
HAL Id: tel-02489733
https://theses.hal.science/tel-02489733v1

Submitted on 24 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Semi-supervised Margin-based Feature Selection for
Classification

Samah Hijazi

To cite this version:
Samah Hijazi. Semi-supervised Margin-based Feature Selection for Classification. Artificial Intelli-
gence [cs.AI]. Université du Littoral Côte d’Opale; École doctorale des Sciences et de Technologie
(Beyrouth), 2019. English. �NNT : 2019DUNK0546�. �tel-02489733�

https://theses.hal.science/tel-02489733v1
https://hal.archives-ouvertes.fr


THÈSE de doctorat en Cotutelle
Pour obtenir le grade de Docteur délivré par

L’Université du Littoral Côte d’Opale
L’Ecole Doctorale SPI - Université Lille Nord-De-France

et
L’Université Libanaise

L’Ecole Doctorale des Sciences et Technologie

Discipline : Sciences et Technologies de l’Information et de la

communication, Traitement du Signal et des Images

Présentée et soutenue publiquement par

Samah HIJAZI

le 20 Décembre 2019

Sélection d’Attributs Basée Marge pour la Classification
dans un Contexte Semi-Supervisé

Membre du Jury:

M. Fadi DORNAIKA Professeur de Recherche à l’Université du Pays Basque Rapporteur
M. Ali MANSOUR Professeur à l’Université ENSTA Bretagne Rapporteur
M. Kifah TOUT Professeur à l’Université Libanaise Président
M. Ghaleb FAOUR Directeur de Recherche au CNRS-Liban Examinateur
Mme. Marwa EL BOUZ Enseignante-Chercheuse à Yncréa-Ouest Examinateur
M. Denis HAMAD Professeur à l’Université du Littoral Côte d’Opale Directeur de thèse
M. Ali KALAKECH Professeur à l’Université Libanaise Directeur de thèse
Mme. Mariam KALAKECH Maître de Conférences à l’Université Libanaise Encadrante de thèse





Cotutelle PhD THESIS
submitted in partial fulfillment for the degree of Doctor of Philosophy

from the University of the Opal Coast
Doctoral School SPI - University of Lille- North France

and
the Lebanese University

Doctoral School of Science and Technology

Specialty : Information and Communication Sciences and

Technologies, Signal and Image Processing

Publicly defended by

Samah HIJAZI
on December 20, 2019

Semi-supervised Margin-based Feature Selection for
Classification

Committee Members:

Mr. Fadi DORNAIKA Research Professor at the University of the Basque Country Reviewer
Mr. Ali MANSOUR Professor at the University of ENSTA Bretagne Reviewer
Mr. Kifah TOUT Professor at the Lebanese University President
Mr. Ghaleb FAOUR Research Director at CNRS-Lebanon Examiner
Mrs. Marwa EL BOUZ Teacher-Researcher at Yncréa-Ouest Examiner
Mr. Denis HAMAD Professor at the University of the Littoral Opal Coast Thesis Director
Mr. Ali KALAKECH Professor at the Lebanese University Thesis Director
Mrs. Mariam KALAKECH Senior Lecturer at the Lebanese University Thesis Supervisor





Contents

Acknowledgment i

Notations iii

Abbreviations v

Introduction 7

1 Score-Based Feature Selection 13
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2 Dimensionality Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3 Data and Graph Representation . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3.1 Graph Data Representation . . . . . . . . . . . . . . . . . . . . . . 17
1.3.2 Graph Laplacian Matrices . . . . . . . . . . . . . . . . . . . . . . . 21

1.4 Feature Selection with Contextual Knowledge . . . . . . . . . . . . . . . 22
1.4.1 Types of Supervision Information . . . . . . . . . . . . . . . . . . 24

1.5 General Procedure of Feature Selection . . . . . . . . . . . . . . . . . . . . 25
1.5.1 Subset Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.5.2 Evaluation Criterion of Performance . . . . . . . . . . . . . . . . . 27
1.5.3 Stopping Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.5.4 Result Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.6 Ranking Feature Selection Methods based on Scores . . . . . . . . . . . . 32
1.6.1 Unsupervised Scores . . . . . . . . . . . . . . . . . . . . . . . . . . 33
1.6.2 Supervised Scores . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
1.6.3 Semi-supervised Scores with Pairwise Constraints . . . . . . . . . 36

1.7 Feature Redundancy Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 39
1.7.1 Redundancy Performance Evaluation Metrics . . . . . . . . . . . 41

1.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42



2 Relief-Based Feature Selection 45
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.2 The Original Relief Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.2.1 Strengths and Limitations . . . . . . . . . . . . . . . . . . . . . . . 49
2.3 Basic Variants and Extensions of Relief with Probabilistic Interpretation 51

2.3.1 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.3.2 Incomplete Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.3.3 Multi-Class Problems . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.4 Concept of Change Interpretation . . . . . . . . . . . . . . . . . . . . . . . 56
2.5 Margin Notion in Relief-Based Feature Selection . . . . . . . . . . . . . . 58

2.5.1 Margin General Definition and Types . . . . . . . . . . . . . . . . 58
2.5.2 Mathematical Interpretation . . . . . . . . . . . . . . . . . . . . . . 60
2.5.3 Instance Weighting in RBAs . . . . . . . . . . . . . . . . . . . . . . 71

2.6 Statistical Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
2.6.1 STatistical Inference for Relief (STIR) . . . . . . . . . . . . . . . . 74

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3 An Approach based on Hypothesis-Margin and Pairwise Constraints 79
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.2 Hypothesis-Margin in a Constrained Context For Maximizing Relevance 81

3.2.1 General Mathematical Interpretation . . . . . . . . . . . . . . . . . 82
3.2.2 Relief with Side Constraints (Relief-Sc) . . . . . . . . . . . . . . . 84
3.2.3 ReliefF-Sc: A Robust version of Relief-Sc . . . . . . . . . . . . . . 88
3.2.4 Iterative Search Margin-Based Algorithm with Side Constraints

(Simba-Sc) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.3 Feature Clustering in a Constrained Context for Minimizing Redundancy 91

3.3.1 Feature Space Sparse Graph Construction . . . . . . . . . . . . . . 93
3.3.2 Agglomerative Hierarchical Feature Clustering . . . . . . . . . . 95
3.3.3 Proposed Feature Selection Approach . . . . . . . . . . . . . . . . 97

3.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
3.4.1 Experimental Results on Relief-Sc: Selection of Relevant Features 99
3.4.2 Experimental Results on FCRSC: Selection of Relevant and Non-

redundant Features . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4 Active Learning of Pairwise Constraints 121
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124



4.2.1 Constraints Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 124
4.2.2 Constraints Propagation . . . . . . . . . . . . . . . . . . . . . . . . 125

4.3 Active learning of Constraints . . . . . . . . . . . . . . . . . . . . . . . . . 128
4.3.1 Using Graph Laplacian . . . . . . . . . . . . . . . . . . . . . . . . 128
4.3.2 Active Constraint Selection . . . . . . . . . . . . . . . . . . . . . . 129

4.4 Propagation of Actively Selected Constraints . . . . . . . . . . . . . . . . 134
4.5 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
4.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

4.6.1 Used Benchmarking Feature Selection Methods . . . . . . . . . . 141
4.6.2 Datasets Description and Parameter Setting . . . . . . . . . . . . . 142
4.6.3 Performance Evaluation Measures . . . . . . . . . . . . . . . . . . 144
4.6.4 Performance Evaluation Results . . . . . . . . . . . . . . . . . . . 146

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

Conclusion and Perspectives 163

Bibliography 167

Publications 184

List of Tables 185

List of Figures 186

Abstract 191

Résumé 193

Résumé Étendu de la Thèse 195





Acknowledgment

First and foremost, praises and thanks to the God, the Almighty, for His showers of
blessings throughout my travel and research journey.

Special thanks to the University of the Littoral Opal Coast (ULCO), Agence Uni-
versitaire de la Francophonie (AUF), and the National Council For Scientific Research
(CNRS-L) for supporting this work with a scholarship grant as a part of ARCUS E2D2
project.

I would like to express my deep and sincere gratitude to my thesis director, Pro-
fessor Denis HAMAD for giving me the opportunity to do research and providing
invaluable guidance throughout this research. I would also like to thank Professor Ali
KALAKECH, my thesis co-director, and Dr. Mariam KALAKECH, my thesis super-
visor, for their valuable advices during my thesis work. It was a great privilege and
honor to work under their guidance.

I would also like to express my special thanks to Professor Fadi DORNAIKA and
Professor Ali MANSOUR for their precious time and effort to review my work. Special
thanks to Professor Kifah TOUT, Professor Ghaleb FAOUR, and Dr. Marwa El BOUZ
as well for examining my thesis.

To my friends and research colleagues, Emna CHEBBI, Hiba AL ASSAAD, Pamela
AL ALAM, Aya MOURAD, Ali DARWICH, Rim TRAD, Mohammad HARISSA, Ghi-
daa BADRAN, Tarek ZAAROUR, Ragheb GHANDOUR, Rasha SHAMSEDDINE, and
Mohammad Ali ZAITER, thank you all for your constant support. I am also extremely
thankful to the amazing Dr. Vinh Truong HOANG for his efforts and advices. Special
thanks to Mahdi BAHSOUN, I wouldn’t have known about this opportunity without
your help.

i



To my parents and life coaches, Zakaria HIJAZI and Amal WEHBI, no words can
express my feelings of gratitude. Thank you for being there every moment, shower-
ing me with love, support, encouragement, sincere prayers, and care. I am extremely
grateful for all the sacrifices you have done for making my future brighter. To my sis-
ter, Sahar HIJAZI simply thank you for being you. I am extremely lucky to be your
little sister.

Final words to my partner and supporter Ali REBAIE. Thank you for your patience
and for listening to me every single day, to my smallest and simplest problems, to my
fears and worries. Thank you for understanding the long silent nights. I owe it all to
you.



Notations

X Data matrix X = {xn}N
n=1

yl Data Labels vector
N Number of data points
Nc Number of points in class c
F Number of features
C Number of classes
xn n-th data point
yn Label of data point xn

xni Value of n-th data point on i-th feature
Ai i-th feature
Ain Value of i-th feature on the n-th data point
µAi Mean of the i-th feature
µc

Ai
Mean of i-th feature for points of class c

S Similarity matrix
D Degree diagonal matrix
ML Pairwise must-link constraints set
CL Pairwise cannot-link constraints set
SML Similarity matrix defined on ML
SCL Similarity matrix defined on CL
Skn Similarity matrix defined on ML and nearest neighbors
DML Degree diagonal matrix defined on ML
DCL Degree diagonal matrix defined on CL
Dkn Degree diagonal matrix defined on ML and nearest neighbors
L Laplacian matrix with L = D− S
Lsym Normalized symmetric Laplacian matrix
Lrw Normalized asymmetric Laplacian matrix
LML Laplacian matrix with LML = DML − SML
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LCL Laplacian matrix with LCL = DCL − SCL

Lkn Laplacian matrix with Lkn = Dkn − Skn

I Identity matrix
V Set of nodes in a graph
Vn Graph node corresponding to data point xn

E Set of edges in a graph
G = (V, E) Undirected graph constructed over X
Vi Variance Score of a particular feature Ai

LSi Laplacian Score of a particular feature Ai

Fi Fisher Score of a particular feature Ai

CS1i Constraint Score-1 of a particular feature Ai

CS2i Constraint Score-2 of a particular feature Ai

CS3i Constraint Score-3 of a particular feature Ai

CS4i Constraint Score-4 of a particular feature Ai

CLSi Constrained Laplacian Score of a particular feature Ai

K Number of nearest neighbors
KNN(xn) Set of the K-nearest neighbors to xn

w Weight vector spanning F features
wi Weight of feature Ai

H(xn) Nearhit of point xn

M(xn) Nearmiss of point xn

T Number of iterations
KH(xn) K-nearhits of point xn

KM(xn) K-nearmisses of point xn

KM(xn, c) K-nearmisses of point xn from different class c
ρ(xn) Hypothesis-margin of point xn

z Hypothesis-margin vector of length F
ρ(xn, xm) Hypothesis-margin of a cannot-link constraint
ρ((xn, xm),w) Weighted Hypothesis-margin of a cannot-link constraint
∆(p1, p2) General distance function between any two data points
∆(Ai, p1, p2) General distance function between any two data points on a specific feature
∆w(p1, p2) General weighted distance function between any two data points
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LLE Local Linear Embedding
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LPP Locality Preserving Projections
MLPP-CLP Multiple Locality Preserving Projections with Cluster-based Label Propagation



Introduction

With the rapid growth of modern technologies, the limitless number of computer and
Internet applications has caused an exponential increase in the amount of generated
data in a variety of domains. For instance, in domains such as social media, healthcare,
marketing, bioinformatics and biometrics, the data provided such as image, video,
text, voice, gene expression microarrays, and other kinds obtained from social rela-
tions and the Internet of Things may not only be huge in terms of the data samples,
but also in terms of feature dimensionality. This imposes many challenges on effective
and efficient data management.

Therefore, the use of data mining and machine learning techniques becomes a ne-
cessity for automatically extracting knowledge and uncovering hidden patterns from
data. In fact, according to the contextual knowledge and the way of identifying data
patterns, these techniques can be broadly categorized into classification, regression (or
prediction), and clustering. Data classification, the problem of identifying to which of
a set of pre-defined categories a data point should belong, can model many real-world
applications. Indeed, datasets are usually represented by two-dimensional matrices
where the rows correspond to data samples and columns correspond to the features
characterizing them. In this regard, some of the available features characterizing the
data may not provide any useful information or even express noise with respect to a
certain relevance evaluation criterion (e.g. class discrimination), others may be corre-
lated or redundant which makes the learning process complex, expensive in terms of
storage and computation, ineffective, less generalizable and difficult to interpret.

As a solution, finding narrower data matrices that can successfully summarize the
original ones can be considered. The latter process is known as dimensionality reduc-
tion which is a major step in data pre-processing. It can be mainly applied in two
different approaches: feature extraction and feature selection. Feature extraction con-
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verts the initial input space into a new one of lower dimensions by combining the
original features, thus, changing their meaning. Whereas, feature selection simply
chooses a small subset of features that best describes a dataset out of a larger set of
candidate features with the aim of producing a lower-dimensional space without any
core changes to the meaning of features. Consequently, feature selection costs less than
feature extraction in terms of computational cost and model interpretability.

Generally speaking, individual feature selection can be generalized into feature
weighting/scoring/ranking, by which, each feature is individually assigned a soft rel-
evance score instead of just a binary one. Indeed, the process by which this score is
evaluated changes with the change of contextual knowledge. Therefore, in an un-
supervised context where no labeling information is available at all, feature selec-
tion methods resort to using data similarity and local discriminative information ap-
proaches to measure the ability of features in discriminating data groups. On the other
side, in a supervised context where data is fully labeled, feature selection methods as-
sign higher scores to features having high correlation measures with class labels. There
also exists a whole family of feature selection algorithms that use a margin-based score
in order to evaluate and rank features. These are known as Relief-Based Algorithms
(RBAs) and were initially suggested in the supervised context for two-class problems.
They assign bigger weights for features that best contribute to enlarge a distance met-
ric called hypothesis-margin. This margin is calculated as the difference between the
distance from a point to its nearmiss (nearest point having a different label) and the
distance to its nearhit (nearest data point having the same label). RBAs proved to gen-
erally perform well regardless of the problem specifications. They have low bias filter
algorithms (independent of classifiers), considered relatively fast, capable of detecting
feature interaction, robust and noise-tolerant in addition to their ability to capture data
local dependencies [1, 2].

However, in many real-world applications, there usually exist few labeled data
points and lots of unlabeled ones, by which, both supervised and unsupervised fea-
ture selection algorithms cannot fully take advantage of all data points in this scenario.
Thus, it was wise to use semi-supervised methods to feat both labeled and unlabeled
points. Actually, compared to class labels, pairwise constraints are another type of
supervision information that can be acquired more easily. These constraints simply
specify whether a pair of data points belongs to the same class (must-link constraint)
or to different classes (cannot-link constraint) without specifying the classes them-
selves. Many constraint scores use these two notions to rank features, however, they
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still neglect the information provided by unconstrained and unlabeled data.

This led us to suggest a new framework for semi-supervised constrained margin-
based feature selection that handles the two core aspects of feature selection: relevancy
and redundancy. It consists of, (1) a constrained margin-based feature selection algo-
rithm that utilizes pairwise cannot-link constraints only and benefits from both the lo-
cal unlabeled neighborhood of the data points as well as the provided constraints, (2) a
method for actively selecting constraints based on matrix perturbation theory applied
on the similarity matrix in addition to the propagation of these constraints through
decomposing the problem into a set of independent label propagation subproblems,
and (3) a feature clustering method that combines sparse graph representation of the
feature space with margin maximization.

In order to compare the performance of our suggested methods with other score-
based supervised, unsupervised and constrained feature selection methods, experi-
ments will be initially carried out on well-known benchmark UCI (University Califor-
nia Irvine [3]) and high-dimensional gene expression datasets.

Contributions

The core of this thesis is semi-supervised constrained feature selection for high-dimen-
sional data. As feature selection aims at finding a small subset of relevant and non-
redundant features that can successfully summarize the original feature space, our
workflow was to focus first on tackling the problem of constraint-relevant feature se-
lection followed by handling redundancy. Throughout this work our contributions
can be summarized as follows:

• We provide a comprehensive and concise literature review of Relief-based Al-
gorithms from their four interpretations, called probabilistic [4], comprehensible
[5], mathematical [6], and statistical [7]. We highlight their strengths, limita-
tions, variants and extensions, in addition to representing the original Relief as a
margin-based algorithm.

• We suggest the semi-supervised margin-based constrained algorithms Relief-Sc
(Relief with Side Constraints) and its robust version ReliefF-Sc. They integrate
the modification of hypothesis-margin when used with cannot-link constraints,
with the analytical solution of the supervised Relief algorithm from its optimiza-
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tion perspective. They utilize cannot-link constraints only to solve a simple con-
vex problem in a closed-form providing a unique solution.

• We suggest an active method for pairwise constraints selection called Active
Constraint Selection (ACS). The output of this method is used by Relief-Sc and
ReliefF-Sc. ACS is based on the matrix perturbation theory, specifically on the
First-Order Eigenvector Perturbation theorem. It systematically chooses which
pairs of data are more effective in reducing uncertainty. Accordingly, only these
pairs are queried for constraints from human-experts, thus, decreasing human
labor-cost and avoiding noisy constraints and any ill interactions between a ran-
dom constraint set and our objective function. In addition, a method for Prop-
agating these Actively Selected Constraints (PACS) to their neighborhood was
also suggested.

• We propose extending our semi-supervised feature selection method into a novel
combination of feature clustering and hypothesis margin maximization. This
method, called Feature Clustering ReliefF-Sc (FCRSC), aims to allow redundancy
elimination as part of our overall suggested framework.

Structure of thesis

This thesis is structured as follows:

In the first chapter, we introduce the definitions of dimensionality reduction, fea-
ture extraction, feature selection, feature relevancy, and feature redundancy. We also
present the main data notations and knowledge representation together with graph
data construction methods. In addition, we categorize the feature selection process
according to the availability of supervision information (class labels and pairwise con-
straints) and according to the evaluation criterion of performance while presenting
some of the well-known state-of-the-art score-based ranking methods.

In the second chapter, we provide a survey of the most popular filter-type Relief-
Based Algorithms and show their implicit margin-based core. Mainly, the original
supervised Relief algorithm is explained thoroughly focusing on its strengths, limita-
tions, and applications in different contexts as a context-aware algorithm. Also, we
cover all variants, and extensions of Relief that were suggested to handle problems
with noisy, incomplete, and multi-class data. The chapter is divided into four major
sections each of which expresses Relief from a different possible interpretation (prob-
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abilistic, comprehensible, mathematical, and statistical).

In the third chapter, we first suggest Relief-Sc and its robust version ReliefF-Sc.
Their goal is effectively reducing data high dimensionality by finding a unique rel-
evant feature subset in a closed-form. This is to be obtained in a semi-supervised
context using side pairwise cannot-link constraints. Therefore, we first explain the
change in the main notions of a margin (nearhit and nearmiss) from the supervised to
the constrained context. We also formulate the constrained Relief-Sc under the math-
ematical interpretation of RBAs. In addition, we present the only other constrained
margin-based algorithm (Simba-Sc) that is mainly used in our comparisons of Relief-
Sc’s performance. On the other side, we present our FCRSC method for redundancy
elimination or minimizing redundancy with its main three building blocks: (1) sparse
graph construction to represent feature similarities, (2) hierarchical clustering upon
the latter, (3) combining margin maximization with the output of feature clustering
which results in maximizing relevancy while minimizing redundancy. Finally, we ex-
perimentally validate the efficiency of Relief-Sc, ReliefF-Sc, and FCRSC on multiple
UCI machine learning and two high dimensional gene-expression datasets in compar-
ison with supervised, unsupervised and semi-supervised state-of-the-art filter feature
selection methods.

In the fourth chapter, we present our active constraint selection and propagation
methods with briefing their related work. In fact, we divide the chapter into two main
parts. The first one explains our core contribution i.e. the process of selecting pairwise
constraints to be used by the constrained margin-based feature selection algorithm
Relief-Sc. The second one is the augmentation of supervision information by prop-
agating these constraints called PACS. Finally, extensive experiments are applied on
UCI [3] benchmark datasets and two high-dimensional gene expression ones to vali-
date the performance of our methods in addition to showing the effect of randomly
generated constraints (RCG) vs. actively selected constraints (ACS) in the process of
constrained feature selection.

Finally, we highlight our contributions and conclude the thesis while pointing out
our future perspectives.
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1.1. Introduction

1.1 Introduction

When feeding high dimensional data to the “model” of traditional learning techniques
without any proper preprocessing, unsatisfactory learning performance can be ob-
tained due to a critical problem known as the curse of dimensionality [8]. The latter
refers to a phenomenon by which data becomes sparser in high dimensional spaces
leading to over-fitting the learning algorithm [9]. In addition, many of the features de-
scribing the original feature space in real-world applications might be irrelevant and
redundant.

To clearly explain the notions of relevancy and redundancy, we use two features
to present three different examples as can be seen in Figure (1.1). The first example
presented in Figure (1.1a) shows the case when both Feature 1 and Feature 2 are con-
sidered irrelevant, this is due to their inability to discriminate data points of the two
different classes (clusters). In the second example, presented in Figure (1.1b), Feature 1
is considered irrelevant; whereas, Feature 2 can clearly separate Class A from Class B,
thus, it is considered relevant. Note that, usually a feature that best describes a dataset
according to a specific relevance evaluation criterion is said to be relevant, which is in
this example, the capability of class separation (classification problems). On the other
side, the third example, presented in Figure (1.1c), is the case when Feature 1 and
Feature 2 are redundant. In such cases, the information provided by the features is
strongly correlated. Eliminating irrelevant and redundant features can decrease data
dimensionality without any negative impact on the learning performance, on the con-
trary, it is said to enhance it.

1.2 Dimensionality Reduction

It is well-known that the presence of irrelevant and redundant features can penalize
the performance of a machine learning algorithm, increase its storage requirements,
elevate its computational costs and make data visualization and model interpretability
much harder. In order to mitigate such problems, dimensionality reduction as a data
preprocessing strategy is one of the most powerful tools to be used. By its turn, it can
be mainly divided into two different groups, feature extraction and feature selection
[10–12].

• Feature Extraction: projects the initial input space onto a new one of lower di-
mension by combining the original features either linearly or non-linearly, thus,
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CHAPTER 1. SCORE-BASED FEATURE SELECTION

changing their meaning [13, 14]. In fact, linear feature extraction is applied
when the data is assumed to fall on a linear subspace or when the classes of
data can be discriminated linearly, whereas, non-linear feature extraction is ap-
plied when the data pattern is assumed to be more complex and exists on a
non-linear sub-manifold [15]. Some existing well-known feature extraction al-
gorithms are Fisher Linear Discriminant Analysis (FLDA) [16], Kernel FLDA
[17], Supervised Principal Component Analysis (SPCA) [18], Principal compo-
nent Analysis (PCA) [19], Multidimensional Scaling (MDS) [20], Isomap [21],
Local Linear Embedding (LLE) [22] and t-distributed Stochastic Neighbor Em-
bedding (t-SNE) [23].

• Feature Selection: Feature selection aims at selecting the features that best de-
scribe a dataset out of a larger set of candidate features for the sake of producing
a lower dimensional space without any transformation or change on the physi-
cal meaning of the original features [12, 14, 24, 25]. For classification problems,
feature selection aims at selecting the highly discriminant features. In other
words, it aims at selecting the features that best discriminate between data points
belonging to different classes. Some well-known feature selection algorithms
are Pearson Correlation Coefficient (PCC) [24], Mutual Information (MI) [15],
Fast Correlation-based Filter (FCBF) [26], Sequential Forward Selection (SFS), Se-
quential Backward Selection (SBS) [15], and Minimum Redundancy-Maximum
Relevance (mRMR) [27].
Note that, the original input feature set is usually composed of the following four
groups of features: (a) completely irrelevant, (b) weakly relevant and redundant,
(c) weakly relevant but non-redundant, and (d) strongly relevant features [25].

(a) Irrelevant features (b) Relevent Feature 2
and irrelevent Feature 1

(c) Redundant features

Figure 1.1: Three examples illustrating the notions of relevancy and redundancy. (a)
shows two irrelevant features; (b) shows one relevant feature (Feature 2) and one ir-
relevant feature (Feature 1); and (c) shows two redundant features.
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Completely Irrelevant  
features 

Weakly Relevant 
and 

Redundant  
features 

Weakly Relevant 
 but 

 Non- Redundant 
features 

Strongly 
Relevant  
features 

Optimal feature subset 

(a) (b) (c) (d) 

Figure 1.2: The four kinds of possible feature groups within an original feature set.

As the first two groups can significantly degrade the performance of learning al-
gorithms and decrease their computational efficiency [28–30], it is expected from
a good feature selection algorithm to be able to keep features from within groups
(c) and (d). Figure (1.2) presents the four existing groups and identifies the opti-
mal desired feature subset.

Both of the above dimensionality reduction tools, feature extraction and feature
selection, are effective and capable of improving learning performance, decreas-
ing memory storage, enhancing computational efficiency, and building better
generalization models. However, feature selection costs less in terms of com-
putation and is superior in terms of better readability and interpretability. As
feature extraction maps the original feature space into a new one of a lower di-
mension, linking the features from the original feature space to the extracted one
becomes difficult. Thus, unlike in feature selection, further analysis of the ex-
tracted features turns to be problematic and their physical meaning is not main-
tained. It is important to note that sometimes keeping the original meaning of
features is crucial, like in genetic analysis, by which, determining which genes
are responsible for a specific disease is the goal [8, 24]. Therefore, in our work,
we are interested in feature selection methods.

Before moving forward with feature selection, we declare the symbols and no-
tations that will be used in this chapter together with the main aspects of graph
data representation.
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1.3 Data and Graph Representation

In our work, we consider a data matrix X ∈ RN×F where N is the number of data
points and F is the number of features. To be clear, it is possible to consider this matrix
X from two perspectives:

• The data points perspective, where the data matrix X is represented as follows:

X =


x1

· · ·
xn

· · ·
xN

 =


x11 · · · x1i · · · x1F

· · · · · · · · · · · · · · ·
xn1 · · · xni · · · xnF

· · · · · · · · · · · · · · ·
xN1 · · · xNi · · · xNF

 (1.1)

Each of the N rows of matrix X represents a data point1 xn ∈RF. Thus, xni is the
value of the n-th data point over the i-th feature Ai.

• The features perspective, where the data matrix X is represented as follows:

X =
(

A1 · · · Ai · · · AF

)
=


A11 · · · Ai1 · · · AF1

· · · · · · · · · · · · · · ·
A1n · · · Ain · · · AFn

· · · · · · · · · · · · · · ·
A1N · · · AiN · · · AFN

 (1.2)

Each of the F columns of matrix X above represents a feature2Ai ∈ RN. Note
that, Ain is equivalent to xni and holds the same value. It can be also read as the
value of the i-th feature over the n-th data point xn.

Throughout the report, italic letters are used to denote scalars and bold letters are
used to denote vectors or matrices (e.g. xn1, xn, X).

1.3.1 Graph Data Representation

Liu and Zhang [31] have claimed that by constructing a graph using the data in the
original feature space, some of the data’s intrinsic properties are reflected. In other
words, the graph structure reveals the inherent characteristics of the original data.
Therefore, it is assumed that finding a smaller set of features that can best preserve the

1also known as an instance, example or observation.
2 also known as a variable or attribute.
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graph structure, is said to have the most informative and important features.

Generally, a very fundamental step in graph-based methods is graph construction.
The latter is divided into graph adjacency determination and graph weight assign-
ment. Regarding the graph adjacency determination, a set of well-known methods
like K-nearest neighbor, ε-ball based, and fully connected graph are widely used [32].
On the other side, for graph weight assignment, another set of well-known methods
is used, some of which are Gaussian kernel, inverse Euclidean distance, and cosine
similarity [33, 34].

In addition, according to graph theory, the structure information of a graph can be
obtained from its spectrum [35]. Thus, spectral graph theory [36] represents a solid
theoretical framework, by which, multiple powerful existing feature selection meth-
ods depend on [35, 37–40]. Therefore, we decided to brief the corresponding basic
graph aspects.

For the training set X with N points, let G = (V, E) be the undirected graph con-
structed from X, where V= {V1, . . . ,VN} is the set of vertices and E is the set of edges.
Each vertex Vn in this graph represents a data point xn and each edge connecting
two vertices Vn and Vm carries a non-negative weight snm ≥ 0. The graph weights
are represented by an NxN similarity matrix S = (snm)n,m=1,...,N holding the pairwise
similarities between all data points as follows:

S =


0 s12 . . . s1N

s21 0 · · · s2N
...

... . . . ...
sN1 sN2 · · · 0

 (1.3)

G is an undirected graph, snm = smn, which means, the similarity matrix is symmetric.
Also, note that each pairwise similarity snm is within the range 0≤ snm ≤ 1.

According to von Luxburg [32], there are several approaches to build a graph out
of a given dataset with known pairwise similarities snm between its data points. Before
we get to brief the most common similarity graph-building methods, it is important
to note that their main aim is modeling the local pairwise neighborhood relationships
between data points.

• ε-neighborhood graph: In this type of graph, every two vertices that are asso-
ciated with two data points having a distance less than a threshold ε, are con-
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nected. In other words, a circle of radius ε and center xn defines which vertices
are connected to the vertex Vn corresponding to xn. Since the distances between
connected points will all be within the same range (maximum ε), there is no
need for weighting the edges. Instead, an edge only exists between two ver-
tices when their corresponding data points are considered neighbors yielding an
unweighted graph (the weight of an edge is either 0 or 1).

• K-nearest neighbor graph: In this type of graph, the goal is to connect vertex
Vn with vertex Vm if xm is among the K-nearest neighbors of xn. Since in this
definition the neighborhood relationship might not be mutual (e.g xn is in the
K-nearest neighbors of xm, however, not vice versa), it outputs a directed graph.

Two ways can be used to make this graph undirected:

– The normal K-nearest neighbor graph: built through ignoring the direc-
tions of the edges, which means, connecting two vertices Vn and Vm with
an undirected edge if xn is among the K-nearest neighbors of xm or xm is
among the K-nearest neighbors of xn.

– The mutual K-nearest neighbor graph: built through connecting two ver-
tices Vn and Vm if both of their corresponding data points are among the
K-nearest neighbors of each other.

In both cases, the edges are weighted by the similarity value between their end-
points.

• Fully connected graph: In this type of graph, all data points with positive sim-
ilarity to each other are connected and each edge is weighted by snm. As it is
expected from the graph to represent the local neighborhood relationships of
data, this type of graph construction is usually only chosen if the similarity func-
tion itself models local neighborhoods.

In fact, there are some well-known similarity functions that can be used for the
construction of a graph such as:

– The Gaussian similarity function evaluated as follows:

snm = e−
‖xn−xm‖2

2σ2 (1.4)

where the parameter σ is a user-defined constant that controls the width of
the neighborhood and ‖xn − xm‖ denotes the distance between xn and xm.
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– The self-tuning (auto-adaptive) Gaussian similarity function evaluated as
follows:

snm = e−
‖xn−xm‖2

2σnσm (1.5)

where the local scaling parameters σm and σm are calculated by studying
the local statistics of the neighborhood of points xn and xm respectively. For
instance σn = ‖xn− xk‖where K is a user-defined constant that specifies the
K-th neighbor of xn [41].

– The inverse of Euclidean distance similarity function calculated as fol-
lows:

snm =
1

‖xn−xm‖2

σ2 + 1
(1.6)

– The Cosine similarity function used to measure the similarity between two
vectors by calculating the cosine of the angle between them, evaluated as
follows:

snm = |cos(xn, xm)| =
|xn

T · xm|
‖xn‖‖xm‖

(1.7)

Now that we mentioned the graph-building methods, we highlight one of their
important characteristics i.e. the degree dnn of a vertex Vn ∈ V. It is equal to the sum
of weights of all edges connected to this vertex. It is defined as the diagonal matrix
D = (dnm)n,m=1...N calculated as follows:

D =



d11 0 · · · 0 0
0 d22 0 · · · 0
... 0 . . . 0

...

0
... 0 dnn 0

0 0 · · · 0 dNN


(1.8)

where,

dnn =
N

∑
m=1

snm (1.9)

It is worth to note that the degree dnn of a node Vn can be considered as a local density
measure at xn since dnn increases with the increase of the number of data points that
are close to xn [42].
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1.3.2 Graph Laplacian Matrices

Based on the definitions of the similarity matrix S and degree matrix D of the previous
section, the unnormalized Laplacian matrix can be determined as follows:

L = D− S (1.10)

where S and D are defined in Equations (1.3) and (1.8) respectively. The Laplacian
matrix L satisfies the properties of being symmetric, positive semi-definite, and the
below Equation (1.11).

For every vector v ∈RN:

vT Lv =
1
2

N

∑
n,m=1

snm(vn − vm)
2 (1.11)

Typically, we denote the eigenvalues of the Laplacian matrix L, sorted in their increas-
ing order, by λ1 ≤ λ2 ≤ ... ≤ λN and their corresponding eigenvectors v1,v2,...,vN

satisfying Lv = λv.
It is important to note that the data separation information according to the graph
Laplacian actually starts being available from the second eigenvector and on, this is
since λ1 = 0 and its associated vector v1 = (1/

√
N)1 always holds, where 1 is a vector

of size N such that 1 = (1,1, ...,1)T.

Note that, the diagonal elements of the similarity matrix S do not affect or change
the unnormalized graph Laplacian. Thus, each similarity matrix which coincides with
S on all off-diagonal positions yields the same unnormalized graph Laplacian. In par-
ticular, self-edges in a graph do not change the corresponding graph Laplacian. There-
fore, these are generally set to zero (snn = 0).

On the other side, there are two normalized Laplacian matrices, by which, one is
symmetric and the other is asymmetric (random walk) [32].

• The normalized symmetric Laplacian matrix of the graph is defined as follows:

Lsym = D−1/2LD−1/2 = I − D−1/2SD−1/2 (1.12)

where D1/2 is the diagonal matrix defined upon D1/2
nn =

√
dnn. Thus, D−1/2

nn =
1√
dnn

with the assumption that dnn , 0 and Lsym also satisfies the properties of
being symmetric, positive semi-definite, and the below Equation (1.13).
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For every vector v ∈RN:

vT Lsymv =
1
2

N

∑
n,m=1

snm(
vn√
dnn
− vm√

dmm
)2 (1.13)

Also, the smallest eigenvalue is given by λ1 = 0 and its associated eigenvector
v1 = ( 1√

∑n dnn
)D1/21 where 1 is a vector of size N such that 1 = (1,1, ...,1)T.

• The normalized asymmetric Laplacian matrix, also known as random walk [32],
of the graph is defined as follows:

Lrw = D−1L = I − D−1S (1.14)

where D−1 is the diagonal matrix defined upon D−1
nn = 1

dnn
with the assumption

that dnn , 0 and the eigenvector v1 of Lrw is equal to v1 =
1√
N

1 knowing that the
smallest eigenvalue λ1 = 0.

Note that, the above mentioned graphs are generally dependent on the values of
the parameters ε, K, or σ. Without finding appropriate values of these parameters with
respect to the data structure, the built similarity matrix may not be able to reflect the
real similarity among data points.

Now that we have presented the symbols, notations and basic notions of data rep-
resentation and graph construction, we show the categorization of feature selection
into unsupervised, supervised and semi-supervised according to the integration of
contextual knowledge.

1.4 Feature Selection with Contextual Knowledge

According to the availability of supervision information, feature selection is widely
categorized into unsupervised when no supervision information is available at all [30,
38], as supervised when data is fully supervised [27, 43], and as semi-supervised when
supervision information exists over only a few data points [10, 39].

• Unsupervised methods: in the context of unsupervised learning where no su-
pervision information is available, it is difficult to define an efficient criterion for
evaluating candidate features. In fact, unsupervised feature selection is said to be
fabricated for clustering problems. Thus, starting with a completely unlabeled
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training set, it utilizes all data points that are available in the feature selection
phase for the sake of finding robust criteria to define feature relevance. Multi-
ple unsupervised methods for selecting features were proposed in the literature.
These tend to use various evaluation criteria like the ability to preserve data
neighborhood graph, exploiting data similarity, maximizing feature variances,
and the ability to preserve local discriminative information [24, 30, 35, 38, 44–
48].

• Supervised methods: on the contrary to the unsupervised context, supervised
feature selection methods are generally fabricated for classification and regres-
sion problems [13]. As for classification, feature selection aims at finding the
features that can best discriminate data points of different classes. For example,
a feature can be selected as relevant if it is highly correlated with the vector of
class labels [9]. In this context, first a feature subset is selected using one of the
available feature selection methods applied on the training data [27, 43, 49–51].
Afterward, the learning algorithm is trained over the selected subset of features.
Then, the built model is applied to unseen data (an unlabeled testing set de-
scribed by the same set of features) for predicting class labels. Note that, the cost
of labeling data points by domain human experts is very high in terms of time
and effort and may not always be error-free (some data might be labeled falsely
[52]).

• Semi-supervised methods: in brief, while traditional supervised feature selec-
tion methods work when the data is fully labeled, unsupervised ones work with-
out any supervision information. However, in many real-world applications, the
amount of supervision information (e.g. the number of labeled data) might be
limited providing insufficient supervision information to supervised feature se-
lection methods. Similarly, unsupervised feature selection methods can be effec-
tive using unlabeled data only, however, without the ability to benefit from the
available supervision information. Hence, it is preferable to use semi-supervised
methods that can evaluate the relevance of features taking into account both la-
beled and unlabeled data [10, 53–56].

Therefore, in a training set X of N data points we may have two subsets depending
on the label availability: X l = {x1, x2, . . . , xl}l,0 with the class label corresponding to
each data point and Xu = {xl+1, xl+2, . . . , xl+u}u,0, which are unlabeled. When l = 0,
all data points are unlabeled and the learning context is said to be unsupervised. When
u = 0, all data points are labeled and the learning context is said to be supervised.
However, in real world problems, where we typically have only few labeled and many

23



1.4. Feature Selection with Contextual Knowledge

unlabeled data points (l << u) the context is said to be semi-supervised. Note that,
N = l + u.

