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Résumeé en francais

Cette thése de doctorat est consacrée a I'accélération d’électrons par des lasers femtosecondes ultrain-
tenses. Les faisceaux d’électrons ainsi générés sont ultracourts et intrinséquement synchronisés avec
impulsion laser accélératrice, ce qui les rend particuli€rement attractifs pour 'amélioration de la ré-
solution temporelle dans des expériences pompe-sonde telles que la diffraction d’électrons ultrarapide.
Si l'accélération par sillage laser, se produisant dans les plasmas sous-denses (transparents), est la
méthode la plus souvent considérée pour atteindre cet objectif, des électrons peuvent également étre
accélérés lors de linteraction entre un laser ultraintense et un plasma sur-dense (opaque). Lémission
d’électrons dans le cadre de cette interaction a été relativement peu étudiée dans le passé car (i) les
faisceaux d’électrons obtenus sont généralement de moins bonne qualité que ceux générés par sillage
laser et (ii) l'interaction est extrémement sensible a la forme du gradient de densité a la surface du
plasma, qui est particulierement difficile a contréler expérimentalement. Pour des interfaces plasma-vide
trés abruptes, les mécanismes menant a I'éjection d’électrons sont bien compris. En particulier, il a été
récemment montré que les électrons gagnent dans ce cas une grande quantité d’énergie lors de leur in-
teraction dans le vide avec I'impulsion laser réfléchie, ce qui ouvre de nouvelles possibilités (e.g. controler
l'interaction dans le vide en modifiant la structure du laser). A I'opposé, pour des gradients de densité
plasma plus étendus, l'interaction n’est pas aussi bien comprise et de nouvelles expériences sont donc
nécessaires dans ce régime. D’'une maniere plus générale, le potentiel réel des plasmas sur-denses en
tant que source d’électrons demeure inconnu, ce qui motive de nouveaux travaux de recherche dans
cette direction.

Dans cette thése, I'accélération d’électrons lors de I'interaction entre un laser d’intensité relativiste et
un plasma sur-dense a été étudiée dans deux cas précédemment inexplorés. Premiérement, nous avons
considéré le cas ou I'impulsion laser n’est composée que de quelques cycles optiques. Cette étude est
motivée par des expériences récentes réalisées au Laboratoire d’Optique Appliquée. Lobjectif principal
est de déterminer s’il y a des changements fondamentaux dans la physique de I'interaction lorsque I'on
utilise des impulsions de durées extrémement courtes. Deuxiemement, nous avons examiné le cas ou
le laser incident a une polarisation radiale. Les lasers polarisés radialement sont intéressants car leur
champ électrique possede une forte composante longitudinale, capable en principe d’accélérer des élec-
trons dans le vide dans la direction de propagation du laser. Si cet état de polarisation a été largement
étudié théoriquement et numériquement dans le passé, les résultats expérimentaux sont restés jusqu’a
cette thése peu probants, principalement parce qu’il n’y avait pas de méthode connue pour injecter effi-
cacement des électrons dans le champ laser. Or, nous avons précisément vu que les électrons éjectés
de la surface d’'un plasma sur-dense pouvaient étre accélérés dans le vide par I'impulsion laser réfléchie.
Nous avons donc étudié dans cette thése I'accélération d’électrons injectés par un plasma sur-dense
dans un laser polarisé radialement. Les objectifs de cette étude sont d’établir précisément les condi-
tions menant a une accélération efficace dans le vide, de déterminer si la polarisation radiale permet
d’améliorer I'accélération par rapport a la polarisation linéaire et finalement de quantifier les propriétés
des faisceaux d’électrons qui peuvent étre obtenus de cette maniére. Le travail effectué au cours de
cette thése est essentiellement théorique et numérique, mais dans chaque cas les études effectuées
sont confrontées a de nouveaux résultats expérimentaux.

Ce manuscrit est structuré comme suit :



ii Résumé en francais

Nous donnons dans le premier chapitre une vue d’ensemble de I'accélération d’électrons avec des
lasers ultraintenses. Nous commencgons par décrire I'accélération par sillage laser dans les plasmas
sous-dense, puis nous présentons I'état de l'art de I'accélération d’électrons dans les plasmas sur-
denses. Nous détaillons ensuite les résultats obtenus dans le passé concernant I'accélération par laser
dans le vide, a la fois en polarisation linéaire et radiale. Dans chaque cas, nous décrivons le mécanisme
d’accélération de maniére théorique et nous présentons les principaux résultats expérimentaux.

Dans le second chapitre, nous introduisons les méthodes numériques utilisées pour modéliser I'accélération
d’électrons par laser. Les simulations particule-test sont particulierement peu couteuses et permettent
de résoudre les équations du mouvement d’électrons individuels se trouvant au sein d’une impulsion
laser. La prise en compte d’effets plasmas se fait a travers la méthode PIC (Particle-In-Cell) dont
nous présentons d’abord I'algorithme standard. Les simulations PIC de I'interaction d’un laser avec un
plasma sur-dense sont extrémement couteuses en trois dimensions. Nous décrivons donc par la suite
deux techniques permettant de réduire le cout des simulations par rapport a la méthode PIC standard
: l'utilisation de coordonnées cylindriques en incidence normale et I'utilisation de solveurs de Maxwell
pseudo-spectraux en incidence oblique. Finalement, nous décrivons une méthode pouvant étre utilisée
pour modéliser analytiquement les impulsions trés focalisées de quelques cycles optiques, qui peut étre
utile pour les simulations particule-test.

Le troisieme chapitre est consacré a I'analyse de résultats expérimentaux récents obtenus avec le
laser de la Salle Noire du Laboratoire d’Optique Appliquée, qui délivre des impulsions de quelques cycles
optiques d’intensité relativiste. Dans un premier temps, nous nous concentrons sur I'estimation de la
longueur de gradient pendant l'interaction. Nous décrivons ensuite les résultats expérimentaux obtenus.
A court gradient, ces résultats sont conformes a la théorie présentée dans le premier chapitre. Lémission
simultanée d’électrons et d’harmoniques du laser y est en particulier observée. A plus long gradient, les
résultats sont plus inattendus : I'émission d’électrons ne se produit que pour des impulsions lasers de
quelques cycles optiques. Des simulations PIC 2D permettent d’expliquer I'origine de ces électrons : ils
sont accélérés par des ondes plasmas formées dans le sillage du laser dans la zone de densité quasi-
critique du preplasma. Ce nouveau régime d’accélération par sillage laser est caractérisé par la rotation
des ondes plasmas induite par le gradient de densité. Lémission d’électrons ne se produit que pour
des impulsions de quelques cycles optiques en vertu de la condition de résonance qui stipule que des
durées d’impulsions laser extrémement courtes sont nécessaires pour former des ondes plasmas pour
ces hautes densités.

Dans le quatrieme chapitre, nous étudions numériquement I'accélération d’électrons injectés par un
plasma sur-dense dans une impulsion polarisée radialement en incidence normale. Lincidence normale
est choisie car les électrons sont dans ce cas injectés par le champ longitudinal proche de I'axe optique,
ce qui est idéal pour I'accélération dans le vide par le champ laser réfléchi. Nous commencgons par
détailler les conditions menant a une accélération efficace par un laser polarisé radialement puis nous
montrons, grace a des simulations PIC, que ces conditions sont vérifiées lorsque I'on utilise un plasma
sur-dense pour injecter les électrons. Nous étudions ensuite, a I'aide de simulations particule-test, les
conditions pouvant mener a des faisceaux d’électrons bien collimatés. En particulier, augmenter I'énergie
des impulsions laser semble étre une approche prometteuse, ce que nous confirmons par des simulations
PIC montrant que des faisceaux d’électrons de trés bonne qualité peuvent étre obtenus avec des lasers
polarisés radialement.

Les premiers résultats expérimentaux en polarisation radiale sont présentés dans le cinquieéme et
dernier chapitre. Contrairement a I'étude numérique précédente, ces résultats ont été obtenus en in-
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cidence oblique, pour des raisons essentiellement pratiques. La possibilité d’accélérer des électrons a
des énergies relativistes est démontrée pour la premiére fois dans ces expériences. Comme attendu,
les électrons sont émis dans la direction de propagation du laser, ce qui peut mener a une diminution de
la divergence angulaire du faisceau d’électrons. L'étude de I'’émission d’harmoniques ainsi que I'analyse
de simulations PIC 3D des expériences révélent des changements intéressants dans la physique de
l'interaction. En particulier, nous observons que les électrons sont éjectés du plasma uniquement aux
positions ou le laser est localement polarisé p. Ceci n’est pas optimal pour I'accélération dans le vide
car les électrons sont injectés loin de I'axe optique, ou le champ longitudinal est maximal. Par ailleurs,
le laser perd partiellement sa structure spatiale lors de la réflexion sur le plasma, ce qui mene en partic-
ulier a l'apparition de champs transverses importants sur I'axe optique, qui peuvent dévier les électrons
accélérés par le champ longitudinal et a terme mener a un élargissement de la divergence angulaire du
faisceau d’électrons. Ces défauts (électrons injectés loin de I'axe optique, perte de structure spatiale
du laser réfléchi) peuvent étre évités en incidence normale et nous anticipons donc que ces résultats
expérimentaux peuvent encore étre largement améliorés.

Finalement, des perspectives plus générales sur le domaine de l'interaction laser-plasma sur-dense
sont données dans les conclusions.
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Introduction

Since their first observation by Plicker and Hittorf in the mid-19th century [1], electron beams have been
extensively used for many practical purposes. Most famously, they have been the main components
of televisions for nearly a century until the advent of LCD screens. Electron beams are also routinely
employed in industry for heating or treating materials, welding, 3D printing, machining and lithography.
In hospitals, electron beam therapy is used in the treatment of superficial tumors and electrons are also
useful to generate X-rays for radiography and radiotherapy. At much higher energies (up to = 100 GeV),
electron beams have allowed us to unravel the fundamental interactions between subatomic particles in
colliders, such as the Large Electron-Positron Collider at CERN.

Beams of accelerated electrons also serve as remarkable tools for imaging matter with unmatched
precision. Owing to significant progress in aberration-correcting electron optics, sub-angstréom resolutions
are now achievable in the most advanced electron microscopes. For instance, figure 1 shows an image
of individual atoms from a monolayer of MoS; obtained with a record 39 pm resolution using a scanning
transmission electron microscope. Electron microscopes are also able to take advantage of electron
diffraction to explore the crystal structure of solids in reciprocal space.

At the same time, the development of mode-locking techniques in the 1980s has permitted the gen-
eration of light pulses with femtosecond duration [3]. This has led to the rise of ultrafast science, a new
branch of physics which describes phenomena occuring on extremely short timescales (attoseconds to
picoseconds). Since then, significant efforts were made to combine the ultrahigh spatial resolution of
electron microscopy with ultrahigh temporal resolution. Such temporal information can be obtained in
pump-probe experiments, where a pump pulse is used to excite a sample out of its equilibrium state
and a separate probe pulse (which would be a pulsed electron beam in the case of electron imaging)
measures the state of the sample at a precise delay after the pump. By repeating the experiment at
various delays between the two pulses, it is then possible to reconstruct the ultrafast evolution of the
sample relaxation towards equilibrium. The achievable temporal resolution in such experiments is of
course limited by the duration of both the pump and probe pulses.

The prospects of observing new ultrafast phenomena (the collective motion of atoms in a solid, the

Figure 1: Scanning transmission electron microscope image of a monolayer of MoS, acquired with a
ptychographic reconstruction technique. The dimmer spot indicated by the red arrow reveals the presence
of a sulfur mono-vacancy (i.e. a sulfur atom is missing). Image taken from [2].



2 Introduction

intermediate steps of a chemical reaction, etc.) has therefore driven the development of electron beams
with femtosecond durations. Such beams can then directly be used as a probe in time-resolved exper-
iments. There has been for example significant advances in ultrafast transmission electron microscopy
(UTEM) [4]. In this case however, it is challenging to obtain at the same time high spatial and high tem-
poral resolution. This is more easily achieved in diffraction mode, via ultrafast electron diffraction (UED)
experiments which are less sensitive to the spatial quality of the electron beam. UED typically employs
100 keV to few-MeV electrons pulses to uncover the ultrafast dynamics of phase transitions in solids and
of transient structures in chemical reactions [5]. Femtosecond electron beams are also useful for the
generation of ultrashort X-ray bursts in free-electron lasers, that can in turn also be used in pump-probe
experiments.

Obtaining such short electron beams requires using a femtosecond laser pulse and a method for
transfering the ultrashort nature of the laser to the electrons. In today’s conventional accelerators, the
femtosecond laser is struck on a photocathode and thereby triggers the emission of electrons which are
then accelerated by an external RF or DC field. Using state-of-the-art RF bunching cavities, few-MeV
electron beams with sub 10-fs durations are now achievable [6]. However, such low temporal resolutions
have still not been attained in UED experiments. This is because the resolution in pump-probe experi-
ments is limited not only by the duration of the pulses, but also by the synchronization between the pump
and probe pulses. When RF fields are used for electron acceleration or compression, perfect synchro-
nization of the generated electron beam with the pump pulse cannot be obtained, which has de facto
limited the temporal resolution of UED experiments to values exceeding 100 fs [7].

Yet, many physical processes, including the fastest phonon modes in solids and the vibration or
breaking of molecular bonds, have a characteristic timescale in the 10-100 fs range. Directly observ-
ing these processes requires attaining even better temporal resolutions. Consequently, several groups
around the world are currently exploring various routes to achieve this breakthrough. For example, sub-
stantial progress has recently been made in laser-RF synchronization methods [8] and in timestamping
techniques [9]. Alternately, many researchers are looking for other ways to generate and control ultra-
short few-MeV electron beams that would ensure that they remain inherently synchronized with a laser
field. This can explain for example the recent attract for THz pulses, which can be generated by optical
rectification [10] in perfect synchronization with a laser pulse and have the potential to accelerate [11]
and manipulate [12] relativistic electrons.

Another promising possibility is to directly use the laser field to accelerate the electrons. Obtaining
femtosecond electron beams in this manner requires using ultrashort laser pulses with extreme inten-
sities, which was made possible by the development in 1985 of the chirped pulse amplification tech-
nique [13]. When such an intense laser interacts with matter, the latter is instantly ionized and forms a
plasma. If the conditions are adequate, electron bunches can be efficiently accelerated from the ensu-
ing laser-plasma interaction. Since plasmas can support much higher electric fields than the dielectric
structures of conventional accelerators, this method offers the possibility of accelerating electrons to large
energies over very short distances. The standard scheme for accelerating electrons with lasers is laser
wakefield acceleration [14, 15]. It takes place in underdense plasmas, which typically come from the
ionization of a gas target, and is now very well understood. It has lead to the generation of high quality
electron beams [16, 17, 18] with energies up to 8 GeV [19] and durations lower than 2 fs [20], and is a
rising candidate for achieving UED experiments with unprecedented time resolution [21, 22].

Electrons can also be accelerated when an ultraintense laser pulse is focused onto an opaque over-
dense plasma, which typically originates from the ionization of a solid target. The mechanisms leading
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to electron emission in this case have been less studied, which is partly because laser wakefield ac-
celeration has demonstrated better beam quality. Another important reason is that the interaction is
extremely sensitive to the density profile at the plasma front surface, which is a parameter that is par-
ticularly challenging to control in experiments. The recent development of ultraintense lasers with an
extremely high temporal contrast has enabled the completion of experiments with a fine monitoring of the
gradient scale length and the identification of some of the processes leading to the ejection of electrons
from the plasma [23, 24]. In particular, it was noted that, if the gradient scale length is appropriate (of the
order of A/10, where A is the laser wavelength), the ejected electrons can receive large energy gains
in vacuum directly from the reflected laser field. This opens up new possibilities as this process, labeled
vacuum laser acceleration (VLA), had beed extensively studied theoretically but never clearly observed
experimentally. For instance, we can now consider tailoring the structure of the laser pulse in order to
control the interaction in vacuum. Furthermore, the different electron acceleration mechanisms are still
not fully established, which is especially true for longer gradient scale lengths, that exceed the laser wave-
length. Overall, the full potential of overdense plasmas as a source of ultrashort electron beams remains
unknown and more work, both theoretical and experimental, is therefore required in this direction.

It is in this context and in the continuity of these recent results that | have carried out my PhD thesis.
| have studied the acceleration of electrons from the interaction of a relativistic intensity (> IOISW/cmz)
ultrashort (< 50 fs) laser pulse with an overdense plasma which has a density gradient on its front surface.
I have more specifically focused on two unexplored interaction scenarios:

e | have considered the case where the laser pulse is so short that it only consists of a few optical
oscillations. This corresponds to the so-called few-cycle regime. This study is motivated by the
recent upgrade of the Salle Noire laser, developed by the PCO group at LOA, which can now deliver
3.5 fs (less than 1.5 optical cycles) pulses with a relativistic intensity (exceeding 1019W/cm2) ata
kHz repetition rate. In particular, the first experiments on solid targets with these laser parameters
were performed in the course of my PhD. Working with few-cycle pulses has several advantages.
First, it leads to lower pulse energies for a given intensity, which means that the repetition rate,
which is a crucial parameter for applications, can be increased. Secondly, few-cycle pulses can
in principle result in shorter electron beam durations, which is also beneficial for applications in
ultrafast science. The main objectives of this study are to determine whether there are substantial
changes in the physics of the interaction with extremely short pulse durations and to evaluate the
effect of the carrier-envelope phase (CEP) which is a new relevant parameter.

e | have also examined the case where the incident laser pulse is radially polarized. Such beams
are particularly attractive for vacuum laser acceleration (VLA) as they possess a strong longitudinal
electric field that can directly accelerate electron in the laser propagation direction. They have been
widely studied numerically and theoretically and promising results have been obtained. However,
until this work, there had been no experimental observation of electron acceleration to relativistic
energies with radially polarized beams, which is because no practical way to efficiently inject the
electrons into the laser was found. We have precisely seen in the previous paragraphs that VLA
could be achieved by focusing a laser pulse onto an overdense plasma. This therefore provides
a great opportunity to test the effectiveness of VLA with radial polarization as an electron acceler-
ation scheme. The objectives of this study are to accurately establish the conditions under which
acceleration by a radially polarized beam is efficient, to determine whether it can lead to improved
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results (lower angular spread, high energies, etc.) compared to linear polarization and if so, to
quantify the electron beam parameters achievable with this acceleration method.

The work presented in this manuscript is above all theoretical and numerical. | have tried to develop
simple analytical models whenever possible, and relied on the Particle-In-Cell (PIC) method otherwise.
However, | have also closely collaborated throughout my thesis with the experimental teams working with
two state-of-the-art laser facilities: the Salle Noire laser at LOA, that we have previously mentioned, and
the UHI100 laser at CEA Saclay. The UHI100 laser delivers 24 fs pulses with a peak power of ~ 20 TW on
target and has been used in many seminal experiments concerning the interaction of ultrahigh intensity
pulses with overdense plasmas [25, 26, 27, 24]. We will present in particular new experimental results
obtained with each of these laser systems, which will be confronted to my numerical studies. The purpose
of the simulations shown in this present work are therefore not only to provide general results regarding
the interaction of the plasma with a few-cycle or a radially polarized pulse, but also to serve as a tool for
explaining or predicting novel experimental results.

More generally, this thesis aims at providing a better understanding of the pathways and mechanisms
of energy transfer to the plasma electrons in laser-solid target interactions. This is indeed a complex and
fundamental question that has implications for ion acceleration [28], high harmonic generation [29] and
inertial confinement fusion [30].

This manuscript is organized as follows.

Chapter 1 is a background chapter in which we review different schemes used to accelerate elec-
trons with an ultraintense laser pulse. After depicting laser-wakefield accelerators, we focus on electron
emission from overdense plasmas and on the vacuum laser acceleration process that can subsequently
occur. We provide in particular a summary of previous results obtained with radially polarized lasers. In
each case, the acceleration mechanism is described theoretically and the principal experimental results
are presented.

In chapter 2, we describe the numerical methods that | have used to study laser-plasma interaction.
We present in particular the standard Particle-In-Cell (PIC) algorithm as well as two useful techniques for
substantially reducing the cost of 3D simulations: the use of cylindrical coordinates at normal incidence
and the use of pseudo-spectral Maxwell solvers at oblique incidence. We also present at the end of this
chapter a method to obtain exact solutions to Maxwell’s equations that can be used to model few-cycle
pulses in simulations.

We show in chapter 3 results from recent experiments performed with relativistic intensity few-cycle
pulses with the Salle Noire laser. We find that, if the gradient scale length is large enough (larger than the
laser wavelength), such extremely short pulses can drive laser wakefield acceleration in the near-critical
density part of the plasma. This regime is characterized by the rotation of the plasma waves induced by
the density gradient. Few-cycle pulses are required to trigger this mechanism because of the resonance
condition at these high densities. We place a strong emphasis in this chapter on the estimation of the
plasma density profile during interaction and on the uncertainties associated with this estimation.

We examine in chapter 4 the acceleration of electrons injected by an overdense plasma into a radially
polarized beam. We establish the initial conditions leading to efficient acceleration and show that these
conditions can be fulfilled by focusing a radially polarized laser onto an overdense plasma. This results
in an acceleration to higher energies than with other existing injection methods. We focus in this chap-
ter on the interaction at normal incidence and demonstrate that, under appropriate conditions, narrow
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divergences can be obtained.

Finally, we study in chapter 5 the interaction at oblique incidence by presenting recent experimental
results obtained with the UHI100 laser, in which the possibility of accelerating electrons to relativistic
energies in the longitudinal direction is demonstrated for the first time. These experiments are analyzed
by making use of full-3D PIC simulations.
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We survey in this chapter existing methods for accelerating electrons to relativistic energies using
lasers. We provide in each case a brief theoretical description of the acceleration mechanisms as well as
the main experimental results.

We start by defining in section 1.1 the parameters characterizing a laser pulse and we give typical
values considered in this manuscript. In particular, we look at very intense lasers that rapidly turn any
matter they interact with into a plasma. We therefore succinctly describe the basic principles of plasma
physics and laser-plasma interaction in section 1.2. Two distinct regimes exist, depending on whether the
plasma frequency is lower (underdense plasmas) or higher (overdense plasmas) than the laser frequency.
Laser pulses can propagate in an underdense plasma and, if the conditions are appropriate, they may
generate plasma waves that can in turn accelerate electrons over very short distances. This is the
principle of laser wakefield acceleration (LWFA), which is the standard method for accelerating electrons
with lasers and is overviewed in section 1.3.

We place important emphasis on overdense plasmas, which reflect incident light. Relativistic elec-
tron beams can also be generated when a high-intensity laser is focused on such target. We present
in section 1.4 the different theoretical and experimental results regarding the ejection of electrons from
overdense plasmas. We highlight in particular the crucial importance of the plasma gradient scale length
during the interaction, which is often overlooked, thereby complicating the interpretation of many experi-
mental results. In some cases, the ejected electron beam can interact with the reflected laser pulse and
even gain energy from it. The process by which an electron can gain large amount of energy in vacuum
directly from the laser field is known as vacuum laser acceleration (VLA) and is reviewed in section 1.5.
We focus in particular on the case of radially polarized beams, which have an attractive structure for
accelerating electrons in vacuum.

More generally, this chapter aims at providing a theoretical and physical background that will be used
in the remainder of this manuscript.

1.1 Laser parameters
A laser pulse is entirely determined by its electromagnetic fields E and B. In most cases, a linearly

polarized laser can be approximately described by a Gaussian beam, which is characterized by a Gaus-
sian decrease of its electromagnetic field amplitude in the transverse direction. The E and B fields of a
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Figure 1.1: The electric field of a Gaussian beam with wy = 2A, ¢cep = 0 and g(t) = 1 (infinitely long
duration) shown at timet = 0.

Gaussian beam propagating along the z-direction and polarized along the x-direction are [31]:

E(T7t) = EO

wo 1’2 }’2 Z Z
W) exp (_w(z)z) cos (kz— a)t—i-sz(Z) — arctan (ZR> + ¢CEP) g (l — E> ex (1.1)

Ey w r r Z Z
B(r,t) = %Wg)exp <_W(Z)2> cos <kz— ot +k2R(z) — arctan (ZR) + ¢CEP> g (t — E) e, (1.2

Where r = \/x%+y? is the radial coordinate in cylindrical coordinates and e; is a unit vector directed
along the i axis. These equations are valid within the paraxial approximation (more details can be found
in section 2.3.1). An example of field calculated using equation 1.1 is plotted in figure 1.1. We define the
following quantities related to Gaussian beam, but which can usually be extended to other beam profiles:

o is the frequency of the pulse and k = 2 = 2/1—” is its wavevector. Here, c is the speed of light in

c
vacuum.

e wy is the beam radius at focus, usually known as the beam waist. It is a typical transverse size of
the beam at focus and is defined as the radius above which the electric field amplitude is less than
1/e of its on-axis value.

e zz is the Rayleigh length defined as zzx = nwj/A = kw}/2. It is a characteristic propagation
distance during which the beam expands due to diffraction. At z = zg, the beam cross-section has
doubled compared to z = 0.

2
o w(z) =woy/1+ (i) is the 1/e beam radius (in amplitude) at position z.

e Far from focus, the beam is emitted in a cone whose opening angle is 260 where 6 = arctan ano
We have in all practical cases 0 ~ %WO Therefore, the tighter the focusing, the more rapidly the

laser diffracts.
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Figure 1.2: Electric field on the axis att = 0 of a 3.5-fs, A = 800 nm laser pulse for different values of the

CEP

2
e R(z)=z+ %R is the radius of curvature of the wavefronts at position z.

e The term arctan ( = ) is known as the Gouy phase. It causes the beam to acquire an extra phase

<

2R
of  while passing through focus, which results in a superluminal phase velocity on the axis at
focus.

g is a temporal envelope which is often assumed to be Gaussian:

2
g(f) = exp <—21n(2);> (1.3)

Where 7 is the pulse duration in full width at half maximum (FWHM) of intensity. It is a good time to
mention that, unless specified otherwise, the pulse durations are always given in FWHM of intensity
in this manuscript.

¢cep is the phase at which the temporal envelope is maximum at z = 0. This parameter is known
as the carrier-envelope phase (CEP). It is irrelevant for many-cycle pulses but has a significant
impact on the temporal shape of the electric field for few-cycle pulses, as illustrated in figure 1.2.

E)y is the peak amplitude of the electric field (which is attained only if ¢cep is an integer multiple of
7). Rather than directly dealing with Ey in, say, TV/m, it is more common to use either the peak
CS()E(% ek

meCc@
vacuum permittivity and e and m, are respectively the electron charge and mass. Iy and ag are

linked by the following relation, in practical units:

intensity Iy = in W/cm? or the normalized field amplitude ag =

. Here, g is the

ap = 8.5 x 10702 [um] 1}/ *[W /cm?] (1.4)

It can be noted that a nonrelativistic electron in a plane wave oscillates with a velocity amplitude
of agc. Therefore, the motion of electrons interacting with lasers such that ag < 1 is nonrelativistic
while the motion of electrons interacting with lasers such that ag > 1 is strongly relativistic. For a
wavelength of 800 nm, ag = 1 corresponds to Iy = 2.14 x 1018W/cm2 and Ey =4.02 TV/m.

ﬂW%IO

e The peak power of the laser is given by P = .

2
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Laser system Salle Noire UHI100
Central wavelength 800 nm 800 nm
Repetition rate 1 kHz 10 Hz (single shot in practice)
Pulse energy ~25mJ ~ 460 mJ
Pulse duration 3.5fs 24 fs
Peak power ~ 670 GW ~18 TW
wo 1.5um 3.2 um
Peak intensity | ~ 1.6 x 10°° W /cm? ~5.8x 10°°W /cm?
ap ~ 2.7 ~5.2
Peak electric field ~11TV/m ~21TV/m

Table 1.1: Typical on-target parameters of the Salle Noire and UHI100 laser systems for the experiments
that are studied in this thesis.

P
e The pulse energy is U = ~ PT.

We mainly consider in this manuscript relativistic (ap > 1), tightly focused (wg = 1 — 5 um) and ultra-
short (T = 3 — 30 fs) laser pulses with 800-nm wavelength. In particular, much of the work performed
in this thesis is based on experimental results obtained with the Salle Noire and the UHI100 laser sys-
tems. Both lasers use the chirped pulse amplification technique to generate 24-fs pulses with a central
wavelength of 800 nm.

The Salle Noire system, which has been developed at the Laboratoire d’Optique Appliquée (LOA),
additionally uses a helium-filled hollow core fiber to post-compress the laser pulses [32, 33, 34, 35]. By
changing the pressure in the fiber, the final pulse duration can be continuously varied from 24 fs to 3.5 fs,
thus reaching the so-called few-cycle regime. The laser functions at a kHz repetition rate, which makes
the generated electron beams more easily transferable to applications. Even though this limits the on-
target pulse energy to 2.5 mJ, a tight focusing (down to wg = 1.5 um) can be used to reach relativistic
intensities (up to ag = 2.7 for 3.5-fs pulses).

The UHI100 laser system is located at CEA Saclay. It delivers more energetic pulses, typically around
500 mJ on target. The 24-fs pulses can be focused down to wy = 3.2 um, which results in ag = 5.2.

The parameters of the two lasers are summed up in table 1.1 and a graphic representation of the
electric field of the pulses is shown in figure 1.3. Even though the total energy is 200 times higher in a
UHI100 pulse, the intensity is only 4 times higher because a Salle Noire pulse occupies a much smaller
volume.

1.2 The plasma state

Ultrahigh intensity laser pulses can ionize any atom they interact with, as will be described in section 1.2.1.
One consequence is that when such a pulse impinges on a solid or gas target, it will de facto interact with
a plasma. We therefore present in sections 1.2.2 and 1.2.3 basic results regarding plasmas and their
interaction with electromagnetic waves.
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Figure 1.3: Electric field att = 0 of Gaussian beams with parameters corresponding to the Salle Noire
and the UHI100 lasers. A Gaussian temporal envelope is used.
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Figure 1.4: Field ionization mechanisms. (a) The binding potential of the electron is undisturbed by the
laser field. The electron may be ionized by absorbing multiple photons so that the total absorbed energy
exceeds the ionization energy Ei,ni. (b) The field is intense enough to disturb the nucleus Coulomb
potential. The electron may be freed by tunnelling through the resulting potential barrier. (c) If the field
is high enough to suppress the potential barrier, the electron is ejected from its parent atom or ion. The
dashed green line represents the potential created by the external field.

1.2.1 Field ionization

Field ionization is the process by which an electromagnetic wave, the laser field in our case, can strip a
bound electron from its nucleus. At the considered wavelength (800 nm), the energy of a single photon
is ~ 1.5 eV, which is smaller than the ionization energy of any atom or ion. An electron may therefore
be freed by absorbing several photons at the same time, a process known as multiphoton ionization,
which becomes significant for intensities exceeding 10'° W/cm2 [36]. For even higher intensities, the
binding Coulomb field felt by the electron becomes perturbated by the applied electric field. The dominant
ionization mechanisms in this case are tunnel ionization, in which the electron is ejected by quantum
tunnelling and barrier-suppression ionization, where the potential perturbation is strong enough for the
electron to classicaly escape from the nucleus. These three mechanisms are summed up in figure 1.4.
The intensity Ips; at which barrier-suppression ionization occurs can be simply estimated by assuming
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Element Z | E;,,; (first ionization) | Igg; (first ionization) | E;,,; (last ionization) | Izs; (last ionization)
Hydrogen | 1 13.6 eV 1.37 x 101 W /cm? 13.6 eV 1.37 x 104 W /cm?
Helum | 2 24.6 eV 1.46 x 10'5W /em? 54.4 eV 8.76 x 101 W /cm?
Carbon | 6 11.3 eV 6.52 x 103 W /em? 490 eV 6.41 x 10'8W /cm?
Nitrogen | 7 145 eV 1.77 x 10" W /cm? 667 eV 1.62 x 10" W /cm?
Oxygen | 8 13.6 eV 1.37 x 10" W /em? 871 eV 3.60 x 1019 W /cm?
Aluminium | 13 5.99 eV 5.15x 10'2W /em? 2304 eV 6.67 x 10°°W /cm?
Silicon | 14 8.15 eV 1.76 x 103 W /em? 2673 eV 1.04 x 102 W /cm?
Argon | 18 15.8 eV 2.49 x 10'*W /cm? 4 426 eV 4.74 x 102" W /em?
Cesium | 55 5.99 eV 9.15 x 10" W /cm? 42913 eV 4.48 x 10%*W /cm?

Table 1.2: First and last ionization energy of usual or representative chemical elements, with the corresponding barrier-
suppresion ionization intensites. Cesium is the element with the lowest first ionization energy and helium with the
highest. The ionization energies have been obtained from the NIST Atomic Spectra Database.

that the potential felt by the electron is the sum of the Coulomb nucleus potential and the potential due to
a homogeneous external electric field EE = Ee, [36]. The total potential on the x-axis is thus:

Z*e?
V= —eEx

_ 1.5
dmegx (1.5)

Here, Z* corresponds to the degree of ionization (i.e. Z* =1 for a first ionization, Z* = 2 for a second
ionization, etc.) Above the barrier-suppression intensity, we have the relation V. < —Ej,,,; for x > 0, where
E;,,i is the ionization energy of the electron. This translates to:

2 314
nece E
Ipsi = # (1.6)
Which becomes in practical units:
2 9E140ni[€v]
IBS[[W/Cm ] =4 x 10 7 (17)

Barrier-supression intensities provide a simple way to estimate the degree of field ionization of a laser-
generated plasma as a function of the electric field amplitude. Numerical values of Izs; obtained with
equation 1.7 for the first and last ionization energies of some usual or representative elements are shown
in table 1.2. We note in particular that the intensitiy for first ionization is at most ~ 1015W/cm2. Conse-
quently, when a laser pulse is focused to relativistic intensities (> 1018W/cm2) on a target, the latter is
always ionized well before the temporal center of the pulse reaches it. The main conclusion is therefore
that relativistic intensity lasers inevitably interact with plasmas.

On the other hand, last ionization intensities can be extremely high. Thus, depending on the elements
composing the target, it is entirely possible that the plasma is not entirely ionized during the interaction
and that the high-intensity part of the laser pulse induces additional ionization.
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1.2.2 Mathematical descriptions of plasmas

Plasma is a state of matter in which long range electromagnetic interactions coming from ions and un-
bound electrons play a significant role. There is a large variety in the plasma conditions (density and
temperature can both span over several orders of magnitude) which can give rise to complex and inter-
esting phenomena [37, 38, 39]. Plasmas are usually modeled either with a kinetic or a fluid description.

In kinetic models, each species s of the plasma is entirely described through its distribution function
fs(r,p,t), which corresponds to its density in phase-space. At time ¢, the number of particles in an
infinitesimal 6-dimensional volume d*rd>p centered around (r,p) is given by: dN = f,(r,p,t)d*rd’p.
Measurable macroscopic quantities can then be obtained by integration of the distribution function. For
example, the density of species s is given by:

ns<r7t) = /R’ fS(Tapat)d3p (1.8)
Similarly, the average velocity at position 7 is:
_ 3
wlrn) = s [ o) P (1.9

p

1+[p/(msc)|?
In fluid models, the species are directly described through these macroscopic averaged fields.

Sometimes, different fluids are used for different species (e.g. in two-fluid models where one fluid de-
scribes the electrons and the other the ions) and sometimes a single fluid is used to model the whole
plasma (e.g. in magnetohydrodynamics). A fluid approach leads to simplified equations, which can even
be solved analytically in some cases.

During relativistic laser-plasma interactions, strongly out-of-equilibrium phenomena that can involve
trajectory crossings, which cannot be described with an average velocity, are frequent and a fluid ap-
proach is usually not sufficient. Moreover, the electrons move at such high velocities (close to c) that
collisions are entirely negligible within the timescale of the interaction (30 fs at most for the pulses con-
sidered in this thesis). The corresponding kinetic equation that governs the evolution of the distribution
functions of noncollisional plasmas is the Vlasov equation. It should be used to accurately describe
high-intensity laser-plasma interactions and reads:

&fs af? af? —
5 5 p =0 (1.10)

gs is here the charge of the particle. Long range electromagnetic interactions between charged particles
in the plasma are taken into account by the Lorentz force term in the Vlasov equation. The E and B
fields can be obtained via Maxwell’s equations:

Where v(p) = and my is the mass of a particle.

+v(p).

+¢s (E+v(p) x B)

V.E = g Gauss’s law (1.11)
0
V.B=0 Gauss’s law for magnetism (1.12)
JB
VxE= o Maxwell-Faraday (1.13)

oE
V x B = 1 <J+808t> Ampére’s law (1.14)
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The resulting Vlasov-Maxwell system 1.10-1.14 is a complete set of equations describing the evolution
of the plasma. Vlasov and Maxwell’s equations are coupled because the source terms in equations 1.11
and 1.14 are obtained by integrating the distribution functions of the plasma species:

pr)=Ya. [ Lr.pndp (1.15)
Jmﬂ:Z%AﬂWMWWﬂfP (1.16)

Physically this means that the motion of the particles generates electromagnetic fields which in turn affect
in a self-consistent manner the motion of the particles. The Vlasov-Maxwell system is a nonlinear set of
equations for which analytical solutions cannot in general be found. A numerical approach is therefore
prefered in most cases. The Particle-In-Cell (PIC) algorithm, presented in chapter 2, is the standard
method to model kinetic plasmas when collisions are negligible and is widely used in the field of laser-
plasma interactions.

1.2.3 Electromagnetic waves in a plasma

Let us consider in this section the propagation of a nonrelativistic (ay < 1) electromagnetic monochro-
matic plane wave of the form E = Eoe"(“”*kz) in a homogeneous plasma of density n,. We use a fluid
model to describe the plasma. We assume that the plasma is cold (negligible temperature compared to
the electron motion in the electromagnetic field), noncollisionnal and that the ions are immobile. With
these hypotheses, the fluid equation of motion is:

v,
3 + (v..V)v, = -

e

(E +v, x B) (1.17)

v, is here the fluid electron velocity. For a small perturbation from equilibrium, which can be assumed
since the wave is nonrelativistic, this equation can be linearized and becomes:

dv, e
5 __m76E (1.18)

The principal impact of the electromagnetic wave is thus to induce an electron oscillation at the frequency
. We can rewrite this equation for the current density J = —en,v,:

aJ 5
FT eoa)pE (1.19)

We have defined here the plasma frequency ®, as:

nee?

0, = (1.20)

me&y
The plasma frequency is a fundamental characteristic of plasmas. It corresponds to the timescale for
which collective phenomena arise in plasmas. In particular, @, is the frequency of electron plasma

waves (or Langmuir waves), which are collective electron oscillations around their equilibrium position in
response to an initial charge separation. We note that the plasma frequency only depends on the plasma



16 Chapter 1. Overview of laser-driven electron acceleration

density (@, o< ,/n.). High-density plasmas thus respond more quickly to an external perturbation than
low-density plasmas.

By inserting equation 1.19 into the derivative of Ampére’s law 1.14 with respect to time and by com-
bining the result with Maxwell-Faraday equation 1.13, we can obtain the wave equation in a cold noncol-
lisional plasma:

1
2 [E—— [
vie- 5 (%

= +w§E> =0 (1.21)

Note that to obtain this equation we have used the relation V.E = 0, which is valid since there is, to
first order, no charge separation induced by the plane wave. Equation 1.21 admits solutions of the form
/(1K) provided that k and @ satisfy the dispersion relation:

k:gm——gzi”p (1.22)
c (0] Cc

We see that there are two very distinct cases, depending on whether @ < @, or @ > ®),. The transition
between the two cases occurs at the critical density n., which is the plasma density for which ® = ®,,.
The critical density reads mathematically:

M€ 0>
ne =

= (1.23)

For a wavelength of 800 nm, we have n. = 1.74 x 10*! cm™3

Overdense plasmas
We first consider the case @ < @,, or equivalently n, > n.. Such plasmas are known as overdense
plasmas. In this case, k is imaginary in equation 1.22. This means that the wave is evanescent with
a skin depth given by 1/|k|. In other words, light with a frequency smaller than the plasma frequency
cannot propagate in a plasma.

Physically, the condition @ < @, means that the collective plasma behaviour is faster than the elec-
tromagnetic wave oscillation. The response of the plasma to the electromagnetic field is to generate
currents and charge separations in such a way that they cancel the incoming radiation, i.e. that the total
field inside the plasma is 0. Overdense plasmas thus behave in a similar manner as metals or perfect
conductors. In particular, they are opaque and reflect incident light. At a wavelength of A = 800 nm,
overdense plasmas are typically generated by the ionization of a solid or liquid target.

Underdense plasmas
We now consider the case @ > ), or equivalently n, < n.. Such plasmas are known as underdense
plasmas. In this case, k is real in equation 1.22. This means that the electromagnetic wave can propagate
in the plasma. In other words, plasmas are transparent to light with a frequency higher than the plasma
frequency. At a wavelength of A = 800 nm, underdense plasmas are typically generated by the ionization
of a gas target.

Physically, the condition @ > ®, means that the electromagnetic wave oscillation is faster than the
collective plasma behaviour. In this case, the plasma response is too slow to cancel out the electromag-
netic field, which can propagate. The plasma nonetheless affects the propagation of light, as can be seen
by the fact that the dispersion relation 1.22 is different than the vacuum dispersion relation @ = kc. We
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note in particular that underdense plasmas are dispersive. The electromagnetic wave phase velocity can
be calculated by the formula vy = @ /k, which yields:

Vy = —F— 1.24
0 —a (1.24)
T o?
The phase velocity is superluminal. It is close to c in the strongly underdense limit @ > ®, but can be
significantly greater than c if @ approaches w,. We can deduce from the previous formula the refractive
index of plasmas:

N=y/1--2% (1.25)

For plasmas, we note that we have N < 1. The group velocity can also be calculated using the formula
Vg = ‘2—‘,‘{’, which yields:

o
Vg==C 1—; (1.26)
Unlike the phase velocity, the group velocity in plasmas in smaller than ¢. This means that the plasma
tends to slow down the pulses. We can again note that we have v, = c in the strongly underdense limit
> .

We conclude this section by mentioning that the critical density is increased when relativistic intensity
electromagnetic waves are considered. This means that pulses with ag > 1 can propagate in denser
plasmas than pulses with ag < 1, a process known as relativistic transparency [40, 41]. Physically, it can
be understood by the relativistic increase in the inertia of the electrons as they oscillate in the field, which
reduces the effective plasma frequency.

1.3 Laser wakefield acceleration

Laser wakefield acceleration (LWFA) [15], also known as laser-plasma acceleration, is the most com-
mon method for accelerating electrons to relativistic energies with lasers. In this scheme, the driving laser
pulse propagates in an underdense plasma and generates plasma waves in its wake. The electrostatic
fields associated to the plasma waves propagate with a phase velocity that is equal to the group velocity
of the laser pulse and can be used to accelerate an electron bunch. This method has led to the genera-
tion of high quality electron beams with energies up to 8 GeV [19] and measured durations lower than 2
fs [20].

1.3.1 Plasma wave generation in the linear regime

We start by explaining, using a fluid model, how a linearly polarized laser pulse can generate plasma
waves in a homogenous plasma. This process can be studied analytically in three dimensions with the
following assumptions:

e As in section 1.2.3, the plasma is cold and noncollisional and the ions are immobile.
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e We consider a nonrelativistic intensity (a(z) < 1) laser driver. This is known as the linear regime.

e We assume that the driving laser pulse remains the same throughout its propagation. We thus
neglect the laser diffraction as well as any change in the laser field induced by the plasma.

e We assume that the pulse duration is much longer than the laser period: 7 >> 27/ where 7 is the
pulse duration and  is the laser frequency.

e We assume that the plasma is strongly underdense: @, < ®.

The main difference with the model of section 1.2.3 is that we consider here a laser pulse with a finite
volume rather than a plane wave. As we will see, the spatial variations in the intensity of the laser pulse
result in the emergence of charge separations, via the ponderomotive force, which are at the origin of
plasma waves.

We use in this section the electric potential V and the magnetic vector potential A, which are such
that:

E(r,t)=-VV(r,)— ao;?(r,t) (1.27)
B(r,t) =V x A(r,t) (1.28)

We choose the Coulomb gauge (V.A = 0) since it conveniently separates the plasma and laser fields:
in this case V represents the electrostatic potential due to charge separations while A represents the
laser pulse. Since we assumed that the laser pulse does not evolve during the interaction, this means
that the magnetic vector potential is of the form:

A(r,t) =Aoa(x,y,z— vgt) cos(kz — ot ) e, (1.29)

Where Ay = m,cap/e is the peak amplitude of the magnetic vector potential and a is a positive function
representing the pulse envelope which is normalized so that its maximal absolute value is 1. We have
also assumed without loss of generality that the laser field is polarized in the x direction. The laser electric
and magnetic fields are then given by E; = —‘93—‘;‘ and By = V x A while the plasma electrostatic field
is —VV.

With these notations, the fluid momentum conservation equation reads:
_ e

Jv,
5 + (v,.V)v, = - (EL+v,xBp,—VV) (1.30)

Since we consider the linear regime, we write the electron velocity in a perturbative manner as v, =
V.1 + Vo2 Where v, is its first-order linear component and v, its second order component. With these
notations, the first order of equation 1.30 is:

S (1.31)

Vel = —A (1.32)
m
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Thus, as previously, the main electron motion is an oscillation at the laser frequency. The curl of this
expression gives: By =m,/eV x v,;. We can then use this relation in the second order of equation 1.30,
which reads:

dv,
Ve2 + (vel.V)vel = Ve X V X0, — iVV (1.33)
ot Me
alveZ 62 2 e
—=——=-VIA|"— — 1.34
ot 2m£v| | me vV (1:34)

We have used here the vector identity V (|v,1]?/2) = ve1 X V X 0,1 + (v,1. V) v,1. Overall, the equation
of motion up to order 2 is:

dv, e e? , e
=——FE ——V|A|"——VV 1.35
ot M, L 2m2 Al M, (1.39)

Next, we use the fact that the laser oscillations are much faster than the other timescales of the system,
namely the temporal variations of the pulse envelope (@ > 27/7) and the plasma response (® > ®),).
This allows us to average the equation of motion 1.35 over the fast oscillations, which yields:

00, A(Z)e2 o e

=——-Va —-—VV 1.
ot 4m? a m, (1.36)
dv, at_ o, e

=-—Va -—VV 1.37
ot 4 Ve Me (1.37)

Where v, is the averaged electron velocity. We see here that the average effect of the laser field on
the electrons is a force, known as the ponderomotive force, which is proportional to the gradient of
a* and pushes the electrons towards the regions of low laser intensity. The ponderomotive force causes
charge separations that can be self-consistently studied by adding the Poisson equation and the continuity
equation to the averaged equation of motion 1.37. In the Coulomb gauge, the Poisson equation is:

e e

VvV = —(ne —np) = —dn, (1.38)
& &

Where n, and ng are respectively the local and equilibrium electron density and én, = n, —ng. The

averaged linearized continuity equation is:

d6n,

o tmV.5, =0 (1.39)

The three equations 1.37-1.38-1.39 together with the choice of the laser field A(r,t) entirely determine
the evolution of the three unknown variables 6n., v, and V. By combining these three relations, we
can obtain the equation verified by a single variable. For example, this yields after some algebra for the
density pertubation on,:

0?2 5\ On, a(z)c2 90

The plasma density perturbation 6, thus behaves as an harmonic oscillator at the frequency w, which
is driven by the ponderomotive force of the laser. In other words, the laser pulse triggers plasma waves.
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These laser generated plasma waves are often called wakefields, hence the term laser wakefield accel-
eration.

The plasma equations are more easily solved when expressed with respect to the normalized poten-
tial ¢ = eV /m,c?, which results in:

2 2
<§t2+a) >¢(r,t) an)p a(x,y,z Z—Vgt) (1.41)

Since the laser pulse, and thus the potential ¢ it creates, propagate without evolving with a velocity v,,
the relevant longitudinal variable is { = z — v,¢. We thus perform the change of variable (z,7) — ({,1*)
and we have in particular % = 0. This relation directly comes from the fact that the laser driver is
nonevolving'. With these new variables, equation 1.41 becomes:

2 2k2
(552 +48) 00 ) = U @(x0) (142

Where k, = ), /v, is the plasma wavenumber. For an infinitely short (and infinitely wide) driver pulse
such that @*(x,y, ) = 8(&) /k,, where § is the Dirac function, the resulting potential is:

2

¢=—fsm<k §)H(~§) = 5 sin(opt — ky2)H(~() (1.43)

Where H is the Heaviside step function. For an arbitrary function a2(x,y, {), we can use the linearity of
equation 1.42 to obtain its general solution:

Clzk 400
o(x.y§)=—=r" : a*(x,y,{")sin(ky( —¢'))d¢’ (1.44)

Far behind the laser pulse ({ &~ —o0), this integral can be expressed as a function of the Fourier transform
of @ with respect to {, noted a>

2k
(])(x,y, C) = _a(iTpViz(xvy?kp” Sin (kpc_'—arg (Ziz(xvyvkp))) (145)

As we can see from this equation, in the linear regime the laser pulse triggers a sinusoidal response from
the plasma. The resulting plasma waves have a wavelength A, = 27 /k, and a phase velocity that is
equal to the group velocity of the laser pulse. If the temporal envelope @*(x,y, () is real and symmetric
with respect to §, which can usually be assumed, then we have arg (a*(x,y,k,)) = 0 and the previous
equation reduces to:

agkp .
0003, 6) = = TL1@ (x,3.k) sin (k) (1.4

d
"More generally, equation 1.42 can be obtained with the quasi-static approximation, which corresponds to — < Vg7 3 and

d
a *
physically means that the changes in the driving laser along its propagation occur on timescales much larger than the pulse
duration and the plasma period. Here, we have assumed that the driving laser does not evolve at all, which is an even stronger

approximation.
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The electric field and the density perturbation 6n, of the resulting accelerating structure can then be
obtained by taking respectively the gradient and the Laplacian of the potential. This yields in particular
for the longitudinal electric field E:

Exn ) — < ”! (x,3,k) cos (k,{) (1.47)

Thus, the accelerating field behind the laser is important when the longitudinal Fourier transform of the
pulse envelope has a significant value at the wavenumber k. This occurs when:

e The pulse duration is smaller than the plasma period 27/ @), in conformity with the uncertainty
principle.

e The laser envelope is spatially modulated (in the longitudinal direction) at the plasma wavelength
A, =2m/k,. This is for instance the case in self-modulated laser wakefield acceleration [42].

In particular, for a given laser pulse, there is a plasma density for which kf,]ZfZ(x =0,y =0,k,)|, and
thus the on-axis accelerating field E, is maximum. This is known as the resonance condition and the
corresponding density for which plasma wave excitation is optimal is the resonant density.

Let us consider as an example the usual case of a cylindrically symmetric pulse which is Gaussian in
2 2
~ r .
the longitudinal and transverse coordinates, @ = exp (—2ln(2)§rz> exp (—2>. We have far behind
1% w,
8 0

such a laser driver:

T 0T B “’1%752 _27r2 .
o(r,¢)= n(2) ag g exp ( Teln 2)> exp < w% sin(k,{) (1.48)
gy [ 2@t O 2
E.(r,§)=Ey n(2) ag g exp ( T6In(2 )> exp < W% cos(k,() (1.49)
- _ T Yt )T r 27
E.(r,{)=—Ep 1n(2) 02w0 exp ( 16ln(2)> e exp ( W% > sin(k, () (1.50)
2

L . 1 27 ENA
on(r,§) =no ln(2)a0 g exp( el (2)>exp< W%>sm(kpé) l—i—wgk% 1 w% (1.51)

Where r is the transverse cylindrical coordinate and Ey = m.c®, /e. The electrostatic accelerating struc-
ture resulting from the propagation of a Gaussian beam in an underdense plasma possesses a longitudi-
nal component E, that can accelerate electrons and a radial component E, that can confine the electrons
on the r = 0 axis. The field is both accelerating and focusing for a quarter of the plasma period, which
can result in high-quality accelerated electron beams.

The amplitude of the accelerating field is plotted in figure 1.5 in the case of (a) constant laser pa-
rameters, (b) constant density and laser amplitude or (c) constant density and laser pulse energy. As
expected, for given laser parameters, there is a density for which wakefield generation is optimal. The
resonance condition reads mathematically for such a Gaussian pulse:

0,7 =44/In(2) =~ 3.33 (1.52)
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Figure 1.5: (a) Amplitude of the longitudinal electric field E, of the plasma waves in the linear regime as a
function of plasma density for a 24-fs pulse with Gaussian envelope and ag = 0.1. The resonant density
in this case is n, = ne,.; = 6 x 1018 cm=3, which corresponds to n./300 for a wavelength of 800 nm. In
(b), E, is plotted at the density n,,., as a function of pulse duration for a constant laser amplitude of ay =
0.1. The resonant duration is here 17.3 fs. In (c), E, is plotted at the density n.,.; as a function of pulse
duration for a constant laser pulse energy (aﬁr is kept constant). The constant is chosen so that ay = 0.1
at24 fs.

Similarly, for given values of ag and n,, there is a pulse duration for which the E; field is maximum. The
resonance condition in this case is?:

®,7T =24/2In(2) ~2.35 (1.53)

In both cases, the resonance condition signifies that plasma wave formation is optimal when the pulse
duration is approximately half a plasma period. Long pulses efficiently excite wakefields in low-density
plasmas while short pulses are better suited to high-density plasmas. For instance, for a wavelength of
800 nm, the resonant density is ~ n./300 for 24-fs pulses and ~ n./12.5 for 5-fs pulses®. We can also
point out that the resonance is rather broad and thus that wakefields can still be formed outside of these
specific densities.

In experiments, the pulse duration is usually varied at a constant pulse energy. In this case there is
no longer a resonance since decreasing the pulse duration always result in a stronger wakefield, as can
be seen in figure 1.5(c). This is of course because the laser amplitude ag increases as the pulse duration
is reduced*. In any case, an important result is that a laser pulse cannot efficiently drive wakefields in a
plasma whose density is much greater than the resonant density. This means in particular that few-cycle
pulses are required to excite plasma waves in near-critical density plasmas.

2Sometimes, the resonance is defined as the maximum of E, /E, rather than E,. This leads to a single resonance condition,
given by equation 1.53, instead of two different resonance conditions (equations 1.52 and 1.53) here. The difference comes
from the fact that Ey depends on ®,.

30f course this last value is not perfectly accurate because the assumption @ >> 271/t used in the derivation of the pondero-
motive force is not verified for few-cycle pulses. This model nonetheless provides a good estimation of the resonant density.

4Once again the model breaks for very short pulses. This is even more true in this case because the linear assumption
a(z) < 1is no longer valid as the pulse duration approaches 0.
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1.3.2 The nonlinear regime

In the linear regime (a?J < 1), the plasma is only slightly perturbated by the driving laser, which has
allowed us to linearize the fluid equations and results in a sinusoidal response of the plasma. This is no
longer the case in the nonlinear regime (ag > 1). The nonlinear regime can still be studied analytically
using a cold fluid model neglecting the ion motion but this time in one dimension only. In this model, which
is not detailed in this manuscript, a nonevolving laser pulse is assumed (the quasistatic approximation)
to obtain the differential equation® verified by the normalized electric potential ¢ [43, 44]:

-1/2
s 1+ (aoa)?/2
a—cz_kpyg By <1—y§(1+¢)2 ~1 (1.54)

Where B, = vg/c and ¥, = 1/4/1—B2. Equation 1.54 is usually solved numerically. This is done
in figure 1.6, which shows the normalized potential, longitudinal electric field and density perturbation
generated by a 5-fs pulse near the resonant density in the linear (ap = 0.25) and the nonlinear regimes
(ag = 2.3, corresponding to the Salle Noire laser). As expected, in the linear regime these quantities
evolve sinusoidally and the density perturbation remains small (8, < ng). On the other hand, the fields
become distorted in the nonlinear regime and we observe the formation of sharp density peaks whose
value can reach several times the initial density. We also note that the effective plasma period tends
to increase in the nonlinear regime. There is still a resonance, as is illustrated in figure 1.7. Even
though the resonant values may slightly change, the main trends found in the previous section still hold
in the nonlinear regime, even for few-cycle pulses with relativistic intensities which can in principle not be
described by the 3D linear model.

There is no general analytical model to study the formation of plasma waves in 3 dimensions in the
nonlinear regime. PIC simulations are thus generally used to study this process. When transverse effects
are included, the formation of plasma cavities entirely void of electrons (meaning that 8, = —ng) is ob-
served. This is known as the blowout or bubble regime, because the cavity usually has an approximately
spherical shape. A typical density perturbation map in the blowout regime is shown in figure 1.8(b). The
bubble provides an ideal structure for accelerating electrons, with fields that are both accelerating and
focusing over nearly half a plasma wavelength. It has led to the first demonstration of laser wakefield
acceleration of a high-quality electron beam with a narrow divergence and energy spread [16, 17, 18].
The formation of the ion cavities occurs when the intensity of the laser is high enough to expel all the
electrons from the optical axis (ay > 2 is commonly required) and when both the pulse transverse and
longitudinal sizes are matched to the plasma wavelength [45]:

T 2L~ )2 (1.55)

V2
1.3.3 Injection methods

In the previous sections, we have presented how a laser pulse can generate a plasma-based accelerating
structure. We have however not described how electrons can be trapped by the structure and accelerated

5Note that equation 1.54 is also valid without averaging the laser normalized magnetic potential over the fast oscillations, i.e.
using @* cos?(k¢) instead of a2 /2. However, we have used the averaged potential in the images presented in this manuscript.
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Figure 1.6: (a)-(b) Normalized potential, (c)-(d) longitudinal electric field and (e)-(f) density perturbation of
the plasma waves driven by a 5-fs pulse with (a),(c),(e) ap = 0.25 or (b),(d),(f) ap = 2.3 in a plasma with
density n, = 1.4 x 10°°cm™3 (n./12.5 for A = 800 nm) according to the 1D nonlinear theory of wakefield
generation (eq. 1.54). The red curve shows for reference the electric field envelope a(&) in arbitrary units.
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Figure 1.7: (a) Amplitude of the longitudinal electric field E, of the plasma waves in the nonlinear regime
as a function of plasma density for a 5-fs pulse with Gaussian envelope and ay = 2.3. The resonant
density in this case is 2 x 10°° cm~3, which corresponds to n. /8.7 for a wavelength of 800 nm. In (b), E,
is plotted at a density of 1.4 x 10°°cm™3 as a function of pulse duration for a constant laser amplitude
of ag = 2.3. The resonant duration is here 3 fs. In (c), E. is plotted at a density of 1.4 x 102°cm™ as a
function of pulse duration for a constant laser pulse energy (a(z)r is kept constant). The constant is chosen
so thatay = 2.3 at 5 fs. The red dashed lines show the corresponding curves obtained with the linear
model. The difference between the red and blue curves is due to assumptions made in the linear model
(ag < 1 and @, < @) which are not verified here. In (c) the value of the electric field is not given for very
short pulse durations because of numerical difficulties when integrating equation 1.54 near the density
peaks.

to high energies. The injection of electrons into the wakefields usually cannot be studied with a fluid model
because the accelerated electrons follow a significantly different trajectory from the fluid electrons making
up the plasma waves.

An electron can gain energy if it remains for a long time in an accelerating phase of the wakefield.
Since the accelerating structure propagates at a speed close to ¢, an electron can only be trapped in
an accelerating phase if it rapidly acquires a relativistic velocity in the direction of propagation of the
laser. This may happen spontaneously (self-injection of the hot plasma electrons or by wavebreaking)
but a dedicated technique is often employed to trap electrons [47]. We can cite in particular the use of
a second laser pulse [48] or of an externally produced electron beam [49]. We focus in this section on
two specific injection methods, ionization injection and injection in density gradients, because they will be
useful later on in this manuscript.

1.3.3.1 lonization injection

In this method [50, 51], the trapped electrons are generated by field ionization (see section 1.2.1) by
the strong electric fields at the center of the laser pulse. These electrons therefore originate from ions
with high ionization energies. The idea of this technique is that some electrons are generated at the
right phase of the wakefield (the optimal phase corresponds to electrons starting with an accelerating
half-cycle) and are thus more likely to be trapped than electrons created early in front of the laser. A
mathematical description of ionization injection can be found in [52].

This method can be achieved in practice by adding an adequate chemical element into the gas



26 Chapter 1. Overview of laser-driven electron acceleration
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Figure 1.8: lllustration of the normalized density perturbation J,/ny in (a) the linear regime and (b) the
bubble regime. Images taken from [46].
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Initial ion state | lonization energy | Barrier suppression intensity
N 145 eV 1.77 x 104 W /em”
N+ 29.6 eV 7.68 x 10'*W /cm?
N2+ 47.7 eV 2.30 x 1015 W /em?
N3+ 77.4 eV 8.97 x 10'5W /cm?
N4+ 97.9 eV 1.47 x 10'°W /cm?
N3+ 552 eV 1.03 x 10" W /em?
NO+ 667 eV 1.62 x 10"°W /ecm?

Table 1.3: lonization energies of nitrogen and corresponding barrier-suppresion ionization intensites. The
ionization energies have been obtained from the NIST Atomic Spectra Database.

target. Let us consider as an example the case of nitrogen, which is commonly used for this purpose.
The ionization energies of nitrogen and the corresponding barrier suppression intensities are given in
table 1.3. For a relativistic laser driver (I > IOISW/cmZ), the electrons generated from N to N** will be
ionized at the very front of the laser. Most of them will be part of the fluid electrons forming the plasma
waves. On the other hand, the N°>* and N ions have a high ionization energy and can therefore
only be ionized at the temporal center of the laser pulse. Some of their electrons will be created at the
appropriate phase of the wakefield and will become trapped. In experiments, the total accelerated charge
can be controled by adjusting the percentage of nitrogen (or any other appropriate element) in the gas
target.

1.3.3.2 Injection in density gradients

In this method [53], the target density profile is tailored in order to locally reduce the phase velocity
of the plasma waves and thus facilite the injection of plasma electrons into the wakefields. We briefly
describe in this section the standard theory of plasma wave formation in a density gradient. We work
in the linear regime and assume that the plasma density ny only depends on the longitudinal coordinate
z. Additionally, we use the fact that @ > , in the linear model to neglect the longitudinal variation of
the group velocity: v¢ &~ ¢ everywhere. In this case, only the dependence of k, on z must be taken into
account in the equation 1.42 verified by the normalized potential ¢ within the quasistatic approximation:

2 212
<a+¢@0¢:a&5d# (1.56)

In the case of a homogeneous plasma, k, is constant and we have seen that solutions to this equation
are of the form @ sin(k,(z — v,t)) behind the laser driver (see equation 1.46). Thus, we can assume as
a first approximation that solutions to equation 1.56 are of the form:

¢ = ¢o(z)sin(k,(z)(z— vet)) (1.57)

Such an approximation is reasonable if the plasma density gradient scalelength L is much larger than
the plasma wavelength: k,(z)L > 1. In this case, the phase of the plasma wave can be defined as
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@ =k, (2)(z—vqt). The effective frequency @,y and wavenumber k¢ of such a wave are:
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The density gradient leaves the frequency unchanged but adds an additional time-varying term to the
plasma wavenumber. The phase velocity of the wakefield is given by @, rs/k.rr and reads:

.
_ 8
v(p_—1 T (1.60)
+ k, dz

Behind the laser pulse, we have z — vt < 0. In a density downramp such that %i; < 0, the effect of the
density gradient is a decrease in the local phase velocity. This decrease is time-dependent: the further
away from the laser, the slower is the phase velocity. A negative density gradient can thus greatly facilitate
electron injection, which occurs whenever the wakefield is slow enough to trap the hot plasma electrons.

1.3.4 LWFA in experiments

Laser wakefield accelerators have been operating successfully in the past decades and accelerating
gradients exceeding 100 GV/m - more than 3 orders of magnitude higher than those achievable with
conventional accelerators - have been attained, thus enabling relativistic acceleration over very short
distances. Nevertheless, plasma-based accelerators are still not routinely used for scientific, industrial or
medical applications. This is largely due to the fact that relativistic laser plasma interactions rely on many
competing and complex nonlinear phenomena, which can limit the stability, tunability and quality of the
generated electron beam. For instance, we have assumed in the previous sections that the driving laser
pulse does not evolve during its propagation in the plasma. This is not the case in practice and many
effects coming from the retroaction of the plasma on the laser (dispersion, self-modulation, relativistic self-
focusing, ionization induced defocusing, etc.) must be taken into account in experiments. Still, significant
progress have been made over the past 25 years, owing to the development of laser technology, the
better understanding of the interaction and the development of adequate diagnostics [54].

Significant efforts are made to increase the accelerated electron energies, with the ultimate objectives
of using the electron beam in free-electron lasers or in particle colliders. High energies are usually
attained in the linear regime in low density plasmas. Low-densities are required so that the group velocity
of the laser (and thus the phase velocity of the plasma waves) remains very close to ¢, which prevents the
electrons from overtaking the wakefield. The diffraction of the laser pulse can be compensated by using
preformed plasma channels, which can guide the laser over tens of centimeters and large laser energies
(tens of joules) are required to sustain the accelerating structure over such long distances. As of today,
the highest published electron energy is 8 GeV [19], which has been achieved using 30 J, 35 fs laser
pulses over an acceleration distance of 20 cm. Higher electron energies can be expected in the future
from further progress in laser technology and from the sought-after use of multiple acceleration stages.

Laser-plasma accelerators are also attractive for their potential use in ultrafast science, since they
can generate femtosecond-duration electron beams and secondary radiations which are inherently syn-
chronized with the driving laser. We can cite in particular the betatron radiation emitted as the trapped
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Figure 1.9: Images taken from [56]. (a) Angular distribution and (b) energy spectrum of electron beams
accelerated in the bubble regime in Salle Noire. The charge in this case is ~ 100 fC, but electron bunches
containing up to ~ 10 pC have also been obtained [57], albeit with lower energies.

electrons oscillate in the wakefield [55] which could provide a compact and inexpensive source of ultra-
short X-ray pulses.

