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Abstract

One substantial question, that is often argumentative in learning theory, is how to choose
a ‘good’ loss function that measures the fidelity of the reconstruction to the original.
Logarithmic loss is a natural distortion measure in the settings in which the reconstructions
are allowed to be ‘soft’, rather than ‘hard” or deterministic. In other words, rather than
just assigning a deterministic value to each sample of the source, the decoder also gives an
assessment of the degree of confidence or reliability on each estimate, in the form of weights
or probabilities. This measure has appreciable mathematical properties which establish
some important connections with lossy universal compression. Logarithmic loss is widely
used as a penalty criterion in various contexts, including clustering and classification,
pattern recognition, learning and prediction, and image processing. Considering the high
amount of research which is done recently in these fields, the logarithmic loss becomes a

very important metric and will be the main focus as a distortion metric in this thesis.

In this thesis, we investigate a distributed setup, so-called the Chief Executive Officer
(CEO) problem under logarithmic loss distortion measure. Specifically, K > 2 agents
observe independently corrupted noisy versions of a remote source, and communicate
independently with a decoder or CEO over rate-constrained noise-free links. The CEO also
has its own noisy observation of the source and wants to reconstruct the remote source to
within some prescribed distortion level where the incurred distortion is measured under

the logarithmic loss penalty criterion.

One of the main contributions of the thesis is the explicit characterization of the rate-
distortion region of the vector Gaussian CEO problem, in which the source, observations and
side information are jointly Gaussian. For the proof of this result, we first extend Courtade-
Weissman’s result on the rate-distortion region of the discrete memoryless (DM) K-encoder

CEO problem to the case in which the CEO has access to a correlated side information
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ABSTRACT

stream which is such that the agents’ observations are independent conditionally given
the side information and remote source. Next, we obtain an outer bound on the region of
the vector Gaussian CEO problem by evaluating the outer bound of the DM model by
means of a technique that relies on the de Bruijn identity and the properties of Fisher
information. The approach is similar to Ekrem-Ulukus outer bounding technique for the
vector Gaussian CEO problem under quadratic distortion measure, for which it was there
found generally non-tight; but it is shown here to yield a complete characterization of the
region for the case of logarithmic loss measure. Also, we show that Gaussian test channels
with time-sharing exhaust the Berger-Tung inner bound, which is optimal. Furthermore,
application of our results allows us to find the complete solutions of three related problems:
the quadratic vector Gaussian CEO problem with determinant constraint, the vector
Gaussian distributed hypothesis testing against conditional independence problem and
the vector Gaussian distributed Information Bottleneck problem.

With the known relevance of the logarithmic loss fidelity measure in the context
of learning and prediction, developing algorithms to compute the regions provided in
this thesis may find usefulness in a variety of applications where learning is performed
distributively. Motivated from this fact, we develop two type algorithms: i) Blahut-
Arimoto (BA) type iterative numerical algorithms for both discrete and Gaussian models
in which the joint distribution of the sources are known; and ii) a variational inference
type algorithm in which the encoding mappings are parameterized by neural networks
and the variational bound approximated by Monte Carlo sampling and optimized with
stochastic gradient descent for the case in which there is only a set of training data is
available. Finally, as an application, we develop an unsupervised generative clustering
framework that uses the variational Information Bottleneck (VIB) method and models the
latent space as a mixture of Gaussians. This generalizes the VIB which models the latent
space as an isotropic Gaussian which is generally not expressive enough for the purpose
of unsupervised clustering. We illustrate the efficiency of our algorithms through some

numerical examples.

Keywords: Multiterminal source coding, CEO problem, rate-distortion region, loga-
rithmic loss, quadratic loss, hypothesis testing, Information Bottleneck, Blahut-Arimoto

algorithm, distributed learning, classification, unsupervised clustering.
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Notation

Throughout the thesis, we use the following notation. Upper case letters are used to
denote random variables, e.g., X; lower case letters are used to denote realizations of
random variables, e.g., x; and calligraphic letters denote sets, e.g., X. The cardinality
of a set X' is denoted by |X|. The closure of a set A is denoted by A . The probability
distribution of the random variable X taking the realizations x over the set X is denoted
by Px(z) = Pr[X = z|; and, sometimes, for short, as p(z). We use P(X) to denote
the set of discrete probability distributions on X'. The length-n sequence (Xj, ..., X,)
is denoted as X™; and, for integers j and k such that 1 < k < j < n, the sub-sequence
(Xk, Xgt1, ..., X;) is denoted as X,z. We denote the set of natural numbers by N, and the
set of positive real numbers by R, . For an integer K > 1, we denote the set of natural
numbers smaller or equal K as K ={k € N : 1 <k < K}. For a set of natural numbers
S C K, the complementary set of S is denoted by S¢ ie., Sc={keN : ke £\ S}.
Sometimes, for convenience we use S defined as S = {0} US®. For a set of natural numbers
S C K; the notation Xg designates the set of random variables { X} with indices in the
set S, i.e., Xs = {Xj }res. Boldface upper case letters denote vectors or matrices, e.g., X,
where context should make the distinction clear. The notation X' stands for the conjugate
transpose of X for complex-valued X, and the transpose of X for real-valued X. We denote
the covariance of a zero mean, complex-valued, vector X by ¥, = E[XXT]. Similarly, we
denote the cross-correlation of two zero-mean vectors X and Y as ¥, , = E[XY'], and the
conditional correlation matrix of X given Y as 4, = E [(X — E[X|Y])(X — E[X|Y])],
Le., Tyy = Tyx — By X, ' Xy . For matrices A and B, the notation diag(A,B) denotes
the block diagonal matrix whose diagonal elements are the matrices A and B and its
off-diagonal elements are the all zero matrices. Also, for a set of integers J C N and

a family of matrices {A;},cs of the same size, the notation A s is used to denote the
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NOTATION

(super) matrix obtained by concatenating vertically the matrices {A;};c7, where the
indices are sorted in the ascending order, e.g, A2 = [AB,AE]T. We use N (u, X) to
denote a real multivariate Gaussian random variable with mean g and covariance matrix
3, and CN (s, X) to denote a circularly symmetric complex multivariate Gaussian random

variable with mean p and covariance matrix 3.
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Chapter 1

Introduction and Main

Contributions

The Chief Executive Officer (CEO) problem — also called as the indirect multiterminal
source coding problem — was first studied by Berger et al. in [2]. Consider the vector
Gaussian CEO problem shown in Figure 1.1. In this model, there is an arbitrary number
K > 2 of encoders (so-called agents) each having a noisy observation of a vector Gaussian
source X. The goal of the agents is to describe the source to a central unit (so-called
CEO), which wants to reconstruct this source to within a prescribed distortion level. The
incurred distortion is measured according to some loss measure d : X X X - R, where X

designates the reconstruction alphabet. For quadratic distortion measure, i.e.,
d(z,2) = |v — 2|?

the rate-distortion region of the vector Gaussian CEO problem is still unknown in general,
except in few special cases the most important of which is perhaps the case of scalar
sources, i.e., scalar Gaussian CEO problem, for which a complete solution, in terms of
characterization of the optimal rate-distortion region, was found independently by Oohama
in [3] and by Prabhakaran et al. in [4]. Key to establishing this result is a judicious
application of the entropy power inequality. The extension of this argument to the case of
vector Gaussian sources, however, is not straightforward as the entropy power inequality is
known to be non-tight in this setting. The reader may refer also to [5,6] where non-tight
outer bounds on the rate-distortion region of the vector Gaussian CEO problem under

quadratic distortion measure are obtained by establishing some extremal inequalities that

1
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Encoder 1
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Figure 1.1: Chief Executive Officer (CEO) source coding problem with side information.

are similar to Liu-Viswanath [7], and to [8] where a strengthened extremal inequality
yields a complete characterization of the region of the vector Gaussian CEO problem in
the special case of trace distortion constraint.

In this thesis, our focus will be mainly on the memoryless CEO problem with side
information at the decoder of Figure 1.1 in the case in which the distortion is measured

using the logarithmic loss criterion, i.e.,
d™ (z", i) = ! > d(wi, i)
n-
with the letter-wise distortion given by
(e, #) =log (1)
()
where Z(-) designates a probability distribution on X and z(x) is the value of this
distribution evaluated for the outcome = € X'. The logarithmic loss distortion measure
plays a central role in settings in which reconstructions are allowed to be ‘soft’, rather
than ‘hard’ or deterministic. That is, rather than just assigning a deterministic value to
each sample of the source, the decoder also gives an assessment of the degree of confidence
or reliability on each estimate, in the form of weights or probabilities. This measure

was introduced in the context of rate-distortion theory by Courtade et al. [9, 10] (see

Chapter 2.1 for a detailed discussion on the logarithmic loss).

1.1 Main Contributions

One of the main contributions of this thesis is a complete characterization of the rate-

distortion region of the vector Gaussian CEO problem of Figure 1.1 under logarithmic
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CHAPTER 1. INTRODUCTION AND MAIN CONTRIBUTIONS

loss distortion measure. In the special case in which there is no side information at the
decoder, the result can be seen as the counterpart, to the vector Gaussian case, of that by
Courtade and Weissman [10, Theorem 10] who established the rate-distortion region of
the CEO problem under logarithmic loss in the discrete memoryless (DM) case. For the
proof of this result, we derive a matching outer bound by means of a technique that relies
of the de Bruijn identity, a connection between differential entropy and Fisher information,
along with the properties of minimum mean square error (MMSE) and Fisher information.
By opposition to the case of quadratic distortion measure, for which the application of
this technique was shown in [11] to result in an outer bound that is generally non-tight,
we show that this approach is successful in the case of logarithmic distortion measure
and yields a complete characterization of the region. On this aspect, it is noteworthy
that, in the specific case of scalar Gaussian sources, an alternate converse proof may be
obtained by extending that of the scalar Gaussian many-help-one source coding problem
by Oohama [3] and Prabhakaran et al. [4] by accounting for side information and replacing
the original mean square error distortion constraint with conditional entropy. However,
such approach does not seem to lead to a conclusive result in the vector case as the entropy
power inequality is known to be generally non-tight in this setting [12,13]. The proof
of the achievability part simply follows by evaluating a straightforward extension to the
continuous alphabet case of the solution of the DM model using Gaussian test channels
and no time-sharing. Because this does not necessarily imply that Gaussian test channels
also exhaust the Berger-Tung inner bound, we investigate the question and we show that

they do if time-sharing is allowed.

Besides, we show that application of our results allows us to find complete solutions to
three related problems:

1) The first is a quadratic vector Gaussian CEO problem with reconstruction constraint
on the determinant of the error covariance matrix that we introduce here, and for
which we also characterize the optimal rate-distortion region. Key to establishing
this result, we show that the rate-distortion region of vector Gaussian CEO problem
under logarithmic loss which is found in this paper translates into an outer bound
on the rate region of the quadratic vector Gaussian CEO problem with determinant
constraint. The reader may refer to, e.g., [14] and [15] for examples of usage of such

a determinant constraint in the context of equalization and others.
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2)

The second is the K-encoder hypothesis testing against conditional independence
problem that was introduced and studied by Rahman and Wagner in [16]. In this
problem, K sources (Y1,..., Yg) are compressed distributively and sent to a detector
that observes the pair (X, Y() and seeks to make a decision on whether (Yy,...,Yg)
is independent of X conditionally given Y, or not. The aim is to characterize all
achievable encoding rates and exponents of the Type II error probability when the
Type I error probability is to be kept below a prescribed (small) value. For both
DM and vector Gaussian models, we find a full characterization of the optimal rates-
exponent region when (X, Yy) induces conditional independence between the variables
(Y1,...,Yk) under the null hypothesis. In both settings, our converse proofs show
that the Quantize-Bin-Test scheme of [16, Theorem 1], which is similar to the Berger-
Tung distributed source coding, is optimal. In the special case of one encoder, the
assumed Markov chain under the null hypothesis is non-restrictive; and, so, we find
a complete solution of the vector Gaussian hypothesis testing against conditional
independence problem, a problem that was previously solved in [16, Theorem 7] in the
case of scalar-valued source and testing against independence (note that [16, Theorem
7] also provides the solution of the scalar Gaussian many-help-one hypothesis testing

against independence problem).

The third is an extension of Tishby’s single-encoder Information Bottleneck (IB)
method [17] to the case of multiple encoders. Information theoretically, this problem
is known to be essentially a remote source coding problem with logarithmic loss
distortion measure [18]; and, so, we use our result for the vector Gaussian CEO
problem under logarithmic loss to infer a full characterization of the optimal trade-off
between complezity (or rate) and accuracy (or information) for the distributed vector

Gaussian IB problem.

On the algorithmic side, we make the following contributions.

1)

For both DM and Gaussian settings in which the joint distribution of the sources
is known, we develop Blahut-Arimoto (BA) [19,20] type iterative algorithms that
allow to compute (approximations of) the rate regions that are established in this
thesis; and prove their convergence to stationary points. We do so through a

variational formulation that allows to determine the set of self-consistent equations
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CHAPTER 1. INTRODUCTION AND MAIN CONTRIBUTIONS

that are satisfied by the stationary solutions. In the Gaussian case, we show that the
algorithm reduces to an appropriate updating rule of the parameters of noisy linear
projections. This generalizes the Gaussian Information Bottleneck projections [21]
to the distributed setup. We note that the computation of the rate-distortion
regions of multiterminal and CEQO source coding problems is important per-se as
it involves non-trivial optimization problems over distributions of auxiliary random
variables. Also, since the logarithmic loss function is instrumental in connecting
problems of multiterminal rate-distortion theory with those of distributed learning
and estimation, the algorithms that are developed in this paper also find usefulness
in emerging applications in those areas. For example, our algorithm for the DM CEO
problem under logarithm loss measure can be seen as a generalization of Tishby’s IB
method [17] to the distributed learning setting. Similarly, our algorithm for the vector
Gaussian CEO problem under logarithm loss measure can be seen as a generalization
of that of [21,22] to the distributed learning setting. For other extension of the
BA algorithm in the context of multiterminal data transmission and compression,
the reader may refer to related works on point-to-point [23,24] and broadcast and

multiple access multiterminal settings [25, 26].

