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Résumé

L’objectif principal de cette thèse est de comprendre les interactions entre les agents financiers
et le carnet d’ordres. Elle se compose de six chapitres inter-connectés qui peuvent toutefois
être lus indépendamment.

Nous considérons dans le premier chapitre le problème de contrôle d’un agent cherchant à
prendre en compte la liquidité disponible dans le carnet d’ordres afin d’optimiser le placement
d’un ordre unitaire. Pour ce faire, il peut soit rester dans le carnet d’ordres pour conserver
son emplacement stratégique ou bien annuler son ordre afin de retarder son achat s’il pense
pouvoir bénéficier d’un meilleur prix dans le futur. A la fin du temps imparti, si l’agent ne
parvient à exécuter son ordre, il accepte de payer un coût de transaction et lance un ordre
marché pour forcer l’achat. Notre stratégie permet de réduire le risque de sélection adverse:
acheter alors que le prix baisse. Néanmoins, la valeur ajoutée de cette approche est affaiblie
en présence de temps de latence: prédire les mouvements futurs des prix est peu utile si le
temps de réaction des agents est lent.

Dans le chapitre suivant, nous étendons notre étude à un problème d’exécution plus général
où les agents traitent des quantités non unitaires afin de limiter leur impact sur le prix. On
considère donc un agent représentatif qui se demande quelle est la meilleure manière d’acheter
une quantité donnée pendant une durée déterminée en utilisant des ordres de marché, des
ordre limites ou des annulations? Pour résoudre ce problème, on introduit une formule qui
permet un calcul efficace de l’impact sur le prix. On utilise ensuite cette formule pour obtenir
une tactique qui produit de meilleurs résultats que les stratégies d’exécution classiques.

Dans le troisième chapitre, on s’inspire de l’approche précédente pour résoudre cette fois
des problèmes de market making plutôt que des problèmes d’exécution. Le rôle des market
makers est de produire de la liquidité. Pour ce faire, ils proposent des prix à l’achat en
général plus bas que ceux à la vente ce qui leur permet de réaliser des profits. Ainsi, ils
utilisent surtout des ordres limites et envoient des ordres de marché en principe pour gérer leur
inventaire uniquement. La résolution de ce problème nous permet de proposer des stratégies
pertinentes compatibles avec les actions typiques des market makers. Ensuite, nous modélisons
les comportements des traders haute fréquence directionnels et des brokers institutionnels
dans le but de simuler un marché où nos trois types d’agents interagissent de manière optimale
les uns avec les autres.

Nous proposons dans le quatrième chapitre un modèle d’agents où la dynamique des flux
dépend non seulement de l’état du carnet d’ordres mais aussi de l’historique du marché. Pour
ce faire, nous utilisons des généralisations des processus de Hawkes non linéaires. En effet, le
modèle pour le carnet d’ordres introduit dans les parties précédentes est réaliste et permet
d’estimer les quantités d’intérêt. Toutefois, il présente quelques restrictions. Tout d’abord, les
décisions prisent par les agents dépendent uniquement de l’état du carnet d’ordres alors que les
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stratégies des market makers et traders haute fréquence peuvent être plus complexes. Ensuite,
les agents sont agrégés en trois groupes: market makers, traders haute fréquence directionnels
et brokers institutionnels. Il est donc difficile d’analyser les différences de comportement entre
les acteurs qui appartiennent au même groupe. Pour dépasser ces difficultés, on présente
un modèle plus général qui permet de calculer en fonction de flux individuels plusieurs
indicateurs pertinents. Il est notamment possible de classer les market makers en fonction de
leur contribution à la volatilité.

Pour résoudre les problèmes de contrôle soulevés dans la première partie de la thèse, nous
avons développé des schémas numériques. Une telle approche est possible lorsque la dy-
namique du modèle est connue. Lorsque l’environnement est inconnu, on utilise généralement
les algorithmes itératifs stochastiques. Dans le cinquième chapitre, nous proposons une méth-
ode permettant d’accélérer la convergence de tels algorithmes.

Les approches considérées dans les chapitres précédents sont adaptées pour des marchés
liquides utilisant le mécanisme du carnet d’ordres. Cependant, cette méthodologie n’est plus
nécessairement pertinente pour des marchés régis par des règles de fonctionnement spécifiques.
Pour répondre à cette problématique, nous proposons, dans un premier temps, d’étudier le
comportement des prix sur le marché très particulier de l’électricité.
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Abstract

This thesis aims at understanding the interactions between the market participants and the
order book. It consists of six connected chapters which can however be read independently.

In the first chapter, we tackle the control problem of an agent who wishes to exploit the order
book liquidity to optimise the placement of a unit limit order during a fixed time period.
To do so, the agent can insert limit orders to keep its strategical placement or cancel its
already insert limit order and delay the execution hoping to get a better execution price in
the future. When the order is not executed at the end of the period, the agent sends a market
order and crosses the spread to guarantee the execution. We show that our optimal tactic
reduces the adverse selection risk: the execution of a buy limit order followed by a price
decrease. Nonetheless, the added value of taking into account order book liquidity is eroded by
latency: being able to predict future price moves is less profitable if agents reaction time is large.

In the next chapter, we extend our study to more general execution problems where agents
handle non-unit quantities to mitigate their price impact. For this, we consider an agent who
aims at finding the optimal way to buy a given amount of assets over some fixed time interval
using limit orders, market orders and cancellations. To solve this problem, we introduce a
closed-form formula which enables an efficient computation of the price impact. Using this
formula, we derive the agent optimal tactic and show that it outperforms significantly standard
execution strategies.

The third chapter adapts our previous approach to solve market making issues. The role of
the market makers is to provide liquidity. For this, they propose bid and ask prices and make
money out of the difference between these two prices. Thus, they use mainly limit orders and
should somehow send market orders only for inventory management purpose. The resolution
of this problem enables us to propose relevant strategies which are consistent with typical
market makers behaviours. After that, we model the behaviours of directional high frequency
traders and institutional brokers in order to simulate an order book driven market with our
three classes of agents interacting optimally with each others.

We introduce in the fourth chapter an agent-based model where the dynamics of the flow
depend not only on the order book state but also on the history of the market. For this, we
use generalisations of non-linear Hawkes processes. Although we introduce in the previous
chapters a realistic agent-based model which enables to estimate the quantities of interest,
such approach still have some limitations. First, agents decisions depend on the market history
only through the last order book state while market makers and directional high frequency
traders strategies may be more intricate. Second, agents are aggregated into three groups:
market makers, directional high frequency traders and institutional brokers. Consequently, it
is difficult to disentangle disparities among behaviours of market participants belonging to the
same group. To overcome these difficulties, we propose a general order book model which
allows us to compute several relevant microstructural indicators in terms of the individual
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flows. It is notably possible to rank market makers according to their own contribution to
volatility.

To solve the control problems appearing in the first part of the thesis, we develop numerical
schemes. This is possible when the dynamics of the model is known. To tackle control
problems in an unknown environment, it is common to use stochastic iterative algorithms. In
the fifth chapter, we propose a method that accelerates the convergence of such algorithms.

The approaches built in the previous chapters are appropriate for liquid markets that use
an order book mechanism. However our methodologies may not be suitable for exchanges
with very specific operating rules. To investigate this issue, as a first step, we study the price
behaviour of the very particular intra-day electricity market.
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Introduction

The goal of this thesis is to study some control problems faced by market participants and
to understand the interactions between financial processes such as order flows, liquidity,
prices and volatility at different time scales (i.e. starting from the microsecond accuracy to
several years). We aim at simultaneously proposing useful models and building estimation
procedures for them. These models have to reproduce the most important features of the
markets and enable us to design helpful tools for financial agents and regulators. Let us be-
gin with presenting and motivating the different questions on which we want to shed some light.

Motivations

In general, market participants can take three elementary actions to buy a given number of
shares. First, they can send a market order to get immediate execution. However they have to
pay a trading cost which corresponds to the bid-ask spread. Second, they can insert a limit
order to avoid crossing the spread. In that case, they delay the execution. Third, they can
cancel an already inserted limit order hoping to get a better acquisition price in the future.
Nevertheless they postpone even more the execution. We choose to focus, as a first step, on
the optimal placement problem of a unit buy order using only cancellations and insertions. A
market order can only be sent at the terminal time if needed. In such case, the agents wonder
how to find the right balance between fast execution and avoiding adverse selection: if the
price has high chances to go down, the probability to be filled is high but it may be better to
wait a little more to get a better price. Additionally, it is well known that the state of the order
book, in particular the imbalance, is a key factor in the prediction of the short-term price
move which is closely related to the adverse selection effect. Thus, we might ask ourselves the
following question:

Question 1. How to take advantage of our understanding of order flows to optimise elementary
decisions in execution algorithms by reducing the adverse selection risk?

Addressing Question 1, we highlight the disparities between the different classes of agents and
illustrate how their actions depend on the imbalance. We also show that taking into account
the order book dynamics, mainly through the imbalance, allows us to mitigate adverse selec-
tion effects, which improves the performance of trading strategies. Nonetheless, the added
value of exploiting this order book liquidity is eroded by latency. Indeed, being able to predict
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future price moves is of less use if one does not have enough time to cancel and reinsert limit
orders.

In this first study, we consider a simple situation where the agent handles a unit quantity and
can send a market order only at the end of the period. This framework is simple and enables
us to carry on easy computations. However, it is natural to extend our model to more general
optimal execution issues where agents use market orders, buy non-unit quantities and split
their orders to reduce their price impact. In addition to that, we want to replace the linear
approximation of the price impact used to answer Question 1, by an exact formula. Note that
we choose to minimize the price impact instead of the acquisition price since it is the crucial
variable for agents such as brokers who interact thousands of times per day with the order
book. This pushes us to consider the following question:

Question 2. How to construct, within an order book model, tractable optimal execution algorithms
that reduce price impact?

When answering this question, we propose an order book model inspired from the queue-
reactive approach and prove its convergence towards a stationary regime. In this framework,
we provide a closed-form formula for the endogenous price impact which allows us to com-
pute the sequence of orders solving the execution problem of the agent. In addition, we show
that our optimal tactics outperform significantly standard execution strategies.

After confirming the relevance of our approach for the optimal execution problem, we wonder
how to extend our methodology to the dual problem of high frequency market making. The
market makers (MMs) provide liquidity by proposing bid and ask prices and make money
out of the difference between these two prices (i.e. the bid-ask spread). They use mainly
limit orders and should somehow send aggressive orders only for inventory management
purpose. After that we turn to the trading issue of a directional high frequency trader (DHFT).
The DHFTs are agents that use their low latency technology to catch temporary arbitrage
opportunities. The resolution of these control problems allows us to consider a market with
three classes of agents, namely institutional brokers (IBs), MMs and DHFTs who interact with
each other’s in an order book driven exchange. This constitutes a first building block towards
a better understanding of the interactions between the different market participants and the
order book. Therefore, we raise the following question:

Question 3. How to exploit our previous methodology for market making and DHFTs problems and
use it to reproduce a realistic agent-based order book market?

As an answer to Question 3, we propose reformulations of our model that are consistent with
actual MMs and DHFTs issues and solve them numerically. This enables us to exhibit sophis-
ticated optimal strategies that coincide with typical MMs and DHFTs behaviours. Then, we
build a realistic market simulator where IBs, MMs and DHFts interact optimally with each
other’s. This market simulator can be used to estimate market statistics for any given distri-
bution of the agents and to back-test market participants strategies.
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Motivations

Although we consider a realistic agent-based model enabling us to forecast quantities of
interest, the preceding approach still have some limitations. First, agents decisions depend on
the market history only through the last order book state while MMs and DHFTs strategies
may be more intricate. Second, agents are aggregated into three groups: IBs, MMs and
DHFTs. Consequently, it is difficult to disentangle disparities among behaviours of market
participants belonging a priori to the same group. This is of paramount importance for
regulators who aim at understanding how each participant affects the market. To capture
entirely such effect, we want to propose a more general model and to build a simple estimation
procedure that quantifies the impact of each agent on market quality. This leads us to the
following question:

Question 4. How to build a tractable path dependent model accounting for the interactions between
market participants strategies and the order book and use it to assess the contribution of each agent
to market quality?

Investigating Question 4, we design a general agent-based order book model where the order
flows interact with each other through the order book state and the history of the flows. We
also prove new ergodic and limit theorems for this framework that enable us to build an
estimation methodology for the agents trading flows (insertion, cancellation and aggressive
orders) and to derive a mathematical link between the individual behaviour of each partic-
ipant and the market quality, measured for example through the volatility. Thanks to this
relation, we propose a ranking methodology for high frequency market makers in term of
their role in the stability of the market.

To answer Questions 1, 2 and 3, it is necessary to solve control problems. One can develop
numerical schemes to solve them when the parameters governing the dynamics of the model
are known or the dimension is not too large. However, when the dynamics of the model are
unspecified, this approach is no longer valid. To overcome this difficulty, it is common to use
stochastic iterative algorithms. These algorithms appear in many applications that involve
finding zeros of a partially known function or minimising an average cost. Furthermore
they require mild convergence conditions: no convexity requirements, weak regularity and
partial knowledge of the cost function. In such algorithms the step size γk is crucial for the
convergence. This quantity represents the maximum amount to move along a given search
direction at step k . Hence, we consider the following question:

Question 5. How to dynamically select the step size (γk )k≥0 to improve the convergence of stochastic
iterative algorithms?

The tools developed in the answers of the previous questions are designed for liquid markets
using an order book mechanism. However it is not clear whether our approaches are suitable
for markets with very specific operating rules. To tackle this issue, we propose, as a first
step, to study the price behaviour of the intra-day electricity market. This market is unique
since agents trade forwards contracts with a lifetime (i.e. the duration between the issue
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and delivery date) smaller than one day. We aim at conducting a global study of the price
variations and trading activity to determine the most relevant features of such market and
build a toy model for them. Hence, the last question addressed in this thesis is the following:

Question 6. What are the main properties of the price in the electricity intra-day market and how
to build a model that reproduces them?

Outline

Each chapter of this thesis addresses one of the questions above.

In Chapter I, we answer Question 1 by studying partially labelled trades data to analyse how
the decisions of each class of market participants depend on liquidity imbalance. This al-
lows us to formulate a control problem where agents aim at buying a unit quantity of an
asset and control limit orders by exploiting order book liquidity, in order to reduce adverse
selection (i.e. the execution of a buy limit order followed by a price decrease). This is of
great importance for the optimal placement issue of limit orders where the key point is to
find the right trade-off between fast execution and avoiding adverse selection. Next, we solve
our control problem and show how the obtained strategies can improve the performance of
trading algorithms. Finally, we highlight that the outcome of our liquidity-based strategies is
harmed by latency: the ability to predict future liquidity-consuming flows is deteriorated by
the incapacity to react fast enough to order book moves. This underlines the importance of
speed advantage in the reduction of adverse selection.

In Chapter II, we tackle Question 2 by first conducting an empirical study that details how
market orders, limit orders, limit orders within the spread and cancellations depend on order
book liquidity. This study is different from the one of Chapter I since it focuses on the order
type instead of the market participant class. Based on these observations, we propose an
order book model inspired from the queue-reactive dynamics, in reduced dimension, with
state-dependent regeneration and non-constant spread, and show its ergodicity. Within this
framework, we provide a closed-form formula for our endogenous price impact. This allows
us to solve the execution problem of an agent who wants to minimize its impact and derive
the associated optimal strategy. In addition, we show that our optimal tactic enables us to
outperform significantly standard execution strategies.

Answers to Question 3 lie in Chapter III. We model the behaviour of three classes of agents
namely institutional brokers (IBs), market makers (MMs) and directional high frequency
traders (DHFTs) using an order book model. On the one hand, the MMs and DHFTs de-
termine their optimal strategy by maximising the expected utility of their terminal wealth
within a framework inspired by the one of Chapter II. In this study, the main difference be-
tween DHFTs and MMs strategies is that DHFTs exploit the correlation between two stock
prices to generate profit. On the other hand, IBs have a pre-scheduled task to buy or sell
many shares of the considered asset. Then, we derive the equations satisfied by the value
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function of each agent and explain how to deduce the optimal control strategies from them.
Finally, we provide an illustration of the interactions that can take place between these differ-
ent market participants by simulating an order book model in which each of them applies his
own (optimal) strategy.

We address Question 4 in Chapter IV. For this, we restrict ourselves to the modelling of
the best bid and ask limits. We propose an approach based on the individual behaviours of
market participants modelled by non-linear and state-dependent Hawkes like processes. Our
model encompasses the well-known Poisson, Queue-reactive and Hawkes Queue-reactive dy-
namics for order books. Under mild assumptions, we prove the ergodicity and diffusivity of
our model. We also derive semi-closed formulas for the spread, imbalance and market volatil-
ity in terms of the intensities of the flows of the different market participants. Thanks to these
results, we are for example able to rank market makers according to their contribution to
volatility. This ranking is illustrated on several CAC 40 assets. Interestingly the obtained
rankings are quite homogeneous from one asset to another.

Question 5 is answered in Chapter V. This chapter investigates to what extent one can im-
prove reinforcement learning (RL) algorithms. Our study is split into three parts. First, we
show that the classical asymptotic convergence rate O(1/

p
N ) is pessimistic and can often be

replaced by O
(
(log(N )/N )β

)
with 1

2 ≤β≤ 1 and N the number of iterations. Second, we pro-
pose a dynamic optimal policy for the choice of the learning rate (γk )k≥0 used in stochastic
approximation. We decompose our policy into two interacting levels: the inner and the outer
level. In the inner level, the algorithm PASS operates. This algorithm builds a new sequence
(γi

k )k≥0, based on a predefined sequence (γo
k )k≥0, whose error decreases faster than the pre-

defined one. In the outer level, we propose an optimal methodology for the selection of the
predefined sequence (γo

k )k≥0. These two levels are interacting in the sense that the algorithm
PASS influences the construction of the sequence (γo

k )k≥0. Third, we show numerically that
our selection methodology of the learning rate outperforms significantly standard RL algo-
rithms in the three following applications: the estimation of a drift, the optimal placement of
limit orders and the optimal execution of a large number of shares.

Question 6 is discussed in Chapter VI. To do so, we investigate the price behaviour in the spe-
cific intra-day electricity market. This market is non-standard since it has unique operating
rules. We first propose a descriptive analysis of the price fluctuations and exchanged volumes
in such market. Then, we investigate the price impact generated by a power plant break-
down, study some price properties and finally propose a model that reproduces the different
observed features. This work constitutes a first step towards the conception of optimised
trading strategies in the intra-day electricity market.
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1 Chapter I - Limit order strategic placement with adverse
selection risk and the role of latency

In Chapter I, we answer Question 1: How to incorporate the dynamics of the order book
in trading algorithms to reduce the adverse selection risk? We start our study by analysing
the dependence between elementary decisions of the various types of agents and order book
liquidity. To do so, we use partially labelled trade data that is a direct feed from NASDAQ-
OMX.1 Based on our observations, we propose a stochastic control framework where, in
the process of buying a unit quantity, agents optimise limit orders by exploiting liquidity
imbalance, to reduce adverse selection. For limit orders, we need optimal strategies essentially
to identify situations when it is more suitable to stay in the order book and keep its queue
priority (i.e. accelerates the execution) than to cancel its order and wait for better conditions
to reinsert it. Thus, we use cancellations mainly to avoid adverse selection: having a buy limit
order filled just before a price decrease. Then, we show that latency reduces the efficiency of
using liquidity imbalance: it is less interesting to predict future price moves when the agent
is not fast enough to catch temporary profit opportunities that he may detect.

1.1 Empirical evidences

We first analyse our data to emphasize the predictive power of the imbalance and then
illustrate how agent’s decisions depend on order book liquidity.

Predictive power of the imbalance. The imbalance Imbt at time t is the easiest way to
summarize the state of the order book. It is defined as follows:

Imbt := εt
QBi d

t −Q Ask
t

QBi d
t +Q Ask

t

, (1)

with QBi d
t (resp. Q Ask

t ) the available quantity at the best bid (resp. ask) and εt the event sign
(i.e. εt = 1 when it is a buy order and εt = −1 otherwise). Figure .1.a shows the imbalance
on the x-axis and the average mid price move after 50 trades on the y-axis. We see that the
imbalance is highly positively correlated to the price move after 50 trades. Figure .1.b shows
the distribution of imbalance just before a change in the order book state. We remark that
agents are highly active at extreme imbalance values. This is because they identify a profit
opportunity to catch or on the contrary an adverse selection effect to avoid.

1NASDAQ-OMX is the primary market in the MiFID sense on the considered stock, see [145] for details
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Figure .1 – (a) The predictive power of imbalance on stock Astra Zeneca: Imbalance (just
before a trade) on the x-axis and the expected price move (during the next 50 trades) on the
y-axis. (b) Distribution of the imbalance just before a trade from 2013-01-02 to 2013-09-30
(accounts for 376,672 trades).

Agent’s decisions depend on order book liquidity. On the one hand, Figure .2.a shows
the average state of the imbalance for four classes of agents when they “accept” to transact
via a limit order. On the other hand, we compute in Figure .2.b the average midprice move
immediately before and after a class of participant accepts to transact via a limit order. In
these two graphs, one can clearly see that the state of the imbalance and the price profiles
are different across classes:

• Institutional brokers accept transactions when the imbalance is largely negative, i.e.
they buy using a limit order when the price is going down as shown in Figure .2.b
(and conversely when they sell). They suffer from a large adverse selection: had they
wait a little more, the price would have been more competitive. They make this choice
because they have to buy/sell fast from risk management reasons of their clients’ orders.

• High Frequency participants (here high frequency market makers and high frequency
proprietary traders) trades via limit orders correspond to the less negative imbalance.
They are the most opportunistic agents: look more at the order book state, have enough
speed advantage to benefit from this information and their decisions are less driven by
urgency considerations. Figure .2.b indeed shows that the price goes up before they buy
with limit orders. This implies that they insert limit orders shortly before the trade.

• Global Investment banks are in between. Three reasons may explain such behaviour:
first, their activity is a mix of client execution and proprietary trading; second, they have
specific strategies to accept transactions via limit orders; third, they invest a little less
than high frequency participants in low latency technology, but more than institutional
brokers.
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Figure .2 – (a) Neutralized order book imbalance and (b) Average mid price move when
a limit order is executed for institutional brokers, global investment banks, high frequency
market makers and high frequency proprietary traders. Data are from AstraZeneca (2013-01
to 2013-09).

1.2 Problem formulation

We place ourselves in the case of an agent who aims at buying a unit size quantity q . The

order book state is modelled by Uµ
n =

(
QBe f or e,µ

n ,Q A f ter,µ
n ,QOpp,µ

n ,Pµ
n

)
where QBe f or e,µ is the

quantity having priority on the order q , Q A f ter,µ is the quantity posted after the order q ,
QOpp,µ is the first opposite limit quantity, Pµ

n is the mid price, µ is the control of the agent
and the integer n represents the event time, see Figure .3. The agent uses two possible
controls:

• s (like stay): stay in the order book and keep its strategic placement,

• c (like cancel): cancel the order and wait for a better order book state to reinsert it at
the top of the best bid queue, see Figure .3,

to find the right balance between fast execution (i.e. control s) and avoiding adverse selection
(i.e. control c).
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Figure .3 – Diagram of flows affecting our order book model.

Optimal control problem. We fix a finite horizon time f <∞ and want to compute

V f (0,U ) = sup
µ
E
[
∆Pµ

∞
]
, (2)

where:

• U = (qbe f or e , q a f ter , qopp , p) is the initial state of the order book.

• nµ

E xec = inf
{
n ≥ 0, s.t QBe f or e,µ

n = 0, µn = s
}∧ f represents the execution time.

• ∆Pµ
∞ = lim

n→∞
(
Pµ

n −P E xec,µ

nµ

E xec

)
represents the long-term underlying gain of the trader, where

the execution price P E xec,µ
n satisfy P E xec,µ

n = Pµ
n − 1

2 when the limit order is executed

before f and P E xec,µ
n = Pµ

n + 1
2 otherwise. Indeed, if at f the order has not been

executed, we cross the spread to guarantee execution.

We consider the following approximation:

P∞,n = E[ lim
k→∞

Pµ

k |Fn] = Pn + α

2
· QSame

n −QOpp
n

QOpp
n +QSame

n

, (3)

where Fn denotes the filtration generated by the order book process Uµ
n and α > 0 a pa-

rameter representing the sensitivity to the imbalance. This approximation is consistent with
our empirical observations since the imbalance can predict quite accurately the price future
moves, see Figure .1.a. In Chapter II, we present a more rigorous computation of this quantity.
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1.3 Numerical resolution

Numerical scheme. Using Approximation (3), we have

E[∆Pµ
∞] = E[ZT µ

E xec
],

with Zn = P∞,n−P E xec,µ
n , P∞,n defined in (3) and P E xec,µ

n defined above. We can then compute
V f using the following result.

Result 1. Using the dynamic programming algorithm we have{
G f = Z f ,
Gn = max(P cGn+1,P sGn+1) , ∀n ∈ {0,1, . . . , f −1},

where V f (0,U0) =G0(U0), P c (resp. P s ) is the transition matrix of the Markov chain Uµ
n when the

initial decision is c (resp. s).

Methodology. We assume that the order flow intensities are linear functions of the im-
balance and we compare our optimal solution with another standard strategy denoted by
(NC)

• (NC) corresponds to the case where no control is adopted (i.e. we always stay in the
orderbook and “join the best bid” each time it changes).

• We call (OC) our optimal placement strategy: controls "c" and "s" are considered.

Relevance of our strategy. Let µc (resp. µ∗) be the control under NC (resp. OC). Figure .4.a
represents the variation of EU0,µ∗

[
∆Pµ

∞
]

and EU0,µc
[
∆Pµ

∞
]

when the initial imbalance of the
order book varies. Here U0 refers to the initial order book state and ∆Pµ

∞ is defined in (2). As
expected the strategy OC provides better results than NC. A remarkable effect is the way the
optimal control anticipates adverse selection. When imbalance is highly negative, OC cancels
first to take advantage of a better future opportunity.

Latency price. The Markov chain Uµ
n corresponds to a market participant enabled to

change his control at each period. A slower participant will not react at each limit order
book move. Hence, he can be modelled by a Markov chain Uµ

τn where τ ∈ N∗ corresponds
to a latency factor. We define V τ

f (0,U0) in the same way as V f (0,U0), see (2), but where the

underlying order book process Uµ
n is replaced by Uµ

τn . In such case, the latency cost of a
participant corresponds to

Latenc yU0, f (τ) =V f (0,U0)−V τ
f (0,U0), ∀τ ∈N∗.

Figure .4.b shows the variation of the latency cost with respect to the latency factor τ. We
observe that

• The latency cost obviously increases with the latency factor τ.
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Figure .4 – (a) EU0,µ∗
[
∆Pµ

∞
]

and EU0,µc
[
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]

when intensities are linear functions of the
imbalance and (b) latency cost as a function of the latency factor τ for different values of α.

• The latency cost is higher when the sensitivity to adverse selection α (see (3)) increases.

In this chapter, we show the relevance of our approach for the optimal placement problem
of unit order. We wonder now how to extend our methodology to more realistic optimal
execution contexts where the agent handles non-unit quantities and can send market orders
at any time. These modifications generate additional difficulties since we need to take into
account the splitting of the orders. In addition to that, in Chapter I, the price impact was
approximated by a linear function of the imbalance. We now want to provide a proper
formula for the computation of this quantity. Thus, we address in Chapter II the following
question: How to extend this model to develop suitable general optimal execution algorithms
that aim at reducing the price impact?

2 Chapter II - Optimal liquidity-based trading tactics

In this chapter, we tackle Question 2: How to construct, within a realistic order book model,
optimal execution algorithms that reduce price impact? We start our study with an empirical
analysis that describes how market participants decisions, namely market orders, cancella-
tions, limit orders and limit orders within the spread are related to order book liquidity.
Based on these observations, we adapt the approach of Chapter I to propose an order book
model with state-dependent regeneration and non-constant spread and we show its ergodic-
ity. We provide a closed-form formula of the endogenous price impact that allows for fast
computation. Using this result, we solve the execution problem of a buying agent who aims
at minimizing its impact and derive the associated optimal strategy. Finally, numerical results
show that our optimal tactic enables us to outperform standard execution strategies.
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2.1 Order book modelling

2.1.1 Empirical evidences

We start our analysis by investigating how market participants act when liquidity varies. To
do so, we use data from Bund futures on Eurex exchange Frankfurt. This database records
during one week from 1 to 5 September 2014, the state of the order book (i.e. available
quantities and prices at best limits) event by event with microsecond accuracy. The database
accounts for 3 407 574 events.

Let t be the current time. Figure .5 shows the average imbalance value for each event type. We
give the interpretation of Figure .5 in the case of a buy limit/limit mid2/cancellation/market
order, since the event sign is taken into account in the expression of the imbalance Imbt , see
(1). Note that Figure .2.a differs from Figure .5 since it focuses on the type of the orders instead
of the class of the agents. We see that market participants insert limit orders when imbalance
is negative (execution highly probable), cancel or send limit orders within the spread when
imbalance is positive (less chance to be executed) and use market orders when imbalance is
highly positive (rushing for liquidity when it is scarce).
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Figure .5 – Average imbalance before Limit/Limit mid/Cancel/Market order.

2.1.2 The model

The order book state is modelled by the Markov process Ut = (
Q1

t ,Q2
t ,St

) ∈ U where Q1
t

(resp. Q2
t ) is the best bid (resp. ask) quantity and St is the spread. The dynamics of Ut are

described through a Markov jump process in the spirit of Chapter I. Within this framework,
we incorporate a state-dependent regeneration which is so that the new order book state after
a depletion depends on the order book state just before the depletion and the depleted side
(i.e. best bid/ask). We also enforce the classical bid-ask symmetry relation that ensures no
statistical arbitrage and allows us to aggregate bid and ask side data in the calibration of the
model’s parameters. Finally, we denote by P 1

t (resp. P 2
t ) the best bid (resp. ask) price and Pt

the mid price. The mid price variations will be describe later.

2A limit mid order is a limit order inserted within the spread.
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2.1.3 Ergodicity

Under mild conditions, the considered order book process Ut is ergodic. Indeed, we have the
following result.

Result 2 (Ergodicity). Under mild assumptions, the process Ut is ergodic (i.e. converges towards a
unique invariant distribution). Additionally, we have the following speed of convergence:

||P t
u(.)−π||T V ≤ B(u)ρt ,

with ||.||T V the total variation distance, P t
u(.) the Markov kernel of the process Ut starting from

the initial point u ∈U, π the invariant distribution, ρ < 1 and B(u) a constant depending on the
initial state u.

This theorem is the basis for our asymptotic study of the order book dynamics, since it
ensures the convergence of the order book state towards an invariant probability distribution.
Thus the stylized facts observed on market data can be explained by a law of large numbers
type phenomenon for this invariant distribution.

2.1.4 Long-term price move computation

We provide the computation methodology of the long-term price D(u) starting from the initial
state u ∈U defined as follows:

D(u) = lim
t→∞Eu

[
Pt −P0

]
, (4)

The computation of D(u) is interesting for at least two reasons. First, it allows us to predict
the long-term average mid price move for any initial order book state u. Second, the quantity
D(u) is crucial for the computation of the price impact.3 To compute D(u) we need to specify
the price dynamics.

Price dynamics. The mid price after the n-th order book event Pn satisfies Pn = P0 +∑n
i=1∆Pi with ∆Pi = Pi −Pi−1. The price jumps ∆Pi are a deterministic function of the order

book state before the jump and the order book event causing the jump. For example, we can
consider the simple case where the mid price decreases (resp. increases) by one tick when the
best bid (resp. ask) is depleted. We have the following result.

Result 3 (Price impact). Under mild assumptions, the vector D satisfies

D = (I − A)−1F,

where the matrix A encodes transition probabilities to the different order book states after the
first regeneration and the vector F represents the different average mid price moves after the first
regeneration. They are defined in detail in Chapter III. Figure .6 gives a numerical computation of
the vector D .

3The connection between the computation of the price impact and Equation (4) is detailed in Chapter II.
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Figure .6 – Price move lim
t→∞EU0 [Pt −P0] in percentage of the tick δ= 1 cent. Q1 and Q2 are

divided by the average event size.

2.2 Optimal control problem

2.2.1 Problem formulation

We express the agent control problem for a buy order of size q0. It can be changed to a sell
order in an obvious way. The agent state is modelled by the process

Ūµ
t =

(
QBe f ,µ

t ,Qa,µ
t ,Q A f t ,µ

t ,Q2,µ
t , Iµt ,Sµt ,Pµ

t ,P E xec,µ
t

)
,

where Qa,µ
t is the size of agent’s limit order inserted at the best bid, QBe f ,µ

t is the quantity

inserted before Qa,µ
t , Q A f t ,µ

t represents orders inserted after Qa,µ
t , P E xec,µ

t is the acquisition
price of q0 − Iµt , Iµt is the agent’s inventory and µ = {µt , t ≤ T } is the control of the agent.
We recall that Q2,µ

t is the best ask limit, Pµ
t is the mid price and Sµt is the spread. Then,

Q1,µ
t =QBe f ,µ

t +Qa,µ
t +Q A f t ,µ

t is the total volume at the best bid. It is split into three quantities
to take into account the order placement. The regeneration of the order book after the total
consumption of a given best limit still depends on the depleted side (i.e. ask/bid) and the
order book state before a depletion.

At every decision time, the trader can do nothing or take three possible decisions:

• l : He can insert a fraction of Iµ at the top of the bid queue or within the spread if not
already inserted.

• c: He can cancel his already existing limit order Qa,µ. By acting this way, the trader
can wait for a better order book state. This control will essentially be used to avoid
adverse selection, i.e. obtaining a transaction just before a price decrease.

• m: He can send a market order to get an immediate execution of a fraction of Iµ.

Every decision of the agent is also characterized by a price level p and an order size q . The
price level is equal to p ≥ 0 when the order is inserted at the limit price P 1 +min(p,S) with
P 1 the best bid price and S the spread.
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Optimal control problem. We fix a finite horizon time T <∞ and we want to compute

VT (0,u) = sup
µ
E
[

f
(

lim
s→∞E[∆Pµ

s /FT µ

E xec
]
)

︸ ︷︷ ︸
final constraint

−γ
∫ T µ

E xec

0
Iµs d s︸ ︷︷ ︸

running cost

]
,

where

• u = (qbe f , q a , q a f t , q2, i , s, p, pexec ) is the initial agent state.

• T µ

E xec = inf
{

t ≥ 0, s.t Iµt = 0
}∧T represents the final execution time.

• ∆Pµ
t = (

q0Pµ
t −P E xec,µ

T µ

E xec

)
represents the price impact and q0 is the initial order size.

• γ is a non-negative homogenization constant representing the waiting cost or the risk
aversion of the agent and f :R→R is a Lipschitz function.

We solve the agent’s control problem in two situations: when decisions are taken at fixed
frequency ∆−1 and when they can be taken at any time. However, we present only the results
for the second situation in this introduction.

2.2.2 Decision taken at any time

We define the value function VT of the control problem such that

VT (t ,u) = sup
µ
E
[

f
(

lim
s→∞E[∆Pµ

s /FT µ

E xec
]
)−γ∫ T µ

E xec

t
Iµs d s|Ūµ

t = u
]
.

We provide the system of equations satisfied by VT when decisions are taken at any time and
show how to approximate it.

Result 4. Let u = (qbe f , q a , q a f t , q2, i , s, p, pexec ) be an initial state and t ∈ [0,T ]. Then V (t ,u)
satisfies in the viscosity sense and almost everywhere

• When i > 0 and p < P̄4:

max

(
A V (t , .)−γI, sup

e∈E
V e (t , .)−V (t , .)

)
= 0, (5)

where V (t , .) and V e (t , .) are vectors such that V (t , .)i =V (t ,ui )5 and V e (t , .)i = E[V (t ,ue
i )]

with ue
i the new order book state when the decision e is taken.6 Equation (5) should be

understood coordinate by coordinate.

4Here P̄ is a fixed threshold such that the agents liquidates its inventory for risk management reasons when
the mid price gets beyond P̄ .

5Here ui is the unique state associate to the index i .
6We use the expected value E[V (t ,ue

i )] since the control e may lead to several states because of the regeneration.
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• When i = 0 or p ≥ P̄ (execution time condition):

V (t ,u) = g̃ (u), ∀t ≤ T,

with g̃ (u) = f
(

lim
t→∞Eu[∆Pt ]

)
.

• The terminal condition is
V (T,u) = g (u), (6)

with g (u) = f
(
E[ lim

t→∞Eumt [∆Pt ]]
)
and the decision mt represents the liquidation of the

remaining inventory. We keep in mind that the control m may lead to several states because
of the regeneration.

To solve numerically the preceding equations, we consider the following discrete framework.

Discrete-time Markov chain approximation. Let U∆
n be a Markov chain with the transi-

tion matrix P∗,∆ defined by

P∗,∆
u,u′ = P

[
U∆ = u′|U0 = u

]
, ∀(u,u′) ∈U2,

with Ut the process defined in Section 2.1.2.7 In this approximation, U∆
n is viewed as the

market evolution without the intervention of the agent. Associated to this new market, we
introduce the controlled discrete-time Markov chain

Ū∆,µ
n =

(
QBe f ,µ

n ,Qa,µ
n ,Q A f t ,µ

n ,Q2,µ
n , Iµn ,Sµn ,Pµ

n ,P E xec,µ
n

)
,

by using the same construction as in Section 2.2.1.8 Finally, for every k ≥ 0, we define the
piecewise constant process Ũ∆,µ associated to U∆,µ

n such that:

Ũ∆,µ
t =U∆,µ

k , ∀t ∈ [k∆, (k +1)∆),

and we denote by Ṽ ∆(t ,U ) the value function of the control problem 2.2.1 where the process
Uµ is replaced by Ũ∆,µ and the agents takes its decisions only at times k∆ with k ∈N.

Solving numerically the optimal control problem in the discrete framework. We de-
note by V ∆(n,u) the value function associated to the discrete control problem (i.e. the state
process U∆,µ

n ), with n the period and u the order book state. The dynamic programming
principle provides a numerical scheme to compute backward V ∆(0,u) starting from the ter-
minal condition.9 Thus, we can estimate Ṽ ∆(n∆,u) since Ṽ ∆(n∆,u) =V ∆(n,u).

Let µOpti ,∆ (resp. µOpti ) be the optimal control associated to the process Ũµ
t (resp. Uµ

t ). Then
we have the following error estimate result.

7Given the infinitesimal generator Q of U , the transition matrix P∗,∆ can be easily computed since P∗,∆ = e∆Q .
8In addition to that, the price impact PI∆∞ in this discrete-time approximation can be computed by following

the approach of Section 2.1.4
9To compute efficiently the value function, the dynamic programming scheme can be parallelized.
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Result 5. Under mild assumptions, Ṽ ∆ converges pointwise towards V . Additionally, we have the
following error estimate:

|Ṽ ∆(t ,u)−V (t ,u)| ≤ R(T − t )∆, ∀(t ,u), (7)

with R > 0 a positive constant. Moreover, the control µOpti ,∆ converges towards µOpti and for ∆
small enough we have the equality µOpti ,∆ =µOpti , a.s.

The above result provides an error bound for the approximation Ṽ ∆(t ,u) and ensures the
convergence of the controls.

2.3 Numerical experiments

Decisions taken at any time. Figure .7 shows the value function at time zero (i.e. average
gain of the optimal strategy) in red and the one of the strategy stay at the best bid in blue
in percentage of the tick δ = 1 cent using the discrete approximation. When imbalance is
highly negative, it is optimal to cancel the order to avoid adverse selection, when imbalance
is highly positive it is optimal to send a market order or stay in the order book. In our case,
stay in the order book is interesting when imbalance is highly positive since the priority value
is important. When the imbalance is close to 0, it is optimal to send a market order to reduce
the waiting cost. We note that the profit and loss of the optimal strategy is significantly higher
than the one of the strategy stay at the bid.
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Figure .7 – The gain per tick of the optimal strategy in red and the one of the strategy join
the bid in blue for different values of the initial imbalance. Initial imbalances are obtained
with QBe f = 0, Q1 = 11 and Q2 from 1 to 11. Then, we fix Q2 = 11 and vary Q1 from 10
to 1. Initial parameters are as follows: the time step is equal to ∆ = 1 second, there are 10
periods, arrival rate are constant (i.e. λ1,+ = λ2,+ = 0.06) consumption rates are constant (i.e.
λ1,− = λ2,− = 0.12), the new bid (resp. ask) is set to 5 and the new ask (resp. bid) to 3 after
the total depletion of the bid (resp. ask) limit, the quantity q0 = 1, the waiting cost c = 0.0085,
the price increases (resp. decreases) by δ= 1 cent when the ask limit (resp. bid limit) is totally
consumed and the function f is the identity.

We emphasize in this chapter the relevance of our approach for optimal execution issues. We
now aim at extending our methodology for market making and high-frequency pair trading
strategies. The resolution of these two problems will allow us to propose a market simulator
with three classes of agents who interact with each other’s in an order book driven exchange.
Thus, we consider the following question: How to exploit the previous approach for market
making and DHFTs problems and use it to reproduce a realistic agent-based order book
driven market?

3 Chapter III - Optimal inventory management and order book
modeling

Chapter III addresses the following question: how to exploit our previous approach to solve
MMs and DHFTs problems and use it to simulate an order book driven exchange? Unlike
brokers, MMs do not aim at acquiring or liquidating a given number of shares. They provide
liquidity by proposing buy and sell prices and generate profit from the difference between
these two prices (i.e. bid-ask spread). To do so, they are supposed to mainly use passive
orders. Nonetheless, they can send aggressive orders to manage their inventory risk. In our
context, the main distinction between MMs and DHFTs lies in the fact that DHFTs include
the correlation between two stock prices in their decision making process. In this study, we
adapt our previous approach to formulate and solve the MM and DHFT control problems.
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3. Chapter III - Optimal inventory management and order book modeling

We also use the standard Cartea-Jaimungal framework to solve the control problem of our
last market participant, the IB, who needs to buy or sell a given number of shares. Numerical
simulations exhibit strategies that coincide with typical MMs, DHFTs and IBs behaviours.
After that, we construct a market simulator where IBs, MMs and DHFTs interact optimally
with each other’s and provide an illustration of the type of features that can emerge.

3.1 MM control problem

3.1.1 Problem formulation

The MM state is modelled by the Markov process

Zµ
t =

(
Q1,µ

t ,Q2,µ
t ,P 1,µ

t ,P 2,µ
t , Iµt ,Gµ

t , N 1,µ
t , N 2,µ

t ,B 1,µ
t ,B 2,µ

t , Jµt

)
,

where Q1,µ
t (resp. Q2,µ

t ) is the best bid (resp. ask) quantity, P 1,µ
t (resp. P 2,µ

t ) is the best bid
(resp. ask) price, Iµt is the MM inventory, Gµ

t is the MM wealth, N 1,µ
t (resp. N 2,µ

t ) is the size of
agent’s limit order inserted at the best bid (resp. ask), B 1,µ

t (resp. B 2,µ
t ) is the quantity inserted

before the agent’s limit order at the best bid (resp. ask) and Jµt is the number of decisions
taken by the MM.10

At any time, the MM can take the same type of actions as presented in the control problem
of Chapter II. The aim of the MM is to maximise the expected utility

−E[
exp

(−η{
U (Zµ

T )−% j
})]

,

with
U (z) := g + i+p1 − i−p2 −κ([i+−q1]++ [i−−q2]+),

for any z = (p1, p2, q1, q2, g , i ,n1,n2,b1,b2, j ) ∈ DZ with DZ the set of admissible values for
z.11 Here, r+ and r− respectively refer to the positive and negative part of any real number
r . In the above, η > 0 is the absolute risk aversion parameter, and κ > 0 is a penalty term.
The quantity U (z) represents the Mark-to-Market value of the MM portfolio. It is the sum of
two components the current wealth of the agent g and the liquidation value of its inventory
i+p1 − i−p2 −κ([i+ − q1]+ + [i− − q2]+). We incorporate a liquidity premium through the
parameter κ: the agent pays higher transaction costs when he executes quantities that exceed
the best limits. We also add the coefficient %≥ 0 to penalize the number of actions taken by
the MM. This is the analogous of the inventory risk term in the classical Cartea-Jaimungal
framework, see [52].

3.1.2 Problem resolution

We provide the equations satisfied by the MM value function v and the numerical scheme
used to approximate the solution. We define v such that

v(t , z) = sup
µ
E[U (Zµ

T )|Zµ
t = z],

10We record this quantity since it may induce a cost.
11The set DZ is described more in detail in Chapter III
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for any (t , z) ∈ [0,T ]×DZ and we denote by v∗ and v∗ respectively the lower-semicontinuous
and upper-semicontinuous envelopes of v . We consider the following notations:

Iϕ(t , z) :=
∫

(K eϕ(t , z)−ϕ(t , z))dβ(e|p, q) and K ϕ(t , z) := sup
c∈C(z)

K cϕ(t , z),

for any z = (p1, p2, q1, q2, g , i ,n1,n2,b1,b2, j ) ∈ DZ where e ∈C(z) is an event triggered by
other market participants, p = (p1, p2) are the prices at the best quotes, q = (q1, q2) are the
volumes at the best limits, β(.|p, q) is a non-negative kernel representing the instantaneous
arrival rate of an event e conditional to the current state (p, q), c represents the MM action,
C(z) is the set of admissible actions and

K cϕ(t , z) := E[ϕ(t , zc
t )], (8)

with zc
t the new agent state when he applies the control c to the current state Zt = z at time

t .12 Thus, the partial differential equation characterizing v is given by

min
{−∂tϕ−Iϕ,ϕ−K ϕ

}= 0, on [0,T )×DZ ,

min
{
ϕ−U ,ϕ−K ϕ

}= 0, on {T }×DZ .
(9)

We show the following result.

Result 6. Under mild assumptions, the function v∗ (resp. v∗) is a viscosity supersolution (resp. sub-
solution) of (9). Moreover, the value function v is the unique continuous viscosity solution of (9) in
the class of (discontinuous) solutions that belongs to Ł

exp
∞ .13

We move now to the numerical scheme for (9). For this, we introduce a classical fully explicit
finite difference scheme (vk

n)k,n≥1, with n and k are respectively time and space discretization
parameters, and show its convergence.

Result 7. Under mild assumptions, the sequence (vk
n)k,n≥1 converges pointwise to v on [0,T )×DZ

as k,n →∞.
We also prove that the sequence of controls derived in a standard way from the numerical
scheme is asymptotically optimal.

3.1.3 Numerical experiment

Figure .8 shows a simulated trajectory for the optimal strategy starting from a symmetric
configuration of the order book with queue lengths equal to 6.14 For this path, Figure .8
records the evolution of the MM controls, the order book state, the agent’s inventory and his
wealth during a trading period T = 59 seconds. The time step here is 1 second. The MM’s
decisions are mainly driven by inventory management constraints and predictions of the next

12Note that we use an expectation in (8) since an action may lead to different states.
13The set of functions Ł

exp
∞ is defined in Chapter III

14Our unit here is 1/2 of the ATS (i.e. mediAn Trade Size).
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3. Chapter III - Optimal inventory management and order book modeling

price moves through the imbalance variable. For example, the MM first sends limit orders of
size 3 on both sides of the order book. At time 8, an aggressive buy order consumes 2 of the
3 limit orders that he posted at the best bid. He decides then to cancel the last remaining
buy limit order to avoid increasing his inventory. To assess the performance of our strategy,
we provide in Figure .9 the distribution of the gain of the MM for 105 simulated paths. We
can see the median gain of the MM is around 0.6 which represents 6 times the tick.
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Figure .8 – Simulated path of the optimal strategy of the Market Maker. In the top left panel,
the blue color refers to limit orders, the purple one corresponds to cancellations, the yellow
one is associated to limit orders within the spread and the red one symbolizes market orders.
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Figure .9 – Density estimation of the gain made by the Market Maker.

3.2 DHFT control problem

3.2.1 Problem formulation

The optimisation problem of the DHFT is quite similar to that of MM. However the major
difference is that the DHFT trades a second asset which corresponds to the futures of the
same stock. Thus, we keep the same notations of the previous section and describe only the
dynamics of the new added variable Ft associated to the future reference price

Ft =
P 1

t +P 2
t

2
+St ,

where St is a mean-reverting process

St = S0 +
∫ t

0
ρ(ŝ −Su)du +

∫ t

0
σ(Su)dWu . (10)

Here, ρ is the strength of the mean reversion, ŝ is the average mean reversion level and
σ :R 7→R is a Lipschitz bounded function representing the volatility of the process.

The strategy of the DHFT is described by the same quantities as the one of the MM in the
previous section. The key distinction lies in the fact that he constantly holds a number equal
to −I units of the futures F . Additionally, we assume that buying/selling the futures leads to
the payment of a proportional cost κ≥ 0.

The aim of the DHFT is to maximise the expected utility

E[−exp
(−η{U (ST , Zµ

T )−% j }
)
],
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with
U (s, z) := g + i+∆1

−− i−∆2
+−κ([i+−q1]++ [i−−q2]+),

for any z = (p1, p2, q1, q2, g , i ,n1,n2,b1,b2, j ) ∈ DZ where the new variables ∆1
± and ∆2

± satisfy

∆1
± := p1 − p1 +p2

2
− s ±κ , ∆2

± := p2 − p1 +p2

2
− s ±κ.

The resolution of this optimization problem is very similar to that of the MM. Thus, the partial
differential equation satisfied by the value function in the viscosity sense, the convergence of
the numerical scheme and the one of the approximate controls still hold for the DHFT control
problem. Furthermore, we repeat for the DHFT the same kind of experiments made for the
MM. We find that the DHFT strategy consists in mainly making money out of the spread
between the asset price and the futures price since his position in stocks is always covered by
a symmetric position in the futures.

3.3 IB control problem

We now turn to our last market participant. The IB faces an execution problem. He needs
to buy I0 shares from the stock within a time interval [0,T ]. To solve the IB control problem
we consider two types of strategies: a volume strategy and a Volume Weighted Average Price
(VWAP) strategy. However, we only show the results for the VWAP one in this introduction.

3.3.1 VWAP strategy

We now present a VWAP based strategy. The VWAP is defined as follows:

VWAPT = wT

v(0,T )
where w :=

∫ ·

0
vt Pt d t and v(·,T ) :=

∫ T

·
vsd s, (11)

with vt the traded volume on the market and Pt the stock price. We model the broker state
through the process Uµ

t = (Pµ
t , Iµt ,Gµ

t ) where It refers to its inventory, Gt is its wealth and µt

corresponds to the agent’s control. The IB chooses its instantaneous trading speed (µt )t≥0 to
maximise the expected utility

E
[−exp[−η{GT + IT (PT − κ̃IT )− I0VWAPT }

]
,

for some κ̃> 0 which represents a penalty in case the inventory does not match 0 at T . We
have the following formula for v .

Result 8. The IB value function defined such that

v(t , p, i , g , w) = sup
µ
E
[−exp[−η{GT + IT (PT − κ̃IT )− I0VWAPT }]|Ft

]
,

satisfies the semi closed formula

v(t , p, i , g , w) =−e−η{g−m̄w−pv(t ,T )m̄)+i (p−κ̃i )} ×eh0(t )+h1(t )i+h2(t )i 2
,

where the functions h0, h1 and h2 are fully characterized by ODEs.
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3. Chapter III - Optimal inventory management and order book modeling

3.3.2 Numerical experiment

Figure .10 shows a simulated path for a broker with a VWAP strategy. It presents the variations
of the brokers inventory, the cost of a unit share during the execution, the brokers controls
and the order book state. We can see that a small number of market orders are sent. Thus, the
liquidity imbalance created by this execution algorithm is the main driver of the price upward
trend. Figure .11 provides an histogram of the relative error (in %) of the VWAP obtained by
both the volume and the VWAP strategies with respect to the VWAP of the whole market.15

One can see that actually the VWAP strategy performs better than the market on average.
This is an expected result since the VWAP strategy is built in order to beat the VWAP of the
market.

Figure .10 – Simulated path of the VWAP strategy.

15Namely, (VWAPMM −VWAPMarket)/VWAPMarket, in which VWAPMM is the VWAP obtained by the IB by
playing his optimal strategy
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Percentage difference with the market VWAP

Figure .11 – Histogram of the VWAP percentage error with respect to the VWAP of the market
for the VWAP strategy. Histogram based on 104 simulated paths.

3.4 Full market simulation

We now propose an illustration of possible interactions that may happen between several
market participants acting optimally. To do so, we consider a market made of 6 agents: 1
MM, 1 DHFT, 2 IBs playing a volume strategy to execute a fixed quantity (one buys and the
other sells), 2 IBs playing a VWAP strategy to execute a fixed quantity (one buys and the other
sells). At each time step, each participants sends its optimal decision given the current state
of the order book. The control of the DHFT is executed first, followed by the one of the MM
and finally the actions of the volume and VWAP IBs. This procedure is a first building block
towards a realistic market simulator that can be used to back-test strategies or estimate the
quantities of interest in a simulated market with a given composition of the agents (i.e. the
type of participants and their number), etc. More details are given in Chapter III.

Now we want to compare individual market participants, notably in term of their contribution
to market quality. This is why we aim at proposing a model based on the individual behaviour
of agents, allowing us to rank them with respect to the impact of their trading on market
stability.

4 Chapter IV - From asymptotic properties of general point
processes to the ranking of financial agents

Chapter IV answers Question 4: How to build a model for the interactions between strategies
of individual market participants and use it to assess their contribution to market quality?
Instead of aggregating agents into groups as in the approach of Chapter III, we want to
model the specific flows of each agent taking part in the market. To do so, we restrict
ourselves to the modelling of the best bid and ask dynamics. We propose a very general
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financial agents

framework where individual behaviours are modelled using point processes that can be seen
as state-dependent and non-linear Hawkes-type processes. The well-known Poisson, Queue-
reactive and Hawkes Queue-reactive dynamics for order books are particular cases of our
setting. Using this approach, we establish theoretical results allowing us to assess the specific
contributions of agents to market quality.

4.0.1 Modelling of the best bid and ask dynamics

We use an event by event approach. Each event is characterised by (Tn , Xn) ∈ (R+,E) where:

• Tn is the time of the nth event.

• Xn is a variable encoding the characteristics of the event:

− size sn : an integer representing the order size.

− price pn : equals to k ∈ N when the order is inserted at the price best bid +kτ0,
where τ0 is the tick size.

− direction dn : + if it provides liquidity and − when liquidity is removed or con-
sumed.

− type t o
n : 1 (resp. 2) when the bid (resp. ask) is modified.

− agent an : the market consists in N agents.

The order book state is modelled by the process Ut =
(
Q1

t ,Q2
t ,St

)
where Q1

t (resp. Q2
t ) is the

best bid (resp. ask) quantity and St is the spread.

Generalised intensity and market reconstitution. The intensity λt (e) associated to an
event e ∈ E can be informally defined by

λt (e) = lim
δt→0

P
[
#{Tn ∈ (t , t +δt ], Xn = e} ≥ 1|Ft

]
δt

,

where Ft is the sigma-algebra representing information from the history of the market. We
assume it depends on the past event and current state of the market in the following way:

λt (e) =ψ(
e,Ut− , t ,

∑
Ti<t

φ(e,Ut− , t −Ti , Xi )
)
,

where ψ is a possibly non-linear function, Ut− is the order book state relative to the last
event before t and φ is the Hawkes-like kernel representing the influence of the past events.
The functions φ and ψ are both R+-valued. In absence of the kernel φ, this corresponds
to the Queue-reactive model (and to the zero-intelligence Poisson model when ψ does not
depend on Ut− ). When φ is non-zero, ψ represents the interaction between the past events
and the current order book state. Moreover, we allow ψ to have polynomial growth while
in the literature it has typically at most linear growth. In this case, this model generalises
the Hawkes Queue-reactive approach. Note that this intensity also encompasses Quadratic
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Hawkes processes with a separable quadratic kernel. In this setting, one can recover the
market intensity λM

t (e ′) of an anonymous event e ′ (e ′ does not contain the agent identity)
using the formula below

λM
t (e ′) = ∑

a≤N
λt

(
(e ′, a)

)
.

Ergodicity. Our first theoretical result is relative to the ergodicity of our limit order book
model.

Result 9. Under suitable assumptions, Ūt = (Q1
t ,Q2

t ,St ,λt ) is ergodic: there exists a probability
measure µ such that (exponential speed of convergence)

lim
t→∞Pt (u, A) = Pt (µ, A), ∀u, ∀A,

where Pt (u, .) is the probability distribution of Ut given the initial condition u ∈ W0 and u
represents all the past events up to time 0. Thus, u is a sequence indexed by N− for past events and
valued in R+×E . The measure µ is a probability distribution defined on the space (W0,W0)16 and
Pt (µ, A) = ∫

W0
Pt (x, A)µ(d x) is the probability distribution of Ut starting from the random initial

condition µ.

From the ergodic property, we can derive asymptotic results for the long-term behaviour of
our system.

Scaling limits. The reference price after n jumps Pn writes Pn = P0+∑n
i=1∆Pi where ∆Pi =

Pi −Pi−1 = ηi and E[ηi ] = 0. We now assume that ηi is centred with ηi = f (Ui ) for some
measurable function f and consider the process

Xn(t ) = Pbntcp
n

, ∀t ≥ 0.

The next result describes the behaviour of the price at the macroscopic scale (in event time,
the result in calendar time is very similar and also provided in the core of Chapter IV).

Result 10. Under the stationary distribution µ, see Result 9, the quantity Xn(t ) satisfies the
following convergence result:

Xn(t )
L−→σWt ,

with σ2 = Eµ[η2
0]+2

∑
k≥1Eµ[η0ηk ] and µ the stationary distribution.

This result relates the individual order flow intensities and the macroscopic volatility of the
asset. It enables us to rank market participants according to their contribution to volatility.
We now explain how empirical computations of relevant quantities can be made.

16A detailed description of this space is given in Chapter IV.
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4.0.2 Explicit computations of market quantities

In this model, we can derive semi-explicit formulas for the stationary distribution of the
order book, the expected spread, the price volatility and intensities of the fluctuations of the
cumulated imbalance. In the following, we provide those relative to the stationary distribution,
expected spread and the price volatility.

Stationary probability distribution of the order book. Let π(.) = P (µ, .) be the stationary
distribution of Ut , see Result 9. Then, we can compute π by solving the following equation.

Result 11. The distribution π satisfies
πQ = 0,
π1= 1,

(12)

where the infinite dimensional matrix Q verifies

Q(u,u′) = ∑
e∈E(u,u′)

Eµ[λ(e)|],

with E(u,u′) the set of events directly leading to u′ from u.

In order to compute Q(u,u′), we take two states u and u′ such that u 6= u′ and define

N u,u′
t = ∑

Ti<t
δi

u,u′ , t u = ∑
Ti<t

∆Ti1UTi−1=u ,

with δi
u,u′ = 1UTi−1=u,UTi =u′ and ∆Ti = Ti −Ti−1. Therefore, one can estimate the matrix Q in

the following way.

Result 12. We have

Q̂(u,u′) = N u,u′
t

t u →
t→∞ Q(u,u′), a.s. (13)

Note that the estimator of Q̂(u,u′) := N u,u′
t /t u , and hence π, does not depend on the model.

Spread computation We recall that the spread S is a state variable since U = (Q1,Q2,S).
Thus, the expected value of the spread S̄ under the stationary distribution satisfies

S̄ = Eπ[S] = ∑
q1,q2,s

π(q1, q2, s)s.

We end with the computation of the volatility in practice when restricting ourselves to the
Markov case (for simplicity here).
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Price volatility computation in the Markov case. In the Markov case, the second term
in the volatility formula introduced in Result 10 can be easily computed from the marginal
stationary distribution π. Indeed, the transition matrix P of the Markov chain U (transitions
after one jump) satisfies:

Pu,u′ =
{ −Q(u,u′)/Q(u,u), if u 6= u′ and Q(u,u) 6= 0,

0, if u 6= u′ and Q(u,u) = 0,
and Pu,u =

{
0, if Q(u,u) 6= 0,
1, if Q(u,u) = 0,

for any u and u′. In this setting, we have (recall that ηi = f (Ui )):

Eµ[η0ηk ] = Eπ[η0ηk ] =∑
u
π(u) f (u)Eu[ηk ], Eu[ηk ] =∑

u′
P k

u,u′ f (u′). (14)

4.0.3 Numerical experiments

Using Result 10 and placing ourselves in the Markov case, we propose a ranking of the nine
main market makers based on their impact on volatility. For this, we use four large tick assets
(for which the model is very suitable): Air Liquide, EssilorLuxottica, Michelin and Orange,
on Euronext, over a one year period: from January 2017 till December 2017.

For each asset, we compute first the liquidity provision and consumption intensities relative
to the whole market using Equation (13). Then, we estimate the stationary measure of the
order book using Equation (12). Finally we obtain the macroscopic volatility using Equation
(14). We give in Figure .12 the results relative to Air Liquide.

(a) Intensity of the market (b) Stationary measure Q1
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Long-term price volatility σ2 = 0.227.

Figure .12 – (a) Liquidity insertion and consumption intensities (in orders per second) with re-
spect to the queue size (in average event size) and (b) the corresponding stationary distribution
of (Q1) with respect to the queue size (in average event size), proper to Air Liquide.

Thereafter, for each market maker, we estimate the new market volatility σ2,N in a situation
where we suppose that he withdraws from the market and compare it with the market volatil-
ity σ2,M when all the participants are involved: If σ2,N > σ2,M , this means that the market
maker in question decreases the volatility (i.e. stabilizes the market) otherwise he increases
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the volatility (i.e. destabilises the market). Thus, the agent who increases volatility (resp.
decreases) the most is ranked first (resp. last). In the following table, we establish the ranking
of market makers which is actually quite stable across assets.

Market
maker

Ranking
Air

Liquide

Market
share Air
Liquide

Ranking
Exilor-

Luxottica

Market
share

Exilor-
Luxottica

Ranking
Michelin

Market
share

Michelin

Ranking
Orange

Market
share

Orange

MM1*** 4 4% 3 3% 3 4% 3 3%
MM2 9 1% 9 1% 9 1% 7 1%
MM3 6 5% 6 5% 7 4% 5 4%
MM4 5 1% 4 1% 4 0% 4 1%
MM5 7 5% 8 5% 8 5% 9 5%
MM6**** 1 3% 2 3% 1 3% 1 4%
MM7**** 2 7% 1 12% 2 9% 2 7%
MM8* 3 9% 5 5% 5 5% 6 4%
MM9 8 2% 7 2% 6 2% 8 2%

Table .1 – Market share and ranking of markets makers. We put the symbol * next to the
name of the market maker each time he is decreasing the volatility of an asset.

In Questions 1, 2 and 3, we solve some control problems faced by different classes of financial
agents using numerical schemes. Such approach is appropriate when the model and its
parameters are known. However, in many situations the dynamics of the model are not clearly
stated. A classical way to overcome this problem is to use stochastic iterative algorithms.
These algorithms appear in many applications and require weak convergence conditions.
Hence, we address in the next chapter the following question: How to dynamically choose
the learning rate in order to improve the convergence of stochastic iterative algorithms?

5 Chapter V - Improving reinforcement learning algorithms:
towards optimal learning rate policies

In this chapter, we answer Question 5: Is there an optimal policy for the selection of the
learning rate in order to improve the convergence of reinforcement learning algorithms? We
start our work by investigating to what extent one can improve the classical asymptotic con-
vergence rate O(1/

p
N ). Indeed, we show that this rate is pessimistic and can be replaced in

many applications by O
(
(log(N )/N )β

)
with 1

2 ≤ β≤ 1 and N the number of iterations. Next,
we propose a dynamic optimal policy for the choice of the learning rate (γk )k≥0 used in
stochastic approximation. For this, we first introduce the algorithm PASS that modifies the
values of a predefined sequence (γo

k )k≥0 using the sign variations of the past observed errors.
This algorithm accelerates the convergence of standard stochastic iterative algorithms with
the step size (γo

k )k≥0. Second, we propose an optimal methodology for the construction of
an appropriate piecewise constant sequence (γo

k )k≥0. Third, we combine this method and Al-
gorithm PASS to improve the convergence of stochastic iterative algorithms. Finally, we show
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that our selection methodology of the learning rate provides better convergence results than
standard RL algorithms in three numerical examples: the estimation of a drift, the optimal
placement of limit orders and the optimal execution of a large number of shares.

5.1 Improvement of the asymptotic convergence rate

Let us first formulate our problem. We aim at finding q∗ ∈Rd solution of the equation

M(q, z) = E[m(q, X (z), z)] = 0, ∀z ∈Z = {1, . . . ,d},

where X (z) ∈ Rk is a random variable with an unknown distribution and m is a function
from Rd ×Rk ×Z to R. Although the distribution of X (z) is unspecified, we assume that
we can observe some variables (Zn)n≥1 valued in Z and

(
Xn(Zn)

)
n≥1 drawn from the same

distribution of X (Zn). In such context, reinforcement learning (RL) addresses this problem
through the following iterative procedure:

qn+1(Zn) = qn(Zn)−γn(Zn)m(qn , Xn+1(Zn), Zn), (15)

with q0 a given initial condition and (γn)n≥0 ∈Rd a component-wise non-negative sequence.
The asymptotic convergence speed of stochastic iterative algorithms is in general O(1/

p
N ).

We aim at investigating how one can extend and improve such asymptotic rate for (15). Note
that, the function q∗ is solution of the minimization problem

min
q∈Rk

g (q),

with g (q) = ‖M(q)‖2.17 Since we do not have a direct access to the distribution of X (z),
we use that at time n one keeps memory of a training sample of n(z) independent variables
(X z

i )i=1...n(z) drawn from X (z) distribution. Here n(z) is the number of times when the process
Zn visited z. We define qn as a solution of

min
q∈Rk

gn(q), (16)

with gn(q) = ‖M n(q)‖2 and M n(q, z) = En[m(q, X (z), z)] = 1
n(z)

∑n(z)
j=1 m(q, X j (z), z) the ex-

pected value under the empirical measure µ = 1
n(z)

∑n(z)
j=1 δX j (z). After that, we denote by qn

k
an approximate solution of the problem (16) given by an optimization algorithm after k itera-
tions. Thus, we can decompose our total error into the estimation error and the optimization
error as follows:

0 ≤ E[g (qn
k )− g (q∗)

]≤ E[g (qn)− g (q∗)
]︸ ︷︷ ︸

estimation error

+E[|g (qn)− g (qn
k )|]︸ ︷︷ ︸

optimization error

.

17When M is the gradient of a function f (i.e. ∇ f = M ), one can show that q∗ minimises a convex and
differentiable function g (q) =∑d

i=1 E[L(q, X (i ), i )] with L a well defined operator.

32



5. Chapter V - Improving reinforcement learning algorithms: towards optimal learning rate
policies

5.1.1 Estimation error

We focus now on the first source of error.

Slow convergence rate. Standard uniform convergence results ensure that

E[sup
q

|g (q)− gn(q)|] ≤ c
1p
n

,

with c > 0 a positive constant. This result allows us to derive the pessimistic bound 2c 1p
n

for
the estimation error.

Fast convergence rate. Many authors obtain fast statistical convergence rate in the follow-
ing form:

E
[

sup
q

(
g (q)− gn(q)

)]≤ c(
log(n)

n
)β, (17)

with 1
2 ≤ β ≤ 1.18 These fast statistical estimations are established under regularity and

boundedness conditions of the function M , see [19, 58] or when the data distribution satisfies
some noise conditions, see for instance [19, 150]. Inequality (17) enables us to derive a bound
for the estimation error proportional to ( log(n)

n )β.

5.1.2 Optimization error

We turn now to the optimization error. Since g is replaced by the empirical mean gn which
is known, there are many algorithms in the literature that approximate qn . Under suitable
assumptions one can expect an exponential convergence speed for such algorithms. In un-
favourable situations, it is possible to ensure a convergence rate of O(1/N ).

5.1.3 Conclusion

We have decomposed our initial error into

• Estimation error: its convergence is O( 1p
N

) in pessimistic cases. In the other situa-

tions, the convergence is faster (i.e. O( log(N )
N )β) with 1

2 ≤β≤ 1.

• Optimization error: the convergence is exponential under suitable conditions. In
unfavourable cases, the convergence rate is O( 1

N ).

The comparison of these error sources shows that the estimation error is the dominant com-
ponent. In addition to that, we can overcome the O( 1p

N
) asymptotic speed, in some situations,

by improving the estimation error.

18It is possible to get rid of the log(n) factor in the above inequality using the “chaining” technique, see [40].
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5.2 Optimal policy for the learning rate

We consider now Algorithm (15) and propose an optimal way to choose the learning rate γk .
This type of algorithms appears in many contexts: stochastic iterative algorithms, gradient
methods, fixed point iterative techniques, etc. It is well known that the choice of γk plays a
key role for the convergence. Thus, we focus only on the step size and present a selection
policy for (γk )k≥0 decomposed into two interacting levels

• The inner level: we define the algorithm PASS inspired from line search that uses a pre-
defined sequence (γo

k )k≥0 and the sign variations of m(qk , Xk+1(Zk ), (Zk )) to construct
a new sequence (γ̂k )k≥0. This new sequence improves the convergence of Algorithm
(15).

• The upper level: we propose an optimal methodology for the selection of a piecewise
constant predefined sequence (γo

k )k≥0.

5.2.1 The inner level

For any predefined sequence (γo
k )k∈N, we introduce the following version of the algorithm

PASS that is adapted to reinforcement learning (RL) issues. This is the version used for our
numerical experiments.

Algorithm 1 (PAst Sign Search (PASS) for (RL)). We start with an arbitrary q0 and define by
induction qn and γ̂n

• If m(qn , Xn+1(Zn), Zn)×m(qr n
1

, Xr n
1 +1(Zr n

1
), Zr n

1
) ≥ 0, then do

qn+1(Zn) = qn(Zn)−h
(
γ̂n(Zn),γn(Zn)

)
m(qn , Xn+1(Zn), Zn),

γ̂n+1(Zn) = h
(
γ̂n(Zn),γn(Zn)

)
,

with r n
1 is the index of the last observation when the process X visits the state Xn .

• Else, do

qn+1(Xn) = qn(Xn)− l
(
γ̂n(Xn),γn(Xn)

)
m(qn , Xn , Xn+1),

γ̂n+1(Xn) = l
(
γ̂n(Xn),γn(Xn)

)
.

We have other versions of this algorithm where the vector qn is modified entirely and not
component-wise. We define the total error E k such that E k = ∑d

z=1(qk (z)−q∗(z))2. We first
compare the error E k of PASS with the one of (15) and show that it decreases faster. This
enables us to derive the convergence of PASS.

Result 13. Under mild assumptions, Algorithm PASS converges in the sense that

E[E n] →
n→∞ 0.
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5.2.2 The outer level

To select the initialisation learning rate (γo
k )k∈N, we construct a sequence of integers (ki )i∈N

such that γo
k is constant within each interval Ii = [ki ,ki+1[ with i ∈N. Then, we choose the

“best" constant γo
ki

such that the total error E ki decreases as fast as possible by at least a

factor α during the time period Ii in the sense that E[E ki+1 ] <αE[E ki ].

We place ourselves in the interval Ii . In such case, the step size γo
ki
= γ is fixed. Inside this

interval, we show that

Result 14. Under mild assumptions, ∃M̄ > 0, β ∈ [0,1) such that the error E n verifies

E[E n+ki ] ≤ c(γ)(1− α̃n)+ α̃n M̄E[E ki ], ∀α̃< max(β,α(γ)), (18)

with c(γ) = γ2R , α(γ) = 1− f (γ), f (x) = 2Lx −B x2 and (R,L,B) ∈R3+ positive constants.

The above result ensures that the error converges exponentially towards the constant c(γ).
Thus, the main idea is to select γ such that c(γ) ≤αE ki . This gives a set [0,γmax] of potential
values for γ with γmax a fixed constant. Then, we select among this set the unique value of γ
that maximises α(γ). After fixing the value of γ, we give ourselves an error precision r and
define ki+1 = ki + ji with ji the first index n such that E[E n+ki ] ≤ αE[E ki ](1+ r ). Inequality
(18) provides an estimation for ji .

Using the above methodology, we define recursively the sequence (ki )i∈N and (γki )i∈N as
follows:  ki+1 = ki +d

log( αr
2(1+r )M̄

)

log(αki )
e ,γki+1 =αγki , ∀i ≥ 0,

k0 = 0 ,γk0 = γ̄1 ∨ γ̄2,

where αki = 1− f (γki ). The quantities γ̄1 and γ̄2 are two suitable initialisation constants that
ensures the decrease of the error during the first iterations. We show that the convergence
speed of the algorithm is exponentially fast as long as i ≤ i∗ with i∗ a fixed threshold.
However, when i > i∗ we recover a slow convergence rate of O( 1p

i
).

5.3 Numerical experiments

In Chapter V we consider three numerical examples: the drift estimation, the optimal place-
ment of limit orders and the optimal execution of a large amount of shares. As an illustration,
we choose here to present only the results associated to the optimal placement problem.

Optimal placement. We consider an agent who aims at buying a unit quantity using limit
orders and market orders. In such case, the agents wonder how to find the right balance
between fast execution and avoiding trading costs associated to the bid-ask spread. The
agent state at time t is modelled by X t = (QBe f or e ,Q A f ter ,P ) with QBe f or e the number of
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shares placed before the agent’s order, Q A f ter the queue size after the agent’s order and Pt

the mid price, see Figure .3. The agents wants to minimise the quantity

E[F (Xτ∨T exec)+
∫ τ∨T exec

0
c d s],

where

• T exec = inf{t ≥ 0, Pt = 0} the first time when the limit order gets a transaction.

• τ the first time when a market order is sent.

• X = (QBe f or e ,Q A f ter ,P ) the state of the order book.

• F (u) is the price of the transaction (i.e. F (u) = p+ψ when the agents crosses the spread
and F (u) = p otherwise).

