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Walter Villanueva
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Chapter 1

Context and Objectives

The growth of global energy consumption has facilitated the discovery and exploitation of

new resources by human-kind. Nuclear energy is one of the latest energy sources to be

used at a large scale.

The first efforts to use nuclear energy for electricity generation emerged by the year

1951, with the construction of the Experimental Breeder Reactor I (EBR-I) at Idaho,

United States of America. EBR-I was the world’s first electricity generating nuclear power

plant. From then to the present date, the IAEA reports state a total of 449 nuclear power

reactors in operation all over the world, with a combined net installed capacity of 397,650

MWe1, contributing about 11% to the global electricity production2.

The fundamental difference between a nuclear reactor and the other power generating

reactors lies in the principle of energy generation. The energy generation in nuclear reactors

is a result of a controlled fission chain reaction. A fission reaction is characterized by the

absorption of a neutron by a heavy nucleus (the fuel atom), causing it to split into lighter

nuclei (the fission products), more neutrons and releasing energy in the form of heat and

kinetic energy of the fission products [1].

Nuclear reactors can be broadly classified into two types, on the basis of the energy

of the fission causing neutron. These are known as the thermal reactors (which use low

energy neutrons to cause fission) and the fast reactors (that use high energy neutrons).

1data extracted from https://pris.iaea.org/pris/
2http://www.world-nuclear.org/information-library/nuclear-fuel-cycle/

nuclear-power-reactors/nuclear-power-reactors.aspx
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1.1. Operating principle of Nuclear Reactors

The thermal reactors can be further classified on the basis of choice of fuel and moderator

material (briefly discussed in Section 1.1) to be used. Of the different types, there exist

two designs that make use of light water (H2O) as a coolant as well as a moderator:

• Pressurized Light-Water Moderated and Cooled Reactor (PWR) and;

• Boiling Light-Water Cooled and Moderated Reactor (BWR).

Together, the PWR and BWR are also known as Light Water Reactors (LWR). The

present work is focused on the Pressurized Water Reactors (PWR), the most commonly

used Light Water Reactor (LWR) design for civilian purposes, representing nearly 66.6%

(299 out of 449) of the total operating reactors in the world3.

1.1 Operating principle of Nuclear Reactors

Like any other power plant, a nuclear reactor has the following three components :

• reactor core: it is the point of energy generation. The reactor core consists of the

nuclear fuel, moderator material (to slow down the neutrons released from the fission

reaction for sustaining the chain reaction) and the control rods (to control the rate

of fission reaction) ;

• heat transport system: it consists of the coolant and the heat-exchange system,

to transfer the generated energy ‘out’ of the reactor core for electricity generation;

• turbine generator: for conversion of the transferred energy to electrical energy,

for the purpose of distribution.

For a typical PWR, the centre of the fission reaction (i.e. the reactor core) consists

of numerous fuel assemblies, along with control rods. Each of these fuel assemblies is

composed of numerous fuel pins (consisting of uranium oxide (UO2) fuel pellets, encased in

a Zircaloy cladding) grouped together like bundles. The reactor core is situated inside the

reactor pressure vessel (RPV) along with the other control and structural material (mainly

composed of steel), which has a constant circulation of the coolant (water) through the

3extracted from https://pris.iaea.org/PRIS/WorldStatistics/OperationalReactorsByType.

aspx.
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1.2. Nuclear reactor safety and severe accidents

• the clad on the reactor fuel (the point of generation for the fission products);

• the reactor vessel containing all the fuel elements together (to form the reactor core);

• and the leak-proof containment to prevent radioactivity release into the environment.

In line with this concept, the nuclear reactors are equipped with multiple independent

and redundant safety systems apart from the basic components. These systems work in

parallel to mitigate the risks associated with malfunction or operational errors during a

‘design-basis accident’ 5 and to prevent such situations from turning into major accidents

that could lead to core meltdown.

However, the efficiency of any safety system is dependent on the accident for which

it is designed and there may occur accident sequences that are not within the scope of

the existing safety features. The possibility of occurrence of such ‘beyond design-basis

accident’ (BDBA) sequences have been demonstrated by the accidents occurred at the

Three Mile Island-2 (TMI-2) reactor (United States of America, 1979), the Chernobyl

Reactor (Ukraine, 1986) and the most recent at the Fukushima Daiichi Nuclear Power

Plants (Japan, 2011).

These accidents have stressed the need to adopt measures (in terms of safety systems

for the present reactors and improved designs for future reactors) to mitigate the occur-

rence of accident scenarios that could lead to a core-meltdown accident (thus reducing its

probability). Such accident scenarios are called ‘severe accidents’.

1.2.1 Initiation and the progression of a severe accident in Pres-

surized Light Water Reactors

The accidents in LWRs can be classified as:

• reactivity initiated accident (RIA);

• loss of cooling accident.

5 I.A.E.A. defines design-basis accident as “accident conditions against which a facility is designed
according to established design criteria, and for which the damage to the fuel and the release of radioactive
material are kept within authorized limits.”
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The first type of accident (RIA) occurs in the cases where there is an increase or in-

sertion of reactivity in the reactor core, which could result from the malfunctioning of

control rod driving mechanism. On the other hand, a cooling accident occurs when

there is a malfunctioning/breakdown of the heat removal mechanisms (for maintaining the

reactor core temperatures), which can result into a partial or complete meltdown of the core.

A loss of cooling accident in a nuclear reactor can be the result of a station blackout

(SBO) or a loss of coolant accident (LOCA) sequence (or both). A station blackout (SBO)

sequence is caused due to a complete loss of the off-site as well as the on-site alternating

current (AC) electrical power6 (as in the case of Fukushima Reactors). Such a condition

has an adverse impact on the ability of the reactor to achieve safe shut-down conditions,

risking the possibility of core damage. On the contrary, a loss of coolant accident (LOCA)

represents the failure of the heat transport system arising from a break in the cooling

circuit that can bring about core meltdown. LOCA can be characterized as a Large-Break

LOCA (LBLOCA) or a Small-Break LOCA (SBLOCA), depending on the size of the

break in the heat transport system, which together with the location of the break (i.e. in

the primary or the secondary cooling circuit), determines how fast or slow the core degra-

dation occurs. Within the spectrum of loss of cooling accidents, in terms of rate of core

degradation, SBO is an intermediate case between the fast LBLOCA and the slow SBLOCA.

Further discussion is limited to the scenarios related to loss of cooling accidents that

result in the meltdown of the reactor core.

1.2.1.1 Core melt initiation and the “early phase of core degradation”

Under normal operation conditions, the heat generated from fission chain reaction is

constantly transferred to the flowing coolant and out of the reactor vessel by the help of

the heat transport system, thus maintaining the integrity of the fuel cladding. However, a

loss in the coolant flow can trigger emergency shutdown of the reactor where the fission

chain reaction is brought to a halt. Despite stopping the chain reaction, heat is still being

generated in the reactor core due to radioactive decay. If not managed properly, this heat

can increase the fuel temperature and cause damage to the reactor core.

6The off-site AC power is supplied by the electrical grid to which the nuclear power plant is connected,
whereas the on-site power is supplied by the emergency diesel generators. Both these alternate power
sources are essential for a safe operation and accident recovery of the nuclear power plants.
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1.2. Nuclear reactor safety and severe accidents

Under such circumstances, the heating of the reactor core materials and their melting is

strongly dependent on the composition and the configuration of the core. The following

sequence of physico-chemical phenomena describes the early phase of core degradation in

a PWR [2][3]:

• The increased temperature boils off the coolant present inside the core, thus lowering

the overall coolant level in the RPV below the top of the active fuel region (a

condition termed as “core uncovery”).

• The low heat transfer properties of steam hinders the transfer of the decay heat

produced from the fission products in the fuel, causing an increase in the reactor

core temperature. The increasing temperatures (∼ 1000 K) triggers changes to the

mechanical properties of the clad, causing its deformation.

• At temperatures ∼ 1100 K, the control rod undergoes fusion to form molten Ag-In-Cd

alloy.

• Interaction of the zircaloy clad with the steam at ∼ 1300 K results in its exothermic

oxidation, that leads to its severe distortion and rupture. The clad rupture marks

the breach of the first physical barrier against radiation release.

• Further increase in the temperature (∼ 1500 − 1600 K) facilitates the dissolution of

absorber material (B4C) into stainless steel and (as a separate event) the failure of

control rods to form a eutectic melt of stainless steel-Zr and Ag-In-Cd-Zr. The melt

relocates to lower (relatively cooler) regions of the core, where they tend to solidify

again, blocking the flow channels between the fuel rods.

• The blockage of flow channels can cause accelerated heat up of the core, initiating

dissolution of the UO2 fuel (melting point 3100 K) in the molten Zircaloy (melting

point 2030 − 2250 K based on the degree of oxidation of the alloy) well below its

melting point, to form a molten pool inside the reactor core.

This molten mixture consists of the uranium dioxide UO2 fuel and the partially oxidized

zirconium cladding (Zr + ZrO2) and is known as corium.
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1.2. Nuclear reactor safety and severe accidents

1.2.1.2 Relocation of corium to the reactor vessel lower head - the “late phase

of core degradation”

The molten corium pool eventually breaks out of the reactor core and progresses towards

the lower head of the reactor vessel. As the corium is relocated from the core, it is likely to

come in contact with the surrounding structural materials and the coolant (water) present

in the lower head. The phenomena related to the late in-vessel phase of corium relocation

depends on factors like:

• pressure of the reactor vessel;

• the amount and composition of the relocating corium;

• presence of water in lower head of the reactor vessel.

Depending on these factors, a list of possible scenarios include:

• impingement of the RPV wall (the second physical barrier against radiation release)

by the melt jet in case of high pressure conditions;

• fuel-coolant interaction (FCI) in the ‘wet’ lower head (i.e. presence of coolant)

which may or may not cause complete evaporation of the coolant. The FCI involves

quenching and partial fragmentation of the corium jet7 and a possible steam explosion.

Steam explosion is a complex multi-step process, with its strength depending on

factors such as the amount of relocating melt, temperature and the depth of water

and the in-vessel pressure conditions. It is expected to pose a risk to the containment

of radioactivity both in-vessel or ex-vessel (discussed later in the section). However,

the OECD SERENA project [5] has concluded that the impact of steam explosion

to induce failure of the RPV lower head can be ruled out as a possible risk to its

integrity.

Assuming a complete evaporation of the coolant, the resultant debris bed at the bottom of

the vessel, starts to re-heat due to the decay heat released by the fission products present

in it. The re-heated debris, along with the un-quenched (or added) corium reaches a

molten pool configuration which heats to a stationary state.

The contact of the heated corium pool with the reactor vessel wall results in the conduction

7The phenomenon of corium jet fragmentation was experimentally confirmed by the FARO tests [4].
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1.2. Nuclear reactor safety and severe accidents

of heat and partial ablation of the vessel wall. Inability to cool the reactor vessel wall can

eventually cause its failure due to thermo-mechanical rupture or a meltout. The failure

of the vessel wall denotes the breach of the second physical barrier and the beginning of

the ex-vessel progression of the accident, where corium interacts with the concrete pit

(also known as the reactor pit) of the reactor containment. This phase of corium pro-

gression is the last possible chance to contain the release of radioactivity in the environment.

The ex-vessel interaction of the corium pool can lead to two possible situations. On

one hand, the FCI in the reactor pit could lead to a steam explosion8. On the other hand,

corium spreads and interacts with the concrete lining of the reactor pit (molten corium-

concrete interaction (MCCI)) [2], causing its ablation. At this stage, the effectiveness

of preventing the escape of radioactivity into the environment depends on the thickness

of the concrete lining in the reactor pit, the amount of water present in it (to cool the

corium-concrete melt) and the rate at which the decay heat from the fission products in

corium decreases.

The description of the various stages of corium progression (schematic representation

given by Figure 1.29) stresses on the importance of retention of corium within the reactor

vessel in order to manage the release of radioactivity into the environment.

8Phase 2 of the SERENA project was focused on answering the uncertainties involved with ex-vessel
FCI related to reactor containment integrity.

9extracted from [2].

8



1.2. Nuclear reactor safety and severe accidents

Figure 1.2: Different stages of corium progression during a severe accident

1.2.2 Severe accident analysis and management strategies

The phenomena associated with corium progression during a severe accident are not

completely understood in the sense that there is either a lack of knowledge or the phe-

nomena have not been modelled completely. This includes both approaches, where each

phenomenon under investigation has been considered independently or in conjunction with

another phenomenon. Moreover, based on how the accident progresses, the impact of these

phenomena poses an uncertainty on the determination of thermal loads on the reactor

containment structures. In order to predict the consequences of the phenomena and their

overall impact on the integrity of the containment structure, the need for detailed studies

to understand the phenomenology of these interactions was acknowledged. This marked

the birth of severe accident analysis and its related management strategies.

The earliest worldwide organized efforts towards severe accidents analysis were made after

the TMI-2 accident. Research projects for experimental as well as analytical development

were initiated to conduct multi-disciplinary studies of the phenomena related to corium

9



1.2. Nuclear reactor safety and severe accidents

and its interactions (based on the accident scenarios constructed from existing evidence)

and to predict their consequences. The accuracy of these predictions were subject to the

limitation posed by the scale at which the information was obtained. With the main focus

placed on ensuring the integrity of the containment, management strategies were developed.

Reference [2] defines severe accident management (SAM) as “the use of existing and

alternative resources, systems and actions to arrest and mitigate accidents that exceed

the design basis of nuclear power plants”. SAM strategies adopt a cyclic approach that

includes:

• identifying the uncertainties related to the phenomenology associated with corium

propagation and its interactions;

• identifying and prioritizing the risks related to these uncertainties with respect to

the physical process under consideration;

• undertaking safety studies (numerical or experimental) to estimate the impact of

these risks, and finally;

• comparison and verification of the acquired knowledge with similar other studies, to

ensure complete understanding of the phenomena.

From the collective understanding of the corium behaviour, four major actions were

recognized as a part of SAM strategies to ensure public safety :

• cooling of the degraded core;

• management of combustible gases;

• management of the containment temperature, pressure and integrity, and;

• management of the release of radioactivity.

As a result, two main design strategies have been employed for the coolability, stabiliza-

tion and termination of severe accidents for the Gen-III reactors10 and the future light

water reactors, namely, the in-vessel melt retention strategy and the ex-vessel melt

retention strategy.

10The Gen-III reactor designs are an improvement on the Gen-II reactor designs, with increased thermal
efficiency, significantly enhanced safety systems, improved fuel technology and standardized designs for
reduced maintenance and capital costs.

10



1.2. Nuclear reactor safety and severe accidents

1.2.2.1 The In-Vessel Melt Retention (IVMR) Strategy

The IVMR strategy is based on the concept of flooding the cavity present between the

reactor vessel and the containment pit with water, to submerge the vessel (either completely

or partially) and to cool it from outside. The process of ‘external’ cooling of the vessel

(ERVC) helps by ensuring that the in-vessel corium pool is cooled and stabilized thus

preventing it from affecting the RPV wall integrity.

First introduced about 20 years ago ([6],[7]), the IVMR strategy was initially employed in

the designing of the reactors AP600 [8] (later replaced by AP1000[9]) and as a back-fitting

measure to the Loviisa VVER-440 [10]. The present day reactor designs of the Korean

APR-1400 [11],[12],[13] and the Chinese HPR-1000 [14] have also been developed including

IVMR concept, with an ongoing effort to study the possibilities of applying the same as a

back-fitting measure for the operational Gen-II reactors11.

1.2.2.2 The Ex-Vessel Melt Retention Strategy

The ex-vessel concept of melt retention has been adopted by the EPR design for reactors

operational in Finland (and under construction at Flamanville (France) [15]) and for the

Russian VVER 1000-91/99 designs constructed in Tian Wan (China) and Kudankulam

(India)[16]. This strategy involves design concepts that include:

• Allowing the corium melt discharged from the reactor vessel (after RPV breach) to

occupy a cavity and spread. Additionally, a layer of sacrificial concrete is installed

over the cavity floor. The spreading process allows reduction of the corium pool

depth to a level that can be directly cooled by a layer of water above the melt or

with an indirect cooling system [17] composed of water filled channels. This concept

has been adopted as a back-fitting measure to some existing Gen-II reactors [18].

• Another concept includes the presence of core-catcher that retains the molten corium

flowing out of the reactor vessel [19]. The corium entering the core-catcher interacts

with the sacrificial material located inside. Additionally, the core-catcher is externally

cooled to transfer the heat away from the melt.

11Gen-II reactor refers to the design classification for nuclear reactors built until the end of 1980s.
These designs include that of the PWR (Pressurized Water Reactor), CANDU (Canada Deuterium
Uranium reactor, a Canadian pressurized water reactor), BWR (Boiling Water Reactor), AGR (Advanced
Gas-cooled Reactor), VVER (Vodo-Vodyanoi Energetichesky Reaktor; “Water-Water Power Reactor”)
and the RBMK(Reaktor Bolshoy Moshchnosti Kanalnyy, “High Power Channel-type Reactor”).
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1.3. Assessment of the uncertainties related to IVMR strategy

The success of these mentioned management strategies depends on their ability to eliminate

any threats to the integrity of the containment. For the present thesis further discussions

are focused on the in-vessel melt retention strategy.

1.3 Assessment of the uncertainties related to IVMR

strategy

The success of the IVMR strategy depends on its ability to maintain the RPV wall integrity.

Its effectiveness in ensuring vessel integrity is further related to the identification of the

main processes and variables that are responsible, or pose a major threat to the RPV wall,

followed by the modelling of the phenomena associated with them. Within this framework,

a joint study was undertaken under the H2020 European project IVMR [20] , wherein the

main risks to the safety demonstration of IVMR strategy were classified as :

• Thermo-mechanical failure of RPV through mechanisms like creep, plastic

deformations etc.

• Steady state heat flux values exceeding the Critical Heat Flux (CHF),

resulting in the thermal breach of the RPV wall.

• Transient condition interactions between in-vessel corium and the RPV

wall, leading to its excessive ablation.

• Risk of Ex-vessel high energy steam explosion in case the RPV fails12.

The present thesis focuses on the risks to IVMR success that are associated with the

effect of transient in-vessel corium interactions as well as steady-state conditions, that

are imposed on the RPV wall, and may lead to a possible early melt-through of the wall.

Thus, a detailed knowledge of the in-vessel corium behaviour is important. There are two

possible approaches towards which investigations may be followed for understanding the

in-vessel corium behaviour:

12As mentioned earlier, the risk posed by in-vessel steam explosion to the RPV integrity is not considered
to be high. Nevertheless, it has an impact on the boundary conditions related to ex-vessel FCI, hence it
needs to be considered.
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1.3. Assessment of the uncertainties related to IVMR strategy

• identification of the corium configurations that pose maximum thermal load on the

RPV wall, or;

• tracking the transient conditions related to the in-vessel corium interactions to

estimate their thermal impact on the RPV wall.

The following sections describe the in-vessel corium behaviour and the physical phenomena

associated with it during steady state as well as transient conditions.

1.3.1 In-vessel corium behaviour : the “bounding” case approach

The in-vessel corium is a complex multi-component, multi-phase system composed of the

molten fuel (UO2), partially oxidized cladding (Zr, ZrO2), reactor structural materials

(stainless steel elements Fe, Cr, Ni) and the non-volatile fission products. Its behaviour is

governed by two major phenomena :

• thermochemical interactions between the species constituting the corium pool, that

can cause its separation into several liquid (immiscible) and solid phases;

• the thermal/thermal-hydraulic phenomena related to the natural convection in the

pool that govern the heat flux distribution in the pool and at the pool-RPV wall

interface.

The relocation of corium melt into the reactor vessel lower head, along with molten steel

(from the melting of internal reactor structures) is a scenario dependent process, which

also evolves with time. The high temperature molten mixture not only imposes high

thermal loads onto the RPV wall, but also undergoes chemical interactions with the

vessel wall material, which when coupled together can cause the RPV wall to melt. From

the point of view of the IVMR strategy, the RPV wall melt-through can be prevented

by an accurate estimation of the heat flux imposed by the corium pool on it for any

configuration. Within this context, there is a consensus that the thermal load of an

in-vessel corium configuration corresponding to an ‘all liquid’ state (i.e. all the corium and

steel present in the system exists in liquid state after complete re-melting of the debris) is

the maximum and that such corium configurations should be the basis of the IVMR studies.

The earliest approaches ([6], [7], [8] and [21]) were based upon considering a “bound-

ing” case configuration, which was expected to represent the steady state configuration
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that would be realized for any IVMR scenario [8]. This configuration corresponded to a

completely molten oxidic pool in the lower head (corresponding to a complete melt of the

debris and the structural material in the lower head), insulated from the RPV wall and

the top metallic layer by an oxidic crust that is formed as a result of solidification of the

corium pool layer in contact with the wall (see Figure 1.3).

Figure 1.3: Two-layer configuration for in-vessel corium with a molten steel layer
sitting atop the oxidic pool

In such a condition, one of the main threats to the integrity of the RPV wall is imposed

by the top metallic layer. The oxidic pool transmits heat towards the vessel wall as well

as its top surface through natural convection. The heat dissipated by the top surface of

the oxidic pool is transmitted to the metallic layer. The high thermal conductivity of the

metal layer combined with its low thickness results in high lateral heat flux being imposed

on the RPV wall in contact with it. The high heat flux induces a phenomena called the

“focusing effect” which could eventually cause melting of the vessel wall in contact with

the metallic layer.

However, such a bounding case assumption does not take into account the thermochemical

interaction between the corium-steel species and may not always exist in case of the

postulated accident scenarios.

References [8] [22] have well documented the corium-steel composition (formed during the
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late phase of the in-vessel progression) to lie within the domain of U-O-Zr-steel miscibil-

ity gap. The presence of a miscibility gap results in stratification of the liquid pool at

thermochemical equilibrium conditions, to give two immiscible liquid phases that consists

of:

• an “oxidic” phase that is rich in oxygen, and;

• a “metallic” phase rich in uranium and zirconium.

These liquid phases differ in their density, resulting in their gravity driven separation of

corium to form a two-layer stratified pool. Supported by both experimental [23] as well as

theoretical [24] studies, this repartitioning of the elements into two immiscible liquids is

dependent on parameters like:

• the temperature (T) of the corium system;

• the atomic ratio U/Zr (RU/Zr) and the degree of oxidation of Zr (Cn);

• the ratio between the mass of steel and corium present in the system xsteel.

For a given value of T, Cn and RU/Zr , the possibility of phase segregation depends on a

maximum “critical” mass of steel that corresponds to the presence of a heavy metal phase.

When the amount of steel present in the system is less than this critical value (denoted

by x̃steel), the corium pool undergoes phase segregation and the heavy metal relocates

to the bottom of the RPV. This relocation is a result of the redox reaction occurring in

sub-oxidized corium UO2+ Zr ⇋ U + ZrO2, with the equilibrium conditions favoring

in the direction of the reduction of uranium dioxide to form metallic uranium, that is

transferred along with zirconium into steel, forming the heavy metal phase. The formation

of heavy metal phase is favored upto the point where the steel mass added to the system

corresponds to x̃steel.

Further addition of steel causes an inversion in the mass densities of the metallic and

oxidic phases (depicted by Figure 1.413), which is accompanied by the shift in the direction

of the redox reaction, facilitating the oxidation of U and Zr present in the heavy metal

13The graph depicts the change in phase densities as a function of the amount of steel in the system.
This calculation was obtained from the thermochemical equilibrium associated with the thermodynamic
base NUCLEA09 [25] for the U-O-Zr-steel system and density laws implied in the codes TOLBIAC-ICB
[26] and PROCOR [27].
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Figure 1.5: Three-layer configuration for in-vessel corium with a molten steel layer
sitting atop the gravity separated corium pool

This configuration with the gravity separated oxidic and heavy metal phases and the

upper molten steel layer, corresponds to a minimum thickness of the top steel layer. This

situation poses an even greater threat to the RPV as the reduced thickness of the steel

layer aggravates the problem of focusing effect, with the maximum possible heat flux being

imposed on the RPV wall. For this reason, it was considered important to include the

thermochemical behaviour for the modelling of in-vessel corium behaviour.

The bounding case approach, is limited in the sense that the possibility of stratifica-

tion of corium pool depends, in particular, on the steel to corium mass ratio. The

description of the above bounding case is given for an imposed ratio, which itself is related

to both, the scenario and time dependent corium mass flow rate, as well as the steel mass

introduced from the RPV wall ablation. These factors depend on the transient conditions

posed by the evolution of the corium-steel system. In this context, the need for transient

calculations based on these thermochemical interactions was identified as an important

issue under the H2020 European IVMR project [20] for an improved knowledge of the

in-vessel corium behaviour.

1.3.2 Transient conditions affecting the stratification of in-vessel

corium

The study of transient corium-steel thermochemical interaction and its impact on the heat

flux distribution and the transient focusing effect was conducted in the MASCA-RCW test
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[30] [31] which was carried out within the framework of the OECD-MASCA experimental

program [32].

As mentioned earlier in Section 1.3.1, the possibility of the presence of a three-layer

stratified corium pool depends on the steel mass added to the system, which may not be

even present if the initial system corresponds to a steel mass inventory that is greater

than the critical mass to be present for causing stratification. Based on this parameter,

two transient situations leading to the stratification of the corium pool and its inversion,

can be considered. The occurrence of these transients can be explained with the help of

the redox reaction occurring in the sub-oxidized corium (specific to the locations near the

metal/oxide interface), and the consequent interaction with the metal layer.

For steel amount in the system being less than x̃steel, the enrichment of the steel layer near

the metal/oxide interface (as a result of the redox reaction) leads to formation of heavy

metal globules in this layer. The difference in the densities of the heavy metal globules and

the steel layer results in Rayleigh-Taylor instabilities, that eventually causes the gravity

driven downward migration of the globules, to form a heavy metal layer.

Similar sequence of events are responsible for the transient conditions related to the

inversion of the stratification. The formation of heavy metal is facilitated by the presence

of free U and Zr in the oxidic layer near the steel/oxide interface. For the heavy metal

layer present in contact with the bottom layer of the oxidic pool, an interaction between

the metallic U and Zr species (from heavy metal phase) with oxygen (from the oxidic

phase) results in the oxidation of the metal species and consequently, depletion of U and

Zr from the heavy metal phase. This causes formation of light metal globules in the heavy

metal layer and gives rise to similar Rayleigh-Taylor instabilities due to mass density

difference. Eventually, the light metal globules rise to the top of the pool, bringing about

stratification inversion.

1.3.3 Uncertainties associated with the phenomenology of in-

vessel corium

The transient conditions can have a significant impact on the heat flux distribution in

the corium pool, thus imposing a greater thermal load on the RPV wall than the values
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estimated by the bounding cases. In addition, these transients also pose uncertainties

regarding the in-vessel corium behaviour. The identification of these sources of uncer-

tainties is of great importance from the the point of view of the success of the IVMR strategy.

The present section is focused on the description of the uncertainties specific to the

two transients that have been identified in Section 1.3.2 for the mass transfer to obtain

the equilibrium configurations [33]. Though these transient situations may not actually be

followed in the same order during an accident scenario, they are useful in explaining all

the possible uncertainties related to in-vessel corium.

1.3.3.1 Stratification of the in-vessel corium pool

The transient situations leading from a two layer corium configuration to a three-layer

stratified configuration (depicted by Figure 1.614) are a result of the interaction between

the oxidic and the steel layers, followed by the diffusion of U and Zr species in the metal

and the “ablation” of the upper molten steel layer to form an immiscible dense metal

phase.

(a) Thermochemical interaction between
oxide-steel layers

(b) Relocation of heavy metal layer to the
bottom of the pool

Figure 1.6: Transient leading to the stratification of in-vessel corium pool

The initial lower head configuration (represented by Figure 1.6a) depicts the oxidic and

steel layers, separated at the interface by a very thin refractory crust, which is also present

along the RPV wall in the region occupied by the oxidic pool. The refractory crust along

the RPV wall is formed as a result of the temperature gradient between the oxidic corium

14adapted from [34].
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pool and the externally cooled RPV wall. It has a varying thickness that increases towards

the bottom section of the wall. The crust acts as a “thermal barrier” against the heat flux

transferred by the oxidic pool, thus preventing the fast ablation of the RPV wall. However,

the top metal layer is not separated from the RPV wall by such a crust, which results in

the vessel wall experiencing high lateral heat flux at the point of contact. This induces the

focusing effect (see Section 1.3.1), which can eventually lead to vessel failure.

The thermal behaviour of the in-vessel pool for this configuration has been a subject

of investigation for various experimental programs like COPO [35], ACOPO[21], BALI

[36], RASPLAV-SALT, SIMECO[37] (for oxidic pool) , MELAD and BALI-metal (for

the top metal layer). These experimental results have enabled defining the heat transfer

correlations which can be applied to calculate the heat fluxes and the temperatures, which

can be used to estimate the risk of reactor vessel melt-through. However, the correlations

obtained are with respect to a steady state configuration. The use of these correlations to

calculate heat fluxes under transient situations gives rise to uncertainties in the in-vessel

corium description. Hence, development of improved correlations that can take into account

the transient phenomena is required to ensure accuracy of the in-vessel corium description.

The horizontal refractory crust separating the oxidic pool from the steel layer (formed

due to temperature gradient at the steel-corium interface) is very thin (of the order of

millimeters) and probably unstable due to the mass transfer occurring between the steel

and oxidic layers. Nevertheless, its presence acts as a “thermochemical barrier” against

the steel-corium interactions, which has an impact on the kinetics of stratification.

As mentioned in Section 1.3.1, the transfer of species across the steel-oxide interface

and the downward migration of the heavy metal phase (Figure 1.6b) poses a difficulty to

the vessel wall integrity due to increased focusing effect.

1.3.3.2 Addition of steel and the inversion of corium pool stratification

The second transient (depicted by Figure 1.715) is related to the inversion of the stratifica-

tion.

15adapted from [34].
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(a) Thermochemical interaction between
heavy metal-oxide layers

(b) Inversion of stratification and the up-
ward relocation of light metal layer

Figure 1.7: Transient leading to the inversion of stratification for in-vessel corium pool

The heavy metal layer, being deficient in oxygen, undergoes an exchange of species with

the oxidic layer (schematic depicted by Figure 1.7a). This exchange of species, together

with the addition of steel (from the melting of internal reactor structures) above the

critical values facilitates the inversion of the stratification (as explained in Section 1.3.2)

and the upward relocation of the super-heated light metal above the oxidic layer (final

configuration depicted by Figure 1.7b).

This transient, leading to the upward displacement of metal, gives rise to a number

of complications. Firstly, this relocation process has an impact on the stability of the

horizontal crust present between the former steel-oxide layers (mentioned in Section 1.3.3.1).

The interaction of molten metal with the oxidic crust can lead to its dissolution. Addi-

tionally, this relocated light metal layer also interacts with the refractory crust along the

RPV wall, causing similar dissolution reactions in the lateral crust. This, combined with

the thermo-mechanical phenomena such as local melting of reactor vessel wall in contact

with the crust, mechanical load on the crust due to collapsing of in-vessel structures,

stratification inversion process etc., has an impact on the lateral crust stability by posing

a risk of its rupture. A break in the lateral crust results in the formation of localized high

heat flux regions called ‘hotspots’ where the light metal comes in direct contact with the

RPV wall. In such situations, the asymmetric thermal load experienced by the vessel wall

can lead to its ablation. The problem of hotspot creation at the top of the pool is crucial as

it poses greater uncertainties to the RPV integrity, that is under the influence of high heat

fluxes due to focusing effect in this particular region. Consequently, such a configuration
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(depicted by Figure 1.8) is more penalizing than the bounding case considered with all the

molten metal sitting atop the oxidic pool (Figure 1.7b).

Figure 1.8: Transient in-vessel corium configuration with the relocated light metal on
top of the oxidic pool.

It should be mentioned that the dissolution process also occurs for the crust in contact

with the previously located heavy metal layer. However, the considerable threat of its

complete dissolution and the formation of hotspots is less, owing to the greater thickness

of the crust in contact with the heavy metal.

The impact of the steel-crust interactions on the stability of the oxidic crust has been

the focus of the studies conducted under the CORDEB2 program [38]. In particular,

the mechanisms involved with crust dissolution process have been determined by the

VITI-CORMET experiments [39].

From the above discussions, it is evident that for a better thermodynamic description of

the in-vessel corium, there is a need for detailed study of the thermochemical phenomena

associated with in-vessel corium. In this respect, the two major sources of uncertainty are

related to the knowledge on the:

• kinetics of the stratification process, and;

• thermochemistry of the oxidic crust, in particular the molten steel-crust interactions.
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The existing analyses take into account the thermal role of the crust, which is of importance

to maintain the integrity of the RPV wall. However, it is also required to understand the

thermochemical phenomena (i.e. the dissolution process) associated with the oxidic crust

as it not only impacts the kinetics of stratification, but also effects the thermo-mechanical

stability of the crust itself.

1.4 Modelling of in-vessel corium: state-of-the-art

and research avenues

The thermochemical-thermohydraulic phenomena related to in-vessel corium propagation

evolve spatially and temporally with the changing temperature and composition of the

corium pool. Under such situations, the time associated to the evolution of in-vessel corium

and its postulated effect on the safety of the RPV vessel can be analyzed by the help of

statistical calculations performed by the state-of-the-art numerical codes.

These numerical codes are either integral (ASTEC [40], MELCOR [41], MAAP [42],

SOCRAT, ATHLET-CD) or specific to the studies related to the IVMR strategy (PRO-

COR [27], SIMPLE, HEFEST_URAN and IVRSYS) and have been developed by making

use of the existing “shared” knowledge on the in-vessel corium behaviour, in order to

estimate the heat flux distributions on the RPV wall during transient conditions. By

taking into account the bounding as well as transient cases, the construction of such codes

involves writing of energy and mass conservation equations for each of the defined layers,

with the dependent variables averaged over space (thus being macroscopic in nature). The

conservation equations are supplemented with models related to the thermochemical phe-

nomena associated with these layers (such as models for mass transfer for the stratification)

and the closures to the equation set is provided by the “closure laws” obtained from the

results of the experimental studies.