For the cases in which the joint distribution of the sources is not known (instead only
a set of training data is available), we develop a variational inference type algorithm,
so-called D-VIB. In doing so: i) we develop a variational bound on the optimal
information-rate function that can be seen as a generalization of IB method, the
evidence lower bound (ELBO) and the S-VAE criteria [27, 28] to the distributed
setting, ii) the encoders and the decoder are parameterized by deep neural networks
(DNN), and iii) the bound approximated by Monte Carlo sampling and optimized
with stochastic gradient descent. This algorithm makes usage of Kingma et al.’s
reparameterization trick [29] and can be seen as a generalization of the variational

Information Bottleneck (VIB) algorithm in [30] to the distributed case.

Finally, we study an application to the unsupervised learning, which is a generative

clustering framework that combines variational Information Bottleneck and the Gaussian

Mixture Model (GMM). Specifically, we use the variational Information Bottleneck method

and model the latent space as a mixture of Gaussians. Our approach falls into the class
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in which clustering is performed over the latent space representations rather than the
data itself. We derive a bound on the cost function of our model that generalizes the
ELBO; and provide a variational inference type algorithm that allows to compute it. Our
algorithm, so-called Variational Information Bottleneck with Gaussian Mixture Model
(VIB-GMM), generalizes the variational deep embedding (VaDE) algorithm of [31] which
is based on variational autoencoders (VAE) and performs clustering by maximizing the
ELBO, and can be seen as a specific case of our algorithm obtained by setting s = 1.
Besides, the VIB-GMM also generalizes the VIB of [30] which models the latent space
as an isotropic Gaussian which is generally not expressive enough for the purpose of
unsupervised clustering. Furthermore, we study the effect of tuning the hyperparameter
s, and propose an annealing-like algorithm [32], in which the parameter s is increased
gradually with iterations. Our algorithm is applied to various datasets, and we observed a
better performance in term of the clustering accuracy (ACC) compared to the state of the

art algorithms, e.g., VaDE [31], DEC [33].

1.2 Outline

The chapters of the thesis and the content in each of them are summarized in what follows.

Chapter 2

The aim of this chapter is to explain some preliminaries for the point-to-point case before
presenting our contributions in the distributed setups. First, we explain the logarithmic
loss distortion measure, which plays an important role on the theory of learning. Then,
the remote source coding problem [34] is presented, which is eventually the Information
Bottleneck problem with the choice of logarithmic loss as a distortion measure. Later,
we explain the Tishby’s Information Bottleneck problem for the discrete memoryless [17]
and Gaussian cases [21], also present the Blahut-Arimoto type algorithms [19,20] to
compute the IB curves. Besides, there is shown the connections of the IB with some well-
known information-theoretical source coding problems, e.g., common reconstruction [35],
information combining [36-38], the Wyner-Ahlswede-K&rner problem [39,40], the efficiency
of investment information [41], and the privacy funnel problem [42]. Finally, we present the

learning via IB section, which includes a brief explanation of representation learning [43],
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finite-sample bound on the generalization gap, as well as, the variational bound method
which leads the IB to a learning algorithm, so-called the variational IB (VIB) [30] with

the usage of neural reparameterization and Kingma et al.’s reparameterization trick [29].

Chapter 3

In this chapter, we study the discrete memoryless CEO problem with side information
under logarithmic loss. First, we provide a formal description of the DM CEO model that
is studied in this chapter, as well as some definitions that are related to it. Then, the
Courtade-Weissman'’s result [10, Theorem 10] on the rate-distortion region of the DM K-
encoder CEO problem is extended to the case in which the CEO has access to a correlated
side information stream which is such that the agents’ observations are conditionally
independent given the decoder’s side information and the remote source. This will be
instrumental in the next chapter to study the vector Gaussian CEO problem with side
information under logarithmic loss. Besides, we study a two-encoder case in which the
decoder is interested in estimation of encoder observations. For this setting, we find
the rate-distortion region that extends the result of [10, Theorem 6] for the two-encoder
multiterminal source coding problem with average logarithmic loss distortion constraints
on Y; and Y5 and no side information at the decoder to the setting in which the decoder
has its own side information Y that is arbitrarily correlated with (Y, Y2). Furthermore, we
study the distributed pattern classification problem as an example of the DM two-encoder
CEO setup and we find an upper bound on the probability of misclassification. Finally,
we look another closely related problem called the distributed hypothesis testing against
conditional independence, specifically the one studied by Rahman and Wagner in [16]. We
characterize the rate-exponent region for this problem by providing a converse proof and

show that it is achieved using the Quantize-Bin-Test scheme of [16].

Chapter 4

In this chapter, we study the vector Gaussian CEO problem with side information under
logarithmic loss. First, we provide a formal description of the vector Gaussian CEO
problem that is studied in this chapter. Then, we present one of the main results of the
thesis, which is an explicit characterization of the rate-distortion region of the vector

Gaussian CEO problem with side information under logarithmic loss. In doing so, we

7
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use a similar approach to Ekrem-Ulukus outer bounding technique [11] for the vector
Gaussian CEO problem under quadratic distortion measure, for which it was there found
generally non-tight; but it is shown here to yield a complete characterization of the region
for the case of logarithmic loss measure. We also show that Gaussian test channels with
time-sharing exhaust the Berger-Tung rate region which is optimal. In this chapter, we
also use our results on the CEO problem under logarithmic loss to infer complete solutions
of three related problems: the quadratic vector Gaussian CEO problem with a determinant
constraint on the covariance matrix error, the vector Gaussian distributed hypothesis
testing against conditional independence problem, and the vector Gaussian distributed

Information Bottleneck problem.

Chapter 5

This chapter contains a description of two algorithms and architectures that were developed
in [1] for the distributed learning scenario. We state them here for reasons of completeness.
In particular, the chapter provides: i) Blahut-Arimoto type iterative algorithms that allow
to compute numerically the rate-distortion or relevance-complexity regions of the DM and
vector Gaussian CEO problems that are established in previous chapters for the case in
which the joint distribution of the data is known perfectly or can be estimated with a high
accuracy; and ii) a variational inference type algorithm in which the encoding mappings
are parameterized by neural networks and the variational bound approximated by Monte
Carlo sampling and optimized with stochastic gradient descent for the case in which there
is only a set of training data is available. The second algorithm, so-called D-VIB [1], can
be seen as a generalization of the variational Information Bottleneck (VIB) algorithm
in [30] to the distributed case. The advantage of D-VIB over centralized VIB can be
explained by the advantage of training the latent space embedding for each observation
separately, which allows to adjust better the encoding and decoding parameters to the
statistics of each observation, justifying the use of D-VIB for multi-view learning [44,45]

even if the data is available in a centralized manner.

Chapter 6

In this chapter, we study an unsupervised generative clustering framework that combines

variational Information Bottleneck and the Gaussian Mixture Model for the point-to-point

8
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case (e.g., the CEO problem with one encoder). The variational inference type algorithm
provided in the previous chapter assumes that there is access to the labels (or remote
sources), and the latent space therein is modeled with an isotropic Gaussian. Here, we
turn our attention to the case in which there is no access to the labels at all. Besides, we
use a more expressive model for the latent space, e.g., Gaussian Mixture Model. Similar to
the previous chapter, we derive a bound on the cost function of our model that generalizes
the evidence lower bound (ELBO); and provide a variational inference type algorithm
that allows to compute it. Furthermore, we show how tuning the trade-off parameter s
appropriately by gradually increasing its value with iterations (number of epochs) results
in a better accuracy. Finally, our algorithm is applied to various datasets, including the
MNIST [46], REUTERS [47] and STL-10 [48], and it is seen that our algorithm outperforms
the state of the art algorithms, e.g., VaDE [31], DEC [33] in term of clustering accuracy.

Chapter 7

In this chapter, we propose and discuss some possible future research directions.

Publications

The material of the thesis has been published in the following works.

e Yigit Ugur, Inaki Estella Aguerri and Abdellatif Zaidi, “Vector Gaussian CEO
Problem Under Logarithmic Loss and Applications,” accepted for publication in
IEEFE Transactions on Information Theory, January 2020.

e Yigit Ugur, Inaki Estella Aguerri and Abdellatif Zaidi, “Vector Gaussian CEO
Problem Under Logarithmic Loss,” in Proceedings of IEEE Information Theory
Workshop, pages 515 — 519, November 2018.

e Yigit Ugur, Inaki Estella Aguerri and Abdellatif Zaidi, “A Generalization of Blahut-
Arimoto Algorithm to Compute Rate-Distortion Regions of Multiterminal Source
Coding Under Logarithmic Loss,” in Proceedings of IEEE Information Theory Work-
shop, pages 349 — 353, November 2017.

e Yigit Ugur, George Arvanitakis and Abdellatif Zaidi, “Variational Information Bot-
tleneck for Unsupervised Clustering: Deep Gaussian Mixture Embedding,” Entropy,
vol. 22, no. 2, article number 213, February 2020.
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Chapter 2

Logarithmic Loss Compression and

Connections

2.1 Logarithmic Loss Distortion Measure

Shannon’s rate-distortion theory gives the optimal trade-off between compression rate and
fidelity. The rate is usually measured in terms of the bits per sample and the fidelity of the
reconstruction to the original can be measured by using different distortion measures, e.g.,
mean-square error, mean-absolute error, quadratic error, etc., preferably chosen according
to requirements of the setting where it is used. The main focus in this thesis will be
on the logarithmic loss, which is a natural distortion measure in the settings in which
the reconstructions are allowed to be ‘soft’, rather than ‘hard’ or deterministic. That is,
rather than just assigning a deterministic value to each sample of the source, the decoder
also gives an assessment of the degree of confidence or reliability on each estimate, in the
form of weights or probabilities. This measure, which was introduced in the context of
rate-distortion theory by Courtade et al. [9,10] (see also [49,50] for closely related works),
has appreciable mathematical properties [51,52], such as a deep connection to lossless
coding for which fundamental limits are well developed (e.g., see [53] for recent results
on universal lossy compression under logarithmic loss that are built on this connection).
Also, it is widely used as a penalty criterion in various contexts, including clustering and
classification [17], pattern recognition, learning and prediction [54], image processing [55],
secrecy [56] and others.

Let random variable X denote the source with finite alphabet X = {xy,...,z,} to
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be compressed. Also, let P(X) denote the reconstruction alphabet, which is the set
of probability measures on X. The logarithmic loss distortion between x € X and its
reconstruction & € P(X), log : X X P(X) — Ry, is given by

1

Bx)

liog(z, &) = log (2.1)

where Z(-) designates a probability distribution on X and Z(x) is the value of this
distribution evaluated for the outcome x € X. We can interpret the logarithmic loss
distortion measure as the remaining uncertainty about x given z. Logarithmic loss is also
known as the self-information loss in literature.

Motivated by the increasing interest for problems of learning and prediction, a growing
body of works study point-to-point and multiterminal source coding models under loga-
rithmic loss. In [51], Jiao et al. provide a fundamental justification for inference using
logarithmic loss, by showing that under some mild conditions (the loss function satisfying
some data processing property and alphabet size larger than two) the reduction in optimal
risk in the presence of side information is uniquely characterized by mutual information,
and the corresponding loss function coincides with the logarithmic loss. Somewhat related,
in [57] Painsky and Wornell show that for binary classification problems the logarithmic
loss dominates “universally” any other convenient (i.e., smooth, proper and convex) loss
function, in the sense that by minimizing the logarithmic loss one minimizes the regret
that is associated with any such measures. More specifically, the divergence associated
any smooth, proper and convex loss function is shown to be bounded from above by the
Kullback-Leibler divergence, up to a multiplicative normalization constant. In [53], the
authors study the problem of universal lossy compression under logarithmic loss, and
derive bounds on the non-asymptotic fundamental limit of fixed-length universal coding
with respect to a family of distributions that generalize the well-known minimax bounds
for universal lossless source coding. In [58], the minimax approach is studied for a problem
of remote prediction and is shown to correspond to a one-shot minimax noisy source
coding problem. The setting of remote prediction of [58] provides an approximate one-shot
operational interpretation of the Information Bottleneck method of [17], which is also
sometimes interpreted as a remote source coding problem under logarithmic loss [18].

Logarithmic loss is also instrumental in problems of data compression under a mutual

information constraint [59], and problems of relaying with relay nodes that are constrained
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not to know the users’ codebooks (sometimes termed “oblivious” or nomadic processing)
which is studied in the single user case first by Sanderovich et al. in [60] and then by
Simeone et al. in [61], and in the multiple user multiple relay case by Aguerri et al. in [62]
and [63]. Other applications in which the logarithmic loss function can be used include

secrecy and privacy [56,64], hypothesis testing against independence [16,65-68] and others.

s Yn R .
X" —— Py|x ———— Encoder 3 Decoder — X7

Figure 2.1: Remote, or indirect, source coding problem.

2.2 Remote Source Coding Problem

Consider the remote source coding problem [34] depicted in Figure 2.1. Let X™ designates
a memoryless remote source sequence, i.e., X" := {X;}" ,, with alphabet X™. An encoder
observes the sequence Y™ with alphabet Y™ that is a noisy version of X™ and obtained
from X" passing through the channel Py |x. The encoder describes its observation using

the following encoding mapping
o Yt {1, , MM} (2.2)

and sends to a decoder through an error-free link of the capacity R. The decoder produces
X" with alphabet X™ which is the reconstruction of the remote source sequence through

the following decoding mapping
™ {1, MY S x (2.3)

The decoder is interested in reconstructing the remote source X" to within an average
distortion level D, i.e.,

Epyy [d™(z",3")] < D, (2.4)
for some chosen fidelity criterion d™(z",4") obtained from the per-letter distortion
function d(z;, &;), as

. 1 N
d™ (z", #") = - ;d(xl,xl) : (2.5)
The rate-distortion function is defined as the minimum rate R such that the average

distortion between the remote source sequence and its reconstruction does not exceed D,

as there exists a blocklength n, an encoding function (2.2) and a decoding function (2.3).