Using the classical dynamic programming principle, one can solve this control problem using
(15) since the Q function is a zero of a certain operator, see Chapter V. Figure V.4 shows three
control maps: the x-axis reads the quantity on “same side” (i.e. Q same = QBe f or e +Q A f ter )
and the y-axis reads the position of the limit order in the queue, i.e. QBe f or e . The color and
numbers give the control associated to a pair (Q same ,QBe f or e ): 1 (blue) means “stay in the
book”, while 0 (red) means “cross the spread” to obtain a transaction. The panel (at the left)
gives the reference optimal controls obtained with a finite difference scheme, the middle panel
the optimal controls obtained for the Algorithm (15) where the step-size (γk )k≥0 is derived
from the upper level of our optimal policy and the right panel the optimal control obtained
with our optimal policy (i.e. upper level and inner level combined). It shows that after few
iterations our optimal policy already found the optimal controls. Figure V.5 compares the
log of the L2 error, averaged over 1000 trajectories, between the different algorithms. We see
clearly that our methodology improves basic stochastic approximation algorithms.

a) Theoretical optimal control b) step_ cste optimal control c) PASS optimal control

1 2 3 4 5 6 7 8 9

1
2

3
4

5
6

7
8

9

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 0 0

1 1 0 0 0

1 0 0 0

0 0 0

0 0

0

1 2 3 4 5 6 7 8 9

1
2

3
4

5
6

7
8

9

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 0 0

1 1 1 0 0

1 1 0 0

1 1 1

1 1

1

1 2 3 4 5 6 7 8 9

1
2

3
4

5
6

7
8

9

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 0

1 1 1 1 0 0

1 1 0 0 0

1 0 0 0

0 0 0

0 0

0

Figure .13 – Comparison optimal control after 300 iteration for different methods: left is the
optimal control, middle is basic RL with a step size derived from the upper level and right is
our optimal policy for the step size (i.e. upper level and inner level combined).
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L2-error against the number of iterations
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Figure .14 – The log L2-error against the number of iterations.

The applications studied in the previous chapters are appropriate for liquid markets where the
order book mechanism is well developed such as equity markets. Nonetheless, our methodol-
ogy may be less adapted to markets with very specific operating rules. To address this issue,
we study in the next chapter the price variations of the intra-day electricity market. Thus, we
tackle our final question: What are the main price features in such market and how to design
a model that reproduces them?

6 Chapter VI - Price impact study on the electricity intra-day
market

In this last chapter, we address the following question: What are the main properties of the
price in the electricity intra-day market and how to build a model that captures them? We
propose a general empirical study of price fluctuations and trading activity in this market.
This allows us to capture the most important characteristics of the electricity market. Then,
we focus on the price impact generated by a power plant breakdown. This is of great im-
portance for market participants that face several power plant failures per year and need to
include this cost in their trading strategies. After that, we investigate some further properties
of the price variations and finally propose a model consistent with our observations.
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6.1 General empirical analysis

6.1.1 Description of the intra-day electricity market

Here we give a description of the electricity intra-day market runned by Epex Spot in France.
Every day at 3 p.m, Epex Spot opens trading sessions19 where agents trades forward contracts.
The specificity of these forward contracts is that they should be delivered on the following
day. Each trading session is associated to a unique time period and buying a forward contract
in one given session ensures the supply of 1 MW of energy during the related time period.
Each of those sessions remains open until 30 minutes before the beginning of the delivery.
When a session for a given delivery period is open, trading can occur continuously and is
run using an order book mechanism.

6.1.2 Databases description

We use two databases. The first one comes from the electricity intra-day market runned by
Epex Spot in France. This database records, during two years from the 1st January 2017 to
the 31th January 2019, the trades executed in the intra-day electricity market event by event
with a minute accuracy for each forward contract. The second database reports all the power
plants breakdowns that happened in the same period. The first database accounts for 1 146
777 events and the second 12 109 breakdowns.

6.1.3 Features of the intra-day electricity market

After describing the breakdowns distribution, we study the intra-day volume variations and
the price seasonality.

Intra-day volumes. The exchanged volume is at its lowest level for early maturities when
the need of energy supply is low, it attains its highest level during afternoon maturities and
then stabilizes for late maturities. It is important to note that for each forward contract the
market activity sharply accelerates close to the delivery hour (i.e. maturity).

Price seasonality. For each forward contract, we show that the weighted price at the intra-
day level have the same variations of the daily exchanged volume. At the weekly scale, the
weighted price decreases during the weekend since economic activity is reduced. In addition
to that, at the year level, the weighted price is low during the summer since the clients
consumption is weak and becomes high in the winter when the clients need more energy.

19There are trading sessions for the 24 hours and 48 half hours in both France and Germany. For Germany,
there are also 96 sessions for the quarters of an hour
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6.2 Price study

Price impact. We deal only with unexpected power plant breakdowns with a minimum
level of 150 MW energy loss. Thus we keep only few thousands breakdowns. We compute, for
each one of the considered breakdowns, the quantity

∆Pt = εt
Pt −Pt0

Pt0

, ∀t ∈ [t0, t1],

where Pt is the transaction price, εt is the sign of the transaction (i.e. εt = 1 for buy market
orders and −1 otherwise) and the times t0 and t1 are defined as follows:

• t0 is the first transaction time after the beginning of the breakdown.

• t1 is the minimum time between the ending time of the breakdown, the end of the day
and the closure time of the forward contract.

Finally, we define the price impact It as the empirical average of ∆Pt over all the breakdowns
and the rescaled time s such that s(t ) = t−t0

t1−t0
for any t ∈ [t0, t1].

Aggregated price impact profile. Figure .15 shows that the aggregated price impact curve
(i.e. for all the forward contracts) is linear. We choose to plot the aggregated impact since
we have more observations however we check that our conclusions remain valid for the most
important maturities (i.e. with high exchanged volume). A linear price impact means that
agents behaviours remain unchanged during the whole execution of the meta-order. This
can be explained by their incapacity to detect the variations in the order book dynamics
generated by the liquidation of a meta-order or by their unwillingness to react to the meta-
order execution. Thus, the interactions between agents decisions are weak and their actions
are mainly triggered by exogenous information like market announcements.
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Figure .15 – Price impact profile for aggregated maturities.

Price impact profiles for different regimes. We investigate the connection between the
price impact curve and the amplitude of the energy loss during a breakdown (i.e. size of
the breakdown). We choose this variable since it is the analogous of the size of the meta-
order when dealing with execution issues. Many empirical studies have already explored the
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relation between these two last variables. They show that the price impact I generated by a
meta-order of size Q follows the “square root law” (i.e. I ≈ ( Q

VD

)δ with δ> 0 and VD the daily
volume). Our study consists in decomposing our initial data in three buckets with the same
number of observations using quantiles. Figure .16 plots the price impact associated to each
one of these buckets. We can see that the global shape of the impact curve is unchanged when
the energy loss varies since the impact is linear for all the buckets. However, its magnitude
increases with the breakdown size which is an expected result. Indeed, to thwart a huge
energy loss, market participants buy large quantities from the intra-day market and therefore
increase the price.

Figure .16 – Price impact for different initial price regimes.

Trade signs autocorrelation. Let l ∈ N. We also study the autocorrelation function C (l )
between the trade signs εl defined such that

C (l ) = E[εlε0]−E[εl ]E[ε0],

with εl = 1 for buy market orders and −1 otherwise. In liquid markets, one expects typically
to observe a strong correlation between trade signs. However, we show the existence of
a negative correlation only between the first trade and its successor. Thus it suggests the
absence of memory since the long-term correlation between the trade signs is weak.

Response function autocorrelation. Let l ∈ N. We study the response function R(l ) be-
tween the price moves and the trade signs εl defined such that

R(l ) = E[(p̄l − p̄0)ε̄0],

with z̄ = z −E[z] for any process z. We reveal a power law decrease for the response function
and show that the response function remains always higher than a positive bottom level.

Price diffusion. We study the regularity of the price process through the Hurst exponent
H . To estimate H we place ourselves in the following framework. Let Zt be a process which
satisfies

d Zt =σdW H
t , ∀t ≥ 0,
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where σ is a constant volatility and W H
t is a fractional Brownian motion (fBm) whose Hurst

exponent is H . Then, there exists a constant C ≥ 0 such that

E[|Zt+∆−Zt |q ] =C∆H q , ∀t ≥ 0,∀∆≥ 0,∀q ≥ 0.

This shows that
y q
∆ = A′

q∆+C ′, (19)

with y q
∆ = log(E[|pt+∆ − pt |q ]), A′

q = H q and C ′ = log(C ). Figure .17.a plots y q
∆ against ∆

when the underlying process Z is the price. We see that the linear relation (19) is satisfied.
Figure .17.b plots A′

q for different values of q and estimates the slope of this curve which
represents the Hurst exponent. The estimated Hurst exponent is close to 0.48 ≈ 0.5 which
was not an obvious result in this very specific market.

(a) y q
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Figure .17 – (a) Plot of y q
∆ against ∆ during the years 2017-2018, (b) Plot of A′

q against q and
estimation of the Hurst exponent for the price process associated to the maturity 22h.

6.3 Price modelling

We can build a price model consistent with our observations. This model is inspired from
the propagator model introduced in [39]. We show how to carry computations and calibrate
this model in our specific setting. Such model is useful for prediction and estimation of the
quantities of interest. We consider the following dynamics for the price at time n:

pn = p0 +µnn + ∑
k≤n−1

G(n −k)εk ,

with µ a real constant representing the price trend, G : R+ → R+ the impact function that
represents the influence of a single transaction on the price, εn is the sign of the n-th trade.
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6.3.1 Properties of the model

When the autocorrelation between the trade signs is weak, we show that this model can
reproduce a linear price impact. Moreover, we recover the power law decrease of the response
function R . Finally, we study the diffusivity of the price process and link its Hurst exponent
with the asymptotic behaviour of the trade signs autocorrelation function C (n) and the impact
function G .

42



CHAPTER I

Limit order strategic placement with
adverse selection risk and the role of

latency

Abstract

This paper is split in three parts: first, we use labelled trade data to exhibit how market
participants decisions depend on liquidity imbalance; then, we develop a stochastic control
framework where agents monitor limit orders, by exploiting liquidity imbalance, to reduce
adverse selection. For limit orders, we need optimal strategies essentially to find a balance
between fast execution and avoiding adverse selection: if the price has chances to go
down the probability to be filled is high but it is better to wait a little more to get a better
price. In a third part, we show how the added value of exploiting liquidity imbalance is
eroded by latency: being able to predict future liquidity-consuming flows is of less use if
you do not have enough time to cancel and reinsert your limit orders. There is thus a
rationale for market makers to be as fast as possible to reduce adverse selection. Latency
costs of our limit order driven strategy can be measured numerically.
To authors’ knowledge this paper is the first to make the connection between empirical
evidences, a stochastic framework for limit orders including adverse selection, and the
cost of latency. Our work is a first step to shed light on the role played by latency and
adverse selection in optimal limit order placement.

1 Introduction

With the electronification, fragmentation and increase of trading frequency, order book dy-
namics is under scrutiny. Indeed, a deep understanding of order book dynamics provides
insights on the price formation process. There are essentially two approaches for modelling
the price formation process. First, general equilibrium models based on interactions between
rational agents who take optimal decisions. General equilibrium models focus on agents be-
haviours and interactions. For example, investors split their metaorders into large collections
of limit orders (i.e. liquidity-providing) and market orders (i.e. liquidity-consuming) (see [14],
[105], [148]) while (high frequency) market makers mostly use limit orders to provide liquidity
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to child orders of investors (see [31]). Second, statistical models where the order book is seen as
a random process (see [39], [83], [90], [114] and references herein). Statistical models focus on
reproducing many salient features of real markets rather than agents’ behaviours and interac-
tions. In this paper, we consider a statistical model where the arrival and cancellation flows
follow size dependent Poisson processes. Using this model, we propose an optimal control for
one agent targeting to obtain the “best price” by maintaining optimally a limit order in the
order book .

In practice, market participants use optimal trading strategies to find a balance between
at least three factors: the price variation uncertainty, the market impact and the inventory
risk. For example, an asset manager who took the decision to buy or sell a large number
of shares needs to adapt its execution speed to price variations. The simplest case would
be to accelerate execution when price moves in its favor. He needs to consider the mar-
ket impact too and in particular the price pressure of large orders: fast execution of huge
quantities consumes order book liquidity and increases transaction costs. Finally, there is an
inventory risk associated to the orders size: it is riskier to hold a large position than a small
one during the same period of time. A fast execution reduces this inventory risk. The asset
manager should then find the optimal balance between trading slow and fast. Models for
these strategies are now well known (see [50, 52, 79, 80, 84, 85] ). Recent papers introduce
a risk term in their optimisation problem. Moreover, some papers combine even short term
anticipations of price dynamics inside these risk control frameworks. For example, in [11],
authors include a Bayesian estimator of the price trend in a mean-variance optimal trading
strategy. In [51], authors include an estimate of future liquidity consumption – µ in their pa-
per shoud be compared to our consuming intensities λ·,− – in macroscopic optimal execution.

In this paper, we consider an optimal control problem where the agent faces the price varia-
tion uncertainty and the market impact but there is no inventory risk since we consider one
limit order. The idea is to propose optimal strategies that can be plugged into any large scale
strategy (see [145, Chapter 3] for a practitioner viewpoint on splitting the two time scales of
metaorders executions) by taking profit of a short term anticipation of price moves.

After some considerations about short time price predictions and empirical evidences show-
ing that market participants decisions depend on the imbalance (see Section 2), we show that
optimal control can add value to any short term predictor (see Section 4) in the context of
simple controls (cancel or insert a limit order) for a “large tick” stock. This result can thus be
used by investors or market makers to include some predictive power in their optimal trading
strategies. Then we show how latency influences the efficient use of such predictions. Indeed,
the added value of the optimal control is eroded by latency. It allows us to link our work to
regulatory questions. First of all: what is the “value” of latency? Regulators could hence rely
on our results to take decisions about “slowing down” or not the market (see [44] and [67] for
discussions about this topic). It sheds also light on maker-taker fees since the real value of
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limit orders (including adverse selection costs), is of great importance in this debate (see [87]
for a discussion).

This paper can be seen as a mix of two early works presented at the “Market Microstructure:
Confronting Many Viewpoints” conference (Paris, 2014): an optimal control driven one [124]
and a data-driven one focused on the predictive power of order books [146]. Our added val-
ues are first a proper combination of the two aspects (inclusion of an imbalance signal in an
optimal control framework for limit orders), and then the construction of our cost function.
Unlike in the second work, we do not value a transaction with respect to the mid-price at
t = 0, but with respect to the microprice (i.e. the expected future price given the liquidity
imbalance) at t =+∞. We will argue that the difference is of paramount importance since it
introduces an effect close to adverse selection, that is crucial in practice.

As an introduction of our framework, we will use a database of labelled transactions on NAS-
DAQ OMX (the main Nordic European regulated markets) to show how order book imbalance
is used by market participants in a way that can be seen as compatible with our theoretical
results.

Hence the structure of this paper is as follows: Section 2 presents order book imbalance as a
microprice and illustrates the use of imbalance by market participants thanks to the NASDAQ
OMX database. Once these elements are in place, Section 3 presents our model and Section 4
shows how to numerically solve the control problem and provides main results, especially the
influence of latency on the efficiency of the strategy.

2 Main Hypothesis and Empirical Evidences

2.1 Database presentation

The data used here is a direct feed from NASDAQ-OMX, that is the primary market1 on the
considered stock. Capital Fund Management feed recordings for AstraZeneca account for
72% of market share (in traded value) for the continuous auction on this stock over the con-
sidered period. Surprisingly, there is currently no academic paper comparing the predictive
power of imbalances on different trading venues. It is outside of the scope of this paper to
elaborate on this. We will hence consider that the liquidity on our primary market represents
the state of the liquidity on other “large” venues (namely Chi-X, BATS and Turquoise on the
considered stock). If it is not the case one can adapt our result relying on statistics on each
venue, or on the aggregation of all venues. We did not aggregate venues ourselves for obvious
synchronization reasons: we do not know the capability of each market participant to syn-
chronize information coming from all venues and do not want to add noise by making more
assumptions. Our idea here is to use the state of liquidity at the first limits on the primary
market as a proxy of information about liquidity really used by participants.

1i.e. the regulated exchange in the MiFID sense, see [145] for details.
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Venue AstraZeneca Vodafone
BATS Europe 7.16% 7.63%
Chi-X 19.27% 20.02%
Primary market 72.24% 61.09%
Turquoise 1.33% 11.26%

Table I.1 – Fragmentation of AstraZeneca (compared to Vodafone) from the 2013-01-02 to the
2013-09-30

We focus on NASDAQ-OMX because this European market has an interesting property: mar-
ket members’ identity is known. It implies that transactions are labelled by the buyer’s and
the seller’s names. Almost all the trading activity on NASDAQ Nordic stocks was labelled
this way until the end of 2014. Note that members’ identity is not investors’ names; it is the
identity of brokers or market participants large enough to apply for a membership. High
Frequency Participants (HFP) are of this kind. Of course some participants (like large asset
management institutions) use multiple brokers, or a combination of brokers and their own
membership. Nevertheless, one can expect to observe different behaviours when members
are different enough. We will here focus on three classes of participants: High Frequency
Participants (HFP), global investment banks and institutional brokers.

2.2 Stylized fact 1: the predictive power of the order book imbalance

Short term price prediction utility. Academic papers (see [39] or [90]) and brokers’ re-
search papers (see [30]) document how the sizes at first limits of the public order book2

influence the next price move. It is worthwhile to underline that the identified effects are
usually not strong enough to be the source of a statistical arbitrage: the expected value of
buying and selling back using accurate predictions based on sizes at first limits does not beat
transaction costs (bid-ask spread and fees). See [95] for a discussion. Nevertheless:

• For an investor who already took the decision to buy or to sell, this information can spare
some basis points. For very large orders, it makes a lot of money and in any case it
reduces implicit transaction costs.

• Market makers naturally use this kind of information to add value to their trading pro-
cesses (see [65] for a model supporting a theoretical optimal market making framework
including first limit prices dynamics).

The easiest way to summarize the state of the order book without destroying its informational
content is to compute its imbalance: the quantity at the best bid minus the one at the best ask
divided by the sum of these two quantities:

Imbt := QBi d
t −Q Ask

t

QBi d
t +Q Ask

t

. (1)

2Limit order books are used in electronic market to store unmatched liquidity, the bid size is the one of passive
buyers and the ask size the one of passive sellers, see [145] for details.
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The nature of the predictive power of the imbalance. The predictive power of the order
book imbalance is well known (see [113]). The rationale of this stylized fact (i.e. the midprice
will go in the direction of the smaller size of the order book) is outside of the scope of this paper.
We just give here some clues and intuitions to the reader:

• The future price move is positively correlated with the imbalance. In other terms

E[(Pt+δt −Pt )× sign(Imbt )|Imbt ] > 0,

where Pt is the midprice (i.e. Pt = (P Bi d
t +P Ask

t )/2, where P Bi d and P Ask are respec-
tively the best bid ans ask prices) at t for any δt . Obviously when δt is very large, this
expected price move is very difficult to distinguish from large scale sources of uncer-
tainty. See for instance [113] for details on the “predictive power” of such an indicator
(our Figure II.2 illustrates this predictive power on real data).

• Within a model in which the arrival and cancellation flows follow independent point
processes of the same intensity, the smallest queue (bid or ask) will be consumed first,
and the price will be pushed in its direction. See [90] for a more sophisticated point
process-driven model and associated empirical evidences.

• Another viewpoint on imbalance would be that the bid vs. ask imbalance contains
information about the direction of the net value of investors’ metaorders: first, in a
direct way if one is convinced that investors post limit orders; second, indirectly if one
believes that investors only consume liquidity and in such case bid and ask sizes are
indicators of market makers net inventory.

The focus of formula (1) on the first two limits weaken the predictive power of the bid vs. ask
imbalance. For large tick assets3 it may be enough to just use the first limits, but for small
tick ones it certainly increases the predictive power of our imbalance indicator to take more
than one tick into account. Since the predictive power of the imbalance is outside the scope
of the paper, we will stop here the discussion.

Empirical evidences on the predictive power of the imbalance. Figure II.2.a shows
the imbalance (1) on the x-axis and the midprice move after 50 trades on the y-axis. In
Figure II.2.a, we recover that the imbalance is highly positively correlated to the price move
after 50 trades. Figure II.2.b shows the distribution of the imbalance just before a change in
the order book state. In Figure II.2.b, agents are highly active at extreme imbalance values.
People become highly active at extreme imbalances because they identify a profit opportunity
to catch or at the opposite an adverse selection effect to avoid. Another explanation may
come from the predictive power of the imbalance (see Figure II.2.a). In fact, participants start
to anticipate the next price move when the imbalance signal becomes strong while they are
inactive when they have no view on the next price move (i.e. the signal imbalance is weak).

3For a focus on tick size, see [60].
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Figure I.1 – (a) The predictive power of the imbalance on stock Astra Zeneca: imbalance (just
before a trade) on the x-axis and the expected price move (during the next 50 trades) on
the y-axis. (b) distribution of the imbalance just before a trade. From the 2013-01-02 to the
2013-09-30 (accounts for 376,672 trades).

This paper provides a stochastic control framework to post limit orders using the information
contained in the order book imbalance. In such context, we will call P+∞(t ) the microprice
seen from t and defined it such that

P+∞(t ) = lim
δt→+∞

E(Pt+δt |Pt ,Imbt ).

2.3 Stylized fact 2: Agent’s decisions depend on the order book liquidity

2.3.1 Agent’s decisions depend on the order book imbalance

We expect some market participants to invest in access to data and technology to take profit
of the informational content of the order book imbalance. A very simple way to test this
hypothesis is to look at the order book imbalance just before a transaction with a limit
order for a given class of participant. We will focus on three classes of agents (i.e. market
participants): Global Investment Banks, High Frequency Participants (HFP), and Regional
Investment Banks or Brokers. Table I.2 provides descriptive statistics on these classes of
participants in the considered database.

We focus on limit orders since information processing, strategy and latency play a more im-
portant role for such orders than for market orders (market orders can be sent blindly, just to
finish a small metaorder or to cope with metaorders late on schedule, see [145] for elabora-
tions on brokers’ trading strategies).
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Order type Participant type Order side Avg. Imbalance Nbe of events

Limit Global Banks Sell 0.35 62,111
Buy -0.38 63,566

HFP Sell 0.32 52,315
Buy -0.33 46,875

Instit. Brokers Sell 0.57 6,226
Buy -0.52 4,646

Table I.2 – Descriptive statistics for our three classes of agent. AstraZeneca (2013-01 to
2013-09).

For the following charts, we use labelled transactions from NASDAQ-OMX4 and thanks to
timestamps (and matching of prices and quantities) we synchronize them with order book
data (recorded from direct feeds by Capital Fund Management). It enables us to snapshot the
sizes at first limits on NASDAQ-OMX just before the transaction.

For a given participant (i.e. agent) a the quantity at the best bid (respectively best ask) is
QBi d
τ (a) (resp. Q Ask

τ (a)) just before a transaction at time τ involving a limit order owned
by a. We write Q same

τ (a) := QBi d
τ (a) (resp. Qopposi te

τ (a) := Q Ask
τ (a)) for a buy limit order

and Q same
τ (a) :=Q Ask

τ (a) (resp. Qopposi te
τ (a) :=QBi d

τ (a)) for a sell limit order. We normalize
the quantities by the best opposite to obtain ρτ(a) = (

Q same
τ (a)−Qopposi te

τ (a)
)
/
(
Q same
τ (a)+

Qopposi te
τ (a)

)
. It is then easy to average over the transactions indexed by timestamps τ to

obtain an estimate of this expected ratio for one class of agent:

R(a) = 1

Card(T )

∑
τ∈T

ρτ(a), lim
Card(T )→+∞

R(a) = Eτ
(

Q same
τ (a)−Qopposi te

τ (a)

Qopposi te
τ (a)+Qopposi te

τ (a)

)
.

It is even possible to control a potential bias by using the same number of buy and sell
executed limit orders to compute this “neutralized” average:

R ′(a) = 1

Card(T (buy))

∑
τ∈T (buy)

ρτ(a)+ 1

Card(T (sell))

∑
τ∈T (sell)

ρτ(a).

Figure I.2.a shows the average state of the imbalance (via some estimates of R ′(a), on As-
traZeneca from January 2013 to August 2013) for each class of agents (see Table I.3, Table I.4,
Table I.5 for some lists of NASDAQ-OMX memberships used to identify agents classes). One
can see the state of the imbalance is different within each class:

• Institutional brokers accept a transaction when the imbalance is highly negative, i.e.
they buy using a limit order while the price is going down. It generates a large adverse
selection: had they wait a little more, the price would have been cheaper. They make
this choice because they have to buy fast for risk management reasons.

4For each transaction, we have a buyer ID, seller ID, a size, a price and a timestamp.
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Figure I.2 – Comparison of neutralized order book Imbalance R ′(a) at the time of a trade
via a limit order (a) for institutional brokers, global investment banks and High Frequency
Participants. (b) Shows a split of HFP between market makers and proprietary traders. Data
are the ones of AstraZeneca (2013-01 to 2013-09).

• High Frequency Participants (HFP) accept a transaction when their imbalance is ap-
proximately the half of the Institutional brokers one. For sure they look more at the
order book state before taking a decision. Moreover, they can be more opportunistic
(i.e. ready to wait the perfect moment) instead of being lead by urgency considerations.
If we split HFP between more market making-oriented ones and proprietary trading
ones on Figure I.2.b we see

– market makers (probably for inventory reasons: they have to alternate buys and
sells), accept to trade when the imbalance is more negative than the average of
HFP. They are probably paid back from this adverse selection by bid-ask spread
gains (see [119]);

– proprietary traders are the most opportunistic participants of our panel, leading
them to have the less intense imbalance when they trade via limit orders: they
seem to be the ones that suffer the less from adverse selection.

• Global Investment banks are in between. Three reasons may explain such behaviour:
first, their activity is a mix of client execution and proprietary trading (hence we per-
ceive the imbalance when they accept a trade as an average of the two categories);
second, they have specific strategies to accept transactions via limit orders; third, they
invest a little less than HFP in low latency technology, but more than institutional
brokers.

The main effect to note is that each class of agents seems to exploit differently the state of
the order book before accepting or not a transaction.
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2.3.2 The added value of imbalance for market participants

Since we know that classes of agents take into account differently the state of the order book
in their decision making process, we may ask ourselves what could be the value of such a “high
frequency market timing”?. We attempt to measure this value with a combination of NASDAQ-
OMX labelled transactions and our synchronized market data. To do this, we compute the
midprice move immediately before and after a class of participant a accepts to transact via a
limit order as follows:

∆P mi d
δt (τ, a) = P mi d

τ+δt −P mi d
τ

ψ̄
·ετ(a),

where ετ(a) is the “sign” of the transaction (i.e. +1 for a buy and -1 for a sell) and ψ̄ is the
average bid-ask spread on the considered stock. A “price profile5” around a trade is the
averaging of this price move as a function of δt (between -5 minutes and +5 minutes); it is an
estimate of the “expected price profile” around a trade:

pa(δt ) = 1

Card(T )

∑
τ∈T

∆P mi d
δt (τ, a), lim

Card(T )→+∞
pa(δt ) = Eτ∆P mi d

δt (τ, a).
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Figure I.3 – Midprice move relative to its position when a limit order is executed for (a) a
High Frequency Market Maker, an investment bank, and an institutional broker; (b) makes
the difference between HF market makers and HF proprietary traders. AstraZeneca (2013-01
to 2013-09).

Figure I.3.a and I.3.b show the price profiles of our three classes of participants, exhibiting
real differences beween them. First of all, it confirms the conclusions we draw from Figure I.2.
Since it is always interesting to have a look at dynamical measures of liquidity (see [110] for a
defense of the use of more dynamical measures of liquidity instead of plain averages):

5Note this “price profiles” are now used as a standard way to study the behaviour of high frequency traders in
academic papers, see for instance [42] or [31].
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• It is clear that Institutional brokers (green line) are buying while the price is going
down. Had they bought later, they would have obtained a cheaper price. As underlined
early they probably do it by purpose: they can have urgency reasons or they are using a
“trading benchmark” that does pay more attention to the executed volume than to the
execution price (see [145, Chapter 3] for details about brokers’ benchmarks).

• We can see that the difference between High Frequency Participants (HFP) and Global
investment banks comes from the price dynamics before the trade via a limit order : for
Investment banks the price is more or less stable before the execution and goes down
when the limit order is executed. For HFP the price clearly go up before they bought with
a limit order. It implies that they inserted their limit order shortly before the trade. In
our framework we will see how cancelling and reinserting limit orders can be a way to
implement an optimal strategy.

• On Figure I.3.b we see the difference between HF market makers and HF proprietary
traders: the latter succeed in inserting buy (resp. sell) limit orders and obtaining
transaction while the price is clearly going up (resp. down). After the trade, one can
read a second difference between them and HF market makers: proprietary traders
suffer from less adverse selection (the cyan curve is a little higher than the red one).

These charts show that there is a value in taking liquidity imbalance into account. In Sec-
tion 4, we show the added of controlling a limit order by exploiting the order book imbalance.

The role of latency. Without a fast enough access to the servers of exchanges, a participant
could know the best action to perform (insert or cancel a limit order), but not be able to im-
plement it before an unexpected transaction. Since low latency has a cost, some participants
may decide to ignore this information and do not access to fast market feeds, order books
states, etc.

In the following sections we will not only provide a theoretical framework to “optimally”
exploit the order book dynamics for limit order placement, but also study its sensitivity to
latency, showing how latency can destroy the added value of understanding the order book
dynamics. In our theoretical framework, we can explore situations in which the participant
know the best action but cannot implement it on time.

3 The Dynamic Programming Principle Applied to Limit
Order Placement

To set a discrete time framework, we focus on the simple case (but complex enough in terms
of modelling) of one atomic quantity qε to be executed in T f units of time (can be order book
events, trades, or seconds). It will be a buy order, but it is straightforward for the reader to
transpose our results for a sell order.
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From zero to T f the trader (or software) in charge of this limit order can: cancel it (i.e. remove
it from the order book) and insert it at the top of the bid queue, or do nothing. If the trader
did not obtain an execution thanks to its optimal posting policy at T f , we force him to cancel
his order (if any) and send a market order to obtain a trade. For simplicity, we consider a
model adapted to large tick stocks (i.e. for which the spread equals to one tick). However,
our construction can be adapted to a small tick stock by enlarging the control space. For
example, we can add the possibility to post a limit order in between the best bid and the
best ask. Since we consider a small size order, sending a limit order in between first limits
highly increases the adverse selection risk. Consequently, we neglect, as a first approximation,
such a control in our model. In a more general framework, other limits should be taken into
account and more controls can be considered.

3.1 Formalisation of the Model

Let qε be a small limit order inserted at the first bid limit of the order book. The order book
state is modelled by

Uµ
t =

(
QBe f or e,µ

t ,Q A f ter,µ
t ,QOpp,µ

t ,Pµ
t

)
,

where QBe f or e,µ is the quantity having priority on the order qε, Q A f ter,µ is the quantity posted
after the order qε, QOpp,µ is the first opposite limit quantity, Pµ

t is the mid price, µ is the
control of the agent and t is the current time. For simplicity, we neglect the quantity qε:

QSame,µ =QBe f or e,µ+Q A f ter,µ.

Limit order book dynamics. Since we do not differentiate cancellations and market orders,
the order book dynamics can be modelled by four counting processes (see Figure IV.1):

• NOpp,+
t (respectively N Same,+

t ) with an intensity λOpp,+(QOpp ,QSame ) (resp. λSame,+(QOpp ,QSame ))
representing the inserted orders in the opposite limit (resp. same limit).

• NOpp,−
t (resp. N Same,−

t ) with an intensity λOpp,−(QOpp ,QSame ) (resp. λSame,−(QOpp ,QSame ))
representing the cancelled orders in the opposite limit (resp. same limit).

In this model, these four counting processes depend only on quantities at first limits. At each
event time, an atomic quantity q is added or canceled from the order book. Moreover, we
assume the following bid-ask symmetry relation:{

λOpp,+(QOpp ,QSame ) =λSame,+(QSame ,QOpp ),
λOpp,−(QOpp ,QSame ) =λSame,−(QSame ,QOpp ).
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Figure I.4 – Diagram of flows affecting our order book model.

Hence, the size of the first limits can be written as follows when none of them is negative:
QOpp,µ

t = QOpp,µ
t− +q∆NOpp,+

t −q∆NOpp,−
t ,

QBe f or e,µ
t = (

QBe f or e,µ
t− −q∆N Same,−

t

)
1

QBe f or e,µ
t− ≥q

,

Q A f ter,µ
t = Q A f ter,µ

t− +q∆N Same,+
t −q1

0≤QBe f or e,µ
t− <q

∆N Same,−
t .

(2)

What happens when Q A f ter,µ,QBe f or e,µ or QOpp,µ is totally consumed: First of all,
we neglect the probability that at least two of these three events happen simultaneously. When
one of the two queues fully depletes, we assume that the price moves in its direction. Thus
we introduce a discovered quantity QDi sc to replace the deleted first queue and an inserted
quantity Q Ins to be put in front of QDi sc . These quantities are random variables and their
law are conditioned by the order book state before the depletion. In detail:

1. When QOpp,µ
t = 0. The price increases by one tick (keep in mind for a buy order, the

opposite is the ask side). Then, we discover a new opposite limit and a new bid quantity
is inserted into the bid-ask spread (on the bid side) by other market participants (see
Figure I.5). It reads 

QOpp,µ
t = QDi sc (QOpp,µ

t− ,QSame,µ
t− ),

QBe f or e,µ
t = Q Ins(QOpp,µ

t− ,QSame,µ
t− ),

Q A f ter,µ
t = 0.

QDi sc is the “discovered quantity” and Q Ins the “inserted quantity”.
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Figure I.5 – Diagram of a upward price change for our model.

2. When QBe f or e,µ
t = 0. The limit order is executed. This case is considered in Equation

(2).

3. When moreover Q A f ter,µ
t = 0. The price decreases by one tick. Then, we discover a

new quantity on the bid side and market makers insert a new quantity on the opposite
side: 

QOpp,µ
t = Q Ins(QOpp,µ

t− ,QSame,µ
t− ),

QBe f or e,µ
t = QDi sc (QOpp,µ

t− ,QSame,µ
t− ),

Q A f ter,µ
t = 0.

If the limit order was in the order book: it has been executed. Otherwise the price
moves down and the trader has the opportunity to reinsert a limit order on the top of
QDi sc (see Figure I.6 for a diagram).

|
Same Opp

Q A f ter QOpp

P (t ) Pr i ce

λSame,+

λSame,−

λOpp,+

λOpp,−

Before price moves down

| |
Same Opp

QDi sc

Q Ins

P(t)-1 P(t) Pr i ce

After price moved down

Figure I.6 – Diagram of an downward price move in our model.

The control. We consider two types of control C = {s,c}:

55



I. Limit order strategic placement with adverse selection risk and the role of latency

• s (like stay): stay in the order book.

• c (like cancel): cancel the order and wait for a better order book state to reinsert it at
the top of Q same (Qbi d for our buy order). This control is essentially used to avoid
adverse selection, i.e. avoid to buy just before a price decrease.

Optimal control problem. We fix a finite horizon time T f <∞ and we want to compute:

VT f (0,U ) = sup
µ
E
[
∆Pµ

∞
]
.

Where:

• U = (qbe f or e , q a f ter , qopp , p) is the initial state of the order book.

• T µ

E xec = inf
{

t ≥ 0, s.t QBe f or e,µ
t < q, µt = s

}∧T f represents the first execution time. Once
the order executed, the order book is frozen.

• ∆Pµ
∞ = lim

t→∞
(
Pµ

t −P E xec,µ

T µ

E xec

)
represents the gain of the trader, where the execution price

P E xec,µ
t satisfy P E xec,µ

t = Pµ
t − 1

2 when the limit order is executed before T f and P E xec,µ
t =

Pµ
t + 1

2 otherwise. Indeed, if at T f the order hasn’t been executed, we cross the spread
to guarantee execution.

Choice of a benchmark. We compare the value of the obtained shares at t to its expected
value at infinity, i.e. E(P+∞(t )|Imbt ) since it is not attractive to buy at the best bid if we
expect the price to continue to go down. Indeed, it is possible to expect a better future price
thanks to the observed imbalance. It thus induces an adverse selection cost in the framework.
This is not a detail since the trader will have no insentive to put a limit order at the top of
a very small queue if the opposite side of the book is large. We will see in Section 4 using
empirical evidences that this is a realistic behaviour. Such a behaviour cannot be captured
by other linear frameworks like [124]. To solve the control problem, we introduce in the next
section a discrete time version of the initial problem whose value function can be computed
numerically. In this discrete framework, lim

t→∞
(
Pµ

t −P E xec,µ

T µ

E xec

)
is computed using the imbalance.

3.2 Discrete time framework

Let ∆t be the time step and T f be the final time. Let t0 = 0 < t1 < . . . < t f −1 < t f = T f different
instants at which the order book is observed, such that tn = n∆t for all n ∈ {

0,1, · · · , f
}
. Under

the assumption that between two consecutive instants tn and tn+1 for all n ∈ {
0,1, · · · , f −1

}
,

only five cases can occur:

• 1 unit quantity is added at the bid side;

• 1 unit quantity is consumed at the bid side;

• 1 unit quantity is added at the opposite side;
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3. The Dynamic Programming Principle Applied to Limit Order Placement

• 1 unit quantity is consumed at the opposite side;

• nothing happens.

We neglect the situation where at least two cases occur during the same time interval (the
probability of such conjunctions are of the orders of λ2, hence our approximation remains
valid as far as (λd t )2 is small compared to λd t ).

Framework 1 (Our setup in few words.). In short, our main assumptions are:

• only one limit order of small quantity qε is controlled, it is small enough to have no influence
on order book imbalance;

• decrease of queue sizes at first limits is caused by transactions only (i.e. no difference between
cancellation and trades);

• queues decrease or increase by one quantity only;

• the intensities of point processes (including the ones driving quantities inserted into the bid-ask
spread and driving the quantity discovered when a second limit becomes a first limit) are
functions of the quantities at best limits only;

• no notable conjunction of multiple events.

We introduce the following Markov chain Uµ
n =

(
QBe f or e,µ

n ,Q A f ter,µ
n ,QOpp,µ

n ,Pµ
n ,Execn

)
where:

• QBe f or e,µ
n is the QBe f or e,µ size at time tn that takes value in N.

• Q A f ter,µ
n is the Q A f ter,µ size at time tn that takes value in N.

• QOpp,µ
n is the QOpp,µ size at time tn that takes value in N.

• Pµ
n is the mid price at time tn .

• Execn is an additional variable taking values in {−1,0,1}. Execn equals to 1 when the
order is executed at time tn , 0 when the order is not executed at time tn and -1 (a
“cemetery state”) when the order has been already executed before tn . We set Exec0 = 0.

In the same way, we define N Same,+
n , N Same,−

n , NOpp,+
n and NOpp,−

n as the values of the count-
ing processes N Same,+

t , N Same,−
t , NOpp,+

t et NOpp,−
t at time tn . The transition probabilities of

the Markov chain Uµ
n are detailed in Appendix I.A.
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I. Limit order strategic placement with adverse selection risk and the role of latency

The terminal constraint. The microprice P∞,n ≈ E[P∞|Fn] is defined such as:

P∞,n = F (QOpp
n ,QSame

n ,Pn) = Pn + α

2
· QSame

n −QOpp
n

QOpp
n +QSame

n

, ∀n ∈ {0,1, · · · , f }.

Where Fn is the filtration associated to Un such that Fn =σ (Un ,k ≤ n) and α is a parameter
that represents the sensitivity of future prices to the imbalance. The execution price PExec,n

is defined ∀n ∈ {0,1, · · · , f } such that:

PExec,n =


Pn + 1
2 , when Execn = 0,

Pn + 1
2 , when Execn ∈ {−1,1} andPn+1 −Pn 6= 0,

Pn − 1
2 , when Execn ∈ {−1,1} andPn+1 −Pn = 0.

Let k0 be the execution time: n0 = inf(n ≥ 0,Execn = 1)∧ f . Then, the terminal valuation can
be written

Zk0 = P∞,n0 −PExec,n0 . (3)

Let U be the set of all progressively measurable processes µ := {
µk ,k < f

}
valued in {s,c}.

This problem can be written as a stochastic control problem:

VU0, f = sup
µ∈U

E
U0,µ

[
Zn0

]= sup
µ∈U

E
U0,µ

[
f −1∑
i=1

gi (Ui ,µi )+ g f (U f )

]
,

where gi (Ui ,µi ) = Zi when Execi = 1 and µi = s and 0 otherwise for all i ∈ {
1, · · · , f −1

}
.

We write g f (U f ) = Z f when Exec f ∈ {0,1} and 0 otherwise. We want to compute VU0, f =
sup
µ∈U

E
U0,µ

(Zk0 ) using dynamic programming algorithm:

{
G f = Z f ,
Gn = max(P cGn+1,P sGn+1) , ∀n ∈ {0,1, · · · , f −1},

(4)

where P c and P s are the transition probabilities of the Markov chain Uµ
n when the initial de-

cisions are respectively c and s. Equation (4) provides an explicit forward-backward algorithm
that can be solved numerically:

• Step 1 Forward simulation: starting from an initial state u, we simulate all the reachable
states during f periods.

• Step 2 Backward simulation: at the final period f , we can compute G f for each reachable
state. Then, using the backward equation (4), we can compute, recursively, Gi knowing
Gi+1 to get G0.

For more details about the forward-backward algorithm see Appendix I.A.

58



4. A Qualitative Understanding

4 A Qualitative Understanding

In this section, we present and comment the simulation results. We are going to compare two
situations:

• The first one called (NC) corresponds to the case when no control is adopted (i.e. we
always stay in the order book and “join the best bid” each time it changes).

• The second one called (OC) corresponds to the optimal control case: controls "c" and
"s" are considered.

Moreover, our simulation results are given for two different cases:

• Framework (CONST): intensities of insertion and cancellation are constant: λSame,+
k =

λ
Opp,+
k = 0.06 and λSame,−

k = λ
Opp,−
k = 0.5 ∀k ∈ {

0,1, · · · , f
}
. Under (CONST), the in-

serted quantities Q Ins and discovered quantities QDi sc are constant too.

• Framework (IMB): intensities of cancellation and insertion are functions of the imbal-
ance such as ∀k ∈ {

0,1, · · · , f
}
:

λ
Opp,+
k

(
QOpp

k ,QSame
k

)
=λSame,+

k

(
QSame

k ,QOpp
k

)
=λ+

0 +β+ QOpp
k

(QOpp
k +QSame

k )
,

λ
Opp,−
k

(
QOpp

k ,QSame
k

)
=λSame,−

k

(
QSame

k ,QOpp
k

)
=λ−

0 +β− QSame
k

(QOpp
k +QSame

k )
,

where λ±
0 refer to both basic insertion and cancellation intensities and β± are pre-

dictability parameters representing the sensitivity of order flows to the imbalance.
Moreover, under (IMB), inserted and discovered quantities are computed in the fol-
lowing way:

– When QOpp
k is totally consumed, we set QDi sc

k = dqdi sc
0 + θdi sc ·QSame

k e and
Q Ins = dq i ns

0 +θi ns ·QSame
k e. Where θdi sc and θi ns are coefficients associated to

liquidity and d.e is the upper rounding. The quantities qdi sc
0 and q i ns

0 are the
basic discovered and inserted quantities.

– Similarly when QSame
k is totally consumed, we set QDi sc = dqdi sc

0 +θdi sc ·QOpp
k e

and Q Ins = dq i ns
0 +θi ns ·QOpp

k e.

This kind of relations is compatible with empirical findings of [90] and different from [55] in
which QDi sc =Q Ins is independent of the liquidity imbalance.

4.1 Numerically Solving the Control Problem

4.1.1 Anticipation of Adverse Selection

The cancellation is used by the optimal strategy to avoid adverse selection. For instance,
when the quantity on the same side is extremely lower than the one on the opposite side, it
is expected to cancel the order to wait for a better future opportunity. The optimal control
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I. Limit order strategic placement with adverse selection risk and the role of latency

takes in consideration this effect and cancels the order when such a high adverse selection
effect is present.

We keep the same notations of Section 3. Let µ := {
µk ,k < f

}
a control, we define EU0,µ (∆P|Exec) =

EU0,µ
(
Zk0

)
. The quantity EU0,µ (∆P|Exec) depends on the control µ, the initial state of the

order book U0 and the terminal period f . This variable can be directly computed by a for-
ward algorithm that visits all the possible states of the Markov chain Uµ

n . For more details
about the transition probabilities of the Markov chain Uµ

n see Appendix I.A. The quantity
EU0,µ (∆P|Exec) is interesting since it corresponds to the quantity to maximize in our optimal
control problem and it represents as well the profitability/trade of an agent.

Let µs the control where the agent always stays in the order book (i.e. NC) and µ∗ the optimal
control (i.e. OC). Figure I.7.a represents the variation of EU0,µ∗ (∆P|Exec) and EU0,µs (∆P|Exec)
when the initial imbalance of the order book moves under (CONST). In Figure I.7.a, blue
points are initial states where it is optimal to stay in the order book at the initial time (i.e.
t = 0) while red points are initial states where it is optimal to cancel the order at t = 0.
Initial parameters are fixed such that λSame,+ = λOpp,+ = 0.06, λSame,− = λOpp,− = 0.5, α= 4,
QDi sc = 6, Q Ins = 4, f = 20, q = 1 and P0 = 10. Moreover, the initial imbalance values are
obtained by varying QOpp

0 from 2 to 12 and Q A f ter
0 from 1 to 11 while QBe f or e

0 is kept constant
equal to 1. Figure I.7.b is the analogous of Figure I.7.a but under the framework (IMB). In
Figure I.7.b, initial parameters are fixed such that λ+

0 = 0.06, λ−
0 = 0.5, β+ = 0.075, β− = 0.25,

qdi sc
0 = 6, q i ns

0 = 2, θdi sc = 3, θdi sc = 0.5, α= 4, f = 20 and P0 = 10. Similarly, initial imbalance

values are obtained by varying QOpp
0 from 2 to 12 and Q A f ter

0 from 1 to 11 while QBe f or e
0 is

kept constant equal to 1.
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Figure I.7 – (a) (resp. (b)) EU0,µ∗ (∆P|Exec) and EU0,µs (∆P|Exec) when intensities are constant
(CONST) (resp . (4)).

The main effect to note on these curves is the way the optimal control anticipates adverse
selection. When imbalance is highly negative, we cancel first the order (red points) to take
advantage from a better futur opportunity. We notice that under the framework (IMB), the
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4. A Qualitative Understanding

agent cancels earlier than under the framework (CONST) since more weights are given to
cancellation events. This point is detailed in **. Appendix I.C explains the downward slopes
at the left of Figures I.7.a and I.7.b.

4.1.2 Price Improvement comes from avoiding adverse selection

As expected, results obtained by the optimal control (OC) case are better than the ones of
the non-controlled (NC) case: by cancelling and taking into account liquidity imbalance, one
can be more efficient than just staying in the order book. Figure I.8.a shows the variation of
the price improvement (resp. EU0,µ∗ (∆P|Exec)−EU0,µs (∆P|Exec)) when the initial imbalance
moves, under both frameworks (CONST) and (IMB). We kept the same initial parameters of
Figures I.7.a and I.7.b.

Similarly, Figure I.8.b represents the variation EU0,µ∗
(
Pk0 |Exec

)−EU0,µs
(
Pk0 |Exec

)
when the

initial imbalance moves, under both frameworks (CONST) and (IMB). The quantity Pk0 is the
mid price at the execution time k0. We kept the same initial parameters of Figures I.7.a and
I.7.b.
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Figure I.8 – (a) EU0,µ∗ (∆P|Exec)− EU0,µs (∆P|Exec) move relative to initial imbalance under
(CONST) and (IMB). (b) EU0,µ∗

(
Pk0 |Exec

)−EU0,µs
(
Pk0 |Exec

)
move relative to initial imbalance

move relative to initial imbalance under (CONST) and (IMB).

Figure I.8 deserves the following comments. As expected, the optimal control provides bet-
ter results than a blind “join the bid” strategy. In Figure I.8.a the price improvement is
non-negative since our control maximizes EU0,µ (∆P). When the initial imbalance is highly
positive, the price improvement is close to 0 however when the initial imbalance is highly
negative the price improvement becomes higher than 0 by avoiding adverse selection. Sim-
ilarly, Figure I.8.b shows that the optimal strategy allows us to buy with a low average price
when imbalance is highly negative by preventing from adverse selection.6

6Indirectly, maximizing EU0,µ (∆P|Exec) leads to the minimization of the price.
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I. Limit order strategic placement with adverse selection risk and the role of latency

4.1.3 Average Duration of Optimal Strategies

In brief, the optimal strategy aims to obtain an execution in the best market conditions (i.e.
with a low adverse selection risk). It can be read on the average lifetime (i.e. "duration") of the
strategy. Figure I.9.a compares the average strategy duration in both settings (NC) and (OC)
when intensities are constant (CONST). We keep the same initial parameters of Figure I.7.a.
Figure I.9.b is the analogous of Figure I.9.a but under the framework (IMB). Finally, Figure I.9.c
shows the "stay ratio" (i.e. the proportion of stay decisions under the optimal strategy) under
both settings (NC) and (OC) when intensities depend on the imbalance (IMB). Figure I.9.b and
I.9.c are computed with the same initial parameters of Figure I.7.b.
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Figure I.9 – Average strategy duration as a function of (a) the initial imbalance under (CONST)
and (b) the initial imbalance under (IMB). (c) Stay ratio as a function of the initial imbalance
under (IMB).

In both Figures I.9.a and I.9.b, the average strategy duration of the optimal control is always
higher than the non-optimal one. It is an expected result since the optimal control cancels
the order and hence postpone the execution. Moreover, the algorithm cancels the order when
high adverse selection is present (i.e. the imbalance is highly negative under IMB 7). In such

7 close to t = 0, the optimal strategy is free to cancel its limit order; but when T f is close, it has to think about
the cost of having to cross the spread in few steps.
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case, the average strategy duration of the optimal control is strictly greater than the non-
optimal one (see Figures I.9.a and I.9.b).

** In Figure I.9.b, when intensities depend on the imbalance (IMB), the average strategy
duration has an increasing trend. In fact, under (IMB), when imbalance is highly positive,
more weights are given to events delaying the execution. For example, when imbalance is
highly positive, the bid queue is a way larger than the opposite one. Then, the probability to
obtain an execution on the bid side is low: that’s why it is expected to wait more. Moreover,
Figure I.9.c shows that the agent become more active when high adverse selection is present.
Indeed, when the imbalance is negative (i.e. high adverse selection), the "stay ratio" decreases
and consequently the "cancel ratio" increases.

4.1.4 Influence of the Terminal Constraint

In this section, we want to shed light on two stylized facts:

1. the optimal strategy performs better under good market condition when there is more
time left.

2. the optimal strategy becomes highly active close to the terminal time.

(a) (b)

1 2 3 4 5 6 7 8 9 10
Remaining time

0.25

0.30

0.35

0.40

0.45

0.50

0.55

E
U

0
,µ
∗
(∆
P
|E
x
ec

)

Constant intensities

Variable intensities

1 2 3 4 5 6 7 8 9 10
Remaining time

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

S
ta

y
/C

an
ce

l
ra

ti
o

% stay time

% cancel time

Figure I.10 – (a) EU0,µ∗ (∆P|Exec) move relative to remaining time under (CONST) and (IMB).
(b) stay cancel ratio move relative to remaining time to maturity under (IMB).

Figure I.10.a compares the variation of EU0,µ∗ (∆P|Exec) as a function of the remaining time
under frameworks (CONST) and (IMB). The initial imbalance is fixed equal to 0.5. Thanks
to the Figure I.10.a, we can see that the more time remaining, the better for the optimal
strategy. However, the concavity of the curve shows that the marginal performance ∂E(∆P)t

∂t is
decreasing. Moreover, Figure I.10.a shows also that EU0,µ∗ (∆P|Exec) may converge to a limit
value when maturity time tends to infinity. Since the Markov chain Un is ergodic (cf. [90]), we
believe that this limit value is unique and independent of the initial state of the order book
and could lead to an “almost ergodic” regime.
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I. Limit order strategic placement with adverse selection risk and the role of latency

In Figure I.10.b, we present the percentage of times when the optimal strategy cancels its
order and the percentage of times when it decides to stay in the order book as a function of
remaining time under (CONST) and (IMB). The initial imbalance is fixed to 0.5. Thanks to
Figure I.10.b, we conclude that it is optimal to be more active close to t = T f . In Figures I.10.a
and I.10.b, we keep the same initial parameters of Figures I.7.a and I.7.b

4.2 The Price of Latency

In Section 3, we define the Markov chain Uµ
n that corresponds to a market participant enabled

to change his control at each period. A slower participant will not react at each limit order
book move. Hence, he can be modelled by the markov chain Uµ

τn where τ corresponds to
a latency factor such as τ ∈ N∗. Using notations of previous sections, we define Zτ, f as the
final constraint associated to the Markov chain Uµ

τn . Thus, we define the latency cost of a
participant with a latency factor τ such as:

Latenc yU0, f (τ) =VU0, f −VU0, f ,τ, ∀τ ∈N∗, (5)

where VU0, f ,τ = sup
µ∈U

EU0,µ
(
Zτ, f

)
. By adapting the same numerical forward-backward algo-

rithm, the cost of latency can be computed numerically. This cost can be converted into a
value: it is the value a trader should accept to pay in technology since he will be rewarded in
term of performance.

Figures I.11.a and I.11.b show the variation of the latency cost with respect to the latency factor
τ under both frameworks (CONST) and (IMB) for different values of α. The initial imbalance
is fixed equal to 0.5 with an initial state Q A f ter

0 = 2,QBe f or e
0 = 1 and QOpp

0 = 1. We keep the
same initial parameters of Figure I.7.a and Figure I.7.b. Numerical results show:

• The latency cost increases with the latency factor τ (cf. Figure I.11.a).

• The latency cost is higher when sensitivity to adverse selection increases (i.e. α is big)
(cf. Figures I.11.a and I.11.b).

Consequently, the relevance of exploiting a knowledge on liquidity is eroded by latency: being
able to predict future liquidity-consuming flows is of less use if you one cannot cancel and
reinsert his limit orders at each change of the order book state. For instance, when two agents
act optimally according the same criterion, the faster will have more profits than the slower.

5 Conclusion

We have used NASDAQ-OMX labelled data to show how market participants accept or refuse
transactions via limit orders as a function of liquidity imbalance. It is not an exhaustive study
on this exchange from the north of Europe (we focus on AstraZeneca from January 2013 to
September 2013). We first show that the order book imbalance has a predictive power on
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Figure I.11 – (a) Latency cost as a function of the latency factor τ under (CONST). (b) Latency
cost as a function of the latency factor τ under (IMB) for different values of α.

future mid price moves. We then focus on three types of market participants: Institutional
brokers (IB), Global Investment Banks (GIB) and High Frequency Participants (HFP). Data
show that IB accept to trade when the imbalance is more negative (i.e. they buy or sell while
the price pressure is downward or upward) than GIB, themselves accepting a more negative
imbalance than HFP. Moreover, when we split HFP between high frequency market makers
and high frequency proprietary traders (HFPT), we see that HFPT achieve to buy via limit
orders when the imbalance is very small. We complete this analysis with the dynamics of
prices around limit orders execution, showing how strategically participants use their limit
orders.

Then we propose a theoretical framework to control limit orders where the liquidity imbal-
ance can be used to predict future price moves. Our framework includes potential adverse
selection via a parameter α. We use the dynamic programming principle to solve it. We show
that our solutions have commonalities with our empirical findings.

In a last Section we show how the capability of exploiting the imbalance predictability using
our optimal control decreases with latency: the trader has less time to put in place sophisti-
cated strategies, hence he cannot take profit of any strategy gain.

The difficult point of using limit orders is adverse selection: if the price has chances to go
down the probability to be filled is high but it is better to postpone execution to get a better
price. However, when a market participant cancels his limit order (to postpone execution), he
takes the risk to never obtain a transaction: the reinsertion of the order will be on the top of
the bid queue. Furthermore, the price may go up again before the execution of the limit order.
Our framework includes all these effects and our optimal strategy makes the choice between
waiting in the queue or leaving it when the probability that the price goes down becomes too
high. To do this, the position of the limit order in the queue is taken into account by our
controller.
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This leads to a quantitative way to understand market making and latency: if a market
maker is fast enough, he will be able to play this insert, cancel and re-insert game to react
to his observations of liquidity imbalance. In our framework we use the difference between
the sizes of the first bid and ask queues as a proxy of liquidity imbalance. In the real
world market participants can use a lot of other information (like liquidity imbalance on
correlated instruments, or real time news feeds). In such context, the speed can be seen
as a protection against adverse selection, potentially reducing transaction costs. Within this
viewpoint, high frequency actions do not add noise to the price formation process (as opposite
to the viewpoint of [44]) but allows market makers to offer better quotes. At this stage, we do
not conclude speed is good for liquidity because:

• We only focus on one limit order. We should go towards a framework similar to the
one of [80] to conclude on the added value of imbalance for the whole market making
process, but it will be too sophisticated at this stage.

• It is not fair to draw conclusions from a knowledge of the theoretical optimal behaviour
of one market participant; to go further we should model the game played by all
participants, similarly to what have been done in [106]. Again it is a very sophisticated
work. Nevertheless, this paper is a first step. We are convinced it is possible to obtain
partially explicit formula, to enable more systematic explorations of the influence of the
parameters (currently our simulations are highly memory consuming). It should allow
to confront our results with observed behaviours (especially using observed values for
our parameters α,β,QDi sc ,Q Ins and λs).

• Last but not least, any conclusion on the added value of low latency and high frequency
market making should take into account market conditions. Its value could change with
the level of stress of the price formation.

This work shows that imbalance is used by participants, and provides a theoretical framework
to play with limit order placement. It can be used by practitioners. More importantly, we hope
other researchers will extend our work in different directions to answer to more questions,
and we will ourselves continue to work further to understand better liquidity formation at the
smallest time scales thanks to this new framework.
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I.A Transition probabilities of the markov chain Un

When first limits are totally consumed, new quantities QDi sc
n and Q Ins

n are inserted in the
order book. We introduce then φn the joint distribution of the random variables QDi sc

n

et Q Ins
n at time tn . We assume these two variables are independent from their past and

independent from the counting processes N Same,+, N Same,−, NOpp,− and NOpp,+. However,
QDi sc

n and Q Ins
n can be correlated at time tn .

Let n ∈ {
0,1, · · · , f

}
, p ∈R+, qbe f ∈N, q a f t ∈N, qopp ∈N, qdi sc ∈N, q i ns ∈N and e ∈ {−1,0,1}

• When the order has been executed before tn (i.e. e = 1 or e =−1),then:

P
(
Un+1 = (p, qbe f , q a f t , qopp ,−1)/Un = (p, qbe f , q a f t , qopp ,e)

)
= 1.

When the order is executed a dead center is reached and both quantities and the price
remain unchanged. In such case, the control has no more infuence.

• When the order isn’t executed at tn (i.e. e = 0), we set:

A unit quantity is added to QOpp . Under control "s", the transition probability
is the following:

P(c)(Un+1 = (p, qbe f , q a f t ,
(
qopp +1

)
,e)|Un = (p, qbe f , q a f t , qopp ,e)

)
=P(

{
NOpp,+

n+1 −NOpp,+
n = 1

}
∩

{
NOpp,−

n+1 −NOpp,−
n = 0

}
∩

{
N Same,+

n+1 −N Same,+
n = 0

}
∩

{
N Same,−

n+1 −N Same,−
n = 0

}
)

=λOpp,+
n ∆t

(
1−λOpp,−

n ∆t

)(
1−λSame,−

n ∆t
)(

1−λSame,+
n ∆t

)
.

Under control "c":

P(s)(Un+1 = (p,
(
qbe f +q a f t

)
,0,

(
qopp +1

)
,e)|Un = (p, qbe f , q a f t , qopp ,e)

)
=λOpp,+

n ∆t

(
1−λOpp,−

n ∆t

)(
1−λSame,−

n ∆t
)(

1−λSame,+
n ∆t

)
.

A unit quantity is cancelled from QOpp . We differentiate between two cases:

1. When qopp > 1, under control "s":

P(c)(Un+1 = (p, qbe f , q a f t ,
(
qopp −1

)
,e)|Un = (p, qbe f , q a f t , qopp ,e)

)
=P(

{
NOpp,+

n+1 −NOpp,+
n = 0

}
∩

{
NOpp,−

n+1 −NOpp,−
n = 1

}
∩

{
N Same,+

n+1 −N Same,+
n = 0

}
∩

{
N Same,−

n+1 −N Same,−
n = 0

}
)

=λOpp,−
n ∆t

(
1−λOpp,+

n ∆t

)(
1−λSame,−

n ∆t
)(

1−λSame,+
n ∆t

)
.
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Under control "c":

P(s)(Un+1 = (p,
(
qbe f +q a f t ),0,

(
qopp −1

)
,e)|Un = (p, qbe f , q a f t , qopp ,e)

)
=λOpp,−

n ∆t

(
1−λOpp,+

n ∆t

)(
1−λSame,−

n ∆t
)(

1−λSame,+
n ∆t

)
.

2. When qopp ≤ 1, the price increases by one tick under control "s":

P(c)(Un+1 = (p +1, q i ns ,0, qdi sc ,e) |Un = (p, qbe f , q a f t ,1,e)
)

=λOpp,−
n ∆t

(
1−λOpp,+

n ∆t

)(
1−λSame,−

n ∆t
)(

1−λSame,+
n ∆t

)
φn+1(qdi sc , q i ns).

Under control "c", the last formula does not change.

A unit quantity is added to QSame , under control "s" we have:

P(c)(Un+1 = (p, qbe f , q a f t +1, qopp ,e)|Un = (p, qbe f , q a f t , qopp ,e)
)

=λSame,+
n ∆t

(
1−λOpp,+

n ∆t

)(
1−λOpp,−

n ∆t

)(
1−λSame,−

n ∆t
)

.

Under control "c":

P(s)(Un+1 = (p,
(
qbe f +q a f t +1

)
,0, qopp ,e)|Un = (p, qbe f , q a f t , qopp ,e)

)
=λSame,+

n ∆t

(
1−λOpp,+

n ∆t

)(
1−λOpp,−

n ∆t

)(
1−λSame,−

n ∆t
)

.

A unit quantity is cancelled from QSame . We distinguish again three cases:

1. When
(
qbe f > 1andq a f t ≥ 0

)
or

(
qbe f = 1andq a f t ≥ 1

)
, under control "s":

P(c)(Un+1 = (p, qbe f −1, q a f t , qopp ,e)|Un = (p, qbe f , q a f t , qopp ,e)
)

=λSame,−
n ∆t

(
1−λOpp,+

n ∆t

)(
1−λOpp,−

n ∆t

)(
1−λSame,+

n ∆t
)

.

We suppose that our order is executed when Q A f ter
n is consumed. Under control

"c":

P(s)(Un+1 = (p,
(
qbe f +q a f t −1

)
,0, qopp ,e)|Un = (p, qbe f , q a f t , qopp ,e)

)
=λSame,−

n ∆t

(
1−λOpp,+

n ∆t

)(
1−λOpp,−

n ∆t

)(
1−λSame,+

n ∆t
)

.

2. When qbe f = 0andq a f t > 1, under control "s":

P(c)(Un+1 = (p,0,
(
q a f t −1

)
, qopp ,1)|Un = (p, qbe f , q a f t , qopp ,e)

)
=λSame,−

n ∆t

(
1−λOpp,+

n ∆t

)(
1−λOpp,−

n ∆t

)(
1−λSame,+

n ∆t
)

.

Under control "c":

P(s)(Un+1 = (p,
(
q a f t −1

)
,0, qopp ,0)|Un = (p, qbe f , q a f t , qopp ,e)

)
=λSame,−

n ∆t

(
1−λOpp,+

n ∆t

)(
1−λOpp,−

n ∆t

)(
1−λSame,+

n ∆t
)

.
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3. When qbe f +q a f t = 1, under control "s":

P(c)(Un+1 = (p, qdi sc ,0, q i ns ,1)|Un = (p, qbe f , q a f t , qopp ,e)
)

=λSame,−
n ∆t

(
1−λOpp,+

n ∆t

)(
1−λOpp,−

n ∆t

)(
1−λSame,+

n ∆t
)
φn+1(qdi sc , q i ns).

Under control "c":

P(s)(Un+1 = (p, qdi sc ,0, q i ns ,0)|Un = (p, qbe f , q a f t , qopp ,e)
)

=λSame,−
n ∆t

(
1−λOpp,+

n ∆t

)(
1−λOpp,−

n ∆t

)(
1−λSame,+

n ∆t
)
φn+1(qdi sc , q i ns).

Nothing happens in the limit order book with probability

P(c)(Un+1 =Un |Un
)= (

1−λSame,−
n ∆t

)(
1−λOpp,+

n ∆t

)(
1−λOpp,−

n ∆t

)(
1−λSame,+

n ∆t
)

.

• For all the remaining cases we assume the transition probability neglectibe. We hence
set it to zero.

Remark. By taking in consideration the different cases and neglecting the terms with
order strictly superior than 1 in ∆t , we have for any control i ∈ {c, s}:

∑
statesUn

statesUn+1

∫
(N+)2

P(i )(Un+1|Un)µn+1(d qdi sc ,d q i ns)

≈ 1+λSame,+
n ∆t +λSame,−

n ∆t +λOpp,+
n ∆t +λOpp,−

n ∆t .

Consequently, if λSame,+
n ∆t +λSame,−

n ∆t +λOpp,+
n ∆t +λOpp,−

n ∆t = o(1) ( which is true when ∆t

is small), we end up with for any control i ∈ {c, s}:

∑
statesUn

statesUn+1

∫
(N+)2

P(i )(Un+1/Un)φn+1(d qdi sc ,d q i ns) ≈ 1.
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I.B Composition of market participants groups

High Fequency Traders

Name NASADQ-OMX Market Prop.
member code(s) Maker Trader

All Options International B.V. AOI
Hardcastle Trading AG HCT

IMC Trading B.V IMC, IMA Yes
KCG Europe Limited KEM, GEL Yes

MMX Trading B.V MMX
Nyenburgh Holding B.V. NYE

Optiver VOF OPV Yes
Spire Europe Limited SRE, SREA, SREB Yes
SSW-Trading GmbH IAT
WEBB Traders B.V WEB

Wolverine Trading UK Ltd WLV

Table I.3 – Composition of the group of HFT used for empirical examples and the composition
of our “high frequency market maker” and “high frequency proprietary traders” subgroups.

Global Investment Banks

Name NASADQ-OMX
member code(s)

Barclays Capital Securities Limited Plc BRC
Citigroup Global Markets Limited SAB

Commerzbank AG CBK
Deutsche Bank AG DBL

HSBC Bank plc HBC
Merrill Lynch International MLI

Nomura International plc NIP

Table I.4 – Composition of the group of Global Investment Banks used for empirical examples.

I.C Extreme Imbalances

The decreasing slope at the right of the curve in Figure I.7.a and I.7.b when imbalance
is highly positive (i.e. QSame À QOpp ≈ 1 ). In this situation, the order will be executed in
general before the final time T f without being followed by a price move (1) or will be executed
at T f and followed by a price move (2). In both cases, the final constraint ∆P is positive (see

70



I.C. Extreme Imbalances

Institutional Brokers

Name NASADQ-OMX
member code(s)

ABG Sundal Collier ASA ABC
Citadel Securities (Europe) Limited CDG

Erik Penser Bankaktiebolag EPB
Jefferies International Limited JEF

Neonet Securities AB NEO
Remium Nordic AB REM

Timber Hill Europe AG TMB

Table I.5 – Composition of the group of Institutional Brokers used for empirical examples.

Graph I.12). Given that ∆P in case (2) is lower than ∆P in case (1) and situation (2) occurs
more frequently when imbalance is highly positive, it is expected to find a decreasing slope
at the right of the curve.

|q

Q A f ter

QSame

Same Opp Pr i ceP (t )

PExec P∞∆P> 0

if order executed before T f (1)

| |
P (t )

PExec P∞
∆P> 0

Same Opp

QDi sc

Q Ins

QOpp

Q A f ter

q
Pr i ce

if order executed at T f (2)

Figure I.12 – ∆P when Imbalance highly positive
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CHAPTER II

Optimal liquidity-based trading tactics

Abstract

We consider an agent who needs to buy (or sell) a relatively small amount of assets over
some fixed short time interval. We work at the highest frequency meaning that we wish
to find the optimal tactic to execute our quantity using limit orders, market orders and
cancellations. To solve the agent’s control problem, we build an order book model and
optimize an expected utility function based on our price impact. We derive the equations
satisfied by the optimal strategy and solve them numerically. Moreover, we show that our
optimal tactic enables us to outperform significantly standard execution strategies.

Keywords: Market microstructure; limit order book; high frequency trading; queuing model;
Markov jump processes; ergodic properties; adverse selection; execution probabilities; market
impact; optimal trading strategies; optimal tactics; stochastic control.

1 Introduction

Most electronic exchanges use an order book mechanism. In such markets, buyers and sellers
send their orders to a continuous-time double auction system. These orders are then matched
according to price and time priority. Each submitted order has a specific price and size and
the order book is the collection of all submitted and unmatched limit orders. This is illus-
trated in Figure II.1, which shows a classical representation of an order book at a given time.
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1

2

3
time

priority

market order

cancellation

Bid side Ask side

Spread

|| |

mid price

P Bi d
1P Bi d

2P Bi d
3

. . .

P Ask
1 P Ask

2 P Ask
3

. . .

Q Ask
1

Q Ask
2

Q Ask
3

QBi d
1

QBi d
2

QBi d
3

P (t )
Price

Figure II.1 – Order book representation at a given time. Here P Ask
i (resp. P Bi d

i ) with i ≥ 1 are
the sellers (resp. buyers) limit prices and they are increasingly (resp. decreasingly) ordered.
For a given price P Ask

i (resp. P Bi d
i ), the limit Q Ask

i (resp. QBi d
i ) is the available selling (resp.

buying) quantity.

In this limit order book setting, we consider the following issue: an agent has to buy or sell a
given quantity of asset before a fixed time horizon. During the execution process, the agent
can take four elementary decisions:

• Insert limit orders in the order book, hoping to avoid crossing the spread. We will
assume that the agent does not place limit orders above the best limits however he can
insert them within the spread.

• Stay in the order book with an already existing limit order, to keep his tactical place-
ment.

• Cancel existing limit orders.

• Send market orders to get immediate execution.

Note that this is the microstructural version of the classical Almgren-Chriss optimal execu-
tion problem for the liquidation of a large quantity of asset over a time interval [0,T ], see
[10, 29, 74] and [47, 48, 49, 51, 52, 76, 82, 85] for various extensions. In the setting of [10],
[0,T ] is split in sub time windows (typically a few minutes per window) and one derives the
number of shares to be executed in each window. In our case, we want to specify how to act
optimally within each window. Indeed, our buyer or seller reacts to every order book move
and handles reasonably small quantities during short periods of time.

In order to solve this problem, we of course need to model the order book dynamics. There
are essentially two order book modelling approaches in the litterature. First, “equilibrium
models", based on interactions between rational agents who take optimal decisions, see
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[66, 134, 139]. Second, “statistical models" where the order book is seen as a suitable ran-
dom process, see [2, 3, 20, 55, 57, 83, 106, 107, 144]. Statistical models focus on reproducing
many salient features of real markets rather than individual agents behaviours and interac-
tions between them. In this paper, we use a statistical model. In such models, the arrival and
cancellation flows often follow independent Poisson processes. The Poisson assumption allows
for the derivation of simple, and often closed-form, formulas, for example for the probabilities
of various order book events, see [2, 57, 83, 106, 129].

However, as clearly shown in [90], this assumption is not realistic and it is necessary to
take into account accurately the local state-dependent behaviour of the order book. So
in [90, 91], the authors introduce the Queue-Reactive order book model where order flows
follow a Markov jump process. They also provide ergodicity conditions and model parameters
calibration methodology.

Order book model. Here we refine the Queue-Reactive model to make it compatible with
a stochastic control framework enabling us to solve important practical issues. To do so,
we only consider the best bid and ask limits to work with a reasonably small state space.
Furthermore, in order to get a truly good fit to real order book dynamics, we focus on the so-
called regeneration process which models the order book state right after the total depletion
of a limit. In our setting, when a limit is totally depleted, the order book is regenerated in a
new state whose regeneration law depends on the order book state just before the depletion.
In general, order book models consider several bid and ask limits and use a regeneration
process independent from the order book state, see [3, 57, 90]. Here, we model the order
book by a three-dimensional Markov jump process

(
Q1

t ,Q2
t ,St

)
where Q1

t is the available
quantity at the best bid, Q2

t is the available quantity at the best ask and St is the spread. In
addition, we provide a dynamics for the mid price Pt which depend on the order book state.