The comparison of the various codes for obtaining a consolidated set of results was

a part of the H2020 European project IVMR (2015-2019), wherein a step-wise approach

was followed to study the impact of uncertainties related to the corium pool modelling at
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different stages of in-vessel melt progression [28], first separately, and then by progressively

increasing the complexity of the situation. Finally, a series of benchmark activities with

sensitivity studies were conducted to assess the capability of these SA codes [43]. These

studies helped in the identification of the sources for uncertainties, which need further

research and developed for better performance of the SA codes. These include:

• Uncertainties related to the kinetics of in-vessel corium stratification:

There have been efforts to develop transient thermochemical models ([29] [33]) based

on the corium pool behaviour in the presence of a miscibility gap [22]. These transient

models allow for an estimation of the kinetics of the stratification process. However,

there is a lack of experimental data to validate these evaluations. In particular,

there is no experimental information on the process of the inversion of the heavy

metal layer. The experiments conducted under the MASCA program do indicate

the formation of the heavy metal layer, but the characteristic time related to its

inversion is unknown. Such an uncertainty can significantly alter the thermal load

on the reactor vessel, and was found to be one of the major sources for large dis-

crepancies in the results obtained during the benchmark activities of the SA codes [43].

As a supplement to these experimental evidences, the development of numerical based

simulations on a mesoscopic scale (also known as “fine” models) to study the kinetics

of the responsible thermochemical processes could also be useful. The first steps in

this direction were undertaken in [44], where a mesoscopic thermochemical model

was developed to study the kinetics of stratification in terms of multi-component

and multi-phase diffusion.

• Lack of detailed modelling of the oxidic crust: The present codes either do not

take into presence of the oxidic crust, or it is assumed to be in quasi-static state. Such

an assumption to the model has an impact only in terms of the boundary conditions

specified for the solving of the conservation equations. However, the behaviour of

the crust as a thermochemical barrier has a greater impact on the kinetics of the

stratification process (discussed in Section 1.3.3). In addition, the interaction of the

crust with the relocated light metal layer and its dissolution is of importance to its

overall thermo-mechanical stability. Thus, detailed thermochemical-thermohydraulic

modelling of the crust is needed which includes the interactions associated with it. A

first step in this direction has been taken in context of the PROCOR platform [45].
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Such models also require experimental evidences regarding crust thermochemistry,

which are part of the ongoing CORDEB-2 and VITI-CORMET experiments.

An accurate description of the in-vessel corium requires not only the development of new

thermochemical models, but also their coupling with the thermohydraulics models. As a con-

sequence, such a coupling raises the issue of consistency of the thermodynamic description

of the corium system. A partial or incomplete coupling between the thermochemical-

thermohydraulic models could lead to erroneous calculations by the SA codes, which would

have an impact on the accuracy of the IVMR strategy. One possible way to improve con-

sistency is by using a common source for thermodynamic description (i.e. thermodynamic

database) for deriving the inputs required by the thermochemical and thermohydraulic

models. This can be achieved by coupling the thermodynamic database with the ‘already

coupled’ thermochemical-thermohydraulics models. However, such a coupling may pose

certain questions or constraints in terms of thermochemical-thermohydraulic modelling

and it is imperative to answer the questions that will be associated to its feasibility.

This brings us to the objective of the present thesis work. This work aims at the de-

velopment of a methodology for the coupling of the thermodynamic database to the

thermochemical-thermohydraulic models for in-vessel corium description. The proposed

methodology is tested on ‘mock-up’ macroscopic and mesoscopic models developed for

studying corium progression.

The development of the macroscopic model for plane front solidification under PRO-

COR is focused on testing the consistency of the coupling between the thermochemical-

thermohydraulics models with the thermodynamic database and is a step towards the

thermochemical-thermohydraulic modelling of the crust during the solidification process.

The question of thermodynamic consistency is also answered for the model developed at

the mesoscopic scale, which seeks to provide a general formulation for the energy and mass

balance equations that can be applied to study the kinetics of various thermochemical

processes like solidification and phase separation. As a consequence, the information

obtained from the mesoscopic simulations can be incorporated into the development of

new thermochemical models in PROCOR.
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Chapter 2

Methods and Tools

As previously mentioned, the objective of the thesis is to develop a methodology for

the coupling between a thermodynamic database as a source of input and the coupled

thermochemical-thermohydraulic models for obtaining a consistent description of the

corium system. This consistency in the description can be achieved by making use of a

single, exhaustive source for the thermodynamic representation of the system throughout

all the different models and the respective closures.

The thermodynamic databases constructed from the CALPHAD method (specific to

the SA studies) offer such a representation by providing information on the thermodynamic

quantities. These quantities include the thermodynamic potentials like the Gibbs free

energy (G) of the system and its derivatives such as entropy (S), enthalpy (H), specific

heat capacity etc. In addition to these thermodynamic quantities that can be derived from

CALPHAD, several thermophysical quantities (thermal conductivity, viscosity, etc.) are

also required for the construction of the thermochemical models. These properties cannot

be directly obtained from CALPHAD and require other sources. At the same time, the

thermohydraulic models also require the thermophysical properties as inputs for providing

consistent ‘closures’ to the conservation equations.

As various thermochemical models for studying the in-vessel corium behaviour rely on

the description provided by these CALPHAD databases, it is considered to be a feasible

choice for the ‘single’ source of thermodynamic information, which can be coupled to the

thermochemical-thermohydraulic models for ensuring a consistent description.
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Within the context of the present thesis, such a coupling has to be carried out for

the mathematical models developed at different spatial scales (i.e. a macroscopic and a

mesoscopic model). Regardless of the scale at which it is being implemented, a traditional

mathematical model is composed of a set of governing equations (such as the mass and

energy balance equations) based on underlying hypotheses, with a set of initial and bound-

ary conditions. These set of equations can be solved analytically as well as numerically

(with the help of simulations). However, the analytical approach is limited to simple cases

and, in general, numerical simulations are required. The use of these models for obtaining

quantitative information on the system requires correct inputs, which in this case, can be

offered through the coupling with CALPHAD database.

The present chapter focuses on providing a general description of the method for the utiliza-

tion of information in the thermodynamic database (Section 2.1) and for the development

of the numerical models at the two scales of interest (Section 2.2).

2.1 The CALPHAD approach for thermodynamic de-

scription of in-vessel corium

For a given alloy system, its phase diagram is necessary to understand the relationship

between the composition, processing conditions, the resulting micro-structure and finally

the effect on material properties. The correctness of these phase diagrams (consequently the

predictions made by their use) depends on the accuracy of the thermodynamic properties

of the material on which they are based. However, for complex multi-component systems

like in-vessel corium, this data is not readily available. Therefore, one can make use of the

computational methods like CALPHAD (CALculation of PHAse Diagram) for modelling

the thermodynamic properties and phase diagrams for the system.

The CALPHAD method makes use of mathematical models to describe the thermo-

dynamic properties (e.g. Gibbs energy, entropy, enthalpy, etc.) of the possible phases

for a system, as functions of the thermodynamic state variables such as temperature (T ),

pressure (p), composition and certain adjustable parameters [46]. The developed models
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are assessed based on the collected experimental data (from techniques such as calorimetry,

X-ray diffraction techniques, solubility limit studies etc.) and the results of ab initio

calculations, to determine the adjustable parameters. This is followed by an optimization

of the models, which results in obtaining the values for the adjustable parameters, such

that they offer the best possible agreement between the experimental and theoretically

calculated data.

The parameters obtained as a result of the assessment and optimization process are

assembled to form the thermodynamic databases, which can be utilized for:

• obtaining equilibrium thermodynamic description and/or for producing phase dia-

grams of higher order multi-component systems, and ;

• extrapolation of the data to obtain material thermodynamic properties outside the

range of stability for a phase.

Figure 2.1 gives a schematic representation1 of the construction of thermodynamic databases

using the CALPHAD method.

Figure 2.1: Schematic representation of the CALPHAD method

1extracted from [47].
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2.1.1 Description of a system and calculation of thermodynamic

equilibrium using CALPHAD method

Within the CALPHAD approach, the thermodynamic system is composed of “compo-

nents”2. The components can combine to form “constituent” species (denoted by S) that

define the composition of a phase. It should be noted that for a thermodynamic system,

the number of components and constituents may not be the same. Take for example the

H-O system: The components of this thermodynamic system are the elements H and O,

whereas the gas phase of the system (at low temperatures) can be composed of constituent

species H2, O2 and H2O.

The CALPHAD database is composed of Gibbs molar energies3 Gθ
M for all possible

phases θ that can be exhibited by the system. For a particular phase, the molar Gibbs

energies (Gθ
M ) are described as models consisting of mathematical functions dependent on

the state variables such as temperature (T ), pressure (p), composition (yθ
i )i∈S :

Gθ
M : T , p, (yθ

i )i∈S → Gθ
M (2.1)

Keeping a general expression for the dependence of Gibbs energies on temperature and

pressure, the Gibbs energy of a system is strongly dependent on the composition. This

dependence on composition is affected by the strength of interactions between the con-

stituents, which is not the same for all phases. As a result, it is not possible to have a

single model for all phases and a general formalism needs to be adopted. As a consequence,

the Compound Energy Formalism (CEF) [48] [49] has been adopted, which supports most

of the models (based on composition dependency) such that an appropriate model for each

of the existing phases can be applied.

The CEF formalism assumes the distribution of the constituents of a phase (i.e. ions,

2The components can be elements or stoichiometric compounds, depending on the way the system has
been defined.

3In principle, all the thermodynamic properties like entropy, enthalpy etc. can be modelled in
CALPHAD. However, the choice for modelling the Gibbs energy is based on two reasons: 1) all the
experimental data are obtained at constant temperature and pressure conditions, and 2) the other
thermodynamic properties can be easily obtained from the Gibbs energy by the use of thermodynamic
relations.
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neutral atoms, vacancies, etc.) into one or more sub-lattices4 (denoted by s), where they

mix according to the classical solution theory (ideal or non-ideal model). The interaction

parameters related to the mixing are different in different sub-lattices. The Gibbs energy

for a phase is described per mole of formula unit5. As a result, instead of the overall

phase composition yθ
i , Eq. 2.1 is dependent on the molar fraction of the constituent i on a

sub-lattice (denoted by y
(s)
i ), with

∑

i y
(s)
i = 1:

Gθ
M : T , p, (y

(s)
i )i,s → Gθ

M (2.2)

where the molar fraction of the constituent y
(s)
i for a sub-lattice s is expressed as the ratio

between the number of sites occupied by the the constituent i on the sub-lattice s (denoted

by N
(s)
i ) to the total number of sites present on it (denoted by N (s)).

y
(s)
i =

N
(s)
i

N (s)

For this sub-lattice model, the constituent composition for the phase θ can be obtained in

terms of the end member fractions y
θ,(s)
I . An “end member” represents a single constituent

present in each sub-lattice of a crystal with long range order6. The endmember fraction

y
θ,(s)
I for constituent i is given by the product of y

(s)
i in each sub-lattice s :

y
θ,(s)
I = Πsy

θ,(s)
i∈I (2.3)

When a phase has no sub-lattices, the end member specifies a single constituent of the

phase and the above fraction denotes the constituent fraction yθ
i .

In this way, from the description of the Gibbs energy of each phase given by Eq. 2.2, the

4The term ‘sub-lattices’ can have different physical meanings in different phases. For instance, in
ionic liquids, they can be used to separate anions and cations, whereas for alloys they can be identified
with crystallographic sub-lattices, which represent the geometric arrangement corresponding to the first
co-ordination sphere for any atom.

5The formula unit for a phase is defined as the sum of all the sites in all the sub-lattices of the phase
(
∑

s
a(s)).

6A long-range ordering is present in crystals, where dislike constituents tend to be present together
as clusters, such that these interactions are effective over greater distances, which is not the case for
short-range ordering, where this tendency of formation of clusters exists only for the first, or in some cases
second nearest-neighbours.
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total Gibbs Energy for the system (G) can be obtained as :

G =
∑

θ

nθGθ
M (2.4)

with nθ representing the amount of phase present in the system (in terms of amount of

constituents per formula unit).

Each of these individual Gibbs energies (Gθ
M) are expressed as an addition of various

contributions [50]:

Gθ
M = srfGθ

M + cfgGθ
M + phyGθ

M + EGθ
M (2.5)

where :

• srfGθ
M represents the Gibbs energy of a mixture of species constituting the phase θ,

where each of the species is assumed to be isolated;

• cfgGθ
M is the contribution from the assumption of an ideal mixing of the species,

corresponding to all the possible configurations in which they can exist;

• phyGθ
M represents the contributions to the Gibbs energy due to any particular physical

phenomena that may be exhibited by the phase, such as magnetic transitions, and;

• EGθ
M describes the contribution of the excess Gibbs energy. The excess term repre-

sents the real behaviour of the phase, by taking into account the other interactions

within the system (such as the effect of non-ideal mixing behaviour on the thermo-

dynamic properties, the reactions between the species, etc.)

The thermodynamic equilibrium of the system for a fixed value of the state variables can

be obtained by minimization of the total Gibbs energy (G), which can be achieved through

the help of a Gibbs Energy minimizer code.

2.1.2 CALPHAD databases for in-vessel corium systems

A minimal description for the in-vessel corium can be provided by a quaternary system

U-O-Zr-Fe. Particular to the application, the modelling of liquid and solid phases for

corium description omits the dependency of the Gibbs energy on pressure. As a result, the

pressure variable p in Eq. 2.2 is neglected (except for the modelling of the gaseous phase).

There exist two databases that are widely used for obtaining corium descriptions: NUCLEA
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[25] [51] and TAF-ID (Thermodynamics of Advanced Fuels-International Database) [52].

The NUCLEA database describes the Gibbs energy of a phase by making use of a

non-ideal ‘associate’ model with a single sub-lattice, that takes into account the interac-

tions between the elements (for e.g. elements A and B), to form associate species7 of the

form AaBb. Consequently, the constituents of this sub-lattice include the species A, B and

the stoichiometric compound AaBb, which also are the end members. As there exists a

single sub-lattice, the end member fraction for each species i (given by Eq. 2.3) reduces to

represent the species composition yθ
i in the phase. For such a case, a generalised relation

for the concentration of the element i in terms of mole fractions (xi), can be obtained with

the help of the mole fraction of the species j (yj) formed by it :

xi =

∑

j bi,jyj
∑

k

∑

j bk,jyj

(2.6)

where bi,j represents the stoichiometric coefficient for element i in the species j. The Gibbs

energy functions for the model are written in terms of species (constituent) compositions.

Introduction of the “associate species” as a new constituent for writing the Gibbs energy of

formation, provides an internal degree of freedom which can be used to fit the experimental

data.

The TAF-ID database, on the other hand, makes use of an ionic model (given by Eq. 2.7)

to describe the liquid phase. This ionic model consists of two sub-lattices, where one

sub-lattice is composed of constituents in the form of cations A, and the other sub-lattice

consists of anions B, hypothetical vacancies V a (in order to model metallic liquid systems)

and neutral species C0
k (for modelling non-metallic liquid systems). The charge on a cation

(respectively on an anion) is indicated by v+
i (respectively v−

j ), where i, j are the specific

constituents. These ions (or vacancies) occupy a number of sites (denoted by P for cations

and Q for anions) on each sub-lattice, the value of which depends on the constituent

fraction.

(A
v+

i

i )P (B
v−

j

j , V a, C0
k)Q (2.7)

7Reference [47] introduces the term “associate” to denote the species formed for a shorter time duration,
due to weak interactions between the atoms. Thus, the formed associate molecule is not stable in nature.
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The present thesis makes use of a database that has been extracted from NUCLEA database

(version 09), in combination with the Gibbs energy minimizer (see [53] for details on the

algorithm) incorporated in the OpenCalphad (OC) software which is used through an

interface in PROCOR for obtaining thermodynamic properties such as specific enthalpies

for the system, as well as the interface temperature and composition related to local

equilibrium condition.

2.2 Tools for numerical modelling

The numerical analysis includes different approaches, which can be classified into two

broad categories [54] :

• lumped parameter models that consist of conservation equations integrated over

large spatial zones (such as the stratified layers in a corium pool), and;

• distributed parameter models which consist of conservation equations that have been

written for a spatial domain discretized by a mesh.

Within the context of SA studies, both kinds of models are useful for obtaining the relevant

information. For instance, the lumped parameter models make up the integral codes such

as MAAP, ASTEC etc. The purpose of these integral codes is to simulate SA conditions

for a LWR. Similar to this, the integral code developed under the PROCOR platform of

CEA is dedicated specifically to the study of corium progression. The platform consists of

various physical models and their associated parameters for describing the various aspects

associated with corium (for e.g. models related to a stratified corium pool, transient

corium propagation to the lower head, corium-concrete interactions, etc.). Each of these

models are constructed as a lumped parameter model to describe the evolution of corium

for a spatial domain defined on a macroscopic scale (i.e. in the order of meters), which

when combined, predicts the evolution of corium over a complete SA sequence.

On the contrary, the distributed parameter models are used to gain a better under-

standing of a particular set of phenomena by “zooming” into a particular part of the

overall transient that takes place in an SA sequence. In this respect, the conservation
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equations for these distributed parameter models have a limited scope in terms of the part

of the SA sequence being studied or spatial domain described. Consequently, the system

(within this domain) is represented through these distributed parameter models which

are constructed on a mesoscopic scale (i.e. in the order of millimeters). Based on this

choice of spatial scale, such models are useful for constructing detailed thermochemical

models, which can be coupled with the thermohydraulic models based on Computational

Fluid Dynamics (CFD) to obtain quantitative results related to these specific parts of the

transient. Consequently, the information obtained from this approach can be used for

improving the integral codes.

2.2.1 Lumped-Parameter models for integral codes

The lumped parameter models consist of zones or ‘control volumes’ (denoted by Vc, where

c represents the zone defined in the model) that are separated through interfaces (denoted

by β(i,j)i6=j
), which may be fixed in space (with heat flux continuity) or mobile (related to

a Stefan condition). Each of these zones are represented by mass averaged properties such

as specific enthalpy, composition, etc. considering that the necessary closure laws for the

conservation equations can be expressed in terms of these variables.

Within the context of using lumped parameter approach for modelling in-vessel corium,

the determination of heat flux values for the system requires solving of the mass and

energy conservation equations. The closures to the energy conservation equation depend

on how the energy transfer in the system is defined. Since the corium flow is considered to

be governed by natural convection under the assumption of the Boussinesq approximation,

the closures for the energy conservation equations can be related to the dimensionless

Rayleigh number (Ra). As a consequence, the closures do not depend on the velocity of

the fluid flow, thereby excluding the need to solve the momentum conservation equation.

Consequently, the mass and energy conservation equations along with their associated

interface conditions, are cast into an integral form in terms of macroscopic conservation

equations.

For a physical model consisting of a zone i with N(i) neighboring zones, the mass and

energy conservation equations for the ith zone can be written according to the general
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formulation of conservation equations as discussed in Appendix A:

dmi(t)

dt
+

∑

i∈N(i)

ṁβi,j ,i(t) + ṁi,ext = 0 (2.8)

d

dt

(

h̄imi

)

+
∑

j∈N(i)

(

ϕ̄βi,j ,iAβi,j
+ h̄βi,j ,iṁβi,j ,i

)

+ h̄i,extṁi,ext = q̇mass
i mi (2.9)

with the associated interface conditions formulated as:

ṁβi,j ,i + ṁβi,j ,j = 0 (2.10)

h̄βi,j ,iṁβi,j ,i + h̄βi,j ,jṁβi,j ,j + (ϕ̄βi,j ,i + ϕ̄βi,j ,j)Aβi,j
= 0 (2.11)

where:

• mi represents the total mass of the zone (kg1), which is a function of time t (s1);

• βi,j, i (respectively βi,ext) is the interface between the neighboring domains i, j

(respectively between zone i and the system boundary);

• ṁβi,j ,i (respectively ṁi,ext) is the mass flow rate of i (kg1s−1) associated with the

interface βi,j, i (respectively the mass flow rate associated with the system boundary

βi,ext), which is positive for a mass flow that is directed out of the zone i and

(respectively) negative for the mass flow directed towards the zone i;

• h̄i is the mass-averaged specific enthalpy (J1kg−1K−1) of the zone i;

• Aβi,j ,i is the area (m2) of the interface βi,j, i between the zones i and j;

• ϕ̄βi,j ,i denotes the averaged heat flux (W 1m−2) associated with surface Aβi,j ,i, which

is positive if the flux is directed out of the zone i towards the interface βi,j, i and

negative if the flux is directed inside the zone i from βi,j, i;

• q̇mass
i is the mass averaged heat source associated with the zone i (represented as

power density W 1kg−1).

The above set of equations is supplemented by equations relating the composition of the

spatial zones, each of which (i.e. the composition) is represented by the mass fraction (w̄k)

of the species k ∈ S. This representation has been considered for the codes TOLBIAC-

ICB [26] and PROCOR, where the thermophysical properties associated with the zones
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are written as mixing laws applied to species density functions of temperature. Further

discussion on these species conservation equations is presented in Chapter 3.

2.2.1.1 Closures to the conservation equations

For any spatial zone, the closure of the energy conservation equations Eq. 2.9 and the

associated interface condition Eq. 2.11 requires appropriate enthalpy-temperature relations.

For a multi-component system such as corium, these relations must take into account the

dependence on the chemical composition [55] along with their dependency on temperature

and pressure, for a consistent thermodynamic description of the system. In general, the

dependency of the relations on pressure is neglected for studies related to corium liquid

phases, which are assumed to be compatible with the Boussinesq approximation of fluid

dynamics (see [56]) while modeling natural convection.

In this framework, the enthalpy-temperature relation can be described in a general way by

the function:

H : T̄ ,
(

w̄j
)

j∈S
→
(

h̄θ, ωθ,
(

wj
θ

)

j∈S

)

θ∈P

(2.12)

where:

• T̄ is the average temperature (in K);

• (w̄j)j∈S
is the average composition defined in terms of mass fraction w̄j for all species

j ∈ S;

• ωθ is the mass fraction of phase θ, having the composition (in terms of species mass

fractions)
(

wj
θ

)

j∈S
;

• h̄θ is the specific enthalpy (J/kg) of the phase θ, and;

• h̄ is the average specific enthalpy (J/kg) which can be obtained from the relation

h̄ =
∑

θ∈P

[

ωθh̄θ

]

.

Such relations are referred to as “Equation-Of-State” (EOS) and can be used to obtain a

reciprocal temperature-enthalpy relation by solving the non-linear root-finding problem:

find T̄ such that H
[

T̄ ,
(

w̄j
)

j∈S

]

= h̄
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2.2.1.2 Enthalpy-temperature Relations provided by CALPHAD

Recalling that the Gibbs energies are modelled per formula unit (Eq. 2.2), the Gibbs

energy per mole of components Gθ
m (J1mol−1) can be defined from Eq. 2.2 as:

Gθ
m : T , p, (y

(s)
i ) → Gθ

M(T , p, (y
(s)
i )i∈S)/

∑

i

∑

s

a(s)
∑

k

bi(k)y
(s)
k (2.13)

where:

• a(s) denotes the number of sites occupied by the sub-lattice s;

• bi(k) refers to the stoichiometric coefficient of component i in the constituent species

k, and;

• the denominator
∑

i

∑

s a(s)∑

k bi(k)y
(s)
k represents the number of mole of components

per formula unit.

In the same way, one can obtain the specific Gibbs energy Gθ (J1kg−1) for a phase θ, by

multiplying the molar masses (Mi) of each component i to their respective stoichiometric

coefficients:

Gθ : T , p, (y
(s)
i ) → Gθ

M(T , p, (y
(s)
i )i∈S)/

∑

i

∑

s

a(s)
∑

k

Mibi(k)y
(s)
k (2.14)

As a consequence, the above function can be directly used to obtain functions that describe

other thermodynamic properties by making use of appropriate thermodynamic relations.

For instance, keeping in mind the present requirement of evaluating specific enthalpy, the

associated function can be obtained from the thermodynamic relation:

H = G − TS (2.15)

Hθ : T , p, (y
(s)
i )i,s → Hθ = Gθ(T , p, (y

(s)
i )i,s) + TSθ(T , p, (y

(s)
i )i,s) (2.16)

where Sθ is the specific entropy functional (JK−1kg−1) that is obtained from the derivative

of the Gθ as:

Sθ : T , p, (y
(s)
i )i,s → S = −∂Gθ

∂T
|
p,(y

(s)
i

)i,s

(

T , p, (y
(s)
i )i,s

)

(2.17)

Similarly, the specific heat capacity Cp can be obtained as a partial derivative of the

enthalpy (given by Eq. 2.16) with respect to the temperature, for a constant pressure
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condition.

Eq. 2.16 represents the general form of the enthalpy-temperature relation obtained for a

phase θ from the CALPHAD database. Using such enthalpy-temperature relations to pro-

vide closures, first requires the knowledge regarding the representation of the composition

at each sub-lattice. If the description of the composition is chosen to be in terms of the

component mass fractions (discussed in Section 2.2.2.2), the utilization of the CALPHAD

database will require additional constraints that need to be addressed. On the other hand,

within the context of integral models for in-vessel corium, as the associate models used

in NUCLEA database consists of a single sub-lattice with constituents as species, the

representation does not change and Eq. 2.16 can be used as it is for a reduced (single

sub-lattice) case to construct EOS as depicted by Eq. 2.12.

However, such a construction has two more constraints:

• The first constraint comes from the description provided by the CALPHAD database.

The enthalpy-temperature relation provided by CALPHAD (Eq. 2.16) is for a single

phase θ, whereas, the EOS depicted by Eq. 2.12 needs to be general in the sense that

it should be able to describe a multiphasic domain. This need for general EOS is

related to the system and the applications considered, which for the case of in-vessel

corium is related to the description of a domain with two liquid phases and a solid

phase in it.

• The second constraint is related to the validity of the EOS with respect to its

dependency on composition and temperature, at a macroscopic scale.

The work presented in Chapter 3 focuses on answering these questions related to the direct

utilization of CALPHAD based EOS, within the framework of macroscopic modelling.

2.2.2 Distributed parameter models for mesoscopic scales

The current knowledge on the feasibility of IVMR strategy is based on the use of integral

codes for determining the heat flux distributions from the corium pool to the RPV wall.

These results are obtained from the macroscopic thermohydraulic models that are based

on conservative, and often invalid assumptions and heat transfer correlations. In order

to obtain more accurate descriptions, these models need to be improved. This can be

38



2.2. Tools for numerical modelling

achieved partly by conducting more corium-based experiments. However, owing to the

limitations of corium-based experiments, an alternative tool has emerged as a viable option

in the recent past due to the increasing computational power: CFD.

CFD offers a supplementary approach for gaining knowledge related to the thermal-

hydraulic behaviour of the in-vessel corium. Monophasic CFD codes have been used in a

number of applications, including the thermohydraulic analysis of inversion of stratification

in corium pool [57], the study of natural convection in internally heated pools [58] [59],

with a comparison of the results obtained from experiments. Within the framework of the

H2020 IVMR project, different CFD related modelling activities have been initiated by

EDF (NEPTUNE_CFD)[60], CEA (TrioCFD) [59] [61] NCBJ, NRG and UJV for studying

the thermohydraulic behaviour of a homogeneous corium pool and the light metallic layer

on top of it.

Such studies require modelling of the thermochemical behaviour of in-vessel corium at a

spatial scale which can be coupled with the CFD based codes. In particular, the objective

in this direction is to obtain a multi-phase CFD code, which can simulate the transient

conditions related to the phenomena of solidification of the oxidic crust and liquid phase

segregation.

The initial activities in this direction were related to the development of a thermochemical

model at the mesoscopic scale for studying stratification kinetics [44]. The choice of

numerical tool to be used for modelling was made according to the three important criteria:

• the model should be compatible with a Eulerian framework, which ensures a fixed

mesh framework, such that no explicit tracking of the moving interface is needed;

• the model must be compatible with the CFD models, without imposing an additional

constraint on the mesh size, and most importantly;

• the model should be consistent with the thermodynamic description provided by

CALPHAD database (i.e. it should be possible to couple the model with CALPHAD

database).
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2.2.2.1 The diffuse interface approach and the phase-field model

The phase transformation processes (such as solidification and liquid segregation) are

dependent on the evolution of the micro-structure, which is related to the dynamics

of the interfaces between the different phases. The numerical modelling of such phase

transformation processes can be done by either adopting a sharp-interface formulation (of

the type known as “Stefan problems”) or by using diffuse description of the interface. In

this context, the use of a diffuse interface approach is considered to be numerically simpler

compared to the sharp-interface methodology for the simple reason that the diffuse models

do not need to explicitly track the motion of the interface.

Development of a detailed model that follows this phase transformation process on a

mesoscopic scale (order of millimeters) requires a modelling tool that can allow the user

to “up-scale” the physical thickness8 of the interface, while conserving the physics of the

system at the larger spatial scale (for eg. the conservation laws) as well as the overall

motion of the interface. Consequently, the “up-scaled” interface thickness becomes a

model parameter, which can be chosen in accordance with the mesoscopic scale, without

changing the bulk thermodynamics, the interface energy and the bulk kinetics of the

model. However, the process of up-scaling poses additional constraints on the other model

parameters in order to relate them to the physical parameters associated with the system.

A diffuse-interface approach to numerical modelling relies on the continuum descrip-

tion of a system that is composed of two bulk phases separated by a “thick” interface of

width δ (see Figure 2.2a). This concept appeared a little more than a century ago, with

the model developed by van der Waals to study the liquid-gas system using a continuous

density function [62]. The diffuse interface is represented by the means of variables that

are functions of space (z) and time (t), that vary continuously across the interface to take

constant values in the bulk regions (similar to sharp interface descriptions, see Figure 2.2).

In the remainder of the thesis, these variables will be referred to as “order parameters”(φ).

The evolution of these order parameters describes the evolution of the system.

8Contrary to its ‘sharp’ appearance on a macroscopic scale, the interface has a diffuse character on
a microscopic scale, owing to a transition zone that exists between the two phases, which has a finite
thickness, roughly of the order of a few atomic spacings (i.e. having a physical thickness of the order of 1
nanometer).
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(a) Sharp interface (b) Diffuse interface

Figure 2.2: Diffuse vs sharp interface description

The notion of order parameters was introduced to the diffuse interface theory by Landau

for describing the order-disorder phase transformations. Furthermore, the extension of

this work in terms of describing the free energy of a system based on the order parameters

and its gradients, was carried out by Ginzburg and Landau [63].

These works went on to become the basis of the phase-field method, which has be-

come an important tool for simulating microstructure evolution (see for example [64], [65],

[66], [67]). The phase field model allows the up-scaling of the interface thickness without

affecting the bulk thermodynamics and the surface energy associated with the interface

in the system. Consequently, the interface thickness is treated as a model parameter

in such models. The present day applications of the phase-field method are numerous,

with simulations being performed for processes ranging from solidification [68], solid-state

transformations [69], crack-propagation [70], to dislocation dynamics [71] etc.

General formulation of the phase field models

As mentioned above, the main ingredients required for developing a phase-field model

to depict any process, are the choice of the appropriate dynamic variables (i.e. order

parameters) and a thermodynamic potential (like the free energy) that depends on these
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order parameters for the description of the system. Most of the phase-field models found

in literature are derived for constant temperature and volume conditions. In such cases,

the appropriate choice for the thermodynamic potential is the Helmholtz free energy F.

This free energy potential is defined for the domain V , as a functional of the form:

F(φ) =
∫

V

(

f(φ) +
κφ

2

2
|∇φ|2

)

dV (2.18)

where:

• f(φ) is the free energy density (J1m−3).

• The gradient term
κφ

2

2
|∇φ|2 is related to the contributions from the interactions

occurring at the interface, owing to its diffuse character. This term creates a positive

contribution, thus increasing the free energy of the system, which comes from the

creation of an interface.

• κφ
2 is a positive coefficient called the “gradient energy coefficient” that is related to

the surface energy and the thickness associated with the interface.

The order parameters describing the system, may or may not have a physical significance,

and can be distinguished as:

• conserved: provided the quantity depicted by the order parameter is conserved for

the system (eg. local composition), or;

• non-conserved: provided the quantity concerning this order parameter does not

remain conserved during system evolution (eg. information on phase, or local crystal

structure, or magnetization etc.).

The non-conserved order parameters are assigned constant values for the two regions. For

example, if we consider solidification, the non-conserved order parameter φ denotes the

presence of the solid or liquid phase at any point in space and time, and it is assigned the

values:

φ =







0 in the liquid

1 in the solid
(2.19)

and within the diffuse interface:

0 < φ < 1 (2.20)
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The system evolves with time in a manner that leads to the decrease of its free energy,

such that at long times it reaches a minimum value that represents the thermodynamic

equilibrium state:
dF

dt
≤ 0 (2.21)

As this free energy functional is dependent on the order parameter functions, its minimum

is determined w.r.t. the variations of the order parameters. This minimization can be

achieved by the applicability of the Euler-Lagrange equation [64]:

δF(φ)

δφ
= 0 (2.22)

where δF[φ]
δφ

is the variational derivative of F [φ] with respect to the field φ. By applying

the theory of variational calculus, F [φ] is calculated as:

δF [φ]

δφ
=

∂f

∂φ
−
{

∂x

(

∂f

∂(∂xφ)

)

+ ∂y

(

∂f

∂(∂yφ)

)

+ ∂z

(

∂f

∂(∂zφ)

)}

(2.23)

The first term on the right hand side of Eq. 2.23 affects only the bulk part of the functional

whereas the second term gives the variation of the functional with respect to gradient

terms for the interface.