13
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Remote Source Coding Under Logarithmic Loss

Here we consider the remote source coding problem in which the distortion measure is

chosen as the logarithmic loss.

Let ((y) = Q(+ly) € P(X) for every y € V. Tt is easy to see that

EPXY llog (X,Q)] ZZPXY (z,y)log

Q( y)
PX|Y($’3/)
—ZZPXY T,y 10gPX|Y (zly) +ZZPXY RN Q(zly)
= H(X|Y) + Dxi(Pyix|Q)
> H(X]Y), (26)

with equality if and only of (V') = Pxy (+|y).

Now let the stochastic mapping ¢™ : Y* — U™ be the encoder, i.e., ||| < nR
for some prescribed complexity value R. Then, U" = ¢ (X™). Also, let the stochastic
mapping Y™ : U" — X™ be the decoder. Thus, the expected logarithmic loss can be

written as

S B, sty o) £ XD, (2.7

where (a) follows from (2.4) and (2.5), and (b) follows due to (2.6).
Hence, the rate-distortion of the remote source coding problem under logarithmic loss

is given by the union of all pairs (R, D) that satisfy
(2.8)
where the union is over all auxiliary random variables U that satisfy the Markov chain

U - Y -e- X. Also, using the substitution A := H(X) — D, the region can be written
equivalently as the union of all pairs (R, A) that satisfy

(2.9)

This gives a clear connection between the remote source coding problem under logarithmic

and the Information Bottleneck problem, which will be explained in the next section.
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Y U R
X — P, v|Xx ——{ Encoder  Decoder — X

Figure 2.2: Information Bottleneck problem.

2.3 Information Bottleneck Problem

Tishby et al. in [17] present the Information Bottleneck (IB) framework, which can
be considered as a remote source coding problem in which the distortion measure is
logarithmic loss. By the choice of distortion metric as the logarithmic loss defined in (2.1),
the connection of the rate-distortion problem with the IB is studied in [18,52,69]. Next,

we explain the IB problem for the discrete memoryless and Gaussian cases.

2.3.1 Discrete Memoryless Case

The IB method depicted in Figure 2.2 formulates the problem of extracting the relevant
information that a random variable Y € ) captures about another one X € X such that
finding a representation U that is maximally informative about X (i.e., large mutual
information I(U; X)), meanwhile minimally informative about Y (i.e., small mutual
information [(U;Y")). The term I(U; X) is referred as relevance and I(U;Y) is referred as
complexity. Finding the representation U that maximizes I(U; X) while keeping I(U;Y)
smaller than a prescribed threshold can be formulated as the following optimization
problem

A(R) := P :Hll(z%;;{Y)gR I(U; X) . (2.10)

Optimizing (2.10) is equivalent to solving the following Lagrangian problem

LB max [(U; X)—sI(U;Y), (2.11)

Pyy

where £!B can be called as the IB objective, and s designates the Lagrange multiplier.
For a known joint distribution Pxy and a given trade-off parameter s > 0, the optimal
mapping Pyjy can be found by solving the Lagrangian formulation (2.11). As shown
in [17, Theorem 4], the optimal solution for the IB problem satisfies the self-consistent
equations
eXp[_DKL(PX|y||PX|u)]
> P(u) exp[=Dxr(Pxy|| Pxju)]

15
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= pluly)p(y) (2.12b)

\/

plalu) = prh/ (ylu) = Z

(2.12¢)

The self consistent equations in (2.12) can be iterated, similar to Blahut-Arimoto algo-
rithm?, for finding the optimal mapping Pyy which maximizes the IB objective in (2.11).
To do so, first Pyy is initialized randomly, and then self-consistent equations (2.12) are
iterated until convergence. This process is summarized hereafter as

P( ) N P(l) N P(l) N P( ) N P(t) N P(t) N P()

*
Uly X|U Uy — X|U vy — - — Popy -

2.3.2 (Gaussian Case

Chechik et al. in [21] study the Gaussian Information Bottleneck problem (see also [22,
70,71]), in which the pair (X,Y) is jointly multivariate Gaussian variables of dimensions
ng,ny. Let 3y, 3y denote the covariance matrices of X,Y; and let ¥, denote their
cross-covariance matrix.

It is shown in [21,22,70] that if X and Y are jointly Gaussian, the optimal representation

U is the linear transformation of Y and jointly Gaussian with Y 2. Hence, we have
U=AY +7Z, Z~N(0,X%,). (2.13)

Thus, U ~ N (0,X,) with ¥, = AL AT+ 3,
The Gaussian IB curve defines the optimal trade-off between compression and preserved
relevant information, and is known to have an analytical closed form solution. For a

given trade-off parameter s, the parameters of the optimal projection of the Gaussian 1B

!Blahut-Arimoto algorithm [19,20] is originally developed for computation of the channel capacity and the
rate-distortion function, and for these cases it is known to converge to the optimal solution. These iterative
algorithms can be generalized to many other situations, e.g., including the IB problem. However, it only converges

to stationary points in the context of IB.
20ne of the main contribution of this thesis is the generalization of this result to the distributed case. The

distributed Gaussian IB problem can be considered as the vector Gaussian CEO problem that we study in
Chapter 4. In Theorem 4, we show that the optimal test channels are Gaussian when the sources are jointly

multivariate Gaussian variables.
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problem is found in [21, Theorem 3.1], and given by ¥, =T and

(

[OT;OT;OT;...;OT} 0<s<py

. nt. nf- . Nt c c

alvl,0,0,...,O} B < s <S5
A= [ , (2.14)

[aw};anE;O*;..-;OT] B < s < B
where {VJ{, e ,VILU} are the left eigenvectors of 3y 3 ! sorted by their corresponding
ascending eigenvalues Ay, ..., Ap,; B = ﬁ are critical s values; «; are coefficients defined
by «; = %7 0f is an n, dimensional row vectors of zeros; and semicolons separate

1V, Sy Vi

rows in the matrix A.

Alternatively, we can use a BA-type iterative algorithm to find the optimal relevance-
complexity tuples. By doing so, we leverage on the optimality of Gaussian test channel,
to restrict the optimization of Pyjy to Gaussian distributions, which are represented
by parameters, namely its mean and covariance (e.g., A and X,). For a given trade-off
parameter s, the optimal representation can be found by finding its representing parameters

iterating over the following update rules

1 -1

e = (z;llx - Mz;}) (2.15a)
S

AT =3B A (I -2, 30 (2.15b)

2.3.3 Connections

In this section, we review some interesting information theoretic connections that were
reported originally in [72]. For instance, it is shown that the IB problem has strong
connections with the problems of common reconstruction, information combining, the

Wyner-Ahlswede-Korner problem and the privacy funnel problem.

Common Reconstruction

Here we consider the source coding problem with side information at the decoder, also
called the Wyner-Ziv problem [73], under logarithmic loss distortion measure. Specifically,
an encoder observes a memoryless source Y and communicates with a decoder over a

rate-constrained noise-free link. The decoder also observes a statistically correlated side
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information X. The encoder uses R bits per sample to describe its observation Y to the
decoder. The decoder wants to reconstruct an estimate of Y to within a prescribed fidelity
level D. For the general distortion metric, the rate-distortion function of the Wyner-Ziv

problem is given by

RY% (D) = min I(U;Y|X), (2.16)

Py BlAY.0(U,X))<D
where ¢ : U X X — Y is the decoding mapping.
The optimal coding coding scheme utilizes standard Wyner-Ziv compression at the

encoder, and the decoding mapping 1 is given by
(U, X) =Pr]Y =y|U, X]. (2.17)
Then, note that with such a decoding mapping we have
Ellog (Y, (U, X))] = H(Y|U, X) (2.18)

Now we look at the source coding problem under the requirement such that the
encoder is able to produce an exact copy of the compressed source constructed by the
decoder. This requirement, termed as common reconstruction (CR), is introduced and
studied by Steinberg in [35] for various source coding models, including Wyner-Ziv setup
under a general distortion measure. For the Wyner-Ziv problem under logarithmic loss,
such a common reconstruction constraint causes some rate loss because the reproduction
rule (2.17) is not possible anymore. The Wyner-Ziv problem under logarithmic loss with

common reconstruction constraint can be written as follows

Ryl (D) = min I(U;Y|X), (2.19)

Pyt HY|U)<D
for some auxiliary random variable U for which the Markov chain U -e- Y -e- X holds. Due
to this Markov chain, we have I(U;Y|X) = I(U;Y) — I(U; X). Besides, observe that the
constrain H(Y|U) < D is equivalent to I[(U;Y) > H(Y) — D. Then, we can rewrite (2.19)
as

Ry (D) min I(U;Y) - I(U; X) . (2.20)

B Pypy : I(U;Y)>H(Y)-D
Under the constraint I(U;Y) = H(Y) — D, minimizing I(U;Y|X) is equivalent to maxi-
mizing /(U; X), which connects the problem of CR readily with the IB.

In the above, the side information X is used for binning but not for the estimation at
the decoder. If the encoder ignores whether X is present at the decoder, the benefit of
binning is reduced — see the Heegard-Berger model with CR, [74,75].

18



CHAPTER 2. LOGARITHMIC LOSS COMPRESSION AND CONNECTIONS

Information Combining

Here we consider the IB problem, in which one seeks to find a suitable representation
U that maximizes the relevance I(U; X) for a given prescribed complexity level, e.g.,

I(U;Y) = R. For this setup, we have

[(Y;U,X) = I(Y;U) + I(Y; X|U)
— [(V;U) + I(X;Y,U) — I(X;U)
WY, U) + I(X;Y) — I(X;U) (2.21)

where (a) holds due the Markov chain U -e- Y -e- X. Hence, in the IB problem (2.11),
for a given complexity level, e.g., I(U;Y) = R, maximizing the relevance I(U; X) is
equivalent of minimizing I(Y; U, X). This is reminiscent of the problem of information
combining [36-38], where Y can be interpreted as a source transferred through two channels
Pyjy and Pxjy. The outputs of these two channels are conditionally independent given
Y’; and they should be processed in a manner such that, when combined, they capture as

much as information about Y.

Wyner-Ahlswede-Korner Problem

In the Wyner-Ahlswede-Korner problem, two memoryless sources X and Y are compressed
separately at rates Ry and Ry, respectively. A decoder gets the two compressed streams
and aims at recovering X in a lossless manner. This problem was solved independently by
Wyner in [39] and Ahlswede and Kérner in [40]. For a given Ry = R, the minimum rate
Ry that is needed to recover X losslessly is given as follows

RY(R)=  min HX|U) . (2.22)

Pyjy : I(U;Y)<R

Hence, the connection of Wyner-Ahlswede-Kérner problem (2.22) with the IB (2.10) can
be written as

A(R) = I(U;X)=H(X)+ RX(R) . 2.23

(R) =, max p [UX)=HX)+ (R (2.23)

Privacy Funnel Problem

Consider the pair (X,Y) where X € X be the random variable representing the private

(or sensitive) data that is not meant to be revealed at all, or else not beyond some level A;
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and Y € Y be the random variable representing the non-private (or nonsensitive) data
that is shared with another user (data analyst). Assume that X and Y are correlated,
and this correlation is captured by the joint distribution Pxy. Due to this correlation,
releasing data Y is directly to the data analyst may cause that the analyst can draw some
information about the private data X. Therefore, there is a trade-off between the amount
of information that the user keeps private about X and shares about Y. The aim is to find
a mapping ¢ : Y — U such that U = ¢(Y) is maximally informative about Y, meanwhile
minimally informative about X.

The analyst performs an adversarial inference attack on the private data X from the
disclosed data U. For a given arbitrary distortion metric d : X x X — R, and the joint
distribution Px y, the average inference cost gain by the analyst after observing U can be

written as

AC(d, Pxy) := inf Ep,  [d(X,2)] — inf Ep,,[d(X, X)|U] ) (2.24)
feX ’ X(6(Y)) ’

The quantity AC was proposed as a general privacy metric in [76], since it measures the
improvement in the quality of the inference of the private data X due to the observation
U. In [42] (see also [77]), it is shown that for any distortion metric d, the inference cost

gain AC' can be upper bounded as

AC(d, Pxy) < 2V2L\/I(U; X) , (2.25)

where L is a constant. This justifies the use of the logarithmic loss as a privacy metric
since the threat under any bounded distortion metric can be upper bounded by an explicit
constant factor of the mutual information between the private and disclosed data. With

the choice of logarithmic loss, we have

[(U; X) = H(X) — inf Ep [log(X, X)] . (2.26)

X(U)
Under the logarithmic loss function, the design of the mapping U = ¢(Y") should strike a
right balance between the utility for inferring the non-private data Y as measured by the
mutual information I(U;Y’) and the privacy threat about the private data X as measured
by the mutual information I(U; X). That is refereed as the privacy funnel method [42],

and can be formulated as the following optimization

min IU; X) . (2.27)
Pyy  I(U;Y)2R

Notice that this is an opposite optimization to the Information Bottleneck (2.10).
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2.4 Learning via Information Bottleneck

2.4.1 Representation Learning

The performance of learning algorithms highly depends on the characteristics and properties
of the data (or features) on which the algorithms are applied. Due to this fact, feature
engineering, i.e., preprocessing operations — that may include sanitization and transferring
the data on another space — is very important to obtain good results from the learning
algorithms. On the other hand, since these preprocessing operations are both task- and
data-dependent, feature engineering is high labor-demanding and this is one of the main
drawbacks of the learning algorithms. Despite the fact that it can be sometimes considered
as helpful to use feature engineering in order to take advantage of human know-how
and knowledge on the data itself, it is highly desirable to make learning algorithms less
dependent on feature engineering to make progress towards true artificial intelligence.

