Gradient Descent, SGD, (Robbins and Monro, 1951),
following the same equation 3.5, but applied to only a mini-batch at a time, instead of
the whole data (batch).

Many advances built on top of SGD helped in advancing deep learning, like
combining SGD with momentum (Rumelhart et al., 1988), RMSProp algorithm (Hinton
et al., 2012) and Adam algorithm (Kingma and Ba, 2014).

3.1.4 Inference: How to generate sequences from the network?

There exists several approaches in order to generate information from the networks. In
the case of recurrent neural networks, this is a sequential process (one step at a time,
till we generate the whole sequence), as illustrated in figure 3.4.

During the inference mode, the objective is to generate the most likely se-
quence. We want to solve the following problem

Find x1,x2, ...,xN that

argmaxx1,x2,...,xN
p(x1,x2, ...,xN)

(3.6)

3.1. BACKGROUND 80

Figure 3.4: An example of using RNN in order to infer a sentence. The token to
be generated here is a character. At each time step, the model is given the part
of the sentence that has been generated so far, and asked to give the probability
distribution over the next character. This distribution is then given to the selected
sampling distribution, which sample the next character, and so on.

This problem, however, is not tractable, as it scales badly with the number
of options (i.e, dimensions) per time step, and the number of time steps required. One
simple way is to perform greedy sampling, where, at each time step, we select the most
likely token. This, however, leads to repetitive and predictable patterns (Chollet, 2017).

A better way will be to use stochastic sampling, by leveraging the fact that
at each step, we have a probability distribution over all possible tokens. This allows
more diversity in the generated tokens, and also allow unlikely tokens to be sampled
some of the time.

But what if we want to control the level of randomness in the sampling process?
Having such control will allow us to explore different ways to infer from the model, in
order to determine the most satisfying way. This control can be done using temperature
sampling. The idea is to reshape the probability distribution over the different token.
On one extreme, very high temperature (going to infinity) will flatten the distribution,
making the distribution equivalent to uniform distribution. On the other extreme, a
temperature of zero will be mount to greedy sampling. This is illustrated in figure 3.5.

A clear advantage for temperature sampling is its simplicity, ease of implemen-
tation, and ability to generate diverse outputs. However, this also create a challenge
when we want to focus on issues like repeatability and reproducibility.

81 CHAPTER 3. GENERATION, BENCHMARKS AND EVALUATION

Fi
gu

re
3.

5:
Ill

us
tr

at
io

n
of

te
m

pe
ra

tu
re

sa
m

pl
in

g.
W

he
n

th
e

te
m

pe
ra

tu
re

τ
is

ve
ry

lo
w,

it
be

co
m

es
gr

ee
dy

sa
m

pl
in

g.
W

ith
th

e
in

cr
ea

se
of

te
m

pe
ra

tu
re

,
w

e
ca

n
se

e
m

or
e

hi
gh

er
po

ss
ib

ili
ty

of
sa

m
pl

in
g

th
e

lo
w

er
-p

ro
ba

bi
lit

y
to

ke
ns

.
W

he
n

th
e

te
m

pe
ra

tu
re

is
to

o
hi

gh
,i

tb
ec

om
es

un
ifo

rm
sa

m
pl

in
g.

3.1. BACKGROUND 82

Another important thing to notice is that the training/optimization part is not
the same as the generation part. Usually in machine learning, there is a symmetry
between the training and testing procedures. However, in generation, we are suddenly
letting the model generate long sequences, and use it output from the current step
as the input to the next step. The model is not trained to see its own output in the
input. It is trained to see always the ground truth in the input. Overtime, there is
an accumulation of errors that build up, leading to the degradation in the quality of
generation (Ranzato et al., 2015). This discrepancy between the training and generation
will have consequences in the evaluation process, as we will see shortly.

3.1.5 How to introduce prior to the model? (conditioning the model)

When training a RNN network, we usually initialize the first hidden state with zeros.
This way, we are informing the model that we are not making any prior assumptions
about that particular sequence, and that all sequences in the data have the same ’no
prior assumption’ condition.

However, what if you want to add some prior knowledge about the sequence
to the model? There are two reasons why we may want to do that:

• Increase accuracy: In case we are doing some classic pattern recognition task
(classification, regression), having extra useful information will definitely help in-
creasing the model final performance.

• Act as a command: In case of generative model – during the generative mode –
we need a way to trigger the model in order to start generating a sequence in a
particular context. For example, we want to tell the model to generate letter ’A’.
Initializing the model with this value allow it to start generating letter A.

There are multiple ways to bias the model, all targeting the same thing: ini-
tializing the hidden state of the model. Some work in the literature combines multiple
of these approaches in the same setup. To the best of our knowledge, there is no one
place which all these methods are discussed together.

Initialize the first hidden state directly This is a common approach, used image cap-
tioning (Karpathy and Fei-Fei, 2015), machine translation, and sequence-to-sequence
autoencoders. This is illustrated in figure 3.61.

Using the first time-step This method was used in the work done in (Vinyals et al.,
2015), in the area of image captioning. The prior in this case is the image, and the

83 CHAPTER 3. GENERATION, BENCHMARKS AND EVALUATION

objective is to generate the text caption for it. In order to condition the model, the
authors projected the image information into the same size as the word embedding
used, thus creating a fake word, and concatenated this new word with the rest of the
words. The hidden state after this fake word is now condition on the information from
the image. This is illustrated in figure 3.62.

Using context sequence – multiple time-steps – In this approach, the model is pro-
vided with some time-steps from the ground truth, in give it a context. At the end of
the these given time-steps, the hidden state is initialized with information about what
to be done. A use case for this scenario – for example – is when training a language
model on multiple authors. When asking the model to generate, you can provide some
sentences from the author you want, so the model can follow on this.

Concatenating input time-steps with the condition In the work done by (Ha and Eck,
2017), although not mentioned explicitly, the dataset used – the QuickDraw dataset,
discussed earlier – is quite complicated – they choose different tasks than us –. It
is hard to make the model remember the information about such a complex task over
a long time span. Thus, the authors use a mix of initializing the first hidden state
and concatenating with the first time-step in order to make it easier for the model to
remember the task. This is illustrated in figure 3.63.

Concatenating the hidden state with the condition This approach is more popular
now, since it allows the use of attention mechanisms (Denil et al., 2012; Larochelle
and Hinton, 2010). Examples for this in image captioning (Xu et al., 2015a), speech
synthesis (Wang et al., 2017b).

3.1.6 How to evaluate the quality of generation?

The objective evaluation of a generative model is a challenging task, since there is no
consensus for objective evaluation metrics. We can not simply make strict comparisons
between the generated data and the ground truth, since, as we saw earlier in the
inference section, there is asymmetry between the training and the generation task.
While a subjective evaluation can be a workaround to this problem, it is quite slow,
expensive and hinders the development of new models and approaches. The need for
objective evaluation that are consistent with the relevant subjective evaluation is thus
a necessity.

Let’s see how this problem is approached in different domains:

3.1. BACKGROUND 84

1 Initializing the hidden state, similar to the one used in (Karpathy and Fei-Fei, 2015).

2 Initializing using the first time-step, similar to the one used in (Vinyals et al., 2015).

3 Concatenating the condition with time-step, similar to the one used in (Ha and Eck, 2017).

Figure 3.6: Different conditioning method for RNN

85 CHAPTER 3. GENERATION, BENCHMARKS AND EVALUATION

Text Evaluating text is an essential task to assess the quality of generation in many
applications, like image captioning, language translation and language modeling.
An example for an objective text evaluation metric is BLEU score (Papineni et al.,
2002), which stands for bilingual evaluation understudy, it is a well known metric
to evaluate text generation applications, like image captioning (Karpathy and Fei-
Fei, 2015; Vinyals et al., 2015) and machine translation (Sutskever et al., 2014a).
It tries to capture the human evaluation criteria for the quality of the generated
text. It compares individual generated segments – the size of the segments is a
parameter to set – to see if they exist in the ground truth. It does not focus on
the location of that segment, just the fact if it exists or not. The small segments –
letters or words – are used in order to measure the adequacy of the generation,
while the longer segments are used to measure the fluency of the generation.
Usually, the metrics is reported on segments from one to four words, to give and
overall idea about the quality of the system.
Other objective metrics were developed and commonly used, such as METEOR (Denkowski
and Lavie, 2014) and Word Error Rate (Klakow and Peters, 2002).

Speech synthesis We are not aware of commonly used objective metrics in this area.
A commonly used subjective criteria is Mean opinion score (MOS), which is the
average of individuals’ opinions on the quality of the system. As an example, the
Blizzard Challenge (of ISCA , the International Speech Communication Associa-
tion) is an annual competition in speech synthesis, to encourage the development
of better speech synthesizers. The evaluation is much more detailed that MOS, by
trying to assess multiple levels for speech, like intelligibility, naturalness, utter-
ance and the efficiency of the speech. Another evaluation metric used is MUltiple
Stimuli with Hidden Reference and Anchor (MUSHRA), which uses anchors in
order to set a relative reference for the participants to perform the evaluation.

Handwriting of offline Chinese letters Chang et al. (2018) proposed two metrics to
evaluate the quality of their generated letters: content accuracy and style dis-
crepancy. For the first metrics, they train an evaluator model on the ground truth
data, and use it to recognize the letters produced by their generator. For the sec-
ond metric, they follow an approach developed in Gatys et al. (2015), where the
authors studied the problem of image style transfer, by measuring the correlation
between different filter activations (in convolution neural network) at one layer,
which represents the style representation.

We would like to phrase the objective from these metrics here as the desire to
capture the distance between the generated and the ground truth distribution. It is not
important if some individual mistakes happens in the generated sequence, what matters
is to capture the essence of the ground truth distribution. That being said, for complex
distribution, capturing the distribution, or even measuring the distance between two
distributions, is not always a tractable task. As noted in the speech synthesis point,
sometimes it is better and more practical to consider multiple criteria in the same time

3.2. PUTTING IT ALL TOGETHER 86

in order to better understand and evaluate the behavior of the system. This point will
later reflect our decisions concerning the evaluation criteria for our work.

Another way to perform the evaluation seen in the literature – like in (Wang
et al., 2018) – is to use a machine learning model (sometimes called the Oracle), trained
on the task needed (recognizing the speaker in the synthesized sound for example). In
that case, the model is trained on the ground truth, and used in order to evaluate
the samples generated by the model. To put simply, we strictly disagree with such
approach, for two reasons:

Improper data distribution It violates the rules of machine learning: if the model is
trained on some distribution, then we expect it to perform well on that distribution.
What another model generates is simply a different distribution from the ground
truth (even though we want this distance to be as close as possible). Thus, the
model behavior in this case is not covered in the statistical learning theory. If
the oracle – on the ground truth – has an accuracy of 90%, and then we change
the data distribution, we can not really trust the prediction of the system, it is no
longer the 90% percent, and we do not know what it is.
The problem continues when we have two generators, and we want to determine
which is best, using an oracle, then we can not really compare them. If one gen-
erator achieves 80% and the other is 85% accuracy, we can not make a conclusion
about which is better. The process itself is flawed. Besides, we do not have
access to confidence level on the quality of the oracle, thus it is not possible to
perform such comparison using the oracle.

Adversarial problem The problem gets worse when we use the oracle in order to eval-
uate the generator, then use this value as feedback to the generator in order to
"improve" it. We experimented on this part to better understand it. Check appendix
C for more details.

The takeaway messages is: it is not about numbers and face value. It is about
what these numbers actually means and implies. A model is an approximation of ground
truth distribution, and not the ground truth in itself. Thus, dealing with it as the ground
truth will easily lead to a loss.

3.2 Putting it all together

In the previous section, we explored multiple building blocks for the work to come,
like recurrent neural networks (architectures, training, inference and conditioning). We
also discussed the issue of evaluation the output of generative models, discussing three
aspects: evaluation in case of text (image captioning, translation, and text generation

87 CHAPTER 3. GENERATION, BENCHMARKS AND EVALUATION

in general), speech synthesis, and the dangers of using another model (oracle model)
in order to evaluate the generation quality.

In this section, we discuss how to put all these elements together, the deci-
sions made, and the experimental setup used, in order to address the following three
questions:

• How to generate handwritten letters using deep learning framework?

• How to evaluate the generated traces?

• What benchmarks are suitable to compare to?

Our contributions will be on how to evaluate the generated traces, proposing
multiple benchmarks, and using the prior knowledge about the power of those bench-
marks in order to ground the the proposed evaluation metrics. The work done in this
chapter was published in (Mohammed et al., 2018).

3.2.1 Our proposed evaluation metrics

Evaluation is a challenging problem when using generative models. We want metrics
to capture the distance between the generated and the ground truth distributions. One
of our contributions is to propose using the following metrics:

BLEU score As mentioned earlier, BLEU score is used in the evaluation of text gen-
eration. Since we discretized the letter drawings, this fits nicely within our work. The
general intuition is the following: if we take a segment from the generated letter, did
this segment happen in the ground truth letter? We keep doing this for segments of
increasing length (the length of the segment here is the number of grams used in the
BLEU score). For our work, we report the results on segments from 1 to 3 time steps.

Each part of the letter has two parallel segments: freeman codes and speed,
thus, we report the BLEU score for both of them. The equation to compute the BLEU
score is the following:

(3.7) BLEUN =
∑C∈G ∑N∈C CountClipped(N)

∑C∈G ∑N∈C Count(N)

(3.8) ScoreN = min(0,1− LR

LG
)

N

∏
n=1

BLEUn

3.2. PUTTING IT ALL TOGETHER 88

where: G is all the generated sequences, N is the total number of N-grams
we want to consider. CountClipped is clipped N-grams count (if the number of N-grams
in the generate sequence is larger than the reference sequence, the count is limited to
the number in the reference sequence only), LR is the length of the reference sequence,
LG is the length of the generated sequence. The term min(0,1− LR

LG
) is added in order to

penalize short generated sequences (shorter than the reference sequence), which will
deceptively achieve high scores.

In order to get into the intuition of using such a metric in evaluating the
quality of handwriting generation, we can imagine that we are comparing segments
of a generated trace to segments in the ground truth letter, by asking the following
question: does the segment in the generated trace exist (anywhere) in the original
trace? The shorter segments represent adequacy (i.e., does the generated trace use the
same elementary moves like the ground truth trace). The longer segments represents
fluency of drawing (i.e., how good the drawing is)3. See figure 3.7. Usually, in case of
text evaluation, the values of N between 1 and 4 grams are reported. In our work, we
report till 3 grams.

Figure 3.7: Using BLEU score of different sizes, we compare segments of variable length
in the generated trace to the target trace. The smaller BLEU scores evaluate the
adequacy of the drawing, while the bigger BLEU scores evalute the fluency (Papineni
et al., 2002).

End of Sequence The length of the letter is another aspect of the style. The distri-
bution of length in the generated examples should follow the ground truth examples.
In order to perform this analysis, we compute Pearson correlation coefficient between
the generated examples and the ground truth data.

3This last interpretation of short and long segments is adapted from the (Papineni et al., 2002), which
uses them for text translation evaluation.

89 CHAPTER 3. GENERATION, BENCHMARKS AND EVALUATION

3.2.2 How to ground the metrics?

We assess multiple methods to condition our handwritten letter generator, and evaluate
their ability to capture of writing styles. We know their cardinal order of the power of
these methods (depends on the kind of information available to each method). Knowing
this information beforehand, we can use it to ground our performance metrics. The
methods are:

Letter identity : the letter id only is used as bias. No style information is thus included.
The model will try to average over the different example for the same letter. We
consider this as a lower baseline.

Letter + Writer identities : the letter id and writer id are used as a bias. Thus, the
model has an explicit access information about the writer. This method is expected
to perform the best. This model will also serve as a upper baseline.

Image classifier embedding : we train a convolution neural network (CNN) to classify
the letters images4, as shown in figure 3.8. We use an intermediate layer as to
extract embeddings, that will encode information about the letter images. This
model should perform the same or a more performance than using the letter iden-
tity only, since it learns to clusters the letters, and there are classification errors.
But we expect it to perform less than the letter + writer identities.

Image auto-encoder latent space : we train a letter image autoencoder, using recon-
struction error, and use the latent space as a representation of the letter + style.
The architecture we use can be seen in figure 3.8. The latent space encodes
the similarity between the letters. This model should perform worse than using
the letter identity only, since, while it capture the similarity between the letter
images, it does not capture discriminative features about each letter itself.

From this discussion, we can say that cardinal power of the different conditions
is:

autoencoder < letter ≤ classi f ier < letter+writer(3.9)

3.2.3 Proposed model

We use a type of RNN called Gated-Recurrent Network (GRU) (Chung et al., 2014),
which is known for having a better memory ability than basic RNN, thus, making it suit-
able choice for long sequence. Our model is a conditioned-GRU model, demonstrated

4This letter classification task achieves 95.1% classification accuracy, which we consider very good.

3.2. PUTTING IT ALL TOGETHER 90

Figure 3.8: Left: architecture of the CNN letter classifier we used. Batch normalization
is used after each convolution layer. The Dense 1 layer – with a size of 34 – is the
embedding that is used to condition our generator. Right: the autoencoder architecture
we used. The output of the first Dense 34 layer provides the latent space used to
condition the generator.

91 CHAPTER 3. GENERATION, BENCHMARKS AND EVALUATION

in figure 3.9. Using this model, we compare different style approached discussed in
section 3.2.2, and use the generation results from that model in order to ground the
proposed evaluation metrics, discussed in section 3.2.1.

1 Training mode, using teacher forcing methodology (Goodfellow et al., 2016; Williams and
Zipser, 1989), where the model gets its input from the ground truth all the time.

2 Generation/Inference mode, where the model gets its input at each time step from its own
output at the previous time step.

Figure 3.9: The conditioned-GRU model used in this work. During the training mode 1,
the input of the model is always the ground truth, and the predicted value is compared
to the ground truth. During the generation mode 2, the input to the model at each step
is the model prediction from the previous step. The ’style info’ and the ’task info’ inputs
are separated here for illustration (they could be mixed).

We ran random hyper-parameter tuning over a wide range of parameters, in
order to select the final model. The selected model were a based GRU cell, with 3
hidden layers, each of size 256, and a dropout of 0.3. Adam optimizer (Kingma and
Ba, 2014) is selected, with a learning rate of 10−3. A Multi-Layer Perceptron (MLP)
is applied to the output of the GRU at each time step, with an output size of 34. Two
SoftMax operation are then applied, in order to extract the freeman code and the speed

3.2. PUTTING IT ALL TOGETHER 92

level.