The agent control problem. Let us now introduce the agent’s control problem. We for-
mulate it for a buy order of size q a (it can be changed to a sell order in an obvious way).
From time zero to the final time T , we assume that, at every decision time, the buyer can do
nothing or use one of the three following actions: insert a fraction of the remaining quantity
to buy (if not already inserted) at the top of the bid queue or within the spread (decision l),
cancel the already inserted limit orders (decision c) or send a market order (decision m) for a
fraction of the remaining quantity. If the agent does not obtain the total execution of q a at
time T , he cancels the remaining quantity in the order book and send a market order. Thus,
the trader’s strategy is modelled by the sequence µ = (τi ,υi )i≥0 of random variables where
(τi )i≥0 is a sequence of increasing stopping times that represents the optimal decision times
and υi ∈ E=T×N×P refers to the optimal decision. Here, the set T= {l ,c,m} indicates the
type of the order, the set N specifies the order size and P determines the order posting price.1

The agent aims at determining the optimal sequence of decisions to reduce its price impact

1See Section 3.1 for a detailed description of the control µ and the set P.
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PIµ∞ which is defined such that

PIµ∞ =− lim
t→∞E

[
q aPµ

t −P E xec,µ], (1)

with Pµ
t the mid price, P E xec,µ the acquisition price of the quantity q a , t the current obser-

vation time and µt the agent’s control which remains constant when the user does nothing.2

Let Iµt be the agent’s inventory, that is the remaining quantity he has to buy at time t .3 We
denote by P E xec,µ

t the acquisition price of the quantity q a − Iµt and T µ

E xec the time where q a is
totally executed. To take into account the waiting cost, the sensitivity to the price impact and
to work in a slightly more general setting, we consider the following optimisation problem:

sup
µ
E
[

f
(

lim
t→∞E

[
q aPµ

t −P E xec,µ

T µ

E xec

/FT µ

E xec

])
︸ ︷︷ ︸

final constraint

−γ
∫ T µ

E xec

0
Iµs d s︸ ︷︷ ︸

running cost

]
,

where f : R→ R is a Lipschitz function and γ is an homogenization non-negative constant
representing the waiting cost. Here we use a conditional expectation to account for the
fact that agents collect information along their own trading. Note that optimal execution
problems, in general, minimize the acquisition price (resp. liquidation) of the quantity to buy
(resp. sell) called here P E xec,µ

T µ

E xec

. However because of the price relaxation typically following the

end of the metaorder execution, this acquisition (resp. liquidation) price is not an appropriate
benchmark for agents who need to sell (resp. buy) back at least a portion of the executed
shares in the future. This is the case of brokerage companies who execute a large number of
clients metaorders everyday. In this work, we place ourselves in a setting where we can define
a notion of the price after the relaxation (i.e. expected long term value) Pµ

∞ = lim
t→∞E[Pµ

t ] and

use it as a benchmark. Our trading has an influence on Pµ
∞ that we will be able to compute.

Note that, we send t to ∞ to get the new stationary value of the price after our execution.
Thus, infinity should be seen as the scale of time where the resilience of the market takes
place. This notion of resilience after order executions has been studied in the literature, see
[71]. In our case, its order of magnitude corresponds to few hours. We stress that the reduction
of the price impact is crucial for brokers. As a matter of fact, they do not only execute one
given (meta-)order, but interact thousands of times per day with the order book to execute
hundreds of metaorders, which will all be subjected to the impact of previous orders. We
study this problem in two cases. First, when agent’s decisions are taken at fixed frequency
∆−1. This enables us to investigate latency effects and moderately high frequency trading
issues. Second, when agent’s decisions are taken at any time, to handle the situation where
one has access to ultra high frequency trading technology.

2If the agent has no order in the order book and does nothing at the beginning of the period, we consider he
starts with control c .

3In the latter, we slightly improperly call I
µ
t the inventory of the agent.
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Positioning of the paper. This paper is obviously not the first work where a stochastic
control framework involving limit orders, market orders and cancellations is used to solve
a high frequency trading problem. For example in [79, 108, 82] and Chapter I, the authors
consider the problem of optimal posting of a limit order while market making issues are
adressed in [13, 52, 80, 84] and Chapter III. The problem of optimal execution using limit
and market orders is also investigated in [45, 50, 56, 75, 78]. However the interactions between
market participants decisions, liquidity and behaviour of the order book are not really taken
into account. In our work, the decision of the agent depends on its current position in the
queue and the available liquidity on the order book. Some of the few papers considering an
approach close to ours are [81, 94] and Chapter I. Beyond a slightly more general setting,
compared to these papers, our main contribution is to optimize our trading tactic not only
with respect to its local profit and loss but also to the endogenous price impact it generates.
This is of primary importance for any market participant with intense trading activity.

Results. In this paper, we propose an order book model in reduced dimension, with state-
dependent regeneration and non-constant spread. Within this framework, we provide a
closed-form formula for the endogenous price impact. This allows us to compute the se-
quence of orders solving the optimal execution problem for an agent who wants to minimize
its impact. When the trading frequency is fixed, an explicit expression is obtained for the
value function of the agent. When decisions can be taken at any time, we explain how to
design simple and efficient numerical methods and provide accurate error estimates. We even
show that the optimal control in continuous time is exactly obtained when the discretization
mesh of the numerical scheme is small enough. We also prove the ergodicity of our order
book under mild assumptions on the intensity functions.

The paper is organized as follows. In Section 2, we introduce our order book model, prove
its ergodicity and provide the formula for the price impact. In Section 3, we formulate the
agent’s control problem. Our main theorems including the equations satisfied by the value
function and the numerical methodology to solve them are provided in Section 4. Finally,
numerical experiments are given in Section 5. The proofs are relegated to an appendix.

2 Order book modelling

In this section, we first confirm on data that agents behaviours depend on order book liquidity,
see [90, 111] and Chapter I for closely related results. Then, we describe the order book
dynamics.

2.1 Preliminary: Empirical evidences

One specificity of our work is that we wish to carefully model the interactions between market
participants and liquidity. We first show on real data that market participants act differently
when facing different liquidity conditions.
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Database presentation. Data used here are from Bund futures on Eurex exchange Frank-
furt. We focus on this product since it is a good example of a very liquid and large tick asset.
The database records during one week from 1 to 5 September 2014, the state of the order book
(i.e. available quantities and prices at best limits) event by event with microsecond accuracy.
For each day, our data cover the time period from 8 a.m to 10 p.m Frankfurt time. Each event
has a type, a side (i.e. bid/ask) and a size. We consider three types of events: insertion of
limit orders, cancellation of existing limit orders and market orders. The database accounts
for 3 407 574 events.

Let t be the time when an event happens in the order book. We define the imbalance Imbt

and the mid price move δ seconds after the event time t , ∆P mi d
δ

(t ), by
Imbt = εt

Q1
t −Q2

t

Q1
t +Q2

t

,

∆P mi d
δ

(t ) = εt
Pδ+t −Pt

st
,

where Q1
t (resp. Q2

t ) is the available quantity at the best bid (resp. ask), Pt is the mid price, εt

is the event sign (i.e. εt = 1 when it is a buy order and -1 otherwise) and st is the spread (i.e.
st = P Ask

t −P Bi d
t with P Ask

t the best ask price and P Bi d
t the best bid price).

We want to confirm that agents decisions depend on the order book liquidity. A simple way
to do so is to summarize the state of the order book liquidity through the imbalance. Fig-
ure II.2.a shows the average imbalance value for each event type. We give the interpretation
of Figure II.2.a in the case of a buy limit/limit mid4/cancellation/market order, since the event
sign is taken into account in the expression of Imbt . We see that market participants in-
sert limit orders when imbalance is negative (execution highly probable), cancel orders when
imbalance is positive (less chance to be executed) and use market orders when imbalance is
highly positive (rushing for liquidity when it is scarce).

Figure II.2.b shows the distribution of imbalance just before a liquidity provision event (i.e..
insertion of limit orders) and a liquidity consumption event (i.e.. cancellation of limit orders
or market orders). We see that agents are highly active at extreme imbalance values.5 Indeed,
in these cases, they identify a profit opportunity to catch or on the contrary an adverse
selection effect to avoid (for example buying just before a price decrease). This is related to the
predictive power of the imbalance. As can be seen in Figure II.2.c, ∆P mi d

δ
(t ) after 2 minutes

(i.e. δ = 2min) is highly correlated to the imbalance. This means that market participants
use the imbalance as a signal to anticipate next price moves.6 Hence, our empirical results
clearly confirm that agents decisions depend on the order book liquidity.

4Limit order inserted within the spread.
5The high rate of liquidity provision for very positive imbalance can be surprising at first sight. However it

may be due to orders inserted within the spread creating a new best limit.
6Quoting Sasha Stoikov: Imbalance is the least well hidden secret of high frequency trading.
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(a) Average imbalance before
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Figure II.2 – Some statistics about the imbalance.

Bid-ask symmetry assumption. It links buyers and sellers behaviours. To formulate the
bid-ask symmetry relation, we denote by Ut = (Q1

t ,Q2
t ,Pt ) the process modelling the state of

the order book. We recall that Q1
t (resp. Q2

t ) is the available quantity at the best bid (resp. ask)
and Pt is the mid price. For a buyer, Q1 represents the waiting queue before the execution
and Q2 the available buying quantity. For a seller, roles of Q1 and Q2 are interchanged: Q2

is the waiting queue and Q1 the available liquidity. Additionally, buyers and sellers decisions
depend on the reference price value: a buyer (resp. seller) aims to be executed at the lowest
(resp. highest) price. Thus, we define U s ym

t = H(Ut ) = (Q2
t ,Q1

t ,−Pt ) the symmetric process of
Ut where the function H moves us from the buyer point of view to the seller one or conversely.
The symmetry assumption ensures that

U s ym
t /U s ym

0
Law= Ut /U0, ∀t ≥ 0. (2)

We assume the bid-ask symmetry relation since it ensures no statistical arbitrage

E
[
∆Pt

]= 0, ∀t ≥ 0. (3)

with ∆Pt = Pt −P0. When a stationary distribution exists, we also have E
[
∆P∞

]= 0. Addition-
ally, when Pt is a Markov process, Equation (3) proves that Pt is a martingale. Finally, when Pt

is a right continuous Markov process Equation (3) ensures absence of arbitrage opportunities
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II. Optimal liquidity-based trading tactics

in the market. Finally, in our Markovian framework, the bid-ask symmetry assumption allows
us to derive the optimal control for a seller directly from the buyer one.

To illustrate the bid-ask symmetry, we present, in Table II.1, basic statistics about the time
between two consecutive events happening in the order book. According to Equation (2),
the mean value between two consecutive events at the best bid and the best ask side should
be equal. In Table II.1 column names correspond to the event type, for example in column
“Global” (resp. “Bid”) we study the time between two consecutive events happening in the
order book (resp. best bid) and so on. In our case, cancellation includes market orders.
Table II.1 shows that the mean value between two consecutive limit/cancellation/global events
at the best bid and the best ask are close.

Global Bid Ask BidCancel AskCancel BidLimit AskLimit

Mean (10−2 sec) 1.62 2.37 2.33 2.61 2.65 4.26 4.12
Nb.Events 3.38.106 1.67.106 1.71.106 8.66.105 8.86.105 8.08.105 8.21.105

Table II.1 – Median value of the time distribution between two consecutive events. Events
associated to price moves are removed.

2.2 Order book framework

Let (Ω,F , (Ft ),P) be a filtered probability space with F0 the trivial σ-algebra. The order
book state is modelled by the Markov process Ut =

(
Q1

t ,Q2
t ,St

)
where Q1

t (resp. Q2
t ) is the best

bid (resp. ask) quantity and St is the spread. We denote by P 1
t (resp. P 2

t ) the best bid (resp.
ask) price, Pt the mid price and τ0 the tick size. The mid price dynamics will be described
in Section 2.4 and in this section we focus on the dynamics of Ut . For simplification, we take
the state space U= (N∗)2 ×τ0N

∗ .7

The Markov process U is characterized by its the infinitesimal generator Q. For u =
(q1, q2, s) ∈U,u′ = (q ′1, q ′2, s′) ∈U, n ∈N∗, k ∈ {1, · · · , s

τ0
−1}, e1 = (1,0), e2 = (0,1) and i ∈ {1,2},

we consider the following form for Ut :
Q(q,s),(q+nei ,s) = λi ,+(u,n) + R(u, (q +nei , s)),
Q(q,s),(q−nei ,s) = λi ,−(u,n,0) + R(u, (q −nei , s)) , if q i > n,
Q(q,s),(q+(n−q i )ei ,s−kτ0) = λi ,k (u,n) + R(u, (q + (n −q i )ei , s −kτ0)) , if s > τ0,
Q(q,s),(q ′,s′) = R(u, (q ′, s′)) , if s′ 6= s,

(4)

with Qu,u =−∑
u′ 6=u Qu,u′ , q = (q1, q2), q ′ = (q ′1, q ′2) and

• λ1,+(u,n) (resp. λ2,+(u,n)) represents the arrival rate of limit orders of size n at the
best bid (resp. ask) when the order book state is u.

7However we can work on the following state space U= (R∗+)3 and recover similar results.

80



2. Order book modelling

• λ1,−(u,n,0) (resp. λ2,−(u,n,0)) is the arrival rate of liquidity consumption orders of
size n that do not deplete the best bid (resp. ask), when the order book state is u.

• λ1,k (u,n) (resp. λ2,k (u,n)) represents the arrival rate of buying (resp. selling) limit
orders of size n within the spread at the price P 1 +kτ0 (resp. P 2 −kτ0).

• λ1,−(u,n,u′) (resp. λ2,−(u,n,u′)) represents the arrival rate of liquidity consumption
orders of size n that deplete the best bid (resp. ask) and lead to a new state u′ when
the order book state is u.

• R(u,u′) verifies R(u,u′) = ∑2
j=1

∑
m≥q i λ j ,−(u,m,u′) and represents the order book re-

generation component.

Order book regeneration. In our framework, when one limit is totally depleted, the order
book is regenerated in a new state whose law depends on the order book state just before
the depletion and the depleted side (i.e. best bid/ask). The regeneration of the process U is
described through the quantity R(u,u′) where u′ ∈U is the order book state after the depletion
and u is the order book state before the depletion. A simple choice is to consider the case
where the spread increases by one tick when the best bid or ask are depleted and to draw
new best bid and ask quantities from a fixed stationary distribution, see [55].

Symmetry relations. Additionally, for every u = (q1, q2, s) ∈U,u′ = (q ′1, q ′2, s′) ∈U, n ∈N∗

and k ≤ s
τ0

−1, we assume the following bid-ask symmetry relations:


λ1,+(u,n) = λ2,+(us ym ,n),
λ1,k (u,n) = λ2,k (us ym ,n),

λ1,−(u,n,u′) = λ2,−(us ym ,n,u′s ym),
(5)

with us ym = (q2, q1, s). This classical bid-ask symmetry relation ensures no statistical ar-
bitrage and allows us to aggregate bid and ask side data in the calibration of the model’s
parameters.

2.3 Ergodicity

We now provide a theoretical result on the ergodicity of the process Ut = (Q1
t ,Q2

t ,St ) under
three general assumptions. A definition of the ergodicity is given in Appendix II.B.

We denote by λi ,+
Q (resp. λi ,−

Q ) and λ+
S (resp. λ−

S ) the arrival rate of events that increase

(resp. decrease) by n the size of the limit Q i and the spread S for any i ∈ {1,2}. For sake of
completeness, we give an explicit expression for λi ,±

Q and λ±
S

λi ,±
Q (u,n) = ∑

(q ′,s′)∈U
Qu,(q ′,s′)1q ′i=q i±n , λ±

S (u,n) = ∑
(q ′,s′)∈U

Qu,(q ′,s′)1s′=s±n , ∀u = (q1, q2, s) ∈U, ∀n ≥ 1.
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II. Optimal liquidity-based trading tactics

Assumption 1 (Negative individual drift). There exist three positive constants Cbound , z0 > 1
and δ> 0 such that for any u = (q1, q2, s) ∈U∑

n≥0(zn
0 −1)(λ1,+

Q (u,n)−λ1,−
Q (u,n) 1

zn
0

) ≤−δ, when q1 ≥Cbound ,∑
k≥0(zτ0k

0 −1)
(
λ+

S (u,k)−λ−
S (u,k) 1

z
τ0k
0

) ≤−δ, when s ≥Cbound .

Assumption 1 ensures that the queue size and the spread value tend to decrease when they
become too large. Using Equation (5), we also have

∑
n≥0

(zn
0 −1)(λ2,+

Q (u,n)−λ2,−
Q (u,n)

1

zn
0

) ≤−δ, ∀q2 ≥Cbound .

Assumption 2 (Local bound on the incoming flow). There exists z1 > 1 such that for any B ≥ 0
we have ∑

n≥0 zn
1 λ

1,+
Q (u,n) ≤ H B , when q1 ≤ B ,∑

k≥0 zτ0k
1 λ+

S (u,k) ≤ H B , when s ≤ B ,

with u = (q1, q2, s) ∈U and H B a positive constant.

Assumption 2 ensures no explosion in the system: the order arrival speed stays bounded
within any bounded set of U. Using the symmetry relation, we have

∑
n≥0

zn
1 λ

2,+
Q (u,n) ≤ H B

when q2 ≤ B . For example, Assumption 2 is satisfied in the particular case when both the size
of the best limits and the the spread cannot get beyond a maximum threshold. Assumption 1
and 2 are close to those used in [91] and slightly more general. We have the following result.

Theorem 1 (Ergodicity). Under Assumptions 1 and 2, the process Ut is ergodic (i.e.. converges
towards a unique invariant distribution). Additionally, we have the following speed of convergence:

||P t
u(.)−π||T V ≤ B(u)ρt ,

with ||.||T V the total variation distance, P t
u(.) the Markov kernel of the process Ut starting from

the initial point u ∈U, π the invariant distribution, ρ < 1 and B(u) a constant depending on the
initial state u, see Appendix II.B.

Remark 1. To prove the ergodicity we do not require the intensities to be uniformly bounded.

This theorem is the basis for the asymptotic study of the order book dynamics in Section 2.1,
since it ensures the convergence of the order book state towards an invariant probability
distribution. Thus the stylized facts observed on market data can be explained by a law of
large numbers type phenomenon for this invariant distribution. The proof of this result is
given in Appendix II.B and it is quite inspired from [90, 91].
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2. Order book modelling

2.4 Computation of the long-term average price move

In this section, we provide the computation methodology of the following quantity:

D(u) = lim
t→∞Eu

[
Pt −P0

]
, (6)

with u ∈U. The computation of D(u) is interesting for at least two reasons: first, it allows us
to predict the long-term average mid price move for any initial order book state u. Second,
the quantity D(u) is useful for the computation of the price impact PIµ∞ defined in (1), see
Section 4.1 for a detailed connection between the computation of PIµ∞ and Equation (6). To
compute numerically D(u), we need to bound the domain U. Hence, we replace Assumption 2
by slightly less general assumptions.

Assumption 3 (Insertion Bound). There exists a positive quantity Qmax such that for any
u = (q1, q2, s) ∈U,u′ ∈U, n ≥ 0 and k ≤ s

τ0
−1 ,

λ1,+(u,n) = 0, when q1 +n >Qmax ,
λ1,k (u,n) = 0, when q1 +n >Qmax ,
λ1,−(u,n,u′) = 0, when q1 >Qmax .

This assumption is not restrictive since quantities at the best limits remain essentially bounded.
Using the symmetry relation, we have as well, for any u = (q1, q2, s) ∈ U,u′ ∈ U, n ≥ 0 and
k ≤ s

τ0
−1 {

λ2,+(k)(u,n) = 0, when q2 +n >Qmax ,
λ2,−(u,n,u′) = 0, when q2 >Qmax .

Assumption 4 (Regeneration bound 2). There exists a positive constant Q̃max such that for all
(u,u′) ∈U2 and i ∈ {1,2}, we have

λi ,−(u,n,u′) = 0, when ||u′||∞ > Q̃max ,

with ||x||∞ = sup j≤N |x j | for any vector x ∈RN .

Under the symmetry relation, Assumption (4) needs to be satisfied for only one i ∈ {1,2} .

Price dynamics. The mid price after the n-th order book event Pn satisfies Pn = P0 +∑n
i=1∆Pi with ∆Pi = Pi −Pi−1. The price jumps ∆Pi are a deterministic function of the order

book state before the jump and the order book event causing the jump. For example, we can
consider the simple case where the mid price decreases (resp. increases) by one tick when the
best bid (resp. ask) is depleted.

Assumption 5 (Mid price bound). The process Ut , see Section 2.2, is irreducible8 and there exists
a state u ∈U such that D(u) <∞.
Remark 2. When D(u) =±∞ for all u ∈U, there is nothing to prove. Additionally, since Ut is
irreducible, Assumption 5 implies that D(u) <∞ for all u ∈U.

8 To ensure that Ut is irreducible we only need the intensity functions to be positive when Assumptions 3 and
4 are not satisfied.
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II. Optimal liquidity-based trading tactics

Computation methodology of the price impact: A mid price move can be caused by
only one of the following events:

• event 1: depletion of the best bid or sell limit order within the spread.

• event 2: depletion of the best ask or buy limit order within the spread.

Let t1 (resp. t2) be the first time when an event of type 1 (resp. 2) happens. At t1 (resp. t2) the
mid price moves on average by α−

i = EUi

[
∆Pt1

]
(resp. α+

i = EUi

[
∆Pt2

]
) and the order book is

regenerated according to a distribution d 1
i (resp. d 2

i ). Here we assimilate the initial state Ui

to its unique index i . We consider the following notations:

• q−
i i ′ = PUi [{t1 < t2}∩ {Ut−1 =Ui ′}] and q+

i i ′ = PUi [{t2 ≤ t1}∩ {Ut−2 =Ui ′}]. They represent
respectively the probability that t1 < t2 or conversely and the exit state is Ui ′ .

• d 1
i ,k (resp. d 2

i ,k ) are transition probabilities from the state Ui to Uk when t1 < t2.

• qi = ∑
i ′

(
q+

i i ′α
+
i ′ + q−

i i ′α
−
i ′
)

and pi ,k = ∑
i ′

(
q+

i i ′d
2
i ′,k + q−

i i ′d
1
i ′,k

)
represent respectively the

average mid price move after the first regeneration and the probability to reach the
state Uk starting from the initial point Ui right after the first regeneration.

• U s ym
i = (q2, q1, s) is the symmetric state of Ui = (q1, q2, s) and i s ym is the index of the

symmetric state U s ym
i , see (5).

• D is a vector satisfying Di = lim
t→∞EUi [Pt −P0] for every state Ui = (q1, q2, s) ∈ D. We

write D for the set D = {(q1, q2, s); q1 ≥ q2}.9

• A is a matrix defined such that Ai ,k = pi ,k−pi ,ks ym

1−(pi ,i−pi ,i s ym ) when i 6= k and Ai ,i = 0 for any

(Ui ,Uk ) ∈D2.10 Note that the matrix I − A is invertible.

We have the following result.

Proposition 1 (Price impact). Under Assumptions 3, 4 and 5, the vector D satisfies

D = (I − A)−1F.

The vector F satisfies Fi = qi

1−(pi ,i−pi ,i s ym ) for any Ui ∈D10.

The proof of this result is given in Appendix II.C.1. A numerical computation of the vector D
is given in Section 2.5, Figure II.3.

Remark 3. To compute D , we need to estimate the regeneration distributions d 1
. , d 2

. , α
±
. and q±

. .
The quantities d 1

. , d 2
. and α

±
. can be estimated from the order book empirical distribution after a

price change. Then, we only need to estimate q±
i i ′ . The estimation methodology of q±

i i ′ is detailed in
Lemma II.C.3 of Appendix II.C.

9Note that Di = −Di s ym under the symmetry relation (5), thus it is enough to know the values Di for any
Ui ∈D.

10 Recall that we assimilate the state Ui to its unique index i .
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2.5 Numerical application

In this section, we compute numerically the price impact using Propostion 1. We also assess
the model by comparing the theoretical and empirical distributions of (Q1,Q2) at long term
and short term horizon.

Approximation of lim
t→∞EU0 [Pt − P0]. Figure II.3 shows lim

t→∞EU0 [Pt − P0] defined in Sec-

tion 2.4 and computed using Proposition 1, for different values of the initial state U0 =
(Q1,Q2,τ0) where the spread is equal to one tick. Figure II.3 shows the predictive power
of the imbalance: when the imbalance is positive the price increases on average and con-
versely. We also note that the bid-ask symmetry relation is respected.

Price impact lim
t→∞EU0 [Pt −P0]
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Figure II.3 – Price impact lim
t→∞EU0 [Pt −P0] in percentage of the tick size δ. Q1 and Q2 are

divided by the average event size and the tick δ= 0.01.

Model approximation at short-time horizon. Figures II.4.a and II.4.b show respectively
the empirical and theoretical distributions of Q1 after 20 events. We choose 20 events since it
is coherent with the duration of our control. The estimation of the theoretical distribution is
based on a Monte-Carlo simulation of the order book. We can see that both distributions are
close and consequently that our model is consistent with the empirical order book dynamics
at least during the control duration. The model is also consistent with empirical data on long
term horizon, see [90].

Model approximation at long-term horizon. Figure II.5.a and Figure II.5.b show respec-
tively the empirical and the theoretical distribution of Q1 and Q2. Both distributions are
close.
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(a) Empirical Q1 distribution
after 20 events

(b) Theoretical Q1 distribution
after 20 events
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Figure II.4 – (a) Empirical distribution of Q1 after 20 events and (b) theoretical distribution of
Q1. The quantities Q1 and Q2 are divided by the average event size.

(a) Empirical distribution of (Q1,Q2) (b) Stationnary distribution of (Q1,Q2)
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Figure II.5 – Empirical distribution of Q1 on x-axis and Q2 y-axis in (a) and theoretical one
in (b).

3 Optimal tactic control problem

3.1 Presentation of the stochastic control framework

We express the control problem for a buy order of a size q0. It can be changed to a sell order
in an obvious way.

Order book dynamics. The agent state is modelled by the process

Ūµ
t =

(
QBe f ,µ

t ,Qa,µ
t ,Q A f t ,µ

t ,Q2,µ
t , Iµt ,Sµt ,Pµ

t ,P E xec,µ
t

)
,

where Qa,µ
t is the size of agent’s limit order inserted at the best bid, QBe f ,µ

t is the quantity

inserted before Qa,µ
t , Q A f t ,µ

t represents orders inserted after Qa,µ
t (see Figure IV.1), P E xec,µ

t is
the acquisition price of q0− Iµt , Iµt is the agent’s inventory and µ= {µt , t ≤ T } is the control of
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the agent. We recall that Q2,µ
t is the best ask limit, Pµ

t is the mid price and Sµt is the spread.

Then, Q1,µ
t = QBe f ,µ

t +Qa,µ
t +Q A f t ,µ

t is the total volume at the best bid. It is split in three
quantities to take into account the order placement. We add minor changes to the order book
dynamics:

• Arrival rates: for the best bid, we differentiate market orders consumption rate λ1,−
m

from limit orders cancellation rate λ1,−
c . Cancellation orders consume Q A f t ,µ

t first, and

market orders QBe f ,µ
t first.11

• Regeneration: the regeneration of the process Ūµ
t is deduced from that of Uµ

t =
(Q1,µ

t ,Q2,µ
t ,Sµt ) and Pµ which are described in Section 2.2. Here, we explain the re-

generation of the three variables QBe f ,µ
t , Qa,µ

t and Q A f t ,µ
t since the one of Q2,µ

t , Sµt and
Pµ

t is detailed in Section 2.2. After a regeneration Qa,µ
t = 0 when the best bid is totally

depleted and remains unchanged otherwise. Furthermore, the quantity Q A f t ,µ
t +QBe f ,µ

t
is equal to the regenerated best bid12 and the position of Qa,µ

t is drawn from a distri-
bution ζi

u depending on the order book state just before the regeneration u and the
depleted side i (i.e. best ask in our case). A natural choice is to set Q A f t ,µ

t = 0 and

QBe f ,µ
t equal to the new best bid when the best bid is depleted or the price moves, and

keep the quantities QBe f ,µ
t ,Qa,µ

t and Q A f t ,µ
t unchanged when the best ask is depleted

with no price move.

The symmetry relation (5) satisfied by (Q1,µ
t ,Q2,µ

t ,Sµt ) is unchanged.

|
Bi d Ask

QBe f ,µ
t

Qa,µ
t

Q A f t ,µ
t

Q2,µ
t

Pt
Pr i ce

Figure II.6 – Diagram representing the position of the agent order.

Trader’s controls. At every decision time, the trader can do nothing or take three decisions:

11This modelling is conservative since we delay the order execution as long as possible. It corresponds to the
worst case scenario for the user.

12The best bid Q
1,µ
t after a depletion is defined in Section 2.2.
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• l : He can insert a fraction of Iµ at the top of the bid queue or within the spread if not
already inserted.

• c: He can cancel his already existing limit order Qa,µ. By acting this way, the trader
can wait for a better order book state. This control will essentially be used to avoid
adverse selection, i.e.. obtaining a transaction just before a price decrease.

• m: He can send a market order to get an immediate execution of a fraction of Iµ.

Every decision of the agent is also characterized by a price level p and an order size q . Thus,
the trader’s control is modelled by the sequence µ = (τi ,υi )i≥0 of random variables where
(τi )i≥0 is a sequence of increasing stopping times (with respect to the filtration generated by
Ūµ) that represents the optimal decision times and υi ∈ E is the optimal decision. We define
the set E such that E = T×N×P with T = {l ,c,m} and P = τ0N. If the agent has no order
inserted in the order book and does nothing at the beginning, the initial control is c .13 The
price level is equal to p ≥ 0 when the order is inserted at the limit price P 1 +min(p,S). We
focus on strategies that satisfy the condition below.

Assumption 1 (Admssible strategies). There exists a fixed constant P̄ such that the agent liqui-
dates its remaining quantity when Pµ ≥ P̄ (i.e. µt = (m,St , Iµt )1Pµ

t ≥P̄ ).

The above assumption ensures the boundedness of the execution price P E xec,µ.

Trader’s inventory and liquidation price. Let e = (o, p, q) ∈ E be a market event. When e

is sent by another market participant, the processes Qa,µ
t , Iµt and P E xec,µ

t jump as follows:
Qa,µ

t = Qa,µ
t− −1o=m min((q −QBe f ,µ

t− )+,Qa,µ
t− ),

Iµt = Iµt− +1o=m∆Qa,µ
t ,

P E xec,µ
t = P E xec,µ

t− −∆Iµt (Pµ
t− −

Sµt−
2 ),

with min((q−QBe f ,µ
t− )+,Qa,µ

t− ) the quantity bought at the best bid price Pµ
t−−

Sµt−
2 , ∆X t = X t−X t−

for any càdlàg process X and (x)+ = max(x,0). When e is sent by the agent, the processes
Qa,µ

t , Iµt and P E xec,µ
t are updated such that

Qa,µ
t = 1o=l q +1o=mQa,µ

t− ,
Iµt = Iµt− −1o=m min(q, Iµt− −Qa,µ

t− ),

P E xec,µ
t = P E xec,µ

t− −∆Iµt
[
Pµ

t− +
Sµt−

2 +α(−∆Iµt −Q2,µ
t− )+

]
,

where the parameter α represents a linear temporary price impact. At the end of the execution
we have the following terminal condition (i.e. liquidation of the remaining inventory):

Qa,µ
T = 0,

IµT = 0,

P E xec,µ
T = P E xec,µ

T − + IµT −
[
Pµ

T − + s
2 +α(IµT − −Q2,µ

T − )+
]
.

13To track only the first limits, we assume that the agent follows the best bid.
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Optimal control problem. We fix a finite horizon time T <∞ and we want to compute

VT (0,u) = sup
µ
E
[

f
(

lim
s→∞E[∆Pµ

s /FT µ

E xec
]
)

︸ ︷︷ ︸
final constraint

−γ
∫ T µ

E xec

0
Iµs d s︸ ︷︷ ︸

running cost

]
,

where

• u = (qbe f , q a , q a f t , q2, i , s, p, pexec ) is the initial agent state.

• T µ

E xec = inf
{

t ≥ 0, s.t Iµt = 0
}∧T represents the final execution time.

• ∆Pµ
t = (

q0Pµ
t −P E xec,µ

T µ

E xec

)
represents the price impact and q0 is the order size.14

• γ is a non-negative homogenization constant representing the waiting cost or the risk
aversion of the agent and f :R→R is a Lipschitz function.

We solve the agent’s control problem in two situations: when decisions are taken at fixed
frequency ∆−1 and when they are taken at any time.

4 Theoretical results

In this section, we compute lim
t→∞E

[
∆Pµ

t /FT µ

E xec

]
, discuss the existence, uniqueness and regu-

larity of the solution of our control problem and give equations satisfied by the value function.

4.1 Price impact computation

In this section Assumptions 3, 4 and 5 are satisfied. Let Uµ

T µ

E xec

be the order book state at the

end of the execution, we split ∆Pµ
t in two quantities

∆Pµ
t = (

q0Pµ
t −P E xec,µ

T µ

E xec

)= (
q0Pµ

t −q0Pµ

T µ

E xec

)+ (
q0Pµ

T µ

E xec

−P E xec,µ

T µ

E xec

)
= q0∆P

′,µ
t + (

q0Pµ

T µ

E xec

−P E xec,µ

T µ

E xec

)
,

where

• Pµ

T µ

E xec

is the mid price at the execution (i.e. Pµ

T µ

E xec

and P E xec,µ

T µ

E xec

are known at the

execution).

• ∆P
′,µ
t = Pµ

t −Pµ

T µ

E xec

is the long term mid price move after the execution.

14We will see that lim
t→∞E

[
∆P

µ
t /FT

µ
E xec

]
is well-defined and an explicit computation of this quantity is given in

Section 4.1.
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II. Optimal liquidity-based trading tactics

Thus, we only need to compute ∆P
′,µ
t . Since we place ourselves after the execution, we have

Qa,µ

T µ

E xec

= 0 and Q A f t ,µ

T µ

E xec

= 0 which means that Q1,µ

T µ

E xec

=QBe f ,µ

T µ

E xec

. Since the price jumps are a deter-

ministic function of Uµ before each jump and Uµ is Markov15, we have lim
t→∞E

[
∆P

′,µ
t /FT µ

E xec

]=
lim

t→∞EUµ

T
µ
E xec

[
∆P

′,µ
t

]
. Proposition 1 provides an explicit formula for the computation of lim

t→∞EUµ

T
µ
E xec

[
∆P

′,µ
t

]
.

4.2 Existence and uniqueness of the optimal strategy, regularity properties

In the rest of the article, Assumptions 1, 3, 4 and 5 are in force. In this section, we discuss
existence and uniqueness of the optimal strategy and show regularity results for the state
process Uµ and the value function. First, for a finite horizon time T , we define the value
function

VT (t , ū) = sup
µ
E
[

f
(

lim
s→∞E[∆Pµ

s /FT µ

E xec
]
)−γ∫ T µ

E xec

t
Iµs d s|Ūµ

t = ū
]
,

with 0 ≤ t ≤ T , ū ∈ Ū=N5 ×τ0N
∗× (τ0

2 Z)2 and T t ,µ
E xec = inf

{
s ≥ t , s.t Iµs = 0

}∧T .16

Existence - uniqueness of the optimal control. The optimal strategy exists in the two
frameworks (i.e. decisions taken at fixed frequency and at any time) but for different reasons.
When decisions are taken at fixed frequency ∆−1 the optimal strategy exists since we have
a finite number of available strategies. When decisions are taken at any time, the sequence
of optimal controls (τi ,υi )i≥0, where τi is the optimal decision time and υi is the optimal
decision, satisfies 

τ0 = 0, υ0 = argmax
r∈E

{
E
[
VT (0,Ū r

0 )
]}

,

τi+1 = inf
{

t > τi ;VT (t ,Ū µ̂
t−) = sup

r∈E,r 6=υi

E
[
VT

(
t , (Ū µ̂

t−)r
)]}

,

υi+1 = argmax
r∈E,υi 6=r

{
E
[
VT

(
τi+1, (Ū µ̂

τ−i+1
)r

)]}
,

(7)

where ūr is the new state when the agents takes the decision r and current state is ū and
µ̂= (τ j ,υ j ) j≤i for any state ū and control r . Since VT is continous, the optimal control is well-
defined. The proof of (7) is given in Appendix II.E. However, there is a priori no uniqueness
of the optimal strategy in the two frameworks.

Regularization of the problem. To force the uniqueness of the optimal strategy, we present
a practical criterion. First, we define an order relation between trader’s decisions c < l < m.
The intuition behind is that m is the least risky decision because we get direct execution, l is
riskier than m but less risky than c because there is no delay of the execution. Then, we order
sizes (resp. prices) increasingly (resp. decreasingly) since a large size accelerates the liquida-
tion of the inventory and a small posting price reduces instantaneously the impact. Finally, we

15Uµ does not depend on µ after the execution since the agents leaves the market.
16The results remain valid when Ū=R5+×R∗+× (R)2.
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4. Theoretical results

consider the following order relation between x = (x1, . . . , xn) ∈Rn , and y = (y1, . . . , yn) ∈Rn :

x ≤ y iff
(
x1 < y1

)
or

(
x1 = y1 and (x2, . . . , xn) ≤ (y2, . . . , yn)

)
.

Hence, we can choose the least risky decision among the optimal ones in the above sense.

Regularity of the state process and the value function. The agent state process Ūµ and
the value function VT are Lipschitz in space and time. The proofs of these results are given
in Appendix II.D in the more general case where Ū=R5+×R∗+× (R)2.

4.3 Decisions taken at fixed frequency ∆−1: dynamic programming equation

In this section, we provide and solve the system of equations satisfied by the value function
VT of the optimal control problem. The constant P̄ is defined in Section 3.1. We have the
following result.

Theorem 1. Let u = (qbe f , q a , q a f t , q2, i , s, p, pexec ) be an initial state and t ∈ [0,T ]. Then
V (t ,u) satisfies

• When i > 0 and p < P̄ :

– At the decision time t = k∆< T :

V (k∆, .) = sup
e∈E

(
V e ((k∆)+, .)

)
, (8)

where V (t , .) and V e (t , .) are vectors such that V (t , .)i = V (t ,ui )10 and V e (t , .)i =
E[V (t ,ue

i )], where ue
i is the new order book state when the decision e ∈ E is taken.

Equation (8) should be understood coordinate by coordinate.

– At t 6= k∆< T :
0 =−γI+A V (t , .), (9)

where A = ∂t +Q is the infinitesimal generator of the process Uµ
t .

• When i = 0 or p ≥ P̄ (execution time condition):

V (t ,u) = g̃ (u), ∀t < T, (10)

with g̃ (u) = f
(

lim
t→∞Eu[∆Pt ]

)
.

• The terminal condition is:
V (T,u) = g (u), (11)

with g (u) = f
(
E[ lim

t→∞Eumt [∆Pt ]]
)
and the decision mt represents the liquidation of the

remaining inventory. We keep in mind that a control m may lead to several states because of
the regeneration.
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The proof of this result is given in Appendix II.E.

Remark 1. At every decision time, as long as the order is not executed, the agent compares the
value function given by each control and takes the highest one, see Equation (8). When, the order is
executed, the agent gain is g̃ (u) with u the order book state at the end of the execution. If the order is
not executed before T , the agent send a market order to obtain immediate execution and earn g (u).

Remark 2. Without the control c and l , Equations (8), (9) and (11) are equivalent, in dimension 1,
to the classical problem of finite horizon Bermudean options.

Explicit solution. It is possible to exhibit a solution V for equations of Theorem 1 under a
mild assumption. The solution is constructed backward and step by step within each interval
[k∆, (k +1)∆∨T ) with k ≤ k1 = bT

∆ c an integer.

• Step 1 - Initialization: We take k = k1 and place ourselves in [k∆, (k+1)∆∨T ). Note that
we can reformulate equations of Theorem 1 to obtain that V satisfies{

V (T,u) = g (u),
0 =−γI+ g̃+ Ã V , ∀t ∈ [k∆, (k +1)∆∨T ),

(12)

where the vector g̃ incorporates the execution time constraint associated to (10) and
Ã = ∂t + Q̃ . The operator Q̃ is obtained by removing all the transitions to states
where the inventory is zero or the price exceeds P̃ . We can give the following explicit
expression for g̃ and Q̃ :{

g̃(u) =1i 6=0,p<P̄ +∑
qbe f +q a≤n<q1 λ

1,−
m (u,n,0)g̃ (u)+1i 6=0,p<P̄

∑
u′,n≥q1 λ1,−

m (u,n,u′)g̃ (u′),
Q̃(u,u′) =Q(u,u′)1i 6=0,p<P̄ ,i ′=0,

where u = (qbe f , q a(′), q a f t , q2, i , s, p, pexec ) ∈ Ū, u′ = (q ′be f , q ′a , q ′a f t , q ′2, i ′, s′, p ′, p ′exec ) ∈
Ū and q1 = qbe f +q a +q a f t . Let Im(Q̃) and K er (Q̃) be respectively the image and the
kernel of Q̃ . We consider the assumption −γI+ g̃ ∈ Im(Q̃)+K er (Q̃)17 which means that

−γI+ g̃= g̃Im(Q̃) + g̃K er (Q̃),

with g̃Im(Q̃) ∈ Im(Q̃) and g̃K er (Q̃) ∈ K er (Q̃). Since g̃Im(Q̃) ∈ Im(Q̃), there exists z̃ such
that Q̃ z̃ = g̃Im(Q̃). Then, we can check that the following variable is solution of (12):

V 0
t = e(T−t )Q̃ g + (T − t )g̃K er (Q̃) − z̃, ∀t ∈ (k∆,T ], (13)

where g is the vector such that gi = g (Ūi ). Indeed, we have

A V 0
t = ∂t V 0

t +Q̃V 0
t =−Q̃e(T−t )Q̃ g − g̃K er (Q̃)

+Q̃e(T−t )Q̃ g + (T − t )Q̃g̃K er (Q̃)︸ ︷︷ ︸
=0

−Q̃ z̃

=−[
g̃K er (Q̃) + g̃Im(Q̃)

]= γI− g̃,

which ensures that V 0
t is solution of (12).

17This assumption verified for instance when Q̃ is revertible or symmetric.
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• Step 2 - Iteration: At time k∆, the agent can take a decision. So he compares expressions
of Equation (8) and takes the maximum. After that, he reiterates Step 1 with new initial
values and k = k1 −1.

4.4 Second approach: Decisions taken at any time

Let us now consider the case where the agent takes a decision at any time. In this section,
we provide the system of equations satisfied by the value function and we also introduce a
simplified control problem whose value function can be easily computed numerically, and
converges towards the one of the initial optimal control problem.

4.4.1 Dynamic programming equation

We keep the same notations as in Theorem 1. We have the following result for the value
function in this setting.

Theorem 2. Let u = (qbe f , q a , q a f t , q2, i , s, p, pexec ) be an initial state and t ∈ [0,T ]. Then
V (t ,u) satisfies in the viscosity sense and almost everywhere

• When i > 0 and p < P̄ :

max

(
A V (t , .)−γI, sup

e∈E
V e (t , .)−V (t , .)

)
= 0. (14)

• When i = 0 or p ≥ P̄ (execution time condition):

V (t ,u) = g̃ (u), ∀t ≤ T.

• The terminal condition is:
V (T,u) = g (u). (15)

The proof of the result is given in Appendix II.E. Since ∂t V is a priori not continuous, we
use the notion of viscosity. However we show that ∂t V is continuous except on the boundary
of {V = g } and the above equations are satisfied pointwise except on this boundary, see
Appendix II.E.

Remark 3. When there is no control c and l , Equations (14) and (15) are equivalent, in dimension
1, to the classical problem of finite horizon American option.

4.4.2 Numerical resolution of the optimal execution problem

To solve numerically the preceding optimal control problem, we consider a discrete frame-
work. We show here how this discrete framework can be used to approximate the solution of
the continuous control problem. Furthermore, an error estimate is provided.
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Discrete-time Markov chain approximation. Let U∆
n be a Markov chain with a transition

matrix P∆ defined by

P∗,∆
u,u′ = P

[
U∆ = u′|U0 = u

]
, ∀(u,u′) ∈U2,

with Ut the process defined in Section 2.2. Given the infinitesimal generator Q of U , the
transition matrix P∗,∆ can be easily computed since P∗,∆ = e∆Q . In this approximation, U∆

n is
viewed as the market evolution without the intervention of the agent. Associated to this new
market, we introduce the controlled discrete-time Markov chain

U∆,µ
n =

(
QBe f ,µ

n ,Qa,µ
n ,Q A f t ,µ

n ,Q2,µ
n , Iµn ,Sµn ,Pµ

n ,P E xec,µ
n

)
,

by using the same construction as in Section 3.1. Additionally, the price impact PI∆∞ in this
discrete-time approximation can be computed by following the same approach of Section 4.1.
Finally, for every k ≥ 0, we define the piecewise constant process Ũ∆,µ associated to U∆,µ

n such
that

Ũ∆,µ
t =U∆,µ

k , ∀t ∈ [k∆, (k +1)∆).

We denote by Ṽ ∆(t ,U ) the value function of the control problem 3.1 where the process Uµ is
replaced by Ũ∆,µ and the agents takes its decisions only at times k∆ with k ∈N.

Solving numerically the optimal control problem in the discrete framework. We de-
note by V ∆(n,u) the value function associated to the discrete control problem (i.e. the state
process U∆

n ), with n the period and u the order book state. The dynamic programming
principle reads

V ∆(i ,u) = sup
e∈E

E
[

V ∆
(
(i +1),U∆,µ

i+1

)
−γI∆|U∆,µ

i = u, µi = e
]

, (16)

with the terminal constraint V ∆(n f ,u) = g (u), I the agent’s inventory, µ the control of the
agent and n f the final period. Equation (16) provides a numerical scheme to compute V ∆(0,u).
At the final time T , we can compute V ∆(n f ,u) for each reachable state. Using the backward
Equation (16), we can compute V ∆(i ,u) knowing V ∆(i +1,u) to get the initial value V ∆(0,u).
Thus, one can estimate Ṽ ∆(n∆,u) since Ṽ ∆(n∆,u) =V ∆(n,u). The numerical results of sim-
ulations are presented in Section 5. To compute efficiently the value function, computations
can be carried on in parallel. Let us consider the following assumption.

Assumption 1. There exists a constant D such that

||P∆−P∗,∆||F ≤ D∆2,

with ||.||F the Frobenius norm.
Remark 4. The finite difference scheme associated to the equations of Theorem 2 is the application
of the discrete-time approximation with a Markov chain Ũ∆

n whose transition matrix P̃∆ = I +Q∆.
Note that P̃∆ satisfies Assumption 1.
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Let µOpti ,∆ (resp. µOpti ) be the optimal control associated to the process Ũ∆,µ
t (resp. Uµ

t ) and
H an upper bound for the intensity functions that exists under Assumptions 3 and 4. Note
that g is bounded by ||g ||∞ since we focus on strategies that liquidate the whole inventory
when the mid price get beyond P̄ . Then we have the following error estimate result.

Theorem 3. Under Assumption 1, Ṽ ∆(t ,u) converges towards V (t ,u) for every (t ,u) ∈ [0,T ]× Ū.
Additionally, we have the following error estimate:

|Ṽ ∆(t ,u)−V (t ,u)| ≤ R(T − t )∆, (17)

with R = 4cq a H +D||g ||∞. Moreover, the control µOpti ,∆ converges µOpti and for ∆ small enough
we have the equality µOpti ,∆ =µOpti , a.s.

The proof of this result is given in Appendix II.F.

5 Numerical experiments

In this section, we show the relevance of the optimal strategy in both frameworks: when
decisions are taken at fixed frequency ∆−1 and when they are taken at any time. To do so, we
compare the optimal gain given by our strategy and the one given by the standard strategy
join the bid: stay in the order book at the best bid until the final time. Here, we write Q1

(resp. Q2) for the best bid (resp. ask) limit.

5.1 Computation of the optimal gain: decisions taken at a fixed frequency
∆−1

Figure II.7 shows for an order of size 1 the difference between the average gain (i.e. the initial
value function) of the optimal strategy and the one of the strategy join the bid for different
values of the initial Q1 and Q2. The gain of the optimal strategy is obviously always higher
than that of the strategy stay in the order book. However, because of the priority value, that is
the advantage of a limit order compared with another limit order standing at the rear of the
same queue, it is more useful to be active (i.e. cancel the order or send a market order) when
imbalance is highly positive than when it is negative. Finally, note that the optimal strategy
reaches the maximum value of 2.4 ticks (since the tick δ= 1 cent).
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Figure II.7 – Difference between the optimal gain of the optimal strategy and the one of the
strategy stay at the best bid. The initial parameters are fixed as follows: the time frequency
is equal to ∆= 10 seconds, the final time T = 100 seconds, arrival and consumption rates are
estimated on data (see Appendix II.A), the new bid (resp. ask) is set to 5 and the new ask
(resp. bid) to 3 after the total depletion of the bid (resp. ask) limit, the quantity q0 = 1, the
waiting cost c = 0, the price increases (resp. decreases) by δ= 1 cent when the ask limit (resp.
bid limit) is totally consumed and the function f is equal to the identity.

5.2 Computation of the optimal gain: decision taken at any time

Figure II.8 shows the value function at time zero (i.e. trader’s gain) of the optimal strategy
in red and the one of the strategy stay at the best bid in blue in percentage of the tick δ= 1
cent using the discrete approximation. The points colors refer to the initial decision given by
the strategy: green points means stay in the order book at the beginning is the best decision,
red points means cancel is the best initial decision and black points means send a market
order is the best initial decision. When imbalance is highly negative, it is optimal to cancel
the order to avoid adverse selection, when imbalance is highly positive it is optimal to send a
market order or stay in the order book. In our case, stay in the order book is interesting when
imbalance is highly positive since the priority value is important (i.e. QBe f is fixed equal to
1). In mid cases (i.e. imbalance close to 0), it is optimal to send a market order to reduce the
waiting cost. We note that the gain of the optimal strategy is significanlty better than the one
of the strategy join the bid.
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Figure II.8 – The gain per tick of the optimal strategy in red and the one of the strategy join
the bid in blue for different values of the initial imbalance. Initial imbalances are obtained
with QBe f = 0, Q1 = 11 and Q2 from 1 to 11, and Q2 = 11 and Q1 from 10 to 1. Initial
parameters are as follows: the time step is equal to ∆= 1 second, there are 10 periods, arrival
and consumption rates are constant λ1,+ = λ2,+ = 0.06 and λ1,− = λ2,− = 0.12, the new bid
(resp. ask) is set to 5 and the new ask (resp. bid) to 3 after the total depletion of the bid (resp.
ask) limit, the quantity q0 = 1, the waiting cost c = 0.0085, the price increases (resp. decreases)
by δ= 1 cent when the ask limit (resp. bid limit) is totally consumed and the function f is the
identity.
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II.A Model parameters estimation

The estimation methodology of the arrival and cancellation rates of limit orders is similar to
that in [90]. The regeneration distribution of the order book is estimated from the empirical
distribution of order book states after a depletion. In what follows, we provide the calibration
results of our order book model using the database described in Section 2.1. Here, we write
Qt = (Q1

t ,Q2
t ) with Q1

t (resp. Q2
t ) the best bid (resp. ask) quantity and consider that intensities

and regeneration distributions depend only on Qt .

Intensities estimation. For every Q = (Q1,Q2), we write τ1,+(Q) = λ1,+/λ1,− and τ2,+(Q) =
λ1,+/λ1,− respectively for the bid and ask side growth ratios. Given the bid-ask symmetry
relation, we can aggregate data and focus on the bid side only. Figures II.9.a, II.9.b, II.9.c
and II.9.d show respectively λ1,+, λ1,−, τ1,+ and τ2,+ for different values of Q . As expected,
we can see that participants insert more limit orders when the imbalance is negative (see
Figure II.9.a when Q2 À Q1) while they cancel more when the imbalance is positive (see
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Figure II.9.b when Q1 ÀQ2). Finally, Figure II.9.c (resp. Figure II.9.d) shows that τ1,+ (resp.
τ2,+) is high when imbalance is negative (resp. positive) and becomes low when imbalance
is positive (resp. negative) which means that the bid limit (resp. ask limit) tends to increase
(resp. decrease) when Q1 ¿Q2 and tends to decrease (resp. increase) when Q1 ÀQ2.
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Figure II.9 – (a) λ1,+, (b) λ1,−, (c) τ1,+ and (d) τ2,+ for different values of (Q1,Q2). Q1 and Q2

are divided by the average event size.

Quantities after depletion. When one limit is depleted, we write QNew,1 (resp. QNew,2)
for the new best bid (resp. ask). Figures II.10.a, II.10.b and II.10.c show respectively QNew,1,

QNew,2 and the ratio r+(Q1,Q2) = QNew,1

QNew,2 for different values of Q1 and Q2 before the mid
price move. Since we aggregate data, the bid queue is always the depleted queue and the ask
limit is the non-consumed limit. Figures II.10.a and II.10.b show that QNew,1 depends mainly
on Q2 while QNew,2 depends on both Q1 and Q2. However, the interesting point is that r+

reach its maxima in two cases, see Figure II.10.c. The first case, when the bid is low and the
ask is high, can be explained by a mean reversion effect while the second one, when both
queues are initially high, is due to the arrival of a large order consuming market liquidity.
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II.A. Model parameters estimation

(a) QNew,1 (b) QNew,2
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Figure II.10 – (a) QNew,1, (b) QNew,2 and (c) r+ for different values of Q1 and Q2. Q1 and Q2

are divided by the average event size.
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II. Optimal liquidity-based trading tactics

II.B Ergodicity of the process (Ut )

II.B.1 Outline of the proof

Let Zt be a Markov process defined on the probability space (Ω,F ,Ft ,P) and valued in
(W,W ) and Pt (x, A) the probability transition of Zt .

Definition II.B.1 (Ergodicity). The process Zt is ergodic if there exists an invariant probability
measure π which satisfies

lim
t→∞||Pt (x, .)−π(.)||T V = 0,

where ||µ−µ′||T V = sup
A∈F

|µ(A)−µ′(A)|.

To prove that Ut is ergodic, we design a Lyapunov function V : U→ (0,∞), on which the
following negative drift condition is satisfied for some c > 0 and d > 0:

QV (q) ≤−cV (q)+d ,

Q be the infinitesimal generator of Ut . Then, using Theorem 6.1 in [122], the Markov process
Ut is non-explosive and V-uniformly ergodic. Furthermore, by Theorem 4.2 in [122], it is
Harris positive recurrent.

II.B.2 Proof

Let u = (q1, q2, s) ∈U and z = min(z0, z1), we define

V (u) = ∑
i∈{1,2}

zq i−Cbound + zs−Cbound .

To simplify notations we do not write the dependence of λi ,±
Q (n) and λ±

S (n) on u. For any
t ≥ 0, we have

Qt V (u) = ∑
u′ 6=u

Qt u,u′
[
V (u′)−V (u)

]
.

By rearranging the above terms, we get

Qt V (u) =
2∑

i=1

∑
1≤n

[
λi ,+

Q (n)(zq i+n−Cbound − zq i−Cbound )+λi ,−
Q (n)(zq i−n−Cbound − zq i−Cbound )

]
+ ∑

1≤n

[
λ+

S (n)(zs+nτ0−Cbound − zs−Cbound )+λ−
S (n)(zs−nτ0−Cbound − zs−Cbound )

]
=

2∑
i=1

zq i−Cbound
∑

1≤n
(zn −1)

[
λi ,+

Q (n)−λi ,−
Q (n)

1

zn

]
+ zs−Cbound

∑
1≤n

(znτ0 −1)

[
λ+

S (n)−λ−
S (n)

1

znτ0

]
. (18)
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II.B. Ergodicity of the process (Ut )

Step (i ). When q i ≤ C bound , the quantity zq i−Cbound is bounded and the intensities are
bounded by Assumption (2). Hence, there exist c1 > 0 and d 1 > 0 such that

zq i−Cbound
∑

1≤n
(zn −1)

[
λi ,+

Q (n)−λi ,−
Q (n)

1

zn

]
≤ zq i−Cbound

( ∑
1≤n

znλi ,+
Q (n)

)
≤−c1zq i−Cbound +d 1. (19)

Similarly, when s ≤C bound , we have

zs−Cbound
∑

1≤n
(znτ0 −1)

[
λ+

S (n)−λ−
S (n)

1

znτ0

]
≤−c1zs−Cbound +d 1. (20)

Step (i i ). Using Assumption (1), we deduce that

zq i−Cbound
∑

1≤n(zn −1)
[
λi ,+

Q (n)−λi ,−
Q (n) 1

zn

]
≤−2δzq i−Cbound , when q i >C bound ,

zs−Cbound
∑

1≤n(znτ0 −1)
[
λ+

S (n)−λ−
S (n) 1

znτ0

]≤−2δzs−Cbound , when s >C bound .
(21)

Step (i i i ). By combining Inequalities (26), (20) and (27), we have

Qt V (u) ≤−cV (u)+d ,

with c = min(c1,2δ) and d = d 1. This completes the proof.
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II. Optimal liquidity-based trading tactics

II.C Proof of the computation of the long-term average price
move

II.C.1 Proof of Proposition 1

For simplification, we fix the spread equal to one tick. Hence, t1 (resp. t2) are the first
depletion of the best bid (resp. ask). Under Assumptions 3 and 4, the number of reachable
states N is finite. For any i , i ′ ∈NU with NU = {1, . . . , N } and (s,r ) ∈ R+× {1,2}, we denote by
µr

i i ′(s) the density of t r
i i ′ the first depletion time of the limit r when the initial state is Ui and

the state before the depletion is Ui ′ . We write µ−
i i ′ (resp. µ+

i i ′ ) for the density of t̃−i i ′ (resp. t̃+i i ′ )
the first time when the bid (resp. ask) limit is consumed before the ask (resp. bid) one and
where the initial state is Ui and the state before the depletion is Ui ′ .

Lemma II.C.1. There exist m1 > 0 and m2 > 0 such that

µr
i i ′(s) ≤ m1e−m2s , µ±

i i ′(s) ≤ m1e−m2s , ∀s ∈R+,∀r ∈ {1,2},∀(i , i ′) ∈N2
U .

The proof of Lemma II.C.1 is given after the proof of Proposition 1. Let i ∈ NU , s ≥ 0 and
D i

s = EUi [Ps −P0]. We denote by µ−t
i i ′ (resp. µ+t

i i ′ ) the density of t̃−t
i i ′ (resp. t̃+t

i i ′ ) the first time
lower than t where the bid (resp. ask) limit is depleted before the ask (resp. bid) one and
when the initial state is Ui and the state before the depletion is Ui ′ . Under Assumption 5,
we have D i∞ = lim

t→∞EUi [Pt −P0] <∞ at least for one i . Since Ut is irreducible it means that

D i∞ <∞ for all i . We have the following result:

Lemma II.C.2.

lim
t→∞

∫ t

0
µ±t

i i ′ (s)(Dk
t −Dk

t−s)d s = 0, ∀(i , i ′,k) ∈N3
U ,∀r ∈ {1,2}.

The proof of Lemma II.C.2 is given at the end of this section. Let us prove Proposition 1.

Proof of Proposition 1. Let ∆P 0
t = Pt −P0 and q±t

i i ′ =P[t̃±i i ′ ≤ t ] for t ≥ 0. We can write

EUi [∆P 0
t ] = EUi [∆P 0

t 1t2≤t1<t ]+EUi [∆P 0
t 1t1<t2<t ]

= EUi [E[∆P 0
t /Ft2 ]1t2≤t1<t ]+EUi [E[∆P 0

t /Ft1 ]1t1<t2<t ] (22)

=∑
i ′

q+t
i i ′

[
α+

i ′ +
∫ t

0
µ+t

i i ′ (s)
( N∑

k=1
d 2

i ′,k Dk
t−s

)
d s

]+∑
i ′

q−t
i i ′

[
α−

i +
∫ t

0
µ−t

i i ′ (s)
( N∑

k=1
d 1

i ′,k Dk
t−s

)
d s

]

=

(1)︷ ︸︸ ︷∑
i ′

q+t
i i ′

(
α+

i ′ +
N∑

k=1
d 2

i ′,k

∫ t

0
µ+t

i i ′ (s)Dk
t d s

)+∑
i ′

q−t
i i ′

(
α−

i +
N∑

k=1
d 1

i ′,k

∫ t

0
µ−t

i i ′ (s)Dk
t d s

)

+

(2)︷ ︸︸ ︷∑
i ′

q+t
i i ′

(
α+

i ′ +
N∑

k=1
d 2

i ′,k

∫ t

0
µ+t

i i ′ (s)∆Dk
t ,s d s

)+∑
i ′

q−t
i i ′

(
α−

i +
N∑

k=1
d 1

i ′,k

∫ t

0
µ−t

i i ′ (s)∆Dk
t ,s d s

)
,
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II.C. Proof of the computation of the long-term average price move

with ∆Dk
t ,s = Dk

t−s −Dk
t . Using Lemma II.C.2, the quantity (2) goes to 0 when t tends to

infinity. Hence by sending t to infinity in (22), we find

D i
∞ =∑

i ′
q+

i i ′α
+
i ′ +q−

i i ′α
−
i ′ +

N∑
k=1

∑
i ′

(q+
i i ′d

2
i ′,k +q−

i i ′d
1
i ′,k )Dk

∞ = qi +
N∑

k=1
pi ,k Dk

∞. (23)

Additionally, using the symmetry relation, we have D i∞ = −D i s ym

∞ . We write D for the set
D = {(q1, q2, s); p = 0, q1 ≥ q2}. Consequently, Equation (23) reads

D i
∞(1− (pi ,i −pi ,i s ym )) = qi +

∑
k∈D

(pi ,k −pi ,k s ym )Dk
∞.

Given that 0 ≤ pi ,i < 1 (the price moves with a non-zero probability when one limit is totally
consumed), we have (1− (pi ,i −pi ,i s ym )) > 0. This proves the result of Proposition 1.

Proof of Lemma II.C.1. Let i , i ′ ∈NU and r ∈ {1,2}. Under Assumptions 3 and 4, the intensities
are bounded by a constant λ∞. Let N∞ be the Poisson process which admits λ∞ as an
intensity. We have

PUi [t≤ t1 ≤ t̄,Ut−1 =U ′
i ] ≤P[Nt −Nt 6= 0, ∀t ∈ [t, t̄]] =

∫ t̄

t
λ∞e−λ∞s d s, ∀t, t̄ ∈R+.

Consequently, we get

µr
i i ′(t) = lim

t̄→t

PUi [t≤ t1 ≤ t̄,Ut−1 =U ′
i ]

t̄− t
≤ lim

t̄→t

∫ t̄
t λ∞e−λ∞s d s

t̄− t
=λ∞e−λ∞t.

By following the same methodology, we also have

µ±
i i ′ ≤λ∞e−λ∞t.

This completes the proof.

Proof of Lemma II.C.2. Using Lemma II.C.1, we have

P[t̃±t
i i ′ ≤ s] =P[t̃±i i ′ ≤ s|t̃±i i ′ ≤ t ] = P[t̃±i i ′ ≤ s]

P[t̃±i i ′ ≤ t ]
≤ m1e−m2s

q±t
i i ′

, ∀s ≤ t ,

with q±t
i i ′ = P[t̃±i i ′ ≤ t ]. Under Assumptions 3 and 4 the intensities are bounded and the price

jumps are also bounded since the state space is finite. Hence, there exists m3 > 0 such that

Dk
t ≤ m3t , ∀t ≥ 0.

Since lim
t→∞Dk

t <∞ is finite, we have εt = sups≤ t
2
|Dk

t −Dk
t−s | →

t→∞ 0. Consequently, we have

lim
t→∞|

∫ t

0
µ±,t

i i ′ (s)(Dk
t −Dk

t−s)d s| ≤ lim
t→∞εt

∫ t
2

0
µ±t

i i ′ (s)d s +
∫ t

t
2

µ±t
i i ′ (s)|Dk

t −Dk
t−s |d s

≤ lim
t→∞εt + 2m3

q±t0

i i ′
t
∫ t

t
2

m1e−m2s d s

≤ lim
t→∞εt + 2m1m2m3

q±t0

i i ′
t (e−m2t −e−m2

t
2 ) = 0,

with t0 a fixed positive number such that q±t0

i i ′ > 0. This completes the proof.

103



II. Optimal liquidity-based trading tactics

II.C.2 Computation methodology of q±
i i ′

The reader can skip this part for a first reading. For simplification, we fix the added/cancelled
quantity q = 1 and the spread constant. To take into account non-unitary jumps, we can
simply fill the zero values of the matrix Q̃∗ with the right probabilities, see Equation (24).

Let R = [R−,R+] be the matrix such that R−
i i ′ = q−

i i ′ and R+
i i ′ = q+

i i ′ . To compute the matrix R ,
we first fix the price P = 0 since there is no price move before the total depletion of a limit
and model the order book state by u = (q1, q2) with q1 (resp. q2) the best bid (resp. ask)
quantity. Then, we introduce the absorbing states U0,q ′ (resp. Uq ′,0) with q ′ ≥ 1 associated to
the cases u′ = (0, q ′)(resp. u′ = (q ′,0)) where Q1 (resp. Q2) is consumed before Q2 (resp. Q1).
We want to compute the probabilities to visit U0,q ′ and Uq ′,0 with q ′ ≥ 1 starting from U ′

i . To
do this, we consider the infinitesimal generator Q∗ of the Markov process (Q1,Q2) (the price
P = 0 is fixed)

Q∗ =
[

02Qmax 0[
Q− Q+ ]

Q̃∗

]
,

where 02Qmax is the zero square matrix of size 2Qmax , Q− encodes transitions to the absorbing
states U0,q ′ and Q+ encodes transitions to the absorbing states Uq ′,0 with 1 ≤ q ′ ≤Qmax , and
Q̃∗ is similar to the infinitesimal generator of the process Ut without regeneration. The matrix
Q̃∗ has the following form:

Q̃∗ =


Q̃∗,(1)

1 Q̃∗,(1)
0 0 0 . . .

Q̃∗,(2)
2 Q̃∗,(2)

1 Q̃∗,(2)
0 0 . . .

...
. . . . . . . . .

...
. . . 0 0 Q̃∗,(Qmax )

2 Q̃∗,(Qmax )
1

 , (24)

where Q̃∗,(l )
0 encodes transitions from level Q1 = l to level Q1 = l +1, matrix Q̃∗,(l )

2 encodes
transition from level Q1 = l to Q1 = l −1 and matrix Q̃∗,(l )

1 encodes transitions within level
Q1 = l . Qmax is the maximum quantity available on each limit. Within each sub-matrix Q̃∗,(l )

i

with i ∈ {0,1,2}, Q1 is equal to l and Q2 vary from 1 to Qmax . The sub-matrices Q̃∗,(l )
i , for

i = 0,1, can be written

Q̃∗,(l )
0 =

 λ1,+(l ,1)
. . .

λ1,+(l ,Qmax )

 and Q̃∗,(l )
2 =

 λ1,−(l ,1)
. . .

λ1,−(l ,Qmax )

 .

Let λ∗(l , l ′) =∑2
i=1λ

i ,+(l , l ′)+λi ,−(l , l ′) for every l , l ′ ∈ {1, · · · ,Qmax }. For l ≤Qmax , we have

Q̃∗,(l )
1 =


−λ∗(l ,1) λ2,+(l ,1) 0 0 . . .
λ2,−(l ,2) −λ∗(l ,2) λ2,+(l ,2) 0 . . .
...

. . . . . . . . .
...

. . . 0 0 λ2,−(l ,Qmax ) −λ∗(l ,Qmax )

 .

Finally, we define the matrix Q− such that Q−
i i = λ1,−(1, i ) for 1 ≤ i ≤Qmax and 0 otherwise,

and the matrix Q+ such that Q+
iQmax+1,i+1 =λ2,−(i ,1) for 0 ≤ i ≤Qmax −1 and 0 otherwise.
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II.C. Proof of the computation of the long-term average price move

Lemma II.C.3 (Computation of q±
i i ′ ). Let R = [R−,R+] be the matrix such that R−

i i ′ = q−
i i ′ and

R+
i i ′ = q+

i i ′ . Then, R is a solution of the equation

Q̃∗R =−z1,

where Q̃∗ is defined in (24) and z1 = [Q−,Q+] with Q− and Q+ defined (25). The solution of this
equation is unique since Q̃∗ is invertible.

The proof of this lemma is given below.

Example 1. The case where the best bid dynamics are independent from the one of the best ask is a
classical setting that was studied in [90]. In such situation, the matrix Q̃∗ is diagonalisable, see
Appendix II.CII.C.3. Additionally, when the intensities are constant, we have a closed closed-form
formula for the diagonalisation of Q̃∗, see Appendix II.CII.C.3.

Proof of Lemma II.C.3. Using Theorem 3.3.1 in [131], for every absorbing state Ui ′ we have{
q−

U0,q ,U0,q
= 1, q+

U0,q ,Ui ′
= 0, q−

Uq,0,Ui ′
= 0, q+

Uq,0,Uq,0
= 1, with q ∈ {1,Qmax },∑

j Q∗
i , j q±

j ,i ′ = 0 ∀i ∈ [2Qmax +1,(Qmax )2 +2Qmax ].

In the above equations, we use a slight abuse of notation and do not differentiate the state
Ui ′ and the index i ′. The equation above reads

Q̃∗R =−z1, (25)

with z1 = [Q−,Q+] and R = [R−,R+] the matrix such that R−
i i ′ = q−

i i ′ and R+
i i ′ = q+

i i ′ . The
solution of this equation is unique since Q̃∗ is invertible. When queues are independent
Q̃∗ is diagonalisable, see next sub-section. In the simple case of constant intensities, Q̃∗

diagonalisation is explicitely computable.

II.C.3 Diagonalisation of Q̃∗

II.C.3.1 Symmetrization of Q̃∗ under the assumption of independent queues

The idea is to find a matrix P such that P−1Q̃∗P is symmetric with P = LH . First, we consider
the bloc-diagonal matrix H = di ag {H1, H2, . . . HQmax } where every Hi is a square matrix of
size Qmax such that 

H1 = I ,

Hi+1 = Hi

√
Q̃∗,(i )

2

(
Q̃∗,(i−1)

0

)−1
, ∀i ≥ 1.

Here p. refers to the square root of a matrix. The existence of such a matrix in this case is
trivial since Q̃∗,(i )

2 and Q̃∗,(i−1)
0 are diagonal with strictly positive coefficients.

Next, we consider the bloc-diagonal matrix L = di ag {L1,L1, . . .L1} where L1 is a diagonal

matrix with diagonal coefficients L1(1,1) = 1 and L1(i +1, i +1) = L1(i , i )

√
Q̃∗,(0)

1 (i+1,i )

Q̃∗,(0)
1 (i ,i+1)

for all

i ≥ 1. Given that queues are independent we have Q̃∗,(0)
1 = Q̃∗,(0)

i for all i ≥ 1. Finally, we
remark that P−1Q̃∗P , with P = LH , is symmetric.
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II.C.3.2 Diagonalisation of the symmetric matrix P−1Q̃∗P : constant coefficients

In the simple case of constant coefficients, the matrix P defined in Appendix II.CII.C.3II.C.3.1
satisfies

P−1Q̃∗P =


A(a,b) V 0 0 0
V A(a,b) V 0 0
...

...
...

...
0 0 0 V A(a,b)

 and A(a,b) =


a b 0 0 . . .
b a b 0 . . .
...

...
...

...
...

. . . 0 0 b a

 ,

where V = βI with β > 0 and a and b are some fixed constants. In such framework, the
eigenvalues of P−1Q̃∗P are

λ
k, j
a,b,β = a +2b cos(

kπ

n +1
)+2βcos(

jπ

n +1
), ∀1 ≤ k, j ≤ n,

and the associated eigenspace is generated by the eigenvector X k, j =
(
v j

1 X k , v j
2 X k · · · , v j

Qmax X k
)
,

where v j
. satisfies

v j
r = sin(r

jπ

n +1
), ∀1 ≤ r, j ≤ n,

and X k is a vector such that

X k
l = sin(l

kπ

n +1
), ∀1 ≤ k, l ≤ n.

II.D Generalities about the state process Uµ
t and the value

function

For simplification, we fix the added/cancelled quantity q = 1 and the spread constant equal
to 1 tick. In this section we take Ū=R5+×(R)2 and Assumptions II.D.1 and II.D.2 are in force.
When Ū=N5 × (τ0

2 Z)2, the results of this section remain valid but for different values of the
constants and Assumptions II.D.1 and II.D.2 are not needed.

II.D.1 Regularity of the regenerative process Uµ
t

The regularity of our regenerative process is not trivial. In fact, if we consider two processes
Uµ and U ′µ satisfying the same order book dynamics (see Section 3.1) but starting from two
different initial points u0 and u′

0, as long as there is no regeneration, for every order flow
trajectory, the error ||Uµ−U ′µ|| is equal to the initial error ||u0 −u′

0||. However, when one
of the two processes is regenerated before the other, the regenerated one starts a new cycle
from a random position and the error ||Uµ−U ′µ|| is no longer bounded by ||u0−u′

0||. Hence,
the irregularity mainly comes from the regeneration. In our case, since the regeneration law
depends on the killing state, it may introduce strong irregularities. Consequently, we need an
assumption to ensure that regeneration distributions are similar when exit points are close
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t and the value function

enough. We denote by d̃ i
u the regeneration distribution of Uµ

t when the depleted side is i and
the state before the depletion is u. We give here a result on the regularity of the state process
under two general assumptions.

Assumption II.D.1 (Regeneration smoothness). There exist positive constants K , q0, q1 ≤ 1∧q0

and β such that for any u,u′ = (q ′be f , q ′a , q ′a f t , q ′2, i ′, p ′, p ′exec ) ∈ Ū,

||d̃ i
u − d̃ i

u′ ||T V ≤ K (||u −u′||p )p ,
d̃ i

u(u′) = 0, when min(q ′1, q ′2) ≤ q0,∑
i

(
λi ,+(u)+λi ,−(u,u′)1q i>q1

)≤β,

with q ′1 = q ′be f + q ′a + q ′a f t , ||p − p ′||T V = sup
A ∈F

|p(A )− p ′(A )| and ||.||p the Lp norm with

p ≥ 1.

Assumption II.D.1 is a Lipschitz type inequality to ensure that regeneration distributions are
almost similar when exit states are close enough. Furthermore, we add a support constraint
to guarantee that regenerated limits have a size higher than a fixed minimum quantity q0 and
consider a boundedness assumption for the intensities. We also add the following assumption.

Assumption II.D.2 (Exit dynamics). ∀u = (q1, q2) ∈U=R2+ and i ∈ {1,2}, there exists a positive
constants β− such that ∀ε> 0, ∃qε > 0,

∑
u′
λi ,−(u,u′)1q i≤qε ≥

β−

ε
.