Representation learning [43] is a sub-field of learning theory which aims at learning
representations by extracting some useful information from the data, possibly without using
any resources of feature engineering. Learning good representations aims at disentangling
the underlying explanatory factors which are hidden in the observed data. It may also be
useful to extract expressive low-dimensional representations from high-dimensional observed
data. The theory behind the elegant IB method may provide a better understanding of
the representation learning.

Consider a setting in which for a given data Y we want to find a representation U,
which is a function of Y (possibly non-deterministic) such that U preserves some desirable
information regarding to a task X in view of the fact that the representation U is more
convenient to work or expose relevant statistics.

Optimally, the representation should be as good as the original data for the task,
however, should not contain the parts that are irrelevant to the task. This is equivalent
finding a representation U satisfying the following criteria [78]:

(7) U is a function of Y, the Markov chain X -e- Y —e- U holds.

(17) U is sufficient for the task X, that means I(U;X) = I(Y;X).
(731) U discards all variability in Y that is not relevant to task X, i.e., minimal I(U;Y).
Besides, (ii) is equivalent to I(Y; X|U) = 0 due to the Markov chain in (7). Then, the

optimal representation U satisfying the conditions above can be found by solving the
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following optimization

min I(U)Y) . (2.28)

Pyjy : 1(Y;X[U)=0

However, (2.28) is very hard to solve due to the constrain I(Y;X|U) = 0. Tishby’s IB
method solves (2.28) by relaxing the constraint as I(U;X) > A, which stands for that
the representation U contains relevant information regarding the task X larger than a

threshold A. Eventually, (2.28) boils down to minimizing the following Lagrangian

min H(X|U) +s/(U;Y) (2.29a)
Pyy
= erIun ]EPX,Y EPU\Y[_ lOg PX\U] + 3DKL<PU|YHPU) . (229b)
Uy

In representation learning, disentanglement of hidden factors is also desirable in addition
to sufficiency (ii) and minimality (iii) properties. The disentanglement can be measured

with the total correlation (TC) [79,80], defined as

TC(U) == Dxw(Pul [[ Po,) - (2.30)
J
where U; denotes the j-th component of U, and TC(U) = 0 when the components of U
are independent.

In order to obtain a more disentangled representation, we add (2.30) as a penalty

in (2.29). Then, we have

glin EPX,Y ]EPU\Y[_ 10g PX|U] + SDKL(PU|YHPU):| + ﬁDKL <PU|| H PU].> y (231)
u|Y h

J
where [ is the Lagrangian for TC constraint (2.30). For the case in which 8 = s, it is easy

to see that the minimization (2.31) is equivalent to

min Ep,
Py)y ’

(2.32)

Ery [ 10g Pxu] + sDi. (Purv || [T P )
J

In other saying, optimizing the original IB problem (2.29) with the assumption of inde-
pendent representations, i.e., Py =[] i Py, (u;), is equivalent forcing representations to be
more disentangled. Interestingly, we note that this assumption is already adopted for the

simplicity in many machine learning applications.

22



CHAPTER 2. LOGARITHMIC LOSS COMPRESSION AND CONNECTIONS

2.4.2 Variational Bound

The optimization of the IB cost (2.11) is generally computationally challenging. In the case
in which the true distribution of the source pair is known, there are two notable exceptions
explained in Chapter 2.3.1 and 2.3.2: the source pair (X,Y) is discrete memoryless [17]
and the multivariate Gaussian [21,22]. Nevertheless, these assumptions on the distribution
of the source pair severely constrain the class of learnable models. In general, only a set of
training samples {(z;,y;)}!~, is available, which makes the optimization of the original IB
cost (2.11) intractable. To overcome this issue, Alemi et al. in [30] present a variational
bound on the IB objective (2.11), which also enables a neural network reparameterization
for the IB problem, which will be explained in Chapter 2.4.4.

For the variational distribution @y on U (instead of unknown Py ), and a variational
stochastic decoder Q x|y (instead of the unknown optimal decoder Px|y), let define
Q = {Qxv,Qu}. Besides, for convenience let P := {Pyy }. We define the variational IB
cost LYB(P, Q) as

LYP(P,Q) :=Ep,, [EPU\YUOg Qxv] — SDKL(PUlYHQU)] : (2.33)

Besides, we note that maximizing £'B in (2.11) over P is equivalent to maximizing
LBP) = —H(X|U)—sI(U;Y). (2.34)
Next lemma states that £Y'B(P, Q) is a lower bound on £B(P) for all distributions Q.

Lemma 1.

Ly™(P,Q) < LP(P), for all pmfs Q .

In addition, there exists a unique Q that achieves the maximum maxq LYB(P, Q) =

LB(P), and is given by

Qxw=Pxv, Qu=F. [ ]

Using Lemma 1, the optimization in (2.11) can be written in term of the variational

IB cost as follows
mljz}xﬁiB(P) = maxmax LYB(P. Q). (2.35)
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2.4.3 Finite-Sample Bound on the Generalization Gap

The IB method requires that the joint distribution Pxy is known, although this is not the
case for most of the time. In fact, there is only access to a finite sample, e.g., {(z;, vi)}7;.
The generalization gap is defined as the difference between the empirical risk (average
risk over a finite training sample) and the population risk (average risk over the true joint
distribution).

It has been shown in [81], and revisited in [82], that it is possible to generalize the IB as
a learning objective for finite samples in the course of bounded representation complexity
(e.g., the cardinality of U). In the following, I (+; ) denotes the empirical estimate of the
mutual information based on finite sample distribution pr for a given sample size of n.
In [81, Theorem 1], a finite-sample bound on the generalization gap is provided, and we
state it below.

Let U be a fixed probabilistic function of Y, determined by a fixed and known conditional
probability Pyjy. Also, let {(z;,v:)}7, be samples of size n drawn from the joint probability
distribution Pxy. For given {(x;,v;)}!, and any confidence parameter 6 € (0,1), the
following bounds hold with a probability of at least 1 — ¢,

[(U;Y) - [(U;Y)] < [l ogn +los ) \/@ L=t (2.36a)
V2n n

g < UL 2) gy Jlog (1) 4 1) (U] +1) — 4
[I(U; X) - 1(U; X)| < o + " )

Observe that the generalization gaps decreases when the cardinality of representation U

(2.36b)

get smaller. This means the optimal IB curve can be well estimated if the representation
space has a simple model, e.g., || is small. On the other hand, the optimal IB curve is
estimated badly for learning complex representations. It is also observed that the bounds
does not depend on the cardinality of Y. Besides, as expected for larger sample size n of

the training data, the optimal IB curve is estimated better.

2.4.4 Neural Reparameterization

The aforementioned BA-type algorithms works for the cases in which the joint distribution
of the data pair Px y is known. However, this is a very tight constraint which is very unusual
to meet, especially for real-life applications. Here we explain the neural reparameterization

and evolve the IB method to a learning algorithm to be able to use it with real datasets.
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Let Py(uly) denote the encoding mapping from the observation Y to the bottleneck
representation U, parameterized by a DNN f, with parameters 6 (e.g., the weights
and biases of the DNN). Similarly, let ()4(x|u) denote the decoding mapping from the
representation U to the reconstruction of the label Y, parameterized by a DNN g, with
parameters ¢. Furthermore, let (), (u) denote the prior distribution of the latent space,
which does not depend on a DNN. By using this neural reparameterization of the encoder
Py(uly), decoder Q4(x|u) and prior )y (u), the optimization in (2.35) can be written as
max  Epyy [Epy(upy)[log Qs(X|U)] = sDxr (P (U]Y)[|Qy(U))] - (2.37)

Then, for a given dataset consists of n samples, i.e., D = {(x;,¥;)},, the optimization
of (2.37) can be approximated in terms of an empirical cost as follows

max — Eemp 2.38
0,04 N Z ( )

where L3"(0, ¢,¢) is the empirical IB cost for the i-th sample of the training set D, and

given by

L357(0,0,0) = Epyu,v, [log Qo (Xi[Us)] — s Dkr (P (Ui Y3)[|Qu(Us)) - (2.39)

Now, we investigate the possible choices of the parametric distributions. The encoder
can be chosen as a multivariate Gaussian, i.e., Py(uly) = N (u; py, 3g). So, it can be
modeled with a DNN fp, which maps the observation y to the parameters of a multivariate
Gaussian, namely the mean p, and the covariance Xy, i.e., (pg, X9) = fp(y). The decoder
(Qs(x|u) can be a categorical distribution parameterized by a DNN f,; with a softmax
operation in the last layer, which outputs the probabilities of dimension |X|, i.e., X = gy(u).
The prior of the latent space Q,(u) can be chosen as a multivariate Gaussian (e.g., N'(0,I))
such that the KL divergence Dk, (Fp(U|Y)|Q4(U)) has a closed form solution and is easy
to compute.

With the aforementioned choices, the first term of the RHS of (2.39) can be computed

using Monte Carlo sampling and the reparameterization trick [29] as
1
Ep,(uiv[log Qg (Xi|Ui)] Zlog Qo(xilwij) , Wj=py;+35 €, € ~N(0]I),

where m is the number of samples for the Monte Carlo sampling step. The second term of

the RHS of (2.39) — the KL divergence between two multivariate Gaussian distributions —
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has a closed form. For convenience, in the specific case in which the covariance matrix is
diagonal, i.e., 3y, := diag({agﬂ-’k}’,z;l), with n, denoting the latent space dimension, the

RHS of (2.39) can be computed as follows

1
5 Z [0, —logog,, — 1+ 05, - (2.40)
k=1
Encoder : Latent : Decoder
Py(uly) e~N(0,1) : : Representation : Qo(ulx)
Ko | ©
(=’
) T u=p,+3je

............................................................................

Figure 2.3: Representation learning.

Altogether, we have the following cost to be trained over DNN parameters #, ¢ using

stochastic gradient descent methods (e.g., SGD or ADAM [83]),

1 m s Ty
e m > log Qu(xilui ) — 3 D [poix—logog, ) — 1+ 05,4 - (2.41)
’ j=1 k=1

Note that, without loss of generality, the prior is fixed to Qy(u) = N(0,I), hence the
optimization is not over the prior parameter 1. So the VIB learning algorithm optimizes the
DNN parameters for a given training dataset D and a parameter s. After the convergence
of the parameters to 6*, ¢*, the representation U can be inferred by sampling from the
encoder Py-(UJY) and then the soft estimate of the target variable X can be calculated
using the decoder Q4+ (X|U) for a new data Y. An example of learning architecture which

can be trained to minimize cost (2.41) using neural networks is shown in Figure 2.3.

2.4.5 Opening the Black Box

Learning algorithms using DNNs is getting more and more popular due to its remarkable
success in many practical problems. However, it is not well studied how algorithms using
DNNs improves the state of the art, and there is no rigorous understanding about what it
is going inside of DNNs. Due to the lack of this understanding, the DNN is usually treated
as a black box and integrated into various algorithms as a block in which it is not known

exactly what it is going on. Schwartz-Ziv and Tishby in [84] (also Tishby and Zaslavsky
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in a preliminary work [82]) suggested to use an information-theoretical approach to ‘open
the black box’, where the IB principle is used to explain theory of deep learning. In [84],
it is proposed to analyze the information plane — where I(U; X) versus I(U;Y) is plotted

— due to useful insights about the trade-off between prediction and compression.

7999 7999

1.0

0.8
—~ 12} %]
s Ak S S
= g 2
S iy &
~ 04

0.2

0.0

1 3 5 7 9 11 0 0
I(UY) 1(UY)
(a) Tanh activation function. (b) ReLU activation function.

Figure 2.4: The evolution of the layers with the training epochs in the information plane. In the
x-axis, the mutual information between each layer and the input, i.e., I[(Uy;Y), is plotted. In the
y-axis, the mutual information between each layer and the label, i.e., I(Uy; X), is plotted. The
colors indicate training time in epochs. The curve on the far corresponds the mutual information
with the output layer; and the curve on the far right corresponds the mutual information with

the input layer. Figures are taken from [85].

Now consider a NN with K layers and let Uy be a random variable denoting the
representation, which is the output of k-th hidden layer. Then, the Markov chain
X oY o U o - Ug - X holds. In particular, a fully connected NN with
5 hidden layers with dimensions 12 - 10 -7 -5 — 4 — 3 — 2 is trained using SGD to make a
binary classification from a 12-dimensional input. All except the last layers are activated
with the hyperbolic tangent function (tanh); and sigmoid function is used for the last
(i.e., output) layer. In order to calculate the mutual information of layers with respect
to input and output variables, neuron’s tanh output activations are binned into 30 equal
intervals between -1 and 1. Then, these discretized values in each layer is used to calculate
the joint distributions Py, y and Py, x over the 2'? equally likely input patterns and true

output labels. Using these discrete joint distributions, the mutual informations I(Uy;Y")
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and I(Uy; X) are calculated, and depicted in Figure 2.4a. In Figure 2.4a, a transition is
observed between an initial fitting phase and a subsequent compression phase. In the
fitting phase, the relevance between representations in each layer and label (e.g., the
mutual information /(Uy; X)) increases. The fitting phase is shorter, needs less epochs.
During the compression phase, the mutual information between representations and the
input, i.e., I(Uy;Y'), decreases.

In a recent work [85], Saxe et al. reports that these fitting and compression phases
mentioned in [84] are not observed for all activation functions. To show that, the same
experiment is repeated, however the tanh activations are interchanged with ReLU. The
mutual information between each layer with the input Y and the label X over epochs is
plotted in Figure 2.4b. It is observed that except the curve on the far left in Figure 2.4b
which corresponds the output layer with sigmoid activation, the mutual information with
the input monotonically increases in all ReLU layers, hence the compression phase is not

visible here.