1.4.1 Types of Supervision Information

Generally, class labels are the first to come to mind when mentioning supervision in-
formation. These specify which class each data point should belong to. Accordingly,
supervised and semi-supervised feature selection methods are usually explained in
terms of the available amount of class labels. However, in real-world applications,
there exists a cheaper kind of supervision information i.e. pairwise constraints. On the
contrary to class labels, these constraints only specify whether a pair of data points
should belong to the same group (must-link constraint) or different groups (cannot-
link constraint) without identifying the groups themselves.

1.4.1.1 Class Labels

As can be seen in Figure (1.3), in supervised or semi-supervised contexts, feature se-
lection utilizes fully or partially labeled data respectively. In both cases, it aims at
evaluating the relationship between the features and their provided class label infor-
mation. Thus, considering that in the training set X each data point xn is associated
with a class label yn, we denote by yl the vector of labels defined as follows:

yl =


y1

...
yn

...
yN

 (1.15)

where yn ∈ {1, .., c, ...,C} and C is the number of classes of the data. Having C
classes, we denote by Nc the number of data points in each class c.

1.4.1.2 Pairwise Constraints

Pairwise constraints are a cheaper kind of prior knowledge. They guide learning al-
gorithms and allow multiple unsupervised ones to improve their performance [57]. It
is easier for a user to specify whether some pairs of data points belong to the same
class or not, in other words, similar or dissimilar, than it is to specify class belongings.
In fact, class labels can be directly transformed into must-link and cannot-link con-
straints, however, constraints cannot be transformed into class labels. This is straight-
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forward since the amount of information provided by class labels is superior. Hence,
one way of building the must-link and cannot-link constraint sets is directly from the
class labels by connecting the data points that share the same label with a must-link
and connecting the data points that have different labels with a cannot-link [53, 58, 59].
Another way is to find these sets by directly adding them to data points using Active
Learning as will be suggested and discussed in chapter 4.

The sets of must-link and cannot-link constraints consisting of pairs of data points
from the training set X, denoted by ML and CL respectively, are defined as follows:

• ML = {(xn, xm) | xn and xm belong to the same group}

• CL = {(xn, xm) | xn and xm belong to different groups}

Pairwise constraints are used to evaluate the relevance of each feature according
to its constraint preserving ability. In the context of spectral theory, two graphs GML

and GCL can be constructed to represent them by using the data points of ML and CL
respectively. Accordingly, an edge is created between two nodes of the graph GML (or
GCL) when their corresponding data points are must-linked (or cannot-linked). Thus,
the similarity matrices holding the edge weights between every two nodes in GML and
GCL are defined as follows:

sML
nm =

1 if (xn, xm) ∈ ML

0 otherwise
(1.16)

sCL
nm =

1 if (xn, xm) ∈ CL

0 otherwise
(1.17)

In the three mentioned learning contexts: supervised, unsupervised, and semi-
supervised, the process of feature selection follows a general workflow. The latter is
illustrated in Figure (1.3) and will be detailed in the following section.

1.5 General Procedure of Feature Selection

By following the flow chart of the general procedure of feature selection presented
in Figure (1.3), there are typically four basic steps [12]. These are known as subset
generation, subset evaluation, stopping criterion and result validation [11].
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Figure 1.3: A flow chart showing the general procedure of feature selection while tak-
ing the contextual knowledge into consideration.

1.5.1 Subset Generation

Initially, subset generation, i.e. a search procedure, utilizes specific search strategies
to produce candidate feature subsets ready for the following evaluation step. It is
based on complete, sequential and random search strategies. (1) The complete search
strategy guarantees finding the optimal subset with respect to the used evaluation cri-
terion. One example of complete search is the exhaustive search where no optimal fea-
ture subset is missed; However, this might induce high computational cost (i.e. O(2F)

when the number of features F is large). (2) The sequential search strategy is computa-
tionally less expensive; However, it might not find the optimal set. Some approaches
to this type of search are Sequential Forward Selection and Sequential Backward Se-
lection. The former starts with an empty set and adds one feature at a time according
to the evaluation criterion, whereas, the latter starts with the full set of features and re-
moves one feature at a time. (3) Random search strategy escapes the chance of falling
into a local optima by starting with a randomly chosen set of features and then contin-

26



CHAPTER 1. SCORE-BASED FEATURE SELECTION

uing either with sequential search or with simply other random feature sets.

1.5.2 Evaluation Criterion of Performance

At this step, each of the candidate feature subsets is examined with respect to its pre-
ceding best subset by a particular evaluation criterion. If the evaluation’s output con-
firms that the new subset is better than the one before, the former replaces the latter.
As can be seen in Figure (1.4), feature selection can be categorized into three main
methods according to the evaluation criterion of performance. These methods are:
filter methods [38, 40], wrapper methods [60, 61] and embedded methods [62, 63]. Fil-
ter methods are also known as independent methods since they are independent of
any learning algorithm, while, wrapper and embedded methods are known as depen-
dent ones since they utilize the performance of a learning algorithm in the process of
selecting features [11, 12].

Feature Selection 
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Classifier 
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Figure 1.4: The broad categorization of feature selection into filter, wrapper and em-
bedded methods based on the evaluation criterion.
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1.5.2.1 Filter methods

Filter methods measure the goodness of generated feature subsets by relying on the
intrinsic characteristics of the data training set independently from any learning algo-
rithm. Hence, although filter methods are said to be computationally efficient, their
selected feature subsets might not be optimal for the used learning algorithm. This is
caused by the fact that no specific learning algorithm is guiding the process of feature
selection. Generally, any filter method works in two consecutive steps. Step 1, con-
sists of ranking the features in the order of their importance with respect to a specific
evaluation criterion. This criterion is further divided into univariate [38, 64] and mul-
tivariate schemes [27, 65]. In the former, each feature is evaluated individually and
independently from other features, whereas, in the latter, multiple features are evalu-
ated and ranked together in a batch mode. Step 2 consists of filtering out the features
of lowest ranks, thus, obtaining the final selected subset.

Some of the well-known filter evaluation criteria are:

• Measures of features discriminative ability to separate classes (also known as
distance, divergence and separability measures) [37, 66, 67].

• Measures of features correlation with class labels (also known as dependency
measures) [24, 68].

• Information based measures that typically evaluate the information gain from a
feature [27, 69, 70].

• Measures of features manifold structure preserving ability [35, 38, 71].

• Measures of features ability in reconstructing the original data [45, 72].

1.5.2.2 Wrapper methods

Wrapper methods require a predefined learning algorithm, by which, the process of
feature selection is wrapped around. In fact, wrapper methods utilize the performance
of this predetermined learning algorithm to evaluate the importance of features. Gen-
erally, superior performance and optimal feature subsets are guaranteed with such
methods as they focus on choosing the features that best improve the predictive accu-
racy of a specific learning algorithm, however, they also tend to be computationally
more expensive. To sum up, after deciding on the learning algorithm, a typical wrap-
per method performs two steps. In step 1, it searches for a subset of features. In step
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2, it evaluates the selected subset using the chosen learning algorithm. Steps 1 and 2
are repeated until the stopping criterion (section 1.5.3) is reached [60, 73].

1.5.2.3 Embedded methods

For the sake of a more efficient feature selection, embedded methods are a trade-off
between both filter and wrapper methods. By which, they generally try to find a fea-
ture subset that maintains good performance of learning algorithms while keeping
computational cost in an acceptable range. For instance, one may consider a filter ap-
proach to remove low ranked features in terms of relevance or importance, and then
apply a wrapper method on the selected subset to find the best features from within
[46, 65, 74].

Out of these three widely used feature selection approaches, we are interested in
filter methods as they are considered simple, fast and efficient. Moreover, they can be
applied as an independent preprocessing step before any mining algorithm.

1.5.3 Stopping Criterion

The stopping criterion decides when the process of feature selection should be termi-
nated. In fact, both the generation and evaluation steps are repeated until the stopping
criterion is met. The latter can be determined by:

• The subset generation step, where the process can be stopped either when a spe-
cific number of selected features or a maximum number of iterations is reached.

• The evaluation step, where feature selection termination can be determined by
the stability of performance, which means, adding or removing features would
not impose any performance change or improvement. It can also be determined
by obtaining a sufficiently good feature subset, in other words, a subset that
obtains an evaluation measure, i.e. greater than an acceptance threshold.

1.5.4 Result Validation

Finally, the selected feature subset (i.e. considered the best compared to all other gen-
erated subsets) has to be validated. Accordingly, result validation can be done by
simply evaluating the selected subset using domain prior knowledge. For example,
by monitoring the change in the classification performance of a classifier with respect
to the change in the feature subsets. For instance, if the classification accuracy rate
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records a greater value using the selected subset than using the original feature space,
the result is considered good.

Note that, data classification is the problem of automatically determining to which cat-
egory, out of a given set of categories, a new data point belongs. This is done through
a process of two consecutive phases. (1) Building a model using a data training set,
by which, the category or class membership of each data point is a priori known. (2)
Testing the built model using a data testing set, by which, the category or class mem-
bership of each data point is unknown. An example of a classification problem is
automatically deciding whether a person is healthy or diseased based on his observed
medical characteristics (features like: age, gender, family history, blood pressure, etc).
In fact, some well-known classification algorithms usually used for this type of vali-
dation are as follows:

• K-Nearest Neighbor (K-NN) [75]: a simple non-parametric method that can achieve
high performance when the number of data points is sufficiently big. It uti-
lizes only the spatial distributions of empirical samples without any previous
assumptions about their class distributions, where a new data point is classified
by the class of the majority of its K-nearest points.

• Support Vector Machines (SVM) [76]: a set of well-known general learning meth-
ods that have become very popular in the last few decades. A SVM classifier
maps data points into another space such that, a gap (called sample-margin) be-
tween the mapped points of different classes is maximized. Accordingly, new
data points are mapped into that same space and classified based on which side
of the gap they fall. Basically, multi-class SVM can be done by dividing a multi-
class problem into a set of two-class ones (e.g. one-against-one and one-against-
all methods). Besides, different kernel functions like linear, sigmoid, polynomial
and radial basis function (RBF) can be used.

• Naive Bayes (NB) [77]: a probabilistic classifier based on Bayes theorem. It ap-
plies classification with a naive (strong) independence assumption among fea-
tures. In other words, it considers that given the class labels, features are condi-
tionally independent of each other.

• Decision Tree (C4.5) [78]: a well-known classifier that applies an entropy-based
criterion on a set of training data to build the decision tree. For instance, the data
points can be split into smaller subsets by using a feature as the decision rule.
For this purpose, the algorithm measures the information gain at each split.

30



CHAPTER 1. SCORE-BASED FEATURE SELECTION

1.5.4.1 Relevancy Performance Evaluation Metrics

There exist multiple supervised performance evaluation metrics that are related to
data classification and can be obtained after applying a classifier on the selected set
of features. Three widely used metrics are accuracy, precision, and recall. To clearly
explain them, we consider having two classes, a positive class and a negative class to
build the confusion matrix. It holds the four different combinations of predicted and
actual values of these two classes as can be seen in Figure (1.5).

1. True Positives (TP): the total number of correct predictions that are positive,
which means, were predicted to be positive knowing that they actually belong
to the positive class.

2. False Positives (FP): the total number of incorrect predictions that are positive,
which means, were predicted to be positive knowing that they actually belong
to the negative class.

3. True Negative (TN): the total number of correct predictions that are negative,
which means, were predicted to be negative knowing that they actually belong
to the negative class.

4. False Negative (FN): the total number of incorrect predictions that are negative,
which means, were predicted to be negative knowing that they really belong to
the positive class.
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Actual  

Positive 
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Figure 1.5: The confusion matrix, a table of the four different combinations of pre-
dicted (rows) and actual (columns) class values. It is very useful for understanding
and measuring the accuracy, precision, and recall.

• Classification Accuracy: a well-known evaluation metric defined as a percentage
of correct predictions. Thus, it evaluates how many data points were correctly
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classified using the selected features by classifiers like the ones presented in 1.5.4.

Accuracy =
TP + TN

TP + TN + FP + FN
(1.18)

• Precision and Recall: another two well-known evaluation metrics usually used
together and can be applied in the context of classification. Precision answers
the question of what proportion of positive predictions was actually correct.
Whereas, recall, also called sensitivity, answers the question of what proportion
of actual positives was identified correctly.

Precision =
TP

TP + FP
(1.19)

Recall =
TP

TP + FN
(1.20)

1.6 Ranking Feature Selection Methods based on Scores

In feature selection, filter methods can be broadly categorized as relying on subset
evaluation or individual evaluation. Subset evaluation depends on some search strat-
egy to evaluate the relevance of candidate feature subsets. On the other side, individ-
ual evaluation, also known as feature ranking/weighting, aims at sorting the features
in either the increasing or decreasing order of a particular weight or score that is as-
signed to each of them [2]. For that, unlike subset evaluation, it assesses the degree of
relevance of each feature individually.

As our work is focused on feature ranking methods, in this section, we briefly re-
view eight of the well-known ranking methods that are based on scores and will be
used throughout the upcoming chapters. Later on, also a detailed and concise review
of a filter-type feature ranking family that is based on feature weights is presented in
chapter 2.

The eight well-known score-based ranking methods that are briefly reviewed in
this section are divided into unsupervised, supervised and semi-supervised as pre-
sented in Figure (1.6).
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Filter Methods 
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Laplacian 
score 

Variance 
Score 

Fisher score 

Class labels 
Pairwise 

constraints 
Partially 
labeled 

Partially 
constrained 

Constraint 
score-1 (CS1) 

Constraint 
score-2 (CS2) 

Constraint 
score-4 (CS4) 

Constrained 
Laplacian 

Score (CLS) 

Constraint 
score-3 (CS3) 

Figure 1.6: Score-based feature selection methods categorized according to the differ-
ent learning contexts.

1.6.1 Unsupervised Scores

• Variance Score [64]: generally known as the simplest unsupervised feature eval-
uation method. It uses the variance along a specific feature to reflect its repre-
sentative power. Hence, the features with the maximum variance are selected
assuming that a feature with higher variance contains more information and is
more relevant. This means that the features are ranked in the decreasing order
of their assigned Variance scores Vi.
Variance score depends on the following equation to evaluate features:

Vi =
1
N

N

∑
n=1

(Ain − µAi)
2 (1.21)

where N is the number of data points, Ain is the value of feature Ai on a data
point xn and µAi =

1
N ∑N

n=1 Ain.
Variance score can be also interpreted as a global graph preserving method as
follows [31]:

Vi =
1
N

AT
i

(
I − 1

N
11T
)

Ai (1.22)
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where I is the identity matrix and 1 ∈RN is a vector of all ones.

• Laplacian Score [38]: a well-known unsupervised feature selection method which
does not only depend on selecting the features of larger variances and higher
representative power but also considers their locality preserving ability. Its key
assumption is that data points within the same class should be close to each other
and far otherwise. In other words, a feature is said to be "good" when two near
data points in the original space are also near to each other on this particular fea-
ture, which means, it has the ability to preserve the local geometrical structure of
the data. Note that, the smaller Laplacian score is the better, i.e., the features are
ranked in the increasing order of their assigned Laplacian scores LSi.
The Laplacian score is calculated according to the following equation:

LSi =
∑xn,xm∈X(Ain − Aim)

2snm

∑xn∈X(Ain − µAi)
2dnn

(1.23)

where dnn is defined in Equation (1.9) and D is a diagonal matrix holding dnn in
its diagonal defined in Equation (1.8). S is neighborhood matrix between data
points expressed as follows:

snm =

e−
‖xn−xm‖2

σ2 if xn and xm are neighbors

0 otherwise
(1.24)

where σ2 is a user-defined constant and "xn and xm are neighbors" means that ei-
ther xn is in the K-nearest neighbors of xm or xm is among the K-nearest neighbors
of xn.
In addition, Equation (1.23) can be represented under the framework of the spec-
tral graph theory as follows:

LSi =
ÃT

i LÃi

ÃT
i DÃi

(1.25)

where L is defined as in Equation (1.10) and Ãi is defined as:

Ãi = Ai −
AT

i D1
1TD1

1 (1.26)

and 1 ∈RN is a vector of all ones.
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1.6.2 Supervised Scores

1.6.2.1 Using Class Labels

• Fisher Score [64]: a well-known supervised feature selection method that seeks
features with best discriminant ability. It is based on maximizing the distances
between data points of different classes and minimizing the distances among
points of the same class. To rank the features in the order of their relevancy, they
are sorted in the decreasing order of their obtained fisher score Fi. Thus, as the
value of an assigned score to a feature increases, its importance also increases.
The Fisher score is calculated according to the following equation:

Fi =
∑C

c=1 Nc(µc
Ai
− µAi)

2

∑C
c=1 Nc(σc

Ai
)2

(1.27)

where, Nc is the number of data points in class c, µAi denotes the mean of the i-th
feature over all data points, and µc

Ai
and (σc

Ai
)2 are the mean and the variance of

class c upon the i-th feature Ai respectively.
Also, it is possible to compute Fisher score using the global graph-preserving
method [31]. This can be done by writing Equation (1.27) as follows:

Fi =
AT

i (Sw − Sb)Ai

AT
i (I − Sw)Ai

(1.28)

where Sw = ∑C
c=1

1
Nc

ecec
T is the summation of the weight matrices of C within-

class graphs knowing that ec is an F-dimensional class indicator vector that holds
ec(n) = 1 if xn is in class c or 0 otherwise. In each of these within-class graphs,
all data points are connected with an equal weight 1/Nc. Sb = 1

N eeT, on the
other side, is the weight matrix of between-class graphs, by which, each edge
connecting different classes is assigned a weight of 1/N. Note that, e is an F-
dimensional between-class indicator vector.

1.6.2.2 Using Pairwise Constraints

• Constraint Scores [40]: two supervised constrained feature selection methods
that utilize pairwise constraints (must-links and cannot-links) only to evaluate
the relevance of features. Their key idea is to select features having the highest
constraint preserving ability. This means that a "good" feature is the one that
correctly reflects that two data points are close to each other when they are con-
nected by a must-link constraint and that they are far from one another when
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they are connected by a cannot-link constraint.
The two introduced score functions are: Constraint Score-1 (CS1) and Constraint
Score-2 (CS2). Both score functions are to be minimized, which means, a lower
score corresponds to a more relevant feature.

CS1 is calculated according to the following equation:

CS1i =
∑(xn,xm)∈ML(Ain − Aim)

2

∑(xn,xm)∈CL(Ain − Aim)2 (1.29)

CS2, a variant of CS1, is calculated according to the following equation:

CS2i = ∑(xn,xm)∈ML(Ain − Aim)
2 − λ ∑(xn,xm)∈CL(Ain − Aim)

2 (1.30)

Where ML and CL are the sets of must-link and cannot-link constraints defined
in section 1.4.1.2 and λ is a regularization coefficient used to balance the contri-
bution of the first and second terms of Equation (1.30). This is since the distance
between points belonging to different classes is usually larger than the distance
between points of the same class, thus, λ needs to be relatively small. The default
value of λ, set by the authors, is 0.1 [40].

Note that, CS1 and CS2 can also be expressed under the framework of spectral
theory according to the following equations:

CS1i =
AT

i LML Ai

AT
i LCL Ai

(1.31)

CS2i = AT
i LML Ai − λAT

i LCL Ai (1.32)

where, the matrices LML and LCL define the constraint Laplacian matrices cal-
culated as: LML = DML − SML and LCL = DCL − SCL where DML and DCL are
the degree matrices defined by dML

nn = ∑N
m=1 sML

nm and dCL
nn = ∑N

m=1 sCL
nm having the

similarity matrices SML and SCL defined by Equations (1.16) and (1.17) respec-
tively.

1.6.3 Semi-supervised Scores with Pairwise Constraints

• Constraint Score-3 (CS3) [79]: a semi-supervised feature selection method that
is fundamentally based on spectral graph theory and manifold learning. It aims
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at selecting the most locality sensitive discriminant features. For that, it tries to
find both the local geometrical structure and the discriminant structure of data
by utilizing unlabeled data and pairwise constraints respectively. In this method,
a nearest neighbor graph3 (Gkn) is built using the set of must-link constraints ML
and the data set X. Another graph4 (GCL) is built as defined in section 1.4.1.2.
The edges of these two graphs are weighted using their corresponding similarity
matrices Skn and SCL respectively. This score is to be minimized by which a lower
score means a more relevant feature.
CS3 can be calculated as follows:

CS3i =
∑(xn ,xm)∈X (Ain−Aim)

2skn
nm

∑(xn ,xm)∈X (Ain−Aim)2sCL
nm

(1.33)

where,

skn
nm =


γ if xn and xm ∈ ML

1 if xn and xm are unlabeled
but xn ∈ KNN(xm) or xm ∈ KNN(xn)

0 otherwise

(1.34)

Note that, KNN(xn) denotes the set of the K-nearest neighbors to xn. γ and k
were set empirically to the values of 100 and 5 respectively [79].

As a graph-based method, the equation of CS3 can be also given by:

CS3i =
AT

i Lkn Ai

AT
i LCL Ai

(1.35)

where Lkn = Dkn− Skn defines the Laplacian matrix of graph Gkn, and the degree
matrixDkn is defined by dkn

nn = ∑N
m=1 skn

nm.
Due to the large value of γ, although CS3 is semi-supervised, it is considered
very similar to CS2 that neglects unlabeled data points [53].

• Constraint Score-4 (CS4) [53]: a semi-supervised constrained feature selection
method that not only utilizes pairwise constraints to evaluate the relevance of
features but also uses the intrinsic idea of the unsupervised Laplacian Score to
benefit from the available unlabeled data. Consequently, this score is considered
less sensitive to the user-defined constraint sets. It applies a simple multiplica-

3Also known as the within-class graph.
4known as the between-class graph.
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tion of the unsupervised Laplacian Score from Equation (1.23) with the super-
vised CS1 from Equation (1.30). This score is to be minimized by which a lower
score means a more relevant feature. CS4 is calculated according to the following
equation:

CS4i =
∑xn ,xm∈X (Ain−Aim)

2snm

∑xn∈X (Ain−µAi )
2dnn

. ∑(xn ,xm)∈ML(Ain−Aim)
2

∑(xn ,xm)∈CL(Ain−Aim)2 (1.36)

Note that, CS4 can also be expressed under the framework of spectral theory as
it is also a graph-based method. The equation is given by:

CS4i =
Ãi

T LÃi

Ãi
T DÃi

. AT
i LML Ai

AT
i LCL Ai

= LSi .CS1i

(1.37)

• Constrained Laplacian Score (CLS) [54]: a semi-supervised feature selection method
that evaluates the relevance of a feature according to both of its locality and con-
straints preserving abilities. It aims at selecting the most discriminative and in-
formative features for data analysis and initially originates from constraining the
known Laplacian score. This score considers that a relevant feature should be the
one, by which, two data points that are neighbors or connected by a must-link
constraint, are close to each other. In addition, it should be the feature of high
variance, by which, two cannot-linked data points are well separated. This score
is to be minimized. It is calculated according to the following equation:

CLSi =
∑xn,xm∈X(Ain − Aim)

2skn
nm

∑n ∑m|∃l,(xl ,xm)∈CL(Ain − αAinm)
2dnn

(1.38)

where,

skn
nm =

e−
‖xn−xm‖2

σ2 if xn and xm are neighbors or (xn, xm) ∈ ML

0 otherwise
(1.39)

and

αAinm =

Aim if (xn, xm) ∈ CL

µAi otherwise
(1.40)

Hindawi [59] also derived CLS in the spectral graph-based representation as fol-
lows:

CLSi =
AT

i Lkn Ai

AT
i LCLDkn Ai

(1.41)

38



CHAPTER 1. SCORE-BASED FEATURE SELECTION

1.7 Feature Redundancy Analysis

As detailed in section 1.6, a common practice of score-based filter-type feature selec-
tion methods is to simply rank the features in the order of their assigned scores at the
end of the individual evaluation process [59]. Then, a subset of the top-ranked fea-
tures, e.g. a group of the first 10 features if the desired subset size is 10, is considered
as the final selected feature subset [80]. One drawback of this straightforward rank-
ing approach is that the selected subset might hold features that are correlated to one
another. This is also known as feature redundancy. In fact, redundant features may
increase dimensionality unnecessarily [81] and degrade learning performance when
facing a shortage of data [82]. Therefore, multiple pieces of research suggested en-
hancing the representative power of the feature subset by demanding that the selected
features are maximally dissimilar to each other [27, 54, 80, 83–85].

Feature-Relevance  
Analysis 

Feature-Redundancy  
Analysis 

Original  
features Selected  

Features 

Final  
Selected 
features 

Figure 1.7: The general two-step framework of classical feature selection methods that
handle maximizing the relevancy of features with respect to a specific problem while
minimizing their redundancy with respect to each other.

Classical methods remove redundancy among features by generally depending on
Euclidean distance, Pearson correlation and information measures [25]. Figure (1.7)
shows the general procedure of such methods. For instance, one widely used method
is the "Minimum Redundancy-Maximum Relevance" called (mRMR) [27]. It is a su-
pervised multivariate feature selection method that is said to output a feature subset
having the most diverse features (as non-correlated to each other as possible) while
still having a high correlation with the class label.

For that, mRMR method uses two criteria that are based on mutual information.

• A maximal relevance criterion, by which, the features of high mutual informa-
tion with the vector of class labels are selected as follows:

maxRelevancy(Fs,yl) =
1

card(Fs)
∑

Ai∈Fs

I(Ai;yl)
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where Fs is the selected subset of features, card(Fs) is the number of features in
Fs, and yl is the vector of class labels.

• A minimum redundancy criterion, by which, the features of low mutual infor-
mation with other features are selected as follows:

minRedundancy(Fs) =
1

(card(Fs))2 ∑
Ai,Aj∈Fs

I(Ai; Aj)

I(x;y) denotes the mutual information between elements x and y defined in
terms of their probabilistic density functions as follows:

I(x;y) = ∑
x

∑
y

P(x,y) log
P(x,y)

P(x)P(y)

On the other side, there exists another non-classical framework for obtaining a subset
of representative and diverse features, i.e. feature clustering. Figure (1.8) shows the
general framework of applying clustering for the sake of maximizing diversity among
features. Methods under this framework follow the below three-step process:

Clustering of
features

Choosing 
representative

features

Selected feature subset 
of maximum relevance 

and 
maximum diversity

Figure 1.8: A general framework for clustering-based feature selection methods.

• Step 1: A suitable distance measure is chosen for evaluating the similarity or
dissimilarity between features.

• Step 2: An appropriate clustering method is applied for grouping similar fea-
tures.

• Step 3: An appropriate evaluation criterion is applied for choosing the most rep-
resentative feature out of each cluster.

In [86], Dhillon et al. suggested a global criterion for word (feature) clustering and
applied it to text classification. It is a novel information theoretic divisive algorithm
that minimizes the “within-cluster Jensen-Shannon divergence” while simultaneously
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maximizing the “between-cluster Jensen-Shannon divergence”. Another supervised
method that hierarchically clusters the features (using Ward’s method), was proposed
by Ienco and Meo [87]. It uses a hybrid method to evaluate the feature subset obtained
at each level of the dendrogram5. In fact, at each level, a class-distribution preserving
measure (Goodman-Kruskal τ [88]) is used to select the most representative features
from within each cluster before a classifier evaluates the goodness of the feature sub-
set.
In addition, many clustering-based feature selection methods using information the-
ory were proposed [51, 89, 90]. For instance, one method that uses agglomerative
hierarchical clustering builds its own kind of similarity space between features using
an information theoretic measure i.e. mutual information [91]. Whereas, Sotoca and
Pla [43] build their features dissimilarity space using conditional mutual information.
On the other side, Zhao [92] combines the usage of the maximal information coeffi-
cient measure with the affinity propagation clustering method to find similar features.

Note that, a feature clustering-based method might select an irrelevant feature as
these features are often clustered together. Thus, it is preferable to remove them before
feature clustering.

1.7.1 Redundancy Performance Evaluation Metrics

• Representation Entropy (RE) [30, 44]: is an unsupervised metric used to com-
pare the redundancy in obtained feature subsets. It obtains a maximum value
when all the eigenvalues become equally important, which means, the level of
uncertainty becomes maximum. This indicates that information is evenly dis-
tributed among all the principal directions. On the contrary, it obtains a value of
zero only when all the information is present along the single principal coordi-
nate direction (all eigenvalues are equal to zero except one).

The RE of a d-sized feature subset, denoted by HR, is calculated as follows:

HR = −
d

∑
j=1

λ̃jlogλ̃j

5A multi-level tree diagram called dendrogram. Cutting this dendrogram on a specific level results
in one of the possible feature clustering solutions.
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where

λ̃j =
λj

∑d
j=1 λj

and λj is one eigenvalue of the d× d covariance matrix of the respective feature
space.

• Redundancy [59, 82]: another very well-known unsupervised metric that is based
on the linear correlation coefficient. It quantifies the strength of pairwise linear
relationship between two features. When there is no correlation between two
features, then the values of features do not tend to increase or decrease in tan-
dem. It is not ensured that two uncorrelated features are independent, this is
since some kind of nonlinear relationship might exist.

The redundancy measure, denoted by RED, of a feature subset Fs can be calcu-
lated as follows:

RED(Fs) =
1

card(Fs)(card(Fs)− 1) ∑
Ai,Aj∈Fs,i>j

corr(Ai, Aj)

where card(Fs) is the number of features in Fs and corr(Ai, Aj) is linear correla-
tion coefficient between features Ai and Aj calculated as follows:

corr(Ai, Aj) =
∑n(Ain − µAi)(Ajn − µAj)√

∑n(Ain − µAi)
2
√

∑n(Ajn − µAj)
2

where µAi and µAj are the means of the feature vectors Ai and Aj respectively.
A large value of RED(Fs) means that many of the selected features have strong
correlation and accordingly it is expected to have redundancy in Fs.

1.8 Conclusion

In this chapter, we introduced the general procedure of feature selection as a dimen-
sionality reduction tool. For that, we first had to present the data notations and knowl-
edge representation together with graph data construction and representation.
Afterward, we started by defining the original feature space that can hold relevant,
irrelevant, and redundant features, by which, the latter two feature-types are well
known to degrade the performance of learning algorithms. As a solution, we high-
lighted the importance of dimensionality reduction while broadly categorizing it into
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feature extraction and feature selection methods. As our focus is on feature selection
methods, we only provided a brief overview of some of the widely used feature extrac-
tion methods. On the other side, we illustrated the problem of feature selection in the
unsupervised, supervised, and semi-supervised learning contexts by detailing a set of
representative state of the art score-based ranking methods. In addition, we reviewed
the categorization of feature selection into filter, wrapper, and embedded methods ac-
cording to the evaluation criterion of performance. Finally, we explain the main idea
of feature redundancy analysis and state some of its performance evaluation metrics.

As our contribution field is focused on filter-type methods, the next chapter is a de-
tailed review of a powerful family of these methods called Relief-Based Algorithms,
by which, we will modify in the later chapters to effectively solve the problem of con-
strained semi-supervised feature selection.
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Relief-Based Feature Selection
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2.1 Introduction

As elaborated in the previous chapter, the data used in many machine learning and
pattern recognition applications is provided with a very large number of features.
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Some of which can be irrelevant or redundant. This can lead to over-fitting the learn-
ing algorithm, penalizing its performance, and increasing its computational cost. To
mitigate such problems, feature selection can be used as a data preprocessing step.

Remembering that according to the evaluation criterion of performance, there are
three main categories for feature selection: filter methods [12, 93], wrapper methods,
and embedded methods. We are particularly interested in filter Relief-based methods
that are simply based on ranking features according to a specific assigned weight. This
is motivated by the fact that compared to wrapper methods, Relief avoids any exhaus-
tive combinatorial search and learning algorithm-dependency, hence, it is more effi-
cient. Moreover, it usually performs better than other filter feature selection methods
due to the performance feedback of a non-linear classifier when searching for relevant
features [94]. At the same time, Relief-based methods are context-aware, taking into
account local information to detect dependencies and interactions between features
themselves while still providing a global view to select useful features [37].

Therefore, in this chapter, we first explain the original Relief algorithm in section
2.2. Then, by highlighting its strengths and limitations, we show its main variants and
extensions in section 2.3. Also, Relief is presented by its four possible interpretations,
that are, probabilistic, comprehensible, mathematical and statistical in sections 2.3, 2.4,
2.5 and 2.6 respectively. In addition, Relief is introduced as a margin-based algorithm
followed by a set of consequent extensions in section 2.5. Finally, we conclude the
chapter in section 2.7.

2.2 The Original Relief Algorithm

Relief was suggested in 1992 by Kira and Rendell [49, 66] as a solution for the problem
of selecting a small subset of features that ideally is necessary and sufficient to de-
scribe some specific target concept1 in a supervised context. It is said to be an efficient,
simple and practical feature selection solution for two-class real-world classification
problems that involve feature interaction without the need of explicitly trying combi-
nations of features.
In addition, Relief that was inspired by instance based-learning [95, 96], calculates a
proxy statistic for each feature in order to estimate its "quality" or "relevance" to the
target concept. Hence, it is a statistical method that avoids heuristic search. In fact,

1 A target concept is the endpoint of a specific problem, e.g., it is the class label in classification
problems and the predicted value in regression.
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in order to calculate these feature statistics, Relief introduced two very important no-
tions, that are, the nearhit and the nearmiss of a data point. To explain them clearly, we
consider the training set X = [x1, ..., xn, ..., xN] ∈ RN×F, where xn = {xn1, ..., xni, ..., xnF}
is the n-th data point in X of N data points characterized by F features with yn being
its corresponding class label.

Definition 2.1. The nearhit of a data point xn, denoted by H(xn), is defined as its
nearest point from the same class and the nearmiss of a data point xn, denoted by
M(xn), is defined as its nearest point from a different class. Figure (2.1a) illustrates
these two notions.

Definition 2.2. The feature-statistics, referred to as the features "weights" or "scores"
[2], are denoted by a weight vector w = (w1, ...,wi, ...,wF)

T spanning over the F fea-
tures, where wi is the relevancy weight corresponding to the i-th feature.

The pseudo-code of Relief is presented below in Algorithm 2.1.

Algorithm 2.1 Relief

Input:

• Labeled Training set X of N data points and F features

• Number of iterations T

Output: Relevance vector

1. Initialize the weight vector to zero w = (0,0, ...,0)

2. For t = 1, ..., T

(a) Pick randomly a data point xn from X

(b) Find H(xn) and M(xn)

(c) For i = 1, ..., F, calculate
wnew

i = wold
i + ∆(Ai, xn, M(xn))2 − ∆(Ai, xn, H(xn))2

End For

End For

3. Relevance = w/T

4. The chosen feature set is {i|Relevancei > τ} where τ is a fixed threshold.
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As summarized in Algorithm 2.1, Relief iterates over multiple random data points.
At each iteration t of T, it selects a data point xn randomly and without replacement,
where T is a user-defined parameter. Then, for the chosen xn, Relief finds the nearhit
H(xn) and nearmiss M(xn) using squared Euclidean distance. It then updates the
value of each feature weight wi by the value of the difference between the distance
from xn to H(xn) and from xn to M(xn) over this specific feature. For instance, a rele-
vant feature is expected to induce a different value between xn and M(xn), thus, when
this is true, its corresponding relevancy weight wi is increased by the value of the dif-
ference it induced. Conversely, it is expected from a relevant feature to induce a very
similar value (no difference) between xn and its nearhit H(xn), therefore, any recorded
difference, is subtracted from the corresponding relevancy weight wi. By meaning,
Relief evaluates the relevancy of each feature by calculating its ability to discriminate
between near points of two different classes. Hence, a feature that contributes more to
this data discrimination is considered more relevant.

The ∆ function used in step (c), i.e. the weight-updating step of Algorithm 2.1,
given by ∆(Ai, p1, p2), calculates the distance between any two data points p1 and p2

on a specific feature Ai.

Definition 2.3. For quantitative features, ∆ can be calculated as:

∆(Ai, p1, p2) =
|value(Ai, p1)− value(Ai, p2)|

max(Ai)−min(Ai)
∈ [0,1] (2.1)

Similarly, for qualitative features, ∆ can be calculated as:

∆(Ai, p1, p2) =

{
0, if value(Ai, p1) = value(Ai, p2)

1, otherwise
(2.2)

Where value(Ai, p) is the value of the data point p over the i-th feature. The maxi-
mum and minimum values of Ai denoted max(Ai) and min(Ai) are evaluated over
the whole set of data points. This normalization ensures that all ∆ values are scaled
into the interval [0,1] for both qualitative and quantitative features. Note that, the
same ∆ function is also used to find the nearest neighbors of a considered data point.
In fact, the distance between any two data points is simply the sum of their ∆ functions
over all features.

Figure (2.1) illustrates an example of the weight-updating step with continuous
features. In this example, we consider a set of 10 data points divided equally on two
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classes (A and B) and defined by two features (Feature 1 and Feature 2) each. The ta-
ble presented in Figure (2.1b) shows these data points with their feature values, class
assignment, and the maximum and minimum values of each feature used for max-
min normalization. Figure (2.1a) also shows the 2D plot of these data points with
x5 as the considered data point, x4 as its nearhit and x7 its nearmiss. Accordingly,
Figure (2.1c) shows how the weights w1 and w2, corresponding to Feature 1 and Fea-
ture 2 respectively, are updated upon considering the data point x5, its nearhit and its
nearmiss; when the value of a feature is different between x5 and its nearhit, this fea-
ture loses and its corresponding weight is penalized by the value of the difference

(
e.g.

w1− = (3−2)2

(max(feature1)−min(feature1))2

)
. On the other side, when the value of a feature is

different between x5 and its nearmiss, this feature wins and its corresponding weight
is increased by the value of the difference

(
e.g. w1+ = (3−7)2

(max(feature1)−min(feature1))2

)
.

Finally, after finishing the T iterations, the output (named Relevance in step (3) of
the original Relief algorithm) is a weight vector w divided by T, obtaining an average
of the accumulated weight wi corresponding to each feature Ai. This guarantees that
all final weights are normalized within the interval [−1,1]. Then, each feature having
a Relevancei greater than a given threshold τ is selected. According to the theoretic
demonstration by kira and Rendell [49], the value of τ can be statistically evaluated
based on Chebyshev’s inequality, such that, the probability of choosing an irrelevant
feature is as small as possible. However, instead of specifying the threshold value τ,
it is often more practical to a priori specify the desired size of feature subset (a num-
ber) based on the functional, computational, or run time limitations of the learning
algorithms to be applied after that. This can be done by ranking the features in the
descending order of their weights and then choosing the first 10 features if 10 was the
desired feature subset size.

Note that, although the original Relief [66] used Euclidean distance rather than Man-
hattan distance, later experiments by Kononenko et al. [97] showed no significant
differences between both distances in the context of Relief, thus, the simplified de-
scription using Manhattan distance became a standard [2].