The kinetics of the process can be studied by tracking the evolution of the order pa-

rameters in space and time. This evolution is a result of the driving forces that tend to

minimize the free energy of the system. The form of the evolution equation depends on

the nature of the order parameter.

Conserved order parameters

For the order parameters (φi) related to the conserved quantities in the system, the

evolution equation is derived from their respective conservation laws, which takes the form:

∂φi(z, t)

∂t
+ ~∇ ~Jφi

= 0 (2.24)

where ~Jφ refers to the flux associated with the order parameter. This diffusion flux can

be derived in a phenomenological way from the variational derivative of the free energy
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functional w.r.t. the specific order parameter (φi) as

~Jφi
= −Mi

~∇
(

δF

δφi

)

(2.25)

with Mi being the kinetic coefficient that can be a function of the local values of all the

conserved order parameters. The evolution equations of the form Eq. 2.24 are referred to

as Cahn-Hilliard equations [72], or Model B [73].

Non-conserved order parameters

The non-conserved order parameters, as the name suggests, do not evolve under the

constraints of the conservation laws. Their evolution in space and time is described by an

equation of the form:
∂φk(z, t)

∂t
= −Mk

δF

δφk

(2.26)

where Mk is the kinetic parameter associated with the time scale of the relaxation of

the system. The evolution equations of the form Eq. 2.26 are referred to as Allen-Cahn

equations [74], also known as Model A [73]. The Allen Cahn equation simply denotes the

relaxation of the system to the equilibrium condition posed by the non-conserved order

parameter.

2.2.2.2 Issues related to the thermodynamic consistency of the phase field

model

As mentioned earlier, the choice of thermodynamic potential for the formulation of

phase-field models depends on the dynamic variables of interest. For modelling phase

transformations such as solidification, these variables generally are the temperature and

the composition, hence the appropriate potential is the Helmholtz free energy (F) (as

presented above). However, it should be noted, that this choice of potential is strictly

valid for the studies related to constant temperature and molar volume conditions (i.e.

isothermal systems). In the context of modelling in-vessel corium systems, as the density

variation is considered to be independent of the pressure of the system, for isothermal

conditions the appropriate thermodynamic potential is the Gibbs energy G.

For cases where the variation of temperature is also taken into account i.e. the non-

isothermal systems, incorporation of the energy equation is necessary to take into account
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2.2. Tools for numerical modelling

this temperature variation as it is associated with the energy flow across the interface.

As a consequence, the thermodynamic potential that can be used to obtain a consistent

description of the system changes to entropy S. A general framework for the same is

described in [75], which will be used as a starting point and is explained in detail in

Chapter 4 of the thesis.

With such a formulation, the second concern is related to the coupling of the devel-

oped phase field model with the CALPHAD database for obtaining the quantities of

interest. In terms of composition dependence, the evolution equation in phase field is

defined in terms of the component composition, whereas the CALPHAD description is

based on the composition defined in terms of constituent fractions. In such circumstances,

the coupling of the phase field model with CALPHAD requires additional hypotheses

which can relate the component and constituent compositions, depending on the phase

which is being modelled. These questions have been addressed in detail in Chapter 4.
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Chapter 3

Application of CALPHAD based

closures to the lumped-parameter

models for solidification of in-vessel

corium

3.1 Introduction

The importance of predicting the transient thermal loads on the vessel wall for ensuring suc-

cess of IVMR strategy has been discussed in length in Chapter 1. A proper understanding

of the interfacial conditions between the melt and the solid crust is important as it governs

the heat flux distribution on the RPV wall. In this context, ensuring thermodynamic consis-

tency between the coupled thermochemical-thermohydraulic lumped parameter models is

of prime importance. A partial or incomplete coupling between the models could lead to an

erroneous results which would effectively impact the accuracy of the overall IVMR strategy.

One such example of the discrepancies involved with thermodynamic inconsistency was

identified as a result of the studies involving the code cross comparison conducted by

CEA and EDF [76]. The benchmark activities conducted for the models developed for

different corium configurations under the PROCOR platform (CEA) and MAAP (EDF)

have uncovered that an important source of disparity is related to the adopted formulation

for the mass and energy conservation equations and the associated enthalpy-temperature

relations. The MAAP code consists of energy conservation equations written for the
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corium pool in terms of specific enthalpy, the data tabulated for which (as a function of

changing temperature and composition) has been constructed under the hypothesis of

‘no thermochemical interaction’ between the corium and molten steel. This however, is

in contradiction with the macro-segregation hypotheses (introduced in [22]) that were

used for setting the boundary conditions to the system (i.e. the interface temperature

was set equal to the liquidus temperature of the bulk molten pool). The inconsistency

resulted in an erroneous calculation of the liquidus temperature for the interface between

the pool-crust layer by the MAAP code. Contrarily, the PROCOR model for the corium

pool consists of energy balance equations written in terms of specific enthalpies as well,

but it is supplemented with explicit enthalpy-temperature relations that take into account

the macro-segregation hypotheses. Consequently, the inconsistency in the calculation of

interface liquidus temperature is not exhibited by the PROCOR results. However, the

PROCOR model does not explicitly represent the crust. Instead, a “fictitious” quasi-

stationary crust has been considered in terms of the temperature boundary condition it

imposes to the liquid layers in the pool (see [77] for more details). A consistent model with

an explicit description of the crust as an independent component is required in order to

study its transient thermal behaviour, which is needed for the development of a complete

model where additional thermochemical phenomena can be added and studied. A first

initiative for the crust modelling in PROCOR has been reported in [45], and the same issue

related to the thermodynamic consistency of the closures is faced in this development.

In this context, as discussed in [78], it is useful to adapt a general formulation for

writing the energy conservation equations in terms of specific enthalpies and use general

enthalpy-temperature relations that can be referred to as “Equation-Of-State” (EOS) to

provide closures to the integral models. Additionally, from the point of view of ensuring

thermodynamic consistency, the utilization of CALPHAD based enthalpy-temperature

relations for constructing these general EOS is beneficial [79] [80]. However, as discussed

earlier (in Chapter 2), the direct utilization of these enthalpy-temperature relations requires

fulfillment of certain constraints, which is the focus of the present chapter.
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3.2. Questions related to the use of CALPHAD for construction of EOS

3.2 Questions related to the use of CALPHAD for

construction of EOS

Within the context of integral modelling in PROCOR, the constraints associated with the

direct use of CALPHAD based enthalpy-temperature relations to construct the general

EOS can be recalled from the discussion in Section 2.2.1.2.

The first complication is related to the use of CALPHAD based EOS for describing

a multiphasic domain V. The enthalpy-temperature relation (given by Eq. 2.16) cannot

be directly used to provide closures for a multiphasic system as the description provided

by Eq. 2.16 is limited to a single phase θ, whereas, the EOS depicted by Eq. 2.12 needs

to take into account the possible multiphasic nature of the domain V. Such a condition,

where multiple phases may exist in a domain, is possible for in-vessel corium under two

circumstances:

• if the average composition of the domain (w̄j
j∈S) lies under the miscibility gap region.

This results in the decomposition of the phase to give two immiscible phases within

the domain (same as phase-segregation explained for in-vessel corium in Section 1.3.1),

and;

• if the temperature of the domain T̄ falls below the liquidus temperature Tliquidus(w̄
j
j∈S)

that is associated with average composition of the domain. This results in solidifica-

tion within the bulk liquid.

In order to address this in a general way, additional hypotheses and models must be

supplemented to the CALPHAD data at the time of constructing the EOS. Additionally,

it must be ensured that these hypotheses are consistent with the thermochemical models

that have been coupled with the thermohydraulic model under consideration. Failure to

do so could lead to errors in the prediction of the results, an issue similar to the one raised

by the hypothesis used for the MAAP code, as mentioned previously.

Within this context, [81] reports the results related to the numerical tests that have been

carried out in the framework of PROCOR platform for comparing the CALPHAD based

general EOS that have been constructed by making use of different segregation hypothesis

for the underlying thermodynamic system. These comparisons have been conducted for
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3.2. Questions related to the use of CALPHAD for construction of EOS

a simple test case, with the aim of answering the constraint related to the treatment of

a multiphasic spatial domain. It should be noted that these tests have been conducted

separately and not as a part of the assessment that is presented in the following sections of

this chapter. Hence, a detailed discussion of these results is not the main scope of the thesis.

The second complication arises with respect to ensuring the validity of the constructed

EOS. In principle, the enthalpy evaluated from the thermodynamic function Eq. 2.16 is a

local function for a given temperature and composition value, which may also be valid for

a homogeneous spatial domain (in terms of both temperature and composition). Such a

relation can be useful for predicting the system behaviour at a microscopic level. In case

of a macroscopic spatial domain, the enthalpy is given by the relation:

h̄nmn =
∫

V
ρnhdV =

∫

V
ρnHθ

[

T (~r), (wj(~r))j∈S

]

dV (3.1)

where h is dependent on the state variables T and w̄j
j∈S that are functions of spatial

vector ~r. The value obtained from Eq. 3.1 depends on the inhomogeneities in the domain

Vn related to the temperature and composition. However, this value may not be equal

to the enthalpy evaluated for a macroscopic domain, based on its average composition

(mnHθ
(

T̄ , w̄j
j∈S

)

). This can be explained from the fact that the average of product of two

quantities is not always the same as the product of the averages [55].

The evaluated enthalpy (from Eq. 3.1) can be strictly equal to mnHθ
(

T̄ , w̄j
j∈S

)

only

in two cases: the spatial domain Vn is homogeneous, or Hθ has a linear dependency on

the temperature and composition variables. For these two cases mentioned, one can use

the constructed EOS for evaluation of the enthalpy values.

With these constraints in mind, the feasibility of using CALPHAD database for con-

structing general EOS is assessed. The numerical tests related to this assessment have

been conducted on a “mock-up” model developed under PROCOR platform, to describe

the thermal and thermochemical evolution of the solidifying crust at the boundary of

a sub-oxidized corium pool under a plane solidification front hypothesis. This mock-up

model represents a minimum model that can be utilized for answering the above mentioned

constraints related to the construction of EOS and any other additional questions that

may need to be answered, with respect to the development of a crust model. The following
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3.3. Description of the corium-crust solidification model

sections provide a brief description of the developed integral model, which is followed by

the numerical verifications for a ternary U-O-Zr system considered for a temperature range

between 1800 and 3000 K. These results (presented in Section 3.4) have been a part of a

publication ([82]) for the journal Annals of Nuclear Energy.

3.3 Description of the corium-crust solidification model

The present model depicts a simplified configuration of a sub-oxidized corium pool with

a non-eutectic1 homogeneous composition and a fixed external boundary temperature.

Figure 3.1 depicts the two-zone 1-D situation, with the liquid corium (denoted by p)

undergoing solidification at its interface (denoted by β) cooled from outside (with the

external boundary being denoted by α). The crust is denoted by s while the interface and

external boundary areas are considered to be equal (i.e. Aβ = Aα = A). The interface

is assumed at the origin (z = z0) and the crust thickness (zs) propagates with time till a

steady state is achieved. The inputs related to the thermo-physical properties for both

the liquid and solid phases are calculated in PROCOR using TOLBIAC-ICB code, where

these properties are obtained from the mixing laws applied to species density functions of

temperature (see [26]).

1The corium composition can be eutectic or non-eutectic, based on its composition. In general, the
eutectic composition for corium is considered only in case of studies involving the Ex-vessel corium-concrete
interactions.
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3.3. Description of the corium-crust solidification model

the associated interface equation (adapted from Eq. 2.11) for plane front solidification :

d

dt

(

h̄pmp

)

+ ϕ̄β,pAβ + h̄β,pṁβ,p = q̇mass
p mp (3.5)

d

dt

(

h̄sms

)

+ ϕ̄β,sAβ − h̄β,sṁβ,p + ϕ̄α,sAβ = q̇mass
s ms (3.6)

(

h̄β,p − h̄β,s

)

ṁβ,p +
(

ϕ̄β,p + ϕ̄β,s

)

Aβ = −∆hṁβ,p (3.7)

where:

• ϕ̄α,s is the heat flux at the crust-external boundary interface (> 0), directed from

the bulk solid towards the external boundary;

• ϕ̄β,s is the heat flux at the crust-pool interface (< 0), directed from the bulk solid

towards the interface;

• ϕ̄β,p is the heat flux at the crust pool interface (> 0), directed from bulk corium pool

towards the interface;

• ∆hṁβ,p is an additional interfacial term, which is discussed in Section 3.3.5.

Mass diffusion in the solid crust is neglected (i.e. the diffusive mass flux in the solid at

the interface J̄ j
β,s = 0). Hence, the species mass conservation and its associated interface

equation for the system is given by:

d

dt

(

w̄j
pmp

)

+ J̄ j
β,pAβ + w̄j

β,pṁβ,p = 0 (3.8)

d

dt

(

w̄j
sms

)

− w̄j
β,sṁβ,p = 0 (3.9)

(

w̄j
β,p − w̄j

β,s

)

ṁβ,p + J̄ j
β,pAβ = −∆wj

βṁβ,p (3.10)

where:

• w̄j
p, w̄j

s and w̄j
β,s are the species mass fractions corresponding to the bulk liquid, bulk

solid and the interfacial solid composition, respectively;

• ∆wj
βṁβ,p is an additional interface term, discussed in Section 3.3.5, and;

• J̄ j
β,p is the diffusive mass flux for the interfacial liquid composition.

With the exception of the additional terms ∆hṁβ,p and ∆wj
βṁβ,p in Eqs. 3.7 and 3.10

respectively, the model presented above is a “standard” plane front solidification model
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3.3. Description of the corium-crust solidification model

(see, for instance, [83] for analytical solutions in the binary case with a linearized liquidus

curve) that has been used in [84] for the interpretation of the LIVE-L3A test2

3.3.2 Modelling the fluxes in the system

The general expression for J̄ j
β,p is given as:

J̄ j
β,p = −ρβ,p

n−1∑

h=1

[

kjh
m (w̄h

β,p − w̄h
p )
]

(3.11)

with ρβ,p as the mass density of the interface liquid and kjh
m is the mass transfer coefficient

for the species h with respect to species j.

For an initial assessment, the hypothesis of an infinitely fast transfer of mass in the

liquid boundary layer (i.e. kjh
m → ∞) has been considered. This is a standard hypothesis

for corium pool models, which comes from the consideration that all layers are well mixed.

Consequently, the averaged composition of the interfacial liquid is equal to the bulk liquid

phase composition (i.e. w̄j
β,p = w̄j

p). The assumption of local thermodynamic equilibrium

at the interface results in the interface temperature Tβ to be equal to the liquidus tempera-

ture Tliquidus

(

w̄j
β,p

)

corresponding to the interface composition of the corium pool
(

w̄j
β,p

)

j∈S
.

Continuing on a closed system analysis, the heat fluxes at each of the boundaries are

modelled. For the interface, the heat transfer from the corium pool to the solid crust is a

result of convection and can be expressed using Nusselt-Rayleigh correlation:

ϕ̄β,p = h∆(T̄ p − Tβ,p) (3.12)

where h∆ denotes the heat transfer coefficient and T̄ p is the average temperature of the

liquid pool. Out of the different heat transfer correlation available in [86], the present

model makes use of the correlation for upward heat transfer that has been derived from

2The LIVE program headed by the Karlsruher Institute of Technology (KIT) in Germany, that aims
to study the core melt phenomena during the late phase of core melt progression in the RPV both
experimentally (in the form of large scale experiments with simulant materials (salt mixtures of sodium
nitrate NaNO3 and potassium nitrate KNO3)) and analytically using CFD codes in order to provide a
reasonable estimate of the remaining uncertainty band under the aspect of safety assessment. Within its
framework, the main objective of the LIVE-L3A test was to investigate the behaviour of the molten pool
and the formation of the crust at the melt/vessel wall interface influenced by the melt relocation position
and initial cooling conditions [85].
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3.3. Description of the corium-crust solidification model

the BALI experimental program (see [87]).

The heat flux across the solid at the interface
(

ϕ̄β,s

)

, as well as the RPV wall boundary
(

ϕ̄α,s

)

is a result of the conduction process, and can be expressed in the form of 1-D

conduction:

ϕ̄α,sAβ = −λsAβ

∂Ts(zs, t)

∂z
(3.13)

ϕ̄β,sAβ = λsAβ

∂Ts(z0, t)

∂z
(3.14)

with Ts and λs being the temperature distribution and thermal conductivity associated

with the solid crust respectively.

A quadratic temperature profile is assumed to depict the variation across the solid at

any time [54] and the boundary conditions are set for crust temperature at the interface

(Ts(z0, t) = Tβ) and the external boundary (Ts(zs, t) = TB.C.). Consequently, the heat flux

at the two solid boundaries (i.e. ϕ̄β,s and ϕ̄α,s) are obtained in terms of Tβ , TB.C. and the

average solid temperature T̄s:

ϕ̄α,s = λs

6T̄ s(t) − 2Tβ − 4TB.C.

zs

(3.15)

ϕ̄β,s = λs

6T̄ s(t) − 4Tβ − 2TB.C.

zs

(3.16)

3.3.3 Closures relations: CALPHAD-based EOS

The construction of the CALPHAD based EOS for providing closures to the energy

conservation equations of the model will be presented in this section. For the temperature

(1800 to 3000 K) and composition range of interest, only the liquid phase (LIQUID) and

the solid face-centered cubic (U,Zr)O2−x phase (C1_FCC) corresponding to the phase of

the first appearing solid3, have been considered. As earlier mentioned in Section 2.1.2, the

Gibbs free energies for the two phases are described by a non-ideal associate model in the

NUCLEA database, which is based on the following stoichiometric species as constituents:

U, UO2, Zr, ZrO2 and O. From these Gibbs energy functions, following the procedure

3It has been noted that for temperatures below 2000 K, solid phases other than C1_FCC also appear
and are stable, such as the tetragonal (Zr,U)O2−x phase (TET(OXIDE) or TET_OXIDE_ in the NUCLEA
database) and the α-Zr(O) phase (HCP_A3(1) or HCP_A3 in the NUCLEA database).
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3.3. Description of the corium-crust solidification model

depicted by Eqs. 2.14, 2.15 and 2.16, the enthalpy-temperature relations for the two phases

are obtained, which has a general form :

Hθ : T̄ , w̄j∈S

j → h̄ (3.17)

In order to directly utilize these enthalpy-temperatures for providing closures, additional

assumptions need to be made, such that the two constraints (discussed in detail in Sec-

tion 3.2) are properly addressed. In this context, the first constraint of ensuring monophasic

domains has been dealt separately for both the phases.

For the LIQUID phase, the mass transfer at the interface is assumed to be infinitely

fast (i.e. kj,h
m → ∞) . This, in addition to the initial condition that relates the average

temperature of the liquid molten pool T̄ p to be greater than the associated liquidus

temperature Tliquidus, ensures that the liquid domain Vp is monophasic. Consequently

the closure relations for average mass enthalpies of the bulk and interfacial liquid can be

directly provided by the enthalpy-temperature relations:

h̄p(T̄ p) = HLIQUID

[

T̄ p,
(

w̄j
p

)

j∈S

]

(3.18)

h̄β,p(Tβ) = HLIQUID

[

Tβ,
(

w̄j
β,p

)

j∈S

]

(3.19)

In case of the crust Vs, the problem of monophasic phase is addressed by assuming the

initially formed solid to be a pure C1_FCC phase. Recalling that the first solid phase to be

formed during the transient is C1_FCC, consequently, the closure relations to the energy

conservation equation in solid domain can be obtained from:

h̄s(T̄ s) = HC1_FCC

[

T̄ s,
(

w̄j
s

)

j∈S

]

(3.20)

h̄β,s(Tβ) = HC1_FCC

[

Tβ,
(

w̄j
β,s

)

j∈S

]

(3.21)

In addition, CALPHAD data is exploited through equilibrium calculations that involve

minimization of the Gibbs energy of the system for the given temperature and composition

value, which provide the local equilibrium conditions at the interface in terms of phase

transition temperature Tliquidus

(

w̄j
β,p

)

j∈S
(appearance of the C1_FCC phase) and composi-

tion
(

w̄j
β,s

)

j∈S
of the solid C1_FCC phase that is formed upon solidification.
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With respect to the second constraint, the validity of these EOS on a macroscopic scale

has been tested in the section on numerical verifications, where the dependency of the

EOS (depicted by Eqs. 3.18, 3.19, 3.20 and 3.21) on temperature and composition has

been studied. In this context, for the cases where this constraint is not fulfilled, the mass

averaged specific enthalpy values (obtained from the EOS) can be used by adopting partial

linearization of the enthalpy function in composition (as mentioned in [55]).

3.3.4 Numerical coupling scheme for time integration

The time integration of conservation equations coupled with CALPHAD related properties

requires numerical discretization for solving the corium solidification transient. To do so,

a macro time scale is defined with prescribed time-step ∆t and a semi-explicit coupling

between mass, energy conservation equations and species mass balance is considered.

Over a macro time-step [t, t + ∆t], material compositions are considered to be constant

and equal to their values at t in such a way that the interface temperature along with

the enthalpy-temperature relations of Eqs. 3.18, 3.19, 3.20 and 3.21 can be evaluated

at t. Following this, an explicit Euler scheme is used to integrate the mass and energy

conservation equations for the crust (Eqs. 3.3 and 3.6) and corium (Eqs. 3.2 and 3.5) from

t to t + ∆t over a micro time-step grid (with a micro time-step δt). Finally, the updated

phase compositions at t + ∆t are obtained by time integration of the species conservation

equation Eqs. 3.8 and 3.9 using the explicit scheme approximation. For instance, for the

solid phase, integration of Eq. 3.9 over a single time-step is given as:

∫ ti+∆t

ti

(

d

dt

(

w̄j
sms

)
)

dt =
∫ ti+∆t

ti

(

w̄j
sṁβ,p

)

dt (3.22)

(

w̄j
sms

)

|t+∆t = w̄j
β,s|t [(ṁβ,p) |t+∆t − (ṁβ,p) |t] ∆t +

(

w̄j
sms

)

|t (3.23)

With previously calculated values for w̄j
s , w̄j

β,s and ms at time t , the updated system

calculation can be obtained. These updated compositions act as inputs to the model for

the next macro time-step.

3.3.5 Redox reaction at the interface

Upon updating the system composition at the end of each time step, it may be observed

that the species mass conservation no longer holds true for the solid and liquid phases
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3.3. Description of the corium-crust solidification model

of the system and there may be formation of new species in the solidified crust at the

interface that were not present in the interfacial liquid. As a result, the interfacial terms

∆hṁβ,p and ∆wj
βṁβ,p of Eqs. 3.7 and 3.10 respectively, have been introduced in Section 3.3.

For a study related to the solidification of a completely oxidized corium system (i.e.

CZr = 100%), the composition of the crust formed at the interface is consistent with

the interface liquid in terms of the species present. For such a system, the species mass

conservation equations hold true for the values of ∆hṁβ,p and ∆wj
βṁβ,p = 0. However, in

case of the solidification of sub-oxidized corium system, the NUCLEA database predicts a

difference in the composition of the solid formed at thermodynamic equilibrium at the

liquidus temperature from the interfacial liquid composition. In particular, appearance

of non-zero mass fraction of U species in the solid is noted. This presence may be inter-

preted as a result of the redox reaction (UO2 + Zr ⇋ U + ZrO2) occurring in direction

of formation of U and ZrO2 in the interfacial liquid. The extra interfacial terms −∆hṁβ,p

and −∆wj
βṁβ,p are there to correct the balance equations Eqs. 3.7 and 3.10 accordingly.

The non-zero mass fraction for U species relative to the associate model of the C1_FCC

phase corresponds to the slight sub-stoichiometry of the (U,Zr)O2−x phase. This sub-

stoichiometry is to be related to vacancies in the face-centered cubic lattice and not be

confused with appearance of an actual metallic U phase.

A quantity r is defined to denote the mass of interfacial liquid required for solidify-

ing a unit mass of solid at equilibrium composition. Out of this mass r of the initial

liquid at the interface
(

w̄j
β,p

)

j∈S
, a unit mass of solid

(

w̄j
β,s

)

j∈S
is formed, leaving (r − 1)

amount of “residual” liquid of composition
(

w̄j
β,p′

)

j∈S
. From there, the overall species mass

variation occurring at the interface gives the value of ∆wj
β as:

∆wj
β = w̄j

β,s + (r − 1) w̄j
β,p′ − rw̄j

β,p (j ∈ S) (3.24)

In practice, the value of r can be calculated from the conservation of elements, that is

upheld by the system and is represented by the relation:

ēi
β,pmβ,p = ēi

β,smβ,s + ēi
β,p′mβ,p′ (3.25)
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where
(

ēi
β,s

)

i∈E
(respectively

(

ēi
β,p

)

i∈E
and

(

ēi
β,p′

)

i∈E
) are the component mass fractions

(for all components belonging to the element set E) associated with the species mass

fractions
(

w̄j
β,s

)

j∈S
(respectively

(

w̄j
β,p

)

j∈S
and

(

w̄j
β,p′

)

j∈S
). Consequently, for a “limiting”

element case corresponding to the absence of element i in the residual liquid phase (i.e.

ēi
β,p′ = 0), the above equation reduces to:

ēi
β,pmβ,p = ēi

β,smβ,s (3.26)

Recalling that r is the mass of liquid at the interface required to obtain unit mass of solid,

from the above equation, it can be expressed as:

r = max
i∈E

(

ēi
β,s

ēi
β,p

)

For the present case of interest, the “limiting” element for the solidifying interfacial liquid

is uranium (U). Thus r is expressed as:

r =
ēU

β,s

ēU
β,p

(3.27)

Following this, the “residual” liquid composition in terms of species mass fraction
(

w̄j
β,p′

)

j∈S

can be obtained from a simple element mass conservation and a subsequent hypothesis

assuming that the “residual” liquid is obtained from a local equilibrium calculation at

the interface temperature
(

Tβ

(

w̄j
β,p

)

j∈S

)

. Note that this is the same assumption that

has been used in the phase-field model of the multi-phase multi-component diffusion for

in-vessel corium in [88].

In this context, ∆h is interpreted as the specific enthalpy of reaction associated to

the oxygen redistribution in the interfacial liquid concurrent to solidification and it is

evaluated as:

∆h = r

(

HLIQUID

[

Tβ,
(

1

r
w̄j

β,s +
(

1 − 1

r

)

w̄j
β,p′

)

j∈S

]

− h̄β,p

)

(3.28)

with h̄β,p evaluated from the closure relation given by Eq. 3.19.
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Such a modification of the energy and species conservation equations to ensure a ther-

modynamically consistent description is not common and no discussion regarding such a

modification has been found in literature. It should be noted, that for a system where the

composition is represented in terms of the element mass fractions, such a modification of

the conservation equations will not be required. However, such a description will require

additional hypotheses in order to convert the element mass fractions to the species mass

fractions, which will be required for the evaluation of the thermophysical quantities.

3.4 Numerical results and analysis

The developed model was subjected to initial verification tests, with respect to global

energy balance and the analysis of the heat conduction profile in the solid crust at steady

state, the results of which are presented in Appendix B.

Following the initial verification, the modified thermal model with CALPHAD-based

EOS inputs, has been used for evaluation of the principal variables of interest on three

solidification transients for sub-oxidized and fully oxidized corium systems. These systems

have a common U/Zr molar ratio
(

RU/Zr

)

of 1.2, which is typical of French PWRs, with

different Zr molar oxidation degree CZr being 30% , 70% and 100% respectively. These

varying oxidation degrees depend on the accident scenarios that lead to core degradation

and the consequent corium relocation in the lower head, with CZr = 30% being the lowest

possible value and CZr = 100% corresponding to the complete oxidation of corium before

its relocation. For the initial system conditions of the three cases (refer to Table 3.1 ), the

evolution of different parameters were studied for a macro (respectively micro) time-step

size of ∆t = 100 s (respectively δt = 1 s) and have been summarized below. These

conditions have been selected in such a way that a monotonic solidification transient is

obtained for the corium configurations. The transient calculations are performed until

steady state (defined by a criterion relative to the crust mass variation between two

consecutive time-steps that should be lower than 10−2kg).
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3.4. Numerical results and analysis

Parameters CZr = 30% CZr = 70% CZr = 100%

Mass power density q̇mass (W/kg) 100

Solid initial mass ms (kg) 1000

Liquid initial mass mp (kg) 20000

Solid initial temperature T̄ s (K) 2200

External boundary temperature TB.C. (K) 1800

Interface surface area A(m2) 12.56

Liquid initial temperature T̄ p (K) 2700 2880 2940

Initial interface temperature Tliquidus

(

w̄j
β,p(t = 0)

)

(K) 2637.0 2818.8 2874.7

Table 3.1: Initial inputs to the thermal model: Case CZr = 30% , CZr = 70% and
CZr = 100%

3.4.1 Testing the validity of using EOS

The validity of using HLIQUID and HC1_FCC functions as EOS in the conservation equations is,

in the general case, related to the linearity of these functions with respect to temperature

and composition. As earlier mentioned in Section 3.3.3, these EOS are useful in predicting

the system behaviour at a microscopic level but their validity at macroscopic levels need

to be tested as well. This is because at a microscopic level, the specific enthalpy can be

expressed as a function of the local temperature and composition as Hθ(T , (wj)j∈S
) for a

given phase θ. However, this relation may not be valid for corresponding mass averaged

enthalpy h̄m =
∫

V ρhdV where V refers to the spatial zone in which volume averaging is

applied and m =
∫

V ρdV is the mass of the spatial zone.

In order to test the validity of the EOS, the variation of the specific enthalpy (denoted by

h̄s and h̄p for solid and liquid phases respectively) as a function of temperature is shown

in Figure 3.3 (respectively Figure 3.2) for the solid (respectively liquid) phase at initial

and steady state compositions (denoted as w̄j
0 and w̄j

∞ respectively) over the temperature

range [TB.C., Tβ] (respectively [Tβ, Tp]) for the CZr = 30% and CZr = 70% cases.
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3.4. Numerical results and analysis

from Figure 3.5 (respectively Figure 3.6) that the time-evolution of the liquid (respectively

solid) phase temperature is different, with the change in the liquidus temperature being

small for the completely oxidized corium system (CZr = 100%) compared to that for the

sub-oxidized corium systems with CZr = 30% and CZr = 70% respectively.

This difference in trends is due to the dependence of the liquidus temperature on the

interface composition. The variations in the composition are seen to directly effect the

liquidus temperature. For a completely oxidized system, the change in composition is

observed to be small, with the maximum variation being recorded for the mass fraction

of ZrO2 in the solid crust (≈ −9.5%) as well as in the bulk liquid (≈ 0.92%), resulting in

almost no variation of the liquidus temperature (< −2◦). In comparison, the sub-oxidized

systems of corium undergo larger changes in their composition. For system CZr = 30%, the

highest being recorded for the amount of Zr present in the solid crust (≈ −64%) (respec-

tively ≈ −59% for CZr = 70%) and the appearance of species U in the solid (w̄U
s = 0.062)

(respectively w̄U
s = 0.031 for CZr = 70%) (see Section 3.3.5). The larger changes in the

system composition result in a more significant variation of the liquidus temperature

(≈ −59◦ for CZr = 30%) (respectively for CZr = 70%, ≈ −17◦) as can be seen in Figure 3.5.

This dependence affects the overall system by altering the associated thermo-physical

properties, and consequently the solidification transient.
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3.4. Numerical results and analysis

to Figure 3.7). This is mainly related to the modification in the enthalpy value for the

liquid phase. At t = 0 s, CZr = 30% value for h̄β,p is 21% higher than CZr = 70% value

(respectively 32% higher than CZr = 100%) while for the solid this increase is limited to

7% (respectively 14% for CZr = 100%). This important variation is attributed to the

large dependence of the enthalpy as a function of the oxygen content. Note that for pure

compounds such as UO2 and ZrO2, it has been verified that this dispersion of specific

latent heat of solidification is largely reduced and values are consistent with published

data as shown in Table 3.2.

compound NUCLEA’09 [89] [90]

UO2 276 277 259±15

ZrO2 730 706 n/a

Table 3.2: Latent heat of fusion in kJ/kg for UO2 and ZrO2 from different sources

The liquid enthalpy values computed from CALPHAD data are likely to have a large

uncertainty because of the scarcity of associated experimental data and measurements of

latent heat of solidification for such ternary systems at high temperature are not available

[91]. Because of the considerable difference in the values of phase change enthalpies
(

h̄β,p − h̄β,s + ∆h
)

between the CZr = 30%, CZr = 70% and CZr = 100% cases, an

important difference in the corium solidification rate is observed. This difference increases

with time, resulting in a slower solidification rate for CZr = 30% compared to CZr = 70%

and CZr = 100%. Figure 3.8 gives the time evolution of crust mass for the three cases. It

can be observed that the degree of oxidation of the corium determines the rate of heat

transfer and consequently the solidification rate for the system. Lesser Zr oxidation in a

system leads to a longer transient time before reaching steady state, owing to its decreasing

solidification rate.
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3.5. Modelling of finite mass transfer in liquid boundary layer

as solving the above equation, requires calculation of the mass transfer coefficients kjh
m

before-hand. These coefficients can be deduced from analysis based on heat and mass

transfer correlations for natural convection (as obtained in [92]), and are related to the

diffusion coefficient D for binary systems (see [93]) through the relation:

km = D2/3
(

Nu

H
µ1/3Gr1/12Prr

)

(3.30)

where:

• Nu is the Nusselt number, which represents the ratio of convective to conductive

heat transfer at the boundary in a fluid;

• Gr is the Grashof’s number, which represents the correlation of heat and mass

transfer due to thermally induced natural convection;

• Prr is the Prandtl number, which represents the ratio of momentum diffusivity to

thermal diffusivity, and r is the exponent which is equal to −1/2 and −1/3 for

Pr ≤ 1 and Pr ≫ 1 respectively;

• µ refers to the momentum diffusivity (m2s−1), and;

• H represents the height of the fluid layer (m).