For small size queues (i.e. q i ≤ qε), Assumption II.D.2 ensures that intensities of depletion
are high (i.e. λi ,− ≥ 1

ε ) while other intensities are bounded. Such assumption avoids critical
situations where the order book goes far away from an exit state after being too close to it.
It is also consistent with empirical evidences since a limit disappears almost instantaneously
when it becomes lower than a given bound qε. We have the following result proved in
Appendix II.DII.D.4.

Theorem II.D.1 (Regularity of the state process). Under Assumptions 2, 3, 4, 5, II.D.1 and II.D.2,
the process Uµ

t satisfies

E
[
(||Uµ

t −U ′µ
t ||p )p]≤ K0eC0T (||U0 −U

′
0||p )p , ∀U0,U

′
0 ∈ Ū,∀t ∈ [0,T ], (26)

where Uµ
t (resp. U ′µ

t ) is the Markov process starting from the initial state U0 (resp. U
′
0), T is the

final time, K0 and C0 are constants defined in Appendix II.DII.D.4.

107



II. Optimal liquidity-based trading tactics

II.D.2 Regularity of the value function

In this section, we fix p = 1 and write ||.||p = ||.||. Since f is Lipschitz, the function g (u) =
f (Eu

[
∆Pµ

∞
]
) is Lipschitz as well, see Lemma II.D.3. When the state process is valued in

N5 × (τ0
2 N

∗)2 we only need g to be bounded which is always satisfied under Assumptions 3, 4
and 5. Then, we have the following regularity properties proved in Appendix II.DII.D.5.

Proposition II.D.1. Let T be the final horizon, the value function V is

• Lipschitz in space:

|VT (t ,U1)−VT (t ,U2)| ≤ AeC0(T−t )||U1 −U2||, ∀U1,U2 ∈ Ū,∀t ∈ [0,T ], (27)

with A and C0 constants respectively defined in Appendix II.DII.D.5 and Theorem II.D.1.

• Lipschitz in time:

|VT (t ,U1)−VT (t
′
,U1)| ≤ L0|t

′ − t |, ∀U1 ∈ Ū,∀t , t ′ ∈ [0,T ], (28)

with L0 = cq a + AeC0(T−t )C and C a constant defined in Appendix II.DII.D.4.

II.D.3 Execution time inequalities

Here again we also fix p = 1 and write ||.||p = ||.||. We recall that T t ,µ
E xec is defined in Section 4.2

for any control µ. We provide here two execution time inequalities. First, when agent’s
decisions are taken at a fixed frequency ∆−1, we have the following inequality.

Proposition II.D.2. Let U1, U2 be two initial states and µ
Opti
1 (resp. µOpti

2 ) the optimal strategy
for the process starting from U1 (resp. U2). Then, we have

E

[
|T t ,µOpti

2
E xec −T

t ,µOpti
1

E xec |
]
≤∆eC1(T−t )||U1 −U2||+∆K1(T − t ), ∀U1,U2 ∈ Ū,∀t ∈ [0,T ],

with C1 = log(K0)
∆ +C0, K1 = 4β and C0 and K0 defined in Appendix II.DII.D.4.

Proposition II.D.2 shows that both initial states and agent’s latency ∆ affect the optimal
execution time. We have a second inequality when decisions are taken at any time.

Proposition II.D.3. Let U1, U2 be two initial states and µ
Opti
1 (resp. µOpti

2 ) the optimal strategy
for the process starting from U1 (resp. U2). Then, we have

E

[
|T t ,µOpti

2
E xec −T

t ,µOpti
1

E xec |
]
≤ K ′

0||U1 −U2||, ∀U1,U2 ∈ Ū,∀t ∈ [0,T ], (29)

with K ′
0 = log(K0). The constant K0 is given in Theorem II.D.1.

Proofs of Propositions II.D.2 and II.D.3 are given in Appendix II.D.6.
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II.D.4 Proof of Theorem II.D.1

Notations: Let U0, U
′
0 ∈ Ū, Uµ

t (resp. U ′µ
t ) the process starting from U0 (resp. U ′

0), T the
final time horizon, P̄ the maximum mid price value, P̄ E xec the upper bound for the execution
price and Q̂max = max(Qmax,Q̃max, P̄ ). Let τ1,− (resp. τ′1,−) be the first time where the best bid
(resp. ask) is totally consumed, τ1,+ (resp. τ′1,+) the first time where the best ask (resp. bid) is
depleted and τ1 = τ1,−∧τ1,+ (resp. τ′1 = τ′1,−∧τ′1,+) the first regeneration time of the process

Uµ
t (resp. U ′µ

t ). Finally, we write τ2 for τ2 = τ1 ∨τ′1. Let ε = (||U0 −U
′
0||p )p > 0, there exists

0 < qε ≤ q0 satisfying conditions of Assumption II.D.2. We fix p ≥ 1 and write ||.||p = ||.||.

Step 1: Assume ||U0 −U ′
0|| > qε. Let us show that

E
[

sup
0≤t≤T

||Uµ
t −U ′µ

t ||p]≤ 3p−1||U0 −U
′
0||p eC̃ T , (30)

with C̃ = Ĉβ
q p
ε
, Ĉ = [

6(Q̂max)p + (P̄ E xec )p
]

and β is defined in Assumption II.D.2.

Proof of Equation (30). We write δUµ
t =Uµ

t −U0 and δU ′µ
t =U ′µ

t −U ′
0. Then, we have

||Uµ
t −U ′µ

t ||p = 3p−1
(
||δUµ

t ||p +||δU ′µ
t ||p +||U0 −U ′

0||p
)

.

Since E
[

sup
0≤t≤T

||δUµ
t ||p

]≤ [
6(Q̂max)p + (P̄ E xec )p

]
βT , we have

E
[

sup
0≤t≤T

||Uµ
t −U ′µ

t ||p]≤C T +B ,

with C = 3p−1Ĉβ and B = 3p−1||U0 −U
′
0||p . Since ||U0 −U ′

0|| > qε, we have B > 3p−1q p
ε . The

latter leads to the following inequality:

E
[

sup
0≤t≤T

||Uµ
t −U ′µ

t ||p]≤C T +B ≤ BeC̃ T ,

with C̃ = Ĉβ
q p
ε
. The last inequality comes from ax +b ≤ bea/b0x when b > b0.

Step 2: Assume ||U0 −U ′
0|| ≤ qε. First, let us show that

E||Uµ
τ2
−U ′µ

τ2
||p ≤ κ||U0 −U ′

0||p , (31)

with κ= κ1Ĉβ+2
p

2κ2RK , κ1 = (1+3Tβ)
β− , κ2 = κ1Ĉβ+1, K defined in Assumption II.D.1 and

R defined in Appendix II.D.4.1.

Proof of Inequality (31). We assume that τ1 > τ′1 a.s. The general case uses the same lines of
argument. We have

||Uµ
τ2
−U ′µ

τ2
||p = ||Uµ

τ1
−U ′µ

τ1
||p ≤

(1)︷ ︸︸ ︷
||U ′µ

τ1
−U ′µ

τ′1
||p +

(2)︷ ︸︸ ︷
||Uµ

τ1
−U ′µ

τ′1
||p .
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• Part (1) satisfies

E[||U ′µ
τ1
−U ′µ

τ′1
||p ] ≤ ĈβE[|τ1 −τ′1|] ≤ Ĉβκ1||U0 −U ′

0||p . (32)

In the second inequality, we use E[|τ1 −τ′1|] ≤ κ1||U0 −U ′
0||p , see Lemma II.D.1 below.

• For Part (2), let X = [0,Q̂max ]6 × [0, P̄ E xec ]. There exists a Borel function s valued in
[−1,1], see Appendix II.D.4.1 at the end of the proof, and a positive contant R such that

||x − y ||p ≤ R|s(x)− s(y)|, ∀(x, y) ∈ X 2.

Let us denote by dx the regeneration distribution of Uµ
t (i.e. dx = d 1

x (resp. dx = d 2
x )

when the best bid (resp. ask) is totally depleted). Finally, we denote by M the set of
Borel functions on X that take values in [−1,1]. In such case, we have

E
[||Uµ

τ1
−U ′µ

τ′1
||p]≤ R E

[|s(Uµ
τ1

)− s(U ′µ
τ′1

)|]= R E
[
E[

∫
[|s(x)− s(y)|]dUµ

τ−1
(x)dU ′µ

τ′−1
(y) d xd y/Fτ1 ]

]
≤p

2R E
[
E[|

∫
|s(x)|dUµ

τ−1
(d x)−

∫
|s(y)|dU ′µ

τ′−1
(d y)|/Fτ1 ]

]
≤
p

2R E
[
E[|sup

g∈M

{∫
g dUµ

τ−1
(d x)−

∫
g dU ′µ

τ′−1
(d x)

}
|/Fτ1 ]

]

= 2
p

2R E
[ (∗)︷ ︸︸ ︷
||dUµ

τ−1
−dU ′µ

τ′−1
||T V

]≤ 2
p

2RK E
[||Uµ

τ−1
−U ′µ

τ′−1
||p]

.

In (*) we used the total variation distance property 2||µ−ν||T V = sup
g∈M

∫
g dµ− ∫

g dν.

Given that E[||Uµ
τ−1

−U ′µ
τ′−1

||p ] ≤ κ2||U0 −U ′
0||p , see Lemma II.D.2 below, we have

E[||Uµ
τ1
−U ′µ

τ′1
||p ] ≤ 2

p
2RKκ2||U0 −U ′

0||p . (33)

By combining Inequalities (32) and (33), we get the result.

Lemma II.D.1. We have
E[|τ1 −τ′1|] ≤ κ1||U0 −U ′

0||p ,

with κ1 = (1+3Tβ)
β− .

Proof of Lemma II.D.1. First, we assume that τ1 > τ′1 a.s and consider the following notation.
For every state u, we write u2,+ (resp. u2,−) for the new state of the order book when a
quantity q = 1 is added to (resp. cancelled from) Q2. The same reasoning holds for Q1. We
have

E[|τ1 −τ′1|] = E
[
E[|τ1 −τ′1|/Fτ′+1 ]

]= E[E[τ̂1/Fτ′+1 ]
]= E[E[τ̂1/Uµ

τ′1
]
]= E[h(Uµ

τ′1
)
]
,

where τ̂1 = τ1 −τ′1 is also the first regeneration time of Uµ
t but starting from the initial point

Uµ

τ′1
and h(x) = E[τ/Uµ

0 = x] where τ is the first regeneration time of Uµ
t when Uµ

0 = x. Since

U ′µ
t is regenerated at time τ′1, then Q ′1,µ

τ′−1
≤ q or Q ′2,µ

τ′−1
≤ q . Let us consider the case where
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Q ′1,µ
τ′−1

≤ q . The case Q ′2,µ
τ′−1

≤ q is solved using the same arguments. Since ||Uµ

τ′−1
−U ′µ

τ′−1
|| = ||Uµ

0 −
U ′µ

0 || (i.e. the error is unchanged before the first regeneration), we have Q1,µ
τ′1

≤ ||Uµ
0 −U ′µ

0 || ≤ qε.

We note u1 =Uµ

τ′1
. By considering the possible transitions of the process Uµ, we have

1+λ1,+(u1)h(u1,+
1 )+λ2,−(u1)h(u2,−

1 )+λ2,+(u1)h(u2,+
1 )−λ∗(u1)h(u1) = 0,

with λ∗ = ∑
i λ

i ,++λi ,−. Using Assumption II.D.2 and h(u) ≤ T , for every initial state u, we
have

h(u1) ≤ 1+λ1,+(u1)h(u1,+
1 )+λ2,−(u1)h(u2,−

1 )+λ2,+(u1)h(u2,+
1 )

λ∗(u1)
≤ (1+3Tβ)ε

β−

= κ1||U0 −U ′
0||p ,

with κ1 = (1+3Tβ)
β− . The case when the condition τ1 > τ′1 a.s is not satisfied uses the same

arguments. This proves the result.

Lemma II.D.2. We have
E[||Uµ

τ−1
−U ′µ

τ′−1
||p ] ≤ κ2||U0 −U ′

0||p ,

with κ2 = κ1Ĉβ+1.

Proof of Lemma II.D.2. By following the same methodology as for Lemma II.D.1, we first note
that

E[||Uµ
τ−1

−U ′µ
τ′−1

||p ] ≤ E[E[||Uµ
τ−1

−Uµ

τ′−1
||p /Fτ′1 ]

]+E[||U ′µ
τ′−1

−Uµ

τ′−1
||p]

= E[E[||Uµ
τ−1

−Uµ

τ′−1
||p /Uµ

τ′1
]
]+||U0 −U ′

0||p

≤ ĈβE
[
E[|τ̂1|/Uµ

τ′1
]
]+||U0 −U ′

0||p ≤ ĈβE
[
h(Uµ

τ′1
)
]+||U0 −U ′

0||p ,

where τ̂1 = τ1 − τ′1 is the first regeneration time of Uµ
t but starting from the initial point

Uµ

τ′1
and h(x) = E[τ/Uµ

0 = x] where τ is the first regeneration time of Uµ
t when Uµ

0 = x. In

the proof of Lemma II.D.1, we show that E
[
E[h(Uµ

τ′1
)]

] ≤ κ1||U0 −U ′
0||p . Hence, we have

E[||Uµ
τ−1

−U ′µ
τ′−1

||p ] ≤ κ2||U0 −U ′
0||p , with κ2 = κ1Ĉβ+1. This proves the result.

Step 3: Assume ||U0 −U ′
0|| ≤ qε. Let us show that

E||Uµ
t −U

′,µ
t ||p ≤ κ̃eC ′T ||U0 −U ′

0||p , (34)

for any t <∞, where C ′ = (β(κ−1))+ and κ̃= 1∨κ.

Proof of Inequality (34). Let t <∞, we denote by N Reg en
t (resp. N ′Reg en

t ) the random variable
representing the number of regenerations of Uµ

t (resp. U ′µ
t ) before t . Let t1, · · · , tN Reg en be

the regeneration times of Uµ
t and t ′1, · · · , t ′

N ′Reg en the regeneration times of U ′µ
t . We build the

sequence t̃n such that t̃1 = t1 ∨ t ′1 and
t 1

n = inf{ti > t̃n ; i ∈ {1, · · · , N Reg en
t }}

t 2
n = inf{t ′i > t̃n ; i ∈ {1, · · · , N ′Reg en

t }}
t̃n+1 = t 1

n ∨ t 2
n .
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Let Ñ Reg en
t be the first index n when one of the sets Ωn

1 = {ti > t̃n ; i ∈ {1, · · · , N Reg en
t }} or

Ωn
2 = {t ′i > t̃n ; i ∈ {1, · · · , N ′Reg en

t }} is empty. We adopt the convention t̃n = t , ∀n > Ñ Reg en
t .

Thus, we have

E||Uµ
t −U

′,µ
t ||p = E[||Uµ

t̃
Ñ

Reg en
t

−U
′,µ
t̃

Ñ
Reg en
t

||p]≤
(∗∗)︷ ︸︸ ︷

E
[
κÑ Reg en

t ||Uµ
0 −U

′,µ
0 ||p]≤ ||Uµ

0 −U
′,µ
0 ||pE[κÑ Reg en

t
]
,

where (**) is obtained by using Inequality (31) and the conditional expectation argument.
When κ> 1, we denote by N∗ the Poisson process with constant intensity β. Thus, we have

E
[
κÑ Reg en

t
]≤ E[e(N∗

t +1)log (κ)]= κe−βt (1−κ) <∞.

When κ ≤ 1, we have κÑ Reg en
t ≤ 1 and consequently, E

[
κÑ Reg en

t
] ≤ 1. This proves Inequality

(34). By combining Inequalities (30) and (34), we complete the proof of Theorem II.D.1 with
K0 = κ̃∨3 and C0 = C̃ ∨C ′.

II.D.4.1 Existence of s

Let us first consider the function s−1 = −a log(a) defined in [0,1]. The function s−1 is con-
tinuous in [0,1] and bijection in the subinterval [0,e−1]. Moreover, it is a Hölder function

satisfying ||s−1(a)− s−1(b)|| ≤ R1||a−b|| 1
p , ∀(a,b) ∈ [0,1]2. We denote by s1 the inverse of s−1

defined in [0,e−1]. The function s1 is continous and valued in [0,1]. Additionally, s1 satisfies
||a −b||p ≤ R1|s1(a)− s1(b)|,∀(a,b) ∈ [0,e−1]2.

Then, we define the normalization function s2 :
X → [0,e−1]7

(x1, · · · , x7) → (s2
1(x1), · · · , s2

1(x5), s2
2(x6), s2

3(x7))
where s2

1 , s2
2 and s2

3 are three auxiliary functions for normalization defined such as

s2
1(x) = x

e−1Q̂max
, s2

2(x) = x

e−1Q̂max
and s2

3(x) = x

e−1P̄ E xec
. It is simple to see that s2 satisfies

||x−y ||p ≤ R2||s2(x)−s2(x)||p , ∀(x, y) ∈ X 2, with R2 = min(Q̂max, (q aQ̂max( 3
2 +α))). Finally, we

define s(x) =∑7
i=1 |s1(s2(xi ))|. Using the inequality∑N

i=1 |xi − y i | ≤p
2|∑N

i=1 |xi |−∑N
i=1 |y i ||, we have ||x − y ||p ≤ R2R1

p
2|s(x)− s(y)|,∀(x, y) ∈ X 2.

II.D.5 Regularity of the value function

Lemma II.D.3. The function g is Lipschitz.

Proof of Lemma II.D.3. Since f is Lipschitz, it suffices to prove that r (i ) = PI i∞ = lim
t→∞EUi [Pt −

P0] is Lipschitz where Pt is the mid price. Let Ui be an order book state. We denote by
(P i

t )t≥0 and (U i
t )t≥0 respectively the mid price and the order book processes starting from Ui .

Using Theorem II.D.1, we have

|PI i
t −PI i ′

t | ≤ E[|P i
t −P i ′

t |]+|P i
0 −P i ′

0 | ≤ E[||U i
t −U i ′

t ||]+||Ui −Ui ′ ||
≤ (K0eC0t +1)||Ui −Ui ′ ||, (35)
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with PI i
t = EUi [Pt −P0]. Since PI i

t →
t→∞ PI i∞, there exists tmax such that for any t ≥ tmax and

state i , we have |PI i
t −PI i∞| ≤ ||Ui −Ui ′ ||. Using (35), we have

|PI i
∞−PI i ′

∞| ≤ |PI i
∞−PI i

tmax
|+ |PI i

tmax
−PI i ′

tmax
|+ |PI i ′

∞−PI i ′
tmax

| ≤ (2+K0eC0tmax )||Ui −Ui ′ ||.
This completes the proof.

Proof of Inequality (27). We write U 1,µ
t (resp. U 2,µ

t ) for the process such that U 1,µ
t =U1 (resp.

U 2,µ
t =U2). Using the fact that g is Lipschitz and Inequality (26), we have

|VT (t ,U1)−VT (t ,U2)| ≤ sup
µ
E

[
|g (U 1,µ

T t ,µ
E xec1

)− g (U 2,µ

T t ,µ
E xec2

)|+ cq a |T t ,µ
E xec1

−T t ,µ
E xec2

|
]

≤ sup
µ
E
[
|g (U 1,µ

T t ,µ
E xec1

)− g (U 2,µ

T t ,µ
E xec1

)|+ |g (U 2
T t ,µ

E xec1

)− g (U 2
T t ,µ

E xec2

)|+ cq a |T t ,µ
E xec1

−T t ,µ
E xec2

|
]

≤ sup
µ
E
[

g[Li p]K0eC0(T−t )||U1 −U2||+ g[Li p]C |T t ,µ
E xec2

−T t ,µ
E xec1

|+ cq a |T t ,µ
E xec2

−T t ,µ
E xec1

|
]

≤ ||U1 −U2||
(
g[Li p]K0eC0(T−t ) +K ′

0C
)≤ AeC0(T−t )||U1 −U2||,

where C = g[Li p]C + cq a , C is a constant, K ′
0 = log(K0), µOpti

1 (resp. µ
Opti
2 ) is the optimal

control when U1 (resp. U2) is the starting point and A = g[Li p]K0 +K ′
0C. In the penultimate

inequality, we use Inequality (29) to complete the proof.

Proof of Inequality (28). Inequality (28) is proved using the dynamic programming principle
and Inequality (27).

II.D.6 Proofs of Propositions II.D.2 and II.D.3

Proof of Proposition II.D.2. We fix ∆> 0 and prove the result by recurrence on n ≥ 0 for every
T ∈ [0,n∆].

• Initialisation: Case n = 0, in this case T
t ,µOpti

2
E xec = T

t ,µOpti
1

E xec = 0.

• Iteration: Let us assume the result true for T ∈ [0,n∆]. Let T ∈ [0, (n +1)∆]. When
T ∈ [0,n∆], the result is true using the recurrence assumption. When T ∈ (n∆, (n+1)∆],
we can write

T
t ,µOpti

2
E xec = T

t ,µOpti
2

E xec 1
T

t ,µ
Opti
2

E xec ≤∆
+ (T

t ,µOpti
2

E xec −∆)1
T

t ,µ
Opti
2

E xec ≥∆
+∆1

T
t ,µ

Opti
2

E xec ≥∆
.

Let Ũ µ̃ be the process following the same dynamics as Uµ but with initial value Uµ

∆ and

ending at T −∆ with a control µ̃t = µt+∆. Then, we have classically T µ̃

E xec = T µ,∆
E xec −∆

and V (∆,u) =V T−∆(0,u). Thus, we can write

E
[|T t ,µOpti

2
E xec −T

t ,µOpti
1

E xec |]=
(1)︷ ︸︸ ︷

E
[|T t ,µOpti

2
E xec 1

T
t ,µ

Opti
2

E xec ≤∆
−T

t ,µOpti
1

E xec 1
T

t ,µ
Opti
1

E xec ≤∆
|]+

(2)︷ ︸︸ ︷
E
[|T t ,µ̃Opti

2
E xec −T

t ,µ̃Opti
1

E xec |]

+∆
(3)︷ ︸︸ ︷

E
[|1

T
t ,µ

Opti
2

E xec ≥∆
−1

T
t ,µ

Opti
1

E xec ≥∆
|] .
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– For Part (1), we have

E
[|T t ,µOpti

2
E xec 1

T
t ,µ

Opti
2

E xec ≤∆
−T

t ,µOpti
1

E xec 1
T

t ,µ
Opti
1 ,t

E xec ≤∆
|]≤ E[|T t ,µOpti

2
E xec 1

T
t ,µ

Opti
2

E xec ≤∆
|]+E[|T t ,µOpti

1
E xec 1

T
t ,µ

Opti
1

E xec ≤∆
|]

≤∆(
E
[
1

T
µ

Opti
2

E xec ≤∆

]+E[1
T
µ

Opti
2

E xec ≤∆

])≤∆22β.

– For Part (2), using the recurrence assumption and Inequality (26), we have

E
[
(T

µ̃
Opti
2

E xec −T
µ̃

Opti
1

E xec )
]≤∆eC1(T−(t+∆))E

[||U 1
∆−U 2

∆||
]+K1∆(T − t −∆)

≤∆K0eC1(T−(t+∆))+C0∆||U1 −U2||+K1∆(T − t −∆).

– For Part (3), using the same arguments of Part (2), we have

∆E
[|1

T
t ,µ

Opti
2

E xec ≥∆
−1

T
t ,µ

Opti
1

E xec ≥∆
|]≤∆22β.

Finally, since C1 = log(K0)
∆ +C0, we have

E
[
T

t ,µOpti
2

E xec −T
t ,µOpti

1
E xec

]≤ 4∆2β+K0∆eC1(T−(t+∆))+C0∆||U1 −U2||+K1∆(T − t −∆)

≤ K1∆(T − t )+K0∆eC1(T−(t+∆))+C0∆||U1 −U2||
=∆(

K1(T − t )+eC1(T−t )||U1 −U2||
)
.

Proof of Proposition II.D.3. Using Proposition II.D.2, we have

E
[
T
µ

Opti
2 ,t

E xec −T
µ

Opti
1 ,t

E xec

]≤∆(||U1 −U2||eC1(T−t ) +K1(T − t ))

≤ lim
∆→0

C0∆||U1 −U2||+ log(K0)

∆
∆||U1 −U2||+K1∆(T − t )

= K ′
0||U1 −U2||.

II.E Resolution of the optimal control problem

II.E.1 Proof of Theorem 1

First, let us assume that the time derivative ∂t V is continuous is each sub-interval (k∆, (k +
1)∆). Then, we can show classically that V satisfies the equations of Theorem 1 by applying
Itō’s formula. Thus, it suffices to exhibit a solution and use a verification argument to con-
clude. Equation (13) in Section 4.3 provides a solution that satisfies the required regularity of
∂t V . Thus, we conclude using a verification theorem as in Theorem 4.1 in [133].
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II.E.2 Proof of Theorem 2

Let G = ([0,Q̂max])7 × [0, P̄ E xec ], G0 =
(
[0,Q̂max]4 × {0}× [0,Q̂max]2 × [0, P̄ E xec ]

)
∪

(
[0,Q̂max]6 ×

[P̄ ,Q̂max] × [0, P̄ E xec ]
)
, and g̃ and g are Lipschitz functions representing respectively the

boundary and final constraints. We denote by Q̂max = max(Qmax,Q̃max, P̄ ), P̄ the maximum
mid price value and P̄ E xec the upper bound for the execution price. Equations satisfied by V
can be formally derived by assuming that V is smooth and using the dynamic programming
principle 

max
(
∂t v +Qv, supr∈EK r v − v

)
= 0, on [0,T )×G ,

v = g̃ , on [0,T )×G0,
v(T, .) = g , on G ,

(36)

with Q f (u) = ∫
f (u′)− f (u)dQ(u′;u) the infinitesimal generator of the state process, K r f (u) =∫

f (u′)dkr (u′;u) for every continuous and bounded function f , state u and control r ∈ E.
Since a control r may lead to several states, we write kr (u′;u) for the probability to reach the
state u′ starting from u after taking the decision r .

Existence, uniqueness of the solution: Uniqueness of the solution comes from a standard
comparison principle using the same arguments as in [33, Theorem 2.2]. Existence of the
solution can also be derived following [33, Theorem 2.3].

Regularity of the solution: Let us show that ∂t V is continuous except on the boundary of
{V = g }. We denote by V the continuous and Lipschitz viscosity solution of (36).
Let r be the control which modifies the agent’s state when it exists. Let O be the open
set O = {V > max(K r V , g )}∪ {(t ,u); V > g , kr (u;u) = 1}. On O, we have ∂t V = −QV in the
viscosity sense. Hence, by considering a sequence of smooth functions converging uniformly
towards V , we have ∂t V is continuous on O, see [37, Corollary 5.6] for a close construction.

Let O1 = {K r V =V , V > g } and
◦

O1 its interior assumed non-empty, otherwise there is nothing
to prove. Since V is Lipschitz, ∂t V is essentially bounded. To show that ∂t V is uniquely

defined on
◦

O1, we assume the opposite and consider a point x0 = (t0,u0) where ∂t V admits
two possible values. We have

V (x0) =K r V =
∫

V (t0,u′)dkr (u′;u0).

There exists at least one u′
0 satisfying kr (u′

0;u0) > 0 and (t0,u′
0) ∈O. To see this, let us take

u′
0 = argmax{V (t0,u′), kr (u′;u0) > 0}. Since V (t0,u′

0) ≥ V (x0) > g , we have (t0,u′
0) ∉ {V =

g }. If (t0,u′
0) ∈ O, it is exactly the needed result. If (t0,u′

0) ∉ O, then V (t0,u′
0) = K r V =∫

V (t0,u′)dkr (u′;u′
0) ≤ V (t0,u′

0). Hence, the only possibility is kr (u′
0;u′

0) = 1 which provides
the needed contradiction.
Since u′

0 ∈ O, then ∂t V (t0,u′
0) is uniquely defined and ∂t V is continuous around (t0,u′

0).
Hence, the function ∂t Ṽ , with Ṽ = V −kr (u′

0; .)V (.,u′
0), is not uniquely defined in x0 and Ṽ
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satisfies
Ṽ (x0) = K̃ r V = ∑

u′,u′ 6=u′
0

V (t0,u′)kr (u′;u0).

Since the sum in the above equation is finite, we can apply the same arguments as before
several times to find that the null function is not uniquely defined which provides the needed

contradiction. Hence ∂t V is uniquely defined on
◦

O1. Furthermore, since ∂t V is continuous
on O, we can prove by contradiction and using the same arguments that ∂t V is continuous

on
◦

O1 and thus on Ō1.

Let O2 = Ō ∩ Ō1, where Ō1 is the closure of O1 and x be a point on O2. Thus, x is the limit
point of (xn)n≥0 and (x1

n)n≥0, such that (xn)n ∈O and (x1
n)n ∈O1. Let l (resp. l1) be the limit

value of lim
n→∞∂t V (xn) (resp. lim

n→∞∂t V (x1
n)). Hence, we can check

l = lim
n→∞∂t V (xn) = lim

n→∞QV (xn) =QV (x) = lim
n→∞QK r V (x1

n) = K r lim
n→∞QV (x1

n) = K r lim
n→∞∂t V (x1

n) = l1.

Thus, ∂V is continuous on O3 = Ō ∪ Ō1. On the set O4 = {V = g }, ∂t V is clearly continuous
since ∂t V = 0.
Finally, we consider the set O5 = ∂O4 and x a point on O5. Here again, x is the limit point of
(xn)n≥0 and (x1

n)n≥0, such that (xn)n ∈ O3 and (x1
n)n ∈ O4. Let l (resp. l1) be the limit value

of lim
n→∞∂t V (xn) (resp. lim

n→∞∂t V (x1
n)). Thus, the condition l = l1 is equivalent to Qg = 0. This

relation is not necessarily satisfied.

Conclusion: Equation (36) is satisfied almost everywhere by V . Since ∂t V is continuous
except on the set O5 = ∂{V = g }, Equation (36) is satisfied pointwise except on O5.

II.E.3 Optimal strategy

Let τT
i := τi ∧T µ

E xec . Since V satisfies Equation (14), we have

E[g (Uµ

T
µ
E xec

)− cq aT µ

E xec ] = E[V (T µ

E xec ,Uµ

T
µ
E xec

)]

=V (0,U0)+ ∑
i≥0
E
[∫ τT

i+1

τT
i

[
A V (s,Uµ

s )− cq a]
d s +

[
V (τi , (Uµ

τi−)βi )−V (τi ,Uµ
τi−)

]]
=V (0,U0).

Since, by construction, E
[
V (τi , (Uµ

τi−)βi )−V (τi ,Uµ
τi−)

]= 0, and A V (.,U )−cq a = 0, this shows
that this policy satisfies E[g (Uµ

T µ

E xec

)− cq aT µ

E xec ] = V (0,U0), and is therefore optimal, by defi-

nition of V (0,U0).
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II.F Proof of Theorem 3

II.F.1 Proof of Inequality (17)

Let us fix ∆ and show the result by recurrence on n for every T ∈ [0,n∆].
Initialisation: in this case we have V

′ =V = g .
Iteration: let us assume the result true for n. Let T ∈ [0, (n +1)∆).

• When T ∈ [0,n∆]: the result is true using the recurrence assumption.

• When T ∈ (n∆, (n + 1)∆]: let t ∈ [0,T ]. When t ∈ (∆,T ], the result is true by using
V (t ,U ) = VT−t (0,U ), Ṽ ∆(t ,U ) = Ṽ ∆

T−t (0,U ) and the recurrence hypothesis. Let us take
t ∈ [0,∆,T ). Using the dynamic programming principle, we have

|Ṽ ∆(t ,u)−V (t ,u)| ≤
∣∣∣sup
µ
E
[

cq a([T̃ t ,µ
E xec − t ]1T̃ t ,µ

E xec≤t+∆− [T t ,µ
E xec − t ]1T t ,µ

E xec≤t+∆)

+cq a∆(1T̃ t ,µ
E xec>t+∆−1T t ,µ

E xec>t+∆)+ (
Ṽ ∆

T−t (∆,Ũµ,∆
∆ )−VT−t (∆,Uµ

∆)
)]∣∣∣.

– First we have

E
[|(T̃ t ,µ

E xec−t )1T̃ t ,µ
E xec≤t+∆−(T t ,µ

E xec−t )1T t ,µ
E xec≤t+∆|

]≤∆E[1T̃ t ,µ
E xec≤t+∆+1T t ,µ

E xec≤t+∆
]≤∆22H .

– Second, using (4.4.2), we have

|E[(Ṽ ∆
T−t (∆,Ũµ,∆

∆ )−VT−t (∆,Uµ

∆)
)]| = |∑

u′

[
P∆u,u′Ṽ ∆

T−t (∆,u′)−P[
U∆ = u′|U0 = u

]
VT−t (∆,u′)

]|
≤∑

u′

[
P∗,∆

u,u′ |(Ṽ ∆
T−t (∆,u′)−VT−t (∆,u′)|]+D||g ||∞∆2

≤ R(T − t −∆)∆+D||g ||∞∆2.

– Finally, we have

cq a∆E
[|1T̃ t ,µ

E xec>t+∆−1T t ,µ
E xec>t+∆|

]≤ cq a∆E
[|1T t ,µ

E xec≤t+∆+1T̃ t ,µ
E xec≤t+∆|

]≤ cq a∆22H .

By combining above inequalities, we conclude

|Ṽ ∆
T−t (t ,u)−VT−t (t ,u)| ≤ R(T − t −∆)∆+R∆2 ≤ R(T − t )∆.

II.F.2 Proof of the stationary convergence of µOpti ,∆

Let µOpti ,∆ be the piecewise constant optimal control associated to the process Ũµ,∆
t . We

say that a sequence of functions f n converges to f in a stationary way when ∃n0 such that
∀n ≥ n0, f n = f .
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Outline of the proof: First, we prove the existence of a subsequence (φn)n≥0 such that
µOpti ,∆φ(n) (ω) →

n→∞ µ̄(ω) in a stationary way, where µ̄(ω) is a piecewise constant function.

Then, using Ṽ ∆(t ,U ) →
∆→0

V (t ,U ) and the stationary convergence µOpti ,∆φ(n) , there exists n0

such that ∀n ≥ n0, E[g (Ũ
∆φ(n),µ̄

T̃ µ̄

E xec

)−cq a T̃ µ̄

E xec ] = E[g (Ũ
∆φ(n),µ

Opti ,∆φ(n)

T̃ µ
Opti ,∆φ(n)

E xec

)−cq a T̃ µ
Opti ,∆φ(n)

E xec ] →
∆→0

V (t ,U ).

Since Uµ
t is right continuous, µ̄ is optimal.

Proof of the stationary convergence: First, let us prove that there exists ε > 0 such that
for every a ∈ [0,T ], we can find a subsequence µOpti ,∆φa (n) (ω) which is stationary in [a, a +ε).
Let a ∈ [0,T ], since the space C = {l ,c,m} is compact, we can extract a subsequence φa(n)
such that µOpti ,∆φa (n) (ω)(a) converges towards a given limit µ(ω)(a). Since C is finite the
sequence µOpti ,∆φa (n) (ω)(a) is stationary. Let ε(ω) > 0 be the minimum time between two
consecutive jumps in [0,T ]. Hence, µOpti ,∆φa (n) (ω)(a) is constant in [a, a + ε). Consequently,
µOpti ,∆φa (n) (ω)(x) →

n→∞µ(ω)(a), ∀x ∈ [a, a +ε) in a stationary way.

Let mε = bT

ε
c. For every i ∈ {0, · · · ,mε}, there exists φiε such that

µ
Opti ,∆

φiε(n) (ω)(x) →
n→∞µ(ω)(iε), ∀x ∈ [iε, (i +1)ε).

We define the piecewise constant limit function µ̄(ω) such that

µ̄(ω)(x) =µ(ω)(iε), ∀x ∈ [iε, (i +1)ε).

By construction, there exists φ(n) (constructed by a finite number of φiε(n) compositions),
the sequence µOpti ,∆φ(n) (ω) →

n→∞ µ̄(ω) in a stationary way.
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CHAPTER III

Optimal inventory management and order
book modeling

Abstract

We model the behaviour of three agent classes acting dynamically in a limit order book of
a financial asset. Namely, we consider market makers (MM), high frequency directional
trading (DHFT) firms, and institutional brokers (IB). Given a prior dynamics of the order
book, similar to the one considered in the Queue-Reactive models [55, 90, 91], the MM
and the HFT define their trading strategy by optimizing the expected utility of terminal
wealth, while the IB has a prescheduled task to sell or buy many shares of the considered
asset. We derive the variational partial differential equations that characterize the value
functions of the MM and HFT and explain how almost optimal control can be deduced
from them. We then provide a first illustration of the interactions that can take place
between these different market participants by simulating the dynamics of an order book
in which each of them acts optimally.

Key words: Optimal trading, market impact, optimal control.
MSC 2010: 49L20, 49L25.

1 Introduction

The comprehension of the order book dynamics have become a fundamental issue for all
market participants and for regulators that try to increase the market transparency and ef-
ficiency. A deep understanding of the order book dynamics and agents behaviours enables:
market makers to ensure liquidity provision at cheaper prices, high frequency traders to
reduce arbitrage opportunities, investors to reduce their transaction costs, policy makers to
design relevant rules, to strengthen market transparency and to reduce market manipulations.
Moreover, modelling the order book provides insights on the behaviour of the price at larger
time scales since the price formation process starts at the order book level, see e.g. [54] for
Brownian diffusion asymptotic of rescaled price processes. Recently, the widespread market
electronification has facilitated the access of high quality data describing market participants
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decisions and interactions at the finest time scale, on which statistics can be based. The avail-
ability of the order book data certainly allows a better understanding of the market activity.
On the other hand, the recent market fragmentation and the increase of trading frequency
rise the complexity of agents actions and interactions.

The main objective of the present paper is to propose a flexible order book model close to
the one of [55, 90, 91] and Chapter II, construct a first building block towards a realistic order
book modelling, and try to better understand the various regimes related to the presence of
different market participants. Instead of considering pure statistical dynamics as in e.g. [55],
we construct a structural endogenous dynamics, see e.g. Chapter I and Chapter II, based on
the optimal behaviour of agents that are assumed to be rational. For numerical tractability,
we simplify the market in three classes of (most significant) participants: the market makers
(MM), the directional high frequency trading (DHFT) firms, and the institutional brokers (IB).
Each of them decides of his policy in an optimal way, given prior statistics, and then interact
with the others given the endogenous realizations of the market.

More precisely, they assume that the market dynamics follow an order book model similar
to the one suggested by the Queue-Reactive approach [90], see also [1, 55, 81], in which we
restrict ourselves to the best bid and ask queues1: limit and aggressive orders arrive with
certain intensities, when a queue is depleted it is regenerated according to a certain law and
possibly after a price move, the spread can take two different values.2 Importantly, we also
take the imbalance into account in the modelling of the different transition probabilities, see
e.g. Besson et al. [30].

The market participants can either put limit or aggressive orders. The aim of a market maker
is to gain the spread. He should therefore essentially insert limit orders, aggressive orders
being used when his inventory is too unbalanced. In our model, he can only act on the
given order book. The directional high frequency trader is assumed to play on the correlation
between the order book dynamics, viewed as the stock price, and the price of another asset,
called futures hereafter. Indeed, he believes that the difference between the stock and the
futures prices is mean-reverting. Whenever he buys/sells one unit of the stock, he sells/buys
back one unit of the futures. We do not handle the order book associated to the futures but
simply model the price of the futures as the mid-price of the stock to which a mean-reverting
process is added. Still, we introduce a (possibly equal to 0) transaction cost proportional to
the size of the transaction. As the market-makers, he seeks for a zero inventory at the end
of the trading period. Finally, institutional brokers are simply assumed to play VWAP (Vol-
ume Weighted Average Price)- or Volume-based strategies (trading algorithms). Again, they
essentially use limit orders and become aggressive when they are too late in their schedule.

1This limitation is for numerical tractability. It is already enough for most markets.
2One could consider a larger set of possible spreads in theory, but refrains to doing this for numerical

tractability.
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To solve the IB control problem we follow the Cartea-Jaimungal approach, see [52] and its
various extensions [47, 48, 49, 50, 51].

We focus on the derivation of the optimal strategies of the market makers and the high fre-
quency traders, and on how they can be computed numerically by solving the associated
variational partial differential equations. Note that it is important to consider their strategies
within a dynamical model as current actions impact the order book and therefore may modify
its futures dynamics. We will actually see that, in certain situations, participants can place
aggressive orders or limit orders in the spread just to try to manipulate the order book in
a favorable way. Note that the dimension of our control space is higher than in [1, 81] and
Chapters I and II since more complex decisions are required to tackle the market making
problem.

However, the ultimate goal of this work is to provide a market simulator. In the last sec-
tion, we already present simulations of the market behaviour given the pre-computed optimal
strategies of the different actors. More precisely, we will only simulate the evolution of the
mean-reverting process (driving the difference between the stock and the futures price) to-
gether with the reconstruction of the queues when prices move, and let the participants play
their optimal strategies given the evolution of the order book due to their different actions.
This should allow us to study how these different market participants may interact with each
others when they act optimally. In particular, one should observe different market regimes
depending on the proportion of the different participants in the total population, on their risk
aversion, etc. First simulations are provided in this paper, a more throughout study is left for
future research.

Our approach therefore lies in between two current streams of literature. The first one is
based on “general equilibrium models”, including economic models, where the market ac-
tivity is generated by interactions between rational agents who take optimal decisions that
interact through the market netting process, see e.g. [66, 134, 139]. The second stream of lit-
erature considers purely statistical models where the order book is seen as a random process,
see e.g. [2, 3, 20, 55, 57, 77, 83, 82, 90, 91, 106, 107, 144]. The statistical models focus on
reproducing many salient features of a real market rather than agents behaviours and inter-
actions.

We end this introduction with an outline of our paper. In Section 2, we present the general
order book dynamics. The market maker control problem is studied in details in Section 3.
Therefore, we present the equations satisfied by their optimal strategy and propose a numeri-
cal solution for this problem, together with numerical illustrations. In Section 4, we formulate
the directional high frequency trader control problem and perform a similar analysis. The
institutional broker strategy is described in Section 5, where we restrict ourselves to VWAP
and Volume liquidation problems. Finally, in Section 6, we simulate a realistic market using
the three agent’s optimal trading strategies.
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2 General order book presentation and priors of the market
participants

As mentioned above, we focus on a single order book and only model the best bid and ask
prices, in a similar way to [55]. In this section, we describe the general market mechanisms as
well as the priors on which the optimal strategies of the agents are based. We fix a terminal
horizon time T and consider a probability space (Ω,P). Here, Ω :=Ω1 ×Ω2 and P :=P1 ⊗P2,
where Ω1 is the space of R11-valued cadlag paths on [0,T ] endowed with a probability mea-
sure P1 with full support on Ω1, and Ω2 is the one dimensional Wiener space endowed with
the Wiener measure P2.

We denote respectively by (Pb
t )t≥0 and (Pa

t )t≥0 the best bid offer and the best ask offer pro-
cesses on the market. They are valued in dZ where d> 0 is the tick size. We denote by (Qb

t )t≥0

and (Qa
t )t≥0 the sizes of the corresponding queues valued in N∗. To simplify the notation,

we introduce P := (Pb,Pa), Q := (Qb,Qa) and define the spread process as δP := Pa −Pb.
Moreover, we assume3 that δPt ∈ {d,2d} for all t ≥ 0.

We denote by (τi )i≥1 the times at which orders are sent to the market. We assume that this
sequence is increasing and that #{i ∈N : τi < T } <∞ a.s. The market participants can send
different types of orders at each time τi :

• Aggressive orders of size αb
i ∈N∩ [0,Qb] at the bid or of size αa

i ∈N∩ [0,Qa] at the ask:
the size of the corresponding queue, Qb or Qa, decreases by the size of the aggressive
order, αb

i or αa
i .

• Limit orders of size Lb
i ∈ N at the bid or of size La

i ∈ N at the ask: the size of the
corresponding queue, Qb or Qa, increases by the size of the limit order, Lb

i or La
i .

• When δP = 2d: limit orders of size L
b, 1

2
i ∈N at the bid or of size L

a, 1
2

i ∈N at the ask: the
order is placed inside the spread, at the price Pb+d = Pa−d, which generates a new

queue at the bid or at the ask, of size L
b, 1

2
i or L

a, 1
2

i , and a price move.

• Cancellations: cancellations of Mb
i ∈N∩ [0,Qb] orders at the bid or of Ma

i ∈N∩ [0,Qa]
orders at the ask. The difference between cancellations and aggressive orders is that
aggressive orders consume the bottom of the limit while cancellations consume the top
of the limit first.

3The extension to more possible spread values is straightforward. We stick to this setting for notational and
computational simplicity. Note that this limit is also justified by empirical evidences for many stocks, see [55].
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The sequence (αb
i ,αa

i ,Lb
i ,La

i ,L
b, 1

2
i ,L

a, 1
2

i , Mb
i , Ma

i )i≥1 is a random variable leaving, with prob-

ability one, on the state space C◦ defined as the collection of elements (ab, aa,`b,`a,`b, 1
2 ,

`a, 1
2 ,mb, ma) ∈N8 such that

abaa = 0,
`b = `a = 0 if max{ab, aa} ≥ 1,

`b, 1
2 = 0 if max{ab, aa,`b} ≥ 1,

`a, 1
2 = 0 if max{ab, aa,`a} ≥ 1,

mb = 0 if max{ab, aa,`b,`b, 1
2 } ≥ 1,

ma = 0 if max{ab, aa,`a,`a, 1
2 } ≥ 1.

(1)

We interpret the above expression as follows. First, aggressive orders cannot be sent simulta-
neously at the bid and at the ask. Next, limit orders (at the current bid/ask prices) cannot be
placed when aggressive orders are already sent. Finally, one cannot insert limit orders within
the spread if limit orders at the current bid/ask prices are placed. Because we only consider
the first limits, these conditions are natural whenever one presumes that orders of different
market participants do not arrive exactly at the same time.

Depending on the arrival of orders, queues can be depleted. In this case, new queues can
be re-generated, at the same prices or at different prices, and possibly with a change of the
spread value. To model this, we introduce a sequence of random variables (εi ,εbi ,εai )i≥1 with
values in {0,1}× (N∗)2. The sequence (εi )i≥1 describes possible jumps of the bid/ask prices,
while the sequence (εbi ,εai )i≥1 describes the new sizes of the queues when they are re-generated
after a depletion. More precisely, we postulate that

Pb
τi
= Pb

τi−1
+d

[
1{εi=1}

(
−1{Qb

τi−1
=α̂b

i } +1{δPτi−1=2d}1{Qa
τi−1

=α̂a
i }

)
+1

{L
b, 1

2
i >0}

]
,

Pa
τi
= Pa

τi−1
+d

[
1{εi=1}

(
1{Qa

τi−1
=α̂a

i } −1{δPτi−1=2d}1{Qb
τi−1

=α̂b
i }

)
−1

{L
a, 1

2
i >0}

]
,

Qb
τi
= Qb

τi−1
+Lb

i + (L
b, 1

2
i −Qb

τi−1
)1

{L
b, 1

2
i >0}

− α̂b
i 1{∆Pb

τi
=0} + (εbi −Qb

τi−1
)1{∆Pb

τi
6=0}∪{α̂b

i =Qb
τi−1

},

Qa
τi
= Qa

τi−1
+La

i + (L
a, 1

2
i −Qa

τi−1
)1

{L
a, 1

2
i >0}

− α̂a
i 1{∆Pa

τi
=0} + (εai −Qa

τi−1
)1{∆Pa

τi
6=0}∪{α̂a

i =Qa
τi−1

},

(2)

for i ≥ 1, where
α̂b/a

i :=αb/a
i +Mb/a

i ,

with
(Pb

0 ,Pa
0 ,Qb

0 ,Qa
0) ∈ DP,Q := {(pb, pa, q) ∈ (dZ)2 × (N∗)2 : pa−pb ∈ {d,2d}},

and the convention τ0 = 0−. Note that (1) ensures that these dynamics are consistent. In
particular, prices can move only if one of the queues is depleted because of the arrival of ag-
gressive orders and cancellations or if a new limit order is inserted within the spread. These
two situations cannot occur simultaneously. The ask price can move by d when the ask queue
is depleted. If the spread was already 2d, then the bid price moves up as well. The other way
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III. Optimal inventory management and order book modeling

around if the bid queue is depleted. In the following, we extend the dynamics of (P,Q) by
considering it as a step constant right-continuous process on [0,T ].

We now denote by E the N12-valued step constant right-continuous process defined by

∆Eτi := Eτi −Eτi−1 := (αb
i ,αa

i ,Lb
i ,La

i ,L
b, 1

2
i ,L

a, 1
2

i , Mb
i , Ma

i ,εi ,εbi ,εai ,1), i ≥ 1,

with Eτ0 := E0 := 0. Later on, we shall only write

(Pτi ,Qτi ) =TP,Q (Pτi−1 ,Qτi−1 ,∆Eτi ), (3)

in which the map TP,Q is defined explicitly by (1).

The process E models the flow of all the orders on the market. From the viewpoint of a
market participant, it corresponds to its own orders and to the other participants’ orders that
we denote by Ẽ . The process Ẽ has jump times (τ̃i )i≥1 ⊂ (τi )i≥1 of sizes

∆Ẽτ̃i =
∑
j≥1

1{τ̃i=τ j }∆Eτ j , ∀i ≥ 1. (4)

It induces a counting measure ν̃(d t ,de). For a market participant, a prior on this mea-
sure is given by the compensator µ̃ of ν̃ under P. We assume that it is state-dependent.
More precisely, we consider a Borel kernel (p, q) ∈ DP,Q 7→ µ̃(·|p, q) ∈ M ([0,T ]×N8), where
M ([0,T ]×N8) denotes the collection of non-negative measures on [0,T ]×N8. In particular,
it can depend on the order book’s imbalance, as observed in e.g. [30]. To be consistent with
the constraints imposed above, it satisfies

µ̃(·|p, q) is supported by C◦, for all (p, q) ∈ DP,Q . (5)

Additionally, the aggressive orders and cancellations are never bigger than the corresponding
queue size. This assumption is more explicit in our numerical example sections, see Sec-
tion 3.4.

Next, we shall denote by E φ the flows corresponding to the trading strategy of either a market
maker, a directional high frequency trader, or an institutional broker. Thus, they face a global
flow E = Ẽ +E φ. Moreover, for simplicity, we assume that µ̃ is of the form

d µ̃(c,ε,εb,εa,d t |p, q) = dλ(ε,εb,εa|p, q,c)dβ(c|p, q)d t , (6)

in which λ and β are bounded Borel non-negative kernels and (without loss of generality)∫
dλ(ε,εb,εa|p, q,c) = 1, for all (p, q,c) ∈ DP,Q ×C◦. (7)

Later on, when an order (αb
i ,αa

i ,Lb
i ,La

i ,L
b, 1

2
i ,L

a, 1
2

i , Mb
i , Ma

i ) is sent by a MM, an HFT or an IB,
we shall also assume that the conditional law of (εi ,εbi ,εai ) is given by λ.
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3. Market maker’s optimal control problem

Remark 2.1. Let γ(p, q) := ∫
dβ(c|p, q). Then, γ is uniformly bounded by the above assumption.

Let τ be a stopping time and fix h > 0. Since λ integrates to one, it follows that P[#{t ∈ [τ,τ+h] :
∆Ẽt 6= 0} = 1|Fτ] = hγ(Pτ,Qτ)+o(h) and P[#{t ∈ [τ,τ+h] :∆Ẽt 6= 0} > 1|Fτ] = o(h). Moreover,
the process counting the number of jumps of Ẽ is dominated by a Poisson process with intensity γ̄ :=
supγ<∞. Hence, P[#{t ≤ T :∆Ẽt 6= 0} ≥ k] ≤ γ̄T /k, for k ≥ 1, by Markov’s inequality. Similarly,

if g is a non-decreasing Borel map, then E[g (#{t ∈ [0,T ] :∆Ẽt 6= 0})] ≤∑
k≥1 g (k) (γ̄T )k

k ! e−γ̄T .

3 Market maker’s optimal control problem

In this section, we describe the optimal control problem of the market maker, the key tools to
characterize the solution and how to numerically approximate the optimal control.

3.1 Market maker’s strategy and the state dynamics

The market maker typically places limit orders in order to make profit of the spread but can
turn aggressive when his inventory is too important. At the end of the trading period [0,T ],
the later should be zero. In the following, we denote by G his gain process and by I his
inventory. We also need to keep track of the sizes of the orders that he already placed at the
bid queue, Nb, and at the ask queue, Na. For simplicity, we impose that new orders cannot
be inserted at the bid (respectively at the ask) if he already placed a limit order at the bid
(respectively at the ask). Then, his position at the bid (resp. at the ask) is completely described
by Nb (resp. Na) and the number of units Bb before him in the bid-queue (resp. Ba before
him in the ask-queue). Later on, we only write N = (Nb, Na) and B = (Bb,Ba).

To define the market maker’s control, we assume that he faces the exogenous process Ẽ

described in Section 2. For him, a control is a sequence of random variables φ= (τφi ,cφi )i≥1

where (τφi )i≥1 is an increasing sequence of times and each

c
φ

i = (αb,φ
i ,αa,φ

i ,Lb,φ
i ,La,φ

i ,L
b, 1

2 ,φ
i ,L

a, 1
2 ,φ

i , Mb,φ
i , Ma,φ

i ),

is C◦-valued, see below for more implicit restrictions. The quantities (τφi )i≥1 are the de-

cision of the MM and c
φ

i his actions. The components of the vector c
φ

i have the same
meanings as in Section 2. Given his own orders and the other participants’ orders, the
sequence of times at which orders are sent to the market is (τi )i≥1 where τ0 := 0− and
τi+1 =min{τ̃ j > τi , j ≥ 1}∧min{τφj > τi , j ≥ 1}, see (4) and above.

We denote by E φ the càdlàg process that jumps only at the times τφi s with jump size

∆E
φ

τ
φ

i

= (cφi ,
∑
j≥1

(ε j ,εbj ,εaj )1{τφi =τ j }), ∀i ≥ 1,

so that4

E = E φ+ Ẽ ,

4We keep in mind that E also depends of φ but dot not make this explicit for ease of notations.
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III. Optimal inventory management and order book modeling

from his point of view. As usual, we impose that E φ is predictable for the (completed) filtration
Fφ = (Fφ

t )t≥0 generated5 by E . We will also keep in mind the number of actions

J := ∑
i≥1

1{τφi ≤·}
,

from time 0 on, as it may induce a cost.

We now impose a minimum and maximum inventory size, denoted by (−I∗, I∗) ∈ (−N)×N,
and that

#{τφi ≤ T, i ≥ 1} ≤ kφ∧ J◦ a.s., for some kφ ∈N,

for some J◦ ∈ N∪ {∞}. The constraint on the inventory is classic. The constraint on the
number of operations can be justified by operational constraints. In the case J◦ = ∞, it
just means that each control should be of essentially bounded activity, but the bound is not
uniform on the set of controls and can be as large as needed. To be admissible, a control φ
should therefore be such that each c

φ

i is C(Z
τ
φ

i −
)-valued, where

Z := (P,Q, X ) with X := (G , I , N ,B , J ),

and, for any z = (pb, pa, qb, qa, g , i ,nb,na,bb,ba, j ), C(z) is the collection of elements c :=
(ab, aa,`b, `a,`b, 1

2 , `a, 1
2 , mb, ma) ∈C◦ \ {0} such that:

ab ≤min
{

i + I∗−ba ; qb
}

, aa ≤min
{

I∗− i −bb ; qa
}

,

`b ≤ (I∗− i )1{nb=0} , `a ≤ (i + I∗)1{na=0},

`b, 1
2 ≤ (I∗− i )1{pa−pb=2d}1{nb=0} , `a, 1

2 ≤ (i + I∗)1{pa−pb=2d}1{na=0},

mb ≤ nb , ma ≤ na,

c = 0 if j = J◦.

Note that the constraints on the first three lines correspond to the fact that we do not want
to take a position that could lead to an inventory out of the limits −I∗ and I∗ if it was sud-
denly executed. The indicator functions correspond to additional constraints on the controls,
imposed for numerical tractability: no new limit order can be sent on a side if one has not
been executed or has not cancelled the position on the same side before, no limit order can
be sent in the spread if it is not equal to two ticks. In this case, we write φ ∈C (0, Z0−). The
dynamics of X are given by

Xτi =TX (Pτi−1 ,Qτi−1 , Xτi−1 ,∆E
φ
τi

)1{∆E
φ
τi
6=0} + T̃X (Pτi−1 ,Qτi−1 , Xτi−1 ,∆Ẽτi )1{∆E

φ
τi
=0}, (8)

in which TX ,T̃X :R22 7→ dZ×N×N4 ×N. More precisely, consider the map

exe(a,n,b) :=min{(a −b)+,n}, a,b,n ∈N.

5Note that this creates a dependence of the filtration on the control itself, which is similar to [16].
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3. Market maker’s optimal control problem

It represents the number of stocks set at a limit that are executed when an aggressive order
of size a arrives, that the position in the queue is b, and the size of the posted block at this
position is n. Then, having in mind the constraints encoded in C(·) above, see also (1), we
can write

TX = (TG ,TI ,TNb ,TNa ,TBb ,TBa ,TJ ) , T̃X = (T̃G ,T̃I ,T̃Nb ,T̃Na ,T̃Bb ,T̃Ba ,T̃J ),

where

TG (p, q, x,δ) = g + (ab−exe(ab,nb,bb))pb− (aa−exe(aa,na,ba))pa,

TI (p, q, x,δ) = i − (ab−exe(ab,nb,bb))+ (aa−exe(aa,na,ba)),

TNb/a(p, q, x,δ) = nb/a+ [`b/a−nb/a]++`b/a, 1
2 −mb/a−exe(ab/a,nb/a,bb/a),

TBb/a(p, q, x,δ) = bb/a+ (qb/a−bb/a)1{`b/a 6=0} −bb/a1{mb/a=nb/a} − (bb/a∧ab/a)1{ab/a 6=0} −bb/a1
{`b/a, 1

2 6=0}
,

TJ (p, q, x,δ) = j +1,

and

T̃G (p, q, x,δ) = g −exe(ab,nb,bb)pb+exe(aa,na,ba)pa,

T̃I (p, q, x,δ) = i +exe(ab,nb,bb)−exe(aa,na,ba),

T̃Nb/a(p, q, x,δ) = nb/a−exe(ab/a,nb/a,bb/a),

T̃Bb/a(p, q, x,δ) = [bb/a−ab/a]+1{mb/a=0} + (bb/a− [mb/a− (qb/a−bb/a−nb/a)]+)+1{mb/a 6=0},

T̃J (p, q, x,δ) = 0,

for any x = (g , i ,nb,na,bb,ba, j ), δ= (ab, aa,`b,`a,`b, 1
2 ,`a, 1

2 ,mb,ma,ε,εb,εa), p = (pb, pa) and
q = (qb, qa) .

Remark 3.1. It follows from (6) and the constraint that E φ is predictable that the probability that
E φ and Ẽ jump at the same time on [0,T ] is zero. This justifies the formulation (8).

For later use, note that it follows from (1) and (8) that

Zτi =T (Zτi−1 ,∆E
φ
τi

)1{∆E
φ
τi
6=0} + T̃ (Zτi−1 ,∆Ẽτi )1{∆E

φ
τi
=0}, (9)

in which

T = (TP,Q ,TX ) and T̃ = (TP,Q ,T̃X ).

3.2 The optimal control problem

The aim of the market maker is to maximize his expected utility

E[U (ZT )],

127



III. Optimal inventory management and order book modeling

in which

U (z) :=−exp
(
−η{g + i+pb− i−pa−κ([i+−qb]++ [i−−qa]+)−% j }

)
, (10)

for any z = (pb, pa, qb, qa, g , i ,nb,na,bb,ba, j ). In the above, η> 0 is the absolute risk aversion
parameter, and κ> 0 is a penalty term taking into account that liquidating the current inven-
tory may lead to a worse price than the one corresponding to the best bid or ask: the quantity
i+pb− i−pa corresponds to the liquidation value of the inventory if the bid and ask queues
are big enough to absorb it, the expression starting from κ takes into account the number of
shares that will not be liquidated at the best limit. The coefficient %≥ 0 penalizes the number
of actions taken by the market maker. To define the corresponding value function, we now
extend the definition of our state processes by writing

Z t ,z,φ = (P t ,z,φ,Q t ,z,φ, X t ,z,φ),

for the process satisfying (1)-(8) under the control φ starting from the initial condition Z t ,z,φ
t− =

z ∈ DZ where DZ is the collection of elements (pb, pa, qb, qa, g , i ,nb,na,bb,ba, j ) ∈DP,Q ×dZ×
{−I∗, . . . , I∗}×N4 × {0, . . . , J◦} such that

nb+ i ≤ I∗ , i −na ≥−I∗,

bb+nb ≤ qb , ba+na ≤ qa.

The corresponding set of admissible controls is C (t , z), and the filtration associated to φ ∈
C (t , z) is Ft ,z,φ. We then set

v(t , z) := sup
φ∈C (t ,z)

J (t , z;φ) , for (t , z) ∈ [0,T ]×DZ ,

where
J (t , z;φ) := E[U (Z t ,z,φ

T )].

Remark 3.2. For later use, observe that

v(t , z) = e−ηg v(t , pb, pa, qb, qa,0, i ,nb,na,bb,ba, j ),

for all t ≤ T and z = (pb, pa, qb, qa, g , i ,nb,na,bb,ba, j ) ∈ DZ . Moreover, if J◦ =∞, we also have
v(t , z) = e−η(g−% j )v̄(t , z) := e−η(g−% j )v(t , pb, pa, qb, qa,0, i ,nb,na,bb,ba,0).

Remark 3.3. Note that v is bounded from above by 0 by definition. On the other hand, for all
z = (pb, pa, qb, qa, g , i ,nb,na,bb,ba, j ) ∈ DZ ,

v(t , z) ≥mini∈[−I∗,I∗]E[U (P t ,z,0
T ,0,0, g , i ,0,0,0,0, j )]

= e−η(g−% j )mini∈[−I∗,I∗]E[U (P t ,z,0
T ,0,0,0, i ,0,0,0,0,0)],

where P t ,z,0 corresponds to the price dynamics when the MM does not act on the order book up to T .
Moreover, it follows from (10) that

E[U (P t ,z,0
T ,0,0,0, i ,0,0,0,0,0)] ≥−eηI∗|pb|E[eηI∗(|P t ,z,0,b

T −pb|+2d+κ)],
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3. Market maker’s optimal control problem

where
sup

pb∈dZ
E[eηI∗(|P t ,z,0,b

T −pb|+2d+κ)] <∞,

by Remark 2.1 and the fact that the price can jump only by d when a market event occurs. Thus, v
belongs to the class Ł

exp
∞ of functions ϕ such that ϕ/L is bounded, in which

L(pb, g , j ) := e−η(g−I∗|pb|−% j ).

for any (pb, g , j ) ∈ dZ×dZ× {0, . . . , J◦}.

3.3 The dynamic programming equation

The derivation of the dynamic programming equation is standard, and is based on the dy-
namic programming principle. We state below the weak version of Bouchard and Touzi [37],
and let v∗ and v∗ denote the lower- and upper-semicontinuous envelopes of v .

Proposition 3.1. Fix (t , z) ∈ [0,T ]×DZ and a family {θφ,φ ∈ C (t , z)} such that each θφ is a
[t ,T ]-valued Ft ,z,φ-stopping time and ‖Z t ,z,φ

θφ
‖L∞ <∞. Then,

sup
φ∈C (t ,z)

E
[

v∗(θφ, Z t ,z,φ
θφ

)
]
≤ v(t , z) ≤ sup

φ∈C (t ,z)
E
[

v∗(θφ, Z t ,z,φ
θφ

)
]

.

Proof. The right-hand side inequality follows from a conditioning argument, see [37]. The left-
hand side is more delicate because the set of admissible controls depends on the initial data.
However, it can be easily proved along the lines of Baradel et al. [16] when {θφ,φ ∈C (t , z)} is
[t ,T ]∩ (N∪ {t ,T })-valued. Then, the general case is obtained by approximating [t ,T ]-valued
stopping times from the right (recall that Z is right-continuous). �

One can then derive the corresponding dynamic programming equation. For any z = (p, q, x) ∈
DZ , c ∈C(z), t ≤ T , and a continuous and bounded function ϕ, we set

Iϕ(t , z) :=
∫

(K cϕ(t , z)−ϕ(t , z))dβ(c|p, q) and K ϕ(t , z) := sup
c∈C(z)

K cϕ(t , z),

where we use the convention that K 0 = sup;=−∞, and

K cϕ(t , z) :=
∫
ϕ(t ,T (z,c,ε,εb,εa))dλ(ε,εb,εa|p, q,c),

recall (6), (7) and (9). The partial differential equation characterization of v is then at least
formally given by

min
{−∂tϕ−Iϕ,ϕ−K ϕ

}= 0, on [0,T )×DZ ,

min
{
ϕ−U ,ϕ−K ϕ

}= 0, on {T }×DZ .
(11)

In order to ensure that the above is correct, we need two additional conditions.

Assumption 3.1. For all upper-semicontinuous (resp. lower-semicontinuous) ϕ ∈ Ł
exp
∞ , the map

(t , z) ∈ [0,T ]×DZ 7→ (I ,K )ϕ(t , z) is upper-semicontinuous (resp. lower-semicontinuous) and be-
longs to Ł

exp
∞ .
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III. Optimal inventory management and order book modeling

Assumption 3.2. There exists a Borel function ψ that is continuously differentiable in time and
such that

(i) 0 ≥ ∂tψ+Iψ, on [0,T )×DZ ,

(i) ψ−K ψ≥ ι, on [0,T ]×DZ , for some ι> 0,

(i) ψ≥U , on {T }×DZ ,

(i) liminf
n→∞ (ψ/L)(tn , zn) =∞ if |zn |→∞ as n →∞, for all (tn , zn)n≥1 ⊂ [0,T ]×DZ .

Then, one can actually prove that v is the unique solution of (11) in the class Ł
exp
∞ defined in

Remark 3.3.

Theorem 3.1. Let Assumption 3.1 hold. Then, v∗ (resp. v∗) is a viscosity supersolution (resp. subso-
lution) of (11). If moreover Assumption 3.2 holds, then v is continuous on [0,T )×DZ and is the
unique viscosity solution of (11), in the class of (discontinuous) solutions in Ł

exp
∞ .

Proof. In view of Proposition 3.1, the derivation of the viscosity super- and subsolution prop-
erties is very standard under Assumption 3.1, see e.g. [16, 37]. As for uniqueness, let us
assume that v and w are respectively a super- and a subsolution. Let ψ be as in Assumption
3.2. Then, (v − w −ψ)(tn , zn) converges to −∞ if |zn | → ∞ as n → ∞, for any sequence
(tn , zn)n≥1 ⊂ [0,T ]×DZ , and showing that v ≥ w on [0,T ]×DZ can be done by, e.g., following
the line of arguments of [16, Proposition 5.1]. Finally, v∗, v∗ ∈ Ł

exp
∞ by Remark 3.3. �

Remark 3.4. If J◦ <∞ and the supports of λ(·|p, q,c) and γ(·|p, q) are bounded, uniformly in
(p, q,c) ∈ (dZ)2 ×N2 ×C◦, then it is not difficult to see that the function defined by

ψ(t , z) := e2η(1+I∗)|z|e−r ( j+t ), for z = (p, q, g , i ,n,b, j ) ∈ DZ and t ≤ T,

satisfies the requirements of Assumption 3.2, for r large enough. Verifying Assumption 3.2 in the case
J◦ =∞ seems much more difficult. On the other hand, the sequence of value functions associated to a
sequence (J n◦ )n≥1 increases to the value function associated to J◦ =∞ as J n◦ →∞. which provides a
natural way to construct a convergent numerical scheme for the computation of v and the optimal
control policy, see Sections 3.4 and 3.5 below. Standard arguments based on this approximation
would also imply that v∗ = v and that v is the smallest supersolution of (11), in the class of
(discontinuous) solutions in Ł

exp
∞ .

3.4 Dimension reduction, symmetries and numerical resolution

Before providing a converging numerical scheme for (11), let us first recall that the variables g
(and j if J◦ =∞) can be omitted, see Remark 3.2. If moreover, the transition kernels depend
on prices only through the spread (which is a natural assumption at least on a rather short
horizon time), then one more dimension can be eliminated.

Assumption 3.3. The kernel (p, q,c) ∈ DP,Q ×C 7→ (λ(·|p, q,c),β(·|p, q)) depends on p = (pb, pa)
only through the value of the half-spread δp := (pa−pb)/2.
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3. Market maker’s optimal control problem

Indeed, if Assumption 3.3 holds, then one easily checks that

e−ηi p◦
v̄(t ,−δp,δp, qb, qa,0, i , ·) = v̄(t , p◦−δp, p◦+δp, qb, qa,0, i , ·)

= v̄(t , pb, pa, qb, qa,0, i , ·),

with p◦ := (pa+pb)/2, so that

eηi (pb+δp)v̄(t , pb, pb+2δp, qb, qa,0, i , ·).

does not depend on pb but only on δp . The resolution of the equation can also be simplified
by using potential symmetries, in the sense of the following assumption.

Assumption 3.4. For all (p, q) ∈ DP,Q , c := (ab, aa,`b,`a,`b, 1
2 , `a, 1

2 ,mb,ma) ∈C and all Borel
sets O ⊂ {0,1}, Ob,Oa ⊂N,∫

O×Ob×Oa
dλ(ε,εb,εa|p, q,c) =

∫
O×Oa×Ob

dλ(ε,εa,εb|p̄, q̄ , c̄),

where p̄ = (−pa,−pb), q̄ = (qa, qb) and c̄ = (aa, ab,`a,`b,`a, 1
2 ,`b, 1

2 ,ma,mb). Moreover, for all
Borel sets O =Ob

a ×Oa
a ×Ob

`
×Oa

`
×Ob

`
1
2
×Oa

`
1
2
×Ob

m ×Oa
m ⊂N8,

∫
O

dβ(c|p, q) =
∫

Ō
dβ(c|p̄, q̄),

where Ō :=Oa
a ×Ob

a ×Oa
`
×Ob

`
×Oa

`
1
2
×Ob

`
1
2
×Oa

m ×Ob
m .

The above assumption implies that the transition probabilities of the order book are symmet-
ric at the bid and at the ask, whenever the configurations are. Then, v admits a symmetry
which can be exploited to reduce the complexity of the numerical resolution of (11). Namely,
under Assumption 3.4, we have

v̄(t , pb, pa, qb, qa,0, i ,nb,na,bb,ba, j ) = v̄(t ,−pa,−pb, qa, qb,0,−i ,na,nb,ba,bb, j ).

Let us now turn to the definition of a numerical scheme for (11). We now make the additional
assumption that the supports of λ and β are bounded (not that they are already discrete, by
nature).

Assumption 3.5. J◦ <∞ and there exists finite Borel sets O1 ⊂N8 and O2 ⊂N3 such that β(·|p, q)
is supported by O1 and λ(·|p, q,c) is supported by O2, for all (p, q,c) ∈ DP,Q ×C.

Then, the operators I and K are explicit. Hence, the only required discretization is in time.
For a time step T /n > 0, we define a time grid πn := {t n

i , i ≤ n} where t n
i = i T /n for i ≤ n. We

next consider the sequence of space domains Dk
Z := DZ ∩[−k,k]11 for k ≥ 1, and we let vk

n be
the solution of

vk
n(t n

i , ·) = max

{
vk

n(t n
i+1, ·)+ T

n
I vk

n(t n
i+1, ·), max

c∈C(·)
K c,n vk

n(t n
i+1, ·)

}
= 0, on Dk

Z , i ≤ n −1,

vk
n −U = 0, on ({T }×Dk

Z )∪ (πn × (DZ \ Dk
Z )),

(12)
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where

K c,n =K c + T

n
I ◦K c .

This fully explicit scheme is convergent.

Proposition 3.2. Let Assumption 3.5 hold, then the sequence (vk
n)k,n≥1 converges pointwise to v on

[0,T )×DZ as k,n →∞.
Proof. First note that (vk

n/L)k,n≥1 is uniformly bounded, where L is defined in Remark 3.3.
This follows from Assumption 3.5 and a simple induction argument, compare with Re-
mark 3.3. Then, standard stability results, see e.g. [17] and [15, Section 3.2], imply that
the relaxed upper-limit v∞ and lower-limit of v∞ of (vk

n)k,n≥1 are respectively sub- and su-
persolution of (11) and belong to the class Ł

exp
∞ . The comparison result mentioned in the proof

of Theorem 3.1, see Remark 3.4, thus implies that v∞ ≥ v ≥ v∞ while v∞ ≤ v∞ by definition.
�

3.5 Approximate optimal controls

In the following, we estimate the optimal control in a classical way. For each i < n, we choose
a measurable map ĉk

n(t n
i , ·) such that

ĉk
n(t n

i , ·) ∈ argmax{K c,n vk
n(t h

i+1, ·), c ∈C(·)} , on Dk
Z ,

ĉk
n(t n

i , ·) = 0, on DZ \ Dk
Z ,

and define the sequence of stopping times

τ̂n,k
j+1 :=min{t n

i : i ≥ 0, t n
i > τ̂n,k

j , (vk
n −K ĉk

n vk
n(t n

i+1, ·))(t n
i , Ẑ n,k

t n
i −

) = 0}, j ≥ 0,

with τ̂n,k
0 := 0−, and in which Ẑ n,k = (P̂ n,k ,Q̂n,k , X̂ n,k ) is defined as in (9) for the initial

condition Z0− at 0 and the control associated to φ̂k
n := (τ̂n,k

i , ĉk
n(τ̂n,k

i , Ẑ n,k

τ̂n,k
i −))i≥1 in a Markovian

way. This provides a sequence of controls that is asymptotically optimal.

Proposition 3.3. Let the conditions of Proposition 3.2 hold. Then,

lim
n,k→∞

E[U (Ẑ n,k
T )] = v(0, Z0−).