3.2.4 Results

We train our different models and generate the traces from them as explained earlier.
In this section, we compare the different models using the evaluation metrics discussed
before. We observe the consistency of the reported metrics with the prior information
about the cardinal power of the different methods, equation 3.9. This is how we ground
our metrics.

BLEU score

The final results using the BLEU score can be seen in table 1. The results vary when
measuring BLEU-1. But, as we increase the number of grams, BLEU-2 and BLEU-3, to
measure the similarity between larger segments of the traces, we can observe:

• The letter + writer condition performed better than all other conditions, thus
showing that having access to information about the writer, like the writer id,
improve the quality of the handwriting synthesis.

• The image classifier condition performs better than the letter identity only, but
less than the letter + writer bias. Since the classifier is trained on a single ob-
jective only (to classify the letters), and the classifier performs well, we expect
the embedding to cluster the letters well, as seen in figure 3.10. We can expect
the model to capture some of the writer style, possibly in the inter-cluster vari-
ance. This is an interesting result, suggesting that some fine tuning for the image
classifier while in the generation task could be beneficial to capture more details
about the styles.

• The image autoencoder bias performed the worst. To understand why, we plot
a 2-D projection of its latent space using t-SNE (van der Maaten and Hinton,
2008), figure 3.10. Since the autoencoder is trained to minimize the reconstruction
error, the distance in the latent space encode the proximity between the images.
It can be observed also that this latent space does not encode discriminative
features for the letters. Using this latent space for our generator, we find the
model gets confused between nearby letters, resulting sometimes in generating
different letters than requested.

93 CHAPTER 3. GENERATION, BENCHMARKS AND EVALUATION

1
Bo

ttl
en

ec
k

of
th

e
au

to
-e

nc
od

er

2
Bo

ttl
en

ec
k

of
th

e
cl

as
si

fie
r

Fi
gu

re
3.

10
:W

e
pr

oj
ec

tt
he

bo
ttl

en
ec

ks
of

bo
th

th
e

au
to

en
co

de
ra

nd
th

e
cl

as
si

fie
r,

us
in

g
PC

A,
in

or
de

rt
o

ge
ta

n
id

ea
ab

ou
t

th
e

re
as

on
th

es
e

bo
ttl

en
ec

ks
le

ad
to

a
ve

ry
di

ffe
re

nt
pe

rfo
rm

an
ce

.
Fi

gu
re

1
sh

ow
s

th
e

au
to

en
co

de
r

la
te

nt
sp

ac
e,

th
er

e
is

no
cl

ea
r

se
pa

ra
tio

n
be

tw
ee

n
le

tte
rs

;t
he

en
co

di
ng

is
ba

se
d

on
th

e
si

m
ila

rit
y

of
th

e
im

ag
es

on
ly

,w
hi

le
fig

ur
e

2
sh

ow
s

th
e

cl
as

si
fie

r
em

be
dd

in
g,

th
er

e
is

a
cl

ea
r

se
pa

ra
tio

n
be

tw
ee

n
th

e
le

tte
rs

-
w

ith
fe

w
ex

ce
pt

io
ns

-.

3.2. PUTTING IT ALL TOGETHER 94

Aspect/Feature Speed Freeman
Model / B-score B-1 B-2 B-3 B-1 B-2 B-3
Letter identity 49.7 37.3 24.2 47.4 36.6 26.8
Image classifier 50.9 38.2 24.6 48.5 37.9 28.1
Image autoencoder 51.9 37.9 23.1 46.4 35.0 24.5
Letter + Writer identities 51.5 41.4 25.1 56.7 39.4 28.3

Table 1: Comparing different approaches for style extraction using clipped n-grams.
The higher the value, the better.

Sequence length

As mentioned earlier, we performed a statistical test between the paired distributions
of lengths of the generated and the reference tracings. The results are shown in table 2.
We can see the following:

• The results from the statistical test shows that the letter + writer bias outperform
the rest of the biases, achieving p-value < 0.05. This is quite reassuring, since it
is also in line with the results from the BLEU score.

• The results from the Pearson correlation coefficients are also consistent with
the rest of the results. High coefficients are given to the letter + writer bias,
compared to the other methods. The image classifier and autoencoder gives the
lowest results. This could be due to insufficient information about the letter length
that can be inferred from the image. For the image classifier, as noted earlier, a
fine-tuning during the generation task is worth exploring.

Models Pearson coefficient p-value
Letter bias 0.38 0.84
Image classifier 0.32 0.62
Image autoencoder 0.25 0.29
Letter + Writer bias 0.55 0.04

Table 2: Pearson correlation coefficients and associated p-values for the EOS distri-
butions of the different style biases. A letter + writer bias performs much better than
others biases, while the image autoencoder bias performs the worse. This confirms
with our expectations about the relative power of the different biases.

3.2.5 Examples of the generated letters

The design choices of our experiments (discretization, and ignoring the pen state) affects
the final shape of the letters, yet, the letters and their style are quite recognizable. See

95 CHAPTER 3. GENERATION, BENCHMARKS AND EVALUATION

examples for the original letters in figure 3.11. Examples for the generation with our
methods are in figure 3.12. This is a subjective indication that our model is working
properly, producing real-like comprehensible letters.

3.3 Summary

In this chapter, we sit the foundations for the work done in our thesis. We first discussed
the relevant areas in the state-of-the-art concerning recurrent neural networks, opti-
mization, inference/generation and evaluation of generation. We then detailed how we
combine these elements in order to address the questions in this thesis. We addressed
three points:

• How to generate traces using deep generative models? We proposed to use
a conditioned-GRU model. We explained the process behind training, optimizing
and choosing hyper-parameters for this model, and showed some of the generated
letters.

• How to evaluate the quality of the generated letters? We proposed two evaluation
criteria, BLEU score metric – inspired by its usage in evaluating text quality – and
End-of-Sequence quality, as a way to capture some aspects of the distribution,
and a feasible way to measure the distance between two distributions.

• We proposed multiple benchmarks for future evaluation of style extraction models,
and to ground the proposed evaluation metrics as well.

Now that we have our benchmarks and evaluation metrics, it is time to go for the next
chapter on style extraction.

3.3. SUMMARY 96

1
B

2
C

3
D

4
A

5
E

6
F

7
G

8
H

9
I

10
J

11
K

12
L

13
M

14
N

15
O

16
P

17
Q

18
R

19
S

20
T

21
U

22
V

23
W

24
X

25
Y

26
Z

Figure
3.11:Exam

ples
oforiginalletters.The

blue
x

m
ark

is
the

starting
point.These

ones
are

generated
using

the
letter

+
W

riterbias.E
and

F
are

visually
harderto

recognize,since
w

e
do

notm
odelthe

pen
pressure,otherw

ise,the
restofthe

letters
are

w
ellrecognizable.

97 CHAPTER 3. GENERATION, BENCHMARKS AND EVALUATION

1
A

2
B

3
C

4
D

5
E

6
F

7
G

8
H

9
I

10
J

11
K

12
L

13
M

14
N

15
O

16
P

17
Q

18
R

19
S

20
T

21
U

22
V

23
W

24
X

25
Y

26
Z

Fi
gu

re
3.

12
:

Ex
am

pl
es

of
ge

ne
ra

te
d

le
tte

rs
.

Th
e

bl
ue

x
m

ar
k

is
th

e
st

ar
tin

g
po

in
t.

Th
es

e
on

es
ar

e
ge

ne
ra

te
d

us
in

g
th

e
le

tte
r

+
W

rit
er

bi
as

.T
he

ge
ne

ra
lq

ua
lit

y
of

th
is

qu
ite

ac
ce

pt
ab

le
.

3.3. SUMMARY 98

Chapter 4

Framework

Contents
4.1 Background . 101

4.1.1 What is an auto-encoder? . 101
4.1.2 Sequence auto-encoder . 102
4.1.3 Conditioned auto-encoder . 103

4.2 Putting it all together . 104
4.2.1 Model architecture . 105
4.2.2 Letter generation with style preservation 105
4.2.3 Style transfer . 107
4.2.4 Styles per letter . 109

4.3 Summary . 110

In the previous chapter, we set the foundations of studying styles, which is the
work done in the PhD. We explored our choices for generative models and the evaluation
metrics, and how to ground them. We also had a discussion about lower- and upper-
bound benchmarks. These foundations are necessary in order to have baselines to
compare to, and performance aspects (i.e., metrics) use for this comparison.

In this chapter, we build on these foundations, by proposing the use of con-
ditional temporal auto-encoder framework in order to study and extract styles, in the
context of sequences (i.e., a time aspect exists in the data). We take advantage from
the fact that the content is well known in our dataset (i.e., the identity of the letters in
IRONOFF).

Questions addressed in this chapter

99

100

• What possible framework to study styles? and why?

• How does this framework performance compare to the benchmarks?

• What kind of styles we can extract from this framework? and how do we
extract them?

101 CHAPTER 4. FRAMEWORK

4.1 Background

4.1.1 What is an auto-encoder?

Auto-encoder (Hinton and Salakhutdinov, 2006) is an identity-capturing framework, that
allows the emergence of interesting behaviors. To expand on this, the objective of the
auto-encoder is to capture/learn the distribution of the input data (identity-capturing).
An auto-encoder consists mainly of three parts (see figure 4.1):

1. Encoder: it takes the input data, and project it into a manifold (the bottleneck).

2. Bottleneck code/learned representation: this is the representation learned by
the encoder. In the basic form, this just the output of some linear/non-linear
activations. However, a lot of the literature exists on how to organize and shape
the bottleneck, in order to allow the emergence of interesting information about
the data.

3. Decoder: it takes the learned representation, and reconstruct the original input
from it.

Figure 4.1: An example for the main components of an auto-encoder, used on image
compression: an encoder takes the image, transfer it via a set of transformations into
a bottleneck code, which is a compressed representation for that image. The decoder
then takes this bottleneck code, and apply a series of transformations on it, in order to
reconstruct the original input image. Source of this image is (Mohammed).

There are many reasons for using auto-encoders, to name a few:

4.1. BACKGROUND 102

Dimensionality Reduction It is one of the main motivations to study auto-encoders.
By mapping a high-dimensional data into a smaller low-dimension space, we can
better explore the data, or use it as a step in a pipeline of machine learning/data
analysis operations, where it provides a more manageable format of the original
data, as in (Ha and Schmidhuber, 2018). It can also be used in classification
system (Goodfellow et al., 2016).

Information Retrieval The kind of search used in information retrieval is an efficient
in low-dimensional space. In (Salakhutdinov and Hinton, 2009), auto-encoder
is trained to produce low-dimensional binary code, which can be then used in
queries (by returning the entities that have the same binary code).

Anomaly Detection Multiple works have explored the use of auto-encoders in order to
perform anomaly detection (An and Cho, 2015; Ribeiro et al., 2018; Sakurada and
Yairi, 2014). The main hypothesis is that the auto-encoder will learn the most
salient features in the data. Thus, when faced with an anomaly, a significant
degradation in the quality of reconstruction will be noticed. The reconstruction
error can be used in this case as an indicator if the input data point is an anomaly
or not.

Image De-noising Multiple works have explored the use of auto-encoder in order to de-
noise images (Cho, 2013a,b; Gondara, 2016). The applications of image de-noising
are diverse, from post-processing of digital images, to more sensitive areas like
medical images.

The idea of compressing data is not new. Techniques like Principal Compo-
nents Analysis (PCA) (Jolliffe, 2011) or Independent component analysis (ICA) (Hyväri-
nen and Oja, 2000) do exist in order to project the data into smaller dimensions. But
they are usually restricted by several assumptions. In case of PCA, it assumes linearity
and orthogonality in the dimensions of variation in the data. Neural networks enables
us to get around this issue, by leveraging nonlinearity and multiple layers, this giving
us a more flexible approach to find dimensions of variation in the data.

4.1.2 Sequence auto-encoder

It is a special case of auto-encoder, where RNN is used in order to compress a sequence
into a fixed size bottleneck code. The sequence itself could have a varied size. The first
architecture proposed for sequence auto-encoder was proposed in (Cho et al., 2014;
Sutskever et al., 2014b), with statistical machine translation as the main application.
They use RNN encoder and decoder parts, and consider that the last hidden state of
the RNN encoder to be the summary/compression of the sequence. The RNN decoder
uses this bottleneck in order to reconstruct the whole original sequence (see figure 4.2).

103 CHAPTER 4. FRAMEWORK

Figure 4.2: An illustration for a sequence-to-sequence architecture, used for language
translation between English and German. The encoder summarize the English sentence,
and the decoder use it as to bias its own output, to generate the equivalent German
sentence.

There many applications where a sequence-to-sequence model is used, for
example:

Machine translation (Sutskever et al., 2014b) used sequence-to-sequence architecture
in order to develop a machine translation system that surpassed the published
results to that moment. The first sequence is the source language, and the second
sequence is the target language (that can also differ in the word count from the
source language).

Speech synthesis Speech synthesis also benefited from a sequence-to-sequence archi-
tecture, like the work done in (Oord et al., 2016a; Wang et al., 2017b), achieving
currently the state-of-the-art results. Another common approach for sequence-to-
sequence learning is to use convolution network instead of RNN for the encoder
and/or the decoder, like the work done in (Ping et al., 2017). A convolution
network is generally faster than RNN and parallelize better, thus making it a
lucrative approach. The underlying assumptions are the same however.

Video captioning Another application that benefited from sequence-to-sequence ar-
chitecture is generating text (sequence of words/letters) that describe a video
(sequence of frames), as nicely summarized in (Aafaq et al., 2018). In this case,
the encoder – dealing with the video part – is used a convolution neural network
(because of its excellent ability to capture spatial features), while the encoder –
dealing with the text part – is usually a RNN.

4.1.3 Conditioned auto-encoder

In the examples mentioned before, we focused on unconditional auto-encoder, where in
the decoder only have the information given to it from the encoder part. A conditioned

4.2. PUTTING IT ALL TOGETHER 104

auto-encoder is when we concatenate extra information to the output of the encoder, and
feed it to the decoder1. Why conditioning an auto-encoder? It frees the encoder from
learning the condition information – since this information is given for free – , allowing
it to focus on other parts. An example of this is the work done in (van den Oord et al.,
2017), where they used an auto-encoder to compress audio, and condition the decoder
on the speaker-id. This led the encoder to factor out speaker-specific information in
the learned bottleneck, thus, learning speaker-independent information2.

4.2 Putting it all together

In order to address the research questions stated at the beginning of the chapter, we
chose to adopt the concept of conditioned auto-encoder as our framework to explore
styles in handwriting, for the potential following benefits discussed in the previous
section:

• Conditioning the decoder on the content identity of the task (i.e., the letter iden-
tity) will free the encoder from learning this information, thus allowing it to focus
on learning the letter-independent style relevant information.

• The encoder will learn a bottleneck, that is a compressed information about the
sequence style. This can allow us to explore this bottleneck via traditional tech-
niques (PCA, tSNE, clustering, classification of the bottleneck...etc), thus, getting
more insight about what the model actually learned

In this following subsections, I will present our contributions: the model archi-
tecture we used, and quantifying the quality of the generated letter using the evaluation
metrics and benchmarks we discussed in the previous chapter. Then, we will briefly
take a look at our first attempt to tackle transfer learning3. I then end with the style
extraction part, where we explore what knowledge/information about the styles our
model has extracted. The work done in this chapter was published in (Mohammed.
et al., 2019).

1The word ’conditioned’ is used when a neural network has information from about the task. So a
decoder is a conditioned network on the encoder information. We distinguish here in the terminology
between ’unconditioned auto-encoder’, where the decoder is not conditioned on anything else except the
encoder, and ’conditioned auto-encoder’ where the decoder has access to extra information other than the
encoder.

2Simple explanation and demonstration for that paper can be found in https://avdnoord.github.io/
homepage/vqvae/

3More details on transfer learning in the next chapter

https://avdnoord.github.io/homepage/vqvae/
https://avdnoord.github.io/homepage/vqvae/

105 CHAPTER 4. FRAMEWORK

4.2.1 Model architecture

The model architecture is illustrated in figure 4.3. The input/output frames of the model
are detailed in figure 4.4. The tracing of the letter is first fed to the encoder module.
The final hidden state of that module summarizes the letter. In order to allow this
module to focus on learning the style embedding, we complement this last hidden state
with the one-hot encoding of the letter identity, and use an embedding of them as the
bias input to the generator. The encoder thus is free from the need to learn the letter
identity, and can focus learning the style information that enables the generator to
better approximate the ground truth tracings.

In the decoder, we follow the framework proposed by Vinyals et al. (2015) in
order to bias the model – as in the previous chapter – : we create an extra time step
at the beginning, which has the information we want to bias the model with. In this
case, this time step (34-D) is the projection of the encoder last hidden state (128-D)
and the letter encode (26-D). This has a much lower dimension than encoder hidden
state. This further encourage the model to learn only the necessary style information,
as suggested in Skerry-Ryan et al. (2018).

In order to allow for faster exploration of different hyper-parameters, we use
an early stopping of 20 epochs (when no improvement in the validation score happens
during these epochs). To summarize, the current model specifications:

• Encoder hidden size: 128

• Decoder hidden size: 128

• Encoder layers: 2

• Decoder layers: 2

• Encoder dropout: 0.0

• Decoder dropout: 0.2

• Learning rate: 0.001

4.2.2 Letter generation with style preservation

The objective here to compare the quality of the generated letters to the state-of-the-
art benchmarks. As mentioned earlier, we compare using the BLEU score metric and
the EoS analysis. The BLEU score results can be seen in table 1, and the results for
EoS analysis results are in table 3. We can see that the BLEU-3 score results of our
model achieves 32.3% accuracy in Speed feature and 38.7% accuracy in Freeman feature,

4.2. PUTTING IT ALL TOGETHER 106

1 Training mode, using the teacher forcing methodology (Goodfellow et al., 2016; Williams and
Zipser, 1989).

2 Inference mode, using the softmax temperature sampling method.

Figure 4.3: Schematic diagram of the model we used. During the training time 4.31, the
input to the model is always the ground truth. During the inference time 4.32 however,
the input to the decoder (generator) part at each time step is its own predication in
the previous time step.