However, for an n component system (which is of interest for the present case), there

exist n − 1 independent inter-diffusion coefficients4 Dn
kj [94]. As a result, the diffusion

coefficients can be conveniently represented in an n − 1 dimensional matrix notation called

the Fick matrix [D], where each element of the matrix denotes a diffusion coefficient Dn
kj

(evaluated by eliminating the composition dependence of nth element):

Dn
kj = Dkj − Dkn (3.31)

These Dkj (which are dependent on the mobility value ςk for the component k) can be

calculated by adopting a linearized theory for mass fluxes, which is discussed in Appendix D.

In case of a n-component system, a diagonalization of [D] can be performed in order to ap-

ply Eq. 3.30 for its different eigenvalues in order to calculate the mass transfer coefficient kjh
m

4The derivations for the expressions of these inter-diffusion coefficients is one of the focuses of Chapter 4,
with an exception that the final expression for diffusion coefficients are required to be in terms of mass
fractions (to ensure consistency with the description adopted for the macroscopic model) instead of molar
concentrations.
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3.6. Conclusions

Having ensured a consistent evaluation of the mass transfer coefficient values, the species

equations need to be solved so as to obtain a physical solution related to the evolution of

liquid composition with time. However, the dependency of w̄j
β,p , w̄j

β,p′ and r values on the

bulk liquid composition w̄j
p, results into a non-linear system of equations. In order to solve

for the interface liquid composition w̄j
β,p, a fixed point iteration scheme with relaxation

was used. With this updated modeling of the interface condition in species mass fractions,

different numerical simulations were performed for the system conditions described in

Section 3.4. In all cases, convergence issues were faced with w̄j(n+1)

β,p going rapidly out of

the allowed range [0,1] during iterations in such a way that these simulations could not

be completed. The analysis made through additional tests (by direct evaluation of the

function associated with this non-linear problem over its input variable space) showed that

the existence of a solution to this non-linear system in the general case is questionable.

Further analysis is needed but it was considered out of main scope of this Ph.D. thesis

and thus, was not undertaken.

3.6 Conclusions

The work presented in this chapter has allowed for a detailed discussion on exploring the

possibility of using CALPHAD database for constructing general EOS to be used as closures

in corium-related thermal models associated with phase segregation. In particular, it was

shown that the consistent use of CALPHAD data for evaluating interface quantities related

to the local equilibrium assumption requires a modification of the species conservation

equations for the case of a sub-oxidized corium. Although the testing of these CALPHAD

based EOS has been done on a mock-up model, the feasibility of using them to obtain

thermodynamically consistent closures (as reported by the obtained results) also addresses

the issue of thermodynamic consistency for the coupled thermochemical-thermohydraulic

models for in-vessel corium description.

Moreover, the numerical study related to the adoption of different segregation hypotheses

during the EOS construction [81] further confirms the applicability of such an approach

where a general EOS, supplemented by appropriate hypotheses, can be used for providing
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3.6. Conclusions

closures to the models for depicting different cases, such as treating the liquid miscibility

gap. The next step in this direction is to actually construct a complete EOS and verify its

use for in-vessel corium modeling in the PROCOR.
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Chapter 4

Consistent formulation of a

mesoscopic model for in-vessel

corium through phase-field

This chapter presents a thermodynamically consistent formulation of a non-isothermal

phase-field model which can be used to simulate the kinetics of thermochemical processes

associated with in-vessel corium behaviour. In principle, this formulation can be used for

a wide range of applications, two of which have been discussed in the chapter; namely

the process of corium solidification at the RPV boundary and the inter-liquid transfer

associated to a miscibility gap in the case of transient stratification of in-vessel corium. Fur-

thermore, the questions related to the use of CALPHAD-based description for mesoscopic

models are addressed. In addition, the constraints posed on the model due to the up-

scaling of the interface have been studied for isothermal conditions in simple binary systems.

As mentioned earlier in Chapter 2, a phase-field model is useful as it can be introduced

in the frame of CFD based codes, which can be used to gain knowledge regarding the

thermohydraulic behaviour for in-vessel corium.
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4.1. Thermodynamic representation of an n-component system

4.1 Thermodynamic representation of an n-component

system

Recalling the discussion in Section 2.2.2.2, it is known that the formulation of a phase-

field model requires the choice of an appropriate thermodynamic potential, which can be

used for the consistent derivation of the evolution equations of the dynamic variables of

interest. For an n-ary system (i.e. composed of n components) to be studied in isothermal

conditions with a fixed volume, the appropriate thermodynamic potential for description

is the Helmholtz free energy F, which can be derived from the molar internal energy of the

system (Ẽm) through a Legendre transformation. This molar internal energy is represented

as a state function1 of variables S̃m, Vm and xi as:

Ẽm = T S̃m − pVm +
n∑

i=1

µ̃ixi (4.1)

where:

• S̃m is the molar entropy for the system;

• Vm represents the molar volume of the system;

• xi is the mole fraction of the ith component, expressed as xi = Ni

N
, where Ni is the

number of moles of component i and N is the total number of moles in the system,

and;

• µ̃i is the chemical potential associated with the ith component, and it is expressed as

µ̃i = ∂Ẽ
∂Ni

.

The above system description can be reduced by defining n − 1 ‘independent’ component

concentrations (in terms of mole fractions), with the nth component concentration expressed

in terms of these independent concentrations as xn = 1−∑n−1
i=1 xi. Substituting the relation

in the above equation, the molar internal energy for the reduced system (denoted by Em)

is expressed as:

Em = TSm − pVm +
n−1∑

i=1

µixi + µ̃n (4.2)

1It should be noted that the tilde notation introduced above is only to distinguish the thermodynamic
representation of an n-ary system from that for a reduced system composed of n − 1 constituents.
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4.1. Thermodynamic representation of an n-component system

with :

µi = (µ̃i − µ̃n) (4.3)

If the system is defined for a constant pressure condition, with the internal energy density

em (expressed as Em/Vm) expressed as a function of the variables sm, (xi/Vm) and a

non-conserved parameter φ that denotes the phase of the system, dem is obtained from

Eq. 4.2 as:

dem = Tdsm +
n−1∑

i=1

µid
(

xi

Vm

)

+
∂em

∂φ
dφ (4.4)

where:

• T is defined as the partial derivative of em with respect to the entropy density sm

(expressed as Sm/Vm): T = ∂em

∂sm
, and;

• µi is defined as the partial derivative of em with respect to the component molar

concentration xi/Vm : µi = ∂em

∂(xi/Vm)
.

In order to utilize the thermodynamic description provided by CALPHAD, a Legendre

transformation of the internal energy to the Gibbs energy of the system is required. This

has been discussed in detail in Appendix C, which gives the thermodynamic relation

between the Gibbs energy density gm and the internal energy density of a reduced system

as:

dgm = dem − Tdsm − smdT

=
n−1∑

i=1

µid
(

xi

Vm

)

+
∂em

∂φ
dφ − smdT

(4.5)

For a binary system (i.e. n = 2), the thermodynamic representation for the system can be

achieved in terms of a single component concentration as:

Em = TSm − pVm + µx (4.6)

With µ = (µ̃1 − µ̃2). For constant pressure condition, dividing by the molar volume Vm

yields the expression for the internal energy density em(sm, (x/Vm), φ) :

dem = Tdsm + µd
x

Vm

+
∂em

∂φ
dφ (4.7)
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4.1. Thermodynamic representation of an n-component system

The Legendre transformation of the internal energy density for the reduced binary system

to the Gibbs energy density gives the final form as:

dgm = µd
x

Vm

+
∂em

∂φ
dφ − smdT (4.8)

For a system composed of materials whose density is not dependent on pressure, the

thermodynamic description can be obtained by making use of the Gibbs free energy as

the thermodynamic potential. Furthermore, assuming that the molar volume Vm for

such systems is constant, the Helmholtz free energy functional (F) is equivalent to the

Gibbs free energy functional (G) and so the evolution equations for the phase-field model

can be derived in a consistent manner. In terms of coupling the phase-field model with

CALPHAD to obtain the thermodynamic properties, recalling that the NUCLEA database

consists of Gibbs energies that are functions of the constituent composition yi, there

exists an additional question of the relating the system composition (which is defined in

terms of component xi) to yi. Consequently, just having the information on the element

compositions is not sufficient, but the relation between the elements and the species mole

fractions must also be known, which depends on the system which is being treated. For

instance, for a U-O-Zr system, it is necessary to know about the state of oxygen (i.e. if it

exists as a free element or is combined with other elements) in relation to the formation of

oxide compounds. The solution to this question is addressed later in the chapter.

However, for the phase-field model to take into account the effect of temperature variation

in the system, the appropriate potential to describe the system is entropy (as proposed

by [75]). The following section discusses the formulation of a generalized phase-field

model that was developed for studying the thermochemical processes associated with

the in-vessel corium. It should be noted that although the presentation of equations has

been made in terms of the solid liquid phases, this model can be used to study both, the

solidification as well as the phase-segregation in liquid systems. Furthermore, for the sake

of clarification, the formulation has been given for binary systems, but it can be applied to

the treatment of an n-ary system as the evolution equations for the binary system can be

converted for multi-component system by replacing the terms dependent on the reduced

system composition (x), with the terms dependent on xi ∀i ∈ n − 1, for the reduced n − 1

component system.
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4.2 Consistent formulation of evolution equations from

the entropy functional

The formulations based on Gibbs (or Helmholtz) free energy functional are applicable

strictly to the study of isothermal systems, and are extended to some non-isothermal cases

by ‘patching in’ an energy equation [95]. In order to treat non-isothermal cases, incor-

poration of the energy equation is necessary since it takes into account the temperature

variation associated with the energy flow across the moving phase boundary. As a result

of the addition of the energy conservation equation, the dependent variable changes from

temperature to energy and consequently the thermodynamic potential changes from the

Gibbs free energy to the entropy S.

This approach of using an entropy functional for the formulation of phase field models, first

introduced by Penrose and Fife [75], is useful for obtaining thermodynamically-consistent

equations for non-isothermal systems, with the possibility to obtain isothermal situations

as a special case. Writing the entropy density as a function of em, x
Vm

and φ, the entropy

functional for a constant volume V system [96] is given as:

S =
∫

V

(

sm(em,
x

Vm

, φ) − 1

Ta
fdw(φ) − 1

T

κφ
2

2
|∇φ|2

)

dV (4.9)

where :

• sm refers to the local molar entropy density;

• φ is the non-conserved phase field variable or the order parameter, which indicates

the phase of the material. φ is defined as a continuous spatial function, where it is

assumed that at any instant in time, it takes a value of 1 and 0 in the bulk solid and

liquid phase regions, whereas it varies continuously between these two values across

the interface;

• fdw(φ) is a double-well function given by:

fdw(φ) =
1

4

[

φ2(1 − φ)2
]

which has mimina at φ = 0 and φ = 1. Together sm(em, x
Vm

, φ) − 1
T a

fdw(φ) denote

the local entropy density of the system;
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4.2. Consistent formulation of evolution equations from the entropy functional

• a is a pre-factor that is used for the up-scaling of the interface thickness, and;

• κφ is the positive gradient coefficient for φ. This constant parameter is associated

with the formation of the interface and accounts for the energy “cost” to the system

associated with it.

In a general formulation, there also exist gradient terms κ2
e, κ2

x that are associated with

gradients in energy and composition within the interface. The physical significance of

these gradient coefficients and how to obtain them depends on the spatial scale of the

problem being studied. On a microscopic scale, these coefficients will result from the

interactions that occur at this scale, and they can be typically be obtained from mean field

approximations to microscopic models, in a manner similar to [97]. On a macroscopic scale,

the gradient coefficients will be obtained from the macroscopic properties of the interface,

in particular the surface tension and the interface thickness (for example, see [65] [98] and

[99]). However, for most phase field models, the effect of these gradients is not taken into

account. In this respect, by taking into account the phase-field φ, a simplest choice for the

modelling can be made, where only the gradient coefficient associated with φ is retained

as it allows for a direct control on the parameters associated with the interface (such as

the interface energy and thickness). This choice has been adopted for the development of

the present model. Consequently, for the entropy functional given by Eq. 4.9, the time

derivative is given as:

dS

dt
=
∫

V

[(

∂sm

∂em

)

ėm +

(

∂sm

∂x/Vm

)

ẋ/Vm +

(

∂sm

∂φ
− 1

Ta
f ′

dw(φ) +
κφ

2

T
∇2φ

)

φ̇

]

dV (4.10)

The driving forces for overall phase transformation can be obtained by calculating the

variational derivative of the entropy functional (i.e. Eq. 4.10):

(

δS

δem

)

=

(

∂sm

∂em

)

(4.11)

(

δS

δ(x/Vm)

)

=

(

∂sm

∂(x/Vm)

)

(4.12)

(

δS

δφ

)

=

(

∂sm

∂φ
− 1

Ta
f ′

dw(φ) +
1

T
κφ

2∇2φ

)

(4.13)
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4.2.1 Derivation of the kinetic equations for the conserved and

non-conserved variables

To discuss the kinetics of a model, time evolution equations are required for the fields

which control the evolution of the entropy functional. For the energy and concentration

fields, since they are conserved quantities, their evolution is governed by the local energy

and mass conservation laws:

ėm = −∇Je (4.14)
ẋ

Vm

= −∇Jx (4.15)

To ensure consistency with the second law of thermodynamics, the local entropy production

must be non-negative. This can be achieved by adopting the linear phenomenological

equations for coupled heat and mass transfer given by the gradients corresponding to

variation in entropy with respect to changing energy and concentration:

Je = Mee∇
(

δS

δem

)

+ Mex∇
(

δS

δ(x/Vm)

)

(4.16)

Jx = Mxe∇
(

δS

δem

)

+ Mxx∇
(

δS

δ(x/Vm)

)

(4.17)

where Mxx and Mee are related to the inter-diffusion coefficients for the components and

the heat conduction, respectively. The coefficients Mex and Mxe describe the coupled effect

of the heat and mass transfer which can be related to the Soret and Dufour effects2. These

coefficients are considered to be equal to each other according to Onsager’s reciprocal

relations. The second law of thermodynamics requires these coefficients to be positive3. If

the contribution of the cross-terms is ignored, Eqs. 4.16 and 4.17 can be simplified as:

Je = Mee∇
(

δS

δem

)

= Mee∇
(

∂sm

∂em

)

(4.18)

Jx = Mxx∇
(

δS

δ(x/Vm)

)

= Mxx∇
(

∂sm

∂(x/Vm)

)

(4.19)

2The Soret effect refers to the presence of mass diffusion fluxes that arise due to spatial variations in
the temperature of a system. On the other hand, the Dufour effect refers to the presence of an energy flux
due to a concentration gradient.

3For a general case where the cross terms Mxe and Mex are considered, from the second law of
thermodynamics, it is required that the matrix M composed of these coefficients Mee, Mxx, Mxe and Mex

must be positive. Only in the specific case where the cross terms are taken to be zero, does it imply that
the diagonal terms Mee and Mxx are positive.
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4.2. Consistent formulation of evolution equations from the entropy functional

It should be noted that by neglecting the effect of the cross terms does not change any

of the discussions that are related to the point of answering the thermodynamic closures.

The time evolution of the order parameter φ, which is a non-conserved quantity, is given

by the Allen-Cahn equation:

∂φ

∂t
= Mφ

δS

δφ
= Mφ

(

∂sm

∂φ
− 1

Ta
f ′

dw(φ) +
1

T
κφ

2∇2φ

)

(4.20)

where Mφ is a positive kinetic parameter related to the mobility of the interface. The

application of the evolution equations Eqs. 4.14, 4.15 and 4.20 to determine the kinetics of

the model requires the evaluation of the driving forces for the phase transformation [66].

The driving forces for the evolution equations (denoted by the gradients of the par-

tial derivatives given on the R.H.S. of Eqs. 4.18, 4.19 and 4.20) can be obtained from the

thermodynamic relations detailed in Appendix C.

For the energy conservation equation, starting from the first principle of thermodynamics

and using Eq. C.4 of Appendix C:

∇
(

∂sm

∂em

)

= ∇
(

1

T

)

= − 1

T 2
∇T (4.21)

In a similar manner, for the mass conservation equation, the derivative ∂sm

∂(x/Vm)
can be

obtained from Maxwell’s equations Eq. C.29 from Appendix C and the driving force is

given as:

∇
(

∂sm

∂(x/Vm)

)

= ∇
(

− µ

T

)

(4.22)

For the non-conserved order parameter φ, the driving force is given by the expression for
δS
δφ

in Eq. 4.20, where ∂sm

∂φ
is given by Eq. C.28 of Appendix C :

∂sm

∂φ
= − 1

T

(

∂em

∂φ

)

sm, x
Vm

= − 1

T

(

∂gm

∂φ

)

T , x
Vm

(4.23)

where ∂gm

∂φ
is obtained from the Gibbs energy density written for the system by introducing

an interpolation function p(φ) between Gibbs energy densities of homogeneous phases gs
m

and gl
m:

gm(T ,
x

Vm

, φ) = p(φ)gs
m(T ,

xs

Vm

) + (1 − p(φ))gl
m(T ,

xl

Vm

) (4.24)
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4.2. Consistent formulation of evolution equations from the entropy functional

where xs = 0 and xl = x if φ = 0, xs = x and xl = 0 if φ = 1 and, when φ ∈]0, 1[, xs

and xl are the compositions of the solid and liquid phases at equilibrium for an overall

composition given by x as explained in more details in the next section.

p(φ) = φ3(10 − 15φ + 6φ2) =







0 φ = 0

1 φ = 1
(4.25)

p′(φ) = 30φ2(1 − φ)2 = 0 ∀ φ ∈ {0, 1} (4.26)

Substituting Eqs. 4.21 and 4.22, the fluxes for energy and mass (i.e. Eqs. 4.18 and 4.19)

can be expressed as :

Je = Mee∇
(

1

T

)

= −Mee

T 2
∇T (4.27)

Jx = Mxx∇
(

− µ

T

)

= −Mxx∇
(

µ

T

)

(4.28)

Eqs. 4.27 and 4.28 can be substituted in Eqs. 4.14 and 4.15 to get the final forms for the

evolution equations for the variables em and x/Vm :

ėm = −∇.
[

−Mee

T 2
∇T

]

(4.29)

ẋ

Vm

= −∇.
[

−Mxx∇
(

µ

T

)]

(4.30)

It should be noted that under the constant molar volume assumption, the energy equation

given by Eq. 4.29 can be equivalently written in terms of the specific enthalpy h.

In the above formulation, if the dependency on the phase marker φ is dropped and

instead the gradient coefficient in composition (κ2
x) is considered, the evolution equa-

tions given by Eq. 4.29 (when written in the form of enthalpy) and Eq. 4.30 present a

non-isothermal extension to the Cahn-Hilliard model developed in [44] for studying the

kinetics of inter-layer mass transfer in the liquid miscibility gap of in-vessel corium. In

order to solve the system of evolution equations (i.e. Eqs. 4.29 and 4.30 for enthalpy and

composition respectively), the energy conservation equation requires closures in terms of

enthalpy-temperature relations. From the point of view of thermodynamic consistency,

this system is very similar to the case discussed in Chapter 3 and the closure relations can

be obtained by using an EOS (constructed from CALPHAD) of the form Hθ : T , x → hθ.
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4.3. Equivalent formulation of phase-field model from the grand potential

4.2.2 Limitations to the formulation in entropy approach

The use of the phase-field model developed from the entropy functional approach for

studying a two-phase binary (or n-ary) system has certain limitations. Contrary to the

case of a pure substance, the energy (or enthalpy) as well as the composition of the binary

system varies across the interface. In order to achieve the condition of local equilibrium,

both phases must follow the conditions that:

• the chemical potentials of the two phases must be equal, i.e. µs(xs/Vm) = µl(xl/Vm),

where xs/Vm (respectively xl/Vm) refer to the component composition in phase

θ (θ = s, l), and;

• the grand potential density (denoted as ωm = gm − µx/Vm) must be equal for the

two phases.

As a result, the bulk and the interface quantities cannot be decoupled and a non-linear

system of equations needs to be solved in order to obtain the composition at the interface.

Several alternate solutions have been proposed to solve this problem of non-linearity, which

includes the option of defining separate fields for the composition of each of the phases (as

proposed in [99]).

However, it should be noted that for the system defined in terms of enthalpy, composition

and φ, the corresponding intensive variables to the conserved quantities (i.e. temperature

T and chemical potential µ) remain constant across the interface at equilibrium. Thus,

these variables can be used as dependent variables for deriving the phase-field model [100].

Consequently, the corresponding thermodynamic potential must be changed to the grand

potential functional (denoted by Ω̆) from entropy.

4.3 Equivalent formulation of phase-field model from

the grand potential

Following the Legendre transformation from Gibbs energy to the grand potential (discussed

in Appendix C) the thermodynamic relation between grand potential density (ωm) and
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4.3. Equivalent formulation of phase-field model from the grand potential

entropy density (sm) is obtained by Eq. C.20 as:

(

∂ωm

∂T

)

µ,φ

= −sm (4.31)

Thus, by making use of this thermodynamic relation, the entropy functional given by

Eq. 4.9 can be re-written in a thermodynamically consistent way (see for example [101])

as:

Ω̆ =
∫

V

(

ωm(T , µ, φ) +
1

a
fdw(φ) +

κ2
φ

2
|∇φ|2

)

dV (4.32)

with ωm expressed as an interpolation (given by uni-variate function p(φ) in Eq. 4.25)

between the homogeneous grand potential densities for the phases θ = s and l :

ωm = p(φ)ωs
m(T , µ) + (1 − p(φ))ωl

m(T , µ) (4.33)

The variational derivatives for Ω̆ can be obtained as (details in Appendix C):

δΩ̆

δT
=

(

∂ωm

∂T

)

= −sm (4.34)

δΩ̆

δµ
=

(

∂ωm

∂µ

)

= − x

Vm

(4.35)

δΩ̆

δφ
=

(

∂ωm

∂φ
+

1

a
f ′

dw(φ) − κ2
φ∇2φ

)

= −T
δS

δφ
(4.36)

Similarly, the partial derivative of the grand potential density with respect to the dependent

variables T , µ and φ can be obtained from Eq. 4.33.

4.3.1 Evolution equations for the conserved and non-conserved

order parameters

The coupled equations for the evolution of the conserved variables µ and T from the

grand potential functional (Eq. 4.32), are obtained by making use of the mass and energy

conservation equations, and the time-evolution of the non-conserved order parameter φ:
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4.3. Equivalent formulation of phase-field model from the grand potential

4.3.1.1 Conserved order parameters T and µ:

4.3.1.1.1 Mass conservation equation

In the expression for the mass conservation equation given by Eq. 4.30, the substitution of

Eq. C.21 (from Appendix C) for x
Vm

gives:

∂

∂t

(

∂ωm

∂µ

)

= ∇
[

−Mxx∇
(

µ

T

)]

(4.37)

By making use of Eq. C.24 from Appendix C and re-arranging the terms, the mass

conservation equation is written in terms of the derivative of the molar grand potential

(denoted by Ωm) with respect to the variables T , µ and φ:

(

∂2Ωm

∂T∂µ

)

∂T

∂t
+

(

∂2Ωm

∂µ2

)

∂µ

∂t
= Vm∇

[

−Mxx∇
(

µ

T

)]

−
(

∂2Ωm

∂µ∂φ

)

∂φ

∂t
(4.38)

4.3.1.1.2 Energy conservation equation

In Eq. 4.29 for conservation of energy, the time derivative of the molar internal energy

density em(sm, x/Vm, φ) can be expressed as derivative of the grand potential density (from

Eqs. C.20, C.21 and C.22 of Appendix C) as:

∂em

∂t
= T

∂sm

∂t
+ µ

∂

∂t

(
x

Vm

)

+

(

∂em

∂φ

)

∂φ

∂t

= −T
∂

∂t

(

∂ωm

∂T

)

− µ
∂

∂t

(

∂ωm

∂µ

)

+

(

∂ωm

∂φ

)

∂φ

∂t

(4.39)

Substituting Eq. 4.37 for ∂
∂t

(
∂ωm

∂µ

)

and Eq. C.25 for ∂
∂t

(
∂ωm

∂T

)

in Eq. 4.39, the final form of

the energy conservation equation (in Ωm) can be obtained by equating Eqs. 4.29 and 4.39:

(

∂2Ωm

∂T 2

)

∂T

∂t
+

(

∂2Ωm

∂µ∂T

)

∂µ

∂t
=

Vm

T
∇
[

−Mee

T
∇T

]

− Vmµ

T
∇
[

−Mxx∇
(

µ

T

)]

+
1

T

(

∂Ωm

∂φ
− T

∂2Ωm

∂T∂φ

)

∂φ

∂t

(4.40)

Thus, Eqs. 4.38 and 4.40 represent the coupled equations in the evolution of the variables

µ and T .
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4.3.1.2 Non-conserved order parameter φ

As mentioned earlier in Section 2.2.2.1 of Chapter 2, the evolution of the non-conserved

order parameter is governed by the Allen-Cahn equation, which is given by Eq. 4.20. From

Eq. C.28 of Appendix C this equation can be modified as:

∂φ

∂t
= Mφ

[

− 1

T

∂ωm

∂φ
− 1

Ta
f ′

dw(φ) +
1

T
κφ

2∇2φ

]

(4.41)

The partial derivative of ωm with respect to φ can be evaluated from Eq. 4.33, which upon

substitution in the above equation gives a final expression for the time evolution of φ (in

terms of Ωm):

∂φ

∂t
=

(

Mφκ2
φ

T

)

∇2φ −
(

Mφ

aT

)

f ′
dw(φ) −




Mφ

(

Ωs
m − Ωl

m

)

VmT



 p′(φ) (4.42)

The derivation of the evolution equations for the dependent variables (Eqs. 4.38, 4.40

and 4.42) together give the phase-field model in the grand potential formulation. As

mentioned earlier, in the context of the present thesis, this model has been used to study

the kinetics of solidification and phase segregation in liquid system, the numerical results

for which will be presented in Section 4.5.

4.3.2 Parameters of the phase-field model

The present section is dedicated to the derivation of the parameters related to the diffuse

interface description and those related to the evolution of the dependent variables T , µ

and φ.

4.3.2.1 The diffuse-interface parameters

The diffuse interface shows interaction of the phases. The gradient terms in the functional

take into account these interactions, which in turn depend on variation of the order

parameter through the interface thickness. This is the region where φ undergoes a relevant

change, as it is constant in the bulk phases. This is dependent on the evolution equation

for φ.

The surface energy per unit area σβ can be obtained as the difference between the value
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4.3. Equivalent formulation of phase-field model from the grand potential

of the grand potential functional for the system with interface Ω̆Tβ
and the homogeneous

phases (i.e. without contribution of the terms related to interface) Ω̆hom
Tβ

for the system at

equilibrium temperature Tβ and chemical potential µ:

σβ =
Ω̆Tβ

− Ω̆hom
Tβ

Interface area
(4.43)

where Ω̆hom
Tβ

is expressed as :

Ω̆hom
Tβ

=
∫

ωm(Tβ, µ)d3r (4.44)

and Ω̆Tβ
is given by Eq. 4.32 taken at T = Tβ. For the system at equilibrium, the

phase-field order parameter φ attains the values 1 and 0 at the boundaries of the system

(corresponding to z = 0 and z = L respectively). Therefore, without loss of generality it

can be considered that φ(0) = 0 and φ(L) = 1. Thus σβ can be written for a 1-D domain

as :

σβ =
∫ L

0




1

a
fdw +

κ2
φ

2

(

dφ(z)

dz

)2


 dz (4.45)

For a system under equilibrium, the grand potential densities for the solid and liquid

phases follow the condition:

ωs
m(Tβ, µ) = ωl

m(Tβ, µ) (4.46)

∴ the equilibrium profile for the order parameter φ is given by Eq. 4.42 at steady state:

1

a
f ′

dw(φ) = κ2
φ

d2φ(z)

dz2
(4.47)

The multiplication of the L.H.S. and R.H.S. of the above equation with dφ
dz

gives:

κ2
φ

(

d2φ(z)

dz2

)(

dφ(z)

dz

)

=
1

a

(

dfdw

dφ(z)

)(

dφ(z)

dz

)

(4.48)

This can be integrated with respect to z within the domain [0, z] to obtain:

κ2
φ

2

(

dφ(z)

dz

)2

=
1

a




fdw(φ(z)) − fdw(φ(0))

︸ ︷︷ ︸

=0




 =

1

a
fdw(φ(z)) (4.49)
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4.3. Equivalent formulation of phase-field model from the grand potential

where Eq. 4.45 can be substituted for the R.H.S. and the relation for σβ can be obtained

as:

σβ =
∫ L

0
κ2

φ

(

dφ(z)

dz

)2

dz (4.50)

Eq. 4.50 can be written as an integration with respect to φ, with a change of variables

that is given as :

σβ =
∫ L

0
κ2

φ

(

dφ(z)

dz

)2

dz =
∫ φ(L)

φ(0)
κ2

φ

(

dφ(z)

dz

)

dφ (4.51)

For an analytical solution to σβ, an expression is required for the term dφ(z)
dz

in the above

equation. This can be done by re-visiting the Eq. 4.49:

dφ(z)

dz
=

√
2

κφ

√

1

a
fdw(φ(z)) (4.52)

The above relation can be substituted in Eq. 4.51 to obtain the surface energy as:

σβ =

√

2

a
κφ

∫ φ(L)

φ(0)

√

fdw(φ(z))dφ

=

√

2

a
κφ

∫ φ(L)

φ(0)

1

2
φ(1 − φ)dφ

=
κφ√
2a

[

φ2

2
− φ3

3

]φ(L)

φ(0)

(4.53)

As φ(0) = 0 and φ(L) = 1, the final expression for the interface energy is obtained as :

σβ =
κφ

6
√

2a
(4.54)

The interface thickness δβ is defined as:

δβ =
φ(L) − φ(0)

max
(

dφ(z)
dz

) (4.55)

with φ(L) − φ(0) = 1 and the maximum for dφ(z)
dz

calculated to be 1
4
√

2aκφ
for φ(z) = 0.5.

Substituting the max value for Eq. 4.52 in Eq. 4.55, the interface thickness can be calculated

as:

δβ = 4
√

2aκφ (4.56)
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As a consequence, the values for the parameters κ2
φ and a can be calculated directly from

the interface parameters σβ and δβ, by using the relations :

κ2
φ =

3

2
σβδβ (4.57)

a =
δβ

48σβ

(4.58)

4.3.2.2 The kinetic parameters

The evolution of the variables T and µ is given by the energy and mass conservation

equations given by Eqs. 4.40 and 4.38, respectively. The linear phenomenological equations

(Eqs. 4.27 and 4.28) can be recalled from Section 4.2.1 for relating the fluxes for energy

(Je) and mass transfer (Jx):

Je = −Mee

T 2
∇T (4.59)

Jx = −Mxx∇
(

µ

T

)

(4.60)

The expressions for the kinetic coefficients Mee and Mxx can be derived from Fourier’s law

of heat conduction and Fick’s law of diffusion respectively.

4.3.2.2.1 Kinetic coefficients for energy and mass conservation equations

Fourier’s law of heat conduction relates the heat flux Je to be proportional to the negative

gradient in temperature:

Je = −λ∇T (4.61)

where the coefficient of proportionality λ is the thermal conductivity (Wm−1K−1) of the

material. Equating Eqs. 4.59 and 4.61, the kinetic coefficient Mee is obtained as:

Mee = λT 2 (4.62)

where λ is dependent on the phase (hence on φ), and can be expressed as an interpolation

between the homogeneous phase thermal conductivities λs and λl.

For a single phase, the diffusive mass flux Jx for a reduced system with independent driving
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forces (given by ∇µi) is represented as (detailed derivation presented in Appendix D):

Jk =
n∑

i=1





n∑

j=1

[δij − xi] [δjk − xk]
xjDj

VmR
∇µi

T



 (4.63)

where R is the universal gas constant (JK−1mol−1) and δjk is the Kronecker delta function

which is equal to 1 for j = k and equal to 0 for j 6= k. Comparing Eqs. 4.60 and 4.63,

the kinetic coefficients of diffusion can be obtained for the bulk phase θ (denoted by M θ
xx,

θ = s and l for solid and liquid phase respectively), which for a binary system is reduced

to:

M θ
xx =

x(1 − x)

VmR

[

(1 − x)Dθ
1 + xDθ

2

]

(4.64)

with Dθ
1 and Dθ

2 being the self diffusion coefficients for the two components in phase

θ. Within the interface, where the two phases co-exist, this kinetic coefficient can be

determined by applying an interpolation function hmixing(φ) between the two-phases of

the form:

Mxx =
[

hmixing(φ)M s
kj + (1 − hmixing(φ))M l

kj

]

(4.65)

It should be noted that unlike the interpolation function p(φ) introduced in Section 4.2.1,

the function hmixing(φ) does not have to follow the same constraints as mentioned in

Eq. 4.25. For the sake of convenience, the numerical analysis carried out in Section 4.5

makes use of the same function (as p(φ)) for defining this interpolation function hmixing(φ).