Directly using the wakefield accelerated electron beams for ultrafast imaging (for instance as a probe
in ultrafast electron diffraction) would require electrons with few-MeV energy, which is lower than what is
commonly obtained. The scaling laws for the bubble regime [45] show that high-quality electron bunches
with few-MeV energy can be obtained in high-density plasmas (~ n./10 at 800 nm) with tightly focused,
few-mJ and few-cycle drivers, i.e. with parameters corresponding to the Salle Noire laser. Pioneering
results have indeed recently been obtained in Salle Noire [56, 57] in which the acceleration of few-MeV,
few-degrees wide, pC electron beams over very short distances (tens of microns) are demonstrated. An
example of beam angular distribution and energy spectrum is shown in figure 1.9. The duration of the
electron bunch immediatly after the interaction is estimated from PIC simulations to be approximately 1 fs.
Such an electron beam has great potential for ultrafast science, especially because the experiments are
performed at a kHz repetition rate thanks to the use of a limited laser driver energy (few-mJd). Using high
repetition rates is indeed desirable in many applications since it improves the data collection statistics.
Research regarding the development and optimization of both the laser system and the gas targets is
still ongoing in order to improve the stability and quality of the electron beam, with the final objective of
performing ultrafast electron diffraction experiments with sub 10-fs resolution.

1.4 Electron acceleration from overdense plasmas

High-energy electron bunches are also generated when a laser pulse is focused to relativistic intensi-
ties on a solid-density target. However, the physics of electron acceleration has been less studied for
overdense plasmas than for underdense plasmas. This is partly due to the fact that laser wakefield ac-
celeration in underdense plasmas has demonstrated better electron beam quality than what has been
achieved from solid targets, thus sparking more interest. Another reason is that the interaction between
a laser and an overdense plasma strongly varies depending on the density profile at the interface be-
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tween the plasma and vacuum. The density gradient scalelength L is in particular a key parameter of
the interaction. It is however very challenging to control experimentally, since it requires extremely high
temporal contrast, which has hampered the interpretation and understanding of many experiments. For
a very sharp plasma-vacuum interface (L < A), the physics of electron emission from the plasma is now
fairly well understood and will be described in section 1.4.2.1. The ejection of electron in this case is
closely related to the emission of high-harmonics, which will be briefly reviewed in section 1.4.3. On the
contrary, there is no unified theory describing the acceleration of electrons when the gradient scalelength
exceeds the laser wavelength and there is therefore a need for a better understanding of the interaction
in this regime.

1.4.1 Basics of laser-overdense plasma interaction
1.4.1.1 Laser reflection on an overdense plasma

As we have seen in section 1.2.3, when a laser pulse impinges on an overdense plasma, the collective
electron response results in a cancellation of the electromagnetic fields inside the plasma and in a spec-
ular reflection of the laser. In practice the vacuum-plasma boundary is not entirely abrupt and the plasma
usually has a density gradient on its front surface. This density gradient, sometimes referred to as a
preplasma, is either due to the rising edge of the laser or created on purpose using a separate pulse,
called a prepulse. In the presence of a preplasma, the main laser pulse can propagate up to a point
where it is reflected. The density n,.r at which reflection occurs can be obtained from the total internal
reflection condition:

N(l’lref) = sin9,~ (1.61)

Where N(nref) is the refractive index at the density n,.r and ; is the incidence angle of the laser on the
target, as defined in figure 1.10. The refractive index in a plasma is given by equation 1.25 and reads:

o
N(npes) = 41— =L (1.62)
ne
We deduce from the two previous equations the plasma density at reflection:
Nyef = N cos’ 0; (1.63)

The interaction heavily depends on the polarization state of the laser pulse. In the case of linear po-
larization and oblique incidence, we say that the laser is p-polarized if its electric field is in the incidence
plane while its magnetic field is oriented in the y direction and that the laser is s-polarized if its magnetic
field is in the incidence plane while its electric field is in the y direction. P-polarization usually results in a
stronger coupling between the laser and the plasma because part of the electric field is directed towards
the density gradient, which can easily cause charge separations. Unless specified otherwise, we will
consider p-polarized pulses throughout this manuscript.

Using the coordinate system defined in fig 1.10, we also introduce the following common geometric
directions:

e The normal direction is the direction of the density gradient. It is parallel to the x-axis.
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Figure 1.10: lllustration of the interaction between a laser pulse and an overdense plasma with a density
gradient on its front surface. The laser propagates in an underdense plasma until it is reflected at the
density nyey = ne cos2 0;, where 6; is the incidence angle of the laser.

e The specular direction is the direction of propagation of the reflected laser pulse. It is parallel to
the line z = xtan 6;.

e The grazing direction is the positive z-direction. It is perpendicular to the density gradient.

1.4.1.2 Importance of the gradient scale length

Itis almost always assumed that the density in the preplasma only depends on the x-coordinate, although
this 1D hypothesis might not always be valid, especially when the plasma is created by the rising front of
the laser pulse itself. Most commonly, an exponential density profile is chosen:

(1.64)

nMAXexp(—x/L) if x>0
ne(x) =
nMAX if x <0

Where x is the coordinate in the direction of the density gradient defined in fig 1.10, nyax is the maxi-

v -1
mum plasma density, which is usually in the range 100n, — 400n, for solid targets and L = <\ne|>
ne

is the gradient scale length. The exponential density profile, plotted in figure 1.11, comes from a simple
isothermal model of preplasma expansion that will be described in section 3.1.1. As it turns out, the
gradient scale length L is a key parameter that can drastically change the interaction. It has a critical
impact on laser absorption by the plasma [58, 24], electron acceleration [24, 59], high-harmonic gener-
ation [24, 26, 59] and ion acceleration [60]. The effect of the gradient scale length on the shape of the
reflected pulse in 2D PIC simulations is shown in figure 1.12. When no preplasma is present (L = 0), the
laser is simply reflected specularly and its shape remains unaffected. In this case, the plasma behaves
as a perfect conductor and is often called a plasma mirror. When a sharp density gradient with L =1 /7
is introduced, the laser pulse is still specularly reflected and mainly unaltered by the plasma, although
significant high-harmonic generation is observed. The term plasma mirror is still commonly used in this
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Figure 1.11: Preplasma exponential density profile given by equation 1.64

regime. On the other hand, when a large preplasma with L = 2 is present, the reflected pulse is strongly
distorted. A temporal chirp is observed since lower frequencies are reflected earlier (1. o< ?). The term
plasma mirror is not appropriate in this case. Consequently, we only use the term plasma mirror in this
manuscript to refer to overdense plasmas with very sharp (L < A) density gradients on their front surface.

Since the gradient scale length is a crucial parameter, it must be controlled in experiments. However,
this can only be achieved using laser pulses with extremely high temporal contrast. If the contrast is not
high enough, the target is ionized very early in front of the laser pulse which initiates an uncontrolled
plasma expansion. Multiphoton ionization typically starts when the intensity exceeds 100 — 10! W /cm?
which means that for a relativistic intensity laser driver (I > IO]SW/sz), a temporal contrast higher
than 10'? is usually required to supress unwanted preplasma expansion caused by the main pulse. This
value is particularly difficult to attain experimentally. As a result, many experiments have been performed
without precisely knowing the gradient scale length during interaction, which makes their interpretations
difficult. This has made the literature somewhat unclear, with a wide variety of experimental results [61],
and has considerably hindered the understanding of the physics involved.

Once the laser contrast is high enough, the standard way to adjust the gradient scale length in exper-
iments is to add a spatially overlapped prepulse which is responsible for ionizing the target and triggering
the preplasma expansion. The prepulse must precede and be perfectly synchronized with the main pulse.
Then, the gradient scale length during the interaction can be varied by changing the delay between the
two pulses. A short delay leads to a sharp plasma-vacuum interface while a larger value for the delay
results in longer preplasma expansion. The relation between the prepulse lead and the gradient scale
length can be obtained by performing interferometric measurements [62, 63]. The prepulse usually has
a weaker intensity than the main pulse, on the order of 10'* — 10'5W/cm?, and is focused to a much
larger spot size, so that the plasma during the interaction is transversely homogeneous. The expansion
of the plasma during the experiments carried out in Salle Noire and the corresponding estimated density
profiles during interaction will be studied in more details in section 3.1.

1.4.1.3 Electron heating mechanisms

In this section, we introduce 3 laser absorption mechanisms that are frequently mentioned in the literature.
Brunel absorption / Vacuum heating
This mechanism [64] occurs for p-polarized pulses at oblique incidence when the gradient scale length is
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Figure 1.12: Results from 2D PIC simulations. (a) Magnetic field of a 5-fs laser pulse with A = 800
nm, wo = 1.5um and ag = 2.15 impinging on an overdense plasma with a 45° incidence angle. (b)-
(d) Magnetic field of the reflected pulse for L =0 (b), L= A/7 (c) and L =2A (d). The position x =0
corresponds here to the point where the plasma starts in the simulations, with a density ofn./20. Detailed
simulation parameters are provided in appendix B.
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Figure 1.13: Schematic illustration of vacuum heating. Brunel electrons (in green) originating from the
plasma surface are pushed in vacuum during half a laser cycle by the laser. They then penetrate the
plasma bulk where there is no laser field and they deposit their energy to the plasma through collisions.

much shorter than the quivering amplitude of the electrons oscillating in the laser field. Brunel absorption
is thus relevant for high laser intensities and sharp density gradients. In this case, the electrons on the
surface of the plasma are pulled out into vacuum at every optical cycle by the normal component of the
laser electric field (E,). When the sign of the laser Lorentz force changes, the electrons are pushed back
into the plasma bulk where the laser field is screened. They can then propagate ballistically inside the
target and deposit their kinetic energy (acquired from the laser field) to the plasma via collisions. These
hot electrons travelling into the plasma after spending half a laser cycle in vacuum are known as Brunel
electrons. Vacuum heating is illustrated in figure 1.13.

J x B heating
At normal incidence, Brunel absorption can no longer occur because the electric field has no component
direct towards the density gradient. However, for relativistic lasers, the v x B term in the Lorentz force
can push the electrons into the bulk of the plasma where they escape the laser field. Then, as in the
previous case, this population of hot electrons deposit their energy in a collisional manner. This process
is known as J x B heating [65].

Resonant absorption
Resonant absorption [66] corresponds to the resonant excitation of plasma waves when the laser fre-
quency matches the plasma frequency (@ = @,, or equivalently n.=n.). Resonant absorption requires
a normal electric field component to generate the charge separation that will trigger the plasma waves
and can thus only occur for oblique incidence and p-polarization. Since the laser is reflected in this case
at n.cos? 6;, before reaching the critical density, it is the evanescent laser field inside the plasma that
causes resonant absorption.
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Figure 1.14: Schematic illustration of the acceleration of electrons (in green) from an overdense plasma
in the backward direction.

1.4.2 Electron acceleration in the backward direction

We consider in this section the acceleration of electrons in the backward direction of an overdense target,
as illustrated in figure 1.14. Electrons may also be accelerated in the forward direction when thin targets
are used (this is in fact essential for most ion acceleration experiments), but we will only consider in
this manuscript electron acceleration in the backward direction from thick targets. Even though electron
acceleration experiments on thick solid targets with sub-100-fs relativistic intensity pulses have been
performed more than 15 years ago [67], the mechanisms responsible for accelerating the electrons are
well understood only in the case of very sharp gradients (L < A). This is largely due to the lack of control
on the preplasma in many experiments.

1.4.2.1 Electron acceleration at short gradients

We first consider the case of short gradient scale lengths (L < A). The ejection of energetic electrons
from the plasma in this regime has been fully described in [23, 61] using theory and PIC simulations
in a 1D geometry (i.e. for an infinitely wide laser driver). We summarize this process in the following
paragraphs.

When no density gradient is present on the front surface (L = 0), it is found that electrons are only
ejected from the plasma if ag > nyax /n.. For plasmas originating from solid targets, we usually have
nyax > 100n.. This means that, for present-day laser drivers with ag < 100, electrons cannot be ejected
from a solid-density plasma with a step-like density profile. In this case, the electrons at the surface of
the plasma have Brunel-like trajectories (see fig. 1.13). This is mainly due to the gyromagnetic effect [68]:
when electrons are pulled out of the plasma by the laser electric field, the magnetic force tends to rotate
these electrons back into the plasma.

The gyromagnetic effect can be overcome if strong electrostatic fields at the plasma surface help elec-
tron ejection. Such electrostatic fields become significant when decreasing the plasma density (hence
the condition ap > nyax /nc) or when adding a density gradient in front of the plasma. We will focus on
the latter case since a plasma with a density gradient is easier to produce experimentally than a plasma
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Figure 1.15: Image taken from [23]. Snapshot from a 1D PIC simulation showing the ion (grey) and
electron (red) density profile during the interaction of a laser with ay = 8 and a plasma with an exponential
density profile and L = A /16 at 45° incidence.

with a step-like density profile and a density of a few n.. Figure 1.15 shows a snapshot from a 1D PIC
simulation of the interaction between a laser with ag = 8 and a plasma with an exponential density profile
and L = A /16. An important result is that, while the ions remain immobile, the surface electrons tend to
regroup into a sharp density peak which oscillates following the sign of the laser field. The electrostatic
field resulting from this charge separation is of great importance in the electron ejection process.

With these elements in mind, electron ejection from the plasma can be described with a two step
push-pull mechanism, which is illustrated in figure 1.16. In the first step (the push phase), the normal
component of the electric field of the laser E, pushes electrons inside the plasma, creating a sharp density
peak. As the electron density peak is pushed deeper into the density gradient, the immobile ions create a
large restoring static field, resembling a plasma capacitor. The second step (the pull phase) starts when
the sign of the electric field switches. Both the laser and the static field then work together to pull the
electrons out of the plasma. If most electrons eventually return to the plasma, a small fraction of the
electrons inside the density peak (< 1%) gain enough energy from the plasma capacitor to escape from
the plasma.

This process is in principle repeated for every cycle of the laser with a strong enough electric field
in the density gradient direction. This results in a train of attosecond electron bunches at the exit of
the plasma. It should be noted however that the ejected charge can significantly change between two
consecutive cycles, meaning that electron ejection in one period can impact following periods in a non
trivial way. In particular, with ~25 fs pulses, it is not uncommon that most electrons are ejected before
the temporal center of the pulse where the electric field is the strongest. This particular case can be
explained by the fact that the charge separation induced by the ejection of electrons tends to prevent
further electrons from escaping from the plasma.

An important feature of this mechanism is that electrons are ejected with a high velocity at a zero of
the laser field. As will be seen in section 1.5, these are ideal conditions for the electrons to gain energy
from their interaction in vacuum with the reflected laser field [27].

The push-pull mechanism requires a density gradient so that the plasma electrostatic field become
substantial. However, if the gradient scale length is too large, the electrons no longer form a sharp density
peak and the mechanism breaks. Electron acceleration at short density gradients is optimal when L is on
the order of 1 /10 for a 45° incidence angle. In this regime, the electrons are emitted around the specular
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Figure 1.16: lllustration of the push-pull mechanism. In the push phase, the laser force pushes electrons
inside the plasma while the immobile ions create a restoring plasma force. This results in an electron
density peak. In the subsequent pull phase, both the laser and plasma force pull the electrons towards
vacuum. Some of the electrons in the density peak are ejected in the process. Image taken from [61].

direction, with an angular distribution that is strongly impacted by the interaction of the electrons with the
reflected laser pulse (see section 1.5.1.5).

1.4.2.2 Electron acceleration at long gradients

For longer gradient scale lengths, the mechanisms responsible for electron ejection are not that well un-
derstood. In recent experiments carried out at CEA Saclay [24] with a precise control of the preplasma,
a transition from the push-pull mechanism to stochastic heating by the interference pattern formed be-
tween the incident and reflected pulse is found to occur when the gradient scale length exceeds A /4 at
45° incidence. The gradient scale length at the transition decreases when the incidence angle increases.

Numerous experiments have been performed with a contrast such that the gradient scale length dur-
ing the interaction is even larger (L ~ A or greater). Many have reported on the emission of relativistic
electrons bunches, meaning that there are probably other electron acceleration mechanisms at play in
this regime. However, due to the lack of precise control and knowledge of the preplasma density profile,
there is a wide disparity of experimental results and if many mechanisms have been proposed (includ-
ing resonant absorption [69, 70], ponderomotive acceleration [67], acceleration by surface quasistatic
fields [71], laser wakefield acceleration [70, 72] or direct laser acceleration® [74, 75, 76)), it is still un-
clear which ones actually arise in experiments and the precise experimental conditions under which they

Note that direct laser acceleration corresponds here to the acceleration of electrons oscillating in a plasma channel under
the combined action of laser and plasma fields, as initially described in [73]. It is different from the acceleration of electrons by
a laser pulse in vacuum, which will be described in section 1.5.
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appear are not known. There is therefore a need for a better understanding of the interaction at long
gradients, which requires experiments with a better control of the preplasma density profile.

1.4.3 High-harmonic generation

We give in this section a quick introduction to the two main mechanisms responsible for the emission
of high-harmonics from overdense plasmas. Even though this is not the main topic of this thesis, high-
harmonic generation is closely linked to electron acceleration in the short gradient regime and can provide
a useful probe of the interaction. Unlike electrons, high-harmonics are only emitted at short gradients [24]
(L < A). Both the Coherent Wake Emission (CWE) and the Relativistic Oscillating Mirror (ROM) mech-
anisms will be briefly discussed in the following. For more details, a tutorial review on high-harmonic
generation from plasma mirrors can be found in [29].

1.4.3.1 Coherent Wake Emission (CWE)

Coherent Wake Emission is the dominant high-harmonic generation mechanism at nonrelativistic inten-
sities (ag < 1). Itis caused by hot Brunel electrons (see section 1.4.1.3) propagating towards the plasma
bulk. Brunel electrons returning earlier to the plasma tend to have a lower velocity than electrons reaching
the plasma surface at a later time. As a result, the different electron trajectories will cross which results
in the formation of an electron density peak. This density peak then triggers plasma waves which radiate
coherently at the local plasma frequency. Since the whole process is repeated at every laser period, it
leads to high-harmonics in the frequency domain. The maximum emitted frequency corresponds to the
maximum plasma frequency and reads:

npAx
WcWEMAX = Dlaser T (1 65)
V c

This frequency typically corresponds to a maximum harmonic order Wew g/ Wq5er ranging between 15
and 20.

The CWE mechanism is significant for gradient scale lengths ranging between approximately A /100
and A/15. This is lower than the gradient scale length required for electron ejection (L ~ A/10).
This means that electron and high-harmonic emission cannot occur simultaneously in the nonrelativistic
regime, as was observed experimentally in [59].

1.4.3.2 Relativistic Oscillating Mirror (ROM)

The Relativistic Oscillating Mirror mechanism is the domimant high-harmonic generation mechanism in
the relativistic regime. As we have seen in section 1.4.2.1 when a high-intensity laser is focused on an
overdense plasma with an abrupt density gradient, a sharp electron density peak is formed while the
ions remain mostly immobile. This density peak oscillates driven by the normal component of the laser
electric field. If the laser has a relativistic intensity (ap > 1), these oscillations are strongly nonlinear and
the electrons in the density peak radiate at high frequencies. Once again, since this process is repeated
periodically, it leads to the generation of high-harmonics of the laser pulse in the frequency domain.

This mechanism is called the Relativistic Oscillating Mirror. lts name comes from the fact that the
oscillating electron density peak can be seen as a mirror reflecting the incident pulse. At the times
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Figure 1.17: Snapshot from a 1D PIC simulation showing the reflected magnetic field (red) and ejected
electron density (blue) at the plasma edge after the interaction of a laser withag =5 and t =24 fs and a
plasma with an exponential density profile and L = A /8 at 45° incidence. We observe the simultaneous
emission of high-harmonics via the ROM mechanism and attosecond electron bunches through the push-
pull mechanism. It can be observed that the charge contained in each electron peak significantly varies
from one cycle to the next. Image taken from [23].

when the mirror moves with a relativistic velocity towards vacuum, the frequency of the reflected pulse is
strongly Doppler upshifted, thus leading to high frequencies.

We note that the process leading to electron ejection via the push-pull mechanism and high-harmonic
generation through the ROM mechanism is essentially the same. In both cases, the emission comes from
the nonlinear oscillation of the electron density peak. At every laser period, when the sign of the electric
field switches, the density peak is pulled by both the laser field and the plasma static field towards vacuum
and quickly reaches a relativistic speed. The electrons in the peak then radiate, forming an attosecond
electromagnetic pulse, and a small part of them will be ejected from the plasma, forming an attosecond
electron bunch. This means in particular that the ROM mechanism is efficient for the same gradient scale
lengths as electron acceleration, typically around A /10. Thus, unlike in the nonrelativistic regime, elec-
trons and harmonics can be emitted simultaneously when ag > 1. This was confirmed experimentally [24]
and is illustrated in figure 1.17, which has been obtained from a 1D PIC simulation.

1.5 Vacuum Laser Acceleration

When electrons are ejected from a plasma mirror by the push-pull mechanism presented in the previous
section, they later interact with the reflected laser pulse and can even gain energy from it. The possibility
of accelerating electrons directly from the laser fields has attracted considerable attention in the past
decades. Indeed, many theoretical [77, 78, 79, 80, 81, 82] and numerical [83, 84, 85, 86] studies have
been carried out with the prospects of understanding this fundamental interaction and profiting from the
immense accelerating fields involved, that can exceed 10 TV/m - 2 orders of magnitude higher than
what is commonly achieved in laser wakefield accelerators. However, if directly using the laser fields
is conceptually the simplest method to accelerate electrons with lasers, it is not the easiest to achieve
experimentally. This is because electrons are only efficiently accelerated when they remain for a long
time in an accelerating phase of the laser pulse, which is challenging to accomplish.
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We present in section 1.5.1 the main theoretical and experimental results regarding the acceleration
of electrons by a linearly polarized laser field. In particular, we expose the conditions leading to an
efficient accelerations and we show that plasma mirrors naturally fulfill these conditions and can thus
serve as ideal injectors to achieve electron acceleration in the reflected laser pulse. In section 1.5.2, we
present previous theoretical, numerical and experimental results concerning radially polarized beams,
which possess an ideal structure for accelerating electrons in vacuum. The acceleration of electrons
injected by a plasma mirror into a laser pulse with radial polarization will eventually be the main subject
of chapters 4 and 5.

1.5.1 Vacuum Laser Acceleration with linear polarization
1.5.1.1 Acceleration principle

Let us consider a laser propagating along the z direction which is linearly polarized such that the electric
field oscillates in the x-direction (E = Ee,) while the magnetic field oscillates in the y-direction (B =
E/cey). It might seem conterintuitive that such a laser can accelerate electrons in vacuum along the
longitudinal direction z, given that the accelerating E field is directed towards the transverse direction
x. Indeed, in the nonrelativistic regime (B, < 1, where B, = |v,|/c is the electron velocity relative to
the speed of light), the laser will only make electrons oscillate in the polarization direction at the laser
frequency, but cannot induce an acceleration in the longitudinal direction. On the other hand, in the
relativistic regime the magnetic force must be taken into account and can lead to an acceleration in the
longitudinal direction. To illustrate this acceleration principle, let us consider an electron moving with
relativistic speed mainly along the direction of propagation of the laser pulse. This electron is subject to
the electric force Fr = —e E and to the magnetic force Fg = —ewv, X B. Three cases can be considered.

The first case, illustrated in figure 1.18(a), corresponds to an electron moving exactly along the z-axis.
In this case, the electric and magnetic forces have opposite directions but the magnetic force is weaker by
a factor 3, which results in a total force with magnitude (1 — 3,)|e E| oriented towards — E. The electric
force dominates in the nonrelativistic regime while the magnetic force virtually compensates the electric
force in the ultrarelativistic regime. The net effect of the laser in this case is a deflection of the electron in
the transverse direction.

The second case, illustrated in figure 1.18(b), corresponds to an electron moving with an angle 6,
with respect to the z-axis in the direction of the electric force. Compared to the previous case, the electric
force is still oriented along the x-axis but the magnetic force is rotated so that it remains perpendicular
to the velocity. The resulting total force induced by the laser tends to increase the electron momentum
both in the z-direction and the x-direction: the electron gains energy. Such an electron is said to be in an
accelerating phase of the laser. Several points can be noted:

e Only the electric force does work, while only the magnetic force has a component in the longitudinal
direction. The acceleration process can thus be seen as the laser electric field providing kinetic
energy to the electron in the transverse direction while the laser magnetic field rotates the electron
towards the longitudinal direction.

e An electron gaining energy will always see an increase in its transverse momentum. This means
that electrons accelerated by a linearly polarized laser will tend to be pushed to the side of the
beam.



1.5. Vacuum Laser Acceleration 41

Figure 1.18: Schematic illustration of the forces acting on a relativistic electron interacting with a linearly
polarized laser. The blue dot represents an electron moving with a velocity v, in the direction indicated by
the blue arrow. The green arrows represent either the electric force Fg or the magnetic force Fy acting
on the electron while the red arrows represent the total force F;,; acting on the electron. The dashed
black lines show the z-axis. In (a), the electron is moving along the z direction and is deflected by the laser
field. In (b), the electron is moving with an angle 0, with respect to the z-axis such that it is accelerated
by the laser field. In (c), the electron is moving with an angle 6, with respect to the z-axis such that it is
decelerated by the laser field. Note that in (a) the electron is mildly relativistic (8, = 0.7) so that the total
force remains appreciable while in (b) and (c) the electron is ultrarelativistic (B, ~ 1).

e The total force acting on the electron is not zero, even in the ultrarelativistic limit for which the force

has a magnitude of 1/2(1 —cos 6;)|eE]|.

e For 3, < cos Oy, the total force makes an angle greater than 6, with respect to the z-axis and the
laser is decollimating. On the other hand, if the electron is fast enough so that 8, > cos 6,, the total
force makes an angle smaller than 6, with respect to the z-axis and the laser is collimating. In the
ultrarelativistic limit (83, ~ 1), the angle made by the force with respect to the z-axis is minimal at a
value of 6,/2 and the laser is collimating.

The third case, illustrated in figure 1.18(c), corresponds to an electron moving with an angle 6, with
respect to the z-axis in the direction opposite to the electric force. This case is essentially the opposite
of the previous case and can be obtained by simply changing the sign of the electromagnetic fields,
which correspond to shifting the laser phase by &. The resulting total force induced by the laser tends to
decrease the electron momentum both in the z-direction and the x-direction: the electron loses energy.
Such an electron is said to be in an decelerating phase of the laser. We note in particular that an
electron which sees a decrease in its transverse momentum will also see a decrease in its longitudinal
momentum and lose energy.

In reality, an electron can oscillate between these three situations during its interaction with a linearly
polarized pulse. It will gain a significant amount of energy if it remains in an accelerating phase of the
laser for a long enough time.

It is worth noting that we have considered here an electron with no velocity v, , in the transverse y
direction. Since the laser force has no component in this direction, v, , is indeed 0 at all times provided
that v., = O initially. Our previous study is valid in this scenario. If v, is different from 0, two main
changes occur:
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e The electron will drift in the y direction with a constant momentum p. .

e The magnetic force is reduced, which leads to weaker accelerating fields in the longitudinal direc-
tion and thus to less efficient acceleration. The ideal case therefore corresponds to v, , = 0, which
we have studied before and which results in a two-dimensional electron motion in the z — x plane.

We finally mention that we have not considered the case of electrons contrapropagating with the
laser, which is of lesser interest as electrons are not efficiently accelerated in this situation.
1.5.1.2 1D conservation laws

We make the assumption in this section that the laser field is one-dimensional: it only depends on the
variable r —z/c. Itis entirely characterized by its magnetic vector potential A, which reads, in the Coulomb
gauge (V.A=0):

A=A(t—z/c)e, (1.66)

The resulting electric and magnetic fields are then given by:
E=E(t—z/c)e, (1.67)

E(t—z/c)

B=—"""¢, (1.68)
C

Where E = —d,A. We define a = ni—fc as the normalized vector potential and u, = nfjc as the normalized
electron momentum. We will see that in one dimension, there are three constants of motion which
determine the evolution of the three components of u,.

The first two constants of motion are obtained from the conservation of canonical momentum, which
comes from the assumed invariance along the x and y directions. Along the x direction the constant of
motion is given by u., —a. We can then obtain the normalized momentum in the x direction u, , as a

function of the laser field a and the initial conditions:
Uex = Uexi+a—aj (1.69)

Where u, »; denotes the initial normalized momentum in the x direction and q; the laser normalized mag-
netic potential at the initial position of the electron. Along the y direction, there is no vector potential and
we thus simply obtain the conservation of the electron momentum:

Uey = Ue.y (1.70)

The third constant can be obtained from the equation of motion projected along the z direction and the
equation stating the conservation of energy:

du,, e

Set o BLE 1.71
dt mecﬁe,/\’ ( )
d
e ¢\ E=—CB.E (1.72)
dt mec? mec

We note that the right hand side is the same in the two equations, which means that the quantity «, ; — .,
where 7, is the electron Lorentz factor, is the desired third constant of motion. After some algebra and
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using the relation 7 = u;  +u; ,+u _ we can express either u, . or ¥, as a function of u, . and the initial
conditions. The result is:

2 2 2
1+ Uex + Ueyi — ('Ye,i - M&Zi)

Uez = (1.73)
e,z 2 ('ye,i - Me,zi)
1+ ug,x + ug,yi + ('ye,i - ue,zi)2
Ye= (1.74)
2 ('Ye,i - ”&zi)

In one dimension, the sole knowledge of the laser fields allow us to determine consecutively u, , and
u.; as a function of the initial conditions. We once again remark here, consistently with the previous
section, that an increase in the longitudinal momentum or the energy of the electron always comes with
an increase in its transverse momentum.

Sometimes these equations can be integrated to obtain the electron trajectory x.(a), y.(a) and z.(a)
as we will see in the next section in the case of a plane wave. Even when this is not possible, useful
information can be obtained from these conservation laws.

Let us for example examine the common case of a pulse, so that a — 0 when either t —z/c — —
(early in front of the pulse) or t — z/c — oo (far behind the pulse). In particular, the normalized potential
is always 0 at the end of the interaction (t — +oo) after the electron has overtaken the laser. We consider
two distinct cases:

1. The initial vector potential is zero: a; = 0. This corresponds to an electron initially in front of the
pulse or, for an approximately sinusoidal laser potential, inside the pulse around a maximum of the
electric field (the latter could correspond for example to an electron generated by field ionization).
Since a is the same at the beginning and at the end of the interaction and the momentum only
depends on a and the initial conditions, we conclude that there is zero net momentum change from
the interaction. In this case, the electron oscillates in the laser field but the accelerating phases
exactly compensate the decelerating phases and the electron eventually does not gain energy.

2. The initial vector potential different from zero: a; # 0. The variation of the transverse momentum
in this case is given by Au, , = Aa, where Aa is the difference between the final and the initial
normalized vector potential. Then, the variation of the longitudinal momentum and of the Lorentz

Auz,)

2 (Yei — Ue,zi)
the electron can be effectively accelerated by the laser pulse. The energy gain is maximum when

the initial vector potential is either minimum (if u, ,; is positive) or maximum (if u. ,; is negative),
thus leading to the highest A(uéx). This ideal scenario corresponds to an electron initially
inside the pulse at a zero of the electric field. Physically, it means that the electron starts with a
whole accelerating half-cycle that will not be entirely compensated by the subsequent decelerating
phases.

factor is given by Au,, = Ay, = . In this case, there is a net energy change and

Overall, this means that an electron can gain energy from a laser pulse either because it begins
its interaction inside the pulse, which allows it to convert initial magnetic potential into momentum, or
because of transverse variations in the laser field.
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1.5.1.3 Electron motion in a plane wave

We now consider the particular case of a plane wave, for which the trajectories can be obtained analyti-
cally. In this case, the normalized magnetic vector potential is given by:

a=apcos(w(t —z/c))ex = apcos ey (1.75)

Where o is the plane wave frequency and ¢ = w(r — z/c) denotes its phase. The resulting electric and
magnetic fields are:

E = Eysinge, (1.76)

E
B ="singe, (1.77)
C

With Ey = m.cag/e. To simplify the equations, we will consider an electron with no initial transverse
momentum wu,; = u. ;€; Which starts its interaction at the optimal initial phase. This optimal phase
corresponds to a zero of the electric field and we choose ¢; = 0, resulting in @; = ag. As an illustration,
we plot in figure 1.19 electron trajectories corresponding to 3 different choices for ag and ¥, ;.

The conservation laws for the transverse momentum can be written very simply:

Upy = 0 (1.78)
uegc((p) =aop (COS¢ - 1) (1.79)

The motion is two-dimensional in the x — z plane because the electron has no initial velocity in the y
direction. In this case, the electron oscillates in the x direction with a negative average momentum that
is equal to the conserved canonical momentum. With our choice of initial conditions, this result in a drift
of the electron towards negative x positions. The only case with no transverse drift thus corresponds to
zero canonical momentum, which is the worst scenario in terms of maximum reached energy. We thus
see another reason why electrons tend to be pushed to the side of the beam as they are accelerated with
linear polarization: not only are the accelerating fields transverse, but the most favorable initial conditions
result in a transverse drift of the electrons.

After some algebra (a more detailed derivation can be found in [77]), we can also express the longi-
tudinal momentum and Lorentz factor as a function of ¢:

2
Ue 7 (O) = Yei <ﬁe,zi + (%O (cos¢ — 1)2 (1 +B@zi)) (1.80)
2
%(‘p):}/e,i(l"‘(;)(COS¢_1)2(1+I3€,Zi)> (1-81)

Where B..i = u..i/ %, is the initial electron velocity along the z direction. Several points can be noted:

o Ifu,,; >0, then u,, > 0 at all times. In other words, if the electron initially moves in the direction
of laser propagation, it will never be contrapropagating with the laser. This is always true in the
absence of initial transverse momentum. In this case, the electron will therefore drift both towards
the positive z direction and the negative x direction, as can be seen in figures 1.19(j) to (1).

e The laser is accelerating for 0 < ¢ < & and decelerating for ¥ < ¢ < 27.
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Figure 1.19: Electron trajectories in a plane wave. In the left panels, the plane wave is nonrelativistic
(ap = 0.2) and the electron has no initial velocity. In the middle panels, the plane wave is relativistic
(ap = 5) and the electron has no initial velocity. In the right panels, the plane wave is relativistic (ay = 5)
and the electron has a significant initial velocity, corresponding to a kinetic energy of =2 MeV, in the
longitudinal direction. In all cases, the electron has no transverse momentum at the initial phase ¢ = 0.
(a)-(c) Trajectories in momentum space. (d)-(f) Lorentz factor as a function of the phase seen by the
electron. (g)-(i) Angle 6, with respect to the z-axis as a function of the phase seen by the electron. (j)-(I)
Trajectories in real space. (m)-(0) Phase seen by the electron as a function of time. In all images, the
green dot shows a point where the electron energy is maximum while the red dot shows a point where
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e The highest reached energy gain is proportional to Ay, = 2, ;a3(1 + B..;). Unsurprisingly, the en-
ergy gain grows when increasing either the laser normalized amplitude, which results in stronger
accelerating fields, or the initial electron velocity, which results in a longer time spent in an accel-
erating phase. The possible energy gain in a given plane wave is unbounded: any value can be
reached provided that the initial velocity is chosen high enough.

e As stated previously, an accelerated electron sees an increase in both its transverse and longitudi-
nal momentum. However, the maximum change in the transverse momentum is simply proportional
to ag, while the maximum change in the longitudinal momentum is proportional to ag and also in-
creases with the initial energy. Thus, electrons reaching high energy (high 7., and ag) tend to be
mainly accelerated in the longitudinal direction, while electrons with a lower energy have a motion
which is mainly in the transverse direction, as is illustrated by the different scales in figures 1.19(a)
to (c) and (j) to (I). This can be quantified by the angle 6, that the electron momentum makes
with respect to the z axis, which is such that tan 8, = uw/um. At the position where the energy is
maximum, this angle is:

tan 6, = 240 (1.82)
) Ye,i (ﬁe,zi + 2a2(1 + ﬁe zi)) -
0 ’
In the limit where aj >> 1, this expression becomes:
1
tan 6, = (1.83)

Ye.ito(1+ Bezi)

These expressions are useful to estimate the emission angle of electrons accelerated by a linearly
polarized pulse. Low energy electrons tend to be accelerated with large angles while high energy
electrons are accelerated closer to the optical axis, as can be seen in figure 1.19(g) to (i).

The transverse position x(¢) can be obtained by integrating j(; = dx;t")) j; Indeed, both dx;f’) =

-1 -1
Cb;egq(;;)) and j(; = <Cfi‘f) = <a) (1 - u;;;ip‘l;))) are known. The longitudinal position z(¢) can

be obtained in a similar manner. In the case of a plane wave, the integration can be performed analytically
and the result is, with our choice of initial conditions (see [77] for more details):

kx<¢) :aOYe,i(l +ﬁe,zi) (Sin¢ - ¢) (1 -84)
p
kz(9) :2(11[3_) [(2[36721' + %aé(l +l3e,zi)> ¢ —2ag(1+ Bezi)sing + %(1 + Bei)sin2¢ | (1.85)

Where we have assumed that the electron is initially at x = z = 0. In the transverse direction, the electron
motion is the combination of an oscillation with a quivering amplitude x;, of apYe,i(1+ ﬁe,zi)% and of a

zﬁe,zi + %a% (1 + Be,zi)
2(1 - ﬁe,zi)

per cycle. It is common to define the dephasing length Z,,,;, as the distance traveled by the electron dur-
ing an accelerating phase, which is in this case:

A

drift of ap..i(1+ B..i)A per cycle. In the longitudinal direction, the laser advances by

2Bezi+ 3a2(1 + o
Zdeph = Z((P = 7[) = 6’214(12_01(3 ) e,zz)
e,2l

A (1.86)
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Finally, we plot in figures 1.19(m) to (0) the plane wave phase ¢ seen by the electron as a function of
time. As expected, the electron spends a longer time in phases for which it has a relativistic energy since
it dephases more slowly with respect to the laser in this case.

1.5.1.4 Electron motion in a laser pulse

The previous 1D calculations are useful as they provide an intuition as well as orders of magnitudes
regarding the interaction between an electron and a laser in vacuum. In reality, a laser pulse has a finite
transverse extent and thus diffracts, which results in several important changes:

e An electron can exit the laser pulse if its transverse excursion exceeds the beam radius w(z), thus
effectively ending the interaction.

e The interaction can also end if the electron remains in the pulse long enough so that the laser fields
have become negligible due to diffraction.

e Another effect of diffraction is the Gouy phase shift, which induces an extra phase of 7 as the laser
beam passes through focus. This leads to a superluminal phase velocity on the axis at focus
that makes the electron dephase more rapidly with respect to the laser. The Gouy phase
has a negative effect on electron acceleration as it reduces the time an electron can spend in an
accelerating cycle at the positions where the laser is most intense.

e Unlike in a plane wave, the laser intensity depends on the transverse position. One consequence
is that an electron oscillating through multiple laser cycles will be pushed by the ponderomotive
force to regions of lower intensities. The derivation of the relativistic ponderomotive force F,,uq
experienced by an electron in a laser beam is given in reference [80] and relies on averaging the
electron motion over the fast oscillations, as was done in the case of plasma wave formation in the
linear regime (see section 1.3.1). The result is:

62

Foppa = ————V A2 (1.87)
pon 2me,}/e2 perp

Where g denotes the average of quantity g over the laser oscillations and A ., is the transverse
magnetic vector potential in the Coulomb gauge. This expression is valid provided that the electron
velocity is not too fast in the longitudinal z direction so that an averaging over the fast oscillations
can be performed. In the case of a Gaussian beam, it will result in a force that is independent in the
direction of polarization and that pushes the electrons isotropically towards the side of the beam.

e \We have stated in the previous section that the possible energy gain in a plane wave is unbounded.
This is no longer the case for a beam with a finite transverse extent. This is because the accel-
erating field is transverse and therefore an energy gain necessarily results from a displacement
in the transverse direction. An upper bound for the energy gain can be obtained by considering
an electron traveling from x = —oo to x = +oo while remaining at the phase corresponding to the
maximum accelerating field [79]:

oo
AWMAX =e EX(Z‘)V&xdt (1 .88)

~+oo
AWMAX = e/ Ex(x)dx (1 .89)

—o0
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For a Gaussian laser, we have at most E,(x) = Egexp(—(x/wo)?), where Ej is the peak electric
field and wy is the beam waist. The result of the integral is then:

AWMAX = €E()W()\/E (1 .90)

Noting that Eqwq is proportional to the square root of the laser peak power (see section 1.1), we
can rewrite this expression as:

2e
AWpiax = VP (1.91)
V€&
In practical units, this result becomes:
AWyax[MeV] ~ 39/ P[TW] (1.92)

Two important points should be noted:

1. This value has been obtained by assuming that the electron remains at the optimal phase
throughout its trajectory and that diffraction is negligible during the interaction (i.e. the elec-
tron travels much less than a Rayleigh length in the longitudinal direction as it passes through
the beam). Satisfying both conditions is most likely impossible, which means that the maxi-
mum energy gain given by equation 1.92 cannot even be approached in practice.

2. This scaling law means that accelerating electrons in vacuum is not adapted for reaching high
energy gains. For instance, with a 10 PW laser, the energy gain cannot exceed 4 GeV. For
comparison, 8 GeV electron beams have been obtained from laser wakefield acceleration
using a PW-class laser [19]. On the other hand, this method could be well-suited for pro-
ducing MeV electron beams, which could be useful for applications such as ultrafast electron
diffration, and can in principle be obtained from sub-TW laser systems.

Unlike in a plane wave, there is no analytical expression for the trajectories of electrons in a realistic laser
pulse and one has to resort to test-particle simulations, whose principle will be presented in section 2.1,
to study quantitatively this process. In simulations, two typical electron trajectories, corresponding to two
extreme cases, can be found [61]:

e First, electrons that see many laser oscillations tend to be mainly affected by the ponderomotive

force. The succession of accelerating and decelerating phases leads in this case to low energy
gains. Electrons are isotropically scattered in the transverse direction which leads to axisymmetric
angular distributions which are characterized by the presence of a hole in the direction of laser
propagation. The intrinsic isotropy of the ponderomotive force means that the interaction of a laser
with an electron bunch is inherently a 3D process, which cannot be properly reproduced in 2D
simulations. The fastest electrons tend to be accelerated closer to the laser propagation direction
than the slowest ones. This regime of acceleration is called the ponderomotive regime’. A typical
electron trajectory and electron angular distribution in this regime is shown in figure 1.20.

At the other end, electrons remaining for a long time in an accelerating phase of the laser can
reach considerably higher energies. In order to obtain a net energy gain, the electron must not

"The term ponderomotive scattering is also often used.
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Figure 1.20: Ponderomotive electron dynamics in a linearly polarized (in the x direction) laser with ag = 4,
wo = 5um and T = 30 fs obtained from test-particle simulations. Panels (a) to (c) show the trajectory of
an electron beginning its interaction in front of the laser with an initial momentum u, ;; = 1 (corresponding
to Y.~ 1.4 and B, .; = 0.71) and transverse initial positions x.; = —1.5 A andy.; = 1.1 A. The electron
sees many laser oscillations and is eventually scattered towards the side of the beam with a low energy
gain (Y. = 3 at the end). (d) Final angular distribution of a bunch of electrons initially on the optical axis
in front of the laser pulse with an average initial momentum u,,; = 1. The initial electron distribution is
Gaussian both in real space and momentum space, with o, = 0, =3.1A, 0, =0.14, 6, = 0,y = 0.1 and
o,. = 1. The electron bunch and the laser overlap around focus. The angular distribution after interaction
is isotropic with a hole in the laser propagation direction. Images taken from [61].

lose this energy in the following decelerating cycles. This can occur if the electron exits the pulse
transversally after being accelerated (xg.i, ~ wo) or if it remains in an accelerating cycle long
enough so that the next decelerating cycle is diminished due to diffraction (Zgepn > zg). In this
case, electrons are emitted in the direction of polarization of the laser, which leads to nonisotropic
angular distributions. It is once again observed that faster electrons are directed closer to the
optical axis. This more efficient regime of acceleration is known as Vacuum Laser Acceleration
(VLA)8, and is usually aimed for in experiments. A typical electron trajectory and electron angular
distribution in this regime is shown in figure 1.21.

The conditions leading to an efficient acceleration and to high energy gains are the following:

e The electron should start its interaction inside the laser pulse, near the beam spatial and temporal

8We can note that the use of the term Vacuum Laser Acceleration (VLA) is not standardized. In some articles, this term
is used to refer both to the regime where electrons remain for a long time at a given phase of the laser (sometimes labeled
the subcycle regime) and to the ponderomotive regime [87, 76]. Sometimes, a different term may be used. In particular, use
of the word direct is frequent, especially in the case of radially polarized lasers (e.g. direct electron acceleration [88], direct
laser acceleration [89], direct-field electron acceleration [90] or simply direct acceleration [91]). However, this may be confused
with the direct laser acceleration mechanism occuring in plasma channels initially described in [73]. Finally, some authors do
not use a specific term and use instead unambiguous but longer expressions such as electron acceleration by laser fields in
vacuum [78]. In this manuscript, we will only use the term Vacuum Laser Acceleration (VLA) to describe the regime where
electrons remain for a long time at a given phase of the laser (subcycle regime) and we will not use a specific term which
emcompasses both the VLA and ponderomotive regimes.
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Figure 1.21: VLA electron dynamics in a linearly polarized (in the x direction) laser with ay = 4, wo = 5 pum
and © = 30 fs obtained from test-particle simulations. Panels (a) to (c) show the trajectory of an electron
beginning its interaction inside the laser at focus, close to a zero of the electric field (¢;/2x = —0.1,
with E, o< sin¢), with an initial momentum u,_,; = 1 (corresponding to ¥, ; ~ 1.4 and B, ~ 0.71) and
transverse initial positions x, ; = 0.6 A andy. ; = 0. The electron remains for a long time in an accelerating
cycle, which results in a high energy gain (y. = 100 at the end). (d) Final angular distribution of a bunch
of electrons initially on the optical axis inside the laser pulse at focus, around a zero of the electric field,
with an average initial momentum u, ;; = 1. The initial electron distribution is Gaussian both in real space
and momentum space, with o, = o, = 3.14, o; = 0.14, o,x = 6,, = 0.1 and o,, = 1. The angular
distribution after interaction is characterized by a bright spot in the polarization direction. Images taken
from [61].
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intensity maxima and close to a zero of the electric field. This is similar to the 1D case where the
electron benefits from the ensuing initial canonical momentum. It means that the electron begins
its interaction with an accelerating half-cycle and is thus more likely to be trapped for a long time in
this accelerating phase.

e The electron should have a relativistic initial velocity in the direction of propagation of the laser
beam. This reduces the dephasing between the electron and the laser and allows to electron to
spend more time in the accelerating cycle®.

Electrons that satisfy these conditions tend to have VLA trajectories while electron that do not satisfy
these requirements tend to have ponderomotive trajectories. As an example, the only difference between
figure 1.20, which illustrates ponderomotive behavior, and 1.21, which illustrates VLA behavior, is that
the electrons are initially in front of the laser pulse in the former case, while they are inside the laser pulse
around the optimal phase in the latter case.

1.5.1.5 Experiments with linear polarization

If VLA has been studied theoretically and numerically for the past 25 years, it has proved difficult to
observe experimentally. This is because it is extremely challenging to inject an electron bunch with a
relativistic velocity at a precise phase inside a laser pulse. Historically, two methods have been used to
inject an electron into an intense laser field.

The first one is the ionization of a low density gas target by the laser pulse itself [92, 93]. In
this case, the density must be chosen low enough to ensure that no plasma effects occur during the
interaction. While the first ionized electrons are created early in front of the pulse, this method offers
the possibility of generating electrons deep inside the laser pulse if at least one the barrier suppression
intensity thresholds of the elements making up the gas target is matched to the laser peak intensity.
However, the electrons are created in this case near the maxima of the electric field, where the transverse
canonical momentum is small, and without initial velocity. These conditions are far from optimal and
lead to low energy gains. For instance, in reference [93], 300 keV electrons have been detected in the
polarization plane using a 400-fs laser with ag = 1.5 (Ip = 3 % 1018W/crn2 with A = 1 um). The fact that
electrons are detected in the polarization plane even though the VLA regime is not attained might seem
inconsistent with the isotropic nature of the ponderomotive regime. However, in this case the electrons
have a nonzero initial transverse canonical momentum if they are not ionized exactly at a maximum of
the electric field, which will result in a drift of the electron in the polarization diretion. The electron feels
the ponderomotive force, but this initial momentum in the polarization plane still affects the final angular
distribution.

The second method for electron injection is the use of a pre-existing electron beam that is coprop-
agating with the laser pulse. In reference [94], this was done by focusing a 750-ps long prepulse onto
a thin plastic target, which creates electrons with an initial energy of a few tens of keV. Then, using a

9However, it should be noted that if the initial momentum in the z direction is too high, the electron will barely be deflected
by the laser, which will result in a low energy gain (since energy gains arise from a transverse displacement of the electron in
linear polarization). The initial conditions leading to an efficient acceleration of an initially ultrarelativistic (¥, > 1) electron are
more complex and can involve the electron having an initial transverse momentum or starting the interaction far from focus. It
can even sometimes be beneficial for the electron to lose part of its initial energy at the beginning of the interaction so that it can
regain more energy later on.
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Figure 1.22: Setup for accelerating a pre-accelerated electron bunch with a laser pulse in vacuum. The
electrons pass through a hole in the focusing parabolic mirrord. The laser pulse and the electron beam
can then meet at focus. Image taken from [78].

main pulse with T =400 fs, wo = 10 um and ag = 3, the authors observed electrons with an energy up to
1 MeV in the polarization plane, making an angle 6, ~ 45° with respect to the laser propagation direction.
However, these results still remain controversial [95, 96] since in this regime the ponderomotive force is
supposed to be dominant and result in an isotropic electron angular distribution [80]. Indeed, the fact that
electron were detected in the polarization plane is more consistent with an ionization injection scenario
than with an pre-existing electron beam in front of the laser pulse.

A more common possibility to generate the pre-accelerated electron beam is to use a conventional
accelerator such as a DC gun or a linac. In this case, a parabolic mirror with a hole in its center can be
used to let the electron bunch pass while focusing the laser beam. This setup, initially proposed in [78],
is illustrated in figure 1.22. The main drawback of this scheme resides in the fact that the electron beam
is initially in front of the laser pulse, which is not a favorable scenario. Injecting the electron beam close
to the laser spatial intensity maximum would require placing an optical element around focus, which
would thus be damaged by the high intensities involved during experiments. Even if this was not an
issue, injecting the electrons at a precise phase of the laser would necessitate an electron beam with
attosecond duration in synchronization with the laser, which is beyond the reach of current technology. In
practice, the electron beam will span over multiple laser wavelengths. This means that some electrons
will be accelerated while other will be decelerated by the laser, which eventually results in an increase of
the electron beam energy spread. For example, an experiment was performed in 2012 using the method
presented in figure 1.22 at the Brookhaven National Laboratory [87]. In the experiments, a 20-MeV
electron beam is generated with a linear accelerator. When a copropagating CO; laser pulse with ag ~ 1
is focused onto the electrons, an slight increase in the electron beam energy spread is observed, thereby
illustrating the difficulties associated with this injection method.

More recently, it was demonstrated that plasma mirrors could also be used to inject electrons into a
laser beam. We have indeed seen in section 1.4.2.1 that focusing a relativistic intensity laser onto an
overdense plasma with a sharp density gradient on its front surface leads to the periodic emission of
electrons, via the push-pull mechanism, that can then interact with the reflected pulse. Moreover, these
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electrons are injected at a precise phase of the laser, near a zero of the electric field, with a relativistic
velocity in the direction of the reflected pulse. These are precisely the optimal injection conditions that we
have identified in the previous section. We can thus expect to observe the VLA regime if the laser pulse
has a sufficient intensity.

This was indeed confirmed by an experiment performed with the UHI100 laser at CEA Saclay [27].
In the experiments, 25-fs pulses with A = 800 nm, wy = 5.5 um and ag = 3.1 impinge on an overdense
plasma with a controllable density gradient. A typical experimental angular distribution obtained at the
optimal gradient scale length for electron emission in the short gradient regime (L ~ A /15) is displayed
in figure 1.23(a). This distribution is characterized by a hole in the specular direction surrounded by
an isotropic halo of electrons and a bright spot located in the polarization plane, between the specular
and normal directions. The intuitive interpretation of this result is that the isotropic halo correspond to
electrons having ponderomotive trajectories, while the bright spot in the incident plane correspond to
electrons having VLA trajectories. This explanation is supported by the fact that electrons in the bright
spot have a higher energy (~ 10 MeV) than electrons in the isotropic halo (~ 5 MeV), as can be seen in
figure 1.23(b).

In order to confirm this physical interpretation, test-particle simulations of the interaction between an
electron beam initially close to a zero of the electric field and the reflected laser pulse (neglecting its
high-harmonic content) were carried out. By adjusting the initial electron beam parameters, an excellent
agreement with the experiments could be found, as is visible in figures 1.23(c) and (d). The test-particle
simulations can then be used to extract information regarding the electron trajectories. In figure 1.24, the
electrons are sorted depending on the number of laser optical cycles N, that they see during their inter-
action with the reflected laser. As expected, the isotropic halo corresponds to electrons that experience
many oscillations and are scattered by the ponderomotive force, while the bright spot in the polarization
plane corresponds to electrons who undergo Vacuum Laser Acceleration. This experiment constituted
the first clear experimental observation of electrons accelerated in the VLA regime and confirmed that
plasma mirrors can be used as ideal injectors for accelerating electrons in vacuum.

1.5.1.6 Ponderomotive regime for few-cycle pulses

The expression of the ponderomotive force has been obtained by averaging the electron motion over the
laser oscillations. One might wonder whether this concept is still relevant for pulses only consisting of a
few optical oscillations. | have briefly examined this matter by performing test-particle simulations of the
interaction of an electron bunch with a laser pulse in the ponderomotive regime.

In the simulations, the electrons all have the same initial longitudinal momentum u,,; = 1 (corre-
sponding to 7, ; ~ 1.4 and B, ;; ~ 0.71) and have no transverse momentum. The electron bunch has a
Gaussian distribution in real space with 0, = 0, = 3.1A and o, = 0.1A, where A = 800 nm is the laser
wavelength. The electrons interact with a laser pulse with wy = 5um, ay = 4 and either 7 = 30 fs or
T = 3.5 fs. The electron bunch is initially in front of the pulse, which should lead to a ponderomotive
scattering of the electrons. The laser meets the electrons around ¢ = 0 and z = 0, which corresponds to
its envelope temporal and spatial maxima.

The final angular distributions in the simulations are displayed in figure 1.25. We observe in both
cases an isotropic scattering of the electron bunch, which is a signature of the ponderomotive regime.
Even though further studies could probably be done on the subject, these simulations show that the
concept of the ponderomotive force is still relevant for few-cycle pulses.
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Figure 1.23: (a) Typical experimental angular distribution of electrons emitted from a plasma mirror ob-
tained with the UHI100 laser. The side panels show the values of the distribution along the dashed line,
while the dashed circle shows the angular extent of the reflected beam. (b) Electron energy spectra
measured at the position of the red square and the blue circle in (a). Panel (c) and (d) show the same
quantities but obtained from a test-particle simulation. The green dashed curve in (d) shows the initial
energy spectrum in the simulation, which indicates that electrons have been accelerated in vacuum from
~ 1.5 MeV to ~ 10 MeV in experiments. Image taken from [61].
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Figure 1.24: Angular distributions of several electron populations which are separated depending on
the number of laser optical cycles N, that they experience in the test-particle simulation. Image taken

from [61].
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Figure 1.25: Results from test-particle simulations. Final angular distributions of an electron bunch initially
in front of a (a) 30 fs or a (b) 3.5 fs laser pulse with ag = 4.
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1.5.2 Vacuum Laser Acceleration with radial polarization
1.5.2.1 Introduction to radial polarization

When VLA is carried out with linearly polarized pulses, the accelerating fields are transverse. This means
that the electrons are pushed off the optical axis as they are accelerated, which tends to widen the
resulting angular distributions. For this reason, the possibility of accelerating electrons with longitudinal
(i.e. in the direction of propagation of the laser) fields has frequently been studied [78, 97, 98, 99, 100,
101, 102, 90, 91, 88, 89, 103, 104, 105, 106, 107]. The existence of longitudinal electromagnetic field
components is a consequence of Gauss’s law in vacuum (V.E = 0) when there is a variation of the
transverse fields in the polarization direction. As an example, let us consider a beam which is linearly
polarized in the x direction so that we can assume that £, = 0. In this case, Gauss’s law reads:

% n JE, _

dx  0dz
We can see that whenever there is a transverse variation of the E; field, a nonzero longitudinal field must
also be present. In fact, taking longitudinal fields into account is crucial in the description of the pondero-
motive force presented in the previous section [80]. Equation 1.93 also tells us that large variations in
the transverse field lead to large E. field amplitudes. Therefore, tight focusings result in a more important
contribution from the longitudinal field. We can estimate the transverse and longitudinal variations of

X

d E JE
the fields as ‘ ~ x| and S

0 (1.93)

~ k|E;|. This allows us to roughly evaluate the amplitude of the
ox wo dz

longitudinal field in a linearly polarized beam:

By el A
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|Ey| (1.94)

We note that the longitudinal field becomes significant only when the beam waist is on the order of the
laser wavelength. More precisely, the amplitude at focus of the longitudinal field in a linearly polarized
Gaussian beam can be calculated to first order with respect to the small parameter 1/(kwy), resulting

in [80]:
2Ey x —r?
|E;| = - —exp (2 > (1.95)
Wwo Wo wg

Where Ej is the peak amplitude of the transverse field. The amplitude of the E, and E, fields on the x-
axis at the focus of a linearly polarized Gaussian beam is shown in figures 1.26(a) and (b). As expected,
the longitudinal field only acquires significant values at positions where the E, field varies rapidly. In
particular, the E, field amplitude is 0 on the plane x = 0 and maximum for x = iwo/ﬂ. We also note
that the longitudinal field is much weaker than the transverse field, even for an extreme focusing (wg = 1),

A
consistently with the previous scaling E, ~ H|Ex|.

Directly using the E; field of a linearly polarized pulse for accelerating electrons in the longitudinal
direction would not be very effective because:

e As we have just seen, the E, field has a weak amplitude for linear polarization.

e The longitudinal field is maximum in a region with strong transverse fields. This means that even if
electrons were to gain energy from the E, field, they would still be deflected by the E; field.
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Figure 1.26: Amplitude at focus on the x-axis of the transverse (blue curve) and longitudinal (green
curve) electric field in the case of a linearly polarized beam with wog = 5A (a), a linearly polarized beam
with wog = A (b), a radially polarized beam with wg = 5A (c) and a radially polarized beam with wg = A

(d).
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Figure 1.27: Typical intensity distribution at focus of (a) a linearly polarized beam, (b) a radially polarized
beam and (c) an azimuthally polarized beam. The arrows show the local direction of the electric field.

Both issues can be solved if radially polarized pulses are used instead of linearly polarized pulses.
A laser is radially polarized if at every position the polarization points towards its center, as is illustrated in
figure 1.27(b). Such beams have a rotational symmetry and are consequently described using cylindrical
coordinates (r,8,z). The radial electric field E, vanishes on the optical axis (otherwise there would be a
singularity at » = 0), which results in intensity profiles with a characteristic doughnut-shape. The magnetic
field of a radially polarized beam only has an azimuthal component Bg.

At focus on the optical axis, there is a strong variation of the radial E, field in the polarization di-
rection, which results in a strong longitudinal electric field E,, as can be seen in figures 1.26(c) and
(d). The ratio between the peak amplitude of the longitudinal field and the peak amplitude of the radial

field is ~ 0.742— for radial polarization, compared to ~ 0.137— for linear polarization. For extreme
wo wo

focusings (wg ~ A), the longitudinal field even becomes comparable to the radial field, as is apparent
in figure 1.26(d). Moreover, the E, is maximum in a region where the transverse fields vanish. This is
particularly attractive for vacuum laser acceleration as it means that, unlike in the case of linear polariza-
tion, an electron located close to the optical axis can be accelerated by the strong longitudinal field of a
radially polarized beam without being deflected. The prospects of obtaining more collimated and more
energetic electron beams from VLA in this different acceleration scenario explain why radially polarized
beams have attracted considerable attention in the past two decades [78, 97, 98, 99, 100, 101, 102, 90,
91, 88, 89, 103, 104, 105, 106, 107].

Figure 1.28 illustrates another common explanation for the emergence of a strong longitudinal field
with radial polarization. Far from focus, the beam is either converging or diverging and its electric field
possesses both a longitudinal (in the z direction) and a transverse component. For a linearly polar-
ized beam, the longitudinal components interfere destructively on the axis at focus while the transverse
components interfere constructively. On the other hand, for a radially polarized beam, the transverse
components interfere destructively while the longitudinal components interfere constructively, which re-
sults in a strong E; field in a region with no transverse field.

Altough there are other methods for producing radially polarized beams [108, 109, 110, 111, 112], a
phase mask consisting of four or eight half-wave plates with different optical axes, as shown in figure 1.29,
is usually used to convert the laser polarization from linear to radial. This method has been used to obtain
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Figure 1.28: Schematic illustration explaining the presence of a strong longitudinal field for radially polar-
ized beams. On the optical axis at focus, the longitudinal fields interfere destructively for linear polariza-
tion, resulting in a pure transverse field, but interfere constructively for radial polarization, resulting in a
strong longitudinal field.

Figure 1.29: Schematic illustration of the conversion from linear to radial polarization using a segmented
waveplate consisting of 4 half-wave plates. The red arrows represent the laser polarization while the
black arrows show the half-wave plates fast optical axis.

radial polarization in all previous experiments with high-intensity laser pulses [113, 114, 115].

We conclude this section by introducing azimuthally polarized lasers, for which the electric field Eq
is in the azimuthal direction, as illustrated in figure 1.27(c). Azimuthally polarized beams are similar to
radially polarized beams but have the electric and magnetic fields "exchanged", meaning that the main
components of such pulses are Eg, B, and B;,. They do not exhibit an E, field and therefore cannot
directly accelerate electrons in the longitudinal direction. This polarization state is often studied concur-
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rently with radial polarization in experiments since it can be generated in the same manner simply by
turning the waveplate (or the laser initial polarization) by 7 /2.

We will present in the following sections the principal previous results that have been obtained re-
garding electron acceleration with radially polarized lasers.
1.5.2.2 Fields of a radially polarized pulse

To lowest order, the nonzero components of a radially polarized pulse within the paraxial approximation
are given by the following expressions, in cylindrical coordinates [100]:

2k 2
E.(r,t) =Ep, <v:zz)> Erexp <_w(rz)2) cosPg (t — %) (1.96)

Bo(r,t) = E’(:’t)

E.(r1) = Eo, <szz)>2exp <—W(r;2> [— (1 - Wé)z) sing — ;e’;cosq)] g (z . f) (1.98)

Where Ej . is the peak amplitude of the longitudinal field and ¢ = kz — @t —i—k#ﬁz) —2arctan (é) +Ocep
is the phase of the beam. The other quantities are the same as for linearly polarized Gaussian beams:

(1.97)

wy is the beam waist, zg = w3 /4 is the Rayleigh length, w(z) = woy/ 1+ 22/z% is the beam radius at

position z, R(z) = z—i—z,ze/z is the radius of curvature and g is a temporal envelope. Several important
comments can be made simply from these expressions:

e The radial field is maximum at the transverse position = w(z)/v/2. At focus, the peak amplitude

k
of this field is given by Ey, = $E0.z- It is common to define the normalized peak
T 2exp(1/2)vV2
amplitude of the radial and longitudinal field as ao, = eEy,/(m.c®) and ag, = eEy;/(m.cw).
k
We obviously still have ag, = $ao,z, which becomes in practical units the relation
T 2exp(1/2)V2

A
ap,; = 0.742—ay , that we have given in the previous section. The longitudinal field is therefore
' w

0

substantial only in the case of very tight focusing. We could even in principle have ag ; > ao ,, but
this would require wy < 0.742A which is challenging to achieve in practice (this corresponds to
wo < 600 nm for A = 800 nm).

e Out of focus, the peak amplitude of the radial field varies as Er,O% while the peak amplitude of
w(z
wo

2
the longitudinal field varies as E ()> . Thus, the longitudinal field decreases more rapidly
w(z

than the radial field as the beam diffracts. This is consistent with the fact that the longitudinal field
is associated with a transverse radiation of the radial field, which is most important at focus'®.

10strictly speaking, the maximum of the E, field as given by equation 1.98 very far from focus (]z] > zg) is obtained at position
r =w(z) and corresponds to the term in cos ¢, which varies as &. At this transverse position (r = w(z)), the E; and E, fields

w(z)

are in phase and the total electric field is perpendicular to the curve w(z) (E;/E, = —dw(z)/dz). This means that the term
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Laser system Salle Noire UHI100
Central wavelength 800 nm 800 nm
Pulse energy ~25mJ ~ 460 mJ
Pulse duration 3.5fs 24 fs
Peak power ~ 670 GW ~18TW
wo 1.5 um 3.2um
ao (linear polarization) ~2.7 ~5.2
ap,r (radial polarization) ~ 1.7 ~3.2
ap,; (radial polarization) ~ 0.67 ~ 0.59
AWyax (eq. 1.121) ~25MeV | =~ 130 MeV

Table 1.4: Typical on-target parameters of the Salle Noire and UHI100 laser systems. The last three lines
show the normalized field amplitudes as well as the maximum energy gain that could be expected with
radial polarization.

e The peak power of a radially polarized pulse is given by [88]:

2
T
p= 8Oc¥ exp(1)E3, (1.99)

This relation allows us to compare the normalized amplitudes ay ; and ay - of a radially polarized
beam to the normalized amplitude ap of a linearly polarized Gaussian beam with the same peak
power and beam waist:

2
1
do,r = €Xp <—2) ap =~ 0.61ag (1.101)

We note in particular that the peak electric field of a radially polarized pulse is smaller than the peak
electric field of a linearly polarized pulse with similar laser parameters. As an example, we show
in table 1.4 the field amplitudes that could be expected from radially polarized pulses generated
from either the Salle Noire or UHI100 laser system. We note that we can expect in both cases
longitudinal electric field values on the order of ag, ~ 0.6. Even though they are not relativistic,
these values remain high enough to make these lasers potentially suitable to study longitudinal
electron acceleration in vacuum.