107 CHAPTER 4. FRAMEWORK

Figure 4.4: Input sequence to our model. The first time step contains the information
necessary to condition/bias our model. In case of the encoder, this first time step (the
bias) is not included.

compared to 25.1% and 28.3% accuracy using the benchmark model on both features
respectively.

The same goes for the EoS analysis. In comparing the Person Coefficient, our
model achieves 0.99 score compared to 0.55 for the benchmark model (the highest score
is 1.0). This is a support that our model capture the style of handwriting better than
the benchmark.

Examples for generated letters can be found in figure 4.14.

Aspect/Feature Speed Freeman
Model / B-score B-1 B-2 B-3 B-1 B-2 B-3
Letter + Writer bias 51.5 41.4 25.1 56.7 39.4 28.3
Style Extractor 71 51.7 32.3 65.6 51.5 38.7

Table 1: BLEU scores for conditioned-autoencoder (style extractor) in comparison
with the benchmark model (biased by the identity of the writer and the letter). The
conditioned-autoencoder performs better than the benchmark, thus indicating the ad-
vantage of the conditioned-autoencoder in extracting style.

4.2.3 Style transfer

One of the hypotheses we want to test is whether there is a limited number of styles
needed, to generalize over new writers. To achieve this, the learned representation for
styles should extract generic information about the styles.

4.2. PUTTING IT ALL TOGETHER 108

Aspect/Feature Speed Freeman
Model / B-score B-1 B-2 B-3 B-1 B-2 B-3
Letter + Writer bias 55.4 39.6 25.3 50.2 38.6 27.7
Style Extractor 72.4 52.4 32.2 70.4 55.6 42.1

Table 2: BLEU scores for different models for style extraction for 30 new writers (style
transfer). The benchmark model (biased by the identity of the writer and the letter) is
trained on those writers, while the style extractor was not exposed to those writers, the
style extractor still outperforms the benchmark. This could be an indication that the
number of styles are limited afterall, and that the extra 30 writers do not necessarily
add that much information about styles in handwriting.

Models Pearson coefficient
Letter + Writer bias 0.55
Style Extractor 0.99

Table 3: Pearson correlation coefficients for the End-of-Sequence (EoS) distributions
for the conditioned-autoencoder framework (style extractor) compared to the baseline
(with letter and writer information only), on the generated letters compared to the
ground truth. We can see that the (style extractor) outperforms the baseline.

Models Pearson coefficient
Letter + Writer bias 0.5
Style Extractor 0.99

Table 4: Pearson correlation coefficients for the End-Of-Sequence (EoS) distributions
for the different models on 30 new writers (style transfer). Even though the baseline
model is given explicit information about the writer, the style extractor still outperforms
the baseline. This could be an indication that the there is a limited number of styles
after-all.

109 CHAPTER 4. FRAMEWORK

In order to test this hypothesis, we expose our model to 30 writers that have
not been seen before. We compare our model performance on these writers with a
model biased by the writer and letter identities (the benchmark model). The latter
model was not constrained from seeing those writers (thus, the reported results of the
comparison overestimates the actual performance of that model).

The BLEU scores can be seen in table 2. Our model achieves on BLEU-3 score
32.2% and 42.1% accuracy on the Speed and Freeman code features, compared to 25.3%
and 27.7% on the benchmark model for the same features respectively.

The EoS analysis can be seen in table 4. Our model achieves a Pearson
coefficient value of 0.99, compared to 0.5 for the benchmark. Thus, the new model
clearly outperforms the current benchmarks on the transfer task, on both BLEU score
and EoS analysis.

4.2.4 Styles per letter

One of the nice consequences of using our model is that we can have a better look at
the styles. We explore the latent space for multiple letters, and see that we can uncover
interesting writing styles. A full scale analysis is beyond the scope of this thesis. We
project the latent space using Principal Components Analysis (PCA) (Jolliffe, 2011) and
t-SNE (van der Maaten and Hinton, 2008).

As a start, we take a look at letter X. Beforehand, we identified a style fea-
ture in letter X: some writer draw X clockwise, and some draw it anti-clockwise4. We
manually annotated the whole dataset for this feature; the result can be seen in fig-
ure 4.5. Almost half of the writers draw the letter X clockwise, and the other half draw
it anti-clockwise. If our assumption is correct, our model should be able to capture this
feature. We project the latent of the model using PCA on all the letter X, which can be
seen in figure 4.6. The model latent space clusters almost perfectly match those based
on rotation. Examples for letters from both clusters are in figure 4.7.

Encouraged by the results on letter X, we explored more letters. For letter C,
we can see the latent space project in figure 4.8. It can be seen that there are at least
two main clusters. Examples from this cluster in the red ellipse are in figure 4.10. This
clearly represents the Edwardian handwriting style. The rest of the writers (in the big
cluster) have a very similar style (this is expected, since the drawing of the letter C is
quite simple).

For letter A, our model latent space create two main clusters, figure 4.9. We
give examples from those two in figure 4.11, where we can see clear difference in the

4We did not find a connection between this point and the handedness of the participants.

4.3. SUMMARY 110

style. Some people start drawing the letter from down-left, other writers start from the
top of letter A, move down, then continue drawing of the letter.

Another example is for letter S bottleneck, figure 4.12. There are three result-
ing clusters which we investigated. The indicated cluster (in red) is clearly different
from the other two clusters (not indicated). Examples can be seen in figure 4.13. The
indicated cluster is again for people with Edwardian handwriting style. We did not
find a clear difference between the other two clusters though, but this is an expected
outcome of using t-SNE (since it does not have a clear objective of clustering styles).

These examples show is that we can use our model to extract verbose style
information.

Figure 4.5: Results of the manual annotation for the rotation of letter X drawings
over the whole dataset. Almost half the writers drew X clockwise, the other half anti-
clockwise. The undefined styles were unclear to determine.

4.3 Summary

In this chapter, we discussed the way we chose in order to study styles, by using
the auto-encoder framework. We hypothesized that we can study styles implicitly by

111 CHAPTER 4. FRAMEWORK

Figure 4.6: Projection for latent space for letter X using PCA. The colors show the
ground truth of the X rotation: blue is counter clockwise, orange is clockwise, and the
few red points are undefined. The x-axis in this case indicate the clockwise/counter
clockwise feature. We expect the y-axis to represent the different velocity of drawing,
however, we did not investigate this assumption.

looking at how they contribute to the reconstruction/generation of the letters. We
looked at the state-of-the-art concerning auto-encoders, the sequence-to-sequence
case, and why we may choose to condition an auto-encoder.

I then presented our work, addressing the following points:

• What possible framework to study styles? And how to validate it? We test the
auto-encoder framework relative the benchmarks we proposed in the previous
chapter, in order to determine if it is actually a valid framework to study styles. We
find that an auto-encoder outperforms the benchmarks in all evaluation metrics,
suggesting that this is a good approach.

• What kind of styles we can extract from this framework? And how do we extract
them? Given the good performance results of the auto-encoder, we wanted to have
further confirmation that our model is actual learning relevant style information
from one side, and if we can learn something new about styles. We explored the
model bottleneck for different letters, showing a strong evidence that the model
is quite useful in the study of styles.

• Can we transfer the styles over different writers? We hypothesis that there is a
limited number of styles in general – if we have enough writers in our training
data, we will generalize well to new writers –. We test this hypothesis by hiding

4.3. SUMMARY 112

Figure 4.7: Examples for writing of letter X. Starting point is marked with the blue
mark. Each raw is randomly sampled from each cluster in the bottleneck. The clusters
shows that almost half the writers draw the letter clockwise (first row, first cluster),
and the other half draw it anti-clockwise (second row, second cluster).

113 CHAPTER 4. FRAMEWORK

Figure 4.8: Projection for latent space for letter C using t-SNE. The cluster surrounded
by the red circle has a clear interpretation, where writers have a cursive style.

4.3. SUMMARY 114

Figure 4.9: Projection for latent space for letter A using PCA.

115 CHAPTER 4. FRAMEWORK

Figure 4.10: Examples for writing of letter C from the selected cluster (first row) versus
the rest of the letter drawings (second row). Starting point is marked with the blue
mark. The drawings from the selected cluster show people with Edwardian style of
handwriting.

4.3. SUMMARY 116

Figure 4.11: Examples for writing of letter A from the selected clusters. Starting point
is marked with the blue mark. Each row is from one cluster. The first row show people
who start drawing the letter from the top, going down, and then continue the drawing
of the letter. The second row show people who start drawing from down directly.

117 CHAPTER 4. FRAMEWORK

Figure 4.12: Projection for latent space for letter S using t-SNE. We manage to interpret
the indicated cluster as the Edwardian style in drawing. The other two clusters (not
indicated) did not show clear difference in the style, but this is an expected behavior
from using the t-SNE algorithm, since it does not try to cluster styles as an objective.

4.3. SUMMARY 118

Figure 4.13: Examples for writing of letter S from the selected cluster (first row) versus
the other two clusters (second row). Starting point is marked with the blue mark. The
drawings from the selected cluster is always Edwardian style.

119 CHAPTER 4. FRAMEWORK

Fi
gu

re
4.

14
:

Ex
am

pl
es

of
ge

ne
ra

te
d

le
tte

rs
.

Th
e

bl
ue

m
ar

k
is

th
e

st
ar

tin
g

po
in

t.
Th

e
tr

ac
es

in
gr

ee
n

is
th

e
gr

ou
nd

tr
ut

h,
an

d
th

e
re

d
is

th
e

ge
ne

ra
te

d
on

es
by

ou
r

m
od

el
.

4.3. SUMMARY 120

Figure
4.15:

Exam
ples

ofgenerated
letters.

The
blue

m
ark

is
the

starting
point.

The
traces

in
green

is
the

ground
truth,

and
the

red
is

the
generated

ones
by

our
m

odel.

121 CHAPTER 4. FRAMEWORK

a number of writers from the training data, and compare a model trained on
the other writers (transfer model) versus a model trained only on those writers
(baseline model). We see clearly the transfer model outperforms the baseline,
thus giving good evidence for our hypothesis.

We thus are ready for the next chapter, where we dive more into the world of
transfer learning...

4.3. SUMMARY 122

Chapter 5

Style Extraction and Transfer

Contents
5.1 Transfer learning . 124
5.2 Putting it all together . 128

5.2.1 IRONOFF . 132
5.2.2 QuickDraw! . 134
5.2.3 A word of caution about confusion matrix 144

5.3 Are we actually capturing styles? . 144
5.4 Summary and take-away message . 145

We finally arrive to the core objective of our thesis: how to leverage information
of style from one (or more) task/s, in order to bootstrap the learning of a new task?

Questions addressed in this chapter

• What is transfer learning? and what are the different approaches to perform
it? We will explain the different paradigms and metrics used to characterize
transfer learning.

• How do we approach the problem of style transfer, for both handwriting and
sketch drawing?

• The experiments performed, the results, and our conclusions.

123

5.1. TRANSFER LEARNING 124

5.1 Transfer learning

An important research direction in machine learning nowadays is transfer learning. If
humans and machines are able to learn how to perform a task, one of the thing that
separates humans from machines is the ability to leverage this knowledge in order
to acquire new skills and perform new tasks, without the need for additional trials
and errors from tabula rasa. This however, is not a straightforward thing for machine
learning to do. The algorithms are fitted to data responding directly to the task required
(i.e., has the same input feature space and same distribution). Thus, a change in the task
can lead to degradation in the algorithm performance (Pan and Yang, 2009; Shimodaira,
2000; Tan et al., 2018; Weiss et al., 2016).

Let’s first introduce some notations that will help in formulating the problem:

• We first introduce the concept of Domain. A domain defines a feature space
(e.g., images of animals), and the probability distribution of this space (i.e., the
distribution of pixels in the images of animals). We can consider the domain as
the available knowledge to us. Thus, a domain D is defined as D = {X ,P(X)},
where:
X is the feature space, X is the data samples available to us from the feature
samples, X = {x1,x2, · · · ,xn} ∈ X , where n is the size of the learning sample. P(X)
is the marginal distribution probability of this data sample.

• For a given domain (aka, the knowledge available to us), a task is something
we would like to achieve using the knowledge we have. A task T is defined as
T = {Y , f (.)}, where:
Y is the task objectives, f (.) is the mapping function (mapping the domain knowl-
edge to the task objectives). It can also be rewritten as a conditional probability
over the domain knowledge, T = {Y ,P(Y |X)}.

• Based on this notation, we define two more concepts: Source and Target. A
source defines a domain and a task/s that are available to us already (where we
have plenty of domain knowledge, and examples on the task/s). A target defines
a domain and a task/s as well, where we usually do not have enough domain
knowledge and/or examples on the task/s.

Now that we clarified some basic terminology, we can move on to define
transfer learning: given source domain data DS, source task TS, target domain DT and
target task TT , we wish to improve the performance of the target task fT (.) by using
DS and TS.

Given this definition, we can categorize different types of problems that trans-
fer learning covers:

125 CHAPTER 5. STYLE EXTRACTION AND TRANSFER

• The source and target domains are different, DS 6= DT , which means that the
feature space is different, XS 6=XT , and/or the probability distribution of the feature
space are not the same, P(XS) 6= P(XT). If XS 6= XT , the transfer learning problem
is Heterogeneous. Otherwise, it is Homogeneous.

• The source and target tasks are different, TS 6= TT , which means that the objectives
are different, YS 6= YT , and/or the mapping function (from the feature space to the
objectives) are different, P(YS|XS) 6= P(YT |XT).

Many approaches in order to achieve transfer learning has been proposed in
the literature. We will discuss the different approaches, and give examples from the
literature on each one. We follow the categorization of transfer learning approaches
done in (Tan et al., 2018)1, by first identifying four main categories of transfer learning:

• Instances-based : in this case, we utilize examples from the source domain into
the training of the new target domain, by defining weights on them.

• Mapping-based : the objective in this case is to project the instances from the
two domains into a new manifold, that increases the similarity between the two
domains.

• Network-based : the more common type of deep transfer learning. It is based on
the idea that the layers of the deep neural network extracts basic and general
information, that shared a lot with other domains. In this case, the network or
some of its layers are re-used on the target task.

• Adversarial-based : similar objective to Mapping-based, by using generative ad-
versarial networks (Goodfellow et al., 2014) in order to find a manifold that are
fit for both source and the target domains.

In the context of deep transfer leaning – the main domain in our work –,
Network-based and Adversarial-based transfer are the relevant categories in this case.
Adversarial-based transfer is quite recent, and there is not much to talk about at the
moment, so we will focus Network-based transfer, as it is the most common type of
deep transfer learning.

When it comes to evaluating the success of the transfer, there is no one way
to evaluate transfer learning in general. This depends a lot on the objectives of transfer
learning, and the criteria of success. In the case of machine learning, the improvement
in end quality of the model is the primary performance aspect being measured and
reported – like the classification accuracy (Chattopadhyay et al., 2012; Glorot et al.,

1Other categorization exists, like the one used in (Weiss et al., 2016). When it comes to deep transfer
learning, we believe the categorization in (Tan et al., 2018) to be the most relevant.

5.1. TRANSFER LEARNING 126

2011; Long et al., 2013; Pan et al., 2010a), the reduction in the average error (Pan et al.,
2010b)...,etc –. The transfer is considered successful if it achieves better performance
than the baseline method (a model trained from scratch on the data available for the
target task only).

We expect that, with the introduction of transfer learning via deep learning,
that the time to train the model could be another aspect to consider – similar to what
is being used in reinforcement learning (Taylor and Stone, 2007) –, although – to the
best of our knowledge – we do not find studies mentioning this at the moment.

The idea of using deep learning (LeCun et al., 2015) in order to achieve trans-
fer learning has gain popularity during the last years, following the achievements in
having better computational resources (Raina et al., 2009), and the availability of large
benchmark datasets - most notably: ImageNet (Deng et al., 2009) for object detection,
MS-COCO (Lin et al., 2014) for image captioning

The first notable success of deep learning happened in the area of computer
vision, with the AlexNet architecture (Krizhevsky et al., 2012). It was found out that such
a deep network manages to extract generic features about the images: it learns simple,
hierarchical filters, that are generic enough to be applicable for different datasets (see
figure 5.1). The filters can be also seen as a representation of knowledge learned on
the given tasks, with the first layers learning primitive filters (like edge detection for
example), and the subsequent layers learning more complex filters. This observation led
to another surge in the usage of pre-trained AlexNet – and later newer architectures,
like VGG16 (Simonyan and Zisserman, 2014), Inception (Szegedy et al., 2015)...,etc –
as feature extractors for new, unseen datasets (i.e, transfer learning using these deep
learning architectures).

Other examples on network-based transfer learning are:

• Sentiment Classification: (Glorot et al., 2011) discusses a deep learning approach
for transfer learning for sentiment classification, by using stacked de-noising auto-
encoders (Vincent et al., 2008) to correct the marginal distribution between the
source and the target domain, by learning latent variables/features common be-
tween the two data sources in two steps: they first train an auto-encoder on the
unlabeled data from the source and the target. This will produce latent variables
that will make P(XS) closer to P(XT). They then use those latent features to train
a classifier on the labeled source data.
Experiments are done on 12 different sources and target domain pairs. The data
are reviews for different products (4 different products). The performance metric
used in this case is the classification error rate when using a classifier trained
on the source task only, minus the classification error rate of a classifier trained
on the target task only. A SVM classifier trained on the source domain is used
as a baseline, and a comparison with other transfer methods (Blitzer et al., 2006;

127 CHAPTER 5. STYLE EXTRACTION AND TRANSFER

Figure 5.1: Visualization of the first convolution layer of a trained AlexNet. Note the
basic shape of filters that resemble to Gabor filters widely used in image processing
for decades (Fogel and Sagi, 1989; Jain and Farrokhnia, 1991). It is possible to see that
those same filters will be useful in other computer vision or image-related tasks.

Li and Zong, 2008; Pan et al., 2010a). All these methods performs better than the
baseline, and (Glorot et al., 2011) peforms better than all of them.

• Underwater Acoustics: (Malfante et al., 2018b) compares the use of deep transfer
learning to manual features (Malfante et al., 2016, 2018a), in order to recognize the
sounds of fish underwater. Interestingly, the deep learning models are trained on
ImageNet (Deng et al., 2009) dataset (which is completely unrelated to acoustics),
then used in order to extract features from the spectrogram of the underwater
recordings. The assumption here is the the filters learned with deep learning are
basic and generic enough, to be used in other domains, thus, deep learning can
provide a natural correction for P(XS), to make it close to P(XT). Without any
fine-tuning, the deep learning achieves quite a high performance, although less
than the state of the art, suggesting that a further investment in this direction is
worth the time.