4.3.2.2.2 Choice of kinetic coefficient Mφ

For a system to achieve thermodynamic equilibrium, the condition Ωs
m(T , µ, φ) = Ωl

m(T , µ, φ)

must be satisfied. For the isothermal case, this corresponds to finding the solution of

the evolution equations Eqs. 4.38 and 4.42 of the model simplified under the constant

temperature assumption (i.e. Ṫ = 0), which are given as:

(

∂2Ωm

∂µ2

)

∂µ

∂t
= −Vm∇(Mxx∇ µ

T
) −

(

∂2Ωm

∂µ∂φ

)

φ̇ (4.66)

∂φ

∂t
=

(

Mφκ2
φ

T

)

∇2φ

︸ ︷︷ ︸

I

−
(

Mφ

aT

)

f ′
dw(φ)

︸ ︷︷ ︸

II

−



Mφ

(

Ωs
m − Ωl

m

)

VmT



 p′(φ)

︸ ︷︷ ︸

III

(4.67)
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In the absence of a phase field parameter, the kinetics of the system depends only on the

characteristic time τ associated to diffusion (discussed below), which is governed by the

chemical potential gradient imposed by the initial state of the system. However, upon

introducing the phase field parameter, the driving force for the phase transformation is

governed by the coupled effect of the two phenomena. In this case, the evolution of the

system towards equilibrium is associated to the relaxation of the phase field as well as the

chemical potential gradient. Thus, the kinetics of the system depends on the choice of the

phase field mobility Mφ as well as the initial composition of the system.

In order to ensure that the model depicts the kinetics of the thermochemical process

correctly (with the phase field order parameter φ being used as a ‘marker’ for the interface

position), it is important to choose an appropriate value for the mobility coefficient Mφ.

This can be achieved by following the procedure of non-dimensionalizing the evolution

equations Eqs. 4.66 and 4.67 for the dependent variables. The dimensionless quantities are

introduced as:

t∗ =
t

τ
(4.68)

z∗ =
z

L
(4.69)

µ∗ =
µ

µ0

(4.70)

Ω∗
m =

Ωm

Ω0

(4.71)

∆Ω∗
m =

Ωs
m − Ωl

m

∆Ω0

(4.72)

M∗
xx =

Mxx

M0

(4.73)

where:

• τ is the characteristic time associated the evolution of the variable µ, which represents

the time taken for the diffusion process to occur in the system of a given length scale

L, and;

• µ0 , Ω0, ∆Ω0 and M0 are the characteristic values associated to the order of magni-

tudes of µ , Ωm, Ωs
m − Ωl

m and Mxx respectively.
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The characteristic time for the evolution of φ, depends on the magnitudes of the con-

tributing terms. As a result, a characteristic time associated to each of these terms can

be defined. The terms I and II of Eq. 4.67 correspond to the capillary force, which are

related to the intrinsic properties of the interface defined by the parameters of interface

energy σβ and interface thickness δβ (see Eqs. 4.54 and 4.56). Whereas, term III couples

the evolution of φ to the chemical potential µ. The magnitude of this term is not known a

priori, but depends on the thermodynamic driving force (Ωs
m − Ωl

m)/Vm for the interface,

which is an external parameter related to the choice of initial state of the system.

It can be recalled from Section 4.3.2 that at equilibrium, terms I and II balance one

another to give the equilibrium profile for φ. Since these two terms dependent on one

another, the characteristic times associated to them are proportional to one another (the

proof for the same is presented in Appendix F). Hence they should not be considered

separately. Instead, two characteristic time scales are defined for the evolution of φ, where:

• the first time scale is associated to the interface properties (i.e. the terms I and II),

and is expressed as:
1

τφ

=
Mφ

aT
(4.74)

• the second time scale is associated to the thermodynamic driving force that is set

externally (term III):
1

τ3

=
Mφ∆Ω0

VmT
(4.75)

If the interface motion is considered to be slow so as to ensure that the hypothesis of

local equilibrium at the interface is followed (i.e. the intensive properties like temperature

(T ) and the chemical potential (µ) are equal for the co-existing phases), it is imperative

for the heat and species transfer across the interface to occur rapidly compared to the

‘relaxation’ of the interface. This implies that the characteristic times for the evolution

of φ (τφ and τ3) must be greater than the diffusion time associated with species transfer

across the interface (denoted by tdiff ), which is defined as:

tdiff =
δ2

β

Dx

(4.76)

where Dx is the species diffusion coefficient, that is related to the kinetic coefficient Mxx

by Eq. D.40 of Appendix D. At the same time, for the entire process to be ‘diffusion
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controlled’4, τφ and τ3 must be smaller than τ , which is expressed from Eq. F.10 of

Appendix F as:

τ =
L2

Dx

(4.77)

From the above mentioned conditions, it is clear that the two characteristic time scales

associated to Eq. 4.67 must follow the conditions:

δ2
β

Dx

≪ τφ ≪ L2

Dx

(4.78)

δ2
β

Dx

≪ τ3 ≪ L2

Dx

(4.79)

Thus, by substituting Eqs. 4.74 and 4.75 in the above relations for τφ and τ3 respectively,

a maximum and minimum bound for the choice of Mφ value can be obtained.

As mentioned in the beginning of this section, the characteristic time scales τ , τφ and τ3

can be obtained through the non-dimensionalization of Eqs. 4.66 and 4.67. To do so, two

approaches were followed (which are discussed in Appendix F), which yielded two sets

of bounding values for Mφ by using the Eqs. F.18 and F.19 and Eqs. F.47 and F.48 of

Appendix F respectively. Both of these approaches bounds have been used to discuss the

numerical results presented in Section 4.5.

Further, the combination of Eqs. 4.78 and 4.79 yields a maximum value condition on the

choice of interface thickness δβ :

(

δβ

L

)2 (
a∆Ω0

Vm

)

≪ 1 (4.80)

δβ ≪
(

48L2σβVm

∆Ω0

)1/3

(4.81)

However, it must be recalled that above mentioned constraints on the choice of Mφ (and

also δβ) are valid only for the cases where the interface motion is assumed to be slow,

which is the case for most physical situations (and has also been considered for the present

study). For a case corresponding to fast motion of the interface (such as the case of rapid

4This condition for the process to be diffusion controlled is chosen as the main interest of using the
model is to study the overall evolution of the system that takes place at a much larger scale compared to
the kinetics of the interface.
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solidification, discussed in [101]), there may exist additional conditions which have an

influence on the choice of phase-field mobility. The discussion related to these conditions

has not been included in the present thesis work.

4.3.3 Conditions for application of the grand potential approach

The idea of formulating a phase-field model in grand potential functional requires the

elimination of the extensive variables of enthalpy h and composition x in favor of the

intensive variables T and µ, both of which depend on space and time. This elimination

is simple if the extensive variables are related to their corresponding intensive variables

by simple invertible functions. Moreover, if the functions for the Gibbs free energies are

convex in x and h, a monotonous relation between these variables (i.e. the extensive and

intensive variables) exists, which makes it possible to switch to T and µ as the dynamic

variables. Consequently, the enthalpy (respectively the composition) of the system can

be obtained as a partial derivative of the grand potential functional with respect to the

temperature (respectively the chemical potential).

4.4 Numerical scheme for time integration

The numerical solution to the model can be obtained by making use of the Euler explicit

or the semi-implicit time integration schemes. This requires numerical discretization of the

evolution equations in space and time. The spatial discretization in 1-D for the evolution

equations was achieved by using the finite differences method in a manner similar to

Appendix B of [44], where a thicker mesh size was adopted for the discretization of the

bulk regions and a relatively thinner mesh was used for the interface such that at least

10 spatial nodes lie within the interface of thickness δβ. The temporal discretization of

the evolution equations was achieved by making use of a theta-scheme, which has been

referred to in Appendix G.

In principle, any of the two time integration schemes can be utilized to solve the evolution
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equations for the system. However for the case of the explicit time scheme, the choice

of spatial mesh size (i.e ∆z value) poses a condition related to the ‘maximum’ allowable

time-step ∆t for which the numerical scheme is stable. In particular, for the present

phase-field model this criterion for the stability depends on behaviour of the non-linear

source terms present in the evolution equations (detailed in Section G.2 of Appendix G).

As a consequence, depending on the maximum ∆t value obtained, the choice between the

use of explicit or the semi-implicit time scheme has been made for solving the transients

discussed in the following Section 4.5 on the numerical results.

4.5 Numerical results and analysis

For the developed phase-field model simplified under the constant temperature assumption,

the validity of the coupled evolution equations in chemical potential and the phase-field

order parameter (given by Eqs. 4.66 and 4.67) was tested for studying the processes of

solidification and phase segregation in the binary U-Zr and U-O systems respectively. The

purpose of these numerical simulations was limited to addressing the constraints associated

with the coupling of the the model with CALPHAD, and to answer the questions related

to the up-scaling of the interface and its effect on the choice of the phase-field mobility

Mφ.

The initial condition of the system is set by defining initial spatial profiles for the non-

conserved order parameter φ (which takes constant values of 0 and 1 in the regions

corresponding to the bulk phases and varies smoothly between these values within the

interface defined by a thickness δβ (m)) and the mole fraction of the component U (denoted

by xU ), which is expressed as interpolation of the compositions in bulk phases (denoted by

xθφ=0

U ∀ φ ∈ {0, 1}) in φ:

xU = p(φ)xθφ=1

U + (1 − p(φ))xθφ=0

U (4.82)

The conversion of this initial xU profile to a profile in chemical potential µ, requires solving

the non-linear equation within the interface region, where a solution for phase compo-

sitions xθφ

U must be found, such that the condition of local equilibrium in the interface
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µφ=1(x
θφ=1

U ) = µφ=0(x
θφ=0

U ) is satisfied. Contrary to the entropy approach, this non-linear

system is to be solved only at the time of initializing the system.

The transient calculations were performed until the steady state condition for the system

was obtained, which corresponds to the thermodynamic equilibrium condition for the

system defined by the equilibrium chemical potential value µeq (the numerical steady state

condition is defined by a criterion relative to the chemical potential variation between two

consecutive time-steps that should be lower than 10−1 Jmol−1).

4.5.1 Testing the model for solidification of U-Zr system under

isothermal conditions

4.5.1.1 Thermodynamic description of the U-Zr system

The binary U-Zr system is composed of pure elements U and Zr, which also are the con-

stituent species for the system. Consequently, the component and constituent compositions

are related to each other as:

xU = yU (4.83)

xZr = yZr (4.84)

The conservation of mass gives the relation between the component composition (respec-

tively the constituent composition from Eqs. 4.83 and 4.84) as:

xU + xZr = 1 (4.85)

In terms of coupling the grand potential model with the CALPHAD description given

for the phases from the NUCLEA database, the equivalence of the compositions makes it

easy for directly obtaining the required thermodynamic quantities (details in Appendix E)

without the need for applying additional hypotheses.

For this system, the equilibrium calculations performed by OC at temperature T = 1500 K

showed the presence of a single solid phase (denoted by BCC_A2A in NUCLEA database),

and for T = 1800 K, the presence of both solid (BCC_A2A) and liquid phases (denoted by

LIQUID in NUCLEA database) was noted. The variation in the Gibbs free energy as a
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function of the molar composition of the element U (xU) was studied for the phases of

interest (i.e. the BCC_A2A and LIQUID phases) at a constant temperatures of 1500 and

1800 K. From the Figures 4.1 and 4.2, it can be observed that the Gibbs energy curves for

the two temperatures are convex in xU .

Figure 4.1: Variation of the molar Gibbs free energy Gm with the mole fraction of U
xU and the equilibrium molar Gibbs energy Gm eq for the BCC_A2A phase of binary U-Zr

system at T = 1500 K.
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Figure 4.2: Variation of the molar Gibbs free energy Gm with the mole fraction of U
xU and the equilibrium molar Gibbs energy Gm eq for the LIQUID and BCC_A2A phases

of binary U-Zr system at T = 1800 K.

Upon plotting the chemical potential values as a function of composition (for the two

temperatures), the Figures 4.3 and 4.4 show that a monotonous relation between µ and

xU exists for the U-Zr system (with the exception of the cases when the composition tends

towards a unary system i.e. xU → 0 or xU → 1). Hence, it is possible to invert the Gibbs

energy functions to be dependent on µ for the composition range (excluding the unary

system cases).
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Figure 4.3: Variation of the chemical potential µ with the mole fraction of element
U and the equilibrium chemical potential µeq for the BCC_A2A phase in a binary U-Zr

system at T = 1500 K.

Figure 4.4: Variation of the chemical potential µ with the mole fraction of element
U and the equilibrium chemical potential µeq for the LIQUID and BCC_A2A phases in a

binary U-Zr system at T = 1800 K.
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4.5.1.2 Initialization of the system and inputs to the model

The initial condition proposed for the solidification model is related to the initial spatial

profiles constructed in terms of µ and φ. The developed model was tested for three cases:

• Case 1: a (BCC_A2A) phase for the temperature T = 1500 K, with an initial homoge-

neous composition xU = 0.5;

• Case 2: a (BCC_A2A) phase at T = 1500 K with a non-homogeneous initial composi-

tion, and;

• Case 3: a two phase system composed of (BCC_A2A) and LIQUID phases at 1800 K,

with the average initial composition xU = 0.5.

The inputs for the model parameters have been described for this system under consideration

in Table 4.1.

Input parameters U-Zr system

Single-phase Two-phase

Length scale for the system L (m) 0.5

Interface thickness δβ (m) 5.0 × 10−4

Temperature T (K) 1500 1800

Molar volume Vm (m3mol−1) 1.79 × 10−5

a (J−1m3) 1.04 × 10−4

Gradient coefficient κ2
φ (Jm−1) 7.50 × 10−5

Kinetic coefficient Mxx (mol2KJ−1m−1s−1) 8.38 × 10−5

Interface energy σβ (Jm−2) 0.1

Average initial composition xU 0.5

Table 4.1: Initial inputs to the phase-field model for testing solidification in binary
U-Zr system under isothermal conditions

For the present analysis, since the main focus is on answering the questions associated

with thermodynamic consistency, the input for kinetic coefficient for diffusion Mxx (see
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Table 4.1) is assumed to be equal for both phases (i.e. M s
kj = M l

kj), even though this is

not physically possible in the case of solidification.

4.5.1.3 Initial verification of the model on a single phase system

The initial verification of the model was performed for the cases associated with single

phase-system, corresponding to (first) a homogeneous and (second) a non-homogeneous

initial composition. Upon recalling the system of coupled evolution equations in µ (Eq. 4.66)

and φ (Eq. 4.67), for a pure solid phase, the initial spatial profile for the phase-field order

parameter corresponds to:

φ(z) = 1 ∀ z ∈ [0, L] (4.86)

For a constant value of φ, the term corresponding to φ̇ is 0. As a result, contribution of

this term to Eq. 4.66 is 0 and Eq. 4.66 reduces to a diffusion equation of the form:

(

∂2Ωm

∂µ2

)

µ̇ = −Vm

T
∇(Mxx∇µ) (4.87)

In terms of the presence of a single phase, this diffusion is equivalent to re-distribution

of mass within the phase to obtain a homogeneous composition at steady state. The

solution to the above equation can be obtained by applying the Euler explicit scheme (see

Section G.1 of Appendix G for details on the discretization of the evolution equations),

with a time-step value ∆t = 100s. This value of ∆t corresponds to the maximum value

that can be obtained from the CFL condition on µ̇ equation for the explicit scheme (see

Section G.2 of Appendix G for details).

As a first step, the model was tested for a first case of the homogeneous initial com-

position of the solid. As there exist no gradients in the chemical potential (i.e. ∇µ = 0)

for this system, the initial and steady state compositions are expected to be the same.

This was verified by the model (depicted by Figure 4.5).
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Figure 4.5: Initial and steady state profiles for chemical potential µ in space z, for
transient calculations performed for the BCC_A2A phase in U-Zr binary system with a

homogeneous initial composition xU (t = 0) = 0.5.

The model was then tested for a non-homogeneous initial composition of the solid. For

this initial state of the system, there exists a gradient in the chemical potential (as shown

in Figure 4.6) which corresponds to the non-homogeneous distribution of composition in

space. The transient simulations verified the expected behaviour which corresponds to the

reduction of chemical potential gradient with time. Also, the steady state composition for

the system was found to be consistent with the expected homogeneous system composition

x̄ss
U = 0.5 that is associated with the mass conservation (see Figure 4.7).
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Figure 4.6: Initial and steady state profiles for chemical potential µ in space z, for
transient calculations performed for the BCC_A2A phase in U-Zr binary system with a

non-homogeneous initial composition.

Figure 4.7: Initial and steady state profiles for composition xU in space z, for tran-
sient calculations performed for the BCC_A2A phase in U-Zr binary system with a

non-homogeneous initial composition.
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Figure 4.9: Initialization of the two phase U-Zr system with a homogeneous composition
: profiles for chemical potential µ and phase-field order parameter φ in space z.

The initial profile for φ is represented by a continuous function that takes up constant

values of 1 and 0 in bulk solid and liquid phase respectively and varies smoothly between

these values across the interface (see Figure 4.9) with the initial position of the interface

z0
β = 2.5 × 10−1 m. For this choice of initial system, the model behaviour was studied and

the results related to the choice of the phase-field mobility Mφ value and the scale separa-

tion for the interface have been discussed in the following Sections 4.5.1.4.1 and 4.5.1.4.2.

These tests determine the appropriate model kinetic parameter value for which the tran-

sient achieves a steady state configuration corresponding to a spatial profile with µ = µeq

(obtained as −34833.4 Jmol−1 from the equilibrium calculation performed by OC) and

the steady state position of the interface (denoted by zss
β , also determined with the help of

an equilibrium calculation, by making use of the lever rule). This position denotes the

fraction of the solid and liquid phase present in the system at equilibrium. For the present

system configuration, zss
β = 2.688 × 10−1 m. Further, the validity of Mφ parameter was

tested for a system with different initial conditions (in Section 4.5.1.4.3).
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4.5.1.4.1 Comparison among the choices for phase-field mobility Mφ

In the present section, the initial tests are carried out for a set of Mφ values that were

taken from the range presented by the minimum and maximum bounds based on the

conditions posed by Eqs. F.18 and F.19 (obtained from the non-dimensionalization of the

evolution equations, discussed in Appendix F). As a second part, the obtained results

will be analysed with respect to the alternate bounds on Mφ, that were obtained from

Eqs. F.47 and F.48 (based on the alternate approach to non-dimensionalization presented

in Appendix F).

From the conditions posed by Eqs. F.18 and F.19, an upper and lower bound value

for Mφ common to the two inequalities was obtained:

6.26 × 10−8 J−1K1s−1m3 ≪ Mφ ≪ 1.08 × 10−5 J−1K1s−1m3 (4.88)

The choice of Mφ must be made within the range presented by these bounds, such

that the above condition is followed. Three different values of Mφ were chosen (Mφ =

1.0 × 10−5 , 1.0 × 10−6 and 1.0 × 10−7 J−1K1s−1m3) and the effect of each choice on

the behaviour of the model was studied. For each of these simulations, the transient

calculations were performed until the final time for the transient was equal to twice the

characteristic time for diffusion (tf = 2τ). At the end of the complete simulation, the final

values for the chemical potential were compared to µeq (comparison between the values

was made up to the order of 10−1).

Case: Mφ = 1.0 × 10−5 J−1K1s−1m3

For Mφ = 1.0 × 10−5 J−1K1s−1m3 (close to the upper bound for Mφ), the evolution of the

solidification transient is tested by using the semi-implicit scheme for time discretization,

with a time step ∆t = 10−3 s.

The results obtained from the transient calculations show that the choice of Mφ value as

10−5 causes the phase field to react very rapidly, compared to the effect of the chemical

potential gradient. Consequently, the process is entirely governed by the adjustment of the

phase field order parameter and the model reacts to the local driving force first. For the

given initial condition, the driving force is composed of two opposite phenomena acting on

the either side of the interface. This results in “creation” of a new interface (depicted by
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the steady state spatial profiles for composition and order parameter φ in Figures 4.10

and 4.11 respectively) because the condition that the interface exists in local equilibrium,

is violated.

Figure 4.10: Initial and steady state profiles for composition xU in space z for transient
calculations performed with Mφ = 1.0 × 10−5 J−1K1s−1m3, for a fixed scale separation

and initial condition on a two phase U-Zr system.

Figure 4.11: Initial and steady state profiles for phase-field order parameter φ in space
z for transient calculations performed with Mφ = 1.0 × 10−5 J−1K1s−1m3, for a fixed

scale separation and initial condition on a two-phase U-Zr system.
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Case: Mφ = 1.0 × 10−6 J−1K1s−1m3

For Mφ = 1.0 × 10−6 J−1K1s−1m3 (close to the logarithmic mean of the range for Mφ

presented by Eq. 4.88), the evolution of the solidification transient is tested by using the

semi-implicit scheme for time discretization, with a time step ∆t = 1 s.

The results obtained from the transient calculations depict that the model behaviour

is in accordance with the kinetics of the solidification process (i.e. the time taken for the φ,

µ and xU profiles to reach their steady state configuration corresponds to the macroscopic

characteristic time associated to diffusion τ), with the final position of the interface (zf
β)

being equal to (zss
β ) (see Figures 4.13 and 4.12).

Figure 4.12: Initial and steady state profiles for composition xU in space z for transient
calculations performed with Mφ = 1.0 × 10−6 J−1K1s−1m3, for a fixed scale separation

and initial condition on a two phase U-Zr system.
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Figure 4.13: Initial and steady state profiles for phase-field order parameter φ in space
z for transient calculations performed with Mφ = 1.0 × 10−6 J−1K1s−1m3, for a fixed

scale separation and initial condition on a two phase U-Zr system.

Another way to verify the transient behaviour of the model, is to compute the interface

energy for steady state by making use of the integral represented by Eq. 4.50 and verify

that it is equal to the initially set value (given in Table 4.1). For the present case, the

error in the interface energy calculated from Eq. 4.50
(

σf
β = 0.099

)

with respect to the

initially imposed interface energy (σβ) is 1.0%.

Case: Mφ = 1.0 × 10−7 J−1K1s−1m3

For Mφ = 1.0 × 10−7 J−1K1s−1m3 (close to the lower bound for Mφ), the evolution of the

solidification transient is tested by using the semi-implicit scheme for time discretization,

with a time step ∆t = 10 s. The initial and steady state spatial profiles for the variables

xU , φ and µ are depicted by Figures 4.14, 4.15 and 4.16.
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Figure 4.14: Initial and steady state profiles for composition xU in space z for transient
calculations performed with Mφ = 1.0 × 10−7 J−1K1s−1m3, for a fixed scale separation

and initial condition on a two phase U-Zr system.

Figure 4.15: Initial and steady state profiles for phase-field order parameter φ in space
z for transient calculations performed with Mφ = 1.0 × 10−7 J−1K1s−1m3, for a fixed

scale separation and initial condition on a two phase U-Zr system.
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Figure 4.16: Initial and steady state profiles for chemical potential µ in space z for
transient calculations performed with Mφ = 1.0 × 10−7 J−1K1s−1m3, for a fixed scale

separation and initial condition on a two phase U-Zr system.

The evolution of variables xU , φ and µ was observed to be according to the expected

movement of the interface. The final position of the interface zf
β was also found to be

≈ zss
β . However, the transient time (tf) corresponding to this steady state position and

composition is greater than the characteristic time related to diffusion. This suggests that

the process is not controlled by the species diffusion.

The transient calculations performed with phase field mobility values of as 10−6 and

10−7 exhibit similar transients with different time values corresponding to their steady

states. For a lower value of the phase field mobility (i.e. Mφ = 1.0 × 10−7 J−1K1s−1m3),

the condition for the process to be diffusion controlled is violated as the macroscopic

characteristic time corresponding to the steady state is not conserved. This is evident in

Figures 4.17 and 4.18, where the system is unable to reach the steady state values for

composition and chemical potential at the time corresponding to τ .
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Figure 4.17: Comparison of composition xU profiles for different phase field mobility
values

Figure 4.18: Comparison of chemical potential µ profiles for different phase field
mobility values

On tracking the interface position (i.e. the spatial co-ordinate z corresponding to the

value φ(z) = 0.5) during the transient, it was observed that only for case when Mφ =

1.0 × 10−6 J−1K1s−1m3, the time taken by the interface to achieve the expected steady

state position is consistent with the characteristic macroscopic time for diffusion, whereas,
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for the case of Mφ = 1.0 × 10−7 J−1K1s−1m3 the interface takes a longer time to reach

the steady state position (see Figure 4.19).

Figure 4.19: Tracking interface position zβ : comparison of profiles for different phase
field mobility values

This can be related to the approach followed for non-dimensionalization of the evolution

equations (detailed in Appendix F). The range for Mφ value given by Eqs. F.18 and F.19 is

rather large and does not offer a clear indication of the appropriate choice. Consequently,

an alternate approach was followed, through which new maximum and minimum bounds

for Mφ values were evaluated from the conditions given by Eqs. F.47 and F.48. These

conditions provide a narrower range for Mφ compared to Eq. 4.88:

3.49 × 10−7 J−1K1s−1m3 ≪ Mφ ≪ 3.94 × 10−6 J−1K1s−1m3 (4.89)

The logarithmic mean evaluated from these maximum and minimum bounds corresponds

to the value 1.17 × 10−6 J−1K1s−1m3, which is close to the choice of Mφ = 1.0 ×
10−6 J−1K1s−1m3.
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4.5.1.4.2 Comparison between the choice of scale separation

As a next step, the model behaviour was studied for a reduced interface thickness δβ, while

keeping the Mφ value fixed to 1.0 × 10−6 J−1K1s−1m3 (as obtained from the previous

section). To do so, a different ratio for scale separation (δβ/L) was chosen and the transient

calculations were performed by using the semi-implicit scheme for time discretization,

with a time step of ∆t = 1 s. As a consequence of changing the interface thickness, the

parameters a, κ2
β are modified (mentioned in Table 4.2).

Model Parameters Input values

Scale separation δβ/L 10−4

Interface thickness δβ (m) 5.0 × 10−5

a = δβ/48σβ (J−1m3) 1.04 × 10−5

Gradient coefficient κ2
φ = 1.5σβδβ (Jm−1) 7.50 × 10−6

Table 4.2: Model parameters calculated for a scale separation δβ/L = 10−4.

The evolution of the variables xU , φ and µ was observed to be according to the expected

behaviour, with the composition of the phases and the chemical potential profiles depicting

the expected steady state values (depicted in Figures 4.20 and 4.22 respectively). The

motion of the φ profile was also observed to be in accordance with the expected behaviour,

with the final interface position zf
β equal to zss

β . Also, the time taken for the transient

to reach steady state configuration (in xU , µ and φ) is also in accordance with the

characteristic time associated with the diffusion (τ).
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Figure 4.20: Initial and steady state profiles for composition xU in space z for transient
calculations performed with Mφ = 1.0×10−6 J−1K1s−1m3, for a reduced scale separation

ratio δβ/L = 10−4 on a two phase U-Zr system.

Figure 4.21: Initial and steady state profiles for phase-field order paramter φ in space
z for transient calculations performed with Mφ = 1.0 × 10−6 J−1K1s−1m3, for a reduced

scale separation ratio δβ/L = 10−4 on a two phase U-Zr system.
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Figure 4.22: Initial and steady state profiles for chemical potential µ in space z for
transient calculations performed with Mφ = 1.0 × 10−6 J−1K1s−1m3, for a reduced scale

separation ratio δβ/L = 10−4 on a two phase U-Zr system.

The error in the final interface energy (from Eq. 4.50) with respect to the initially imposed

interface energy (i.e. σf
β and σβ respectively) is about 1.0%. The final calculated interface

thickness (δf
β) was found to be in agreement with the initially imposed interface thickness

(δi
β).

In order to compare the behaviour of the model for the different choices for scale separation,

three spatial co-ordinates were chosen, out of which two co-ordinates represented the bulk

phase regions (z1 = 0.109 m for solid and z3 = 0.408 m for liquid phase) far away from

the interface. The third co-ordinate (z2 = 0.249) m is chosen such that it is very close to

the interface for the case δ/L = 10−4 and inside the interface for δ/L = 10−3 (depicted by

Figure 4.24).
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Figure 4.23: Positions z1, z2 and z3

Figure 4.24: Position z2 relative to the two cases of scale separation ratio : δ/L = 10−3

and δ/L = 10−4.

For these positions, the evolution of the mole fraction xU was plotted with respect to

time (see Figures 4.25, 4.27 and 4.26). For the two points z1 and z3 lying far away from
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the interface (i.e. Figures 4.25 and 4.26) , the evolution of the transients for xU are in

accordance with the steady state conditions for these regions.

Figure 4.25: Variation of composition xU with time t at position z1

Figure 4.26: Variation of composition xU with time t at position z3
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by the gradient of chemical potential across the interface. The proportionality constant for

this relation is given by the phase field mobility Mφ, which itself is not a fixed parameter,

but is dependent on the macroscopic diffusion characteristic time as well as on the diffusion

time for species across the interface (discussed in Section 4.3.2.2.2). As a consequence,

alteration in the interface thickness will cause a change in the magnitude of the driving

force. A decrease in the interface thickness causes the driving force to increase. If the rate

of phase change is assumed to be a constant, the increase in the magnitude of the driving

force must be accompanied by an increase in the magnitude of the phase field mobility.

For the case depicted by Figure 4.28, the choice for Mφ = 1.0 × 10−6 J−1K1s−1m3 results

in a ‘slower’ motion of the interface for a finer choice of interface thickness (corresponding

to the scale separation δ/L = 10−4).

Figure 4.28: Tracking interface position zβ: comparison of profiles obtained from
transient simulations performed for a fixed value of Mφ = 1.0 × 10−6 J−1K1s−1m3 and

two different scale separation ratios δ/L.

Consequently, if the rate of phase change is to be kept the same as it was depicted for

case corresponding to δβ/L = 10−3 and Mφ = 1.0 × 10−6 J−1K1s−1m3, a ‘higher’ value
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4.5.1.4.3 Comparison between different choices for the initial condition of

the system

Recalling Section 4.3.2.2.2, it can be seen that for Eq. 4.80 to be valid, the ratio between

the thermodynamic driving force and the capillary force (given by a∆Ω0/Vm) must be very

small. However, the results demonstrated in Sections 4.5.1.4.1 and 4.5.1.4.2 are related

to simulations performed on a system for which the initial state corresponded to a sharp

gradient in µ across the interface, as depicted by Figure 4.9). Due to such an extreme initial

condition posed by µ, the thermodynamic driving force (given by (∆Ω0)/Vm) acting on the

system is high within the interface. Consequently, for a fixed capillary force (defined by

1/a) the condition of (a∆Ω0/Vm) ≪ 1 is violated at the initial time-step, which could have

an effect on the model behaviour. To ensure that the condition (a∆Ω0/Vm) ≪ 1 holds true

even for the initial state, an alternate approach for system initialization was followed, where

the chemical potential in the diffuse interface region was set to the equilibrium chemical

potential value, whereas the chemical potential values for the bulk regions corresponded

to the homogeneous composition with xU = 0.5 (corresponding initial spatial profiles for µ

and xU are depicted by Figures 4.30 and 4.31 respectively).

Figure 4.30: Initial µ profile vs z corresponding to the two-phase binary U-Zr system
initialized with µ = µeq within the interface.
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Figure 4.32: Tracking interface position zβ : comparison of profiles for different initial
conditions imposed on the system and fixed values for parameter Mφ and the scale

separation ratio δβ/L.

Above all, the results based on the discussions in Sections 4.5.1.4.1, 4.5.1.4.2 and 4.5.1.4.3, all

confirm the robustness of the conditions that are posed by Eqs. F.47 and F.48 (corresponding

to the alternate non-dimensionalization approach in Appendix F) on the choice of the

phase-field mobility value Mφ. This is further proven from the discussion above, which

shows that despite the choice of a different initial state for the system, the use of these

conditions resulted in the same upper and lower bounds.
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4.5.2 Testing the model for liquid phase segregation in U-O sys-

tem under isothermal conditions

4.5.2.1 Thermodynamic description of the U-O system

The binary U-O system is different from the binary U-Zr system in the sense that it

exhibits a liquid miscibility gap, for a large range of temperature and composition. For a

fixed temperature of T = 3200 K , two phases are seen to co-exist: an oxygen-rich “oxidic”

phase and another uranium-rich “metallic” phase. Within the context of in-vessel corium

behaviour, it can be recalled from Chapter 1 that a similar situation has been documented

for the U-O-Zr-steel system in [8] and [22], which is related to the transient stratification

of the corium pool.

For the present system composed of U-O that is considered here, the thermodynamic

description obtained from CALPHAD in terms of the constituent molar fractions y depicts

the presence of three species UO2, U and O at equilibrium, with the overall sum of the

constituent mole fraction given as yU + yO + yUO2 = 1 and the relation between the

component (element) molar fractions and the constituent molar fractions as :

xU =
yO + 2yUO2

1 + 2yUO2

(4.91)

xO =
1 − yO

1 + 2yUO2

(4.92)

In order to ensure that the reduction of the system can be applied to this U-O system,

an additional hypothesis is required. Going back to the initial choice of temperature, an

equilibrium calculation for the system at 3200 K highlighted the absence of “free” oxygen

in the system (i.e. yO = 0). If the assumption of no “free” oxygen is applied to the

initial state of the system, the equality in the number of constituents and components

can be obtained, ensuring direct use of the thermodynamic data from CALPHAD (see

Appendix E for details). Consequently, this ensures the absence of free oxygen in system

during the transient and the system can then be determined in terms of a single component

molar fraction. This approach is consistent with the general hypothesis proposed in [44]

for systems of interest for application to in-vessel corium, where the redox reactions are

supposed to be at local equilibrium at all times.
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Recalling Section 4.3.3, for the conditions on the use of Grand Potential model, a

monotonous invertible relation between the chemical potential µ and the component

molar fraction x must be ensured. From Figure 4.33, it can be seen that this condition does

not hold true for the U-O liquid, where the chemical potential exhibits a non-monotonous

trend for a large range of composition, which represents the composition range of U for the

presence of miscibility gap. However, on considering the regions close to the extremes of

the composition range and encompassing the equilibrium points, monotonous µ functions

of xU can be constructed. Consequently, these two regions can be selected to denote the

“oxidic” and the “metallic” liquid phases respectively (see Figure 4.34) and the functions

can be used to obtain the thermodynamic properties for these two liquid phases.