Proof. Let γ(p, q) := ∫
dβ(c|p, q) and recall that γ is uniformly bounded by assumption, as

well as the sequence (vk
n)k,n≥1. Then, it follows from Remark 2.1 that

vk
n(t n

i+1, Ẑ n,k
t n

i
)+ T

n
I vk

n(t n
i+1, Ẑ n,k

t n
i

) =vk
n(t n

i+1, Ẑ n,k
t n

i
)(1− T

n
γ(P̂ n,k

t n
i

,Q̂n,k
t n

i
))

+ T

n

∫
K c vk

n(t n
i+1, Ẑ n,k

t n
i

)dβ(c|P̂ n,k
t n

i
,Q̂n,k

t n
i

)

=E[vk
n(t n

i+1,T̃ (Ẑ n,k
t n

i
,∆Ẽt n

i+1
))|F φ̂k

n

t n
i

]+o(n−1),
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and, similarly,

K
ĉk

n (τ̂n,k
i ,Ẑ n,k

τ̂
n,k
i

−
),n

vk
n(τ̂n,k

i + T

n
, Ẑ n,k

τ̂n,k
i −) =E[vk

n(τ̂n,k
i + T

n
,T̃ (Ẑ n,k

τ̂n,k
i + T

n −,∆Ẽ
τ̂n,k

i + T
n

))|F φ̂k
n

τ̂n,k
i −]+o(n−1),

with the convention that T̃ (·,0) is the identity. Let θn
k be the first time when Ẑ n,k exists the

domain Dk
Z . In view of (12), Assumption 3.5 (in particular that J0 <∞) and Remark 2.1 (see

the arguments at the end of Remark 3.3), an induction implies that

vk
n(0, Z0−) = E[U (Ẑ n,k

θn
k

)]+on(1) = E[U (Ẑ n,k
T )]+on(1)+ok (1),

in which on(1) and ok (1) go to 0 as n →∞ and k →∞. It remains to appeal to Proposition 3.2.
�

3.6 Numerical experiments

We now turn to a numerical experiment. We compute an approximation of the optimal con-
trol as described in Section 3.5, using the simplifications detailed in Section 3.4.

Let us first describe a realistic prior distribution for the evolution of Ẽ . The coefficients we
use are inspired from the behaviour of the stock Société Générale (GLE FP)6 and from [30].
As for the prior on the dynamics of the market. We simply consider that both market and
limit orders arrive according to a Poisson process. Both limit and aggressive orders arrive
with an intensity of 0.6 per second. When a limit order arrives, it is assigned to the bid or
the ask with probability 1/2. When a market order arrives, we assign it to the bid or the ask
according to the statistics described for big caps in [30, Chart 8 p.10]. Namely, if

Imbτ̃i :=
Qb
τ̃i
−Qa

τ̃i

Qb
τ̃i
+Qa

τ̃i

,

is the order book imbalance at the time τ̃i at which the market order arrives, then it arrives
at the ask with probability 0.5+0.35× Imbτ̃i . To describe the size of the orders and of the
inventory, we take 1/2 of the ATS (mediAn7 Trade Size) as the unit.

The size of the market orders is also assumed to be dependent on the order book imbalance.
We use [30, Chart 16 p.10] to estimate that the size of the trade arriving at the ask (if it arrives
at the ask), represents a percentage of the queue (that we round to an integer number, by
above). Namely, we set f̂

a
τ̃i

:= 0.7+0.3× Imbτ̃i , and assign a (conditional) probability of 60%

that the order is of size round[f̂
a
τ̃i
×Qa

τ̃i
] and the same probability that the executed volume

deviates from the latter by one unit (with equal probability to be by one more and one less
unit - if quantities are negative or bigger than the size of the queue, we obviously set them to
0 or to the size of the queue).

6We thank Kepler-Cheuvreux for providing us these data.
7Following [30, Page 23].
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We use a simpler modelling approach for the limit orders. With 55% probability a limit order
(if it arrives) is of size of 2 (recall that the unit is 1/2 of an ATS). It is of size 3 with probability
10% and of size 1 with probability 35%. Again, it is based on [30].

When a queue is depleted, the probability of a price move is set to P[εi = 1|Fτ̃i ] = 75%. If
the bid is depleted but the bid price does not go down, the size of the new bid queue is
set to 2 units with probability 60%, 1 unit with probability 25% and 3 units with probability
15%, otherwise it is set to 10 units with probability 60%, 5 units with probability 25% and
12 units with probability 15%. The same applies to the ask price if this is the ask queue
that is depleted. If both ask and bid prices move, recall (3), we take the same distribution
for both queues and consider them as being (conditionally) independent. The distribution
corresponds to the one of a price move, as described above.

When the spread is equal to two ticks, the next limit order arrives in the spread with proba-
bility 90%. This models the fact that a spread of two ticks is not common, see e.g. [55]. To be
consistent with the probability of arrival of market orders at the bid or at the ask, we assume
that a new bid limit is created in the spread with probability 0.5+0.35×Imbτ̃i (otherwise, this
is a new ask limit). The size of this new limit is 2 with 55%, of size 3 with probability 10%
and of size 1 with probability 35%. This corresponds to the behaviour of the stock Société
Générale (GLE FP). We do not change the dynamics of aggressive orders with the size of the
spread.

Let us now describe the other parameters of the Market Maker’s optimal control problem. We
set the bid price to 10 at time 0−, the spread is one tick, and the tick equal to 0.01, recall from
Section 3.4 that only the spread size matters (because we have here the required symmetry)
and observe that the latter can be rescaled together with the level of risk aversion, which is
here fixed to η= 1. We take κ= 0.02 and %= 10−20. The horizon time is T = 59 seconds, and
the time step is 1 second. We keep a small horizon time for a better visibility of the evolution
of the order book. We do not consider cancellations from the rest of the market for simplicity.
Moreover, in order to reduce the computation time, we add the additional constraint that the
MM cannot cancel only part of position in a queue, he can only cancel the whole position.
We also fix a maximal queue size of 12 and fix the maximal absolute value of the inventory
to I∗ = 7. The size of the limit and market orders sent by the MM are constrained to be less
than 3. This corresponds to adding an additional constraint in the definition of C (·) which
does not change the above analysis.

In Figure III.2, we provide a simulated path of the optimal strategy, starting from a symmetric
configuration of the order book, with queue lengths equal to 6. In this simulation, the MM
always play before the other (random) players.8 The top left graphic describes the control
played by the MM. Triangles pointing outward (with respect to the zero line) correspond to
limit orders, the number of triangles giving their size. Arrows with triangles pointing inward
are cancellations, again the number of triangles gives the size. Aggressive orders are symbol-

8This is just a convention, since the transition probabilities do not depend on time.
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3. Market maker’s optimal control problem

ized by lines with squares, while limit orders within the spread correspond to the lines with
dots. The top right graphic gives the state of the order book just after the MM action, and
before the nature (i.e. the other players) plays. The size of the lines gives the total length
of each queue, while the dots symbolize the position of the MM in the queue. The middle
left graphic describes the state of the order book after the nature decision. The bottom left
graphic gives the value of the portfolio of the MM if he had to liquidate (by sending aggressive
orders) his stock holding at the best bid/ask price. The final value gives the “true” liquidation
value of the book. In the case that the final inventory cannot be liquidated at the best bid/ask
price, we liquidate the remaining part at the best bid/ask price minus/plus one tick. The
middle right graphic is the inventory just before he plays and the bottom right one is the bid
and ask prices just after he plays. Figure III.1 provides the distribution of the gain made by
the MM, it uses 105 simulated paths.

His strategy can seem difficult to interpret at first sight. But, we have to remember that he
believes that the imbalance plays an important role in the book order dynamics, and that he
not only should take care of it but that he can actually use it: some limit orders are sent not
to be executed but to influence the evolution of the price in a favorable direction. Also note
that he should avoid a price decrease/increase when his inventory is positive/negative. Having
this in mind, it is not surprising that he can be sometimes at the limit of a price manipulation
strategy, if he is big enough with respect to the market, which is the case in these simulations.
Finally, we have to keep in mind that his strategy is constrained. He sometimes cancels
positions to be free to react more quickly to a more favorable market configuration later on.
Not surprisingly, the MM first sends limit orders of equal sizes on both sides of the order book.
Nothing happens until time t = 9. At this time is inventory is 2 and his position at the ask is
still far from the beginning of the queue. In order to avoid increasing again his inventory, he
cancels his remaining position of one unit at the bid. He puts a new position at the bid at time
10 after the queue has slightly increased, because of an exogenous limit order. Unfortunately
for him, this new position is immediately executed, and his inventory jumps to 5. After the
queue is regenerated, he immediately puts a limit order of size 2 at the bid. His reasoning
is the following: 1. this position has little chance to be executed immediately, he does not
take a risk of again increasing his inventory; 2. by doing this he increases the imbalance and
therefore the probability of being executed at the ask so has to gain the spread and reduce
his inventory. This strategy is successful since immediately 2 units of his positions at the ask
are executed. The imbalance is still good even if he cancels his last unit at the bid, so as to
be free to play the control he wants once his last unit at the ask will be executed. In fact, it
does not work and he decides to refresh his global position at time 16 by cancelling his final
unit at the ask and putting limit orders again at time 17 in a symmetric way. This is a limit
spread order at the bid. This makes sense since he has to avoid the stock price to go down,
because he has a positive inventory. The fact that just after he alternates between putting and
cancelling limit orders at the ask is probably a numerical artifact: on the one hand, he wants
to have a limit position at the ask because his inventory is large, on the other hand he does
not want to increase the imbalance to avoid having a too big probability of being executed at
the bid and of seeing the price go down. Similarly, he wants to keep a position at the bid to
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III. Optimal inventory management and order book modeling

avoid a downward price move, while he really does not want to be executed on this side. The
aggressive order at the bid at time 19 is just a partial cancellation, that is completed at time
20. He just does not want to be executed. By doing so, he unfortunately causes a downward
jump of the bid, which is not good for him. Just after he sends a limit spread order at the bid
to fight against this downward pressure, and then cancels it once the bid is back at a distance
one tick of the ask. This strategy is successful. The rest of his orders can be interpreted in
a similar manner. Just note that he starts to be aggressive at the bid side at time 49 because
his inventory is too big and the maturity starts to be quite close, in particular the first market
order of size 3 compensates the execution of a position of size 3 at the bid just before (so that
the graphic of the inventory does not move, although the inventory temporary jumps to the
upper limit 7).

Histogram of Market Maker return
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Figure III.1 – Density estimation of the gain made by the Market Maker.
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Figure III.2 – Simulated path of the optimal strategy of the Market Maker.
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4 High frequency pair trading problem

We now turn to the DHFT strategy. We consider a pair trading strategy where the trader
invests in the difference of two highly correlated assets. Here, we choose the futures price of
the stock to be the second asset. The order book defined in Section 2 represents the dynamics
of the stock. Whenever the trader buys/sells n units of stocks (being by an aggressive order
or by the execution of a limit order), he sells/buys immediately n units of the futures. His
inventory should be fully liquidated at T .

4.1 The optimal control problem

We assume that the reference price F of the futures is given by

F = Pb+Pa

2
+S, (13)

where S is a mean-reverting process

S = S0 +
∫ ·

0
ρ(ŝ −St )d t +

∫ ·

0
σ(St )dWt . (14)

Here, ρ is the strength of mean reversion, ŝ is the average of mean reversion and σ :R 7→R is
a Lipschitz bounded function representing the volatility of the process. In the following, we
shall assume that

the support of σ is bounded. (15)

Remark 4.1. The above implies in particular that S lies in a certain compact set DS as soon as S0

does. This could clearly be relaxed to the price of a finer analysis.

The strategy of the DHFT is described by the same quantities used for the MM case, see
Section 3. The only difference lies in the fact that he constantly holds a number equal to −I
units of the futures F . We assume that buying/selling the futures leads to the payment of a
proportional cost κ≥ 0. Then, the dynamics of the corresponding state process X are given
by

Xτi =TX (Sτi ,Pτi−1 ,Qτi−1 , Xτi−1 ,∆E
φ
τi

)1{∆E
φ
τi
6=0} + T̃X (Sτi ,Pτi−1 ,Qτi−1 , Xτi−1 ,∆Ẽτi )1{∆E

φ
τi
=0}, (16)

with TX and T̃X now defined such that

TG (s, p, q, x,δ) = g + (ab−exe(ab,nb,bb))∆b
−− (aa−exe(aa,na,ba))∆a

+,

TI (s, p, q, x,δ) = i − (ab−exe(ab,nb,bb))+ (aa−exe(aa,na,ba)),

TNb/a(s, p, q, x,δ) = nb/a+ [`b/a−nb/a]++`b/a, 1
2 −mb/a−exe(ab/a,nb/a,bb/a),

TBb/a(p, q, x,δ) = bb/a+ (qb/a−bb/a)1{`b/a 6=0} −bb/a1{mb/a=nb/a} − (bb/a∧ab/a)1{ab/a 6=0} −bb/a1{`b/a 6=0},

TJ (s, p, q, x,δ) = j +1,
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and

T̃G (s, p, q, x,δ) = g −exe(ab,nb,bb)∆b
++exe(aa,na,ba)∆a

−,

T̃I (s, p, q, x,δ) = i +exe(ab,nb,bb)−exe(aa,na,ba),

T̃Nb/a(s, p, q, x,δ) = nb/a−exe(ab/a,nb/a,bb/a),

T̃Bb/a(p, q, x,δ) = [bb/a−ab/a]+1{mb/a=0} + (bb/a− [mb/a− (qb/a−bb/a−nb/a)]+)+1{mb/a 6=0},

T̃J (s, p, q, x,δ) = 0,

in which

∆b
± := pb− pb+pa

2
− s ±κ , ∆a

± := pa− pb+pa

2
− s ±κ.

In the above, we use the notations x = (g , i ,nb,na,bb,ba, j ), δ = (ab, aa,`b,`a,`b, 1
2 ,`a, 1

2 ,mb,
ma, ε,εb,εa), p = (pb, pa) and q = (qb, qa). The set of admissible controls C (0,S0, Z0−) is
defined as in Section 3 but with respect to the (completed) filtration Fφ = (Fφ

t )t≥0 generated
by (S,E ).

We also assume that DHFT has an exponential type utility function, with risk aversion pa-
rameter η> 0. Then, she wants to maximize over φ ∈C (0,S0, Z0−) the expected utility

E[U (ST , Zφ

T )],

where
U (s, z) :=−exp

(
−η{g + i+∆b

−− i−∆a
+−κ([i+−qb]++ [i−−qa]+)−% j }

)
, (17)

for any z = (pb, pa, qb, qa, g , i ,nb,na,bb,ba, j ), and where ∆b
± and ∆a

± are defined as above.

As in Section 3, we next extend the definition of our state processes by writing

(S t ,s , Z t ,s,z,φ) = (S t ,s ,P t ,s,z,φ,Q t ,s,z,φ, X t ,s,z,φ),

for the process satisfying (1)-(8)-(14) under the control φ and the initial condition (S t ,s
t , Z t ,s,z,φ

t− )
= (s, z) ∈ DS×DZ . The corresponding set of admissible controls is C (t , s, z), and the filtration
associated to φ ∈C (t , s, z) is Ft ,s,z,φ = (F t ,s,z,φ

s )s∈[t ,T ]. We finally define the value function

v(t , s, z) := sup
φ∈C (t ,s,z)

J (t , s, z;φ) for (t , s, z) ∈ [0,T ]×DS ×DZ ,

where
J (t , s, z;φ) := E[U (S t ,s

T , Z t ,s,z,φ
T )].

We close this section with Remarks that are the counterparts of Remarks 3.2 and 3.3.

Remark 4.2. For later use, observe that

v(t , s, z) = e−η(g−% j )v̄(t , z) := e−η(g−% j )v(t , s, pb, pa, qb, qa,0, i ,nb,na,bb,ba,0),

for all t ≤ T , s ∈ DS and z = (pb, pa, qb, qa, g , i ,nb,na,bb,ba, j ) ∈ DZ .

Remark 4.3. Note that v is bounded from above by 0 by definition. It also follows from (15) that
S t ,s takes values in the compact set DS so that v ∈ Ł

exp
∞ by the same reasoning as in Remark 3.3.
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4.2 The dynamic programming equation

As in Section 3.3, we first provide a dynamic programming principle. Again, we let v∗ and
v∗ denote the lower- and upper-semicontinuous envelopes of v .

Proposition 4.1. Fix (t , s, z) ∈ [0,T ]×DS ×DZ and a family {θφ,φ ∈ C (t , s, z)} such that each
θφ is a [t ,T ]-valued Ft ,s,z,φ-stopping time and ‖(S t ,s

θφ
, Z t ,s,z,φ

θφ
)‖∞ <∞. Then,

sup
φ∈C (t ,x,q)

E
[

v∗(θφ,S t ,s
θφ

, Z t ,s,z,φ
θφ

)
]
≤ v(t , s, z) ≤ sup

φ∈C (t ,x,q)
E
[

v∗(θφ,S t ,s
θφ

, Z t ,s,z,φ
θφ

)
]

.

Proof. Let Ck (t , x, z) be the set of controls φ satisfying the additional constraint #{τφi , i ≥ 1} ≤
k a.s., and let vk be the corresponding value function, for k ≥ 1. Then, it is not difficult to
see that vk is continuous, and the arguments of [37] imply that

sup
φ∈Ck (t ,x,z)

E
[

vk (θφ,S t ,s
θφ

, Z t ,s,z,φ
θφ

)
]
≤ vk (t , s, z)

≤ sup
φ∈Ck (t ,x,z)

E
[

vk (θφ,S t ,s
θφ

, Z t ,s,z,φ
θφ

)
]

≤ sup
φ∈C (t ,x,z)

E
[

v(θφ,S t ,s
θφ

, Z t ,s,z,φ
θφ

)
]

.

Since by definition v = limk→∞ ↑ vk and C (t , x, z) = ∪k≥1Ck (t , x, z), sending k →∞ in the
above leads to the required result, recall Remark 4.3. �

The partial differential equation associated to v is then at least formally given by

min
{−Lϕ−Iϕ,ϕ−K ϕ

}= 0, on [0,T )×DS ×DZ ,

min
{
ϕ−U ,ϕ−K ϕ

}= 0, on {T }×DS ×DZ ,
(18)

in which L is the Dynkin operator associated to (14):

Lϕ= ∂tϕ+ρ(ŝ − s)∂sϕ+ 1

2
σ2∂2

ssϕ.

To fully characterize the value function, we need the additional assumption, similar to As-
sumption 3.2.

Assumption 4.1. There exists a Borel function ψ ∈C 1,2([0,T ]×DS ×DZ ) such that

(i) 0 ≥Lψ+Iψ, on [0,T )×DS ×DZ ,

(i) ψ−K ψ≥ ι, on [0,T ]×DS ×DZ for some ι> 0,

(i) ψ≥U , on {T }×DS ×DZ ,

(i) liminf
n→∞ (ψ/L)(tn , sn , zn) =∞ if |zn |→∞ as n →∞, for all (tn , sn , zn)n≥1 ⊂ [0,T ]×DS ×DZ .

Theorem 4.1. Let Assumption 3.1 hold. Then, v∗ (resp. v∗) is a viscosity supersolution (resp. subso-
lution) of (18). If moreover Assumption 4.1 holds, then v is continuous on [0,T )×DZ and is the
unique viscosity solution of (18), in the class Ł

exp
∞ .
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4. High frequency pair trading problem

Proof. In view of Proposition 4.1, the derivation of the viscosity super- and subsolution prop-
erties is very standard under Assumption 3.1, see e.g. [37]. As for uniqueness, this follows
from a comparison principle that can be proved in the class Ł

exp
∞ by arguing as in the proof

of Theorem 3.1. �

As for the MM problem, Assumption 4.1 is easily checked when J◦ <∞.

Remark 4.4. If J◦ <∞ and the supports of λ(·|p, q,c) and γ(·|p, q) are bounded, uniformly in
(p, q,c) ∈ (dZ)2×N2×C◦, then the function ψ defined in Remark 4.4 also satisfies the requirements
of Assumption 4.1, for r large enough.

4.3 Dimension reduction, symmetries and numerical resolution

As in Section 3.4, one can use specificities of the value function to reduce the complexity of
the resolution of (18). First, the variable (g , j ) can be omitted, see Remark 4.2. Moreover, if
Assumption 3.3 holds, then one easily checks that

v̄(t , s, pb, pb+2δp, qb, qa,0, i ,nb,na,bb,ba,0),

does not depend on pb. The difference with the relation obtained in Section 3.4 is due to (13)
and the fact that the HFT always holds a symmetric position in the stock and the futures (he
is protected against evolutions of the mid-price). The other symmetry relations described in
Section 3.4 do not hold because of the dependence on the process S.

Let us now turn to the definition of a numerical scheme for (18). Recall that, under Assump-
tion 3.5, the operators I and K are explicit. Hence, the only required discretization is in
time and in the variable s. We shall consider separately the diffusion part and the obsta-
cle part of the PDE. More precisely, we fix a time and a space grid πn

t := {t n
i , i ≤ nt } and

πn
s := {sn

i , i ≤ ns} where t n
i = i T /nt for i ≤ nt and sn

i = s+ i (s− s)/ns , i ≤ ns . Here, s and s are
such that DS = [s, s], recall Remark 4.1, and n := (nt ,ns) ∈N2. We next define the sequence of
space domains Dk

Z := DZ ∩ [−k,k]11 for k ≥ 1, and we let vk
n be defined by

vk
n = max

{
v̌k

n ,K v̌k
n

}
= 0 ,on πn

t ×πn
s ×Dk

Z ,

vk
n −U = 0, on ({T }×πn

s ×Dk
Z )∪ (πn

t ×πn
s × (DZ \ Dk

Z )).
(19)

Here, for i ≤ nt −1 and i ′ ≤ ns ,

v̌k
n(t n

i , sn
i ′ , ·) = E[vk

n(t n
i+1,pn(S

t n
i ,sn

i ′
t n

i+1
), ·)]+ T

n
I vk

n(t n
i+1, sn

i ′ , ·), on Dk
Z , (20)

where pn is the left-hand side projection operator on πn
s . Note that the above numerical

scheme is not fully explicit as it requires to compute conditional expectations. This can how-
ever be easily performed either by a finite difference scheme or by Monte-Carlo techniques in
a very classical way. Note in particular that the randomness in these conditional expectations
only comes from a one dimensional factor.

Proposition 4.2. Let Assumptions 4.1 and 3.5 hold, then the sequence (vk
n)n≥1 converges pointwise

to v as nt ,ns ,k →∞.
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Proof. Note that Assumption 4.1 ensures that comparison holds for (18) in the class Ł
exp
∞ , see

e.g., [16, Proposition 5.1]. Thus, as for Proposition 3.2, the result is an easy consequence of
the stability result of [17]. �

4.4 Approximate optimal controls

The optimal control can be numerically estimated as in Section 3.4. We first extend (vk
n , v̌k

n)
to πn

t ×DS ×DZ by setting (vk
n , v̌k

n)(·, s, ·) := (vk
n , v̌k

n)(·,pn(s), ·). Then, we choose a measurable
map ĉk

n(t n
i , ·) such that

ĉk
n(t n

i , ·) ∈ argmax{K c v̌k
n(t h

i , s, ·), c ∈C(·)} , on DS ×Dk
Z ,

ĉk
n(t n

i , ·) = 0, on DS × (DZ \ Dk
Z ),

and define the sequence of stopping times

τ̂n,k
j+1 :=min{t n

i : i ≥ 0, t n
i > τ̂n,k

j , (vk
n −K ĉk

n v̌k
n(t n

i , ·))(t n
i ,St n

i
, Ẑt n

i −) = 0}, j ≥ 0,

with τ̂n,k
0 := 0−, and in which Ẑ n,k = (P̂ n,k ,Q̂n,k , X̂ n,k ) is defined as in (9)-(14) for the initial

condition Z0− and the control associated to φ̂k
n := (τ̂n,k

i , ĉk
n(τ̂n,k

i ,S
τ̂n,k

i
, Ẑ n,k

τ̂n,k
i −))i≥1 in a Marko-

vian way. Again, this provides a sequence of controls that is asymptotically optimal.

Proposition 4.3. Let the conditions of Proposition 4.2 hold. Then,

lim
k→∞

lim
nt ,ns→∞E[U (ST , Ẑ n,k

T )] = v(0,S0, Z0−),

in which the limit is taken along sequences n such that n2
t n−1

s → 0.

Proof. Let γ(p, q) := ∫
dβ(c|p, q) and recall that γ is uniformly bounded by assumption. The

family {(vk
n , v̌k

n)/L}k,n≥1 is uniformly bounded, compare with Remark 4.3. Also note that
(s, z) ∈ DS ×Dk

Z 7→U is Ck-Lipschitz, for some Ck > 0 that only depends on k . By induction
(recall that the component s is projected on πn

s ),

|v̌k
n(·, s, ·)− v̌k

n(·, s′, ·)| ≤C ′
k [|s − s′|+nt O(n−1

s )], for all s, s′ ∈ DS , on Dk
Z ,

for some C ′
k > 0 that does not depend on n∈N2. Since S is 1/2-Hölder in time in L2, together

with Assumption 3.5, this implies that

K cI v̌k
n(t n

i+1, sn
i ′ , z) =K cE[I v̌k

n(t n
i+1,S

t n
i ,sn

i ′
t n

i+1
, z)]+Ok (n

− 1
2

t )+nt Ok (n−1
s ),

= E[v̌k
n(t n

i+1,S
t n

i ,sn
i ′

t n
i+1

, Z
t n

i ,z,c
t n

i+1
)]+Ok (n

− 1
2

t )+nt Ok (n−1
s ) for z ∈ Dk

Z , c ∈C(z),

in which the exponent c in Z t n
i ,z,c means that the impulse c is given at t n

i , and we use
Remark 2.1 again. In the above, Ok (ξ) is a function, that may depend on k, but such that
ξ ∈ R \ {0} 7→ |Ok (ξ)|/ξ is bounded in a neighborhood of 0. By the arguments already used in
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the proof of Proposition 3.3, it follows that

vk
n(t n

i , sn
i ′ , z) =E[vk

n(t n
i+1,S

t n
i ,sn

i ′
t n

i+1
, Z

t n
i ,z,0

t n
i+1

)]∨ max
c∈C(z)

E[vk
n(t n

i+1,S
t n

i ,sn
i ′

t n
i+1

, Z
t n

i ,z,c
t n

i+1
)]

+ok (n−1
t )+nt Ok (n−1

s ),

and therefore

vk
n(0,S0, Z0−) = E[U (Sθn

k
, Ẑ n,k

θn
k

)]+ok
n(1)+Ok (n2

t n−1
s )

= E[U (ST , Ẑ n,k
T )]+ok

n(1)+Ok (n2
t n−1

s )+ok (1),

by induction, in which ok
n(1) goes to 0 as n →∞, ok (1) goes to 0 as k →∞, and θn

k is as in
the proof of Proposition 3.3. It remains to appeal to Proposition 4.2. �

4.5 Numerical experiments

We use the same model as the one described in Section 3.6. As for the new parameters, we
take ŝ = 0, ρ = 50 and σ= 0.2, in particular the mean reversion parameter is taken to be large.
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Figure III.3 – Simulated path of the optimal strategy of the High Frequency Trader.
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4. High frequency pair trading problem

We approximate the behaviour of the spread process S by a trinomial tree based on the
transition probabilities associated to the diffusion (14), so that the expectation in (20) can be
computed explicitly. More precisely, we consider a centered 6 points grid with mesh equal to
half a tick (i.e. 0.005).

The graphics in Figure III.3 have the same interpretation as in Section 3.6 except that we
now also provide the evolution of the Futures process F , this is the dashed line in the bottom
right graphic. Remember that the HFT does not gain from the evolution of the mid-price, as
his position in stocks in always covered by a symmetric position in the futures. He only gains
from the evolution of the spread process S or from the bid-ask spread of the stock if S does
not move. Not surprisingly, his behaviour is quite different from the one of the MM described
in Section 3.4.

As the MM, the DHFT starts with a symmetric position because the spread with the future is
0. Then he tries selling at time 4 by sending a limit sell order in the spread to buy the futures
whose price (compared to the mid-price of the stock) decreases. He is starting to play on the
stock-futures spread and follows this strategy until time 14. He plays in a more symmetric
way after this until time 35, with a slight tendency to resume his inventory. At time 35, he
decides to clearly sell stocks again and buy the futures whose price is again very low. From
time 40 on, he inverts his position on the book to try buying the stock and thus sells the
futures whose price went up. He finally inverts his position again at time 50 when the futures
price goes back to the mid price, to liquidate his position on the pair. Compared with the
MM in Figure III.2, DHFT positions are clearly driven by the stock-futures spread. The DHFT
also does not seem to try to control the stock’s mid-price as the MM did. In Figure III.4, we
provide an estimation of the density of the gain of the HFT based on 105 simulated paths.

Histogram of HFT return

Return

D
en
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Figure III.4 – Density estimation of the gain made by the High Frequency Trader.
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5 Institutional broker strategies for portfolio liquidation

We now turn to the Institutional Broker problem. We consider in the following two common
strategies for buying/selling a block of stocks. We focus on the buying side, selling being
performed in a symmetrical way.

5.1 Volume strategy

We first consider a simple volume strategy. We fix a participation rate f ∈ (0,1). It corre-
sponds to the percentage of the total traded volume executed by the broker between 0 and the
end of the execution. This means that the agents should buy the percentage f /(1− f ) of the
other market participants trades volume. To acquire I0, the IB splits [0,T ] into subintervals
[ti , ti+1] of R+. At the beginning of each subinterval, he estimates the conditional probability
pi ,i+1 that a trade arrives at the best bid, given that a trade arrives and given the order book
state at ti . Then, he inserts a buy limit bid order of size ( f /(1− f ))Q1

ti
/pi ,i+1 at ti . Here, the

quantity Q1
ti

/pi ,i+1 represents the average number of trades needed to deplete the best bid
and ( f /(1− f )) is the percentage of this traded volume that the IB want to buy. In the mean-
time, the IB compares the realized volume ∆I := I − I0 with the total traded volume on the
market ṽ(0, ·)+∆I . If ∆I (1− f ) > f ṽ(0, ·)+δI with δI > 0 a given threshold, the broker stops
adding limit orders and cancels the already inserted limit orders. If ∆I (1− f ) < f ṽ(0, ·)−δI ,
the agents sends an aggressive order so as to turn to a position ∆I (1− f ) ≥ f ṽ(0, ·)−δI as
soon as possible. The IB leaves the market when I ≥ 0.

For our numerical experiment, we take the same model as in Section 3.6, we consider a par-
ticipation rate f = 0.2 and simply take pi ,i+1 = 1/2. The time intervals [ti , ti+1] have a length
of 60 seconds and the time step is 1/2 second. We take δI = 4 (i.e. 2 ATS). The number of
units to buy is I◦ = 250 units. A simulated path of the strategy is provided in Figure III.5.
In the top left graphic, the dashed lines correspond to the target volume ±δI , while the
solid curve is the volume traded by the IB. The top right graphic gives the control of the
IB: lines with inward pointing arrows are limit orders, lines with squares are market orders.
The bottom left graphic provides the evolution of the average price at which stocks have been
bought by the IB from time 0 on. The bottom right graphic gives the evolution of the bid
and ask prices. One can see that this very simple strategy is quite efficient in the sense that
only a limited number of market orders are sent. On the other hand, the systematic position
of the IB at the bid limit creates an important imbalance that contributes to push up the price.

Figure III.6 provides an histogram of the relative error (in %) of the VWAP obtained by this
strategy with respect to the VWAP realized at the level of the whole market.9 It is based on
104 simulated paths. One can see that this average price is typically slightly higher than the
VWAP of the market.

9Namely, (VWAPVol −VWAPMarket)/VWAPMarket in which VWAPVol is the VWAP obtained by the IB by
playing his volume strategy.
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Figure III.5 – Simulated path of the volume strategy.

Percentage difference with the market VWAP

Figure III.6 – Histogram of the VWAP percentage error with respect to the VWAP of the
market, for the Volume strategy.
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5.2 VWAP

We now present a VWAP (Volume Weighted Average Price) based trading strategy frequently
practiced by institutional brokers. Suppose that, at initial time 0, an institutional broker
decides to buy a quantity I0 ∈ N of a tradable asset using a VWAP based strategy, i.e. by
trying to obtain an average execution cost not more than

VWAPT = wT

v(0,T )
where w :=

∫ ·

0
vt Pt d t and v(·,T ) :=

∫ T

·
vsd s, (21)

in which v is a deterministic non-negative continuous process such that
∫ T

0 vt d t > 0, which
represents the trading volume of the market, and P models the stock price.10

5.2.1 Abstract continuous time resolution

Following the seminal work of Almgren and Chriss [9], see also [76, Section 4.4], we first
consider the idealized world in which trading is done continuously at a bounded intensity,
the trading speed ϑ, taken as a process in the class C of non-negative processes adapted
to the (completed) filtration generated by W . He assumes that the dynamics of the asset
reference price P have a permanent linear price impact generated by the agent’s trading
activity, see [9]. More precisely, he assumes that the stock price evolves according to

dPt =βϑt d t +σdWt , (22)

with β,σ> 0, while his inventory I follows the dynamics

d It =ϑt d t ,

with the initial condition I0 =−I0, meaning that he is short at 0 of I0 stocks that he has to buy
on [0,T ]. He also assumes that his wealth G is affected by a temporary linear market impact
κϑ, for some κ> 0, i.e.

dGt =−ϑt
[
Pt +κϑt

]
d t . (23)

The goal of the agent is to maximise over ϑ ∈C the expected utility

E
[−exp[−η{GT + IT (PT − κ̃IT )− I0

wT

v(0,T )
}]

]
, (24)

for some κ̃> 0 which represents a penalty in case the inventory does not match 0 at T . This
type of problems has been widely studied, see the books [76, 82] for references. In the present
form, it can be solved explicitly by using a verification argument. We have the following
result.

10We take it deterministic for simplicity. In practice, it generally corresponds to a market volume curve
estimated by the broker.
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Theorem 5.1. The IB value function defined such that

v(t , p, i , g , w) = sup
µ
E
[−exp[−η{GT + IT (PT − κ̃IT )− I0VWAPT }]|Ft

]
,

satisfies the semi closed formula

v(t , p, i , g , w) =−e−η{g−m̄w−pv(t ,T )m̄+i (p−κ̃i )} ×eh0(t )+h1(t )i+h2(t )i 2
,

where the functions h0 and h1 are fully characterized by ODEs

∂t h0 =−1

2
σ2(ηv(t ,T )m̄)2 + (h1 +βηv(t ,T )m̄)2

4κη
,

∂t h1 =σ2η2v(t ,T )m̄ + (h1 +βηv(t ,T )m̄)
−βη+2ηκ̃+2h2

2κη
,

∂t h2 =−η
2σ2

2
+

[−βη+2ηκ̃+2h2
]2

4κη
.

The above result shows that the optimal control policy is given by

ϑ̂= v̂(·, I ),

where

v̂(t , i ) := β∂p v(t , p, i , g , w)+∂i v(t , p, i , g , w)−p∂g v(t , p, i , g , w)

2κ∂g v(t , p, i , g , w)

= β[i − v(t ,T )m̄]−2κ̃i − [h1(t )+2h2(t )i ]/η

2κ
.

One can check that the function h2 has the following form:

h2(t ) = 1

c1 + c2ec3(T−t )
− c4,

in which the constants c1, . . . ,c4 can be computed explicitly by using the above differential
equation and the terminal condition h2(T ) = 0. Namely, set

a0 :=−η
2σ2

2
+ η(2κ̃−β)2

4κ
, a1 := 2κ̃−β

κ
, a2 = 1

κη
,

and let y◦ be a root11 of

(4a0a2 −a2
1)y2 + (a2

1 −4a0a2)y +a0a2 = 0,

then
c3 = a1

1−2y◦
, c4 = a0

(1− y◦)c3
, c1 = y◦

c4
, c2 = 1

c4
− c1.

Existence of y◦ is guaranteed since

a2
1 −4a0a2 = η2σ2

2
> 0.

11The function h2 does not depend on the choice of the root.
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III. Optimal inventory management and order book modeling

Proof of Theorem 5.1. The value function v satisfies the following Hamilton-Jacobi-Bellman
equation:

0 = sup
u≥0

(
∂tϕ+ 1

2
σ2∂2

ppϕ+pvt∂wϕ+u
(
β∂pϕ+∂iϕ−p∂gϕ

)−u2κ∂gϕ

)
, on [0,T )×R4

with terminal condition

ϕ(T, p, i , g , w) =−e−η{g+i (p−κ̃i )−m̄0w} , for (p, i , g , w) ∈R4,

where
m̄ := I0/v(0,T ).

To simplify the above, we first write v in the form

v(t , p, i , g , w) = e−η(g−m̄w−pv(t ,T )m̄)v̄(t , p, i ) with v̄(t , p, i ) := v(t , p, i ,0,0),

so that v̄ formally solves

0 = ∂tϕ+ 1

2
σ2(∂2

ppϕ+2ηv(t ,T )m̄∂pϕ+η2v(t ,T )2m̄2ϕ)− (β∂pϕ+βηv(t ,T )m̄ϕ+∂iϕ+ηpϕ)2

4κηϕ
,

on [0,T )×R4, with terminal condition

ϕ(T, p, i , g , w) =−e−η{i (p−κ̃i )} for (p, i , g , w) ∈R4.

One possible solution is given by

v̄(t , p, i ) =−e−η{i (p−κ̃i )}eh0(t )+h1(t )i+h2(t )i 2
,

in which h0,h1 and h2 solve12 on [0,T )

∂t h0 =−1

2
σ2(ηv(t ,T )m̄)2 + (h1 +βηv(t ,T )m̄)2

4κη
,

∂t h1 =σ2η2v(t ,T )m̄ + (h1 +βηv(t ,T )m̄)
−βη+2ηκ̃+2h2

2κη
,

∂t h2 =−η
2σ2

2
+

[−βη+2ηκ̃+2h2
]2

4κη
,

with h0(T ) = h1(T ) = h2(T ) = 0. Then, h0, h1 and h2 are fully characterized. We complete
the proof with an easy verification argument.

12Just insert the above in the PDE of v̄ and match the orders in the i variable.
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5.2.2 Strategy in practice and simulations

In practice, this optimal strategy cannot be implemented within an order book. We there-
fore consider a “discrete” version. In this version, we assume that the IB tries to keep his
inventory I equal to the optimal inventory Î := ∫ ·

0 ϑ̂t d t − I◦. To do this, he fixes a time grid
{ti , i ≤ n} with t0 = 0 and tn = T . At time ti , he estimates that she has to execute a volume of
Vi ,i+1 := ∫ ti+1

ti
v̂(t , Iti )d t on [ti , ti+1] while the volume of the market will be Ṽi ,i+1 =

∫ ti+1
ti

vt d t .
Then, he follows a volume strategy with threshold δI =+∞, see Section 5.1 above, on [ti , ti+1]
with a target participation rate of f = Vi ,i+1/(Ṽi ,i+1 +Vi ,i+1). When ∆I := I − I0 > Î + δ̄I , for
some δ̄I > 0, orders are cancelled and he waits until ∆I ≤ Î +δ̄I . In the case where ∆I < Î −δ̄I ,
he send market orders to reduce to the difference Î − δ̄I −∆I as fast as possible.

For our numerical experiment, we take the same configuration as in Section 5.1, with δ̄I = 4,
i.e. 2 ATS. The optimization of the VWAP strategy is done with a time horizon of 30
minutes and a flat volume curve (so that the control does in fact not depend on it). The
number of units to buy is I◦ = 250 units. The additional parameters13 are set to η= 1, σ= 0.2,
β= 0,0004, κ= 0.003 and κ̃= κ∗60. The latter corresponds to the cost incurred when buying
the remaining shares IT in 1 additional minute after T , at a flat intensity in the theoretical
continuous time model of Section 5.2.1. The volume intensity v corresponds to 0.6 ATS per
second, i.e. 1.2 units per second.

The interpretation of the different graphics in Figure III.7 is the same as in Section 5.1, except
that the dashed lines in the top left graphic correspond now to the optimal VWAP trading
curve ±2 ATS. Again, we see that only a limited number of market orders were needed to
be sent, but that the imbalance created by the VWAP trading algorithm drives the price up.
Figure III.8 provides an histogram of the relative error (in %) of the VWAP obtained by this
strategy with respect to the VWAP of the whole market.14 It is based on 104 simulated paths.
One can see that he actually typically performs better than the market. Not surprisingly, this
strategy performs better than the volume strategy in terms of VWAP.

13The coefficients β and κ are estimated for our book dynamics. Given priors with simulate a bunch of paths
and estimated them by a moment matching approach based on (22)-(23). We then use the updated values to
simulate a new bunch of paths and we re-estimate them. And so on, until convergence.

14Namely, (VWAPMM −VWAPMarket)/VWAPMarket, in which VWAPMM is the VWAP obtained by the IB by
playing his optimal VWAP strategy
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III. Optimal inventory management and order book modeling

Figure III.7 – Simulated path of the VWAP strategy.

Percentage difference with the market VWAP

Figure III.8 – Histogram of the percentage error with respect to the VWAP of the market, for
the VWAP strategy.
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6 Simulation of the full market

We now provide an illustration of possible interactions of several market participants. Again,
a more realistic and general study is left for future research.

The prior and parameters of the participants are the same as the one that have been used in
the above numerical experiments. More precisely, we consider one MM, one DHFT and four
IB. Among the IB, two are playing volume strategies (a buy and a sell) and two are playing
WVAP strategies (a buy and a sell). At each time step, each participant decides of his optimal
control given the current state of the order book. They send their orders at the same time.
The control of the DHFT is executed first, then the one of the MM, and finally the controls
of the Volume and VWAP trading algorithms are executed (we choose the order among them
randomly, according to a uniform distribution).

The exogenous randomness only comes from the simulation of the stock-futures spread pro-
cess S and from the new queues created when one queue is depleted. If the bid queue is
depleted, then the bid price moves down. If the bid-ask spread is equal to two ticks, then the
ask price moves down as well. The other way round if the ask queue is depleted. If the bid
(resp. the ask) price moves down (resp. up), we consider that this is a discovered limit and its
size is chosen as in Section 3.4: 10 units with probability 60%, 5 units with probability 25%
and 12 units with probability 15%. If the bid (resp. the ask) price move up (resp. down), which
can happen if the bid-ask spread is already of two ticks, we consider that this is a created
limit and its size is chosen again as in Section 3.4: 2 units with probability 60%, 1 unit with
probability 25% and 3 units with probability 15%. There is no other randomness. The rest of
the dynamics is generated by the HFT, the MM and the four other trading algorithms.

Note that only the VWAP trading algorithms are forced to trade, when they reach the (upper
or lower) limit of their prescribed inventory path. In principle, the MM plays aggressive orders
only when he needs to adjust quickly his inventory. For a typical path of the stock-futures
spread, the HFT also has no incentive to send aggressive orders, except to adjust his inven-
tory. Without trades, the Volume trading algorithms do not act as well (because the market
volume does not move). Therefore, if the MM and the HFT have a zero initial inventory, we
expect to have to wait for the VWAP trading algorithms to initiate first aggressive orders, and
starts the whole dynamics. In our illustration, we start with an initial state in which the HFT
and the MM have a zero initial inventory. Each VWAP trading algorithm has to buy/sell 75
stocks within 5 minutes of trading. This corresponds to an average of 0.5 trades per second,
which is consistent with the priors of the MM and the HFT.

The Figures III.9, III.10, III.11, III.12, III.13 and III.14 have the same interpretation as in Sec-
tion 3.4 except that now the position of the agent in the queue is in blue in the top right and
middle left graphics (the black part corresponding to the other participants). The top right
graphic is the state of the book just after the control of the agent is executed, the middle left is
the state of the order book after the controls of all the participants have been executed. Note
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III. Optimal inventory management and order book modeling

that the trades are surprisingly due to the VWAP trading algorithms, to which the Volume
trading algorithms need to adjust. The aggressive orders sent by the HFT and the MM are
either cancellations or corrections of their inventory near the terminal time, except around
time 35 at which the HFT clearly wants to take a position on the stock-futures spread because
it is very low.

7 Conclusion

We have proposed a simplified but still realistic modelling of an order book, whose dynamics
depend on the current imbalance. We have derived optimal strategies for three key actors:
Market Makers, High Frequency Traders and Institutional Brokers (volume and VWAP trading
algorithms). In this model, optimal strategies can be estimated numerically. Simulations show
how complex optimal strategies are when actors believe that the imbalance actually has an
impact on the dynamics of order flows. Our numerical simulations show that the construc-
tion of a realistic market simulator is feasible. A desirable next step would be to consider
realistic proportions of market participants for the simulations proposed in Section 6 and to
see whether the market statistics used to calibrate the different strategies can be retrieved
through the simulated interactions of the various players. If this is the case, one can imagine
trying to exhibit different market patterns depending on the nature and proportions of actors
currently acting.

Acknowledgment: This research is part of a Cemracs 2017 project and benefited from the
support of the Initiative de Recherche from Kepler-Cheuvreux and Collège de France. We are
very grateful for the support of P. Besson and his team.
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Figure III.9 – Optimal strategy of the High Frequency Trader when agents play together.
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III. Optimal inventory management and order book modeling
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Figure III.10 – Optimal strategy of the Market Maker when agents play together.
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7. Conclusion
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Figure III.11 – Optimal strategy of the Volume trading algorithm (seller) when agents play
together.
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III. Optimal inventory management and order book modeling
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Figure III.12 – Optimal strategy of the Volume trading algorithm (buyer) when agents play
together.
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7. Conclusion
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Figure III.13 – Optimal strategy of the VWAP trading algorithm (seller) when agents play
together.
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Figure III.14 – Optimal strategy of the VWAP trading algorithm (buyer) when agents play
together.
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CHAPTER IV

From asymptotic properties of general
point processes to the ranking of financial

agents

Abstract

We propose a general non-linear order book model that is built from the individual
behaviours of the agents. Our framework encompasses Markovian and Hawkes based
models. Under mild assumptions, we prove original results on the ergodicity and diffusivity
of such system. Then we provide closed-form formulas for various quantities of interest:
stationary distribution of the best bid and ask quantities, spread, liquidity fluctuations
and price volatility. These formulas are expressed in terms of individual order flows of
market participants. Our approach enables us to establish a ranking methodology for the
market makers with respect to the quality of their trading.

Keywords: Market microstructure, limit order book, high-frequency trading, market making,
queuing model, Hawkes processes, ergodic properties, volatility, regulation.

1 Introduction

In the last two decades, the development of electronic and fragmented markets has lead to
a deep disruption in the landscape of market participants. In particular, traditional market
making institutions have been largely replaced by high-frequency market makers. Market
makers are intermediaries between buyers and sellers. In an electronic limit order book, they
provide liquidity to market participants willing to trade immediately by simultaneously post-
ing limit orders on both sides of the book. Market makers undergo different types of risk,
mainly adverse selection and inventory risks. To avoid adverse selection risk, they must be
able to update very frequently their quotes in response to other order submissions or cancel-
lations. To minimise their inventory risk, they need to use smart algorithms enabling them to
hold positions for very short time periods only, see for example [115].
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IV. From asymptotic properties of general point processes to the ranking of financial agents

High-frequency traders (HFTs) are now the only market participants that are indeed able to
play the role of market makers on liquid stocks, see [98]. This is achieved thanks to an intense
use of speed (co-location) and technology. They are supposedly capable to maintain a strong
presence at best price limits and control adverse selection at the same time, see [99], while
operating efficient inventory management in an increasingly fast-moving market, see [5, 18].
This is to the extent that HFTs are described as the new market makers in [120].

Since the arrival of these new market makers, academics, regulators and practitioners aim at
understanding whether their activity is harmful or beneficial for markets. On the one hand,
some argue that HFTs have a positive impact on markets: the competition between market
makers leads to an increase in market depth, to narrower bid-ask spreads which is equivalent
to reduced trading costs for other investors, see [88, 99] and to better price discovery, see
[88, 137]. On the other hand, others assert that high-frequency market makers have toxic con-
sequences. For example, they worsen market volatility during flash crashes by aggressively
liquidating their long positions, see [101, 116].

One important common point in most studies analysing the behaviour of HFTs is that they
try to measure how HFTs impact the market as a group, without investigating individual be-
havioural disparities among them. Chapters I and II shed light on the fact that all HFTs do
not behave similarly, showing for example that they have very different levels of aggressiveness
and liquidity provision. In this paper, we wish to participate to the debate about the role of
HFTs on market quality by bringing some new quantitative elements enabling regulators and
exchanges to assess the individual effects of each high-frequency market maker operating on
the market. In particular, we want to be able to rank market makers according to the quality
of their trading.

We use several metrics for market quality such as spread and liquidity fluctuations, but a
particular focus is given to the price volatility. This idea of disentangling market participants
contribution to volatility is used in [136]. In this work, the authors nicely model the inter-
actions between the various orders of the different market participants using linear Hawkes
processes. This model is very interpretable: an order of type A of Agent i raises the likelihood
of an order of type B of Agent j by a certain amount. Consequently, the authors naturally
define the contribution of Agent A to the volatility by the weighted sum over all possible types
of orders of Agent A of the squared mean price jump triggered by each of these orders, the
associated weight being the intensity of the corresponding order type.

Our focus here is on market makers. Thus one crucial element to take into account is the
well-known fact that the main market driver of any market making strategy is the state of the
limit order book (and not single individual orders of other market participants), see [90, 125]
and Chapter I. Therefore, in the spirit of the Queue-reactive model of [90], we assume that
the state of the order book, which is a common component, affects the interactions between
our high-frequency market participants. However, to get a really accurate modelling of the
behaviour of the agents, we also let their individual actions depend on their own past ones
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1. Introduction

and on those of other participants, in the spirit of [136]. We allow for strong non-linearities
in the dependences with the past, leading to a much generalised version of Hawkes-Queue-
reactive type order book models, see [126, 153].

In this extended and non-Markovian framework, we are able to prove the ergodicity and
diffusivity of our system, see [91] for inspiring ideas. Furthermore, we provide asymptotic
expressions for market quantities such as spread, liquidity fluctuations or price volatility in
terms of the individual order flows of market participants. This notably enables us to forecast
the dynamics of the market in case one market makers leaves it. The idea is that we consider
that market makers interact with the market through their algorithms which are specified for
example in term of average event size or in term of relative quantities such as the imbalance.
If we remove one market participant while the others do not modify their algorithms, we can
for instance compute a new volatility. If it is larger (smaller) than the actual one, we can say
that the considered market maker has a stabilising (destabilising) effect on the market. This
eventually leads us to a ranking of market makers with respect to the quality of their trading.

Let us now give a brief description of our model. Let n be a positive integer representing the
index of the n-th order book event en . Each event en happens at time Tn and is characterised
by a variable Xn that encodes all the needed information to describe en . For example, Xn

contains the order size, the type of the order (limit order, liquidity-consuming order such
as market order or cancellation), the order posting price and the identity of the agent. A
detailed description of the sequences (Tn)n≥1 and (Xn)n≥1 is given in Section 2.2. The order
book state is modelled by the process Un = (

Q1
n ,Q2

n ,Sn
)

with Q1
n the available quantity at

the best bid, Q2
n the available quantity at the best ask and Sn the spread at time Tn . For a

detailed description of the dynamics of Un , see Equation (1). Here we focus on the first limits
to reduce the dimension of the state space and keep a tractable model.1 Finally, we use a
general approach to infer the behaviour of the price process from that of (Un), in the spirit
of [91] and Chapter II, see Section 4 for the detailed formulation. We define the non-linear
Hawkes-Markovian arrival rate λt (e) of an order book event e (e containing the identity of
the involved agent) at time t ∈R+ as follows:

λt (e) =ψ(
e,Ut− , t ,

∑
Ti<t

φ(e,Ut− , t −Ti , Xi )
)
,

where ψ is a non-linear function, Ut− is the order book state relative to the last event before
t and φ is the Hawkes kernel representing the influence of past events. The functions φ
and ψ are both R+-valued. In absence of the kernel φ, the function ψ leads to a classical
Markovian approach since the arrival rate of an event e depends essentially on the order
book state Ut− . When φ is non-zero, ψ controls the interactions between the past events and
the current order book state. Note that we allow ψ to have a polynomial growth while in the
literature, it has at most a linear growth, see [41]. Additionally, we do not impose ψ and φ to
be continuous, which means that a sudden change of regime in the order book dynamics are

1However, we can model deeper limits by enlarging the dimension of the state space.
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IV. From asymptotic properties of general point processes to the ranking of financial agents

also incorporated in our modelling. Finally, we propose an agent-based model since market
participant identities are contained in the order book events e through the variables (Xi )i≥1.

Our framework is a generalised order book model where the arrival rate of the events follows
a non-linear Hawkes-type dynamics that depend on the order book state. This approach cov-
ers most existing bid-ask order book models. It is a natural extension of the Poisson intensity
models, see [2, 83, 144], the Markovian Queue-reactive model introduced in [90] and the
Hawkes based models such as [3, 126, 136]. In this setting, under mild assumptions, we pro-
vide new ergodic results and limit theorems, expressing all the limiting quantities in terms of
the individual flows of market participants. Furthermore, we build an estimation methodology
for the intensity functions which turns out to be similar to the one used in the Queue-reactive
case, see [91], although the model here is much more general and non-Markovian. These
theoretical results for our point processes, which largely extend classical ergodicity properties
limited to the Markov case, are the basis for the assessment of the role of the different market
participants on market quality as explained above.

The paper is organised as follows. First, we introduce in Section 2 our order book model and
describe how to recover the market dynamics from the individual behaviours of each agent.
Then, we prove the ergodicity of our system in Section 3 and its diffusivity in Section 4. In
Section 5, we provide the needed formulas to compute the order book stationary distribution,
the price volatility and the liquidity fluctuations. Finally, numerical results and ranking of
market makers on several assets are provided in Section 6. Proofs and additional results are
relegated to an appendix.

2 Market modelling

In this section, we describe the order book model and show how to recover the market
dynamics given the agents individual behaviours.

2.1 Introduction to the model

In the order book mechanism buyers and sellers send their orders to a continuous-time double
auction system. Market participants orders have a specific size that is measured in average
event size (AES)2 and the orders can be sent to different price levels that are separated by
a minimum distance which is the tick size. In our model, we only consider the price levels
between the best bid and ask prices to reduce the dimension of the state space. Additionally,
we assume that the agents can take three elementary decisions:

• Insert a limit order of a specific size at the best bid or ask price, hoping to get an
execution.

• Insert a buying or selling limit order of a specific size within the spread.

2AES is the average size of events observed in the limit order book.
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• Send a liquidity-consuming order of a specific size at the best bid or ask price. Cancel-
lation and market orders have the same effect on liquidity. Thus, they are aggregated
to constitute the liquidity consumption orders.

The size of the orders is not constant in the model. Finally, the mid price is valued on the set
τ0Z where τ0 is the tick size. A simple example is to consider the case where the mid price
decreases (resp. increases) by one tick when the best bid (resp. ask) is totally depleted. Here,
the mid price jumps size may be larger than one tick. In the rest of the article, we take the
mid price as our reference price for simplification. The dynamics of the model are illustrated
in Figure IV.1.

|
Bi d Ask

Q1
t

Q2
t

Pt
Pr i ce

i 1

c1

i 2

c2

i 1(2)
1
2

Figure IV.1 – Diagram of flows affecting our order book model. The quantity i 1 (resp. i 2)
represents the insertion of limit orders at the best bid (resp. ask). The quantity i 1

1
2

(resp. i 2
1
2

)

is associated to buying (resp. selling) limit orders within the spread. The quantities c1 and c2

refer to the orders that consume respectively the liquidity at the best bid and ask.

Notations. We consider the following notations:

• The current physical time is t .

• The mid price is Pt , the best best bid price is P 1
t and the best ask price is P 2

t .

• The spread is St = P 2
t −P 1

t and α0 is the tick size.

• The available quantity at the best bid (resp. ask) is Q1
t (resp. Q2

t ).

2.2 Order book dynamics

Let (Ω,F ) be a measurable space and (Tn)n≥1 a non-decreasing sequence of random variables
such that Tn < Tn+1 on the event {Tn <∞}. We associate to each Tn a random variable Xn

taking its value on a measurable space (E ,E ). In our case, Tn is the time when events
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IV. From asymptotic properties of general point processes to the ranking of financial agents

happen in the order book and Xn are variables describing each event. We endow Ω with the
filtration (Ft )t≥0 defined as Ft =σ({Tn ∈C }×{Xn ∈ B}, C ∈B(R)∩(−∞, t ], B ∈ E ). Each event
is characterised by:

• The size of the order: is an integer representing the minimum quantity that can be
inserted in the order book.3

• The price of the order: equals to k ∈N when the order is inserted at the price P 1+kα0.

• The direction of the order: equals to +1 if it provides liquidity and −1 when liquidity
is removed.

• The type of the order: equals to 1 (resp. 2) when it modifies the bid (resp. ask)4 side.

• The identity of the agent: is valued in {1, . . . , N } since the market consists in N agents.

Since we track only the first limits, we add the following variables to describe the new order
book state when one of these limits is depleted: Q̃1 (resp. Q̃2) the new bid (resp. ask) queue
and S̃ the new spread after a depletion. Note that when there is no depletion, the random
vector (Q̃1,Q̃2, S̃) is arbitrary5 and its values are not used. Finally, we record the order book
state after an event to add a dependence between the arrival rate of the events and the past
order book states. The order book dynamics are described below. Hence, we consider the
following form for E = N̄×T×S×B× Ũ×U×A with:

• N̄=N∗: the set where the orders size is valued.

• T=N: the set where the price levels are valued.

• S= {+1,−1}: the set where the orders direction is valued.

• B= {1,2}: the set where the orders type is valued.

• Ũ= {
N2 ×α0N

}
\U0: the set where the order book states after a depletion are valued.6

• U= {
N2 ×α0N

}
\U0: the set where the order book states after an event are valued.

• A= {1, . . . , N }: the set where the agents identity is valued.

• U0 = {0}2 ×α0N: the set of unreachable order book states.

Example 2. We place ourselves in the case where the minimum order size is a quarter of the
AES and (Q̃1,Q̃2, S̃) = c when there is no depletion with c is a fixed constant. Thus, a buy limit
order of size 0.5 AES inserted at the best bid price +1 tick by the agent 5 when the best bid size is
Q1

i = 1 AES, the best ask size is Q2
i = 3 AES and the spread S = 2 ticks is represented by the event

e = (2,1,+1,1,c,u,5) with u = (2,12,1).
3In practice, the minimum quantity can be taken as a quarter of the the average event size (AES).
4A buy (sell) limit order within the spread, a liquidity consumption at the bid (resp. ask) or a limit order at the

bid (resp. ask) modify the bid side first.
5To fix the ideas we can take (Q̃1,Q̃2, S̃) = c with c a fixed constant when there is no depletion.
6The state where the best bid or ask size is zero is fictitious state that allow us to model the price changes, see

Remark 5.8.

166
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Order book dynamics. The order book state is modelled by the process Ut =
(
Q1

t ,Q2
t ,St

)
where Q1

t (resp. Q2
t ) is the best bid (resp. ask) quantity and St is the spread. The dynamics of

the reference price are going to be deduced from the one of the process (Ut )t≥0, see Section 4.
The process Ut is defined in the following way:

Ut =
∑

Ti<t
∆Ui , ∆Ui =Ui −Ui−1,

with Ui = (Q1
i ,Q2

i ,Si ) ∈U the order book state after the i -th event (we write Ui for UTi when
no confusion is possible). Thus, we only need to describe the variables (Ui )i≥1. Let i ≥ 1
and Xi = (ni , ti , si ,bi ,Ũi ,Ui , ai ) ∈ E with ni ∈ N̄, ti ∈ T, si ∈ S, bi ∈ B, Ũi = (Q̃1

i ,Q̃2
i , S̃i ) ∈ U,

Ui = (Q1
i ,Q2

i ,Si ) ∈U and ai ∈A. The variable Ui satisfies

Si = 1εi=0Si−1 − (t 1
i + t 2

i )+1εi=1S̃i ,

Q1
i = 1εi=0Q1

i−1 + (n1,+
i −n1,−

i +n
1, 1

2
i )+1εi=1Q̃1

i ,

Q2
i = 1εi=0Q2

i−1 + (n2,+
i −n2,−

i +n
2, 1

2
i )+1εi=1Q̃2

i ,

(1)

where εi is a price move indicator (i.e. ε= 0 when there is no depletion and ε= 1 otherwise),
the variable t 1

i (resp. t 2
i ) is the spread variation when a buy (resp. sell) limit order is inserted

within the spread. The variables n1,+
i (resp. n2,+

i ), n1,−
i (resp. n2,+

i ) and n
1, 1

2
i (resp. n

2, 1
2

i )
are respectively the best bid (resp. ask) increments when a buy limit order is inserted at the
best bid (resp. ask), when a consumption order is sent at the best bid (resp. ask) and when
a buy (resp. sell) limit order is inserted within the spread. We now explain how the previous
quantities can be written in terms of the state variables:

εi = 1
{si=−1}∩

(
{bi=1,ni≥Q1

i−1}∪{bi=2,ni≥Q2
i−1}

),

t 1
i = min(tiα0,Si−1 −α0)1{bi=1, ti 6=0},

t 2
i = (Si−1 − tiα0)+1

{bi=2, ti 6= Si−1
α0

}
,

n1(2),+
i = ni 1

{si=+1,ti=0(
Si−1
α0

),bi=1(2)}
,

n1(2),−
i = ni 1

{si=−1,ti=0(
Si−1
α0

),bi=1(2),ni<Q1(2)
i−1 }

,

n1(2),1/2
i = ni 1

{si=+1,ti∉{0,
Si−1
α0

},bi=1(2)}
.

We denote by λt the intensity of the point process (Tn , Xn). For e ∈ E , λt (e) corresponds to
the arrival rate of an event of type e conditional on the past history of the process and it is
defined informally as

λt (e) = lim
δt→0

P
[
#{Tn ∈ (t , t +δt ], Xn = e} ≥ 1|Ft

]
δt

,

with #A is the cardinality of the set A. We consider the following expression for the intensity:

λt (e) =ψ(
e,Ut− , t ,

∑
Ti<t

φ(e,Ut− , t −Ti , Xi )
)
, (2)
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where ψ and φ are R+-valued functions. The individual behaviour of each agent is encoded
in the functions ψ and φ through e and (Xi )i≥1, see Equation (2).

Note that we can recover the full definition of the intensity of the process N = (Tn , Xn) using
the following proposition:

Proposition 2.1. For any B ∈ E and t ∈R+, we have

lim
δt→0

P
[
#{Tn ∈ (t , t +δt ], Xn ∈ B} ≥ 1|Ft

]
δt

=∑
e∈B λt (e). (3)

The proof of Proposition 2.1 is given in Appendix IV.A. The existence and the uniqueness of
a probability measure P on the filtered probability space (Ω,F ,Ft ) such that (3) is satisfied
and λt verifies Equation (2) is ensured as soon as

∑
e∈E λt (e) is locally integrable, see [93]. We

prove that
∑

e∈E λt (e) is locally integrable in Appendix IV.C.

2.3 Market reconstitution

We can recover the market intensity λM
t using the corollary below.

Corollary 2.1. When λt verifies Equation (2), the market intensity λM
t (e ′) of an event e ′ (e ′ does

not contain the identity of the agent) in the exchange is given by

λM
t (e ′) = lim

δt→0

P
[
#{Tn ∈ (t , t +δt ], Xn ∈ (e ′,A)} ≥ 1|Ft

]
δt

= ∑
a∈A

λt ((e ′, a)), (4)

for any e ′ ∈ E ′ = N̄×T×S×B× Ũ×U.
The proof of Corollary 2.1 is a consequence of Proposition 2.1.

2.4 Some specific models

Poisson intensity. We introduce here a simple version of the Poisson intensity model where
the variable Xn = (nn , t o

n , sn ,bn ,Ũn ,Un , an) with Un = (Q1
n ,Q2

n ,Sn) satisfies

• the order size nn = 1: all the events have the same size 1 AES.

• the price level t o
n ∈ {0, Sn

α0
}: orders are inserted at the best bid or ask.

• the law of Ũn is unchanged: when one limit is depleted, the new state is drawn from
the stationary distribution of the order book.

For any e = (n, t o , s,b, ũ,u, a) ∈ E with u = (Q1,Q2,S), we can recover Poisson models by
taking the following choice of the parameters:

ψ(e,u, t , z) = h̃(s,b, a)1n=1,t o∈{0, S
α0

}, ∀z, t ∈R+,

168



2. Market modelling

with h̃ a deterministic function valued on R+. Thus, the expression of the intensity becomes

λt (e) = h̃(s,b, a)1n=1,t o∈{0, S
α0

}.

Such modelling was introduced in [2, 55, 144].

Queue-reactive intensity. In the Queue-reactive model, the arrival rate of the events de-
pends only on the current order book state. For any e ∈ E and u ∈U , we take

ψ(e,u, t , z) = h̃(e,u), ∀z, t ∈R+,

to reproduce the Queue-reactive dynamics with h̃ a deterministic function valued on R+.
Hence, the intensity reads

λt (e) = h̃(e,u).

Such modelling was studied in [90, 91].

Hawkes Queue-reactive intensity. In the Hawkes framework, the arrival rate of each event
depends fully on all the past market events. For any e ∈ E and u ∈U , we generate the Hawkes
Queue-reactive dynamics by taking

ψ(e,u, t , z) = h(e,u, t )+ z, ∀z, t ∈R+.

Thus intensity has the following expression

λt (e) = h(e,Ut− , t )+ ∑
Ti<t

φ(e,Ut− , t −Ti , Xi ).

Close modelling was used [3, 14, 95, 126, 136].

Quadratic Hawkes process. The quadratic Hawkes processes generalise the linear Hawkes
processes by adding an interaction term between the pairs of past events. In the classical
one-dimensional case, the intensity function of a quadratic Hawkes process reads

λt (e) = h(t )+ ∑
Ti<t

φ(t −Ti )+ ∑
Ti ,T ′

i <t

K (t −Ti , t −T ′
i ),

with K : R+×R+ → R+ the quadratic kernel. We can recover a simple case of the quadratic
Hawkes models when K is separable (i.e. K (t , s) = k(t )k(s) with k a non negative function) by
taking ψ of the following form:

ψ(e,u, t , z) = h(e,u, t )+ z2, ∀z, t ∈R+.

Hence, the expression of the intensity becomes

λt (e) = h(e,Ut− , t )+ ∑
Ti<t

φ2(e,Ut− , t −Ti , Xi )+ ∑
Ti ,T ′

i <t

φ(e,Ut− , t −Ti , Xi )φ(e,Ut− , t −T ′
i , X ′

i ).

Quadratic Hawkes models were introduced in [34, 132].

Remark 2.1. In our modelling, the linear term is necessarily φ2. However, to overcome this
limitation we can add a new argument to the function ψ which differentiates the linear kernel from
the quadratic one. This will not modify the proofs.

169



IV. From asymptotic properties of general point processes to the ranking of financial agents

3 Ergodicity

3.1 Notations and definitions

Let Zt be a process defined on the probability space (Ω,F ,Ft ,P) and valued in (W0,W0).
We consider another process Vt defined on (W0,W0) and valued in (X ,X ) and we denote
by Pt (x, .) the probability distribution of V 0,x

t starting at 0 with the initial condition x ∈ W0.
For any measure µ defined on (W0,W0) viewed as a random starting condition, we denote by
Pt (µ, .) = ∫

W0
Pt (x, .)µ(d x).

Definition 3.1 (Invariant distribution). The measure µ is invariant if the probability distribution
Pt (µ, .) does not depend on the time t .

This definition is consistent with the one given in [41, 86, 123]. The process Vt starting with
the initial distribution µ is stationary if and only if µ is invariant. We define the total variation
distance between two measures π and π′ such that ||π−π′||T V = supA∈X |π(A)−π′(A)|.
Definition 3.2 (Ergodicity). Let C ∈W0. The process Vt is C -ergodic if there exists an invariant
measure µ such that for any x ∈C , we have Pt (x, .) →

t→∞ P0(µ, .) in total variation.

Remark 3.1. This definition is consistent with the one given in [123]. Ergodicity is interesting since
it ensures the convergence of the order book process Ut towards an invariant probability distribution.
Thus the stylized facts observed on market data can be explained by a law of large numbers type
phenomenon for this invariant distribution.

Remark 3.2. In this section, we work with a continuous time processes Zt and Vt with t ∈ R+.
However, all the definitions are similar for a discrete time processes Zn and Vn with n ∈N. We just
have to replace t by n in the definitions above.

The space Ω and the filtration Ft considered here are defined in Section 2.2, F = F∞,
the filtered space W0 is the space of sequences indexed by N− and valued on R+×E , X =
U× (R+)E and X = U ×B(R+)⊗E with U the σ-algebra generated by the discrete topology
on U, B(R+)⊗E the cylinder σ-algebra for (R+)E , B(R+) the borel σ-algebra of R+ and
W0 =

(
B(R+)×E

)⊗N−
with E the σ-algebra generated by the discrete topology on E . We need

to work on the space W0 since the dynamics of the process depend on its whole past.

3.2 Ergodicity

In this section, we assume that the process Ūt is irreducible and provide under general as-
sumptions a theoretical result on the ergodicity of the process Ūt = (Q1

t ,Q2
t ,St ,λt ) with λt the

intensity defined by (2).

We denote by λi ,+
Q (resp. λi ,−

Q ) and λ+
S (resp. λ−

S ) the arrival rate of the events that respectively

increase (resp. decrease) the limit Q i and the spread S for any i ∈B. Let Ut = (Q1
t ,Q2

t ,St ) be
the order book process and e ∈ E be a market event, the quantities λi ,±

Q and λ±
S are defined
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by the following formulas:

λi ,±
Q (Ut− ,n) = ∑

e∈E i ,±
Q (Ut− ,n)

λt (e), λ±
S (Ut− ,k) = ∑

e ′∈E±
S (Ut− ,k)

λt (e), (5)

with n ∈N, k ∈N and

E i ,±
Q (Ut− ,n) = {e ∈ E ; s.t ∆Q i

t =±n},

E±
S (Ut− ,k) = {e ∈ E ; s.t ∆St =±k},

(6)

with ∆X t = X t −X t− for any process X t . For simplicity and since there is no ambiguity, we do
not write the dependence of λi ,±

Q and λ±
S on the current time t . For any n ∈N∗, we write

P (n) = {km = {k1, . . . ,km} ∈ (N∗)m ; s.t k1 + . . .+km = n, m ∈N∗},

for the set containing all the partitions of n.

Assumption 3.1 (ψ growth). We assume that there exist c ≥ 0, d ≥ 0 and nψ ∈N such that
ψ̃(e, z) ≤ c(e)+d(e)znψ ,

supe∈E

{
d(e)

∑
km∈P (nψ) 1/m!

(nψ

km

)∫
Rm+

∏m
i=1φ

∗ki (e, si )d si

}
< 1,

with ψ̃(e, z) = sup(u,t )∈U×R+ψ(e,u, t , z), φ∗(e, s) = supu∈U
∑

x∈E φ(e,u, s, x) and
(nψ

km

)= ( nψ

k1,...,km

)=
nψ!

k1! ...km ! .

Assumption 3.1 is natural. To see this, we take a 1-d stationary non-linear Hawkes process Nt

with an intensity λt that verifies

λt = c +d(
∑

Ti<t
φ(t −Ti ))nψ = c +d(

∫ t

−∞
φ(t − s)d Ns)nψ , ∀t ∈R+.

By stationarity, we have

λ̄= E[λt ] = c +dE[(
∫ t

−∞
φ(t − s)d Ns)nψ ]

= c +d

{ ∑
km∈P (nψ)

1/m!

(
nψ
km

)∫
(−∞,t )m

m∏
i=1

φki (t − si )E[d Ns1 . . .d Nsm ]

}
,

with
(nψ

km

)
an enumeration factor. In fact, if we have nψ possible events divided in m groups

such that the j -th group is composed of k j events, then the quantity
(nψ

km

)
counts the number

of possible groups. Here each group represents the jumps that happen at the same time.
Since the jumps have a unit size, the Brascamp-Lieb inequality ensures that E[d Ns1 . . .d Nsm ] ≤∏m

i=1E[d N m
si

]1/m =∏m
i=1E[d Nsi ]1/m =∏m

i=1E[λsi ]1/m = λ̄ which leads to

λ̄≤ c +qλ̄,

with q = d/m!
∑

km∈P (nψ)
(nψ

km

)∫
(R+)m

∏m
i=1φ

ki (e, si )d si . The condition q < 1 of Assumption 3.1

guarantees that λ̄ is finite.
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Remark 3.3. Non linear Hawkes process are studied mainly when the function ψ admits at most a
linear growth (i.e. nψ ≤ 1). When nψ = 1, we recover the classical condition

sup
e∈E

d(e)

{∫
R+
φ∗(e, s)d s

}
< 1.

When nψ = 2, Assumption 3.1 becomes

sup
e∈E

d(e)

{(∫
R+
φ∗(e, s)d s

)2 +
∫
R+
φ∗(e, s)2d s

}
< 1.

Assumption 3.2 (Negative drift). There exist positive constants Cbound , z0 > 1 and δ such that∑
n≥0(zn

0 −1)
(
λi ,+

Q (Ut− ,n)−λi ,−
Q (Ut− ,n) 1

zn
0

)≤−δ, a.s when Q i
t− ≥Cbound ,∑

k≥0(zα0k
0 −1)

(
λ+

S (Ut− ,k)−λ−
S (Ut− ,k) 1

z
α0k
0

)≤−δ, a.s when St− ≥Cbound ,
(7)

for any i ∈B and Ut = (Q1
t ,Q2

t ,St ) ∈U where α0 is the tick size.

Assumption 3.2 ensures that both the size of the first limits and the spread tend to decrease
when they become too large. Same kind of hypothesis are used in [90] and Chapter II but
when the order book dynamics are Markov.