• Speech to speech translation: (Xu et al., 2014) studies the idea of transferring
the speech knowledge learned from one language to another using deep neural
networks. In particular, they study the transfer between Mandarin and English
(both ways). Their hypothesis is that when modeling the speech in a language,
there is a part in the model that is language independent. Their work was to
find this part, and use it to bootstrap the learning of a new language (in case

5.2. PUTTING IT ALL TOGETHER 128

of neural networks, this can be rephrased as trying to find the good part in the
neural network that is language independent).
They compared their proposed transfer approach to a baseline model (a deep
learning model trained on the target task only), and compare the different the
usage of different layers of a deep neural network trained on the source task (in
order to determine the best part, or the language independent part). They report
multiple performance metrics: segmental SNR (SSNR), log-spectral distortion
(LSD), and perceptual evaluation of speech quality (PESQ). They find that, given
insufficient data on the target task (which is one of the motivations to perform
transfer learning), this transfer scheme works better than the baseline.

• Image classification: (Oquab et al., 2014) investigated the usage of a convolution
neural network (CNN) trained on ImageNet (Deng et al., 2009) (where the object
of interest is centered in the image), to extract low-level and mid-level features,
that can transfer well to more complex dataset, PASCAL VOC (Everingham et al.,
2010) (where there are several objects of interest in the image), and is smaller
than ImageNet. They use the average precision as their performance metric, and
they show that the transfer is better than training a model from scratch on this
target dataset.

• Styles of speech synthesis: (Wang et al., 2018) discusses the problem of trans-
ferring the styles between different speakers, in the task of speech synthesis.
Traditionally, the outcome of speech synthesis systems is the same style (aver-
age reading). One of the challenges is to capture the richness of style of different
speakers on some training data, and transfer this style to new text (in particular,
when the readers change their voice between different characters in the text).
In their work, they propose an embedding approach called Global Style Tokens
(GST), in order to extract the styles from the different speakers during the training
phase. They then show that they can use these tokens as extra information to the
speech synthesis system, to bias/affect the style of the outcome. They compare
this to a baseline model, called TACOTRON (Wang et al., 2017b), without these
GST addition. They use Mean Opinion Score (MOS) performance metric – a sub-
jective metric to assess the quality of experience experienced –. They conclude
that transfer learning using GST outperforms the baseline model.

5.2 Putting it all together

In the previous section, we explored the concept of transfer learning, with focus on
network-based transfer, with multiple examples from the literature on this type of trans-
fer. In this section, we will explain the work done during our thesis on transfer learning.
The main challenge we had is how to capture and transfer the styles between different
tasks. Two questions should be of concern:

129 CHAPTER 5. STYLE EXTRACTION AND TRANSFER

• Which framework/methodology of transfer we should use?

• How to assess the quality of transfer?

Our contributions in this part is that we study these questions on both IRONOFF
and QuickDraw!. We proposed an experimental protocol in order to perform a rigorous
evaluation for the usage of transfer learning – partially on the basis of the work done
in (Lathuiliére et al., 2019) –. We use a slightly different experimental protocol between
the two datasets however, depending on the computational power available. We will
discuss the reasoning behind this, and will argue that both setups are good enough to
address our questions concerning the transfer of styles. The work done in this chapter
is in the publication phase.

What are we transferring? A typical approach to perform transfer learning in deep
learning models is to:

1. Train the model on the source task.

2. Freeze some parts of that model.

3. When going to the target task, use the frozen parts in a new model, and train the
rest of that new model on the target task.

The part that we freeze/transfer in our case is illustrated in figure 5.2.

How to evaluate the quality of transfer? Concerning the performance metrics, we
decided to use multiple metrics to determine the effect of transfer learning, and com-
pare it to the baseline (no transfer). While the usage of a single metric offers more
convenience for decision making (i.e., which model to choose), our goal is have a better
understanding for the transfer of style. To achieve this, we would like to shade light
on the outcome from different angles, by using multiple metrics. We first evaluate the
quality of the model in prediction by looking at the log-likelihood on the test data2.
We then evaluate the quality of generation using our previously proposed metrics (the
BLEU score and EOS analysis). We compare the performance of the generated strokes
count, and include it in the comparison.

One of the things we changed from the previous work is that, when analyzing
end of sequence, instead of using Pearson Coefficient, we use Krippendorff-Alpha (Krip-
pendorff, 2011). The reason for this is that it offers a smoother transition between what

2Based on experience, the cross-entropy matters when it comes to generation. A difference of around
0.1 in cross-entropy between two models gives different generation quality.

5.2. PUTTING IT ALL TOGETHER 130

Figure
5.2:

An
illustration

for
m

odelw
e

use.The
partidentified

by
the

gray
area

–
the

style
extraction

m
odule

–
is

w
hat

w
e

transfer
(i.e.,w

hat
w

e
freeze

from
the

source
task,and

use
in

the
target

task).
Since

w
e

give
the

m
odel

the
task

content/identity,the
gray

part
is

expected
to

focus
m

ore
on

the
style

extraction.
D

uring
the

exposure
to

the
source

task,
allthe

different
com

ponents
ofthe

m
odelare

being
trained.

D
uring

the
exposure

to
the

target
task,the

gray
area

is
the

trained
one

on
the

source
task,w

ith
frozen

param
eters.The

other
parts

w
illbe

trained.

131 CHAPTER 5. STYLE EXTRACTION AND TRANSFER

is good and bad (thus, it is a good way to deal with ordinal values). In Pearson co-
efficient, if there is a mismatch between the generation and ground truth, it will not
matter how big is the mistake (the distance between the generated and the ground
truth). With Krippendorff-alpha, we can take into account the distance between the
generated and the target symbols, thus providing a softer and more realistic estimation
for the correlation.

Another aspect we consider in our analysis is the number of strokes the model
is generating. In the previous work, we did not model the strokes, in order to simplify
the system and the analysis. Now that we are confident about our approach, we added
the strokes to our model. Strokes are more complex to model, because the stroke
signals are more sparse. A good stroke generation is an indication that the model
can perform hard discrete decisions in order to generate the whole shape. We use
Krippendorff coefficients as well to report and analyze the strokes. We also consider
the confusion matrices for the generated strokes versus the ground truth ones, in order
to shade more light on the behavior of the model.

One important choice to make is to decide the amount of data to be used
in the target task. Normally, the whole point from transfer learning is to cope with
the insufficient data available for the target task. However, since we do not have a
particular scenario to solve (we are mainly interested in that ’what if this happens’
question), there is no clear criteria to decide the amount of data. If we select very few
points, we may be biased towards giving transfer learning an advantage, while also
sacrificing having generally bad results (even if transfer learning proved to be better
than baseline on our performance metrics). It is important that the overall behavior of
the system is acceptable (generating shapes with acceptable quality). To get around
this design problem, we decided to use the entire data available to the target task, thus,
testing the ’worst case scenario’ for transfer learning (where the baseline has plenty of
data, and it is used to train the whole model, compared to training only half the model
in case of transfer learning). This will be the case for both IRONOFF and QuickDraw!
datasets.

To summarize, our contributions in this chapter are:

• We show how to use the conditioned-autoencoder framework in order to perform
style transfer.

• We propose two protocols – different in power – in order to perform the experi-
ments of transfer learning.

• We intensively evaluate the usage of transfer learning relative to the baselines,
across a wide range of metrics.

• We perform the tests on two different datasets, for extra confirmation.

5.2. PUTTING IT ALL TOGETHER 132

5.2.1 IRONOFF

In case of handwriting letters, we distinguish between three tasks: uppercase, lower-
case and digits3.

We explore the idea of transfer learning on all possible combinations of tasks:

• From uppercase and lowercase to digits,

• from uppercase and digits to lowercase,

• and from lowercase and digits to uppercase.

Experimental setup

Figure 5.3 details the protocol we used for this experiment. For each source/target
task combination, we first perform hyper-parameters search for the network for both
the source and the target tasks, and then train these models. Using these models:

• We use the source model to extract the encoder module (aka, the style extraction
module). We then add it to a new model, freeze it (it will not be part of training),
and train the new model on the target task. We also search for the best hyper-
parameters for this new model. We call this model the ’transfer model’. We retrain
this transfer model 5 times with different random weights each time, and report
the stats on the cross-entropy of the test data for those repetitions.

• We retrain the target model 5 time as well.

• Then, we use the best performing transfer and targets models for generating the
target tasks, and report the stats of the different generation metrics.

We use 10% of the data for testing, another 10% for validation, and the rest is
our training set.

Results

Loglikelihood of prediction In the prediction mode, the model is tested in a similar
manner to the way it was trained: it is given the input from the ground truth, represent-
ing the current time step, and asked to predict the next time step. This tells us about

3I do not see a problem of working on the lower categories (A, a, B, b,, 7, 8, 9) – each letter/digit sep-
arately –. However, it would have consumed a lot of computational time test on all possible combinations
of source/target tasks.

133 CHAPTER 5. STYLE EXTRACTION AND TRANSFER

Fi
gu

re
5.

3:
Fl

ow
ch

ar
te

xp
la

in
in

g
th

e
ex

pe
rim

en
tp

ro
to

co
lu

se
d

in
IR

O
N

O
FF

da
ta

se
t.

5.2. PUTTING IT ALL TOGETHER 134

the quality of the training procedure from one side, and shade light on the confidence
of the model in predicting the next time step.

The result of 5 times repetitions, for all the different combinations of source/target
tasks, are mentioned in figure 5.4. We can see that the transfer learning always gives
a significant advantage over baseline models.

BLEU score Now we go to the generation part, our main concern in our thesis. As
discussed earlier, we use BLEU score to assess the quality of matching segments be-
tween the generated and the ground truth letters, in a gradual manner (i.e., we increase
the size of the segments to match gradually). Table 1 summarizes the numbers. We
see that transfer learning always performs better than the baseline.

End-of-Sequence analysis One aspect to measure the quality of the generation, that
we identified previously, is to analyze how the model predicts the end of the sequence
generation. Table 2 shows the results of the Krippendorff coefficients for the different
modes. In general, the different modes are performing quite well. It can be seen that
transfer learning is actually performing better than the baseline models, adding another
indication to the benefit of using transfer learning.

Strokes analysis As mentioned earlier in this section, we started to consider the the
strokes in this part of our work. Table 3 shows the strokes results of the Krippendorff
coefficients for the different modes. With the exception of the uppercase letters, transfer
learning performs better than baseline models. For the uppercase letters, this could be
due to the extra complexity of these letters (see figure 2.4, where it can be found that
uppercase letters are usually the ones with higher number of strokes). A fine tuning for
the style extraction module is the next logical step to perform here, to make it adapt
to complexity of the this task. We also consider the confusion matrix for the generated
strokes in comparison with the ground truth, figure 5.5. We can see that it is consistent
with the Krippendorff results, where transfer learning outperforms the baselines. In
the uppercase letters however, it is noted that the transfer learning performs better on
single stroke, while the baseline performs better on the 2 and 3 strokes.

5.2.2 QuickDraw!

In case of sketch drawings, we define the task by the class it belongs to. So we have
5 tasks: circle, triangle, square, hexagon and octagon. We explore the idea of transfer
learning on all possible combinations of tasks: in each combination, one task is removed
(the target task), and the other tasks are considered as source tasks.

135 CHAPTER 5. STYLE EXTRACTION AND TRANSFER

Fi
gu

re
5.

4:
IR

O
N

O
FF

:l
og

cr
os

s-
en

tr
op

y
of

pr
ed

ic
tio

n
of

te
st

da
ta

se
tf

or
di

ffe
re

nt
co

m
bi

na
tio

ns
of

so
ur

ce
/ta

rg
et

ta
sk

s,
w

ith
5

re
pe

tit
io

ns
.W

e
ca

n
se

e
th

at
,i

n
al

lp
os

si
bl

e
so

ur
ce

/ta
rg

et
ta

sk
co

m
bi

na
tio

ns
,t

he
tr

an
sf

er
le

ar
ni

ng
gi

ve
s

be
tte

ra
dv

an
ta

ge
th

an
ju

st
le

ar
ni

ng
fro

m
sc

ra
tc

h
on

th
e

ta
rg

et
ta

sk
.

Th
e

st
ar

s
in

di
ca

te
th

e
st

at
is

tic
al

si
gn

ifi
ca

nc
e

le
ve

l(
1

fo
r
<

0.
05

,2
fo

r
<

0.
01

an
d

3
fo

r
<

0.
00

1)
.

5.2. PUTTING IT ALL TOGETHER 136

Aspect/Feature Speed Freeman
Model / B-score B-1 B-2 B-3 B-1 B-2 B-3
Uppercase-baseline 66.1 46.3 27.2 62.8 49.4 37.1
Uppercase-transfer 68.3 47.8 28.3 65.47 51.8 39.0
Lowercase-baseline 73.1 69.7 55.9 54.8 37.2 40.9
Lowercase-transfer 75.5 71.2 58.0 56.0 39.4 41.9
Digits-baseline 68.7 65.2 49.1 49.6 29.3 34.6
Digits-transfer 71.5 70.7 51.2 55.9 31.4 41.7

Table 1: IRONOFF : BLEU score results on the generated letters, for the baseline
models (trained on the target task only), and the transfer models (the encoder – style
extractor – is trained on the source task, while the decoder is trained on the target
task). The results show the advantage of using transfer learning.

Task/Model Baseline Transfer
Uppercase 0.95 0.97
Lowercase 0.96 1.0
Digits 0.92 0.99

Table 2: IRONOFF : Krippendorff correlation coefficients for the End-Of-Sequence (EoS)
distributions between the transfer and baseline, for all tasks.

Task/Model Baseline Transfer
Uppercase 0.38 0.25
Lowercase 0.56 0.65
Digits 0.4 0.71

Table 3: IRONOFF : Krippendorff correlation coefficients for the strokes distributions
between the transfer and baseline, for all tasks. Except for the uppercase case, transfer
learning seems to perform well in the lowercase and the digits tasks.

137 CHAPTER 5. STYLE EXTRACTION AND TRANSFER

Figure 5.5: IRONOFF!: Confusion matrix for strokes for both baseline (left) and transfer
(right) models, on the uppercase, lowercase letters and digits (in order). A small differ-
ence may appear in the total number between the baseline and the transfer confusion
matrix is a result of us removing the column when it has a low/insignificant value (for
aesthetic reason only, and to make the message focused).

5.2. PUTTING IT ALL TOGETHER 138

Experimental setup

Due to the increase of the number of tasks – compared to IRONOFF –, and using the
same experiment setup proved to be too much compared to the computational resources
available to us. We identify that one of the expensive bottlenecks in our work is the
number of times we need to perform hyper-parameter search. In order to get around
this problem, we are using a simpler (and less powerful protocol), see figure 5.6. We
perform the hyper-parameters search once in the beginning of the experiment, on the
all the tasks combined, to find good hyper-parameters that is suitable to the domain
of ’sketch drawing’. From there, we fix the hyper-parameters for all the different steps
in the experiment. The analysis steps are the same as in IRONOFF.

Another thing we noticed is that retraining the model 5 times only (like in
IRONOFF) leads to unstable conclusions, thus make it hard to quantify the difference
between the baseline and the transfer modes. We increased the number of models to
30 in this case, in order to have a more consistent trend.

Results

Loglikelihood of prediction The results can be seen in figure 5.7. For all the combi-
nations, there is a clear advantage for using transfer learning over the baseline model.
The difference in all cases is statistically significant.

BLEU score The BLEU score results are summarized in table 4. Transfer learning
outperforms the baseline models in this case.

End of Sequence analysis Table 5 summarizes the results on end-of-sequence anal-
ysis in case of QuickDraw!. The benefits of transfer learning are clear.

Strokes analysis Table 6 summarize the results on strokes analysis in case of Quick-
Draw!. The benefits of transfer learning are clear. We also report the confusion matrix
for the strokes, figure 5.8. It is noted that the performance of the system in general de-
creases, as the diversity in the number of strokes increases. But still, transfer learning
provides the better results.

139 CHAPTER 5. STYLE EXTRACTION AND TRANSFER

Fi
gu

re
5.

6:
Fl

ow
ch

ar
te

xp
la

in
in

g
th

e
ex

pe
rim

en
tp

ro
to

co
lu

se
d

in
Q

ui
ck

D
ra

w
!

da
ta

se
t.

5.2. PUTTING IT ALL TOGETHER 140

Figure
5.7:Q

uickD
raw

!:cross-entropy
ofprediction

oftestdatasetfordifferentcom
binations

ofsource/targettasks,w
ith

30
repetitions.W

e
can

see
that,in

allpossible
source/targettask

com
binations,the

transfer
learning

gives
better

advantage
than

just
learning

from
scratch

on
the

target
task.

The
stars

indicate
the

statisticalsignificance
level(1

for
<

0.05,2
for

<
0.01

and
3

for
<

0
.001).

141 CHAPTER 5. STYLE EXTRACTION AND TRANSFER

Aspect/Feature Speed Freeman
Model / B-score B-1 B-2 B-3 B-1 B-2 B-3
Circle-baseline 59.0 54.5 49.6 60.0 54.7 48.9
Circle-transfer 70.4 65.5 60.3 65.0 58.1 50.6
Triangle-baseline 47.3 40.0 32.6 33.2 28.2 24.0
Triangle-transfer 61.3 52.4 44.1 50.6 44.8 39.8
Square-baseline 46.8 40.1 32.7 44.0 39.1 34.9
Square-transfer 57.9 50.8 42.9 53.0 47.4 42.3
Hexagon-baseline 58.1 50.4 41.4 45.4 40.3 35.9
Hexagon-transfer 62.0 54.0 44.8 47.6 42.3 37.8
Octagon-baseline 55.2 47.1 38.3 43.7 38.7 34.6
Octagon-transfer 57.3 49.3 40.5 46.1 41.1 36.7

Table 4: QuickDraw!: BLEU score results on the generated letters, for the baseline
models (trained on the target task only), and the transfer models (the encoder – style
extractor – is trained on the source task, while the decoder is trained on the target
task). The results show an advantage in using transfer learning.