On the optical axis » = 0, only the longitudinal electric field E, is nonzero. This means that an
electron initially on the optical axis with no transverse momentum will remain on the optical axis
throughout the interaction. As a result, many of the previous results regarding electron acceleration
with radially polarized beam have been obtained for on-axis electrons, since it greatly simplifies the

proportional to cos ¢ in the expression of E; is in fact a part of the transverse field which acquires a nonzero component in the
z direction because of the beam curvature (the component in the z direction far from focus in figure 1.28). The truly longitudinal

component thus corresponds to the term in sin¢ in equation 1.98 and varies as (

wo ) )
—— | , as noted in the main text.

w(z)
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study of the interaction. In particular, all theoretical studies on the subject consider an electron on
the optical axis, while transverse effects are taken into account via numerical simulations. A review
of the theory of on-axis electron acceleration by a radially polarized beam will be presented in the
next section.

Electrons can also have plane trajectories. This happens for example for an electron initially in the
plane y = 0 with no initial velocity along the y direction. This may be used the simplify the study of
the transverse dynamics of an electron accelerated by a radially polarized beam, as will be done
for instance in chapter 4.

We notice that the Gouy phase shift for a radially polarized laser is twice as important as for a
linearly polarized laser. This is essentially because radial polarization, as given by equations 1.96-
1.98, is a first-order mode, which can for instance be obtained by combining two Laguerre-Gauss
modes with radial index p = 0 and azimuthal index [ = 1 which are perpendicular to each other [116].
The Gouy phase shift leads to an extra phase of 27 as the laser passes through focus. This means
that an on-axis electron interacting with the beam from z = —co to z = oo will experience at least
one full accelerating half-cycle and one full decelerating half-cycle. This unavoidable dephasing
between the electron and the laser constitutes in fact one of the principal limitations (along with the
field amplitude decrease due to diffraction) to the energy that an electron can gain from a radially
polarized pulse, as will be seen in the next section. The Gouy phase shift results in a superluminal
phase velocity on the axis at focus that is even higher than for linear polarization. On the axis r =0,
the phase velocity reads [88]:

c

Ve = (1.102)

C L (/w)?

m? (14 (z/2r)?)
(1.103)
The phase velocity is maximum at focus (z = 0), where its value is:
c

Vo.MAX = 73— (1.104)

1— =

TIZR
(1.105)

For instance, the maximum phase velocity in the case of the Salle Noire laser (wo = 1.5um) is
approximately 1.03 c.

We can see from equation 1.97 that, in the paraxial approximation, the E, and By fields have the
same amplitude everywhere. This means that the accelerating principle for linear polarization, in
which the electric field accelerates the electron in the transverse direction while the magnetic field
rotates the electron towards the optical axis also applies to the E, and By fields. Therefore, in a
radially polarized pulse, the electrons can be accelerated by the E, field if they remain close to
the optical axis, but can also be accelerated by the E,/By fields in the same way that electrons
can be accelerated by the E,/B, fields in linearly polarized beams. For electrons with a relativistic
velocity in the laser propagation direction, the E, and v X Bg forces virtually cancel each other and
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Figure 1.30: lllustration of the accelerating/decelerating and focusing/defocusing phases in a radially
polarized beam. The hatched region corresponds to the quarter of the optical cycle where the fields are
both accelerating and focusing.

the electrons mainly feel the effect of the E, field. This is an ideal scenario as the electron beam
remains collimated in this case (we will see in chapter 4 that, with nonparaxial field expressions,
the E, and By fields do not have the same amplitude everywhere, which can make things more
complicated). On the other hand, an electron with a significant transverse momentum will feel the
effect of both the longitudinal and transverse fields.

e There is a /2 phase shift between the E,; and E, fields. Assuming that electrons are mainly

accelerated by the longitudinal field, this means that radially polarized beams are both accelerating
and focusing for only a quarter of the optical cycle. The different accelerating and decelerating
phases as well as focusing and defocusing phases are represented in figure 1.30. Here, the words
focusing and defocusing correspond to the sign of the force induced by the E, field. Once again,
outside of the paraxial approximation, the magnetic force can exceed the transverse electric force,
which means that the transverse fields are in fact not always focusing when E, > 0. This point will
be discussed in more details in chapter 4.

e We finally conclude this section by remarking that the fields of a radially polarized beam have

a similar structure as the fields of other common accelerating methods. For instance, it can be
argued that the accelerating field structure is similar to that in the linear regime of laser wakefield
acceleration (see equations 1.49-1.50). Indeed, in both cases the fields have a longitudinal E,
component proportional to exp(—r? /w$) and a radial E, component proportional to rexp(—r?/wj),
which is dephased by 7/2 with respect to the longitudinal component. However, a significant
difference is that the laser wakefield accelerating fields do not contain a strong Bg component,
as they are of electrostatic origin (they come from a charge separation). This means that the
radial fields have a much stronger impact on the focusing of the electron beam in laser plasma
accelerators, since the E, force will not be compensated by the v x Bg force in this case. The
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fields of a radially polarized beam are in fact even more similar to those of the propagating TMo;
mode in circular waveguides that is very commonly used in RF linear accelerators [117]. For
this reason, radially polarized beams are often refered to as TMy; beams (see e.g. [88])''. In
that sense, it can be said that radially polarized pulses have an ideal structure for accelerating
electrons in vacuum with lasers. Nevertheless, it should be kept in mind that acceleration with
radially polarized lasers suffers from important defects compared to RF cavities, which are inherent
to VLA. First, the accelerating structure is small, typically less than a micron, which means that it
is difficult to inject electrons at a precise phase of the laser. Secondly, the phase velocity of the
accelerating field cannot be controlled and is greater than c on the axis at focus, which means that
electrons will always be dephased with respect to the laser.

1.5.2.3 Theory of on-axis longitudinal acceleration

We consider in this section an electron on the optical axis (r = 0) which interacts with the longitudinal
electric field E, of a radially polarized laser. We additionally assume in this section that the laser in
infinitely long (g = 1, where g is the temporal envelope). The value of the longitudinal electric field in this
case is given by:

2
E.(z,t) = —Eo. (%) sin ¢ (1.106)

With ¢ = kz — or — 2arctan (i) + degp. Itis first important to note that this longitudinal field originates
from a transverse variation of the radial field. This means that transverse effects are intrinsically included
in this on-axis study of the electron motion, even if the resulting trajectories are monodimensional. In
particular, the 1D conservation laws that we have derived for linearly polarized pulses in section 1.5.1.2
do not apply here.
Analytical model without diffraction

In the case of linearly polarized beams, the study of electron oscillations in a plane wave could be carried
out analytically and has resulted in useful physical considerations regarding the interaction. We may
thus be tempted to do the same in the case of radial polarization and study the on-axis trajectories of an
electron in a field of the form:

E,=—Ey.sin¢ (1.107)

Where ¢ = kz — ot. This corresponds to neglecting diffraction in the expression of E,, which is somewhat
inconsistent with the fact that the longitudinal field comes from a finite transverse extent of the laser. |
have found that the relativistic motion of an electron in such a field can be studied analytically, which
has to my knowledge not been published anywhere. We start by writing the equations of conservation of
momentum and energy for the electron, which read respectively:

dyeﬁe,z eEO,z .

= 1.1
7 mc sin ¢ (1.108)
d E
e _ 2028 Gng (1.109)
dt mec

" As in waveguides, higher order radially polarized modes labeled TM,,, also exist in vacuum [118].



1.5. Vacuum Laser Acceleration 65

By combining these two equations, we can eliminate ¥, and find the equation determining the evolution
of Be.::

d 2 :
Pez _ Eoz 1y p2 )3

1.110
dt mecC ( )

As in the case of the linearly polarized plane wave, we perform the change of variable t — ¢. By noting

that fl—‘f = —w(1 — B.;), the previous equation then becomes:
B 1-p2)°
d e,z . T Peygz
=~ = —ag ,SIn = 1.111
d(P va ¢ 1 o ﬁg’Z ( )

This equation can be integrated by separation of variables, which results in:

2
1— ( 1= Pesi — ap; (cos ¢ — cos ¢i)>

1+Be7zi
Be:(¢) = (1.112)

2
1+ (1 / i;g:z —ay; (cos ¢ —cos ¢,~)>

Here, ¢; is the initial phase, for which the electron normalized longitudinal velocity is 3, ,;. We first note
that in some cases, there is a value of the phase, noted ¢., such that . .(¢.) = 1. Such a value for 3,
is of course impossible to attain. The interpretation in this case is that the electron actually approaches
but never reaches the phase ¢.: it no longer oscillates in the field but instead becomes "locked" at this
accelerating phase of the laser where it can gain an infinite amount of energy. This can be confirmed
by integrating fB..(¢) to obtain the position z.(¢). We indeed find in this case that z, diverges as ¢
approaches ¢.. This phase-locking of the electron occurs for:

1 l—ﬁezi
R _ ’ 1.113
apz = Azc 1 —cos (Pi \/Tﬁe;j ( )

We thus find that there exist in this model two radically different scenarios:

1. For ap; < ap 4, the electron indefinitely oscillates in the field. This can roughly correspond to the
ponderomotive regime discussed in the case of linear polarization.

2. For ap; > ap ., the electron is indefinitely accelerated. This can roughly correspond to the VLA

regime discussed in the case of linear polarization.

Of course, this second scenario cannot exist in reality as the electron will always dephase with respect to
the laser due to the Gouy phase shift. However, this model remains useful as it provides an estimation
of the electric field at which the transition between the ponderomotive and VLA regimes occur. We will
see in chapter 4 that this estimation is in good agreement with simulations. We can remark that the worst
initial phase corresponds to an electron which initially starts with a decelerating half-cycle (¢; = 0). In
this case, the electron will always oscillate in the field regardless of ap .. On the opposite, the optimal
initial phase, for which the electron is most likely to be phased-locked, corresponds to beginning with an
accelerating half-cycle (¢; = 7). Phase-locking is also facilitated by a significant initial velocity. In the
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particular case where the electron begins its interaction at ¢; = +m with no initial velocity, it becomes
trapped for ap; > 0.5, which is a moderately low value. Finally, if the electron begins its interaction at rest
at a maximum of the electric field, the threshold value for attaining the VLA regime is given by ag ;. = 1.
This would correspond to the case of an electron created by ionization inside the laser pulse.

Maximum theoretical energy gain
The equation of motion can no longer be solved analytically if diffraction is included in the field. However,
for an ultrarelativistic electron such that z = ct, the energy gain can be calculated analytically [78]. In this
case, we have the relation kz — @t = 0 along the electron trajectory and the phase seen by the electron
is given by ¢ = —2arctan (i) + ¢cep. We note that for an ultrarelativistic electron the Gouy phase shift
is the only source of dephasing with the laser. The energy gained by the electron is given by:

lf
AW = —e/ E (t)cdt (1.114)
1
2f
AW = —e / E.(2)dz (1.115)
Zi
2 sin (—2 arctan <i) + (PCEP)
AW :e/ Eo . dz (1.116)
% 1+ 57
‘R

Where 1; (resp. z;) is the time (position) at which the interaction starts and ¢7 (zy) is the time (position) at
which the interaction ends. This integration can be carried out analytically and results in:

E o
AW = eOT’ZZR {cos <—2arctan <Z> +¢c5p>] (1.117)

ZR %

EE()JZR (

AW = cos ¢y —cos ¢;) (1.118)

Where ¢; and ¢ are respectively the initial and final phase seen by the electron during the interaction.
We first note that for an interaction between z = —o0 and z = +oo, the Gouy phase shift is 27 and we
thus have ¢, = ¢; which results in zero energy gain. The electron sees in this case a full accelerating
half-cycle and a full decelerating half-cycle which exactly compensate each other. This is a particular
case of the Lawson-Woodward theorem, which will be seen in section 1.5.3, and which states that the
net energy gain is zero for an ultrarelativistic electron interacting with a pure electromagnetic wave in
vacuum from z = —oo to z = +o0. For an ultrarelativistic electron, an energy gain can therefore only be
obtained if the interaction is spatially limited. The energy gain is maximum for an electron that only sees
an accelerating half-cycle, regardless of its initial position. This can occur for example for an interaction
between z = — and z = 0, between z = —zz and z = 4z or between z = 0 and z = 4. The latter
case is interesting because it could correspond to the case of an electron injected by a plasma mirror
into a reflected radially polarized pulse. In any case, the energy gained by an ultrarelativistic electron that
experiences a full accelerating half-cycle is given by:

AWpax = eEp ;zr (1.119)
This can be rewritten as a function of the laser power:

2
TcEy

AWyax = 2e VP (1.120)
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In practical units, this result becomes:

AWyax [MeV] ~ 31,/P[TW] (1.121)

In reality, an electron evolves at a velocity which is smaller than ¢ and will thus dephase more quickly with
respect to the laser. This means that an electron accelerated by a radially polarized beam will always
receive a smaller energy gain than that given by equation 1.121. We remark that, even though they
have been obtained in a very different manner, the maximum energy gain in a radially polarized pulse
is very similar to that for linear polarization (see equation 1.92). In particular, the energy gain scales in
both cases as the square root of the laser power. This once again means that VLA is not well-suited for
generating extremely high energy electron beams.

We also remark that, unlike the case of linear polarization, this maximum energy gain has been
obtained with a practical scenario (an on-axis ultrarelativistic electron whose interaction is limited to a
single accelerating half-cycle, for instance between z = 0 and +o) which takes dephasing and diffraction
into account. This means that the maximum energy gain given by equation 1.121 can be approached in
practice (provided that an adequate injection method is found). Consequently, the energy gain that can
be attained with a radially polarized pulse is probably higher than with a similar linearly polarized pulse
(although the maximum energy gain that can be achieved in practice with linear polarization is not well
quantified).

Equation 1.121 indicates that the energy gain is at most ~ 25 MeV with the Salle Noire laser (=
670GW) and =~ 130 MeV with the UHI100 laser (= 18TW). These values are somewhat high but it should
be kept in mind that attaining these maximum energy gains would require using an initially ultrarelativistic
electron beam.

1.5.2.4 Previous simulation results

The trajectories of electrons interacting with radially polarized pulses can only be obtained numerically,
usually through test-particle or PIC simulations. We sum up in this section the principal numerical results
that have obtained obtained on the subject over the past two decades.

Historically, the first test-particle simulations have been carried out for infinitely long pulse dura-
tions [97, 100, 101]. In this situation, the electons de facto begin their interaction inside the laser. In [100],
it is shown that the optimal initial phase in this case corresponds to an electron starting its interaction with
an accelerating half-cycle. We will see in chapter 4 that this condition still holds when finite duration
pulses are used. In [101], Salamin notes that, using a 1 PW or 10 PW laser with wy = 0.534 (ao ; be-
tween = 350 and = 1000), electrons initially at rest at z = 0 at the optimal phase and close to the optical
axis (r < 0.251) are accelerated to energies in the GeV range with a final angle < 1° with respect to the
optical axis. These results are promising but have been obtained with an extremely high laser power and
an extremely tight focusing.

Next, simulations of electrons initially at rest at z = 0 in front of a finite duration pulse have been
performed [98, 99, 90]. Experimentally, this would correspond to the ionization of elements with low
ionization energies, since in this case the electrons are generated early in front of the pulse. In refer-
ence [90], it was observed that when ag ; < 1, the electrons tend to experience many laser oscillations,
which results in a low energy gain. On the opposite, when aq ; > 1, electrons can remain for a long time
in an accelerating phase of the laser and gain large amounts of energy. This corresponds to a transi-
tion between the ponderomotive regime and the VLA regime. We note in particular that the value of the
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electric field at the transition is consistent with that obtained in the diffractionless model of the previous
section in the case of injection by ionization (cos ¢; = 0 and 3, ;; = 0).

In the same publication, the authors find that, for a given peak power, there exists an optimal beam
waist wg which is such that ay ; is slightly higher than 1. For larger beam waists, we have ap; < 1 and
the acceleration is ponderomotive and inefficient. For smaller beam waists, the interaction distance is
reduced without significantly increasing the electric field seen by the electron. Indeed, even though this
case potentialy corresponds to ag; > 1, the electron will spend a long time in the first cycle for which
the normalized longitudinal field is greater than 1 and will consequently never penetrate in the temporal
center of the pulse where ag ;> 1. However, it was found in [91] that when the initial electron longitudinal
position z.; is an adjustable parameter, the best focusing is in fact the tightest. For very small beam
waists, the electron should initially be located well before the laser focus z.; < 0 and its trajectory should
be such that it reaches the temporal center of the pulse at z = 0 where it can be efficiently accelerated.

Then, the acceleration of electrons injected by ionization into a radially polarized beam has been
studied more accurately using PIC simulations [102, 89, 105, 106]. In [102], it is shown that high quality
GeV electron beams can be obtained using a laser with wy = 34 and a peak power ranging between
2 PW and 100 PW (ao ; between ~ 15 and ~ 100). They note that electrons ionized inside the laser
reach higher energies than electrons ionized early in front of the pulse. They additionally observe that,
for identical laser parameters, radial polarization leads to more energetic and more collimated electron
beams in this scenario. However, it should be noted that, on top of the extremely high peak powers
involved, the target in the simulations is a low-density nanosphere with a radius of A /4 that is exactly at
focus on the optical axis.

The ionization injection method has been studied in a very different regime in [89]. Using a 6-fs,
300-GW laser focused on a low-density hydrogen target, they obtain a 1-fC, 240-keV electron beam with
good emittance and energy spread. However, it should be noted that to obtain these results, the authors
have used a very tight focusing wo ~ 4 so that the longitudinal field reaches ag ; ~ 1.6. Slightly higher
energies are in principle achievable if targets with higher-Z elements are used, but the authors find that
this leads to an unwanted increase in the energy spread, as electrons originating from different ionization
states will follow different trajectories [105]. In [106], these results are extended to few-TW laser powers
and they show in particular that few-MeV electron beams are achievable in this case. Nevertheless, the
same extreme focusing is used.

More recently, the acceleration of pre-accelerated electron beams which are initially in front of the
laser pulse has been studied [91, 103, 107]. Unsurprisingly, it is observed that an electron can gain more
energy from the laser if it initially has a velocity in the longitudinal direction. In [107], it is found that the
threshold ag ; > 1 for reaching the VLA regime that was previously obtained for electrons initially at rest
can be extended to electrons that have an initial velocity. To do that, the authors consider the frame where
the electrons are initially at rest, inside which the threshold ag ; > 1 is in principle valid. In this frame, the
longitudinal field seen by the electron is increased due to the relativistic Doppler downshift of the laser
frequency. Because of that, the threshold in the laboratory frame is lowered to:

1— Be,zi
1 + ﬁe,zi

ao. > (1.122)

This threshold was found to be in good agreement with simulations. Interestingly, this threshold exactly
corresponds to the one obtained analytically in my model without diffraction that was presented in the



1.5. Vacuum Laser Acceleration 69

previous section, for an electron initially at a maximum of the electric field (see equation 1.113 for cos ¢; =
0). According to the analytical model, we could thus expect the threshold to be lowered by a factor 2 for
an electron initially inside the laser that starts its interaction with an accelerating half-cycle. Finally, in the
same paper [107], the authors point out that the laser pulse tends to reduce the pre-accelerated electron
bunch duration, as electrons at the rear of the bunch are accelerated earlier that electron in front of the
bunch.

1.5.2.5 Previous experimental attempts

There have been in the past only two experimental attempts at electron acceleration in vacuum with
radially polarized pulses. Each of the experiments have used one of the injection methods that were
previously employed in the case of linear polarization: the ionization of a low density gas target and the
use of pre-accelerated electron beams.

The first experiment [113] has been performed at the Advanced Laser Light Source in Canada and
corresponds to the ionization of a gas target. A 15-fs infrared (A = 1.8 um) with an on-target energy of
550 wJ interacts inside a chamber filled with a low-density oxygen gas. The pulse is focused using an
on-axis parabola with a numerical aperture of 0.7. The resulting beam waist is expected to be wg ~ 0.6A,
but has not been measured and is therefore possibly underestimated. Such a tight focusing would result
in ap . =~ 1.4, which should be sufficient to accelerate electron to relativistic energies. However, an energy
gain of only ~ 20 keV was obtained, which suggests that such high longitudinal fields were not achieved.
The authors nonetheless observe that the electron signal disappears when the polarization is switched
to azimuthal or linear, which indicates a significant effect of the polarization.

The second experiment [119] was carried out using an electron beam which was pre-accelerated with
aDC gun. A A = 800 nm, 8-fs laser pulse with an on-target energy of 600 uJ is focused to a beam waist
wo = 1.2 um onto the electron beam. The peak longitudinal field is not provided but these parameters
correspond to ap ; =~ 0.4. The electron beam has an initial energy of 40 keV and is approximately 1-mm
long. Therefore, depending on their position in the bunch, some electrons will be accelerated, some will
be decelerated and most will not feel the laser at all. This effectively resulted in an increase of the beam
energy spread, as in similar experiments performed with linear polarization (see section 1.5.1.5). The
maximum detected energy is 50 keV, which corresponds to a 10 keV energy gain.

We have seen that both previous experiments have resulted in inefficient acceleration. This is due
to the modest laser energies used, the possible difficulty of generating high quality radially polarized
beams and the fact that nonoptimal injection methods were used. We will show both numerically and
experimentally in chapters 4 and 5 that using a plasma mirror injector can solve the last issue, resulting
in the demonstration of electron acceleration to relativistic energies.

1.5.3 Lawson-Woodward theorem

We conclude our study of VLA by presenting an important result regarding the acceleration of electrons
in vacuum, known as the Lawson-Woodward theorem [120, 78]. The theorem states that under some
conditions, described below, the interaction between an electron and an electromagnetic wave results in
zero net energy gain for the electron. The conditions under which the theorem can be applied are the
following:

1. We neglect the power radiated by the electron.
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2. The electron has an ultrarelativistic velocity (. > 1) in the same direction throughout the interac-
tion. This means that, with an appropriate choice of coordinates, the electron trajectory can be
written as z ~ ct, x =y = 0. This assumption implies in particular that the transverse fields are not
strong enough to significantly deflect the electron.

3. The electron only interacts with a pure propagating electromagnetic wave (no static component
and no imaginary wavevectors) in vacuum from z = —oo {0 7 = H-o0.

With these assumptions, the electron only moves in the z direction and therefore only the E, component
of the electric field can work. The total energy gain is thus given by:

AW = —e /m E(x(1),y(t), (1), )edt (1.123)
AW = —ec/bo E.(0,0,ct,t)cdt (1.124)

Since the electron trajectory is known in advance, we can sum over the contribution of each plane wave
constituting the electromagnetic field to calculate the energy gain. We therefore write the Fourier trans-
form of E;:

E(x,y,2,t) = / dKE; (ky, ky, k) ke thvth=on) (1.125)

Here, EZ is the Fourier transform of E; att =0 and @ = | /k? —|—k§ + k2. Along the electron trajectory, we
have in particular:

E.(0,0,ct,1) = / dKE, (ky, ky, k,)e' ket (1.126)

Injecting this expression into equation 1.124, we obtain:

oo

AW = —ec/dk {I:fz(kx,ky,kz)/

—o0

e"(klcw)’dt} (1.127)
AW = —ec/dkﬁz(kx,ky,kz)a(kzc - 0) (1.128)

Where ¢ is the Dirac delta function. Thus, only wavevectors such that @ = k,c can contribute to the
energy gain. In the absence of static field and of imaginary wavevectors, this can only be satisfied by
a vector k of the form (0,0,%;), where k; is a strictly positive real number. This corresponds to a plane
wave copropagating with the electron. However, in such a case the electric field is purely transverse and
we have EVZ(O,O,kZ) = 0. This eventually means that AW = 0, which proves the theorem.

This theorem is useful as it applies to every laser polarization and can rule out many scenarios
in which one wants to post-accelerate an initially ultrarelativistic beam using a laser pulse in vacuum.
However, it should be kept in mind that its domain of applicability is limited and, as we will see in the
following, somewhat vague. Condition 1 is verified in virtually all cases that we consider here and is
therefore not the principal concern. Condition 3 is more restrictive and is not verified in the case of
injection by a plasma mirror or by ionization of a low-density gas, because the interaction in vacuum does
not occur from z = —oo to z = +o0. This means that the Lawson-Woodward theorem is of no importance
in these situations. The theorem is in fact of interest only when pre-accelerated electron beams are used.
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Figure 1.31: Electron trajectories obtained from single particle simulations. (a) The electron is initially
at rest at z = 0 on the optical axis in front of a radially polarized pulse with A = 800 nm, T = 3.5 fs,
wo = 1.5um and ap, = 1.5. (b) Same interaction seen in the inertial frame where the electron has
an initial Lorentz factor ¥, ; = 100. (c) Same simulation as in (b) except that the electron has this time
an initial Lorentz factor 7y, ; = 100 000. We have used in these simulations exact expressions for the
electromagnetic field as presented in section 2.3.

Condition 2 is also very restrictive and can moreover be quite tricky. First of all it should be noted
that the theorem cannot be applied whenever the laser significantly deflects or slows down the electron,
because in this case the trajectory cannot be approximated by z = ct. For example, an initially relativistic
electron can very well start its interaction by losing most of its energy, so that it is at one point non-
relativistic, and be even more accelerated later on, resulting in a net energy gain [97, 91, 107]. Another
possibility is that the electron remains ultrarelativistic throughout the interaction but gains energy by being
deflected, for example by the transverse fields in linear polarization '2. Overall, it cannot be concluded
from the theorem that an initially relativistic electron cannot be accelerated from VLA.

More fundamentally, an electron always has a velocity which is smaller than ¢ and it is therefore not
entirely clear at what point the second condition can be considered true. In particular the fact that an
electron is relativistic or not depends on the choice of the inertial frame. For every electron that remains
ultrarelativistic throughout the interaction in a given frame, there exist another frame in which the electron
is initially at rest. Conversely, for every electron that gains energy from VLA (and is therefore not subject
to the Lawson-Woodward theorem), there exist an infinite number of frames in which the electron remains
relativistic throughout the interaction, which seems to contradict the theorem.

As an example, let us consider an electron initially at rest on the optical axis and at z = 0 in front
of a radially polarized pulse with A =800 nm, T = 3.5 fs, wp = 1.5um and agp, = 1.5. The kinetic
energy of this electron as a function of time is plotted in figure 1.31(a). Since the laser field is intense
enough (ap ; > 1), the electron remains for a long time in an accelerating half-cycle and eventually gains
= 2.66 MeV from the interaction.

Let us now look at the same interaction in the inertial frame where the electron has an initial Lorentz
factor 7. ; = 100 and moves in the positive z direction. In this frame, the laser pulse is strongly Doppler
upshifted: its wavelength is ~ 4 nm, its duration is ~ 17.5 as, its beam waist is unchanged, its longitudinal

2More generally, the VLA scenario with transverse fields, where the electron gains energy by being deflected by the E field
and is rotated back in the z direction by the B field, violates by essence condition 2, and is therefore not subject to the theorem.
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electric field amplitude is unchanged (but ay ; is decreased to ~ 0.0075 due to the frequency increase), its
Rayleigh length is increased from 8.84 um to ~ 1.77 mm and its peak power is increased from ~ 3 TW to
= 120 PW. The electron energy as a function of time in this frame is shown in figure 1.31(b). It increases
from ~ 51 MeV, to ~ 629 MeV, which corresponds to a ~ 578 MeV energy gain. We note that this
trajectory has been obtained from a test-particle simulation and that the final electron energy matches
that theoretically expected from the Lorentz transformation. Its minimum energy during the interaction
is ~= 29 MeV, which can be considered to be relativistic (this value can be raised to an arbitrarily high
number if ¥, ; is chosen large enough). Therefore, its trajectory can be well approximated by z = ct, and
the electron appears to verify all the conditions of the Lawson-Woodward theorem. Yet, it receives a net
energy gain.

We show in figure 1.31(c) the same simulation as in figure 1.31(b) except that the electron has an
initial Lorentz factor ¥, ; = 100 000 instead of ¥, ; = 100 (this corresponds to choosing ¥.; =~ 500 (=~ 255
MeV) in the initial frame of figure 1.31(a)). In this case the electron initially loses approximately 20%
of its energy, but regains it later on in the following accelerating half-cycle, resulting in a negligible net
energy change. This corresponds to a typical Lawson-Woodward trajectory. This suggests that condition
2 can be understood in the following way: for given laser parameters (and thus in a given frame), the
energy gain tends towards 0 as the trajectory approaches z = ct. How close must the trajectory be to
z = ct for the energy gain to be negligible is not specified by the theorem and depends on the given laser
parameters. In particular, the fact that we can always change the inertial frame shows that from every
real number 8 < 1, there exist trajectories such that .. > B at all time for which the Lawson-Woodward
theorem does not apply. However, it should be noted that the laser power becomes increasingly large as
B approaches 1 in this scenario.

We heuristically notice that the theorem can be applied whenever the initial electron energy is rela-
tivistic and higher than the maximum theoretical energy gain given by the laser pulse peak power (equa-
tion 1.121). This could provide a clearer criterion for condition 2 (even though this hypothesis has not
been tested thoroughly and we consequently do not exclude that counterexamples can be found) and
shows that the theorem still has relevance in many practical cases. Nevertheless, its implications should
not be overestimated because:

e The theorem does not apply to injection methods where the interaction is spatially limited (as is the
case with plasma mirrors).

e The theorem only applies to highly energetic electron beams. However, we have previously seen
that VLA is anyway not well-suited to accelerate electrons to high-energies. This means that the
theorem does not apply to scenarios where VLA would be the most appealing (e.g. for generating
few-MeV electron beams).

In particular, this theorem should not be used to dismiss the mere possibility of accelerating electrons
with lasers in vacuum.

1.6 Conclusion

We have presented in this chapter different techniques for generating relativistic electrons using ultra-
high intensity laser pulses. Laser wakefield acceleration in underdense plasmas remains the standard
method for obtaining high-quality electron beams, and multiple GeV energy gains as well as few-fs bunch
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durations have been obtained. Electrons can also be accelerated from the interaction between a laser
pulse and an overdense plasma with a density gradient on its front surface. For large preplasmas, the
interaction is not well understood and there is a need for more experiments in this regime. As will be
seen in chapter 3, we indeed observe experimentally electrons at long gradients in Salle Noire, which
we attribute to laser wakefield acceleration taking place in the underdense part of the preplasma. On
the opposite, the interaction is well understood for sharp density gradients. In this case, the electrons
are ideally injected into the reflected laser pulse where they can gain large amounts of energy from VLA,
as has been demonstrated experimentally with linearly polarized pulses. Plasma mirrors thus provide a
simple method for studying this fundamental acceleration process. It has often been proposed that radial
polarization be used instead of linear polarization in order to improve the quality of the VLA generated
electron beams. We will therefore study in chapters 4 and 5 the acceleration of electrons injected by a
plasma mirror into a radially polarized beam.
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The relativistic motion of an electron accelerated in vacuum by a monochromatic plane wave can be
solved analytically, as was shown in chapter 1. However, an analytical approach is no longer possible
when more realistic multi-dimensional laser pulse profiles are used. Numerical simulations are therefore
necessary to study the acceleration of electrons in vacuum more quantitatively. The simplest method is to
perform test particle simulations, in which the motion of a set of electrons inside a known electromagnetic
field is computed. These inexpensive simulations, described in section 2.1, are particularly useful when
the initial conditions for the electrons are known.

When modeling the injection of electrons by an overdense plasma into a laser pulse, plasma effects
must be included in the simulations. The method of choice to simulate the interaction of an ultrahigh
intensity laser pulse with a plasma is the Particle-In-Cell (PIC) method, where the motion of a collection of
charged particles is solved self-consistently with Maxwell’s equations. The standard PIC loop is presented
in section 2.2.2. PIC simulations can be very computationally demanding and full-3D simulations of the
interaction between a relativistic intensity laser pulse and an overdense plasma are not tractable with the
standard PIC method. We present in sections 2.2.3 and 2.2.4 two solutions enabling 3D simulations: the
use of cylindrical coordinates at normal incidence and the use of pseudo-spectral Maxwell solvers for any
laser incidence.

Finally, in Section 2.3, we present a method that can be used to model ultrashort and tightly focused
laser pulses in simulations.
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2.1 Test-particle simulations

Test particle simulations, also known as single particle simulations, solve the relativistic equation of
motion of a set of charged particles in a known electromagnetic field:

Poll) g (B 0).5) +0p > B (ry(1).0) @)
drc’i’[(t) = v, (1) (2.2)

Here, r,(t), v,(), p,(t) and g, are respectively the position, velocity, momentum and charge of particle
p attime t and E(r,t) and B(r,t) are the electromagnetic fields (the laser fields in the case of VLA).
Since the E and B fields are known in advance, the particles have no influence on the fields and do
not interact with each other. For a given electromagnetic field, a particle trajectory is therefore entirely
determined by its initial position in phase space (r,(0),p,(0)). This means in particular that single
particle simulations become inaccurate when the charge of the simulated electron beam becomes too
high.

There are different methods for integrating equations 2.1-2.2, but the Boris pusher [121] is the most
common choice as it is fast, accurate and easy to implement. A leapfrog integration is used in the Boris
pusher, meaning that positions and velocities are calculated at interleaved time points. More specifically,
after a time step Ar is chosen, positions are computed at times nAr while velocities are computed at
times (n+ 1/2)At, where n is an integer. This is done so that the time derivatives are centered, which
increases the stability and accuracy of the integration. In the Boris scheme, the following equations are
used to update a particle’s position and momentum:

py = ph '+ Mg, (B4 9 % B) 2.3)
1 +1/2
i =1l 4 Arv, (2.4)

We have used the notation aZ = ap(nA,) for the particle position, velocity and momentum and the nota-
tion A; = A(rg,nA,) for the fields. The Boris pusher is characterized by the use of an average velocity
'D;’, in the calculation of the magnetic force, thereby increasing the accuracy of the method. It is defined

by [122]:
n+1/2 n—1/2
pp+/ +pl /

2%

(2.5)

<X

Where }7[} is an average Lorentz factor equal to:

nt1/2 . n—1/2\ 2
=41+ (Pp +Pp ) (2.6)
2mpc

1/2 n+1/2

Equation 2.3 is implicit since ¥ depends on p"+ S0 an algorithm must be used to obtain p from
P P P

pZ_l/z. This is done in practice using a three step method first described in [121]. First, half of the electric
field is applied, then the magnetic rotation is calculated and finally the other half of the electric force is

applied.
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Test particle simulations are particularly inexpensive compared to PIC simulations. Moreover, since
the trajectories of different particles are independent from one another, single particle simulations can
be easily parallelized by having different processors compute the motion of different particles. These
simulations are useful when the initial conditions of the particles are well known. For instance, they
yield the same results as PIC simulations when studying the acceleration of electrons in vacuum after
ionization of a low density hydrogen gas [89], because the electrons are all generated early in front of the
laser pulse in this case (this only works of course if the density of the gas is low enough to make plasma
and space charge effects negligible).

However, when plasma mirrors are used as an injection method, test particle simulations provide
no information regarding the initial conditions for the electrons. They can therefore not be used as a
tool to predict final electron distributions for given laser and plasma parameters. Nevertheless, after an
experimental result is obtained, it is possible to retrieve the experimental electron spectrum and angular
distribution by tuning the initial conditions in the single particle simulations, as was done in reference [27].
Then, these simulations are used to extract useful information regarding the electron trajectories without
having to perform expensive 3D PIC simulations.

It should also be noted that test particle simulations are very sensitive to the choice of the laser
electromagnetic fields, as was shown in reference [104]. Since in principle any arbitrary function of space
and time can be chosen as the E and B fields in the simulations, incorrect results may be obtained if
the fields are unphysical. For instance, using laser fields described by the paraxial approximation leads
to severely flawed electron angular distributions [80, 123]. Extra care must therefore be taken when
choosing the electromagnetic fields. A possible way of modeling ultrashort and tightly focused pulses will
be discussed in section 2.3.

The test particle simulations presented in this thesis have been carried out using a code initially
developed in C++ by Olle Lundh for which | have made further developments (parallelization with the
OpenMP library, implementation of the pulse profiles described in section 2.3 and of more exotic initial
particle distributions).

2.2 Particle-In-Cell simulations

When simulating the interaction between an overdense plasma and an ultraintense laser pulse, plasma
and space charge effects must be included and test particle simulations are no longer appropriate. As
we have seen in chapter 1, kinetic phenomena are prevalent during the interaction, which means that
fluid (hydrodynamic or magnetohydrodynamic) simulations are not suitable either. Since collisions can
be neglected, the Vlasov-Maxwell system (see section 1.2.2) provides the relevant equations to solve in
order to describe the plasma response. The Particle-In-Cell (PIC) algorithm is the standard method for
solving this system and thus for modeling collisionless kinetic plasmas.

PIC simulations are widely used in the field of high-intensity laser-plasma interaction to gain addi-
tional insight from experiments, mainly by accessing quantities that are not directly measurable (plasma
density maps with subwavelength resolution, electromagnetic field values). They are also used to predict
experimental results and to validate analytical models of the interaction. The PIC method relies on very
little assumptions, which can lead to very good agreement with experiments, provided that the laser and
plasma are modeled accurately.
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2.2.1 Principle of the PIC method

One possible approach to simulate the laser-plasma interaction would be to directly solve the Vlasov-
Maxwell system, using for instance finite difference methods. Such schemes exist indeed [124], but are
not frequently used because of the high dimensionalities involved. For example, solving for the distribution
functions f; in a 3D geometry requires a 6D grid (3 dimensions for real space and 3 dimensions for
momentum space), which can be prohibitively expensive.

Rather than being described through the distribution functions f; of its constituent species, the plasma
is usually modeled by a collection of charged particles (electrons and ions) interacting with each other.
In the PIC method, the particles interact through Maxwell’s equations. Accelerated particles emit electro-
magnetic radiations via the source terms in Maxwell’s equations. These generated field will then retroact
on the particles’ motion through the Lorentz force. A PIC code therefore consists in the resolution of the
equation of motion of charged particles coupled with Maxwell’'s equations. In practice, the particles evolve
freely in space while the fields (electromagnetic fields, charge density and current density) are calculated
on a grid. The main steps of the PIC loop are described in section 2.2.2.

Ideally, each PIC particle would represent a single physical electron. This can however not be realis-
tically done in practice, as the number of simulated particles would be too high. For instance, assuming
Ao = 800 nm, the number of electrons in a volume of lg at 200 times the critical density is already
1.7 x 10", For this reason, each particle in a simulation represents many physical particles which are
close to each other in phase space and is therefore called a macroparticle. Macroparticles have a fi-
nite spatial extent, characterized by a shape function S(7) such that the charge density associated to
particle p is:

pp(r) =qpw,S(r—r)) (2.7)

Here, 7, is the central position of macroparticle p, w), is its weight, which corresponds to the number of
physical particles it represents and ¢, is the charge of a single physical particle. The shape function is
normalized: [gs S(r)d®r = 1 so that the total charge of the particle is g,w,. The distribution function
associated to the macroparticle is:

Ip(r,p) =wpS(r—r,)6(p—py) (2.8)

Where ¢ is the Dirac function and p, the momentum of the particle. It can be noted that, even though
macroparticles do not have a well-defined position, they have a well-defined momentum. Using such
distribution functions, PIC simulations solve the Vlasov-Maxwell system, with the minor approximation
that the particle shape functions remain constant in the simulations.

The shape functions are used to make the connections between the particles and the grid. For
instance, the charge density deposited by particle p on a grid point located at position 7, is:

Pgrid.p = qupS(Tgrid - rp) (29)

Similarly, the electric field E, acting on the particle is obtained from the electric field Eg,;; on the neigh-
boring grid points and from the shape function S(7):

E, =Y S(rgia—7p)Egia (2.10)
grid
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Figure 2.1: Standard 1D macroparticle shape functions of order (a) 0, (b) 1, (c) 2 and (d) 3. Ax is the grid
spatial step.

Usually, the shape functions described in [125] are used. They are obtained by consecutively per-
forming the convolution of a top-hat function with itself, as shown in figure 2.1. The shape function of
order n is made of piecewise polynomials of order n and its first (n — 1) derivatives are continuous.
These functions are chosen for their advantageous numerical properties (low noise and error in the force
calculations, the total deposited charge is always the macroparticle charge). Increasing the spline order
broadens the macroparticle spatially, which reduces the numerical noise but increases the number of
computer operations, as the macroparticle deposits charge and current on more grid points. A spline of
order 3 is used in all the PIC simulations presented in this manuscript. In this case, and in a 3D geometry,
the particle has a volume of 4Ax x 4Ay x 4Az, which means that it interacts with 64 adjacent grid points.

2.2.2 The standard PIC loop

PIC simulations make extensive use of leapfrog methods. Typically, the electric field and the particle
positions are calculated at integer times (multiples of the timestep Ar) while the magnetic field and the
particle momenta are calculated are half-integer times. Let us assume that the particles’ momenta are
known at time (n — 1/2)Ar and are noted pZ_l/z and that their positions are known at time nAr and are

noted 7. Furthermore, we assume that the electric field is known on the grid at time nAr (noted E,; )

and that the magnetic field is known at time (n+ 1/2)At (noted B;,’ZL}/Z). We hereafter briefly summarize

the different steps occuring in the course of one PIC iteration, during which these quantities are updated
to pZH/Z, it Eg,’:;} and B;':;;/z. These different steps are represented in figure 2.2. A PIC simulation
consists in performing this loop for a desired number of timesteps. A more comprehensive description of
the standard PIC algorithm is given in [125] and [126].

Interpolation
In order to update the particles momenta from pZil/z to pZH/Z using the Lorentz force, the electromag-
netic fields must be interpolated from the grid to the positions of the particles. This is done through the
shape function, as described in equation 2.10. The same shape function must be used for the interpola-
tion and for the current deposition, so that no self-forces are applied by a particle on itself [125].

We note that the Lorentz force requires the magnetic field to be calculated at time nAtz. In practice,

Bg,’”.d is obtained by computing the average between B;;;ﬂ and B;:;;/z. This method may lead to an
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Figure 2.2: Diagram showing the four main steps of the standard PIC loop.

substantial overestimation of the force when the E and v x B terms should practically cancel each other,
as is the case for example when an ultrarelativistic electron copropagates with a laser beam. In such a
case, a higher precision is required when estimating Bgrid, so that an accurate cancellation of the E and
v X B forces is obtained. This can be achieved for example with a third-order time interpolation [127].
Particle pusher
Once the electromagnetic fields are known at the positions of the particles, the relativistic equations of
motion are integrated to obtain pZH/Z and r[’;“. This is usually done using the Boris pusher which was
described in section 2.1.
Current deposition
In this step, the source terms are calculated on the grid in order to update the electromagnetic fields from

Maxwell’s equations 2.11-2.14:

V.E = SBO Gauss’s law (2.11)
V.B=0 Gauss’s law for magnetism (2.12)
VXX E= —a(_f Maxwell-Faraday (2.13)
V x B =Ly <J+8088?> Ampére’s law (2.14)

Only two of Maxwell’s equations (Maxwell-Faraday and Ampére’s law) are time-dependent. These
are therefore the equations that will be used to update the E and B fields. Consequently, only the
current needs to be deposited on the grid in order to update the electromagnetic fields. Additionally, we
require that the algorithms used for the current deposition and Maxwell solver ensure that Gauss’s law
and Gauss’s law for magnetism are satisfied throughout the simulation. In the case of the Yee Maxwell
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Figure 2.3: Diagram showing one grid cell of the Yee lattice. Different components of the electromagnetic
fields are calculated at different positions in the cell.

solver, which will be described below, Gauss’s law for magnetism is satisfied over the simulation provided
that it is satisfied in the first iteration and Gauss’s law is satisfied during the whole of the simulation if it is
satisfied in the first iteration and if the continuity equation 2.15 is always verified.

L 4V.J=0 (2.15)

The current deposition should therefore be done in such a way that the charge conservation equa-
tion 2.15 is satisfied on the grid. If the current is deposited in the same manner as the charge (see
equation 2.9) then the continuity equation is not verified. For this reason, a current deposition algorithm
which satisfies equation 2.15 for any shape function was developed by Esirkepov [128]. Esirkepov’s
method is used in most present-day PIC codes.

Yee Maxwell solver

The most commonly used Maxwell solver in PIC simulations is the Yee solver [129], which is based
on the finite-difference method. The Yee solver uses a staggered grid, which means that the different
compoments of the electromagnetic fields are computed at different points in space. The Yee lattice grid
cell is shown in figure 2.3. The positions are chosen so that the space derivatives in Maxwell-Faraday
(2.13) and Ampére’s law (2.14) are centered, which makes the discretized spatial derivates second-order
accurate. The components of the current are calculated on the same positions as those of the electric
field.

The electric field is updated to E;‘;;} by discretizing Ampere’s law. For example, using the notation

A7 = A(iAx, jAy, kAz,nAt), the x-component of the electric field Eyg,;4 is updated via the following
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formula:

n+1/2 _ pntl/2 n+1/2 _ pontl)2
Sitggtak  litggosk gkt Titggk—3 n+1/2

n+1 _ n 2 .
E = + At 0 xi+%,j,k

xi+%7jvk xi_i_%’j’k Ay AZ

(2.16)

n+3/2

Similar equations are used for updating Eyg”.d and Ez,,;;. Then the magnetic field is updated to Bgn.d

through the discretization of Maxwell-Faraday, which reads for the x-component:

n+1 _ n+l n+1 _ n+l

32 pontl/2 a Sjtlks kS n Vij+ k1 Vi 5k
it kL Nk Ay Az

(2.17)

Again, similar equations are used for updating Byg”.d and B;,,;;. The fields E;‘:;[} and B;’:;j/z will then
be used in the next iteration to update the particles’ momenta via the Lorentz force.

Additional modules in the PIC loop
The 4 steps presented above (interpolation, particle pusher, current deposition and Maxwell solver) are
the fundamental constituents of the PIC loop. Other modules may also be added to take new physics into
account in the simulations, such as collisions, ionization or quantum electrodynamics effects [130].

Among these, only field ionization was included in some of the simulations presented in this manuscript.
It is incorporated into the PIC loop by calculating at every time step the ionization probability of every atom
or ion with a bound electron. This probability depends on the electric field interpolated at the position of
the macroparticle and the ionization energy of the bound electron. It is usually calculated using the ADK
model for tunnel ionization, developed by Ammosov, Delone and Krainov [131].

Typical parameters for plasma mirror simulations
Here, we present common parameters that are used when simulating the interaction of an ultraintense
laser pulse with a plasma mirror. We also give the typical number of computation hours that is required
to run these simulations.

The plasma is usually modeled using the density profile shown in figure 2.4. At the beginning of the
simulation, each cell with a non-zero density is filled with a given number of particles (typically 10 particles
per cell per specie in 3D and 100 particles per cell per specie in 2D, but this number can vary depending
on the simulation). The density in each cell is adjusted by appropriately choosing the weight of the
macroparticles. The exponential density profile is artificially cut at a finite density nyn, typically around
n./20-n./10, in order to reduce the number of particles in the simulation. The maximum density ny4x is
usually around 100n.-250n.. For high laser intensities, the choice of the initial plasma temperature only
has a weak effect on the simulation results [61].

Plasma mirror simulations require very fine grid cells. Acceptable orders of magnitude regard-
ing the charge and energy of ejected electrons can be obtained for spatial resolution on the order of
Ax ~ A /50. However, with the standard PIC algorithm presented above, full convergence of the high-
harmonic generation efficiency and of the electron angular distribution requires spatial steps of approx-
imately Ax ~ A /300 [132, 133]. This makes the simulations computationally very expensive. Con-
verged 2D simulations typically cost ~ 10 000-20 000 hours while 3D simulations require billions of
hours [132, 133].

Given the high number of computation hours involved, these simulations have to be carried out on
parallel supercomputers. Efficient parallelization of the code is achieved, using the Message Passing



2.2. Particle-In-Cell simulations 83

S nauax |
>
+
0
0 Ne =NpAx
(O]
©
©
&
n
O nunN - |
o 0 :
0 L *In(naax/namn)

Position in gradient direction x

Figure 2.4: Initial plasma density profile in the plasma mirror simulations. The density profile is made of 3
parts: in the first part there is no plasma, in the second part the plasma density increases exponentially
in the gradient direction and in the third part the plasma density is constant.

Interface (MPI) and OpenMP standards, through a domain-decomposition technique. The simulation box
is divided into several subdomains and each MPI process is assigned one domain. The PIC loop is then
performed locally in each subdomain. At every timestep, the MPI processes exchange information with
their nearest neighboors regarding particles passing through different subdomains and the resolution of
Maxwell’s equations on the domain borders. With this method, converged 2D simulations are achievable
on all present-day supercomputers but 3D plasma mirror simulations with the standard PIC algorithm
remain out of reach, even with the largest existing supercomputing facilities.

The 2D simulations presented in this thesis use the standard PIC loop and have been per-
formed using the code Warp, developed in Berkeley, on supercomputer Occigen, located at the
CINES in Montpellier, France.

2.2.3 PIC simulations in cylindrical geometry

As we have seen in the previous section, converged 3D simulations of plasma mirror interaction with
an ultraintense laser pulse are not tractable with the standard PIC loop. However, such simulations are
desirable in some cases to obtain more realistic and quantitative results. In particular, the electron angular
distributions resulting from VLA after the laser-plasma interaction possess intrinsically 3D features that
cannot be retrieved from 2D PIC simulations.

When the laser impinges on the plasma at normal incidence, 3D simulations can be achieved by
taking advantage of the approximate axial symmetry of the problem to strongly reduce the computational
cost of the simulations. This is done by calculating the fields in cylindrical coordinates (r,0,z) and by
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performing a Fourier series expansion in the azimuthal coordinate 6. This reads, for a given field A:

oo

A(r,0,z) =Re ( A"(1,2) exp(—ime)> (2.18)

m=0
A(r,0,2) =A%(r,z) +Re (A\l(r,z)> cos(0) +1Im (Xl (r,z)) sin(6)

(2.19)
+Re (Xz(r,z)) cos(26) +Im (Xz(r,z)) sin(20) + ...

The idea of this method is that only the first few modes are necessary to describe the interaction
if the problem has an approximate cylindrical symmetry. For instance, a radially polarized pulse with a
cylindrical envelope propagating in the z-direction is entirely described by the m = 0 mode. If the pulse
has instead a linear polarization, it is then entirely described by the m = 1 mode. Therefore, in the
simulations, the Fourier expansion is truncated at a chosen maximum order [ for all the considered fields
(charge and current densities and electromagnetic fields). The resulting simulation is performed on [
2D (r,z) grids. This means that its computational cost is that of / 2D simulations, which is considerably
reduced compared to a single 3D simulation.

This method was developed and implemented into the code CALDER-CIRC by Agustin Lifschitz at
LOA [134]. The interpolation, current deposition and Yee solver are adapted to the cylindrical geometry
and a dedicated technique is used to deal with the singularity on the r = 0 axis. The code CALDER-CIRC
was used in this thesis to simulate the interaction between a radially polarized pulse and a plasma mirror
at normal incidence, as is presented in Chapter 4.

2.2.4 Pseudo-spectral Maxwell solvers

The code CALDER-CIRC is a very useful tool to perform 3D simulations at a very reasonable cost when the
laser has a normal incidence. However electron acceleration and high-harmonic generation experiments
with solid targets are rarely performed at normal incidence. This is because:

e From a theoretical point of view, in linear polarization there is virtually no electric field component
directed towards the plasma at normal incidence, which hampers the ejection of electrons and
emission of harmonics at short gradients.

e From an experimental point of view, after interaction at normal incidence, the laser pulse is reflected
back into the laser system, which may cause damage to optics and amplifying media.

3D simulations are therefore also desirable to accurately explain and predict experimental results in ge-
ometries that differ from normal incidence. They are not tractable with the standard PIC method because
convergence of the simulations occurs for very small spatial steps (Ax ~ A /300). One possibility to make
these simulations feasible is therefore to reduce the numerical errors induced by the different steps of the
PIC loop so that the simulations can converge for larger spatial steps. One of such errors is humerical
dispersion, which comes from the Maxwell solver. Numerical dispersion is commonly used to quantify
the errors introduced by the discretization of Maxwell’s equations. In particular, numerical dispersion
causes an electromagnetic wave to propagate at a nonphysical velocity, which can depend on its wave-
length and on its direction with respect to the simulation grid. As we will see in the following section, the
Yee solver induces numerical dispersion.
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2.2.4.1 Numerical dispersion in the Yee solver

Numerical dispersion is studied through the vacuum numerical dispersion relation of a given solver. In

the case of the Yee solver, it can be obtained by assuming field expressions of the form E = Ege! (ke thky+kz—or)
and B = Boe"("»*'”k-“er"ZZ*“”) and by inserting these expressions into the discretized time-dependent
Maxwell’s equations 2.16- 2.17. The resulting Yee vacuum dispersion relation is:

A . koA A
ain? [(PAT) g2 (KA G2 (RAYY e (KA
2 2 2 2

- T T (2.20)

c2Ar? Ax? Ay? AZ?

This equation is different from the physical dispersion relation @ = kc (even though equation 2.20 reduces
to @ = kc when k,Ax, k,Ay, k;Az and WAt approach zero), as can be seen in figures 2.5(a) and 2.5(b) in
the 2D case. This means that the discretization of Maxwell's equations introduces numerical dispersion.
One consequence is that solutions that are exponentially growing in time may appear if the timestep
At is too large. This happens when Ax, Ay, Az, At, k., k, and k, are such that the right hand side of
equation 2.20 is greater than 1/(cAt)?, which can only be fulfilled if the frequency @ is imaginary. In
order to avoid such numerical instability, a condition called the CFL condition (named after Courant,
Friedrich and Lewy, also known as the Courant condition) must be respected. The CFL condition is:

1 1 1 1

Vel v v 2.21)

When the spatial steps are the same in all directions, the Courant condition reduces to its usual form:

Ar < % In 2D this inequality becomes Ar < % and in 1D Ar < &,

Another consequence of numerical dispersion is that the group and phase velocities of electromag
netic waves are not always equal to ¢. The phase velocity vy,

which yields:
2 At kyAx kyA k., A
Vovee = 7, K] arcsin (ch \/sm < x2 > +sin? <}2y) +sin? ( Zz Z>) (2.22)

Similarly, the group velocity can be calculated using the formula v, = |Vo| , which yields, after
assuming for simplicity that Ax = Ay = Az:

k,Ax kAx kyAx kyAx k,Ax k.Ax
c Sinz( 5 ) c0s2< 5 >—|—sin2 ( y2 ) cos? (yT> +sin2( Z2 > cos? ( 12 )
Veyee =
k. Ax kyAx k,Ax k. Ax kyAx k,Ax
J <Sin2< 2 >+Sin2<y7)“m2< 2 )) (1_6252 (Sinz( 2 )“i“z( 2 >+Sin2< 2 )))

(2.23)

The 2D Yee phase and group velocities are plotted in figures 2.5(c)-(d) as a function of k,Ax and
kyAy. We first note that we always have vy, , < ¢ and v, < ¢, which means that the Yee solver
tends to underestimate the velocity of electromagnetic pulses. In the particular case where k, = k,, then
Voye.. = Veyee = C- The Yee solver is thus not dispersive when the electromagnetic waves are propagating
along the grid diagonal. On the other hand, when either k, =0 or k, = 0, vy,,, and v, can strongly



86 Chapter 2. Numerical methods

Yee frequency

1 Physical frequency

0 025 05 075 1
k,Ax/m

Yee phase velocity

1 Yee group velocity

(c)

0.75 0.75
& Q
B 3
4 0.5 0.5 ©
> >
<8 =
0.25 0.25

Figure 2.5: (a) 2D Physical dispersion relation in vacuum as a function of k, and k. (b) 2D Yee dispersion

relation in vacuum and corresponding (c) phase velocity and (d) group velocity as a function of k, and k.

We assume here that Ax = Ay and we have chosen At = %
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Figure 2.6: Snapshots from 2D simulations. Magnetic field of a 3.14 fs laser pulse (in FWHM of intensity)
with central wavelength A = 800 nm (a),(c),(e) before or (b),(d),(f) after a 100 um propagation with
the Yee solver. The spatial step is the same in both direction and is either (a)-(b) Ax = 1 /9.5, (c)-(d)
Ax=A/19 or (e)-(f) Ax = 1 /28.5. The laser pulse propagates towards the bottom direction and has a
Rayleigh length of 141 um. Detailed simulation parameters are provided in appendix B.

differ from ¢, especially in the high-frequency limit where | k| approaches 7 /Ax. This means that the Yee
solver is highly dispersive for electromagnetic pulses propagating along one of the grid directions. This is
illustrated in figure 2.6, which shows the vacuum propagation with the Yee solver of a few-cycle pulse for
a distance of 125 wavelengths along one of the grid directions. When a large spatial step is used (Ax =
A /9.5), strong numerical dispersion is observed: the laser pulse becomes chirped as its high frequency
components lag behind, which results in an artificial increase of the laser pulse duration. As expected,
numerical dispersion becomes less significant when the spatial step is reduced. For Ax = 1/19, the
increase in pulse duration is small but still visible and it becomes imperceptible for Ax = 1/28.5. The
"numerical vacuum" therefore behaves as a dispersive material, with an anisotropic frequency-dependent
refractive index. In plasma mirror simulations, this causes the harmonic emission to be emitted at a
frequency-dependent angle, following Snell-Descartes law [132].

2.2.4.2 Principle of pseudo-spectral solvers

The example of figure 2.6 illustrates the fact that the grid cells must be fine enough not only to resolve the
relevant physical phenomena (e.g. resolve the laser and plasma wavelengths for a given problem) but
also to reduce the numerical errors induced by the discretization of Maxwell’'s equations to an acceptable
level. If the accuracy of the Maxwell solver is improved, the spatial step Ax may therefore be chosen
larger, which can reduce the computational cost of the simulation.

The spatial derivatives in the Yee solver are estimated from centered finite difference. For instance,
if a is a 1D function sampled at equally spaced grid points a; = a(jAx), then the derivative of a sampled
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on the same gridpoints is calculated by:

da’y _ 4yl —aj (2.24)
dx) | 2Ax '

This method is second-order accurate, which means that the errors coming from the discretization of the
spatial derivative scale as Ax* [135]. The accuracy of the finite difference spatial derivative can be raised
by taking into consideration more adjacent grid points in the calculation. For example, a fourth-order
accuracy can be obtained with the following formula, which takes into account the two nearest grid points
in each direction:

(2.25)

@ B —aj+2+8aj+1 —8aj_1 +aj_2
dx); 12Ax

More generally, finite difference with an arbitrary order p accuracy can be achieved by including the p/2
(p is assumed to be even) nearest grid points in each direction in the calculation [136]:

da p/2 ajy)—aj|
) it~ 2t 226
(dx> ,. IR TTY (2.26)

2((p/2)!)?

. (p_/2—l)!(p/2+l)!
ence method increases with the accuracy order.

Alternatively, the spatial derivatives can be calculated through a discrete Fourier transform:

Where a,; = (—1)"*! [137]. Of course, the computational load of the finite differ-

<Zi)j = (77 kT (a)]) (2.27)

Here, .Z is the discrete Fourier transform, .% ~! is the inverse discrete fourier transform, k, is the Fourier
transform variable of x and i is the unit imaginary number. According to the Nyquist-Shannon sampling
theorem, equation 2.27 is exact with the assumptions that the function a is periodic and that it contains
no frequency component such that |k,| > 7 /Ax [135]. In fact, equation 2.27 is the limit of equation 2.26
as the accuracy order p approaches infinity. With this method, all the spatial derivates (%)j can be
calculated in one step with infinite precision and at a reasonable computational cost thanks to the fast
Fourier transform (FFT) algorithm, which scales as O (nln(n)), where n is the data size.

This idea is the basis of pseudospectral methods. Among these, the best known is the pseudospectral
time domain (PSTD) Maxwell solver [138]. In the PSTD method, the spatial derivatives are calculated in
Fourier space, but the fields are still advanced in time through finite differences in a leapfrog arrangement.
The following equations are used to advance the fields in time in the PSTD solver:

- _ _ At ~
E" = E"+ic*Atk x B"T/? — aJ"“/2 (2.28)

B'3/2 = B2 Atk x BT (2.29)

Here, we use the notation A" = .% (A(r = nAr)). Even though the PSTD solver is more accurate than
the Yee solver, it still introduces numerical dispersion and still has a Courant condition because of the
errors coming from the time integration. In this case, the dispersion is isotropic and the electromagnetic
waves propagate at slightly superluminal velocities.
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Instead of using finite differences, the time integration can also be performed analytically under the
weak assumption that the current density is constant during one timestep (an assumption which is already
implicitly made in the PSTD or Yee solvers). This idea is implemented in the pseudospectral analytical
time domain (PSATD) Maxwell solver [139, 140]. Because the time derivatives are calculated analytically
and the spatial derivatives are computed with infinite precision in Fourier space, the PSATD is free of
numerical dispersion: its vacuum dispersion relation is @ =
electromagnetic waves travel at ¢ regardless of their direction or frequency.

Pseudospectral solvers naturally calculate all the electromagnetic fields components at the same
position on the unit grid cell, but they can be easily recast on the Yee staggered grid of figure 2.3 [141].
Similarly, the E and B fields in the PSATD solver can either be calculated at the same times or in a
leapfrog arrangement as in the Yee solver. In the latter case, the following equations are used for the
Maxwell solver [140]:

_ - S k/~ - 2
B = B4 2isch < B2 - 20 iz = (k.Jm12) 22 (2.30)
|k|c80 &0 ]kz\c
Br3/2 — gr+l/2 _ lSi{?\XEn+l+iu0 | |CE>< (f”+3/2—f”“/2) (2.31)
C

S =sin(|k|cAt/2) and C = cos(|k|cAt/2). If a first-order Taylor expansion is performed
on the parameters S and C, i.e. S ~ |k|cAt/2 and C ~ 1, then the PSATD equations 2.30-2.31 reduce
to the PSTD equations 2.28-2.29. Equivalently, the PSTD solver tends towards the PSATD solver as At
approach zero.

When pseudospectral solvers are used in PIC codes, the electromagnetic fields are updated in
Fourier space but an inverse discrete Fourier transform has to be performed at every time step so that
the fields can be interpolated at the position of the particles.

2.2.4.3 Finite order pseudo-spectral solvers

The PSTD and PSATD solvers calculate the spatial derivatives with infinite precision. For this reason, it
is often said that pseudospectral solvers are infinite order methods.

It is also possible to define pseudo-spectral solvers with finite accuracy order. In this case, the spatial
derivatives are calculated in Fourier space with the following formula:

(;lj)j — (F kT @), (2.32)

Where £} is a modified wavenumber which can be obtained by converting equation 2.26 into Fourier
space [142]. For an accuracy of order p, k; reads:

P2 exp(ilkeAx) —exp(—ilkeAx) 22 sin( lk Ax)

Z Pt 2ilAx Z P A

The order-p PSTD and the order-p PSATD are simply obtained by replacing k with £* in equations 2.28-
2.29 and 2.30-2.31 respectively. Thus, the computational load of a finite order pseudo-spectral solver
does not depend on the choice of the order p and is similar to that of the infinite order case. It might
seem peculiar to lower the accuracy of a solver without decreasing its computational cost but as we will

(2.33)
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Figure 2.7: Principle of the domain decomposition for pseudospectral solvers in 1D. At every timestep, the
fields are advanced in Fourier space by performing local FFTs in each subdomain, including the guard
cells. Then, after a local inverse FFT, the fields in the guard cells are replaced by the fields in the adjacent
subdomains.

see in the following section, finite order pseudo-spectral solvers are very useful for massively parallel
simulations.

It is worth mentioning that the derivatives calculated using equation 2.32 are the same as those
calculated using equation 2.26. This means that the order-p PSTD solver is mathematically equivalent
to an order-p finite difference solver, the only difference being that the derivatives are calculated in the
Fourier domain, which is more efficient for very high orders. It follows in particular that the infinite order
PSTD solver is the limit of finite difference solvers as the accuracy order p approaches infinity [143].

2.2.4.4 Domain decomposition method for pseudo-spectral solvers

Even though the PSATD solver has been known since 1973 [139] and is much more precise than the
Yee solver, it had not, until recently, been widely used in large-scale PIC simulations. This is because
of its inefficient parallel scalability coming from the use of global FFTs, which require many global inter-
processor communications. This has limited the number of cores that could be used with pseudospectral
solvers, thereby rendering them impractical for demanding 3D simulations that can require up to hundreds
of thousands of cores.

In order to overcome this issue, a domain decomposition technique for pseudospectral solvers was
recently proposed [140]. In this method, the simulation box is divided into subdomains and each MPI
process is assigned one domain, together with guard cells along the subdomain border, as illustrated in
figure 2.7. The FFTs are then performed locally and information is exchanged between neighboring MPI
processes concerning the fields in the guard cell regions. This decomposition technique, which enables
efficient parallelization of pseudospectral solvers up to 800 000 cores [133], is identical to that of the
standard PIC algorithm but usually mandates more guard cells.

Indeed, in the case of the Yee solver, because the spatial derivatives are performed locally (only taking
into account the nearest grid point in each direction), only one guard cell surrounding each subdomain
is necessary. Similarly, for a solver of accuracy order p, p/2 guard cells are in principle required for
the calculation of the spatial derivatives on the domain borders. Using less than p/2 guard cells in this
case would introduce truncation errors. Such errors are unavoidable with infinite order pseudospectral
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solvers since in this case p/2 = +oo (this is essentially because the FFT is a global operation).
Truncation errors have been characterized analytically and numerically in reference [144] for the
PSTD solver of arbitrary order. The main results from this study are that:

e For a given number of guard cells, increasing the accuracy of the solver increases the truncation
errors. This is because high-order solvers have a reduced locality (more distant grid points are
taken into account in the spatial derivative calculation).

e For a given accuracy order, increasing the number of guard cells decreases the truncation errors
but increases the computional load of the simulations by increasing the number of grid points in
each process as well as the number of inter-processor communications.

e The best compromise is found when ultrahigh order (e.g. order p = 100) solvers are used with
a limited number of guard cells (typically around 10). Compared to infinite order, using ultrahigh
order solvers reduces the truncation errors while maintaining an excellent precision on the spatial
derivatives. Using ~10 guard cells is then enough to ensure that the truncation errors remain
acceptable while limiting the increase in the computional cost associated to the guard regions.