Figure 4.33: Variation of chemical potential µ with respect to the component composi-
tion xU , evaluated at a fixed temperature T = 3200 K for U-O binary liquid system.
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Figure 4.34: Variation of chemical potential µ with respect to the component composi-
tion xU , corresponding to the oxidic (ox) and metallic (met) liquid domains, evaluated

at a fixed temperature T = 3200 K for U-O binary liquid system.

4.5.2.2 Initialization of the system

The assumption yO = 0 for the initial system imposes a constraint on the range for xU
(

xU ∈
[

1
3
, 1
])

. Moreover, the choice of separate phase domains for the oxidic and metallic

liquids imposes an additional constraint on the range of xU for these domains, such that

the composition ranges corresponding to these separate domains are given as:

xU ∈ [(1/3 + ǫ) , 0.5] in oxidic phase (4.93)

xU ∈ [0.79, (1.0 − ǫ)] in metallic phase (4.94)

where ǫ is an arbitrary small value (set to 10−3). These two factors were taken into

consideration for defining two initial states for the system, which are mentioned as:

• Case 1, where the initial condition in µ corresponds to values for pure oxidic and

metallic composition in the bulk regions and the µ values in the interface have been

obtained under the hypothesis of local equilibrium, and;

125
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• Case 2, which corresponds to the initial condition with µ = µeq value within the

interface, while keeping µ corresponding to pure phases in the bulk.

The construction of an initial condition (in terms of µ) corresponding to Case 1 requires a

careful construction of the initial xU profile within the interface region. This is because

there exists a very narrow range in µ, for which both liquid phases co-exist (see Figure 4.35).

Figure 4.35: Variation of chemical potential µ with respect to the component composi-
tion xU , corresponding to the common range of µ where both oxidic (ox) and metallic
(met) liquid domains co-exist, evaluated at a fixed temperature T = 3200 K for U-O

binary liquid system.

This common range also provides an “allowed” range for xU in the two phases which is

given as :

xox
U ∈ [0.43115, 0.5] (4.95)

xmet
U ∈ [0.79, 0.95840] (4.96)
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With these allowed composition ranges, the initial component molar fraction xU for the

interface region can be determined by using the relation:

xU = p(φ)xox
U + (1 − p(φ))xmet

U (4.97)

Consequently, a map for the allowed range of xU was obtained (depicted by Figure 4.36)

for varying values of φ in Eq. 4.97, which gives a confined range for xU as a function of

φ which can be used to set the initial condition, such that the conversion of this profile

from xU to µ is possible (i.e. xox
U and xmet

U values can be found, such that the condition

µox(xox
U ) = µmet(x

met
U ) is satisfied).

Figure 4.36: Possible range for composition xU within the interface, for different values
of φ.

The alternative way of initializing the system with equilibrium µ value within the interface

is similar to Section 4.5.1.4.3. With these two initial profiles as input conditions, the model

was subjected to verifications. As mentioned before, the initialization of the system affects

the choice of scale separation and the appropriate phase field mobility value. This effect is
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discussed in detail in the following section.

4.5.2.3 Results for U-O liquid case

With the two initial conditions on the system mentioned in Section 4.5.2.2, the model was

used to study the evolution of the transient for the phase segregation process. The input

parameters to the model have been mentioned in Table 4.3 and the transient simulations

were performed until the steady state conditions associated with the chemical potential of

the system (µ = µeq), and the expected position of the interface zss
β were achieved.

Input parameters U-O system

System initialization Case 1 Case 2

Length scale for the system L (m) 0.1

Interface thickness δβ (m) 1.0 × 10−4

Temperature T (K) 3200

Molar volume Vm (m3mol−1) 1.18 × 10−5

a (J−1m3) 2.09 × 10−5

Gradient coefficient κ2
φ (Jm−1) 1.56 × 10−5

Interface energy σβ (Jm−2) 0.1

Kinetic coefficient Mxx (mol2KJ−1m−1s−1) 7.35 × 10−6 7.21 × 10−6

Average initial composition x̄i
U 0.67737 0.67465

Table 4.3: Initial inputs to the phase-field model for testing phase segregation in binary
U-O system under isothermal conditions

For the two initial conditions considered for the present case of U-O system, it was observed

that the different initial states have slightly different initial mass inventories (see Table 4.3).

This difference in mass is due to the fact that the profile within the interface is not

symmetric in Case 1, while it is in Case 2. As a consequence, the equilibrium calculations

performed with these x̄i
U compositions yield different expected steady state positions for

the interface, which are mentioned in Table 4.4.
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Initial state zss
β (m)

Case 1 0.05142

Case 2 0.05201

Table 4.4: Expected steady state evaluated from the average mass inventories for the
two initial systems defined for the U-O system.

Based on the choice made for the scale separation (i.e. δβ/L = 10−3) for the numerical

simulations, the minimum and maximum bounds on the Mφ value were obtained for the

two systems from the relations Eqs. F.47 and F.48 as:

Initial system Mφ (J−1K1s−1m3) from Eqs. F.47 and F.48

Case 1 1.47 × 10−7 ≪ Mφ ≪ 4.45 × 10−7

Case 2 1.44 × 10−7 ≪ Mφ ≪ 4.36 × 10−7

Table 4.5: Maximum and minimum bound values obtained for the choice of phase-field
mobility Mφ for two initial U-O systems.

Contrary to the discussion in case of the U-Zr system, where the bounds obtained from

Eqs. F.47 and F.48 were independent of the choice of initial state, for the present case a

slight difference is observed in the values mentioned in Table 4.5. This difference can be

explained from the fact that these bounds are evaluated by taking the averaged value for

the kinetic coefficient Mxx, which is related to the average initial composition xi
U . However,

the maximum value condition on the choice of δβ, when evaluated from Eqs. F.47 and F.48,

gives the same value for both systems:

δβ ≪ 1.45 × 10−4 m (4.98)

From the above relation, it is evident that the choice of δβ = 1.0 × 10−4 m is very

close to the maximum allowed limit. As a consequence, a finer interface thickness value

should be chosen. However, this would mean that for the numerical simulations, the space

discretization mesh defined for the system should be of the order of micrometers (10−6 m),
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which is unfavorable due to the strict conditions posed by it on the choice of time-step to

be applied for the time integration of the evolution equations.

Without changing the scale separation, an attempt was made to study the evolution

of the two systems with Mφ = 1.0 × 10−7 J−1K1s−1m3, (which is consistent with the order

of magnitude for the logarithmic mean value obtained from the bounds given by Eqs. F.47

and F.48) in order to verify the capability of the model to reach a consistent steady-state.

The time-step value was chosen as ∆t = 1 s and the calculations were performed by using

a semi-implicit numerical scheme for a final time corresponding to 2τ .

From the transient calculations it was observed that the conservation of initial mass

inventory is violated, resulting in a difference between the steady state and the expected

average composition (denoted by x̄ss,exp
U = 0.68384 corresponding to µeq). This default in

mass also affects the steady state interface position, the percentage error associated to

which is depicted in Table 4.6, along with the percentage error in the average steady state

composition x̄ss
U calculated with respect to the initial average composition x̄i

U .

Initial system x̄i
U calculated x̄ss

U error % (w.r.t. x̄ss,exp
U ) error % (w.r.t. zss,exp

β )

Case 1 0.67737 0.68769 1.52 −4.41

Case 2 0.67465 0.68582 1.65 −4.71

Table 4.6: Calculated initial and steady state average mass composition for the two
systems and the error percentages with respect to the expected values of steady state

average composition x̄ss,exp
U and the interface positions zss,exp

β (given in Table 4.4).

In order to verify the source of error for such a behaviour, different analyses were performed.

As a first step, since the spatial profile in µ is obtained through an interpolation in xU , the

error associated with use of this interpolation function to calculate µeq from the equilibrium

phase compositions, and its effect on the calculation of the expected steady state position

was studied. The direct calculation of µeq from OC showed a slight variation in comparison

to the µeq value obtained from the interpolated µ value for the equilibrium mass fractions

xox
U and xmet

U for the two phases. However, the impact of this difference in µeq value

on the expected steady state position of the interface was found to be negligible (the
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percentage error in the calculation of the expected steady-state value was less than 0.001%).

The second analysis was performed to verify the evolution for φ. For this, the tran-

sient simulations were performed for a case where the initial condition on the system was

set corresponding to µeq. In addition to this, the choice of Mφ value close to the lower

bound results in a condition where the evolution of the transient is no longer governed

by diffusion of species through the bulk phases (i.e. the characteristic time of evolution

is governed by τφ). Instead, the adjustment of the φ spatial profile is required to reach

thermodynamic equilibrium. Since the expected steady state position of the interface is

related to the average composition of the system at equilibrium (i.e. x̄ss
U ), for an initial

system corresponding to µeq, this zss
β is very close to the initial interface position. The

transient simulations verified that for such an initial state of the system, the adjustment

of the φ profile was as per the expected steady state, with the zf
β → zss

β .

At this point, it is useful to recall the discussion on the consideration of separate ‘oxi-

dic’ and ‘metallic’ domains for construction of the thermodynamic function in µ (from

Section 4.5.2.1). This approach was followed in order to obtain monotonous relation

between µ and xU (within the confined regions), which could be used for switching the

thermodynamic representation of the system in terms of the intensive variable - a condition

that is necessary for the application of the grand potential formulation (see Section 4.3.3).

Consequently, it was determined that for the local equilibrium hypothesis to uphold at

all times within the interface, the chemical potential values must lie within the common

range µ ∈ [316460.3, 330840.1] at all times.

Having said this, in order to develop a generalized model that is not bound by such

system specific conditions, a prolongation of the thermodynamic functions for the two

liquid phases was carried out, based on the universal maximum and minimum values for

µ in the system. In principle, if the condition for µ within the interface is satisfied, this

prolongation should have no effect on the behaviour of the model. This can be explained

by recalling Eq. 4.67:

∂φ

∂t
=

(

Mφκ2
φ

T

)

∇2φ −
(

Mφ

aT

)

f ′
dw(φ) −




Mφ

(

Ωs
m − Ωl

m

)

VmT



 p′(φ) (4.99)

In the above equation, only the third term on L.H.S. is coupled to µ (in terms of Ωm(µ, φ)),
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which is multiplied by the function p′(φ). As the p′(φ) function varies only within the

interface and is 0 for the bulk phases (see Eq. 4.26), this implies that the evolution of φ is

not dependent on the value of µ outside the interface, which gives a theoretical support to

the approach of using prolonged thermodynamic functions.

However, for the transient calculations performed on the system represented by Case

2, it was observed that this condition on µ is violated during the initial time-steps in the

transient (see Figure 4.37), where for t = 1 s and t = 250 s, µ does not lie in the common

range (denoted by horizontal dashed red lines in the same figure) within the interface.

Figure 4.37: Variation of chemical potential µ in space z during the initial transient time-
steps, depicting the violation of the condition on µ values within the interface (represented
by the horizontal dashed red lines corresponding to the µ range associated with the
co-existence of the oxidic and metallic phase). Case: initial condition corresponding to

µeq in the interface.

Although the violation of the condition for µ was resolved after few initial time-steps, its

effect on the default in the mass inventory x̄U was not resolved. This deviation in x̄U

had a significant impact on the determining the expected steady state position of the
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interface, which was verified upon comparing the steady state position exhibited by the

transient (i.e. zss
β of Table 4.4) to the value for zss

β that was calculated for the altered

average composition (see Table 4.7).

Initial system calculated x̄ss
U calculated zss

β (m) zf
β (m)

Case 2 0.68582 0.04956 0.04972

Table 4.7: Comparing the equilibrium interface position zss
β to the interface position

depicted by the transient, for the system (Case 2) exhibiting the violation of mass
balance.

In order to address this issue of non-conservation, an alternate approach was adopted,

wherein an initial condition similar to Case 2 was defined, with the exception that the

interface thickness for the initial µ profile (denoted by δµ) was taken to be twice the

interface thickness(i.e. δµ = 2 × δβ). Although the violation of the condition on µ was

resolved faster, the impact of this violation on the mass balance was similar to that for

Case 2. Thus, in order to utilize the phase-field model for studying phase segregation

kinetics, the question related to an alternate initial condition for the system must be

answered so as to ensure that the interface condition for µ is not violated during the

transient evolution.

4.6 Conclusions

Through this chapter, a general formulation for a phase-field model to study thermochemi-

cal processes related to in-vessel corium has been proposed. For this phase-field model, the

questions associated to its coupling with CALPHAD data have been answered. In particu-

lar, it was shown that for the model to be used for studying phase segregation process, an

alternative method must be developed to initialize the system so as to ensure conservation

of mass during the transient. Furthermore, the effect of ‘up-scaling’ the interface thickness

(in order to ensure that the model can be used to describe thermochemical phenomena at a
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mesoscopic scale) on the kinetics of the phase-field model have been studied. In particular,

the constraints related to the maximum choice of interface thickness, and consequently its

impact on the choice of the phase-field mobility parameter Mφ were discussed.

Although these studies have been performed for simplified models at isothermal con-

ditions and for binary systems, from the point of view of consistent thermodynamic

description, the findings can be applied to an n-component system. The next steps in this

direction would be related to the verification of the complete non-isothermal model with

respect to the effect of temperature variation on the the model kinetics.
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Chapter 5

General conclusions and future

perspectives

This thesis work was focused on answering some of the questions related to the ther-

modynamic consistency of the coupled thermochemical-thermohydraulic models for the

description of in-vessel corium. To do so, a systematic approach was followed to ensure

an extensive utilization of the thermodynamic description for in-vessel corium that is

provided by the CALPHAD method, in the coupled models that have been developed at

macroscopic and mesoscopic scales.

As a first step in this direction, the feasibility of using CALPHAD was tested on a

‘mock-up’ model developed at the macroscopic scale for studying the plane front solidifica-

tion process at the boundary of a molten corium pool. This model was developed for the

ternary U-O-Zr system, where a general formulation for writing the energy conservation

equations in terms of specific enthalpies was adopted.

For such a formulation, the questions related to the use of CALPHAD-based enthalpy-

temperature relations (referred to as “Equation-Of-State” - EOS) for providing closures

to the model were answered. These EOS were subjected to verification for the transient

simulations (discussed in Chapter 3), where the validity of these EOS related to the

linearity of these functions with respect to temperature and composition changes was

confirmed. The obtained numerical results confirmed the feasibility of using these EOS to

provide closures to the conservation equations in corium-related thermal models, and to

address the issue of thermodynamic consistency for the coupled in-vessel corium models
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developed on a macroscopic scale. Moreover, the numerical study carried out in [81]

further confirmed the applicability of using a general EOS, supplemented by appropriate

hypotheses, for providing closures to the models for depicting different cases, such as

treating the liquid miscibility gap.

This work has also touched to a general question associated with the formulation of

the conservation equation related to composition in the frame of multi-component multi-

phase transport models. Here, these conservation equations were formulated in terms of

stoichiometric species mass fractions (because the considered thermophysical properties

laws are formulated with these variables) and it was shown that, in this case, the eval-

uation of the interface quantities related to the local equilibrium assumption required

non-standard modification of the interface conservation equations to take into account the

redox process concurrent to solidification of sub-oxidized corium.

This initial success of using CALPHAD-based closures for the macroscopic in-vessel

corium models has proved to be encouraging for undertaking the next step in this ongoing

work, where a complete EOS can be constructed and verified for the in-vessel corium

modelling of the PROCOR code. Additionally, the information obtained through this work

is useful for the ongoing work discussed in [45], which focuses on the development of a

model that describes the thermochemical coupling of the solid crust with the corium pool

at the boundary of the reactor pressure vessel.

The second part of the work was based on the encouraging results obtained during

Clément Cardon’s thesis [44], which proposes a Cahn-Hilliard model for studying the

kinetics of inter-layer mass transfer in the liquid miscibility gap of in-vessel corium. The

initial objective in this framework was to study the conditions of extension of such a

model to non-isothermal conditions and investigate the questions related to its thermo-

dynamic consistency. For this, a phase-field model (including non-conserved phase-field

variable φ as a phase marker) was developed by adopting a rather general formulation in

grand potential that can be used to simulate the kinetics of the solidification and phase

segregation processes under non-isothermal conditions. This choice of using the grand

potential is favorable in terms of performing numerical simulations as the bulk and interface

properties can be adjusted independently. Although the presentation of the evolution

equations for the dependent variables (in Chapter 4) was made for the description of
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a binary system, they can be applied to an n-component system without a loss of generality.

The closures for this non-isothermal model were studied in details, in particular, the

constraints associated with the use of CALPHAD data. It was observed that for a

non-isothermal extension of the model developed in [44] (where only conserved variables

associated with element molar fractions are involved), the question of thermodynamic

consistency can be answered in a similar way as for the macroscopic model by making

use of CALPHAD-based EOS. In the case where a non-conserved phase-field variable

is considered as a phase marker, the additional issue associated with the effect of an

‘up-scaling’ of the interface thickness on the kinetics of the phase-field model was discussed.

In particular, the conditions related to the maximum choice of interface thickness, and its

impact on the choice of the phase-field mobility parameter Mφ were discussed.

Numerical studies were performed for the analysis of solidification and phase-segregation in

binary U-Zr and U-O systems respectively under isothermal conditions. For these systems

it was observed (and verified with the help of numerical results in the U-Zr case) that in

order to use this model for simulating processes with a broadened interface, the choice

of the phase-field mobility parameter Mφ needs to be made from within a range that is

posed by the characteristic times associated with the diffusion of mass across the system

and the interface separately. Also, it was noted that the maximum possible choice for

the scale separation in the system was rather constraining (considering the use of such

a model in the frame of CFD) and was dependent on the system under consideration.

In particular, for the case of studying the liquid miscibility gap in the U-O system, the

condition imposed on the maximum ‘allowed’ interface thickness is such that using this

model to simulate this process on a mesoscopic scale is probably impractical.

Moreover, due to the presence of a liquid miscibility gap in the U-O system, the exploita-

tion of the CALPHAD data to provide closures to this model was not straightforward

as the model condition related to the need of convex Gibbs energy functions was not

fulfilled for this system. An alternate approach was proposed to solve this problem

where two separate phase domains with monotonic Gibbs energy variations were selected

from within the system. With this approach, it was observed that for the model to

behave correctly, the chemical potential values within the interface region must always
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lie within a common ‘allowed’ range of values which is obtained from the overlapping

region where both the phase domains co-exist. Consequently, the initial condition for

the system was constructed accordingly. However, the transient simulations performed

with such an initial condition were not successful and a violation of the mass conservation

was observed as the constraint on the chemical potential range within the interface was

not fulfilled at all times. In this context, the question of initializing correctly the model

in this U-O case so as to ensure conservation of mass over the transient has been left opened.

Although from the initial results related to the up-scaling of the interface, the inte-

gration of this model into the CFD based codes may not be entirely favourable for studying

the evolution of in-vessel corium on a large scale (i.e. the order of meters) due to the

strong conditions posed on the resolution of the interface, it seems promising to apply the

model on a finer spatial scale. One such example where this model could be useful is to

study the dissolution process related to the interaction between the crust and liquid metal

phase, as studied in the context of the VITI-CORMET experiments [39]. Furthermore, the

verification of the model for non-isothermal conditions is still required in order to deter-

mine if the variation of temperature has any further constraints on the kinetics of the model.

Apart from these near future perspectives, there lies the scope of achieving a stronger

coupling of the phase-field models to the CALPHAD description. This is because at

present, not all the physical quantities that are of interest to the model are derived in a

thermodynamically consistent way. One such example is the interfacial energies used in

the model description. As these values are very difficult to measure experimentally for the

corium system (as, generally speaking, for all solid-liquid interfaces), the closures related

to them for the model are restricted to the use of constant parameters. In this context, an

extension of CALPHAD to model these interfacial energies by making use of the Butler

equation [102] seems promising.
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Appendix A

General formulation of conservation

equations for the Lumped Parameter

models

This appendix presents the formulation of the conservation equations for the lumped-

parameter models implemented in PROCOR, based on the local conservation equations.

The further details are mentioned in Appendices A & B of [103].

For a spatial domain split into different sub domains (or zones) Vn, the bound-

ary of the region Vn, denoted by ∂Vn is split as ∂Vn = ∪m∈N(n)βn,m ∪ βn,ext where

βn,m = βm,n is the interface between the neighboring domains n and m and βn,ext is the

part of ∂Vn that lies on the boundary of the system. N(n) represents the number of

neighboring regions to Vn.

For this spatial region Vn, the local conservation equation can be written for any

mass intensive property p with units ([p] kg−1):

∂ρnpn

∂t
+ ~∇.ρn~vnpn + ~∇.~ϕp

n = ρnṡp
n (A.1)

with ρn being the mass density, ~vn is the fluid velocity, ~ϕp
n is the flux associated with the

property p ([p] m−2s−1) and ṡp
n is the source mass density associated with p ([p] kg−1s−1).

Integrating over Vn and using Reynolds and Gauss theorems, the macroscopic conservation
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equation for Vn is obtained as:

d

dt

(∫

Vn

ρnpndV
)

+
∫

Vn

(~ϕp
n + ρnpn(~vn − ~u∂Vn

)) .a ~A =
∫

Vn

ρnṡp
n (A.2)

where ~u∂Vn
is the velocity of the domain boundary ∂Vn. Defining p̄n and ¯̇Sp

n as:

p̄nmn =
∫

Vn

ρnpndV (A.3)

¯̇Sp
n =

∫

Vn

ρnṡp
ndV (A.4)

where mn =
∫

Vn
ρndV is the mass of the domain n. With this Eq. A.2 can be re-written

as:
d

dt
(p̄nmn) +

∫

Vn

(~ϕp
n + ρnpn(~vn − ~u∂Vn

)) .d ~An = ¯̇Sp
nmn (A.5)

with d ~An is ~nndA with ~nn the normal vector to βn,m pointing outwards of Vn. For an

interface βn,m, the interface condition equations are obtained by integration of Eq. A.1

over a control volume that collapses on the interface as depicted on Figure A.1. In this

integration process, similar to the previous one for obtaining Eq. A.2, as the volumes on

both sides of the interfaces tend towards zero ǫ → 0, the volume terms become zero while

the surface terms are restricted to terms evaluated on both sides of the interface βn,m i.e.

∫

βn,m

(~ϕp
n + ρnpn(~vn − ~u∂Vn

)) .d ~Am +
∫

βn,m

(~ϕp
m + ρnpm(~vm − ~u∂Vn

)) .d ~Am = 0 (A.6)

Eq. A.6 is sometimes referred to as Kotchine’s theorem and is valid only when there is no

accumulation, generation or transport of property p on the interface (refer to [104] for an

example). In particular, surface tension is not taken into account here.
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Figure A.1: Control volume for interface equations

For p = 1, the mass conservation equation is obtained. In particular, denoting:

ṁβn,m,n =
∫

βn,m

ρn(~vn − ~u∂Vn
).d ~An (A.7)

ṁn,ext =
∫

βn,ext

ρn(~vn − ~u∂Vn
).d ~An (A.8)

the mass fluxes through βn,m and βn,ext respectively, the mass conservation equation for

Vn is written (from Eq. A.5) is simply:

dmn

dt
+

∑

m∈N(n)

ṁβn,m,n = 0 (A.9)

and, the associated interface conditions on βn,m (obtained from from Eq. A.6) is given as:

ṁβn,m,n + ṁβn,m,m = 0 (A.10)

p̄βn,m,n, p̄n,ext, ~ϕβn,m,n and ~ϕn,ext are defined as:

p̄βn,m,nṁβn,m,n =
∫

βn,m

ρnpn(~vm − ~u∂Vn
).d ~An (A.11)

p̄n,extṁn,ext =
∫

βn,ext

ρnpn(~vm − ~u∂Vn
).d ~An (A.12)

ϕ̄p
βn,m,nAβn,m =

∫

βn,m

~ϕp
n.d ~An (A.13)

ϕ̄p
n,extAβn,ext

=
∫

βn,ext

~ϕp
n.d ~An (A.14)
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where Aβn,m (resp. Aβn,ext
) is the area of βn,m (resp. βn,ext). Eq. A.5 can be written as:

d

dt
(p̄nmn) +

∑

m∈N(n)

(

ϕ̄p
βn,m,nAβn,m + p̄βn,m,nṁβn,m,n

)

+ p̄n,extṁn,ext = ¯̇Sp
nmn (A.15)

The overall system is considered to be closed (in terms of mass), the interface conditions

of Eq. A.6 can be formulated as:

p̄βn,m,nṁβn,m,n + p̄βn,m,mṁβn,m,m +
(

ϕ̄p
βn,m,n + ϕ̄p

βn,m,m

)

Aβn,m = 0 (A.16)

For p = wj, the mass fraction of species j, the species mass conservation for Vn is obtained

from Eq. A.15 as:

d

dt

(

w̄j
nmn

)

+
∑

m∈N(n)

(

J̄ j
βn,m,nAβn,m + w̄j

βn,m,nṁβn,m,n

)

+ w̄j
n,extṁn,ext = 0 (A.17)

where J̄ j is the diffusive mass flux associated to species j and the interface conditions for

βn,m given by Eq. A.16 are:

w̄j
βn,m,nṁβn,m,n + w̄j

βn,m,mṁβn,m,m +
(

J̄ j
βn,m,n + J̄ j

βn,m,m

)

Aβn,m = 0 (A.18)

For p = h the mass enthalpy, neglecting viscous dissipation and the effect of the pressure

material derivative, the energy conservation equation is obtained from Eq. A.15 as:

d

dt

(

h̄nmn

)

+
∑

m∈N(n)

(

ϕ̄βn,m,nAβn,m + h̄βn,m,nṁβn,m,n

)

+ h̄n,extṁn,ext = q̇mass
n mn (A.19)

where ϕ̄ is the heat flux and q̇mass
n is the mass power density. The interface condition can

be obtained similar to Eq. A.16 as:

h̄βn,m,nṁβn,m,n + h̄βn,m,mṁβn,m,m +
(

ϕ̄βn,m,n + ϕ̄βn,m,m

)

Aβn,m = 0 (A.20)
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Initial verification tests on the

developed macroscopic 1-D plane

front solidification model

This appendix presents the initial verification tests performed on the ‘mock-up’ 1-D

model for plane-front solidification, developed in PROCOR. The model was subjected to

verification with respect to global energy balance and the analysis of the heat conduction

profile in the solid crust at steady state.

For a sub-oxidized corium composition defined by its U/Zr molar ratio, Zr oxida-

tion degree CZr = 30% and the initial temperature conditions, the input values for the

solid and liquid masses were chosen accordingly in order to observe a pure solidification

front for the transient till a steady state is achieved. These initial inputs have been given

in Table B.1. Additionally, it has been assumed that both solid and liquid phases have

same initial composition (denoted by (w̄j
0)j∈S) and internal mass power density (q̇mass),

which is taken to be a constant. For the initial composition w̄j
0, the liquidus temperature

Tliquidus was calculated by an equilibrium calculation in OC.
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Container dimensions (radius, height) [m] 2, 1

Solid initial mass m0
s [kg] 1000

Liquid initial mass m0
p [kg] 20000

Mass power density q̇mass [W/kg] 100

Molar U/Zr ratio 1.2

Zr oxidation degree CZr 30%

Solid initial temperature T̄ s [K] 2200

Liquid initial temperature T̄ p [K] 2700

Initial interface temperature Tliquidus

(

w̄j
β,p(t = 0)

)

[K] 2637

External boundary temperature TB.C. [K] 1800

Table B.1: Initial inputs: verification of the thermal model for a sub-oxidized corium
system CZr = 30%

As first step of verification, the thermal model is tested with an EOS (referred to

as “manufactured” EOS) of the type hp(T ) = Cp
pT − h∗ for the liquid phase (p) and

hs(T ) = Cs
pT for the solid phase (s), where Cθ

p refers to the specific heat capacity of the

phase θ (θ = p for liquid and = s for solid phase respectively) and h∗ is the reference

enthalpy of the liquid in the stable state. As a consequence, the calculations performed

from the thermal model based on such a manufactured EOS (with the reference enthalpy

value set to h∗ = ∆h − (Cp
p − Cs

p)Tliquidus) yielded same results as that obtained from a

thermal model formulated explicitly in terms of temperature with constant values for heat

capacity (Cs
p and Cp

p for solid and liquid phases respectively) and the enthalpy for phase

change ∆h.

At the end of the first verification, the “manufactured” EOS used in the thermal

model was replaced by the EOS obtained from CALPHAD (i.e. Eqs. 3.18, 3.19, 3.20

and 3.21 from Chapter 3) and the model was tested for the verifications related to global

heat balance and steady state conduction profiles. It should be noted that for this initial

verification, the dependency of the CALPHAD based EOS on the compositions has not

been taken into account. Instead, the initial composition w̄j
0 is used for the bulk as well as

interfacial liquid and solid phases.
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B.1 Global energy balance at steady state

The energy conservation equation for the entire system can be written by adding the

Eqs. 3.5 and 3.6 and substituting Eq. 3.7 for the heat fluxes :

d

dt

(

h̄pmp

)

+
d

dt

(

h̄sms

)

− ∆h ˙mβ,p + ϕ̄α,sAβ = q̇mass
p mp + q̇mass

s ms (B.1)

Under steady state conditions, the above equation reduces to:

ϕ̄α,sAβ = q̇mass
p mp + q̇mass

s ms (B.2)

Eq. B.2 represents the global energy balance for the system at steady state.

The conductive heat flux at the external boundary ϕ̄α,s is a function of the thick-

ness of the solid crust. At initial time steps, due to negligible thickness of the solid

layer, the heat flow outwards to the RPV wall is high. However, with the increasing

crust thickness, the rate at which heat is transferred to the RPV wall, decreases.

The internal powers (denoted by q̇mass
p mp and q̇mass

s ms for the liquid corium and solid

crust respectively), on the other hand, change according to the evolving liquid and

solid masses respectively. With the progression of the interface in the direction of

solidification, the crust mass increases and the liquid mass decreases, up to the time

when a steady-state is achieved. At this steady state, the rate of heat transferred

to the vessel wall by conduction is equal to the total heat generated in the crust and the pool.

The above behaviour was observed in the calculations performed by the CAL-

PHAD-EOS based thermal model. Figure B.1 depicts the evolution of the internal powers

of the solid and liquid phases with time such that their summation reaches a constant

value which is equal to the conductive heat flux at steady state.
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Legendre transformation of

Thermodynamic potentials

The present appendix deals with the transformations between the thermodynamic potentials

by making use of the Legendre transformation. A Legendre transformation is a variable

transformation that enables conversion of a function of one set of variables to another

function of conjugate set of variables. Consider a function f(x1, x2, ...xn) , the complete

differential of f is given as:

df =
n∑

i=1

(

∂f

∂xi

)

xj(j 6=i)

dxi (C.1)

The Legendre transformation of f w.r.t. xi is given by another function g, which is

expressed as:

g = f −
n∑

i=p+1

(

∂f

∂xi

)

xj(j 6=i)

xi (C.2)

where n − (p + 1) denotes the number of variables which we want to change to their

corresponding conjugates.

In the context of thermodynamics, an equation of state corresponding to a ther-

modynamic potential can be converted to the equation of state corresponding to another

thermodynamic potential by altering any one of the variables with its conjugate. The

following section demonstrates in detail, the Legendre transformation from internal energy

to the grand potential.
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Legendre transformation from internal energy to

grand potential

The thermodynamic state of an isolated system can be defined by using an ‘equation of

state’, which relates the molar internal energy Em of the system to its molar entropy Sm,

molar volume Vm and mass fraction x : Em(Sm, Vm, x). The differential of this equation of

state gives:

dEm =

(

∂Em

∂Sm

)

Vm,x

dSm +

(

∂Em

∂Vm

)

Sm,x

dVm +

(

∂Em

∂x

)

Sm,Vm,

dx

= TdSm − pdVm + µdx

(C.3)

With T and p defined as:

T ≡
(

∂Em

∂Sm

)

Vm,x

(C.4)

p ≡ −
(

∂Em

∂Vm

)

Sm,x

(C.5)

For a constant molar volume, the internal energy density em can be obtained as :

dem = Tdsm + µd
(

x

Vm

)

(C.6)

The choice of internal energy Em(Sm, Vm, x) as an equation of state is not convenient to

work with. This is because in practice, experiments are performed in isothermal conditions

(i.e. dT = 0) rather than adiabatic conditions (dQ = 0). A Legendre transformation

allows working with another equation of state by changing the variable Sm to its conjugate

variable T . Thus, the transformation is taken for em(sm, x/Vm, φ) w.r.t. s and it is given

as:

fm = em − Tsm (C.7)

where fm is the Helmholtz free energy density fm(T , x/Vm, φ). Using the thermodynamic

relation

dfm = dem − Tdsm − smdT (C.8)

If the system is assumed to have a constant molar volume, the Helmholtz free energy

density becomes equivalent to the Gibbs free energy density which is a suitable
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thermodynamic potential for a system defined for a constant temperature as well as

pressure conditions.