Task/Model Baseline Transfer
Circle 0.6 0.84
Triangle -0.05 0.61
Square 0.04 0.35
Hexagon 0.07 0.2
Octagon 0.07 0.16

Table 5: QuickDraw!: Krippendorff correlation coefficients for the end-of-sequence
distributions between the generated letters and the ground truth letters.

Task/Model Baseline Transfer
Circle -0.04 0.1
Triangle -0.04 0.42
Square 0.03 0.25
Hexagon -0.08 0.23
Octagon 0.06 0.18

Table 6: QuickDraw!: Krippendorff correlation coefficients for the strokes distributions
between the generated letters and the ground truth letters. Transfer learning achieves
better results than the baseline on all the different tasks.

5.2. PUTTING IT ALL TOGETHER 142

143 CHAPTER 5. STYLE EXTRACTION AND TRANSFER

Figure 5.8: QuickDraw! Confusion matrix for strokes for both baseline (left) and transfer
(right) models, on the different tasks. A small difference may appear in the total number
between the baseline and the transfer confusion matrix is a result of us removing the
column when it has a low/insignificant value (for aesthetic reason only, and to make
the message focused).

5.3. ARE WE ACTUALLY CAPTURING STYLES? 144

5.2.3 A word of caution about confusion matrix

In the previous two experiments, we presented the confusion matrix for the strokes.
However, it is important to understand what these numbers actually mean. In a normal
classification problem, the confusion matrix gives important information about the pre-
cision and recall of the classification. When comparing two algorithms – for example –,
the usage of the values of confusion matrix is an acceptable approach to consider. How-
ever, this is not the case when dealing with the generative aspects of machine learning.
Bear in mind the asymmetry between the training of the model (using the log-likelihood
of prediction) and the usage of the model (by sampling from the model), thus, a one-
to-one comparison between what is generated and the ground truth is not possible or
meaningful. A logical consequence for this is that we can not use such a method to
compare two models together (i.e., compare transfer learning and the baseline). What
we would like to achieve with generative model is to capture the distribution of the
ground truth, thus, for a meaningful comparison, we want to compare the distribution of
the generation relative to the distribution of the ground truth. That is a core challenge
in our thesis: to provide tools to capture the distribution, to facilitate the comparison
and evaluation of different models/methods.

One way to look at the confusion matrix is the general trends in the matrix,
like:

• The deviation around the diagonal: as the shapes gets more complicated, and as
the number strokes increases, we expect that the deviation will increase.

• Looking for systematic errors (e.g., the number of strokes for a square is always
one instead of being three or four): this could help diagnosing problems with the
models design, data processing...,etc.

5.3 Are we actually capturing styles?

In the previous section, we showed that all the metrics point to the benefits of transfer
learning over using the target data only. We argued that this approach captures the
styles, and that we are transferring the styles to a new task. But, are we really
capturing the styles this way? In section 4.2.4, we tried to motivate this point, by some
exploring the bottleneck of the styles. We showed that looks consistent with what we
know beforehand (in case of letter ’X’ for example), or that it uncovers things we either
did not notice beforehand (like in letters ’C’ and ’S’), or uncover new things that we did
not anticipate (in case of letter ’A’).

Testing for something that is ill-defined and not always known beforehand,
like styles, is quite challenging. To add to the challenge, the methods we used to

145 CHAPTER 5. STYLE EXTRACTION AND TRANSFER

explore the bottleneck space (PCA and tSNE) are not designed to uncover a ’styles’
manifold, so sometimes, basic styles went missing (for example, with this exploration
methods, we could not uncover the clockwise/counterclockwise drawing of letter ’O’ for
example, which we know a priori that it exists!).

In this section, we want to shade more light on this problem, from a different
and quantifiable angle. We will choose one aspect using QuickDraw! dataset this
time, we manually annotated circles and octagons into clockwise/counterclockwise cat-
egories. Then, we build a classifier on top of the styles bottleneck, to measure the
quality of the capturing of this style aspect. If we can not see this style visually with
PCA and tSNE, then we should be able to measure its impact.

We annotated 716 drawings (see table 7). We trained a classifier (Random
forests classifier) on this data directly, randomly separating training and test data, and
repeated this 5 times. We did not configure the hyper-parameters of that classifier (we
want a general figure, not interested in an exact one). We obtained 92.9±6.0% on the
weighted F1 score. This suggests that this style extraction method does indeed capture
this style aspect.

Task/Direction Clockwise (CW) Counter-clockwise (CCW)
Circle 339 57
Octagon 115 205

Table 7: Results of manual annotation for CW-CCW on 716 drawings (octagon/circles)
in QuickDraw! dataset. Sometimes the drawing is not clear, so we did not include.
The selected examples are the clear ones only. It can be seen that the data is not
balanced.4

5.4 Summary and take-away message

In this chapter, we presented our hypotheses for style transfer learning. We presented
our proposed approach, and the proposed experimental protocol in order to investigate
these hypotheses. To have better support for our conclusions, we carried out the exper-
iments on two different datasets, IRONOFF and QuickDraw!, both of them presenting
different challenges and behaviors: IRONOFF has more clear semantics, made by a
pen, while in QuickDraw! the contributors exerted more freedom on their work, and
most of the work is believed to be done by the mouse or maybe a tablet (using a finger
or a pen). Also, we chose to perform the study on the worst case scenario, where there
is an abundance of data available to the target task. To better understand and compare
transfer learning versus the baseline models (models trained only on the target task),
we considered multiple performance metrics: the log-likelihood of prediction, the BLEU
score, end-of-sequence and strokes analyses for the generated shapes.

5.4. SUMMARY AND TAKE-AWAY MESSAGE 146

The results overwhelmingly point to the benefit of transfer learning compare
to the baselines on the different proposed metrics, thus providing a strong evidence to
our hypotheses.

Part III

Perspectives and Closing Remarks

147

Chapter 6

Prespective and future work

Contents
6.1 Challenges . 151

6.1.1 Choice of how to tackle the topic? 151

6.1.2 Determine the scope of interest in the state-of-the art 151

6.1.3 Lack of Benchmarks, evaluation metrics 152

6.1.4 Deep learning: theory, hardware and software frameworks 153

6.2 Limitations of the current work . 154
6.2.1 Style extraction and exploration using PCA and tSNE methods 154

6.2.2 Leak in the style module . 155

6.3 Future directions . 156
6.3.1 Disentanglement of latent space to uncover styles 156

6.3.2 Data efficiency . 157

6.3.3 Perceptual evaluation and system specification 157

6.3.4 Experimental protocol . 158

6.4 Summary . 159

This chapter will be a free discussion about what I had done, lessons learned,
shortcomings of this work, difficulties in the PhD, and potential areas of development.

Science should always be about honesty, humility and respect, and not just
flashy results and wide conclusions. Science can always make use of learning from
setbacks – something that is almost missing in the scientific literature –. I will do my
best in this chapter to highlight the other side of good results.

Maybe one day someone – maybe a PhD student – will decide to follow on
this work. It is important for me that they do not repeat the same mistakes. Instead,

149

150

everything should be ready for them in order to make new mistakes. That is how we
move forward. After all, our objective in this PhD is transfer learning between different
tasks. It is now time to transfer learning between two different colleagues.

151 CHAPTER 6. PRESPECTIVE AND FUTURE WORK

6.1 Challenges

In this section, I will discuss the challenges faced during the PhD – from my personal
perspective –, in the hope that I will learn from it for the future, and to illuminate the
path for others as well.

6.1.1 Choice of how to tackle the topic?

The usage of deep learning in this topic has not been the first or clear option from
the beginning. As I mentioned earlier, the objective of the project was to develop
components for human-robot interaction domain. In a first glance, deep learning and
human-robot interaction do not really mix well. The problem is simply the availability
of data.

There is a stretch of imagination in this thesis, that we assume – and I believe
rightly so – that the data problem in HRI will be resolved in the future. Better and
more reliable hardware is becoming available, and there is a general awareness now
in the community about the need to do something concerning the data: a lot of data
is being recorded by my research group, but there is no standardization or culture of
open sourcing the data, even within the same team, leading to a big waste of efforts
and time.

At first, it seems that more data-efficient methods – that depends on well
designed priors from humans – are the way to go in such project. However, the advances
in deep learning application in areas like speech synthesis, image captioning, text and
music generation, and the lucrative possibilities that data-driven approaches provide
were hard to ignore. Besides, the current advances in machine learning indicate that
computational approaches, even with simple algorithms, are outperforming methods
that depends on human knowledge and prior1.

6.1.2 Determine the scope of interest in the state-of-the art

A major challenge during the PhD was to determine the relevant state of the art. For
generative models, the usage of deep learning methods was not the clear choice of the
beginning, and once chosen, it took considerable effort to determine the scope of the
relevant literature.

The same goes for the state of the art on styles. The word itself, and the

1As nicely noted by Richard Sutton, one of the god fathers of reinforcement learning, in his article
The bitter lesson, http://incompleteideas.net/IncIdeas/BitterLesson.html

http://incompleteideas.net/IncIdeas/BitterLesson.html

6.1. CHALLENGES 152

range of study, is very wide – as noted early in the introduction. By far, the work done
in handwriting styles was the least relevant to our work; most of the work is done on
offline handwriting (thus not dealing with the dynamics of writing itself) – and this is
most of the work done currently –2. The problem does not always manifest itself in a
technical shape, sometimes – and most annoying – it is mostly that we do not know
what we are looking for exactly, and even if we do know, we do not know the exact
terminology other people are using to describe it.

I am thankful for the great deal of openness that researchers in machine
learning are embracing. The discussions through online forums, blogs, tutorials, on-
line courses, and recent books, had definitely made this massive search space more
tractable.

6.1.3 Lack of Benchmarks, evaluation metrics

Getting around these issues was quite a dilemma, for many reasons:

• I do not believe it is a healthy practice for one team to design the benchmarks, and
then build methods to beat those benchmarks in the same time. The choices can
be easily biased, and it could be argued that the benchmarks are designed/chosen
to be weak enough in order to show progress. In our case, it was mandatory to
do so nevertheless, and we tried as much as possible to be fair in making these
choices.

• In engineering, it is the right practice to have different teams for design and test
of the product. If one team do both, the testing process tend to be biased (i.e.,
even with the best intention, the team is looking for confirmation of their design,
not the problems in it). By analogy, I think this a pitfall of us developing the
metrics, the benchmarks, and using them. What if we are mainly looking at the
metrics that confirms our hypothesis? It is hard to rule out this possibility.

We tried our best to avoid this when selecting the metrics, and by using
multiple metrics to evaluate our hypothesis. However, an independent investigation in
this issue is favorable.

2Most of the great advances that happened recently in neural networks – especially in generative
models – is related to computer vision. Thus, it is more convenient to deal with handwriting as images
(offline handwriting) than as a dynamic process (online handwriting).

153 CHAPTER 6. PRESPECTIVE AND FUTURE WORK

6.1.4 Deep learning: theory, hardware and software frameworks

Several excellent frameworks – like Keras (Chollet et al., 2015), PyTorch (Paszke et al.,
2017) and TensorFlow (Abadi et al., 2015) – do exist at the moment in order to provide
friendly APIs for deep learning, with many online tutorials. This gives the impression
that you can just jump in the topic, train a neural network, and now you can harness the
power of deep learning. However, in my experience, the quick gains of this approach
will be lost soon in the face of the first problem. Even for someone experienced with
traditional machine learning, deep learning poses an extra challenge: it is usually
computationally expensive. More thinking is needed about what to do and what not to
do in this case.

It is important to understand the fundamental of statistical learning theory (Hastie
et al., 2001), machine learning and deep learning before engaging in an endeavor that
uses deep learning. This particular strategy was a key factor in any progress done
during my PhD. There are plenty of excellent online courses, free books and many re-
sources, that provide a gradual and methodological approach, which a learner can use
in order to achieve this.

Another thing to highlight here is the hardware needs. Having access to a
GPU is a necessity in order to learn, experiment and develop using deep learning.
Recently, interesting cloud-based solutions – like Colab3, which is free – provide quick
access to hardware suitable for deep learning. Some other solutions that I used – like
Amazon AWS, which is not free – do exist, with the advantage of being easily configured
and scalable, and with a support from the research institution, could provide a good
replacement for buying and maintaining expensive hardware in-house. The bottom line
is: it is important to keep in mind the hardware available, otherwise, the whole process
will be hindered.

Another aspect to consider is the framework to use. Keras for example pro-
vide interesting high-level APIs, while PyTorch and TensorFlow provide low-level APIs.
PyTorch focuses more on being close to the Python language way of thinking, while
TensorFlow provide a wide variety of interesting functions, including deployment capa-
bilities4. It is lucrative to go for Keras, but once a low-level development is needed, I
find that it adds an unpleasant overhead, requiring a mastery level of the underlying
framework. Besides, in my opinion, starting by working on high-level directly encour-
ages bad practices – since everything is done in background, it is easy to bypass
important details in the way deep learning works, thus, developing poor debugging
and problems diagnostic skills –. Discovering PyTorch was, by far, the unspoken hero
in this PhD, and one of the best engineering decisions I have made. My point from
discussion is illuminate the different trade-offs between the different platform. No one

3https://colab.research.google.com/
4This gap between PyTorch and TensorFlow is closing, with every new version of both.

https://colab.research.google.com/

6.2. LIMITATIONS OF THE CURRENT WORK 154

is better than the other. It is important to understand the task in hand, and choose the
suitable tool for it.

6.2 Limitations of the current work

In this section, I discuss what I consider shortcomings for some of the methods used in
this work.

6.2.1 Style extraction and exploration using PCA and tSNE methods

In this work, when exploring the latent space of our model, I used either PCA or tSNE
projection methods (to project the latent space from the high dimensional space into
a smaller one)5, and tried to use the assumptions behind both methods to extract
meaningful information from the latent space.

While this is an acceptable approach, it really stretches these methods to a
breaking point, plus, it may hinder further investigation:

PCA It assumes Gaussian distribution and linearity in the space to be projected. There
is no reason however to assume that these assumptions hold for embeddings,
especially with the large dimensions of the latent space. In the non-linearity
aspect, the latent space does not have the clear objective of transferring non-
linear style relationship into linear ones (simply, because no such objective can
be formulated directly, since the problem of styles is ill-defined), unlike what can
be noticed for the last layers of neural network classifiers (where an embedded
objective of the network is project the data from their non-linear manifold into a
linear one). Finding orthogonality in the style space is an interesting aspect to
explore, but this is a strong assumption, and there is no reason to believe that it
holds for all aspects of styles.

tSNE It provides a way to deal with non-linearity, thus allowing another further explor-
ing the latent space, but it is hard to repeat the results (the method is stochastic)
and the projection does not necessarily yield information about the styles. Chang-
ing the perplexity parameter leads to different results as well (I didn’t explore the
relation of that parameter to find a more suitable style manifold, and I am not
sure if it is worth the effort).

5Or I used the latent space in a classification task to identify if particular information exists in the
latent space.

155 CHAPTER 6. PRESPECTIVE AND FUTURE WORK

But what is a good projection criteria in this case? should we let the organiza-
tion of styles emerge on its own, by constraining the latent space and add regularization
to the loss function (i.e., during an end-to-end training of the network)? should a sec-
ond optimization step be performed on the latent space, in order to disentangle it? I
discuss some of these ideas briefly in section 6.3.

6.2.2 Leak in the style module

The idea of conditioning is to provide the task content/identity as input to the decoder
(the condition), thus, relieving the encoder from learning it, and focus only on learning
the styles, thus enhancing the style transfer capability. Ideally in this case, we expect
that the output of the encoder has little to none information about the task identity.
However, careful testing shows that this is not the case. There is a considerable leak
of information about the task content/identity into the encoder.

I do not have an explanation at the moment for the reason behind this phe-
nomena. My intuition6 is that the problem lies in the way we describe the task content.
The assumption in my thesis is that a harsh one-hot encoding of the task is sufficient
to describe the task correctly is flawed in my opinion. An analogy for this can been
drawn from clustering (hard clustering versus fuzzy clustering). Hard clustering, similar
to one-hot encoding, does provide us with which this task is, but nothing about how
this task relates to other tasks (i.e., proximity/similarity to other task), which is what
fuzzy clustering do. It could also be that our assumption that the task and the style
are independent and can be separated is incorrect.

The influential work done by Geoffrey Hinton in (Hinton et al., 2015) – per-
formed on the MNIST dataset (LeCun and Cortes, 2010) – is a contributing factor in
my intuition. I will not dive into details about this article here, since it is outside the
scope of this work, I will just mention two interesting results from this study:

• In a classification task, the traditional description of the labels is one-hot encod-
ing. However, using a soft/fuzzy description of the labels reveals much better
results (makes sense, since it is more rich in information).

• If you train a classifier on the soft labels of digits 7 and 8 only, the classifier will
perform almost 90% accuracy on the other labels 7!. It means that a better task
description may increase the data efficiency of the model.

A similar concept should definitely be explored in the context of this work.
6I did not have the time to perform rigorous testing for this idea unfortunately.
7I personally find this particular result fascinating.

6.3. FUTURE DIRECTIONS 156

6.3 Future directions

During my thesis, with each step, with each question answered, the door was unlocked
to many new questions. This is the beautiful part about science. The not-so beautiful
part is that time is limited, and choices have to be made, I can not pursue them all. I
try to document what I believe is the possible directions to go from here in this section.

6.3.1 Disentanglement of latent space to uncover styles

So far, we did not try to impose any constraints or structure on the latent space. We
used general post-processing methods (PCA, tSNE or classification) in order to shade
some light on the content of the latent space. Adding structure to the latent space
is very interesting, it may allow the emergence of these styles on their own. Some
work has been done in that direction in case of images (Higgins et al., 2017). An
example of adding structure can be simply by forming the latent space as a number
of Gaussian distributions (Kingma and Welling, 2013), enforcing discretization in the
latent space (Jang et al., 2016; Maddison et al., 2016; van den Oord et al., 2017), or many
other ideas. Another interesting dimension to explore is to have a hierarchical latent
space structure (Hsu et al., 2018), which can add more interpretability to the latent
space, enabling a better comprehension of the extracted styles. In all these examples,
the model is optimized end-to-end.

Finding a good structure and constraints is probably a challenging task though,
but the potential rewards are huge, for two reasons at least:

• It can be an efficient way to discover and understand styles. After all, an important
aspect of my PhD is to use machine learning as a tool to perform science, as
discussed in the introduction. Facilitating this objective is a good news.