2.2.1 Strengths and Limitations

Notably, since Relief avoids heuristic search and does not look for an optimal mini-
mum feature subset size, it is said to be efficient [66]. For instance, compared to the
time complexity of an algorithm that does an exhaustive search for detecting interac-
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M (x5)H (x5)

(a) 2D Data Plot

Data point Feature 1 Feature 2 Class 

X 1 2 3 A 

X 2 1 4 A 

X 3 3 4 A 

X 4 2 5 A 

X 5 3 6 A 

X 6 8 6 B 

X 7 7 5 B 

X 8 9 5 B 

X 9 7 4 B 

X 10 9 4 B 

Feature max 9 6 

Feature min 1 3 

Normalization 
(max-min) 

8 3 

Considered Data point 

Nearhit  

Nearmiss 

(b) A Data table showing the feature values of the
considered data point, its Nearhit and its Nearmiss

3  6     A 

2 5    A 

X5 

H(x5) 

M(x5) 

Features Class 

w1 -= 1/64 

w1  +=16/64 

X5 

w2  +=1/9 

3  6     A 

7 5    B 

w2  -= 1/9 

(c) Weight Updates

Figure 2.1: An illustration of one weight-updating step by Relief over continuous fea-
tures. (a) Shows the 2D plot of the data points with x5 as the considered data point,
x4 as its nearhit and x7 its nearmiss. (b) Shows the data points table with the maxi-
mum and minimum value of each feature used for max-min normalization. (c) Shows
how the weights w1 and w2 corresponding to Feature 1 and Feature 2 respectively are
updated.
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tions between all feature pairs i.e. O(2F), Relief has a time complexity of O(TNF),
or O(NF) whenever T < N. Thus, it requires linear time in terms of the number of
features and training data points. In addition, Relief is non-parametric, which means,
it ranks the features without making any assumptions regarding the population dis-
tribution or sample size [2]. Moreover, Relief can be seen as an any-time ranking al-
gorithm. This means that it can be stopped at any iteration and obtain a relevancy-
ranking of features, yet, with more time or data its results can be improved. Relief
has been also categorized as non-myopic, which means it can evaluate the relevance
of features in the context of other features (detects feature interactions) [98].
However, the original Relief is basically limited to two-class classification problems.
Although, Kira and Rendell [66] suggested that, as future work, the algorithm can be
easily extended to solve multi-class classification problems by splitting them into a se-
ries of two-class problems, this solution was considered unsatisfactory and inefficient
[99]. Relief also has no mechanism to work with missing data or feature redundancy.
In fact, the original Relief analysis suggests that its performance might be penalized
by insufficient training iterations (i.e. not a large enough T). Most importantly, in 1994,
Kononenko identified that Relief was susceptible to noise interfering with the selection
of nearest neighbors [4].

2.3 Basic Variants and Extensions of Relief with Proba-

bilistic Interpretation

Now that we detailed the aspects and notions of the basic original Relief algorithm,
it is important to note that it gained a big deal of interest between filter-type feature
selection methods leading to a series of extensions, interpretations, and modifications.
In this section, we go through a concise review of the Relief-Based Algorithms, known
recently as RBAs [2].

Initially, in the context of instance-based learning, kononenko [4] derived a proba-
bilistic interpretation of the feature weights obtained by Relief.

Definition 2.4. The probabilistic interpretation considers that a good feature Ai

should:

• induce a high probability of having a different value over a data point xn and its
own nearmiss M(xn).

• induce a low probability of having a different value over a data point xn and its
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own nearhit H(xn).

Thus, the weight wi of the feature Ai is obtained as an approximation of the difference
between the above probabilities:

wi = P
(

value(Ai, xn) , value(Ai, M(xn))

)
−P
(

value(Ai, xn) , value(Ai, H(xn))

) (2.3)

However, from this probabilistic point of view, it is considered that a larger number
of iterations T, i.e the number of data points used for approximating probabilities,
provides a more reliable approximation. At the same time, T should not exceed the
number of data points available in X, i.e T ≤ N.

2.3.1 Robustness

By following the drawbacks of Relief, Kononenko stated that the selection of near-
est neighbors with respect to important features is one of the most important steps in
Relief [4]. However, when selecting them in a context of irrelevant (redundant and
noisy) features, the process can become unreliable and negatively affect the probabil-
ity estimations. Therefore, kononenko proposed the first modification of Relief, called
ReliefA, as a solution. It is an extended more robust version of Relief that aims at in-
creasing the reliability of probability approximations. For that, ReliefA searches for
K-nearhits and K-nearmisses instead of only one nearhit and one nearmiss. In fact,
ReliefA can be seen as a functionality-based extension, i.e, averaging the contributions
of K-nearhits/misses.

Definition 2.5. The K-nearhits of xn from the same class are denoted by KH(xn) :
{H1(xn), H2(xn), ..., HK(xn)} and the K-nearmisses of xn from the opposite class in
a two-class problem are denoted by KM(xn) : {M1(xn), M2(xn), ..., MK(xn)}. Where
K is a user defined parameter representing the number of closest points to xn to be
considered.

However, the number of considered nearest neighbors K should be kept relatively
small. This is due to the fact that as K increases from 1 approaching N, the condition
of using the "near" data points for feature weight estimation is eliminated. This was
derived by Robnik-Šikonja and Kononenko [37] who showed that without the "near"
requirement, Relief weights might lose their ability to consider local information and
hence the ability to detect feature interaction. In fact, the power of RBAs lies in their
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ability to efficiently exploit information locally while still being able to provide a global
view with context awareness.

It was noted that using ReliefA instead of Relief improves the estimates of features
for both free of noise and noisy datasets, however, a more significant improvement is
obtained when the data is noisy [4].

2.3.2 Incomplete Data

Following the usage of K-nearest neighbors, five extensions were proposed to ReliefA
to deal with missing values and multi-class problems, known as ReliefB through Reli-
efF [4]. Three of these extensions that are ReliefB, ReliefC, and ReliefD, were proposed
in order to deal with incomplete data or missing values.
In fact, ReliefB handles missing values by modifying the output of the corresponding
∆ function as follows:

• if at least one of the two data points has an unknown value on a specific feature
Ai:

∆(Ai, p1, p2) = 1− 1
#o f valuesAi

where #o f valuesAi is the number of possible values for feature Ai.

On the other hand, ReliefC differs from ReliefB by disregarding the contributions of
the differences that are calculated from data points of at least one unknown value on a
specific feature through suitable normalization. This is done with the assumption that
when enough training data is provided, the resulting feature weights should converge
to their correct estimate values.

However, experiments showed that ReliefD performed the best in the context of in-
complete and noisy data. For that, when ReliefD encounters an unknown value of a
data point on a specific feature, it replaces the output of the corresponding ∆ function
by the class-conditional probability that these two data points have different values
over this specific feature as follows:

• if one data point of the two has an unknown value (e.g. value of p1 over Ai is
unknown):

∆(Ai, p1, p2) = 1− P(value(Ai, p2)|class(p1))
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• if both of the data points p1 and p2 have unknown values over Ai:

∆(Ai, p1, p2) = 1−
#o f valuesAi

∑
valueAi

P(valueAi |class(p1))× P(valueAi |class(p2))

Where #o f valuesAi is the number of possible values for feature Ai and the values
of conditional probabilities are approximated using the relative frequencies over the
training data.

On the contrary, Relieved-F suggested by kohavi et al. [100] handles missing data
by simply setting the difference between two unknown values to 0 and the difference
between an unknown and any other known value to one.

2.3.3 Multi-Class Problems

Kira and Rendell [49, 66] proposed that the original Relief algorithm can be applied
in the context of three or more classes through splitting the domain or problem into a
series of two-class ones. However, this was proved to be inefficient and unsatisfactory
[97]. Therefore, as more practical solutions, the two other extensions, namely ReliefE
and ReliefF, were proposed following ReliefD to efficiently deal with the problem of
having more than two classes [4]. As for ReliefE, the straightforward generalization of
Relief, it simply modifies the definition of nearmiss to be the one nearest point from
any "other" class with respect to a data point xn.

On the other side, ReliefF that includes both of the suggested modifications applied
in ReliefA and ReliefD, is the most common and well-known variant of the original
Relief algorithm nowadays. For instance, in order to deal with multi-class problems,
ReliefF finds a nearmiss from each different class instead of finding only one nearmiss
from the opposite class in the case of two-class problems or from any different class
as in ReliefE in case of multi-class problems. Then, the contributions of each nearmiss
from each "other" class are averaged based on the prior probability of each class and
used to update weight estimates. By meaning, the algorithm evaluates the ability of
features to separate all pairs of classes regardless of their number and regardless of
which two classes are the closest to each other. Moreover, as the capabilities of ReliefF
include those of ReliefA, it can also choose K-nearmisses from each ‘different’ class
and K-nearhits from the same class of a considered data point.
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Definition 2.6. The K-nearhits of xn from the same class are defined as in the pre-
vious definition Definition 2.5 without being changed. However, the K-nearmisses
of xn from each "other" class are now denoted by KM(xn, c) : {M1(xn, c), M2(xn, c), ...
MK(xn, c)}. Where K is a user defined parameter representing the number of closest
points to xn to be considered and c denotes the class to which each nearmiss belongs.

Finally, kononenko [4] concluded that as the number of iterations or considered
data points, i.e. T, approaches the total number of data points N, the quality of the
weight estimates becomes more reliable. Hence, it became the default to set T = N,
where each data point is considered once without replacement. In this regard, the
Relieved-F [100], mentioned before, can be seen as a very straightforward extension to
ReliefF. It is a deterministic algorithm that uses all data points and all possible nearhits
and possible nearmisses of each point. For instance, if there is a tie between two points
on being equally "near" to a considered data point, their contributions are averaged in-
stead of choosing one of them randomly. Kohavi et al. [100] claimed that although this
way requires only as much time as the standard Relief algorithm with T = N, it would
provide the result expected when it is allowed to run for an infinite amount of time.

Definition 2.7. The weight updating step in ReliefF can be given by:

wnew
i = wold

i −
1

(T·K) ∑K
j=1 ∆(Ai, x, H j)+

1
(T·K) ∑c,class(x)

[ P(c)
1−P(class(x)) ∑K

j=1 ∆
(

Ai, x, M j(c)
)] (2.4)

Where P(c) represents the prior probability of class c (estimated from the train-
ing set) and 1− P(class(x)) represents the sum of probabilities for the misses’ classes.
Note that, the normalization using these prior class probabilities is a necessity. This
is due to the fact that using K-nearmisses from each "other" class would tend to un-
reliably reflect an exaggerated influence of classes with a small number of elements.
Accordingly, the pseudo-code of ReliefF is presented below in Algorithm 2.2.

Note that, later in 1996, Kononenko et al. [99] suggested an adaptation of ReliefF
to regression problems called RReliefF. In such cases where the target concept (i.e a
discrete variable in classification problems) is a continuous variable (real-valued func-
tion), the notions of nearhit and nearmiss cannot be explicitly used. This is due to the
impossibility of realizing the exact knowledge of whether two data points belong to
the same class or not. Thus, the probability that the predicted value of two data points
is different was introduced instead [101].
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Algorithm 2.2 ReliefF

Input:

• Labeled Training set X of N data points and F features
• Number of iterations T

Output: Weight vector w

1. Initialize the weight vector to zero w = (0,0, ...,0)

2. For t = 1, ..., T

(a) Pick randomly a data point x from X

(b) Find K-nearhits KH(x)

(c) For each class c , class(x)
find K-nearmisses KM(x)
End For

(d) For i = 1, ..., F, calculate
wnew

i = wold
i −

1
(T·K) ∑K

j=1 ∆(Ai, x, H j) +

1
(T·K) ∑c,class(x)

[ P(c)
1−P(class(x)) ∑K

j=1 ∆
(

Ai, x, M j(c)
)]

End For

End For

3. The chosen feature set is {i|wi > τ} where τ is a fixed threshold

2.4 Concept of Change Interpretation

So far, the probabilistic interpretation of Relief weights was well suited to hold and
explain a set of statistical and class-discriminative properties and extensions of RBAs.
However, it fails when trying to find a human-comprehensible explanation of Equa-
tion (2.3). For instance, subtraction of probabilities and the negated feature similarity
(different values on a feature) are difficult to understand by human experts in real-
world applications. Therefore, another interpretation (based on a theoretical analysis)
of the Relief’s weights or estimates was introduced by Robnik-Šikonja and Kononenko
[5]. It is said to be more understandable and comprehensible than the probabilistic one.
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In fact, Robnik-Šikonja and Kononenko suggested that the feature weights, as-
signed by Relief, can be interpreted as their ability to explain a change in the value
of the endpoint (class or predicted value). However, this interpretation is proposed
in the context of a problem space that is densely covered with data points to analyze
the behavior of Relief. By meaning, it assumes that when the number of data points
approaches infinity, Relief’s weights (quality estimates of each feature) converge and
can be interpreted as the ratio between the number of explained changes in the class
labels2 and the number of considered data points. If it is possible to explain a certain
change in the endpoint value in multiple different ways, all of these ways share credit
for it in the feature weight. Also, if two or more features are involved in one of the
explanation ways, all of these features gain the same credit to their relevancy weight.

An example which illustrates the "concept of change interpretation" was detailed
in [37] and [5]. We use the same example to better explain the idea. Thus, Table 2.1
shows a boolean domain where the predicted value (class) of a data point is deter-
mined by the following expression: Class=(A1 · A2) + (A1 · A3).

Table 2.1: A table showing the data points and the responsibility of each feature in
changing the outcome of the boolean problem defined by Class = (A1 · A2) + (A1 ·
A3). Example proposed by Robnik-Šikonja and Kononenko [5, 37].

Data point
Features

Class Features holding Responsibilty of Class Change
Score

A1 A2 A3 A1 A2 A3

x1 1 1 1 1 A1 1/8 0 0
x2 1 1 0 1 A1 or A2 0.5/8 0.5/8 0
x3 1 0 1 1 A1 or A3 0.5/8 0 0.5/8
x4 1 0 0 0 A2 or A3 0 0.5/8 0.5/8
x5 0 1 1 0 A1 1/8 0 0
x6 0 1 0 0 A1 1/8 0 0
x7 0 0 1 0 A1 1/8 0 0
x8 0 0 0 0 A1 and A2 or A1 and A3 1/8 0.5/8 0.5/8

Total Score 0.75 0.1875 0.1875

By analyzing the first row of Table 2.1, we can say that A1 takes the responsibility
of changing the value of the class label. This is clear since changing its value alone
from 1 to 0 affects the value of the class similarly. Whereas, changing the value of
A2 or A3 alone leaves the class value unaltered. In addition, by analyzing the second
row, it can be noticed that changing the values of either A1 or A2 can be responsible
for altering the class label. Thus, in this case, changing A1 and changing A2 represent

2An explained change of concept is a change in the class label that can be justified by a feature value
change.
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two possible ways of "change in concept" and they share the responsibility for that.
It is also possible to similarly analyze rows three to seven to decide which feature is
responsible for the class change. However, the analysis of the eighth row shows that
changing only one feature is not enough for a class change. Nevertheless, changing
A1 and A2 or A1 and A3 changes the class label. Hence, a minimum of two changes
is required to change the class and the responsibility score goes to both of the feature
pairs A1 and A2 or A1 and A3. Since there are 8 data points in this example and they all
have an equal probability of occurrence, each responsibility score is divided by 8. For
instance, when feature A1 alone was responsible for the class change (rows 1, 5, 6 and
7) it gains a value of 1/8 for each. On the other side, when it shares the responsibility
with another feature each of them gets a score of 0.5/8. Finally, as can be seen in the
Total Score row of Table 2.1, feature A1 gets a total score of 0.75 and both A2 and A3

get a score of 0.1875 each.

To validate this conceptual example, Robnik-Šikonja and Kononenko [5] added
five random binary features next to the three relevant ones that were discussed above.
Then, they empirically showed that the feature weights obtained by Relief and ReliefF
for this problem converge to 0.75 for A1 and 0.187 for A2 and A3 when the number of
data points is large. Also, a detailed analysis, derivation, and proof of this interpre-
tation is presented in [5] with a complete description of how it differs between Relief
and ReliefF.

2.5 Margin Notion in Relief-Based Feature Selection

In 2004, Gilad-Bachrach et al. [102] presented the Relief-family weight updating func-
tion as a "Maximal Margin" or "Large Margin" objective function to be optimized.

2.5.1 Margin General Definition and Types

Intuitively speaking, the margin is a geometric measure that evaluates the confidence
of a classifier when making its decision. Moreover, it plays a crucial role in the machine
learning and pattern recognition domains and similarly to other tools and techniques
in such domains, the margin was initially defined in the supervised context [103–105].
It was also noted that it can be used for theoretic generalization bounds and as guide-
lines for algorithmic design [104]. Two approaches were declared for defining the
margin of a data point with respect to a classification rule [106]:

• The sample-margin, i.e. the more common approach, measures the distance be-
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tween a data point and the decision boundary induced by a specific classifier. For
example, Support Vector Machines [76] include a classification algorithm that
represents data examples as points in space, mapped so that the data points be-
longing to different classes are separated by a clear gap (sample-margin) that is
as wide as possible. Figure (2.2a) shows how the sample margin quantifies the
distance a data point can travel before it hits the decision boundary.

• The hypothesis-margin, i.e. the alternative definition, requires a distance mea-
sure between data points. It defines the margin as the difference between the
distance from a data point to its nearest point of alternative class (defined by Re-
lief as nearmiss) and the distance to its nearest point of the same class (defined
by Relief as nearhit).
Figure (2.2b) provides an illustration of the hypothesis-margin. By meaning, it
is the largest distance a data point can travel within the feature space without
altering the dataset’s labeling structure, and thus without affecting the label pre-
diction of a new arriving point. This is done, such that, drawing a circle of a
radius equal to the margin (denoted ρ) around each data point and allowing
each of these points to freely change its position within its corresponding cir-
cle, does not alter the assigned label to the new data point. This shows that the
hypothesis-margin measures the stability to trivial changes in the data points
locations.

Although using the sample-margin looks initially more natural, it was shown in
[106] that it can be unstable when using the first nearest neighbor (1-NN) margin.
This is due to being very sensitive to the smallest relocations of the data points (a
small position-change can lead to a dramatic alteration in the decision boundary of the
sample-margin). Moreover, it was proved that the hypothesis-margin lower bounds
the sample-margin and has a lower computational cost for high-dimensional data
sets [106, 107]. Which means, in the case of 1-NN, a large hypothesis-margin ensures
a large sample-margin in addition to being simple and easy to compute.
Therefore, noticing the resemblance between the nearest neighbor notions of the weight-
updating rule (proposed in the original Relief) and the hypothesis-margin definition,
made it natural to utilize margin maximization in feature selection. This is applied
under the assumption that a feature’s ability to discriminate between data points with
respect to a specific classification rule can be measured by its contribution to the max-
imization of this hypothesis-margin [102].

59



2.5. Margin Notion in Relief-Based Feature Selection

𝜌 

Decision boundary 

Sample Margin 

(a) Sample-Margin

M(𝒙𝑛) 

𝜌 

𝒙𝑛 

H(𝒙𝑛) 

(b) Hypothesis-Margin

Figure 2.2: The two types of nearest neighbor margin denoted by ρ. We show how
to measure the margin (radius of dotted circles) with respect to a new data point con-
sidering a set of labeled data points; (a) The sample-margin i.e. the distance between
the considered data point and the decision boundary. (b) The hypothesis-margin i.e.
the maximum distance the data points can travel without altering the label of the new
data point.

2.5.2 Mathematical Interpretation

Inspired by the work done in [102] where the margin notion was introduced to Relief
family and the maximization of the averaged margin was empirically observed, Sun
and Li [6] proposed a mathematical interpretation of Relief from its optimization point
of view. Before we get to show Relief from its optimization perspective, we generally
define the margin and the weighted-margin independently of any specific distance
measure.

Definition 2.8. The hypothesis-margin of a data point xn denoted by ρ(xn) with
respect to the training data X is the difference between the distance from xn to its
nearmiss and the distance from xn to its nearhit3 given by:

ρ(xn) = ∆(xn, M(xn))− ∆(xn, H(xn)) (2.5)

where ∆(p1, p2) is defined as the generalized distance function between any two data
points p1 and p2 calculated in the space of all features F with p ∈ R and ∆(Ai, p1, p2)

3Recalling that the nearhit and nearmiss notions are declared in Definition 2.1 and illustrated in
Figure (2.1a).
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from Definition 2.3 as follows:

∆(p1, p2) =

( F

∑
i=1
|∆(Ai, p1, p2)|

p
) 1

p

(2.6)

Note that, ρ(xn) is only positive when xn is correctly classified by 1-NN classifier,
which means, when the distance from xn to its nearmiss is larger than the distance
from xn to its nearhit.

Thus, the overall hypothesis-margin over the training set X can be computed as:

ρ(X) =
N

∑
n=1

ρ(xn) (2.7)

As the ability of a feature to discriminate between data points can be evaluated by
how much it contributes to the margin’s maximization, this contribution can be rep-
resented and quantified by the same weight vector w = (w1, ...,wi, ...,wF)

T spanning
over the F features defined in Definition 2.2 [102]. Thus, one natural idea is to scale
each feature by a non-negative vector w to obtain a weighted feature space such that a
margin-based function in this induced feature space is maximized [6, 102]. Note that,
applying margin-based feature selection in a weighted space is motivated by the fact
that the nearest neighbors in the original space are highly unlikely to be the same in
the weighted feature space [6, 108].

Definition 2.9. Considering a weight vector w = (w1, ...,wi, ...,wF)
T, the weighted

hypothesis-margin of a data point xn with respect to the training set X is given by:

ρ(xn,w) = ∆w(xn, M(xn))− ∆w(xn, H(xn)) (2.8)

where ∆w(p1, p2) is defined as the generalized distance function between any two data
points p1 and p2 calculated in the weighted space of all features in F with p ∈ R as
follows:

∆w(p1, p2) =

( F

∑
i=1
|wi∆(Ai, p1, p2)|

p
) 1

p

(2.9)

According to Equations (2.8) and (2.9), each time the margin is calculated with
respect to a data point xn of F features, the weight vector w contributes to this cal-
culation. Taking (2.8) into account, it can be generalized to calculate the weighted
hypothesis-margin over all the given data points. Consequently, the final weight vec-
tor of dimension F shows the impact of each feature in enlarging the margin, which is
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considered the relevancy score of the feature in terms of original Relief notions.

Thus, the weighted hypothesis-margin over the training set X is computed as:

ρ(X,w) =
N

∑
n=1

ρ(xn,w) (2.10)

It is clear that Equation (2.10) is the summation of the weighted hypothesis margins
over the whole training set. So, the key idea is that as a feature contributes more in
enlarging the overall weighted margin, it gets higher weights, and will consequently
have a higher chance of being selected.

Changing the value of p in Equations (2.6) and (2.9) defines different margin-based
feature selection algorithms. If it is set to 1 i.e l1-norm, deriving Manhattan distance,
the standardized Relief algorithm is obtained [6, 50, 94]; if p is set to 2 i.e l2-norm de-
riving Euclidean distance, the resulting algorithm is Simba [102]; also, if p is set to 2
but the squared Euclidean distance is used, the resulting algorithm is the original Re-
lief initially defined in [66].

As a side note, in the context of face recognition, where an enhanced block-based
face descriptor is used to represent face images, Moujahid and Dornaika [109] pro-
posed a modified Relief algorithm (m-RELIEF) that uses a weighted χ2 distance to
select features (i.e. in this case histograms) instead of using the classical Euclidean
distance.

2.5.2.1 Optimization Approach to Relief Algorithm

Sun and Li pointed out that the reason behind widely depending on heuristic-search
approaches for feature selection is the difficulty of defining an objective function, by
which, well-established optimization techniques can optimize [6, 50, 94]. However,
they noticed that although Relief is a feature-weighting algorithm that allows work-
ing with soft feature-weights4, it did not have a clearly defined objective function to
be optimized. Therefore, they defined the standardized Relief from its optimization
point of view over a margin-based objective function using Manhattan distance (i.e
p = 1 in Equations (2.6) and (2.9)). This new interpretation enabled viewing Relief as
an online feature-weighting algorithm. The latter makes use of the performance of a

4Soft weights means that weights assigned to each feature are real-valued instead of being binary
indicators of whether a feature is selected or not. The problem of defining an optimizable objective
function in feature selection can be somehow mitigated by using feature-weighting strategies [8].
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highly non-linear nearest neighbor classifier to learn discriminant information locally
with the aim of identifying useful features. For that, it solves a simple convex problem
in a closed-form5 which justifies its simplicity and effectiveness.

Accordingly, the hypothesis-margin of a data point xn denoted by ρ(xn) is defined
as:

ρ(xn) = |xn −M(xn)| − |xn − H(xn)| (2.11)

Where the used distance function | . | is the l1-norm (or Manhattan distance) defined
as:

|v| =
F

∑
i=1
|vi| = |v1|+ ... + |vi|... + |vF| (2.12)

The weighted hypothesis-margin of xn with respect to X is:

ρ(xn,w) = |xn −M(xn)|w − |xn − H(xn)|w (2.13)

where,

|v|w = |w ◦ v| =
F

∑
i=1

wi|vi| = w1|v1|+ ... + wi|vi|+ ... + wF|vF| (2.14)

Knowing that w ≥ 0 and ◦ is the Hadamard product.

Definition 2.10. The margin-based objective function from the optimization point
of view is obtained by scaling each feature such that the averaged hypothesis-margin
in the weighted feature space can be maximized as follows:

max
w

∑N
n=1 ρ(xn,w)

= max
w

∑N
n=1

(
∑F

i=1 wi|xni −M(xn)i| −∑F
i=1 wi|xni − H(xn)i|

)
s.t. ‖w‖2

2 = 1 and w ≥ 0

(2.15)

where the weight vector w ≥ 0 ensures that it induces a distance measure. In fact, it is
intuitive that the chosen weight vector should induce a positive value when features
are relevant. Also, ||w||22 = 1 ensures that the vector is not maximized without bounds.

Definition 2.11. Let z = (z1, ...,zi, ...,zF)
T be a vector that holds the hypothesis-

5An equation is said to be a closed-form solution if it solves a given problem in terms of functions
and mathematical operations from a given generally-accepted set. For example, an infinite sum would
generally not be considered a closed-form [110].
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margin induced by each feature when considering all data points in X as follows:

zi =
N

∑
n=1
|xni −M(xn)i| − |xni − H(xn)i| (2.16)

For clarity, we express z in the following notation:

z =
N

∑
n=1


 |xn1 −M(xn)1|

...
|xnF −M(xn)F|

−
 |xn1 − H(xn)1|

...
|xnF − H(xn)F|


 =

z1

...
zF

 (2.17)

Definition 2.12. Considering z, the simplified margin-based objective function to be
maximized is given by:

max
w

wTz, s.t. ‖w‖2
2 = 1, w ≥ 0 (2.18)

By using the Lagrangian function on (2.18), the equation can be expressed as:

L(w,λ,µ) = −wTz + λ(wTw− 1)− µTw (2.19)

where λ > 0 and µ ≥ 0 are the Lagrangian multipliers.
Now by taking the derivative of L with respect to w we obtain:

∂L

∂w
= −z + 2λw− µ (2.20)

And satisfying stationarity condition by solving ∂L
∂w = 0 we get:

∂L

∂w
= 0 =⇒ w =

1
2λ

(z + µ) (2.21)

To derive a closed-form solution for w, it is assumed that there exists an i : 1 ≤ i ≤ F
where zi > 0, when this assumption is not true, i.e, when z ≤ 0, the distance between
a data point and its nearhit is simply greater than the distance between it and its
nearmiss, which negatively affects the performance of neighborhood-based learning
algorithms. However, using this assumption it can be proved by contradiction that
λ > 0. Consider the case when λ < 0 while holding the assumption that zi > 0, then
zi + µi > 0. It is then obtained that wi < 0 which contradicts with the initial constraint
w ≥ 0.

According to Sun and Li [6], the Karush Kuhn Tucker (KKT [111]) complementarity
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condition: µTw = 0 is used to verify the three following cases:

1. zi = 0⇒ µi = 0⇒ wi = 0.

2. zi > 0⇒ zi + µi > 0⇒ wi > 0⇒ µi = 0.

3. zi < 0⇒ µi > 0⇒ wi = 0⇒ zi = −µi.

Finally, the optimal solution can be calculated in a closed-form as follows:

w∗ = w/‖w‖2 = (z)+/‖(z)+‖2

where, z is given by Equation (2.17)
and (z)+ = [max(z1,0), ...,max(zF,0)]T

(2.22)

By comparing the latter expression of w with the update rule of Relief, Sun and Li
[6] concluded that Relief is an online solution to the optimization scheme in Equation
(2.15) and they claimed that this is always true except for irrelevant features i.e when
w∗i = 0 for zi ≤ 0.

2.5.2.2 Iterative Search Margin-Based Algorithm (Simba)

As mentioned in section 2.5.2, the Simba algorithm, proposed by Gilad-Bachrach et
al. [102], is obtained when using the l2-norm with this mathematical interpretation. It
is an iterative search algorithm that uses a stochastic gradient ascent to maximize its
margin-based evaluation function. It is a slightly modified Relief with the major ad-
vantage of re-evaluating the margin with respect to the updated weight vector at each
previous iteration. It is also said to deal with correlated or redundant features [102].

Definition 2.13. The hypothesis-margin of xn denoted by ρ(xn) is given by half the
difference between the distance from a data point to its nearmiss and the distance to
its nearhit. However, we omit the half 6 obtaining the following:

ρ(xn) = ‖xn −M(xn)‖ − ‖xn − H(xn)‖ (2.23)

Where the used distance function ‖ .‖ is the l2-norm (or Euclidean distance) defined
as:

‖v‖ =

√√√√ F

∑
i=1

vi
2 =

√
v2

1 + ... + v2
i + ... + v2

F (2.24)

6In order to maintain the coherence of the hypothesis-margin definition with previous ones, we omit
the multiplication by 1

2 from the definition used in [102] i.e. ρ(xn) =
1
2
(
‖xn −M(xn)‖− ‖xn − H(xn)‖

)
.
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Definition 2.14. The weighted hypothesis-margin of xn using the weight vector w =

(w1, ...,wi, ...,wF)
T spanning over F features with respect to X is given by:

ρ(xn,w) = ‖xn −M(xn)‖w − ‖xn − H(xn)‖w (2.25)

where,

‖v‖w = ‖w ◦ v‖ =

√√√√ F

∑
i=1

wi
2vi

2 =
√

w2
1v2

1 + ... + w2
i v2

i + ... + w2
Fv2

F (2.26)

Note that, since for any scalar λ, the weighed margin ρ(xn,λw) = |λ|ρ(xn,w), the
authors introduced a natural normalization factor, i.e. to require max(w2

i ) = 1. This
guarantees that ‖v‖w ≤ ‖v‖.
The building blocks of Simba’s evaluation function are the weighted margins of each
data point known to us as ρ(xn,w).
Definition 2.15. Considering the training set X and the feature weights denoted by
the vector w, Simba’s evaluation function is given by:

ρ(X,w) =
N

∑
n=1

ρ(xn,w) (2.27)

Thus, as ρ(X,w) is smooth almost everywhere, a gradient ascent can be used to maxi-
mize it as follows:

∂ρ(X,w)
∂wi

= ∑N
n=1

∂
∂wi

(‖xn −M(xn)‖w − ‖xn − H(xn)‖w)

= ∑N
n=1

∂
∂wi

(‖q‖w − ‖v‖w)

= ∑N
n=1

∂
∂wi

(√
∑F

i=1 w2
i q2

i

)
− ∂

∂wi

(√
∑F

i=1 w2
i v2

i

)

= ∑N
n=1

(
2 wiq2

i

2
√

∑F
i=1 w2

i q2
i

)
−
(

2 wiv2
i

2
√

∑F
i=1 w2

i v2
i

)

= ∑N
n=1 wi

(
q2

i√
∑F

i=1 w2
i q2

i

− v2
i√

∑F
i=1 w2

i v2
i

)

= ∑N
n=1

[
(xni−M(xn)i)

2

‖xn−M(xn)‖w
− (xni−H(xn)i)

2

‖xn−H(xn)‖w

]
wi

(2.28)

Where M(xn)i and H(xn)i denote the values of the nearmiss of xn and the nearhit
of xn on a specific feature Ai respectively.
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Then, Simba algorithm presented in Algorithm 2.3 uses the following weight up-
dating equation:

wnew
i = wold

i +
[
(xni−M(xn)i)

2

‖xn−M(xn)‖w
− (xni−H(xn)i)

2

‖xn−H(xn)‖w

]
wold

i (2.29)

Algorithm 2.3. Simba

Input:

• Labeled Training set X of N data points and F features
• Number of iterations T

Output: Weight vector w

1. Initialize w = (1,1, ...,1)

2. For t = 1, ..., T

(a) Pick randomly a data point x from X

(b) Calculate M(xn) and H(xn) with respect to X\{xn}and the weight vector w

(c) For i = 1, ..., F calculate

∆i =

(
(∆(Ai ,xn,M(xn)))2

∆w(xn,M(xn))
− (∆(Ai ,xn,H(xn)))2

∆w(xn,H(xn))

)
wi

End For

(d) w = w + ∆

End For

3. w←w2/
∥∥w2

∥∥
∞

where, w2 = (w1
2, ...,wi

2, ...,wF
2) and

∥∥w2
∥∥

∞ = max(w1
2, ...,wi

2, ...,wF
2)

Although Gilad-Bachrach et al. claimed that Simba is superior to Relief as it eval-
uates distances between data points according to the weight vector w at each itera-
tion, Sun and Li [50], showed that is inferior to ReliefF and highlighted that a major
drawback of Simba is its implementation. In fact, its optimization returns many local
maxima. Although Simba alleviated this problem by restarting the algorithm multiple
times from different starting points, it still cannot guarantee obtaining a global max-
imum. Moreover, as a constrained non-linear optimization problem, Simba cannot
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be easily solved through long-established optimization techniques. Thus, it optimizes
its margin-based objective function first through a gradient ascent considering the nor-
malization constraints. Then, as a separate final step, the obtained solution is projected
over these constraints as can be seen in step (3) of Simba algorithm. In conclusion, the
convergence of Simba’s algorithm is doubtful.

2.5.2.3 I-Relief algorithm

After highlighting the limitations of Simba, Sun and Li [6] suggested another iterative
Relief-based feature weighting algorithm called I-Relief. In fact, this allowed them to
identify two weaknesses in Relief: (1) Its assumption that the nearest neighbors of a
data point in the original space are the same in the weighted space (similarly noticed
by [108]), and (2) its lacking a mechanism for data outliers detection. Therefore, they
proposed an analytical solution to deal with these two issues, hence, describing Relief
as an online algorithm that utilizes the performance of a highly non-linear classifier to
evaluate a margin-based objective function and solves a simple convex optimization
problem in a closed-form.

To handle the two mentioned drawbacks of Relief simultaneously, I-Relief first de-
fines two sets Mn = {m : 1 ≤ m ≤ N,ym , yn} and Hn = {m : 1 ≤ m ≤ N,ym = yn,m ,
n} corresponding to each point xn. Supposing that the nearest hit and nearest miss of
each data point are known, their indices are saved in a set denoted Sn = {(sn1,sn2)}
where sn1 ∈Mn and sn2 ∈Hn. Also, a vector of outliers7 denoted by o = [o1, ...,oN]

T is
considered as a set of binary parameters, such that on = 0 if xn is an outlier, and on = 1
otherwise. The objective function in its deterministic form to be optimized using the
above-explained Lagrangian is now given by:

ρ(w) =
N

∑
n=1,on=1

(‖xn − xsn1‖w − ‖xn − xsn2‖w) (2.30)

Since the index sets and o are unknown, their values were assumed to be ran-
dom variables and the probability distributions of the unobserved data can be derived.
Thus, the probability of the m-th data point being the nearmiss of xn can be defined as:

Pmiss(m|xn,w) =
f (‖(xn − xm)‖w)

∑j∈Mn f (‖(xn − xj)‖w)
(2.31)

7An outlier, in our context, is either a mislabeled data point or a one highly corrupted with noise.
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Similarly the probability of the m-th data point being the nearhit of xn is given by:

Phit(m|xn,w) =
f (‖(xn − xm)‖w)

∑j∈Hn f (‖(xn − xj)‖w)
(2.32)

Where f (.) is a kernel function that can be denoted as f (d) = exp(−d/σ), and the ker-
nel width σ is a user defined parameter.

Likewise the probability of an outlier is defined as:

Po(on = 0|X,w) =
∑j∈Mn f (‖xn − xj‖w)

∑xj∈X\xn f (‖(xn − xj)‖w)
(2.33)

And the probability of not an outlier is defined as:

γn = 1− Po(on = 0|X,w(t)). (2.34)

where t denotes an iteration and w(t) denotes the value of w at a specific iteration t.

Therefore, upon the latter definitions, the iterative algorithm I-Relief was derived
by adopting the idea of the EM algorithm [112] in order to treat unobserved data as
random variables, however, the objective function of Equation (2.35) is not a likeli-
hood.
Thus, changing the deterministic ρ(w) into its estimated form as follows:

Step-1: After the t-th iteration, the Q function is calculated as:

Q(w|w(t)) = E{S,o}[ρ(w)]

= ∑N
n=1 γn(∑m∈Mn αm,n‖xn − xm‖w −∑m∈Hn βm,n‖xn − xm‖w)

= ∑N
n=1 γn

(
∑i wi ∑m∈Mn αm,nMi

n,m −∑i wi ∑m∈Hn βm,nHi
n,m

)
= wT ∑N

n=1 γn(M̄n − H̄n)

= wTv

(2.35)

Where superscript i denotes the i-th feature, Mn,m = |xn − xm| if m ∈ Mn, Hn,m =

|xn − xm| if m ∈Hn, αm,n = Pmiss(m|xn,w(t)), and βm,n = Phit(m|xn,w(t)).
Step 2 : the re-estimation of w in the (t + 1)-th iteration is :

w(t+1) = argmax
w∈W

Q(w|w(t)) = (v)+/‖(v)+‖2 (2.36)
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Where, W= {‖w‖2 = 1,w ≥ 0}. Eventually, I-Relief is presented in Algorithm 2.4.

Algorithm 2.4. I-Relief

Input:

• Labeled Training set X of N data points and F features

• Number of iterations T

• Kernel width σ , and stopping criterion φ

Output: Converged closed-form solution of the weight vector w

1. Initialize w = (1/F,1/F, ...,1/F)

2. For t = 1, ..., T

(a) Calculate pairwise distances d(xn, xm|w(t−1)),∀xn, xm ∈ X

(b) Calculate Pmiss, Phit and Po as in (2.31), (2.32) and (2.33) respectively.

(c) Update the weights in w as in Equation (2.36)

(d) If ‖w(t) −w(t−1)‖ ≤ φ, Break , End For

End For

2.5.2.4 Extensions of I-Relief to Multi-class and Semi-supervised Contexts

In the same work, I-Relief algorithm was also extended to a handle multi-class prob-
lems in two different versions. The first one, called I-Relief-1, combined the mathemat-
ical interpretation with ReliefF’s way of handling multi-class problems using the be-
low straightforward integration of ρ = ∑c,class(x)

P(c)
1−P(class(x)) |x−M(x, c)| − |x−H(x)|

into Equation (2.15), where P(c) is the prior probability of class c and 1− P(class(x))
represents the sum of probabilities for the misses’ classes. However, it was noted that
obtaining a positive margin from such a combination does not necessarily mean that a
correct classification occurred. Therefore, I-Relief-2 was suggested to regain this char-
acteristic using the below-defined margin:

ρ = min{c,class(x)}|x−M(x, c)| − |x− H(x)|
= min{xm∈X\Xclass(x)}|x− xm| − |x− H(x)|

(2.37)

where Xclass(x) is a subset of X containing all data points belonging to the class of x.
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In addition, multiple other extensions were proposed to I-Relief for different goals.
One extension, known as online I-Relief, was suggested to work in cases where the
amount of training data is very large or when not all of it is initially available [6, 50].
Thus, online I-Relief is a transformation from a batch learning method to an online
learning one that is considered computationally more attractive. Another extension, a
local learning-based I-Relief algorithm, called Logistic I-Relief, was proposed for cases
where we have extremely large data dimensionality with a huge number of irrelevant
features. Its main idea is to utilize local learning to break down a complex non-linear
problem into a set of locally linear ones and still find the feature weights globally un-
der the same large margin framework.