In practice, the PSATD solver with ultrahigh order is used in massively parallel simulations. Using fi-
nite order has the effect of increasing the locality of the PSATD solver and can thus mitigate the truncation
errors arising from the domain decomposition method. Unlike in the infinite order case, the finite order
PSATD is subject to numerical dispersion. However, numerical dispersion can be rendered arbitrarily
small if the accuracy order is high enough. The dispersion relation of the order-p PSATD is [132]:

L | (%2 sin lkAx R sin(lkyAx) lkAx 22 sin( lkAx
0)(’6):“{3 |C:E <Z N — > (Z .l Z pl— 7 )

(2.34)

Where we have assumed for simplicity that Ax = Ay = Az. There is no Courant condition in vacuum
associated to this dispersion relation. The phase velocity can be immediatly obtained by dividing the
previous expression by |k| and the group velocity can be calculated as previously using the formula
, which yields:

VepsSATDp —

2
c? b2 b2 s1nlkAx)
VepsaTDp = m [ ((1; oty cos(lkyAx) Z .l +

p/ p/ 2 p/ p/ 212
((iamcos(lkym ) (iaplsm (tky Ax))) + ((iachos(lkZAx ) (f bl sin(k; Ax))) ]
I=1 I=1

(2.35)

The dispersion relation, phase velocity and group velocity of the PSATD solver of order 100 in the 2D
case are plotted in figure 2.8. We see in particular that numerical dispersion is negligible outside of the
high-frequency limit where either k, or k, approach 7 /Ax. This can be confirmed by looking at the same
example as with the Yee solver: the propagation of a few-cycle laser pulse, which is shown in figure 2.9.
In the case of the Yee solver, the pulse was strongly chirped after 100 wm of propagation for Ax =21 /9.5.
On the opposite, with the PSATD solver of order 100, no significant dispersion of the pulse is observed,
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Figure 2.8: (a) 2D Physical dispersion relation in vacuum as a function of k, and k. (b) 2D PSATD of
order 100 dispersion relation in vacuum and corresponding (c) phase velocity and (d) group velocity as a
function of k, and k.

even for spatial steps as large as Ax = A /3.2, for which the description of the laser pulse itself (and more
particularly of its interaction with particles) would be very doubtful. This example confirms that improving
the precision of the Maxwell solver is a way to obtain acceptable solutions to a given problem with larger
spatial and time steps and thus to reduce the computational load of the simulations.

In the case of plasma mirror simulations, it was shown in reference [133] that convergence of the
ejected electron angular distribution is achieved for Ax ~ A /70 with the order-100 PSATD solver. For
comparison, a spatial resolution of Ax ~ A /300 is necessary to attain convergence in 2D simulations
with the Yee solver. Even though at a given resolution simulations with pseudospectral solvers are ap-
proximately twice as slow as simulations with the Yee solver (because of the FFT calculations) [132],
the possibility of using larger spatial steps with the PSATD solver reduces the time to solution by more
than two orders of magnitude in 3D simulations. This method make 3D PIC simulations of electron ac-
celeration from plasma mirrors achievable with existing supercomputing facilities. A single 3D simulation
remains nevertheless extremely expensive, with a numerical cost of several million computation hours,
which prohibits the exploration of large parameter spaces. It can be noted that an even finer spatial
resolution is required to attain convergence of the high-harmonic generation efficiency, which can make
the simulations even more costly [145]. It is worth mentioning that the PSATD solver has also been
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Figure 2.9: Snapshots from 2D simulations. Magnetic field of a 3.14 fs laser pulse (in FWHM of intensity)
with central wavelength A = 800 nm (a),(c),(e) before or (b),(d),(f) after a 100 um propagation with the
order-100 PSATD solver. The spatial step is the same in both direction and is either (a)-(b) Ax = 1/9.5,
(c)-(d) Ax = A /4.8 or (e)-(f) Ax = A /3.2. The laser pulse propagates towards the bottom direction and
has a Rayleigh length of 141 um. Detailed simulation parameters are provided in appendix B.

used to improve the accuracy and stability of laser wakefield acceleration simulations, notably through
the reduction of numerical Cherenkov radiation [146, 147, 148, 136].

In this thesis, the PSATD solver of order 100 was used to perform 3D simulations of electron
acceleration from plasma mirrors using the code Warp [149] coupled with the high-performance
PICSAR library [150], which is developed by the group of Henri Vincenti at CEA Saclay.

2.3 Modeling tightly focused few-cycle laser pulses

We describe in this section how laser pulses can be described in simulations. The most common ap-
proach is to use Gaussian beams with a temporal envelope. This method is usually suitable for PIC
simulations, in which Maxwell’s equations are solved, but is inappropriate for test particle simulations.
We therefore present, following the work of April [151, 152], closed-form expressions of linearly or radi-
ally polarized pulses that are exact solutions of Maxwell equations and that can be used in either PIC
or test particle simulations. It should be noted that only ideal laser pulses, containing no aberrations or
imperfections, are considered in this thesis.

2.3.1 Gaussian beams

We briefly explain here how the expression of the Gaussian beam can be obtained as well as the approx-
imations upon which it relies.
It can be shown using Maxwell’s equations that the electric and magnetic fields in vacuum must satisfy
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the electromagnetic wave equation:

) _10°E _
) 19°B B
V°B(r,t)— 292 (r,t)=0 (2.37)

This means that each cartesian component ¢ of the electromagnetic fields must satisfy the scalar wave
equation:

1 9%
V2o(r,t)— ——=—(r,t) =0 2.38
o(r.1) = 52 (1) 2.39)
By performing a Fourier transform with respect to time (or equivalently by assuming a monochromatic
temporal dependence of the form ¢(r,t) = @(r,®)e'®’), the wave equation becomes the Helmholtz

equation:
Vio(r,0)+kK*¢(r,0) =0 (2.39)

Where k = w/c. Simple solutions to the Helmholtz equation are plane waves of the form e~ *Z (here prop-
agating along the positive z-direction) and spherical waves of the form e~I7l /|| (in this case originating
from a source point at 7 = 0).

Next, we consider a beam propagating along the z direction, so that its principal spatial dependence
is e 2. This term can be factored out of the Helmholtz equation by writing @ (7, ®) = i(r, ®)e~* and
by inserting this expression into equation 2.39, which yields:

2~ 2~ 2~ ~
d°u  J0°u  J-u Zik@ _

a2 Ty T ag kg =0 (2.40)

The paraxial approximation consists in neglecting the term %57 in the previous equation. This means
that the longitudinal variation of the laser pulse, excluding the oscillating term e~?, is small compared to
one wavelength and compared to the transverse variation of the laser pulse. It is valid if the wavevectors
k that make up the laser pulse are directed close to the optical axis, which corresponds experimentally to
a weak focusing. With this approximation, the paraxial Helmholtz equation, or paraxial wave equation is:

2~ 25~ ~
3;2{%—3;‘—2%32‘ =0 (2.41)
Spherical waves of the form @ = e*""|"|/|r| are not anymore solutions to the paraxial wave equation.
However, a solution to equation 2.41 can be obtained by assuming 2> x? —i—y2 and making the substitu-
tions |r| ~ z+ (x> +y?)/(2z) in the phase term and |r| ~ z in the amplitude term of the spherical wave.
The resulting function, sometimes refered to as a "paraxial spherical wave" [31], is an exact solution to
equation 2.41 and reads:

. 1 2
uoc —exp | —ik— (2.42)
Z 2z

Here r = \/)ﬁy2 is the radial coordinate in cylindrical coordinates.
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The expression of the Gaussian beam can be obtained by assuming that a source point located at
the complex position (0,0, —izg), where zg is the Rayleigh length as defined in chapter 1, generates a
paraxial spherical wave [31, 153]. This technique, known as the complex source point method, leads
to the following expressions:

- B IZR <o [ —i r’

ulr,m) = F(w)wo—a(z) exp < k2§(z)> (2.43)
~ iZR . r2 .

(p("", a)) = F(CO) %exp (—lkz,_qv(z)) eXp(—lkZ) (244)

Here, @y is a parameter related to the amplitude of @, F is a function that takes into account the possible
dependence of the amplitude on @ and ¢(z) = z+ izg. The linearly polarized (along x) monochromatic
(with frequency @) Gaussian beam is obtained by taking the real part of @(r, ®)e'®, where ¢(r, ®) is
given by equation 2.44, for the E, and B, components and by assuming that all the other components
are zero. After some algebra, this yields:

E(r,t) = Eg— r ke ot kel t <Z)> 2.45
(r,t) = Ow(z)eXp<_w(z)2>COS<Z_w+ T(Z)—arcan p= ex (2.45)

Ey w r? r? Z
B(r,t) = %W(;)exp (—W(Z)2> cos (kz— wt—i—sz(Z) — arctan (ZR>> ey (2.46)

The parameters are the same as defined in chapter 1: wy = \/2zg/k is the beam waist radius, w(z) =

woy/1+422/z% is the beam radius at position z, R(z) = z+z%/z is the radius of curvature, @y is the
frequency of the beam and E) its electric field amplitude. When modeling a pulsed laser beam, it is very
common to multiply the previous expression by a temporal envelope g(t —z/c), which is often chosen to

be a Gaussian:
2 2
wo r r z z
e ——— | cos|kz—wt+k —arctan | — (t—7> N 2.47
w(2) Xp( w<z>2> ( ‘ 2R(z) <zﬁ>>g A

2 2
B(r,t)= iov:zz)exp <_w(rz)2) cos <kz— ot +k21:(z) — arctan <;>) g (t — g) e, (2.48)

Equations 2.47- 2.48 are not exact solutions to Maxwell’s equations. They indeed rely on three main
approximations:

E(T,l) =Ep

e The paraxial Helmholtz equation was solved rather than the exact Helmholtz equation. This be-
comes inaccurate when the beam waist wq approaches one laser wavelength.

e The wave equation was solved independently for every cartesian component of the electromagnetic
field. Even without the paraxial approximation, this is not a sufficient condition to obtain a solution
to Maxwell’s equations. In particular, the longitudinal field E, which is necessarily present if the
beam as a finite transverse extent is not included in equations 2.47- 2.48.

e Using a temporal envelope g is only valid if the different frequency components have the same spa-
tial shape. This is a reasonable approximation for long pulses with narrow spectra. However, this is
no longer the case for few-cycle pulses as the different frequency components will not diffract in the
same way. For instance, it is not possible for two different frequency components to simultaneously
have the same beam waist wy and the same Rayleigh length zz.
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Figure 2.10: Snapshots from 3D PIC simulations of the propagation of an 800-nm, 3.5-fs laser pulse
with wo = 1.5 um. The pulse is introduced at the plane z = —35 um either using an exact solution
to Maxwell’s equations (equations 2.82-2.87) (a)-(c), a Gaussian beam with its curvature included in
the envelope g (d)-(f) or a Gaussian beam without the curvature included in g (equations 2.47-2.48)
(9)-(i). The curvature is taken into account by the transformation g (t — f) —g (t —<i- ﬁzw) The
pulse is shown before focus (a),(d),(g), at focus (b),(e),(h) and after focus (c),(f),(i). The propagation of
the pulse is acceptable when the exact solution to Maxwell’s equation or the Gaussian beam with the
curvature included are used. On the other hand, the shape of the pulse at focus is unsatisfactory when
the curvature is not taken into account in the envelope. Detailed simulation parameters are provided in

appendix B.

In the case of PIC simulations, the electromagnetic field is introduced at a given plane, either through
boundary conditions or by way of an antenna made of ficticious macroparticles that oscillate in a con-
trolled way so as to generate the desired field. Outside of this plane, the laser pulse is propagated by the
Maxwell solver. The fields in the PIC simulations are therefore always a solution to Maxwell’'s equations
(neglecting numerical errors) even if the expressions used to produce them are not. In practice, equa-
tions 2.47- 2.48 are suitable to introduce a linearly polarized pulse even with parameters that correspond
to the Salle Noire laser (wy = 1.5 um, 3.5-fs pulse duration), provided that the curvature of the beam is
taken into account in the temporal envelope, as illustrated in figure 2.10. Higher-order terms, such as the
longitudinal electric field E,, will naturally appear in the simulation.

On the other hand, in test-particle simulations, the electromagnetic fields can be chosen everywhere
without restriction. Using field expressions that are not solution to Maxwell's equations can be trouble-
some. For example, it was noted in [80] that using equations 2.47-2.48 tends to confine electrons in the
polarization plane, which leads to an anisotropic ponderomotive force. Similarly, in the case of radial
polarization, using the paraxial approximation results in an excessive confinement of the electrons on the
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optical axis [123]. These nonphysical effects can lead to severe faults in the prediction or interpretation
of experimental results, which can be avoided by using expressions that are exact solutions to Maxwell’s
equations. Yet, it should be kept in mind that there are many different ways to model an ideal laser pulse
in @ manner that suppresses the nonphysical effects described above, the choice of which can still have
a significant impact on VLA in test-particle simulations [104].

2.3.2 Modeling ultrashort pulses: the Poisson spectrum

We start by presenting how ultrashort pulse durations can be dealt with. One possibility is to add correc-
tions to g(r — z/c) in a perturbative manner [80, 98]. Another possibility is to perform an inverse Fourier
transform of the field component ¢ (r, ®) calculated in the previous section. This means that we sum up
the contribution of monochromatic Gaussian beams of different frequencies, which reads mathematically:

o(r1) = [ Z (7, o) exp(ion)do (2.49)
_ °° IZR . r*
= /NF(a))Ei(Z)exp <z <wtkzkm>>dw (2.50)
—oo [ Flw)E / P\ 2.51
o/ <w>q~(z)exp<zw<t_c_m>) " (2.51)

We have used in the last line the fact that @ = kc. We also note that the function F(®) corresponds
here to the spectrum of the pulse. The calculation of this integral is greatly simplified if we assume
that the pulse is isodiffracting, which means that the Rayleigh length is the same for all frequency
components. This assumption is not always true in experiments. For example, in the case of the Salle
Noire laser, a wide spectrum is obtained through self-phase modulation in a hollow-core fiber [34]. At
the fiber output, all the frequency components have the same waist, which is fixed by the fiber radius.
This means that the Rayleigh length is proportional to the frequency and thus that Salle Noire few-cycle
pulses are not isodiffracting. However, assuming that wy is the same for all frequency components makes
the integral 2.51 impractical to carry out analytically [154], because zg and g(z) both depend on @ in this
case. For this reason, we only consider in the following isodiffracting pulses for which the previous integral
simply corresponds to an inverse Fourier transform of F(®). Thus, by denoting f(¢) the inverse Fourier
transform of F(®), the result of the integral for isodiffracting pulses is:

izR z 7

ot = e (-2 355) (@:52)
We observe in particular that the value of component ¢ on the optical axis at the waist (r =z =0) is
given by ¢ f(¢). The temporal shape of the pulse is therefore directly given by the real part of the inverse
Fourier transform of the spectrum F(®). This method is useful because it easily provides a closed-form
expression of a Gaussian beam with any spectrum whose Fourier transform can be calculated analytically.
We may be tempted to use a Gaussian spectrum of the form:

fz(w—wo)2>

; T
F(w) :e¢O2 T exp( $In(2)

(2.53)
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Where ¢y is an absolute phase that correspond to the CEP of the laser pulse, oy is the central frequency
and 7 is the pulse duration in FWHM of intensity. In this case we simply have:

2
, t

ft)=e%exp (21n(2)72> exp(impt) (2.54)

And we finally have from equation 2.52:

5 N2

(r,1) i 2R ex 21n(2) (t i 2C%<Z)> ex (ia)o (t < r )) (2.55)

r,t) = @'’ —— — - .
P =G P v P ¢ 2q()

However, such an expression has two important drawbacks. First, it diverges exponentially as r ap-
proaches infinity. This can be clearly seen in the case t = z = 0, for which equation 2.55 becomes:

4 2
o(r,t =0) = @ye'® exp <1n(2)M> exp < lld ) (2.56)

2czr

This spurious exponential growth of the fields comes from the fact that the Gaussian spectrum contains
negative frequency components (@ < 0) which diverge in equation 2.43. Secondly, because the Gaussian
spectrum contains a non-zero static component (F (@ = 0) # 0), the resulting fields do not verify the
condition [*2* E(r,t)dt = 0, which should be verified by laser pulses. Using fields that do not satisfy this
condition in test-particle simulations results in an additional unphysical acceleration (which is essentially
the acceleration by a static field) that can lead to erroneous conclusions (see e.g. [155]). Both issues can
be solved by cutting the spectrum at an arbitrary positive frequency @, :

Flo)=¢ Tz(w_w")2> H(® — 0 (2.57)

% ‘ exp (

21/271n(2) 81n(2)
Where H is the Heaviside step function. This was previously done in references [156, 157] with @,,; = 0.
The inverse Fourier transform of this spectrum reads:

io 2

ft) = e2 exp <—2ln(2);2> exp(iwyt) (1 + ierfi <\/21n(2)t — 1W>> (2.58)

T 2,/2In(2)

Where erfi is the imaginary error function. The spectrum F(®) and the pulse temporal shape in this case
are shown in figure 2.11. The main disadvantage of this method is that it leads to rather complicated
pulse expressions involving the error functions.

Rather than a Gaussian spectrum, we use in this thesis a Poisson-like spectrum, as initially done
in [158], which is defined as:
S )SH wse_S%

——H 2.59
o (@) 259

F(w) :a%( e

Here, T is the gamma function, @y is the frequency for which F(®) is maximum and s is a parameter
related to the pulse duration in FWHM of intensity 7 by the relation [158]:

T =s51/2(41/6+D) —1) (2.60)

This spectrum is chosen because:
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Figure 2.11: (a) Normalized Gaussian spectrum cut at the frequency @.,, = /30, where @ is the
central frequency, for pulse durations of 7.9 fs, 3.5 fs and 1.5 fs in FWHM of intensity for an 800-nm laser
pulse. (b) Corresponding temporal shape of the laser pulses at position 7 = 0. We have assumed that

$o=0

e |t tends towards a Gaussian spectrum for long pulse durations (s — ). It is therefore one of the
possible extensions of the gaussian temporal envelope for few-cycle pulses.

e There are no static or negative frequency components, as insured by the Heaviside function.
Consequently, the obtained fields are not diverging when r approaches +co and the condition
[*= E(r,t)dt = 0'is satisfied.

e The function F(w) has a simple inverse Fourier transform:

S

. —(s+1)
£(t) = e <1 - W) (2.61)

The Poisson spectrum and the real part of its inverse Fourier transform are shown in figure 2.12 for
different pulse durations. The Gaussian beam with a Poisson-like spectrum can be obtained by inserting
equation 2.61 into equation 2.52 for the E, and B, fields and by assuming that the other components are
zero. The final result is the real part of the following expression:

00 12R i kor? —(s+1)
E r,t :E()el 0 _—— <1_ <(D()t—k()z_~>> €y (262)
(7] q(z) s 24(z)
. . —(s+1)
Ey s 1ZR l kO’"2
B(r,t) = —2¢it =R (1 —- (wot—koz— — e (2.63)
(r.1) c g2 s 24(z2) Y

Where ky is defined as @y /c.
These fields can be easily generalized from 3 to 2 dimensions (x,z). In this case the solution 2.43 of
the paraxial wave equation becomes:

u = iZ—Rex —ii
. o) = Fl@)ooy =0 p( "zc7<z>) (264
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Figure 2.12: (a) Normalized Poisson-like spectrum for s = 125, 25 or 5. This corresponds respectively
to pulse durations of 7.9 fs, 3.5 fs and 1.5 fs in FWHM of intensity for an 800-nm laser pulse. (b)
Corresponding temporal shape of the laser pulses at position r = 0. We have assumed that ¢ = 0

Then, the same steps as in the three-dimensional case can be performed. This provides the expression
of the electromagnetic fields of the 2D Gaussian beam with a Poisson-like spectrum:

E(r.1) = Epe'® i@?<1_"( ok _’WCZ))(HUe (2.65)
DTG U\ : |
. . —(s+1)
Ey - IZR i kox? >>
B(r,1) = et | BB (1 1 (gt —kgz— —2 , 2.66
(rie)="Te q(Z)( S(wo "7 240 @ (269

These fields were used in the 2D PIC simulations carried out during this thesis.
Of course, the field expressions presented here are still unsuitable for test-particle simulations, in
particular because they are obtained with the paraxial approximation and have no longitudinal component.

2.3.3 Nonparaxial pulses

There are various possibilities to obtain nonparaxial field expressions. We can cite in particular:

e The Lax expansion method [159] in which the fields calculated in a power series of the small
parameter € = 1 /kowy whose leading term is the paraxial Gaussian beam 2.45-2.46.

e The angular representation method [160] which uses plane wave decomposition to obtain field
expressions in the form of integrals that have to be either evaluated numerically or developped in a
power series of € (see e.g. [80]).

Both methods are very common but they do not provide closed form solutions to Maxwell’'s equations.
Yet, such analytical solutions are desirable since they are not limited by a validity range, they can be
implemented at a low computational cost in test particle simulations and the laser parameters can be
varied easily. We describe in this section one way to obtain closed-form solutions to Maxwell’s equations
that reduce to Gaussian beams in the paraxial limit (kowo > 1) [151, 152].
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A possible approach would be to use the electromagnetic potentials V(r,7) and A(r,t), which are
such that:

E(r,t)=-VV(r,t)— aail(r,t) (2.67)

B(r,t) =V x A(r,t) (2.68)
The idea here is that, in the Lorenz gauge (V.A + ;—2%—‘; = 0), if the A and V fields are solution to
the (nonparaxial) wave equation then the electromagnetic fields obtained through equations 2.67-2.68
satisfy Maxwell’s equations. Therefore, with an appropriate choice for the magnetic potential A, the E
and B fields can be obtained by simple differentiations. This method was used by Davis to obtain the
expression of a linearly polarized beam from a magnetic potential oriented in the direction of polarization
(A = (A,,0,0)) [161] and the expression of a radially polarized beam from a magnetic potential oriented
in the direction of propagation (A = (0,0,A;)) [162]. However, these fields were obtained within the
paraxial approximation (with calculations up to the third order in € in the case of linear polarization), even
though this method can be extended to the nonparaxial case.

A formally equivalent but more convenient method consists in using the Hertz vectors (also known as
polarization potentials) rather than the magnetic potential. The electric Hertz vector I1I, and the magnetic
Hertz vector I1,, are two vector fields that can be seen as potentials of the usual potentials A and V.
Indeed, if the II, and IT,, fields are known, then the A and V fields are given by [163]:

A(r,t)= ;aal}(r,t) +uoV x IL,(7,1) (2.69)
V(r,t) = —-V.II(r,1) (2.70)

The Hertz vectors are designed so that potentials obtained using equations 2.69-2.70 automatically sat-
isfy the Lorenz condition. The E and B fields can be obtained from II, and II,, using equations 2.67
to 2.70, which yields [164]:

1 9°I1, oI,
E(r,t) =V (VIL(rt))— 2o (r,t) — oV x 5 (r,1) (2.71)
B(r,t) = C—IZV X a;} (r,t) + 1oV x V xIL,(r,1) (2.72)

Electromagnetic fields obtained in this manner are solutions to Maxwell’s equations in vacuum provided
that the Hertz vectors verify the wave equation:

1 9211

2 e
VL, (r,t) — — =0 2.7
(ri) =553 (2.73)

1 9211
v1L, —_— " 2.74
I1,(r,t) 335 0 (2.74)

The next step is therefore to find adequate solutions IT, and IT,, to the wave equations such that the
resulting E and B fields can satisfactorily model a laser pulse. We work in the frequency domain (r, ®)
and subsequently look for solutions to the scalar Helmholtz equation 2.39.

We can start by extending the complex source point method to the nonparaxial case and consider
a spherical wave emitted by a point source located at the complex position (0,0, —ia), where a is a
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distance called the confocal parameter. However, the resulting field e‘”‘ﬁ/ﬁ, where R = /12 + (z+ia)?
is nonphysical since it diverges when z = 0 and r* =a? (ﬁz 0) [153]. This issue can be overcome by
adding a point sink term e*""R/kv, which corresponds to a spherical wave converging towards the complex
point (0,0, —ia) [165]. The resulting complex source-sink method gets rid of the singularity at z = 0 and
r = a and provides a usable solution to the Helmholtz equation:

—ikR __ ikR
¢(r,0) = iF(w)(poe*k“a% (2.75)
- 2F(w)(p0e"“asmg‘R) (2.76)

The constants are chosen such that, in the paraxial limit ka >> 1, this expression reduces to equation 2.44
with a corresponding to the Rayleigh length zx [152]. It is instructive to look at the field ¢ on the optical
axis r =0:

D r — _ ia —ikz _ ,—2ka ikz
§(r=0.2,0)=F(@)p " (e e~ %ag ) (2.77)

The term e~*¢ comes from the point source while the term e'** comes from the point sink. Therefore, on
the optical axis, the effect of adding a sink is to add a counterpropagating wave, which is in principle not
desired. However the amplitude of this wave is reduced by a factor e=%*¢, which makes the counterprop-
agating wave negligible in practical cases. For instance, in the Salle Noire laser for which wy = 1.5 um,
we have ka ~ kozg ~ 70 and thus e~ %% ~ 107, We see that the sink term is completely negligible on
axis (but is nevertheless essential to remove the singularity at R= 0).

As previously, this solution can be converted to the temporal domain with an inverse Fourier transform:

o(r.t)= [ or ,we®do (2.78)
o0 e—ikﬁ_ eikﬁ ,

= igyp F(w)ae*’“‘iﬁ ¢ dw (2.79)

= i(po/ %F(a)) (e — ) dw (2.80)

Witht,. =¢+ § + % andt_ =t — § + % Once again, the calculation is greatly simplified if we assume
that the pulse is isodiffracting, which means in this case that a is independent of @. With this assumption,
the integral is simply an inverse Fourier transform of the spectrum F(®), whose result is:

olr) = P (1(t) - f0.) (2.81)

Finally, the electromagnetic fields can be obtained by plugging this function into the Hertz vec-
tors. To obtain a pulse linearly polarized in the x direction, we use IL.(r,t) = @(r,t)ex and I1,,(r,t) =
gco(r,t)e,. Then, the E and B fields are obtained from equations 2.71-2.72:
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> @ > (1) 0 5 /A0 A
" G ¥ G
Ex(r,t):{()[<f—l>;—<3f—l>< L ‘) COSQ( SR ~> (2.82)
R | \R2 ¢ R R R c c R
(2) (1) 0)
Ay |G 36V 3G
Ey(r,1) = "2 | 2 R (2.83)
R | c cR R
@ (1) (0) @ A0
~ (¥ 36 3G ¥ G
EZ(T,I) = = [C 0 ( 5 =~ — > — (2—~> (284)
R2 c cR R2 c cR
(2) (n O)
Ay |G 361V 3G E,
B.(r,1) = 22 | 5 L =) (2.85)
cR3 | € cR R? ¢
A 2 G(z) 2 G(]) G(O) 5 G( ) G(l)
By(r1) = 22 <y~ _ >;—<3~y —1> + _ cos 2 (2.86)
cR | \ R? c R? cR R? c c R
@) (1) (0) @ A0
~(c® 36 3G G G
Bz(r,t):lg cs| ———=+— |- | - ——= (2.87)
cR2 c cR R? c cR

The physical fielgs are the real parts of the previous expressions where A is proportional to the amplitude
of the field, cos 8 = (z+ia)/R and G = £ (1, )+ £ (r_), where £ is the nth derivative of f. If a
Poisson spectrum (equation 2.59) is used, as is the case in this thesis, then we have:

o Ds+n+1) fiag\" it T
M) (1) = i > "7 T ) [0 _
fr) =e I(s+1) ( s > <1 s ) (2.88)

Because we have used a solution of the wave equation in the Hertz vectors, the fields given by equa-
tions 2.82-2.87 are an exact solution to Maxwell’s equations in vacuum. We notice that the E and B
fields play a symmetric role and that one can be obtained from the other by performing the exchange
x <> y. The 6 components of the electromagnetic field are nonzero in this expression. However, we have
in all practical cases E; > E; > E, (for a laser polarized in the x direction). The 3 components of the
electric field are shown at ¢ = 0 in figure 2.13 with parameters corresponding to the Salle Noire laser. In
principle, the tighter the focusing, the more significant the E, and E, are. However, even in the case of
the Salle Noire laser (wp = 1.5 um), we have |E;|yax ~ 0.065|Ex|yax and |Ey|pax = 0.0024|Ey|pyax. It
may also be noted that there is no simple expression to obtain the peak amplitude of a given component,
which generally depends on Ag, a, ¢y and s (for a Poisson spectrum). If Ay is real and positive and
¢o = —m/2, the E, and B, fields are maximum at# =0 and r = 0.

Radially polarized fields can be obtained in a similar manner by choosing Il (r,t) = ¢(r,t)e; and
IT,, = 0. In this case and in cylindrical coordinates, only the E,, E, and By fields are nonzero. They read:

N e (NP D)
3Apsin(20) ( GT' G, G*
E (r,1) = - — 4 2.89
(x.1) 2R ( R2 R 3 (289
29 (0) (1) 1P
- 6
E(rgy="0|3c08 021 (G G ) s o) (2.90)
R R R c c

S A A2
A G
Bo(r,1) = 05;;9 < - Gc; > (2.91)
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Figure 2.13: Exact expression of a pulse linearly polarized in the x direction. Ey (a),(d), E; (b),(e) and E,
(c),(f) fields obtained from equations 2.82-2.84 with a Poisson spectrum in a plane of constanty (a)-(c)
or constant z (d)-(f). The fields are obtained at focus (t = 0) with Ag real and positive, ¢ = 0 and Salle
Noire parameters (s =25 and a = 8.84 um, which correspond to 3.5 fs and wg = 1.5 um). The fields are
normalized so that the peak amplitude of the E field is 1.
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Figure 2.14: Exact expression of a radially polarized pulse. E, (a),(d), Bg (b),(e) and E (c),(f) fields
obtained from equations 2.89-2.91 with a Poisson spectrum in a plane of constanty (a)-(c) or constant z
(d)-(f). The fields are obtained at focus (t = 0) with Ag real and positive, ¢o = 0 and Salle Noire parameters
(s =25 and a = 8.84 um, which correspond to 3.5 fs and wyg = 1.5um). The fields are normalized so
that the peak amplitude of the E, field is 1.

We have here sin 6 = r/ﬁ and sin(2§) — 2sin @ cos B. These fields are plotted in figure 2.14 with Salle
Noire parameters. We have in this case |E;|yax =~ 0.37|E,|max. Once again, there is no simple expres-
sion to obtain the peak amplitude of a given component. If A is real and positive and ¢p = —7/2, the E;
field is maximum att =0 and » = 0.

Finally, fields with azimuthal polarization can be straightforwardly obtained from fields with radial
polarization by exchanging the E and B fields: (E, B) — (Bc,—FE/c).

Unless specified otherwise, these fields have been used in the test-particle simulations presented in
this manuscript.
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Thanks to a recent upgrade, the Salle Noire laser can deliver few-cycle pulses (duration as low as
3.5 fs) with relativistic intensity (up to ag = 2.7) at a kHz repetition rate. The first experiments on solid
targets with few-cycle pulses were performed during the course of my thesis and | contributed to their
analysis. The results at short density gradients (L < A) are fully consistent with the theory presented
in section 1.4.2.1. For longer gradient scale lengths (L > A), it is observed that electron emission only
occurs when ultrashort pulses with sub-10 fs duration are used. PIC Simulations indicate that in this
regime the electrons are accelerated by a laser wakefield formed in the near-critical density part of the
plasma.

We discuss in section 3.1 the preplasma expansion and the estimation of the plasma density profile
during interaction. The experimental results are then presented in section 3.2. We briefly present in sec-
tion 3.3 PIC simulations of the interaction at short gradients. Finally, the electron acceleration mechanism
at long gradients is studied in section 3.4 using PIC simulations.

3.1 Preplasma Expansion

During the experiments in Salle Noire, a prepulse with ~ 30 fs duration and ~ 10 — 10'5W /cm? inten-
sity is used to ionize and heat the target, thereby creating a plasma with a temperature of a few tens of eV.
The plasma then expands into vacuum. At a precise delay after the prepulse, the main pulse is focused
on the expanded plasma and the relativistic interaction takes place. The plasma density profile during
the interaction, which is a critical parameter, is thus determined by the preplasma expansion, which must
therefore be studied thoroughly.

We start by presenting in section 3.1.1 the isothermal model of plasma expansion, which leads to
the exponential density profile. We then present in section 3.1.2 an interferometry experiment aimed
at measuring the expansion velocity during the experiments in Salle Noire [63]. We put in particular
a strong emphasis on the uncertainties associated with this measurements. Finally, we show in sec-
tion 3.1.3 results from 1D hydrodynamic simulations of the preplasma expansion, which are compared to
the interferometry experiment.

3.1.1 Isothermal model of preplasma expansion

Here, we present the model leading to the usual exponential density profile, which can be found in refer-
ences [166, 167]. A 1D two-fluid model is used with the following assumptions:

e The plasma is made of ions with charge Ze and electrons with charge —e.
e There are no collisions.

e There are no external fields. The only field is the electric field E = —%—‘; due to charge separation

in the plasma.
e The ion fluid is cold (zero temperature).

e The electron fluid is isothermal with temperature 7.
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e At t = 0, the ion density is constant n; = n;y for x < 0 and zero for x > 0. At ¢ > 0, the plasma
expands towards the positive x direction due to the charge separation generated by the nonzero
electron temperature.

With these assumptions, the equations of conservation of mass and momentum for the ions respectively
read:

al’l,' al’li 8v,~

§+vig+ni§:0 (3.1)
o on_ zeav .2
o Viox m; 0x (3-2)

Where v; is the fluid ion velocity and m; is the ion mass.

Additionally, we use the fact that the timescale of electron motion is much shorter than the timescale
of ion motion. Since the plasma expansion occurs through the ion motion, we can assume that the
electron fluid is at thermal equilibrium at all times and thus follows a Boltzmann distribution’ and that the
plasma is quasi-neutral almost everywhere. This reads mathematically:

\%

Ne = Nep €XP ¢ (3.3)
kgT,

ne =272n; (3.4)

Where n,g = Zn,g is the electron density in the unperturbed region of the plasma (x — —oo) and kg is the
Boltzmann constant. Equations 3.1 to 3.4 form a complete set of equations for the 4 unknown variables
ne, n;, v; and V. A solution to this set of equation for ¢ > 0 is given by:

neo €XP <_cxt — 1) if x > —cyt

Ne =27Zn; = s (3.5)
70 if x < —cyt
X
cs+— ifx>—cgt
Vi = ! (3.6)
0 if x < —cgt
kgT,
oV B2 x> —cyt
E = —87 = ecst (37)
* 0 if x < —cgt

| ZkgT,
Where ¢; = B¢ is the ion sound velocity. The plasma thus expands with an exponential density

profile and a gradiént scale length that increases linearly with time at the speed of sound: L = cst. As
one would expect, the higher the electron temperature, the faster the plasma expansion. The plasma
is unperturbed for x < —c,t and the electron density at the initial plasma-vacuum boundary is always
ne(x =0) = n,pexp(—1) for r > 0. The electric field is homogeneous inside the density gradient and
decreases with time as o< 1/¢. As illustrated by the red lines in figure 3.1, this electric field E corresponds
to the presence of a positive surface charge &E at x = —cgt and a negative surface charge &FE at
X = o0,

The Boltzmann distribution equation may sometimes (this is done in [167] for instance) be replaced by the assumption that
at equilibrium the electric field due to charge separation compensates the electron pressure: n.eE = —Vp, = —kpT,Vn,. This
equation, which can be obtained by neglecting the electron mass in the electron fluid equation of motion, leads to the same
exponential density gradient.
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Figure 3.1: 1D isothermal expansion of a plasma with initial density n.o = 200n.. The blue curves show
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(c). The red curves show the corresponding surface charge density, where E;, = kpTe
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This solution is not well-behaved, as can be seen from the fact that the ion fluid velocity diverges when
t — 0 or x — +-o0. Physically, this comes from the fact that the quasi-neutral hypothesis n, = Zn;, which
may at a first glance seem inconsistent with the presence of an electrostatic field, is only reasonable
when the gradient scale length is larger than the local Debye length L > Ap. The Debye length Ap =

[ €okpT.
0 B; is indeed precisely the scale length below which the quasi-neutral hypothesis cannot be made
nee

in plasmas [37]. The condition L > Ap is violated either at short times ¢ (because then L = ¢, can be
arbitrarily small) or at large positions x (because then the Debye length becomes arbitrarily large due to
the decrease in plasma density), which is precisely when the solution becomes ill-behaved.

A more rigorous approach to obtain the 1D isothermal plasma expansion is thus to replace the quasi-
2

neutral hypothesis by the Poisson equation 8?9):2/ = e(n, —Zn;) and to solve the resulting set of equations
numerically, as is done in [166]. This leads to a few notable modifications which make the solution well-
behaved? but the exponential density profile (eq. 3.5) remains a very good approximation of the solution
in this case.

Still, it should be kept in mind that this model is based on two strong assumptions that are not
accurate:

e The isothermal hypothesis has two principal flaws. First, the temperature is assumed to be homo-
geneous inside the plasma. In practice, the prepulse only heats the target within the skin depth of
the plasma, which is much shorter than the laser wavelength for strongly overdense plasmas. The
energy is then transfered to the bulk of the plasma by collisional processes (including collisional
ionization) which can lead to significant inhomogeneities in the electron temperature. Secondly,
the electron temperature also tends to decrease with time due to thermal losses as well as the fact
that electrons lose energy when accelerating the ions. Adiabatic, rather than isothermal, models of
plasma expansion also exist [168] and a decrease in the electron temperature with time is indeed
observed in this case.

e The 1D hypothesis is motivated by the fact that the transverse size of the prepulse creating the
plasma is usually much larger than that of the main pulse, meaning that the plasma is transversely
homogeneous during interaction. However, this assumption is no longer valid when the gradient
scale length approaches the transverse size of the prepulse, because the plasma then expands
both in the longitudinal (x) and transverse directions.

3.1.2 Spatial Domain Interferometry experiments in Salle Noire

With the assumptions of the previous model, the gradient scale length during the experiments in Salle

| ZkpT,
Noire is given by c,At, where ¢, = 2287 is the plasma ion speed of sound and At is the delay between
.

L
the prepulse and the main pulse. Ar is known accurately in experiments, but precisely evaluating c; is

2The main differences are the following:

e There is, at a given time, a finite maximum fluid ion velocity. Consequently, there exists an ion front after which the ion
density is rigorously 0.

e The surface charge densities shown in figure 3.1 become volume charge densities with a finite width.

e The negative charge density is located at the ion front rather than at x = 4
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Figure 3.2: Images taken from [63]. (a) Schematic drawing of the honeycomb transmission mask placed
in the path of the probe pulse. (b) On-target intensity profile of the pump (greyscale) and probe (col-
orscale) pulses. (c) Principle of the Spatial Domain Interferometry measurement.

more challenging. We note that the expansion velocity depends on both the ionization state of the plasma
ions Z and the electron temperature T,, which cannot easily be directly measured. To overcome these
difficulties, an interferometry experiment, detailed in [63] has been carried out in Salle Noire in order to
directly measure c;.

3.1.2.1 Interferometry measurements

The preplasma expansion velocity is evaluated experimentally from an interferometric pump-probe mea-
surement labeled Spatial Domain Interferometry (SDI). The pump pulse is the prepulse that iniates
the expansion. The probe pulse is the main pulse which has been modified by adding a periodic trans-
mission mask, illustrated in figure 3.2(a), before the focusing parabola. The resulting on-target intensity
distribution is shown in the colorscale of figure 3.2(b). It consists of a central spot (the Oth order spot)
surrounded by 6 weaker spots (the 1st order spots).

The principle of the pump-probe measurement is illustrated in figure 3.2(c). In the ideal case, only the
Oth-order spot is reflected by an expanded plasma while the first order spots are reflected at a position
where the prepulse has not generated a plasma. As a result, the optical path length seen by the central
spot is shorter, which produces a phase difference A¢ between the 0th order and 1st order spots. This
phase difference grows as the delay between the pump and probe pulses is increased, due to the plasma
expansion. Everytime, A¢ is increased by 7, there is an inversion in the interference pattern formed by
the reflected central and side spots far from the target, which can be detected experimentally.

In the experiments in Salle Noire, the pump pulse, whose on-target intensity profile can be seen in
the greyscale of figure 3.2(b), spatially overlaps both the Oth order and 1st order spots. As a result, the
side spots are also reflected on an expanding plasma. Nevertheless, because the prepulse intensity is
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6cm

Figure 3.3: Images taken from [169]. Experimental reflected probe intensity profile in the far-field for a
delay of 0 ps (a), 6 ps (b), 12 ps (c) and 20 ps (d) between the pump and probe pulses. The inversions in
the interference pattern observed in (c) and (d) correspond respectively to A¢p = and A¢p = 27.

weaker at the position of the side spots, the electron temperature is smaller and the plasma expansion is
slower. Consequently, a phase difference A¢ is still created between the 0th order spot and the 1st order
spots. The resulting inversion in the reflected probe intensity profile have been observed experimentally,
as shown in figure 3.3.

Then, after making some assumptions regarding the preplasma expansion that will be detailed in the
following section, it is possible to retrieve the expansion velocity from the delays at which the inversions
occur. A velocity of ¢, = 10.8 nm/ps was obtained in this case [63]. However, as pointed out in [169],
there are large uncertainties on this value.

3.1.2.2 Analysis of the measurements

The purpose of this section is to detail how the expansion velocity can be estimated from the measure-
ment presented in the previous section. This is useful to clearly understand the assumptions underlying
the estimation of the preplasma density profile, which will then be compared to hydrodynamic simulations
in section 3.1.3. The relevant experimental data is the following:

e The inversions in the reflected probe intensity profiles have been observed at delays of 12 ps, 20
ps and 30 ps. The corresponding phase differences A¢ are respectively x, 2 and 3.

e The prepulse intensity at the position of the 0th order spot is Iy = 3.5 x 10" W /cm?

e The average prepulse intensity at the position of the 1st order spots is I} = 8.7 X 10‘3W/cm2
e The incidence angle of the probe pulse is 49.3°

e The duration of the pump and probe pulses is 30 fs.

e The intensity of the probe central spot is ~ 10'®W /cm?

e The intensity of the probe side spots is on the order of ~ 10'5 W /cm?

The dephasing A¢ between the 0th and 1st order spots of the probe pulse has two sources:
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1. During its reflection, the probe propagates in a underdense plasma whose refractive index is
smaller than 1, thus effectively reducing the optical path length of the pulse. In the following,
this process is referred to as the propagation dephasing.

2. Because of the plasma expansion, the probe reaches critical density and is thus reflected before
the initial solid target surface, as is illustrated in figure 3.2. This also reduces the pulse optical path
length. In the following, this process is referred to as the expansion dephasing.

The expansion dephasing is usually much larger than the propagation dephasing, but we evaluate both
processes in the following paragraphs.

Propagation dephasing
The change in the reflected probe phase due to the propagation in an underdense plasma is given by:

Aprop = k / (N(s) —1)ds (3.8)
Adprop =k 1— "n ) 1) as (3.9)

Where the integral is performed along the whole laser path and k = 27t/ is the laser wavenumber. Let
us evaluate this integral for a pulse impinging on an overdense plasma with a 1D exponential density
profile at oblique incidence. We assume without loss of generality that n, = n. at x = 0 and we write in
this case n, = n.exp(—x/L). The integral 3.9 then becomes:

—+oo

Aprop = 2k <\/1 —exp (-xis)> - 1) ds (3.10)

Sref

Here, s,.r is the position at which the laser is reflected. The integral corresponds to the path of the
reflected pulse and the factor 2 ensures that the path of the incident pulse is also taken into account in
the calculation. We chose s such that s = 0 when x = 0 and we thus have s = x/ cos 6;, where 6; is the
laser incident angle. We then perform the change of variable s — x in the previous integral:

~+oo
2k X
Mpop = g < 1—exp(—7) —1) dx (3.11)
ref
The laser is reflected at the density 7. cos? 6;, which corresponds to the position Xref = —2LIn(cos 6;).
The integral 3.11 can be evaluated analytically. The result is, after some algebra:
4kL . 1+sin6;
Aprop = “eosh, <1 —sinf;+1In (2’>) (3.12)

This result is valid for 0 < 6, < /2.
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Figure 3.4: Expansion (blue curve) and propagation (red curve) dephasings as a function of the probe
incidence angle for a gradient scale length L = A /10 and maximum plasma densities of 5 n. (a), 50 n,
(b) and 500 n. (c). The dephasings are plotted using equations 3.12 and 3.15.

Expansion dephasing
As stated previously, the probe pulse is reflected at the density n, cos? 6;. If we assume that the density
profile is given by equation 3.5, the position at which the laser is reflected is given by:

neo
=Lln| ——F——+— 3.13
Aref n (exp(l)nc cos? 9i> (3.13)

This result assumes in particular that the density at the initial vacuum-solid target boundary x = 0 is
neoexp(—1), in agreement with the isothermal model of plasma expansion presented in section 3.1.1.
The phase difference due to the reflection at x = x,. rather than at x = 0 is given by:

2kxyer

Ay = — 3.14

Pexp cos 6; ( )
2kL NeO

AQoyp = — 1 3.15

Pexp cos 0; n<exp(1)ncc0329,~> (3.19)

Comparison between propagation and expansion dephasing
For an exponential density profile, both dephasings depend linearly on the gradient scale length L. On the
other hand, they depend nontrivially on the incidence angle 6; and the expansion dephasing additionally
depends on the maximum plasma density n.g. The propagation and expansion dephasings are plotted
as a function of the incidence angle for 3 different plasma densities in figure 3.4.

The propagation dephasing decreases when the incidence angle is increased due to the fact that
the laser does not penetrate in the highest plasma density region where the optical index is significantly
smaller than 1. On the other hand, the expansion dephasing increases for rising incidence angles and
diverges when 6; approaches 7. This is both because the reflection position x,.; becomes increasingly
large and because of the geometric factor 1/ cos 6;, which comes from the fact that at grazing incidence
the total laser propagation distance is much greater than its propagation distance in the gradient direction
X.

At normal incidence, the two dephasings are comparable in amplitude when n,y ~ 5 n.. However,
much higher bulk plasma densities that usually exceed 100 n. are used in most solid target experiments.
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In such a case, the expansion dephasing is dominant. This effect is amplified at oblique incidence for
which the propagation dephasing rapidly becomes negligible.

Estimation of the expansion velocity in the interferometry measurement
The measurements in Salle Noire were carried out with a 49.3° incidence angle. We find in this case
that the expansion dephasing is ~ 17 times higher than the propagation dephasing for n.,9 = 50n. and
~ 27 times higher than the propagation dephasing for n.,o = 500n.. We thus neglect the propagation
dephasing and only consider the expansion dephasing in the estimation of the expansion velocity in the
SDI measurements.

The phase A¢ measured experimentally then corresponds to the difference between the expansion
dephasing A¢.., 1 seen by the probe 1st order spots and the expansion dephasing A¢.., o seen by the
probe 0Oth order spot:

A¢p = A(Pexp,l - A(Pexp,O (3.16)

2k 10,0 N0, 1
AO — Lol <Y \-Liln| —& 3.17
¢ cos 6; < 0 (exp(l)nccos2 9,-) o <exp(1)nccos2 9,->> 317)

Where L, = ¢, ,At and n. , respectively correspond to the gradient scale length and maximum plasma
density at the position of the probe nth order spot. We can immediatly see that the sole measurement of
the ratio A¢ /At is not sufficient to determine the four unknown variables ¢y, Cs,1, Ne0,0 and neq,1. Other
hypotheses must therefore be made in order the estimate the expansion velocity.

The first one that we make is to assume that the expansion velocity is at every position proportional
to the square root of the local prepulse intensity. This approximation is motivated by the fact that the
expansion velocity is proportional to the square root of the temperature in the 1D isothermal expansion
model. If we assume that the prepulse absorption coefficient is the same everywhere, the temperature
will be proportional to the local prepulse fluence®, and thus to the local prepulse intensity (at least in the
absence of spatiotemporal couplings). This approximation reads mathematically ¢; o< VT < +/I. When
considering the position of the probe 0th and 1st order spots, this becomes:

|

Cs,1 = EC&O (3.18)

We then insert this expression into equation 3.17 to obtain:

2kcs oAt 10,0 I 10,1
AQ = : 1 ’ —/—In| —————+— 3.19
¢ cos 6; < n (exp(l )necos? 6; Iy n exp(1)n.cos? 6; (3.19)

If we make the additionnal approximation that the maximum plasma density is the same everywhere, the
previous equation is simplified to:

2kc oAt I neo
AO = . l1—4/=)In| ————5—+ 2
= os, ( V Io> " (‘“«Xp(l)ncCOS2 9i> 1920
—1
A¢ cos 6; /1 e
0= " l—s/=In( —= 3.21
Cs0 At 2k |:< I()) n (exp(l)nc cos2 61>:| ( )

3The fluence is the incident energy per unit area, commonly expressed in J/cmz. It is proportional to the intensity and the
pulse duration.

Or equivalently:
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With this expression, the expansion velocity can be directly estimated from the experimental measure-
ment of the ratio A¢ /At (approximately /10 ps~!) provided that a maximum plasma density 7. is
chosen.

However, choosing n.g is not obvious. It can be estimated from the molecular density of the target
(2.2 x 10%?cm 3 for fused silica) and the ionization state of the plasma, but choosing the ionization state
is in turn not obvious. For a fully ionized target (Si'** and O%*), we have 30 electrons per molecule which
results in an electronic density of 380 n.. This provides an upper bound for n.9. The plasma ionization
state may be estimated using the intensity of the prepulse and the barrier suppression ionization thresh-
old for silicon and oxygen, which are given in table 3.1. For a prepulse intensity of 3.5 x 1014W/cm2, this
would lead to Si?* and Ot and . = 50n.. However, this evaluation is based on the assumption that field
ionization is the dominant ionization mechanism, which may not be true. Indeed, once the target is ion-
ized, the prepulse only interacts inside the plasma skin depth, which is much shorter than a wavelength
for a strongly overdense plasma. Then, collisional processes are responsible for causing additional ion-
ization in the plasma bulk, and possibly ionization to higher states than those induced by field ionization.
This renders the estimation of the plasma ionization state (which may very well be inhomogeneous and
time-dependent) not straightforward.

The choice of n.o alone leads to significant uncertainties regarding the plasma expansion velocity.
Choosing n.o = 50n. results in ¢ = 6.9 nm/ps whereas choosing n.9 = 380n, results in ¢, = 4.5 nm/ps.
Other sources of uncertainties in equation 3.21 include:

e The assumption that the plasma density profile is exponential.

e The assumption that the prepulse absorption coefficient is the same everywhere, which leads to
¢y o< v/1. The ratio of absorbed energy may indeed depend on the local prepulse intensity.

e The assumption that the maximum plasma density n.q is the same everywhere. We could indeed
expect a lower value of the ionization state at the position of the probe 1st order, since the prepulse
intensity is lower at that point.

e The fact that the probe pulse, which was more intense than the pump pulse in the interferometry
measurement, can induce further ionization as it travels in the preplasma, thus influencing its own
propagation. PIC simulations performed at long gradients that will be shown in section 3.4 indeed
show that the ionization induced by a pulse can affect the position at which it is reflected (see
figure 3.22). This effect, which could be different for the probe Oth and 1st orders, is difficult to
evaluate because the plasma ionization state during the expansion is not precisely known.

e The experimental uncertainties in the estimation of the prepulse intensities.

Overall, the uncertainty on the expansion velocity measurement probably exceeds 50%.

In the following we heuristically choose a maximum density of n,9 = 100n,, which corresponds to 8
ionized electrons per molecule and results in an expansion velocity of ¢y = 5.8 nm/ps. This value differs
from the value of ¢; = 10.8 nm/ps obtained in the publication presenting the measurements [63]. This is
because of the following differences:

e The maximum plasma density was chosen as n,o = 300n,, rather than n.,o = 100n, here.

e It was assumed that the laser reflects at n. rather than n.cos? 6;. This corresponds to dropping the
term cos’ 6; in the logarithm of equation 3.21.



118 Chapter 3. Few-cycle laser wakefield acceleration on solid targets with long gradient scale lengths

Initial ion state | lonization energy | Barrier suppression intensity

Si 8.15eV 1.76 x 1013 W /ecm?
Sit 16.3 eV 7.06 x 103 W /em?
Si** 33.5eV 5.60 x 1014 W /cm?
it 45.1 eV 1.03 x 10'W /em?
Sitt 167 eV 1.24 x 107 W /em?
St 205 eV 1.96 x 107 W /cm?
Sio* 247 eV 3.04 x 10" W /cm?
Si’* 304 eV 5.34 x 10" W /em?
Sit+ 351 eV 7.50 x 10'7 W /em?
Si%* 401 eV 1.03 x 10'8W /cm?
Silo+ 476 eV 1.70 x 10" W /cm?
sill+ 523 eV 2.08 x 10'8W /cm?
Sil?* 2440 eV 8.39 x 102°W /cm?
Sil3+ 2670 eV 1.04 x 102 W /cm?

0 13.6 eV 1.37 x 104W /cm?
ot 35.1 eV 1.52 x 10'5W /em?
ot 54.9 eV 4.04 x 10'5W /cm?
(03as 77.4 eV 8.97 x 10 W /cm?
o+ 114 eV 2.70 x 10'°W /ecm?
o>t 138 eV 4.03 x 10'°W /ecm?
(okas 739 eV 2.43 x 10"°W /em?
o'+ 871 eV 3.60 x 10" W /cm*

Table 3.1: lonization energies of silicon and oxygen and corresponding barrier-suppresion ionization
intensites. The ionization energies have been obtained from the NIST Atomic Spectra Database.
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e It was assumed that the density at x = 0 is always ., rather than n.oexp(—1) here. This corre-
sponds to dropping the term exp(1) in the logarithm of equation 3.21.

e A calculation error was made in equation (9) of [63]. It essentially corresponds to multiplying rather
than dividing by cos 6; in equation 3.14 and eventually to dividing rather than multiplying by cos 6;
in equation 3.21. Without this error, the estimated velocity would have been c¢; = 4.6 nm/ps.

Estimation of the expansion velocity in the new experimental campaign
In the experiments that will be presented in section 3.2, a more energetic prepulse was used, with a peak
fluence of ~ SOJ/cm2 (compared to ~ IOJ/cm2 in the interferometry measurement). This corresponds
to a peak intensity of ~ 1.8 x 1015W/cm2 for a 25-fs pulse duration. No spatial domain interferometry
measurement were made with this prepulse. Thus, to estimate the expansion velocity in this case, we
have used the previously described assumption that the expansion velocity is proportional to the square
root of the fluence. This leads to an expansion that is approximately v/5 times faster than during the
interferometry measurement. We obtain in this manner a value of ¢; = 12.9 nm/ps, which is used in the
analysis of the experiments.

We can also point out that in the recent experiments, the main pulse duration was varied between 3.5
fs and 24 fs. The prepulse initially had the same duration, since it is created by picking up a small part of
the main pulse, but propagates through dispersive optic elements, which increases its on-target duration.
This means that experiments performed with the shortest main pulse durations have the longest prepulse
duration. For instance, we estimated that the experiments performed with a 5-fs main pulse duration
have a prepulse duration on the order of 100 fs. However, it is observed that the delay for which electron
emission is optimal in the short gradient regime is similar regardless of pulse duration (see figure 3.12
that will be presented later), indicating that the plasma expansion is the same for every prepulse duration.
This was also observed in the hydrodynamic simulations presented in the next paragraph (simulations
with different prepulse duration but identical fluence lead to almost indistinguishable results). This tends
to confirm that the prepulse fluence is the main parameter driving the preplasma expansion.

3.1.3 1D hydrodynamic simulations of preplasma expansion

The spatial domain interferometry method presented in the previous section essentially provides a mea-
surement of the position x,.r at which the probe pulse is reflected (or more precisely of the difference
between the position x,. s o at which the probe 0th is reflected and the position x,. 1 at which the probe 1st
order is reflected), where the density is . cos? 6;. Then, the expansion velocity is estimated by assuming
an isothermal plasma expansion and choosing a maximum plasma density.

In order obtain more insight on the preplasma expansion, 1D hydrodynamic simulations of plasma
expansion using the code ESTHER have been carried out by Laurent Videau, at the CEA-DAM-DIF center
in Bruyéres-le-Chéatel. These simulations are useful to test the validity of the isothermal expansion model,
upon which our previous estimation of ¢, relies, and can be directly compared with the interferometry
measurements.

3.1.3.1 The ESTHER code

ESTHER is a 1D Lagrangian hydrodynamic code developed at the CEA DAM [170]. In the simulations,
the prepulse impinges with p-polarization and 45° incidence on a solid fused silica target with a step-
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like density profile and an initial temperature of 300 K. Field ionization is not included in the simulations.
However, in the absence of ionization, the laser pulse would cross the target without depositing energy
since fused silica is transparent in its solid state. In order to avoid this, an imaginary part is artificially
added to the optical index of the target to model the initial laser absorption and creation of the plasma.
This means that the very beginning of the interaction is probably poorly modeled. However, once the
target is in plasma state, the imaginary index becomes irrelevant. We accordingly observe that the
results are independent on the choice of the imaginary index provided that it is high enough so that a
plasma is created during the first laser optical cycles, as is the case in experiments. This suggests that
artificialy adding an imaginary optical index is a cost-effective way to model the initial ionization.

Once the prepulse has deposited part of its energy into the target, the plasma expansion is calculated
using an equation of state that is valid from the solid phase to the plasma phase [171]. In the case of
silica, only a single temperature model is available. This means that the electron and ion temperatures
are the same, even at the beginning of the plasma expansion. This is probably not the case in reality and
is a possible source of uncertainty in the simulations.

The mass density, fluid velocity and temperature as a function of time are then given as outputs. An
estimation of the ionization state is also given, but its validity is unclear and we have consequently not
used it.

3.1.3.2 Simulation results

Simulations have been carried out with laser parameters corresponding to either the prepulse in the
interferometry measurement or the more energetic prepulse in the recent experimental campaign. In the
former case, we use a pulse duration of 30 fs with a peak intensity of 3.5 ><1014W/cm2, resulting in
a fluence of ~ 11J/cm2. In the latter case, we use a pulse duration of 100 fs with a peak intensity of
5 x 1014W/cm2, resulting in a higher fluence of ~ 53J/cm2. The pulse duration is chosen to model
the chirped prepulse used in the experiments, as explained in the last paragraph of section 3.1.2.2.
Choosing a pulse duration of 50 fs and an intensity of 1015W/cm2 (same fluence) leads to identical
results, meaning that the exact choice of the pulse duration is not significant.

The expansion of the plasma mass density is displayed for both simulations in figure 3.5. As expected,
a higher fluence leads to a faster plasma expansion. We notice that the density profiles have a very similar
shape in the two cases. In particular, we observe that for short delays Ar after the prepulse, the density
profile is close to an exponential (a pure exponential would be a straight line in this logarithmic scale). This
confirms that choosing an exponential density profile in the simulations is a reasonable approximation at
short gradients.

On the other hand, the density profile significantly deviates from an exponential for longer delays. This
is an indication that the isothermal assumption is violated in the simulations. This can be confirmed by
plotting the expanding plasma temperature, which is done in figure 3.6(a) in the case of the high fluence
simulation. We indeed observe that not only the temperature is not homogeneous, with the highest values
located towards the expansion direction, but it also decreases with time during the expansion.

The fluid velocity during expansion is plotted for the same simulation in figure 3.6(b). The linear
relation between position and velocity that is predicted from the isothermal model is well reproduced.
Nonetheless, unlike in the model, the maximum velocity remains finite in simulations because the plasma
is bounded in space.
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Figure 3.5: Results from 1D hydrodynamic simulations. Mass density of a fused silica target at four
different delays after irradiation at At = 0 by a 30-fs, 3.5 ><1014W/cm2 prepulse (a) or a 100-fs, 5
x 1014w / cm? prepulse. pg is the mass density of fused silica in its solid state.
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Figure 3.6: Results from 1D hydrodynamic simulations. Temperature (a) and velocity (b) of a fused silica
target at four different delays after irradiation at At = 0 by a 100-fs, 5 x10'*W /cm? prepulse.
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Figure 3.7: (a) Reflection position x,.y of the probe pulse Oth order in the interferometric measurement
estimated from hydrodynamic simulation (blue curve) or from an exponential density profile with the pre-
viously evaluated expansion velocity (red curve). (b) Same plot but zoomed on the first 30 ps of the
expansion. (c) Gradient scale length at position x,.y. The apparent discontinuities in the blue curve in (b)
occur when the reflection position jumps from one grid cell to the next.

The density profiles shown in figure 3.5(b) have been used in the simulations with a long gradient
scale length that will be presented in section 3.4.

3.1.3.3 Comparison between simulations and interferometry measurements

The purpose of this section is to test the consistency between the hydrodynamic simulations and the
expansion velocity obtained with spatial domain interferometry. The main difficulty arises from the fact
that ESTHER simulations provide mass density profiles while it is the electron density which has an effect
on the interaction. This is essentially because the ionization state is not precisely known.

One possible test is to compare the position of reflection x,. s given by either the hydrodynamic simu-
lations or an exponential density profile with the measured expansion velocity. We first consider the case
of the interferometry measurement (simulation with the lowest prepulse fluence). We use the previously
estimated values of ¢, = 5.8 nm/ps and n.9 = 100 n.. The latter corresponds to an ionization state of
8 electrons per molecule that we use to evaluate the electron density n, from the mass density p in the
ESTHER simulation. The reflection position x,.r in the simulations is then obtained by finding the posi-
tion such that ne(x,ef) = n.cos? 6;. In the case of the experimental density profile, x,. is estimated with
equation 3.13.

The result is shown in figure 3.7(a) and a close-up of the beginning of the expansion in shown in
figure 3.7(b). If similar orders of magnitude are obtained, we find a faster initial expansion of the reflection
position in the hydrodynamic simulations, especially in the first 30 ps which correspond to delays where
the interferometry measurement is performed. A better agreement can be obtained in the first 30 ps by
choosing 4 electrons per molecule, resulting in n.g = 50 n, and ¢, = 6.9 nm/ps.

The gradient scale length L(x,.r) at the reflection position is plotted in figure 3.7(c). We once again
observe a faster expansion in the simulation. We can also remark that, if both x,.; and L(x,ef) evolve
linearly with At for an exponential gradient, the plasma expansion appears to be more "concave" in
simulations.
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Figure 3.8: (a) Reflection position x,.y of the main pulse in the recent experimental campaign estimated
from hydrodynamic simulation (blue curve) or from an exponential density profile with the previously
evaluated expansion velocity (red curve). (b) Gradient scale length at position x,.r. (c¢) Same plot but
zoomed on the first 20 ps of the expansion. The apparent discontinuities in the blue curve in (c) occur
when the reflection position jumps from one grid cell to the next.

The same test has been performed for the highest fluence simulation (=~ 53 J/cmz), which corre-
sponds to the recent experimental campaign. We assume in this case that the plasma has an ionization
state of 8 electrons per molecule during expansion and correspondigly use n.o = 100 n. and ¢, = 12.9
nm/ps to estimate the electron density in the exponential gradient. However, we also make the hypothesis
that the main pulse, with its peak intensity on the order of 10'8 — 10! W /cm? depending on the duration,
causes further ionization as it propagates in the preplasma, resulting in a final ionization state estimated
from the barrier-suppression ionization thresholds of 22 electrons per molecule (Si'®t and O%*). Conse-
quently, we assume that the main pulse is reflected at a density 1, (x,.f) = 8/22 x n.cos? 6;, where 8 and
22 correspond to the initial (during expansion) and final (after reflection) ionization states and n,(x) is the
density profile immediatly before interaction with the main pulse. Results are displayed in figure 3.8. We
once again find a faster expansion of the gradient scale length L in simulation.

In both cases, we remark that the difference between the simulations and the exponential density
profile are more pronounced for the gradient scale length at the position of reflection L(x,.s) than for the
reflection position itself. This is because the density profiles are not exponential in simulations and is a
reminder that the SDI method is a measurement of the reflection position but not directly of the density
gradient at reflection, which is the more relevant parameter in experiments.

The previous tests had the disadvantage of relying not only on the choice of the ionization state, but
also on the choice of the maximum plasma density n.o (although both were chosen self-consistently).
One way to test the agreement between simulations and measurements without have to choose n
is to simulate the interferometry experiment using the ESTHER density profile. For this purpose we
have performed a new ESTHER simulation with an intensity corresponding to the prepulse intensity at
the position of the probe 1st order spots (I = 8.7 x 10'3 W/sz)_ This allows us to estimate the density
profile seen by the probe side spots. After choosing an ionization state, we can calculate numerically both
the propagation and expansion dephasing seen by the Oth and 1st order spots and eventually evaluate
A¢. We have done this for 3 different choices of ionization state:
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Figure 3.9: Dephasing A¢ between the probe 1st order and Oth order spots evaluated using (a) 6 elec-
trons per molecule for the Oth order spot and 4 electrons per molecule for the first order spots, (b) 8
electrons per molecule for both the 0th and 1st order spots and (c) 4 electrons per molecule for both the
Oth and 1st order spots. The green dots show for comparison the experimental measurements.

e Assumption 1: we only take the ionization levels whose barrier-suppresion intensity thresholds are
much lower (at least one order of magnitude) than the probe pulse intensity. We obtain in this
manner 6 electrons per molecule (Si*™ and O*) for the central spot and 4 electrons per molecule
(Si*t and O™) for the side spots.

e Assumption 2: we take 8 electrons per molecule for both the central and side spots. This is
consistent with the previous assumptions that n.o = 100 n. everywhere.

e Assumption 3: we take 4 electrons per molecule for both the central and side spots. This assump-
tion is chosen because we have found retrospectively that it leads to the best agreement with the
interferometry measurement.

Results from these tests are shown in figure 3.9. A¢ = 37 was measured for a delay Ar =30 ps. In
simulations, we find for the same delay A¢ = 4.37 with assumption 1, A¢ = 4 with assumption 2
and A¢ = 2.8m with assumption 3. Similar orders of magnitude for the dephasing are obtained, with
values up to = 50% higher in simulations. As previously, we observe a concave plasma expansion in the
hydrodynamic simulations.