• In a generative framework, this structure can be seen as control knobs for the gen-
erator. A good disentanglement will give us meaningful control knobs. Once we
have them, we can start use them to synthesize new data with the characteristics
that we want.

Another possible direction to look at a better post-processing methodology.
For example, given some criteria, we can optimized the learned latent space in order
to structure the latent space. I implicitly did this by using PCA and tSNE, but we can
envision developing our own methods and cost functions that will help with the problem
in hand.

157 CHAPTER 6. PRESPECTIVE AND FUTURE WORK

6.3.2 Data efficiency

By data efficiency I mean that amount of data needed in order to achieve the desired
performance. This depends on many things, including the data itself, the complexity
of the distribution, the machine learning algorithm used...,etc. This point is important
to consider when data is expensive, like in robotics for example. In my thesis, due to
the availability of the data in the chosen domains, the problem of data efficiency did
not surface and was not of concern. It can be considered that transfer learning is one
way to address data efficiency (by requiring less data samples in order to learn the
target task). However, some aspects of data efficiency needs to be addressed heads
on: for example, during HRI, the robot may need to adjust its behavior to suit to the
human. In such case, some trial-and-error is needed in order to get proper data that
will allow the robot to modify its approach. This data must be limited – the human will
not withstand weird behavior from the robot for so long –. Some research work is in
progress to investigate learning policies from a handful of trials (Chatzilygeroudis et al.,
2018; Cully et al., 2015). This point is a necessity for any successful deployment on the
robot. A possible challenge in this case is to deal with rare occurrence phenomena, for
example, some styles are very rare to occur, and it is not possible to get enough data
on them unless we collect large sums of data.

6.3.3 Perceptual evaluation and system specification

In this thesis, we showed the validity of transfer learning in case of styles in an objective
manner, using many performance metrics, which we believe that they matter and are
relevant. But there is an important point we did not address: how much difference in
each performance metric do we actually care about? If I say that, concerning the EOS
metric, that one system has a Krippendorff correlation of 0.9 and another one has 0.95,
the question here is simply: should we be concerned about this 0.05 difference? What
is th minimal acceptable value? and how much difference should concern us? And if we
do care about this 0.05 difference, then is it worth the effort spent in order to get it (time
wise, model complexity...,etc)? It is very important to go from the numerical universe
to the physical universe, and get a sense of what those numbers actually mean, and
determine what to care for.

This leads to another important point, which is to determine what do we actu-
ally want (i.e., develop the necessary specifications and criteria for our final objective).
In case of human-robot interaction for example – I will use arbitrary numbers here –,
we can consider that the robot can try a particular action with the human three times
only in order to get it right (maybe the human will get bored after). Thus we need
to consider algorithms that can update their decisions efficiently. Another question
could be about the acceptable level of performance that should be achieved in order to
have a successful interaction. This will give good guidance for the development of new

6.3. FUTURE DIRECTIONS 158

algorithms.

Bottom line is, it is important to know what we want first, and what is the
limitation that we have, otherwise, the development can be easily misguided. It is
important that when we do machine learning, we do machine learning that actually
matters (Wagstaff, 2012).

6.3.4 Experimental protocol

The experiment of transfer learning in chapter 5, in my opinion, is quite complex, with too
moving parts. A good portion of the time I spent on this experiment was on developing
the protocol of the experiment, and I am still not feel fully satisfied about it. For
example:

• The choice of the number of repetitions in case of IRONOFF (5 repetitions) was
based on the numbers in (Lathuiliére et al., 2019), but there is not good motivation
for this number. Performing an in-depth analysis into this matter is possible –
I believe –, but would have consumed so much time and resources beyond our
capacity. The choice of 30 repetitions in case of QuickDraw! is also arbitrary;
it is high enough to avoid any statistical problem, but maybe a lower number is
possible.

• I did not study the role of the random seed in the performance of the networks.
This is an issue in case of reinforcement learning – it is important to test for
different random seeds –. I am not aware of something similar for the kind of
generative models used in my thesis, but that does not mean such an effect should
be ruled out.

• I used a weighted random generation policy during the PhD. It is simple and quite
effective. However, during such an experiment, there is a question on how to take
it into account: should I consider performing a statistical measure on different
generation runs? should I take the best of a number of generations?
A similar problem goes for the weights of the neural network. I repeated the
training N times. Should I report the generation over those N times, or only for
the best set of weights of those N times? In my thesis, I chose the best generation
output on the best set of weights, under the assumption that performing such
a statistical analysis will just focus on the generation policy and the weights
initialization policy, which are things out of the scope of my concern. I can assume
that over time, better generation and initialization policies will exist. But this is
argument though could be flawed.

• There is an argument about the necessity of performing hyper-parameters search
for each step of the experiment – the source, target and transfer parts –. In

159 CHAPTER 6. PRESPECTIVE AND FUTURE WORK

IRONOFF, I performed this in all the parts of the experiments. In QuickDraw!
however, due to the need for more repetitions, a choice had to be made – we can
not computationally afford all of this –. I fixed the hyper-parameters in all parts
of the experiment, and focused on the repetitions only.
There are two arguments here for each correct protocol: my argument is that
machine learning is a search problem, thus, in order to claim that one approach
is better than the other – transfer learning is better than the baseline models in
that case –, a search process is needed for both of them. The data quantity is also
not the same for both approaches, thus, a particular choice of hyper-parameters
could have a large effect for one approach, and small for another approach. The
other side of the argument is that, to assess something like transfer learning, we
need to test them both on the same hyper-parameters, thus, we can know what is
the actual advantage of one approach over the other. I am more inclined towards
my arguments, as I believe it fits within the core of machine learning paradigm.
However, probably there is a point in between where the both arguments meet.
Worst case scenario in my opinion is that the second argument leads to a limited
test about transfer learning. Revisiting and rethinking this process is essential.

Testing for all these issues is simply not feasible in my case, but I do genuinely
believe that building a solid protocol is essential in order to have solid conclusions.

6.4 Summary

In this chapter, I explained some of the major challenges of my thesis. Finding the right
balance between the angle of attack, the methodology to be used – and the constraints
that come with it – and what needs to be done, is the key to have a feasible thesis.
After all, resources – mainly time – are limited, thus the need to visit this balance. It
will never works well from the first time; evaluation and adaptation are needed every
now and then. I discussed also my personal intake on how to think when using deep
learning, in terms of hardware, software framework and different trade-offs.

I then moved on to discuss two limitations of our work. The way that we explore
styles in the latent space at the moment has shown interesting information, but it is
simply inadequate on the long run. We also identified that, despite using a conditioned-
autoencoder, the encoder is still trying to learn information about the condition. I expect
that a better separation between the style and the task content/identity will lead to
better transfer results, thus, more work is needed to investigate the reasons behind
this leak.

Last, I proposed three directions to go from here, which I believe are important.
Structuring the latent space in order to allow information about styles to emerge is a

6.4. SUMMARY 160

very interesting direction: it will make it more easier to interpret the styles in the data,
and can have the potential to be used as control knobs in order to synthesize new data
with the desired characteristics. Data efficiency is another direction, where algorithms
are developed in order to take into account the data that we can actually acquire. It is
also time to move from the numerical world (where my work resides) into the physical
world, to better understand what these numbers actually mean in reality, what is the
differences that matter in the different metrics, and what is the minimum thresholds
in each of those metrics needed in order to achieve a satisfying performance. Finally,
I discussed the importance of the experimental protocol, especially with a complex
experiment like the transfer learning one, and the need have clear objectives, proper
statistical tests and alignment with the paradigm of machine learning.

Chapter 7

Closing Remarks

Contents
7.1 At the beginning... 161
7.2 What did we do? . 162

Here we arrive to the end of the journey. I would like to take the space here
to summarize what were the objective of my thesis and the motivation behind those
objectives, what was achieved during this thesis.

7.1 At the beginning...

We started with a hypothesis that, any task human do consists of two parts: a con-
tent/identity (the core of the task) and the style (the manner the task is performed). My
thesis represents our interest in studying styles, in the framework of machine learn-
ing. The reason for using machine learning is that data are becoming more complex,
and applying traditional tools on it directly is no longer effective. Machine learning
provide a tool for scientific research in order to explore large amounts of data; as an
inquiry to see if particular information exists (as in classification), or in summarizing
and compressing the data into suitable manifold, that we can perform analysis on.

Dealing with styles is a problem that emerges in many areas, most relevant
to us, in case of human-robot interaction. Applying machine learning algorithms in a
naive way directly on the data in order to learn models of human behavior leads to
an averaging phenomena, where the specific style of the humans are averaged and
removed. Thus, we need to find a way to extract those styles, and enable the machine
learning algorithm to take into account while building models of interaction. Taking

161

7.2. WHAT DID WE DO? 162

the style of each human partner into account during the interaction is important in
order for the human to have a better experience, thus allowing some level of trust and
confidence to emerge during the interaction.

The problem of styles is ill-defined, and poses a lot of challenges in the way
we can approach it. It is not clear how to think about the problem, what framework to
use, what suitable metrics to evaluate the styles, and to what benchmarks we should
compare different methods. Some think about styles in an explicit way – some particular
aspects exist – and some think about it in an implicit way – generating behaviors and
comparing them to the desired behaviors –. Besides, we do not have suitable data in
the area of human-robot interaction in order to performs such study. Building this data
set from scratch would have been very expensive.

In order to have a more controlled environment, where we can study styles, we
focused our attention on another problem, that we believe has relevant characteristics
to our original objective: online handwriting and sketch drawing. There are several
advantages of working on such domain, like the availability of large quantities of anno-
tated data, and the task content/identity is well defined. This allowed us to focus on
the problem of developing proper methods to study styles.

We were curious about the idea of styles in different tasks: how can we study
them? is it possible to extract them? and if so, are they transferable between different
tasks? Transferability of styles between task is an immensely useful idea; it can save
us a lot of work in terms of collecting and annotating new data. Plus, it can allow us
to better understand the common styles and aspects between different tasks.

7.2 What did we do?

The first step is to break these general objectives into smaller ones, address these small
objectives, and then combine them to realize the original general objectives. For the
case of studying styles, we did not have any evaluation metrics, benchmark to compare
to, framework to reason about styles. All these points are entangled together; tackling
one of them will affects the others.

We first decided to use an implicit way to look at styles, by generating behav-
iors and evaluating them. Thus, given the plenty of data available, we went for deep
generative models framework. We proposed evaluation metrics, but they need to be
grounded – even if they look logical –, so we proposed multiple benchmarks, that we
know beforehand their relative power, and used this knowledge in order to ground the
proposed metrics. See chapter 3 for more details.

Once the basis were laid, it was time to study styles. We used a conditioned-

163 CHAPTER 7. CLOSING REMARKS

autoencoder to study styles. The condition was on the task identity/content, thus
letting the autoencoder focus on learning relevant style information. We analyzed the
latent space, and showed some examples of the extracted styles – some of them we
were not aware of their existence before –. See chapter 4 for more details.

Once we successfully extracted styles, we had a strong interest in transferring
those styles between different tasks. This is especially important when collecting and
annotating data is expensive (like in case of human-robot interaction). We capitalized
on the success of the conditioned-autoencoder framework we used, by reusing the
relevant part (the encoder/style extractor) in one new task. We expanded and refined
the the evaluation metrics we use, and we added another data set, and performed
extensive statistical tests to investigate our methods. We showed the validity and the
potential of our approach. See chapter 5 for more details.

Finally, I presented what I believe as the take-away message from my per-
sonal experience during this PhD. I discussed the challenges faced (from choosing the
choice of the research point. diversity of the literature, the lack of benchmark and
performance metrics and the proper usage of deep learning), and the shortcomings of
my work (the need for better/more specialized methods to explore the latent space
and extract styles, and the leak of information about the task identity/content in the
style extraction module), and what I think is the potential directions to investigate (the
proper structuring of the latent space, the data efficiency aspect, and better realization
and understanding for the physical implication of the evaluation metrics we used). See
chapter 6 for more details.

7.2. WHAT DID WE DO? 164

Part IV

Appendices and Resources

165

Appendix A

Hyper-parameter tuning

Machine learning in its core is a search in the hypothesis space of a particular al-
gorithm, in order to find the suitable parameters/hyper-parameters that best fit the
data, while adhering the rules of statistical learning theory (Hastie et al., 2001). For
parameters tuning in neural networks (i.e., learning the weights of the networks), back-
propagation (Rumelhart et al., 1988) is one of the well established algorithms most
commonly used1.

Yet, when it comes to hyper-parameters, it is not that obvious2. There is two
main strategies for finding hyper-parameters3:

• Manual search: for people with small computational budget. The idea is to get
some sense of how the model behave, have educated guess overtime on the be-
havior of the different hyper-parameters, change them in a local manner.

• Using a search strategy: in order to better cover the possible hyper-parameters by
using a heuristic to perform the search, and one of the dominant search strategies
in deep learning is a random search Bergstra and Bengio (2012). It is important
though to have a suitable range for the hyper-parameters, otherwise, a lot of
computational resources can be wasted. During my thesis, I used the random
search strategy.
In a more aggressive kind of search, the search for hyper-parameters start from
coarse and converge to fine type of search, in order to find the best possible set
of hyper-parameters. I did not adapt such a strategy, just the coarse search.

1Several other algorithms do exist, like evolutionary algorithms (Eiben et al., 2003) – which recently
are achieving remarkable results –.

2By not obvious, I am politely meaning it was an utter suffering!
3As wonderfully explained by ’Andrew Ng’ in his Deep Learning Specialization in Coursera platform,

https://www.coursera.org/specializations/deep-learning

167

https://www.coursera.org/specializations/deep-learning

168

Intensive methods to search for hyper-parameters, like grid-search, are not feasi-
ble with computationally demanding methods like deep learning.

The range of the hyper-parameters differs, for example, the learning rate of
the optimizer is recommended to be on log-scale. For width of layer, I performed quick
exploration on what are the upper and lower limits that makes sense (in my case, 64
and 256 served as the limits). For the number of layers, it was between 1 and 3. I
search for the learning rate was done alone first, and then fixed for the rest of the
experiments, to reduce the search time from one side.

Another point is when to stop the training of a particular set of hyper-parameters,
and move on to the other sets. To completely converge, the network can take a lot of
time (and many epochs). I used a very conservative approach, of using the validation
set to determine the stopping point (early stopping), and putting a threshold on the
max number of epochs. Probably a better (and faster) solution exist, but to the best of
my knowledge, I could not find such a solution.

Appendix B

List of publications

This is a list of publications done during this PhD

B.1 International Conferences

• O.Mohammed, G.Bailly, D.Pellier. Style transfer and extraction for the handwrit-
ten letters using deep learning. 2019 ICAART (International Conference on Agents
and Artificial Intelligence), Prague, Czech Republic.

• O.Mohammed, G.Bailly, D.Pellier. Handwriting styles: benchmarks and evalua-
tion metrics. Fifth International Conference on Social Networks Analysis, Man-
agement and Security (SNAMS), 2018. Valencia, Spain.

• Gerazov, B., G. Bailly, O. Mohammed and Y. Xu (2018), Embedding Context-
Dependent Variations of Prosodic Contours using Variational Encoding for De-
composing the Structure of Speech Prosody, 2018 Workshop on Prosody and
Meaning: Information Structure and Beyond, Aix-en-Provence, France

• Marielle MALFANTE, Omar MOHAMMED, Cédric GERVAISE, Mauro DALLA MURA,
Jérôme I. MARS, Use of deep features for the automatic classification of fish
sounds, 2018 OCEANS - MTS/IEEE Kobe Techno-Ocean

• Omar Mohammed, Gerard Bailly, Damien Pellier, Acquiring Human-Robot Interac-
tion skills with Transfer Learning Techniques, HRI ’17 Proceedings of the Compan-
ion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction

169

B.2. JOURNAL ARTICLES 170

B.2 Journal articles

B. Gerazov, G. Bailly, O. Mohammed, Y. Xu and P. Garner, A Variational Prosody Model
for the decomposition and synthesis of speech prosody, to be submitted.

B.3 Infomal communication

• RHUM Workshop, presentation, 2017

• RHUM Workshop, poster, 2018

• FADEX sur l’AI, presentation, 2018

• RHUM Workshop, presentation, 2019

• JDD of DPC, presentation, 2019

Appendix C

Adversarial evaluation

In this part, I mention an experiment I performed, in order to investigate the problem of
using an oracle to evaluate the generator, and use the quality assessment of the oracle
as a feedback to the generator, in order to improve it. I will first describe what is the
problem, then explain the hypothesis, and then show the experiments performed, and
the lessons learned.

A similar work was done in (Nguyen et al., 2015) 1 and heavily inspired by the
work done in (Papernot, 2017). I would like to thank Ludovic Darmet for the valuable
discussions and resources about this topic.

C.1 What is the problem?2

Given a data distribution that separates points into two classes (as in figure C.1), and
given some examples from that distribution (the sampled data points), the objective is
to estimate this decision boundary given the sampled data points, figure C.2. Using
test data in order to estimate the errors of the model estimation does not always reveal
the problem or the boundaries that the model actually learned, figure C.3.

This is where adversarial examples comes in. Adversarial examples exploit the
fact that that the there is a difference between the ground truth decision boundary and
the model approximated decision boundary. The model is blind about what the reality
looks like, thus, it can be exploited by some fake examples, in order to generate improper
classification, figure C.4. The problem gets worse when we increase dimensionality of
the problem – curse of dimensionality –.

1I was not aware of that work beforehand. The paper is neatly explained though.
2The images in this section are taken from (Papernot, 2017).

171

C.1. WHAT IS THE PROBLEM? 172

Figure C.1: The ground truth decision boundary that separates data into two classes.
This decision boundary is unknown in advance. The objective of machine learning is to
estimate/approximate/learn this decision boundary.

Figure C.2: The machine learning model estimate the decisions boundary based on the
given examples. The estimation is not perfect, and not necessarily matches the ground
truth boundary.

173 APPENDIX C. ADVERSARIAL EVALUATION

Figure C.3: Using the test data, sometimes we do not get a sense for the limitations
of the model approximation. Even when the model shows errors, it is not possible to
estimate the boundaries of the model approximation from this information.

Figure C.4: Adversarial examples exploit the fact that the model only approximates the
ground truth decision boundary, thus, there is a gap between them. Using this gap can
easily misguide the model and lead to misclassification.