This Gibbs energy can be expressed as a Legendre transformation : G = H − TS , with

H = E + pV . For a constant volume system it is given by the form:

Gm = Em − TSm + pVm (C.9)

gm = em − Tsm + p (C.10)

dgm = dem − Tdsm − smdT (C.11)

where dem is given by Eq. C.6. Substituting this expression for dem in Eq. C.11:

dgm = µd
(

x

Vm

)

− smdT +
∂em

∂φ
dφ (C.12)

For Gibbs energy density defined as gm(T , x
Vm

, φ), following relations are obtained:

(

∂gm

∂T

)

x
Vm

,φ

= −sm (C.13)

(

∂gm

∂x/Vm

)

T ,φ

= µ (C.14)

(

∂gm

∂φ

)

T , x
Vm

=

(

∂em

∂φ

)

sm, x
Vm

(C.15)

For a system that allows interchanging of particles with a reservoir, the chemical potential

is constant. To describe such a system, the grand potential (per mole) Ωm(T , Vm, µ) is

defined as the Legendre transform of the molar Gibbs free energy. Consequently, the

thermodynamic relation between grand potential density and Gibbs energy density is given

as:

ωm = gm − µ
x

Vm

= em − Tsm + p − µ
x

Vm

(C.16)
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∴ the complete differential for the grand potential density ωm is given as:

dωm = dem − Tdsm − smdT − µd
(

x

Vm

)

− x

Vm

dµ (C.17)

Substituting Eq. C.6 for dem, Eq. C.17 can be written as:

dωm = −smdT − x

Vm

dµ +
∂em

∂φ
(C.18)

Thus, grand potential density is obtained as a function of the conserved variables T , µ and

the non conserved variable φ:

dωm =

(

∂ωm

∂T

)

µ,φ

dT +

(

∂ωm

∂µ

)

T ,φ

dµ +

(

∂ωm

∂φ

)

T ,µ

dφ (C.19)

with the relations:

(

∂ωm

∂T

)

µ,φ

= −sm (C.20)

(

∂ωm

∂µ

)

T ,φ

= − x

Vm

(C.21)

(

∂ωm

∂φ

)

T ,µ

=

(

∂em

∂φ

)

sm, x
Vm

(C.22)

and ω̇m as :

∂ωm

∂t
=

(

∂ωm

∂T

)

µ,φ

∂T

∂t
+

(

∂ωm

∂µ

)

T ,φ

∂µ

∂t
+

(

∂ωm

∂φ

)

T ,µ

∂φ

∂t

= −(sm)
∂T

∂t
−
(

x

Vm

)
∂µ

∂t
+

(

∂ωm

∂φ

)

T ,µ

∂φ

∂t

(C.23)

where:

∂

∂t

(

∂ωm

∂µ

)

T ,φ

=

(

∂2ωm

∂T∂µ

)

φ

∂T

∂t
+

(

∂2ωm

∂µ2

)

T ,φ

∂µ

∂t
+

(

∂2ωm

∂µ∂φ

)

T

∂φ

∂t
(C.24)

∂

∂t

(

∂ωm

∂T

)

µ,φ

=

(

∂2ωm

∂T 2

)

µ,φ

∂T

∂t
+

(

∂2ωm

∂µ∂T

)

φ

∂µ

∂t
+

(

∂2ωm

∂T∂φ

)

µ

∂φ

∂t
(C.25)
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The derivatives of the grand potential density with respect to T and φ can be obtained by

comparing the Maxwell’s relations for gm and ωm as:

(

∂ωm

∂T

)

µ,φ

=

(

∂gm

∂T

)

x
Vm

,φ

= −sm (C.26)

(

∂ωm

∂φ

)

T ,µ

=

(

∂gm

∂φ

)

T , x
Vm

=

(

∂em

∂φ

)

sm, x
Vm

(C.27)

Finally, the expression for sm(em, x/Vm, φ) can be obtained in terms of the derivatives of

ωm by using the mathematical identity
(

∂x
∂y

)

z
= −

(
∂x
∂z

)

y

(
∂z
∂y

)

x
, while keeping the variables

x/Vm and φ fixed one at a time:

(

∂sm

∂φ

)

em, x
Vm

= −
(

∂sm

∂em

)

φ, x
Vm

(

∂em

∂φ

)

sm, x
Vm

= − 1

T

(

∂em

∂φ

)

sm, x
Vm

= − 1

T

(

∂gm

∂φ

)

T , x
Vm

= − 1

T

(

∂ωm

∂φ

)

T ,µ

(C.28)

(

∂sm

∂(x/Vm)

)

em,φ

= −
(

∂sm

∂em

)

φ, x
Vm

(

∂em

∂(x/Vm)

)

sm,φ

= − 1

T

(

∂em

∂(x/Vm)

)

sm,φ

= − 1

T

(

∂gm

∂(x/Vm)

)

T ,φ

= − µ

T

(C.29)

154



Appendix D

Evaluating diffusion coefficients and

chemical mobilities for

multi-component mass transfer

The present appendix focuses on deriving suitable expressions for the multi-component

diffusion coefficients (Dkj) and the kinetic coefficient for mass transfer (Mxx), which are

required in Chapters 3 and 4 respectively.

The solutions to the equations of mass transfer in multi-component systems are

limited to some very special situations. Thus, the only option remaining is to rely

on simplified models for deducing the solution. The Linearized theory developed

by Toor is an approach towards solving these multi-component diffusion problems.

In this approach, the fluxes in a multi-component system are described by a linear

combination of appropriate driving forces, with proportionality constants which depend on

the multi-component diffusion coefficients and appropriate binary mass transfer coefficients.

For an n-component system, the general expression for the fluxes Jk is given

as:

Jk = −
n∑

k=1

LkiFi (D.1)

Where Lki are the phenomenological parameters that relate the flux of component k to all

the driving forces Fk. The driving forces are defined in a way such that under isothermal

conditions, the rate of entropy production per unit volume (invariant under Gallilean
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transformations [105]) is given by:

σ =
∂S

∂t
=

1

T

n∑

k=1

JkFk (D.2)

The Onsager’s reciprocal relation for the phenomenological coefficients is given by:

Lki = Lik (D.3)

It should be noted that the mass flux value evaluated from Eq. D.1 depends on the choice

of reference frame. A linear expression for fluxes in the lattice-fixed frame of reference

(denoted by J̃k) is given by taking the driving forces equal to the gradient of the chemical

potentials (denoted by µ̃j for a non-reduced system composed of n interdependent driving

forces):

J̃k = −
n∑

j=1

Lkj∇µ̃j (D.4)

which follows the relation:
n∑

k=1

J̃k = 0 (D.5)

Transformation of Eq. D.4 to obtain mass fluxes (denoted by Jk) for a volume fixed frame

of reference (i.e. for a reference frame defined such that there is no net flow of volume) :

Jk = −
n∑

j=1

L′
kj∇µ̃j (D.6)

with the phenomenological coefficient L′
kj expressed as:

L′
kj =

n∑

i=1

[

δki − xk

(
Vi

Vm

)]

Lij (D.7)

where:

• δki is the Kronecker delta , i.e. = 1 when i=k and 0 otherwise;

• xk is the mole fraction of the component k;

• Vi is the partial molar volume Vi =
(

∂V
∂Nk

)

P ,T ,Nj

with Nk being the number of moles

of component k;

• Vm is the molar volume given by Vm =
∑n

j=1 xjVj.
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The above transformation is applicable as it does not change the value of the fluxes as

they satisfy the relation:
n∑

k=1

JkVk = 0 (D.8)

The phenomenological coefficient Lki can be evaluated by making use a model similar to the

‘vacancy exchange mechanism’ model for Crystalline phases1 [105], the phenomenological

coefficients are identified as:

Lkj =







0 ∀k 6= j

ckςk ∀k = j
(D.9)

where ck denotes the molar concentration (mol1m−3) for component k and ςk is the

mobility of the component k.

The Eqs. D.6 and D.7 serve as a common point for further discussion, where

these equations can be manipulated to obtain the quantities of interest, as per the

requirements of the study performed in the present thesis.

D.1 Evaluation of diffusion coefficients

In order to treat the problem of finite mass transfer for the mock-up plane front

solidification model discussed in Chapter 3, the relation derived for the mass transfer

coefficient km from Eq. 3.30 requires diffusion coefficient values as inputs.

Starting from Eq. D.6 for the mass fluxes in a volume fixed frame, the driving

force is given by the gradient of the chemical potentials µ̃, which are functions of the

compositions. In principle, these µ̃ can be expressed as:

µ̃i = µ̃i (c1, c2, ..., cn) (D.10)

1In the vacancy exchange mechanism, it is assumed that the process of diffusion occurs by the jumping
of atoms into their neighboring vacant lattice sites. Additionally, it’s assumed that the distribution of
these vacant sites is random for any given instance.
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where the condition on the concentrations is given by
∑n

i ciVi = 1. By applying the chain

rule of derivation, Eq. D.6 can be written as:

Jk = −
n∑

i

L′
ki

n∑

j=1

∂µ̃i

∂cj

∇cj (D.11)

which can be re-written as:

Jk = −
n∑

j=1

Dkj∇cj (D.12)

The term Dkj is introduced as the diffusivity (or diffusion coefficient) and is expressed as:

Dkj =
∑

L′
ki

∂µ̃i

∂cj

(D.13)

With L′
ki being calculated using Eqs. D.7 and D.9, for the relation ck = xk

Vm
, a final

expression is obtained for the diffusion coefficients associated with the mass fluxes under a

volume fixed frame of reference:

Dkj =
∑

i

(

δik − xk

(
Vi

Vm

))

xiςi
∂µi

∂xj

(D.14)

In the above expression, the quantity ∂µi

∂xj
is purely thermodynamic and can be evaluated

from the thermodynamic description of the system. In order to do so, it is required that

the chemical potentials of each component must be expressed in terms of mole fractions to

obtain a correct result.

However, from the point of interest of the macroscopic model developed in Chap-

ter 3 which is developed under a ‘mass fixed’ frame of reference, a change of reference

frame is required in order to obtain appropriate values for mass fluxes. Consequently,

the expression for the diffusion coefficients given by Eq. D.14 will not hold true for a

system represented under a mass fixed frame of reference. The section below, presents the

derivation of the appropriate diffusion coefficients under the transformation of the system.

Reference Frame Transformations and Calculation of Multicom-

ponent diffusion coefficients

For molar fluxes expressed in the volume fixed frame, recalling the equations Eq. D.12

and Eq. D.8, with the driving force equal to the gradient of molar concentration ci that
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obey
∑

k ckVk = 1. On the other hand, in a mass fixed frame of reference, the mass flux

(denoted by Jm
k ) holds the relation:

∑

Jm

k = 0 (D.15)

This mass flux is related to molar flux (JM
k ) as:

JM

k =
Jm

k

Mk

(D.16)

Where Mk refers to the molar mass of the component k. The molar flux obeys the relation:

∑

JM

k Mk = 0 (D.17)

Using the linear theory, the mass flux can be expressed as:

Jm

k = −ρ
∑

i

Dm

k,i∇wi (D.18)

with the driving force represented by the gradient of mass fraction wi, and Dm
k,i being the

diffusion coefficient evaluated under mass fixed reference frame.

When the fluxes in one reference frame (P ) are to be measured in a different

frame of reference (R) that is moving with an average relative velocity of vP R with respect

to reference frame P , the relation between quantities is given by the equation [106]:

JR

k = JP

k + ckvP R (D.19)

Thus, using the above relation, the molar flux value for the mass-fixed frame can be

expressed in terms of molar flux in volume fixed reference frame as:

JM

k = JV

k + ckvV M (D.20)

Using equations Eq. D.16 and Eq. D.15, an expression for vV m instead, is obtained as:

vV m = −1

ρ

∑

i

MiJ
V

i (D.21)
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Eq. D.20 can be expressed in terms of Jm
k and JV

k as:

Jm

k =
∑

i

(

δkiMk − ckMkMi

ρ

)

JV

i (D.22)

Substitution of the expressions for fluxes in linear theory (i.e. Eq. D.18 and Eq. D.12) to

the above relation gives us:

− ρDm

k,j∇wj = −
(
∑

i

(

δkiMk − ckMkMi

ρ

)

Di,j

)

∇cj (D.23)

The mass fraction wi can be expressed in terms of the molar concentration values ci from

the relation:

wi =
Mi

ρ
ci (D.24)

∇ci =
1

Mi

(wi∇ρ + ρ∇wi) (D.25)

A linear relation between the diffusion coefficients Dm
k,j and Di,j can be obtained by

neglecting the term ∇ρ and using Eq. D.25 in conjunction with Eq. D.23, which is given

as:

Dm

k,j =
∑

i

(

δkiMk

Mj

− wkMi

Mj

)

Di,j (D.26)

Thus, substituting the value obtained from Eq. D.14 into the above relation, an

appropriate expression for evaluating the diffusion coefficients associated to fluxes in a

mass fixed frame of reference can be obtained.
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D.2 Evaluating the Kinetic coefficients for mass

transfer

It can be recalled from Chapter 4 that the expression for mass flux Jx for the system is

expressed by the linear phenomenological equation Eq. 4.19 as:

Jx = Mxx∇
(

δS

δ(x/Vm)

)

(D.27)

Where Mxx is the kinetic coefficient related to the mass diffusion. In order to evaluate

this mass flux, the diffusion mobilities (denoted by Mxx) need to be calculated. The

following steps can be applied for manipulating Eqs. D.6 and D.7 to obtain these kinetic

coefficient value.

In general, the relation for the phenomenological coefficients Lik given by Eq. D.3 is valid

only for the conditions where the set of driving forces are independent of each other. If the

Fk are identified with the chemical potential gradients ∇µk, the invariance of the entropy

production term upon the change of reference frame is ensured by application of the

Gibbs-Duhem relation. However, the Gibbs-Duhem relation imposes an interdependence

of the driving forces, causing a violation of Eq. D.3. As a result, it is preferred to work

with a set of n − 1 independent forces ∇Φk where Φk are the appropriate potentials. By

introducing these appropriate expressions for the independent forces, the sum
∑n−1

k=1 JkΦk

can give the correct entropy production.

Starting from Eq. D.6 for the mass flux of component k for isothermal diffusion

under a volume fixed frame of reference, the phenomenological coefficient L′
kj is expressed

by Eq. D.7. For working with n − 1 independent set of driving forces ∇Φi, Eq. D.6

modifies to:

Jk = −
n∑

i=1

L′′
ki∇Φi (D.28)

where:

∇Φi = ∇µ̃i − Vi

Vn

∇µ̃n (D.29)

L′′
ki =

n∑

j=1

n∑

r=1

[

δir − xi
Vr

Vm

] [

δjk − xk
Vj

Vm

]

Ljr (D.30)
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For the case where Vj

Vm
= 1 the above expressions reduces to (for chemical potential in

the reduced system (µ) linked to chemical potentials of the non-reduced system (µ̃) as

µ = µ̃i − µ̃n ):

∇Φi = ∇µ̃i − ∇µ̃n = ∇µi (D.31)

L′′
ki =

n∑

j=1

n∑

r=1

[δir − xi] [δjk − xk] Ljr (D.32)

It should be noted that the Eq. D.28 depends on the choice of n which will correspond to

the dependent potential. The phenomenological coefficient Lkj can be expressed by using

the similar approach of applying a model similar to the ’vacancy exchange mechanism’

model (i.e. Eq. D.9 as mentioned before). Following the condition, the expression for L′′
ki

is obtained as :

L′′
ki =

n∑

j=1

[δij − xi] [δjk − xk] Ljj (D.33)

The diffusion mobility ςk is related to the tracer diffusion coefficient D∗
k through the

Einstein relation as:

ςk =
D∗

k

RT
(D.34)

The tracer diffusion coefficient D∗
k can be assimilated to the self diffusion coefficient Dk

under the assumption of no isotopic effect (i.e. it is considered that two atoms of different

masses do not have different diffusion coefficients), which are calculated from the Arrhenius

law:

Dk(T ) = D∗
k0

exp(−Ed/kT ) (D.35)

Substitution of Eq. D.34 into Eq. D.9, the phenomenological coefficient Lkj can be expressed

as:

Lkk = ck
Dk

RT
(D.36)

The above expression can be substituted in Eq. D.33 to get the final expression for the

coefficient L′′
ki:

L′′
ki =

n∑

j=1

[δij − xi] [δjk − xk]
xjDj

VmRT
(D.37)

from which a final expression for the mass flux Jk can be obtained :

Jk =
n∑

i=1





n∑

j=1

[δij − xi] [δjk − xk]
xjDj

VmRT
∇Φ



 (D.38)
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For isothermal conditions, the phenomenological equation given by Eq. 4.28 reduces to :

Jx = −Mxx

T
(∇µ) (D.39)

Upon comparing Eq. D.39 with Eq. D.38, an expression for Mxx can be obtained:

Mxx = TL′′
k1 =

n∑

j=1

[δij − xi] [δjk − xk]
xjDj

VmR
(D.40)

Specific to the case of binary systems, Eq. D.28 can be re-written by using Eqs. D.31

and D.37 (with n = 2 corresponding to the dependent potential) :

J1 = −L′′
11∇µ1 = −x(1 − x)

VmRT
[(1 − x)D1 + xD2] ∇µ1 (D.41)

where x = x1. Thus, using the relation given by Eq. D.40, for a binary system the value

for Mxx is given by the final expression :

Mxx =
x(1 − x)

VmR
[(1 − x)D1 + xD2] (D.42)
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Calculation of quantities using

OpenCalphad

This appendix presents the expressions for the various thermodynamic quantities that are

evaluated from CALPHAD database, to be used as inputs to the developed phase-field

model in Chapter 4.

Recalling from the discussion on the CALPHAD method in Chapter 2, the calcu-

lation of various thermodynamic quantities required for modelling the corium system

has been done by using the NUCLEA database in combination with the Gibbs energy

minimizer incorporated in the OpenCalphad (OC) software. For each possible phase, OC

provides with the Gibbs energy per mole of the constituent (i.e. species, denoted by yi)

for an n component, n constituent system, which is represented as:

G̃M = G̃M(y1, ...yn)

It should be noted that the tilde notation has been introduced above only to differentiate

between a complete n component system from a reduced system composed of n − 1

components. In order to obtain the Gibbs energy per mole of the component (G̃m), the

following relation can be used:

G̃m =
G̃M

Ñ
where Ñ is the number of mole of components (elements) per 1 mole of constituents

(species).
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For a system consisting of the same number of constituents as the number of

components, (i.e. n elements that combine to form n species), it is possible to define a

reduced system with n − 1 independent constituents. Following
∑n

i yi = 1, yn can be

expressed as yn = 1 − ∑n−1
j yj, the molar Gibbs energy for the reduced system GM is

defined as:

GM = G̃M(y1, ...yn−1, (1 −
n−1∑

j=1

yj))

Similarly, the Gibbs energy per mole of components for the reduced system (Gm) is given

by:

Gm =
1

N GM (E.1)

where N is the number of moles of elements per mole of species, for the reduced system.

Using this expression, the thermodynamic quantities can then be obtained for the reduced

system as follows:

E.1 Gibbs energy density per mole of component

By definition, gm is expressed as:

gm =
Gm

Vm

=
GM

VmN (E.2)

Using Eq. E.2, the various quantities of interest can be extracted from the CALPHAD

database, by making use of appropriate thermodynamic relations.

E.2 Chemical potential for Binary systems

For a binary system composed of components with mole fractions x1 and x2, the following

holds true from conservation law:

x1 + x2 = 1 (E.3)

x2 = 1 − x1 (E.4)

Assuming that the system is composed of constituent species with mole fractions

y1 and y2 and that species conservation holds, the state of the system can be completely
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determined by a single variable. The reduced molar Gibbs energy for constituents GM is

defined for this system as :

GM = G̃M (y1, (1 − y1)) (E.5)

By definition, µ is given as :

µ =
∂Gm

∂x1

=
∂Gm

∂y1

.
∂y1

∂x1

(E.6)

Where y1 corresponds to the molar fraction of the constituent 1. For a constant molar

volume, the substitution of Eq. E.1 for Gm in the above equation gives:

µ =

[

∂

∂y1

(
GM

N
)](

∂y1

∂x1

)

(E.7)

=

[

1

N

(

∂GM

∂y1

)

− GM

N 2

(

∂N
∂y1

)](

∂y1

∂x1

)

(E.8)

From the thermodynamic relation between ωm and gm give by Eq. C.16, it can be recalled

that the quantity required in place of µ is µ/Vm, which can be expressed as:

µ

Vm

=
1

Vm

[

1

N

(

∂GM

∂y1

)

− GM

N 2

(

∂N
∂y1

)](

∂yi

∂x1

)

(E.9)

where the derivative ∂GM

∂y1
can be written as:

∂GM

∂y1

=

(

∂G̃M

∂y1

)

y2

+

(

∂G̃M

∂y2

)

y1

∂y2

∂y1

=

(

∂G̃M

∂y1

)

y2

−
(

∂G̃M

∂y2

)

y1

(E.10)

Similarly, N can be expressed in terms of y1 as:

N = Ñ (y1, (1 − y1)) (E.11)

∴ the derivative ∂N
∂y1

can be obtained from the above relation as:

∂N
∂y1

=

(

∂Ñ
∂y1

)

y2

+

(

∂Ñ
∂y2

)

y1

(

∂y2

∂y1

)

=

(

∂Ñ
∂y1

)

y2

−
(

∂Ñ
∂y2

)

y1

(E.12)
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Eqs. E.10 and E.12 can be substituted in Eq. E.8 to obtain the final expression for µ:

µ =

[

1

N

(

∂GM

∂y1

)

− GM

N 2

(

∂N
∂y1

)]

=
1

Ñ





(

∂G̃M

∂y1

)

y2

−
(

∂G̃M

∂y2

)

y1





− G̃M

Ñ 2





(

∂Ñ
∂y1

)

y2

−
(

∂Ñ
∂y2

)

y1





(E.13)

With the relation between y and x being known, the derivative ∂y1

∂x1
can be obtained.

Case: U-Zr system

For the U − Zr system, the constituents (also components) are U and Zr. The following

hold true :

xU = yU (E.14)

xZr = yZr (E.15)

xU + xZr = 1 (E.16)

Ñ = yU + yZr = 1 (E.17)

GM and N are defined as:

GM = G̃M(yU , (1 − yU)) (E.18)

N = yU + (1 − yU) (E.19)

For x1 = xU , the chemical potential µ̃U is expressed as:

µU =
∂Gm

∂xU

=

(

∂Gm

∂yU

)

.

(

∂yU

∂xU

)

(E.20)

From Eq. E.14 it can be seen that ∂yU

∂xU
= 1. From this, the final expression for

µU is obtained as :

µU =
1

Ñ





(

∂G̃M

∂yU

)

yZr

−
(

∂G̃M

∂yZr

)

yU



 (E.21)
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Case: U-O system

This particular case corresponds to the type of systems where the number of components

and constituents are no longer the same. In such cases, direct use of the associate model

with species as its constituents to evaluate quantities is not possible.

In order to obtain the chemical potential, an additional hypothesis is required.

The components and constituents of the U-O system include elements U and O and

species U , UO2 and O respectively. The relation between the element and species molar

fractions is given as:

xU + xO = 1 (E.22)

xO = 1 − xU (E.23)

yUO2 + yO + yU = 1 (E.24)

Ñ = 3yUO2 + yO + yU (E.25)

The molar fractions of the components are dependent on the molar fractions of the

constituents as:

xU =
1 − yO

1 + 2yUO2

xO =
yO + 2yUO2

1 + 2yUO2

Application of additional hypothesis: For the present system, an initial assumption

of no free oxygen is made based on the equilibrium calculations performed for T = 3200 K

(i.e. yO = 0). The application of this assumption to the initial state of the system leads to

the presence of equal number of constituents and components in the system, which ensures

the direct use of the thermodynamic data from CALPHAD and so the molar fraction xU

can be expressed as xU = 1
1+2yUO2

, within the range
[

1
3
, 1
]

and from Eq. E.24 we obtain

yUO2 = 1 − yU . Moreover, with this initial assumption, it can also be ensured that the
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system is devoid of yO during the transient as well. Thus, xU and xO can be rewritten as:

xU =
1

3 − 2yU

xO =
2(1 − yU)

3 − 2yU

The constituent fractions can be related to xU as:

yU =
3xU − 1

2xU

(E.26)

yUO2 = 1 − yU =
1 − xU

2xU

(E.27)

GM and N are defined as:

GM = G̃M(yU , yO, (1 − yU − yO)) (E.28)

N = Ñ (yU , yO, (1 − yU − yO)) = yU + yO + 3(1 − yU − yO) (E.29)

For x1 = xU , the chemical potential µU is expressed as:

µU =
∂Gm

∂xU

=

(

∂Gm

∂yU

)

.

(

∂yU

∂xU

)

(E.30)

The derivative ∂yU

∂xU
can be computed from Eq. E.26. From this, the final expres-

sion for µU can be obtained as:

µU =
1

Ñ





(

∂G̃M

∂yU

)

yO,yUO2

−
(

∂G̃M

∂yUO2

)

yU ,yO

+ 2
G̃M

Ñ




1

2(xU)2
(E.31)
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E.3 Grand potential density

It can be recalled from Eq. C.18, the grand potential density ωm is given for the reduced

system from the thermodynamic relation:

ωm = gm − µ̂xi (E.32)

where µ̂ = µ/Vm. ωm can be computed from CALPHAD by substitution of Eqs. E.2

and E.9 to Eq. E.32.

E.4 Entropy density

By definition, s can be obtained from Eq. C.26 of Appendix C as :

s = −∂ωm

∂T
= −∂gm

∂T
(E.33)

Substitution of Eq. E.2 for gm in the above equation, entropy density can be evaluated

from OC.

E.5 Second order derivatives of the Grand potential

density

The generalized evolution equations for the variables T and µ given by Eqs. 4.38 and 4.40

require second order derivatives of the grand potential density with respect to T and µ :
∂2ωm

∂T 2 , ∂2ωm

∂µ̂2 and ∂2ωm

∂µ̂∂T
. The general expressions for these quantities have been derived below.

It can be recalled from Eq. C.26 that the second derivative of grand potential

density with respect to T can be expressed in terms of a partial derivative of Gibbs energy

density with respect to T . Substitution of Eq. E.2 for gm, the final expression for ∂2ωm

∂T 2

can be obtained as:

∂2ωm

∂T 2
=

∂2gm

∂T 2

=
1

VmN

(

∂2GM

∂T 2

) (E.34)

170



Appendix E

Similarly, the second derivative of ωm with respect to µ can be obtained from Eq. C.21 as:

∂2ωm

∂µ̂2
= −∂x

∂µ̂
(E.35)

Contrary to the other derivatives, ∂2ωm

∂µ̂2 cannot be directly obtained from OC through an

analytical derivative. Hence, a numerical derivative is used to evaluate it, which is achieved

by making use of the forward difference scheme for discretization of the derivative:

− ∂x

∂µ̂
= −

[

x(µ̂i + ǫ) − x(µ̂i)

ǫ

]

(E.36)

where ǫ is an arbitrary value that is smaller than the difference between two consecutive

values of µ̂ for the defined grid. Finally, for the partial derivative of ωm with respect to T

and µ, the expression can be obtained by using Eqs. E.33 and E.2:

∂2ωm

∂µ̂∂T
= − ∂x

∂T
= − ∂s

∂µ̂

=
∂

∂µ̂

(

1

VmN

(

∂GM

∂T

)) (E.37)
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Non-dimensionalization of the

evolution equations for the

isothermal phase field model

The present appendix discusses the approaches followed for the non-dimensionalization of

the evolution equations Eqs. 4.66 and 4.67 of the phase field model developed in Chapter 4.

The dimensionless variables introduced in Section 4.3.2.2.2 of Chapter 4 can be recalled

here:

t∗ =
t

τ
(F.1)

z∗ =
z

L
(F.2)

µ∗ =
µ

µ0

(F.3)

Ω∗
m =

Ωm

Ω0

(F.4)

∆Ω∗
m =

Ωs
m − Ωl

m

∆Ω0

(F.5)

M∗
xx =

Mxx

M0

(F.6)

where:

• τ is the characteristic time associated the evolution of the variable µ, which represents

the time taken for the diffusion process to occur in the system of a given length scale

L, and;
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• µ0 , Ω0, ∆Ω0 are the characteristic values associated with the order of magnitudes of

µ (1.0 ∗ 105) , Ωm (1.0 ∗ 105) and Ωs
m − Ωl

m (1.0 ∗ 103), and M0 is the characteristic

value associated with the kinetic coefficient Mxx, which has been taken as the average

value for Mxx, depending on the system under consideration in Chapter 4 (i.e. the

binary U-Zr or U-O system) respectively.

Non-dimensionalization of the µ evolution equation and defining the charac-

teristic time for diffusion

The evolution equation in µ (Eq. 4.66) is given as:

(

∂2Ωm

∂µ2

)

µ̇ = −Vm

T
∇(Mxx∇µ) −

(

∂2Ωm

∂µ∂φ

)

φ̇ (F.7)

The dimensionless form for Eq. F.7 can be written as:

(

∂2Ω∗
m

∂µ∗2

)

dµ∗

dt∗ = −
(

Vmµ2
0M0τ

TL2Ω0

)

∂

∂z∗

(

M∗
xx

∂µ∗

∂z∗

)

−
(

∂2Ω∗
m

∂µ∗∂φ

)

dφ

dt∗ (F.8)

where we set:
Vmµ2

0τ

TL2Ω0

M0 = 1 (F.9)

From Eq. F.9, an expression for the characteristic diffusion time τ can be obtained:

τ =
L2

Vmµ2
0M0/Ω0T

=
L2

Dx

(F.10)

where Vmµ2
0M0/Ω0T has the same dimensions as that of the diffusion coefficient Dx.