On the other side, the first extension of RBA’s to a semi-supervised context, later
known as SLIR (Semi-Supervised Logistic I-Relief), was proposed by Cheng et al. [113]
as a natural augmentation to the Logistic I-Relief algorithm. Its key idea is in the
modification of the objective function of Logistic I-Relief to consider the margins of
unlabeled data points as well as the margins of labeled ones. The latter is used to
maximize the distance between data points belonging to different classes, while the
former is used to extract the geometric structure of the data space. However, SLIR was
only capable of handling binary-class problems. Consequently, in a recent work [114],
SLIR was extended to deal with multi-class problems in the presence of both labeled
and unlabeled data points while ensuring symmetry between them. This algorithm,
known as MSLIR (Multi-classification Semi-Supervised Logistic I-Relief), proposes a
novel scheme to find the margins of unlabeled data points, by which, it calculates mul-
tiple margins for an unlabeled point, each of them corresponds to considering that the
point belongs to one of the possible classes. This provides c candidate margin vectors
for each unlabeled data point and the chosen margin is the one that maximizes w. Fi-
nally, Tang and Zhang [115] recorded some poor performance by MSLIR when predict-
ing the labels of unlabeled points and proposed a novel multi-class semi-supervised
logistic I-Relief based on nearest neighbor (called MSLIR-NN) to solve this problem.
For instance, MSLIR-NN uses the nearest neighbor scheme to label unlabeled data
points and then calculates their margin vectors accordingly.

2.5.3 Instance Weighting in RBAs

Knowing that the terms "instance weighting" or "observation weighting", in our con-
text, mean assigning a weight also to each data point contributing in the margin cal-
culation process [2], the majority of initial Relief-based algorithms (from the original
Relief to ReliefF algorithm in Table 2.2) did not consider weighting data points. How-
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2.5. Margin Notion in Relief-Based Feature Selection

ever, under the umbrella of instance weighting, this can be explained as using binary
weights where nearest points contribute with a weight of 1 and all other points get a
weight of 0 (i.e no contribution).

For classification problems, Draper et al. [108] suggested the first iterative Relief-
based approach, called Iterative Relief, with the aim of removing the bias of ReliefF
against non-monotonic features8. After claiming that ReliefF’s distance measure can
turn to be irrelevant when dealing with non-monotonic features, it was normal to as-
sign higher weights to monotonic features as they are considered more relevant with
respect to non-monotonic ones. Thus, in order to find a distance measure that can
effectively choose similar nearhits and misses in the feature space, they proposed in-
stance weighting using a "radius", by which, all data points within are included in the
calculation of feature weights instead of using an integer number K of nearhits and
nearmisses. Moreover, the contribution of a data point decreases as it moves farther
from the target point within the radius circle.

Also, the methods suggested by I-Relief algorithms for calculating probability sets
for all hits and misses implicitly replaces the whole idea of a specific number K of hits
and misses by instance weighting [6, 50, 94, 117]. Where, in fact, a data point with a
higher probability of being the nearmiss or nearhit is the one having the smallest dis-
tance from the target point.

On the other hand, similarly to I-Relief and its successors, a set of variants that
had their main focus on instance weighting were suggested. These are explained thor-
oughly by the review of Urbanowiz et. al [2] and known as SURF (Spatially Uni-
form ReliefF), SURF* (* indicates opposite), SWRF* (Sigmoid Weighted ReliefF Star),
MultiSURF* (Multiple Threshold SURF*), and MultiSURF (Multiple Threshold SURF).
The latter five algorithms could only handle discrete-valued features and binary class
problems since they are application driven9.

8The bias of ReliefF was declared by (Bins and Draper, 2001) especially when the data has more
noisy features [116], Knowing that a non-monotonic feature is a feature that is neither non-decreasing
nor non-increasing with respect to the predicted value. These features can position the data points of
the same class into different parts of the feature space even when they are relevant. In other words, it
has an internal optima.

9These algorithms were suggested for feature selection in genomics problems with single nucleotide
polymorphisms (SNPs). In such an application, features can have one of three discrete values (0, 1, or
2) and a binary class representing sick or healthy patients.

72
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2.6 Statistical Interpretation

As mentioned before, RBAs are non-parametric from the statistical point of view,
which means, they do not make any assumption about the underlying probability dis-
tribution of data. This makes determining the statistical significance of feature weights
assigned by RBAs a hard task. However, Le et al. [7] re-conceptualized Relief to obtain
a new family of STatistical Inference Relief (STIR) estimators that maintains Relief’s
ability to detect feature interactions while integrating sample variance of the nearest
neighbor distances into the feature relevancy estimation. They claimed that the fea-
ture weights obtained by the standard Relief algorithm are equivalent to a difference of
mean feature value differences between nearhit and nearmiss groups. Accordingly, a
new formulation of Relief estimates that accounts for the variance within and between
groups is suggested. The STIR formalism applies generally to all RBAs, including Re-
liefF with fixed K-nearest neighbors and MultiSURF with adaptive radii. Thus, a set
of definitions was derived as follows:

Definition 2.16. The set of ordered nearmiss pairs denoted by (xn, M jn(xn)), or sim-
ply, (xn, M jn) of T data points (n = 1, ..., T) and nearest KMn misses, denoted Mjn(j =
1, ...,K), are represented as the following nested set:

M = {{(xn, M jn)}, jn = 1, ...,KMn ; n = 1, ..., T} (2.38)

Definition 2.17. The set of ordered nearhit pairs denoted by (xn, H jn) of T data
points (n = 1, ..., T) nearest KHn hits, denoted Hjn(j = 1, ...,K), are represented as the
following nested set:

H = {{(xn, H jn)}, jn = 1, ...,KHn ; n = 1, ..., T} (2.39)

Where for both hit and miss sets, the inner index jn depends on the outer index n. The
importance of this index appears in algorithms like MultiSURF where each data point
xn can have a different number of misses and hits instead of a fixed number K.

Now that the sets are clearly defined, we show the reformulation of the weights as-
signed by RBAs into the difference of the means of these hit and miss sets. First, note
that, the hit and miss sets in Equations (2.39) and (2.38) respectively are calculated
using the distance ∆(p1, p2) of Equation (2.6), taking into consideration the "neighbor-
hood" definition (e.g fixed K in ReliefF and data radius in MultiSURF).
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2.6. Statistical Interpretation

Definition 2.18. The mean of ∆ function (defined in Equation (2.1)) of a feature
Ai averaged over all pairs of nearmisses (M Equation (2.38)), denoted M̄i, can be ex-
pressed as:

M̄i =
1
T

T

∑
n=1

1
KMn

KMn

∑
jn=1

∆(Ai, xn, M jn) (2.40)

where Mjn is the j-th nearest miss of the data point xn, and KMn is the number of
nearmisses of xn. The scaling by 1

KMn
ensures a consistent neighborhood average

weighting for different RBAs like MultiSURF, SURF and ReliefF.

Definition 2.19. The mean of ∆ function (defined in Equation (2.1)) of a feature Ai

averaged over all pairs of nearhits (H Equation (2.39)), denoted H̄i, can be expressed
as:

H̄i =
1
T

T

∑
n=1

1
KHn

KHn

∑
jn=1

∆(Ai, xn, H jn) (2.41)

where, similarly, Hjn is the j-th nearest hit of the data point xn, and KHn is the number
of nearhits of xn.

Definition 2.20. The importance score assigned by RBAs to each feature Ai can be
then expressed as the averaged z presented in Equation (2.17) as follows:

z̄i = M̄i − H̄i (2.42)

This formulation applies to all RBAs [7]. Accordingly, Equation (2.42) was used
later as the basis to compute the permutation p-values for the sake of comparison.
Then, for computing the statistical significance of features with computational effi-
ciency, Equation (2.42) was extended to develop a Relief-based pseudo t-test.

2.6.1 STatistical Inference for Relief (STIR)

The new type of Relief-based algorithm is then presented as an incorporation of the
pooled standard deviations about the mean hit and miss ∆ functions to transform the
Relief-based feature importance scores z̄i into a pseudo t-statistic [7]. Note that, the
pooled standard deviation presented below allows for unbalanced variances between
hit and miss nearest neighbor ∆ functions and allows for a different number of these
∆ functions in the hit and miss groups themselves.

Definition 2.21. The STIR weight (or STIR score) is constructed from the Relief
difference of means (z̄i in Equation (2.42)) in the numerator and the standard error in
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the denominator as follows:

wSTIRi =
M̄i − H̄i

σpool[M, H]
√

1/|M|+ 1/|H|
(2.43)

Where |H| = ∑T
n=1 KHn and |M| = ∑T

n=1 KMn are the total number of hit and miss
neighbors over all the data points in X. And the pooled standard deviation denoted
by σpool is given by:

σpool[M, H] =

√
(|M| − 1)σ2

M̄i
+ |H| − 1)σ2

H̄i

|M|+ |H| − 2
(2.44)

And the group variances are given by:

σ2
M̄i

=
1
T

T

∑
n=1

1
KMn

KMn

∑
jn=1

(∆(Ai, xn, M jn)− M̄i)
2 (2.45)

σ2
H̄i

=
1
T

T

∑
n=1

1
KHn

KHn

∑
jn=1

(∆(Ai, xn, H jn)− H̄i)
2 (2.46)

According to [7], wSTIRi score shown in Equation (2.43) approximately follows a
t-distribution from which they compute p-values. For that, a degree of freedom df =
|M|+ |H| − 2 is used in calculating the p-value. It was concluded that STIR can record
the statistical significance of RBA scores by a pseudo t-test that stands for variance in
the mean difference of hit and miss nearest neighbor ∆ functions.

2.7 Conclusion

As we were interested in Relief-based methods, in this chapter, we concisely reviewed
the set of well-known efficient filter-type RBAs. For that, we started with a clear ex-
planation of the original Relief algorithm while highlighting its strengths and limita-
tions. Afterward, we presented the main variants and extensions of Relief that were
suggested to handle problems with noisy, incomplete, and multi-class data. This was
done while generally categorizing RBAs according to their four broad possible inter-
pretations. These are, the probabilistic, the comprehensible, the mathematical and the
statistical interpretations. Most importantly, Relief was introduced as a margin-based
feature selection algorithm which will be the base of the following chapters.
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2.7. Conclusion

Table 2.2: Summary of the main Relief-based algorithms covered in this chapter. Each
algorithm is followed by its reference, main contribution, learning context, time com-
plexity, and other capabilities mentioned explicitly in their original publications. C, l,
and u used in the semi-supervised algorithms denote the number of classes, labeled
data points and unlabeled data points respectively. Some parts of the table are adapted
from [2].
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Relief [66]

First filter-type feature selection
method capable of dealing with

feature interactions
(dependencies) in a simple and

efficient way.

Supervised O(TNF) x

ReliefA [4]

Using k-nearest hits/misses
instead of only one to increase the

reliability of probability
approximations and feature
weights when data is noisy

Supervised O (TNF) x x

ReliefB-D [4]
Handling missing data with

ReliefD being the best variant
Supervised O (TNF) x x x

ReliefE-F [4]
Dealing with multi-class

problems with ReliefF becoming
the standard algorithm.

Supervised O (TNF) x x x x

RReliefF [99, 101]

Adapting ReliefF to work with
continuous class labels.

Introducing instance weighting
by distance-from-target.

Supervised O (TNF) x x x x x

Relieved-F [100]
Choosing the nearest points for
scoring in a deterministic way.

Handling missing data.
Supervised

T = N =⇒
O(N2F)

x x x x

Iterative Relief [108]

Introducing the first iterative
approach. Improving ReliefF by

removing its bias against
non-monotonic features.

Replacing k-nearest neighbors by
radius-circle around the target

point. Using distance-from-target
instance weighting.

Supervised O(TN2F) x x x x
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Table 2.2 Continued
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Iterative Search
Margin-based

Algorithm (Simba)
[102]

Introducing the first margin
concept to Relief-based

algorithms. Considering scoring
in the weighted space. Using

gradient ascent optimization on a
margin-based objective function.

Supervised O (TNF) x x x x

I-Relief [6, 50]

Introducing Relief from its
optimization perspective.

Replacing the idea of defined
K-nearest neighbors by

probabilities of being a hit or a
miss and using them for instance

weighting. Introducing outlier
detection.

Supervised O (TN2F) x x x x x

I-Relief-1 and
I-Relief-2 [6, 50]

Extending I-Relief to deal with
multi-class problems.

Supervised O (TN2F) x x x x x

Online I-Relief [6, 50]

Dealing with huge amounts of
data or data not completely

available initially through online
learning (not batch mode).

Supervised O (TNF) x x x x x

Logistic I-Relief (LIR)
[94, 117]

Handling extremely large data
dimensionality with a large

number of irrelevant features in
an efficient way through local

learning. Introducing a logistic
margin-based objective function

with a sparse solution.

Supervised O (TN2F) x x x x x

Semi-supervised
Logistic I-Relief

(SLIR) [113]

Modifying the objective function
of LIR to consider margins of

both labeled and unlabeled data
points.

Semi-
supervised

Margin of
labeled:
O(Fl2).

Margin of
unlabeled

O(Flu)

x x x
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Table 2.2 Continued

Algorithm /
Reference(s)

Focus / Contribution
Learning
Context

Asymptotic
Time

Complexity

C
on

ti
nu

ou
s

Fe
at

ur
es

In
st

an
ce

W
ei

gh
ti

ng

M
ul

ti
-C

la
ss

Pr
ob

le
m

s
R

eg
re

ss
io

n
Pr

ob
le

m
s

M
is

si
ng

D
at

a

N
oi

se
-t

ol
er

an
t

Fe
at

ur
e-

R
ed

un
da

nc
y

It
er

at
iv

e
A

pp
ro

ac
h

O
ut

li
er

D
et

ec
ti

on

Multi-classification
Semi-supervised
Logistic I-Relief

(MSLIR)[114]

Modifying the objective function
of SLIR to consider margins of

both labeled and unlabeled data
points in multi-class problems.

Semi-
supervised

Margin of
labeled:
O(Fl2).

Margin of
unlabeled
O(CFlu)

x x x x

Multi-class
Semi-supervised
Logistic I-Relief
based on nearest

neighbor
(MSLIR-NN) [115]

Using the nearest neighbor
scheme to label unlabeled points
and then calculating their margin

vectors accordingly.

Semi-
supervised

Margin of
labeled:
O(Fl2).

Margin of
unlabeled

O(Flu)

x x x x

STatistical Inference
Relief (STIR) [7]

Re-conceptualizing Relief to
obtain a new family of STatistical
Inference Relief (STIR) estimators

while maintaining its ability to
detect feature interactions

through integrating sample
variance of the nearest neighbor

distances into the feature
relevancy estimation.

Supervised φ x x x
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3.1. Introduction

3.1 Introduction

The concept of a hypothesis-margin was initially suggested in the supervised learning
context by [66] as an algorithm called Relief, it is a filter-type method for individual-
evaluation feature selection. Being aware of the contextual supervision information
and capable of calculating a weight value for each feature, Relief proved its ability to
successfully rank features in the order of their relevance to a specific problem like clas-
sifying new data points. This importance measure is referred to as feature weights. By
meaning, the hypothesis-margin is the largest distance a data point can travel within
the feature space without altering the dataset’s labeling structure, and thus without
affecting the label prediction of a new arriving point.

However, as explained in Chapter 2, in many real-world applications, there usu-
ally exist few labeled data points and lots of unlabeled ones, by which both supervised
and unsupervised feature selection algorithms cannot fully take advantage of all data
points in this scenario. Thus, it was wise to use semi-supervised methods [39, 54] to
feat both labeled and unlabeled data points. In fact, compared to class labels, pairwise
constraints are another type of supervision information that can be acquired more eas-
ily. These constraints simply specify whether two data points are similar and there-
fore should be in the same category (a must-link constraint) or dissimilar and therefore
should be in different categories (a cannot-link constraint) without the need to identify
their class labels.

In this chapter, we suggest to integrate the modification of hypothesis-margin when
used with cannot-link constraints, with the analytical solution of the supervised Re-
lief algorithm [50, 66]. This means we conjugate hypothesis-margin concept used in
[107] with Relief algorithm from its optimization perspective. The proposed method
is a semi-supervised margin-based feature selection algorithm called Relief-Sc. It is
a modification of the well-known original Relief algorithm from its optimization per-
spective. It utilizes cannot-link constraints only to solve a simple convex problem in
a closed form giving a unique solution. Besides, a slightly modified Relief-Sc into a
more robust version with respect to noisy data, called ReliefF-Sc algorithm, is also
presented and generally applied instead in our experiments.

80
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In addition, we propose to extend our semi-supervised feature selection method
into a novel combination of feature clustering and hypothesis margin maximization
called FCRSC. This approach aims at handling the two core aspects of feature selec-
tion (relevance and redundancy) and is divided into three steps. First, the similarity
weights between features are represented by a sparse graph by which it is assumed
that each feature can be reconstructed from the sparse linear combination of the oth-
ers. Second, features are then hierarchically clustered identifying groups of the most
similar ones. Finally, our semi-supervised margin-based objective function is opti-
mized to select the most data discriminative feature from within each cluster, hence,
maximizing relevance while minimizing redundancy (maximizing diversity) among
features. Eventually, we experimentally validate our proposed approach on multiple
well-known UCI [3] benchmark datasets.

This chapter is divided into two main sections. The first main one, i.e. section
3.2, provides the introduction and explanation of the notions and concepts of the
hypothesis-margin in a semi-supervised learning context with a general mathematical
interpretation (section 3.2.1) and three feature selection algorithms descending from
it. These are Relief-Sc, ReliefF-Sc and Simba-Sc presented in sections 3.2.2, 3.2.3, and
3.2.4 respectively. The second main section 3.3 presents the feature selection frame-
work that deals with feature redundancy in addition to feature relevance. It includes
sections 3.3.1, 3.3.2, and 3.3.3 that present building the sparse graph, hierarchical clus-
tering upon it, and the combination of feature clustering with constrained margin-
based feature selection respectively. On the other side, in section 3.4, we present the
experimental results to validate the proposed approaches. Experiments are achieved
on multiple well-known UCI machine learning datasets [3]. Finally, we conclude in
section 3.5.

3.2 Hypothesis-Margin in a Constrained Context For Max-

imizing Relevance

In this section, we present a concise explanation of the constrained hypothesis-margin
under a general mathematical interpretation similarly to that of Chapter 2. We also
present the proposed margin-based feature selection algorithm Relief-Sc. In addition,
we explain Simba-Sc [107] as a state of the art algorithm that applies feature selection
in a way that is similar to ours.
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3.2.1 General Mathematical Interpretation

Hypothesis-margin plays an important role in feature selection, just like sample-margin
does in Support Vector Machines (SVM) [94]. As hypothesis-margin lower bounds
the sample margin [102, 106], it was stated by Yang and Song [107] that in the case
of a 1-Nearest Neighbor (1-NN) large hypothesis-margin, a large sample-margin is
guaranteed with ease of computation. In cases where the only available supervision
information is in the form of pairwise constraints, especially cannot-link ones [107],
we consider using these constraints to calculate the constrained hypothesis-margin.
Knowing that a cannot-link constraint specifically indicates that each data point of
the considered data pair should belong to a different cluster, it is necessary to mod-
ify the supervised notions of nearmiss and nearhit in order to find the constrained
hypothesis-margin. Thus, for pedagogical purposes, all the following definitions and
equations are adapted from Chapter 2.

Definition 3.1. Let CL = {(xn, xm)} be a set of cannot link constraints and (xn, xm)

be one cannot-link constraint in it. For instance, as can be seen in Figure (3.1), in the
constrained context, the nearhit of xm denoted H(xm) is considered equivalent to the
nearmiss M(xn) of xn (that is usually used in a supervised context with class labels),
thus, it replaces it. On the other side, the nearhit of H(xn) represents the nearhit of xn

as it is usually. Also, the number of constraints card(CL) is equal to a user-predefined
value T.

Note that, according to the local cluster assumption, the nearhit of a point is sim-
ply its nearest neighbor without any class information. In fact, this assumption means
that nearby points are assigned to the same class or in other words have the same la-
bel. Accordingly, the constrained hypothesis-margin was first mentioned in [107].

Definition 3.2. The constrained hypothesis-margin is calculated as the difference
between the distance from the data point xn to the nearhit of xm denoted H(xm) and
the distance from the data point xn to its own nearhit H(xn).

ρ(xn, xm) = ∆(xn, H(xm))− ∆(xn, H(xn)) (3.1)

recalling that ∆(p1, p2) is defined in Chapter 2 as the generalized distance function be-
tween any two data points p1 and p2 over all the features F with p ∈R and ∆(Ai, p1, p2)

defined in Definition 2.3.
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M (xn)

Xn

H (xn)

(a) The original notions of nearmiss and nearhit used in the supervised margin calcu-
lation (see Figure 2.1a). The nearmiss of a point xn represented by M(xn) is its nearest
point from a different class and the nearhit of a point xn represented by H(xn) is its
nearest point from the same class.

Xm 

Xn 

H(xn) 

H(xm) 

(b) The modified notions of nearmiss and nearhit used in the constrained margin cal-
culation, where the dashed line represents the cannot-link constraint between a couple
(xn,xm). H(xm) represents the nearmiss M(xn) of xn and H(xn) represents the nearhit
of xn.

Figure 3.1: The evolution of the nearmiss and nearhit notions from the supervised
context to the semi-supervised constrained one.
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Therefore, the overall constrained hypothesis-margin with respect to the set of
cannot-link constraints CL and the training set X can be computed as:

ρ(X) = ∑
(xn,xm)∈CL

ρ(xn, xm) (3.2)

Similarly to the supervised context, we consider the weighted hypothesis-margin
using the weight vector w defined in Definition 2.2, however, in a semi-supervised
constrained context. The latter can be calculated as follows:

ρ((xn, xm),w) = ∆w(xn, H(xm))− ∆w(xn, H(xn)) (3.3)

Each time the margin is calculated with respect to a data point xn of F features, the
weight vector w contributes to this calculation. Taking Equation (3.3) into account, it
can be generalized to calculate the weighted hypothesis-margin over all the given data
points. Consequently, the final weight vector of length F shows the impact of each fea-
ture in enlarging the margin, which is considered the score/weight of the feature.

Then, the weighted constrained hypothesis-margin with respect to the set of cannot-
link constraints CL and the training set X can be computed as:

ρ(X,w) = ∑
(xn,xm)∈CL

ρ((xn, xm),w) (3.4)

It is then clear that Equation (3.4) is the summation of the weighted constrained hy-
pothesis margins over the whole cannot-link constraints set. So, the feature subset that
contributes the most in enlarging this overall margin has a weight vector of higher val-
ues, and is consequently selected.

Similarly to the supervised context, changing the value of superscript p in Equa-
tions (2.6) and (2.9) defines different constrained margin-based feature selection algo-
rithms. If the l1-norm is used, deriving Manhattan distance, our proposed constrained
Relief-Sc algorithm is obtained [118]. However, if the l2-norm is used, deriving Eu-
clidean distance, the resulting algorithm is the constrained Simba-Sc [107].

3.2.2 Relief with Side Constraints (Relief-Sc)

We consider the interesting mathematical interpretation that was suggested by Sun
and Li [6] to view the margin from an optimization perspective. It was stated that this
interpretation not only takes advantage of the performance of a highly nonlinear clas-
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sifier to calculate a margin-based objective function, but also solves a simple convex
problem in a closed-form and obtains a unique solution. Thus, we modified this for-
mulation into a constrained one called Relief-Sc that obtains its solution by calculating
the margin over all the constraints in CL in a batch mode.
Definition 3.3. The constrained hypothesis-margin of a cannot-link constraint (xn, xm)

denoted by ρ(xn, xm) under Relief-Sc is defined as:

ρ(xn, xm) = |xn − H(xm)| − |xn − H(xn)| (3.5)

Where the used distance function | . | is the l1-norm (or Manhattan distance) defined in
Equation (2.12).

Accordingly, the weighted constrained hypothesis-margin of the cannot-link con-
straint (xn, xm) with respect to X is:

ρ((xn, xm),w) = |xn − H(xm)|w − |xn − H(xn)|w (3.6)

where |v|w is defined in Equation (2.14).

Therefore, we focus on the constrained environment using pairwise constraints, es-
pecially cannot-link ones as they are considered more important than must-link con-
straints from margin’s perspective [107]. As a result, we found it axiomatic to integrate
the usage of constrained hypothesis-margin with a more simple and computationally
efficient algorithm like Relief from its optimization point of view. Since constrained
algorithms are penalized by the choice of constraints, the unique solution provided by
optimized Relief-Sc allows it to be effectively analyzed when given a fixed set of con-
straints. Thus, the optimization method (gradient ascent) used in [107] was replaced
by the analytical solution suggested in [6] producing a new version of Relief algorithm
from an optimization view point.

Definition 3.4. The weighted constrained margin-based objective function to be
optimized by Relief-Sc is given by:

max
w

∑
(xn,xm)∈CL

ρ((xn, xm),w)

= max
w

∑
(xn,xm)∈CL

(
∑F

i=1 wi|xni − H(xm)i| −∑F
i=1 wi|xni − H(xn)i|

)

s.t. ‖w‖2
2 = 1 and w ≥ 0

(3.7)
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It is intuitive that the weight vector w ≥ 0 should have positive values for relevant
features since it is a distance metric, and ||w||22 = 1 prevents the vector from being
maximized without bounds [6].

Definition 3.5. To simplify and combine Equations (3.6) and (3.7), we show the
i-th element (corresponding to the i-th feature) of the constrained margin vector z. It
is evaluated over all the available cannot-link constraints in CL with respect to the
training set X as follows:

zi = ∑
(xn,xm)∈CL

|xni − H(xm)i| − |xni − H(xn)i| (3.8)

For clarity, we express the margin vector z in the following notation:

z = ∑
(xn,xm)∈CL


 |xn1 − H(xm)1|

...
|xnF − H(xm)F|

−
 |xn1 − H(xn)1|

...
|xnF − H(xn)F|


 =

z1

...
zF

 (3.9)

Definition 3.6. Considering the constrained margin vector z, the simplified weighted
constrained margin-based objective function to be optimized by Relief-Sc can be for-
mulated as follows:

max
w

wTz, s.t. ‖w‖2
2 = 1, w ≥ 0 (3.10)

Now, using the Lagrangian function the Equation (3.10) can be expressed as:

L(w,λ,µ) = −wTz + λ(wTw− 1)− µTw (3.11)

where λ > 0 is the Lagrange multiplier and µ ≥ 0 is the Karush Kuhn Tucker (KKT)
multiplier vector satisfying complementarity condition: µTw = 0.

Now by calculating the derivative of L with respect to w we obtain:

∂L

∂w
= −z + 2λw− µ (3.12)

and we satisfy the stationarity condition by solving ∂L
∂w = 0 to obtain w as follows:

∂L

∂w
= 0 =⇒ w =

1
2λ

(z + µ) (3.13)
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As mentioned in section 2.5.2.1, Sun and Li [6] used the Karush Kuhn Tucker (KKT
[111]) complementarity condition: µTw = 0 to verify the three following cases that
also hold in Relief-Sc:

1. zi = 0⇒ µi = 0, wi = 0.

2. zi > 0⇒ zi + µi > 0⇒ wi > 0⇒ µi = 0

3. zi < 0⇒ µi > 0⇒ wi = 0⇒ zi = −µi

This leads to: {
wi

}F

i=1
=


zi
+

2λ if zi > 0

0 if zi ≤ 0
(3.14)

Finally, the optimal solution can be calculated in a closed-form as:

w∗ = w/‖w‖2 = (z)+/‖(z)+‖2

where, z is given by Equation (3.9)
and (z)+ = [max(z1,0), ...,max(zF,0)]T

(3.15)

In summary, Relief-Sc uses the cannot-link constraint set CL to calculate the averaged
margin z that the features induce using the nearhits of xn and xm. Finally, it calculates
w directly as shown in step 3 of Algorithm 3.1.

Algorithm 3.1 Relief-Sc

Input: Training data X, Set of cannot-link constraints CL
Output: Weight vector w

1. Calculate H(xn) and H(xm) for each cannot-link constraint in CL with Respect to X

2. For i = 1, ..., F,
zi = ∑(xn,xm)∈CL ∆(Ai, xn, H(xm))− ∆(Ai, xn, H(xn))

end For

3. w = (z)+/||(z)+||2
where, (z)+ = [max(z1,0), ...,max(zF,0)]T
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3.2.3 ReliefF-Sc: A Robust version of Relief-Sc

However, in ReliefF [4], the hypothesis-margin is calculated over a group of K-nearest
neighbors (K-NN) for each selected data point which leads to considering ReliefF as
the robust supervised version of the original Relief algorithm with respect to noisy
data. Thus, we similarly enhance Relief-Sc. For instance, when considering a cannot-
link constraint (xn, xm), instead of taking only one nearhit to xn and one nearhit to
xm, we now consider K-nearhits to xn and K-nearhits to xm denoted by KH(xn) :
{H1(xn), H2(xn), ..., HK(xn)} and KH(xm) : {H1(xm), H2(xm), ..., HK(xm)} respectively,
where K is a user defined parameter representing the number of closest points to xn

and xm to be considered. In this way, the margin evaluation is averaged over a larger
neighborhood and thus is less vulnerable to erroneous data. Consequently, the i-th
element (corresponding to the i-th feature) of the margin vector z is given by:

zi = ∑
(xn,xm)∈CL

1
K

K

∑
j=1

(
∆(Ai, xn, H j(xm))− ∆(Ai, xn, H j(xn))

)
(3.16)

Therefore, in the context of a robust constrained hypothesis margin over K-NN, we
apply Relief-Sc as stated in Algorithm 3.2. To sum up, it uses a cannot-link constraint
set to calculate the average margin zi that each feature induces over the K-nearest hits
of xn and xm. Finally, it calculates w directly as shown in step 3 of Algorithm 3.2.

Algorithm 3.2. ReliefF-Sc

Input: Training data X, Set of cannot-link constraints CL, and Number of Nearest Neighbors
K
Output: Weight vector w

1. Calculate KH(xn) and KH(xm) for each cannot-link constraint in CL with Respect to X

2. For i = 1, ..., F,

zi = ∑(xn,xm)∈CL
1
K ∑K

j=1

(
∆(Ai, xn, H j(xm))− ∆(Ai, xn, H j(xn))

)
end For

3. w = (z)+/||(z)+||2
where, (z)+ = [max(z1,0), ...,max(zF,0)]T
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3.2.4 Iterative Search Margin-Based Algorithm with Side Constraints
(Simba-Sc)

As mentioned in section 3.2.1, the Simba-Sc algorithm, proposed by Yang and Song [107],
is obtained when using the l2-norm with this mathematical interpretation. It is a
modification of Simba algorithm (detailed in section 2.5.2.2 of chapter 2) into a semi-
supervised margin-based algorithm that iteratively utilizes pairwise constraints specif-
ically cannot-link ones to evaluate the ability of features in discriminating data points.
It also uses a gradient ascent method to maximize its margin-based objective function.
Thus, a higher score means a more relevant feature. Note that, Simba-Sc has a mech-
anism to deal with redundancy, however, it may still choose correlated features only
when this contributes positively to the overall performance.

Definition 3.7. The constrained hypothesis-margin of a cannot-link constraint (xn, xm)

denoted by ρ(xn, xm) is given by half the difference between the distance from the data
point xn to the nearhit of xm and the distance to its own nearhit. However, similarly to
Equation (2.23), we also omit the half obtaining the following:

ρ(xn, xm) = ‖xn − H(xm)‖ − ‖xn − H(xn)‖ (3.17)

where the used distance function ‖ .‖ is the l2-norm (or Euclidean distance) defined as
in Equation (2.24).

Definition 3.8. By considering a training set X, a cannot-link constraint (xn, xm),
and the weight vector w, the weighted hypothesis-margin of (xn, xm) is given by:

ρ((xn, xm),w) = ‖xn − H(xn)‖w − ‖xn − H(xn)‖w (3.18)

where ‖v‖w is defined in Equation (2.26).

Definition 3.9. Considering the training set X and the feature weights denoted by
the vector w, the evaluation function of Simba-Sc is given by:

ρ(X,w) = ∑
(xn,xm)∈CL

ρ((xn, xm),w) (3.19)

By analyzing Equation (3.19), the authors declared that a natural normalization
constraint is required on w, i.e., max (w2

i ) = 1 [107]. Besides, similarly to Simba, they
ignore this normalization constraint during the calculation of w since for any scalar λ,
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the weighed constrained margin ρ((xn, xm),λw) = |λ|ρ((xn, xm),w). However, after
finding w, the normalization constraint ‖w2‖∞ = 1 should be projected on it.

Similarly to Simba, the building blocks of the evaluation function ρ(X,w) of Simba-
Sc are the weighted constrained margins of each cannot-link constraint known to us
as ρ((xn, xm),w). Thus, as ρ(X,w) is smooth almost everywhere, the gradient ascent
evaluated on the set of all cannot-link constraints is obtained similarly to Equation
(2.28) as follows:

∂ρ(X,w)
∂wi

= ∑
(xn,xm)∈CL

∂
∂wi

(‖xn − H(xm)‖w − ‖xn − H(xn)‖w)

= ∑
(xn,xm)∈CL

[
(xni−H(xm)i)

2

‖xn−H(xm)‖w
− (xni−H(xn)i)

2

‖xn−H(xn)‖w

]
wi

(3.20)

where H(xm)i and H(xn)i denote the values of the nearhits of xm and xn on a specific
feature Ai respectively.

Simba-Sc algorithm presented in Algorithm 3.3 uses the following weight updat-
ing equation:

wnew
i = wold

i +
[
(xni−H(xm)i)

2

‖xn−H(xm)‖w
− (xni−H(xn)i)

2

‖xn−H(xn)‖w

]
wold

i (3.21)

Also similarly to Simba, the optimization method used in Simba-Sc is vulnerable to
local maxima. Although it is restarted multiple times from different starting points, it
still cannot guarantee obtaining a global maximum. Besides, as a constrained (math-
ematically) non-linear optimization problem, Simba-Sc also can not be easily solved
through well-established optimization techniques. So, it first optimizes the margin-
based objective function using a gradient ascent method while ignoring the normal-
ization constraint. Then, as a separate final step, the obtained solution is projected
over these constraints as can be seen in step (3) of Algorithm 3.3. In conclusion, the
convergence of Simba-Sc algorithm is also doubtful [50].
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Algorithm 3.3. Simba-Sc

Input:

• Training data X

• Set of cannot-link constraints CL

• Number of iterations T

Output: Weight vector w

1. Initialize w = (1,1, ...,1)

2. For t = 1, ..., T

(a) Pick randomly a cannot-link constraint (xn, xm) from CL

(b) Calculate H(xm) and H(xn) with respect to X\{xn}and the weight vector w

(c) For i = 1, ..., F calculate

∆i =

(
(∆(Ai ,xn,H(xm)))2

∆w(xn,H(xm))
− (∆(Ai ,xn,H(xn)))2

∆w(xn,H(xn))

)
wi

End For

(d) w = w + ∆

End For

3. w←w2/
∥∥w2

∥∥
∞

where w2 = (w1
2, ...,wi

2, ...,wF
2) and

∥∥w2
∥∥

∞ = max(w1
2, ...,wi

2, ...,wF
2)

3.3 Feature Clustering in a Constrained Context for Min-

imizing Redundancy

Feature relevance is not the only aspect of a good feature selection method. In fact, the
feature space can be composed of the following four groups of features [25]: (a) com-
pletely irrelevant, (b) redundant and weakly relevant, (c) non-redundant but weakly
relevant, and (d) strongly relevant features. As the first two groups can significantly
degrade the performance of learning algorithms and decrease their computational ef-
ficiency [29, 30], it is expected from a good feature selection method to be able to keep
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features from within groups (c) and (d).

However, we noticed that a drawback in Relief-Sc, inherited from its basic super-
vised precursor Relief algorithm [66], is that it lacks the ability to deal with redundancy
among features. Nevertheless, it is well known that eliminating redundant features is
also an important aspect of feature selection.

Generally, in supervised and unsupervised contexts, multiple researches applied
feature clustering with the aim of selecting a non-redundant and relevant feature sub-
set. However, they tended to build their similarity matrices between features using
information theoretic measures like mutual information [91], conditional mutual in-
formation [43] and maximal information coefficients [92]. It was also considered easy
to transfer traditional data clustering methods to work for feature clustering, however,
the challenge was in finding a suitable and meaningful definition of similarity notion
between features [119].

Therefore, we propose to extend our semi-supervised feature selection method by a
novel combination of feature clustering with hypothesis-margin maximization (Relief-
Sc 3.2.2) to obtain a non-redundant feature subset, by which, its features are ranked in
the order of their relevance to a target concept. For that, we benefit from the charac-
teristics of non-parametrized sparse representation where it is possible to reconstruct
each feature by the sparse linear combination of others [120]. This is done through
solving a L1-minimization problem. In fact, we may treat these sparse coefficients as
similarity weights to build our features similarity matrix on top of which we apply
clustering. For instance, we adopt an agglomerative single-link hierarchical clustering
method. It clusters features progressively into larger groups forming a multi-level tree
diagram called dendrogram. Cutting this dendrogram on a specific level, results in
one of the possible clustering solutions by which the features within the same cluster
(or group) play important roles in reconstructing each other and are thus assumed to
be redundant in our scenario.

On the other side, multiple ways were used to select the most representative fea-
ture from each cluster like using lasso-type penalty factors [121], feature-class associ-
ation measures [87] or simply selecting the cluster’s centroid [92]. However, in our
approach, we aim at representing each cluster by the feature that best maximizes a
pairwise constraint-relevancy margin-based objective function. This maximization is
quantized by assigning bigger weights to features that best contribute to enlarging a
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semi-supervised distance metric called constrained hypothesis-margin. Besides, the
overall approach aims at maximizing relevancy while minimizing redundancy, and to
the best of our knowledge, no work has previously done that by combining feature
clustering upon sparse representation with the constrained hypothesis-margin. To be
precise, Simba-Sc [107] that is detailed in section 3.2.4 deals differently with redun-
dancy, this will be illustrated in our experimental comparisons.

In the following sections, we detail each step of the proposed approach. For in-
stance, in section 3.3.1, we explain how to represent the relationships between features
to be used in clustering and in section 3.3.2, we explain the used hierarchical clustering
method in our context. Finally, in section 3.3.3, we present the overall semi-supervised
feature selection approach that combines both feature clustering and hypothesis mar-
gin maximization.