Overall, the comparisons performed in this section are useful as they illustrate the significant un-
certainties associated with the estimation of the preplasma density profile, and in particular those arising
from the fact that the ionization states are not known. Nevertheless, similar orders of magnitude are found
in both measurements and simulations, which confirms that the spatial domain interferometry method can
provide a reasonable estimation of the expansion velocity. We consistently find a somewhat faster plasma
expansion in simulations. This difference can be explained by the uncertainties associated with the mea-
surements, but could also mean that these 1D hydrodynamic simulations with a single temperature model
tend to overestimate the expansion.
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3.1.4 Conclusion on the preplasma expansion

Both the spatial domain interferometry measurement and the 1D hydrodynamic simulations allow us to
have a reasonable estimation of the preplasma density profile during experiments. It should be kept in
mind that there are significant uncertainties associated with this estimation. This might sound concerning
given that the gradient scale length is a key parameter of the interaction. However:

e The delay between the prepulse and the main pulse can be continuously varied in experiments.
Performing such a gradient scan makes it possible to identify the different electron acceleration
regimes relevant to a given set of laser parameters, which can then be understood using PIC
simulations. The uncertainties on the density profile will result in uncertainties on the gradient
scale length for which a given mechanism occurs/is optimal, but do not prevent us from studying
the physics of the interaction.

e The experiments are reproducible since using the same prepulse parameters will lead to the same
plasma expansion. This means that if a better estimation of the plasma density profile is obtained,
the experiments can still be retrospectively analyzed more accurately.

It should also be noted that we have only considered in this section a one-dimensional expansion.
When the longitudinal extension of the preplasma is of the same order of magnitude as the prepulse
spot size (= 13 um in Salle Noire), transverse effects likely come into play in the plasma expansion.
This effect could be significant in the electron acceleration mechanism at long gradients identified in
section 3.4. A detailed study of the multi-dimensional expansion of the preplasma in Salle Noire using 2D
or 3D hydrodynamic simulations could be the subject of future work.

3.2 Experimental Results

We present in this section results from the first experiments in Salle Noire where relativistic intensity
few-cycle pulses have been used on solid targets, which have been carried out by Maimouna Bocoum
and Frederik Bohle [34]. We focus primarily on the emission of fast electrons but we also mention results
regarding high-harmonic generation in section 3.2.3.

3.2.1 Experimental setup

The Salle Noire laser delivers 2.6-mJ pulses at 1-kHz repetition rate with an extremely high temporal
contrast (> 10'%) [32]. The 800 nm, 24 fs laser pulses are post-compressed in a helium-filled stretched
hollow-core fiber [33, 35]. The pulse duration can be tuned by changing the pressure in the fiber, thereby
providing near Fourier transform limited pulses from 3.5 fs to 24 fs. The laser beam is focused down
to wo = 1.5 um resulting in peak intensities ranging from 2.3 x 10'8 W /em? (ag ~ 1) for 24 fs pulses to
1.6 x 10 W /cm? (ag ~ 2.7) for 3.5 fs pulses.

In the experiment, represented in Fig. 3.10, p-polarized pulses impinge on an optically flat fused silica
(Si0,) target with an incidence angle 6; = 55°. A spatially overlapped prepulse, created by picking off
= 4% of the main pulse through a holey mirror, is focused to a much larger 13 um FWHM spot (see inset
of Fig. 3.10) in order to generate a transversely homogeneous plasma that expands into vacuum. The
plasma density profile during the interaction is controlled by varying the delay, At, between the prepulse
and the main pulse.
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Figure 3.10: Schematic of the experimental setup. The laser pulses interact at 1-kHz repetition rate with
a fused silica rotating target. The resulting fast electrons and high-harmonic emission are simultaneously
detected. Inset: superimposition of the on-target prepulse (white) and main pulse (color) focal spots.
Image taken from [34].
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Figure 3.11: Lanex screen spectral response. This data was initially presented in [172].

Backward electron emission is measured using a Lanex screen, protected by a 13 pm thick Al-foil,
which detects electrons with energies > 150keV. The Lanex screen was calibrated prior to the experiment
using a 3-MeV RF accelerator. As shown in figure 3.11, the response of the screen depends on the
detected electron energy. Therefore, the electron energy spectrum should be known in order to evaluate
the absolute detected charge for a given shot. However, electron energy spectra have not been measured
in this first experimental campaign. For this reason, the absolute charge is estimated from a spectrum
obtained from a PIC simulation described in section 3.4 (see figure 3.21). The resulting uncertainty, of
the order of 50%, is mainly due to the fact that the energy spectra are not known. The angular electron
distribution in the backward direction is recorded for —3° < 6, <75° and —15° < 6, < 15° where 6, and
0, are the angles with respect to target normal respectively in the incidence and transverse planes.

Additionally, harmonics emitted in the specular direction can be measured by an XUV spectrome-
ter coupled to a micro-channel plate and a phosphor screen detector. The harmonic spectrum is then
measured in the 6, direction while the harmonic beam divergence is obtained in the 6, direction. When
the high-harmonic signal is measured, the fast electrons can only be detected at angles smaller than the
specular direction (6, < 6;) because the Lanex screen would otherwise block the harmonic beam.

3.2.2 Electron emission

Figure 3.12 shows the measured electron signal as a function of the delay between the prepulse and
the main pulse for 5 different laser pulse durations. As expected, we find a strong electron emission for
short delays (At < 20 ps), corresponding to a sharp plasma-vacuum interface. This emission, detected
for every pulse duration, is optimal for a delay At ~ 7 ps, i.e. L < A/5. In this regime, the push-pull
mechanism described in section 1.4.2.1 is responsible for the ejection of electrons from the plasma. A
typical electron angular distribution obtained with a 5-fs pulse in this case is displayed in figure 3.13(a),
showing a broad divergence angle of ~ 50°.

As the delay is further increased, the detected charge drops (10 ps < Ar < 30 ps), and then rises
again for longer delays (At > 50 ps). This time however, electrons are only emitted when few-cycle pulses
(<10 fs) are used. Note that chirping a few-cycle pulse to increase its duration results in a similar decline
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Figure 3.12: (a)-(e) Electron angular distribution integrated over the 6, angle as a function of the delay
between the prepulse and the main pulse for respective pulse durations of 24, 10, 7.5, 5 and 3.5 fs. (f)
Total ejected charge as a function of the delay between prepulse and main pulse. The gradient scale
lengths given in the top axis are obtained using an expansion velocity of 12.9 nm/ps, as described in
section 3.1.2.2. Each data point corresponds to an average over 50 shots (50 ms acquisition time at 1
kHz repetition rate). The red lines mark the specular direction.
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Figure 3.13: Typical electron angular distribution obtained with 5-fs pulses respectively in the short ((a),
At =9 ps) and long ((b), At = 140 ps) plasma scale length regimes. The red dots mark the specular
direction.

of the electron signal, as can be seen in figure 3.14. This is thus a very distinct physical regime, in which
the gradient length is much larger (L > A) and the duration of the laser pulse plays a major role. In this
case, the obtained electron beams have more charge and a narrower divergence angle of ~ 25° as is
visible in figure 3.13(b). The electrons are emitted near the specular direction, with a slight shift towards
the normal direction. The detected signal is very stable over a wide range of delays (50 ps<< At <200 ps),
indicating that the electron ejection mechanism is not highly sensitive to the exact shape of the plasma
density profile. The beam also exhibits good shot-to-shot stability: the fluctuation is on the order of 10%
on the charge and 5% on the divergence and the beam pointing fluctuation is on the order of 1°. These
statistics have been computed for the case of a pulse duration T = 3.5 fs and at a delay Ar = 90 ps
and using either 18 100-ms data acquisitions (corresponding to 100 shots per acquisition at 1 kHz) or 15
shorter acquisitions with a duration ranging between 1 ms and 10 ms.

It should be noted that the electron charge in figure 3.12(f) has been evaluated using the energy
spectrum obtained from a 2D PIC simulation in the long gradient regime (combined with the spectral
response of the Lanex screen) that will be shown later (see figure 3.21(c)). The values given correspond
to an electron energy of =~ 850 keV (i.e. the absolute value of the charge would be correct if all detected
electrons had an energy of 850 keV). This results in high uncertainties because the experimental energy
spectra may be different from the one originating from the 2D PIC simulation and because they may
significantly vary depending on the experimental parameters. For instance, it may seem like the absolute
charge in the short gradient regime is highest for 24-fs pulses. However, this might not be the case since
we can reasonably expect higher electron energies from lower pulse durations (due to the increase in
intensity) which would deposit less energy in the detector and result in an underestimation of the charge.
Similarly, we cannot assert with certainty from figure 3.12(f) that the charge in the long gradient regime
is significantly higher than the charge in the short gradient regime, because the corresponding energy
spectra could considerably differ.

Experiments have also been carried out with intensities reduced to 11% of their original values,
ranging from 2.5 x 107 W /cm? (ag ~ 0.3) for 24 fs pulses to 1.8 x 10’8 W /cm? (ag ~ 0.9) for 3.5 fs
pulses. This drop in intensity has been obtained by aperturing the main laser beam. The experimental
results in this case are shown in figure 3.15. It appears that, for a given pulse duration, the signal at
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Figure 3.14: Total detected charge as a function of pulse duration for a delay At = 90 ps between the
prepulse and the main pulse. The pulse duration is tuned here by chirping positively (red points) or
negatively (blue points) the 3.5-fs driving laser.

long gradient drops much faster than the signal at short gradient (coming from the push-pull mechanism)
when the intensity is decreased.

3.2.3 High-harmonic generation

In a previous experimental campaign in Salle Noire with longer pulses and lower intensities (30 fs and
ap ~ 0.7), it was observed that the harmonics were emitted for sharper density gradients than the elec-
trons [59]. This is because Coherent Wake Emission (see section 1.4.3.1) is the dominant high-harmonic
generation mechanism at this nonrelativistic intensity.

In the new experimental campaign presented here, the reduced pulse duration leads to relativistic field
values (ag > 1) for which the Relativistic Oscillating Mirror (see section 1.4.3.2) mechanism is expected to
become predominant, for gradients of the order of L ~ A /10. A strong correlation between the harmonic
and electron signal should be found in this case. This is indeed what is observed experimentally as can
be seen in figure 3.16.

Another interesting result is that for extremely short pulse durations, the measured harmonic signal
strongly depends on the laser CEP. Although the CEP was not fully stabilized during these experiments,
data could be recorded over short sequences of shots lasting 30 ms (30 pulses per sequence) during
which the CEP is approximately stable. Even though the CEP drift is random from one sequence to the
next, it could be estimated for each data sequence, thus effectively making it possible to study the effect of
CEP on high-harmonic generation. Figure 3.17 shows two extreme cases of measured harmonic signal.
In the left image, the spectrum is strongly modulated, indicating that two similarly intense attosecond
pulses are generated in this case. On the opposite, the spectrum becomes nearly continuous when the
CEP is shifted by &, which corresponds to the emission of a single high-harmonic pulse. In this case,
the reflected pulse duration is estimated from 2D PIC simulations to be on the order of 200 as. These
results suggest that isolated attosecond pulses could be routinely generated at a kHz repetition rate with a
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Figure 3.15: (a)-(e) Electron angular distribution integrated over the 6, angle as a function of the delay
between the prepulse and the main pulse for respective pulse durations of 24, 10, 7.5, 5 and 3.5 fs and
reduced intensity. (f) Total ejected charge as a function of the delay between prepulse and main pulse.
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taken from [34].
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Figure 3.17: Two XUV spectrograms obtained with a 3.6-fs driving laser (ag =~ 2.7) and two different CEP
values, presumably shifted by 7.

precise control of the CEP. It can be pointed out that no such strong effect of the CEP has been observed
on the electron signal.

Finally, it should be noted that, regardless of pulse duration, no high-harmonic signal is measured at
long gradients (L > A), even when a strong electron emission is observed. This is a confirmation that
electron acceleration at long gradients originates from a different mechanism which is not associated to
any high-harmonic generation.

More details regarding the high-harmonic emission during this experimental campaign can be found
in [34].

3.2.4 Conclusion

At short gradients (L < 1), the experimental results shown in the previous sections are fully consistent
with the theory presented in 1.4 and with previous experimental results [24]. In particular, at relativistic
intensities, the simultaneous emission of electrons via the push-pull mechanism and high-harmonics
through the ROM mechanism is detected.

At longer gradients, (L > A), no harmonics are measured but a strong electron emission is observed
when sub-10 fs pulses are used. Understanding the origin of this electron beam is the main objective of
section 3.4.
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3.3 PIC simulations of electron acceleration in the short gradient regime

Even though the physics at short gradients is well understood, it is still instructive to examine PIC sim-
ulations of the interaction. We present in this section two plasma mirror simulations with Salle Noire
laser parameters ; one in two-dimensions and one in three-dimensions. On top of the additional physical
information, in particular regarding the energy of the emitted electrons which was not measured experi-
mentally, a direct comparison between 2D and 3D PIC simulations of the interaction is obtained.

In both simulations, a 3.5-fs laser pulse with wyg = 1.5 um and ag = 2.92 impinges at 45° incidence
on an overdense plasma with an exponential density profile and a gradient scale length L = A1 /7. The
maximum plasma density is 200 n. in the 2D case and 100 7. in the 3D case but this parameter does not
play a significant role. In the 2D simulation, the Yee solver is used with a spatial resolution Ax = Az =
A /143 and 36 macroelectrons per cell while in the 3D simulation the order-100 PSATD solver is used with
Ax = Ay = Az = 1 /36 and 6 macroelectrons per cell. Note that the incidence angle in the simulations
(45°) is different from the incidence angle in the experiments presented in the previous section (55°).
This is because the 3D simulation was initially carried out to be compared with a simulation with radial
polarization that is presented in appendix A.

Figure 3.18 shows snapshots from the two simulations. The electron density is only displayed in the
2D case because it was not included as a diagnostic in the 3D simulation. The reflected laser field shape
is very similar in both cases, meaning that the oscillation of the plasma surface, visible in figure 3.18(b) is
well reproduced in two-dimensions. We also observe in figure 3.18(c) that the ejected electron bunches
have a rather complex structure, indicating that the push-pull mechanism leading to electron ejection
occurs nontrivially in multiple dimensions.

The ejected electrons angular distribution in the 3D simulation is displayed in figure 3.19(b). It can be
compared with the experimental distribution of figure 3.13(a), showing a good agreement. The electron
beam might be slightly less diverging in the simulation which could be explained by the fact that space
charge effect will tend to broaden the distribution as the electron beam propagates towards the detector
in experiments. This effect is not included in the simulation since the electron beam propagation is only
computed for the first 70 wum while the Lanex screen is located 10 cm away from the target in experiments.

On the other hand, unlike in experiments, a hole is observed in the specular direction in the 2D angular
distribution shown in figure 3.19(a), with most electrons accelerated between the specular and grazing
directions. As we have seen in section 1.5, this hole can be caused by the ponderomotive force during
the interaction of the ejected electrons with the reflected laser pulse in vacuum. The reason this hole is
not observed in either the experiments or the 3D simulation is not entirely clear. In previous experiments
in Salle Noire with many cycle pulses, it was observed that the presence of this hole depended on the
laser focus position [169], meaning that this parameter, whose influence has not been fully studied, might
still be at play here. The presence of the hole in the specular direction in the 2D simulation suggests
that the acceleration of electrons in vacuum is poorly modeled in two-dimensions, although it could also
be partly due to differences in the initial electron injection into the reflected field between the 2D and 3D
cases.

The electron energy spectra, visible in figures 3.13(c)-(d), have a similar shape in both cases. The
electrons have a typical energy of ~ 1 MeV with a tail in the energy distribution that extends to 3.5 MeV
in the 2D simulation and 5 MeV in the 3D simulation. The correlations between the electron energy and
the emission angle 6,, displayed in figures 3.13(e)-(f), reveal that the most energetic electrons are accel-
erated closer to the specular direction in 3D than in 2D. Finally, the total ejected charge is ~ 12pC/ um in



3.3. PIC simulations of electron acceleration in the short gradient regime 135

2D Simulation 2D Simulation 3D Simulation
I (a) 1 @ 1 [ 1
8 . 8l . S {8
< 6 f 6l i L 16 =
5 4 74 7% B
4 R 4t E - {4
0 2 4 6 8 10 12 0 2‘ 4‘1 E“) é 1‘0 1‘2 0 2‘ 4‘1 é E; 1‘0 1‘2
z/A z/A z/A
g (D) gl (&) | | (h) 1s
6| . L 16 <
s
4| . L 14
n - g/// | i ‘ »/// 1,
O Il Il Il Il Il Il Il Il Il Il Il Il O
4 6 8 10 12 14 4 6 8 10 12 14
z/\ zZ/\
g (F) | (i) 1s
61 . - 16
/(
N ~
T NN 1| N
2} . S 42
O Il Il Il Il Il Il Il Il Il Il Il Il 0
8 10 12 14 16 6 8 10 12 14 16 6 8 10 12 14 16
z/\ z/A z/A
0.1 1 -3 0 3
n./n. (log scale) B, (units of a)

Figure 3.18: Snapshots from the 2D and 3D PIC simulations. In (a)-(c), both the electron density and the
laser magnetic field are shown in the 2D case. In (d)-(i), only the laser magnetic field is shown in the 2D
case (d)-(f) and in the incidence plane of the 3D simulation (g)-(i). There is approximately 4 laser periods
between each snapshot. Detailed simulation parameters are provided in appendix B.



136 Chapter 3. Few-cycle laser wakefield acceleration on solid targets with long gradient scale lengths

2D simulation 3D simulation
16 F 7 T T T ]
 (a)
14
8 12 |
£ 10
£ s}
S ok
4 P
o Ll \
0 : 2‘0 4‘0 6‘0 8‘0 0 20 40 60 80
0, (degrees) 0, (degrees)
14 ‘ 80
S 12 L(c) , L (d)]70
O] | i - 460
g 1(; | 1 L 150 %
g L la0 =
6 i =
= 1 {130 O
g *r ] 1 120 @
o 2 1 {10
0 Il Il Il Il Il Il Aw L 0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0 1 2 3 4 5 6
Energy (MeV) Energy (MeV)
S 231 (e)
O 3.0F
= 25f
; 20} . =
9 1.5} a7 T 2 | ::
o 1o ;2 8 !
0.0 6 2‘0 4‘0 6‘0 80 0 20 40 60 80
0, (degrees) 0, (degrees)
0 1 0 50 100 150 200 250
a.u. pC/(rad)?

Figure 3.19: Ejected electron distributions. (a)-(b) Angular distribution respectively in 2 and 3 dimensions.
(c)-(d) Energy spectrum respectively in 2 and 3 dimensions. (e)-(f) Correlation between energy and 0,
angle with respect to normal direction in the incident plane respectively in 2 and 3 dimensions. Only the
electrons with an energy higher than 150 keV are displayed. The red lines and dot mark the specular
direction. Detailed simulation parameters are provided in appendix B.
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2D and = 63 pC in 3D. These numbers are in good agreement with the estimated experimental ejected
charge.
The main findings from these simulations are that:

e =~ 1 MeV electrons can be expected from the experiments performed with few-cycle pulses in Salle
Noire.

e 2D PIC simulations of relativistic plasma mirror interaction correctly reproduce the main qualitative
trends regarding the oscillation of the plasma surface and the energy of the emitted electrons, but
cannot provide accurate electron distributions.

3.4 Laser wakefield acceleration at long gradients

We present in this section PIC simulations aimed at understanding the origin of the electrons detected at
long gradients with few-cycle pulses in experiments. We find that the electrons are accelerated by a laser
wakefield formed in the near-critical density part of the preplasma. We then determine the conditions
under which this mechanism occurs as well as the effect of the different experimental parameters.

3.4.1 Simulation parameters

Several 2D PIC simulations of the interaction have been performed using the code WARP. We took
great care in providing a realistic description of the plasma density gradient. First, field ionization is
taken into account in the simulations. Initially, the SiO, plasma is partially ionized up to Si** and O**.
These ionization states are estimated from the prepulse peak intensity (~ 1015W/cm2) and the intensity
thresholds for barrier-suppression ionization in silicon and oxygen. It not entirely clear whether these
values are accurate but we have checked that our results remain valid when the initial ionization states
are either lowered or raised up to Si** and 0% (which correspond to the barrier-suppresion ionization
states induced by a 1017W/crn2 beam). Then, further ionization (either tunnel or barrier-suppression)
can be induced by the main pulse in the course of the simulations. Secondly, the initial plasma density
profile is obtained from the ESTHER hydrodynamic 1D simulation presented in section 3.1.3. We have
indeed seen that the preplasma densities deviate from an exponential at long gradients, and we therefore
use the density profiles shown in figure 3.5(b) as inputs for the PIC simulations.

The numerical parameters are the following: spatial steps Ax = Az = A /71 where A = 800 nm, 4
particles per cell per species (electrons, Si*t ions and O?T ions) initially. After further ionization by
the main pulse, the number of electron per cell ranges from 4 to 60, depending on the final degree of
ionization. We use the same laser parameters as in the experiments: zz = 8.84 um (corresponding
to wy = 1.5um), 7 ranging between 3.5 fs and 24 fs and ag accordingly ranging between 2.57 (3.5-fs
pulses) and 0.98 (24-fs pulses). The laser focus point is located at the position of the initial solid-vacuum
interface. The laser is thus reflected slightly before focus because of the plasma expansion. Finally, a
moving window is started after the interaction in order to follow the accelerated electrons up to tens of
microns away from the plasma. We consider that an electron is ejected if it is located more than 8 um
away from the plasma surface with an energy exceeding 150 keV.
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Figure 3.20: Laser magnetic field and electron density from PIC simulations with a large plasma scale
length (At = 80 ps) and a pulse duration of (a)-(c) 5 fs or (d)-(f) 24 fs. The green and yellow dots show a
sample of gjected electrons. Ty is the laser optical oscillation period. Detailed simulation parameters are
provided in appendix B.

3.4.2 Identification of the acceleration mechanism

Snapshots from two different PIC simulations are shown in figure 3.20. Both simulations use the plasma
density profile obtained with a delay Ar = 80 ps (i.e. the red curve in figure 3.5(b)), a value for which the
electron beam is detected in the experiments. The pulse duration is either 5 fs or 24 fs, resulting in peak
intensities of 10" W /cm? (ag = 2.15) and 2.1 x 10'8 W /cm? (ag = 0.98) respectively.

The first striking feature is the formation of high amplitude plasma waves in the wake of the 5-fs pulse.
Their wavefront is bent by the density gradient, as will be explained in section 3.4.4. Even though these
wakefields appear in the whole region where the 5-fs pulse propagates, inside which the density ranges
from nc/100 to necos? 6; ~ 0.3n, they are completely absent in the 24-fs pulse simulation. This can be
easily explained by the fact that wakefield excitation is optimal at the resonance condition, i.e. when the
pulse duration is on the order of half the plasma wavelength: T~ A4,/2c. As we have seen in the first
chapter, this gives a resonant density of ~ n./12.5 for 5-fs pulses, versus ~ n./300 for 24-fs pulses,
explaining why large wakefields appear for the few-cycle pulse only. More details will be given in the next
section.

Some electrons, represented in green in figure 3.20, are trapped and accelerated by the plasma
waves’ strong electric fields, that reach up to 1 TV/m. The angular and energy distribution of these
LWFA electrons is shown in the green curves of figure 3.21(a) and figure 3.21(c) respectively. Their
energy spectrum extends to = 2.5 MeV and their total ejected charge is = 7 pC/um. These electrons
are emitted in the same direction as the electrons detected at long delays in experiments (see the red
curve in Fig. 3.21(a)). Moreover, as in experiments, these electrons only appear for few-cycle pulses.
We therefore attribute the electron beam detected at long delays in experiments to Laser Wakefield
Acceleration (LWFA).
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Figure 3.21: (a),(b) Angular and (c),(d) energy distribution of the two families of electrons that are ejected
in the (a),(c) 5 fs and (b),(d) 24 fs simulation. The distributions are obtained at the end of the simulation,
long after the interaction. The red dashed curve in (a) shows for comparison the experimental angular
distribution integrated along the 6, angle obtained with a 5 fs pulse and an 80 ps prepulse lead, in arbitrary
units. Note that the green spectrum in (c) has been used along with the spectral response of the Lanex
screen to estimate the absolute charge in experiments. Detailed simulation parameters are provided in
appendix B.
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Figure 3.22: Laser magnetic field and electron density from PIC simulations with a large plasma scale
length (At = 80 ps) and a pulse duration of 5 fs with field ionization turned on (a)-(c) or off (d)-(f). The
green and yellow dots show a sample of ejected electrons. Note that the simulation in the top of this
image is the same as in figure 3.20, the only difference being that electrons accelerated by different
cycles of the wakefield are shown. Detailed simulation parameters are provided in appendix B.

We notice that the angular distribution of the LWFA electrons is significantly narrower in the simulation
than in experiments. Once again, this is likely due to space charge effects during the propagation of the
electron beam to the detector, which we expect to be important for a sub-MeV beam with tens of pC
charge. The electrons are indeed only propagated for tens of microns in the simulation while the Lanex
screen is located =~ 10 cm away from the target in experiments.

In the simulations, the LWFA electrons come from the L-shell of silicon. They have high binding
energies (from ~ 150 eV to =~ 500 eV) and can therefore only be ionized by the huge electric fields
inside the main laser pulse. The fact that only electrons ionized in the center of the pulse are accelerated
suggests that ionization injection, a well-known mechanism in underdense plasmas (see section 1.3.3.1),
is responsible for trapping the electrons into the wakefields.

This can be confirmed by rerunning the simulation with field ionization turned off. This is shown in
figure 3.22. In the simulation with ionization turned on, electrons are accelerated by 3 consecutive cycles
of the wakefield, with most electrons accelerated by the second one (the green electrons displayed in
figure 3.20). On the other hand, when field ionization is turned off electrons are only accelerated by the
third cycle of the wakefield. In this case, the electrons appear to be self-injected by the wavebreaking of
the plasma oscillations. This confirms that most electrons (at least the electrons in the first two cycles)
are injected by ionization in the initial simulation. More generally, we observe when varying the interaction
parameters that electrons are steadily injected when ionization is turned on whereas the injected charge
is unstable with ionization turned off (even though in the best cases it is comparable to the injected charge
with ionization turned on). This shows that taking field ionization into account is necessary to properly
describe the injection of electrons into the plasma waves in this regime.

Physically, electrons injected by ionization have two advantages in comparison with pre-ionized elec-
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trons, which makes them more likely to be trapped by the plasma wave:

e They can be generated at the optimal initial phase of the wakefield. This is similar to the usual case
of ionization injection in gas targets.

e They can receive an initial momentum kick in the transverse direction if they are not generated
exactly at a maximum of the electric field (this can be seen directly in the one-dimensional case
from the conservation of canonical momentum). This effect is not significant in gas targets because
electrons are accelerated in this case in the direction of propagation of the laser, implying that
electron injection is not aided by a kick in the transverse direction. However, in the LWFA regime
identified here, this effect might play a more important role as the electrons are accelerated in the
transverse direction.

We may also notice that the laser pulse is reflected deeper into the plasma when ionization is turned
off. This shows that the ionization induced by a pulse propagating in a preplasma can affect the position
at which it is reflected. As discussed in section 3.1.2, this effect can increase the uncertainty in the
interferometric measurement of preplasma expansion.

Another family of electrons, shown in yellow in figure 3.20 and labelled “reflection electrons”, is ejected
from the plasma in the simulations. These electrons are accelerated at the reflection point of the laser,
where the density is n. cos? ;. Their angular and energy distributions are displayed in the yellow curves
of figure 3.21. This family of electrons, which appears for both 5-fs and 24-fs pulses and has a very
large angular divergence spreading across all directions, is not detected in experiments. The presence
of these electrons constitutes the principal discrepancy between simulations and experiments. It will be
further discussed in section 3.4.6. Still, the simulations explain the main experimental observations: a
well-defined beam of LWFA electrons that appears only for extremely short pulse durations.

Finally, we show for completeness in figure 3.23 the angle-energy distribution of the electrons ejected
in the two simulations presented here. The LWFA electrons are isolated in figure 3.23(c). We note in
particular that, in the 5-fs simulation, the "yellow electrons" tend to be more energetic than the wakefield
accelerated electrons. We also observe an angle-energy correlation in the LWFA electrons distribution,
with faster electrons located closer to the specular direction.

3.4.3 Conditions for triggering the mechanism

The aim of this section is to clarify the conditions under which the identified LWFA mechanism occurs.
We have previously made the following experimental observations:

e For a constant pulse energy, the electron beam disappears when the pulse duration is increased
over 10 fs.

e For a constant few-cycle pulse duration, the electron beam disappears when the intensity is de-
creased to subrelativistic values (ap < 1).

The first observation is also found in simulations. Figure 3.24 shows snapshots from PIC simulations
performed with all the pulse durations studied experimentally. The transition from a regime without plasma
wave formation (T = 24 fs) to a regime with strong plasma wave formation (7 < 10 fs) is clearly observed.
This transition is also visible when plotting the laser wakefield accelerated charge as a function of pulse
duration, as shown in figure 3.25.



142 Chapter 3. Few-cycle laser wakefield acceleration on solid targets with long gradient scale lengths

1024 fs - all electrons 1o 5 fs - all electrons 105 fs - LWFA electrons10
< 87(a) | 87(b) 1 | (©) s =
(O] (O]
E 6 { 6f 16 | 16 E
> &/ >
o 4t 4 4} 44 | 14 O
9 ; e 3
qc) 2t £ 4 2} ." L H2 o+ Eg 42 <
Ll . i > d . . . L

0 = 0 —— L 0

= 0 — 1 |
0 10 20 30 40 50 60 70 80 90 O 10 20 30 40 50 60 70 80 90 O 10 20 30 40 50 60 70 80 90

0, (degrees) 0, (degrees) 0, (degrees)
0 10 20 30
pC/um/MeV/rad

Figure 3.23: Angle-energy distribution of the wakefield accelerated electrons in the 24-fs simulation (a)
and the 5-fs simulation (b). The LWFA electrons are isolated in (c). Detailed simulation parameters are
provided in appendix B.

At this point, it cannot be concluded that there is an effect of pulse duration. Indeed, in all the
experimental and numerical results presented until now, the LWFA electron beam is observed everytime
a relativistic driver is used, which in the case of the Salle Noire laser corresponds to sub-10 fs durations.
It could therefore be argued that the mechanism might be triggered by a 24-fs pulse with an increased
intensity. To explore this possibility, we have carried out simulations with interchanged intensities, i.e. the
5-fs laser pulse has a peak intensity of 2.1 x 10'8 W /cm? (ag = 0.98) and the 24-fs laser pulse has a peak
intensity of 1 x 10'°W /em? (ap = 2.15). Snapshots from these simulations are shown in figure 3.26.

Interestingly, the main results stay the same: a very small amount (= 300 fC/um) of electrons are
laser wakefield accelerated in the 5-fs simulation while no plasma wave formation is observed in the 24-fs
simulation*. This clearly confirms that there is an effect of pulse duration and that the emergence of the
electron beam cannot simply be attributed to the increase in intensity when reducing the pulse duration.
Note that the 5-fs simulation shown here is consistent with results from experiments at reduced intensity
presented in figure 3.15, which were obtained using similar laser parameters. We indeed see in both
cases a very strong drop of the wakefield accelerated electron charge when reducing the intensity.

As stated in the previous section, the effect of pulse duration is due to the resonance condition. In
layman’s terms, the 24-fs pulse is too long to excite a plasma wave in the near-critical density plasma
considered here. More quantitatively, we can estimate the amplitude of the wakefields generated in our
experiments from the 1D nonlinear theory of wakefield generation presented in section 1.3.2. This can
be done in two different ways.

First, we can consider a given plasma density n, and calculate the amplitude of the plasma waves
that a Salle Noire pulse would generate in a plasma with constant density n, as a function of pulse
duration. The result is shown in the blue curve of figure 3.27 for n, = n./50, which is a typical density
for which wakefields are formed in the simulations. Unsurprisingly, only ultrashort laser pulses (7 < 10
fs) are able to excite high amplitude plasma waves. In particular, the wakefield potential amplitude is
=~ 100 times higher with 5-fs pulses than with 24-fs pulses. Note that the laser energy is kept constant
in these calculations; the laser electric field amplitude thus scales as ag < 1/\/?. The red markers in

4There is however in this case a significant amount of ejected electrons, but none of them are accelerated from a wakefield.
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Figure 3.24: Laser magnetic field and electron density from PIC simulations with a large plasma scale
length (At = 80 ps) and pulse durations of (a)-(c) 3.5 fs, (d)-(f) 5 fs, (g9)-(i) 7.5 fs, (j)-(I) 10 fs or (m)-(o0)
24 fs, respectively corresponding to normalized field amplitudes ag of 2.57, 2.15, 1.76, 1.52 and 0.98. The
green and yellow dots show a sample of ejected electrons that are originating from silicon ions. Detailed
simulation parameters are provided in appendix B.
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Figure 3.25: Detected electron charge in experiments and laser wakefield accelerated charge in simula-
tions as a function of pulse duration. All points are obtained for a delay At = 80 ps between the prepulse
and the main pulse. Detailed simulation parameters are provided in appendix B.
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Figure 3.26: Laser magnetic field and electron density from PIC simulations with a large plasma scale
length (At = 80 ps), a pulse duration of (a)-(c) 5 fs or (d)-(f) 24 fs and a normalized field amplitude ay
of (a)-(c) 0.98 or (d)-(f) 2.15. The green and yellow dots show a sample of ejected electrons that are
originating from silicon ions. Detailed simulation parameters are provided in appendix B.
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Figure 3.27: Normalized peak-to-peak amplitude A¢ of the electric potential of a laser-driven wakefield
in an n./50 density plasma as a function of the FWHM pulse duration T obtained using the 1D nonlinear
theory of wakefield generation. The blue curve corresponds to laser parameters that are accessible in
experiments (in particular a%r is kept constant along the curve). The red markers correspond to the laser
parameters used in the simulations with interchanged intensities presented in figure 3.26.

figure 3.27 show the wakefield amplitudes obtained with the laser parameters used in the simulations
with interchanged intensities presented in figure 3.26 (5 fs, ag = 0.98 and 24 fs, ap = 2.15). Although
the laser pulse energy is 25 times higher in the 24-fs pulse, the generated wakefield amplitude is 3
times higher with the 5-fs pulse. This result highlights the necessity of using few-cycle pulses in order to
generate plasma waves in near-critical density plasmas.

Alternatively, we can consider given laser parameters and compute the amplitude of the plasma wave
they would generate in a homogeneous plasma as a function of the density. This is done in figure 3.28
for laser parameters corresponding to the 5-fs and 24-fs Salle Noire pulses (blue and green curves)
as well as the laser parameters used in the simulations with interchanged intensities (orange and red
curves). Of course, the same conclusions are drawn: only ultrashort pulse durations lead to substantial
plasma waves in the density region of interest. This representation offers the advantage of quantitatively
comparing the relative effects of pulse intensity and pulse duration. If both effects are important, the
effect of pulse duration appears to be even more critical.

In conclusion, the conditions for which the identified LWFA mechanism is triggered are the following:

e The gradient scale length must be long enough (L > A) so that the laser pulse can propagate in
the near-critical density part of the preplasma and excite the wakefield.

e Few-cycle pulses (< 10 fs for A = 800 nm) are required to efficiently drive plasma waves at such
high densities, in accordance with the resonance condition.

e Relativistic intensities (ag > 1) are required so that the wakefields are strong enough to trap and
accelerate a significant amount of electrons to high energies.
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Figure 3.28: Normalized peak-to-peak amplitude A¢ of the electric potential of a laser driven wakefield
in a homogeneous plasma as a function of plasma density obtained using the 1D nonlinear theory of
wakefield generation for a 24-fs pulse with ag = 0.98 (green curve), a 24-fs pulse with ay = 2.15 (red
curve), a 5-fs pulse with ay = 0.98 (orange curve) and a 5-fs pulse with ay = 2.15 (blue curve). The
reddened part correspond to typical densities for which wakefields are generated in the simulations.
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Figure 3.29: Schematic illustration of the standard LWFA regime (left) and the identified LWFA regime
(right). The main difference is that, due to the plasma waves wavefront rotation induced by the density
gradient, the electrons are not accelerated in the same direction as the driving laser pulse in the identified
regime.

3.4.4 Rotation of the wakefield

A unique feature of the identified acceleration regime is that the electrons are not emitted in the same di-
rection as the driving laser pulse, as is usually the case with LWFA. This effect is illustrated schematically
in figure 3.29. It is due to the wakefield’s wavefront rotation induced by the density gradient. To explain
this rotation, we can use a similar approach as that developed in the case of injection in density gradients
in conventional LWFA (see 1.3.3.2). The only difference, which does not change the main reasoning, is
that in our case the density gradient is not solely in the direction of propagation of the pulse, but also
partly transverse.

As we have seen in chapter 1, in the linear regime the laser triggers a sinusoidal response from
a homogeneous density plasma. Far behind the laser pulse, the normalized potential ¢ associated to
the plasma wave is in this case of the form ¢y sin(k,(z — v,t)), where we use the same notations as in
chapter 1 (in particular k, = , /v,, where @), is the plasma frequency and v, is the group velocity of the
laser). This can be rewritten as ¢ = @ sin(w,(f(z) —1)), where 1y(z) = z/v, is the time at which the
temporal center of the laser pulse excites the plasma wave.

As a first approximation, we can assume that in the presence of a density gradient, the potential is of
the form:

¢ (r,1) = go(r) sin(@, (7) (10 (r) 1)) (3:22)

This approximation is reasonable if the plasma density varies smoothly enough: k,L>> 1. In our case, 1y
can be expressed as a function of the laser incidence angle 6;:

zsin 6; — xcos 6;
fgp=—"—7—7—7— (3.23)
C
Additionally, we assume that the plasma density (and thus the plasma frequency ®,) only depends on x.
Then, we can define the phase ¢ of the plasma wave as:
ing — 0;
00, 2.1) = @, (x) (zsmxcos _,)

c

(3.24)
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Figure 3.30: Wavefronts (darker lines) obtained using equation 3.24 during the propagation of a laser
pulse (represented in blue and red) in a plasma with an exponential density profile (L = 3A.). Two con-
secutive wavefronts are separated by a phase of 2x. Panels (a) and (b) correspond to two different values
of the time t.

Plasma wavefronts obtained using this equation in an exponential density gradient are shown in fig-
ure 3.30. It is a good time to recall that this expression has been obtained relying on multiple approx-
imations (linear regime ap < 1, quasi-static approximation, long pulse durations 7 > 27/ ®, strongly
underdense plasma @, < ®, smooth gradient k,L >> 1), all of which are not valid in our experimental
case. We cannot therefore reasonably expect the wavefronts obtained using equation 3.24 to perfectly
match those found in the 2D PIC simulation. Still, the qualitative shape of the plasma waves is reproduced
and we see in particular a similar rotation of the wavefronts. Physically, this rotation can be explained by
the transverse density gradient seen by the laser, i.e. the fact that one side of the laser pulse excites a
plasma wave with a higher frequency than the other. A given phase will therefore be reached quicker in
the region of higher frequency, which results in rotated wavefronts®.

We can also use this model to qualitatively explain the measured angular distribution. Let us consider
an electron moving with an angle 6, with respect to the x-axis at a position where the wavefront of the

51t is worth mentioning that an almost identical expression for the phase @ of the plasma wave has been previously obtained
in the same manner in the context of the Coherent Wake Emission (CWE) mechanism of high-harmonic generation [29]. In this
case, the plasma waves are generated by Brunel electrons returning to the plasma. Since these electrons are also propagating
obliquely with respect to the density gradient, this leads to a similar rotation of the plasma wavefronts.
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Figure 3.31: Geometric derivation of the plasma wave phase velocity in the direction of electron motion
(Vq;)@e. We consider an electron moving at (vqp)ee, which therefore remains at a constant phase of the
wakefield. The blue dots show the position r. of the electron at times t andt +dt. The grey lines show,
to first order, the wavefronts around the electron position at times t andt + dt. We use the law of sines
on the red triangle, which reads (vy)g,dt sin(n/2 — 6,,+ 6,) = (v¢).dtsin(6,,).

plasma wave makes an angle 6,, with respect to the z-axis (see figure 3.30(b)). We first note that since
the plasma frequency only depends on x, the phase velocity of the plasma waves in the z-direction is
(vg): = ¢/sinH;. We can then, using the law of sines (see figure 3.31 for more details), calculate the
phase velocity along the direction of electron motion:

(vo)g, = sin 6,
o)6. = cos(6, — 6,,) sin Gic

(3.25)

If the electron is trapped in the wakefield, its velocity is mainly colinear with the electric field of the plasma
waves, i.e. perpendicular to the wavefronts. In this case, we have 6, ~ 6,, and equation 3.25 is simplified

to:
sin 6
(pr) 6. = ‘

Sin Gic (3.26)

Trapping of electrons by the plasma wave is only possible if the phase velocity of the wakefield is lower
than ¢, meaning in our case that electrons can only be emitted when 6, < 6;. Furthermore, electron
acceleration to relativistic energies is efficient when the phase velocity is close to ¢. Equation (3.26)
therefore indicates that the electrons should be emitted close to the specular direction with a slight shift
towards the normal direction, in good agreement with experiments and simulations. Electrons directed
closer to the grazing direction (6, > 6;) cannot be trapped as the phase velocity of the plasma waves in
their direction is greater than ¢ while electrons emitted close to the normal direction cannot reach high
energies as they would quickly dephase from the plasma waves. We can in particular expect an angle-
energy colleration in the wakefield accelerated electrons, with the fastest electrons accelerated near the
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Figure 3.32: Laser magnetic field and electron density from a PIC simulation with a large plasma scale
length (At = 80 ps), a pulse duration of 5 fs, a normalized field amplitude ay of 2.15 and an incidence
angle 6; of 40°. The green and yellow dots show a sample of ejected electrons that are originating from
silicon ions. Detailed simulation parameters are provided in appendix B.

specular direction and the slowest electrons accelerated closer to the normal. Such a correlation is
indeed observed in simulations, as can be seen in figure 3.23(c).

3.4.5 Dependence on the interaction parameters

We study in this section the effect of various interaction parameters on the identified LWFA mechanism.

3.4.5.1 Effect of the incidence angle

We first consider the influence of the incidence angle 6;. According to the model of wakefield rotation de-
veloped in the previous section, the LWFA electrons are accelerated close to the specular direction, with
a slight shift towards the normal direction. We thus expect that when varying the laser incidence angle,
the ejected electron beam will follow the direction of the reflected laser pulse. To test this hypothesis,
we have performed simulations with incidence angles of 40° and 70° (in addition to the previously shown
simulation at 55° incidence). Snapshots from these simulations are displayed in figures 3.32 and 3.33.
We notice that the main physical results are unchanged in these simulations and in particular electrons
accelerated by a wakefield (green) and electrons accelerated at the reflection point of the laser (yellow)
are still observed.

Figure 3.34 shows the angle-energy correlation of the ejected LWFA electrons in these simulations,
while their angular distribution is plotted in the same axes in figure 3.35. The following observations can
be made:

e The ejected electrons indeed tend to follow the specular direction. However, the angle of emission
of the electron beam appears to "vary more slowly" than the laser incidence angle. This can be
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Figure 3.33: Laser magnetic field and electron density from a PIC simulation with a large plasma scale
length (At = 80 ps), a pulse duration of 5 fs, a normalized field amplitude ay of 2.15 and an incidence
angle 6; of 70°. The green and yellow dots show a sample of ejected electrons that are originating from
silicon ions. Detailed simulation parameters are provided in appendix B.

seen by the fact that some electrons are accelerated over the specular direction (6, > 6;) in the 40°
simulation, while electrons tend to be further away from the specular direction in the 70° simulation.
Our prediction that the LWFA electrons are ejected close to the specular direction with a slight shift
towards the normal direction therefore provides a reasonable trend but cannot be seen as a strict
rule. This can be explained by the excessive simplicity of the wakefield rotation model as well as
the fact that electrons might still be deflected after being accelerated by the plasma waves (this is
particularly true in the 70° simulation) .

e The angle-energy correlation in the electron distribution, with the fastest electrons emitted closer
to the specular direction, is still found at other incidence angles.

e The experimental incidence angle of 55° seems to be (roughly) close to optimal. The total LWFA
charge is indeed the highest in this case (4.2 pC/um for 6; = 40°, 7 pC/um for 6; = 55° and 2.6
pC/um for 6; = 70°). Additionally, the highest energies are reached for 6; = 55° and the angular
distribution is significantly more peaked.

3.4.5.2 Effect of the density gradient

Generally, we find that the LWFA mechanism consistently occurs for long enough gradient scale lengths.
For instance, very similar results as those presented in section 3.4.2 are found when an exponential
density profile with a gradient scale length L = 3A is chosen. This confirms our previous experimental
observation that the identified mechanism is not highly sensitive to the exact shape of the plasma density
profile.
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Figure 3.34: Angle-energy distribution of the wakefield accelerated electrons in the simulation with (a)
40° incidence, (b) 55° incidence and (c) 70° incidence. The dashed lines mark the specular direction.
Detailed simulation parameters are provided in appendix B.
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Figure 3.35: Angular distribution of the wakefield accelerated electrons in the simulation with 40° inci-
dence (blue curve), 55° incidence (green curve) and 70° incidence (red curve). The dashed lines mark
the specular direction. Detailed simulation parameters are provided in appendix B.
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Figure 3.36: Electron density from PIC simulations with a pulse duration of 5 fs, a normalized field
amplitude ag of 2.15 and a incidence angle 6; of 55° for varying density profiles corresponding to a
prepulse lead At of (a) 6 ps, (b) 10 ps, (c) 20 ps, (d) 40 ps, (e) 80 ps and (f) 130 ps. Note that the
80-ps simulation is the same as that presented earlier in figure 3.20. Detailed simulation parameters are
provided in appendix B.

To estimate more quantitatively what is meant by "long enough gradient scale lengths", we have
performed a series of 6 simulations with varying initial plasma density profiles. The density profiles are
all obtained from the same Esther hydrodynamic simulation and the delay Ar between the prepulse and
the main pulse is varied between 6 ps (short gradient regime) and 130 ps (long gradient regime). A
representative snapshot from each simulation is shown in figure 3.36.

A delay of 6 ps roughly corresponds to a gradient scale length of ~ A /4 (see figure 3.8(c)), which
is slightly larger than the optimal for electron ejection at short gradients. Nevertheless, the characteristic
oscillation of the plasma surface in this regime is visible in figure 3.36(a). For At = 10 ps, these oscillations
are still visible but become blurred and they are completely absent for Ar = 20 ps. In the latter case, the
plasma oscillations in the wake of the laser become visible but there are still no wakefield accelerated
electrons. In this simulations, nearly all fast ejected electrons are accelerated at the position of reflection
of the laser ("yellow electrons”). This is no longer the case for Ar = 40 ps, where LWFA electrons are
observed, albeit in slightly smaller numbers than in the following simulations. Finally, for delays of 80 ps
and 130 ps, the LWFA electrons are present in both cases in similar numbers and this corresponds to the
regime previously identified.

Overall, the transition from the push-pull mechanism to LWFA is visible in simulations. We observe
that the push-pull mechanism starts vanishing for a delay of approximately 10 ps while the wakefield
acceleration mechanism starts taking place roughly around Ar = 40 ps (in term of gradient scale length
L, this means that the mechanism roughly starts taking place for L ~ A, even though a similar gradient
scan has not been performed with exponential density gradients). These values are consistent with the
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experiments.

However the trend of the total ejected charge as a function of the delay Az is not reproduced. In
experiments, a peak is observed at short gradients ; then the detected charge drops before rising again
at longer gradients (see figure 3.12(f)). In simulations, a monotonous increase of the total ejected charge
is observed during the transition from the push-pull mechanism to LWFA. This increase is due to the
electrons emitted at the position of reflection of the laser pulse which start being significant as soon as
the push-pull ejected charge is reduced.

Larger density gradients (At > 130 ps) have not been explored in the course of this thesis.

3.4.5.3 Effect of other parameters

We very succintly describe here the impact of other parameters that we have studied and that do not play
a major role on the LWFA mechanism.

e Very similar results are found when switching the laser polarization from p to s. In particular, the
two populations of ejected electrons remain present.

e We also find that the CEP has little impact on the LWFA mechanism. The wakefield accelerated
electron beam is indeed stable when varying this parameter. The angular distribution of the elec-
trons accelerated at the position of reflection tends to vary in an erratic manner but these electrons
are still present regardless of the CEP.

3.4.5.4 Simulation at higher intensity

Finally, we present a simulation carried out with a much higher intensity (ap = 10 with 7 = 5 fs). The
objective of this simulation is to see how we can expect the mechanism to behave with the next generation
of ultraintense few-cycle laser pulses (the parameters roughly correspond to those targeted by the SYLOS
laser system at ELI-ALPS [173]). Electron density maps from this simulation are visible in figure 3.37.
We observe in figure 3.37(a) that plasma waves are still formed in the wake of the laser, but are highly
distorted. Large cavities nearly void of electrons are also observed. Very rapidly, the plasma waves break
and the interaction becomes highly erratic. If a large amount of electrons are accelerated by the charge
separation associated with the wakefields (most of them after the wavebreaking), we find that this does
not lead to a collimated electron beam, as is the case in the simulation with Salle Noire parameters.

3.4.6 Electrons accelerated at the reflection position

As we have stated previously, in all 2D simulations that we have carried out at moderate or long gradients
(L > A/2), a significant amount of electrons are accelerated at the reflection point of the laser, where
the density is n. cos> 6;. They have been labelled in the previous sections "reflection electrons" or "yellow
electrons". The corresponding charge is usually higher than the charge accelerated by plasma waves
and the "yellow electrons" have the highest energies. Moreover, these electrons are observed for every
pulse duration, even for T = 24 fs, a duration for which virtually no electrons are observed in experiments,
which constitutes the main difference between experiments and simulations. Reducing the intensity of
the 24-fs pulse by a factor =~ 2 (ag = 0.98 — a¢ = 0.7) in simulations only leads to a ~ 25% drop of the
ejected charge, meaning that this discrepancy can seemingly not be explained by an overestimation of
the experimental intensity.



3.4. Laser wakefield acceleration at long gradients 155

0
0 5 10 15 20 25 0 5 10 15 20 25
Z/>\0 Z/)\O
1073 1072 107! 10° 10!
[ |
ne/nc

Figure 3.37: Electron density maps from a PIC simulation with a large plasma scale length (At = 80 ps),
a pulse duration of 5 fs and a normalized field amplitude ay of 10. Each snapshot is separated by 4.5
laser periods. Detailed simulation parameters are provided in appendix B.
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Figure 3.38: Laser magnetic field during and after the interaction from a PIC simulation with a large
plasma scale length (At = 80 ps), a pulse duration of 5 fs, a normalized field amplitude ay of 2.15 and an
incidence angle 6; of 55°. The observed quasistatic magnetic fields remain long after the interaction and
tend to move away from the reflection point of the laser. Detailed simulation parameters are provided in
appendix B.

The mechanism leading to the emission of these electrons, observed both in s and p-polarization,
has not been studied very thoroughly. Plasma oscillations appear to be triggered by the laser as it is
reflected and eventually break, leading to the emission of energetic electrons in an erratic manner. Strong
quasistatic magnetic fields are usually observed when the plasma oscillations break and can remain long
after the laser pulse is reflected. An example is shown in figure 3.38. Such magnetic fields have been
observed in similar simulations with the UHI100 laser and a L = A /1.5 gradient scale length [24]. They
can also correspond to the magnetic vortices observed in PIC simulations of either the "magnetic vortex
acceleration" mechanism of ion acceleration [174] or of the experimentally observed collapse of a laser
pulse in a near-critical density gas target [175]. It is not clear whether these magnetic fields directly play
a role in the emission of fast electrons, but they at least have an impact on the final angular distribution
by deflecting part of the accelerated electrons (in any case, the quasistatic magnetic fields play no part
in the dynamics of the LWFA electrons, which are accelerated before the laser is reflected).

Our initial thought was that the relative importance of the "reflected electrons” would be reduced in
more accurate 3D simulations. This can happen through changes in the physics of the interaction when
taking variations in the y-direction into account. Another possibility is that a significant portion of these
electrons are ejected at angles such that they were not detected in experiments. This is motivated by
the fact that the "reflection electrons" have a wide angular spread in the 6, angle in simulations. If there
is a similar spread in the transverse 6, angle, this would make most of these electrons undetectable
in experiments since the Lanex screen only covers the |6, < 15° region. In order to examine these
possibilities, low-resolution 3D simulations® have been carried out at the very end of this thesis. We have

6The main changes between the 3D simulations and the previously presented 2D simulations are the following:

e The spatial step is increased to A /16.
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performed a simulation with a 5-fs pulse duration and a simulation with a 24-fs pulse duration. The laser
intensity is slightly lower in these simulations (ap = 2 for T = 5 fs and ag = 0.86 for T = 24 fs) than in the
previous ones.

Overall, we find that performing 3D simulations does not change the main qualitative results. The
rotated wakefields, shown in figure 3.39(b), are once again only observed in the 5-fs simulation. We
show for comparison in figure 3.39(a) results from a 2D simulation performed with identical laser and
numerical parameters. We remark that the plasma waves are more "linear" in the 3D simulations: the
density peaks are less pronounced and the amplitude of the oscillations is smaller (notice the change
in the color scale). This is due to the facts that the laser is reflected before reaching focus and that
diffraction occurs more rapidly in 3D, which results in a lower laser intensity in the 3D simulation at the
position where the wakefields are generated. Indeed, because of diffraction, the electric field amplitude

w

of a Gaussian beam on the optical axis scales as % in 3D but only as % in a 2D geometry. More
w(z w(z

quantitatively, the laser pulse would be focused in the simulations at approximately x = —0.74 in the

absence of a plasma, where we have used the axis of figure 3.39 to define to absolute x values. If we use
x = 141 as a typical position for which the plasma waves are generated, we find that the laser is ~ 2.3
Rayleigh lengths away from focus when driving the wakefields, corresponding to w(z) = 2.5wy. This
results in a laser electric field of ag = 1.26 in 2D but only ag ~ 0.79 in the 3D simulation, thus explaining
the difference in the plasma waves’ shape.

These snapshots show that the exact position at which the laser is focused is an important parameter
for the wakefield acceleration mechanism, especially in three-dimensions. In the experiments, the abso-
lute position of focus was not precisely known, but it was kept constant during a given gradient scan at
fixed pulse duration. The fact that electrons were detected at short gradients indicates that the focus was
located around the initial target-vacuum interface as in the simulations, but we cannot be more accurate
than this at the moment.

Ejected electron distributions from the 3D simulations are displayed in figure 3.40. The two electron
populations are still observed and we have isolated the wakefield accelerated electrons in panels (c) and
(f). The total ejected charge in the 24-fs simulation is ~ 100 pC, among which ~ 40 pC are emitted at
angles covered by the Lanex screen (—3° < 6, < 75° and —15° < 6, < 15°). In the 5-fs simulations,
these numbers become = 200 pC and =~ 90 pC respectively, with =~ 30 pC and =~ 15 pC accelerated by
the laser wakefield. Unlike what we expected, the ratio between LWFA electrons and "yellow electrons”
appears to be reduced in the 3D simulation. The wakefield electrons also have a lower energy, that does
not exceed 1 MeV. We attribute the decrease in the LWFA electrons charge and energy to the faster
diffraction in 3D which reduces the amplitude of the plasma waves. We expect that it is possible to obtain
a more intense LWFA beam simply by changing the position of focus of the laser pulse.

On the other hand, solely performing 3D simulations is apparently not sufficient to reduce the elec-

e The number of particles per cell per species is dropped to 1.

e Oxygen ions are removed. This is because the corresponding electrons tend to either be ionized early in front of the
main pulse (up to O°7) or not be ionized at all (0% and O77). In both cases, they essentially do not contribute to the
dynamics of ionization injection, unlike electrons originating from silicon ions.

e The minimum density at which the plasma is cut is increased from n. /450 to n./140.
e No moving window is started to follow the electrons after the laser-plasma interaction.

These changes might seem drastic, but we have checked that they do not alter the main conclusions from 2D simulations. In
this manner, the presented 3D simulations cost less than 70 000 computation hours.
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Figure 3.39: Snapshot showing the charge density of the rotated wakefield generated by a 5-fs pulse with
ap =2 in a large preplasma (At = 80 ps) in a low-resolution simulation (Ax = A /16) either in a 2D (a) or
a 3D (b) geometry. Detailed simulation parameters are provided in appendix B.

trons accelerated at the reflection point of the laser. Even though this result should be confirmed by
higher-resolution 3D simulations, it is a non-negligible source of uncertainty in the interpretation of the
experiments. For instance, it cannot entirely be excluded that part of the electrons detected at longer
gradients with few-cycle pulses in experiments are in fact accelerated at the point of reflection of the laser
and not by a wakefield in the underdense part of the plasma.

A better understanding of these ejected electrons, and in particular of the reason why they were
not detected in experiments with 24-fs pulses, could be the object of further work. Possible avenues to
explain this discrepancy include matching more closely the experimental parameters in the simulations
(e.g. by using more accurate 3D preplasma density profile as well as an experimental laser focal spot
and an exact position of laser focus), carrying out 3D simulations with better spatial resolution, and
gathering new experimental data (e.g. to obtain electron energy spectra and to study the effect of various
experimental parameters such as the polarization state, the position of laser focus and the CEP on the
emitted electron beam).

3.5 Conclusion

We have presented and analyzed in this chapter experimental results obtained in Salle Noire regarding
the acceleration of electrons from solid targets using relativistic intensity few-cycle pulses. We have iden-
tified two regimes where an intense electron emission is detected. First, push-pull electrons are ejected
at short gradients for every pulse duration. A simultaneous emission of ROM harmonics is observed in
this case, consistently with the known theory presented in section 1.4.

When decreasing the pulse duration to sub-10 fs values, another electron acceleration regime is
found, this time at long gradients (L > A). No simultaneous emission of harmonics is detected this time.
Using 2D PIC simulations, we have attributed this unanticipated electron beam to laser wakefield accel-
eration occuring in the underdense part of the preplasma. This new LWFA regime, which is distinguished
by the rotation of the plasma waves behind the laser driver, has been fully characterized in section 3.4.



3.5. Conclusion 159

(a) 24 fs - all electrons ;

250 — a T T T T T T />'\ >
200 $ *( ) 15 @ 80"
S () - {14 = 602
3 150 — ~ ~—
= 2 i 13 > H40 S
“100f @ o g
QO ol B i 12 = Mo~
ISH = L . 41 GC) Q

o < s I LI
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
6, (degrees) 6, (degrees)
(b) 5 fs - all electrons ]
— S giss
n 5
600 )] Q QL
g 8 . E 1005
S a0l 5 3 > 753
—— ) , O 50 E
Q200 T c W =
& 1 9 Q
0 Qg [ 0 <%
s e 0 I.IJ
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
6, (degrees) 6, (degrees
(c) 5 fs - wakefield electrons ]

250 —_ .Tf T T T T T T —~ >
2 200f O (f) 1s %_) 100§
§ 150 g - {a E 75 =
€ | ba e

i 120, =
2 50 \_; i 1; GC) 5 %
o0 < | A SR R ey o 0

0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
0, (degrees) 0, (degrees

Figure 3.40: (a)-(b) Ejected electron angular distribution in the 3D simulation with (a) T = 24 fs and (b)
T =15 fs. The angular distribution of the wakefield accelerated electrons in this case is isolated in (c).
(d)-(f) Correlation between the 0, angle and the electron energy in the same cases. The distributions of
the wakefield electrons are particularly noisy because only a small number of test particles have been
used to separate the two ejected populations. Detailed simulation parameters are provided in appendix
B.
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These results were the subject of a publication in Physics of Plasmas [176]. We also observe in the simu-
lations electrons accelerated at the reflection point of the laser, which are not detected in experiments, at
least for many-cycle pulses. Further work is required to understand the reason behind this discrepancy.

More generally, the fact that it can be challenging to exactly reproduce experimental results in simula-
tions, even when efforts are made to use a realistic description of the preplasma, illustrates the complexity
of laser-overdense plasma interactions, which depend nontrivially on the difficult to control plasma den-
sity profile. Because of this intricacy, extra care must be taken when analyzing experimental data. In
particular, not much information can be extracted from experiments performed without very high temporal
contrast, without a prepulse or without varying the gradient scale length because the preplasma density
profile remains uncertain in these cases. Yet, many experimental results are still obtained and published
in this manner.

Overall, these experiments offer a better understanding of the interaction between ultraintense laser
pulses and solid targets and confirms that extremely short pulse durations provide access to new accel-
eration regimes.
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We have seen in the first chapter that when a relativistic intensity laser pulse is focused with oblique
incidence on a plasma mirror, electrons are periodically ejected from the plasma at every optical cycle of
the laser with a strong enough electric field. These electrons are ideally injected into the reflected laser
pulse where they can receive a substantial energy gain from VLA. When linear polarization is used, the
accelerating fields are transverse, which tends to result in large angular spreads. This may no longer
be the case with radially polarized beams, which, as we have seen in section 1.5.2, possess a strong
on-axis E; field that can directly accelerate electrons in the longitudinal direction. We therefore study in
the following chapters the acceleration of electrons from the interaction between an overdense plasma
and a relativistic intensity radially polarized pulse. In this chapter, we study the interaction numerically
and focus on the case of normal incidence. We will present in chapter 5 recent experiments performed
at oblique incidence with the UHI100 laser.

This chapter is organized as follows. In section 4.1, we start by presenting the initial conditions that
lead to efficient acceleration in vacuum by a radially polarized beam. We then show, by performing a PIC
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simulation at normal incidence, that electrons ejected from a plasma mirror satisfy these conditions and
are accelerated to higher energies than with other injection methods. Using test-particle simulations, we
next investigate in section 4.2 the requirements for generating highly collimated electrons beams. The
simulations indicate in particular that increasing the longitudinal field amplitude can result in a significant
decrease in the beam angular divergence. This is confirmed in section 4.3, in which we perform PIC
simulations of the interaction at normal incidence for various laser parameters.

4.1 Conditions for optimal injection into a radially polarized pulse

4.1.1 The optimal conditions

We have seen in section 1.5.1.4 that VLA with linear polarization is efficient when the electrons are
injected inside the laser pulse, close to a zero of the electric field, and with a relativistic velocity in the
laser propagation direction. Here, we show that the optimum injection conditions into a radially polarized
beam are very similar. To this end, we perform on-axis test-particle simulations of an electron accelerated
by a radially polarized pulse. On the optical axis, the transverse fields vanish and the electrons is only
subject to the E; field. It will therefore remain on the axis throughout the simulation. We recall that, within
the framework of the paraxial approximation, this longitudinal field reads, at r = O:

2 _z 2
E.(z,t)=—Ep, <ng2)> sin¢ exp (—ZIOg(Z)(tI_ZC)> (4.1)

Where ¢ = kz — ot — 2 arctan(z/zg) + @cep is the laser phase, w(z) = wo,/1+ j—i is the beam radius at
R

position z, wy the beam waist, zg = kw%/2 is the Rayleigh length, 7 is the pulse duration in FWHM of the
intensity and ¢cgp is the CEP. We have here assumed a Gaussian temporal envelope.

We start by studying the motion of an electron, initially at rest at r = z =0, in the field given by equa-
tion 4.1. We have stated in chapter 2 that the paraxial approximation should not be used in test-particle
simulations. However, it has been shown that paraxial fields are sufficient to describe the on-axis motion
of an electron accelerated by a radially polarized field [123, 177]. We use parameters corresponding to
the Salle Noire laser: A = 800 nm, ap, = 0.7, wo = 1.5um, T = 3.5 fs and ¢cgp = 7 /2. We consider
three different initial phases for the electron, which are represented in figure 4.1(a). Figures 4.1(b) and (c)
show trajectories for non optimal initial phases, where the electron starts respectively in front of the laser
pulse and inside the pulse at a maximum of the electric field. This is similar to the case of the ionization
of a gas with respectively a low ionization energy and a high ionization energy. In each of these cases,
the electron quickly dephases, resulting in negligible energy gains (respectively 9.3 eV and 0.81 eV). On
the opposite, figure 4.1(d) shows more efficient acceleration when the electron is initially at a zero of the
electric field. This is because the electron starts with a whole accelerating half-cycle and stays in it much
longer than in the previous cases, resulting in a final energy of 1.3 MeV.

We can note that this optimal phase corresponds to a maximum of the initial longitudinal canonical

J0A
momentum. We can indeed write, in the Coulomb Gauge, E, = — % We see that a zero of the electric

field corresponds to an extremum of the magnetic potential A; and thus to an extremum of the canonical
momentum —eA, (in the absence of initial velocity). Of course the longitudinal canonical momentum is
not a conserved quantity, since there is no invariance in the z direction. However, it can still be understood
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Figure 4.1: Results from test particle simulations with on-axis electrons. (a) Waveform of the few-cycle
longitudinal electric field. The colored dots represent the initial positions of the electron in (b)-(d). (b)-(d)
Longitudinal momentum p, along the electron trajectory for various cases: the electron is initially at rest
either (b) in front of the pulse, (c) inside the pulse at a maximum of the field, (d) inside the pulse at a zero
of the field. The double headed arrows show the time spent inside the main accelerating half-cycle.
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by noting that:
t +oo
—eA,(z,1) :/ eE, (z,t")dl' :/ —eE,(z,t")dl' 4.2)
— oo t

Where we have used the fact that A, (z,1 = —o0) = A.(z,f = +0) = 0, since [ E.(z,1)dt must be zero
for a laser pulse that has no static component. We can see that the canonical momentum corresponds
to the longitudinal momentum that an electron initially at (z,¢) would get if it were to remain at the same
position z until # = +eo. This is of course not the case in practice (except in the limit ap, < 1) but it
can help us understand why the optimal phase corresponds to a maximum of the canonical momentum.
In reality, we can expect the final momentum of an electron at the optimal phase to exceed its initial
canonical momentum because the decelerating half-cycles following the initial accelerating half-cycle will
be diminished due to diffraction. This is for example the case of the electron of figure 4.1(d), which has
an initial canonical momentum of the order of 0.7 m.c and a final momentum of ~ 3.4 m,c.

We can remark that, so far, the optimal conditions are very similar for linear and radial polarization:
the electrons should initially be inside the laser pulse close to a zero of the accelerating electric field.
We can however already notice a slight difference between the optimal conditions for the two polarization
states. In the case of linear polarization, all the zeros of the electric field (two per optical cycle) are optimal
initial phases for electron acceleration. On the other hand, for radial polarization only one of the zeros of
the E; field is optimal at every cycle (corresponding to ¢ = 7). The other zero (¢ = 0) corresponds in
fact to the worst initial case for which the electron starts with a decelerating half-cycle (or alternately has
a canonical momentum which is maximum and directed opposite to the laser propagation direction).