2.5 An Example Application: Text clustering

In this section, we present a deterministic annealing-like algorithm [32, Chapter 3.2], and
also an application of it to the text clustering. The annealing-like IB is an algorithm which
works by tuning the parameter s. First, we recall the IB objective

LB min [(U;Y) - sI(U; X) . (2.42)

Pyy

When s — 0, the representation U is designed with the most compact form, i.e., [U| =1,
which corresponds the maximum compression. By gradually increasing the parameter s,
the emphasization on the relevance term I(U; X) increases, and at a critical value of s,
the optimization focuses on not only the compression but also the relevance term. To
fulfill the demand on the relevance term, this results that the cardinality of U bifurcates.
This is referred as a phase transition of the system. The further increases in the value of s
will cause other phase transitions, hence additional splits of U until it reaches the desired
level, e.g., [U| = |X].

The main difficulty is how to identify these critical phase transition values of s. In [32],

the following procedure offered for detecting phase transition values: At each step, the
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previous solution — which is found for the previous value of s — is taken as an initialization;

and each value of U is duplicated. Let u; and uy be such duplicated values of u. Then,

1
p(uily) = pluly) { 5 + aé(u,y)
(2 ) (2.43)

p(uzly) = p(uly) G —aé(u, y)) :

where é(u, ) is a random noise term uniformly selected in the range [—1/2,1/2] and «
is a small scalar. Thus, the p(u;|y) and p(us|y) is slightly perturbed values of p(uly). If
(3:3)

these perturbed version of distributions are different enough, i.e., D33"*"(Pxu, || Pxju,) > 7,

where 7 is a threshold value and Djg is the Jensen - Shannon divergence given by

D§g17W2)(PX, Qx) = m Dx(Px||Px) + T2 Dx1(Qx | Px), where Py = m Px + mQx ,
(2.44)
the corresponding value of s is a phase transition value and u is splitted into u; and us.
Otherwise, both perturbed values collapse to the same solution. Finally, the value of s
is increased and the whole procedure is repeated. This algorithm is called deterministic
annealing IB and stated in Algorithm 1. We note that tuning s parameter is very critical,
such that the step size in update of s should be chosen carefully, otherwise cluster splits

(phase transitions) might be skipped.

Algorithm 1 Deterministic annealing-like IB algorithm

: input: pmf Py y, parameters a, 7, €.

: output: Optimal P[j'Y. (soft partitions U of Y into M clusters)

. initialization Set s — 0 and |U| =1, p(uly) =1, Vy € V.

: repeat

Update s, s = (1 + €5)So1q-

Duplicate clusters according to (2.43).

Apply IB algorithm by using iteration rules (2.12).

Check for splits. It D32 (Py; | Pyi,) > 7 then U < {U\ {u}} U {ur, uz}.
: until [U| > M.

Now, we apply the annealing-like algorithm to the 20 newsgroups dataset for word
clustering according to their topics. For convenience, we use a tiny version of 20 newsgroups
dataset, in which the most informative 100 words selected which come from 4 different
topics listed in Table 2.1. By using the the number of occurrences of words in topics, the

joint probability Px y is calculated. With the choice of parameters a = 0.005, ¢, = 0.001
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and 7 = 1/s, the annealing IB algorithm is run and Figure 2.5 shows the corresponding IB
curve, as well as, the phase transitions. Besides, the resulting complexity-relevance pairs

are plotted with the application of K-means algorithm for different number of clusters.

The obtained clusters are given in Table 2.2.

Relevance, I(U; X)

0.9 T T
= Annealing IB
0.8 - | X Transition phases 1
® K-means, K=3
K-means, K=4
0.71 K-means, K=2 }
® K-means, K=5
0.6 | ® K-means, K=6 1
® K-means, K=7
® K-means, K=8
0.5 a
[ ]
[ J
0.4 o
L]
0.3 n
0.2 8
0.1 b
0 | | | | | | | | | | |
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

Complexity, I(U;Y)

Figure 2.5: Annealing IB algorithm for text clustering.

Topics Sub-Topics
Group 1 (comp) comp.graphics, comp.os.ms-windows.misc, comp.sys.ibm.pc.hardware,
comp.sys.mac.hardware, comp.windows.x
Group 2 (rec) rec.autos, rec.motorcycles, rec.sport.baseball, rec.sport.hockey
Group 3 (sci) sci.crypt, sci.electronics, sci.med, sci.spacesci.space
Group 4 (talk) talk.politics.misc, talk.politics.guns, talk.politics.mideast, talk.religion.misc

Table 2.1: The topics of 100 words in the the subgroup of 20 newsgroup dataset.

Words

Cluster 1

card, computer, data, disk, display, dos, drive, driver, email, files,
format, ftp, graphics, help, image, mac, memory, number, pc, phone,
problem, program, scsi, server, software, system, version, video, windows

Cluster 2

baseball, bmw, car, engine, fans, games, hit, hockey,

honda, league, nhl, players, puck, season, team, win, won

Cluster 3

cancer, disease, doctor, insurance, launch, lunar, mars, medicine, mission, moon, msg, nasa,

orbit, patients, research, satellite, science, shuttle, solar, space, studies, technology, vitamin

Cluster 4

aids, bible, case, children, christian, course, dealer, earth, evidence, fact,
food, god, government, gun, health, human, israel, jesus, jews, law, oil,

power, president, question, religion, rights, state, university, war, water, world

Table 2.2: Clusters obtained through the application of the annealing IB algorithm on the

subgroup of 20 newsgroup dataset.
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2.6 Design of Optimal Quantizers

The IB method has been used in many fields, and in this section we present an application
in communications, which is an optimal quantizer design based on the IB method [86,87].
The main idea is adapted from the deterministic IB, which was first proposed in [32]
for text clustering (which is presented in the previous section). Here, the IB method
compresses an observation Y to a quantized variable U while preserving the relevant
information with a random variable X. We consider the case in which the variable U is
quantized with ¢ € N bits, i.e., || = 29. The aim is to find the deterministic quantizer
mapping FPyy which maps the discrete observation Y to a quantized variable U which
maximizes the relevance I(U; X) under a cardinality constraint |U/|. This is equivalent to
finding the optimal clustering of ¥ which maximizes the mutual information I(U; X).
So we initialize randomly by grouping Y into U] clusters. The algorithm takes one of
the elements into a new cluster — so-called the singleton cluster. Due to this change, the
probabilities Py and Py are changed, and the new values are calculated using the 1B
updates rules (2.12). Then, the deterministic IB is applied to decide on which one of the
original || clusters that the singleton cluster will be merged. The possible |U| choices

corresponds to merger costs given by
C(Vsng: Vi) = ODST™ (Pxy | Px) . k=1, U], (2.45)

where D{T"™) is the Jensen - Shannon divergence given in (2.44) and

v =Pr(Y =y)+Pr(U=u) (2.46a)
M = Pr(Y = y) /¢ (2.46D)
mo =Pr(U=u)/v . (2.46¢)

The singleton cluster merges with the one which has a smaller merger cost.

The algorithm is a greedy algorithm, which repeats the draw and merge steps for all Y
until the obtained clusters are the same. Since the IB method does not converge to the
global optimum, it should be run several times and the clustering (quantization) should

be done with the best outcome, i.e., the mapping which maximize the IB cost (2.11).

Now we consider an example of finding the optimum channel quantizers for the binary

input additive white Gaussian noise (AWGN) channel [86, Section III], in which a code
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bit € {0,1} from a binary LDPC codeword is transmitted over a binary symmetric
AWGN channel with binary shift keying (BPSK) modulation, i.e., s(z) = —2z + 1.
Symbol s(x) is transmitted over the channel, and the continuous channel output y is
observed. The prior distribution of the code bits is assumed to be Bernoulli-(1/2), i.e.,
p(x =0) = p(x = 1) = 1/2. Then the joint distribution p(z,y) is given by

p(2,y) = ———— exp (—M> | (2.47)

"9 2102 207,

where 02 is the channel noise variance. We note that the deterministic method offered
for the optimum channel quantizers is valid for only the discrete variables, so Y needs
to be discretized with a fine resolution. The channel output is discretized into uniformly
spaced representation values. Figure 2.6 illustrates an example in which the channel
output interval [—M, M] is discretized into 20 values, i.e., || = 20, and these values are

represented by using unsigned integers.

M M
"012345678910111213141516171819 '

Figure 2.6: Discretization of the channel output.

Mo W Vo V3 V4 Vs

A A A A

012345678 910111213141516171819

Figure 2.7: Visualization of clusters {yk}',f’z'l separated by boundaries |, that are to be optimized.

The idea is to build a quantizer which uses a deterministic mapping Py which maps
from the discrete output Y to the quantized value U, such that the quantized values are as
much as informative about X (i.e., large mutual information /(U : X)) under the resolution
constraint of the quantizer, i.e., |{|. Finding the mapping Py which maximizes I(U; X)
corresponds to finding the optimum boundaries separating the clusters )y, as illustrated
in Figure 2.7. For example, after the random initialization of clusters, at the first step,
the rightmost element of ) is taken into the singleton cluster, and the merger costs are
calculated for putting it back into )} and putting it to its neighbor cluster );. The cluster
which makes the merger cost smaller is chosen. At each iteration, an element on the border

is taken into the singleton cluster, which will be merged into the one with a smaller cost
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among the original and neighbor clusters. These steps are repeated until the resulting

cluster does not change anymore. This algorithm is detailed in [86, Algorithm 1].

In digital communication systems, a continuous channel output is fed into an analog-
to-digital converter to obtain a discrete valued sample — depicted in Figure 2.8. In theory,
it is assumed that the quantizer has a very high resolution so the effect of quantization is
generally ignored. However, this is not the case in real life. A few bits are desired in the

implementations, hence the quantizer becomes a bottleneck in the communication system.

Y Quantizer

Pyy — U

X —| Pyix

Figure 2.8: Memoryless channel with subsequent quantizer.

The state of the art low-density parity-check (LDPC) decoders execute the node
operations by processing the quasi-continuous LLRs, which makes belief propagation
decoding challenging. The IB method is proposed in [86] to overcome this complexity
issues. The main idea is to pass compressed but highly informative integer-valued messages
along the edges of a Tanner graph. To do so, Lewandowsky and Bauch use the IB
method [86], and construct discrete message passing decoders for LDPC codes; and they

showed that these decoders outperform state of the art decoders.

We close this section by mentioning the implementation issues of DNNs which are used
for many artificial intelligence (AI) algorithms. The superior success of DNNs comes at
the cost of high complexity (computational- and memory-wise). Although the devices,
e.g., smartphones, get more and more powerful compared to a few year ago with the
significant improvement of the chipsets, the implementation of DNNs is still a challenging
task. The proposed approach seems particularly promising for the implementation of DNN

algorithms on chipsets.
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Chapter 3

Discrete Memoryless CEO Problem

with Side Information

In this chapter, we study the K-encoder DM CEOQO problem with side information shown
in Figure 3.1. Consider a (K + 2)-dimensional memoryless source (X, Yy, Yy,...,Yk)
with finite alphabet X x Yy x Vi X ... X Vi and joint probability mass function (pmf)
Pxvovi..vie (@, Y0, Y1, ..., yk). It is assumed that for all S C K :={1,... K},

Ys o (X,Y,) - Yse (3.1)

forms a Markov chain in that order. Also, let {(X;, Yo, Y14, ..., Yk:)}, be a sequence of
n independent copies of (X, Yy, Y1,...,Yg), Le, (X", Y7 Y, ... Y2) ~ [Ty Pxyovi,..vi
(%iy Yo.is Y14y - - - » Yki)- In the model studied in this chapter, Encoder (or agent) k, k € IC,
observes the memoryless source Y, and uses Rj, bits per sample to describe it to the
decoder. The decoder observes a statistically dependent memoryless side information
stream, in the form of the sequence Y|, and wants to reconstruct the remote source X"
to within a prescribed fidelity level. Similar to [10], in this thesis we take the reproduction
alphabet X to be equal to the set of probability distributions over the source alphabet
X. Thus, for a vector Xn e /f”, the notation Xj(x) means the j*-coordinate of X",
1 < 7 < n, which is a probability distribution on X', evaluated for the outcome x € X'. In
other words, the decoder generates ‘soft’ estimates of the remote source’s sequences. We
consider the logarithmic loss distortion measure defined as in (2.5), where the letter-wise

distortion measure is given by (2.1).
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Y7 Ry
| Encoder 1 >
.............................. _ Y5 Eneoder 2 Ry ch
X — Py, v, . YiX ' ] 7| Bneoder ’ % — X"
.................... ) : z
Yy Rk
 Encoder K >

(R
Figure 3.1: CEO source coding problem with side information.

Definition 1. A rate-distortion code (of blocklength n) for the model of Figure 3.1 consists

of K encoding functions
o s {1, MY, fork=1,... K,
and a decoding function
™ {1 MMy ) x {1, M ) Y A |

Definition 2. A rate-distortion tuple (Ry, ..., Rk, D) is achievable for the DM CEQ source
coding problem with side information if there exist a blocklength n, encoding functions

{¢,§n)}§:1 and a decoding function 1™ such that
1
Ry > =logM™ | fork=1,... K,
n
D2 E[d® (X", v (o (07, 6 (V) YE))]

The rate-distortion region RD¢go of the model of Figure 3.1 is defined as the closure of

all non-negative rate-distortion tuples (Ry, ..., Rk, D) that are achievable. [ |

3.1 Rate-Distortion Region

The following theorem gives a single-letter characterization of the rate-distortion region

RD¢go of the DM CEO problem with side information under logarithmic loss measure.

Definition 3. For given tuple of auziliary random variables (Uy, ..., Uk, Q) with distri-

bution Py, o(uk,q) such that Pxy, v ve.0(Z, Yo, Y, U, q) factorizes as

K

K
Px v, (:L', yO) H PYk|X»Y0 (yk|xv yO) PQ<q) H PUk|Yk7Q(uk|yk7 Q) ) (32)
k=1 k=1
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define RDcro(Uy, ..., Uk, Q) as the set of all non-negative rate-distortion tuples (Ry, ...
Rk, D) that satisfy, for all subsets S C IC,

?