3.3.1 Feature Space Sparse Graph Construction

Sparse graph representation has received a great deal of attention in recent years [31,
122, 123], this is due to its ability to find the most compact representation of the orig-
inal data and to preserve its underlying discriminative information [47]. In fact, the
sparse representation model generally aims at representing a data point using as few
as possible other data points within the same dataset (over-complete dictionary). Con-
ventionally, some recent work utilized sparse theory to build the similarity matrix
among data points by assuming that each point can be reconstructed by the sparse
linear combination of other points [120, 124, 125]. On the contrary, in our work, the
similarity graph adjacency structure and the corresponding graph weights are built
simultaneously among features instead of data points [126, 127]. While computing the
sparse linear coefficients by solving a L1-norm regularized least squares loss problem,
the most similar features as well as their estimated similarity weights to the recon-
structed feature are identified. Hence, we obtain the feature-wise sparse similarity
matrix that will be used in grouping features.
It is important to note that the main advantages of using the L1-graph are the follow-
ing:

• It can lead to a sparse representation which can enhance the efficiency and the
robustness to noise in learning algorithms [47].

• While many clustering algorithms [32, 128] are very sensitive to some parame-
ters when building their similarity graphs (like the performance of traditional
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spectral clustering that is heavily related to the choice of the parameter sigma in
Gaussian kernel), our graph construction is parameter free.

• It obtains both the graph adjacency structure and the corresponding similarity
weights by L1-optimization, while L2-graphs usually separate them into two
steps.

To mathematically formalize the problem, we consider the data matrix from its
feature’s perspective as presented in Equation (1.2). Therefore, to reconstruct each
feature (attribute) Ai using as few entries of X as possible, we set X i = X/Ai =

[A1, ..., Ai−1, Ai+1, ..., AF] and then we solve an L0-norm optimization problem as fol-
lows:

min
si
‖si‖0 s.t. Ai = X isi (3.22)

where ‖.‖0 denotes the L0-norm, which is equal to the number of non-zero compo-
nents in si, si = [si1, ..., si,i−1,0, si,i+1, ..., siF]

T is a F-dimensional coefficients vector in
which the ith element is equal to zero (implying that Ai is removed). The element sij

(i , j) denotes the contribution of any other feature Aj in reconstructing Ai.

Note that, the solution of Equation (3.22) is NP-hard. Thus, a sparse vector si can
be approximately estimated by the following L1-minimization problem [125]:

min
si≥0
‖si‖1 s.t. Ai = X isi, 1Tsi = 1 (3.23)

where ‖.‖1 denotes the L1-norm and 1 ∈RF is a vector of all ones values.

In fact, due to the presence of noise, the constraint Ai = X isi in Equation (3.23) does
not always hold. Thus, Liu and Zhang [31] mentioned a modified robust extension
(invariant to translation and rotation) to mitigate this problem. It can be defined as
follows:

min
si≥0
‖si‖1 s.t. ‖Ai − X isi‖2 < ξ, 1Tsi = 1 (3.24)

where ξ represents a given error tolerance. The sparse vector si is computed for
each feature Ai. The optimal solution of Equation (3.24) for each data point Ai is a
sparse vector ŝi, this vector allows building the sparse re-constructive similarity matrix
S = (ŝi,j)F×F, defined by:

S = [ŝ1, ..., ŝi, ..., ŝF]
T (3.25)

Note that, the obtained S is usually asymmetric, so we force symmetry using S =

(ST + S)/2.
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The L1-minimization problem of Equation (3.24) can be solved in polynomial time by
standard linear programming methods [120] using publicly available packages such
as SLEP (Sparse learning with efficient projections) package [129]. As the vector ŝi

is sparse (a lot of its components have zero values and few have non-zero ones), the
features in the dataset which are far from each other will have very small (zero or near
zero) coefficients. This solution can reflect the intrinsic geometric properties of feature
space. Algorithm 3.4 summarizes the graph construction.

Algorithm 3.4. Sparse Graph Construction

Input: Training data X
Output: Feature Similarity matrix S
Initialize S = 0

1. For each feature Ai

(a) Eliminate Ai from X as

X i = X/Ai = [A1, ..., Ai−1, Ai+1, ..., AF]

(b) Solve Equation (3.24) to obtain ŝi

(c) Iff the j-th entry of ŝi denoted ŝi,j , 0

set the weight Sij = |ŝi,j|, 1≤ i, j ≤ F

2. Force symmetry by S = (ST + S)/2

3.3.2 Agglomerative Hierarchical Feature Clustering

As we mentioned before, a good feature selection algorithm is expected to find fea-
tures that are most relevant in terms of discriminating data points between different
classes while being least correlated to each other. The latter is similar to the general
assumption of clustering where the data is partitioned such that points within the
same cluster are as similar as possible to each other and as different as possible from
points in other clusters [91]. Focusing on the idea of finding the least redundant (most
diverse) features brought up clustering the features themselves instead of clustering
data points [43, 89]. For instance, this minimized-redundancy among features can be
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obtained by grouping them into different groups according to a similarity criterion
then choosing one or multiple features to represent each group.
Among the four primary clustering categories that are hierarchical, density-based, sta-
tistical and centroid-based [130], we were interested in hierarchical clustering. It is use-
ful when the structure of the dataset can hold nested clusters and does not require a
predefined number of clusters as this algorithm outputs a tree diagram called dendro-
gram. The dendrogram that records the sequence of merges of clusters (features) into
larger clusters, presents a multi-level grouping of these features [121]. Hence, depend-
ing on the cutoff level of the dendrogram, the number of obtained clusters can vary
between 1 and F. Intuitively, at lower levels of the dendrogram we have the clusters
of most redundant features that were first to be grouped. Thus, cutting on low lev-
els, results in a higher number of clusters and therefore more cluster representatives
i.e. a bigger output feature subset. However, cutting the dendrogram on higher lev-
els results in a smaller number of clusters and thus fewer cluster representatives i.e. a
smaller output feature subset. Hence, although choosing a high level of clustering en-
sures eliminating more redundancy, it could still cause more information loss. As a
result, a good quality of clustering is closely related to the problem-adequate choice of
the cutoff level. Therefore, we decided to cutoff when merging distances become large
enough to create a second-level hierarchy, which means when clusters of features start
being merged together instead of merging individual features. This is explained by
our goal of reducing redundancy among features to a certain level without excessive
compression that might lead to some information loss.

In summary, hierarchical clustering can have multiple methods for computing the
distance between clusters (ward, complete, median, centroid, single and others), how-
ever, as we are working with features clustering and as we wish to merge the clusters
on the most similar features (not their average nor on the farthest two features within a
cluster i.e complete linkage), the agglomerative single-linkage hierarchical clustering
was applied. It takes as input the F× F feature-wise similarity matrix denoted by S ob-
tained from section 3.3.1. This algorithm initially assigns each feature to its own clus-
ter, then finds the largest element sij remaining in S, after that the corresponding two
most similar clusters (or features) are merged based on sij. After each merging step,
the similarity matrix is updated by replacing the two grouped clusters (or features) by
the newly formed cluster in S. This update can be expressed as sh,ij = max

s
{shi, shj}

Where sh,ij is the similarity between the cluster newly obtained by merging clusters
(features) Ai and Aj and another cluster Ch (or feature Ah). shi and shj are the respec-
tive similarities between cluster (or feature) pairs.
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3.3.3 Proposed Feature Selection Approach

Our proposed approach that combines feature clustering with ReliefF-Sc, called (FCRSC),
is a filter-type feature selection method as it does not depend on the performance of
any learning algorithm while obtaining its ranked feature subset. In addition, one very
important advantage of our method is that it is non-parametric, which means its per-
formance is not vulnerable to being closely related to any tuned parameter. Moreover,
we do not specify the number of clusters to be obtained from hierarchical clustering,
but instead, we state a mechanism that choses the cutoff automatically such that no
excessive compression nor trivial solutions are obtained.

To sum it up, first, we build the feature similarity graph on top of which we apply
agglomerative hierarchical clustering. This graph is obtained through sparse coding,
where the assigned similarity weights between features are in fact sparse coefficients
indicating how much each feature contributes in reconstructing the other. It is very
important to find a clustering solution C where features compression is not exagger-
ated (obtain very few clusters) nor underestimated (obtaining the trivial solution: each
feature in its own cluster). Meanwhile, a weight is also assigned to each feature by
ReliefF-Sc as it maximizes the semi-supervised margin-based objective function.

The significance of this approach lies in the last but most important algorithm
called FCRSC. It starts with the two available ingredients, i.e., the clustering solution
C obtained by hierarchical clustering and the weight vector w obtained by ReliefF-Sc.
Then, for each of the clusters Cl in C, the number of features within Cl is evaluated.
When a cluster has one and only one feature (considered not redundant at all), it is di-
rectly added to the chosen feature subset Fs. However, when more than one feature is
assigned to Cl, the features within Cl are sorted in the descending order of their corre-
sponding margin weights given in w. Thus, the feature with the highest weight (most
relevant) is added to the feature set Fs and the rest are eliminated as they are judged
to be redundant. After getting the representative feature from each cluster, these are
sorted again in the descending order of w leading to the optimization of a two-fold
objective problem, i.e, (1) minimizing redundancy between features in Fs and (2) max-
imizing relevancy between the features and the cannot-link constraints in CL. Thus,
we obtain the ranked feature subset rankedFs. Note that, the number of features in
rankedFs will be equal to the number of obtained clusters denoted card(Cl).
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Algorithm 3.5. FCRSC

Input:

• Set of Clusters C obtained by Hierarchical clustering
• Weight vector w obtained by Algorithm 3.2

Output: Ranked Feature Subset rankedFs

Initialize: Feature set Fs = φ,

1. For each cluster Cl in C

if card(Cl) = 1

Fs← Fs ∪ Current f eature

end if

if card(Cl) > 1

Sorted← sort (features ∈ Cl , descending w)

Current f eature← Sorted( f irst row)

Fs← Fs ∪ Current f eature

end if

end For

2. rankedFs ← sort (Fs, descending w)

3. return rankedFs

3.4 Experimental Results

We present the experimental results of this chapter in two separate sections. The first
section focuses on comparing Relief-Sc with the margin-based Simba-Sc algorithm in
terms of classification accuracy and their relation with the set of provided constraints.
On the other hand, the second section uses a different data experimental setup to com-
pare ReliefF-Sc and FCRSC with other well-known filter algorithms in terms of the
ability to select relevant features (expressed by classification accuracy) and the ability
to choose a less redundant feature subset while maintaining accuracy.
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3.4.1 Experimental Results on Relief-Sc: Selection of Relevant Fea-
tures

In this section, we compare the classification accuracy obtained by the nearest neigh-
bor classification algorithm after feature selection using our proposed Relief-Sc algo-
rithm and other classical feature selection algorithms: Fisher score (supervised), Lapla-
cian score (unsupervised), and Simba-Sc (semi-supervised).

3.4.1.1 Datasets Description

For fair evaluation, we use four well-known numeric UCI machine learning datasets
[3] that were used in [40] and [107], including Sonar, Soybean, Wine and Heart. We
also use another two high dimensional gene-expression datasets: ColonCancer [131]
and Leukemia [132].
ColonCancer and Leukemia datasets aim at specifying the presence or absence of can-
cerous tumors, they are characterized by a very small number of data points compared
to the number of features they possess. These two gene-expression datasets are an ob-
vious example of a dataset suffering from the "curse of dimensionality".

Table 3.1 summarizes the main characteristics of each dataset. The second column
of this table shows the number of data points, the third column shows the data di-
mension and the fourth column shows the number of classes. Also, the fifth column
specifies the number of points in each class in order to allow observing whether the
classes are balanced or not and the last column presents the number of constraints
used by constrained algorithms. Before analyzing the results, we note that a dataset
can have features lying within different ranges, this affects the performance of fea-
ture selection algorithms leading to unreliable outcomes. Thus, similarly to [30], we
normalize the features of each dataset using min-max criterion to scale their values
between zero and one. Besides, similarly to [40], we partition the datasets into two

Table 3.1: Datasets and their characteristics

Dataset #points #features #classes #points per class #constraints
Sonar 208 60 2 97, 111 10

Soybean 47 35 4 10, 10, 10, 17 8
Wine 178 13 3 59, 71, 48 20
Heart 270 13 2 150, 120 20

ColonCancer 62 2000 2 40, 22 10
Leukemia 72 5147 2 47, 25 10
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halves, the first half of data points from each class is considered for training, and the
second half is considered for testing.
Feature selection is applied on the training subset, it allows ranking the features ac-
cording to their assigned scores by different algorithms. Afterward, the classification
accuracy of each ranked set of features is then measured by applying a classifier on the
testing subset defined by these same features. As in [40, 107], we use 1-NN classifier
with Euclidean distance for this purpose.

The comparison results between the two constrained algorithms Simba-Sc and our
proposed Relief-Sc are averaged over 10 runs. This means that at each run Simba-Sc
and Relief-Sc are applied on different cannot-link constraints (randomly generated).
Since these constraints are considered more important than must-link ones from the
view point of margin, the latter two algorithms utilized them. To be clear, in each run
these constraints are generated as follows: we randomly choose a pair of data points
from the training set, then we check to which class each point belongs, if it appears
that these two points belong to different classes, they are considered the end points of
a cannot-link constraint. This operation is repeated until we reach the desired number
of constraints. This number was specified similarly to [107] for the datasets Sonar,
Soybean, Wine and Heart as 10, 8, 20 and 20 respectively. We also use 10 constraints
for both ColonCancer and Leukemia datasets as can be seen in the last column of Table
3.1.

3.4.1.2 Comparison of Classification Performances on UCI Machine Learning Datasets

Figure (3.2) shows the plots of classification accuracies vs. the desired number of fea-
tures selected by our considered algorithms on the UCI datasets: Figure (3.2a) is for
Sonar, Figure (3.2b) is for Soybean, Figure (3.2c) is for Wine and Figure (3.2d) is for
Heart.

As a reminder, the unsupervised Laplacian Score uses data discriminative power
and locality preserving ability to select features instead of any supervision informa-
tion, unlike supervised Fisher Score that uses full class labels, yet both Laplacian and
Fisher Scores still have to access the whole training data to calculate feature scores. In
fact, semi-supervised Relief-Sc and Simba-Sc use supervision information a bit more
than Laplacian Score, but much less than Fisher Score. This supervision information
takes the form of few cannot-link constraints. The latter was reflected in Figure (3.2),
where we can see that the classification accuracies of Relief-Sc and Simba-Sc gener-
ally lies between the classification accuracies of Fisher and Laplacian Scores respec-
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(c) Wine
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Figure 3.2: Classification accuracy vs. different number of selected features on 4 UCI
datasets: (a) Sonar; (b) Soybean; (c) Wine; (d) Heart. The number of constraints used
for each dataset is presented in Table 3.1.
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Table 3.2: The highest classification accuracy rates Acc (in %), with d representing the
dimension of the considered selected feature space and F representing the original
feature space.

Simba-Sc Relief-Sc Without Selection
Acc d Acc d Acc F

Sonar 58.65 3 60.29 5 50.96 60
Soybean 98.26 13 99.57 14 95.65 35

Wine 97.6 11 97.9 11 96.59 13
Heart 76 9 75.78 8 74.81 13

tively. Sometimes, the constrained algorithms can even reach close classification ac-
curacies to that of supervised scores. Since the accuracy curves achieved by Relief-Sc
and Simba-Sc are very comparable, we record their highest accuracy rates Acc and the
corresponding dimension d of their selected feature subset in Table 3.2. We also show
in this table the rates obtained by using the original feature space without performing
feature selection.

From Table 3.2, we can first notice that the highest classification accuracy rates Acc
achieved when applying the two constrained selection algorithms are greater than the
rates achieved without selection (i.e. on the original feature space). This confirms the
importance of feature selection in improving the classification results. Indeed, this is
due to the fact that only few of the initially available features are usually highly rel-
evant and not noisy with respect to the desired objective (e.g. classifying a person as
healthy or diseased). From this table, we can also see that Relief-Sc was superior to its
constrained competitor Simba-Sc almost always, this is true except on Heart dataset.
Also, when Relief-Sc recorded higher accuracies, the selected feature space was very
small compared to the size of the original space, especially for Sonar (5 out of 60) and
Soybean (14 out of 35). Note that, the decrease in accuracy for Heart dataset (Fig-
ure (3.2d)) is caused by the presence of hybrid features. Qualitative features having
nominal values contributed more to the margin calculation than the other quantitative
features even if they are not really more relevant. A ramp function was suggested as a
solution to this problem, by which, ∆ is set to 0 (or 1) if the difference between values of
continuous features is equal to or below (above) a user-predefined minimum (or max-
imum). In between these two boundaries, a function of the distance from them is used
[37, 133]. However, in practice, it may be challenging to apply such an approach since
it requires a problem-specific optimization of two additional user-defined parameters
[2].
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3.4.1.3 Comparison of Classification Performances on High Dimensional Gene-
Expression Datasets

Figure (3.3) shows the plots of classification accuracies vs. the desired number of fea-
tures selected by the considered algorithms on these datasets: Figure (3.3a) is for
ColonCancer and Figure (3.3b) is for Leukemia. Also similarly to Table 3.2, we record
the highest accuracy rates Acc and the corresponding dimension d selected by Relief-
Sc and Simba-Sc on these two gene-expression datasets in Table 3.3.

For instance, Table 3.3 shows that Relief-Sc achieved a maximum accuracy of 76.45%
on a set of 658 features out of 2000, unlike Simba-Sc that provided its highest accuracy
of 76.13% on a set of 1008 features. This means the feature space can be reduced by
more than half using Relief-Sc and still provide fair classification accuracy. On the
other side, Figure (3.3b) shows the Leukemia dataset where the classification perfor-
mance of Relief-Sc was not only comparable to the other constrained Simba-Sc algo-
rithm but also to the supervised Fisher Score. The accuracy curve achieved by Fisher
Score is close to that reached by Relief-Sc, i.e., 89.41% using only 52 features. Results

Table 3.3: The highest Classification Accuracy Rates Acc (in %), with d representing
the dimension of the considered selected feature space and F representing the original
feature space.

Simba-Sc Relief-Sc Without Selection
Acc d Acc d Acc F

ColonCancer 76.13 1008 76.45 658 70 2000
Leukemia 87.94 33 89.41 52 79 5147

on both UCI and gene-expression datasets show that integrating supervision informa-
tion in the form of few cannot-link constraints only, can still be very useful for feature
selection especially for the Relief-Sc algorithm. The classification performance of this
algorithm generally lies between that of Fisher and Laplacian Scores respectively due
to the amount of supervision information available for each algorithm, yet it proved
that it can significantly reduce the size of the feature space while preserving good
classification performance.
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(b) Leukemia

Figure 3.3: Classification Accuracy vs. different number of selected features on 2 high
dimensional gene-expression datasets using 1NN: (a) ColonCancer; (b) Leukemia. The
number of constraints used for each dataset is presented in Table 3.1.

3.4.1.4 Comparison of Obtained Solutions on a Fixed Set of Cannot-link Con-
straints

As explained in section 3.2.4, Simba-Sc uses a gradient ascent optimization method to
find a weight vector w that maximizes the hypothesis margin. It is then important to
note that in order to mitigate the problem of local optima, Simba-Sc chooses multiple
starting points and runs the whole algorithm for each of them. The output of each loop
(starting point) is the margin calculated over the features of our cannot-link constraints
in CL. Thus, for each starting point another permutation of constraints is chosen by
Simba-Sc and consequently we obtain a different margin. Finally, the margin having
the largest sum is the chosen solution and its corresponding w is assigned as feature
weights. Therefore, it is then clear that Simba-Sc is vulnerable to be trapped in local
maximum. This is because no random solution can guarantee that the algorithm tried
all possible constraint permutations.

Consequently, on a fixed constraint set, Relief-Sc has the advantage of achieving
a unique solution compared to Simba-Sc. In other words, it always obtains the same
solution whereas Simba-Sc fluctuates between multiple local maximum. In order to
validate this advantage, Figure (3.4a) and Figure (3.4b) show the classification results
on four different successive runs of Relief-Sc and Simba-Sc on Wine and Heart datasets
while fixing the set of cannot-link constraints. The unique solution provided by Relief-
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Figure 3.4: Classification Accuracies after successive runs of Relief-Sc and Simba-Sc on
(a) Wine; (b) Heart with a fixed set of cannot-link constraints.

Sc can be clearly stated compared to the alternating Simba-Sc solutions between better
and worse. This confirms that Relief-Sc is the only constrained algorithm that exploits
the potential of a highly nonlinear classifier (1-NN) to find the closed-form solution of
a simple convex problem.

3.4.1.5 Comparison in terms of Running Time and Constraints number

In terms of computational complexity, the original supervised Relief [49] and Simba
[102] are equivalent, their complexity is calculated as O(TNF) where T is the number
of iterations, N is the number of points and F is the number of features. However,
when iterating over all training data points, i.e. when T = N, the complexity becomes
O(N2F), this is why some works considered decreasing the size of used data points
by smart selection of training instances [134]. Similarly, the constrained Relief-Sc and
Simba-Sc have equivalent computational complexity but in our case T = card(CL),
where card(CL) is the number of cannot-link constraints. When card(CL) is high, one
can also consider smart selection of constraints to prevent a high computational cost.

As we mentioned above, Simba-Sc chooses multiple starting points and re-evaluates
the whole algorithm for each of them. It then compares their results, the one that ob-
tains the margin of the largest sum, is the chosen solution. Although the number of
starting points is a constant that is not considered in the big O notation of computa-
tional complexity, re-running and comparing multiple runs to find the best solution
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Table 3.4: The average running time (in ms) for each of Relief-Sc and Simba-Sc vs. the
number of cannot-ink constraints. Maximum number of constraints is 220 for Colon-
Cancer and 297 Leukemia. Starting points fixed to default = 5 set by authors [107].

ColonCancer Leukemia
#Constraints Relief-Sc Simba-Sc Relief-Sc Simba-Sc

5 27.4 103.7 129.8 329.6
15 33.3 252.9 134.7 590.9
25 39.3 393.4 152.8 880.7
35 45.4 551 168.6 1176.1

Max 149.3 3893.3 548.4 9297.2

affects the over all running time. It is clear that Simba-Sc is vulnerable to be trapped in
local maximum. This is because no random solution can guarantee that the algorithm
tried all possible constraint permutations. If this was the case, the computational com-
plexity of Simba-Sc would increase and the algorithm might become intractable.
For validation, we measure the running time of our proposed Relief-Sc and of Simba-

Table 3.5: The average running time (in ms) for Relief-Sc and Simba-Sc versus the
number of starting points. Maximum number of cannot-link constraints is 220 for
ColonCancer and 297 Leukemia.

ColonCancer Leukemia
#StartPoints Relief-Sc Simba-Sc Relief-Sc Simba-Sc

5 27.4 103.7 129.8 329.6
15 27.4 226.6 129.8 516.1
25 27.4 336.2 129.8 745.9
35 27.4 457.2 129.8 980.2

Max 27.4 2582.3 129.8 6852.1

Sc on the two high dimensional datasets (ColonCancer and Leukemia). The results are
shown in Tables 3.4 and 3.5 where Relief-Sc appears scalable in terms of the number of
constraints considered, whereas the running time of Simba-Sc increases linearly with
the number of constraints and starting points. For instance, on ColonCancer, when the
number of training data points available is 31, having 20 in class 1 and 11 in class 2,
a total of maximum 220 cannot-link constraints can be obtained. If we wish to try all
possible solutions and find the global maximum, Simba-Sc should also set the number
of starting points to 220. During this process, the elapsed time and randomness make
Simba-Sc intractable although our training data is small. Table 3.6 shows how the run-
ning time of Simba-Sc increases when tested on both ColonCancer and Leukemia with
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their corresponding maximum constraints and starting points. Note that from Table
3.7 we can see that the running time of Relief-Sc is near to that of the unsupervised
Laplacian Score and even when it uses all possible constraints it still takes less time
than Fisher Score.

Table 3.6: The Running time (in ms) for Simba-Sc when considering the maximum
number of cannot-link constraints and the maximum number of starting points i.e. 220
for ColonCancer and 297 for Leukemia. Each constraint is randomly selected without
replacement.

#StartPoints = #Constraints ColonCancer Leukemia
220 1.7 ×105 -
297 - 5.6 ×105

Table 3.7: The Running times (in ms) for each of Fisher and Laplacian Scores averaged
over 20 runs on the two high dimensional datasets.

ColonCancer Leukemia
Fisher 687.6 1708.8

Laplacian 43.4 110.9

3.4.2 Experimental Results on FCRSC: Selection of Relevant and Non-
redundant Features

In this section, we compare the performance of our proposed FCRSC approach with
some of the well-known state of the art feature selection methods. This comparison is
applied in terms of classification accuracy, redundancy-removal ability, and execution
time. The used datasets, feature selection methods, and classifiers are detailed in the
following sections.
It is very important to note that, in this section, ReliefF-Sc is used, which means, the
algorithm considers K-nearhits (sections 3.2.2 and 3.2.3 show the difference between
Relief-Sc and ReliefF-Sc).

3.4.2.1 Datasets Description

To evaluate the proposed approach, in this section, six well-known benchmark datasets
representing a variety of problems were used. These datasets include Wine and Sonar
common with the previous experiments in section 3.4.1, and Breast Cancer Wisconsin
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(Diagnostic) Data Set (WDBC), Ionosphere, Spambase, and Arrhythmia as additional
datasets also from the UCI machine learning repository [3]. We summarize the main
characteristics of each dataset in Table 3.8.
We use the same normalization min-max method mentioned in 3.4.1.1 to keep the fea-
tures within the same scale. Also for Arrhythmia dataset where some of the feature
values are missing, similarly to [30] we replace them with the average of all available
values of the same corresponding feature. In addition, in the following experiments

Table 3.8: Datasets and their characteristics

Dataset #points #features #classes #points per class #constraints
Wine 178 13 3 59, 71, 48 20

WDBC 569 30 2 357, 212 40
Ionosphere 351 34 2 225, 126 20
Spambase 4601 57 2 1813, 2788 100

Sonar 208 60 2 97, 111 20
Arrhythmia 452 279 13 245, 44, 15, 15, 13, 25, 3, 2, 9, 50, 4, 5, 22 20

we partition each dataset into 2/3 for training and 1/3 for testing. This process is
repeated independently for 10 times and only the averaged results are recorded. In
each run, feature selection followed by classifiers learning are applied on the training
subset to allow ranking the features according to their assigned scores by different
algorithms and then training the classifier on these same ranked feature sets. The clas-
sification accuracy that can be obtained by each ranked set of features (each feature
selection method) is then measured by applying the learned classifier on the testing
subset defined by these same features.

3.4.2.2 Used Feature Selection methods, Classifiers, and Parameter Setting

We use the Variance and Laplacian scores as they are widely-used well-known un-
supervised filter methods for comparison [30, 40]. We also choose to compare with
the supervised mRMR method since it aims at optimizing the same two-fold objective
problem. ReliefF, Simba-Sc and ReliefF-Sc, on the other side, are all margin-based,
similarly to the proposed FCRSC.
In addition, as the three semi-supervised constrained algorithms Simba-Sc, ReliefF-Sc
and the proposed FCRSC are dependent on cannot-link constraints, these constraints
are generated in each run (similarly to [107]) as explained in section 3.4.1.1. Regard-
ing the number of constraints, we considered them relatively to the number of data
points available in each dataset. Thus, it was set to 20 for Wine, Ionosphere, Sonar
and Arrhythmia, 40 for WDBC, and 100 for Spambase dataset. Moreover, the number
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of starting points for the nonlinear optimization method (gradient ascent) in Simba-
Sc is set to its default value by the authors i.e 5. Also for fair comparisons, common
parameters between different algorithms were set to the same values. For instance,
Laplacian score, ReliefF, ReliefF-Sc and FCRSC had their neighborhood size set to 10
in all experiments (similarly to [30]) except for Spambase, which was set to 60 due to
its large sample size. We also set the number of features in the subset obtained by
mRMR to be equal to the number of clusters obtained by FCRSC.

We use more than one classifier of different decision-making natures and learning
processes in order to provide a fair evaluation of used filter feature selection methods
independently of the applied classification rules. These classifiers are: Nearest Neigh-
bor classifier, SVM, Naive Bayes, and C4.5. Besides, these experiments can also be
eye-opening on which classifier can be best used with the proposed feature selection
method.

3.4.2.3 Performance Evaluation in terms of Classification Accuracy and Feature set
Redundancy for Constrained Algorithms

According to the previously detailed experimental setup, we first compare the perfor-
mance of the proposed FCRSC method with that of the constrained feature selection
methods stated in section 3.4.2.2. As these algorithms belong to the same supervision
context of the proposed method and depend on an evaluation function of similar na-
ture, we chose to closely compare with them at first. Therefore, the comparison is
applied in terms of two important aspects: the classification accuracy a ranked feature
set can bestow and the amount of redundancy that this set possesses. In fact, we aim
at showing how FCRSC improves the performance of its precursor ReliefF-Sc and how
it generally outperforms Simba-Sc in both of these aspects. In addition, C4.5 classifier
was used as it can not detect feature interactions [135], a capability that the compared
Relief-based algorithms has [97].

Hence, Figures (3.5) and (3.6) show the averaged accuracy rates obtained by the C4.5
classifier on the ranked feature sets obtained by the constrained filter methods (Simba-
Sc, ReliefF-Sc and the proposed FCRSC) on Wine, WDBC, Ionosphere, Spambase,
Sonar and Arrhythmia datasets over 10 independent runs. In fact, each two figures
in a row correspond to one of the datasets. The figure on the left shows the averaged
classification accuracy and the figure on the right shows the corresponding averaged
representation entropy (i.e. an unsupervised metric used to compare redundancy in
obtained feature subsets (section 1.7.1)).
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For instance, from Figures (3.5) and (3.6) we can see that generally FCRSC was always
able to obtain a feature subset that provides a better classification accuracy while be-
ing less redundant. This was true except for Spambase in Figures (3.6a) and (3.6b),
where the three algorithms performed approximately the same in terms of accuracy
and redundancy and for Ionosphere in Figures (3.5e) and (3.5f), where FCRSC out-
performed ReliefF-Sc and competed with Simba-Sc. On the other side, FCRSC proved
that it can significantly improve the classification performance of its constrained an-
tecedent ReliefF-Sc (e.g. Ionosphere, Sonar and Arrhythmia) through compromising
between maximum relevancy and minimum redundancy in order to compose a sub-
set that holds either weakly relevant but non-redundant features or strongly relevant
ones.
Thus, from Figure (3.5a) on Wine dataset, we can see that FCRSC outperformed both
constrained algorithms. Although, Figure (3.5b) showing Representation Entropy (RE)
on Wine, shows that Simba-Sc had chosen less redundant features as the first three
ones, still FCRSC outperformed it in terms of classification accuracy. In addition, the
results on WDBC dataset were interesting, by which, Figures (3.5c) and (3.5d) show
that FCRSC was better than ReliefF-Sc and Simba-Sc in both classification accuracy
and redundancy reduction. For instance, FCRSC allowed a maximum classification
accuracy of 94.60% after only 12 features out of 30 in the original space. Knowing
that similarly to FCRSC, Simba-Sc also has a mechanism to remove redundancy, it is
important to note that it keeps redundant features only when they still enlarge the
margin. This means that Simba-Sc can still choose redundant features which explains
why FCRSC generally obtains higher representation entropy among the chosen fea-
ture subsets (Figures (3.5) and (3.6)). Since the presence of redundant features can
decrease learning performance, removing them allowed FCRSC to obtain higher accu-
racy rates as stated in Figure (3.5c) on WDBC. Moreover, FCRSC on Sonar dataset, as
can be seen in Figures (3.6c) and (3.6d), outperformed Simba-Sc and ReliefF-Sc from
the first few features until it reached its maximum of 75.94% on only 19 features out
of 60 in the original space. However, later on, starting from the 27th chosen feature,
Simba-Sc and ReliefF-Sc performed slightly better, although FCRSC maintained less
redundant feature subsets throughout all of its ranked features.
Finally, as can be seen in Figures (3.6e) and (3.6f) on Arrhythmia, FCRSC clearly out-
performed Simba-Sc which was not able to detect a feature subset that can at least
provide a classification accuracy equivalent to the one obtained without feature selec-
tion. In fact, ReliefF-Sc was able to find such a subset, however, its performance was
lagging behind that of FCRSC. The latter was able to find a smaller feature subset with
better classification accuracy and less redundancy among its features.

110



CHAPTER 3. AN APPROACH BASED ON HYPOTHESIS-MARGIN AND
PAIRWISE CONSTRAINTS

2 4 6 8 10 12
Ranked Features

60

65

70

75

80

85

90

95

100

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y 

w
ith

 C
4.

5 
(%

)

Simba-Sc

ReliefF-Sc

FCRSC

(a) Wine

2 4 6 8 10 12
Ranked Features

0

0.5

1

1.5

2

2.5

3

R
ep

re
se

nt
at

io
n 

E
nt

ro
py

(b) Wine

5 10 15 20 25 30
Ranked Features

90

91

92

93

94

95

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y 

w
ith

 C
4.

5 
(%

)

(c) WDBC

5 10 15 20 25 30
Ranked Features

0

0.5

1

1.5

2

2.5

3
R

ep
re

se
nt

at
io

n 
E

nt
ro

py

(d) WDBC

5 10 15 20 25 30
Ranked Features

75

80

85

90

95

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y 

w
ith

 C
4.

5 
(%

)

(e) Ionosphere

5 10 15 20 25 30
Ranked Features

0

0.5

1

1.5

2

2.5

3

3.5

4

R
ep

re
se

nt
at

io
n 

E
nt

ro
py

(f) Ionosphere

Figure 3.5: The averaged classification accuracy rates using C4.5 classifier vs. the num-
ber of ranked features obtained by the constrained algorithms: Simba-Sc, Relief-Sc and
the proposed FCRSC over 10 independent runs on (a) Wine, (c) WDBC, and (e) Iono-
sphere datasets. The averaged Representation Entropy (RE) of each dataset is also
shown in (b), (d), and (f) respectively.
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(c) Sonar
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(d) Sonar
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(e) Arrhythmia
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Figure 3.6: The averaged classification accuracy rates using C4.5 classifier vs. the num-
ber of ranked features obtained by the constrained algorithms: Simba-Sc, Relief-Sc and
the proposed FCRSC over 10 independent runs on (a) Spambase, (c) Sonar, and (e) Ar-
rhythmia datasets. The averaged Representation Entropy (RE) of each dataset is also
shown in (b), (d), and (f) respectively.
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3.4.2.4 Performance Evaluation in terms of Classification Accuracy using Multiple
Classifiers for the Unsupervised, Supervised, and FCRSC Algorithms

For the sake of generality, in this section, we compare the classification performance
of the proposed constrained FCRSC method with that of the unsupervised and su-
pervised methods mentioned in 3.4.2.2 using three different classifiers. We use the
well-known K-NN, SVM and NB classifiers, each depending on a different decision
rule nature, to show the general positioning of FCRSC performance with respect to
some of the well-known feature selection state of the art algorithms. This also shows
whether a performance degradation or improvement is classifier-dependent or is re-
ally imposed by the chosen feature subset.

For instance, each of the Figures (3.7) through (3.12) corresponds to a dataset with
the classification accuracies obtained by three different classifiers upon the feature
subsets ranked by Variance score, Laplacian score, ReliefF, mRMR and the proposed
FCRSC.

From these figures, we can see that in general FCRSC was always able to obtain a
higher accuracy curve compared to the unsupervised Variance and Laplacian scores
except on WDBC where the five feature selection algorithms showed interfering and
fluctuating accuracy curves from the first few ranked features as can be seen in Figure
(3.8). Also, FCRSC was sometimes able to compete with supervised methods as can be
seen in Figure (3.7) on Wine, Figure (3.11) on Sonar and Figure (3.12) on Arrhythmia.

For instance, Figure (3.7) shows that using the three different classifiers on Wine
dataset, FCRSC performed better than the unsupervised Variance score on all of them
from the first few features. It also outperformed the Laplacian score, however, the lat-
ter chose a better starting feature. In addition, as mentioned before, FCRSC competed
with the supervised ReliefF and mRMR as can be seen in Figures (3.7a) and (3.7b),
where in fact, FCRSC and mRMR performed approximately the same. This can be due
to their similar behavior in compromising between maximizing relevancy or minimiz-
ing redundancy.

Also, FCRSC on Ionosphere, as can be seen in Figure (3.9), clearly outperformed
the unsupervised methods on the three classifiers in a very similar manner. Again,
Figures (3.9a) and (3.9b) show a close classification accuracy values recorded by the
supervised mRMR and the constrained FCRSC.
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Figure 3.7: Wine dataset: the averaged classification accuracy rates using (a) K-NN, (b)
SVM, and (c) NB classifiers vs. the number of ranked features obtained by Variance
score, Laplacian score, ReliefF, mRMR and the proposed FCRSC over 10 independent
runs.
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Figure 3.8: WDBC dataset: the averaged classification accuracy rates using (a) K-NN,
(b) SVM, and (c) NB classifiers vs. the number of ranked features obtained by Variance
score, Laplacian score, ReliefF, mRMR and the proposed FCRSC over 10 independent
runs.
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Figure 3.9: Ionosphere dataset: the averaged classification accuracy rates using (a)
K-NN, (b) SVM, and (c) NB classifiers vs. the number of ranked features obtained
by Variance score, Laplacian score, ReliefF, mRMR and the proposed FCRSC over 10
independent runs.
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Figure 3.10: Spambase dataset: the averaged classification accuracy rates using (a)
K-NN, (b) SVM, and (c) NB classifiers vs. the number of ranked features obtained
by Variance score, Laplacian score, ReliefF, mRMR and the proposed FCRSC over 10
independent runs.
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Figure 3.11: Sonar dataset: the averaged classification accuracy rates using (a) K-NN,
(b) SVM, and (c) NB classifiers vs. the number of ranked features obtained by Variance
score, Laplacian score, ReliefF, mRMR and the proposed FCRSC over 10 independent
runs.
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Figure 3.12: Arrhythmia dataset: the averaged classification accuracy rates using (a)
K-NN, (b) SVM, and (c) NB classifiers vs. the number of ranked features obtained
by Variance score, Laplacian score, ReliefF, mRMR and the proposed FCRSC over 10
independent runs.
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On the other side, on Spambase dataset, as can be seen in Figure (3.10), feature se-
lection was generally not significant by all algorithms (the best accuracy was obtained
on the original feature set) except for ReliefF and mRMR with NB classifier shown
in Figure (3.10c). However, the performance of FCRSC was generally stable with the
three used classifiers. It lies between the supervised and unsupervised methods except
for SVM classifier presented in Figure (3.10b) where both the unsupervised methods
together with FCRSC outperformed mRMR. In addition, the results on Sonar and Ar-
rhythmia were interesting, where as can be seen in Figure (3.11a) on Sonar dataset,
both Variance and Laplacian scores reached their highest accuracy rates (82.03%) on
the full feature space of Sonar dataset i.e 60 features, whereas FCRSC obtained an ac-
curacy of 83.04% over only 37 features. This shows that, in this case, Variance and
Laplacian scores could not obtain a smaller feature subset that can provide a similar
or better classification than the original one. It is important here to note that, the per-
formance degradation of FCRSC that appeared between approximately the 27th and
37th features on Sonar with C4.5 classifier (analyzed in the previous section and pre-
sented in Figure (3.6c)) was classifier-related since a good performance was obtained
for the same features using K-NN, SVM and NB classifiers.