C.2. HOW TO TEST THIS? 174

C.2 How to test this?

C.2.1 Experimental setup

I designed an experiment in order to see how this actually works. I build a variety of
classifier models (oracles) – in order study the phenomena across multiple algorithms
– on the MNIST dataset (LeCun and Cortes, 2010), figure C.5, and then build an image
generator that is optimized on the outcome of each classifier (on the softmax outcome
of the classifier3). The optimizer is an genetic algorithm (Eiben et al., 2003). The
experiment setup is shown in figure C.6.

Different algorithms had been tested, starting from logistic regression, kNN4(5
neighbors), neural networks (1 hidden layer, 5 neurons).

Figure C.5: MNIST is a popular offline handwriting dataset for digits from 0-9. 70K
examples are available, 60K for training/validation and 10K for testing. The images
size is 64x64.

C.2.2 Models performance on the classification task

I report the accuracy performance of these classifiers on the training and test data in
table 1. It can be seen that the models seems to perform quite well on the task, thus,
these models seem as good candidates to be oracles in order to train a generator.

3The classifier outcome is the highest value of the softmax for one of the outcomes. Thus, the objective
of the generator is to generate an image that maximize the softmax value for the desired decision.

4In this case, I reduced the images size from 64x64 to 8x8, in order to reduce the computational time
and memory needed.

175 APPENDIX C. ADVERSARIAL EVALUATION

Figure C.6: The setup of the experiment to understand the effect of using an oracle as
the guidance for training a generator. The oracles were trained on MNIST dataset in
order to classify the digits, and the generator is optimized based on what the oracle
output. The generator objective is to generate images for different digits.

Classifier Train Test
Logistic Regression 92.7 92
kNN 99 96.1
Neural networks 98.57 97.1

Table 1: The accuracy of the different classifiers used. The models perform well on the
MNIST data. All the models have a satisfying performance.

C.2. HOW TO TEST THIS? 176

C.2.3 Using the oracles to train the generator

Now that the potential oracles are trained, I started using them to train generators. The
objective is to generate an image that maximizes the relevant likelihood of the required
digit in the oracle model (i.e., maximize the probability of this digits in the oracle).
The results are in figure ??. We can see that all the oracles had been fooled quite
easily by the generator. The oracles are show absolute confidence about the content
of the images from the generator, while those images have no meaningful content or
any resemblance to the ground truth digits. This here shows my original point, that
the numbers from the oracle do not represent a trustworthy feedback in order to train
a generator.

C.2.4 Diving into KNN

Given the previous results, I was curious if something can be done to avoid these results.
I started to look at the KNN algorithm, since it is more easier to interpret. I analyzed
the average distance of the test set and the adversarial examples to the training set.
The results are shown in figure C.8. The adversarial examples have a much higher
distance to the training data than the test data.

To understand what is happening, let’s discuss it on case of only 2 categories,
see figure C.9. What the generator is doing is that it tries to place the adversarial
examples far from the relative examples. KNN classifies examples based on the nearest
neighbors, aside from the distance. Thus, it is easily fooled.

I tried to see if we can mitigate this point, by using this information to develop
a new generator, with an optimization objective of both maximizing the confidence of
the KNN likelihood, while in the same time adding a penalty on the distance to the
relevant training data. The results are shown in figure C.10. We can see that we start
to have more clear numbers. Except for digit 1, the other images are comprehensible
and correct. However, repeating this experiment multiple times did not reveal changes
in the generated images (see figure C.11). What I conclude is that the resulting images
are reflecting the average/mean of the different images in for the required digits, thus,
no diverse set of images for each digit are generated. What we would like to have in a
generator training is to capture the data distribution, and not just zoom in on the mean
value.

177 APPENDIX C. ADVERSARIAL EVALUATION

1 Logistic Regression

2 Multi-layer Perceptron

3 KNN

Figure C.7: Results of using different oracles in order to train a generator. Each
generated image has the target digit and the final oracle confidence about it. Logistic
regression, MLP and KNN were fooled very easily, with absolute confidence about the
meaning of the different images.

C.2. HOW TO TEST THIS? 178

Figure C.8: KNN analysis: comparing the difference in the distance between the test
data and the adversarial examples relative to the training data. We can see that the
adversarial examples have a much higher distance than the test data.

179 APPENDIX C. ADVERSARIAL EVALUATION

Figure C.9: How adversarial examples are developed to fool KNN: the generator simply
tries to put the malicious examples as far as possible from the clusters. In the same
time, the KNN algorithm just classifies examples based on the nearest neighbors, aside
from the distance.

C.3. WHAT IS THE LESSON LEARNED? 180

Figure C.10: KNN results after modifying the optimization objective: instead of only
maximize the likelihood of the intended digit, I also added a penalty on the distance to
the training data. The images are more relevant and comprehensible in this case.

C.3 What is the lesson learned?

Even if the model (oracle) is doing extremely well on the ground-truth distribution, it is
should not be used naively as a replacement for the ground truth, in order to evaluate
other models (like a generator). The generator can easily learn how to deceives the
oracle in order to maximize the final performance numbers, without any consideration
for what these numbers implies. I believe that this is an interesting direction in research
though, with a lot of potential, by developing some safeguards to protect the model from
being deceived, reporting the model confidence about the current input, or having some
estimation for the model error once we change the distribution.

181 APPENDIX C. ADVERSARIAL EVALUATION

Figure C.11: Illustration for the performance of KNN after having the modified objective
function (the likelihood of the oracle and the distance to the training data). While the
results are quite good, the resulting images are reflecting the average/mean of the
different images in for the required digits, thus, no diverse set of images for each digit
are generated.

C.3. WHAT IS THE LESSON LEARNED? 182

Bibliography

Nayyer Aafaq, Ajmal Mian, Wei Liu, Syed Zulqarnain Gilani, and Mubarak Shah. Video
description: a survey of methods, datasets and evaluation metrics. arXiv preprint
arXiv:1806.00186, 2018.

Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian
Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Joze-
fowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat
Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens,
Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vi-
jay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg,
Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine
learning on heterogeneous systems, 2015. URL https://www.tensorflow.org/.
Software available from tensorflow.org.

Jinwon An and Sungzoon Cho. Variational autoencoder based anomaly detection using
reconstruction probability. 2015.

Gérard Bailly, Stephan Raidt, and Frédéric Elisei. Gaze, conversational agents and
face-to-face communication. Speech Communication, 52(6):598–612, 2010.

Gérard Bailly, Alaeddine Mihoub, Christian Wolf, and Frédéric Elisei. Gaze and face-to-
face interaction. In Geert Brône & Bert Oben, editor, Eye-tracking in Interaction.
Studies on the role of eye gaze indialogue, pages 139 – 168. Benjamins, 2018. doi:
10.1075/ais.10.07bai. URL https://hal.archives-ouvertes.fr/hal-01939223.

Aharon Ben-Tal and Arkadi Nemirovski. Lectures on modern convex optimization: anal-
ysis, algorithms, and engineering applications, volume 2. Siam, 2001.

James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization.
Journal of Machine Learning Research, 13(Feb):281–305, 2012.

Christopher M Bishop. Mixture density networks. Technical Report. Aston University,
Birmingham, 1994.

183

https://www.tensorflow.org/
https://hal.archives-ouvertes.fr/hal-01939223

BIBLIOGRAPHY 184

John Blitzer, Ryan McDonald, and Fernando Pereira. Domain adaptation with structural
correspondence learning. In Proceedings of the 2006 conference on empirical meth-
ods in natural language processing, pages 120–128. Association for Computational
Linguistics, 2006.

Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university
press, 2004.

Bo Chang, Qiong Zhang, Shenyi Pan, and Lili Meng. Generating handwritten chinese
characters using cyclegan. CoRR, abs/1801.08624, 2018. URL http://arxiv.org/
abs/1801.08624.

Rita Chattopadhyay, Qian Sun, Wei Fan, Ian Davidson, Sethuraman Panchanathan, and
Jieping Ye. Multisource domain adaptation and its application to early detection
of fatigue. ACM Transactions on Knowledge Discovery from Data (TKDD), 6(4):18,
2012.

K. Chatzilygeroudis, A. Vassiliades, F. Stulp, S. Calinon, and J.-B. Mouret. A survey
on policy search algorithms for learning robot controllers in a handful of trials.
arXiv:1807.02303, pages 1–19, 2018.

Kyunghyun Cho. Boltzmann machines and denoising autoencoders for image denoising.
arXiv preprint arXiv:1301.3468, 2013a.

Kyunghyun Cho. Simple sparsification improves sparse denoising autoencoders in de-
noising highly corrupted images. In International Conference on Machine Learning,
pages 432–440, 2013b.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representa-
tions using rnn encoder-decoder for statistical machine translation. arXiv preprint
arXiv:1406.1078, 2014.

François Chollet et al. Keras. https://keras.io, 2015.

Francois Chollet. Deep Learning with Python. Manning Publications, 2017. https:
//www.manning.com/books/deep-learning-with-python.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical
evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint
arXiv:1412.3555, 2014.

Nikhil Churamani, Paul Anton, Marc Brügger, Erik Fließwasser, Thomas Hummel, Julius
Mayer, Waleed Mustafa, Hwei Geok Ng, Thi Linh Chi Nguyen, Quan Nguyen, et al.
The impact of personalisation on human-robot interaction in learning scenarios.
In Proceedings of the 5th International Conference on Human Agent Interaction,
pages 171–180. ACM, 2017.

http://arxiv.org/abs/1801.08624
http://arxiv.org/abs/1801.08624
https://keras.io
https://www.manning.com/books/deep-learning-with-python
https://www.manning.com/books/deep-learning-with-python

185 BIBLIOGRAPHY

Antoine Cully, Jeff Clune, Danesh Tarapore, and Jean-Baptiste Mouret. Robots that can
adapt like animals. Nature, 521(7553):503, 2015.

Christopher De Sa. Non-convex optimization. 2017.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale
Hierarchical Image Database. In CVPR09, 2009.

Misha Denil, Loris Bazzani, Hugo Larochelle, and Nando de Freitas. Learning where
to attend with deep architectures for image tracking. Neural computation, 24(8):
2151–2184, 2012.

Michael Denkowski and Alon Lavie. Meteor universal: Language specific translation
evaluation for any target language. In Proceedings of the EACL 2014 Workshop
on Statistical Machine Translation, 2014.

Moises Diaz, Miguel A Ferrer, Antonio Parziale, and Angelo Marcelli. Recovering west-
ern on-line signatures from image-based specimens. In 2017 14th IAPR Interna-
tional Conference on Document Analysis and Recognition (ICDAR), volume 1, pages
1204–1209. IEEE, 2017.

Dominik Dörr, David Grabengiesser, and Frank Gauterin. Online driving style recogni-
tion using fuzzy logic. In 17th International IEEE Conference on Intelligent Trans-
portation Systems (ITSC), pages 1021–1026. IEEE, 2014.

Agoston E Eiben, James E Smith, et al. Introduction to evolutionary computing, vol-
ume 53. Springer, 2003.

Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew
Zisserman. The pascal visual object classes (voc) challenge. International journal
of computer vision, 88(2):303–338, 2010.

Itzhak Fogel and Dov Sagi. Gabor filters as texture discriminator. Biological cybernetics,
61(2):103–113, 1989.

Herbert Freeman. On the encoding of arbitrary geometric configurations. IRE Transac-
tions on Electronic Computers, 2:260–268, 1961.

Peggy E Gallaher. Individual differences in nonverbal behavior: Dimensions of style.
Journal of personality and social psychology, 63(1):133, 1992.

Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge. Texture synthesis and the
controlled generation of natural stimuli using convolutional neural networks. CoRR,
abs/1505.07376, 2015. URL http://arxiv.org/abs/1505.07376.

Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N Dauphin. Con-
volutional sequence to sequence learning. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pages 1243–1252. JMLR. org, 2017.

http://arxiv.org/abs/1505.07376

BIBLIOGRAPHY 186

Aurélien Géron. Hands-on machine learning with Scikit-Learn and TensorFlow: con-
cepts, tools, and techniques to build intelligent systems. " O’Reilly Media, Inc.",
2017.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Domain adaptation for large-scale
sentiment classification: A deep learning approach. In Proceedings of the 28th
International Conference on Machine Learning (ICML-11), pages 513–520, 2011.

Lovedeep Gondara. Medical image denoising using convolutional denoising autoen-
coders. In 2016 IEEE 16th International Conference on Data Mining Workshops
(ICDMW), pages 241–246. IEEE, 2016.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sher-
jil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In
Advances in neural information processing systems, pages 2672–2680, 2014.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

Google. The quick, draw! dataset, 2017. URL https://github.com/
googlecreativelab/quickdraw-dataset#the-raw-moderated-dataset.

Alex Graves. Generating sequences with recurrent neural networks. arXiv preprint
arXiv:1308.0850, 2013.

David Ha. Mixture density networks with tensorflow. blog.otoro.net, 2015. URL http:
//blog.otoro.net/2015/11/24/mixture-density-networks-with-tensorflow/.

David Ha and Douglas Eck. A neural representation of sketch drawings. arXiv preprint
arXiv:1704.03477, 2017.

David Ha and Jürgen Schmidhuber. World models. arXiv preprint arXiv:1803.10122,
2018.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical
Learning. Springer Series in Statistics. Springer New York Inc., New York, NY,
USA, 2001.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 770–778, 2016.

Fritz Heider and Marianne Simmel. An experimental study of apparent behavior. The
American journal of psychology, 57(2):243–259, 1944.

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew
Botvinick, Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic
visual concepts with a constrained variational framework. ICLR, 2(5):6, 2017.

http://www.deeplearningbook.org
https://github.com/googlecreativelab/quickdraw-dataset#the-raw-moderated-dataset
https://github.com/googlecreativelab/quickdraw-dataset#the-raw-moderated-dataset
http://blog.otoro.net/2015/11/24/mixture-density-networks-with-tensorflow/
http://blog.otoro.net/2015/11/24/mixture-density-networks-with-tensorflow/

187 BIBLIOGRAPHY

Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. Neural networks for machine
learning lecture 6a overview of mini-batch gradient descent. 2012.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural
network. arXiv preprint arXiv:1503.02531, 2015.

Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data
with neural networks. science, 313(5786):504–507, 2006.

Wei-Ning Hsu, Yu Zhang, Ron J Weiss, Heiga Zen, Yonghui Wu, Yuxuan Wang, Yuan
Cao, Ye Jia, Zhifeng Chen, Jonathan Shen, et al. Hierarchical generative modeling
for controllable speech synthesis. arXiv preprint arXiv:1810.07217, 2018.

Aapo Hyvärinen and Erkki Oja. Independent component analysis: algorithms and ap-
plications. Neural networks, 13(4-5):411–430, 2000.

Anchit Jain. Improve your model accuracy by transfer learning. URL https://medium.
com/data-science-101/transfer-learning-57ce3b98650. 2018-07-09.

Anil K Jain and Farshid Farrokhnia. Unsupervised texture segmentation using gabor
filters. Pattern recognition, 24(12):1167–1186, 1991.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-
softmax. arXiv preprint arXiv:1611.01144, 2016.

Derick A Johnson and Mohan M Trivedi. Driving style recognition using a smartphone
as a sensor platform. In 2011 14th International IEEE Conference on Intelligent
Transportation Systems (ITSC), pages 1609–1615. IEEE, 2011.

Ian Jolliffe. Principal component analysis. In International encyclopedia of statistical
science, pages 1094–1096. Springer, 2011.

Takashi Kawashima Jongmin Kim Nick Fox-Gieg with friends at Google Creative Lab
Jonas Jongejan, Henry Rowley and Data Arts Team. The quick, draw! game, 2017.
URL https://quickdraw.withgoogle.com/.

Andrej Karpathy and Li Fei-Fei. Deep visual-semantic alignments for generating image
descriptions. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 3128–3137, 2015.

Shir Kashi and Shelly Levy-Tzedek. Smooth leader or sharp follower? playing the
mirror game with a robot. Restorative neurology and neuroscience, 36(2):147–159,
2018.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

https://medium.com/data-science-101/transfer-learning-57ce3b98650
https://medium.com/data-science-101/transfer-learning-57ce3b98650
https://quickdraw.withgoogle.com/

BIBLIOGRAPHY 188

Dietrich Klakow and Jochen Peters. Testing the correlation of word error rate and
perplexity. Speech Communication, 38(1-2):19–28, 2002.

George Konidaris, Scott Kuindersma, Roderic Grupen, and Andrew Barto. Robot learn-
ing from demonstration by constructing skill trees. The International Journal of
Robotics Research, 31(3):360–375, 2012a.

George Konidaris, Ilya Scheidwasser, and Andrew G. Barto. Transfer in reinforcement
learning via shared features. J. Mach. Learn. Res., 13:1333–1371, May 2012b. ISSN
1532-4435. URL http://dl.acm.org/citation.cfm?id=2188385.2343689.

Simeon Kostadinov. How recurrent neural networks
work, 2017. URL https://towardsdatascience.com/
learn-how-recurrent-neural-networks-work-84e975feaaf7.

Klaus Krippendorff. Computing krippendorff’s alpha-reliability. 2011.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in neural information processing
systems, pages 1097–1105, 2012.

Hugo Larochelle and Geoffrey E Hinton. Learning to combine foveal
glimpses with a third-order boltzmann machine. In J. D. Lafferty, C. K. I.
Williams, J. Shawe-Taylor, R. S. Zemel, and A. Culotta, editors, Ad-
vances in Neural Information Processing Systems 23, pages 1243–1251.
Curran Associates, Inc., 2010. URL http://papers.nips.cc/paper/
4089-learning-to-combine-foveal-glimpses-with-a-third-order-boltzmann-machine.
pdf.

S. Lathuiliére, P. Mesejo, X. Alameda-Pineda, and R. Horaud. A comprehensive analysis
of deep regression. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, pages 1–1, 2019. ISSN 0162-8828. doi: 10.1109/TPAMI.2019.2910523.

Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010. URL
http://yann.lecun.com/exdb/mnist/.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):
436–444, 2015.

Shoushan Li and Chengqing Zong. Multi-domain adaptation for sentiment classification:
Using multiple classifier combining methods. In 2008 International Conference on
Natural Language Processing and Knowledge Engineering, pages 1–8. IEEE, 2008.