> R+ D= IV Ukl X, Yo, Q) + H(X|Use, Yo, Q) - n
keS keS

Theorem 1. The rate-distortion region for the DM CEQ problem under logarithmic loss
15 given by

RDEEO == URDCEO<U1> ER) UKa Q) y

where the union is taken over all tuples (Uy, ..., Uk, Q) with distributions that satisfy (3.2).
Proof. The proof of Theorem 1 is given in Appendix A. O]

Remark 1. To exhaust the region of Theorem 1, it is enough to restrict {U, Y | and Q
to satisfy \Ux| < | V| for k € K and |Q|] < K + 2 (see [10, Appendiz A]). [

Remark 2. Theorem 1 extends the result of [10, Theorem 10] to the case in which the
decoder has, or observes, its own side information stream Yy' and the agents’ observations
are conditionally independent given the remote source X™ and Yy', i.e., Y& (X", Y")-e YL
holds for all subsets S C KC. The rate-distortion region of this problem can be obtained
readily by applying [10, Theorem 10], which provides the rate-distortion region of the model
without side information at decoder, to the modified setting in which the remote source
is X = (X,Yy), another agent (agent K + 1) observes Y41 = Yo and communicates
at large rate Rk, = oo with the CEO, which wishes to estimates X to within average

logarithmic distortion D and has no own side information stream’. |

3.2 Estimation of Encoder Observations

In this section, we focus on the two-encoder case, i.e., K = 2. Suppose the decoder wants
to estimate the encoder observations (Y7, Y2), i.e., X = (Y1, Y2). Note that in this case the
side information Yy can be chosen arbitrarily correlated to (Y7, Y5) and is not restricted to
satisfy any Markov structure, since the Markov chain Y} —-e- (X, Yy) —e- Y5 is satisfied for

all choices of Yj that are arbitrarily correlated with (Y7,Y3).

'Note that for the modified CEO setting the agents’ observations are conditionally independent given the

remote source X.
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If a distortion of D bits is tolerated on the joint estimation of the pair (Y;,Y3), then
the achievable rate-distortion region can be obtained easily from Theorem 1, as a slight
variation of the Slepian-Wolf region, namely the set of non-negative rate-distortion triples

(R1, Ry, D) such that

Ry > HW|Yy,Y,) — D (3.3a)
Ry > H(Ys|Yy, Y1) = D (3.3b)
R1+R2 Z H(Yi,Yé|Yb)—D (330)

The following theorem gives a characterization of the set of rate-distortion quadruples
(R1, Ry, Dy, Dy) that are achievable in the more general case in which a distortion D; is
tolerated on the estimation of the source component Y; and a distortion D, is tolerated
on the estimation of the source component Y5, i.e., the rate-distortion region of the
two-encoder DM multiterminal source coding problem with arbitrarily correlated side

information at the decoder.

Theorem 2. If X = (Y1,Y3), the component Y; is to be reconstructed to within average
logarithmic loss distortion Dy and the component Yy is to be reconstructed to within
average logarithmic loss distortion Do, the rate-distortion region RDyr of the associated
two-encoder DM multiterminal source coding problem with correlated side information at
the decoder under logarithmic loss is given by the set of all non-negative rate-distortion

quadruples (Ry, Ry, D1, Ds) that satisfy

Ry > I(Uy; Y1|Us, Y0, Q)
Ry > I(Uz; Ya|U1, Yo, Q)
Ry + Ry > 1(Uy, Uz Y1, Y2 [ Yo, Q)
Dy > HY1|Uy, Us, Yo, Q)
Dy > H(Y>|U1, Us, Y0, Q) ,

Jor some joint measure of the form PYO,YI,Y2<yOa Y1, ?J2)PQ(Q)PU1\Y1,Q(U1|?J1, Q)PUQ\YQ,Q(U2|?J27 Q)-
Proof. The proof of Theorem 2 is given in Appendix B. O]

Remark 3. The auziliary random variables of Theorem 2 are such that Uy o (Y1, Q) —

o (Yo, Ys,Us) and Uy o (Y5, Q) - (Yo, Y1, Uy) form Markov chains. [
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Remark 4. The result of Theorem 2 extends that of [10, Theorem 6] for the two-encoder
source coding problem with average logarithmic loss distortion constraints on Y1 and Y5
and no side information at the decoder to the setting in which the decoder has its own side
information Yy that is arbitrarily correlated with (Y1,Y2). It is noteworthy that while the
Berger-Tung inner bound is known to be non-tight for more than two encoders, as it is
not optimal for the lossless modulo-sum problem of Korner and Marton [88], Theorem 2
shows that it is tight for the case of three encoders if the observation of the third encoder

is encoded at large (infinite) rate. [

In the case in which the sources Y; and Y, are conditionally independent given Yy, i.e.,
Y] e~ Yy e Y, forms a Markov chain, it can be shown easily that the result of Theorem 2

reduces to the set of rates and distortions that satisfy

Ry > I(UnsYh) — I(U:: Vo) (3.4)
Ry > I(Us; Ya) — I(Uy; V) (3.5)
Dy > H(1|Uy, Yo) (3.6)
Dy > H(Y»2|Us, Yy) , (3.7)

for some measure of the form Py, v, v, (%o, ¥1, Y2) Pojvi (w1 [y1) Pusjvs (2] ).
This result can also be obtained by applying [89, Theorem 6] with the reproduction

functions therein chosen as
fk(Uk,lfo) = PI‘[Yk = yk|Uk7YE)] s fOl" ]f = 1, 2 . (38)
Then, note that with this choice we have

E[d(Yx, fu(Uk, Yo)] = H(Y|Uy, Yo) , for k=1,2. (3.9)

3.3 An Example: Distributed Pattern Classification

Consider the problem of distributed pattern classification shown in Figure 3.2. In this
example, the decoder is a predictor whose role is to guess the unknown class X € X of
a measurable pair (Y7,Y5) € Yy x Vs on the basis of inputs from two learners as well as
its own observation about the target class, in the form of some correlated Yy € ). It

is assumed that Y} —e— (X,Y;) o Y5. The first learner produces its input based only
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Y; R
- Qu,ivi :

X = PY07Y17Y2|X '_ QXlUlyUQ;YO — XeX

Y; Qu,|vs =

RE

Figure 3.2: An example of distributed pattern classification.

on Y; € Yi; and the second learner produces its input based only on Y5 € ),. For the
sake of a smaller generalization gap?, the inputs of the learners are restricted to have
description lengths that are no more than R; and Ry bits per sample, respectively. Let
Quiyv, = Y — P(Ur) and Quypy, @ Vo — P(Us) be two (stochastic) such learners. Also,
let QX|U1,U2,Y0 : Uy XUy X Yy — P(X) be a soft-decoder or predictor that maps the pair
of representations (Uy, Usy) and Yj to a probability distribution on the label space X'. The

pair of learners and predictor induce a classifier

Qx|y0,y1,y2($|yo7y1,y2) = Z Quajyi (s |y1) Z QU2|Y2(U2|y2)QX|U1,U2,YO($|U1,U2,yo)

w1 EUL ug EUs

= EQley1 EQUZ\YQ [QX|U1,U2,Y0 (@|U1, Uz, 90)] (3.10)

whose probability of classification error is defined as

Pg(QX‘Yo,Yl,YQ) = 1 - EPX,YO,YI,YQ [QX‘Y(),Yl,YQ <X|%7 Yi’ YQ)] : (311)

Let RD¢po be the rate-distortion region of the associated two-encoder DM CEO problem
with side information as given by Theorem 1. The following proposition shows that there

exists a classifier ) for which the probability of misclassification can be upper

*
X|Yp,Y1,Y2
bounded in terms of the minimal average logarithmic loss distortion that is achievable for

the rate pair (R, Ry) in RD¢ -

2The generalization gap, defined as the difference between the empirical risk (average risk over a finite training
sample) and the population risk (average risk over the true joint distribution), can be upper bounded using the
mutual information between the learner’s inputs and outputs, see, e.g., [90,91] and the recent [92], which provides a
fundamental justification of the use of the minimum description length (MDL) constraint on the learners mappings

as a regularizer term.
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Proposition 1. For the problem of distributed pattern classification of Figure 5.2, there

exists a classifier Q}|YO _— for which the probability of classification error satisfies
Pe(Qyoyiys) < 1 0xp ( —inf{D : (Ry,Ry, D) € RD@EO}) ,

where RD¢ g is the rate-distortion region of the associated two-encoder DM CEO problem

with side information as given by Theorem 1.

Proof. Let a triple mappings (Qu, v, Qu,|vs QX|U1,U2,Y0) be given. It is easy to see that the

probability of classification error of the classifier Qyy; y, y, as defined by (3.11) satisfies

PE(QX\YO,Yl,Yg) SEpeyoviv [—log QX\YO,Yl,Yg (X 1Yo, Y1, Y2)] . (3.12)

Applying Jensen’s inequality on the right hand side (RHS) of (3.12), using the concavity
of the logarithm function, and combining with the fact that the exponential function

increases monotonically, the probability of classification error can be further bounded as

PE(QX|Y0,Y1,Y2) S 1 - eXp ( - EPX,YO,Yl,YQ [_ log QX’\YO,Yl,Yg (X|Yb’ Yiv }/Q)D . (313)

Using (3.10) and continuing from (3.13), we get

PS(QX\YO,Yl,Yg) <1- CXp < - EPX,YO,Yl,YQ [_ log EQUI\YI ]EQU2|Y2 [QX|U1,U2,YO (X|U17 U27 Yb)”)

<1—exp < - EPX,YO,Yl,YQEQU1|YI EQU2|Y2 [_ log[QX\Ul,UQ,YO (X|U17 U, Yb)“) )
(3.14)

where the last inequality follows by applying Jensen’s inequality and using the concavity
of the logarithm function.

Noticing that the term in the exponential function in the RHS of (3.14),

D(QUl\YN QUl\Ylv QX\Ul,UQ,YO) = EPXYOY1Y2 ]EQU1|Y1 EQU2|Y2 [_ log QX|U1,U2,Y0 (X|U17 Us, YO)] )

is the average logarithmic loss, or cross-entropy risk, of the triple (Qu, v, , Qus|vs, @ X|U1,U2,YO)§
the inequality (3.14) implies that minimizing the average logarithmic loss distortion leads
to classifier with smaller (bound on) its classification error. Using Theorem 1, the min-
imum average logarithmic loss, minimized over all mappings Qu,jy;, : i — P(U)
and Qu,|y, : Yo — P(Us) that have description lengths no more than R; and R; bits

per-sample, respectively, as well as all choices of ) Xy, - UL X Us X Vo — P(X), is

D*(Ry, Ry) = inf{D : (Ry, Ry, D) € RD{yo} - (3.15)
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Thus, the direct part of Theorem 1 guarantees the existence of a classifier () whose

;2|Y0,Y1,Y2
probability of error satisfies the bound given in Proposition 1. ]

To make the above example more concrete, consider the following scenario where Yy
plays the role of information about the sub-class of the label class X € {0,1,2,3}. More
specifically, let S be a random variable that is uniformly distributed over {1,2}. Also,
let X7 and X5 be two random variables that are independent between them and from S,
distributed uniformly over {1,3} and {0, 2} respectively. The state S acts as a random
switch that connects X; or X5 to X, i.e.,

X = Xs. (3.16)

That is, if S =1 then X = Xy, and if S = 2 then X = X,. Thus, the value of S indicates
whether X is odd- or even-valued (i.e., the sub-class of X). Also, let

Yo=S5 (3.172)
Yi = Xs @ Zi (3.17D)
Yo =Xs® 2o, (3.17¢)

where Z; and Z, are Bernoulli-(p) random variables, p € (0, 1), that are independent
between them, and from (S, X7, X5), and the addition is modulo 4. For simplification,
we let Ry = Ry = R. We numerically approximate the set of (R, D) pairs such that
(R, R, D) is in the rate-distortion region RD{g, corresponding to the CEO network of
this example. The algorithm that we use for the computation will be described in detail in
Chapter 5.1.1. The lower convex envelope of these (R, D) pairs is plotted in Figure 3.3a
for p € {0.01,0.1,0.25,0.5}. Continuing our example, we also compute the upper bound
on the probability of classification error according to Proposition 1. The result is given in
Figure 3.3b. Observe that if Y} and Y3 are high-quality estimates of X (e.g., p = 0.01),
then a small increase in the complezity R results in a large relative improvement of the
(bound on) the probability of classification error. On the other hand, if Y; and Y5 are
low-quality estimates of X (e.g., p = 0.25) then we require a large increase of R in order
to obtain an appreciable reduction in the error probability. Recalling that larger R implies
lesser generalization capability [90-92], these numerical results are consistent with the

fact that classifiers should strike a good balance between accuracy and their ability to
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generalize well to unseen data. Figure 3.3¢ quantifies the value of side information S given

to both learners and predictor, none of them, or only the predictor, for p = 0.25.

— =050 i i i i i — 5 =050
ol —_—p=0.25 —p=025
09 —p=0.10 51 —p=010

p=001 p=001

Upper Bound on P
Upper Bound on P

031

Figure 3.3: Illustration of the bound on the probability of classification error of Proposition 1 for
the example described by (3.16) and (3.17).

(a) Distortion-rate function of the network of Figure 3.2 computed for p € {0.01,0.1,0.25,0.5}.
(b) Upper bound on the probability of classification error computed according to Proposition 1.
(c) Effect of side information (SI) Yj when given to both learners and the predictor, only the

predictor or none of them.