We next study the effect of having a relativistic initial velocity. Figure 4.2(a) shows the trajectory of
an electron at the optimal initial phase with no initial velocity. This is in fact the same trajectory as in
figure 4.1(d), which results in a 1.3 MeV energy gain. In figure 4.2(b), the electron starts at the same
phase but with an initial velocity of 200 keV in the direction of propagation of the laser. This initial velocity
allows the electron to remain for a much longer time in the first accelerating half-cycle, which eventually
results in an energy gain increased by one order of magnitude (10.2 MeV compared to 1.3 MeV). In this
case the electron appears to experience in total less than an optical cycle (one accelerating half-cycle
and one decelerating half-cycle). We can also note that even a moderately relativistic initial energy can
result in large changes in the energy gain.

In conclusion, we observe that the conditions leading to an efficient acceleration with radial polariza-
tion are very similar to that of linear polarization:

e The electron should start its interaction near the spatial and temporal maxima of the laser pulse
and close to a zero of the E; field, so that it begins with a strong accelerating half-cycle.

e The electron should have an initially relativistic velocity in the laser propagation direction, so that it
can remain for a long time in the first accelerating half-cycle.

4.1.2 On-axis parameter study

Here, we examine the effect of various parameters on the acceleration of an electron fulfilling the optimal
conditions identified in the previous section. To simplify the analysis, we consider throughout this section
an electron on the optical axis. This parameter study is performed in the following manner:
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Figure 4.2: Result from test particle simulations with on-axis electrons. Energy of single electrons along
their trajectories. The electrons are initially inside the laser pulse at a zero of the longitudinal electric field
with either (a) no initial velocity or (b) an initial velocity of 200 keV in the direction of propagation of the

laser.
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e The standard case corresponds to an electron initially at t = 0 and z = r = 0 with an initial kinetic
energy of 200 keV at the optimal phase of the laser. The laser parameters are: A = 800 nm,
ap,;=0.7,wo=1.5um, 7= 3.5 fs and ¢cgp = 7. This standard case corresponds to the electron
of figure 4.2(b) except that the CEP has been changed from 7 /2 to 7 (note that in both cases the
electrons starts at the optimal phase of the laser, i.e. at E, = 0).

e We then consecutively vary the parameters one at a time, while keeping the value of the other
parameters equal to that of the standard case.

As in the previous section, we use the expression of the E, field given by the paraxial approximation
combined with a Gaussian temporal envelope.

This study also serves as a test-bed for the threshold between the ponderomotive and VLA regimes
that we have derived in section 1.5.2.3, and which reads:

1 1— ﬁe 7
L . 43
40z = A0ze = 77 ¢ o; \/Tﬁezl 7

Where ¢; is the initial phase seen by the electron and ¢f3, .; is the initial velocity of the electron. Whenever
applicable, we indicate in the figures the values for which this threshold is attained.

The first simulations that we perform will allow us to analyze more precisely the optimal conditions
presented in the previous section. In a second part, we will study the effect of varying the laser parame-
ters.

4.1.2.1 Detailed study of the optimal initial conditions

Effect of initial phase

We start by studying the influence of the initial phase seen by an electron initially inside the pulse. In this
scan, the electron is initially at # = z = 0 and the initial phase is varied by changing the CEP of the laser.
The resulting final electron energy as a function of the initial phase is plotted in figure 4.3. We observe,
as stated in the previous section, that the optimal phase is &, which corresponds to an electron starting
its interaction with an accelerating half-cycle. The green line shows the theoretical threshold between the
VLA and ponderomotive regimes. We find that it indeed provides a good estimation of the phase after
which the energy gain is negligible.

Effect of initial velocity

In this scan, we vary the initial kinetic energy of the electron. The result is plotted in figure 4.4. The red
dashed line shows the final energy corresponding to the maximum theoretical energy gain derived in sec-
tion 1.5.2.3 (AWyax[MeV] ~ 31,/P[TW]). With our choice of laser parameters, the maximum energy
gain is = 24.86 MeV. We observe that the kinetic energy gained by the electron first increases rapidly with
its initial velocity and then saturates at the maximum theoretical value. This result was expected because
this theoretical value has precisely been obtained for an ultrarelativsitic electron interacting with the laser
from z =0 to z = +o0. We can note that the energy gain always increases with the electron initial velocity.
This is different from the linear polarization case, for which an initial velocity that is too high results in the
electron being barely deflected and consequently receiving a low energy gain.
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Figure 4.3: Final energy of an electron initially att = z = 0 with an initial energy of 200 keV as a function
of the initial phase in a radially polarized pulse with A = 800 nm, ap, = 0.7, wo = 1.5um, T =3.5 fs. The
green lines show the threshold between the ponderomotive and VLA regime as estimated by equation 4.3.
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Figure 4.4: Final energy of an electron initially att = z = 0 as a function of its initial velocity in a radially
polarized pulse with A = 800 nm, ap, = 0.7, wo = 1.5um, T = 3.5 fs and ¢cgp = . The red dashed line
shows the final energy corresponding to the maximum theoretical energy gain.
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Figure 4.5: Final energy of an electron with an initial energy of 200 keV as a function of its initial longi-
tudinal position in a radially polarized pulse with A = 800 nm, ap; = 0.7, wo = 1.5um, 7 = 3.5 fs and
$cep =T

Effect of initial longitudinal position

We have stated in the previous section that acceleration is efficient when the electron is initially close to
the spatial maxima of the laser field (i.e. at focus). Here, we verify this assertion by varying the initial lon-
gitudinal position of the electron. The initial time is adjusted so that the electron is always at the optimal
phase and at the center of the temporal envelope. The results are displayed in figure 4.5. We observe
that the optimal initial position is in fact slightly after focus, although the distance from focus is smaller
than a Rayleigh length. At the optimal initial position, electrons gain less energy in the first accelerating
half-cycle than if they were initially at focus, but then lose less energy in the following decelerating phase,
resulting in a higher energy gain. On the opposite, too far from focus, the E; field amplitude is not strong
enough to trap electrons in an accelerating cycle, which leads to low energy gains. We can also note that
the optimal value depends on the other laser parameters, but is very often either slightly after focus (as
is the case here) or exactly at focus (most notably in the ultrarelativistic limit).

Overall, these simulations confirm the well-foundedness of the optimal conditions evidenced in the
previous section.

4.1.2.2 Laser parameter scan

Effect of beam waist
Here, we vary the laser beam waist wo while keeping the laser power constant. This means that the

longitudinal field amplitude varies as ag; =« —. Decreasing the beam waist thus strongly increases the
w

E. field but also decreases the Rayleigh Iengtﬁ and increases the phase velocity around focus (because
of the quicker variation of the Gouy phase 2arctan(z/zg)). We plot in figure 4.6 the final electron energy
as a function of wy. We observe that decreasing the beam waist always results in more efficient accel-
eration in this regime. This indicates that the tighest possible focusing should be used in experiments.
We note that the energy gain approaches the maximum theoretical value as wy is decreased. This is
because ag ; acquires very high values in this case, meaning that the electron will almost instantaneously
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Figure 4.6: Final energy of an electron initially att = z = 0 with an initial energy of 200 keV as a function
of the laser beam waist in a radially polarized pulse with A = 800 nm, T = 3.5 fs and ¢cgp = ®. The
laser peak power is kept constant as the beam waist is varied and the field amplitude is chosen such that
ap . = 0.7 whenwy = 1.5 um. The green line shows the threshold between the ponderomotive and VLA
regime as estimated by equation 4.3. The red dashed line shows the final energy corresponding to the
maximum theoretical energy gain.

be ultrarelativistic. It should however be kept in mind that the energy gains for wy < A are probably not
entirely meaningful (because the paraxial approximation is still used and because diffraction will anyways
always limit wg to ~ A). Finally, we also remark that the theoretical threshold between the VLA and
ponderomotive regime once again provides a good estimation of the beam waist above which the gained
energy becomes negligible.

Effect of electric field amplitude a ,

We now vary the longitudinal field amplitude ag ;. We first note that, since all other parameters are kept
constant, the laser power scales as P o< a%nz. This means in particular that the maximum theoretical en-
ergy gain is proportional to ap ;. The results of the scan are shown in figure 4.7. Unsurprisingly, we find
that increasing the amplitude of the E, field increases the energy gain. We note that, once the amplitude
is high enough, the final energy scales almost linearly with ao , and that the ratio between the effective
energy gain and the theoretical maximum energy gain approaches 1. This is once again because the
electron becomes almost instantaneously ultrarelativistic when ay ; is significantly greater than 1. Finally,
we once gain remark that the theoretical threshold between the VLA and ponderomotive regime provides
a good estimation of the field amplitude below which the energy gain is negligible.

Effect of pulse duration
Here, we vary the pulse duration 7 while keeping ag , = 0.7. This means that the pulse energy increases
as 7 increases. Figure 4.8 indicates that the pulse duration does not have a significant effect on the
acceleration as long as 7 is larger than an optical period. This is because the electron only sees ap-
proximately one optical cycle during its interaction (see figure 4.2(b)), so that adding other optical cycles
does not affect the electron trajectory. This result suggests that, at a fixed laser energy, the pulse du-
ration should be chosen as small as possible in order to increase the peak power and the final electron
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Figure 4.7: Final energy of an electron initially att = z = 0 with an initial energy of 200 keV as a function
of ay ; in a radially polarized pulse with 2 = 800 nm, wo = 1.5um, T = 3.5 fs and ¢cgp = 7. The green
line shows the threshold between the ponderomotive and VLA regime as estimated by equation 4.3. The
red dashed line shows the final energy corresponding to the maximum theoretical energy gain.
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Figure 4.8: Final energy of an electron initially att = z = 0 with an initial energy of 200 keV as a function
of T in a radially polarized pulse with A = 800 nm, wo = 1.5um, ag, = 0.7 and ¢cgp = n. The dashed
part of the curve shows the region where T is smaller than a laser period, for which the results are not
entirely meaningful.

energy. Once again, the results are probably not entirely meaningful when the pulse duration is lower
than the laser period, because using a Gaussian temporal envelope is not completely valid in this case
(and more generally because a laser pulse shorter than its period is not entirely meaningful in itself). In
particular, since the CEP is such that E, is zero at the maximum of the temporal envelope, the amplitude
of the longitudinal field never actually approaches 0.7 for very short pulse durations because it is already
substantially reduced by the temporal envelope at the position where it is maximum. This explains the
drop in the energy gain as 7 approaches zero.

Effect of CEP
Finally, we examine the effect of varying the laser CEP. As the CEP is varied, the electron is always



4.1. Conditions for optimal injection into a radially polarized pulse 171

bcpp=T/2 bcrp~2.35 GoEp=T
(@) (b) (c)
§\°
z N

——— N
—~ 11.0
E 105} (d) . .
— 10.0 | E
> 95| f
E 9.0} i
U g5} u
T gof .
L 75 ! ! ! !

0 w/2 ™ 3m/2
CEP (rad)

Figure 4.9: (a)-(c) Waveform of the longitudinal electric field of a 3.5-fs pulse with (a) ¢cpp = 7/2,
(b) ¢cep =~ 2.35 and (c) ¢cep = ®. The blue dots show the initial electron position in the test-particle
simulations while the hatched areas show the first accelerating half-cycle seen by the electron in blue.
(d) Final energy of an electron initially att = z = 0 with an initial energy of 200 keV as a function of the
CEP in a radially polarized pulse with A = 800 nm, wy = 1.5 um, ap, = 0.7 and t© = 3.5 fs. The coloured
dots show the positions of the CEP values of (a)-(c).

at z = 0 initially, but the initial time is continuously changed so that the electron always starts with an
accelerating half-cycle. This means that in this case the electron does not always start at the temporal
maximum of the pulse envelope. Beforehand, we could expect that two different values for the CEP could
be optimal. The first one is ¢cgp = T, which we have considered throughout this section and which
corresponds to the maximum value for the initial canonical momentum. The waveform of the longitudinal
electric field with this choice of CEP is shown in figure 4.9(c). The second value is §cgp = /2, which
corresponds to the maximum value for the accelerating field and which was used in the previous section.
The waveform of the longitudinal electric field with this choice of CEP is shown in figure 4.9(a). We find
that, with our choice of parameters, the optimal CEP is actually approximately halfway between the two
previously cited values, as can be seen in figure 4.9(d). The waveform of the longitudinal electric field at
the optimal CEP value is shown in figure 4.9(b). It should be noted that the exact value for which the CEP
is optimal depends on the electron initial velocity and on the other laser parameters. We heuristically find
that it is almost always between ¢czp = /2 and ¢cep = 7. Finally, we remark that using the worst CEP
only results in a 25% drop in the electron final energy, even with a pulse duration as short as 3.5 fs. This
suggests that, while the CEP can influence the acceleration, this parameter is not as crucial as the laser
peak power or beam waist.

In conclusion, this section has allowed us to identify the key laser parameters of the interaction in
vacuum. We first note that the theoretical threshold between the ponderomotive and VLA regime appears
to provide a good estimation of the required longitudinal field to obtain a significant energy gain. ag ; is
therefore the key first laser parameter and should be chosen as high as possible. This can be achieved
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by using tight focusing and high peak powers. Once ay ; is substantially over the threshold, the energy
gain is mainly dictated by the laser peak power, with the expected scaling AW o V/P.

4.1.3 Plasma mirror as ideal injector

In this section, we show that, as in the case of linear polarization, the conditions leading to efficient
vacuum laser acceleration with radial polarization can be attained by using a plasma mirror to inject the
electrons into the reflected pulse. To demonstrate this, we perform a PIC simulation of the interaction
between a relativistic intensity radially polarized pulse and an overdense plasma with a sharp density
gradient. The simulation is performed at normal incidence, for two principal reasons:

e As we have explained in the first chapter, electron ejection by the push-pull mechanism requires a
strong electric field component in the direction of the density gradient. This makes normal incidence
inefficient with linear polarization because in this case the electric field is parallel to the plasma
surface. For radial polarization however, the longitudinal E; field is directed towards the density
gradient at normal incidence. We can thus expect the electrons to be ejected close to the optical
axis, where the E, field is maximum, which would be ideal for acceleration in the longitudinal
direction by the reflected pulse.

e The interaction at normal incidence is axisymmetric. This means that it can be simulated in cylindri-
cal coordinates (see section 2.2.3) with the cost of a 2D simulation. We use the code CALDER-CIRC
for this purpose. On the other hand, oblique incidence requires full 3D simulations which are much
more demanding computationally®.

In the PIC simulation, we once again use parameters corresponding to the Salle Noire laser: A =
800 nm, ap, = 0.7, wo = L.5pum and 7 = 3.5 fs. The CEP is ¢cgp = m/2 for the incident field, which
becomes ¢cep = —7/2 for the reflected field. The laser is focused on the plasma, which has a maximum
density of 200n,. and an exponential density gradient with L = A /7 (we find that the results are for the
most part unchanged when the gradient scale length is lowered to L = A /10). The numerical parameters
are the following: space steps Ax ~ 4 /882 and Ar =~ A /205, timestep At ~ T /1045 (where T is the laser
period), 50 electrons per cell, box size N, x N, = 5624 x 6552, 2 orders for the Fourier expansion along
the poloidal direction. A moving window is started after the interaction, making it possible to follow the
ejected electrons far from the plasma.

Figure 4.10 displays three different snapshots from the PIC simulation, showing the interaction be-
tween the laser and the plasma. The push-pull mechanism, which is responsible for the ejection of

1in principle we could perform 2D simulations at oblique incidence with a laser that has a transverse electric field of the form
2
X
Ey o< xexp | — (—) at focus. Such a laser would indeed exhibit a longitudinal field and could be used to mimic radial
wo

polarization in two-dimensions. However, we do not expect this 2D field to accurately model the acceleration in vacuum by
a radially polarized beam. There are several reasons for this. On the one hand, the ratio between the longitudinal and the
transverse field would likely be smaller because there is no variation of the E), field to contribute to building the E; field. This
would make the acceleration less efficient. On the other hand, the Gouy phase shift would likely be decreased by a factor 2 and

32 2
the amplitude of the E; field would probably decrease as (%) rather than (%) , since in 2D the beam only diffracts
w(z w(z

in one direction. This would greatly improve the efficiency of the acceleration. This shows once again that 2D simulations are
inadequate for studying VLA, this time mainly because diffraction, which can only be correctly modeled in a 3D geometry, is a
crucial element of the interaction and the main limit to the energy gain.
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electron in the short gradient regime (see section 1.4.2.1), is clearly visible. We recall that it consists of
the following two steps. (1): The normal component of the electric field of the laser pushes electrons
inside the plasma, resulting in a density peak, which can be seen in the yellow dots of figure 4.10 and in
the red curve of figure 4.11. As the electron density peak is pushed deeper into the density gradient, the
immobile ions create a large restoring static field, resembling a plasma capacitor. (2): When the density
peak reaches its maximum depth (figure 4.10(b)), the sign of the electric field switches and both the laser
and the static field work together to pull the electrons out of the plasma. A small fraction of the electrons
inside the density peak can gain enough energy from the plasma capacitor to be ejected from the plasma.
These electrons are ideally injected into the reflected pulse since they start with an initial velocity at the
optimal phase, where the sign of the longitudinal field changes, and thus begin their interaction with an
accelerating half cycle, represented in blue in figure 4.10(c). This simulation therefore shows that the
push-pull mechanism can be triggered by the E, field of a radially polarized beam at normal incidence,
which results in optimal electron injection into the reflected pulse.

We observe that the laser is partly distorted by the reflection on the plasma mirror, as is illustrated in
figure 4.12. However, we note that the high-harmonic content of the reflected pulse remains small, as no
harmonics are visible beyond order 10, even in log scale. This comes from the fact that the normalized
electric field in the gradient direction is relatively weak (ap ; = 0.7). For comparison, at oblique incidence
with linear polarization and similar laser parameters, the normalized electric field in the gradient direction
is = 2 and harmonics up to order 60 are visible in 2D simulations. We also remark in figure 4.12(b)
that the transverse fields of the reflected pulse vanish on the optical axis, which is expected because
the interaction is cylindrically symmetric. We can thus anticipate that the generated harmonics have an
overall small impact on the acceleration of electrons by the reflected beam. This will be confirmed in the
following paragraphs.

Figures 4.13(a) and 4.13(c) show the energy-angle and the angular distributions of the electrons
ejected from the plasma mirror. The total ejected charge is about 60 pC and the divergence of the
electron beam is of the order of 30°. This value is slightly lower but comparable to the divergence
obtained in 3D simulations with the Salle Noire laser and linear polarization (=~ 40°, see figure 3.19).
Furthermore, because they are injected into the laser with optimal initial conditions, a group of electrons
representing several pC is accelerated to relativistic energies, typically from 1 to 8 MeV. Once again,
this value is higher than in simulations with linear polarization, where the maximum observed energy is
~ 5 MeV. This shows that radial polarization can result in a sensible improvement of the acceleration
compared to linear polarization. The highly energetic electrons in the radial polarization simulation form
a ring-shaped beam with a typical angle of 150 mrad with respect to the optical axis. We also note that
there is a correlation between the energy and the emission angle among the MeV electrons, with the
fastest ones emitted closer to the specular direction.

Figures 4.14(a) and 4.14(c) show the energy spectrum and time distribution of the electrons with
6 <200 mrad and E > 1 MeV, after 145 um of propagation. Such filtering can typically be achieved using
a pinhole and a magnet to select only certain angles and energies. These electrons represent 3.3 pC.
Thanks to its high energy, this fast electron bunch is kept ultrashort, with a duration of around 12 fs. It
would be possible to diminish the duration of the bunch by reducing the acceptance angle of the selected
electrons, at the cost of also diminishing the selected charge. The transverse normalized emittance of
this electron beam is €, = 3.18 um, which is too high for electron diffraction experiments. However,
filtering this electron bunch can result in lower emittance values. For instance, selecting electrons with
an energy between 4.06 MeV and 4.14 MeV results in a 2% energy spread, a charge of 100 fC and



174 Chapter 4. Numerical study with radially polarized pulses at normal incidence

0 0.5 Z/}\Z}) 15

Figure 4.10: Snapshots from the CALDER-CIRC PIC simulation showing the longitudinal electric field and
electron density extracted at three different timesteps. (a) The plasma is still unperturbed by the incoming
laser. (b) The electrons are pushed into the plasma by the laser, resulting in a density peak indicated by
the yellows markers. (c) Electrons that were in the density peak are now pulled away from the plasma,
betweenz=1.2 A andz= 1.7 A. A second electron bunch is also being ejected one wavelength behind,
between z = 0.3 A and z = 0.8 A, whereas a new density peak is visible two wavelengths behind, at
z=0.1 A. Detailed simulation parameters are provided in appendix B.
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Figure 4.11: Results from the CALDER-CIRC PIC simulation. Plasma electronic density averaged be-
tween r =0.05 A and r = 0.3 A as a function of longitudinal position z either before the interaction (blue
curve) or during the interaction, at the time where the density peak reaches its maximum depth (red
curve). Detailed simulation parameters are provided in appendix B.
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Figure 4.12: Results from the CALDER-CIRC PIC simulation. (a) Incident By field as a function of r and
t obtained =~ 4 A away from the plasma surface. (b) Reflected By field as a function of r and t obtained
~ 4 A away from the plasma surface. (c) Amplitude of the Fourier transform of the incident Bg field with
respect to time performed for every transverse position r. (d) Same for the reflected By field. Detailed

simulation parameters are provided in appendix B.
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Figure 4.13: (a)-(b) Energy-angle distributions and (c)-(d) angular distributions of the obtained electron
beam after interaction of the pulse with (a),(c) a plasma mirror or (b),(d) argon gas. On the top images,
the electrons inside the black rectangles are the one represented in figure 4.14. On the bottom images,
the angular distribution is represented in the form dN/dS, with dS = dtan 6, x dtan 6, = d(py/p;) X
d(py/p;). Detailed simulation parameters are provided in appendix B.
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Figure 4.14: (a)-(b) Energy spectrum and (c)-(d) time distribution of a chosen subset of electrons af-
ter 145 um of propagation for (a),(c) the plasma mirror simulation and (b),(d) the argon gas simulation.
Detailed simulation parameters are provided in appendix B.

a normalized emittance of &, = 0.18 um. Emittance in the nm range can even be obtained by further
filtering the beam while still maintaining the charge at the fC level. The characteristics of this electron
beam would make it useful for applications in ultrafast science. Note that to obtain the time distribution
plots, electrons leaving the simulation box are assumed to travel with constant speed afterwards.

Figure 4.15(a) shows the energy of representative fast electrons along their trajectories outside the
plasma. The electrons are randomly chosen among the electrons with 8 < 0.1 rad and £ > 1 MeV.
These electrons leave the plasma with an energy of a few hundreds of keV. Most of their final energy
is thus gained by VLA in the reflected pulse. Figure 4.15(b) shows the work done by the longitudinal
field, defined by WE, = —er.EZdt, for the same electrons. Figures 4.15(a) and 4.15(b) are very similar,
which proves that electrons are mainly accelerated by the longitudinal electric field of the laser, taking
full advantage of the radial polarization. We can remark that the trajectories of the fastest electrons in
the PIC simulation closely resemble that of the electron in figure 4.2(b), obtained with a test-particle
simulation. This confirms that the high-harmonic content of the reflected pulse, which is not taken into
account in the test-particle simulation, does not play a major role on the acceleration in vacuum. This
result also indicates that the initial velocity given by the plasma in the push-pull mechanism is crucial for
reaching high energies. Indeed, the test-particle simulations performed in section 4.1.1 have shown that
the maximum attainable energy without initial velocity was ~ 1.3 MeV.

In order to demonstrate the benefits of using a plasma mirror, we also perform PIC simulations of the
acceleration of electrons injected by ionization of a low density gas target. The same laser parameters
are used, except for the CEP, which is set to 7 so as to have the same value as in [89]. The gas target
is either made of hydrogen or argon. It is infinite in the transverse direction and is 10 um long in the
longitudinal direction. The maximum electron density is chosen to be 3 x 10'®cm™3, a value for which
space-charge and plasma effects are negligible [89].

In the case of hydrogen, we did not observe significant on-axis electron acceleration. This is because
hydrogen has a low ionization energy, resulting in the electrons being ionized early in front of the laser
pulse. Because, the normalized amplitude of the longitudinal field (ap , = 0.7) is smaller than the threshold
value ag . = 1, this leads to a case very similar to that of figure 4.1(a) and to a low final energy. In [89],
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Figure 4.15: (a) Energy of representative ejected electrons as a function of their distance z from the
plasma. (b) Work done by the longitudinal electric field as a function of the distance from the plasma,
for these same electrons. The color of the different plots is given by the final energy of the electrons.
Detailed simulation parameters are provided in appendix B.
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it was reported that electrons could be accelerated by ionizing a hydrogen target, but a much tighter
focusing, wyg = 785 nm, that is harder to obtain in practice, was used in the simulations, resulting in a
higher value for a ; of ~ 1.6.

With argon however, some deep shell electrons are generated inside the laser pulse, making it pos-
sible to accelerate on-axis electrons. Figures 4.13(b) and 4.13(d) show the energy-angle and the angular
distributions of the obtained electrons. The total ejected charge is about 70 fC, three orders of magni-
tude lower than with the plasma mirror, and a few fC stay near the axis. The charge can nonetheless
be increased by raising the initial gas density, at the cost of decreasing the electron beam quality [89].
The on-axis electrons are very well collimated but have an energy ranging from 0 to 200 keV, one to
two orders of magnitude lower than with the plasma mirror. The energy spectrum and time distribution
of the electrons with 6 < 0.2 rad after 145 um of propagation is shown in figures 4.14(b) and (d). This
corresponds to a selected charge of 1.7 fC. As can be expected from its low energy and high energy
spread, the time duration of this electron bunch is already over 300 fs after 145 um of propagation.

The main conclusion from these simulations is therefore that plasma mirrors can be used to inject
electrons with ideal conditions into a radially polarized pulse, which results in a more efficient accelera-
tion than with other proposed acceleration schemes. These results were the subject of a publication in
Physical Review Letters [178].

4.2 Acceleration of an electron bunch in test-particle simulations

We have studied in the previous section the conditions leading to the efficient acceleration of an on-
axis electron. We have then shown using a PIC simulation that plasma mirrors could be used to attain
these ideal conditions. The longitudinal dynamics of the accelerated electrons in the PIC simulation
matches that of test-particle simulations and is encouraging because it shows that high energy gains
are achievable. On the other hand, the transverse electron dynamics is not as satisfactory because
the final angular divergence is only marginally reduced compared to linear polarization. Yet, obtaining
narrower angular distributions was one of the initial objectives of using radial polarization. In section 4.2.1,
we therefore analyze using test-particle simulations electron trajectories in a 3D geometry and provide
insights explaining why the electron beam is not well collimated in the previous PIC simulation. While
it is often stated in the literature that the transverse fields of a radially polarized beam can help confine
the electrons near the optical axis [101, 91, 113, 103], we find that it is actually the opposite in our case:
the transverse fields tend to increase the electron transverse momenta and are the principal reason the
electrons are deflected away from the optical axis. We then discuss in the following sections several
scenarios for which narrow divergences can be obtained. In particular, using stronger longitudinal fields
appears to be a promising solution.

4.2.1 Analysis of the transverse electron dynamics

We start by showing that single particle simulations can appropriately reproduce the transverse dynamics
of the accelerated electron beam in the previously shown PIC simulation. We use in all test-particle
simulations presented in the remainder of this chapter an exact solution to Maxwell’s equations for the
electromagnetic field, as described in section 2.3.3. The laser parameters correspond to the Salle Noire



180 Chapter 4. Numerical study with radially polarized pulses at normal incidence

10 = T T T T T T T T
; 5
) 8 |
Z
> o
O 4
—
O -
cC 2
L : E 1-2
0 il st T W SR I I I I 1
00 0.2 04 06 08 10 1.2 14 -2 -1 0 1 2
0 (rad) tan (60,)
(a.u.)
0.0001 0.01 1 0 (a'u') 1
[— o — (—  aaaaa—

Figure 4.16: (a) Energy-angle distribution and (b) angular distribution of the electron bunch at the end of
the test-particle simulation.

laser (A = 800 nm, wy = 1.5um, T = 3.5 fs), except that the longitudinal electric field has been lowered
from ap, = 0.7 to ap; = 0.59 to take into account the energy absorbed by the plasma mirror when
generating the fast electrons. The value of ag ; for the reflected beam corresponds to a reflectivity of
the plasma mirror of ~ 70%, which is consistent with the typical fraction of incident laser energy used
to acceleration electrons (= 30% [24]). The laser CEP is ¢cgp = 7. For simplicity, we consider a single
electron bunch initially inside the laser pulse close to a zero of the electric field. The electron beam initially
has a Gaussian distribution both in real and momentum space, with an adaptable mean and variance.
These initial parameters are then adjusted so as to match the PIC simulation results. The test-particle
simulations themselves consist in solving the motion of one million electrons with the previously described
initial conditions in a radially polarized field.

Figure 4.16 shows the energy-angle and angular distribution of an electron beam with a mean initial
momentum of 0.7 m,c in the longitudinal direction (corresponding to ~ 113 keV). The initial standard
deviations of the Gaussian distributions are 6, = 0.15 um and 6, = 0.7 m.c in the longitudinal direction
and o, = lum and 6,; = 0.7 mcc in the transverse directions. These initial values are consistent
with those obtained =~ 2 um away from the plasma surface in the PIC simulation. We observe that
figure 4.16 is very similar to figures 4.13(a) and (c). This shows that test-particle simulations are able
to reproduce the electron dynamics in vacuum observed in the PIC simulation. This also confirms that
the generated high-harmonics do not play in significant part in the vacuum laser acceleration process
at normal incidence. The fact that single particle simulations can provide accurate results is valuable
because such simulations are computationally cheap, which allows us to easily vary the parameters and
thus obtain useful information regarding the interaction.

We start by examining the electron transverse dynamics and collimating properties of radially polar-
ized beams. Figures 4.17(a) and (b) show the initial and final angular distributions of the simulated elec-
tron bunch. Figure 4.17(b) is in fact the same as figure 4.16(b) except that the axes have been changed.
We first note that the overall electron beam angular spread is not significantly reduced by the interaction
with the radially polarized pulse. In fact, we can observe from the distributions of figures 4.17(c) and (d)
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that most electrons do not see a significant change in both their transverse and longitudinal momenta
from the interaction. Of course, these electrons, whose kinetic energies remain low, could be filtered out
in practice if the electron beam were to be used in pump-probe experiments for ultrafast science.

This is what we do in figures 4.17(e) to (h), which show the same distributions, but only consider-
ing the electrons whose final energy exceeds 1.5 MeV. This allows us to focus on the dynamics of the
electrons which are actually accelerated by the radially polarized beam. For these fast electrons, the
interaction leads this time to a decrease in the angular spread, by a factor ~ 2. We remark from fig-
ures 4.17(g) and (h) that both the longitudinal momentum p, and the transverse momentum p | of these
electrons increase during the acceleration in vacuum. This means that the reduction of the angular diver-
gence comes from an increase in p, (which is stronger than the increase in p, ) rather than a decrease
in p . Still, the fast electrons are not very well collimated and, as noted in the previous section, form a
ring-shaped beam with a typical angle of 150 mrad with respect to the optical axis.

We can further separate the fast electrons depending on whether they are accelerated mostly by
the longitudinal field or by the transverse fields. We have indeed seen in the first chapter that electrons
could be accelerated by the E,/Byg fields with radial polarization in the same way that electrons could be
accelerated by the E, /B, fields with linear polarization. To achieve this separation, we calculate the work
done by the E; and E, field in the test-particle simulation and sort the fast electrons in two populations:
(i) electrons for which the work done by the E, field is greater than that done by the E, field and (ii) elec-
trons for which the work done by the E, field is higher. We find that both populations have approximately
the same number of test electrons (~ 50 000 out of the 1 000 000 initial electrons in each population).
The resulting distributions are shown in figure 4.18. Unsurprisingly, electrons accelerated by the E, are
emitted at much smaller angles than electrons accelerated by the E,. Moreover, we remark that E, ac-
celerated electrons reach much higher energies (although this is not directly visible in figure 4.18, we
can clearly observe that the highest momentum attained in figure 4.18(d) is much higher than the highest
momentum attained in figure 4.18(h)). This is mainly because the initial electron distribution is optimal for
acceleration by the E, field but not for acceleration by the E. field (the electrons are initially around a zero
of the longitudinal field, which corresponds to a maximum of the transverse fields). Still, these results
validate the whole idea of using radial polarization as it shows that acceleration by longitudinal field can
lead to high energy electrons emitted much closer to the optical axis.

An interesting result is that the final electron beam becomes well-collimated if the simulation is per-
formed with the fields given by the paraxial approximation, as is visible in figure 4.19. Of course, this first
shows that, as explained in chapter 2, great care must be taken when choosing the electromagnetic field
in single particle simulations. In particular, the paraxial approximation leads to heavily inaccurate results.
Nevertheless, this simulation remains useful because it can help us understand why the electron is not
well-collimated when nonparaxial fields are used.

A first hint can be obtained by looking at the correlation between the work done by the electric field
and the variation in the electron momentum, both in the longitudinal and transverse directions. The
corresponding distributions are plotted in figure 4.20, in the paraxial and the nonparaxial cases, for the E,
accelerated electrons with a final energy exceeding 1.5 MeV. We observe in both cases that electrons for
which the work done by the E, field is high receive a large momentum kick in the longitudinal direction,
which is reasonable. On the other hand, the results in the transverse direction are more surprising. First,
we observe substantial differences between the paraxial and nonparaxial simulations. Secondly, we
remark that in the nonparaxial case the electrons which lose the most energy from the transverse fields
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Figure 4.17: Results from a test-particle simulation reproducing the PIC simulation. (a)-(b) Electron
beam angular distribution respectively before and after the interaction. (c)-(d) Electron beam momentum
distribution respectively before and after the interaction. (e)-(f) Angular distribution of the electrons with
a final energy greater than 1.5 MeV respectively before and after the interaction. (g)-(h) Momentum
distribution of the electrons with a final energy greater than 1.5 MeV respectively before and after the
interaction.



4.2. Acceleration of an electron bunch in test-particle simulations 183
Initial distributions Final distributions
E. accelerated electrons > 1.5 MeV
1.0} (a). L (b)]1.0
. 05} . - 405

D
~ o0} . - @ 400 ~—
c
8 -os¢t . - 1-05 8
-1.0} g = {-1.0
—1.0—6.5 ofo 055 150 —1.0—6.5 ofo 055 1fo
tan (6,) tan (6,)
20 T T T T T T T T T T T T T T 20
(c) (d)
—~ 15} = {15 —~
< <
E 10} - ; 110 £
= =
Q >5f i - - 1° o
(s I I I I I I I C I I I I I I L] 0
0.0 05 1.0 15 20 25 3.0 3.5 00 05 1.0 15 20 25 3.0 3.5
p./(m.C) p./(m.C)
E, accelerated electrons > 1.5 MeV
= 05
L ©
e
-1.0-0.50.0 0.5 1.0 —i.(»(;.s ofo 055 1fo
tan (6,) tan (0,)
20 T T T T T T T T T T T T T T 20
(9) (h)
—~ 15} g = {15 —~
< =
E 10} . - {10 £
= =
Q S5 i i ﬂ 15 o
0L 1- 1 1 1 1 1 [ C 1 1 1 1 1 1 [ 0
00 05 1.0 15 20 25 3.0 3.5 00 05 1.0 15 20 25 3.0 3.5
p./(m.c) (a.u.) , P1/(m.c)

Figure 4.18: Results from a test-particle simulation reproducing the PIC simulation. (a)-(b) Angular dis-
tribution of the E, accelerated electrons with a final energy greater than 1.5 MeV respectively before and
after the interaction. (c)-(d) Momentum distribution of the E, accelerated electrons with a final energy
greater than 1.5 MeV respectively before and after the interaction. (e)-(f) Angular distribution of the E,
accelerated electrons with a final energy greater than 1.5 MeV respectively before and after the interac-
tion. (g)-(h) Momentum distribution of the E, accelerated electrons with a final energy greater than 1.5

MeV

respectively before and after the interaction.
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Figure 4.19: Results from a test-particle simulation using the fields given by the paraxial approximation.
(a)-(b) Electron beam angular distribution respectively before and after the interaction. (c)-(d) Electron
beam momentum distribution respectively before and after the interaction. (e)-(f) Angular distribution of
the electrons with a final energy greater than 1.5 MeV respectively before and after the interaction. (g)-(h)
Momentum distribution of the electrons with a final energy greater than 1.5 MeV respectively before and
after the interaction.
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Figure 4.20: (a)-(b) Correlation between the work done by the E. field and the variation in the electron

longitudinal momentum Ap. in a test-particle simulation using either an exact solution to Maxwell’s equa-

tions (a) or the fields given by the paraxial approximation (b). (c)-(d) Correlation between the work done

by the E, field and the variation in the electron absolute transverse momentum Al|p, | in a test-particle

simulation using either an exact solution to Maxwell’s equations (c) or the fields given by the paraxial

approximation (d). We have only considered the E, accelerated electrons with a final energy exceeding
1.5 MeV in the distributions.

are in fact the electrons which receive the highest transverse momentum kick. This unanticipated result
appears to be inconsistent with the acceleration principle with transverse fields that we have presented
in section 1.5.1.1. We have indeed stated that, as illustrated in figure 4.21(a), when the transverse fields
decelerate the electrons, they should also induce a decrease in the transverse momentum, which is
exactly the opposite of what we observe in figure 4.20(c).

This discrepancy can be explained by the fact that figure 4.21(a) has been obtained by assuming that
the transverse E, and By fields have the same amplitude (cB, = E ). This is indeed the case in the
paraxial approximation, but for a nonparaxial radially polarized field, the E, and By fields do not have the
same amplitude everywhere. For an ultrarelativistic electron with no transverse momentum, this means
that the ve X Bg force does not always compensate the E, force. This results in a deflection of the
fast electrons that does not exist with the paraxial fields and tends to widen the electron angular distribu-
tions [123]. For an electron with a nonzero transverse momentum, the fact that the E, and By fields do not
have the same amplitude can significantly alter the result of figure 4.21(a). For instance, figure 4.21(b)
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(b)

Figure 4.21: Schematic illustration of the transverse field forces acting on a relativistic electron interacting
with a laser. The blue dot represents an electron moving with a velocity v, in the direction indicated by
the blue arrow. The green arrows represent either the transverse electric force Fr, or the transverse
magnetic force F  acting on the electron while the red arrows represent the total transverse force Fy |
acting on the electron. The dashed black lines show the z-axis. The electron is ultrarelativistic (8, ~ 1)
and is moving with an angle 6, = 20° with respect to the z-axis such that it is decelerated by the transverse
fields. In (a), the transverse E and B fields have the same amplitude. In (b), the B field has an amplitude
which is 1.06 times that of the E field. In (c), the B field has an amplitude which is 1.12 times that of the
E field.

shows a scenario in which, because the By field has a larger amplitude than the E, field, the trans-
verse forces are decelerating the electron while leaving its transverse momentum unchanged. Similarly,
figure 4.21(c) shows a scenario in which, as the By field is even larger, the transverse forces are decel-
erating and at the same time increasing the electron transverse momentum. This worst-case scenario,
which is forbidden with the fields given by the paraxial approximation, explains the unexpected correlation
between the work done by the E, field and the change in transverse momentum of figure 4.20(c) and is
in fact the principal reason why the electron beam is well collimated in the paraxial simulation but not in
the nonparaxial simulation (and thus in the PIC simulation). Before continuing, two relevant points can be
noted:

e Infigure 4.21, rather large differences between the transverse E and B fields (on the order of 10%)
are necessary to obtain a case where the transverse forces are both decelerating and defocusing.
This is because a large angle of 20° was chosen for 6, for illustration purposes. In reality this angle
can be much smaller, in which case lesser differences between the transverse E and B fields can
result in the same situation.

e In principle we could also have the ideal case where the transverse fields are both accelerating
the electron and reducing its transverse momentum. However, we observe that this scenario very
rarely occurs in practice in the typical trajectories of the simulations presented here.

To illustrate the difference between the paraxial and the nonparaxial cases, we now study the trajec-
tory of a typical E, accelerated electron. To simplify the analysis, we consider a plane trajectory for which
y=0atalltimes. Atr =0 (i.e. at the focus of the laser pulse), the electron is initially at x =~ 228 nm, y =0
and z = 6.46 nm with an initial momentum p, ~ 0.48m,c, py, = 0 and p, =~ 1.05m.c. This corresponds
to an initial kinetic energy of ~ 270 keV and an initial angle 6, of ~ 24.5° with respect to the x-axis.
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Figure 4.22: Longitudinal dynamics of a typical E, accelerated electron in a radially polarized pulse.
(a),(e) E; field seen by the electron as a function of time. (b),(f) Longitudinal electron momentum as a
function of time. (c),(g) Work done by the E, field on the electron as a function of time. (d),(h) Electron
kinetic energy as a function of time. Panels (a)-(d) have been obtained with an exact solution to Maxwell’s
equation. Panels (e)-(h) have been obtained with fields given by the paraxial approximation.

The motion of this electron is then solved either with the fields which are an exact solution to Maxwell’s
equations or with the paraxial fields. We use the same laser parameters as in the previously presented
simulations (corresponding to the Salle Noire laser).

Figure 4.22 shows the longitudinal dynamics of the electron. It is very similar in both cases. The
electron is initially accelerated by the E, field up to =~ 8 MeV before entering a decelerating phase. The
exact time at which the electron begins its deceleration is different in the paraxial and the nonparaxial
simulations, but the electron has in both cases a final energy of ~ 6 MeV. We remark in particular that the
curves for the longitudinal momentum, the kinetic energy and the work done by the E, field are all very
much alike, which shows that, for this electron, the interaction is dominated by the longitudinal field.

Figure 4.23 shows the transverse dynamics of the electron. There are in this image significant differ-
ences between the nonparaxial and paraxial trajectories. At first sight, the plots of E, (E;) and By, (Bg) as
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a function of time are all very similar. However, we observe that in the nonparaxial case the normalized
amplitude of the transverse magnetic field seen by the electron tends to be higher than that of the trans-
verse electric field by up to & 0.02 (in units of ag). Of course this is not the case in the paraxial simulation
where we have by construction E, = cBg.

In the two trajectories, the transverse fields are initially negative and, consequently, the transverse
electron momentum rapidly increases in the first few femtoseconds from ~ 0.5m.c to ~ m.c. During
these first instants, the electron is not yet fully relativistic and the E, force dominates to v, x B, force.
In this case the transverse forces are both accelerating (the work done by the E, field is positive) and
defocusing (the transverse momentum increases), which is an expected situation.

Then, the sign of the transverse fields changes and they therefore become decelerating (the work
done by the E, field decreases). At this point, the evolution of the transverse momentum is radically
different in the two trajectories. In the nonparaxial trajectory, the B, field is stronger than the E, field and
the scenario represented in figure 4.21(c) occurs: even though the transverse fields are decelerating,
they increase the electron transverse momentum, which rises almost up to ~ 2m,.c. This scenario is
forbidden in the paraxial trajectory, and only the case depicted in figure 4.21(a) can occur: as soon as
the sign of the transverse field changes, they become decelerating and at the same time decrease the
electron momentum. The transverse momentum in the nonparaxial trajectory eventually stabilizes around
~ 1.7 m.c while in the paraxial trajectory it stabilized around ~ 0.75 m,c. This results in an emission angle
with respect to the optical axis 6, ~ 7.9° in the nonparaxial case and 6, ~ 3.4° in the paraxial case.

This example illustrates the fundamental differences between the two simulations presented in this
section. It also sheds light on the reason why the fast electrons are not very well collimated as they
are accelerated by a radially polarized beam: at phases where we could naively expect the transverse
fields to be focusing, we find that they can in fact be defocusing due to the amplitude difference between
the E, and By fields, which leads to larger than expected transverse electron momenta. We discuss
in the following sections several possibilities for obtaining narrow divergence electron beams with radial
polarization.

4.2.2 Narrow divergence from better initial beam quality

We study in this section the effect of varying the initial electron beam properties, namely its transverse
extent in real space and in momentum space, with the following question in mind: does improving the
initial electron beam quality also result in an improvement of the accelerated beam properties?

We can first notice that the longitudinal field is responsible for the longitudinal momentum gained
by the electron, while the transverse fields are responsible for the transverse momentum gained by the
electron. Thus, one way to increase the ratio between p, and p, (which corresponds to the emission
angle) is to reduce the effect of the transverse fields. This can be achieved by having the electrons
initially located closer to the optical axis, where the E, field is maximum and the E,/By fields are weak. To
illustrate this, we perform the same simulation as in the previous section, except that the initial transverse
positions are all divided by 10. This corresponds to an initial standard deviation in the transverse direction
of o, = 100 nm, which is now much smaller than the beam waist (1.5 um).

The results of this simulation are displayed in figure 4.24. We indeed find in this case that the trans-
verse momentum gained by the fast electrons is smaller, which results in an electron beam with a narrow
angular spread. Once again, the collimation of the electron beam does not come from a decrease in its
transverse momentum, but from a stronger increase in its longitudinal momentum than in its transverse
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Figure 4.23: Transverse dynamics of a typical E, accelerated electron in a radially polarized pulse. (a),(f)
E, (E,) field seen by the electron as a function of time. (b),(g) By (Bg) field seen by the electron as
a function of time. (c),(h) Difference between the absolute values of the B, and E fields seen by the
electron as a function of time. (d),(i) Transverse electron momentum as a function of time. (e),(j) Work
done by the E, (E,) field on the electron as a function of time. Panels (a)-(e) have been obtained with an
exact solution to Maxwell’s equation. Panels (f)-(j) have been obtained with fields given by the paraxial
approximation.
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momentum. This confirms that the transverse fields of a radially polarized beam tend to be defocusing,
even for electrons located very close to the optical axis. This simulation nevertheless shows that it is in
principle possible to obtain few-MeV electron beams with good quality from VLA with radial polarization,
provided that the electron beam is initially very close to the optical axis, with a transverse extent that is
much smaller than the laser beam waist. However, such small widths cannot be obtained with the plasma
mirror injection method described in section 4.1.3, precisely since in this case the electrons are ejected
with a transverse extent that is on the order of the beam waist.

We also perform a simulation with an initially well-collimated electron beam. We use the same pa-
rameters as in the previous section except that the transverse momenta are all divided by 10. This
corresponds to an initial standard deviation in the transverse direction of 6, = 0.07 m.c, which is now
much smaller than the average momentum in the longitudinal direction (0.7 m,c). Results from this simu-
lation are shown in figure 4.25. We find that reducing the transverse momenta indeed results in an overall
narrower angular spread. However:

e The final beam is more divergent than the initial beam. This is because the transverse fields
increase the initially very small transverse momenta.

e The angular spread of the fast electrons is only marginally reduced compared to the simulation of
the previous section. They in particular still form a ring-shaped beam with a typical angle of 150
mrad with respect to the optical axis.

Overall, we find that improving the initial beam quality can indeed result in better final beam properties.
Of course, these parameters cannot directly be controlled when plasma mirror injectors are used and so
this does not provide a practical way to reduce the electron beam divergence with this injection method.

More generally, we can remember from this section that the final distributions of an electron bunch
accelerated by a radially polarized field can be quite sensitive to the initial injection conditions. This means
that test-particles simulations cannot be used to predict the result of experiments (or of PIC simulations)
because the exact initial injection conditions with plasma mirrors, which result from intricate laser-plasma
interaction processes and depend on the experimental parameters in a nontrivial way, cannot be easily
forecast.

4.2.3 Narrow divergence from more energetic electrons

Another way to obtain collimated beams is to exploit the correlation between the energy and emission
angle of VLA accelerated electrons. We have indeed observed in the PIC simulation that the fastest
electrons tend to be emitted closer to the optical axis, because they acquire a larger longitudinal mo-
mentum. We could thus expect that using laser parameters such that electrons are accelerated to much
larger energies would result in narrower angular spreads. We find that it is indeed the case in test-particle
simulations.

For instance, we show in figure 4.26 results from a simulation performed with a much more intense
radially polarized laser. The parameters are the same as in section 4.2.1, expect that the normalized
amplitude of the E; field is increased from ap, = 0.59 to ag; = 5.9 (ao,, is accordingly increased from
1.49 to 14.9). This corresponds to increasing the pulse energy by a factor 100. Note that, unlike in the
previous figures, the bottom panels in figure 4.26 ((e) to (h)) do not show the electrons with a final energy
greater than 1.5 MeV because virtually all electrons reach MeV energies with such a high intensity laser.
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Figure 4.24: Results from a test-particle simulation with the electrons initially located very close to the
optical axis. (a)-(b) Electron beam angular distribution respectively before and after the interaction. (c)-
(d) Electron beam momentum distribution respectively before and after the interaction. (e)-(f) Angular
distribution of the electrons with a final energy greater than 1.5 MeV respectively before and after the
interaction. (g)-(h) Momentum distribution of the electrons with a final energy greater than 1.5 MeV
respectively before and after the interaction.
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Figure 4.25: Results from a test-particle simulation with an initially well-collimated electron beam. (a)-(b)
Electron beam angular distribution respectively before and after the interaction. (c)-(d) Electron beam
momentum distribution respectively before and after the interaction. (e)-(f) Angular distribution of the
electrons with a final energy greater than 1.5 MeV respectively before and after the interaction. (g)-(h)
Momentum distribution of the electrons with a final energy greater than 1.5 MeV respectively before and
after the interaction.
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Instead, we show in figures 4.26(e) to (h) the electrons for which the work done by the E, field is greater
than the work done by the E, field.

We find that the angular divergence is greatly reduced when the laser intensity is increased. We
generally observe that both the transverse and longitudinal momenta tend to be increased when ag  is
raised from 0.59 to 5.9. However, the ratio between p, and p | at the end of the simulation for the E,
accelerated electrons is greatly improved when increasing the laser intensity, explaining why we obtain in
this case an electron beam with a very narrow divergence.

In contrast to the previous section, this method for reducing the angular spread can be applied to
plasma mirror injectors. We just need in principle to focus an ultraintense laser pulse at normal incidence
on an overdense plasma with a sharp density gradient. We will see in section 4.3.3 that such high laser
intensities can indeed lead to extremely peaked electron angular distributions in PIC simulations.

This acceleration regime was in fact previously observed in PIC simulations with the ionization of a
low-density gas injection method [102]. In this article (which was already mentioned in the first chapter),
the authors focus a radially polarized laser with wy = 34 and a peak power ranging between 2 PW
and 100 PW (ag; between ~ 15 and ~ 100) onto a low-density nanosphere with a radius of A /4 to
generate high quality GeV electron beams. We can remark that these PIC simulations combine two of
the methods that we have presented to obtain collimated electrons: the use of high intensity lasers to
increase the longitudinal electron momenta and the use of small initial transverse sizes to reduce the
defocusing effect of the transverse fields. Even though these parameters are probably difficult to attain
experimentally, they lead in the best cases to angular divergences of the order of 2°.

4.2.4 Narrow divergence from ponderomotive electrons

Finally, we point out in this section that peaked angular distributions can also originate from low-energy
electrons. Here, "low-energy" refers to electrons whose final energy is much lower than the theoretical
maximum energy gain for given laser parameters. This corresponds for example to the electrons forming
a sharp peak in the specular direction in the PIC simulation with injection by ionization of argon gas
presented in section 4.1.3 (see figure 4.13(d)). The energy of these electrons (at most ~ 200 keV) is
indeed much lower than the maximum possible energy gain with the Salle Noire laser (= 29 MeV).

It is also possible to obtain collimated MeV electron beams in this manner. As an illustration, we show
in figure 4.27 results from a simulation performed with parameters corresponding to the UHI100 laser:
A =800 nm, wo =3.1um, T =24 fs and ap ; = 0.75. The initial electron distribution is the same as in the
previous sections except that the standard deviation in the transverse spatial direction has been raised
from 1 um to 2 um: the mean initial momentum is 0.7 m,c in the z-direction, the standard deviations are
0, =0.15um, 6, = 0.7 m.c, 6, =2umand 6, = 0.7 m.c. In this test-particle simulation, the electron
bunch is as previously initially at focus (z = 0) and at the optimal phase of the laser. However, it is this
time located 4 optical cycles in front of the temporal center of the pulse envelope.

We find that the final electron beam is well-collimated. Looking at the angle-energy distribution of
figure 4.27(a), we remark that the electrons emitted with very small angles (visible on the bottom left
corner of this image) have an energy ranging between ~ 1 MeV and =~ 5 MeV, which is much lower than
the maximum final energy reached in the simulation (= 50 MeV) and the theoretical maximum energy
gain (= 114 MeV for the ~ 13.5 TW laser considered here).

Figure 4.28 allows us to compare the initial and final distributions in this simulation. We observe that
the angular spread is indeed reduced during the acceleration. We can note from figures 4.28(c) and
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Figure 4.26: Results from a test-particle simulation with a more intense radially polarized pulse. (a)-(b)
Electron beam angular distribution respectively before and after the interaction. (c)-(d) Electron beam
momentum distribution respectively before and after the interaction. (e)-(f) Angular distribution of the
electrons with a final energy greater than 1.5 MeV respectively before and after the interaction. (g)-(h)
Momentum distribution of the electrons with a final energy greater than 1.5 MeV respectively before and
after the interaction.
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Figure 4.27: (a) Energy-angle distribution and (b) angular distribution of the electron bunch at the end of
a test-particle simulation with parameters corresponding to the UHI100 laser.

(d) that most electrons will see an increase in both their transverse and longitudinal momentum during
their interaction with the radially polarized pulse. However, we observe that the electrons emitted less
than 50 mrad from the specular direction, which are isolated in figures 4.28(e) to (h), see a significant
decrease in their transverse momentum as well as a modest increase in their longitudinal momentum.
This is the only scenario in which we observe that the transverse fields of a radially polarized beam can
reduce the electron transverse momenta. If a sufficient number of electrons are collimated in this manner,
the angular distribution becomes peaked around the laser propagation direction, which is what occurs in
this simulation.

By analyzing electron trajectories, we can remark that these collimated low-energy electrons tend
to explore many optical cycles of the laser and therefore correspond to ponderomotively accelerated
electrons. With linear polarization, we have previously seen that electrons subject to the ponderomotive
force tend to be isotropically scattered in the transverse direction, which leads to angular distributions
containing a hole in the laser propagation direction. With radial polarization, there is an intensity minimum
around r = 0, which means that the ponderomotive force can also push the electrons towards the optical
axis. This could explain why the lower energy electrons can form a sharp peak in the angular distribution.
Several points can be noted.

e This method for obtaining narrow divergences is not very efficient. Indeed, attaining a desired
energy level requires a laser capable of accelerating electrons to much larger energies.

e It is possible for an electron to see many laser oscillations without being emitted in the direction of
laser propagation. Likewise, it is possible for an electron bunch to be accelerated to low energies
without resulting in a narrow divergence beam. The exact initial conditions leading to peaked
angular distributions in this regime appear to be nontrivial and have not been studied thoroughly in
this thesis. They could be the subject of future work.

e This regime (in which the lower energy electrons give rise to low angular spreads) can also occur



196 Chapter 4. Numerical study with radially polarized pulses at normal incidence

Initial distributions Final distributions
All electrons
Lol V (b)] 1.0
. 05k L 4os —
3 -7 N
0.0 L 0.0
C -
8 -o0s5 E - 1-05 8
-1.0 3 - H{-1.0
-1.0-0.50.0 0.5 1.0 —-1.0-0.50.0 0.5 1.0
tan (6,) tan (6,)

40 T T T T T T T T T T 40
35| (c) A B (d) 435
— 30} . L {30 ~
O o5t i i 125 Y
E 20} i L {120 £
X 15} . L 415 Z
o 10} A R {10 o
51 i 15
0 I 1 [ 1 1 40

0 1 2 3 4 5 0 1 2 3 4 5
p./(m.C) p./(m.C)
Electrons with <50 mrad
1.0 bt L (f) {10
0.5 pEEy i los —
0.0 5 L ® 40.0
c -~
_{3 -0.5 o - 4-0.5 ;3
-1.0 L {-1.0
-1.0-0.50.0 0.5 1.0 -1.0-0.50.0 0.5 1.0
tan (6,) tan (6,)

40 T T T T T I T T T T T 40
35} (g9) A (h) d3s
— 30} . {30 ~
O ot i 125 ©
E 20} . {20 E
15} - 415 <
o 10} ] 110 o
51 i 1 15
OB'-_ I 1 1 [ 1 1 1 1 L 40
0 1 2 3 4 5 0 1 2 3 4 5

pi/(m.c) (a.u.) , Pu/(m.c)

Figure 4.28: Results from a test-particle simulation with parameters corresponding to the UHI100 laser.
(a)-(b) Electron beam angular distribution respectively before and after the interaction. (c)-(d) Electron
beam momentum distribution respectively before and after the interaction. (e)-(f) Angular distribution of
the electrons with a final angle with respect to the optical axis smaller than 50 mrad respectively before
and after the interaction. (g)-(h) Momentum distribution of the electrons with a final angle with respect to
the optical axis smaller than 50 mrad respectively before and after the interaction.
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with few-cycle lasers. This is not inconsistent with the presence of a ponderomotive force which,
as we have seen in section 1.5.1.6, still has relevance for extremely short pulse durations.

e These lower energy electrons accelerated in the laser propagation direction gain most of their
energy from the E; field, which therefore seems to play a role in this regime.

e This regime can also be observed with azimuthally polarized beams, which also possess a min-
imum in the intensity distribution around r = 0. In this case of course the electrons cannot be
accelerated by the E, field (which is zero everywhere), which means that there are differences
between the lower energy electron trajectories in radial and azimuthal polarization.

4.2.,5 Conclusion

We have studied in this section the transverse dynamics of vacuum laser accelerated electrons in a
radially polarized laser. We have noted that the transverse fields have an overall negative effect on the
acceleration as they tend to deflect the electrons and widen the resulting angular distributions. We have
then presented several scenarios in which narrow divergences can be obtained. This can occur when
electrons are accelerated to large energies using very intense lasers or, oppositely, can also result from
the lower energy electrons which do not experience the VLA regime. We have also pointed out that
the acceleration process, and in particular its transverse dynamics, is sensitive to the initial injection
conditions.

4.3 PIC simulations with other laser parameters

We have presented in section 4.1.3 a PIC simulation showing that electrons are ideally injected in the
reflected pulse when an intense radially polarized laser is focused at normal incidence on a plasma
mirror. In this section, we present results from similar PIC simulations at normal incidence performed
with different laser parameters. We first study the influence of the CEP in section 4.3.1. Then we present
in section 4.3.2 results from a simulation with a many-cycle pulse, using parameters corresponding to
the UHI100 laser. Finally, we examine in section 4.3.3 results from simulations performed with higher
intensity lasers, which demonstrate that peaked angular distributions can be obtained in this regime.

4.3.1 Effect of the CEP

We show in this section results from 4 PIC simulations performed with different values of the CEP. We
use in the simulations a gradient scale length L = A /7 and laser parameters corresponding to the Salle
Noire laser: A = 800 nm, ap; = 0.7, wo = 1.5um and 7 = 3.5 fs. The values of the CEP of the reflected
pulse are —m/2, 0, ©/2 and . The corresponding waveforms of the longitudinal field are shown in
figures 4.29(c), (f), (i) and (I). We can note that the simulation with ¢cgp = —7/2 is the simulation that
was presented in section 4.1.3. Final angle-energy and angular distributions from these simulations are
displayed in figure 4.29.

We first find that changing the laser CEP does not alter the main qualitative results: electrons are
still ejected from the plasma and ideally injected into the reflected laser pulse where they can receive
energy gains up to several MeV from the E, field. We also always observe the correlation between the
energy of the fast electrons and their emission angle, with the fastest electrons emitted closer to the
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Figure 4.29: Results from PIC simulations at normal incidence for 4 different values of the CEP
(a),(d),(9),(j) Final angle-energy distribution respectively for §cep = —1/2, ¢cep =0, dcep = m/2 and
Ocep = 7. (b),(e),(h),(k) Final angular distribution respectively for §cep = —7/2, dcep =0, dcep = /2
and ¢cep = . (c),(f),(i),(l) Waveform of the reflected E, field (excluding its high-harmonic content) re-
spectively for §cgp = —7/2, ¢cep = 0, ¢cpp = ©/2 and Pcep = m. The blue dots show the the first
position at which a significant amount of electrons are ejected from the plasma in the simulations. The
hatched area shows the corresponding initial accelerating half-cycle. Detailed simulation parameters are
provided in appendix B.
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specular direction. However, we also note that there are substantial quantitative differences in the final
distributions depending on the value of the CEP. For instance, the maximum reached energy varies from
~ 5 MeV for gcgp = m/2 to ~ 10 MeV for ¢cgp = 0. The simulations where higher energies are attained
also correspond to simulations where the final angular divergence is narrower, consistently with the fact
that the fastest electrons are accelerated closer to the specular direction. Consequently, while the total
ejected charge is similar in all simulations (from ~ 45 pC for ¢¢cgp = 7/2 to =~ 60 pC for ¢cpp = —7/2),
there are very large variations in the number of MeV electrons emitted at an angle smaller than 200 mrad,
which are the electrons that would be most useful for applications: ~ 3.3 pC for ¢cgp = —7/2, ~ 5.5 pC
for gcgp =0, ~ 11 fC for ¢cgp = m/2 and =~ 100 fC for Pcgp = 7.

We can remark that the values of the CEP that we had identified as being close to optimal using
on-axis test-particle simulations (¢cgp = 7/2 and ¢cgp = T, see section 4.1.2.2) lead in this case to the
least efficient acceleration. This can be explained by differences in the ejection from the plasma as the
CEP is varied. In particular, the blue dots in figures 4.29(c), (f), (i) and (l) show the first position at which
a significant amount of electrons are ejected from the plasma. For ¢cgp = m and ¢cgp = 7/2, this first
ejected electron bunch is not emitted at the temporal center of the laser and does not take advantage
of the most intense accelerating half-cycle. Although electrons are also injected in the following cycle,
where the accelerating E; field is stronger, they do not reach very high energies. This may be because the
charge separation created by the ejection of the first electron bunch negatively impacts the initial injection
conditions of the electrons in the second electron bunch?. We more generally note that the simulations
where the highest energies are reached correspond to the simulations where the first ejected electrons
are initially the closest to the temporal center of the laser pulse. This can provide a reasonable explanation
as to why the best values of the CEP are not necesarily the ones with the strongest accelerating half-
cycle.

This strong effect of the CEP should probably be observable in experiments with few-cycle pulses.
These results thus indicate that this parameter should be taken into account in such experiments. They
also illustrate that electron ejection from the plasma can depend nontrivially on the interaction parameters.
Combined with the fact that the subsequent acceleration in the reflected radially polarized pulse is also
quite sensitive to the initial injection conditions, this means that accurately predicting experimental results
is not simple.

4.3.2 Simulation with multi-cycle pulses

Here, we present a simulation performed with parameters corresponding to the UHI100 laser: A =
800 nm, wo = 3.1um, 7 =24 fs, ap, = 4.9 and ap, = 0.94. We still use a plasma with a gradient
scale length L = 1 /7. One of the objectives from this simulation is to study whether there are funda-
mental changes in the interaction when multi-cycle pulses are used. We find that the results are in fact
quite similar: electrons are still ejected from the plasma at every optical cycle of the laser and acceler-
ated to relativistic energies by the E, field. Final electron distributions are shown in figure 4.30. Electron
energies reach up to =~ 25 MeV but we note that the final electron beam is not well collimated, with an
angular divergence that is approximately twice as large as in the best simulations with Salle Noire laser
parameters. Out of the ~ 550 pC ejected from the plasma, approximately 30 pC are eventually emitted
with an angle smaller than 200 mrad.

2For ¢cpp = /2, the first ejected electron bunch actually returns to the plasma and is not accelerated by the reflected pulse.
This however does not prevent it from negatively affecting the initial injection conditions of the following electron bunch.
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Figure 4.30: Results from a PIC simulation at normal incidence using UHI100 laser parameters. (a)
Final electron angle-energy distribution and (b) final electron angular distribution. Detailed simulation
parameters are provided in appendix B.

We can also observe in the simulation that only electrons in the first ejected bunches tend to remain
close to the optical axis as they are accelerated by the reflected pulse. The reasons why the following
bunches are more strongly deflected are not entirely clear but this explains why the final angular distri-
bution is broader in this simulation. This would mean that using few-cycle pulses, for which only one or
two electron bunches are emitted from the plasma, is more favorable than using multi-cycle pulses in the
objective of obtaining narrow divergences.

4.3.3 Simulations with more intense pulses

We have observed in test-particle simulations that electrons accelerated to ultrarelativistic energies tend
to be emitted very close to the laser propagation direction, leading to narrow angular spreads. In order to
test whether high-quality electron beams could be obtained in this manner using plasma mirror injection,
we have carried out simulations with much higher laser intensities, which we present in this section. We
use for all these simulations a gradient scale length L =1 /7.

We first show results from a simulation performed with a few-cycle pulse, using the parameters tar-
geted by the SYLOS laser system [173]: a pulse energy of 100 mJ, a beam waist of wg = 1.5 um and
a pulse duration of 5 fs in FWHM of intensity. This leads to ap, = 3.78 and ag , = 9.55. Final electron
distributions are shown in figure 4.31. As expected, we observe that the electron beam is now very well
collimated. In fact, we find that the charge ejected within an angle 6 of the specular direction scales
almost linearly with 6 (this approximation is valid for small values of 6, typically when 8 < 200 mrad). For
instance, there is an ejected charge of 23.7 pC within 100 mrad of the specular direction, 9.84 pC within
50 mrad and 1.45 pC within 10 mrad (for comparison, the total ejected charge is ~ 668 pC). This means
that the ejected charge per solid angle scales as 1/6 and thus that the angular distribution remains nar-
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Figure 4.31: Results from a PIC simulation at normal incidence using parameters targeted by the SY-
LOS laser system. (a) Final electron angle-energy distribution and (b) final electron angular distribution.
Detailed simulation parameters are provided in appendix B.

row even for very small values of 8. For instance, figure 4.32(a) shows the same angular distribution
as in figure 4.31(b) but zoomed on the angles 6 < 35 mrad. We observe that this distribution is indeed
still peaked. The energy spectrum of the electrons accelerated within 5 mrad of the specular direction,
visible in figure 4.32(b), also presents a narrow peak around 16 MeV. These electrons represent a charge
of = 635 fC and have a transverse emittance of ~ 650 nm. The emittance can be reduced to ~ 10 nm
while maintaining the charge to ~ 80 fC by selecting the electrons within 16.2 MeV and 16.5 MeV (=~ 2%
energy spread). Such a small divergence ultrashort relativistic beam with monoenergetic energy could
be particularly useful for applications such as ultrafast electron diffraction. This simulation probably cor-
responds to the best regime of acceleration by a radially polarized pulse that we have observed in this
thesis.