On the other hand, Figure (3.12) on Arrhythmia, also shows that FCRSC outper-
forms the unsupervised algorithms and competes with the supervised ones. In fact, it
was also able to obtain either a similar or a higher classification accuracy compared to
the one obtained by the full feature space with approximately only half the number of
features. For example, an accuracy of 55.3% on 117 feature was recorded using FCRSC
with KNN (Figure (3.12a)) compared to 52.93% on 279 features without feature selec-
tion and 55.5% on 141 features using ReliefF and mRMR.

In conclusion, FCRSC aims at finding a relevant and non-redundant feature subset
that is said to either maintain the classification accuracy obtained on the full feature
space or provide an enhanced accuracy performance (through removing the irrelevant
and noisy features). It is important to note that although FCRSC chooses a final subset
of features (size(Fs) < F), it is still a ranking feature selection method, which means,
similarly to the other feature selection methods mentioned in this paper, subsets that
are also smaller than Fs can be obtained. Moreover, as FCRSC utilizes the ReliefF-
Sc algorithm for its margin maximization objective, it was clear from the results that
removing redundant features in addition to irrelevant ones allows better classification
performance. Finally, using more than one classifier with different decision-making
natures provided a fair evaluation of the used filter feature selection methods and

116



CHAPTER 3. AN APPROACH BASED ON HYPOTHESIS-MARGIN AND
PAIRWISE CONSTRAINTS

proved the general independence between them and the classifiers.

3.4.2.5 Comparison in terms of Running Time

In this section, we consider the different supervised, unsupervised and semi-supervised
feature selection methods from the execution time perspective. Thus, Table 3.9 presents
the average execution time (in ms) of each feature selection method over 10 indepen-
dent runs.

Table 3.9: Average execution time (in ms) of the different Unsupervised, Supervised,
and Semi-supervised feature selection methods over 10 independent runs.

Dataset

Feature Selection method

Unsupervised Supervised Semi-supervised

Variance Laplacian ReliefF mRMR Simba-Sc ReliefF-Sc FCRSC

Wine 0.41 9.06 71.62 13.66 569.04 1.70 9.61
WDBC 0.81 73.68 205.70 43.25 3166.88 5.97 47.31

Ionosphere 0.34 29.66 128.20 28.39 1032.83 2.50 41.80
Spambase 1.92 5408.62 15290.15 342.65 67081.99 755.62 1905.42

Sonar 0.59 16.06 108.83 35.76 694.99 2.73 89.55
Arrythmia 2.46 93.64 4727.31 446.71 1336.32 5.47 1463.52

Average 1.09 938.45 3421.97 151.73 12313.67 129.00 592.87

For instance, from this table we can see that, Variance score, as expected, had the
least execution time with the least differences between datasets since it is the simplest
method among all. However, Laplacian, ReliefF and Simba-Sc appeared to have a
great increase in execution time as the number of data points increase significantly as
was the case between Spambase (4601 data points) and Sonar (208 data points) with
approximately equal number of features. Although ReliefF-Sc and FCRSC also had a
significant increase in the latter case, this increase was less steep.

Noting that Simba-Sc, ReliefF-Sc and FCRSC are all dependent on constraints and
are provided with the same number on each dataset, we declare that Simba-Sc con-
sumes much more time due to it being repeated from 5 different starting points (gradi-
ent ascent method) to optimize its objective function. On the other side, as the number
of features increase significantly between 13 for Wine and 60 for Sonar (having close
number of data points and same number of provided constraints i.e 20) the execution
time by all the algorithms increased reasonably, however, ReliefF-Sc increased very
little compared to FCRSC, and this is due to the time needed by FCRSC to apply the
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steps of feature clustering and cluster-representative choosing.

Hence, the overall average execution time for each method on all datasets, as can be
seen in the last row of Table 3.9, shows that FCRSC was generally faster than Laplacian,
ReliefF, and Simba-Sc. Thus, in terms of computational complexity, we can say that
FCRSC is mainly related to the following:

• the number of cannot-link constraints card(CL)

• the number of data points N

• the dimension of feature space F

In big O notation, the constrained ReliefF-Sc can be calculated in O(card(CL)× NF).
Also, the ranking step that is used within all ranking feature selection methods needs
O(F × log(F)). The proposed FCRSC is divided into multiple steps some of which
can be done in parallel (clustering the features and calculating their margin weights).
For instance, the construction of the sparse graph costs O(F2) [47], the single linkage
hierarchical clustering of features also needs O(F2). Hence, the overall computational
complexity by FCRSC can be calculated as O(Max(card(CL)× NF, F2, F× log(F))).

3.5 Conclusion

To deal with data high dimensionality in a semi-supervised context, we discussed
margin-based feature selection algorithms with side pairwise constraints. Consider-
ing only cannot-link constraints due to their conceptual importance from the margin’s
perspective and their ease of acquirement, we suggested Relief-Sc algorithm. It uti-
lizes the cannot-link constraints to assign weights to different features according to
their contribution in maximizing the hypothesis-margin. Relief-Sc is capable of find-
ing a unique relevant feature subset in a closed-form. Experimental results on multi-
ple UCI machine learning and two high dimensional gene-expression datasets proved
that Relief-Sc can obtain comparable performances with supervised Fisher Score using
full class labels on the entire training set, and has better performance than the other
constrained Score Simba-Sc. Note that in [107], they concluded that Simba-Sc had bet-
ter performance than Constraint Score-1 and Constraint Score-2, this means Relief-Sc
also has better performance than these two scores. Moreover, Relief-Sc can work only
on few constraints from the training set, which ensures computational advantage over
other algorithms when dealing with high dimensional data. A robust version of Relief-
Sc, called ReliefF-Sc, was also suggested.
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In addition, a novel combination of feature clustering upon a sparse graph with
a margin-based objective function called FCRSC was proposed. This approach is
said to handle the two core aspects of feature selection (relevancy and redundancy)
in three main building blocks where it first constructs the similarity matrix between
features through sparse representation. Secondly, on top of the latter, feature clus-
tering is applied simultaneously with the application of the margin-based algorithm
ReliefF-Sc. Finally, FCRSC obtains its final feature subset by choosing the feature
that most enlarges the margin from each cluster of features, hence, maximizing rel-
evancy while minimizing redundancy. The efficiency of this approach was compared
to supervised, unsupervised and semi-supervised filter feature selection methods us-
ing four different classification schemes on six UCI well-known benchmark machine
learning datasets. The results showed the satisfactory performance of FCRSC that out-
performed the unsupervised and semi-supervised methods on most datasets and also
competed with the supervised ones.
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Active Learning of Pairwise Constraints
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4.1 Introduction

As explained in the previous chapter, our proposed algorithms Relief-Sc, ReliefF-Sc
and FCRSC are all constrained semi-supervised algorithms that particularly utilize
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cannot-link constraints. As a reminder, pairwise constraints are a cheaper kind of
supervision information that does not need to reveal the class labels of data points.
Initially, constraints were suggested to augment the performance of traditional clus-
tering algorithms by increasing the semantic meaningfulness of the resulting clusters
[136]. Accordingly, many algorithms used them to enhance clustering tasks [137–141],
but only few considered using them for feature selection (e.g. [107, 142]).

However, in most current methods, pairwise constraints are said to be provided
passively and generated randomly over multiple algorithmic runs by which the results
are averaged. This leads to the need for a large number of constraints that might be re-
dundant, unnecessary, and under some circumstances even inimical to the algorithm’s
performance. It also masks the individual effect of each constraint set and introduces
a human labor-cost burden. Although it was assumed by the machine learning com-
munity that adding constraints as supervision information will guide and improve
clustering performance, Davidson et al. [57] stated that the latter can still be degraded
even when constraints are random but directly generated from data labels. It is then
expected that the used constraints can affect the performance of constrained feature
selection methods just like they affect constrained clustering.

Therefore, in this chapter, we suggest a framework for actively selecting and then
propagating these constraints for feature selection. This framework has three main
components. (1) The feature selection algorithm that utilizes constraints (detailed in
sections 3.2.2 and 3.2.3, (2) our core contribution i.e. the process of selecting these con-
straints, and (3) the augmentation of supervision information through propagating
them. In this chapter, we introduce the second two components:

• First, we target the process of systematically and actively selecting the constraints
based on the idea of matrix perturbation [143]. Accordingly, we benefit from the
spectral characteristics of the graph Laplacian which by turn is defined on the
similarity matrix. The impact of each data couple (pairwise constraint) on this
matrix can be reflected by the change it can cause to the graph Laplacian, espe-
cially to its eigensystem. When a small perturbation in the similarity value of a
couple is able to perturb the graph Laplacian leading to a more well-separated
form of the second eigenvector, this couple is definitely considered more impor-
tant and significant as a constraint. Therefore, we propose an Active Constraint
Selection (ACS) method based on a second-eigenvector sensitivity criterion. It
aims at seeking those data couples with the highest ability to change the posi-
tion of the most uncertain points (i.e. near zero) on the second eigenvector to
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one of the two certain groups, thus, dividing the data into two well-separated
groups. The latter couples will be the only ones queried for constraints, hence,
reducing the cost of queries. In fact, these constraints that can decrease uncer-
tainty and enhance class-separation, allow the selection of relevant features with
the highest class-discriminative ability.

• Second, as we aim to query an oracle for the constraints, we are able to ask only
a specific number of questions before this process gets inefficient and not user-
friendly. Furthermore, for the family of margin-based algorithms, a sufficient set
of points is needed to calculate the margin [2]. Thus, we adapt an exhaustive
propagation method that allows spreading the constraints to the neighborhood
of our initially instance-level selected ones. As this propagation produces soft
constraints between data points, we also suggest thresholding for pruning the
results and avoiding noisy constraints.

These two components together with ReliefF-Sc (section 3.2.3) form our pro-
posed framework of active constraint selection and propagation for feature se-
lection.

In order to validate our framework, we apply a series of experiments. First, we com-
pare the classification accuracies of our proposed ReliefF-Sc with random constraints
generation (RCG) to itself but with active constraint selection (ACS). Then, the latter is
compared to Relief-Sc with the propagation of active constraint selection (PACS). Sec-
ond, we compare the accuracies obtained by different well known supervised, unsu-
pervised, and constrained feature selection algorithms when utilizing RCG and ACS.
These experiments are applied on multiple well-known UCI machine learning datasets
and two high-dimensional gene expression ones.

This chapter is structured as follows: in section 4.2, we explain some related work
to constraints selection and propagation. In section 4.3, we explain our active con-
straint selection method while providing the needed background. In section 4.4, we
detail our adaption of the constraint propagation method. Section 4.5 discusses the
computational complexity of our method. The experimental results on the perfor-
mance of feature selection after constraint selection and propagation are discussed in
section 4.6. Finally, we conclude in section 4.7.
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4.2 Related Work

Since it is much easier to obtain pairwise relations between data points than to obtain
their class labels, many pieces of research considered solving real-life problems using
them instead. As a result, it was important to navigate through available methods to
understand how a more beneficial constraint set can be chosen.

4.2.1 Constraints Selection

Davidson et al. [57] suggested two measures namely "informativeness" and "coher-
ence" of constraints in order to measure their utility, they also stated that the degraded
performance after using a constraint set is not due to noisy or erroneous constraints
but instead due to the interaction between this set and specifically the characteristics
of the used algorithm. Although the two latter suggested notions were tailored to a
clustering framework, they could be applied as two standalone measures indepen-
dently of the learning model. Therefore, Benabdeslem and Hindawi [54] adopted the
notion of "coherence" to measure the utility of constraints for their feature selection
constrained Laplacian Score. Note that "informativeness" and "coherence" ensured
"Direct constraint satisfaction" by which a must-link constraint is treated in a way that
its two endpoints are close to each other and a cannot-link constraint is treated in a
way that its two endpoints are ensured to be well-separated.

Furthermore, instance-level constraints can be generated from background knowl-
edge given by an expert i.e querying an oracle, or by acquiring them from a set of
labeled data [138, 144]. The second way of generating constraints was more actually
used except when actively choosing constraints is the goal [139]. In fact, whatever way
we choose to acquire constraints, measuring their utility is a good practice. Abin and
Beigy [140] measured constraints utility actively using two assumptions. The first one
states that a constraint is considered more informative if it is a cannot-link constraint
joining two close data points, whereas the second assumption states that a constraint is
considered more informative if it is a must-link constraint joining two far data points.
The latter two assumptions give important spatial information about the data. More-
over, they used a Support vector data description (SVDD) to find the support vectors
in the dataset and then generate constraints only from the points that are on the bound-
ary, thus shaping the data. To make the best of the chosen constraints, they avoided
information redundancy by choosing distant constraints. This means that when two
constraints of the same type are available in the same vicinity, only one of them is con-
sidered.
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Similarly, [145] suggested active spectral clustering method "Access" that examines
the eigenvectors of the graph Laplacian. It uses the theoretical properties of spectral
decomposition to identify data items that are located on the boundaries of clusters
(boundary points and sparse points). It aimed to reduce the human interaction bur-
den by actively obtaining constraints on these particular boundary points. However, it
was closely related to the assumption of having data with very close clusters or over-
lapping boundaries and that the only reason for degraded performance is boundary
points.

Another significant approach proposed by Wauthier et al. was to actively guide a
spectral clustering algorithm to incrementally measure similarities that are most likely
to reduce uncertainty [141]. Particularly, they study the trade-off between desired clus-
tering quality and the amount of available information about the data. This trade-off
is studied in the framework of spectral clustering by which not all pairwise similar-
ity measurements are available initially. For that, they maintain estimations of true
similarities as baselines. Then, they iteratively query an external black-box (e.g. a hu-
man expert) on points that show the highest uncertainty in the clustering task. It was
stated that most realistic pairwise similarity matrices do exhibit some clustering struc-
ture even when incomplete. However, the selection of the most uncertain data pair, in
this case, can be seen as a constraints selection problem by showing that the utility of
having information of this particular couple is high.

4.2.2 Constraints Propagation

Generally, as the number of constraints is quadratically related to that of data points,
it is only feasible to query for a small proportion of all possible constraints before the
process turns to be resource-expensive, even when we utilize an inexpensive oracle
[146]. Thus, in real-life scenarios, we might not be able to ask for a large number of
queries and might have to work with the minimum but sufficient amount of data from
the "constraint selection" step.

In [147], kamvar et al. just trivially modified the values of the similarity matrix
to 1 and 0 where a must-link or a cannot-link constraint is present respectively. This
method barely affects spectral clustering results because only similarities between con-
strained pairs are changed. In order to allow pairwise constraints to exert a stronger
effect on spectral clustering, Lu and Ip [148] presented an exhaustive and efficient
method for constraint propagation. They applied propagation by decomposing the
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process into sub-propagation-problems and then solving each of the subproblems in-
dependently based on local K-NN graphs. It was noted that this method was the
first to tackle constraint propagation to the entire dataset with computational effi-
ciency. Moreover, as propagation is a pre-step done independently from the clustering
method, it can be used with different constrained clustering methods only by adjust-
ing the affinity matrix accordingly. This method is not limited to two-class problems,
allows soft constraints, and results in a closed-form solution.

From a different point of view, Klein et al. [144] tackled space-level information
given by constraints instead of only satisfying individual instance-level constraints,
which means, a cannot-link constraint not only tells that its endpoints should be in
different clusters, but also their nearby points should be similarly separated. They
also propagated must-link constraints by modifying the actual distance or similarity
graph and then applying unsupervised clustering on the modified graph. This implic-
itly holds the neighborhood-based constraints information. However, they stated that
it was harder to maintain cannot-link constraints and used a proximity-based cluster-
ing algorithm to propagate their information.

On the other hand, Lu and Carreira-Perpinan [137] also researched constraint prop-
agation and suggested a method for affinity propagation that utilizes the limited avail-
able pairwise constraints to change their corresponding values within the affinity ma-
trix according to their positions through a Gaussian process. This method deals with
multi-class problems through applying an heuristic search over the different cannot-
link constraints. Another idea was to extend an exemplar-based clustering algorithm
[149] to work in a semi-supervised context with propagating instance-level constraints
[150]. This method modified the factor-graph to include meta-points (MTPs) that can
take the role of exemplars. For instance, by enforcing constraints on these MTPs and
then changing the similarities between points accordingly, affinity propagation is ob-
tained. Furthermore, a semi-definite programming problem (SDP) that is also not lim-
ited to two-class problems was used by [151] to apply such constraint propagation but
incurring a high computational cost.

When working in a semi-supervised context consistency is an important assump-
tion. It means that points in the same neighborhood or on the same manifold are
considered belonging to the same cluster. The latter, also known as cluster assump-
tion, takes two different levels. When a neighborhood-based algorithm is used, the
level is said to be local, whereas when the algorithm is structure-based, the level is
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said to be global. For instance, Zoidi et al. [152] modified the method suggested in
[153] to handle propagating pairwise constraints within a "Multiple Locality Preserv-
ing Projections with Cluster-based Label Propagation" (MLPP-CLP) framework, a new
method for propagating person identity labels on facial images, this method used two
types of knowledge: a projection matrix that holds the locality information from mul-
tiple image representations and a priori pairwise must-links and cannot-links. During
the projection phase, both the propagated constraints and the Locality Preserving Pro-
jections (LPP) are used to find a projection matrix that respects pairwise constraints,
maps data to a space of reduced dimensionality and retains the locality information of
data. For instance, data that are must-linked should be mapped close to each other and
data that are cannot-linked must be mapped far away from each other. To propagate
constraints, they modified the smooth iterative graph-based label propagation func-
tion that utilizes an initial set of given labeled points to predict the labels of unlabeled
ones. The input of the function was changed to be the initial constraint matrix instead
of the initial label matrix, thus, the output is a neighborhood of propagated constraints
instead of a matrix of predicted labels. It finally converges to a closed-form solution of
fully propagated constraints. Nevertheless, this method finds application when there
are multiple representations of data such as the case of multi-view camera systems.

From a different perspective, Wang et al. [154] answered the question of how to learn
constraints through self-learning, thus transforming the work from expert teaching to
self-teaching. The latter transition tackles the problem of incrementally polling an ora-
cle for new constraints and minimizes the number of queries needed from the human
experts. Briefly, they suggested extending the objective function of spectral clustering
such that new constraints can be self-taught according to the graph affinity matrix and
the few available prior knowledge (constraints). This work is considered as "transfer-
ring knowledge" since unconstrained data is gaining information through augmented
constraints. But unlike other transfer learning settings, this framework has one do-
main only (affinity graph) and one task (clustering). It was claimed that this frame-
work was the first to combine graph min-cut with matrix completion into an iterative
self-teaching process. As they explained, spectral clustering had many advantages
over other clustering schemes like its simple objective function, its easy implemented
closed-form solution, and its ability of modeling arbitrarily shaped clusters. Yet, it
greatly depends on the completeness and correctness of the data graph.
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4.3 Active learning of Constraints

Since feature selection by ReliefF-Sc closely depends on the used constraint set, we
extend to study thoroughly the systematic and active selection of the constraints that
will be used by this algorithm. Accordingly, we focus on cannot-link constraints as
they are considered more important than must-link constraints from the margin’s per-
spective.

As we mentioned before, pairwise constraints were mostly used in constrained clus-
tering problems to actively improve and guide clustering [139, 144, 145, 155]. Only
few used them similarly in feature selection [107, 142]. As mentioned before, utiliz-
ing pairwise constraints does not necessarily improve clustering performance in the
sense of increased agreement between the estimated clusters and the actual ones [57].
Even when some constraint sets are generated from data labels directly, they can still
decrease clustering performance. Moreover, Davidson et al. [57] proved that the per-
formance degradation or stability is not always due to false constraints, but sometimes
due to ill interactions between a chosen constraint set and the objective function of the
clustering algorithm used. Later, many pieces of research aimed at understanding
how a more beneficial constraint set can be chosen [58, 140, 141].

Therefore, in the following sections, we first give a brief background on how we use
graph Laplacian in 4.3.1 and then we detail the process of selecting constraints based
on the graph Laplacian eigen-decomposition for feature selection instead of clustering
in 4.3.2.

4.3.1 Using Graph Laplacian

This section closely depends on the definitions in section 1.3.2. For instance, for the
dataset X with N points, we have an NxN symmetric similarity matrix S that holds
pairwise similarities between all data points as defined in Equation (1.4). Simply, each
pairwise similarity, denoted snm, is within the range 0 ≤ snm ≤ 1: n,m = 1, ..., N and
since self-edges do not alter the graph Laplacian matrix, we set snn = 0. This similar-
ity matrix is computed in some problem-specific manner using the self-tuning (auto-
adaptive) method by [41] that utilizes a user-specified parameter representing a num-
ber of the nearest-points to each data point to be considered for calculating the disper-
sion parameter automatically for evaluating the Gaussian Kernel (Equation (1.5)).

Let D be the degree diagonal matrix defined in Equations (1.8) and (1.9). In our work,
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we use the unnormalized Laplacian matrix L defined in Equation (1.10).

As our goal is to find a minimal cut for the Laplacian graph such that the similari-
ties between different clusters are minimized, it is important to remind that the sepa-
ration information actually starts being available from the second eigenvector and on,
this is since λ1 = 0 and its associated vector v1 = (1/

√
N)1 always hold, where 1 is a

vector of size N such that 1 = (1,1, ...,1)T.

Accordingly, the second eigenvector can be obtained as follows:

v2 = argmin
v

vT Lv = argmin
v

1
2

N

∑
n,m=1

snm(vn − vm)
2 (4.1)

s.t vTv = 1, vT1 = 0

For instance, by considering the embedding of data on the second eigenvector v2, we
are dividing this data into two distant groups away from zero, one on the negative side
and the other on the positive side. Therefore, v2 plays the role of an approximation of
the two-cluster indicator vector.

4.3.2 Active Constraint Selection

We consider the Laplacian spectral properties for the selection of our cannot-link con-
straints. Spectral bi-partitioning, that is represented by splitting the data according to
thresholding the second eigenvector v2 values, is beneficial in our case. For instance,
when data is well clustered, splitting on v2 is enough to divide the dataset X into two
distinct clusters. Even in the case of multi-class data the second eigenvector will still
divide X into only two groups, however, this ensures that the data in group 1 should
be cannot-linked to the data in group 2 even if these latter groups can be further di-
vided themselves. Thus, regardless of the true number of classes, thresholding on v2 to
split the data is sufficient for the selection of cannot-link constraints. In addition, our
Active Constraint Selection (ACS) algorithm is an active iterative algorithm, which
means, each time a constraint is obtained, the similarity matrix is updated accord-
ingly, leading to a change in the Laplacian matrix. This leads to changing the second
eigenvector of the graph Laplacian, which ensures that data configuration is being up-
dated and by turn the representation of multi-class data implicitly holds. Since we are
precisely interested in margin-based feature selection, and specifically in cannot-link
constraints, we treat them as identifiers that not only tell that their two end points are
well separated, but also tell that their nearby surrounding points are well separated
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too. In our case, this local consistency hypothesis is respected and assumed to be
true. Accordingly, we follow the logic of spectral analysis and benefit from the spec-
tral properties of the graph Laplacian of data.

As we mentioned in section 4.3.1, upon embedding the data on v2, they are pro-
jected as two distant groups away from zero, one on the negative side and the other
on the positive side, hence, v2 plays the role of an approximation of the relaxed cluster
indicator vector. For instance, Equation (4.1) shows that any point with approximately
equal similarities snm : n,m = 1, ..., N to all other points, will be embedded close to the
average of all the points locations on v2, which means, it will be embedded near zero
and considered an uncertain point. Nevertheless, using v2, we are not working on the
real feature space, but on an equivalent projected one. Therefore, we iteratively utilize
the perturbation analysis theory to actively find the couple in input space that has the
greatest first order derivative with respect to this minimum point on v2 [156, 157].

Theoretically speaking, our method initially starts with a complete matrix of sim-
ilarities and then mainly captures the point of minimum magnitude on the estimated
|v2| denoted v2(i∗) where i∗ = argmini∈{1...N}|v2(i)|. This point is considered the one
with highest uncertainty. The method then measures the sensitivity of v2(i∗) to the
change in snm, once it finds the similarity couple (xn, xm) that is most able to change
the embedding location of v2(i∗) on v2, only this couple is queried for a constraint
and its corresponding similarity snm is amended accordingly. For instance, an external
source of knowledge (e.g. an expert or a human oracle) is asked to observe the couple
(x∗n, x∗m) and provide an answer about whether it should be a cannot-link or a must-link
constraint. If it appears that the queried couple should be a cannot-link (or must-link)
constraint then snm is changed to 0 (or 1). Finally, v2 is calculated again and the process
iterates until finding the required number of constraints.

Similarly to [143] and [141], we search for the couple of highest impact on v2 using:

(xn∗ , xm∗) = argmax
(n,m)

∣∣∣∣dv2(i∗)

dsnm

∣∣∣∣ (4.2)

where Equation (4.2) is evaluated according to the First-Order Eigenvector Perturba-
tion theorem [156] as follows:∣∣∣∣dv2(i∗)

dsnm

∣∣∣∣ = ∣∣∣∣ N

∑
p>2

vT
2 [∂L/∂snm]vp

λ2 − λp
vp(i∗)

∣∣∣∣ (4.3)
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For the sake of easy but original representation of data, we adopt the incidence vec-
tor/matrix representation [136, 158].

Definition 4.1. The incidence vector ei is the position indicator of index i where
1 ≤ i ≤ N. Thus, the i-th element of ei is equal to 1 while the rest of the entries are 0.
The length of this vector is equal to N.

Definition 4.2. We denote by R the incidence matrix holding the difference be-
tween the incidence vectors (en − em) as its columns where 1≤ n < m ≤ N [158]. The
incidence matrix R is an equivalent but simpler representation of our similarity ma-
trix where each of its columns shows the similarity between two points n and m when
multiplied by

√
snm. Thus, a similarity snm can be represented by the difference of the

two incidence vectors
(
(en − em)

√
snm
)

[158]. We present below the support of this
proposition, and declare that it enables the straight forward calculation of [∂L/∂snm].

For a Laplacian matrix L = D − S there exists an incidence matrix R by which
L = RRT :

RRT = ∑
1≤n<m≤N

(
(en − em)

√
snm
)(
(en − em)T√snm

)
= ∑

1≤n<m≤N
snm(en − em)(en − em)T

= L

(4.4)

Note that,

(en − em)(en − em)
T =



...
...

. . . 1 . . . -1 . . .
...

...
. . . -1 . . . 1 . . .

...
...


(4.5)

where
[∂L/∂snm] = (en − em)(en − em)

T (4.6)

This representation allows measuring the change in L with respect to the simi-
larity change between a couple (xn, xm) in X. So, after substituting [∂L/∂snm] by
(en − em)(en − em)T (applying Equation (4.6) in Equation (4.3)), we obtain the couple
of highest impact on v2 as follows:
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(xn∗ , xm∗) = argmax
(n,m)

∣∣∣∣∑N
p>2

vT
2 [(en − em)(en − em)T]vp

λ2 − λp
vp(i∗)

∣∣∣∣ (4.7)

Note that, since an uncertain couple is either uncertain due to having uncertainty on
both of its points or due to having at least one of them considered uncertain, it is pos-
sible and common to have the point of minimum value on v2 as one of the points of
the most sensitive couple (xn∗ , xm∗). The latter can be considered with the aim of de-
creasing the search space to be N instead of N2.

Finally, once we have found the couples to be queried for constraints, we apply
our feature selection method presented in Algorithm 3.2 on these constraints. It is
important to note that when solving the hardest form of a specific problem, you im-
plicitly solve the easier versions of it. Which means, selecting the most discriminative
features using the most confusing constraints implicitly holds feature selection on any
other true but random constraint. Algorithm 4.1 shows the detailed steps of our con-
straint selection method.

Example:

To illustrate this method and highlight the significance of constraint selection, we
present a toy example in Figure (4.1).

As can be seen in Figure (4.1a), the dataset is composed of 6 data points charac-
terized by 3 features each. The scatter plot of these data points is presented in Figure
(4.1b) where points 1, 2 and 3 are assigned to the first cluster and points 3, 4 and 5 are
assigned to the second one. We also show the projection of these data points on the
first feature A1, second feature A2 and third feature A3 in Figures (4.1c), (4.1d) and
(4.1e) respectively. It is thus clear that the third feature A3 is the only one that can per-
fectly assign the data points to their true clusters successfully. So, it is expected from
an efficient feature selection method to identify feature A3 as the most relevant one.

When we first considered an unsupervised feature selection method, i.e the Lapla-
cian score, it failed to identify the most relevant feature A3, instead, it chose A1 which
is known to be irrelevant as presented in Figure (4.1h). With the aim of improving fea-
ture selection, we used our constrained margin-based semi-supervised method pre-
sented in Algorithm 3.2 and called ReliefF-Sc.

132



CHAPTER 4. ACTIVE LEARNING OF PAIRWISE CONSTRAINTS

We first applied ReliefF-Sc on two randomly generated cannot-link constraints as
presented in Figure (4.1f), but surprisingly, the ranking of features did not change and
A3 was still not identified as the most relevant feature correctly. Therefore, we consid-
ered actively choosing the couples to be queried using Algorithm 4.1 before applying
ReliefF-Sc again.

Figure (4.1i) shows the change in v2 during the process of selecting these constraints.
It is divided into two steps. Step 1 shows that point 5 was the closest to zero on v2,
hence it was considered the point with the highest uncertainty, i.e. i∗ = 5. As men-
tioned before, a point is uncertain when it is not clear to which cluster it should be
assigned. Accordingly, after evaluating the sensitivity of i∗ = 5 with respect to the
data couples, the couple (5, 2) was chosen to be queried for a constraint. The latter
was obtained from class labels in this example leading to a cannot-link constraint. The
similarity matrix is updated accordingly (s(5,2)=0) and the Laplacian matrix is recalcu-
lated obtaining a different v2. Later, the updated v2 appears in the second graph of
(4.1i) where the closest point to zero appeared to be point 3. Thus, as can be seen in
Step 2 the second constraint (3, 6) was chosen similarly to Step 1. Finally, the selected
constraints can be seen in Figure (4.1g) and the last update of v2 after finding the two
constraints can be seen in the third graph of (4.1i) by which it appears that the two
clusters were well separable.
The ranking of the constrained feature selection method ReliefF-Sc and the super-
vised method ReliefF were identical as presented in Figure (4.1h). A3 was success-
fully ranked as the most relevant feature, A1 the second, and the least relevant feature
A2 was ranked the last as expected. Being able to reach the same ranking by ReliefF
(supervised) using ReliefF-Sc (constrained) with active constraint selection (ACS) and
not with random constraint generation (RCG), shows the significance of choosing con-
straints systematically.

One of the known drawbacks of the Relief family margin-based algorithms is that
due to their initial supervised context, they need a set of points that is sufficiently
big to calculate the margin [2]. However, even inexpensive oracles can turn to be
resource-expensive and impose high costs when queried for a large number of con-
straints. Therefore, in our scenario, we should deal with a relatively small number
of constraints due to the nature of the this "Active Constraint Selection (ACS)" step.
Hence, in the next section, we present a method that allows the automatic propaga-
tion of these selected constraints to their unconstrained neighborhood.
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Algorithm 4.1. Active Constraint Selection (ACS)

Input: Needed number of constraints card(CL), CL = {φ} and similarity matrix S
Output: Constraint set CL

1. Initialize iter = 1

2. While iter <= card(CL),

(a) L = D− S

(b) Find eigenvectors v and eigenvalues λ of L

(c) i∗ = argmini∈{1...N}|v2(i)|

(d) (n∗,m∗) = argmaxn,m∈{1...N}

∣∣∣∣∣dv2(i∗)

dsnm

∣∣∣∣∣
(e) Query for constraints on the couple

• if (xn∗ , xm∗) should be a must-link constraint
set sn∗m∗ = sm∗n∗ = 1

• if (xn∗ , xm∗) should be a cannot-link constraint
set sn∗m∗ = sm∗n∗ = 0
update CL with the couple (xn∗ , xm∗)

iter = iter +1

End While

4.4 Propagation of Actively Selected Constraints

With the aim of increasing the number of available constraints for ReliefF-Sc algo-
rithm, propagating instance-level constraints to space-level ones can be a solution
[137, 144, 150, 151, 154]. The latter pieces of research tackled the problem of failing to
maintain the space-level implications suggested by constraints in the clustering con-
text; in other words, they found a mechanism for propagating the constraints to their
neighborhood. However, to the best of our knowledge, no previous work has com-
bined selecting constraints based on the graph Laplacian eigen-decomposition with
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(a) Dataset (b) 3D-scatter of data points

(c) Data projected on feature
A1

(d) Data projected on feature
A2

(e) Data projected on feature
A3

(f) Random Constraint Gener-
ation (RCG)

(g) Active Constraint Selection
(ACS) by Algorithm 4.1

(h) Feature ranks by different Methods

Step 1: 

  i*=5 
 Obtained: (xn*, xm*)=(5,2) 
 Query oracle for constraint 
 Reply : cannot-link 

 
⟹ Update S(5,2) = 0 

⟹ Updated  𝒗𝟐 
 
 
Step 2: 

i*=3 
Obtained: (xn*, xm*)=(3,6) 
Query oracle for constraint 
Reply : cannot-link 

 
⟹ Update S(3,6) = 0 

⟹ Updated  𝒗𝟐 
 

 
 
 

 

 

(i) Changes in v2 during the process of Active Con-
straint Selection where the x-axis holds the indexes of
data points and the y-axis represents the values of these
data points on v2

Figure 4.1: Three-dimensional Example Dataset: (a) Dataset, (b) 3D-scatter of data
points; (c),(d),(e) Data projected on features A1, A2, A3 respectively; (i) shows changes
in v2 during ACS; (g) shows the ACS by Algorithm 4.1; (f) shows RCG and (h) shows
the results of features ranked by different methods.
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space-level constraints propagation for the sake of better feature selection.

To explain how propagation can affect feature selection, we show that while the
features selected in a constrained environment are consistent with the instance-level
constraints themselves, they might not be consistent with the natural global implica-
tions of these constraints. For example, in Figure (4.2) the true data partitioning is
given in (4.2c) and Feature 2 should be selected, however, the two instance-level con-
straints shown in (4.2b) might not be enough to select this feature based on Relief algo-
rithm, on the contrary, Feature 1 is selected. When a stronger space-level propagation
occurs, it can change the results to clearly select Feature 2 as the data discriminating
feature. Note that, the set of points in (4.2b) satisfies the cannot-link constraints, but
Figure (4.2c), after propagation, shows a more intuitive partitioning for correct feature
selection. Therefore, not only should points that are cannot-linked be in different clus-
ters, but also their neighboring ones.

We thus explain the method we adapted to our scenario for propagating constraints
to the neighboring points surrounding our previously obtained ones using Algorithm
4.1. It is intuitive to assume that if two points are cannot-linked, their nearest neigh-
bors should also be cannot-linked due to neighboring point similarity rule. One main
obstacle known about propagating cannot-link constraints is that they are not transi-
tive. On the contrary to working with a must-link propagation, if xm, xn are cannot-

(a) Data (b) Instance-level
cannot-link constraints

(c) Propagated
information

Figure 4.2: The effects of propagating cannot-link constraints to the data in (a): know-
ing that the true partitioning is shown in (c) and that Feature 2 should be selected, two
instance-level constraints only may be not enough to select Feature 2 based on Relief
family distance-based feature selection (b); Whereas, a stronger space-level propaga-
tion changes results to clearly select Feature 2 as the data discriminative feature (c).
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linked and xn, xj are cannot-linked we can’t derive the conclusion that xm, xj are also
cannot-linked. Therefore, we decide to generalize the cannot-link constraints that we
initially have to include neighboring points. This is done through an iterative proce-
dure that is not limited to two-class problems, allows soft constraints, and converges
to a closed form solution with computational efficiency.
To increase the number of pairwise constraints with the aim of exerting a stronger ef-
fect on the constrained learning process, in [148], they presented an exhaustive and
efficient method for constraints propagation. Since this propagation method is usu-
ally applied as a pre-step independently from clustering, it is possible to use it before
any other constrained learning method to be enhanced; just like filter-type methods in
feature selection.

Definition 4.3. We denote by Q = {Qnm}N×N the initial indicator sparse matrix of
cannot-link constraints obtained by Algorithm 4.1 as:

Qnm =

{
1, if (xn, xm) ∈ CL
0, otherwise

(4.8)

Note that, in this paper, we are interested in propagating our actively chosen cannot-
link pairwise constraints in order to provide more information to Relief-Sc for apply-
ing margin-based feature selection, this is why the indicator matrix Qnm holds only
cannot-link constraints.

Although the method by [152] is capable of applying vertical constraint propa-
gation, i.e along the columns of the initial constraint matrix Q, sometimes a column
might not contain any pairwise constraint, this means that all the cells of this column
might have the value of zero and therefore no vertical constraint propagation can be
obtained for this particular column. Thus, [148] not only modified the label propaga-
tion method to a constraint propagation one, but also solved empty constraint column
problem by two exhaustive and efficient vertical and horizontal propagation steps.
The latter step is usually applied after finishing vertical propagation in an iterative
approach, and leads to a full matrix that contains a constraint between every two data
points in X.

Similarly to [148] and [153], we use the normalized similarity graph to propagate
the constraints in a data-specific manner. For that, we denote by {Pnm}N×N the neigh-
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borhood matrix calculated as follows:

P = D−
1
2 SD−

1
2 (4.9)

where P is a symmetric matrix having real valued entries between data points. Note
that, unlike [148] we use a fully connected symmetric similarity graph instead of the
K-NN graph to build S.

Definition 4.4. Let G = {Gnm}N×N : |Gnm| ≤ 1 be the matrix that holds the propa-
gated constraints at each iteration of the algorithm while retaining initial information
from Q.
The t-th iteration for a vertical propagation is given by:

Gv(t + 1) = aPGv(t) + (1− a)Q (4.10)

And it converges to [148]:

G∗v = (1− a)(I − aP)−1Q (4.11)

The t-th iteration for a horizontal propagation is given by:

Gh(t + 1) = aGh(t)P + (1− a)G∗v (4.12)

Similarly, it converges to [148]:

G∗h = (1− a)G∗v(I − aPT)−1 (4.13)

where a is a regularization parameter between [0,1], it regulates the amount of infor-
mation a data point receives from its neighbors graph P and its initial state Q. It was
initially set to 0.99 by [153] The convergence analyses of vertical and horizontal prop-
agations are stated by [153] and [148] respectively.
Finally, from Equations (4.11) and (4.13) the over all closed-form solution can be cal-
culated in a quadratic time O(kN2) as:

G∗ = G∗h
= (1− a)2(I − aP)−1Q(I − aP)−1 (4.14)

At the end of this propagation method a full matrix of soft pairwise constraints is ob-
tained. Lu and Ip dealt with these values as confidence scores that are thresholded
upon zero leading to the adjustment of their similarity matrix accordingly. However,
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since our aim is not constrained spectral clustering but constrained feature selection,
we need to find an appropriate threshold τ to filter the propagated constraints. Ac-
cordingly, any couple corresponding to a cell in G∗ that has a value less than τ will be
disregarded and any couple corresponding to a cell in G∗ that has a value greater than
or equal to τ will be considered a cannot-link constraint in the new set of propagated
constraints CL∗. Thus, we calculate the threshold τ as the mean of the maximum val-
ues obtained from each row of G∗.
Then,

CL∗ =
{

(xn, xm) if G∗nm ≥ τ } (4.15)

We show our overall method step by step to reach constraint propagation in Al-
gorithm 4.2. Note that the below standalone constraint propagation algorithm can be
applied prior to feature selection independently from any feature selection algorithm.