Non-dimensionalization of the φ evolution equation and defining its character-

istic time

The evolution equation for the non-conserved order paramter φ is given by Eq. 4.67 as:

φ̇ =

(

Mφκ2
φ

T

)

∇2φ −
(

Mφ

aT

)

f ′
dw(φ) −




Mφ

(

Ωs
m − Ωl

m

)

VmT



 p′(φ) (F.11)

From the discussion in Section 4.3.2.2.2 of Chapter 4, it can be recalled that the charac-

teristic time of evolution for φ depends on the magnitudes of the three terms present in

Eq. 4.67. The characteristic time associated with the evolution of φ can be recalled from
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Eq. 4.74, which is expressed as:
1

τφ

=
Mφ

aT
(F.12)

Multiplication of the evolution equation by τφ and its subsequent simplification gives:

τφφ̇ = τφ

(

Mφκ2
φ

T

)

∇2φ − f ′
dw(φ) − τφ




Mφ

(

Ωs
m − Ωl

m

)

VmT



 p′(φ)

=
(

aκ2
φ

)

∇2φ − f ′
dw(φ) −




a
(

Ωs
m − Ωl

m

)

Vm



 p′(φ)

φ̇ =

(

aκ2
φ

τφ

)

∇2φ −
(

1

τφ

)

f ′
dw(φ) −

(

a(Ωs
m − Ωl

m)

τφVm

)

p′(φ)

(F.13)

The term aκ2
φ/τφ can be written as the phase field diffusion coefficient Dφ. Substituting

for κ2
φ and a from Eqs. 4.57 and 4.58 :

Dφ =
δ2

β

32τφ

=
δ2

βMφ

32aT
(F.14)

Non-dimensionalization of Eq. F.13 in space and time gives:

1

τφ

dφ

dt∗ =
(

Dφ

L2

)

︸ ︷︷ ︸

= 1
τ1

∂2φ

∂z∗2
−
(

1

τφ

)

f ′
dw(φ) −

(

a∆Ω0

τφVm

)

︸ ︷︷ ︸

= 1
τ3

Ω∗
mp′(φ) (F.15)

where:
1

τ1

=
Dφ

L2
=

(

δ2
β

32L2

)

1

τφ

(F.16)

Hence, τ1 and τφ are shown to be proportional. On the other hand, the characteristic time

associated with the evolution of the third term (τ3) can be recalled from Eq. 4.75 as:

1

τ3

=
Mφ∆Ω0

VmT
(F.17)

With the relations for τ , τφ and τ3 known, Eqs. F.10, F.12 and F.17 can be substituted

in the relations given by Eqs. 4.78 and 4.79, with tdiff defined by Eq. 4.76 to obtain the
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inequalities for the mobility coefficient Mφ as :

aVmµ2
0M0

Ω0L2
≪ Mφ ≪ aVmµ2

0M0

Ω0δ2
β

(F.18)

V 2
mµ2

0M0

L2Ω0∆Ω0

≪ Mφ ≪ V 2
mµ2

0M0

δ2
βΩ0∆Ω0

(F.19)

An alternate approach to the non-dimensionalization

of the evolution equations for the choice of Mφ

From the thermodynamic relation between the component mass fraction and the grand

potential density (Eq. 4.35), the second order derivative of ω with respect to µ and the

derivative ∂2µ
∂µ∂φ

are given as:

∂2ωm

∂µ2
= p(φ)

∂2ωs
m

∂µ2
+ (1 − p(φ))

∂2ωl
m

∂µ2
(F.20)

∂2ωm

∂µ∂φ
= p′(φ)

[

∂ωs
m

∂µ
− ∂ωl

m

∂µ

]

(F.21)

From Eqs. 4.35 and F.20, the concentration ρ (mol1m−3) and the susceptibility χ

(J−1mol2m−3) respectively for solid and liquid phase are defined as:

ρs =
xs

Vm

= −
(

∂ωs
m

∂µ

)

(F.22)

ρl =
xl

Vm

= −
(

∂ωl
m

∂µ

)

(F.23)

χs =

(

∂ρs

∂µ

)

= −
(

∂2ωs
m

∂µ2

)

(F.24)

χl =

(

∂ρl

∂µ

)

= −
(

∂2ωl
m

∂µ2

)

(F.25)

where ρ and χ are functions of chemical potential µ. Since the absolute reference (i.e. the

“zero”) of the chemical potential is not uniquely defined (unlike temperature which has

an absolute value proportional to the kinetic energy), there does not exist a value for µ
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which is equivalent to the temperature Tβ corresponding to the phase change. However, it

is possible to find a range of chemical potential that is associated to the phase change,

i.e. the chemical potential difference. For this, lets start from a reference value µeq and

look for a value of µ at which the composition of the liquid phase is equal to the reference

composition of the solid phase:

ρl(µ) = ρs(µeq) (F.26)

ρl can expressed by the Taylor series expansion around the value µeq as:

ρl(µ) = ρl(µeq) +

(

∂ρs

∂µ

)

µeq

(µ − µeq) (F.27)

= ρeq
l + χeq

l (µ − µeq) (F.28)

Substitution of Eq. F.28 for ρl in Eq. F.26 gives:

(µeq − µ) = µ∗ =
(ρeq

l − ρeq
s )

χeq
l

=
(xeq

l − xeq
s )

Vmχeq
l

(F.29)

A dimensionless chemical potential u for the difference (µ−µeq) (i.e. the chemical potential

of the phase and the equilibrium chemical potential value) can be defined as:

u =
(µ − µeq)

µ∗ =
(µ − µeq)Vmχeq

l

xl − xs

(F.30)

The derivatives Eqs. 4.35, F.20 and F.21 can be re-written for the grand potential density

expressed as a function of the intensive variables and the phase field order parameter

(Eq. 4.33) in terms of ρ and χ as:

∂ωm

∂µ
= −ρm(µ, T , φ) = − [p(φ)ρs + (1 − p(φ))ρl] (F.31)

∂2ωm

∂µ2
= −

[

p(φ)
∂ρs

∂µ
+ (1 − p(φ))

∂ρl

∂µ

]

(F.32)

= χ(µ, T , φ) = − [p(φ)χs + (1 − p(φ))χl] (F.33)

∂2ωm

∂µ∂φ
= −∂ρm

∂φ
= −p′(φ) [ρs − ρl] (F.34)
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Non-dimensionalization of the evolution equation for µ and defining the char-

acteristic time for diffusion

The substitution of Eqs. F.33 and F.34 in Eq. 4.66 for the evolution µ gives:

− χ
dµ

dt
= −∇

(
Mxx

T
∇µ

)

+ p′(φ) [ρs − ρl]
∂φ

∂t
(F.35)

Close to equilibrium, ρl is given by Eq. F.28. Similarly, ρs = ρeq
s + χeq

s (µ − µeq). A quantity

∆ρeq = ρeq
l − ρeq

s is defined, using which the difference ρs − ρl can be expressed as:

ρs − ρl = (ρeq
s − ρeq

l ) + (µ − µeq) [χeq
s − χeq

l ] (F.36)

= −∆ρeq − (µeq − µ) [χeq
l − χeq

s ] (F.37)

= −∆ρeq

[

1 + u

(

1 − χeq
s

χeq
l

)]

(F.38)

Similarly, the µ in the evolution equation corresponds to the difference (µ−µeq), which can

be written as u∆ρeq/χeq
l . Substitution of (µ − µeq) and Eq. F.38 for ρs − ρl, the Eq. F.35

modifies as:

−χ∆ρeq

χeq
l

du

dt
= −∆ρeq

[

∇
(

Mxx

χeq
l T

∇u

)

+ p′(φ)

[

1 + u

(

1 − χeq
s

χeq
l

)]

∂φ

∂t

]

(F.39)

(

χ

χeq
l

)

u̇ = ∇
(

Mxx

χeq
l T

∇u

)

+ p′(φ)

[

1 + u

(

1 − χeq
s

χeq
l

)]

∂φ

∂t
(F.40)

With the dimensionless variables z∗, M∗
xx and t∗, the above equation is non-dimensionalized

to give:
du

dt∗ =

(

M0τ

χTL2

)

∂

∂z∗ (M∗
xx

∂u

∂z∗ ) + p′(φ)

[

1 + u

(

1 − χeq
s

χeq
l

)]

∂φ

∂t∗ (F.41)

where M0τ
χT L2 is set to 1. Hence the characteristic diffusion time τ is expressed as:

τ =
χTL2

M0

=
L2

Dx

(F.42)

where Dx = M0/χT and χ is given by Eq. F.33.
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Non-dimensionalization of the evolution equation for φ and defining its char-

acteristic time

With the characteristic time for φ defined as per Eq. F.12, Eq. 4.67 is re-written in terms

of grand potential densities as:

dφ

dt
=

(

aκ2
φ

τφ

)

∇2φ −
(

1

τφ

)

f ′
dw(φ) −




a
(

ωs
m − ωl

m

)

τφ



 p′(φ) (F.43)

For an interface close to equilibrium, ωs
m − ωl

m can be written from the Taylor series

expansions as :

ωs
m = ωs

m(µeq) +

(

∂ωs

∂µ

)

µeq

(µ − µeq) = ωs
m(µeq) − ρeq

s (µ − µeq)

ωl
m = ωl

m(µeq) +

(

∂ωl

∂µ

)

µeq

(µ − µeq) = ωl
m(µeq) − ρeq

l (µ − µeq)

ωs
m − ωl

m = (µ − µeq) [ρeq
l − ρeq

s ] =
u(∆ρeq)

2

χlT

Substitution of the above expression for ωs
m − ωl

m in Eq. F.43:

dφ

dt
=

(

aκ2
φ

τφ

)

︸ ︷︷ ︸

=Dφ

∇2φ −
(

1

τφ

)

f ′
dw(φ) −

(

au(∆ρeq)
2

χlτφ

)

p′(φ) (F.44)

Non-dimensionalization of the above equation and re-substitution for τφ gives :

dφ

dt∗ = τ

[(

Mφκ2
φ

TL2

)

d2φ

dz∗2
−
(

Mφ

Ta

)

f ′
dw(φ) −

(

Mφ(∆ρeq)
2

χlT
u

)

p′(φ)

]

(F.45)

with:
1

τ3

=
Mφ∆ρ2

equ

χlT
(F.46)

and u is of the order of magnitude equal to 1. With the relations for τ , τφ and τ3 known,

Eqs. F.42, F.12 and F.46 can be substituted in the relations given by Eqs. 4.78 and 4.79,
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with tdiff defined by Eq. 4.76 to obtain the inequalities for the mobility coefficient Mφ as:

aM0

χL2
≪ Mφ ≪ aM0

δ2
βχ

(F.47)

M0χl

χ(∆ρeq)2L2
≪ Mφ ≪ M0χl

χ(∆ρeq)2δ2
β

(F.48)

From the above two approaches of non-dimensionalization, if the inequality conditions for

the characteristic diffusion times τ (i.e. Eqs. F.18 and F.47) and τ3 (Eqs. F.19 and F.48

respectively) are compared, the order of magnitudes for χ and ∆ρeq can be obtained as:

χ =
Ω0

µ2
0Vm

(F.49)

∆ρeq = (χl∆Ω0)
1/2 (F.50)

where χl has the same order of magnitude as Eq. F.49.

It is evident that the two non-dimensionalization approaches can be made equiva-

lent by an appropriate choice of ∆Ω0. However, the constraint lies in making this

appropriate choice of ∆Ω0 which is an external parameter related to the choice of initial

condition for the system (as mentioned in Section 4.3.2.2.2 of Chapter 4), that approaches

to zero as the system tends to a state of equilibrium.

If the discussion in the Section 4.3.2.2.2 is recalled, based on the choice of order

of magnitude for ∆Ω0 as 103 and 10−1 for the two initial conditions (corresponding to

Section 4.5.1.4.1 and Section 4.5.1.4.3, respectively for the binary U-Zr system), the upper

and lower bounds for Mφ evaluated from Eqs. F.18 and F.19 were obtained as:

6.26 × 10−8 J−1K1s−1m3 ≪ Mφ ≪ 1.08 × 10−5 J−1K1s−1m3 (F.51)

1.18 × 10−6 J−1K1s−1m3 ≪ Mφ ≪ 6.80 × 10−2 J−1K1s−1m3 (F.52)

The large variation in the acceptable bounds for Mφ posed great difficulty in choosing an

appropriate value of Mφ, making it dependent on the choice of initial state of the system. On

the contrary, if the alternate non-dimensionalization approach is followed, since the value

of ∆ρeq is independent of the choice of initial state, the bounds on Mφ value were evaluated

to be the same, irrespective of the initial condition posed on the system. Furthermore,
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for the two non-dimensionalization approaches to be equivalent, the appropriate choice of

∆Ω0 corresponds to an order of magnitude of 2.7 × 10−1, which is very small compared to

the choice of ∆Ω0 = 103 which was made for the first non-dimensionalization approach

(for the initial system condition corresponding to Section 4.5.1.4.1).
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Numerical discretization of the

evolution equations

This appendix presents the 1-D numerical discretization of the coupled system of evolution

equations that have been derived for the phase-filed model developed in Chapter 4. For

the spatial discretization of the evolution equations, a finite difference scheme has been

adopted, which has been taken from the discretization scheme described by Appendix B

of [44]. The temporal discretization of the system of equations has been achieved by using

a theta scheme.

Section G.1 presents the temporal discretization of the evolution equations that

have been obtained by making use of the theta scheme, which is followed by a discussion on

the conditions for the numerical stability of the Euler explicit time scheme in Section G.2.
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G.1 The theta scheme for temporal discretization of

the evolution equations in µ and φ under isother-

mal conditions

G.1.1 Evolution equation for φ

For µ value evaluated at time t = tn, the φ evolution equation is written for 1-D situation

from Eq. 4.67 as:

∂φ

∂t
= A

∂2φ

∂z2
−Cφ4 + 2(C − B)φ3 + (3B − C)φ2 − Bφ
︸ ︷︷ ︸

=H(φ)

(G.1)

By performing the Taylor series expansion, the source term represented by H(φ) in the

above equation can be linearized as:

H =
[

3Cφ∗
i

4 + (4B − 4C)φ∗
i

3 + (C − 3B)φ∗
i

2
]

︸ ︷︷ ︸

=(D)

+
[

−B + (6B − 2C)φ∗
i + (6C − 6B)φ∗

i
2 − 4Cφ∗

i
3
]

︸ ︷︷ ︸

=(E)

φi

(G.2)

Thus, Eq. G.1 has the final form:

∂φ

∂t
= A

∂2φ

∂z2
+ Eφ + D (G.3)

Taking the term corresponding to coefficient D as a constant, i.e. Dn = Dn+1 , the above

equation is discretized in time using theta-scheme:

φn+1 − φn

∆t
= θ

[

A
∂2φn

∂z2
+ Eφn + Dn

]

+ (1 − θ)

[

A
∂2φn+1

∂z2
+ Eφn+1 + Dn+1

]

(G.4)

Upon regrouping the like terms together, the final form the equation is given as:

[

1 − ∆t(1 − θ)E − ∆t(1 − θ)A∇2
]

φn+1 =
[

1 + θ∆tE + θ∆tA∇2
]

φn + D∆t (G.5)
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G.1.2 Evolution equation for µ

The evolution equation in µ can be recalled from Eq. 4.66 as:

(

∂2Ωm

∂µ2

)

∂µ

∂t
= −Vm

T
∇(Mxx∇µ) −

(

∂2Ωm

∂µ∂φ

)

∂φ

∂t
(G.6)

where Mxx is calculated for µ and φ values at t = tn. Let us assign:

(

∂2Ωm

∂µ2

)

= A1 (G.7)

−Vm

T
= A2 (G.8)

−
(

∂2Ωm

∂µ∂φ

)

= A3 (G.9)

then, Eq. G.6 can be re-written as:

A1
∂µ

∂t
= A2∇(Mxx∇µ) + A3

∂φ

∂t
(G.10)

where φ̇i is treated as a constant, calculated by :

∂φ

∂t
=

φn+1
i − φn

i

∆t
(G.11)

The discretization of Eq. G.10 in time by using the theta scheme gives us:

A1

[

µn+1 − µn

∆t

]

= θ

[

A2∇(Mxx∇µn) + A3
∂φ

∂t

]

+ (1 − θ)

[

A2∇(Mxx∇µn+1) + A3
∂φ

∂t

] (G.12)

which, upon regrouping like terms together gives the final form:

[

1 − A2(1 − θ)∆t

A1

∇Mxx∇
]

µn+1 =

[

1 +
A2θ∆t

A1

∇Mxx∇
]

µn +
A3

A1

∆t
∂φ

∂t
(G.13)

Eqs. G.5 and G.13 are of the form [A] ~x = ~b, which can be solved for the vari-

able of interest (i.e. φn+1 and µn+1 for for Eqs. G.5 and G.13 respectively) by an inversion

of the matrix [A] (represented by the respective expressions on the L.H.S. of these
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equations). These equations represent a generalized form for discretization of the evolution

equations, which can be reduced to the Implicit as well as the Explicit by choosing the

appropriate value of θ:

θ =







0 implicit scheme

1 explicit scheme
(G.14)

By substituting θ = 1 in Eqs. G.5 and G.13, the discretized form of the evolution equations

for the explicit scheme can be obtained as:

φn+1 =
[

1 + E∆t − ∆tA∇2
]

φn + D∆t (G.15)

µn+1 =

[

1 +
A2∆t

A1

∇Mxx∇
]

µn +
A3

A1

∆tφ̇ (G.16)

It should be noted that for the discretized equations Eqs. G.5 and G.13 obtained by

substituting θ = 0, since the terms D and Mxx ( for Eqs. G.5 and G.13 respectively)

the variation is not considered (i.e. they are calculated for t = tn), the final discretized

equations represent a semi-implicit scheme.

G.2 Criterion for the stability of the Explicit dis-

cretization scheme: the CFL condition

The stability of the explicit numerical scheme applied for solving the evolution equations,

depends on an appropriate choice of the time-step and the spatial mesh size value. The

following sections describe the steps to be followed for obtaining the maximum bound

values for the choice of time-step value, to solve the discretized evolution equations for the

case of a non-linear source term.

G.2.1 CFL condition for the φ evolution equation

The evolution equation for φ can be recalled from Eq. 4.67 as:

∂φ

∂t
=

(

Mφκ2
φ

T

)

∇2φ

︸ ︷︷ ︸

I

−
(

Mφ

aT

)

f ′
dw(φ)

︸ ︷︷ ︸

II

−



Mφ

(

Ωs
m − Ωl

m

)

VmT



 p′(φ)

︸ ︷︷ ︸

III

(G.17)
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Where :

f ′
dw(φ) = 0.5 [φ(1 − φ)(1 − 2φ)] (G.18)

= 0.5φ − 1.5φ2 + φ3 (G.19)

p′(φ) = 30φ2(1 − φ)2 (G.20)

= 30φ2 − 60φ3 + 30φ4 (G.21)

Eq. G.17 can be written as :

∂φ

∂t
= A

∂2φ

∂z2
− Bf ′

dw(φ) − Cp′(φ) (G.22)

Lets assume:

A =
Mφκ2

φ

T
(G.23)

B =
Mφ

aT
(G.24)

C =
Mφ

VmT

[

Ωs
m − Ωl

m

]

(G.25)

Case 1: When in a bulk region (i.e. a single phase, with φ = 0 or 1), the

terms II and III are zero beacuse f ′
dw(φ) = 0 and p′(φ) = 0 for φ = 0, 1. Hence, Eq. G.22

reduces to a simple diffusion equation:

∂φ

∂t
= A

∂2φ

∂z2
(G.26)

The solution to the above equation by the Euler Explicit method requires discretization of

the equation in space and time. For this scheme, the numerical stability analysis of the

scheme is given by the Courant-Friedrichs-Lewy (or CFL) condition as :

∆t ≤ 1
[

2A
(∆z)2

] (G.27)
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Case 2: When inside the interface region, at equilibrium the term III is zero due to

the condition Ωs
m = Ωl

m. With the presence of the interface, Eq. G.22 obtains the form :

∂φ

∂t
= A

∂2φ

∂z2
− Bf ′

dw(φ)
︸ ︷︷ ︸

=H(φ)

(G.28)

Substitution of f ′
dw(φ) in the above equation, the second term needs to be linearized in

order to obtain the condition for numerical stability.

The source term linearization can be done by adopting Taylor series expansion of

H(φ) (Note: for the sake of simplicity, in the equations, φn
i is denoted by φi and (φn

i )∗ by

φ∗
i ):

H = H∗ +

(

dH

dφ

)∗
(φi − φ∗

i ) (G.29)

For the present case:

H(φ) = −Bf ′
dw(φ) = −0.5B [φ(1 − φ)(1 − 2φ)] (G.30)

dH

dφ
= −Bf ′′

dw(φ) = −0.5B
[

1 − 6φ + 6φ2
]

(G.31)

(

dH

dφ

)∗
(φi − φ∗

i ) = −0.5B
[

(1 − 6φ∗
i + 6φ∗

i
2)φi − (φ∗

i − 6φ∗
i

2 + 6φ∗
i

3)
]

(G.32)

Thus, H(φ) can be expressed as:

H = −0.5B[φ∗
i − 3φ∗

i
2 + 2φ∗

i
3] − 0.5B[(1 − 6φ∗

i + 6φ∗
i

2)φi

− (φ∗
i − 6φ∗

i
2 + 6φ∗

i
3)]

= [−0.5B(3φ∗
i

2 − 4φ∗
i

3)]
︸ ︷︷ ︸

=D

+ [−0.5B(1 − 6φ∗
i + 6φ∗

i
2)]

︸ ︷︷ ︸

=E

φi

= D + Eφi

(G.33)

Upon the temporal discretization of Eq. G.28 by using the theta scheme, the CFL condition

can be obtained by regrouping like terms together as:

∆t ≤ 1
[

2A
(∆z)2 − E

] (G.34)

Case 3: For a point inside the interface, when the condition of thermodynamic
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equilibrium is not achieved, all the terms of the Eq. G.17 play a role. Rewriting the

equation:

∂φ

∂t
= A

∂2φ

∂z2
−Bf ′

dw(φ) − Cp′(φ)
︸ ︷︷ ︸

=H(φ)

(G.35)

= A
∂2φ

∂z2
+ H(φ) (G.36)

In order to obtain the CFL condition for Eq. G.36, the source term H(φ) has to be

linearized :

H(φ) = −Bf ′
dw(φ) − Cp′(φ) (G.37)

dH

dφ
= −Bf ′′

dw(φ) − Cp′′(φ) (G.38)

H∗ = −Bf ′
dw(φ∗

i ) − Cp′(φ∗
i ) (G.39)

(

dH

dφ

)∗
(φi − φ∗

i ) = [−Bf ′′
dw(φ∗

i ) − Cp′′(φ∗
i )] (φi − φ∗

i ) (G.40)

The above relations can be substituted in Eq. G.29 to give:

H = H∗ −
(

dH

dφ

)∗
φ∗

i

︸ ︷︷ ︸

=(D)

+

(

dH

dφ

)∗

︸ ︷︷ ︸

=(E)

φi

= [−Bf ′
dw(φ∗

i ) − Cp′(φ∗
i ) + (Bf ′′

dw(φ∗
i ) + Cp′′(φ∗

i )) φ∗
i ]

︸ ︷︷ ︸

=D

+ [−Bf ′′
dw(φ∗

i ) − Cp′′(φ∗
i )]

︸ ︷︷ ︸

=E

φi

= D + Eφi

(G.41)

where D and E are constant values calculated at the value of φ obtained from the previous

iteration. Eq. G.36 can be discretized by using Finite Differences method:

φn+1
i − φn

i

∆t
= A

[

φn
i+1 − 2φn

i + φn
i−1

(∆z)2

]

+ H(φn
i ) (G.42)

= A

[

φn
i+1 − 2φn

i + φn
i−1

(∆z)2

]

+ D + Eφn
i (G.43)
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Upon regrouping the like terms together we obtain:

φn+1
i =

(

A∆t

(∆z)2

)

φi+1

︸ ︷︷ ︸

=ai+1φi+1

+

(

E∆t − 2A∆t

(∆z)2
+ 1

)

φi

︸ ︷︷ ︸

aiφi

+

(

A∆t

(∆z)2

)

φi−1

︸ ︷︷ ︸

ai−1φi−1

+D∆t (G.44)

From the above equation, the CFL condition can be calculated as:

E∆t − 2A∆t

(∆z)2
+ 1 ≥ 0 (G.45)

∆t

[

2A

(∆z)2
− E

]

≤ 1 (G.46)

∆t ≤ 1
[

2A
(∆z)2 − E

] (G.47)

At this point, it should be noted that the linearization of the source term carried out

for the cases 2 and 3 may or may not lead to convergence of the Explicit scheme. The

reason for this uncertainty lies in the fact that the coefficient of the linearized source

function (i.e. value of E) must follow the condition E ≤ 0 [107]. To be consistent with

the condition, an alternative approach can be followed, wherein the source H is split

into two parts based on the signs of the coefficients of φ. Out of these parts, the part

with all positive coefficients of φ is kept as a constant at the value of previous itera-

tion (i.e. at φ∗
i ) and the second part (with negative coefficients) is linearized using Eq. G.29.

Whether this condition is followed at all times or not, depends on the sign of

the value of E. For the systems under consideration in Chapter 4, based on the input

values for the model parameters and the initial condition, it was observed that the order

of magnitude for the coefficients depicted by Eqs. G.24 and G.25 have a huge difference,

thus making the third term of the equation dominates the evolution of φ. In addition

to it, from the initialization of the system, the value Ωs
m − Ωl

m when plotted against

spatial profile of µ (at t = 0s), showed an inversion of sign within the interface region

(depicted by Figure G.1 for the case of binary U-Zr system), making it even more difficult

to compute the CFL condition.
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H1(φ) = (60C − B)φ3 − 0.5Bφ

=
(

(60C − B)φ∗
i

3 − 0.5Bφ∗
i

)

+
(

3(60C − B)φ∗
i

2 − 0.5B
)

(φi − φ∗
i )

= −2(60C − B)φ∗
i

3 +
(

3(60C − B)φ∗
i

2 − 0.5B
)

︸ ︷︷ ︸

<0

φi

(G.50)

The linearized source H is finally obtained as :

H =
[

−30Cφ∗
i

4 − 2(60C − B)φ∗
i

3 + (1.5B − 30C)φ∗
i

2
]

+
[

3(60C − B)φ∗
i

2 − 0.5B
]

φi

(G.51)

Discretization of Eq. G.36 :

φn+1
i − φn

i

∆t
= A

[

φn
i+1 − 2φn

i + φn
i−1

(∆z)2

]

+ H(φn
i )

= A

[

φn
i+1 − 2φn

i + φn
i−1

(∆z)2

]

+
[

3(60C − B)φ∗
i

2 − 0.5B
]

φn
i

+
[

−30Cφ∗
i

4 − 2(60C − B)φ∗
i

3 + (1.5B − 30C)φ∗
i

2
]

(G.52)

Regrouping like terms together :

φn+1
i =

[

A∆t

(∆z)2

]

φi+1

︸ ︷︷ ︸

=ai+1φi+1

+

[

(3(60C − B)φ∗
i

2 − 0.5B)∆t − 2A∆t

(∆z)2
+ 1

]

φi

︸ ︷︷ ︸

aiφi

+

[

A∆t

(∆z)2

]

φi−1

︸ ︷︷ ︸

ai−1φi−1

+
[

−30Cφ∗
i

4 − 2(60C − B)φ∗
i

3 + (1.5B − 30C)φ∗
i

2
]

∆t
︸ ︷︷ ︸

constant

(G.53)

From the above equation, the CFL condition can be calculated as:

(3(60C − B)φ∗
i

2 − 0.5B)∆t − 2A∆t

(∆z)2
+ 1 ≥ 0 (G.54)

∆t

[

2A

(∆z)2
− (3(60C − B)φ∗

i
2 − 0.5B)

]

≤ 1 (G.55)

∆t ≤ 1
[

2A
(∆z)2 +

[

0.5B − 3(60C − B)φ∗
i

2
]] (G.56)
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G.2.1.2 Case: C = 0

The expression for the non-linear term is re-written by grouping together the terms which

have an odd valued exponents, which need to be linearized:

H(φ) = −Bf ′
dw(φ) (G.57)

= 1.5Bφ2 +
[

−0.5Bφ − Bφ3
]

︸ ︷︷ ︸

H1(φ)

(G.58)

H1(φ) = (−0.5Bφ∗
i − Bφ∗

i
3) + (−0.5B − 3Bφ∗

i
2)(φi − φ∗

i ) (G.59)

= 2Bφ∗
i

3 +
[

−3Bφ∗
i

2 − 0.5B
]

︸ ︷︷ ︸

<0

φi (G.60)

∴ H(φ) =
[

1.5Bφ∗
i

2 + 2Bφ∗
i

3
]

+
[

−3Bφ∗
i

2 − 0.5B
]

φi (G.61)

Discretization of Eq. G.36 and rearrangement of like terms together gives :

φn+1
i =

[

A∆t

(∆z)2

]

φi+1

︸ ︷︷ ︸

=ai+1φi+1

+

[

−(3Bφ∗
i

2 + 0.5B)∆t − 2A∆t

(∆z)2
+ 1

]

φi

︸ ︷︷ ︸

aiφi

+

[

A∆t

(∆z)2

]

φi−1

︸ ︷︷ ︸

ai−1φi−1

+
[

1.5Bφ∗
i

2 + 2Bφ∗
i

3
]

∆t
︸ ︷︷ ︸

constant

(G.62)

∴ the CFL condition is given as :

−(3Bφ∗
i

2 + 0.5B)∆t − 2A∆t

(∆z)2
+ 1 ≥ 0 (G.63)

∆t

[

2A

(∆z)2
+ (0.5B + 3Bφ∗

i
2)

]

≤ 1 (G.64)

∆t ≤ 1
[

2A
(∆z)2 +

[

0.5B + 3Bφ∗
i

2
]] (G.65)

G.2.1.3 Case: C > 0

The expression for the non-linear term is re-written by grouping together the terms which

have an odd valued exponents, which need to be linearized:

H(φ) =
[

1.5Bφ∗
i

2 + 60Cφ∗
i

3
]

+
[

−0.5Bφ − 30Cφ2 − Bφ3 − 30Cφ4
]

︸ ︷︷ ︸

H1(φ)

(G.66)
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H1(φ) = −0.5Bφ − 30Cφ2 − Bφ3 − 30Cφ4

=
(

−0.5Bφ∗
i − 30Cφ∗

i
2 − Bφ∗

i
3 − 30Cφ∗

i
4
)

+
(

−0.5B − 60Cφ∗
i − 3Bφ∗

i
2 − 120Cφ∗

i
3
)
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i )

=
(
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i
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i

3 + 90Cφ∗
i

4
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+
(

−0.5B − 60Cφ∗
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i
2 − 120Cφ∗

i
3
)

︸ ︷︷ ︸
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φi

(G.67)

The linearized source term is obtained as:

H(φ) =
[

(1.5B + 30C)φ∗
i

2 + (2B + 60C)φ∗
i

3 + 90Cφ∗
i

4
]

+
[

−0.5B − 60Cφ∗
i − 3Bφ∗

i
2 − 120Cφ∗

i
3
]

φi

(G.68)

Discretization of Eq. G.36:

φn+1
i − φn
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+ H(φn
i )

= A

[
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i + φn
i−1
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i
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i

3 + 90Cφ∗
i

4
]

(G.69)

Upon regrouping the like terms together:

φn+1
i =

[

A∆t

(∆z)2

]

φi+1
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]
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aiφi
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ai−1φi−1
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[

(1.5B + 30C)φ∗
i

2 + (2B + 60C)φ∗
i

3 + 90Cφ∗
i

4
]

∆t
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constant

(G.70)

From the above equation, the CFL condition can be calculated as:

(−0.5B − 60Cφ∗
i − 3Bφ∗

i
2 − 120Cφ∗

i
3)∆t − 2A∆t

(∆z)2
+ 1 ≥ 0 (G.71)

∆t

[

2A

(∆z)2
− (−0.5B − 60Cφ∗

i − 3Bφ∗
i

2 − 120Cφ∗
i

3)

]

≤ 1 (G.72)

∆t ≤ 1
[

2A
(∆z)2 +

[

0.5B + 60Cφ∗
i + 3Bφ∗

i
2 + 120Cφ∗

i
3
]] (G.73)
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G.2.2 CFL condition for the µ evolution equation

The time evolution of µ under isothermal conditions can be recalled from Eq. 4.66 as:

(

∂2Ωm

∂µ2

)

∂µ

∂t
= −Vm

T
∇(Mxx∇µ) −

(

∂2Ωm

∂µ∂φ

)

∂φ

∂t
(G.74)

A1
∂µ

∂t
= A2∇(Mxx∇µ) + A3

∂φ

∂t
︸ ︷︷ ︸

=S

(G.75)

where:

A1 =

(

∂2Ωm

∂µ2

)

< 0 (G.76)

A2 = −Vm

T
< 0 (G.77)

A3 = −
(

∂2Ωm

∂µ∂φ

)

> 0 (G.78)

and Mxx (abbreviated as M in further equations) is calculated for values of µ and φ at

t = tn. Assuming the term including ∂φ
∂t

to be a constant source term, the discretization of

Eq. G.75 gives:

µn+1
i − µn

i

∆t
=

A2

A1

[

2M+µn
i+1 − 2(M+ + M−)µn

i + 2M−µn
i−1

(∆z)2

]

+
S
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(G.79)
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=ai−1µi−1

+
[

S
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︸ ︷︷ ︸
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(G.80)
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The CFL condition can be obtained from the above equation as:

1 − A2∆t

A1 (∆z)2 2
(

M+ + M−
)

≥ 0 (G.81)

A2∆t

A1 (∆z)2 2
(

M+ + M−
)

≤ 1 (G.82)

∆t ≤ A1 (∆z)2

2A2 (M+ + M−)
(G.83)

where M+ and M− are values of Mxx calculated for φ+ and φ− values respectively, with

φ+ and φ− defined as:

φ+ =
φn

i+1 + φn
i

2
(G.84)

φ− =
φn

i + φn
i−1

2
(G.85)
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Résumé

Cette thèse de doctorat s’intéresse à la manière d’assurer une représentation thermo-

dynamiquement consistante du corium en cuve (un mélange à haute température de

matériaux fondus du cœur et des structures d’un réacteur nucléaire) dans les modèles

couplés de thermohydraulique-thermochimie mis en jeu pour l’étude des Accidents Graves

(AG) des Réacteurs refroidis à l’Eau Légère (RELs). En particulier, dans le contexte

d’une stratégie de rétention de corium en fond de cuve (« In-Vessel Retention » - IVR), la

connaissance du comportement de ce corium et du risque associé de percement “thermique”

de la cuve sont des questions de premier ordre.

Le corium en fond de cuve est un système thermodynamique complexe (a min-

ima quaternaire U-O-Zr-Fe) dont la modélisation du comportement transitoire nécessite un

couplage de modèles décrivant les principaux phénomènes thermochimiques (ségrégation

des phases : solidification à l’interface et lacune de miscibilité à l’état liquide) et

thermohydrauliques (convection naturelle et instabilités de Rayleigh-Taylor pour les

liquides, conduction dans le solide). Dans ce cadre, un point essentiel est lié aux entrées

thermodynamiques et l’utilisation d’une base de données thermodynamiques obtenue par

la méthode CALPHAD apparait pertinente pour l’obtention des fermetures et données

d’entrée des modèles de thermohydraulique et de thermochimie respectivement. Ces

bases de données décrivent des modèles relatifs aux fonctions d’énergie de Gibbs des

différentes phases possibles d’un système. Elles peuvent être utilisées pour évaluer les

conditions possibles d’équilibre thermodynamique d’un système ainsi que ses propriétés

thermodynamiques dans des conditions hors-équilibre.
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Dans ce travail, une approche systématique pour l’utilisation exhaustive de ces

données CALPHAD dans les modèles couplés a été proposée. Les questions soulevées

ont été traitées au travers de l’étude de modèles « maquettes » décrivant une partie des

phénomènes relatifs au comportement du corium en cuve à des échelles macroscopique ou

mésoscopique.

Dans une première partie, la faisabilité de l’utilisation des données CALPHAD

pour un modèle intégral (échelle macroscopique) été testée. En considérant le système

ternaire U-O-Zr, ce modèle décrit le processus de solidification en front plan à la

frontière d’un bain de corium fondu. Ces modèles thermiques intégrés consistent en des

équations de conservation de masse et d’énergie qui nécessitent des entrées liées aux

propriétés thermochimiques des matériaux, qui sont étroitement liées aux variables d’état

thermodynamique. En conservant une formulation générale des équations de conservation

de l’énergie en termes d’enthalpies spécifiques des phases, les fonctions d’énergie de

Gibbs d’une base CALPHAD peuvent être utilisées à la fois pour le calcul des conditions

d’équilibre local à l’interface liquide/solide (température de changement de phase et

composition de la phase solide se formant) mais aussi pour les fermetures des équations de

conservation d’énergie (sous la forme de relations enthalpie-température dépendant de la

composition). Des résultats numériques obtenus pour divers degrés d’oxydation initiaux

du corium ont montré la viabilité d’une telle approche pour garantir une représentation

thermodynamique cohérente des systèmes à travers le modèle.

Une seconde partie dans ce travail a été consacrée au développement d’une for-

mulation générale pour des modèles à interface diffuse obtenus par une approche par

champ de phase et s’adressant à la simulation de différents processus thermochimiques

non-isothermes tels que la solidification ou la ségrégation des phases liquides. Pour cela,

un modèle de champ de phase a été développé en adoptant une formulation générale en

grand potentiel. Ce choix d’utiliser le grand potentiel est pertinent car les propriétés

de volume et d’interface peuvent être ajustées indépendamment dans un tel modèle.

Pour le cas de solidification non isotherme, l’incorporation de l’équation de conservation

de l’énergie est nécessaire. Les fermetures thermodynamiques du modèle peuvent être

obtenues à partir des bases de données CALPHAD. Les fermetures de ce modèle non

isotherme ont été étudiées en détail, en particulier les contraintes liées à l’utilisation des

données CALPHAD. De plus, l’effet de la « mise à l’échelle » de l’épaisseur d’interface sur
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la cinétique du modèle de champ de phase a été étudié. En particulier, les contraintes

liées au choix maximum de l’épaisseur d’interface et son impact sur le choix du paramètre

de mobilité du champ de phase ont été quantifiés. Des résultats numériques pour les

systèmes binaires U-Zr et U-O dans des conditions isothermes ont permis de vérifier cette

paramétrisation du modèle.
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