We also show for completeness in figure 4.33 results from a simulation performed with Salle Noire
parameters except that the electric field amplitude has been multiplied by 10. This corresponds to a pulse
energy of 250 mJ, a beam waist of wy = 1.5 um and a pulse duration of 3.5 fs in FWHM of intensity, which
leads to ap, = 7 and ag, = 17.7. We once again observe that the charge ejected within an angle 6 of
the specular direction scales quasi-linearly with 8 (=~ 64 pC within 100 mrad of the specular direction,
= 7.2 pC within 10 mrad and ~ 540 fC within 1 mrad out of =~ 1 nC ejected in total), which results in an
even narrower angular distribution. This time the energy spectrum of the electrons accelerated within 5
mrad of the specular direction presents two marked peaks, around 25 MeV and 60 MeV. Although such
parameters are probably unachievable with current laser technology, this simulation shows the robustness
of this method for generating high-quality electron beams.

Finally, we show in figure 4.34 results from a simulation carried out with a multi-cycle pulse with very
high intensity. The aim of this simulation is to check whether high-quality electron beams can also be
obtained in this case. For this purpose, we use the following laser parameters: A =800 nm, wy = 1.5 um,
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Figure 4.32: Results from a PIC simulation at normal incidence using parameters targeted by the SY-
LOS laser system. (a) Angular distribution of the electrons with an energy greater than 1 MeV around
the specular direction. (b) Energy spectrum of the electrons accelerated within 5 mrad of the specular
direction. Detailed simulation parameters are provided in appendix B.
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Figure 4.33: Results from a PIC simulation at normal incidence using Salle Noire laser parameters with
the electromagnetic field amplitude multiplied by 10. (a) Angular distribution of the electrons with an en-
ergy greater than 1 MeV around the specular direction. (b) Energy spectrum of the electrons accelerated
within 5 mrad of the specular direction. Detailed simulation parameters are provided in appendix B.
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Figure 4.34: Results from a PIC simulation at normal incidence using a very intense multi-cycle radially
polarized pulse. (a) Final electron angle-energy distribution and (b) final electron angular distribution.
Detailed simulation parameters are provided in appendix B.

T=241s, ap, = 32 and ap, = 12.7. This corresponds to a pulse energy of ~ 5 J and a peak power
of =~ 200 TW. As in the previous section, we find that only the electrons emitted during the first optical
cycles remain close to the optical axis throughout the simulation. This leads to an angular distribution
that is much broader than in the previous simulations performed with shorter pulse durations. As a result,
from the = 3.3 nC ejected in the simulations, only ~ 93 pC are ejected within 100 mrad of the specular
direction and ~ 2.3 pC within 10 mrad. This result once again indicates that few-cycle pulses are better-
suited for accelerating electrons with radial polarization when using plasma mirrors at normal incidence
as an injection method.
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In the previous chapter, we have examined the acceleration of electrons injected by focusing an
ultraintense laser pulse at normal incidence on an overdense plasma. The choice of studying the
interaction at normal incidence was made for two principal reasons:

1. At normal incidence, only the E, component of the electric field is directed towards the density
gradient. This means that electrons are injected close to the optical axis of the reflected pulse,
which is ideal.

2. At normal incidence, the interaction is axisymmetric. This has allowed us to perform PIC simula-
tions in cylindrical coordinates at a reasonable cost.

However, from an experimental point of view, the interaction is easier to study at oblique incidence. Once
again, there are two main reasons for this:

1. Electron acceleration experiments with linear polarization already exist and are carried out at
oblique incidence. Thus, experiments with radial polarization at oblique incidence can be readily
performed simply by converting the laser polarization state with an appropriate waveplate, without
any further change in the experimental setup.

2. At normal incidence, the laser pulse might be reflected back into the laser system, which could
cause damage to optics and amplifying media.

We therefore investigate in this chapter the possibility of accelerating electrons injected by focusing a laser
pulse at oblique incidence on a plasma mirror. This study is based on recent experiments performed
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Figure 5.1: Experimental setup. The images on the screens show the electron beam angular distribution
after the interaction (left screen) and its angularly resolved spectrum (right screen).

by Diego Guenot, Ludovic Chopineau, Adrien Denoeud and Jérdme Faure with the UHI100 laser at
CEA Saclay, which demonstrate for the first time electron acceleration to relativistic energies with radial
polarization. The experimental results are displayed in section 5.1 and analyzed in section 5.2 using
full-3D PIC simulations. We also mention that results from 3D PIC simulations carried out at oblique
incidence with Salle Noire laser parameters are presented in the appendix.

5.1 Experimental results

5.1.1 Experimental setup

The experimental setup is represented in figure 5.1. The UHI100 laser at CEA Saclay is a 100-TW class
system which provides 800-nm, 24-fs laser pulses with an ultrahigh temporal contrast (> 10'?) thanks to a
double plasma mirror system [179] located before the experimental chamber. We use a deformable mirror
to correct the laser wavefront. A phase mask consisting of eight half-wave plates with different optical
axes, as shown in figure 5.2(a), can be inserted in order to convert the laser polarization from linear to
radial or azimuthal. Each octant of the phase mask is made of a 80-um thick piece of mica, which is
thin enough to result in a low B-integral of 0.15 rad. By rotating the entire waveplate, the polarization
can be continuously varied from radial to azimuthal. A circular aperture, not depicted in figure 5.1, is
used to remove the edges of the beam and improve the focal spot. In the case of linear polarization,
a 50mm aperture is used, thus reducing the energy on target to 460 mJ. When the radial polarization
waveplate is introduced in the beam, a 65 mm aperture is used such that the energy on target is 675 mJ.
The beam is focused with a 60° incidence angle onto a fused silica target by a parabola with a focal length
f =200 mm. Resulting focal spots are shown in figures 5.2(b) and (c). For linear polarization, the beam
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Figure 5.2: Generation of radial polarization. a) Sketch of the waveplate used and extraordinary axes of
the eight octants. b) Focal spot for linear polarization, i.e. without the waveplate. c¢) Focal spot for radial
polarization.

waist is measured to be 3 x 3.4 um, which results in an estimated peak intensity of / = 5.8 x 101 W /cm?
(ap = 5.2). For radial polarization, the characteristic doughnut shape is clearly observed. The slight
asymmetry of the spot is probably due to imperfections in the wavefront and/or imperfect centering of the
beam on the waveplate. The beam waist is obtained by fitting 2 exp (—2r%/w§) to the spatial profile,
which gives 3.05 x 3.2um. The resulting peak intensity is 7 = 4.8 x 10" W /cm? (ap,, = 4.7). Using
these parameters we estimate the longitudinal normalized field to be:

ap, = 0.742ay,, <A> =0.9. (5.1)
wo

This value is probably somewhat overestimated because of the asymmetry in the focal spot but it indicates

that the longitudinal component of the electric field approaches relativistic intensities, making the laser

suitable for electron acceleration in the longitudinal direction.

A small mirror is inserted before the parabola in order to create a weak prepulse from the main laser
beam [26]. This prepulse is used to ionize the target and initiate a plasma expansion at an adjustable de-
lay before the main pulse, therefore creating a transversely homogeneous preplasma with an accurately
controlled density gradient.

A calibrated phosphor screen [172] (KODAK LANEX fine) is used in combination with a camera to
observe the electron angular distribution around the specular direction. The screen is covered by a
1.63 mm aluminium plate to provide shielding against the laser light and remove the electrons with an
energy lower than ~900 keV. A pair of magnets in combination with a slit can be added in front of the
screen to measure angularly resolved electron energy spectrum in the incidence plane (6, = 0, where 6,
is as defined in figure 5.1).

In parallel to the electron distributions, high order harmonics emitted in the specular direction can be
measured by replacing the electron spectrometer with an XUV spectrometer. The spectrometer uses a
1200 lines per mm varied line spacing concave extreme ultraviolet grating (Shimadzu 30-002) coupled
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Figure 5.3: Typical experimental angular electron distributions. The specular direction corresponds to
6, = 6, = 0. (a) linear polarization: the electron beam is located between the specular and normal
directions. (b) azimuthal polarization: electrons are located on both sides of the specular direction (c)
radial polarization. (d) Angular distribution obtained in the best shots with radial polarization. Both (c)
and (d) display an on-axis electron beam in the specular direction. The dashed red lines show the angular
extent of the reflected laser beam.

to a large 69 x 88 mm rectangular microchannel plate and a phosphor screen. This provides harmonic
spectra which are angularly resolved in the transverse 6, direction. With linear polarization, it is possible
to observe up to the 45 harmonic order.

5.1.2 Electron emission

A typical electron angular distribution obtained with linear polarization is displayed in figure 5.3(a). The
main features of this distribution are the presence of a hole in the specular direction and of a bright peak
between the specular and the normal directions, in good agreement with previous experiments [27, 24].
This bright spot is located approximately 150 mrad from the specular direction and contains a charge of
= 700 pC. The electron signal in this regime is optimal when the gradient scale length is on the order of
A /10 (see [24]).

While the electron signal exhibits good stability in linear polarization, we observe significant shot-
to-shot fluctuations in the electron charge and angular distribution when the phase mask is introduced
to generate radial polarization, which we attribute to shot-to-shot fluctuations in the laser focal spot.
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Figure 5.4: Experimental electron spectra obtained with radial polarization (red curve), linear polarization
(blue curve) and linear polarization at reduced energy (green curve).

We nonetheless consistently observe an electron beam emitted very close the specular direction, while
another spot remains visible between the normal and specular directions, as can be seen in figure 5.3(c).
This peak has a narrower divergence, typically in the 50 mrad range, and can contain up to 200pC
(100 pC on average). In the best shots, the spot in the specular direction can even contain more charge
than the spot located between specular and normal, which results in an electron beam with a divergence
halved compared to the electron beam accelerated with linear polarization. An example of such shot is
shown in figure 5.3(d). It can be noted that the shot-to-shot fluctuations have prevented us from clearly
establishing the precise influence of the gradient scale length in this regime.

When rotating the waveplate to generate azimuthal polarization, the electron peak in the center fades
away, as shown in figure 5.3(b). In this case, a significant amount of electrons tend to be located on the
other side of the hole, between the specular and the grazing directions.

Overall, we remark that electrons are only emitted in the specular direction when radially polarized
pulses, which possess a considerable longitudinal electric field, are used. This strongly suggests that
these electron are, as initially desired, accelerated by the E, field.

Figure 5.4 shows the electron energy spectra recorded at the position of the bright spot for linear
polarization and at the position of the specular spot for radial polarization. With linear polarization, the
maximum reached energy is 11 MeV with a peak at 6 MeV while with radial polarization the maximum
energy is 6 MeV with a peak around 2 MeV. In order to obtain a similar spectrum with linear polarization it
is necessary to reduce the laser energy by 30% (we have in this case 320 mJ on target and ag ~ 4.3).

5.1.3 High-harmonic generation

With the purpose of gaining additional insight on the interaction, we also study the generation of high-
harmonics, which is closely related to the generation of fast electrons in the relativistic regime [23, 24].
Figure 5.5 shows typical angularly resolved harmonic spectra for linear, radial and azimuthal polarization
between harmonic orders 9 and 18. When the waveplate is introduced in the beam the total harmonic
yield decreases. Each spectrum is therefore renormalized separately in figure 5.5. In the case of az-
imuthal polarization, we observe interference fringes on each harmonics in the 6, angle. These fringes
correspond to the interference pattern that would be generated by two sources separated by 4.8 +0.1 um
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Figure 5.5: Experimental angularly resolved harmonic spectra in the case of (a) linear polarization, (b)
radial polarization and (c) azimuthal polarization.

in the transverse y-direction. The interference patterns for consecutive harmonic orders appear to be
shifted by 7. In other words, if the signal is close to 0 at a given angle for harmonic order n, it will be
close to maximum at the same angle for harmonic order n+ 1. In the case of radial polarization, we
observe no interference pattern but we notice that the harmonic intensity can substantially vary between
even and odd harmonics (in figure 5.5(b) the even harmonics are stronger but in some other shots the
odd harmonics can become stronger).

5.2 Analysis of the experiments

5.2.1 Electron ejection and high-harmonic generation at oblique incidence

The fact that the harmonic signal in azimuthal polarization seems to originate from two sources from
either side of the incidence plane strongly suggests that only the parts of the laser for which the electric
field is directed in the incidence plane (p-polarization) contribute to high-harmonic emission, while no
harmonics are emitted from the positions where the electric field is perpendicular to the incidence plane
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Figure 5.6: Schematic view of the laser field footprint on the plasma surface for (a) linear, (b) radial or (c)
azimuthal polarization. Electrons and harmonics are only emitted when the laser is p-polarized, which
results in two distinct sources in the case of radial and azimuthal polarization.

(s-polarization). This is illustrated in figure 5.6. It has indeed been shown that, at the laser intensities con-
sidered here, the harmonics signal is suppressed when the polarization is switched from p to s (see [24]).
For linear polarization, the whole beam can be p-polarized, which leads to a single harmonic source. On
the other hand, for radial or azimuthal polarization, the locally p-polarized parts of the beam form two
separate spots which can result in two separate harmonic sources. This is supported by the fact that
the distance between the two sources obtained from the interference pattern (4.8 £+ 0.1 um) matches the
distance between the two maxima in the focal spot (4.3 =0.2 um, see figure 5.2(c)).

This physical interpretation can also be used to explain why interference patterns for consecutive har-
monic orders appear to be shifted by . We indeed know that the harmonic signal is emitted periodically
at a precise phase of the incident laser field. Since, for either radial or azimuthal polarization, the electric
field in the two separate sources have opposite sign, the harmonic emission is delayed by half a laser
cycle from one source to the other. This leads, for harmonic n, to a phase shift of nw between the two
sources, which results in a phase shift of 7 in the interference patterns for consecutive harmonics.

For radial polarization, we also expect to see an interference pattern but this time in the 6, angle.
However, the fringes cannot be seen in the experiment as our spectrometer samples the harmonic beam
at a given 6,. Therefore, the spectrometer only sees one position in the interference pattern for each
harmonic. Since there is a & phase difference between consecutive harmonic patterns, this means that
the harmonic intensity may strongly vary between odd and even harmonics, which is precisely what we
observe in figure 5.5(b).

In order to confirm this physical explanation, we turn to 3D PIC simulations using the code Warp
combined with the high-performance library PICSAR. We use the high-order Pseudo-Spectral Analytical
Time Domain (PSATD) Maxwell solver which strongly reduces numerical dispersion, with a stencil spatial
order of 100 and 8 guard cells (see section 2.2.4). Each of the simulations presented here costs around
3 million computation hours on supercomputer Mira at the Argonne Leadership Computing Facility. We
use in the simulations a spatial resolution of Ax = Ay = Az = A /57, a temporal resolution of Az = T' /57
(where T is the laser period) and 6 particles per cell per specie. The laser impinges the plasma with a 60°
incidence angle, a central wavelength A = 800 nm, a beam waist of wy = 3.1 um and a pulse duration of
24 fs in FWHM of intensity. The peak normalized amplitude of the transverse field is ay = 5.4 for linear
polarization and ag , = 4.9 (corresponding to ag , = 0.94) for radial and azimuthal polarization. A cosine
temporal envelope is used. The plasma density profile is exponential with a minimum density of n./20, a
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maximum density of 100 n. and a gradient scale length of either L= A /10 or L = A /7. Finally, a moving
window is used in order to follow the trajectory of the electrons in the reflected pulse up to 80 wm away
from the plasma (approximately 2 Rayleigh lengths).

Angularly resolved harmonic spectra obtained from the simulations are displayed in figure 5.7. In
panels (a) to (c), the harmonics are resolved in the 6, direction so that they can be directly compared
with the experimental measurements shown in figure 5.5. A very good agreement is found: in azimuthal
polarization, we observe interferences with a phase shift of & between consecutive harmonics while in
radial polarization we notice that the harmonic intensity considerably differs between even and odd har-
monics. In figure 5.7(d), the angular dependence is shown with respect to the 6, angle in the radially
polarized case, allowing us to uncover the interference pattern which is not visible in experiments. Both
the experimental and simulation harmonic spectra show clear evidence that using either radial or az-
imuthal polarization results in two separate harmonic sources that correspond to positions where the
laser is locally p-polarized. This is once again supported by the fact that the distance between the two
sources obtained from the simulation harmonic signal is =~ 4.7 um, which is consistent with the theoretical
distance between the two maxima in the focal spot (vV2wg ~ 4.4 um).

As we have stated in the first chapter, the harmonics are emitted via the Relativistic Oscillating Mir-
ror (ROM) mechanism, which occurs as the reflecting plasma surface oscillates nonlinearly following the
laser field (see section 1.4.3.2). At the moments when the oscillating electrons are pulled towards vac-
uum, the incident field is strongly Doppler upshifted, leading to the high-harmonic generation. At the
same time, part of the oscillating electrons acquire a high enough energy to escape from the plasma,
leading to the ejection of electrons. Since both electron and high-harmonic emissions are originating
from the same oscillation of the plasma surface, they happen simultaneously and are efficient for the
same laser and plasma parameters. Such a correlation between ROM harmonics and electron ejection
has indeed been observed experimentally [24]. In the case of radial or azimuthal polarization, we have
just seen that harmonics are only generated at the positions where the laser is locally p-polarized. We
can therefore expect a similar behaviour for electron ejection, which would mean that the electrons are
emitted from two separate sources.

In order to confirm this prediction, we plot in figure 5.8 the initial position of the electrons that are
ejected from the plasma in the simulations. As anticipated, only the p-polarized parts of the laser con-
tribute to electron ejection, which results in two distinct electron sources in radial and azimuthal polar-
ization. The fact that electron emission only occurs at specific parts of the focal spot can partly explain
the significant shot-to-shot fluctuations observed in experiments with radial and azimuthal polarization.
We have indeed seen that the focal spot possesses an asymmetry (see figure 5.2(c)) which can vary
depending on the shots. Shots with a higher intensity in the p-polarized parts of the beam will result in a
much higher detected charge than shots with a higher intensity in the s-polarized parts of the beam.

From a VLA point of view, the fact that the E, field in radial polarization does not contribute to electron
injection and that the interaction is still dominated by the transverse fields is not ideal. Indeed, the initial
purpose of using radial polarization was to accelerate the electrons close to the optical axis where the
transverse fields are negligible whereas in our case the electrons are injected on the side of the beam
where the transverse fields are the highest. Nevertheless, the fact that we have detected experimentally
electrons in the longitudinal direction suggests that it is possible for some electrons to reach the optical
axis after being injected on the side of the beam.

Another important result of the simulations is that the laser partially loses its spatial structure upon re-
flection. Indeed, high-harmonic generation is more efficient in the p-polarized parts of the pulse whereas
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Figure 5.7: Results from 3D PIC simulations. Angularly resolved harmonic spectra for (a) linear, (b),(d)
radial or (c) azimuthal polarization. The angular dependence is shown with respect to the 0, angle in
panels (a) to (c), which corresponds to the experimental case, and with respect to the 6, angle in panel
(d), so that the interference pattern becomes apparent. These images have been obtained with ay = 5.4
for linear polarization and ao , = 4.9 for radial and azimuthal polarization and a gradient scale length
L = A/10. Detailed simulation parameters are provided in appendix B.
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Figure 5.8: Results from 3D PIC simulations. Initial position of the electrons that are ejected 4 um away
from the plasma in the case of (a) linear, (b) radial or (¢) azimuthal polarization. These images have been
obtained with ag = 5.4 for linear polarization and ao , = 4.9 for radial and azimuthal polarization and a
gradient scale length L = A /10. Detailed simulation parameters are provided in appendix B.

the reflectivity of the fundamental frequency is higher in the s-polarized parts of the pulse, since the laser
spends in this case less energy in the generation of harmonics and fast electrons. Consequently, the
reflected laser field no longer has cylindrical symmetry. Figure 5.9 displays snapshots from the PIC sim-
ulation with radial polarization showing the laser pulse in the incidence plane before and after reflection.
We most notably observe that the hole in the intensity distribution at the center of the laser is suppressed
after the interaction. This may make the VLA process in the reflected pulse more complex. In particu-
lar, we remark that high-amplitude harmonic fields, which have a much longer Rayleigh length than the
fundamental pulse, remain present on the optical axis far from the plasma. Such harmonic fields could
cause an unwanted deflection of electrons accelerated by the longitudinal field close to the optical axis,
where transverse fields are usually negligible.

5.2.2 Electron distributions

If the harmonic spectra obtained in PIC simulations showed excellent agreement with experiments, we
find that it is more difficult to reproduce the electron angular and energy distributions in the 3D PIC simu-
lations with radial and azimuthal polarization. In particular, we have observed, as will be seen hereafter,
that a better agreement could be found in radial polarization by reducing the laser intensity. Consequently,
the electron distributions shown here have been obtained with a lower value of ay compared to the pre-
vious images. Figures 5.10(a) and (b) show typical electron angular distributions obtained in simulations
with respectively radial and linear polarization. Before commenting these distributions, it must be noted
that they have been obtained after propagating the reflected pulse 80 um away from the plasma. Even
though this value exceeds two Rayleigh lengths for the fundamental frequency, some electrons are still
interacting with the laser and these distributions are therefore susceptible to evolve. In the linearly polar-
ized case, we nevertheless find that the main features of the experimental angular distribution are well
reproduced: most electrons are accelerated between the specular and normal directions (6, > 0) and
there is virtually no electron emitted in the specular direction. This is in good agreement with previous 3D
PIC simulations performed with similar laser and plasma parameters [133, 24]. When the polarization is
switched to radial, we observe as in experiments more electrons located around the specular direction,
which could correspond to electrons accelerated by the E, field. However, we find that this does not lead
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Figure 5.9: Results from a 3D PIC simulation. Laser magnetic field in the incidence plane with radial
polarization, either (a) before or (b) after the interaction. Here, the magnetic field is given in units of ag
(Bo = m,w/e). These images have been obtained with ay , = 4.9 and a gradient scale length L = 1./ 10.
Detailed simulation parameters are provided in appendix B.

to a reduction of the electron beam angular spread.

The energy spectra obtained at the angles indicated by the black circles in figure 5.10 are shown in
figures 5.11(a) and (b). We first point out that these distributions have been obtained with an intensity
about two times lower than the experimental value estimated in section 5.1.1. Even with this decrease in
the field amplitude, we observe that electrons in the simulation with radial polarization acquire an energy
that is approximately twice as high as detected experimentally. This suggests that imperfections appear-
ing in the laser focal spot (such as intensity inhomogeneities and phase aberrations) when the waveplate
is introduced may degrade the acceleration process compared to the ideal case that is considered in
the simulations. This would be consistent with the facts that electron ejection from the plasma depends
nontrivially on the laser parameters and that VLA is sensitive to the initial injection conditions as well as
to the exact shape of the laser [104]. As an illustration of the effect that imperfections can have on the
interaction, we can mention that it was recently shown that longitudinal chromatism can have a consider-
able impact on VLA with radially polarized beams [180]. Moreover, we remark in figure 5.11 that, unlike
in the experiments, using radially polarized pulses with similar parameters does not lead to a decrease in
the electron energy compared to linear polarization, which tends to corroborate our interpretation.

To obtain an electron energy spectrum matching the experimental one, we have performed another
simulation with radial polarization with an intensity even further decreased to approximately a tenth of
the experimental value given in section 5.1.1. Although this is a large difference, we find that it leads
to a good agreement with experiments, as can be seen in figure 5.11(c). This shows the extent to
which the acceleration process seems to be negatively affected by the imperfections introduced by the
waveplate. Interestingly, we find that reducing the laser intensity leads to a much more collimated electron
beam, whose angular distribution is shown in figure 5.10(c). This distribution resembles that of the best
experimental shots with radial polarization (see figure 5.3(d)), which confirms that a better agreement



216

Chapter 5. Experiments at oblique incidence with radial polarization

Radial (a,,=3.

0 a.u. 1
o —
3)

Linear (a0=3.6

| (o) ] [(b) ™%~ & 1100 5
- h - . ©
d 0 g
= = == b 100~
-200 0 200 200 0 200
0, (mrad) 0, (mrad)
Radial (a,,=1.6) Azimuthal (a,,=1.6)
._'Ii.‘-.l"‘ = (d) +5 = 100 _’8‘
5 © E
—100;;
0, (mrad) 0, (mrad)

Figure 5.10: Results from 3D PIC simulations. (a)-(b) Angular distributions of the electrons with an energy
greater than 1 MeV obtained at the end of the simulations with (a) radial polarization and ay , ~ 3.3, (b)
linear polarization and ay ~ 3.6, (c) radial polarization and ay , ~ 1.6 and (d) azimuthal polarization and
ao,r ~ 1.6. Panel (b) has been obtained with L = A /10 while the other panels have been obtained with
L = A /7. Detailed simulation parameters are provided in appendix B.
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Figure 5.11: Results from 3D PIC simulations. Energy spectra of the electrons located within 30 mrad of
the black circles shown in figure 5.10. Panel (b) has been obtained with L = A /10 while the other panels
have been obtained with L = A /1. Detailed simulation parameters are provided in appendix B.
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with experiment is found by reducing the intensity. We also once again find that using radial polarization
can result in a significant decrease in the electron beam divergence. However, the simulations are not
entirely satisfactory as they indicate that increasing the energy of the laser, and thus of the resulting
electron beam, leads to a broadening of the angular distribution.

We can point out that we do not obtain a similarly narrow electron beam in the specular direction with
azimuthal polarization. For example, we show in figure 5.10(d) the angular distribution obtained with the
same parameters as in figure 5.10(c), except that the polarization is changed from radial to azimuthal. We
find in this case that the electrons are emitted with a very wide divergence of the order of 600 mrad (which
is not entirely visible in figure 5.10(d), for direct comparison with the other numerical and experimental
distributions).

In the remainder of this section, we investigate the reasons why we obtain a narrow divergence with
radial polarization when ag , = 1.6, but not when ao , = 3.3, with the ultimate purpose of understanding
the conditions leading to a high-quality electron beam. We can first note that the electrons forming the
sharp peak in figure 5.10(c) have a final energy (up to ~ 5 MeV) that is much lower than the theoretical
maximum energy gain (= 47.5 MeV for a peak power of ~ 2.4 TW). This could mean that the peak in
the angular distribution originates from electrons having ponderomotive trajectories, as in the test-particle
simulation presented in section 4.2.4. This would be consistent with the fact that the electrons forming
this peak tend to explore multiple optical cycle of the laser in the PIC simulation. However, this is not a
sufficient explanation of why the electron beam is only well-collimated in the simulation with ag , = 1.6.
Indeed, the electrons accelerated near the specular direction in figure 5.10(a) also have an energy that is
much lower than the theoretical maximum energy gain (=~ 95.1 MeV for a peak power of ~ 9.4 TW) and
also tend to explore multiple optical cycle of the laser in the PIC simulation.

In order to understand the fundamental differences between the angular distributions of figures 5.10(a)
and (c), we have further analyzed the trajectories of the corresponding electrons in the PIC simulations.
We first find that, if electrons are ejected in two spatially-separated bunches (corresponding to positions
where the laser is locally p-polarized, as previously seen), only the electrons initially in the bunch located
on the right (such that z > 0) in figure 5.8(b) contribute to the collimated spot in the specular direction in
figure 5.10(c). This can be understood fairly easily and is illustrated in figure 5.12. The main reason is that
the electrons are ejected from the plasma at a phase which is such that they tend to be deflected towards
the normal direction by the transverse fields. This explains why the electrons are detected between the
specular and normal directions (6, > 0) with linear polarization, rather than between the specular and
grazing directions. In the case of radial polarization, electrons initially in the bunch such that z < 0, la-
beled "bunch A" in figure 5.12, tend to directly escape on the side of the beam and thus never interact
with the E, field. On the other hand, electrons initially in the bunch such that z > 0, labeled "bunch B"
in figure 5.12, tend to be shifted towards the center of the pulse, where they may be accelerated by the
E. field. The fact that electrons have different trajectories depending on their initial location will also fur-
ther increase the fluctuations in the experimental angular distributions when the focal spot possesses an
asymmetry that varies from shot to shot, as was the case in the experiments.

In the following, we focus on the electrons initially in "bunch B", both in the simulation with ag, = 1.6
and the simulation with ap, = 3.3. As we have just explained, these electrons are initially on the side
of the reflected laser pulse but a significant fraction of them are shifted towards the center of the beam
and subsequently spend a long time close to the optical axis where the longitudinal field has a high
amplitude. This is another indication that the electrons emitted in the specular direction are, at least partly,
accelerated by the E, field. We show in figures 5.13(a) to (d) the angular distribution of the electrons such
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Figure 5.12: Schematic illustration of electron emission from the plasma in the incident plane for linear (a)
and radial (b) polarization. The green arrows in the reflected field indicate the direction of the transverse
electric field seen by the electrons immediatly after they are ejected. The electrons are always emitted at
a phase such that they tend to be deviated towards the normal direction (this implies in particular that the
phase at which electrons are ejected is shifted by T between spot A and spot B). For radial polarization,
the electrons originating from spot B are more likely to interact with the E, field than those coming from
spot A. Detailed simulation parameters are provided in appendix B.
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that z > O initially, either ~ 80 fs after reflection or at the end of the simulation, ~ 270 fs after reflection.
At the beginning of their interaction, the electrons have a very narrow angular spread in the 6, direction
in both simulations. In the lower intensity case (ap,, = 1.6), this angular divergence remains small until
the end, and we eventually observe a collimated beam in the specular direction. On the opposite, when
the intensity is increased, a considerable widening of the angular distribution in the 6, direction is visible.
This means that electrons initially accelerated in the longitudinal direction are deflected in the transverse
direction during their interaction with the reflected beam. This deflection, occuring far from the plasma,
could be due to the harmonic fields which, as previously stated, have a longer Rayleigh length and remain
for a long time close to the optical axis. The harmonic fields are much more intense in the simulation with
ap,» = 3.3 because the high-harmonic generation efficiency increases nonlinearly with the intensity [29],
which would explain why the electrons are not deflected in the simulation with ag , = 1.6.

In order to test this possibilty, we perform inexpensive 3D test particle simulations of the acceleration
of an electron bunch by an ideal radially polarized pulse, which has no high-harmonic content. To simplify
the interaction, we only consider a single attosecond electron bunch which is, as in experiments, initially
located off the optical axis where the transverse fields are the most intense. The electrons start their
interaction at a zero of the E, field and the initial phase is chosen such that the electrons are pushed by the
transverse fields towards the optical axis, which corresponds to the electron bunch B in the simulations.
The electrons are initially at the focus of the laser, around 4 optical cycles before the temporal center of
the pulse and have a Gaussian distribution both in real and momentum space, with an adjustable mean
and variance. We use in the simulations a laser with a central wavelength of A = 800 nm, a beam waist
of wo = 3.1 um, a pulse duration of 24 fs in FWHM of intensity and a peak normalized amplitude of the
radial electric field of ag , = 2.6 or ap , = 1.3. These values are slightly lower than in the PIC simulations
to take into account the fact that the reflectivity of the plasma mirror is smaller than unity.

We find that, with an approriate choice of parameters for the initial electron bunch, it is possible to
obtain similar trajectories as in the PIC simulation with the lowest intensity. For example, we show in
figures 5.13(e) and (f) the angular distributions obtained either ~ 80 fs after focus or ~ 270 fs after focus
for an electron beam initially located 2 um from the optical axis with an initial mean kinetic energy of 1 MeV
and an average angle of 10° away from the specular direction, oriented towards the grazing direction.
The initial standard deviations of the Gaussian distributions are o, = 0.17 um and 6, = 0.9 mc in the
longitudinal direction and oy, = 0.5 um, oy = 1.2 um, 0, = m.c and 6,, = 0 in the transverse directions.
We observe as in the PIC simulations the formation of a collimated spot in the specular direction. The
test particle simulation additionally allows us to calculate the work done by the different components of
the electric field. We find that the electrons emitted in the collimated spot gain most of their energy from
the work done by the E, field, which provides further evidence that the electrons detected in the specular
direction in experiments are indeed accelerated by the longitudinal field.

When increasing the intensity in the test-particule simulations, we are unable to reproduce the large
broadening of the angular spread in the 6, direction that was observed in the PIC simulation. For instance,
we show in figures 5.13(g) and (h) the angular distributions obtained for an electron beam initially located
3.1 um from the optical axis with an initial mean kinetic energy of 2 MeV oriented towards the specular
direction. The initial standard deviations of the Gaussian distributions are o, = 0.19 um and 6,, = m,.c
in the longitudinal direction and oy = 0.8 um, o, = 0.8 um, 0, = 3.2 m.c and o, = 0 in the transverse
directions. We observe that the electron beam remains collimated in the y-direction, which strongly differs
from the PIC simulation. This is an indication that the high-harmonics fields, which are not included
in the test-particle simulations, are indeed deflecting the electrons off the optical axis.
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Figure 5.13: (a)-(d) Angular distribution of the electrons such that z > 0 initially in the 3D PIC simulation
with (a)-(b) ap,, = 1.6 or (c)-(d) ap, = 3.3. The distributions are shown either ~ 80 fs after reflection
or = 270 fs after reflection, which corresponds to the end of the simulation. (e)-(h) Similar angular
distributions reproduced in test-particle simulations. The laser intensity is slightly reduced in the test-
particle simulations to take into account the energy absorption by the plasma mirror. Detailed simulation
parameters are provided in appendix B.



5.3. Conclusion 221

5.3 Conclusion

These experiments have demonstrated for the first time the possibility to accelerate electrons to relativistic
energies with a radially polarized laser pulse. This provides a clear validation of the effectiveness of the
plasma mirror injection method studied in the previous two chapters. It was shown that radial polarization
can lead to acceleration in the longitudinal direction and reduce the divergence of the electron beam
compared to linear polarization. We have also noted some interesting differences in the physics of the
laser-plasma interaction at oblique incidence, as using either radial or azimuthal polarization leads to
two distinct sources of electrons and high-harmonics. This is not ideal for electron acceleration as the
electrons are mainly injected by the E, field at a position of the beam where the longitudinal field is
negligible. Moreover, the radially polarized structure is partially lost upon reflection, which results in
particular in strong harmonic fields which may deviate the electrons located on the optical axis if the laser
is intense enough. While these limitations have not prevented us from obtaining a narrow divergence
electron beam, PIC simulations indicate that they will make this acceleration method at oblique incidence
difficult to scale to larger laser (and electron) energies because we expect in this case an increase in the
electron beam angular spread. This result indicates that normal incidence should be favoured in future
experiments with radial polarization.






Conclusion and perspectives

In this thesis, the interaction between an overdense plasma and a femtosecond relativistic intensity laser
pulse has been investigated in two rather unusual regimes.

First, we have considered the case of few-cycle pulses. For short gradient scale lengths (L < A),
reducing the pulse duration does not fundamentally change the interaction. We nonetheless observe that,
for a given pulse energy, shorter durations result in higher electron energies because of the increased
intensity. For longer gradient scale lengths (L > A), extremely short pulse durations can on the opposite
drastically change the interaction. In this case, the laser now satisfies the resonance condition as it
propagates in the underdense part of the preplasma and is therefore able to trigger high amplitude plasma
waves. Electrons can be injected by ionization into these rotated wakefields and accelerated to relativistic
energies towards vacuum.

This result confirms that few-cycle pulses may provide access to new acceleration regimes. It more
generally shows that new electron emission mechanisms can still be identified from the interaction of an
ultraintense laser pulse with an overdense plasma. This is especially true for long gradient scale lengths.
Indeed, although many experiments have been performed in this case, clearly establishing the existing
acceleration mechanisms and the precise conditions for which they occur remains challenging. Fully
understanding the physics of the interaction at these long gradients will require more experiments with
diverse parameters and precisely controled conditions. We anticipate that this field will profit from future
progress in the control and diagnostic of the plasma density profile, since we have seen that uncertainties
associated with the preplasma expansion could result in uncertainties on the analysis of experimental re-
sults. The current development and increase in accessibility of high-resolution 3D PIC simulations will
likely also be highly beneficial to the accurate modeling of coming experiments.

Secondly, we have considered the case where the incident laser has radial polarization. We have
first seen that plasma mirrors can ideally inject electrons into the reflected pulse, where they can be
accelerated to high energies. This has been confirmed for normal incidence in PIC simulations and for
oblique incidence both in PIC simulations and in experiments. The ejected electrons can be directly
accelerated in the longitudinal direction by the E, field, which can, under adequate conditions, result in a
smaller angular spread than with linear polarization. This precisely corresponds to the initial objective of
using radially polarized pulses, which confirms that such beams have an excellent structure for vacuum
laser acceleration.

Nonetheless, while relativistic energies can be obtained in a robust manner with this acceleration
scheme, the simulations indicate that the conditions leading to very narrow angular spreads are more
difficult to predict. This is largely due to the inherent intricacy of the laser plasma interaction and of
the subsequent acceleration in vacuum, which is sensitive to the exact initial electron distributions. At
oblique incidence, the interaction in vacuum is made even more complex by the partial loss of the radially
polarized structure which is caused by the difference in the reflectivity between the s and p-polarized parts
of the beam. We anticipate that this phenomenon, which leads to the emergence of strong transverse
fields on the optical axis, could be the main limit preventing the obtention of high-quality electron beams
with large energies at oblique incidence.
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Overall, the range of parameters for which acceleration is optimal is quite narrow. First, the electrons
should be accelerated to high energies (> 10 MeV) so that they are emitted close to the specular direc-
tion. This mandates to use of lasers with high peak powers and tight focusings. Next, the interaction
should be perfomed at normal incidence so that the radially polarized structure is preserved, ensuring
that the deflecting transverse fields remain weak close to the optical axis. Finally, few-cycle pulses are
preferred because we have observed that only electrons injected in the first few bunches tend to be well-
collimated. With such short pulse durations, the CEP of the laser should be stabilized since we have
seen that it can have a considerable impact on the injection of electrons from the plasma. In these opti-
mal conditions, which correspond to parameters targeted by the SYLOS laser at the ELI-ALPS institute
in Hungary, the obtained electron beam is expected to have peaked angular and energy distributions.
This could make VLA with radial polarization a credible alternative to laser wakefield acceleration in the
quest for ultrafast electron diffraction experiments with sub-10 fs resolution. This therefore clearly calls for
experiments to be carried out in this promising scenario. Such experiments would also be the occasion
to confirm the predicted large effect of the CEP on the interaction. In order to attain these objectives, two
challenges should be overcome:

e Existing experiments should be adapted so that they can be performed at normal incidence and
that an electron beam backpropagating towards the employed focusing optical element can be
detected. In the case where this would be too difficult to achieve, experiments at quasi-normal
incidence could be considered. An interesting follow-up study would therefore be to investigate
whether results at small incidence angles would be significantly different from results at normal
incidence.

e Efforts should be made to generate high-quality radially polarized pulses with relativistic intensity.
We have indeed seen that the waveplate used to generate radial polarization in the experiments
with the UHI100 laser could bring about imperfections in the incident laser pulse. We suspect
that these imperfections have in turn deteriorated the acceleration process to the point that (i) we
had to reduce the intensity by nearly an order of magnitude in the PIC simulations so that a good
agreement with the experimental results could be found and (ii) electrons were accelerated in ex-
periments to significantly higher energies with linear polarization than with radial polarization. This
shows in particular that VLA with radial polarization can only be competitive with other acceleration
methods if the laser beam has a very good quality, which should probably be as close as possible
to the ideal case that is considered in the simulations. Furthermore, we have also observed that
introducing the waveplate has led to a substantial increase in the shot-to-shot fluctuations, which
have prevented the study of the influence of crucial parameters, such as the gradient scale length.
Drastically improving the stability of the radially polarized beam is also a necessary step so that the
optimal acceleration regimes can be identified experimentally and so that the generated electron
beams can eventually be used in applications in ultrafast science.

All in all, we can remark that the experimental requirements for achieving high-quality acceleration
appear to be much more stringent for VLA with radial polarization than for laser-wakefield accelerators.
Experiments should be performed at normal incidence, using ~ 100 mJ few-cycle pulses with a high tem-
poral contrast, and even with a precise control of the CEP. However, this does not necesarily mean that
there is no benefit from this acceleration scheme. For instance, since the interaction with the plasma only
occurs on the surface and is only used for injection, we could expect the acceleration in vacuum to be
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less subject to nonlinear phenomena than laser wakefield acceleration, which relies on the propagation
of an ultraintense laser pulse inside a plasma. This could result in improved stability, which might in the
end be a decisive advantage for applications.

On a broader level, this study with radially polarized pulses illustrates the potential for tunability of
plasma mirrors as a source of synchronized electrons and high-harmonics or as a test-bed for studying
laser-plasma interactions. Here, simply by changing the laser polarization state, we have been able to
trigger the acceleration of electrons in the specular direction and the emission of high-harmonics in two
separate interfering sources. We have examined the case of radial polarization, due to its attractive ca-
pacity as an electron accelerator, but many other exotic beam structures can also in principle be used.
We can mention for example laser beams carrying orbital angular momentum, which have been previ-
ously studied in the case of plasma mirrors [181] and also in the case of underdense targets [182] as
a way to further control the interaction (in the latter case for instance to obtain donut-shaped wakefields
that can be useful for positron acceleration).

Shaping the laser in order to study new physical processes can now be considered as an established
technique, as is demonstrated by the recent experimental results obtained on plasma mirrors with beams
carrying orbital angular momentum and with radially polarized beams. Nevertheless, using exotic pulses
to generate high-quality electron beams might prove more challenging. In our case for example, we have
just stated that converting the polarization from linear to radial has resulted in an overall deterioration of
the plasma mirror as a source of energetic particles due to imperfections in the radially polarized pulse.
This may be a more general feature of ultrahigh intensity exotic beams: in order to obtain improved results
compared to a standard Gaussian beam, not only should the new beam structure be able to enhance the
interaction in principle (e.g. in simulations), but it should also have in practice (i.e. in experiments) a high
enough quality so that the degradations induced by the beam imperfections do not outweigh the benefits
of the chosen structure. The latter point could be critical for the tunability of plasma mirrors as source
of particles and radiations and strongly motivate further research towards the generation of high-quality
relativistic intensity exotic beams.

It is also worth mentioning that the adaptability of plasma mirrors comes not only from the possibility
of shaping the incident laser pulse but also from the possibility of shaping the plasma density profile. This
can be achieved either by using preformed targets [183] or spatially shaped prepulses [184]. This could
also open up new possibilities and provide an even high degree of control over the interaction. We could
for instance consider adjusting the density profile in order to optimize the injection process into a radially
polarized beam.

Of course, plasma mirrors are currently not competitive with gas targets as a source of ultrashort
electrons and high-harmonics. This could however change in the future due to continuing progress in
laser technology and in the control of the interaction. We should in particular keep in mind that high-
harmonic generation and electron emission mechanisms at short gradients have only been understood
fairly recently and offer an interesting potential for tunability and optimization (the promising interaction at
normal incidence with radial polarization is a good illustration). At longer gradients, we can even expect
to find new processes for accelerating electrons, whose potential as a source is by definition unknown. In
any case, there are still interesting physics to explore in the field of laser-overdense plasma interaction.






Appendix A: 3D PIC simulations with Salle
Noire laser parameters

We present in this appendix a 3D PIC simulation performed at oblique incidence with radial polarization
and parameters corresponding to the Salle Noire laser. This simulation is compared to the simulation
with linear polarization that was presented in section 3.3 and which was carried out with similar laser
parameters. We use in both simulations the order-100 PSATD solver with Ax = Ay = Az = A /36 and 6
macroelectrons per cell. These values might not be sufficient to attain full convergence of the simulations,
but we have observed that increasing the resolution to A /48 in the radial polarization simulation did
not significantly change the results. We use a gradient scale length L = A /7 and the following laser
parameters: a central wavelength A = 800 nm, an incidence angle 6; = 45°, a pulse energy of 2.5 mJ,
a beam waist wy = 1.5 um, a pulse duration 7 = 3.5 fs, a CEP for the reflected pulse ¢cgp = —m/2 for
radial polarization and ¢cgp = O for linear polarization (with the notations of equation 1.1). This leads to
ap = 2.92 for linear polarization and ag , = 1.77 and ag ; = 0.7 for radial polarization. We note that, since
the laser is more tightly focused, the ratio between ag ; and ag ;- is higher than in the previous simulations
carried out at oblique incidence with parameters corresponding to the UHI100 laser. We could expect
that this more important contribution from the E, field will lead to better results with radial polarization.

We show in figure A.1 the initial position of the electrons that are ejected from the plasma in the
simulation. We first notice that the shapes of these distributions become quite complex when using few-
cycle pulses. This illustrates the intricacy of the processes leading to electron ejection from the plasma.
We nonetheless still observe that electrons tend to be ejected at positions where the E, field is strong
with radial polarization. This is once again not an ideal scenario as the interaction is still dominated by
the transverse fields.

We also observe that, as previously, the radially polarized beam partially loses its stucture upon
reflection. This is visible in figure A.2 where we can see in particular that there is no longer a clear hole
on the optical axis in the transverse field distribution of the reflected pulse.

Ejected electron distributions are displayed in figure A.3. The total ejected charge is similar in both
simulations: = 63 pC with linear polarization and ~ 58 pC with radial polarization. However, we find in
this case that using radial polarization actually worsens the results compared to linear polarization. First,
the angular divergence is broader, as can be seen in figure A.3(b). Secondly, if the low energy part of
the spectrum is similar in both simulations, we observe a high energy tail that extends up to =~ 5 MeV
with linear polarization and which is not present with radial polarization. The maximum reached energy
in the latter case in only ~ 2 MeV. This means that with the chosen parameters, the structure of the
radially polarized beam is not sufficient to compensate the lower intensity coming from the conversion
from linear to radial polarization. We can note that in the simulation with radial polarization, the electron
beam already has a wide angular spread very close from the plasma surface, which is probably because
the longitudinal electron momenta remain small. This is different from the higher intensity simulation with
UHI100 parameters (see figure 5.10(a)) in which the electrons were initially well collimated before being
deflected in the 6, direction by the harmonic fields.

These simulations confirm that it can be difficult to predict experimental results when plasma mirrors
are used with radial polarization. Indeed, although we had hoped that the tighter focusing associated
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Figure A.1: Results from 3D PIC simulations with Salle Noire laser parameters. Initial position of the
electrons that are ejected 4 um away from the plasma in the case of (a) linear and (b) radial polarization.
Detailed simulation parameters are provided in appendix B.
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Figure A.2: Results from a 3D PIC simulation with Salle Noire laser parameters. Laser magnetic field
in the incidence plane with radial polarization, either (a) before or (b) after the interaction. Here, the
magnetic field is given in units of ayp (Bo = m.®/e). Detailed simulation parameters are provided in
appendix B.
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Figure A.3: Ejected electron distributions in the 3D PIC simulations with Salle Noire laser parameters. (a)-
(b) Angular distribution respectively for linear and radial polarization. (c)-(d) Energy spectrum respectively
for linear and radial polarization. (e)-(f) Correlation between energy and 6, angle with respect to normal
direction in the incident plane respectively for linear and radial polarization. Only the electrons with an
energy higher than 150 keV are displayed. The red lines and dot mark the specular direction. Detailed
simulation parameters are provided in appendix B.
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with the Salle Noire laser could improve the results thanks to a stronger E, field (relative to the E, field),
we have found that radial polarization actually deteriorates the acceleration process in this case. We
can however recall that, using the same laser parameters, we have obtained at normal incidence more
collimated electron beams with energies reaching up to ~ 10 MeV (see for instance figures 4.29(d) and
(e)) from radial polarization. The latter case corresponds to the best VLA scenario that we have observed
with Salle Noire laser parameters.



Appendix B: Parameters for PIC
simulations

Detailed PIC simulation parameters are provided in this appendix. In all simulations the plasma density
gradient is parallel to one of the grid directions and we use A = 800 nm.
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Figures Geometry Spatial step ppc Solver interp | azim moving window

1.12 2D A/30 25 Yee 3 - no

2.6 2D A/9.5-A1/19-1/28.5 0 Yee 3 - yes

2.9 2D 2/9.5-1/4.8-2./3.2 0 | PSATD-100 | 3 - yes

2.10 3D A/12.5 0 PSATD-100 3 - yes
3.18(a)-(f)-3.19(a)-(e) 2D A/143 36 Yee 3 - yes, 100 um propagation
3.18(g)-(i)-3.19(b)-(f) 3D A/36 6 | PSATD-100 3 - yes, 70 um propagation
3.20-3.38 2D A/71 4 Yee 3 - yes, 100 um propagation

3.39(a) 2D A/16 1 Yee 3 - no

3.39(b)-3.40 3D A/16 1 Yee 3 - no
4.10-4.15 r-z Ax~ A /882 ; Ar~A/205 | 50 Yee 3 1 yes, 150 um propagation
4.29 r-z Ax~A/294 ; Ar~A/68 | 200 Yee 3 1 yes, 150 um propagation
4.30 r-z Ax~A/294 ;Ar~A/68 | 30 Yee 3 1 yes, 800 wm propagation
4.31-4.32 r-z Ax~A/294 ; Ar~A/68 | 250 Yee 3 1 yes, 150 um propagation
4.33 r-z Ax~A/294 ; Ar~A/68 | 200 Yee 3 1 yes, 150 wm propagation
4.34 r-z Ax~A/294 ;Ar~A/68 | 50 Yee 3 1 yes, 800 wm propagation
5.7-5.13 3D A/57 6 | PSATD-100 3 - yes, 80 pwm propagation
A1-A3 3D A/36 6 | PSATD-100 3 - yes, 70 wm propagation

Table 1: Numerical parameters for the PIC simulations presented in this manuscript. ppc: particles per cell per species before ionization,

interp: interpolation order, azim: azimuthal decomposition order in cylindrical coordinates (azim = 1 corresponds to orders 0 and 1).
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Figures agp wgo (um) | 7 (fs) | Incidence Envelope
1.12 2.15 1.5 5 45° egs. 2.82-2.87
2.6 1 6 3.14 0° egs. 2.47-2.48
29 1 6 3.14 0° egs. 2.47-2.48
210 1 1.5 3.5 0° egs. 2.82-2.87 + eqgs. 2.47-2.48
3.18(a)-(f)-3.19(a)-(e) 2.92 1.5 3.5 45° egs. 2.65-2.66
3.18(g)-(i)-3.19(b)-(f) 2.92 15 35 45° egs. 2.82-2.87
3.20-3.26 2.57-0.98 1.5 3.5-24 55° egs. 2.65-2.66
3.32-3.35 2.15 1.5 5 40°-70° egs. 2.65-2.66
3.36 2.15 1.5 5 55° egs. 2.65-2.66
3.37 10 1.5 5 55° egs. 2.65-2.66
3.38 2.15 1.5 5 55° egs. 2.65-2.66
3.39-3.40 2-0.86 1.5 5-24 55° egs. 2.82-2.87
4.10-4.15 + 4.29 ap;=0.7;a0, =177 1.5 3.5 0° egs. 2.89-2.91
4.30 ap; =094 a0, =49 3.1 24 0° cosine + paraxial
4.31-4.32 ap, =3.78 ;ap, =9.55 1.5 5 0° egs. 2.89-2.91
4.33 ap,=17;a0,=17.7 1.5 3.5 0° egs. 2.89-2.91
4.34 ap;=12.7; a9, =32 1.5 24 0° cosine + paraxial
5.7-5.8 5.4 3.1 24 60° cosine + paraxial
5.7-56.9 ap; =094 a0, =49 3.1 24 60° cosine + paraxial
5.10(b)-5.11(b) 3.6 3.1 24 60° cosine + paraxial
5.10(a)-5.11(a)-5.13(c),(d) ap;=0.63;a0,=33 3.1 24 60° cosine + paraxial
5.10(c),(d)-5.11(c),(d)-5.13(a),(b) | ao,=0.31;a9,=1.6 3.1 24 60° cosine + paraxial
A.1(a)-A.3(a)-(e) 2.92 1.5 35 45° egs. 2.82-2.87
A.1(b)-A.2-A.3(b)-(f) ap,=0.7;a0,=1.77 1.5 35 45° egs. 2.89-2.91

Table 2: Laser parameters for the PIC simulations presented in this manuscript. cosine + paraxial: cosine temporal envelope with
paraxial approximation fields.
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Figures L (/) nyax (/ne) | maan (/ne) | Te (eV) | T; (eV) lons
1.12 0-1/7-2 100 1/20 0 0 co*
3.18(a)-(f)-3.19(a)-(e) 1/7 200 1/20 0 0 o8+
3.18(g)-(i)-3.19(b)-(f) 1/7 100 1/20 0 0 cot
3.20-3.35 Hydro (80 ps) - 1/450 0 0 Si*t + 0%
3.36 Hydro (6-130 ps) - 1/450 0 0 Si*t + 0%
3.37-3.38 Hydro (80 ps) - 1/450 0 0 Si*t + 0%
3.39-3.40 Hydro (80 ps) - 1/140 0 0 Sitt
4.10-4.15 + 4.29 1/7 200 110 50 10 ~08+
4.30 1/7 20 1/5 50 10 ~08*
4.31-4.34 1/7 200 1/10 50 10 ~08+
5.7-5.9-5.10(b)-5.11(b) 110 100 1/20 0 0 cot
5.10(a),(c),(d)-5.11(a),(c),(d)-5.13 1/7 100 1/20 0 0 cot
A1-A3 1/7 100 1/20 0 0 cot

Table 3: Plasma parameters for the PIC simulations presented in this manuscript. L: plasma gradient scale length, T, : elec-
tron temperature, T;: ion temperature. Simulations with initially fully ionized ions correspond to simulations with ionization
turned off.
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We propose a method to generate femtosecond, relativistic, and high-charge electron bunches using few-
cycle and tightly focused radially polarized laser pulses. In this scheme, the incident laser pulse reflects off
an overdense plasma that injects electrons into the reflected pulse. Particle-in-cell simulations show that the
plasma injects electrons ideally, resulting in a dramatic increase of charge and energy of the accelerated
electron bunch in comparison to previous methods. This method can be used to generate femtosecond pC
bunches with energies in the 1-10 MeV range using realistic laser parameters corresponding to current kHz

laser systems.

DOI: 10.1103/PhysRevLett.119.094801

The advent of femtosecond lasers that can reach enor-
mous intensities, well beyond 10'® W/cm? [1], brings
about new possibilities. Among these, the acceleration of
electrons to relativistic energies in very short distances is
particularly promising. One of the many advantages of
using lasers to accelerate electrons is the possibility to
create ultrashort relativistic electron beams, with durations
of a few femtoseconds [2]. As they are perfectly synchron-
ized with the driving laser, these electron beams could
drastically reduce the time resolution in various experi-
ments such as ultrafast imaging and diffraction [3,4] or
femtosecond pulse radiolysis [5]. As of today, laser wake-
field accelerators [6] have paved the way to electron
acceleration in the 100 MeV to multi-GeV range using
100 TW to PW laser drivers [2,7], with low repetition rates.
However, these beams are inappropriate for the aforemen-
tioned applications as lower energy electrons but high
reliability and statistics, and thus higher repetition rates are
required. There is therefore a strong need for electron
sources with MeV energies and high-repetition rates.
Despite recent progress of kHz laser wakefield accelerators
in the MeV range [8—11], vacuum laser acceleration (VLA)
is a very good candidate for producing MeV electrons at
high-repetition rates. Indeed, in VLA, electrons are directly
accelerated using the laser fields and the energy gain scales
as AW[MeV] = 30\/W [12], showing that MeV
acceleration is possible with sub-TW laser systems. This
is of great interest because TW peak powers have been
demonstrated in milliJoule and kiloHertz laser systems, by
postcompressing laser pulses to few cycle, sub-5-fs dura-
tion [13,14]. VLA using such lasers could enable the
development of kHz femtosecond electron sources.

VLA with radially polarized laser beams (rather than with
linearly polarized beams) was proposed as a way to improve
the electron beam quality [12,15-23]. Indeed, such beams
contain both features of an efficient accelerator: an accel-
erating field in the longitudinal direction E, as well as a

0031-9007/17/119(9)/094801(5)
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radial field E, that can confine electrons close to the optical
axis. The longitudinal field E, becomes more significant as
the beam is tightly focused. Numerical simulations have
shown that VLA with radial polarization resulted in more
energetic and more collimated electron beams than VLA
with linear polarization [16]. Two schemes are commonly
proposed for injecting and accelerating electrons into
radially polarized laser pulses: (i) ionization injection, where
electrons are released near a maximum of the laser electric
field by ionizing a low density gas [21] and (ii) external beam
injection, where a preaccelerated electron beam is injected
into the laser fields [23]. At present only two experimental
results have been published, in which energy gains ranging
from a few keV to tens of keV have been obtained [18,23]. In
this Letter, we show that these modest energy gains are due
to nonoptimal injection conditions. We propose a simple
method based on the use of an overdense plasma for
optimally injecting and accelerating electrons into radially
polarized laser pulses. We show that high-charge (several
pC), relativistic (1-10 MeV) beams with femtosecond
durations can be obtained with current mJ lasers operating
at a kHz repetition rate.

We start by explaining how the initial injection condition
affects the subsequent acceleration of electrons. For sim-
plicity, we first consider the linear polarization case, with a
laser electric field E; « sin ¢, where ¢p = wyt — kyz is the
electron phase in a field with wave vector k; and angular
frequency @, In a plane wave, it is straightforward
to show [24] that the maximum energy gain is
AW o = mc?ypa(1 + | cos ¢;|)>. Here, y, is the initial
Lorentz factor of the electron, a, is the normalized
amplitude of the field, given by ay = E; ,.x/Ey with
Ey = m,cwy/e, and ¢; is the initial phase of the electron
in the laser. This formula shows that the energy gain is
highest when (i) using high amplitude laser fields,
(ii) injecting electrons inside the laser pulse at the optimal
phase, ¢, =0, i.e., at a zero of the electric field, and

© 2017 American Physical Society
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(iii) injecting electrons with a high initial energy y,. These
specific initial conditions are difficult to achieve exper-
imentally, explaining why the observation of VLA has been
a challenge. For radially polarized laser pulses, the problem
is intrinsically 3-dimensional and obtaining simple ana-
lytical estimates is quite difficult. Therefore, in the follow-
ing, we use numerical calculations to show that the
optimum injection conditions are the same as in the linear
polarization case.

Within the framework of the paraxial approximation and
assuming a Gaussian temporal envelope, the on-axis
longitudinal electric field of the lowest order radially
polarized laser beam is [15]

E (z,1) = Ezo%sind)exp <—2 log(2) 4 ;;) > (1)

With ¢ = wot — koz + 2arctan(z/z9) — o, w(z) =
wov/1 + (z%/73) is the beam waist, w, the minimum beam
waist, zg = kow3/2 is the Rayleigh length, 7, is the pulse
duration in FWHM of the intensity, and ¢ is the initial
phase. We also define a, as the normalized amplitude of
the longitudinal field: ay, = E,o/E, with E, defined ear-
lier. Because of the Gouy phase 2 arctan(z/z,), the axial
phase velocity of the beam is superluminous [19]. If the
interaction between the electron and the laser is limited
between z = 0 (i.e., the beam waist) and 7 = +o00, as is the
case for most proposed accelerating schemes, the phase
difference due to the Gouy phase is 7. As a consequence,
electrons cannot stay indefinitely in an accelerating phase
of the laser (where E, is negative). An electron can reach
high energies if it remains in an accelerating half-cycle for a
long time and net energy gains can be obtained if the
subsequent decelerating half-cycle is diminished due to
diffraction or the temporal shape of the pulse. An electron
can stay in an accelerating phase longer if it has a velocity
close to the speed of light, explaining why it is advanta-
geous to inject electrons with a high initial energy or to use
high laser amplitudes.

The efficiency of the acceleration can also be greatly
improved by carefully choosing the initial phase of the
electron. To illustrate this, we perform on-axis test particle
simulations of an electron initially at rest at r = z = 0 that
is accelerated by the field in Eq. (1), for three different
initial phases. To model current kHz laser systems [14], we
use the following parameters: Ay = 800 nm, a,, = 0.7,
wo = 1.5 um, 7y, = 3.5 fs, and ¢y = /2. With these val-
ues, using the paraxial approximation and a Gaussian
envelope is not perfectly valid but can nonetheless lead
to decent estimates for the on-axis energy gain [20].
Figures 1(b) and 1(c) show trajectories for nonoptimal
initial phases, where the electron starts respectively in front
of the laser pulse and inside the pulse at a maximum of the
electric field. This is similar to the case of the ionization of
a gas with, respectively, a low ionization energy and a high
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FIG. 1. Results from test particle simulations. (a) Waveform of

the few-cycle longitudinal electric field. The colored dots
represent the initial positions of the electron in (b)-(d). (b)-(d)
Longitudinal momentum p, along the electron trajectory for
various cases: the electron is initially at rest either (b) in front of
the pulse, (c) inside the pulse at a maximum of the field, (d) inside
the pulse at a zero of the field. The double headed arrows show
the time spent inside the main accelerating half-cycle.

ionization energy. In each of these cases, the electron
quickly dephases, resulting in negligible energy gains
(respectively, 9.3 eV and 0.81 eV). On the opposite,
Fig. 1(d) shows more efficient acceleration when the
electron is initially at a zero of the electric field. This is
because the electron starts with a whole accelerating half-
cycle and stays in it much longer than in the previous cases,
resulting in a final energy of 1.3 MeV. The above consid-
erations show that VLA with radial polarization can lead to
strong acceleration if electrons are injected (i) inside the
laser pulse (ii) at a zero of the longitudinal field and
(iii) with a high velocity in the propagation direction. While
no current experimental setup allows such subwavelength
precision, we show that these condition can be naturally
satisfied using a plasma mirror injector.

A plasma mirror is an overdense plasma with a short
density gradient, with a typical scale length of < 1,/10.
When an ultraintense laser pulse is focused on such an
overdense plasma, it reflects off the plasma which behaves
like a nearly perfect mirror (hence the term plasma mirror).
Nevertheless, while the laser pulse interacts with the
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plasma density gradient, it is able to pull out electrons and
inject them into the reflected pulse with ideal initial
conditions, allowing them to be efficiently accelerated.
Recent experiments using Gaussian lasers with linear
polarization led to a clear observation of electron accel-
eration to energies in the MeV range [25], but with rather
large divergence angles of tens of degrees [25,26]. We
demonstrate in the following that the concept of plasma
mirror injection can also be applied to radially polarized
laser pulses, potentially leading to more efficient accel-
eration and better beam quality.

We used PIC simulations with the quasi-3D code
CALDER-CIRC [27] to confirm that plasma mirrors fit-
tingly allow us to inject a highly charged bunch of electrons
near the zero of the electric field and with an initial velocity
of a few hundreds of keV. Thanks to these optimal initial
conditions, the electrons are then accelerated to relativistic
energies by the reflected pulse. In our simulation, the
plasma has a maximum electron density of 200n., with
n. = 1.7x10?! cm™3. The density decays exponentially
with a gradient length of 4 /7. The laser beam is focused on
the plasma at normal incidence, and a moving window is
started after the interaction, making it possible to follow the
ejected electrons far from the plasma. Following [21], we
use an exact closed-form solution with a Poisson-like
spectrum to model the radially polarized pulse (more
details can be found in the Supplemental Material [28]).
We take the same laser parameters as for the single
particle simulations: 4y = 800 nm, ao, = 0.7, ¢y = 7/2,
wy = 1.5 um, and 7, = 3.5 fs. Numerical parameters can
be found in the Supplemental Material [28].

Figure 2 displays three different snapshots from the PIC
simulation, showing the interaction between the laser and
the plasma. The electrons are ejected via the push-pull
mechanism that was identified and fully described for
linearly polarized beams in [31]. It consists of the following
two steps. (1) The normal component of the electric field of
the laser E, pushes electrons inside the plasma, resulting in
a density peak. As the electron density peak is pushed
deeper into the density gradient, the immobile ions create a
large restoring static field, resembling a plasma capacitor.
(2) When the density peak reaches its maximum depth
[Fig. 2(b)], the sign of the electric field switches and both
the laser and the static field work together to pull the
electrons out of the plasma. A small fraction of the
electrons inside the density peak can gain enough energy
from the plasma capacitor to be ejected from the plasma.
These electrons are ideally injected into the reflected pulse
since they start with an initial velocity at the optimal phase,
where the sign of the longitudinal field changes, and thus
start with an accelerating half cycle, represented in blue in
Fig. 2(c). This push-pull mechanism is repeated for every
cycle of the laser with a strong enough electric field in the
density gradient direction, and is optimal when the gradient
length is on the order of 4,/10 [31].

(a)

FIG. 2. PIC simulations showing the longitudinal electric field
and electron density extracted at three different timesteps. (a) The
plasma is still unperturbed by the incoming laser. (b) The
electrons are pushed into the plasma by the laser, resulting in
a density peak indicated by the yellows markers. (c) Electrons that
were in the density peak are now pulled away from the plasma,
between z =124, and z=1.71,. (See also Supplemental
Material movie [28] for more insight on the electron ejection.)

Figures 3(a) and 3(c) show the energy-angle and the
angular distributions of the electrons ejected from the
plasma mirror. The total ejected charge is about 60 pC.
Furthermore, because they are injected into the laser with
optimal initial conditions, a group of electrons representing
several pC is accelerated to relativistic energies, typically
from 1 to 8 MeV. At such relativistic speeds, the magnetic
force v, X B, opposes the radial force E, [20], mitigating
the collimating effect of the radial polarization. These
highly energetic electrons consequently form a ring-shaped
beam with a typical angle of 200 mrad with respect to the
optical axis. This divergence angle is nonetheless signifi-
cantly lower than what is achieved experimentally with
linearly polarized lasers [25,26]. Analysis of the work done
by the different forces shows that these electrons are
accelerated by VLA in the reflected pulse by the longi-
tudinal component of the electric field E_, taking full
advantage of the radial polarization. See Supplemental
Material [28] for more details.