Algorithm 4.2. Standalone Constraint Propagation

Input: Actively Chosen Constraint set CL by Algorithm 4.2
Output: Updated Constraint set CL∗ by Propagated constraints

1. Initialize the constraint matrix Q from CL using (4.8)

2. Calculate the normalized similarity graph P using (4.9)

3. Apply the Vertical constraint propagation using (4.11)

4. Apply the Horizontal constraint propagation using (4.13)

5. Calculate the threshold τ = Mean (Maximum o f each row in G∗)

6. Obtain CL∗ using (4.15)

Finally, Figure (4.3) shows the results of propagating the initial constraints ob-
served in Figure (4.1) using Algorithm 4.2. As expected, ReliefF-Sc with PACS just
maintained the correct rank of features since ReliefF-Sc with only ACS was also able
to correctly rank them. However, Figure (4.3c) shows that the false rank by ReliefF-Sc
with RCG was fortunately corrected upon applying propagation (PRCG). This is due
to augmenting supervision information although point 5 was left without a constraint
as can be seen in Figure (4.3a).
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4.4. Propagation of Actively Selected Constraints

(a) Random constraints after propagation (PRCG)

(b) Actively selected constraints after propagation
(PACS)

(c) Results of ReliefF-Sc after propagation with and
without Active Constraint Selection.

Figure 4.3: The resulting propagation of our previous actively selected constraints: (a)
Propagation of initial random constraints (6, 2) and (6, 1), (b) Propagation of actively
selected constraints (5, 2) and (3, 6) by Algorithm 4.1, and (c) Improved results of
feature selection after propagation of constraints.
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4.5 Complexity Analysis

As for computational complexity of ReliefF-Sc, it is calculated as mentioned in the
previous chapter, O(card(CL)× NF), knowing that card(CL) is the number of cannot-
link constraints, N is the number of data points and F is the dimension of feature
space. Under the ACS framework, the computational complexity by ReliefF-Sc is not
the problem since we aim to actively select as few as possible good constraints. How-
ever, this selection of constraints using Algorithm 4.1 can turn to have a very high-cost
overhead when the number of data points N is relatively large. This is due to the ne-
cessity of calculating Equation (4.7) each time we want to find the sensitivity matrix.
The latter holds all the sensitivities of all data couples to the minimum point i∗ on
v2. Thus, Equation (4.7) that costs O(N3) has to be repeated as long as we still need
more constraints. Therefore, the overall computational complexity of Algorithm 4.1 is
calculated as O(card(CL)× N3). This is an issue to most of the pair-based constraints
selection algorithms due to the nature of the pair selection problem that needs to rank
O(N2) candidate pairs during each of its searching iterations [136].

4.6 Experimental Results

We first describe the experimental setup, where we aim at comparing the classifica-
tion accuracy obtained by the different supervised, unsupervised and semi-supervised
constrained feature selection algorithms listed in section 4.6.1. We specify the used
datasets in section 4.6.2 and the performance evaluation measures in section 4.6.3.

In our experiments, we seek to show that our framework with active constraint se-
lection replacing random constraint generation can significantly improve constrained
feature selection algorithms especially our margin-based ReliefF-Sc. Note that, ACS is
algorithm-independent, which means that unlike other constraint selection methods
[138, 139, 147], our method can be used to actively choose constraints regardless of the
used constrained feature selection method. We also show the significance of propa-
gating constraints and its effect on the classification accuracy curves. The comparison
results are detailed in section 4.6.4.

4.6.1 Used Benchmarking Feature Selection Methods

To evaluate our feature selection framework using the proposed active constraint se-
lection and propagation methods, we benchmark with the following well-known fea-
ture selection methods including our own: Fisher score, ReliefF, Laplacian score, Con-
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straint score-1 (CS1), Constraint score-2 (CS2) (where λ is set to the default value given
by authors i.e 0.1 [40]), Simba-Sc (Start points parameter is set to its default value i.e
5 [107]), Constraint score-4 (CS4), Constrained Laplacian score (CLS), and ReliefF-Sc
the proposed semi-supervised margin-based constrained feature selection method de-
tailed in section 3.2.3.
In the following, ReliefF-Sc is applied in three versions: (1) alone with RCG denoted
ReliefF-Sc+RCG, (2) after applying ACS presented in Algorithm 4.1 denoted ReliefF-
Sc+ACS, and (3) as a combination of Algorithms 3.2, 4.1 and 4.2 that is detailed in
section 4.4. The latter is denoted as ReliefF-Sc+PACS.

4.6.2 Datasets Description and Parameter Setting

We evaluate our proposed active constraint selection and propagation framework on
five well-known numeric UCI machine learning datasets [3], including Soybean, Wine,
Heart, Sonar and Image Segmentation. We also test on another two high dimen-
sional gene-expression datasets: ColonCancer [131] and Leukemia [132]. Note that,
our experiments are divided according to their goal into two parts. The first part,
including sub-sections 4.6.4.1 and 4.6.4.2, focuses on highlighting the effect of Ac-
tive Constraint Selection in comparison to Random Constraint Generation and Con-
straint Propagation and is applied on Soybean, Wine, Heart, Sonar, ColonCancer and
Leukemia datasets using the 1-NN classifier. The second part, including sub-sections
4.6.4.3 and 4.6.4.4, focuses on the comparison with other feature selection methods
and is applied on Wine, Image Segmentation and ColonCancer using the 1-NN and
SVM classifiers. Image Segmentation dataset was used in the second part in order to
validate the results over a dataset with a greater number of classes.

Table 4.1 summarizes the main characteristics of each dataset mentioned in the first
column. The second, third, and fourth columns show the number of data points, the
data dimension, and the number of classes respectively. Also, the fifth column speci-
fies the number of points in each class in order to allow observing whether the classes
are balanced or not and the last column indicates the number of queried constraints.
Before recording the results, and for the sake of a fair comparison between different
methods, we normalize all features to be between zero and one. Also, the similarity
between data points is computed in some problem-specific manner, generally, we use
the self-tuning (auto-adaptive) method by [41] that takes only a user-specified param-
eter representing the number of the nearest points to each data point and calculates
the dispersion parameter automatically for evaluating the Gaussian Kernel.
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Table 4.1: Datasets and their main characteristics

Dataset #data points #features #classes #points per class #constraints
Soybean 47 35 4 10, 10, 10, 17 3

Wine 178 13 3 59, 71, 48 20
Heart 270 13 2 150, 120 20
Sonar 208 60 2 97, 111 10

Segmentation 210 19 7 30, 30, 30, 30, 30, 30, 30 10
ColonCancer 62 2000 2 40, 22 8

Leukemia 72 5147 2 47, 25 10

In these experiments, we divide our datasets into training and testing sets defined
by the same features, the first half of data points from each class is considered as the
training set and the second half is considered as the testing set. We were also careful
that no testing data is seen by either the feature selection algorithm or the classifier
during the learning process.

Regarding constraints, it is important to know that they can be generated from
background knowledge given by an expert, i.e querying an oracle, or acquired exper-
imentally from a set of labeled data [138]. In our experiments, since we compare the
effect of random constraints to the effect of constraint selection, we average the results
over 100 runs for the random constraint sets. At each run, random constraints are
generated as follows: a pair of data points is randomly picked from the training set,
then its class assignment is checked if it turns to be that these two points belong to
different classes they are considered a cannot-link constraint couple. This operation
is repeated until the desired number of constraints is met. While for actively selected
constraints, we select them using Algorithm 4.1 where the user only provides infor-
mation about the couple considered most uncertain. Since cannot-link constraints are
considered more important than must-link ones from the viewpoint of margin, Algo-
rithm 3.2 (ReliefF-Sc) utilizes them only. Note that, we set the same value of K (number
of nearest neighbors) for both ReliefF and ReliefF-Sc on each dataset according to its
characteristics. This value was set to 5 for Wine, Heart, Sonar and Leukemia and 3 for
Soybean and Segmentation, however, only for ColonCancer we kept it equal to 1 since
we experimentally noticed that this value provided the highest accuracy curve for this
particular dataset.

Also, our criteria to choose the number of pairwise constraints to be queried is as
follows: we check the approximate number of points around zero on the second eigen-
vector v2, and we consider it as the minimum supervision information needed. Hence,
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we use the number of cannot-link constraints specified by [107] for the datasets Wine,
Heart, and Sonar i.e 20, 20 and 10 respectively since they fit our criteria, we also use
10 constraints for Image Segmentation similarly to [53], however, for Soybean, Colon-
Cancer and Leukemia datasets we assign 3, 8 and 10 constraints respectively. Note
that, for the algorithms that use both must-link and cannot-link constraints, for exam-
ple, CS1 and CS2, we provide half the number of constraints as cannot-link and half
as must-link (chosen in the same manner when using ACS or RCG). This is to ensure
providing the same amount of supervision information to all algorithms.

4.6.3 Performance Evaluation Measures

After applying feature selection, we evaluate its performance using three evaluation
measures: one is related to the data classification accuracy obtained by applying a clas-
sifier on the selected set of features, and two others are directly related to measuring
the quality of the selected feature set, i.e., Precision and Distance measures [159].

1. Classification Accuracy: is defined as a percentage of correct predictions. Thus,
we evaluate how many data points were correctly classified using the chosen
feature subset. It is defined in Equation (1.18) of section 1.5.4.1 as follows:

Accuracy =
TP + TN

TP + TN + FP + FN

In our experiments, we evaluate the classification accuracy of each ranked set of
features by applying two well known classifiers: the Nearest Neighbor (1-NN)
classifier with euclidean distance and the SVM classifier with linear kernel func-
tion (default configurations in Matlab-stats toolbox are used). For this purpose,
first the feature selection is applied on the training set, this provides the ranking
of features according to their assigned scores by different algorithms. Then, clas-
sification using the selected features is applied on the testing set.

2. Precision (Pr) [159]: is here calculated as the number of features present in two
lists: Target Tr that represents the first s features present in the optimal feature
ranking list Sopt and Rs that represents the first s features found in a selected set
of features resulting from the feature selection method, divided by the number
of features in Tr denoted by card(Tr) (i.e card(Tr) = s):

Pr =
card(Tr ∩ Rs)

card(Tr)
(4.16)
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Figure 4.4: Relationship between the terms used in the Performance measures: Preci-
sion and Distance.

This measure is between zero and one, knowing that Pr = 1 when the subsets
Tr and Rs contain the same features and Pr = 0, when there is no intersection
between them. The higher precision the better result. For clarity we present
the relations between all terms in Figure (4.4). Note that, Precision (Pr) here is
different from the one presented in Equation (1.19).

3. Distance [159]: since Precision cannot consider the order of features between Tr

and Rs, we also use Distance Dt. This measure is defined based on the sum of
distances between the intersecting features of Tr and Rs. We calculate the dis-
tance of each feature by comparing its position in Tr and Rs.
Let us consider S

′
opt the reverse of Sopt to calculate the maximum possible dis-

tance Dtmax between two lists having the same features as:

Dtmax = ∑
∀Ai∈Sopt

|position(Ai ∈ Sopt)− position(Ai ∈ S
′
opt)| (4.17)

Where Dtmax is used to keep distance Dt between zero and one, knowing that Dt
is at its best when it is zero with the two lists having identical ranking and larger
than zero otherwise.

Finally, Dt is calculated as follows:

Dt =
∑∀Ai∈Tr |position(Ai ∈ Tr)− position(Ai ∈ R)|

Dtmax
(4.18)
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4.6.4 Performance Evaluation Results

In this section, we first compare the classification accuracy obtained after applying
Algorithm 3.2 (ReliefF-Sc with RCG) to the classification accuracy obtained after ap-
plying the same algorithm but with active constraint selection (ReliefF-Sc with ACS)
in section 4.6.4.1. We then propagate the selected constraints and compare the clas-
sification accuracy obtained after applying ReliefF-Sc on these constraints to the clas-
sification accuracy obtained without propagation in section 4.6.4.2. Then, in sections
4.6.4.3 and 4.6.4.4, we compare supervised (Fisher, ReliefF), unsupervised (Laplacian),
and semi-supervised constrained feature selection algorithms (ReliefF-Sc, Simba-Sc,
CS1, CS2, CS4, CLS) also with RCG and ACS.

4.6.4.1 ReliefF-Sc with Random Constraint Generation (RCG) vs. ReliefF-Sc with
Active Constraint Selection (ACS)

Figures (4.5a–4.5f) show the plot of classification accuracies vs. the desired number
of features ranked by ReliefF-Sc on Soybean, Wine, Heart, Sonar, ColonCancer, and
Leukemia respectively. We also record the highest accuracy rates Acc and the corre-
sponding dimension d of the selected feature subset obtained by ReliefF-Sc with and
without constraint selection in Table 4.2.

As can be seen in Figure (4.5), it is generally always the case that the classification
accuracy while using the constraints chosen by Algorithm 4.1 is better than the accu-
racy using the same number of random constraints. For instance, Figures (4.5a) and
(4.5b) show that with constraints selection we were able to reach the optimal classifica-
tion of data points using only a few selected features. Moreover, it can be noticed that
generally, ReliefF-Sc with ACS obtains higher classification accuracies from the first
ranked feature as can be seen in Figures (4.5b), (4.5d), (4.5e), and (4.5f), which means
that applying feature selection on actively selected constraints is able to enhance fea-
ture selection and identify the most discriminative feature earlier.

Note that, the results of ReliefF-Sc with RCG are averaged over 100 runs, which
means, their results implicitly hold more information, this masks the steep curve fluc-
tuations through accuracy-averaging. Whereas ReliefF-Sc with ACS is deterministic
and only applied once, this is due to the closed-form solutions obtained by both Al-
gorithm 4.1 and ReliefF-Sc. In fact, we get the same selected constraints and the same
selected features regardless of the number of times we repeat a run. Moreover, note
that the applicability of a proposed method is a very important issue. For instance, ap-
plying feature selection algorithms using randomly selected constraints might some-
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times obtain higher classification accuracies, but it is not logical nor feasible to query
for the required number of random constraints in some real-world situations (e.g. 8
constraints for ColonCancer requested for 100 times in order to average their results),
it might then be less expensive to label the data than to query for 800 constraints. This
issue reduces the applicability of RCG although it is usually used.

Moreover, from Table 4.2 we can see that feature selection by ReliefF-Sc with ACS
on Wine and Soybean boosted classification accuracy to reach 100%, which means that
with actively selected constraints, ReliefF-Sc was able to successfully select the features
that can provide an optimal classification of data by choosing only 9 features out of 35
on Soybean and 5 features out of 13 on Wine, unlike the results of RCG that required
choosing 4 additional features in order to reach its highest accuracy rate i.e. 98.22%
on Soybean and choosing 6 additional features to reach 97.75% on Wine. In addition,
although the result on Sonar presented in Figure (4.5d) was problematic, this table also
shows that ReliefF-Sc with ACS was still able to enhance the highest possible accuracy
rate to become 62.50% on 29 which is 4.85% higher with a dimension that is smaller by
1 feature.

Furthermore, we insist on the impressive result obtained on the high-dimensional
gene expression ColonCancer dataset, where ReliefF-Sc with selected constraints was
able to reach its highest accuracy from the first chosen feature, this shows that the al-
gorithm was able to directly decide the most significant feature in the dataset using
our constraints. Whereas, it had to choose 1316 features to reach its highest accuracy
using random constraints. Finally, for Leukemia dataset, Table 4.2 shows that after se-
lecting only 198 features out of 5147 the highest classification accuracy reached 91.18%
using ACS, which is 7.74% higher than the accuracy using RCG i.e 83.44% with 388
selected features.

Therefore, the significance of choosing the data couples to be queried for con-
straints and then to be used for feature selection is here verified. Also, as the accu-
racy rates achieved without feature selection on the original feature space were always
lower than the accuracy rates achieved with feature selection, thus the importance of
feature selection in improving the classification results is also confirmed.

As we mentioned before, one of the known drawbacks of the Relief family algo-
rithms is that they might need a sufficiently big set of points to calculate the margin.
Hence, since we care for asking the oracle as few questions as possible and for main-
taining feasibility, we might sometimes obtain a very small number of constraints. As a
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(a) ReliefF-Sc with RCG and ACS on Soybean
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(b) ReliefF-Sc with RCG and ACS on Wine
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(c) ReliefF-Sc with RCG and ACS on Heart
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(d) ReliefF-Sc with RCG and ACS on Sonar
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(e) ReliefF-Sc with RCG and ACS on Colon-
Cancer
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(f) ReliefF-Sc with RCG and ACS on Leukemia

Figure 4.5: Accuracy rates using 1-NN classifier vs. different number of selected fea-
tures obtained by ReliefF-Sc+RCG and ReliefF-Sc+ACS on 4 UCI datasets: (a) Soybean;
(b) Wine; (c) Heart; (d) Sonar; and on 2 high dimensional gene-expression datasets: (e)
ColonCancer; (f) Leukemia.
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Table 4.2: The highest classification accuracy rates Acc (in %) obtained using 1-NN
classifier on the features ranked by ReliefF-Sc algorithm with RCG and ACS, where d
represents the dimension by which Acc is reached and F represents the original feature
space.

Without Selection ReliefF-Sc+RCG ReliefF-Sc+ACS
Dataset Acc F Acc d Acc d
Soybean 95.65 35 98.22 13 100 9

Wine 96.59 13 97.75 11 100 5
Heart 74.81 13 76.42 9 79.26 8
Sonar 50.96 60 57.65 30 62.50 29

ColonCancer 70.97 2000 74.87 1316 83.87 1
Leukemia 79.41 5147 83.44 388 91.18 198

solution, in the next section, we experiment propagating constraints through transmit-
ting supervision information to the unlabeled and unconstrained remaining nearby
data points.

4.6.4.2 Results by ReliefF-Sc after the Propagation of the Actively Selected Con-
straints (PACS)

We plot the classification accuracies with PACS in Figure (4.6) and we record the high-
est accuracy rates in Table 4.3 before and after propagation. In addition, we show the
sensitivity analysis of the propagation process to the regularization parameter in Fig-
ure (4.7).

Figure (4.6) shows that generally the accuracy curves with PACS were higher than
they were with ACS only. Also, PACS generally either maintains the same accuracy
levels or obtains better ones like on Wine, Heart and ColonCancer presented in Fig-
ures (4.6b), (4.6c) and (4.6e) respectively.

Since we already obtained the highest possible accuracy rate i.e 100% on Soybean
and Wine using ACS, Figures (4.6a) and (4.6b) show that propagation enabled main-
taining this accuracy on a wider span of selected features. The rows corresponding
to Soybean and Wine in Table 4.3 also record the series of these selected features. For
instance, this high accuracy was maintained on a span of 5 features (i.e 5,6,7,8,9) after
propagation compared to 3 features (i.e 5,7,8) before propagation on Wine. Also, for
Soybean a span of 12 features (i.e 7,8,9,10,11,12,13,14,15,16,17,18) was maintained
after propagation compared to 8 features (i.e 9,10,11,12,13,14,15,16) before propaga-
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(a) ReliefF-Sc with PACS on Soybean

2 4 6 8 10 12
Ranked Features

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y 

w
ith

 1
-N

N

ReliefF-Sc+ACS

ReliefF-Sc+PACS

(b) ReliefF-Sc with PACS on Wine

2 4 6 8 10 12
Ranked Features

0.5

0.55

0.6

0.65

0.7

0.75

0.8

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y 

w
ith

 1
-N

N

ReliefF-Sc+ACS

ReliefF-Sc+PACS

(c) ReliefF-Sc with PACS on Heart
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(d) ReliefF-Sc with PACS on Sonar
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(e) ReliefF-Sc with PACS on ColonCancer
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(f) ReliefF-Sc with PACS on Leukemia

Figure 4.6: Accuracy rates using 1-NN classifier vs. different number of selected fea-
tures obtained by ReliefF-Sc+ACS and ReliefF-Sc+PACS on 4 UCI datasets: (a) Soy-
bean; (b) Wine; (c) Heart; (d) Sonar; and 2 high-dimensional gene-expression datasets:
(e) ColonCancer; (f) Leukemia.
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Figure 4.7: Accuracy rates over the first 50% ranked features using 1-NN classifier vs.
different values of the regularization Parameter a ranging in ]0,1[.

tion. It is also worth the note that the problematic result on Sonar was significantly
enhanced obtaining a much higher accuracy curve as can be seen in Figure (4.6d),
which ensures a better feature selection process. Moreover, ReliefF-Sc with PACS on
Leukemia was able to obtain 100% of accuracy from the first few ranked features as
can be seen in (4.6f) although with ACS (that was in its turn significantly higher than
the accuracy using RCG) it was able to reach 91.18% maximum. Table 4.3 insists on
the latter. For instance, ReliefF-Sc with PACS on Leukemia reached this highest accu-
racy on only 74 features after it had to choose 198 with ACS alone. Also, it shows that
the highest classification accuracy on Sonar increased from 62.50% before constraints
propagation to 74.07% with only 6 selected features out of 60 in the original space.

Note that, the regularization parameter a = 0.99 ([153]) can be experimentally
tuned to better fit each dataset. For Soybean, we keep a = 0.99. However, we ex-
perimentally set a to the value of 0.6 for Wine, 0.37 for Heart, 0.47 for Sonar, 0.46 for
ColonCancer, and 0.75 for Leukemia dataset. In order to analyze the sensitivity of the
constraints propagation process to the regularization parameter a, we present Figure
(4.7). It shows the fluctuation in accuracy on the first 50% ranked features when fea-
ture selection is applied on propagated constraints. For example, Sonar dataset has 60
features in the original feature space, we show the change in accuracy on exactly the
first 30 selected features upon using all the possible values of a ranging between 0 and
1 exclusively.

This Figure shows that for Soybean and Heart datasets the obtained sets of propa-
gated constraints are less sensitive to the regularization parameter than those of Wine
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and Sonar. In fact, since Soybean already has a very small number of training data
points (i.e. 24 points) the effect of constraints remained the same on feature selection
until the regularization parameter reached the last few values (that are greater than
0.9). This means that more information is considered from the neighborhood graph
and less is considered from the initial constraint matrix Q, which allows more prop-
agation to the neighborhood leading to a considerable number of propagated con-
straints with respect to the size of data (23 constraints on 24 data points). However,
due to the noisy Sonar data, it was harder to follow the behavior with respect to a on
it as the fluctuation was generally over all the analysis curve. It was also interesting
as we noticed that using a value of 0.47 the number of propagated constraints reached
102 remembering that we have only 104 training data points and noting that the initial
set of actively chosen constraints before propagation had only 10 constraints. Hence,
for Sonar we decided to use a = 0.47.

In conclusion, we do not expect the propagation to be independent of its only pa-
rameter a; However, Figure (4.7) shows a great deal of stability even while a big change
appears in the value of a (like moving from a = 0.1 to a = 0.7 on Heart). There is al-
ways some critical value of a by which the accuracy differs obviously (like a = 0.78 on
Heart and a = 0.6 on Wine) except for Sonar. Therefore, we can analyze the data, if its
similarity graph possess some kind of structure to the data by itself, then we can in-
crease the value of a to consider more information from the neighborhood graph and
allow higher levels of propagation. On the other side, when no clear structure of the
data is provided by the similarity graph, then we keep the value of a in small ranges in
order to consider more information from the matrix of chosen constraints and to keep
low levels of propagations (propagate only to very close neighboring points).

Table 4.3: The highest classification accuracy rates Acc (in %) obtained using 1-NN
classifier on the features ranked by ReliefF-Sc before and after constraints propagation,
with d representing the dimension where Acc is reached. Initial constraints before
propagation obtained systematically using Algorithm 4.1.

Without Selection ReliefF-Sc+ACS ReliefF-Sc+PACS
Dataset Acc F Acc d Acc d
Soybean 95.65 35 100 9 –> 16 100 7 –> 18

Wine 96.59 13 100 5, 7, 8 100 5 –> 9
Heart 74.81 13 79.26 8 79.26 8
Sonar 50.96 60 62.50 29 74.07 6

ColonCancer 70.97 2000 83.87 1 83.87 1
Leukemia 79.41 5147 91.18 198 100 74
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After detailing the performance results using ReliefF-Sc alone with RCG, ACS and
PACS, in the next section, we wish to compare the algorithms detailed in section 4.6.1
with RCG and ACS on Wine, Segmentation and ColonCancer datasets using both 1-
NN and SVM classifiers.

4.6.4.3 Classification Accuracies by Different Constrained Feature Selection Meth-
ods with Random Constraints Generation (RCG) vs. with Active Constraints
Selection (ACS)

This section aims at benchmarking the different supervised, unsupervised, and semi-
supervised constrained feature selection algorithms. It also aims at showing that the
process of active constraint selection is independent of the constrained feature selec-
tion algorithm and can enhance the chosen set of features regardless of the algorithm
to be used. For that, we plot the accuracy curves obtained by 1-NN and SVM classi-
fiers after feature selection using Fisher, ReliefF, Laplacian and the constrained margin-
based ReliefF-Sc and Simba-Sc algorithms on Wine, Segmentation and ColonCancer in
Figure (4.8). For these latter accuracies, Table 4.4 further presents the highest accuracy
rates Acc and their corresponding dimensions d obtained by all the algorithms de-
tailed in section 4.6.1 with and without constraint selection.

Moreover, in Figure (4.9) of this section, we also provide a comparison of the
change in accuracies using 1-NN and SVM classifiers after applying ReliefF-Sc and
Simba-Sc with ACS and RCG vs. varying the number of provided constraints.

From Figure (4.8), we can see that generally both the constrained algorithms ReliefF-
Sc and Simba-Sc were significantly improved when applied with ACS. We can also see
that our ReliefF-Sc was not only improved with ACS to outperform its self when ap-
plied with RCG, but also to outperform Simba-Sc with ACS on the first few ranked
features as can be seen in Figures (4.8a) and (4.8b) although both methods reached the
same highest accuracy rate and on the same dimension on Wine dataset using 1-NN
classifier. ReliefF-Sc with ACS was also able to compete with the supervised ReliefF
and Fisher scores as can be seen in Figures (4.8c), (4.8d) and (4.8f). Note that, Fisher
and ReliefF utilize full class labels and being able to compete with their performances
only with few selected constraints is very interesting. In addition, from Figures (4.8c)
and (4.8d) we can see that ReliefF-Sc and Simba-Sc with ACS both obtained prominent
results on Segmentation, where they approximately maintained having higher accu-
racy curves over the whole set of ranked features compared to the supervised algo-
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(a) Wine with 1NN classifier
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(b) Wine with SVM classifier
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(c) Segmentation with 1NN classifier
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(d) Segmentation with SVM classifier
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(e) ColonCancer with 1NN classifier
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(f) ColonCancer with SVM classifier

Figure 4.8: Accuracy rates using 1-NN and SVM classifiers vs. different number of se-
lected features obtained by supervised (Fisher, ReliefF), unsupervised (Laplacian) and
constrained ReliefF-Sc and Simba-Sc algorithms with RCG and ACS on 2 UCI datasets:
(a,b) Wine; (c,d) Segmentation; and 1 high-dimensional gene-expression dataset: (e,f)
ColonCancer.
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rithms. It is also important to note that the accuracy curves obtained by ReliefF-Sc and
Simba-Sc with RCG were sometimes below the accuracy curve obtained by the unsu-
pervised Laplacian like in Figures (4.8a) and (4.8c), and this was completely resolved
and enhanced for ReliefF-Sc when applied with ACS. Finally, from Figure (4.8e) on
ColonCancer, we can see that the performance of ReliefF-Sc with RCG was improved
significantly upon being applied with ACS to reach its highest possible accuracy rate
from the first few features. Moreover, both ReliefF-Sc and Simba-Sc were able to ob-
tain the same accuracy curves by the supervised Fisher and ReliefF with only 8 chosen
constraints as can be seen in Figure (4.8f).

For clarity and to further compare all the constrained feature selection algorithms
mentioned in section 4.6.1, we observe Table 4.4. First of all, from this table, we can see
that feature selection by ReliefF-Sc, Simba-Sc, CS1, CS2, CS4, and CLS was generally
always enhanced to obtain better highest accuracy rates on smaller selected dimen-
sions when using ACS (rows shaded in gray). Also, we can see that ReliefF-Sc ob-
tained the highest accuracy rate and on the smallest dimension compared to all other
constrained algorithms in 4 experiments out of 6. It had a tie with Simba-Sc+ACS alone
on Wine with 1-NN classifier and a tie with Simba-Sc, CS1, CS2, and CS4 with ACS on
ColonCancer with 1-NN. However, on Wine and ColonCancer with SVM, ReliefF-Sc
was the only algorithm that obtained the highest accuracy rate with the smallest di-
mension among all constrained algorithms. Moreover, although ReliefF-Sc with ACS
did not win on Segmentation with both 1-NN and SVM, this loss was just in terms of
the dimension and not the accuracy rate.

On another hand, since for margin-based algorithms, we are more interested in
cannot-link constraints, we compare the performances obtained by ReliefF-Sc and
Simba-Sc with ACS and RCG on Wine, Segmentation, and ColonCancer upon chang-
ing the number of constraints given to the algorithms. Figure (4.9) plots these clas-
sification accuracies taking the first 50% of the ranked features on each dataset. We
present Fisher, ReliefF and Laplacian algorithms only as baselines since they do not
use constraints. This figure generally shows stability in the accuracy obtained by
ReliefF-Sc with ACS with respect to increasing the number of selected constraints,
this shows the consistency in our constraint selection process. On the other side, it
shows that Simba-Sc with ACS was not able to obtain such stability when the num-
ber of constraints is changed as can be seen in Figure (4.9b), this is due to its gradient
ascent strategy that can obtain multiple solutions even for the same set of constraints.
This means different runs might obtain different solutions even on the same input,
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Table 4.4: The highest accuracy rates Acc (in %) and their corresponding dimensions
d using 1-NN and SVM classifiers vs. different numbers of selected features obtained
by supervised (Fisher, ReliefF), unsupervised (Laplacian) and constrained ReliefF-Sc,
Simba-Sc, CS1, CS2, CS4 and CLS algorithms with RCG and ACS on 2 UCI datasets:
Wine; Segmentation; and 1 high-dimensional gene-expression dataset: ColonCancer.

1-NN Classifier SVM Classifier

Wine Segmentation ColonCancer Wine Segmentation ColonCancer

Acc d Acc d Acc d Acc d Acc d Acc d

Without Selection 96.59 13 84.76 19 70.97 2000 97.73 13 86.67 19 83.87 2000
Fisher 100 5 89.52 11 83.87 5 97.72 5 88.57 13 83.87 11
ReliefF 98.86 10 89.52 11 83.87 6 97.72 3 88.57 13 83.87 20

Laplacian 100 6 89.52 11 77.42 8 97.72 6 87.61 12 83.87 49

ReliefF-Sc
RCG 97.75 11 85.73 12 74.87 1316 96.72 9 87.54 12 83.87 1945
ACS 100 5 89.52 11 83.87 1 98.86 4 88.57 16 83.87 19

Simba-Sc RCG 97.47 11 84.76 19 74.9 884 96.59 13 86.67 19 83.87 1926
ACS 100 5 89.52 11 83.87 1 97.72 5 86.67 19 83.87 27

CS1 RCG 97.34 11 85.54 14 79.97 141 96.5 13 87.04 17 83.87 1878
ACS 98.86 5 89.52 11 83.87 1 98.86 5 88.57 15 83.87 42

CS2 RCG 97 12 86.72 15 78.87 221 96.89 12 86.87 18 83.87 1913
ACS 98.86 10 89.52 7 83.87 10 97.72 12 88.57 16 83.87 66

CS4 RCG 97.66 11 85.91 11 78.32 144 96.69 11 87.29 17 83.87 1892
ACS 98.86 6 89.52 11 83.87 1 97.72 4 88.57 15 83.87 55

CLS
RCG 97.82 10 85.1 14 78.81 182 96.65 7 87.38 15 83.87 1823
ACS 98.86 5 89.52 10 83.87 27 97.72 5 88.57 13 83.87 112

unlike the closed-form solution that ReliefF-Sc provides. Also it is important to note
that when using ReliefF-Sc or Simba-Sc with RCG some added random constraints de-
creased the performance as can be seen in Figures (4.9d), (4.9e) and (4.9f), this proves
that random constraints might introduce ill effects. In addition, (4.9a) shows that
ReliefF-Sc and Simba-Sc with RCG obtained fluctuating accuracies that were generally
below the supervised Fisher and ReliefF. On the other side, Figures (4.9c) and (4.9d)
show that for all the number of constraints, ReliefF-Sc with ACS obtains stable and
higher accuracies than those of the supervised Fisher and ReliefF. In addition, Figures
(4.9e) and (4.9f) on ColonCancer similarly show that ReliefF-Sc with ACS had an ac-
curacy equal to the one obtained by Fisher on all constraint numbers. This experiment
shows the sensitivity of the feature selection process to the input constraints. Using
more constraints does not mean higher accuracy, on the contrary, the quality of the
constraints is what matters.

To sum up, Figure (4.8) and Table 4.4, highlight two very important findings. First,
they clearly show that ACS is an algorithm-independent method since it was applied
with multiple constrained feature selection algorithms and it was able to generally en-
hance and improve them. Second, they also prove that the combination of our ReliefF-
Sc algorithm and our ACS method is able to outperform constrained and unsupervised
feature selection methods and compete with the supervised ones. On the other side,
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(a) Wine with 1NN classifier
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(b) Wine with SVM classifier
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(c) Segmentation with 1NN classifier
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(d) Segmentation with SVM classifier
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(e) ColonCancer with 1NN classifier
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(f) ColonCancer with SVM classifier

Figure 4.9: Accuracy rates obtained on the first 50% ranked features by the margin-
based constrained ReliefF-Sc and Simba-Sc algorithms with RCG and ACS followed
by 1-NN and SVM classifiers vs. different number of constraints on 2 UCI datasets:
(a,b) Wine; (c,d) Segmentation; and 1 high-dimensional gene-expression dataset: (e,f)
ColonCancer. Fisher, ReliefF and Laplacian do not use constraints and are used as
supervised and unsupervised baselines.
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Figure (4.9) shows the importance of choosing the constraints systematically, proves
the consistency provided by ACS, and points out the sensitivity of feature selection to
the quality of inputted constraints.

In the following section, we further benchmark the same semi-supervised con-
strained algorithms with RCG and ACS but this time using the two feature-related
performance measures (Precision and Distance).

4.6.4.4 Precision and Distance measures by Different Constrained Feature Selec-
tion Methods with Random Generated Constraints (RCG) vs. with Actively
Selected Constraints (ACS)

In this section, we compare the precision and distance measures obtained by the con-
strained feature selection algorithms. We use the ranked list of the supervised Fisher
score as the reference (optimal) list in our comparisons as it generally obtained the
highest accuracy rates in the above experiments and since it ranks features according
to their correlation with the class labels directly. Thus, we consider it as the baseline
by which we compare the ability of different semi-supervised algorithms to select the
same features (precision) and in the same order (distance). Note that, we use the first
half of the ranked lists by all algorithms in the calculation of these two measures as-
suming that this ensures the removal of irrelevant features (e.g. for ColonCancer we
select first 1000 ranked features out of 2000 features in the original space). Also note
that since for the RCG method the results are averaged over 100 repeated runs, we
calculate the precision and distance measures for each run (on each subset we obtain)
and we finally present the mean and standard deviations of these measures.

Figure (4.10) shows the bar graphs of precision and distance using the constrained
algorithms with RCG and with ACS on Wine, Segmentation, and ColonCancer. It
shows that generally, the ranked feature lists by constrained algorithms with active
constraint selection obtained higher precision when compared to the supervised ranked
feature list (by Fisher) with lower distances as can be seen in Figures (4.10e) and (4.10f)
on ColonCancer. This means, even the order of selecting features tends to act in a
supervised manner when constraints are selected actively. Also, the results on Seg-
mentation in Figure (4.10c) show that constrained algorithms with ACS improved to
identically act like a supervised feature selection algorithm with full class labels only
with 10 selected constraints.
For instance, ReliefF-Sc, Simba-Sc, CS1, CS4, and CLS reached a precision value of 1 on
this dataset. In such a case, when precision is maximum, even if the distance measure
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(a) Precision measure of feature sub-
sets on Wine

(b) Distance measure of feature subsets
on Wine

(c) Precision measure of feature subsets
on Segmentation

(d) Distance measure of feature subsets
on Segmentation

(e) Precision measure of feature subsets
on Colon-cancer

(f) Distance measure of feature subsets
on Colon-cancer

Figure 4.10: Three groups of two bar graphs each. Every two graphs in a row respec-
tively show the Precision Pr and Distance Dt measures of the first 50% ranked features
by ReliefF-Sc, Simba-Sc, CS1, CS2, CS4, and CLS with RCG and ACS on (a, b) Wine;
(c, d) Segmentation ; (e, f) ColonCancer.
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increases like for ReliefF-Sc and Simba-Sc with ACS in Figure (4.10d), this increase
does not mean a performance degradation at all. It only means that the algorithms
selected the optimal feature subset in another order. Although Simba-Sc, CS1, and
CS2 showed a lower precision bar with ACS on Wine, it is important to notice that
the standard deviation from the mean for RCG method is large enough to show that a
lower precision is always possible and the high precision cannot be ensured. Similarly,
in (4.10b) the standard deviation of the distance measure of RCG shows that it can in-
crease to be higher than the fixed distance value obtained by our ACS method. On the
other side, note that the precision obtained by ReliefF-Sc with ACS outperformed that
of Simba-Sc, CS1, and CS2, whereas it was similar to that of CS4 and CLS on Wine.
Also, all the constrained algorithms were competitive in terms of feature subsets’ pre-
cision on Segmentation and ColonCancer except for CS2 that was lagging behind.

Finally, these experiments prove the significance of actively selecting constraints
on the subset of selected features directly in addition to its importance and effect on
the classification accuracy. As we have explained, Fisher is a supervised feature selec-
tion method that uses full class labels, thus, when ACS is able to enhance constrained
feature selection algorithms to obtain similar feature subsets, it proves that only with
few but well-chosen queries, constrained algorithms can obtain results that are able to
compete with supervised ones.

4.7 Conclusion

In this chapter, we suggested a framework for actively selecting and propagating con-
straints for feature selection using graph Laplacian. In fact, we highlighted two main
components: (1) our core contribution, i.e. the process of selecting pairwise constraints
to be used by the constrained margin-based feature selection algorithm ReliefF-Sc and
(2) the augmentation of supervision information by propagating these constraints. Fo-
cusing on the constraint selection process, we assumed that when a small perturba-
tion in the similarity value of a data couple is able to perturb the similarity matrix
and lead to a more well separated form of the second eigenvector of the graph Lapla-
cian, this couple is definitely considered a more important and significant constraint.
Thus, obtaining supervision information on such data couples is able to improve the
performance of constrained feature selection algorithms. Moreover, for the sake of
increasing supervision information without engaging the resource-expensive human
oracle, we then propagated the selected constraints to their unlabeled neighborhood.
This allowed the margin-based ReliefF-Sc to perform better with a sufficiently big set
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of couples as it requires. Finally, experimental results showed how crucial constraint
selection can be to the performance of constrained feature selection algorithms.
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Conclusion and Perspectives

In this thesis, we provided a semi-supervised margin-based constrained feature selec-
tion framework that is capable of handling the main two aspects of feature selection:
maximizing relevancy with respect to a target concept and minimizing redundancy.
The latter is done for the sake of dimensionality reduction.