Remark 3.4. In practice, Assumption 3.2 is verified when the following conditions are satisfied:∑
n≥0(zn

0 −1)
(
ψi ,+

Q (u,n, t , z)−ψi ,−
Q (u,n, t , z) 1

zn
0

) ≤−δ, when q i ≥Cbound ,∑
n≥0(zα0k

0 −1)
(
ψ+

S (u,k, t , z)−ψ−
S (u,k, t , z) 1

z
α0k
0

) ≤−δ, when si ≥Cbound ,

φi ,+
Q (u,n, t , x) ≤φi ,−

Q (u,n, t , x), when q i ≥Cbound ,

φ+
S (u,k, t , x) ≤φ−

S (u,k, t , x), when si ≥Cbound ,
ψ(e,u, t , z), is non-decreasing in z, when q i ≥Cbound ,
ψ(e,u, t , z), is non-decreasing in z, when si ≥Cbound ,

(8)

where u = (q1, q2, s) ∈U, i ∈B and ψi ,±
Q , ψ±

S , φ
i ,±
Q and φ±

S are functions defined such that

ψi ,±
Q (u,n, t , z) =∑

e∈E i ,±
Q (u,n)ψ(e,u, t , z), φi ,+

Q(S)(u,n, t , x) = supe∈E i ,+
Q(S)(u,n)φ(e,u, t , x),

ψ±
S (u,k, t , z) =∑

e∈E±
S (u,k)ψ(e,u, t , z), φ−

Q(S)(u,k, t , x) = infe∈E−
Q(S)(u,k)φ(e,u, t , x),

with (n,k, t , z) ∈ N2 ×R2+. Although Inequalities (7) and (8) are not equivalent, there is a large
panel of functions that satisfy (8). A proof of this result is given Appendix IV.B.

Assumption 3.3 (Bound on the overall flow). We assume that there exist z1 > 1, M and ψ> 0
satisfying

c∗ = ∑
e∈E c(e) <∞,

λ∗ = ∑
e∈E ,km∈P (nψ) d(e)/m!

(nψ

km

)∫
Rm+

∏m
j=1φ

∗k j (e, s j )d s j <∞,

Q i∞ = ∑
n∈N(zn

1 −1)Ex
[
λi ,+

Q (u,n)− λi ,−
Q (u,n)

zn
1

]< M , when q i ≤Cbound ,

S∞ = ∑
k∈N(zk

1 −1)Ex
[
λ+

S (u)− λ−
S (u,n)

zk
1

]< M , when s ≤Cbound ,

λt (e) = ∑
e∈E λt (e) ≥ψ, a.s.
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3. Ergodicity

with c(e), d(e) and φ∗ defined in Assumption 3.1, i ∈B, x ∈W0 and Cbound defined in Assumption
(3.2). Similar assumptions are considered in [90] and Chapter II in the Markov case.

Assumption 3.3 ensures no explosion in the system since it forces the arrival rate of orders,
the size of the limits and the spread to stay bounded.

Remark 3.5. In practice, we can find pathwise conditions similar to those used in Remark 3.4 such
that the inequalities Q i∞ < M , S∞ < M and λt (e) ≥ ψ̄, a.s are satisfied.

Theorem 3.1 (Existence). Under Assumptions 3.1, 3.2 and 3.3, the process Ūt = (Q1
t ,Q2

t ,St ,λt )
admits an invariant distribution.

The proof of this result is given in Appendix IV.C.

Assumption 3.4 (Regularity). We assume that ψ is a càdlàg function continuous with respect to
z, φ is a positive càdlàg function and there exist ψ̄ :R+ →R+ and n1 ∈N such that

|ψ(e,u, s, x)−ψ(e,u, s, y)| ≤ |ψ̄(x)− ψ̄(y)|, ∀(e,u, s, x, y) ∈ E ×U×R3
+,

and
|ψ̄(x)− ψ̄(y)| ≤ K |x − y ||1+xn1 + yn1 |, ∀(x, y) ∈R2

+,

with K a positive constant.

Remark 3.6. Assumption 3.4 is satisfied in the special case where ψ̄ is a polynomial.

We have the following result.

Theorem 3.2 (Ergodicity). Under Assumptions 3.1, 3.2, 3.3 and 3.4, the process Ūt is W0-ergodic,
which means that there exists an invariant measure µ, see Definition 3.1, that satisfies

lim
t→∞Pt (x, A) = P0(µ, A), ∀x ∈W0, A ∈X ,

where Pt (x, A) is the probability that Ūt ∈ A starting from the initial condition x. Additionally, we
have the following speed of convergence:

||Pt (x, .)−P0(µ, .)||T V ≤ K1e−K2t , ∀x ∈W0,

with K1, K2 are positive constants and ||.||T V the total variation distance.

The proof of this result is given in Appendix IV.D. We can construct pathwise the point
process N = (Tn , Xn) defined in Section 2 using the following algorithm.

Remark 3.7 (Pathwise construction of N ). Using the thinning algorithm proposed by Lewis in
[112] and Ogata in [132], the point process N = (Tn , Xn) defined in Section 2 satisfies N = lim

m→∞N m

where N m is defined as follows

λm+1
t (e) = ψ

(
e,U m

t− , t ,
∑

T m<t φ(e,U m
t− , t −T m , X m)

)
1T m≤t<T m+1 +λm

t (e)1t<T m ,
N m+1((0, t ]×B) = ∫

(T m ,T m+1]×B N∗(d t × (0,λm+1
t (e)]×de)1t>T m +N m((0, t ∧T m]×B),

T m+1 = sup{t > T m ;
∫

(T m ,t ]×E N∗(d t × (0,λm
t (e)]×de) = 0},

with U m the order book process generated by N m and described in (1), N∗ = (T ∗
n ,R∗

n , X ∗
n ) a Poisson

process valued on R2+×E which admits dtdzν(de) as an F N∗
t intensity and ν=∑

e∈E δe .
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IV. From asymptotic properties of general point processes to the ranking of financial agents

This is a well known result that were used in many contexts, see [41, 59, 109, 112, 132]. The
proof of Theorem 3.1 ensures that the above algorithm is well defined.

4 Limit theorems

Let n be the index of the n-th jump, (ηn)n≥0 be a process satisfying ηn = f ((Ui )i≤n , (Yi )i≤n)
with f a measurable function valued on (R,B(R)), (Yi )i≥n is a geometrically ergodic sequence,
see 15.7 in [121], independent of (Ui )i≥n . Here, we write µ̄ for the invariant measure of the
joint process (Ū ,Y )7, Vn =∑n

k=1ηk and Sn =∑n
k=1(ηk −Eµ̄[ηk ]). We denote by

Xn(t ) = Sbntcp
n

, ∀t ≥ 0.

Assumption 4.1. Under the invariant measure µ̄, the sequence (ηi )i≥0 is stationary and Eµ̄[|η0|] <
∞.
Assumption 4.2. Under the invariant measure µ̄, we have Eµ̄[(η0 −Eµ̄[η0])2] < 1.

Proposition 4.1. Under Assumption 4.1, we have

Vn

n
−→

n→∞ Eµ̄[η0], a.s. (9)

Moreover when both Assumptions 4.1 and 4.2 are verified, the quantity Xn(t ) satisfies

Xn(t )
L−→σWt , (10)

with σ2 = Eµ̄[η2
0]+2

∑
k≥1Eµ̄[η0ηk ] and µ̄ the invariant measure of (Ui ,Yi ) and Wt a standard

brownian motion.

Note that σ2 <∞ under Assumption 4.2. The proof of this result is given in Appendix IV.E.

Remark 4.1. The leading term in the expression of σ2 is Eµ̄[η2
0]. Numerically, it can be computed

as soon as we have an estimate of the stationary distribution of η0, see Proposition 5.1.

Proposition 4.1 ensures that the large scale limit of S in event time is a brownian motion.
However, it is more relevant to study the large scale limit of the process S in calendar time.
Thus we now consider the process

X̃n(t ) = SN (nt )p
n

, ∀t ≥ 0.

The following proposition provides the large scale limit of the process SN (nt ).

7Recall that Ū is the process Ū = (Q1,Q2,S,λ).
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5. Formulas

Proposition 4.2. Under Assumption 4.1, we have

VN (nt )

n
−→

n→∞
Eµ̄[η0]

Eµ̄[∆T1]
, a.s. (11)

Moreover when both Assumptions 4.1 and 4.2 are verified, the quantity X̃n(t ) satisfies

X̃n(t )
L−→ σ√

Eµ̄[∆T1]
Wt , (12)

with σ2 = Eµ̄[η2
0]+2

∑
k≥1Eµ̄[η0ηk ], µ̄ the invariant measure of (Ui ,Yi ), ∆Tn = Tn −Tn−1 the

inter-arrival time between the n-th and (n −1)-th jump and Wt a standard brownian motion.

The proof of this result is given in Appendix IV.E.

Remark 4.2. The mid price after n jumps Pn satisfies Pn = P0+∑n
i=1∆Pi with ∆Pi = (Pi−Pi−1) =

ηi . When (ηi )i≥0 verifies Assumptions 4.1 and 4.2, the rescaled price process P̃n(t ) = PN (nt )p
n

converges

towards a Brownian diffusion.

5 Formulas

In this section, we provide a calibration methodology for the intensities and computation
formulas for the quantities of interest: the stationary distribution of the order book, the price
volatility and the fluctuations of liquidity.

5.1 Stationary probability computation

In this section, we denote by µ the invariant measure of Ū = (Q1,Q2,S,λ) defined on (W0,W0),
see Theorem 3.2. Let ζt = f ((Ui )Ti≤t ) be a stationary process under µ with f a measurable
function valued in (Z ,Z ), Z a countable space and π the stationary distribution of ζt . The
proposition below provides a fixed point formula satisfied by π.

Proposition 5.1. The stationary distribution π satisfies

πQ = 0,
π1 = 1.

(13)

where the infinite dimensional matrix Q verifies

Q(z, z ′) = ∑
e∈E(z,z ′)

Eµ[λ(e)|ζ0 = z], (14)

with E(z, z ′) the set of events directly leading to z ′ from z.

The proof of this result is provided in Appendix IV.F.

Remark 5.1. When ζt =Ut = (Q1
t ,Q2

t ,St ), Proposition 5.1 provides a fixed point equation for the
computation of the stationary distribution π of the order book.
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IV. From asymptotic properties of general point processes to the ranking of financial agents

Remark 5.2. The operator Q is the infinitesimal generator of the process ζ defined such that

Q(z, z ′) = lim
δ→0

Pµ[ζδ = z ′|ζ0 = z]

δ
for any z 6= z ′. The proof of this result is given in Equation (61) of

Appendix IV.F.

5.1.1 Markov framework

In the Markov case, it is a well known result that Q satisfies (13), see [131]. In this case, the
coefficients of Q are parameters of the model and can be estimated using (15).

5.1.2 General case

Let us take two states z and z ′ such that z 6= z ′. We define N z,z ′
t and t z such that

N z,z ′
t = ∑

Ti<t
δi

z,z ′ , t z = ∑
Ti<t

∆Ti 1{ζTi−1=z},

with δi
z,z ′ = 1{ζTi−1=z,ζTi =z ′} and ∆Ti = Ti −Ti−1. We have the following result.

Proposition 5.2. When (δi
z,z ′)i≥1 satisfies Assumption 4.1, we have

Q̂(z, z ′) = N z,z ′
t

t z →
t→∞ Q(z, z ′), a.s. (15)

The proof of this result is given in Appendix IV.G.

Remark 5.3 (Confidence interval). We can compute a confidence interval for the estimator Q̂(z, z ′),
see Appendix IV.G for the details.

Remark 5.4. When ζt =Ut = (Q1
t ,Q2

t ,St ), Proposition 5.2 provides an estimator for the operator
Q(u,u′) with u,u′ ∈U and u 6= u′.

Remark 5.5. In the Markov case and when ζt = Ut , see [91], the authors used the estimator
presented in Proposition 5.2 to evaluate Q(u,u′).

Remark 5.6. Let (z, z ′) ∈U2 such that z 6= z ′ and a ∈A, we consider the quantity Q(z, z ′, a) =∑
e∈E(z,z ′)∩E(a)E[λ(e)|ζ0 = z] with E(a) the set of events generated by the agent a. This quantity

represents the infinitesimal probability that the agent a sends an order that moves ζ from z to z ′. It
can be estimated by Q̂(z, z ′, a) = N z,z ′,a

t /t z which satisfies

Q̂(z, z ′, a) = N z,z ′,a
t

t z →
t→∞ Q(z, z ′, a), a.s, (16)

with N z,z ′,a
t =∑

Ti<t δ
i
z,z ′,a and δ

i
z,z ′,a = 1{ζTi−1=z,ζTi =z ′,Ai=a} where Ai is the identity of the agent

causing the i -th event. The quantity Q(z, z ′, a) allows us to infer the market dynamics (i.e. the
operator Q) for a specific combination of the agents, see Equation (14).
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5. Formulas

5.2 Spread computation

Since the process Ut is ergodic the spread St has a stationary distribution. Then, we can
compute Eπ[S∞] where π is the stationary distribution of U . The computation formula
for π is detailed in Proposition 5.1 and the estimation methodology of Q is described in
Proposition 5.2.

5.3 Price volatility computation

We place ourselves in the case of Remark 4.2 and assume that the mid price moves (ηi )i≥0

are valued in ζ=α0Z with α0 the tick size. In such situation, the limit theorem of Section 4
ensures the convergence of P̄n(t ) towards

P̄n(t )
L−→σWt ,

with σ2 = Eµ̄[η2
0]+2

∑
k≥1Eµ̄[η0ηk ] and µ̄ the invariant measure of (Ū ,Y ), see Section 4. The

quantity of interest is σ2. To compute σ2, we need to evaluate Eµ̄[η0ηk ] for all k ≥ 0. We have

Eµ̄[η2
0] =∑

η∈ζπη0 (η)η2,
Eµ̄[η0ηk ] =∑

η∈ζπη0 (η)ηEµ̄[ηk |η0 = η], ∀k ≥ 1,
(17)

with πη0 (η) = Pµ̄[η0 = η]. Thus we need to estimate πη0 and Eµ̄[ηk |η0 = η] to evaluate σ2.
The computation of the leading term Eµ̄[η2

0] requires only the knowledge of the stationary
distribution πη0 . The latter is evaluated using Proposition 5.1. To estimate Eµ̄[ηk |η0 = η] with
k ≥ 1, we use the following proposition.

Proposition 5.3. Let us take k ≥ 1, η ∈ ζ and

Nη,(k)
n = ∑

j≤n
η jδ

j (k)
η ,

with δ j (k)
η = 1{η j−k=η} and nη =∑

j≤n δ
j (k)
η . When both (ηiδ

i (k)
η )i≥1 and (δi (k)

η )i≥1 satisfy Assump-
tion 4.1, we have

Ê(η0,k) = Nη0 (k)
n

nη
→

n→∞ Eµ̄[ηk |η0 = η], a.s. (18)

The proof of this result is similar to the one of Proposition 5.2.

Remark 5.7 (Markov case). When the dynamics of U are Markov and ηi = f0(Ui ) for any i ≥ 0
with f0 a deterministic function, see Remark 5.8. We have

Eπ[η0ηk ] = ∑
u∈U

π(u)η0(u)Eu[ηk ], (19)
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IV. From asymptotic properties of general point processes to the ranking of financial agents

where π is the stationary distribution of U that can be computed using Proposition 5.1 and
Eu[ηk ] = (P k ∗η0)u =∑

u′∈UP k
u,u′η0(u′) with P k the k-th power of the Markov chain P associated

to the process U and which satisfies

Pu,u′ =
{ −Qu,u′/Qu,u , if u 6= u′ and Qu,u 6= 0,

0, if u 6= u′ and Qu,u = 0,

Pu,u =
{

0, if Qu,u 6= 0,
1, if Qu,u = 0,

(20)

where the quantity Pu,u′ represents Pu,u′ =P[U1 = u′|U0 = u] with U1 the state of the order book
after one jump.

Remark 5.8. In Section 6, for any u = (q1, q2, s), we consider the following function:

f0(u) =


−1, if q1 = 0 and q2 > 0,
+1, if q2 = 0 and q1 > 0,
0, otherwise ,

for the numerical simulations. Note that the states where q1 = 0 or q2 = 0 are fictitious states that
are not observable in practice. These states are introduced to handle the price changes. Indeed, the
states where q1 = 0 (resp. q2 = 0) correspond to a price decrease (resp. increase) by one tick and the
states where both q1 = 0 and q2 = 0 are unreachable.

5.4 An alternative measure of market stability

Another way to look at market stability is to investigate the behaviour of the disequilibrium
between offer and demand. This equilibrium can be for example measured through the cu-
mulative imbalance Nt = V b

t −V a
t where V b

t (resp. V a
t ) is the net number of inserted limit

orders at the bid (resp. ask). From no arbitrage argument, we know that the dynamics of Nt

are closely related to that of the price [95, 100]. Consequently, it is natural to view the long
term volatility of this object as an alternative measure of market stability.

In this section, we follow the same methodology used in Section 5.3. The cumulative imbal-
ance after n jumps Nn satisfies Nn = N0+∑n

i=1∆Ni where ∆Ni = Ni −Ni−1 = ni . Hence, when
(ni )i≥0 satisfies Assumptions 4.1 and 4.2, we have the following convergence result:

X N
n =

∑n
k=1(nk −Eu[nk ])

p
n

L−→ σ̃Wt ,

with σ̃2 = Eµ[n2
0]+ 2

∑
k≥1Eµ[n0nk ] and µ the stationary distribution of Ū given by Theo-

rem 3.1. The quantity Eµ[n0nk ] can be computed using the same methodology of Section 5.3.
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6. Numerical experiments

6 Numerical experiments

In this section, we propose a ranking of the market makers for four different assets, based
on their impact on volatility. For each asset, we compute first the liquidity provision and
consumption intensities relative to the whole market using Equation (15).8 Then, we estimate
the stationary measure of the order book, see Equation (13), and use it to compute the two
following estimators of the market volatility:

σ2,G = Eµ[η2
0],

σ2,M
k = Eπ[η2

0]+2
∑k

j=1Eπ[η0η j ],

where µ is the invariant measure of Ū given by Theorem 3.2, π is the stationary distribu-
tion of U when the order book dynamics are Markov and ηi = f0(Ui ) with f0 defined in
Remark 5.8. The estimator σ2,G is computed by applying Equation (17) and σ2,M

k is evaluated
using Remark 5.7. Thereafter, for each market maker, we compute its own intensities using
Equation (16). After that, we estimate the new market intensities in a situation where we sup-
pose that he withdraws from the exchange by subtracting the agent intensity from the market
one, see Corollary 2.1. We finally compute the new market volatility estimators σ2,G and σ2,M

k
corresponding to this new scenario using Equation (17) and Remark 5.7 again.

Remark 6.1. In the simple case where the order book dynamics are Markov and the queues are
independent, see Section 2.3.3 in [90], minimizing the first order approximation of the price
volatility σ2 ∼ Eπ[η2

0] is similar to selecting the agent with the highest ratio insertion/consumption
λ1(2),+

Q

λ1(2),−
Q

. This condition is a well-known result which means that the new agent needs to have an

insertion/consumption ratio greater than the one of the market. The proof of this result is given in
Section IV.H.

Remark 6.2. The reconstruction methodology of the market assumes that other participants will
not modify their behaviours when an agent leaves the market. In practice, this assumption is
satisfied since agents react to global variables such as the imbalance and not to a specific agent-based
information. Additionally, when an agent leaves the market, the other participants do not have
enough order flow history to calibrate all the parameters of their models.

Remark 6.3. The reconstruction methodology of the market takes into account the volume exchanged
by each agent since this information is included in the estimated intensities. Indeed, the intensity of
an agent who trades a large volume is high because he either interacts frequently with the market or
generates significant changes in the order book state.

6.1 Database description.

We study four large tick European stocks: Air Liquide, EssilorLuxottica, Michelin and Or-
ange, on Euronext, over a year period: from January 2017 till December 2017. The data
under study are provided by the French Regulator Autorité des marchés financiers. For each

8A liquidity provision (resp. consumption) event is assimilated to an increase (resp. decrease) of the best bid or
ask size by 1 unit. To fix the ideas, one (AES) is our unit here.
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IV. From asymptotic properties of general point processes to the ranking of financial agents

of these assets, we have access to the trades and orders data. Using both data, we rebuild the
Limit Order book (LOB) up to the first limit of both sides, whenever an event (an order inser-
tion, an order cancellation or an aggressive order) happens on one of these limits. Note that
we remove market data corresponding to the first and last hour of trading, as these periods
have usually specific features because of the opening/closing auction phases. We present in
Table IV.1 some preliminary statistics on the different considered assets.

Asset Number of
insertion
orders (in
millions of

orders)

Number of
cancellation
orders (in
millions of

orders)

Number of
aggressive
orders (in
millions of

orders)

Ratio of
cancellation

orders number
over aggressive
orders number

Average
spread (in

ticks)

Air Liquide 2.36 2.40 0.21 11.4 1.07
EssilorLuxottica 3.90 3.96 0.34 11.6 1.11
Michelin 3.81 4.01 0.32 12.5 1.14
Orange 6.60 6.66 0.47 14.1 1.14

Table IV.1 – Preliminary statistics on the assets.

Table IV.1 shows that the number of insertion orders is lower than that of cancellation orders.
A priori, this seems contradictory, but what happens in practice is that some agents insert
orders that they cancel partially and progressively at a later stage by sending multiple can-
cellation orders, which leads to a number of cancellation orders higher than that of insertion
orders.

The considered market makers, that we aim at ranking, are the Supplemental Liquidity
Providers (SLP) members. The SLP programme imposes a market making activity on pro-
gramme members, including order book presence time at competitive prices. In return, they
get favorable pricing and rebates in the form of a maker-taker fees model directly comparable
to those of the major competing platforms. This programme includes 9 members. Some of
them have at the same time SLP activity and other activities, such like proprietary or agency
activity. In our analysis, we only analyse the SLP flow of these members. We denote the
market makers by MM1 to MM9.

6.2 Computation of the intensities and the stationary measure

We compute the liquidity consumption and provision intensities at the first limit relative to
the whole market according to the queue size, the corresponding stationary measure and the
long term volatility for Air Liquide. Results relative to EssilorLuxottica, Michelin and Orange
are relegated to Appendix IV.I. The estimation methodology of the intensities is based on
Proposition 5.2. To apply this proposition, we record, for every event occurring in the LOB
at the best limits (best ask and bid), the type of this order (insertion or consumption), the
waiting time (in number of seconds) between this event and the preceding one occurring at
the same limit and the queue size before the event. The queue size is then approximated by
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6. Numerical experiments

the smaller integer that is larger than or equal to the volume available at the queue, divided
by the stock average event size (AES) computed for each limit on a daily basis. In practice,
the spread cannot be equal to one tick all the time. This is why we exclude from our analysis
all the events that occur when the spread is higher than one tick.

(a) Intensity of the market (b) Stationary measure Q1

0 5 10 15 20 25 30
2

3

4

5

6

7
Liquidity consumption
Liquidity provision
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0.00
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Long term price volatility σ2,G = 0.035, σ2,M
10 = 0.227.

Figure IV.2 – (a) Liquidity insertion and consumption intensities (in orders per second) with
respect to the queue size (in AES) and (b) the corresponding stationary distribution of Q1

with respect to the queue size (in AES), proper to Air Liquide.

We can see that for all these assets, the liquidity provision intensity is approximately a de-
creasing function of the queue size. This result reveals a quite common strategy used in
practice: posting orders when the queue is small to seize priority (for further details about
the priority value, see Chapter III). For all assets, the consumption intensity is an increasing
function when the queue size is large. For small queue sizes, we notice a slight decrease of
this intensity, see Figure IV.2. Indeed, the increasing aspect corresponding to large queue
sizes is explained by market participants waiting for better price when liquidity is abundant.
The decreasing aspect associated to small queue sizes is due to aggressive orders sent by
agents to get the last remaining quantities available at the first limits: market participants
rushing for liquidity when it is rare. The lower the ratio of cancellation orders number over
aggressive orders number is, the clearer the decreasing shape for small queue sizes stands
out, see Table IV.1 and Figures IV.2, IV.4, IV.5 and IV.6.

6.3 Ranking of the market makers

For each of the assets and for each one of the market makers, we compute the liquidity
consumption and provision intensities, and the corresponding price volatility σ2,M

10 that we
would obtain in a situation where the studied market maker withdraws from the market. Since
the estimators σ2,G and σ2,M

10 give the same ranking, we choose to show the values for σ2,M
10

alone. We show next the results relative to Air Liquide; those of EssilorLuxottica, Michelin
and Orange are relegated to Appendix IV.I.
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Intensities and σ2,M
10 when one market maker leaves the market
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Figure IV.3 – Liquidity insertion and consumption intensities (in orders per second) with
respect to the queue size (in AES) and σ2,M

10 when one market maker is ejected from the
market for the stock Air Liquide.

Based on the previous results, we carry out for each asset the ranking of the different market
makers according to their contribution to volatility. To do so, we compare the expected
volatility when removing each market maker from the market to the actual one when all
the market makers in the market: if the expected volatility is higher (resp. lower) than
the actual one, this means that the market maker into question decreases (resp. increases)
market volatility. The market maker who decreases9 (resp. increases10) volatility the most
is ranked first (resp. last). In the following table, we add a star next to market makers
decreasing volatility: a zero star (resp. a four stars) means that the market maker increases
(resp. decreases) the market volatility of the 4 studied assets.

9The expected volatility of the new market without this market maker is the highest.
10The expected volatility of the new market without this market maker is the lowest.
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IV.A. Market reconstitution

Market
maker

Ranking
Air

Liquide

Market
share Air
Liquide

Ranking
Exilor-

Luxottica

Market
share

Exilor-
Luxottica

Ranking
Michelin

Market
share

Michelin

Ranking
Orange

Market
share

Orange

MM1*** 4 4% 3 3% 3 4% 3 3%
MM2 9 1% 9 1% 9 1% 7 1%
MM3 6 5% 6 5% 7 4% 5 4%
MM4 5 1% 4 1% 4 0% 4 1%
MM5 7 5% 8 5% 8 5% 9 5%
MM6**** 1 3% 2 3% 1 3% 1 4%
MM7**** 2 7% 1 12% 2 9% 2 7%
MM8* 3 9% 5 5% 5 5% 6 4%
MM9 8 2% 7 2% 6 2% 8 2%

Table IV.2 – Market share and ranking of markets makers

IV.A Market reconstitution

Proof of Proposition 2.1. Let t ≥ 0 be the current time. For any B ∈ E , we denote by T t ,e the
first time greater than t when an event e ∈ B happens given Ft and T t ,B = mine∈B T t ,e the
time of the next market event. Thus, we have

λt (B) = lim
δt→0

P
[
#{Tn ∈ (t , t +δt ], Xn ∈ B} ≥ 1|Ft

]
δt

= lim
δt→0

P
[
{T t ,B ∈ (t , t +δt ]}|Ft

]
δt

.

We write f t ,e for the density function of T t ,e and F t ,e
B (s) =P[

(
minẽ∈B\{e} T t ,ẽ

)≥ s|T t ,e ≤ s] for
any s ≥ 0. Using the monotone convergence theorem, we have

lim
δt→0

P
[
{T t ,B ∈ (t , t +δt ]}|Ft

]
δt

= lim
δt→0

∑
e∈B

∫ t+δt
t f t ,e (s)F t ,e

B (s)d s

δt

= ∑
e∈B

lim
δt→0

∫ t+δt
t f t ,e (s)F t ,e

B (s)d s

δt

= ∑
e∈B

f t ,e (t )F t ,e
B (t ) = ∑

e∈B
λt (e),

since f t ,e ′
a (t ) =λt ((e ′, a)) using Equation (2) and F t ,e ′

a (t ) = 1 by definition. This completes the
proof.
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IV.B Proof of Remark 3.4

Proof of Remark 3.4. Let N = (Tn , Xn) be the point process defined in Section 2 and i ∈ B =
{1,2}. We define φi ,±,n

Q in the following way:

φi ,+,n
Q = supe∈E i +

Q (u,n)
∑

Ti<t φ(e,Ut− ,n, t −Ti , Xi ),

φi ,−,n
Q = infe∈E i −

Q (u,n)
∑

Ti<t φ(e,Ut− ,n, t −Ti , Xi ),

with Ut = (Q1
t ,Q2

t ,St ). When Q i
t− ≥Cbound , using that ψ is non-decreasing in z, we have

∑
n≥0

(zn
0 −1)

(
λi ,+

Q (Ut− ,n)−λi ,−
Q (Ut− ,n)

1

zn
0

)≤ ∑
n≥0

(zn
0 −1)

(
ψi ,+

Q (Ut− ,n, t ,φi ,+,n
Q )−λi ,−

Q (Ut− ,n)
1

zn
0

)
= ∑

n≥0
(zn

0 −1)
(
ψi ,+

Q (Ut− ,n, t ,φi ,+,n
Q )−ψi ,−

Q (Ut− ,n, t ,φi ,+,n
Q )

1

zn
0

)
+ ∑

n≥0
(1− 1

zn
0

)
(
ψi ,−

Q (Ut− ,n, t ,φi ,+,n
Q )−λi ,−

Q (Ut− ,n)
)= (i )+ (i i ).

Using Equation (8), we have

(i ) = ∑
n≥0

(zn
0 −1)

(
ψi ,+

Q (Ut− ,n, t ,φi ,+,n
Q )−ψi ,−

Q (Ut− ,n, t ,φi ,+,n
Q )

1

zn
0

)≤−δ, a.s, (21)

when Q i
t− ≥Cbound . Moreover, using that ψ is non-decreasing in z, we have

(i i ) = ∑
n≥0

(1− 1

zn
0

)
∑

e∈E i −
Q (u,n)

(
ψ(e,Ut− ,n, t ,φi ,+,n)−ψ(e,Ut− ,n, t ,

∑
Ti<t

φ(e,Ut− ,n, t −Ti , Xi ))
)

≤ ∑
n≥0

(1− 1

zn
0

)
∑

e∈E i −
Q (u,n)

(
ψ(e,Ut− ,n, t ,φi ,+,n)−ψ(e,Ut− ,n, t ,φi ,−,n)

)
, a.s,

when Q i
t− ≥ Cbound . Since Equation (8) ensures that φi ,+,n ≤ φi ,−,n , a.s and ψ is non-

decreasing in z, we deduce that

(i i ) = ∑
n≥0

(1− 1

zn
0

)
(
ψi ,−

Q (Ut− ,n, t ,φi ,+,n
Q )−λi ,−

Q (Ut− ,n)
)≤ 0, a.s, (22)

when Q i
t− ≥Cbound . Using Equations (21) and (22), we get

∑
n≥0

(zn
0 −1)

(
λi ,+

Q (Ut− ,n)−λi ,−
Q (Ut− ,n)

1

zn
0

)≤−δ, a.s,

when Q i
t− ≥Cbound . By following the same methodology, we also get

∑
n≥0

(zn
0 −1)

(
λi ,+

S (Ut− ,n)−λi ,−
S (Ut− ,n)

1

zn
0

)≤−δ, a.s,

when St− ≥Cbound . This completes the proof.
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IV.C Proof of Theorem 3.1

IV.C.1 Preliminary results

For any k ≥ 1, we denote by Tn+1(e), T i±
Qn+1

(k) and T i±
Sn+1

(k) respectively the arrival time of the

first event e, e i±
Q (k) ∈ E i ,±

Q and e±S (k) ∈ E±
S greater than Tn . The sets E i ,±

Q and E±
S are defined

in Equation (6). They contain the events that increase or decrease the best bid, best ask and
spread by k .

Lemma IV.C.1. Let n ≥ 0 and i ∈B. The order book increments satisfy the following formulas:

P[∆Q i
n+1 =±k] = E[∫

R+
λi ,±

Qn
(t ,k)Zn(t )d t

]
,

P[∆Sn+1 =±k] = E[∫
R+
λ±

Sn
(t ,k)Zn(t )d t

]
,

with ∆Q i
n+1 =Q i

n+1 −Q i
n , ∆Sn+1 = Sn+1 −Sn and

Zn(t ) = e−[
∑

e

∫ t
0 λn (e,s+Tn )d s], λi ,±

Qn
(t ,k) =∑

e∈E i±
Q (k)λn(e, t +Tn),

λ±
Sn

(t ,k) =∑
e∈E i±

S (k)λn(e, t +Tn), λn(e, t ) =ψ(
e,UTn , t ,

∑
Ti≤Tn

φ(e,UTn , t −Ti , Xi )
)
, ∀t ≥ 0.

Proof of Lemma IV.C.1. We write ∆Tn+1(e) = Tn+1(e)−Tn for any event e ∈ E and ∆T i±
Qn+1

(k) =
T i±

Qn+1
(k)−Tn . Using Remark 3.7, the increments (∆Tn+1)n≥0 are independent given Fn and

∆Tn+1(e)|Fn follows a non homogeneous exponential distribution with an intensity λn(e, .).
Thus, we have

P[∆Q i
n+1 =±k] = E[P[∆T i±

Qn+1
(k) <∆Tn+1(e), ∀e ∉ E i±

Q (k)|Fn]]

= E[∫
R+
λi ,±

Qn
(t ,k)e−

∫ t
0 λ

i ,±
Qn

(s,k)d s d t
∏

e∉E i±
Q (k)

(∫
R+

1t<teλn(e, te )e−
∫ te

0 λn (e,s)d sd te
)]

= E[∫
R+
λi ,±

Qn
(t ,k)e−[

∑
e

∫ t
0 λn (e,s)d s] d t

]= E[∫
R+
λi ,±

Qn
(t ,k)Zn(t )d t

]
. (23)

By following the same methodology used in Equation (23), we get

P[∆Sn+1 =±k] = E[∫
R+
λ±

Sn
(t ,k)Zn(t )d t

]
,

which completes the proof.

Let τO be the first entrance period of N i = (Ti+ j , Xi+ j ) j≤0 to the set O ∈ W0, Cbound de-
fined in Assumption 3.2 and 1 < z ≤ min(z0, z1) with z0 and z1 are respectively defined in
Assumptions 3.2 and 3.3.
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Lemma IV.C.2 (Drift condition). Under Assumptions 3.2 and 3.3, the process Un = (Q1
n ,Q2

n ,Sn)
satisfies the following drift condition:

E
[
zQ i

n+1−Cbound 1τO≥n+1
]≤λE[zQ i

n−Cbound 1τO≥n+1
]+BE

[
1τO≥n+1

]
,

E
[
zSn+1−Cbound 1τO≥n+1

]≤λE[zSn−Cbound 1τO≥n+1
]+BE

[
1τO≥n+1

]
, ∀n ∈N,∀i ∈B,

with λ< 1 and B two constants.

Remark IV.C.1. We define

VCbound (u) = ∑
i∈{1,2}

zq i−Cbound + zs−Cbound , ∀u ∈U. (24)

Using Lemma IV.C.2, we deduce that

E
[
VCbound (Un+1)1τO≥n+1

]≤λE[VCbound (Un)1τO≥n+1
]+3BE

[
1τO≥n+1

]
, ∀n ∈N,

Proof of Lemma IV.C.2. We write Ẽ
[

X
] = E[X 1τO≥n+1

]
for any random variable X to simplify

the notations and V instead of VCbound since there is no possible confusion. We have

Ẽ
[
zQ i

n+1 |Fn
]= Ẽ[zQ i

n |Fn
]+ ∑

u′ 6=Un

P̃[Q i
n+1 = q ′|Fn]

[
zq ′ − zQ i

n

]
.

Using Lemma IV.C.1, we get

P[∆Q i
n+1 =±k] = E[∫

R+
λi ,±

Qn
(t ,k)Zn(t )d t

]
,

which leads to

Ẽ
[
zQ i

n+1
]= Ẽ[zQ i

n
]+ Ẽ[∫

R+
Zn(t )

{∑
k≥1

λi ,+
Qn

(t ,k)
[

zQ i
n+k − zQ i

n

]
+ ∑

k≥1
λi ,−

Qn
(t ,k)

[
zQ i

n−k − zQ i
n

]}
d t

]
,

= Ẽ[zQ i
n
]+ Ẽ[∫

R+
Zn(t ) {Qu(t ,Un)} d t

]
, (25)

with Qu(t ,Un) = ∑
k≥1λ

i ,+
Qn

(t ,k)
[

zQ i
n+k − zQ i

n

]
+∑

k≥1λ
i ,−
Qn

(t ,k)
[

zQ i
n−k − zQ i

n

]
. By rearranging

the above terms, we get

Qu(t ,Un) = zQ i
n−Cbound

∑
1≤k

(zk −1)

[
λi ,+

Qn
(t ,k)−λi ,−

Qn
(t ,k)

1

zk

]
.

We write Ẽ
[∫
R+ Zn(t ) {Qu(t ,Un)} d t

]= T1 +T2 with

T1 = Ẽ
[∫
R+

Zn(t )1Q i
n≤C bound {Qu(t ,Un)} d t

]
,

T2 = Ẽ
[∫
R+

Zn(t )1Q i
n>C bound {Qu(t ,Un)} d t

]
.
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We first handle the term T1. When Q i
n ≤ C bound , the quantity zQ i

n−Cbound < 1 is bounded.
Additionally, we have

∑
e∈E λn(e, s +Tn) ≥ ψ > 0 under Assumption 3.3. This ensures that

Zn(t ) ≤ e−ψt , a.s. Thus, there exist c1 > 0 and d 1 > 0 such that

T1 ≤
∫
R+

e−ψt Ẽ
[

{Qu(t ,Un)} d t
]≤−c1Ẽ

[
zQ i

n−Cbound 1Q i
n≤C bound

]
+d 1. (26)

In the last inequality we used Assumption 3.3 again. For the term T2, we use Assumption 3.2
and Zn(t ) ≤ e−ψt , a.s, to deduce that

T2 ≤− δ

ψ
Ẽ
[

zQ i
n−Cbound 1Q i

n>C bound

]
. (27)

By combining Inequalities (26) and (27), we have

Ẽ
[∫
R+

Zn(t ) {Qu(t ,Un)} d t
]≤−cẼ

[
zQ i

n−Cbound
]+ Ẽ[d

]
,

with c = min(c1, δψ ) and d = d 1 which proves the first inequality of Lemma IV.C.2. By follow-
ing the same steps, we also prove the second inequality. This completes the proof.

IV.C.2 Outline of the proof

To prove the existence of an invariant distribution, we first construct N as a limiting process
of the sequence N m defined in Remark 3.7. This construction is based on the thinning
algorithm. After that, we show, in Steps (ii) and (iii), that N is well defined. Then, we introduce
the process Ū∞ = esssupt≥0 Ūt which dominates Ūt and prove that is does not explode in
Step (iv). This ensures the tightness of the family ∪t≥0Ūt . Additionally, the process Ū satisfies
the Feller property since E is a countable space and E[‖Ūt‖] is uniformly bounded. Thus, we
deduce that Ū admits an invariant distribution and complete the proof.

IV.C.3 Proof

Proof of Theorem 3.1. Let us take N∗ and U∗ the processes described in Remark 3.7 with
ν=∑

e∈E δe . For clarity, we forget the dependence of Ex[.] on the initial condition x ∈W0.

Step (i): In this step, we prove that the process N , defined by Equation (3), exists as a
limiting process of the sequence N m . To do so, we first introduce some notations. We define
recursively the processes λm and N m as in Remark 3.7. Note that U m = (Qm 1,Qm 2,Sm) can
be decomposed in the following way:

Qm i
t =Qm i ,+

t −Qm i ,−
t , Sm

t = Sm
t

+−Sm
t

−, (28)

with
Qm i ,+

t =∑
T m<t ∆Qm i

t 1∆Qm i
t >0, Qm i ,−

t =∑
T m<t ∆Qm i

t 1∆Qm i
t <0,

Sm+
t =∑

T m<t ∆Sm
t 1∆Sm

t>0, Sm−
t =∑

T m<t ∆Sm
t 1∆Sm

t<0,

187



IV. From asymptotic properties of general point processes to the ranking of financial agents

with i ∈ B and ∆Zt = Zt − Zt− for any process Z . For all ω ∈ Ω, each one of the processes
N m , λm , Qm i ,± and Sm± is non decreasing with m by induction. Hence, they admit limiting
processes N , λ, Q1(2),± and S±. This implies that U m converges towards U . To ensure that
N admits λ as an intensity, we need to prove that

∑
e∈E λt (e) and U are both finite a.s, see

Steps (ii)-(iii).

Step (ii): In this step, we prove by induction on m that supt E[
∑

e∈E λ
m
t (e)] is uniformly

bounded which ensures that supt E[
∑

e∈E λt (e)] is finite and that
∑

e∈E λt (e) does not explode.
We write λm

n (e, t ) = λm
t (e)1T m

n <t≤T m
n+1

. For m = 0, we have E[λm
n (t ,e)] = 0 since λm

t (e) = 0 for
any t ≥ 0. We have by construction

E[λm+1
n (e, t )] = E[λm

n (e, t )], when n ≤ m,
E[λm+1

n (e, t )] = 0, when n > m +1.

for any t ≥ 0. Thus, we only need to study the case n = m + 1. Using Remark 3.7 and
Assumption 3.1, we have

sup
t
E[λm+1

m+1(e, t )] ≤ c(e)+d(e)sup
t
E[

( ∑
T m

i <t
φ̄(e, t −T m

i , X m
i )

)nψ ]

= c(e)+d(e)sup
t

∑
{km }∈P (nψ)

1/m!

(
nψ
kk

) ∑
x∈E k

∫
(−∞,t )k

k∏
i=1

φ̄ki (e, t − si , xi )E[d N m
s1

. . . d N m
sk

],

with φ̄(e, t , x) = supu∈Uφ(e,u, t , x) and
(nψ

kk

) = nψ!
k1!...,kk ! . Using the above equation and the

Brascamp-Lieb inequality, we have

sup
t
E[λm+1

m+1(e, t )] ≤ c(e)+d(e)sup
t

∑
kk∈P (nψ)

1/m!

(
nψ
kk

) ∑
x∈E k

∫
(−∞,t )k

k∏
i=1

φ̄ki (e, t − si , xi )(sup
t ,n

E[λm
n (xi , t )])1/k d si

= c(e)+ λ̄md(e)
∑

kk∈P (nψ)
1/m!

(
nψ
kk

) ∑
x∈E k

∫
Rk+

k∏
i=1

φ̄ki (e, si , xi )d si

≤ c(e)+qλ̄m , (29)

with λ̄m = supt ,e,n E[λm
n (e, t )] and q = supe {d(e)

∑
kk∈P (nψ) 1/m!

(nψ

kk

)∫
Rk+

∏k
i=1φ

∗ki (e, si )d si }
where φ∗ is defined in Assumption 3.1. Using (29), we deduce that

λ̄m+1 ≤ c

1−q
+qm+1λ̄0 = x̄.

Since q < 1 under Assumption 3.1, it ensures that λ̄ = supm λ̄m is finite. To complete the
proof, we use (29) and Assumption 3.3, to get the following inequality:

sup
t
E[

∑
e∈E

λm
t (e)] ≤ c∗+ λ̄ ∑

e∈E ,kk∈P (nψ)
d(e)/m!

(
nψ
kk

) ∑
x∈E k

∫
Rk+

k∏
i=1

φ̄ki (e, t − si , xi )d si <∞.
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Step (iii): We write U m
n = (Qm 1

n ,Qm 2
n ,Sm

n ) =U m
Tn

. We prove here that E[Qm i
n ] and E[Sm

n ] are

uniformly bounded for all m ≥ 0 and n ≥ 0 to ensure that S and Q i do not explode. Let us
prove that

E
[
zQm i

n+1
]≤λE[zQm i

n
]+B , ∀n ≤ m −1, m ≥ 1. (30)

with z ≤ min(z0, z1) and z0 and z1 are respectively defined in Assumption 3.2 and 3.3, λ< 1
and B ≥ 0. Let m ≥ 1, we have by construction

E[zQm+1 i
n+1 ] = E[zQm i

n+1 ], when n ≤ m −1.

Thus, we only need to investigate the case n = m. This is proved in Lemma IV.C.2. Using
Inequality (30), we get

E
[
zQm i

n
]≤ B

1−λ +λn zQm i
0 , ∀n ≤ m, (31)

with zQm i
0 fixed. Thus, E

[
Qm i

n

]
is uniformly bounded. Using similar lines of argument, we

also have E[Sm
n ] uniformly bounded. Hence, the limiting processes U does not explode.

Step (iv): First, note that the process N is well defined since λt is locally integrable, see
Step (ii)-(iii) and [93]. Additionally, we can construct it pathwise using the thinning algorithm,
see Remark 3.7.

Let Ūs be the process described in Theorem 3.1 and for which we just proved the existence.
This process is dominated by the process Ū∞ = (U∞,λ∞) = esssups≥0 Ūs . In this part, we
prove that both E[U∞] and E[λ∞] are finite.

First, we prove that E[U∞] <∞. Let λ< ρ < ρ1 < 1, C > 0, S the set S = {u ∈U; u >C , c.w.}
where c.w means component-wise and S a set S ∈ U ⊂ S . Since Un1Un∈S c is bounded
a.s, we only need to show E[U∞,S ] is finite with U∞,S = esssupn∈N U S

n and U S
n = Un1Un∈S .

Using the Doob’s decomposition, we have U S
n = M S

n + AS
n with M S

n a martingale and AS
n =∑n

k=1

(
E[U S

k |Fk−1]−U S
k−1

)
a predictable process. Thus, we get

E[U∞,S ] ≤ E[esssup
n≥0

M S
n ]+E[esssup

n≥0
AS

n], c.w.

The Doob’s inequality and Fatou’s Lemma ensure that E[supn≥0 M S
n ] ≤ 2 lim

n→∞E[M S
n

2
]

1
2 , c.w .

Using the martingale property of M S
n and the Doob’s decomposition of U S

n , we find

E[(M S
n )2]−E[(M S

0 )2] =
n∑

k=1
E[(M S

k −M S
k−1)2], M S

k −M S
k−1 =U S

k −E[U S
k |Fk−1], c.w.

We have

E[(M S
k −M S

k−1)2] = E[(U S
k −E[U S

k |Fk−1])2] ≤ 2
(
E[(U S

k )2]+E[E[(U S
k )2|Fk−1]]

)≤ 4E[(U S
k )2], c.w.
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Let us prove that
∑

k≥0E[(U S
k )2] <∞. Using Lemma IV.C.2 and by taking O = {(T j , X j ) j≤0 ∈

W0; X j = (n j , t j ,b j , ũ j ,u j , a j ) ∈ E and u0 ≥C , c.w.}, we have

E
[
VC (Un+1)1Un+1∈S ,Un∈S

]≤ E[VC (Un+1)1Un∈S
]≤λE[VC (Un)1Un∈S

]+E[B1Un∈S
]
. (32)

By following the same lines of arguments used to prove (25) in Lemma IV.C.2 and basic
approximations, we have the following inequality:

E
[
zQ i

n+1−C 1{Un+1∈S ,Un∈S c }
]≤ E[zQ i

n−C 1{Un+1∈S ,Un∈S c }
]+E[∫

R+
Zn(t )1{Un+1∈S ,Un∈S c } {Qu(t ,Un)} d t

]
.

In the set {Un ∈ S c }, we have Q i
n ≤ C which implies zQ i

n−C < 1. Additionally, we have∑
e∈E λn(e, s +Tn) ≥ψ> 0 under Assumption 3.3. This ensures that Zn(t ) ≤ e−ψt , a.s. Thus,

using Assumption 3.3, there exists B 1 such that

E
[
zQ i

n−C 1{Un+1∈S ,Un∈S c }
]+E[∫

R+
Zn(t )1{Un+1∈S ,Un∈S c } {Qu(t ,Un)} d t

]≤ E[B 11{Un+1∈S ,Un∈S c }].

(33)

We take C ≥C∗ = max(log( 2B
ρ−λ +1), log( B 1

1−ρ1 ),Cbound ) to ensure that{ [
B − (ρ−λ)VC (Un)

]
1Un∈S < 0, a.s.[

B 1 − (1−ρ1)VC (Un +1)
]
1Un+1∈S < 0, a.s.

By combining Inequalities (32) and (33) and taking C ≥C∗, we deduce that

ρ1E
[
VC (Un+1)1Un+1∈S

]≤ ρE[VC (Un)1Un∈S
]+E[(

B − (ρ−λ)VC (Un)
)
1Un∈S

]
+E[(

B 1 − (1−ρ1)VC (Un+1)
)
1Un+1∈S

]
,

≤ ρE[VC (Un)1Un∈S
]
,

which ensures that E
[
VC (Un+1)1Un+1∈S

] ≤ rE
[
VC (Un)1Un∈S

]
with r = ρ

ρ1 < 1. Since (U S
k )2 ≤

c1VC (U S
k ), this proves that

∑
k≥0E[(U S

k )2] < c1
∑

k≥0E[VC (U S
k )] ≤ c1

1−ρ < ∞. Hence, we get

E[esssupn≥0 M S
n ] ≤ ( c1

1−ρ
) 1

2 , c.w . We also have

AS
n ≤ ÃS

n =
n∑

k=1
|E[U S

k |Fk−1]−U S
k−1| ≤ 2

n∑
k=1

E[|U S
k |], c.w,

with ÃS
n a component-wise non-decreasing process. Since E[|U S

k |] ≤
(
E[(U S

k )2]
) 1

2 , we get

E[Ãn] ≤ ( c1
1−ρ

) 1
2 . Hence, we deduce that E[esssupn≥0 AS

n] ≤ ( c1
1−ρ

) 1
2 , c.w which ensures that

E[U∞,S ] <∞.

Second, we prove that E[λ∞] is finite. Let t ≥ 0 and T = {t0 = 0 < t1 < . . . < tn = t } be a
partition of [0, t ]. Using the monotone convergence theorem, we have

E[
n∑

k=1
|λtk −λtk−1 |] ≤ E[

∑n
k=1(tk − tk−1)

t
|λ̃tk − λ̃tk−1 |] = E[

∫ t
0 f T ds

t
] ≤

∫ t
0 E[ f T ]ds

t
,
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with f T =∑n
k=1 |λtk −λtk−1 |1tk−1≤t<tk . Since E[|λtk −λtk−1 |] ≤ 2supt E[|λt |] ≤ c

1−q <∞, we get

E[
n∑

k=1
|λtk −λtk−1 |] ≤

c

1−q
<∞.

We can then apply Bichteler-Dellacherie theorem to write λt = Ms + As with Ms a martingale
and As a predictable process with almost surely finite variation over finite time intervals such
that

E[vart (λ)] = E[vart (M)]+E[vart (A)],

where vart (Z ) is the variation of any process Z over the interval [0, t ]. Since

E[λ∞] ≤ E[esssup
s

Ms]+E[esssup
s

As], esssup
s≤t

Ms ≤ vart (M), esssup
s≤t

As ≤ vart (A),

and supt E[vart (λ)] <∞, we deduce that E[λ∞] <∞. Finally, we have E[‖Ūt‖] ≤ E[‖Ū∞‖] <∞,
for all t ≥ 0. Thus, the family ∪t≥0Ūt is tight. Moreover, the process Ūt satisfies the Feller
property since U and E are countable states and E[‖Ūt‖] is uniformly bounded. Thus the
process Ū admits an invariant distribution µ which completes the proof.

IV.D Proof of Theorem 3.2

IV.D.1 Preliminary result

Lemma IV.D.1. Let (Fn)n≥0 be a sequence of σ-algebras such that Fn →
n→∞ F∞ with F∞ a

σ-algebra and (Xn)n≥0 be a sequence of random variables valued in R such that Xn →
n→∞ X , a.s,

Xn is F∞-measurable, X is F∞-measurable and supn E[X 2
n] <∞. Then, we have

E
[

Xn |Fn
] →

n→∞ X , a.s.

Remark IV.D.1. In the above Lemma IV.D.1, we can replace the condition supn E[X 2
n] <∞ by the

condition E[supn Xn] <∞ and recover the same result.

Proof of Lemma IV.D.1. Let m and n be two positive integers. We write X m
n = E[Xm |Fn].

Step (i): Since supn E[X 2
n] <∞, we can apply a conditional dominated convergence theorem

to show that X m
n →

m→∞ Xn = E[X |Fn], a.s.
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Step (ii): Since F∞ = lim
n→∞Fn , there exists a sequence (An)n≥0 such that An ∈ Fn and

An →
n→∞ A. By definition, we have

E[Xn1An ] = E[X 1An ].

Note that the family (Xn)n≥0 is tight. Indeed, using Doob’s and Jensen’s inequalities, we have

E
[

sup
i≤n

|Xi |
]≤ E[(sup

i≤n
|Xi |

)2] 1
2 = E[sup

i≤n
X 2

i

] 1
2 ≤ 2E

[
X 2

n

] 1
2 .

Then, using Fatou’s Lemma, we get E
[

supi≤n Xi
] ≤ 2(supn E

[
X 2

n

]
)

1
2 <∞ which ensures that

(Xn)n≥0 is tight. Thus, we can extract a sub sequence (Xnk )k≥0 such that Xnk →
k→∞

Z a.s.

Since supn E[X 2
n] <∞, we can use the dominated convergence theorem to get

E[Z 1A] = lim
k→∞

E[Xnk 1Ank
] = lim

k→∞
E[X 1Ank

] = E[X 1A].

Thus, we have Z = X , F∞−a.s. Since all the variables Xk are F∞-measurable, the variable
Z is also F∞-measurable for any n ≥ 0. Given that Z and X are both F∞-measurable,
we deduce that every accumulation point Z of (Xn)n≥0 satisfies Z = X , a.s. Finally, we get
limm→∞

n→∞ X m
n = X , a.s. and we can use a composition argument, to deduce that E

[
Xn |Fn

] →
n→∞

X , a.s.

We borrow the following definition from [41].

Definition IV.D.1 (Coupling). Two point processes N and N ′ couple if and only if

lim
t→∞P

[
Ns = N ′

s , ∀s ∈ (t ,∞)
]= 1.

Lemma IV.D.2. Let N be a point process and λ its intensity. We have

P[Ns −Nt = 0, ∀s ∈ (t ,∞)|Ft ] = E[e−
∫ ∞

t λu 1Au d s |Ft ],

with Au = {Nu −Nt = 0} for all u ≥ t .

Proof. See Lemma 1 in [41].

Lemma IV.D.3. Two point processes N and N ′ which admit respectively λ and λ′ as intensities
couple if and only if ∫ ∞

0
sup
e∈E

E
[|λs(e)−λ′

s(e)|]d s <∞.

Proof. Let Ft = F N
t ∨F N ′

t . Using the canonical coupling, the point process |N −N ′| admits
|λt −λ′

t | as an Ft -intensity. Using Lemma (IV.D.2) and Jensen’s Inequality, we have

P
[

sup
e

|Ns(e)−N ′
s(e)| = 0, ∀s ∈ (t ,∞)

]≥ E[e−
∫ ∞

t supe |λs (e)−λ′
s (e)|d s] ≥ e−

∫ ∞
t supe E[|λs (e)−λ′

s (e)|]d s .

Since
∫ ∞

0 supe E
[|λs(e)−λ′

s(e)|]d s < ∞, we have
∫ ∞

t supe E
[|λs(e)−λ′

s(e)|]d s →
t→∞ 0 which

implies that
P
[

sup
e

|Ns(e)−N ′
s(e)| = 0, ∀s ∈ (t ,∞)

] →
t→∞ 1.

This completes the proof.
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IV.D.2 Uniqueness

IV.D.2.1 Outline of the proof

Let N∞ = (T ∞
i , X ∞

i ) be the stationary process constructed in Theorem 3.1 and N = (Ti , Xi )
be a point process whose intensity satisfies (2). We write λ (resp. λ∞) for the intensity
of N (resp. N∞). To prove the uniqueness of the invariant distribution, we only need
to show that

∫ ∞
0 supe∈E E

[|λs(e)−λ∞
s (e)|]d s < ∞, see Lemma IV.D.3. To do so, we first

show that (Un)n≥0 is f -geometrically ergodic, see Lemma IV.D.6. The proof of this result
requires Lemmas IV.D.4 and IV.D.5. Using this result, we prove, in Lemma IV.D.7, that
f (t ) = supe E

[|λt (e)−λ∞
t (e)|] satisfies the following inequality:

f (t ) ≤ u(t )+ c3G
(∫ t

0
h̄(t − s) f (s)d s

)
,

with u(t ) = c2E[||Ut −U∞
t ||]+ c1E

[‖Ut −U∞
t ‖βp

] 1
βp , G(t ) = t

1
β and h̄(t ) = supe,u,x φ

(
e,u, t , x

)
with c1, c2, c3, β > 1 and p > 1 positive constants. Then, we use Theorem 3 in [21] and the
above inequality, to show that

∫
R+ f (t )d t <∞ which ensures the uniqueness.

IV.D.2.2 Proof

Let λ < 1 given by Lemma IV.C.2 and λ < ρ < 1. We denote by s = {(T j , X j ) j≤0 ∈ W0; X j =
(n j , t j ,b j , ũ j ,u j , a j ) ∈ E and V (u0) ≤ 2B

ρ−λ+1} and by α a set α ∈W0 ⊂ s. We have the following
lemma.

Lemma IV.D.4. Under Assumptions 3.2 and 3.3, the function f = V + 1 with V defined in
Equation (24) and r > 1 such that

sup
x∈W

Ex
[ τα∑

n=1
f (Un)r n]<∞.

Proof. The proof is similar to Theorem 6.3 in [121].

Let Fn and Fl≤ j≤n be respectively defined in the following way Fn = σ
(
T j × X j , ∀ j ≤ n

)
,

Fl≤ j≤n =σ(
T j ×X j , ∀l ≤ j ≤ n

)
. We also write pn

k as follows:

pn
k (u) = |P[Un = u|Fk≤ j≤n−1

]−P[Un = u|F j≤n−1]|, ∀n ∈N,∀k ≤ n −1,∀u ∈U.

Lemma IV.D.5. Under Assumptions 3.1, 3.3 and 3.4, we have

pn
k = sup

u∈U
pn

k (u) →
k→∞

0, a.s. (34)
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Proof. Using Lemma IV.C.1, we have

pn
k (u) = |E[

∫
R+

Zn(t )λn(u, t )d t |Fk≤ j≤n−1]−E[
∫
R+

Zn(t )λn(u, t )d t |F j≤n−1]|

= |E[
∫
R+

Zn(t )λn(u, t )d t |Fk≤ j≤n−1]−
∫
R+

Zn(t )λn(u, t )d t |,

with λn(u, t ) =∑
e∈E(Un−1,u)λn(e, t ), λn(e, t ) =ψ(e,Un−1, t+Tn−1,rn(t )), rn(t ) =∑

j≤n−1φ(e,Un−1, t+
Tn−1 −T j , X j ) and Zn(t ) = e−

[∫ t
0

∑
e λn (e,s)d s

]
.

Since pk = supu∈U pn
k (u), we can construct a sequence (u j ) j≥0 such that pn

k (u j ) →
j→∞

pn
k , a.s.

We write u j = (q1
j , q2

j , s j ). Without loss of generality, we can consider that (q1
j ) j≥0 is mono-

tonic by taking a sub-sequence of (q1
j ) j≥0. Hence, there exists a limiting process q1∞ such that

q1
j →

j→∞
q1∞, a.s. By repeating this argument several times, we can always construct (u j ) such

that

pn
k (u j ) →

j→∞
pk , u j →

j→∞
u∞, a.s.

Let us prove that λn(u j , t ) →
j→∞

λn(u∞, t ), a.s. To do so, we distinguish two sets A1 = {w ∈
Ω; u∞(w) <∞} and A2 = {w ∈Ω; u∞(w) =∞}. When u∞ <∞, we have u j = u∞ for j large
enough since U is countable. This ensures that E(Un−1,u j ) = E(Un−1,u∞), a.s for j large
enough. Thus, we get

λn(u j , t )1A1 →
j→∞

∑
e∈E(Un−1,u∞)

ψ(e,Un−1, t +Tn−1,rn(t ))1A1 , a.s.

When u∞ =∞, we have
∑

e∈E(Un−1,u∞)λn(e, t ) = 0 since E(Un∞−1,u∞) =∅. Using
∑

e∈E λn j (e, t ) <
∞, a.s, see Step (ii) in the proof of Theorem 3.1, we deduce that

∑
e∈E(Un j −1,C c )λn j (e, t ) →

c→∞ 0,

a.s with C c = {u ∈U; u > c, c.w}, c > 0 and c.w means component-wise. Since E(Un j−1,u j ) ⊂
E(Un j−1,C c ) for j large enough, we get

∑
e∈E(Un j −1,u j )λn j (e, t ) →

j→∞
0, a.s which means that

λn(u j , t )1A2 →
j→∞

∑
e∈E(Un−1,u∞)

ψ(e,Un−1, t +Tn−1,rn(t ))1A2 = 0, a.s,

and proves λn(u j , t ) →
j→∞

λn(u∞, t ), a.s.

Additionally, we have E[supn,s
∑

e λn(e, s)] < ∞, see Step (iv) in the proof of Theorem 3.1.
Thus, we get E[supn,u,s λn(u, s)] <∞. Since

∑
e λn(e, s) ≥ψ under Assumption 3.3, we have

Zn(t ) ≤ e−ψt , a.s. Then, we can apply the dominated convergence theorem to show that∫
R+

Zn(t )λn(t ,u j )d t →
j→∞

∫
R+

Zn(t )λn(t ,u∞)d t , a.s.

Furthermore, we have

E
[

sup
j

∫
R+

Zn(t )λn(u j , t )d t
]≤ E[∫

R+
sup

j
e−ψt

λn(u j , t )d t
] Fubini=

∫
R+

e−ψt
E
[

sup
j
λn(u j , t )

]
d t ,
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with E
[

sup j λn(u j , t )
] < ∞. Hence, we can use the conditional dominated convergence to

show

E
[∫
R+

Zn(t )λn(u j , t )d t |Fk≤r≤n−1
] →

j→∞
E
[∫
R+

Zn(t )λn(u∞, t )d t |Fk≤r≤n−1
]
.

Finally, since Fk≤r≤n−1 →
k→∞

Fr≤n−1, we can apply Lemma IV.D.1 to deduce that

pn
k →

k→∞
0, a.s.

This completes the proof.

Let ∆Tn = Tn −Tn−1 be the inter-arrival time between n-th jump and the n −1-th jump with
Tn the time of the n-th event. Let N∞ = (T ∞

i , X ∞
i ) be the stationary process constructed

in Lemma 3.1 and N = (Ti , Xi ) be a point process whose intensity satisfies (2). We write
U∞ = (Q1∞,Q2∞,S∞) (resp. U = (Q1,Q2,S)) for the order book state associated to N∞ (resp.
N ). We denote by λ∞ (resp. λ) the intensity of N∞ (resp. N ). We have the following result.

Lemma IV.D.6. Under Assumptions 3.1, 3.2, 3.3 and 3.4, the process (Un)n≥0 is f -geometrically
ergodic, see 15.7 in [123], in the sense that there exists r > 1 such that

sup
x∈W0

∑
n≥1

Ex
[‖ f (Un)− f (U∞

n )‖r n]<∞.

Proof. Let P n(x, A) be the probability of being in the set A = {(tk , xk )k≤0 ∈W0; xk = (nk , tk ,bk , sk , ũk ,uk , ak ), u0 ∈
a}, a ∈U , with U the σ-algebra generated by the discrete topology on U, after n jumps con-
ditional on x = (tk , xk )k≤0 ∈ W0 = (R+ ×E)N

−
. Let y ∈ W0. We write π for the stationary

distribution of the process U∞
n = (Q1∞

n ,Q2∞
n ,S∞

n ) and ταk for the first entrance time of U to
the set αk = {z ∈W0; z−k+1≤ j≤0 = y−k+1≤ j≤0}. Using the first-entrance last-exit decomposition
of P n(x, A), see Section 8.2 in [123], we have

P n(x, A) = αk P n(x, A)+
n∑

j=1

j∑
i=1

[∫
U

j−i

u,αk

∫
Ui

x,αk

αk P i (x, du)P j−i (u,d v)αk P n− j (v, A)
]

= αk P n(x, A)+
n∑

j=1

j∑
i=1

[∫
U

j−i

u,αk

∫
Ui

x,αk

αk P i (x, du)P j−i (u,d v)αk P n− j (y, A)
]

+
n∑

j=1

j∑
i=1

[∫
U

j−i

u,αk

∫
Ui

x,αk

αk P i (x, du)P j−i (u,d v) |αk P n− j (v, A)− αk P n− j (y, A)|]. (35)

with αk P n(x, A) = P[(Tk , Xk )k≤0 = x, Un ∈ A, ταk ≥ n] and Ui
x,αk = {z ∈ αk ; (zk )k≤i = x}. Using

Ex[ταk ] <∞ for all x ∈ S and the arguments used in the proof of Theorem 10.2.1 in [123], we
deduce that the stationary distribution admits the following representation:

π(A) = Ey[ταk ]−1Ey[
τ
αk∑

j=1
1Ūn∈A] =π(αk )

∞∑
j=1

αk P j (y, A). (36)
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By combining (35) and (36), we get

P (x, A)−π(A) = αk P n(x, A)+
[(
αk P (x)∗P (αk )−π(αk )

)∗ αk P (y)
]

n
(A)+π(αk )

∑
j≥n+1

αk P j (y, A)

+ (
αk P (x)∗P (αk )

)∗ (
αk P (αk )− αk P (y)

)
n(A). (37)

with ∗ the integrated Cauchy product between two sequences which is defined as follows:

[u(B)∗ v(C )]n(A) =
n∑

i=1

∫
Ui

B ,C

ui (B , du)vn−i (u, A), ∀(B ,C , A) ∈ (W0)3,

with (un)n≥0 and (vn)n≥0 two sequences such that un , vn : (W0)2 → R. Let f be the func-
tion defined in Lemma IV.D.4, π( f ) = ∫

U π(du) f (u) <∞, Ex[ f (Un)] = ∫
U P n(x,du) f (u) and

|P n(x, .)−π| f = |Ex[ f (Un)]−π( f )|. Using (37), we have

|P n(x, .)−π| f ≤ Ex[ f (Un)1τ
αk ≥n]+ [αk P (x)∗P (αk )−π(αk )]∗ t f

n

+π(αk )
∑

j≥n+1
t f

j +|αk P (x)∗P (αk )∗∆t f
n |, (38)

with t f
n = Ey[ f (Un)1τ

αk ≥n] and ∆t f
n (v) = (Ev[ f (Un)1τ

αk ≥n]−t f
n ). To prove geometric ergodicity

we have to show

sup
x

∑
n≥1

|P n(x, .)−π| f r n <∞, (39)

with r > 1. Let us take n̄ ∈N∗ and the delay k(n̄) ∈N associated to αk depending on n̄. Using
(38), we have

n̄∑
n≥1

|P n(x, .)−π| f r n ≤
n̄∑

n≥1
Ex[ f (Un)1τ

αk ≥n]r n +
n̄∑

n≥1
|(αk P (x)∗P (αk )−π(αk )

)∗ t f
n r n |

+π(αk )
n̄∑

n≥1

∑
j≥n+1

t f
j r n +

n̄∑
n≥1

[αk P (x)∗P (αk )]∗∆t f
n r n = (i) + (ii) + (iii) + (iv) .

The error term (i) can be dominated by

n̄∑
n≥1

Ex[ f (Un)1τ
αk ≥n]r n ≤ ∑

n≥1
Ex[ f (Un)1τ

αk ≥n]r n = Ex
[ ταk∑

n=1
f (Un)r n]

. (40)

The error term (iii) can be bounded by

π(αk )
n̄∑

n≥1

∑
j≥n+1

t f
j r n ≤π(αk )

∑
n≥1

∑
j≥n+1

t f
j r n ≤ π(αk )

r −1
sup

v
Ev

[ ταk∑
n=1

f (Un)r n]
. (41)

Now we move to the error term (iv). We have(
αk P (x)∗P (αk )

)∗∆t f
n ≤ ∑

j≤n, i≤ j
[
∫
U

j−i

u,αk ×Ui
x,αk ×W0

αk P i (x, du)P j−i (u,d v)
]
∆αk P n− j (d w) f (w),
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with ∆αk P n− j (d w) = |αk P n− j (v,d w)− αk P n− j (y,d w)|. Using Equations (35) and (36), we get

∆αk P n− j (d w) ≤ αk P n− j (v,d w)+ αk P n− j (y,d w),

∑
j≤n, i≤ j [

∫
U

j−i

u,αk ×Ui
x,αk ×W αk P i (x, du)P j−i (u,d v)

]
αk P n− j (v,d w) f (w) ≤ Ex

[
f (Un)r n

]<∞,

∑
j≤n, i≤ j [

∫
U

j−i

u,αk ×Ui
x,αk ×W αk P i (x, du)P j−i (u,d v)

]
αk P n− j (y,d w) f (w) ≤ Ey

[
f (Un− j )r n

]<∞,

Since ∆αk P n− j →
k→∞

0, see Lemma IV.D.5, the dominated convergence theorem ensures that

(
αk P (x)∗P (αk )

)∗∆t f
n →

k→∞
0.

Thus, there exists k̄(n̄) such that
(
αP (x)∗P (α)

)∗∆t f
n ≤ ε(n̄) for any k ≥ k̄(n̄). Hence the error

term (iv) can be majorated by

n̄∑
n≥1

[αk P (x)∗P (αk )]∗∆t f
n r n ≤ ε(n̄)

r n̄+1 −1

r −1
, (42)

which means that we have to choose ε(n̄) < c1
r−1

r n̄+1−1 with c1 a positive constant. Finally, using
the property

lim
n→∞(u ∗ v)n = lim

n→∞un × lim
n→∞vn , (43)

we dominate the error term (ii) by

|
n̄∑

n≥1

(
αk P (x)∗P (αk )−π(αk )

)∗ t f
n r n | ≤ ( ∑

n≥1
|[αk P (x)∗P (αk )

]
n(αk )−π(αk )|r n)

sup
v
Ev

[ ταk∑
n=1

f (Un)r n]
.

(44)

Additionally, we have

|[αk P (x)∗P (αk )
]

n(αk )−π(αk )| = |[αk P (x)∗ (P (αk )−π(αk ))
]

n(αk )−π(αk )
∑

i≥n+1
αk P i (x,αk )|

= |[αk P (x)∗ (P (αk )−P (y))
]

n(αk )+ [
αk P (x)∗ (P (y)−π(αk ))

]
n(αk )

−π(αk )
∑

i≥n+1
αk P i (x,αk )|

≤ [
αk P (x)∗|P (y)−P (αk )|]n(αk )+ [

αk P (x)∗|P (y)−π(αk )|]n(αk )

+π(αk )
∑

i≥n+1
αk P i (xu ,αk ),
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for any n ∈N. Using Equation (43), we get

n̄∑
n≥1

[|αk P (x)∗P (αk )−π(αk )|]n(αk )r n ≤
n̄∑

n≥1

[
αk P (x)∗|P y(αk )−P (αk )|]n(αk )r n

+
n̄∑

n≥1

[
αk P (x)∗|P (y)−π(αk )|]n(αk )r n +π(αk )

∑
n≥1

i≥n+1

αk P i (x,αk )r n

≤ ( ∑
n≥1

αk P n(x,αk )r n)( ∑
n≥1

sup
w∈αk

|P n(y,αk )−P n(w,αk )|r n)
+ ( ∑

n≥1
αk P n(x,αk )r n)( ∑

n≥1
|P n(y,αk )−π(αk )|r n)

+π(αk )
∑

n≥1

∑
i≥n+1

αk P i (x,αk )r n = (1)+ (2)+ (3).

The term (2) is bounded by

(2) ≤ Ex
[
r τα

]
sup

y

( ∑
n≥1

|P n(y,α)−π(α)|r n)
.

Since the Kendall theorem ensures that Ex
[
r ταk

]<∞ and
∑

n≥1 |P n(x,αk )−π(αk )|r n <∞ are
equivalent, the quantity (1) is finite if and only if supv Ev

[
r ταk

]<∞. The term (1) is majorated
by

(1) ≤ Ex
[
r ταk

]( ∑
n≥1

sup
w∈αk

|P n(w,αk )−P n(y,αk )|r n)
.

To ensure that the sequence v(n̄) = ∑n̄
n≥1 supw∈αk |P n(w,αk )−P n(y,αk )|r n is bounded, the

put a dependence k and n̄. Let ε1(n̄) > 0. By following the same arguments used in the proof
of Inequality (42), there exists k̄1(n̄) such that for any k ≥ k̄1(n̄), we have

n̄∑
n≥1

sup
w∈αk

|P n(y,αk )−P n(w,αk )|r n ≤ ε1(n̄)
r n̄+1 −1

r −1
.

By taking ε1(n̄) ≤ c1
r−1

r n̄+1−1 , we get (1) ≤ c1 supxEx
[
r ταk

]
. Furthermore, the term (3) can be

dominated by (3) ≤ Ex
[
r ταk

]
. Thus, we deduce that

(i i ) ≤ c1Ex
[
r τα

]
(1+ sup

v

∑
n≥1

|P n(v,α)−π(α)|r n)
sup

v
Ev

[ ταk∑
n=1

f (Un)r n]
. (45)

By combining Inequalities (40), (41), (44) and (45), we have (39) when supx Ex
[∑τ

αk

n=1 f (Un)r n
]

and supx Ex
[
r ταk

]
are both finite. Since Ex

[∑τ
αk

n=1 f (Un)r n
] < ∞ implies Ex

[
r ταk

] < ∞, we
only need to prove

Ex
[ ταk∑

n=1
f (Un)r n]<∞.

This last inequality is satisfied thanks to Lemma IV.D.4.

198
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Lemma IV.D.7. Under Assumptions 3.1, 3.3 and 3.4, the process Ū is ergodic.