Figures 4(a) and 4(c) show the energy spectrum and time
distribution of the electrons with 6 < 200 mrad and
E > 1 MeV, after 145 um of propagation. Such filtering
can typically be achieved using a pinhole and a magnet to
select only certain angles and energies. These electrons
represent 3.3 pC. Thanks to its high energy, this fast
electron bunch is kept ultrashort, with a duration of around
12 fs. It is possible to diminish the duration of the pulse by
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FIG. 3. (a), (b) Energy-angle distribution and (c), (d) angular

distributions of the obtained electron beam after interaction of the
pulse with (a), (c) a plasma mirror or (b), (d) argon gas. On the top
images, the electrons inside the black rectangles are the one
represented in Fig. 4. On the bottom images, the angular
distribution is represented in the form dN/dS, with
dS = dtanf, x dtan @, = d(p,/p.) x d(p,/p;)-

reducing the acceptance angle of the selected electrons, at
the cost of also diminishing the selected charge. To obtain
the time distribution plots, electrons leaving the simulation
are assumed to travel with constant speed afterwards.

In order to demonstrate the benefits of using a plasma
mirror, we also perform PIC simulations of the ionization
scheme. The same laser parameters are used, except for the
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FIG. 4. (a), (b) Energy spectrum and (c), (d) time distribution of

a chosen subset of electrons after 145 ym of propagation for (a),
(c) the plasma mirror simulation and (b), (d) the argon gas
simulation.

absolute phase ¢, which is set to z so as to have the same
value as in [21]. The gas target is either hydrogen or argon.
It is infinite in the transverse direction and is 10 ym long in
the longitudinal direction. The maximum electron density
is chosen to be 3 x 10'® cm™3, a value for which space-
charge and plasma effects are negligible [21].

In the case of hydrogen, we did not observe significant
on-axis electron acceleration. This is because hydrogen has
a low ionization energy, resulting in the electrons being
ionized early in front of the laser pulse. This leads to a case
very similar to that of Fig. 1(a) and to a low final energy. In
[21], it was reported that electrons could be accelerated by
ionizing a hydrogen target, but a much tighter focusing,
wy = 785 nm, that is harder to obtain in practice, was used
in the simulations, resulting in a higher value for ay..

With argon, however, some deeper shells electrons are
generated inside the laser pulse, making it possible to
accelerate on-axis electrons. Figures 3(b) and 3(d) show the
energy-angle and the angular distributions of the obtained
electrons. The total ejected charge is about 70 fC, 3 orders
of magnitude lower than with the plasma mirror, and a few
fC stay near the axis. The charge can nonetheless be
increased by raising the initial gas density, at the cost of
decreasing the electron beam quality [21]. The on-axis
electrons are rather well focused and have an energy
ranging from 0 to 200 keV, 1-2 orders of magnitude lower
than with the plasma mirror. The energy spectrum and time
distribution of the electrons with 8 < 0.2 rad after 145 ym
of propagation is shown in Figs. 4(b) and 4(d). This
corresponds to a selected charge of 1.7 fC. As can be
expected from its low energy and high energy spread, the
time duration of this electron bunch is already over 300 fs
after 145 um of propagation.

To conclude, plasma mirrors can inject high-charge
electron beams with optimal conditions in the reflected
pulse, making it possible to study experimentally VLA with
radially polarized beams. Femtosecond, pC bunches of
electrons with an energy between 3 and 7 MeV could be
readily obtained with current kHz lasers. Moreover, we can
take advantage of the high ejected charge to improve the
quality of the electron beam, characterized by its transverse
normalized emittance ¢, ,, by selecting only a subset of the
ejected electrons. Depending on the application, a com-
promise between the charge, the energy spread, and the
normalized emittance of the beam can be found by filtering
the electron beam, which could be achieved experimentally
with an appropriate transport beam line. For instance,
selecting electrons with an energy between 4.06 and
4.14 MeV results in a 2% energy spread, a charge of
100 fC, and a normalized emittance of ¢,,=¢,, =
0.18 pum. Emittance in the nm range can even be obtained
by further filtering the beam while still maintaining the
charge at the fC level. Such a low emittance ultrashort beam
could be of great interest for ultrafast electron diffraction
experiments.
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ABSTRACT

We measure the emission of energetic electrons from the interaction between relativistic-intensity ultrashort laser pulses and a solid density
plasma with a tunable density gradient scale length. We detect an electron beam that only appears with few-cycle pulses (<10 fs) and large
plasma scale lengths (L > 4,). Numerical simulations, in agreement with the experiments, reveal that these electrons are accelerated by a laser
wakefield. Plasma waves are indeed resonantly excited by the few-cycle laser pulses in the near-critical density region of the plasma.
Electrons are then injected by ionization into the plasma waves and accelerated to relativistic energies. In this laser wakefield acceleration
regime, the plasma waves are rotated by the plasma density gradient, which results in the electrons not being emitted in the same direction as

the driving laser pulse.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5084783

I. INTRODUCTION

Since the recent advent of ultrahigh intensity lasers, bright parti-
cle and radiation sources with a femtosecond duration have been
developed from relativistic laser-plasma interactions. These new sour-
ces are expected to find applications in various fields including medi-
cine, imaging, and ultrafast probing of matter.”” Laser wakefield
acceleration (LWFA) is an efficient process for driving relativistic elec-
tron beams with few femtosecond durations’ and energies in the
100 MeV to multi-GeV range’ ° or more recently in the few-MeV
range with kHz lasers.” ” In this scheme, the laser pulse ponderomo-
tive force drives a high amplitude plasma wave that is able to trap and
accelerate electrons over very short distances.'’ Usually, LWFA takes
place in mm-scale underdense plasmas (gas jets) but is quite inefficient
with solid targets. Indeed, for solid-density plasmas, the processes
responsible for transferring the laser energy to particles and radiation
are radically different. Understanding the pathways and mechanisms
of energy transfer to the plasma electrons is a complex and fundamen-
tal question that has implications for ion acceleration'' and high
harmonic generation.'”

It is well known that the plasma density profile at the front
surface is a key parameter that can dramatically transform the nature
of the interaction.” ' When the plasma scale length is short

compared to the laser wavelength (L < /0/10), the physics is now fairly
well understood. At moderate intensity, vacuum heating'” is the domi-
nant mechanism for energy transfer to the electrons. At relativistic
intensities, the physics becomes more complex: the laser field triggers
a periodic push-pull motion of the front surface that follows the sign
of the laser field.””' This nonlinear periodic motion leads to high har-
monic generation via the relativistic oscillating mirror mechanism”>**
and also results in electron ejection from the front surface.”" "
These electrons are subsequently injected into the reflected laser field
where they can directly gain large amounts of energy.”* In this regime,
electron emission has been reported to be optimal when the gradient
scale length is on the order of ~1,/10, with electron energies ranging
from 100 keV to multi-MeV, depending on laser intensity.”* >’

For longer gradient scale lengths, interaction in the near-critical
density part of the plasma, which has also been investigated in the
context of ion acceleration,””* becomes significant. The physics gets
extremely complex, and there is no unified description of energy trans-
fer and electron acceleration. There is a wide disparity of experimental
results, and various mechanisms have been proposed, including reso-
nant absorption,“’;” JxB heating,% ponderomotive acceleration,”’
stochastic heating,”™”” acceleration by surface quasistatic fields,”
or direct laser acceleration.’’"” However, it is still unclear what
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mechanisms actually arise in experiments and the precise experimental
conditions under which they appear are not known. This may be due
to the lack of control and measurement of the density gradients, which
makes the interpretations difficult. In this article, we show that by
using few-cycle laser pulses with durations as short as 3.5 fs, we find a
regime where LWFA occurs in the near-critical density region of the
plasma. Even though this mechanism was previously suggested to
explain experimental results with thick solid targets,”*” LWFA is here
clearly identified by varying and precisely controlling the key parame-
ters of the interaction, namely, the gradient length and the pulse dura-
tion, and by performing Particle-In-Cell (PIC) simulations with
realistic plasma density profiles. We find that this regime, which
results in the emission of an= 25°-wide stable electron beam, only
occurs with few-cycle laser pulses.

Il. EXPERIMENTAL SETUP AND RESULTS

The experiments are performed with the Salle Noire laser system
at the Laboratoire d’Optique Appliquée (LOA). The laser delivers 2.6-
m] pulses at a 1-kHz repetition rate with an extremely high temporal
contrast (>10")."* The 800 nm, 24 fs laser pulses are post-compressed
in a helium-filled stretched hollow-core fiber."*° The pulse duration
can be tuned by changing the pressure in the fiber, thereby providing
near Fourier transform limited pulses from 3.5 fs to 24 fs. The laser
beam is focused down to a 1.75 um FWHM spot, resulting in peak
intensities ranging from 2.3 x 10" W/em? (ag ~ 1) for 24 fs pulses to
1.6 x 10" W/em? (ao ~ 2.7) for 3.5 fs pulses. Here, a, is defined as the
normalized amplitude of the peak laser field: a,= Epax/Eo with E,
= mecwole, where oy is the laser frequency, ¢ is the speed of light in
vacuum, and m, and e are the electron mass and charge, respectively.
In this experiment, as shown in Fig. 1, p-polarized pulses impinge on
an optically flat fused silica (SiO,) target with an incidence angle of 0;
= 55°. A spatially overlapped prepulse, created by picking off ~4% of
the main pulse through a holey mirror, is focused to a much larger
13 um FWHM spot (see the inset of Fig. 1) in order to generate a
transversely homogeneous plasma that expands into vacuum. The

um
-10 0 10

Main Pulse

=1

Prepulse

e’-emission

FIG. 1. Schematic of the experimental setup. The laser pulses interact at a 1-kHz
repetition rate with a fused silica rotating target. Inset: superimposition of the on-
target prepulse (white) and main pulse focal spots.
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plasma density profile during the interaction is controlled by varying
the delay, At, between the prepulse and the main pulse. The density
scale length is estimated experimentally using spatial domain interfer-
ometry (SDI) and by assuming isothermal expansion.”” Backward
electron emission is measured using a Lanex screen, protected by a
13 um thick Al-foil, which detects electrons with energies >150keV.
The Lanex screen was calibrated prior to the experiment using a
3-MeV RF accelerator. The absolute charge is estimated from the elec-
tron energy spectrum obtained from the PIC simulations described
below, combined with the known spectral response of the Lanex
screen. The resulting uncertainty, of the order of 50%, is mainly due to
the fact that the exact shape of the energy spectra was not measured.
The angular electron distribution in the backward direction is
recorded for -3° < 6 < 75° and -15° < ¢ < 15°, where 0 and ¢ are
the angles with respect to the target normal in the incidence and trans-
verse planes, respectively.

Figures 2(a)-2(f) show the measured electron signal as a function
of the delay between the prepulse and the main pulse for 5 different
laser pulse durations. We first find a strong electron emission for short
delays (At < 20 ps), corresponding to a sharp plasma-vacuum inter-
face. This emission, detected for every pulse duration, is optimal for a
delay of At = 9 ps, i.e,, L < A¢/5. In this regime, the push-pull mecha-
nism mentioned in the introduction is responsible for the ejection of
electrons from the plasma.”’***” A typical electron angular distribu-
tion in this case is displayed in Fig. 2(g), showing a broad divergence
angle of ~50°.

As the delay is further increased, the detected charge drops (10 ps
< At < 30 ps) and then rises again for longer delays (At > 50 ps).
This time, however, electrons are only emitted when few-cycle pulses
(<10 fs) are used. Note that chirping a few-cycle pulse to increase its
duration results in a similar decline of the electron signal, as can be
seen in Fig. 3. This is thus a very distinct physical regime, in which the
gradient length is much larger (L > 4,) and the duration of the laser
pulse plays a major role. In this case, the obtained electron beams have
more charge and a narrower divergence angle of ~25° as is visible in
Fig. 2(h). The electrons are emitted near the specular direction, with a
slight shift towards the normal direction. The detected signal is very
stable over a wide range of delays (50 ps < At < 200 ps), indicating
that the electron ejection mechanism is not highly sensitive to the
exact shape of the plasma density profile. In contrast to the emission
of electrons for short delays (At < 20 ps) which is strongly correlated
with high-harmonics generation,”” we measure no high-harmonics
signal at these longer delays (At > 30 ps).

lll. PIC SIMULATIONS

To understand the origin of this new electron emission process,
we turn to 2D PIC simulations using the code WARP***” coupled to
the high performance PICSAR library.”” > We use the same laser
parameters as in the experiments (more details are given in the supple-
mentary material). A moving window is started after the interaction in
order to follow the accelerated electrons far from the plasma. We took
great care in providing a realistic description of the plasma density gra-
dient. First, the plasma is initially partially ionized (up to Si** and
0*") in order to model ionization by the prepulse. The initial
ionization states are estimated from the prepulse peak intensity (~10"
W/cm?®) and the intensity thresholds for barrier-suppression ioniza-
tion™ in silicon and oxygen. Further ionization by the main pulse is
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FIG. 2. (a)-(e) Electron angular distribution integrated over the ¢ angle as a func-
tion of the delay between the prepulse and the main pulse for respective pulse
durations of 24, 10, 7.5, 5, and 3.5 fs. (f) Total ejected charge as a function of the
delay between the prepulse and the main pulse. (g) and (h) Typical electron angular
distribution obtained with 5-fs pulses in the short (At = 9 ps) and long (At = 140
ps) plasma scale length regimes, respectively. The gradient scale lengths given in
the top axis are obtained from SDI measurements.*’ The white lines in (a)—(e) rep-
resent the prepulse leads corresponding to the ticks in (f). The red lines and dots
mark the specular direction.

also taken into account in the simulations. Second, the plasma den-
sity profile is obtained by performing hydrodynamic 1D simula-
tions with the code ESTHER.”” Figure 4 shows the resulting
profiles for 4 different values of the delay between the prepulse and
the main pulse. Note that the density profiles are not always expo-
nential in Fig. 4, in contrast to the results from models assuming
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FIG. 3. Total detected charge as a function of pulse duration for a delay of At = 90 ps
between the prepulse and the main pulse. The pulse duration is tuned here by chirping
positively (red points) or negatively (blue points) the 3.5-fs driving laser.
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FIG. 4. Results from 1D hydrodynamic simulations. Normalized electron density
nene as a function of position x for different delays after a prepulse with a fluence
of 50 Jiem? fonizes a solid fused-silica target. x= 0 is the initial solid-vacuum inter-
face position. n; = meeoa)g / ¢ is the critical density above which the laser cannot
propagate. &g is the vacuum permittivity.

isothermal expansion. The gradient appears to have an exponential
shape only for short delays (i.e., for sharp plasma-vacuum interfa-
ces) but not for longer delays. The isothermal hypothesis, used to
estimate the gradient scale length in the previously mentioned SDI
measurements,”” likely fails due to radiation and convection losses
on these longer timescales. In our case, the electron beam appears
for long delays At, and we therefore use the density profiles shown
in Fig. 4 as inputs for the PIC simulations.

Snapshots from two different PIC simulations are shown in Fig.
5. Both simulations use the plasma density profile obtained with a
delay of At = 80 ps (i.e., the red curve in Fig. 4), a value for which the
electron beam is detected in the experiments. The pulse duration is
either 5 fs or 24 fs, resulting in peak intensities of 10'° W/cm? (ay
=2.15) and 2.1 x 10"® W/ecm? (g, = 0.98), respectively.

The first striking feature is the formation of high amplitude
plasma waves in the wake of the 5-fs pulse. Their wavefront is bent by
the density gradient, akin to the plasma waves generated by Brunel
electrons in the coherent wake emission mechanism of high-harmonic
generation.'” Even though these wakefields appear in the whole region
where the 5-fs pulse propagates, inside which the density ranges from
11000 to n¢ cos?0; ~ 0.3nc,”° they are completely absent in the 24-fs
pulse simulation. This can be easily explained by the fact that wakefield
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FIG. 5. Laser magnetic field and electron density from PIC simulations with a large plasma scale length (At = 80 ps) and a pulse duration of (a)—(c) 5 fs or (d)(f) 24 fs. The
green and yellow dots show a sample of ejected electrons. Ty is the laser optical oscillation period, and By = Eg/c with Ey defined earlier. Multimedia views: https://doi.org/
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excitation is optimal at the resonance condition, i.e., when the pulse
duration is on the order of half the plasma wavelength:"’ © ~ 4,/2c.
This gives a resonant density of #,/14 for 5-fs pulses, versus #,/300 for
24-fs pulses, explaining why large wakefields appear for the few-cycle
pulse only (see also supplementary material).

Some electrons, presented in green in Fig. 5, are trapped and
accelerated by the plasma waves’ strong electric fields that reach up to
1 TV/m. The angular and energy distributions of these LWFA elec-
trons are shown in the green curves of Figs. 6(a) and 6(c), respectively.
Their energy spectrum extends to ~2.5MeV, and their total ejected
charge is ~7 pC/um. These electrons are emitted in the same direction
as the electrons detected at long delays in experiments [see the red
curve in Fig. 6(a)]. Moreover, as in experiments, these electrons only
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FIG. 6. (a) and (b) Angular and (c) and (d) energy distribution of the two families of
electrons that are ejected in the (a) and (c) 5 fs and (b) and (d) 24 fs simulation.
The distributions are obtained at the end of the simulation, long after the interaction.
The red dashed curve in (a) shows for comparison the experimental angular distri-
bution integrated along the ¢ angle obtained with a 5 fs pulse and an 80 ps pre-
pulse lead, in arbitrary units.

appear for few-cycle pulses. We therefore conclude that the electron
beam detected at long delays in experiments originates from LWFA.
We notice that the angular distribution of these electrons is signifi-
cantly narrower in the simulation than in experiments. This is likely
due to space charge effects during the propagation of the electron
beam to the detector, which we expect to be important for a sub-MeV
beam with tens of pC charge. The electrons are indeed only propa-
gated for tens of microns in the simulation, while the Lanex screen is
located ~10 cm away from the target in experiments.

In the simulations, the LWFA electrons come from the L-shell of
silicon. They have high binding energies (from ~150 eV to <500 eV)
and can therefore only be ionized by the huge electric fields inside the
main laser pulse. The fact that only electrons ionized in the center of
the pulse are accelerated suggests that injection by ionization, a well-
known mechanism in underdense plasmas,””" is responsible for
trapping the electrons into the wakefields. Taking field ionization
into account is therefore needed to properly describe the injection of
electrons into the plasma waves and more generally to correctly model
laser interactions with overdense plasmas when the plasma scale
length is large.

Another family of electrons, shown in yellow in Fig. 5 and
labelled “reflection electrons,” is ejected from the plasma in the simula-
tions. These electrons are accelerated at the reflection point of the
laser, where the density is 71 cos?6;. Their angular and energy distribu-
tions are displayed by the yellow curves of Fig. 6. This family of elec-
trons, which appears for both 5-fs and 24-fs pulses and has a very
large angular divergence spreading across all directions, is not detected
in experiments. This fact shows that our 2D PIC simulations do not
accurately reproduce the ratio between the two populations. This sec-
ond family of electrons would likely be attenuated in more accurate
but more costly 3D simulations. However, this is not a major concern
because the simulations explain the main experimental observations,
ie., a well-defined beam of LWFA electrons which appears only for an
extremely short pulse duration.

It is also worth noting that the same qualitative results are found
when the simulations are performed with an exponential density
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profile with L =34, thus confirming our previous observation that
the electron ejection mechanism is not highly sensitive to the exact
shape of the plasma density profile. Another interesting point is that a
similar trend can be found when the intensities are interchanged in
the simulations (i.e., when the 5-fs simulation is carried out with a
peak intensity of 2.1 x 10'® W/cm?, while the 24-fs simulation is per-
formed with a 1x 10" W/cm® peak intensity). In this case, even
though the laser pulse energy is 25 times lower in the 5-fs simulation,
a very small number of electrons remain laser wakefield accelerated,
while there is still no plasma wave formation in the 24-fs simulation
(see supplementary material). These simulations show a clear effect of
the pulse duration and confirm that the emergence of the electron
beam is not simply due to the increase in intensity when reducing the
pulse duration.

IV. PLASMA WAVE FORMATION AND ELECTRON
ACCELERATION IN A TRANSVERSE GRADIENT

A unique feature of this acceleration regime is that the electrons
are not emitted in the same direction as the driving laser pulse, as is
usually the case with LWFA, even with similar laser parameters and
plasma densities.”® This is because the wakefields' wavefronts are
rotated by the density gradient. To explain this rotation, we use a sim-
ple heuristic model based on the following assumptions: (i) the plasma
wave is initiated at the temporal center of the laser pulse. This is for-
mally equivalent to an infinitely short driving pulse and is reasonable
if the pulse duration is much shorter than a plasma period. (ii) The
plasma wave is longitudinal, i.e., the electrons forming it oscillate in
the direction of laser propagation. This assumption is equivalent to an
infinitely wide (1D) driving laser pulse and is valid when the laser
transverse size is larger than a plasma wavelength. (iii) The center of
the laser pulse travels at ¢, neglecting the decrease in group velocity.
(iv) The phase of the plasma wave varies at each point at the local
plasma frequency. This is valid if the gradient scale length is much
larger than the plasma wavelength.'”” With these assumptions, the
phase ¢ of the plasma wave is

@(x:2,t) = p(x) (£ = to(x, 2)). 1)

Here, ), is the local plasma frequency and ty = (zsin 0
—x cos 0;) /¢ is the time at which the temporal center of the laser pulse
excites the plasma wave. Plasma wavefronts obtained using Eq. (1) in
an exponential density gradient are shown in Fig. 7. Even though this
simple model is not perfectly valid for the considered experimental
case, it can qualitatively reproduce the shape of the plasma waves.
Physically, the rotation of the wavefronts can be explained by the
transverse density gradient seen by the laser, ie., the fact that one side
of the laser pulse excites a plasma wave with a higher frequency than
the other. A given phase will therefore be reached quicker in the region
of higher frequency, which results in rotated wavefronts.

We can also use this model to qualitatively explain the measured
angular distribution. Let us consider an electron moving with an angle
0, with respect to the x-axis at a position where the wavefront of the
plasma wave makes an angle 0,, with respect to the z-axis [see Fig.
7(b)]. We first note that since the plasma frequency only depends on
x, the phase velocity of the plasma waves in the z-direction is
(vp), = ¢/ sin0;. We can then, using the law of sines, calculate the
phase velocity along the direction of electron motion
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FIG. 7. Wavefronts (darker lines) obtained using Eq. (1) during the propagation of a
laser pulse (represented in blue and red) in a plasma with an exponential density
profile (L = 34). Two consecutive wavefronts are separated by a phase of 27.

sin 0,,
cos (0, — 0,,) sin 0; “

(Vw)oe = (2)
If the electron is trapped in the wakefield, its velocity is mainly
collinear with the electric field of the plasma waves, i.e., perpendicular

to the wavefronts. In this case, we have 0, ~ 0,, and Eq. (2) is simpli-
fied to

sin 0,

(VQ))OL. = sin 0; c. (3)

Trapping of electrons by the plasma wave is only possible if the
phase velocity of the wakefield is lower than ¢, meaning in our case
that electrons can only be emitted when 0, < 0,. Furthermore, electron
acceleration to relativistic energies is efficient when the phase velocity
is close to c. Equation (3) therefore indicates that the electrons should
be emitted close to the specular direction with a slight shift towards
the normal direction, in good agreement with experiments and simu-
lations. Electrons directed closer to the grazing direction (0, > 0,) can-
not be trapped as the phase velocity of the plasma waves in their
direction is greater than ¢, while electrons emitted close to the normal
direction cannot reach high energies as they would quickly dephase
from the plasma waves.
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V. CONCLUSION

In conclusion, we detect an electron beam that only appears for
few-cycle pulses and large plasma scale lengths. Particle-In-Cell simu-
lations successfully explain the experimental results: the detected elec-
trons are injected by ionization into wakefields formed behind the
pulse. These plasma waves can only be efficiently excited by few-cycle
pulses at these near-critical densities, explaining why this new electron
emission mechanism is only observed with extremely short pulses. A
singular trait of this acceleration regime is that, due to the rotation of
the wakefields induced by the density gradient, the electron beam is
not emitted in the same direction as the driving laser pulse. This work
offers a better understanding of the interaction between ultraintense
laser pulses and solid targets and confirms that extremely short pulse
durations and controlled plasma conditions provide access to new
acceleration regimes.

SUPPLEMENTARY MATERIAL

See supplementary material for the experimental results obtained
when reducing the main laser pulse intensity (first section). In the sec-
ond section, we provide detailed explanations regarding how few-cycle
laser pulses are modeled in our Particle-In-Cell simulations. In the
third section, we give more information concerning the numerical
parameters of the Particle-In-Cell simulations presented in the main
text. In the fourth section, we present simulations performed with the
other pulse durations studied experimentally. In the fifth section, we
present more exhaustively the simulations with interchanged intensi-
ties that are mentioned in the main text. In the sixth section, we esti-
mate the amplitude of the plasma waves generated in our experiments
using the 1D nonlinear theory of wakefield generation.
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We present experimental results of the vacuum laser acceleration (VLA) of electrons using radially polarized laser
pulses interacting with a plasma mirror. Tightly focused radially polarized laser pulses were proposed for electron
acceleration because of their strong longitudinal electric field, making them ideal for VLA. However, experimental
results have been limited until now because injecting electrons into the laser field has remained a considerable challenge.
Here, we demonstrate experimentally that using a plasma mirror as an injector solves this problem and permits to inject
electrons at the ideal phase of the laser, which results in the acceleration of electrons along the laser propagation while
reducing the electron beam divergence compared to the linear polarization case. We obtain electron beams with few-
MeV energies and a 200 pC charge, thus demonstrating for the first time electron acceleration to relativistic energies
using a radially polarized laser. High-harmonic generation from the plasma surface is also measured and provides
additional insight into the physics of the interaction. Detailed comparisons between the experimental results and full
3D simulations unravels the complex physics of electron injection and acceleration in this new regime: we find that
electrons are ejected into the radially polarized pulse in the form of two spatially-separated bunches emitted p-polarized
regions of the focus. Finally, we propose an experimental configuration in which this process is further optimized,

leading to extremely peaked electron angular distributions and higher energy beams.

I. INTRODUCTION

Owing to the progress of intense femtosecond lasers!, new

methods for accelerating particles have been developed in the
last two decades. Most notably, laser wakefield accelera-
tors>? take advantage of extremely high accelerating gradi-
ents, on the order of 100 GV/m, to generate ultrashort* elec-
tron bunches with high beam quality and energies ranging
from few-MeV> to multi-GeV®. Vacuum Laser Acceleration
(VLA), in which the electrons are directly accelerated by the
laser field, is another method for accelerating electrons that
has also drawn significant attention. Many theoretical’~!! and
numerical'>!3 studies of VLA have been carried out with
the prospects of understanding this fundamental interaction
and profiting from the immense accelerating fields involved,
that can exceed 10 TV/m. However, experimental observa-
tion of high energy gains from VLA has proven difficult to
achieve'®~1°. This is due to the fact that acceleration is effi-
cient when electrons are injected with a high initial velocity
at a precise phase of the laser pulse, close to a zero of the
electric field, so that they remain in an accelerating phase of
the laser for a long time. Since the accelerating structure has
superluminal phase velocity® and usually sub-micron wave-
length, these stringent injection conditions are not attained
with conventional injection methods. Indeed, two methods
have been tried so far to inject electrons into an intense laser
field: the ionization of a low density gas target or the use of
a pre-accelerated electron beam. In the first case, electrons

OThese three authors contributed equally
b Electronic mail: jerome.faure @ensta-paris.fr

are injected with no initial velocity at a phase of the laser that
is not optimal for electron acceleration (close to a maximum
of the electric field), which leads to inefficient acceleration.
In the second case it is particularly challenging to inject the
electrons at a precise phase of the accelerating structure, as it
would require electron bunches with attosecond duration and
synchronization with the laser. For this reason, experimental
attempts at VLA with this method tend to result in a widening
of the energy spread rather than a net acceleration.

It was recently observed that plasma mirrors could solve
this issue and act as ideal injectors for VLA?Y. A plasma
mirror is an overdense plasma with a sharp density gradient
on its front surface (L < Ay, where L is the gradient scale
length and A the laser wavelength). The term "plasma mirror"
comes from the fact that they reflect light specularly. When a
p-polarized laser pulse with ultrahigh intensity is focused on
such target, nonlinear oscillations of the plasma surface occur
following the sign of the laser pulse. These oscillations lead to
the periodic emission of high-harmonics, via the Relativistic
Oscillating Mirror (ROM) mechanism?!, and ejection of elec-
trons at a precise phase of the laser pulse??. These electrons
are ideally injected in the reflected laser field: they begin their
interaction close to a zero of the electric field with a relativistic
velocity directed towards the specular direction, which allows
them to gain large amounts of energy from the reflected pulse.
Using 20 TW laser pulses on-target, it was demonstrated that
3nC, 5-10MeV electron bunches with 150 mrad divergence
could be produced?®?.

When VLA is carried out with linearly polarized pulses, the
accelerating fields are transverse. This means that the elec-
trons are pushed off the optical axis as they are accelerated,
which tends to widen the angular distribution. For this rea-



son, the possibility of accelerating electrons with longitudinal
electric fields has frequently been studied®>*~2°. Radially po-
larized beams are ideal candidates for achieving this>*2°. A
laser is radially polarized if at every position the polarization
vector points towards its center. In this case, the magnetic
field only has an azimuthal component By. The relevance of
this polarization state comes from the presence of a strong lon-
gitudinal field at focus, located on the optical axis, where the
transverse fields vanish. The main components of a paraxial
radially polarized pulse at focus can be written in cylindrical
coordinates as:

kor 2
E, =Eo;—-exp | ——5 | cosmot x f(t) €))
2 wg
Bo=E,/c )
2 2
E.=Eyexp (—2> (1—2> sinapt X f(1).  (3)
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where Ej ; is the peak amplitude of the longitudinal electric
field, c is the speed of light in vacuum, ko = 27t/ Ay is the laser
central wavenumber, @y its central frequency, wy its beam
waist and f(¢) a normalized temporal envelope. It is com-
mon to define ag; = Eo ;/Ey as the normalized amplitude of
the longitudinal field. Here Ey = m,cay/e where m, and e
are the electron mass and charge respectively. The normal-

ized peak amplitude of the radial field, noted ay ,, is given by

exp(—0.5)kow,
a0, = p( 2) 0Wo

fore, the longitudinal field is predominant onfy in the case of
very tight focusing. If the E; field is strong enough, it can
be used to directly accelerate electrons in the longitudinal di-
rection. This requires the electrons to be located very close
to the optical axis, where the longitudinal field is maximum
and the deflecting E, and By fields are negligible. In such a
case, the electrons can remain for a long time in the center
of the laser beam, which can in principle result in an electron
beam with higher energy and smaller divergence than with
linear polarization®. In the past, there have been two experi-
mental attempts at VLA using radial polarization, but modest
energy gains, of at most tens of keV, have been achieved!”-!°.
This is due to the fact that relatively small laser energies were
used, and, as explained earlier, that electron injection into the
laser pulse was not optimal. However, numerical simulations
have recently demonstrated that, as in the case of linear polar-
ization, plasma mirrors could be used to inject electrons with
ideal initial conditions into radially polarized beams, resulting
in relativistic and low divergence electron beams>C.

This paper presents experimental results of electron accel-
eration to relativistic energies using radially polarized pulses
combined to a plasma mirror injector. We observe that using
radial polarization leads to electron acceleration in the longi-
tudinal direction, thereby reducing the angular spread. Elec-
tron beams with a charge exceeding 100 pC and an energy
spectrum peaking at 2 MeV have been obtained. In order to
gain further insight from the interaction and the electron injec-
tion process, we also study the case of azimuthal polarization.
Azimuthally polarized beams are similar to radially polarized
beams but have the electric and magnetic fields "exchanged",
meaning that the main components of such pulses are Eg, B,

ap ;- It can be noted that ZL oc L There-
’ 0,r wo

and B;. They do not exhibit an E, field and therefore can-
not directly accelerate electrons in the longitudinal direction,
which we verify experimentally. While the propagation of ul-
traintense radially or azimuthally polarized pulses in under-
dense plasmas has been previously studied?!, this is the first
time that the interaction of such pulses with overdense plas-
mas is investigated experimentally.

The paper is organized as follows. In Sec. II, we describe
our experimental setup. The experimental results are pre-
sented in Sec. III and analyzed in Sec. IV with the help of
full-3D Particle-In-Cell (PIC) simulations. Finally, the ideal
experimental parameters that would be required to optimize
the acceleration with radially polarized beams are discussed
in Sec. V.

II. EXPERIMENTAL SETUP

The experimental setup is represented in Fig. 1. The
UHI100 laser at CEA Saclay is a 100-TW class system which
provides 800-nm, 24-fs laser pulses with an ultrahigh tempo-
ral contrast (> 10'2) thanks to a double plasma mirror sys-
tem>? located before the experimental chamber. We use a
deformable mirror to correct the laser wavefront. A phase
mask consisting of eight half-wave plates with different opti-
cal axes, as shown in Fig. 2(a), can be inserted in order to con-
vert the laser polarization from linear to radial or azimuthal.
Each octant of the phase mask is made of a 80- um thick piece
of mica, which is thin enough to result in a low B-integral of
0.15 rad. By rotating the entire phase mask, the polarization
can be continuously varied from radial to azimuthal. A cir-
cular aperture, not depicted in Fig. 1, is used to remove the
edges of the beam and improve the focal spot. In the case of
linear polarization, a 50 mm aperture is used, thus reducing
the energy on target to 460 mJ. When the radial polarization
phase mask is introduced in the beam, a 65 mm aperture is
used such that the energy on target is 675 mJ. The beam is
focused with a 60° incidence angle onto a fused silica target
by a parabola with a focal length f = 200 mm. Resulting
focal spots are shown in Figs. 2(b) and 2(c). For linear polar-
ization, the beam waist is measured to be 3 x 3.4 um, which
results in an estimated peak intensity of / = 5.8 x 10'°W/ cm?
(ap =5.2). For radial polarization, the characteristic doughnut
shape is clearly observed. The slight asymmetry of the spot is
probably due to imperfections in the wavefront and/or imper-
fect centering of the beam on the phase mask. The beam waist
is obtained by fitting 7 exp (72r2 / w%) to the spatial profile,
which gives 3.05 x 3.2um. The resulting peak intensity is
I =48x 10'9W/cm2 (ap,, = 4.7). Using these parameters
we estimate the longitudinal normalized field to be:

a; = 0.742a, (i‘;) =09. (4)

This value is probably somewhat overestimated because of the
asymmetry in the focal spot but it indicates that the longitu-
dinal component of the electric field approaches relativistic
intensities, making the laser suitable for electron acceleration
in the longitudinal direction.
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FIG. 1. Experimental setup. The images on the screens show the electron beam angular distribution after the interaction (left screen) and its

angularly resolved spectrum (right screen).

a)
m f Extraordinary axis

b) )
20 20
w/o phase mask with phase mask
-10 10
Ty
@ J e
10 10
20 ‘k 20
20 10 0 10 20 -20
um

FIG. 2. Generation of radial polarization. a) Sketch of the phase
mask and extraordinary axes of the eight octants. b) Focal spot for
linear polarization, i.e. without the phase mask. c¢) Focal spot for
radial polarization.

A small mirror is inserted before the parabola in order to
create a weak pre-pulse from the main laser beam33. This
pre-pulse is used to ionize the target and initiate a plasma ex-
pansion at an adjustable delay before the main pulse, therefore
creating a transversely homogeneous preplasma with an accu-
rately controlled density gradient.

A calibrated phosphor screen** (KODAK LANEX fine) is
used in combination with a camera to observe the electron an-
gular distribution around the specular direction. The screen
is covered by a 1.63 mm aluminium plate to provide shield-
ing against the laser light and remove the electrons with an
energy lower than ~900 keV. A pair of magnets in combina-
tion with a slit can be added in front of the screen to measure
angularly resolved electron energy spectrum in the incidence

plane (6, = 0, with 8, defined in Fig. 1).

In parallel to the electron distributions, high order harmon-
ics emitted in the specular direction can be measured by re-
placing the electron spectrometer with an XUV spectrometer.
The spectrometer uses a 1200 lines per mm varied line spacing
concave extreme ultraviolet grating (Shimadzu 30-002) cou-
pled to a large 69 x 88 mm rectangular microchannel plate and
a phosphor screen. This provides harmonic spectra which are
angularly resolved in the transverse 6, direction. With linear
polarization, it is possible to observe up to the 45" harmonic
order.

lll.  EXPERIMENTAL RESULTS

A typical electron angular distribution obtained with linear
polarization is displayed in Fig. 3(a). The main features of this
distribution are the presence of a hole in the specular direction
and of a bright peak between the specular and the normal di-
rections, in good agreement with previous experiments?’-23,
This bright spot is located approximately 150 mrad from the
specular direction and contains a charge of ~ 700 pC. The
electron signal in this regime is optimal when the gradient
scale length is on the order of Ag/10 (see Ref.?3).

While the electron signal exhibits good stability in linear
polarization, we observe significant shot-to-shot fluctuations
in the radial polarization case, which we attribute to shot-
to-shot fluctuations in the laser focal spot that appear when
the phase mask is inserted in the laser beam. We nonethe-
less consistently observe an electron beam emitted very close
the specular direction, while another spot remains visible be-
tween the normal and specular directions, as can be seen in
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FIG. 3. Typical experimental angular electron distributions. The
specular direction corresponds to 6, = 6, = 0. (a) linear polariza-
tion: the electron beam is located between the specular and normal
directions. (b) azimuthal polarization: electrons are located on both
sides of the specular direction (c) radial polarization. (d) Angular
distribution obtained in the best shots with radial polarization. Both
(c) and (d) display an on-axis electron beam in the specular direc-
tion. The dashed red lines show the angular extent of the reflected
laser beam.
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FIG. 4. Experimental electron spectra obtained with radial polariza-
tion (red curve), linear polarization (blue curve) and linear polariza-
tion at reduced energy (green curve).

Fig. 3(c). This peak in the specular direction has a narrower
divergence, typically in the 50 mrad range, and can contain up
to 200 pC (100 pC on average). For the best shots, the spot
in the specular direction can even contain more charge than
the spot located between specular and normal, and the elec-
tron beam divergence is reduced by a factor of two compared
to the linear polarization case. An example of such shot is
shown in Fig. 3(d).

When rotating the phase mask to generate azimuthal polar-
ization, the electron peak in the center fades away, as shown
in Fig. 3(b). In this case, a significant amount of electrons
are located on the other side of the hole, between the specular
and the grazing directions. Overall, we remark that electrons
are only emitted in the specular direction when radially polar-
ized pulses, which possess a considerable longitudinal electric
field, are used. This strongly suggests that these electron are,
as initially desired, accelerated by the E. field.

Figure 4 shows the electron energy spectra recorded at the
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FIG. 5. Experimental angularly resolved harmonic spectra in the case
of (a) linear polarization, (b) radial polarization and (c) azimuthal
polarization.

position of the bright spot for linear polarization and at the po-
sition of the specular spot for radial polarization. With linear
polarization, the maximum reached energy is 11 MeV with a
peak at 6 MeV while with radial polarization the maximum
energy is 6 MeV with a peak around 2 MeV. In order to obtain
a similar spectrum with linear polarization it is necessary to
reduce the laser energy by 30% (we have in this case 320 mJ
on target and ag ~ 4.3).

With the purpose of gaining additional insight on the in-
teraction, we also study high-harmonic generation (HHG),
which is closely related to the generation of fast electrons in
the relativistic regime???3. Figure 5 shows typical angularly
resolved harmonic spectra for linear, radial and azimuthal po-
larization between harmonic orders 9 and 18. When the phase
mask is introduced in the beam, the total harmonic yield de-
creases. Each spectrum is therefore renormalized separately
in Fig. 5. In the case of azimuthal polarization, we observe
interference fringes on each harmonics in the 6, angle. These
fringes correspond to the interference pattern that would be
generated by two sources separated by 4.8 £0.1 um in the
transverse y-direction. The interference patterns for consecu-
tive harmonic orders appear to be shifted by . In other words,
if the signal is close to O at a given angle for harmonic order
n, it will be close to maximum at the same angle for harmonic
order n+ 1. In the case of radial polarization, we observe no
interference pattern but we notice that the harmonic intensity
can substantially vary between even and odd harmonics (in
Fig. 5(b) the even harmonics are stronger but in some other
shots the odd harmonics can become stronger).
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IV. INTERPRETATION AND DISCUSSION
A. Harmonic generation
1. Physical interpretation for the two sources of HHG

The fact that the harmonic signal with azimuthal polariza-
tion seems to originate from two sources from either side of
the incidence plane strongly suggests that only the parts of the
laser that are p-polarized contribute to high-harmonic emis-
sion, while no harmonics are emitted in the regions where the
laser is s-polarized. It has indeed been shown that, at the laser
intensities considered here, the harmonics signal is suppressed
when the polarization is switched from p to s (see Ref.??).
These ideas are illustrated in Fig. 6: for linear polarization,
the whole beam can be p-polarized, which leads to a single
harmonic source. On the other hand, for radial or azimuthal
polarization, the locally p-polarized parts of the beam form
two separate spots which can result in two separate harmonic
sources. This is supported by the fact that the distance be-
tween the two sources obtained from the interference pattern
(4.8 £ 0.1 um) matches the distance between the two maxima
in the focal spot (4.3 £0.2 um, see Fig. 2(c)).

This physical interpretation can also be used to explain why
interference patterns for consecutive harmonic orders appear
to be shifted by m. We indeed know that the harmonic sig-
nal is emitted periodically at a precise phase of the incident
laser field. Since the electric field in the two separate sources
have opposite sign for radial or azimuthal polarization, the
harmonic emission is delayed by half a laser cycle from one
source to the other, i.e. a & phase delay. This leads, for har-
monic n, to a phase shift of nz between the two sources, which
results in a phase shift of 7 in the interference patterns for con-
secutive harmonics.

For radial polarization, we also expect to see an interfer-
ence pattern but this time in the 8, angle. However, the fringes
cannot be seen in the experiment as our spectrometer samples
the harmonic beam at a given 6. Therefore, the spectrometer
only sees one position in the interference pattern for each har-
monic. Since there is a  phase difference between consecu-
tive harmonic patterns, the harmonic intensity strongly varies
between odd and even harmonics, which is precisely what we
observe in Fig. 5(b).

2. 3D PIC simulations of harmonic generation

In order to confirm this physical explanation, we turn to
3D PIC simulations using the code WARP-¢ combined with
the high-performance library PICSAR?"-38. We use the high-
order Pseudo-Spectral Analytical Time Domain (PSATD)
Maxwell solver which strongly reduces numerical disper-
sion%4, As a result, convergence of the simulations is at-
tained with larger spatial and temporal steps, which makes
full 3D PIC simulations at solid density feasible using current
petascale machines*'**>. Each of the simulations presented
here costs around 3 million computation hours on supercom-
puter Mira*}. The gradient scale length is either Ao /10 or Ao /7
and the laser parameters are the same as as in experiments. A
moving window is used in order to follow the trajectory of
the electrons in the reflected pulse up to 80 um away from
the plasma (approximately 2 Rayleigh lengths). More details
regarding the simulations are given in appendix A.

Angularly resolved harmonic spectra obtained from the
simulations are displayed in Fig. 7. In panels (a) to (c), the
harmonics are resolved in the 6, direction so that they can
be directly compared with the experimental measurements
shown in Fig. 5. A very good agreement is found: in az-
imuthal polarization, we observe interferences with a phase
shift of 7 between consecutive harmonics while in radial po-
larization, we notice that the harmonic intensity considerably
differs between even and odd harmonics. In Fig. 7(d), the
angular dependence is shown with respect to the 6, angle in
the radially polarized case, allowing us to uncover the inter-
ference pattern which is not visible in experiments. Both the
experimental and simulated harmonic spectra show clear evi-
dence that radial or azimuthal polarizations result in two sep-
arate harmonic sources that correspond to positions where the
laser is locally p-polarized. This, again, is supported by the
~ 4.7 um distance between the two sources obtained from the
simulated harmonic signal, which is consistent with the the-
oretical distance between the two maxima in the focal spot
(V2wo ~ 4.4 um).
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FIG. 7. Results from 3D PIC simulations. Angularly resolved har-
monic spectra for (a) linear, (b),(d) radial or (c) azimuthal polariza-
tion. The angular dependence is shown with respect to the 6, angle
in panels (a) to (c), which corresponds to the experimental case, and
with respect to the 6, angle in panel (d), so that the interference pat-
tern becomes apparent.

3. Two sources of electron injection

As we have stated in the introduction, the harmonics are
emitted via the Relativistic Oscillating Mirror (ROM) mecha-
nism, which occurs as the reflecting plasma surface oscillates
nonlinearly following the laser field. At the moments when
the oscillating electrons are pulled towards vacuum, the inci-
dent field is strongly Doppler upshifted, leading to the high-
harmonic generation. At the same time, part of the oscillating
electrons acquire a high enough energy to escape the plasma,
leading to the ejection of electrons. Since both electron and
high-harmonic emissions are originating from the same oscil-
lation of the plasma surface, they happen simultaneously and
are optimized for the same laser and plasma parameters. Such
a correlation between ROM harmonics and electron ejection
has indeed been observed experimentally?>. In the case of
radial or azimuthal polarization, we have just seen that har-
monics are only generated at the positions where the laser is
locally p-polarized. We can therefore expect a similar behav-
ior for electron ejection, which would mean that electrons are
also emitted from two separate sources.

In order to confirm this prediction, we plot in Fig. 8 the ini-
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FIG. 8. Results from 3D PIC simulations. Initial position of the
electrons that are ejected 4 um away from the plasma in the case of
(a) linear, (b) radial or (c) azimuthal polarization.

tial position of the electrons that are ejected from the plasma
in the simulations. As anticipated, only the p-polarized parts
of the laser contribute to electron ejection, which results in
two distinct electron sources in radial and azimuthal polariza-
tion. The fact that electron emission only occurs at specific
parts of the focal spot can partly explain the significant shot-
to-shot fluctuations observed in experiments with radial and
azimuthal polarization. We have indeed seen that the focal
spot possesses an asymmetry (see Fig. 2(c)) which can vary
depending on the shots. Shots with a higher intensity in the
p-polarized parts of the beam will result in a much higher
detected charge than shots with a higher intensity in the s-
polarized parts of the beam.

From a VLA point of view, the fact that the E; field in ra-
dial polarization does not contribute to electron injection and
that the interaction is still dominated by the transverse fields
is not ideal. Indeed, the initial purpose of using radial polar-
ization was to accelerate the electrons close to the optical axis
where the transverse fields are negligible whereas in our case
the electrons are injected on the side of the beam where the
transverse fields are the highest. Nevertheless, the fact that we
have detected experimentally electrons in the longitudinal di-
rection suggests that it is possible for some electrons to reach
the optical axis after being injected on the side of the beam.

4. Loss of radial symmetry of the reflected pulse

Another important result of the simulations is that the laser
partially loses its spatial structure upon reflection. This is due
to the fact that that laser absorption is higher in the p-polarized
parts of the focal spot, and lower in the s-polarized parts of the
spot (this can be understood by the fact that electron emission
and harmonic generation are stronger for the p-polarized com-
ponents of the field). Consequently, the reflected laser field no
longer has cylindrical symmetry. Figure 9 displays snapshots
from the PIC simulation with radial polarization showing the
laser pulse in the incidence plane before and after reflection.
We most notably observe that the hole in the intensity distri-
bution at the center of the laser is suppressed after the interac-
tion. This may make the VLA process in the reflected pulse
more complex. In particular, we remark that high-amplitude
harmonic fields, which have a much longer Rayleigh length
than the fundamental pulse, remain present on the optical axis
far from the plasma. Such on-axis harmonic fields could cause
an unwanted deflection of electrons accelerated by the longi-



tudinal field close to the optical axis, where transverse fields
are supposed to be negligible in a perfect radially polarized
pulse.
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FIG. 9. Results from a 3D PIC simulation. Laser magnetic field in
the incidence plane with radial polarization, either (a) before or (b)
after the interaction. Here, By = Ey/c with E defined earlier.

B. Electron acceleration
1. 3D PIC simulations of electron acceleration

The harmonic spectra obtained in PIC simulations show ex-
cellent agreement with experiments, but we find that it is more
difficult to reproduce the electron angular and energy distri-
butions in the 3D PIC simulations with radial and azimuthal
polarization. First, it must be noted that in order to obtain
accurate results, the simulations should be run until electrons
completely exit the laser field, which is a considerable com-
putational challenge. In our simulations, the reflected pulse
propagates 80 um away from the plasma, i.e. more than two
Rayleigh lengths; nevertheless, some electrons are still inter-
acting with the laser, indicating that their angular and energy
distributions might still evolve. Secondly, as we have seen in
the experiment, results obtained with the phase mask for radial
polarization give lower performance in terms of electron ac-
celeration (energy and charge) and harmonic yield, compared
to the linear polarization case. This suggests that imperfec-
tions of the focal spot (such as intensity inhomogeneities and
phase aberrations) might affect the interaction more severely
in the case of radial polarization, probably because the ra-
dial symmetry can easily be broken when imperfections are
present in the focal region.

Therefore, we find that in order to obtain a quantitative
agreement with the experiment, it is necessary to reduce the
laser intensity substantially, and even more so in the case of
radial polarization. Figures 10(a) and 10(b) show typical elec-
tron angular distributions obtained in simulations with lower
intensity for, respectively, radial and linear polarization. Here,
ag = 3.6 for the linear case and ag, = 3.3 for the radial case,
corresponding to a factor of two lower intensity compared to
the experiment described in Sec. II. In the linearly polarized
case, we find that the main features of the experimental an-
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FIG. 10. Results from 3D PIC simulations. (a)-(b) Angular dis-
tributions of the electrons with an energy greater than 1 MeV ob-
tained at the end of the simulations with (a) radial polarization and
ap = 3.3, (b) linear polarization and ay = 3.6, (c) radial polarization
and ag , = 1.6 and (d) azimuthal polarization and ag , = 1.6.
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FIG. 11. Results from 3D PIC simulations. Electron energy distri-
butions are computed in a 30 mrad cone angle defined by the black
circles shown in Fig. 10.

gular distribution are well reproduced: most electrons are ac-
celerated between the specular and normal directions (6, > 0)
and there is virtually no electron emitted in the specular di-
rection. This is in good agreement with previous 3D PIC
simulations performed with similar laser and plasma parame-
ters”>*2. When the polarization is switched to radial, there are
more electrons located around the specular direction, as in ex-
periments. However, we find that contrary to the experiment,
this does not lead to a reduction of the electron beam angular
spread and the overall simulated beam does not completely
match the experimental results.

The corresponding energy spectra are computed at the an-
gles indicated by the black circles and are shown in Figs. 11(a)
and 11(b). Even with this lower intensity level, the simulation
with radial polarization yields electrons with an energy that is
approximately twice as high as detected experimentally. This,
again, suggests that imperfections of the laser focal spot de-
grade substantially the acceleration process compared to the
ideal case that is considered in the simulations. This is consis-
tent with the fact that both electron ejection from the plasma



and subsequent VLA are sensitive to the exact spatio-temporal
shape of the laser pulse?®**.

To obtain an electron energy spectrum matching the ex-
perimental one, we have performed another simulation with
radial polarization with an intensity even further decreased
to approximately a tenth of the experimental value given in
Sec. II. Although this is a large difference, we find that it
leads to a good agreement with experiments, as can be seen
in Fig. 11(c). This shows the extent to which the accelera-
tion process seems to be negatively affected by the imperfec-
tions introduced by the phase mask. Interestingly, we find
that reducing the laser intensity leads to a much more colli-
mated electron beam, whose angular distribution is shown in
Fig. 10(c). This distribution resembles that of the best exper-
imental shots with radial polarization (see Fig. 3(d)), which
confirms that a better agreement with experiment is found by
reducing the intensity. We also once again find that using
radial polarization can result in a significant decrease in the
electron beam divergence.

Finally, simulations confirm that azimuthal polarization
does not yield a collimated electron beam in the specular
direction, in agreement with experiments. For example, in
Fig. 10(d), we show the angular distribution obtained with the
same parameters as in Fig. 10(c), except that the polarization
is changed from radial to azimuthal. We find in this case that
the electrons are emitted with a very wide divergence of the
order of 600 mrad (which is not entirely visible in Fig. 10(d),
for direct comparison with the other numerical and experi-
mental distributions).

2. Physical explanation for the narrow divergence e-beam

In this section, we investigate the reasons why we obtain a
narrow divergence with radial polarization when ag, = 1.6,
but not when ag, = 3.3, with the ultimate purpose of un-
derstanding the conditions leading to a high-quality electron
beam. In order to understand the fundamental differences be-
tween the two cases, we have analyzed the trajectories of the
corresponding electrons in the PIC simulations. Recalling that
electrons are ejected in two spatially-separated bunches (cor-
responding to regions where the laser is locally p-polarized,
as previously seen), we find that only the electrons originat-
ing from the bunch located on the right (such that z > 0) in
Fig. 8(b) contribute to the collimated spot in the specular di-
rection in Fig. 10(c). This can be understood fairly easily and
is illustrated in Fig. 12. First, we stress a general feature of
this plasma mirror injection mechanism: most electrons are
ejected from the plasma at a phase which is such that they
tend to be deflected by the transverse fields towards the nor-
mal direction, see Fig. 12(a). This explains why, in the linear
polarization case, the electron beam is located between the
specular and normal directions (6, > 0). In the case of radial
polarization, electrons initially in the bunch such that z < 0,
labeled "bunch A" in Fig. 12, tend to directly escape on the
side of the beam and thus never interact with the E; field. On
the other hand, electrons initially in the bunch such that z > 0,
labeled "bunch B" in Fig. 12, are shifted towards the center

of the pulse, where they can be accelerated by the E, field.
The fact that electrons have different trajectories depending
on their initial location will also further increase the fluctua-
tions in the experimental angular distributions when the focal
spot possesses an asymmetry that varies from shot to shot, as

was the case in the experiments.
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FIG. 12. Schematic illustration of electron emission from the plasma
in the incident plane for linear (a) and radial (b) polarization. The
green arrows in the reflected field indicate the direction of the trans-
verse electric field seen by the electrons immediately after they are
ejected. The electrons are always emitted at a phase such that they
tend to be deviated towards the normal direction (this implies in par-
ticular that the phase at which electrons are ejected is shifted by @
between spot A and spot B). For radial polarization, the electrons
originating from spot B are more likely to interact with the E; field
than those coming from spot A.

We now focus on the electrons initially in "bunch B", both
in the simulation with ap, = 1.6 and the simulation with
ap,, = 3.3. These electrons, initially on the side of the re-
flected laser pulse, propagate towards the center of the beam
and subsequently spend a long time close to the optical axis
where the longitudinal field has a high amplitude. This is an-
other indication that electrons emitted in the specular direc-
tion are, at least partly, accelerated by the E; field. We show
in Figs. 13(a) to (d) the angular distribution of the electrons
such that z > O initially, either ~ 80 fs after reflection or at
the end of the simulation, ~ 270 fs after reflection. At the
beginning of their interaction, these electrons have a very nar-
row angular spread in the 6, direction in both simulations. In
the lower intensity case (ag, = 1.6), this angular divergence
remains small until the end, and we eventually observe a col-
limated beam in the specular direction. On the opposite, when
the intensity is increased, a considerable widening of the an-
gular distribution in the 6y direction is visible. This means that
electrons initially accelerated in the longitudinal direction are
deflected in the transverse direction during their interaction
with the reflected beam. This deflection, occurring far from
the plasma, could be due to the harmonic fields which, as pre-
viously stated, have a longer Rayleigh length and remain for
a long time close to the optical axis. The harmonic fields are
much more intense in the simulation with ag, = 3.3 because
the high-harmonic generation efficiency increases nonlinearly
with the intensity?', which would explain why the electrons
are not deflected in the simulation with ag , = 1.6.



PIC simulations
80 fs after focus 270 fs after focus

1.6
r‘é 100 | 100,8
g 0 q° E
~ -100 100,
> >
@100 ‘-‘-‘:
g O 0 g
~-100 |- g RS 100
© 11 1 Il I 1 1 I L -~ o= 25 -i:lﬂ <
200 0 200 200 0 200
0, (mrad) 0, (mrad)
Test-particle simulations
aO,r = 1 3
= (e) - (f) =
f‘é 100 | 1+ 4100 f‘é
E ORI | —— 0 £
~ -100 | 4k H{-100=
< Il Il Il Il Il Il Il Il Il Il Il Il Il Il <
200 0 200 200 0 200
0, (mrad) 0, (mrad)
ay r = 2.6
= (g) ' = (h) =
E 100 | Eps 4100 E
I e R e =
~-100 |- 1k 4-100
< | | | | | | | | | | | | | | <
200 0 200 200 0 200
0, (mrad) 0, (mrad)

80 fs after focus 270 fs after focus
0 a.u. 1
[ — ]

FIG. 13. 3D-PIC simulations. (a)-(d) Angular distribution of elec-
trons with z > 0 initially, with (a)-(b) ap , = 1.6 or (¢)-(d) ap , = 3.3.
The distributions are shown either ~ 80 fs after reflection or ~ 270 fs
after reflection, which corresponds to the end of the simulation. (e)-
(h) Similar angular distributions reproduced in test-particle simula-
tions. The laser intensity is slightly reduced in the test-particle sim-
ulations to take into account the energy absorption by the plasma
mirror.

3. Test particle simulation of electron acceleration

In order to confirm the deleterious role of high-harmonic
fields, we have performed a series of fast 3D test particle
simulations of the acceleration of an electron bunch by an
ideal radially polarized pulse, without high-harmonic fields.
To simplify the interaction, we only consider a single attosec-
ond electron bunch which is, as in experiments, initially lo-
cated off the optical axis where the transverse fields are the
most intense. The electrons start their interaction at a zero of
the E, field and the initial phase is chosen such that the elec-
trons are pushed by the transverse fields towards the optical
axis, which corresponds to the electron bunch B in the simu-
lations. Electrons are initially placed at the focus of the laser,
around four optical cycles before the temporal center of the
pulse and have a Gaussian distribution both in real and mo-
mentum space, with an adjustable mean and variance. More

details concerning these simulations can be obtained in ap-
pendix B.

By choosing the adequate initial electron distribution, we
find that it is possible to obtain similar trajectories as in the
PIC simulation with the lowest intensity. For example, we
show in Figs. 13(e) and (f) the angular distributions obtained
either ~ 80 fs after focus or ~ 270 fs after focus for an electron
beam initially located 2 um from the optical axis with an ini-
tial mean kinetic energy of 1 MeV and an average angle of 10°
away from the specular direction, oriented towards the graz-
ing direction. The initial standard deviations of the Gaussian
distributions are o; = 0.17 um and 6,; = 0.9 m,c in the lon-
gitudinal direction and oy = 0.5 um, oy, = 1.2 um, Gy = mc
and o), = 0 in the transverse directions. We observe as in
the PIC simulations the formation of a collimated spot in the
specular direction. The test particle simulation additionally
allows us to calculate the work done by the different compo-
nents of the electric field. We find that the electrons emitted
in the collimated spot gain most of their energy from the work
done by the E, field, which provides further evidence that the
electrons detected in the specular direction in experiments are
indeed accelerated by the longitudinal field.

When increasing the intensity in the test-particule simula-
tions, we do not obtain the large broadening of the angular
spread in the 6, direction that was observed in the PIC sim-
ulation. For instance, we show in Figs. 13(g) and (h) the
angular distributions obtained for an electron beam initially
located 3.1 um from the optical axis with an initial mean ki-
netic energy of 2 MeV oriented towards the specular direction.
The initial standard deviations of the Gaussian distributions
are 0; = 0.19 um and ©,,; = m,c in the longitudinal direction
and oy = 0.8 um, 6, = 0.8 um, 6),, = 3.2 m.c and 6,y =0 in
the transverse directions. We observe that the electron beam
remains collimated in the y-direction, which strongly differs
from the PIC simulation. This is an indication that the high-
harmonics fields, which are not included in the test-particle
simulations, are indeed deflecting the electrons off the optical
axis and are detrimental to the electron beam quality.

Overall, the 3D simulations confirm that radial polarization
can lead to acceleration in the longitudinal direction, most
likely driven by the E, field. This can lead to a decrease in
the divergence of the accelerated electrons compared to linear
polarization. However, the simulations also indicate that the
experiments were not performed with ideal interaction condi-
tions. First, the electrons are mainly injected by the E, field
at a position of the beam where the longitudinal field is neg-
ligible. Secondly, the radially polarized structure is partially
lost upon reflection. This results in particular in strong har-
monic fields which may deviate the electrons located on the
optical axis if the laser is intense enough. These limitations
make this acceleration method difficult to scale to larger ener-
gies because we expect in this case an increase in the electron
beam angular spread.



V. IDEAL CONDITIONS FOR VLA WITH RADIAL
POLARIZATION

In this section, we explain how to overcome the previously
mentioned limitations. To this end, we describe the interac-
tion parameters that should be used to take full advantage of
radial polarization while using similar laser pulse energies. In
particular, two key elements can be changed in order to dras-
tically improve the results.

The first one is the use of normal incidence rather than
oblique incidence. With normal incidence, the E, field is par-
allel to the plasma surface so that only the E, field contribute
to electron ejection. Electrons are therefore injected close to
the optical axis where the longitudinal field can accelerate
them efficiently. This is a considerable enhancement com-
pared with oblique incidence where the electrons are ejected
in regions with intense radial fields. Moreover, since the axi-
symmetry of the reflected pulse is preserved at normal inci-
dence, the transverse fields will always vanish on axis so that
electrons will not be deflected from the region with strong ac-
celerating fields.

The second key element is the increase of the amplitude of
the longitudinal field ag ;. This can be done both by focusing
the laser pulse more tightly, as aq ; scales as 1/ w%, and by re-
ducing the pulse duration in order to increase the laser power.
Using shorter pulses has other advantages: it leads to shorter
electron beams and limits the interaction in the interference
pattern formed by the incident and reflected beam.

Figure 14 presents results from a PIC simulation carried out
in these conditions. Since the interaction at normal incidence
has axial symmetry, the simulation is performed in cylindri-
cal coordinates with the code CALDER-CIRC*, thus hugely
reducing its numerical cost. We use parameters targeted by
the SYLOS laser system*®: a pulse energy of 100 mJ, a beam
waist of wy = 1.5 um and a pulse duration of 5 fs in FWHM
of intensity. This leads to ag, = 3.78 and ap, = 9.55. See
also appendix C for more information regarding this simula-
tion. We observe that the charge ejected within an angle 6
of the specular direction scales quasi-linearly with 6. For in-
stance, there is an ejected charge of 23.7 pC within 100 mrad
of the specular direction, 9.84 pC within 50 mrad and 1.45
pC within 10 mrad. This means that the ejected charge per
solid angle scales as 1/6, which results in the peaked angu-
lar distribution shown in Fig. 14(a). The energy spectrum
of the electrons accelerated in the specular direction, visible
in Fig. 14(b), presents a narrow peak around 16 MeV. Such
a narrow divergence ultrashort relativistic beam with quasi-
monoenergetic energy could be particularly useful for appli-
cations such as ultrafast electron diffraction and femtosecond
X-ray generation via inverse Compton scattering.

VI. CONCLUSION

We have demonstrated for the first time the possibility to
accelerate electrons to relativistic energies with a radially po-
larized laser pulse. It was shown that radial polarization can
lead to acceleration in the longitudinal direction and reduce
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FIG. 14. Results from the PIC simulation at normal incidence. (a)
Angular distribution of the electrons with an energy greater than 1
MeV around the specular direction. (b) Energy spectrum of the elec-
trons accelerated within 5 mrad of the specular direction.

the divergence of the electron beam. However, while this work
clearly demonstrates that the relativistic regime is reached for
radially polarized laser pulses, the data shows that the per-
formance is still degraded when compared to linear polariza-
tion. This suggest that more work is still required to gener-
ate higher purity radially polarized pulses at ultrahigh inten-
sity. We have also unveiled the details of the physics of the
laser-plasma interaction, and found that the use of radial or
azimuthal polarization at oblique incidence leads to two spa-
tially separated sources of electrons and high-harmonics. We
conclude that harmonic generation is detrimental to the accel-
eration process so that these experiments were not performed
in ideal conditions because of the use of oblique incidence.
We expect that the accelerated electron beams can be greatly
improved at normal incidence and with stronger longitudinal
fields. These results refine our understanding of the interac-
tion between exotic ultra-intense laser pulses and plasma mir-
rors and may provide a new path for generating high quality
ultra-short relativistic electron bunches.
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Appendix A: Parameters for the 3D PIC simulations

We use a spatial resolution of Ax = Ay = Az = Ay/57, a
temporal resolution of At = T /57 and 6 particles per cell per
specie. The PSATD Maxwell solver is used with a stencil
spatial order of 100 and 8 guard cells. The laser impinges the
plasma with a 60° incidence angle, a central wavelength of
Ao = 800 nm, a beam waist of wg = 3.1 um and a pulse du-
ration of 24 fs in FWHM of intensity. The peak normalized
amplitude of the transverse field is ag = 5.4 for linear polar-
ization and ag, = 4.9 for radial and azimuthal polarization.
The intensity was reduced to obtain the accelerated electron
distributions, as indicated in Figs. 10, 11 and 13. A cosine
temporal envelope is used. The plasma density profile is ex-
ponential with a minimum density of n./20 and a maximum
density of 100 n.. The gradient scale length is L = A¢/10,
except in the simulations at reduced intensity in radial and az-
imuthal polarization, where it is L = 4y/7.

Appendix B: Parameters for the test particle simulation

We use in the test particle simulation a laser pulse with the
same spatio-temporal profile as in Ref.?’. We use a central
wavelength of Ayg = 800 nm, a beam waist of wy = 3.1 um,
a pulse duration of 24 fs in FWHM of intensity and a peak
normalized amplitude of the radial electric field of ag , = 2.6
or ap, = 1.3. These values are slightly lower than in the PIC
simulations to take into account the fact that the reflectivity of
the plasma mirror is smaller than unity.

The initial electron distributions are as indicated in the main
text.

Appendix C: Parameters for the PIC simulation in cylindrical
coordinates

We use a spatial resolution of Ax = A9/279 and Ar = /65,
a temporal resolution of At = Ty/331, 250 particles per cell
per specie and 2 orders for the Fourier expansion along the
azimuthal direction. The plasma density profile is exponential
with a gradient scale length of L = Ap/7, a minimum density
of n./10 and a maximum density of 200 n.. The laser has
a central wavelength of A9 = 800 nm, a beam waist of wg =
1.5 um and a pulse duration of 5 fs in FWHM of intensity. The
peak normalized amplitude of the longitudinal field is ag ; =
3.78 and the peak amplitude of the radial field is ag, = 9.55
for radial and azimuthal polarization. We use the same laser
spatio-temporal profile as in Ref.?”.
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