As we were interested in individual filter-type feature weighting/ranking, we pro-
vided a comprehensive review of a whole family of feature selection algorithms that
use a margin-based score in order to evaluate and rank features in the order of their
relevance. These are known as Relief-Based Algorithms (RBAs) and proved to gen-
erally perform well regardless of the problem specifications, they have a low bias,
are considered relatively fast, are capable of detecting feature interaction, are robust
and noise-tolerant in addition to being able to capture data local dependencies [1, 2].
These algorithms were initially suggested in the supervised context and extended to
the semi-supervised one with class labels. However, feature selection became more
challenging with the “small labeled-sample” problem, in which the amount of data
that is unlabeled is much larger than the amount of labeled data taking into consider-
ation the high cost of data labeling. Thus, we were interested in the semi-supervised
constrained context where a cheaper kind of supervision information, i.e. pairwise
constraints is used. These only specify whether two data points should be in the same
group (must-link constraint), or in different groups (cannot- link constraint). So, we
reviewed in details several recent works which have attempted to use pairwise con-
straints in both supervised and semi-supervised contexts.

With our interest in exploiting the strengths of margin-based feature selection within
the semi-supervised constrained environment, we discussed margin-based feature se-
lection with side pairwise constraints. We also demonstrated the change in the notion
of margin from the supervised to the constrained context and provided its mathe-
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matical interpretation. Accordingly, we suggested our constrained margin-based fea-
ture selection algorithm called Relief with Side constraints (Relief-Sc) and its robust
version ReliefF-Sc. Focusing only on cannot-link constraints due to their conceptual
importance from the margin’s perspective, we showed how Relief-Sc utilizes these
cannot-link constraints to assign weights to different features according to their con-
tribution to maximizing the hypothesis-margin and finds a unique relevant feature
subset in a closed-form. Experimental results proved that Relief-Sc is competitive to
supervised scores using full class labels and can outperform other constrained and
unsupervised ones. Moreover, we showed how it can provide good results with only
a few pairwise constraints, which ensures computational advantages over other algo-
rithms when dealing with high dimensional data.

Although the importance of constraints is practically proven, some constraints can
degrade the learning performance. Thus, we suggested an Active Constraint Selection
method (ACS) that depends on perturbation theory analysis to find a constraint set of
higher utility. For that, we first discussed some of the most important related work
on constraint selection. Then, we detailed the proposed method, by which, we find
the data couple that is capable of reducing uncertainty in terms of spectral analysis.
In other words, we find the couple that when supplied with background knowledge
imposes the highest utility. Thus, we actively query the human oracle for information
(pairwise constraint) on this particular chosen couple only.

Since we can only ask a small number of questions before the process becomes
resource-expensive, we also presented a method for propagating the actively selected
constraints into their unlabeled neighborhood, called PACS. In this regard, we showed
how PACS can increase supervision information and enhance feature selection with-
out requiring higher costs of human-labor.

On the other side, we suggested a novel combination of feature clustering upon
a sparse graph with our margin-based objective function called Feature Clustering
Relief-Sc (FCRSC). The efficiency of this combination was validated in comparison to
supervised, unsupervised and semi-supervised filter feature selection methods using
four different classifications schemes. The experimental results showed that eliminat-
ing redundant features can considerably improve the learning process.
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Perspectives

Based on the outcomes presented in this thesis, we highlight several future research
directions.

• In our work, Relief-Sc utilizes cannot-link pairwise constraints only. Thus, it
might ignore valuable information carried by must-link constraints. Therefore,
we can improve our work through finding a way to integrate must-link con-
straints in our constrained margin-based objective function.

• In ACS, we have focused on finding a constraint set of high utility with respect
to our objective function. However, when a considerable number of points are
near zero on the second eigen-vector (v2), the process of selecting constraints can
tend to be random. Therefore, we can mitigate this weakness by considering the
sensitivity of the couples with respect to multiple eigenvectors instead of only
the second eigenvector. Then, the couple of highest sensitivity on multiple eigen-
vectors is chosen. The number of the eigenvectors to be considered can be equal
to the number of classes if known. In case not, we can either use all eigenvectors
as can be seen in Equation (4.7) or use some method to automatically estimate
the number of classes like eigengap [32] and density peaks [160].

• In ACS, we have focused on the First-Order Eigen-vector Perturbation Theory
to choose the most significant couple. There is also some work that chooses fea-
tures based on the eigenvalue sensitivity analysis [71]. It would be interesting to
experiment whether eigenvalue sensitivity analysis could provide better perfor-
mance in selecting our constraints.

• Our framework includes some computationally expensive subroutines such as
calculating the sparse graph of the feature space when the number of features
is very large and calculating eigenvector sensitivity when the number of data
points increases significantly. Therefore, working on the scalability of our frame-
work can be of great importance. For example, parallelization of the process of
calculating eigenvector sensitivity matrix can be considered. The process can be
naturally split into several independent tasks.

• Relief-Sc is a semi-supervised algorithm. Although it exploits unlabeled data in
the neighborhood of a constraint, it is still closely related to the chosen constraint
set. To decrease this effect, ensemble learning can be used where some other
simple unsupervised algorithm that focuses on the intrinsic structure of data can
be also used along with Relief-Sc. Each algorithm in the ensemble ranks the
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features alone, at the end, some voting system finds the best in the combined
results. Which means, the features ranked on top by both algorithms are the
ones that will be considered.

• Application to Image analysis domain e.g. face recognition, texture.
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Abstract

Feature selection is a preprocessing step crucial to the performance of machine learn-
ing algorithms. It allows reducing computational costs, improving classification per-
formances and building simple and understandable models. Recently, using pairwise
constraints, a cheaper kind of supervision information that does not need to reveal the
class labels of data points, received a great deal of interest in the domain of feature se-
lection. Accordingly, we first proposed a semi-supervised margin-based constrained
feature selection algorithm called Relief-Sc. It is a modification of the well-known Re-
lief algorithm from its optimization perspective. It utilizes cannot-link constraints only
to solve a simple convex problem in a closed-form giving a unique solution. However,
we noticed that in the literature these pairwise constraints are generally provided pas-
sively and generated randomly over multiple algorithmic runs by which the results
are averaged. This leads to the need for a large number of constraints that might be re-
dundant, unnecessary, and under some circumstances even inimical to the algorithm’s
performance. It also masks the individual effect of each constraint set and introduces
a human labor-cost burden.

Therefore, we suggested a framework for actively selecting and then propagating
constraints for feature selection. For that, we made use of the similarity matrix based
on Laplacian graph. We assumed that when a small perturbation of the similarity
value between a data couple leads to a more well-separated cluster indicator based on
the second eigenvector of the graph Laplacian, this couple is expected to be a pairwise
query of higher and more significant impact. Constraints propagation, on the other
side, ensures increasing supervision information while decreasing the cost of human
labor.

Besides, for the sake of handling feature redundancy, we proposed extending Relief-
Sc to a feature selection approach that combines feature clustering and hypothesis
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margin maximization. This approach is able to deal with the two core aspects of fea-
ture selection i.e. maximizing relevancy while minimizing redundancy (maximizing
diversity) among features.

Eventually, we experimentally validate our proposed algorithms in comparison
to other known feature selection methods on multiple well-known UCI benchmark
datasets which proved to be prominent. Only with little supervision information, the
proposed algorithms proved to be comparable to supervised feature selection algo-
rithms and were superior to the unsupervised ones.

Keywords: Dimensionality Reduction, Feature Selection, Cannot-link Constraints,
Hypothesis-margin, Relief-Based Algorithm, Margin Maximization, Constraints selec-
tion, Active learning.
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Résumé

Dans le domaine de l’apprentissage automatique, la sélection d’attributs est une étape
d’une importance capitale. Elle permet de réduire les coûts de calcul, d’améliorer les
performances de la classification et de créer des modèles simples et interprétables.
Récemment, l’apprentissage par contraintes de comparaison, un type d’apprentissage
semi-supervisé, a suscité un vif intérêt pour la sélection d’attributs. En effet, celui-
ci est moins contraignant car il n’impose pas la connaissance des labels des classes.
Dans ce contexte semi-supervisé avec contraintes, nous avons proposé un algorithme
de sélection d’attributs à large marge appelé Relief-Sc. Il s’agit d’une modification de
l’algorithme supervisé Relief. Il utilise uniquement les contraintes de comparaison
cannot-links pour résoudre un problème d’optimisation convexe donnant une solu-
tion unique.

Les contraintes sont généralement générées aléatoirement, de manière passive et
dans certains cas, défavorables aux performances de l’algorithme. Pour cela, nous
proposons une méthodologie de sélection active des contraintes suivie d’une étape de
propagation des contraintes. Nous avons appliqué la théorie de la perturbation sur la
matrice de similarité du graphe Laplacien. Les contraintes cannot-links sont choisies
parmi les couples de données ayant le plus d’influence sur la matrice de similarité. La
procédure de propagation des contraintes est appliquée pour assurer une augmenta-
tion des informations de supervision tout en réduisant l’effort humain. De plus, dans
un souci de gestion de la redondance des attributs, nous avons proposé d’étendre
l’algorithme Relief-Sc en y intégrant une procédure de classification non supervisée
des attributs. Cette approche permet de traiter les deux aspects fondamentaux de la
sélection des attributs : maximiser la pertinence tout en minimisant la redondance
(maximisation de la diversité) entre les attributs.

Finalement, nous avons validé expérimentalement les algorithmes proposés en les
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comparant à d’autres algorithmes de sélection d’attributs sur plusieurs bases de don-
nées UCI. Nous avons montré qu’avec peu d’information de supervision, les perfor-
mances des algorithmes proposés sont comparables aux algorithmes de sélection su-
pervisée et supérieures aux algorithmes non supervisés.

Mots-clés: Réduction de la dimension, sélection d’attributs, contraintes de com-
paraison, algorithme Relief, marge maximale, apprentissage actif.
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Résumé Étendu de la Thèse

La croissance rapide des technologies a entraîné une augmentation exponentielle de la

quantité de données générées dans divers domaines. Par exemple, dans des domaines

tels que les réseaux sociaux, la santé, le marketing, la bio-informatique et la biométrie,

les données fournies telles que les images, les vidéos, les textes, la voix, les micros-

réseaux d’expression des gènes et d’autres types obtenus à partir des relations sociales

et de l’Internet des objets peuvent non seulement être énormes en termes de nombre

d’instances, mais également en termes de dimensionnalité des attributs. Cela pose de

nombreux défis pour une gestion efficace des données.

Par conséquent, l’utilisation des techniques d’exploration de données et d’apprenti-

ssage automatique est devenue une nécessité pour l’extraction automatique des con-

naissances et la découverte des modèles sous-jacents dans ces données. En fait, selon

les connaissances contextuelles et la manière d’identifier les modèles de données, ces

techniques peuvent être classées en trois catégories: la classification, la régression

(ou prévision) et le regroupement (clustering en anglais). La classification des don-

nées, dont le but est d’identifier l’appartenance d’un point de données à un groupe

prédéfini, peut modéliser de nombreuses applications dans le monde réel. En effet,

les ensembles de données sont généralement représentés par des matrices bidimen-
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sionnelles où les lignes correspondent aux échantillons de données et les colonnes

correspondent aux attributs qui les caractérisent.

En introduisant des données de grandes dimensions dans le «modèle» des tech-

niques d’apprentissage traditionnelles sans pré-traitement approprié, des performances

d’apprentissage insatisfaisantes peuvent être obtenues en raison d’un problème cri-

tique connu sous le nom de malédiction de la dimensionnalité [8]. Ce dernier fait

référence à un phénomène selon lequel les données deviennent plus dispersées dans

les espaces de grandes dimensions, ce qui conduit à sur-adapter l’algorithme d’apprent-

issage [9]. De plus, certains attributs caractérisant les données n’apportent aucune

information utile à un critère d’évaluation de la pertinence (par exemple, la discrimi-

nation de classe). D’autres attributs peuvent être corrélés ou redondants, ce qui rend

le processus d’apprentissage complexe, coûteux en termes de stockage et de calcul,

inefficace, moins généralisable et difficile à interpréter.

Les attributs d’entrée d’origine sont généralement composés des quatre groupes

suivants: (a) complètement non-pertinents, (b) faiblement pertinents et redondants, (c)

faiblement pertinents mais non redondants, et (d) attributs fortement pertinents [25].

Les deux premiers groupes peuvent dégrader considérablement les performances des

algorithmes d’apprentissage et diminuer leur efficacité de calcul [28–30]. Un algo-

rithme de sélection d’attributs convenable devrait permettre de conserver les attributs

au sein des groupes (c) et (d). La figure (A ) présente les quatre groupes existants et

identifie le sous-ensemble d’attributs souhaité optimal.
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Complètement Attributs non-
pertinents 

Faiblement Attributs pertinents 
et redondants 

Faiblement Attributs 
pertinents mais non 

redondants 

Attributs très 
pertinents 

Sous-ensemble d'attributs optimaux 

(a) (b) (c) (d) 

Figure A : Les quatre types d’attributs selon leur pertinence et leur redondance.

Pour mieux expliquer les notions de pertinence et de redondance, nous utilisons

deux attributs pour présenter trois exemples différents illustrés dans la Figure (B ). Le

premier exemple présenté dans la Figure (B a) montre le cas où l’attribut 1 et l’attribut

2 sont considérés comme non-pertinents, à cause de leur incapacité à discriminer les

points de données des deux classes. Dans le deuxième exemple, présenté dans la

Figure (B b), l’attribut 1 est considéré comme non-pertinent; alors que l’attribut 2 peut

clairement séparer la classe A de la classe B, et par conséquence, il est considéré comme

pertinent. Généralement, l’attribut est dit pertinent quand il décrit mieux un ensem-

ble de données en fonction d’un certain critère d’évaluation de pertinence spécifique,

ce qui correspond à la capacité de séparation de classes (problèmes de classification)

dans notre exemple. Par contre, le troisième exemple, présenté dans la Figure (B c),

correspond au cas où l’attribut 1 et l’attribut 2 sont redondants. Dans ce cas, les infor-

mations fournies par les attributs sont fortement corrélées.

Il est bien connu que la présence d’attributs non pertinents et redondants peut

197



pénaliser les performances d’un algorithme d’apprentissage automatique, augmenter

ses besoins en stockage, augmenter ses coûts de calcul et rendre la visualisation des

données et l’interprétabilité des modèles plus difficiles. Pour atténuer ces problèmes,

la réduction de dimensionnalité en tant que stratégie de prétraitement des données

est l’un des outils les plus puissants à utiliser. Elle peut être principalement divisée en

deux groupes différents, l’extraction d’attributs et la sélection d’attributs [10–12].

• Extraction d’attributs: projette l’espace d’entrée initial sur une nouvelle dimen-

sion inférieure en combinant les attributs d’origine de manière linéaire ou non

linéaire, modifiant ainsi leur signification [13, 14]. En fait, l’extraction linéaire

d’attributs est appliquée lorsque les données sont dans un sous-espace linéaire

ou lorsque les classes de données peuvent être discriminées linéairement, alors

que l’extraction non-linéaire d’attributs est appliquée lorsque le modèle de don-

nées est supposé être plus complexe et existe sur une sous-variété non-linéaire

[15]. Certains algorithmes d’extraction d’attributs bien connus sont l’analyse dis-

(a) (b) (c)

Figure B : Trois exemples illustrant les notions de pertinence et de redondance. (a)

montre deux attributs non-pertinents; (b) montre un attribut pertinent (attribut 2) et

un attribut non-pertinent (attribut 1); et (c) montre deux attributs redondants.
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criminante linéaire (LDA) [161], l’analyse en composantes principales (PCA) [19]

et les algorithmes à base de graphes.

• Sélection d’attributs: la sélection d’attributs vise à sélectionner les attributs qui

décrivent au mieux une base de données parmi un grand ensemble d’attributs

candidats, afin de créer un espace de dimension inférieure, sans aucune trans-

formation ni modification de la signification d’attributs d’origine [12, 14, 24, 25].

Pour les problèmes de classification, la sélection des attributs vise à sélectionner

les attributs les plus discriminants. En d’autres termes, il s’agit de sélection-

ner les attributs qui distinguent mieux les points de données appartenant à dif-

férentes classes. Parmi les algorithmes de sélection d’attributs les bien connus,

on peut citer le coefficient de corrélation de Pearson (PCC) [24], l’information

mutuelle (MI) [15], le filtre à corrélation rapide (FCBF) [26], la sélection séquen-

tielle en avant (SFS), la sélection séquentielle en arrière (SBS) [15] et la Redon-

dance minimale Pertinence Maximale (mRMR) [27].

Les deux outils de réduction de dimensionnalité ci-dessus, l’extraction d’attributs

et la sélection d’attributs, sont efficaces et capables de:

– Améliorer les performances d’apprentissage.

– Diminuer la mémoire de stockage.

– Améliorer l’efficacité des calculs.

– Construire de meilleurs modèles de généralisation.

Néanmoins, la sélection d’attributs coûte moins cher en terme de calcul et elle
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est meilleure en termes de lisibilité et d’interprétabilité. Alors que l’extraction

d’attributs projète l’espace d’attributs d’origine dans un nouvel espace de di-

mension inférieure. Contrairement à la sélection d’attributs, la signification des

attributs extraits n’est pas conservée. Il est important de noter qu’il est parfois

crucial de conserver le sens original des attributs, comme dans l’analyse géné-

tique, qui consiste à déterminer quels gènes sont responsables d’une maladie

donnée [8, 24]. Par conséquent, dans notre travail, nous nous intéressons aux

méthodes de sélection d’attributs.

Généralement, la sélection individuelle d’attributs peut être réalisée en associant à

chaque attribut un score de pertinence qui est un poids positif ou nul et en les ordon-

nant selon leurs scores. En effet, le processus d’évaluation de ce score change avec le

changement de connaissance contextuelle. Par conséquent, dans un contexte non su-

pervisé où aucune information de labellisation n’est disponible, les méthodes de sélec-

tion d’attributs ont recours à des approches de similarité des données et d’informations

discriminantes locales pour mesurer la capacité des attributs dans des groupes de don-

nées discriminantes. D’un autre côté, dans un contexte supervisé où les données sont

entièrement labellisées, les méthodes de sélection d’attributs accordent des scores plus

élevés aux attributs ayant des mesures de corrélation élevées avec les labellisations de

classes.

Il existe toute une famille d’algorithmes de sélection d’attributs qui utilisent un

score basé sur la marge afin d’évaluer et de classer les attributs. Ceux-ci sont ap-

pelés algorithmes à base de Relief (RBAs) et ont été initialement suggérés dans le con-
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texte supervisé pour des problèmes à deux classes. Ils affectent des poids plus impor-

tants aux attributs qui contribuent au mieux à élargir une distance interclasses appelée

l’hypothèse de marge. Cette marge est calculée en tant que différence entre la distance

d’un point à son “nearmiss” (point le plus proche ayant une labellisation différente)

et la distance à son “nearhit” (point le plus proche ayant la même labellisation). Les

RBAs se sont généralement bien comportés, quelles que soient les spécifications du

problème. Ils ont des algorithmes de filtrage à faible biais (indépendants des classi-

fieurs), considérés relativement rapides, capables de détecter l’interaction d’attributs,

robustes et tolérants au bruit, en plus de leur capacité à réveler les dépendances locales

des données [1, 2].

Toutefois, dans de nombreuses applications du monde réel, il existe une faible

quantité de données labellisés et beaucoup plus de données non labellisés, et par

conséquent, l’emploi unique d’algorithmes supervisés ou non supervisés de sélection

d’attributs ne peuvent pas profiter de tous les points de données dans ces scénarios.

Pour cela, Il était bénéfique d’utiliser des méthodes semi-supervisées pour exploiter

les points étiquetés et non étiquetés. En fait, par rapport aux labellisations des classes,

les contraintes par paires sont un autre type d’information de supervision qui peuvent

être acquises plus facilement. Ces contraintes spécifient simplement si une paire de

points de données appartient à la même classe (must-link constraint) ou à des classes

différentes (cannot-link constraint), sans spécifier les classes elles-mêmes. De nom-

breux scores de contraintes ont utilisé ces deux notions pour classer les attributs, mais

ils négligent souvent les informations fournies par des données non contraintes et non
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labellisées.

Cela nous a amenés à proposer un nouveau cadre pour la sélection d’attributs semi-

supervisée avec contraintes basées sur des marges, et qui gère les deux aspects essen-

tiels de la sélection d’attributs: la pertinence et la redondance. Ce cadre est divisé en

trois composants principaux.

Le premier composant consiste en un algorithme de sélection d’attributs semi-

supervisés avec contraintes basées sur des marges qui utilisent uniquement des con-

traintes de comparaison de type cannot-link, et bénéficient à la fois du voisinage local

non étiqueté des points de données ainsi que des contraintes fournies. Pour cela, nous

avons suggéré d’intégrer la modification du score de sélection basé sur l’hypothèse de

marges utilisé avec des contraintes cannot-link, avec la solution analytique de l’algori-

thme de Relief supervisé [50, 66]. Autrement dit, nous avons fusionné le concept de

l’hypothèse de marges, utilisé dans [107] avec l’algorithme Relief pour obtenir une

meilleure optimisation. Par conséquent, nous obtenons notre algorithme de sélection

d’attributs semi-supervisé basé sur des marges, appelé Relief-Sc. Il utilise des con-

traintes cannot-link pour résoudre un problème convexe simple donnant une solution

unique. En outre, nous présentons l’algorithme Relief-Sc légèrement modifié dans

une version plus robuste, appelée algorithme ReliefF-Sc.

Pour expliquer l’idée de base de Relief-Sc, considérons (xn, xn) un couple de con-

traintes de cannot-link avec xn et xm représentant deux points de données. Relief-Sc
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trouve ensuite les points les plus proches (nearhit) de xn et xm. Ensuite, il calcule la dif-

férence entre la distance entre xn et le nearhit de xm et entre xn et son propre nearhit.

Notez que cette différence est observée sur chacun des attributs disponibles. Ainsi,

Relief-Sc évalue la "marge" induite par chaque attribut. En d’autres termes, il sup-

pose que la capacité d’un attribut à discriminer entre les points de données puisse être

appliquée en fonction de sa contribution à la maximisation de la marge. Cette contri-

bution peut être représentée et quantifiée par un vecteur de poids s’étendant sur tous

les attributs [118]. Ayant un ensemble de contraintes de cannot-link, Relief-Sc met à

jour de manière itérative le poids de chaque attribut en fonction de la marge qu’il in-

duit sur chaque contrainte de cannot-link. À la fin, les attributs ayant le poids les plus

élevés sont classés en premier et par conséquent considérés comme plus pertinents

pour la fonction objective considérée.

Cependant, nous avons constaté que les contraintes par paires sont généralement

dites passives et sont générées aléatoirement à partir des données labellisées pour

évaluer la moyenne des résultats. Cela conduit à la génération aléatoire d’un grand

nombre de contraintes qui peuvent être redondantes, inutiles, et même, dans certaines

circonstances, défavorables aux performances de l’algorithme. Ce qui masque égale-

ment l’effet individuel de chaque ensemble de contraintes.

Sélection active des contraintes

En outre, bien qu’il soit communément admis que l’ajout de contraintes en tant qu’info-

rmation de supervision améliorerait les performances du clustering, Davidson et al.
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[57] ont mentionné que les performances pourraient être dégradées, même lorsque les

contraintes sont aléatoires, mais générées directement à partir de données labellisées.

Par conséquent, nous nous attendions à ce que les attributs utilisés puissent affecter

la performance de la méthode de sélection des attributs avec contraintes, de la même

manière qu’ils affectent le clustering avec contraintes.

En conséquence, nous avons suggéré le deuxième composant de notre cadre dans

lequel nous avons ciblé le processus de sélection systématique et active des contraintes

sur la base de l’idée de perturbation de matrice de similarité [143]. Pour cela, nous

bénéficions des caractéristiques spectrales du graphe Laplacien qui est à son tour

défini sur la matrice de similarité. L’impact de chaque couple de données (contraintes

de comparaison) sur cette matrice peut être reflété par le changement qu’il peut en-

traîner sur le graphe Laplacien, et en particulier sur ses valeurs et vecteurs propres.

Lorsqu’une petite perturbation de la valeur de similarité d’un couple est capable de

perturber le graphe Laplacien conduisant à une forme mieux séparée du second vecteur

propre, ce couple est définitivement considéré comme une contrainte plus importante

et plus significative. Nous avons donc proposé une méthode de sélection de contrainte

active (ACS) basée sur un critère de sensibilité du second vecteur propre.

Techniquement, l’algorithme ACS commence initialement par une matrice com-

plète de similarités entre les points de données à partir desquels il calcule le graphe

Laplacien des données. Il trouve ensuite les vecteurs propres et les valeurs propres

de ce dernier graphe suivis en considérant spécifiquement le deuxième vecteur pro-
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pre. Lorsque les données sont organisées en groupes, leur projection sur le deuxième

vecteur propre est suffisante pour diviser l’ensemble de données en deux groupes dis-

tincts. Ces deux groupes sont obtenus en seuillant les valeurs du deuxième vecteur

propre par rapport à zéro. Ainsi, un groupe est formé sur le côté négatif et l’autre

sur le côté positif montrant que ce vecteur propre joue le rôle d’une approximation du

vecteur indicateur de clusters. ACS se concentre ensuite sur la capture du point de

magnitude minimum sur le deuxième vecteur propre estimé. Ce point est considéré

comme celui qui présente la plus grande incertitude. Il s’ensuit alors que ACS utilise

de manière itérative le théorème de l’analyse de perturbations pour trouver active-

ment le couple dans l’espace d’entrée qui a la plus grande dérivée de premier ordre

par rapport à ce point minimum sur le deuxième vecteur propre (celui le plus proche

de zéro est considéré le plus incertain) [156, 157].

Par conséquent, ACS mesure ensuite la sensibilité du point le plus incertain sur le

deuxième vecteur propre par rapport au changement des valeurs de similarité entre

chaque couple de données. Une fois qu’il trouve le couple de points le plus incer-

tain sur le deuxième vecteur propre, seul ce couple est interrogé par comparaison et

sa valeur de similarité correspondante est modifiée. Pour cela, une source externe

de connaissances (par exemple un expert) est invitée à observer le couple choisi et à

fournir une réponse sur la question de savoir si le couple se ressemble must-link ou

ne se ressemble pas cannot-link. S’il apparaît que le couple interrogé doit être une

contrainte de cannot-link (or must-link), sa valeur de similarité passe à 0 (ou 1). Enfin,

le deuxième vecteur propre est à nouveau calculé et le processus est reitéré jusqu’à

trouver le nombre de contraintes requis.
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Alors, notre objectif était de rechercher les couples de données dont les projections

sur le deuxième vecteur propre sont les plus proches de zéro et de signes opposés. Ces

derniers couples seront les seuls interrogés sur les contraintes, réduisant ainsi le coût

des requêtes. En fait, ces contraintes, qui peuvent réduire l’incertitude et améliorer la

séparation des classes, permettent de sélectionner des attributs pertinents dotés de la

plus grande capacité de discrimination de classes.

Propagation des contraintes

De plus, comme nous ne pouvons poser que quelques questions avant que le proces-

sus ne devienne ennuyeux et coûteux en ressources, nous avons également montré

le processus de propagation des contraintes sélectionnées activement dans leur voisi-

nage non-labellisé, appelé PACS. À cet égard, nous avons montré comment le PACS

peut augmenter les informations de supervision et améliorer la sélection des attributs

sans nécessiter de coûts de de requêtes plus élevés. Cela est réalisé en décomposant

le problème en un ensemble de sous-problèmes de propagation de labellisations in-

dépendantes.

Dans le PACS, les contraintes de cannot-link initialement obtenues par ACS sont

représentées par une matrice d’indicateurs parcimonieux qui a une valeur de 1 unique-

ment entre les couples de cannot-link. Ensuite, la propagation des contraintes verti-

cales, c.-à-d., le long des colonnes de la matrice de contraintes initiale, est appliquée.

Parfois, une colonne peut ne contenir aucune contrainte par paire, cela signifie que
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toutes les cellules de cette colonne peuvent avoir la valeur zéro et donc aucune prop-

agation de contrainte verticale ne peut être obtenue pour cette colonne particulière.

Ceci est résolu par une étape de propagation horizontale. Cette dernière est appliquée

après avoir terminé la propagation verticale dans une approche itérative et conduit à

une matrice complète qui contient une contrainte douce entre tous les deux points de

données. Finalement, il est nécessaire de trouver un seuil approprié pour filtrer les

contraintes propagées. Ainsi, tout couple correspondant à un élément de la matrice

de contraintes souples ayant une valeur inférieure au seuil sera ignoré et tout couple

correspondant à une élément ayant une valeur supérieure ou égale au seuil sera con-

sidéré comme une contrainte de cannot-link dans le nouvel ensemble de contraintes

propagées. Ce seuil est calculé comme la moyenne des valeurs maximales obtenues à

partir de chaque ligne de la matrice complète des contraintes souples.

De plus, nous avons remarqué qu’un inconvénient de l’algorithme Relief-Sc, hérité

de sa version standard supervisée [66], est qu’il n’est pas assez efficace pour gérer la

redondance entre les attributs. Néanmoins, il est bien connu que l’élimination des

attributs redondants est également un aspect important de la sélection des attributs.

Sélection d’attributs représentatifs

En conséquence, nous avons suggéré le troisième composant de notre cadre dans

lequel on étend notre méthode de sélection d’attributs semi-supervisée à une nou-

velle combinaison de regroupement d’attributs et de maximisation des marges de

l’hypothèse appelée FCRSC. Cette approche, présentée dans la figure (C ), vise à traiter

207



Classification non-
supervisée des 

 les attributs 

Choisir 
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les attributs 
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et 
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Figure C : Schéma méthodologique de sélection d’attributs représentatifs de clusters

dans l’espace d’attributs.

les deux aspects essentiels de la sélection des attributs (pertinence et redondance) et

est divisée en trois étapes.

• Étape 1: Une mesure de distance appropriée est choisie pour évaluer la simi-

larité ou la dissimilarité entre les attributs. Dans le FCRSC les poids de simi-

larité entre les attributs sont représentés par un graphe parcimonieux en vertu

duquel on suppose que chaque attribut peut être reconstruit à partir de la com-

binaison linéaire parcimonieuse d’autres attributs. Cela se fait en résolvant un

L1-problème de minimisation.

• Étape 2: Une méthode de clustering appropriée est appliquée pour regrouper des

attributs similaires. Parmi les quatre principales catégories de regroupement qui

sont hiérarchiques, basées densité, statistiques et basées centroïdes [130], nous

étions intéressés par le regroupement hiérarchique. Cet algorithme génère un

diagramme arborescent appelé dendrogramme. Intuitivement, à des niveaux

inférieurs du dendrogramme, nous avons les grappes des attributs les plus re-

dondants qui ont d’abord été regroupés. Ainsi, la réduction à de faibles niveaux
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entraîne un nombre plus élevé de clusters et donc davantage de représentants de

clusters, c.-à-d., un sous-ensemble d’attributs de sortie plus important. Par con-

séquent, nous avons décidé de couper l’arbre lorsque les distances de fusion de-

viennent suffisamment grandes pour créer une hiérarchie de deuxième niveau;

on coupe lorsque des groupes d’entités commencent à être fusionnées au lieu

de fusionner des entités individuelles. Cela s’explique par notre objectif de ré-

duire la redondance des attributs à un certain niveau, sans réduction excessive

pouvant entraîner une perte d’information.

• Étape 3: Un critère d’évaluation approprié est appliqué pour choisir l’attribut le

plus représentatif de chaque groupe/cluster. Dans le FCRSC, nous commençons

par les deux ingrédients disponibles, c.-à-d., la solution de clustering obtenue

par clustering hiérarchique et le vecteur de poids obtenu par Relief-Sc. Ensuite,

pour chacun des clusters obtenus, le nombre d’attributs à l’intérieur est évalué.

Lorsqu’un cluster est composé d’un seul attribut (considéré comme non redon-

dant), il est directement ajouté au sous-ensemble d’attributs final choisi. Cepen-

dant, lorsque plusieurs attributs sont trouvés dans le même cluster, les attributs

seront triés dans l’ordre décroissant de leur vecteur de pondération de marge

correspondant. Ainsi, l’attribut avec le poids le plus élevé (le plus pertinent) est

ajouté à l’ensemble d’attributs et les autres sont éliminés car ils sont jugés redon-

dants. Après avoir obtenu les attributs représentatifs de chaque cluster, ceux-ci

sont à nouveau triés dans l’ordre décroissant de leurs poids.

Afin de comparer les performances de nos méthodes suggérées avec d’autres méth-

odes de sélection d’attributs supervisés, non supervisés et contraintes basées sur les
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scores, des expériences ont été réalisées sur des jeux de données de référence UCI et

d’expression des gènes de grande dimension.

Contributions

Le cœur de cette thèse est la sélection active d’attributs semi-supervisée avec con-

traintes pour les données de grande dimension. Dans la mesure où la sélection d’attri-

buts vise à trouver un petit sous-ensemble d’attributs pertinents et non redondants

pouvant résumer avec succès l’espace d’attributs d’origine, notre travail devait se con-

centrer d’abord sur le problème de la sélection d’attributs pertinents avec contraintes,

puis sur la gestion de la redondance. Tout au long de ce travail, nos contributions

peuvent être résumées comme suit:

• Nous présentons une revue bibliographique et concise sur les algorithmes basés

sur Relief à partir de leurs quatre interprétations possibles (probabiliste, com-

préhensible, mathématique et statistique), tout en soulignant leurs points forts,

leurs limites, leurs variantes et leurs extensions, en plus de représenter l’algorithme

Relief standard comme un algorithme basé sur la marge.

• Nous proposons des algorithmes de sélection d’attributs semi-supervisés basés

sur les marges Relief-Sc (Relief avec contraintes de comparaisons) et sa ver-

sion robuste nommée ReliefF-Sc. Ils intègrent la modification de l’hypothèse de

marges quand elle est utilisée avec des contraintes cannot-link, avec la solution

analytique de l’algorithme Relief supervisé du point de vue de son optimisation.

Ils utilisent des contraintes cannot-link uniquement pour résoudre un problème
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convexe simple dans une forme fermée offrant une solution unique.

• Nous suggérons une méthode active pour la sélection de contraintes par paires

appelée Sélection de Contrainte Active (ACS). Le résultat de cette méthode est

utilisé par Relief-Sc et ReliefF-Sc. ACS est basé sur la théorie de perturbations

matricielles, et en particulier, sur le théorème de perturbation de vecteurs pro-

pres de premier ordre. L’algorithme choisit systématiquement les paires de don-

nées les plus efficaces pour réduire les incertitudes. En conséquence, seuls ces

couples sont soumis à l’expertise humaine, ce qui permet de réduire le coût de la

main-d’œuvre. En outre, une méthode de propagation de ces contraintes sélec-

tionnées dans leur voisinage (PACS) a également été suggérée.

• Nous proposons d’étendre notre méthode de sélection d’attributs semi-supervisée

à une nouvelle combinaison de regroupement d’attributs et de maximisation

des marges d’hypothèses. Cette méthode appelée Feature Clustering ReliefF-Sc

(FCRSC), permet d’éliminer la redondance dans le cadre de notre travail global

suggéré.

Structure de la Thèse

Cette thèse est structurée comme suit:

Dans l’introduction générale, nous fournissons une brève introduction au prob-

lème de sélection d’attributs dans un contexte semi-supervisé. nous décrivons égale-

ment les principales contributions de la thèse.
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Dans le premier chapitre, nous présentons les définitions de réduction de dimen-

sionnalité, d’extraction d’attributs, de sélection d’attributs, de pertinence et de redon-

dance d’attributs. Nous présentons également les principales notations de données et

la représentation des connaissances, ainsi que les méthodes de construction des don-

nées à base de graphes. En outre, nous classons le processus de sélection d’attributs

en fonction de la disponibilité des informations de supervision (labellisation de classe

et contraintes par paires) et en fonction du critère de performance de l’évaluation, tout

en présentant l’ordonnancement des attributs selon leurs scores.

Dans le deuxième chapitre, nous présentons une bibliographie sur les algorithmes

Relief de type filtre les plus populaires et nous mettons l’accent sur l’importance des

marges dans ces algorithmes. L’algorithme Relief supervisé original est expliqué en

détail en mettant l’accent sur ses points forts, ses points faibles et sur ses applications

dans différents contextes en tant qu’algorithme sensible au contexte. Nous couvrons

également toutes les variantes et extensions de Relief suggérées pour traiter les prob-

lèmes de données bruitées, incomplètes et à classes multiples. Le chapitre est divisé

en quatre sections principales, chacune exprime une interprétation possible différente

(probabiliste, compréhensible, mathématique et statistique).

Dans le troisième chapitre, nous proposons dans un premier temps l’algorithme

Relief-Sc et sa version robuste ReliefF-Sc. Leur objectif est de réduire la haute dimen-

sionnalité des données en trouvant un sous-ensemble d’attributs pertinents uniques,
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dans un contexte semi-supervisé à l’aide de contraintes cannot-link. Par conséquent,

nous expliquons d’abord le changement de principales notions de marge du con-

texte supervisé au contexte avec contraintes. Nous formulons également le Relief-Sc

avec contraintes par l’interprétation mathématique des RBA. De plus, nous présentons

l’algorithme basé sur les marges avec contraintes (Simba-Sc) principalement utilisé

dans nos comparaisons des performances de Relief-Sc. D’autre part, nous présen-

tons notre méthode FCRSC pour l’élimination ou la minimisation de redondance avec

ses trois principaux blocs de construction: (1) la construction de graphes creux pour

représenter les similarités d’attributs, (2) le regroupement hiérarchique sur ce dernier,

(3) la combinaison de la maximisation des marges avec les résultats de la segmenta-

tion d’attributs, ce qui optimise la pertinence tout en minimisant la redondance. Enfin,

nous validons expérimentalement l’efficacité de Relief-Sc, ReliefF-Sc et FCRSC sur

plusieurs bases d’apprentissage automatique UCI et deux jeux de données d’expression

de gènes de grandes dimensions par rapport aux méthodes de sélection supervisées,

non supervisées et semi-supervisées.

Dans le quatrième chapitre, nous présentons nos méthodes de sélection et de prop-

agation de contraintes actives en expliquant les travaux correspondants. En fait, nous

avons divisé le chapitre en deux parties, la première explique notre contribution es-

sentielle, c.-à-d., le processus de sélection des contraintes de comparaison à utiliser par

l’algorithme de sélection d’attributs basé sur les marges avec contraintes, Relief-Sc. La

seconde partie discute l’accroissement des informations de supervision en propageant

ces contraintes appelées PACS. Enfin, des expériences approfondies ont été appliquées
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sur des ensembles de données de référence UCI et sur deux systèmes d’expression de

gènes de grandes dimensions pour valider les performances de nos méthodes, ainsi

que pour montrer l’effet des contraintes générées aléatoirement (RCG) par rapport

aux contraintes sélectionnées (ACS) dans le processus de sélection d’attributs avec

contraintes.

Finalement, dans la conclusion générale, nous résumons nos constatations, contri-

butions et limites et en proposant des perspectives pour la continuité de ce travail.
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