Proof of Lemma IV.D.7. For simplicity, we write c1, c2 and c3 for positive constants and forget
the dependence of Ex[X ] on the initial state x for any random variable X . Let N∞ = (T ∞

i , X ∞
i )

be the stationary process constructed in Lemma 3.1 and N = (Ti , Xi ) be a point process whose
intensity satisfies (2). We write U∞ = (Q1∞,Q2∞,S∞) (resp. U = (Q1,Q2,S)) for the order book
state associated to N∞ (resp. N ). We denote by λ∞ (resp. λ) the intensity of N∞ (resp. N ).
To prove the uniqueness, we need to show that N and N∞ couple which is satisfied when∫ ∞

0
sup

e
E
[|λt (e)−λ∞

t (e)|]d t <∞,

thanks to Lemma IV.D.3. We write f (t ) = supe E
[|λt (e)−λ∞

t (e)|] for any t ≥ 0.

Step (i): For any γ= p
q > 1 with p, q ∈N∗ and β such that 1

β + 1
γ = 1. Let us first prove that

f (t ) ≤ u(t )+ g1(t )G
(∫ t

0
h̄(t − s) f (s)d s

)
, (46)

with u(t ) = c3E[||Ut −U∞
t ||]+c1E

[‖Ut −U∞
t ‖βp

] 1
βp [1+2B(t )], g1(t ) = c2(1+2B(t )), G(t ) = t

1
β ,

h̄(t ) = supe,u,x φ
(
e,u, t , x

)
and B(t ) = sup0≤k≤nψ−1

[
Bk (t )

] 1
pγ

with Bk (t ) defined in Equation

(50). The quantities c1, c2 and c3 are positive constants. We have

f (t ) = E[|ψ(e,Ut , t ,rt )−ψ(e,U∞
t , t ,r∞

t )|]
≤ E[|ψ(e,Ut , t ,rt )−ψ(e,U∞

t , t ,rt )|]+E[|ψ(e,U∞
t , t ,rt )−ψ(e,U∞

t , t ,r∞
t )|]

= (1)+ (2),

with rt =
∫ t

0 φ(e,Ut , t −s, Xs)d Ns and r∞
t = ∫ t

0 φ(e,U∞
t , t −s, X ∞

s )d N∞
s . Let us first handle the

term (2). Using Assumption 3.4, we have

E
[|ψ(e,U∞

t , t ,rt )−ψ(e,U∞
t , t ,r∞

t )|]≤ E[|ψ̄(rt )− ψ̄(r∞
t )|]

≤ KE
[|rt − r∞

t ||1+ r n1
t + r∞n1

t |]
≤ K

(i )︷ ︸︸ ︷
E
[|rt − r∞

t |β] 1
β

(i i )︷ ︸︸ ︷
E
[|1+ r n1

t + r∞n1

t |γ] 1
γ .
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The term (i) can be dominated by

E
[|rt − r∞

t |β] 1
β ≤ E[|∫ t

0
φ(e,Ut , t − s, Xs)d Ns −φ(e,U∞

t , t − s, Xs)d N∞
s |β] 1

β

≤ 2
β−1
β E

[|∫ t

0
φ(e,Ut , t − s, Xs)d Ns −φ(e,U∞

t , t − s, Xs)d Ns |β
] 1
β

+2
β−1
β E

[(∫ t

0
h̄(t − s)|d Ns −d N∞

s |
)β] 1

β

≤ 2
β−1
β E

[‖Ut −U∞
t ‖β|

∫ t

0
h̃(e, t − s, Xs)d Ns |β

] 1
β +2

β−1
β

[∫ t

0
h̄(t − s) f (s)d s

] 1
β

≤ 2
β−1
β E

[‖Ut −U∞
t ‖βp] 1

βp E
[|∫ t

0
h̃(e, t − s, Xs)d Ns |βq] 1

βq +2
β−1
β

[∫ t

0
h̄(t − s) f (s)d s

] 1
β

= c1E
[‖Ut −U∞

t ‖βp] 1
βp + c2

[∫ t

0
h̄(t − s) f (s)d s

] 1
β , (47)

with h̄(s) = supe,u,x φ(e,u, s, x), h̃(e, s, x) = 2
min(α0,1) supuφ(e,u, s, x) and min(α0,1) repre-

sents the minimum distance between two elements in the countable space U. The quantity
E
[|∫ t

0 h̃(e, t − s, Xs)d Ns |βq
]

is bounded since

E
[|∫ t

0
h̃(e, t − s, Xs)d Ns |βq]≤ E[|∫ t

0
h̃(e, t − s, Xs)d Ns |q

] 1
β

≤
{ ∑

km∈P (q)

∑
x̄∈E m

(
q

km

)
×

∫
(−∞,t )m

E
[ m∏

i=1
h̃(e, t − si , xi )d Nsi

]} 1
β

≤
{ ∑

km∈P (q)

∑
x̄∈E m

(
q

km

)
×

∫
(−∞,t )m

m∏
i=1

h̃(e, t − si , xi )E
[
λsi

]
d si

} 1
q <∞.

The term (ii) satisfies

E
[|1+ r n1

t + r∞n1 |γ] 1
γ ≤ 3

γ−1
γ

(
1+E[|r n1

t |γ]
1
γ +E[|r∞n1

t |γ]
1
γ
)
, (48)

with γ= p
q and p, q ∈N∗. We have

E[|r n1
t |

p
q ] ≤ E[|r n1

t |p ]
1
q

= E[
(∫ t

0
φ(e,Ut , t − s, Xs)d Ns

)n1p ]
1
q

=
{ ∑

km∈P (p̄)

∑
x̄∈E m

(
p̄

km

)
×

∫
(−∞,t )m

E

[
m∏

i=1
φ̄(t − si , xi )d Nsi

]} 1
q

, (49)

with φ̄(t , x) = supe,uφ(e,u, t , x) and p̄ = n1p . Using (49) and the Brascamp-Lieb inequality,
we have

E[|r n1
t |

p
q ] ≤

[ ∑
km∈P (p̄)

∑
x̄∈E m

(
p̄

km

)
×

∫
(−∞,t )m

m∏
i=1

φ̄(t − si , xi )E
[
λsi

] 1
m d si

] 1
q

=
[ ∑

km∈P (p̄)

∑
x̄∈E m

(
p̄

km

)
Rm(t )

] 1
q = Bk (t )

1
q , (50)
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with Rm(t ) = ∫
(−∞,t )m

∏m
i=1 φ̄(t − si , xi )E

[
λsi

] 1
m+m′ d si and Bk (t ) = ∑

km∈P (p̄)
∑

x̄∈E m

( p̄
km

)
Rm(t ).

Similarly, we also have

E[|r∞n1

t |
p
q ] ≤ Bk (t )

1
q . (51)

Using Inequalities (48) and (50), we deduce that (ii) verifies

E
[|1+ r n1

t + r∞n1 |γ] 1
γ ≤ 3

γ−1
γ (1+2 sup

0≤k≤nψ−1

[
Bk (t )

] 1
qγ

). (52)

By combining inequalities (47) and (52), we deduce that

(2) ≤ 3
γ−1
γ

[
c1E

[‖Ut −U∞
t ‖βp] 1

βp + c2
[∫ t

0
g (t − s) f (s)d s

] 1
β

][
1+2 sup

0≤k≤nψ−1

[
Bk (t )

] 1
qγ

]
. (53)

Using Theorem 3.1, we have supe,t E[supuψ(e,u, t ,rt )] is finite. Thus, there exists K such that

(1) ≤ c3E[||Ut −U∞
t ||]. (54)

Thus using Equations (53) and (54), we prove (46).

Step (ii): By a density argument, there exist continous sequences of functions (up )p≥1,
(g p

1 )p≥1 and (h̄p )p≥1 such that up (t ) →
p→∞ u(t ) and u ≤ up , g p

1 (t ) →
p→∞ g1(t ) and g1 ≤ g p

1 and

h̄p L1

→
p→∞ h̄ and h̄ ≤ h̄p . Thus, we have

f (t ) ≤ up (t )+ g p
1 (t )G

(∫ t

0
h̄p (s) f (s)d s

)
.

Using a density argument again, we can find a sequence of functions ( f k )k≥1 converges
uniformly towards f . By affording ourselves to use sub-sequences, we can always consider
that

f p (t ) ≤ ũp (t )+ g p
1 (t )G

(∫ t

0
h̄p (s) f p (s)d s

)
,

with ũp (t ) = up (t )+| f − f p |∞. Using Theorem 3 in [21] and Inequality (46), we have

f p (t ) ≤ v p (t )F p (t )

{
1+G

[
H−1(∫ t

0
h̄p (s)g p

1 (s)d s
)]}

,

with H(s) = ∫ s
0

d t
1+G(t ) , v p (t ) = max(G1(ũp )(t ),1), F p (t ) = max(G1(g p

1 )(t ),1) and

G1(w)(t ) = w(t )

(
1+

∫ t

0
w(s)h̄p (s)e

∫ t
s h̄p g p

1 du d s

)
.

By sending p to infinity, we deduce that

f (t ) ≤ v(t )F (t )

{
1+G

[
H−1(∫ t

0
h̄(s)g1(s)d s

)]}
, (55)

with v(t ) = max(G1(u)(t ),1) and F (t ) = max(G1(g1)(t ),1).
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Step (iii): Let us prove that
∫
R+ u(t )d t <∞. Since B(t ) is uniformly bounded, we only need

to prove that { ∫
R+ E

[‖Ut −U∞
t ‖]d t <∞,∫

R+ E
[‖Ut −U∞

t ‖βp
] 1
βp d t <∞.

Since 0 <ψ= infu,t ,r supe ψ(e,u, t ,r ) ≤λn , we have

E
[∫
R+

‖Ut −U∞
t ‖d t

]=≤ E[ ∑
n≥0

‖Un −U∞
n ‖

∫ Tn+1

Tn

d t
]

= E[ ∑
n≥0

‖Un −U∞
n ‖E[Tn+1 −Tn |Fn]

]
≤ E[ ∑

n≥0
‖Un −U∞

n ‖ 1

ψ

]
.

Using Lemma IV.D.6, we have E
[∑

n≥0 ‖Un −U∞
n ‖] < ∞ which ensures that E

[∫
R+ ‖Ut −

U∞
t ‖d t

]<∞. By using a similar methodology and the fact that
∑

n≥0E
[‖Un−U∞

n ‖βp
]
r n <∞

with r > 1, see Lemma IV.D.6, we also have
∫
R+ E

[‖Ut −U∞
t ‖βp

] 1
βp d t <∞.

Step (iv): Since g1 is bounded and
∫ t

0 h̄(s)d s <∞, the functions F (t ) and{
1+G

[
H−1

(∫ t
0 h̄(s)g1(s)d s

)]}
are bounded as well. Moreover,

∫
R+ u(t )d t <∞ thanks to the

previous step. Thus, by applying Inequality (55), we have that
∫
R+ f (t )d t <∞ which completes

the proof.

IV.D.3 Speed of convergence

Lemma IV.D.8. We have the following error estimate:

||Pt (w, .)− π̄||T V ≤ K1e−K2t , ∀w ∈W,

with K3 > 0 and K2 > 0.

Proof of Lemma IV.D.8. We forget the dependence of Ex[X ] on the initial state x for any ran-
dom variable X . We have

||Pt (w, .)− π̄||T V ≤P[sup
e

|Ns −N∞
s | 6= 0, ∀s ∈ (t ,∞)]

=
(
1−P[sup

e
Ns = N∞

s , ∀s ∈ (t ,∞)]

)
= (i ).

Using Lemma IV.D.2 and Jensen’s Inequality, we have

(i ) ≤ 1−e−
∫ ∞

t f (s)d s ,

with f (t ) = supe E
[|λt (e)−λ∞

t (e)|] for any t ≥ 0. Using Inequality (55) and the boundedness

of F and
{

1+G
[

H−1
(∫ t

0 h̄(s)g1(s)d s
)]}

, we have

(i ) ≤ c1

∫ ∞

t
u(t )d t , (56)
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with c1 a positive constant. Let us now prove that

u(t ) ≤ c1e−αt , (57)

with α a positive constant. We have

E[‖Ut −U∞
t ‖] = E[‖UN (t ) −U∞

N∞(t )‖] ≤ E[‖UN (t ) −U∞
N (t )‖]+E[‖U∞

N (t ) −U∞
N∞(t )‖].

Using the fact that
∑

n≥1E[‖Un −U∞
n ‖]r n <∞, there exists α > 0 such that E[‖Un −U∞

n ‖] ≤
Ae−αn . Let us denote by U∞,δ

t the δ-translated process defined such that U∞,δ
t =U∞

t+δ. By

applying Lemma IV.D.7 to the process U∞,δ, we also have supδ
(∑

n≥1E[‖U∞,δ
n −U∞

n ‖]r n
)<∞

which ensures that E[‖U∞,δ
n −U∞

n ‖] ≤ Ae−αn . Using Lemma IV.D.9 below and the uniqueness
of the stationary distribution, we have N (t )

t →
t→

1
Eπ[∆T1] and N∞(t )

t →
t→

1
Eπ[∆T1] , a.s. Thus, we

deduce that

E[‖Ut −U∞
t ‖] ≤ c1e−αt . (58)

Using the same lines of argument, we also have

E[‖Ut −U∞
t ‖βp ]

1
βp ≤ c1e−αt . (59)

By combining Inequalities (58) and (59) and using the expression of u(t ), we recover Inequality
(57) which ensures that

(i ) ≤ c1e−αt .

This completes the proof.

Lemma IV.D.9. For any initial state u ∈U, the process ∆Tn satisfies∑n
i=1∆Ti

n
→

n→∞ Eµ[∆T1] a.s,

with µ the unique stationary distribution of the point process N .

Proof. Since there exists λ > 0 such that inft ,u,r
∑

e∈E λt (e,u,r ) > λ, we have E[∆Tn] ≤ 1
λ for

any n ≥ 1. Thus, ∆Tn admits a finite stationary distribution. Using the Theorem 17.1.2 in
[123], we complete the proof.

IV.E Proof of Propositions 4.1 and 4.2

Proof of Proposition 4.1. The proof of Equation (9) is a direct application of Theorem 2 in [63].
Since (Un) is f -geometrically ergodic, see Lemma IV.D.6, (Yn) is g -geometrically ergodic and
Un and Yn are independent, the process (Un ,Yn) is f̃ -geometrically ergodic with f̃ (u, y) =
f (u)+ g (y). Let g and h be two functions such that g 2,h2 ≤ f̃ , µ the stationary distribution
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of (U ,Y ) and v̄ = v −Eµ[v] for any function v . By following the same lines of argument of
Lemma 16.1.5 in [123], we have

|Eπ[h̄(Zn)ḡ (Zn+k )]| ≤ REπ[ ¯̃f (Z0)]r k ,

with Zn = (Un ,Yn), r < 1 and R a positive constant. The quantity Eπ[ ¯̃f (Z0)] is bounded by
Lemma IV.C.2. Thus Z is a geometric mixing and Theorems 19.1 and 19.2 in [32] give the
result.

Proof of Proposition 4.2. Using Lemma IV.D.9 and Proposition 4.2, the proof of this result is
analagous to the proof of Theorem 4.2 in [91].

IV.F Stationary distribution computation

Proof of Proposition 5.1. Let z ∈ Z and z ′ ∈ Z such that z 6= z ′. Since ζ is stationary under µ,
we have ∑

z ′∈Z

∫
Az′
µ(d w)Pt (w, Az ) =

∫
W0

µ(d w)Pt (w, Az ) =µ(Az ), ∀t ≥ 0, (60)

with Pt (w, .) the probability distribution of ζ0,w
t starting from the initial condition w and Az =

{(ws)s≤0 ∈ W0; ζ0,w
0 = z}. Since

∫
Az′ µ(d w)Pt (w, Az ) = Pµ[ζt = z, ζ0 = z ′] = Pµ[ζ0 = z ′]Pµ[ζt =

z|ζ0 = z ′] and µ(Az ) =Pµ[ζ0 = z], the quantity π(z) =µ(Az ) defined in Section 5.1 satisfies∑
z ′∈Z

π(z ′)Pµ[ζt = z|ζ0 = z ′] =π(z), ∀t ≥ 0,

which also leads to the following equation:∑
z ′∈Z

π(z ′)Q̃(z, z ′) = 0,
∑

z ′∈Z
π(z ′) = 1,

with Q̃(z, z ′) = lim
δ→0

Pµ[ζδ = z ′|ζ0 = z]

δ
. The quantity Q̃(z, z ′) satisfies

Q̃(z, z ′) = lim
δ→0

Pµ[Uδ = z ′|U0 = z]

δ
= lim
δ→0

Pµ[{T1 ≤ δ, e1 ∈ E(z, z ′)}|ζ0 = z]+ε
δ

= lim
δ→0

Eµ[P[{T1 ≤ δ, e1 ∈ E(z, z ′)}|F0]|ζ0 = z]+ε
δ

= Eµ[lim
δ→0

P[{T1 ≤ δ, e1 ∈ E(z, z ′)}|F0]

δ
|ζ0 = z]+ lim

δ→0

ε

δ

= Eµ[
∑

e1∈E(z,z ′)
λ0(e1)|ζ0 = z]+ lim

δ→0

ε

δ

= ∑
e1∈E(z,z ′)

Eµ[λ0(e1)|ζ0 = z]+ lim
δ→0

ε

δ
,
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where ε is an error term associated to the cases when at least two events happen in the
interval [0,δ]. Since

∑
e1∈E Eµ[λ0(e1)] is finite, we have ε ≤ c1δ

2 with c1 a positive constant.
We deduce that

Q̃(z, z ′) = ∑
e1∈E(z,z ′)

Eµ[λ0(e1,u)] =Q(z, z ′). (61)

This completes the proof.

IV.G Proof of Proposition 5.2

Proof of Proposition 5.2. We write λu,u′
s = ∑

e∈E(u,u′)λs(e) and E(u,u′) the set of events that
moves the order book from the state u to u′. We have

N u,u′
t

t
=

∫ t
0 λsδ

s
u,u′ d s

t
+ ( N u,u′

t −∫ t
0 λsδ

s
u,u′ d s

t

)
. (62)

Since (λs)s≥0 is stationary under π̄ and Eπ̄[λs] <∞, the Theorem 2.1-chapter X in [63] ensures
that∫ t

0 λsδ
s
u,u′ d s

t
→

t→∞ Eπ̄[λ0δ
0
u,u′ ] =

∑
e∈E(u,u′)

Eπ̄[λ0(e)δ0
u,u′ ] =

∑
e∈E(u,u′)

Eπ̄[λ0(e)δ0
u,u′ |U0 = u]Pπ̄[U0 = u]

=Pπ̄[U0 = u]
∑

e∈E(u,u′)
Eπ̄[λ0(e)|U0 = u]

=Pπ̄[U0 = u]Q(u,u′), a.s. (63)

Moreover, since N u,u′
t −∫ t

0 λ
u,u′
s d s is a martingale and sups≥0,u,u′ E[λu,u′

s ] <∞, we have

N u,u′
t −∫ t

0 λsδ
s
u,u′ d s

t
→

t→∞ 0, a.s. (64)

Hence, by combining (62), (63) and (64), we prove
N u,u′

t

t
→

t→∞Pπ̄[U0 = u]Q(u,u′), a.s. On the

other hand, we have

t u

t
=

∫ t
0 δ

s
u d s

t
. (65)

Since (Us)s≥0 is stationary under π̄ and Eπ̄[δs
u] <∞, the Theorem 2.1-chapter X in [63] ensures

that ∫ t
0 δ

s
u d s

t
→

t→∞ Eπ̄[δ0
u] =Pπ̄[U0 = u], a.s. (66)

Thus, we deduce that

N u,u′
t

t u =
N u,u′

t

t
t u

t

→
t→∞ Q(u,u′), a.s,

which completes the proof.
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Proof of confidence interval computation. By applying Theorem 4.1 to the sequence of ηs =
λsδ

s
u,u′ and use basic inequalities to approximate t by its integer part btc, we have

p
t
( N u,u′

t

t
−Pπ̄[U0 = u]Q(u,u′)

) L→σ1W1, (67)

with σ2
1 = Eµ[(λ0δ

0
u,u′)2]+2

∑
k≥1Eµ[λ0δ

0
u,u′λkδ

k
u,u′ ] and Wt a standard brownian motion. Sim-

ilarly, by using the same arguments, we also have

p
t
( t u

t
−Pπ̄[U0 = u]

) L→σ2W1, (68)

with σ2
2 = Eµ[(δ0

u)2]+2
∑

k≥1Eµ[δ0
uδ

k
u]. Using (67) and (68), we have with asymptotic probability

95% that

Pπ̄[U0 = u]Q(u,u′) ∈ [
N u,u′

t

t
+ 1.96σ1p

t
,

N u,u′
t

t
− 1.96σ1p

t
],

Pπ̄[U0 = u]−1 ∈ [
t

t u + 1.96σ2p
t

× t

t u ,
t

t u − 1.96σ2p
t

× t

t u].

(69)

Equation (69) ensures that we have with probability 90%

Q(u,u′) ∈ [(
N u,u′

t

t
+ 1.96σ1p

t
)(

t

t u + 1.96σ2p
t

× t

t u), (
N u,u′

t

t
− 1.96σ1p

t
)(

t

t u − 1.96σ2p
t

× t

t u)].

IV.H Proof of Remark 6.1

Proof. We assume that the insertion (resp. consumption) intensity λ+ (resp. λ−) is constant
and focus on the best bid limit Q1. The stationary distribution πol d of Q1 verifies

πol d (q) =πol d (0)(ρol d )q , πol d (0) = (1+
∞∑

q=1
(ρol d )q )−1, ρol d = λ+

λ−, (70)

with q ≥ 1 the size of Q1. We add to the market a new agent whose insertion (resp. consump-
tion) intensity λ+,a (resp. λ−,a ) is also constant. The stationary distribution πnew of Q1 in
the new market satisfies

πnew (q) =πnew (0)(ρnew )q , πnew (0) = (1+
∞∑

q=1
(ρnew )q )−1, ρnew = λ++λ+,a

λ−+λ−,a , (71)

with q ≥ 1 the size of Q1. Using Equations (70) and (71), we can write

ρnew = ρol d (1+R(λ,λa)), πnew (0) = (
1+

∞∑
q=1

(ρol d )q (1+R(λ,λa))q)−1, (72)
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with λ = (λ+,λ−), λa = (λ+,a ,λ−,a) and R(λ,λa) = (1+ λ+,a

λ+ )/(1+ λ−,a

λ− )−1. We want the new
introduced agent to reduce the volatility of the old market which at the first order reads

Eπnew [η2
0] ≤ Eπol d [η2

0]. (73)

Using Equation (72), we can reformulate Inequality (73) in the following way:

∑
q

(ρol d )q
(
1+R(λ,λa)

)q

(
1+∑∞

j=1(ρol d ) j (1+R(λ,λa)) j
)η2

0(q) ≤∑
q

(ρol d )q(
1+∑∞

j=1(ρol d ) j
)η2

0(q), (74)

for any function η0. To satisify Inequality (74) we need R(λ,λa) ≥ 0 which leads to

λ+,a

λ−,a ≥ λ+

λ−,

This condition is a well-known result which ensures that the new agent needs to have an
insertion/consumption ratio greater than the one of the market.

IV.I Supplementary numerical results

The three next figures show the liquidity consumption and provision intensities at the first
limit relative to the whole market according to the queue size, the corresponding stationary
measure and the long term volatility, respectively for EssilorLuxottica, Michelin and Orange.

(a) Intensity of the market (b) Stationary measure Q1
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Long term price volatility σ2,G = 0.038, σ2,M
10 = 0.26.

Figure IV.4 – (a) Liquidity insertion and consumption intensities (in orders per second) with
respect to the queue size (in AES) and (b) the corresponding stationary distribution of Q1

with respect to the queue size (in AES), proper to ExilorLuxottica.
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(a) Intensity of the market (b) Stationary measure Q1
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Figure IV.5 – (a) Liquidity insertion and consumption intensities (in orders per second) with
respect to the queue size (in AES) and (b) the corresponding stationary distribution of Q1

with respect to the queue size (in AES), proper to Michelin.

(a) Intensity of the market (b) Stationary measure Q1
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Figure IV.6 – (a) Liquidity insertion and consumption intensities (in orders per second) with
respect to the queue size (in AES) and (b) the corresponding stationary distribution of Q1

with respect to the queue size (in AES), proper to Orange.

For each of the market makers, we compute the liquidity consumption and provision intensi-
ties, and the corresponding stationary measure that we would obtain in a situation where the
studied market maker withdraws from the market and the other market participants do not
change their behaviour. We show respectively the results relative to EssilorLuxottica, Michelin
and Orange.
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Intensities and σ2,M
10 when one market maker leaves the market: stock EssilorLuxottica
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Figure IV.7 – Liquidity insertion and consumption intensities (in orders per second) with
respect to the queue size (in AES) and σ2,M

10 when one market maker is ejected from the
market for the stock EssilorLuxottica.
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Intensities and σ2,M
10 when one market maker leaves the market: stock Michelin
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Figure IV.8 – Liquidity insertion and consumption intensities (in orders per second) with
respect to the queue size (in AES) and σ2,M

10 when one market maker is ejected from the
market for the stock Michelin.

210



IV.I. Supplementary numerical results

Intensities and σ2,M
10 when one market maker leaves the market: stock Orange
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Figure IV.9 – Liquidity insertion and consumption intensities (in orders per second) with
respect to the queue size (in AES) and σ2,M

10 when one market maker is ejected from the
market for the stock Orange.
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CHAPTER V

Improving reinforcement learning
algorithms:towards optimal learning rate

policies

Abstract

This paper investigates to what extent we can improve reinforcement learning algorithms.
Our study is split in three parts. First, our analysis shows that the classical asymptotic
convergence rate O(1/

p
N ) is pessimistic and can be replaced by O((log(N )/N )β) with

1
2 ≤β≤ 1 and N the number of iterations. Second, we propose a dynamic optimal policy
for the choice of the learning rate (γk )k≥0 used in stochastic algorithms. We decompose
our policy into two interacting levels: the inner and the outer level. In the inner level,
we present the PASS algorithm (for “PAst Sign Search”) which, based on a predefined
sequence (γo

k )k≥0, constructs a new sequence (γi
k )k≥0 whose error decreases faster. In

the outer level, we propose an optimal methodology for the selection of the predefined
sequence (γo

k )k≥0. Third, we show empirically that our selection methodology of the
learning rate outperforms significantly standard algorithms used in reinforcement learning
(RL) in the three following applications: the estimation of a drift, the optimal placement
of limit orders and the optimal execution of large number of shares.

1 Introduction

We consider a discrete state space Z =N or Z = {1, . . . ,d} with d ∈N∗. We are interested in
finding q∗ ∈Q =RZ solution of

M(q, z) = E[m(q, X (z), z)] = 0, ∀z ∈Z , (1)

with X (z) ∈ X a random variable with an unknown distribution and m a function from
Q×X ×Z to Q. Although the distribution of X (z) is unspecified, we assume that we can
observe some variables (Zn)n≥1 valued in Z and

(
Xn(Zn)

)
n≥1 drawn from the distribution of

X (Zn). Reinforcement learning (RL) addresses this problem through the following iterative
procedure:

qn+1(Zn) = qn(Zn)−γn(Zn)m(qn , Xn+1(Zn), Zn), (2)
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V. Improving reinforcement learning algorithms:towards optimal learning rate policies

where q0 is a given initial condition and each γn is a component-wise non-negative vector
valued in RZ . The connection between RL, problem (1) and Algorithm (2) is detailed in
Section 2. It is possible to recover the classical SARSA, Q-learning and double Q-learning
algorithms used in RL by taking a specific expression for m and Xn+1. Note that Algo-
rithm (2) is different from the standard Robbins-Monro (RM) algorithm used in stochastic
approximation (SA)

qn+1 = qn −γnm̄(qn , Xn+1), (3)

with m̄(q, x)(z) = m(q, x(z), z) and γn ≥ 0, mainly because, as it is frequent in RL, we do not
observe the entire variable

(
Xn+1(z)

)
z∈Z ) but only its value according to the coordinate Zn .

Indeed, the way (Zn)n≥1 visits the set Z plays a key role in the convergence of Algorithm (2)
which is not the case of Algorithm (3). RM algorithm was first introduced by Robbins and
Monro in [138]. After that, it was studied by many authors who prove the convergence of qn

towards q∗, see [24, 28, 35, 104]. The asymptotic convergence rate has also been investigated
in many papers, see [24, 103, 140]. They show that this speed is in general proportional to
1/
p

N with N the number of iterations.

In this work, we give a special focus to RL problems. Nowadays RL cover a very wide collec-
tion of recipes to solve control problems in an exploration-exploitation context. This literature
started in the seventies, see [151, 152], and became famous mainly with the seminal paper of
Sutton, see [147]. It largely relied on the recent advances in the control theory developed in
the late 1950s, see [22]. The key tool borrowed from this theory is the dynamic programming
principle satisfied by the value function. This principle enables us to solve control problems
numerically when the environment is known and the dimension is not too large. To tackle the
curse of dimensionality, recent papers, see [143], use deep neural networks (DNN). For exam-
ple, in [92], authors use DNN to derive optimal hedging strategies for finance derivatives and
in [117] they use a similar method to solve a high dimensional optimal trading problem. To
overcome the fact that environment is unspecified, it is common to use RM algorithm which
estimates on-line quantities of interest. The combination of control theory and SA gave birth
to numerous papers on RL.

Our contributions are as follows. We first conduct an error analysis to show that the classical
asymptotic rate O(1/

p
N ) is pessimistic and can be enhanced in many situations. It is indeed

possible to get a O((log(N )/N )β) asymptotic speed with 1/2 ≤ β ≤ 1 and N the number of
iterations. Then, we present our main result. It consists in proposing a dynamic policy for
the choice of the step size (γk )k≥0 used in (3). Our policy is decomposed into two interacting
levels: the inner and the outer level. In the inner level, we propose the PASS algorithm,
for “PAst Sign Search”. This algorithm builds a new sequence (γi

k )k≥0, using a predefined se-
quence (γo

k )k≥0 and the sign variations of m(qn , Xn+1(Zn), Zn). The error of (γi
k )k≥0 decreases

faster than the one of (γo
k )k≥0. In the outer level, we propose an optimal methodology for

the construction of a piecewise constant predefined sequence (γo
k )k≥0. These two levels are

interacting in the sense that PASS influences the construction of (γo
k )k≥0. Finally, we show that

our selection methodology provides better convergence results than standard RL algorithms
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in three numerical examples: the drift estimation, the optimal placement of limit orders and
the optimal execution of a large number of shares.

The structure of this paper is as follows: Section 2 describes the relation between RL and
SA. Section 3 reformulates the problem (1) in terms of a minimisation issue and defines with
accuracy the different sources of error. This enables us to exploit the most recent convergence
results for each source of error to show that the slow convergence speed O(1/

p
N ) can be

replaced by O((log(N )/N )β) with 1/2 ≤ β ≤ 1 and N the number of iterations. Section 4
contains our main contribution. We start by defining the Algorithm PASS, comparing it with
two other schemes and proving its convergence. Then, we describe our outer level policy
and discuss its speed of convergence. Finally, we explain our selection methodology of the
learning rate (γo

k )k≥0 which combines the PASS Algorithm with the outer level to enhance the
convergence of (3). The last Section 5 provides numerical examples taken from the optimal
trading literature: optimal placement of a limit order and the optimization of the trading
speed of a liquidation algorithm. Proofs and additional results are relegated to an appendix.

2 Reinforcement learning

We detail in this section the relation between SA and RL since we are interested in solving
RL problems. RL aims at estimating the Q-function which quantifies the value for the player
to choose the action a when the system is at z. Let t be the current time, Ut ∈U be a process
defined on a filtered probability space (Ω,F ,Ft ,P) which represents the state of the system
and At ∈ A the agent action at time t . We assume that the process (Ut , At ) is Markovian.
The agent aims at maximizing

E[
∫ T

0
ρs f (s,Us , As)d s +ρT g (UT )], (4)

with g the terminal constraint, f the instantaneous reward, ρ a discount factor and T the
final time. Let us fix a time step ∆> 0 and allow the agent to take actions only at times1 k∆
with k ∈N. The Q-function satisfies

Q(t ,u, a) = sup
A
E[

∫ T

t
ρ(s−t ) f (s,Us , As)d s +ρ(T−t )g (UT )|Ut = u, At = a], ∀(t ,u, a) ∈R+×U ×A ,

with A = {At , t < T } a possible control process for the agent. We view the agent control A as
a feedback process (i.e. adapted to the filtration Ft ). The Q-function satisfies the classical
dynamic programming principle (DPP)

Q(t ,u, a) = E[Rt+∆+ρ∆ sup
a′∈A

Q(t +∆,Ut+∆, a′)|Ut = u, At = a], (5)

1We recall the following classical result: when ∆ goes to zero, the value function and the optimal control of
this problem converges towards the one where decisions are taken at any time.
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with Rt+∆ = ∫ t+∆
t ρ(s−t ) f (s,Us , As)d s. Equation (5) reads that the optimal expected gain when

the agent starts at u and chooses action a at time t is the sum of the next expected reward
Rt+∆ plus the value of acting optimally starting from the new position Ut+∆ at time t +∆. By
reformulating (5), we obtain that Q solves equation

E[m(q, X z
t+∆, z)] = 0, ∀z = (t ,u, a) ∈Z = [0,T ]×U ×A , (6)

where X z
t+∆ = (U z

t+∆,Rz
t+∆) ∈X =U ×R, U z

s and Rz
s are respectively the conditional random

variables Us and Rs given the initial condition (U z
t , Az

t ) = (u, a) with z = (t ,u, a) ∈ Z and m
is defined as follows:

m(q, x, z1) = H(q, x, z1)−q(z1), H(q, x, z1) = r +ρ∆ sup
a′∈A

q(t 1 +∆,u, a′),

for any x = (u,r ) ∈ X and z = (t 1,u1, a1) ∈ Z . Thus, one can use stochastic approximation
tools to solve (6).

Actions of the agent. Note that Equation (6) shows that one can study Q only on the time
grid2 DT = {n∆, n ≤ T /∆}. Thus, we define Ak and Uk such that Ak = Ak∆ and Uk =Uk∆ for
any k ∈N. The key variable to study is not the agent decision Ak but Zk = (k,Uk , Ak ). Thus,
the rest of the paper formulates the results in terms of Zk only.
Moreover, it is important in practice to visit the space DT ×U ×A sufficiently enough. Thus,
to learn Q , it is common to not choose the maximising action3, but to set the conditional
distribution of the random variable Ak such that

P[Ak = a|Fk ] = e ε̄k (Z a
k )∑

a′ e ε̄k (Z a′
k )

, ∀a ∈A , (7)

with Z a
k = (k,Uk , a), ε̄k (Z a

k ) =β(Z a
k )

∑
a′ εk (U

Z a
k

k+1, a′), β : Z →R+ a discount function and

εk (z) =
{ |m(qrk (z), Xrk (z)+1(z), z)|, when the state z is already visited,

b, otherwise,

where b > 0 encourages the exploration, qk satisfies (2) and rk (z) is the last observation time
of the state z. Beside, to give more importance to the maximizing action, one may consider
the following policy:

P[Ak = a|Fk ] = eβk (Uk )qk (Z a
k )∑

a′ eβk (Uk )qk (Z a′
k )

, ∀a ∈A , (8)

with βk : U → R+ a discount function. Any mixture of these two procedures can an also be
considered.

2Here, we take T = n∗∆ with of n∗ ∈N∗. Such approximation is not restrictive.
3The maximising action a∗ for a state u is defined such that a∗ = argmaxa∈A q(u, a).
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3 Improvement of the asymptotic convergence rate

In [25, Part 2, Section 4], [103, Section 10] and [104, Section 7], the authors show a central
limit theorem for the procedure (3) which ensures a convergence rate of O(1/

p
N ) where N is

the number of iterations. In this section, we extend such convergence rate to Algorithm (2)
and aim at understanding how one can improve it. For this, we decompose our total error
into two components: estimation error and optimization error.

3.1 Error decomposition

In this section, the space Z = {1, . . . ,d} is finite with d ∈ N∗. In such case, we view q and
M(q) as vectors of RZ (i.e. M(q)[z] = M(q, z) for any z ∈Z ). Moreover, the process (Zn)n≥1

is Markovian. We consider the following assumptions.

Assumption 3.1 (Existence of a solution). There exists a solution q∗ of Equation (1).

Assumption 3.2 (Pseudo convexity). The function M satisfies

〈M(q)−M(q ′), q −q ′〉 ≥ 0, ∀q ∈RZ ,∀q ′ ∈RZ .

The above assumption is natural since the gradient of any real valued convex function f
satisfies Assumption 3.2.

Assumption 3.3 (Pseudo strong convexity). There exists L > 0 such that

〈M(q)−M(q ′), q −q ′〉 ≥ L‖q −q ′‖2, ∀q ∈RZ ,∀q ′ ∈RZ .

Assumption 3.3 replaces the strong convexity condition. Under Assumption 3.1, the function
q∗ is solution of the minimization problem

min
q∈Q

g (q). (9)

with g (q) = ‖M(q)‖2.

Remark 3.1. Note that, in the special case where M is the gradient of a given function f (i.e.
∇ f = M ), the quantity q∗ minimises a convex and differentiable cost g̃ = ∑

z∈Z E[L(q, X (z), z)]
with

L(q, x, z) =
∫ 1

0

(
q(z)−q∗(z)

)×m
(
q∗+ r (q −q∗), x, z

)
dr, ∀q ∈Q, ∀z ∈Z , ∀x ∈X .

and ∇g̃ = M . Thus, we can replace g by g̃ and all the results of this section hold. In the rest of this
section, we use g instead of g̃ .
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In our context we do not have a direct access to the distribution of X (z) because we are in the
case of “on-line” RL. Nevertheless, we assume that at time n we keep memory of a training
sample of n(z) independent variables (X z

i )i=1···n(z) drawn from the distribution X (z) where
n(z) is the number of times the Markov chain Zn visited z. We define qn as a solution of

min
q∈Q

gn(q), (10)

with gn(q) = ‖M n(q)‖2 and M n(q) = En[m(q, X (z), z)] = (∑n(z)
j=1 m(q, X j (z), z)

)
/n(z) the ex-

pected value under the empirical measure µ = (∑n(z)
j=1 δX j (z)

)
/n(z). We finally define qn

k as
an approximate solution of the problem (10) returned by an optimization algorithm after k
iterations. Thus, we can bound the error g (qn

k ) by

0 ≤ E
[(

g (qn
k )− g (q∗)

)
(z)

]
≤ E

[(
g (qn)− g (q∗)

)
(z)

]
︸ ︷︷ ︸

estimation error

+E
[∣∣∣g (qn)− g (qn

k )
∣∣∣(z)

]
︸ ︷︷ ︸

optimization error

,

since q∗ minimizes g .

3.2 Convergence rate of the estimation error

3.2.1 Slow convergence rate

We have the following result.

Proposition 3.1. We assume that the Markov chain Zn is irreducible. There exists c1 > 0 such that

E[sup
q

|g (q)− gn(q)|(z)] ≤ c1
1p
n

.

The proof of this result is given in Appendix V.D. This result allows us to derive the following
bound for the estimation error

E[
(
g (qn)− g (q∗)

)
(z)] = E[(g (qn)− gn(qn)

)
(z)

]+E[(gn(qn)− gn(q∗)
)
(z)

]︸ ︷︷ ︸
≤0

+E[(g (q∗)− gn(q∗)
)
(z)

]
≤ 2E

[
sup

q
|g (q)− gn(q)|(z)

]≤ 2c1
1p
n

. (11)

This bound is known to be pessimistic.

3.2.2 Fast convergence rate

We obtain the following fast statistical convergence rate.

Proposition 3.2. Assume that the Markov chain Zn is irreducible and

E
[

sup
q

|g (q)− gn(q)|(z)|n̄(z)
]≤ c ′

(
log(n̄(z))

n̄(z)

)β
, (12)

218



3. Improvement of the asymptotic convergence rate

with 1
2 ≤β≤ 1, c ′ > 0 and n̄(z) = n(z)∧1. Then, there exists c2 > 0 such that

E[
(
g (qn)− g (q∗)

)
(z)] ≤ c2

(
log(n)

n

)β
.

The proof of this proposition is given in Appendix V.E. The condition (12) is established when

• The loss function g satisfies regularity conditions, of which the most important are:
Lipschitz continuity and convexity, see [19]. Moreover under the strong convexity as-
sumption, the constant β is equal to 1.

• The data distribution satisfies some noise conditions, see for instance [19, 150] in the
pattern recognition problem.

• The function m has a bounded moment α (i.e. E[mα(q)] <∞) with α> 1, see [58].

3.3 Convergence rate of the optimization error

We turn now to the optimization error. This means that expected value in (9) is replaced by
the empirical mean which is known. In such case, one can use many algorithms to find qn .
We present in the table below the most important properties of some gradient methods. Note
that the results of Table V.1 remain valid when strong convexity is replaced by Assumption 3.3
and in general when convexity is replaced by Assumption 3.2.4

Algorithm Cost of one
iteration

Iterations to achieve an ε precision Time to reach an ε precision

Convex Strongly convex Convex Strongly convex

GD O(d 2) O
(1

ε

)
O

(
log

(1

ε

))
O

(d 2

ε

)
O

(
d 2 log

(1

ε

))
SGD O(d) O

( 1

ε2

)
O

(1

ε

)
O

( d

ε2

)
O

(d

ε

)
Proximal O(d) O

(1

ε

)
O

(
log

(1

ε

))
O

(d

ε

)
O

(
d log

(1

ε

))
Acc. prox. O(d) O

( 1
p
ε

)
O

(
log

(1

ε

))
O

( d
p
ε

)
O

(
d log

(1

ε

))
SAGA O(d) O

(1

ε

)
O

(
log

(1

ε

))
O

(d

ε

)
O

(
d log

(1

ε

))
SVRG O(d) O

(
log

(1

ε

))
O

(
d log

(1

ε

))
Table V.1 – Asymptotic properties of some gradient methods. Note that d is the dimension
of the state space Z and ε is a desired level of accuracy. Here ε corresponds to 1/n. GD
stands for Gradient Descent, SDG for Stochastic Gradient Descent, Proximal for Stochastic
proximal gradient descent [53, 141], Acc. prox. for accelerated proximal stochastic gradient
descent [130, 141], SAGA for Stochastic accelerated gradient approximation [61], and SVRG
for stochastic variance reduced gradient [97].

4Assumption 3.3 is the analogous of the strong convexity condition and convexity can be replaced by
Assumption 3.2 in many cases.
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3.4 Conclusion

Following the formalism of [36], we have decomposed our initial error into

• Estimation error: its convergence is O(1/
p

N ) in pessimistic cases. In the other situa-
tions, the convergence is faster (i.e. O

(
(log(N )/N )β

)
) with 1/2 ≤β≤ 1.

• Optimization error: the convergence is exponential under suitable conditions. In
unfavourable cases, the convergence rate is O(1/N ).

The comparison of these error sources shows that the estimation error is the dominant com-
ponent. Thus, we can overcome the O(1/

p
N ) asymptotic speed, in some situations, by

improving the estimation error.

4 Optimal policy for the learning rate γ when is countable

In this section, we take Z =N and consider the following type of algorithms:

qn+1(Zn) = qn(Zn)−γn(Zn)m(qn , Xn+1(Zn), Zn), ∀n ∈N.

One can recover the classical SARSA, Q-learning and double Q-learning algorithms used in
RL by considering a specific expression for m and Xn+1. In such algorithms the choice of
γn is a crucial point. One can find in the literature general conditions that guarantee the
convergence such that∑

k≥0
γk (z) =∞, a.s,

∑
k≥0

γ2
k (z) <∞, a.s, ∀z ∈Z . (13)

However, since the set of processes (γn)n≥0 satisfying these conditions is large in general
and may even be empty when (Zn)n≥0 is not recurrent. Thus, to be more specific, many au-
thors suggest to take γn proportional to 1/nα for stochastic approximation algorithms. The
exponent α may vary from 0 to 1 depending on the algorithm used, see to cite [68, 128].
Nonetheless, such a choice may be sub optimal. For example, Figure V.1.a shows that the blue
curve is a way higher than the orange one. Here, the blue curve represents the variation of
the logarithm of the L2-error when γn = η/n, whereas the orange curve stands for a constant
learning rate (i.e. γn = γ). We choose the constant η that ensures the fastest convergence for
the blue curve.

In this paper, we propose to use a stochastic learning rate (γk )k≥0; our learning policy is
decomposed into two interacting levels: the inner and the outer level. In the inner level, we
use the PASS algorithm, for “PAst Sign Search”. This algorithm builds a new sequence (γi

k )k≥0,
based on a predefined sequence (γo

k )k≥0 and the sign variations of m(qn , Xn+1(Zn), Zn), whose
error decreases faster than the predefined one. In the outer level, we propose an optimal
methodology for the selection of a piecewise constant predefined sequence (γo

k )k≥0. These
two levels are interacting in the sense that the PASS algorithm influences the construction of
the sequence (γo

k )k≥0.
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Figure V.1 – L2-error for the estimation of the drift when γk is constant in orange and when
γk ∝ 1

k in blue.

4.1 The inner level

4.1.1 The algorithms

In this part, we introduce three algorithms. We start with our benchmark which is the standard
algorithm used in RL. Then, we present a second algorithm inspired from SAGA [61], which
is a method used to accelerate the convergence of the stochastic gradient descent. SAGA
reduces the optimization error exponentially fast. Finally, we describe the PASS algorithm
that modifies the learning rate (γk )k∈N based on the sign variations of m(qn , Xn+1(Zn), Zn).
The main idea is to increase (γk )k∈N as long as the sign of m(qn , Xn+1(Zn), Zn) remains
unchanged. Then, we reinitialize or lower γk using a predefined sequence (γo

k )k∈N when
the sign of m(qn , Xn+1(Zn), Zn) switches. This algorithm can be seen as an adaptation of
the line search strategy, which determines the maximum distance to move along a given
search direction, to stochastic iterative methods. Actually, the line search method requires
a complete knowledge of the cost function because it demands to evaluate several times the
difference g

(
qk+γM(qk )

)−g
(
qk

)
for different values of γ with g and M defined in Section 3.1.

However, stochastic iterative models have neither access to g nor M . They can only compute
m(qn , Xn+1(Zn), Zn) when the state z = Zk is visited. Moreover, to get a new observation they
need to wait5 for the next visit of the state z = Zk . Nevertheless, they have instantaneous
access to the previously observed values. Thus, the main idea here is to use these past
observations although it adds a small memory cost. Some theoretical properties of these
algorithms are investigated in Section 4.1.3.

Algorithm 2 (RL). We start with an arbitrary q0 ∈Q and define by induction qk

qk+1(Zk ) = qk (Zk )−γk (Zk )m(qk , Xk+1(Zk ), Zk ).

5This waiting time may be very long depending on the dimension of the state space Z and the properties of
the process (Zk )k≥0.
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Algorithm 3 (SAGA). We start with an arbitrary q0 ∈Q, M 0 = 06, n0 = 0 and define by induction
qk , M k and nk

qk+1(Zk ) = qk (Zk )−γk (Zk )

[
m(qk , Xk+1(Zk ), Zk )−M k [Zk , i ]+

(∑M
j=1 nk [Zk , j ]M k [Zk , j ]

)
(∑M

j=1 nk [Zk , j ]
) ]

,

M k+1[Zk , i ] = m(qk , Xk+1(Zk ), Zk ),
nk+1[k, i ] = 1,

with i picked from the distribution p = (
∑M

i=1 nk [k, i ]δi )/(
∑M

j=1 nk [k, j ]). The quantity nk [k, j ]
records the j -th time when the process Z visits the state Zk before the k-th iteration.

For the next algorithm, we give ourselves a predefined sequence (γk )k≥0, an increasing func-
tion h :R+ →R+ and a non-increasing function l :R+ →R+. The function h is used to increase
the learning rate and hence to accelerate the descent, while the function l is used to go back
to a slower pace. A typical way to do it is to use a predefined learning rate.

Algorithm 4 (PASS). We start with an arbitrary q0 and define by induction qk and γ̂k

• If m(qn , Xn+1(Zn), Zn)×m(qr n
1

, Xr n
1 +1(, Zr n

1
), Zr n

1
) ≥ 0, then do

qn+1(Zn) = qn(Zn)−h
(
γ̂n(Zn),γn(Zn)

)
m(qn , Xn+1(Zn), Zn),

γ̂n+1(Zn) = h
(
γ̂n(Zn),γn(Zn)

)
,

with r n
1 is the index of the last observation when the process X visits the state Xn .

• Else, do

qn+1(Xn) = qn(Xn)− l
(
γ̂n(Xn),γn(Xn)

)
m(qn , Xn , Xn+1),

γ̂n+1(Xn) = l
(
γ̂n(Xn),γn(Xn)

)
.

4.1.2 Assumptions

In this section, we present the assumptions needed to prove our main result about the con-
vergence of Algorithms RL, SAGA and PASS. We consider the following assumptions:

Assumption 4.1 (Existence of a solution). There exists a solution q∗ of (1).

We write m∗ for the vector m∗ = m(q∗) ∈X ×Z with q∗ solution of (1).

Assumption 4.2 (Pseudo strong convexity 2). There exists a constant L > 0 such that(
Ek [m(qk , Xk+1(Zk ), Zk )−m∗(Xk+1(Zk ), Zk )]

)(
qk (Zk )−q∗(Zk )

)≥ L
(
qk (Zk )−q∗(Zk )

)2, (14)

with q∗ of (1) and Ek [X ] = E[X |Fk ] for any random variable X .

6Here M0 is the zero function in the sense that M0[z, i ] = 0 for any z ∈Z and i ∈ {1, . . . , M }.
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Recall that Assumption 4.2 is natural in the deterministic framework. For instance, if we
take a strongly convex function f and call m its gradient (i.e.m = ∇ f ). Then, m satisfies
Assumption 4.2. Additionally, the pseudo-gradient property (PG) considered in [28, Section
4.2] is close to Assumption 3.2. However, Assumption 3.2 is slightly less restrictive than PG
since it involves only the norm of the component (qk − q∗)(Zk ) instead of the norm of the
vector (qk −q∗). To get tighter approximations, we will also need the quantity Lk defined as
follows:

Lk =


Ek [m(qk , Xk+1(Zk ), Zk )−m∗(Xk+1(Zk ), Zk )]

qk (Zk )−q∗(Zk )
, If qk (Zk )−q∗(Zk ) 6= 0,

0, otherwise.

Note that Lk ≥ 0 under Assumption 4.2. It is also the biggest constant that satisfies (14) for a
fixed k . In particular, this means that Lk ≥ L.

Assumption 4.3 (Lipschitz continuity of m). There exists a positive constant B > 0 such that for
any random variables X and X ′ valued in X we have

Ek
[(

m(qk , X , Zk )−m∗(X ′, Zk )
)2]≤ B

{
1+ (

qk (Zk )−q∗(Zk )
)2 +Ek

[(
X −X ′)2]}, (15)

with Ek [X ] = E[X |Fk ] for any random variable X .

Assumption 4.3 guarantees that m is Lipschitz. Authors in [28, Section 4.2] use a similar
condition. To get better bounds, we introduce Bk

Bk = Ek
[(

m(qk , X , Zk )−m∗(X ′, Zk )
)2]

1+ (
qk (Zk )−q∗(Zk )

)2 +Ek
[(

X −X ′)2].

We have Bk ≤ B since Bk is the smallest constant satisfying (15) for a fixed k . We finally
need an assumption on the learning (γk )k≥0 that describes indirectly how the process Z
communicates with its different states.

Assumption 4.4 (Learning rate explosion). For any z ∈Z , there exists a non-negative determin-
istic sequence (γd

k (z))k∈N such that

γk (z) ≥ γd
k (z) and

∑
k≥1

γd
k (z) =∞, ∀z ∈Z .

When the process Z is Markovian and γk (z) is bounded, Assumption 4.4 ensures that Z is
recurrent. The boundedness assumption of γk (z) is not restrictive and can always be fulfilled.
Indeed, since γk (z) is bounded, there exists a positive constant A such that γk (z) ≤ A, a.s for
all k ≥ 1. Thus, we get

∑
k≥1E[γk (z)1Zk=z ] ≤ A

∑
k≥1P[Zk = z]. Since the left hand side of the

previous inequality diverges under Assumption 4.4, we have
∑

k≥1P[Zk = z] =∞ which proves
that Z is recurrent.
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4.1.3 Main results

In this section, we compare the algorithms RL, SAGA and PASS and prove the convergence
of PASS. Let c be a positive constant and k ∈N. We define the error function for the different
algorithms as follows:

ek (z) =
{

(qk (z)−q∗(z))2, for algorithms RL and PASS,∑M
j=1 n̄k [z, j ]

(
M k [z, j ]−m∗(z)

)2 + c(qk (z)−q∗(z))2, for algorithm SAGA,

for all z ∈Z with n̄k [z, j ] = (
nk [z, j ]

)
/
(∑M

i=1 nk [z, j ]
)

for any j ∈ {1, . . . , M } and the total error
E k such that E k = ‖ek‖. We also use the following notations:

p(x) = 2Lx −B x2, pk (x) = 2Lk x −Bk x2, γ̄k = argsup
l∈R

pk (l ) = Lk

Bk
, ∀x ∈R.

Proposition 4.1. Let z ∈Z . Under Assumptions 4.1, 4.2 and 4.3, and when there exists r1 ≥ 1 such
that

γ2 ≤ l (γ1,γ2), and h(γ1,γ2) ≤ r1γ2, ∀(γ1,γ2) ∈R2,

we have

1AEk [ek+1(z)] ≤1A
[
αk ek (z)+Mk

]
, (16)

with A = {Zk = z}. The values of the constant αk and Mk vary from an algorithm to another as
follows:

αk (z1) =


[
1−p

(
γk (z)

)]
, for algorithm RL,

max
(
1−p

(
γk (z)

)+ B
Mc ,1− ( 1

M −6γ2
k (z)c

))
, for algorithm SAGA,{

1−pk
(
γ∗

k

)+d 1γ2
k (z)1ck≥1

}
, for algorithm PASS,

(17)

with ck = Ek [γ̂k (z)m(qk , Xk+1(z), z)]

γ̄k (z)Ek [m(qk , Xk+1(z), z)]
, γ∗

k
= ck (z)γ̄k ∨ γ̄k , d 1 = (r1 −1)2Bk and

Mk =


Bγ2

k (z)(2+ vk ), for algorithm RL,
3Bγ2

k (z)(2+ vk ), for algorithm SAGA,
B

(
ck γ̄k

)2(2+ vk ), for algorithm PASS,
(18)

where vk is the variance of Zk .

Equation (16) reveals that the performances of algorithms RL, SAGA and PASS depend on the
interaction between two competing terms:

• On the one hand the slope αk controls the decrease of the error from one step to the
other,

• On the other hand the quantity Mk gathers two sources of imprecision: the estimation
error and the optimization error. Both sources of imprecision have a term in the
variance vn (because the distribution of Z is unknown) and a positive constant (coming
from the noise generated by the noisy nature of observations).
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There is a competition between these two terms: to decrease Mk we need to send γk towards
zero while the reduction of αk requires a relatively small but still non-zero value of γk . Thus,
γk should satisfy a trade-off in order to ensure the convergence of the algorithms. The RM
conditions (13) are a way to address this trade-off. Now, in order to analyse the properties of
each algorithm, we compare for a given γk their respective values for αk and Mk in Table V.2.
For sake of clarity, we choose to present the variable (1−αk ) instead of αk in this table; note
that a large value of 1−αk means that αk is small and thus induces a fast convergence.

Algorithms (1−αk ) Mk

Value Comparison
with Algo 1

Value Comparison
with Algo 1

RL (Algo 1) 2γk (z1)L − Bγ2
k (z1) — Bγ2

k (2+ vk ) —

SAGA (Algo 2)
(
2γk (z1)L−Bγ2

k (z1)− B
Mc

)
∨

(
1

M −6γ2
k (z1)c

)
smaller 3Bγ2

k (2+ vk ) larger

PASS (Algo 4) 2γ∗
k

Lk − Bk
(
γ∗

k

)2 +d 1γ2
k1ck≥1 larger B

(
ck γ̄k

)2(2+ vk ) larger

Table V.2 – Comparison of the algorithms RL, SAGA and PASS.

The result below holds only for Algorithms 2 and 4.

Theorem 4.1. Let the Assumptions 4.1, 4.2, 4.3 and 4.4 be in force. Algorithms 2 and 4 verify

• When
∑

k≥0E[γ2
k ](z) <∞ for all z ∈Z, we have

E0[E n] →
n→∞ 0. (19)

• When γk (z) = γ1{Zk=z} for all (k, z) ∈N×Z with γ> 0 a positive constant, for any positive
number r there exist two constants β ∈ [0,1) and M̄ > 0 which satisfy

E0[E n] ≤ c(1+ r )(1− α̃n)+ α̃n M̄E 0, ∀α̃< max(β,α), ∀n ∈N, (20)

with c = γ2M

1−α, α= 1−γ and M = supn Mn .

4.2 The upper level

In practice, to apply PASS we need an appropriate predefined sequence (γk )k∈N. It is possible
to take γk proportional to 1/kα with α ∈ (0,1] as proposed in [128, 138]. However, in this
section, we present a piecewise constant policy for the selection of the learning rate (γk )k∈N.
To do so, we construct a sequence of integers (ki )i∈N such that γk is constant within each
interval Ii = [ki ,ki+1[ with i ∈ N. Additionally, we choose the “best" constant γki such that
the error E[E n] decreases the fastest possible by at least a factor α during the time period Ii

in the sense that E[E ki+1 ] ≤αE[E ki ]. Here the factor α is a fixed constant.

First, note that the function f (x) = 2Lx −B 2 with L defined in Assumption 4.2 and B intro-
duced in Assumption 4.3 reaches its maximum value at the point γ̄1 = L

B ≥ 0. Since we need
f (γ0) to be the largest possible for a fast convergence, we take γ0 as close as possible to
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γ̄1. Let r > 0 be a precision factor and γ̄2 = 2E 0L
m̄(1+r )+BE 0 where E 0 is the initial total error,

m̄ = supk Mk /γ2
k is uniformly bounded of γ̄2 and the ratio Mk /γ2

k is defined in Proposition
4.1. To guarantee a decrease of the error by a factor α during the first iterations, we also need
γ0 ≤ γ̄2. Thus, we define recursively the sequence (ki )i∈N and (γki )i∈N as follows: ki+1 = ki +d

log( αr
2(1+r )M̄

)

log(αki )
e ,γki+1 =αγki , ∀i ≥ 0,

k0 = 0 ,γk0 = γ̄1 ∨ γ̄2,

(21)

with αki = 1−γki and M̄ defined in Theorem 4.1. The proposition below provides a non-
asymptotic approximation of the number of steps ki needed to reduce the error by the factor
αi with i ∈N.

Proposition 4.2. Under Assumptions 4.1, 4.2 and 4.3, we have

ki ≤ L1i +L2(i − i∗)++L3(α−(i−i∗+1)+ −1).

with i∗ = sup{i ≥ 0, αki ≤ β}, β defined in Theorem 4.1, L1 = −L
log(β) , L2 = Lb̄

2qL(1−b̄γ̄1)
, L3 =

L
2qLγ0(1−α−1) , L = | log( αr

2(1+r )M̄
)|, b̄ = B

2L and q = 1
2−β .

The proof of the above result is given in Appendix V.H. Proposition 4.2 shows that the con-
vergence speed due to (21) is exponentially fast as long as i ≤ i∗ (i.e.ki ≤ L1i ). In such case,
the leading term is L1i . This means that we need around L1i steps to reduce the error by a
factor αi /2.7 However, when i > i∗, the dominating term becomes L3(α−(i−i∗+1)+ −1). This
means that after a number k of iterations proportional to k ∝ α−i we reduce the error by
1/
p

k =αi /2. Then, we recover the slow convergence rate of O(1/
p

k).

Since the constants L and B are unknown in practice, a first solution consists in starting
with arbitrary values for B and L and generating a sequence of learning rates. If the error
m(qn , Xn+1(Zn), Zn) increases, one can take a larger value for B and a smaller one for L
otherwise he keeps B and L unchanged. A second solution consists in directly averaging the
error m(qn , Xn+1(Zn), Zn) over the lasts p visit times with p ∈N fixed by the controller. If this
average error does not decrease, Equation (21) reduces the value of the step size by a factor
α.

4.3 Extension

The results of this section still hold when the descent sequence (2) is replaced by

qn+1(z) = qn(z)−γn(z)m(qn , Xn+1(z), z), ∀z ∈Z ,∀n ∈N. (22)

When γn(z) = 0 if z 6= Zn , we recover (2). Thus, Equation (22) is slightly more general.
Moreover, Algorithm (22) appears in many contexts: stochastic iterative algorithms, gradient
methods, fixed point iterative techniques, etc. The results of this section can be directly
transposed to (22). We present in Appendix V.A an adaptation of the Algorithm PASS for
(22).

7Recall that αi is the square of the error.
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5 Some examples

5.1 Methodology

In this section, we compare four algorithms. The two first ones are two different versions of
RL. In the first version, the learning rate γk is taken such that γk = η

k with η > 0 selected
to provide the best convergence results. In the second version, the step size follows the
upper level policy, described in Section 4.2. The third algorithm is SAGA where the step
size is derived from the upper level policy. Finally, we use the PASS algorithm (for “PAst
Sign Search”) presented and studied theoretically in the previous sections. We consider three
numerical examples to compare the convergence speed of these algorithms: drift estimation,
optimal placement of limit orders and the optimal liquidation of shares.

5.2 Drift estimation

Formulation of the problem. We observe a process (Sn)n≥0 which satisfies

Sn+1 = Sn + fn+1 +Wn , (23)

with Wn a centred noise with finite variance. We want to estimate the quantities fi with
i ∈ {1, · · · ,nmax }. Using (23) and E[Wt ] = 0, we get

E
[
Si+1 −Si − fi+1

]= 0, ∀i ∈ {0, · · · ,nmax −1}.

Thus, we can estimate fi using stochastic iterative algorithms. The pseudo-code of our
implementation of PASS for this problem can be found in the Appendix V.B under the name
Implementation 1.

Numerical results. Figure VI.3 shows the variation of the L2-error when the number of
iterations increases. We can see that the algorithm PASS outperforms standard stochastic
approximation algorithms. Moreover, other algorithms behave as expected: the standard RL
decreases very slowly (but we know it will drive the asymptotic error to zero), the constant
learning rate and SAGA provides better results than RL, while PASS seems to have captured
the best of the two worlds for this application: very fast acceleration at the beginning and the
asymptotic error goes to zero.
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L2-error against the number of iterations
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Figure V.2 – The L2-error between f k and f for different numerical methods averaged over
1000 simulated paths.

5.3 Optimal placement of a limit order

Formalisation of the problem. We consider an agent who aims at buying a unit quantity
using limit orders and market orders (see Chapter I for detailed explanations). In such
case, the agents wonder how to find the right balance between fast execution and avoiding
trading costs associated to the bid-ask spread. The agent state at time t is modelled by
X t = (QBe f or e ,Q A f ter ,P ) with QBe f or e the number of shares placed before the agent’s order,
Q A f ter the queue size after the agent’s order and Pt the mid price, see Figure V.3. The agents
wants to minimise the quantity

E[F (Xτ∨T exec)+
∫ τ∨T exec

0
c d s],

where

• T exec = inf{t ≥ 0, Pt = 0} the first time when the limit order gets a transaction.

• τ the first time when a market order is sent.

• X = (QBe f or e ,Q A f ter ,P ) the state of the order book.

• F (u) is the price of the transaction (i.e. F (u) = p+ψ when the agents crosses the spread
and F (u) = p otherwise).

We show in Section 2 that the Q-function is solution of (6). Thus, we can use Algorithms RL,
SAGA and PASS to estimate it. The pseudo-code of our implementation of PASS is available
as Implementation 2 in Appendix V.B.

228



5. Some examples

|
Same Opp

QBe f or e

q

Q A f ter

QOpp

P (t )
Pr i ce

Figure V.3 – The state space of our limit order control problem.

Numerical results. Figure V.4 shows three control maps: the x-axis reads the quantity on
“same side” (i.e. Q same = QBe f or e +Q A f ter ) and the y-axis reads the position of the limit
order in the queue, i.e. QBe f or e . The color and numbers gives the control associated to
a pair (Q same ,QBe f or e ): 1 (blue) means “stay in the book”, while 0 (red) means “cross the
spread” to obtain a transaction. The panel (at the left) gives the reference optimal controls
obtained with a finite difference scheme, the middle panel the optimal controls obtained for a
RL algorithm where the step-size (γk )k≥0 is derived from the upper level policy, and the right
panel the optimal control obtained with our optimal policy (i.e. upper level and inner level
combined). It shows that after few iterations our optimal policy already found the optimal
controls. Figure V.5 compares the log of the L2 error, averaged over 100 trajectories, between
the different algorithms. We see clearly that our methodology improves basic stochastic ap-
proximation algorithms. Again, the other algorithms behave as expected: SAGA is better than
a constant learning rate that is better than the standard RL (at the beginning, since we know
that asymptotically RL will drive the error to zeros whereas a constant learning rate does not).

a) Theoretical optimal control b) step_cste optimal control c) PASS optimal control
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Figure V.4 – Comparison optimal control after 300 iteration for different methods: left is the
optimal control, middle is RL with a step size derived from the upper level and right is our
optimal policy for the step size (i.e. upper level and inner level combined).
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L2-error against the number of iterations
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Figure V.5 – The log L2-error against the number of iterations averaged over 1000 simulated
paths.

5.4 Optimal execution

Formalisation of the problem. An investor wants to buy a given quantity q0 of a trad-
able instrument (see [52] and [145] for details about this application). The price St of this
instrument satisfies the following dynamics:

dSt =αd t +σdBt ,

where α ∈ R is the drift and σ is the price volatility. The state of the investor is described
by two variables its inventory Qt and its wealth X t at time t . The evolution of these two
variables reads {

dQt = νt d t , Q0 = q0,
dWt =−νt (St +κνt )d t , W0 = 0,

(24)

with νt the trading speed of the agent and κ> 0. The term κνt corresponds to the temporary
price impact. The investor wants to maximize the following quantity

WT +QT (ST − AQT )−φ
∫ T

t
Q2

s d s,

it represents its final wealth XT at time T , plus the value of liquidating its inventory minus a
running quadratic cost. The value function V is defined such that

V (t , w, q, s) = sup
ν
E
[
WT +QT (ST − AQT )−φ

∫ T

t
Q2

s d s|Wt = w, Qt = q, St = s
]
.
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We remark that v(t , w, q, s) =V (t , w, q, s)−w −qs verifies

v(t , w, q, s) = sup
ν
E
[

(WT −Wt )+ (QT ST −Qt St )︸ ︷︷ ︸
=M t

T

−AQ2
T −φ

∫ T

t
Q2

s d s|Wt = w, Qt = q, St = s
]
.

(25)

Using (24), we can see that the variable M t
T is independent of the initial values Wt , St and

Qt . This means that v is a function of only two variables the time t and the inventory q . The
dynamic programming principle ensures that v satisfies

v(t , q) = sup
ν
E
[
M t

t+∆−φ
∫ t+∆

t
Q2

s d s + v(t +∆,Qt+∆)|Qt = q
]
. (26)

We fix a maximum inventory q̄ . Let k = (kT ,kq ) ∈ (N∗)2, ∆ = T /kT , DT = {t kT
i ; i ≤ kT } and

Dq = {q
kq

i ; i ≤ kq } with t kT
i = i∆ and q

kq

i =−q̄ +2i q̄/kq . To estimate v we use the numerical
scheme (vk

n)n≥1,k∈(N∗)2 defined such that

vk
n+1(Zn) = vk

n(Zn)+γn(Zn)
[

sup
ν∈A(Zn )

{Mν
n+1 −φ∆Q2

n + vk
n(Z ν

n+1)− vk
n(Zn)}

]
,

with Zn = (n∆,Qn∆) and A(Zn) ∈ Dq is the set of admissible actions.8 When the final time
T is reached (i.e. n = kT ), we pick a new initial inventory from the set Dq and start again
its liquidation. At a first sight, it is not clear that vk

n approximates v . However, we show
in Appendix V.I that vk

n converges pointwise to v on DT ×Dq when n → ∞ and k → ∞.
see Appendix V.B for a detailed implementation of the algorithm with the corresponding
pseudo-code (as Implementation 3).

Numerical results. Figure V.6 shows the value function v for different values of the elapsed
time t and the remaining inventory Qt . The panel (at the left) gives the reference value
function. It is computed by following the same approach of [46]. The middle panel the value
function obtained obtained after 120 000 iterations for RL algorithm where the step-size
(γk )k≥0 is derived from the upper level of our optimal policy, and the right panel the value
function obtained with our optimal policy (i.e.upper level and inner level combined). It shows
that our optimal strategy leads to better performance results. We also plot, in Figure V.7, a
simulated path for the variations of the log L2 error for different algorithms. Here again, we
notice that our methodology improves the basic RL algorithm and that the ordering of other
approaches is similar to the one of the “drift estimation” approximation (i.e. SAGA and the
constant learning rate are very similar).

8We do not allow controls that leads to states where the inventory exceeds q̄ .
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a) Theoretical value function b) step_ cste value function c) PASS value function
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Figure V.6 – Comparison value function between methods.
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Figure V.7 – The log L2-error against the number of iterations averaged over 1000 simulated
paths.

V.A Extension of the PASS Algorithm

First, we can adapt Algorithm PASS to (22) by considering component-wise version which
consists in applying Algorithm 4 introduced in Section 4.1.1 to all the visited coordinates of
qn . Next, we also propose a more direct approach with the algorithm below.

Algorithm 5 (PASS for (22)). We start with an arbitrary q0 and define by induction qk and γ̂k
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• If 〈m(qn , Xn+1),m(qn−1, Xn)〉 ≥ 0, then do

qn+1 = qn −h
(
γ̂n ,γn

)
m(qn , Xn+1),

γ̂n+1 = h
(
γ̂n ,γn

)
.

• Else, do

qn+1 = qn − l
(
γ̂n ,γn

)
m(qn , Xn+1),

γ̂n+1 = l
(
γ̂n ,γn

)
.

V.B Implementations

We give here the pseudo code used for each one of the three numerical examples considered
in Section 5.

Drift estimation. We consider the following expression for the functions h and l :

h(γ,γbase ) = min(γ+γbase ,3γbase ), l (γ,γbase ) = max(γ−γbase ,γbase ), ∀(γ,γbase ) ∈R+.

We use Implementation 1 for the numerical experiments.

Optimal placement of limit orders. We consider the following expression for the functions
h and l :

h(γ,γbase ) = max(min(γ+2/3γbase ,3γbase ),γbase ), l (γ,γbase ) = max(γ−2/3γbase ,γbase ), ∀(γ,γbase ) ∈R+.
(27)

We use Algorithm 2 for the numerical experiments. Note that we do not need to send a
market order to know our expected future gain.

Optimal execution of a large number of shares. To solve this problem we use the same
functions h and l considered in the previous problem, see (27). Then, we apply Algorithm 3.
In this problem, it is crucial to select actions according to the policy (7) in order to encourage
exploration. The coefficient β̄ used by the agent to select its actions is taken constant equal
to β̄= 5. We consider the same policy for all the tested algorithms.

V.C Additional results: optimal execution

Authors in [46] show that v satisfies

v(t , q) = h0(t )+h1(t )q −h2(t )/2q2, ∀t ∈ [0,T ], ∀q ∈R, (28)

with h0, h1 and h2 are three real valued functions. Here, we want to estimate h0, h1 and h2

using the ersatz (28) and Equation (26). We use Equations (26), (49) and (28) and we neglect
the terms of second order (i.e. o(∆t )) to get

v(t , q) = sup
ν
E[ν∆t (h1 −qh2)−ν2∆tκ+q∆S −φq2 + v(t +∆t , q). (29)
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V. Improving reinforcement learning algorithms:towards optimal learning rate policies

Algorithm 1 PAst Sign Search (PASS) for (RL) drift estimation problem

1: Algorithm parameters: step size (γo)n≥0 ∈ (0,1], number of episodes n
initial guess q0, past error value Epast

Initialise γ̂0 = γo
0

2: for episode in 1 : n do
3: for t ∈ {0, . . . ,nmax −1} do
4: Observe ∆Xnext = St+1 −St

5: if the first visit time to t then
6: q0(t ) ← q0(t )− γ̂0(t )m(q0,∆Xnext , t )
7: else if m(q0, t ,∆Xnext )×Epast (t ) ≥ 0 then
8: γ̂0(t ) ← h

(
γ̂0(t ),γo(t )

)
9: q0(t ) ← q0(t )− γ̂0(t )m(q0,∆Xnext , t )

10: else if m(q0, t ,∆Xnext )×Epast (t ) < 0 then
11: γ̂0(t ) ← l

(
γ̂0(t ),γo(t )

)
12: q0(t ) ← q0(t )− γ̂0(t )m(q0,∆Xnext , t )
13: end if
14: Epast (t ) ← m(q0, t ,∆Xnext )
15: end for
16: Save the norm ‖E‖ of the vector Epast (t ).
17: if the average value of ‖E‖ over the last w = 5 episodes is not reduced by p = 1%

then
18: γo(t ) ← max

(
γo(t )/2,0.01

)
(this is done each w episodes)

19: end if
20: end for

By maximising the above expression over ν, we get the optimal control ν∗ = h1−qh2

2κ . Finally,
Using (28), we can split Equation (29) in three parts

h2(t ) = h2(t +∆t )−2φ+ (h2(t +∆t ))2

2κ
, h2(T ) = 2A,

h1(t ) = h1(t +∆t )+E[∆S]− h2(t +∆t )h1(t +∆t )

2κ
, h1(T ) = 0,

h0(t ) = h0(t +∆t )+ (h1(t +∆t ))2

4κ
, h0(T ) = 0.