3.4 Hypothesis Testing Against Conditional Independence

Consider the multiterminal detection system shown in Figure 3.4, where a memoryless
vector source (X, Yo, Y1,...,Yk), K > 2, has a joint distribution that depends on two
hypotheses, a null hypothesis Hy and an alternate hypothesis H;. A detector that observes
directly the pair (X,Y;) but only receives summary information of the observations
(Y1,...,Yk), seeks to determine which of the two hypotheses is true. Specifically, Encoder
k, k=1,..., K, which observes an i.i.d. string Y}, sends a message M}, to the detector a
finite rate of Ry bits per observation over a noise-free channel; and the detector makes its
decision between the two hypotheses on the basis of the received messages (M, ..., Mk)
as well as the available pair (X", Yy"). In doing so, the detector can make two types of
error: Type I error (guessing H; while Hy is true) and Type II error (guessing Hy while H;
is true). The Type II error probability decreases exponentially fast with the size n of the
i.i.d. strings, say with an exponent F; and, classically, one is interested is characterizing

the set of achievable rate-exponent tuples (Ry,..., Rk, F) in the regime in which the
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Ry
Y[ —{ Encoder 1 >
Yg 2 o :
5" — Encoder 1T & | He{HyH)}
(&)
A
n RK
% —| Encoder K ’

[ 1

X n YOTL

Figure 3.4: Distributed hypothesis testing against conditional independence.

probability of the Type I error is kept below a prescribed small value €. This problem,
which was first introduced by Berger [93], and then studied further in [65,66,94], arises
naturally in many applications (for recent developments on this topic, the reader may refer
to [16,67,68,95-99] and references therein).

In this section, we are interested in a class of the hypothesis testing problem studied
n [16]* obtained by restricting the joint distribution of the variables to satisfy the Markov
chain

Ys o (X,Y)) o Yse, foral SCK:={1,...,K}, (3.18)

under the null hypothesis Hy; and X and (Y7,. .., Yx) are independent conditionally given
Y, under the alternate hypothesis H, i.e.,

K
Ho: Pxyyvi..vie = Pxy, H Py, 1xv, (3.19a)
i=1
Hy: Qxyovivie = PvoPxyvoPri,. viclvs - (3.19b)

Let {(Xi, Yo, Y14, .-, Yii) 2, be an iid. sequence of random vectors with the distribu-
tion at a single stage being the same as the generic vector (X, Yy, Y1,...,Yk). As shown
in Figure 3.4, Encoder k € KC observes Y;" and then sends a message to the detector using

an encoding function

oMy {1 M™Y. (3.20)

3In fact, the model of [12] also involves a random variable Y1, which is chosen here to be deterministic as it

is not relevant for the analysis and discussion that will follow in this thesis (see Remark 5).
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The pair (X", Yy") is available at the detector which uses it together with the messages

from the encoders to make a decision between the two hypotheses based on a decision rule
D {1, MMy ) x {1 MY ) Xt x V= {Hy, Hy ) (3.21)

The mapping (3.21) is such that ™ (my, ... cmc, 2" yy) = Ho if (mq, ... .omg, 2™, yf) €
A,, and H; otherwise, with

A ST My < xm < Wy
k=1

designating the acceptance region for Hy. The encoders {gzvﬁfgn)}le and the detector @E(")
are such that the Type I error probability does not exceed a prescribed level € € [0, 1], i.e.,

P“ n Y(n
M (V) (Vi) X7, Y

(A7) <e, (3.22)
and the Type II error probability does not exceed 3, i.e.,

o (An) <5 (3.23)

------

Definition 4. A rate-exponent tuple (Ry,..., Rk, E) is achievable for a fized € € |0, 1]
and any positive J if there exist a sufficiently large blocklength n, encoders {gzén)}le and a

detector 15(”) such that

1 n
“logM™ <Ry +6, fork=1,.. K, (3.24a)
n

1
——logB>E—35. (3.24b)
n

The rate-exponent region Ryt s defined as

Rur == m RHT,E , (325)
e>0
where Ryt is the set of all achievable rate-exponent vectors for a fized € € (0, 1]. [ |

We start with an entropy characterization of the rate-exponent Ry as defined by (3.25).

Let

R=J U R(n A" hex) . (3.26)

" {qzin)}kelc
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where

R<n {é,ﬁ")}kea - {(Rl,...,RK,E) s.t.

1
R, > =log|¢M (Y|, for k=1,... K
n

1 Y(n n n n
E < I () beers X7VF) } :

We have the following proposition, whose proof is essentially similar to that of [65, Theorem

5] and, hence, is omitted.

Proposition 2. Ryr= R* . [

Now, recall the CEO source coding problem under logarithmic loss of Figure 3.1 and
its rate-distortion region RD{ o as given by Theorem 1 in the case in which the Markov
chain (3.1) holds. The following proposition states that Ryt and RD¢gq can be inferred

from each other.

Proposition 3. (Ry,..., Rk, E) € Ryr if and only if (Ry,..., Rk, H(X|Yy) — E) €
RDo-

Proof. The proof of Proposition 3 appears in Appendix C. O]
The result of the next theorem follows easily by using Theorem 1 and Proposition 3.

Theorem 3. [100, Theorem 1] For the distributed hypothesis testing against conditional
independence problem of Figure 3./, the rate-exponent region is given by the union of all

non-negative tuples (Ry, ..., Rx, F) that satisfy, for all subsets S C IC,

E<I(Us; X|Y0, Q)+ Y (Ri — I(Yi; Ul X, Y5,Q)) .
keS

for some auziliary random variables (Uy, ..., Uk, Q) with distribution Py, o(ux,q) such

that Px v, v ve.0(%, Yo, Y, Uk, q) factorizes as

Px v, (2, Yo HPYMXYO(QHI Yo) Polq HPUklka(tuk, q) - u
k=1
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Remark 5. In [16], Rahman and Wagner study the hypothesis testing problem of Fig-
ure 3.4 in the case in which X is replaced by a two-source (Yii1,X) such that, like in
our setup (which corresponds to Y1 deterministic), Yy induces conditional indepen-
dence between (Y1,...,Yk,Yiki1) and X under the alternate hypothesis Hy. Under the
null hypothesis Hy, however, the model studied by Rahman and Wagner in [16] assumes
a more general distribution than ours in which (Y1,...,Yrk,Yk41) are arbitrarily corre-
lated among them and with the pair (X,Yy). More precisely, the joint distributions of
(X, Y1,..., Yk, Y1) under the null and alternate hypotheses as considered in [16] are

Ho : Pxyovi.Yie Yerr = ProPxoyi v i vo (3.28a)

Hy: Qxyovivievien = Do Pxpvo P, vie Yie v - (3.28b)

For this model, they provide inner and outer bounds on the rate-exponent region which
do not match in general (see [16, Theorem 1] for the inner bound and [16, Theorem 2]
for the outer bound). The inner bound of [16, Theorem 1] is based on a scheme, named
Quantize-Bin-Test scheme therein, that is similar to the Berger-Tung distributed source
coding scheme [101,102]; and whose achievable rate-exponent region can be shown through
submodularity arguments to be equivalent to the region stated in Theorem 3 (with Yi .1 set
to be deterministic). The result of Theorem 3 then shows that if the joint distribution of
the variables under the null hypothesis is restricted to satisfy (3.19a), i.e., the encoders’
observations {Yy }rexc are independent conditionally given (X,Yy), then the Quantize-Bin-
Test scheme of [16, Theorem 1] is optimal. We note that, prior to this work, for general
distributions under the null hypothesis (i.e., without the Markov chain (3.1) under this
hypothesis) the optimality of the Quantize-Bin-Test scheme of [16] for the problem of
testing against conditional independence was known only for the special case of a single
encoder, i.e., K = 1, (see [16, Theorem 3]), a result which can also be recovered from

Theorem 3. [ |

47



48



Chapter 4

Vector Gaussian CEO Problem with

Side Information

In this chapter, we study the K-encoder vector Gaussian CEO problem with side in-
formation shown in Figure 4.1. The remote vector source X is complex-valued, has
n,-dimensions, and is assumed to be Gaussian with zero mean and covariance matrix
Yy = 0. X" = (Xy,...,X,) denotes a collection of n independent copies of X. The
agents’ observations are Gaussian noisy versions of the remote vector source, with the

observation at agent k € K given by
Y,w:HkaFN;w s fOI’ 1= 1,...,71, (41)

where Hy € C™*"* represents the channel matrix connecting the remote vector source
to the k-th agent; and Ny, € C" is the noise vector at this agent, assumed to be i.i.d.
Gaussian with zero-mean and independent from X;. The decoder has its own noisy
observation of the remote vector source, in the form of a correlated jointly Gaussian side

information stream Y, with
YOJ = H()Xl + N07i 5 for © = 1, e (42)

where, similar to the above, Hy € C"*™ is the channel matrix connecting the remote
vector source to the CEO; and Ny ; € C™ is the noise vector at the CEO, assumed to be
Gaussian with zero-mean and covariance matrix 3y > 0 and independent from X;. In this

chapter, it is assumed that the agents’ observations are independent conditionally given
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Figure 4.1: Vector Gaussian CEO problem with side information.

the remote vector source X" and the side information Y, i.e., for all § C K,
Yi—-o (X"Y])) o Y . (4.3)

Using (4.1) and (4.2), it is easy to see that the assumption (4.3) is equivalent to that the
noises at the agents are independent conditionally given Ny. For notational simplicity, 3
denotes the conditional covariance matrix of the noise N at the k-th agent given Ny, i.e.,
Y = X, |n,- Recalling that for a set S C K, the notation N designates the collection of
noise vectors with indices in the set S, in what follows we denote the covariance matrix of

Ng as 3y,,.

4.1 Rate-Distortion Region

We first state the following proposition which essentially extends the result of Theorem 1

to the case of sources with continuous alphabets.

Definition 5. For given tuple of auziliary random variables (Uy, ..., Uk, Q) with distri-

bution Py, o(ux,q) such that Px v, v.ue.0(X, Yo, Yk, Uk, q) factorizes as

K

K
PX,YO (X7 YO) H PYk|X,Y0 (Yk|X, yO) PQ(q) H PUk\Yk,Q<uk’y}ca Q) ) (4'4)
k=1 k=1

define 7/3\1510E0(U1, ..., Uk, Q) as the set of all non-negative rate-distortion tuples (R, ...,
Rk, D) that satisfy, for all subsets S C IC,

D+ Re> Y (Y5 UilX, Yo, Q) + h(X|Use, Yo, Q) - (4.5)
keS keS
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Also, let ﬁ\ﬁéEo = U7€7JDICEO(U1, ..., Uk, Q) where the union is taken over all tuples
(Uy,..., Uk, Q) with distributions that satisfy (4.4). [

Definition 6. For given tuple of auziliary random variables (V1, ..., Vi, Q') with distri-

bution Py, o (vk,q') such that Px v, vevi.0 (X, Y0, YK, Vi, ¢') factorizes as

K K

Px v, (x,y0) | [ Prux.vo (yelx. y0) Por(d) [ [ Prirvir (ilys. @) . (4.6)
i Pl

11
define RDcpo(Vi, ..., Vi, Q') as the set of all non-negative rate-distortion tuples (R, . ..,
Rk, D) that satisfy, for all subsets S C IC,

Z Ry > 1(Ys; Vs|Vse, Yo,Q")
kes

D> hXWi,..., Vi, Y0, Q) .

Also, let 7/2\1/7101EO = UﬁgEo(Vb .., Vi, Q') where the union is taken over all tuples
Vi, ..., Vi, Q") with distributions that satisfy (4.6). [ |

Proposition 4. The rate-distortion region for the vector Gaussian CEQO problem under

logarithmic loss is given by
. — !
RDya.cro = RDcro = RDcxo -

Proof. The proof of Proposition 4 is given in Appendix D. O

For convenience, we now introduce the following notation which will be instrumental in
what follows. Let, for every set S C K, the set S := {0} U S°. Also, for S C K and given
matrices {€2,}5 | such that 0 < Q; < X', let Ag designate the block-diagonal matrix

given by
0 0
As = ' , (4.7)
0 diag({3r — X QXp}rese)

where 0 in the principal diagonal elements is the ngxng-all zero matrix.
The following theorem gives an explicit characterization of the rate-distortion region of

the vector Gaussian CEO problem with side information under logarithmic loss measure

that we study in this chapter.
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Theorem 4. The rate-distortion region RDYq cpo of the vector Gaussian CEO prob-

lem under logarithmic loss is given by the set of all non-negative rate-distortion tuples

(Ry,..., Rk, D) that satisfy, for all subsets S C K,

D—l—ZRk > Zlog |I—Qk2 | + log
keS keS

(r )(2 +HLE, (1- AsS, )H5>_1',

for matrices {Q}E | such that 0 < €, < X!, where S = {0} US® and Ag is as defined
by (4.7).

Proof. The proof of the direct part of Theorem 4 follows simply by evaluating the region
ﬁlch as described by the inequalities (4.5) using Gaussian test channels and no time-
sharing. Specifically, we set @ = () and p(ug|yx, q) = CN (yx, 2 1/2(Qk — 1)21/2) kek.
The proof of the converse appears in Appendix E. m

In the case in which the noises at the agents are independent among them and from
the noise N at the CEO, the result of Theorem 4 takes a simpler form which is stated in

the following corollary.

Corollary 1. Consider the vector Gaussian CEO problem described by (4.1) and (4.2) with
the noises (Ny,...,Ng) being independent among them and with No. Under logarithmic

loss, the rate-distortion region this model is given by the set of all non-negative tuples

(Ry,..., Rk, D) that satisfy, for all subsets S C K,

-1
)

D+Y Ry>) logm———rc— — Q 57 +log |(me) (B! + HIX;'Ho + Y H[QH,)
keS keS | k2 keSe

or some matrices {Q Y such that 0 < Q, < 21 [ |
f {2} k

Remark 6. The direct part of Theorem J shows that Gaussian test channels and no-time
sharing exhaust the region. For the converse proof of Theorem /, we derive an outer
bound on the region 7/2\7/)ICEO. In doing so, we use the de Bruijn identity, a connection
between differential entropy and Fisher information, along with the properties of MMSE
and Fisher information. By opposition to the case of quadratic distortion measure for
which the application of this technique was shown in [11] to result in an outer bound that
1s generally non-tight, Theorem 4 shows that the approach is successful in the case of
logarithmic loss distortion measure as it yields a complete characterization of the region.