T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays, P. Perona, D. Ramanan,
C. L. Zitnick, and P. Dollár. Microsoft COCO: Common Objects in Context. ArXiv
e-prints, May 2014.

http://dl.acm.org/citation.cfm?id=2188385.2343689
https://towardsdatascience.com/learn-how-recurrent-neural-networks-work-84e975feaaf7
https://towardsdatascience.com/learn-how-recurrent-neural-networks-work-84e975feaaf7
http://papers.nips.cc/paper/4089-learning-to-combine-foveal-glimpses-with-a-third-order-boltzmann-machine.pdf
http://papers.nips.cc/paper/4089-learning-to-combine-foveal-glimpses-with-a-third-order-boltzmann-machine.pdf
http://papers.nips.cc/paper/4089-learning-to-combine-foveal-glimpses-with-a-third-order-boltzmann-machine.pdf
http://yann.lecun.com/exdb/mnist/

189 BIBLIOGRAPHY

Mingsheng Long, Jianmin Wang, Guiguang Ding, Jiaguang Sun, and Philip S Yu. Trans-
fer feature learning with joint distribution adaptation. In Proceedings of the IEEE
international conference on computer vision, pages 2200–2207, 2013.

David G Lowe et al. Object recognition from local scale-invariant features. 1999.

Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A con-
tinuous relaxation of discrete random variables. arXiv preprint arXiv:1611.00712,
2016.

Marielle Malfante. Automatic classification of natural signals for environmental moni-
toring. 2018.

Marielle Malfante, Mauro Dalla Mura, Jerome I Mars, and Cedric Gervaise. Automatic
fish sounds classification. The Journal of the Acoustical Society of America, 139(4):
2115–2116, 2016.

Marielle Malfante, Mauro Dalla Mura, Jean-Philippe Métaxian, Jerome I Mars, Orlando
Macedo, and Adolfo Inza. Machine learning for volcano-seismic signals: Challenges
and perspectives. IEEE Signal Processing Magazine, 35(2):20–30, 2018a.

Marielle Malfante, Omar Mohammed, Cedric Gervaise, Mauro Dalla Mura, and Jérôme I
Mars. Use of deep features for the automatic classification of fish sounds. In 2018
OCEANS-MTS/IEEE Kobe Techno-Oceans (OTO), pages 1–5. IEEE, 2018b.

Vincenzo Manzoni, Andrea Corti, Pietro De Luca, and Sergio M Savaresi. Driving style
estimation via inertial measurements. In 13th International IEEE Conference on
Intelligent Transportation Systems, pages 777–782. IEEE, 2010.

U-V Marti and Horst Bunke. A full english sentence database for off-line handwriting
recognition. In Document Analysis and Recognition, 1999. ICDAR’99. Proceedings
of the Fifth International Conference on, pages 705–708. IEEE, 1999.

Clara Marina Martinez, Mira Heucke, Fei-Yue Wang, Bo Gao, and Dongpu Cao. Driving
style recognition for intelligent vehicle control and advanced driver assistance: A
survey. IEEE Transactions on Intelligent Transportation Systems, 19(3):666–676,
2017.

Alaeddine Mihoub, Gérard Bailly, Christian Wolf, and Frédéric Elisei. Graphical models
for social behavior modeling in face-to face interaction. Pattern Recognition Letters,
74:82–89, 2016.

Niyas Mohammed. How to autoencode your pokémon. URL http:
//hackernoon.storage.googleapis.com/how-to-autoencode-your-pok%C3%
A9mon-6b0f5c7b7d97. 15-04-2017.

Omar Mohammed, Gerard Bailly, and Damien Pellier. Handwriting styles: benchmarks
and evaluation metrics. In 2018 Fifth International Conference on Social Networks
Analysis, Management and Security (SNAMS), pages 159–166. IEEE, 2018.

http://hackernoon.storage.googleapis.com/how-to-autoencode-your-pok%C3%A9mon-6b0f5c7b7d97
http://hackernoon.storage.googleapis.com/how-to-autoencode-your-pok%C3%A9mon-6b0f5c7b7d97
http://hackernoon.storage.googleapis.com/how-to-autoencode-your-pok%C3%A9mon-6b0f5c7b7d97

BIBLIOGRAPHY 190

Omar Mohammed., Gérard Bailly., and Damien Pellier. Transfer and extraction of
the style of handwritten letters using deep learning. In Proceedings of the
11th International Conference on Agents and Artificial Intelligence - Volume 2:
ICAART,, pages 677–684. INSTICC, SciTePress, 2019. ISBN 978-989-758-350-6.
doi: 10.5220/0007388606770684.

Christoph Molnar. Interpretable Machine Learning. 2019. https://christophm.github.
io/interpretable-ml-book/.

Michael C Mozer. A focused backpropagation algorithm for temporal. Backpropagation:
Theory, architectures, and applications, 137, 1995.

Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. The MIT Press, 2012.
ISBN 0262018020, 9780262018029.

Shreya Narang and Ms Divya Gupta. Speech feature extraction techniques: a review.
2015.

Jeremy Neubauer and Eric Wood. Accounting for the variation of driver aggression in
the simulation of conventional and advanced vehicles. Technical report, National
Renewable Energy Lab.(NREL), Golden, CO (United States), 2013.

Anh Nguyen, Jason Yosinski, and Jeff Clune. Deep neural networks are easily fooled:
High confidence predictions for unrecognizable images. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 427–436, 2015.

Duc Canh Nguyen, Gérard Bailly, and Frédéric Elisei. Pattern Recognition Letters
Learning Off-line vs. On-line Models of Interactive Multimodal Behaviors with
Recurrent Neural Networks. Pattern Recognition Letters, 100:29–36, December
2017. doi: 10.1016/j.patrec.2017.09.033. URL https://hal.archives-ouvertes.fr/
hal-01609535.

SynSIG Special Interest Group of ISCA (the International Speech Communication As-
sociation). Blizzard challenge 2019, 2019. URL https://www.synsig.org/index.
php/Blizzard_Challenge_2019.

Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex
Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. Wavenet: A
generative model for raw audio. arXiv preprint arXiv:1609.03499, 2016a.

Aaron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent neural
networks. arXiv preprint arXiv:1601.06759, 2016b.

Maxime Oquab, Leon Bottou, Ivan Laptev, and Josef Sivic. Learning and transferring mid-
level image representations using convolutional neural networks. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages 1717–1724,
2014.

https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/
https://hal.archives-ouvertes.fr/hal-01609535
https://hal.archives-ouvertes.fr/hal-01609535
https://www.synsig.org/index.php/Blizzard_Challenge_2019
https://www.synsig.org/index.php/Blizzard_Challenge_2019

191 BIBLIOGRAPHY

Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions on
knowledge and data engineering, 22(10):1345–1359, 2009.

Sinno Jialin Pan, Xiaochuan Ni, Jian-Tao Sun, Qiang Yang, and Zheng Chen. Cross-
domain sentiment classification via spectral feature alignment. In Proceedings of
the 19th international conference on World wide web, pages 751–760. ACM, 2010a.

Sinno Jialin Pan, Ivor W Tsang, James T Kwok, and Qiang Yang. Domain adaptation
via transfer component analysis. IEEE Transactions on Neural Networks, 22(2):
199–210, 2010b.

Nicolas Papernot. Security and privacy in machine learning. Tutorial at IEEE WIFS,
Rennes, France, 2017. URL https://project.inria.fr/wifs2017/files/2017/
12/WIFS_T2_Papernot.pdf.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for
automatic evaluation of machine translation. In Proceedings of the 40th annual
meeting on association for computational linguistics, pages 311–318. Association
for Computational Linguistics, 2002.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary
DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic
differentiation in PyTorch. In NIPS Autodiff Workshop, 2017.

Wei Ping, Kainan Peng, Andrew Gibiansky, Sercan O Arik, Ajay Kannan, Sharan
Narang, Jonathan Raiman, and John Miller. Deep voice 3: Scaling text-to-speech
with convolutional sequence learning. arXiv preprint arXiv:1710.07654, 2017.

Rajat Raina, Anand Madhavan, and Andrew Y Ng. Large-scale deep unsupervised
learning using graphics processors. In Proceedings of the 26th annual international
conference on machine learning, pages 873–880. ACM, 2009.

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli, and Wojciech Zaremba. Sequence
level training with recurrent neural networks. CoRR, abs/1511.06732, 2015. URL
http://arxiv.org/abs/1511.06732.

Manassés Ribeiro, André Eugênio Lazzaretti, and Heitor Silvério Lopes. A study of deep
convolutional auto-encoders for anomaly detection in videos. Pattern Recognition
Letters, 105:13–22, 2018.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of
mathematical statistics, pages 400–407, 1951.

A. J. Robinson and Frank Fallside. The utility driven dynamic error propagation net-
work. Technical Report CUED/F-INFENG/TR.1, Engineering Department, Cam-
bridge University, Cambridge, UK, 1987.

https://project.inria.fr/wifs2017/files/2017/12/WIFS_T2_Papernot.pdf
https://project.inria.fr/wifs2017/files/2017/12/WIFS_T2_Papernot.pdf
http://arxiv.org/abs/1511.06732

BIBLIOGRAPHY 192

David E Rumelhart, Geoffrey E Hinton, Ronald J Williams, et al. Learning representa-
tions by back-propagating errors. Cognitive modeling, 5(3):1, 1988.

Mayu Sakurada and Takehisa Yairi. Anomaly detection using autoencoders with non-
linear dimensionality reduction. In Proceedings of the MLSDA 2014 2nd Workshop
on Machine Learning for Sensory Data Analysis, page 4. ACM, 2014.

Ruslan Salakhutdinov and Geoffrey Hinton. Semantic hashing. International Journal of
Approximate Reasoning, 50(7):969–978, 2009.

Laurence Séraphin-Thibon, Silvain Gerber, and Sonia Kandel. Analyzing variability
in upper-case letter production in adults. In Spelling and Writing Words, pages
163–178. BRILL, 2019.

Hidetoshi Shimodaira. Improving predictive inference under covariate shift by weighting
the log-likelihood function. Journal of statistical planning and inference, 90(2):227–
244, 2000.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van
Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam,
Marc Lanctot, et al. Mastering the game of go with deep neural networks and tree
search. nature, 529(7587):484, 2016.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

R. J. Skerry-Ryan, Eric Battenberg, Ying Xiao, Yuxuan Wang, Daisy Stanton, Joel Shor,
Ron J. Weiss, Rob Clark, and Rif A. Saurous. Towards end-to-end prosody transfer
for expressive speech synthesis with tacotron. CoRR, abs/1803.09047, 2018. URL
http://arxiv.org/abs/1803.09047.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with
neural networks. In Proceedings of the 27th International Conference on Neural
Information Processing Systems - Volume 2, NIPS’14, pages 3104–3112, Cambridge,
MA, USA, 2014a. MIT Press. URL http://dl.acm.org/citation.cfm?id=2969033.
2969173.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with
neural networks. In Advances in neural information processing systems, pages
3104–3112, 2014b.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. 2018.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going
deeper with convolutions. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 1–9, 2015.

http://arxiv.org/abs/1803.09047
http://dl.acm.org/citation.cfm?id=2969033.2969173
http://dl.acm.org/citation.cfm?id=2969033.2969173

193 BIBLIOGRAPHY

Makoto Tachibana, Junichi Yamagishi, Koji Onishi, Takashi Masuko, and Takao
Kobayashi. Hmm-based speech synthesis with various speaking styles using model
interpolation. In Speech Prosody 2004, International Conference, 2004.

Chuanqi Tan, Fuchun Sun, Tao Kong, Wenchang Zhang, Chao Yang, and Chunfang Liu.
A survey on deep transfer learning. ArXiv, abs/1808.01974, 2018.

Matthew E Taylor and Peter Stone. Cross-domain transfer for reinforcement learning.
In Proceedings of the 24th international conference on Machine learning, pages
879–886. ACM, 2007.

Paul Taylor. Text-to-speech synthesis. Cambridge university press, 2009.

Kristinn R Thórisson. Natural turn-taking needs no manual: Computational theory and
model, from perception to action. In Multimodality in language and speech systems,
pages 173–207. Springer, 2002.

Aaron van den Oord, Oriol Vinyals, et al. Neural discrete representation learning. In
Advances in Neural Information Processing Systems, pages 6306–6315, 2017.

L.J.P. van der Maaten and G.E. Hinton. Visualizing high-dimensional data using t-sne.
2008.

C. Viard-Gaudin, P. M. Lallican, S. Knerr, and P. Binter. The ireste on/off (ironoff) dual
handwriting database. In Document Analysis and Recognition, 1999. ICDAR ’99.
Proceedings of the Fifth International Conference on, pages 455–458, Sep 1999.
doi: 10.1109/ICDAR.1999.791823.

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extract-
ing and composing robust features with denoising autoencoders. In Proceedings
of the 25th international conference on Machine learning, pages 1096–1103. ACM,
2008.

Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. Show and tell: A
neural image caption generator. CoRR, abs/1411.4555, 2014. URL http://arxiv.
org/abs/1411.4555.

Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. Show and tell:
A neural image caption generator. In Computer Vision and Pattern Recognition
(CVPR), 2015 IEEE Conference on, pages 3156–3164. IEEE, 2015.

Kiri Wagstaff. Machine learning that matters. arXiv preprint arXiv:1206.4656, 2012.

Wenfu Wang, Shuang Xu, and Bo Xu. Gating recurrent mixture density networks for
acoustic modeling in statistical parametric speech synthesis. In 2016 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
5520–5524. IEEE, 2016.

http://arxiv.org/abs/1411.4555
http://arxiv.org/abs/1411.4555

BIBLIOGRAPHY 194

Xin Wang, Shinji Takaki, and Junichi Yamagishi. An autoregressive recurrent mixture
density network for parametric speech synthesis. 2017 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP), pages 4895–4899,
2017a.

Yuxuan Wang, RJ Skerry-Ryan, Daisy Stanton, Yonghui Wu, Ron J Weiss, Navdeep
Jaitly, Zongheng Yang, Ying Xiao, Zhifeng Chen, Samy Bengio, et al. Tacotron:
Towards end-to-end speech synthesis. arXiv preprint arXiv:1703.10135, 2017b.

Yuxuan Wang, Daisy Stanton, Yu Zhang, RJ Skerry-Ryan, Eric Battenberg, Joel Shor,
Ying Xiao, Fei Ren, Ye Jia, and Rif A Saurous. Style tokens: Unsupervised style
modeling, control and transfer in end-to-end speech synthesis. arXiv preprint
arXiv:1803.09017, 2018.

Karl Weiss, Taghi M Khoshgoftaar, and DingDing Wang. A survey of transfer learning.
Journal of Big Data, 3(1):9, 2016.

Paul J Werbos. Generalization of backpropagation with application to a recurrent gas
market model. Neural networks, 1(4):339–356, 1988.

Ronald J. Williams and David Zipser. A learning algorithm for continually running fully
recurrent neural networks. Neural Comput., 1(2):270–280, June 1989. ISSN 0899-
7667. doi: 10.1162/neco.1989.1.2.270. URL http://dx.doi.org/10.1162/neco.1989.
1.2.270.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhut-
dinov, Richard Zemel, and Yoshua Bengio. Show, attend and tell: Neural image
caption generation with visual attention. arXiv preprint arXiv:1502.03044, 2015a.

Li Xu, Jie Hu, Hong Jiang, and Wuqiang Meng. Establishing style-oriented driver
models by imitating human driving behaviors. IEEE Transactions on Intelligent
Transportation Systems, 16(5):2522–2530, 2015b.

Yong Xu, Jun Du, Li-Rong Dai, and Chin-Hui Lee. Cross-language transfer learning
for deep neural network based speech enhancement. In The 9th International
Symposium on Chinese Spoken Language Processing, pages 336–340. IEEE, 2014.

Heiga Zen and Andrew Senior. Deep mixture density networks for acoustic modeling in
statistical parametric speech synthesis. In 2014 IEEE international conference on
acoustics, speech and signal processing (ICASSP), pages 3844–3848. IEEE, 2014.

http://dx.doi.org/10.1162/neco.1989.1.2.270
http://dx.doi.org/10.1162/neco.1989.1.2.270

	I Introduction and Problem Description
	Introduction
	What is a style?
	What is the objective of this project?
	Why Handwriting?
	What is transfer learning? and why do we need it?
	If we want to perform transfer learning, why extracting styles?
	Contributions of this PhD
	Thesis outlines

	Datasets
	Online Handwriting – IRONOFF
	Sketch Drawing – QuickDraw!
	General comments on QuickDraw! and IRONOFF

	Data representation
	Continuous or Discrete representation?
	Feature engineering: Direction and Speed
	QuickDraw! strokes preprocessing

	Summary

	II Experiments
	Generation, benchmarks and evaluation
	Background
	Sequential data
	Recurrent Neural Networks and Sequence Modeling
	Optimization Algorithms
	Inference: How to generate sequences from the network?
	How to introduce prior to the model? (conditioning the model)
	How to evaluate the quality of generation?

	Putting it all together
	Our proposed evaluation metrics
	How to ground the metrics?
	Proposed model
	Results
	Examples of the generated letters

	Summary

	Framework
	Background
	What is an auto-encoder?
	Sequence auto-encoder
	Conditioned auto-encoder

	Putting it all together
	Model architecture
	Letter generation with style preservation
	Style transfer
	Styles per letter

	Summary

	Style Extraction and Transfer
	Transfer learning
	Putting it all together
	IRONOFF
	QuickDraw!
	A word of caution about confusion matrix

	Are we actually capturing styles?
	Summary and take-away message

	III Perspectives and Closing Remarks
	Prespective and future work
	Challenges
	Choice of how to tackle the topic?
	Determine the scope of interest in the state-of-the art
	Lack of Benchmarks, evaluation metrics
	Deep learning: theory, hardware and software frameworks

	Limitations of the current work
	Style extraction and exploration using PCA and tSNE methods
	Leak in the style module

	Future directions
	Disentanglement of latent space to uncover styles
	Data efficiency
	Perceptual evaluation and system specification
	Experimental protocol

	Summary

	Closing Remarks
	At the beginning...
	What did we do?

	IV Appendices and Resources
	Hyper-parameter tuning
	List of publications
	International Conferences
	Journal articles
	Infomal communication

	Adversarial evaluation
	What is the problem?The images in this section are taken from advattackpresentation.
	How to test this?
	Experimental setup
	Models performance on the classification task
	Using the oracles to train the generator
	Diving into KNN

	What is the lesson learned?