(30)

Thus, we can use Algorithm RL to estimate h0, h1 and h2. The results are given in Figures V.8
and V.9.
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Algorithm 2 PAst Sign Search (PASS) for (RL) optimal placement problem

1: Algorithm parameters: step size (γo)n≥0 ∈ (0,1], number of episodes n
initial guess q0, past error value Epast

Initialise γ̂0 = γo
0

2: for episode in n do
3: Select initial state X0

4: for each step within episode do
5: Take the action stay in the order book
6: Observe the new order book state Xnext

7: for a ∈ {0,1} do
8: if the first visit time to Xnext then
9: q0(X0, a) ← q0(X0, a)− γ̂0(X0, a)ma(q0, X0, Xnext )

10: else if ma(q0, X0, Xnext )×Epast (X0, a) ≥ 0 then
11: γ̂0(X0, a) ← h

(
γ̂0(X0, a),γo(X0, a)

)
12: q0(X0, a) ← q0(X0, a)− γ̂0(X0, a)ma(q0, X0, Xnext )
13: else if ma(q0, X0, Xnext )×Epast (X0, a) < 0 then
14: γ̂0(X0, a) ← l

(
γ̂0(X0, a),γo(X0, a)

)
15: q0(X0, a) ← q0(X0, a)− γ̂0(X0, a)ma(q0, X0, Xnext )
16: end if
17: Epast (X0, a) ← ma(q0, X0, Xnext )
18: end for
19: X0 ← Xnext

20: end for
21: Save the norm ‖E‖ of the vector Epast (t ).
22: if the average value of ‖E‖ over the last w = 40 episodes is not reduced by p = 5%

then
23: γo(t ) ← max

(
γo(t )/2,0.01

)
(this is done each w episodes)

24: end if
25: end for
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Figure V.8 – (a) The quantity hrl
0 (t ), (b) hrl

1 (t ) and (c) hrl
2 (t ) computed using the (RL) procedure.

(a’) The quantity h0(t ), (b’) h1(t ) and (c’) h2(t ) computed using an explicit numerical scheme.
The (RL) approximations are close to the one of the numerical scheme.
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Algorithm 3 PAst Sign Search (PASS) for (RL) optimal execution problem

1: Algorithm parameters: step size (γo)n≥0 ∈ (0,1], number of episodes n
initial guess q0, past error value Epast

Initialise γ̂0 = γo
0

2: for episode in n do
3: Select the initial inventory Q0

4: for t ∈ {0, . . . ,nT −1} do
5: Observe the new price state Snext and set X0 = (t ,Q0)
6: Observe the new price state Snext

7: if the first visit time to X0 then
8: q0(X0) ← q0(X0)− γ̂0(X0)m(q0,Snext , X0)
9: else if m(q0,Snext , X0)×Epast (X0) ≥ 0 then

10: γ̂0(X0) ← h
(
γ̂0(X0),γo(X0)

)
11: q0(X0) ← q0(X0)− γ̂0(X0)m(q0,Snext , X0)
12: else if m(q0,Snext , X0)×Epast (X0) < 0 then
13: γ̂0(X0) ← l

(
γ̂0(X0),γo(X0)

)
14: q0(X0) ← q0(X0)− γ̂0(X0)m(q0,Snext , X0)
15: end if
16: Epast (X0) ← m(q0,Snext , X0)
17: Select an action A and observe Qnext

18: Q0 ←Qnext

19: end for
20: Save the norm ‖E‖ of the vector Epast (t ).
21: if the average value of ‖E‖ over the last w = 300 episodes is not reduced by p = 1%

then
22: γo(t ) ← max

(
γo(t )−0.01,0.01

)
(this is done each w episodes)

23: end if
24: end for
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Figure V.9 – (a) The quantity v rl(0, q) is estimated using the (RL) approach and (b) the quantity
v rl(t , q) is computed by following [46]. Both approximations v rl(0, q) and v theo(0, q) are close.

236



V.D. Proof of Proposition 3.1

V.D Proof of Proposition 3.1

Proof of Proposition 3.1. Let z ∈Z . Standard uniform convergence results ensure that

E[sup
q

|g (q)− gn(q)|(z)|n(z)] ≤ c
1p

n(z)∧1
, a.s.

with c > 0 a positive constant. Since the Markov chain (Zn)n≥1 is irreducible and the set Z is
finite, the sequence (Zn)n≥1 is positive recurrent and we have

n(z)

n
=

∑n
k=11Zk=z

n
→

n→∞Pµ[Zn = z] > 0 = p(z),

with µ the unique invariant distribution of (Zn)n≥1. Thus, we have

un(z) = E
√

n

n(z)∧1

 →
n→∞

1√
p(z)

> 0.

This shows that un(z) is bounded by u∞(z) and ensures that

E[sup
q

|g (q)− gn(q)|(z)] ≤ c1(z)
1p
n

,

with c1(z) = cu∞(z). The constant c1 can be taken independent of z since Z is finite.

V.E Proof of Proposition 3.2

Proof of Proposition 3.2. Let z ∈Z . We follow the same approach used in the proof of Propo-
sition 3.1 to get

vn(z) = E
[( log(n̄(z))/ log(n)

n̄(z)/n

)β]
≤ E

[( 1

n̄(z)/n

)β]
→

n→∞
1

p(z)β
> 0.

This shows that vn(z) is bounded by v∞(z) and ensures that

E[sup
q

|g (q)− gn(q)|(z)] ≤ c2(z)
1p
n

,

with c2(z) = c ′v∞(z). The constant c2 can be taken independent of z since Z is finite. Using
the same manipulations of (11), we complete the proof.

V.F Proof of Proposition 4.1

Proof of Proposition 4.1. Let k ≥ 0, A the set A = {Zk = z} and m(qk ) ∈RZ such that m(qk )(z ′) =
m(qk , Xk+1(z ′), z ′) for any z ′ ∈Z . We split the proof in three steps. In each one of these steps,
we prove (16) for a given algorithm.
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Step (i): In this step, we prove (16) for Algorithm RL. We have

1AEk [(qk+1 −q∗)2(z)] =1AEk [(qk −γk m(qk )−q∗)2(z)]

=1A

(
qk −q∗)2(z)−2γkEk [m(qk )](qk −q∗)(z)︸ ︷︷ ︸

=(i )

+γ2
k Ek [m(qk )2(z)]︸ ︷︷ ︸

=(i i )

 .

Using Assumption 4.2 and Ek [m∗] = 0, we get (i ) ≤ −2Lγk |qk − q∗|2(z). Since Ek [m∗] = 0,
Assumption 4.3 gives

(i i ) = Ek
[(

m(qk )−Ek [m(qk )]
)2(z)

]+ (
Ek [m(qk )−m∗]

)2(z)

≤ B(1+ vk )+B(1+ (qk −q∗)2(z)).

Thus, we deduce that

1AEk [(qk+1 −q∗)2(z)] ≤1A

(1−2γk L+Bγ2
k︸ ︷︷ ︸

=−p(γk )

)
(
qk −q∗)2(z)+γ2

k (z)B(2+ vk )︸ ︷︷ ︸
=Mk

 ,

which shows (16) for Algorithm RL.

Step (ii): Here we show (16) for Algorithm SAGA. Let M̄ k (z) = ∑M
j=1 n̄k [z, j ]M k [z, j ] and

n̄k [z, j ] = nk [z, j ]/
∑M

j ′=1 nk [z, j ′]. Using Ek [m∗] = 0 and Ek [M k [z, i ]] = M̄ k (z), we have

1AEk
[(

qk+1 −q∗)2(z)
] =1A

{
(qk −q∗)2(z)+2(Ek [qk+1]−qk )(qk −q∗)(z)+Ek [(qk+1 −qk )2(z)]

}
=1A

{
(qk −q∗)2(z)−2(γkEk [m(qk )−m∗])(qk −q∗)(z)

+γ2
kEk

[(
m(qk )(z)−M k [z, i ]+ M̄ k (z)

)2]}
≤︸︷︷︸

Assumption 4.2

1A

(
1−2Lγk

)(
qk −q∗)2(z)+γ2

k Ek
[(

m(qk )(z)−M k [z, i ]+ M̄ k (z)
)2]︸ ︷︷ ︸

=(1)

 .

(31)

We first dominate the term (1). Since Ek [m∗](z) = 0 and

Ek

[(
M k [z, i ]−m∗)2(z)

]
=∑

j
n̄k [z, j ]Ek

[(
M k [z, j ]−m∗(z)

)2
]

,
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we have

(1) = Ek

∣∣∣∣∣(m(qk )−Ek [m∗]
)
(z)− (

M k [z, i ]−m∗(z)
)+ (∑

j
n̄k [z, j ](M k [z, j ]−m∗(z))

)∣∣∣∣∣
2

≤ 3
[
Ek

[
m(qk )−m∗]2 (z)+Ek

[(
M k [z, i ]−m∗(z)

)2
]
+Ek

[(∑
j

n̄k [z, j ](M k [z, j ]−m∗(z)
)]2]

≤︸︷︷︸
Jensen’s inequality

3
[
Ek

[(
m(qk )−m∗)2(z)

]
+Ek

[(
M k [z, i ]−m∗)2(z)

]
+∑

j
n̄k [z, j ]Ek

[(
M k [z, j ]−m∗(z)

)2
]]

= 3
[
Ek

[(
m(qk )−Ek [m(qk )]

)2(z)
]
+ (
Ek [m(qk )−m∗](z)

)2 +2
∑

j
n̄k [z, j ]Ek

[(
M k [z, j ]−m∗(z)

)2
]]

≤︸︷︷︸
Assumption 4.3

3
[

B
(
2+ vk +

(
qk −q∗)2 (z)

)+2
∑

j
n̄k [z, j ]Ek

[(
M k [z, j ]−m∗(z)

)2
]]

= 3B
(
2+ vk

)+3B
(
qk −q∗)2 (z)+6

∑
j

n̄k [z, j ]Ek

[(
M k [z, j ]−m∗(z)

)2
]]

. (32)

By combining (31) and (32), we get

1AEk [|qk+1 −q∗|2(z)] ≤1A

{
(1−2γk (z)L+3Bγ2

k (z))
(
qk −q∗)2(z)

+6
∑

j
n̄k [z, j ]Ek

[(
M k [z, j ]−m∗(z)

)2
]
+3Bγ2

k (vk +2)(z)

}
. (33)

Moreover, we have

1AEk
[ M∑

j=1
n̄k [z, j ]

(
M k+1[z, j ]−m∗(z)

)2]=1A

{
1

M
Ek

[
(m(qk )−m∗)2(z)

]
+(1− 1

M
)

M∑
j=1

n̄k [z, j ]Ek
[(

M k [z, j ]−m∗(z)
)2]}

≤1A

{
B

M

(
1+ (qk −q∗)2(z)

)
+(1− 1

M
)

M∑
j=1

n̄k [z, j ]Ek
[(

M k [z, j ]−m∗(z)
)2]} .

(34)
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Thus using (33) and (34), we conclude

1AEk [ek+1(z)] ≤1A

(1−2γk L+3Bγ2
k +

B

Mc
)︸ ︷︷ ︸

=α1

c
(
qk −q∗)2(z)

+ (1− 1

M
+6γ2

k (z)c)︸ ︷︷ ︸
α2

∑
j

n̄k [z, j ]Ek
[(

M k [z, j ]−m∗(z)
)2 ]+3Bγ2

k (vk +2)(z)

≤1Aαek (z)+3Bγ2
k (vk +2)(z),

with α= max(α1,α2) ∈ [0,1).

Step (iii): In this final step, we show (16) for Algorithm PASS. We have

1AEk [(qk+1 −q∗)2(z)] =1AEk [(qk − γ̂k m(qk )−q∗)2(z)]

=1A

(
qk −q∗)2(z)−2Ek [γ̂k m(qk )](qk −q∗)(z)︸ ︷︷ ︸

=(i )

+Ek [γ̂2
k (m(qk ))2(z)]︸ ︷︷ ︸

=(i i )

 .

For the term (i), using Assumption 4.2 and Ek [m∗] = 0, we have (i ) =−2ck γ̄k (qk −q∗)2(z) with
ck = Ek [γ̂k m(qk )(z)]

γ̄kEk [m(qk )(z)] . Using Assumption 4.3 and Ek [m∗] = 0, we get

(i i ) = c2
k γ̄

2
kEk

[
m(qk )2(z)

]= c2
k γ̄

2
k

(
Ek

[(
m(qk )−Ek [m(qk )]

)2(z)
]+ (

Ek [m(qk )−m∗]
)2(z)

)
≤ c2

k γ̄
2
k

(
Bk (1+ vk )+Bk (1+ (qk −q∗)2(z))

)
.

Thus, we deduce that

1AEk [(qk+1 −q∗)2(z)] ≤1A

(1−2ck γ̄k Lk +Bk
(
ck γ̄k

)2︸ ︷︷ ︸
=−pk (ck γ̄k )

)
(
qk −q∗)2(z)+ c2

k γ̄
2
k (z)Bk (2+ vk )︸ ︷︷ ︸

=Mk

 .

(35)

We write γ
k

for the quantity γ
k
= ck γ̄k ∨ γ̄k . Since γ̂k ∈ [γk ,r1γk ], we have ck γ̄k ∈ [γk ,r1γk ].

When ck γ̄k ∈]γk , γ̄k ], we have pk (γ
k

) = pk (ck γ̄k ) > pk (γk ) ≥ 0. When ck γ̄k ∈]γ̄k ,r1γk ] (i.e.
ck ≥ 1), we use that

|pk (ck γ̄k )−pk (γ
k

)| = |pk (ck γ̄k )−pk (γ̄k )| ≤ Bk (ck γ̄k − γ̄k )2 ≤ Bk (r1γk −γk )2 = γ2
k d 1,

with d 1 = (r1 −1)2Bk . Thus, using (35), we conclude

1AEk [(qk+1 −q∗)2(z)] ≤1A

(1−pk (γ
k

)+γ2
k d 11ck≥1)

(
qk −q∗)2(z)+ c2

k γ̄
2
k (z)Bk (2+ vk )︸ ︷︷ ︸

=Mk

 .

This completes the proof.
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V.G Proof of Theorem 4.1

V.G.1 Preparation for the proof of Theorem 4.1

We introduce the following notations. Let j ∈ N and (µn)n≥1 a real sequence, we write
(µ j

n)n≥1 for the delayed sequence µ j
n =µ j+n for any n ≥ 1. Additionally, we define recursively

the sequence (aµn)n≥1 as follows:

aµ1 = 1, and aµn+1 =µn

n∑
l=1

an+1−l aµl , ∀n ≥ 1. (36)

Lemma V.G.1. By convention, an empty sum is equal to zero. Let (vn)n≥1 be the sequence defined
as follows:

vn = εn +µn
(n−1∑

j=1
an− j v j

)
, ∀n ≥ 1,

where (εn)n≥0 and (µn)n≥0 are two real sequences and
∑

j≥0 a j = 1. Then, we have

vn =
n∑

j=1
aµ

j

n+1− j ε j , ∀n ≥ 1. (37)

Proof of Lemma V.G.1. Let us prove the result by induction on n ≥ 1. By definition, Equation
(37) is satisfied for n = 1. By applying the induction hypothesis (37) to all j ≤ n, we get

vn+1 = 1×εn+1 +µn+1
( n∑

j=1
an+1− j v j

)= aµ
n+1

1 εn+1 +µn+1
( n∑

j=1
an+1− j

j∑
l=1

aµ
l

j+1−lεl
)

= aµ
n+1

1 εn+1 +
[ n∑

l=1
µn+1

( n∑
j=l

an+1− j aµ
l

j+1−l

)
εl

]
= aµ

n+1

1 εn+1 +
[ n∑

l=1
µn+1

(n−l+1∑
j=1

an−l+2− j aµ
l

j

)
εl

]
= aµ

n+1

1 εn+1 +
n∑

l=1
aµ

l

n+2−lεl =
n+1∑
j=1

aµ
l

n+2− j ε j .

Lemma V.G.2. Let n ∈N, (µn)n≥0 be a positive sequence, (aµn)n≥0 be the sequence defined in (36)
and rn = 1−µn .

• When
∑

n≥0 rn =∞, we have

aµn →
n→∞ 0. (38)
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• When
∑

n≥0 rn =∞ and there exists β ∈ [0,1) such that
∑

n≥0β
n an <∞, we have

βn aµn →
n→∞ 0. (39)

Proof of Lemma V.G.2. We need to introduce the following notations. Let n ∈N∗ and (un)n≥1

be a real sequence. We define respectively the translation operator T1 and the aggregation
operator T2 as follows T1(u)n = un−11n≥2 and T2(u)n = (∑

l≥1 al ul
)
1n=1. We denote by

(wk )k≥1 the sequence

w1
n = ε11n=1, wk+1 = (T1 +µk+1T2)(wk ), ∀k ≥ 1,∀n ≥ 1. (40)

Our construction ensures that vk+1 =wk+1
1 = µk+1T2(wk )1. In the sequel, we first prove (38)

then show (39).

Step (i): Here, we demonstrate (38). We first handle the case where a1 = 1. In such case, we
have

vn =µn vn−1 =
( n∏

i=2
µi

)
v1 =

( n∏
i=2

(1− ri )
)
v1 ≤ e−

∑n
l=2 rl v1 →

n→∞ 0,

since
∑

l≥2 rl = ∞. Now we place ourselves in the case where a1 < 1. Using (40), we have
wn = [∏n−1

l=1

(
T1 +µl+1T2

)]
w1 which gives

vn =µnT2
[n−1∏

l=1

(
T1 +µl+1T2

)]
(w1)1 =µnT2

[ ∑
k=(k1,··· ,km )∈Pn−1

∑
i=(i1,··· ,im )∈{1,2}m

µ̄ki T km

im
· · ·T k1

i1

]
(w1)1,

with Pn−1 = {k= (k1, · · · ,km) ∈ (N∗)m ; s.t k1+·· ·+km = n−1} the set containing all the parti-
tions of (n−1) and µ̄ki =∏

l∈A k
i
µl . Note that each integer l ∈ {1, · · · ,n−1} belongs to a group

pl (i.e. pl =
∑pl

r=1 kp ≤ l <∑pl+1
r=1 kr ) and the set A k

i = {l ∈ {1, · · · ,n−1}; s.t ipl = 2} refers to the
groups where we select the operator T2 instead of T1.

Let ε > 0 and m ∈ N∗. Using that ‖w1‖∞ = supl≥1 |w1
l | is finite, we have T2T m

1 (w1)1 =∑
l≥m+1 alw

1
l ≤ (∑

l≥m+1 al
)‖w1‖∞. Since

∑
l≥1 al < ∞, there exists n0 ∈ N such that when

m ≥ n0, we have T2T m
1 (w1)1 ≤ ε

2 . We write ā for the quantity ā = maxl≤n0 al . Since a1 < 1
and

∑
l≥1 al = 1, we have ā < 1. Thus there exists n1 ∈ N such that for all m ≥ n1, we have

ān1 ≤ ε
2 .

We denote by kT1 = ∑
r≥1, s.t ir =1 kr the integer that counts the number of times the operator

T1 is chosen. When kT1 ≤ n0n1, we have #{l , l ∉A k
i } ≤ n0n1, which gives

µ̄ki = ∏
l∈A k

i

µl =
∏

l∈A k
i

(1− rl ) ≤ e
−
(∑

l∈Ak
i

rl

)
= e

−
(∑n

l=0 rl

)
+
(∑

l∉Ak
i

rl

)
≤ e−

(∑n
l=0 rl

)
+n0n1 , (41)

since rl ≤ 1. Thus, there exists n2 ∈N such that for all m ≥ n2, we have µ̄ki ≤ ε
2 .
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We take now n ≥ n3 = (n0n1)∧n2. When kT1 > n0n1, we differentiate two cases. First, if
there exists r such that kr ≥ n0 and ir = 1. In such case, since T2(u) ≤ T∞(u) with T∞(u)n =
‖u‖∞1n=1, we have

T2
(
T km

im
· · ·T k1

i1

)
(w1)1 = T2

(
T km

im
· · ·T kr+1

2 T n0
1 T kr −n0

1 · · ·T k1
i1

)
(w1)1 ≤ ε

2
T2

(
T km

im
· · ·T kr+1∞ T kr

1 · · ·T k1
i1

)
(w1)1.

(42)

Second, when we cannot find such r , then necessarily kT2 ≥ n
n0

≥ n1 with kT2 =∑
r≥1, s.t ir =2 kr

represents the number of times the operator T2 is selected. Since w1
n = ε11n=1 and kl ≤ k0

whenever il = 2, the coefficients al with l > k0 never appear. In such situation, we get
T2(u) ≤ āT∞(u) using basic inequalities. The inequalities T2(u) ≤ āT∞(u) and ākT2 ≤ ān1 ≤ ε

2
ensure

T2
(
T km

im
· · ·T k1

i1

)
(w1)1 ≤ ākT2

T2
(
T km

īm
· · ·T k1

ī1

)
(w1)1 ≤ ε

2
T2

(
T km

īm
· · ·T k1

ī1

)
(w1)1, (43)

with īm = im1im=1 +∞1im=2. When kT1 ≤ n0n1, we use (41) and n ≥ n2 to get

µ̄ki T2
(
T km

im
· · ·T k1

i1

)
(w1)1 ≤ ε

2

(
T km

im
· · ·T k1

i1

)
(w1)1. (44)

By combining the inequalities (42), (43), (44) and T2(u) ≤ T∞(u), we conclude

vn ≤ ε

2

[ ∑
kT1≤n0n1

(
T km

im
· · ·T k1

i1

)
(w1)1

]+ ε

2

[ ∑
kT1>n0n1

(
T km

īm
· · ·T k1

ī1

)
(w1)1

]
≤ ε

2

[n−1∏
l=1

(
T1 +µl+1T2

)]
(w1)1 + ε

2

[n−1∏
l=1

(
T1 +µl+1T∞

)]
(w1)1 ≤ ε

2
+ ε

2
≤ ε.

which proves (38).

Step (ii): Let us prove (39). Note that (hn)n≥0 = (βn aµn)n≥0 verifies

h0 = 0, hn+1 =µn+1

n∑
l=0

(
βn+1−l aµn+1−l

)︸ ︷︷ ︸
=gn+1−l

hl , ∀n ≥ 0,

with (gn)n≥0 the sequence defined such that gn = βn aµn . This means that hn = gµn . Thus a
straightforward application of (38) to the sequence (gµn )n≥0 gives (39). This completes the
proof.

Lemma V.G.3. Let Z be a finite space and (z, z1) ∈Z 2. Under Assumption 4.4, there exist two
constants β ∈ [0,1) and d > 0 such that

an(z1) =Pz [τZ1≥n] ≤βnd , ∀n ∈N. (45)

Proof of Lemma V.G.3. Let (z, z1) ∈ Z 2 and Az1 = {z ′ ∈ Z ; P[Z1 = z1|Z0 = z ′] = 1} the states
that leads to z1 with probability 1. To avoid the states z ′ ∈ Z where the quantity P[Z1 6=
z1|Z0 = z ′] = 0, we first show (45) for the Markov chain Z̃n = Zn1Zn∉Az1

+ z1Zn∉Az1
. Then, we

prove (45) in the general case.
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Step (i): We prove (45) by induction on n ∈N∗ for the Markov chain Z̃ . We denote by τ1
Z̃1

the first visit time of the Markov chain Z̃ to the state z1. For n = 1, we have

Pz [τ1
Z̃1

= 1] =Pz [Z̃1 = z1] ≤ max
z ′∈Z

[
max

(
Pz ′ [Z̃1 = z1],Pz ′ [Z̃1 6= z1]

)]=β.

Note that β ∈ [0,1) since Pz ′ [Z̃1 = z1] < 1. Let us take now n > 1. We have

Pz [τ1
Z̃1

≤ n] =Pz [τ1
Z̃1

= 1]+ ∑
z ′ 6=z1

P (z, z ′)Pz [τ1
Z̃1

≤ n −1],

with P (z, z ′) = P[Z̃1 = z ′|Z̃0 = z]. The induction assumption gives Pz [τ1
Z̃1

≤ n −1] ≥ 1−βn−1

which ensures

Pz [τ1
Z̃1

≤ n] ≥ (1−Pz,zc
1
)+ (

1−βn−1)Pz,zc
1
≥ 1−βn ,

with Pz,zc
1
=P[Z̃1 6= z1|Z̃0 = z]. Thus, we get Pz [τ1

Z̃1
> n] ≤βn .

Step (ii): Let us now prove (45) for Z . Since Z reaches z1 at most one iteration after Z̃ , we
have

Pz [τ1
Z1

≤ n] ≤Pz [τ1
Z̃1

≤ n −1] ≤βn−1 = 1

β︸︷︷︸
=d

βn , ∀n ≥ 1.

Recall that τ1
Z1

is the first visit time of the Markov chain Z to the state z1. This completes
the proof.

V.G.2 Propagation of the error

As a first step, we consider the case where the process (Zk )k≥1 is Markovian. For any z1 ∈Z ,
we write τ1

Z1
= inf{l > 0, Zl = z1} for the first visit time of (Zk )k≥1 to the state z1. Moreover, we

define the sequence (ak )k≥0 such that ak (z1) =P[τ1
Z1

≥ k|F0]. We have the following result.

Proposition V.G.1. Let (Zk )k≥1 be a Makov process, z1 ∈ Z and n ∈ N∗. Under Assump-
tions 4.1, 4.2, 4.3 and 4.4, we have

E0[en(z1)] ≤ εn +
n−1∑
j=1

an− j ᾱ jE0[e j (z1)],

with εn = e1(z1)an(z1)+∑n−1
j=1 an− j M j and ᾱ j =

E0[α j e j (z1)]

E0[e j (z1)]
1E0[e j (z1)] 6=0. The variables α j and

M j are given by (17) and (18).
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Proof of Proposition V.G.1. Let (z, z1) ∈Z 2 and n ∈N∗. Using the last-exit decomposition, see
Section 8.2.1 in [123], we have

Ez [en(z1)] = Ez [en(z1)1τ1
Z1

≥n]+
n−1∑
j=1

Ez [en(z1)1{τ1
Z1

≥n− j , Z j=z1}]

= Ez [e1(z1)1τ1
Z1

≥n]+
n−1∑
j=1

Ez [e j+1(z1)1{τ1
Z1

≥n− j , Z j=z1}]

≤︸︷︷︸
Proposition 4.1

Ez [e1(z1)1τ1
Z1

≥n]+
n−1∑
j=1

Ez [(α j e j (z1)+M j )1{τ1
Z1

≥n− j , Z j=z1}]

= Ez [e1(z1)1τ1
Z1

≥n]+
n−1∑
j=1

Ez [(α j e j (z1)+M j )1{Z j=z1}E[1τ1
{Z1

≥n− j }|F j ]]

≤ e1(z1)Ez [1τ1
Z1

≥n]+
n−1∑
j=1

Pz1 [τ1
Z1≥n− j ]Ez [(α j e j (z1)+M j )]

= εn +
n−1∑
j=1

an− j ᾱ jEz [e j (z1)],

with a j (z1) =Pz1 [τ1
Z1

≥ j ], τ1
Z1

= inf{l > 0, Zl = z1} and αn and Mn defined in Proposition 4.1.
In the second equality, we use that en(z1) does not change as long as the state z1 is not
reached. This completes the proof.

We turn now to the general case. However, we use the same kind of arguments needed
in the Markov setting. Let n ∈ N∗ and (z1, . . . , zn) ∈ Z n . For any i ∈ {1, . . . ,n}, we denote
by Ai the set Ai = {Z1 = z1, . . . , Zi = zi }. Moreover, we write τn

Z
= inf{l > 0, Zl+n = z1} and

an
k =P[τn−k

Zn
≥ k|Fn]. We have the following result.

Proposition V.G.2. Under Assumptions 4.1, 4.2, 4.3 and 4.4, we have

E0[en(z1)1An ] ≤ εn +
n−1∑
j=1

an
n− j ᾱ jE0[e j (z1)1An ],

with εn = e1(z1)a0
n(z1)+∑n−1

j=1 an
n− j M j and ᾱ j =

E0[α j e j (z1)1An ]

E0[e j (z1)1An ]
1E0[e j (z1)1An ] 6=0. The variables

α j and M j are given by (17) and (18).
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Proof of Proposition V.G.2. We have

Ez [en(z1)1An ] = Ez [en(z1)1τ1
Z1

≥n, An ]+
n−1∑
j=1

Ez [en(z1)1
{τ j

Z j
≥n− j , Z j=z1, An }

]

= Ez [e1(z1)1τ1
Z1

≥n, An ]+
n−1∑
j=1

Ez [e j+1(z1)1
{τ j

Z j
≥n− j , Z j=z1, An }

]

≤︸︷︷︸
Proposition 4.1

Ez [e1(z1)1τ1
Z1

≥n, An ]+
n−1∑
j=1

Ez [(α j e j (z1)+M j )1
{τ j

Z j
≥n− j , Z j=z1, An }

]

≤ Ez [e1(z1)1τ1
Z1

≥n, An ]+
n−1∑
j=1

Ez [(α j e j (z1)+M j )1{Z j=z1, An }E[1
{τ j

Z j
≥n− j }

|Fn]]

≤ e1(z1)Ez [1τ1
Z1

≥n]+
n−1∑
j=1

P[τ j
Z j≥n− j |Fn]Ez [(α j e j (z1)+M j )1An ]

≤ εn +
n−1∑
j=1

an
n− j ᾱ jEz [e j (z1)1An ],

In the second equality, we use that en(z1) does not change as long as the state z1 is not
reached. This completes the proof.

V.G.3 Proof of Theorem 4.1

Proof of Theorem 4.1. We split the proof in two steps. We first show (19) and (20) when Z is
finite then when Z is countable.

Step (i): In this part, we prove (19) and (20) when the space Z is finite. For clarity, we first
proof the results when (Zk )k≥0 is Markovian then we explain how to show it for the general
case.

Sub-step (i-1): Here we demonstrate (19) when the space Z is finite. Let z1 ∈Z and n ∈N∗.
Using Proposition V.G.1, the sequence vn(z1) = ᾱn(z1)E[en(z1)] verifies

vn(z1) ≤ ε̄n(z1)+ ᾱn(z1)
n−1∑
j=1

an− j (z1)v j (z1),

with ε̄n(z1) = ᾱn(z1)εn(z1). For clarity and since there is no ambiguity, we forget the depen-
dencies to z1 in the rest of the proof. Thus, using Lemma V.G.1, we get

vn =
n∑

j=0
aµ

j

n− j ε̄ j ,

with (aµn)n≥0 defined in (36). We can assimilate the sequence ε̄ to the measure µ=∑
k≥0 ε̄kδk

with δk the Dirac measure at k . Since εk = e1(z1)ak+
∑n−1

k=1 an−kE[Mk ],
∑

k ak <∞,
∑

k≥0E[γ2
k ] <

∞ and E[Mk ] = O(E[γ2
k ]) for all the algorithms, we get

∑
k≥0 εk <∞ using the properties of
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the Cauchy product between two sequences. This property ensures that the measure µ has

a finite mass. Additionally, using Lemma V.G.2, we have aµ
j

n →
n→∞ 0 for any j ≥ 0. Thus, the

dominated convergence theorem ensures that vn →
n→∞ 0.

When (Zk )k≥0 is not Markovian, one can show using the same methodology above and
Proposition V.G.2 that for any sequence z = (zk )k∈N∗ ∈ Z the quantity ũn = E[en(z1)1An

z
]

converges towards 0 with An
z = {Z1 = z1, . . . , Zn = zn}. Since en1An

z
≤ e01An

z
, we use the

dominate convergence theorem to get

lim
n→∞E[en] = ∑

z∈S
lim

n→∞E[en1An
z

] = 0,

where S is the set of sequences valued in Z and An
z = {Z1 = z1, . . . , Zn = zn} for any z ∈S .

Sub-step (i-2): In this step, we show (20) when the space Z is finite. Since γk (z) = γ1{Zk=z}

for all (k, z) ∈ N×Z , the quantity αk is constant (i.e. αk = α). Let M = supn Mn . Using
a direct induction and Proposition V.G.1, we get un = E[en(z1)] ≤ c with c solution of the

equation c = γ2M +αc (i.e. c = γ2M
1−α ). We define (mn)n≥0 as follows:

mn = γ2M +
=ãn︷ ︸︸ ︷(

e1(z1)
)
an(z1)︸ ︷︷ ︸

=bn

+α
n∑

j=1
an+1− j v j , ∀n ≥ 0.

By direct induction, we have un ≤ mn for all n ≥ 0. Lemma V.G.1 gives

mn =
n∑

l=0
aµ

l

n−l bl = γ2M
( n∑

l=0
aµ

l

n−l

)+ ( n∑
l=0

aµ
l

n−l ãl
)
, ∀n ≥ 0,

Using a direct induction and (36), we check that aµ
l

n−l = αn−l a∗n−l
n−l . The sequence a∗l is

defined recursively such that a∗1
n = an and a∗l+1

n = (a∗l ∗a)n =∑n−1
j=1 a∗l

n+1− j a j for any n ∈N.

Using this expression of aµ
l

n−l , we get

γ2M
( n∑

l=0
aµ

l

n−l

)≤ γ2M
( n∑

l=0
αl )= γ2M

1−αn

1−α = (1−αn)c.

Thanks to Lemma V.G.3, we know that an(z1) ≤ βnd with β ∈ [0,1) and d > 0 which gives∑
l≥0 r n ãn(z1) <∞ for any r < 1

β . Let r < min(1/β,1/α). Using the properties of the Cauchy
product between sequences, we have∑

n≥1
r n( n∑

l=0
aµ

l

n−l ãl
)≤ ∑

n≥1

( n∑
l=0

r n−lαn−l r l ãl
)≤ ( ∑

n≥1
r nαn)( ∑

n≥1
r n ãn

)<∞. (46)

Inequality (46) ensures the existence of M̄ > 0 such that
(∑n

l=0 aµ
l

n−l ãl
) ≤ α̃n M̄ for any α̃ <

max(β,α). This shows that mn ≤ (1− α̃n)c + α̃n M̄e1(z1) which completes the proof when Z

is finite.
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To handle the case where (Zk )k≥0 is not Markovian, we first show using Proposition V.G.2
and the methodology above that for any sequence z = (zk )k∈N∗ ∈ Z we have E[en1An ] ≤
(1−α̃n)c+α̃n M̄e1(z1)E[1An ] with An

z = {Z1 = z1, . . . , Zn = zn}. Then, we use the same approach
of Section Sub-step (i-1) to deduce that un ≤ (1− α̃n)c + α̃n M̄e1(z1).

Step (ii): Now we assume that Z is countable. We prove the result when (Zk )k≥0 is Marko-
vian then we explain how to extend it in the general case.

Sub-step(ii-1): Let ε > 0. Since E 1 = ∑
k≥1 e1(zk ) <∞, there exists k0 ∈ N such that for all

k ≥ k0, we have
∑

k≥k0
e1(zk ) < ε

2 . We write Ak0 for the set Ak0 = {zk , k ≤ k0}. Since Ak0 is
finite, we use Sub-step (i −1) to show the existence of k1 ∈N such that for all k ≥ k1, we have∑

k≤k0
ek1 (zk ) < ε

2 . Let us now take k ≥ k1. Using (e l (z))l≥1 is non-increasing for any z ∈ Z ,
we get E k =∑

k≥k0
e1(zk )+∑

k<k0
e1(zk ) ≤ ε

2 + ε
2 = ε.

Sub-step(ii-2): Let M = supn Mn and ε = (1−α)γ2Mr > 0. Since E 1 = ∑
k≥1 e1(zk ) < ∞,

there exists k0 ∈ N such that for all k ≥ k0, we have
∑

k≥k0
e1(zk ) < ε. We write Ak0 for

the set Ak0 = {zk , k ≤ k0}. Since Ak0 is finite, we use Sub-step (i − 2) to show that for all
n ∈ N, we have en(zk ) < (1 − α̃n)c + α̃n M̄e1(z1) with zk ∈ Ak0 . Using ε = (1 −α)γ2Mr ≤
(1 −α)γ

2M
1−α r = (1 −α)cr and (e l (z))l≥1 is non-increasing for any z ∈ Z , we deduce that

‖en‖∞ = max
(

supk>k0
e1(zk ),supk≤k0

e1(zk )
)≤ max

(
(1− α̃n)c + α̃n M̄e1(z1),ε

)≤ (1− α̃n)c(1+
r )+ α̃n M̄e1(z1).

V.H Proof of Proposition 4.2

Lemma V.H.1. Under Assumptions 4.1, 4.2 and 4.3, we have

E[E ki+1 ] ≤αi
M̄γ0(1+ r )

u −Bγ0
, ∀i ∈N. (47)

Proof of Lemma V.H.1. Let us show the result by induction on i ∈ N. Since the proof for the
initialisation step and the induction step are similar, we only show the induction step. We
assume that (47) holds for a given i − 1. We consider the delayed error sequence uki

n =
E[en+ki |Fki ]. By following the same methodology used in the proof of Proposition V.G.1, we
get

uki
n ≤ εki

n +αki

k−1∑
j=1

aki+k− j uki

j , ∀k ∈N∗.

This allows us to use Theorem 4.1 in order to exhibit a dominating sequence M̄ which verifies

Ezi [uki
n ] ≤ (1−αn

ki
)(1+ r

2
)ci +αn

ki
M̄uki

1 , ∀n ∈N,
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n)n≥1,k∈(N∗)2

with ci = γki M̄
(1−αki ) ≤αi+1

M̄γ0

u −Bγ0
and uki

1 ≤αi
M̄(1+ r )γ0

u −Bγ0
under the induction hypothesis. Thus,

by taking ki+1 = ki +d
log( αr

2(1+r )M̄
)

log(αki )
e and ni+1 = ki+1 − ki , we check that αni+1

ki
M̄ ≤ αr

2(1+ r )
which gives

Ezi [eki+1 ] = Ezi [uki
ni+1

] ≤ (1+ r

2
)ci +

r

2
uki

1 ≤αi+1
M̄(1+ r )γ0

u −Bγ0
.

This completes the proof.

Proof of Proposition 4.2. Let L = | log( αr
2(1+r )M̄

)| and i∗ = sup{i ≥ 0, αki ≤β}. When αki ≥β (i.e.

f (γki ) ≤ (1−β)), we use the inequality log(1− x) ≤−qx, for all x ∈ [0,1−β] with q = 1
2−β , to

get

ki ≤ L
∑

γk j ≥γ
−1

log(β)
+L

∑
γk j <γ

−1

log(1− f (γki ))

≤ L
∑

i≤i∗

−1

log(β)
+L

∑
i>i∗

1

q f (γki )
= L

∑
i≤i∗

−1

log(β)
+ L

qu

∑
i>i∗

1

γki (1− b̄γki )
,

with b̄ = b
u . Then, we use that 1

x(1−b̄x)
= 1

x + b̄
1−b̄x

to deduce

ki ≤ Li
−1

log(β)
+ (i − i∗)+

Lb̄

qu(1− b̄γ̄1)
+ L

qu

∑
i>i∗

1

γki

.

Since γki =αiγ0, we conclude that

ki ≤ L1i +L2(i − i∗)++L3(α−(i−i∗+1)+ −1).

with L1 = −L
log(β) , L2 = Lb̄

qu(1−b̄γ̄1)
and L3 = L

quγ0(1−α−1) . This completes the proof.

V.I Proof of the convergence of (vk
n)n≥1,k∈(N∗)2

In this section we prove the following result.

Proposition V.I.1. The sequence (vk
n)n≥1,k≥1 converges pointwise towards v on DT ×Dq when

n →∞ and k →∞.
Proof of Proposition V.I.1. We prove this result in three steps. First, we show that v can be
approximated by a numerical scheme v̄k . Then, we replace v̄k by another scheme vk that
also converges towards v . Finally, we show that vk

n tends to vk when n →∞.
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Step (i): We start with our initial control problem where the agents may choose its trading
speed at any time. It was studied by many authors, see for example [46], who show that the
optimal trading speed verifies

ν(t , q) = h1(t )−qh2(t )

2κ
, (48)

with h1 : [0,T ] → R and h2 : [0,T ] → R+ a positive function. The above equation shows that
when q is large enough ν has the opposite sign of q . Let us take such a large enough q̃ and
place ourselves in Sq = [−q̄ , q̄] with q̄ = 2q̃ . In such case, Equation (48) ensures that ν is
bounded by ν̄ on Sq . This show that we can replace the initial set of controls R by the subset
D ⊂ [−ν̄, ν̄] where the sign of ν positive is (resp. negative) when the inventory is −q̃ (resp. q̃ ).
Now, we approximate this problem in a classical way using the numerical scheme v̄k defined
such that

v̄k (nt ,nq ) = sup
ν∈Da

E
[
M nt

nt+1 −φQ2
nt∆t

∆+ v̄k (nt +1,nν
q+1)|Qnt∆t = nq∆q

]
, ∀(nt ,nq ) ∈ DT ×Dq ,

with M nt
nt+1 = M nt∆

∆t (nt+1), nν
q+1 the index such that Qν

(nt+1)∆t
= nν

q+1∆q and Da = D ∩ {i∆q , i ∈
Z}. Note that the set Da is contained in our admissible set of controls A(nt∆t ,nq∆q ) when
∆ is small enough. This shows that we can substitute A(nt∆t ,nq∆q ) to Da without any
restriction. The convergence of (v̄k )k≥∈(N∗)2 towards v on the set DT ×Dq when k →∞ is
standard.

Step (ii): We denote by vk the numerical scheme

vk (nt ,nq ) = E[ sup
ν∈Da

{
M nt

nt+1 −φQ2
nt∆t

∆+ vk (nt +1,nν
q+1)

}|Qnt∆t = nq∆q
]
, ∀(nt ,nq ) ∈ DT ×Dq .

Let us show that v̄k and vk have the same limit. For this, we use a backward recurrence.
For the moment, we assume that |supνE[M nt

nt+1]−E[supνM nt
nt+1]| ≤ K∆2

t and we will prove

it at the end of Step (ii). We want to show that |v̄k (nt ,nq )− vk (nt ,nq )| ≤ K (T − t )∆t for all
(nt ,nq ) ∈ DT ×Dq . At the terminal time v̄k and vk coincide. We move now to the induction
part. We have

|v̄k (nt ,nq )− vk (nt ,nq )| = |sup
ν
E[M nt

nt+1 −φq2∆t + v̄k (nt +1,nqt+1)]

−E[sup
ν

M nt
nt+1 −φq2∆t + vk (nt +1,nqt+1)]|

≤ |sup
ν
E[M nt

nt+1]−E[sup
ν

M nt
nt+1]|+ |E[sup

ν

{
v̄k (nt +1,nqt+1)− vk (nt +1,nqt+1)

}]|
≤ E[sup

ν

{
K∆2

t +K (T − t −∆t )∆t
}]

= K (T − t )∆t .
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In the third inequality, we use the induction assumption to complete the proof. Now, let us
show that |supνE[M nt

nt+1]−E[supνM nt
nt+1]| ≤ K∆2

t . We write t = nt∆t , ∆Q =Qt+∆t −Qt = ν∆t ,

∆S = St+∆t −St and ∆S̄ = ∫ t+∆t
t (Ss −St )d s. Thus, we have

M nt
nt+1 = (Wt+∆−Wt )+ (Qt+∆St+∆−Qt St )

=−ν∆S̄ −∆QSt −κν2∆t +Qt∆S +∆QSt +∆Q∆S

=−ν∆S̄ −κν2∆t +Qt∆S +ν∆t∆S. (49)

The above equation shows supνM nt
nt+1 = (∆t∆S−∆S̄)2

4κ∆t
+Qt∆S. Using E[∆S] =α∆t and

E[∆S̄] =
∫ t+∆

t
α(s − t )d s =α∆2

t /2,

we get

sup
ν
E[M nt

nt+1] = α2∆3
t

16κ
+αQt∆t and E[sup

ν
M nt

nt+1] = α2∆3
t

16κ
+ σ2∆2

t

12κ
+αQt∆t .

Thus we deduce that |supνE[M nt
nt+1]−E[supνM nt

nt+1]| ≤ K∆2
t with K = σ2

12κ .

Step (iii): Theorem 4.1, proves that vk
n converges towards vk . Thus by composition we have

vk
n converges pointwise towards v when n →∞ and k →∞ which completes the proof.

251





CHAPTER VI

Price impact study of the electricity
intra-day market

Abstract

We propose the first analysis of the price behaviour in the intra-day electricity market.
This market is unique since it has very specific operating rules. We first conduct a global
descriptive study of the price variations and the trading activity in such market. Then,
we investigate the price impact generated by a power plant breakdown, study the price
structure and finally propose a model to reproduce these properties.

1 Introduction

The growth of electronic and fragmented exchanges generated deep changes in the financial
markets during the last 20 years. In particular, it facilitated the access to high-quality data that
describes the actions and interactions of market participants. This data has been thoroughly
analysed in many equity markets, see [12, 14, 43, 73, 118, 127, 149]. However, none of these
studies concern the intra-day electricity market since agents had access to such data only
“few” years ago and the current operating rules in such market reduce the usefulness of this
data. This market is maintained in a rudimentary competitive state by strong operating
constraints that inhibit the development of substantial market making or arbitrage. Indeed,
an agent needs, for example, to buy and sell back the asset during a short time window to
generate profit since the lifetime of the asset is lower than one day (i.e. the longest trading
period opens at 3 p.m and ends the day after at 11.30 p.m). Additionally, the trading activity in
such markets is low compared to the one of electronic venues (i.e. small daily traded volume
and low trading frequency) since they attract mainly market participants with economically
driven decisions, see the website of Epex Spot.1 This paper is, to the best of our knowledge,
the first one to conduct a detailed, in-depth academic study of the price structure in the
intraday electricity market which is a unique example of exchanges that are close to the
old non-electronic markets and where empirical studies are possible since transactions are
recorded.

1http://www.epexspot.com/, visited on May 3rd, 2019
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VI. Price impact study of the electricity intra-day market

The price impact is an important feature of financial markets since it describes how the price
absorbs a new information. It is defined as the average price move conditioned on a starting
event. It is natural to think that some particular starting events will impact the price in a
specific way. For example, one may expect that initiating buy orders tend to increase the
price while initiating sell orders tend to drive it down. The empirical characterization of the
price impact and its theoretical understanding are a major issue from practitioners point of
view, see [26, 38, 102, 142]. On the one hand, a robust prediction of the market impact allows
an accurate estimation of the transaction costs used by financial agents to build their trading
strategies, see [12, 14, 102, 127]. On the other hand, the market impact shape may penalize
big investment funds since it represents trading costs and therefore it contributes to selecting
the size distribution of agents, see [26, 142]. Finally, a precise prediction of the price impact
reflects the lack or excess of demand and thus it indicates to market participants the potential
existence of profit opportunities, see [38].

The vast majority of conducted studies addressed the problem of the market impact for the
initiating event: liquidation of metaorders, see [12, 14, 27, 43, 73, 118, 149]. The initiating event
considered in this paper is the announcement of a power plant breakdown in the electricity
intra-day market runned by Epex Spot in Europe. This incident is similar to a metaorder
execution since the owner of the plant needs to buy large quantities during the whole break-
down period. Indeed, after a power plant failure, the electricity distributor suffers from a lack
of energy provision. Since he must provide his clients with their exact consumption at every
minute and the electricity is not storable at large scales, the distributor sends immediately buy
orders to compensate this lack. The literature has already paid attention to electricity intra-
day markets, mainly with the scope of a renewable power plant owner seeking to reduce his
imbalance, see for instance Garnier and Madlener [69], Henriot [89], and Aïd et al. [4]. The
latter focuses on optimal trading in such market and uses the linear permanent/instantaneous
market impact model of Almgren and Chriss [10] to incorporate the transaction costs that a
producer may face while buying energy after a power plant outage.

The impact on the price is not the only important aspect of financial markets. In this paper,
we also investigate the three following properties: the trade signs autocorrelation, the response
function, see [39], and the price diffusivity. For the first two aspects (i.e. the trade signs and
the response function), their characterization allows a better understanding and modelling of
the price impact, see [39], which is in itself a crucial issue as discussed before. Additionally,
these two first aspects can also be used as signals that trigger trading decisions. Here, we
describe the price diffusivity through the Hurst exponent. This quantity determines the
balance between two competitive ingredient of the price variations: the mean reversion (i.e.
sub-diffusivity) and the price capacity to follow a trend (i.e. super-diffusivity). The Hurst
exponent is also useful in the price modelling since it fixes the regularity of the fractional
Brownian motion (fBm) that generates the dynamics of the price volatility, see [96]. Finally,
the Hurst exponent value may indicate the existence or not of a long memory for the price
process, see [70]. Based on our empirical study, we propose a model, inspired from the
propagator approach in [39], to whom we add a drift component and the impact of exogenous
information. This model is consistent with the four investigated properties and allows the
estimation and prediction of the quantities of interest.
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After a first descriptive analysis that describes the trading activity, the price distribution
and the price seasonality in the electricity intra-day market, we show that the price impact
generated by a power plant breakdown is linear. Then, we exhibit a short term correlation
between the trade signs (i.e. the next trade sign depends mainly on the current one) and a
power law decrease of the response function. After that, we study the diffusivity of the price
process and show that the value of its Hurst exponent is H = 0.38. Finally, we propose a
model for the observed price which reproduces the four investigated market properties.

The paper is organised as follows. First, we describe the intra-day electricity market and
conduct a general descriptive analysis in Section 2. Then, we estimate the price impact
generated by a power plant breakdown and investigate its variations for different price regimes
in Section 3. In Section 4, we compute the autocorrelation function between the trade signs,
the response function and the Hurst exponent of the price process and its volatility. Finally,
we propose a price model consistent with the numerical results in Section 5 and draw our
conclusions in Section 6. Proofs and additional results are relegated to an appendix.

2 Descriptive analysis of the intra-day electricity market

2.1 Description of the intra-day electricity market

Because of the non-storability of electricity, consumption must be equal to production when
aggregated over an interconnected physical network. Thus, within each country, the Trans-
mission System Operator (TSO) is the one in charge of implementing the equilibrium. To do
so, the TSO pays agents to be responsible for the equilibrium over a part of the network, since
the latter has millions of consumption units. These agents must ensure equilibrium otherwise
they face penalties given by the TSO.

In continental Europe, all such registered agents can access a continuous-time market called
the intra-day market, where they can buy or sell forward contracts (that is, a commitment to
deliver energy during a specified time frame) for the next hours. Here we give a description
of the electricity intra-day market runned by Epex Spot in France. A comparison with, say,
Nordic markets can be found in the modeling article by Benth and Koekebakke [23]. Every
day at 3 p.m, Epex Spot opens trading sessions2 where agents trades forward contracts. The
specificity of these forward contracts is that they should be delivered on the following day.
Each trading session is associated to a unique time period and buying a forward contract
in one given session ensures the supply of 1 MWh of energy during the related time period.
Each of those sessions remains open until 30 minutes before the beginning of the delivery.
When a session for a given delivery period is open, trading can occur continuously and is
run using an order book mechanism.

While a session for a given delivery period is open, trading can occur continuously and is run
using order books. Thus, an agent that is responsible for the equilibrium between production
and consumption faces a choice when there is an outage in one of the plants in his portfolio:

2There are trading sessions for the 24 hours and 48 half hours in both France and Germany. For Germany,
there are also 96 sessions for the quarters of an hour
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he can switch another plant on if it is available or he can buy power in the intra-day markets.
The choice is dictated by the costs of each solution and by the delay required to start the
plants. Because of transparency rules, producers must inform all market participants of the
outages in their production as soon as it happens. For that reason, market participant, who
knows the production means of other members, may infer, with a reasonably high rate of
success, whether a competitor facing an outage will buy energy in the intra-day market or
not.

We end this presentation by describing the agents in the French and German intra-day elec-
tricity markets. According to the website of Epex Spot1, in 2019, there are 98 markets
participants in France and 193 in Germany. Those participants are energy utilities, oil com-
panies, aggregators of renewable production, banks and financial institutions. Market makers
are thus present in the intraday markets.

2.2 Description of the database

We use two databases. The first one comes from the electricity intra-day market runned by
Epex Spot in France. This database records, during two years from the 1st January 2017
to the 31th January 2019, the trades executed in the intra-day electricity market (i.e. the
transaction price, the size of the transaction and the region of the transaction) event by event
with a minute accuracy for each forward contract. The market is composed of 24 forward
contracts and each one of them has a unique delivery hour (i.e. maturity) between 1 a.m and
12 p.m. Every day, trading sessions open at 3 p.m. In these sessions, agents can buy or sell
forward contracts for maturities that vary from 1 a.m to 12 p.m of the day after. The second
database reports all the power plants breakdowns that happened in the same period in the
France market. This database enables us to select the observations of the intra-day market
that occur during the breakdown periods. The first database accounts for 1 146 777 events
and the second 12 109 breakdowns.

2.3 Features of the intra-day electricity market

Breakdowns distribution. There are two types of breakdowns: planned breakdowns and
unexpected ones. For the planned ones, agents have enough time to take in advance mea-
sures that reduces the impact of the lack of energy provision generated by the breakdown.
For the unexpected ones, agents react right after the power plant failure to compensate the
under-supply of energy. Our database contains 25 853 planned breakdowns and 7831 un-
expected ones. On average breakdowns last few hours and they generate an average loss of
energy provision of 202 MW. Table VI.1 summarizes basic statistics about the power plant
breakdowns.
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Type Number of breakdowns Mean energy loss (MW) Duration (Hours)
Planned 2716 260 14
Unexpected 9393 177 10.5
All 12 109 202 11

Table VI.1 – Most important statistics of the power plant breakdowns.

Next, we focus on unexpected breakdowns and analyse for each forward contract the average
number of transactions and the average exchanged volume during the breakdowns. The
results are presented in Figure VI.1. We consider the maturities 18h, . . . , 22h since they have
the highest average daily volume, see Figure VI.1.
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18 19 20 21 22
Hours

0

100

200

300

400

500

600

700

800

M
ea

n 
cu

m
ul

at
ed

 v
ol

um
e

18 19 20 21 22
Hours

0

5

10

15

20

25
M

ea
n 

nu
m

be
r o

f t
ra

ns
ac

tio
ns

Figure VI.1 – (a) Average exchanged volume during breakdowns for each maturity, (b) Average
number of transactions during breakdown for each maturity.

Intra-day volumes. Figure VI.2.a describes the daily average exchanged volume for each
forward contract. The daily exchanged volume is at its lowest level for early maturities when
the need of energy supply is low, it attains its highest level during afternoon maturities and
then stabilizes for late maturities. It is important to note that for each contract the market
activity accelerates close to the delivery hour (i.e. maturity), see Figure VI.2.b for the forward
contract 20h.

Price seasonality. For each forward contract, Figure VI.3 shows some seasonality features
of the weighted price (i.e. price normalized by the transaction volume). On average, the
weighted price is low for early maturities, it begins to increase starting from the forward
contract 9 a.m, reaches its highest level for afternoon maturities and stabilizes again for late
delivery hours. Figure VI.3.b shows that the aggregated weighted price decreases during
the weekend since the economic activity is reduced. Finally, Figure VI.3.b reveals that the
weighted price during is low during the summer since the clients consumption is weak and
becomes high in the winter when the clients need more energy supply.
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(a) Average daily volume/maturity (b) Number of transactions for the maturity
20h
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Figure VI.2 – (a) Average volume for breakdowns, (b) Average number of breakdowns for each
maturity.

(a) Average weighted price by maturity (b) Average weighted price by days of the week

(c) Average weighted price by month

Figure VI.3 – (a) Average weighted price by maturity, (b) Average weighted price by days of
the week, (c) Average weighted price by month.

3 Estimation methodology and definitions

Although the price impact curve during the execution may vary from a market to another
one, its shape provides insight into the distribution of the agents composing the market. Here,
we focus on the three following properties of this curve:
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• Linear: a linear price impact means that the interaction between agents actions is weak
since the impact mainly comes from exogenous information like market announcements.
Such shape is expected in elementary market where the arbitrage and market making
activity is not well developed or when the impact of all the agents is aggregated, see
[135].

• Convex: a convex price impact means that agents detect the liquidation of a metaorder
and react to it. In such case, the interaction between market participants decisions is
strong and agents are ready to provide liquidity when other participants require it. This
is expected in liquid equity markets, see for example [12, 14, 43, 118, 127].

• Concave: a concave price impact also means that agents identify the execution of a
metaorder and reply to it. Thus, the interaction between agents decisions is strong
however market participants avoid providing liquidity now. Such behaviour is expected
when there is a financial crisis.

3.1 Estimation methodology

First, we select only unexpected ones since agents cannot take measures in advance to reduce
the impact the power plant failure. Then, we require a minimum level of 150 MW energy loss
for each breakdown otherwise its effect is not significant. After this first filter, we compute,
for each one of the remaining breakdowns, the quantity

∆Pt = εt
Pt −Pt0

Pt0

, ∀t ∈ [t0, t1],

where Pt is the transaction price, εt is the sign of the transaction (i.e. εt = 1 for buy market
orders and −1 otherwise) and t0 and t1 are defined as follows:

• t0 is the first transaction time after the beginning of the breakdown.

• t1 is the minimum time between the ending time of the breakdown, the end of the day
and the closure time of the forward contract.

Note that the transaction price is not defined everywhere. In such case, Pt is the price of the
last transaction before t . Finally, we define the price impact It as the empirical average of
∆Pt over all the breakdowns and the rescaled time s such that s(t ) = t−t0

t1−t0
for any t ∈ [t0, t1].

3.2 Price impact profiles

3.2.1 Aggregated price impact profiles

Figure VI.4.a shows that the aggregated price impact curve (i.e. for all the forward contracts)
is linear. We choose to plot the aggregated impact since we have more observations however
we check that our conclusion remain valid for the most important maturities (i.e. with high
exchanged volume). As discussed before a linear price impact means that the interaction
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between agents decisions is weak and their actions are mainly triggered by exogenous in-
formation like market announcements. Note that Figures VI.4.b and VI.4.c consolidates the
shape of Figure VI.4.a. Indeed, the size of the transactions increases during the execution but
the trading speed decreases (i.e. less transactions). This creates a balance that keep the slope
of the price impact curve constant during the execution.3

(a) Price impact profile for aggregated maturities (b) Trading speed profile for aggregated
maturities
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(c) Transactions size profile for aggregated maturities
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Figure VI.4 – (a) Price impact profile , (b) trading speed profile and (c) transactions size profile
for aggregated maturities .

3.2.2 Price impact profiles for different regimes

In this section, we investigate the connection between the price impact curve and the am-
plitude of the energy lost during a breakdown (i.e. size of the breakdown). We choose this
variable since it is the analogous of the size of the meta-order when dealing with execution
issues. Many empirical studies have already explored the relation between the price impact
at the end of the execution and the size of the meta-order, see []. They show that the price
impact I generated by a meta-order of size Q follows the “square root law” (i.e. I ≈ ( Q

VD

)δ
with δ> 0 and the daily volume).

3For example, in a situation, where both the transaction size and the trading speed decreases during the
execution, the slope of the price impact curve will mechanically decreases.
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We start by decomposing our initial data in three buckets with the same number of obser-
vations using quantiles. Figure VI.5 plots the price impact associated to each one of these
buckets. Figure VI.5 shows that the global shape of the impact curve is unchanged when the
energy loss vary since we observe a linear impact for all the buckets. However, the magni-
tude of impact increases with the size of the breakdown which is an expected result. Indeed,
to compensate the energy loss of a huge breakdown, market participants need to buy large
quantities from the intra-day market which increases the price.

Price impact for different initial regimes of the energy loss

Figure VI.5 – Price impact for different initial price regimes.

4 Price study

4.1 Trade signs autocorrelation

Let l ∈N. In this section, we study the autocorrelation function C (l ) between the trade signs
εl defined such that

C (l ) = E[εlε0]−E[εl ]E[ε0],

with εl = 1 for buy market orders and −1 otherwise. Figure VI.6 shows the existence of a
negative correlation between the first trade and its successor. Figure VI.6 also suggests the
absence of memory since the long-term correlation between the trade signs is weak.

261



VI. Price impact study of the electricity intra-day market
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Figure VI.6 – The autocorrelation plot between trade signs.

4.2 Response function autocorrelation

Let l ∈N. In this section, we study the response function R(l ) between the price moves and
the trade signs εl defined such that

R(l ) = E[(p̄l − p̄0)ε̄0],

with z̄ = z −E[z] for any process z. Figure VI.7 reveals a power law decrease for the response
function. Figure VI.7 also shows that the response function is higher than a bottom level close
to 0.001.
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Figure VI.7 – Response function associated to the maturity 22h.

4.3 Price diffusion

In this section, we study the regularity of the price process and the volatility through their
Hurst exponent H . Let Zt be a process with the following dynamics:

d Zt =σdW H
t , ∀t ≥ 0,

where σ is a constant volatility and W H
t is a fractional Brownian motion (fBm) whose Hurst

exponent is H . Then, there exists a constant C ≥ 0 such that

E[|Zt+∆−Zt |q ] =C∆H q , ∀t ≥ 0,∀∆≥ 0,∀q ≥ 0.

This shows that
y q
∆ = A′

q∆+C ′, (1)

with y q
∆ = log(E[|pt+∆ − pt |q ]), A′

q = H q and C ′ = log(C ). Figures VI.8.a plots y q
∆ against

∆ when the underlying process Z is the price. We see that the linear relation 1 is verified.
Figures VI.8.b plots A′

q for different values of q when the underlying process Z is the price and
estimates the slope of this curve which represents the Hurst exponent. For both processes, the
estimated Hurst exponent is close to 0.48 ≈ 0.5 which shows that W H is a Brownian motion.
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(a) y q
∆ vs ∆ for the price (b) A′

q against q for the price
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Figure VI.8 – (a) Plot of y q
∆ against ∆ during the years 2017-2018, (b) Plot of A′

q against q
and estimation of the Hurst exponent for the price process associated to the maturity 22h.

5 Price modelling

In the literature, many authors have addressed the problem of modeling the market impact.
First introduced models use a linear price impact, see [10, 13, 52, 80, 105], since it is the
simplest theoretical setting where round-trip execution strategies (zero terminal inventory)
with negative execution costs (profit making) are excluded. Additionally, when the impact is
linear, it is possible to solve the optimal liquidation problem of a metaorder and to derive
closed-form formulas for the solutions, see [10, 13, 80, 52]. After that, econophysicists start
to tackle this problem and found that the market impact is non-linear using an empirical
approach. In many of their articles they show that the price impact curve is concave and
it can be well approximated by a square root function, see [12, 14, 43, 73, 118]. This new
feature led to the development of several models to reproduce a non-linear impact. These
approaches can be decomposed in three following categories:

• Hawkes/propagator models: the underlying idea behind Hawkes and propagator
models is similar. Indeed, in the Hawkes framework, the arrival rate of each event
depends fully on all the past market events, see [3, 14, 95]. While in the propagator
model, it is the next price move which fully depends on all the past market events, see
[39]. A link between these two types of models has been established in [95]. Additon-
ally, we can solve, under both setting, optimal execution problems and derive optimal
liquidation strategies, see [7, 6, 8].

• Equilibrium models: the market dynamics arise from interactions between rational
agents acting optimally: each agent chooses the decision that maximizes its own utility.
They were first introduced by economists with representative agents models, see for
example the seminal work of Kyle [105] and the pioneer paper of Glosten and Milgrom
[72] but also [66, 134, 139]. Since that, these models were extended to more general
frameworks where a martingale condition is in force, see [64, 95, 100]. Such condition
ensures no-arbitrage opportunities and a zero overall profit, see [64, 95, 100].
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5. Price modelling

• Statistical models: the order flows of events are modeled by an appropriate random
process in order to reproduce salient features of real markets, see [2, 3, 20, 55, 57, 106,
107, 144]. Such setting enables efficient computation of quantities of interest such as:
trading costs, market impact or execution probabilities. Additionally, authors added,
within such framework, rational agents that maximizes their own utility in order to
solve liquidation problems, see Chapter II, or investigated the impact of transaction
costs on Walrasian auctions4, see [62].

These three methodologies propose a large panel of possibilities and it is always possible to
design, for each approach, a model that reproduces a relevant property of the price impact
curve.

5.1 Description of the model

We can build a price model consistent with our observations. This model is inspired from
the propagator model introduced in [39]. We show how to carry computations and calibrate
this model in our specific setting. Such model is useful for prediction and estimation of the
quantities of interest. We consider the following dynamics for the price at time n:

pn = p0 +µnn + ∑
k≤n−1

G(n −k)εk , (2)

with µ a real constant representing the price trend, G : R+ → R+ the impact function that
represents the influence of a single transaction on the price, εn is the sign of the n-th trade.

5.2 Properties of the model

Price impact. Empirical evidences for the electricity market, see Figure VI.6, suggest that

C (1) ≤ 0, C (l ) = 0, ∀l ≥ 2. (3)

In such case, the price impact at time n verifies

In = E[(pn −p0)εn] =µn ēn +G(1)C (1), ∀n > 1,

with ē = E[en]. Thus, we recover a linear price impact consistent with numerical observations,
see Figures VI.4.a and VI.5. More generally, we always have

In =µn ēn +
n−1∑
k=0

G(k)C (k),∀n ≥ 0.

When the trades autocorrelation function and the kernel function satisfy a power law decrease
which means

C (n) = K0

(h +n)γ
, G(n) = K1

(h +n)β
, (4)

4In Walrasian auctions the asset price is the point where the supply and demand curves intersect.
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with (K0,K1) ∈R2+, h ∈R+ and (γ,β) ∈R2+, we get

In =µn ēn +
n−1∑
k=0

K0K1

(h +n)γ(h +n)β
∼∞µn ēn + K0K1

1−γ−β(h +n)1−γ−β.

We deduce that the shape of the price impact can vary from a linear to a power law function
depending on the interaction between three factors: the price trend associated to µn , the
trade signs autocorrelation function C (n) and the impact function G .

Response function. We first assume that C satisfies (3) which is consistent with empirical
evidences. Since C (1) ≤ 0 and G is non-negative, we find

Rl = E[(p̄n+l − p̄n)εn] =G(l )+C (1)[G(l +1)+G(l −1)−G(1)] =G(l )+C (1)[G(l +1)+G(l −1)]+a1,

with p̄n = pn − E[pn] and a1 = C (1)G(1). Note that the constant a1 represents the basis
response level. Figure VI.4 shows that a1 is close to 0.01. Additionally, when the impact
function G has a power law decrease which means that there exists K1 ≥ 0 and β≥ 0 such that

G(n) ∼
n→∞

K1

nβ
, (5)

we get Rl ∼
l→∞

(1+2C (1))K1

lβ
+ a1. This ensures the power law decrease of Rl − a1 which is

consistent with the empirical observations, see Figure VI.4. In the general case, both the
impact function and the response function provide information about each other. Indeed,
using Equation (2), we have

Rl =
l−1∑
k=0

G(l −k)C (k)+ ∑
k≥l

[G(l +k)−G(k)]C (k) (a)

=
l∑

k=1
G(k)[C (l −k)−C (k)]+ ∑

k≥l+1
G(k)[C (k − l )−C (k)] (b) . (6)

Using Equation (6).a we can recover the response function using the impact function G . In
particular, when both G and C verifies (4), we get Rl ∼

l→∞
KR

l 1−γ−β with KR a non-negative

constant. Conversely, when the response function is given, Equation (6).b shows that the
impact function is solution of a linear system.

Price and volatility diffusion. We assume that C verifies (3) and G satisfies (5). These
choices are consistent with the numerical observations. In such case, we use Equation (3) to
get {

p̄n =∑n−1
k=0 G(n −k)ε̄k ,

p̄n+l − p̄n =∑l−1
k=0 G(n + l −k)ε̄k +

∑
k≥l+1[G(n + l −k)−G(n −k)]ε̄k ,

with p̄k = pk −E[pk ], ε̄k = εk −E[εk ]. This gives

∆l = E[(p̄n+l − p̄n)2] = ∑
k<l

[
(Ḡ l

k )2 +2C (1)Ḡ l
kḠ l

k−1

]
,
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6. Conclusion

with Ḡ l
k =G(l−k)−G(−k)1k<0. Since G satisfies (4), we deduce that ∆l ∼

l→∞
K∆
l h with h = 1−2β

and K∆ a non-negative constant. The empirical study of Section 4.3 gives an estimation of
the exponent h. Thus, we can use this estimation to select β. In the more general case, we
have

∆l =
∑

k≤l−1
(Ḡ l

k )2 +2
∑

k<k ′≤l−1
C (k ′−k)Ḡ l

kḠ l
k ′ .

When G and C satisfy (4), we deduce that ∆l ∼
l→∞

K∆
l h with h = 1−2β−γ and K∆ a given non-

negative constant. Using an empirical estimation of the exponents h and γ, see Section 4, we
can approximate β.

6 Conclusion

We propose the first analysis of the price behaviour in the intra-day electricity market. This
market is unique since it has very specific operating rules.

We find that the price impact is linear.

There is a very short term correlation between trade signs: Absence of memory. The response
function has a power law. The price satisfies the EMH hypothesis since the Hurst exponent
is close to 0.5.

We propose that reproduces these different properties which is inspired from . This model for
prevision and estimation of the quantities of interests.

267





Bibliography

[1] Frédéric Abergel, Côme Huré, and Huyên Pham. Algorithmic trading in a microstruc-
tural limit order book model. arXiv preprint arXiv:1705.01446, 2017.

[2] Frédéric Abergel and Aymen Jedidi. A mathematical approach to order book modeling.
International Journal of Theoretical and Applied Finance, 16(05):1350025, 2013.

[3] Frédéric Abergel and Aymen Jedidi. Long-time behavior of a Hawkes process–based
limit order book. SIAM Journal on Financial Mathematics, 6(1):1026–1043, 2015.

[4] René Aïd, Pierre Gruet, and Huyên Pham. An optimal trading problem in intraday
electricity markets. Mathematics and Financial Economics, 10(1):49–85, 2016.
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Titre: Contrôle optimal et apprentissage statistique pour la modélisation du carnet d’ordres

Mots clés: Carnet d’ordres, trading optimal, modèle de file d’attente, processus de Hawkes, propriétés ergodiques,
apprentissage par renforcement.
Résumé: L’objectif principal de cette thèse est d’étudier
certains problèmes de contrôle rencontrés par les agents
financiers et de comprendre les interactions entre les dif-
férentes quantités d’intérêt tels que les flux d’ordres, la
liquidité, les prix et la volatilité à différentes échelles de
temps (c’est-à-dire partant de la microseconde jusqu’à
plusieurs années). On cherche à la fois à proposer des
modèles utiles et à construire des estimateurs pour leurs
paramètres. Ces modèles permettent de reproduire les
principales caractéristiques des marchés et de concevoir
des outils utiles pour les agents et les régulateurs.
Dans les premiers chapitres de cette thèse, on a étudié
des problèmes de contrôle rencontrés par différents types
d’agents: brokers institutionnels, market makers et les
traders haute fréquence. La résolution de ces problèmes a
produit des stratégies d’achat et de vente en accord avec
les comportements de ces agents. On utilise ensuite ces
stratégies pour simuler un marché où les brokers institu-
tionnels, les market makers et les traders haute fréquence
intéragissent de manière optimale les uns avec les autres.
Le modèle introduit dans les chapitres précédents est
réaliste et utile, mais il présente certaines restrictions.
Par exemple, les décisions prisent par les agents dépen-

dent uniquement de l’état du carnet d’ordres alors que les
stratégies de certains acteurs peuvent être plus complexes.
Pour dépasser ces difficultés, on présente un modèle plus
général qui permet de calculer en fonction de flux indi-
viduels plusieurs indicateurs pertinents. Il est notamment
possible de classer les market makers en fonction de leur
contribution à la volatilité
Pour résoudre les problèmes de contrôle soulevés dans
la première partie de la thèse, nous avons développé des
schémas numériques. Une telle approche est possible
lorsque la dynamique du modèle est connue. Lorsque
l’environnement est inconnu, on utilise généralement des
méthodes d’approximation stochastique. Dans le cin-
quième chapitre, nous proposons un algorithme permet-
tant d’accélérer la convergence de telles méthodes.
Les approches considérées dans les chapitres précédents
sont adaptées pour des marchés liquides utilisant le mécan-
isme du carnet d’ordres. Cependant, cette méthodologie
n’est plus nécessairement pertinente pour des marchés
régis par des règles de fonctionnement spécifiques. Pour
répondre à cette problématique, nous proposons, dans un
premier temps, d’étudier le comportement des prix sur le
marché très particulier de l’électricité.

Title: Optimal control and statistical learning for order book modelling

Keywords: Limit order book, optimal trading, queuing model, Hawkes processes, ergodic properties, reinforcement
learning.
Abstract: The goal of this thesis is to study some control
problems faced by market participants and to understand
the interactions between financial processes such as order
flows, liquidity, prices and volatility at different time scales
(i.e. starting from the microsecond accuracy to several
years). We aim at simultaneously proposing useful models
and building estimation procedures for them. These mod-
els have to reproduce the most important features of the
markets and enable us to design helpful tools for financial
agents and regulators.
In the first three chapters of this thesis, we tackle con-
trol problems faced by different types of agents namely
institutional brokers, market makers and high frequency
traders. The resolution of these problems enables us to
propose trading strategies consistent with typical market
participants behaviours. Then, we use these strategies
to simulate a market where institutional brokers, market
makers and high frequency traders interact optimally with
each other’s.
The market model introduced in the previous chapters is
realistic and useful however it has some limitations. For
example, agents decisions depend on the market history

only through the last order book state while strategies
of some market participants may be more intricate. To
overcome such restriction, we propose a general order
book model which allows us to compute several relevant
microstructural indicators in terms of the individual flows.
It is notably possible to rank market makers according to
their own contribution to volatility.
In the first part of the thesis, we develop numerical
schemes to solve agents control problems. This is possible
when the dynamics of the model is known. To tackle con-
trol problems in an unknown environment, it is common
to use stochastic approximation algorithms. In the fifth
chapter, we propose a method that accelerates the conver-
gence of such algorithms.
The approaches built in the previous chapters are appropri-
ate for liquid markets that use an order book mechanism.
However our methodologies may not be suitable for ex-
changes with very specific operating rules. To investigate
this issue, as a first step, we study the price behaviour of
the very particular intra-day electricity market.

Université Paris-Saclay
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