On this aspect, note that in the specific case of scalar Gaussian sources, an alternate
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converse proof may be obtained by extending that of the scalar Gaussian many-help-one
source coding problem by Oohama [3] and Prabhakaran et al. [}] through accounting for
additional side information at CEO and replacing the original mean square error distortion
constraint with conditional entropy. However, such approach does not seem conclusive in
the vector case, as the entropy power inequality s known to be generally non-tight in this

setting [12,13]. |

Remark 7. The result of Theorem J generalizes that of [59] which considers the case of
only one agent, i.e., the remote vector Gaussian Wyner-Ziv model under logarithmic loss,
to the case of an arbitrarily number of agents. The converse proof of [59], which relies
on the technique of orthogonal transform to reduce the vector setting to one of parallel
scalar Gaussian settings, seems insufficient to diagonalize all the noise covariance matrices
stmultaneously in the case of more than one agent. The result of Theorem j is also
connected to recent developments on characterizing the capacity of multiple-input multiple-
output (MIMO) relay channels in which the relay nodes are connected to the receiver
through error-free finite-capacity links (i.e., the so-called cloud radio access networks). In
particular, the reader may refer to [103, Theorem 4] where important progress is done,
and [62] where compress-and-forward with joint decompression-decoding is shown to be

optimal under the constraint of oblivious relay processing. [ |

4.2 Gaussian Test Channels with Time-Sharing Exhaust the

Berger-Tung Region

Proposition 4 shows that the union of all rate-distortion tuples that satisfy (4.5) for all
subsets S C K coincides with the Berger-Tung inner bound in which time-sharing is used.
The direct part of Theorem 4 is obtained by evaluating (4.5) using Gaussian test channels
and no time-sharing, i.e., @ = 0, not the Berger-Tung inner bound. The reader may
wonder: i) whether Gaussian test channels also exhaust the Berger-Tung inner bound for
the vector Gaussian CEO problem that we study here, and ii) whether time-sharing is
needed with the Berger-Tung scheme. In this section, we answer both questions in the
affirmative. In particular, we show that the Berger-Tung coding scheme with Gaussian
test channels and time-sharing achieves distortion levels that are not larger than any other

coding scheme. That is, Gaussian test channels with time-sharing exhaust the region
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I
RD g as defined in Definition 6.

Proposition 5. The rate-distortion region for the vector Gaussian CEO problem under

logarithmic loss is given by

—1I1I
7Q'ZDQ/C}—CEO = U RDCEO(VYIGv s 7V1g1a Ql) )

!
where RDcgo(+) is as given in Definition 0 and the superscript G is used to denote that

the union is taken over Gaussian distributed V,S ~ p(vg|yr,q') conditionally on (Y, Q').

Proof. For the proof of Proposition 5, it is sufficient to show that, for fixed Gaussian
conditional distributions {p(us|yx)}_,, the extreme points of the polytopes defined by (4.5)
are dominated by points that are in ﬁgEo and which are achievable using Gaussian
conditional distributions {p(v|ys,¢')}5_ ;. Hereafter, we give a brief outline of proof for
the case K = 2. The reasoning for K > 2 is similar and is provided in Appendix F.
Consider the inequalities (4.5) with Q = () and (Uy, Us) := (U, US') chosen to be Gaussian
(see Theorem 4). Consider now the extreme points of the polytopes defined by the obtained

inequalities:

0,0, 1(Y1; USIX, Yo) + I(Ya; USIX, Yo) + h(X[Yo))
I(Y1;USIY0),0, I(US; Y5 |X, Yo) + M(X|US, Yy))

= (0,

= (

= (0,1(Y2; Us'| Yo), I(U; Y1 |X, Yo) + h(X|Us, Y))
= (I(Y1; U [Yo), [(Ya; U3 |UY, Yo), M(X|U, Us', Yy))
= (

(
I<Y17Ul |U2 7Y0> I<Y2>U2G|Y0>7h(X|U1G7U2GaYU>> )

where the point P; is a a triple (jo), Réj), DW). Tt is easy to see that each of these
points is dominated by a point in 7/2\1/?2130, i.e., there exists (Ry, Ry, D) € 7/2\1/)EEO for
which R; < jo), Ry < jo) and D < DU._ To see this, first note that P, and P;
are both in 7/€ZJDICIEO. Next, observe that the point (0,0, (X]|Y))) is in 7/2\7/)ICIEO, which
is clearly achievable by letting (V1,V5,Q") = (0,0,0), dominates P;. Also, by using
letting (Vi, Va, Q") = (U, 0,0), we have that the point (I(Y1;Ui|Yo),0, h(X|U;,Yy)) is
in 7/2\1/)2]30, and dominates the point P». A similar argument shows that P; is dominated
by a point in 7/2\2/?ICIEO. The proof is terminated by observing that, for all above corner
points, Vj is set either equal UF (which is Gaussian distributed conditionally on Y}) or a

constant. O
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Remark 8. Proposition 5 shows that for the vector Gaussian CEQO problem with side
information under a logarithmic loss constraint, vector Gaussian quantization codebooks
with time-sharing are optimal. In the case of quadratic distortion constraint, however, a
characterization of the rate-distortion region is still to be found in general, and it is not
known yet whether vector Gaussian quantization codebooks (with or without time-sharing)
are optimal, except in few special cases such as that of scalar Gaussian sources or the
case of only one agent, i.e., the remote vector Gaussian Wyner-Ziv problem whose rate-
distortion region is found in [59]. In [59], Tian and Chen also found the rate-distortion
region of the remote vector Gaussian Wyner-Ziv problem under logarithmic loss, which they
showed achievable using Gaussian quantization codebooks that are different from those (also
Gaussian) that are optimal in the case of quadratic distortion. As we already mentioned,
our result of Theorem / generalizes that of [59] to the case of an arbitrary number of

agents. [

Remark 9. One may wonder whether giving the decoder side information Yo to the
encoders is beneficial. Similar to the well known result in Wyner-Ziv source coding of
scalar Gaussian sources, our result of Theorem /J shows that encoder side information does

not help. [ |

4.3 Quadratic Vector Gaussian CEO Problem with Determinant

Constraint

We now turn to the case in which the distortion is measured under quadratic loss. In this

case, the mean square error matrix is defined by
1 . .
D™ = - ) "E[(X; - X;)(X; — X,)T]. 4,
- Zl [( ) )'] (4.8)

Under a (general) error constraint of the form
D™ <D, (4.9)

where D designates here a prescribed positive definite error matrix, a complete solution is
still to be found in general. In what follows, we replace the constraint (4.9) with one on

the determinant of the error matrix D™ i.e.,
D™ <D, (4.10)
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(D is a scalar here). We note that since the error matrix D™ is minimized by choosing
the decoding as
X; = E[Xilo1" (Y1), -, o (), Y] (4.11)

where {gzvﬁén) K | denote the encoding functions, without loss of generality we can write (4.8)
as

1 - Y(n 7(n
D™ = - Z mmse(Xikbg )(Y?), e ,ng()(Y?()a Yy) - (4.12)
i=1

Definition 7. A rate-distortion tuple (Ry,..., Rk, D) is achievable for the quadratic
vector Gaussian CEQ problem with determinant constraint if there exist a blocklength n,

K encoding functions {\" <, such that

1
Ry > =logM™. fork=1,... K,
n

V

1 - 7(n n 7(n n n
D > ﬁmese(Xﬂqﬁg )(Y1):---,¢§<)(YK)aY0) :
i=1

The rate-distortion region RD%%_CEO 15 defined as the closure of all non-negative tuples

(Ry,...,Rg, D) that are achievable. [

The following theorem characterizes the rate-distortion region of the quadratic vector

Gaussian CEO problem with determinant constraint.

Theorem 5. The rate-distortion region RDYe cro of the quadratic vector Gaussian
CEO problem with determinant constraint is given by the set of all non-negative tuples

(Ry,..., Rk, D) that satisfy, for all subsets S C K,
log - < > Ry +log T — @3] +log B! + HLS, (T - AsE, ) Hss
g D= k g k2 & | &x S%ng S&ng JHS|
=
for matrices {Qu}5 | such that 0 < @ < X!, where S = {0} US® and A is as defined
by (4.7).

Proof. The proof of Theorem 5 is given in Appendix G. O]

Remark 10. [t is believed that the approach of this section, which connects the quadratic
vector Gaussian CEQ problem to that under logarithmic loss, can also be exploited to possibly
infer other new results on the quadratic vector Gaussian CEO problem. Alternatively, it
can also be used to derive new converses on the quadratic vector Gaussian CEO problem.

For example, in the case of scalar sources, Theorem 5, and Lemma 15, readily provide
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an alternate converse proof to those of [3, 4] for this model. Similar connections were
made in [104, 105] where it was observed that the results of [10] can be used to recover
known results on the scalar Gaussian CEO problem (such as the sum rate-distortion region
of [106]) and the scalar Gaussian two-encoder distributed source coding problem. We

also point out that similar information constraints have been applied to log-determinant

reproduction constraints previously in [107]. |
Two-Encoder Rate Region ‘ K-Encoder Rate Region
Cooperative bound [trivial] Oohama ’98 [108], Prabhakaran et al. '04 [4]
scalar
Wagner et al. '08 [106] Tavildar et al. ’10 [109]
scalar, sum-rate scalar, tree-structure constraint
Rahman and Wagner '15 [110] Ekrem and Ulukus 14 [11]
vector vector, outer bound

Ugur et al. ’19
vector, determinant constraint

Table 4.1: Advances in the resolution of the rate region of the quadratic Gaussian CEO problem.

We close this section by presenting Table 4.1, where advances in the resolution of the

rate region of the quadratic Gaussian CEO problem is summarized.

4.4 Hypothesis Testing Against Conditional Independence

In this section we study the continuous case of the hypothesis testing problem presented in

Chapter 3.4. Here, (X, Yy, Yq,..., Yg) is a zero-mean Gaussian random vector such that
Yo = HOX + NO 5 (413)

where Hy € C™*™ X € C™ and Ny € C™ are independent Gaussian vectors with zero-
mean and covariance matrices X = 0 and 3 = 0, respectively. The vectors (Y1,..., Yg)
and X are correlated under the null hypothesis Hy and are independent under the alternate

hypothesis Hy, with

Hy : Y, =H,X+N,, forall ke (4.14a)
Hy :(Y1,...,Yg) independent from X conditionally given Yy . (4.14Db)
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The noise vectors (N, ..., Ng) are jointly Gaussian with zero mean and covariance matrix
Yne = 0. They are assumed to be independent from X but correlated among them and

with Ny, with for every S C K,
NS —— NO - Ngc . (415)

Let X denote the conditional covariance matrix of noise N given Ny , k € K. Also, let
Rve.ut denote the rate-exponent region of this vector Gaussian hypothesis testing against
conditional independence problem. The following theorem gives an explicit characterization
of Ryg.ur. The proof uses Proposition 3 and Theorem 4 in a manner that is essentially

similar to that in the proof of Theorem 5; and, hence, it is omitted for brevity.

Theorem 6. [100, Theorem 2] The rate-exponent region Ryg.ur of the vector Gaussian
hypothesis testing against conditional independence problem 1is given by the set of all
non-negative tuples (Ry, ..., Rk, E) that satisfy, for all subsets S C IC,
B <3[Ry +log|T - Q5] ] +log [T+ SLHES,! (1 - AsT,!)Hy|
keS

~log ‘I + S HISH,

Y

for matrices {4}, such that 0 < Q; < 2., where S = {0} U S® and Ag is given
by (4.7). [

Remark 11. An alternate proof of Theorem 6, which is direct, can be obtained by evaluating
the region of Proposition 3 for the model (4.14), and is provided in [100, Section V-BJ.
Specifically, in the proof of the direct part we set Q = 0 and p(ug|yr) = CN (yr, Ei/Z(Qk —
I)E,lf/z) for k € K. The proof of the converse part follows by using Proposition 3 and
proceeding along the lines of the converse part of Theorem / in Appendizx E. [ |

In what follows, we elaborate on two special cases of Theorem 6, i) the one-encoder
vector Gaussian testing against conditional independence problem (i.e., K = 1) and ii) the

K-encoder scalar Gaussian testing against independence problem.

One-encoder vector Gaussian testing against conditional independence problem

Let us first consider the case K = 1. In this case, the Markov chain (4.15) which is to

be satisfied under the null hypothesis is non-restrictive; and Theorem 6 then provides a
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complete solution of the (general) one-encoder vector Gaussian testing against conditional
independence problem. More precisely, in this case the optimal trade-off between rate and

Type II error exponent is given by the set of pairs (R, E') that satisfy

E <Ry +log T — Q%]

(4.16)
i —1 -1 ty—1
B <log T+ 3 Hyg 1,30, (I- A{071}En{071})H{0,1}’ — log )I + 2. HyX; Hy|
for some n;xn; matrix Q; such that 0 < Q; < X7, where Hyy = [HJ{), HHT, Yo 18
the covariance matrix of noise (Np, N;) and
0 0
A{O,l} = s (417)

0 3 —303%

with the 0 in its principal diagonal denoting the ngxng-all zero matrix. In particular, for
the setting of testing against independence, i.e., Yo = () and the decoder’s task reduced
to guessing whether Y; and X are independent or not, the optimal trade-off expressed
by (4.16) reduces to the set of (Ry, E) pairs that satisfy, for some nj xn; matrix £, such
that 0 < Q; < X7,

E < min {Rl Flog|l— %], log|I+ =.HIQH,

} . (4.18)

Observe that (4.16) is the counter-part, to the vector Gaussian setting, of the result of [16,
Theorem 3] which provides a single-letter formula for the Type II error exponent for the
one-encoder DM testing against conditional independence problem. Similarly, (4.18) is the
solution of the vector Gaussian version of the one-encoder DM testing against independence
problem which is studied, and solved, by Ahlswede and Csiszar in [65, Theorem 2]. Also,
we mention that, perhaps non-intuitive, in the one-encoder vector Gaussian testing against
independence problem swapping the roles of Y; and X (i.e., giving X to the encoder and
the noisy (under the null hypothesis) Y; to the decoder) does not result in an increase of
the Type II error exponent which is then identical to (4.18). Note that this is in shar